CATALYTIC, ASYMMETRIC ACYL HALIDE-ALDEHYDE CYCLOCONDENSATIONS IN COMPLEX MOLECULE SYNTHESIS AND APPLICATION TO THE INSTALLATION OF QUATERNARY CARBON STEREOCENTERS

by
Andrew J. Kassick
B. S., The Pennsylvania State University, 1999

Submitted to the Graduate Faculty of
the Department of Chemistry in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH FACULTY OF ARTS AND SCIENCES

The dissertation of Andrew J. Kassick is approved by:

Professor Scott G. Nelson	
Advisor	Date
Professor Dennis P. Curran	Date

Professor Craig S. Wilcox

	Date
Professor Billy W. Day	
	Date
University of Pittsburgh	

November 2004

CATALYTIC, ASYMMETRIC ACYL HALIDE-ALDEHYDE CYCLOCONDENSATIONS IN COMPLEX MOLECULE SYNTHESIS AND APPLICATION TO THE INSTALLATION OF QUATERNARY CARBON STEREOCENTERS

Andrew J. Kassick, Ph. D.

University of Pittsburgh, 2004

The synthetic utility of recently developed catalytic, asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions has been successfully demonstrated in complex molecule total synthesis. Extensive use of the enantiomerically enriched β-lactone products of AAC methodology has led to the enantioselective total synthesis of the potent microtubule-stabilizing agent, (-)-laulimalide (1). Additional highlights of the synthesis include a diastereoselective aldol reaction that united major fragments 85 and 86 and a remarkably high-yielding modified Yamaguchi macrolactonization. Novel methodology was also developed to effect both the onepot interconversion of β-lactones to dihydropyranones and the Lewis acid-mediated addition of allenylstannane reagents to glycal acetates.

Asymmetric AAC reactions have also been instrumental in recent studies toward the total synthesis of the cytotoxic marine natural product, amphidinolide B_{1} (133). By exploiting AAC methodology, several key stereochemical relationships present in major fragments $\mathbf{1 7 1}$ and $\mathbf{1 7 2}$ were established. A highly enantioselective installation of the C_{16} tertiary carbinol stereocenter was acheived through the application of Mukaiyama's $\mathrm{Sn}(\mathrm{IV})$-allylation protocol, and a rapid synthesis of sulfone subunit $\mathbf{1 7 4}$ was realized from commercially available γ-butyrolactone. Regioselective β-lactone ring opening by phosphonate anions was also documented.

Amphidinolide B_{1} (133)

The enantiomerically enriched β-lactone products of AAC methodology have also been demonstrated to serve as useful templates for the installation of asymmetric quaternary carbon stereocenters. Treatment of β-lactones with NaHMDS in the presence of an in situ electrophile at low temperature resulted in enolization and subsequent alkylation to afford to afford trans-3,4disubstituted lactones in moderate to good yield with good levels of diastereoselectivity. Resubjecting the monoalkylated products to the reaction conditions and a different electrophile resulted in the efficient production of α, α-disubstituted- β-lactones in high yield with high transdiastereoselectivity. A more efficient route to α, α-disubstituted β-lactones was realized starting from the cis-3,4-disubstituted β-lactones products of the recently developed second generation

AAC reaction. Asymmetric quaternary carbon formation was accomplished in two steps affording the desired α, α-disubstituted- β-lactones in high yield with excellent diastereoselectivity.

Catalyst 36

Catalyst 180

TABLE OF CONTENTS

CHAPTER 1. ENANTIOSELECTIVE TOTAL SYNTHESIS OF (-)-LAULIMALIDE 1
1.1 BACKGROUND 1
1.1.1 Isolation. 1
1.1.2 Biological Activity 3
1.1.3 Structural Features 4
1.1.4 Previous Synthetic Work 5
1.2 AAC REACTION TECHNOLOGY IN THE TOTAL SYNTHESIS OF (-)-LAULIMALIDE13
1.3 RETROSYNTHETIC ANALYSIS 15
1.4 THE C ${ }_{1}-\mathrm{C}_{14}$ DIHYDROPYRAN FRAGMENT 16
1.4.1 Retrosynthetic Analysis 16
1.4.2 First Generation Synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ Fragment of (-)-Laulimalide. 17
1.5 FRAGMENT UNION AND MACROLIDE FORMATION 30
1.6 REVISED RETROSYNTHETIC ANALYSIS 34
1.7 SECOND GENERATION SYNTHESIS OF THE $C_{1}-C_{14}$ DIHYDROPYRAN FRAGMENT. 35
1.8 SYNTHESIS OF THE C ${ }_{15}-\mathrm{C}_{20}$ SUBUNIT 45
1.9 SYNTHESIS OF THE C $\mathrm{C}_{21}-\mathrm{C}_{28}$ DIHYDROPYRAN SIDECHAIN. 47
1.10 COMPLETION OF THE $\mathrm{C}_{15}-\mathrm{C}_{28}$ FRAGMENT 48
1.11 FRAGMENT UNION AND MACROLIDE FORMATION 50
1.11.1 Asymmetric Aldol Reaction 50
1.11.2 Seco Acid Formation and Macrolactonization 54
1.12 COMPLETION OF THE TOTAL SYNTHESIS OF (-)-LAULIMALIDE 62
1.13 CONCLUSIONS 64
1.14 EXPERIMENTAL SECTION 65
CHAPTER 2. STUDIES TOWARD THE TOTAL SYNTHESIS OF AMPHIDINOLIDE B. 116
2.1 BACKGROUND 116
2.1.1 Isolation. 116
2.1.2 Structural Features 117
2.1.3 Biological Activity 118
2.1.4 Previous Synthetic Work 119
2.2 RETROSYNTHETIC ANALYSIS 126
2.3 THE C $\mathrm{C}_{1}-\mathrm{C}_{13}$ FRAGMENT 127
2.3.1 Retrosynthesis 127
2.3.2 Synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{6}$ Subunit 128
2.3.3 Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ Subunit 129
2.4 THE C ${ }_{14}-\mathrm{C}_{26}$ FRAGMENT 131
2.4.1 Retrosynthetic Analysis 131
2.4.2 Installation of the C_{16} Tertiary Carbinol Stereocenter 132
2.4.3 Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ Subunit 137
2.4.4 Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ Subunit. 142
2.4.5 Subunit Coupling and Functionalization for Fragment Union 146
2.5 FUTURE WORK 149
2.6 CONCLUSIONS 152
2.7 EXPERIMENTAL SECTION 153
CHAPTER 3. DIASTEREOSELECTIVE β-LACTONE ENOLATE ALKYLATION IN THE CONSTRUCTION OF QUATERNARY CARBON STEREOCENTERS 176
3.1 BACKGROUND 176
3.2 ENOLATE ALKYLATION OF AAC-DERIVED β-LACTONES 180
3.3 SYNTHETIC APPLICATION OF α, α-DISUBSTITUTED β-LACTONES 188
3.4 CONCLUSIONS 191
3.5 EXPERIMENTAL SECTION 193

LIST OF TABLES

Table 1. Lewis Acid Activated Allenylstannane Additions to Glycal Acetates 27
Table 2. Lewis Acid Activated Allenylstannane Addition to Glycal Acetate 29
Table 3. Asymmetric Aldol Reaction Employing Modified Corey Diazaborolidines. 53
Table 4. Concentration Studies in Yamaguchi Macrolactonization 60
Table 5. Enolization and Alkylation of α-Unsubstituted β-Lactones 183
Table 6. Alkylation of 3,4-trans-Disubstituted β-Lactones 185
Table 7. Alkylation of 3,4-cis-Disubstituted β-Lactones 187
Table 8. Azide-Mediated $\mathrm{S}_{\mathrm{N}} 2$ Ring Opening of α, α-Disubstituted β-Lactones. 190

LIST OF FIGURES

Figure 1. (-)-Laulimalide (1) 2
Figure 2. Isolaulimalide (2) and Neolaulimalide (3) 2
Figure 3. Retrosynthesis of (-)-Laulimalide: Ghosh Approach 6
Figure 4. Revised Ghosh Retrosynthesis 7
Figure 5. Retrosynthesis of (-)-Laulimalide: Paterson Approach 8
Figure 6. Retrosynthesis of (-)-Laulimalide: Mulzer Approach 9
Figure 7. Retrosynthesis of (-)-Laulimalide: Wender Approach 10
Figure 8. Retrosynthesis of (-)-Laulimalide: Crimmins Approach 11
Figure 9. Retrosynthesis of (-)-Laulimalide: Williams Approach 12
Figure 10. Accessible Structural Motifs from Enantiomerically Enriched β-Lactones 14
Figure 11. Retrosynthesis of (-)-Laulimalide: Nelson Approach. 15
Figure 12. Retrosynthetic Approach to the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment of (-)-laulimalide 16
Figure 13. Pyranone Formation Via Direct Vinyl Anion Addition to β-Lactones 20
Figure 14. ${ }^{1}$ H 2D-NOESY NMR Spectrum of Dihydropyran 78 (500 MHz) 32
Figure 15. Revised Nelson Retrosynthesis 35
Figure 16. Proposed Model for Observed Selectivity in Double Diastereodifferentiating AAC Reactions ${ }^{43}$ 38
Figure 17. Hydrazone Anion Mediated Dihydropyranone Formation from β-lactones 42
Figure 18. The Amphidinolide B Group 116
Figure 19. Chakraborty Approach to the Major Fragments of Amphidinolide B_{1} 120
Figure 20. Nishiyama Approach to the Major Fragments of Amphidinolide B_{1} 121
Figure 21. Myles Approach to the Major Fragments of Amphidinolide B_{1} 122
Figure 22. Kobayashi Approach to the Major Fragments of Amphidinolide B_{1} 123
Figure 23. Lee Approach to the Major Fragments of Amphidinolide B_{1} 124
Figure 24. Pattenden Approach to the Major Fragments of Amphidinolide B_{1} 126
Figure 25. Retrosynthetic Approach to Amphidinolide B_{1} 127
Figure 26. Retrosynthesis for the $\mathrm{C}_{1}-\mathrm{C}_{13}$ Fragment of Amphidinolide B_{1} 128
Figure 27. Retrosynthesis for the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment of Amphidinolide B_{1} 131
Figure 28. Mukaiyama's Asymmetric Allylation of Carbonyl Compounds 136
Figure 29. Diastereoselective Glycolate Aldol Reaction in the Formation of the $\mathrm{C}_{21}, \mathrm{C}_{22}$ syn-diol
Relationship of Amphidinolide B_{1} 150
Figure 30. Completion of the Total Synthesis of Amphidinolide B_{1} 151
Figure 31. Rationale for the Observed Diastereoselectivity in the Alkylation of β-LactoneEnolates177
Figure 32. AAC-Derived β-Lactones in Asymmetric Quaternary Carbon Formation 180
Figure 33. Second generation asymmetric acyl halide-aldehyde cyclocondensation (AAC 186reactions of substituted ketenes
Figure 34. Rationalization for low yields of alkylation with 3-methyl-3,4-cis-disubstituted β lactones188

LIST OF SCHEMES

Scheme 1. Synthesis of Allylsilane 49^{a} 17
Scheme 2. Preparation of AAC-Precursor 50^{a} 18
Scheme 3. Lactone to Dihydropyranone Interconversion ${ }^{a}$ 22
Scheme 4. Synthesis of Dihydropyranone 72^{a}. 23
Scheme 5. Proposed Lewis Acid Activated Allenylstannane Addition of $\mathrm{C}_{1}-\mathrm{C}_{4}$ Laulimalide Sidechain 23
Scheme 6. Synthesis of Allenylstannane 41^{a}. 26
Scheme 7. Synthesis of Ene Substrate 79^{a} 31
Scheme 8. Synthesis of β-Silyloxyaldehyde 94^{a} 36
Scheme 9. Double Diastereodifferentiation in Iterative AAC Application 39
Scheme 10. Synthesis of 1,3-syn β-Lactone ent- 96^{a}. 40
Scheme 11. Preparation of anti,anti- β-Lactone 99^{a} 41
Scheme 12. One Pot β-Lactone to Dihdyropyranone Interconversion 43
Scheme 13. Synthesis of trans-2,6-Dihydropyran 103^{a}. 44
Scheme 14. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ Dihydropyran Fragment 86^{a} 45
Scheme 15. Synthesis of the $\mathrm{C}_{15}-\mathrm{C}_{20}$ Subunit 89^{a} 46
Scheme 16. Synthesis of the $\mathrm{C}_{21}-\mathrm{C}_{28}$ Dihydropyran Sidechain 88^{a} 47
Scheme 17. Diastereoselective Vinyl Grignard Addition to α-Alkoxyaldehyde 89^{a} 49
Scheme 18. Completion of the $\mathrm{C}_{15}-\mathrm{C}_{28}$ Fragment 85^{a} 50
Scheme 19. Deprotection of $\mathrm{C}_{19} p$-Methoxybenzyl Ether 122^{a} 55
Scheme 20. Yamaguchi Macrolactonization of Seco Acid 123^{a} 57
Scheme 21. Synthesis of 125 via Yonemitsu Modified Yamaguchi Macrolactonization 59
Scheme 22. Optimized Conditions for Modified Yamaguchi Macrolactonization ${ }^{a}$ 61
Scheme 23. Completion of the Total Synthesis of (-)-Laulimalide (1) ${ }^{a}$ 63
Scheme 24. Synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{6}$ Subunit 173^{a}. 129
Scheme 25. Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ Subunit 185^{a} 130
Scheme 26. Attempted C_{16} Tertiary Carbinol Installation via Asymmetric Brown Allylation. 133
Scheme 27. Attempted C_{16} Tertiary Carbinol Installation via Asymmetric Tagliavini Ti(IV)- BINOL Allylation 134
Scheme 28. Attempted C_{16} Tertiary Carbinol Installation via Walsh Protocol 135
Scheme 29. Mukaiyama Asymmetric Sn(IV)-Allylation of Benzyl Pyruvate ${ }^{a}$ 137
Scheme 30. Conversion of Benzyl Ester 197 to Alkyne 198^{a} 138
Scheme 31. AAC-Based Installation the C_{18} Hydroxyl-Bearing Stereocenter ${ }^{a}$ 139
Scheme 32. Lithium Phosphonate Anion Ring Opening of β-Lactone 61 141
Scheme 33. Completion of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ Subunit 187^{a} 142
Scheme 34. Synthesis of Aldehyde 210^{a} 143
Scheme 35. Asymmetric Dimethylzinc Addition to Ketones: Total Synthesis of (-)-Frontalin (213) 144
Scheme 36. Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ Subunit 221^{a} 146
Scheme 37. Fragment Union and Diol Installation. 147
Scheme 38. Fragment Coupling and Diol Installation 149
Scheme 39. $\mathrm{La}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ Mediated Ring Opening of α, α-Disubstituted β-Lactones 189

ACKNOWLEDGEMENTS

I am eternally grateful to the Lord God Almighty for granting me the strength and perseverance to complete my Ph. D. degree. The road that I have followed for the past five years has not always been an easy one, but by always keeping God in my life, I have been able to endure the hardships while still enjoying all of the many blessings that have been afforded to me.

I would like to thank my advisor, Professor Scott G. Nelson, for providing me with the opportunity to work on very challenging and rewarding research projects. I truly appreciate the time and effort that you have devoted to making me a better chemist and helping me to realize my goals.

To the members of the Nelson group, both past and present, I wish to thank all of you for your friendship and for sharing your knowledge and time with me over the years. You have made my graduate career at Pitt an enjoyable one. I would especially like to thank those group members intimately involved in my research projects: Drs. Mark Hilfiker and Wing Cheung, in the total synthesis of $(-)$-laulimalide, and Apsara Gopalarathnam, in our studies toward the total synthesis of amphidinolide B_{1}. You have been excellent colleagues and your contributions to these works have been invaluable. I would also like to thank my good friend and colleague, Dr. G. Greg Zipp for his friendship and many inciteful lunchtime discussions about chemistry and life. I am truly grateful for our friendship.

To my parents, Andrew and Patricia Kassick, and my brother, Alex, thank you so very much for supporting and encouraging me during these past few years and throughout my life. Through your love and sacrifices you taught me the value of hard work and the importance of family and have helped to make me the man I am today. You are very special people and I
always want to make you proud. I made it, Mom and Dad. I love you and thank you for everything.

Finally, I would like to thank my dear wife, Rachael for being a constant source of strength for me througout these past five years. You have been so understanding of my demanding schedule and have always been there for me to share in my happiness and success as well as comfort me in difficult times. I love you so very much and I greatly appreciate all the things that you have done for me. I am truly blessed to have you as my wife.

CHAPTER 1. ENANTIOSELECTIVE TOTAL SYNTHESIS OF (-)-LAULIMALIDE

1.1 BACKGROUND

1.1.1 Isolation

(-)-Laulimalide (1), originally known as fijianolide B, is a macrocyclic marine natural product that was first isolated in 1988 by Crews and coworkers from the Vanuatu chocolate sponge Cacospongia mycofijiensis (Figure 1). ${ }^{1}$ Independent efforts by a team of Hawaiian scientists led by Moore coincided with this discovery, culminating in the isolation of $\mathbf{1}$ from the Indonesian sponge Hyatella sp. ${ }^{2}$ The genesis of the name laulimalide is the Hawaiian word laulima, meaning "people working together," and is reflective of the highly collaborative research effort that led to its isolation. Laulimalide has since been found in the crude lipophilic extracts of several other species of marine sponge native to the Pacific region including Fasciospongia rimosa ${ }^{3}$ and most recently Dactylospongia sp. ${ }^{4}$ Structure elucidation and relative stereochemical assignments for $\mathbf{1}$ were achieved by NMR spectroscopy, ${ }^{1,2}$ while its absolute configuration was determined through X-ray diffraction studies by Higa and coworkers in 1996. ${ }^{3}$

[^0]

Figure 1. (-)-Laulimalide (1)

As depicted in Figure 2, laulimalide is isolated along with its constitutional isomers, isolaulimalide (2) and neolaulimalide (3). Isolaulimalide (fijianolide A) is a trisubstituted tetrahydrofuran-containing metabolite of 1 that arises from the $\mathrm{S}_{\mathrm{N}} 2$ ring opening of the laulimalide $\mathrm{C}_{16}-\mathrm{C}_{17}$ epoxide by the C_{20} hydroxyl function under weakly acidic conditions. ${ }^{5}$ Neolaulimalide was obtained by Higa et al. from the Okinawan sponge Fasciospongia rimosa, and exists as a ring-expanded regioisomer of $\mathbf{1}$ resulting from lactonization onto the distal C_{20} hydroxyl group of the syn diol moiety. ${ }^{6}$ It also appears to be less susceptible to acid-mediated cyclization than laulimalide (1), isomerizing to 2 only after several days.

 (fijianolide A)

Figure 2. Isolaulimalide (2) and Neolaulimalide (3)

[^1]
1.1.2 Biological Activity

Soon after its isolation, laulimalide (1) was found to be a highly cytotoxic chemical entity. ${ }^{1,2}$ It exhibits low nanomolar activity against the human epidermoid carcinoma KB cell line $\left(\mathrm{IC}_{50}=15\right.$ $\mathrm{ng} / \mathrm{mL}$), and has also proven to effectively inhibit growth in several other human tumor cell lines including A549 (human lung), HT29 (human colon), MEL28 (human skin), and MDA-MB-435 (human breast) cell lines $\left.\left(\mathrm{IC}_{50}=10-50 \mathrm{ng} / \mathrm{mL}\right)\right)^{2,3}$ Isolaulimalide exhibits substantially weaker levels of activity against the KB cell line $\left(\mathrm{IC}_{50}>200 \mathrm{ng} / \mathrm{mL}\right)$ as well as MDA-MB- 435 cells $\left(\mathrm{IC}_{50}\right.$ $=2 \mu \mathrm{M})$ potentially owing to its lack of the $\mathrm{C}_{16}-\mathrm{C}_{17}$ epoxide moiety. The ring-expanded neolaulimalide (3), however, displays commensurate levels of cytotoxicity as $\mathbf{1}$ against A549, HT29, and MEL28 cell lines $\left(\mathrm{IC}_{50}=10-50 \mathrm{ng} / \mathrm{mL}\right) .{ }^{6}$

Recent studies have shown that the mechanism of action of laulimalide is similar to that of the popular anticancer agent paclitaxel $\left(\mathrm{Taxol}^{\mathrm{TM}}\right)^{7}$ Both compounds promote the polymerization of tubulin and the stabilization of cellular microtubules, events that disrupt normal mitotic cell division and lead, ultimately, to premature apoptosis. ${ }^{7}$ As a result, $\mathbf{1}$ has been recognized as a new member of a limited collection of nontaxane microtubule-stabilizing natural products with high anticancer potential that includes discodermolide, elutherobin, and the epothilones. However, a recent report strongly suggests that while laulimalide exhibits similar microtubule stabilizing activity as paclitaxel, it does not bind to the taxoid site on the $\alpha \beta$-tubulin dimer. ${ }^{8}$ Competitive binding assays by Hamel et al. have demonstrated the failure of $(-)$ laulimalide to inhibit binding of either $\left[{ }^{3} \mathrm{H}\right]$-paclitaxel or the fluorescent Taxol derivative, 7-O[N-(2,7-difluoro-4'-fluoresceincarbonyl)-L-alanyl]paclitaxel (Flutax 2), to the tubulin polymer.

[^2]Additionally, HPLC analysis of microtubule pellets formed in the presence of both laulimalide and paclitaxel revealed a near stoichiometric amount of both compounds. This simultaneous binding of paclitaxel and laulimalide to tubulin provided further evidence for the existence of a binding site distinct from that recognized by the taxoids. Another notable difference between the two microtubule-stabilizing agents is the superior ability of laulimalide to inhibit cellular proliferation in multidrug-resistant cell lines overexpressing P-glycoprotein such as the human ovarian carcinoma SKVLB-1 cell line. ${ }^{6}$ Such impressive biological activity along with its limited natural abundance makes laulimalide an attractive synthetic target.

1.1.3 Structural Features

In addition to its intriguing and potentially useful biological activity, laulimalide displays a high degree of molecular complexity with many key structural features. One of the most notable features is its highly functionalized 18-membered macrolide. Located within laulimalide's macrolactone is a trans-2, 6-disubstituted dihydropyran ring $\left(\mathrm{C}_{5}-\mathrm{C}_{9}\right)$ along with some particularly sensitive functionality in the form of an acid-labile epoxide ring ${ }^{9}$ at $\mathrm{C}_{16}-\mathrm{C}_{17}$ and an easily isomerized Z-enoate ester linkage spanning $\mathrm{C}_{1}-\mathrm{C}_{4}$ (Figure 1). ${ }^{10}$ A second dihydropyran moiety is incorporated into a side chain that is tethered to the macrolide at C_{19}. Laulimalide possesses ten oxygenated carbons, nine stereogenic centers (eight hydroxyl-bearing stereocenters and an isolated methyl-bearing stereocenter at C_{11}), as well as five $\mathrm{C}-\mathrm{C}$ double bonds. This

[^3]combination of structural complexity and potential chemotherapeutic utility has made laulimalide an extremely attractive target molecule for synthetic organic chemists. ${ }^{11,12}$

1.1.4 Previous Synthetic Work

To date, ten total syntheses of (-)-laulimalide have been reported by seven different synthetic groups. The first total synthesis of laulimalide was achieved in 2000 by Ghosh and Wang. ${ }^{11 \mathrm{a}}$ Ghosh's approach features two olefin forming reactions that unite the two major fragments $\mathbf{4}$ and 5 to furnish the requisite macrocycle. First, a Julia olefination between sulfone fragment $\mathbf{4}$ and aldehyde 5 affords the trans-alkene which is later fashioned into the $\mathrm{C}_{16}-\mathrm{C}_{17}$ epoxide functionality. An intramolecular Still-Gennari coupling between a C_{19} phosphonoacetate and C_{3} aldehyde forms the requisite $\mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{Z}$ olefin $(E / Z 2: 1)$ and closes the macrocycle. ${ }^{13}$ Assembly of 4 was accomplished through the nucleophilic addition of the organolithium species derived from vinyl dibromide 6 into α-alkoxyaldehyde 7. Both dihydropyran rings were synthesized using Grubbs' ring closing metathesis strategy, ${ }^{14}$ and the sensitive epoxide ring was installed in the final stages of the synthesis via the Sharpless asymmetric epoxidation (Figure 3).

[^4]Ghosh et al. later reported a modified approach to (- -laulimalide that incorporated an improved method for macrocycle construction (Figure 4). ${ }^{15}$ Following the fragment uniting Julia olefination reaction between major subunits $\mathbf{4}$ and $\mathbf{5}$ employed in the original total synthesis of $\mathbf{1}$, Ghosh elected to pursue the Yamaguchi macrolactonization of hydroxy alkynoic acid $\mathbf{8}$ to close the 18 -membered ring. Subsequent Z-enoate ester installation was achieved by Lindlar reduction of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ triple bond to furnish a highly functionalized laulimalide precursor.

$\Downarrow \quad 1$

5

6

7

Figure 3. Retrosynthesis of (-)-laulimalide: Ghosh approach

[^5]

1

5

Figure 4. Revised Ghosh Retrosynthesis

Shortly after Ghosh and Wang published their first total synthesis of (-)-laulimalide, Paterson ${ }^{11 b}$ disclosed a second approach to the potent, microtubule-stabilizing natural product (Figure 5). Paterson's approach relied on his previously developed asymmetric aldol methodology employing chiral diisopinocampheyl-boron enolates. ${ }^{16}$ This methodology is used to achieve the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond formation between fragments $\mathbf{1 0}$ and $\mathbf{1 1}$ as well as in the preparation of the dihydropyran ring in fragment 11. ${ }^{17}$ The side chain dihydropyran fragment $\mathbf{1 2}$ was prepared in highly enantioenriched form via a hetero-Diels-Alder reaction using Jacobsen's chiral tridentate Cr (III) catalyst $14 .{ }^{18}$ In the late stages of the synthesis, a Mitsunobu macrolactonization protocol was required to complete the macrolide in order to preserve the

[^6]integrity of the Z-enoate ester due to undesired scrambling of the olefin geometry at $\mathrm{C}_{2}-\mathrm{C}_{3}$ under traditional based-mediated macrolactonization conditions. ${ }^{6}$

11

Figure 5. Retrosynthesis of (-)-Laulimalide: Paterson Approach

For Mulzer and coworkers, the total synthesis of (-)-laulimalide has been the subject of intense study since 1999. A total of three different approaches to the synthesis of $\mathbf{1}$ have been achieved in the Mulzer laboratories. ${ }^{11 c-e}$ In perhaps the most elegant of these strategies, a highly selective Still-Gennari coupling between the C_{3} aldehyde in fragment $\mathbf{1 5}$ and the C_{19} phosphonoacetate in fragment 16 established the Z-enoate linkage. Subsequent macrolide ring
closure was accomplished with an unprecedented allylsilane addition into a chiral acetal moiety in 16 derived from $(2 R, 4 R)-(-)$-pentanediol. This is reported as being the first example of macrocycle formation by an allyl transfer reaction. As in Ghosh's approach, dihydropyran ring formation in subunits $\mathbf{1 5}$ and $\mathbf{1 7}$ was achieved by ring-closing metathesis using Grubbs' catalyst (Figure 6).

1

15

16

18

Figure 6. Retrosynthesis of (-)-Laulimalide: Mulzer Approach

In 2002, several total syntheses of (-)-laulimalide were completed in close succession beginning with a highly convergent route published by Wender (Figure 7). Analysis of Wender's synthesis reveals major fragments $\mathbf{1 9}$ and 20. In the formation of the 18 -membered macrolactone, Yamamoto's (acyloxy)-borane $21{ }^{19}$ was employed to effect an intermolecular asymmetric Sakurai reaction uniting allylsilane 20 and aldehyde 19 with concomitant establishment of the C_{15} stereocenter. Wender then relied on a highly regioselective Yamaguchi

[^7]macrolactonization of an alkynoic acid onto the unprotected $\mathrm{C}_{19}, \mathrm{C}_{20}$-diol to deliver the intact macrolide. Desymmetrization of commercially available isopropylidene tartrate led to α-chiral aldehyde 22, while asymmetric hetero-Diels-Alder technology using Jacobsen's (S, S)-Cr-salen catalyst $\mathbf{2 4}{ }^{20}$ and Mikami's (S)-BINOL- TiCl_{2} system $\mathbf{2 5}^{21}$ provided dihydropyran subunits $\mathbf{2 0}$ and 23, respectively.

Figure 7. Retrosynthesis of (-)-Laulimalide: Wender Approach

[^8]Up to this point, the $\mathrm{C}_{16}-\mathrm{C}_{17}$ epoxide of (-)-laulimalide was viewed as an extremely sensitive functional group that warranted its installation very late, if not in the final step of all previously reported total syntheses. This notion was challenged in Crimmins' approach to laulimalide where the sensitive epoxide moiety was introduced at a much earlier stage in the synthesis. ${ }^{10 f}$ Fragment union and macrolide formation was accomplished with a diastereoselective allylstannane addition between the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment 26 and the epoxide containing $\mathrm{C}_{15}-\mathrm{C}_{27}$ subunit 27, followed by a Mitsunobu macrolactonization of seco acid $\mathbf{2 8}$ to preserve the integrity of the (Z)-enoate ester linkage (Figure 8). To establish elements of stereochemistry in each of the three major fragments $\mathbf{2 6}, \mathbf{2 9}$, and $\mathbf{3 0}$, Crimmins relied heavily on his previously developed asymmetric alkylation methodology employing chiral oxazolidinone glycolates. ${ }^{22}$

1
Olefination

Figure 8. Retrosynthesis of (-)-Laulimalide: Crimmins Approach

[^9]In the most recently reported total synthesis of (-)-laulimalide, Williams described a highly diastereoselective coupling of allylsilane fragment $\mathbf{3 1}$ and Crimmins' epoxyaldehyde 27. Subunit 27 was constructed through a chelation-controlled addition of E-alkenyl zincate $\mathbf{3 2}$ to α alkoxyaldehyde $\mathbf{3 3}$ followed by Grubbs' ring-closing metathesis to form the requisite dihydropyran side chain. A novel allenylstannane Ferrier reaction between 34 and glycal acetate 35 was employed to directly install the $\mathrm{C}_{1}-\mathrm{C}_{4}$ propargylic sidearm necessary for the safe installation of the required $\mathrm{C}_{2}-\mathrm{C}_{3} \mathrm{Z}$-olefin via the Yamaguchi macrolactonization and subsequent Lindlar reduction protocol initially described by Ghosh and coworkers (Figure 9).

1

Figure 9. Retrosynthesis of (-)-Laulimalide: Williams Approach

1.2 AAC REACTION TECHNOLOGY IN THE TOTAL SYNTHESIS OF (-)LAULIMALIDE

Methodology developed recently in our research group encouraged our pursuit of the total synthesis of (-)-laulimalide. Catalytic, asymmetric acyl halide-aldehyde cyclocondensation (AAC) reaction technology allows for the efficient preparation of masked aldol products in the form of β-lactones from a wide variety of aldehydes (Equation 1). Employing substoichiometric amounts (10-15 mol \%) of a chiral aluminum triamine catalyst 36, a variety of enantiomerically enriched β-lactones have been produced, making these synthons readily available and easily prepared for use in synthesis endeavors. ${ }^{23}$

Enantioenriched β-lactones are useful building blocks in organic synthesis due to their unique electrophilicity (Figure 10). ${ }^{24}$ By exploiting the reactivity of these β-lactone templates, synthetic and stereochemical challenges associated with the total synthesis of (-)-laulimalide can be addressed. For example, the creation of hydroxyl-bearing stereocenters, a prominent architectural feature of laulimalide, can be accomplished by the addition of hard nucleophiles

[^10]such as alkoxides, alkyl Grignard reagents, and metal amide species into the carbonyl of the β lactone. ${ }^{25}$ Installing alkyl-bearing stereocenters, such as the methyl-bearing stereocenter at C_{11} of laulimalide, can be achieved by utilizing soft nucleophiles. Dialkylcuprate reagents undergo nucleophilic attack in an $\mathrm{S}_{\mathrm{N}} 2$ fashion at the C_{4} position of the lactone to generate optically active β-disubstituted carboxylic acids. ${ }^{26}$ Use of the asymmetric AAC reaction in an iterative fashion leads to the formation of 1,3-stereochemical relationships, yet another important structural feature in our planned total synthesis. It was therefore speculated that the versatile reactivity demonstrated by enantiomerically enriched β-lactones would provide a novel and efficient approach to the total synthesis of (-)-laulimalide.

Figure 10. Accessible Structural Motifs from Enantiomerically Enriched β-Lactones

[^11]
1.3 RETROSYNTHETIC ANALYSIS

Our original retrosynthetic approach to (-)-laulimalide is outlined in Figure 11. Removal of the $\mathrm{C}_{16}-\mathrm{C}_{17}$ epoxide followed by a disconnection at $\mathrm{C}_{20}-\mathrm{C}_{21}$ via a diastereoselective vinyl metal addition would deliver dihydropyran subunit $\mathbf{3 7}$ along with the highly functionalized macrocycle 38. Construction of $\mathbf{3 8}$ would be accomplished through propargylic acid esterification and subsequent intramolecular asymmetric allylsilane addition of the lower $\mathrm{C}_{1}-\mathrm{C}_{14}$ dihydropyran fragment 39 and the $\mathrm{C}_{15}-\mathrm{C}_{20} \alpha, \beta$-unsaturated aldehyde 40. Stereoselective synthesis of fragments 39 and $\mathbf{4 0}$ was predicated on exploiting the unique reactivity demonstrated by the enantiomerically enriched β-lactone products of AAC reaction technology.

Figure 11. Retrosynthesis of (-)-Laulimalide: Nelson Approach

1.4 THE $\mathrm{C}_{1}-\mathrm{C}_{14}$ DIHYDROPYRAN FRAGMENT

1.4.1 Retrosynthetic Analysis

Through further retrosynthetic analysis of the lower dihydropyran fragment 39, we recognized the potential for applying AAC-based reaction technology and developing new methods for addressing key synthetic challenges (Figure 12). We had envisaged the novel stereoselective installation of the entire $\mathrm{C}_{1}-\mathrm{C}_{4}$ ynoate ester sidearm of $\mathbf{3 9}$ occurring via a Lewis acid-mediated allenylstannane addition of $\mathbf{4 1}$ to glycal acetate $\mathbf{4 2} .^{27}$ Glycal $\mathbf{4 2}$ would be readily accessible through the typical 1,2-reduction and acylation sequence available to the corresponding dihydropyranone 43. Preparation of $\mathbf{4 3}$ was then anticipated from the regioselective ring opening of β-lactone 44 with subsequent acid- mediated cyclization and elimination.

Figure 12. Retrosynthetic Approach to the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment of (-)-laulimalide

[^12]
1.4.2 First Generation Synthesis of the $\mathbf{C}_{1}-\mathbf{C}_{14}$ Fragment of (-)-Laulimalide

The synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment of (-)-laulimalide (Scheme 1) began from the known aldehyde 45. ${ }^{28}$ Lactone 46 was prepared in 97% yield from aldehyde 45 under standard asymmetric AAC conditions $\left(\mathrm{AcBr}, \mathrm{iPr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}\right)$ employing $10 \mathrm{~mol} \%$ of the S, S Al(III)-triamine catalyst $\mathbf{3 6}$ and was recrystallized to high enantiopurity (98% ee). Regioselective $\mathrm{S}_{\mathrm{N}} 2$ ring opening of $\mathbf{4 6}$ to the carboxylic acid via dimethylmagnesiocuprate addition (80% yield) efficiently set the requisite methyl-bearing C_{11} stereocenter. Acid $\mathbf{4 7}$ was then converted to methyl ester 48 (DCC, DMAP, MeOH) in 86% yield. Treating ester 48 with an excess of an organocerium reagent derived from CeCl_{3} and trimethylsilylmethylmagnesium chloride $\left(\mathrm{TMSCH}_{2} \mathrm{MgCl}\right)$ delivered the corresponding allylsilane 49. ${ }^{29}$

Scheme 1. Synthesis of Allylsilane $\mathbf{4 9}^{a}$

b $\downarrow 80 \%$

49

$$
\begin{aligned}
\\
\mathrm{c} \square \square \\
86 \%
\end{aligned} \quad 48 \mathrm{X}=\mathrm{OH}
$$

${ }^{a}$ Conditions: a) 10 mol\% Catalyst 2, AcBr , DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$. b) $\mathrm{CuBr}, \mathrm{MeMgBr}, \mathrm{TMSCI}, \mathrm{THF} / \mathrm{DMS},-50^{\circ} \mathrm{C}$ to rt. c) DCC, DMAP, MeOH . d) $\mathrm{CeCl}_{3}, \mathrm{TMSCH}_{2} \mathrm{MgCl}, \mathrm{THF},-78^{\circ} \mathrm{C}$ to rt.

[^13]Further elaborating allylsilane 49 to the target molecule 39 required its transformation into lactone 44 (Eq 2). The aldehyde 52 required for generating 44 was to be produced by silyl deprotection and oxidation of 49 (Scheme 2). Treatment of silane 49 with tetra-nbutylammonium fluoride (TBAF) resulted in the cleavage of the TBDPS ether in forming alcohol 51 (83% yield); however, oxidation with tetra-n-propylammonium perruthenate (TPAP, NMO, $4 \AA$ molecular sieves) afforded none of the desired aldehyde product 52. Additional attempts to oxidize the primary alcohol employing Swern conditions ${ }^{30}$ and Dess-Martin periodinane ${ }^{31}$ were also unsuccessful. This problem was circumvented by removal of the trimethylsilyl (TMS) group with Amberlyst-15 resin in THF to form 53, although loss of the allylsilane at this stage now required a new approach for the coupling of major fragments 39 and 40. Silyl deprotection and subsequent TPAP oxidation provided the volatile aldehyde $\mathbf{5 0}$ in $\mathbf{7 9 \%}$ yield from silyl ether 49.

Scheme 2. Preparation of AAC-Precursor $\mathbf{5 0}^{a}$

${ }^{a}$ Conditions: a) TBAF, THF. b) TPAP, NMO, $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Amberlyst-15, THF.

[^14]Aldehyde 50 was then used as the coupling partner in a second AAC reaction. Subjecting aldehyde 50 to standard AAC reaction conditions $\left(\mathrm{AcBr},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}\right)$ employing $10 \mathrm{~mol} \%$ of the (R, R) aluminum-triamine catalyst ent-36 furnished lactone $\mathbf{5 5}$ as a 91:9 mixture of $\left(2^{\prime} S, 4 R\right):\left(2^{\prime} S, 4 S\right)$ diastereomers based on ${ }^{1} \mathrm{H}$ NMR analysis (500 MHz). Unfortunately, intermediate $\mathbf{5 5}$ also proved to be very volatile and attempts to completely remove solvent from the product resulted in the substantial loss of material. After separation of the lactone diastereomers by column chromatography, steps were taken to convert $\mathbf{5 5}$ to the requisite dihydropyranone.

We envisioned a possible synthetic route to dihydropyranones from simple enantiomerically enriched β-lactone precursors. The initial strategy for arriving at these pyranone intermediates involved the direct nucleophilic addition of vinyl anions of type $\mathbf{5 6}$ into β-lactones (Figure 13). These hard nucleophiles would preferentially add into the carbonyl of the lactone with subsequent ring opening to produce the corresponding enol ether 57. Under acidic conditions, this enol ether would hydrolyze to the β-ketoaldehyde $\mathbf{5 8}$ with probable cyclization to form hemiacetal 59. Subsequent dehydration would then provide the desired dihydropyranone product 60.

Figure 13. Pyranone Formation Via Direct Vinyl Anion Addition to β-Lactones

To explore the feasibility of this direct vinyl anion addition route, a model study was undertaken employing (4S)-4-phenethyloxetan-2-one 61 (Eq 3). ${ }^{23 a}$ Metallating (Z)-1-ethoxy-2tributylstannylethylene 62^{32} with n-butyllithium afforded vinyl anion $\mathbf{6 3}^{33}$ which was then slowly treated with β-lactone 61. The desired product $\mathbf{6 4}$ was obtained as an approximately $3: 1$ mixture of cis/trans vinyl ether isomers in a combined 23% yield, along with many unidentifiable products. Transmetallation of the reactive organolithium species $\mathbf{6 3}$ to the corresponding Grignard and organocerium reagents afforded similar mixtures of olefin isomers but in slightly lower yields (18\%). Forming the cuprate of the organolithium species provided compound $\mathbf{6 4}$ again in low yield (15\%). Despite these low yields, it was discovered that, upon standing at ambient temperature, the enol ether intermediate does cyclize to the desired pyranone product 65, proving the viability of the route; however, extensive optimization was necessary to achieve synthetically useful chemical yields.

[^15]

Due to the unsatisfactory results obtained from the direct addition of vinyl anions to β lactones, a modified strategy to achieve pyranone formation was devised (Scheme 3). Prior ring opening of the β-lactone to a species more tolerant of the reaction conditions followed by vinyl anion addition was anticipated to result in higher yields. To test this strategy, Weinreb amide $\mathbf{6 6}$ was prepared from the corresponding β-lactone in 98% yield under conditions developed by Shimizu and Nakata. ${ }^{34}$ Protection of the resulting secondary alcohol with N, O bis(trimethylsilyl)acetamide (BSA) afforded the TMS-protected Weinreb amide 67 in 89% isolated yield. Subjecting amide $\mathbf{6 7}$ to lithium anion $\mathbf{6 3}$ at $-78^{\circ} \mathrm{C}$ provided enol ether $\mathbf{6 8}$ as a mixture of cis/trans isomers (15:1) in a combined 65% yield. In subsequent experiments, the enol ether was not isolated but, rather, was dissolved in tetrahydrofuran (THF), treated with Amberlyst-15 ion exchange resin (100 mass\%), and maintained at ambient temperature overnight to effect the acid-mediated cyclization. After purification, dihydropyran $\mathbf{6 5}$ was obtained in 76% overall yield from amide 67.

[^16]Scheme 3. Lactone to Dihydropyranone Interconversion ${ }^{a}$

61

$\begin{array}{ccl}\mathrm{b} & \square 66 & \mathrm{X}=\mathrm{OH} \\ 89 \% & \square 67 & \mathrm{X}=\mathrm{OTMS}\end{array}$

68
${ }^{a}$ Conditions: a) $\mathrm{MeON}(\mathrm{Me}) \mathrm{H} \cdot \mathrm{HCl}, \mathrm{Me}_{2} \mathrm{AlCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $\mathrm{BSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. c) $62,{ }^{n}$ BuLi, THF, $-78^{\circ} \mathrm{C}$. d) Amberlyst-15, THF, rt

Using this strategy, lactone 55 was efficiently converted to Weinreb amide 69 by ring opening with the aluminum-amide species derived from N, O-dimethylhydroxylamine and dimethylaluminum chloride (Scheme 4). Amide 69 was then treated with N, O bis(trimethylsilyl)acetamide (BSA) providing the corresponding TMS ether 70 in 90% yield. The resulting β-siloxyamide 70 was subjected to the cis-ethoxyvinyllithium-mediated protocol for pyranone synthesis and the resulting mixture of enones 71 was then treated with 100 mass $\%$ of Amberlyst-15 resin in THF at ambient temperature to effect the cyclization to pyranone $\mathbf{7 2}$ in good yield (72\% from amide 70).

