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Lateral-torsional buckling is a method of failure that occurs when the in-plane bending capacity 

of a member exceeds its resistance to out-of-plane lateral buckling and twisting.  The lateral-

torsional buckling of beam-columns with doubly-symmetric cross-sections is a topic that has 

been long discussed and well covered.  The buckling of members with monosymmetric cross-

sections is an underdeveloped topic, with its derivations complicated by the fact that the centroid 

and the shear center of the cross-section do not coincide.  In this paper, the total potential energy 

equation of a beam-column element with a monosymmetric cross-section will be derived to 

predict the lateral-torsional buckling load.   

 The total potential energy equation is the sum of the strain energy and the potential 

energy of the external loads.  The theorem of minimum total potential energy exerts that setting 

the second variation of this equation equal to zero will represent a transition from a stable to an 

unstable state.  The buckling loads can then be identified when this transition takes place.  This 

thesis will derive energy equations in both dimensional and non-dimensional forms assuming 
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that the beam-column is without prebuckling deformations.  This dimensional buckling equation 

will then be expanded to include prebuckling deformations.   

 The ability of these equations to predict the lateral-torsional buckling loads of a structure 

is demonstrated for different loading and boundary conditions.  The accuracy of these predictions 

is dependent on the ability to select a suitable shape function to mimic the buckled shape of the 

beam-column.  The results provided by the buckling equations derived in this thesis, using a 

suitable shape function, are compared to examples in existing literature considering the same 

boundary and loading conditions. 

 The finite element method is then used, along with the energy equations, to derive  

element elastic and geometric stiffness matrices.  These element stiffness matrices can be 

transformed into global stiffness matrices.  Boundary conditions can then be enforced and a 

generalized eigenvalue problem can then be used to determine the buckling loads.  The element 

elastic and geometric stiffness matrices are presented in this thesis so that future research can 

apply them to a computer software program to predict lateral-torsional buckling loads of 

complex systems containing members with monosymmetric cross-sections. 
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1.0 INTRODUCTION 

 

 

The members of a steel structure, commonly known as beam-columns, are usually designed with 

a thin-walled cross-section.  Thin-walled cross-sections are used as a compromise between 

structural stability and economic efficiency and include angles, channels, box-beams, I-beams, 

etc.  These members are usually designed so that the loads are applied in the plane of the weak 

axis of the cross-section, so that the bending occurs about the strong axis.  However, when a 

beam, usually slender in nature, has relatively small lateral and torsional stiffnesses compared to 

its stiffness in the plane of loading, the beam will deflect laterally and twist out of plane when 

the load reaches a critical limit.  This limit is known as the elastic lateral-torsional buckling 

load.   

The lateral buckling and twisting of the beam are interdependent in that when a member 

deflects laterally, the resulting induced moment exerts a component torque about the deflected 

longitudinal axis which causes the beam to twist (Wang, et al. 2005).  The lateral-torsional 

buckling loads for a beam-column are influenced by a number of factors, including cross-

sectional shape, the unbraced length and support conditions of the beam, the type and position of 

the applied loads along the member axis, and the location of the applied loads with respect to the 

centroidal axis of the cross section. 

 This paper will focus on the lateral-torsional buckling of steel I-beams with a 

monosymmetric cross-section.  In a beam with a monosymmetric cross-section, the shear center 



2 
 

and the centroid of the cross-section do not coincide.  The significance of this can be explained 

by the Wagner effect (Anderson and Trahair, 1972), in which the twisting of the member causes 

the axial compressive and tension stresses to exert an additional disturbing torque.  This torque 

can reduce the torsional stiffness of a member in compression and increase the torsional stiffness 

of a member in tension.  In I-beams with doubly-symmetric cross-sections, these compressive 

and tensile stresses balance each other exactly and the change in the torsional stiffness is zero.  In 

I-beams with monosymmetric cross-sections where the smaller flange is further from the shear 

center, the Wagner effect results in a change in the torsional stiffness.  The stresses in the smaller 

flange have a greater lever arm and predominate in the Wagner effect.  The torsional stiffness of 

the beam will then increase when the smaller flange is in tension and decrease when the smaller 

flange is in compression. 

When a structure is simple, such as a beam, an energy method approach may be used 

directly to calculate the lateral-torsional buckling load of the structure.  Assuming a suitable 

shape function, the equations derived using the energy method can provide approximate buckling 

loads for the structure.  However, when a structure is complex, this is not possible.  In this case, 

the energy method in conjunction with the finite element method may be used to calculate the 

lateral-torsional buckling load of the structure. 

The finite element method is a versatile numerical and mathematical approach which can 

encompass complicated loads, boundary conditions, and geometry of a structure.  First, element 

elastic stiffness and geometric stiffness matrices are derived for an element using the energy 

equations for lateral-torsional buckling.  The structure in question must be divided into several 

elements, and a global coordinate system can be selected for that structure.  The element elastic 

stiffness and geometric stiffness matrices are transformed to the global coordinate system for 
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each element, resulting in global element elastic and geometric stiffness matrices for the 

structure.  After this assembly process, boundary conditions are enforced to convert the structure 

from an unrestrained structure to a restrained structure.  The derived equilibrium equations are in 

the form of a generalized eigenvalue problem, where the eigenvalues are the load factors that, 

when multiplied to a reference load, result in lateral-torsional buckling loads for the structure.    

The main objective of this thesis is to formulate equations for lateral-torsional buckling 

of monosymmetric beams using the energy method.  Suitable shape functions will be applied to 

these equations to provide approximate buckling solutions that can be compared to previous data.  

The finite element method will be used to derive element elastic and geometric stiffness matrices 

that can be used in future works in conjunction with computer software to determine lateral-

torsional buckling loads of more complex structures.  
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2.0   LITERATURE REVIEW 

 

 

This section reviews available literature that explores lateral-torsional buckling as the primary 

state of failure for beams used in structures.  A beam that has relatively small lateral and 

torsional stiffnesses compared to its stiffness in the plane of loading tends to deflect laterally and 

twist out of plane.  This failure mode is known as lateral-torsional buckling.  Two methods are 

used to derive the critical load values that result in lateral-torsional buckling beam failure: the 

method utilizing differential equilibrium equations and the energy method.  The differential 

equilibrium method of stability analysis assumes the internal and external forces acting on an 

object to be equal and opposite.  The energy method refers to an approach where the total 

potential energy of a conservative system is calculated by summing the internal and external 

energies.  The buckling loads for the system can then be approximated if a suitable shape 

function for the particular structure is used, thus reducing the system from one having infinite 

degrees of freedom to one having finite degrees of freedom. This approach is known as the 

Rayleigh-Ritz method.  This method will provide acceptable results as long as the assumed shape 

function is accurate.  Both the differential equilibrium method and energy methods are examined 

in this literature review. 
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2.1 EQUILIBRIUM METHOD 

 

The closed form solutions for various loading conditions and cross-sections are demonstrated 

below using the equilibrium method.  The beams are assumed to be stationary and therefore the 

sum of the internal forces of the structure and the external forces is assumed to be zero.  The 

equations are rearranged in terms of displacements resulting in a second order differential 

equation from which the buckling loads can be solved. The beams are assumed in this section to 

be elastic, initially perfectly straight, and in-plane deformations are neglected.  Rotation of the 

beam, φ , is assumed small, so for the small angle relationships sinφ φ=  and cosφ = 1 can be 

used. 

 Consider a simply supported beam with a uniform rectangular cross section as shown in 

Figure 2.1a and Figure 2.1b.  Note that u, v and w are the displacements in the x-, y-, and z-

directions, respectively.  The section rotates out of plane at an angle φ . The differential 

equilibrium equations of minor axis bending and torsion of a beam with no axial force (F = 0) 

are derived from statics as (Chen and Lui.  1987) 

EI d u
dz

My x

2

2 = − φ         (2.1)  

GJ
d
dz

M
du
dz

Mx z

φ
= +        (2.2) 

where EI
Ehb

y =
3

12
    and  GJ

Ghb
=

3

3
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EI y represents the flexural rigidity of the beam with respect to the y-axis and GJ represents the 

torsional rigidity of the beam with respect to the z-axis.  M x  and Mz  are the internal moments 

of the beam acting about the x-axis and the z-axis, respectively.  In Eq. (2.1), the component of 

M x  in the y-direction is represented by  − M x sinφ   which, by way of the small angle theorem, 

reduces to − M xφ .  In Eq. (2.2), the torsional component of M x  acting in the z-direction is 

represented by M du
dzx . 

 

 

Figure 2.1a  Beams of Rectangular Cross-Section 

 

    

Figure 2.1b  Beams of Rectangular Cross-Section with Axial Force and End Moments 
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2.1.1 Closed Form Solutions 

 

Case 1: A  beam that is subjected to only equal end moments M about x-axis 

 
This loading case is shown in Figure 2.1b, with F = 0.  Since there is no torsional component of 

the moment, let  Mx = M and Mz = 0.  The equilibrium equations given in Eq. (2.1) and (2.2) 

reduce to 

EI
d u
dz

My

2

2 = − φ         (2.3) 

GJ
d
dz

M
du
dz

φ
=         (2.4) 

Solving for u from Eqs. (2.3) and (2.4) yields (respectively): 

d u
dz

M
EI y

2

2 =
− φ

          (2.5) 

d u
dz

GJ
M

d
dz

2

2

2

2=
φ

                   (2.6) 

Eliminating u yields a single differential equation of the form 

d
dz

M
GJEI y

2

2

2

0
φ

φ+ =                    (2.7) 

Solving the second order differential equation yields the general solution as 

φ( ) sin cosz A
Mz

EI GJ
B

Mz
EI GJy y

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟       (2.8) 

By applying the boundary condition φ = 0  at z = 0, B is equal to zero. 



8 
 

The constant A may then not be equal to zero because it provides a trivial solution.  Therefore at 

z = L  

  sin
M L
EI GJ

cr

y

= 0          (2.9) 

Solving for Mcr to provide the smallest nonzero buckling load yields 

M
EI GJ

Lcr

y
=
π

          (2.10) 

where Mcr is the critical value of M that will cause the beam to deflect laterally and twist out of 

plane. 

 

 

Case 2: A  linearly tapered beam with a rectangular cross section that is subjected to only equal 

end moments M about x-axis 

 

For this case, consider a linearly tapered beam with initial depth ho which increases at a rate z
L
δ  

as shown in Figure 2.2 where 

h z z
L

ho( ) ( )= +1 δ         (2.11) 

In Eq. (2.11), h(z) is the linear tapered depth of the beam as a function of z, ho is the depth of 

beam at z = 0, and (1 + δ) is the ratio of height of tapered beam at z = L to z = 0. 
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Figure 2.2  Linear Tapered Beam Subjected to Equal and Opposite End Moments 

 

The beam properties of the tapered section can be written as 

EI EIy o= η          (2.12) 

GJ GJo= η          (2.13) 

 where I
h b

o
o=

3

12
 , J

h b
o

o=
3

3
, and η δ= +1

z
L

.     (2.14) 

As in Case 1, there is no torsional component of the moment so that  Mx = M and Mz = 0.  

Substituting Eqs. (2.12) and (2.13) into the equilibrium equations yield 

EI
d u
dz

Moη φ
2

2 = −         (2.15) 

GJ
d
dz

M
du
dzoη

φ
=         (2.16) 

The derivative of η with respect to z is 

 d
dz L
η δ
=          (2.17) 

which enables the following relationships 

z 
M 

M

h o
ho(1 + δ ) 

y 

L

h  (z) 
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d
dz

d
d

d
dz L

d
d

φ φ
η

η δ φ
η

= =
            (2.18) 

and 

  
d
dz L

d
d

2

2

2 2

2

φ δ φ
η

=
⎛
⎝⎜

⎞
⎠⎟         (2.19) 

Substituting Eqs. (2.17) – (2.19) into the equilibrium Eqs. (2.15) and (2.16) yield 

EI
L

d u
d

Moη
δ

η
φ⎛

⎝⎜
⎞
⎠⎟ = −

2 2

2        (2.20) 

GJ
L

d
d

M
L

du
doη

δ φ
η

δ
η

⎛
⎝⎜

⎞
⎠⎟ =

⎛
⎝⎜

⎞
⎠⎟        (2.21) 

Differentiating Eq. (2.21) and combining it with Eq.(2.20) in order to eliminate u yields 

η
φ
η

η
φ
η

φ2
2

2
2 0

d
d

d
d

k+ + =          (2.22) 

where  

k
M L

EI GJo o

2
2 2

2=
δ

             (2.23) 

The general solution of Eq. (2.22) is given by (Lee, 1959) 

φ η η= +A k B ksin( ln ) cos( ln )       (2.24) 

Applying the boundary condition φ  = 0 at z = 0, B is equal to zero.  The constant A may then not 

be equal to zero because it provides a trivial solution.  Therefore the boundary condition φ  = 0 at 

η δ= +( )1  yields 

sin( ln( ))k 1 0+ =δ         (2.25) 

Solving for Mcr to provide the smallest nonzero buckling load yields 
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M
EI GJ

Lcr
o o=

+
πδ

δln( )1
       (2.26) 

where Mcr is the critical value of M that will cause the beam to deflect laterally and twist out of 

plane.  It is important to recognize that ifδ = 0 , meaning that the beam is not tapered,  Eq. (2.26) 

reduces to 

M
EI GJ

Lcr
o o=

π
         (2.27)  

which is the result obtained in Case 1. 

 

 

Case 3: A simply supported beam with a concentrated load, P, at midspan (at z = L/2) 

 

For this case, consider a non-tapered beam with a concentrated load, P, at midspan as shown in 

Figure 2.3. 

 

Figure 2.3  Simply Supported Beam with Concentrated Load, P, at Midspan 

z 

P

y 

L
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The moments Mx  and Mz are derived using basic equilibrium concepts as 

M Pz
x = 2

         (2.28) 

( )M
P

u uz = ∗−
2

        (2.29) 

Where u* represents the lateral deflection at the centroid of the middle cross section and u 

represents the lateral deflection at any cross section. 

By substituting the relationships for M x  and Mz  into Eqs. (2.1) and (2.2),  the differential 

equations for this case become 

 EI d u
dz

Pz
y

2

2 2
= − φ

             (2.30)  

 
( )GJ d

dz
Pz du

dz
P u uφ

= + ∗−
2 2        (2.31)

 

 Combining the above equations to eliminate the term u yields 

d
dz

P z
EI GJy

2

2

2 2

4
0φ φ+ =         (2.32) 

For simplicity, the following non-dimensional relationships are used 

η =
z
L

                   (2.33) 

ζ =
P L
EI GJy

2 4

4
        (2.34) 

Eq. (2.32) can then be reduced to 

d
d

2

2
2 2 0φ

η
ζ η φ+ =         (2.35) 
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The general solution utilizes Bessel functions (Arfken, 2005) of the first kind of orders 1/4 and -

1/4 shown below as 

φ η ζη ζη
=

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥−AJ BJ1 4

2

1 4

2

2 2/ /      (2.36) 

Applying the boundary conditions φ = 0  atη = 0  and  d
d
φ
η
= 0   at  η =

1
2   

gives J−
⎛
⎝⎜

⎞
⎠⎟ =3 4 8

0/

ζ

 
then

ζ
8

10585= .   yielding an expression for the buckling load, Pc, as 

P
L

EI GJc y=
16 94

2

.
        (2.37) 

where Pc is the lateral-torsional buckling load (Wang, et al. 2005). 

