HYDROZIRCONATION/ZR-ZN TRANSMETALATION/ALDIMINE ADDITION: ONE-POT SYNTHESIS OF ALLYLIC, *C*-CYCLOPROPYLALKYL, AND HOMOALLYLIC AMINES FROM ALKYNES.

by

Christopher Nicholas Owen Kendall

B. Sc., University of Waterloo, 1997

M. Sc., Queen's University, 2000

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2004

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Christopher Kendall

It was defended on

October 20, 2004

and approved by

Dennis Curran

Scott Nelson

Billy Day

Peter Wipf Dissertation Director

Abstract

HYDROZIRCONATION/ZR-ZN TRANSMETALATION/ALDIMINE ADDITION: ONE-POT SYNTHESIS OF ALLYLIC, *C*-CYCLOPROPYLALKYL, AND HOMOALLYLIC AMINES FROM ALKYNES.

Christopher Kendall, PhD

University of Pittsburgh, 2004

The Zr-Zn transmetalation, aldehyde addition methodology developed in the Wipf group was extended to the synthesis of allylic amines. The use of toluene as a reaction solvent was required to obtain high yields and low reaction times. *N*-Phosphinoyl-, *N*-sulfonoyl-, and *N*-carbamoylimines were excellent substrates for this transformation. Many chiral ligands were tested for asymmetric catalysis, but minimal *ee* was achieved. Addition to chiral phosphinimines was also attempted, but the diastereoselectivities were low.

A novel three-component *C*-cyclopropylalkylamine synthesis was discovered while attempting to perform the allylic amine synthesis in CH_2Cl_2 . The mechanism of this transformation is not fully understood; however, this is the first reported example of a high-yielding Simmons-Smith cyclopropanation with CH_2Cl_2 as the carbene precursor. This reaction was optimized by adding CH_2I_2 to the reaction mixture once all imine was consumed. Addition of CH_2I_2 prior to imine substrate resulted in homoallylic amine formation.

List of Abbreviations

Ac	.acetyl
BDPS	.tert-butyldiphenylsilyl
Bn	.benzyl
Boc	.tert-butyloxycarbonyl
cat	.catalytic
Cbz	.benzyloxycarbonyl
cod	.1,5-cyclooctadiene
Ср	.cyclopentadienyl
dba	.dibenzylideneacetone
DBU	.1,8-diazabicyclo[5.4.0]undec-7-ene
DEAD	.diethyl azodicarboxylate
DEIPS	.diethylisopropylsilyl
DEPC	.diethyl cyanophosphonate
DMAP	.4-dimethylaminopyridine
DME	.ethylene glycol dimethyl ether
DMF	.N,N-dimethylformamide
DMP	.Dess-Martin periodinane
DMSO	.dimethylsulfoxide
DPPA	.diphenylphosphoryl azide
dppf	.1,1'-bis(diphenylphosphino)ferrocene
<i>dr</i>	.diastereomeric ratio
ee	.enantiomeric excess
ent	.enantiomer
HPLC	high pressure liquid chromatography.
KHMDS	.potassium bis(trimethylsilyl)amide
L*	.chiral ligand
NIS	.N-iodosuccinimide
NMO	4-methylmorpholine N-oxide
	incury morphonic iv oxide
PG	.protecting group

<i>p</i> -Tol4-tolyl
rtroom temperature
TBAFtetrabutylammonium fluoride
TBStert-butyldimethylsilyl
TEStriethylsilyl
Tftrifluoromethanesulfonyl
TFAtrifluoroacetic acid
THFtetrahydrofuran
TIPStriisopropylsilyl
TLCthin layer chromatography
TMStrimethylsilyl
TPAPtetrapropylammonium perruthenate
Tsp-toluenesulfonyl

Abstract	iii
List of Abbrevations	iv
List of Tables	vii
List of Figures	viii
List of Schemes	ix
1 Introduction	1
1 1 Hydrozirconation	1
1.2 The Zr-Zn Transmetalation Methodology	4
1.3. Allylic Amines	
1.4. Diethylzinc Additions to Aldimines	
1.5. Simmons-Smith Cyclopropanation	
2. Results and Discussion	
2.1. Synthesis of Allylic Amines	
2.2. Asymmetric Synthesis of Allylic Amines	
2.3. Synthesis of <i>C</i> -Cyclopropylalkylamines	
2.4. Synthesis of Homoallylic Amines	
2.5. Application of an Alternate Preparation of Alkenylzirconocenes	60
3. Conclusions	
4. Experimental Part	
Appendix A	
X-ray Structure and Data of Binaphthyl-Phenyl Phosphinimine 219	
Appendix B	
X-ray Structure and Data of Benzamide 268.	
Appendix C	
X-ray Structure and Data of a Derivative of Cyclopropane 267.	
Appendix D	
X-ray Structure and Data of Lactam anti-287	
Cited Literature	

List of Tables

Table 1. Representative examples for asymmetric Et ₂ Zn addition to 104	24
Table 2. Representative examples for catalytic asymmetric R ₂ Zn addition to aromatic imines.	26
Table 3. Substituent effects on <i>syn/anti</i> selectivity for (<i>E</i>)-disubstituted allylic ethers	28
Table 4. Imine addition optimization studies.	33
Table 5. Synthesis of allylic amines using the Zr-Zn transmetalation methodology	34
Table 6. Attempted asymmetric addition reactions with imine 104 and ligands 55 and 181	38
Table 7. Attempted asymmetric addition reactions with more reactive imines	40
Table 8. Attempted asymmetric addition reactions with in situ-generated imines	41
Table 9. Diastereoselective addition to chiral phosphinimines.	45
Table 10. Synthesis of novel aryl-phenyl phosphinamides.	47
Table 11. C-Cyclopropylalkylamine reaction optimization	50
Table 12. Synthesis of C-cyclopropylalkylamines.	50
Table 13. Synthesis of homoallylic amines.	58

List of Figures

Figure 1. Hydrozirconation to form alkyl- and alkenylzirconium reagents.	1
Figure 2. Unsuccessful Zr-Zn transmetalation/aldehyde addition in an attempted total sy	ynthesis
of macrolactin A	11
Figure 3. Transition state models for <i>anti-</i> and <i>syn-selective cyclopropanations</i>	
Figure 4. Ligands tested and <i>ee's</i> obtained for the attempted	43
Figure 5. Proposed mechanism for formation of <i>C</i> -cyclopropylalkylamide 257	54
Figure 6. Transition state models for cyclopropanation of allylic amide 274.	56
Figure 7. Proposed mechanism for formation of homoallylic amide <i>syn-279</i>	60
Figure 8. Proposed mechanism for formation of homoallylic amide 296	62
Figure 9. Diversity-oriented synthesis of imine addition products	64

List of Schemes

Scheme 1. Alkenylzirconocene addition to aldehydes catalyzed by AgClO ₄
Scheme 2. Pd-catalyzed alkenylzirconocene and vinyl bromide coupling in Negishi's total
synthesis of lissoclinolide4
Scheme 3. One-pot synthesis of prostaglandins by conjugate addition, enolate trapping5
Scheme 4. ZnCl ₂ -accelerated coupling of alkenyl zirconocenes5
Scheme 5. Two applications of alkenylzirconocenes in Panek's total synthesis of callystatin A6
Scheme 6. Zr-Zn transmetalation and <i>in situ</i> addition to aldehydes
Scheme 7. Zr-Zn transmetalation/aldehyde addition in Wipf's total synthesis of curacin A8
Scheme 8. Zr-Zn transmetalation/aldehyde addition in Williams' total synthesis of ratjadone8
Scheme 9. Zr-Zn transmetalation/aldehyde addition in Williams' synthesis of laulimalide9
Scheme 10. Zr-Zn transmetalation/aldehyde addition in the diastereoselective synthesis of
sphingosines
Scheme 11. Zr-Zn transmetalation/ketone addition in Jacobsen's total synthesis of fostriecin11
Scheme 12. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition12
Scheme 13. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Danishefsky's
total synthesis of halichlorine
Scheme 14. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Wipf's total
synthesis of leucascandrolide A14
Scheme 15. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Porco's total
synthesis of lobatamide C14
Scheme 16. Catalytic asymmetric Zr-Zn transmetalation/ketone addition15
Scheme 17. An Overman rearrangement in the total synthesis of antofine by Kim et al17
Scheme 18. Asymmetric allylic amination in Mori's total synthesis of strychnine
Scheme 19. Buchwald's Zr-mediated synthesis of allylic amines
Scheme 20. Hydrozirconation of propargylic amines to form allylic amines
Scheme 21. Et ₂ Zn-mediated addition of alkenyl zirconocenes to nitrones
Scheme 22. Rhodium(I)-catalyzed addition of alkenyl zirconocenes to imines20
Scheme 23. Diastereoselective addition of alkenyl alanes to sulfinimines
Scheme 24. Racemic Ni-catalyzed reductive coupling of alkynes, boranes, and imines21
Scheme 25. Asymmetric Ni-catalyzed reductive coupling of alkynes, boranes, and imines22

Scheme 26.	Soai's asymmetric addition of Et ₂ Zn to <i>N</i> -diphenylphosphinoylimine 104 2	3
Scheme 27.	Comparison of asymmetric alkylation of N-diphenylphosphinoylimine 114 and	
	diastereoselective hydrogenation by the process group at Bristol-Myers Squibb2	5
Scheme 28.	Alcohol-directed Simmons-Smith cyclopropanation	8
Scheme 29.	Amide-directed Simmons-Smith cyclopropanation	0
Scheme 30.	Amine-directed Simmons-Smith cyclopropanation	0
Scheme 31.	Zr-Zn transmetation/Simmons-Smith cyclopropanation	1
Scheme 32.	Synthesis of C-cyclopropyl alcohols from vinyloxiranes using Schwartz reagent3	1
Scheme 33.	Facile one-pot deprotection and derivitization of allylic phosphinamide 172 3	6
Scheme 34.	Highest <i>ee</i> achieved for addition to an imine other than 104 4	1
Scheme 35.	Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of	
	stoichiometric Me ₂ Zn4	2
Scheme 36.	Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of	
	catalytic ZnCl ₂ 4	2
Scheme 37.	Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of	
	catalytic CuBr4	3
Scheme 38.	Attempted diastereoselective addition to a chiral sulfinimine4	4
Scheme 39.	Synthesis and of binaphthyl-phenyl phosphinimine 219 4	6
Scheme 40.	One-step synthesis of phosphinamide 226 4	8
Scheme 41.	Synthesis of aryl bromide 252	8
Scheme 42.	Unexpected formation of amino cyclopropane 2574	9
Scheme 43.	Deprotection of phosphinamide 257	2
Scheme 44.	Relative stereochemistry determination of 263 by chemical correlation to 257 5	2
Scheme 45.	Relative stereochemistry determination of 264 by an alternate synthesis	3
Scheme 46.	Mitsunobu reaction on <i>anti</i> -271	3
Scheme 47.	Relative stereochemistry determination of 262 by chemical correlation to 264 5	3
Scheme 48.	Unsuccessful attempts to obtain cyclopropanation products	5
Scheme 49.	Tandem carboalumination, aldimine additions with and without cyclopropanation. 5	7
Scheme 50.	Unexpected formation of homoallylic amide 279	7
Scheme 51.	Assignment of homoallylic amine stereochemistry	9
Scheme 52.	Unsuccessful one-pot vinylzinc homologation/electrophile allylation	0

Scheme 53. Allylic amine and amino cyclopropane syntheses using Takahashi's protocol	.61
Scheme 54. Effect of a deuterium quench on the unexpected homoallylic amide 293.	.61
Scheme 55. Homoallylic amine synthesis using Takahashi's protocol.	62

1. Introduction

1.1. Hydrozirconation¹

Hydrozirconation with Cp₂ZrHCl (Schwartz reagent) is one of the few general methods available for the direct conversion of readily available alkenes and alkynes into organometallic reagents (Figure 1).² Another advantage zirconocenes have over other organometallics are reaction conditions that are compatible with the presence of many functional groups. The majority of synthetic applications utilize alkenylzirconocenes (**4**), since the reaction of Cp₂ZrHCl with alkynes is very fast and highly regioselective, whereas alkenes are not as reactive, and furthermore internal alkylzirconocenes are rapidly isomerized into terminal alkylzirconocenes.³ If this isomerization can be avoided, the hydrozirconation of an internal alkene generates a stereocenter, but very little effort has been made towards asymmetric hydrozirconation.⁴

Figure 1. Hydrozirconation to form alkyl- and alkenylzirconium reagents.

While hydrozirconation is the most common method for forming organozirconocenes, Cp₂ZrEt₂ and Cp₂ZrBu₂ (easily prepared by reacting Cp₂ZrCl₂ with the appropriate alkyllithium reagent) can be used to form zirconacyclopentanes, -cyclopentenes, and -cyclopentadienes,⁵ which then react very similarly to acyclic organozirconocenes. Cp₂ZrR₂ reagents can also be inserted into vinyl halides,⁶ methoxy enol ethers,⁷ enolsilanes,⁸ and vinyl sulfides, sulfoxides, and sulfones⁹ to form alkenylzirconocenes.

Cp₂ZrHCl was first prepared in 1970¹⁰ and used to hydrozirconate alkenes¹¹ and alkynes¹² by Wailes and co-workers. Subsequently, Schwartz and co-workers treated the resulting alkyl-¹³ and alkenylzirconocenes¹⁴ with inorganic electrophiles, and used transmetalation (from Zr to Al) to increase their reactivity towards organic electrophiles.¹⁵ Schwartz reagent is a moderately air-, moisture-, and light-sensitive colorless solid that can be handled and

weighed on a balance. The hydrozirconation of terminal alkynes proceeds rapidly (5-15 min) at room temperature in CH_2Cl_2 or THF, and is very easily monitored visually since Cp_2ZrHCl is insoluble in most organic solvents whereas the colored organozirconocenes **4** are highly soluble.

In general, amides, ketones, aldehydes and nitriles are not compatible with hydrozirconation conditions, but alkynes can be selectively hydrozirconated in the presence of certain esters. Functional groups that are recovered unchanged after exposure to Schwartz reagent include carbamates, acetals, epoxides, ethers, halides, and sulfides. Alcohols undergo an acidbase reaction with one equivalent of Cp₂ZrHCl and thereafter do not significantly interfere with alkene or alkyne hydrozirconation. Schwartz reagent has been used as a reducing agent by Ganem and co-workers for the deoxygenation of β -ketoesters to α , β -unsaturated esters,¹⁶ and for the reduction of amides to imines.¹⁷ Cp₂ZrHCl also reduces *N*,*N*-disubstituted amides to aldehydes,¹⁸ and phosphine oxides to phosphines.¹⁹

Though the ionic character of the C-Zr bond is almost equivalent to that of the C-Mg bond, organozirconocenes are much weaker nucleophiles than Grignard reagents due to steric shielding at the metal center by the two cyclopentadienyl ligands. Small electrophiles such as halogens, protons, dioxygen, CO,²⁰ and isocyanides,²¹ can be directly added to the C-Zr bond. One of the most widely used applications of organozirconocenes is for the preparation of (*E*)-vinyl halides by alkyne hydrozirconation followed by halogenation. (*Z*)-Vinyl halides can also be prepared by hydrozirconating stannylacetylenes.²² Regiospecific deuterium labeling can be achieved by quenching organozirconocenes with D₂O or by using Cp₂ZrDCl for hydrozirconation.²³ Hanzawa, Taguchi and co-workers have developed the synthetic utility of acyl-zirconocenes (formed by CO insertion into the C-Zr bond) and demonstrated their reactivity in aldehyde additions,²⁴ imine additions,²⁵ Pd-catalyzed cross-coupling,²⁶ and Pd-catalyzed 1,2- or 1,4-additions to α,β-unsaturated ketones.²⁷

Suzuki and co-workers have prepared allylzirconocenes by hydrozirconation of allenes. These reagents readily converted aldehydes into homoallylic alcohols in high diastereoselectivities.²⁸ Along with acylzirconocenes, however, allylzirconocenes are the only classes of organozirconium reagents that will react directly with organic electrophiles such as aldehydes.

One way to increase alkenylzirconocene reactivity towards organic electrophiles is to reduce the steric congestion about zirconium by chloride abstraction. Suzuki and co-workers reported that cationic zirconocenes prepared *in situ* reacted rapidly with aldehydes to generate

allylic alcohols (Scheme 1).²⁹ For example, when **6**, the product of hydrozirconation of 1hexyne, was treated with aldehyde **5** in the presence of 5 mol% of AgClO₄, alcohol **7** was isolated in 90% yield after only a 10 min reaction time. In the absence of the Ag(I) salt, only 17% conversion was observed after 2 h. Wipf and Xu have shown that cationic alkenylzirconocenes promote an epoxide rearrangement/[1,2]-hydrogen shift of terminal epoxides, followed by vinylation of the resulting aldehyde, affording secondary allylic alcohols.³⁰

Scheme 1. Alkenylzirconocene addition to aldehydes catalyzed by AgClO₄.

A second general solution to the lack of reactivity of alkenylzirconocenes is transmetalation. Many metals can be used for transmetalation from alkyl- and alkenylzirconocenes;^b however, the most synthetically useful are Pd and Ni, Cu, and Zn. Negishi and co-workers discovered that alkenylzirconocenes could be coupled to aryl or alkenyl halides under Ni-³¹ or Pd-catalysis.³² A recent total synthesis of lissoclinolide demonstrates a typical application of this methodology (Scheme 2).³³ Protected propargyl alcohol **9** was hydrozirconated with an *in situ* generated reagent³⁴ and the resulting alkenylzirconocene **10** was iodinated to form (*E*)-vinyl iodide **11**. Pd-catalyzed coupling with propargyl alcohol **8**, Swern oxidation and then a Corey-Fuchs reaction converted **11** into 1,1-dibromide **12**. Pd-catalyzed Negishi coupling of vinyl bromide **12** with zirconocene **10** occurred exclusively at the *trans*-position. Carboxylic acid **13** was then formed by lithium-halogen exchange of the remaining vinyl bromide with a CO₂ quench. Finally, the natural product was formed by Ag⁺-catalyzed lactonization of **13**, and deprotection. The Zr-Pd coupling methodology has aslo been used in a total synthesis of papulacandin.³⁵

Fu and co-workers have extended the Pd-catalyzed coupling of alkenylzirconocenes to alkyl halides,³⁶ and Lipshutz and Frieman have recently reported that the heterogeneous Ni-catalyzed coupling of alkenylzirconocenes and aryl halides can be significantly accelerated by using microwaves.³⁷

Scheme 2. Pd-catalyzed alkenylzirconocene and vinyl bromide coupling in Negishi's total synthesis of lissoclinolide.

Transmetalation from Zr to Cu combines the ease of preparation of organozirconocenes with the wide scope of reactions of organocopper reagents.³⁸ Wipf and co-workers showed that Cu(I)-catalyzed addition of alkenylzirconocenes to acid chlorides afforded α , β -unsaturated ketones,³⁹ and that Cu catalyzes the conjugate addition of alkylzirconocenes to enones.^{40,41} Lipshutz and co-workers have worked extensively on the preparation of cyanocuprates using a hydrozirconation, transmetalation sequence.⁴² These cuprate reagents can be alkylated with epoxides or activated (benzylic or allylic) halides,⁴³ and used in conjugate additions to α , β -unsaturated ketones.⁴⁴ Lipshutz and Wood reported a three-component coupling of cyanocuprates, cyclopentenones and aldehydes (or propargylic triflates) for the synthesis of prostaglandin-like compounds (Scheme 3).⁴⁵ For example, disubstituted cyclopentenone **18** was prepared in one pot and 74% yield as a 12:1 mixture of stereoisomers using alkyne **14**, 2-cyclopentene-1-one and aldehyde **17**. The same sequence has also been performed on a solid support.⁴⁶

1.2. The Zr-Zn Transmetalation Methodology⁴⁷

Negishi and co-workers discovered a significant acceleration in the Pd(0)-catalyzed cross coupling of alkenylzirconocenes with alkenyl, aryl, and alkynyl halides upon addition of ZnCl₂

to the reaction mixture (Scheme 4).⁴⁸ For example, the Pd(0)-catalyzed coupling of zirconocene **20** with vinyl bromide **19** yielded no trace of product after 6 h, whereas a 72% isolated yield of the desired diene **21** was obtained after 1 h when the reaction was performed in the presence of a stoichiometric amount of ZnCl₂. This acceleration is likely due to a transmetalation of the alkenyl organometallic from the large zirconocene to the much smaller zinc, followed by another transmetalation, to palladium, and continuing in the standard Pd(0)-coupling catalytic cycle.⁴⁹

Scheme 3. One-pot synthesis of prostaglandins by conjugate addition, enolate trapping.

Scheme 4. ZnCl₂-accelerated coupling of alkenyl zirconocenes.

Panek and Hu optimized⁵⁰ this process for their synthesis of the unnatural amino acid Adda.⁵¹ The recent total synthesis of callystatin A by Langille and Panek used a $ZnCl_2$ -assisted sp^2-sp^2 coupling of an alkenylzirconocene, and a second hydrozirconation to prepare a (*Z*)-vinyl halide (Scheme 5).⁵² Trimethylsilylalkyne **22** was hydrozirconated at 50 °C and the resulting terminal zirconocene **23** was quenched selectively at Zr with iodine, affording (*E*)-vinyl iodide **25**. Negishi coupling replaced the iodine with an ethyl group and, after several steps, iodo-desilylation and another Negishi coupling (selectively at the vinyl bromide) formed (*Z*)-vinyl iodide **27**. A second hydrozirconation was used to prepare alkenylzirconocene **28**, which was coupled to **27** to form the carbon skeleton of the natural product. Completion of the total

synthesis required only two deprotections and an oxidation. The Zr-Zn-Pd transmetalation sequence has also been used in the total syntheses of reveromycin B^{53} , motuporin,⁵⁴ FR 901464,⁵⁵ eunicenone A,⁵⁶ β -carotene,⁵⁷ pitiamide A,⁵⁸ and xerulin.⁵⁹

Scheme 5. Two applications of alkenylzirconocenes in Panek's total synthesis of callystatin A.

Wipf and Xu reported in 1993 a high yielding preparation of allylic alcohols from alkenylzirconocenes and aldehydes mediated by dialkylzinc reagents (Scheme 6).⁶⁰ For example, hexenyl zirconocene **6** was added to benzaldehyde in the presence of Me₂Zn to afford allylic alcohol **33** in 93% isolated yield (based on benzaldehyde). The reaction mechanism is thought to involve a Zr-Zn transmetalation, forming alkenyl zinc species **31**, followed by a Zr-accelerated⁶¹ 1,2-addition of exclusively the alkenyl group of **31** to aldehyde **32**.⁶² When the reaction solvent is CH₂Cl₂, this one-pot reaction is completed within 10 h on an 18 mmol scale.⁶³ Substituted benzaldehydes and aliphatic aldehydes were also effective electrophiles, and

functional groups tolerated on the alkynes included silyl ethers and benzyl esters. The allylic alcohols were isolated in 54-94% yield. Me₂Zn can be used in catalytic quantities,⁶⁴ and this same net transformation has been shown to be mediated by both $ZnBr_2^{65}$ and MeLi.⁶⁶

Scheme 6. Zr-Zn transmetalation and *in situ* addition to aldehydes.

Wipf and Xu used the Zr-Zn transmetalation/aldehyde addition strategy to rapidly prepare triene **36**, an early intermediate in their total synthesis of curacin A (Scheme 7).⁶⁷ Hydrozirconation of alkyne **34** and transmetalation with Et_2Zn was followed by addition of tiglic aldehyde to the reaction mixture, and then the expected allylic alcohol was immediately oxidized to the corresponding ketone **35**, isolated in 85% overall yield. Pd(0)-catalyzed Bu₃SnH reduction of the triflate formed by trapping of the kinetic enolate afforded the all-*trans*-triene **36** in 71% yield. A similar sequence was used to prepare the all-(*E*)-polyene fragments of asukamycin⁶⁸ and nisamycin.⁶⁹

Williams and co-workers have used the Zr-Zn exchange methodology in their total synthesis of ratjadone (Scheme 8).⁷⁰ Construction of the 5,6-dihydropyran-2-one was initiated by addition to aldehyde **38** of the alkenylzirconocene prepared from alkyne **37**. Allylic alcohol **39** was isolated as a 1:1 mixture of diastereomers in very high yield. To set the stereochemistry of the newly formed stereocenter, the alcohol was oxidized and the resulting enone immediately subjected to an assymetric reduction, which gave a 5:1 mixture of diastereomers.

Scheme 7. Zr-Zn transmetalation/aldehyde addition in Wipf's total synthesis of curacin A.

Scheme 8. Zr-Zn transmetalation/aldehyde addition in Williams' total synthesis of ratjadone.

Williams and co-workers again used this methodology in their total synthesis of laulimalide (Scheme 9).⁷¹ To set the desired C_{20} stereocenter, a chelation-controlled addition to aldehyde **43** of the alkenylzinc reagent, derived from hydrozirconation of alkyne **42** and transmetalation with Me₂Zn, was used. The desired allylic alcohol **44** was obtained as a 4:1 mixture of diastereomers. The next step in their sequence involved another popular organometalic reaction of alkenes, namely a ring-closing metathesis. The one-pot Zr-Zn transmetalation protocol was preferable in this case to addition of an alkenylzincate reagent, which required preparation and isolation of the corresponding vinyl iodide, then lithium-halogen exchange with

t-BuLi, and finally transmetalation with Me₂Zn. Though the addition of this zincate gave a higher diastereoselectivity, the Zr-Zn transmetalation/aldehyde addition protocol was considered more practical. The same zincate strategy was earlier used to form the same C_{20} stereocenter, using very similar substrates, by Messenger and Davidson.⁷² Through the diastereoselectivity of the addition was very high (only one stereoisomer was obtained), the yield was low (45%) and the reaction mixture was contaminated with 15% of a difficult to separate by-product resulting from methyl addition to the aldehyde.

Scheme 9. Zr-Zn transmetalation/aldehyde addition in Williams' synthesis of laulimalide.

Murakami and Furusawa used the Zr-Zn methodology to prepare both *erythro-* and *threo-*sphingosine, using a highly diastereoselective addition of alkenylzirconocene **47** to Garner's aldehyde (**46**) in the presence of Et_2Zn (Scheme 10).⁷³ Interestingly, the choice of solvent used for the reaction dictated the relative stereochemistry of the allylic alcohol product. In CH₂Cl₂, the *syn-*alcohol **48** was formed in high diastereoselectivity and high yield. However, keeping all other conditions identical but performing the entire one-pot reaction in THF, *anti-*alcohol **49** was favored with a diastereoselectivity of 12:1 and an isolated yield of 67%. An improved yield of 70% and a selectivity of 20:1 was achieved by using half an equivalent of ZnBr₂ instead of one equivalent of Et₂Zn.

Scheme 10. Zr-Zn transmetalation/aldehyde addition in the diastereoselective synthesis of sphingosines.

Chavez and Jacobsen extended the Zr-Zn methodology to the addition to ketones, specifically epoxyketone **51**.⁷⁴ Their total synthesis of fostriecin required a diastereoselective, chelation-controlled vinylation of enantiomerically pure **51** (Scheme 11). The most successful model study was hydrozirconation of 1-octyne, transmetalation with Me₂Zn and addition to **51**, which afforded the expected tertiary allylic alcohol with a diastereoselectivity of >30:1 and in 75% isolated yield. Using alkyne **50** in place of 1-octyne also afforded the desired allylic alcohol (isolated as TES-ether **52** in 45% combined overall yield) with >30:1 diastereoselectivity. The Zr-Zn methodology has also been extended to α -ketoesters by Wipf and Stephenson.⁷⁵

Unsuccessful use of this methodology has been reported in stereocontrolled additions to *in situ* formed oxacarbenium ions (due to competitive alkyl group transfer)⁷⁶ and in studies towards the nautral products halicholactone,⁷⁷ constanolactone A,⁷⁸ and macrolactin A.⁷⁹ In the latter synthesis, a late-stage hydrozirconation of enyne **54**, transmetalation to Me₂Zn, and addition to aldehyde **53** was planned (Figure 2). Though a test addition to benzaldehyde did afford the desired 1,2-addition product in 50% yield, no addition to aldehyde **53** was observed and the approach was abandoned.

Scheme 11. Zr-Zn transmetalation/ketone addition in Jacobsen's total synthesis of fostriecin.

Figure 2. Unsuccessful Zr-Zn transmetalation/aldehyde addition in an attempted total synthesis of macrolactin A.

In their initial communication on the Zr-Zn transmetalation/aldehyde addition methodology, Wipf and Xu reported that performing the reaction detailed in Scheme 6 in the presence of 8 mol% of proline-derived ligand **55** and at -20 °C afforded enantiomerically enriched allylic alcohol (*S*)-**33**, though with a low *ee* of 38%. Wipf and Ribe improved the *ee* to 95% by performing the reaction at -30 °C in toluene, in the presence of 10 mol% of amino thiol **56** (Scheme 12).⁸⁰ Critically, the process also required a 60 min incubation, at -30 °C, of the zirconocene/Me₂Zn/chiral ligand mixture prior to addition to the electrophile. Without this added step, which was believed to allow for complete solvation of the chiral ligand, the *ee*'s of the reaction product were not reproducible.⁸¹ The amino thiol ligand **56** gave generally moderate to high *ee*'s for all substrates tested, including electron-rich aromatic aldehydes and aliphatic aldehydes (63-74% *ee*), and benzaldehyde and more electron-deficient aromatic aldehydes (83-

99% *ee*). When performed in the presence of amino thiol **56**, the reaction *ee* displayed a strong, positive non-linear effect.⁸²

Scheme 12. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition.

The catalytic asymmetric Zr-Zn transmetalation/aldehyde addition has been used in several natural product total syntheses. Danishefsky and Trauner used this reaction at a very late stage of their total synthesis of halichlorine (Scheme 13).⁸³ Since Horner-Wadsworth-Emmons homologation of the aldehyde prepared by oxidation of alcohol **57** was unsuccessful, alkyne **58** was instead prepared and used in an asymmetric vinylation of aldehyde **59**, catalyzed by amino alcohol **55**. The desired bis-allylic alcohol **60** was isolated in 67% yield as a 4:1 mixture of diastereomers. In the absence of ligand **55**, the ratio of diastereomers was 1:1. Completion of the total synthesis required only protection of the newly formed allylic alcohol, deprotection of the primary alcohol and ester and their subsequent coupling under Keck macrolactonization conditions, and a final deprotection.

Wipf and Reeves used this asymmetric methodology in their formal synthesis of leucascandrolide A (Scheme 14).⁸⁴ The zirconocene **62** was added to aldehyde **61** in the presence of Me₂Zn and 25 mol% of amino thiol **56**. Allylic alcohol **63** was isolated in 62% yield as a 5:1 mixture of diastereomers, though the major diastereomer had a configuration at the new alcohol stereocenter that was opposite to that predicted. This forced a change in strategy for completion of the macrocyclic core. In the absence of an external chiral ligand, the Me₂Zn-mediated alkenylzirconocene addition to aldehyde **61** afforded a 1.8:1 mixture of diastereomers.⁸⁵ Williams and co-workers also used the Zr-Zn methodology to construct the same C-C bond in their approach to leucascandrolide A, though as with their approach to ratjadone (Scheme 8), no chiral ligand was employed and the newly formed allylic alcohol was immediately oxidized and then stereoselectively reduced.⁸⁶

Scheme 13. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Danishefsky's total synthesis of halichlorine.

Porco and co-workers used the asymmetric Zr-Zn transmetalation/aldehyde addition in their total synthesis of lobatamide C (Scheme 15).⁸⁷ Again, amino thiol **56** was used in catalytic quantities (10 mol%), here to affect the Et_2Zn -mediated addition of alkenylzirconocene **66** to aldehyde **65**. The desired allylic alcohol was isolated in 68% yield but only as a 2:1 mixture of diastereomers, however, other methods evaluated for setting this stereocenter, including lipase reduction, asymmetric reduction of the corresponding dienone, and catalytic asymmetric alkynylation of the aldehyde, were no more effective. In the absence of **56**, the alcohol **67** was isolated in 87% yield as a 1:1 mixture of diastereomers.

Scheme 14. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Wipf's total synthesis of leucascandrolide A.

Scheme 15. Catalytic asymmetric Zr-Zn transmetalation/aldehyde addition in Porco's total synthesis of lobatamide C.

Li and Walsh have recently reported the catalytic asymmetric vinylation of ketones using the Zr-Zn transmetalation strategy (Scheme 16).⁸⁸ Though Walsh and co-workers had previously reported a catalytic asymmetric vinylation of aldehydes using a B-Zn transmetalation/aldehyde

addition,⁸⁹ in the presence of the chiral amino alcohol (-)-MIB,⁹⁰ a different approach was required for ketones. High levels of enantiocontrol were achieved using Zr-Zn transmetalation and catalytic quantities of the chiral Ti complex prepared from Ti(O*i*-Pr)₄ and diol **70**.⁹¹ Under these conditions, tertiary alcohols were formed in high yield (84-98%) and with good *ee* (79-97%). For example, vinylation of acetophenone (**68**) with alkenylzirconocene **6** in the presence of stoichiometric Me₂Zn and Ti(O*i*-Pr)₄, and catalytic diol **70**, afforded tertiary allylic alcohol **71** in 85% isolated yield with an *ee* of 93% (the absolute stereochemistry was not determined). The analogous vinylation of propiophenone (**69**) afforded alcohol **72** in 90% yield and 94% *ee*. Other ketones succesfully tested included various arene-substituted acetophenones, 4-methyl-2-pentanone, and a few α,β -unsaturated ketones.

