Utility of the Catalytic, Asymmetric Acyl Halide-

Aldehyde Cyclocondensation Reaction in Natural Product Synthesis

by
Andrew S. Wasmuth
B.Sc., University of Rochester, 2001

Submitted to the Graduate Faculty of the Department of Chemistry in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH

ARTS AND SCIENCES

This dissertation was presented
by

Andrew S. Wasmuth

It was defended on
September 6, 2006 and approved by

Scott G. Nelson, Ph.D., Associate Professor
Craig S. Wilcox, Ph.D., Professor
Peter Wipf, Ph.D., University Professor
Billy Day, Ph.D., Associate Professor

Copyright © by Andrew S. Wasmuth 2006

Utility of the Catalytic, Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reaction in Natural Product Synthesis

Andrew S. Wasmuth, Ph. D.

University of Pittsburgh, 2006

Abstract

The ability of the catalytic, asymmetric acyl halide-aldehyde cyclocondensation (AAC) reaction to produce stereoenriched β-lactone products has found extensive utility in natural product synthesis. The asymmetric $\mathrm{Al}($ III $)$-catalyzed $\mathrm{AAC}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring opening sequence was exploited in synthetic efforts towards the enantioselective total synthesis of the aspidospermane alkaloid (-)rhazinilam (1). The synthetic sequence features an enantioselective cyclization of a tethered pyrrole moiety onto an optically-active allene to set the quaternary carbon stereocenter while concomitantly forming rhazinilam's tetrahydroindolizine core. In addition, attempts at forming the requisite biaryl bond via a Pd-catalyzed cross-coupling reaction are also discussed.

Recently, it was found that the Cinchona alkaloids quinine and quinidine can catalyze the AAC reaction to produce disubstituted β-lactones in high yield and in essentially enantiomerically and diastereomerically pure form. Reaction conditions were developed which allowed for the
effective formation of masked polypropionate units by employing the Cinchona alkaloidcatalyzed AAC reaction. Based on the pseudoenantiomer of the Cinchona alkaloid used, different stereoarrays of polypropionate units are obtained. A variety of optically active aldehydes are viable in this transformation as reaction conditions can be optimized for a specific substrate. A matched/mismatched phenomenon was observed where the matched case produced the desired polypropionate unit in good yield and high diastereoselectivity and the mismatched case afforded an unexpected β-lactone product in diminished yield and diastereoselectivity.

$(+)$-Discodermolide (81) is a marine, microtubule-stabilizing polyketide that can only be isolated in scarce amounts from nature. Due to our inability to harvest it in supple amounts, the total synthesis of $(+)$-discodermolide has been the focus of many research groups. Application of the cinchona alkaloid-catalyzed AAC reaction towards the catalytic, asymmetric total synthesis of an analogue of $(+)$-discodermolide (100) is discussed.

TABLE OF CONTENTS

1.0 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF (-)-RHAZINILAM 1
1.1 ISOLATION AND BIOACTIVITY 1
1.2 PAST SYNTHESES 3
1.3 RETROSYNTHETIC ANALYSIS AND AAC TECHNOLOGY 7
1.4 RESULTS AND DISCUSSION 10
1.4.1 Background 10
1.4.2 Synthesis of 1-silyloxy-5,6,7,8-tetrahydroindolizine 28 12
1.4.3 Synthesis of 1-benzyloxy-5,6,7,8-tetrahydroindolizine 35 17
1.4.4 Formation of triflate precursor 45 21
1.4.5 Attempts at forming the biaryl bond 27
1.4.5.1 Exploring siloxanes as cross-coupling partners 27
1.4.5.2 Attempts at using a Suzuki cross-coupling reaction. 29
1.5 EXPERIMENTAL 31
2.0 EFFICIENT FORMATION OF POLYPROPIONATE UNITS VIA THE CINCHONA ALKALOID-CATALYZED AAC REACTION 53
2.1 BACKGROUND 53
2.2 RESULTS AND DISCUSSION 59
2.2.1 Synthesis and reactivity of model aldehyde 57 59
2.2.2 Synthesis and reactivity of model aldehyde 64 63
2.2.3 Synthesis and reactivity of aldehyde ent-64b 71
2.2.4 Synthesis and reactivity of aldehyde 72 73
2.2.5 Iterative polypropionate unit formation 75
2.3 EXPERIMENTAL 773.0 EFFORTS TOWARDS A CATALYTIC, ASYMMETRIC SYNTHESIS OF ANANALOGUE OF (+)-DISCODERMOLIDE98
3.1 ISOLATION AND BIOACTIVITY 98
3.2 PAST SYNTHESES AND RETROSYNTHETIC ANALYSIS 99
3.3 RESULTS AND DISCUSSION 103
3.3.1 Synthesis of aldehyde 83 103
3.3.2 Synthesis of aldehyde 99 107
3.3.3 Synthesis of iodide 85 109
3.3.4 Synthesis of the model alkyne 108 111
3.3.5 First attempt at the synthesis of alkyne 84 114
3.3.6 Revised synthesis of alkyne 84 117
3.4 EXPERIMENTAL 119
APPENDIX A 150
BIBLIOGRAPHY 152

LIST OF TABLES

Table 1: Deprotection of model 3-benzyloxy pyrrole 41 24
Table 2: Protecting group effect on aldehyde 64 in the AAC.. 65
Table 3: Co-solvent effect on the AAC reaction of aldehydes 64a,b 66
Table 4: Temperature effect on the AAC reaction of aldehyde 64b. 67
Table 5: Addition of model alkyne 108 into aldehyde 99 113

LIST OF FIGURES

Figure 1: (-)-Rhazinilam (1) and (+)-1,2-dehydroaspidospermidine (2) 2
Figure 2: Key steps in Smith's synthesis of rhazinilam 4
Figure 3: Key steps in Sames' syntheses of rhazinilam. 5
Figure 4: Key steps in Magnus' synthesis of rhazinilam 6
Figure 5: Key step in Trauner's synthesis of rhazinilam 6
Figure 6: The Nelson Group's retrosynthetic analysis of (-)-rhazinilam 8
Figure 7: The $\mathrm{AAC}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring opening sequence and (-)-malyngolide (19) 10
Figure 8: Restrictions for Grignard precursor 11
Figure 9: 3-Alkoxy/silyloxy substituted pyrroles as Grignard precursors 12
Figure 10: Synthetic analysis of 3-silyloxy pyrrole 20 13
Figure 11: Proposed mechanism for $\mathrm{Pd}(\mathrm{II})$-catalyzed cyclization ($\mathrm{M}=\mathrm{Pd}$) 16
Figure 12: Synthetic analysis of pyrrole 29 and synthesis of pyrrolone 30 18
Figure 13: Erythromycin (55) and (-)-dictyostatin (56) 53
Figure 14: Formation of propionate units via enzymatic catalysis 54
Figure 15: Formation of polypropionate units via the alkaloid-catalyzed AAC 58
Figure 16: Explanation of beta-lactone products from aldehyde 57 62
Figure 17: Reetz-Evans model of aldehyde 57 70
Figure 18: Reetz-Evans model of aldehyde 64b 71
Figure 19: (+)-Discodermolide (81) 98
Figure 20: Retrosyntheses of (+)-discodermolide 100
Figure 21: Polysilylated analogue 82 101
Figure 22: Retrosynthetic analysis of analogue 82 102
Figure 23: Retrosynthetic analysis of left fragment 83 102

Figure 24: Retrosynthetic analysis of fragments 84 and 85.
Figure 25: Revised retrosynthetic analysis .. 108

LIST OF SCHEMES

Scheme 1 13
Scheme 2 14
Scheme 3 15
Scheme 4 19
Scheme 5 20
Scheme 6 21
Scheme 7 23
Scheme 8 25
Scheme 9 26
Scheme 10 27
Scheme 11 28
Scheme 12 30
Scheme 13 55
Scheme 14 55
Scheme 15 56
Scheme 16 57
Scheme 17 58
Scheme 18 60
Scheme 19 61
Scheme 20 61
Scheme 21 64
Scheme 22 68
Scheme 23 69
Scheme 24 72
Scheme 25 73
Scheme 26 73
Scheme 27 74
Scheme 28 75
Scheme 29 104
Scheme 30 105
Scheme 31 107
Scheme 32 109
Scheme 33 110
Scheme 34 111
Scheme 35 112
Scheme 36 115
Scheme 37 116
Scheme 38 116
Scheme 39 117
Scheme 40 118

PREFACE

Table of Abbreviations

AAC	Acyl halide-aldehyde cyclocondensation
BINOL	$1,1^{\prime}$-Bi-2-naphthol
Bn	Benzyl
BnOH	Benzyl alcohol
Boc	tert-Butoxycarbonyl
$(\mathrm{Boc})_{2} \mathrm{O}$	tert-Butoxycarbonyl anhydride
$(\mathrm{BzO})_{2}$	Benzoyl peroxide
DMAP	4-Dimethylaminopyridine
DMF	N,N-Dimethylformamide
DMP	Dess-Martin periodinane; 1,1,1-Tris(acetyloxy)-1,1-dihydro-1,2-
DMS	benziodoxol-3(1H)-one
DMSO	Dimethyl sulfide
dppf	1,1'-Bis(diphenylphosphino)ferrocene
d.r.	Diastereomeric ratio
ee	Enantiomeric excess
EtOAc	Ethyl acetate
HOAc	Acetic acid
LA	Lewis acid
LAH	Lithium aluminum hydride
LDA	Lithium diisopropylamide
MOM	Methoxymethyl
MsOH	Methanesulfonic acid

NaHMDS	Sodium bis(trimethylsilyl)amide
NBS	N -Bromosuccinimide
NMO	N-Methylmorpholine N -oxide
$\mathrm{Pd}(\mathrm{OAc})_{2}$	Palladium(II) acetate
PMB	p-Methoxybenzyl
TBAF	Tetrabutylammonium fluoride
TBAI	Tetrabutylammonium iodide
TBDPS	tert-Butyldiphenylsilyl
TBS	tert-Butyldimethylsilyl
TBSOTf	tert-Butyldimethylsilyl trifluoromethanesulfonate
TEA	Triethylamine
TESCl	Triethylsilyl chloride
Tf	Trifluoromethanesulfonyl
TFA	Trifluoroacetic acid
$\mathrm{Tf}_{2} \mathrm{O}$	Trifluoromethanesulfonic anhydride
THF	Tetrahydrofuran
TIPS	Triisopropylsilyl
TIPSOTf	Triisopropylsilyl trifluoromethanesulfonate
TLC	Thin-layer chromatography
TMEDA	$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediamine
TMS	Trimethylsilyl
TMSCHN_{2}	(Trimethylsilyl)diazomethane
TMSCl	Chlorotrimethylsilane
TMS-QD	Trimethylsilylquinidine
TMS- Q_{N}	Trimethylsilylquinine
TPAP	Tetrapropylammonium perruthenate
Ts	Tosyl

Acknowledgements

First, I would like to thank those members of my chemical family who have helped me with my professional accomplishments. I would like to especially thank Professors Scott G. Nelson and Robert K. Boeckman, Jr. for their constant support and advice throughout my academic career and aid during my development as a scientist. Additionally, I am very grateful they possessed the courage to give a young, scrappy, wannabe chemist from Brooklyn a chance to get his hands dirty on such challenging and interesting projects. I would like to thank Professors Craig S. Wilcox, Peter Wipf, Billy W. Day and Paul Floreancig for their guidance during my time at the University of Pittsburgh.

I would like to thank Andrew Kassick, Apsara Gopalarathnam, Benjamin Stevens, Xiaoqiang Shen and Cheng Zhu as well as the past and present members of the Nelson research group for their friendship, advice and support during my graduate school career. Additionally, I would like to thank all my great friends in the chemistry department who were kind enough to put up with me during my time here. There are way too many of them to list here but those poor souls know who they are. Of course, special thanks to the main office gals (especially my chemistry mom Fran Nagy) for being so friendly and feeding a poor and hungry graduate student with your delicious food.

As for my non-chemical family (who I think about often), I would like to thank my mom, dad, and sister for their overwhelming love and compassion during my entire life. Never once have I ever doubted your love and support for me and all that I do. Your cheers are always the loudest, your words always the kindest, and for that I love you eternally. I would like to thank my extended family and family friends whose faces I may not see that often, but whose support
is constantly heard. I would like to thank Ethan Kross, Kevin and Kay Ohannessian, June Hou and the rest of my friends for their companionship during my existence. I truly cherish all of you and all the time we spend together. You have always ensured that I fight the good fight and have always had my back no matter how daunting the opposition.

Five long, hard years of graduate school, four challenging years of research, three very stimulating projects, two published papers and one Ph.D.. Not bad for a kid from Brooklyn...
"Life is for those who are willing to take on the weight of the universe in order to take one more step over its horizon."

1.0 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF (-)-RHAZINILAM

1.1 ISOLATION AND BIOACTIVITY

(-)-Rhazinilam (1) is a naturally occurring antimitotic agent isolated from the plants Melodinus australis (1965) ${ }^{1}$, Rhazya stricta (1970) ${ }^{2}$ and most recently Kopsia singapurensis (1987) ${ }^{3}$ (Figure 1). Single crystal X-ray diffraction studies (1972) unambiguously elucidated the tetracyclic skeleton of rhazinilam, which is a relative of the Aspidosperma class of alkaloids. ${ }^{4}$ Rhazinilam was found to possess a 5,6,7,8-tetrahydroindolizine subunit, a phenyl-pyrrole biaryl bond with a dihedral angle of 95° and a nine-membered lactam. It is believed that rhazinilam is an artifact of the isolation process, potentially arising from oxidation of (+)-1,2dehydroaspidospermidine (2). ${ }^{5,6}$ Strong evidence for this comes from the observation that precursor 2, upon prolonged exposure to air does, in fact, form rhazinilam. ${ }^{7}$

[^0]

1

2

Figure 1: (-)-Rhazinilam (1) and (+)-1,2-dehydroaspidospermidine (2)

Rhazinilam has attracted attention as a potential cancer chemotherapeutic agent due to its ability to disrupt mitosis. Biological studies have shown that rhazinilam mimics the effects of both vinblastine and Taxol $^{\mathrm{TM}}$ on microtubule dynamics. ${ }^{8}$ In vitro, rhazinilam expresses the vinblastine-type effect of inducing non-reversible assembly of tubulin into spiral polymer and the Taxol ${ }^{\mathrm{TM}}$-type effect of inhibiting cold-induced disassembly of microtubules. In addition, rhazinilam possesses the ability to induce the formation of asters in mitotic cells and microtubule bundles in interphase cells. Rhazinilam displays cytotoxic activity against the KB cell line, as well as inhibition of microtubule disassembly in low micromolar concentrations $\left(\mathrm{IC}_{50}=2 \mu \mathrm{M}\right.$ and $\mathrm{IC}_{50}=3 \mu \mathrm{M}$, respectively). ${ }^{9}$

Due to its interesting pharmacological profile, structurally less complex congeners of rhazinilam have been synthesized and subjected to structure-activity relationship studies in order to determine the relevant biologically active areas. ${ }^{9,10 \mathrm{a}-\mathrm{e}}$ The studies suggest that the presence of the phenyl-pyrrole subunit and the lactam functionality are imperative for antitubulin activity. In
${ }^{8}$ (a) David, B.; Sévenet, T.; Morgat, M.; Guénard, D.; Moisand, A.; Tollon, Y.; Thoison, O.; Wright, M. Cell Motil. Cytoskeleton 1994, 28, 317-326. (b) Banwell, M.; Edwards, A.; Smith, J.; Hamel, E.; Verdier-Pinard, P. J. Chem. Soc., Perkin Trans. 1, 2000, 1497-1499.
${ }^{9}$ Dupont, C.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Biorg. Med. Chem. 1999, 7, 2961-2969.
${ }^{10}$ (a) David, B.; Sévenet, T.; Thoison, O.; Awang, K.; Païs, M.; Wright, M.; Guénard, D. Biorg. Med. Chem. Lett. 1997, 7, 2155-2158. (b) Pascal, C.; Dubois, J.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Tetrahedron 1998, 54, 14737-14756. (c) Dupont, C.; Guénard, D.; Thal, C.; Thoret, S.; Guéritte, F. Tetrahedron Lett. 2000, 41, 5853-5856. (d) Alazard, J.-P.; Millet-Paillusson, C.; Boyé, O.; Guénard, D.; Chiaroni, A.; Riche, C.; Thal, C. Biorg. Med. Chem. Lett. 1991, 1, 725-728. (e) Pascal, C.; Dubois, J.; Guénard, D.; Guéritte, F. J. Org. Chem. 1998, 63, 6414-6420.
addition, studies point to restricted rotation around the biaryl bond and/or the ethyl group as having a pivotal role in bioactivity as well. Overall, none of the synthetic analogues performed as well as (-)-rhazinilam (1).

1.2 PAST SYNTHESES

To date, four racemic syntheses and one asymmetric synthesis of rhazinilam have been reported. The first of these was a racemic synthesis by Smith in 1973 (Figure 2). ${ }^{11}$ The key transformation in Smith's synthesis involved formation of the tetrahydroindolizine skeleton, which commenced with N-alkylation of pyrrole 3 with tosylate 4 to yield pyrrole 5 . Treatment of pyrrole 5 with AlCl_{3} facilitated an intramolecular cyclization of the heterocycle onto the γ-lactone to afford tetrahydroindolizine 6. Subsequent formation of tetracycle 7 was achieved by reduction of the aryl nitro group followed by macrolactamization.

${ }^{11}$ Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1973, 14, 5179-5184.

6
$\xrightarrow[\text { 2) Macrolactamization }]{\text { 1) Reduction of aryl nitro }}$

7

Figure 2: Key steps in Smith's synthesis of rhazinilam

It was not until almost 30 years after Smith's total synthesis of rhazinilam when Sames reported a second racemic synthesis. ${ }^{12}$ The key steps involved formation of tetrahydroindolizine 9 via Grigg cyclization of prepared iminium salt 8 and utilization of a stoichiometric amount of platinum complex to dehydrogenate one of the gem-diethyl groups on tricycle 10, via C-H activation, to afford alkene 11 (Figure 3). This methodology was later employed again by Sames in the only asymmetric synthesis of rhazinilam to date. ${ }^{13}$ With the aid of a chiral auxiliary, the platinum complex was able to selectively distinguish between the two gem-diethyl groups to set the proper ethyl-bearing stereocenter needed for the asymmetric synthesis of (-)-rhazinilam. While highly innovative, the stereodefining transformation not only was plagued with an inverse relationship between the diastereoselectivity and isolated yield obtained, but also required the use of a stoichiometric amount of the platinum complex.

[^1]

Figure 3: Key steps in Sames' syntheses of rhazinilam

In the time between the racemic and asymmetric syntheses reported by Sames, Magnus completed a total synthesis of racemic rhazinilam which yielded the natural product in nine steps in 8% overall yield (Figure 4). ${ }^{14}$ In a similar fashion to Sames' sequence, the key transformation was formation of tetrahydroindolizine 13 via alkylation then Grigg cyclization of thiophenyl imine 12. The natural product was completed by first reducing the aryl nitro group present in carboxylic acid $\mathbf{1 4}$ followed by macrolactamization.

[^2]

Figure 4: Key steps in Magnus’ synthesis of rhazinilam

In 2005, after the Nelson group's initial attempt at an asymmetric total synthesis of (-)rhazinilam, a concise racemic synthesis of rhazinilam was published by Trauner and coworkers. ${ }^{15}$ The key transformation in Trauner's synthesis forms the nine-membered lactam 15 via an intramolecular $\operatorname{Pd}(0)$-catalyzed cross-coupling reaction using an unfunctionalized pyrrole as a coupling partner (Figure 5). This transformation unquestionably demonstrates the electronrich nature and nucleophilicity of the pyrrole moiety existent in the tetrahydroindolizine core.

Figure 5: Key step in Trauner's synthesis of rhazinilam

[^3]
1.3 RETROSYNTHETIC ANALYSIS AND AAC TECHNOLOGY

The key step in our synthetic approach to an enantioselective synthesis of (-)-rhazinilam is based upon concomitant formation of the quaternary carbon stereocenter and tetrahydroindolizine core via cyclization of a pyrrole moiety onto an optically active allene. The strategy envisioned entails formation of the stereogenic center and tetrahydroindolizine core first with latter installation of the biaryl bond and lactam (Figure 6). The retrosynthetic analysis of the natural product opens the nine-membered lactam by cleaving across two bonds to yield two separate fragments. The first disconnection comes from cleavage of the amide bond, which can be made by an intramolecular macrolactamization reaction. The second disconnection occurs across the biaryl bond, which can be derived from a Suzuki-type cross-coupling between boronic acid 16 and triflate 17. The tetrahydroindolizine intermediate 17 will come from a Lewis acid-catalyzed cyclization of the pyrrole moiety onto an optically-active allene. Utilizing both the catalytic asymmetric acyl halide-aldehyde cyclocondensation (AAC) reaction and the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring opening developed in the Nelson group, the chiral allenic precursor can be made from nucleophilic attack of a pyrrole-containing organocuprate onto propargylic β-lactone 18.

Figure 6: The Nelson Group's retrosynthetic analysis of (-)-rhazinilam

In 1999, the original asymmetric aluminum(III)-catalyzed AAC reaction was developed by the Nelson group as an alternative method for the production of aldol adducts (Eq. 1). ${ }^{16 \mathrm{a}-\mathrm{c}}$ In this transformation, ketene is generated in situ by reaction of an acyl bromide with Hünig's base. Then, under catalysis of the symmetric $\mathrm{Al}(\mathrm{III})$ triamine catalyst \mathbf{A}, the generated ketene undergoes a $[2+2]$ cycloaddition with an aldehyde to yield enantiomerically enriched β-lactones. In 2004 a second evolution of the catalyst was developed, the unsymmetric Al (III) triamine \mathbf{B}, which allows for the incorporation of substituted ketenes in the [2+2] cycloaddition reaction. Some attractive attributes of these AAC reactions are the ability to employ a wide variety of aldehydes in this transformation and the fact that the $\mathrm{Al}(\mathrm{III})$-catalyzed AAC reaction can be scaled up without any deleterious effects.

d.r. $>6: 1 /$ syn:anti

[^4]

The unique electrophilicity possessed by these enantiomerically enriched β-lactones allows for reactivity diversification based on the type of nucleophile employed (Eq. 2). Hard nucleophiles add directly to the lactone carbonyl, furnishing addition-elimination products while soft nucleophiles attack in a $\mathrm{S}_{\mathrm{N}} 2$ fashion, yielding β-substituted carboxylic acids. These different optically active ring-opened products are suited for further facile structural manipulation in many different directions. For this reason, β-lactones are useful intermediates and building blocks in organic synthesis. ${ }^{16 \mathrm{~d}}$

In addition to the normal modes of reactivity expressed by optically active β-lactones, propargylic β-lactones are also subject to $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring opening by organocuprate reagents. The products from these reactions are axially chiral allenes, which are useful intermediates in organic synthesis (Figure 7). By employing this $\mathrm{AAC}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ ring opening sequence, a concise asymmetric
total synthesis of the naturally occurring antibiotic (-)-malyngolide (19) was achieved. ${ }^{17}$ It was believed that (-)-rhazinilam could also be synthesized utilizing the $A A C-S_{N} 2^{\prime}$ ring opening sequence, where the chirality of the molecule is set during subsequent cyclization upon the optically active β-allenic acid.

Figure 7: The $A A C-S_{N} 2$ ' ring opening sequence and (-)-malyngolide (19)

1.4 RESULTS AND DISCUSSION

1.4.1 Background

In order to proceed with the synthesis of (-)-rhazinilam (1) as envisioned, the first major synthetic target would be an appropriate Grignard precursor to open the ring of the enantioenriched β-lactone 18. First, the synthon had to be a pyrrole substituted at nitrogen with a 3-halo propyl chain. This would allow for the formation of the tetrahydroindolizine skeleton upon intramolecular cyclization of the pyrrole moiety onto the tethered allene (Figure 8). Secondly, the pyrrole would have to be functionalized in the 3-position so to allow for future installation of the biaryl bond via a Pd^{0}-catalyzed cross-coupling reaction. Lastly, it was imperative that the functionality at the 3-position of the pyrrole be compatible with the ensuing

[^5]Lewis-acid catalyzed cyclization. Possibilities of poisoning the Lewis acid catalyst, as well as deactivation of the pyrrole moiety either electronically or sterically, were issues to be addressed.

Figure 8: Restrictions for Grignard precursor

Based on these considerations, it was decided that a pyrrole with either an alkyl or silyl ether substituent at the 3-position would be a good candidate for the Grignard precursor (Figure 9). In addition to being amenable to subsequent elaboration into a viable Pd^{0} cross-coupling partner (triflate) for the biaryl bond formation, it was speculated that having a 3-alkoxy substituted pyrrole would also aid the desired regioselectivity in the ensuing cyclization. Though they are inductively electron-withdrawing groups (EWG), alkyl ethers are resonance electron donating groups (EDG). As a result of this resonance donation, the C-2 carbon of the pyrrole moiety will be more electron rich, and hence favored to cyclize rather than the less activated C-5 position.

$\mathrm{R}=$-alkyl, $-\mathrm{SiR}_{3}$
$\mathrm{Y}=-\mathrm{COOH},-\mathrm{COOMe}$
$\mathrm{M}=-\mathrm{B}(\mathrm{OH})_{2},-\mathrm{Si}(\mathrm{OR})_{3}$
$\mathrm{R}^{\prime}=-\mathrm{NO}_{2},-\mathrm{NHBoc}$

Figure 9: 3-Alkoxy/silyloxy substituted pyrroles as Grignard precursors

1.4.2 Synthesis of 1-silyloxy-5,6,7,8-tetrahydroindolizine 28

The initial approach to (-)-rhazinilam was made using 3-silyloxy pyrrole 20 as the requisite precursor for eventual formation of the tetrahydroindolizine skeleton (Figure 10). Retrosynthetically, pyrrole 20 could be derived from 3-hydroxy-2-carboxylate pyrrole 21 via a deprotection/protection process. Utilizing extensive research done by Wasserman and coworkers, pyrrole 21 could be derived from vicinal tricarbonyl species $22 .{ }^{18}$ Trione 22 can be synthesized from the commercially available phosphorous ylide 23.

Figure 10: Synthetic analysis of 3-silyloxy pyrrole 20

Starting from phosphorus ylide 23, addition of a solution of 3-chloropropionyl chloride in benzene produced the addition-elimination adduct 24 in 94% yield (crude) (Scheme 1). ${ }^{19}$ Oxidative cleavage of phosphoranylidine 24 was achieved by stirring with Oxone ${ }^{\mathrm{TM}},{ }^{18 \mathrm{i}}$ affording chloro-tricarbonyl 22 in 82% yield (crude). ${ }^{18 \mathrm{~d}}$ Reaction of primary chloride 22 with saturated aqueous NaHCO_{3} afforded a 98% yield (crude) of the elimination product, ene-trione 25.

Scheme 1

${ }^{18}$ (a) Wasserman, H. H.; Han, W. T. Tetrahedron Lett. 1984, 25, 3743-3746. (b) Wasserman, H. H.; Cook, J. D.; Fukuyama, J. M.; Rotello, V. M. Tetrahedron Lett. 1989, 30, 1721-1724. (c) Wasserman, H.H.; Lombardo, L. J. Tetrahedron Lett. 1989, 30, 1725-1728. (d) Wasserman, H. H.; Fukuyama, J.; Murugesan, N.; van Duzer, J.; Lombardo, L.; Rotello, V.; McCarthy, K. J. Am. Chem. Soc. 1989, 111, 371-372. (e) Wasserman, H. H.; Rotello, V. M. J. Org. Chem. 1989, 54, 2785-2786. (f) Wasserman, H. H.; Cook, J. D.; Vu, C. B. Tetrahedron Lett. 1990, 31, 4945-4948. (g) Wasserman, H. H.; Kuo, G.-H. Tetrahedron 1992, 48, 7071-7082. (h) Wasserman, H. H.; Vu, C. B.; Cook, J. D. Tetrahedron 1992, 48, 2101-2112. (i) Wasserman, H. H.; Ennis, D. S.; Blum, C. A.; Rotello, V. M. Tetrahedron Lett. 1992, 33, 6003-6006. (j) Wasserman, H. H.; Blum, C. A. Tetrahedron Lett. 1994, 35, 9787-9790. (k) Wasserman, H. H.; Baldino, C. M.; Coats, S. J. J. Org. Chem. 1995, 60, 8231-8235.
${ }^{19}$ This ylide is commercially available but can also be made easily on large scale ($25 \mathrm{~g}-30 \mathrm{~g}, 97 \%$ yield); Cooke, Jr., M. P.; Burman, D. L. J. Org. Chem. 1982, 47, 4955-4963.

Due to a unique reactivity pattern, vicinal tricarbonyls are synthetic platforms for the production of a variety of heterocycles. ${ }^{18 b, f-h, j}$ Reacting the very electrophilic tricarbonyl 25 with 3bromopropylamine in the presence of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$, followed by silica gel-induced dehydration and aromatization gave 3-hydroxy-2-carboxylate pyrrole 21 in 55\% yield (Scheme 2). ${ }^{18 \mathrm{~b}}$ Treatment of pyrrole 21 with trifluoroacetic acid (TFA) initiated a tandem tbutyl-ester deprotection/decarboxylation sequence, producing the very light- and air-sensitive pyrrolone 26. ${ }^{20}$ Immediate silylation of the pyrrolone with TIPSOTf provided 3-silyloxy pyrrole 20 in 67% yield over the two steps.

Scheme 2

${ }^{20} \mathrm{H}$ NMR data for crude pyrrolone 26 can be found in the experimental section.

Preparation of β-lactone 18, ${ }^{21}$ required for coupling with the Grignard reagent derived from 3silyloxy pyrrole 20, was undertaken using the AAC methodology developed in the Nelson group. ${ }^{16}$ Reacting acetyl bromide and pent-2-ynal in the presence of a catalytic amount of (S, S) aluminum triamine catalyst A produced β-lactone $\mathbf{1 8}$ in 85% yield and 87% ee (Scheme 3). The Grignard reagent from pyrrole $\mathbf{2 0}$, needed to open β-lactone 18, was formed by adding a solution of bromide 20 in THF to Mg^{0} activated by 1,2-dibromoethane. Slow addition of the generated Grignard reagent to a solution of $\mathrm{CuCN}, \mathrm{LiBr}$ and β-lactone 18 in THF at $-78{ }^{\circ} \mathrm{C}$ provided the desired $\mathrm{S}_{\mathrm{N}} 2$ ' adduct, β-allenic acid 27, in 50% yield. ${ }^{17}$ Unfortunately, despite multiple attempts, the yield of this transformation could not be improved. ${ }^{22}$

Scheme 3

[^6]Despite the low yield, this sequence provided the compound required to test the intramolecular cyclization of the pyrrole moiety onto the optically active allene. Subjecting allene 27 to a substoichiometric amount of $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}(20 \mathrm{~mol} \%)$ afforded the desired cyclized product, tetrahydroindolizine 28, in 50% yield (Figure 11). ${ }^{23}$ Equally important, almost complete transfer of chirality from the enantioenriched β-lactone to the bicycle was observed. Stereoselectivity for this transformation arises from facial selectivity of the ensuing cyclization due to complexation of the Pd^{2+} metal center to the carboxylate and proximal olefin. This coordination directs the pyrrole to approach from the β-face (as drawn in Figure 11) in order to satisfy the stereoelectronic requirement of antiperiplanar addition to the activated alkene.

