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LATERAL-TORSIONAL BUCKLING OF STRUCTURES WITH MONOSYMMETRIC
CROSS-SECTIONS

Matthew J. Vensko, M.S.

University of Pittsburgh, 2008

Lateral-torsional buckling is a method of failure that occurs when the in-plane bending capacity
of a member exceeds its resistance to out-of-plane lateral buckling and twisting. The lateral-
torsional buckling of beam-columns with doubly-symmetric cross-sections is a topic that has
been long discussed and well covered. The buckling of members with monosymmetric cross-
sections is an underdeveloped topic, with its derivations complicated by the fact that the centroid
and the shear center of the cross-section do not coincide. In this paper, the total potential energy
equation of a beam-column element with a monosymmetric cross-section will be derived to

predict the lateral-torsional buckling load.

The total potential energy equation is the sum of the strain energy and the potential
energy of the external loads. The theorem of minimum total potential energy exerts that setting
the second variation of this equation equal to zero will represent a transition from a stable to an
unstable state. The buckling loads can then be identified when this transition takes place. This

thesis will derive energy equations in both dimensional and non-dimensional forms assuming



that the beam-column is without prebuckling deformations. This dimensional buckling equation

will then be expanded to include prebuckling deformations.

The ability of these equations to predict the lateral-torsional buckling loads of a structure
is demonstrated for different loading and boundary conditions. The accuracy of these predictions
is dependent on the ability to select a suitable shape function to mimic the buckled shape of the
beam-column. The results provided by the buckling equations derived in this thesis, using a
suitable shape function, are compared to examples in existing literature considering the same

boundary and loading conditions.

The finite element method is then used, along with the energy equations, to derive
element elastic and geometric stiffness matrices. These element stiffness matrices can be
transformed into global stiffness matrices. Boundary conditions can then be enforced and a
generalized eigenvalue problem can then be used to determine the buckling loads. The element
elastic and geometric stiffness matrices are presented in this thesis so that future research can
apply them to a computer software program to predict lateral-torsional buckling loads of

complex systems containing members with monosymmetric cross-sections.
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1.0 INTRODUCTION

The members of a steel structure, commonly known as beam-columns, are usually designed with
a thin-walled cross-section. Thin-walled cross-sections are used as a compromise between
structural stability and economic efficiency and include angles, channels, box-beams, [-beams,
etc. These members are usually designed so that the loads are applied in the plane of the weak
axis of the cross-section, so that the bending occurs about the strong axis. However, when a
beam, usually slender in nature, has relatively small lateral and torsional stiffnesses compared to
its stiffness in the plane of loading, the beam will deflect laterally and twist out of plane when
the load reaches a critical limit. This limit is known as the elastic lateral-torsional buckling
load.

The lateral buckling and twisting of the beam are interdependent in that when a member
deflects laterally, the resulting induced moment exerts a component torque about the deflected
longitudinal axis which causes the beam to twist (Wang, et al. 2005). The lateral-torsional
buckling loads for a beam-column are influenced by a number of factors, including cross-
sectional shape, the unbraced length and support conditions of the beam, the type and position of
the applied loads along the member axis, and the location of the applied loads with respect to the
centroidal axis of the cross section.

This paper will focus on the lateral-torsional buckling of steel I-beams with a

monosymmetric cross-section. In a beam with a monosymmetric cross-section, the shear center



and the centroid of the cross-section do not coincide. The significance of this can be explained
by the Wagner effect (Anderson and Trahair, 1972), in which the twisting of the member causes
the axial compressive and tension stresses to exert an additional disturbing torque. This torque
can reduce the torsional stiffness of a member in compression and increase the torsional stiffness
of a member in tension. In I-beams with doubly-symmetric cross-sections, these compressive
and tensile stresses balance each other exactly and the change in the torsional stiffness is zero. In
I-beams with monosymmetric cross-sections where the smaller flange is further from the shear
center, the Wagner effect results in a change in the torsional stiffness. The stresses in the smaller
flange have a greater lever arm and predominate in the Wagner effect. The torsional stiffness of
the beam will then increase when the smaller flange is in tension and decrease when the smaller
flange is in compression.

When a structure is simple, such as a beam, an energy method approach may be used
directly to calculate the lateral-torsional buckling load of the structure. Assuming a suitable
shape function, the equations derived using the energy method can provide approximate buckling
loads for the structure. However, when a structure is complex, this is not possible. In this case,
the energy method in conjunction with the finite element method may be used to calculate the
lateral-torsional buckling load of the structure.

The finite element method is a versatile numerical and mathematical approach which can
encompass complicated loads, boundary conditions, and geometry of a structure. First, element
elastic stiffness and geometric stiffness matrices are derived for an element using the energy
equations for lateral-torsional buckling. The structure in question must be divided into several
elements, and a global coordinate system can be selected for that structure. The element elastic

stiffness and geometric stiffness matrices are transformed to the global coordinate system for



each element, resulting in global element elastic and geometric stiffness matrices for the
structure. After this assembly process, boundary conditions are enforced to convert the structure
from an unrestrained structure to a restrained structure. The derived equilibrium equations are in
the form of a generalized eigenvalue problem, where the eigenvalues are the load factors that,
when multiplied to a reference load, result in lateral-torsional buckling loads for the structure.

The main objective of this thesis is to formulate equations for lateral-torsional buckling
of monosymmetric beams using the energy method. Suitable shape functions will be applied to
these equations to provide approximate buckling solutions that can be compared to previous data.
The finite element method will be used to derive element elastic and geometric stiffness matrices
that can be used in future works in conjunction with computer software to determine lateral-

torsional buckling loads of more complex structures.



2.0 LITERATURE REVIEW

This section reviews available literature that explores lateral-torsional buckling as the primary
state of failure for beams used in structures. A beam that has relatively small lateral and
torsional stiffnesses compared to its stiffness in the plane of loading tends to deflect laterally and
twist out of plane. This failure mode is known as lateral-torsional buckling. Two methods are
used to derive the critical load values that result in lateral-torsional buckling beam failure: the
method utilizing differential equilibrium equations and the energy method. The differential
equilibrium method of stability analysis assumes the internal and external forces acting on an
object to be equal and opposite. The energy method refers to an approach where the total
potential energy of a conservative system is calculated by summing the internal and external
energies. The buckling loads for the system can then be approximated if a suitable shape
function for the particular structure is used, thus reducing the system from one having infinite
degrees of freedom to one having finite degrees of freedom. This approach is known as the
Rayleigh-Ritz method. This method will provide acceptable results as long as the assumed shape
function is accurate. Both the differential equilibrium method and energy methods are examined

in this literature review.



21 EQUILIBRIUM METHOD

The closed form solutions for various loading conditions and cross-sections are demonstrated
below using the equilibrium method. The beams are assumed to be stationary and therefore the
sum of the internal forces of the structure and the external forces is assumed to be zero. The
equations are rearranged in terms of displacements resulting in a second order differential
equation from which the buckling loads can be solved. The beams are assumed in this section to
be elastic, initially perfectly straight, and in-plane deformations are neglected. Rotation of the
beam, ¢, is assumed small, so for the small angle relationships sing = ¢ and cos¢g =1 can be
used.

Consider a simply supported beam with a uniform rectangular cross section as shown in
Figure 2.1a and Figure 2.1b. Note that u, v and w are the displacements in the x-, -, and z-
directions, respectively. The section rotates out of plane at an angle ¢. The differential
equilibrium equations of minor axis bending and torsion of a beam with no axial force (¥ = 0)

are derived from statics as (Chen and Lui. 1987)

d’ u
EI, 1 =-M_¢ (2.1)
d¢ du
G. A MXE+ M, (2.2)
Ehb’ Ghb®
where El | = 2 and GJ = 3



EI  represents the flexural rigidity of the beam with respect to the y-axis and GJ represents the

torsional rigidity of the beam with respect to the z-axis. M and M, are the internal moments
of the beam acting about the x-axis and the z-axis, respectively. In Eq. (2.1), the component of
M _ in the y-direction is represented by — M _sing which, by way of the small angle theorem,
reduces to — M ¢. In Eq. (2.2), the torsional component of M acting in the z-direction is

represented by M du .
dz

]

Figure 2.1a Beams of Rectangular Cross-Section

Figure 2.1b Beams of Rectangular Cross-Section with Axial Force and End Moments



2.1.1 Closed Form Solutions

Case 1: A beam that is subjected to only equal end moments M about x-axis

This loading case is shown in Figure 2.1b, with /= 0. Since there is no torsional component of

the moment, let M,= M and M,= 0. The equilibrium equations given in Eq. (2.1) and (2.2)

reduce to
d* u
Ely 7 =-M ¢ (2.3)
d¢ du
— =M — 2.4
GJ dz dz @4

Solving for u from Eqgs. (2.3) and (2.4) yields (respectively):

d’u - Mg
= —2=L 2.5
dz>  El, 3)
d’u _GJd i) 2.6)
dz* M dZ’ '
Eliminating u yields a single differential equation of the form
<4 + M =0 (2.7)
dz*  GJEI, ¢= '
Solving the second order differential equation yields the general solution as
") A'[ MZ] Beoy ——— @8)
z) = Asin| ————=| + Bcos ———— :
JEL.GJ JEL,GJ

By applying the boundary condition ¢ = 0 atz =0, B is equal to zero.



The constant 4 may then not be equal to zero because it provides a trivial solution. Therefore at

z=L
. Mcr L
sin———==0 (2.9)
JELGJ
Solving for M., to provide the smallest nonzero buckling load yields
| EI GJ
M, =—— (2.10)

cr L
where M., is the critical value of M that will cause the beam to deflect laterally and twist out of

plane.

Case 2: A linearly tapered beam with a rectangular cross section that is subjected to only equal

end moments M about x-axis

For this case, consider a linearly tapered beam with initial depth 4, which increases at a rate %5
as shown in Figure 2.2 where
M@=a+%&@ @2.11)

In Eq. (2.11), A(z) is the linear tapered depth of the beam as a function of z, 4, is the depth of

beam at z =0, and (1 + J) is the ratio of height of tapered beam at z =L to z = 0.



O — TR

y = (1+6)h,

Figure 2.2 Linear Tapered Beam Subjected to Equal and Opposite End Moments

The beam properties of the tapered section can be written as

EI, = El,n (2.12)
GJ=GJ,n (2.13)

here 1, = 10y Y g o 1a Zs 2.14
where /, = —°=, J, =~ —,and 7= 1+ 0. (2.14)

As in Case 1, there is no torsional component of the moment so that M,= M and M.= 0.

Substituting Egs. (2.12) and (2.13) into the equilibrium equations yield

dZ
El o —= - Mg 2.15)
dz
d¢  du
GIn - m= 2.1
oM e (2.16)

The derivative of # with respect to z is

dn_o (2.17)
dz L

which enables the following relationships



g _dpdy_5dy 19

dz dndz Ldn
and

ﬁ:(ﬂzﬁ

e 2.19
dz* L) dny’ 2.19)
Substituting Egs. (2.17) — (2.19) into the equilibrium Egs. (2.15) and (2.16) yield
El q{é) L M (2.20)
o L d772 - .
o) dg o) du
GJ 7(—)—: M(—j— 2.21
*\L) dn L) dn @.21)

Differentiating Eq. (2.21) and combining it with Eq.(2.20) in order to eliminate u yields

2
772;[—77?+ ﬂj—i+ k*¢=0 (2.22)
where
,  Mr
T ELGJS (223
The general solution of Eq. (2.22) is given by (Lee, 1959)
@ = Asin(kInn)+ Bcos(klnn) (2.24)

Applying the boundary condition ¢ = 0 atz= 0, B is equal to zero. The constant 4 may then not

be equal to zero because it provides a trivial solution. Therefore the boundary condition ¢ =0 at

n=(1+0) yields
sin(kIn(1+ 0)) =0 (2.25)

Solving for M., to provide the smallest nonzero buckling load yields

10



0 11E]0GJ0

M =
“ " In(1+5) L

(2.26)

where M., is the critical value of M that will cause the beam to deflect laterally and twist out of

plane. It is important to recognize that if & = 0, meaning that the beam is not tapered, Eq. (2.26)

reduces to
7 EI GJ
M, = % (2.27)

which is the result obtained in Case 1.

Case 3: A simply supported beam with a concentrated load, P, at midspan (at z = L/2)

For this case, consider a non-tapered beam with a concentrated load, P, at midspan as shown in

Figure 2.3.

Figure 2.3 Simply Supported Beam with Concentrated Load, P, at Midspan

11



The moments M, and M. are derived using basic equilibrium concepts as

M =

X

Pz
< 2.28
2 ( )

M. =

z

N | Ny

(ux—u) (2.29)

Where u* represents the lateral deflection at the centroid of the middle cross section and u
represents the lateral deflection at any cross section.