Scheme 16. Catalytic asymmetric Zr-Zn transmetalation/ketone addition.

The goal of the research presented here was to develop an asymmetric synthesis of allylic amines by extending the Zr-Zn transmetalation methodology to imines. Though an obvious disconnection, the 1,2-addition of functionalized organometallic reagents to imines has not been widely exploited for the synthesis of allylic amines. An asymmetric synthesis of α -chiral benzylamines (by addition to benzaldimines) would produce valuable building blocks which could be used to prepare analogues of ligand **56** and improve the asymmetric allylic alcohol synthesis detailed in Scheme 12.

1.3. Allylic Amines

Allylic amines are important chiral intermediates in organic synthesis, for example in the preparation of unnatural amino acids.⁹² This moiety is found in such natural products as

motuporin,⁹³ hemiasterlin,⁹⁴ cyclotheonamide B,⁹⁵ and curacin A,⁹⁶ and is also used as a peptide isostere.⁹⁷ As such, the preparation of allylic amines has long received considerable attention from the synthetic community.⁹⁸

Though chiral allylic amines have been traditionally prepared by olefination of amino aldehydes, -^{,99} this approach suffers from the low stability and ease of epimerization of the aldehydes. The most used modern method for the preparation of allylic amines is the Overman rearrangement.¹⁰⁰ This process is a [3,3]-sigmatropic rearrangement, without loss of stereo-chemical integrity, of allylic imidates into allylic trichloroacetamides. A recent demonstration of the methodology was reported in the asymmetric total synthesis of antofine by Kim and co-workers (Scheme 17).¹⁰¹ Chiral allylic alcohol **73** was converted into allylic amide **74** under standard Overman rearrangement conditions. Due in part to the relatively harsh conditions needed to deprotect the trichloroacetamide formed, alternate [3,3]-processes continue to be explored, including rearrangements of allyl cyanates,¹⁰² phosphorimidates¹⁰³ and phospholidines.¹⁰⁴ Significantly, the metal-catalyzed preparation of enantiomerically enriched allylic amines from racemic imidates has been achieved¹⁰⁵ and continues to be improved.¹⁰⁶

The most developed catalytic asymmetric preparation of allylic amines are allylic aminations of π -allyl complexes, pioneered by Trost.¹⁰⁷ A recent demonstration of this methodology was reported by Nakanishi and Mori as the first key step in their asymmetric total synthesis of strychnine (Scheme 18).¹⁰⁸ Allylic carbonate **76** was aminated by sulfonamide **77**

via its chiral π -allyl Pd-complex, affording allylic sulfonamide **78** in 75% yield with an *ee* of 84%. Though this transformation has not been as extensively used by the synthetic community as the Overman rearrangement, the methodology continues to be developed.¹⁰⁹

Scheme 17. An Overman rearrangement in the total synthesis of antofine by Kim et al.

Scheme 18. Asymmetric allylic amination in Mori's total synthesis of strychnine.

Two other catalytic asymmetric preparations of allylic amines that have recently been described are Ni(II)-catalyzed hydroamination of dienes,¹¹⁰ and the aza-Baylis-Hilman reaction, using the modified cinchona alkaloid β -isocepeidine.¹¹¹ Several methods have been reported for the preparation of chiral allylic amines from non-racemic precursors, including nucleophilic displacement of allylic bromides;¹¹² tellurium-mediated reductive opening of aziridine methanol derivatives¹¹³ and the closely related indium-mediated opening of 2-iodo-methyl aziridines;¹¹⁴ deoxygenation of 3-amino-1,2-diols;¹¹⁵ and dehydration of β -hydroxy- γ -amino sulfones.¹¹⁶ The

lipase¹¹⁷ or chiral acid¹¹⁸ mediated resolution of racemic primary allylic amines has also been used to prepare enantiomerically pure allylic amines.

The 1,2-addition of alkenylorganometallic reagents to imines has not been widely exploited as a general method for the preparation of allylic amines.¹¹⁹ One reason could be dimerization of the alkenvlorganometallic reagent resulting in α -selective crotylation.¹²⁰ Many examples of catalytic asymmetric¹²¹ and diastereoselective¹²² additions of vinyllithium or vinyl Grignard reagent to imines and imine derivatives have been reported, though these are usually simply scope of a particular nucleophilic addition methodology. A number of examples of diastereoselective additions of a highly substituted alkenyllithium to sulfonylimines were reported by Braun and Opdenbusch; however, the allylic double bonds were immediately oxidatively cleaved to form amino acids.¹²³ In some cases, diastereoselective addition of nucleophiles to imines for the preparation of analogues of ligands,¹²⁴ peptides,¹²⁵ sugars,¹²⁶ or the antibiotic anisomycin,¹²⁷ included one example of addition of vinyllithium or vinyl Grignard. Diastereoselective addition of vinylmagnesium bromide to a chiral α -hydroxy imine was a key step in the total synthesis of 4a,5-dihydrostreptazolin,¹²⁸ and diastereoselective addition of vinvllithium to a chiral oxime ether was the key step in the synthesis of CP-99,994.¹²⁹ A related preparation of allylic amines, by catalytic asymmetric¹³⁰ or diastereoselective¹³¹ 1,2-addition of nucleophiles to α,β -unsaturated imines, has been reported. Very few examples of racemic¹³² or asymmetric¹³³ additions of vinylzinc reagents to imines have been reported.

Buchwald and co-workers have reported a zirconocene-mediated synthesis of allylic amines starting from alkynes and imines (Scheme 19).¹³⁴ Lithiation of amine **80** and addition to Cp₂ZrMeCl afforded, after loss of methane, azazirconacyclopropane **82**. Coupling of **82** with alkynes such as 1-hexyne formed allylic amines such as **84** after methanolysis of the Zr-C and Zr-N bonds. The regioselectivity of alkyne coupling was excellent if one of the substituents in the 3- or 5-position of azazirconacyclopentene **83** was aromatic. Yields ranged from 48 to 80% with examples of primary aliphatic and benzylic amines, and both terminal and internal alkynes. An asymmetric, auxiliary-based variant was subsequently reported.¹³⁵ Whitby,¹³⁶ Mori,¹³⁷ and others¹³⁸ have expanded this methodology, and the equivalent Ta-¹³⁹ and Ti-mediated¹⁴⁰ transformations have been reported.

Scheme 19. Buchwald's Zr-mediated synthesis of allylic amines.

Another synthesis of allylic amines involving zirconium was reported by Hauske and coworkers (Scheme 20).¹⁴¹ Non-racemic propargylic amines were prepared and then the triple bond was hydrozirconated and functionalized *via* iodination or Ni(II)-catalyzed 1,4-addition. For example, valine-derived propargyl carbamate **86** was converted into vinyl iodide **87** in modest yield. To demonstrate the scope of this transformation, seven simple amino acid derivatives were selected. The derivatized allylic amines were isolated in only 20-54% yield.

Scheme 20. Hydrozirconation of propargylic amines to form allylic amines.

A few methods for the construction of allylic amines using alkynes and imines, related to the research presented herein, have recently been reported. The Zr-Zn transmetalation strategy described in the previous section was extended by Vallée and co-workers to the preparation of allylhydroxylamines, using nitrones as electrophiles (Scheme 21).¹⁴² For example treatment of nitrone **88** with hexenylzirconocene **6** in the presence of Et_2Zn afforded hydroxylamine **89** in 62% yield. Both aliphatic and aromatic nitrones were used in this process. The isolated yields for unfunctionalized, terminal and internal alkynes were in the range of 29-83%, whereas yields for functionalized alkynes ranged from 5-60%. The same transformation using hydroboration in place of hydrozirconation was subsequently reported.¹⁴³

Scheme 21. Et₂Zn-mediated addition of alkenyl zirconocenes to nitrones.

A Rh(I)-catalyzed addition of alkenyl zirconocenes to *N*-tosyl aldimines was reported by Kakuuchi, Taguchi and Hanzawa (Scheme 22).¹⁴⁴ For example, addition of hexenylzirconocene **6** to aldimine **90** in the presence of 2 mol% of the rhodium catalyst afforded sulfonamide **91** in near quantitative yield. The authors suggest a transmetalation of the alkenyl group from Zr to Rh prior to 1,2-addition to the aldimine. They observed no alkyl group transfer from substrates prepared by hydrozirconation of alkenes. The hydrozirconation step was performed in CH₂Cl₂ and then the solvent switched to dioxane prior to addition of the aldimine and Rh(I) catalyst to the reaction mixture. Both aromatic and aliphatic aldimines as well as functionalized alkynes all formed the desired sulfonamides in high (58-99%) yield.

Scheme 22. Rhodium(I)-catalyzed addition of alkenyl zirconocenes to imines.

Water-accelerated carboalumination of alkynes is another effective method for the preparation of reactive alkenyl organometallics.¹⁴⁵ Wipf, Nunes and Ribe showed that direct addition of vinyl alanes to enantiopure *N*-sulfinimines¹⁴⁶ afforded trisubstituted allylic amines in high yield and good diastereoselectivity (Scheme 23).¹⁴⁷ For example **93**, the methylaluminated product derived from 1-octyne, was added to sulfinimine **92** affording sulfinamide **94** with an 80% isolated yield and diastereomeric ratio of 20:1. Functional group tolerance on the alkyne segment is not as broad for carboalumination as for hydrozirconation, nevertheless a range of unfunctionalized alkynes were used as well as a triisopropylsilyl ether-substituted terminal alkyne. Aromatic, cinnamyl and cyclohexyl sulfinimines were used as substrates, with isolated

yields ranging from 65-85%, and all diastereoselectivities were at least 6:1. An alkyne carbocupration, imine-addition strategy has also been used to prepare allylic amines.¹⁴⁸

Scheme 23. Diastereoselective addition of alkenyl alanes to sulfinimines.

A three-component Ni(0)-catalyzed coupling of alkynes, organoboron reagents, and aldimines, forming tetrasubstituted allylic amines, was reported by Patel and Jamison (Scheme 24).¹⁴⁹ For example the reaction of alkyne **96**, benzaldimine **95**, and triethylborane, catalyzed by 5 mol% of a Ni(0)/trialkylphosphine complex afforded allylic amines **97-99** in 78% combined yield. The scope of this reaction was limited to internal alkynes and the regioselectivity of the double bond formed was high (9:1) only for alkyne substrates that included one aryl and one alkyl substituent. When trialkylboranes were used, the reductive coupled product **99** was formed in *ca*. 10% yield; however, when boronic acids were used, only the alkylative coupled products (for example regioisomers **97** and **98**) were isolated. Both aromatic and aliphatic aldimines were used and the isolated yields of the product mixtures ranged from 30-98%.

Scheme 24. Racemic Ni-catalyzed reductive coupling of alkynes, boranes, and imines.

Recently, this reaction was extended to an asymmetric synthesis of allylic amines by using chiral phosphine **101** and alkylimines such as **100** (Scheme 25).¹⁵⁰ Not only were most of the desired allylic amines obtained in good yield (42-95%) and high enantioselectivity (51-89% *ee*), but the undesired products of reductive coupling, such as **99**, were avoided under these

reaction conditions. The enantioenriched allylic amines formed were oxidatively deprotected with no loss of enantiomeric purity to afford the corresponding primary amines. No explanation for determination of the absolute stereochemistry of the allylic amines was given.

Scheme 25. Asymmetric Ni-catalyzed reductive coupling of alkynes, boranes, and imines.

1.4. Diethylzinc Additions to Aldimines

Despite the vast body of knowledge for dialkylzinc (R_2Zn) additions to aldehydes,¹⁵¹ the corresponding addition to aldimines has not been as widely studied due to their significantly lower electrophilicity.¹⁵² Most examples have been limited to the addition of strongly basic reagents such as Grignard reagents or alkyllithiums. Katritzky and Harris reported the asymmetric addition of Et₂Zn to *N*-(amidobenzyl)-benzotriazoles (masked *N*-acylimines) in up to 76% *ee* in the presence of one equivalent of *N*,*N*-dibutylnorephedrine.¹⁵³ Soai and co-workers soon afterwards reported that *N*-diphenylphosphinoylimines such as **104** were sufficiently active for R_2Zn addition, and the easily deprotected phosphinamide products **106** could be prepared in up to 90% *ee* and recrystallized to higher enantiomeric purities (Scheme 26).¹⁵⁴ Again, one equivalent of a norephedrine ligand was used. Similar levels of enantiocontrol (84% *ee* and 76% isolated yield) were obtained when the same reaction was performed in neat Et₂Zn.¹⁵⁵

Scheme 26. Soai's asymmetric addition of Et₂Zn to *N*-diphenylphosphinoylimine 104.

Soai has subsequently developed polymer-¹⁵⁶ and dendrimer-supported¹⁵⁷ norephedrine ligands for use in this asymmetric transformation, and other groups have developed amino alcohols **108**,¹⁵⁸ **109**,¹⁵⁹ **110**,¹⁶⁰ **111**,¹⁶¹ **112**,¹⁶² and **113**.¹⁶³ A survey of results is presented in

Table 1. The isolated yields of **106** were in general high, normally within the range of 65-90%, and the reaction required at least three equivalents of Et_2Zn . Highest *ee* was achieved when one equivalent of the chiral ligand was used (compare Entries 1 with 2; 3 with 4; 5 with 6; and 10 with 11 and 12). The reaction times were long and usually required room temperature for acceptable rates. Pericàs and co-workers developed an amino alcohol/silyl halide protocol that allowed performing the reaction at -20 °C, though no significant improvement in yield or *ee* was observed with the asymmetric ligands tested (Entry 7). Recently, Beresford has found that using catalytic quantities of the natural alkaloid cinchonidine (**113**) as the amino alcohol and two equivalents of MeOH afforded α -ethylbenzylamine **106** with a similar yield and *ee* (entry 13) as when one equivalent of **113** was used (entry 10).

	PPh ₂	3 equiv Et ₂	Zn I	NHP(O)Ph ₂	2
	N L	L*, toluen	e Ph		
	Ph´ `H			106	
	104				
Entry	L* (Equiv)	Temperature	Yield (%)	ee (%)	Reference
1	105 (1.0)	0 °C	89	90 (<i>S</i>)	154
2	105 (0.5)	0 °C	69	85 (<i>S</i>)	154
3	108 (1.0)	rt	63	94 (<i>R</i>)	158a
4	108 (0.5)	rt	76	87 (<i>R</i>)	158a
5	109 (1.0)	rt	75	97 (S)	159c
6	109 (0.5)	rt	68	92 (<i>S</i>)	159c
7^a	110 (1.0)	-20 °C	75	92 (<i>S</i>)	160b
8 ^b	111 (1.0)	rt	92	97 (R)	161b
9^b	112 (1.0)	rt	77	91 (<i>S</i>)	162a
10^{c}	113 (1.0)	rt	76	93 (R)	163a
11^{c}	113 (0.5)	rt	77	87 (<i>R</i>)	163a
12^{c}	113 (0.05)	rt	50	69 (<i>R</i>)	163b
13 ^c	113 $(0.2)^d$	rt	70	93 (<i>R</i>)	163b

Table 1. Representative examples for asymmetric Et₂Zn addition to 104.

0

^{*a*}1 equiv TIPS-Cl added to the reaction mixture. ^{*b*}5 equiv Et₂Zn used. ^{*c*}12 equiv Et₂Zn used. ^{*d*}2 equiv MeOH added.

The process chemistry group at Bristol-Myers Squibb tested the asymmetric alkylation of *N*-diphenylphosphinoylimines during the large-scale synthesis of a candidate for the treatment of cystic fibrosis and rheumatoid arthritis, DMP 777 (Scheme 27).¹⁶⁴ Alkylation of imine **114** with *n*-Pr₂Zn in the presence of 1.5 equivalents of norephedrine-derived amino alcohol *ent*-**105** was performed on a 30 mmol scale, affording (*R*)-**115** in 67% conversion, but 50% isolated yield (after crystallization), and 89% *ee*. Phosphinamide **115** was then deprotected using TFA/MeOH at reflux. Ultimately, a diastereoselective hydrogenation of chiral ketimine **118** was selected to prepare large quantities of chiral amine **116**, despite destruction of the chiral auxiliary in this process. The phosphinimine alkylation method was undesirable due to the relatively low *ee* of 89% obtained, and the need to use stoichiometric quantities of *ent*-**105**.

Scheme 27. Comparison of asymmetric alkylation of *N*-diphenylphosphinoylimine 114 and diastereoselective hydrogenation by the process group at Bristol-Myers Squibb.

Tomioka and co-workers reported an asymmetric alkylation of *N*-tosylimines, catalyzed by Cu(OTf)₂ and phosphine **119**.¹⁶⁵ Several other groups have subsequently investigated this Cu-catalyzed reaction, using ligands **122**,¹⁶⁶ **123**,¹⁶⁷ **124**,¹⁶⁸ and **125**.¹⁶⁹ A survey of their results (for alkylation of imines derived from aromatic aldehydes) is shown in Table 2. Tomioka and co-workers improved their ligand's selectivity by preparing **120** (for Et₂Zn addition, entry 1) and **121** (for Me₂Zn and *i*-Pr₂Zn addition, entries 2 and 3). Charette and co-workers have developed ligand **122** for the alkylation of phosphinimines (entries 4-6), resulting in a superior process due to the significantly milder deprotection conditions of diphenylphosphinamides compared to sulfonamides. High *ee's* were reported for Et₂Zn, Me₂Zn and *i*-Pr₂Zn additions to both aromatic and *in situ* generated aliphatic imines. Hoveyda, Snapper and co-workers have successfully developed a Zr-catalyzed asymmetric addition of Et₂Zn to imines derived from condensation of aryl aldehydes and *o*-anisidine, in the presence of as little as 0.1 mol% of peptide **126** (entry
10).¹⁷⁰ Dahmen and Bräse have reported that *in situ* generated *N*-formylimines can be alkylated by Et_2Zn in the presence of catalytic quantities of paracyclophane amino alcohol **127** affording adducts in very high yield and enantioselectivity (entry 11).¹⁷¹

Table 2. Representative examples for catalytic asymmetric R₂Zn addition to aromatic imines.

N ^{_PG} R ₂ Zn NH(PG)							
		Ph	cat. Metal,	L* Ph	`R		
Entry	R (Equiv)	PG	Metal (mol%)	L* (mol%)	Yield (%)	ee (%)	Reference
1^a	Et (2)	Ts	$Cu(OTf)_2(5)$	120 (6.5)	97	96 (<i>S</i>)	165c
2^b	Me (8)	Ts	Cu(OTf) ₂ (20)	121 (15)	97	87 (S)	165c
3 ^{<i>a</i>}	<i>i</i> -Pr (2)	Ts	Cu(OTf) ₂ (20)	121 (15)	92 ^c	78 (S)	165c
4^a	Et (2)	$P(O)Ph_2$	$Cu(OTf)_2(6)$	122 (3)	96	98 (S)	166b
5^b	Me (3)	$P(O)Ph_2$	CuOTf(5)	122 (5)	87	97 (S)	166b
6^a	<i>i</i> -Pr (3)	$P(O)Ph_2$	Cu(OTf) ₂ (10)	122 (5)	84	95 (S)	166b
7^a	Et (2)	Ts	$CuBF_4(3)$	123 (6)	93	86 (<i>S</i>)	167b
8^a	Et (2)	Ts	$CuClO_4(3)$	124 (6)	92	68 (S)	168
9^d	Et (4)	Ts	Cu(OTf) ₂ (10)	125 (12)	58	77 (<i>S</i>)	169
10^{b}	Et (3)	2-C ₆ H ₄ OMe	Zr(O <i>i</i> -Pr) ₄ (20)	126 (0.1)	82	93 (<i>S</i>)	170a
11^e	Et (6)	СНО	none	127 (2)	99	95 (R)	171

^{*a*}Reaction in toluene at 0 °C. ^{*b*}Reaction in toluene at rt. ^{*c*}5% of BnNHTs also isolated. ^{*d*}Reaction in toluene at -20 °C. ^{*e*}Reaction in hexane at 10 °C.

1.5. Simmons-Smith Cyclopropanation

In the course of the research presented here, a one-pot imine vinylation/cyclopropanation was discovered. The mechanism was thought to involve an allylic amide-directed Simmons-Smith cyclopropanation.¹⁷² Cyclopropane amino acids are of considerable interest as many, such as (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I)^{173,174} and (2S,4R)-hypoglycin A,¹⁷⁵ show biological activity.¹⁷⁶ They are also increasingly used in the pharmaceutical industry, in active compounds such as BILN 206.¹⁷⁷

Simmons and Smith discovered that the cyclopropanation of alkenes could be accomplished using the product of a zinc/copper couple and CH_2I_2 .¹⁷⁸ The active reagent was believed to be the electrophilic zinc carbenoid IZnCH₂I. Furukawa and co-workers found that a similar cyclopropanating reagent, presumably EtZnCH₂I, could be formed by mixing Et₂Zn and CH_2I_2 .¹⁷⁹ A number of metal/CH₂X₂ (X = halogen) combinations, with or without additional ligands, have been subsequently developed.^{b,180}

The Simmons-Smith reaction has gained wide use for the cyclopropanation of alkenes due to its tolerance of most common functional groups including alkynes, alcohols, ethers, aldehydes, ketones, and carboxylic acids and their derivatives. Dihalides other than CH₂I₂, such as CH₃CHI₂, can be used to form trisubstituted cyclopropanes.¹⁸¹ CH₂Cl₂ is the solvent of choice for this reaction, since it is "non-basic, unreactive towards the zinc reagents, and polar enough to solubilize the substrates."^a

An important characteristic of the Simmons-Smith cyclopropanation is that it can be directed by allylic alcohols and ethers.¹⁸² For example, the more sterically hindered β -face of the allylic double bond of alcohol **128** was diastereoselectively and chemoselectively cyclopropanated using the Simmons-Smith reagent (Scheme 28).¹⁸³

Scheme 28. Alcohol-directed Simmons-Smith cyclopropanation.

(Z)-Disubstituted and trisubstituted allylic double bonds nearly always give very high *syn*-selectivities when cyclopropanated; however, selectivities with (*E*)-disubstituted double bonds are much lower, and highly reagent- and substituent-dependant.¹⁸⁴ In some cases (*E*)-disubstituted allylic ethers can favor *anti*-selectivity (Table 3).¹⁸⁵ Two trends can be observed: as the size of \mathbb{R}^2 increases, *syn*-selectivity increases as well; however, the size of the \mathbb{R}^1 ether has the opposite effect, increasing *anti*-selectivity.

	OR ¹	EtZnCH ₂ I (\mathbb{R}^1 = Me and Bn) or CF ₃ CO ₂ ZnCH ₂ I (\mathbb{R}^1 = TES)			OR ¹ +		
Ph	[⊥] R ²		CH ₂ Cl ₂	P		Ph	
	Entry	R^1	R^2	Yield (%)	syn:anti	Reference	
	1	Me	Me	95	39:61	185a	
	2	Me	Et	93	77:23	185a	
	3	Me	<i>i</i> -Pr	94	98:2	185a	
	4	Bn	Me	94	10:90	185a	
	5	Bn	Et	97	33:67	185a	
	6	Bn	<i>i</i> -Pr	82	95:5	185a	
	7	TES	Me	87	>1:99	185b	
	8	TES	Et	87	3:97	185b	
	9	TES	i-Pr	78	30:70	185b	

Table 3. Substituent effects on *syn/anti* selectivity for (*E*)-disubstituted allylic ethers.

Transition state models that explain these trends are shown in Figure 3. The allylic $A^{1,3}$ strain of transition state **I**, normally used to explain *syn*-selectivity for allylic alcohol-directed
cyclopropanation (i.e. $R^1 = H$ for the allylic alcohol substrate), decreases relative to the strain
between the R^1 and R^2 groups in transition state **II** for sufficiently large R^1 and small R^2 groups.
Allylic $A^{1,3}$ -strain is the dominant interaction for (*Z*)-allylic ethers.

Figure 3. Transition state models for *anti-* and *syn-*selective cyclopropanations of allylic ethers.^a

Amides can also be strong directing groups in the Simmons-Smith reaction, though there are very few published examples. Cyclopentenylamide **130** was cyclopropanated exclusively *syn* to the amide, despite the presence of an allylic alcohol on the opposite face of the ring (Scheme 29).¹⁸⁶ Reversal of selectivity was observed when the fully *N*-protected cyclopentene **132** was subjected to the same reaction conditions. The related cyclopropanation of α , β -unsaturated amides using SmI₂/CH₂I₂ was proposed to involve co-ordination of Sm to the carbonyl oxygen.¹⁸⁷

Amines are normally not directing groups for Simmons-Smith cyclopropanation, likely due to competitive formation of zinc-complexed ammonium ylides.¹⁸⁸ Aggarwal and co-workers have found that a suitably proximal hydroxyl group inhibited ylide formation between allylic amines and bis-iodomethylzinc, thus allowing cyclopropanation of the alkene (Scheme 30).¹⁸⁹ For example, pseudoephedrine-containing allylic amine **134** was cyclopropanated to afford **135** as a single diastereomer in very high yield. Tertiary amines were required, and no additional functional groups, such as alcohols or esters, were tolerated as substituents on the substrate. The

chiral auxiliary was removed in high yield by quaternizing the amine followed by heating with NaH.

Scheme 29. Amide-directed Simmons-Smith cyclopropanation.

Scheme 30. Amine-directed Simmons-Smith cyclopropanation.

Oshima and co-workers have combined the Zr-Zn transmetalation strategy with Simmons-Smith cyclopropanation conditions for a net synthesis of *trans*-disubstituted cyclopropanes from alkynes (Scheme 31).¹⁹⁰ For example, hydrozirconation of 1-dodecyne and transmetalation with *i*-PrZnCl formed alkenylzinc reagent **139**. Addition of the Furukawa reagent to the reaction mixture, stirring at room temperature for 1 h, and quenching with deuterated acetic acid afforded cyclopropane **141** (*via trans*-cyclopropylzinc species **140**). Cumediated allylation of **140** afforded the corresponding allyl-substituted cyclopropane.

Taguchi, Hanzawa and co-workers have reported another Zr-mediated synthesis of cyclopropanes. They prepared cyclopropyl alcohols from vinyloxiranes by simply treating the substrate with Schwartz reagent in CH_2Cl_2 (Scheme 32).¹⁹¹ This reaction was very diastereoselective for *cis*-vinyloxirane **142**, as *C*-cyclopropyl alcohol **145** was the only diastereomer isolated from the reaction mixture. When the *trans*-vinyloxirane was used, the diastereomeric ratio of the *anti,trans*-cyclopropane (vs. *anti,cis*-) was 80:20. The analogous hydrozirconation of vinylaziridines afforded *C*-cyclopropylalkylamines. Allylic ethers have also been converted into cyclopropanes by the same mechanism, however, a Lewis acid was needed for deoxygenation.¹⁹²

Scheme 31. Zr-Zn transmetation/Simmons-Smith cyclopropanation.

Scheme 32. Synthesis of C-cyclopropyl alcohols from vinyloxiranes using Schwartz reagent.

2. Results and Discussion

2.1. Synthesis of Allylic Amines¹⁹³

The research project described here was initiated to extend the Zr-Zn methodology developed in the Wipf group to an asymmetric synthesis of allylic amines. Optimization of a racemic transformation analogous to the allylic alcohol synthesis detailed in Scheme 6 was undertaken using 1-hexyne (30) and benzaldimine 104. The hydrozirconation of terminal alkynes is very rapid in CH₂Cl₂ or THF at room temperature, thus initially the one-pot reaction was attempted in either of these two solvents (Table 4). Standard conditions were as follows: 1.5 equivalents of 30 were hydrozirconated with an equimolar quantity of Cp₂ZrHCl. Once the reaction mixture was homogeneous (~10 min), it was cooled to -78 °C, treated with 1.5 equivalents of Me₂Zn, rapidly warmed to room temperature, cannulated into a solution of aldimine 96, and stirred until TLC analysis showed consumption of the imine. Performing the reaction under these standard conditions in CH₂Cl₂ yielded only 41% of the desired allylic amide **146** after 18 h (entry 1). The reaction time was decreased significantly by heating the reaction mixture to reflux (entry 2), though the isolated yield increased only to 59%. Increasing the number of equivalents of reagents and heating at reflux (entries 3 and 4) had a detrimental effect on the yield (vide infra). There was no trace of 1,2-addition in the absence of Me₂Zn in CH₂Cl₂ after 4 h (entry 5).

Under standard conditions in THF, only 54% of **146** was isolated after 36 h (Table 4, entry 6). Either doubling the number of equivalents (entry 7), heating the reaction mixture (entry 8), or both (entry 10) reduced the reaction time but did not increase the isolated yield. The optimal conditions in THF consisted of heating the reaction mixture to 40 °C and using 2 equivalents of all reagents, which gave a 65% yield of **146**, based on aldimine **104**, after 16 h (entry 9). Additives such as TMS-Cl,¹⁹⁴ MeOH or an amino alcohol, each of which accelerate Et₂Zn addition to aldimines, did not improve the isolated yield or rate of reaction in CH₂Cl₂ or THF (entries 11-13).

The results in CH_2Cl_2 and THF were not promising, so toluene was investigated as the reaction solvent. When the entire one-pot reaction, including hydrozirconation at 40 °C for 1 h, was performed in toluene, 59% of **146** was isolated (Table 4, entry 14). However, when hydro-zirconation was first performed in CH_2Cl_2 and then the solvent switched to toluene, gratifyingly

a 76% yield of **146** was isolated after 2 h (entry 15). When Me₂Zn was omitted from the reaction mixture, again no addition product was observed (entry 16); however, a catalytic amount of Me₂Zn resulted in nearly as high a yield as when using 1.5 equivalents of Me₂Zn, though the reaction time was significantly increased (entry 17). Again, additives such as MeOH or BnOH had no affect on the reaction yield (entries 18 and 19).

Table 4.	Imine	addition	optimization	studies
I upic ii	1111110	uuuuuu	optimization	bruares.

				O PP N	^h ² 104	
──C ₄ H ₉ 30	Cp ₂ ZrHC		Zr C ₄	$H_9 \left[\begin{array}{c} Ph^{\frown} H \\ \hline Me_2 \end{array} \right]$	Zn P	h C_4H_9
			0			146
Entry	Equiv 6	Equiv Me ₂ Zn	Solvent	Temperature	Time (h)	Yield $(\%)^a$
1	1.5	1.5	CH_2Cl_2	rt	16	41
2	1.5	1.5	CH_2Cl_2	reflux	16	59
3	2.0	2.0	CH_2Cl_2	reflux	16	43
4	3.0	3.0	CH_2Cl_2	reflux	16	11
5	1.5	0	CH_2Cl_2	rt	4	0
6	1.5	1.5	THF	rt	36	54
7	3.0	3.0	THF	rt	16	50
8	1.5	1.5	THF	30 °C	20	49
9	2.0	2.0	THF	40 °C	16	65
10	3.0	3.0	THF	40 °C	4	52
11	1.5	1.5	CH_2Cl_2	rt	16	40^b
12	1.5	1.5	CH_2Cl_2	reflux	16	64^c
13	1.5	1.5	THF	rt	36	45^d
14	1.5	1.5	toluene	rt	4	59
15	1.5	1.5	toluene ^e	rt	2	76
16	1.5	0	toluene ^e	rt	16	0
17	1.5	0.2	toluene ^e	rt	16	72
18	1.5	1.5	toluene ^e	rt	6	74^c
19	1.5	1.5	toluene ^e	rt	6	74^{f}

^{*a*}Yields of isolated products are based on aldimine **104**. ^{*b*}0.1 equiv of HO(CH₂)₂NMe₂ was added. ^{*c*}0.5 equiv of MeOH was added. ^{*d*}1 equiv of TMS-Cl was added. ^{*e*}Hydrozirconation was performed in CH₂Cl₂, which was subsequently removed *in vacuo* and replaced with toluene. ^{*f*}0.5 equiv of PhCH₂OH was added.

Using the optimized reaction conditions (Table 4, entry 15), the reaction scope was investigated (Table 5). Trisubstituted alkene **147** was prepared in high yield from 3-hexyne (entry 2). Functional groups on the alkyne such as silyl ethers (entry 3), silyl esters (entry 4), sulfonamides and carbamates (entry 5) were tolerated. Bulky trimethylsilylacetylene did not yield any significant quantities of the desired allylic amide **155** (entry 6). In contrast to Et_2Zn addition to **104**, electron-withdrawing groups on the benzaldimine did not affect the reaction (entry 7), whereas the presence of electron-donating groups significantly reduced the isolated yield (entry 8).

Other *N*-diphenylphosphinoylimines derived from non-enolizable aldehydes were prepared and subjected to these reaction conditions. Thus α , β -unsaturated aldimines **160** and **162** were converted to bis-allylic amides **161** and **163**, and alkynlimine **164** was converted to propargylamide **165** in 85% yield (Table 5, entries 9-11). The *N*-tosyl group was also suitable for activating benzaldimine **90** under these conditions (entry 12), and *N*-tosylimines **166**, **168** and **170**, derived from enolizable aldehydes, formed amides **167**, **169** and **171** (entries 13-15).