27
50\% yield

Figure 11: Proposed mechanism for Pd(II)-catalyzed cyclization (M = Pd)

[^7]As anticipated, 3-silyloxy pyrrole 20 could be elaborated to the tetrahydroindolizine fragment of the (-)-rhazinilam skeleton, even allowing further elaboration to a triflate cross-coupling partner, albeit in low yield. ${ }^{23}$ However, in the latter half of the sequence, the compounds became increasingly more unstable. In each reaction, as well as in storage, decomposition occurred which attenuated yields. For this reason a more optimal route was sought.

1.4.3 Synthesis of 1-benzyloxy-5,6,7,8-tetrahydroindolizine 35

After failure of converting silyloxy tetrahydroindolizine 28 to an acceptable amount of the desired triflate precursor needed for the studies of using a Pd^{0}-catalyzed cross-coupling reaction to form the biaryl bond, different protecting groups for the requisite hydroxy group were considered. The main concerns for proper choice of a protecting group were not only that the integrity of the protecting group be uncompromised during the Grignard reagent formation, but that it also be labile enough to be removed easily after formation of the tetrahydroindolizine core. After deliberation, it was felt that a pyrrole with a benzyloxy group in the 3-position would be a suitable candidate.

To pursue this strategy, 3-benzyloxy pyrrole 29 became the new synthetic target. Pyrrole 29 is derived from ethoxy pyrrolone 30 by transetherification followed by hydride reduction (Figure 12). Ethoxy pyrrolone $\mathbf{3 0}$ could be synthesized from commercially available ethyl acetoacetate in three steps. Reacting ethyl acetoacetate with triethyl orthoformate in the presence of a catalytic amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ provided ester 31 in 86% yield. ${ }^{24}$ Allylic bromination of ester 31 with NBS provided a 90% yield of bromide $32^{24 \mathrm{~b}}$ which, upon subjection to a mixture of 3-

[^8]chloropropylamine hydrochloride and 1.0 M aqueous NaOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, afforded ethoxy pyrrolone 30 in 62% yield. ${ }^{25}$

Figure 12: Synthetic analysis of pyrrole 29 and synthesis of pyrrolone 30

In order to obtain the benzyloxy analogue of optically active allene 27, 3-benzyloxy pyrrole 29 had to be synthesized. Transetherification of ethoxy pyrrolone $\mathbf{3 0}$ with benzyl alcohol proceeded under acid catalysis at $90{ }^{\circ} \mathrm{C}$ and reduced pressure ($13-22 \mathrm{mmHg}$) to yield 3-benzyloxy pyrrolone 33 in 60% yield (Scheme 4). ${ }^{26}$ Reduction of 33 with excess ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded a 50% yield of 3-benzyloxy pyrrole 29. ${ }^{24 b}$ Optically active β-allenic acid 34 was synthesized in 65%

[^9]yield by adding the pre-formed Grignard reagent of chloride 29 to a $-78^{\circ} \mathrm{C}$ solution of β-lactone 18, CuCN and LiBr in THF.

Scheme 4

34
65\% yield

With the synthesis of the benzyloxy allenic acid 34 now completed, the next goal was to cyclize the pyrrole and form the tetrahydroindolizine core. Subjecting optically active allene 34 to a substoichiometric amount of $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the desired 1-benzyloxytetrahydroindolizine 35 in 58% yield and 72% ee (Scheme 5). However unlike the silyloxy derivative, $30 \mathrm{~mol} \%$ of the $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}$ was needed for complete consumption of the starting material. The necessity of the higher catalyst loading may be due to a few reasons. First, the benzyloxy substituent is more inductively electron-withdrawing than the silyloxy group, which would decrease the electron density in the pyrrole ring. This would render the pyrrole less nucleophilic, thus deactivating the heterocycle towards cyclization. Second, a benzyloxy group is a more efficient coordinating group than a silyloxy group and therefore the benzyl ether may be unproductively sequestering some of the Pd catalyst needed for activation of the allene.

Scheme 5

34

35
58\% yield

36
88\% yield

37
59\% yield

An attempt to improve the yield of the cyclized product was made by esterifying acid 34 with TMSCHN_{2} to produce methyl ester allene $\mathbf{3 6}$ in 88% yield. By transforming the acid functionality into an ester, the stability of the starting allene as well as isolation of the desired bicyclic product would both be aided. ${ }^{27}$ Disappointingly, methyl ester allene $\mathbf{3 6}$ performed no better in the cyclization than allenic acid 34, yielding 59% of the methyl ester tetrahydroindolizine 37 in 72\% ee.

[^10]
1.4.4 Formation of triflate precursor 45

With the benzyloxy bicycle now formed, efforts were focused on transforming the tetrahydroindolizine core into a viable cross-coupling partner. In order to form the biaryl bond present in the skeleton of (-)-rhazinilam, the benzyl ether on the tetrahydroindolizine core needed to be deprotected and a triflate group installed. Removal of the benzyl group was initially undertaken using transfer hydrogenation conditions. Due to the slower rates associated with transfer hydrogenation compared to the use of hydrogen gas, we felt we would be able to monitor the reaction by TLC and quench the reaction mixture after the more active benzyl group was removed, but before the pendant neo-pentyl double bond was reduced.

The initial conditions attempted for this transformation consisted of 1,4-cyclohexadiene as the source of molecular hydrogen and 10% activated $\mathrm{Pd} / \mathrm{C}(100 \%(\mathrm{w} / \mathrm{w}))$ in $\mathrm{EtOH}\left(\right.$ Scheme 6). ${ }^{28}$ Tetrahydroindolizines 35, $\mathbf{3 7}$ and $\mathbf{3 8}$ (obtained by reducing $\mathbf{3 7}$ with LAH (90% yield) followed by silylation of 39 with TIPSOTf (82% yield)) were subjected to these conditions. Unfortunately, none of the transfer hydrogenation experiments produced any desired product. While in all cases the starting material was consumed, the crude ${ }^{1} \mathrm{H}$ NMR spectra from the reactions did not show definitive peaks that would correlate to the expected pyrrolone products.

Scheme 6

35
${ }^{28}$ Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki, C.; Meienhofer, J. J. Org Chem 1978, 43, 4194-4196.

35

37

1) 10% act. $\mathrm{Pd} / \mathrm{C}(100 \%(w / w))$, H_{2} (gas), EtOH
2) $\mathrm{Tf}_{2} \mathrm{O}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}$ to rt

A second attempt at the deprotection of the benzyl ether on the tetrahydroindolizine core was made, this time subjecting both 35 and 37 to hydrogen gas with 10% activated $\mathrm{Pd} / \mathrm{C}(100 \% \mathrm{w} / \mathrm{w})$ in EtOH. Similar to the transfer hydrogenation experiments, 35 and 37 were consumed completely, though again producing crude ${ }^{1} \mathrm{H}$ NMR spectra that were indistinctive. However, subjecting the crude products from the deprotection reactions to triflic anhydride in the presence
of triethylamine actually yielded 19% of triflate tetrahydroindolizine 40 (from 37). ${ }^{29} \mathrm{An}$ interesting observation from this result is that the neo-pentyl double bond, thought to be less activated towards reduction in these conditions due to sterics, was reduced in the same amount of time it took for the aryl benzyl group to be removed.

In order to maintain the integrity of the pendant olefin and to optimize the deprotection, alternative conditions were sought to debenzylate the pyrrole. Experiments were conducted using model 3-benzyloxy pyrrole 41, which was synthesized in a similar manner as 3-benzyloxy pyrrole 29. Reacting phenethylamine with allylic bromide 32 afforded the ethoxy pyrrolone 42 in 64% yield (Scheme 7). Transetherifying 42 with benzyl alcohol produced an 80% yield of benzyl ether $\mathbf{4 3}$ which was subsequently reduced with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ to yield 36% of model benzyloxy pyrrole 41. The studies conducted on model pyrrole 41 included an investigation of the acceleration effect of acetic acid as a media for transfer hydrogenation, as well as some Brønsted acid and Brønsted acid-Lewis base conditions to remove a benzyl group (Table 1). ${ }^{30}$

Scheme 7

[^11]${ }^{30}$ (a) Kalinin, A. V.; Reed, M. A.; Norman, B. H.; Snieckus, V. J. Org. Chem. 2003, 68, 5992-5999. (b) Kiso, Y.; Ukawa, K.; Nakamura, S.; Ito, K.; Akita, T. Chem. Pharm. Bull. 1980, 28, 673-676. (c) Matteson, D. S.; Man, H.W.; Ho, O. C. J. Am. Chem. Soc. 1996, 118, 4560-4566. (d) Node, M.; Kodama, S.; Hamashima, Y.; Baba, T.; Hamamichi, N.; Nishide, K. Angew. Chem. Int. Ed. 2001, 40, 3060-3062.

Table 1: Deprotection of model 3-benzyloxy pyrrole 41

41

entry	Conditions ${ }^{\text {a }}$	Time	Results ${ }^{\text {b }}$
a	1,4-cyclohexadiene, 10% act. Pd/C, EtOH:HOAc/(3:2) ${ }^{\text {c }}$	10 hours	>95\% conv. ${ }^{(78 \%)^{\text {d }}}$
b	1,4-cyclohexadiene, 10% act. $\mathrm{Pd} / \mathrm{C}, \mathrm{HOAc}{ }^{\mathrm{c}}$	8 hours	>95\% conv. (61\%) ${ }^{\text {d }}$
c	MsOH in CHCl_{3}	5.5 hours	$\sim 50 \%$ conv.
d	MsOH in $\mathrm{Me}_{2} \mathrm{~S}$	20 hours	$\sim 67 \%$ conv.
e	TFA	16 hours	no conv. ${ }^{\text {e }}$
f	TFA: $\mathrm{Me}_{2} \mathrm{~S} /(2: 1)$	20 hours	$\sim 95 \%$ conv.

${ }^{\mathrm{a}}$ Trials $\mathrm{a}, \mathrm{b}, \mathrm{d}$ and f were run using $0.070 \mathrm{~g}(0.253 \mathrm{mmol})$ of 41 . Trials c and e were run using $0.050 \mathrm{~g}(0.180 \mathrm{mmol})$ of 41. Reactions were run at 0.10 M in the respective solvents. ${ }^{\mathrm{b}}$ Based on crude ${ }^{1} \mathrm{H}$ NMR. In all cases, the ${ }^{1} \mathrm{H}$ NMRs showed a mix of desired product and starting material. ${ }^{\text {c }}$ Used $100 \%(\mathrm{w} / \mathrm{w})$ of 10% activated Pd / C. ${ }^{\mathrm{d}}$ Crude yields. ${ }^{e}$ Based on TLC, no crude ${ }^{1} \mathrm{H}$ NMR taken.

As was expected, the use of HOAc as the solvent increased the rate at which the transfer hydrogenation occurred, albeit at a lower isolated yield. In addition, the Brønsted acid-Lewis base condition of TFA: $\mathrm{Me}_{2} \mathrm{~S}$, which should have no affect on the pendant neo-pentyl olefin,
yielded a promising result. Unfortunately, when these conditions were employed for the removal of the benzyl ether on tetrahydroindolizine 37, no desired product was obtained (Scheme 8). It was hypothesized that deprotection of the benzyl ether was being inductively stymied by the electron-rich nature of the pyrrole moiety. Installation of an electron withdrawing group, in this case a carbomethoxy group, onto the pyrrole should rectify this problem. An electronwithdrawing group would decrease the electron density within the pyrrole moiety thereby inductively labilizing the benzyl ether.

Scheme 8

The carbomethoxy group was easily installed onto the heterocyclic core in two steps. Acylation of tetrahydroindolizine 37 with trichloroacetyl chloride followed by methanolysis with freshly prepared sodium methoxide produced benzyl ether 44 in 84% overall yield (Scheme 9). As hypothesized, the carbomethoxy group did facilitate the deprotection of the hydroxy group. Subjection of benzyl ether $\mathbf{4 4}$ to TFA: $\mathrm{Me}_{2} \mathrm{~S} /(2: 1)$ successfully cleaved the benzyl group. ${ }^{31}$ The intermediate pyrrolone was too unstable to purify so the crude residue was treated directly with $\mathrm{Tf}_{2} \mathrm{O}$ and Hünig's base to yield 43% of the desired cross-coupling partner, triflate 45. Installation of the carbomethoxy group proved even more efficacious as incorporation of the

[^12]electron-withdrawing substituent onto tetrahydroindolizine $46,{ }^{32}$ to form ethyl ether $\mathbf{4 7}$, enabled removal of the ethyl substituent from the pyrrolo-ether by using BBr_{3}. Subsequent treatment of the crude pyrrolone with $\mathrm{Tf}_{2} \mathrm{O}$ and Hünig's base produced triflate 45 in 57% yield. ${ }^{31}$ With the desired triflate at hand, it was time to attempt formation of the biaryl bond.

Scheme 9

[^13]
1.4.5 Attempts at forming the biaryl bond

1.4.5.1 Exploring siloxanes as cross-coupling partners

Due to the existence of a variety of literature procedures to form biaryl bonds via $\mathrm{Pd}^{0}-$-mediated cross-coupling reactions, formation of the requisite bond between pyrrole triflate 45 and an aniline derivative was studied on multiple fronts at once. Turning to coupling chemistry developed by Hiyama and DeShong, siloxanes were explored as potential cross coupling partners. ${ }^{33}$ Model triflate 48 was synthesized in a similar fashion as 3-siloxy pyrrole 20 (Scheme 10). Starting with ene-trinone 25, addition of phenethylamine followed by stirring with silica gel provided 3-hydroxy-2-carboxylate pyrrole 49 in 38% yield. Treatment of 49 with TFA induced a tandem tbutyl-ester deprotection/decarboxylation sequence to afford the very light and air sensitive pyrrolone 50 that underwent immediate triflation with $\mathrm{Tf}_{2} \mathrm{O}$ to yield model triflate $\mathbf{4 8}$ in 70% overall yield from $49 .{ }^{34}$

Scheme 10

25

38% yield

${ }^{33}$ (a) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845-853. (b) Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 3266-3270. (c) Mowery, M. E.; DeShong, P. Org. Lett. 1999, 1, 2137-2140. (d) DeShong, P.; Handy, C. J.; Mowery, M. E. Pure Appl. Chem. 2000, 72, 1655-1658. (e) Manoso, A. S.; DeShong, P. J. Org. Chem. 2001, 66, 7449-7455. (f) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835-846.
${ }^{34} \mathrm{H}$ NMR data for crude pyrrolone 50 can be found in the experimental section.

48
70\% yield

In order to gauge the reactivity of pyrrole triflates in these siloxane cross-coupling reactions, a coupling reaction between model triflate 48 and commercially available phenyltrimethoxysilane was conducted. Subjection of the model triflate to conditions developed by DeShong produced biaryl 51 in 17% yield (Scheme 11). ${ }^{33 \mathrm{c}}$ Though the yield of the coupled product was poor, it demonstrated that the pyrrole triflates possessed some potential coupling ability with siloxanes. Consequently, syntheses of different phenylsiloxane cross-coupling partners that contained a nitrogen functionality in the 2-position was attempted. Disappointingly, only two ortho-silyl compounds, N, N-dimethyl aniline siloxane 52 (47% yield) and N-Boc aniline trimethylsilane 53 (32% yield), could be synthesized. ${ }^{35}$ However, subjecting both 52 and 53 to the same conditions that afforded biaryl 51 failed to yield any coupled product.

Scheme 11

48
 $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$, TBAF, DMF, $90^{\circ} \mathrm{C}$

51
17% yield

[^14](b) The N-Boc aniline starting material used in the production of 53 is commercially available.

48, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}$,
52; 53
TBAF, DMF $90^{\circ} \mathrm{C}$

Due to the inability to synthesize the desired siloxane cross-coupling partners, as well as the failure to couple the available aniline-derived coupling precursors to model triflate 48, no further studies in the area of using siloxanes as potential cross-coupling partners were conducted.

1.4.5.2 Attempts at using a Suzuki cross-coupling reaction

At the same time at which siloxanes were being tested as potential cross-coupling partners, the use of boronic acids as viable cross-coupling partners showed some promise in model studies. ${ }^{23}$ However, attempts to utilize aryl boronic acids with triflate 45 in a Suzuki cross-coupling reaction to form the requisite biaryl bond proved fruitless. ${ }^{36}$ Efforts to couple triflate 45 with commercially available o-nitro phenyl boronic acid (16) and phenyl boronic acid did not produce

[^15]any desired biaryl product (Scheme 12). Surprisingly, unreacted starting material was fully recovered as reduction product 54 was not detected.

Scheme 12

54

It is speculated that the failure of the Suzuki cross-coupling reactions to produce any desired product and any reduced starting material may be caused by two reasons. First, despite the inductive electron-withdrawing nature of the carbomethoxy group the pyrrole-triflate bond may still not be labile enough for the Pd^{0} to insert into. Second, the very sterically cumbersome quaternary carbon stereocenter which is in close proximity to the pyrrole-triflate bond may be sterically blocking the Pd^{0} from getting close enough to the desired bond.

Due to the failure to form the biaryl bond via cross-coupling reaction using a pyrrole triflate, in addition to the moderate yields obtained during key reactions in the synthetic
sequence, synthetic efforts towards the total synthesis of (-)-rhazinilam were temporarily ceased in order to revise the synthetic sequence.

1.5 EXPERIMENTAL

General Information: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 (300 $\mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: $\delta 0.00 \mathrm{ppm}$). Data is reported as follows: chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet $\mathrm{app}=$ apparent, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 spectrometers (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: \delta 128 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: $\delta 0.00 \mathrm{ppm}$). Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\mathrm{D}}$ (c $\mathrm{g} / 100 \mathrm{~mL}$) with units of degree $\cdot \mathrm{g} \cdot \mathrm{cm}^{-3}$. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Analytical thin layer chromatography (TLC) was performed on EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described on EM
silica gel $60\left(230-240\right.$ mesh). ${ }^{37}$ Analytical gas liquid chromatography (GLC) was performed on a Varian 3900 gas chromatograph with a flame ionization detector and split mode capillary injection system using a VarianCP Wax 52CB column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Hydrogen was used as the carrier gas at the indicated pressures. Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp, 190-600 nm), using a Daicel Chiralcel ${ }^{\text {TM }}$ ODH column ($250 \times 4.6 \mathrm{~mm}$) (Daicel Inc.). HPLC grade isopropanol and hexanes were used as the eluting solvents. Melting points were taken using a Mel-Temp apparatus and are uncorrected.

Unless otherwise stated, all experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware using standard inert atmosphere techniques for introducing reagents and solvents. Anhydrous solvents were obtained by passage through successive alumina- and Q5 reactant-packed columns on a solvent purification system. All water used in reactions and in aqueous solutions was deionized. Acetyl bromide and $\mathrm{Tf}_{2} \mathrm{O}$ were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$. Phenethylamine, TMEDA, N, N-dimethylaniline, TMSCl and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ were distilled from CaH_{2}. TIPSOTf and 3-chloropropionyl chloride were distilled prior to use. All other reagents were used as purchased. The yields reported are unoptimized.

(R)-4-(But-1-ynyl)oxetan-2-one (18): To a solution of (S,S)-ligand A (0.461g, $0.853 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{~mL})$ at ambient temperature was added AlMe_{3} Et $(0.470 \mathrm{~mL}, 0.938 \mathrm{mmol}, 2.0 \mathrm{M}$ in hexanes) in a slow, dropwise manner. Gas evolution was observed almost immediately upon addition. The clear solution was stirred for 4 hours at ambient temperature, after which the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 mL)

[^16]and subsequently cooled to $-78{ }^{\circ} \mathrm{C}$. To the solution was added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(5.00 \mathrm{~mL}, 29.0 \mathrm{mmol})$ followed by slow, dropwise addition of acetyl bromide ($2.40 \mathrm{~mL}, 32.4 \mathrm{mmol}$). The reaction mixture was stirred for 15 minutes at $-78^{\circ} \mathrm{C}$. Subsequently, neat aldehyde $(1.40 \mathrm{~g}, 17.1 \mathrm{mmol})$ was added in a dropwise fashion. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ until complete consumption of the starting material, as monitored by TLC. The reaction mixture was poured into cold ether (150 mL) and filtered through a plug of silica, eluting with more cold ether. Concentrated the ethereal filtrate in vacuo and purified the crude oil via bulb-to-bulb distillation (pot temperature $40^{\circ} \mathrm{C} @ 0.1 \mathrm{mb}$). In some cases, additional purification was performed using silica gel chromatography (10:1/pentanes:ether) to yield the title compound as a pale yellow oil (1.80 g, 85\%): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.03$ (ddt, $J=6.3,4.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (dd, $J=$ $16,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=16,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{qd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.2,92.8,74.5,59.1,46.2,13.3,12.5$. Separation of the enantiomers by chiral HPLC [Daicel Chiracel ${ }^{\text {TM }}$ OD-H column, flow rate $0.950 \mathrm{~mL} / \mathrm{min}$., 15% ${ }^{i} \operatorname{PrOH}, 85 \%$ hexane, $\mathrm{T}_{\mathrm{r}}: 8.25 \mathrm{~min}(S), 10.1 \mathrm{~min}(R)$] provided the enantiomeric excess to be $87 \% .^{38}$

5-Chloro-2,3-dioxopentanoic acid tert-butyl ester (22): To a solution of ylide $23(2.58 \mathrm{~g}, 6.85 \mathrm{mmol})$ in benzene $(17.6 \mathrm{~mL})$ at $\sim 4{ }^{\circ} \mathrm{C}$ was added a solution of 3-chloropropionyl chloride ($0.327 \mathrm{~mL}, 3.43 \mathrm{mmol}$) in benzene $(1.7 \mathrm{~mL})$ in a slow, dropwise fashion. Upon complete addition of the acyl chloride, the reaction mixture was warmed to ambient temperature and stirred for 30 minutes. The reaction mixture

[^17]was then diluted with cold ether (25 mL) and stirred vigorously for an additional 5 minutes. Filtered off the precipitate via vacuum filtration and washed the solid with cold ether (2×100 mL). The filtrate was then concentrated in vacuo to yield dione ylide 24 as a yellow-white solid $(1.44 \mathrm{~g}, 94 \%)$ that was used without further purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-$ $7.43(\mathrm{~m}, 15 \mathrm{H}), 3.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$; EI-MS m/z 466 $\left(\mathrm{M}^{+}\right), 431,374,347,277,201$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{ClO}_{3} \mathrm{P}: 466.1465$; found 466.1473.

To a mixture of the dione ylide 24 in THF (34 mL) and water $(17 \mathrm{~mL})$ was added oxone ${ }^{\circledR}$ $(3.19 \mathrm{~g}, 5.19 \mathrm{mmol})$. Stirred the resulting biphasic mixture vigorously for 4 hours, after which the reaction mixture was diluted with water $(30 \mathrm{~mL})$. Separated the layers and extracted the aqueous layer with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to yield a yellow oil. The yellow oil was dissolved in 1:1/hexanes:ethyl acetate $(10 \mathrm{~mL})$ and stirred at ambient temperature for 1 hour. The resulting white precipitate was removed via quick filtration over a plug of silica that was washed with $1: 1 /$ hexanes:ethyl acetate ($2-3$ column volumes). Concentrated the filtrate in vacuo to yield the title compound as a 'wet' solid $(0.603 \mathrm{~g}, 82 \%)$ that was used without any further purification: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 1.52$ (s, 9H).

2,3-Dioxopent-4-enoic acid tert-butyl ester (25): To a solution of trione 22
$(0.603 \mathrm{~g}, 2.53 \mathrm{mmol})$ in THF $(16 \mathrm{~mL})$ was added saturated aqueous NaHCO_{3} $(12 \mathrm{~mL})$. The biphasic mixture was stirred vigorously for 4 hours, after which the reaction mixture was diluted with water $(15 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic extracts were then washed with brine
($1 \times 15 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to yield the title compound as a yellow solid ($0.500 \mathrm{~g}, 98 \%$) that was used without further purification: m.p. $59-62{ }^{\circ} \mathrm{C}$; IR (thin film) $3382,2984,2930,1746,1712,1612,1106,1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{dd}, J=7.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 1.48(\mathrm{~s}$, 9H).
 1-(3-Bromopropyl)-3-hydroxy-1H-pyrrole-2-carboxylic acid tert-butyl ester (21): To a mixture of ene-trinone $25(5.33 \mathrm{~g}, 26.4 \mathrm{mmol})$ and 3bromopropylamine hydrobromide $(5.77 \mathrm{~g}, 26.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(470 \mathrm{~mL})$ at ambient temperature was slowly added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(4.60 \mathrm{~mL}, 26.4 \mathrm{mmol})$. The dark yellow solution became homogenous and was stirred for an additional 30 minutes at ambient temperature. Silica gel (118 g) was then added and the resulting mixture was allowed to stir vigorously overnight. The silica gel was filtered off and washed with a copious amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated in vacuo and purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as a yellow oil ($8.07 \mathrm{~g}, 55 \%$): IR (thin film) 2973, 1642, 1555, 1393, $1367,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\operatorname{app} \mathrm{p}, J=6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,156.2,127.7,106.2,96.2,82.0,47.8$, 34.2, 30.4, 28.7; EI-MS m/z $303\left(\mathrm{M}^{+}\right), 247,229,123 ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{BrNO}_{3}$: 303.0470, found 303.0471.

1-(3-Bromopropyl)-3-triisopropylsilanyloxy-1H-pyrrole (20): To a solution of 3-hydroxy-2-carboxylate pyrrole $21(1.10 \mathrm{~g}, 3.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added trifluoroacetic acid $(11 \mathrm{~mL})$. Stirred the solution vigorously for 6 hours at ambient temperature, after which the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous NaHCO_{3}. Diluted the reaction mixture with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, separated the layers and washed the organic layer with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{x})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1x) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to yield 1,2-dihydro-pyrrolone 26 as an oil that was used without further purification: Crude ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\operatorname{app} \mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$.

The crude 1,2-dihydropyrrolone 26 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(20 \mathrm{~mL})$, followed by slow, dropwise addition of TIPSOTf ($1.17 \mathrm{~mL}, 4.34 \mathrm{mmol})$. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes and then allowed to warm to ambient temperature overnight. Subsequently, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with water and then diluted with ether. The layers were separated and organic layer washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford a crude oil that was purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as an orange oil ($0.860 \mathrm{~g}, 67 \%$ overall yield from 21): IR (thin film) 2943, 2866, 1556, 1346, 1006, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.35(\operatorname{appt} \mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.22($ app t, $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74(\mathrm{dd}, J=2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\operatorname{app} \mathrm{p}$, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.8$,
$117.9,107.3,101.3,47.4,34.1,30.3,17.9,12.4$, EI-MS m/z $359\left(\mathrm{M}^{+}\right), 316,280,252,208,180$, 152; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{BrNOSi}$: 359.1280 , found 359.1286 .

5-Ethyl-8-(3-triisopropylsilanyloxypyrrol-1-yl)octa-3,4-dienoic
acid (27): To a mixture of $\mathrm{Mg}^{0}(0.107 \mathrm{~g}, 4.40 \mathrm{mmol})$ in THF (5.5 mL) was added dibromoethane $(14 \mu \mathrm{~L})$. After gas evolution occurred, to the activated Mg^{0} was added a solution of bromide $20(0.792 \mathrm{~g}, 2.20 \mathrm{mmol})$ in THF (5.5 mL) over 10 mins . The mixture was stirred until all the starting material was consumed, as monitored by TLC. The prepared Grignard reagent was then added to a flask containing a $-78{ }^{\circ} \mathrm{C}$ solution of β-lactone $18(0.273 \mathrm{~g}, 2.20 \mathrm{mmol}), \mathrm{CuCN}(0.020 \mathrm{~g}, 0.220 \mathrm{mmol})$ and $\operatorname{LiBr}(0.044 \mathrm{~g}, 0.510 \mathrm{mmol})$ in THF $(24 \mathrm{~mL})$. Stirred the reaction mixture for 1 hour, after which the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was allowed to warm to ambient temperature, after which the layers were separated and the aqueous layer extracted with ether ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were then washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{X} 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified the resultant oil by silica gel chromatography (6:1/hexanes:ethyl acetate) to yield the title compound as a yellow-orange oil ($0.425 \mathrm{~g}, 50 \%$): Unable to characterize due to product instability.

(E)-4-((R)-1-(Triisopropylsilyloxy)-8-ethyl-5,6,7,8-tetrahydroindolizin-8-yl)but-3-enoic acid (28): To a solution of allenic acid $27(0.177 \mathrm{~g}, 0.440 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.1 \mathrm{~mL})$ was added $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}\left(0.023 \mathrm{~g}, 8.73 \times 10^{-5} \mathrm{~mol}\right)$. The resulting solution was stirred vigorously at ambient temperature for 8 hours. The
reaction mixture was diluted with $1: 1 /$ hexanes:ethyl acetate $(12 \mathrm{~mL})$ then quickly filtered over a plug of silica gel that was washed exhaustively with 1:1/hexanes:ethyl acetate. Concentrated the filtrate in vacuo and purified the oil by silica gel chromatography (4:1/hexanes:ethyl acetate) to yield the title compound as an oil ($0.090 \mathrm{~g}, 50 \%$): Unable to characterize due to product instability.