 

 

Case 4: A simply supported I –beam with a monosymmetric cross-section subjected to equal end 

moments, M, and an axial load, F, acting through the centroid: 

 

In this case, consider a non-tapered monosymmetric I-beam subjected to end moments, M, and 

an axial force, F, as shown in Figure 2.4a with the cross-section of the beam shown in Figure 

2.4b. 
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Figure 2.4a  Monosymmetric Beam subjected to End Moments and Axial Force 

 

 

Figure 2.4b  Cross-Section of Monosymmetric Beam 

 

The minor axis distributed force equilibrium equation and the distributed torque equilibrium 

equation for the member can be expressed as (Kitipornchai and Wang. 1989) 

EI
d u
dz

M Fy
d
dz

F
d u
dzy o

4

4

2

2

2

2= − + −( )
φ

     (2.38) 

( )GJ F r M
d
dz

EI
d
dz

M
du
dzo x w− ⋅ + − =2

3

3β
φ φ

     (2.39) 

Where the warping rigidity is 

h 
yo 

y

x  centroid, o 

shear center, s

IyT 

IyB 

z F  F 

M  M 

y 
L
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EI EI hw y= −ρ ρ( )1 2          (2.40) 

and the degree of monosymmetry can be expressed as 

ρ =
+

=
I

I I
I
I

yT

yT yB

yT

y( )
         (2.41) 

where I yT and IyB  are the second moments of inertia about the y-axis of the top and bottom 

flanges, respectively, as shown in Figure 2.4b.  Because the beam has a monosymmetric cross-

section, the centroid of the beam, o, and the shear center, s, do not coincide.   This introduces a 

term, yo, which  represents the vertical distance between the centroid and the shear center.  The 

polar radius of gyration about the shear center, ro, can be expressed as 

r
I I

A
yo

x y
o

2 2=
+

+           (2.42) 

The monosymmetric parameter of the beam (Trahair and Nethercot, 1984) is 

βx
x AA

oI
x ydA y dA y= +

⎛

⎝
⎜

⎞

⎠
⎟ −∫∫

1 22 3       (2.43)                                       

where x and y are coordinates with respect to the centroid.  βx  accounts for the Wagner effect, 

which is the change in effective torsional stiffness due to the components of bending 

compressive and tensile stresses that produce a torque in the beam as it twists during buckling.   

Recognizing that, since the beam is simply supported, the boundary conditions become    

φ = 0  and d
dz

2

2 0φ
= at  z = 0, L. 

With the elimination of u and the implementation of the above boundary conditions, Eqs. (2.36) 

and (2.39) yield a closed form solution for critical values F and M (Trahair and Nethercot, 1984) 

as 
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( )M Fy r F F
F
F

F
F

M
r Fo z E

E z

x

o z
+ = −

⎛
⎝
⎜

⎞
⎠
⎟ − +
⎛

⎝
⎜

⎞

⎠
⎟0

2 2
21 1
β

    (2.44) 

where FE is the Euler buckling load given by  

F
EI
LE

y
=
π 2

2            (2.45) 

and Fz is given as (Wang, et al. 2005) 

F
GJ
r

EI
GJLz

o

w= +
⎛
⎝
⎜

⎞
⎠
⎟2

2

21
π

       (2.46) 

In order to obtain a non-dimensional elastic buckling moment, use is made of the non-

dimensional parameters (Kitipornchai and Wang. 1989) 

K
EI h
GJL

y=
π 2 2

24         (2.47)
  

 η =
+⎛

⎝
⎜

⎞
⎠
⎟

4
2h

I I
A

x y         (2.48) 

 υ =
2 0y
h          (2.49)

 

Λ =
F
FE

         (2.50) 

( )λ υ
β

= − + −⎡
⎣⎢

⎤
⎦⎥

Λ Λx

h
K1        (2.51) 

γ =
ML

EI GJy          (2.52)
 

Where h is the distance between the centroids of the top and bottom flange and K is the beam 

parameter.  The practical range for values of K is between 0.1 and 2.5, with low values 
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corresponding to long beams and/or beams with compact cross-sections, and higher values 

corresponding to short beams and/or beams with slender cross sections. 

 

Using the above nondimensional parameters, Eq.  (2.44) may be rewritten as (Wang, et al. 2005) 

[ ]{ }γ π λ λ υ ρ ρ η= ± − + − + − −⎡
⎣⎢

⎤
⎦⎥

2 2 21 1 4 1K KΛ Λ Λ( ) ( )   (2.53) 

The non-dimensional buckling equation shown above is the general solution of M for 

monosymmetric beams.  Eq. (2.53) is a versatile equation because it also accurately predicts the 

lateral-torsional buckling loads for beams of doubly symmetric cross-sections by simplifying the 

terms in the equation so that the monosymmetric parameter, β, is equal to zero and the degree of 

monosymmetry, ρ , is reduced to 1
2

 . 
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2.2 ENERGY METHOD 

 

The second method used for determining lateral-torsional buckling loads in thin-walled 

structures is the energy method.  The energy method serves as a basis for the modern finite 

element method of computer solution for lateral-torsional buckling problems of complex 

structures.  The energy method is related to the differential equations of equilibrium method in 

that calculus of variation can be used to obtain the differential equations derived by the first 

method.  The energy method is based on the principle that the strain energy stored in a member 

during lateral-torsional buckling is equal to the work done by the applied loads.  The critical 

buckling loads can then be obtained by substituting approximate buckled shapes back into the 

energy equation if the shape function is known.  This approach is known as the Rayleigh-Ritz 

method.   

 The strain energy stored in a buckled member can be broken down into two categories, 

the energy from St. Venant torsion and from warping torsion.  Pure or uniform torsion exists 

when a member is free to warp and the applied torque is resisted solely by St. Venant shearing 

stresses.  When a member is restrained from warping freely, both St. Venant shearing stresses 

and warping torsion resist the applied torque.  This is known as non-uniform torsion.   
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2.2.1 Uniform Torsion 

 

When a torque is applied to a member that is free to warp, the torque at any section is resisted by 

shear stresses whose magnitudes vary based on distance from the centroid of the section.  These 

shear stresses are produced as adjacent cross-sections attempt to rotate relative to one another.  

The St. Venant torsional resistance must directly oppose the applied torque as 

T GJ
d
dzsv =
φ

         (2.57)
 

whereφ  is the angle of twist of the cross-section, G is the shearing modulus of elasticity, J is the 

torsional constant, and z is direction perpendicular to the cross section, as illustrated in Figure 

2.5.  

Figure 2.5  Twisting of a Rectangular Beam that is Free to Warp 

z
T

T
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2.2.2 Non-uniform Torsion 

 

If the longitudinal displacements in the member are allowed to take place freely and the 

longitudinal fibers do not change length, no longitudinal stresses are present and warping is 

permitted to take place.  However, certain loading and support conditions may be present that 

prevent a member from warping.  This warping restraint creates stresses which produce a torsion 

in the member.  Non-uniform torsion occurs when both St. Venant and warping torsion act on the 

same cross section.  The expression for non-uniform torsion can be given as  

T T Tsv w= +           (2.58) 

 where Tw is the warping torsion, which, for an I section, is  

T V hw f=          (2.59) 

where Vf is the shear force in each flange and h is equal to the height of the section.  Recognizing 

that the shear in the flange is the derivative of the moment present in the flange, Eq. (2.59) 

becomes  

T
dM

dz
hw

f= −          (2.60) 

The bending moment in the upper flange, Mf,  can be written in terms of the displacement in the 

x-directon, u , as 

M EI
d u
d zf f=

2

2         (2.61) 

Recognizing that 

u
h

=
φ
2

         (2.62) 
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and introducing the cross-sectional property known as the warping moment of inertia  

I
I h

w
f

=
2

2
         (2.63) 

the warping torsion can now be expressed as 

T EI
d
dzw w= −

3

3

φ
        (2.64) 

 

The differential equation for non-uniform torsion is obtained by substituting Eq. (2.57) and Eq. 

(2.64) into Eq. (2.58) is 

T GJ
d
dz

EI
d
dzw= −

φ φ3
3        (2.65) 

The first term refers to the resistance of the member to twist and the second term represents the 

resistance of the member to warp.  Together, the terms represent the resistance of the section to 

an applied torque. 

 

2.2.3 Strain Energy 

 

 The strain energy stored in a twisted member can be broken into two categories, the 

energy due to St. Venant torsion and the energy due to warping torsion.  The strain energy due to 

St. Venant torsion (Chajes, 1993) is  

dU
T d

sv
sv=

φ
2

         (2.66) 

where it can be seen that the change in strain energy stored in element dz due to St. Venant 

torsion is equal to one half the product of the torque  and the change in the angle of twist. 

Solving for dφ  from Eq. (2.57) 
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d
T
GJ

dzsvφ =          (2.67) 

and substituting it into Eq. (2.66) yields 

dU
T
GJ

dzsv
sv=

2

2
        (2.68) 

Substituting Eq. (2.57) into Eq. (2.68) and integrating results in the expression for strain energy 

due to St. Venant torsion. 

U GJ
d
dz

dzsv

L

=
⎛
⎝⎜

⎞
⎠⎟∫1

2 0

2φ
       (2.69) 

The strain energy due to the resistance to warping torsion of an I-beam, for example, is equal to 

the bending energy present in the flanges.  The bending energy stored in an element dz of one of 

the flanges is equal to the product of one half the moment and the rotation as  

dU EI
d u
dz

dzw f=
⎛
⎝
⎜

⎞
⎠
⎟

1
2

2

2

2

       (2.70) 

Substituting Eqs. (2.62) and (2.63) into Eq. (2.70) yields 

dU EI
d
dz

dzw w=
⎛
⎝
⎜

⎞
⎠
⎟

1
4

2

2

2
φ

       (2.71) 

Integrating Eq. (2.71) over the length of the member, L, and multiplying by two to account for 

the energy in both flanges results in the expression for the strain energy in a member caused by 

resistance to warping. 

U EI
d
dz

dzw w

L

=
⎛
⎝
⎜

⎞
⎠
⎟∫1

2 0

2

2

2
φ

       (2.72) 

The total strain energy in a member is then represented by the addition of  Eqs. (2.69) and (2.72). 

U GJ
d
dz

dz EI
d
dz

dz
o

L

w

L

=
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫1

2
1
2

2

0

2

2

2
φ φ

     (2.73) 
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2.2.4 Solutions Using Buckling Shapes 

 

Case 5: A  simply supported, doubly symmetric I-beam that is subjected to only equal end 

moments M about x-axis 

 

The loading in this case is identical to Case 1, but this case consists of a beam with an I cross-

section instead of a rectangular cross-section.  As in Case 1, Mx = M and Mz = 0. 

The boundary conditions for the case of uniform bending are given below. 

 

 u v
d u
dz

d v
dz

= = = =
2

2

2

2 0  at z = 0, L     (2.74) 

φ φ
= =

d
dz

2

2 0    at z = 0, L     (2.75) 

 In order to find the critical moment by use of the energy method, it is necessary to find 

the moment for which the total potential energy has a stationary value.  The strain energy stored 

in the beam consists of two parts; the energy due to the bending of the member about the y-axis 

and the energy due to the member twisting about the z-axis.  The total strain energy for the 

section is 

U EI
d u
dz

dz GJ
d
dz

dz EI
d
dz

dzy

L L

w

L

=
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝
⎜

⎞
⎠
⎟∫ ∫ ∫1

2
1
2

1
2

2

2
0

2

0

2 2

2
0

2
φ φ

  (2.76) 

The strain energy, U,  must now be added to the potential energy of the external loads, Ω, to 

determine a stationary value for Π Ω= +U .  For a member subjected to uniform bending, the 

external potential energy is equal to the negative product of the applied moments and the angles 

through which they act upon the beam. 
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Ω = −2 Mψ          (2.77) 

where ψ is the angle of rotation about the x-axis of the beam and can be expressed as 

ψ
φ

= ∫1
2 0

du
dz

d
dz

dz
L

        (2.78) 

Combining Eqs. (2.77) and (2.78) yields an expression for the potential energy of the external 

loads as 

Ω = − ∫M
du
dz

d
dz

dz
L

0

φ
        (2.79) 

and yields the following expression for the total potential energy of the beam. 

Π =
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ −∫ ∫ ∫ ∫1

2
1
2

1
2

2

2
0

2

0

2 2

2
0

2

0
EI

d u
dz

dz GJ
d
dz

dz EI
d
dz

dz M
du
dz

d
dz

dzy

L L

w

L Lφ φ φ
       

(2.80) 

As stated at the beginning of this section, the Rayleigh-Ritz method for determining critical loads 

requires the assumption of suitable expressions for buckling modes.  The following buckling 

shapes satisfy our boundary conditions: 

u A
z

L
= sin

π
           (2.81)  

φ
π

= B
z

L
sin          (2.82) 

Substituting the buckled shapes into Eq. (2.80) and identifying that 

sin cos2

0

2

0 2

L Lz
L

dz
z

L
dz

L∫ ∫= =
π π

      (2.83) 

 the total potential energy of the beam, Π , becomes 

Π =
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

EI A L
L

GJB L
L

E I B L
L

MABL
L

y w
2 4 2 2 2 4 2

4 4 4 2
π π π π

 
(2.84)  
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Setting the derivative of Π with respect to A and B equal to zero, the critical moment can be 

obtained.  

d
dA

EI
L

A MLByΠ
= − =

π 2

0        (2.85) 

d
dB

MLA GJL
E I

L
BwΠ

= − +
⎛

⎝
⎜

⎞

⎠
⎟ =

π 2

0      (2.86) 

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the 

coefficients A and B in Eqs. (2.85) and (2.86) must vanish leaving 

EI
L

GJL
E I

L
M Ly wπ π2 2

2 2 0+
⎛
⎝
⎜

⎞
⎠
⎟ − =      (2.88) 

Solving for M in Eq. (2.88) yields the critical moment for a simply supported beam in uniform 

bending as  

M
L

EI GJ EI
Lcr y w= +

⎛
⎝
⎜

⎞
⎠
⎟

π π 2

2       (2.89) 

 

 

Case 6: A doubly symmetric I-beam with fixed ends that is subjected to only equal end moments 

M about x-axis 

 

For this case, as in Case 1, Mx = M and Mz = 0. 