By substituting the relationships for A and M into Egs. (2.1) and (2.2), the differential

equations for this case become

2
g fz,
dz 2 (2.30)
GJ@ = E@+£(u*—u)
dz 2 dz 2 (2.31)
Combining the above equations to eliminate the term u yields
2 2_2
dgé+ Pz 4-0 (2.32)
dz= 4El ,.GJ
For simplicity, the following non-dimensional relationships are used
z
—— 2.33
n=7 (2.33)

P*I'
¢= (2.34)
\/ 4EI,GJ

Eq. (2.32) can then be reduced to

ﬁ?Jr Cntg=0 (2.35)
dn

12



The general solution utilizes Bessel functions (Arfken, 2005) of the first kind of orders 1/4 and -

1/4 shown below as

¢= \/;{AJM (%’72) +BJ_,, (%’fﬂ (2.36)

Applying the boundary conditions ¢ =0 at7 =0 and ? =0 at = %
n

gives J /4(9 =0 then% = 1.0585 yielding an expression for the buckling load, P,, as

16.94
R==7 JEI,GJ (2.37)

where P, is the lateral-torsional buckling load (Wang, et al. 2005).

Case 4: A simply supported I —beam with a monosymmetric cross-section subjected to equal end

moments, M, and an axial load, F, acting through the centroid:

In this case, consider a non-tapered monosymmetric I-beam subjected to end moments, M, and
an axial force, F, as shown in Figure 2.4a with the cross-section of the beam shown in Figure

2.4b.
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Figure 2.4a Monosymmetric Beam subjected to End Moments and Axial Force

shear center, s

o
=

"X centroid, o h

lyg y

J

Figure 2.4b Cross-Section of Monosymmetric Beam

The minor axis distributed force equilibrium equation and the distributed torque equilibrium

equation for the member can be expressed as (Kitipornchai and Wang. 1989)

d*u d’*¢ d’u
El, e ~-(M+ Fy,) N F = (2.38)
(GJ-F-r’+ M, )@ EI ﬁ—M@ (2.39)
o P dz vd? T dz '

Where the warping rigidity is
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2
EI, = EI p(1- p)h (2.40)

and the degree of monosymmetry can be expressed as

I I
L (2.41)

N
(Ur+1,) 1

where / ;and I, are the second moments of inertia about the y-axis of the top and bottom

flanges, respectively, as shown in Figure 2.4b. Because the beam has a monosymmetric cross-

section, the centroid of the beam, o, and the shear center, s, do not coincide. This introduces a
term, y,, which represents the vertical distance between the centroid and the shear center. The

polar radius of gyration about the shear center, 7,, can be expressed as

ri=——+y? (2.42)

The monosymmetric parameter of the beam (Trahair and Nethercot, 1984) is

B zli(szydmij] ~2y, (2.43)
X A

A
where x and y are coordinates with respect to the centroid. S, accounts for the Wagner effect,

which is the change in effective torsional stiffness due to the components of bending
compressive and tensile stresses that produce a torque in the beam as it twists during buckling.

Recognizing that, since the beam is simply supported, the boundary conditions become

2

$p=0 andca{(é—Oatz:O,L.

=
zZ

With the elimination of # and the implementation of the above boundary conditions, Egs. (2.36)
and (2.39) yield a closed form solution for critical values F and M (Trahair and Nethercot, 1984)

as
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(M + Fy,))* =r’F.F 1—i 1 £, Mp 2.44
Vo) =1, FF; F _F+r2F (2.44)
E o z

z

where FF is the Euler buckling load given by

7’ El
F, = 2 (2.45)
and £’ is given as (Wang, et al. 2005)
F GJ[I EZEIWj 2.46
= — -|- M
ot GJL? (2.46)

In order to obtain a non-dimensional elastic buckling moment, use is made of the non-

dimensional parameters (Kitipornchai and Wang. 1989)

_  |7TELW
K= 1/—}
4GJL? (2.47)

= 4(]”5) 2.48
n=3 " (2.48)
h (2.49)
JU 2.50
"7 (2.50)
/1—{—1)/\4-@‘ (I—A)}I? (2.51)
= . ,
ML

JEIGJ 2.52)

Where 4 is the distance between the centroids of the top and bottom flange and K is the beam

parameter. The practical range for values of K is between 0.1 and 2.5, with low values

16



corresponding to long beams and/or beams with compact cross-sections, and higher values

corresponding to short beams and/or beams with slender cross sections.

Using the above nondimensional parameters, Eq. (2.44) may be rewritten as (Wang, et al. 2005)

y= zr[/’ti\//’tz — KA+ (1- M1+ K [4p(1- p) - nA]}} (2.53)

The non-dimensional buckling equation shown above is the general solution of M for
monosymmetric beams. Eq. (2.53) is a versatile equation because it also accurately predicts the
lateral-torsional buckling loads for beams of doubly symmetric cross-sections by simplifying the

terms in the equation so that the monosymmetric parameter, £, is equal to zero and the degree of

. 1
monosymmetry, p, is reduced to 5
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2.2 ENERGY METHOD

The second method used for determining lateral-torsional buckling loads in thin-walled
structures is the energy method. The energy method serves as a basis for the modern finite
element method of computer solution for lateral-torsional buckling problems of complex
structures. The energy method is related to the differential equations of equilibrium method in
that calculus of variation can be used to obtain the differential equations derived by the first
method. The energy method is based on the principle that the strain energy stored in a member
during lateral-torsional buckling is equal to the work done by the applied loads. The critical
buckling loads can then be obtained by substituting approximate buckled shapes back into the
energy equation if the shape function is known. This approach is known as the Rayleigh-Ritz
method.

The strain energy stored in a buckled member can be broken down into two categories,
the energy from St. Venant torsion and from warping torsion. Pure or uniform torsion exists
when a member is free to warp and the applied torque is resisted solely by St. Venant shearing
stresses. When a member is restrained from warping freely, both St. Venant shearing stresses

and warping torsion resist the applied torque. This is known as non-uniform torsion.
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2.2.1 Uniform Torsion

When a torque is applied to a member that is free to warp, the torque at any section is resisted by
shear stresses whose magnitudes vary based on distance from the centroid of the section. These
shear stresses are produced as adjacent cross-sections attempt to rotate relative to one another.

The St. Venant torsional resistance must directly oppose the applied torque as

d
7, -cs%

dz (2.57)

where ¢ is the angle of twist of the cross-section, G is the shearing modulus of elasticity, J is the

torsional constant, and z is direction perpendicular to the cross section, as illustrated in Figure

2.5.

“

Figure 2.5 Twisting of a Rectangular Beam that is Free to Warp

/
z

/
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2.2.2 Non-uniform Torsion

If the longitudinal displacements in the member are allowed to take place freely and the
longitudinal fibers do not change length, no longitudinal stresses are present and warping is
permitted to take place. However, certain loading and support conditions may be present that
prevent a member from warping. This warping restraint creates stresses which produce a torsion
in the member. Non-uniform torsion occurs when both St. Venant and warping torsion act on the
same cross section. The expression for non-uniform torsion can be given as

I'=T,+T, (2.58)
where T, is the warping torsion, which, for an I section, is

T, =Vh (2.59)

where V;is the shear force in each flange and / is equal to the height of the section. Recognizing
that the shear in the flange is the derivative of the moment present in the flange, Eq. (2.59)
becomes

M,
T,=-—"h (2.60)
y

The bending moment in the upper flange, My, can be written in terms of the displacement in the

x-directon, u# , as

u
M, =EI, 12 (2.61)
Recognizing that
h
= % (2.62)

20



and introducing the cross-sectional property known as the warping moment of inertia

ol " 2.63
= (2.63)
the warping torsion can now be expressed as
T, =-EI i (2.64)
w = w dZ3 :

The differential equation for non-uniform torsion is obtained by substituting Eq. (2.57) and Eq.

(2.64) into Eq. (2.58) is

d¢ d’¢
T=GJ——-El
dz —"d’

(2.65)

The first term refers to the resistance of the member to twist and the second term represents the
resistance of the member to warp. Together, the terms represent the resistance of the section to

an applied torque.

2.2.3 Strain Energy

The strain energy stored in a twisted member can be broken into two categories, the

energy due to St. Venant torsion and the energy due to warping torsion. The strain energy due to

St. Venant torsion (Chajes, 1993) is

T,d
dU — SV ¢

2.66
ve (2.66)

where it can be seen that the change in strain energy stored in element dz due to St. Venant
torsion is equal to one half the product of the torque and the change in the angle of twist.

Solving for d ¢ from Eq. (2.57)
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dg=—dz (2.67)

and substituting it into Eq. (2.66) yields

2

dU,, dz (2.68)

2GJ
Substituting Eq. (2.57) into Eq. (2.68) and integrating results in the expression for strain energy

due to St. Venant torsion.

U, = ; j LGJ( ‘Z) dz (2.69)

The strain energy due to the resistance to warping torsion of an I-beam, for example, is equal to
the bending energy present in the flanges. The bending energy stored in an element dz of one of

the flanges is equal to the product of one half the moment and the rotation as

1 d*u
dUW=EEIf = dz (2.70)

Substituting Egs. (2.62) and (2.63) into Eq. (2.70) yields

dUu —lEI (d2¢j2d 2.71
w 4 w dZZ Z ( . )
Integrating Eq. (2.71) over the length of the member, L, and multiplying by two to account for

the energy in both flanges results in the expression for the strain energy in a member caused by

resistance to warping.

U, = 1 J. EI [d ¢] dz (2.72)

2 dz*

The total strain energy in a member is then represented by the addition of Egs. (2.69) and (2.72).
L L 2 1\ 2
d¢] [d ¢j
2.73
2J. GJ( pa dz + 2J‘EIW 12 dz (2.73)
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2.2.4 Solutions Using Buckling Shapes

Case 5: A simply supported, doubly symmetric I-beam that is subjected to only equal end

moments M about x-axis

The loading in this case is identical to Case I, but this case consists of a beam with an I cross-
section instead of a rectangular cross-section. As in Case I, M, =M and M, = 0.

The boundary conditions for the case of uniform bending are given below.

d’u d’v
Uu=v= e :dz_2:0 atz=0,L (2.74)
d*¢
¢=d2 =0 atz=0,L (2.75)
yA

In order to find the critical moment by use of the energy method, it is necessary to find
the moment for which the total potential energy has a stationary value. The strain energy stored
in the beam consists of two parts; the energy due to the bending of the member about the y-axis
and the energy due to the member twisting about the z-axis. The total strain energy for the

section is

1 a1 (Hde) 1 arg)’
- —EI - (—j —EI I [ j 2.76
5 y'[) [dzzj dz + 2GJJ‘0 pa dz + 2Bl 07 dz ( )

The strain energy, U, must now be added to the potential energy of the external loads, €2, to
determine a stationary value for I1 = U + Q . For a member subjected to uniform bending, the
external potential energy is equal to the negative product of the applied moments and the angles

through which they act upon the beam.
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Q=-2My (2.77)

where y is the angle of rotation about the x-axis of the beam and can be expressed as
——dz (2.78)

Combining Egs. (2.77) and (2.78) yields an expression for the potential energy of the external

loads as
Q=-M| ———d- (2.79)
and yields the following expression for the total potential energy of the beam.
Ly jL(dzu) dz + —GJ_[ (d¢j LB IL(d2¢) - r@@dz
2 )y \dZ? 2 dz 2 dz* dz dz

(2.80)

As stated at the beginning of this section, the Rayleigh-Ritz method for determining critical loads
requires the assumption of suitable expressions for buckling modes. The following buckling

shapes satisfy our boundary conditions:

LTz
u= AsmT (2.81)
LTz
= Bsin— .
¢=B f (2.82)

Substituting the buckled shapes into Eq. (2.80) and identifying that

L L

Tz , Tz L

JAsm —dz—j cos’ —dz=— (2.83)
0 L 0 L 2

the total potential energy of the beam, I1 , becomes

Il =

EIyAZL(n)4 GJBzL(ﬂ)Z EJWBZL(n)“ MABL(ﬂ ’
—_— _I_ — —_— —_— —_—
L

4 \L 4 4 L 2 Z) (2.84)
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Setting the derivative of I1 with respect to 4 and B equal to zero, the critical moment can be

obtained.
al EI/TZA MLB =0 2.8
dd ~ L - - (2.85)
A v [GJL EIW”ZJB— 0 2.86
dB L - (2.86)

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the

coefficients 4 and B in Egs. (2.85) and (2.86) must vanish leaving

2
E]yﬂ'
L

El x’ ,
GJL + - M*I? =0 (2.88)

Solving for M in Eq. (2.88) yields the critical moment for a simply supported beam in uniform

bending as

T 72'2
M, = |EL| GI+ EI,—5 (2.89)

Case 6: A doubly symmetric I-beam with fixed ends that is subjected to only equal end moments

M about x-axis

For this case, as in Case I, M, = M and M, = 0.
Consider an I-beam whose ends are free to rotate about a horizontal axis but restrained against

displacement in any other direction, as shown in Figure 2.6.
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Figure 2.6 1-beam Fixed at Both Ends Subjected to End Moments

The boundary conditions are as follows

du

Uu=—-= atz=0, L (2.90)
dz
d*v

V= =0 atz=0, L 291
= (2.91)
d

¢:—¢:0 atz=0, L (2.92)
dz

The following buckling shapes satisfy the geometric boundary conditions

- A(1 27”) 2.93

U= - CoS 7 (2.93)
( 27[2)

@= B| 1-cos (2.94)

Substituting the buckled shapes into Eq. (2.80) and using the simplification in Eq. (2.83), the

total potential energy of the beam becomes

2
VA

A7’ 7’
I = 7[4E1y T GJB® + 4EIWB?— 2MAB] (2.95)
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Setting the derivative of the I equations with respect to 4 and B equal to zero, yield the

following two equations.

dal 7’ 7’

A 8EIyA7— 2MB| =0 (2.96)
iz’ 7’

B L 2GJB + 8E]WBF— 2MA| =0 (2.97)

Egs. (2.95) and (2.96) expressed in matrix form is

. =0 (2.98)
-M  GJ+4El,—

"L
If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the

coefficients 4 and B in Eq. (2.98) must vanish leaving

2 2

T T 5
4EI, 5| GJ+4El, 7|~ M* =0 (2.99)

Solving for M as the critical moment yields

27 7’
M, == |EI|GJ+4El ~— (2.100)
cr L y w L2

It is interesting to note that the critical moment for the restrained beam is proportional to that of
the simply supported beam. If the warping stiffness is negligible compared to that of the St.
Venant stiffness, the critical moment for the fixed beam is twice that of the hinged beam. If the
St. Venant stiffness is negligible compared to that of the warping stiffness, the critical moment of
the fixed beam is four times that of the hinged beam. The reason for this is that lateral bending
strength and warping strength depend of the length of the beam, where St. Venant stiffness does

not. St. Venant stiffness is therefore unaffected by a change in boundary conditions.
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3.0 LATERAL-TORSIONAL BUCKLING OF BEAM-COLUMNS

The energy method detailed in Chapter 2, in conjunction with the Raleigh-Ritz method, is useful
in determining closed form or approximate solutions, with a high degree of accuracy, when a
suitable buckling mode can be identified. In more complex structural systems, identification of
the buckling mode is not possible. In this case, a finite element approach is an ideal method that
may be used to calculate the buckling load. In order to formulate element elastic and geometric
stiffness matrices that represent different load cases, one approach is to derive total potential
energy of a beam-column element with a concentrated force, distributed force, end moments, and
an axial force. Therefore, the objective of this chapter is to derive energy equations for a beam-
column element with the above mentioned loads.