Scheme 4. Synthesis of Dihydropyranone $\mathbf{7 2}^{a}$

aConditions: a) $\mathrm{MeON}(\mathrm{Me}) \mathrm{H} \cdot \mathrm{HCl}, \mathrm{Me}_{2} \mathrm{AICl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $\mathrm{BSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. c) 62, ${ }^{n}$ BuLi, THF, $-78^{\circ} \mathrm{C}$. d) Amberlyst-15, THF.

Having arrived at a working synthetic route to the desired dihydropyranone intermediate 72, we next initiated model studies focused on installing the ynoate ester sidearm of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment. A Lewis acid-mediated allenylstannane addition of reagent 41 into glycal acetates derived from the corresponding pyranone intermediates was an intriguing possibility (Scheme 5).

Scheme 5. Proposed Lewis Acid Activated Allenylstannane Addition of $\mathrm{C}_{1}-\mathrm{C}_{4}$ laulimalide sidechain

The requisite allenylstannane reagent $\mathbf{4 1}$ for exploring this strategy was previously unreported; however, there were several examples of similar compounds in the literature that instilled confidence in achieving the desired reactivity with glycal acetate intermediates. For example, Danishefsky has demonstrated, under appropriately Lewis acidic conditions, that allylsilanes serve as good nucleophiles for the regio- and stereoselective addition into glycal acetates to provide 2,6-trans-disubstituted dihydropyran rings (Eq 4). ${ }^{35}$ Additionally, synthetic studies by Marshall have shown that allenylstannane reagents are capable of Lewis acid-mediated nucleophilic addition into aldehydes, affording the corresponding homopropargylic alcohol adducts (Eq 5). ${ }^{36}$ Based on these precedents, the successful nucleophilic addition of allenylstannane 41 to glycal acetates was anticipated.

To examine the proposed nucleophilic allenylstannane addition, model glycal acetate 73 as well as stannane reagent 41 was prepared. Glycal acetate $\mathbf{7 3}$ was synthesized via a standard two step reaction sequence involving the reduction of pyranone $\mathbf{6 5}$ under Luche conditions ${ }^{37}$

[^17]$\left(\mathrm{CeCl}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}\right)$ with subsequent protection of the resulting allylic alcohol as the corresponding acetate to furnish glycal acetate 73 in $90-93 \%$ overall yield (Eq 6). ${ }^{38}$

65

1) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ NaBH_{4}
2) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$
(90-93\%)

The synthesis of allenylstannane 41, as depicted in Scheme 6, commenced with the acidcatalyzed esterification of commercially available 2-butynoic acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$, isobutylene) to afford the desired tert-butyl ester 74 in good yield. Deprotonation of $\mathbf{7 4}$ with LDA at $-78{ }^{\circ} \mathrm{C}$ followed by quenching with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnCl}$ then furnished allenylstannane 41 (25-38\%). These modest isolated yields have recently been attributed to the original preparation of 41 in which ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnCl}$ was added dropwise to a solution of enolate 75. Under such reaction conditions, the potential Michael accepting product 41, was generated in the presence of excess nucleophile leading to an increased propensity for anionic polymerization. Upon addition of the electrophile, the solution became deep red in color indicative of the presence of a highly conjugated species. A reverse addition of enolate to electrophile at low temperature was envisioned to prevent the undesired Michael addition and increase the isolated yield of the allenylstannane 41. ${ }^{39}$ Indeed, reverse addition of nucleophile to electrophile proved to be the most effective method for enolate quenching as it cleanly afforded 41 in 75% yield.

[^18]Scheme 6. Synthesis of Allenylstannane $\mathbf{4 1}^{a}$

${ }^{a}$ Conditions: (a) isobutylene, $\mathrm{H}_{2} \mathrm{SO}_{4}$. (b) i. LDA, THF, $-78{ }^{\circ} \mathrm{C}$, ii. ${ }^{n} \mathrm{BuSnCl}$.

With model glycal acetate $\mathbf{7 3}$ and allenylstannane $\mathbf{4 1}$ in hand, a variety of Lewis acids were screened to establish the optimal reaction conditions for effecting the introduction of the requisite ynoate ester sidechain (Table 1). Treatment of a $-78^{\circ} \mathrm{C}$ methylene chloride solution of acetate 73 and stannane 41 (2.2 equiv) with stoichiometric Lewis acids was envisioned to result in nucleophilic attack of $\mathbf{4 1}$ at C_{6} of glycal $\mathbf{7 3}$ with concomitant elimination of acetate to form $\mathbf{7 6}$ (Eq 4). Boron trifluoride diethyletherate provided the desired 2,6-dihydropyran product 76, but in modest yield (38\%). Montmorillonite K10 clay was also employed to mediate the reaction between glycal acetate 73 and allenylstannane 41; however, a yield of only 33% was achieved. Reactions with titanium-based Lewis acids afforded only moderate reactivity (entries c-e). The low isolated yields of $\mathbf{7 6}$ obtained in these reactions prompted the investigation of other means of promoting this transformation

Table 1. Lewis Acid Activated Allenylstannane Additions to Glycal Acetates

${ }^{a}$ Isolated yields of purified products. ${ }^{b}$ Addition of glycal acetate to allene/Lewis acid.

A similar reaction involving Lewis acid mediated allylstannane addition into glycal epoxides was recently described in Evans' total synthesis of altohyrtin $\mathrm{C}\left(\mathrm{Eq} 7\right.$). ${ }^{40}$ This nucleophilic addition sequence utilized various silyl and stannyl triflate Lewis acids for the introduction of propenyl sidechains into glycal epoxides in moderate to good yield (51-63\%). These results led to the examination of silyl and stannyl triflate Lewis acids in the context of our allenylstannane addition reactions.

[^19]

Lewis Acid: \quad TMSOTf $=51 \%, T E S O T f=56 \%,{ }^{n}{ }^{n} u_{3} S n O T f=63 \%$

Initial attempts to promote the allenylstannane addition to glycal acetate $\mathbf{7 3}$ under the silyl triflate conditions afforded the desired product 76 in yields higher than those observed in previous investigations (Table 2). Use of trimethylsilyl triflate generated propargyl ester 76 in 56% yield while treatment with triethylsilyl triflate afforded the desired dihydropyran product in 63\% yield. Additional trials with triisopropylsilyl triflate were comparable to earlier studies where titanium(IV)-based Lewis acids were employed (40\%). However, tributyltin triflate proved to be the optimal Lewis acid for the nucleophilic addition of allenylstannane 41 into glycal acetate 73, furnishing dihydropyran 76 in 65% yield.

Table 2. Lewis Acid Activated Allenylstannane Addition to Glycal Acetate

Due to the previously experienced acid sensitivity of glycal acetates, ${ }^{38}$ we hypothesized that the lower isolated yields of $\mathbf{7 6}$ resulted from the undesired decomposition of $\mathbf{7 3}$ prior to allenylstannane addition. We envisioned that excess tin reagent would intercept the glycal acetate electrophile prior to its participation in destructive side reactions. To test this hypothesis, a large excess (5.0 equiv) of the allenylstannane reagent 41 was employed in the ${ }^{n} \mathrm{BuSnOTf}-$ mediated addition reaction. The desired adduct 76 was now obtained as a single diastereomer in 75\% yield.

We were now prepared to introduce the ynoate ester sidechain of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment of 1 employing the optimized conditions for nucleophilic allenylstannane addition. Glycal acetate 77, prepared according to the reaction sequence outlined in Eq 6, and allenylstannane 41 were cooled to $-78{ }^{\circ} \mathrm{C}$ and slowly treated with 1.1 equiv of ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnOTf}$. Upon warming the reaction to
ambient temperature, the $\mathrm{C}_{1}-\mathrm{C}_{4} \alpha, \beta$-unsaturated ester sidearm of $(-)$-laulimalide was efficiently installed in one step in 71% yield completing fragment 78 (Eq 8). The trans-substitution across the dihydropyran ring was confirmed by a 2D-NOESY spectrum (Figure 14) in which a crosspeak between H_{9} and the C_{4} methylene was observed. Additionally, the absence of a cross-peak between H_{5} and H_{9} provided further evidence for a 2,6-trans arrangement of ring substituents.

1.5 FRAGMENT UNION AND MACROLIDE FORMATION

According to the retrosynthetic strategy outlined in Figure 11, assembly of the asymmetric ene precursor 79 required first formatting dihydropyran subunit 78 as the corresponding carboxylic acid. After a brief survey of reaction conditions for the deprotection of tert-butyl esters, TMSOTf and 2,6-lutidine was identified as a suitable reagent system, cleanly affording carboxylic acid $\mathbf{8 0}$ in 90% yield. Acid $\mathbf{8 0}$ and alcohol $\mathbf{8 1}$ were then united through a carbodiimide coupling reaction (DCC, DMAP) to generate ester 82 in moderate yield (31\%). Subjecting the coupled product $\mathbf{8 2}$ to 2% triflic acid (TfOH) in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(7: 3)$ resulted in trityl ether deprotection providing allylic alcohol $\mathbf{8 3}$ which was then oxidized to the requisite α, β-unsaturated aldehyde substrate for intramolecular ene macrocyclization (Scheme 7).

Scheme 7. Synthesis of Ene Substrate 79 ${ }^{\boldsymbol{a}}$

b $\downarrow 75 \%$

79

83
${ }^{\text {a Conditions: }}$ a) DCC, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $2 \% \mathrm{TfOH}$ in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$. c) TPAP, NMO, $4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Figure 14. ${ }^{1} \mathrm{H}$ 2D-NOESY NMR Spectrum of Dihydropyran 78 (500 MHz)

The synthesis at this stage had arrived at the critical intramolecular ene macrocyclization event (Eq 9). We sought to construct the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond and concomitantly establish the requisite C_{15} hydroxyl-bearing stereocenter under reaction conditions described by Mikami for the intermolecular ene reaction of olefins and activated glyoxylate electrophiles. ${ }^{41}$ Employing Mikami's protocol, a $-78^{\circ} \mathrm{C}$ solution of $\mathrm{Ti}(\mathrm{IV})-(S)-(-)-\mathrm{BINOL}$ catalyst was treated with the enal substrate 79. No reaction was observed by TLC analysis after 2 h at $-78^{\circ} \mathrm{C}$ and, as a result, the reaction was allowed to warm slowly to ambient temperature while being carefully monitored by TLC. Even after being maintained for several hours at ambient temperature, no product formation was observed. Unfortunately, the electrophilic aldehyde portion of ene substrate 79 proved to be insufficiently activated to achieve the desired bond construction.

Despite our inability to close the macrocycle through an intramolecular ene reaction, the previously described synthetic route provided a suitable arena for the evaluation of catalytic, asymmetric AAC reaction technology in complex molecule synthesis as well as the development of additional novel methodology aimed at addressing some of the key challenges in the synthesis of the lower $\mathrm{C}_{1}-\mathrm{C}_{14}$ fragment of (-)-laulimalide. For example, a working synthetic route to useful dihydropyranone intermediates from enantiomerically enriched β-lactones was achieved. In addition, a novel, one-step installation of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ ynoate ester sidechain of $\mathbf{7 8}$ was realized

[^20]via a Lewis acid-mediated allenylstannane addition to glycal acetate 73. However, the present approach did suffer from several other problems. Aldehyde $\mathbf{5 0}$ and lactone $\mathbf{5 5}$ were discovered to be rather volatile intermediates which hindered their preparation in large quantities. Additionally, although we had arrived at a route that accessed dihydropyranones from enantiomerically enriched β-lactone templates, we still desired a more direct strategy to streamline the current synthesis. As a result, we elected to pursue an alternate route to the $\mathrm{C}_{1}-$ C_{14} fragment of (-)-laulimalide.

1.6 REVISED RETROSYNTHETIC ANALYSIS

Our revised retrosynthetic approach to (-)-laulimalide is illustrated in Figure 15. Coupling of major fragments $\mathbf{8 5}$ and $\mathbf{8 6}$ was now envisioned to occur by an asymmetric aldol reaction between the $\mathrm{C}_{15} \alpha, \beta$-unsaturated aldehyde in fragment $\mathbf{8 5}$ and a suitable chiral enolate derived from the methyl ketone moiety in fragment 86. To avoid the base- mediated scrambling of the Z-enoate ester linkage observed by Paterson, we would perform the requisite macrolactonization step on the corresponding propargylic carboxylic acid to close the 18 -membered ring. Subsequent partial hydrogenation of the alkyne would unveil the sensitive Z-alkene. As outlined in our initial strategy, the $\mathrm{C}_{1}-\mathrm{C}_{4}$ propargylic acid side arm would be installed via a Lewis acidmediated addition of allenylstannane 41 to glycal acetate $\mathbf{8 7}$ which in turn would be accessed through a dihydropyranone intermediate derived from the corresponding enantiomerically enriched β-lactone. Completion of the upper fragment $\mathbf{8 5}$ and concomitant introduction of the $\mathrm{C}_{19}, \mathrm{C}_{20}$ syn-diol arrangment would be accomplished via a diastereoselective vinyl metal addition between an anion derived from dihydropyran subunit $\mathbf{8 8}$ and α-alkoxyaldehyde $\mathbf{8 9}$.

1

86

88

Figure 15. Revised Nelson Retrosynthesis

1.7 SECOND GENERATION SYNTHESIS OF THE $\mathbf{C}_{1}-\mathbf{C}_{14}$ DIHYDROPYRAN FRAGMENT

The synthesis of the lower $\mathrm{C}_{1}-\mathrm{C}_{14}$ dihydropyran subunit of $(-)$-laulimalide was initiated by an asymmetric AAC reaction with acetaldehyde (90) in the presence of tetrabutylammonium bromide at $-78{ }^{\circ} \mathrm{C}$ to provide the known compound (S)- β-butyrolactone 91 in 86% yield and greater than 99% ee as determined by chiral GC analysis (Scheme 8). Ring opening of 91 with N,O-dimethylhydroxylamine and dimethylaluminum chloride ${ }^{34}$ followed by protection of the resulting secondary alcohol as its tert-butyldiphenylsilyl ether furnished Weinreb amide $\mathbf{9 3}$ in 77% overall yield from lactone 91. Amide 93 was then efficiently reduced with
diisobutylaluminum hydride (DIBAL-H) at $-78{ }^{\circ} \mathrm{C}$ to deliver the corresponding β siloxyaldehyde 94 in excellent yield.

Scheme 8. Synthesis of β-Silyloxyaldehyde $\mathbf{9 4}^{a}$

${ }^{a}$ Conditions: (a) Catalyst $\mathbf{X}, \mathrm{AcBr}$, DIPEA, $\mathrm{Bu}_{4} \mathrm{NBr}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$. (b) $\mathrm{Me}_{2} \mathrm{AlCl}$, (MeO)MeNH•HCl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) TBDPSCI, DIPEA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. (d) DIBAL-H, Et $2 \mathrm{O},-78^{\circ} \mathrm{C}$.

From our revised retrosynthesis, it can be seen that the silyl-protected secondary alcohol possessed by aldehyde 94 represents a latent C_{13} methyl ketone moiety anticipating the crucial asymmetric aldol reaction to unite major fragments $\mathbf{8 5}$ and $\mathbf{8 6}$. Although this stereocenter would eventually be destroyed in the oxidative unmasking of the ketone, judicious choice of the absolute stereochemistry at this position is imperative as the iterative application of AAC reaction technology enters into the realm of double stereodifferentiation.

In double diastereodifferentiating reactions, both reacting partners (or one reacting partner and a catalyst) possess stereocontrolling elements. These chiral controllers can either interact favorably with one another in a "matched pair" to afford the desired product with
enhanced selectivity or alternatively an unfavorable interaction can result leading to a "mismatched pair" and diminished levels of diastereoselectivity. ${ }^{42}$ Previous investigations from our group regarding the establishment of 1,3 stereochemical relationships via sequential AAC reactions have demonstrated the propensity of the chiral $\mathrm{Al}(\mathrm{III})$-triamine catalyst $\mathbf{3 6}$ to exert a strong influence over the preexisting β-stereocenter in the aldehyde component of the reaction, leading to good to excellent levels of diastereoselectivity for both the "mismatched" and "matched" substrate/catalyst pairs, respectively. ${ }^{43}$ These observations have been rationalized by employing the following model (Figure 16). In the matched AAC reaction of a β-chiral aldehdye containing an (S)-stereocenter and catalyst 36, the apically coordinated aldehyde adopts a conformation such that the β-methyl substituent orients itself away from the incoming ketene nucleophile. This arrangment acts in concert with the stereocontrolling trifluoromethyl group present in the triamine backbone of $\mathbf{3 6}$ to further shield the Si diastereoface of the aldehyde resulting in excellent levels of diastereoselectivity ($>94 \%$ de). In contrast, when catalyst ent-36 is employed, the corresponding mismatched case is obtained. The methyl substituent of the β stereocenter is now directed toward the ketene nucleophile creating a more hindered approach to the Si face of the aldehyde electrophile. Although the observed diastereoselection is lower in this case, it is still synthetically useful ($>85 \%$ de).

[^21]

Figure 16. Proposed Model for Observed Selectivity in Double Diastereodifferentiating AAC Reactions ${ }^{43}$

We sought to exploit this observation by establishing the C_{11} stereocenter in β-lactone intermediate 95 by iterative AAC application (Scheme 9). Unfortunately, subjecting aldehyde 94 to standard AAC reaction conditions ($\mathrm{AcBr},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}$) and employing $10 \mathrm{~mol} \%$ of the necessary (R, R) aluminum-triamine catalyst ent-36 resulted in unexpectedly low levels of diastereoselection (60% de) along with poor yields, and undesirably long reaction times. It appeared from this exceedingly apparent "mismatched" substrate/catalyst pairing that the sterically demanding tert-butyldiphenylsilyl protecting group was more capable of influencing the diastereoselectivity of the AAC reaction than in previously studied aldehydes. Based on this outcome, we expected that performing the reaction with (S, S) catalyst 36 would result in much increased levels of diastereoselectivity and faster reaction time indicative of the matched pair. Indeed, this was the case as the combination of aldehyde $\mathbf{9 4}$ and $10 \mathrm{~mol} \%$ of catalyst $\mathbf{3 6}$ at -50 ${ }^{\circ} \mathrm{C}$ rapidly afforded syn- β-lactone 96 as a $97: 3$ mixture of $\left(2^{\prime} S, 4 S\right):\left(2^{\prime} S: 4 R\right)$ diastereomers.

Scheme 9. Double Diastereodifferentiation in Iterative AAC Application

Arriving at the desired 1,3-syn- β-lactone ent-96 necessary for (- -laulimalide required the preparation of aldehyde ent-94 in the opposite enantiomeric series starting from (R)- β butyrolactone (Scheme 10). Lactone ent-91 was obtained in identical yield as essentially a single enantiomer (99% ee), and application of the previously described three step sequence of ring-opening, protection, and reduction arrived at (3R)-3-(tert-butyldiphenylsilyloxy)butyraldehyde (ent-94). When subjected to the iterative AAC reaction with $10 \mathrm{~mol} \%$ of the $R, R-$ $\mathrm{Al}(\mathrm{III})$-triamine catalyst ent-36, lactone ent-96 was obtained in 86% isolated yield with excellent levels of diastereoselectivity $\left[\left(2^{\prime} R, 4 R\right):\left(2^{\prime} R: 4 S\right)=97: 3\right]$ as determined by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis.

Scheme 10. Synthesis of 1,3-syn β-lactone ent-96 ${ }^{a}$

c $\downarrow 95 \%$

${ }^{a}$ Conditions: (a) $\left(\mathrm{Me}_{2} \mathrm{AlCl},(\mathrm{MeO}) \mathrm{MeNH} \cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$. b) TBDPSCI, DIPEA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. (c) DIBAL-H, $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$. (d) Catalyst ent-36, AcBr, DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$.

After generating β-lactone ent-96 with the correct absolute stereochemistry, we could then further elaborate this intermediate to the lower subunit of $(-)$-laulimalide (Scheme 11). Treating ent-96 with the soft nucleophile dimethylmagnesiocuprate resulted in the expected $\mathrm{S}_{\mathrm{N}} 2$ ring opening to establish the requisite C_{11} methyl-bearing stereocenter in carboxylic acid 97 . Acid 97 was then efficiently converted to the corresponding aldehyde 98 in high yield (86\%) according to a one-pot reduction/oxidation sequence developed by Brown. ${ }^{44}$ Aldehyde $\mathbf{9 8}$ then served as the coupling partner in a third AAC reaction that afforded the anti, anti- β-lactone $\mathbf{9 9}$ in 84% isolated yield with acceptable levels of diastereoselectivity $(\mathrm{dr}=92: 8)$.

[^22]Scheme 11. Preparation of anti,anti- β-lactone $\mathbf{9 9}^{a}$

b $\downarrow 86 \%$

${ }^{\text {a Conditions: }}$ (a) $\mathrm{CuBr}, \mathrm{MeMgBr}$, TMSCI, THF/DMS, $-50^{\circ} \mathrm{C}$ to rt. (b) i. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}$; ii. PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) $15 \mathrm{~mol} \%$ Catalyst ent-36, AcBr , DIPEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$.

With lactone $\mathbf{9 9}$ in hand, attention was then focused on the preparation of pyranone $\mathbf{1 0 0}$. Although a synthetic route to dihydropyranones from β-lactones had been previously established, a more direct conversion was still desired. Recently, a streamlined approach for the preparation of dihydropyranones via direct nucleophilic addition of hydrazone anions into β-lactones was described (Figure 17). ${ }^{45}$ The method involved lithiation of acetaldehyde N-piperidine hydrazone 101 at $-78{ }^{\circ} \mathrm{C}$, followed by treatment with a β-lactone electrophile which resulted in regioselective ring opening to the corresponding β-ketohydrazone. Subjecting the crude hydrazones to Amberlyst-15 acidic ion exchange resin in refluxing THF then resulted in cyclization and subsequent dehydroamination to provide the desired dihydropyranone products in good yield (72-81\%).

[^23]

, Amberlyst-15

Figure 17. Hydrazone Anion Mediated Dihydropyranone Formation from β-lactones

Attempts to apply the hydrazone anion methodology to the more complex lactone intermediate 99 proved to be problematic. Treating an excess of lithium anion derived from acetaldehyde N-piperidine hydrazone at $-78{ }^{\circ} \mathrm{C}$ with lactone 99 cleanly generated the corresponding β-ketohydrazone 102; however, when 102 was subjected to the cyclization conditions (Amberlyst-15, THF, reflux) unexpected cleavage of the tert-butyldiphenylsilyl protecting group was observed. The desired pyranone product was isolated in $26-38 \%$ yield along with considerable amounts of tert-butyldiphenylsilanol and other unidentified materials. By choosing a milder acid source to effect the cyclization, it was believed that this silyl deprotection/decomposition problem could be circumvented. Treatment of $\mathbf{1 0 2}$ with CSA (5.0 equiv) in THF at ambient temperature followed by gently warming to $60{ }^{\circ} \mathrm{C}$ resulted in cyclization of ketohydrazone $\mathbf{1 0 2}$ to the desired pyranone $\mathbf{1 0 0}$ in 62% yield from lactone $\mathbf{9 9}$ without any observed loss of the TBDPS group (Scheme 12).

Scheme 12. One Pot β-Lactone to Dihdyropyranone Interconversion

Having adapted the acid-mediated cyclization conditions to arrive at the requisite dihydropyranone intermediate, attention was then focused on preparing $\mathbf{1 0 0}$ for ynoate ester sidearm installation. Pyranone $\mathbf{1 0 0}$ was further elaborated into glycal acetate $\mathbf{8 7}$ according to the previously described sequence of Luche reduction followed by acylation of the resultant allylic alcohol to furnish acetate 87 in 90% overall yield. Lewis acid-mediated allenylstannane addition with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnOTf}$ then delivered the trans-2, 6-disubstituted dihydropyran 103 as a single diastereomer in 74\% yield (Scheme 13).

Scheme 13. Synthesis of trans-2,6-Dihydropyran $\mathbf{1 0 3}^{a}$

103
${ }^{\text {a}}$ Conditions: a) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}$. b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP. c) $\mathbf{4 1}, \mathrm{Bu}_{3} \mathrm{SnOTf}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$

Formatting subunit $\mathbf{1 0 3}$ for the fragment uniting aldol reaction required removal of the secondary silyl group at C_{13} followed by oxidation to the corresponding methyl ketone. However, these seemingly trivial functional group manipulations proved to be quite challenging as attempted deprotection of the TBDPS ether under standard fluoride- based reaction conditions (TBAF, THF) resulted in decomposition of the starting material. This problematic decomposition may arise from either the deprotonation of a propargylic hydrogen at C_{4} or potential 1,4 -addition of fluoride ion into the α, β-unsaturated ester. Both pathways would lead to a reactive allene intermediate which could engage in unwanted side reactions. As a result of this unexpected sensitivity of advanced intermediate $\mathbf{1 0 3}$ to TBAF deprotection conditions, a modification of the present scheme was required.

Given the observed incompatibility of the α, β-unsaturated ester moiety in $\mathbf{1 0 3}$ with fluoride-based deprotection agents, it was decided to unveil the latent methyl ketone moiety at C_{13} prior to introducing the ynoate ester sidechain. Compound $\mathbf{8 7}$ was treated with excess TBAF
(5.0 equiv) at $0{ }^{\circ} \mathrm{C}$ to successfully effect silyl group deprotection, and the crude reaction product was then oxidized to methyl ketone 104 (80% overall yield from 87) employing pyridinium dichromate (PDC). Exposing glycal acetate 104 to excess allenylstannane reagent 41 under the optimized conditions $\left(\mathrm{Bu}_{3} \operatorname{SnOTf},-78{ }^{\circ} \mathrm{C}\right)$ resulted in the efficient installation of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ sidearm in one step (80%), thus completing the synthesis of the lower $\mathrm{C}_{1}-\mathrm{C}_{14}$ dihydropyran subunit 86 (Scheme 14).

Scheme 14. Completion of the $\mathrm{C}_{1}-\mathrm{C}_{14}$ Dihydropyran Fragment $\mathbf{8 6}^{a}$

${ }^{a}$ Conditions: (a) TBAF, THF. (b) PDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) 41, $\mathrm{Bu}_{3} \mathrm{SnOTf}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$

1.8 SYNTHESIS OF THE $\mathbf{C}_{15}-\mathbf{C}_{20}$ SUBUNIT ${ }^{46}$

As illustrated in Scheme 15, construction of the $\mathrm{C}_{15}-\mathrm{C}_{20} \alpha$-alkoxyaldehyde subunit $\mathbf{8 9}$ again relied on the enantiomerically enriched β-lactone products of asymmetric AAC technology.

[^24]Lactone 105 was prepared from aldehyde in 92% yield under the usual conditions (AcBr , ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}, 10 \mathrm{~mol} \%$ Catalyst ent-36, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-50{ }^{\circ} \mathrm{C}$) efficiently setting the C_{19} hydroxyl-bearing stereocenter with an enantiomeric excess of 92% as determined by chiral HPLC analysis. Ring opening of 105 with N, O-dimethylhydroxylamine and dimethylaluminum chloride ${ }^{34}$ to the corresponding Weinreb amide $\mathbf{1 0 6}$ followed by protection of the resulting secondary alcohol with p-methoxybenzyltrichloroacetimidate and triflic acid (TfOH) at $0^{\circ} \mathrm{C}$ afforded amide $\mathbf{1 0 7}$ in 77\% yield from lactone 105. Amide to aldehyde interconversion with DIBAL-H provided aldehyde $\mathbf{1 0 8}(80 \%)$ which was then subjected to the three step sequence of Wittig olefination, DIBAL-H reduction, and trityl protection to furnish the protected triol 109 in 60% yield. Deprotection of the tert-butyldiphenylsilyl ether (TBAF, THF) followed by alcohol oxidation with Dess-Martin periodinane then provided the α-alkoxyaldehyde subunit $\mathbf{8 9}$ in 87% overall yield from the fully protected triol 109.

Scheme 15. Synthesis of the $\mathrm{C}_{15}-\mathrm{C}_{20}$ Subunit $\mathbf{8 9}^{a}$

${ }^{a}$ Conditions: (a) $\mathrm{Me}_{2} \mathrm{AlCl}$, (MeO)MeNH•HCl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $\mathrm{PMBOC}(=\mathrm{NH}) \mathrm{CCl}_{3}$, $\mathrm{TfOH}, \mathrm{Et}_{2} \mathrm{O}$, rt. (c) DIBAL-H, THF, $-78^{\circ} \mathrm{C}$. (d) (e) DIBAL-H, THF, $-78^{\circ} \mathrm{C}$. (f) (g) TBAF, THF. (h) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.

1.9 SYNTHESIS OF THE $\mathrm{C}_{21}-\mathbf{C}_{28}$ DIHYDROPYRAN SIDECHAIN ${ }^{47}$

Having arrived at the α-alkoxyaldehyde portion of the upper synthon $\mathbf{8 5}$, an efficient synthetic route to the corresponding dihydropyran coupling partner $\mathbf{8 8}$ was required. The synthesis of the requisite $\mathrm{C}_{21}-\mathrm{C}_{28}$ dihydropyran subunit 88, depicted in Scheme 16, was initiated by an asymmetric Brown allylation ${ }^{48}$ of β-tributylstannyl acrolein with (-)diisopinocampheylallylborane $\mathbf{1 1 0}$ to afford the chiral homoallylic alcohol $\mathbf{1 1 1}$ in high yield with excellent levels of enantioselectivity (98% ee). Etherification of alcohol $\mathbf{1 1 1}$ provided triene $\mathbf{1 1 2}$ which was then exposed to $14 \mathrm{~mol} \%$ of Schrock's Mo(VI)-based ring closing metathesis catalyst $\mathbf{1 1 3}$ to effect dihydropyran ring formation. ${ }^{49}$ Vinyl iodide $\mathbf{1 1 5}$ was then obtained upon treatment of stannane 114 with N-iodosuccinimide (NIS) at $-20^{\circ} \mathrm{C}$.

Scheme 16. Synthesis of the $\mathrm{C}_{21}-\mathrm{C}_{28}$ Dihydropyran Sidechain $\mathbf{8 8}^{a}$

${ }^{a}$ Conditions: (a) 110, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (b) $\mathrm{KHMDS}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$, THF. (c) Catalyst 113 ($14 \mathrm{~mol} \%$), PhCH_{3}. (d) NIS, THF.

[^25]
1.10 COMPLETION OF THE $\mathrm{C}_{15}-\mathrm{C}_{28}$ FRAGMENT

The assembly of the intact $\mathrm{C}_{15}-\mathrm{C}_{28}$ fragment of (-)-laulimalide was predicated on the diastereoselective addition of a vinyl metal species derived from dihydropyran 115 into α alkoxyaldehyde 89. It was postulated that metal chelation between the carbonyl oxygen and the neighboring p-methoxybenzyl substituent would serve to create an organized transition state capable of governing the formation of the desired $\mathrm{C}_{19}-\mathrm{C}_{20}$ syn diol relationship. Preliminary experimentation revealed that the necessary Cram-chelate stereocontrol could be realized by employing vinyl Grignard 116 (Scheme 17). Lithiation of iodide $\mathbf{1 1 5}$ at $-78^{\circ} \mathrm{C}$ with ${ }^{t} \mathrm{BuLi}(2$ equiv) followed by transmetallation with an ethereal solution of MgBr_{2} afforded the necessary vinyl Grignard species 116 which was then treated with α-alkoxyaldehyde 89. Ensuing nucleophilic addition resulted in the formation of the $\mathrm{C}_{15}-\mathrm{C}_{28}$ fragment $\mathbf{1 1 7}$ in 89% yield as a $3: 1$ mixture of syn:anti diastereomers favoring the desired syn-diol arrangement. ${ }^{50}$ Despite our arrival at the requisite $\mathrm{C}_{19}-\mathrm{C}_{20}$ syn-stereochemical relationship, the low levels of diastereoselectivity obtained in the vinyl Grignard addition prompted further optimization in order to be incorporated into the present total synthesis.

[^26]Scheme 17. Diastereoselective Vinyl Grignard Addition to α-Alkoxyaldehyde $\mathbf{8 9}^{a}$

${ }^{a}$ Conditions: (a) i. ${ }^{t} \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$. ii. MgBr_{2}. (b) $89, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Solvent polarity was believed to play a major role in the modest diastereoselectivity observed in the previously described vinyl Grignard addition. It has been well documented that the use of Lewis basic solvents such as $\mathrm{Et}_{2} \mathrm{O}$ and THF in diastereoselective Grignard-aldehyde addition reactions disrupts chelate organization by coordination to the metal center leading, ultimately, to lower diastereoselectivity. To avoid this undesired solvent effect, the diethyl ether was removed under reduced pressure at $-78^{\circ} \mathrm{C}$ after formation of the reactive Grignard species and was replaced with the noncoordinating solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{51,52}$ Treatment of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of vinyl Grignard $\mathbf{1 1 6}$ with α-alkoxyaldehyde $\mathbf{8 9}$ then resulted in nucleophilic addition along the chelate-Cram trajectory depicted in Scheme 17 to afford exclusively the requisite $\mathrm{C}_{19}-$ C_{20} syn-diol diastereomer 117 in 98 \% yield.

[^27]Completion of the upper $\mathrm{C}_{15}-\mathrm{C}_{28}$ synthon of laulimalide required only a few routine synthetic manipulations (Scheme 18). Silylation of the newly formed C_{20} hydroxyl group with TBSCl and imidazole furnished the fully protected upper synthon $\mathbf{1 1 8}$ which was subsequently exposed to formic acid in nitromethane to effect trityl ether deprotection. Treatment of allylic alcohol 119 with Dess-Martin periodinane then provided the completed α, β-unsaturated aldehyde fragment $\mathbf{8 5}$ in 84\% overall yield from alcohol 117.

Scheme 18. Completion of the $\mathrm{C}_{15}-\mathrm{C}_{28}$ Fragment $\mathbf{8 5}^{a}$

(a) TBSCl , imidazole $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
(b) $\mathrm{HCOOH}, \mathrm{MeNO}_{2}$.
(c) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

1.11 FRAGMENT UNION AND MACROLIDE FORMATION

1.11.1 Asymmetric Aldol Reaction

With sufficient quantities of both major fragments of laulimalide in hand, steps toward the union of the two halves were investigated. Initial attempts at achieving the desired $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond construction between aldehyde fragment $\mathbf{8 5}$ and methyl ketone $\mathbf{8 6}$ employed a chiral boron aldol
protocol described by Paterson (Eq 10). ${ }^{53}$ Generation of the (+)-diisopinocampheyl boron enolate of methyl ketone $\mathbf{8 6}$ followed by treatment with aldehyde $\mathbf{8 5}$ at $-78{ }^{\circ} \mathrm{C}$ afforded the desired aldol adduct $\mathbf{1 2 0}$ in 60% yield albeit as a $3: 1$ mixture of $\mathrm{C}_{15}(S: R)$ diastereomers.

The poor levels of diastereoselectivity obtained in the previously described aldol reaction forced us to evaluate other methods for achieving acceptable levels of stereocontrol. ${ }^{54}$ We recognized an attractive alternative to (+)-DIPCl in Corey's chiral diazaborolidine 121. In 1993, Corey described the aldol reaction of the chiral boron enolate derived from bromoborane $\mathbf{1 2 1}$ and tert-butyl acetate with benzaldehyde (Eq 11) that successfully delivered the desired β hydroxyester product in 73% yield and 80% ee. ${ }^{55}$ However, application of bromoborane reagent 121 to the construction of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond in laulimalide, did not increase diastereoselectivity from what was previously observed (3:1).

[^28]

Further attempts at optimization of diastereoselectivity were made by modifying the structure of the Corey diazaborolidine reagent. Reacting 1,2-diphenylethylenediamine with a variety of sulfonyl chlorides provided a range of bis-sulfonamide ligands that were evaluated in the asymmetric aldol reaction to stereoselectively unite fragments $\mathbf{8 5}$ and $\mathbf{8 6}$. The results of this survey of modified Corey reagents are summarized in Table 3. More sterically bulky sulfonamide groups (entries a and b) produced aldol adducts with higher levels of diastereoselection ($\sim 5: 1$) than previously observed. Examining electron donating p-tolyl sulfonyl substituents on the diamine backbone (entry c) led to only marginally increased diastereoselectivity. The use of electron withdrawing substituents, however, proved to be much more effective. While p-trifluoromethoxyphenyl groups resulted in commensurate levels of selectivity as previously observed, the bis-p-nitrophenyl-substituted diazaborolidine reagent 121e afforded the desired aldol adduct as an 8.7:1 (S):(R) mixture of diastereomers. Scale-up and subsequent protection of the resulting secondary alcohol as the corresponding tertbutyldimethylsilyl ether furnished aldol adduct $\mathbf{1 2 2}$ in 89% yield with a synthetically useful diastereomer ratio $\left(\mathrm{C}_{15}(S):(R)=9: 1\right)$.

Table 3. Asymmetric Aldol Reaction Employing Modified Corey Diazaborolidines
entry

1.11.2 Seco Acid Formation and Macrolactonization

Once suitable conditions were established for uniting major fragments 85 and 86 with good levels of diastereoselectivity, we turned our attention to the critical macrocylcization event. According to our planned retrosynthesis, ring closure to form the 18 -membered macrolide would occur via the Yamaguchi macrolactonization of propargylic seco acid $\mathbf{1 2 3}$ in order to prevent the undesired base-mediated scrambling of the $\mathrm{C}_{2}-\mathrm{C}_{3}(Z)$-olefin observed previously by Paterson. ${ }^{10 \mathrm{a}}$ Arriving at 123, however, required the sequential deprotection of the p-methoxybenzyl (PMB) ether and the tert-butyl ester in the fully protected aldol adduct $\mathbf{1 2 2}$. Initial attempts aimed at removing the $\mathrm{C}_{19} \mathrm{PMB}$ ether focused on traditional oxidative deprotection with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Treating 122 with 1.5 equiv of DDQ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ mixture resulted in the cleavage of the desired PMB protecting group; however, the yield of alcohol $\mathbf{1 2 4}$ was not always reproducible (70-83\%). The varied isolated yields of $\mathbf{1 2 4}$ were attributed to the strongly acidic dihydroquinone by-product of the deprotection reaction. Under the reaction conditions, the acidic nature of the dihydroquinone may also to serve to deprotect the secondary TBS groups present in $\mathbf{1 2 4}$ resulting in an extremely polar triol species. Conducting the deprotection reaction under neutral conditions was viewed as a means of avoiding the unwanted cleavage of the silyl ether linkages. Subjecting p-methoxybenzyl ether $\mathbf{1 2 2}$ to DDQ in the presence of pH 7 phosphate buffer then provided alcohol $\mathbf{1 2 4}$ in quantitative yield (Scheme 19).

Scheme 19. Deprotection of $\mathrm{C}_{19} p$-Methoxybenzyl Ether $\mathbf{1 2 2}^{a}$

Removal of the tert-butyl ester was next accomplished by adapting the previously described protocol in Scheme 7. Ester 124 was treated with 2, 6-di-tert-butylpyridine and TMSOTf at $-50^{\circ} \mathrm{C}$ followed by a pH 5 buffer solution at $0^{\circ} \mathrm{C}$ to effect silyl ester deprotection to obtain seco acid $\mathbf{1 2 3}$ in 90% yield after column chromatography (Eq 12). With the requisite seco acid in hand, cyclization conditions for the construction of the 18 -membered macrolactone could be explored.

Pursuit of macrolactone 125 began by employing traditional Yamaguchi macrolactonization conditions (Scheme 20). Seco acid $\mathbf{1 2 3}$ was first treated with $\mathrm{Et}_{3} \mathrm{~N}$ and 2,4,6trichlorobenzoyl chloride in THF to generate the corresponding mixed anhydride $\mathbf{1 2 6}$. Following the removal of solvent, the crude reaction mixture was diluted with toluene (0.0006 M) to attain the "high-dilution" conditions necessary to avoid intermolecular lactonization. Syringe pump addition of DMAP over the course of 2 h to a solution of mixed anhydride $\mathbf{1 2 6}$ at ambient temperature resulted in acyl-pyridinium formation and subsequent lactonization to afford the desired macrolactone $\mathbf{1 2 5}$ in 44% yield. Although preparation of the highly functionalized 18 -membered macrolactone of $(-)$-laulimalide with the commonly used Yamaguchi protocol was successful, a more efficient macrolactonization method was still desired. Additional reagent systems were investigated to achieve the desired propargylic acid macrolactonization. Carbodiimide coupling reagents DCC^{56} and EDC^{57} as well diphenyl chlorophosphate, ${ }^{58}$ and p-nitrobenzoyl anhydride with $\mathrm{Sc}(\mathrm{OTf}) 3{ }^{59}$ were selected for activating the carboxylic acid moiety, unfortunately, the high reaction temperatures required by these macrolactonization protocols resulted in decomposition of the seco acid starting material.

[^29]Scheme 20. Yamaguchi Macrolactonization of Seco Acid $\mathbf{1 2 3}^{a}$

${ }^{a}$ Conditions: (a) 2,4,6-trichlorobenzoylchloride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$. (b) DMAP, PhCH_{3}

a
b

An interesting and highly efficient Yamaguchi macrolactonization was reported in 1990 by Yonemitsu in the total synthesis of erythronolide $\mathrm{A}\left(\mathrm{Eq} \mathrm{13)} .^{60}\right.$ The 14-membered erythronolide macrocycle was formed by treating a concentrated benzene solution (0.01 M) of the mixed anhydride of seco acid 127 with DMAP at ambient temperature. The ensuing macrolactonization proceeded rapidly (1 h) to afford lactone $\mathbf{1 2 8}$ in near quantitative yield. Surprisingly, this reaction was successful even without the high dilution conditions which are

[^30]generally required in the conventional Yamaguchi macrolactonization. The success of this method has been attributed to the favorable conformation adopted by seco acid $\mathbf{1 2 7}$, which greatly enhances its propensity for cyclization.

127

128

Given the success enjoyed by Yonemitsu in the previously described Yamaguchi macrocyclization, we elected to incorporate similar lactonization conditions into our own synthetic strategy (Scheme 21). Treating a benzene solution of seco acid 123, DMAP, and $\mathrm{Et}_{3} \mathrm{~N}$ at ambient temperature with 2,4,6-trichlorobenzoyl chloride resulted in the complete consumption of starting material and the formation of two products as observed by TLC analysis. The major product, isolated in 56% yield, was determined to be the desired macrocycle $\mathbf{1 2 5}$ by ${ }^{1} \mathrm{H}$ NMR and high resolution ESI-MS analysis. The minor component of the reaction mixture was identified as the dimer $\mathbf{1 2 9}$ based on similar spectroscopic techniques and was obtained in 15% yield. While this result would suggest that seco acid $\mathbf{1 2 3}$ does not adopt an optimal conformation for macrolactonization, it was believed that the formation of dimer could be prevented by the commonly employed high dilution technique for traditional Yamaguchi macrolactonization.

Scheme 21. Synthesis of $\mathbf{1 2 5}$ via Yonemitsu Modified Yamaguchi Macrolactonization

To test this hypothesis, a series of macrolactonization reactions were performed at varying concentrations and the results are presented in Table 8. Despite our attempts at lowering reaction concentration, we could not inhibit dimer formation. Even at 0.001 M , the concentration typically employed in conventional Yamaguchi macrolactonizations, the undesired dimeric product $\mathbf{1 2 9}$ was still observed.

