eprintid: 7210 rev_number: 4 userid: 6 dir: disk0/00/00/72/10 datestamp: 2011-11-10 19:37:41 lastmod: 2016-11-15 13:40:31 status_changed: 2011-11-10 19:37:41 type: thesis_degree metadata_visibility: show contact_email: tam7@pitt.edu item_issues_count: 0 eprint_status: archive creators_name: Madison, Tamika Arlene creators_email: tam7@pitt.edu creators_id: TAM7 title: Electron and Molecular Dynamics: Penning Ionization and Molecular Charge Transfer ispublished: unpub divisions: sch_as_chemistry full_text_status: public keywords: charge transport; computer simulations; mass spectrometry; molecular beams; organic semiconductors; Penning ionization abstract: An understanding of fundamental reaction dynamics is an important problem in chemistry. In this work, experimental and theoretical methods are combined to study the dynamics of fundamental chemical reactions. Molecular collision and dissociation dynamics are explored with the Penning ionization of amides, while charge transfer reactions are examined with charge transport in organic thin film devices.Mass spectra from the Penning ionization of formamide by He*, Ne*, and Ar* were measured using molecular beam experiments. When compared to 70eV electron ionization spectra, the He* and Ne* spectra show higher yields of fragments resulting from C!N and C!H bond cleavage, while the Ar* spectrum only shows the molecular ion, H-atom elimination, and decarbonylation. The differences in yields and observed fragments are attributed to the differences in the dynamics of the two ionization methods. Fragmentation in the Ar* spectrum was analyzed using quantum chemistry and RRKM calculations. Calculated yields for the Ar* spectrum are in excellent agreement with experiment and show that 15% and 50% of the yields for decarbonylation and H-atom elimination respectively are attributed to tunnelingThe effects of defects, traps, and electrostatic interactions on charge transport in imperfect organic field effect transistors were studied using course-grained Monte Carlo simulations with explicit introduction of defect and traps. The simulations show that electrostatic interactions dramatically affect the field and carrier concentration dependence of charge transport in the presence of a significant number of defects. The simulations also show that while charge transport decreases linearly as a function of neutral defect concentration, it is roughly unaffected by charged defect concentration. In addition, the trap concentration dependence on charge transport is shown to be sensitive to the distribution of trap sites.Finally, density functional theory calculations were used to study how charge localization affects the orbital energies of positively charged bithiophene clusters. These calculations show that the charge delocalizes over at least seven molecules, is more likely to localize on "tilted" molecules due to polarization effects, and affects molecules anisotropically. These results suggest that models for charge transport in organic semiconductors should be modified to account for charge delocalization and intermolecular interactions. date: 2011-06-30 date_type: completed institution: University of Pittsburgh refereed: TRUE etdcommittee_type: committee_chair etdcommittee_type: committee_member etdcommittee_type: committee_member etdcommittee_type: committee_member etdcommittee_name: Hutchison, Geoffrey R etdcommittee_name: Yaron, David etdcommittee_name: Grabowski, Joseph J etdcommittee_name: Chong, Lillian T etdcommittee_email: geoffh@pitt.edu etdcommittee_email: yaron@cmu.edu etdcommittee_email: joeg@pitt.edu etdcommittee_email: ltchong@pitt.edu etdcommittee_id: GEOFFH etdcommittee_id: etdcommittee_id: JOEG etdcommittee_id: LTCHONG etd_defense_date: 2011-04-12 etd_approval_date: 2011-06-30 etd_submission_date: 2011-04-15 etd_access_restriction: immediate etd_patent_pending: FALSE assigned_doi: doi:10.5195/pitt.etd.2011.7210 thesis_type: dissertation degree: PhD committee: Geoffrey R. Hutchison (geoffh@pitt.edu) - Committee Chair committee: David Yaron (yaron@cmu.edu) - Committee Member committee: Joseph J. Grabowski (joeg@pitt.edu) - Committee Member committee: Lillian T. Chong (ltchong@pitt.edu) - Committee Member etdurn: etd-04152011-175003 other_id: http://etd.library.pitt.edu/ETD/available/etd-04152011-175003/ other_id: etd-04152011-175003 citation: Madison, Tamika Arlene (2011) Electron and Molecular Dynamics: Penning Ionization and Molecular Charge Transfer. Doctoral Dissertation, University of Pittsburgh. (Unpublished) document_url: http://d-scholarship-dev.library.pitt.edu/7210/1/dissertation_tamadison_04252011.pdf