Lateral-torsional buckling of a beam-column occurs when the loads on an element
become large enough to render its in-plane state unstable. When the loads on the member reach
these critical values, the section will deflect laterally and twist out of the plane of loading. At
critical loading, the compression flange of the member becomes unstable and bends laterally
while the rest of the member remains stable restraining the lateral flexure of the compression
flange, causing the section to rotate. This is common in slender beam-columns with insufficient
lateral bracing that have a much greater in-plane bending stiffness than their lateral and torsional

stiffnesses. It is important to know the critical load for lateral-torsional buckling because this
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method of failure is often the primary failure mode for thin-walled structures. The focus of this
chapter is to formulate energy equations that can be used to derive element elastic and geometric
stiffness matrices of a beam-column with a monosymmetric I cross-section.
The basic assumptions used in the following derivations are:
1. The member has a monosymmetric cross-section.
2. The beam-column remains elastic. This implies that the member must be long and
slender.
3. The cross-section of the member does not distort in its own plane after buckling and
its material properties remain the same.
4. The member is initially perfectly straight, with no lateral or torsional displacements
present before buckling.
5. The member is a compact section.
The orientation of the member used to derive the energy equations is depicted in Figure
3.1 using the xyz coordinate system with the origin being at 0. The x-axis is the major principle
axis and the y-axis is the minor principle axis with the z-axis being oriented along the length of

the member, coinciding with the centroidal axis of the undeformed beam-column.

b

/ ( .
i

e

Figure 3.1 Coordinate System of Undeformed Monosymmetric Beam
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The displacements in the x, y, and z directions are denoted as u, v, and w, respectively. If

loading occurs in the yz plane, the member will have an in-plane displacement, v, in the y-

o : . dv L
direction and an in-plane rotation - A member loaded along the z-axis will have a
/4

displacement, w. The result of lateral-torsional buckling is an out-of-plane displacement, u, in

o . du . .
the x-direction, an out-of-plane rotation, - an out-of-plane twisting rotation, ¢, and an out-of-
z

d¢

plane torsional curvature, = It is assumed in this chapter that in-plane deformations w, v, and
y4

? are very small and therefore can be neglected. In the next chapter, the energy equations
/4

derived in this chapter will be expanded to include these displacements, which are known as
prebuckling deformations.

The applied loads on the beam column include; (1) a distributed load, ¢, which acts at a
height a above the centroidal axis (2) a concentrated load, P, which acts at a height e above the

centroidal axis (3) a concentric axial load, /' (4) end moments, M; and M, as shown below.

{ gb—»z é) I

l

y

Figure 3.2 External Loads and Member End Actions of Beam Element
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The energy equations for the lateral-torsional buckling of a member with a
monosymmetric cross-section differ from those of a member with a double symmetric cross-

section because the centroid and the shear center do not coincide on a monosymmetric beam-
column, as shown in Figure 3.3. This introduces the term, y,, into the derivation representing

the distance between the shear center, s, and the centroid, o.

lyr

AN

shear center, s |* T

X centroid, o h

lyg

Figure 3.3 Cross-Section of Monosymmetric I-beam

The change in effective torsional stiffness of the member due to the components of
bending compressive and tensile stresses that produce a torque in the beam as it twists during
buckling is referred to as the Wagner effect (Anderson and Trahair, 1972). In a beam with a
doubly-symmetric cross-section, these compressive and tensile stresses balance each other and
do not affect the torsional stiffness of the beam. For the case of monosymmetry, these tensile
and compressive stresses do not balance each other and the resulting torque causes a change in

the effective torsional stiffness of the member from GJ to (GJ + M, 8,) (Wang and Kitipornchai,

1986). Because the smaller flange of the beam is farther away from the shear center than the
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larger flange, it creates a larger moment arm and predominates in the Wagner effect. This means
that when the smaller flange is in tension, the effective torsional stiffness of the beam is
increased while the effective torsional stiffness is reduced when the smaller flange is in
compression. This inconsistency adds to the complexity of the energy equation derivations for
lateral torsional buckling.
The energy equation for an elastic thin-walled member is derived by considering the strain
energy stored in the member, U, and the potential energy of the external loads, 2, as
[m=U+Q (3.1)
where IT represents the total potential energy of the member.
The strain energy present in the member is the potential energy of the internal stresses
and strains present in the beam-column, while the potential energy of the loads represents the
negative of the work done by external forces. The total potential energy increment may be

written as
1 o 1

The theorem of stationary total potential energy states that of all kinematically admissible
deformations, the actual deformations (those which correspond to stresses which satisfy
equilibrium) are the ones for which the total potential energy assumes a stationary value (Pilkey
and Wunderlich, 1994) or 611 =0.

As previously discussed, the structure is unstable at buckling. The theorem of minimum
total potential energy states that this stationary value of IT at an equilibrium position is
minimum when the position is stable. Therefore the equilibrium position can be considered

stable when
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Lemso (33)
2
and likewise is unstable when
1
—o0°I1<0 (3.4)
2
Therefore, the critical condition for buckling would be when the total potential energy is equal to
zero, thus representing the transition from a stable to unstable state (Pi, et al., 1992).
1o
-0 I1=0 (3.5)
2
Substituting Eq. (3.1) yields the critical condition for buckling as

%(5%J+5QQ)=0 (3.6)

3.1 STRAIN ENERGY

The strain energy portion of the total potential energy may be expressed as a function of the
longitudinal and shear strains as well as stresses. Assume an arbitrary point P, in the cross

section of the thin walled member. The strain energy of the member can be expressed as
1
U=\ a0, 7,7, Jad ¢z (3.7)
L A4

where

¢,= longitudinal strain of point P,
o, = longitudinal stress of point P,

v, = shear strain of point P,

33



T, = shear stress of point P,

With its second variation being
1 2 1 2 2
55 =5 ) A(é'gp&rp +06y,0t,+8°¢,0,+0 ;/prp)dA dz (3.8)

5

> 0, ¥, and 7, and their variations will be expressed in terms of centroidal displacements

in the following section in order to derive the energy equation for lateral-torsional buckling.

3.1.1 Displacements

In order to properly investigate deformations in a beam-column, two sets of coordinate systems
are defined. In the fixed global coordinate system oxyz, the axis oz is fixed and coincides with
the centroidal axis of the undeformed beam. The axes ox and oy represent the principle axes of

the undeformed beam, as shown in Figure 3.4.

Figure 3.4 Deformed Beam
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The second set of coordinate systems is a moving, right hand, local coordinate system,
oxyz . The origin of this coordinate system is at point 0 located on the centroidal axis of the
beam and moves with the beam during displacement, as shown in Figure 3.4. The axis
o0z coincides with the tangent at 6 after the centroidal axis has been deformed. The principle
axes of the deformed beam are ox and oy.

When the beam column element buckles, point P, on the beam moves to point P. This
deformation occurs in two stages. Point P, first translates to point P, by the displacements u, v,
and w. The point P, then rotates through an angle 0 to the point P about the line on where the
line on passes through the points o and 6. After the rotation, the moving local coordinate

system oxpz becomes fixed. The transition of point P, to point P can be seen in Figure 3.5. The
directional cosines of the moving axes ox, 0y, and o6z relative to the fixed global axes ox, oy,

and oz can be determined by assuming rigid body rotation of the axes through an angle 9 (P1, et

al., 1992).

NN

Figure 3.5 Translation of Point P, to Point P
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The displacements of point P, can be expressed as (P1i, et al., 1992)

u, u X X
vp = Vit TR .);_ .)/}0 - .); - .);0 (3'9)
w, w - ok, 0

Where u,, v,, and w, are total displacements of general point Pu(fc, )3,0) . Note that u, v, and w

are shear center displacements and ( V- j/o) is the distance between the centroid and the shear
center, as seen in Figure 3.3. o is the section warping function (Vlasov, 1961) and — wk_ is
the warping displacement and represents the deformation in the z-direction.

The first term on the right side of the equation contains the shear center displacement as
the point P, translates laterally to point P,. The remaining terms on the right side of the equation
represent the rotation of point P;to its final destination at point P. T% is defined as the rotational

transformation matrix of the angle of rotation, 6. Assuming small angles of rotation

1 Hyz 922 9 exey 9 exgz
T T TR » T
0.0, 0’ 6’ 0,0.
T, = O+ 5 1—7— ; -0+ 5 (3.10)
0.0 0,6. 02 6
-0 + == - —=—- =
2 2 2 2]

where 6., 6,, and 0, are components of the rotation ¢ in the x, y, and z directions, respectively

(Torkamani, 1998).

Consider an undeformed element A zand its deformed counterpart A z(1+ &), where &

represents the strain. A u,Av, and (A z+ A w) are components of the deformed element length
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A z(1+ &) on the ox, oy, and oz axes, respectively. The relationship between the deformed
element and its components can be expressed as

Az(1+ )N, = Aui +Av] +(Az+Aw)k (3.11)
where N is a unit vector in the 62 direction.
Az(l1+ &)N _ 1s projected on the x and y axes as

Au=Az(1+&N.-i=Az(1+ &)l (3.12)

Av=Az(1+ & N.-j=Az(1+ &m, (3.13)
where 1., m,, and n. are directional cosines of the 0z direction with respect to the oxyz fixed
coordinate system.

Dividing the previous equations by A z, and taking the limit as Az goes to zero gives

@—1' M—l' M—(l )l 3.14
dz oAz Al Az VT (3.14)
dv_ By Az(1+8)mz_(1 ) 315
dZ_Azlir};Az_Azlg}; z =+ ém, (3.15)

Where /, and m, are defined as . (Torkamani, 1998)

6.6,
I = 9y +T (3.16)
0.6
m, =-6,+ 2 (3.17)
2
Therefore
du ( 96’)
— =16 +==|(1+ 3.18
dZ y 2 ( 6‘) ( )
dv 99]
—=|-0 +==|(1+ 3.19
. ( L+ |(1+e) (3.19)
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By disregarding higher order terms, strain is eliminated and Egs. (3.18) and (3.19) become

du 6.6
s (ey ; Tj (3.20)
6.6
o022 (.21)
Z

Solving for 6, and 6, from the previous equations yields

g 1y 52
dz 2 “dz

g - Ly (3.23)

T oodz 2 T dz

Projecting the unit lengths along the ox axis onto the oy axis and the 6y axis onto the ox axis

yield m_ and [, respectively. (Torkamani, 1998)

0.0,
[, =-6.+ 5 (3.24)
6.0
m, =0 +—2 (3.25)
2
. . x07 x07 . AN A A
The projections — 6. + —=and 6. + —= of unit lengths along the 0y and ox axes onto the ox

and oy axes, respectively, can be used to define the the mean twist rotation, ¢, of the ox and oy

axes on the oz axis is

1 0.0, 0.0,
p=f |0+ ~a+ 2 (3.26)
Which simplifies to
¢=0. (3.27)
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Substituting the expressions for €., 6, , and 6. into the rotational transformation matrix, 7,

yields
I 1, L
Tpy=\m, m, m, (3.28)
n, o n, n,
Where
1(du)’ 1 1 du dv
[ = 1——(—) —— - 3.29
* 2\dz 2 ¢ 2 dz dz ¢ ( )
1 dudv l(du)z l(dv)z
[ =—¢p————+—| — ——| — 3.30
g ¢ 2dzdz 4\dz ¢ 4\ dz ¢ ( )
du
[ =— 3.31
Sl (3.31)
1 du dv l(dvjz l(dujz
=¢—-———— = — + = — 3.32
m =9 2dz dz 4\dz ¢ 4\ dz ¢ ( )
1 (dv)z 1 , 1ldudv
=]l-——| ——¢ " +——— 3.33
m=lE) 20 v (3:33)
dv
m, =— 3.34
T (3.34)
du dv ldu ,
N Sl 3.35
" dz dz ¢ 4 dz / ( )
dv du ldv ,
=——t—@P+—— 3.36
"y dz dz 4 dz ¢ ( )
2 2
17 ST -
2\dz 2\dz
The torsional curvature is (Love, 1944)
dl dm, dn_
k. = [ + m, + n (3.38)