Entry	Alkyne	Aldimine	Allylic Amine	Yield (%)
1	1-hexyne (30)	O Ph H 104	NHP(O)Ph ₂ Ph C ₄ H ₉ 146	76
2	3-hexyne	104	NHP(O)Ph ₂ Ph Et Et	72
3	OBDPS 148	104	NHP(O)Ph ₂ Ph OBDPS 149	73
4	O OTIPS 150	104	Ph Ph CO ₂ TIPS 151	65
5	CO ₂ Et N Ts 152	104	NHP(O)Ph ₂ Ph N(Ts)CO ₂ Et 153	59

Table 5. Synthesis of allylic amines using the Zr-Zn transmetalation methodology.

Entry	Alkyne	Aldimine	Allylic Amine	Yield (%)
6	──TMS 154	104	NHP(O)Ph ₂ Ph TMS	< 10
7	30	MeO ₂ C	MHP(O)Ph ₂ C ₄ H ₉ MeO ₂ C	84
8	30	MeO 158	NHP(O)Ph ₂ C ₄ H ₉ MeO 159	35
9	30	Ph 160 O PPh ₂ PPh ₂ H	NHP(O)Ph ₂ Ph C ₄ H ₉ 161	28
10	30	Ph H	NHP(O)Ph ₂ Ph C ₄ H ₉ 163	72
11	30	Ph 164	NHP(O)Ph ₂ C ₄ H ₉ Ph 165	85
12	30	Ph H 90	NHTs Ph C ₄ H ₉ 91	80
13	30	Ph H 166	NHTs Ph C ₄ H ₉ 167	90
14	30	N ^{-Ts} H 168	NHTs C ₄ H ₉ 169	71

Table 5 (continued). Synthesis of allylic amines using the Zr-Zn transmetalation methodology.

Entry	Alkyne	Aldimine	Allylic Amine	Yield (%)
15	30	N ^{-Ts} H 170	NHTs C ₄ H ₉ 171	81

Table 5 (continued). Synthesis of allylic amines using the Zr-Zn transmetalation methodology.

^{*a*}Reaction conditions: (i) 1.5 equiv of Cp₂ZrHCl, 1.5 equiv of alkyne, CH₂Cl₂, rt, 10 min; (ii) 1.5 equiv of Me₂Zn, toluene, -78 °C, 5 min; (iii) 1.0 equiv of aldimine, toluene, rt, 2-5 h. ^{*b*}Yields of isolated products are based on aldimines.

Like benzyl phosphinamide **106**, the allylic phosphinamides prepared were easily deprotected under mild conditions.¹⁹⁵ For example, anhydrous HCl in MeOH removed the diphenylphosphinoyl group of **172**, and in one pot the allylic amine was reprotected as amide **173**, carbamate **174** or sulfonamide **175** (Scheme 33).

Scheme 33. Facile one-pot deprotection and derivitization of allylic phosphinamide 172.

Several other aldimines were tested using the conditions of Table 5. Carbamoylimines such as **175**, and *N*-acetylimine **177** were significantly more reactive than phosphinimine **104** or sulfonimine **90** (*vide infra*). All benzaldimines that did not have an activating (strongly withdrawing) group on nitrogen, including *N*-aryl imine **178**, *N*-silyl imine **179**, and oxime **180**, were unreactive under the Zr-Zn transmetalation conditions.

2.2. Asymmetric Synthesis of Allylic Amines

Development of an asymmetric synthesis of **144**, through the use of chiral amino alcohol or thiol promoters that were effective for the enantioselective allylic alcohol reaction detailed in Scheme 13, was unsuccessful. Amino alcohol **55** and amino thiophenol **181** were used for the

attempted *ee* optimization studies (Table 6). Both were effective asymmetric catalysts for the Zr-Zn transmetalation/aldehyde addition reaction, and both can easily be prepared in large scale in two steps from inexpensive, commercially available starting materials.

Optimization was performed for the addition of alkenylzirconocene **6** to imine **104**. Using the standard conditions of toluene as the reaction solvent and performing the reaction at room temperature gave acceptable yields of **146** but less than 5% *ee* when 10 or 50 mol% of **55** was added to the reaction mixture (Table 6, entries 1 and 2). The same occured when amino thiol **181** was used with a reaction temperature of 0 °C (entries 3 and 4). For phosphinimine **104**, when the reaction was performed at -20 °C there was a significant drop in the rate of reaction, and only a very small *ee* was measured by chiral HPLC (entry 5).

	U N_PPł	٦ ₂	ClCp ₂ Zr	C ₄ H ₉ 6	NHP(O)Ph ₂		
Ph H 104			Me ₂ Zn, 55 o toluene, 16	r 181 , Pł -48 h	Ph C₄H ₉ 146		
Entry	Equiv Me ₂ Zn	L*	Equiv L*	Temperature	Yield $(\%)^a$	$ee (\%)^{b}$	
1	1.2	55	0.1	rt	65	< 5	
2	1.2	55	0.5	rt	71	< 5	
3	1.5	181	0.1	0 °C	68	< 5	
4	1.5	181	0.5	0 °C	69	< 5	
5	1.5	181	0.1	-20 °C	39	10	
6	1.0	55	1.0	rt	0	-	
7	3.0	55	1.0	rt	66	24	
8	3.0	55	1.0	10 °C	75	23	
9	3.0	55	1.0	0 °C	27	29	
10	3.0	181	1.0	10 °C	56	34	
11	0.2	181	0.5	50 °C	56	18	

 Table 6. Attempted asymmetric addition reactions with imine 104 and ligands 55 and 181.

^{*a*}Yields of isolated products based on **104**. ^{*b*}Measured by chiral HPLC using a Chiracel OD or AD Column.

Though the reaction was largely unaffected by the presence of substoichiometric quantities of ligand when at least one equivalent of Me₂Zn was used, addition of one equivalent of **55** to an equal amount of Me₂Zn suppressed addition of alkenylzirconocene **6** to imine **104** (Table 6, entry 6). The use of stoichiometric quantities of **55** required 3 equivalents of Me₂Zn for an acceptable isolated yield of **146**, but the *ee* of the reaction was still not high (entry 7). Lowering the temperature did not significantly increase the *ee*, and once again reduced the rate of reaction (entries 8 and 9). The highest *ee* of allylic phosphinamide **146** (34%) was achieved using three equivalents of Me₂Zn, one equivalent of **181**, and performing the reaction in toluene at 10 °C (entry 10). The reaction could be forced to completion when equal or greater amounts of amino alcohol than Me₂Zn were used, by heating to 50 °C. However, when 0.2 equivalents of Me₂Zn and 0.5 equivalents of **181** were used at 50 °C, the reaction *ee* was only 18% (entry 11). The observed *ee*'s, though low, were reproducible. Repeating reactions using one equivalent of ligand that gave *ee*'s in the range of 20-30% gave a result that was within 5% *ee* of the originally measured value. In every set of reaction conditions tested for an asymmetric synthesis of **146**,

where less than one equivalent of ligand but at least one equivalent of Me₂Zn was used, the *ee* was always <10%.

Several other ligands were prepared and tested using the conditions of Table 6, entries 8 and 10. These included amino alcohols **108**, ^b **112**, ^b **127**, ¹⁹⁶ **182**, **183**, ¹⁹⁷ **184**, ¹⁹⁸ **185**, ¹⁹⁹ **186**, ²⁰⁰ **187**, and **188**, alcohols **189** and **190**, and amines **191-193**. In all cases, the *ee* was <30%. Pyridine **189** was prepared as a racemic mixture and then separated by semi-preparative chiral

HPLC using a Chiralcel AD column. The enantiomerically pure ligand (*S*)-**189** was effective for Et_2Zn addition to phosphinimine **104** using the conditions of Table 1 (α -ethylbenzylamine (*S*)-**106** was isolated in 74% yield with an *ee* of 93%), but was ineffective for the preparation of enantiomerically enriched allylic phosphinamide **146**. Based on the results of Scheme 14, alcohol **190** was also prepared as a racemic mixture and separated by chiral HPLC, but was also inneffective. Diols **70**,²⁰¹ **194** and **195**²⁰² were also tested, in combination with Ti(IV) reagents. Regardless of the conditions used, when Ti was present in the reaction mixture, the *ee* was zero. *N*-Tosylimine **90** was also completely ineffective, with only racemic product formed. Using ZnCl₂ in place of Me₂Zn was also briefly investigated, however the *ee*'s were zero in all reactions tested.

N-Carbamate, -amide, and -urea benzaldimines **176**, **177**, **197**, **199**, and **202** were significantly more reactive than phosphinimine **96**, thus temperatures lower than those of Table 6 could be investigated (Table 7). Again, no *ee* higher than 35% was obtained. The allylic amine derivatives were however typically isolated in higher yield.

N R Ph H imine		CICp ₂ Zı	C.	₄ H ₉ 6	NHCOR		
		1.5 equiv I tolu	Vle ₂ Zn, 10 Jene, -30) mol% L*, °C	Ph C ₄ H ₉ allylic amine		
Entry	R	Imine	L*	Yield $(\%)^a$	$ee (\%)^b$	Allylic Amine	
1^c	Ot-Bu	176	55	81	22	196	
2	OEt	197	181	94	7	198	
3^d	OMe	199	55	86	6	200	
4	Me	177	181	44	1	201	
5	NMe_2	202	181	69	6	203	

Table 7. Attempted asymmetric addition reactions with more reactive imines.

^{*a*}Yields of isolated products, based on imines. ^{*b*}Measured by chiral HPLC using a Chiracel OD or AD Column. ^{*c*}1 equiv of Me₂Zn used. ^{*d*}3 equiv of Me₂Zn and 1 equiv of L* used, and reacted at -20 °C.

The benzaldimines **176**, **177**, **197**, and **199** could be prepared *in situ* using the method of Dahmen and Bräse (Table 8). The advantage of this method was the ease of preparation and the stability of the solid sulfonamide sulfones, compared to the aldimines which were all moisture-sensitive oils. However, as can be seen by comparing Table 7, entry 2 and Table 8, entry 1, the isolated yield of ethyl carbamate **198** was much lower using the *in situ* generated imine protocol. The isolated yield of acetamide **201** was very slightly increased (Table 7, entry 4 vs. Table 8, entry 2), likely due to the difficulty in handling the very unstable imine **177**. This approach was abandoned because no *ee* above 10% was obtained using *in situ* generated imines.

The highest *ee* achieved using an imine other than **104** was from addition to **199**, in the presence of 1 equivalent of both Me₂Zn and amino alcohol **55**, which yielded 80% of allylic carbamate **200** in 32% *ee* (Scheme 34).

Table 8. Attempted asymmetric addition reactions with in situ-generated imines.

HN Ph sulfon sulf	O R SO₂Ph aamide fone	Me ₂ Zn	$\begin{bmatrix} O \\ H \\ Ph \\ H \end{bmatrix}$	6 Me ₂ Zn, 10 r toluene, -	nol% 55 , 20 °C	NHCOR Ph	C₄H ₉ ne
•	Entry	R	Sulfonamide Sulfone	Yield $(\%)^a$	$ee (\%)^b$	Allylic Amine	
-	1	OEt	204	51	5	198	
_	2	Me	205	48	6	201	
	<i>a</i> x x ² 1 1	0.1	1 1 1	1 10	har	1.1	

Scheme 34. Highest ee achieved for addition to an imine other than 104.

Following a recently published protocol,²⁰³ *in situ* generated acyliminium ions were used as electrophiles in the Zr-Zn transmetalation reaction, and found to be significantly more reactive than any other imines tested. Quantitative formation of acyliminium chloride **206** took 15 min at room temperature in CH_2Cl_2 and could be monitored by TLC. Treatment of **206** with hexenyl-zirconocene **6** and an equivalent of Me₂Zn resulted in very rapid 1,2-addition, though a significant amount of methyl addition also occurred. When the reaction was performed at room temperature, 51% of the desired allylic amide **207** was isolated, as well as 32% of methyl-adduct **208** (Scheme 35).

To avoid methyl transfer to acyliminium **206**, $ZnCl_2$ was successfully used in place of Me₂Zn (Scheme 36). During optimization of these reaction conditions, it was discovered that as little as 1 drop of a 1.0 M solution of $ZnCl_2$ in Et₂O was sufficient to catalyze the addition of hexenylzirconocene **6**; after only a 15 min reaction time at 0 °C, 82% of **207** was isolated. There was no addition when $ZnCl_2$ was excluded from the reaction.

Scheme 35. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of stoichiometric Me₂Zn.

Scheme 36. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic ZnCl₂.

Despite the presence of a significantly more reactive electrophile and the high yield of addition product **207** with only 2 mol% of $ZnCl_2$ added, no *ee* was obtained when the reaction was performed in the presence of chiral amino alcohols or thiols. As previously, using an equal amount of ligand and $ZnCl_2$ had a detrimental affect on the rate of reaction, whereas if more $ZnCl_2$ than ligand was used only racemic product was formed. Unlike all of the other imines tested; however, the addition of **6** to **206** was also catalyzed by Cu(I) salts (Scheme 37). In the presence of 10 mol% of CuBr, allylic amide **207** was isolated in 86% yield after a 30 min reaction time at 0 °C.

All Cu(I) salts tested were almost equally effective, so CuCl was selected for asymmetric studies since Cp_2ZrCl_2 (the Zr complex formed after transmetalation in this case) is not highly soluble in CH_2Cl_2 . Several known asymmetric ligands for Cu-catalyzed reaction were tested, including **209-217** (Figure 4) No ligand was found that delivered any enantioselectivity (<10%)

ee for each catalyst system tested), and again the rate of reaction was decreased upon addition of an external ligand to the reaction mixture.

Scheme 37. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic CuBr.

Figure 4. Ligands tested and *ee*'s obtained for the attempted Cu-catalyzed asymmetric synthesis of 207.

Lacking success using external chiral ligands for an asymmetric synthesis of allylic amines using the Zr-Zr transmetalation methodology, other strategies were explored. Diastereo-

selective addition to chiral sulfinimine **92** was attempted; however, this aldimine was not sufficiently reactive, even at elevated temperatures (Scheme 38).

Scheme 38. Attempted diastereoselective addition to a chiral sulfinimine.

Several chiral phosphinamides were prepared and tested as potential substrates for diastereoselective addition of alkenylzirconocene **6** (Table 9). The first imine tested was binaphthyl-phenyl phosphinimine **219**, which was prepared as a single diastereomer (*vide infra*). Addition of **6** to this imine at room temperature afforded the desired allylic amide **220** with a modest diastereomeric ratio of 72:28 (entry 1). The benzaldimines of known phosphinamides **221**²⁰⁴ and **224**²⁰⁵ were then tested and identical diastereoseletivities of 69:31 were obtained for both (entries 2 and 3). Since there was no change in selectivity for all three substrates tested, it was assued that the bulky R group was not as hoped involved in stereodifferentiation, instead the constant *dr* of 7:3 was due to the difference in size between the phenyl and oxygen substituents on phosphorous.

Preliminary molecular modeling showed that *ortho*-substituted phenyl rings blocked one face of the aldimine and oriented the oxygen away from the C=N double bond. A series of novel phosphinamides were prepared to test the modeling findings. Though the first two imines tested, **227** and **230**, had poorer selectivities of nearly 1:1 (Table 9, entries 4-6), the reaction was much slower, and imine **227** required 40 °C for an isolated yield of 68%. In these cases, due to the lower rate of reaction, it appeared that the transition state was more crowded thus the model appeared to be correct. Imines **233** and **236** were then tested (entries 7 and 8). In both cases a reaction temperature of 40 °C was required, and the diastereoselectivity was increased, though it was still much too low to be useful. Imine **239** showed no improvement over **233** (entry 9).

O		PhCHO	0 Н	CICp ₂ Z	C ₄ I	H ₉ 6 0	6 O Ph		
R ^{_1}	NH₂ −	TiCl ₄ , Et ₃ N, R	P N Ph	Ме	Zn, toluen	e R [∠] P Ph H		C₄H ₉	
pr	imary	CH ₂ Cl ₂	imine			ally	allylic amide		
a	mide								
Entry	Primary Amide	R	Imine	Yield ^a	Allylic Amide	Temperature	Yield ^b	dr	
1	218		219	16%	220	rt	76%	72:28	
2	221		222	35%	223	rt	53%	69:31	
3	224	<i>t</i> -Bu	not isolated		225	rt	32%	69:31	
4	226	¥	not isolated		227	rt	51%	57:43	
5	226	TMC	not isolated		227	40 °C	68%	54:46	
6	228	TMS	229	87%	230	rt	70%	51:49	
7	231	Ph	232	82%	233	40 °C	89%	65:35	
8	234		235	97%	236	40 °C	86%	59:41	
9	237		238	88%	239	45 °C	87%	63:37	

Table 9. Diastereoselective addition to chiral phosphinimines.

^{*a*}Isolated yields of Imines. ^{*b*}Isolated yields of Allylic Amides.

The imines were prepared using the method of Jennings and Lovely,²⁰⁶ and initially isolated, with difficulty, by precipitation. Imines **225** and **227** could not be isolated by this method, and so they were used as crude mixtures of imine and benzaldehyde. Imines **230**, **233**, **236**, and **239** were purified by column chromatography after it was discovered that unlike diphenylphosphinamide **104**, these imines were stable on deactivated SiO₂.

Binaphthyl-phenyl phosphinimine **219** was prepared from the known phosphinic acid **241**²⁰⁷ in three steps (Scheme 39). Thermal opening of phosphole oxide **240** with NaOH was very low yielding. The subsequent one-pot acid chloride formation and amidation was nearly quantitative. Imine formation afforded a 64:38 mixture of diastereomers, and fortunately, crystalization from CH_2Cl_2 /hexanes afforded an x-ray quality (Appendix A) single crystal that was characterized and tested in the diastereoselective addition.

Scheme 39. Synthesis and of binaphthyl-phenyl phosphinimine 219.

The novel phosphinamides **243**, **246**, **248**, **250**, and **252** were prepared by adapting the literature procedure used for mesityl-phenyl phosphinamide **221** (Table 10). Aryl Grignard addition to ClP(OEt)₂ was followed by mild acid-promoted rearrangement to afford ethyl phosphinates with a characteristic P-H coupling of ~550 Hz. Only **244** (R = *t*-Bu) was isolated (entry 1), in all other cases the crude material was used in the subsequent Pd-catalyzed coupling with iodobenzene. Phosphinates **245**, **247**, **249**, **251**, and **253** were isolated in modest to high yield. For entries 2-5, a three-step, high yielding sequene of dealkylation, acid chloride formation, and amidation was used for ester to amide conversion. Non-racemic phosphinamide **221** has been prepared by treating its corresponding acid chloride with one enantiomer of α -methylbenzylamine, separating the resulting diastereomers by chromatography on SiO₂, and removal of the benzylic group by hydrogenation. This resolution strategy was not explored here since no highly diastereoselective alkenylzirconocene addition was found.

Table 10. Synthesis of novel aryl-phenyl phosphinamides.

	R aryl br	Br 1. Mg, 7 2. 0.1 N omide	THF; CIP(OEt) ₂	R ary phosph	O II P OEt H yl	ioo cat. Po Et ₃ N,	dobenzene d(OAc) ₂ + o MeCN, 70	dppf,)°C	
		R O PhOEt	1. TMS-Br, C 2. (COCl) ₂ , c 3. liq. NH ₃ , C	H ₂ Cl ₂ ; Me at. DMF, C H ₂ Cl ₂	OH :H ₂ Cl ₂	R Drima	O P NH ₂ Ph		
		phosphinate				prina			
Entry	Aryl Bromide	R	Aryl Phosphinate	Yield ^a	Aryl-Ph Phosph	ienyl	Yield ^b	Primary Amide	Yield
1	243	<i>t</i> -Bu	244	95%	245	5	60%	226	
2	246	TMS	not isolated		247	7	28%	228	88%
3	248	Ph	not isolated		249)	82%	231	95%
4	250	1-adamantyl	not isolated		251	l	48%	234	61%
5	252	<i>p</i> -tolyl	not isolated		253	;	54%	237	87%

^{*a*}Isolated yield of Aryl Phosphinates. ^{*b*}Isolated yield of Aryl-Phenyl Phosphinates. ^{*c*}Isolated yield of Primary Amides.

For the conversion of ester **245** to amide **226**, a known one-step protocol using $NaNH_2$ was followed, but the yield was low and the reaction was not clean (Scheme 40). This appraoch failed completely for the conversion of **247** to **228**, so the three-step sequence shown in Table 10 was used for all other substrates.

Scheme 40. One-step synthesis of phosphinamide 226.

Known aryl bromides 243,²⁰⁸ 246,²⁰⁹ and 250^{210} were prepared according to literature procedures. Tolyl-substituted bromobenzene 252 was prepared by Suzuki coupling of 4-methyl-phenylboronic acid (255) with 1,2-dibromobenzene (Scheme 41).

This diastereolective addition strategy was abandonded since the diastereoselectivities obtained were not promising, and preparation of the chiral phosphinimines required up to eight chemical steps, not including the needed resolution should the method be used for the synthesis of non-racemic allylic amines.

Scheme 41. Synthesis of aryl bromide 252.

2.3. Synthesis of C-Cyclopropylalkylamines

While investigating the alkenylzinc addition to aldimines in CH_2Cl_2 (Table 4), it was observed that increasing the number of equivalents of the organometallic reagents when

performing the reaction at reflux reduced the isolated yield of the desired allylic amide **146**. This was due to formation of a second phosphinamide, cyclopropane **257** (Scheme 42). Only the amino cyclopropane with *anti*-configuration (determined by X-ray analysis of benzyl derivative **268**, Appendix B) was identified by ¹H NMR analysis of the crude reaction mixture. By repeating the reaction in CD_2Cl_2 , bis-deuterated cyclopropane **258** was formed, whereas **257** remained the major product formed if Me₂Zn was replaced with Et₂Zn, thus the origin of the new cyclopropyl carbon was shown to be the solvent.

Scheme 42. Unexpected formation of amino cyclopropane 257.

Allowing the reaction to continue for a longer period of time increased the yield of **257** and decreased that of **146** (Table 11, Entry 2). Lowering the number of equivalents of the organometallic reagents reduced the yield of **257**, even after prolonged reaction times (Entries 3 and 4). Even as little as 10 equivalents of CH_2Cl_2 added to a reaction performed in toluene resulted in formation of substantial quantities of **257**, though heating was necessary to keep the reaction time under 24 h (Entries 5 and 6). Whenever CH_2Cl_2 was used, **257** was not the only product formed, thus, in order to increase the yield and rate of the reaction, CH_2I_2 was added to the reaction mixture, resulting in the isolation of **257** in 74% yield (Entry 7).

The scope of the optimized reaction conditions (Table 11, entry 7) is shown in Table 12. Silyl ether, silyl ester, sulfonamide, and carbamate functional groups were again tolerated on the alkyne moiety (entries 2-4).²¹¹ Alkynylimine **164** was converted into propargylamine **262**²¹² in modest yield (entry 5); however, the α , β -unsaturated imines **159** and **161** gave only complex mixtures of mono- and bis-cyclopropanated amides. Use of *N*-tosylimine **90** in place of **104** retained the excellent diastereoselectivity displayed by all reactions thus far (entry 6); however, with alkylimines **166** and **170**, the diastereoselectivity was lower (entries 7 and 8).

O C N ^{PPh} 2 — Ph H 104		Cp ₂ Zr Me ₂ Zn	$ \begin{array}{ccccc} & & & & & & \\ \hline & & & & \\ \hline & & & & \\ & &$		P(O)Ph ₂ C ₄ H ₉ 46	
Entry	Equiv 6 and Me ₂ Zn	Solvent	Temperature	Time (h)	Yield 257 ^{<i>a</i>}	Yield 146 ^{<i>a</i>}
1	3.0	CH_2Cl_2	reflux	1	29%	43%
2	3.0	CH_2Cl_2	reflux	16	58%	11%
3	2.0	CH_2Cl_2	reflux	16	18%	43%
4	1.2	CH_2Cl_2	reflux	16	4%	42%
5	3.0	toluene ^b	rt	36	43%	26%
6	3.0	toluene ^b	40 °C	16	49%	19%
7	3.0	$CH_2Cl_2^{\ c}$	reflux	3	74%	

 Table 11. C-Cyclopropylalkylamine reaction optimization.

^{*a*}Yields of isolated products based on **104**. ^{*b*}10 equiv CH_2Cl_2 added to reaction mixture. ^{*c*}5 equiv CH_2I_2 added to the reaction mixture after 1 h.

 Table 12. Synthesis of C-cyclopropylalkylamines.

Entry	Alkyne	Aldimine	<i>C</i> -Cyclopropylalkylamine ^{<i>a,b</i>}	Yield ^c	dr
1	1-hexyne (30)	104	NHP(O)Ph ₂ Ph C ₄ H ₉ 257	74%	97:3 ^d
2	148	104	Ph Ph 259 NHP(O)Ph ₂ OBDPS	68%	98:2 ^d
3	150	104	Ph Ph 260	71%	>95:5 ^e
4	152	104	Ph Ph Ph Ph Ph N(Ts)CO ₂ Et 261	45%	>95:5 ^e

Entry	Alkyne	Aldimine	<i>C</i> -Cyclopropylalkylamine ^{<i>a,b</i>}	Yield ^c	dr
5	30	164	NHP(O)Ph ₂ C ₄ H ₉ Ph 262	60%	>95:5 ^e
6	30	90	Ph 263 NHTs C ₄ H ₉	66%	>95:5 ^e
7	30	166	Ph 264 NHTs C ₄ H ₉	67%	87:13 ^e
8^f	30	170		62%	40:60 ^{<i>e</i>,<i>g</i>}
9	3-hexyne	104	Ph Et 265 NHP(O)Ph ₂ Et Et 266	46%	96:4 ^{<i>d</i>}
10 ^{<i>h</i>,<i>i</i>}	30	104	$Ph \xrightarrow{HP(O)Ph_2} C_4H_9$	52%	>95:5 ^{e,j}
11^{k}	30	104	267 257	91%	>95:5 ^e

 Table 12 (continued). Synthesis of C-cyclopropylalkylamines.

^{*a*}Only the major isomer is shown. ^{*b*}Reaction conditions: (i) 3 equiv of Cp₂ZrHCl, 3 equiv of alkyne, CH₂Cl₂, rt, 10 min; (ii) 3 equiv of Me₂Zn, CH₂Cl₂, -78 °C, 5 min; (iii) 1 equiv of aldimine, CH₂Cl₂, reflux, 1-2 h; (iv) 5 equiv of CH₂I₂, CH₂Cl₂, reflux, 2-12 h. ^{*c*}Yields of isolated products are based on aldimines. ^{*d*}Determined by HPLC analysis of the crude reaction mixture. ^{*e*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*f*}Additional Me₂Zn (3 equiv) and CH₂I₂ (10 equiv) were added to the reaction mixture. ^{*g*}Major diastereomer was not assigned. ^{*h*}Et₂Zn (6 equiv) and CH₃CHI₂ (12 equiv) were added to the reaction mixture. ^{*i*}Hydrozirconation was performed in THF, and the solvent exchanged to (CH₂Cl)₂ for the remainder of the reaction. ^{*j*}Relative stereochemistry determined by x-ray analysis of a derivative (Appendix C). ^{*k*}1 equiv of PhCH₂OH was added to the reaction mixture.

1,1,2-Trisubstituted cyclopropanes could be prepared in modest yield using internal alkynes in the hydrozirconation step (Table 12, entry 9), and 1,2,3-trisubstituted cyclopropanes

could also be prepared using CH_3CHI_2 in place of CH_2I_2 (entry 10). Using $I_2C(CH_3)_2^{213}$ afforded only trace amounts of the desired tetrasubstituted cyclopropane. When either of these 1,1diiodoalkanes were used in place of CH_2I_2 , hydrozirconation had to be performed in a solvent other than CH_2Cl_2 , otherwise **257** was the major product formed. The isolated yield of **257** was increased to 91% when one equivalent of benzyl alcohol was added to the reaction mixture (entry 11).

The *C*-cyclopropylalkylphosphinamides produced could be easily deprotected in quantitative yield in anhydrous methanol and acid (Scheme 43). Upon acylation, benzamide **268** (used for X-ray analysis to determine the relative stereochemistry, Appendix B) was formed in 99% yield from **257**.

Scheme 43. Deprotection of phosphinamide 257.

The *anti*-configuration was observed for the major diastereomer of all *C*-cyclopropylalkylamines but **265**. The stereochemistry of **259-261** and **266** were assigned by analogy to **257**. Deprotection and *N*-tosylation of **257** afforded **263**, confirming an identical relative configuration for the major diastereomers of *N*-phosphinoyl and *N*-sulfonyl amides (Scheme 44).

Scheme 44. Relative stereochemistry determination of 263 by chemical correlation to 257.

The relative stereochemistry of **264** was determined by chemical correlation (Scheme 45). Known allylic alcohol **270** was prepared using the Zr-Zn transmetalation/aldehyde addition reaction. Simmons-Smith cyclopropanation of **270** with the Furukawa reagent afforded an 86:14 mixture of easily separable diastereomers, with the major isomer assigned a *syn*-relative

stereochemistry based on literature precedent. Mitsunobu substitution of the secondary alcohol of *syn*-**271** with DPPA²¹⁴ gave a 78:22 mixture of diastereomeric azides. The major epimer was assigned as the S_N2 product (*anti* relative stereochemistry), since subjecting the minor diastereomer from Simmons-Smith cyclopropanation (*anti*-**271**) to the Mitsunobu reaction afforded the azides as a 15:85 mixture of diastereomers, favoring the *syn*-stereoisomer (Scheme 46).²¹⁵ Reduction of the mixture of azides followed by *N*-tosylation and epimer separation by chromatography on SiO₂ afforded **264** in 66% overall yield.

Scheme 45. Relative stereochemistry determination of 264 by an alternate synthesis.

Scheme 46. Mitsunobu reaction on anti-271.

The relative configuration of **262** was determined chemically by reduction, deprotection, and tosylation to give **264** (Scheme 47).

Scheme 47. Relative stereochemistry determination of 262 by chemical correlation to 264.

A Simmons-Smith-type cyclopropanation was postulated to explain the formation of 257 (Figure 5). Hydrozirconation of 1-hexyne followed by transmetalation with Me₂Zn afforded alkenylzinc **31**. Addition to aldimine **104** resulted in metalated allylic amide **273**, which reacted with CH_2Cl_2 to give zinc carbenoid **274**. Intramolecular cyclopropanation of **274** gave *anti*-cyclopropane **257**. No reaction occurred in the absence of Me₂Zn. TLC analysis of the reaction mixture clearly showed formation of allylic amide **146** prior to formation of cyclopropane **257**, and there was no addition of a cyclopropylzinc species (prepared according to the conditions of Scheme **31**) to imine **104**.

Figure 5. Proposed mechanism for formation of C-cyclopropylalkylamide 257.

No cyclopropane was formed in CH_2Cl_2 at reflux if the aldimine **104** was replaced with benzaldehyde, or if the alkenylzinc species was generated by a hydroboration, B-Zn transmetalation²¹⁶ (even in the presence of CH_2I_2 , see Scheme 52) or carboalumination, Al-Zn transmetalation strategy (Scheme 48). Simmons-Smith cyclopropanation of allylic phosphinamide **146** afforded **257** as a 71:29 (*anti:syn*) mixture of diastereomers, and allylic sulfonamide **91** afforded **263** as an 81:19 (*anti:syn*) mixture of diastereomers. In both cases the diastereoselectivity was significantly lower than for the one-pot alkenylzirconocene addition/cyclopropanation. Thus, both the zirconocene complex and the aldimine may play a role in the reaction mechanism.

Scheme 48. Unsuccessful attempts to obtain cyclopropanation products

in aldehyde or imine additions.

The high level of diastereoselectivity for *anti*-**257** can be rationalized using the allylic ether-directed cyclopropanation model^a (Figure 6). Transition state **III**, normally invoked to explain *syn*-selective allylic alcohol directed cyclopropanation, minimizes allylic A^{1,3} strain. Transition state **IV** instead minimizes steric interactions of the phenyl substituent with the bulky phosphinoyl protecting group on nitrogen. The zirconocene complex could act as a Lewis acid, activating the halomethyl zinc carbenoid, and forming a significantly larger cyclopropanation reagent *via* a bridged Zr-Zn complex,²¹⁷ which increases *anti*-selectivity compared to the (Zr-free) cyclopropanations of allylic amides **91** and **146**.

The isolated yield of allylic amide **276**, prepared by carboalumination/Al-Zn transmetalation/imine addition was improved to 73% using the optimized addition conditions (toluene, room temperature), and the one-pot aldimine vinylation/cyclopropanation to form the corresponding 1,2,2-trisubstituted cyclopropane **278** was achieved using the optimized conditions for this transformation (Scheme 49). A mixture of **276** and **278** was obtained, and the cyclopropane **278** was formed as a 9:1 mixture of diastereomers. In this case, Me₂Zn was not necessary for cyclopropanation. Pure **278** was prepared by Simmons-Smith cyclopropanation of **276**, affording **278** as a single diastereomer. The relative stereochemistry of the isomer was identical to that of the major diastereomer in the one-pot vinylation/cyclopropanation, and was assigned as *syn* based on literature precedent.

Figure 6. Transition state models for cyclopropanation of allylic amide 274.

2.4. Synthesis of Homoallylic Amines²¹⁸

Interestingly, the order of addition of reactants for the optimized *C*-cyclopropylalkylamine synthesis proved to be crucial for product formation. Addition of CH_2I_2 to the reaction mixture prior to imine **104** lead to a switch from the expected cyclopropylamide **257** to homoallylic amide **279**, in 58% yield and 5:1 diastereoselectivity, favoring the *syn*-isomer (Scheme 50).²¹⁹ This yield was slightly increased by lowering the temperature, but the effect on diastereoselectivity was minimal.