Consider an I-beam whose ends are free to rotate about a horizontal axis but restrained against 

displacement in any other direction, as shown in Figure 2.6.  
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Figure 2.6  I-beam Fixed at Both Ends Subjected to End Moments 

 

The boundary conditions are as follows 

u
du
dz

= = 0  at z = 0, L      (2.90) 

v d v
dz

= =
2

2 0   at z = 0, L      (2.91) 

φ
φ

= =
d
dz

0   at z = 0, L      (2.92)  

The following buckling shapes satisfy the geometric boundary conditions 

u A
z

L
= −

⎛
⎝⎜

⎞
⎠⎟1

2
cos

π
        (2.93) 

φ
π

= −
⎛
⎝⎜

⎞
⎠⎟B

z
L

1
2

cos         (2.94) 

Substituting the buckled shapes into Eq. (2.80) and using the simplification in Eq. (2.83), the 

total potential energy of the beam becomes 

Π = + + −
⎛
⎝
⎜

⎞
⎠
⎟

π π π2 2 2

2
2

2

24 4 2
l

EI
A

L
GJB EI B

L
MABy w    (2.95) 

z 

y 

L

M  M 
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Setting the derivative of the Π equations with respect to A and B equal to zero, yield the 

following two equations.  

d
dA L

EI A
L

MBy

Π
= −

⎛
⎝
⎜

⎞
⎠
⎟ =

π π2 2

28 2 0       (2.96) 

d
dB L

GJB EI B
L

MAw

Π
= + −

⎛
⎝
⎜

⎞
⎠
⎟ =

π π2 2

22 8 2 0     (2.97) 

Eqs. (2.95) and (2.96) expressed in matrix form is 

4

4
0

2

2

2

2

EI
L

M

M GJ EI
L

A
B

y

w

π

π

−

− +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧
⎨
⎩

⎫
⎬
⎭
=       (2.98)  

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the 

coefficients A and B in Eq. (2.98) must vanish leaving 

4 4 0
2

2

2

2
2EI

L
GJ EI

L
My w

π π
+

⎛
⎝
⎜

⎞
⎠
⎟ − =       (2.99) 

Solving for M as the critical moment yields 

M
L

EI GJ EI
Lcr y w= +

⎛
⎝
⎜

⎞
⎠
⎟

2
4

2

2

π π
      (2.100) 

It is interesting to note that the critical moment for the restrained beam is proportional to that of 

the simply supported beam.  If the warping stiffness is negligible compared to that of the St. 

Venant stiffness, the critical moment for the fixed beam is twice that of the hinged beam.  If the 

St. Venant stiffness is negligible compared to that of the warping stiffness, the critical moment of 

the fixed beam is four times that of the hinged beam.  The reason for this is that lateral bending 

strength and warping strength depend of the length of the beam, where St. Venant stiffness does 

not.  St. Venant stiffness is therefore unaffected by a change in boundary conditions. 
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3.0 LATERAL-TORSIONAL BUCKLING OF BEAM-COLUMNS 

 

 

The energy method detailed in Chapter 2, in conjunction with the Raleigh-Ritz method, is useful 

in determining closed form or approximate solutions, with a high degree of accuracy, when a 

suitable buckling mode can be identified.  In more complex structural systems, identification of 

the buckling mode is not possible.  In this case, a finite element approach is an ideal method that 

may be used to calculate the buckling load.  In order to formulate element elastic and geometric 

stiffness matrices that represent different load cases, one approach is to derive total potential 

energy of a beam-column element with a concentrated force, distributed force, end moments, and 

an axial force.  Therefore, the objective of this chapter is to derive energy equations for a beam-

column element with the above mentioned loads.   

Lateral-torsional buckling of a beam-column occurs when the loads on an element 

become large enough to render its in-plane state unstable.  When the loads on the member reach 

these critical values, the section will deflect laterally and twist out of the plane of loading.  At 

critical loading, the compression flange of the member becomes unstable and bends laterally 

while the rest of the member remains stable restraining the lateral flexure of the compression 

flange, causing the section to rotate.  This is common in slender beam-columns with insufficient 

lateral bracing that have a much greater in-plane bending stiffness than their lateral and torsional 

stiffnesses.  It is important to know the critical load for lateral-torsional buckling because this 
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method of failure is often the primary failure mode for thin-walled structures.  The focus of this 

chapter is to formulate energy equations that can be used to derive element elastic and geometric 

stiffness matrices of a beam-column with a monosymmetric I cross-section.    

 The basic assumptions used in the following derivations are:  

1. The member has a monosymmetric cross-section. 

2. The beam-column remains elastic.  This implies that the member must be long and 

slender. 

3. The cross-section of the member does not distort in its own plane after buckling and 

its material properties remain the same. 

4. The member is initially perfectly straight, with no lateral or torsional displacements 

present before buckling. 

5. The member is a compact section. 

The orientation of the member used to derive the energy equations is depicted in Figure 

3.1 using the xyz coordinate system with the origin being at o.  The x-axis is the major principle 

axis and the y-axis is the minor principle axis with the z-axis being oriented along the length of 

the member, coinciding with the centroidal axis of the undeformed beam-column.   

 

Figure 3.1  Coordinate System of Undeformed Monosymmetric Beam 

  y 

z

h

b

u

o
z‐axis 
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 The displacements in the x, y, and z directions are denoted as u, v, and w, respectively.  If 

loading occurs in the yz plane, the member will have an in-plane displacement, v, in the y-

direction and an in-plane rotation dv
dz

.  A member loaded along the z-axis will have a 

displacement, w.  The result of lateral-torsional buckling is an out-of-plane displacement, u, in 

the x-direction, an out-of-plane rotation, du
dz

, an out-of-plane twisting rotation, φ , and an out-of-

plane torsional curvature, d
dz
φ .  It is assumed in this chapter that in-plane deformations w, v, and 

dv
dz

 are very small and therefore can be neglected.  In the next chapter, the energy equations 

derived in this chapter will be expanded to include these displacements, which are known as 

prebuckling deformations.   

 The applied loads on the beam column include; (1) a distributed load, q, which acts at a 

height a above the centroidal axis  (2) a concentrated load, P, which acts at a height e above the 

centroidal axis   (3) a concentric axial load, F   (4) end moments, M1 and M2, as shown below.  

 

Figure 3.2 External Loads and Member End Actions of Beam Element 
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 The energy equations for the lateral-torsional buckling of a member with a 

monosymmetric cross-section differ from those of a member with a double symmetric cross-

section because the centroid and the shear center do not coincide on a monosymmetric beam-

column, as shown in Figure 3.3.  This introduces the term, yo, into the derivation representing 

the distance between the shear center, s, and the centroid, o.   

 

Figure 3.3  Cross-Section of Monosymmetric I-beam 

 

 The change in effective torsional stiffness of the member due to the components of 

bending compressive and tensile stresses that produce a torque in the beam as it twists during 

buckling is referred to as the Wagner effect (Anderson and Trahair, 1972).  In a beam with a 

doubly-symmetric cross-section, these compressive and tensile stresses balance each other and 

do not affect the torsional stiffness of the beam.  For the case of monosymmetry, these tensile 

and compressive stresses do not balance each other and the resulting torque causes a change in 

the effective torsional stiffness of the member from GJ to (GJ + Mx βx) (Wang and Kitipornchai, 

1986).  Because the smaller flange of the beam is farther away from the shear center than the 

h 
yo 
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larger flange, it creates a larger moment arm and predominates in the Wagner effect.  This means 

that when the smaller flange is in tension, the effective torsional stiffness of the beam is 

increased while the effective torsional stiffness is reduced when the smaller flange is in 

compression.  This inconsistency adds to the complexity of the energy equation derivations for 

lateral torsional buckling. 

The energy equation for an elastic thin-walled member is derived by considering the strain 

energy stored in the member, U, and the potential energy of the external loads, Ω , as 

Π Ω= +U          (3.1) 

where Π  represents the total potential energy of the member. 

 The strain energy present in the member is the potential energy of the internal stresses 

and strains present in the beam-column, while the potential energy of the loads represents the 

negative of the work done by external forces.  The total potential energy increment may be 

written as 

 ΔΠ Π Π Π= + + +δ δ δ1
2

1
3

2 3

! !
...       (3.2) 

The theorem of stationary total potential energy states that of all kinematically admissible 

deformations, the actual deformations (those which correspond to stresses which satisfy 

equilibrium) are the ones for which the total potential energy assumes a stationary value (Pilkey 

and Wunderlich, 1994) or δ Π = 0 . 

As previously discussed, the structure is unstable at buckling. The theorem of minimum 

total potential energy states that this stationary value of Π  at an equilibrium position is 

minimum when the position is stable. Therefore the equilibrium position can be considered 

stable when  
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1
2

02δ Π >          (3.3) 

and likewise is unstable when 

1
2

02δ Π <          (3.4)  

Therefore, the critical condition for buckling would be when the total potential energy is equal to 

zero, thus representing the transition from a stable to unstable state (Pi, et al., 1992).   

1
2

02δ Π =          (3.5) 

Substituting Eq. (3.1) yields the critical condition for buckling as 

( )1
2

02 2δ δU + =Ω         (3.6) 

 

 

3.1 STRAIN ENERGY 

 
 

The strain energy portion of the total potential energy may be expressed as a function of the 

longitudinal and shear strains as well as stresses.  Assume an arbitrary point Po in the cross 

section of the thin walled member.  The strain energy of the member can be expressed as 

( )U dA dzp p p p

AL

= +∫∫1
2

ε σ γ τ       (3.7) 

where 

ε p = longitudinal strain of point Po 

σ p = longitudinal stress of point Po 

γ p  = shear strain of point Po 
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τ p  = shear stress of point Po 

With its second variation being 

( )1
2

1
2

2 2 2δ δε δσ δγ δτ δ ε σ δ γ τU dA dzp p p p p p p p
AL

= + + +∫∫   (3.8) 

ε p , σ p , γ p ,  and τ p  and their variations will be expressed in terms of centroidal displacements  

in the following section in order to derive the energy equation for lateral-torsional buckling.   

 

3.1.1 Displacements  

 

 
In order to properly investigate deformations in a beam-column, two sets of coordinate systems 

are defined.  In the fixed global coordinate system oxyz, the axis oz is fixed and coincides with 

the centroidal axis of the undeformed beam.  The axes ox and oy represent the principle axes of 

the undeformed beam, as shown in Figure 3.4.  

 

 

Figure 3.4  Deformed Beam  
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The second set of coordinate systems is a moving, right hand, local coordinate system, 

oxyz .  The origin of this coordinate system is at point o  located on the centroidal axis of the 

beam and moves with the beam during displacement, as shown in Figure 3.4.  The axis 

oz coincides with the tangent at o  after the centroidal axis has been deformed.  The principle 

axes of the deformed beam are ox  and oy .  

When the beam column element buckles, point Po on the beam moves to point P.  This 

deformation occurs in two stages.  Point Po first translates to point Pt by the displacements u, v, 

and w.  The point Pt then rotates through an angle θ to the point P about the line on where the 

line on passes through the points o and o .  After the rotation, the moving local coordinate 

system oxyz  becomes fixed.  The transition of point Po to point P can be seen in Figure 3.5.  The 

directional cosines of the moving axes ox , oy , and oz  relative to the fixed global axes ox, oy, 

and oz can be determined by assuming rigid body rotation of the axes through an angle θ (Pi, et 

al., 1992).    

x

y

z
Po

P
tP

0

x
y

zo

ô

n

z

y

x̂

ˆ

ˆ

ˆ

 

Figure 3.5  Translation of Point Po to Point P 
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The displacements of point Po can be expressed as (Pi, et al., 1992) 

u
v
w

u
v
w

T
x

y y
k

x
y y

p

p

p

R o

z

o

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+ −

−

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
− −

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪ω 0

     (3.9) 

Where up, vp, and wp are total displacements of general point ( )P x yo , ,0 .  Note that u, v, and w 

are shear center displacements and ( )y yo−  is the distance between the centroid and the shear 

center, as seen in Figure 3.3.  ω  is the section warping function (Vlasov, 1961) and −ωkz   is 

the warping displacement and represents the deformation in the z-direction. 

 The first term on the right side of the equation contains the shear center displacement as 

the point Po translates laterally to point Pt.  The remaining terms on the right side of the equation 

represent the rotation of point Pt to its final destination at point P.  TR is defined as the rotational 

transformation matrix of the angle of rotation, θ.  Assuming small angles of rotation 

TR

y z
z

x y
y

x z

x y x z
x

y z

y
x z

x
y z x y

=

− − − + +

+ − − − +

− + + − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

1
2 2 2 2

2
1

2 2 2

2 2
1

2 2

2 2

2 2

2 2

θ θ
θ

θ θ
θ

θ θ

θ
θ θ θ θ

θ
θ θ

θ
θ θ

θ
θ θ θ θ

    (3.10) 

where θx , θy , and θz  are components of the rotation θ in the x, y, and z directions, respectively 

(Torkamani, 1998). 

 Consider an undeformed element Δ z and its deformed counterpart ( )Δ z 1+ ε , where ε  

represents the strain.  Δ Δu v, ,  and ( )Δ Δz w+ are components of the deformed element length 
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( )Δ z 1+ ε on the ox, oy, and oz axes, respectively. The relationship between the deformed 

element and its components can be expressed as 

( ) ( )Δ Δ Δ Δ Δz N ui v j z w kz1+ = + + +ε      (3.11) 

where N z  is a unit vector in the oz  direction.  

( )Δ z N z1+ ε  is projected on the x and y axes as 

( ) ( )Δ Δ Δu z N i z lz z= + ⋅ = +1 1ε ε       (3.12) 

( ) ( )Δ Δ Δv z N j z mz z= + ⋅ = +1 1ε ε       (3.13) 

where lz, mz, and nz are directional cosines of the oz  direction with respect to the oxyz fixed 

coordinate system.   