Table 4. Concentration Studies in Yamaguchi Macrolactonization

Our inability to suppress the formation of dimer $\mathbf{1 2 9}$ led to the examination of several other variables. ${ }^{61}$ In our previous attempts at macrocyclization, the Yamaguchi reagent, 2,4,6trichlorobenzoyl chloride, was added to a solution of seco acid 123. Under these reaction conditions, a small amount of the activated acyl pyridinium pecies would be generated in the presence of a relatively high concentration of hydroxy-acid thereby increasing the likelihood of dimer formation. By reversing the order of addition, slow addition of $\mathbf{1 2 3}$ to a large excess of reagents, the effective concentration of seco acid would be minimized and the likelihood for dimer formation should be diminished. In these modified macrolactonization reactions, a benzene suspension containing a large excess of 2,4,6-trichlorobenzoyl chloride (100 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (500 equiv), and 4-pyrrolidinopyridine (30 equiv) was slowly treated with seco acid $\mathbf{1 2 3}$ in benzene via syringe pump. Monitoring reaction progress by TLC revealed the complete

[^31]consumption of the starting acid 123 and the formation of three products: the desired macrolactone $\mathbf{1 2 5}$, the dimer $\mathbf{1 2 9}$, although to a much lesser extent than previously observed, and a more polar, unidentified product. Although another undesired by-product was formed during the course of the reaction, we were pleased to be able to suppress the formation of dimer $\mathbf{1 2 9}$.

The final variable to be explored in the optimization of our propargylic acid macrolactonization was reaction temperature. All previous attempts at macrolactonization had been performed at ambient temperature, and determination of any temperature dependence on dimer/by-product formation was pursued. Cyclization reactions were now conducted at $0^{\circ} \mathrm{C}$ in toluene employing the previously described slow addition of seco acid to excess reagents protocol. Gratifyingly, dimer formation was completely eliminated at the lower temperature; however, the unidentified by-product still remained. In an attempt to avoid this polar byproduct, the large excess of reagents was dramatically reduced. Treating a $0{ }^{\circ} \mathrm{C}$ toluene suspension of DIPEA (40 equiv), 4-pyrrolidinopyridine (20 equiv), and 2,4,6-trichlorobenzoyl chloride (20 equiv) with seco acid $\mathbf{1 2 3}$ via syringe pump now cleanly afforded the desired 18membered macrolactone $\mathbf{1 2 5}$ as the only observable product by TLC analysis. The optimized Yamaguchi macrolactonization conditions provided macrolide 125 in 93% isolated yield (Scheme 22).

Scheme 22. Optimized Conditions for Modified Yamaguchi Macrolactonization ${ }^{a}$

${ }^{a}$ Conditions: (a) 2,4,6-trichlorobenzoyl chloride (20 equiv), 4-pyrrolidinopyridine (20 equiv), DIPEA (40 equiv), PhCH_{3}

1.12 COMPLETION OF THE TOTAL SYNTHESIS OF (-)-LAULIMALIDE

Having prepared the highly functionalized macrolide 125, only a few additional functional group manipulations were necessary to complete the total synthesis of (-)-laulimalide (Scheme 23). Partial hydrogenation of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ alkyne under Lindlar conditions $\left(\mathrm{H}_{2}, \mathrm{BaSO}_{4}\right)$ successfully unveiled the requisite (Z)-enoate ester $\mathbf{1 3 0}$ as a single regioisomer in 88% yield. Arriving at alkene 130, we had intercepted an intermediate previously described in Paterson's laulimalide synthesis, and thus an equivalent approach was pursued. Takai methylenation of the C_{13} ketone residue efficiently installed the desired exocyclic olefin (131), and subsequent silyl deprotection at $0^{\circ} \mathrm{C}$ with $\mathrm{HF} \cdot$ py provided desepoxylaulimalide (132) in good yield. The completion of our total synthesis of $\mathbf{1}$ was finally realized with a regio- and stereoselective Sharpless asymmetric epoxidation of the $\mathrm{C}_{16}-\mathrm{C}_{17}$ olefin employing (+)-diisopropyltartrate to afford synthetic (-)laulimalide (1) in 69% isolated yield. All physical and spectroscopic data exhibited by $\mathbf{1}\left([\alpha]_{\mathrm{D}}=\right.$ $-198\left(\right.$ c $\left.\left.0.1, \mathrm{CHCl}_{3}\right),{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, \mathrm{IR}, \mathrm{HRMS}\right)$ were in agreement with that previously reported in the literature by Ghosh, Paterson, and Mulzer. ${ }^{11}$

Scheme 23. Completion of the Total Synthesis of (-)-Laulimalide (1) ${ }^{a}$

${ }^{a}$ Conditions: (a) $\mathrm{H}_{2}, \mathrm{BaSO}_{4}$, EtOAc/1-hexene. (b) $\mathrm{CH}_{2} \mathrm{I}_{2}, \mathrm{Zn}, \mathrm{Pbl}_{2}, \mathrm{TiCl}_{4}$, THF. (c) HF•py, THF (d) $20 \mathrm{~mol} \% \mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}, 20 \mathrm{~mol} \%$ (+)-DIPT, ${ }^{\text {t }} \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$.

1.13 CONCLUSIONS

Catalytic, asymmetric acyl halide-aldehyde cyclocondensation methodology has been successfully applied to the total synthesis of the potent microtubule-stabilizing marine natural product (-)-laulimalide. This achievement represents the first example of the application of AAC-based reaction technology to complex molecule synthesis. The route encompassed 23 steps along the longest linear sequence and afforded $\mathbf{1}$ in 5.1% overall yield from the inexpensive and readily available starting material acetaldehyde. Asymmetric AAC reactions were instrumental in directly establishing the $\mathrm{C}_{9}, \mathrm{C}_{11}$, and C_{19} stereogenic centers in (-)-laulimalide. Highlights of the synthesis include a diastereoselective aldol reaction that united major fragments 85 and 86 and a remarkably high-yielding modified Yamaguchi macrolactonization. Additionally, novel methodology was developed to effect both the one-pot interconversion of β lactones to dihydropyranones and the Lewis acid activated allenylstannane addition to glycal acetates which was employed to stereoselectively introduce the $\mathrm{C}_{1}-\mathrm{C}_{4}$ sidearm of laulimalide in one step. A highly diastereoselective vinyl Grignard addition to α-alkoxyaldehyde $\mathbf{8 9}$ was also achieved which effectively generated the $\mathrm{C}_{19}, \mathrm{C}_{20}$-Syn-diol arrangement.

1.14 EXPERIMENTAL SECTION

General Information: Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\mathrm{D}}$ (c $\mathrm{g} / 100 \mathrm{~mL}$, solvent) with units of degree $\cdot \mathrm{g} \cdot \mathrm{cm}^{-3}$. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX 301 and DPX $302(300 \mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $m=$ multiplet $)$, coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 spectrometers (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (deuterochloroform: $\delta 77.0 \mathrm{ppm}$). Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described on EM silica gel 60 (230-240 mesh). ${ }^{62}$ Analytical gas liquid chromatography (GLC) was performed on a HewletPackard 5890 Series II gas chromatograph with a flame ionization detector and split mode capillary injection system, using a Chiraldex ${ }^{\mathrm{TM}}$ G-TA column ($20 \mathrm{~m} \times 0.25 \mathrm{~mm}$) (Advanced Separation Technologies Inc.). Hydrogen was used as the carrier gas at the indicated pressures. Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp, 190-600 nm), using either a Daicel Chiralcel ${ }^{\text {TM }}$ OD-H column ($250 \times 4.6 \mathrm{~mm}$)

[^32]or a Daicel Chiralpak ${ }^{\text {TM }}$ AS-H column $(250 \times 4.6 \mathrm{~mm})$ (Daicel Inc.). HPLC grade isopropanol and hexanes were used as the eluting solvents.

All experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware using standard inert atmosphere techniques for introducing reagents and solvents. Tetrahydrofuran (THF) was distilled from potassium benzophenone ketyl. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, toluene and benzene were distilled from sodium benzophone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dimethylsulfide (DMS), N, N-diisopropylethylamine (DIPEA), and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from CaH_{2} under N_{2}.

(4S)-(tert-Butyldiphenylsilyloxyethyl)oxetan-2-one (46): To a $-50^{\circ} \mathrm{C}$ OTBDPS solution of 0.745 g of aluminum triamine catalyst $36(1.28 \mathrm{mmol})$ in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 3.8 mL of diisopropylethylamine (21.8 mmol) followed by 1.80 mL of acetyl bromide (24.3 mmol). The resulting light yellow solution was maintained at $-50^{\circ} \mathrm{C}$ for 510 min , then treated with 4.0 g of aldehyde $\mathbf{4 5}(12.8 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ slowly dropwise. The reaction was maintained overnight at $-50^{\circ} \mathrm{C}$, then poured into 400 mL of cold hexanes. The mixture was filtered through silica gel, and the silica was washed with $30 \% \mathrm{EtOAc} / \mathrm{hexanes}$. The combined filtrate was concentrated to afford 4.4 g (97%, crude) of lactone 46 as a white crystalline solid (88% ee). Recrystallization from hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ mixtures provided the title compound in 98% ee: $[\alpha]_{\mathrm{D}}=-14.3\left(c 4.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3069,3046,2958,2931,2851$, 2883, 1830, 1735, 1426, $1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H})$, 7.48-7.20 (m, 6H), $4.71(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.60(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J$ $=5.9,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7$, 135.7, 133.4, 130.1, 128.0, 69.3, 59.9, 43.4, 37.4, 27.0, 19.3; EI-MS m/z $297\left(\mathrm{M}^{+}-\mathrm{t}\right.$ Bu), 255, 241,

225, 211, 199, 183, 117, 105; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$: 297.0947, found 297.0947; HPLC (95:5 hexanes $\left./{ }^{i} \mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}\right) \mathrm{T}_{\mathrm{r}}(\mathrm{min})=8.13(S), 9.26(R)$.

(3R)-5-(tert-Butyldiphenylsilyloxy)-3-methylpentanoic acid (47):
To a $-50{ }^{\circ} \mathrm{C}$ solution of 1.82 g of $\mathrm{CuBr}(12.7 \mathrm{mmol})$ in 120 mL of THF and 13 mL of dimethylsulfide was added 8.5 mL of a 3 M ethereal solution of methylmagnesium bromide (25.4 mmol) slowly dropwise via syringe. The resulting heterogeneous mixture was stirred at $-50^{\circ} \mathrm{C}$ for 30 min then warmed to $-30^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled to $-50^{\circ} \mathrm{C}$ and 3.0 g of lactone $46(8.47 \mathrm{mmol})$ in 10 mL of THF was added via cannula. The resulting mixture was maintained at $-50^{\circ} \mathrm{C}$ for 45 min , then 1.65 mL of $\mathrm{TMSCl}(12.7 \mathrm{mmol})$ was added and the reaction was allowed to warm to ambient temperature overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organics were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine $(100 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($15 \% \mathrm{EtOAc} /$ hexanes) to afford $2.5 \mathrm{~g}(80 \%)$ of 47 as a pale yellow viscous oil: $[\alpha]_{\mathrm{D}}=+3.7\left(c 2.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3071, 2959, 2931, 2858, 1708, 1428, 1112, 909, 735, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{dd}, J=1.6,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 6 \mathrm{H}), 3.74(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dd}, J=4.1$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.0,135.8,134.0,129.8,127.9,61.9,41.7,39.2,27.2$, 27.0, 19.9, 19.4; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$: 353.1937, found 353.1934.

methyl ester (48): To a solution of 4.88 g of carboxylic acid 47 (13.2 mmols) in 80 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.165 g of DMAP (1.35 mmol), 3.27 g of dicyclohexylcarbodiimide (15.8 mmols), and 2.7 mL of MeOH (65.4 mmol). The reaction was maintained at ambient temperature for 3 h , then diluted with pentane and filtered through Celite. The filtrate was then concentrated and the crude material was purified by silica gel chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to provide 4.3 g of methyl ester 48 (86\%) as a clear, colorless oil: $\quad[\alpha]_{\mathrm{D}}=+4.7\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3069, 3050, 2958, 2931, 2855, 1739, 1426, 1386, 1358, 1295, 1259, 1220, 1168, 1109, 994, 820, 737, 705, $614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=1.3,7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 6 \mathrm{H}), 3.73(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (s, 3H), $2.37(\mathrm{dd}, J=4.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~m} 1 \mathrm{H}), 1.08(\mathrm{~s}$, $9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.7,135.7,134.0,129.7,127.8$, $61.9,51.5,41.7,39.3,27.4,27.0,19.9,19.3$; EI-MS $m / z 353\left(\mathrm{M}^{+}-\mathrm{OMe}\right), 327\left(\mathrm{M}^{+}-\mathrm{Bu}\right), 213,197$, 183, 135; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}$: 353.1937, found 353.1937.

(3S)-tert-Butyldiphenylsilylmethyl-5-(trimethylsilylmethyl)hex-5-ene ether (49): To a $-78{ }^{\circ} \mathrm{C}$ suspension of 6.26 g of $\mathrm{CeCl}_{3}(25.4 \mathrm{mmol})$ in 50 mL of dry THF was added 25 mL of a 1.0 M ethereal solution of $\mathrm{TMSCH}_{2} \mathrm{MgCl}(25.4 \mathrm{mmol})$. The resulting beige suspension was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ whereupon a solution of 1.95 g of methyl ester $\mathbf{4 8}(5.08 \mathrm{mmol})$ in 10 mL of THF was added slowly dropwise via cannula. The reaction mixture was maintained at $-78{ }^{\circ} \mathrm{C}$ for 2 h and then allowed to warm slowly to ambient temperature. The reaction was quenched with 100 mL of 1 M HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organics were dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude residue was then dissolved in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 g of silica gel was added. After stirring at ambient temperature for 1.5 h , the mixture was filtered and concentrated. Purification by flash chromatography on silica gel (2% EtOAc/hexanes) yielded $2.0 \mathrm{~g}(90 \%)$ of allylsilane 49 as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+7.4(\mathrm{c}$ 2.7, CHCl_{3}); IR (thin film) $3069,3053,2951,2931,2855,1628,1430,1259,1113,859 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.55$ (brs, 2 H), 3.72 (d, $J=5.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=5.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.22(\mathrm{~m}, 2 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.041(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4$, $135.8,134.3,129.7,127.8,108.8,62.3,46.5,39.6,27.0,26.4,19.8,-1.1 ;$ EI-MS m/z $423\left(\mathrm{M}^{+}\right)$, 381, 271, 231, 199, 135, 84, 73, 58; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{OSi}_{2}$: 381.2068, found 381.2066.

(3S)-tert-Butyl-(3,5-dimethylhex-5-enyloxy)diphenyl-silane (53):
To a solution of 4.4 g of allylsilane $49(10.0 \mathrm{mmol})$ in 50 mL of THF was added 4.4 g of Amberlyst-15 ion exchange resin. The reaction was maintained at ambient temperature for 16 h then filtered and concentrated to afford $3.4 \mathrm{~g}(92 \%)$ of $\mathbf{5 3}$ as a yellow oil: IR (thin film): 3071, 3050, 2959, 2930, 2858, 1472, 1428, 1111, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.76-3.63(\mathrm{~m}, 2 \mathrm{H})$, $2.01-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.05$ (s, 9H), $0.81(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,135.5,134.0,129.5$, 127.6, 111.4, 68.0, 62.0, 46.0, 39.4, 26.9, 22.1, 19.5; EI-MS m/z 309 (M+-tBu), 271, 199, 183, 84, 77; HRMS m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OSi}$: 309.1675; found 309.1684.

(3S)-3,5-Dimethylhex-5-en-1-ol (54): To a $0^{\circ} \mathrm{C}$ solution of 1.7 g of silyl ether $53(4.64 \mathrm{mmol})$ in 22 mL of dry THF was added 5.6 mL of a 1.0 M THF solution of tetrabutylammonium fluoride (5.57 mmol). The reaction was then warmed to ambient temperature and stirred for 1 h . Saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography on silica gel ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane $)$ to afford $0.530 \mathrm{~g}(90 \%)$ of the title compound as a clear, colorless liquid. $[\alpha]_{\mathrm{D}}=-26\left(c 2.24, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$ (thin film): 3343,3074,2961,2928, 1650, 1456, 1378, 1058, $887 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $3.80-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}, J=5.9,13 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 144.7,111.9,61.4,46.3,39.9,27.5,22.4,19.7$. EI-MS m/z $128(\mathrm{M}+), 110,95,86,83$, 73, 59, 55 ; HRMS m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}$: 128.1201; found 128.1197.

(3S)-3,5-Dimethylhex-5-enal (50): To a suspension of 2.0 g of $4 \AA$ molecular sieves and 0.728 g of N -methylmorpholine N-oxide (6.21 mmol) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added 0.530 g of alcohol $54(4.1 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After several minutes, 0.075 g of tetrapropylammonium perruthenate $(0.207 \mathrm{mmol})$ was added. The resulting green-black suspension was stirred 30 min at ambient temperature, then filtered through a plug of silica gel. The filtrate was concentrated to afford $0.460 \mathrm{~g}(88 \%)$ of the title compound as a clear, colorless liquid. $[\alpha]_{\mathrm{D}}=-9.8\left(\right.$ c $\left.3.43, \mathrm{CHCl}_{3}\right)$. IR (thin film): $3425,3069,2962,2926,2871,2827,2720,1726,1651,1453,1378,1263 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.32-$
$2.15(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 202.7,143.5,112.1,50.5,45.6,26.0,25.6,22.0,20.0$; EI-MS m/z 111 (M+-Me), 108, 93, 82, 73, 61, 55; HRMS m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{O}: 111.0809$; found 1110808.

(4R, 2'S)-4-(2,4-Dimethylpent-4-enyl)oxetan-2-one (55) To a $-50{ }^{\circ} \mathrm{C}$ solution of 0.405 g of aluminum triamine catalyst ent-36 $(0.697 \mathrm{mmol})$ in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2.0 mL of diisopropylethylamine (11.8 mmol) followed by 0.98 mL of acetyl bromide (13.2 mmol). The resulting light yellow solution was maintained at $-50{ }^{\circ} \mathrm{C}$ for 5-10 min, then treated with 0.878 g of aldehyde $50(6.97 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ slowly dropwise. The reaction was stirred overnight at $-50^{\circ} \mathrm{C}$ and was poured into 150 mL of cold pentane, filtered through silica gel, and concentrated. The residue was purified by flash chromatography on silica gel (20% ether/pentane) to afford the title compound as a colorless liquid: IR (thin film): $3073,2966,2919,1830,1647,1457,1374,1124,887 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.79-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=5.7$, $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=4.3,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.3,143.5$, 112.2, 69.8, 46.0, 43.4, 41.5, 27.5, 22.0, 19.1; EI-MS m/z 168 (M+), 153, 135, 125, 109, 93, 82, $71,67,55 ;$ HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}: 168.1150$; found 168.1146 .

(3S)-3-Hydroxy-5-phenylpentanoic acid $\quad N$-methoxy- N methylamide (66): ${ }^{63}$ To a $0{ }^{\circ} \mathrm{C}$ suspension of 0.937 g of $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine (9.66 mmol) in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $9.66 \mathrm{~mL}(9.66 \mathrm{mmol})$ of

[^33]dimethylaluminum chloride (1.0 M solution in hexanes). The suspension was warmed to ambient temperature and stirred for 2 h . To this suspension was added a solution of lactone $\mathbf{6 1}$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction mixture was maintained overnight at ambient temperature and then quenched with $36 \mathrm{~mL}\left(3 \mathrm{~mL} / \mathrm{mmol} \mathrm{Me} 2_{2} \mathrm{AlCl}\right)$ of pH 8 phosphate buffer. The resulting suspension was stirred at ambient temperature for 15 min , filtered through Celite, and the filtrate was extracted with $\mathrm{CHCl}_{3}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $1.12 \mathrm{~g}(98 \%)$ of the title compound as a pale yellow liquid: $[\alpha]_{\mathrm{D}}=+28\left(c 0.96, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3437, 3058, 2940, 1639, 1496, 1450, 1183, 1076, 994, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-$ $7.16(\mathrm{~m}, 5 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{brs}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 1 \mathrm{H})$, 2.74-2.64 (m, 2H), 2.53-2.49(m, 1H), 1.91-1.84(m, 1H), 1.81-1.74(m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,142.1,128.62,128.58,128.55,128.48,125.9,67.3,61.4,60.2,43.0,38.3$, 31.9; LRMS (EI, 70 eV): m/z 237.

in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $1.2 \mathrm{~mL}(4.6 \mathrm{mmol})$ of N, O-bis(trimethylsilyl)acetamide at ambient temperature. The reaction was maintained for 90 min , then concentrated and purified by flash chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to yield $0.838 \mathrm{~g}(89 \%)$ of the title compound as a pale yellow oil: $[\alpha]_{\mathrm{D}}=+17\left(c 2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3062,3027,1662$, 1250, 1094, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H})$, 4.31 (dddd, $J=5.1,5.1,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.66-$ $2.58(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=5.2,15 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.72(\mathrm{~m}, 2 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 172.0,142.0,128.3$ (4C), 125.6, 69.1, 61.1, 39.9, 39.5, 31.8, 0.81 (3C); LRMS (EI, 70 $\mathrm{eV}): m / z 309$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Si}: ~ 309.1760$, found 309.1754.

(2S)-2-Phenethyl-2,3-dihydropyran-4-one (65): ${ }^{64}$ To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.390 g of cis-2-ethoxyvinylstannane $\mathbf{6 3}(1.08 \mathrm{mmol})$ in 8 mL of THF was slowly added 0.62 mL of a 1.6 M hexane solution of ${ }^{n} \mathrm{BuLi}$. The clear solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 75 min and a solution of 0.160 g of amide $67(0.52 \mathrm{mmol})$ in 2 mL of THF was added via cannula. The reaction mixture was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{EtOAc}(3 \times 6$ mL). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $\mathbf{6 8}$ as a yellow oil. The crude product mixture was dissolved in 2 mL of THF and Amberlyst-15 resin was added. The reaction was stirred at ambient temperature overnight, filtered, and concentrated. Purification by flash chromatography on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) afforded $81 \mathrm{mg}(76 \%)$ of $\mathbf{6 5}$ as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-89\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 1672,1593 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}$, $3 \mathrm{H}), 5.36(\mathrm{dd}, J=1.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=4.3,8.3,13 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.51$ (dd, $J=13,17 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{ddd}, J=1.1,4.0,17 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dtd}, J=5.8,8.8,17 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90($ dddd $, J=4.6,7.1,9.4,17 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 192.1,162.9,140.7$, $128.6,128.3,126.2,107.1,78.5,41.9,36.0,31.0,29.6$; HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$: 202.0994, found 202.0998.

[^34]

N -methyl-amide (69): To a $0{ }^{\circ} \mathrm{C}$ suspension of $1.15 \mathrm{~g}(11.9$
mmol) of in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $11.9 \mathrm{~mL}(11.9 \mathrm{mmol})$ of dimethylaluminum chloride (1.0 M solution in hexanes). The suspension was warmed to ambient temperature and stirred for 2 h . To this suspension was added a solution of lactone 55 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction mixture was allowed to stir overnight at ambient temperature and then quenched with 36 $\mathrm{mL}\left(3 \mathrm{~mL} / \mathrm{mmol} \mathrm{Me}_{2} \mathrm{AlCl}\right)$ of pH 8 phosphate buffer. The resulting suspension was stirred for 15 min , filtered through Celite, and the filtrate was extracted with $\mathrm{CHCl}_{3}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford 0.820 g of the title compound as a pale yellow liquid. $[\alpha]_{\mathrm{D}}=-25\left(c 2.3, \mathrm{CHCl}_{3}\right)$. IR (thin film): $3449,3069,2962,2926,1647,1441,1386,1176,887 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{brs}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.61$ (brd, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=9.4,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59$ (ddd, $J=3.4,9.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{ddd}, J=3.1,9.3,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 173.9,144.5,111.5,65.4,61.2,46.6,43.5,39.0,31.8,26.7,22.1$ 18.9. HRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3}$: 229.1678; found 229.1678.

(3R,5S)-5,7-Dimethyl-3-trimethylsilyloxyoct-7-enoic acid- N -methoxy- N-methylamide (70): To a solution of 0.815 g (3.56 mmol) of amide 69 in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $1.5 \mathrm{~mL}(6.05 \mathrm{mmol})$ of $\mathrm{N}, \mathrm{O}-$ bis(trimethylsilyl)acetamide at ambient temperature. The reaction was maintained for 90 min , then concentrated and purified by flash chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes $)$ to yield $0.960 \mathrm{~g}(90 \%)$ of the title compound as a pale yellow oil. $[\alpha]_{\mathrm{D}}=+2.6\left(c 2.4, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$
(thin film): $3073,2954,2926,1663,1445,1386,1247,1104 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.74-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{dd}, J=7.4$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=5.3,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{ddd}, J=3.1,9.4,12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.19(\mathrm{ddd}, J=3.1,9.5,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 172.3,144.4,111.6,67.5,61.3,46.5,44.9,40.8,31.9,26.7,22.0,19.2,0.60$. HRMS m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{Si}$: 301.2073; found 301.2073.

(2R, 2'S)-(2,4-Dimethylpent-4-enyl)-2,3-dihydropyran-4-one (72): To $\mathrm{a}-78^{\circ} \mathrm{C}$ solution of 1.00 g of cis-2-ethoxyvinylstannane (2.79 mmol) 62 in 8 mL of dry THF was slowly added 1.66 mL of a 1.6 M hexane solution of ${ }^{n} \mathrm{BuLi}$. The clear solution was stirred at $-78^{\circ} \mathrm{C}$ for 75 min and a solution of 0.400 g of amide 70 (1.33 mmol) in 2 mL of THF was added via cannula. The reaction mixture was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was dissolved in 10 mL of THF and Amberlyst-15 resin was added. The reaction was stirred at ambient temperature overnight. The reaction was filtered and the filtrate was concentrated. Purification by flash chromatography on silica gel ($15 \% \mathrm{EtOAc} /$ hexanes) afforded $0.186 \mathrm{~g}(72 \%)$ of 72 a pale yellow oil: $[\alpha]_{\mathrm{D}}=+120$ (c $2.6, \mathrm{CHCl}_{3}$). IR (thin film): $3073,2962,2926,1683,1600,1406,1275,1215,1037,895 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H})$, $4.67(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{ddt}, J=3.7,7.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=13.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=$ $3.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.7,163.3,143.8,112.2,107.0,78.0,46.1,42.5,41.4,26.3$, 22.0, 19.1. HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: 194.1306; found 194.1300.

(2S, 4R)-2-Phenethyl-3, 4-dihydro-2H-pyran-4-yl acetate (73): To a $0^{\circ} \mathrm{C}$ solution of 75 mg of pyranone $72(0.37 \mathrm{mmol})$ and 0.166 g of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (0.445 mmol) in 2 mL of MeOH was added 15 mg of $\mathrm{NaBH}_{4}(0.39 \mathrm{mmol})$ in portions. After 30 min at $0^{\circ} \mathrm{C}$, the reaction was quenched by adding 3 mL of water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$ and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude alcohol ($66 \mathrm{mg}, 0.337 \mathrm{mmol}$) was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added 0.153 mL of $\mathrm{Et}_{3} \mathrm{~N}(1.10 \mathrm{mmol}), 4 \mathrm{mg}$ of dimethylaminopyridine (DMAP) (0.037 mmol), and 0.052 mL of acetic anhydride (0.551 mmol). The resulting clear, colorless solution was then stirred 2 h at ambient temperature. The reaction was concentrated and purified by flash chromatography ($3 \% \mathrm{EtOAc} /$ hexanes, with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford $85 \mathrm{mg}(94 \%)$ of the title compound as a clear colorless oil: $[\alpha]_{\mathrm{D}}=-5.6\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3064,3027,2931,2864,1731,1645,1232 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-$ $7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.50(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.75(\mathrm{~m}$, $1 \mathrm{H}), 4.08-3.96(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.71$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,146.6,141.4,128.4$ (4C), 125.9, 100.9, 73.4, 65.6, 36.3, 33.3, 31.3, 21.2; LRMS (EI, 70eV): m/z 246; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}: 246.1256$, found 246.1247.
$\mathrm{Me}=\mathrm{CO}_{2}{ }^{\text {t }} \mathrm{Bu}$ tert-Butyl but-2-ynoate (74): ${ }^{65}$ Into a pressure tube charged with 5.0 g of tetrolic acid (59.5 mmol) was condensed $\sim 60 \mathrm{~mL}$ of isobutylene at $-40^{\circ} \mathrm{C}$. The mixture was

[^35]then treated with 0.66 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ dropwise via syringe and sealed. The reaction was warmed to ambient temperature and maintained for 24 h . Saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) to afford $6.2 \mathrm{~g}(75 \%)$ of the title compound 74 as a light yellow liquid: IR (thin film): 2981, 2935, 2874, 2249, 1705, 1370, 1280, 1163, 1073; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.
 of a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes dropwise via syringe. The pale yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$ then treated with 1.00 g of ester $74(7.14 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. The resulting orange-red solution was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h then 1.94 mL of ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnCl}(7.14 \mathrm{mmol})$ was added dropwise via syringe. After maintaining for an additional 2 h at $-78^{\circ} \mathrm{C}$, saturated aqueous NaHCO_{3} was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification of the crude product by flash chromatography (hexanes) afforded $1.16 \mathrm{~g}(38 \%)$ of the title compound as a clear, colorless liquid: IR (thin film): 2957, 2928, 2872, 2854, 1920, 1709, $1685,1457,1254,1151,801 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.60(\mathrm{~s}, 2 \mathrm{H}), 1.60-1.47(\mathrm{~m}$, $6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{tq}, J=7.3,7.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.05(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.4,167.7,92.5,80.7,68.4,28.8,28.1,27.1,13.6,10.9$; LRMS (EI, $70 \mathrm{eV}): \mathrm{m} / \mathrm{z} 373\left[\mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right]^{+}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{120} \mathrm{Sn}: 373.1190$, found 373.1187.

(6R,2S)-4-(6-Phenethyl-5,6-dihydro-2H-pyran-2-yl)but-2-
ynoic acid tert-butyl ester (76): To a $-78^{\circ} \mathrm{C}$ solution of 70 mg of glycal acetate $73(0.284 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added 0.610 g of allenylstannane 41 (1.42 mmol) and a solution of 0.150 mg of tributyltin trifluoromethanesulfonate $(0.341 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction was allowed to slowly warm to ambient temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 12 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography ($1 \% \mathrm{EtOAc} / \mathrm{Hex}$) to afford $70 \mathrm{mg}(75 \%)$ of the title compound as a clear colorless oil: IR (thin film) 3028, 2979, 2928, 2239, 1706, 1603, 1455, 1369, 1279, $1161 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.32-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.92-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.80(\mathrm{~m}, 1 \mathrm{H}), 4.47-$ $4.42(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{tt}, J=4.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=5.3,9.1,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}$ $1 \mathrm{H}), 2.64(\mathrm{dd}, J=7.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=7.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.93-$ $1.72(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$; LRMS (EI, 70 eV$): \mathrm{m} / \mathrm{z} 326,270\left[\mathrm{M}^{\mathrm{t}} \mathrm{Bu}\right]^{+}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}: 326.1882$, found 326.1887.

(2R, 2'S, 4S)-(2,4-Dimethylpent-4-enyl)-3,4-dihydro-2H-pyran-4-yl acetate (77): To a $0{ }^{\circ} \mathrm{C}$ solution of 66 mg of pyranone $72(0.34 \mathrm{mmol})$ and 0.152 g of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} 0(0.408 \mathrm{mmol})$ in 2 mL of MeOH was added 14 mg of $\mathrm{NaBH}_{4}(0.36 \mathrm{mmol})$ in portions. After 30 min at $0^{\circ} \mathrm{C}$, the reaction was quenched by adding 3 mL of water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$ and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the corresponding allylic alcohol. The crude alcohol $(0.066 \mathrm{~g}, 0.337 \mathrm{mmol})$ was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to 0
${ }^{\circ} \mathrm{C}$. To this solution was added 0.140 mL of $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{mmol}), 4 \mathrm{mg}$ of dimethylaminopyridine (0.0337 mmol), and 0.048 mL of acetic anhydride (0.505 mmol). The resulting clear, colorless solution was then stirred 2 h at ambient temperature. The reaction was concentrated and purified by flash chromatography ($3 \% \mathrm{EtOAc} /$ hexanes, with $5 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford $0.074 \mathrm{~g}(92 \%)$ of the title compound as a clear colorless residue. $\quad[\alpha]_{\mathrm{D}}=+6.8\left(c 2.3, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3069, 2958, 2926, 2871, 1734, 1643, 1441, 1370, 1231, 1041, $891 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.45$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{brs}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 1 \mathrm{H})$, $2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.09$ $(\mathrm{m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,146.7,144.3,111.8$, $100.9,72.3,65.8,46.5,41.8,34.2,26.5,22.2,21.4,19.1$; EI-MS e/v $238(\mathrm{M}+), 178,160,145$, 121, 109, 91, 81, 66.

(2R,6R,2'S)-4-[6-(2,4-Dimethylpent-4-enyl)-5,6-dihydro-2H-pyran-2-yl]but-2-ynoic acid tert-butyl
ester (78): To a $-78^{\circ} \mathrm{C}$ solution of 42 mg of glycal acetate $77(0.176 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added 0.378 g of allenylstannane $41(0.882 \mathrm{mmol})$ and a solution of 85 mg of tributyltin trifluoromethanesulfonate $(0.194 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction was allowed to slowly warm to ambient temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography ($1 \% \mathrm{EtOAc} / \mathrm{Hex}$) to afford $0.040 \mathrm{~g}(71 \%)$ of the title compound as a clear colorless oil: $[\alpha]_{\mathrm{D}}=-74\left(c 2.1, \mathrm{CHCl}_{3}\right)$. IR (thin film): 3069, 3034, 2974, 2935, 2242, 1707, 1457, 1370, 1275, 1164, 1073, $843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.95-5.89(\mathrm{~m}, 1 \mathrm{H})$,
$5.84-5.79(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.43-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.76(\mathrm{~m}, 1 \mathrm{H})$, $2.65(\mathrm{dd}, J=7.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=6.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H})$, $1.62(\mathrm{ddd}, J=3.5,9.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{ddd}, J=3.1,9.2,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7,144.6,127.6,126.2,111.7,83.3,83.1$, 75.9, 70.4, 66.0, 46.6, 42.4, 31.1, 28.0, 26.6, 24.7, 22.2, 19.2; EI-MS e/v 317 (M+-H), 261, 219, $179,161,109,95,67,57$.

4-((2R,6R)-5,6-dihydro-6-((4S)-2,4-dimethylpent-4-enyl)-2H-pyran-2-yl)but-2-ynoic acid (80): ${ }^{66}$ To a $0{ }^{\circ} \mathrm{C}$ solution of 0.026 g of ester $78(0.082 \mathrm{mmol})$ in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.095 mL of 2,6-lutidine (0.82 mmol) followed by 0.075 mL of tert-butyldimethyltrifluoromethane sulfonate $(0.41 \mathrm{mmol})$. The resulting yellow solution was maintained at $0^{\circ} \mathrm{C}$ for 1.5 h before being quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organics were subsequently washed with 0.1 M citric acid (20 mL) and brine (20 mL). The organics were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $0.020 \mathrm{~g}(95 \%)$ of a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.96-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.75$ $(\mathrm{m}, 1 \mathrm{H}), 4.80-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.48-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.79(1 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=7.0$, $16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=6.9,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.80(\mathrm{~m}, 5 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddd}, J=$ $3.4,9.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{ddd}, J=3.2,9.1,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=6.2, \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 156.8,144.9,127.6,126.5,111.9,87.0,70.6,66.5,46.8,42.6,31.4,26.9$, 25.0, 22.4, 19.5, 2.2.

[^36] 1-(S)-(tert-Butyldiphenylsilyloxymethyl)-5-trityloxy-pent-3-enyl-4-(2R,6R)-[6-(4S)-(2,4-dimethylpent-4-enyl)-5,6-dihydro-2H-pyranyl]but-2-ynoate (82): To a $0{ }^{\circ} \mathrm{C}$ solution of 42 mg of alcohol $\mathbf{4 0}(68.7 \mu \mathrm{~mol}), 9 \mathrm{mg}$ of acid $\mathbf{8 0}(34.3 \mu \mathrm{~mol})$, and 2.7 mg of DMAP $(6.87 \mu \mathrm{~mol})$ in $450 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 9 mg of $\mathrm{DCC}(41.2 \mu \mathrm{~mol})$ in one portion. The reaction was maintained at ambient temperature overnight. After diluting with pentane, the reaction mixture was filtered through Celite and concentrated. Purification by flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) afforded $9 \mathrm{mg}(31 \%)$ of the title compound as a clear, colorless residue: $[\alpha]_{\mathrm{D}}=-177\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3062, 3029, 2955, 2928, 2853, 2238, 1709, 1488, 1446, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $7.50-7.20(\mathrm{~m}, 21 \mathrm{H}), 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.55(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{dddd}, J=$ 6.2, 6.2, 6.2, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.73 (br s, 1H), 4.66 (br s, 1H), 4.46-4.35 (m, 1H), 3.82-3.75 (m, 1H), $3.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=6.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=$ $7.4,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddd}, J=3.3,9.9$, $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.02(\mathrm{~s}+\mathrm{m}, 10 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $153.4,147.2,144.8,144.5$ (2C), 135.9 (2C), 133.6, 131.0, 130.0, 129.0 (4C), 128.2, 128.1, 128.0, $127.5,127.2,126.4,111.9,87.1,86.2,77.5,75.7,75.1,70.5,66.4,64.9,64.4,46.8,42.6,33.8$, 31.4, 27.1 (3C), 27.0, 25.1, 22.5, 19.5; LRMS (EI, 70eV): m/z 856.

1-(S)-(tert-Butyldiphenylsilyloxymethyl)-5-hydroxy-pent-3-enyl-4-(2R,6R)-[6-(4S)-(2,4-dimethylpent-4-enyl)-5,6-dihydro-2H-pyranyl]but-2-ynoate (83): A solution of 13 mg of trityl ether $\mathbf{8 2}(15.2 \mu \mathrm{~mol})$ in $200 \mu \mathrm{~L}$ of $2 \% \mathrm{TfOH}$ in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$
was maintained for 30 min at ambient temperature. Saturated aqueous NaHCO_{3} was added (1 $\mathrm{mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel provided $7 \mathrm{mg}(75 \%)$ of the title compound as a pale yellow residue: IR (thin film): 3417, 2957, 2925, 2855, 2237, 1712, 1463, 1248, 1186, 1080, $968 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.97-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.85-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=5.5$, $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dt}, J=6.7,15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{app} q u i n t e t, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.46-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{br} \mathrm{d}, 2 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=5.7,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=4.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=6.7,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=7.1,16.8$ Hz, 1H), 2.51-2.32 (m, 2H), 2.04-1.85 (m, 5H), $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{ddd}, J=3.4,10.0,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.12(\mathrm{ddd}, J=3.1,9.0,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{O}_{5} \mathrm{SiNa}$: 637.3325, found 637.3353.

1-(S)-(tert-Butyldiphenylsilyloxymethyl)-5-oxo-pent-3-enyl-4-

 (2R,6R)-[6-(2,4-dimethylpent-4-enyl)-5,6-dihydro-2H-pyranyl]but-2-ynoate (79): To a mixture of 13 mg of allylic alcohol $83(21.2 \mu \mathrm{~mol}), 4 \mathrm{mg}$ of N -methylmorpholine N -oxide ($31.8 \mu \mathrm{~mol}$), and 11 mg of $4 \AA$ molecular sieves in $150 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added 1 mg of tetrapropylammonium perrhuthenate $(1.06 \mu \mathrm{~mol})$. The reaction was maintained for 30 min , then filtered through silica gel $(40 \% \mathrm{EtOAc} / \mathrm{hexanes})$. The filtrate was concentrated to afford $10 \mathrm{mg}(77 \%)$ of the title compound 79 as a light yellow residue: ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \quad \delta 9.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.71(\mathrm{dt}, J=7.2$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=7.8 \mathrm{~Hz}, 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.16$(dddd, $\mathrm{J}=5.3,5.3,5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.49-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.85-$ $3.69(\mathrm{~m}, 3 \mathrm{H}), 2.75-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.84(\mathrm{~m}, 5 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 3 \mathrm{H})$.
 (4R)-4-Methyloxetan-2-one (ent-91): To a $-78{ }^{\circ} \mathrm{C}$ solution of 1.3 g of aluminum Me triamine catalyst ent-36 (2.27 mmol) and 14.6 g of tetrabutylammonium bromide (45.4 mmol) in 91 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 6.72 mL of DIPEA (38.6 mmol) followed by 3.20 mL of acetyl bromide (43.1 mmol). The resulting yellow solution was stirred several minutes at $-78{ }^{\circ} \mathrm{C}$ whereupon 1.27 mL of acetaldehyde (22.7 mmol) was added slowly dropwise via syringe. The reaction was maintained at $-78^{\circ} \mathrm{C}$ overnight, and was quenched by pouring into cold hexanes $(300 \mathrm{~mL})$. The resulting mixture was filtered through silica gel $(40 \% \mathrm{EtOAc} / \mathrm{Hex})$ and concentrated to yield $1.7 \mathrm{~g}(87 \%$, crude $)$ of $\boldsymbol{e n t} \mathbf{- 9 1}$ as a pale yellow liquid: Separation of the enantiomers by chiral GC [Chiraldex G-TA column, flow rate $1.5 \mathrm{~mL} / \mathrm{min}$, method: $80^{\circ} \mathrm{C}$ for 5.0 min , ramp at $5.0^{\circ} \mathrm{C} / \mathrm{min}$ to $100^{\circ} \mathrm{C}$ for 10.0 min , ramp at $5.0^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$ for $5 \mathrm{~min} . \mathrm{T}_{\mathrm{r}} 8.04$ $\min (R)$ and $9.05 \min (S)]$ determined the enantiomeric excess to be $99 \% ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 4.61(\mathrm{ddq}, J=4.2,6.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=5.7,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=4.3$, $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.0,67.7,44.0,20.2$.
 (65.1 mmol) in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 65 mL of dimethylaluminum chloride (65 mmol) as a 1 M solution in hexanes. The solution was allowed to warm to ambient temperature and stirred for 2 h . The resulting suspension was treated with a solution of ent-91 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via
cannula. The reaction mixture was maintained at ambient temperature overnight and then quenched with $36 \mathrm{~mL}(3 \mathrm{~mL} / \mathrm{mmol} \mathrm{Me} 2 \mathrm{AlCl})$ of pH 8 phosphate buffer. The reaction was filtered through Celite to remove the solid aluminum salts. The resulting mixture was separated, and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude oil was purified by silica gel chromatography $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ to provide $3.8 \mathrm{~g}(81 \%)$ of the β-hydroxy amide ent-92 as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-58\left(c 3.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3448, 3008, 2974, 2938, 1642, 1420, 1389, 1216, 1002, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.21(\mathrm{ddq}, J=2.6,6.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $3.20(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=9.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,64.0,61.2,39.7,31.7,22.2$; HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{3}$: 147.0895 , found 147.0895 .
 (3R)-3-(tert-Butyldiphenylsilyloxy)- N-methoxy- N-methylbutyramide (ent-93): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.730 g of the β-hydroxy amide ent-92 (4.96 mmol) in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1.73 mL of DIPEA (9.93 mmol), 1.42 mL of TBDPSCl (5.46 mmol), and 0.607 g of DMAP (4.96 mmol). The resulting solution was warmed to ambient temperature and maintained for 18 h . Saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with $1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (15% $\mathrm{EtOAc} /$ hexanes $)$ to afford $1.8 \mathrm{~g}(94 \%)$ of ent-93 as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-9.1\left(c 3.8, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3069, 3045, 2964, 2930, 2856, 1660, 1472, 1385, 1178, 1002, $940 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.79-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.45$ (sextet, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61
(s, 3H), $3.14(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.9,135.8,135.7,134.5,134.0$, $129.5,129.4,127.4,127.3,66.9,61.1,41.8,31.4,26.9,23.7,19.1 ;$ HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}$: 384.1995 , found 384.1976 .