Scheme 49. Tandem carboalumination, aldimine additions with and without cyclopropanation.

Scheme 50. Unexpected formation of homoallylic amide 279.

The reaction scope is illustrated in Table 13. Some functional groups on the alkyne segment, such as silyl ethers (Entry 3) did not interfere with the reaction; however, the use of silyl esters or internal alkynes resulted in both lower yield and reduced diastereoselectivity (Entries 4 and 2). Electron-donating and -withdrawing groups on the aldimine were tolerated and had no effect on product ratios (Entries 5 and 6). *N*-Tosylimines such as **90** and **166** were also suitable substrates, though **90** resulted in decreased diastereoselectivity (Entry 7), whereas **166** provided the homoallylated product **286** in excellent diastereoselectivity. Trace amounts of the corresponding *C*-cyclopropylalkylamines (e.g. **257** for Entry 1) were the only identifiable side products.

Entry	Alkyne	Aldimine	Homoallylic Amide ^{<i>a,b</i>}	Yield $(\%)^c$	dr^d
1	1-hexyne (30)	104	NHP(O)Ph ₂ Ph C ₄ H ₉ 279	71	85:15
2	3-hexyne	104	Ph ₂ (O)PNH Et Ph Et 280	49	75:25
3	148	104		72	85:15
4	150	104	Ph CO ₂ TIPS 282	48	62:38
5	148	156	MHP(O)Ph ₂ MeO ₂ C 283	69	85:15
6	30	158	MeO 284	79	83:17
7	148	90	NHTs Ph OBDPS 285	81	60:40
8	148	166	Ph 286 NHTs OBDPS 286	87	>95:5

Table 13. Synthesis of homoallylic amines.

^{*a*}Only the major isomer is shown. ^{*b*}Reaction conditions: (i) 3 equiv of Cp₂ZrHCl, 3 equiv of alkyne, CH₂Cl₂, rt, 10 min; (ii) 4 equiv of Me₂Zn, CH₂Cl₂, -78 °C, 5 min; (iii) 5 equiv CH₂I₂, 1 equiv of aldimine, CH₂Cl₂, rt, 2-12 h. ^{*c*}Yields of isolated products are based on aldimines. ^{*d*}Determined by ¹H NMR analysis of the crude reaction mixture.

The assignment of the relative stereochemistry of these addition products was first based on the coupling constant analysis of lactams **287**, formed by hydrolysis and cyclization of homoallylic amides **282** (Scheme 51), and later confirmed by an X-ray analysis of *anti*-**287** (Appendix D). ¹H coupling constants of *anti*- and *syn*-**287** were characteristic for 1,2-diaxial and gauche relationships and were in good agreement with literature values.²²⁰

Scheme 51. Assignment of homoallylic amine stereochemistry.

A rationalization of the formation of the homoallylic product is shown in Figure 7. First, hydrozirconation of 1-hexyne followed by transmetalation with Me₂Zn afforded alkenylzinc **31**. Rapid reaction of **31** with CH₂I₂ formed, after [1,2]-shift, allylic zinc **289**, which added to aldimine **104** to form the observed homoallylic amide **279**.²²¹ A similar vinyl zinc to allyl zinc homologation mechanism was proposed by Marek and co-workers in their four-component coupling of alkynyl sulfoxides, organocopper reagents, electrophiles (aldehydes or aldimines) and bis(iodomethyl)zinc.²²² A closed transition state is likely for this reaction and minimization of allylic strain explains the preference for *syn*-configuration. Indirect support for a preferred cyclic transition state came from the dependence of the diastereoselectivity on the nature of the pseudoaxial imine substituents: the bulkier aromatic aldimines significantly eroded *syn*-selectivity versus an aliphatic chain (Table 13, Entries 7 and 8). Attempts to prepare the analogous homoallylic alcohols by replacing aldimines with aldehyde substrates were unsuccessful, and furthermore, efforts to prepare **280** using a B-Zn transmetalation strategy have also failed (Scheme 52). In either case, only allylic products were formed, and thus once again both the aldimine and a zirconocene complex may be important in the mechanism.

Figure 7. Proposed mechanism for formation of homoallylic amide syn-279.

Scheme 52. Unsuccessful one-pot vinylzinc homologation/electrophile allylation.

2.5. Application of an Alternate Preparation of Alkenylzirconocenes

Application of Takahashi's protocol for generating vinylzirconocenes (oxidative insertion of Cp_2Zr into a vinyl halide) to the optimized reaction conditions developed for allylic amide, *C*-cyclopropylalkylamine and homoallylic amide syntheses produced yet another unexpected result. Upon addition of Me₂Zn to vinylzirconocene **292**, followed by imine **104**, homoallylic amide **293** was the major product isolated, not the expected allylic amide **294** (Scheme 53). A similar result was obtained when CH_2I_2 was added (last) to the reaction mixture. Again homoallylic amide **293** was the major product formed, with cyclopropane **295** isolated in only 14% yield.

Scheme 53. Allylic amine and amino cyclopropane syntheses using Takahashi's protocol.

Mechanistic insight was obtained by quenching the reaction mixture with deuterated acetic acid (Scheme 54). In this case, bis-deuterated homoallylic amide **296** was isolated, in a very similar yield to **293**.

Scheme 54. Effect of a deuterium quench on the unexpected homoallylic amide 293.

The bis-deuterated product **296** supported a zirconocycle precursor; a possible mechanism is shown in Figure 8. Oxidative insertion of Cp_2Zr into 2-bromopropene afforded alkenylzirconocene **292**. Ligand exchange on **292** with a second equivalent of Cp_2ZrBu_2 resulted in **297**, which could eliminate butane to form propyne complexed to Cp_2Zr (**298**). Alternatively ligand exchange could have occurred with Me₂Zn, followed by elimination of methane. Takahashi and co-workers have postulated this type of mechanism, by purposely treating **292** with a second equivalent of Cp_2ZrBu_2 .²²³ In their case, bis-zirconocene complex **300** was isolated and characterized. In the present case, however, addition of Me₂Zn and imine **104** to the reaction mixture could result in oxidative cyclization of the propyne- Cp_2Zr complex **298** and allylic amide **302** (formed by a Zr-Zn transmetalation on **292** or **297**, followed by addition to imine **104**). Deuterolysis of both C-Zr bonds of zirconacycle **303** would give the product with
correct deuterium substitution. Attempts to optimize or minimize the yield of **293** were unsuccessful, as were attempts to intercept the proposed mechanism with external alkynes.

Figure 8. Proposed mechanism for formation of homoallylic amide 296.

Under the optimized homoallylic amide reaction conditions shown in Table 13, **304** was formed in 75% yield, and no trace of **293** was detected in the reaction mixture (Scheme 55).

Scheme 55. Homoallylic amine synthesis using Takahashi's protocol.

3. Conclusions

The Zr-Zn transmetalation, aldehyde addition methodology developed in the Wipf group has been extended to the synthesis of allylic amines.^b The use of toluene as a reaction solvent was required to obtain high yields and low reaction times. *N*-phosphinoyl-, *N*-sulfonoyl-, and *N*-carbamoylimines were excellent substrates for this transformation.

Many chiral ligands were tested for asymmetric catalysis, but minimal *ee* was achieved. A successful asymetric synthesis of allylic amines by alkenylzirconocene addition to imines will likely require conditions where transmetalation must take place with a chiral organometallic complex that will subsequently add to the imine or imine derivative without a significant decrease in reaction rate. No such conditions were found in this study.

A novel three-component *C*-cyclopropylalkylamine synthesis was discovered while attempting to perform the allylic amine synthesis in CH_2Cl_2 . The mechanism of this transformation is not fully understood, however this is the first reported example of a high-yielding Simmons-Smith cyclopropanation with CH_2Cl_2 as the carbene precursor. This reaction was optimized by adding CH_2I_2 to the reaction mixture once all imine was consumed. Addition of CH_2I_2 prior to imine substrate resulted in homoallylic amine formation.

Takahashi's alkenylzirconocene protocol was applied to the allylic amine, *C*-cyclopropylalkylamine and homoallylic amine syntheses, allowing formation of products regioisomeric to those derived from hydrozirconation of terminal alkynes. A novel homoallylic amide was formed, believed to result from a zirconacyclopentene intermediate.

The amides prepared in Table 5, Table 12, and Table 13 were screened for activity against the estrogen receptor ER α . Cyclopropane **261** was found to be an antagonist comparable to tamoxifen (the first clinically successful antiestrogen) of 17 β -estradiol (E2)-induced transcription (IC₅₀ of 11 μ M) in cell based and protein-ligand displacement assays.

In summary, the multi-component reaction of alkenylzirconocenes, imines, Me₂Zn and CH₂I₂ can form three different amide products, depending simply on the order of addition of reagents (Figure 9). Due to the functional group tolerance of both Zr and Zn chemistry, libraries of nitrogen-containing alkenes and cyclopropanes with many common functional groups can be rapidly prepared using inexpensive starting materials.

Figure 9. Diversity-oriented synthesis²²⁴ of imine addition products.

4. Experimental Part

All moisture-sensitive reactions were performed using syringe-septum cap techniques under an N₂ or Ar atmosphere and all glassware was dried in an oven at 140 °C for 1 h prior to use. Reactions carried out at -78 °C employed a CO₂-acetone bath. THF was distilled over sodium/benzophenone ketyl, and CH₂Cl₂, toluene and Et₃N were distilled from CaH₂. Me₂Zn, Me₃Al, TsNH₂, CH₂I₂, *N*,*N*-dimethylurea, Pd(OAc)₂, dppf, and 2-bromobiphenyl were purchased from Aldrich Company. Cp₂ZrCl₂ was purchased from Boulder Scientific. (*R*,*R*)-DIOP (**215**) was purchased from Strem Chemical. Cp₂ZrHCl,²²⁵ CH₃CHI₂,²²⁶ *P*,*P*-diphenylphosphin-amide, imines **90**, **104**, **158**, **168**,²²⁷ **170**, **176**,²²⁸ **177**,²²⁹ **178**,²³⁰ **197**, and **199**, alkyne **148**, allylic phosphinamide **172**,²³¹ and ligands **55**, **56**, and **181**,²³² were prepared according to literature procedures.

Reactions were monitored by TLC analysis (EM Science pre-coated silica gel 60 F_{254} plates, 250 µm layer thickness) and visualization was accomplished with a 254 nm UV light and by staining with a PMA solution (5 g of phosphomolybdic acid in 100 mL of 95% EtOH), *p*-anisaldehyde solution (2.5 mL of *p*-anisaldehyde, 2 mL of AcOH, and 3.5 mL of conc. H₂SO₄ in 100 mL of 95% EtOH), Vaughn's reagent (4.8 g of (NH₄)₆Mo₇O₂₄•4 H₂O and 0.2 g of Ce(SO₄)₂ in 100 mL of a 3.5 N H₂SO₄ solution) or a KMnO₄ solution (1.5 g of KMnO₄ and 1.5 g of K₂CO₃ in 100 mL of a 0.1% NaOH solution). Flash chromatography on SiO₂ or deactivated SiO₂ (1% Et₃N in mobile phase) was used to purify the crude reaction mixtures.

Melting points were determined using a Laboratory Devices Mel-Temp II. Infrared spectra were determined on a Nicolet Avatar 360 FT-IR spectrometer. ¹H and ¹³C NMR spectra were obtained on a Bruker Avance 300 instrument in CDCl₃ unless otherwise noted. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ¹H NMR spectra were run at 300 MHz and are tabulated as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet), number of protons, and coupling constant(s). ¹³C NMR spectra were run at 76 MHz using the proton-decoupled pulse sequence with a d₁ of 4 s, and are tabulated by observed peak for compounds **146-148**, **151**, **153**, **156**, **157**, **159-165**, **249**, **257-262**, **266**, **267**, **276**, **278-284**, **293-296**, and **304**, and by chemical shift for all other compounds. Mass spectra were obtained on a Micromass Autospec double focusing instrument.

(E)-N-(1-Phenylhept-2-enyl)-P,P-diphenylphosphinamide (146). General Protocol A. A suspension of 208 mg (0.807 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 105 µL (0.914 mmol) of 1-hexyne, stirred for 5 min, and concentrated in vacuo. A solution of the residue in 2 mL of toluene was cooled to -78 °C, treated with 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min and cannulated into a suspension of 155 mg (0.508 mmol) of imine 104 in 2 mL of toluene. The mixture was stirred at room temperature for 2 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 151 mg (76%) of 146 as a colorless solid: mp 139-140 °C (EtOAc/hexane); IR (KBr) 3127, 2952, 2922, 2859, 1456, 1437, 1194, 1182, 1121, 1109, 722, 695 cm⁻¹; ¹H NMR δ 8.00-7.93 (m, 2 H), 7.89-7.82 (m, 2 H), 7.55-7.23 (m, 11 H), 5.69 (ddt, 1 H, J = 15.3, 6.2, 1.2 Hz), 5.53 (dtd, 1 H, J = 15.3, 6.6, 1.1 Hz), 4.83 (td, 1 H, J = 9.4, 6.4 Hz), 3.34 (dd, 1 H, J = 9.4, 6.2 Hz), 2.01 (q, 2 H, J = 6.4 Hz), 1.34-1.26 (m, 4 H), 0.90 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 143.03, 142.96, 133.73, 133.39, 132.45, 132.29, 132.17, 132.06, 132.01, 131.67, 128.44, 128.37, 128.21, 127.10, 126.92, 56.87, 31.77, 31.12, 22.19, 13.88; EIMS m/z 389 (M⁺, 15), 332 (19), 306 (25), 216 (98), 201 (92), 188 (100), 172 (35), 143 (55), 129 (87), 115 (35), 91 (33), 77 (60); HRMS (EI) *m/z* calcd for C₂₅H₂₈NOP 389.1909, found 389.1906.

Representative attempted asymmetric preparation of 146 (catalytic ligand).

A suspension of 77.0 mg (0.299 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 40.0 μ L (0.348 mmol) of 1-hexyne, stirred for 5 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cooled to -78 °C, treated with 150 μ L (0.300 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min and cannulated into a suspension of 76.0 mg (0.249 mmol) of imine **104** and 7.0 mg (0.026 mmol) of ligand **55** in 1 mL of toluene. The mixture was stirred at room temperature for 16 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with H₂O, saturated NaHCO₃ and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 63 mg (65%) of

146 as a colorless solid. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (12% *i*-PrOH in hexanes, 1.0 mL/min, $R_T = 5.1$ and 6.9 min): 2% *ee*.

Representative attempted asymmetric preparation of 146 (stoichiometric ligand). A suspension of 85.0 mg (0.330 mmol) of Cp₂ZrHCl in 1 mL of CH₂Cl₂ was treated with 40.0 μ L (0.348 mmol) of 1-hexyne, stirred for 5 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cannulated into a suspension, cooled to -78 °C, of 50.0 mg (0.164 mmol) of imine **104**, 44.0 mg (0.163 mmol) of ligand **55**, and 250 μ L (0.500 mmol) of Me₂Zn (2.0 M solution in toluene) in 1 mL of toluene. The mixture was stirred at 10 °C for 24 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 48 mg (75%) of **146** as a colorless solid. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (12% *i*-PrOH in hexanes, 1.0 mL/min, R_T = 5.1 and 6.8 min): 23% *ee*.

(*E*)-*N*-(2-Ethyl-1-phenylpent-2-enyl)-*P*,*P*-diphenylphosphinamide (147). According to the General Protocol A, 205 mg (0.795 mmol) of Cp₂ZrHCl, 105 μ L (0.924 mmol) of 3-hexyne, 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 153 mg (0.501 mmol) of imine **104** (4 h reaction time) afforded 140 mg (72%) of **147** as a colorless solid: mp 129-130 °C (EtOAc/hexane); IR (KBr) 3165, 2959, 2931, 2872, 1436, 1187, 1179, 1107, 727, 696 cm⁻¹; ¹H NMR & 8.00-7.93 (m, 2 H), 7.91-7.83 (m, 2 H), 7.54-7.21 (m, 11 H), 5.56 (t, 1 H, *J* = 7.2 Hz), 4.76 (t, 1 H, *J* = 10.8 Hz), 3.29 (dd, 1 H, *J* = 10.1, 6.2 Hz), 2.19-2.07 (m, 3 H), 1.77 (dq, 1 H, *J* = 14.5, 7.5 Hz), 1.06 (t, 3 H, *J* = 7.5 Hz), 0.73 (t, 3 H, *J* = 7.6 Hz); ¹³C NMR & 142.53, 142.48, 140.94, 140.87, 133.50, 133.40, 132.49, 132.36, 132.13, 132.01, 131.80, 131.75, 131.70, 131.66, 128.56, 128.34, 128.20, 128.16, 127.44, 127.04, 59.11, 21.86, 20.84, 14.43, 13.49; EIMS *m*/*z* 389 (M⁺, 15), 306 (20), 218 (55), 201 (88), 188 (100), 143 (33), 129 (15), 91 (27), 77 (29); HRMS (EI) *m*/*z* calcd for C₂₅H₂₈NOP 389.1909, found 389.1905.

(E)-N-{5-[(tert-Butyldiphenylsilyl)oxy]-1-phenylpent-2-enyl}-P,P-diphenylphos-

phinamide (149). According to the General Protocol A, 205 mg (0.795 mmol) of Cp₂ZrHCl, 300 mg (0.972 mmol) of alkyne **148**, 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 153 mg (0.501 mmol) of imine **104** (12 h reaction time) afforded 226 mg (73%) of **149** as a colorless solid: mp 118-119 °C (EtOAc/hexane); IR (KBr) 3131, 3052, 2928, 2857, 1457, 1438, 1428, 1192, 1111, 1088, 740, 723, 698 cm⁻¹; ¹H NMR δ 8.00-7.93 (m, 2 H), 7.90-7.83 (m, 2 H), 7.70-7.67 (m, 4 H), 7.52-7.25 (m, 17 H), 5.80 (dd, 1 H, *J* = 15.4, 6.0 Hz), 5.57 (dtd, 1 H, *J* = 15.3, 6.8, 1.2 Hz), 4.86 (td, 1 H, *J* = 9.4, 6.2 Hz), 3.68 (t, 2 H, *J* = 6.6 Hz), 3.33 (dd, 1 H, *J* = 9.6, 6.3 Hz), 2.32 (q, 2 H, *J* = 6.6 Hz), 1.07 (s, 9 H); ¹³C NMR δ 142.63, 142.56, 135.47, 133.77, 133.69, 133.58, 133.29, 132.25, 132.19, 132.12, 132.06, 131.86, 131.74, 131.69, 131.65, 131.58, 129.50, 128.69, 128.43, 128.37, 128.20, 127.55, 127.15, 126.99, 63.27, 56.69, 35.48, 26.75, 19.11; EIMS *m*/*z* 600 ([M-CH₃]⁺, 3), 558 (82), 201 (24), 199 (32), 143 (24), 91 (20), 77 (37), 61 (100); HRMS (EI) *m*/*z* calcd for C₃₈H₃₉NO₂PSi [M-CH₃] 600.2488, found 600.2465.

O-Triisopropylsilyl-4-pentynoate (150). According to a literature procedure, a solution of 1.17 g (11.9 mmol) of 4-pentynoic acid in 25 mL of CH₂Cl₂ was treated with 2.29 g (11.9 mmol) of TIPS-Cl and 0.812 g (11.9 mmol) of imidazole. The mixture was stirred at room temperature for 2 h, filtered through Celite, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was Kugelrohr distilled to yield 3.04 g (100%) of **150** as a colorless oil: IR (neat) 3315, 2945, 2870, 1722, 1466, 1372, 1268, 1191, 1068, 1015 cm⁻¹; ¹H NMR δ 2.62-2.57 (m, 2 H), 2.52-2.45 (m, 2 H), 1.96 (t, 1 H *J* = 2.6 Hz), 1.35-1.23 (m, 3 H), 1.07 (d, 18 H, *J* = 7.2 Hz); ¹³C NMR δ 171.64, 82.71, 68.90, 34.90, 17.71, 14.67, 11.87; EIMS *m*/z 211 ([M-C₃H₇]⁺, 100), 155 (18), 131 (22), 103 (47); HRMS (EI) *m*/z calcd for C₁₁H₁₉O₂Si [M-C₃H₇] 211.1154, found 211.1158.

(*E*)-*O*-Triisopropylsilyl-6-(diphenylphosphinyl)amino-6-phenylhex-4-enoate (151). According to the General Protocol A, 260 mg (1.01 mmol) of Cp₂ZrHCl, 285 mg (1.10 mmol) of alkyne **150**, 500 μ L (1.00 mmol) of Me₂Zn (2.0 M solution in toluene), and 153 mg (0.501 mmol) of imine **104** (12 h reaction time) afforded 184 mg (65%) of **151** as a colorless oil: IR (neat) 3167, 2945, 2868, 1718, 1464, 1437, 1186, 1123, 1110 cm⁻¹; ¹H NMR δ 7.94-7.77 (m, 4 H), 7.50-7.19 (m, 11 H), 5.70 (dd, 1 H, *J* = 15.3, 6.2 Hz), 5.51 (dt, 1 H, *J* = 15.5, 5.8 Hz), 4.79 (dt, 1 H, *J* = 9.2, 6.6 Hz), 3.30 (dd, 1 H, *J* = 9.1, 6.1 Hz), 2.53-2.23 (m, 4 H), 1.30-1.10 (m, 3 H), 1.02 (d, 18 H, *J* = 7.2 Hz); ¹³C NMR δ 172.81, 142.65, 132.88, 132.28, 132.19, 132.07, 131.74, 130.40, 128.53, 128.43, 128.27, 127.27, 126.93, 56.90, 35.11, 27.58, 17.72, 11.86; EIMS *m*/*z* 561 (M⁺, 8), 518 (40), 361 (41), 346 (25), 330 (58), 301 (17), 218 (52), 201 (100), 158 (20), 143 (24), 128 (29), 115 (37), 103 (41); HRMS (EI) *m*/*z* calcd for C₃₃H₄₄NO₃PSi 561.2828, found 561.2849.

O-Ethyl-*N*-but-3-ynyl-*N*-[(4-methylphenyl)sulfonyl]carbamate (152). According to a literature procedure,²³³ a solution of 5.39 g (20.5 mmol) of PPh₃ and 2.50 g (10.3 mmol) of TsNHCO₂Et²³⁴ in 100 mL of THF was treated with 520 µL (6.85 mmol) of 3-butyn-1-ol and 2.70 mL (17.1 mmol) of DEAD, stirred at room temperature for 16 h, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (80:20, hexanes/EtOAc) to yield 1.95 g (96%) of 152 as a colorless solid: mp 63-65 °C (EtOAc/hexane); IR (KBr) 3307, 2993, 2941, 2121, 1734, 1353, 1329, 1268, 1168, 1028, 964, 866, 812, 769, 741, 657 cm⁻¹; ¹H NMR δ 7.83 (d, 2 H, *J* = 8.4 Hz), 7.30 (d, 2 H, *J* = 8.1 Hz), 4.13 (q, 2 H, *J* = 7.1 Hz), 4.00 (dd, 2 H, *J* = 8.0, 7.0 Hz), 2.64 (td, 2 H, *J* = 7.5, 2.7 Hz), 2.42 (s, 3 H), 2.02 (t, 1 H, *J* = 2.7 Hz), 1.18 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR δ 152.06, 144.67, 136.44, 129.31, 128.37, 80.17, 70.53, 63.52, 45.26, 21.62, 19.91, 13.96; EIMS *m*/*z* 295 (M⁺, 4), 256 (31), 184 (58), 155 (100), 91 (89); HRMS (EI) calcd for C₁₄H₁₇NO₄S 295.0878, found 295.0892.

(*E*)-*O*-Ethyl-*N*-{5-[(diphenylphosphinyl)amino]-5-phenylpent-3-enyl}-*N*-[(4-methylphenyl)sulfonyl]carbamate (153). According to the General Protocol A, 205 mg (0.795 mmol) of Cp₂ZrHCl, 253 mg (0.857 mmol) of alkyne 152, 380 μL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 153 mg (0.501 mmol) of imine 104 (12 h reaction time) afforded 177 mg (59%) of 153 as a colorless solid: mp 159-160 °C (EtOAc/hexane); IR (KBr) 3168, 3064, 2960, 2871, 1736, 1436, 1370, 1359, 1277, 1186, 1160, 1125, 970, 726, 702, 679 cm⁻¹; ¹H NMR δ 7.99-7.92 (m, 2 H), 7.89-7.80 (m, 4 H), 7.53-7.44 (m, 4 H), 7.41-7.35 (m, 2 H), 7.33-7.24 (m, 7 H), 5.85 (dd, 1 H, *J* = 15.4, 5.8 Hz), 5.54 (dtd, 1 H, *J* = 15.4, 7.1, 1.3 Hz), 4.84 (td, 1 H, *J* = 9.6, 6.0 Hz), 4.09 (q, 2 H, *J* = 7.1 Hz), 3.85 (t, 2 H, *J* = 7.3 Hz), 3.52 (dd, 1 H, *J* = 9.5, 6.8 Hz), 2.50-2.44 (m, 2 H), 2.44 (s, 3 H), 1.15 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR δ 152.08, 144.97, 142.35, 142.28, 136.69, 135.19, 135.13, 133.62, 133.15, 132.28, 132.15, 132.03, 131.91, 131.76, 131.72, 131.69, 131.66, 131.43, 129.19, 128,43, 128.35, 128.26, 128.20, 127.47, 127.19, 127.00, 63.24, 56.47, 46.40, 32.63, 21.54, 13.92; EIMS *m*/*z* 602 (30), 401 (63), 358 (25), 346 (41), 332 (15), 230 (31), 218 (17), 201 (100), 158 (50), 155 (30), 91 (53), 77 (19); HRMS (EI) calcd for C₃₃H₃₅N₂O₅PS 602.2004, found 602.2004.

Methyl 4-[(diphenylphosphinylimino)methyl]benzoate (156). General Protocol B. According to a literature procedure, a suspension of 1.50 g (6.91 mmol) of *P*,*P*-diphenylphosphinamide, 1.25 g (7.61 mmol) of methyl 4-formylbenzoate, and 3.00 mL (20.8 mmol) of Et₃N in 15 mL of CH₂Cl₂ was cooled to 0 °C, treated dropwise with a solution of 3.50 mL (3.50 mmol) of TiCl₄ (1.0 M solution in CH₂Cl₂) in 5 mL of CH₂Cl₂ over 10 min, warmed to room temperature and stirred for 1 h. The mixture was poured into 150 mL of Et₂O,²³⁵ stirred for 5 min, filtered through a pad of Florisil, and concentrated *in vacuo*. The residue was precipitated from CH₂Cl₂ with hexanes to yield 1.19 g (47%) of **156** as a colorless solid: mp 143-145 °C (CH₂Cl₂/hexanes); IR (KBr) 3226, 3060, 3037, 1725, 1613, 1568, 1438, 1280, 1203, 1127, 1107, 861, 834, 766, 750, 729, 697 cm⁻¹; ¹H NMR δ 9.34 (d, 1 H, *J* = 31.7 Hz), 8.15-8.12 (m, 2 H), 8.06-8.03 (m, 2 H), 7.96-7.89 (m, 4 H), 7.48-7.36 (m, 6 H), 3.91 (s, 3 H); ¹³C NMR δ 172.62, 172.52, 166.09, 139.22, 138.89, 134.15, 133.20, 131.91, 131.88, 131.76, 131.63, 131.53, 131.41, 129.95, 129.85, 128.55, 128.38, 128.26, 52.40; EIMS *m*/*z* 363 (M⁺, 24), 201 (100); HRMS (EI) *m*/*z* calcd for C₂₁H₁₈NO₃P 363.1024, found 363.1018.

(*E*)-Methyl 4-{1-[(diphenylphosphinyl)amino]hept-2-enyl}benzoate (157). According to the General Protocol A, 103 mg (0.399 mmol) of Cp₂ZrHCl, 51.0 μL (0.444 mmol) of 1-hexyne, 190 μL (0.380 mmol) of Me₂Zn (2.0 M solution in toluene), and 94.0 mg (0.259 mmol) of imine **156** (1 h reaction time) afforded 97 mg (84%) of **157** as a colorless solid: mp 129-130 °C (EtOAc/hexane); IR (KBr) 3122, 2956, 2928, 2872, 1722, 1437, 1276, 1194, 1109, 724, 695 cm⁻¹; ¹H NMR δ 8.01-7.90 (m, 4 H), 7.85-7.78 (m, 2 H), 7.56-7.34 (m, 8 H), 5.68 (ddt, 1 H, *J* = 15.3, 6.2, 1.2 Hz), 5.51 (dtd, 1 H, *J* = 15.3, 6.6, 1.1 Hz), 4.87 (td, 1 H, *J* = 9.7, 6.3 Hz), 3.93 (s, 3 H), 3.42 (dd, 1 H, *J* = 9.4, 6.4 Hz), 2.01 (q, 2 H, *J* = 6.7 Hz), 1.34-1.24 (m, 4 H), 0.89 (t, 3 H, *J* = 7.0 Hz); ¹³C NMR δ 166.83, 148.10, 148.04, 133.37, 133.18, 133.11, 132.26, 132.14, 132.02, 131.88, 131.83, 131.79, 131.66, 131.40, 131.08, 131.02, 129.77, 128.91, 128.47, 128.43, 128.31, 128.26, 126.98, 56.59, 52.03, 31.78, 31.05, 22.17, 13.86; EIMS *m*/*z* 447 (M⁺, 3), 246 (15), 230 (21), 201 (21), 141 (19), 129 (35), 87 (100), 84 (45); HRMS (EI) *m*/*z* calcd for C₂₇H₃₀NO₃P 447.1963, found 447.1961.

(E)-N-[1-(4-Methoxyphenyl)hept-2-enyl]-P,P-diphenylphosphinamide (159).

According to the General Protocol A, 195 mg (0.756 mmol) of Cp₂ZrHCl, 95.0 μ L (0.827 mmol) of 1-hexyne, 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 149 mg (0.444 mmol) of imine **158** (4 h reaction time) afforded 65 mg (35%) of **159** as a colorless oil: IR (thin film) 2957, 2929, 2871, 2836, 1604, 1511, 1439, 1251, 1175, 1127, 1035, 986, 755, 721, 697 cm⁻¹; ¹H NMR δ 7.95-7.78 (m, 4 H), 7.50-7.32 (m, 6 H), 7.24-7.19 (m, 2 H), 6.85-6.80 (m, 2 H),

5.63 (dd, 1 H, J = 15.3, 6.1 Hz), 5.48 (dtd, 1 H, J = 15.3, 6.7, 1.0 Hz), 4.74 (td, 1 H, J = 9.5, 6.1 Hz), 3.77 (s, 3 H), 3.20 (dd, 1 H, J = 9.2, 6.2 Hz), 2.00-1.93 (m, 2 H), 1.29-1.22 (m, 4 H), 0.86 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 158.63, 135.27, 135.20, 133.73, 133.49, 132.33, 132.20, 132.07, 132.01, 131.84, 131.78, 131.74, 131.70, 131.66, 128.41, 128.24, 128.12, 113.95, 113.79, 56.32, 55.23, 31.79, 31.19, 22.23, 13.91; EIMS m/z 419 (M⁺, 6), 336 (24), 218 (42), 202 (92), 173 (100), 159 (48); HRMS (EI) m/z calcd for C₂₆H₃₀NO₂P 419.2014, found 419.2007.

(2*E*)-*N*-(3-Phenylallylidene)-*P*,*P*-diphenylphosphinamide (160). According to the General Protocol B, 2.00 g (9.21 mmol) of *P*,*P*-diphenylphosphinamide, 1.50 mL (11.9 mmol) of *trans*-cinnamaldehyde, 4.00 mL (28.7 mmol) of Et₃N, and 600 μL (5.47 mmol) of TiCl₄ afforded 1.39 g (46%) of **160** as a colorless solid: mp 142-143 °C (CH₂Cl₂/hexanes); IR (KBr) 3065, 3020, 1629, 1591, 1438, 1207, 1125, 1106, 869, 802, 757, 727, 703, 694 cm⁻¹; ¹H NMR δ 9.04 (dd, 1 H, *J* = 31.7, 9.0 Hz), 7.93-7.86 (m, 4 H), 7.56-7.34 (m, 12 H), 7.10 (ddd, *J* = 15.8, 9.0, 2.1 Hz); ¹³C NMR δ 174.83, 174.72, 150.57, 134.60, 133.69, 132.02, 131.72, 131.68, 131.55, 131.43, 130.75, 128.98, 128.79, 128.50, 128.41, 128.34, 128.22; EIMS *m/z* 331 (M⁺, 7), 201 (48), 130 (100), 77 (52); HRMS (EI) *m/z* calcd for C₂₁H₁₈NOP 331.1126, found 331.1114.