Dividing the previous equations by Δ z , and taking the limit as Δ z  goes to zero gives 

( )
( )du

dz
u
z

z l
z

l
z o z o

z
z= =

+
= +

→ →
lim lim
Δ Δ

Δ
Δ

Δ
Δ
1

1
ε

ε      (3.14) 

( )
( )dv

dz
v
z

z m
z

m
z o z o

z
z= =

+
= +

→ →
lim lim
Δ Δ

Δ
Δ

Δ
Δ

1
1

ε
ε     (3.15) 

Where lz and mz  are defined as . (Torkamani, 1998) 

lz y
x z= +θ

θ θ
2

             (3.16)  

mz x
y z= − +θ

θ θ
2

                  (3.17) 

Therefore 

( )du
dz y

x z= +⎛
⎝⎜

⎞
⎠⎟

+θ
θ θ

ε
2

1        (3.18) 

 ( )dv
dz x

y z= − +
⎛
⎝
⎜

⎞
⎠
⎟ +θ

θ θ
ε

2
1        (3.19) 
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By disregarding higher order terms, strain is eliminated and Eqs. (3.18) and (3.19) become 

du
dz y

x z≈ +⎛
⎝⎜

⎞
⎠⎟

θ
θ θ

2
        (3.20) 

 dv
dz x

y z≈ − +
⎛
⎝
⎜

⎞
⎠
⎟θ

θ θ
2

        (3.21) 

Solving for θx  and θy  from the previous equations yields 

θ θx z
dv
dz

du
dz

= − +
1
2

        (3.22)  

 θ θy z
du
dz

dv
dz

= +
1
2

        (3.23) 

Projecting the unit lengths along the ox  axis onto the oy axis and the oy  axis onto the ox axis 

yield mx  and ly  respectively. (Torkamani, 1998) 

ly z
x y= − +θ

θ θ
2

        (3.24) 

 mx z
x y= +θ

θ θ
2

        (3.25) 

The projections − +θ
θ θ

z
x y

2
and θ

θ θ
z

x y+
2

 of unit lengths along the oy  and ox  axes onto the ox 

and oy axes, respectively, can be used to define the the mean twist rotation, φ , of the ox  and oy  

axes on the oz axis is 

φ θ
θ θ

θ
θ θ

= +
⎛
⎝
⎜

⎞
⎠
⎟ − − +

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

1
2 2 2z

x y
z

x y       (3.26) 

Which simplifies to 

 φ θ= z           (3.27) 
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Substituting the expressions for θx , θy , and θz  into the rotational transformation matrix, TR , 

yields 

 T
l l l
m m m
n n n

R

x y z

x y z

x y z

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

        (3.28) 

Where 

 l du
dz

du
dz

dv
dzx = − ⎛

⎝⎜
⎞
⎠⎟

− −1 1
2

1
2

1
2

2
2φ φ       (3.29) 

 l du
dz

dv
dz

du
dz

dv
dzy = − − + ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

φ φ φ1
2

1
4

1
4

2 2

     (3.30) 

 l du
dzz =          (3.31) 

 m du
dz

dv
dz

dv
dz

du
dzx = − − ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

φ φ φ1
2

1
4

1
4

2 2

     (3.32) 

 m dv
dz

du
dz

dv
dzy = − ⎛

⎝⎜
⎞
⎠⎟

− +1 1
2

1
2

1
2

2
2φ φ       (3.33) 

 m dv
dzz =          (3.34) 

 n du
dz

dv
dz

du
dzx = − − +φ φ1

4
2        (3.35) 

 n dv
dz

du
dz

dv
dzy = − + +φ φ1

4
2        (3.36) 

 n du
dz

dv
dzz = − ⎛

⎝⎜
⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

1 1
2

1
2

2 2

       (3.37) 

The torsional curvature is (Love, 1944) 

 k
dl
dz

l
dm
dz

m
dn
dz

nz
x

y
x

y
x

y= + +       (3.38) 
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Substituting lx  through ny  into the previous expression yields a nonlinear expression for 

torsional curvature as 

 k d
dz

d u
dz

dv
dz

d v
dz

du
dzz = + −

⎛
⎝
⎜

⎞
⎠
⎟

φ 1
2

2

2

2

2       (3.39) 

Eliminating second and higher order terms, the expression for torsional curvature may be 

simplified to 

 k d
dzz =
φ          (3.40) 

Substituting Eqs. (3.29) – (3.37)  into Eq. (3.9) yield the displacement of an arbitrary point Po in 

terms of shear center displacements, rotations, and the section warping.  The total displacements 

up, vp, and wp can be considered the sum of linear and quadratic components of the form 

u
v
w

u
v
w

u
v
w

p

p

p

pl

pl

pl

pn

pn

pn

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
+

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

        (3.41) 

where 

u
v
w

u y y
v x

w x
du
dz

y
dv
dz

d
dz

pl

pl

pl

o
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

− −
+

− − −

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

( )φ
φ

ω
φ

      (3.42) 

u
v
w

x
du
dz

du
dz

dv
dz

y y
du
dz

dv
dz

du
dz

dv
dz

du
dz

d
dz

x
du
dz

dv
dz

dv
dz

du
dz

pn

pn

pn

o

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
=

−
⎛
⎝⎜

⎞
⎠⎟ + +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ − − −

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ −

− +
⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2
2

2 2

2 2

( )φ φ φ φ ω
φ

φ φ
⎠
⎟ − −

⎛
⎝⎜

⎞
⎠⎟ + −

⎛

⎝
⎜

⎞

⎠
⎟ −

− −
⎛
⎝⎜

⎞
⎠⎟ + − +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

1
2

1
4

1
4

1
2

2
2

2 2
2

2

2

2

( )

( )

y y
dv
dz

du
dz

dv
dz

dv
dz

d
dz

x
dv
dz

du
dz

y y
du
dz

dv
dz

d
dz

du
dz

dv
dz

o

o

φ φ ω
φ

φ φ φ φ ω
φ

 

(3.43) 
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The relationship between the displacement of the shear center, ws, and the displacement of the 

centroid, w, in the z-direction can be expressed as (Pi and Trahair, 1992a) 

w w y
dv
dz

dv
dz

du
dzs o= − − −

⎛
⎝⎜

⎞
⎠⎟

1
2

2φ φ       (3.44) 

The derivatives of up, vp, and wp with respect to z are 

du
dz

du
dz

y
d
dz

y
d
dz

O
du
dz

dv
dz

p
o x= − + +

⎛
⎝⎜

⎞
⎠⎟, ,

φ φ
φ      (3.45) 

dv
dz

dv
dz

x
d
dz

O
du
dz

dv
dz

p
y= − +
⎛
⎝⎜

⎞
⎠⎟, ,

φ
φ       (3.46) 

dw
dz

dw
dz

x
d u
dz

y
d v
dz

d
dz

x
d
dz

dv
dz

x
d v
dz

y
d
dz

du
dz

y
d u
dz

O
du
dz

dv
dz

p
z= − − − − − + + +
⎛
⎝⎜

⎞
⎠⎟, ,

2

2

2

2

2

2

2

2

2

2ω
φ φ

φ
φ

φ φ   

(3.47) 

The terms Ox, Oy, and Oz represent terms that are second order or higher and may be 

disregarded. 

 

3.1.2 Strains 

 
 
The longitudinal normal strain εp of point P can be expressed in terms of the rates of change of 

the displacements of point P as 

ε p
p p p pdw

dz
du
dz

dv
dz

dw
dz

= +
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

2 2 2

    (3.48) 

For small strains, 
dw
dz

p⎛
⎝
⎜

⎞
⎠
⎟

2

is small compared to 
du
dz

p⎛
⎝
⎜

⎞
⎠
⎟

2

 and  
dv
dz

p⎛
⎝
⎜

⎞
⎠
⎟

2

 and can be disregarded. 

Therefore 
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ε p
p p pdw

dz
du
dz

dv
dz

= +
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

2 2

      (3.49) 

Substituting in the derivatives of the displacements up, vp, and wp of point Po yields 

ε ω
φ

φ φ
φ

p o

dw
dz

x
d u
dz

y
d v
dz

d
dz

du
dz

dv
dz

x
d v
dz

y
d u
dz

y
du
dz

d
dz

= − − − +
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ − + +

2

2

2

2

2

2

2 2 2

2

2

2

1
2

 

          ( )( )+ + −
⎛
⎝⎜

⎞
⎠⎟

1
2

2 2
2

x y y
d
dzo

φ
       (3.50) 

The first variation of the longitudinal strain is  

δε
δ δ δ

ω
δφ δ δ δ

φ δφ
δ

φp

d w
dz

x
d u
dz

y
d v
dz

d
dz

d u
dz
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d v
dz
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dz

x
d v
dz

x
d v
dz

y
d u
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= − − − + + − − +
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2

2

2

2

2

2

2

2

2
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          ( )( )+ + + + + −y
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dz

y
d u
dz

d
dz

y
du
dz

d
dz

x y y
d d

dzo o o

2

2
2 2

δφ
δ φ δφ δφ φ

  (3.51) 

The second variation of the longitudinal strain is 

( )( )δ ε
δ δ δ

δφ
δ

δφ
δ δφ δφ2

2 2 2

2

2

2
2 2

2

2 2 2p o o

d u
dz

d v
dz

x
d v
dz

y
d u
dz

y
d u
dz

d
dz

x y y
d
dz

=
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ − + + + + −

⎛
⎝⎜

⎞
⎠⎟

 

           (3.52) 

It is assumed that the second variations of the displacements in Eq. (3.52) vanishes. The 

above equations contain a combination of the strains before and after buckling.    In this case, the 

prebuckling displacements are defined as v and w.  During buckling, the displacements are 

defined as δu and δφ . Therefore, the displacements u, φ , δv , and δw  are equal to zero and 

may be eliminated from the above equations. 

The equations for longitudinal strain and its first and second variation thus become 

ε p

dw
dz

y
d v
dz

dv
dz

= − +
⎛
⎝⎜

⎞
⎠⎟

2

2

21
2

       (3.53) 
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δε
δ

ω
δφ

δφp x
d u
dz

d
dz

x
d v
dz

= − − −
2

2

2

2

2

2       (3.54) 

( )( )δ ε
δ δ

δφ
δ δφ δφ2

2 2

2
2 2

2

2 2p o o

d u
dz

y
d u
dz

y
d u
dz

d
dz

x y y
d
dz

=
⎛
⎝⎜

⎞
⎠⎟ + + + + −

⎛
⎝⎜

⎞
⎠⎟

 (3.55) 

The shear strains due to bending and warping of the thin walled section are neglected.  The shear 

strain at point Po due to uniform torsion is (Pi and Trahair, 1992a) 

γ φ
p pt d

dz
= −2          (3.56) 

Where tp represents the distance of Po from the midthickness line of the cross-section. 

The first variation of the shear strain is  

δγ
δφ

p pt
d
dz

= −2         (3.57) 

And the second variation of the shear strain is assumed to be zero. 

δ γ2 0p =          (3.58) 

 
 

3.1.3 Stresses and Stress Resultants 

 

The stresses at point Po can be  related to the strains by Hooke’s Law as  

σ
τ

ε
γ

p

p

p

p

E
G

⎧
⎨
⎩

⎫
⎬
⎭
=
⎡

⎣
⎢

⎤

⎦
⎥
⎧
⎨
⎩

⎫
⎬
⎭

0
0         (3.59) 

The stress resultants for a beam bending are:  

M y dAx p

A

= ∫ σ         (3.60) 
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F dAp

A

= ∫σ          (3.61) 

So that 

 σ p
x

x

F
A

M y
I

= +         (3.62) 

 

3.1.4 Section Properties 

 

xdA ydA
AA

= =∫∫ 0         (3.63) 

x ydA
A

=∫ 0         (3.64) 

A dA= ∫          (3.65) 

I y dAx

A

= ∫ 2          (3.66) 

I x dAy

A

= ∫ 2          (3.67) 

These section properties are valid for not only monosymmetric beams, but doubly symmetric 

ones as well.  To solve the energy equation for monosymmetric beams, additional section 

properties must be introduced.   

 ρ =
+

=
I

I I
I
I

yC

yT yC

yC

y

        (3.68) 
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Where I yT  and I yC  are the minor axis second moments of area of the tension and compression 

flanges, respectively (Kitipornchai and Trahair, 1980).  The value of (ρ  can range from 0 to 1, 

with doubly symmetric I-beams having a value of 0.5.  The warping moment of inertia given in 

Eq. (3.69), with other section properties listed below. 

( )I I hw y= −ρ ρ1 2         (3.69) 

J
bt

= ∑
3

3
         (3.70) 

r
I I

A
yo

x y
o

2 2=
+

+         (3.71) 

βx
x AA

oI
x y dA y dA y= +

⎛
⎝⎜

⎞
⎠⎟
−∫∫1

22 3      (3.72) 

where ro is the polar radius of gyration for the beam about the shear center. βx is known as the 

monosymmetric parameter (Trahair and Nethercot, 1984) .  The term βx  arises from the Wagner 

effect discussed previously in this chapter when the compressive stresses do not equally oppose 

the tensile stresses in a member.  In the case of doubly symmetric beams, the stresses balance 

each other and βx is equal to zero.  When the smaller flange of a monosymmetric beam is in 

compression, there is a reduction in the effective torsional stiffness andβx is negative.  

Conversely, when the smaller flange is in tension, the effective torsional stiffness is greater and 

βx is positive.    
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3.2 STRAIN ENERGY EQUATION FOR MONOSYMMETRIC BEAM-COLUMN 

 

With the newly introduced section properties, the second variation of the strain energy of the 

monosymmetric beam can now be derived to its accepted form.  Substituting 

ε δε δ ε γ δγp p p p p, , , ,2 and δ γ2
p  as well as the stress resultants Mx and F and the section 

properties into Eq. (3.8) yields 

 
( ) ( ) ( )1

2
1
2

2
2

2

2 2 2

2

2

δ
δ δφ δφ

ωU EI
d u

dz
GJ

d
dz

EI
d

dz
L

y=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪
∫  

 
( ) ( ) ( ) ( ) ( )

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ + +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

F
d u

dz
y

d u
dz

d
dz

r y
d

dzo o o

δ δ δφ δφ
2

2 2

2

2  

 ( )
( ) ( )

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎫
⎬
⎪

⎭⎪
M z

d u
dz

d
dz

dzx x2
2

2

2
δ

δφ β
δφ

    (3.73) 

 

 

3.3 POTENTIAL ENERGY OF THE EXTERNAL LOADS 

 

The equations for the potential energy possessed by the loads, or the work done by external 

forces, are derived by multiplying the loads by their corresponding displacements, and summing 

them up. 
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Ω = − − − +∫ ∑( ) ( )v q dz v P
dv
dz

M w Fq

L

P
M

F     (3.74) 

With its second variation being 

( )1
2

2 2 2
2

2δ δ δ
δ

δΩ = − − − +
⎛

⎝
⎜

⎞

⎠
⎟∫ ∑v q dz v P

d v
dz

M w Fq

L

P
M

F   (3.75) 

Where 

vq  = vertical displacement which transverse distributed load q acts 

q  = transverse distributed load in y-direction  

vP  = vertical displacement which transverse concentrated load P acts  

P  = transverse concentrated load in y-direction 

v M  = vertical displacement which moment M acts 

dv
dz

M  = rotation caused by moment M 

M  = applied moment in x-direction  

wF  = longitudinal displacement which load F acts 

F  = concentric load in z-direction 

 

3.3.1 Displacements and Rotations of Load Points 

 

The longitudinal displacement, wF , is considered to be relatively small.  Therefore, wF  = 0.  