3-Ethoxy-but-2-enoic acid ethyl ester (31): A solution of ethyl acetoacetate ($25.5 \mathrm{~mL}, 200 \mathrm{mmol}$) and triethyl orthoformate ($33.3 \mathrm{~mL}, 200 \mathrm{mmol}$) was treated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (6 drops from a pipet) and the resulting dark solution stirred at ambient temperature for 12 hours. The reaction mixture was then treated with quinoline (10 drops from a pipet) and via fractional vacuum distillation $\left(50^{\circ} \mathrm{C}, 0.075 \mathrm{mb}\right)$ the title compound collected as a clear oil ($27.2 \mathrm{~g}, 86 \%$) that was used without further purification: IR (thin film) 2982, 1712, 1624, 1275, 1143, $1054 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .2 .24(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,167.5,90.8,63.9,59.1,18.9,14.6,14.4 ;$ EI-MS m/z $158\left(\mathrm{M}^{+}\right), 143,129,113,85 ;$ HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{3}: 158.0943$, found 158.0935.
 $(408 \mathrm{~mL})$ was added benzoyl peroxide $(1.02 \mathrm{~g})$. The resulting mixture was heated to reflux for 3 hours, after which the solids were filtered off and the filtrate dried over MgSO_{4}. Filtered off the solids, concentrated the filtrate in vacuo and collected the title compound, via vacuum distillation $\left(77^{\circ} \mathrm{C}, 0.21 \mathrm{mb}\right)$, as a yellow-tinged oil ($87.4 \mathrm{~g}, 90 \%$) that was used without further purification:

IR (thin film) 2982, 1708, 1624, 1154, 1128; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}$, $2 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 168.4,166.3,93.4,64.6,59.8,26.0,14.4,14.0$; EI-MS $\mathrm{m} / \mathrm{z} 236\left(\mathrm{M}^{+}\right), 208,190,162,84$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrO}_{3}: 236.0048$, found 236.0045.
 1-(3-Chloropropyl)-4-ethoxy-1,5-dihydropyrrol-2-one (30): To a solution of $\mathrm{NaOH}(3.42 \mathrm{~g}, 85.5 \mathrm{mmol})$ in water $(35 \mathrm{~mL})$ at ambient temperature was added 3-chloropropylamine hydrochloride ($11.1 \mathrm{~g}, 85.5 \mathrm{mmol}$). Once the solution was homogenous, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added followed by dropwise addition of allyl bromide $32(4.05 \mathrm{~g}, 17.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The biphasic mixture was stirred vigorously overnight, after which the layers were separated and the aqueous extracted with ether (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The resulting oil was allowed to sit at ambient temperature overnight and upon completion of cyclization, as monitored by TLC, purified by silica gel chromatography (1:1/hexanes:ethyl acetate) to yield the title compound as an orange-red solid ($4.29 \mathrm{~g}, 62 \%$): IR (thin film) $2924,1675,1619,1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\operatorname{app} \mathrm{p}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,172.1,94.4,66.9,51.2$, 42.2, 39.2, 31.5, 14.0; EI-MS m/z $203\left(\mathrm{M}^{+}\right), 168,154,140,111$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ClNO}_{2}$: 203.0713, found 203.0713.
 4-Benzyloxy-1-(3-chloropropyl)-1,5-dihydropyrrol-2-one (33): To a solution of 1,5-dihydropyrrolone $30(0.584 \mathrm{~g}, 2.87 \mathrm{mmol})$ in benzyl alcohol $(1.80 \mathrm{~mL}, 17.2 \mathrm{mmol})$ was added methanesulfonic acid $(20.0 \mu \mathrm{~L}, 0.320$
mmol). The solution was stirred vigorously for 3 hours at $90^{\circ} \mathrm{C}$ under reduced pressure (~ 12 $\mathrm{mmHg})$. Diluted the reaction mixture with $1: 1 /$ hexanes:ethyl acetate $(20 \mathrm{~mL})$ and purified by silica gel chromatography ($1: 1 /$ hexanes:ethyl acetate) to yield the title compound as a solid ($0.454 \mathrm{~g}, 60 \%$): m.p. $62-64^{\circ} \mathrm{C}$; IR (thin film) $2924,2866,1676,1623,1450,1340,1220,970$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$, $3.54(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\operatorname{app} \mathrm{p}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,171.8,134.7,128.8,128.0,95.6,73.1,51.3,42.2,39.3,31.6$; EI-MS m/z $265\left(\mathrm{M}^{+}\right), 230,202,91$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}_{2}: 265.0870$, found 265.0875.
 3-Benzyloxy-1-(3-chloropropyl)-1H-pyrrole (29): To a solution of benzyloxy-1,5-dihydropyrrolone $33(1.04 \mathrm{~g}, 5.10 \mathrm{mmol})$ in THF $(90 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(25.5 \mathrm{ml}, 25.5 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) over 5 minutes. The yellow-tinged solution was stirred vigorously for 18 hours at ambient temperature before the solution was poured into cold, aqueous $1 \mathrm{M} \mathrm{NaOH}(250 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with ether ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and the mixture stirred vigorously for 1 hour. Filtered the resulting mixture over a plug of celite, concentrated the filtrate in vacuo and purified the resulting oil by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as a light orange-brown oil ($0.475 \mathrm{~g}, 50 \%$): IR (thin film) 2931, 2868, 1717, 1557, 1499, 1330, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{app} \mathrm{t}, J=2.7$
$\mathrm{Hz}, 1 \mathrm{H}), 6.25(\mathrm{appt}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=2.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.42(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\operatorname{app} \mathrm{p}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 147.9, 137.7, 128.4, 127.8, 127.6, 118.8, 103.7, 97.8, 72.8, 46.5, 41.6, 33.9; EI-MS m/z 249 $\left(\mathrm{M}^{+}\right), 186,158,91$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNO}: 249.0920$, found 249.0918 .

8-(3-Benzyloxypyrrol-1-yl)-5-ethylocta-3,4-dienoic acid (34): To a

 mixture of flame-dried $\mathrm{Mg}^{0}(0.456 \mathrm{~g}, 18.8 \mathrm{mmol})$ in THF $(3.4 \mathrm{~mL})$ was added dibromoethane $(0.162 \mathrm{~mL}, 1.88 \mathrm{mmol})$. While the Mg^{0} was being activated, a solution of chloride $29(0.938 \mathrm{~g}, 3.76 \mathrm{mmol})$ in THF $(8.2 \mathrm{~mL})$ was slowly added to the reaction flask and the resulting mixture was allowed to stir at $30^{\circ} \mathrm{C}$ overnight. The prepared Grignard reagent was then slowly added to a solution of $\mathrm{LiBr}(0.075 \mathrm{~g}, 0.864 \mathrm{mmol}), \mathrm{CuCN}$ ($0.034 \mathrm{~g}, 0.376 \mathrm{mmol})$ and β-lactone $18(0.396 \mathrm{~g}, 3.19 \mathrm{mmol})$ in THF $(26 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 hour at $-78^{\circ} \mathrm{C}$, and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting mixture was warmed to ambient temperature, after which the layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{x})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified by silica gel chromatography (6:1/hexanes:ethyl acetate) to yield the title compound as an orange oil $(0.680,65 \%):[\alpha]_{\mathrm{D}}=+4.0\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3088 (br), 2960, 2929, 1705, 1552, $1335 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.38(\mathrm{app}$ $\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\operatorname{app} \mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=2.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 4.88$ $(\mathrm{s}, 2 \mathrm{H}), 3.74(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.78(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.7,177.9,147.5,137.8,128.3,127.6,118.4,107.0,103.5$,97.1, 85.9, 72.6, 49.3, 35.2, 29.0, 25.7, 12.1; EI-MS m/z $339\left(\mathrm{M}^{+}\right), 310,280,248,202,188$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$: 339.1834, found 339.1827.

(E)-4-((R)-1-(Benzyloxy)-8-ethyl-5,6,7,8-tetrahydroindolizin-8-yl)but-3-eno-

 ic acid (35): To a solution of allenic acid $34(0.086 \mathrm{~g}, 0.250 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.5 \mathrm{~mL})$ was added $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}(0.020 \mathrm{~g}, 76.2 \mu \mathrm{~mol})$. The resulting solution was vigorously stirred for 6 hours at ambient temperature. Diluted the reaction mixture with $1: 1 /$ hexanes:ethyl acetate $(2.5 \mathrm{~mL})$ then quickly filtered the mixture over a plug of silica gel that was washed exhaustively with EtOAc. The filtrate was concentrated in vacuo and purified by silica gel chromatography (4:1/hexanes:ethyl acetate) to yield the title compound as a deep red oil $(0.050 \mathrm{~g}, 58 \%):[\alpha]_{\mathrm{D}}=+12.6\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3023(\mathrm{br}), 2931,2868$, 1702, 1562, 1451, $1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dt}, J=15.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (s, 2H), 3.87 (ddd, $J=11.4,5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{td}, J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}, J=7.1$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-1.72(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1$, $142.4,141.1,138.6,128.2,127.3,127.2,118.7,117.0,115.1,96.5,72.9,46.0,41.9,37.7,31.2$, 30.4, 20.3, 8.5; EI-MS m/z $339\left(\mathrm{M}^{+}\right), 310,248,204,148 ;$ HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}: 339.1834$, found 339.1833. Separation of the enantiomers by chiral HPLC [Daicel Chiracel ${ }^{\text {TM }}$ OD-H column, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$., $10 \%{ }^{i} \operatorname{PrOH}, 90 \%$ hexane, $\left.\mathrm{T}_{\mathrm{r}}: 16.88 \mathrm{~min}(R), 19.30 \mathrm{~min}(S)\right]$ provided the enantiomeric excess to be 72%.

8-(3-Benzyloxypyrrol-1-yl)-5-ethylocta-3,4-dienoic acid methyl ester (36):

To a solution of allenic acid $34(0.597 \mathrm{~g}, 1.76 \mathrm{mmol})$ in benzene $(12.6 \mathrm{~mL})$ and $\mathrm{MeOH}(3.40 \mathrm{~mL})$ at ambient temperature was added $\mathrm{TMSCHN}_{2}(1.50$ $\mathrm{mL}, 3.00 \mathrm{mmol}, 2.0 \mathrm{M}$ in hexanes) in a dropwise fashion. The resulting mixture was stirred for 30 minutes, after which the mixture was concentrated in vacuo and purified by silica gel chromatography (15:1/hexanes:ethyl acetate) to yield the title compound as a orange oil $(0.545 \mathrm{~g}, 88 \%):[\alpha]_{\mathrm{D}}=+8.1\left(c 1.3, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2962, 2931, 1738, 1558, $1505,1454,1435,1333,1163 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{app}$ $\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\operatorname{app~t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 4.90$ (s, 2H), $3.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 6 \mathrm{H}), 0.99$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.8,172.2,147.7,138.0,128.4,127.7$, $127.6,118.5,106.9,103.8,97.2,86.4,72.8,51.7,49.5,35.3,29.1,25.8,12.2 ;$ EI-MS m/z 353 $\left(\mathrm{M}^{+}\right), 322,294,263,230,202,188$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}: 353.1991$, found 353.2003

(E)-Methyl-4-((R)-1-(benzyloxy)-8-ethyl-5,6,7,8-tetrahydroindolizin-8-yl)but -3-enoate (37): To a solution of allenic methyl ester $36(0.408 \mathrm{~g}, 1.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.5 \mathrm{~mL})$ was added $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{MeCN})_{2}(0.089 \mathrm{~g}, 0.350 \mathrm{mmol})$. The resulting solution was stirred vigorously at ambient temperature for 6 hours. The reaction mixture was diluted with 1:1/hexanes:ethyl acetate (12 mL) then quickly filtered over a plug of silica gel that was washed exhaustively with EtOAc. Concentrated the filtrate in vacuo and purified the oil by silica gel chromatography (12:1/hexanes:ethyl acetate) to yield the title compound as an orange oil $(0.240 \mathrm{~g}, 59 \%):[\alpha]_{\mathrm{D}}=+15.4\left(c 1.9, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2948, 2874, 1738, 1563, 1453, 1435, 1342, 1205, $1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.25$
$(\mathrm{m}, 5 \mathrm{H}), 6.30(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=15.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (dt, $J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{ddd}, J=11.5,4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=11.6$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-1.71(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.4,142.5,140.6,138.8,128.2,127.3,127.2,119.4,117.1$, $115.1,96.6,72.9,51.5,46.0,41.9,37.8,31.3,30.5,20.4,8.6$; EI-MS m/z $353\left(\mathrm{M}^{+}\right), 324,294$, 262, 234; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}: 353.1991$, found 353.1974. Separation of the enantiomers by chiral HPLC [Daicel Chiracel ${ }^{\text {TM }}$ OD-H column, flow rate $1.00 \mathrm{~mL} / \mathrm{min}$., 5% ${ }^{i} \operatorname{PrOH}, 95 \%$ hexane, $\left.\mathrm{T}_{\mathrm{r}}: 6.29 \mathrm{~min}(R), 8.18 \mathrm{~min}(S)\right]$ provided the enantiomeric excess to be 72%.

(E)-4-((R)-1-(Benzyloxy)-8-ethyl-5,6,7,8-tetrahydroindolizin-8-yl)but-3-en-1-

ol (39): To a solution of methyl ester $37(0.047 \mathrm{~g}, 0.133 \mathrm{mmol})$ in THF $(1.7 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was added LAH $(0.027 \mathrm{~g}, 0.710 \mathrm{mmol})$. The reaction mixture was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$ before being diluted with ether $(2.0 \mathrm{~mL})$ then quenched by sequentially adding $\mathrm{H}_{2} \mathrm{O}(40 \mu \mathrm{~L}), 5.0 \mathrm{~N}$ aqueous $\mathrm{NaOH}(40 \mu \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(110 \mu \mathrm{~L})$. The resulting mixture was dried over MgSO_{4}, filtered over celite and concentrated in vacuo to afford a crude oil that was purified by silica gel chromatography ($9: 1 /$ hexanes:ethyl acetate) to yield the title compound as a clear oil $(0.039 \mathrm{~g}, 90 \%):[\alpha]_{\mathrm{D}}=+9.7\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3394 (br), 2933, 2873, 1562, 1453, 1376, 1341, 1205, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.23 (m, 5H), $6.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{dt}, J=15.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{dt}, J=11.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=11.7$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\operatorname{app~q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.65$ (m, 4H), $0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,140.2,138.5,128.3$,
$127.5,127.3,123.6,117.4,115.0,96.4,72.9,61.7,46.1,41.8,35.9,31.4,31.0,29.7,20.4,8.7$; EI-MS m/z $325\left(\mathrm{M}^{\dagger}\right), 296,234,160$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$: 325.2042, found 325.2044.

(R)-1-(Benzyloxy)-8-((E)-4-triisopropylsilanyloxybut-1-enyl)-8-ethyl-5,6,

7,8-tetrahydroindolizine (38): To a solution of homoallylic alcohol 39 $(0.230 \mathrm{~g}, 0.707 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.8 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was slowly added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(0.160 \mathrm{~mL}, 0.919 \mathrm{mmol})$ followed by TIPSOTf $(0.230 \mathrm{~mL}, 0.848$ $\mathrm{mmol})$. The resulting solution was stirred for 30 minutes, after which the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned with ether and the organic layer washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x})$. Subsequently, the aqueous layer was extracted with ether (1x) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as a clear, colorless oil $(0.279 \mathrm{~g}, 82 \%):[\alpha]_{\mathrm{D}}=+14.2\left(\right.$ c $\left.2.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) $2941,2864,1564,1461,1341,1097,1071 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-$ $7.21(\mathrm{~m}, 5 \mathrm{H}), 6.28(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{br} \mathrm{d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.15$ $(\mathrm{dt}, J=15,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{ddd}, J=11.0,4.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{td}, J=11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\operatorname{app~q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{dq}, J=11.0 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-$ $1.85(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{br} \mathrm{d}, J=2.5 \mathrm{~Hz}, 21 \mathrm{H}), 0.81(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 142.3,138.8,138.3,128.2,127.2,127.1,124.1,117.8,114.8,96.5,72.9$, 63.6, 46.1, 41.9, 36.5, 31.5, 30.7, 20.4, 18.0, 12.0, 8.7; EI-MS m/z $481\left(\mathrm{M}^{+}\right), 452,438,390,362$, $360,318,254,188$; HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{2} \mathrm{Si}$: 481.3376, found 481.3376.

4-Ethoxy-1-phenethyl-1,5-dihydropyrrol-2-one (42): To a solution of NaOH
 $(1.05 \mathrm{~g}, 26.2 \mathrm{mmol})$ in water $(21 \mathrm{~mL})$ at ambient temperature was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(63 \mathrm{~mL})$ followed by phenethylamine $(13.3 \mathrm{~mL}, 106 \mathrm{mmol})$. To the resulting mixture was added a solution of allyl bromide $32(5.00 \mathrm{~g}, 21.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(16 \mathrm{~mL})$ in a dropwise manner. The reaction mixture was stirred vigorously at ambient temperature overnight. Subsequently, the layers of the mixture were separated and the aqueous layer extracted with ether ($2 \times 50 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo and the resulting oil was allowed to stand at ambient temperature 8-10 hours. Upon completion of cyclization, as monitored by TLC, the volatiles were removed in vacuo and the oil purified by silica gel chromatography (3:1/ethyl acetate:hexanes) to yield the title compound as an off-white solid ($3.12 \mathrm{~g}, 64 \%$): m.p. $56-58{ }^{\circ} \mathrm{C}$; IR (KBr plate) 3106, 2938, 1665, 1620, 1378, 1226, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.29-7.16 (m, 5H), $4.97(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.34,172.30$, $139.1,128.9,128.8,126.4,94.5,66.8,51.2,43.0,35.1,14.1$; EI-MS m/z $231\left(\mathrm{M}^{+}\right), 140,112$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$: 231.1259, found 231.1268.

4-Benzyloxy-1-phenethyl-1,5-dihydropyrrol-2-one (43): To a solution of N -phenethyl-1,5-dihydropyrrolone $42(6.24 \mathrm{~g}, 27.0 \mathrm{mmol})$ in benzyl alcohol (20.0 $\mathrm{mL}, 192 \mathrm{mmol})$ was added methanesulfonic acid $(0.230 \mathrm{~mL}, 3.56 \mathrm{mmol})$. The resulting mixture was heated to $90^{\circ} \mathrm{C}$ and stirred vigorously for 3 hours, under reduced pressure (13-22 mmHg). Diluted the reaction mixture with $1: 1 /$ hexanes:ethyl acetate
(20 mL) and purified by silica gel chromatography (1:1/hexanes:ethyl acetate) to yield the title compound as an off-white solid ($6.37 \mathrm{~g}, 80 \%$): m.p. $88-89^{\circ} \mathrm{C}$ IR (thin film) 2931, 2869, 1671, 1623, 1454, 1348, $1219 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.14(\mathrm{~m}, 10 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H})$, $4.85(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.1,171.6,138.9,134.7,128.6,128.5,127.8,126.3,95.4,72.8,51.1,42.9,35.0$; EIMS m/z $293\left(\mathrm{M}^{+}\right), 202,91 ;$ HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{2}:$ 293.1416, found 293.1406.

3-Benzyloxy-1-phenethyl-1H-pyrrole (41): To a solution of $1,5-1$
dihydropyrrolone $43(3.19 \mathrm{~g}, 12.4 \mathrm{mmol})$ in $\mathrm{THF}(248 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added
${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(49.6 \mathrm{ml}, 49.6 \mathrm{mmol}, 1 \mathrm{M}$ in hexanes) over 5 minutes. The yellow solution was stirred vigorously at ambient temperature for 18 hours. Subsequently, the solution was poured into cold, aqueous $1 \mathrm{M} \mathrm{NaOH}(478 \mathrm{~mL})$ and extracted with ether ($3 \times 225 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and the resulting mixture stirred vigorously for 1 hour. The mixture was filtered over a plug of celite and the filtrate concentrated in vacuo. Purified the residual oil by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as an off-white solid (1.24g, 36\%): m.p. $64-66^{\circ} \mathrm{C}$; IR (thin film) 2928, 1548, 1508, 1451, $1019 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.10(\mathrm{~m}, 6 \mathrm{H})$, 6.96-6.94 (m, 2H), $6.20(\operatorname{appt}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\operatorname{app~t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=2.3$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 147.4,138.3,137.6,128.4,128.2,128.1,127.3,127.2,126.2,118.1,103.3,97.1,72.4$, 51.2, 37.7; EI-MS m/z $277\left(\mathrm{M}^{+}\right), 186$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}: 277.1467$, found 277.1464.

General procedure for removal of the benzyl group on 41 via transfer hydrogenation: To a solution of model benzyloxy pyrrole $41(0.070 \mathrm{~g}, 0.253 \mathrm{mmol})$ in HOAc $(2.5 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(0.070 \mathrm{~g}, 10 \%$ act. on carbon) followed by 1,4 -cyclohexadiene $(0.240 \mathrm{~mL}, 2.53 \mathrm{mmol})$. The reaction mixture was stirred vigorously at ambient temperature until complete, as monitored by TLC. The mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered over a plug of celite, washing with more $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Cooled the collected organic layer to $0{ }^{\circ} \mathrm{C}$ and slowly quenched with saturated aqueous NaHCO_{3}. The layers were separated and the organic layer washed once more with saturated aqueous NaHCO_{3}. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo.

General procedure for removal of the benzyl group on 41 via Brønsted acid and Brønsted acid-Lewis base conditions: To a solution of model benzyloxy pyrrole $41(0.070 \mathrm{~g}, 0.253$ $\mathrm{mmol})$ in DMS $(0.77 \mathrm{~mL})$ at ambient temperature was added TFA $(1.53 \mathrm{~mL})$. The reaction mixture was stirred vigorously at ambient temperature until complete, as monitored by TLC. The resulting solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$ before it was slowly quenched with saturated aqueous NaHCO_{3}. The layers were separated and the organic layer washed once more with saturated aqueous NaHCO_{3}. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

3-Hydroxy-1-phenethyl-1H-pyrrole-2-carboxylic acid tert-butyl ester (49):
To a solution of ene-trinone $25(4.97 \mathrm{~g}, 24.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(391 \mathrm{~mL})$ at ambient temperature was slowly added phenethylamine ($3.08 \mathrm{~mL}, 24.6 \mathrm{mmol}$).

The dark yellow solution was stirred for 30 minutes, after which silica gel $(111 \mathrm{~g})$ was added and the resulting mixture stirred vigorously overnight. The silica gel was filtered off and washed with a copious amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated in vacuo and the resulting oil purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as a yellow oil ($2.7 \mathrm{~g}, 38 \%$): IR (thin film) $2975,1639,1553,1393,1154,1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,156.0,138.3,128.7,128.4,127.2,126.5,105.9,95.7,81.6$, 51.1, 38.2, 28.6; EI-MS $m / z 287\left(\mathrm{M}^{+}\right), 231,213,186,122,109$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$: 287.1521, found 287.1511.

Trifluoromethanesulfonic acid 1-phenethyl-1H-pyrrol-3-yl ester (48): To a The reaction mixture was stirred vigorously for 6 hours, after which it was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous NaHCO_{3}. The resulting mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the layers separated and the organic layer washed with saturated aqueous NaHCO_{3} (1 x). The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo to yield 1,2-dihydropyrrolone 50 as an oil that was used without further purification: Crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.04$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.9(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.

The crude 1,2-dihydropyrrolone 50 was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and the solution cooled to $0{ }^{\circ} \mathrm{C}$. To the reaction mixture was slowly added ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(12 \mathrm{~mL})$, followed by slow
addition of $\mathrm{Tf}_{2} \mathrm{O}(0.770 \mathrm{~mL}, 4.60 \mathrm{mmol})$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 minutes then allowed to warm to ambient temperature overnight. The resulting brown solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with water. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic extracts were then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to produce an oil that was purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to yield the title compound as an orange-red oil (1.70 g, 70\% overall yield from 49): IR (thin film) 3141, 3030, 2938, 1420, 1332, 1242, 1210, 1138, $979 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.97(\mathrm{~m}$, $2 \mathrm{H}), 6.50(\operatorname{appt}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\operatorname{app} \mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=2.9,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.0,135.2$, $129.0,128.9,127.2,119.4,119.2\left(\mathrm{q}, \mathrm{J}=319 \mathrm{~Hz},-\mathrm{CF}_{3}\right), 111.5,101.4,52.5,38.1$; EI-MS m/z 319 $\left(\mathrm{M}^{+}\right), 186,158,115,130,105$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: 319.0490$, found 319.0475 .

1-Phenethyl-3-phenyl-1H-pyrrole (51): To a solution of triflate 48 ($0.230 \mathrm{~g}, 0.720$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.016 \mathrm{~g}, 0.070 \mathrm{mmol})$ and triphenylphosphine $(0.038 \mathrm{~g}, 0.144$ $\mathrm{mmol})$ in DMF (7.2 mL) was added phenyltrimethoxysilane ($0.269 \mathrm{~mL}, 1.44 \mathrm{mmol}$) followed by TBAF ($1.45 \mathrm{~mL}, 1.44 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). The mixture was stirred at ambient temperature for 5 minutes, then degassed via one freeze-pump-thaw cycle. The reaction was then heated to $90^{\circ} \mathrm{C}$ and stirred vigorously for 24 hours. The resulting black mixture was allowed to cool to ambient temperature before being quenched with water (7.2 mL) and diluted with ether $(10 \mathrm{~mL})$. The layers were separated and the ethereal layer was washed with water ($7 \times 15 \mathrm{~mL}$). The aqueous layer was then extracted with ether $(1 \times 20 \mathrm{~mL})$ and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified by
silica gel chromatography ($40: 1 /$ hexanes:ethyl acetate) to yield the title compound as a off-white solid ($0.030 \mathrm{~g}, 17 \%$): m.p. 67-70 ${ }^{\circ} \mathrm{C}$; IR (thin film) 3027, 2927, 1554, 1497, 1453; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{app} \mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\operatorname{appt}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=2.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.3,136.0,128.7,128.6,128.5,126.7$, 125.2, 125.0, 124.8, 121.5, 117.3, 106.2, 51.4, 38.3; EI-MS m/z $247\left(\mathrm{M}^{+}\right), 156,143$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}: 247.1361$, found 247.1361.

[(2-Dimethylamino)phenyl]trimethoxysilane (52): To a solution of N, N dimethylaniline ($5.23 \mathrm{~mL}, 41.3 \mathrm{mmol}$), and TMEDA ($6.22 \mathrm{~mL}, 41.3 \mathrm{mmol}$) in hexanes (26 mL) at $40^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(26.0 \mathrm{~mL}, 41.3 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes). Stirred the reaction mixture for 6 hours, after which the yellow heterogeneous mixture was added to a solution of tetramethyl orthosilicate $(5.33 \mathrm{~mL}, 36.1 \mathrm{mmol})$ in hexanes $(26 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at ambient temperature for 14 hours and subsequently filtered, washing the removed solids with pentanes. The filtrate was concentrated in vacuo to yield a crude yellow oil that was purified via bulb-to-bulb distillation (pot temp. $40^{\circ} \mathrm{C} @ 0.075 \mathrm{mb}$ first to remove left over tetramethyl orthosilicate, then $60^{\circ} \mathrm{C} @ 0.075 \mathrm{mb}$ to collect desire product) to yield the title compound as a pale yellow oil ($4.70 \mathrm{~g}, 47 \%$): ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ 161.6, 138.0, 132.0, 128.8, 124.3, 120.4, 50.6, 46.4; EI-MS m/z $241\left(\mathrm{M}^{+}\right), 226,210,195,120 ;$ HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Si}$: 241.1134, found 241.1136.

(2-Trimethylsilanylphenyl)carbamic acid tert-butyl ester (53): To a solution of N-Boc aniline ($1.00 \mathrm{~g}, 5.17 \mathrm{mmol}$) in THF $(21 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was slowly
added ${ }^{t} \mathrm{BuLi}\left(7.50 \mathrm{~mL}, 12.5 \mathrm{mmol}, 1.7 \mathrm{M}\right.$ in pentanes). The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes and then warmed to $-20^{\circ} \mathrm{C}$ for 2 hours. To the reaction mixture was added TMSCl $(1.64 \mathrm{~mL}, 12.9 \mathrm{mmol})$ in a slow, dropwise manner and then warmed the reaction mixture to ambient temperature. Stirred the mixture at ambient temperature for 24 hours, after which diluted the reaction with water, separated the layers and extracted the aqueous layer with EtOAc (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified the resulting oil by silica gel chromatography (30:1/hexanes:ethyl acetate) to yield the title compound as a off-white solid $(0.444 \mathrm{~g}, 32 \%):$ m.p. $58-59^{\circ} \mathrm{C}$; IR (thin film) 3252 , 2976, 1695, 1513, 1365, 1248, $1175 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{appt} \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}), 0.35(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.5,142.5,134.5,131.0,130.2,124.1,123.0,80.2,28.4,-0.47$; EI-MS m/z $265\left(\mathrm{M}^{+}\right), 209,194,149,134,119$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}: 265.1498$, found 265.1490.

2.0 EFFICIENT FORMATION OF POLYPROPIONATE UNITS VIA THE CINCHONA ALKALOID-CATALYZED AAC REACTION

2.1 BACKGROUND

Propionate and polypropionate subunits are common structural motifs found in many biologically active natural products such as antibiotics and antitumor agents (Figure 13). ${ }^{39}$ While the synthesis of polypropionate units has drawn much research interest, the formation of different arrays of these subunits still poses a significant challenge for the synthetic chemist. Biochemically, the production of polypropionate units is accomplished under the influence of two types of enzymatic catalysts, aldolases and antibodies (Figure 14). ${ }^{40}$

Figure 13: Erythromycin (55) and (-)-dictyostatin (56)
${ }^{39}$ (a) Defosseux, M.; Blanchard, N.; Meyer, C.; Cossy, J. Tetrahedron 2005, 61, 7632-7653. (b) Mochirian, P.; Cardinal-David, B.; Guérin, B.; Prévost, M.; Guidon, Y. Tetrahedron Lett. 2002, 43, 7067-7071.
${ }^{40}$ (a) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 7585-7591. (b) Machajewski, T. D.; Wong, C.-H. Angew. Chem. Int. Ed. 2000, 39, 1352-1375.

Type II aldolase

Antibody catalysis

Figure 14: Formation of propionate units via enzymatic catalysis

The most heavily studied and classical synthetic method for the formation of these subunits is undoubtedly the aldol reaction. ${ }^{41}$ The aldol addition reaction is recognized as a fundamental tool for the formation of C-C bonds in synthetic organic chemistry. Due to the widespread use of this transformation in organic synthesis, there has been extensive exploration into performing it asymmetrically. These asymmetric variants can be categorized into two major subclasses: those that use a stoichiometric amount of chiral modifier and those that are catalytic.

Stoichiometric variants of the asymmetric aldol reaction consist of examples where asymmetric induction occurs via a chiral auxiliary that is incorporated onto an achiral substrate donor (Scheme 13). While additional steps in a synthetic sequence are needed for the installation and removal of the chiral auxiliary, this drawback is outweighed by the benefits gained from their use. First, the chiral auxiliaries utilized in the aldol addition reaction are normally prepared in a straightforward fashion from commercially available material. Second, these moieties often facilitate the isolation-separation-purification processes of the incipient aldol adducts. Lastly, the high diastereoselective reliability of these auxiliary-based aldol reactions makes this transformation very practical for both academic and industrial laboratories.

[^18]
Scheme 13

Evans' Oxazolidinone

Crimmins' Modification

Despite the benefits gained by using chiral auxiliaries, they ultimately suffer from the fact that they are used in a stoichiometric amount. A more economical and elegant way to carry out these transformations is to introduce diastereoselectivity by employing a catalytic amount of chiral inductor. ${ }^{40 \mathrm{~b}, 42}$ This goal has been achieved by introducing asymmetric induction using a few different approaches. In 1996, Mukaiyama and coworkers succeeded in performing the first catalytic, asymmetric aldol reaction by utilizing substoichiometric amounts of a chiral tin(II) complex as a Lewis acid to activate the aldehyde acceptor (Scheme 14). Since this pioneering discovery, a steady improvement of chiral Lewis acids to perform this asymmetric transformation has been observed.

Scheme 14

[^19]

Another successful attempt at performing a catalytic, asymmetric aldol addition reaction occurred by mediation with a chiral Lewis base where the aldol donor is activated. This conceptually different approach was accomplished in 2000 by Denmark and coworkers (Scheme 15). In this reaction, trichlorosilyl enolates are used as the aldol donors and are activated by a catalytic amount of chiral phosphoramide Lewis base promoter. The afforded aldol adducts were obtained in good yield with a high degree of enantioselectivity (up to 97% ee).