(3R)-3-(tert-Butyldiphenylsilyloxy)butyraldehyde (ent-94): To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.700 g of ent- $93(1.82 \mathrm{mmol})$ in 11 mL of dry $\mathrm{Et}_{2} \mathrm{O}$ was added a 1.0 M hexanes solution of DIBAL-H $(2.00 \mathrm{mmol})$ dropwise. The resulting colorless solution was maintained at $-78^{\circ} \mathrm{C}$ for 30 min . The reaction was quenched with $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine $(30 \mathrm{~mL})$ and filtered through Celite. The filtrate was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (5\% EtOAc/hexanes) afforded 0.569 g (95\%) of the aldehyde as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+7.5\left(\right.$ c 2.9, CHCl_{3}); IR (thin film) 3069, 3048, 2961, 2930, 2893, 2859, 2720, 1728, 1425, 1379, 1110, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{N} M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.78(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.38($ sextet, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=2.9,6.0,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{ddd}, J=2.2,5.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.1,136.1,134.4,134.0,130.2$, $130.0,128.0,127.9,66.0,53.1,27.2,24.1,19.5$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{Si}: 269.0998$, found 269.0999.

(4R,2'R)-4-[2-(tert-Butyldiphenylsilyloxy)propyl]oxetan-2-one (ent-96): To a $-50^{\circ} \mathrm{C}$ solution of 0.870 g of aluminum triamine catalyst ent-36 $(1.50$ mmol) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4.43 mL of DIPEA (25.4 mmol) followed by 2.10 mL of
acetyl bromide (28.4 mmol). The resulting yellow solution was stirred at $-50{ }^{\circ} \mathrm{C}$ whereupon 4.88 g of the aldehyde ent-94 (15.0 mmol) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise via syringe. The reaction was maintained at $-50{ }^{\circ} \mathrm{C}$ overnight, and was quenched by pouring into cold hexanes (150 mL). The resulting mixture was filtered through silica gel ($50 \% \mathrm{EtOAc} / \mathrm{hexanes}$) and concentrated. The crude product was then purified by flash chromatography on silica gel (3\% EtOAc/hexanes) to afford $4.77 \mathrm{~g}(86 \%)$ of ent-96 as a viscous, colorless oil: $[\alpha]_{\mathrm{D}}=+17(c$ 2.6, CHCl_{3}); IR (thin film): 3072, 3051, 2964, 2930, 2893, 2859, 1824, 1425, 1376, 1110, 909 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.69(\mathrm{dq}, J=4.4$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04($ sextet, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=5.8,16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=4.3,16.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13(\mathrm{dt}, J=6.3,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddd}, J=5.0,7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 168.4,136.2,136.1,134.3,134.0,130.2$, 130.1, 128.1, 127.9, 68.8, 66.7, 44.0, 43.6, 27.3, 23.6, 19.5; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}$: 311.1103, found 311.1107 .

(3S,5R)-5-(tert-Butyldiphenylsilyloxy)-3-methylhexanoic acid (97): To a $-50^{\circ} \mathrm{C}$ solution of 2.69 g of $\mathrm{CuBr}(18.8 \mathrm{mmol})$ in 185 mL of THF and 20 mL of dimethylsulfide was added 12.5 mL of a 3.0 M ethereal solution of methylmagnesium bromide (37.5 mmol) slowly dropwise. The resulting clear, faint green solution was stirred at $-50^{\circ} \mathrm{C}$ for 30 min then warmed to $-30^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled to $-50{ }^{\circ} \mathrm{C}$ and 4.6 g of ent- $96(12.5 \mathrm{mmol})$ in 15 mL of THF was added via cannula. After maintaining the reaction at $-50^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, 2.4 \mathrm{~mL}$ of $\mathrm{TMSCl}(18.8 \mathrm{mmol})$ was added and the reaction was allowed to warm to ambient temperature overnight. A mixture of saturated $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4$
$\times 150 \mathrm{~mL})$. The combined organics were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes) to afford $3.85 \mathrm{~g}(80 \%)$ of 97 as a pale yellow viscous oil: $[\alpha]_{\mathrm{D}}=+6.7$ (c 2.2, CHCl_{3}); IR (thin film): 3070, 3045, 2961, 2928, 2853, $1704,1426,1373,1108,909,820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.52-$ $7.41(\mathrm{~m}, 6 \mathrm{H}), 4.02-3.92(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=5.1,7.5$, $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=4.6,7.7,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.15-1.18(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 179.6,135.9,134.8,134.2,129.6,129.4,127.5,127.4,67.5,46.7$, 41.9, 27.0, 26.7, 24.0, 19.7, 19.3; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}$: 327.1416, found 327.1419.

(3S,5R)-5-(tert-Butyldiphenylsilyloxy)-3-methylhexanal (98): To a solution of 3.75 g of carboxylic acid $97(9.76 \mathrm{mmol})$ in $50 \mathrm{~mL}^{2}$ of $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature was added 7.3 mL of a 2.0 M THF solution of $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{SMe}_{2}(14.6 \mathrm{mmol})$ slowly dropwise. The resulting clear, colorless solution was heated to reflux and maintained 1 h . After cooling to ambient temperature, the solvent was removed, and the remaining viscous residue was dissolved in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this colorless solution was added 5.26 g of pyridinium chlorochromate (24.4 mmol), and the resulting brown suspension was heated to reflux and maintained for 2.5 h . The reaction was then cooled to ambient temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through Celite, and concentrated. The crude product was purified by flash chromatography on silica gel (5\% EtOAc/hexanes) to afford $3.05 \mathrm{~g}(85 \%)$ of $\mathbf{9 8}$ as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-1.0\left(c 2.6, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3067, 3048, 2959, 2928, 2853, 2708, 1726, 1426, 1373, 1111, 1067, $823 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.63(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.67$ $(\mathrm{m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.91-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{ddd}, J=5.0,7.7,13.0$
$\mathrm{Hz}, 1 \mathrm{H}), 1.23(\mathrm{ddd}, J=4.7,8.2,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.78(\mathrm{~d}, J=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.6,135.9,134.7,134.2,129.6,129.5,127.6$, $127.4,67.5,51.3,47.1,27.1,24.9,24.0,20.0,19.3$.

(4R,2'S,4'R)-4-[4'-(tert-Butyldiphenylsilyloxy)-2-methyl-pentyl]oxetan-2-one (99): To a $-50{ }^{\circ} \mathrm{C}$ solution of 0.704 g of aluminum triamine catalyst ent-36 (1.21 mmol) in 16 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2.40 mL of DIPEA (13.7 mmol) followed by 1.13 mL of acetyl bromide (15.3 mmol). The resulting yellow solution was stirred at $-50{ }^{\circ} \mathrm{C}$ whereupon 2.97 g of the aldehyde $98(8.07 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly dropwise via syringe. The reaction was maintained at $-50{ }^{\circ} \mathrm{C}$ overnight, and was quenched by pouring into cold hexanes $(100 \mathrm{~mL})$. The resulting mixture was filtered through silica gel $(50 \% \mathrm{EtOAc} / \mathrm{Hex})$ and concentrated. The crude product was then purified by flash chromatography on silica gel (11\% hexanes/benzene) to afford $2.76 \mathrm{~g}(84 \%)$ of 99 as a white solid: $[\alpha]_{\mathrm{D}}=+21\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3070, 3048, 2965, 2931, 2853, 1828, 1426, 1376, 1200, 1111, 1061, $820 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72-7.66(\mathrm{~m}$, $4 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.45(\mathrm{dtd}, J=4.5,5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=$ 5.7, 16.2 Hz, 1H), $2.95(\mathrm{dd}, J=4.3,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=5.2,7.8$, $13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{ddd}, J=5.2,7.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=5.3,7.9,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20$ (ddd, $J=4.9,8.2,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 168.2,135.9,134.7,134.3,129.6,129.5,127.6,127.4,69.7,67.4$, 47.2, 43.4, 42.2, 27.0, 26.7, 24.1, 19.6, 19.3; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}: 353.1572$, found 353.1559.

(2R,2'S,4'R)-2-[4-(tert-Butyldiphenylsilyloxy)-2-methyl-pentyl]-2,3-
dihydropyran-4-one (100): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.690 mL of diisopropylamine (4.93 mmol) in 20 mL of THF was added 2.95 mL of a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes (4.68 mmol) slowly dropwise. The solution was maintained at $0{ }^{\circ} \mathrm{C}$ for 30 min , then treated with 0.590 mL of acetaldehyde N-piperidine hydrazone (4.93 mmol). The resulting heterogeneous mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , then cooled to $-78{ }^{\circ} \mathrm{C}$ whereupon 1.01 g of $\mathbf{9 9}(2.46 \mathrm{mmol})$ in 2 mL of THF was added via cannula. The resultant yellow solution was maintained at $-78^{\circ} \mathrm{C}$ overnight. The reaction was quenched with saturated NaHCO_{3} and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The remaining residue was dissolved in THF and treated with 2.8 g of camphorsulfonic acid (12.1 mmol). The reaction was warmed to $60^{\circ} \mathrm{C}$ over the course of 1 h and then allowed to cool to ambient temperature. The reaction was quenched with with saturated NaHCO_{3} and extracted with EtOAc. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel ($8 \% \mathrm{EtOAc} /$ hexanes) afforded $0.665 \mathrm{~g}(62 \%)$ of $\mathbf{1 0 0}$ as a yellow oil: $[\alpha]_{\mathrm{D}}=+68\left(c 2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3073, 3051, 2962, 2931, 2860, 1673, 1593, 1429, 1274, 1114, $909 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.35$ $(\mathrm{m}, 6 \mathrm{H}), 7.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=1.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{ddt}, J=4.0,8.3,13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=12.5,16.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=4.5$, $9.5,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{ddd}, J=5.7,7.3,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$, $0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.5,163.0,135.9,134.7,134.3,129.5$, $129.4,127.5,127.4,106.9,67.5,47.6,47.1,42.4,41.9,27.0,25.3,24.0,19.4,19.2$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}$: 379.1729 , found 379.1729 .

(2R,2'S, $\mathbf{4}^{\prime} R, 4 S$)-2-[4-(tert-Butyldiphenylsilyloxy)-2-methylpentyl]-3,4-dihydro-2H-pyran-4-yl acetate (87): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.408 g of $\mathbf{1 0 0}(0.936 \mathrm{mmol})$ and 0.418 g of $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} 0(1.12 \mathrm{mmol})$ in 10 mL of MeOH was added 0.039 g of $\mathrm{NaBH}_{4}(1.03 \mathrm{mmol})$ portionwise. After 40 min at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched by adding 10 mL of water. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 $\times 20 \mathrm{~mL}$) and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford the corresponding allylic alcohol. The crude alcohol $(0.410 \mathrm{~g}, 0.936 \mathrm{mmol})$ was then dissolved in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added $0.391 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{3} \mathrm{~N}$ (2.81 mmol), 0.011 g of DMAP $(0.0936 \mathrm{mmol})$, and 0.135 mL of acetic anhydride $(1.40 \mathrm{mmol})$. The resulting clear, colorless solution was then maintained at ambient temperature for 2 h . The reaction was concentrated and purified by flash chromatography (hexanes/ $\mathrm{Et}_{3} \mathrm{~N} 50: 1$) to afford $0.404 \mathrm{~g}(90 \%)$ of the allylic acetate as a clear colorless oil: $[\alpha]_{\mathrm{D}}=+17.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3070,3048,2961,2931,2856,1729,1645,1429,1370,1231,1108,1040,912 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38(\operatorname{tq} J=1.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{ddd}, J=2.2,3.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.83$ $(\mathrm{m}, 1 \mathrm{H}), 2.16-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.19(\mathrm{ddd}, J=5.3,8.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 12 \mathrm{H}), 0.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8,146.7,135.9,134.9,134.4,129.5,129.4,127.5,127.3,100.8$, $72.2,67.6,65.7,47.7,42.2,34.0,27.0,25.5,24.0,21.2,19.5,19.2 ;$ EI-MS $m / z 423\left(\mathrm{M}^{+}-\mathrm{Bu}\right)$, $363\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}-\mathrm{AcOH}\right), 253,199,147$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$: 363.1780 , found 363.1765 .

($2 R, 4 R, \mathbf{2}^{\prime} \mathrm{S}, \mathbf{4}^{\prime} \mathrm{R}$)-tert-Butyl

2H-pyran-2-yl\}but-2-ynoate (103): To a $-78^{\circ} \mathrm{C}$ solution of 0.065 g of $\mathbf{8 7}(0.135 \mathrm{mmol})$ in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added 0.290 g of $41(0.677 \mathrm{mmol})$ in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by a solution of 0.065 g of tributyltin trifluoromethanesulfonate $(0.149 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 2 h , then allowed to slowly warm to ambient temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 10 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes) to afford $0.056 \mathrm{~g}(74 \%)$ of $\mathbf{1 0 3}$ as a clear colorless oil: $[\alpha]_{\mathrm{D}}=-25\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3071, 3045, 2963, 2930, 2857, 2240, 1708, 1427, 1369, 1279, 1160, 1074, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.32$ $(\mathrm{m}, 6 \mathrm{H}), 5.95-5.80(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dq}, J=6.0,12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.58(\mathrm{dd}, J=6.6,16.7 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{dd}, J=6.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}) 2.00-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H})$, $1.49(\mathrm{~s}, 9 \mathrm{H}), 1.38(\mathrm{ddd}, J=4.5,9.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.05(\mathrm{~s}, 9 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.7,135.9,134.9,134.4$, $129.4,129.3,127.5,127.4,127.3,126.0,83.2,83.0,76.0,70.1,67.6,66.0,47.7,42.4,31.6,30.8$, 29.7, 28.0 (3C), 27.0 (3C), 25.4, 24.7, 24.0, 22.6, 19.7, 19.3, 14.1; HRMS m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 583.3220$, found 583.3203.

Me
acetate (104): To a $0^{\circ} \mathrm{C}$ solution of 0.400 g of allylic acetate $87(0.833$ $\mathrm{mmol})$ in 0.25 mL of THF was added 1.95 mL of a 1.0 M THF solution of tetrabutylammonium fluoride $(1.95 \mathrm{mmol})$ slowly dropwise. The reaction was warmed to ambient temperature, maintained for 6 h , then diluted with EtOAc $(100 \mathrm{~mL})$. The solution was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude alcohol was
dissolved in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.0 g of $4 \AA$ molecular sieves was added followed by 0.784 g of pyridinium dichromate $(2.08 \mathrm{mmol})$. The resulting brown suspension was maintained at ambient temperature for 1.5 h before being diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and filtered through Celite. The filtrate was concentrated and the crude product mixture was purified by flash chromatography on silica gel (hexanes $/ \mathrm{Et}_{3} \mathrm{~N} 50: 1$) to afford $0.160 \mathrm{~g}(80 \%)$ of $\mathbf{1 0 4}$ as a clear, colorless residue: $[\alpha]_{\mathrm{D}}=+9.8$ (c 2.5, CHCl_{3}); IR (thin film): 3067, 2960, 2930, 1729, 1644, 1372, 1232, 1042, 1023, $805 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.38-5.33 (m, 1H), 4.72-4.69 (m, 1H), 4.05-3.97 (m, 1H), 2.50-2.22 (m, 3H), 2.20-2.13 (m, $1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{ddd}, J=3.3,8.4,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.1,170.7,146.4,100.9,72.2,65.5,51.4$, 41.7, 34.0, 30.2, 25.7, 21.1, 19.6.

(2R,6R,2'S)-4-[6-(2-Methyl-4-oxo-pentyl)-5,6-dihydro-2H-pyran-2-yl]but-2-ynoic acid tert-butyl
ester (86): To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.064 g of $\mathbf{1 0 4}(0.267 \mathrm{mmol})$ in 1 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added 0.457 g of $41(1.07 \mathrm{mmol})$ in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by a solution of 0.129 g of tributyltin trifluoromethanesulfonate (0.293 mmol) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 2 h , then allowed to slowly warm to ambient temperature. Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ 6 mL). The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography (2% EtOAc/hexanes) to afford $0.068 \mathrm{~g}(80 \%)$ of $\mathbf{8 6}$ as a clear colorless oil: $[\alpha]_{\mathrm{D}}=-72\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3039,2980,2931,2241,1706,1369,1282,1160,1074,912,732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.92-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dtd}, J=$ $3.6,8.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=7.0,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=6.9,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}$, $J=6.9,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.53(\mathrm{ddd}, J=4.5$, $9.7,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{ddd}, J=3.1,8.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.6,152.5,127.4,125.9,83.3,82.9,75.9,70.1,66.1,51.6$, 42.1, 30.8, 30.0, 28.0, 26.0, 24.6, 19.6; EI-MS m/z $321\left(\mathrm{M}^{+}+\mathrm{H}\right), 265,181,163,123,105,57$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1885$, found 343. 1900.
 (4S)-(tert-Butyldiphenylsiloxymethyl)oxetan-2-one (105): ${ }^{23 a}$ To a -50 5.7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.30 mL of DIPEA (1.7 mmol) followed by 0.14 mL of acetyl bromide (1.9 mmol). The resulting yellow solution was stirred at $-50^{\circ} \mathrm{C}$ whereupon 0.298 g of 2-tert-butyldiphenylsilyloxyacetaldehyde (1.0 mmol) was added dropwise via syringe. After maintaining at $-50^{\circ} \mathrm{C}$ for 12 h , the reaction mixture was diluted with 10 mL of pentane, filtered through silica gel ($30 \% \mathrm{EtOAc} /$ hexanes), and concentrated. The resulting residue was purified by silica gel chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to provide 0.30 g of $\mathbf{1 0 5}(92 \%)$ as a white crystalline solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 6 \mathrm{H}), 4.64-$ $4.57(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=2.6,12.4 \mathrm{~Hz} .1 \mathrm{H}), 3.84(\mathrm{dd}, J=3.1,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$. Separation of the enantiomers by chiral HPLC ($90 / 10$ hexanes $/ i \operatorname{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{r}(\min)}=7.63$ $(R), 13.27(S)$ determined the enantiomeric excess to be 89%.

methoxymethylamine hydrochloride (14 mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 14 mL of dimethylaluminum chloride (14 mmol) as a 1 M solution in hexanes. The solution was allowed to warm to ambient temperature and maintained for 1 h . To this suspension was added a solution of 2.39 g of $105(7.0 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The reaction mixture was maintained for 2 h at ambient temperature, and then quenched with 42 mL of pH 8 hydrogen phosphate buffer. The reaction was filtered through a pad of Celite to remove the solid aluminum salts. The resulting biphasic solution was separated, and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude oil was purified by silica gel chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) to provide 2.64 g (94\%) of the β-hydroxy amide as a white solid: $[\alpha]_{\mathrm{D}}=-16\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3441.6, 3069, 3046, 2954, 2931, 2891, 2855, 1640, 1465, 1426, 1386, 1184, 1109, 998, 828, 741, 705, $610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ (dd, $J=1.8,5.0 \mathrm{~Hz}, 4 \mathrm{H}$), $7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=4.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (dd, $J=5.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=8.3$, 15.2 Hz, 1H), $1.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.1,135.4,133.2,129.7,127.7$, $68.6,67.0,61.1,53.4,34.9,31.7,26.8,19.2$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Si}: 344.1322$, found 344.1318.
 4-(tert-Butyldiphenylsilanyloxy)- N-methoxy-(3S)-(4-methoxybenzyloxy)- N-methylbutyramide (107): To a solution of 0.511 g of β-hydroxy amide 106 (1.27 mmol) in 2.5 mL of diethyl ether at ambient temperature was added 0.790 mL of p-methoxybenzyltrichloroacetimidate (3.82 mmol) and 0.010 mL of trifluoromethanesulfonic acid via syringe. After stirring for 30 min , saturated
aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added to the reaction. The layers were separated, and the aqueous layer was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by silica gel chromatography ($20 \% \mathrm{EtOAc} /$ hexane). Elution of the title compound from the silica column was coincident with trichloroacetamide. The product was triturated from the white solid using pentane $(5 \times 10 \mathrm{~mL})$. The combined pentane washings were concentrated to provide $\mathbf{1 0 7}$ as a clear, colorless oil in 77% yield: $[\alpha]_{\mathrm{D}}=-9.5\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3006, 2954, 2931, 2851, 1707, 1655, 1509, 1461, 1422, 1244, 1109, 820, 756, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{dd}, J=1.1,7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=5.7,16.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=5.2,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=5.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 172.4,156.8,135.6,133.3,130.9,129.7,129.4,127.7$, 113.6, 76.5, 72.3, 65.6, 61.2, 55.2, 34.7, 32.0, 26.8, 19.2; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}$: 464.1893, found 464.1893.

$\mathrm{mmol})$ in 1.0 mL of THF was added 0.129 mL of DIBAL-H $(0.129 \mathrm{mmol})$ as a 1 M solution in hexanes. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 45 min , the reaction was poured into 5 mL of a $0{ }^{\circ} \mathrm{C}$ mixture of $1: 1$ diethyl ether and 1 M HCl . The resulting biphasic mixture was stirred at ambient temperature for 30 min and the organic layer was separated and washed with brine $(1 \times 5 \mathrm{~mL})$. The ether layer was dried over MgSO_{4}, filtered, and concentrated. Purification of the crude product by silica gel chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) provided $0.044 \mathrm{~g}(80 \%)$ of the
aldehyde as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=-20\left(с 0.7, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3065, 3050, 2994, 2954, 2931, 2855, 2725, 1723, 1608, 1584, 1513, 1469, 1422, 1248, 1113, 1034, 820, 737, 705 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.78(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=1.7,6.1 \mathrm{~Hz}, 4 \mathrm{H})$, $7.43-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=11.1,34.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.03(\mathrm{~m}, ~ J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{dd}, J=4.9,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=5.7$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=1.9,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.4$, $159.4,135.7,133.2,130.3,130.0,129.5,127.9,113.9,74.6,71.9,65.3,55.3,46.4,26.9,19.3 ;$ EI-MS (70 eV) $419\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CHO}\right), 405\left(\mathrm{M}^{+}-\mathrm{Bu}\right), 391,333,327,309,267,241,199,181,163$, 135, 121, 105.
 6-(tert-Butyldiphenylsilanyloxy)-(5S)-(4-methoxybenzyloxy)hex-2-enoic acid ethyl ester: To a $0^{\circ} \mathrm{C}$ suspension containing 1.06 g of methyltriphenylphosphonium bromide (3.0 mmol) in 5 mL of THF was added 4.53 mL of KHMDS $(2.27 \mathrm{mmol})$ as a 0.5 M solution in toluene dropwise via syringe. A solution of 0.700 g of the aldehyde $\mathbf{1 0 8}(1.5 \mathrm{mmol})$ in 5 mL of THF was transferred via cannula to the orange Wittig reagent at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to ambient temperature and maintained for 1 h. The reaction was then concentrated and purified by silica gel chromatography $(25 \%$ EtOAc/hexanes) to provide $0.758 \mathrm{~g}(95 \%)$ of the E-enoate ester as a colorless oil: $[\alpha]_{\mathrm{D}}=-16(\mathrm{c}$ $2.5, \mathrm{CHCl}_{3}$); IR (thin film): $3069,3050,2954,2931,2851,1719,1655,1612,1584,1513,1469$, 1430, 1362, 1299, 1248, 1172, 1113, 1034, 820, 741, 705, $610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.56-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dt}, J=7.9$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=11.4,31.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.20(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=5.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{dd}$,
$J=6.9,14.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 166.5,159.3,145.5,135.7,133.4,133.3,130.5,129.9,129.5,127.9,123.6,113.8,78.1,71.8$, $65.4,60.3,55.3,34.8,26.9,19.3,14.4$; EI-MS (70 eV) $475\left(\mathrm{M}^{+}-{ }^{-} \mathrm{Bu}\right), 429,337$ (475-OPMB), 309, 267, 241, 227, 223, 199, 121 (PMB).

6-(tert-Butyldiphenylsiloxy)-(5S)-(4-methoxybenzyloxy)hex-2-en-

1-ol: To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.328 g of the E-enoate ester $(0.617$ mmol) in 3.1 mL of THF was added 1.3 mL of a 1.0 M solution of DIBAL-H in hexanes $(1.29$ mmol). The reaction was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$ over a 90 min period. The reaction mixture was poured into a $0{ }^{\circ} \mathrm{C}$ mixture containing 10 mL of diethyl ether and 10 mL of 1 M HCl and was maintained for 15 min . The organic and aqueous layers were separated, and the aqueous layer was saturated with brine and washed with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by silica gel chromatography $(15 \% \mathrm{EtOAc} /$ hexanes $)$ to provide $0.267 \mathrm{~g}(89 \%)$ of the allylic alcohol as a colorless oil: $[\alpha]_{\mathrm{D}}=-13\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3418, 3065, 3046, 2954, 2931, 2851, 1612, 1509, 1461, 1422, 1244, 1109, 1030, 820, 741, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.66-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=11.3,34.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{dd}, J=4.3,9.4 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=5.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=5.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddd}, J=6.6,9.2,9.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2,135.8,135.7,133.6,133.5,131.7,130.9,129.9,129.8,129.6,129.5,128.7,127.8,113.8$, 79.0, 71.6, 65.5, 63.6, 55.3, 34.4, 27.0, 19.3; EI-MS (70 eV) $433\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}\right), 415\left(433-\mathrm{H}_{2} \mathrm{O}\right), 333$, 295, 279, 241, 223, 211, 199, 181, 163, 135, 121, 105.

6-tert-Butyldiphenylsiloxy-(5S)-(4-methoxybenzyloxy)-hex-2enyl triphenylmethyl ether (109): To a solution containing 0.181 mL of $2,6-\mathrm{lutidine}(1.56 \mathrm{mmol}), 0.289 \mathrm{~g}$ of chlorotriphenylmethane (1.04 mmol), and 0.383 g of tetra-n-butylammonium iodide $(1.04 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a 1 mL methylene chloride solution containing 0.508 g of the allylic alcohol (1.04 mmol) via syringe at ambient temperature. The golden-brown reaction solution was maintained at ambient temperature for 5.5 h. The reaction mixture was then concentrated and purified by silica gel chromatography (10% EtOAc/hexanes) to provide 0.678 g (92%) of $\mathbf{1 0 9}$ as a clear, colorless oil: IR (thin film): 3057, 3026, 2955, 2927, 2856, 1960, 1881, 1818, 1616, 1509, 1450, 1426, 1386, 1362, 1299, 1248, $1176,1109,1054,1034,820,760,744,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.74(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 15 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.88-5.65(\mathrm{~m}$, $2 \mathrm{H}), 4.58(\mathrm{dd}, J=11.3,26.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.43 (ddd, $J=6.4,9.63,10.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.2,144.6$, $135.8,133.7,131.1,130.0,129.8,129.5,129.4,128.8,128.6,128.0,127.9,127.1,113.9,86.9$, 79.3, 71.8, 65.7, 65.0, 55.4, 34.9, 27.0, 19.4;

(2S)-(4-Methoxybenzyloxy)-6-(triphenylmethyloxy)hex-4-en-1-ol: To a solution of 0.100 g of $\mathbf{1 0 9}(0.137 \mathrm{mmols})$ in 1.4 mL of THF was added 0.164 mL of TBAF (0.164 mmol) as a 1 M solution in THF via syringe at ambient temperature. The reaction was maintained for 2 h , then added directly to a silica gel column and eluted with 30% EtOAc/hexanes. The alcohol was isolated as a colorless oil in 99% yield: $[\alpha]_{\mathrm{D}}=+8.0(0.8$,
CHCl_{3}); IR (thin film): 3434, 3081, 3061, 3030, 2931, 2867, 1640, 1612, 1513, 1446, 1244, 1172, 1030, 824, 745, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.35-$ $7.23(\mathrm{~m}, 11 \mathrm{H}), 6.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.95-5.65(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=11.1,41.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{ddd}, J=6.5,9.8,13.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,144.3,130.5,129.9,129.6,128.8,128.0,127.6,127.1,114.1,86.9$, 79.1, $71.5,64.8,64.3,55.4,34.2$; HRMS calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{O}_{4}: 493.2373$, found 493.2379.
 ambient temperature was added 0.094 g of Dess-Martin periodinane $(0.22 \mathrm{mmol})$ portionwise. The resulting turbid white mixture was stirred 30 min . Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with brine (15 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 0.124 g (94%) of $\mathbf{8 9}$ as a colorless oil: $[\alpha]_{\mathrm{D}}=-8.3\left(0.8, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3550,3085,3058,3032$, 2932, 2860, 1732, 1612, 1513, 1490, 1448, 1248, 1174, 1035, 763, 738, $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.67(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 7.42-7.18(\mathrm{~m}, 11 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.90-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=11.3,21.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.88-3.73(\mathrm{~m}, 4 \mathrm{H}), 3.61(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.5,144.3,134.9,130.8,129.9$, 129.7, 128.8, 128.0, 128.0, 127.3, 127.1, 125.9, 114.1, 87.0, 82.8, 72.4, 64.7, 55.4, 33.6, 29.9. FAB-MS m/z $515[\mathrm{M}+\mathrm{Na}]^{+}$.
 (1E)-(3S)-5-Methyl-1-tributylstannylhexa-1,5-dien-3-ol (111): То а $78{ }^{\circ} \mathrm{C}$ solution of 0.119 g of allyl-(-)- $-\mathrm{Ipc}_{2} \mathrm{~B} \mathbf{1 1 0}(0.348 \mathrm{mmol})$ in 1.5 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added 0.100 g of β-tributylstannyl acrolein $(0.290 \mathrm{mmol})$ slowly dropwise. The resulting colorless solution was maintained for 1 h at $-78^{\circ} \mathrm{C}$ and then slowly warmed to $0{ }^{\circ} \mathrm{C}$. An aqueous solution of $3 \mathrm{~N} \mathrm{NaOH}(0.3 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.3 \mathrm{~mL})$ were added, the colorless, biphasic solution was then stirred for 2 h at ambient temperature. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($2 \% \mathrm{EtOAc} /$ hexanes) to afford $0.112 \mathrm{~g}(96 \%)$ of the homoallylic alcohol as a colorless oil: $[\alpha]_{\mathrm{D}}=-9.3\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$; IR (thin film): 3365, 2957, 2926, 2871, 2853, 1460, 1376, 1073, $989,889 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.12(\mathrm{dd}, J=1.1,19.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.04(\mathrm{dd}, J=5.1,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=1.2,79.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.23(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.24 (m, 2H), $1.93(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.34(\mathrm{~m}, 6 \mathrm{H})$, $0.94-0.89(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.1,142.2,127.6,113.6,72.4,46.0,30.0$, 27.2, 22.4, 13.6, 9.4; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OSn}\left[\mathrm{M}-{ }^{n} \mathrm{Bu}\right]^{+}: 345.1240$, found 345.1251.

(1E)-(3S)-Benzoic acid 3-methyl-1-(2-tributylstannylvinyl)-but-3-enyl ester (111a): To a $25^{\circ} \mathrm{C}$ solution of 0.092 g of the homoallylic alcohol $111(0.23 \mathrm{mmol})$ in 0.1 mL pyridine was added 0.03 mL of benzoyl chloride $(0.28 \mathrm{mmol})$ and 0.001 g of DMAP (0.01 mmol) sequentially. The resulting white suspension was maintained for 20 min at ambient temperature. The reaction mixture was quenched with saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 6$ mL). The combined organics were washed with brine (4 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel (2%
$\mathrm{EtOAc} / \mathrm{Hex})$ to afford $0.113 \mathrm{~g}(97 \%)$ of the ester as a colorless oil: $[\alpha]_{\mathrm{D}}=-9.2\left(c 7.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2956, 2926, 2871, 2853, 1721, 1271, 1111, $710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J$ $=5.5,19.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.53(\mathrm{~m}$, $6 \mathrm{H}), 1.33(\mathrm{~m}, 7 \mathrm{H}), 0.91(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 165.7, 145.3, 141.1, 132.7, $130.6,129.6,128.3,113.6,75.3,43.1,29.0,27.6,27.2,22.6,13.7,9.4$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Sn}\left[\mathrm{M}^{-}{ }^{n} \mathrm{Bu}\right]^{+}: 449.1503$, found 449.1484. Separation of the enantiomers by chiral HPLC [Daicel Chiracel ${ }^{\text {TM }}$ OD-H colume, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, 0.5 \%{ }^{i} \operatorname{PrOH}, 99.5 \%$ hexane, T_{r} : $9.7 \mathrm{~min}(R), 10.8 \mathrm{~min}(S)]$ provided the enantiomer ratio: $S: R=98: 1(98 \% \mathrm{ee})$.

(1E, 3S)-3-Allyloxy-5-methylhexa-1,5-dienyltributylstannane (112):
To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.662 g of the homoallylic alcohol 111 (1.65 $\mathrm{SnBu}_{3} \mathrm{mmol}$) in 10 mL of THF was added 7.90 mL of 0.5 M toluene solution of KHMDS (1.82 mmol) slowly dropwise. After $15 \mathrm{~min}, 0.94 \mathrm{~mL}$ of allyl bromide (4.95 mmol) was added into the pale yellow reaction mixture. The resulting solution was slowly warmed to ambient temperature and maintained for 2 h . The reaction was quenched with brine and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 12 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered, and concentrated. Purification by flash chromatography on silica gel (2\% EtOAc/hexanes) afforded $0.699 \mathrm{~g}(97 \%)$ of the title compound 112 as a colorless oil: $[\alpha]_{\mathrm{D}}=-38$ (c 2.3, CHCl_{3}); IR (thin film): 3077, 2957, 2926, 2871, 2852, 1460, 1077, 992, 920, $888 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 6.10(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=7.2,19.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=1.6,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.06(\mathrm{dd}, J=5.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{dd} J=7.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=$
$6.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.96-0.82(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.4,142.2,135.1,131.2,116.5,112.6,82.0,69.1,44.0,29.1,27.2$, 22.9, 13.7, 9.4; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{OSn}\left[\mathrm{M}-{ }^{n} \mathrm{Bu}\right]^{+}: 377.1580$, found 377.1597.

Tributyl[(E)-2-[(2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl]-
vinyl]stannane (114): To a brown solution of 0.081 g of freshly prepared Schrock's catalyst (0.11 mmol) in 11 mL of degassed toluene was added 0.661 g of $1 \mathbf{1 2}$ (1.5 mmol) at ambient temperature. After maintaining the reaction for 25 min , the resulting dark solution was added another portion of 0.081 g of Schrock's catalyst (0.11 mmol). After 30 min , the reaction was exposed to air for 2 h . The reaction mixture was concentrated to provide the crude product, which was purified by flash chromatography on silica gel ($0.6 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $0.465 \mathrm{~g}(81 \%)$ of $\mathbf{1 1 4}$ as a brown oil: $[\alpha]_{\mathrm{D}}=-73\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2957, 2926, 2872, 2851, 1460, 1378, 1123, $988 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.25(\mathrm{~d}, J=19.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=4.8,19.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.91(\mathrm{~m}$, $2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3,131.5,128.5,119.6,76.4,65.6,35.5,29.0,27.2,22.9,13.6,9.3 ;$ HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{OSn}\left[\mathrm{M}-{ }^{n} \mathrm{Bu}\right]^{+}: 357.1240$, found 357.1248.

(2S)-2-[(E)-2-Iodovinyl]-4-methyl-3,6-dihydro-2H-pyran (115): To a $-20^{\circ} \mathrm{C}$ solution of 0.226 g of $\mathbf{1 1 4}(0.55 \mathrm{mmol})$ in 10 mL of THF was added a mixture of 0.123 g of NIS $(0.55 \mathrm{mmol})$ and 0.8 mL of THF slowly dropwise. The resulting yellow solution was maintained for 30 min at $-20^{\circ} \mathrm{C}$, at which point brine was added (6 mL) and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organics were washed with saturated
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(8 \mathrm{~mL})$, dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel $\left(10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /pentane $)$ to afford $0.131 \mathrm{~g}(96 \%)$ of the title compound 115 as a yellow oil: $[\alpha]_{\mathrm{D}}=-107\left(c 0.76, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3026, 2963, 2908, 2823, 1381, 1368, 1124, 1059, 1013, 667, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.61$ (dd, $J=$ $5.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=0.9,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9,131.0,119.7,78.0,75.5,65.6$, 35.0, 23.0; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{OI}$: 249.9855 , found 249.9860 .

(1E,6E)(3S,4S)-4-(4-Methoxybenzyloxy)-1-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)-8-trityloxy-octa-1,6-dien-3-ol (117): To a mixture of 0.173 g of magnesium powder (7.1 mmol) in 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature was added 0.57 mL of 1,2-dibromoethane (6.7 mmol) in 1.70 mL of benzene slowly dropwise. After heat generation and gas evolution ceased, the slightly turbid gray solution was maintained for an additional 30 min then allowed to stand for 1.5 h without stirring. The molarity of magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$ was approximately 1.0 M.

To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.104 g of $\mathbf{1 1 5}(0.42 \mathrm{mmol})$ in 3.5 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added 0.60 mL of 1.39 M pentane solution of ${ }^{t} \mathrm{BuLi}(0.83 \mathrm{mmol})$ slowly dropwise. After maintaining the pale yellow reaction at $-78^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 1.00 \mathrm{~mL}$ of 1.0 M ethereal magnesium bromide (1.0 mmol) was added dropwise. The diethyl ether was pumped off completely under reduced pressure at $78{ }^{\circ} \mathrm{C}$ and 6.0 mL of precooled $\left(-78^{\circ} \mathrm{C}\right) \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added via cannula to dissolve the white residue (116). To this clear colorless solution, 0.158 g of $\mathbf{8 9}(0.33 \mathrm{mmol})$ in 0.7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. After stirring for 20 min at $-78^{\circ} \mathrm{C}$, water $(1.5 \mathrm{~mL})$ and brine $(2.5 \mathrm{~mL})$
were added to quench the reaction. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics was dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($35 \% \mathrm{EtOAc} /$ hexanes) to afford $1.91 \mathrm{~g}(96 \%)$ of 117 as a colorless oil: $[\alpha]_{\mathrm{D}}=-32\left(c 3.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3436, 3013, 2928, 2856, 1513, 1249, 1216, 1034, 757, $705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.38-$ $7.26(\mathrm{~m}, 11 \mathrm{H}), 6.91(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.97-5.78(\mathrm{~m}, 4 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=10.9,44.7$ Hz, 2H), 4.25 (s, 3H), 4.14 (m, 1H), 3.78 (s, 3H), 3.69 (d, J = $4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}$, $1 \mathrm{H}), 2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, .6 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 159.1,144.1,133.1,131.2,130.0,129.7,129.6,129.4,128.4,127.6$, $127.5,126.8,119.5,113.7,86.6,81.2,73.1,72.1,65.4,64.5,60.2,55.0,35.5,33.4,22.8,20.9$, 14.0; FAB-MS e/v $639[\mathrm{M}+\mathrm{Na}]^{+}$. Separation of the diastereomers by HPLC [Zorbax column, flow rate $0.3 \mathrm{~mL} / \mathrm{min}, 3.5 \%{ }^{i} \mathrm{PrOH}, 96.5 \%$ hexane, $\mathrm{T}_{\mathrm{r}}: 65.2(S), 67.8(R)$] provided the diastereomer ratio: $S: R=9: 1$.

tert-Butyl-\{(4E)(1S, 2S)-2-(4-methoxy-benzyloxy)-1-[(1E)-2-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)-vinyl]-6-trityloxyhex-4-enyloxy\}dimethylsilane (118): To a $0{ }^{\circ} \mathrm{C}$
solution of 0.682 g of $\mathbf{1 1 7}(1.1 \mathrm{mmol})$ and 0.238 g of imidazole $(3.4 \mathrm{mmol})$ in 5 mL of DMF was added 0.513 g of $\mathrm{TBSCl}(3.4 \mathrm{mmol})$. After maintaining the reaction at $25^{\circ} \mathrm{C}$ for 4.5 h , the resulting yellow solution was treated with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organics were washed with brine (20 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel $(10 \% \mathrm{EtOAc} / \mathrm{Hex})$ to afford $0.799 \mathrm{~g}(98 \%)$ of the
silyl ether 118 as a yellow oil: $[\alpha]_{\mathrm{D}}=-52\left(c 2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3058, 3005, 2954, 2929, $2855,1513,1448,1249,1105,1036,836,775,758,706,632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: § 7.65-7.62 (m, 6H), 7.49-7.37 (m, 11H), $6.96(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05-5.77(\mathrm{~m}, 4 \mathrm{H}), 5.58(\mathrm{~s}$, $1 \mathrm{H}), 4.73(\mathrm{dd}, J=11.3,19.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.90$ $(\mathrm{s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.2(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,144.3,131.6,131.4$, $130.8,130.2129 .6,129.4128 .6,127.7,126.8,119.7,113.7,86.6,82.1,73.6,73.1,72.5,65.5$, $64.8,55.2,35.7,33.2,25.9,25.6,23.0,18.1,-4.5,-4.9$; FAB-MS e/v $753[\mathrm{M}+\mathrm{Na}]^{+}$.

(2E,7E)(5S,6S)-6-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-8-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)octa-2,7-dien-1-ol (119): To a $0{ }^{\circ} \mathrm{C}$ solution of

 0.440 g of the silyl ether $118(0.61 \mathrm{mmol})$ in 28.0 mL of nitromethane was added 3.9 mL of formic acid slowly dropwise. The resulting yellow solution was stirred for another 20 min after the completed addition. 40 mL of cold saturated NaHCO_{3} and then 30 mL of EtOAc were added. The aqueous layer was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organics were washed with brine (40 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($35 \% \mathrm{EtOAc} / \mathrm{Hex}$) to afford $0.250 \mathrm{~g}(86 \%)$ of the allylic alcohol 119 as a yellow oil: $[\alpha]_{\mathrm{D}}=-83\left(c 4.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3442, 2999, 2929, 2856, 1513, 1249, 1098, 1037, 972, 836, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=$ $11.5,29.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~m}$, $1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.2,131.5,131.4,130.9,130.8,130.2,130.1,129.5,119.7,113.6,81.8,73.5$, $73.1,72.3,65.6,63.8,55.3,35.7,32.8,25.9,23.0,18.1,-4.5,-4.9$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}$ $\left[M-{ }^{t} B u\right]^{+}: 431.2253$, found 431.2275.