The vertical displacement of a point ( ), ,x y a= = =0 0ω  at which a transverse distributed load q 

acts may be found by 

v v m a aq y= + −         (3.76) 
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Where 

m dv
dz

du
dz

dv
dzy = − ⎛

⎝⎜
⎞
⎠⎟

− +1 1
2

1
2

1
2

2
2φ φ       (3.77) 

Therefore,  

( )v v a y
dv
dz

du
dz

dv
dzq o= − −

⎛
⎝⎜

⎞
⎠⎟ + −

⎡

⎣
⎢

⎤

⎦
⎥

1
2

2
2φ φ      (3.78) 

Similarly, the vertical displacement of a point ( ), ,x y e= = =0 0ω  at which a transverse 

concentrated load, P, acts is expressed as 

( )v v e y
dv
dz

du
dz

dv
dzP o= − −

⎛
⎝⎜

⎞
⎠⎟ + −

⎡

⎣
⎢

⎤

⎦
⎥

1
2

2
2φ φ      (3.79) 

The rotation about an axis parallel to the original axis ox at a point ( ), ,x y y M= = =0 0ω  at 

which concentrated moment Mx acts is 

dv
dz

dv
dz

M =          (3.80) 

Because the effects of prebuckling are negected, the deformation v and its derivatives are 

reduced to zero.  These effects will be implemented in a later section.  The displacements 

corresponding to the external loads then simplify to 

( )v a yq o= − −
1
2

2φ         (3.81) 

( )v e yP o= − −
1
2

2φ         (3.82) 

dv
dz

M = 0         (3.83) 

  The second variations of the displacements are 
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 ( )( )δ δφ2 21
2

v a yq o= − −        (3.84) 

 ( )( )δ δφ2 21
2

v e yP o= − −        (3.85) 

 
dv
dz

M = 0         (3.86) 

Substituting Eqs. (3.84) – (3.86) into Eq. (3.75) yields 

 ( )( ) ( )( )1
2

1
2

1
2

2 2 2
δ δφ δφΩ = − + −∫ ∑q a y dz P e yo

L

o    (3.87) 

 

 

3.4 ENERGY EQUATION FOR LATERAL TORSIONAL BUCKLING OF 

MONOSYMMETRIC BEAMS 

 

The second variation of the total potential energy equation for lateral torsional buckling of 

monosymmetric beams is the sum of the second variation of the strain energy equation given in 

Eq. (3.74) and the second variation of the potential energy of the loads given in Eq.  (3.87), as 

shown below.   
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  ( )( ) ( )( )+ − + − =∫ ∑1
2

1
2

0
2 2

q a y dz P e yo

L

oδφ δφ    (3.88) 

Where 

 M M V z q z
x = + −1 1

2

2
 for 0 < <z z p  

 ( )M M V z q
z

P z zx p= + − − −1 1

2

2
 for z z Lp < <  

 z p = distance along beam in z-direction of applied concentrated load, P 

The terms in the energy equation can be separated into three groups.  The first group consists of 

the terms that contain the buckling rigidities EIy, GJ, and EIω  and represent strain energy stored 

during buckling.  The second group consists of the terms that contain the stress resultants F and 

Mx, which represent the work done by the applied loads at the shear center.  The third group 

consists of the remaining terms which represent the work done by transverse forces q and P. 
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3.5 NON-DIMENSIONAL ENERGY EQUATION FOR LATERAL-TORSIONAL 

BUCKLING 

 

The energy equation presented in the previous section has limitations in predicting a lateral-

torsional buckling parameter obtained from the solution of the eigenvalue problem because it 

depends on beam properties such as E, G, L, etc.  Elimination of these properties through a non-

dimensional analysis will provide more general results to determine critical loads and moments 

for lateral-torsional buckling. 

The stiffness parameter, K, of the beam is defined as 

 K
EI

GJL
EI h
GJL

y
= ≈

π πω
2

2

2 2

24
       (3.89) 

The loading parameters are  

 γ P
y

PL
EI GJ

=
2

        (3.90) 

 γ q
y

qL
EI GJ

=
3

        (3.91) 

The monosymmetry parameters are (Kitipornchai, et al.1980) 

 β
β

x
x y

L
EI
GJ

=         (3.92) 

r
r
L

EI
GJo

o y
=          (3.93) 
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 y
y
ho

o=
2

         (3.94) 

Other useful parameters for the non-dimensional analysis are 

 δ
δ

u
u

L
EI
GJ

y
=         (3.95) 

 F
FL
EI y

=
2

         (3.96) 

 M
M L
EI GJy

1
1=         (3.97) 

 V
V L
EI GJy

1
1

2

=          (3.98) 

 z
z
L

=           (3.99) 

 z
z
Lp
p

=          (3.100) 

 a
a
h

=
2

         (3.101) 

e
e

h
=

2
         (3.102) 

where  

 h = the distance between the centroids of the flanges 

The application of these parameters to the energy equation derived in the previous section yield a 

non-dimensional energy equation that provides a buckling parameter for lateral torsional 

buckling of a beam-column with a monosymmetric cross-section.  The multiplication factor used 

to change the energy equation to a non-dimensional form is 
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 Π
Π

=
2 L
GJ

         (3.103) 

The second variation of the non-dimensional total potential energy equation is 
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    (3.104) 

where 

 M M V z q
z

x = + −1 1

2

2
 for 0 < <z zp  

  ( )M M V z q
z

P z zx p= + − − −1 1

2

2
 for z zp < < 1 
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4.0 LATERAL-TORSIONAL BUCKLING OF MONOSYMMETRIC BEAMS 

CONSIDERING PREBUCKLING DEFLECTIONS 

 

 

In the previous chapter, the effects of prebuckling deflections were ignored.  These effects are 

ignored assuming that the thin-walled object is almost perfectly straight and any deformation is 

so small that it may be disregarded.  This assumption is only valid when the ratios of minor axis 

flexural stiffness and torsional stiffness to the major axis flexural stiffness are very small.  In the 

case where the ratios are not small, the effects of prebuckling deflections may significantly alter 

buckling loads and therefore cannot be ignored. 

 

 

4.1 STRAIN ENERGY CONSIDERING PREBUCKLING DEFLECTIONS 

 

4.1.1 Displacements 

 

In the previous chapter, the expression for torsional curvature was simplified to include just the 

first term because the other terms in the expression were deemed to be relatively small.  To 

consider the effects of prebuckling deflections, the torsional curvature, kz, must be represented 

by:   
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Which creates a longitudinal displacement of 
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with the first derivative of wp being 
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(4.3) 

where Oz  represents functions which are 4th order or higher and disregarded for simplicity. 

 

4.1.2 Longitudinal Strain 

 

The longitudinal strain in the previous chapter is give as 

ε p
p p pdw
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      (4.4) 
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Substituting the displacements 
du
dz

p  and  
dv
dz

p  derived in the previous chapter and the new 

expression for 
dw
dz

p considering prebuckling deflections yields  
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The first variation of ε p would then become 
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The second variation of ε p  is 
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The deformations are assumed to occur in two stages; a prebuckling state { }0 0, , ,v w  

followed by a lateral buckling state{ }δ δ φu, , ,0 0 .  This allows for the following simplication to 

be applied to the expression for longitudinal strain and it variations (Pi et al., 1992) 

u v w, , ,φ δ δ = 0      

The simplified expressions are as follows 
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4.1.3 Shear Strain 

 

The effects of shear strain due to bending and warping are neglected.  The shear strain due to 

uniform torsion is 

γ p p zt k= −2          (4.11) 

Substituting the unsimplified expression for torsional curvature,  γ p  becomes (Vlasov, 1961) 
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The first variation of γ p  
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The second variation of γ p is assumed to be zero. 

δ γ2 0p =          (4.14) 

 

 

4.2 STRAIN ENERGY EQUATION CONSIDERING PREBUCKLING 

DEFLECTIONS 

 

Substituting the revised expressions for longitudinal and shear stress and their variations into the 

strain energy equation given in Chapter 3 with the linearized stress resultants 

 F EA dw
dz

=          (4.15) 
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 M EI d v
dzx = −

2

2         (4.16) 

yield the strain energy equation for monosymmetric beam-columns considering prebuckling 

deflections as shown below. 
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4.3 POTENTIAL ENERGY OF THE LOADS CONSIDERING PREBUCKLING 

DEFLECTIONS 

 

4.3.1 Displacements and Rotations of Load Points 

 

The displacements and rotations of load points must be re-derived considering prebuckling 

deflections.  The second variations of the displacements due to the distributed and concentrated 

loads,vq  and vP  respectively, considering prebuckling deflections are given as   
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Substituting the new expressions for the second variations of the displacements of the loads into 

the potential energy equation given in Chapter 3 yields the new potential energy of the loads 

equation as 
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                                                                                                                             (4.20) 

 

 

4.4 ENERGY EQUATION CONSIDERING PREBUCKLING DEFORMATIONS 

 

The energy equation for lateral torsional buckling of monosymmetric beam-columns considering 

prebuckling deformations is determined by substituting Eq. (4.17) and Eq. (4.20) into Eq. (3.6) 

as 
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The first two lines on the right side of the equation contain terms involving buckling rigidities 

EIy, GJ, and EIω  and represent the strain energy stored during prebuckling and buckling.  The 

third and fourth line of the equation contain terms involving the stress resultants F and Mx, which 

represent the work done by the applied loads at the shear center, considering the effects of 

prebuckling.  The final two lines of the equation represent the work done by the distributed load, 

q, and the concentrated load, P, considering prebuckling deflections.  

In order to linearize the new energy equation, the second order in-plane displacements are 

neglected in order to avoid a quadratic eigenvalue equation (Roberts,  2004).  The new energy 

equation, disregarding these second order displacements, is 
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Comparing this equation to Eq. (3.88) in the previous chapter, the only terms that differ are    
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The in-plane curvature is 
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Likewise,  
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The constant C is a function of 
dv
dz

and is calculated at z = 0 as C
dv

dz
=

( )0 . 

Substituting these equations into Eq. (4.23) yields 
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5.0 APPLICATIONS 

 

This chapter will present examples using the buckling equation derived in Section 3.4 (Eq. 

(3.88)) to determine approximate solutions for specific loading and boundary conditions.  These 

solutions will be obtained by assuming suitable shape functions for the displacement  u  and 

rotation φ  during buckling.  The solutions will then be compared to examples presented in other 

literature that used different methods, including differential equilibrium equation method for the 

first example and the method of finite differences for the remaining examples, to obtain buckling 

results to demonstrate the validity of the buckling equations presented in this paper. 

 

 

5.1  SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO EQUAL 

END MOMENTS, M 

 

This example will derive the lateral-torsional buckling moment, Mcr, for a simply-supported 

beam whose ends are restrained from twist subjected to equal end moments, as shown in Figure 

5.1. 
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Figure 5.1  Monosymmetric Beam with Subjected to Equal End Moments 

 

The lateral torsional buckling equation derived in Chapter 3 is 
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Since  M Mx =  and there is no axial force or transverse loading in this example, F = 0, q = 0 , 

and P = 0 , Eq. (5.1) reduces to 

  

M M
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L
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x 



66 
 

 
( ) ( ) ( )1

2
1
2

2
2

2

2 2 2

2

2

δ
δ δφ δφ

ωΠ =
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧
⎨
⎪

⎩⎪
∫
L

yEI
d u

dz
GJ

d
dz

EI
d

dz
 

  ( )
( ) ( )

+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎫
⎬
⎪

⎭⎪
M z

d u
dz

d
dz

dzx x2
2

2

2
δ

δφ β
δφ

       

(5.2)
            

For a simply-supported beam, the following shape functions can be used to solve this problem.   
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The first variation of u  and φ , as well as their first and second derivatives are needed to solve 

this problem and are shown below as 
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δ φ δ
π

=
⎛
⎝⎜

⎞
⎠⎟B

z
L

sin                 (5.6) 

( )d u
d z L

A
z

L
δ π

δ
π

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟cos               (5.7) 

( )d
d z L

B
z

L
δ φ π

δ
π

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟cos               (5.8) 
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( )d u

d z L
A

z
L

2

2

2δ π
δ

π
= −
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⎝⎜

⎞
⎠⎟
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( )d
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B
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2
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2δ φ π
δ
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟sin             (5.10) 

Substituting Eqs. (5.3) – (5.10) into Eq. (5.1) yields 
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1
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⎠⎟∫ L

EI A
z

L L
GJ B

z
Ly

L

sin cos  

  ( )+
⎛
⎝⎜
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⎝⎜

⎞
⎠⎟
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L L
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2 2π
δ
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          (5.11) 

The following integrations will be necessary to evaluate Eq. (5.11) 

sin2

0 2
π z
L

dz
LL ⎛

⎝⎜
⎞
⎠⎟ =∫                 (5.12) 

cos2

0 2
π z
L

dz
LL ⎛

⎝⎜
⎞
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Integrating Eq. (5.11) with respect to z gives 
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δ     (5.14) 
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The critical buckling load occurs when the second variation of total potential energy is equal to 

zero.  Eq. (5.14) can then be written as 

1
2

1
2 2

02
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2
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π δ
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                    (5.15) 

Since δ A  and δB  are not equal to zero 

π

π
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δ
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ω

L
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⎭
=

2

2 0         (5.16) 

If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the 

coefficients  δ A  and δB  in Eq. (5.16) must vanish leaving 

M
L

EI M
L

EI GJ
L

EIy x y
2

2 2 2

0−
⎛
⎝⎜

⎞
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⎛
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⎛

⎝
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⎠
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π
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π π
ω       (5.17) 

Solving Eq. (5.17) for M gives the critical moment for lateral torsional buckling of a 

monosymmetric I-beam subjected to equal end moments as 

( )
M

L
EI

L

EI

L
EI GJ

L
EI EIcr y x

y x

y y=
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟

1
2 4

2 4
2

2 2 4π
β

π β π π
ω  (5.18) 

The beam stiffness parameter and the monosymmetric parameter were given in Section 3.5 under 

non-dimensional analysis as 



69 
 

K
EI

GJL
=

π ω
2

2                  (5.19) 

β
β

x
x y

L
EI
GJ

=                 (5.20) 

Rewriting Eq. (5.18) in terms of K  and βx  yields the elastic critical moment as 

M
L

EI GJ Kcr y= + +
⎛

⎝
⎜

⎞

⎠
⎟ +

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

π πβ πβ
1

2 2
2

2

        (5.21) 

This result for the lateral torsional buckling moment of  monosymmetric I-beams under a 

uniform moment matches the solution given by (Kitipornchai, et al. 1986) for F = 0 when the 

elastic critical moment was derived using the differential equilibrium method illustrated in 

Chapter 2 Eq. (2.53). 
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5.2  SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO 

CONCENTRATED CENTRAL LOAD, P 

 

This example will present the lateral-torsional buckling load, Pcr, for a simply-supported beam 

whose ends are restrained from twist subjected to a concentrated central load that is applied to 

the shear center of the beam, as shown in Figure 5.2. 