(*E*)-*N*-[1-(2-Phenylvinyl)hept-2-enyl]-*P*,*P*-diphenylphosphinamide (161). According to the General Protocol A, 200 mg (0.776 mmol) of Cp₂ZrHCl, 100 μ L (0.870 mmol) of 1-hexyne, 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), and 165 mg (0.498 mmol) of imine 160 (4 h reaction time) afforded 57 mg (28%) of 161 as a colorless solid: mp 141-142 °C (Et₂O/hexane); IR (KBr) 3089, 2954, 2923, 2855, 1438, 1200, 1183, 1122, 1109, 965, 747, 723, 696 cm⁻¹; ¹H NMR δ 7.96-7.88 (m, 4 H), 7.52-7.37 (m, 6 H), 7.33-7.19 (m, 5 H), 6.42 (dd, 1 H, *J* = 15.9, 1.1 Hz), 6.23 (dd, 1 H, *J* = 15.4, 6.5 Hz), 5.60-5.57 (m, 2 H), 4.39-4.36 (m, 1 H), 3.01 (dd, 1 H, *J* = 9.5, 5.9 Hz), 2.04-1.98 (m, 2 H), 1.34-1.25 (m, 4 H), 0.88 (t, 3 H, *J* = 7.0 Hz); ¹³C NMR δ 136.85, 133.81, 133.77, 132.59, 132.42, 132.39, 132.29, 132.26, 132.09, 132.05, 131.90,

131.40, 131.33, 130.78, 130.71, 130.35, 128.62, 128.57, 128.45, 127.65, 126.60, 54.96, 32.05, 31.36, 22.36, 14.06; EIMS m/z 415 (M⁺, 26), 358 (55), 216 (48), 214 (100), 201 (83), 199 (32), 155 (43), 124 (22), 91 (37), 77 (34); HRMS (EI) m/z calcd for C₂₇H₃₀NOP 415.2065, found 415.2105.

(2*E*)-*N*-(2-Methyl-3-phenylallylidene)-*P*,*P*-diphenylphosphinamide (162). According to the General Protocol B, 2.00 g (9.21 mmol) of *P*,*P*-diphenylphosphinamide, 1.50 mL (10.7 mmol) of α-methylcinnamaldehyde, 4.00 mL (28.7 mmol) of Et₃N, and 600 µL (5.47 mmol) of TiCl₄ afforded 1.47 g (46%) of 162 as a colorless solid: mp 153-154 °C (CH₂Cl₂/hexanes); IR (KBr) 3049, 3026, 2952, 2883, 1603, 1443, 1437, 1196, 1128, 1108, 1021, 887, 846, 754, 729, 706, 693 cm⁻¹; ¹H NMR δ 8.98 (d, 1 H, *J* = 31.2 Hz), 7.96-7.89 (m, 4 H), 7.49-7.34 (m, 11 H), 7.22 (s, 1 H), 2.28 (s, 3 H); ¹³C NMR δ 177.91, 177.81, 148.09, 137.74, 137.40, 135.62, 134.16, 132.48, 131.61, 131.55, 131.42, 129.94, 129.07, 128.53, 128.45, 128.29, 12.43; EIMS *m*/*z* 345 (M⁺, 43), 201 (85), 144 (100), 77 (75); HRMS (EI) *m*/*z* calcd for C₂₂H₂₀NOP 345.1283, found 345.1278.

(E)-N-[1-(1-Methyl-2-phenylvinyl)hept-2-enyl]-P,P-diphenylphosphinamide (163).

According to the General Protocol A, 195mg (0.756 mmol) of Cp₂ZrHCl, 100 μ L (0.870 mmol) of 1-hexyne, 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 173 mg (0.501 mmol) of imine **162** (4 h reaction time) afforded 154 mg (72%) of **163** as a colorless oil: IR (thin film) 3176, 3054, 2954, 2927, 2855, 1437, 1192, 1124, 1109, 972, 916, 748, 724, 697 cm⁻¹; ¹H NMR δ 8.11-8.03 (m, 4 H), 7.65-7.53 (m, 6 H), 7.49-7.33 (m, 5 H), 6.50 (s, 1 H), 5.79 (dtd, 1 H, J = 15.3, 6.4, 1.0 Hz), 5.66 (dd, 1 H, J = 15.4, 5.7 Hz), 4.42 (td, 1 H, J = 9.4, 5.7 Hz), 3.28 (dd, 1 H, J = 9.2, 5.9 Hz), 2.19-2.13 (m, 2 H), 1.98 (s, 3 H), 1.68-1.41 (m, 4 H), 1.03 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 138.74, 138.68, 137.58, 133.78, 133.52, 132.52, 132.31, 132.19, 132.16, 132.07, 132.03, 131.79, 131.72, 130.36, 130.29, 128.86, 128.62, 128.52, 128.44, 128.38, 128.27,

128.21, 127.96, 126.32, 126.26, 60.17, 31.86, 31.18, 22.17, 14.82, 13.89; EIMS m/z 429 (M⁺, 16), 32 (21), 358 (61), 228 (86), 218 (49), 201 (100), 155 (19), 91 (19), 77 (29); HRMS (EI) m/z calcd for C₂₈H₃₂NOP 429.2222, found 429.2238.

N-(3-Phenylprop-2-ynylidene)-P,P-diphenylphosphinamide (164). A solution of 2.20 mL (20.0 mmol) of phenylacetylene in 50 mL of THF was cooled to -40 °C, treated with 12.5 mL (20.0 mmol) of *n*-BuLi (1.6 M solution in hexanes), stirred at -40 °C for 10 min, treated with 3.10 mL (40.0 mmol) of DMF, warmed to room temperature over 30 min, and stirred for 30 min. The mixture was quenched by pouring into a biphasic mixture of 10.0 g (73.4 mmol) of KH₂PO₄ in 90 mL of H₂O and 100 mL of MTBE at 0 °C.²³⁶ The organic layer was separated, washed with H₂O, dried (MgSO₄), concentrated in vacuo and filtered through a pad of SiO₂ (9:1, hexanes/EtOAc). The residue (2.10 g, 81%) was used in the next step without further purification. According to the General Protocol B, 1.50 g (6.91 mmol) of P,P-diphenylphosphinamide, 1.35 g (10.4 mmol) of the crude aldehyde, 3.00 mL (21.5 mmol) of Et₃N, and 450 µL (4.10 mmol) of TiCl₄ afforded 914 mg (40%) of **164** as a yellow solid: mp 109-110 °C (CH₂Cl₂/hexanes); IR (KBr) 3056, 2199, 1585, 1439, 1214, 1124, 1109 cm⁻¹; ¹H NMR δ 8.72 (d, 1 H, J = 31.2 Hz), 7.90-7.86 (m, 4 H), 7.60-7.37 (m, 11 H); ¹³C NMR δ 158.12, 132.88, 132.03, 131.68, 131.56, 131.06, 130.72, 128.60, 128.44, 120.45, 100.65, 88.38, 87.90; EIMS m/z 329 $(M^+, 30)$, 216 (30), 201 (74), 130 (32), 102 (42), 77 (100); HRMS (EI) m/z calcd for $C_{21}H_{16}NOP$ 329.0970, found 329.0960.

(*E*)-*N*-(1-Phenethynylhept-2-enyl)-*P*,*P*-diphenylphosphinamide (165). According to the General Protocol A, 195 mg (0.756 mmol) of Cp₂ZrHCl, 95.0 μ L (0.827 mmol) of 1-hexyne, 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 165 mg (0.501 mmol) of imine 164 (2 h reaction time) afforded 176 mg (85%) of 165 as a colorless oil: IR (neat) 3144, 2957, 2928, 2853, 1592, 1490, 1438, 1190, 1124, 1110, 1058 cm⁻¹; ¹H NMR δ 8.09-8.02 (m, 2 H),

7.98-7.90 (m, 2 H), 7.56-7.37 (m, 9 H), 7.35-7.30 (m, 2 H), 5.95 (dtd, 1 H, J = 15.1, 6.8, 1.5 Hz), 5.71 (ddt, 1 H, J = 15.2, 5.2, 1.3 Hz), 4.75 (td, 1 H, J = 9.0, 5.2 Hz), 3.42 (dd, 1 H, J = 9.4, 7.5 Hz), 2.10-2.03 (m, 2 H), 1.40-1.29 (m, 4 H), 0.91 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 133.63, 132.96, 132.52, 132.40, 131.87, 131.75, 131.53, 131.17, 128.79, 128.41, 128.24, 128.07, 126.62, 122.75, 88.44, 84.86, 45.04, 31.40, 30.97, 22.10, 13.76; EIMS *m*/*z* 413 (M⁺, 17), 370 (24), 356 (13), 216 (56), 212 (39), 201 (100), 196 (25), 167 (27), 154 (46), 124 (33), 115 (29), 91 (24), 77 (83); HRMS (EI) *m*/*z* calcd for C₂₇H₂₈NOP 413.1909, found 413.1902.

(*E*)-*N*-(1-Phenylhept-2-enyl)-*S*-(4-methylphenyl)sulfonamide (91). According to the General Protocol A, 195 mg (0.756 mmol) of Cp₂ZrHCl, 95.0 µL (0.827 mmol) of 1-hexyne, 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 130 mg (0.501 mmol) of imine 90 (4 h reaction time) afforded 138 mg (80%) of 91 as a colorless oil: IR (neat) 3272, 3030, 2956, 2927, 2858, 1454, 1433, 1328, 1161, 1094, 1043, 1027, 970, 932, 813, 749, 699, 668 cm⁻¹; ¹H NMR δ 7.65-7.61 (m, 2 H), 7.24-7.12 (m, 7 H), 5.48-5.34 (m, 2 H), 5.18 (d, 1 H, *J* = 7.4 Hz), 4.89 (dd, 1 H, *J* = 7.3, 5.2 Hz), 2.37 (s, 3 H), 1.90-1.84 (m, 2 H), 1.24-1.14 (m, 4 H), 0.83 (t, 3 H, *J* = 6.9 Hz); ¹³C NMR δ 142.92, 140.27, 137.83, 133.72, 129.25, 128.64, 128.40, 127.37, 127.18, 126.90, 59.52, 31.66, 30.87, 22.11, 21.40, 13.83; EIMS *m*/*z* 343 (M⁺, 4), 286 (40) 188 (90), 172 (29), 155 (44), 144 (21), 129 (32), 117 (46), 104 (39), 91 (100), 77 (21), 65 (30); HRMS (EI) *m*/*z* calcd for C₂₀H₂₅NO₂S 343.1606, found 343.1607.

N-(3-Phenylpropylidene)-*S*-(4-methylphenyl)sulfonamide (166). According to a literature procedure, a solution of 1.85 g (11.3 mmol) of sodium benzenesulfinate, 1.71 g (10.0 mmol) of TsNH₂, and 1.32 mL (10.0 mmol) of hydrocinnamaldehyde in 30 mL of 50% formic acid was stirred at room temperature for 16 h, diluted with 20 mL of H₂O, filtered and rinsed with H₂O and pentane. The filter cake was dissolved in 75 mL of CH₂Cl₂ and stirred with 75 mL of saturated NaHCO₃ for 2 h. The organic layer was separated and the aqueous layer extracted with CH₂Cl₂. The combined organic layers were dried (MgSO₄), and concentrated *in vacuo*.

The residue was precipitated from CH₂Cl₂ with hexanes to yield 2.03 g (71%) of **166** as a colorless solid: mp 61-63 °C (CH₂Cl₂/hexanes); IR (KBr) 3271, 3030, 2938, 1634, 1613, 1494, 1453, 1318, 1159, 1091, 784, 705, 682 cm⁻¹; ¹H NMR δ 8.67 (t, 1 H, *J* = 4.0 Hz), 7.81 (d, 2 H, *J* = 8.3 Hz), 7.38-7.15 (m, 7 H), 3.02-2.96 (m, 2 H), 2.91-2.85 (m, 2 H), 2.49 (s, 3 H); ¹³C NMR δ 177.36, 144.69, 139.53, 134.36, 129.75, 128.58, 128.25, 128.09, 126.41, 37.30, 30.53, 21.61; EIMS *m*/*z* 287 (M⁺, 4), 171 (12), 155 (25), 132 (100), 105 (16), 91 (20); HRMS (EI) *m*/*z* calcd for C₁₆H₁₇NO₂S 287.0980, found 287.0979.

(*E*)-*N*-(1-Phenethylhept-2-enyl)-*S*-(4-methylphenyl)sulfonamide (167). According to the General Protocol A, 195 mg (0.756 mmol) of Cp₂ZrHCl, 95.0 µL (0.827 mmol) of 1-hexyne, 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), and 144 mg (0.501 mmol) of imine 166 (5 h reaction time) afforded 168 mg (90%) of 167 as a colorless oil: IR (neat) 3166, 3058, 2955, 2924, 2855, 1490, 1438, 1189, 1124, 1110, 1070, 755, 723, 692 cm⁻¹; ¹H NMR δ 7.73-7.69 (m, 2 H), 7.27-7.06 (m, 7 H), 5.30 (dtd, 1 H, *J* = 15.3, 6.7, 0.8 Hz), 5.07 (ddt, 1 H, *J* = 15.3, 7.4, 1.4 Hz), 4.84 (d, 1 H, *J* = 8.0 Hz), 3.73 (qn, 1 H, *J* = 7.2 Hz), 2.65-2.50 (m, 2 H), 2.39 (s, 3 H), 1.83-1.69 (m, 4 H), 1.20-1.10 (m, 4 H), 0.84 (t, 3 H, *J* = 6.9 Hz); ¹³C NMR δ 142.97, 141.28, 138.18, 133.23, 129.39, 128.80, 128.34, 128.31, 127.19, 125.83, 55.77, 37.67, 31.69, 31.65, 30.94, 22.09, 21.43, 13.86; EIMS *m*/*z* 371 (M⁺, 2), 314 (4), 288 (4), 267 (100), 216 (71), 200 (97), 155 (60), 143 (60), 139 (33), 117 (37), 105 (93); HRMS (EI) *m*/*z* calcd for C₂₂H₂₉NO₂S 371.1919, found 371.1913.

(*E*)-*N*-(1-Isopropylhept-2-enyl)-*S*-(4-methylphenyl)sulfonamide (169). According to the General Protocol A, 390 mg (1.51 mmol) of Cp₂ZrHCl, 190 μ L (1.65 mmol) of 1-hexyne, 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), and 113 mg (0.502 mmol) of imine 168 (4 h reaction time) afforded 111 mg (72%) of 169 as a colorless oil: IR (neat) 3278, 2961, 2926, 2873, 1467, 1437, 1323, 1162, 1096, 1041, 972, 814, 667 cm⁻¹; ¹H NMR δ 7.75 (d, 2 H, *J* = 8.3 Hz), 7.27 (d, 2 H, *J* = 8.6 Hz), 5.21 (dt, 1 H, *J* = 15.6, 6.6), 5.05 (ddt, 1 H, *J* = 15.3, 7.6, 1.3

Hz), 4.98 (d, 1 H, J = 8.5 Hz), 3.53 (td, 1 H, J = 7.8, 5.7 Hz), 2.42 (s, 3 H), 1.81-1.67 (m, 3 H), 1.23-1.05 (m, 4 H), 0.87 (t, 6 H, J = 6.5 Hz), 0.85 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 142.66, 138.32, 133.33, 129.19, 127.15, 126.87, 61.58, 32.99, 31.65, 30.94, 22.01, 21.34, 18.33, 18.14, 13.79; EIMS *m*/*z* 308 ([M-H]⁺, 1), 266 (90), 226 (59), 155 (86), 139 (29), 111 (39), 91 (100); HRMS (EI) *m*/*z* calcd for C₁₇H₂₆NO₂S [M-H] 308.1684, found 308.1687.

(*E*)-*N*-(1-Cyclohexylhept-2-enyl)-*S*-(4-methylphenyl)sulfonamide (171). According to the General Protocol A, 97.0 mg (0.376 mmol) of Cp₂ZrHCl, 50.0 μL (0.435 mmol) of 1-hexyne, 190 μL (0.380 mmol) of Me₂Zn (2.0 M solution in toluene), and 66.0 mg (0.249 mmol) of imine **170** (2 h reaction time) afforded 70 mg (81%) of **171** as a colorless solid: mp 102-103 °C (Et₂O/hexanes); IR (KBr) 3287, 2921, 2851, 1439, 1326, 1151, 1090, 1044 cm⁻¹; ¹H NMR δ 7.70-7.67 (m, 2 H), 7.24-7.21 (m, 2 H), 5.13 (dt, 1 H, *J* = 15.3, 6.4 Hz), 4.99 (ddt, 1 H, *J* = 15.3, 7.6, 1.2 Hz), 4.63 (d, 1 H, *J* = 8.5 Hz), 3.49 (td, 1 H, *J* = 8.0, 6.1 Hz), 2.38 (s, 3 H), 1.77-1.56 (m, 7 H), 1.37-1.26 (m, 1 H), 1.21-1.01 (m, 7 H), 0.99-0.86 (m, 2 H), 0.81 (t, 3 H, *J* = 7.0 Hz); ¹³C NMR δ 142.78, 138.43, 133.32, 129.28, 127.28, 127.22, 61.10, 42.83, 31.73, 31.03, 28.92, 28.83, 26.28, 25.99, 22.12, 21.43, 13.87; EIMS *m*/*z* 349 (M⁺, 1), 266 (100), 155 (48), 91 (84); HRMS (EI) *m*/*z* calcd for C₂₀H₃₁NO₂S 349.2076, found 349.2074.

(*E*)-Methyl 4-(1-benzoylamino-2-propylhex-2-enyl)benzoate (173). A solution of 48.0 mg (0.101 mmol) of phosphinamide 172 in 5.7 mL of a 2 N solution of HCl(g) in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at 0 °C and stirring at room temperature for 30 min) was stirred at room temperature for 12 h, concentrated *in vacuo*, dissolved in 5 mL of CH₂Cl₂, and concentrated *in vacuo*. A solution of the residue in 1 mL of CH₂Cl₂ was treated with 27.0 μ L (0.233 mmol) of PhCOCl, 60.0 μ L (0.344 mmol) of (*i*-Pr)₂NEt, and 2.0 mg (0.016 mmol) of DMAP. The mixture was stirred at room temperature for 1 h, concentrated to ~0.5 mL by rotary evaporation, and chromatographed on SiO₂ (80:20, hexanes/

EtOAc) to afford 32 mg (84%) of **173** as a colorless oil: IR (thin film) 3571, 3311, 2959, 2869, 1725, 1637, 1525, 1277, 1107 cm⁻¹; ¹H NMR δ 8.01 (d, 2 H, *J* = 8.4 Hz), 7.80 (d, 2 H, *J* = 8.4 Hz), 7.55-7.38 (m, 5 H), 6.42 (d, 1 H, *J* = 8.0 Hz), 5.81 (d, 1 H, *J* = 8.1 Hz), 5.33 (t, 1 H, *J* = 7.1 Hz), 3.91 (s, 3 H), 2.18-1.92 (m, 4 H), 1.53-1.31 (m, 4 H), 0.92 (t, 3 H, *J* = 7.3 Hz), 0.89 (t, 3 H, *J* = 7.4 Hz); ¹³C NMR δ 166.83, 166.40, 146.27, 138.81, 134.38, 131.63, 129.84 (2 C), 129.26, 129.10, 128.65 (2 C), 127.34 (2 C), 126.93 (2 C), 57.84, 52.02, 31.77, 29.82, 22.82, 22.14, 14.20, 13.83; EIMS *m*/*z* 379 (M⁺, 46), 336 (59), 322 (56), 105 (100), 77 (48); HRMS (EI) *m*/*z* calc'd for C₂₄H₂₉NO₃ 379.2147, found 379.2143.

(E)-Methyl 4-(1-phenoxycarbonylamino-2-propylhex-2-enyl)benzoate (174).

A solution of 44.0 mg (0.0925 mmol) of phosphinamide **172** in 5.7 mL of a 2 N solution of HCl(g) in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at 0 °C and stirring at room temperature for 30 min) was stirred at room temperature for 12 h, concentrated *in vacuo*, dissolved in 5 mL of CH₂Cl₂, and concentrated *in vacuo*. A solution of the residue in 1 mL of CH₂Cl₂ was treated with 55.0 μ L (0.316 mmol) of (*i*-Pr)₂NEt, 26.0 μ L (0.207 mmol) of ClCO₂Ph, and 2.0 mg (0.016 mmol) of DMAP. The mixture was stirred at room temperature for 1 h, concentrated to ~0.5 mL by rotary evaporation, and chromatographed on SiO₂ (80:20, hexanes/EtOAc) to afford 33 mg (90%) of **174** as a colorless oil: IR (thin film) 3336, 2957, 2869, 1723, 1524, 1490, 1281, 1207, 1112, 1018 cm⁻¹; ¹H NMR δ 8.03 (d, 2 H, *J* = 8.3 Hz), 7.46-7.12 (m, 7 H), 5.40-5.36 (m, 3 H), 3.93 (s, 3 H), 2.14-2.04 (m, 3 H), 1.96-1.86 (m, 1 H), 1.46-1.34 (m, 4 H), 0.92 (t, 3 H, *J* = 7.3 Hz), 0.91 (t, 3 H, *J* = 7.3 Hz); ¹³C NMR δ 166.77, 150.96, 145.99, 138.44, 129.85 (2 C), 129.51, 129.38, 129.22 (2 C), 127.20 (2 C), 125.31, 121.45 (2 C), 120.86, 52.03, 31.43, 29.75, 22.78, 22.05, 14.14, 13.80; EIMS *m*/*z* 395 (M⁺, 2), 364 (8), 301 (23), 259 (100), 227 (22), 214 (45), 170 (24), 141 (34), 128 (34), 94 (95), 77 (63); HRMS (EI) *m*/*z* calc'd for C₂₄H₂₉NO₄ 395.2097, found 395.2101.

(E)-Methyl 4-(1-Benzenesulfonylamino-2-propylhex-2-enyl)benzoate (175).

A solution of 43.0 mg (0.0904 mmol) of phosphinamide 172 in 5.7 mL of a 2 N solution of HCl(g) in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at 0 °C and stirring at room temperature for 30 min) was stirred at room temperature for 12 h, concentrated in vacuo, dissolved in 5 mL of CH₂Cl₂, and concentrated in vacuo. A solution of the residue in 1 mL of CH₂Cl₂ was treated with 53.0 µL (0.304 mmol) of (*i*-Pr)₂NEt, 26.0 µL (0.204 mmol) of PhSO₂Cl, and 2.0 mg (0.016 mmol) of DMAP. The mixture was stirred at room temperature for 1 h, concentrated to ~0.5 mL by rotary evaporation, and chromatographed on SiO₂ (80:20, hexanes/EtOAc) to afford 29 mg (77%) of **175** as a colorless oil: IR (thin film) 3285, 2957, 2873, 1723, 1447, 1442, 1329, 1280, 1163, 1110 cm⁻¹; ¹H NMR δ 7.85 (d, 2 H, J = 8.4 Hz), 7.74 (d, 2 H, J = 8.1 Hz), 7.52-7.46 (m, 1 H), 7.41-7.35 (m, 2 H), 7.17 (d, 2 H, J = 8.3 Hz), 5.19-5.12 (m, 2 H), 4.96 (d, 1 H, J = 7.7 Hz), 3.90 (s, 3 H), 1.92-1.70 (m, 4 H), 1.30-1.12 (m, 4 H), 0.81 (t, 3 H, J = 7.3 Hz), 0.77 (t, 3 H, J = 7.3 Hz); ¹³C NMR δ 166.70, 144.98, 140.53, 137.74, 132.42, 130.08, 129.57 (2 C), 129.24, 128.76 (2 C), 127.25 (2 C), 127.09 (2 C), 61.76, 52.02, 30.88, 29.70, 22.54, 21.94, 14.06, 13.75; EIMS *m*/*z* 415 (M⁺, 1), 384 (1), 372 (1), 340 (1), 304 (16), 274 (19), 258 (17), 141 (31), 132 (20), 77 (100); HRMS (EI) m/z calc'd for C₂₃H₂₉NO₄S 415.1817, found 415.1819.

Methyl 4-(phenoxyiminomethyl)benzoate (180). According to a literature procedure,²³⁷ a solution of 400 mg (2.75 mmol) of *O*-phenylhydroxylamine hydrochloride and 361 mg (2.20 mmol) of methyl 4-formylbenzoate in 10 mL of pyridine was stirred at room temperature for 12 h, and concentrated *in vacuo*. The residue was dissolved in EtOAc, washed with saturated CuSO₄, H₂O and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 533 mg (95%) of **180** as a pale

yellow solid: mp 61-63 °C (EtOAc/hexane); IR (thin film) 1720, 1591, 1489, 1435, 1285, 1215, 1115, 935, 768, 746, 698, 687 cm⁻¹; ¹H NMR δ 8.45 (s, 1 H), 8.11 (dt, 2 H, *J* = 8.3, 1.7 Hz), 7.80 (dt, 2 H, *J* = 8.2, 1.6 Hz), 7.40-7.34 (m, 2 H), 7.28 (d, 2 H, *J* = 7.9 Hz), 7.08 (t, 1 H, *J* = 7.2 Hz), 3.96 (s, 3 H); ¹³C NMR δ 166.44, 159.20, 150.50, 135.65, 131.72, 130.02 (2 C), 129.38 (2 C), 127.44 (2 C), 122.67, 114.57 (2 C), 52.32; EIMS *m*/*z* 255 (M⁺, 19), 162 (25), 130 (38), 94 (100); HRMS (EI) *m*/*z* calcd for C₁₅H₁₃NO₃ 255.0895, found 255.0893.

Phenyl(pyridin-2-yl)methanol (**189**).²³⁸ A solution of 890 μL (9.36 mmol) of 2pyridinecarboxaldehyde in 20 mL of THF was cooled to 0 °C and treated dropwise with a solution of 3.70 mL (11.1 mmol) of PhMgBr (3.0 M solution in Et₂O) in 20 mL of THF. The mixture was stirred at 0 °C for 3 h, quenched with saturated NH₄Cl and extracted with 1N HCl (2x). The aqueous extracts were basified with K₂CO₃ to pH 8, extracted with Et₂O (2x), washed with brine, dried (MgSO₄), and concentrated *in vacuo* to afford 1.21 g (70%) of **189** as a colorless solid: ¹H NMR δ 8.57 (s, 1 H), 7.62 (t, 1 H, *J* = 7.6 Hz), 7.41-7.27 (m, 5 H), 7.22-7.15 (m, 2 H), 5.77 (s, 1 H), 5.16 (bs, 1 H). Approximately 600 mg of racemic **189** was separated by HPLC on a Chiracel AD semi-preparative column (solvent system: 15% *i*-PrOH in hexanes; flow rate: 10 mL/min). (*R*)-Enantiomer: R_t 16.0 min; 99.9% *ee* (HPLC chiracel AD analytical column, 15% *i*-PrOH in hexanes, 1.0 mL/min); α_D -156 (CHCl₃, c = 1.00), lit.²³⁹ -163 (CHCl₃, c = 0.4). (*S*)-Enantiomer: R_t 19.5 min; 99.9% *ee* (HPLC chiracel AD analytical column, 15% *i*-PrOH in hexanes, 1.0 mL/min); α_D +158 (CHCl₃, c = 1.00), lit. +163 (CHCl₃, c = 0.4).

(*S*)-*N*-(1-Phenylpropyl)-*P*,*P*-diphenylphosphinamide (106).¹⁶² A solution of 75.0 mg (0.246 mmol) of imine 104, 46.0 mg (0.248 mmol) of (*S*)-189, and 670 μ L (0.737 mmol) of Et₂Zn (1.1 M solution in toluene) in 1 mL of toluene was stirred at room temperature for 48 h. The mixture was quenched with saturated NH₄Cl, extracted with CH₂Cl₂ (2x), washed with brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was purified by preparative TLC (EtOAc) to yield 61 mg (74%) of (*S*)-106 as a colorless solid: ¹H NMR δ 7.87 (ddt, 2 H, *J* =

11.9, 6.6, 1.6 Hz), 7.76 (ddt, 2 H, J = 12.1, 6.9, 1.5 Hz), 7.52-7.38 (m, 4 H), 7.35-7.20 (m, 5 H), 7.16 (dt, 2 H, J = 6.5, 1.6 Hz), 4.16-4.05 (m, 1 H), 3.27 (t, 1 H, J = 7.5 Hz), 2.09-1.95 (m, 1 H), 1.91-1.77 (m, 1 H), 0.79 (t, 3 H, J = 7.4 Hz). The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (15% *i*-PrOH in hexanes, 1.0 mL/min, $R_T = 5.7$ and 6.9 min): 93% *ee*.

(Tetrahydro-2H-pyran-2-yl)diphenylmethanol (190). A suspension of 1.23 g (50.6 mmol) of Mg in 40 mL of THF was cooled to 0 °C and treated with 5.30 mL (50.3 mmol) of bromobenzene. The mixture was stirred at room temperature for 30 min, heated at reflux for 1 h, cooled to 0 °C, treated dropwise with a solution of 2.00 g (12.6 mmol) of ethyl tetrahydro-2Hpyran-2-carboxylate²⁴⁰ in 10 mL of THF, slowly warmed to room temperature over 16 h, quenched with cold saturated NH₄Cl then 1 N HCl, and extracted with Et₂O (3x). The combined extracts were washed with H₂O and brine, dried (MgSO₄) and concentrated in vacuo. The residue was chromatographed on SiO₂ (9:1, hexanes/EtOAc) to yield 2.34 g (69%) of **190** as a pale yellow solid: mp 95-96 °C (Et₂O/hexane); IR (thin film) 3479, 2935, 2856, 1492, 1448, 1330, 1172, 1090, 1048, 873, 748, 697 cm⁻¹; ¹H NMR δ 7.57-7.53 (m, 2 H), 7.42-7.16 (m, 8 H), 4.24 (dd, 1 H, J = 10.7, 1.9 Hz), 4.10-4.04 (m, 1 H), 3.62 (td, 1 H, J = 11.0, 3.5 Hz), 3.24 (s, 1 H), 1.88-1.83 (m, 1 H), 1.67-1.39 (m, 4 H), 1.14-1.09 (m, 1 H); ¹³C NMR δ 146.52, 143.86, 127.94 (2 C), 127.90 (2 C), 126.83 (2 C), 126.68, 126.47, 125.80 (2 C), 80.19, 79.19, 68.75, 25.83, 24.89, 23.31; EIMS m/z 250 ([M-H₂O]⁺, 11), 206 (18), 183 (35), 160 (32), 131 (59), 124 (100), 105 (42), 91 (43), 77(52); HRMS (EI) m/z calcd for C₁₈H₂₀O₂ [M-H₂O] 250.1358, found 250.1360. Approximately 500 mg of racemic 190 was separated by HPLC on a Chiracel AD semi-preparative column (solvent system: 1.2% i-PrOH in hexanes; flow rate: 10 mL/min). Enantiomer 1: Rt 19.5 min; 93.4% ee (HPLC chiracel AD analytical column, 1.2% i-PrOH in hexanes, 1.0 mL/min); α_D +170 (CHCl₃, c = 0.88). Enantiomer 2: R_t 22.0 min; 86.7% ee (HPLC chiracel AD analytical column, 1.2% *i*-PrOH in hexanes, 1.0 mL/min); α_D -146 (CHCl₃, c = 0.14).

(E)-O-tert-Butyl-N-(1-phenylhept-2-enyl)carbamate (196). A suspension of 95.0 mg (0.368 mmol) of Cp₂ZrHCl in 1 mL of CH₂Cl₂ was treated with 50.0 µL (0.435 mmol) of 1hexyne, stirred at room temperature for 5 min, and concentrated in vacuo. A solution of the residue in 1 mL of toluene was treated with 5.3 mg (0.027 mmol) of amino thiol 56, cooled to -50 °C, and treated with 190 µL (0.380 mmol) of Me₂Zn (2.0 M solution in toluene). The mixture was slowly warmed from -50 °C to -30 °C over 1 h, treated with a solution of 51.0 mg (0.248 mmol) of imine 176 in 1 mL of toluene, stirred at -30 °C for 12 h, quenched with saturated NaHCO₃, diluted with Et₂O, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromato-graphed on SiO_2 (9:1, hexanes/EtOAc) to yield 58 mg (81%) of 196 as a colorless solid: mp 39-40 °C (EtOAc/hexanes); IR (thin film) 3332, 2961, 2927, 1699, 1495, 1366, 1248, 1171, 700 cm⁻¹; ¹H NMR δ 7.34-7.20 (m, 5 H), 5.66-5.50 (m, 2 H), 5.21 (bs, 1 H), 4.89 (bs, 1 H), 2.04 (q, 2 H, J =6.4 Hz), 1.42 (s, 9 H), 1.37-1.20 (m, 4 H), 0.87 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 154.97, 142.04, 132.45, 129.73, 128.43, 127.10, 126.73, 79.42, 56.10, 31.83, 31.21 28.31, 22.13, 13.84; EIMS *m/z* 289 (M⁺, 1), 233 (56), 176 (100), 132 (86); HRMS (EI) *m/z* calcd for C₁₈H₂₇NO₂ 289.2042, found 289.2047. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (0.1% *i*-PrOH in hexanes, 1.0 mL/min, $R_T = 13.1$ and 14.3 min): 22% ee.