$(2 E, 7 E)(5 S, 6 S)$-6-(tert-Butyldimethylsilyloxy)-5-(4-methoxybenzyloxy)-8-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)octa-2,7-dienal (85): To a solution of 0.117 g of the allylic alcohol (0.16 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.139 g of Dess-Martin periodinane (0.33 mmol) portionwise at ambient temperature. The resulting turbid white mixture was stirred 30 min, then quenched with 8 mL of saturated NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 15 \mathrm{~mL}$) and the combined organics were washed with brine (15 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel $(15 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $0.117 \mathrm{~g}(100 \%)$ of $\mathbf{8 5}$ as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-86(c 3.9$, CHCl_{3}); IR (thin film): 2955, 2930, 2887, 2856, 1692, 1513, 1250, 1111, 1036, 837, $778 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.89(\mathrm{dt}, J=7.3,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=7.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{t}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.56(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=11.5,41.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~m}$, $1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 194.0,159.4,156.6,134.1,132.2,131.3,130.0,129.7,129.0,119.7,113.8,80.5,73.3$, $72.4,65.6,55.3,35.7,33.4,25.8,22.9,18.1,-4.6,-5.0$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}-\mathrm{Bu}]^{+}$: 429.2097, found 429.2077.

$4-\{(2 R, 6 R)-6-[(7 E, 12 E)(2 R, 6 S, 10 S, 11 S)-6,11-B i s-$
(tert-butyldimethylsilyloxy)-10-(4-
methoxybenzyloxy)-2-methyl-13-((2S)-4-methyl-

3,6-dihydro-2H-pyran-2-yl)-4-oxo-trideca-7,12-

dienyll-5,6-dihydro-2H-pyran-2-yl\}but-2-ynoic acid tert-butyl ester (122): To a white suspension of 0.800 g of disulfonamide (1.4 mmol) in 71 mL of 1,2 -dichloroethane at $0{ }^{\circ} \mathrm{C}$ was added 2.75 mL of a $1.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of boron tribromide (2.8 mmol) slowly dropwise via syringe. After 5 min , the reaction mixture was warmed to $50^{\circ} \mathrm{C}$ and maintained for 8 h . The resulting clear yellow solution was evaporated under reduced pressure. The yellow residue was dissolved in toluene $(50 \mathrm{~mL})$ and then the clear yellow solution was evaporated again. A procedure of dissolution and subsequent evaporation repeated two times until the white powder formed.

To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.117 g of the prepared boron reagent $\mathbf{1 2 1 f}(0.17 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.056 g of $\mathbf{8 6}(0.17 \mathrm{mmol})$ dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly. After maintaining the resulting colorless solution at $-78^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 0.072 \mathrm{~g}$ of $\mathbf{8 5}(0.15$ mmol) dissolved in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly. After $1 \mathrm{~h}, 1 \mathrm{~mL}$ of MeOH and 5 mL of phosphate buffer (pH 7) were injected sequentially. The reaction mixture was allowed to warm to ambient temperature and maintained for an additional 30 min . The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 9 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered, and concentrated to provide the crude alcohol 120.

To a $0{ }^{\circ} \mathrm{C}$ solution of the resulting yellow residue $\mathbf{1 2 0}$ and 0.059 g of imidazole (1.1 $\mathrm{mmol})$ in 4 mL of DMF was added 0.126 g of $\mathrm{TBSCl}(1.0 \mathrm{mmol})$. After stirring the reaction for 7 h at ambient temperature, the resulting yellow solution was added 10 mL of saturated NaHCO_{3}
and 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine (20 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel $(15 \%$ $\mathrm{EtOAc} /$ hexanes $)$ to afford $0.141 \mathrm{~g}(89 \%)$ of the silyl protected aldol adduct $\mathbf{1 2 2}$ as a yellow oil: $[\alpha]_{\mathrm{D}}=-82$ (c 2.1, CHCl_{3}); IR (thin film): 2955, 2929, 2856, 2239, 1708, 1253, 1704, 837, 777 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.93-$ $5.61(\mathrm{~m}, 5 \mathrm{H}), 5.48-5.41(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.44(\mathrm{~m}, 3 \mathrm{H}), 4.39(\mathrm{bt}, 1 \mathrm{H}), 4.27(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{s}, 2 \mathrm{H}), 4.06-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 3 \mathrm{H})$, 2.38-2.28(m, 5.5H), 2.03-1.92(m, 6.5H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.7,159.2,152.7$, $134.3,131.6,131.5,130.9,130.1,129.5,128.1,127.5,125.9,119.8,113.8,83.2,82.4,76.2,73.6$, $72.8,72.5,70.2,70.0,66.2,65.7,55.4,52.4,51.5,42.1,35.8,32.7,30.9,28.1,26.0,25.3,24.8$, 23.1, 19.7, 18.7, 18.3, 18.2, $-4.1,-4.4,-4.8,-4.8$; HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{84} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 943.5552, found 943.5579.

$4-\{(2 R, 6 R)-6-[(7 E, 12 E)(2 R, 6 S, 10 S, 11 S)-6,11-$ Bis(tert-butyldimethylsilyloxy)-10-hydroxy-2-methyl-13-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)-4-oxotrideca-7,12-dienyl]-5,6-dihydro-2H-
pyran-2-yl\}but-2-ynoic acid (123): To a solution of 0.063 g of the silyl protected aldol adduct 122 (0.069 mmol) in 12 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added 6 mL of a pH 7 phosphate buffer followed by 0.134 g of $\mathrm{DDQ}(0.48 \mathrm{mmol})$ portionwise. The reaction was maintained for 4 h then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The separated organic layer was washed
with saturated $\mathrm{NaHCO}_{3}(2 \times 15 \mathrm{~mL})$ until it was colorless. The extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give yellow oil, which was then dissolved in 8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this yellow solution, 0.34 mL of 2, 6-di-tert-butylpyridine (1.4 mmol) and 0.15 mL of trimethylsilyl trifluoromethanesulfonate $(0.7 \mathrm{mmol})$ were added sequentially at $-50{ }^{\circ} \mathrm{C}$. The reaction mixture was then warmed up to $0{ }^{\circ} \mathrm{C}$ and stirred for 2.5 h . A pH 5 buffer solution (2 mL) was added at $0{ }^{\circ} \mathrm{C}$ and the reaction was stirred vigorously for an additional 1 h . The separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organics were washed with brine (30 mL), dried over MgSO_{4}, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel $(20 \% \mathrm{EtOAc} / \mathrm{Hex}$ to $15 \% \mathrm{EtOH} / \mathrm{EtOAc})$ to afford $0.050 \mathrm{~g}(94 \%)$ of $\mathbf{1 2 3}$ as a yellow oil: $[\alpha]_{\mathrm{D}}=-70\left(c 2.5, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3395, 3035, 2953, 2929, 2852, 2237, 1713, 1470, 1359, 1252, 1091, 837, $778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.95-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.46(\mathrm{~m}, 5 \mathrm{H}), 5.42(\mathrm{brs}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~m}$, 1H), 4.19 (brs, 2H), 4.13-3.95 (m, 3H), $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.54-$ 2.37 (m, 2H), 2.35-2.20(m, 2H), 2.13-1.88 (m, 6H), 1.71 (s, 3H), 1.65-1.50 (m, 1H), 1.36-1.20 $(\mathrm{m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04$ (brs, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 209.5,154.8,135.3,134.3,133.6,131.2,130.5,127.4$, $126.3,125.6,119.5,86.3,75.7,74.5,73.4,70.4,69.4,66.0,65.4,52.3,50.3,42.3,35.4,35.1$, $31.0,25.9,24.3,22.9,20.0,18.1,0.44,-3.9,-4.3,-4.8,-5.0$; HRMS calcd for $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 767.4370$, found 767.4345.

(9E,19Z)(1R, 7S, 11S, 15R, 17R)-11-(tert-Butyldimethylsilyloxy)-7-[(1S)-1-(tert-butyl-
dimethylsilyloxy)-3-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)allyl]-15-methyl-6,21-dioxabicyclo[15.3.1]henicosa-9,19-dien-3-yne-5,13-dione (125): To a $0^{\circ} \mathrm{C}$ solution of 0.0228 g of 4-pyrrolidinopyridine $(0.15 \mathrm{mmol})$ and 0.050 mL of DIPEA $(0.30 \mathrm{mmol})$ in 5.8 mL of toluene was added 0.024 mL of 2,4,6-trichlorobenzoyl chloride (0.15 mmol) slowly dropwise. The resulting pale yellow suspension was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$ then slowly treated with 0.0056 g of seco acid $123(0.077 \mathrm{mmol})$ in 2.4 mL of toluene via syringe pump over 2 h . The pale yellow suspension was maintained for 16 h . The reaction was quenched with brine (5 mL) and the separated aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine (10 mL), dried over MgSO_{4}, filtered, and concentrated. Purification by flash chromatography on silica gel (15% EtOAc/hexanes) afforded 0.0051 g (93\%) of the title compound 125 as a yellow oil: $[\alpha]_{\mathrm{D}}=-67$ (c 2.2, CHCl_{3}); IR (thin film): 3033, 2956, 2929, 2856, 2237, 1713, 1471, 1361, 1250, 1094, 1067, $964,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $5.91-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{dd}, J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.65-5.51(\mathrm{~m}, 3 \mathrm{H}), 5.43(\mathrm{brs}, 1 \mathrm{H}), 4.95(\mathrm{ddd}$, $J=2.4,6.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{brd}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{brd}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.16(\mathrm{~m}$, $3 \mathrm{H}), 4.07(\mathrm{ddd}, J=3.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=11.1,17.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-$ $2.25(\mathrm{~m}, 5 \mathrm{H}), 2.20-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{dd}, J=10.1,12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.14(\mathrm{dd}, J=7.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.9,153.2,137.1,133.6,131.3$, $128.9,127.5,126.7,123.6,119.8,86.7,73.8,73.6,73.2,71.4,68.4,65.9,65.5,54.1,49.8,41.8$, 35.7, 31.6, 26.8, 25.9, 25.8, 23.9, 22.9, 22.6, 21.4, 18.1, 18.0, 14.1, 4.4, -4.4, -4.9, -5.2; ESIMS: 749.3 $\left(\mathrm{M}^{+} \mathrm{Na}\right)^{+}$; HRMS calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 749.4245$, found 749.4279.

(3Z, 9E, 19Z)(1R, 7S, 11S, 15R, 17R) - 11-(tert-Butyldimethylsilyloxy)-7-[(1S)-(tert-butyldimethylsilyloxy)-3-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl)allyll-15-methyl-6, 21-
dioxa-bicyclo[15.3.1]henicosa-3, 9, 19-triene-5, 13-dione (130): To a solution of 8.5 mg of $\mathbf{2 9}$ $(11.7 \mu \mathrm{~mol})$ in EtOAc $(3 \mathrm{~mL})$ and 1-hexene $(3 \mathrm{~mL})$ under H_{2} was added 0.014 mL of quinoline followed by 15 mg of Lindlar catalyst ($5 \% \mathrm{Pd}$ by wt.). The resulting black suspension was maintained for 1 h at ambient temperature, then filtered through Celite and concentrated. Purification by flash chromatography on silica gel (2\% EtOAc/hexanes) afforded 7.5 mg (88%) of 130 as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=-155\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2955, 2927, 2855, 1720, 1651, 1419, 1111, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.35$ (ddd, $J=4.1,9.6,11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90-5.77(\mathrm{~m}, 3 \mathrm{H}), 5.73-5.49(\mathrm{~m}, 4 \mathrm{H}), 5.43$ (brs, 1H), 4.86 (ddd, $J=2.1,6.0,11.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\operatorname{app~q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31,(\mathrm{brd}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{ddd}, J=$ $4.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=6.2,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=6.6,16.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{app} \mathrm{dq}, J=2.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.95-1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.51($ pentet, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{ddd}, J=3.6,6.1,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.2,165.3,148.4,135.8,132.9,131.3,129.0,128.8,125.7,124.9$, $121.4,119.8,75.1,73.3,73.2,73.0,68.6,66.9,65.5,51.8,51.3,42.5,35.7,33.6,31.6,31.3,28.7$, $25.8,25.7,22.9,21.0,18.1,18.0,-4.5(2 \mathrm{C}),-4.9,-5.0$; HRMS m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{K}]^{+}: 767.4141$, found 767.4158 .

(3Z, 9E, 19Z)(1R, 7S, 11S, 15R, 17R)-11-(tert-Butyldimethylsilyloxy)-7-[(1S)-(tert-butyldimethylsilyloxy)-3-((2S)-4-methyl-3,6-dihydro-2H-pyran-2-yl-)-allyll-15-methyl-13-
methylene-6, 21-dioxa-bicyclo[15.3.1]-henicosa-3,9,19-trien-5-one (131): To a suspension of 0.365 g of $\operatorname{zinc}(5.58 \mathrm{mmol})$ and 0.025 g of lead (II) iodide $(0.054 \mathrm{mmol})$ in THF (5 mL) was added 0.250 mL of $\mathrm{CH}_{2} \mathrm{I}_{2}(3.10 \mathrm{mmol})$. The resulting pale yellow suspension was maintained for 30 min at ambient temperature, cooled to $0^{\circ} \mathrm{C}$, then treated with 0.25 mL of a 1.0 M solution of TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{mmol})$. The resulting dark brown suspension was warmed to ambient temperature and maintained for an additional 30 min . A $0^{\circ} \mathrm{C}$ solution of $\mathbf{1 3 0} \mathrm{in} \mathrm{THF}(1 \mathrm{~mL})$ was then treated with the previously described suspension until the starting ketone was completely consumed as observed by TLC. The reaction was quenched with a $1: 1$ mixture of saturated aqueous NaHCO_{3} and brine. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organics were washed with brine, dried over NaSO_{4}, filtered, and concentrated. Purification by flash chromatography on silica gel (5\% EtOAc/hexanes) afforded 9.1 mg (85%) of 131 as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=-118\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2955, 2928, 2856, 1723, 1074, 836, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.32$ (ddd, $\left.J=4.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.91-5.82(\mathrm{~m}, 2 \mathrm{H}), 5.80-5.67(\mathrm{~m}, 3 \mathrm{H}), 5.53-5.49(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{brs}, 1 \mathrm{H}), 4.89(\mathrm{ddd}, J=2.4,6.1$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77($ brs, 1 H$), 4.75($ brs, 1 H$), 4.30-4.15(\mathrm{~m}, 5 \mathrm{H}), 4.06(\mathrm{ddd}, J=4.3,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, \mathrm{J}=10.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.02(\mathrm{~m}, 6 \mathrm{H}), 1.94-$ $1.82(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{ddd}, J=4.9,6.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88$ (brs, $21 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3$, $147.0,144.7,136.3,132.8,131.3,129.0,128.6,125.3,124.9,121.6,119.7,113.4,75.6,73.3$,
$73.1,72.2,72.1,67.0,65.5,45.0,44.7,43.1,35.7,33.8,31.6,31.4,28.8,25.9,25.7,22.9,20.3$, 18.2, 18.0, $-4.3,-4.5,-4.8,-4.9$; HRMS m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 749.4609$, found 749.4586.
 Desepoxylaulimalide (132): To a $0{ }^{\circ} \mathrm{C}$ solution of 13 mg of silyl ether $131(17.9 \mu \mathrm{~mol})$ in THF (2 mL) was added 1.0 mL of $\mathrm{HF} \bullet$ pyridine complex dropwise via syringe. The reaction was maintained for 1 h at ambient temperature, then poured into a $0{ }^{\circ} \mathrm{C}$ mixture of saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and EtOAc (30 mL). The mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organics were washed with brine, dried over NaSO_{4}, filtered, and concentrated. Purification of the crude product by flash chromatography on silica gel ($40 \% \mathrm{EtOAc} /$ hexanes) afforded $8.0 \mathrm{mg}(90 \%)$ of desepoxylaulimalide 132 as a pale yellow oil: $[\alpha]_{\mathrm{D}}=-171$ (c 0.7, CHCl_{3}); IR (thin film): 3415, 2924, 2853, 1720, 1415, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.36(\mathrm{ddd}, J=5.3,9.9,11.4$ Hz, 1H), 5.94-5.82 (m, 3H), 5.79-5.69 (m, 2H), 5.64-5.61 (m, 2H), 5.42 (brs, 1H), $5.00($ app q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{brs}, 2 \mathrm{H}), 4.23-4.12(\mathrm{~m}, 5 \mathrm{H}), 4.05(\mathrm{ddd}, J=4.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.84$ (m, 1H), 3.56 (dddd, $J=1.3,8.0,9.9,18 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.20-$ $2.08(\mathrm{~m}, 3 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.61$ $(\mathrm{m}, 1 \mathrm{H}), 1.14(\mathrm{ddd}, J=4.0,7.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 165.6,147.3,144.9,135.4,133.9,131.3,129.0,128.3,126.5,124.8,121.2,119.7$, $114.3,75.3,73.7,73.1,71.3,69.8,67.6,65.6,44.8,43.3,42.3,35.7,34.4,33.6,30.9,28.3,22.9$, 19.7; $\mathrm{HRMS} m / z$ calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 512.2879$, found 521.2880.

(-)-Laulimalide (1): To a $-20^{\circ} \mathrm{C}$ suspension of 0.130 g of powdered $4 \AA$ molecular sieves in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $5 \mu \mathrm{l}$ of $(+)$-DIPT ($22.5 \mu \mathrm{~mol}$) followed by $5 \mu \mathrm{~L}$ of titanium tetraisopropoxide (16.1
$\mu \mathrm{mol})$. The reaction mixture was maintained at $-20^{\circ} \mathrm{C}$ for 30 min , then treated with a 4.3 M solution of ${ }^{t} \mathrm{BuOOH}$ in toluene. The reaction was maintained for an additional 30 min at $-20^{\circ} \mathrm{C}$, then a solution of 7.8 mg of desepoxylaulimalide $\mathbf{1 3 2}(15.7 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise via syringe. The reaction was maintained for 2 h . A mixture of $4 \mathrm{~N} \mathrm{NaOH}(0.5 \mathrm{~mL})$ and brine (1.5 mL) was added, and the reaction was maintained for 90 min at $0^{\circ} \mathrm{C}$. The mixture was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine and filtered through Celite. The filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash chromatography on silica gel to provide a pale yellow oil that was then triturated with $5 \%{ }^{i} \mathrm{PrOH} /$ hexanes to afford $5.5 \mathrm{mg}(69 \%)$ of (-)-laulimalide (1) as a white solid: $[\alpha]_{\mathrm{D}}=-198\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3423, 3071, 3032, 2917, 2846, 1719, 1642, 1422, 1383, 1213, 1169, $894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.45(\mathrm{ddd}, J=3.8,10.1$, $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.83(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{dd}, \mathrm{J}=5.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.43$ (brs, $1 \mathrm{H}), 5.17(\mathrm{ddd}, J=1.6,5.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{brs}, 1 \mathrm{H}), 4.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.32(\mathrm{br} \mathrm{d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\operatorname{app~q}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=4.5,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79-3.72 (m, 2H), 3.08 (ddd, $J=3.3,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 2 \mathrm{H})$, $2.22(\operatorname{app~dq}, J=2.7,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{brd}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.85(\mathrm{~m}, 7 \mathrm{H}), 1.79(\mathrm{dd}, J$ $=10.0,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{brs}, 3 \mathrm{H}), 1.54-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 166.0,150.3,144.8,133.9,131.2,128.7,128.5,125.2$, $120.5,119.7,112.5,73.4,73.2,73.1,72.3,67.9,66.5,65.6,60.7,52.1,45.5,43.4,37.1,35.6$,
33.8, 33.3, 31.6, 29.7, 22.9, 20.7; HRMS m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 537.2828$, found 537.2816

CHAPTER 2. STUDIES TOWARD THE TOTAL SYNTHESIS OF AMPHIDINOLIDE B

2.1 BACKGROUND

2.1.1 Isolation

The amphidinolides represent an expansive and structurally diverse class of macrocyclic marine natural products that exhibit potentially useful biological activity. Their common origin is the cultured symbiotic dinoflagellate Amphidinium sp. isolated from the Okinawan flatworm of the genus Amphiscolops. ${ }^{67}$ Emerging as one of the most pharmacologically impressive constituents of this family of bioactive microagal metabolites is the highly functionalized, 26-membered macrolide, amphidinolide B_{1} (133).

Amphidinolide B_{1} (133) $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{H}$

Amphidinolide B_{2} (134) $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{H}$
Amphidinolide B_{3} (135) $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

Figure 18. The Amphidinolide B Group

[^37]Amphidinolide B_{1} (133) was originally isolated in 1987 by Kobayashi and coworkers from cultured dinoflagellates obtained from the Okinawan flatworm, Amphiscolops breviviridis. Its gross structure was elucidated by 2D-NMR analysis; however, its relative and absolute stereochemical assignments remained unclear. Shimizu et al. later disclosed the isolation of $\mathbf{1 3 3}$ along with two other isomeric macrolides, denoted amphidinolides $B_{2}(\mathbf{1 3 4})$ and $B_{3}(\mathbf{1 3 5}),{ }^{68}$ from a larger free-swimming dinoflagellate collected off the coast of the U.S. Virgin Islands in 1994. ${ }^{69}$ As a result of the efforts of both Shimizu and Kobayashi, the relative and absolute stereochemistry of the amphidinolide B group was established through X-ray diffraction studies ${ }^{69}$ as well as the independent synthesis and chiral HPLC analysis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ subunit, a known chemical degradation product of amphidinolide $\mathrm{B}_{1} .{ }^{70}$

2.1.2 Structural Features

Amphidinolide B_{1} (133) exhibits a high degree of molecular complexity with many key structural features. The molecule itself is a highly decorated 26 -membered macrolide that contains two distinct regions of functionality. The $\mathrm{C}_{14}-\mathrm{C}_{26}$ portion of $\mathbf{1 3 3}$ is highly oxygenated and includes a syn diol relationship, a tertiary carbinol stereocenter at C_{16} and a β-hydroxy carbonyl moiety while the $\mathrm{C}_{1}-\mathrm{C}_{13}$ portion remains relatively devoid of oxygenated functionality with the exception of the $\mathrm{C}_{8}-\mathrm{C}_{9}$ allylic epoxide and the (E)-enoate ester linkage. Overall, amphidinolide $\mathrm{B}_{1}(\mathbf{1 3 3})$ possesses nine stereogenic centers (seven hydroxyl-bearing stereocenters and two isolated methyl-bearing stereocenters) in addition to four double bonds which include a potentially acid sensitive s-cis diene.

[^38]
2.1.3 Biological Activity

In addition to possessing a synthetically challenging molecular architecture, amphidinolide B_{1} (133) is among the most biologically active members of the amphidinolide family of natural products. It exhibits very potent cytotoxicity against the human epidermoid carcinoma KB cell line $\left(\mathrm{IC}_{50}=4.2 \mathrm{ng} / \mathrm{mL}\right)$ as well as human colon HCT 116 and murine lymphoma L1210 cells $\left(\mathrm{IC}_{50}=0.14 \mathrm{ng} / \mathrm{mL}\right)$. As in the case of $(-)$-laulimalide (1), the $\mathrm{C}_{8}-\mathrm{C}_{9}$ epoxide moiety is believed to play a critical role in the biological activity expressed by 133. Single crystal X-ray analysis of amphidinolide B_{1} confirms the presence of an intraannular hydrogen bond between the epoxide functionality and the C_{21} hydroxyl group giving 133 a seemingly well-defined rectangular structure. ${ }^{69}$ Comparison of the activity displayed by $\mathbf{1 3 3}$ and its C_{21} epimer (amphidinolide D) strongly suggests the importance of the allylic epoxide in the observed biological activity as amphidinolide D is 100 times less potent than $\mathbf{1 3 3}$. The necessity of the epoxide residue was also demonstrated via structural modification of $\mathbf{1 3 3}$; epoxide ring opening with MeOH resulted in a derivative of amphidinolide B_{1} that displayed a 600 -fold decrease in biological activity compared to the parent compound. ${ }^{71}$

Presently, there have been no literature reports regarding the mechanism of action of amphidinolide B_{1}. Limited natural supply coupled with the current lack of a synthetic route to $\mathbf{1 3 3}$ has severely hampered such investigations. Although no total synthesis of $\mathbf{1 3 3}$ has been communicated to date, the combination of its structural complexity, potential chemotherapeutic utility, and limited natural abundance has made amphidinolide B_{1} an extremely attractive target

[^39]molecule for synthetic organic chemists and has led to several reports describing the syntheses of major fragments. ${ }^{72}$

2.1.4 Previous Synthetic Work

The first synthetic approach toward the total synthesis of amphidinolide $B_{1}(\mathbf{1 3 3})$, depicted in Figure 19, was disclosed by Chakraborty et al. in 1997. From a retrosynthetic standpoint, Chakraborty envisioned the assembly of $\mathbf{1 3 3}$ occurring via a Stille coupling to form the $\mathrm{C}_{13}-\mathrm{C}_{14}$ s-cis diene moiety with subsequent macrolactonization to close the 26 -membered ring. These disconnections led to the lower $\mathrm{C}_{1}-\mathrm{C}_{13}$ fragment 136 and the upper $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 137. Fragment 137 was constructed through an aldol reaction between aldehyde 138 and methyl ketone $139(\mathrm{dr}=3: 2)$. The lower $\mathrm{C}_{1}-\mathrm{C}_{13}$ fragment 136 was prepared via the Nozaki-HiyamaKishi coupling of aldehyde subunit 140 and vinyl iodide 141 (syn:anti $3: 7$) to set the requisite anti-diol relationship for epoxide formation. Subsequent Wittig homologation then installed the $E-\alpha, \beta$-unsaturated carboxylate ester.

[^40]

141

Figure 19. Chakraborty Approach to the Major Fragments of Amphidinolide B_{1}

Following the initial report by Chakraborty, Nishiyama and coworkers described a second strategy aimed at the enantioselective total synthesis of $\mathbf{1 3 3}$ that made extensive use of the chiral pool (Figure 20). Retrosynthetically, Nishiyama's approach resembles that of Chakraborty calling for the $\mathrm{Pd}(0)$-mediated synthesis of the s-cis diene as well as ring closure via the macrocyclization of the resulting seco acid and arriving at the $\mathrm{C}_{1}-\mathrm{C}_{13}$ and $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragments 142 and 143 , respectively. Fragment 142 was prepared by Claisen rearrangement and subsequent Wittig reaction of allyl vinyl ether $\mathbf{1 4 4}$ which in turn was synthesized in 18 steps, including an asymmetric Evans alkylation to install the C_{11} methyl-bearing stereocenter, from commercially available D-erythrose. Fragment 143 was assembled via a dithiane anion addition to primary iodide 145 . Dithiane 146 was prepared via Wittig reaction of the known (2S, 4S)-(+)-
pentanediol derived aldehyde $\mathbf{1 4 7}^{73}$ and iodide $\mathbf{1 4 5}$ was synthesized from (3S)-methyl 3,4dihydroxybutanoate.

Figure 20. Nishiyama Approach to the Major Fragments of Amphidinolide B_{1}

In 1999, several partial syntheses of amphidinolide B_{1} were completed in close succession beginning with a highly convergent route published by Myles. Macrolide formation was envisioned to proceed through a fragment uniting nucleophilic addition between a vinyl

[^41]anion derived from ketone 148 and aldehyde 149 followed by macrolactonization. The $\mathrm{C}_{1}-\mathrm{C}_{13}$ fragment $\mathbf{1 4 8}$ was synthesized from sulfone $\mathbf{1 5 0}$ and chiral ester $\mathbf{1 5 1}$ via a Trost/Julia olefination. Construction of the upper $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 149 was achieved by employing a Roush-Masamune olefination of β-ketophosphonate 152 and the (S)-ethyl-(L)-(+)-lactate derived α-chiral aldehyde 153. Sharpless asymmetric dihydroxylation of the resulting E-olefin then installed the $\mathrm{C}_{21}, \mathrm{C}_{22^{-}}$ syn-diol relationship (Figure 21).

Figure 21. Myles Approach to the Major Fragments of Amphidinolide B_{1}

Twelve years after first isolating and establishing the absolute stereochemistry of amphidinolide B_{1}, Kobayashi et al. published synthetic approaches to both the lower $C_{1}-C_{13}$
fragment 154 and the upper $C_{14}-C_{26}$ of 155 (Figure 22). Fragment 154 was prepared by the addition of an organocerium reagent derived from alkyne 156 into aldehyde 157 followed by Wittig olefination to introduce the (E)- α, β-unsaturated ester moiety. Subunits 156 and 157 , in turn, were obtained from 1,4-butanediol and (2S, 4S)-(+)-pentanediol, respectively. To arrive at upper fragment 155, Kobayashi employed an aldol reaction between aldehyde $\mathbf{1 3 8}$ and methyl ketone 158 to form the $\mathrm{C}_{18}-\mathrm{C}_{19}$ bond. Aldehyde 138 was synthesized from commercially available 3-methylbut-3-en-1-ol employing Sharpless asymmetric dihydroxylation technology to install the C_{16} tertiary carbinol stereocenter. Construction of the highly oxygenated $\mathrm{C}_{19}-\mathrm{C}_{26}$ ketone subunit 158 was achieved by Wittig olefination and subsequent dihydroxylation of Shioiri's pentanediol derived aldehyde.

133

Figure 22. Kobayashi Approach to the Major Fragments of Amphidinolide B_{1}

Synthetic efforts by Lee et al. (Figure 23) arrived at the enantioselective preparation of major fragments $\mathbf{1 5 9}$ and $\mathbf{1 6 0}$ of amphidinolide B_{1}. The synthesis of the $C_{1}-C_{13}$ fragment $\mathbf{1 5 9}$, first disclosed in 1997, incorporated the asymmetric allylation of an Evans oxazolidinone with 2,3-dibromopropene to successfully install the C_{11} methyl-bearing stereocenter. A more recent report described Lee's approach to the $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment $\mathbf{1 6 0}$ that involved construction of the $\mathrm{C}_{20}-\mathrm{C}_{21}$ bond via nucleophilic addition of a vinyl lithium species derived from iodide $\mathbf{1 6 1}$ to aldehyde 162. Vinyl iodide $\mathbf{1 6 1}$ was prepared by Takai olefination of α-chiral aldehyde $\mathbf{1 6 3}$ which in turn was manufactured from ethyl-(S)-lactate. The C_{16} tertiary carbinol stereocenter in aldehyde $\mathbf{1 6 2}$ was generated via Sharpless asymmetric epoxidation with subsequent ring opening with dimethyl cuprate.

133

Figure 23. Lee Approach to the Major Fragments of Amphidinolide B_{1}

The most advanced route to the total synthesis of amphidinolide B_{1} has been recently described by Pattenden and Cid (Figure 24). The retrosynthetic strategy called for the union of the major $\mathrm{C}_{1}-\mathrm{C}_{13}$ and $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragments, 164 and $\mathbf{1 6 5}$, respectively, via an esterification of carboxylic acid 164 and the C_{25} secondary alcohol in fragment 165. A subsequent intramolecular Stille coupling would then close the 26 -membered macrocycle. The synthesis of fragment $\mathbf{1 6 5}$ was accomplished through an aldol coupling of ketone $\mathbf{1 6 6}$, derived from (2S, 4S)pentanediol, and aldehyde 167. Aldehyde 167 was prepared from 3-methyl-2-penten-4-yn-1-ol via Sharpless epoxidation to install the C_{16} tertiary carbinol and silylstannylation with subsequent cuprate addition to form the requisite trisubstituted olefin. The lower fragment $\mathbf{1 6 4}$ was assembled via Julia olefination of (R)-3-methylglutarate derived epoxyaldehyde 168 and sulfone 169. Unfortunately, after having united major fragments 164 and 165 by esterification to form 170, the critical intramolecular Stille reaction was unsuccessful in closing the macrolide.

Figure 24. Pattenden Approach to the Major Fragments of Amphidinolide B_{1}

2.2 RETROSYNTHETIC ANALYSIS

Our retrosynthetic approach to amphidinolide B_{1} is outlined in Figure 25. As in previous approaches, bond cleavage along the C_{1}-macrolactone as well as $\mathrm{C}_{14}-\mathrm{C}_{15}$ of the s-cis diene were recognized as strategic disconnections that would enhance the convergency of the synthesis by effectively dividing the target molecule into two equally complex halves, the lower $\mathrm{C}_{1}-\mathrm{C}_{13}$ fragment 171 and the upper $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 172. Palladium-mediated coupling of vinyl iodide 172 and the pinacol boronate ester moiety in $\mathbf{1 7 1}$ was envisioned to unite the major fragments,
forming the acid-sensitive diene moiety, and subsequent Yamaguchi macrolactonization would be employed to close the 26 -membered ring.

Figure 25. Retrosynthetic Approach to Amphidinolide B_{1}

2.3 THE $\mathrm{C}_{1}-\mathrm{C}_{13}$ FRAGMENT

2.3.1 Retrosynthesis

The lower $C_{1}-C_{13}$ fragment of amphidinolide B_{1} (133) can be further dissected at the $C_{6}-C_{7}$ olefin to deliver sulfone $\mathbf{1 7 3}$ and epoxyaldehyde $\mathbf{1 7 4}$ as illustrated in Figure 26. Subunit $\mathbf{1 7 3}$ would be readily accessible from the reduction and subsequent olefination of commercially available γ-butyrolactone, while the enantioselective synthesis of $\mathbf{1 7 4}$ would be predicated on the synthetic elaboration of optically active β-lactone products of asymmetric AAC reaction technology.

Figure 26. Retrosynthesis for the $C_{1}-C_{13}$ fragment of amphidinolide B_{1}

2.3.2 Synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{6}$ Subunit

We had envisaged a rapid synthesis of the $C_{1}-C_{6}$ subunit of amphidinolide B_{1} occurring from commercially available γ-butyrolactone (Scheme 24). The synthesis of $\mathbf{1 7 3}$ commenced with the DIBAL-H reduction of $\mathbf{1 7 5}$ to the corresponding lactol $\mathbf{1 7 6}$ and subsequent trapping of the open form of $\mathbf{1 7 6}$ with phosphorane $\mathbf{1 7 7}$ to arrive at (E) - α, β-unsaturated carboxylate ester $\mathbf{1 7 8}$ in good yield. ${ }^{74}$ Primary alcohol 178 was recognized as a versatile synthon that could be transformed into a variety coupling partners for either a Wittig or Julia olefination reaction. Electing to pursue the Julia olefination strategy, sulfone formation was achieved through a Mitsunobu reaction of alcohol $178\left(\mathrm{DEAD}, \mathrm{PPh}_{3}, \mathrm{THF}\right)$ with 2-mercaptobenzothiazole followed by oxidation of the resulting thioether with catalytic $\mathrm{MnSO}_{4} \bullet \mathrm{H}_{2} \mathrm{O}$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(74 \%\right.$ yield). ${ }^{75}$

[^42]Scheme 24. Synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{6}$ Subunit $\mathbf{1 7 3}^{a}$

 THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$. (d) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaHCO}_{3}, \mathrm{MnSO}_{4} \bullet \mathrm{H}_{2} \mathrm{O}$ (5 mol \%) $\mathrm{CH}_{3} \mathrm{CN}$.

2.3.3 Synthesis of the $\mathbf{C}_{7}-\mathbf{C}_{13}$ Subunit 76

Having arrived at a convenient synthetic route to the $C_{1}-C_{6}$ sulfone subunit, we turned our attention toward the synthesis of epoxy aldehyde $\mathbf{1 7 4}$. Once again, the aid of the catalytic AAC reaction was enlisted to prepare the highly enantiomerically enriched β-lactone $\mathbf{1 7 9}$ in 95% ee employing $20 \mathrm{~mol} \%$ of the second generation unsymmetrical Al (III)-triamine catalyst $\mathbf{1 8 0}$. Cuprate mediated $\mathrm{S}_{\mathrm{N}} 2$ ring opening of lactone $\mathbf{1 7 9}$ afforded the corresponding carboxylic acid 181 in good yield and efficiently installed the C_{11} methyl-bearing stereocenter. Acid to enol triflate interconversion was then accomplished by first treating $\mathbf{1 8 1}$ with 2 equiv of MeLi in THF to provide the requisite methyl ketone (56\%). Enolization of $\mathbf{1 8 2}$ with potassium hexamethyldisilazide (KHMDS) at $-78{ }^{\circ} \mathrm{C}$ followed by electrophilic capture of the enolate oxygen atom with N-phenyltrifluoromethanysulfonimide $\left(\mathrm{PhNTf}_{2}\right)$ then furnished vinyl triflate $\mathbf{1 8 3}$ in 85% yield. In anticipation of the planned fragment uniting Suzuki reaction, triflate $\mathbf{1 8 3}$

[^43]was transformed into the corresponding pinacol boronate ester $\mathbf{1 8 4}$ by a palladium catalyzed coupling with bis(pinacolato)diborane in good yield. Silyl ether $\mathbf{1 8 4}$ was then elaborated to allylic alcohol 185 via the four step sequence of deprotection, oxidation, Horner-WadsworthEmmons olefination, and ester reduction. Sharpless asymmetric epoxidation of allylic alcohol 185 with subsequent oxidation of the primary alcohol would then provide epoxyaldehyde fragment 174 (Scheme 25).

Scheme 25. Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ Subunit $\mathbf{1 8 5}^{\boldsymbol{a}}$

${ }^{a}$ Conditions: (a) CuBr, MeMgBr, TMSCI, THF/DMS $-50^{\circ} \mathrm{C} \rightarrow \mathrm{rt}$. (b) i. $2 \mathrm{MeLi}, \mathrm{Et}_{2} \mathrm{O}$, $0{ }^{\circ} \mathrm{C}$, ii. $\mathrm{H}_{2} \mathrm{O}$. (c) KHMDS, PhNTf_{2}. (d) bis(pinacolato)diborane, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2},{ }_{2} \mathrm{PPh}_{3}$, $\mathrm{PhOK}, \mathrm{PhCH}_{3}, 50^{\circ} \mathrm{C}$. (e) i. $10 \mathrm{~mol} \% \mathrm{DDQ}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$. ii. Dess-Martin periodinane/py. iii. NaH , ($\left.{ }^{(} \mathrm{PrO}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$. iv. DIBAL-H.

2.4 THE $\mathrm{C}_{14}-\mathrm{C}_{26}$ FRAGMENT

2.4.1 Retrosynthetic Analysis

The hydrophilic $C_{14}-\mathrm{C}_{26}$ fragment of amphidinolide B_{1} (133) represents the most densely functionalized portion of the natural product. Fragment 172 would be prepared by Sharpless asymmetric dihydroxylation of the α, β-unsaturated ketone 186 followed by carbostannylation and tin-halogen exchange to generate the vinyl iodide to be used in the fragment uniting Suzuki reaction. Further dissection of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment along the $\mathrm{C}_{21}-\mathrm{C}_{22}$ olefin would deliver β ketophosphonate 187 and α-chiral aldehyde 147 as target subunits. The installation of the C_{18} hydroxyl-bearing stereocenter in fragment 187 would result from the strategic use of AAC reaction technology (Figure 27).

Figure 27. Retrosynthesis for the $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment of amphidinolide B_{1}

2.4.2 Installation of the $\mathbf{C}_{\mathbf{1 6}}$ Tertiary Carbinol Stereocenter

The most synthetically straightforward approach for establishing the C_{16} tertiary carbinol stereocenter in fragment 172, aside from the commonly employed Sharpless asymmetric epoxidation strategy, was envisioned to be an asymmetric allylation of the commercially available acetylenic ketone, 4-trimethylsilyl-3-butyn-2-one. However, unlike the asymmetric allylation of aldehydes which has enjoyed much success in the literature, ${ }^{77}$ the corresponding reaction involving ketone substrates has remained a far more challenging synthetic endeavor due to the marked difference in reactivity between aldehydes and ketones.

One of the few examples of the asymmetric allylation of ketones was described by H. C. Brown. ${ }^{78}$ While most of the methyl ketone substrates examined by Brown resulted in poor levels of asymmetric induction, the allylboration of 3-butyn-2-one resulted in moderate enantioselectivity furnishing the corresponding homoallylic alcohol $\mathbf{1 8 8}$ in 75% ee. Encouraged by this result, we applied Brown's asymmetric allylboration conditions to 4-trimethylsilyl-3-butyn-2-one (190). Treating a $-78^{\circ} \mathrm{C}$ solution of allyldiisopinocampheylborane 189 in $\mathrm{Et}_{2} \mathrm{O}$ with acetylenic ketone 190 afforded the desired allyl addition product 191 in 52% yield. In order to assay the enantioselectivity of the reaction, the tertiary alcohol product was derivatized as the ester of (R)-methoxyphenylacetic acid (DCC, DMAP). Unfortunately, ${ }^{1} \mathrm{H}$ NMR analysis of the crude product mixture revealed a 1:1 mixture of ester diastereomers (192).

[^44]Scheme 26. Attempted C_{16} Tertiary Carbinol Installation via Asymmetric Brown Allylation

A survey of the more recent literature concerning the synthesis of chiral homoallyic alcohols via catalytic, asymmetric ketone allylation led to our investigation of the $\mathrm{Ti}(\mathrm{IV})-\mathrm{BINOL}$ based systems of Tagliavini ${ }^{79}$ and Walsh. ${ }^{80}$ In 1999, Tagliavini et al. published the first example of a catalytic, asymmetric ketone allylation for the enantioselective preparation of tertiary homoallylic alcohols (Scheme 27). Employing a Ti(IV)-(R)-BINOL catalyst ent-25 (20 mol\%) and tetraallyltin as the allylating agent ($40 \mathrm{~mol} \%$), moderate to good enantioselectivities (29$80 \%$ ee) were obtained for a variety of aromatic, aliphatic, and α, β-unsaturated ketone substrates. Although no examples of acetylenic ketones were reported, we sought to examine the effectiveness of these reaction conditions for the installation of the C_{16} tertiary carbinol stereocenter of amphidinolide B_{1}. Treating a solution of $\mathrm{Cl}_{2} \mathrm{Ti}(\mathrm{IV})-(R)$-BINOL catalyst ent-25 in

[^45]$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\mathbf{1 9 0}$ at ambient temperature resulted in the formation of alcohol 191 in 82% isolated yield. As described previously in the case of Brown allylboration, the resulting tertiary alcohol product was then converted to its corresponding (R)-methoxyphenyl acetate ester and assayed by $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopy. Unfortunately, a disappointing 1.2:1 ratio of ester diastereomers was observed.

Scheme 27. Attempted C_{16} Tertiary Carbinol Installation via Asymmetric Tagliavini $\mathrm{Ti}(\mathrm{IV})$ BINOL Allylation

192
dr $=1.2: 1$

The recent investigations by Walsh lead to a major breakthrough in the catalytic, asymmetric allylation of ketones. Through a more detailed examination of the catalyst system utilized by Tagliavini, it was discovered that the major titanium-containing component was BINOL-Ti($\left.\mathrm{O}^{i} \mathrm{Pr}\right)_{2}$. When $\mathrm{BINOL}-\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{2}$ was prepared independently from BINOL and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ with subsequent removal of ${ }^{i} \mathrm{PrOH}$ and employed in allylation reactions,
enantioselectivities comparable to those obtained by Tagliavini were obtained. However, when the catalyst preparation was not followed by removal of ${ }^{i} \mathrm{PrOH}$, a marked increase in enantioselectivity of the tertiary alcohol product of the allylation reaction was realized. Optimized reaction conditions entailed treating a solution of BINOL (20-30 mol \%) and $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ (20-30 mol\%) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with ${ }^{i} \mathrm{PrOH}$ (20 equiv) followed by the ketone substrate and tetraallylstannane (1.5 equiv). Encouraged by the high levels of enantioselectivity obtained by Walsh et al., we prepared alcohol 191 in 88% yield according to the published procedure (Scheme 28). However, conversion of the resulting tertiary alcohol product to its corresponding (R)-methoxyphenyl acetate ester once again revealed synthetically unacceptable levels of diastereoselection (3:2).

