%A SA Asher %A KW Kimble %A JP Walker %J Chemistry of Materials %T Enabling thermoreversible physically cross-linked polymerized colloidal array photonic crystals %X We physically cross-linked a thermoreversible poly(vinyl alcohol) (PVA) hydrogel (TG) within a crystalline colloidal array (CCA) to form an enabling photonic crystal material. The TG consists of a physically cross-linked network formed in a process reminiscent of the well-known freeze-thaw physically cross-linking process, but which avoids solvent freezing which invariably disorders the CCA. These TGCCA can be inexpensively fabricated in any large volume and shape by avoiding the previous covalently polymerized CCA constraints that required thin sheet geometries to enable penetration of the UV light used to photopolymerize the system. This TG hydrogel enables rigidificaton of CCA crystals and subsequent chemical functionalization. In addition, an additional interpenetrating hydrogel can be polymerized within the TGPCCA. The TG can then be dissolved away by simply increasing the temperature. The TGCCA photonic crystal diffraction is highly efficient and similar to previously demonstrated PCCA with covalent cross-links. These TGCCA are stable for weeks or longer at room temperature and can be utilized as photonic crystal materials. They also can be irreversibly covalently cross-linked by using gluteraldehyde. These gluteraldehyde cross-linked TGCCA can be made into chemically responsive sensor photonic crystals by functionalizing the PVA hydroxyl groups with chemical recognition agents. We demonstrate low and high pH sensing by functionalizing with carboxylates and phenol derivatives, respectively. ? 2008 American Chemical Society. %N 24 %P 7501 - 7509 %V 20 %D 2008 %R 10.1021/cm801519x %L pittir17252