Scheme 15

anti:syn>49:1 up to 97% ee

An innovative variant to the "standard" aldol methodologies which has gained an increasing amount of attention in recent years is the use of organocatalysts to perform asymmetric aldol reactions. An enticing attribute of these organocatalytic reactions is the alleviation of having to pregenerate enolates or enolate equivalents. Seminal research in this area, performed by List, Barbas III and coworkers, has shown that the simple amino acid l-proline promotes a
diastereoselective aldol addition reaction between hydroxyacetone and an aldehyde. ${ }^{43}$ Subsequent studies conducted by Macmillan and coworkers further demonstrated the utility of Lproline by successfully cross-coupling two different aldehydes with one another in an enantioand diastereoselective fashion (Scheme 16). ${ }^{44}$ To date, a large variety of proline variants have been synthesized and screened for catalytic activity.

Scheme 16

In 2004, the Nelson group developed an alternative method for the production of propionate units by employing a substoichiometric amount of chiral cinchona alkaloid in the AAC reaction (Scheme 17). ${ }^{45}$ In this $2^{\text {nd }}$ generation AAC reaction, propionyl chloride undergoes a dehydrohalogenation reaction in the presence of Hünig's base to generate methyl ketene in situ. Methyl ketene is then intercepted by a catalytic amount of either TMS-quinine or the pseudoenantiomeric TMS-quinidine to produce exclusively a chiral (Z)-enolate. Subsequently, this chiral nucleophile reacts with an aldehyde via Zimmerman-Traxler chair transition state \mathbf{C} to yield a syn-disubstituted β-lactone product in good yield and in essentially enantio- and diastereomerically pure form.

[^20]
Scheme 17

Due to the highly efficient nature of this transformation, the Nelson group became intrigued by the further potential that this Cinchona alkaloid-catalyzed AAC possessed. More specifically, interest in the effect double diastereoselection would have on the AAC reaction of chirallysubstituted aldehydes was piqued (Figure 15). If the cinchona alkaloid-catalyzed AAC reaction is amenable to these more elaborate aldehydes, it would afford a new and efficient method for the formation of polypropionate units in an iterative fashion.

Figure 15: Formation of polypropionate units via the alkaloid-catalyzed AAC

2.2 RESULTS AND DISCUSSION

In order to determine the potential of the Cinchona alkaloid-catalyzed AAC reaction to form polypropionate units, a variety of model aldehydes were synthesized and tested. These aldehydes varied in stereo- and regiochemical content to observe not only the reactivity of these aldehydes in the AAC reaction but also the effect different substitution patterns would have on the diastereoselectivity of the ensuing cyclocondensation. All the model aldehydes were synthesized using similar, straightforward reaction sequences which could be scaled up with no diminishing effects.

2.2.1 Synthesis and reactivity of model aldehyde 57

The initial studies to determine the potential of the cinchona alkaloid-catalyzed AAC reaction to form polypropionate subunits were made using model α, β-disubstituted syn-aldehyde 57 (Scheme 18). ${ }^{46}$ The synthesis of aldehyde 57 began with commercially available hydrocinnamaldehyde which was subjected to the original Cinchona alkaloid-catalyzed AAC reaction to produce disubstituted β-lactone 58 in 84% yield and in essentially enantio- and diastereomerically pure form. Opening of β-lactone 58 with $(\mathrm{MeO}) \mathrm{NHMe} \cdot \mathrm{HCl}$ in the presence of $\mathrm{Me}_{2} \mathrm{AlCl}$ afforded a 95% yield of β-hydroxy amide 59 . Protection of the now unmasked hydroxy group on amide 59 with TMSCl produced silyl ether 60 in 97% yield. Subsequent reduction of the Weinreb amide moiety on silyl ether $\mathbf{6 0}$ with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded a 90% yield of the desired model aldehyde 57.

[^21]
Scheme 18

With the desired model substrate at hand, syn-aldehyde 57 was subjected to the original Cinchona alkaloid-catalyzed AAC reaction conditions previously reported by the Nelson group. ${ }^{45}$ As expected, the added steric components on model aldehyde 57 greatly attenuated the reactivity of the aldehyde in the AAC reaction, with β-lactone $\mathbf{6 1}$ being produced in low yield. ${ }^{46}$ However while the yield of β-lactone $\mathbf{6 1}$ was low, the reaction did prove that the alkaloidcatalyzed AAC reaction had potential to produce iterative polypropionate units. After optimization of the original AAC reaction conditions, which included changing the solvent ratio (10:1), using an excess of Lewis acid (3.0 equivs.) and elongating the addition time of the solution of PrCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reaction conditions were found that produced the desired syn, anti, syn masked polypropionate unit 61 in 83% yield and as a single diastereomer (Scheme 19).

Scheme 19

After successfully synthesizing the desired syn, anti, syn masked polypropionate 61, model synaldehyde 57 was then subjected to a catalytic amount of the pseudoenantiomeric TMS-Q Q_{N} using the same optimized reaction conditions (Scheme 20). The expected product from this reaction was β-lactone 62 which possesses an all syn stereoarray. Surprisingly, only a very small amount of desired β-lactone 62 was obtained. Instead, the major product obtained was the unexpected anti, anti, syn masked polypropionate unit 63, produced in 68% yield with a d.r. $=$ 19:1/trans:cis. ${ }^{47}$ Despite many efforts, the syn, syn, syn masked polypropionate unit 62 has yet to be synthesized using the Cinchona alkaloid-catalyzed AAC reaction.

Scheme 20

[^22]In order to explain the production of both the expected and unexpected β-lactone products, the transition states which they come from need to be examined. As before with the original cinchona alkaloid-catalyzed AAC reaction, it is felt that this cyclocondensation occurs via a closed Zimmerman-Traxler transition state (Figure 16). However, while invoking this closed transition state two important requirements must be accounted for. First, since an α-chiral aldehyde is being used, the chiral (Z)-enolates that are generated in situ will prefer to approach the recipient aldehydes from an anti-Felkin trajectory to avoid a highly unfavored syn-pentane interaction from occurring. Second, the preferred reactive enantioface of the chiral enolate is going to be solely dependent on the Cinchona alkaloid that is being employed.

61
favored by
TMS-quinidine

63
favored by TMS-quinine

Figure 16: Explanation of beta-lactone products from aldehyde 57

As depicted in transition state D in Figure 16, the expected syn, anti, syn masked polypropionate unit 61 is prepared from reaction of the chiral (Z)-enolate derived from TMS-quinidine with aldehyde 57 via a closed Zimmerman-Traxler chair transition state. However, for the case of
unexpected anti, anti, syn β-lactone product 63, this transition state is not operative. Due to the fact that quinine and quinidine are pseudoenantiomers, their respective chiral enolates will prefer opposite enantiofaces when reacting with aldehyde 57. In light of this, the (Z)-enolate derived from TMS-quinine reacts with syn-aldehyde 57 via boat transition state \mathbf{E} to expose the oppose enantioface of the enolate to the aldehyde while maintaining an anti-Felkin approach. Reaction through this transition state leads to production of the unexpected anti, anti, syn masked polypropionate unit 63.

2.2.2 Synthesis and reactivity of model aldehyde 64

At the same time at which model syn-aldehyde 57 was being tested in the cinchona alkaloidcatalyzed AAC reaction, model anti-aldehydes were also being tested. The synthesis of model aldehydes 64a,b began with monosubstituted β-lactone 65, which was produced in 94% ee from the $\mathrm{Al}(\mathrm{III})$-catalyzed AAC (Scheme 21). Using chemistry developed in the Nelson group, β lactone 65 was α-methylated with MeI and NaHMDS to produce disubstituted trans- β-lactone 66 in 58% yield. 48 Subsequent opening of β-lactone $\mathbf{6 6}$ proceeded in 92% yield to afford β hydroxy Weinreb amide 67. At this point two different silyl ether derivatives, trimethylsilyloxy and triethylsilyloxy amides 68a and 68b, respectively, were made in order to test the effect the protecting group would have on the AAC reaction. Silylation of the β-hydroxy group on amide 67 using standard silylation conditions followed by ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ reduction of the Weinreb amide moiety afforded model aldehydes 64a,b in good overall yield.

[^23]
Scheme 21

64a $P=T M S, 80 \%$ yield
64b $P=T E S, 95 \%$ yield

For the initial studies to determine the viability of aldehydes $\mathbf{6 4 a}, \mathbf{b}$ in the AAC reaction, conditions using a catalytic amount of TMS-quinine were selected (Table 2). The major product obtained for all the aldehydes tested was the expected syn, anti, anti polypropionate unit $\mathbf{6 9}$. More interesting though was the inverse trend between yield and d.r. observed when taking into account the nature of the β-hydroxy protecting group. For protecting groups that allowed the β hydroxy group to participate in chelation (TMS, PMB) ${ }^{49}$ the reactivity of the aldehyde in the AAC was high ($\sim 90 \%$ conversion) with the β-lactone product being produced with good diastereoselectivity (7-9:1/cis:trans). However in the case where a bulkier silyl group was employed (TES), though the reactivity of the aldehyde was decreased (75% conversion) the β lactone product was produced in high diastereoselectivity (15:1/cis:trans).

[^24]Table 2: Protecting group effect on aldehyde 64 in the AAC

${ }^{\text {a }}$ Based on crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{b}}$ Conversions and d.r. measured using HPLC analysis (see Experimental for condition details). Major diastereomer is the depicted cis β-lactone product

Further optimization of the Cinchona alkaloid-catalyzed AAC reaction for anti-aldehydes $\mathbf{6 4 a}, \mathbf{b}$ continued by testing the effect the co-solvent had on the outcome of the reaction (Table 3). For both substrates tested, all the co-solvents employed had a minor effect on the conversion of the starting aldehydes to the β-lactone products, with DMF slightly hindering the reaction. The most drastic effect though was observed in the diastereoselectivity of the β-lactone products obtained. Based on the diastereoselectivities, the use of DMF as a co-solvent was far superior to both THF and $\mathrm{Et}_{2} \mathrm{O}$ for aldehydes $\mathbf{6 4 a}, \mathbf{b}$. When DMF was used, the desired syn, anti, anti polypropionate units 69a,b were both produced exclusively as a single diastereomer.

Table 3: Co-solvent effect on the AAC reaction of aldehydes 64a,b

	$\xrightarrow[\substack{\text { propionyl chloride, } \\ 10: 1 / \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{X}}]{\substack{\text { TMS-quinine }(10 \mathrm{~mol} \%), \\ \text { Lil, }{ }^{\prime} \mathrm{Pr}_{2} \mathrm{NEt}\left(-7 \mathrm{o}^{\circ} \mathrm{C}\right.}}$			
64a,b				
entry	Aldehyde	X	Conversion	d.r.
a	$64 \mathrm{a}^{\text {a }}$	THF	$\sim 86 \%$	5:1
b	$64 \mathrm{a}^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	90\%	9:1
c	$64 \mathrm{a}^{\text {b }}$	DMF	83\%	>50:1
d	$64 \mathrm{~b}^{\text {b }}$	$\mathrm{Et}_{2} \mathrm{O}$	75\%	15:1
e	$64 \mathrm{~b}^{\text {b }}$	DMF	76\%	>50:1

${ }^{\text {a }}$ Based on crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{b}}$ Conversions and d.r. measured using HPLC analysis (see Experimental for condition details). Major diastereomer is the depicted cis β-lactone product

Since the diastereoselectivities achieved by model aldehydes $\mathbf{6 4 a} \mathbf{a} \mathbf{b}$ in the AAC reaction were equivalent up to this point, it was decided to use only one of the substrates for further studies. Due to the extra stability possessed by a TES protecting group compared to a TMS protecting group, as well as to demonstrate that aldehydes with bulkier silyl groups in the β-position can be used in the AAC reaction, anti-aldehyde 64b was chosen for further studies. Since β-lactone 69b was already being produced as a single diastereomer, the only aspect of the reaction left to optimize was to increase the conversion of aldehyde 64b into the β-lactone product. It was felt that the best way to accomplish this would be to increase the temperature at which the reaction was run. With that in mind, a temperature study for the AAC reaction of aldehyde $\mathbf{6 4 b}$ was conducted (Table 4). Gratifyingly, it was found that by performing the reaction at $-50{ }^{\circ} \mathrm{C}$
provided almost complete consumption of aldehyde $\mathbf{6 4 b}$ while still upholding the production of β-lactone 69b as a single diastereomer.

Table 4: Temperature effect on the AAC reaction of aldehyde 64b

Conversions and diastereomeric ratios measured by HPLC analysis (see Experimental for condition details).

The overall optimized reaction for aldehyde 64b in the presence of a catalytic amount of TMSQ_{N} produced the desired β-lactone $\mathbf{6 9 b}$ in 81% yield as a single diastereomer (Scheme 22). In order to unambiguously prove the stereochemistry of the β-lactone product, highly crystalline β lactone 70 was synthesized. Starting with β-lactone 69a, removal of the silyl protecting group with $\mathrm{HF} /$ pyridine provided alcohol 71 in 70% yield. Subsequent formation of the ester with $3,5-$ dinitrobenzoyl chloride in the presence of DMAP yielded β-lactone 70 in 87% yield. After recrystallization via slow vapor diffusion, the X-ray data obtained unambiguously proved that
the matched AAC reaction for aldehydes 64a,b yielded β-lactone products that possessed the expected syn, anti, anti stereoarray (Appendix A).

Scheme 22

70
87\% yield

As with the model syn-aldehyde, when the anti-aldehyde was subjected to the AAC reaction in the presence of the pseudoenantiomeric $T M S-Q_{D}$ a similar type of matched /mismatched phenomenon was observed, however to a more severe extent. While subjection of aldehyde 64b to the AAC reaction with $\mathrm{TMS}-\mathrm{Q}_{\mathrm{N}}$ yielded expected β-lactone product $\mathbf{6 9 b}$, subjection of the aldehyde to the AAC reaction with TMS-Q D $_{\text {D }}$ yielded only a minor amount ($\sim 20 \%$ conversion) of β-lactone product (Scheme 23). Efforts to improve this transformation, which included
screening various Lewis acids, proved fruitless as the reactivity of aldehyde $\mathbf{6 4 b}$ in the $T M S-\mathrm{Q}_{\mathrm{D}}{ }^{-}$ catalyzed AAC reaction remained poor.

Scheme 23

In general, the reactivity of syn-aldehyde 57 seems to be greater than that of anti-aldehyde $\mathbf{6 4 b}$ in the AAC reaction. To explain this, as well as speculate on the greater disparity observed in the matched/mismatched phenomenon with the anti-aldehyde versus the syn-aldehyde, the reactive conformers of the aldehydes needed to be determined. In order to do so, the Reetz-Evans model for the preferred reactive conformers of substituted aldehydes will be invoked. ${ }^{50}$ It is crucial though to keep in mind that since (Z)-enolates are exclusively being formed that an anti-Felkin trajectory of the enolate to the aldehyde is preferred. Therefore, in the case of syn-aldehyde 57 it can be seen that in both transition states \mathbf{F} and \mathbf{G} the syn-aldehyde is able to attain a reactive conformer where both the α - and β-stereocenters are in a desired arrangement (Figure 17). This conformer should be the lowest energy conformer that the aldehyde can attain, thereby facilitating the reaction.

[^25]

Figure 17: Reetz-Evans model of aldehyde 57

Applying the Reetz-Evans model to anti-aldehyde 64b shows that unlike syn-aldehyde 57, in transition states \mathbf{H} and \mathbf{I} the reactive conformer of the anti-aldehyde can only have the α stereocenter in a preferred arrangement (Figure 18). Due to the relative stereochemistry in the starting aldehyde, as well as the strong preference for an anti-Felkin approach, the β-stereocenter on the aldehyde is unable to attain the lowest energy conformation. It is speculated that the higher reactivity of the syn-aldehyde in the AAC reaction is due to the difference in energies between the possible reactive conformers of the syn- and anti-aldehydes. Additionally, it is speculated that in the mismatched AAC reaction with anti-aldehyde 64b (transition state \mathbf{I}) the reaction is more disfavored and sluggish due to the higher energy of the operative transition state of this cyclocondensation (reactive conformer's energy plus the boat transition state).

Figure 18: Reetz-Evans model of aldehyde 64b

2.2.3 Synthesis and reactivity of aldehyde ent-64b

To determine the relationship between the enantiomer of the starting aldehyde and the Cinchona alkaloid employed, the enantiomer of model anti-aldehyde 64b was synthesized and tested in the AAC reaction. The synthetic sequence commenced by α-methylating known β-lactone ent-65 (94% ee) with NaHMDS and MeI to produce trans- β-lactone ent-66 in 50% yield (Scheme 24). ${ }^{48}$ Subsequent ring-opening of β-lactone ent-66 to β-hydroxy Weinreb amide ent-67 with (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ proceeded in 91% yield. Silylation of the β-hydroxy group of amide ent-67 using TESCl in the presence of imidazole afforded a 94% yield of silyl ether ent-

68b. Reduction of the Weinreb amide moiety on silyl ether ent-68b with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded the desired model aldehyde, ent-64b, in 93\% yield.

Scheme 24

As presumed, when aldehyde ent-64b was subjected to the AAC reaction conditions optimized for aldehyde 64b the matched reaction was now with the pseudoenantiomeric TMS-Q ${ }_{\mathrm{D}}$ (Scheme 25). The β-lactone product from that reaction was the expected syn, anti, anti masked polypropionate unit ent-69b which was synthesized in 84% yield and as a single diastereomer. Similar to aldehyde 64b, when aldehyde ent-64b was subjected to the AAC reaction under the catalytic influence of the other cinchona alkaloid, $\mathrm{TMS}_{\mathrm{N}}$, poor conversion to the β-lactone product was observed.

Scheme 25

2.2.4 Synthesis and reactivity of aldehyde 72

Another type of aldehyde that was synthesized and tested in the Cinchona alkaloid-catalyzed AAC reaction was a monosubstituted substrate that possessed a β-silyloxy group and no α substituent. The product from this AAC reaction would be a "skipped" polypropionate unit. Aldehyde 72 was chosen as the model substrate and the synthesis of 72 began by opening known β-lactone $65\left(94 \%\right.$ ee) to β-hydroxy Weinreb amide 73 with (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ in 96% yield (Scheme 26). Silylation of the β-hydroxy group of amide 73 using TESCl and imidazole afforded a 99% yield of silyl ether 74. Reduction of the Weinreb amide moiety on silyl ether 74 with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded the desired model aldehyde 72 in 81% yield.

Scheme 26

Since aldehyde 72 possessed no α-substituent, the observed reactivity was greater than other aldehydes previously tested in the AAC reaction. Therefore, some minor optimization of reaction conditions needed to be carried out. It was found that when β-triethylsilyloxy aldehyde 72 was subjected to the AAC reaction in the presence of a catalytic amount of TMS- Q_{D}, expected β-lactone product 75 was formed as a single diastereomer (Scheme 27). Due to an inability to isolate the desired product in pure form, crude β-lactone 75 was opened to the corresponding bis-hydroxy Weinreb amide using (MeO)NHMe $\cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ to produce amide 76 in 71% yield over the two steps. Alternatively, it was found that the optimal conditions for the AAC reaction of aldehyde 72 catalyzed by TMS-Q N_{N} was in a $2: 1 / \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}$ solvent system where β-lactone 77 was formed in 79% yield as a $10: 1$ inseparable mixture of diastereomers, with the cis-diastereomer predominating.

Scheme 27

72

propionyl chloride

$$
\xrightarrow[\substack{10: 1 / \mathrm{CH}_{2} \mathrm{Cl}_{2}: \\ \text { propionyl chloride }}]{\mathrm{LiClO}_{4}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt},-50^{\circ} \mathrm{C},}
$$

77
79\% yield, 10:1/cis:trans

75
single diastereomer

76
71\% yield
(over 2 steps)

2.2.5 Iterative polypropionate unit formation

To test the further potential of this transformation, tetrasubstituted aldehyde 78 was synthesized to demonstrate the capability of the Cinchona alkaloid-catalyzed AAC reaction to form iterative polypropionate units. If successful, the β-lactone product from the AAC reaction would be a masked polypropionate unit with six contiguous stereocenters. The synthesis of tetrasubstituted aldehyde 78 commenced with opening of β-lactone 61 using (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$, with concomitant cleavage of the TMS ether, to produce bis-hydroxy amide 79 (Scheme 28). Protection of both hydroxy groups with TMSCl , followed by treatment of the crude residue with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded tetrasubstituted aldehyde 78 in 84% overall yield. Gratifyingly, aldehyde 78 was a competent substrate in the AAC reaction, producing the desired syn, anti, syn, anti, syn masked polypropionate unit $\mathbf{8 0}$ as a single diastereomer in 76% yield.

Scheme 28

The Nelson group was successful in developing an efficient alternative method for the production of polypropionate units utilizing a modified version of the asymmetric Cinchona alkaloid-catalyzed AAC reaction. A variety of aldehydes proved amenable to this transformation as flexibility in reaction conditions allowed for optimization of the AAC reaction for a specific aldehyde. ${ }^{51}$ In most cases, the transformation was clean and the β-lactone products were easily isolated or could be used crude in subsequent elaborations. The potential of this cyclocondensation for the synthesis of iterative polypropionate units was further demonstrated by synthesizing a masked polypropionate unit possessing six contiguous stereocenters in diastereomerically pure form.

[^26]
2.3 EXPERIMENTAL

General Information: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 (300 $\mathrm{MHz})$ spectrometers. The chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: $\delta \mathrm{ppm}$). Data is reported as follows: chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, app $=$ apparent, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 spectrometers (75 MHz) with complete proton decoupling. The chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: $\left.\delta \mathrm{ppm}\right)$. Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\mathrm{D}}(c \mathrm{~g} / 100 \mathrm{~mL})$ with units of degree $\cdot \mathrm{g} \cdot \mathrm{cm}^{-}$ ${ }^{3}$. Infrared spectra were taken on a Nicolet Avatar 360 FT-IR spectrometer. Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described on EM silica gel 60 (230-240 mesh). ${ }^{37}$ Automated flash chromatography was performed using an ISCO CombiFlash ${ }^{\circledR}$ Companion ${ }^{\mathrm{TM}}$ using disposable RediSep ${ }^{\mathrm{TM}}$ columns. Analytical gas liquid chromatography (GLC) was performed on a Varian 3900 gas chromatograph with a flame ionization detector and split mode capillary injection system using a VarianCP Wax 52CB column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Hydrogen was used as the carrier gas at the indicated pressures. Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp, 190-600 nm), using a Daicel

Chiralcel ${ }^{\text {TM }}$ OD-H column ($250 \times 4.6 \mathrm{~mm}$) (Daicel Inc.). HPLC grade isopropanol and hexanes were used as the eluting solvents. Melting points were measured using a Mel-Temp apparatus and are uncorrected.

Unless otherwise stated, all experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware using standard inert atmosphere techniques for introducing reagents and solvents. Anhydrous solvents were obtained by passage through successive alumina- and Q5 reactant-packed columns on a solvent purification system. Amines were purified via distillation from CaH_{2}. Propionyl chloride was purified by distillation prior to use. Unless otherwise stated, commercially available reagents were used as received without any further purification. All water used in reactions and in aqueous solutions was deionized.

(3S,4R)-4-((2R,3S)-3-Trimethylsilyloxy-5-phenylpentan-2-yl)-3-methyloxetan-2-one (61): ${ }^{52}$ A flame-dried 25 mL round bottom flask was charged with TMS-quinidine ($45 \mathrm{mg}, 1.14 \times 10^{-4} \mathrm{~mol}$) and LiI $(0.456 \mathrm{~g}, 3.41 \mathrm{mmol})$. To the mixture was added sequentially $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$, DMF $(0.3 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.50 \mathrm{~mL}, 2.84 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 min then cooled to $-50{ }^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $57(0.300 \mathrm{~g}, 1.14$ mmol) followed by dropwise addition of a solution of propionyl chloride ($0.20 \mathrm{~mL}, 2.27 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.76 \mathrm{~mL})$ over 2 h . The resulting heterogeneous reaction mixture was stirred vigorously overnight at $-50^{\circ} \mathrm{C}$, after which the reaction mixture was partitioned between ether $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with ether (2x). The combined organic extracts were then washed with water (2 x) and then brine (1x). The

[^27]combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified via column chromatography (24:1/hexanes:ethyl acetate) to yield $0.300 \mathrm{~g}(83 \%)$ of β-lactone 61: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta$ $4.40 \mathrm{ppm})$ showed the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=+23.4(\mathrm{c}$ 2.2, CHCl_{3}); IR (thin film) 2952, 1827, 1250, 1148, 1118, 1044, $1001 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.40(\mathrm{dd}, J=11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (app p, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=13.5,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=13.5,10.7,6.0 \mathrm{~Hz}$, 1H), 1.91-1.70(m, 3H), $1.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,141.7,128.3$ (2C), 128.1 (2C), 125.7, 75.9, 70.1, 46.3, 37.2, 37.0, 32.5, 8.3, 7.4, 0.3 (3C); EI-MS m/z $320\left(\mathrm{M}^{+}, 305,249,230,207\right.$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}: 320.1808$, found 320.1804.

(2S,3S)-3-Hydroxy- N-methoxy- N,2-dimethyl-5-phenylpentanami-
de (67): To a $0{ }^{\circ} \mathrm{C}$ mixture of N,O-dimethylhydroxylamine hydrochloride ($6.44 \mathrm{~g}, 66.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(122 \mathrm{~mL})$ was added dimethylaluminum chloride ($66.0 \mathrm{~mL}, 66.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, the homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(72 \mathrm{ml})$. To the resulting solution was added a solution of β-lactone $\mathbf{6 6}(6.26 \mathrm{~g}, 33.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The reaction mixture was then warmed to ambient temperature and allowed to stir for 3 h . Cooled the reaction mixture to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer $(100 \mathrm{~mL}, \mathrm{pH}=7)$. The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were then separated and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The
combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (3:1/hexanes:ethyl acetate) to provide 7.59 g (92%) of amide 67: $[\alpha]_{\mathrm{D}}=+13.4$ (c 2.5, CHCl_{3}); IR (thin film) $3434,2937,1636,1495,1454$, $1388 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dt}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.7,141.8,128.0(2 \mathrm{C})$, 127.8 (2C), 125.2, 72.5, 61.0, 39.8, 36.7, 31.7, 31.3, 14.4; EI-MS m/z $251\left(\mathrm{M}^{+}\right) 191,173,145$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}: 251.1521$, found 251.1519.

(2S,3S)-3-Trimethylsilyloxy- N-methoxy- N,2-dimethyl-5-phenylpentanamide (68a): To a solution of β-hydroxyl amide $67(2.60 \mathrm{~g}, 10.4$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(116 \mathrm{~mL})$ at ambient temperature was added 2,6-lutidine ($1.81 \mathrm{~mL}, 15.5$ $\mathrm{mmol})$. The resulting solution was cooled to $-78^{\circ} \mathrm{C}$ and $\operatorname{TMSOTf}(2.25 \mathrm{~mL}, 12.4 \mathrm{mmol})$ was added, after which the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h and then warmed to ambient temperature and stirred for an additional 2 h . The reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic extracts were washed with 1.0 M $\mathrm{NaHSO}_{4}(1 \mathrm{x})$ and brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (9:1/hexanes:ethyl acetate) to provide $3.4 \mathrm{~g}(100 \%)$ of amide 68a: $[\alpha]_{\mathrm{D}}=+33.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2954, 1660, 1454, 1249, 1097, 1071, $1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300MHz, CDCl_{3}): $\delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{ddd}, J=9.7,8.2,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{td}, J=13.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{td}, J=$ 13.4, 5.3 Hz, 1H), 1.91-1.69 (m, 2H), $1.06(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75MHz,
CDCl_{3}): $\delta 176.0,142.3,128.2$ (4C), 125.6, 73.7, 61.2, 41.2, 35.8, 31.7, 31.1, 13.4, 0.3 (3C); ESIMS m/z $346.3(\mathrm{M}+\mathrm{Na})^{+}, 234.2$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 346.1814$, found 346.1803.

(2S,3S)-3-Trimethylsilyloxy-2-methyl-5-phenylpentanal (64a): To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $\mathbf{6 8 a}(1.59 \mathrm{~g}, 4.90 \mathrm{mmol})$ in THF (46 mL) was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(6.90 \mathrm{~mL}, 6.90 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 3 h after which saturated aqueous Rochelle's salts was added (25 mL). The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer was extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide $1.00 \mathrm{~g}(80 \%)$ of aldehyde $64 \mathrm{a}:[\alpha]_{\mathrm{D}}=$ +26.6 (c 2.7, CHCl_{3}); IR (thin film) 2954, 1726, 1454, 1251, $1069 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.00(\mathrm{dt}, J=6.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.63$ $(\mathrm{m}, 2 \mathrm{H}), 2.56(\mathrm{qdd}, J=7.1,5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.16$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.9,141.5,128.1$ (2C), 128.0 (2C), 125.6, 72.7, 51.1, 36.4, 31.2, 10.0, 0.1 (3C); EI-MS m/z $265(\mathrm{M})^{+}, 249,207,190,174 ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: 264.1546$, found 264.1554.

(3R,4S)-4-((2S,3S)-3-Trimethylsilyloxy-5-phenylpentan-2-yl)-3-me-thyloxetan-2-one (69a): A flame-dried 25 mL round bottom flask was charged with TMS-quinine $\left(30 \mathrm{mg}, 7.56 \times 10^{-5} \mathrm{~mol}\right)$ and LiI $(0.304 \mathrm{~g}$,
$2.27 \mathrm{mmol})$. To the mixture of solids was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$, THF $(0.20 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ $(0.330 \mathrm{~mL}, 1.90 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 minutes then cooled to $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $\mathbf{6 4 a}(0.200 \mathrm{~g}, 0.760 \mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride ($0.130 \mathrm{~mL}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}-$ ${ }_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ over 4 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with ether (4 mL) and the white precipitate was filtered off over a plug of silica which was eluted with ether $(80 \mathrm{~mL})$. The filtrate was then concentrated in vacuo and the resulting residue purified via column chromatography (24:1/hexanes:ethyl acetate) to yield $0.190 \mathrm{~g}(78 \%)$ of β-lactone 69a: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR (300 MHz): $82 \%(\delta 4.36 \mathrm{ppm}): 18 \%(\delta 4.19 \mathrm{ppm}) /$ cis β lactone 69a (title compound) : trans β-lactone (not isolated); m.p. $=76-77^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-49.1(\mathrm{c}$ 1.3, CHCl_{3}); IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2954,1826,1250,1118,1087,1066 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.78($ app $\mathrm{p}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=13.6,10.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=13.5,9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (dqd, $J=10.3,6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,141.9,128.0$ (4C), 125.4, 75.8, 72.0, 47.1, 38.5, 33.5, 32.6, 9.5, 8.2, 0.1 (3C) ; EI-MS m/z 320 (M) ${ }^{+}$, 261, 249, 230, 207, 174; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: 320.1808 , found 320.1825 .
 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(44 \mathrm{~mL})$ was added imidazole $(0.463 \mathrm{~g}, 6.80 \mathrm{mmol})$. The homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{TESCl}(1.00 \mathrm{~mL}, 6.00 \mathrm{mmol})$ was added in a dropwise fashion.