 

Figure 5.2  Monosymmetric Beam Subjected to Concentrated Central Load 

 

There is no axial force or uniformly distributed load acting on the beam.  Therefore,    F = 0 and 

q = 0 .  Since the concentrated load, P, is applied at the beam’s shear center, ( )e yo− = 0 . 

Therefore, Eq. (5.1) reduces to 

  

   

y

L
y 

z 
x 

P 
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(5.22)
 

Since this beam is also simply supported, the same buckling modes shapes will be used as in 

Section 5.1.  The moment along the beam, ( )M zx , for a beam with a concentrated central load 

can be expressed as 

( )M z
P

zx =
2

    for 0
2

≤ ≤z
L
          (5.23) 

( ) ( )M z
P

L zx = −
2

  for 
L

z L
2

≤ ≤           (5.24) 

Substituting Eqs. (5.3) – (5.10) and Eqs. (5.23) – (5.24) into Eq. (5.22) yields 

( ) ( )1
2

1
2

2
4

2

0

2
2

2 2δ
π

δ
π π

δ
π

Π =
⎛
⎝⎜
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The following integrations will be necessary to evaluate Eq. (5.25) 
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Therefore integrating Eq. (5.25) with respect to z gives  
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           (5.30) 

Which simplifies to 
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The critical buckling load occurs when the second variation of total potential energy is equal to 

zero, as 
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           (5.32) 

 

Since δ A  and δB  are not equal to zero 
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π
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π
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If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the 

coefficients δ A  and δB  in Eq. (5.33) must vanish leaving 
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           (5.34) 

Solving Eq. (5.34) for P gives the critical buckling load for lateral torsional buckling of a 

monosymmetric I-beam subjected to a concentrated central load as 
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The  non-dimensional loading parameter, γ P , was given in section 3.5 as 

γ P
y

PL
EI GJ

=
2

                  (5.36) 

Rewriting Eq. (5.35) in terms of the non-dimensional beam stiffness parameter, K , given 

in Eq. (5.19) and the monosymmetric parameter,  βx  , given in Eq. (5.20), as well as the loading 

parameter, γ P , shown in Eq. (5.36) yields the elastic critical load parameter for a simply-

supported monosymmetric beam with a concentrated point load as 
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4 8 16 4 32 64
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           ( ) ] ( )+ + + + −
⎫
⎬
⎭

4 32 64 4 1610 8 6 2
1
2 6 4π π π π π βK x       (5.37)  

         

This result can then be compared to the results given in (Anderson and Trahair, 1972) where the 

critical load parameters were obtained using the method of finite differences.  Figures 5.3 – 5.9 

compare the solution presented in Eq. (5.37) with the results given by Anderson and Trahair at 

various values of K  and  βx .  The results obtained by this research using approximate shape 

functions are more accurate as the values for βx  become closer to zero, representing a doubly-
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symmetric beam.  Thus, the shape functions used in this example more accurately predict the 

buckled shape of simply-supported beams with doubly-symmetric cross-sections. 

 

 

Figure 5.3  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = −0 6.  
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Figure 5.4  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = −0 3.  

 

Figure 5.5  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = −01.  
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Figure 5.6  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = 0  

 

Figure 5.7  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = 01.  
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Figure 5.8  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = 0 3.  

 

Figure 5.9  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated Central Load ( )βx = 0 6.  
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5.3  SIMPLY-SUPPORTED MONOSYMMETRIC BEAM SUBJECTED TO 

UNIFORMLY DISTRIBUTED LOAD, q 

 

This example will present the lateral-torsional buckling load,  qcr, for a simply-supported beam 

whose ends are restrained from twist subjected to a uniformly distributed load that is applied to 

the shear center of the beam, as shown in Figure 5.10 

 

Figure 5.10  Monosymmetric Beam Subjected to Uniformly Distributed Load 

 

There is no axial force or concentrated load acting on the beam.  Therefore,    F = 0 and P = 0 .  

Since the uniformly distributed load, q, is applied at the beam’s shear center,  ( )a y− =0 0  . 

Therefore, Eq. (5.1) reduces to 
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L
y 

z 
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(5.38)
   

Since this beam is also simply supported, the same buckling modes shapes will be used as in 

section 5.1.  The moment along the beam, ( )M zx , for a beam with a uniformly distributed load 

can be expressed as 

( )M
qz

L zx = −
2

  for 0 ≤ ≤z L           (5.39) 

Substituting Eqs. (5.3) – (5.10) and Eq. (5.39) into Eq. (5.38) yields 
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The following integrations will be necessary to evaluate Eq. (5.40). 
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Therefore, integrating Eq. (5.40) with respect to z yields 
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Which simplifies to 
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The critical buckling load occurs when the second variation of total potential energy is equal to 

zero, as 
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           (5.45) 

Since δ A  and δB  are not equal to zero 
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If the deformed configuration of the beam is to yield a nontrivial solution, the determinant of the 

coefficients δ A  and δB  in Eq. (5.46) must vanish leaving 
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           (5.47) 

Solving Eq. (5.47) for q gives the critical buckling load for lateral torsional buckling of a 

monosymmetric I-beam subjected to a uniformly distributed load as 
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           (5.48) 

The non-dimensional loading parameter, γ q , was given in section 3.5 as 

γ q
y

qL
EI GJ

=
3

                  (5.49) 

Rewriting Eq. (5.48) in terms of the non-dimensional beam stiffness parameter, K , given 

in Eq. (5.19) and the monosymmetric parameter,  βx  , given in Eq. (5.20), as well as the loading 
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parameter, γ q , shown in Eq. (5.49) yields the elastic critical load parameter for a simply-

supported monosymmetric beam with a uniformly distributed load as 
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π π π β π π πq x=

+
− + + + +

1
3

4 6 9 4 24 36
2 2

12 10 8 2 10 8 6  

         ( ) ] ( )+ + + + −
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⎬
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4 24 36 4 1210 8 6 2
1
2 6 4π π π π π βK x        (5.50) 

  

As in section 5.1, this result can then be compared to the results given in (Anderson and Trahair, 

1972) where the critical load parameters were obtained using the method of finite differences.  

Figures 5.11 – 5.17 compare the solution presented in Eq. (5.50) with the results given by 

Anderson and Trahair at various values of K  and  βx . As in the example in Section 5.2, the 

results obtained by this research using approximate shape functions are more accurate as the 

values for βx  become closer to zero, representing a doubly-symmetric beam.    
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Figure 5.11  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = −0 6.  

 

Figure 5.12  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = −0 3.  
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Figure 5.13  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = −01.  

 

Figure 5.14  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = 0  
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Figure 5.15  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = 01.  

 

Figure 5.16  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = 0 3.  



87 
 

 

Figure 5.17  Buckling Load: Simply Supported Beam with Monosymmetric Cross-Section 

Subjected to a Uniformly Distributed Load ( )βx = 0 6.  
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5.4  CANTILEVER WITH END POINT LOAD, P 

 

This example will present the lateral-torsional buckling load, Pcr, for a cantilever beam subjected 

to a concentrated central load that is applied at the end of the beam to its shear center, as shown 

in Figure 5.18. 

 

Figure 5.18  Monosymmetric Cantilever Beam Subjected to Concentrated End Load 

 

There is no axial force or uniformly distributed load acting on the beam.  Therefore,    F = 0 and 

q = 0 .  Since the concentrated load, P, is applied at the beam’s shear center, ( )e y− =0 0 . 

Therefore, Eq. (5.1) reduces to 
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(5.51)
 

The moment along the beam, ( )M zx , for a beam with a concentrated central load can be 

expressed as 

( ) ( )M z P L zx = − −     for   0 ≤ ≤z L         (5.52)     

Several shape functions including u z A
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experimented with to accurately predict the buckled shape of a cantilever beam.  It was 

determined that in order to obtain acceptable results, a more complicated shape function in the 

form of a trigonometric series must be used (Wang and Kitipornchai, 1986). 
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The first variation of u  and φ , as well as their first and second derivatives are needed to solve 

this problem and are shown below as 
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Substituting Eqs. (5.52) – (5.60) into Eq. (5.51) yields 
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Therefore integrating Eq. (5.51) with respect to z gives  
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Taking the derivative of Eq. (5.62) with respect to δΔr and δθr yields the following set of 

homogeneous linear equations. 
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for r = 1, ....., n. 
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                  (5.64) 

for r = 1, ....., n.        

where the non-dimensional critical load is defined as 
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Eqs. (5.63) and (5.64) are evaluated at n = 7 with the results in the form  
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which can be rearranged to the form 

[ ]{ } { }D α λ α=                 (5.67) 

Where 

 [ ] [ ] [ ]D A B= −1         (5.68) 
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         (5.69) 

 λ
γ

=
1

P
         (5.70) 

Where [A] and [B] are 14 by 14 matrices with the terms of each matrix given in Appendix B.  

The eigenvalues, λ, can be derived from Eq. (5.67), which yield the critical load, as shown in Eq. 

(5.70).    
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        This result can then be compared to the results given in (Anderson and Trahair, 1972) where 

the critical load parameters were obtained using the method of finite differences.  Figures 5.19 – 

5.25 compare the results obtained using Eqs. 5.63 and 5.64 at values of n = 3, 5, and 7 with the 

results given by Anderson and Trahair at various values of K  and  βx .  The shape functions 

using trigonometric series appear to have the same limitations as the ones used for the simply-

supported beams where the predicted buckling moment is more accurate when the beam is closer 

to being doubly-symmetric, with the best predicted result occurring for higher values of n. 

 

 

Figure 5.19  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = −0 6.  
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Figure 5.20  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = −0 3.  

 

Figure 5.21  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = −01.  
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Figure 5.22  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = 0  

 

Figure 5.23  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = 01.  



97 
 

 

Figure 5.24  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = 0 3.  

 

Figure 5.25  Buckling Load: Cantilever Beam with Monosymmetric Cross-Section 

Subjected to a Concentrated End Load ( )βx = 0 6.  



98 
 

 

 

 

6.0 FINITE ELEMENT METHOD 

 

The finite element method is a numerical technique used to solve problems that may be 

otherwise difficult to solve analytically.  In this chapter, the finite element method will be used in 

conjunction with the energy method to establish finite element equations that can be used to 

solve for the elastic lateral buckling load.  The basic concept behind the finite element method is 

to model a continuum with infinite degrees of freedom and as a system of elements having finite 

degrees of freedom.  These elements are assembled to accurately approximate the behavior of the 

entire system. 

 The first step toward formulating a finite element solution is to divide the system into a 

number of discrete elements.  These elements are connected by nodes, which are common points 

shared by adjacent elements that establish the continuity of the system.  The size of the elements 

are arbitrary and should be selected to closely model the behavior of the entire system.  After the 

elements have been defined and nodes selected, a displacement function is established for each 

element.  A displacement function is normally a linear combination of shape functions.  Shape 

functions are usually polynomial functions representing a unit displacement of a particular node 

and zero for the other nodes.  The number of polynomial functions used to describe each element 

is based on the number of degrees of freedom of that element.  A strain-displacement 

relationship and a stress-strain relationship are then defined for each element from the shape 

functions. 



99 
 

 The principle of minimum total potential energy will be used to derive the element 

stiffness matrix and an element geometric stiffness matrix.  Once these matrices are obtained, 

they can be converted to the global coordinate system and assembled into a global stiffness 

matrix to represent the entire system.  The matrix can then be partitioned into free and restrained 

degrees of freedom by the application of boundary conditions.  The section of the global stiffness 

matrix and geometric stiffness matrix containing the free degrees of freedom can then be used to 

obtain the buckling loads for lateral-torsional buckling.   

 In this project, the structural system that the finite element method is being applied to is 

any plane frame.  Each frame element has six nodal degrees of freedom, which means twelve 

total degrees of freedom for each element.  The coordinate system for the beam-column elements 

of the plane frame is shown in Figures 6.1 – 6.3.   

 Figure 6.1 shows the top view of the element with a displacement u(z) at a distance z 

along the element, which is the lateral bending in the x direction.  Of the four out-of-plane nodal 

coordinates shown, u1  and u3  are the out-of-plane nodal displacements at nodes 1 and 2, 

respectively, and u2  and u4  are the out-of-plane nodal rotations of nodes 1 and 2, respectively. 

Figure 6.2 shows the elevation view of the element with a displacement v(z) at a distance 

z along the element, which is the in-plane bending in the y direction.  Of the four in-plane nodal 

coordinates shown, v1  and v3  are the in-plane nodal displacements at nodes 1 and 2, 

respectively, and v2  and v4 are the in-plane nodal rotations of nodes 1 and 2, respectively. 

Figure 6.3 shows the elevation view of the element with a displacement ( )φ z at a distance 

z along the element, which is the torsional rotation in the z-direction.  Of the four nodal 

coordinates shown, φ1  and φ3  are the torsional rotations at nodes 1 and 2, respectively, and φ2  

and φ4  are the torsional curvatures of nodes 1 and 2, respectively. 
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Figure 6.1  Element Degrees of Freedom with Nodal Displacements u 

 

 

Figure 6.2  Element Degrees of Freedom with Nodal Displacements v 

 

 

 

Figure 6.3  Element Degrees of Freedom with Nodal Displacements φ  
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The displacement functions for the generalized displacements u(z), v(z), and φ(z) are 

assumed to be cubic polynomials.  These displacement functions are expressed below as 

(Roberts,  2004) 

[ ]{ }u z N u( ) =          (6.1) 

[ ]{ }v z N v( ) =          (6.2) 

[ ]{ }φ φ( )z N=          (6.3) 

where 

( ) ( ) ( ) ( )N
L

z z L L
L

z L z L zL
L

z z L
L

z L z L= − + − + − + −
⎡
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⎤
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1
2 3

1
2

1
2 3

1
3

3 2 3
3

3 2 2 3
3

3 2
3

3 2 2  

           (6.4) 

and 

 { } { }u u u u u
T

= 1 2 3 4        (6.5) 

 { } { }v v v v v
T

= 1 2 3 4        (6.6) 

 { } { }φ φ φ φ φ= 1 2 3 4

T
       (6.7) 

The matrix [N] is the shape function matrix for each element.  Each term in the shape 

function matrix represents the shape of the displacement function when the element degree of 

freedom corresponding to the shape function has a unit value and all other degrees of freedom 

are equal to zero. 