*odz dz 7 dz 7’
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Substituting /. through », into the previous expression yields a nonlinear expression for

torsional curvature as

o

1

z

dz

d*u dv

dz?

dz

dz*

2

(3.39)

Eliminating second and higher order terms, the expression for torsional curvature may be

simplified to

_4d¢
dz

k

z

(3.40)

Substituting Eqgs. (3.29) — (3.37) into Eq. (3.9) yield the displacement of an arbitrary point P, in

terms of shear center displacements, rotations, and the section warping. The total displacements

up, vp, and w, can be considered the sum of linear and quadratic components of the form

up upl upn
Vo (T 1V + Von (3,41)
w, W, W,
where
u- (- 5,09
V= v+ X¢ (3.42)
wo| | e v g
3 W de de a)dz
e Y . (R o
2\ d)\ dz Y=Y\ s az 2\ dz 2\ dz iz dz
il 1[@@ k)7, 1) ] 1 [(”’j 2 @@} dv dy
pnl 2 \dz dz dz 4 2\ dz ¢ &= 5.) dz 9 dzdz¢ dza’Z
: By L) g g L L @((ﬂ):(ﬂjzj
9 ¢ Y= Yo dz¢ 4dz¢ 2a)dz dz* dz*
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The relationship between the displacement of the shear center, w,, and the displacement of the

centroid, w, in the z-direction can be expressed as (Pi and Trahair, 1992a)

. (dv ldv , duj
Ws_w_y”(dz_2dz¢_dz¢

The derivatives of u,, v,, and w, with respect to z are

hy _du_ydb y do o (dudv )
dz  dz de Yo dz \Ndz dz’

dv, dv _d¢ (du dv j

Sy _@v_ .49 au av

dz dz xdz+0y dz’dz’¢
dW,,_d_w_)edzu_Adzv_ d’¢ Ad¢ﬂ
dz  dz dz* deZ

d*v

A

a)dzz _dez_x dz* Y

dgdu
dz dz ¢

(3.44)

(3.45)

(3.46)

d*u
dz* !

ot
‘Ndz’ dz’

(3.47)

The terms Oy, Oy, and O, represent terms that are second order or higher and may be

disregarded.

3.1.2 Strains

The longitudinal normal strain &, of point P can be expressed in terms of the rates of change of

/)

the displacements of point P as

a2

du »
dz

dv »
dz

dw »
dz

€p

J

du

dwp 2 ; 2
For small strains, _a’ is small compared to _d and
A

z

Therefore

41

dv
dz

(3.48)

2
—pj and can be disregarded.
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dw 1 (du jz (dv jz
14 14 P
_ - 4
& dz * 2[ dz * dz (3.49)

Substituting in the derivatives of the displacements u,, v,, and w, of point P, yields

_dw_ du dvdg [(@) (dv)j (v dud
& = * Y Yz Y dz? Yo'dz dz

7 dz dz* dz? d 2 dz dz
-
2 X y yo dZ *

The first variation of the longitudinal strain is

dow _d*ou _d*ov d’*o¢ dé‘udu dévdv _d*Sv d*v d*Su

% E Ve e e Ve e wa e
2,
9T g4 5, SR LR (24 (5- 5, ) | (3:51)
The second variation of the longitudinal strain is
5 :(déu)z+(d§vj2_2£d26)2‘v5¢+2)9d262'u5¢+2f} dSu dsp (x e )2)(@j2
P\ dz dz dz dz °dz dz dz
(3.52)

It is assumed that the second variations of the displacements in Eq. (3.52) vanishes. The
above equations contain a combination of the strains before and after buckling. In this case, the
prebuckling displacements are defined as v and w. During buckling, the displacements are

defined as ou and 6¢. Therefore, the displacements u, ¢, v, and ow are equal to zero and

may be eliminated from the above equations.

The equations for longitudinal strain and its first and second variation thus become

dw _d*v l(dvjz
dz

£ = (3.53)

R R

42



dsu  dsp  d°
se, =301 400 L4V s (3.54)
dz dz

’ dz*

dou\® . d*Su Cdoudsy (., . .\ dop)’
525p = (E) +2y—dZ2 0P+ 2yozg+(x2+(y—yo) )(;} (3.55)

The shear strains due to bending and warping of the thin walled section are neglected. The shear

strain at point P, due to uniform torsion is (Pi and Trahair, 1992a)
d¢
Vo =72, (3.56)
Where 1, represents the distance of P, from the midthickness line of the cross-section.

The first variation of the shear strain is
oy =-2t — (3.57)

And the second variation of the shear strain is assumed to be zero.

8y, =0 (3.58)

3.1.3 Stresses and Stress Resultants

The stresses at point P, can be related to the strains by Hooke’s Law as

{j } ) [i gH;} (3.59)

The stress resultants for a beam bending are:

M, = _[ yo,dd (3.60)
A
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F= [0, (.61)

So that
F MJ
o, =+ (3.62)
3.1.4 Section Properties
Ifch = j $dA =0 (3.63)
A A
Ifcj;dA =0 (3.64)
A
A= J'dA (3.65)
I =|7%dA (3.606)
.A
1, = | x%dA (3.67)

These section properties are valid for not only monosymmetric beams, but doubly symmetric
ones as well. To solve the energy equation for monosymmetric beams, additional section
properties must be introduced.

I I
p=—2" =2 (3.68)
I,+1. 1

y
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Where 1, and [ . are the minor axis second moments of area of the tension and compression

flanges, respectively (Kitipornchai and Trahair, 1980). The value of pf can range from 0 to 1,

with doubly symmetric I-beams having a value of 0.5. The warping moment of inertia given in

Eq. (3.69), with other section properties listed below.

2
1, =p(1-p),h (3.69)
bt’
J = — (3.70)
3
R
== _ (3.71)
1 A2 A3 A~
B. = R yvdA+ | y dA| -2y, (3.72)
x A A

where 7, is the polar radius of gyration for the beam about the shear center. £ is known as the
monosymmetric parameter (Trahair and Nethercot, 1984) . The term . arises from the Wagner

effect discussed previously in this chapter when the compressive stresses do not equally oppose
the tensile stresses in a member. In the case of doubly symmetric beams, the stresses balance

each other and f_is equal to zero. When the smaller flange of a monosymmetric beam is in
compression, there is a reduction in the effective torsional stiffness and £, is negative.

Conversely, when the smaller flange is in tension, the effective torsional stiffness is greater and

L. 1s positive.
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3.2  STRAIN ENERGY EQUATION FOR MONOSYMMETRIC BEAM-COLUMN

With the newly introduced section properties, the second variation of the strain energy of the
monosymmetric beam can now be derived to its accepted form. Substituting

2 2 .
£, 5€p ,0 £,57, ,0) , and 6"y , as well as the stress resultants A, and F and the section

properties into Eq. (3.8) yields

| (el (4 (o
55 UZEJ. E]y[ P ] -I-GJ[ e

P dz dz dz ? dz
+ M (z) 2[d (fu)] Sp+ ﬂx[d(&ﬁ)] dz (3.73)
dz dz

3.3 POTENTIAL ENERGY OF THE EXTERNAL LOADS

The equations for the potential energy possessed by the loads, or the work done by external

forces, are derived by multiplying the loads by their corresponding displacements, and summing

them up.

46



Q- —j(qu)dz— Z (v, P- ";VZ—ZMM+ W, F) (3.74)

With its second variation being

1 ds’v
552Q = —j(5zqu)dz— Z(azvpp— dZM M+ 8w, F (3.75)

L

Where

v, = vertical displacement which transverse distributed load g acts

g = transverse distributed load in y-direction

v, = vertical displacement which transverse concentrated load P acts

P = transverse concentrated load in y-direction

v,, = vertical displacement which moment M acts

dv,,

dz

= rotation caused by moment M

M = applied moment in x-direction

w, = longitudinal displacement which load F acts

F = concentric load in z-direction

3.3.1 Displacements and Rotations of Load Points

The longitudinal displacement, w,., is considered to be relatively small. Therefore, w,. = 0.

The vertical displacement of a point (fc =0,y=a,w= 0) at which a transverse distributed load ¢

acts may be found by

v, =v+ma-a (3.76)
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Where

1(@)2 1, ldudv
=l-—] —| ——¢"+—-— 3.77
Ty 2\dz 2 ¢ 2dz dz ¢ ( )
Therefore,
1 . (dv)z , dudv
vq—v—z(a—yo){ i + ¢ - T da (3.78)

Similarly, the vertical displacement of a point ()E =0,y=¢,0= O) at which a transverse
concentrated load, P, acts is expressed as

e

Vp = V—E(e— yo)

dv\®  , dudv
(Z) + ¢ —Eg¢} (3.79)

The rotation about an axis parallel to the original axis ox at a point ()2 =0,y=y,,0= O) at

which concentrated moment M, acts is

oy _dv (3.80)
dz dz

Because the effects of prebuckling are negected, the deformation v and its derivatives are
reduced to zero. These effects will be implemented in a later section. The displacements
corresponding to the external loads then simplify to

1

v, == la-5,)¢ (3.81)
1 ~ 2
vp=-5le-5,)¢ (3.82)
v,
e =0 (3.83)

The second variations of the displacements are
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5, = ~~(a- 5, )50) (3.84)

2
5y, = —%(e— 3, )60 ) (3.85)
v,

=0 (3.86)

Substituting Egs. (3.84) — (3.86) into Eq. (3.75) yields

S50 =2 [ala- 3,00  dz+ 3D e 3,)o0) (3.87)

L

3.4 ENERGY EQUATION FOR LATERAL TORSIONAL BUCKLING OF

MONOSYMMETRIC BEAMS

The second variation of the total potential energy equation for lateral torsional buckling of
monosymmetric beams is the sum of the second variation of the strain energy equation given in
Eq. (3.74) and the second variation of the potential energy of the loads given in Eq. (3.87), as

shown below.
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%5211 - %j EI, dd(zf”) NI c(ij¢) + EI, dd(jz‘é)]
dsu))”  (d(su)\(d(se)) , . . .(d (59))
HE (dz )] +2y0[ (dz )][ (dz )]Jr(r” o )[ c(z’z )]
+ M (z) Z[dd(ju)] op+ ﬂx[d(jj)] dz
o3 fala- . No0) a3 Y Ao 3 o0) = 0 3 88
5 | d\a-3,\0¢) dz+ 7 e-y,\o¢) = (3.88)
Where

2

M. =M1+Vlz—q% for 0<z<z,

2

z
M =M, + Vlz—q?— P(Z—Zp) forz,<z<L

z,,= distance along beam in z-direction of applied concentrated load, P

The terms in the energy equation can be separated into three groups. The first group consists of

the terms that contain the buckling rigidities £/,, GJ, and EI, and represent strain energy stored

during buckling. The second group consists of the terms that contain the stress resultants F and
M., which represent the work done by the applied loads at the shear center. The third group

consists of the remaining terms which represent the work done by transverse forces ¢ and P.
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3.5 NON-DIMENSIONAL ENERGY EQUATION FOR LATERAL-TORSIONAL

BUCKLING

The energy equation presented in the previous section has limitations in predicting a lateral-
torsional buckling parameter obtained from the solution of the eigenvalue problem because it
depends on beam properties such as E, G, L, etc. Elimination of these properties through a non-
dimensional analysis will provide more general results to determine critical loads and moments
for lateral-torsional buckling.

The stiffness parameter, K, of the beam is defined as

7El, 7’ EI h*
K="z *\ e (3.89)

The loading parameters are

- P—LZ (3.90)
r= JEIGJ '

- L (3.91)
o= JELGJ '

The monosymmetry parameters are (Kitipornchai, et al.1980)

_ ,Bx Ely

= — 3.92
=" (3.92)
S 3.93
ro - L GJ ( M )
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p— 2J’>0
Vo=, (3.94)

Other useful parameters for the non-dimensional analysis are

ou |EI,
W=7 G/ (3.95)
_  FI’
F=— (3.96)
y
M ML (3.97)
- .
JEI,.GJ
Vo= A (3.98)
‘o JELGJ '
7= 2 (3.99)
zZ= L .
— Zp
Z= (3.100)
_ 2a
a=- (3.101)
. 2e
e= (3.102)

where

h = the distance between the centroids of the flanges
The application of these parameters to the energy equation derived in the previous section yield a
non-dimensional energy equation that provides a buckling parameter for lateral torsional
buckling of a beam-column with a monosymmetric cross-section. The multiplication factor used

to change the energy equation to a non-dimensional form is
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I (3.103
= T . )

The second variation of the non-dimensional total potential energy equation is

o[ e

dz dz dz dz
+ M 01 [d;;f)j5¢+&[di¢)] }di

A Jata s oo e Y e ow) | 6109
where

for 0< z<z,

M =M +Viz-qg—- F(z-zp) forz, <z <1
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40 LATERAL-TORSIONAL BUCKLING OF MONOSYMMETRIC BEAMS

CONSIDERING PREBUCKLING DEFLECTIONS

In the previous chapter, the effects of prebuckling deflections were ignored. These effects are
ignored assuming that the thin-walled object is almost perfectly straight and any deformation is
so small that it may be disregarded. This assumption is only valid when the ratios of minor axis
flexural stiffness and torsional stiffness to the major axis flexural stiffness are very small. In the
case where the ratios are not small, the effects of prebuckling deflections may significantly alter

buckling loads and therefore cannot be ignored.