(*E*)-*O*-Ethyl-*N*-(1-phenylhept-2-enyl)carbamate (198). A suspension of 220 mg (0.853 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 115 μ L (1.00 mmol) of 1-hexyne, stirred at room temperature for 10 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cannulated into a cold (-30 °C) solution of 10.2 mg (0.0563 mmol) of amino thiol **181**, and 420 μ L (0.840 mmol) of Me₂Zn (2.0 M solution in toluene) in 1 mL of toluene. The mixture was stirred at -30 °C for 30 min, treated with a solution of 100 mg (0.564 mmol) of imine **197** in 1 mL of toluene, stirred at -30 °C for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), filtered through Florisil, and

concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 138 mg (94%) of **198** as a colorless oil: IR (thin film) 3324, 2959, 2925, 1698, 1528, 1245, 1074, 1040, 969, 699 cm⁻¹; ¹H NMR δ 7.38-7.24 (m, 5 H), 5.70-5.54 (m, 2 H), 5.28 (bs, 1 H), 5.00 (bs, 1 H), 4.13 (q, 2 H, *J* = 7.1 Hz), 2.07 (q, 2 H, *J* = 6.5 Hz), 1.42-1.29 (m, 4 H), 1.24 (t, 3 H, *J* = 7.1 Hz), 0.90 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR δ 155.75, 141.76, 132.76, 129.44, 128.55 (2 C), 127.31, 126.79 (2 C), 60.90, 56.42, 31.88, 31.21, 22.19, 14.56, 13.90; ESIMS *m*/*z* 300 ([M+K]⁺, 100), 284 ([M+Na]⁺, 78); HRMS (ESI) *m*/*z* calcd for C₁₆H₂₃NO₂Na [M+Na] 284.1626, found 284.1640. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (3.5% *i*-PrOH in hexanes, 1.0 mL/min, R_T = 7.2 and 12.6 min): 7% *ee*.

Preparation of 198 using a modified General Protocol A (*in situ* imine formation). A suspension of 161 mg (0.624 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 80.0 μ L (0.696 mmol) of 1-hexyne, stirred at room temperature for 10 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cannulated into a cold (-20 °C) solution of 100 mg (0.313 mmol) of sulfonamide **204**,²⁴¹ 8.4 mg (0.031 mmol) of amino alcohol **55**, and 240 μ L (0.420 mmol) of Me₂Zn (2.0 M solution in toluene) in 2 mL of toluene. The mixture was stirred at -20 °C for 6 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), diluted in hexanes, filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 42 mg (51%) of **198** as a colorless oil. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (3.5% *i*-PrOH in hexanes, 1.0 mL/min, R_T = 5.6, 12.6 min): 5% *ee*.

(*E*)-*O*-Methyl-*N*-(1-phenylhept-2-enyl)carbamate (200). A suspension of 127 mg (0.492 mmol) of Cp₂ZrHCl in 1 mL of THF was treated with 60.0 μ L (0.522 mmol) of 1-hexyne, stirred at room temperature for 15 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cannulated into a cold (-40 °C) solution of 27.0 mg (0.165 mmol) of imine 199, 44.0 mg (0.163 mmol) of amino alcohol 55, and 250 μ L (0.500 mmol) of Me₂Zn (2.0 M solution in toluene) in 1 mL of toluene. The mixture was stirred at -20 °C for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield

35 mg (86%) of **200** as a colorless oil: IR (thin film) 3324, 2959, 2929, 1707, 1527, 1453, 1248, 1069, 1021, 970, 774, 699 cm⁻¹; ¹H NMR δ 7.37-7.24 (m, 5 H), 5.68-5.54 (m, 2 H), 5.29 (bs, 1 H), 5.07 (bs, 1 H), 3.68 (s, 3 H), 2.07 (q, 2 H, *J* = 6.4 Hz), 1.42-1.28 (m, 4 H), 0.90 (t, 3 H, *J* = 7.0 Hz); ¹³C NMR δ 156.13, 141.72, 132.82, 129.46, 128.53 (2 C), 127.30, 126.74 (2 C), 56.64, 52.08, 31.82, 31.20, 22.14, 13.80; EIMS *m*/*z* 247 (M⁺, 13), 190 (74), 147 (42), 143 (50), 129 (84), 115 (65), 105 (100), 91 (34), 77 (58); HRMS (EI) *m*/*z* calcd for C₁₅H₂₁NO₂ 247.1572, found 247.1578. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (5% *i*-PrOH in hexanes, 1.0 mL/min, R_T = 8.5, 15.0 min): 6% *ee*.

$$Ph$$
 C_4H_9 **201**

(E)-N-(1-Phenylhept-2-enyl)acetamide (201). A suspension of 100 mg (0.388 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 50.0 µL (0.435 mmol) of 1-hexyne, stirred at room temperature for 10 min, and concentrated in vacuo. A solution of the residue in 1.5 mL of toluene was cooled to -30 °C, and treated with 5.0 mg (0.028 mmol) of amino thiol 181 and 200 µL (0.400 mmol) of Me₂Zn (2.0 M solution in toluene). The mixture was stirred for 30 min at -30 °C, treated with a solution of 42.0 mg (0.285 mmol) of imine 177 in 0.5 mL of toluene, stirred at -30 °C for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (1:1, hexanes/EtOAc) to yield 29 mg (44%) of 201 as a colorless oil: IR (thin film) 3279, 2957, 2927, 1652, 1538, 1372, 1292, 970, 698 cm⁻¹; ¹H NMR δ 7.37-7.23 (m, 5 H), 5.95 (bd, 1 H, J = 7.1 Hz), 5.64-5.55 (m, 3 H), 2.06 (g, 2 H, J = 7.0 Hz), 2.01 (s, 3 H), 1.41-1.25 (m, 4 H), 0.89 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 168.92, 141.44, 132.86, 128.91, 128.55 (2 C), 127.33, 126.98 (2 C), 54.59, 31.88, 31.19, 23.37, 22.20, 13.88; ESIMS m/z 270 $([M+K]^+, 28), 254 ([M+Na]^+, 100);$ HRMS (ESI) m/z calcd for $C_{15}H_{21}NONa [M+Na] 254.1521,$ found 254.1527. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (10% *i*-PrOH in hexanes, 1.0 mL/min, $R_T = 6.8$ and 7.8 min): 1% ee.

Preparation of 200 using a modified General Protocol A (*in situ* imine formation). A suspension of 161 mg (0.624 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 80.0 μ L (0.696 mmol) of 1-hexyne, stirred at room temperature for 10 min, and concentrated *in vacuo*. A solution of the residue in 1 mL of toluene was cannulated into a cold (-20 °C) solution of 91.0 mg (0.314 mmol) of sulfonamide **205**,²⁴² 8.4 mg (0.0312 mmol) of amino alcohol **55**, and 240 μ L (0.420 mmol) of Me₂Zn (2.0 M solution in toluene) in 2 mL of toluene. The mixture was stirred at -20 °C for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (1:1, hexanes/EtOAc) to yield 35 mg (48%) of **201** as a colorless oil. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (1.0 mL/min, 10% *i*-PrOH in hexanes, R_T = 6.4 and 8.0 min): 6% *ee*.

(E)-1,1-Dimethyl-3-(1-phenylhept-2-enyl)urea (203). A solution of 3.00 g (34.0 mmol) of 1,1-dimethylurea, 5.0 mg (0.026 mmol) of TsOH·H₂O, and 3.50 mL (34.4 mmol) of PhCHO in 50 mL of toluene was heated at reflux with a Dean-Stark trap for 16 h, and concentrated in *vacuo*. The residue was purified by Kugelrohr distillation (80 °C, ~1 atm) to afford 4.49 g (75%) of a pale yellow oil which was an 86:14 mixture of imine 202 to 1,1-dimethylurea. This mixture was used without further purification in the subsequent reaction. A suspension of 110 mg (0.427)mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 55.0 µL (0.479 mmol) of 1-hexyne, stirred at room temperature for 5 min, and concentrated *in vacuo*. A solution of the residue in 2 mL of toluene was cooled to -30 °C, and treated with 5.1 mg (0.028 mmol) of amino thiol 181 and 210 µL (0.420 mmol) of Me₂Zn (2.0 M solution in toluene). The mixture was stirred for 30 min at -30 °C, treated with a solution of 50.0 mg (0.244 mmol) of imine 202 (86% purity) in 0.5 mL of toluene, stirred at -30 °C for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), filtered through Florisil, and concentrated in *vacuo*. The residue was chromatographed on SiO₂ (3:2, hexanes/EtOAc) to yield 44 mg (69%) of 203 as a colorless solid: mp 65-66 °C (EtOAc/hexanes); IR (thin film) 3330, 2925, 1631, 1527, 1376, 1214, 969, 698 cm⁻¹; ¹H NMR δ 7.36-7.23 (m, 5 H), 5.66-5.59 (m, 2 H), 5.49 (bd, 1 H, J = 5.5 Hz), 4.63 (bd, 1 H, J = 7.3 Hz), 2.93 (s, 6 H), 2.10-2.03 (m, 2 H), 1.42-1.28 (m, 4 H), 0.89 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 157.46, 142.90, 132.38, 130.47, 128.46 (2 C), 127.01, 126.95 (2 C), 55.95, 36.19 (2 C), 31.92, 31.31, 22.22, 13.83; EIMS m/z 260 (M⁺, 7), 172 (33), 143 (59), 129 (100), 115 (37), 91 (30); HRMS (EI) m/z calcd for C₁₆H₂₄N₂O 260.1889, found 260.1888. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (5% *i*-PrOH in hexanes, 1.0 mL/min, $R_T = 13.4$ and 15.0 min): 6% *ee*.

(E)-N-(4-Methoxyphenyl)-N-(1-phenylhept-2-enyl)acetamide (207) and N-(4-methoxyphenyl)-N-(1-phenylethyl)acetamide (208). A solution of 100 mg (0.473 mmol) of imine 178 in 2 mL of toluene was cooled to 0 °C, treated with 35.0 µL (0.492 mmol) of AcCl, warmed to room temperature and stirred for 1 h. Separately, a suspension of 183 mg (0.710 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 90.0 µL (0.783 mmol) of 1-hexyne, stirred at room temperature for 15 min, concentrated in vacuo, and dissolved in 2 mL of toluene. The two solutions were combined at room temperature, cooled to 0 °C, and treated with 240 µL (0.480 mmol) of Me₂Zn (2.0 M solution in toluene). The mixture was warmed to room temperature, stirred for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed on SiO₂ (2:1, hexanes/EtOAc) to yield 82 mg (51%) of 207 and 41 mg (32%) of 208 as brown oils. 207: IR (thin film) 2957, 2927, 2858, 1658, 1511, 1383, 1295, 1250, 1033, 975, 837, 733, 701 cm⁻¹; ¹H NMR δ 7.31-7.13 (m, 5 H), 6.76 (bs, 4 H), 6.50 (d, 1 H, J = 8.7 Hz), 5.83 (dt, 1 H, J = 15.2, 6.6 Hz), 5.56 (dd, 1 H, J = 15.3, 8.7 Hz), 3.77 (s, 3 H), 2.06 (q, 2 H, J = 6.6 Hz), 1.79 (s, 3 H), 1.44-1.24 (m, 4 H), 0.88 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 170.25, 158.96, 140.62, 135.50, 132.71, 131.12 (2 C), 128.15 (2 C), 127.96 (2 C), 127.03, 126.57, 113.88 (2 C), 59.96, 55.21, 31.98, 31.05, 23.02, 22.06, 13.73; ESIMS *m/z* 360 ([M+Na]⁺, 100), 338 ([M+H]⁺, 13); HRMS (ESI) *m/z* calcd for C₂₂H₂₇NO₂Na [M+Na] 360.1939, found 360.1931. 208: IR (thin film) 2974, 2937, 1653, 1510, 1454, 1387, 1315, 1292, 1248, 1032, 835, 700 cm⁻¹; ¹H NMR δ 7.29-7.17 (m, 5 H), 6.76 (bs, 4 H), 6.29 (q, 1 H, J = 7.2 Hz), 3.78 (s, 3 H), 1.77 (s, 3 H), 1.40 (d, 3 H, J = 7.2 Hz); ¹³C NMR δ 170.53, 159.08, 141.25, 131.65, 131.26 (2 C), 128.10 (2 C), 128.01 (2 C), 127.31, 113.93 (2 C), 55.29, 51.73, 23.25, 17.07; ESIMS m/z 292 ([M+Na]⁺, 100), 270 ([M+H]⁺, 18); HRMS (ESI) *m/z* calcd for C₁₇H₁₉NO₂Na [M+Na] 292.1313, found 292.1313.

Preparation of 207 using catalytic ZnCl₂. A solution of 100 mg (0.473 mmol) of imine **178** in 2 mL of toluene was cooled to 0 °C, treated with 35.0 μ L (0.492 mmol) of AcCl, warmed

to room temperature and stirred for 15 min. Separately, a suspension of 185 mg (0.717 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 90.0 μ L (0.783 mmol) of 1-hexyne and stirred at room temperature for 10 min. The two solutions were combined at room temperature, cooled to 0 °C, and treated with 10.0 μ L (0.0100 mmol) of ZnCl₂ (1.0 M solution in Et₂O). The mixture was stirred at 0 °C for 10 min, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (2:1, hexanes/EtOAc) to yield 131 mg (82%) of **207** as a brown oil.

Preparation of 207 using catalytic CuBr. A solution of 100 mg (0.473 mmol) of imine **178** in 2 mL of toluene was cooled to 0 °C, treated with 35.0 μ L (0.492 mmol) of AcCl, warmed to room temperature and stirred for 15 min. Separately, a suspension of 185 mg (0.717 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 90.0 μ L (0.783 mmol) of 1-hexyne and stirred at room temperature for 10 min. The two solutions were combined at room temperature, cooled to 0 °C, and treated with 5.0 mg (0.035 mmol) of CuBr. The mixture was stirred at 0 °C for 30 min, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (2:1, hexanes/ EtOAc) to yield 137 mg (86%) of **207** as a brown oil.

Representative attempted asymmetric preparation of 207 using Cu catalysis.

A suspension of 50.0 mg (0.237 mmol) of imine **178**, 1.9 mg (0.019 mmol) of CuCl, and 12.0 mg (0.0241 mmol) of (*R*,*R*)-DIOP (**215**) in 1 mL of toluene was cooled to 0 °C, treated with 17.0 μ L (0.239 mmol) of AcCl, warmed to room temperature and stirred for 15 min. Separately, a suspension of 90.0 mg (0.349 mmol) of Cp₂ZrHCl in 1 mL of CH₂Cl₂ was treated with 45.0 μ L (0.392 mmol) of 1-hexyne and stirred at room temperature for 10 min. The two solutions were combined at room temperature, stirred for 12 h, quenched with with 1 N HCl, extracted with EtOAc, washed with brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (2:1, hexanes/EtOAc) to yield 57 mg (71%) of **207** as a brown oil. The enantioselectivity was measured by chiral HPLC using a Chiracel AD column (5% *i*-PrOH in hexanes, 1.0 mL/min, R_T = 13.6 and 15.3 min): 3% *ee*.

P-2-(1,1'-Binaphthyl)-*P*-phenylphosphinamide (218). A mixture of 1.34 g (3.56 mmol) of phosphole oxide 240 and 500 mg (12.5 mmol) of crushed NaOH was slowly heated at 280 °C over 3 h. The mixture was stirred at 280 °C for 2 h, cooled to room temperature, and partitioned between CH₂Cl₂ and 2 N NaOH. The aqueous layer was separated, cooled to 0 °C, acidified to pH 4 with conc. HCl, and filtered. The filter cake was dissolved in CH₂Cl₂, dried (MgSO₄), and concentrated *in vacuo*. A solution of the residue in 20 mL of CH₂Cl₂ was cooled to 0 °C, treated with 600 μL (6.88 mmol) of (COCl)₂ and 2 drops of DMF, stirred at 0 °C for 2 h, at room temperature for 1 h, and concentrated *in vacuo*. A solution of the residue in 40 mL of CH₂Cl₂ was cooled to -78 °C, treated with 10 mL of NH₃, slowly warmed to room temperature over 12 h, filtered and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (95:5, CH₂Cl₂/MeOH) to yield 261 mg (19%) of **218** as a colorless foam: mp 105-107 °C (MeOH/CH₂Cl₂); IR (thin film) 3407, 3217, 3053, 1591, 1436, 1184, 1120, 902, 824, 802, 783, 744, 692 cm⁻¹; ¹H NMR δ 7.69-7.61 (m, 8 H), 7.56-7.40 (m, 12 H); EIMS *m/z* 393 (M⁺, 64), 375 (33), 277 (51), 252 (100), 77 (15); HRMS (EI) *m/z* calcd for C₂₆H₂₀NOP 393.1283, found 393.1275.

N-Benzylidene-*P*-2-(1,1'-binaphthyl)-*P*-phenylphosphinamide (219). According to the General Protocol B, 220 mg (0.559 mmol) of phosphinamide 218, 230 μ L (1.65 mmol) of Et₃N, 90.0 μ L (0.885 mmol) of PhCHO, and 35.0 μ L (0.319 mmol) of TiCl₄ afforded a 1.8:1 mixture of diastereomers. The mixture was recrystallized from CH₂Cl₂/hexanes to yield 42 mg (16%) of 219 as a colorless solid: mp 204-205 °C (CH₂Cl₂/hexanes); IR (thin film) 3055, 1618, 1577, 1196, 1113, 852, 831, 752, 690 cm⁻¹; ¹H NMR δ 8.47 (d, 1 H, *J* = 33.2 Hz), 7.94-7.00 (m,

23 H); ESIMS m/z 504 ([M+Na]⁺, 62), 482 ([M+H]⁺, 100); HRMS (ESI) m/z calcd for C₃₃H₂₅NOP [M+H] 482.1674, found 482.1652.

(E)-P-2-(1,1'-Binaphthyl)-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide (220).

According to the General Protocol A, 28.0 mg (0.109 mmol) of Cp₂ZrHCl, 15.0 μ L (0.131 mmol) of 1-hexyne, 27.0 mg (0.0561 mol) of imine **219**, and 50.0 μ L (0.100 mmol) of Me₂Zn (2.0 M solution in toluene) afforded 24 mg (76%) of **220** as an (inseparable) 72:28 mixture of diastereomers: IR (thin film) 3381, 3207, 3055, 2954, 2924, 2858, 1452, 1439, 1184, 1113, 1026, 972, 783, 746, 696 cm⁻¹; ¹H NMR δ 8.01-6.83 (m, 23 H), 5.17-5.04 (m, 1.7 H), 4.91 (dtd, 0.3 H, J = 15.3, 6.6, 1.4 Hz), 4.50 (td, 0.7 H, J = 9.4, 4.2 Hz), 4.39 (td, 0.3 H, J = 9.9, 5.7 Hz), 2.88-2.79 (m, 1 H), 1.93-1.75 (m, 2 H), 1.24-1.08 (m, 4 H), 0.83 (t, 3 H, J = 6.8 Hz); ESIMS *m*/*z* 588 ([M+Na]⁺, 70), 566 ([M+H]⁺, 100); HRMS (ESI) *m*/*z* calcd for C₃₉H₃₇NOP [M+H] 566.2613, found 566.2621.

N-Benzylidene-*P*-mesityl-*P*-phenylphosphinamide (222). According to the General Protocol B, 500 mg (1.93 mmol) of *P*-mesityl-*P*-phenylphosphinamide (221), 290 μ L (2.85 mmol) of PhCHO, 810 μ L (5.81 mmol) of Et₃N, and 120 μ L (1.09 mmol) of TiCl₄ afforded 235 mg (35%) of 222 as a colorless solid: mp 166-167 °C (CH₂Cl₂/hexanes); IR (thin film) 3441, 3058, 2969, 2931, 1610, 1575, 1449, 1435, 1197, 1116, 850, 821, 753, 691, 645 cm⁻¹; ¹H NMR δ 9.32 (d, 1 H, *J* = 32.8 Hz), 7.97-7.93 (m, 2 H), 7.73-7.66 (m, 2 H), 7.55-7.37 (m, 6 H), 6.88-6.87 (m, 2 H), 2.53 (s, 6 H), 2.26 (s, 3 H); EIMS *m*/*z* 347 (M⁺, 100), 270 (26), 256 (20), 243 (68), 106 (85), 91 (32), 77 (22); HRMS (EI) *m*/*z* calcd for C₂₂H₂₂NOP 347.1439, found 347.1443.

(*E*)-*P*-Mesityl-*P*-phenyl-*N*-(1-phenylhept-2-enyl)phosphinamide (223). According to the General Protocol A, 95.0 mg (0.368 mmol) of Cp₂ZrHCl, 50.0 μ L (0.435 mmol) of 1-hexyne, 190 μ L (0.380 mmol) of Me₂Zn, and 87.0 mg (0.250 mmol) of imine 222 afforded 57 mg (53%) of 223 as an (inseparable) 69:31 mixture of diastereomers: mp 122-125 °C (EtOAc/hexanes); IR (thin film) 3204, 2957, 2927, 2854, 1607, 1453, 1435, 1176, 1116, 748, 696 cm⁻¹; ¹H NMR δ 7.75-7.67 (m, 1.4 H), 7.60-7.53 (m, 0.6 H), 7.46-7.15 (m, 8 H), 6.87 (d, 0.6 H, *J* = 3.7 Hz), 6.80 (d, 1.4 H, *J* = 3.7 Hz), 5.77 (dd, 0.7 H, *J* = 15.3, 6.2 Hz), 5.66-5.54 (m, 1 H), 5.42 (dt, 0.3 H, *J* = 15.3, 6.6 Hz), 5.08 (td, 0.3 H, *J* = 8.9, 7.1 Hz), 4.97 (td, 0.7 H, *J* = 9.2, 6.4 Hz), 3.19 (t, 0.3 H, *J* = 9.1 Hz), 3.13 (t, 0.7 H, *J* = 8.9 Hz), 2.45 (s, 1.8 H), 2.35 (s, 4.2 H), 2.28 (s. 0.9 H), 2.26 (s, 2.1 H), 2.05 (q, 1.4 H, *J* = 6.7 Hz), 1.86 (q, 0.6 H, *J* = 6.7 Hz), 1.40-1.26 (m, 2.8 H), 1.23-1.14 (m, 1.2 H), 0.89 (t, 2.1 H, *J* = 7.1 Hz), 0.83 (t, 0.9 H, *J* = 6.8 Hz); ESIMS *m/z* 454 ([M+Na]⁺, 100), 432 ([M+H]⁺, 75); HRMS (ESI) *m/z* calcd for C₂₈H₃₄NOPNa [M+Na] 454.2276, found 454.2280.

(*E*)-*P*-(*tert*-Butyl)-*P*-phenyl-*N*-(1-phenylhept-2-enyl)phosphinamide (225). According to the General Protocol B, 500 mg (2.54 mmol) of *P*-(*tert*-butyl)-*P*-phenylphosphinamide (224), 1.17 mL (8.39 mmol) of Et₃N, 390 μ L (3.84 mmol) of PhCHO, and 150 μ L (1.34 mmol) of TiCl₄ afforded a 1.6:1 mixture of imine and PhCHO, which was used without further purification in the subsequent reaction. According to the General Protocol A, 390 mg (1.51 mmol) of Cp₂ZrHCl, 200 μ L (1.74 mmol) of 1-hexyne, 500 μ L (1.00 mmol) of Me₂Zn, and 200 mg (0.571 mmol) of crude imine (81% purity) afforded 67 mg (32%) of **225** as an (inseparable) 69:31 mixture of diastereomers: IR (thin film) 3228, 2060, 2954, 2929, 2862, 1687, 1475, 1437, 1165, 1113, 1057, 748, 700 cm⁻¹; ¹H NMR δ 7.88-7.81 (m, 0.6 H), 7.64-7.58 (m, 1.4 H), 7.51-7.35 (m, 2 H), 7.33-7.13 (m, 6 H), 5.71 (ddt, 0.7 H, *J* = 15.4, 5.4, 1.3 Hz), 5.52-5.37 (m, 1.3 H), 4.79 (td, 0.3 H, *J* = 8.8, 5.7 Hz), 4.70 (td, 0.7 H, *J* = 9.5, 5.3 Hz), 2.98-2.89 (m, 1 H), 1.98 (q, 1.4 H, *J* = 7.0 Hz),

1.89 (q, 0.6 H, J = 6.2 Hz), 1.36-1.18 (m, 4 H), 1.12 (d, 6.3 H, J = 14.8 Hz), 1.09 (d, 2.7 H, J = 14.8 Hz), 0.85-0.80 (m, 3 H); ESIMS *m*/*z* 392 ([M+Na]⁺, 68), 370 ([M+H]⁺, 100); HRMS (ESI) *m*/*z* calcd for C₂₃H₃₃NOP [M+H] 370.2300, found 370.2290.

Ethyl (2-tert-butylphenyl)phosphinate (244). According to a literature procedure,²⁴³ a suspension of 220 mg (9.05 mmol) of Mg in 10 mL of THF was treated with a solution of 2.00 g (9.38 mmol) of ortho-bromo-tert-butybenzene (243) in 10 mL of THF. The reaction was initiated with 2 drops of (CH₂Br)₂, and the mixture was heated at reflux for 2 h, cooled to room temperature, treated with a solution of 910 µL (5.66 mmol) of ClP(OEt)₂ (90% purity) in 10 mL of THF, heated at reflux for 2 h, cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation (120 °C, ~1 atm) of the residue afforded a colorless oil that was dissolved in 10 mL of THF, treated with 20 mL of 0.1 M HCl, stirred at 50 °C for 4 h, cooled to room temperature and extracted with CH₂Cl₂ (4x). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo* to yield 1.21 g (95%) of 244 as a colorless oil: IR (thin film) 2966, 2906, 2870, 1475, 1433, 1365, 1192, 1122, 1024, 960, 762 cm⁻¹; ¹H NMR δ 7.90 (d, 1 H, J = 566 Hz), 7.95-7.86 (m, 1 H), 7.55-7.43 (m, 2 H), 7.33-7.27 (m, 1 H), 4.24-4.04 (m, 2 H), 1.49 (s, 9 H), 1.33 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 153.88 (d, 1 C, J = 10.2 Hz), 133.00 (d, 1 C, J = 13.9 Hz), 132.55 (s, 1 C), 128.70 (d, 1 C, J =126 Hz), 127.09 (d, 1 C, J = 12.8 Hz), 125.67 (d, 1 C, J = 14.7 Hz), 62.36 (d, 1 C, J = 6.1 Hz), 37.04 (s, 1 C), 32.32 (s, 3 C), 16.10 (d, 1 C, J = 6.4 Hz); EIMS m/z 226 (M⁺, 52), 211 (43), 183 (80), 156 (58), 147 (100), 115 (49), 91 (77), 84 (42), 77 (54); HRMS (EI) m/z calcd for C₁₂H₁₉O₂P 226.1123, found 226.1124.

Ethyl (2-*tert*-butylphenyl)phenylphosphinate (245). According to a literature procedure, a suspension of 1.00 g (4.42 mmol) of ethyl phosphinate 244, 30.0 mg (0.134 mmol)

of Pd(OAc)₂, 320 mg (0.577 mmol) of dppf, 1.23 mL (8.82 mmol) of Et₃N, and 490 μ L (4.38 mmol) of iodobenzene in 25 mL of MeCN was stirred at 70 °C for 24 h. The mixture was cooled to room temperature, diluted with EtOAc, filtered through Celite, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (50:50, hexanes/EtOAc) to yield 800 mg (60%) of **245** as an orange oil: IR (thin film) 2960, 2902, 2870, 1473, 1439, 1228, 1122, 1030, 947, 746, 696 cm⁻¹; ¹H NMR δ 7.95-7.87 (m, 1 H), 7.70-7.57 (m, 3 H), 7.47-7.34 (m, 4 H), 7.26-7.20 (m, 1 H), 4.12-4.02 (m, 2 H), 1.53 (s, 9 H), 1.32 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR δ 156.53 (d, 1 C, *J* = 10.1 Hz), 136.11 (d, 1 C, *J* = 9.8 Hz), 134.37 (d, 1 C, *J* = 136 Hz), 131.93 (s, 1 C), 131.39 (s, 1 C), 131.33 (d, 2 C, *J* = 9.9 Hz), 128.70 (d, 1 C, *J* = 128. Hz), 128.21 (d, 2 C, *J* = 13.1 Hz), 127.65 (d, 1 C, *J* = 13.0 Hz), 125.08 (d, 1 C, *J* = 12.6 Hz), 60.73 (d, 1 C, *J* = 5.5 Hz), 37.22 (s, 1 C), 32.20 (s, 3 C), 16.33 (d, 1 C, *J* = 3.4 Hz); EIMS *m*/*z* 302 (M⁺, 71), 287 (61), 259 (39), 217 (27), 202 (34), 163 (28), 141 (31), 115 (44), 91 (55), 77 (100); HRMS (EI) *m*/*z* calcd for C₁₈H₂₃O₂P 302.1436, found 302.1444.

P-(2-*tert*-Butylphenyl)-*P*-phenylphosphinamide (226). According to a literature procedure,²⁰⁴ a solution of 200 mg (8.70 mmol) of Na in 30 mL of NH₃ was stirred at -35 °C for 1 h, treated with a solution of 760 mg (2.51 mmol) of ethyl phosphinate 245 in 10 mL of THF, stirred at -35 °C for 5 h and slowly warmed to room temperature over 12 h. The mixture was quenched with solid NH₄Cl then wet THF, poured into 1 N HCl, and extracted with CH₂Cl₂ (3x). The combined extracts were dried (MgSO₄) and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (50:50, hexanes/Et₂O) to yield 187 mg (27%) of 226 as a colorless solid: mp 139-140 °C (Et₂O, hexanes); IR (thin film) 3225, 3078, 2954, 1567, 1475, 1436, 1194, 1118, 893, 762, 750, 735, 695 cm⁻¹; ¹H NMR δ 7.91 (ddd, 1 H, *J* = 16.1, 7.8, 1.5 Hz), 7.79-7.72 (m, 2 H), 7.61-7.56 (m, 1 H), 7.48-7.35 (m, 4 H), 7.21-7.15 (m, 1 H), 3.05 (bs, 2 H), 1.57 (s, 9 H); ¹³C NMR δ 156.63 (d, 1 C, *J* = 9.3 Hz), 136.70 (d, 1 C, *J* = 128.4 Hz), 136.63 (d, 1 C, *J* = 11.9 Hz), 131.78 (s, 1 C), 131.40 (d, 2 C, *J* = 9.2 Hz), 131.34 (s, 1 C), 131.01 (d, 1 C, *J* = 116.8 Hz), 128.43 (d, 2 C, *J* = 12.8 Hz), 127.79 (d, 1 C, *J* = 12.1 Hz), 125.20 (d, 1 C, *J* = 13.1 Hz),

37.51 (s, 1 C), 32.46 (s, 3 C); EIMS *m*/*z* 273 (M⁺, 90), 258 (100), 241 (45), 199 (50), 163 (28), 91 (20), 77 (32); HRMS (EI) *m*/*z* calcd for C₁₆H₂₀NOP 273.1283, found 273.1283.

(E)-P-(2-tert-Butylphenyl)-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide (227).

According to the General Protocol B, 166 mg (0.607 mmol) of phosphinamide **226**, 320 μ L (1.84 mmol) of (*i*-Pr)₂NEt, 100 μ L (0.984 mmol) of PhCHO, and 40.0 μ L (0.365 mmol) of TiCl₄ afforded the crude imine, which was used without further purification in the subsequent reaction. According to the General Protocol A, 46.0 mg (0.178 mmol) of Cp₂ZrHCl, 23.0 μ L (0.200 mmol) of 1-hexyne, 90.0 μ L (0.180 mmol) of Me₂Zn (2.0 M solution in toluene), and 32.4 mg (0.0896 mmol) of crude imine at a reaction temperature of 40 °C afforded 27 mg (68%) of **227** as an (inseparable) 54:46 mixture of diastereomers: IR (thin film) 3213, 2922, 2870, 1589, 1435, 1197, 1113, 1051, 1028, 970, 924, 739, 702 cm⁻¹; ¹H NMR δ 7.94-7.55 (m, 4 H), 7.49-7.04 (m, 10 H), 5.75-5.44 (m, 2 H), 4.94-4.82 (m, 1 H), 2.99-2.89 (m, 1 H), 2.04-1.96 (m, 2 H), 1.61 (s, 4.9 H), 1.55 (s, 4.1 H), 1.30-1.15 (m, 4 H), 0.89-0.82 (m, 3 H); ESIMS *m*/*z* 468 ([M+Na]⁺, 84), 446 ([M+H]⁺, 100); HRMS (ESI) *m*/*z* calcd for C₂₉H₃₇NOP [M+H] 446.2613, found 446.2603.