After complete addition, the resulting heterogeneous mixture was warmed to ambient temperature and stirred overnight. The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, the layers separated and the organic layer washed with 1.0 M aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{x})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (9:1/hexanes:ethyl acetate) to provide $1.29 \mathrm{~g}(88 \%)$ of amide $\mathbf{6 8 b}:[\alpha]_{\mathrm{D}}=+32.6\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2953, 2911, 2876, 1663, 1456, 1416, 1093, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.09(\mathrm{dt}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=10.0,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.5,142.1,127.9$ (4C), $125.3,72.6,60.8,40.1,35.3,31.4,29.8,12.8,6.5,4.6$; EI-MS m/z $365\left({ }^{(}\right)^{+}, 336,305,249,145$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$: 365.2386, found 365.2394.
 added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ ($11.2 \mathrm{~mL}, 11.2 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78{ }^{\circ} \mathrm{C}$ for 3 h after which saturated aqueous Rochelle's salts was added $(50 \mathrm{~mL})$. The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer was extracted with ether (3x). The combined organics were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide $2.31 \mathrm{~g}(95 \%)$ of aldehyde $64 \mathrm{a}:[\alpha]_{\mathrm{D}}=$ +29.6 (c 2.8, CHCl_{3}); IR (thin film) 2954, 2876, 1725, 1455, 1093, $1007 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.77(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{app} \mathrm{q}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (app t, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{qdd}, J=7.2,5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.2$, 141.7, 128.3 (2C), 128.1 (2C), 125.7, 72.8, 51.2, 36.6, 31.1, 10.0, 6.7 (3C), 5.0 (3C) ; EI-MS m/z $277(\mathrm{M}-\mathrm{Et})^{+}, 249,173,143 ;$ HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}-\mathrm{Et})^{+}: 277.1624$, found 277.1632.

(3R,4S)-4-((2S,3S)-3-Triethylsilyloxy-5-phenylpentan-2-yl)-3-meth-yloxetan-2-one (69b): A flame-dried 25 mL round bottom flask was charged with TMS-quinine ($52 \mathrm{mg}, 0.13 \mathrm{mmol}$) and LiI ($0.522 \mathrm{~g}, 3.90$ $\mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~mL})$, DMF $(0.35 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.570 \mathrm{~mL}, 3.25 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 minutes then cooled to $-50^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $\mathbf{6 4 b}(0.400 \mathrm{~g}, 1.30$ $\mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride $(0.230 \mathrm{~mL}, 2.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.86 \mathrm{~mL})$ over 4 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-50^{\circ} \mathrm{C}$. The resulting mixture was partitioned between ether $(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15$ $\mathrm{mL})$. The layers were separated and the aqueous layer extracted with ether (2x). The combined organic extracts were then washed with water (2x) followed by brine (1x). The combined organic extracts were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified via column chromatography (24:1/hexanes:ethyl acetate) to yield 0.381 g (81%) of β-lactone 69b: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta 4.35$ ppm) and HPLC analysis (column OD-H, eluent 1.5:98.5/i PrOH :hexanes, flow rate $1 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}_{\mathrm{r}}$
7.014 min) showed that the title compound was produced as a single diastereomer; ${ }^{53}[\alpha]_{\mathrm{D}}=$ -44.1 (c 1.6, CHCl_{3}); IR (thin film) $3435,2953,2876,1826,1455,1117,1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.35-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.35(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dt}, J=8.3,3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{qd}, J=7.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=13.4,10.4,6.3 \mathrm{~Hz} \mathrm{1H}), 2.54(\mathrm{ddd}, J=$ $13.3,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dqd}, J=10.2,6.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.0(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75MHz, CDCl_{3}): $\delta 172.1,142.3,128.2$ (4C), 125.7, 76.1, 71.9, 47.4, 38.9, 33.8, 32.9, 9.5, 8.4, 6.8 (3C), 5.0 (3C); EI-MS m/z $363\left(\mathrm{M}^{+}, 333,289,277,249,173 ;\right.$ HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 385.2175$, found ESI-MS 385.2194.

(3R,4S)-4-((2S,3S)-3-Hydroxy-5-phenylpentan-2-yl)-3-methyloxeta-n-2-one (71): \quad To a $0{ }^{\circ} \mathrm{C}$ solution of silyl ether 69a ($0.340 \mathrm{~g}, 1.06$ mmol) in THF (4.6 mL) was added HF/pyridine $(0.23 \mathrm{~mL})$. The resulting solution was maintained at $0^{\circ} \mathrm{C}$ for 5 min then warmed to ambient temperature and allowed to stir for 2 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by slow addition of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The layers were partitioned with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (9:1/hexanes:ethyl acetate \rightarrow 2:1/hexanes:ethyl acetate) to provide 0.236 g (70%) of β-lactone 71: m.p. $=62-63{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-31.1\left(\right.$ c $\left.1.7, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3448$ (br), 2973, 2942, 1813, 1454, $1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.42(\mathrm{dd}$, $J=11.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{ddd}, J=14.1,9.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=$

[^28]$13.7,9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dqd}, J=12.1,6.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.1,141.7$, 128.0 (2C), 127.9 (2C), 125.4, 76.7, 72.0, 47.4, 38.3, 34.2, 32.0, 10.6, 8.0 ; EI-MS m/z $248(\mathrm{M})^{+}, 230,157$, 134, 117 ; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}: 230.1307$, found 230.1309.

(3S,4S)-4-((2S,3R)-3-Methyl-4-oxooxetan-2-yl)-1-phenylpentan-3yl 3,5-dinitrobenzoate (70): To a solution of alcohol 71 (41 mg, $0.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added 3,5-dinitrobenzoyl chloride ($50 \mathrm{mg}, 0.22 \mathrm{mmol}$). To the reaction mixture was then added DMAP ($1.0 \mathrm{mg}, 8.3 \times 10^{-6} \mathrm{~mol}$) followed by triethylamine ($35 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$). The resulting solution was stirred at ambient temperature for 8 h , after which the reaction mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography ($2: 1 /$ hexanes:ethyl acetate) to provide $64 \mathrm{mg}(87 \%)$ of β-lactone 70. The afforded solid was recrystallized via vapor diffusion recrystallization $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$: m.p. $=$ $167-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-35.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3054,2986,1827,1731,1548,1345$, $1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.21(\mathrm{appt} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 9.00(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22-7.02 (m, 5H), $5.47(\mathrm{ddd}, J=8.9,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, J=11.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{qd}$, $J=7.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2,162.1,148.5$ (2C), 140.7, $133.8,129.3$ (2C), 128.5 (2C), 128.2 (2C), 126.0, 122.3, 78.0, 75.9, 48.2, 36.8, 32.3, 31.7, 11.4,
8.5 ; ESI-MS m/z $465.22(\mathrm{M}+\mathrm{Na})^{+}, 357,229$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+}$: 465.1274, found 465.1274.

(3R,4R)-3-methyl-4-phenethyloxetan-2-one (ent-66): To a $-100{ }^{\circ} \mathrm{C}$ solution of β-lactone ent-65 ($2.50 \mathrm{~g}, 14.2 \mathrm{mmol}$) in THF (710 mL) was added MeI ($4.42 \mathrm{~mL}, 71.0 \mathrm{mmol})$. Subsequently, NaHMDS $(14.2 \mathrm{~mL}, 14.2 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added to the reaction mixture in a dropwise fashion over 2 h . After complete addition, the resulting solution was maintained for an additional hour at $-100^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and allowed to warm to ambient temperature. The layers were separated and the aqueous layer extracted with ethyl acetate (2 x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified using an ISCO CombiFlash ${ }^{\circledR}$ Companion $^{\text {TM }}$ (hexanes $\rightarrow 5 \%$ ethyl acetate, 330 g column) to yield $1.35 \mathrm{~g}(50 \%)$ of disubstituted β-lactone ent66: $[\alpha]_{\mathrm{D}}=+72.7\left(c 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.17$ (ddd, J $=7.4,5.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{qd}, J=7.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=14.0,8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-$ $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

(2R,3R)-3-Hydroxy- N-methoxy- N,2-dimethyl-5-phenylpentanamide (ent-67): To a $0{ }^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride ($1.38 \mathrm{~g}, 14.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added dimethylaluminum chloride ($14.2 \mathrm{~mL}, 14.2 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, cooled the homogenous solution to $0{ }^{\circ} \mathrm{C}$ and added a solution of β-lactone ent-66 (1.35 g, 7.08 mmol$)$ in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir for 3 h . Cooled the reaction mixture to $0^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer ($25 \mathrm{~mL}, \mathrm{pH}=7$). The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were separated and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (3:1/hexanes:ethyl acetate) to provide $1.62 \mathrm{~g}(91 \%)$ of amide ent-67: $[\alpha]_{\mathrm{D}}=-14.2$ (c 1.6, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.21$ $(\mathrm{s}, 3 \mathrm{H}), 2.97-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{dt}, J=13.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$.
 $(1.78 \mathrm{~g}, 7.08 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(78 \mathrm{~mL})$ was added imidazole $(0.819 \mathrm{~g}, 12.0 \mathrm{mmol})$. The homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{TESCl}(1.78 \mathrm{~mL}, 10.6 \mathrm{mmol})$ was added in a dropwise fashion. After complete addition, the resulting heterogeneous mixture was warmed to ambient temperature and stirred overnight. The reaction mixture was then quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$, the layers separated and the organics washed with 1.0 M aqueous NaHSO_{4} (1x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (9:1/hexanes:ethyl acetate) to provide $2.44 \mathrm{~g}(94 \%)$ of amide ent-68b: $[\alpha]_{\mathrm{D}}=-32.5$ (c 2.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{dt}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$,
$3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=9.9,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.

(2R,3R)-3-Triethylsilyloxy-2-methyl-5-phenylpentanal (ent-64b): To a $-78{ }^{\circ} \mathrm{C}$ solution of amide ent-68b $(2.44 \mathrm{~g}, 6.68 \mathrm{mmol})$ in THF $(63 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ ($9.40 \mathrm{~mL}, 9.35 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 3 h after which saturated aqueous Rochelle's salts was added $(30 \mathrm{~mL})$. The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide $1.90 \mathrm{~g}(93 \%)$ of aldehyde ent-64b: $[\alpha]_{\mathrm{D}}=-32.1$ (c 2.2, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 9.76(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.04(\operatorname{app} \mathrm{q}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\operatorname{appt}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{qdd}, J=7.1,5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.73(\mathrm{~m}$, $2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H})$.

(3S,4R)-4-((2R,3R)-3-Triethylsilyloxy-5-phenylpentan-2-yl)-3-meth-yloxetan-2-one (ent-69b): A flame-dried 25 mL round bottom flask was charged with TMS-quinidine ($30 \mathrm{mg}, 7.56 \times 10^{-5} \mathrm{~mol}$) and LiI $(0.303 \mathrm{~g}, 2.27 \mathrm{mmol})$. To the mixture was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$, DMF $(0.20 \mathrm{~mL})$ and ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}(0.330 \mathrm{~mL}, 1.89 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 min then cooled to $-50^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde ent-64b $(0.232 \mathrm{~g}$, 0.760 mmol) followed by dropwise addition of a solution of propionyl chloride ($0.131 \mathrm{~mL}, 1.51$
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.50 \mathrm{~mL})$ over 4 h after which the heterogeneous reaction mixture was stirred vigorously overnight at $-50^{\circ} \mathrm{C}$. The reaction mixture was partitioned between ether (15 mL) and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, the layers separated and the aqueous layer extracted with ether (2 x). The combined organic extracts were washed with water (2x) followed by brine (1x) and then were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified via column chromatography ($24: 1 /$ hexanes:ethyl acetate) to yield 0.234 g (84%) of β-lactone ent69b: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta 4.35 \mathrm{ppm}$) showed the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=+40.0\left(c \quad 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.35(\mathrm{dd}, J=11.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dt}, J=8.3,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{qd}, J=7.7,6.2,1 \mathrm{H}), 2.83(\mathrm{ddd}, J=13.4,10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=13.5$, $10.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dqd}, J=10.2,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.0(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$.

(S)-3-Hydroxy- N-methoxy- N-methyl-5-phenylpentanamide (73):

To a $0{ }^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride $(1.66 \mathrm{~g}, 17.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dimethylaluminum chloride ($17.0 \mathrm{~mL}, 17.0$ mmol, 1.0 M in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, cooled the homogenous solution to $0{ }^{\circ} \mathrm{C}$ and added a solution of β-lactone $65(1.50 \mathrm{~g}, 8.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir for 3 h . Cooled the reaction mixture once again to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer ($50 \mathrm{~mL}, \mathrm{pH}=7$). The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were separated and the aqueous layer
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (3:1/hexanes:ethyl acetate) to provide $1.93 \mathrm{~g}(96 \%)$ of amide 73: $[\alpha]_{\mathrm{D}}=+29.0\left(c 1.8, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3435,2937,1639,1454,1389 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31-7.16$ (m, $5 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{ddd}, J=14.0$, 9.7, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=16.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{dtd}, J=13.9,9.0,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 172.4,141.3,127.6$ (2C), 127.4 (2C), 124.8, 66.2, 60.2, 37.8, 37.7, 31.0, 30.8; EI-MS m/z $237\left(\right.$ M $^{+}, 159,135,117$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}: 237.1365$, found 237.1361.

(S)-3-Triethylsilyloxy- N -methoxy- N -methyl-5-phenylpentanamide
(74): To a solution of β-hydroxyl amide $73(1.93 \mathrm{~g}, 8.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added imidazole $(0.941 \mathrm{~g}, 13.8 \mathrm{mmol})$. The homogenous solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{TESCl}(2.05 \mathrm{~mL}, 12.2 \mathrm{mmol})$ added in a dropwise fashion. After complete addition, the resulting heterogeneous mixture was warmed to ambient temperature and stirred overnight. The reaction mixture was then quenched by addition of saturated aqueous NaHCO_{3} $(40 \mathrm{~mL})$, the layers separated and the organics washed with 1.0 M aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Purified the crude oil by silica gel chromatography (9:1/hexanes:ethyl acetate) to provide $2.83 \mathrm{~g}(99 \%)$ of amide 74: $[\alpha]_{\mathrm{D}}=+17.9\left(c \quad 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film) $2953,2912,2875,1663,1455,1415,1385$, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.34(\mathrm{app} \mathrm{p}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.60(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.8,141.9,127.9$
(4C), 125.3, 68.6, 60.8, 39.4, 31.5, 31.2, 6.5 (3C), 4.7 (3C); EI-MS m/z 351 (M) ${ }^{+}, 321,291,248$, 218; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}: 351.2230$, found 351.2219 .

(S)-3-Triethylsilyloxy-5-phenylpentanal (72): To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $74(2.53 \mathrm{~g}, 7.19 \mathrm{mmol})$ in THF $(67 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(10.1$ $\mathrm{mL}, 10.1 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 3 h after which saturated aqueous Rochelle's salts was added (40 mL). The biphasic mixture was allowed to warm to ambient temperature and stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography ($30: 1 /$ hexanes:ethyl acetate) to provide $1.71 \mathrm{~g}(81 \%)$ of aldehyde 72: $[\alpha]_{\mathrm{D}}=+9.1\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2954, 2912, 2876, 1726, 1455, 1239, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.83(\operatorname{app} \mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32-7.15 (m, 5H), $4.28(\operatorname{app} p, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.68(\mathrm{td}, J=7.6,3.5 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.60(\mathrm{dt}, J=5.9$, $2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.63(\mathrm{q}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.6,141.3,128.0(2 \mathrm{C}), 127.9$ (2C), 125.5, 67.2, 50.4, 39.3, 31.1, 6.5 (3C), 4.6 (3C); EI-MS $m / z 263(M-E t)^{+}, 159,143,129$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}-\mathrm{Et})^{+}:$263.1467, found 263.1470 .

(2S,3R,5S)-3,5-Dihydroxy- N-methoxy- N,2-dimethyl-7-pheny-
lheptanamide (76): A flame-dried 25 mL round bottom flask was charged with TMS-quinidine ($\left.15 \mathrm{mg}, 3.75 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{LiClO}_{4}(0.120 \mathrm{~g}, 1.13 \mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.1 \mathrm{~mL})$, DMF $(0.1 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.16$
$\mathrm{mL}, 0.94 \mathrm{mmol}$). The resulting mixture was stirred at ambient temperature for 5 min then cooled to $-50^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $72(0.110 \mathrm{~g}, 0.380 \mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride ($65 \mu \mathrm{~L}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ over 2 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-50^{\circ} \mathrm{C}$. The resulting mixture was partitioned between ether $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, the layers separated and the aqueous layer extracted with ether (2x). The combined organic extracts were then washed with water (2x) followed by brine (1x). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified via column chromatography (24:1/hexanes:ethyl acetate) to yield $0.118 \mathrm{~g}(90 \%)$ of β-lactone 75 which contained a slight amount of an inseparable silyl impurity: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta 4.79 \mathrm{ppm}$) showed that β-lactone 75 was produced as a single diastereomer.

To a $0{ }^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride ($66 \mathrm{mg}, 0.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.3 \mathrm{~mL})$ was added dimethylaluminum chloride $(0.68 \mathrm{~mL}, 0.68 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, cooled the homogenous solution to $0{ }^{\circ} \mathrm{C}$ and added a solution of impure β-lactone $75(0.118 \mathrm{~g}, 0.340 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir for 18 h . Cooled the reaction mixture once again to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer ($25 \mathrm{~mL}, \mathrm{pH}=7$). The resulting biphasic mixture was filtered over a plug of celite which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$. The layers of the filtrate were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (1:1/hexanes:ethyl acetate) to provide $79 \mathrm{mg}(79 \%)$ of amide 76 (71\% yield
over 2 steps $):[\alpha]_{\mathrm{D}}=+2.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3415(\mathrm{br}), 2937,1635,1455,1388 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.24(\mathrm{dt}, J=10.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}$, $2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{ddd}, J=13.7,9.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{ddd}, J=14.1,7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 177.8,142.1,128.3$ (2C), 128.2 (2C), 125.6, 68.7, 68.5, 61.4, 40.3, 39.5, 39.1, 32.2, 31.9, 10.9; ESI-MS m/z $318(\mathrm{M}+\mathrm{Na})^{+}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NNaO}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+}: 318.1681$, found 318.1679 .

(3R,4S)-4-((S)-2-Triethylsilyloxy-4-phenylbutyl)-3-methyloxetan-2one (77): A flame-dried 25 mL round bottom flask was charged with TMS-quinine ($\left.14 \mathrm{mg}, 3.42 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathrm{LiClO}_{4}(0.109 \mathrm{~g}, 1.03 \mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.68 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(0.34 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.15 \mathrm{~mL}, 0.86$ $\mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 min then cooled to -78 ${ }^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $72(0.100 \mathrm{~g}, 0.34 \mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride $(60 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.24 \mathrm{~mL})$ over 2 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-78^{\circ} \mathrm{C}$. The resulting mixture was partitioned between ether $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted with ether (2 x). The combined organic extracts were then washed with water (1x) followed by brine (1x). Dried the organic layer over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified via column chromatography (24:1/hexanes:ethyl acetate) to yield $0.094 \mathrm{~g}(79 \%)$ of an inseparable mixture of β-lactone diastereomers. Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR (300 MHz): 91.5\% ($\delta 4.82$ ppm) : $8.5 \%(\delta 4.41 \mathrm{ppm}) /$ cis β-lactone 77 (title compound) : trans β-lactone. Characterization
data for cis β-lactone 77 (title compound): IR (thin film) 2954, 2912, 2876, 1826, 1111, 1068 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.82(\mathrm{ddd}, J=10.3,6.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.94 (app p, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{qd}, J=7.7,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{ddd}, J=$ $14.4,9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.62$ $(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 172.4,141.8,128.3$ (2C), 128.2 (2C), 125.8, 72.1, 68.6, 47.5, 38.4, 36.9, 31.6, 8.4, 6.8 (3C), 4.9 (3C); EI-MS m/z $319(\mathrm{M}-\mathrm{Et})^{+}, 275,263,249$, 185, 159; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}-\mathrm{Et})^{+}: 319.1729$, found 319.1734.

(2S, 3R, 4R, 5S)-3,5-Bistrimethylsilyloxy-2,4-dimethyl-7-phenylhe-
ptanal (78): To a $0{ }^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride ($0.770 \mathrm{~g}, 7.90 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.7 \mathrm{~mL})$ was added dimethylaluminum chloride ($7.90 \mathrm{~mL}, 7.90 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, cooled the homogenous solution to $0{ }^{\circ} \mathrm{C}$ and added a solution of β-lactone $\mathbf{6 1}(0.842 \mathrm{~g}, 2.63 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.7 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir overnight. Cooled the reaction mixture once again to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer ($25 \mathrm{~mL}, \mathrm{pH}=7$). The layers of the biphasic mixture were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a solution of the crude residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ at ambient temperature was added imidazole ($0.590 \mathrm{~g}, 8.68 \mathrm{mmol}$). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\mathrm{TMSCl}(1.00$ $\mathrm{mL}, 7.90 \mathrm{mmol}$) was added. Subsequently warmed the reaction mixture to ambient temperature and stirred overnight. Quenched the reaction mixture by addition of saturated aqueous NaHCO_{3}
$(20 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a $-78{ }^{\circ} \mathrm{C}$ solution of the crude residue in THF $(26 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(3.70 \mathrm{~mL}$, $3.70 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 3 h after which saturated aqueous Rochelle's salts was added (30 mL). The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (24:1/hexanes:ethyl acetate) to provide 0.870 $\mathrm{g}(84 \%$ over 3 steps $)$ of aldehyde 78: $[\alpha]_{\mathrm{D}}=+43.2\left(c 1.06, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2954, 1728, 1251, 1108, 1080, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 5 \mathrm{H})$, $4.26(\mathrm{dd}, J=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{td}, J=6.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.47(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.82(\mathrm{~m}$, 2H), 1.75-1.69 (m, 1H), $1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 204.3,141.6,128.2$ (2C), 128.0 (2C), 125.6, 72.2, 71.9, 49.7, 41.0, 37.2, 32.1, 9.75, 6.69, 1.07 (3C), $0.55(3 \mathrm{C})$; ESI-MS m/z $417(\mathrm{M}+\mathrm{Na})^{+}$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 417.2257$, found 417.2273.

(3R, 4S)-4-((2S, 3R, 4R, 5S)-3,5-Bistrimethylsilyloxy-4-methyl-7-phenylheptan-2-yl)-3-methyloxetan-2-one (80): A flamedried 25 mL round bottom flask was charged with TMS-quinine ($29 \mathrm{mg}, 72.0 \mu \mathrm{~mol}$) and LiI $(0.289 \mathrm{~g}, 2.16 \mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(0.20 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.310 \mathrm{~mL}, 1.80 \mathrm{mmol})$. The resulting mixture was stirred at ambient temperature for 5 min then cooled to $-50^{\circ} \mathrm{C}$. To the reaction
mixture was added aldehyde $78(0.284 \mathrm{~g}, 0.720 \mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride ($0.130 \mathrm{~mL}, 1.44 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.48 \mathrm{~mL})$ over 2 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-50{ }^{\circ} \mathrm{C}$. The resulting mixture was diluted with ether and filtered over a plug of silica gel, eluting with ether. The filtrate was concentrated in vacuo and the crude residue purified via column chromatography (24:1/hexanes:ethyl acetate) to yield $0.248 \mathrm{~g}(76 \%)$ of β-lactone 80: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \delta 4.37 \mathrm{ppm}$) showed the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=-4.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2954, 1828, 1250, 1148, 1117, 1080, 1050, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{dd}, J=$ $11.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dq}, J=14.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=10.1,6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.00-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.82(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 172.1,141.8,128.2$ (2C), 128.0 (2C), 125.6, 75.9, 72.3, 71.7, 46.3, 41.2, 37.3, 35.2, 32.0, 9.6, 8.2, 7.9, 1.2 (3C), 0.6 (3C); ESI-MS m/z $473(\mathrm{M}+\mathrm{Na})^{+}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 473.2519$, found 473.2532.

3.0 EFFORTS TOWARDS A CATALYTIC, ASYMMETRIC SYNTHESIS OF AN ANALOGUE OF (+)-DISCODERMOLIDE

3.1 ISOLATION AND BIOACTIVITY

$(+)$-Discodermolide (81) is a naturally occurring marine polyketide metabolite that was isolated from the rare deep sea sponge Discodermia dissoluta by Gunasekara and coworkers in 1990 at the Harbor Branch Oceanographic Institution (Figure 19). ${ }^{54}(+)$-Discodermolide's structure, as determined by spectroscopic studies and single crystal X-ray crystallography, contains 13 stereocenters (six of which are hydroxyl-bearing), a tetrasubstituted δ-lactone, one disubstituted and one trisubstituted (Z)-olefin, a carbamate moiety and a terminal (Z)-diene. ${ }^{55}$ In order to minimize 1,3-allylic strain and the syn-pentane interactions along the skeleton, discodermolide adopts a U -shaped conformation with the bend occurring at the central stereotriad $\left(\mathrm{C}_{10}-\mathrm{C}_{12}\right)$.

81
Figure 19: (+)-Discodermolide (81)

[^29]Discodermolide possesses a very impressive pharmacological profile as an immunosuppressive agent with some additional anti-fungal properties. Recent studies have revealed that discodermolide is a potent antimitotic agent and is recognized as a member of a specialized group of natural products, which includes cytotoxins such as $\mathrm{Taxol}^{\circledR}$ and laulimalide, that act as microtubule-stabilizing agents and mitotic spindle poisons. Biological testing has unveiled that discodermolide possesses impressive cytotoxicity in a variety of human cell lines ($\mathrm{IC}_{50} 3-80 \mathrm{nM}$) causing cell death by apoptosis. ${ }^{56}$ Comparative studies have shown that discodermolide was 1000 -fold more active than $\mathrm{Taxol}^{\circledR}$ in promoting the same microtubule polymerization and bundling. ${ }^{57}$ In addition to discodermolide's inherent cytotoxic capabilities, it has also shown amplified synergistic cytotoxicity when combined with other antimitotic agents. ${ }^{58}$

3.2 PAST SYNTHESES AND RETROSYNTHETIC ANALYSIS

Due to the strong cytotoxic profile possessed by discodermolide, as well as our ability to harvest it from nature in only scarce amounts (isolation yield is $0.002 \% \mathrm{w} / \mathrm{w}$ from frozen sponge; 7 mg of natural product from 434 g of sponge), discodermolide has drawn the attention of many research groups. ${ }^{59}$ The problem of limited supply can only be solved by total synthesis of the natural product as no semi-synthetic pathways or fermentation processes currently exist for its production. Consequently, there exists several total syntheses and numerous partial syntheses of

[^30]discodermolide. Included within the total syntheses to date is an industrial synthesis completed by Novartis Pharmaceutical Corporation who brought discodermolide into clinical trials. ${ }^{57}$

It is not surprising that all the total syntheses of discodermolide disconnect the polypropionate backbone into three fragments of similar size and stereochemical complexity (Figure 20). Most of the syntheses disassembly the skeleton at or in close proximity of the two (Z)-alkenes, highlighting the larger number of present methodologies to form these types of bonds. The polypropionate backbone of discodermolide has been made utilizing an assortment of asymmetric technologies including auxiliary/non-auxiliary controlled aldol reactions and crotylsilane and allenylstannane additions to aldehydes.

Figure 20: Retrosyntheses of (+)-discodermolide

Interest in discodermolide as a synthetic target was piqued because of the heavily polypropionate-containing skeleton that it possesses. It was felt that discodermolide would provide an ideal platform to demonstrate the utility of the recently developed Cinchona alkaloidcatalyzed AAC reaction for polypropionate unit formation in complex natural product synthesis. With that goal in mind, and taking into consideration the existence of numerous completed total syntheses of discodermolide, a derivative of the natural product, polysilylated analogue 82, became the main synthetic target (Figure 21).

Figure 21: Polysilylated analogue 82

Since the main concern was formation of the polypropionate unit skeleton using AAC technology, the proposed retrosynthetic strategy for analogue $\mathbf{8 2}$ is similar to those already proposed for discodermolide. It was decided to disassemble the molecule into three fragments, all of somewhat equal size and complexity, near the two (Z)-alkenes (Figure 22). The initial disconnection is the same used by Marshall and coworkers in their synthesis of discodermolide where the $\mathrm{C}_{7}-\mathrm{C}_{8}$ bond is cleaved. It is felt that this bond can be made, with concomitant setting of the C_{7}-stereocenter, by addition of an alkyne into aldehyde 83, the left fragment. The second disconnection is at the trisubstituted olefin and is similar to the Novartis synthesis of discodermolide where the $\mathrm{C}_{14}-\mathrm{C}_{15}$ bond is made via a Suzuki cross-coupling reaction. This disconnection generates the other two fragments, center fragment $\mathbf{8 4}$ and right fragment $\mathbf{8 5}$.

Figure 22: Retrosynthetic analysis of analogue 82

Further disassembly of aldehyde $\mathbf{8 3}$ shows that the δ-lactone can be synthesized from masked polypropionate unit $\mathbf{8 6}$, which is a product from the Cinchona alkaloid-catalyzed AAC reaction (Figure 23). Polypropionate unit 86 is derived from disubstituted trans- β-lactone 87 which, using chemistry developed in the Nelson group, can be made from commercially available 3-benzyloxy-1-propanol.

Figure 23: Retrosynthetic analysis of left fragment 83

As other research groups have also realized, the center and right fragments possess the same stereotriad and therefore can be derived from the same common intermediate. Alkyne $\mathbf{8 4}$ and iodide $\mathbf{8 5}$ can both be formed from a common intermediate, elaborate Weinreb amide $\mathbf{8 8}$ (Figure 24). Amide 88 can be made from β-lactone $\mathbf{8 9}$, which is a product derived using AAC technology. Masked polypropionate unit $\mathbf{8 9}$ can be synthesized from the commercially available (S)-Roche ester in four steps.

Figure 24: Retrosynthetic analysis of fragments 84 and 85

3.3 RESULTS AND DISCUSSION

3.3.1 Synthesis of aldehyde 83

Synthetic efforts towards the catalytic, asymmetric synthesis of analogue 82 began with formation of the initial desired left fragment, aldehyde 83. The sequence began with known β -
lactone $90(91 \%$ ee $)$ which is made from commercially available 3-benzyloxy-1-propanol in two steps (Scheme 29). Alkylation of β-lactone 90 with NaHMDS and MeI at $-100^{\circ} \mathrm{C}$ afforded α methylated β-lactone 87 in 62% yield. Opening of β-lactone 87 with (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ produced β-hydroxy Weinreb amide 91 in 83% yield. Silylation of amide 91 with TMSCl afforded a 97% yield of silyl ether $\mathbf{9 2}$, which was subsequently treated with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ to produce aldehyde $\mathbf{9 3}$ in 86% yield. Subjection of aldehyde $\mathbf{9 3}$ to the AAC reaction catalyzed by TMS-Q Q_{N} yielded masked polypropionate 86 in 75% yield as a single diastereomer. It is worth noting that for this AAC reaction a 6 hour addition time for the solution of propionyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to be optimal.