Scheme 28. Attempted C_{16} Tertiary Carbinol Installation via Walsh Protocol

Given the unsatisfactory results obtained in the previously described allylation reactions, we turned our attention to a reagent system successfully employed by Mukaiyama and coworkers for the asymmetric allylation of aldehydes and activated ketones (Figure 28). ${ }^{81}$ Mukaiyama's protocol incorporates chiral diisopropyltartrate ligands (5.0 equiv) into Sn (II)-catecholate 193 (2.0 equiv) 82 to afford the corresponding stannate complex 194 which is speculated to undergo oxidative addition with allyl bromide (2.0 equiv) in the presence of catalytic amounts of $\mathrm{CuI}(10$ $\mathrm{mol} \%$) to produce the chiral $\operatorname{Sn}(\mathrm{IV})$-allylating agent 195 . Reaction of $\mathbf{1 9 5}$ with various aromatic aldehyde and pyruvate electrophiles in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ afforded the corresponding homoallylic alcohols in high yield with excellent levels of enantioselectivity.

Figure 28. Mukaiyama's Asymmetric Allylation of Carbonyl Compounds

Intrigued by the high enantioselectivities observed by Mukaiyama, and confident in our ability to transform the activating benzyl ester moiety into the requisite TMS-alkyne in subunit 187, we

[^46]elected to explore the possibility of initiating our synthesis of fragment $\mathbf{1 7 2}$ with the asymmetric allylation of benzyl pyruvate.

2.4.3 Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ Subunit

The synthesis of the $C_{14}-C_{21} \beta$-ketophosphonate subunit 187 commenced with the asymmetric allylation of benzyl pyruvate with the chiral $\operatorname{Sn}(\mathrm{IV})$ allylating agent 195 according to the published procedure described by Mukaiyama et al. ${ }^{75}$ Initially, there was some concern as to the reproducibility of this literature procedure as the high enantioselectivities were representative of very small-scale reactions. In Mukaiyama's examples, reactions typically employed 0.2 mmol ($\sim 35 \mathrm{mg}$) of the benzyl pyruvate substrate. Incorporating this allylation protocol into our synthetic scheme for the preparation of 187 would obviously require performing the reaction on significantly larger scale, and we were concerned whether we would observe the same excellent enantioselectivity in a large scale reaction. Gratifyingly, performing the reaction on 3.0 g of benzyl pyruvate afforded tertiary alcohol 196 in 52% yield with 94% ee (Scheme 29). Silyl protection of the chiral tertiary alcohol with TBSOTf and 2,6-lutidine then delivered silyl ether 197 in 87% yield.

Scheme 29. Mukaiyama Asymmetric Sn(IV)-Allylation of Benzyl Pyruvate ${ }^{a}$

${ }^{a}$ Conditions: (a) (-)-DIPT, $\mathrm{Sn}(\mathrm{II})$-catecholate, $\mathrm{DBU}, \mathrm{Cul}, \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-85^{\circ} \mathrm{C}$. (b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.

While the benzyl ester was essential for the activation of the allylation substrate, it now required further elaboration to an alkyne. This was envisioned to occur by half-reduction to the corresponding aldehyde with subsequent Corey-Fuchs homologation to provide the protected alkyne 198 (Scheme 30). However, attempted half-reduction of 197 to the corresponding aldehyde 199 with 1.0 equivalent of DIBAL-H at $-90^{\circ} \mathrm{C}$ consistently resulted in mixtures of the desired aldehyde product 199, starting ester, and overreduction to alcohol 200. Given this inability to control the half-reduction, benzyl ester 197 was treated with an excess of DIBAL-H to cleanly afford the corresponding alcohol $\mathbf{2 0 0}$ which was then cleanly oxidized to the desired aldehyde under Parikh-Doering conditions. ${ }^{83}$ Corey-Fuchs homologation ${ }^{84}$ of aldehyde 199 with CBr_{4} and PPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished the vinyl dibromide 201 in 85% yield from alcohol 200. After treating 201 with ${ }^{n} \mathrm{BuLi}$ and TMSCl , we arrived at the trimethylsilyl-protected alkyne 198.

Scheme 30. Conversion of Benzyl Ester 197 to Alkyne $\mathbf{1 9 8}^{a}$

${ }^{a}$ Conditions: (a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$. (b) $\mathrm{SO}_{3} \cdot \mathrm{py}$, $\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$. (c) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (d) i. ${ }^{n} \mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}$. ii. $\mathrm{TMSCl},-78^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.

With alkyne 198 in hand, we attempted to apply the asymmetric AAC reaction to form the $\mathrm{C}_{18}-\mathrm{C}_{19}$ bond and concomitantly establish the requisite C_{18} hydroxyl-bearing stereocenter of

[^47]amphidinolide B_{1} (Scheme 31). Selective ozonolysis of the monosubstituted olefin over the TMS-protected alkyne proceeded rapidly at $-78{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /$ py (5:5:1) to afford the desired aldehyde coupling partner for the AAC reaction. There was some concern regarding the protected tertiary alcohol stereocenter in aldehyde 202. In all previous examples of diastereoselective AAC reactions to achieve 1,3-stereochemical relationships, the aldehyde component of the AAC contained a protected secondary alcohol stereocenter where the small hydrogen atom could be oriented toward the approaching ketene nucleophile. In the present reaction, the C_{16} methyl group would be aligned with the incoming nucleophile, and the manner in which this more sterically demanding substituent would affect the observed diastereoselectivity of the reaction was uncertain. We were pleased to discover that subjecting aldehyde 202 to standard AAC conditions ($10 \mathrm{~mol} \%$ of (S, S)-catalyst 36) resulted in the complete conversion of $\mathbf{2 0 2}$ to the corresponding β-lactone $\mathbf{2 0 3}$ in 87% isolated yield with high levels of diastereoselectivity $(d r=30: 1)$ induced by the chiral aluminum triamine catalyst.

Scheme 31. AAC-Based Installation the C_{18} Hydroxyl-Bearing Stereocenter ${ }^{a}$

aConditions: (a) $\mathrm{O}_{3}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{py},-78^{\circ} \mathrm{C}$. (b) $10 \mathrm{~mol} \%$ Catalyst 36, DIPEA, $\mathrm{AcBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}$.

According to our previously described retrosynthetic strategy, completion of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ β-ketophosphonate subunit 187 was predicated on the regioselective ring opening of lactone 203 with a lithium phosphonate anion. This transformation is greatly underrepresented in the literature, most likely due to the low availability of enantiomerically enriched β-lactones; however, a few related examples exist that encouraged our pursuit of this bond construction. It has been demonstrated that, when treated with alkylidenetriphenylphosphoranes, β-propiolactone undergoes ring opening at the carbonyl carbon to afford δ-hydroxy- β-ketophosphoranes in modest yield $(\operatorname{Eq} 14) .{ }^{85}$ Also, γ - and δ-lactones have been shown to react with lithiumalkylphosphonates arriving at the corresponding β-ketophosphonate (Eq 15). ${ }^{86}$ Based on this precedent, we anticipated the successful nucleophilic addition/elimination reaction between β-lactones and lithium alkylphosphonates.

To explore the reactivity of enantiomerically enriched β-lactones toward lithium alkylphosphonates, hydrocinnamaldehyde derived lactone 61 was selected as a test substrate (Scheme 32). We were pleased to learn that treating a $-78^{\circ} \mathrm{C}$ solution of the lithium anion of

[^48]diethylmethylphosphonate 204 (1.5 equiv) in THF with lactone 61 resulted in the formation of the desired β-ketophosphonate 205 in 52% isolated yield; however, it was accompanied by a significant amount (15\%) of a by-product 206 that apparently resulted from the acylation of the newly generated lithium alkoxide product of β-lactone ring opening based on ${ }^{1} \mathrm{H}$ NMR and MS analysis.

Scheme 32. Lithium Phosphonate Anion Ring Opening of b-Lactone 61

The formation of self-acylated product 206 would suggest a competition for the β-lactone electrophile existing between the intended lithium diethylphosphonate nucleophile and the newly generated lithium alkoxide arising from ring opening of 61. Presumably, a marked increase in the concentration of the phosphonate anion should work to suppress the competitive nucleophilic addition by the lithium alkoxide. Indeed, doubling the concentration of lithium diethyl phosphonate (3.0 equiv) effectively eliminated the self-acylation product ${ }^{87}$ and furnished the desired β-ketophosphonate $\mathbf{2 0 5}$ in 83% yield.

Having successfully demonstrated the synthesis of β-ketophosphonates from enantiomerically enriched β-lactones, we could then apply this new strategy to complete the β -

[^49]ketophosphonate subunit $\mathbf{1 8 7}$ (Scheme 33). Lithiation of 3.0 equiv of diethylmethylphosphonate at $-78{ }^{\circ} \mathrm{C}$ in THF , followed by treatment with β-lactone electrophile 203 resulted in regioselective lactone ring opening to β-ketophosphonate 207 in 82% yield. Employing the lithium anion of dimethylmethyl phosphonate cleanly afforded the corresponding β ketophosphonate 208 in slightly higher yields (88-90\%). The resulting secondary alcohol was then protected as its tert-butyldimethylsilyl ether (TBSCl, imidazole, DMF) thus completing the synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ subunit.

Scheme 33. Completion of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ Subunit $\mathbf{1 8 7}^{a}$

b
(a) $(\mathrm{RO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{Li}, \mathrm{THF},-78^{\circ} \mathrm{C}$. (b) TBSCl , imidazole, DMF.

2.4.4 Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ Subunit

We had originally envisioned a potential route to the $\mathrm{C}_{22}-\mathrm{C}_{26} \alpha$-chiral aldehyde fragment of $\mathbf{1 4 7}$ commencing with the enantiomerically enriched β-lactone $\mathbf{1 0 5}$ (Scheme 34). Treatment of $\mathbf{1 0 5}$
with excess dimethylmagnesiocuprate resulted in $\mathrm{S}_{\mathrm{N}} 2$ ring opening to establish the requisite C_{23} methyl-bearing stereocenter and delivered carboxylic acid 209 in 79% yield. Acid 209 was then efficiently converted to the corresponding aldehyde 210 (85%) according to Brown's one-pot reduction/oxidation sequence previously employed in the total synthesis of (-)-laulimalide.

Scheme 34. Synthesis of Aldehyde 210^{a}

105

209

210
${ }^{a}$ Conditions: (a) $\mathrm{CuBr}, \mathrm{MeMgBr}$, TMSCI, THF/DMS, $-50^{\circ} \mathrm{C}$ to rt. (b) i. $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{Et}_{2} \mathrm{O}$; ii. PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Installation of the requisite C_{25} hydroxyl-bearing stereocenter was to be accomplished via a diastereoselective dimethylzinc addition to aldehyde 210. While the asymmetric addition of diethylzinc to aromatic and aliphatic aldehydes has been well established, the corresponding dimethylzinc additions are lesser known. ${ }^{88}$ Initial attempts to arrive at suitable reaction conditions to promote the desired dimethylzinc addition employed Soia's N,N-di-nbutylnorephedrine amino alcohol catalyst 211 (Eq 16). However, subjecting aldehyde 210 to a 0 ${ }^{\circ} \mathrm{C}$ solution of $211(10 \mathrm{~mol} \%)$ and $\mathrm{Me}_{2} \mathrm{Zn}$ (2.2 equiv) in toluene for 24 h resulted in a sluggish reaction that afforded the secondary alcohol product 212 as a $4: 1$ inseparable mixture of diastereomers ($500 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}$) in rather modest yield ($\sim 35 \%$). The ineffectiveness of this protocol prompted the investigation of other means of promoting this transformation.

[^50]

Another intriguing possibility for achieving the desired diastereoselective dimethylzinc addition to aldehyde $\mathbf{2 1 0}$ was described by Yus et al. in the total synthesis of the pine beetle pheromone, (-)-frontalin (213). ${ }^{89}$ The key step in the synthesis of 213 involved the enantioselective addition of dimethylzinc to an α, β-unsaturated ketone 214 at $0{ }^{\circ} \mathrm{C}$ in the presence of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}$ and a substoichiometric amount of the chiral sulfonamide ligand $(1 R, 2 R)$ bis(hydroxycamphorsulfonamido)cyclohexane (HOCSAC) $\mathbf{2 1 5}^{90}$ to afford the chiral tertiary alcohol 216 in 81% yield with an enantiomeric excess of 89% (Scheme 35).

Scheme 35. Asymmetric Dimethylzinc Addition to Ketones: Total Synthesis of (-)-Frontalin (213)

[^51]Given the success with the sterically and electronically more demanding ketone substrate, we anticipated similar results with aldehyde 210. Exposure of $\mathbf{2 1 0}$ to these reaction conditions did result in an increased isolated yield of alcohol 212 (62\%); however, no selectivity was achieved based on $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture $(\mathrm{dr}=1: 1)(\mathrm{Eq} 17)$. Attributing the lack of selectivity to a possible mismatched substrate/catalyst pairing, the reaction was repeated with the enantiomeric $(1 S, 2 S)$-sulfonamide ligand ent-215. Disappointingly, no selectivity was observed possibly owing to unfavorable steric interactions caused by the preexistent β-stereocenter in 210.

A rapid alternative synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ fragment amphidinolide B_{1} from (2S, 4S)-$(+)$-pentanediol was disclosed in Shioiri's total synthesis of geodiamolide A. ${ }^{73}$ This method has also been applied in several other syntheses of the upper fragment of $\mathbf{1 3 3}$ and was viewed as a convenient option (Scheme 36). Selective monosilylation of 217 with sodium hydride and triethylsilyl chloride at ambient temperature yielded the monoprotected diol 218 in 91% yield. ${ }^{91}$ We elected to mono-protect the diol as the triethylsilyl ether in an attempt to build orthogonality into our protecting group strategy as the late stage macrolactonization to close the 26 -membered ring will require selective removal of the C_{25} protecting group to ensure a higher degree of success. Tosylation of the remaining secondary alcohol was performed with p-toluenesulfonyl

[^52]chloride in pyridine solvent to obtain the secondary tosylate 219 in 53% yield accompanied by an unidentifed by-product after 4 days at $4{ }^{\circ} \mathrm{C}$. A far more efficient reagent system for the tosylation of secondary alcohol 218 was realized by substituting 1,4-diazabicyclo[2.2.2]octane (DABCO) for pyridine. ${ }^{92}$ Tosylate 219 could now be obtained in 85% yield after 1.5 h at $0^{\circ} \mathrm{C}$ without any undesired elimination products. Cyanide displacement of the secondary tosylate (NaCN , DMSO, $50^{\circ} \mathrm{C}$) arrived at nitrile 220 and subsequent DIBAL-H reduction provided the $\mathrm{C}_{22}-\mathrm{C}_{26} \alpha$-chiral aldehyde subunit $\mathbf{2 2 1}$ which was used without further purification.

Scheme 36. Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ Subunit 221^{a}

$$
\begin{aligned}
& { }^{a} \text { Conditions: (a) } \mathrm{NaH}, \mathrm{TESCI} \text {, THF. (b) DABCO, } \mathrm{TsCl}, \\
& \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {. (c) } \mathrm{NaCN}, \mathrm{DMSO}, 50^{\circ} \mathrm{C} \text {. (d) DIBAL-H, } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, } \\
& -78^{\circ} \mathrm{C}
\end{aligned}
$$

2.4.5 Subunit Coupling and Functionalization for Fragment Union

Assembly of the two subunits $\mathbf{1 8 7 b}$ and $\mathbf{2 2 1}$ was achieved under Roush-Masamune olefination conditions $\left(\mathrm{LiCl}\right.$, DIPEA, $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ to deliver the desired (E)-olefin 222 as a single regioisomer

[^53]in moderate yield (Scheme 37). ${ }^{93}$ Installation of the syn-diol moiety was then performed according to the reaction conditions described in Myles' synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment of amphidinolide $\mathrm{B}_{1} \cdot{ }^{76 \mathrm{f}}$ Exposure of enone 222 to a $0{ }^{\circ} \mathrm{C}$ suspension of AD-mix $\alpha(2.1 \mathrm{~g} / \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, and $(\mathrm{DHQ})_{2} \mathrm{PHAL}(10 \mathrm{~mol} \%)$ in $1: 1{ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ resulted in the sluggish dihydroxylation of the electron-deficient (E)-olefin affording the desired diol diastereomer 223 in 31\% isolated yield along with a second diol diastereomer and unreacted starting material after 24 h at $0^{\circ} \mathrm{C}$.

Scheme 37. Fragment Union and Diol Installation

aConditions: (a) LiCl, DIPEA, $\mathrm{CH}_{3} \mathrm{CN}$. (b) $\mathrm{AD}-\mathrm{mix} \alpha, 10 \mathrm{~mol} \% \mathrm{~K}_{2} \mathrm{OsO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~mol} \%$ $(\mathrm{DHQ})_{2} \mathrm{PHAL}, \mathrm{NaHCO}_{3}{ }^{\mathrm{t}} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$

[^54]Poor reproducibility of the yields in the synthesis of TES-protected aldehyde 221 led us to prepare the more commonly employed TBS-protected aldehyde $147 .{ }^{72}$ Aldehyde 147 was generated according to the literature procedure (Scheme 36) with the only modification being the incorporation of the DABCO-mediated tosylation protocol. Roush-Masamune olefination of phosphonate $\mathbf{1 8 7 b}$ and aldehyde 147 (LiCl, DIPEA, $\mathrm{CH}_{3} \mathrm{CN}$) afforded the desired (E)-olefin 186 in slightly higher yield (70\%). Enone $\mathbf{1 8 6}$ was then subjected to the previously described Sharpless reagent system (AD-mix $\alpha(2.1 \mathrm{~g} / \mathrm{mmol}), \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$, and (DHQ) $)_{2} \mathrm{PHAL}(10 \mathrm{~mol} \%)$ in $\left.1: 1^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}\right)$. Methanesulfonamide (1.0 equiv) was also added to the reaction in an attempt to accelerate osmate ester hydrolysis. The added methanesulfonamide served its purpose as near complete consumption of the starting enone was observed by TLC after 8 h at $0^{\circ} \mathrm{C}$. Although yields of the syn diol 224 were improved from earlier trials (42-50\%), they were still variable and not synthetically acceptable for such a late stage reaction. Additional attempts at enhancing the isolated yield of $\mathbf{2 2 4}$ by increasing the osmium and chiral amine loading from 10 to $20 \mathrm{~mol} \%$ proved to be ineffective. Protection of the diol was then achieved using excess TBSOTf (3.0 equiv) and 2,6-lutidine (5.0 equiv) to furnish the fully protected $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 225 (Scheme 38).

Scheme 38. Fragment Coupling and Diol Installation

${ }^{a}$ Conditions: (a) LiCI, DIPEA, $\mathrm{CH}_{3} \mathrm{CN}$. (b) AD-mix α, $10 \mathrm{~mol} \% \mathrm{~K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, $10 \mathrm{~mol} \%$ $(\mathrm{DHQ})_{2} \mathrm{PHAL}, \mathrm{NaHCO}_{3}, \mathrm{MeSO}_{2} \mathrm{NH}_{2},{ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$. (c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2.5 FUTURE WORK

Given the inefficient introduction of the $\mathrm{C}_{21}, \mathrm{C}_{22}$ syn-diol via the Sharpless asymmetric dihydroxylation of olefin 186, an alternative route involving a diastereoselective glycolate aldol reaction will be investigated (Figure 29). Such a strategy would require the regioselective generation of (Z)-enolate $\mathbf{2 2 6}$ from lactone $\mathbf{2 0 3}$ derived ketone $\mathbf{2 2 7}$ which would serve to selectively add to the previously synthesized $\mathrm{C}_{22}-\mathrm{C}_{26}$ aldehyde 147 to generate the required syn diol relationship.

Figure 29. Diastereoselective Glycolate Aldol Reaction in the Formation of the $\mathrm{C}_{21}, \mathrm{C}_{22}$ syn-diol Relationship of Amphidinolide B_{1}

Completion of the total synthesis of amphidinolide B_{1} will be predicated on the union of the major fragments 172, 173, and 174 (Figure 30). The $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 172 will be functionalized for fragment coupling through the deprotection and subsequent carbostannylation of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ alkyne to furnish the requisite trisubstituted olefin 228. Julia olefination of epoxyaldehyde $\mathbf{1 7 4}$ and sulfone $\mathbf{1 7 3}$ will then assemble the intact $C_{1}-C_{13}$ fragment 171. Suzuki coupling between vinyl iodide 172, dervied from lithium halogen exchange of 228, and the pinacol boronate ester moiety in $\mathbf{1 7 1}$ will be employed to unite the major fragments, forming the s-cis diene moiety. Silyl deprotection and Yamaguchi macrolactonization of seco acid $\mathbf{2 2 9}$ will then complete the total synthesis of amphidinolide $B_{1}(\mathbf{1 3 3})$.

amphidinolide B_{1} (133) 229

Figure 30. Completion of the Total Synthesis of Amphidinolide B_{1}

2.6 CONCLUSIONS

Asymmetric AAC reactions have been instrumental in our recent studies toward the total synthesis of the cytotoxic marine natural product, amphidinolide B_{1} (133). By exploiting the synthetic utility of AAC reaction technology, key stereochemical relationships present in major fragments 172 and $\mathbf{1 7 4}$ were established. A highly enantioselective installation of the C_{16} tertiary carbinol stereocenter was acheived through the large-scale application of Mukaiyama's $\mathrm{Sn}(\mathrm{IV})$-allylation protocol, and a rapid synthesis of sulfone subunit $\mathbf{1 7 3}$ was realized from commercially available γ-butyrolactone. Also, for the first time, the regioselective ring opening of β-lactones by phosphonate anions has been documented.

2.7 EXPERIMENTAL SECTION

General Information: Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\mathrm{D}}$ (c $\mathrm{g} / 100 \mathrm{~mL}$, solvent) with units of degree $\cdot \mathrm{g} \cdot \mathrm{cm}^{-3}$. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX 301 and DPX $302(300 \mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift, multiplicity $(\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 spectrometers (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal standard (deuterochloroform: $\delta 77.0 \mathrm{ppm}$). Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described on EM silica gel 60 (230-240 mesh). ${ }^{94}$ Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp, 190-600 nm), using a Daicel Chiralpak ${ }^{\text {TM }}$ AS-H column (250×4.6 mm) (Daicel Inc.). HPLC grade isopropanol and hexanes were used as the eluting solvents.

All experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware using standard inert atmosphere techniques for introducing reagents and solvents. Tetrahydrofuran (THF) was either distilled from potassium benzophenone ketyl or passed

[^55]through two columns of alumina, and diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was distilled from sodium benzophone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, dimethylsulfide (DMS), N, N-diisopropylethylamine (DIPEA), and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ were distilled from CaH_{2} under N_{2}.

(2E)-tert-Butyl-6-hydroxy-2-methylhex-2-enoate (178): To a -78
${ }^{\circ} \mathrm{C}$ solution of 1.9 g of γ-butyrolactone (22.0 mmol) in 35 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a 24 mL of a 1.0 M solution of DIBAL-H in hexanes dropwise via syringe. The resulting clear, colorless solution was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{MeOH}(2 \mathrm{~mL})$ and saturated Rochelle's salt (2 mL). The mixture was warmed to ambient temperature and maintained for 2 h . The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield a colorless oil that was used immediately in the next reaction without further purification.

To a $0^{\circ} \mathrm{C}$ solution of 9.0 g of phosphorane $177(23.0 \mathrm{mmol})$ in 50 mL of THF was added a solution of lactol $\mathbf{1 7 6}$ in 10 mL of THF dropwise via syringe. The reaction was allowed to warm to ambient temperature overnight, at which point 20 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) provided $3.11 \mathrm{~g}(70 \%)$ of the title compound as a clear, colorless oil: IR (thin film): 3427, 2977, 2933, 2872, 1705, 1648, 1456, 1168, 851, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.61(\mathrm{dt}, J=1.3$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{brs}, 1 \mathrm{H}), 2.20(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.66$ $(\mathrm{tt}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 167.5,140.3,129.5,79.9,62.0$, 31.4, 28.0, 24.9, 12.2; LRMS (EI, 70eV): m/z $144\left[\mathrm{M}-{ }^{t} \mathrm{Bu}\right]^{+}$; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$: 144.0786, found 144.0792.

enoate: \quad To a $0{ }^{\circ} \mathrm{C}$ solution of 0.334 g of $2-$ mercaptobenzothiazole $(2.0 \mathrm{mmol})$ and 0.393 g of $\mathrm{PPh}_{3}(1.5$ $\mathrm{mmol})$ in 10 mL of THF was added 0.200 g of alcohol $\mathbf{1 7 8}(1.0 \mathrm{mmol})$ in 2 mL of THF. The resulting yellow solution was then treated with 0.285 mL of diethylazodicarboxylate (1.8 mmol) slowly dropwise via syringe. After maintaining for 45 min at ambient temperature, the resulting suspension was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Hexanes were added and the resulting white precipitate was removed by filtering through Celite. Purification of the crude product by flash chromatography on silica gel (2\% EtOAc/hexanes) afforded $0.260 \mathrm{~g}(74 \%)$ of the title compound as a pale yellow oil. IR (thin film): 3062, 2976, 2930, 1704, 1650, 1456, 1427, 1291, 1254, $995 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 167.2, 166.5, 153.1, 139.0, 135.1, 130.3, 125.9, 124.1, 121.4, 120.8, 80.0, 32.9, 28.2, 28.0 (3C), 27.5, 12.4; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}_{2}$: 349.1170, found 349.1171.

tert-Butyl-6-(benzothiazol-2-ylsulfonyl)-2-methylhex-2-
enoate (173): To a solution of 0.200 g of thioether (0.573
$\mathrm{mmol})$ and 5 mg of $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.029 \mathrm{mmol})$ at ambient temperature was added an aqueous mixture of 0.300 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ dropwise via syringe. The resulting pale orange mixture was maintained at ambient temperature for 5 h at which point saturated aqueous NaCl was added $(20 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3
$\times 20 \mathrm{~mL}$). The combined organics were then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification the crude product by flash chromatography on silica gel $(10 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$ afforded $0.150 \mathrm{~g}(69 \%)$ of the title compound as a colorless, viscous oil: IR (thin film): $3065,2976,2930,1701,1649,1555,1473,1330,1150,853 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.19(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{br} \mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{brt}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{dt}, J=7.4,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{tt}, J=7.4,7.4 \mathrm{~Hz}$, 2H), 1.74 (s, 3H), $1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 166.8, 165.5, 152.5, 137.4, 136.6, 131.1, 128.0, 127.6, 125.3, 122.2, 80.2, 54.0, 27.9 (3C), 26.9, 21.5, 12.4; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}_{2}: 381.1068$, found 381.1053.

(2R)-Benzyl-2-hydroxy-2-methylpent-4-enoate (196): ${ }^{42}$ To a white suspension of 6.00 g of tin (II) catecholate (26.4 mmol), 0.251 g of CuI (1.32 mmol), and 14.0 mL of (-)-diisopropyltartrate (66.0 mmol) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added a solution of 9.90 mL of $\mathrm{DBU}(66.0 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via syringe. The resulting clear, pale pink solution was maintained at ambient temperature for 1 h , cooled to $-85^{\circ} \mathrm{C}$, then treated with a solution of 2.35 g of benzyl pyruvate (13.2 mmol) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise via syringe pump over the course of 1 h . A solution of 2.30 mL of allyl bromide (26.4 mmol) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly via syringe pump (over 2.5 h) and the reaction mixture was maintained overnight at $-80^{\circ} \mathrm{C}$. The reaction was quenched with 1 M $\mathrm{HCl}(200 \mathrm{~mL})$ and hexanes $(80 \mathrm{~mL})$, then extracted with 2:1 hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on an ISCO CombiFlash Companion ${ }^{\mathrm{TM}}$ (330 g column, $8-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) to obtain $1.50 \mathrm{~g}(52 \%)$ of a pale yellow liquid: Separation
of enantiomers by chiral HPLC [Daicel Chiralpak AS-H column, $0.9 \%{ }^{i} \mathrm{PrOH} / \mathrm{hexanes}, 0.7$ $\mathrm{mL} / \mathrm{min}, \mathrm{T}_{\mathrm{r}} 18.7 \mathrm{~min}(S)$ and $\left.19.2 \min (R)\right]$ determined the enantiomeric excess to be $94 \% ;[\alpha]_{\mathrm{D}}$ $=+6.9\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.42(\mathrm{~m}, 5 \mathrm{H}), 5.73(\mathrm{dddd}, J=7.3$, $7.3,10,18 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 3 \mathrm{H}), 5.05-5.12(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=7.3,14 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{dd}, J=7.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$.

(2R)-Benzyl-2-(tert-butyldimethylsilyloxy)-2-methylpent-4-enoate

(197): To a $0^{\circ} \mathrm{C}$ solution of 1.0 g of alcohol $196(4.54 \mathrm{mmol})$ in 7 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1.60 mL of 2, 6-lutidine (13.6 mmol) followed by 1.67 mL of tertbutyldimethylsilyltrifluoromethanesulfonate $(7.27 \mathrm{mmol})$. The reaction was warmed to ambient temperature and maintained for 2 h . Saturated aqueous NaHCO_{3} was added $(10 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel ($1 \% \mathrm{EtOAc} /$ hexanes) yielded $1.32 \mathrm{~g}(87 \%)$ of the title compound as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+3.3\left(c 2.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3077, 3035, 2955, 2929, 2894, 2856, 1749, 1641, 1498, 1457, 1376, 1253, 1004, $836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{dddd}, J=7.2,7.2,10,17 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J$ $=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-5.07(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{dd}, J=7.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=7.0,14 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.077(\mathrm{~s}, 3 \mathrm{H}), 0.065(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 174.7, $135.8,133.2,128.5,128.4,128.2,118.0,66.6,46.5,25.9,25.8,18.3,-2.69,-3.11$; LRMS (EI, 70eV): m/z $293\left(\mathrm{M}+-\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si}$: 293.1573, found 293.1570.
 (2R)-2-(tert-butyldimethylsilyloxy)-2-methyl-pent-4-en-1-ol (200): To a $70^{\circ} \mathrm{C}$ solution of 1.85 g of ester $197(5.54 \mathrm{mmol})$ in 55 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a 1.0 M solution of diisobutylaluminum hydride (DIBAL-H) in hexanes dropwise via syringe. The resulting clear, colorless solution was allowed to warm to $-30{ }^{\circ} \mathrm{C}$ over 2 h whereupon 0.900 mL of $\mathrm{MeOH}(22.1 \mathrm{mmol})$ was slowly added. The reaction mixture was then warmed to ambient temperature, treated with saturated aqueous Rochelle's salt (125 mL), and maintained for 2.5 h . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organics were washed with brine. The organic layer was then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel ($4 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane) afforded $1.17 \mathrm{~g}(92 \%)$ of the title compound as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=-0.5(c 1.9$, CHCl_{3}); IR (thin film): $3444,3077,2955,2931,2889,2858,1641,1468,1374,1254,1048,836$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 5.80(\mathrm{dddd}, J=7.4,7.4,11,16 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.11(\mathrm{~m}$, $2 \mathrm{H}), 3.40(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=7.5,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=$ $7.4,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.2$, 117.8, 76.1, 69.9, 44.2, 25.8 (3C), 23.9, -2.1; LRMS (EI, 70eV): m/z $229[\mathrm{M}-\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}: 229.1624$, found 229.1623.

(2R)-2-(tert-butyldimethylsilyloxy)-2-methyl-pent-4-enal (199): To a $0{ }^{\circ} \mathrm{C}$ solution of 1.1 g of alcohol $\mathbf{2 0 0}(4.78 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 3.33 mL of $\mathrm{Et}_{3} \mathrm{~N}(23.9 \mathrm{mmol}), 13 \mathrm{~mL}$ of $\mathrm{DMSO}(\mathrm{mmol})$, and 2.28 g of $\mathrm{SO}_{3} \cdot \mathrm{py}$. The reaction mixture was maintained for 3 h at $0^{\circ} \mathrm{C}$, and then treated with a pH 7 buffer solution (15 mL). The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product mixture was purified by flash chromatography on silica gel
$\left(1 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$ to obtain $1.09 \mathrm{~g}(100 \%)$ of aldehyde 199 as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=$ +25 (c $2.2, \mathrm{CHCl}_{3}$); IR (thin film): 3080, 2965, 2931, 2897, 2858, 2798, 2706, 1739, 1642, 1254, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 5.79$ (dddd, 7.2, 7.2, 10, 17 $\mathrm{Hz}, 1 \mathrm{H}), 5.00-5.20(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.2,132.2,118.8,43.5,25.8$ (3C), 22.5, $-2.31,-2.41$; LRMS (EI, 70eV): m/z $213\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}: 213.1311$, found 213.1312.

(3R)-tert-Butyl-[1-(2,
2-dibromovinyl)-1-methyl-but-3-enyloxy]dimethylsilane (201): To a $0{ }^{\circ} \mathrm{C}$ solution of 5.01 g of $\mathrm{PPh}_{3}(19.1 \mathrm{mmol})$ in 19 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of 3.17 g of $\mathrm{CBr}_{4}(9.56 \mathrm{mmol})$ in 19 mL dropwise via syringe. The resultant orange-yellow solution was maintained at $0^{\circ} \mathrm{C}$ for 20 min , whereupon 1.09 g of aldehyde 199 in 19 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After 1 h , the reaction mixture was diluted with $10 \% \mathrm{EtOAc} /$ hexanes $(150 \mathrm{~mL})$ and filtered through silica gel. Purification by flash chromatography (hexanes) provided $1.60 \mathrm{~g}(87 \%)$ of the title compound as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+13\left(c \quad 2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3078, 2955, 2931, 2893, 2857, 1641, 1606, $1470,1373,1255,1154,1076,1003,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 6.69(\mathrm{~s}, 1 \mathrm{H})$, 5.83 (dddd, $J=7.1,7.1,9.3,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=7.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=7.0,14 \mathrm{~Hz}$, $1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.6$, 133.6, 118.0, 86.2, 46.7, 27.1, 25.9 (3C), -2.1, -2.4; LRMS (EI, 70eV): m/z $369\left[\mathrm{M}^{2} \mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{OSiBr}: 366.9728$, found 366.9744.

(4R)-4-tert-Butyldimethylsilyloxy)-4-methyl-6-trimethylsilyl-hex-1-

 en-5-yne (198): To a $-78^{\circ} \mathrm{C}$ solution of 1.55 g of vinyl bromide 201(4.04 mmol) in 20 mL of THF was added 7.60 mL of a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes dropwise via syringe. The resulting pale yellow solution was maintained for 1 h at $-78{ }^{\circ} \mathrm{C}$, then warmed to $0^{\circ} \mathrm{C}$ for an additional 1 h . After cooling to $-78^{\circ} \mathrm{C}$, the reaction mixture was treated with 1.52 mL of freshly distilled $\mathrm{TMSCl}(12.1 \mathrm{mmol})$. The reaction was allowed to warm slowly to $0{ }^{\circ} \mathrm{C}$ over 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added (40 mL), and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (hexanes) afforded $0.920 \mathrm{~g}(77 \%)$ of the title compound 198 as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+0.64(\mathrm{c}$ 2.2, CHCl_{3}); IR (thin film): $3079,2958,2932,2899,2858,2169,1643,1252,839,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.90(\mathrm{ddt}, J=7.2,11,18 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~d}, J=$ 7.1 Hz, 2H), $1.39(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 134.3, $117.6,110.1,88.3,68.8,49.6,30.4,25.7,18.1,-0.2,-2.9,-3.0 ;$ LRMS (EI, 70eV): m/z $281[\mathrm{M}-$ $\left.\mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{OSi}_{2}$: 281.1757 found 281.1744.

(3R)-3-(tert-Butyldimethylsilyloxy)-3-methyl-5-trimethylsilyl-pent-4-
ynal (202): A $-78{ }^{\circ} \mathrm{C}$ solution of 0.415 g of olefin $198(1.40 \mathrm{mmol})$ in 3.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.3 \mathrm{~mL}$ of MeOH , and 0.7 mL of pyridine was treated with O_{3} until a pink color was observed. The reaction was quenched with 0.384 g of $\mathrm{PPh}_{3}(1.40 \mathrm{mmol})$ and allowed to warm to ambient temperature. The crude product mixture was concentrated and purified by flash chromatography $\left(10 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$ to obtain $0.360 \mathrm{~g}(86 \%)$ of a clear, colorless liquid: $[\alpha]_{\mathrm{D}}$ $=+36\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2959, 2931, 2898, 2858, 2739, 2170, 1731, 1252, 1115, 1041, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.88(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{brd}, J=2.9 \mathrm{~Hz}$, 2H), $1.54(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.9$,
 HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}_{2}$: 283.1549, found 283.1556.

(4S, 2'R)-4-[2-tert-Butyldimethylsilyloxy)-2-methyl-4-trimethylsilyl-but-3-ynyl]-oxetan-2-one (203): To a solution of 0.127 g of triamine ligand $36(0.235 \mathrm{mmol})$ in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperature was added 0.130 mL of a 2.0 M solution of trimethylaluminum in hexanes dropwise via syringe. The clear, colorless catalyst solution was maintained for 2.5 h at ambient temperature, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 mL). After cooling to $-50^{\circ} \mathrm{C}, 0.695 \mathrm{~mL}$ of DIPEA (3.99 mmol) was added followed by 0.330 mL of acetyl bromide (4.46 mmol). The resulting pale yellow solution was stirred at $-50^{\circ} \mathrm{C}$ whereupon 0.700 g of aldehyde $202(2.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ was added dropwise via syringe. The reaction was maintained for 3 h at $-50^{\circ} \mathrm{C}$, and was quenched by pouring into cold hexanes $(50 \mathrm{~mL})$. The resulting mixture was filtered through silica gel $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and concentrated. The crude product was then purified by flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes) to afford $0.720 \mathrm{~g}(87 \%)$ of the title compound as a pale yellow oil: $[\alpha]_{\mathrm{D}}=+30\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2957, 2930, 2857, 2169, 1835, 1251, 1165, 1125, 1077, $868 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 4.83$ (dddd, $\left.J=4.2,4.2,5.7,8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.57(\mathrm{dd}, J=5.7,17 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=$ $4.2,17 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=4.2,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dd}, J=9.0,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 0.86$ (s, 9H), $0.22(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 168.5,107.9$, $90.3,69.1,67.8,48.9,44.6,31.6,31.5,25.6$ (3C), 17.9, -0.34 (3C), -3.0, -3.1; LRMS (EI, $70 \mathrm{eV}): \mathrm{m} / \mathrm{z} 325\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+} ;$HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}_{2}: 325.1655$, found 325.1647.
(4S)-Diethyl 4-hydroxy-2-oxo-6-phenylhexylphosphonate (205):

To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.165 mL of diethylmethylphosphonate (1.13 mmol) in 3.0 mL of THF was added 0.640 mL of a 1.6 M solution of ${ }^{\mathrm{n}} \mathrm{BuLi}$ in hexanes dropwise via syringe. The resulting cloudy, white suspension was maintained for 30 min , then treated with 0.066 g of lactone $\mathbf{6 1}(0.375 \mathrm{mmol})$ in THF $(0.75 \mathrm{~mL})$. The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 45 min . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel $(80 \% \mathrm{EtOAc} /$ hexanes $)$ provided $0.102 \mathrm{~g}(83 \%)$ of the title compound as a pale yellow oil: $[\alpha]_{\mathrm{D}}=+18\left(c 4.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3400, 3061, 3026, 2984, 2930, 1713, 1246, 1024, 971 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.28-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 3 \mathrm{H}), 4.20-3.95(\mathrm{~m}, 5 \mathrm{H})$, $3.55(\mathrm{brd}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 2.85-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 2 \mathrm{H}) 1.28$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 202.3,141.6,128.2$ (2C), 128.1 (2C), 125.6, 66.7, 62.5, 62.4, 50.9, 43.7, 38.1, 31.5, 16.1, 16.0; LRMS (EI, 70eV): m/z 328; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}: 328.1440$, found 328.1452.

(4S,6R)-Diethyl-[6-(tert-butyldimethyl-silyloxy)-4-hydroxy-6-methyl-2-oxo-8-trimethylsilyl-oct-7-ynyl]-
phosphonate (207): To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.360 mL of diethylmethylphosphonate (2.47 mmol) in 6.0 mL of THF was added 1.40 mL of a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes dropwise via syringe. The resulting cloudy, white suspension was maintained for 30 min , then treated with 0.233 g of lactone 203 in THF (1.2 mL). The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc (3
$\times 30 \mathrm{~mL}$). The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel $(50 \%$ EtOAc/hexanes) provided $0.281 \mathrm{~g}(83 \%)$ of β-ketophosphonate 207 as a pale yellow oil: $[\alpha]_{\mathrm{D}}=$ +22 (c 2.4, CHCl_{3}); IR (thin film): 3405, 2957, 2930, 2857, 2167, 1716, 1252, 1028, $840 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.44$ (dddd, $\left.J=2.4,5.4,9.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.10 \mathrm{~m}, 4 \mathrm{H}$), 3.73 (brs, 1H), $3.11(\mathrm{dd}, J=13.6,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=13.6,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=7.3$, $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=5.2,16.2, \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=9.2,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=2.4,14$ $\mathrm{Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 201.0(\mathrm{~d}, J=25 \mathrm{~Hz}), 109.5,89.6,69.0,65.1,51.3,50.3,43.9,42.2,30.2$, 25.6 (3C), 17.8, 16.2, 16.1, -0.47 (3C), $-2.9,-3.2$; LRMS (EI, 70eV): m/z $477\left[\mathrm{M}^{2} \mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{P}: 477.2258$, found 477.2257.

(4S, 6R)-Diethyl-[4, 6-bis-(tert-butyldimethyl-silyloxy)-6-methyl-2-oxo-8-trimethylsilyl-oct-7-ynyl]-
phosphonate (187a): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.280 g of alcohol 207 in 1.2 mL of DMF was added 0.078 g of imidazole (1.14 mmol) and 0.172 g of tert-butyldimethylchlorosilane (1.14 mmol). The reaction mixture was then warmed to ambient temperature and maintained for 48 h . A mixture of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$ was added, and the crude reaction was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was then purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford $0.276 \mathrm{~g}(80 \%)$ of the title compound as a viscous, pale yellow oil: $[\alpha]_{\mathrm{D}}=+28\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2957, 2930, 2898, 2857, 2166, 1717, 1472, 1252, 1027, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.52-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.09$
$(\mathrm{p}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.15-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{dd}, J=8.6,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=9.3,13.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=2.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.80(\mathrm{~s}, 18 \mathrm{H})$, $0.16(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}), 0.097(\mathrm{~s}, 3 \mathrm{H}), 0.063(\mathrm{~s}, 3 \mathrm{H}), 0.012(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 200.6(\mathrm{~d}, J=26 \mathrm{~Hz}), 109.1,89.5,68.3,67.4,62.2,52.6,51.8,44.7,43.0,32.4,25.8$ (3C), 25.7 (3C), 17.9, 17.8, 16.2, 16.1, -0.37 (3C), $-3.0,-3.2,-4.3,-4.8$; LRMS (ESI): m/z 629; HRMS calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{PNa}\right]^{+}: 629.3255$, found 629.3273 .