41  STRAIN ENERGY CONSIDERING PREBUCKLING DEFLECTIONS

4.1.1 Displacements

In the previous chapter, the expression for torsional curvature was simplified to include just the
first term because the other terms in the expression were deemed to be relatively small. To

consider the effects of prebuckling deflections, the torsional curvature, k., must be represented

by:
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1
2

d*udv du d2vJ

4.1
dz* dz dz dz* @D

Which creates a longitudinal displacement of

N L A(ﬂ Ldu 2) A(@ Ldv z)
Wp_{w_xdz_ydz_a)dz}-[_xdz¢_ PPN g0 ¢

z[dw dwj 1[%1(612@ dZv@]j((@)ﬁ(ﬂ)j
Ao\ e az a2 dz) 2\ a2 T2\ a2 dz dz dz))\\az dz

with the first derivative of w, being

dw, dw  du . d’v d%_w[d%ﬂ d%@] {@@ d’v 1 dpdu

dz _Z_xdzz_ydzz_wdzz E dz* dz  dZ° dz - dzdz+¢d22_2¢dz dz

9 +ydzdz+¢ t59 * ¢a’z2 dz’ dz’

1 ,d’u| [dpdu d’u 1 dpdv 1 d_2v+ (dudv¢j
47 dz? dz> 27 dzdz 4 z

(4.3)

where O, represents functions which are 4™ order or higher and disregarded for simplicity.

4.1.2 Longitudinal Strain

The longitudinal strain in the previous chapter is give as

dw 1 [du )2 [dv j2
N p 1 p P 4.4
& dz +2[ dz ¥ dz 44)
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dz dz

~ considering prebuckling deflections yields

expression for
zZ

Cdw  du dv d$ o|dudv dvdi] {dqﬁdv dv 1 dpdu
& = o i 2| d2 dz dZ dz dz dz ¢dz 2¢dz dz

A dz* yd22
Lpdul, j[dbds jdu 1o 1] 1f(dn)”, ()
ek s 2¢dzdz ¢ 2\ gz dz

A (- 5.y )5, et “s)

The first variation of g, would then become

dow ,d*6u ,d*6v d’6¢ af2 5v dpdu 1 do¢du
| op S 2 s

58”: a'z_xdz2 _yd22 _a)dz2 2 dde_Z dz dz
1 dgdou 1 du 1, dé'u [du L dou 1, dgdy
2¢d dz 2¢¢d2 ¢ el Al A s
dsgdv 1 dgdsv dv &) . doudg  dudse
NS ¢5¢ ¢ } YVeTa a Y d dr

+( +(A A)z)@ﬁ Qd35uﬂ+d3ud5v d*vdSu d35v@
o Y= Yo dz dz 2| dZ° dz dZ° dz dz dz dz’ dz

+a’é‘ua’u d5v@ 46
dz dz dz dz (4.6)

The second variation of &, is
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5 _(dé‘uszr(dév)z d o5 d 0V s d0bdu o dgdou d5p dSu
“ =\ ) N e % e Ve e

1, 2du d*Su d*su dS ¢ dv d¢ dSv
Jp— _ % 2 —_ PR —
2(5¢) dz* o9 dz? }FJ{ o9 dz? +of dz dz+5¢ dz dz
dsgdsv 1 d’sv . déudS¢ (Az . 2)(d5¢)2
Y dz (5"5) PR A +(3-72.) dz
3 3
w d é;u d§v_d 6;1) dou @.7)
dz dz dz dz

The deformations are assumed to occur in two stages; a prebuckling state {O,v, w,O}
followed by a lateral buckling state {5 u,0,0,0 ¢} . This allows for the following simplication to

be applied to the expression for longitudinal strain and it variations (Pi et al., 1992)
u,@,0v,ow=>0

The simplified expressions are as follows

dw d*v 1{dv g
“ e Vel @8)

(4.9)

dz* +2

1d*su d* d*s¢ 1(61’3514 dv d’v dé'uj
= — —+— _ —_ _—
o dz* dz* dz* dz d7° dz

5 _(dﬁuj ol2s d’ 5u+ 1(5) 2v d5¢ﬂ 0 déu ds ¢
& = dz ¢d2 ¢ dzdz+y°dz dz

e 2f) @10
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4.1.3 Shear Strain

The effects of shear strain due to bending and warping are neglected. The shear strain due to
uniform torsion is

v, =2t ,k, 4.11)

Substituting the unsimplified expression for torsional curvature, y, becomes (Vlasov, 1961)

do l(dzu dv  d*v duD
= |4, | L0 _d VAl 4.12
Ve p(dz 2\dz* dz  dz* dz ( )

The first variation of 7,

ds¢ 1(d*Sudv d*v dé'uj
oy, =-2t += —_—- 4.13
7o ’ { dz 2( dz* dz dz* dz (4.13)
The second variation of y,is assumed to be zero.
5%y, =0 (4.14)

4.2  STRAIN ENERGY EQUATION CONSIDERING PREBUCKLING

DEFLECTIONS

Substituting the revised expressions for longitudinal and shear stress and their variations into the
strain energy equation given in Chapter 3 with the linearized stress resultants

FeEAYY (4.15)

dz
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d*v

M, =—E1°
dz

(4.16)

yield the strain energy equation for monosymmetric beam-columns considering prebuckling

deflections as shown below.

I I d*(5u) d*v d (59) 1 ava*(su) a>vd(ou))]
28U B gm0 O T e
d*sg 1 dvd3(5u) d3vd(§u) ’ d(5u) ’
+ A, 7+5[Z 2 dZ dz HE dz

d(su) d(s ds dég\’
25, (dzu) (dz¢)+% a’z¢ 5¢] f (r"z J 2)( ¢j }

=

M 2[d (5”)]5¢+ ﬁx[d(5¢)] +[d2vj5¢2 &z 4.17)

4.3 POTENTIAL ENERGY OF THE LOADS CONSIDERING PREBUCKLING

DEFLECTIONS

4.3.1 Displacements and Rotations of Load Points

The displacements and rotations of load points must be re-derived considering prebuckling

deflections. The second variations of the displacements due to the distributed and concentrated

loads,v, and v, respectively, considering prebuckling deflections are given as
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» do
5%, = -(e- 90)((5415 ) - d—:%wj (4.18)
2 n 2> doudv
5%, = (a- y(,)((5¢ ) - - ZM) (4.19)

Substituting the new expressions for the second variations of the displacements of the loads into
the potential energy equation given in Chapter 3 yields the new potential energy of the loads

equation as

R R (R S PO WSS R =2

(4.20)

4.4 ENERGY EQUATION CONSIDERING PREBUCKLING DEFORMATIONS

The energy equation for lateral torsional buckling of monosymmetric beam-columns considering
prebuckling deformations is determined by substituting Eq. (4.17) and Eq. (4.20) into Eq. (3.6)

as
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d*(6u) d*v

— GJ
dz* * dz* !

o9

d(59) l[ﬂdz(&‘) i d(a‘u)ﬂz

dz 2\ dz  dZ? dz*  dz

2>5p 1(dvd(Gu) advd(ou))]
HEL et T T TS
dz 2\dz dz dz> dz

_I_
dz

d(éu)] +2ﬁo[d(di”) d(dézczﬁ) dvd59 ¢j+(ruz+ : 2)(d6¢)

dz dz*

v Z[dz(é'u)] 550 ﬁx[d(5¢)]2 . [dzvj 5 |l

+= ) Ple- )70)((5¢)2 - %%M) (4.21)

The first two lines on the right side of the equation contain terms involving buckling rigidities

El,, GJ, and EI, and represent the strain energy stored during prebuckling and buckling. The

third and fourth line of the equation contain terms involving the stress resultants /' and M,, which
represent the work done by the applied loads at the shear center, considering the effects of
prebuckling. The final two lines of the equation represent the work done by the distributed load,
g, and the concentrated load, P, considering prebuckling deflections.

In order to linearize the new energy equation, the second order in-plane displacements are
neglected in order to avoid a quadratic eigenvalue equation (Roberts, 2004). The new energy

equation, disregarding these second order displacements, is
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5S¢+ GJ

dz* dz*  dz’ dz

M} 2 + 2E1ymd v d(5¢)]2

+GJ

A0 100 el | £120)
d*(59)( dv d*(6u) a’v d(ou)

EI
2 dz? [dz dz* dz* dzj

1 R 2
5D Ple-3.)60) =0 (4.22)
Comparing this equation to Eq. (3.88) in the previous chapter, the only terms that differ are

~ {2%@612 5¢ +GJ (5"5)[61”( ) dzvd(&t)]

dz*  dz* dz \ dz dz* dz*  dz

(5¢)[a’vd (6u) @ d(5u)]

+ EI
° dz? dz dz° dz> dz

dz (4.23)

The in-plane curvature is

v _ M, 424

dz*  EI, (4.24)
Likewise,

ﬂ_J M. . (425

dz El" 29)
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dv 1 .am, Y,

= - = - 4.26
dz>  EI  dz EI (4.26)
. . % ) dv (0)
The constant C is a function of d—and is calculated at z= 0as C = PR
Zz 4
Substituting these equations into Eq. (4.23) yields
S A ) [ M j d(5¢) d*(su)
~|-2-"M —5%5 GJJ——xd C
2.[ I, d’ - EI, ot dz  d7’
L
M_d\og)d\ou M d*(o¢) d*(Su
+ GJ—- (¢) ( )+EI (I——xdz+cj (2¢) (3)
El. dz dz ¢ 1, dz dz
1, d*(5¢)d(su)
-V d. 4.27
I, dz°  dz : (4.27)
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5.0 APPLICATIONS

This chapter will present examples using the buckling equation derived in Section 3.4 (Eq.
(3.88)) to determine approximate solutions for specific loading and boundary conditions. These
solutions will be obtained by assuming suitable shape functions for the displacement u and
rotation ¢ during buckling. The solutions will then be compared to examples presented in other
literature that used different methods, including differential equilibrium equation method for the
first example and the method of finite differences for the remaining examples, to obtain buckling

results to demonstrate the validity of the buckling equations presented in this paper.

5.1 SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO EQUAL

END MOMENTS, M

This example will derive the lateral-torsional buckling moment, M,,, for a simply-supported
beam whose ends are restrained from twist subjected to equal end moments, as shown in Figure

5.1
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Figure 5.1 Monosymmetric Beam with Subjected to Equal End Moments

The lateral torsional buckling equation derived in Chapter 3 is

o3 [ ala- 350 azs 3D Ple- 3, )o9) =0 G

Since M, = M and there is no axial force or transverse loading in this example, /=0, g =0,

and P = 0, Eq. (5.1) reduces to
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1,1 d*(5u))’ d (5¢) ’ a*(59) ’
55 = 5.[ El, 2 + GJ P + EI, P
+ M.(2) 2[@] Sp+ ﬂx[M] dz (5.2)
dz dz

For a simply-supported beam, the following shape functions can be used to solve this problem.

ul(z) = Asin(%) (5.3)
¢(z) = Bsin(%} (54

The first variation of u and ¢, as well as their first and second derivatives are needed to solve

this problem and are shown below as

Su=54 sin(%) (5.5)
S¢=- 6B sin(%j (5.6)
ek (Foed )
0 FJomed )
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dz(é‘u) V4 2 . nwz
1.2 :—(z) 5Asm(7) (5.9)

d;(;¢) _ -(%) 58 sin(%j (5.10)

Substituting Egs. (5.3) — (5.10) into Eq. (5.1) yields
Lon =32 o) s 2]+ (2] o) eos] 2]
297 T2 W) o ST L S
)" 2 7wz
+(—) El,(5B) sinz(—j
L L

- ) Lol 5 omsnl ] 5] 0 o )

(5.11)
The following integrations will be necessary to evaluate Eq. (5.11)
J»L ‘ z(ﬂz)d L (5.12)
in°| —|dz=— .
L) E
r Z(E)d _L (5.13)
. cos’| —~Jdz =~ .
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The critical buckling load occurs when the second variation of total potential energy is equal to

zero. Eq. (5.14) can then be written as

2
/4
o lL(;zjz s4)" (Z) El, - M o4
27 " 22\L) 5B il )
-M GJ + 7 EI, + MB,
(5.15)
Since 64 and 6B are not equal to zero
2
z
(L) o " o4 0 5.16
é‘B - ( . )

2
M G+ (9 EI + Mg,

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the

coefficients 64 and 6B in Eq. (5.16) must vanish leaving

M- (%j ZEIyﬂxM— (%)ZEIy{GJ+ (%}2&”] - 0 (5.17)

Solving Eq. (5.17) for M gives the critical moment for lateral torsional buckling of a

monosymmetric [-beam subjected to equal end moments as

2
M —l(f)zEz + (Z)4M+(ZJ2EI GJ+(£)4EI EI, (5.18
«=5\7) ELA L 4 L r) ELEL, G198

The beam stiffness parameter and the monosymmetric parameter were given in Section 3.5 under

non-dimensional analysis as

68



K= GJL; (5.19)
_ B |EI
=7 G—j (5.20)

Rewriting Eq. (5.18) in terms of K and ,Ex yields the elastic critical moment as

— 2 —
Va f Vi7e3
M, =~ [EI GJ \/1+ K* + (7] o (5.21)

This result for the lateral torsional buckling moment of monosymmetric I-beams under a
uniform moment matches the solution given by (Kitipornchai, et al. 1986) for F'= 0 when the
elastic critical moment was derived using the differential equilibrium method illustrated in

Chapter 2 Eq. (2.53).
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5.2 SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO

CONCENTRATED CENTRAL LOAD, P

This example will present the lateral-torsional buckling load, P, for a simply-supported beam
whose ends are restrained from twist subjected to a concentrated central load that is applied to

the shear center of the beam, as shown in Figure 5.2.