Scheme 29

Hydrolysis of β-lactone $\mathbf{8 6}$ with a biphasic mixture of aqueous KOH and THF, followed by acidification of the reaction mixture to a $\mathrm{pH} \sim 2$ with concentrated HCl , afforded δ-lactone $\mathbf{9 4}$ in 90% yield (Scheme 30). Protection of the β-hydroxy group on δ-lactone 94 as a TBS-ether proved difficult, as a mixture of desired silyl ether 95 (55\% yield) and undesired enoate 96 (22% yield) was obtained. It is speculated that this undesired elimination reaction was the effect of the very Lewis acidic TBSOTf in the presence of base, as well as trans-annular strain caused by the bulky β-silyloxy group in the δ-lactone. The latter hypothesis was validated by acylating the β hydroxy group in δ-lactone 94 as a 3,5-dinitrobenzoyl group (81% yield) and obtaining a X-ray crystal structure of tetrasubstituted δ-lactone 97 (Appendix A). From the crystal structure it can be seen that the protected β-hydroxy group on the lactone is in the axial position, thereby facilitating the undesired elimination reaction.

Scheme 30

Even though silylation of the hydroxy group was problematic, the synthesis of aldehyde $\mathbf{8 3}$ was continued in order to test the aldehyde-alkyne coupling. Removal of the benzyl ether on $\mathbf{9 5}$ via hydrogenolysis yielded primary alcohol 98 in 90% yield (Scheme 31). The left fragment was completed by oxidation of primary alcohol $\mathbf{9 8}$ to aldehyde $\mathbf{8 3}$ using DMP. The aldehyde proved to be somewhat unstable and could not be purified, so the crude product was used in the attempted coupling reaction. The initial hope was to perform an asymmetric addition of the center fragment into the left fragment, therefore a very simplistic test reaction using Carreira's N -methylephedrine modified zinc-acetylide addition reaction was performed. ${ }^{60}$ However, immediately upon subjection of aldehyde $\mathbf{8 3}$ to the reaction conditions, the starting material decomposed to yield a mixture of different α, β-unsaturated carbonyl products. As previously hypothesized, it was felt that the trans-annular strain across the δ-lactone was the cause of the problem. At this point it was realized that aldehyde 83 would not be a viable fragment and decided to revise our target substrate.

[^31]
Scheme 31

83

3.3.2 Synthesis of aldehyde 99

The initial failure at forming the $\mathrm{C}_{7}-\mathrm{C}_{8}$ bond was felt to be a direct cause of the instability of the target fragment chosen rather than the method of formation of the bond, so the target was revised to a more stable and easily handled alternative. Since inherent strain in the δ-lactone was believed to be the source of the problem, a logical choice for an alternative fragment would be an acyclic variant that could be transformed into the δ-lactone if desired. Additionally, the new target had to be a potentially viable substrate for the aldehyde-alkyne coupling reaction and not introduce any chemoselectivity issues. With this in mind, it was felt that aldehyde 99 was a suitable choice for the revised left fragment (Figure 25).

Figure 25: Revised retrosynthetic analysis

As depicted in Figure 25, the revised left fragment 99 can be derived from known β-lactone 86 and therefore the already developed forward sequence. Opening of β-lactone $\mathbf{8 6}$ with (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ in the presence of $\mathrm{Me}_{2} \mathrm{AlCl}$, with concomitant cleavage of the silyl ether, produced an intermediate bis-hydroxy Weinreb amide that was treated with TBSOTf to afford elaborate Weinreb amide 101 in 88% yield over two steps (Scheme 32). Deprotection of the benzyl ether via hydrogenolysis, followed by oxidation of the crude primary alcohol with DMP completed the revised left fragment, aldehyde 99, in 88% yield over two steps.

Scheme 32

86

1) $(\mathrm{MeO}) \mathrm{NHMe} \cdot \mathrm{HCl}$,

101
$P=T B S$
88\% yield
(over 2 steps)
$\xrightarrow[\text { 2) } D M P]{\text { 1) } \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}}$

Left Fragment
99
$P=T B S$
88\% yield
(over 2 steps)

3.3.3 Synthesis of iodide 85

With the synthesis of the left fragment completed, the synthesis of the right fragment, iodide 85, commenced. The synthesis of iodide $\mathbf{8 5}$ began with aldehyde $\mathbf{1 0 2}$ which can be made from the commercially available (S)-Roche ester in 3 steps (Scheme 33). Subjection of aldehyde 102 to the Cinchona alkaloid-catalyzed AAC reaction in the presence of a catalytic amount of TMS- Q_{N} produced β-lactone $\mathbf{8 9}$ in 77% yield as a single diastereomer. Treatment of β-lactone $\mathbf{8 9}$ with (MeO)NHMe $\cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ at $-30{ }^{\circ} \mathrm{C}$ afforded a 91% yield of β-hydroxy Weinreb amide 103. Silylation of amide $\mathbf{1 0 3}$ with TBSOTf produced the common synthetic intermediate for the center and right fragment, amide 88, in 98% yield.

Scheme 33

The synthesis of the completed right fragment was accomplished in 5 steps from common intermediate 88 (Scheme 34). Reduction of the Weinreb amide moiety in common intermediate 88 with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded a quantitative yield of aldehyde 104 . As mention previously, the desired syn, syn, syn polypropionate unit is unable to be produced using the AAC technology. Since a more elaborate variant of this subunit is needed for the right fragment of discodermolide, alternative methods were employed to obtain the desired stereoarray. Utilizing auxiliarycontrolled aldol chemistry developed by Crimmins and coworkers, the desired syn, syn, syn, anti polypropionate unit 105 was synthesized from aldehyde 104 in 91% yield as a single diastereomer. ${ }^{61}$ Protection of the hydroxy group in 105 with TBSOTf yielded oxazolidithione 106 in 95% yield. Subsequent removal of the chiral oxazolidithione auxiliary on 106 with LiBH_{4}

[^32]in MeOH afforded primary alcohol 107 in 83% yield. The synthesis of the right fragment was completed by subjecting alcohol $\mathbf{1 0 7}$ to PPh_{3}, iodine and imidazole to produce primary iodide $\mathbf{8 5}$ in 71% yield.

Scheme 34

3.3.4 Synthesis of the model alkyne 108

Before efforts towards the synthesis of the actual center fragment commenced, model center fragment $\mathbf{1 0 8}$ was synthesized in order to test the coupling of the center and left fragments. The synthesis of the model alkyne began by treating known β-lactone $\mathbf{1 0 9}$ with (MeO) $\mathrm{NHMe} \cdot \mathrm{HCl}$ and $\mathrm{Me}_{2} \mathrm{AlCl}$ to produce an 84% yield of β-hydroxy amide 110 (Scheme 35). Protection of the
free alcohol on amide $\mathbf{1 1 0}$ as a MOM ether, followed by twofold reduction of the amide moiety with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ afforded primary alcohol 111 in 66% overall yield. Formation of a benzyl ether using BnBr and NaH in the presence of TBAI, followed by subsequent deprotection of the TBDPS ether with TBAF produced an 82% yield of benzyl ether 112 over the two steps. Oxidation of the primary alcohol on 112 with DMP, followed by subjection of the intermediate aldehyde to TMSCHN_{2} and freshly generated LDA completed the synthesis of the model center fragment, alkyne 108, in 75% yield over the final two steps.

Scheme 35

With the synthesis of the model alkyne completed, it was time to test the aldehyde-alkyne coupling. As discussed before, the initial hope was to perform an asymmetric addition of the center fragment into the left fragment in order to reinforce setting the C_{7}-stereocenter with the proper stereochemistry. To do so, two of the more common asymmetric addition reactions,
conditions developed by Pu and coworkers $\left[\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}-\mathrm{ZnEt}_{2}-\mathrm{BINOL}\right]$ and conditions developed by Chan and coworkers $\left[\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}-\mathrm{ZnMe}_{2}-\mathrm{BINOL}\right]$, were attempted (Table 5). ${ }^{62}$ Additionally, the more recent InBr_{3} - BINOL reaction conditions developed by Shibasaki and coworkers were attempted. ${ }^{63}$ Disappointingly, while these reaction conditions work well for simple aldehydes and alkynes, they failed to produce any desired product when the complex aldehyde and alkyne fragments were used.

Table 5: Addition of model alkyne 108 into aldehyde 99

${ }^{\text {a }}$ Determined using crude ${ }^{1} \mathrm{H}$ NMR and HPLC analysis. The desired diastereomer is amide $\mathbf{1 1 3}$ which is depicted. Isolated yields not obtained

[^33]After the failure of the asymmetric alkyne addition reactions to produce any desired product, unmodified anionic acetylide addition reactions into aldehyde 99 were attempted. Based on the electrostatic minimization model proposed by Reetz and Evans, aldehyde 99 should adopt a reactive conformer that inherently favors production of the desired 1,3-anti diastereomer, alcohol 113, as the major product. ${ }^{50}$ Preliminary studies with this type of addition were performed using the lithium acetylide of alkyne $\mathbf{1 0 8}$ generated from deprotonation with ${ }^{n} \mathrm{BuLi}$. Addition of the lithium acetylide into aldehyde 99 in toluene at $-78^{\circ} \mathrm{C}$ did yield the aldehyde addition products and a minor amount of enal ($\sim 8 \%$ yield) ${ }^{64}$ As hypothesized, the desired alcohol 113 was the major product, being produced in a diastereomeric ratio of 2.5:1 with the undesired diastereomer. A quick survey of conditions showed that changing the solvent to THF had a beneficial effect as the diastereomeric ratio increased to 4.4:1/desired:undesired. The best diastereomeric ratio (6.0:1/desired:undesired) was obtained in THF when the lithium acetylide was transmetallated into a magnesium bromide acetylide prior to addition to the aldehyde.

3.3.5 First attempt at the synthesis of alkyne 84

With the testing of the aldehyde-alkyne coupling reaction complete, the synthesis of the actual center fragment was undertaken. ${ }^{65}$ Besides formation of the polypropionate unit backbone, the center fragment also possessed the challenge of making a trisubstituted (Z)-olefin with one of the substituents being an iodide. In the preliminary studies for the synthesis of alkyne 84, Panek's method of using hydrozirconation to form the trisubstituted olefin was employed. ${ }^{55}$ In this sequence, a vinyl TMS group acts as a masked vinyl iodide.

[^34]The synthetic sequence begins with protection of the β-hydroxy group on Weinreb amide 103 as a MOM-ether using MOMCl and TBAI to produce amide 114 (Scheme 36). Reduction of the Weinreb amide moiety on amide $\mathbf{1 1 4}$ with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$, followed by transformation of aldehyde 115 into an alkyne with TMSCHN_{2} and freshly prepared LDA afforded alkyne 116 in 71% overall yield. Deprotonation of the terminal alkyne 116 using ${ }^{n} \mathrm{BuLi}$ with subsequent reaction of the generated lithium acetylide with TMSCl produced an 80% yield of silyl ether $\mathbf{1 1 7}$.

Scheme 36

With alkyne $\mathbf{1 1 7}$ synthesized, attempts at forming the requisite trisubstituted olefin utilizing Panek's methodology were made. Unfortunately, despite multiple attempts the desired olefin was unable to be obtained (Scheme 37). The hydrozirconation/iodination reaction proved to be irreproducible as the amount of starting material that was converted to desired product $\mathbf{1 1 8}$ varied greatly. Additionally, desired iodide 118 was contaminated with a minor amount of an
undesired alkene byproduct ($\sim 3-5 \%$ yield) that was unable to be removed. Based on crude ${ }^{1} \mathrm{H}$ NMR data, this undesired olefin byproduct is speculated to be alkene 119.

Scheme 37

To complicate the reaction sequence further, the subsequent Negishi cross-coupling reaction to install the methyl group was very problematic as well. While the desired trisubstituted (Z)-olefin 120 was obtained from the cross-coupling reaction, there was a persistent failure to achieve full consumption of the starting material despite the use of an excess amount of MeZnCl (Scheme 38). Also, as with the hydrozirconation/iodination reaction, this reaction formed an undesired olefin containing byproduct ($\sim 3-10 \%$) that was inseparable from the desired product. Due to the problems associated with these two synthetic steps, this route to alkyne $\mathbf{8 4}$ was abandoned.

Scheme 38

118

3.3.6 Revised synthesis of alkyne 84

After the failure of Panek's methodology to form the requisite trisubstituted olefin from alkyne 117, an alternative sequence to the olefin using the Zhao-Wittig olefination was attempted. ${ }^{66}$ The synthetic sequence to the precursor for the Zhao-Wittig olefination can be made from common intermediate $\mathbf{8 8}$ in 6 steps. Treatment of amide $\mathbf{8 8}$ with HCl and MeOH cleaved the primary silyl ether and catalyzed lactonization to produce an 84% yield of δ-lactone $\mathbf{1 2 1}$ (Scheme 39). Opening of δ-lactone 121 to a Weinreb amide with ensuing Parikh-Doering oxidation of primary alcohol 122 afforded a 79% yield of aldehyde 123 over the two steps.

Scheme 39

88
Common Intermediate $\mathrm{P}=\mathrm{TBS}$

122

121
84\% yield

123
79\% yield
(over 2 steps)

Transformation of the aldehyde functionality in $\mathbf{1 2 3}$ to a terminal alkyne required the use of mild reaction conditions as the aldehyde proved to be somewhat sensitive. Employing Ohira's reagent

[^35]with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in ${ }^{i} \mathrm{PrOH}$, alkyne 124 was produced in 97% yield from aldehyde $\mathbf{1 2 3} .^{67}$ Reduction of amide $\mathbf{1 2 4}$ with ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}$ yielded the precursor for the Zhao-Wittig olefination, aldehyde 125, in 79\% yield. While the Zhao-Wittig olefination is not an extremely efficient reaction (normally $20-40 \%$ yield, $6-19: 1 / Z: E)$, this transformation installs the necessary functionalities to complete the target center fragment in one step. Subjection of aldehyde 125 to a solution of freshly prepared phosphonium salt 126 in the presence of NaHMDS afforded the completed center fragment 84 in 21% yield as a 10:1/Z:E inseparable mixture of olefin isomers.

Scheme 40

Currently, the Nelson group possesses a working synthetic sequence to all the target fragments of analogue 100. Most of the polypropionate units along the backbone of analogue $\mathbf{1 0 0}$ were successfully set using AAC chemistry, with the center and right fragments both being formed from an elaborate common intermediate. Subsequent studies on the coupling of these three

[^36]fragments into analogue 100, as well as derivatization of the analogue into other congeners of $(+)$-discodermolide, will be conducted in the future.

3.4 EXPERIMENTAL

General Information: ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 (300 $\mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: $\delta \mathrm{ppm}$). Data is reported as follows: chemical shift (ppm), multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sept $=$ septet, $\mathrm{app}=$ apparent, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet), coupling constants (Hz), integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX 301 and DPX 302 spectrometers (75 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with either the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}\right)$ or tetramethylsilane as an external standard (TMS: δ ppm). Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\mathrm{D}}(c \mathrm{~g} / 100 \mathrm{~mL})$ with units of degree $\cdot \mathrm{g} \cdot \mathrm{cm}^{-3}$. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed as previously described on EM silica gel 60 (230-240 mesh). ${ }^{37}$ Automated flash chromatography was performed using an ISCO CombiFlash ${ }^{\circledR}$ Companion ${ }^{\text {TM }}$ using disposable RediSep ${ }^{\text {TM }}$ columns. Analytical gas liquid chromatography (GLC)
was performed on a Varian 3900 gas chromatograph with a flame ionization detector and split mode capillary injection system using a VarianCP Wax 52 CB column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}$). Hydrogen was used as the carrier gas at the indicated pressures. Analytical high performance liquid chromatography (HPLC) was performed on a Hewlett Packard 1100 liquid chromatograph equipped with a variable wavelength UV detector (deuterium lamp, 190-600 nm), using a Daicel Chiralcel ${ }^{\text {TM }}$ OD-H column ($250 \times 4.6 \mathrm{~mm}$) (Daicel Inc.). HPLC grade isopropanol and hexanes were used as the eluting solvents. Melting points were measured using a Mel-Temp apparatus and are uncorrected.

Unless otherwise stated, all experiments were carried out under a nitrogen atmosphere in oven or flame-dried glassware using standard inert atmosphere techniques for introducing reagents and solvents. Anhydrous solvents were obtained by passage through successive alumina- and Q5 reactant-packed columns on a solvent purification system. Amines were purified via distillation from CaH_{2}. Propionyl chloride, TBSOTf and MOMCl were purified by distillation prior to use. Unless otherwise stated, commercially available reagents were used as received without any further purification. All water used in reactions and in aqueous solutions was deionized.

(3S,4S)-4-(2-(Benzyloxy)ethyl)-3-methyloxetan-2-one (87): To a solution of β-lactone $90(2.88 \mathrm{~g}, 14.0 \mathrm{mmol})$ in THF $(700 \mathrm{~mL})$ at ambient temperature was added MeI $(4.35 \mathrm{~mL}, 69.9 \mathrm{mmol})$. The reaction mixture was then cooled to $-100{ }^{\circ} \mathrm{C}$ and NaHMDS ($14.0 \mathrm{~mL}, 14.0 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added in a dropwise fashion over 2 h . After complete addition the resulting solution was maintain for an additional hour at $-100{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and allowed to
warm to ambient temperature. The layers were separated and the aqueous layer extracted with ethyl acetate (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by silica gel chromatography (19:1/hexanes:ethyl acetate) to provide 1.91 g (62%) of disubstituted β-lactone 87: $[\alpha]_{\mathrm{D}}=-39.6\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2935, 2872, 1824, 1454, 1385, 1363, $1124 \mathrm{~cm}^{-1}$; ${ }^{1}{ }^{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.31(\mathrm{~m}, 5 \mathrm{H}), 4.52(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.38(\mathrm{td}, J=6.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.67-3.56 (m, 2H), $3.36(\mathrm{qd}, J=7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.4,137.6,127.8$ (2C), 127.1, 127.0 (2C), 76.7, 72.4, 65.3, 50.4, 33.5, 11.6; EI-MS m/z $205(\mathrm{M}-\mathrm{Me})^{+} 192,174,146$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}(\mathrm{M}-\mathrm{CO})^{+}$: 192.1150, found 192.1148 .

(2S,3S)-5-(Benzyloxy)-3-hydroxy- N-methoxy- N,2-dimethylpent-
anamide (91): \quad To a $0^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride ($6.77 \mathrm{~g}, 69.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ was added dimethylaluminum chloride ($69.0 \mathrm{~mL}, 69.4 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, the homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$. To the resulting solution was added a solution of β-lactone $87(7.64 \mathrm{~g}, 34.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir for 2 h . Cooled the reaction mixture once again to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer ($100 \mathrm{~mL}, \mathrm{pH}=7$). The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were then separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and
concentrated in vacuo. The crude oil was purified by silica gel chromatography (2:1/hexanes:ethyl acetate) to provide $8.10 \mathrm{~g}(83 \%)$ of amide 91: $[\alpha]_{\mathrm{D}}=+13.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3443 (br), 2938, 2866, 1636, 1454, 1420, $1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.35-7.27 (m, 5H), 4.53 (br s, 2H), 3.89 (dtd, $J=9.4,6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.62(\mathrm{~m}, 3 \mathrm{H}), 3.69$ $(\mathrm{s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.96(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 176.6,138.0,128.0$ (2C), 127.3 (2C), 127.2, 72.8, 71.7, 67.8, 61.1, 40.0, 34.6, 31.4, 14.3; EI-MS m/z 221 (M-(MeO)NMe) ${ }^{+}$221, 157, 151, 146; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}-(\mathrm{MeO}) \mathrm{NMe})^{+}: 221.1178$, found 221.1177 .

(2S,3S)-5-(Benzyloxy)-3-trimethylsilyloxy- N-methoxy- N,2-dimethylpentanamide (92): To a solution of β-hydroxyl amide 91 (2.24 $\mathrm{g}, 7.97 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added 2,6-lutidine ($2.32 \mathrm{~mL}, 19.9 \mathrm{mmol}$). Subsequently, freshly distilled $\mathrm{TMSCl}(2.22 \mathrm{~mL}, 17.5 \mathrm{mmol})$ was added to the reaction mixture. The resulting solution was warmed to ambient temperature and stirred 1 h , after which the reaction mixture was quenched by addition of saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The layers were separated and the organic layer washed with 1.0 M aqueous NaHSO_{4} (1x). The combined aqueous layers were then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x) and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (6:1/hexanes:ethyl acetate) to provide $2.74 \mathrm{~g}(97 \%)$ of silyl ether 92: $\quad[\alpha]_{\mathrm{D}}=$ +18.1 (c 1.2, CHCl_{3}); IR (thin film) 2957, 2898, 1660, 1454, 1248, $1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{td}, J=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), 3.63-3.57 (m, 2H), 3.19 (s, 3H), 3.15-3.02 (m, 1H), 1.93 (dtd, $J=14.1,7.4,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.69(\mathrm{ddt}, J=14.2,8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$,
CDCl_{3}): $\delta 175.2,138.0,127.6$ (2C), 126.9 (2C), 126.8, 72.2, 70.7, $65.9,60.5,41.3,33.2,31.1$, 12.7, -0.3 (3C); EI-MS m/z $338(\mathrm{M}-\mathrm{Me})^{+}$293, 157; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Si}: 353.2022$, found 353.2023.

(2S,3S)-5-(Benzyloxy)-3-trimethylsilyloxy-2-methylpentanal (93): То a $-78{ }^{\circ} \mathrm{C}$ solution of amide $92(2.74 \mathrm{~g}, 7.75 \mathrm{mmol})$ in THF (75 mL) was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(11.0 \mathrm{~mL}, 10.9 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts (30 mL) was added. The biphasic mixture was allowed to warm to ambient temperature and stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide $1.97 \mathrm{~g}(86 \%)$ of aldehyde 93: $\quad[\alpha]_{\mathrm{D}}=+12.9$ (c 1.2, CHCl_{3}); IR (thin film) 2956, 2860, 1725, 1251, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 4.50(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dt}, J=6.6,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{qdd}, J=7.1,5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 3H), 0.12 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.3,138.0,127.9$ (2C), 127.0 (2C), 126.9, 72.3, 70.1, 66.0, 51.3, 34.4, 9.8, -0.2 (3C); EI-MS m/z $237\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}\right)^{+}$187, 176, 159; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Si}$: 294.1651 , found 294.1641 .

(3R,4S)-4-((2S,3S)-5-(Benzyloxy)-3-trimethylsilyloxypentan-2-yl)-3-methyloxetan-2-one (86): A flame-dried round bottom flask was charged with TMS-quinine ($0.350 \mathrm{~g}, 0.883 \mathrm{mmol}$) and LiI (3.55 g ,
$26.5 \mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$, DMF (2.6 mL) and ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}$ ($3.85 \mathrm{~mL}, 22.1 \mathrm{mmol}$). The resulting mixture was stirred at ambient temperature for 5 min then cooled to $-40^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $93(2.60 \mathrm{~g}, 8.83$ $\mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride ($1.54 \mathrm{ml}, 17.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.3 \mathrm{~mL})$ over 6 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-40^{\circ} \mathrm{C}$. The reaction mixture was quenched with ether and the white precipitate filtered off over a plug of silica which was eluted with ether. The filtrate was then concentrated in vacuo and the resulting residue purified via silica gel chromatography (9:1/hexanes:ethyl acetate) to yield $2.32 \mathrm{~g}(75 \%)$ of β-lactone 86: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \delta 4.34 \mathrm{ppm})$ determined the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=$ -23.3 (c 1.0, CHCl_{3}); IR (thin film) 2956, 1826, 1454, 1251, 1153, $1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.47(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=11.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{dt}, J=7.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\operatorname{app} \mathrm{p}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.02(\operatorname{app} \mathrm{pd}, J=$ $6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 171.9,138.2,128.1$ (2C), 127.4 (2C), 127.2, 75.8, 72.6, 69.4, 67.1, 47.2, 38.5, 32.0, 10.0, 8.3, 0.1 (3C) ; EI-MS m/z $350(\mathrm{M})^{+}, 305,277,237,179$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{2}\right)^{+}:$237.1311, found 237.1320.
 (3R,4S,5R,6S)-6-(2-(Benzyloxy)ethyl)-tetrahydro-4-hydroxy-3,5-dimethylpyran-2-one (94): To a solution of β-lactone $86(0.348 \mathrm{~g}$, $1.00 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at ambient temperature was added KOH ($2.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}$). The biphasic reaction mixture was stirred vigorously at ambient temperature for 8 hours. Subsequently, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and acidified to
a $\mathrm{pH}=2$ by slow addition of conc. HCl . The resulting reaction mixture was then warmed to ambient temperature and stirred vigorously for 1 hour. The reaction mixture was diluted with EtOAc (5 mL) and the layers separated. The organic layer was washed with sat. aq. NaHCO_{3} (1x) followed by $\mathrm{H}_{2} \mathrm{O}$ (1x). Subsequently, the combined aqueous layers were extracted with EtOAc (3x). The combined organic extracts were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (2:1/hexanes:ethyl acetate) to provide $0.248 \mathrm{~g}(90 \%)$ of alcohol 94: $[\alpha]_{\mathrm{D}}=-50.7\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3434 (br), 2972, 2936, 2881, 1727, 1455, 1236, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.57-4.47(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{qd}, J=7.4,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{ddt}, J=14.5,10.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.7,137.9,128.1$ (2C), 127.4 (2C), 127.3, 77.7, 72.9, 72.3, 65.8, 43.0, 34.8, 33.1, 15.4, 12.4; EI-MS m/z $278(\mathrm{M})^{+} 173,164,146$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}: 278.1518$, found 278.1510.

(3R,4S,5R,6S)-6-(2-(Benzyloxy)ethyl)-tetrahydro-4-tert-butyldim-ethylsilyloxy-3,5-dimethylpyran-2-one (95): To a solution of alcohol $94(1.20 \mathrm{~g}, 4.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.3 \mathrm{~mL})$ at ambient temperature was added 2,6 -lutidine $(0.76 \mathrm{~mL}, 6.50 \mathrm{mmol})$. The resulting reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and then TBSOTf $(1.30 \mathrm{~mL}, 5.63 \mathrm{mmol})$ was added in a slow, dropwise fashion. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hours. Subsequently, the reaction mixture was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and warmed to ambient temperature. The layers were separated and the aqueous layer was extracted with ether (3x). The combined organic extracts were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil
was purified by silica gel chromatography (5:1/hexanes:ethyl acetate) to provide $1.38 \mathrm{~g}(55 \%)$ of silyl ether 95 and $0.248 \mathrm{~g}(22 \%)$ of enoate 96. Characterization data for silyl ether $95:[\alpha]_{\mathrm{D}}=$ -23.8 (c 1.3, CHCl_{3}); IR (thin film) 2955, 2930, 2883, 2857, 1735, 1462, 1253, 1095, $1067 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 3 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 3 \mathrm{H}), 2.64$ (qd, $J=7.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,137.9,127.8(2 \mathrm{C})$, 127.0 (3C), 77.8, 73.8, 72.6, 65.6, 43.4, 33.4, 33.1, 25.3 (3C), 17.5, 15.7, 13.4, -5.03, -5.26; EIMS m/z $335\left(\mathrm{M}^{t} \mathrm{Bu}\right)^{+} 305,279,173$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si}$: 392.2383, found 392.2379. Characterization data for enoate 96: $[\alpha]_{\mathrm{D}}=-35.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2926, 1717, 1453, 1363, 1217, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{dd}, J=$ $2.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{td}, J=9.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.50$ (qdd, $J=7.1,4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.4,145.6,138.0,128.1$ (2C), 127.4 (3C), 126.7, 80.4, 72.8, $65.5,33.4,32.8,16.6,16.3$; EI-MS $m / z 260()^{+} 173,154,147,125$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}$: 260.1412, found 260.1402.

(2S,3S,4S,5R)-2-(2-(Benzyloxy)ethyl)-tetrahydro-3,5-di methyl-6-oxo-2H-pyran-4-yl 3,5-dinitrobenzoate (97): To a solution of alcohol $94(0.109 \mathrm{~g}, 0.390 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.5 \mathrm{~mL})$ at ambient temperature was added DMAP $(3.0 \mathrm{mg})$ followed by 3,5-dinitrobenzoyl chloride $(0.117 \mathrm{~g}, 0.510$
$\mathrm{mmol})$. The reaction mixture was then treated with triethylamine $(82 \mu \mathrm{~L}, 0.590 \mathrm{mmol})$ and was subsequently stirred at ambient temperature overnight. Quenched the reaction by addition of sat.
aq. NaHCO_{3}, separated the layers and washed the organic layer with 1.0 M aqueous NaHSO_{4} (1x). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude residue was purified by silica gel chromatography (4:1/hexanes:ethyl acetate) to provide $0.150 \mathrm{~g}(81 \%)$ of δ-lactone $97:[\alpha]_{\mathrm{D}}=$ -26.1 (c 0.9, CHCl_{3}); IR (thin film) 3100, 2936, 1735, 1628, 1545, 1459, 1345, $1275 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 9.28-9.27(\mathrm{~m}, 1 \mathrm{H}), 9.12-9.11(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.29(\mathrm{app}$ $\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{td}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{qd}, J=7.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dqd}, J=10.4,6.9,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.21-2.10 (m, 1H), $1.92(\mathrm{ddt}, J=13.9,9.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.7,161.9,148.6$ (2C), 138.0, 132.9, 129.2 (2C), 128.3 (2C), 127.5 (3C), 122.7, 77.9, 77.7, 73.2, 65.3, 39.9, 33.7, 33.4, 15.6, 12.6; EI-MS m/z 472 $(\mathrm{M})^{+} 455,422,293,260,212$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9}$: 472.1482, found 472.1469. An xray crystal structure of the title compound was obtained from crystals grown via slow vapor diffusion using hexanes and ethyl acetate as the recrystallization solvents.

(3R,4S,5R,6S)-6-(2-(Hydroxy)ethyl)-tetrahydro-4-tert-butyldimet-hylsilyloxy-3,5-dimethylpyran-2-one (98): To a solution of benzyl ether $95(1.35 \mathrm{~g}, 3.44 \mathrm{mmol})$ in ethyl acetate $(7.4 \mathrm{~mL})$ at ambient temperature was added $\mathrm{Pd} / \mathrm{C}(10 \%$ activated, 0.370 g$)$. The atmosphere was evacuated and refilled with $\mathrm{H}_{2(\mathrm{~g})}(3 \mathrm{x})$ and then vigorously stirred at ambient temperature overnight. The heterogeneous reaction mixture was filtered over a plug of celite and the filtrate concentrated in vacuo. The crude residue was purified by silica gel chromatography (2:1/hexanes:ethyl acetate) to provide $0.936 \mathrm{~g}(90 \%)$ of alcohol 98: $[\alpha]_{\mathrm{D}}=-18.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3442(\mathrm{br})$,

2955, 2884, 2857, 1731, 1462, 1252, 1098, $1055 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.52(\mathrm{td}, J$ $=9.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{app} \mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{qd}, J=7.6,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0,79.0,74.1,58.7$, 43.7, 35.9, 34.0, 25.6 (3C), 17.8, 16.1, 13.8, -4.7, -4.9; EI-MS m/z 303 (M) ${ }^{+}$287, 257, 245, 215, 189; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{t} \mathrm{Bu}\right)^{+}: 245.1209$, found 245.1202.