Ethyl [2-(trimethylsilyl)phenyl]phenylphosphinate (247). According to a literature procedure, a suspension of 190 mg (7.82 mmol) of Mg in 10 mL of THF was treated with a solution of 1.75 g (7.64 mmol) of (2-bromophenyl)trimethylsilane (**246**) in 10 mL of THF. The reaction was initiated with 2 drops of 1,2-dibromoethane, and the mixture was heated at reflux for 4 h, cooled to room temperature, treated with a solution of 1.23 mL (7.65 mmol) of CIP(OEt)₂ (90% purity) in 10 mL of THF, heated at reflux for 12 h, cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated *in vacuo*. Kugelrohr distillation (110 °C, ~1 atm) of the residue afforded a colorless oil that was dissolved in 10 mL of THF, treated with 20 mL of 0.1 M HCl, stirred at 60 °C for 6 h, cooled to room temperature and extracted with CH₂Cl₂ (4x). The combined organic extracts were dried (MgSO₄) and

concentrated *in vacuo*. A suspension of the residue, 33.0 mg (0.147 mmol) of Pd(OAc)₂, 164 mg (0.296 mmol) of dppf, 770 µL (4.42 mmol) of (*i*-Pr)₂NEt, and 400 µL (3.57 mmol) of iodobenzene in 25 mL of MeCN was stirred at 70 °C for 18 h. The mixture was cooled to room temperature, diluted with EtOAc, filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (30:70, hexanes/EtOAc) to yield 646 mg (28%) of **247** as a yellow oil: IR (thin film) 3055, 2980, 2947, 2899, 1439, 1230, 1134, 1119, 1032, 949, 845, 742, 696 cm⁻¹; ¹H NMR δ 7.78-7.66 (m, 4 H), 7.49-7.37 (m, 5 H), 4.09-3.99 (m, 2 H), 1.31 (t, 3 H, *J* = 7.1 Hz), 0.38 (s, 9 H); ¹³C NMR δ 145.84 (d, 1 C, *J* = 18.6 Hz), 136.18 (d, 1 C, *J* = 138.1 Hz), 136.04 (d, 1 C, *J* = 16.8 Hz), 133.33 (d, 1 C, *J* = 13.4 Hz), 132.77 (d, 1 C, *J* = 133.0 Hz), 131.74 (s, 1 C), 131.67 (d, 2 C, *J* = 10.1 Hz), 130.83 (d, 1 C, *J* = 3.1 Hz), 128.30 (d, 2 C, *J* = 12.9 Hz), 128.18 (d, 1 C, *J* = 13.4 Hz), 60.79 (d, 1 C, *J* = 5.8 Hz), 16.39 (d, 1 C, *J* = 6.7 Hz), 1.35 (s, 3 C); EIMS *m*/z 303 ([M-CH₃]⁺, 100), 275 (86), 197 (29), 183 (24), 135 (22), 107 (18), 77 (21); HRMS (EI) *m*/z calcd for C₁₆H₂₀O₂PSi [M-CH₃] 303.0970, found 303.0976.

P-[2-(Trimethylsilyl)phenyl]-*P*-phenylphosphinamide (228). A solution of 2.07 g (6.50 mmol) of ethyl phosphinate 247 in 50 mL of CH₂Cl₂ was treated with 1.72 mL (13.0 mmol) of TMS-Br.²⁴⁴ The mixture was stirred at room temperature for 4 h, treated with 25 mL of MeOH, stirred at room temperature for 1 h, and concentrated *in vacuo*. A solution of the residue in 15 mL of CH₂Cl₂ was cooled to 0 °C, and treated with 1.13 mL (13.0 mmol) of (COCl)₂ and 3 drops of DMF. The mixture was stirred at 0 °C for 10 min, at room temperature for 5 h, and concentrated *in vacuo*. A solution of the residue in 50 mL of CH₂Cl₂ was cooled to -78 °C, treated with 10 mL of NH₃, slowly warmed to room temperature over 5 h, filtered, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (99:1, Et₂O/MeOH) to yield 1.65 g (88%) of **228** as a yellow solid: mp 141-142 °C (MeOH/Et₂O); IR (thin film) 3413, 3213, 3065, 1571, 1436, 1243, 1197, 1117, 896, 848, 758 cm⁻¹; ¹H NMR δ 7.88 (ddd, 1 H, *J* = 13.1, 7.5, 1.1 Hz), 7.82-7.74 (m, 3 H), 7.47-7.34 (m, 5 H), 3.12 (bs, 2 H), 0.36 (s, 9 H); ¹³C NMR δ 146.14 (d, 1 C, *J* = 18.3 Hz), 138.26 (d, 1 C, *J* = 131.8 Hz), 136.14 (d, 1 C, *J* = 16.2 Hz), 134.74 (d, 1 C, *J* = 125.1 Hz), 133.71 (d, 1 C, *J* = 13.2 Hz), 131.70 (d, 2 C, *J* = 9.9 Hz), 131.47 (d, 1 C, *J*

= 2.2 Hz), 130.57 (d, 1 C, J = 2.7 Hz), 128.25 (d, 2 C, J = 12.5 Hz), 128.17 (d, 1 C, J = 12.8 Hz), 1.72 (s, 3 C); EIMS m/z 289 (M⁺, 1), 288 (3), 274 (100); HRMS (EI) m/z calcd for C₁₄H₁₇NOPSi [M-CH₃] 274.0817, found 274.0944.

N-Benzylidene-*P*-[2-(trimethylsilyl)phenyl]-*P*-phenylphosphinamide (229).

According to the General Protocol B, 1.09 g (3.77 mmol) of phosphinamide **228**, 1.97 mL (11.3 mmol) of $(i\text{-Pr})_2\text{NEt}$, 570 µL (5.61 mmol) of PhCHO, and 250 µL (2.28 mmol) of TiCl₄ afforded the crude imine, which was chromatographed on SiO₂ (80:20, hexanes/EtOAc, containing 2% Et₃N) to yield 1.23 g (87%) of **229** as a yellow glass: IR (thin film) 3057, 2945, 2895, 1703, 1618, 1577, 1452, 1437, 1242, 1205, 1113, 1057, 852, 822, 739, 688, 663 cm⁻¹; ¹H NMR & 9.28 (d, 1 H, *J* = 31.4 Hz), 8.21 (ddd, 1 H, *J* = 12.0, 6.8, 2.0 Hz), 7.99 (d, 2 H, *J* = 6.8 Hz), 7.83-7.75 (m, 3 H), 7.59-7.38 (m, 8 H), 0.41 (s, 9 H); ESIMS *m/z* 400 ([M+Na]⁺, 72), 378 ([M+H]⁺, 58), 362 ([M-CH₃]⁺, 100); HRMS (ESI) *m/z* calcd for C₂₂H₂₅NOPSi [M+H] 378.1443, found 378.1452.

(*E*)-*P*-[2-(Trimethylsilyl)phenyl]-*P*-phenyl-*N*-(1-phenylhept-2-enyl)phosphinamide (230). According to the General Protocol A, 115 mg (0.446 mmol) of Cp₂ZrHCl, 56.0 μ L (0.487 mmol) of 1-hexyne, 220 μ L (0.440 mmol) of Me₂Zn (2.0 M solution in toluene), and 85.0 mg (0.225 mmol) of imine 229 afforded 73 mg (70%) of 230 as an (inseparable) 51:49 mixture of diastereomers: IR (thin film) 3333, 3059, 2957, 2929, 1691, 1452, 1437, 1243, 1191, 1116, 843, 754, 695 cm⁻¹; ¹H NMR δ 7.96-7.70 (m, 4 H), 7.51-7.22 (m, 10 H), 5.75-5.46 (m, 2 H), 4.88-4.76 (m, 1 H), 3.18-3.11 (m, 1 H), 1.99-1.95 (m, 2 H), 1.30-1.20 (m, 4 H), 0.90-0.85 (m, 3 H), 0.44 (s, 4.5 H), 0.42 (s, 4.5 H); EIMS *m*/*z* 461 (M⁺, 13), 446 (56), 388 (14), 362 (18), 274 (100), 258 (54), 188 (85), 117 (52), 91 (41); HRMS (EI) *m*/*z* calcd for C₂₈H₃₆NOPSi 461.2304, found 461.2312.

Ethyl (2-biphenyl)phenylphosphinate (249). According to a literature procedure, a suspension of 420 mg (17.3 mmol) of Mg in 40 mL of THF was treated with 4.00 g (17.2 mmol) of 2-bromobiphenyl (248). The reaction was initiated with 1 drop of (CH₂Br)₂, and the mixture was heated at reflux for 2 h, cooled to room temperature, treated with 1.80 mL (11.2 mmol) of ClP(OEt)₂ (90% purity), heated at reflux for 2 h, cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation (120 °C, ~1 atm) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl, stirred at 50 °C for 3 h, cooled to room temperature and extracted with CH₂Cl₂ (4x). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo. A suspension of the residue, 75.0 mg (0.334 mmol) of Pd(OAc)₂, 372 mg (0.671 mmol) of dppf, 2.90 mL (16.6 mmol) of (i-Pr)₂NEt, and 1.50 mL (13.4 mmol) of iodobenzene in 100 mL of MeCN was stirred at 70 °C for 16 h. The mixture was cooled to room temperature, diluted with EtOAc, filtered through Celite, and concentrated in vacuo. The residue was chromatographed on SiO₂ (1:2, hexanes/EtOAc) to yield 2.95 g (82%) of 249 as a pink solid: mp 115-116 °C (EtOAc/hexanes); IR (thin film) 3461, 3055, 2977, 1437, 1221, 1033, 951, 753, 696 cm⁻¹; ¹H NMR δ 8.04 (dd, 1 H, J = 12.2, 7.7 Hz), 7.50 (t, 1 H, J = 7.4 Hz), 7.41 (t, 1 H, J = 7.5 Hz), 7.36-7.28 (m, 3 H), 7.22-7.07 (m, 8 H), 3.99-3.78 (m, 2 H), 1.16 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 146.46, 146.31, 140.71, 140.66, 132.95, 132.84, 131.69, 131.56, 131.37, 131.32, 131.22, 129.73, 127.91, 127.74, 127.22, 127.11, 126.72, 126.56, 60.49, 60.42, 16.21, 16.13; EIMS m/z 322 (M⁺, 64), 321 (43), 293 (41), 277 (39), 245 (100), 217 (65), 199 (60), 152 (56); HRMS (EI) m/z calcd for C₂₀H₁₉O₂P 322.1123, found 322.1113.

P-2-Biphenyl-*P*-phenylphosphinamide (231). A solution of 2.50 g (7.76 mmol) of ethyl phosphinate 249 in 50 mL of CH_2Cl_2 was treated with 2.05 mL (15.5 mmol) of TMS-Br. The mixture was stirred at room temperature for 2 h, treated with 25 mL of MeOH, stirred at

room temperature for 1 h, and concentrated *in vacuo*. A solution of the residue in 15 mL of CH₂Cl₂ was cooled to 0 °C, and treated with 1.35 mL (15.5 mmol) of (COCl)₂ and 3 drops of DMF. The mixture was stirred at 0 °C for 1 h, at room temperature for 4 h, and concentrated *in vacuo*. A solution of the residue in 50 mL of CH₂Cl₂ was cooled to -78 °C, treated with 10 mL of NH₃, slowly warmed to room temperature over 5 h, filtered, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (95:5, Et₂O/ MeOH) to yield 2.15 g (95%) of **231** as a colorless solid: mp 149-150 °C (MeOH/Et₂O); IR (thin film) 3411, 3219, 3055, 1567, 1465, 1437, 1188, 1134, 1117, 898, 749, 697 cm⁻¹; ¹H NMR δ 7.85 (ddd, 1 H, *J* = 14.0, 7.7, 1.3 Hz), 7.59-7.19 (m, 13 H), 2.89 (bs, 2 H); ¹³C NMR δ 144.94 (d, 1 C, *J* = 9.5 Hz), 140.99 (d, 1 C, *J* = 3.8 Hz), 134.05 (d, 1 C, *J* = 129.2 Hz), 132.61 (d, 1 C, *J* = 10.7 Hz), 132.58 (d, 1 C, *J* = 125.8 Hz), 131.63 (d, 2 C, *J* = 10.1 Hz), 131.44 (d, 1 C, *J* = 2.4 Hz), 131.11 (d, 1 C, *J* = 6.0 Hz), 131.02 (d, 1 C, *J* = 2.0 Hz), 129.57 (s, 2 C), 128.05 (d, 2 C, *J* = 12.8 Hz), 127.89 (s, 2 C), 127.67 (s, 1 C), 126.86 (d, 1 C, *J* = 12.7 Hz); EIMS *m*/*z* 293 (M⁺, 37), 292 (43), 275 (36), 216 (100), 199 (63), 152 (26); HRMS (EI) *m*/*z* calcd for C₁₈H₁₆NOP 293.0970, found 293.0983.

N-Benzylidene-*P*-2-biphenyl-*P*-phenylphosphinamide (232). According to the General Protocol B, 1.15 g (3.92 mmol) of phosphinamide 231, 2.05 mL (11.8 mmol) of (*i*-Pr)₂NEt, 600 μL (5.90 mmol) of PhCHO, and 260 μL (2.37 mmol) of TiCl₄ afforded the crude imine, which was chromatographed on SiO₂ (20:80, hexanes/EtOAc, containing 2% Et₃N) to yield 1.23 g (82%) of 232 as a colorless solid: mp 54-57 °C (solvent); IR (thin film) 3445, 3055, 1615, 1450, 1438, 1201, 1115, 852, 829, 752, 693 cm⁻¹; ¹H NMR δ 8.79 (d, 1 H, *J* = 32.6 Hz), 7.74-7.64 (m, 5 H), 7.51-7.22 (m, 11 H), 7.12-7.09 (m, 3 H); ESIMS *m/z* 404 ([M+Na]⁺, 100), 382 ([M+H]⁺, 26); HRMS (ESI) *m/z* calcd for C₂₅H₂₀NOPNa [M+Na] 404.1180, found 404.1187.

(*E*)-*P*-2-Biphenyl-*P*-phenyl-*N*-(1-phenylhept-2-enyl)phosphinamide (233). According to the General Protocol A, 135 mg (0.523 mmol) of Cp₂ZrHCl, 66.0 µL (0.574 mmol) of 1-hexyne, 260 µL (0.520 mmol) of Me₂Zn (2.0 M solution in toluene), and 100 mg (0.262 mmol) of imine **232** at a reaction temperature of 40 °C afforded 109 mg (89%) of **233** as an (inseparable) 65:35 mixture of diastereomers: mp 101-104 °C (EtOAc/hexanes); IR (thin film) 3197, 3058, 2955, 2925, 2857, 1465, 1436, 1188, 1115, 753, 697 cm⁻¹; ¹H NMR & 7.75-7.64 (m, 2 H), 7.54-7.15 (m, 15 H), 7.04 (dd, 1.3 H, J = 7.5, 1.7 Hz), 6.93 (dd, 0.7 H, J = 7.2, 2.1 Hz), 5.38-5.25 (m, 1.65 H), 5.16 (dt, 0.35 H, J = 15.3, 6.6 Hz), 4.73-4.61 (m, 1 H), 2.82-2.73 (m, 1 H), 1.90-1.80 (m, 2 H), 1.27-1.18 (m, 4 H), 0.90-0.83 (m, 3 H); EIMS *m*/*z* 465 (M⁺, 21), 292 (23), 277 (59), 199 (53), 188 (100); HRMS (EI) *m*/*z* calcd for C₃₁H₃₂NOP 465.2222, found 465.2235.

Ethyl [2-(1-adamantyl)phenyl]phenylphosphinate (251). According to a literature procedure, a suspension of 190 mg (7.82 mmol) of Mg in 40 mL of THF was treated with 2.29 g (7.86 mmol) of 1-(2-bromophenyl)adamantane (250). The reaction was initiated with 3 drops of $(CH_2Br)_2$, and the mixture was heated at reflux for 6 h, cooled to 0 °C, treated with 1.05 mL (6.53 mmol) of $CIP(OEt)_2$ (90% purity), heated at 40 °C for 12 h, cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated *in vacuo*. Kugelrohr distillation (130 °C, ~1 atm) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl, stirred at 50 °C for 3 h, cooled to room temperature and extracted with CH_2Cl_2 (3x). The combined organic extracts were dried (MgSO₄) and concentrated *in vacuo*. A suspension of the residue, 45.0 mg (0.200 mmol) of Pd(OAc)₂, 217 mg (0.391 mmol) of dppf, 1.71 mL (9.82 mmol) of (*i*-Pr)₂NEt, and 880 µL (7.86 mmol) of iodobenzene in 75 mL of MeCN was stirred at 70 °C for 16 h. The mixture was cooled to room

temperature, diluted with hexanes/EtOAc (1:1), filtered through Celite, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (2:1, hexanes/EtOAc) to yield 1.20 g (48%) of **251** as an orange solid: mp 129-130 °C (EtOAc/hexanes); IR (thin film) 2901, 2848, 1437, 1226, 1125, 1031, 947, 750, 725, 693 cm⁻¹; ¹H NMR δ 7.97 (ddd, 1 H, *J* = 14.6, 7.9, 1.5 Hz), 7.69-7.57 (m, 3 H), 7.53-7.34 (m, 4 H), 7.29-7.23 (m, 1 H), 4.21-4.02 (m, 2 H), 2.32 (d, 3 H, *J* = 12.1 Hz), 2.24 (d, 3 H, *J* = 12.1 Hz), 2.08 (s, 3 H), 1.85 (d, 3 H, *J* = 11.3 Hz), 1.71 (d, 3 H, *J* = 11.9 Hz), 1.36 (t, 3 H, *J* = 7.1 Hz); ¹³C NMR δ 157.58 (d, 1 C, *J* = 10.6 Hz), 136.48 (d, 1 C, *J* = 9.7 Hz), 135.09 (d, 1 C, *J* = 138.1 Hz), 132.02 (d, 1 C, *J* = 2.5 Hz), 131.24 (s, 1 C), 131.17 (s, 2 C, *J* = 9.7 Hz), 128.78 (d, 1 C, *J* = 125.6 Hz), 128.16 (d, 2 C, *J* = 13.1 Hz), 127.19 (d, 1 C, *J* = 13.3 Hz), 124.97 (d, 1 C, *J* = 12.8 Hz), 60.73 (d, 1 C, *J* = 5.8 Hz), 42.57 (s, 3 C), 39.03 (s, 1 C), 36.46 (s, 3 C), 29.38 (s, 3 C), 16.39 (d, 1 C, *J* = 6.8 Hz); EIMS *m*/z 380 (M⁺, 20), 348 (29), 85 (65), 83 (99), 71 (100); HRMS (EI) *m*/z calcd for C₂₄H₂₉O₂P 380.1905, found 380.1904.

P-2-(1-Adamantyl)phenyl-*P*-phenylphosphinamide (234). A solution of 1.16 g (3.05 mmol) of ethyl phosphinate 251 in 25 mL of CH₂Cl₂ was treated with 760 μL (5.76 mmol) of TMS-Br. The mixture was stirred at room temperature for 5 h, treated with 20 mL of MeOH, stirred at room temperature for 30 min, and concentrated *in vacuo*. A solution of the residue in 10 mL of CH₂Cl₂ was cooled to 0 °C, treated with 530 μL (6.08 mmol) of (COCl)₂ and 5 drops of DMF, stirred at 0 °C for 15 min, room temperature for 4 h, and concentrated *in vacuo*. A solution of the residue in 40 mL of CH₂Cl₂ was cooled to -78 °C, treated with 10 mL of NH₃, slowly warmed to room temperature over 6 h, filtered, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (50:50, CH₂Cl₂/Et₂O) to yield 656 mg (61%) of **234** as a colorless solid: mp 216-217 °C (CH₂Cl₂/Et₂O); IR (thin film) 2899, 2846, 1564, 1435, 1191, 1115, 890, 749, 693 cm⁻¹; ¹H NMR δ 7.80 (dd, 2 H, *J* = 12.3, 7.9 Hz), 7.71 (dd, 1 H, *J* = 16.8, 7.8 Hz), 7.58 (t, 1 H, *J* = 7.0 Hz), 7.50-7.42 (m, 4 H), 7.15 (t, 1 H, *J* = 7.5 Hz), 2.96 (bs, 2 H), 2.38 (s, 6 H), 2.13 (s, 3 H), 1.90 (bd, 3 H, *J* = 11.3 Hz), 1.74 (bd, 3 H, *J* = 11.7 Hz); ¹³C NMR δ 157.42 (d, 1 C, *J* = 9.0 Hz), 137.20 (d, 1 C, *J* = 134.4 Hz), 136.39 (d, 1 C, *J* = 13.3 Hz), 131.61 (d, 1 C, *J* =

2.2 Hz), 131.14 (d, 2 C, J = 9.7 Hz), 131.08 (s, 1 C), 131.07 (d, 1 C, J = 117.1 Hz), 128.30 (d, 2 C, J = 12.9 Hz), 127.12 (d, 1 C, J = 12.3 Hz), 124.85 (d, 1 C, J = 13.6 Hz), 42.71 (s, 3 C), 39.06 (s, 1 C), 36.50 (s, 3 C), 29.46 (s, 3 C); ESIMS *m*/*z* 413 ([M+Na+K]²⁺, 27), 374 ([M+Na]⁺, 100), 335 (32); HRMS (ESI) *m*/*z* calcd for C₂₂H₂₆NOPNa [M+Na] 374.1650, found 374.1665.

P-2-(1-Adamantyl)phenyl-*N*-benzylidene-*P*-phenylphosphinamide (235). According to the General Protocol B, 620 mg (1.76 mmol) of phosphinamide 234, 920 μL (5.28 mmol) of $(i-Pr)_2NEt$, 270 μL (2.66 mmol) of PhCHO, and 120 μL (1.09 mmol) of TiCl₄ afforded the crude imine, which was chromatographed on SiO₂ (80:20, hexanes/EtOAc, containing 2% Et₃N) to yield 749 mg (97%) of 235 as a colorless solid: mp 172-173 °C (EtOAc/hexanes); IR (thin film) 2899, 2848, 1617, 1578, 1452, 1206, 1113, 817, 754, 691 cm⁻¹; ¹H NMR δ 9.29 (d, 1 H, *J* = 30.9 Hz), 8.42 (ddd, 1 H, *J* = 14.8, 7.9, 1.4 Hz), 8.00 (d, 2 H, *J* = 8.3 Hz), 7.74-7.35 (m, 10 H), 7.31-7.25 (m, 1 H), 2.32 (bs, 6 H), 2.10 (s, 3 H), 1.89 (d, 3 H, *J* = 11.3 Hz), 1.73 (d, 3 H, *J* = 11.9 Hz); ESIMS m/z 462 ([M+Na]⁺, 100), 440 ([M+H]⁺, 72; HRMS (ESI) m/z calcd for C₂₉H₃₁NOP [M+H] 440.2143, found 440.2147.

(E)-P-2-(1-Adamantyl)phenyl-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide

(236). According to the General Protocol A, 117 mg (0.454 mmol) of Cp₂ZrHCl, 60.0 μ L (0.522 mmol) of 1-hexyne, 230 μ L (0.460 mmol) of Me₂Zn (2.0 M solution in toluene), and 100 mg (0.228 mmol) of imine 235 at a reaction temperature of 40 °C afforded 103 mg (86%) of 236 as an (inseparable) 59:41 mixture of diastereomers: mp 138-140 °C (EtOAc/hexanes); IR (thin film) 2901, 2846, 1433, 1186, 1113, 755, 696 cm⁻¹; ¹H NMR δ 7.87-7.01 (m, 14 H), 5.78-5.45 (m, 2 H), 5.06-4.91 (m, 1 H), 3.04-2.93 (m, 1 H), 2.39 (s, 2.4 H), 2.29 (s, 3.6 H), 2.12-1.67 (m,

11 H), 1.37-1.22 (m, 4 H), 0.93-0.83 (m, 3 H); ESIMS m/z 546 ([M+Na]⁺, 100), 335 (15); HRMS (ESI) m/z calcd for C₃₅H₄₂NOPNa [M+Na] 546.2902, found 546.2914.

2-Bromo-4'-methylbiphenyl (252). A solution of 4.88 g (28.5 mmol) of 4-bromotoluene (254) in 125 mL of THF was cooled to -78 °C and treated with 12.0 mL (30.0 mmol) of *n*-BuLi (2.5 M solution in hexanes). The mixture was stirred at -78 °C for 30 min, treated with 6.70 mL (58.7 mmol) of B(OMe)₃, slowly warmed to room temperature over 16 h, quenched with saturated NH₄Cl, diluted with Et₂O, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. According to a literature procedure,²⁴⁵ a solution of the residue in 50 mL of DME and 100 mL of H₂O was treated with 3.50 mL (29.0 mmol) of 1,2-dibromobenzene (255), 11.8 g (85.4 mmol) of K_2CO_3 , and 1.65 g (1.43 mmol) of Pd(PPh₃)₄. The mixture was heated at reflux for 12 h, cooled to room temperature and extracted with CH₂Cl₂ (3x). The combined organic extracts were washed with H₂O and brine, dried (MgSO₄), and concentrated in *vacuo*. The residue was chromatographed on SiO₂ (99:1, hexanes/Et₂O) to yield 4.86 g (69%) of **252** as a colorless oil: IR (neat) 3053, 3027, 2918, 1464, 1434, 1027, 1005, 818, 753 cm⁻¹; ¹H NMR δ 7.71 (d, 1 H, J = 7.6 Hz), 7.40-7.35 (m, 4 H), 7.29 (d, 2 H, J = 7.9 Hz), 7.25-7.20 (m, 1 H), 2.46 (s, 3 H); ¹³C NMR δ 142.57, 138.23, 137.28, 133.04, 131.27, 129.20 (2 C), 128.64 (2 C), 128.45, 127.27, 122.72, 21.20; EIMS m/z 248 (⁸¹Br-M⁺, 92), 246 (⁷⁹Br-M⁺, 100), 167 (42), 165 (83), 152 (35); HRMS (EI) m/z calcd for C₁₃H₁₁⁷⁹Br 246.0044, found 246.0043.

Ethyl [2-(4'-methylbiphenyl)]phenylphosphinate (253). According to a literature procedure, a suspension of 410 mg (16.9 mmol) of Mg in 50 mL of THF was treated with 4.20 g (17.0 mmol) of aryl bromide **252**. The reaction was initiated with 2 drops of $(CH_2Br)_2$, and the

mixture was heated at reflux for 3 h, cooled to 0 °C, treated with 1.82 mL (11.3 mmol) of ClP(OEt)₂ (90% purity), heated at reflux at 4 h, cooled to room temperature, diluted with 100 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation (120 °C, ~1 atm) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl, stirred at 50 °C for 2 h, cooled to room temperature and extracted with CH₂Cl₂ (3x). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo. A suspension of the residue, 76.0 mg (0.339 mmol) of Pd(OAc)₂, 377 mg (0.608 mmol) of dppf, 2.40 mL (17.2 mmol) of (i-Pr)₂NEt, and 1.52 mL (13.6 mmol) of iodobenzene in 100 mL of MeCN was stirred at 70 °C for 16 h. The mixture was cooled to room temperature, diluted with hexanes/EtOAc (1:1), filtered through Celite, and concentrated in vacuo. The residue was chromatographed on SiO₂ (1:2, hexanes/EtOAc) to yield 2.04 g (54%) of 253 as a yellow oil: IR (thin film) 3463, 3053, 2980, 1466, 1436, 1223, 1134, 1119, 1033, 948, 817, 763, 750, 693 cm⁻¹; ¹H NMR δ 8.06 (ddd, 1 H, J = 12.9, 7.6, 1.3 Hz), 7.54-7.18 (m, 8 H), 6.99 (s, 4 H), 4.01-3.84 (m, 2 H), 2.34 (s, 3 H), 1.21 (t, 3 H, J = 7.1 Hz); ¹³C NMR δ 146.41 (d, 1 C, J = 11.4 Hz), 137.73 (d, 1 C, J = 4.3 Hz, 136.73 (s, 1 C), 132.85 (d, 1 C, J = 9.0 Hz), 132.23 (d, 1 C, J = 116.3 Hz), 131.57 (d, 2 C, J = 10.3 Hz), 131.57 (d, 1 C, J = 2.8 Hz), 131.33 (d, 1 C, J = 8.1 Hz), 131.23 (s, 1 C), 129.54 (s, 2 C), 128.73 (d, 1 C, J = 137.3 Hz), 127.86 (s, 2 C), 127.69 (d, 2 C, J = 13.2 Hz), 126.46 (d, 1 C, J = 12.4 Hz), 60.39 (d, 1 C, J = 5.6 Hz), 21.10 (s, 1 C), 16.16 (d, 1 C, J = 6.8 Hz); ESIMS m/z 359 ([M+Na]⁺, 100), 337 ([M+H]⁺, 13); HRMS (ESI) m/z calcd for C₂₁H₂₁O₂Pna [M+Na] 359.1177, found 359.1168.

P-2-(4'-Methylbiphenyl)-*P*-phenylphosphinamide (237). A solution of 2.02 g (6.01 mmol) of ethyl phosphinate 253 in 50 mL of CH_2Cl_2 was treated with 1.59 mL (12.0 mmol) of TMS-Br. The mixture was stirred at room temperature for 2 h, treated with 25 mL of MeOH, stirred at room temperature for 1 h, and concentrated *in vacuo*. A solution of the residue in 15 mL of CH_2Cl_2 was cooled to 0 °C, treated with 1.05 mL (12.0 mmol) of (COCl)₂ and 3 drops of DMF, stirred at 0 °C for 1 h, at room temperature for 4 h, and concentrated *in vacuo*. A solution

of the residue in 20 mL of CH₂Cl₂ was cooled to -78 °C and treated with 10 mL of NH₃, slowly warmed to room temperature over 12 h, filtered, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (95:5, Et₂O/MeOH) to yield 1.60 g (87%) of **237** as a colorless solid: mp 93-97 °C (MeOH/Et₂O); IR (thin film) 3420, 3225, 3046, 1591, 1563, 1464, 1437, 1191, 1134, 1119, 899, 819, 763, 694 cm⁻¹; ¹H NMR & 7.77 (ddd, 1 H, J = 14.2, 7.7, 1.2 Hz), 7.63 (ddt, 2 H, J = 12.5, 6.9, 1.3 Hz), 7.52-7.44 (m, 2 H), 7.40-7.32 (m, 3 H), 7.26 (ddd, 1 H, J = 7.5, 4.6, 1.1 Hz), 7.17 (d, 2 H, J = 8.0 Hz), 7.12 (d, 2 H, J = 8.2 Hz), 2.65 (bs, 2 H), 2.38 (s, 3 H); ¹³C NMR & 144.76 (d, 1 C, J = 8.9 Hz), 138.10 (d, 1 C, J = 3.8 Hz), 137.60 (s, 1 C), 134.05 (d, 1 C, J = 129.3 Hz), 132.65 (d, 1 C, J = 132.6 Hz), 132.52 (d, 1 C, J = 11.2 Hz), 131.77 (d, 2 C, J = 9.9 Hz), 131.54 (d, 1 C, J = 3.0 Hz), 131.14 (d, 1 C, J = 11.5 Hz), 131.02 (d, 1 C, J = 2.4 Hz), 129.41 (s, 2 C), 128.73 (s, 2 C), 128.08 (d, 2 C, J = 12.9 Hz), 126.72 (d, 1 C, J = 12.8 Hz), 21.18 (s, 1 C); ESIMS m/z 346 ([M+K]⁺, 6), 330 ([M+Na]⁺, 100), 291 (12); HRMS (ESI) m/z calcd for C₁₉H₁₈NOPNa [M+Na] 330.1024, found 330.1009.

N-Benzylidene-*P*-2-(4'-methylbiphenyl)-*P*-phenylphosphinamide (238). According to the General Protocol B, 1.01 g (3.29 mmol) of phosphinamide 237, 400 µL (3.94 mmol) of PhCHO, 1.70 mL (9.76 mmol) of (*i*-Pr)₂NEt, and 210 µL (1.91 mmol) of TiCl₄ afforded the crude imine, which was chromatographed on SiO₂ (40:60, hexanes/EtOAc, containing 2% Et₃N) to yield 1.15 g (88%) of 238 as a colorless solid: mp 145-146 °C (EtOAc/hexanes); IR (thin film) 3439, 3055, 1612, 1575, 1467, 1452, 1436, 1201, 1132, 1114, 851, 828, 760, 693 cm⁻¹; ¹H NMR δ 8.73 (d, 1 H, *J* = 32.8 Hz), 7.81-7.26 (m, 14 H), 7.19 (d, 2 H, *J* = 8.1 Hz), 6.91 (d, 2 H, *J* = 7.7 Hz), 2.18 (s, 3 H); ESIMS *m*/*z* 813 ([2M+Na]⁺, 100), 418 ([M+Na]⁺, 88), 396 ([M+H]⁺, 20); HRMS (ESI) *m*/*z* calcd for C₂₆H₂₂NOPNa 418.1337, found 418.1337.

(E)-P-2-(4'-Methylbiphenyl)-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide

(239). According to the General Protocol B, 98.0 mg (0.380 mmol) of Cp₂ZrHCl, 52.0 μ L (0.453 mmol) of 1-hexyne, 130 μ L (0.260 mmol) of Me₂Zn (2.0 M solution in toluene), and 100 mg (0.253 mmol) of imine 238 at a reaction temperature of 45 °C afforded 105 mg (87%) of 239 as an (inseparable) 63:37 mixture of diastereomers: IR (thin film) 3059, 2957, 2927, 2871, 1691, 1453, 1435, 1184, 1110, 817, 762, 696 cm⁻¹; ¹H NMR δ 7.77-7.12 (m, 15 H), 7.07-7.01 (m, 2 H), 6.93-6.89 (m, 1 H), 5.38-5.13 (m, 2 H), 4.68-4.60 (m, 1 H), 2.86-2.76 (m, 1 H), 2.41 (s, 1.2 H), 2.32 (s, 1.8 H), 1.92-1.81 (m, 2 H), 1.29-1.13 (m, 4 H), 0.89-0.83 (m, 3 H); ESIMS *m*/*z* 518 ([M+K]⁺, 11), 502 ([M+Na]⁺, 100), 291 (15); HRMS (ESI) *m*/*z* calcd for C₃₂H₃₄NOPNa [M+Na] 502.2276, found 502.2299.