Figure 5.2 Monosymmetric Beam Subjected to Concentrated Central Load

There is no axial force or uniformly distributed load acting on the beam. Therefore, F = 0 and

g = 0. Since the concentrated load, P, is applied at the beam’s shear center, (e - j/o) =0.

Therefore, Eq. (5.1) reduces to
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1 a(ou))” (a(s9)) a*(59))
oIl = EI El, 2 + GJ| pa + EI, 2
b M(2) 2[d (52“)] 54+ ﬂx[d(§¢)] d (5.22)
dz dz

Since this beam is also simply supported, the same buckling modes shapes will be used as in

Section 5.1. The moment along the beam, M x(z) , for a beam with a concentrated central load

can be expressed as
(5.23)

L
(L-z) for ESZSL (5.24)

Substituting Egs. (5.3) — (5.10) and Egs. (5.23) — (5.24) into Eq. (5.22) yields
Lon =32 o s 2]+ (2) o) eov] 2]
> =2) 1\ , sin I 7 cos 7

T ! 2 nz
+(—) El(5B) sinz(—)}dz
L L
L 2
1(2|-2P («x |z 7z
+—j { z(—) (5Asm(—jj(535m(—j)
2J, P L L L
P 7\’ 2 Tz
+EZﬂX(Zj (53) cosz(T)}dz

a2 of ) (s 5 ) w23
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(L= z)ﬂx(zj 2(513)2 cosz(%)}dz (5.25)

IZ i Z(Ejd RS 5.26

Ozsm I i TR (5.26)
L

sz Z(E)d RE— (5.27)
L 29U )T 3 g '

. L[ 7z r r

é(L— z) sin 7 dz = E+ P (5.28)
NL-2) (7= )

é 5 oS\ dz = 328 (5.29)

(5.30)
Which simplifies to
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%azn - %g(%} 2[(%) 2E]y(aA)2 + GJ(oB) + (%} 2E1w (5B)’

- PL[ ”47;4] (54)(58)+ PL,Bx[ s 4) (sB)’ (5.31)

The critical buckling load occurs when the second variation of total potential energy is equal to

Z€ero, as
( )ZEI PL(”2+4J
Lo 1L(ﬁj2 sA|" \p) ™ ) 877 4|
2 “22\L) |5B (72'2+4j GJ+(£)2E] +PLﬂ[ﬂ2_4) SB[
877 L © "\ 872
(5.32)
Since 64 and OB are not equal to zero
(ﬁ) 2E1 prf 2t
L ) 87° o4l 533
PL[”Z+4] GJ+(£)2EI +PLﬁ(”2_4j o8] o
87 L @ “\ 877

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the

coefficients 4 and OB in Eq. (5.33) must vanish leaving

7 +4 2L2P2 (Z)zEI -4, (szEl GJ (EJZEI -0
81 L yﬂxs;ﬁ “\7) L )~

(5.34)

Solving Eq. (5.34) for P gives the critical buckling load for lateral torsional buckling of a

monosymmetric [-beam subjected to a concentrated central load as
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Pgﬁm{ {16(El)ﬂ 8(E1)ﬂ = +(E1)ﬂ2 12

v 4(E1 )G 2" + 32(E1)GI 7* + 64( 1 )GIL x° + 4( E1L )(EL, )
+32(E1, (1, )2 + 64(E1, )(E1,)7* | + 4(E1, )" - 16{ 1, )B.2* p (5.39)
The non-dimensional loading parameter, y,, was given in section 3.5 as

PI?

r= JEIGI

(5.36)

Rewriting Eq. (5.35) in terms of the non-dimensional beam stiffness parameter, K, given
in Eq. (5.19) and the monosymmetric parameter, ﬁ_’x , given in Eq. (5.20), as well as the loading
parameter, y,, shown in Eq. (5.36) yields the elastic critical load parameter for a simply-
supported monosymmetric beam with a concentrated point load as

yo = 4(x - 82" + 167°)B7 + (42" + 327° + 647°)
7z + 4

1
+ (47" + 322" + 647°)K?]? + (42° - 167° ),[)’x} (5.37)

This result can then be compared to the results given in (Anderson and Trahair, 1972) where the
critical load parameters were obtained using the method of finite differences. Figures 5.3 —5.9

compare the solution presented in Eq. (5.37) with the results given by Anderson and Trahair at

various values of K and ,[j’x . The results obtained by this research using approximate shape

functions are more accurate as the values for S become closer to zero, representing a doubly-
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symmetric beam. Thus, the shape functions used in this example more accurately predict the

buckled shape of simply-supported beams with doubly-symmetric cross-sections.

Buckling Load: Simply Supported Beam with
Concentrated Central Load (B,= -0.6)
60
£ 50
5 —4—Present Research
]
E 40 =— Anderson and Trahair
]
& 30
o
T
=]
= 20
S
= * -
o 10 . 4
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.3 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (,Ex = —0.6)
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Buckling Load: Simply Supported Beam with
Concentrated Central Load (B,=-0.3)

60
=~ 50
5 —4—Present Research
e}
E 40 =— Anderson and Trahair
]
G
e 30
e
T
S
= 20
o
—
o 10

0]
0] 0.1 0.3 1 3
Beam Parameter, K

Figure 5.4 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (EX = —0.3)

Buckling Load: Simply Supported Beam with
Concentrated Central Load (B,=-0.1)

60
=~ 50
5 —4—Present Research
e}
E 40 =— Anderson and Trahair
]
G
e 30
e
T
S
= 20
S
=
S 10

0]
0] 0.1 0.3 1 3
Beam Parameter, K

Figure 5.5 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (ﬁx = —0.1)
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Buckling Load: Simply Supported Beam with
Concentrated Central Load (B,= 0)

60
=~ 50
5 —4—Present Research
e}
E 40 =— Anderson and Trahair
]
G
e 30
e
T
S
= 20
S
=
S 10

0]
0] 0.1 0.3 1 3
Beam Parameter, K

Figure 5.6 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (EX = O)

Buckling Load: Simply Supported_Beam with
Concentrated Central Load (B,= 0.1)
70
o 60
5 —4—Present Research
o 50
= =— Anderson and Trahair
S 40
[
(=8
® 30
3
T 20
=
© 10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.7 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (ﬁx = 0.1)
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Buckling Load: Simply Supported_Beam with
Concentrated Central Load (B,= 0.3)
70
o 60
5 —4—Present Research
o 50
= =— Anderson and Trahair
S 40
[
(=8
® 30
3
T 20
=
© 10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.8 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (,EX = 0.3)

Buckling Load: Simply Supported_Beam with
Concentrated Central Load (B,= 0.6)
70
o 60
5 —4—Present Research
o 50
= =— Anderson and Trahair
S 40
[
(=8
® 30
= i ——
T 20
=
© 10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.9 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Concentrated Central Load (Ex = 0.6)
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5.3 SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO

UNIFORMLY DISTRIBUTED LOAD, q

This example will present the lateral-torsional buckling load, g, for a simply-supported beam
whose ends are restrained from twist subjected to a uniformly distributed load that is applied to

the shear center of the beam, as shown in Figure 5.10

Figure 5.10 Monosymmetric Beam Subjected to Uniformly Distributed Load

There is no axial force or concentrated load acting on the beam. Therefore, F =0 and P= 0.

Since the uniformly distributed load, ¢, is applied at the beam’s shear center, (a - j/o) =0.

Therefore, Eq. (5.1) reduces to
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. d*(su) d (o))" (a*(59)
55 = EJ- El, 12 + GJ| i + El, 02
+ M (z) 2[d (fu)] 5o+ B [d(5¢)] dz (5.38)
¥ dz odz

Since this beam is also simply supported, the same buckling modes shapes will be used as in
section 5.1. The moment along the beam, M (z), for a beam with a uniformly distributed load

can be expressed as
M, =-"—(L-z for 0<z<L (5.39)

Substituting Egs. (5.3) — (5.10) and Eq. (5.39) into Eq. (5.38) yields
Lo (2 (2] ot 2]
200 T2 ) W) A IR T L

+ (%} s (5B) sinz(%j}dz

2
qz T 2 [ 7z
+ (L z)ﬂx(—) (6B) cos (Tj}dz (5.40)
The following integrations will be necessary to evaluate Eq. (5.40).
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L(L— *)sin?| 2= LT
zL - z" )sin dz=—+ (5.41)

0 L 12 47
J‘L (ZL— 22) z(ﬂZ)d L 540
o2 S\ ET s (542)

Therefore, integrating Eq. (5.40) with respect to z yields

son 5 e o (5] atony s [5)(5) oy

2 L3 L3 2 L3 L3 5
[ e ot (2] anl G- Lfony [ s
Which simplifies to
I, 1L : : 2 2 : 2
S8 = 55(9 [(%) El,(54)" + GJ(5B)" + (%} EI,(5B)
_ qﬁ[ ”627:2 3 j (54)(5B)+ g1 ﬂx[ ’:;;fj (5B) (5.44)

The critical buckling load occurs when the second variation of total potential energy is equal to

ZEero, as
7\’ 7t +3
—| EI - 2[ ]
Ly LL(x) (oA o T 54| _
“22\L) |6B Lz(”2+3j GJ+(_j2E] o [7[2—3j 5B~
q 1271_2 w q ﬂx 1272_2
(5.45)

Since 64 and 6B are not equal to zero
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=0 (5.46)

(9 EL, _qu[Tz;j j {5/1}

Lz(ﬁ2+3j GJ+(£)2EI L [2 3)|(o8
1222 L +qL'p, 1227

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the

coefficients 64 and 6B in Eq. (5.46) must vanish leaving

S e R R R AR

(5.47)

Solving Eq. (5.47) for g gives the critical buckling load for lateral torsional buckling of a

monosymmetric [-beam subjected to a uniformly distributed load as

q, = m{6{9(ﬂy)zﬂxz7z8 ~6(E1, ) pr+ (EI )Zﬁxzﬂn
v 4(E1L )G 2 + 24(E1 )GIL 2* + 36(EIL \GIL 7° + 4(EX )(E1, )2
1

«24(E1, )1, )7 + 36(E1, (B2, )2* | + 4(E1, )2 - 12( 1, )

(5.48)

The non-dimensional loading parameter, y,, was given in section 3.5 as

gL’

B . 5.49
o= JELGJ 649

Rewriting Eq. (5.48) in terms of the non-dimensional beam stiffness parameter, K, given

in Eq. (5.19) and the monosymmetric parameter, £, , given in Eq. (5.20), as well as the loading
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parameter, y,, shown in Eq. (5.49) yields the elastic critical load parameter for a simply-

supported monosymmetric beam with a uniformly distributed load as

e ol 9 a2

1
+ (47" + 247 + 362°)K? ] + (47° - 127 )ﬂx} (5.50)

As in section 5.1, this result can then be compared to the results given in (Anderson and Trahair,
1972) where the critical load parameters were obtained using the method of finite differences.