(2R,3S,4S,5S)-7-(Benzyloxy)-3,5-bis-(tert-butyldimethylsil-yloxy)- N-methoxy- N,2,4-trimethylheptanamide (101): To a $0{ }^{\circ} \mathrm{C}$ mixture of N, O-dimethylhydroxylamine hydrochloride ($0.254 \mathrm{~g}, 2.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.3 \mathrm{~mL})$ was added dimethylaluminum chloride ($2.60 \mathrm{~mL}, 2.60$ mmol, 1.0 M in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and was stirred for 2 h . Subsequently, the homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$. To the resulting solution was added a solution of β-lactone $86(0.304 \mathrm{~g}, 0.870 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ via syringe. The reaction mixture was then warmed to ambient temperature and allowed to stir for 2 h . Cooled the reaction mixture once again to $0^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer $(\mathrm{pH}=$ 7). The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were then separated and the aqueous extracted with EtOAc (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a solution of the crude residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at ambient temperature was added 2,6-lutidine ($0.30 \mathrm{~mL}, 2.60 \mathrm{mmol}$). Subsequently, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$
and TBSOTf $(0.50 \mathrm{~mL}, 2.17 \mathrm{mmol})$ was added in a dropwise fashion. The resulting solution was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was quenched by addition of saturated aqueous NaHCO_{3}, the layers separated and the organic layer washed with 1.0 M aqueous NaHSO_{4} (1x). The combined aqueous layers were then extracted with EtOAc (3x) and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (6:1/hexanes:ethyl acetate) to provide 0.431 g (88% over 2 steps) of silyl ether 101: $[\alpha]_{\mathrm{D}}=-22.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2955, 2929, 2885, 2856, 1667, 1471, 1254, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2$ H), 4.03 (ddd, $J=10.0,4.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=6.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.49$ $(\mathrm{m}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,138.4,128.1$ (2C), 127.6 (2C), 127.3, 74.3, 72.9, 68.7, 67.8, 60.5, 43.4, 39.2, 32.0, 31.6, 26.1 (3C), 25.8 (3C), 18.2, 17.9, 11.6, 10.4, -3.6, -4.1, $-4.5,-5.0$; ESI-MS HRMS calcd for $\mathrm{C}_{30} \mathrm{H}_{57} \mathrm{NNaO}_{5} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 590.3673$, found 590.3616 .

(2R,3S,4S,5S)-6-Formyl-3,5-bis-(tert-butyldimethylsilyloxy)-N-methoxy- $N, 2,4$-trimethylhexanamide (99): To a solution of benzyl ether $101(0.353 \mathrm{~g}, 0.620 \mathrm{mmol})$ in ethyl acetate $(2.2 \mathrm{~mL})$ at ambient temperature was added $\mathrm{Pd} / \mathrm{C}(10 \%$ activated, 0.084 g$)$. The atmosphere was evacuated and refilled with $\mathrm{H}_{2(\mathrm{~g})}$ (3x) and then vigorously stirred at ambient temperature for 2 h . The heterogeneous reaction mixture was filtered over a plug of celite and the filtrate concentrated in vacuo.

To a solution of the crude residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.2 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(0.157 \mathrm{~g}, 1.87$ $\mathrm{mmol})$. Subsequently, cooled the reaction mixture to $0{ }^{\circ} \mathrm{C}$ and added DMP $(0.304 \mathrm{~g}, 0.716$
mmol). The resulting mixture was warmed to ambient temperature and stirred for 2 h . The reaction was quenched by addition of hexanes $(6 \mathrm{~mL})$ and filtered over a plug of florisil which was washed with a solution of $4: 1 /$ hexanes:EtOAc. Concentrated the filtrate in vacuo and purified the crude residue by silica gel chromatography (4:1/hexanes:ethyl acetate) to provide $0.260 \mathrm{~g}(88 \%$ over 2 steps $)$ of aldehyde 99: $[\alpha]_{\mathrm{D}}=-22.3\left(c \quad 1.1, \mathrm{CHCl}_{3}\right) ;$ IR (thin film) 2955 , 2930, 2886, 2857, 1728, 1667, 1471, 1463, 1254, 1087, 1055, 1022, $1004 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.80(\operatorname{appt} \mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dt}, J=8.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\operatorname{app} \mathrm{t}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{app} \mathrm{p}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{dp}, J=$ $11.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 202.4,175.6,74.8,67.3,60.8,46.5,43.2$, 39.3, 31.9, 26.1 (3C), 25.5 (3C), 18.2, 17.7, 12.9, 10.6, -3.4, -4.1, -4.5, -5.1; EI-MS m/z 460 $(\mathrm{M}-\mathrm{Me})^{+}, 418,300,286,260,197$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{49} \mathrm{NO}_{5} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Me})^{+}: 460.2915$, found 460.2906 .

(3R,4S)-4-((S)-1-(tert-Butyldimethylsilyloxy)propan-2-yl)-3-methyloxet-an-2-one (89): A flame-dried round bottom flask was charged with TMSquinine ($63 \mathrm{mg}, 0.160 \mathrm{mmol}$) and $\operatorname{LiI}(0.428 \mathrm{~g}, 3.20 \mathrm{mmol})$. To the mixture of solids was sequentially added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ and ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(0.70 \mathrm{~mL}, 4.00$ mmol). The resulting mixture was stirred at ambient temperature for 5 min then cooled to -78 ${ }^{\circ} \mathrm{C}$. To the reaction mixture was added aldehyde $102(0.323 \mathrm{~g}, 1.60 \mathrm{mmol})$ followed by dropwise addition of a solution of propionyl chloride ($0.28 \mathrm{~mL}, 3.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ over 1.5 h . The heterogeneous reaction mixture was stirred vigorously overnight at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched with ether and the white precipitate was filtered off over a plug
of silica which was eluted with ether. The filtrate was then concentrated in vacuo and the resulting residue purified via silica gel chromatography (19:1/hexanes:ethyl acetate) to yield $0.318 \mathrm{~g}(77 \%)$ of β-lactone 89: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \delta$ $4.42 \mathrm{ppm})$ determined the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=-25.1(\mathrm{c}$ $1.0, \mathrm{CHCl}_{3}$); IR (thin film) 2955, 2930, 2889, 2857, 1828, 1471, 1255, $1117 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.42(\mathrm{dd}, J=11.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{qd}, J=7.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}$, 2H), $1.97(\mathrm{qdd}, J=6.7,4.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (s, 9H), $0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.4,75.8,63.5,46.6,35.7,25.7(3 \mathrm{C}), 18.1$, 12.2, 8.4, -5.6, -5.7; EI-MS e/v $243(\mathrm{M}-\mathrm{Me})^{+}, 201,187,171,157,145$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}-\mathrm{Me})^{+}: 243.1416$, found 243.1433 .

(2R,3S,4S)-5-(tert-Butyldimethylsilyloxy)-3-hydroxy- N-methoxy$N, 2,4$-trimethylpentanamide (103): To a $0{ }^{\circ} \mathrm{C}$ mixture of $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride ($2.76 \mathrm{~g}, 28.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added dimethylaluminum chloride ($28.2 \mathrm{~mL}, 28.2 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 2 h . Subsequently, the homogenous solution was cooled to $-30^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. To the resulting solution was added a solution of β-lactone $89(3.65 \mathrm{~g}, 14.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) via syringe. The reaction mixture was then allowed to stir at $-30^{\circ} \mathrm{C}$ until complete consumption of the starting material (monitored by TLC). Cooled the reaction mixture once again to $0{ }^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer $(\mathrm{pH}=7)$. The resulting biphasic mixture was warmed to ambient temperature and stirred vigorously for 1 h . The layers of the mixture were then separated and the aqueous extracted with EtOAc (3x). The combined
organic extracts were washed with brine $(1 \mathrm{x})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography ($3: 1 /$ hexanes:ethyl acetate) to provide $4.09 \mathrm{~g}(91 \%)$ of amide 103: $[\alpha]_{\mathrm{D}}=-8.1\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3468,2957,2857$, 1639, 1462, 1254, $1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.00(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.67$ $(\mathrm{m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.08-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.3$, $73.2,64.9,60.8,37.0,36.2,31.4,25.4$ (3C), 17.6, 13.3, 10.2, -6.0 (2C); EI-MS m/z 304 $(\mathrm{M}-\mathrm{Me})^{+}, 285,262,232,201,145$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{Si}(\mathrm{M}-\mathrm{Me})^{+}: 304.1944$, found 304.1946.
 $\mathrm{g}, 5.01 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.6 \mathrm{~mL})$ at ambient temperature was added 2,6-lutidine $(0.94 \mathrm{~mL}$, $8.01 \mathrm{mmol})$. Subsequently, the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\operatorname{TBSOTf}(1.50 \mathrm{~mL}$, 6.51 mmol) was added in a dropwise fashion. The resulting solution was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was then quenched by addition of saturated aqueous NaHCO_{3}. The layers were separated and the organic layer washed with 1.0 M aqueous NaHSO_{4} (1x). The combined aqueous layers were then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (7:1/hexanes:ethyl acetate) to provide $2.12 \mathrm{~g}(98 \%)$ of silyl ether 88: $[\alpha]_{\mathrm{D}}=-11.0\left(c 1.5, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2956, 2929, 2885, 2857, 1668, 1471, 1255, $1086 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.95(\mathrm{dd}, J=7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.9,4.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{dd}, J=9.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{tqd}, J$
$=8.3,6.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.0,74.3,64.4$, $60.5,41.3,38.3,31.7,25.7$ (3C), 25.5 (3C), 17.8, 17.7, 13.8, 13.2, -4.4, -4.6, -5.8 (2C); EI-MS $m / z 418(\mathrm{M}-\mathrm{Me})^{+}, 376,260,204,185 ;$ HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{NO}_{4} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Me})^{+}: 418.2809$, found 418.2801.

(2R,3S,4S)-3,5-Bis(tert-butyldimethylsilyloxy)-2,4-dimethylpentanal
(104): To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $88(2.12 \mathrm{~g}, 4.89 \mathrm{mmol})$ in THF $(47 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(9.80 \mathrm{~mL}, 9.78 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts (30 mL) was added. The biphasic mixture was allowed to warm to ambient temperature and stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (24:1/hexanes:ethyl acetate) to provide 1.83 g (quantitative) of aldehyde 104: $[\alpha]_{\mathrm{D}}=-36.5\left(c 1.26, \mathrm{CHCl}_{3}\right) ;$ IR (thin film) 2956, 2929, 2884, 2857, 1729, 1472, 1254, 1091 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=10.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{qd}, J=6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (app. sept., $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.91(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}$, $6 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.9,71.4,64.4,49.5,40.3,25.7$ (3C), 25.6 (3C), 18.0 (2C), 13.4, 7.6, -4.4, -4.5, -5.5, -5.7; EI-MS m/z $317\left(\mathrm{M}^{\mathrm{t}} \mathrm{Bu}\right)^{+}, 259,201,185$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}_{2}\left(\mathrm{M}^{-t} \mathrm{Bu}\right)^{+}: 317.1968$, found 317.1981.

1-((R)-4-Benzyl-2-thioxooxazolidin-3-yl)propan-1-one: ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.95(\mathrm{ddt}, J=10.2,6.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.26(\mathrm{~m}$, $2 \mathrm{H}), 3.43(\mathrm{dq}, J=18.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=13.2,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.24(\operatorname{app~t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.9,174.2,134.9,129.0$ (2C), 128.5 (2C), 126.9, 70.0, 59.4, 37.1, 31.0, 8.1.

(2R,3S,4S,5S,6S)-1-((R)-4-Benzyl-2-thioxooxazolidin-3-yl)-
5,7-bis(tert-butyldimethylsilyloxy)-3-hydroxy-2,4,6-trimet-hylheptan-1-one (105): To a solution of oxazolidinethione $(0.082 \mathrm{~g}, 0.330 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TiCl}_{4}(0.330 \mathrm{~mL}, 0.330 \mathrm{mmol}, 1.0$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the resulting yellow, homogenous solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 5 minutes. Subsequently, to the reaction mixture was added (-)-sparteine ($0.190 \mathrm{~mL}, 0.825 \mathrm{mmol}$) in a dropwise fashion and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 20 minutes. To the deep-red reaction mixture was added a solution of aldehyde $104(0.110 \mathrm{~g}, 0.300 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and the resulting reaction mixture allowed to stir at $0^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched by addition of half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, the layers separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (10:1/hexanes:ethyl acetate) to provide 0.171 g (91\%) of alcohol 105: Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) determined the title compound was produced as a single diastereomer; $[\alpha]_{\mathrm{D}}=-39.2\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3534, 2955, 2929, 2884, 2856, 1678, 1497, 1368, 1318, $1087 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.96$ (ddt, $J=10.2,6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{qd}, J=6.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{ddd}, J=6.2$,
$4.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=10.0$,
$6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=13.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=13.3,10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91$ (app sept., $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{pd}, J=6.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.90(\mathrm{~m}, 21 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 184.1,178.0,135.0,129.0$ (2C), 128.6 (2C), 127.0, 73.9, 73.0, 69.8, 64.8 , $59.4,40.1,39.8,37.7,37.1,25.7$ (3C), 25.6 (3C), 18.0, 17.9, 13.7, 11.9, 9.1, $-4.2,-4.3,-5.6$, -5.7; ESI-MS HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{57} \mathrm{NNaO}_{5} \mathrm{SSi}_{2}(\mathrm{M}+\mathrm{Na})^{+}: 646.3394$, found 646.3387 .

(2R,3S,4R,5S,6S)-1-((R)-4-Benzyl-2-thioxooxazolidin-3-yl)-3,5,7-tris(tert-butyldimethylsilyloxy)-2,4,6-trimethylheptan -1-one (106): To a solution of alcohol $105(2.05 \mathrm{~g}, 3.29 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12.2 \mathrm{~mL})$ at ambient temperature was added 2,6 -lutidine $(0.61 \mathrm{~mL}, 5.26 \mathrm{mmol})$. Subsequently, the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and $\operatorname{TBSOTf}(1.00 \mathrm{~mL}, 4.28 \mathrm{mmol})$ was added in a dropwise fashion. The resulting solution was warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction mixture was quenched by addition of saturated aqueous NaHCO_{3}, the layers separated and the organic layer washed with 1.0 M aqueous NaHSO_{4} (1x). The combined aqueous layers were then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic extracts dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (15:1/hexanes:ethyl acetate) to provide $2.30 \mathrm{~g}(95 \%)$ of silyl ether 106: $[\alpha]_{\mathrm{D}}=$ -58.3 (с $0.5, \mathrm{CHCl}_{3}$); IR (thin film) 2927, 2856, 1693, 1471, 1361, 1252, 1186, $1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.95-4.85(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{dd}, J$ $=6.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=7.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{app} \mathrm{t}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=13.1,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H})$,
$1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.92-0.90(\mathrm{~m}$, $21 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.4,176.6,135.0$, 129.2 (2C), 128.8 (2C), 127.2, 75.9, 73.6, 69.7, 63.8, 59.9, 42.3, 41.6, 38.8, 37.4, 26.2 (6C), 25.9 (3C), 18.5, 18.4, 18.2, 15.9, 14.7, 11.5, -3.2, $-3.3,-3.5,-3.6,-5.3$ (2C); ESI-MS HRMS calcd for $\mathrm{C}_{38} \mathrm{H}_{71} \mathrm{NNaO}_{5} \mathrm{SSi}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 760.4258$, found 760.4280.

(2S,3R,4S,5S,6S)-3,5,7-Tris(tert-butyldimethylsilyloxy)-2,4,6-trim-
ethylheptan-1-ol (107): To a solution of oxazolidinethione 106 $(0.190 \mathrm{~g}, 0.260 \mathrm{mmol})$ in $\mathrm{THF}(1.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{MeOH}(21 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$. Subsequently, $\mathrm{LiBH}_{4}(0.26 \mathrm{~mL}, 0.52 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) was added to the reaction mixture in a dropwise fashion. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h , after which it was warmed to ambient temperature and stirred an additional 2 h . The reaction was quenched by the addition of saturated aqueous Rochelle's salts and stirred vigorously at ambient temperature for 1h. The layers were then separated and the aqueous layer extracted with ether (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (20:1/hexanes:ethyl acetate) to provide 0.119 $\mathrm{g}(83 \%)$ of alcohol 107: $[\alpha]_{\mathrm{D}}=-2.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3456(\mathrm{br} \mathrm{s}), 2956,2885,2857$, 1472, 1463, 1255, 1092, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.49(\mathrm{dt}$, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.65(\operatorname{app} \mathrm{t}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 0.97(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 18 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08-0.04(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 74.1,73.7,66.0,65.1,41.0,39.5,38.3,26.2$ (3C), 26.1 (3C), 25.9 (3C), 18.4 (2C), 18.2, 14.7, 12.1, 10.7, -3.3, $-3.5,-3.8,-3.9,-5.3,-5.4$; EI-MS m/z $491\left(\mathrm{M}^{\mathrm{t}} \mathrm{Bu}^{+}, 401\right.$, 359, 317, 243; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{55} \mathrm{O}_{4} \mathrm{Si}_{3}\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)^{+}: 491.3408$, found 491.3416 .

1-(((2S,3S,4R,5S,6R)-3,5-Bis(tert-butyldimethylsilyloxy)-7-iodo-2, 4,6-trimethylheptyloxy)methyl)benzene (85): To a solution of PPh_{3} ($0.054 \mathrm{~g}, 0.206 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{I}_{2}(0.052 \mathrm{~g}, 0.206 \mathrm{mmol})$. The heterogeneous solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. Subsequently, a solution of alcohol $107(0.075 \mathrm{~g}, 0.137 \mathrm{mmol})$ and imidazole $(0.027 \mathrm{~g}, 0.400 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was cannulated into the reaction mixture and the resulting mixture was warmed to ambient temperature and stirred for 6 hours. The reaction was quenched by the addition of saturated aqueous NaHCO_{3}, the layers separated and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to provide 0.064 $\mathrm{g}(71 \%)$ of iodide 85: $[\alpha]_{\mathrm{D}}=+4.3\left(c 1.6, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2956, 2929, 2885, 2857, 1471, 1256, 1089, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.65-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=10.0$, 6.3, Hz 1H), $3.41(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=9.4,7.8$ Hz, 1H), 2.15-2.00 (m, 1H), 1.87-1.76 (m, 2H), 0.98 (d, J = 6.7 Hz, 3H), 0.95-0.88 (m, 33H), $0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 76.0,73.6$, 65.1, 41.6, 40.8, 39.0, 26.3 (3C), 26.2 (3C), 26.0 (3C), 18.6, 18.5, 18.3, 14.2, 14.1, 14.0, 12.4, $-3.2,-3.3,-3.4,-3.8,-5.2,-5.3 ;$ EI-MS m/z $643(\mathrm{M}-\mathrm{Me})^{+}, 601,511,469,429,395,358,341$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{IO}_{3} \mathrm{Si}_{3}\left(\mathrm{M}^{-} \mathrm{Bu}^{+}:\right.$: 601.2425, found 601.2443.
 dimethylhydroxylamine hydrochloride ($3.74 \mathrm{~g}, 38.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(68 \mathrm{~mL})$ was added
dimethylaluminum chloride ($38.4 \mathrm{~mL}, 38.4 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was allowed to warm to ambient temperature and stirred for 1.5 h. Subsequently, the homogenous solution was cooled to $0{ }^{\circ} \mathrm{C}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(38 \mathrm{ml})$. To the resulting solution was added a solution of β-lactone $109(7.34 \mathrm{~g}, 19.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ via syringe. The reaction mixture was then allowed to warm to ambient temperature and was stirred for 2 hours. Cooled the reaction mixture once again to $0^{\circ} \mathrm{C}$ and quenched slowly with aqueous phosphate buffer $(\mathrm{pH}=7)$. The resulting biphasic mixture was warmed to ambient temperature, the layers separated and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (3:1/hexanes:ethyl acetate) to provide $7.16 \mathrm{~g}(84 \%)$ of amide 110: $[\alpha]_{\mathrm{D}}=+2.3\left(c 0.6, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3462,2961,2932$, 1637, 1472, 1112, $1068 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}$, $6 \mathrm{H}), 4.01(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=$ $9.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.8,135.4$ (4C), 133.3 (2C), 129.4 (2C), 127.4 (4C), 73.3, 65.9, 61.1, 37.4, 36.3, 31.8, 26.7 (3C), 19.1, 13.8, 10.2; EI-MS m/z $444\left(\mathrm{M}^{+}, 386,356,308,269,239\right.$.

(2S,3R,4S)-5-(tert-Butyldiphenylsilyloxy)-3-(methoxymethoxy)-2,4-

dimethylpentan-1-ol (111): To a solution alcohol $110(2.43 \mathrm{~g}, 5.49$ $\mathrm{mmol})$ in ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(22 \mathrm{~mL})$ at ambient temperature was added TBAI ($0.202 \mathrm{~g}, 0.549 \mathrm{mmol}$). Subsequently, added freshly distilled $\mathrm{MOMCl}(2.00 \mathrm{~mL}, 27.5 \mathrm{mmol})$ and allowed the reaction mixture to stir at ambient temperature for 3 hours. After this time, another portion of MOMCl
($2.00 \mathrm{~mL}, 27.5 \mathrm{mmol}$) was added and the resulting reaction mixture allowed to stir for an additional 4 hours. Cooled the reaction mixture to $0^{\circ} \mathrm{C}$ and quenched by slow addition of 1.0 M aqueous HCl . Separated the layers and extracted the aqueous with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). Washed the combined organic extracts with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a $-78{ }^{\circ} \mathrm{C}$ solution of the crude oil in THF (72 mL) was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(7.70 \mathrm{~mL}, 7.66$ mmol, 1.0 M in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts (30 mL) was added. The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a $-78{ }^{\circ} \mathrm{C}$ solution of the crude oil in THF (72 mL) was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(7.70 \mathrm{~mL}, 7.66$ mmol, 1.0 M in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts (30 mL) was added. The biphasic mixture was allowed to warm to ambient temperature and was stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with EtOAc (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (5:1/hexanes:ethyl acetate) to provide $1.55 \mathrm{~g}(66 \%$ over 3 steps $)$ of alcohol 111: $[\alpha]_{\mathrm{D}}=+53.4\left(c \quad 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3440 , 3070, 2961, 2931, 2882, 2857, 1471, 1144, 1112, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.69-7.62 (m, 4H), 7.47-7.35 (m, 6H), $4.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-$ $3.63(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=8.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=7.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 135.4$ (2C), 135.3 (2C), 133.3, 133.2, 129.3 (2C), 127.3 (2C), 127.2 (2C), 98.2, 79.7, 65.3, 64.4, 55.4, 38.1, 36.4, 26.7 (3C), 18.9, 14.0, 9.3; ESI-MS HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 453.2437$, found 453.2395.

(2S,3S,4S)-5-(Benzyloxy)-3-(methoxymethoxy)-2,4-dimethylpentan-1-ol
(112): To a suspension of $\mathrm{NaH}(0.170 \mathrm{~g}, 7.10 \mathrm{mmol}, 60 \%$ dispersion $)$ in THF $(12 \mathrm{~mL})$ was added TBAI $(0.175 \mathrm{~g}, 0.473 \mathrm{mmol})$ followed by a solution of alcohol $111(2.04 \mathrm{~g}$, $4.73 \mathrm{mmol})$ in THF (12 mL). After stirring at ambient temperature for $0.5 \mathrm{~h}, \mathrm{BnBr}(0.730 \mathrm{~mL}$, 6.15 mmol) was then added and the reaction mixture was allowed to stir at ambient temperature overnight. The reaction was quenched by the addition of water, the layers were separated and the aqueous layer extracted with EtOAc (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a solution of the crude residue in THF $(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TBAF $(14 \mathrm{~mL}, 14.2$ mmol, 1.0 M in THF). The reaction mixture was warmed to ambient temperature and stirred for 3 hours. Subsequently, the reaction was quenched with saturated aqueous NaHCO_{3}, the layers separated and the aqueous extracted with EtOAc (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (3:1/hexanes:ethyl acetate $\rightarrow 1: 1 /$ hexanes:ethyl acetate) to provide $1.01 \mathrm{~g}\left(82 \%\right.$ over two steps) of alcohol 112: $[\alpha]_{\mathrm{D}}=-33.5\left(c 1.06, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3456,2965,2933,1454,1209,1140,1093 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.28$ (m, 5H), $4.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{ddd}, J=11.4,6.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, J=11.3,7.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})$, 3.41-3.34 (m, 2H), $2.97(\operatorname{app} \mathrm{t}, J=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0$
$\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.8,127.8$ (2C), 127.1 (2C), 127.0, 98.0, 80.6, 72.3 (2C), 64.2, 55.3, 37.2, 34.5, 13.8, 9.7; ESI-MS HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 305.1729$, found 305.1701 .

1-(((2S,3S,4S)-3-(Methoxymethoxy)-2,4-dimethylhex-5-ynyloxy)methyl)-

benzene (108): To a solution of alcohol $112(0.167 \mathrm{~g}, 0.600 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.0 \mathrm{~mL})$ was added NMO $(0.112 \mathrm{~g}, 0.950 \mathrm{mmol})$ followed by powdered $4 \AA$ molecular sieves $(0.297 \mathrm{~g})$. The mixture was allowed to stir at ambient temperature for 15 minutes, after which TPAP $\left(0.011 \mathrm{~g}, 3.0 \times 10^{-5} \mathrm{~mol}\right)$ was added in one portion. The resulting reaction mixture was stirred for 2 h at ambient temperature and subsequently filtered through a plug of florisil which was washed with a solution of $4: 1 /$ hexanes:ethyl acetate. The filtrate was concentrated in vacuo.

To a solution of diisopropylamine ($0.110 \mathrm{~mL}, 0.780 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}$ ($0.450 \mathrm{~mL}, 0.715 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) in a dropwise fashion. The homogenous solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 10 minutes before it was cooled down to $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was added $\mathrm{TMSCHN}_{2}\left(0.360 \mathrm{~mL}, 0.715 \mathrm{mmol}, 2.0 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}\right)$ and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . Subsequently, a solution of the crude residue in THF (3.2 mL) was then added and the resulting reaction mixture was allowed to warm to ambient temperature overnight. The reaction was quenched with water, the layers separated and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic extracts were washed with water (1x) and brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (24:1/hexanes:ethyl acetate) to provide 0.124 g (75% over two steps) of alkyne 108: $[\alpha]_{\mathrm{D}}=+26.6\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3290,2935,1454$, 1364, 1150, 1091, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=6.8$
$\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=5.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58$ $(\mathrm{dd}, J=9.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{dqd}, J=9.5,7.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 138.3,128.1$ (2C), 127.4 (2C), 127.3, $98.0,86.4,81.8,72.8,72.7,69.6,55.8$, 35.9, 29.5, 17.7, 11.7; EI-MS m/z 231 (M-CH2OMe) ${ }^{+}$, 223, 193, 173, 161; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OMe}\right)^{+}: 231.1385$, found 231.1390.

General procedure for addition of alkyne 108 into aldehyde 99: To a solution of alkyne 108 (3.2 equivs.) in the designated solvent at $-78^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}$ (3.0 equivs.) and the resulting reaction mixture allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes. The lithium alkynylide solution was then transferred via cannula into a $-78{ }^{\circ} \mathrm{C}$ solution of either LiBr or $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$ (3.2 equivs.) in the designated solvent and the resulting reaction mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. Subsequently, a precooled ($-78^{\circ} \mathrm{C}$) solution of aldehyde 99 (1 equiv.) in the designated solvent was cannulated into the reaction mixture and the resulting reaction mixture allowed to stir an additional 0.5 h at $-78^{\circ} \mathrm{C}$. Quenched the reaction by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and separated the layers. Extracted the aqueous with $\operatorname{EtOAc}(3 x)$ then dried the combined organic extracts over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Excess alkyne 108 was recovered by silica gel chromatography (4:1/hexanes:ethyl acetate) and the two diastereomeric alkyne addition products were collected and combined. The diastereomeric ratio was determined by HPLC analysis (column Zorbax, eluent 5.0:95.0/ PrOH :hexanes, flow rate $1 \mathrm{~mL} / \mathrm{min} ; \mathrm{T}_{\mathrm{r}}: 7.010 \mathrm{~min}$ (113, desired), 11.622 min (undesired)).

((2S,3R,4S)-3-(Methoxymethoxy)-2,4-dimethylhex-5-ynyloxy)tert-
butyldimethylsilane (116): To a $0^{\circ} \mathrm{C}$ solution of alcohol 103 (3.78 g, 11.8 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(95 \mathrm{~mL})$ was added sequentially ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(41.3 \mathrm{~mL}, 0.237 \mathrm{~mol})$, TBAI $(0.437 \mathrm{~g}, 1.18 \mathrm{mmol})$ and $\mathrm{MOMCl}(9.00 \mathrm{~mL}, 0.118 \mathrm{~mol})$. The reaction mixture was covered from light and stirred for 18 hours at ambient temperature. Quenched the reaction mixture by addition of saturated aqueous NaHCO_{3}, separated the layers and washed the organic layer with 1.0 M aqueous NaHSO_{4}. The combined aqueous layers were extracted with ether (3x) and the combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a $-78{ }^{\circ} \mathrm{C}$ solution of the crude oil in THF (116 mL) was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(17.8 \mathrm{~mL}, 17.8$ mmol, 1.0 M in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78{ }^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts (60 mL) was added. The biphasic mixture was allowed to warm to ambient temperature and stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a solution of diisopropylamine ($2.20 \mathrm{~mL}, 15.4 \mathrm{mmol}$) in THF (39 mL) at $0{ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(8.90 \mathrm{~mL}, 14.2 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) in a dropwise fashion. The homogenous solution was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 10 mins. before it was cooled down to $-78{ }^{\circ} \mathrm{C}$. To the reaction mixture was then added $\mathrm{TMSCHN}_{2}\left(7.10 \mathrm{~mL}, 14.2 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ and the resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . Subsequently, a solution of the crude residue in THF (64 mL) was then added and the resulting reaction mixture was allowed to warm to ambient temperature overnight. The reaction was quenched with water, the layers were separated and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with water (1x)
and brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide 2.53 g (71% over 3 steps) of alkyne 116: $[\alpha]_{\mathrm{D}}=-32.0\left(c 0.8, \mathrm{CHCl}_{3}\right)$; IR (thin film) 3312, 2955, 2929, 2884, 2857, 1471, 1090, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=9.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\operatorname{appt} \mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{dp}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 98.2,87.4,83.1,70.0,64.9,56.3,38.8,29.0,26.2$ (3C), 18.5, 16.5, 14.7, 5.2 (2C); EIMS m/z $269(\mathrm{M}-\mathrm{OMe})^{+}, 255,247,213,201,145$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}-\mathrm{OMe})^{+}$: 269.1937, found 269.1954.