(4S, 6R)-Dimethyl-[6-(tert-butyldimethyl-silyloxy)-4-hydroxy-6-methyl-2-oxo-8-trimethylsilyl-oct-7-ynyl]-
phosphonate (208): To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.335 mL of dimethylmethylphosphonate (3.13 mmol) in 7.5 mL of THF was added 1.80 mL of a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes dropwise via syringe. The resulting cloudy, white suspension was maintained for 30 min , then treated with 0.355 g of lactone 203 in THF $(2.5 \mathrm{~mL})$. The reaction was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc (3 $\times 30 \mathrm{~mL}$). The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel $(50 \%$ EtOAc/hexanes) provided $0.438 \mathrm{~g}(90 \%)$ of β-ketophosphonate 208 as a pale yellow oil: $[\alpha]_{\mathrm{D}}=$ +25 (c 2.5, CHCl_{3}); IR (thin film): $3408,2957,2857,2167,1718,1473,1253,1183,1116,1043$, $842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.45$ (dddd, $\left.J=2.5,5.0,7.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=7.5,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=5.0,16 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=9.2,14$ $\mathrm{Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=2.5,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.20-0.17(\mathrm{~m}, 6 \mathrm{H}), 0.13(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.9(\mathrm{~d}, J=26 \mathrm{~Hz}), 109.5,89.7,69.0,65.1,52.9,51.3$,
$50.2,42.8,41.1,30.2,25.6(3 \mathrm{C}), 17.8,-0.46(3 \mathrm{C}),-2.9,-3.2$, LRMS (EI, 70 eV): m/z 449 [M$\left.\mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}_{2} \mathrm{P}: 449.1945$, found
 449.1927.
(4S, 6R)-Dimethyl-[4, 6-bis-(tert-butyldimethylsilyloxy)-6-methyl-2-oxo-8-trimethylsilyl-oct-7-ynyl]-phosphonate (187b): To a $0^{\circ} \mathrm{C}$ solution of 0.430 g of alcohol $208(0.927 \mathrm{mmol})$ in 1.2 mL of DMF was added 0.126 g of imidazole (1.85 mmol) and 0.280 g of tert-butyldimethylchlorosilane $(1.85 \mathrm{mmol})$. The reaction mixture was then warmed to ambient temperature and maintained for 16 h . A mixture of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$ was added, and the crude reaction was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was then purified by flash chromatography (EtOAc/hexanes) to afford $0.430 \mathrm{~g}(80 \%)$ of the title compound as a viscous, pale yellow oil: $[\alpha]_{\mathrm{D}}=+29\left(c 1.3, \mathrm{CHCl}_{3}\right) ;$ IR (thin film): 2956, 2930, 2897, 2857, 2166, 1719, 1473, 1253, 1187, 1035, $838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.51$ (dddd, $J=9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.96-3.16(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{dd}, J=8.8,16 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=9.5,14 \mathrm{~Hz}, 1 \mathrm{H})$, $1.71(\mathrm{dd}, J=2.4,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 18 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.085(\mathrm{~s}, 3 \mathrm{H}), 0.035(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.5,109.0,89.6,68.3,67.4,52.3$, $52.7,51.8,43.6,41.9,32.4,25.8$ (3C), 25.7 (3C), 17.9, 17.8, -0.34, -2.9, -3.2, $-4.2,-4.8$; LRMS (EI, 70 eV): $\mathrm{m} / \mathrm{z} 563\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{P}: 563.2809$, found 563.2801.

(3R)-4-(tert-Butyldiphenylsilyloxy)-3-methylbutyric acid (209):
To a $-50^{\circ} \mathrm{C}$ solution of 2.69 g of $\mathrm{CuBr}(18.8 \mathrm{mmol})$ in 185 mL of THF and 20 mL of dimethylsulfide was added 12.5 mL of a 3.0 M ethereal solution of
methylmagnesium bromide (37.5 mmol) slowly dropwise. The resulting clear, faint green solution was stirred at $-50^{\circ} \mathrm{C}$ for 30 min then warmed to $-30^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled to $-50^{\circ} \mathrm{C}$ and 4.6 g of $7(12.5 \mathrm{mmol})$ in 15 mL of THF was added via cannula. After maintaining the reaction at $-50^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, 2.4 \mathrm{~mL}$ of $\mathrm{TMSCl}(18.8 \mathrm{mmol})$ was added and the reaction was allowed to warm to ambient temperature overnight. A mixture of saturated $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4$ $\times 150 \mathrm{~mL})$. The combined organics were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine $(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes $)$ to afford $3.85 \mathrm{~g}(79 \%)$ of the title compound 209 as a pale yellow viscous oil: $[\alpha]_{\mathrm{D}}=+6.3\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3071, 3049, 2960, 2931, 2858, 1709, 1589, 1428, 1112, 702; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.65(\mathrm{~m}, 4 \mathrm{H})$, 7.50-7.35 (m, 6H), $3.59(\mathrm{dd}, J=4.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (6.6, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.35-2.15 \mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.8$, 135.6 (4C), 133.6 (2C), 129.6 (2C), 127.5, 68.1, 38.2, 32.8, 26.8 (3C), 19.2, 16.8; LRMS (EI, $70 \mathrm{eV}): m / z 299\left[\mathrm{M}-{ }^{t} \mathrm{Bu}\right]^{+} ;$HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}: 299.1103$, found 299.1111.

(3R)-4-(tert-Butyldiphenylsilyloxy)-3-methylbutyraldehyde
(210):

To a solution of 1.15 g of carboxylic acid 209 (3.23 mmol) in 30 mL of $\mathrm{Et}_{2} \mathrm{O}$ at ambient temperature was added 2.4 mL of a 2.0 M THF solution of $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{SMe}_{2}(4.84$ mmol) slowly dropwise. The resulting clear, colorless solution was heated to reflux and maintained for 45 min . After cooling to ambient temperature, the solvent was removed, and the remaining viscous residue was dissolved in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this colorless solution was added 1.75 g of pyridinium chlorochromate (8.08 mmol), and the resulting brown suspension
was heated to reflux and maintained for 1 h . The reaction was then cooled to ambient temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through Celite, and concentrated. Purification of the crude product by flash chromatography on silica gel (5\% EtOAc/hexanes) afforded 0.950 g (85%) of the title compound as a viscous, colorless oil: $[\alpha]_{\mathrm{D}}=+2.9\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3134,3071,3050,2959,2717,1726,1589,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $9.80(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.59(\mathrm{dd}, \mathrm{J}=5.0,9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44(\mathrm{dd}, J=7.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=$ 6.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 202.4,135.6$ (4C), 133.5, 129.7 (3C), 127.7 (4C), 68.4, 48.1, 31.3, 26.8 (3C), 19.2, 16.7; LRMS (EI, 70eV): m/z 283 [M- $\left.{ }^{t} \mathrm{Bu}\right]^{+}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si}: 283.1154$, found 283.1153 .

(4R)-5-(tert-Butyldiphenylsiloxy)-4-methylpentan-2-ol (212): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.018 g of (R, R)-HOCSAC ligand $\mathbf{X}(0.032 \mathrm{mmol})$ in 1.0 mL of toluene was added 0.125 mL of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(0.417 \mathrm{mmol})$ followed by 0.385 mL of a 2.0 M solution of $\mathrm{Me}_{2} \mathrm{Zn}$ in toluene $(0.769 \mathrm{mmol})$. The resulting pale green solution was then cooled to $-25{ }^{\circ} \mathrm{C}$ and 0.109 g of aldehyde $210(0.320 \mathrm{mmol})$ in 0.5 mL of toluene was added dropwise via syringe. The reaction was maintained for 24 h at $-25^{\circ} \mathrm{C}$ before being quenched by $\mathrm{MeOH}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3$ $\times 10 \mathrm{~mL}$) and the combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexanes) provided $0.071 \mathrm{~g}(62 \%$ combined yield of a $1: 1$ mixture of diastereomers) of title compound $2 \mathbf{2 1 2}$ as a clear, colorless oil: IR (thin film): 3364, 3071, 3050, 2961, 2930, 2857, 1472, 1428, 1112, 702 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.68(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 12 \mathrm{H}), 4.03-3.88(\mathrm{~m}$,
$2 \mathrm{H}), 3.55(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.66($ brs, 1 H$), 2.30($ brs, 1 H$), 1.98-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.30(\mathrm{~m}$, $4 \mathrm{H}), 1.22(\mathrm{t}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 18 \mathrm{H}), 0.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.6,133.5,129.6,127.6,69.8,69.0,66.4,65.6,44.7,43.9$, 33.7, 32.5, 26.8 (6C), 24.2, 23.5, 19.2, 17.5; HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SiNa}\right]^{+}: 379.2069$, found 379.2064.

(2S, 4S)-4-Triethylsilyloxypentan-2-ol (218): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.494 g of $(2 S, 4 S)-(+)$-pentanediol $(4.74 \mathrm{mmol})$ in 9.5 mL of THF was added 0.228 g of a 60% dispersion of NaH in mineral oil $(5.69 \mathrm{mmol})$ portionwise. Gas evolution and a white precipitate were observed. The resulting cloudy, white suspension was warmed to ambient temperature and maintained for 2 h . The resulting orange mixture was then treated with 0.955 mL of triethylchlorosilane $(5.69 \mathrm{mmol})$ and maintained for 2 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ then washed with brine. The ether layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (5\% EtOAc/hexanes) provided g of title compound 218 as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+21\left(c 2.6, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3432,2960,2878,1458,1415,1375,1239,1124,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 4.12-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{brs}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=3.9,9.6,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, J=$ $2.3,4.9,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})$, 0.63 (q, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 67.5,64.4,45.8,23.7,22.8,6.7,4.8 ;$ LRMS (EI, 70eV): m/z $217[\mathrm{M}-\mathrm{H}]^{+}, 189\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CH}_{2}\right]^{+}$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}$: 189.1311, found 189.1309.

(2S, 4S)-4-Triethylsilyloxy-2-pentyl-4-methylphenylsulfonate (219): Tо а
$0^{\circ} \mathrm{C}$ solution of 3.10 g of alcohol $218(14.2 \mathrm{mmol})$ and 3.19 g of DABCO $(28.4 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4.07 g of $\mathrm{TsCl}(21.3 \mathrm{mmol})$ portionwise. The resulting white suspension was maintained at $0^{\circ} \mathrm{C}$ for 30 min then at ambient temperature for 1 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and filtered through silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The filtrate was then concentrated to afford $5.0 \mathrm{~g}(94 \%)$ of a clear, colorless oil: $[\alpha]_{\mathrm{D}}=+21\left(c 1.9, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2956, 2913, 2877, 1599, 1458, 1365, 1240, 1008, 904, 816, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 1.75(\mathrm{ddd}, J=3.9,7.8,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=4.4,8.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.2,135.1,129.6$ (2C), 127.4 (2C), 78.6, 65.1, 47.2, 24.3, 21.6, 21.5, 6.8 (3C), 5.1 (3C).

(2R, 4S)-2-Methyl-4-triethylsilyloxypentanenitrile (220): To a solution of 0.286 g of tosylate $219(0.769 \mathrm{mmol})$ in 0.9 mL of DMSO was added 0.151 g of $\mathrm{NaCN}(3.08 \mathrm{mmol})$ at ambient temperature. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ and maintained for 24 h . After cooling to ambient temperature, the crude, orange reaction mixture was purified by flash chromatography on silica gel $\left(5 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $)$ to provide 0.127 $\mathrm{g}(73 \%)$ of the title compound as a clear, colorless liquid: $[\alpha]_{\mathrm{D}}=+3.1\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2956, 2913, 2878, 2239, 1459, 1378, 1239, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.01-$ $3.90(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{ddq} \mathrm{J}=7.3,1.88(\mathrm{ddd}, J=7.1,7.1,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{ddd}, J=5.4,7.3$, $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .0 .97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}$, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 123.3,65.4,43.5,23.5,21.5,17.9,6.8$ (3C), 5.0
(3C); LRMS (EI, 70 eV): m/z $198\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{CH}_{2}\right]^{+}$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NOSi}$ 198.1314, found 198.1313 .

(8E)-(3R, 5S, 10R, 12S)-3, 5-Bis-(tert-butyldimethylsilyloxy)-3, 10-dimethyl-12-triethylsilyloxy-1-trimethylsilyltridec-8-en-1-yn-7-one
(222): To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.125 g of nitrile 220 (0.550 mmol) in 1.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.580 mL of a 1.0 M solution of DIBAL-H in hexanes dropwise via syringe. The resulting colorless solution was maintained at $-78^{\circ} \mathrm{C}$ for 1 h , then quenched with $1 \mathrm{M} \mathrm{KHSO}_{4}(5 \mathrm{~mL})$. The reaction mixture was warmed to ambient temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. After washing with $1 \mathrm{M} \mathrm{KHSO}_{4}$ and brine, the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $0.103 \mathrm{~g}(82 \%)$ of aldehyde 221 as a clear, colorless liquid that was used immediately in the next reaction without further purification.

To a mixture of 0.045 g of $\mathrm{LiCl}(0.522 \mathrm{mmol})$ in 2.0 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at ambient temperature was added 0.302 g of β-ketophosphonate $\mathbf{1 8 7 b}(0.522 \mathrm{mmol})$ in 1.2 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred for 5 min then treated with 0.076 mL of DIPEA (0.435 mmol) dropwise via syringe. The resulting white suspension was maintained for 15 min whereupon 0.100 g of aldehyde 221 (0.435 mmol) in 1.2 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added. The suspension dissipated, and the resulting pale yellow solution was maintained for 60 h at ambient temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added $(10 \mathrm{~mL})$ and the mixture was extracted with EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes)
provided $0.175 \mathrm{~g}(59 \%)$ of the title compound as a viscous, pale yellow oil: $[\alpha]_{\mathrm{D}}=+12(c 2.0$, CHCl_{3}); IR (thin film): 2957, 2857, 2167, 1696, 1678, 1626, 1462, 1365, 1251, $991,838 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.72(\mathrm{dd}, J=7.6,16 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=1.1,16 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (dddd, $J=2.6,2.6,9.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=2.5,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}$, $J=9.1,15 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dd}, J=9.2,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{dd}, J=2.6,14 \mathrm{~Hz}, 1 \mathrm{H})$, $1.62(\mathrm{ddd}, J=7.3,7.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{ddd}, J=5.6,7.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=$ 6.0 Hz, 3H), $1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.55-$ $0.63(\mathrm{~m}, 6 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 199.1,152.1,129.2,109.3,89.5,68.4,67.6,66.0,52.4,49.4,46.1,33.1,32.5$, 25.9 (3C), 25.8 (3C), 24.0, 19.2, 18.0, 17.9, 6.9 (3C), 5.1 (3C), $-0.25,-2.8,-3.1,-4.2,-4.6$; HRESIMS calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}_{4} \mathrm{Na}\right]^{+}: 705.4562$, found 705.4567.

(3R, 5S, 8R, 9S, 10R, 12S)-3, 5-Bis-(tert-butyldimethylsilyloxy)-3, 10-dimethyl-12-triethylsilyloxy-1-trimethylsilyltridec-8-en-1-yn-7-one (223): To a suspension of 0.200 g of AD-mix α in 0.8 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ was added 3.5 mg of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(9.53 \mu \mathrm{~mol}), 7.5 \mathrm{mg}$ of (DHQ) $)_{2} \mathrm{PHAL}(9.53 \mu \mathrm{~mol})$, and 24 mg of $\mathrm{NaHCO}_{3}(286 \mu \mathrm{~mol})$. The resulting yellow-orange suspension was maintained for 10 min , cooled to $0{ }^{\circ} \mathrm{C}$, then treated with 0.065 g of enone 222 (95.3 mmol) in 0.3 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) dropwise via syringe. The reaction mixture was maintained for 20 h at $0{ }^{\circ} \mathrm{C}$ at which point 0.038 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. After warming to ambient temperature, the resulting brown mixture was maintained for 1 h and diluted with EtOAc (10 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2
$\times 15 \mathrm{~mL}$). The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude reaction mixture was purified by flash chromatography on silica gel (3% EtOAc/hexanes) to provide $0.021 \mathrm{~g}(31 \%)$ of the title compound as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=$ +10 (c 1.8, CHCl_{3}); IR (thin film): 3452, 2957, 2930, 2857, 2167, 1715, 1463, 1373, 1252, 1118, $1074,9990,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 4.67-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=1.7,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=2.8,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=8.4,16 \mathrm{~Hz}, 1 \mathrm{H})$, $2.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{dd}, J=2.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=3.4$, $9.3,13 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 18 \mathrm{H}), 0.66-0.56(\mathrm{~m}, 6 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.128(\mathrm{~s}, 3 \mathrm{H})$, 0.076 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.5,109.1,89.8,74.6,68.4,67.0,66.3,51.8$, $47.0,43.5,34.0,32.5,29.7,25.9$ (3C), 25.7 (3C), 24.8, 18.0, 17.9, 15.4, 6.9 (3C), 5.2 (3C), 0.27, $-2.8,-3.1,-4.2,-4.6$; HRESI-MS calcd for $\mathrm{C}_{36} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}: 739.4617$, found 739.4636.

$(8 E)(3 R, \quad 5 S, \quad 10 R, \quad 12 S)-3, \quad 5, \quad 12-T r i s-(t e r t-$ butyldimethylsilyloxy)-3, 10-dimethyl-1-trimethylsilyltridec-8-en-1-yn-7-one (186): To a mixture of 0.073 g of $\mathrm{LiCl}(1.73 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at ambient temperature was added 1.0 g of β-ketophosphonate $\mathbf{1 8 7 b}(1.73 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred for 5 min then treated with 0.250 mL of DIPEA (1.49 mmol) dropwise via syringe. The resulting white suspension was maintained for 15 min whereupon 0.285 g of aldehyde $147(0.435 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added. The suspension dissipated, and the resulting pale yellow solution was maintained for 60 h at ambient temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added $(20 \mathrm{~mL})$ and the mixture was extracted with

EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organics were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes) provided $0.590 \mathrm{~g}(70 \%)$ of the title compound as a viscous, pale yellow oil: $[\alpha]_{\mathrm{D}}=+16(c 1.1$, CHCl_{3}); IR (thin film): 2957, 2929, 2896, 2857, 2167, 1701, 1677, 1626, 1472, 1463, 1361, $1252,990,837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.71(\mathrm{dd}, J=7.5,15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.53(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=2.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J$ $=9.1,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=9.3,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=2.5,13.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.59(\mathrm{ddd}, J=7.3,7.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{ddd}, J=5.6,7.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.12$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H})$, $0.18(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.05-0.02(\mathrm{~m}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 199.1,152.2,129.1,109.3,89.5,68.4,67.6,66.0,52.4,49.4,46.0,33.0,32.5,25.9$ (3C), 25.8 (3C), 25.7 (3C), 24.0, 19.0, 18.0, 18.0, 17.9, $-0.24,-2.8,-3.1,-4.1,-4.2,-4.6,-4.8$; HRESIMS calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}_{4} \mathrm{Na}\right]^{+}: 705.4562$, found 705.4595 .

(3R, 5S, 8R, 9S, 10R, 12S)-3, 5, 12-Tris-(tert-butyldimethylsilyloxy)-3, 10-dimethyl-1-trimethylsilyl-tridec-8-en-1-yn-7-one (224): To a suspension of 0.422 g of AD-mix α in 1.6 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) was added 0.015 g of $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(40.2 \mu \mathrm{~mol}), 0.031 \mathrm{mg}$ of $(\mathrm{DHQ})_{2} \mathrm{PHAL}(40.2 \mu \mathrm{~mol}), 0.051 \mathrm{~g}$ of $\mathrm{NaHCO}_{3}(0.602 \mathrm{mmol})$, and 0.038 g of methanesulfonamide $(0.402 \mathrm{mmol})$. The resulting yellow-orange suspension was maintained for 10 min , cooled to $0{ }^{\circ} \mathrm{C}$, then treated with 0.137 g of enone $\mathbf{1 8 6}(0.200 \mathrm{mmol})$ in 0.8 mL of ${ }^{t} \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$ dropwise via syringe. The reaction mixture was maintained for 8 h at $0{ }^{\circ} \mathrm{C}$ at which point 0.076 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added. After
warming to ambient temperature, the resulting brown mixture was maintained for 1 h and diluted with EtOAc $(10 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude reaction mixture was purified by flash chromatography on silica $\mathrm{gel}(3 \% \mathrm{EtOAc} / \mathrm{hexanes})$ to provide $0.061 \mathrm{~g}(42 \%)$ of the title compound as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=+13\left(c 5.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3456, 2957, 2929, 2897, 2857, 2167, 1717, 1472, 1463, 1361, 1252, 1118, 1073, 990, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.67-$ $4.57(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=1.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ $(\mathrm{dd}, J=2.8,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=8.4,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.79(\mathrm{dd}, J=2.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=3.4,9.3,13 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=$ 6.0 Hz, 3H), $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 18 \mathrm{H}), 0.66-0.56(\mathrm{~m}, 6 \mathrm{H})$, $0.21(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.131(\mathrm{~s}, 3 \mathrm{H}), 0.128(\mathrm{~s}, 3 \mathrm{H}), 0.076(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 209.5,109.1,89.8,74.6,68.4,67.0,66.3,51.8,47.0,43.5,34.0,32.5,29.7,25.9(3 \mathrm{C})$, 25.7 (3C), 24.8, 18.0, 17.9, 15.4, 6.9 (3C), 5.2 (3C), $-0.27,-2.8,-3.1,-4.2,-4.6$; HRESI-MS calcd for $\mathrm{C}_{36} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}: 739.4617$, found 739.4647.

(3R, 5S, 8R, 9S, 10R, 12S)-3, 5, 8, 9, 12-Pentakis-(tert-butyldimethylsilyloxy)-3, 10-dimethyl-1-trimethylsilyl-tridec-1-yn-7-one (225): To a $0{ }^{\circ} \mathrm{C}$ solution of 0.015 g of diol $224(20.9 \mu \mathrm{~mol})$ in 0.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $12 \mu \mathrm{~L}$ of 2 , 6-lutidine $(110 \mu \mathrm{~mol})$ followed by $14 \mu \mathrm{~L}$ of tert-butyldimethyltrifloromethane sulfonate ($62.8 \mu \mathrm{~mol})$ dropwise via syringe. The reaction was warmed to ambient temperature and maintained for 2 h at which point saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added. The mixture
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organics were washed with brine. After being dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, the resulting oil was purified by flash chromatography on neutral silica gel (Iatrobeads-1\% EtOAc/hexanes) to afford 0.015 g of the title compound as a pale yellow oil: $[\alpha]_{\mathrm{D}}=+25\left(c\right.$ 1.8, $\left.\mathrm{CHCl}_{3}\right)$; IR (thin film): 2930, 2896, 2858, 2167, 1722, 1473, 1463, 1254, 1069, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 4.60-$ $4.50(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=6.5$, $17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=5.4,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=6.2,13.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.72(\mathrm{dd}, J=5.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 18 \mathrm{H}), 0.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}$, $6 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 207.0,109.6,89.4,81.1,79.2,68.8,66.2,66.1,52.2,49.8,45.6,32.4,30.3,26.1$ (3C), 26.0 (3C), 25.9 (6C), 25.8 (3C), 25.7, 24.6, 18.4, 18.3, 18.1, 18.0, 18.0, 17.9, -0.20 (3C), $-2.8,-$ 2.9 (2C), $-3.8,-4.1,-4.2,-4.3,-4.5,-4.6,-4.9$; HRESI-MS calcd for $\mathrm{C}_{48} \mathrm{H}_{104} \mathrm{O}_{6} \mathrm{Si}_{6} \mathrm{Na}$: 967.6346, found 967.6359.

CHAPTER 3. DIASTEREOSELECTIVE β-LACTONE ENOLATE ALKYLATION IN THE CONSTRUCTION OF QUATERNARY CARBON STEREOCENTERS

3.1 BACKGROUND

Asymmetric quaternary carbon formation represents an important and challenging area in organic synthesis. ${ }^{95}$ Enolate alkylation has emerged as the most common method for achieving the stereoselective installation of quaternary carbons. This traditional enolate alkylation strategy can potentially be limited by poor control over the E / Z geometry in the reacting α, α disubstituted enolate which ultimately compromises reaction diastereoselection. Such issues have been resolved through the use of metal chelates or cyclic enolate moities which are often times incorporated within the structure of a chiral auxiliary. ${ }^{96}$ While these methods have been quite successful in the construction of quaternary carbon stereocenters, a disadvantage arises in the necessity of added synthetic manipulations to install and remove the auxiliary from the desired material. An interesting alternative to chiral auxiliary mediated asymmetric quaternary carbon formation can be realized through the alkylation of β-lactone enolates.

[^56]The earliest examples of β-lactone enolate alkylation to form asymmetric quaternary centers were reported by Mulzer et al. ${ }^{97}$ Treating α-substituted β-lactones $\mathbf{2 3 0}$ derived from the corresponding 3-hydroxycarboxylic acids with lithium diisopropylamide (LDA) in THF at -78 ${ }^{\circ} \mathrm{C}$ cleanly generated the corresponding lithium enolate 231 which was subsequently trapped with a variety of electrophiles to afford α, α-disubstituted β-lactones in good yield and with excellent diastereoselectivity (>98:2). The origin of the observed trans-selectivity in the formation of the quaternary carbon center was attributed to the conformational rigidity of the lactone enolate system whereby incoming electrophiles would approach opposite the bulky C_{4} substituent in order to minimize nonbonded interactions (Figure 28).

Figure 31. Rationale for the observed diastereoselectivity in the alkylation of β-lactone enolates

These preliminary investigations, while successful in demonstrating the utility β-lactone enolates for the diastereoselective formation of quaternary carbon stereocenters, were limited to the use of α-phenyl substituted lactones with bulky C_{4} substituents (${ }^{i} \mathrm{Pr},{ }^{t} \mathrm{Bu}$). In the case of lactone enolates unsubstituted at C_{3}, the rapid dimerization of enolate $\mathbf{2 3 2}$ and another lactone molecule occurs to form the Claisen self-condensation product 233 in high yield (Eq 18).

[^57]

Following the initial reports by Mulzer, further investigation into the enolization and subsequent alkylation of C_{3} unsubstituted β-lactones was undertaken. In 1987, Seebach et al. disclosed the first successful example of the alkylation of a C_{3} unsubstituted β-lactone enolate employing (S)- β-butyrolactone (91). ${ }^{98}$ Seebach's enolization method required slowly treating a solution of LDA with lactone 91 at very low temperatures $\left(-100^{\circ} \mathrm{C}\right)$. Subsequent addition of either methyl or ethyl iodide (2.0 equiv) at $-78{ }^{\circ} \mathrm{C}$ resulted in the generation of trans-3,4disubstituted lactones 234 and 235 in modest yield with good levels of diastereoselection.

91

$234 \mathrm{R}=\mathrm{Me}$; 31\% (dr 8:1)
235 R = Et; 37\% (dr 9:1)

Another interesting approach to achieve the formal enolization and alkylation of $\mathrm{C}_{3^{-}}$ unsubstituted β-lactones was later reported by Mead and Yang (Eq 20). ${ }^{99}$ The strategy involved the disilylative alkylation of a 3-trimethylsilyl-2-oxetanone 236 in the presence of tris(dimethylamino)sulfur(trimethylsilyl)difluoride (TASF) and MeI. The lactone products 237 were obtained in variable yields with modest trans-diastereoselection.

[^58]

The most recent example involving the alkylation of C_{3}-unsubstituted β-lactone enolates was described by Parsons et al. in the total synthesis of the potent pancreatic lipase inhibitor (-)tetrahydrolipstatin $\mathbf{2 3 8}(\mathrm{Eq} 21) .{ }^{100}$ The requisite hexyl side chain of the natural product was to be introduced via the enolization and subsequent alkylation of lactone 239. Extensive optimization identified the combination of NaHMDS as base and the presence of an in situ electrophile (1-iodohex-2-ene) as the most effective reaction conditions for achieving β-lactone enolate alkylation. The desired monoalkylated product $\mathbf{2 4 0}$ was obtained in 36% isolated yield (52% based on recovered starting material) along with 26% of the dialkylated β-lactone 241.

[^59]
3.2 ENOLATE ALKYLATION OF AAC-DERIVED $\boldsymbol{\beta}$-LACTONES

We envisaged that the enantiomerically enriched β-lactone products of asymmetric acyl halidealdehyde cyclocondensation (AAC) reaction technology would offer an efficient means for establishing equivalent bond constructions. Enolization and subsequent alkylation of β-lactones of type $\mathbf{2 4 2}$ should afford trans-3,4-disubstituted lactones which could then be resubjected to the reaction conditions in the presence of a different electrophile to result in the production of β lactones possessing asymmetric quaternary stereocenters.

Figure 32. AAC-Derived β-Lactones in Asymmetric Quaternary Carbon Formation

Although prior literature precedent suggested that the enolization and subsequent alkylation of C_{3}-unsubstituted β-lactones was a nontrivial endeavor, we desired a set of reaction conditions that would efficiently generate β-lactone enolates for subsequent iterative functionalization with alkylating agents to afford asymmetric quaternary carbon stereocenters. Initially, we examined the very low temperature reaction conditions for β-lactone enolate formation reported by Seebach. ${ }^{74}$ Following Seebach's protocol, a $-100{ }^{\circ} \mathrm{C}$ solution of LDA in

THF was slowly treated with a THF solution of (4S)-4-phenethyloxetan-2-one $\mathbf{6 1}$ via syringe pump (Eq 22). This solution was then warmed to $-78{ }^{\circ} \mathrm{C}$ and MeI was added. Unfortunately, these conditions yielded a complex mixture of products, presumably owing to the competing Claisen self-condensation pathway described by Mulzer, along with unreacted starting material by TLC and ${ }^{1} \mathrm{H}$ NMR analysis. None of the desired trans-3,4-disubstituted lactone 243a was observed.

Turning to Parsons' previously described total synthesis of (-)-tetrahydrolipstatin, we next sought to improve upon these earlier results that incorporated an in situ electrophile to intercept the reactive β-lactone enolate. In an attempt to repeat the result obtained by Parsons, a $-100^{\circ} \mathrm{C}$ solution of NaHMDS (1.0 equiv) and MeI (1.5 equiv) in THF was slowly treated with a THF solution of lactone $\mathbf{6 1}$ via syringe pump (Eq 23). After work-up and chromatographic separation, we were pleased to obtain trans-3,4-disubstituted lactone 243 in 36% isolated yield as a 10:1 mixture of anti/syn diastereomers along with 20% of the 3,3-dimethylated product 244 and 17% of unreacted starting material in accordance with that observed by Parsons. The
observed coupling constant in the ${ }^{1} \mathrm{H}$ NMR spectrum of lactone $243\left(J_{3,4}=4.0 \mathrm{~Hz}\right)$ was indicative of the formation of the trans-disubstituted lactone. ${ }^{101}$

Attempts at optimizing this alkylation reaction first entailed a reverse addition of base to the lactone and electrophile at low temperature (Eq 24). Syringe pump addition of NaHMDS (1.0 equiv) to a $-100{ }^{\circ} \mathrm{C}$ solution of lactone $\mathbf{6 1}$ and MeI (1.5 equiv) in THF resulted complete consumption of the starting lactone and an increased yield of the desired trans-disubstituted product 241 to 47%. An additional 11% of the disubstituted by-product was also obtained. The isolated yield of lactone 241 was eventually maximized by employing the previously described reverse addition of base to the starting lactone and a large excess of the MeI electrophile (5.0 equiv) at $-100{ }^{\circ} \mathrm{C}$. Lactone 241 was obtained in 63% isolated yield ($\mathrm{dr} \sim 10: 1$) along with an additional 11% of dialkylated material representing the highest isolated yield for the alkylation of a C_{3}-unsubstituted β-lactone enolate to date.

[^60]These optimized conditions were then used in conjunction with a variety of electrophiles in order to examine the scope of the alkylation reaction. While MeI delivered lactone 243a in 63% yield, the less active ethyl iodide electrophile (entry b) afforded none of the desired transdisubstituted lactone. More highly activated allyl and benzyl bromides provided the expected trans-lactone products 243b-c, however, only in modest yields (entries c and e) potentially owing to competitive self-condensation. In an attempt to suppress the nonproductive selfcondensation reaction pathway, a more highly activated alkylating agent, allyl iodide, was employed (entry d). Gratifyingly, allyl iodide proved to be substantially more reactive than allyl bromide allowing enolate alkylation to effectively compete with the nonproductive selfcondensation pathway affording (3S, 4S)-3-allyl-4-phenethyl-oxetan-2-one 243b in 68% isolated yield along with minor amounts of the corresponding diallylated material.

Table 5. Enolization and Alkylation of α-Unsubstituted β-Lactones

	$\xrightarrow[\text { THF, }-100^{\circ} \mathrm{C}]{\mathrm{NaHMDS}, \mathrm{R}-\mathrm{X}}$	
entry	R-X	Yield ${ }^{a}$ (\%)
a	$\mathrm{CH}_{3} \mathrm{I}$	63 (243a)
b	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$	---
c	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	38 (243b)
d	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{I}$	68 (243b)
e	$\mathrm{PhCH}_{2} \mathrm{Br}$	38 (243c)

${ }^{a}$ Isolated yields of purified products.

While the efficient preparation of 3,4-trans-alkylated products were limited to substitution patterns derived from very reactive electrophiles, i.e. MeI and allyl iodide, these initial experiments generated quantities of several β-lactone substrates for further investigation into the stereoselective installation of quaternary carbon centers. Employing similar reaction conditions as described in the initial alkylation step (NaHMDS, in situ R-X, THF, $-78{ }^{\circ} \mathrm{C}$) lactones 243a-c were successfully enolized and trapped in situ with various electrophiles (Table 5). Activated electrophiles such as allyl and benzyl bromide (entries a, b, f, and h) cleanly afforded the corresponding α, α-disubstituted β-lactones in excellent yield with high levels of diastereoselectivity. Similarly, substanitially poorer primary alkyl iodide electrophiles (EtI and ${ }^{n} \mathrm{BuI}$) were also effective alkylating agents toward β-lactone enolates (entries c and d). However, increased steric bulk in the structure of the electrophile (entry e) was not tolerated when the β branched isobutyl iodide was employed resulting in a significantly lower yield of the corresponding α, α-disubstituted β-lactone 245e. These alkylation experiments successfully demonstrated the synthetic utility of the enantiomerically enriched β-lactone products of the AAC reaction toward asymmetric quaternary carbon construction; however, our inability to efficiently prepare trans-disubstituted β-lactones with C_{3} substituents other than methyl or allyl severely limited the generality of the method.

Table 6. Alkylation of 3,4-trans-Disubstituted β-Lactones

			$\xrightarrow[78^{\circ} \mathrm{C}]{\mathrm{S}, \mathrm{R}_{3}-\mathrm{X}}$		
entry	R_{1}	R_{2}	$\mathrm{R}_{3}-\mathrm{X}$	$\begin{aligned} & \text { Yield } \\ & (\%)^{a} \end{aligned}$	anti:syn ${ }^{\text {b,c }}$
a	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	93 (245a)	97:3
b	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	BnBr	94 (245b)	93:7
c	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	EtI	94 (245c)	>98:2
d	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{I}$	88 (245d)	95:5
e	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{I}$	10 (245e)	-
f	Me	$\mathrm{CH}_{2} \mathrm{OBn}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	93 (245f)	>98:2
g	Allyl	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	MeI	91 (245g)	14:86
h	Bn	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	89 (245h)	5:95

${ }^{a}$ Isolated yields of purified products. ${ }^{b}$ Diastereomer ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product mixtures. ${ }^{c}$ Stereochemistry of major diastereomer was assigned based on literature precedent. See ref. 74d.

In an attempt to circumvent the initial problematic enolization and alkylation of α unsubstituted β-lactones, we eagerly turned to a newly developed AAC reaction employing the second generation unsymmetrical aluminum(III) triamine catalyst 180. This second generation AAC reaction employs substoichiometric amounts of catalylst 180 ($10-20 \mathrm{~mol} \%$) and enables the effective preparation of 3,4-cis-disubstituted β-lactones (246) from a variety of aldehydes and alkyl-substituted ketenes (Figure 32). ${ }^{102}$ The resulting lactones were obtained in good yield with good to excellent enantio- and diastereoselectivities.

[^61]

Figure 33. Second generation asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions of substituted ketenes

Merging the newly acquired 3,4-cis-disubstituted β-lactone products from the second generation AAC reaction with the previously described alkylation protocol resulted in the successful installation of quaternary carbon stereocenters in a variety of α-substituted β-lactones that had formerly been inaccessible through traditional AAC reaction technology (Table 6). Lactones containing either ethyl or n-propyl substituents at the α-position (entries a, b, and c) were readily enolized and alkylated in good yield with high levels of diastereoselectivity (anti/syn >98:2). Bulky α-substituents (entry d) were also tolerated affording the corresponding α, α-substituted β-lactone $\mathbf{2 4 7 d}$ as a single diastereomer in 94% yield.

Table 7. Alkylation of 3,4-cis-Disubstituted β-Lactones

entry	R_{1}	R_{2}	$\mathrm{R}_{3}-\mathrm{X}$	Yield $(\%)^{\mathrm{a}}$	anti:syn ${ }^{\text {b,c }}$
a	Et	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	92 (247a)	>98:2
b	${ }^{n} \mathrm{Pr}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OBn}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	83 (247b)	>98:2
c	${ }^{n} \mathrm{Pr}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	BnBr	86 (247c)	>98:2
d	${ }^{i} \mathrm{Pr}$	Ph	BnBr	94 (247d)	>98:2
e	Me	$\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{Br}$	52 (247e)	95:5
f	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	BnBr	48 (247f)	>98:2
g	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	EtI	21 (247g)	>98:2
h	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	${ }^{n} \mathrm{BuI}$	12 (247h)	>98:2
i	Me	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	MeI	69 (247i)	-

${ }^{a}$ Isolated yields of purified products. ${ }^{b}$ Diastereomer ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product mixtures. ${ }^{c}$ Stereochemistry of major diastereomer was assigned based on literature precedent. See ref. 74d.

Limitations to the method were observed, however, when a methyl group was incorporated at the C_{3} position of the β-lactone substrates (entries e-h). While the observed diastereoselectivity in the alkylation event remained constant ($\geq 95: 5$), isolated yields of the β lactone products were significantly attenuated. These low isolated yields can potentially be attributed to the competitive Claisen self-condensation reaction pathway reported by Mulzer and Seebach. As depicted in Figure 33, nucleophilic attack of a lactone enolate on the starting cis-3,4-disubstituted β-lactone can proceed along a relatively unhindered trajectory reminiscent of a C_{3}-unsubstituted substrate resulting in substantial enolate acylation and further lactone
consumption via oligomerization. As previously observed in the case of C_{3} unsubstituted β lactone enolates, the nature of the alkylating agent appears to play a major role in the degree of competition between alkylation and self-condensation as more reactive electrophiles (entries e, f, and i) afforded the corresponding α, α-disubstituted β-lactones in higher yields than less reactive primary alkyl iodides (entries g and h). Although poor yields were obtained when using 3,4-cisdisubstituted β-lactones containing an α-methyl group, we have previously demonstrated the success of 3,4-trans-disubstituted lactones possessing an α-methyl group in the diastereoselective β-lactone enolate alkylation in the construction of quaternary carbon stereocenters. This difference in reactivity between the two diastereomeric lactones can be rationalized by a hindered trajectory of a lactone enolate approaching a trans lactone from either face. As a result, the two approaches are complementary.

Figure 34. Rationalization for low yields of alkylation with 3-methyl-3,4-cis-disubstituted β lactones

3.3 SYNTHETIC APPLICATION OF α, α-DISUBSTITUTED β-LACTONES

Having prepared a variety of α, α-disubstituted β-lactones, a series of investigations were conducted to determine whether the increased steric bulk of the newly installed quaternary carbon stereocenter would impact the differential electrophilic reactivity patterns typically
displayed by less substitiuted β-lactones. To our delight, treatment of lactones $\mathbf{2 4 5 f}$ and 245b with $\mathrm{La}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ and BnOH resulted in based-mediated alcoholysis cleanly affording the ring opened ester aldol adducts 248a and 248b. Further elaboration of β-hydroxyester \mathbf{c} by mesylation and subsequent elimination then provided the α, α-disubstituted β, γ-unsaturated carboxylate ester 249 in 61\% yield (Scheme 39).

Scheme 39. $\mathrm{La}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ Mediated Ring Opening of α, α-Disubstituted β-Lactones

Similarly, geminal α-substitution appears to have little effect on the azide-mediated $\mathrm{S}_{\mathrm{N}} 2$ ring opening of β-lactones (Table 8). When lactones 245b-d were subjected to NaN_{3} (2.0 equiv) in DMSO at $50{ }^{\circ} \mathrm{C},{ }^{103}$ the corresponding β-azido acids were obtained in near quantitative yield. However, when the steric environment around the electrophilic C_{4} stereocenter was dramatically increased (entry d), the $\mathrm{S}_{\mathrm{N}} 2$ pathway became less accessible resulting in a 5:1 mixture of starting lactone and the desired β-azido acid after 3 days at $50^{\circ} \mathrm{C}$. Despite the low reactivity observed with especially hindered substrates, azide-mediated ring opening of α, α-disubstituted β-lactones

[^62]has proven to be an efficient strategy leading to synthetically useful α, α-disubstituted β-amino acids.

Table 8. Azide-Mediated $\mathrm{S}_{\mathrm{N}} 2$ Ring Opening of α, α-Disubstituted β-Lactones

		$\frac{\mathrm{NaN}_{3}}{\text { DMSO, } 50^{\circ} \mathrm{C}}$	 250a-d	
$\begin{aligned} & \text { 245b-d, } \\ & \text { 247d, } \end{aligned}$				
entry	R_{1}	R_{2}	R_{3}	Yield ${ }^{a}$ (\%)
a	Me	Et	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	98 (250a)
b	Me	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	95 (250b)
c	Me	${ }^{n} \mathrm{Bu}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$	97 (250c)
d	${ }^{i} \operatorname{Pr}$	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	14 (250d)

[^63]
3.4 CONCLUSIONS

The enantiomerically enriched β-lactone products of catalytic, asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions have been successfully employed in the stereoselective construction of quaternary carbon stereocenters. Treatment of β-lactones of type $\mathbf{2 4 2}$ with NaHMDS at low temperature resulted in enolization and subsequent alkylation with in situ electrophiles to afford trans-3,4-disubstituted lactones in moderate to good yield with good levels of diastereoselectivity. Resubjecting the monoalkylated products to the reaction conditions and employing a different electrophile resulted in the efficient production of α, α -disubstituted- β-lactones in high yield with high trans-diastereoselectivity.

A more efficient route to α, α-disubstituted β-lactones was realized by employing the recently developed second generation AAC reaction. This approach avoided the initial problematic enolization and alkylation of α-unsubstituted β-lactones by installing the enolate stabilizing α-stereocenter via the reaction of aldehydes with alkyl substituted ketenes in the
presence of substoichiometric amounts of catalyst 180. Asymmetric quaternary carbon formation could now be accomplished in two steps affording the desired α, α-disubstituted- β lactones in high yield with excellent diastereoselectivity.

Once synthesized, the quaternary center containing lactones were subjected to traditional β-lactone ring opening reaction conditions to furnish the corresponding α, α-disubstituted ester aldol adducts and β-azido acids in excellent yield.