Figures 5.11 — 5.17 compare the solution presented in Eq. (5.50) with the results given by
Anderson and Trahair at various values of K and /.. As in the example in Section 5.2, the
results obtained by this research using approximate shape functions are more accurate as the

values for Bx become closer to zero, representing a doubly-symmetric beam.
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Buckling Load: Simply Supported Beam with
Uniformly Distributed Load (f,= -0.6)
S0
aa
=
5 70 —4—Present Research
e}
E 60 =li—Anderson and Trahair
S 50
(=8
T 40
=]
- 30
frer)
£ —a—
10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.11 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (,[_?x = —0.6)

Buckling Load: Simply Supported Beam with
Uniformly Distributed Load (B,=-0.3)
100
90
~ 80
E 20 —4—Present Research
E =li—Anderson and Trahair
g 60
£ 50
B
§ 40
T 30
£ 20 = ——
W
10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.12 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (,[_?x = —0.3)
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Buckling Load: Simply Supported Beam with
Uniformly Distributed Load (f,=-0.1)
100
90
> 80
E 20 —4—Present Research
E =li—Anderson and Trahair
G 60
£ 50
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w® 30
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Figure 5.13 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (,[_?x = —O.l)

Buckling Load: Simply Supported Beam with
Uniformly Distributed Load (,=0)
100
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E 20 —4—Present Research
E =li—Anderson and Trahair
G 60
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9 40
§ 30 = o—
= 20
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Figure 5.14 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (,Ex = O)
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Buckling Load: Simply Supported_Beam with
Uniformly Distributed Load (f,=0.1)
100
90
-
5 80 —4—Present Research
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E 60 =li—Anderson and Trahair
o
£ 50
B
§ 4o
T 30 » =
£ 20
)
10
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.15 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (EX = 0.1)

Buckling Load: Simply Supported_Beam with
Uniformly Distributed Load (B,=0.3)
120
= 100
5 —4—Present Research
e}
E 80 =li—Anderson and Trahair
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(1]
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- 40
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=
o 20
0
0 0.1 0.3 1 3
Beam Parameter, K

Figure 5.16 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (,Ex = 0.3)
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Buckling Load: Simply Supported_Beam with
Uniformly Distributed Load (B,= 0.6)
120
= 100
5 —4—Present Research
e}
E 80 =li—Anderson and Trahair
(1]
£ 60
o
(1]
=]
- 40
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o 20
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Figure 5.17 Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section

Subjected to a Uniformly Distributed Load (/_?x = 0.6)
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5.4 CANTILEVER WITH END POINT LOAD, P

This example will present the lateral-torsional buckling load, P, for a cantilever beam subjected

to a concentrated central load that is applied at the end of the beam to its shear center, as shown

in Figure 5.18.

NN\

NANNN

Figure 5.18 Monosymmetric Cantilever Beam Subjected to Concentrated End Load

There is no axial force or uniformly distributed load acting on the beam. Therefore, F = 0 and

g = 0. Since the concentrated load, P, is applied at the beam’s shear center, (e - )70) =0.

Therefore, Eq. (5.1) reduces to
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—6°I = %j EI, dd(;u) +GJ i 6(2¢) + EI, dd(jf)j
+ M (z) 2[d (52“)] Sh+ ﬂx[d(§¢)] dz (5.51)
dz dz

The moment along the beam, M (z), for a beam with a concentrated central load can be

expressed as

M (z)=-P(L-2z) for 0<z< L (5.52)

7z 7wz
Several shape functions including u(z) = A(l— coszj and @(z) = B(l— COSZ} were

experimented with to accurately predict the buckled shape of a cantilever beam. It was
determined that in order to obtain acceptable results, a more complicated shape function in the

form of a trigonometric series must be used (Wang and Kitipornchai, 1986).

u(z) = ZA {1— cos%} (5.53)
i (2r-1)zz

Hz)=). 6,|1- cos™—— (5.54)
r=1

The first variation of u and ¢, as well as their first and second derivatives are needed to solve

this problem and are shown below as

Su= ). A {1— cos (5.55)

r=1

(2r-1zz
e

&9



L 2r -1
5p=Y 59{1- cos. rzL)m} (5.56)
r=1
d(&)_i(lM _(lzrq )27’—1) < s
7 —r:1 > ,smz 7 nz 7 V4 (5.57)
d(5¢) "(1 ,(12r—1 )27—1)
P ;1 556’, S| 57— #Z) T % (5.58)
d*(ou) & (1 127-1 \(2r-17 ,
PR Zl ZéArcos(E i 7ZZ) G (5.59)
d*(6¢) & (1 12r-1 \(2r-17 ,
PR Zl Zé‘é’r cos(g 7 ﬂz) o (5.60)

Substituting Egs. (5.52) — (5.60) into Eq. (5.51) yields
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#1,| %

r=1

[ o COS(12r—1ﬂZj (27— 1)2 ”ijz'

& 12r-1 2r-1 ’
PGJZ 59s1n2 . T %

r=1

2
n 120-1 \(2r-1)>
1, ;1[ o0, cos(2 rL ﬂZj rL2 7[2}]
] 1270-1 )\ (2r-1)? " (2r- 1)z
—P(L—Z)P[;l(‘téﬁ cos(2 rL ﬂZj rLz ﬂzjj[;f@{l—cos 2L ZD
n (12;’—1 2r-1 ?

Therefore integrating Eq. (5.51) with respect to z gives

4 2 2
1, ZELE GIn® | & o @r-10)°72%El,)
F O = ;1((2r—1) 5A,2)|+ o Zl[(2r—l) VT Ll
P’ | [1 3 j Y ]
+ = rzl[ T (2r-1)°56, 54,
£ n 2 n 1_(_ 1)r+s—1 1_(_ l)r—s_ 4 j]
T4 ;[ur 1) M’[S:;mées[z(ws—nz Y-8 @r-1)
PR | & [[ 1 1] ) 2]
Y | 5 |(2r- 62
. ; R (2r-1)2%56, (5.62)

Taking the derivative of Eq. (5.62) with respect to 64, and 66, yields the following set of

homogeneous linear equations.
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+7(2r-1 {Z [[ (—1)”‘1+1—(—1)"S_ 4 ]&%ﬂo

T\ 2rts- 17 2(r-9)% (2r-1)°

(5.63)
forr=1,...,n
And
{Low)
2 -1’ . (2r-1)*K? . y.(2r-1)° _( 1 lj 5
dsg. | 8 32 4 (2r- 12> 4|7
2r-1)%1 3
+7/C(r ) —- 5 |0A,
4 4 (2r-1)x
n 1- _1r+s—1 1- _lr—s 4
+—7/c2 z [(25—1)2[ ) >+ ( )2 - ZJMS]
477 | N ser 2(r+s-1) 2(r - 5) (2r-1)

& n l _1_(_ 1)r+s—1 1_(_ l)r_sj ] )
' 7 Lg“sir[[“(zr D2s-1)7 2r+s-1)> ) 2(r - 5)* o0 ] -

(5.64)

where the non-dimensional critical load is defined as
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PI*

Vo= — (5.65)
JEL,GJ
Egs. (5.63) and (5.64) are evaluated at n = 7 with the results in the form
A 1 A 1
6 6
[4ly . (-7,[B]) . (=0 (5.66)
A, A,
o, 6,
which can be rearranged to the form
[Dia} = Alal (5.67)
Where
[D]=[4]"[B] (5.68)
A 1
6
a=1q . (5.69)
A 7
&,
1
A=— (5.70)
Yp

Where [4] and [B] are 14 by 14 matrices with the terms of each matrix given in Appendix B.
The eigenvalues, 4, can be derived from Eq. (5.67), which yield the critical load, as shown in Eq.

(5.70).
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This result can then be compared to the results given in (Anderson and Trahair, 1972) where
the critical load parameters were obtained using the method of finite differences. Figures 5.19 —

5.25 compare the results obtained using Eqs. 5.63 and 5.64 at values of n =3, 5, and 7 with the
results given by Anderson and Trahair at various values of K and ﬁ_’x . The shape functions

using trigonometric series appear to have the same limitations as the ones used for the simply-
supported beams where the predicted buckling moment is more accurate when the beam is closer

to being doubly-symmetric, with the best predicted result occurring for higher values of n.

Buckling Load: Cantilever Beam with
Concentrated End Load (B,= -0.6)

25 == Anderson and Trahair
. ——n=7 //u
<20 n=5 -
g
L +I’1=3
g 15
©
o
B
9 10
©
-
T 5
)
0

0] 0.1 0.3 1 3
Beam Parameter, K

Figure 5.19 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_?x = —0.6)
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Figure 5.20 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_3; = —0.3)
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Buckling Load: Cantilever Beam with
Concentrated End Load (B,=-0.1)
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Figure 5.21 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_;’x = —0.1)
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Figure 5.22 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_?x = 0)
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Figure 5.23 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (,Ex = 0.1)
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Figure 5.24 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_:’x = 0.3)
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Figure 5.25 Buckling Load: Cantilever Beam with Monosymmetric Cross-Section

Subjected to a Concentrated End Load (/_:’x = 0.6)
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6.0 FINITE ELEMENT METHOD

The finite element method is a numerical technique used to solve problems that may be
otherwise difficult to solve analytically. In this chapter, the finite element method will be used in
conjunction with the energy method to establish finite element equations that can be used to
solve for the elastic lateral buckling load. The basic concept behind the finite element method is
to model a continuum with infinite degrees of freedom and as a system of elements having finite
degrees of freedom. These elements are assembled to accurately approximate the behavior of the
entire system.

The first step toward formulating a finite element solution is to divide the system into a
number of discrete elements. These elements are connected by nodes, which are common points
shared by adjacent elements that establish the continuity of the system. The size of the elements
are arbitrary and should be selected to closely model the behavior of the entire system. After the
elements have been defined and nodes selected, a displacement function is established for each
element. A displacement function is normally a linear combination of shape functions. Shape
functions are usually polynomial functions representing a unit displacement of a particular node
and zero for the other nodes. The number of polynomial functions used to describe each element
is based on the number of degrees of freedom of that element. A strain-displacement
relationship and a stress-strain relationship are then defined for each element from the shape

functions.
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The principle of minimum total potential energy will be used to derive the element
stiffness matrix and an element geometric stiffness matrix. Once these matrices are obtained,
they can be converted to the global coordinate system and assembled into a global stiffness
matrix to represent the entire system. The matrix can then be partitioned into free and restrained
degrees of freedom by the application of boundary conditions. The section of the global stiffness
matrix and geometric stiffness matrix containing the free degrees of freedom can then be used to
obtain the buckling loads for lateral-torsional buckling.

In this project, the structural system that the finite element method is being applied to is
any plane frame. Each frame element has six nodal degrees of freedom, which means twelve
total degrees of freedom for each element. The coordinate system for the beam-column elements
of the plane frame is shown in Figures 6.1 — 6.3.

Figure 6.1 shows the top view of the element with a displacement u(z) at a distance z
along the element, which is the lateral bending in the x direction. Of the four out-of-plane nodal

coordinates shown, u, and u, are the out-of-plane nodal displacements at nodes 1 and 2,
respectively, and u, and u, are the out-of-plane nodal rotations of nodes 1 and 2, respectively.

Figure 6.2 shows the elevation view of the element with a displacement v(z) at a distance
z along the element, which is the in-plane bending in the y direction. Of the four in-plane nodal

coordinates shown, v, and v, are the in-plane nodal displacements at nodes 1 and 2,
respectively, and v, and v, are the in-plane nodal rotations of nodes 1 and 2, respectively.
Figure 6.3 shows the elevation view of the element with a displacement ¢(z) at a distance

z along the element, which is the torsional rotation in the z-direction. Of the four nodal

coordinates shown, ¢, and ¢, are the torsional rotations at nodes 1 and 2, respectively, and ¢,

and ¢, are the torsional curvatures of nodes 1 and 2, respectively.
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Figure 6.3 Element Degrees of Freedom with Nodal Displacements ¢

100



The displacement functions for the generalized displacements u(z), v(z), and ¢(z) are

assumed to be cubic polynomials. These displacement functions are expressed below as

(Roberts, 2004)

u(z) = [N]{u} (6.1)
v(z) = [N]{v} (6.2)
#(2) = [N]{ 4] (6.3)

where

N = {%(223 -3z°L+ L3) %(23L— 2220 + ZL3) %(— 220 + 3ZZL) %(ZSL— zsz)

(6.4)
and
wp={u, uy wy o} (6.5)
=y v, v vt (6.6)
(=1t & & o) (6.7)

The matrix [N] is the shape function matrix for each element. Each term in the shape
function matrix represents the shape of the displacement function when the element degree of
freedom corresponding to the shape function has a unit value and all other degrees of freedom

are equal to zero.

The first variation of the displacement functions are

Su(z) = [ N]{ 6u} (6.8)
5v(z) = [N){6v} (6.9)
5¢(2) = [N1{5} (6.10)
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The element stiffness matrix for the structure is derived using the principle of minimum
total potential energy. In order to apply the finite element method, the structure must be
separated into a finite number of elements. The total potential energy for the system may be

expressed as

%52 = %Z (5°U, + 25°Q,)=0 (6.11)

1
where 55 *U, and 5152Q . are the second variation of the strain energy stored in each element

and the work done on each element, respectively. The term A represents the buckling load
factor which the initial load set has to be multiplied by to obtain the buckling load.
The strain energy stored and the work done on each individual element may be expressed

as

%52H - %{5de}r([ke]+ Az )){od.} (6.12)

where

{de} = = the local nodal displacement vector for each element (6.13)

102



A = the buckling parameter for each element

[ke ] = the element local stiffness matrix

[ g, ] = the element local geometric stiffness matrix corresponding with the

initial load set
The element local stiffness matrix and geometric stiffness matrix are both 8 by 8 matrices
representing eight local displacements for each element corresponding to the displacements
when buckling occurs. The arrangement of each matrix is shown below with both matrices being

symmetric about the main diagonal.

up|ky ko ko ky ks ke ki kg
u, ky ky ki ki kye ky kg
A kyy  ky ki ki ky kg
¢ ky kis ki ki kg (6.14)
Us kss kg ks ks
u, kes ke ke
¢ ki ko
¢4 L k88_
u, u, ¢ ¢ u; u, ¢ @,
w gy 2, C5 &u &s L & L)
u, 8n 8xn 8u 8 8x 8L &
A 8yn 8 8 8 837 8
¢, 8aa 8as 8s6 841 8 (6.15)
U, 8ss 86 851 &ss
U, 86 861 8es
¢ 81 8n
@, L 853 |
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To obtain the stiffness matrices, the lateral torsional buckling equation must be re-

written in terms of the initial load set. The second variation of total potential energy then

becomes
1 a(ou))” (d (s9)) *(59))
~ 5 = EI EL| =57 + G| +EL| =5
dsu))”  (dsu)\(d(sg)) . ., (s9))
AE [ (dz )] +2y0[ (dz )][ (dz )]+(r” Yo )[ c(iz )]

N
oY

—_
S,
=

N—

[dz(é'u)]
FAM,()| 2= 5 |6p+ B,

; %,1_[ ala-3,)(59) d= + %/IZ Ple-3,)5¢) =0 (6.16)

L

where the first three terms will contribute to the element elastic stiffness matrix, [ke , and the

rest of the equation will contribute to the element geometric stiffness matrix, [ ge] .