 The first variation of the displacement functions are     

 [ ]{ }δ δu z N u( ) =         (6.8) 

 [ ]{ }δ δv z N v( ) =         (6.9) 

 [ ]{ }δφ δφ( )z N=         (6.10) 
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 The element stiffness matrix for the structure is derived using the principle of minimum 

total potential energy.  In order to apply the finite element method, the structure must be 

separated into a finite number of elements.  The total potential energy for the system may be 

expressed as 

 ( )1
2

1
2

02 2 2δ δ λδΠ Ω= + =∑ U e e       (6.11) 

where 
1
2

2δ Ue  and 
1
2

2λδ Ω e are the second variation of the strain energy stored in each element 

and the work done on each element, respectively.  The term λ  represents the buckling load 

factor which the initial load set has to be multiplied by to obtain the buckling load.   

 The strain energy stored and the work done on each individual element may be expressed 

as 
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2δ δ λ δΠ = +d k g de

T
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the local nodal displacement vector for each element (6.13) 
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  λ  = the buckling parameter for each element 

[ ]ke = the element local stiffness matrix 

[ ]ge = the element local geometric stiffness matrix corresponding with the  

      initial load set 

 The element local stiffness matrix and geometric stiffness matrix are both 8 by 8 matrices 

representing eight local displacements for each element corresponding to the displacements 

when buckling occurs.  The arrangement of each matrix is shown below with both matrices being 

symmetric about the main diagonal. 
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      u u u u1 2 1 2 3 4 3 4φ φ φ φ  
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 To obtain the stiffness matrices,  the lateral torsional buckling equation must be re-

written in terms of the initial load set.  The second variation of total potential energy then 

becomes 
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where the first three terms will contribute to the element elastic stiffness matrix, [ ]ke , and the 

rest of the equation will contribute to the element geometric stiffness matrix, [ ]ge . 

 

 

6.1 ELASTIC STIFFNESS MATRIX 

 

 The first three terms of the buckling equation, Eq. (3.88), that will contribute to the 

element stiffness matrix are 
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which can be expressed as 
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and the generalized elasticity matrix is 
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Substituting the first variation of the displacement functions into the generalized strain vector 

yields  
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which is substituted into Eq. (6.17) as follows. 
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The stiffness matrix can then be expressed as 
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Eq. (6.23) yields an 8 by 8 matrix with the following arrangement. 
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      u u u u1 2 3 4 1 2 3 4φ φ φ φ  

The terms of the elastic stiffness matrix are then rearranged to their appropriate locations as 

shown in Eq. (6.14) and listed in Appendix A. 

 

 

6.2 GEOMETRIC STIFFNESS MATRIX 

 
 
The contribution of the lateral torsional buckling equation in terms of the initial load set to the 

geometric stiffness matrix is 

 

 

 

 



107 
 

( ) ( ) ( ) ( ) ( )1
2

2
2

2 2

2

λ
δ δ δφ δφ

F
d u

dz
y

d u
dz

d
dz

r y
d

dzo o o

L

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ + +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪
∫  

( ) ( )
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ +

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢
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2

1
2
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L
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which can be expressed as 

 { } [ ]{ } ( )( )1
2

1
2

2
δε δε λ δφT

L
oD dz P e y∫ ∑+ −                                      (6.26) 

where the generalized strain vector is 

 { } ( ) ( ) ( )
δε

δ δ
δφ

δφ
=
⎧
⎨
⎩

⎫
⎬
⎭

d u
dz

d u
dz

d
dz

T2

2      (6.27)  

  

and the generalized elasticity matrix is 

 [ ] ( )
( ) ( )

D

F y F
M z

M z q a y
y F F r y M z

o

x

x o

o o o x x

=
−

+ +

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 0
0 0 0
0 0

0 0 2 2

( )
( )

( )β

  (6.28)  

   

Substituting the first variation of the displacement functions into the generalized strain vector 

yields  
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 { }

[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

{ }
{ }δε
δ
δφ

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧
⎨
⎩

⎫
⎬
⎭

N z
N zz

N
N z

u
,
,

,

0
0

0
0

      (6.29)  

which is substituted into Eq. (6.26)  as follows. 
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[ ] [ ]
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0
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δ
δφ

u
N z
N zz

N
N z

D

N z
N zz

N
N z

u
dz

T

T

L

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪∫
,
,

,

,
,

,

  

  
{ }
{ } [ ] [ ][ ] ( ) [ ] [ ][ ] { }

{ }+
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

1
2

0 0λ
δ
δφ

δ
δφ

u
N P e y N

u
T

T

o
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  (6.30) 

The geometric stiffness matrix can then be expressed as 
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[ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ]
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⎢
⎢
⎢
⎢
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⎥
⎥
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0

0
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[ ] [ ][ ] ( ) [ ] [ ][ ]+ −
=

1
2

0 0N P e y N
T

o
z zp

    (6.31) 

The previous equation yields an 8 by 8 matrix with the following arrangement. 

 

u
u
u
u

g g g g g g g g
g g g g g g g

g g g g g g
g g g g g

g g g g
g g g

g g
g

1

2

3

4

1

2

3

4

11 12 13 14 15 16 17 18

22 23 24 25 26 27 28

33 34 35 36 37 38

44 45 46 47 48

55 56 57 58

66 67 68

77 78

88

φ
φ
φ
φ

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

    (6.32) 

      u u u u1 2 3 4 1 2 3 4φ φ φ φ  
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The terms of the geometric stiffness matrix are then rearranged to their appropriate locations as 

shown in Eq. (6.15) and listed in Appendix A. 

 

 

6.3 FINITE ELEMENT METHOD CONSIDERING PREBUCKLING 

DEFLECTIONS 

 

The terms of the second variation of the total potential energy equation that account for 

prebuckling are  
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2
2

2

2
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⎠
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⎜
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⎠
⎟∫EI

M z
EI
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d

dz
d u

dz
x

x

z

ω

δφ δ( )
0

2

2

3

3  

        +
( ) ( )I

I
V

d
dz

d u
dz

dz
x

y
ω δφ δ2

2

⎤

⎦
⎥
⎥

      (6.33)  

When integrating −
⎛
⎝
⎜

⎞
⎠
⎟∫ M z

EI
dzx

x

z ( )
0

, M zx ( ) will be redefined as 

 H z M dx x

z

( ) ( )= ∫0 η η         (6.34) 

Further substituting the definitions given for M zx ( ) in Chapter 4 yields 

 H z M z V z qzx ( ) = + −1 1
2 31

2
1
6

   for 0 ≤ ≤z z p  (6.35) 

 H z M z V z qz P z zzx p( ) ( )= + − − −1 1
2 3 21

2
1
6

1
2

 for z z Lp ≤ ≤  (6.36) 
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Substituting H zx ( ) into the prebuckling energy equation and rearranging in terms of initial load 

set gives 

          
( ) ( ) ( ) ( ) ( )1

2
1
2

2
2

2

3

3

2

2

2

2EI C
d

dz
d u

dz
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⎢
⎢
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I
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d
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d
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d

dz
d u

dzx
x

x
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x
x
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( ) ( ) ( )

2
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3

3

2

2  

       +
( ) ( )I

I
V

d
dz

d u
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dz
x

y
ω δφ δ2

2

⎤

⎦
⎥
⎥

       (6.37)  

   

where the first bracketed term of this equation contributes to the elastic stiffness matrix and the 

remaining terms contribute to the geometric stiffness matrix.  Eq. (6.12) can then be expressed as 

{ } [ ] [ ] [ ] [ ]( )( ){ }1
2
δ λ δd k k g g de

T
e e P e e P e+ + +                        (6.38)                                     

where [ke] and the [ge] are the same elastic and geometric stiffness matrices, respectively, that 

were derived in the previous two sections and [ke]P and [ge]P represent the prebuckling effects 

and are added to the previously derived matrices.  

 

 

6.4 ELASTIC STIFFNESS MATRIX CONSIDERING PREBUCKLING 

DEFLECTIONS 

 
 
 The terms from the prebuckling energy equation (Eq. 4.27) that contribute to the elastic 

stiffness matrix, [ke]P, are 
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( ) ( ) ( ) ( )1
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d u
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+

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∫    (6.39) 

 
which can be expressed as 

 { } [ ]{ }1
2

δε δεT

L
D dz∫                                                                                     (6.40) 

where the generalized strain vector is 

 { }
( ) ( ) ( ) ( )

δε
δ δ δφ δφ
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

d u
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d
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2

3

3

2

2     (6.41)   

and the generalized elasticity matrix is 
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GJ

EI

=
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

0 0
2

0
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2

2
0 0 0

0
2

0 0

ω

ω

      (6.42)  

  

Substituting the first variation of the displacement functions into the generalized strain vector 

yields  

 { }

[ ]
[ ]

[ ]
[ ]

{ }
{ }

δε
δ
δφ

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤
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⎥

⎧
⎨
⎩

⎫
⎬
⎭

N zz
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N z
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u
,
,

,
,

0
0

0
0

      (6.43)   

which is substituted into Eq. (6.40) as follows. 
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0
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    (6.44) 

The stiffness matrix can then be expressed as 
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⎥
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,
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,
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,
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0
0

0
0

0
0

   (6.45) 

 The elastic stiffness matrix considering prebuckling deflections, [ ]ke P , is again an 8 by 8 

matrix.  The terms of  [ ]ke P  are then rearranged to their appropriate locations as shown in Eq. 

(6.14) and listed in Appendix A. 

 

 

 

 

6.5 GEOMETRIC STIFFNESS MATRIX CONSIDERING PREBUCKLING 

DEFLECTIONS 

 
 
 The terms from the prebuckling energy equation Eq. (4.27) in terms of the initial load set 

that contribute to the geometric stiffness matrix, [ge]P, are 
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d
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⎥
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which can be expressed as 

 { } [ ]{ }1
2
λ δε δεT

L
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where the generalized strain vector is 
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and the generalized elasticity matrix is 
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⎢
⎢
⎢
⎢
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⎢
⎢
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⎥
⎥

0 0 0 0
2 2

0 0 0
2

0

0 0 0 0 0
2

0 0 0 0 0

2 2
0 0 0 0
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           (6.49) 
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Substituting the first variation of the displacement functions into the generalized strain vector 

yields  
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[ ]
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⎢
⎢
⎢
⎢
⎢
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      (6.50)  

which is substituted into Eq. (6.47) as follows. 
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 (6.51)  

The geometric stiffness matrix can then be expressed as 
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⎢
⎢
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   (6.52) 

The geometric stiffness matrix considering prebuckling deflections, [ ]ge P , is again an 8 by 8 

matrix.  The terms of  [ ]ge P  are then rearranged to their appropriate locations as shown in Eq. 

(6.15) and listed in Appendix A. 
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7.0  SUMMARY 

 

Lateral-torsional buckling occurs when a beam has a relatively small lateral and torsional 

stiffness compared to its stiffness in the plane of loading, causing the beam to deflect laterally 

and twist out of plane when it reaches a critical load.  This load is known as the lateral-torsional 

buckling load, or LTB load.  A review of existing literature was presented to demonstrated 

previous methods used to derive the LTB load, including the differential equilibrium method of 

stability and energy methods.  The derivations of the LTB load for structures with doubly-

symmetric cross-sections have been long discussed and readily available.  Lateral-torsional 

buckling of a structure with a monosymmetric cross-section is an underdeveloped topic, with 

derivations complicated by the fact that the centroid and the shear center do not coincide in these 

cross sections.  The purpose of this study was to derive equations for lateral-torsional buckling of 

structures with monosymmetric cross-sections, examine the validity of these equations using 

approximate shape functions and comparing these results to other analysis, and use the finite 

element method to obtain element elastic stiffness and geometric stiffness matrices that may be 

used in future research, in conjunction with computer software, to predict the LTB load for 

complex systems. 

 The energy equation for lateral-torsional buckling of a beam-column element is based on 

the theorem of minimum total potential energy.  The total potential energy of the system is the 

sum of the strain energy and the potential energy of the external loads.  This theorem indicates 
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that the critical condition for buckling occurs when the second variation of the total potential 

energy is equal to zero, representing the transition from a stable to an unstable state.    

 The energy equations in this paper are derived for cases both ignoring and considering 

prebuckling displacements.  Prebuckling, or in-plane, displacements are considered so small for 

thin-walled structures that their effect on the lateral-torsional buckling load is negligible.  This 

assumption is only valid when the ratios of minor axis flexural stiffness and torsional stiffness to 

the major axis flexural stiffness are very small.  When these ratios are not small, the effects of 

prebuckling deformations will significantly alter the LTB load and cannot be ignored.  A non-

dimensional buckling equation is also presented for cases without prebuckling displacements.  

The advantage of this form is that the solution can be transferred to other structural systems with 

the same loading conditions. 

 The validity of these energy equations for the lateral-torsional buckling of beam-column 

elements with monosymmetric cross-sections is examined in the applications section of the 

paper.  Suitable trigonometric shape functions for beams that are simply supported and cantilever 

are used to compare the buckling results obtained from the present research to results obtained in 

previous literature using the method of finite differences.  The derived energy equations prove to 

be accurate in predicting critical loads for different boundary and loading conditions, with the 

degree of precision based on the ability of the shape function to predict the buckled shape of the 

beam. 

 The finite element method is used to project the energy equations for lateral-torsional 

buckling of a beam-column element onto a structure with complicated loads, boundary 

conditions, and geometry.  The expression for the second variation of total potential energy is 
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used to derive element elastic stiffness and geometric stiffness matrices for the structure.  These 

matrices can then be transformed to a global coordinate system for each element and assembled 

so boundary conditions can be used to transform the structure from unrestrained to restrained.  