OMBS solution of alkyne $116(1.02 \mathrm{~g}, 3.39 \mathrm{mmol})$ in THF $(5.1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(2.40$ $\mathrm{mL}, 3.73 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexanes) in a dropwise fashion. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Freshly distilled $\mathrm{TMSCl}(0.52 \mathrm{~mL}, 4.07 \mathrm{mmol})$ was then added and the reaction mixture was warmed to ambient temperature and stirred for 2 hours. The reaction was quenched by the addition of water, the layers were separated and the aqueous extracted with ether (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (30:1/hexanes:ethyl acetate) to provide $1.00 \mathrm{~g}(80 \%)$ of alkyne 117: $[\alpha]_{\mathrm{D}}=-33.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2957, 2929, 2885, 2857, 2167, 1471, 1250, 1090, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=9.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$
(dd, $J=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{dq}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 110.1,98.1,85.6,82.9,64.8,56.2,38.7,29.7,25.9$ (3C), 18.3, 16.2, 14.3, 0.06 (3C), $-5.4(2 \mathrm{C})$; EI-MS m/z $341(\mathrm{M}-\mathrm{OMe})^{+}, 315,295,283,247,201$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}_{2}(\mathrm{M}-\mathrm{Bu})^{+}: 315.1812$, found 315.1814.

(3R,4S,5S)-Tetrahydro-4-tert-butyldimethylsilyloxy-3,5-dimethylpyran-2one (121): To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $\mathbf{8 8}(1.06 \mathrm{~g}, 2.44 \mathrm{mmol})$ in $\mathrm{MeOH}(25$ $\mathrm{mL})$ was added conc. $\mathrm{HCl}(3.0 \mathrm{~mL})$ in a dropwise fashion. The reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hours. After that time, the reaction mixture was slowly quenched with saturated aqueous NaHCO_{3}. The layers were separated and the aqueous extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (9:1/hexanes:ethyl acetate) to provide $0.530 \mathrm{~g}(84 \%)$ of δ-lactone $121:{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.26(\operatorname{app~t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=10.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\operatorname{app} \mathrm{t}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{qd}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dqdd}, J=9.4,6.8,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 172.4,72.6,69.2,42.8,29.5,24.9$ (3C), 17.1, 15.2, 11.1, -5.5, -5.6.

$0.390 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ at ambient temperature was added $(\mathrm{MeO}) \mathrm{NHMe} \cdot \mathrm{HCl}(0.059 \mathrm{~g}$, 0.600 mmol) in one portion. Cooled the resulting heterogeneous mixture to $-15^{\circ} \mathrm{C}$ and added a
solution of ${ }^{i} \mathrm{PrMgCl}(0.580 \mathrm{~mL}, 1.16 \mathrm{mmol}, 2.0 \mathrm{M}$ in THF) in a slow, dropwise fashion. After complete addition, the reaction mixture was stirred an additional 1.5 h at $-15^{\circ} \mathrm{C}$ before being diluted with ether and quenched with a solution of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1$ mL). Warmed the biphasic mixture to ambient temperature and stirred until all the salts dissolved. The layers were then separated and the aqueous extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic extracts were washed with brine (1x), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

To a solution of crude residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TEA (0.22 mL) followed by DMSO (0.8 mL). Subsequently added $\mathrm{SO}_{3} \cdot \operatorname{pyr}(0.185 \mathrm{~g}, 1.16 \mathrm{mmol})$ in one portion and stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Diluted the reaction mixture with ether and then quenched by dropwise addition of 1.0 M aqueous $\mathrm{NaHSO}_{4}(1.4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ afterwards stirring the resulting biphasic mixture at $0^{\circ} \mathrm{C}$ for 15 minutes. The layers were separated and the aqueous layer extracted with ether (3x). The combined organic extracts were washed with a solution of saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (6:1/hexanes:ethyl acetate) to provide 0.097 g (79% over 2 steps) of aldehyde 123: m.p. 41-43 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-64.2\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) 2936, 2885, 2857, 1723, 1655, 1462, 1256, 1101, 1077, $1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.0,2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 201.4,174.6,74.2,60.7,51.3,38.6,31.2,25.2(3 C), 17.4,14.4,9.2,-4.9,-5.0 ;$ ESIMS HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{NNaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 340.1920$, found 340.1933.

(2R,3S,4S)-3-tert-Butyldimethylsilyloxy- N-methoxy- $N, 2,4$-trimethy-
lhex-5-ynamide (124): To a solution of aldehyde 123 (1.50 g, 4.74 $\mathrm{mmol})$ and Ohira's reagent ($2.00 \mathrm{~g}, 10.4 \mathrm{mmol}$) in ${ }^{i} \mathrm{PrOH}(66 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(4.63 \mathrm{~g}, 14.2 \mathrm{mmol})$ in one portion. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour then warmed to ambient temperature and stirred an additional 11 hours. Subsequently cooled the reaction mixture to $0{ }^{\circ} \mathrm{C}$ and quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The layers were separated and the aqueous layer extracted with EtOAc (3x). The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude oil was purified by silica gel chromatography (8:1/hexanes:ethyl acetate) to provide $1.46 \mathrm{~g}(97 \%)$ of alkyne 124: $[\alpha]_{\mathrm{D}}=-29.7$ (c 1.0, CHCl_{3}); IR (thin film) 3310, 3250, 2936, 2894, 2856, 1655, 1461, 1254, $1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.93(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.18$ (s, 3H), 2.62 (qdd, $J=7.1,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1,85.3$, $74.9,70.0,61.0,39.5,31.7,31.3,25.6$ (3C), 17.9, 17.4, 14.8, $-3.9,-4.4$; mass spectroscopy data pending.

(2R,3S,4S)-3-tert-Butyldimethylsilyloxy-2,4-dimethylhex-5-ynal (125):
To a $-78{ }^{\circ} \mathrm{C}$ solution of amide $124(0.314 \mathrm{~g}, 1.00 \mathrm{mmol})$ in THF $(7.4 \mathrm{~mL})$ was added ${ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(1.40 \mathrm{~mL}, 1.40 \mathrm{mmol}, 1.0 \mathrm{M}$ in hexanes) in a slow, dropwise fashion. The resulting solution was maintained at $-78^{\circ} \mathrm{C}$ for 2 h after which saturated aqueous Rochelle's salts was added. The biphasic mixture was allowed to warm to ambient temperature and stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with ether (3x). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude
oil was purified by silica gel chromatography (50:1/hexanes:ethyl acetate) to provide 0.201 g (79%) of aldehyde 125: $[\alpha]_{\mathrm{D}}=-48.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (thin film) $3311,2955,2931,1724$, 1472, 1254, 1089, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.90(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{app}$ $\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.7$, 85.4, 73.6, 71.7, 50.4, 31.0, 25.7 (3C), 18.1, 16.9, 9.4, $-4.4,-4.5$; mass spectroscopy data pending.

((Z,3S,4R,5S)-7-iodo-3,5-dimethyloct-6-en-1-yn-4-yloxy)tert-butyldimethylsilane (84): A suspension of ethyltriphenylphosphonium iodide ($0.594 \mathrm{~g}, 1.42 \mathrm{mmol}$) in THF $(6.0 \mathrm{~mL})$ at ambient temperature was treated dropwise with NaHMDS ($1.50 \mathrm{~mL}, 1.50 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF). The reaction mixture immediately turned orange. The resulting mixture was stirred at ambient temperature for 0.5 h before being added over a 1 h time period to a solution of iodine $(0.360 \mathrm{~g}, 1.42 \mathrm{mmol})$ in THF $(12 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting phosphonium salt 126 precipitated as a brown solid. After stirring the suspension at $-78{ }^{\circ} \mathrm{C}$ for 15 minutes, NaHMDS ($1.40 \mathrm{~mL}, 1.42 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added in a dropwise fashion and the reaction mixture gradually cleared and became red. The homogenous solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 0.5 h after which a precooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of aldehyde $125(0.201 \mathrm{~g}, 0.790 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added. The resulting reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 h before it was warmed to $-20^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(65 \mu \mathrm{~L})$. The beige suspension was partially concentrated to 18 mL of distillate then diluted with pentane $(6 \mathrm{~mL})$. The mixture was partially concentrated again to 6 mL , then filtered and the filtercake washed with pentanes. Concentrated the filtrate in vacuo and purified the residue via
column chromatography (100:1/hexanes:ethyl acetate) to yield $65 \mathrm{mg}(21 \%)$ of iodide $\mathbf{8 4}$ as an inseparable mixture of olefin isomers. Diastereomeric ratio determined by crude ${ }^{1} \mathrm{H}$ NMR (300 MHz): 90.9\% ($\delta 3.62 \mathrm{ppm}): 9.1 \%(\delta 3.41 \mathrm{ppm}) /(Z)$-vinyl iodide 84 (title compound) : (E) vinyl iodide. Characterization data for (Z)-vinyl iodide 84 (title compound): $[\alpha]_{\mathrm{D}}=+39.1$ (c 1.0, CHCl_{3}); IR (thin film) 3310, 2956, 2929, 2856, 1471, 1252, $1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 5.42(\mathrm{dd}, J=8.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\operatorname{app} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~d}$, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (s, 9H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.9,99.4,87.0,70.3,45.1$, 33.6, 31.7, 30.3, 26.0 (3C), 18.3, 17.0, 14.9, -3.9, -4.0 ; mass spectroscopy data pending.

APPENDIX A

BIBLIOGRAPHY

${ }^{1}$ Banerji, A.; Majumder, P. L.; Chatterjee, A. G. Phytochemistry 1970, 9, 1491-1493.
${ }^{2}$ Linde, H. H. A. Helv. Chim. Acta. 1965, 48, 1822-1842.
${ }^{3}$ Thoison, O.; Guénard, D.; Sévenet, T.; Kan-Fan, C.; Quirion, J.-C.; Husson, H.-P.; Deverre, J.R.; Chan, K. C.; Potier, P. C. R. Acad. Sci. Paris II 1987, 304, 157-160.
${ }^{4}$ Abraham, D. J.; Rosenstein, R. D. Tetrahedron Lett. 1972, 13, 909-912.
${ }^{5}$ De Silva, K. T.; Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1972, 13, 913916.
${ }^{6}$ Lévy, J.; Soufyane, M.; Mirand, C.; de Maindreville, M. D.; Royer, D. Tetrahedron: Asymm. 1997, 8, 4127-4133.
${ }^{7}$ Goh, S. H.; Ali, A. R. M.; Wong, W. H. Tetrahedron 1989, 45, 7899-7920.
${ }^{8}$ (a) David, B.; Sévenet, T.; Morgat, M.; Guénard, D.; Moisand, A.; Tollon, Y.; Thoison, O.; Wright, M. Cell Motil. Cytoskeleton 1994, 28, 317-326. (b) Banwell, M.; Edwards, A.; Smith, J.; Hamel, E.; Verdier-Pinard, P. J. Chem. Soc., Perkin Trans. 1, 2000, 1497-1499.
${ }^{9}$ Dupont, C.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Biorg. Med. Chem. 1999, 7, 2961-2969.
${ }^{10}$ (a) David, B.; Sévenet, T.; Thoison, O.; Awang, K.; Païs, M.; Wright, M.; Guénard, D. Biorg. Med. Chem. Lett. 1997, 7, 2155-2158. (b) Pascal, C.; Dubois, J.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Tetrahedron 1998, 54, 14737-14756. (c) Dupont, C.; Guénard, D.; Thal, C.; Thoret, S.; Guéritte, F. Tetrahedron Lett. 2000, 41, 5853-5856. (d) Alazard, J.-P.; Millet-Paillusson, C.; Boyé, O.; Guénard, D.; Chiaroni, A.; Riche, C.; Thal, C. Biorg. Med. Chem. Lett. 1991, 1, 725-728. (e) Pascal, C.; Dubois, J.; Guénard, D.; Guéritte, F. J. Org. Chem. 1998, 63, 6414-6420.
${ }^{11}$ Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1973, 14, 5179-5184.
${ }^{12}$ Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2000, 122, 6321-6322.
${ }^{13}$ Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900-6903.
${ }^{14}$ Magnus, P.; Rainey, T. Tetrahedron 2001, 57, 8647-8651.
${ }^{15}$ Bowie, A. L.; Hughes, C. C.; Trauner, D. Org. Lett. 2005, 7(23), 5207-5209.
${ }^{16}$ (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121, 9742-9743. (b) Nelson S. G.; Kim, B.-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318-9319. (c) Nelson S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14-15. (d) Nelson, S. G.; Cheung, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 13654-13655.
${ }^{17}$ Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470-10471.
${ }^{18}$ (a) Wasserman, H. H.; Han, W. T. Tetrahedron Lett. 1984, 25, 3743-3746. (b) Wasserman, H. H.; Cook, J. D.; Fukuyama, J. M.; Rotello, V. M. Tetrahedron Lett. 1989, 30, 1721-1724. (c) Wasserman, H.H.; Lombardo, L. J. Tetrahedron Lett. 1989, 30, 1725-1728. (d) Wasserman, H. H.; Fukuyama, J.; Murugesan, N.; van Duzer, J.; Lombardo, L.; Rotello, V.; McCarthy, K. J. Am. Chem. Soc. 1989, 111, 371-372. (e) Wasserman, H. H.; Rotello, V. M. J. Org. Chem. 1989, 54, 2785-2786. (f) Wasserman, H. H.; Cook, J. D.; Vu, C. B. Tetrahedron Lett. 1990, 31, 4945-4948. (g) Wasserman, H. H.; Kuo, G.-H. Tetrahedron 1992, 48, 7071-7082. (h) Wasserman, H. H.; Vu, C. B.; Cook, J. D. Tetrahedron 1992, 48, 2101-2112. (i) Wasserman, H. H.; Ennis, D. S.; Blum, C. A.; Rotello, V. M. Tetrahedron Lett. 1992, 33, 6003-6006. (j) Wasserman, H. H.; Blum, C. A. Tetrahedron Lett. 1994, 35, 9787-9790. (k) Wasserman, H. H.; Baldino, C. M.; Coats, S. J. J. Org. Chem. 1995, 60, 8231-8235.
${ }^{19}$ This ylide is commercially available but can also be made easily on large scale $(25 \mathrm{~g}-30 \mathrm{~g}, 97 \%$ yield); Cooke, Jr., M. P.; Burman, D. L. J. Org. Chem. 1982, 47, 4955-4963.
${ }^{20}{ }^{1} \mathrm{H}$ NMR data for crude pyrrolone 26 can be found in the experimental section.
${ }^{21}$ Wan, Z. Ph. D. Thesis, University of Pittsburgh 2001, 121.
${ }^{22}$ The Grignard reagent produced for bromide 20 seemed to be short-lived. Even immediate use of the prepared Grignard reagent after all starting bromide was consumed (as monitored by TLC) gave only 50% of allenic acid 27 . Considerable amounts of protonated Grignard reagent, as well as some Wurtz-coupled product, were always observed.
${ }^{23}$ Zipp, G. G. Unpublished results.
${ }^{24}$ (a) Smissman, E. E; Voldeng, A. N. J. Org. Chem. 1964, 29, 3161-3165. (b) Kochhar, K. S.; Pinnick, H. W. J. Org. Chem. 1984, 49, 3222-3224.
${ }^{25}$ Kochhar, K. S.; Carson, H. J.; Clouser, K. A.; Elling, J. W.; Gramens, L. A.; Parry, J. L.; Sherman, H. L.; Braat, K.; Pinnick, H. W. Tetrahedron Lett. 1984, 25, 1871-1874.
${ }^{26}$ Laffan, D. D. P.; Bänziger, M.; Duc, L.; Evans, A.; McGarrity, J. F.; Meul, T. Helv. Chem. Acta 1992, 75, 892-900.
${ }^{27}$ Based on observations made from storage, the methyl ester allene seemed to have a slower rate of decomposition than the corresponding β-allenic acid.
${ }^{28}$ Felix, A. M.; Heimer, E. P.; Lambros, T. J.; Tzougraki, C.; Meienhofer, J. J. Org Chem 1978, 43, 4194-4196.
${ }^{29}$ Characterized by ${ }^{1} \mathrm{H}$ NMR, LRMS and HRMS data.
${ }^{30}$ (a) Kalinin, A. V.; Reed, M. A.; Norman, B. H.; Snieckus, V. J. Org. Chem. 2003, 68, 59925999. (b) Kiso, Y.; Ukawa, K.; Nakamura, S.; Ito, K.; Akita, T. Chem. Pharm. Bull. 1980, 28, 673-676. (c) Matteson, D. S.; Man, H.-W.; Ho, O. C. J. Am. Chem. Soc. 1996, 118, 4560-4566. (d) Node, M.; Kodama, S.; Hamashima, Y.; Baba, T.; Hamamichi, N.; Nishide, K. Angew. Chem. Int. Ed. 2001, 40, 3060-3062.
${ }^{31}$ Verified by crude ${ }^{1} \mathrm{H}$ NMR analysis.
${ }^{32}$ Received from G. Greg Zipp.
${ }^{33}$ (a) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845-853. (b) Mowery, M. E.; DeShong, P. J. Org. Chem. 1999, 64, 3266-3270. (c) Mowery, M. E.; DeShong, P. Org. Lett. 1999, 1, 21372140. (d) DeShong, P.; Handy, C. J.; Mowery, M. E. Pure Appl. Chem. 2000, 72, 16551658. (e) Manoso, A. S.; DeShong, P. J. Org. Chem. 2001, 66, 7449-7455. (f) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res. 2002, 35, 835-846.
${ }^{34}$ H NMR data for crude pyrrolone 50 can be found in the experimental section.
${ }^{35}$ (a) Tacke, R.; Wiesenberger, F.; Lopez-Mras, A.; Sperlich, J.; Mattern, G. Z. Naturforsch 1992, 47b, 1370-1376. (b) The N-Boc aniline starting material used in the production of 53 is commercially available.
${ }^{36}$ A combination of trials were run by Zuosheng Liu, G. Greg Zipp and the author of this document. The trials depicted in Scheme 12 were run by the author of this document.
${ }^{37}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
${ }^{38}$ The β-lactone was opened via addition-elimination to the lactone carbonyl by benzylamine. The enantiomeric excess of the resulting amide was measured.
${ }^{39}$ (a) Defosseux, M.; Blanchard, N.; Meyer, C.; Cossy, J. Tetrahedron 2005, 61, 7632-7653. (b) Mochirian, P.; Cardinal-David, B.; Guérin, B.; Prévost, M.; Guidon, Y. Tetrahedron Lett. 2002, 43, 7067-7071.
${ }^{40}$ (a) Gijsen, H. J. M.; Wong, C.-H. J. Am. Chem. Soc. 1995, 117, 7585-7591. (b) Machajewski, T. D.; Wong, C.-H. Angew. Chem. Int. Ed. 2000, 39, 1352-1375.
${ }^{41}$ (a) Palomo, C.; Oiarbide, M.; García, J. M. Chem. Eur. J. 2002, 8, 36-44. (b) Palomo, C.; Oiarbide, M.; García, J. M. Chem. Soc. Rev. 2004, 33, 65-75.
${ }^{42}$ Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 1595-1601.
${ }^{43}$ Notz, W.; Tanaka, F.; Barbas III, C. F. Acc. Chem. Res. 2004, 37, 580-591.
${ }^{44}$ Northrup, A. B.; Macmillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799.
${ }^{45}$ Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.
${ }^{46}$ The studies concerning model syn-aldehyde 57 were performed by Dr. Jeff Wallace and Dr. Cheng Zhu. The matched AAC reaction with aldehyde 57 where DMF was used as the cosolvent was performed by the author of this document (see Experimental).
${ }^{47}$ The absolute stereochemistry of masked polypropionate unit 63 was unambiguously proven via x-ray crystallography following derivatization.
${ }^{48}$ Kassick, A. J. unpublished results.
${ }^{49}$ The anti-aldehyde possessing a $\beta-\mathrm{PMB}$ ether was only synthesized for testing the protecting group effect and was not characterized.
${ }^{50}$ (a) Reetz, M. T.; Kesseler, K. Jung, A. Tetrahedron 1984, 40, 4327-4336. (b) Reetz, M. T.; Kesseler, K. J. Chem. Soc., Chem. Commun. 1984, 1079-1080. (c) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
${ }^{51}$ Additional aldehydes not presented here were synthesized and tested by Ms. Junping Zhao.
${ }^{52}$ Reaction with DMF that the author of this document performed.
${ }^{53}$ In trials where one of the trans β-lactone diastereomers could be seen, the distinctive ${ }^{1} \mathrm{H}$ NMR shift and HPLC retention time of that trans-diastereomer is $\delta 4.22 \mathrm{ppm}$ and $\mathrm{T}_{\mathrm{r}}=8.955$ min , respectively.
${ }^{54}$ Paterson, I.; Florence, G. J. Eur. J. Org. Chem. 2003, 2193-2208.
${ }^{55}$ Arefolov, A.; Panek, J. S. J. Am. Chem. Soc. 2005, 127, 5596-5603.
${ }^{56}$ (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35, 243-250. (b) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R. E.; Day, B. W.; Hamel, E. Mol. Parmacol. 1997, 52, 613-622. (c) Balachandran, R.; ter Haar, E.; Welsh, M. J.; Grant, S. C.; Day, B. W. Anti-Cancr Drugs 1998, 9, 67-76.
${ }^{57}$ Paterson, I.; Lyothier, I. J. Org. Chem. 2005, 70, 5494-5507.
${ }^{58}$ Harried, S. S.; Lee, C. P; Yang, G.; Lee, T. I. H.; Myles, D. C. J. Org. Chem. 2003, 68, 66466660.
${ }^{59}$ Smith III, A. B.; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823-1826.
${ }^{60}$ Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605-2606.
${ }^{61}$ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.
${ }^{62}$ (a) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4143-4146. (b) Pu, L. Tetrahedron 2003, 59, 9873-9886. (c) Li, X.-S.; Lu, G.; Kwok, W. H.; Chan, A. S. C. J. Am. Chem. Soc. 2002, 124, 12636-12637.
${ }^{63}$ Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 1376013761.
${ }^{64}$ Alcohol 113 was not purified or fully characterized, only crude ${ }^{1} \mathrm{H}$ NMR was used.
${ }^{65}$ When this route was attempted, amide 103 was the common intermediate. Upon failure of this route, the common intermediate became amide 88 .
${ }^{66}$ Chen, J.; Zhao, K. Tetrahedron Lett. 1994, 35, 2827-2828.
${ }^{67}$ Ghosh, A.; Bischoff, A.; Cappiello, J. Eur. J. Org. Chem. 2003, 821-832.

[^0]: ${ }^{1}$ Banerji, A.; Majumder, P. L.; Chatterjee, A. G. Phytochemistry 1970, 9, 1491-1493.
 ${ }^{2}$ Linde, H. H. A. Helv. Chim. Acta. 1965, 48, 1822-1842.
 ${ }^{3}$ Thoison, O.; Guénard, D.; Sévenet, T.; Kan-Fan, C.; Quirion, J.-C.; Husson, H.-P.; Deverre, J.-R.; Chan, K. C.; Potier, P. C. R. Acad. Sci. Paris II 1987, 304, 157-160.
 ${ }^{4}$ Abraham, D. J.; Rosenstein, R. D. Tetrahedron Lett. 1972, 13, 909-912.
 ${ }^{5}$ De Silva, K. T.; Ratcliffe, A. H.; Smith, G. F.; Smith, G. N. Tetrahedron Lett. 1972, 13, 913-916.
 ${ }^{6}$ Lévy, J.; Soufyane, M.; Mirand, C.; de Maindreville, M. D.; Royer, D. Tetrahedron: Asymm. 1997, 8, 4127-4133.
 ${ }^{7}$ Goh, S. H.; Ali, A. R. M.; Wong, W. H. Tetrahedron 1989, 45, 7899-7920.

[^1]: ${ }^{12}$ Johnson, J. A.; Sames, D. J. Am. Chem. Soc. 2000, 122, 6321-6322.
 ${ }^{13}$ Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900-6903.

[^2]: ${ }^{14}$ Magnus, P.; Rainey, T. Tetrahedron 2001, 57, 8647-8651.

[^3]: ${ }^{15}$ Bowie, A. L.; Hughes, C. C.; Trauner, D. Org. Lett. 2005, 7(23), 5207-5209.

[^4]: ${ }^{16}$ (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121, 9742-9743. (b) Nelson S. G.; Kim, B.-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122, 9318-9319. (c) Nelson S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14-15. (d) Nelson, S. G.; Cheung, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 1365413655.

[^5]: ${ }^{17}$ Wan, Z.; Nelson, S. G. J. Am. Chem. Soc. 2000, 122, 10470-10471.

[^6]: ${ }^{21}$ Wan, Z. Ph. D. Thesis, University of Pittsburgh 2001, 121.
 ${ }^{22}$ The Grignard reagent produced for bromide 20 seemed to be short-lived. Even immediate use of the prepared Grignard reagent after all starting bromide was consumed (as monitored by TLC) gave only 50% of allenic acid 27 . Considerable amounts of protonated Grignard reagent, as well as some Wurtz-coupled product, were always observed.

[^7]: ${ }^{23}$ Zipp, G. G. Unpublished results.

[^8]: ${ }^{24}$ (a) Smissman, E. E; Voldeng, A. N. J. Org. Chem. 1964, 29, 3161-3165. (b) Kochhar, K. S.; Pinnick, H. W. J. Org. Chem. 1984, 49, 3222-3224.

[^9]: ${ }^{25}$ Kochhar, K. S.; Carson, H. J.; Clouser, K. A.; Elling, J. W.; Gramens, L. A.; Parry, J. L.; Sherman, H. L.; Braat, K.; Pinnick, H. W. Tetrahedron Lett. 1984, 25, 1871-1874.
 ${ }^{26}$ Laffan, D. D. P.; Bänziger, M.; Duc, L.; Evans, A.; McGarrity, J. F.; Meul, T. Helv. Chem. Acta 1992, 75, 892900.

[^10]: ${ }^{27}$ Based on observations made from storage, the methyl ester allene seemed to have a slower rate of decomposition than the corresponding β-allenic acid.

[^11]: ${ }^{29}$ Characterized by ${ }^{1} \mathrm{H}$ NMR, LRMS and HRMS data.

[^12]: ${ }^{31}$ Verified by crude ${ }^{1} \mathrm{H}$ NMR analysis

[^13]: ${ }^{32}$ Received from G. Greg Zipp

[^14]: ${ }^{35}$ (a) Tacke, R.; Wiesenberger, F.; Lopez-Mras, A.; Sperlich, J.; Mattern, G. Z. Naturforsch 1992, 47b, 1370-1376.

[^15]: ${ }^{36}$ A combination of trials were run by Zuosheng Liu, G. Greg Zipp and the author of this document. The trials depicted in Scheme 12 were run by the author of this document.

[^16]: ${ }^{37}$ Still, W.C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.

[^17]: ${ }^{38}$ The β-lactone was opened via addition-elimination to the lactone carbonyl by benzylamine. The enantiomeric excess of the resulting amide was measured.

[^18]: ${ }^{41}$ (a) Palomo, C.; Oiarbide, M.; García, J. M. Chem. Eur. J. 2002, 8, 36-44. (b) Palomo, C.; Oiarbide, M.; García, J. M. Chem. Soc. Rev. 2004, 33, 65-75.

[^19]: ${ }^{42}$ Alcaide, B.; Almendros, P. Eur. J. Org. Chem. 2002, 1595-1601.

[^20]: ${ }^{43}$ Notz, W.; Tanaka, F.; Barbas III, C. F. Acc. Chem. Res. 2004, 37, 580-591.
 ${ }^{44}$ Northrup, A. B.; Macmillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798-6799.
 ${ }^{45}$ Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.

[^21]: ${ }^{46}$ The studies concerning model syn-aldehyde 57 were performed by Dr. Jeff Wallace and Dr. Cheng Zhu. The matched AAC reaction with aldehyde 57 where DMF was used as the cosolvent was performed by the author of this document (see Experimental).

[^22]: ${ }^{47}$ The absolute stereochemistry of masked polypropionate unit $\mathbf{6 3}$ was unambiguously proven via x -ray crystallography following derivatization.

[^23]: ${ }^{48}$ Kassick, A. J. unpublished results.

[^24]: ${ }^{49}$ The anti-aldehyde possessing a β-PMB ether was only synthesized for testing the protecting group effect and was not characterized.

[^25]: ${ }^{50}$ (a) Reetz, M. T.; Kesseler, K. Jung, A. Tetrahedron 1984, 40, 4327-4336. (b) Reetz, M. T.; Kesseler, K. J. Chem. Soc., Chem. Commun. 1984, 1079-1080. (c) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.

[^26]: ${ }^{51}$ Additional aldehydes not presented here were synthesized and tested by Ms. Junping Zhao.

[^27]: ${ }^{52}$ Reaction with DMF that the author of this document performed.

[^28]: ${ }^{53}$ In trials where one of the trans β-lactone diastereomers could be seen, the distinctive ${ }^{1} \mathrm{H}$ NMR shift and HPLC retention time of that trans-diastereomer is $\delta 4.22 \mathrm{ppm}$ and $\mathrm{T}_{\mathrm{r}}=8.955 \mathrm{~min}$, respectively.

[^29]: ${ }_{55}^{54}$ Paterson, I.; Florence, G. J. Eur. J. Org. Chem. 2003, 2193-2208.
 ${ }^{55}$ Arefolov, A.; Panek, J. S. J. Am. Chem. Soc. 2005, 127, 5596-5603.

[^30]: ${ }^{56}$ (a) ter Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Biochemistry 1996, 35, 243-250. (b) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley, R. E.; Day, B. W.; Hamel, E. Mol. Parmacol. 1997, 52, 613-622. (c) Balachandran, R.; ter Haar, E.; Welsh, M. J.; Grant, S. C.; Day, B. W. Anti-Cancr Drugs 1998, 9, 67-76.
 ${ }^{57}$ Paterson, I.; Lyothier, I. J. Org. Chem. 2005, 70, 5494-5507.
 ${ }^{58}$ Harried, S. S.; Lee, C. P; Yang, G.; Lee, T. I. H.; Myles, D. C. J. Org. Chem. 2003, 68, 6646-6660.
 ${ }^{59}$ Smith III, A. B.; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. 1999, 1, 18231826.

[^31]: ${ }^{60}$ Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605-2606.

[^32]: ${ }^{61}$ Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.

[^33]: ${ }^{62}$ (a) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4143-4146. (b) Pu, L. Tetrahedron 2003, 59, 98739886. (c) Li, X.-S.; Lu, G.; Kwok, W. H.; Chan, A. S. C. J. Am. Chem. Soc. 2002, 124, 12636-12637.
 ${ }^{63}$ Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 13760-13761.

[^34]: ${ }^{64}$ Alcohol 113 was not purified or fully characterized, only crude ${ }^{1} \mathrm{H}$ NMR was used.
 ${ }^{65}$ When this route was attempted, amide 103 was the common intermediate. Upon failure of this route, the common intermediate became amide 88.

[^35]: ${ }^{66}$ Chen, J.; Zhao, K. Tetrahedron Lett. 1994, 35, 2827-2828.

[^36]: ${ }^{67}$ Ghosh, A.; Bischoff, A.; Cappiello, J. Eur. J. Org. Chem. 2003, 821-832.