6.1 ELASTIC STIFFNESS MATRIX

The first three terms of the buckling equation, Eq. (3.88), that will contribute to the

element stiffness matrix are
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(6.17)

which can be expressed as

%L{ oe} [ D) e} dz (6.18)

where the generalized strain vector is

{55}:{d2(5u) (%) —d2(5¢) (6.19)

dz? dz dz*

and the generalized elasticity matrix is

EI, 0 0
[D]=| 0 GJ 0 (6.20)
0 0 EI,

Substituting the first variation of the displacement functions into the generalized strain vector

yields
[N,Zz] [0]
(se)=| [0]  [m.z] {{5”}} (6.21)
[0] —[N,ZZ] {5¢}

which is substituted into Eq. (6.17) as follows.

1

The stiffness matrix can then be expressed as

T

r [NaZZ] [0] [N,ZZ] [0] {5u}
[o]  [n.z] | [D) [o]  [N.Z] dz (6.22)
} [0] - [N,ZZ] [0] _ [N,ZZ] {{5¢}}
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T

[N,ZZ] [O] [N,ZZ] [O]
[&.]= j o] [n.z] | [D] [0] [N.2Z] |z (6.23)
[0] - [N,ZZ] [0] - [N,ZZ]

Eq. (6.23) yields an 8 by 8 matrix with the following arrangement.

u | ky o ko ko ky ks ke ki kg
u, ky ky ki ki kye ky kg
Us kyy  ky ki ki kyo kg
U, ky ki ki kg kg (6.24)
A kss kg ks ks
¢, kes ke ks
¢ kyy ko
Al ks

u, u, u; u, ¢ @ @ @,

The terms of the elastic stiffness matrix are then rearranged to their appropriate locations as

shown in Eq. (6.14) and listed in Appendix A.

6.2 GEOMETRIC STIFFNESS MATRIX

The contribution of the lateral torsional buckling equation in terms of the initial load set to the

geometric stiffness matrix 1s
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; %lj ala-5,)(50) dz + %zz Ple-3,)5¢) =0 (6.25)

L

which can be expressed as

_[ (e} T[ D)l 5} dz + —zz Ple (6.26)
where the generalized strain vector is
d(Su) d*(Su) d(s¢)|"
og| = O 6.27
{ g} { dz dz* / dz (6.27)

and the generalized elasticity matrix is

F 0 0 $F
0 0 M (z) 0
DIl o) gla-3,) 0 (6.28)
$F 0 0 F(rn2+5,2)+(M.(8)

Substituting the first variation of the displacement functions into the generalized strain vector

yields
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[V.2] - [0]

A=l [0 [
R T {{w}}

[0 [N.z]

which is substituted into Eq. (6.26) as follows.

T

R I R o N R

1 ou N,zz [0] N,zz [0] ou

EL {5¢}} o WP {{&»}}"Z
[0] [N,z] [0] [N,z]

+%z{gﬁ}r[[o] [N ey, o] [NH{EZZ{}

The geometric stiffness matrix can then be expressed as

T

[N,z] [O] [N,Z] [O]

~ [N,zz] [0] [N,ZZ] [0]
[ge]‘L o WP e |

[0] [N.] [0] [N.Z]

T

3Tl ) Aol ]

The previous equation yields an 8 by 8 matrix with the following arrangement.

u gy 2 3 &u &s L & L
u, 8n 8xn 8u 8 Lx 8L &
U, 8yn 8 8 8 837 8
u, 8ua 8as 8s6 84 8
A 8ss 8s6 851 &ss
¢, 86 81 8es
¢ 87 8n
@, L 853 |

u, u, u; u, ¢ @ ¢ @,
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The terms of the geometric stiffness matrix are then rearranged to their appropriate locations as

shown in Eq. (6.15) and listed in Appendix A.

6.3 FINITE ELEMENT METHOD CONSIDERING PREBUCKLING

DEFLECTIONS

The terms of the second variation of the total potential energy equation that account for

prebuckling are

EI dz dz

dz (6.33)

M. (z) :
Z] dz|, M (z)will be redefined as

When integrating [I -
0

H, (z) = IMx(ﬂ)dﬂ (6.34)

Further substituting the definitions given for M  (z) in Chapter 4 yields

1 1
H (z)= Mz+ EVIZZ - ng3 for 0<z<z, (6.35)

IN
N

IN
B~

1 2 1 3 1 2
H(z)= Mz+Viz" - —qz —P(EZ -z2z,) for z

> - (6.36)
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Substituting H _(z) into the prebuckling energy equation and rearranging in terms of initial load

set gives
%'[ Elwcd;(Z52¢) d;(;“) . GJC@%] dz + %AH— 2%Mx (2) d;(zf“) 5¢
- fo (z)d;(f¢) d;(;u) - EGIJ (2 df¢) d;(jzu) + g]‘] L(2) d(diqj) d(di“)
+%Vy d;(;¢) d(diu)}dz (6.37)

where the first bracketed term of this equation contributes to the elastic stiffness matrix and the
remaining terms contribute to the geometric stiffness matrix. Eq. (6.12) can then be expressed as

%{ade}r([ke] +[k.], + Mg ]+ [2.],))od.} (6.38)

where [k.] and the [g.] are the same elastic and geometric stiffness matrices, respectively, that
were derived in the previous two sections and [k.]pr and [g.]p represent the prebuckling effects

and are added to the previously derived matrices.

6.4  ELASTIC STIFFNESS MATRIX CONSIDERING PREBUCKLING

DEFLECTIONS

The terms from the prebuckling energy equation (Eq. 4.27) that contribute to the elastic

stiffness matrix, [k.]p, are
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EI C GJIC———
@ dz? dz* ! dz dz*

lj
2
L

which can be expressed as

1
o er
2 L
where the generalized strain vector is

d*(su) a*(su) d(sg) da*(s9)]
dz? dz* dz dz?

{ ¢} ={

and the generalized elasticity matrix is

[ GJ
0 0 3
0 0 0 2
[D]: GJ 2
7 0
EI,
o 0

Substituting the first variation of the displacement functions into the generalized strain vector

yields
[N,zz] 0
B [N,Zzz] 0 {5u}
=5 g o
0 [N,zz]

which is substituted into Eq. (6.40) as follows.
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(6.39)

(6.40)

(6.41)

(6.42)

(6.43)



T

) [N,zz] 0 [N,ZZ] 0

el 05 g | e o

0 [N,Zz] 0 [N,zz]

The stiffness matrix can then be expressed as

T

[N,ZZ] 0 [N,ZZ] 0
[ke],, _ CI [N,Ozzz] [NO,Z] D] [N,OZZZ] []\;)’Z] & (6.45)
0 [N,zz] 0 [N,ZZ]

The elastic stiffness matrix considering prebuckling deflections, [ke] »» 1s again an 8 by 8

matrix. The terms of [ke] are then rearranged to their appropriate locations as shown in Eq.

P

(6.14) and listed in Appendix A.

6.5 GEOMETRIC STIFFNESS MATRIX CONSIDERING PREBUCKLING

DEFLECTIONS

The terms from the prebuckling energy equation Eq. (4.27) in terms of the initial load set

that contribute to the geometric stiffness matrix, [g.]p, are
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G o) dlon) 1, d*(6p)d{ou)

— 6.46
MO e 1 e | (6.46)
which can be expressed as
1
5 1_.. {8} ' [ D){ 8¢} d= (6.47)
L

where the generalized strain vector is

et T e 1R

and the generalized elasticity matrix is

' GIM,(z) LV,
0 0 0 0
2EI, 21,
I M (z)  GJH
0 0 0 _ Y _ x(Z) 0
I, 2FI,
](DHX (Z)
0 0 0 0 0 e x
[D]- o
B I, M (2)
0 - y]— 0 0 0 0
GIM.(z)  GJH.(2)
2EI,  2FI, 0 0 0 0
L,V I H (2)
ey _ e Tx 7
or 0 2 0 0 0
(6.49)
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Substituting the first variation of the displacement functions into the generalized strain vector

yields
_[N,Z] 0
[N,ZZ] 0
N,zzz 0 ou
{58}:[ 0 ] (V] {% 5} (6.50)
0 [N,Z]
o0 v

which is substituted into Eq. (6.47) as follows.

- T -

[N,Z] 0 [N,Z] 0
[N,ZZ] 0 [szz] 0
l {51/!} ! [N,zzz] 0 [N,ZZZ] 0 {{&t}}
2/1J'L{{5¢}} 0 (V] [D] 0 (V] {5¢} dz (6.51)
0 [N,Z] 0 [N,Z]
0 [N,zz]_ | 0 [N,zz]_
The geometric stiffness matrix can then be expressed as
[ [N,Z] 0 1" I [N,Z] 0
[N, 2] 0 [N, 2] 0
N,zzz 0 N,zzz 0
<], :I | ) ) - [D] | ) ) v |“ (6.52)
0 [N,Z] 0 [N,Z]
0 [N,ZZ]_ 0 [N,zz]_

The geometric stiffness matrix considering prebuckling deflections, [ g, ] »» 18 again an 8 by 8

matrix. The terms of [ ge] are then rearranged to their appropriate locations as shown in Eq.

P

(6.15) and listed in Appendix A.
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7.0 SUMMARY

Lateral-torsional buckling occurs when a beam has a relatively small lateral and torsional
stiffness compared to its stiffness in the plane of loading, causing the beam to deflect laterally
and twist out of plane when it reaches a critical load. This load is known as the lateral-torsional
buckling load, or LTB load. A review of existing literature was presented to demonstrated
previous methods used to derive the LTB load, including the differential equilibrium method of
stability and energy methods. The derivations of the LTB load for structures with doubly-
symmetric cross-sections have been long discussed and readily available. Lateral-torsional
buckling of a structure with a monosymmetric cross-section is an underdeveloped topic, with
derivations complicated by the fact that the centroid and the shear center do not coincide in these
cross sections. The purpose of this study was to derive equations for lateral-torsional buckling of
structures with monosymmetric cross-sections, examine the validity of these equations using
approximate shape functions and comparing these results to other analysis, and use the finite
element method to obtain element elastic stiffness and geometric stiffness matrices that may be
used in future research, in conjunction with computer software, to predict the LTB load for

complex systems.

The energy equation for lateral-torsional buckling of a beam-column element is based on
the theorem of minimum total potential energy. The total potential energy of the system is the

sum of the strain energy and the potential energy of the external loads. This theorem indicates
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that the critical condition for buckling occurs when the second variation of the total potential

energy is equal to zero, representing the transition from a stable to an unstable state.

The energy equations in this paper are derived for cases both ignoring and considering
prebuckling displacements. Prebuckling, or in-plane, displacements are considered so small for
thin-walled structures that their effect on the lateral-torsional buckling load is negligible. This
assumption is only valid when the ratios of minor axis flexural stiffness and torsional stiffness to
the major axis flexural stiffness are very small. When these ratios are not small, the effects of
prebuckling deformations will significantly alter the LTB load and cannot be ignored. A non-
dimensional buckling equation is also presented for cases without prebuckling displacements.
The advantage of this form is that the solution can be transferred to other structural systems with

the same loading conditions.

The validity of these energy equations for the lateral-torsional buckling of beam-column
elements with monosymmetric cross-sections is examined in the applications section of the
paper. Suitable trigonometric shape functions for beams that are simply supported and cantilever
are used to compare the buckling results obtained from the present research to results obtained in
previous literature using the method of finite differences. The derived energy equations prove to
be accurate in predicting critical loads for different boundary and loading conditions, with the
degree of precision based on the ability of the shape function to predict the buckled shape of the

beam.

The finite element method is used to project the energy equations for lateral-torsional
buckling of a beam-column element onto a structure with complicated loads, boundary

conditions, and geometry. The expression for the second variation of total potential energy is
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used to derive element elastic stiffness and geometric stiffness matrices for the structure. These
matrices can then be transformed to a global coordinate system for each element and assembled
so boundary conditions can be used to transform the structure from unrestrained to restrained.
The result is a generalized eigenvalue problem that will produce lateral-torsional buckling loads
for the structure. The objective is that future research can utilize these stiffness matrices, along
with computer software, to develop models of complex systems with monosymmetric beam-

columns and predict the lateral-torsional buckling loads of that system.
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A3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX
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A.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX
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A5 ELEMENT PREBUCKLING STIFFNESS MATRIX
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A.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX
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APPENDIX B

B.1 MATRIX [A] FROM SECTION 5.4
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*Only non-zero terms from Matrix [A4] are listed.
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