3.5 EXPERIMENTAL SECTION

General Procedure for the Enolization and Alkylation of α-Unsubstituted β-Lactones: To a $-100{ }^{\circ} \mathrm{C}$ solution of 0.209 g of lactone $61(1.19 \mathrm{mmol})$ and 0.370 mL of $\mathrm{MeI}(5.93 \mathrm{mmol})$ in 60 mL THF was added 1.20 mL of a 1.0 M solution of NaHMDS in THF slowly via syringe pump over 1 h . The reaction was maintained for an additional 1 h at $-100^{\circ} \mathrm{C}$, then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. After warming to ambient temperature, the reaction mixture was extracted with EtOAc and the combined organics were washed with brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (4\% EtOAc/hexanes) provided 0.142 g (63\%) of lactone 243a as a clear, colorless oil.
 (3S, 4S)-3-Methyl-4-phenethyl-oxetan-2-one (243a): $[\alpha]_{D}=-82$ (c 1.7, CHCl_{3}); IR (thin film): $3063,3028,2936,2876,1824,1603,1496,1455$, $1385,1127 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.35-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.18(\mathrm{ddd}, J=4.0,5.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{dq}, J=4.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=5.8,8.8,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 1 \mathrm{H})$, 2.27-2.03 (m, 2H), $1.33(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.6,140.0,128.5$, 128.2, 126.2, 78.5, 50.7, 35.6, 31.1, 12.2; LRMS (EI, 70eV): m/z 190; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}: 190.0994$, found 190.0993.

(3S, 4S)-3-Allyl-4-phenethyl-oxetan-2-one (243b): Purification by flash chromatography on silica gel (2\% EtOAc/hexanes) afforded 0.155 g (68\%) of a clear, colorless oil: $[\alpha]_{\mathrm{D}}=-61\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3083, 3064, 3027, 2931, 2861, 1820, 1642, 1603, 1497, 1454, 1384, $1122 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-$
$7.19(\mathrm{~m}, 5 \mathrm{H}), 5.85-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{brs}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{ddd}, J=$ $4.0,5.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=4.0,6.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.39(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 170.4, 140.0, 132.9, 128.5, 128.2, 126.3, 118.2, 76.3, 55.3, 35.8, 31.4, 31.2; LRMS (EI, 70eV): m/z 216; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}: 216.1150$, found 216.1149.

(3S, 4S)-3-Benzyl-4-phenethyl-oxetan-2-one (243c): Purification by flash chromatography on silica gel (2% EtOAc/hexanes) afforded 0.110 $\mathrm{g}(38 \%)$ of a pale yellow oil: $[\alpha]_{\mathrm{D}}=-19\left(\mathrm{c} 1.8, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3086, 3062, 3028, 2926, 2860, 1820, 1603, 1497, 1454, 1384, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38-7.27(\mathrm{~m}$, $6 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 4 \mathrm{H}), 4.33(\mathrm{ddd}, J=4.2,6.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=4.2,6.0,9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{dd}, J=6.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=9.0,14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=5.7,9.4,14.6 \mathrm{~Hz}$, 1H), 2.56-2.49 (m, 1H), 2.25-2.11(m, 1H), 2.03-1.90(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,140.0,137.0,128.8,128.6,128.5,128.1,127.0,126.2,76.4,57.1,35.5,33.4,29.6 ;$ LRMS (EI, 70eV): m/z 266; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$: 266.1307, found 266.1298.

(3S, 4R)- 4-Benzyloxymethyl-3-methyl-oxetan-2-one (243d): Purification by flash chromatography on silica gel (10\% EtOAc/hexanes) afforded $0.188 \mathrm{~g}(35 \%)$ of a pale yellow oil: $\quad[\alpha]_{\mathrm{D}}=-48\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3063,3031,2867,1821,1496,1454,1362,1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{ddd}, J=4.3,4.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=3.2,11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=4.6,11.7 \mathrm{~Hz} .1 \mathrm{H}), 3.59(\mathrm{dq}, J=4.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 171.3,137.4,128.3,127.7,127.5,77.2,73.5,69.0,47.2,12.0 ;$ LRMS (EI, 70eV): m/z 178; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}: 178.0994$, found 178.0996.

General Procedure for the Enolization and Alkylation of α-Substituted β-Lactones:

To a $-78{ }^{\circ} \mathrm{C}$ solution of 0.092 g of lactone 243a (0.484 mmol) and 0.210 mL of allyl bromide (2.42 mmol) in 6 mL of THF was added 0.580 mL of a 1.0 M solution of NaHMDS in THF slowly via syringe pump over 45 min . The reaction was maintained at $-78^{\circ} \mathrm{C}$ for 1 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was warmed to ambient temperature. The reaction mixture was extracted with EtOAc and the combined organics were washed with brine. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel ($3 \% \mathrm{EtOAc} /$ hexanes) afforded $0.096 \mathrm{~g}(86 \%)$ of a pale yellow oil.

(3S, 4S)-3-Allyl-3-methyl-4-phenethyl-oxetan-2-one (245a): $[\alpha]_{\mathrm{D}}=-44$ (c 2.2, CHCl_{3}); IR (thin film): 3083, 3022, 2975, 2935, 2863, 1818, 1644, 1598, 1496, 1455, 1378, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.76(\mathrm{dddd}, J=7.3,7.3,10.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.13(\mathrm{~m}$, $2 \mathrm{H}), 4.36(\mathrm{dd}, J=4.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=5.4,9.8,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=6.9,11$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=7.0,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=7.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dddd}, J=5.4$, $9.3,9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dddd}, J=4.5,6.8,11,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 174.2,140.4,131.6,128.6,128.3,126.3,119.8,79.8,56.7,40.0,32.4,31.6,14.4 ;$ LRMS (EI, 70eV): m/z 230; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: 230.1307, found 230.1307.
 (3S, 4S)-3-Ethyl-3-methyl-4-phenethyl-oxetan-2-one (245c): Isolated as a pale yellow oil (94%, single diastereomer): $[\alpha]_{\mathrm{D}}=-47$ (c 1.0, CHCl_{3}); IR (thin film): 3027, 2971, 2937, 2880, 1818, 1496, 1455, 1384, $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{dd}, J=4.3,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=5.4,9.7,14 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{ddd}, J=7.1,9.2,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dddd}, J=4.1,9.3,9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dddd}, J=4.4$, $6.3,11,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{bq}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 174.8,140.5,128.6,128.4,126.3,80.1,57.8,32.6,31.7,28.7,13.9,8.56 ;$ LRMS (EI, 70eV): m/z 218; HRMS calcd for 218.1307: found, 218.1305.
 (3S, 4S)-3-Benzyl-3-methyl-4-phenethyl-oxetan-2-one (245b): $\quad[\alpha]_{D}=-$ 25 (c $2.0, \mathrm{CHCl}_{3}$); IR (thin film): 3062, 3027, 2931, 1820, 1603, 1496, 1454, 1382, $1104 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.17-$ $7.08(\mathrm{~m}, 4 \mathrm{H}), 4.42(\mathrm{dd}, J=4.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, 2.78 (ddd, $J=5.3,9.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=7.3,12,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{dddd}, J=5.3,9.3$, $9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dddd}, J=4.4,7.2,12,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \oint 174.5,140.3,135.4,129.8,128.6,128.5,128.4,127.2,126.3,79.3,57.9,41.5,32.1$, 31.7, 15.1; LRMS (EI, 70eV): m/z 280; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{2}: 280.1463$, found 280.1470 .

(3S, 4S)-3-Butyl-3-methyl-4-phenethyl-oxetan-2-one (245d): Purification by flash chromatography on silica gel ($2 \% \mathrm{EtOAc} /$ hexanes) afforded the title compound as a pale yellow oil $(88 \%):[\alpha]_{\mathrm{D}}=-49\left(\mathrm{c} 2.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3063,3027,2957,2934,2862,1822,1496,1455,1382,1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{dd}, J=4.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=$
$5.3,10,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=6.9,9.4,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dddd}, J=5.4,9.4,9.4,14 \mathrm{~Hz}, 1 \mathrm{H})$, 1.96 (dddd, $J=4.3,6.9,11,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=7.2,9.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.38-$ $1.31(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.20(\mathrm{~s}+\mathrm{m}, 4 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $174.9,140.4,128.5,128.3,126.3,80.5,57.2,35.5,32.5,31.7,26.2,22.8,14.3,13.8$; LRMS (EI, $70 \mathrm{eV}): m / z 246$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}: 246.1619$, found 246.1613.

(3S, 4S)-3-Isobutyl-3-methyl-4-phenethyl-oxetan-2-one (245e): IR (thin film): 3027, 2958, 2871, 1820, 1455, 1383, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{dd}, J=3.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=5.3,9.3$, $14 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=7.7,8.5,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{dd}$, $J=6.0,10 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\oint 175.3,140.5,128.6,128.4,126.3,81.7,56.7,44.5,32.4,31.8,24.4,23.9$, 22.4, 14.1; LRMS (EI, 70eV): m/z 246; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}: 246.1619$, found 246.1616.
 (3S, 4R)- 3-Allyl-4-benzyloxymethyl-3-methyl-oxetan-2-one (245f): Isolated as a pale yellow oil $(93 \%$, single diastereomer $):[\alpha]_{D}=-9.1(c$ 2.8, CHCl_{3}); IR (thin film): 3066, 3031, 2976, 2865, 1824, 1642, 1496, $1455,1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.78(\mathrm{dddd}, J=6.9,7.7$, $11,18 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=5.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=6.4,11 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=5.2,11 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{ddt}, J=1.2,6.8,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddt}, J=1.0,7.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (75 MHz, CDCl_{3}): \oint 173.7, 137.3, 131.4, 128.4, 127.8, 127.6, 120.0, 77.6, 73.6, 68.4, 57.1, 40.0, 14.2; LRMS (EI, 70eV): m/z $247(\mathrm{M}+\mathrm{H})$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: 246.1256, found 246.1246.

(3R, 4S)-3-Allyl-3-benzyl-4-phenethyl-oxetan-2-one (245h): Purification by flash chromatography on silica gel ($3 \% \mathrm{EtOAc} /$ hexanes) afforded the title compound as a pale yellow oil: $(84 \%):[\alpha]_{\mathrm{D}}=-51\left(c \quad 3.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3063,3028,2926,2859,1816,1640,1603,1496,1454,1114 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.73(\mathrm{dddd}, J=6.5,8.0,14,17 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{br} \mathrm{d}, J=10$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{dq}, J=1.3,17 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=3.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, 2.96 (ddd, $J=5.1,9.8,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=7.1,9.2,14 \mathrm{~Hz}, 1 \mathrm{H})$, 2.40 (brdd, $J=6.4,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dddd}, J=3.8,7.1,9.9,11 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 173.0, 140.4, 135.2, 131.6, 130.2, 128.6, 128.4, 127.0, 126.3, 120.2, 79.0, 60.2, 36.4, 34.7, 32.3, 31.8; LRMS (EI, 70eV): m/z 306; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}$: 306.1620, found 306.1609.

(3R, 4S)-3-Allyl-3-methyl-4-phenethyl-oxetan-2-one (245g): Isolated as a pale yellow oil ($94 \%, 6: 1$ mixture of diastereomers): IR (thin film): 3064, 3027, 2958, 2930, 2863, 1822, 1641, 1603, 1496, 1455, $1109 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta \quad 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.80(\mathrm{dddd}, J=6.6,7.8,10,14 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=4.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=5.3,9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}$, $J=7.7,7.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddt}, J=1.4,6.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{ddt}, J=1.0,7.8,14 \mathrm{~Hz}, 1 \mathrm{H})$, 2.20-1.94 (m, 2H), $1.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.2,140.4,131.9$,
$128.6,128.4,126.3,119.3,82.6,56.0,34.8,32.2,31.7,19.8 ;$ LRMS (EI, 70eV): m/z 230; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$: 230.1307, found 230.1312.

(3S, 4S)-3-Allyl-3-ethyl-4-phenethyl-oxetan-2-one (247a): Isolated as a pale yellow oil (92%, single diastereomer): $[\alpha]_{\mathrm{D}}=-41\left(c \quad 2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3083, 3063, 3027, 2973, 2882, 1817, 1732, 1642, 1604, 1496, 1455, $1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.74$ (dddd, $J=7.5,7.5,10,17 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=3.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87$ (ddd, $J=5.1,10,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=6.9,9.5,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{dddd}, J=$ $5.2,9.7,9.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{dddd}, J=3.9,6.9,10,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dddd}, J=7.5,7.5,7.5$, $15 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dddd}, J=7.5,7.5,7.5,15 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 173.6,140.5,131.6,128.6,128.4,126.3,119.7,79.9,60.4,36.0,32.0,31.8$, 21.1, 8.4; LRMS (EI, 70eV): $m / z 244$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}, 244.1463$, found 244.1472.

(3S, 4S)-3-Benzyl-4-phenethyl-3-propyl-oxetan-2-one

Isolated as a pale yellow oil (86%, single diastereomer): $\quad[\alpha]_{\mathrm{D}}=-32$ (c 2.1, CHCl_{3}); IR (thin film): 3086, 3062, 2960, 2873, 1815, 1603, 1496, 1455, $1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.23(\mathrm{~m}, 6 \mathrm{H}), 4.40(\mathrm{dd}, J=3.7,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=5.1,9.7,14 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58(\mathrm{ddd}, J=7.5,8.9,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dddd}, J=5.0,9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dddd}, J=3.7,7.4$, $9.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.8,140.4,135.5,129.7,128.6,128.5,128.4,127.1,126.3,79.0,61.4,38.1$,
31.6, 31.2, 17.6, 14.5; LRMS (EI, 70eV): m/z 308; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}: 308.1776$, found 308.1781.

(3R, 4S)-3-Benzyl-3-isopropyl-4-phenyl-oxetan-2-one (247d): Isolated as a white solid $\left(94 \%\right.$, single diastereomer): $[\alpha]_{\mathrm{D}}=-78\left(c \quad 1.6, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3063,3027,2958,2930,1811,1495,1454,1373,1268,1140,921,758$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.20($ septet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 173.5,135.7,134.8,130.5(2 \mathrm{C}), 128.9$ (2C), 128.6, 128.3 (2C), 127.3, 126.7 (2C), 78.2, 68.5, 32.8, 28.3, 17.6, 16.2; LRMS (EI, 70eV): m/z 236 $\left[\mathrm{M}-\mathrm{CO}_{2}\right]^{+} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20}: 236.1565$, found 236.1566.

(3S, 4S)-3-Allyl-4-cyclohexyl-3-methyloxetan-2-one (247e): Isolated as a pale yellow oil $(52 \%, 19: 1$ mixture of diastereomers $):[\alpha]_{\mathrm{D}}=+3.0\left(\begin{array}{cc}\text { c } & 2.0,\end{array}\right.$ CHCl_{3}); IR (thin film): $3080,2932,2854,1823,1642,1452,1382,1137,985$, $925,847 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.75$ (dddd, $J=7.4,7.4,10,18 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23-$ $5.20(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=7.0,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (dd, $J=7.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H})$, 1.29-1.12 (m, 2H), 1.10-0.82 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,132.0,119.7,84.4$, 56.4, 40.4, 38.2, 29.1, 28.3, 26.1, 25.1, 25.0, 14.5; LRMS (EI, 70eV): m/z 208; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}, 208.1463$, found 208.1470.

General procedure for the $\operatorname{La}\left(\mathbf{O}^{t} \mathbf{B u}\right)_{3}$-Mediated Ring Opening of α, α-Disubstituted β Lactones: $:^{25 a}$ To a solution of $\mathrm{La}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ in THF was added benzyl alcohol at ambient temperature. The reaction mixture was maintained until complete consumption of the starting material was observed by TLC. The reaction was then purified by column chromatography.

(1'R, 2S)- Benzyl-2-(2-benzyloxy-1'-hydroxyethyl)-2-methylpent-4-enoate (248a): Purification by flash chromatography (5\% EtOAc/hexanes) afforded 0.022 g (92%) of hyroxyester 248a as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=-8.6$ (с 2.7, CHCl_{3}); IR (thin film): 3467, 3065, 3032, 2979, 2919, 1731, 1640, 1454, 1214, 1086, 739, 698; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 5.76-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{ddd}, \mathrm{J}$ $=2.8,5.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=2.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=5.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=7.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=7.7,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 175.4,137.9,135.9,133.1,128.5,128.4,128.1,127.8,127.7,75.0$, 73.6, 71.0, 66.5, 48.9, 40.7, 17.7; LRMS (EI, 70eV): m/z 263 [M-C $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}: 263.1283$, found 263.1274.

(2S, 3S)-2-Benzyl-3-hydroxy-2-methyl-5-phenyl-pentanoic acid benzyl ester (248b): Purification by flash chromatography (5\% EtOAc/hexanes) afforded $0.073 \mathrm{~g}(86 \%)$ of hyroxyester 248b as a clear, colorless oil: $\quad[\alpha]_{\mathrm{D}}=-35 \quad$ (с $1.8, \mathrm{CHCl}_{3}$); IR (thin film):
$3506,3085,3062,3028,2948,2858,1720,1603,1496,1454,1273,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.18(\mathrm{~m}, 12 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{ddd}, \mathrm{J}=1.8,8.9,11$
$\mathrm{Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=4.8,10,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=6.7,9.9,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dddd}, J=1.8,6.7,10,14 \mathrm{~Hz}$, $1 \mathrm{H}), 1.56(\mathrm{dddd}, J=4.8,10,11,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.4$, $142.1,136.8,135.5,130.1,128.6,128.5,128.4,128.3,128.2,128.1,126.6,125.8,75.1,66.5$, 52.3, 42.5, 34.1, 32.8, 17.6; LRMS (EI, 70eV): m/z 388, $370\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{3}: 388.2038$, found 388.2036.

(2S)-2-Benzyl-2-methyl-5-phenylpent-3-enoic acid benzyl ester (249): To a $0^{\circ} \mathrm{C}$ solution of 0.036 g of hydroxyester 248 b (0.093 mmol) and $26 \mu \mathrm{~L}$ of $\mathrm{Et}_{3} \mathrm{~N}(0.186 \mathrm{mmol})$ in 0.9 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $11 \mu \mathrm{~L}$ of methanesulfonyl chloride $(0.139 \mathrm{mmol})$. The reaction was maintained at $0^{\circ} \mathrm{C}$ for 30 min , and then diluted with ether $(10 \mathrm{~mL})$. The resulting cloudy white mixture was washed with saturated aqueous NaHCO_{3} and brine. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude mesylate was then dissolved in benzene, treated with DBU, and heated at reflux for 18 h . Upon cooling to ambient temperature, the reaction mixture was washed with saturated aqueous NaHCO_{3} followed by brine. The organic layer was again dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentated. Purification by flash chromatography on silica gel ($5 \% \mathrm{EtOAc} /$ hexanes $)$ afforded $0.021 \mathrm{~g}(61 \%)$ of the title compound 249 as a clear, colorless oil: $[\alpha]_{\mathrm{D}}=+13$ (c 1.3, CHCl_{3}); IR (thin film): 3085, 3062, 3029, 2979, 2935, 1731, 1603, 1495, 1454, 1100, $976 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.21(\mathrm{~m}, 10 \mathrm{H}), 7.15-$ $7.08(\mathrm{~m}, 4 \mathrm{H}), 5.83(\mathrm{dt}, J=1.3,16 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=6.7,16 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta 175.3,140.2,137.1,136.0,134.6,130.4,128.7,128.5,128.4,128.3,128.1,128.0$,
127.9, 126.4, 126.0, 66.4, 49.2, 45.6, 39.0, 20.6; LRMS (EI, 70eV): m/z 370; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2}: 370.1933$, found 370.1942 .

General Procedure for the Azide-Mediated Ring Opening of α, α-Disubstituted β -

 Lactones: ${ }^{\mathbf{1 0 4}}$ To a $50{ }^{\circ} \mathrm{C}$ solution of 0.015 mg of $\mathrm{NaN}_{3}(0.229 \mathrm{mmol})$ in 0.3 mL of DMSO was added 0.032 g of lactone $\mathbf{2 4 5 b}$ in 0.3 mL of DMSO followed by a 0.1 mL rinse. The resulting clear, colorless solution was maintained for 3 h at $50^{\circ} \mathrm{C}$, then cooled to ambient temperature. After acidification with $1 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$, the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by flash chromatography (20\% EtOAc/hexanes) to afford 0.035 g of β-azido acid 250b. (2S, 3R)-3-Azido-2-benzyl-2-methyl-5-phenylpentanoic acid (250b): Isolated as a pale yellow oil (95\%): $[\alpha]_{\mathrm{D}}=-35\left(c 1.9, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3063,3028,2929,2099,1705,1603,1545,1496,1454,1275,1213 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.43-7.19(\mathrm{~m}, 10 \mathrm{H}), 3.70(\mathrm{brd}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=$ $13 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=7.9,7.9,16 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 180.1,140.7,136.7,130.1,128.5,128.4,128.1,126.7,126.2,67.9,53.2,43.6$, 33.5, 33.1, 16.0; LRMS (EI, 70eV): m/z $295\left(\mathrm{M}-\mathrm{N}_{2}\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}\left(\mathrm{M}-\mathrm{N}_{2}\right)$: 295.1572, found 295.1575.

[^64]
(2S, 3R)-3-Azido-2-ethyl-2-methyl-5-phenylpentanoic acid (250a):
Isolated as a pale yellow oil $(98 \%):[\alpha]_{\mathrm{D}}=-39\left(c \quad 0.2, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3028,2931,2099,1702,1456,1386,1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{dd}, \mathrm{J}=2.3,11 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=5.0,9.7,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=7.3,9.3,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$, $0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 179.6,140.7,128.5,128.4,126.2,67.9$, 51.9, 33.5, 33.1, 30.6, 15.4, 8.8; LRMS (EI, 70eV): m/z $232\left(\mathrm{M}_{2} \mathrm{~N}_{2}\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{M}-\mathrm{N}_{2}\right): 232.1338$, found 232.1335 .

(2S, 3R)-2-(1-Azido-3-phenyl-propyl)-2-methylhexanoic acid (250c):
Isolated as a pale yellow oil (97%) : $[\alpha]_{\mathrm{D}}=-16\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3064,3027,2956,2863,2099,1702,1496,1455,1383,1254,1219,1151 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=2.3,11 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (ddd, $J=4.8,9.6,14 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=7.3,9.2,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 174.5, 140.7, 128.5, 128.4, 126.2, 68.0, 51.7, 37.5, 33.5, 33.0, 26.5, 23.1, 16.2, 13.8; LRMS (EI, 70eV): m/z $260\left(\mathrm{M}-\mathrm{N}_{2}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\mathrm{M}-\mathrm{N}_{2}\right): 260.1651$, found 260.1650 .

(2R, 3R)-3-Azido-2-benzyl-2-isopropyl-3-phenylpentanoic acid (250d): Isolated as a pale yellow residue (14\%): $[\alpha]_{\mathrm{D}}=-97\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): $\quad 3031,2922,2850,2104,1700,1454,1255,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס 7.49-7.45 (m, 2H), 7.39-7.31(m, 3H), 7.31-7.20(m, 5H), $4.92(\mathrm{~s}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=14 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 2.38($ septet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=$
6.9 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.2,137.3,136.4,130.3$ (2C), 129.3 (2C), 128.4. 128.3 (2C), 128.2 (2C), 126.7, 67.9, 58.2, 39.2, 30.5, 29.7, 19.7, 18.5; LRMS (EI, 70eV): m/z $295\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+} ;$HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}: 295.1572$, found 295.1569.

[^0]: ${ }^{1}$ Quiñoa, E.; Kakou, Y.; Crews, P. J. Org. Chem. 1988, 53, 3642.
 ${ }^{2}$ Corley, D. G.; Herb, R.; Moore, R. E.; Scheuer, P. J.; Paul, V. J. J. Org. Chem. 1988, 53, 3644.
 ${ }^{3}$ Jefford, C. W.; Bernardinelli, G.; Tanaka, J.; Higa, T. Tetrahedron Lett. 1996, 37, 159.
 ${ }^{4}$ Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez-Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775.

[^1]: ${ }^{5}$ Upon treatment of $\mathbf{1}$ with 0.01 N HCl in acetone (4 h , ambient temperature), complete isomerization to $\mathbf{2}$ is observed. See ref. 2.
 ${ }^{6}$ Tanaka, J.; Higa, T.; Bernardinelli, G.; Jefford, C. W. Chem. Lett, 1996, 255.

[^2]: ${ }^{7}$ Mooberry, S. L.; Hernandez, A. H.; Plubrukarn, A.; Davidson, B. S. Cancer Res. 1999, 59, 653.
 ${ }^{8}$ Pryor, D. E.; O'Brate, A.; Bilcer, G.; Diaz, J. F.; Wang, Yu; Wang, Yo; Kabaki, M.; Jing, M. K. ; Andreu, J. M.; Ghosh, A. K.; Giannakakou, P.; Hamel, E. Biochemistry 2002, 41, 9109.

[^3]: ${ }^{9}$ Isolaumalide can be easily prepared from 1 under acidic conditions (CSA, CDCl_{3}). See Paterson, I.; Savi, C. D.; Tudge, M. Org. Lett. 2001, 3, 213.
 ${ }^{10}$ Base-mediated scrambling of the (Z)-enoate ester was observed under traditional macrolactonization conditions. See (a) Paterson, I.; Savi, C. D.; Tudge, M. Org. Lett. 2001, 3, 213. (b) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989. Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, $50,2394$.

[^4]: ${ }^{11}$ (a) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2000, 122, 11027. (b) Paterson, I.; Savi, C. D.; Tudge, M. Org. Lett. 2001, 3, 3149. (c) Enev, V. S.; Kaehlig, H.; Mulzer, J. J. Am. Chem. Soc. 2001, 123, 10764. (d) Mulzer, J.; Öhler, E. Angew. Chem., Int. Ed. 2001, 40, 3842. (e) Mulzer, J.; Hanbauer, M. Tetrahedron Lett. 2002, 43, 3381. (f) Ahmed, A.; Hoegenauer, E. K.; Enev, V. E.; Hanbauer, J. Kahlig, H.; Öhler, E.; Mulzer, J. J. Org. Chem. 2003, 68, 3026. (g) Mulzer, J.; Öhler, E. Chem. Rev. 2003, 103, 3753. (h) Ghosh, A. K.; Wang, Y.; Kim, J. J. Org. Chem. 2001, 66, 8973. (i) Wender, P. A.; Hedge, S. G.; Hubbard, R. D.; Zhang, L. J. Am. Chem. Soc. 2002, 124, 4956. (j) Crimmins, M. T.; Stanton, M. G.; Allwein, S. P. J. Am. Chem. Soc. 2002, 124, 5958. (k) Williams, D. R.; Mi, L.; Mullins, R. J. Stites, R. E. Tetrahedron Lett. 2002, 43, 4841.
 ${ }^{12}$ (a)Shimizu, A.; Nishiyama, S. Tetrahedron Lett. 1997, 38, 6011. (b) Shimizu, A.; Nishiyama, S. Synlett. 1998, 1209. (c) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron Lett. 1997, 38, 2427. (d) Ghosh, A. K.; Wang, Y. Tetrahedron Lett. 2000, 41, 2319. (e) Mulzer, J; Hanbauer, M. Tetrahedron Lett. 2000, 41, 33. (f) Dorling, E. K.; Öhler, E.; Mulzer, J. Tetrahedron Lett. 2000, 41, 6323. (g) Dorling, E. K.; Öhler, E.; Mantouidis, A.; Mulzer, J. Synlett. 2001, 1105. (h) Nadolski, G. T.; Davidson, B. S. Tetrahedron Lett. 2001, 42, 797. (i) Messenger, B. T.; Davidson, B. S. Tetrahedron Lett. 2001, 42, 801.
 ${ }^{13}$ Still, W. C.; Gennari, C.; Tetrahedron Lett. 1983, 24, 4405.
 ${ }^{14}$ Grubbs, R. H.; Chang, S. Tetrahedron, 1998, 54, 4413, and references therein.

[^5]: ${ }^{15}$ Ghosh, A. K.; Wang, Y.; Kim, J. T. J. Org. Chem. 2001, 66, 8973.

[^6]: ${ }^{16}$ (a) Paterson, I.; Lister, M. A.; McClure, C. K. Tetrahedron Lett. 1986, 27, 4787. (b) Paterson, I; Goodman, J. M.; Lister, M. A.; Schumann, R. C.; McClure, C. K.; Norcross, R. D. Tetrahedron Lett. 1990, 46, 4663.
 ${ }^{17}$ Paterson, I. and Smith, J. D. Tetrahedron Lett. 1993, 34, 5351.
 ${ }^{18}$ Dossetter, A. G; Jamison, T.; Jacobsen, E. N. Angew. Chem., Int. Ed. Engl. 1999, 38, 2398.

[^7]: ${ }^{19}$ Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.; Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490.

[^8]: ${ }^{20}$ Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. 1998, 63, 403.
 ${ }^{21}$ Terada, M.; Mikami, K. J. Chem. Soc., Chem. Commun. 1995, 2391.

[^9]: ${ }^{22}$ Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Lett. 2000, 2, 2165.

[^10]: ${ }^{23}$ (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121, 9742 (b) Nelson, S. G.; Kim, B. K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318. (c) Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470. ${ }^{24}$ Pommier, A.; Pons, J.-M. Synthesis 1993, 441.

[^11]: ${ }^{25}$ (a) Nelson, S. G.; Wan, Z.; Peelen, T. J.; Spencer, K. L. Tetrahedron Lett. 1999, 40, 6535. (b) Stuckwisch, C. G.; Bailey, J. V. J. Org. Chem. 1963, 28, 2362. (c) Gresham, T. L.; Jansen, J. E. Shaver, F. W.; Bankert, R. A. J. Am. Chem. Soc. 1949, 71, 2807.
 ${ }^{26}$ (a) Sato, T.; Kawara, T.; Kawashima, M.; Fujisawa, T. Chem. Lett. 1980, 571. (b) Sato, T.; Kawara, T.; Nishizawa, A.; Fujisawa, T. Tetrahedron Lett. 1980, 21, 3377. (c) Fujisawa, T.; Sato, T.; Kawara, T.; Ohashi, K. Tetrahedron Lett. 1981, 22, 4823. (d) Sato, T.; Naruse, K.; Fujisawa, T. Tetrahedron Lett. 1982, 23, 3587. (e) Sato, T.; Itoh, T.; Hattori, C.; Fujisawa, T. Chem. Lett. 1983, 1391. (f) Kawashima, M.; Sato, T.; Fujisawa, T. Tetrahedron 1989, 45, 403.

[^12]: ${ }^{27}$ For a similar approach to this bond construction see ref 11 k .

[^13]: ${ }^{28}$ Aldehyde $\mathbf{3 6}$ was prepared by ozonolysis of 3-(tert-butyldiphenylsilyloxy)-1-butene. See Boeckman, R. K., Jr.; Charette, A. B.; Asberom, T.; Johnston, B. H. J. Am. Chem. Soc. 1991, 113, 5337.
 ${ }^{29}$ Narayanan, B. A. and Bunnelle, W. H. Tetrahedron Lett. 1987, 28, 6261.

[^14]: ${ }^{30}$ (a) Swern, D. J. Org. Chem. 1976, 41, 3329-3331. (b) Swern, D. J. Org. Chem. 1978, 43, 2480. (c) Swern, Synthesis. 1978, 297.
 ${ }^{31}$ (a) Dess, P. B.; Martin , J. C. J. Am. Chem. Soc. 1978, 100, 300. (b) Dess, P. B.; Martin , J. C. J. Am. Chem. Soc. 1979, 101, 5294. (c) Dess, P. B.; Martin , J. C. J. Org. Chem. 1983, 48, 4155.

[^15]: ${ }^{32}$ Prepared by the hydrostannylation of ethyl ethynyl ether. See: Leusink, A. J.; Budding, A.; Marsman, J. W. J. Organometal. Chem. 1967, 9, 285, 294.
 ${ }^{33}$ (a) Wollenberg, R. H.; Albizati, K. F.; Peries, R. J. Am. Chem. Soc. 1977, 99, 7365. (b) Ficini, J.; Falou, S.; Touzin, A. M.; d’Angelo, J. Tetrahedron Lett. 1977, 3589.

[^16]: ${ }^{34}$ Shimizu, T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685.

[^17]: ${ }^{35}$ Danishefsky, S.; Kerwin, J. J. Org. Chem. 1982, 47, 3803.
 ${ }^{36}$ (a) Marshall, J.; Wang, X. J. Org. Chem. 1990, 55, 6246. (b) Marshall, J.; Wang, X. J. Org. Chem. 1991, 56, 3211. (c) Marshall, J. Chem. Rev. 1996, 96, 31.
 ${ }^{37}$ Gemal, A. L.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.

[^18]: ${ }^{38}$ Due to the high acid sensitivity of $\mathbf{7 3}$, purification was performed by flash chromatography on deactivated silica gel eluting with hexanes $/ \mathrm{Et}_{3} \mathrm{~N}$ (50:1).
 ${ }^{39}$ Optimization was performed by Dr. Junfa Fan (Postdoctoral fellow, Department of Chemistry, Univeristy of Pittsburgh).

[^19]: ${ }^{40}$ Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Cote, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, N. A. Tetrahedron 1999, 55, 8671.

[^20]: ${ }^{41}$ Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021, and references therein.

[^21]: ${ }^{42}$ Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem. Int. Ed. Engl. 1985, $24,1$.
 ${ }^{43}$ For a more detailed discussion of double diastereodifferentiating AAC reactions, see Magdalena A. Stan Ph. D. thesis, University of Pittsburgh, 2003.

[^22]: ${ }^{44}$ Brown, H. C.; Rao, C. G.; Kulkarni, S. U. Synthesis 1979, 704.

[^23]: ${ }^{45}$ Zipp, G. G.; Hilfiker, M. A.; Nelson, S. G. Org. Lett. 2002, 4, 1823.

[^24]: ${ }^{46}$ The synthetic work described in this section was performed by Dr. Wing S. Cheung. and Dr. Mark A. Hilfiker, University of Pittsburgh.

[^25]: ${ }^{47}$ All synthetic work described in this section was performed by Dr. Wing Cheung.
 ${ }^{48}$ Brown, H. C.; Jadhav, P. K.; Perumal, P. T. J. Tetrahedron Lett. 1984, 25, 5111.
 ${ }^{49}$ Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112, 3875.

[^26]: ${ }^{50}$ The (19R,20S) configurational assignment of $\mathbf{1 1 7}$ was confirmed by NOE analysis of the corresponding dimethyl acetal.

[^27]: ${ }^{51}$ Keck, G. E.; Andrus, M. B.; Romer, D. R. J. Org. Chem. 1991, 56, 417.
 ${ }^{52}$ Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J. J. Am. Chem. Soc. 2000, 122, 10033.

[^28]: ${ }^{53}$ Paterson, I.; Norcross, R. D.; Ward, R. A.; Romea, P.; Lister, M. A. J. Am. Chem. Soc. 1994, 116, 11287.
 ${ }^{54}$ Further opitmization of the asymmetric aldol reaction described in this section was performed by Dr. Wing S. Cheung (Postdocoral Researcher, Department of Chemistry, University of Pittsburgh).
 ${ }^{55}$ Corey, E. J.; Lee, D.-H. Tetrahedron Lett. 1993, 34, 1737.

[^29]: ${ }^{56}$ Boden, E. P.; Keck, G. E. J. Org. Chem. 1985, 50, 2394.
 ${ }^{57}$ Chackalamannil, S.; Davies, R. J.; Wang, Y.; Asberan, T.; Doller, D.; Wong, J.; Leone, D. McPhail, A. T. J. Org. Chem. 1999, 64, 1932.
 ${ }^{58}$ Kaiho, T.; Masamune, S.; Toyoda, T. J. Org. Chem. 1982, 47, 1612.
 ${ }^{59}$ Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1996, 61, 4560.

[^30]: ${ }^{60}$ Hikota, M.; Sakurai, Y.; Horita, K.; Yonemitsu, O. Tetrahdron Lett. 1990, 31, 6367.

[^31]: ${ }^{61}$ These optimization studies were the work of Dr. Wing S. Cheung (Postdocoral Researcher, Department of Chemistry, University of Pittsburgh).

[^32]: ${ }^{62}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^33]: ${ }^{63}$ Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322.

[^34]: ${ }^{64}$ Corey, E. J.; Cywin, C. L.; Roper, T. D. Tetrahedron Lett. 1992, 33, 6907.

[^35]: ${ }^{65}$ Otaka, A.; Mitsuyama, E.; Kinoshita, T.; Tamamura, H.; Fujii, N. J. Org. Chem. 2000, 65, 4888.

[^36]: ${ }^{66}$ Full characterization was not obtained for compounds $\mathbf{8 0}, \mathbf{8 3}$, and $\mathbf{7 9}$ as they were a part of a failed route to macrocycle 84.

[^37]: ${ }^{67}$ Ishibashi, M.; Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun. 1987, 1127.

[^38]: ${ }^{68}$ Amphidinolides B_{2} and B_{3} were later identified as the C_{18} and C_{22} epimers of $\mathbf{1 3 3}$, respectively. See Figure 15.
 ${ }^{69}$ Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. 1994, 116, 2657.
 ${ }^{70}$ Ishibashi, M.; Ishiyama, H.; Kobayashi, J. Tetrahedron Lett. 1994, 35, 8241.

[^39]: ${ }^{71}$ Kobayashi, J.; Ishibashi, M, Chem. Rev. 1993, 93, 1753.

[^40]: ${ }^{72}$ (a) Cid, B.; Pattenden, G. Tetrahedron Lett. 2000, 41, 7373. (b) Ohi, K.; Nishiyama, S. Synlett 1999, 571. (c) Ohi, K.; Nishiyama, S. Synlett 1999, 573. (d) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2275. (e) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2279. (f) Chakraborty, T. K.; Thippewamy, D. Synlett 1999, 150. (g)Ishiyama, H.; Takemura, T.; Tsuda, M.; Kobayashi, J. J. Chem. Soc., Perkin Trans. 1 1999, 1163. (h) Chakraborty, T. K.; Thippewamy, D.; Suresh, V. R. Chem. Lett. 1997, 563. (i) Chakraborty, T. K.; Suresh, V. R. Chem. Lett. 1997, 565. (j) Lee, D. H.; Lee, S. -W. Tetrahedron Lett. 1997, 38, 7909. (k) Ohi, K.; Shima, K.; Hamada, K.; Saito, Y.; Yamada, N.; Ohba, S.; Nishiyama, S. Bull. Chem. Soc. Jpn. 1998, 71, 2433.

[^41]: ${ }^{73}$ Shioiri, T.; Imaeda, T.; Hamada, Y. Heterocycles 1997, 46, 421.

[^42]: ${ }^{74}$ The geometry of the (E)-olefin in ester 178 was confirmed via 1D NOE spectroscopy (500 MHz). Irradiation of the C_{3} vinyl hydrogen resulted no observable NOE enhancement in the adjacent methyl group.
 ${ }^{75}$ Alonso, D. A.; Nájera, C.; Varea, M. Tetrahedron Lett. 2002, 43, 3459.

[^43]: ${ }^{76}$ All synthetic work described in this section was accomplished by Apsara Gopalarathnam (unpublished results).

[^44]: ${ }^{77}$ Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467.
 ${ }^{78}$ Jadhav, P. K.; Bhat, K. S.; Perumal, T.; Brown, H. C. J. Org. Chem. 1986, 51, 432.

[^45]: ${ }^{79}$ Casolari, S.; D’Addario, D.; Tagliavini, E. Org. Lett. 1999, 1, 1061.
 ${ }^{80}$ Waltz, K. M.; Gavenonis, J.; Walsh, P. J. Angew. Chem. Int. Ed. 2002, 41, 3697.

[^46]: ${ }^{81}$ (a) Nishida, M.; Tozawa, T.; Yamada, K.; Mukaiyama, T. Chem. Lett. 1996, 1125. (b)Yamada, K.; Tozawa, T.; Nishida, M.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1997, 70, 2301.
 ${ }^{82}$ Honnick, W. D.; Zuckerman, J. J. Inorg. Chem. 1978, 17, 501.

[^47]: ${ }^{83}$ Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505.
 ${ }^{84}$ Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769.

[^48]: ${ }^{85}$ Le Roux, J.; Le Corre, M. J. Chem. Soc., Chem. Commun. 1989, 1464.
 ${ }^{86}$ Altenbach, H.-J.; Holzapfel, W.; Smerat, G.; Finkler, S. H. Tetrahedron Lett. 1985, 26, 6329.

[^49]: ${ }^{87}$ No detectable amount of self-acylation product 206 was observed upon ${ }^{1} \mathrm{H}$ NMR analysis of crude product mixtures.

[^50]: ${ }^{88} \mathrm{Pu}$, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757 and references therein.

[^51]: ${ }^{89}$ Yus, M.; Ramón, D. J.; Prieto, O. Eur. J. Org. Chem. 2003, 15, 2745.
 ${ }^{90}$ Ligand 215 and ent- 215 were prepared according to the literature procedure: Balsells, J.; Walsh, P. J. J. Am. Chem. Soc. 2000, 122, 3250.

[^52]: ${ }^{91}$ McDougal, P. G.; Rico, J. G.; Oh, Y.-I.; Condon, B. D. J. Am. Chem. Soc. 1986, 51, 3388.

[^53]: ${ }^{92}$ Hartung, J.; Hünig, S.; Kneuer, R.; Schwarz, M.; Wenner, H. Synthesis 1997, 12, 1433.

[^54]: ${ }^{93}$ Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfield, A. P.; Masamune, S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183.

[^55]: ${ }^{94}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

[^56]: ${ }^{95}$ For recent reviews on the asymmetric synthesis of quaternary carbon stereocenters see: a) Fuji, K. Chem. Rev. 1993, 93, 2037. b) Corey, E. J.; Guzman-Perez, A. Angew. Chem. Int. Ed. 1998, $37,388$.
 ${ }^{96}$ (a) Boeckman, R. K., Jr.; Boehmler, D. Musselman, R. A. Org. Lett. 2001, 3, 3777. (b) Frater, G. Helv. Chim. Acta 1979, 62, 2825. (c) Manthorpe, J. M.; Gleason, J. L. Angew. Chem. Int. Ed. 2002, 41, 2338. (d) Groaning, M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843.

[^57]: ${ }^{97}$ (a) Mulzer, J.; Kerkmann, T. J. Am. Chem. Soc. 1980, 102, 3620. (b) Mulzer, J.; Kerkmann, T. Angew. Chem., Int. Ed. Engl. 1980, 19, 465. (c) Mulzer, J.; Chucholowski, A. Angew. Chem., Int. Ed. Engl. 1982, 21, 777. (d) Mulzer, J.; Chucholowski, A.; Lammer, O.; Jibril, I.; Huttner, G. J. Chem. Soc., Chem. Commun. 1983, 869.

[^58]: ${ }^{98}$ Griesbeck, A.; Seebach, D. Helv. Chim. Acta 1987, 70, 1320.
 ${ }^{99}$ Mead, K. T.; Yang, H.-L. Tetrahedron Lett. 1989, 30, 6829.

[^59]: ${ }^{100}$ Parsons, P. J.; Cowell, J. K. Synlett 2000, 1, 107.

[^60]: ${ }^{101}$ Mulzer, J.; Pointner, A.; Chucholowski, A.; Bruntrup, G. J. Chem. Soc., Chem. Commun. 1979, 52.

[^61]: ${ }^{102}$ Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14.

[^62]: ${ }^{103}$ Nelson, S. G.; Spencer, K. L. Angew. Chem. Int. Ed. 2000, 39, 1323.

[^63]: ${ }^{a}$ Isolated yields of purified products.

[^64]: ${ }^{104}$ A modified work-up procedure was performed for the isolation of the azido acid products compared to the original procedure described in ref. 81.