The result is a generalized eigenvalue problem that will produce lateral-torsional buckling loads 

for the structure.  The objective is that future research can utilize these stiffness matrices, along 

with computer software, to develop models of complex systems with monosymmetric beam-

columns and predict the lateral-torsional buckling loads of that system. 
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APPENDIX A 

 

 

A.1  ELEMENT ELASTIC STIFFNESS MATRIX 
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A.4  ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX 
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360L3 G J M1− 720L2 Iw V1 E+ 720L2 Iy E M1+ 660L5 Iy E P 2160L3 Iy E M1− 2160L3 Iy E P zp−+

 

 

1632L4 V1 Iy E− 1632L4 P Iy E+ 720L2 Iy E P zp 2880Iw E L P zp− 2880Iw E L M1− 480L6 Iy E P−+

 

 

1440L4 Iy E M1+ 1440L4 Iy E P zp+ 1152L5 V1 Iy E 1152L5 P Iy E−+ 2880Iw E L2 P zp+

 

 

2880Iw E L2 M1 240Iw E P L4−+ 80L6 G J P+ 720L4 G J P zp 960Iw E L3 P−+ 720L4 G J M1+ ⎤
⎦
 

 

 

g27
1

60 L3 E Ix( )
360−( ) L Iw V1 E 24 L4 Iy E P 72 L3 Iy E V1−+ 72 L3 Iy E P+ 60 L2 G J M1+⎡

⎣=

 

 

60 Iw E P L2
− 240Iw E L P− 720Iw E P zp+ 23 L4 G J P+ 30 G J L3 P+ 720Iw E M1+

 

 

120Iw E P L3 16L5 G J P− 120L3 G J P zp−+ 60L2 G J P zp 30G J L3 V1−+ 480Iw E L2 P+

 

 

120L3 GJ M1− 120L2 Iy E M1− 48L5 Iy E P− 240L3 Iy E M1+ 240L3 Iy E P zp+ 144L4 V1 Iy E+

 

 

144L4 P Iy E− 120L2 Iy E P zp− 1440Iw E L P zp− 1440Iw E L M1− ⎤
⎦
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g28
1

120L2 E Ix( )
360L Iw V1 E 24L4 Iy E P 48L3 Iy E V1−+ 48L3 Iy E P 40L2 G J M1−+ +⎛
⎝=

 

 

60Iw E P L2
+ 240Iw E L P 720Iw E P zp− 37L4 G J P− 60G J L3 P− 720Iw E M1−+

 

 

120Iw E P L3
− 24L5 G J P+ 200L3 GJ P zp 40L2 GJ P zp−+ 60GJ L3 V1 480Iw E L2 P−+

 

 

200L3 GJ M1 40L2 Iy E M1− 48L5 Iy E P−+ 80L3 Iy E M1+ 80L3 Iy E P zp+ 96L4 V1 Iy E+

 

 

96 L4 P Iy E− 40 L2 Iy E P zp− 1440Iw E L P zp+ 1440Iw E L M1+ ⎞
⎠
 

 

 

g35
1

10L4 E Ix( )
5−( ) L4 G J P 15G J L3 V1 15G J L3 P−+ 180L Iw V1 E+ 3 L4 Iy E P+⎡

⎣=

 

 

6 L3 Iy E V1− 6 L3 Iy E P+ 30L2 GJ M1+ 30L2 GJ P zp+ 360Iw E M1 30Iw E P L2
−+

 

 

120Iw E L P− 360Iw E P zp+ ⎤
⎦
 

 

 

g36
1−

10L3 E Ix( )
L4−( ) GJ P 5 GJ L3 V1 5 GJ L3 P−+ 15L2 GJ M1+ 15L2 GJ P zp+⎡

⎣=

 

 

3 L4 Iy E P 8 L3 Iy E V1−+ 8 L3 Iy E P 10L2 Iy E M1− 10L2 Iy E P zp−+ 180Iw E M1+

 

 

60L Iw V1 E 15Iw E P L2− 60Iw E L P−+ 180Iw E P zp+ ⎤
⎦
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g45
1

30L3 E Ix( )
180L Iw V1 E 39L4 Iy E P− 84L3 Iy E V1 84L3 Iy E P−+ 90L2 GJ M1+⎛
⎝=

 

 

30Iw E P L2
− 120Iw E L P− 360Iw E P zp 14L4 G J P− 45G J L3 P−+ 360Iw E M1+

 

 

60Iw E P L3
+ 28L5 GJ P+ 90GJ L4 P 180L3 GJ P zp−+ 90L2 GJ P zp+ 45GJ L3 V1+

 

 

1 240Iw E L2 P 90L4 GJ V1− 180L3 GJ M1− 360L2 Iw V1 E−+ 60L2 Iy E M1+ 48L5 Iy E P+

 

 

120L3 Iy E M1− 120L3 Iy E P zp− 108L4 V1 Iy E− 108L4 P Iy E+ 60L2 Iy E P zp 720Iw E L P zp−+

 

 

720Iw E L M1− ⎞
⎠
 

 

 

g46
1

60L2 EIx( )
120−( ) LIwV1 E 61L4 Iy EP 144L3 Iy EV1−+ 144L3 Iy EP 90L2 GJ M1−+⎡

⎣=

 

 

30Iw E P L2
+ 120Iw E L P 360Iw E P zp−+ 6 L4 GJ P+ 30GJ L3 P 360Iw E M1−+

 

 

60Iw E P L3
− 12L5 GJ P− 60GJ L4 P− 180L3 GJ P zp 90L2 GJ P zp− 30GJ L3 V1−+

 

 

240Iw EL2 P− 60L4 GJ V1+ 180L3 GJ M1+ 240L2 Iw V1 E 160L2 Iy EM1− 72L5 Iy EP−+

 

 

200L3 Iy E M1+ 200L3 Iy E P zp+ 168L4 V1 Iy E 168L4 P Iy E− 160L2 Iy E P zp−+ 720Iw E LP zp+

 

 

720Iw E L M1+ ⎤
⎦
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g57
1−

10L4 E Ix( )
5−( ) L4 G J P 15G J L3 V1 15G J L3 P−+ 180L Iw V1 E+ 3 L4 Iy E P+⎡

⎣=

 

 

6 L3 Iy E V1− 6 L3 Iy E P+ 30L2 GJ M1+ 30L2 GJ P zp+ 360Iw E M1 30Iw E P L2
− −+

 

 

120Iw E L P− 360Iw E P zp+ ⎤
⎦
 

 

 

g58
1

20L3 E Ix( )
8−( ) L4 GJ P 25GJ L3 V1 25GJ L3 P−+ 50L2 GJ M1+ 50L2 GJ P zp+⎡

⎣=

 

 

180LIw V1 E 6L4 Iy E P−+ 14L3 Iy E V1 14L3 Iy E P−+ 20L2 Iy E M1+ 20L2 Iy E P zp+

 

 

360Iw E M1 30 Iw E P L2
− 120Iw E L P−+ 360Iw E P zp+ ⎤

⎦
 

 

 

g67
1−

10L3 E Ix( )
L4 G J P 5 G J L3 V1− 5 G J L3 P 15L2 G J M1− 15L2 G J P zp−+⎛
⎝=

 

 

3 L4 Iy E P− 8 L3 Iy E V1 8 L3 Iy E P−+ 10L2 Iy E M1+ 10L2 Iy E P zp 180Iw E M1−+

 

 

60L Iw V1 E− 15Iw E P L2
+ 60Iw E L P+ 180Iw E P zp− ⎞

⎠
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g68
1−

60L2 E Ix( )
5−( ) L4 GJ P 25GJ L3 V1 25GJ L3 P−+ 75L2 GJ M1+ 75L2 GJ P zp+⎡

⎣=

 

 

12L4 Iy E P− 26L3 Iy E V1 26L3 Iy E P−+ 30L2 Iy E M1+ 30L2 Iy E P zp+ 540Iw E M1+

 

 

180L Iw V1 E 45Iw E P L2− 180Iw E L P−+ 540Iw E P zp+ ⎤
⎦
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APPENDIX B 

 

B.1  MATRIX [A] FROM SECTION 5.4 

A11
π

2

32
=

 

 

A23
81 π

2

32
=

 

 

A35
625 π

2

32
=

 

 

A47
2401 π

2

32
=

 

 

A59
6561 π

2

32
=

 

 

A6.11
14641 π

2

32
=

 

 

A7.13
28561 π

2

32
=

 

A82
K2

32
1
8

+=
 

 

A94
81 K2

32
9
8

+=
 

 

A10.6
625 K2

32
25
8

+=
 

 

A11.8
2401 K2

32
49
8

+=
 

 

A12.10
6561 K2

32
81
8

+=
 

 

A13.12
14641 K2

32
121
8

+=
 

 

A14.14
28561 K2

32
169
8

+=
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*Only non-zero terms from Matrix [A] are listed. 
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B.1  MATRIX [B] FROM SECTION 5.4 

 

B12
1
16

3

4 π
2

−=
 

 

B14
3−

4 π
2

=
 

 

B16
35−

36 π
2

=
 

 

B18
35−

36 π
2

=
 

 

B1.10
99−

100 π
2

=
 

 

B1.12
99−

100 π
2

=
 

 

B1.14
195−

196 π
2

=
 

B22
5

4 π
2

=
 

 

B24
9
16

3

4 π
2

−=
 

 

B26
5

4 π
2

=
 

 

B28
91−

100 π
2

=
 

 

B2.10
3−

4 π
2

=
 

 

B2.12
187−

196 π
2

=
 

 

B2.14
91−

100 π
2

=
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B32
11−

36 π
2

=
 

 

B34
21

4 π
2

=
 

 

B36
25
16

3

4 π
2

−=
 

 

B38
21

4 π
2

=
 

 

B3.10
171−

196 π
2

=
 

 

B3.12
11−

36 π
2

=
 

 

B3.14
299−

324 π
2

=
 

B42
13

36 π
2

=
 

 

B44
51−

100 π
2

=
 

 

B46
45

4 π
2

=
 

 

B48
49
16

3

4 π
2

−=
 

 

B4.10
45

4 π
2

=
 

 

B4.12
275−

324 π
2

=
 

 

B4.14
13

36 π
2

=
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B52
19−

100 π
2

=
 

 

B54
5

4 π
2

=
 

 

B56
115−

196 π
2

=
 

 

B58
77

4 π
2

=
 

 

B5.10
81
16

3

4 π
2

−=
 

 

B5.12
77

4 π
2

=
 

 

B5.14
403−

484 π
2

=
 

B62
21

100 π
2

=
 

 

B64
75−

196 π
2

=
 

 

B66
85

36 π
2

=
 

 

B68
203−

324 π
2

=
 

 

B6.10
117

4 π
2

=
 

 

B6.12
121
16

3

4 π
2

−=
 

 

B6.14
117

4 π
2

=
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B72
27−

196 π
2

=
 

 

B74
69

100 π
2

=
 

 

B76
155−

324 π
2

=
 

 

B78
133

36 π
2

=
 

 

B7.10
315−

484 π
2

=
 

 

B7.12
165

4 π
2

=
 

 

B7.14
169
16

3

4 π
2

−=
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B81
1
16

3

4π
2

−=
 

 

B82
β x−
16

β x

4 π
2

+=
 

 

B83
27−

4 π
2

=
 

 

B84
3− β x

4 π
2

=
 

 

B85
875−

36π
2

=
 

 

B86
5 β x

36 π
2

=
 

 

B87
1715−

36π
2

=
 

B88
7− β x

36 π
2

=
 

 

B89
8019−

100π
2

=
 

 

B8.10
9 β x

100 π
2

=
 

 

B8.11
11979−

100π
2

=
 

 

B8.12
11− β x

100 π
2

=
 

 

B8.13
32955−

196π
2

=
 

 

B8.14
13 β x

196 π
2

=
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B91
5

36π
2

=
 

 

B92
3− β x

4 π
2

=
 

 

B93
9
16

3

4π
2

−=
 

 

B94
9− β x
16

β x

4 π
2

+=
 

 

B95
125

36π
2

=
 

 

B96
15− β x

4 π
2

=
 

 

B97
4459−

900π
2

=
 

 

 

B98
21 β x

100 π
2

=
 

 

B99
27−

4π
2

=
 

 

B9.10
3− β x

4 π
2

=
 

 

B9.11
22627−

1764π
2

=
 

 

B9.12
33 β x

196 π
2

=
 

 

B9.13
15379−

900π
2

=
 

 

B9.14
39− β x

100 π
2

=
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B10.1
11−

900π
2

=
 

 

B10.2
5 β x

36 π
2

=
 

 

B10.3
189

100π
2

=
 

 

B10.4
15− β x

4 π
2

=
 

 

B10.5
25
16

3

4π
2

−=
 

 

B10.6
25− β x

16

β x

4 π
2

+=
 

 

B10.7
1029

100π
2

=
 

 

 

B10.8
35− β x

4 π
2

=
 

 

B10.9
13851−

4900π
2

=
 

 

B10.10
45 β x

196 π
2

=
 

 

B10.11
1331−

900π
2

=
 

 

B10.12
55− β x

36 π
2

=
 

 

B10.13
50531−

8100π
2

=
 

 

B10.14
65 β x

324 π
2

=
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B11.1
13

1764π
2

=
 

 

B11.2
7− β x

36 π
2

=
 

 

B11.3
459−

4900π
2

=
 

 

B11.4
21 β x

100 π
2

=
 

 

B11.5
1125

196π
2

=
 

 

B11.6
35− β x

4 π
2

=
 

 

B11.7
49
16

3

4π
2

−=
 

 

 

 

B11.8
49− β x

16

β x

4 π
2

+=
 

 

B11.9
3645

196π
2

=
 

 

B11.10
63− β x

4 π
2

=
 

 

B11.11
33275−

15876π
2

=
 

 

B11.12
77 β x

324 π
2

=
 

 

B11.13
2197

1764π
2

=
 

 

B11.14
91− β x

36 π
2

=
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B12.1
19−

8100π
2

=
 

 

B12.2
9 β x

100 π
2

=
 

 

B12.3
5

36π
2

=
 

 

B12.4
3− β x

4 π
2

=
 

 

B12.5
2875−

15876π
2

=
 

 

B12.6
45 β x

196 π
2

=
 

 

B12.7
3773

324π
2

=
 

 

 

 

B12.8
63− β x

4 π
2

=
 

 

B12.9
81
16

3

4π
2

−=
 

 

B12.10
81− β x
16

β x

4 π
2

+=
 

 

B12.11
9317

324π
2

=
 

 

B12.12
99− β x

4 π
2

=
 

 

B12.13
68107−

39204π
2

=
 

 

B12.14
117 β x

484 π
2

=
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B13.1
21

12100π
2

=
 

 

B13.2
11− β x

100 π
2

=
 

 

B13.3
675−

23716π
2

=
 

 

B13.4
33 β x

196 π
2

=
 

 

B13.5
2125

4356π
2

=
 

 

B13.6
55− β x

36 π
2

=
 

 

B13.7
9947−

39204π
2

=
 

 

 

 

B13.8
77 β x

324 π
2

=
 

 

B13.9
9477

484π
2

=
 

 

B13.10
99− β x

4 π
2

=
 

 

B13.11
121
16

3

4π
2

−=
 

 

B13.12
121− β x

16

β x

4 π
2

+=
 

 

B13.13
19773

484π
2

=
 

 

B13.14
143− β x

4 π
2

=
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B14.1
27−

33124π
2

=
 

 

B14.2
13 β x

196 π
2

=
 

 

B14.3
621

16900π
2

=
 

 

B14.4
39− β x

100 π
2

=
 

 

B14.5
3875−

54756π
2

=
 

 

B14.6
65 β x

324 π
2

=
 

 

B14.7
6517

6084π
2

=
 

 

 

B14.8
91− β x

36 π
2

=
 

 

B14.9
25515−

81796π
2

=
 

 

B14.10
117 β x

484 π
2

=
 

 

B14.11
19965

676π
2

=
 

 

B14.12
143− β x

4 π
2

=
 

 

B14.13
169
16

3

4π
2

−=
 

 

B14.14
169− β x

16

β x

4 π
2

+=
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