N-{(*R**)-[(1*R**,2*R**)-2-Butylcyclopropyl](phenyl)methyl}-*P*,*P*-diphenylphosphin-

amide (257). A suspension of 389 mg (1.51 mmol) of Cp₂ZrHCl in 2.5 mL of CH₂Cl₂ was treated with 200 μ L (1.74 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with a solution of 155 mg (0.508 mmol) of imine **104** in 1.5 mL of CH₂Cl₂, heated at reflux for 16 h, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:3, hexanes/EtOAc containing 1% Et₃N) to yield 119 mg (58%) of **257** as a colorless solid and 21 mg (11%) of **146** as a colorless solid. **257**: mp 150-151 °C (EtOAc/hexane); IR (KBr) 3185, 3059, 2957, 2923, 2856, 1456, 1437, 1183, 1123, 1110, 1086, 1065, 724, 698 cm⁻¹; ¹H NMR δ 7.97-7.90 (m, 2 H), 7.80-7.73 (m, 2 H), 7.53-7.40 (m, 4 H), 7.36-7.22 (m, 7 H), 3.80 (q, 1 H, *J* = 8.9 Hz), 3.33 (t, 1 H, *J* = 6.6 Hz), 1.36-1.29 (m, 5 H), 1.10-0.98 (m, 2 H), 0.89 (t, 3

H, J = 7.0 Hz), 0.78-0.72 (m, 1 H), 0.41 (dt, 1 H, J = 8.6, 4.8 Hz), 0.26 (dt, 1 H, J = 8.3, 5.0 Hz); ¹³C NMR δ 143.37, 143.30, 134.30, 133.15, 132.60, 132.42, 132.29, 131.96, 131.84, 131.71, 131.67, 131.57, 131.54, 131.43, 128.42, 128.29, 128.23, 128.09, 127.74, 127.62, 126.96, 126.77, 58.84, 33.22, 31.69, 26.85, 26.79, 22.52, 18.92, 14.10, 10.61; EIMS *m/z* 403 (M⁺, 7), 360 (3), 319 (17), 306 (81), 256 (27), 201 (100), 91 (36), 77 (37); HRMS (EI) *m/z* calcd for C₂₆H₃₀NOP 403.2065, found 403.2066.

Preparation of 257 in the presence of Diiodomethane. General Protocol C.

A suspension of 390 mg (1.51 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 190 μ L (1.65 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with a solution of 153 mg (0.501 mmol) of imine **104** in 2 mL of CH₂Cl₂, and heated at reflux for 1 h. The mixture was cooled to room temperature, treated with 200 μ L (2.48 mmol) of CH₂I₂, heated at reflux for a further 2 h, quenched with saturated NH₄Cl, diluted with EtOAc, washed with 1N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 149 mg (74%) of **257** [*dr* = 97:3 (HPLC)] as a colorless solid.

Preparation of 257 in the presence of Diiodomethane and Benzyl Alcohol.

A suspension of 390 mg (1.51 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated with 200 μ L (1.74 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 1.00 mL (2.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with a solution of 153 mg (0.501 mmol) of imine **104** and 55.0 mg (0.509 mmol) of PhCH₂OH in 2 mL of CH₂Cl₂, and heated at reflux for 90 min. The mixture was cooled to room temperature, treated with 200 μ L (2.48 mmol) of CH₂I₂, heated at reflux for a further 3 h, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 183 mg (91%) of **257** as a colorless solid.

N-{(*R**)-[(1*R**,2*R**)-2-Butyl-3,3-bisdeuterocyclopropyl](phenyl)methyl}-*P*,*P*-

diphenylphosphinamide (258). A suspension of 192 mg (0.745 mmol) of Cp₂ZrHCl in 1.2 mL of CD₂Cl₂ was treated at room temperature with 95.0 µL (0.827 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with a solution of 78.0 mg (0.255 mmol) of imine 104 in 2 mL of CD₂Cl₂, and heated at reflux for 16 h, cooled to room temperature, guenched with saturated NH₄Cl, diluted with EtOAc, washed with 1 N HCl and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 35 mg (34%) of 258 as a colorless solid: mp 151-152 °C (EtOAc/hexane); IR (KBr) 3176, 2954, 2922, 2851, 1437, 1185, 1124, 1110, 1083, 1062 cm⁻¹; ¹H NMR δ 7.93-7.86 (m, 2 H), 7.76-7.69 (m, 2 H), 7.51-7.36 (m, 4 H), 7.32-7.18 (m, 7 H), 3.76 (q, 1 H, J = 8.9 Hz), 3.37 (dd, 1 H, J = 8.4, 6.0 Hz), 1.32-1.20 (m, 5 H), 1.06-0.95 (m, 2 H), 0.85 (t, 3 H, J = 7.0 Hz), 0.79-0.66 (m, 1 H); ¹³C NMR δ 143.34, 143.28, 134.20, 133.07, 132.51, 132.38, 132.25, 131.93, 131.80, 131.69, 131.65, 131.55, 131.52, 131.35, 128.43, 128.26, 128.23, 128.20, 128.06, 126.93, 126.73, 58.76, 33.12, 31.68, 26.62, 26.56, 22.49, 18.67, 14.08, 9.94; ²H NMR (77 MHz) δ 0.35, 0.20; EIMS *m/z* 405 (M⁺, 9), 319 (28), 306 (85), 258 (45), 204 (45), 201 (100), 106 (21), 77 (37); HRMS (EI) m/z calcd for C₂₆H₃₈D₂NOP 405.2191, found 405.2179.

N-{(*R**)-[(1*S**,2*R**)-2-{2-[(*tert*-Butyldiphenylsilyl)oxy]ethyl}cyclopropyl](phenyl)methyl}-*P*,*P*-diphenylphosphinamide (259). According to the General Protocol C, 390 mg (1.51 mmol) of Cp₂ZrHCl, 531 mg (1.72 mmol) of alkyne 148, 750 μL (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 153 mg (0.501 mmol) of imine 104 (2 h reaction time), and 200 μL (2.48 mmol) of CH₂I₂ (12 h reaction time) afforded 216 mg (68%) of 259 [*dr* = 98:2 (HPLC)] as a colorless oil: IR (neat) 3189, 3070, 2930, 2857, 1456, 1437, 1428, 1390, 1191, 1123, 1068, 1028, 823, 722, 694 cm⁻¹; ¹H NMR δ 7.95-7.87 (m, 2 H), 7.81-7.66 (m, 6 H), 7.49-7.37 (m, 10 H), 7.34-7.26 (m, 7 H), 3.87-3.70 (m, 3 H), 3.43 (dd, 1 H, J = 8.7, 5.7 Hz), 1.59 (dq, 1 H, J = 13.5, 6.8 Hz), 1.39 (dq, 1 H, J = 13.7, 6.8 Hz), 1.08 (s, 9 H), 1.08-1.01 (m, 1 H), 0.87-0.76 (m, 1 H), 0.44 (dt, 1 H, J = 8.6, 4.9 Hz), 0.30 (dt, 1 H, J = 8.4, 5.1 Hz); ¹³C NMR δ 143.22, 143.15, 135.50, 135.47, 134.11, 133.93, 133.89, 133.05, 132.38, 132.25, 131.88, 131.75, 131.65, 131.62, 131.52, 131.49, 131.33, 129.45, 128.40, 128.20, 128.04, 127.53, 127.50, 126.94, 126.70, 63.98, 58.54, 36.40, 26.83, 26.57, 26.51, 19.07, 15.53, 10.20; EIMS *m*/*z* 629 (M⁺, 3), 573 (100), 398 (28), 319 (17), 306 (92), 256 (17), 218 (18), 201 (94), 183 (20); HRMS (EI) *m*/*z* calcd for C₄₀H₄₄NO₂PSi 629.2879, found 629.2887.

O-Triisopropylsilyl-4-[(1*R**,2*R**)-2-{(*R**)-[(diphenylphosphinyl)amino](phenyl)-

methyl}cyclopropyl]propanoate (260). According to the General Protocol C, 390 mg (1.51 mmol) of Cp₂ZrHCl, 426 mg (1.65 mmol) of alkyne **150**, 750 μL (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 153 mg (0.501 mmol) of imine **104** (4 h reaction time), and 200 μL (2.48 mmol) of CH₂I₂ (16 h reaction time) afforded 205 mg (71%) of **260** as a colorless oil: IR (neat) 3183, 2947, 2866, 1716, 1462, 1437, 1186, 1125, 1111 cm⁻¹; ¹H NMR δ 7.94-7.87 (m, 2 H), 7.76-7.69 (m, 2 H), 7.52-7.37 (m, 4 H), 7.32-7.19 (m, 7 H), 3.79 (q, 1 H, *J* = 9.0 Hz), 3.50 (dd, 1 H, *J* = 8.8, 6.1 Hz), 2.46-2.31 (m, 2 H), 1.59 (dq, 1 H, *J* = 14.5, 7.1 Hz), 1.48-1.17 (m, 5 H), 1.06 (d, 18 H, *J* = 7.2 Hz), 0.87-0.75 (m, 1 H), 0.44 (dt, 1 H, *J* = 8.6, 4.9 Hz), 0.30 (dt, 1 H, *J* = 8.4, 5.1 Hz); ¹³C NMR δ 173.61, 143.12, 134.35, 133.19, 132.44, 132.31, 131.91, 131.79, 128.47, 128.29, 128.10, 127.04, 126.73, 58.59, 35.74, 29.12, 26.91, 18.27, 17.75, 11.88, 10.57; EIMS *m*/*z* 575 (M⁺, 1), 532 (21), 330 (32), 319 (20), 306 (50), 256 (19), 218 (27), 201 (100), 143 (20), 115 (21), 103 (23), 91 (23); HRMS (EI) *m*/*z* calcd for C₃₄H₄₆NO₃PSi 575.2985, found 575.2979.

O-Ethyl-N-{2-[(1S*,2R*)-2-{(R*)-[(diphenylphosphinyl)amino](phenyl)methyl}cyclopropyl]ethyl}-N-[(4-methylphenyl)sulfonyl]carbamate (261). According to the General Protocol C, 390 mg (1.51 mmol) of Cp₂ZrHCl, 495 mg (1.68 mmol) of alkyne 152, 750 µL (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 153 mg (0.501 mmol) of imine 104 (2 h reaction

time), and 200 μ L (2.48 mmol) of CH₂I₂ (12 h reaction time) afforded 138 mg (45%) of **261** as a colorless oil: IR (neat) 3344, 3187, 3060, 2990, 1731, 1438, 1370, 1353, 1274, 1187, 1170, 1123, 1089, 728, 700, 675 cm⁻¹; ¹H NMR δ 7.98-7.91 (m, 2 H), 7.83-7.74 (m, 4 H), 7.53-7.42 (m, 4 H), 7.38-7.25 (m, 9 H), 4.11 (q, 2 H, J = 7.1 Hz), 3.90 (t, 2 H, J = 7.7 Hz), 3.85-3.72 (m, 1 H), 3.51 (dd, 1 H, J = 8.5, 6.3 Hz), 2.46 (s, 3 H), 1.77 (dq, 1 H, J = 13.7, 6.9 Hz), 1.53 (dq, 1 H, J = 13.7, 7.7 Hz), 1.20-1.11 (m, 1 H), 1.17 (t, 3 H, J = 7.1 Hz), 0.82-0.71 (m, 1 H), 0.47 (dt, 1 H, J = 8.6, 5.2 Hz), 0.39 (dt, 1 H, J = 8.4, 5.1 Hz); ¹³C NMR δ 152.22, 144.31, 143.05, 142.98, 136.75, 134.18, 133.01, 132.39, 132.27, 131.93, 131.80, 131.63, 131.60, 131.29, 129.21, 128.51, 128.32, 128.22, 128.15, 127.97, 127.46, 127.09, 126.75, 63.15, 58.61, 46.96, 34.06, 26.53, 26.47, 21.58, 16.11, 13.96, 10.39; EIMS m/z 616 (M⁺, 2), 461 (8), 415 (10), 360 (9), 319 (17), 306 (100), 256 (15), 243 (24), 216 (23), 201 (89), 155 (39), 91 (52), 77 (28); HRMS (EI) m/z calcd for C₃₄H₃₇N₂O₅PS 616.2161, found 616.2154. Approximately 2.5 mg of racemic **261** was separated by HPLC on a Chiracel OD analytical column (solvent system: 7.5% i-PrOH in hexanes; flow rate: 1 mL/min). Enantiomer 1: R_T 11.2 min; >99% ee (HPLC chiracel OD analytical column, 7.5% *i*-PrOH in hexanes, 1.0 mL/min); α_D -10.9 (CHCl₃, c = 0.1). Enantiomer 2: R_T 16.8 min; >99% ee (HPLC chiracel OD analytical column, 7.5% *i*-PrOH in hexanes, 1.0 mL/min); α_D +11.1 (CHCl₃, c = 0.1).

N-{1-(*R**)-[(1*R**,2*R**)-2-Butylcyclopropyl]-3-phenylprop-2-ynyl}-*P*,*P*-diphenyl-phosphinamide (262). According to the General Protocol C, 395 mg (1.53 mmol) of Cp₂ZrHCl, 195 μ L (1.70 mmol) of 1-hexyne, 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 168 mg (0.510 mmol) of imine 164 (3 h reaction time), and 200 μ L (2.48 mmol) of CH₂I₂ (4 h reaction time) afforded 131 mg (60%) of 262 as a colorless oil: IR (neat) 3166, 3058, 2955, 2924, 2855, 1490, 1438, 1189, 1124, 1110, 1070, 755, 723, 692 cm⁻¹; ¹H NMR (600 MHz) δ 8.04-8.00 (m, 2 H), 7.91-7.87 (m, 2 H), 7.52-7.41 (m, 6 H), 7.34-7.28 (m, 5 H), 4.24 (td, 1 H, *J* = 9.4, 5.6 Hz), 3.30 (t, 1 H, *J* = 8.8 Hz), 1.33-1.18 (m, 6 H), 1.11 (dq, 1 H, *J* = 9.9, 5.0 Hz), 0.90-0.84 (m, 1 H), 0.85 (t, 3 H, *J* = 7.1 Hz), 0.69 (dt, 1 H, *J* = 9.0, 4.6 Hz), 0.31 (dt, 1 H, *J* = 8.2, 4.9 Hz); ¹³C NMR (151 MHz) δ 133.38, 132.77, 132.71, 132.54, 132.38, 131.91, 131.78, 131.72, 131.65, 131.50, 128.52, 128.44, 128.19, 122.78, 87.91, 87.86, 83.84, 46.40, 32.94, 31.64, 24.97, 22.48, 17.58, 14.08, 8.79; EIMS m/z 427 (M⁺, 2), 370 (9), 330 (16), 201 (100); HRMS (EI) m/z calcd for C₂₈H₃₀NOP 427.2065, found 427.2063.

Conversion of 262 to 264. A solution of 50.0 mg (0.117 mmol) of cyclopropane **262** in 5 mL of EtOH was treated with 8.0 mg of 10% Pd on activated charcoal, stirred under an H₂ atmosphere (1 atm) for 16 h, diluted with Et₂O, filtered through Celite and concentrated *in vacuo*. A solution of the residue in 5 mL of a 1 N solution of HCl(g) in MeOH was stirred at room temperature for 4 h, basified with 5% NaOH, and extracted with CH₂Cl₂. The organic extract was dried (MgSO₄), concentrated *in vacuo*, dissolved in 2 mL of CH₂Cl₂, and treated with 65.0 mg (0.341 mmol) of TsCl, 10.0 mg (0.0819 mmol) of DMAP, and 60.0 μ L (0.619 mmol) of Et₃N. The mixture was stirred at room temperature for 16 h, diluted with Et₂O, washed with H₂O and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (9:1, hexanes/EtOAc) to yield 31 mg (68%) of **264** as a colorless oil.

N-{(*R**)-[(1*R**,2*R**)-2-Butylcyclopropyl]phenylmethyl}-*S*-(4-methylphenyl)sulfon-

amide (263). According to the General Protocol C, 193 mg (0.748 mmol) of Cp₂ZrHCl, 95.0 µL (0.827 mmol) of 1-hexyne, 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), 64.0 mg (0.247 mmol) of imine **90** (1 h reaction time), and 100 µL (1.24 mmol) of CH₂I₂ (12 h reaction time) afforded 58 mg (66%) of **263** [dr = 96:4 (¹H NMR)] as a colorless oil: IR (neat) 3277, 2956, 2925, 2856, 1455, 1435, 1326, 1161, 1095, 1056, 1022, 813, 700, 668 cm⁻¹; ¹H NMR δ 7.58-7.54 (m, 2 H), 7.17-7.08 (m, 7 H), 5.23 (d, 1 H, *J* = 6.3 Hz), 3.71 (dd, 1 H, *J* = 8.6, 6.3 Hz), 2.35 (s, 3 H), 1.25-1.13 (m, 5 H), 1.07-0.97 (m, 1 H), 0.88-0.77 (m, 1 H), 0.86 (t, 3 H, *J* = 7.1 Hz), 0.57-0.46 (m, 1 H), 0.39 (dt, 1 H, *J* = 8.6, 4.8 Hz), 0.23 (dt, 1 H, *J* = 8.4, 5.0 Hz); ¹³C NMR δ 142.87, 140.62, 137.76, 129.22, 128.16, 127.16, 127.02, 126.73, 62.07, 33.05, 31.52, 25.36, 22.42, 21.39, 18.53, 14.02, 10.95; CIMS *m*/*z* 358 ([M+H]⁺, 37), 273 (15), 260 (50), 187 (100), 173 (39), 117 (37), 105 (24), 91 (39); HRMS (CI) *m*/*z* calcd for C₂₁H₂₈NO₂S [M+H] 358.1841, found 358.1856.

Conversion of 257 to 263. A solution of 88.0 mg (0.218 mmol) of cyclopropane **257** in 5 mL of a 1 N solution of HCl(g) in MeOH (prepared by treating 4.5 mL of MeOH with 0.5 mL

of AcCl at 0 °C and stirring at room temperature for 30 min) was stirred at room temperature for 4 h, basified with 5% NaOH, and extracted with CH_2Cl_2 . The extract was dried (MgSO₄) and concentrated *in vacuo*. The residue was dissolved in 2 mL of CH_2Cl_2 , and treated with 166 mg (0.871 mmol) of TsCl, 10.0 mg (0.0819 mmol) of DMAP, and 130 µL (1.34 mmol) of Et₃N. The mixture was stirred at room temperature for 16 h, diluted with Et₂O, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 56 mg (72%) of **263** as a colorless oil.

$N-\{1-(S^*)-[(1R^*,2R^*)-2-Butylcyclopropyl]-3-phenylpropyl\}-S-(4-methylphenyl)-$

sulfonamide (264). According to the General Protocol C, 392 mg (1.52 mmol) of Cp₂ZrHCl, 190 μL (1.65 mmol) of 1-hexyne, 750 μL (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 144 mg (0.501 mmol) of imine **166** (1.5 h reaction time), and 400 μL (4.96 mmol) of CH₂I₂ (17 h reaction time) afforded 130 mg (67%) of **264** [dr = 87:13 (¹H NMR)] as a colorless oil: IR (neat) 3278, 2954, 2925, 2857, 1454, 1325, 1160, 1095, 814, 700, 665 cm⁻¹; ¹H NMR δ 7.76-7.74 (m, 2 H), 7.28-7.15 (m, 5 H), 7.09-7.06 (m, 2 H), 4.84 (d, 1 H, J = 7.3 Hz), 2.66-2.60 (m, 3 H), 2.41 (s, 3 H), 1.86-1.76 (m, 2 H), 1.23-1.01 (m, 5 H), 0.94-0.78 (m, 1 H), 0.84 (t, 3 H, J = 6.9 Hz), 0.55-0.46 (m, 1 H), 0.30-0.16 (m, 3 H); ¹³C NMR δ 143.04, 141.65, 138.38, 129.53, 128.26 (2 C), 127.00, 125.73, 58.25, 37.55, 33.18, 31.56, 31.50, 23.64, 22.41, 21.43, 17.41, 14.03, 11.29; CIMS m/z 386 ([M+H]⁺, 76), 288 (61), 280 (32), 215 (74), 172 (81), 131 (67), 119 (48), 117 (100), 105 (36), 91 (82); HRMS (CI) m/z calcd for C₂₃H₃₂NO₂S [M+H] 386.2154, found 386.2161.

N-[(2-Butylcyclopropyl)cyclohexylmethyl]-*S*-(4-methylphenyl)sulfonamide (265). A suspension of 195 mg (0.756 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated at room temperature with 100 μ L (0.870 mmol) of 1-hexyne. After 10 min, the yellow solution was cooled to -78 °C, treated with 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature and cannulated into a solution of 66.0 mg (0.249 mmol) of imine

170 in 1 mL of CH₂Cl₂. The mixture was heated at reflux for 2 h, cooled to 0 °C, treated with 200 μ L (2.48 mmol) of CH₂I₂ and 380 μ L (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), heated at reflux for 12 h, cooled to room temperature, quenched with saturated NaHCO₃, diltued with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was purified on SiO₂ (80:20, hexanes/EtOAc) to yield 66 mg of a 85:15 mixture of **265** (major isomer: 37%, minor isomer: 25%) to **171** (11%). **265** (major isomer, colorless oil): IR (neat) 3281, 2924, 2843, 1445, 1327, 1161, 1088, 1015 cm⁻¹; ¹H NMR δ 7.73 (d, 2 H, *J* = 8.3 Hz), 7.25 (d, 2 H, *J* = 8.0 Hz), 4.88 (d, 1 H, *J* = 7.6 Hz), 2.43-2.36 (m, 1 H), 2.40 (s, 3 H), 1.69-1.37 (m, 6 H), 1.23-0.92 (m, 11 H), 0.82 (t, 3 H, *J* = 6.7 Hz), 0.51-0.40 (m, 2 H), -0.08 (dt, 1 H, *J* = 7.7, 5.2 Hz), -0.16 (dt, 1 H, *J* = 8.4, 4.9 Hz); ¹³C NMR δ 142.79, 138.77, 129.32, 127.01, 63.54, 43.39, 33.29, 31.34, 28.93, 28.70, 26.42, 26.37, 26.22, 22.44, 21.45, 21.20, 18.77, 13.99, 10.27; CIMS *m/z* 364 ([M+H]⁺, 22), 266 (100), 193 (27); HRMS (CI) *m/z* calcd for C₂₁H₃₄NO₂S [M+H] 364.2310, found 364.2321.

N-{(*R**)-[(1*R**,2*R**)-1,2-Diethylcyclopropyl](phenyl)methyl}-*P*,*P*-diphenylphosphinamide (266). According to the General Protocol C, 390 mg (1.51 mmol) of Cp₂ZrHCl, 190 µL (1.67 mmol) of 3-hexyne, 750 µL (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 153 mg (0.501 mmol) of imine **104** (3 h reaction time), and 200 µL (2.48 mmol) CH₂I₂ (12 h reaction time) afforded 93 mg (46%) of **266** [*dr* = 96:4 (HPLC)] as a colorless solid: mp 136-137 °C (EtOAc/hexane); IR (KBr) 3188, 3058, 2961, 2930, 2870, 1453, 1426, 1185, 1123, 1109, 1094, 1063, 752, 720, 699 cm⁻¹; ¹H NMR δ 7.91-7.84 (m, 2 H), 7.76-7.68 (m, 2 H), 7.55-7.40 (m, 4 H), 7.34-7.21 (m, 5 H), 7.19-7.16 (m, 2 H), 4.24 (t, 1 H, *J* = 10.7 Hz), 3.23 (dd, 1 H, *J* = 10.0, 7.0 Hz), 1.69 (dq, 1 H, *J* = 14.8, 7.4 Hz), 1.50 (dq, 1 H, *J* = 13.9, 6.9 Hz), 1.31-1.16 (m, 2 H), 0.97-0.84 (m, 1 H), 0.94 (t, 3 H, *J* = 7.3 Hz), 0.87 (t, 3 H, *J* = 7.3 Hz), 0.66 (tt, 1 H, *J* = 8.5, 6.1 Hz), -0.03 (dd, 1 H, *J* = 5.5, 4.8 Hz); ¹³C NMR δ 142.31, 142.25, 134.18, 132.79, 132.60, 132.47, 131.92, 131.79, 131.72, 131.69, 131.57, 131.53, 131.06, 128.47, 128.31, 128.15, 127.99, 127.20, 126.81, 58.08, 30.69, 30.62, 23.69, 22.92, 21.95, 14.36, 14.07, 11.57; EIMS *m/z* 403 (M⁺, 7), 306 (46), 284 (59), 218 (45), 201 (100), 157 (17), 146 (15), 129 (19), 91 (10), 77 (16); HRMS (EI) *m/z* calcd for C₂₆H₃₀NOP 403.2065, found 403.2075.

$N-(R^*)-\{[(1R^*,2R^*,3R^*)-2-Butyl-3-methylcyclopropyl]phenylmethyl\}-P,P-diphenyl$

phosphinamide (267). A suspension of 195 mg (0.756 mmol) of Cp₂ZrHCl in 2 mL of THF was treated at room temperature with 100 µL (0.870 mmol) of 1-hexyne, stirred for 10 min and concentrated in vacuo. A solution of the resulting yellow solid in 2 mL of (CH₂Cl)₂ was cooled to -78 °C, treated with 380 µL (0.760 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature and cannulated into a suspension of 76.0 mg (0.249 mmol) of imine 104 in 1 mL of (CH₂Cl)₂. The mixture was stirred for 2 h at 40 °C, cooled to -78 °C, treated with 680 µL (0.748 mmol) of Et₂Zn (1.1 M solution in toluene) and 130 µL (1.29 mmol) of CH₃CHI₂, stirred for 16 h at 40 °C, cooled to room temperature, treated with a cold (0 °C) solution of 680 µL (0.748 mmol) of Et₂Zn (1.1 M solution in toluene), 130 µL (1.29 mmol) of CH₃CHI₂, and 80.0 µL (0.770 mmol) of DME in 1 mL of ClCH₂CH₂Cl, and stirred for 24 h at 40 °C, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 20 mg (21%) of **146** and 54 mg (52%) of **267** as colorless solids. **267**: mp 152-153 °C (Et₂O/hexane); IR (KBr) 3200, 2955, 2923, 2861, 1435, 1185, 1123, 1107, 1067, 749, 726, 698 cm⁻¹; 1 H NMR δ 7.92-7.85 (m, 2 H), 7.77-7.70 (m, 2 H), 7.49-7.40 (m, 4 H), 7.38-7.22 (m, 9 H), 3.76 (q, 1 H, J = 8.9 Hz), 3.25 (bt, 1 H, J = 7.1 Hz), 1.31-1.18 (m, 6 H), 0.92-0.84 (m, 6 H), 0.70-0.67 (m, 2 H), 0.61 (dt, 1 H, J = 8.0, 4.7 Hz); ¹³C NMR δ 143.76, 143.70, 133.18, 132.58, 132.45, 132.33, 132.03, 131.90, 131.73, 131.69, 131.60, 131.57, 128.47, 128.30, 128.23, 128.12, 126.87, 126.74, 58.92, 34.06, 33.99, 32.32, 27.49, 23.13, 22.73, 15.95, 14.17, 12.33; EIMS m/z 417 (M⁺, 2), 306 (100), 201 (56), 106 (19); HRMS (EI) m/z calcd for C₂₇H₃₂NOP 417.2222, found 417.2237.

N-{(*R**)-[(1*R**,2*R**)-2-Butylcyclopropyl](phenyl)methyl}benzamide (268). A solution of 91.0 mg (0.226 mmol) of 257 in 5 mL of a 1 N solution of HCl(g) in MeOH was stirred at room temperature for 3 h, basified with 5% NaOH, and extracted with CH₂Cl₂. The organic layer was dried (MgSO₄), concentrated *in vacuo*, dissolved in 3 mL of CH₂Cl₂, and treated with 205 mg (0.906 mmol) of (PhCO)₂O, 10.0 mg (0.0819 mmol) of DMAP, and 240 μ L (1.38 mmol) of (*i*-Pr)₂NEt. The mixture was stirred at room temperature for 1 h, poured into EtOAc, washed with H₂O and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (80:20, hexanes/EtOAc) to yield 69 mg (99%) of **268** as a colorless solid: mp 115-116 °C (hexane); IR (KBr) 3354, 2955, 2921, 2954, 1632, 1524, 1490, 701 cm⁻¹; ¹H NMR δ 7.85-7.81 (m, 2 H), 7.57-7.28 (m, 8 H), 6.54 (d, 1 H, *J* = 7.9 Hz), 4.72 (t, 1 H, *J* = 8.3 Hz), 1.44-1.32 (m, 5 H), 1.25-1.20 (m, 1 H), 1.05-0.98 (m, 2 H), 0.88 (t, 3 H, *J* = 7.1 Hz), 0.65 (dt, 1 H, *J* = 8.2, 4.9 Hz), 0.49 (dt, 1 H, *J* = 8.0, 5.3 Hz); ¹³C NMR δ 166.60, 141.99, 134.67, 131.41, 128.54, 128.47, 127.24, 126.88, 126.67, 57.15, 33.42, 31.86, 24.31, 22.42, 17.87, 14.05, 11.38; EIMS *m*/*z* 307 (M⁺, 19), 292 (4), 264 (6) 250 (14), 236 (16), 222 (31), 210 (40), 160 (15), 152 (22), 105 (100), 77 (53); HRMS (EI) *m*/*z* calcd for C₂₁H₂₅NO 307.1936, found 307.1935.

1-(*R****)-[(1***R****,2***R****)-2-Butylcyclopropyl]-3-phenylpropan-1-ol (***syn***-271) and 1-(***S****)-[(1***R****,2***R****)-2-butylcyclopropyl]-3-phenylpropan-1-ol (***anti***-271). A solution of 361 mg (1.65 mmol) of 1-phenylnon-4-en-3-ol (270) in 15 mL of CH₂Cl₂ was treated at room temperature with 530 μL (6.58 mmol) of CH₂I₂, cooled to 0 °C, treated with 3.40 mL (3.40 mmol) of Et₂Zn (1.0 M solution in hexanes), stirred at room temperature for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated** *in vacuo***. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 47 mg (12%) of** *anti***-271 and 300 mg (78%) of** *syn***-271 as colorless oils.** *anti***-271: IR (neat) 3394, 3062, 3026, 2992, 2855, 1716, 1602, 1496, 1454, 1046 cm⁻¹; ¹H NMR δ 7.47-7.30 (m, 5 H), 3.10 (q, 1 H,** *J* **= 6.8** Hz), 3.02-2.82 (m, 2 H), 2.08-2.01 (m, 2 H), 1.68 (s, 1 H), 1.58-1.31 (m, 6 H), 1.05 (t, 3 H, J = 7.0 Hz), 0.88-0.76 (m, 2 H), 0.54-0.44 (m, 2 H); ¹³C NMR δ 142.28, 128.36, 128.30, 125.68, 75.57, 38.54, 33.37, 32.03, 31.92, 25.57, 22.50, 16.81, 14.07, 9.92; EIMS m/z 232 (M⁺, 7), 215 (7), 148 (15), 130 (51), 109 (28), 105 (29), 91 (100); HRMS (EI) m/z calcd for C₁₆H₂₄O 232.1827, found 232.1824. *syn*-**271**: IR (neat) 3391 3026, 2919, 2855, 1496, 1454, 1031 cm⁻¹; ¹H NMR δ 7.47-7.31 (m, 5 H), 3.10-2.82 (m, 3 H), 2.11-2.04 (m, 2 H), 1.71 (s, 1 H), 1.53-1.35 (m, 6 H), 1.05 (t, 3 H, J = 7.0 Hz), 0.88-0.80 (m, 1 H), 0.78-0.69 (m, 1 H), 0.58 (dt, 1 H, J = 8.8, 4.4 Hz), 0.45 (dt, 1 H, J = 8.0, 4.7 Hz); ¹³C NMR δ 142.27, 128.36, 128.33, 125.71, 75.67, 38.75, 33.32, 32.01, 31.66, 25.76, 2250, 17.01, 14.05, 9.97; EIMS m/z 232 (M⁺, 2), 214 (6), 130 (25), 109 (20), 109 (20), 91 (86); HRMS (EI) m/z calcd for C₁₆H₂₄O 232.1827, found 232.1827.

3-(*S**)-**Azido-3-**[(*1R**,*2R**)-2-butylcyclopropyl]propylbenzene (*anti-272*) and 3-(*S**)-**Azido-3-**[(*1R**,*2R**)-2-butylcyclopropyl]propylbenzene (*syn-272*). According to a literature procedure, a solution of 68.0 mg (0.293 mmol) of *syn-271* in 3 mL of THF was treated with 55.0 μ L (0.349 mmol) of DEAD, 76.0 μ L (0.352 mmol) of diphenylphosphoryl azide and 92.0 mg (0.351 mmol) of PPh₃, stirred at room temperature for 16 h, diluted with Et₂O, filtered through a pad of Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (9:1, hexanes/EtOAc) to yield 64 mg (85%) of **272** as an (inseparable) 78:22 (*anti: syn*) mixture of diastereomers: IR (neat) 3027, 2998, 2922, 2856, 2097, 1496, 1454, 1248, 1031 cm⁻¹; ¹H NMR δ 7.34-7.28 (m, 2 H), 7.23-7.19 (m, 3 H), 2.86-2.63 (m, 3 H), 1.96-1.85 (m, 2 H), 1.49-1.19 (m, 6 H), 0.93 (t, 3 H, *J* = 7.1 Hz), 0.87-0.73 (m, 1.78 H), 0.64-0.54 (m, 0.44 H), 0.54-0.43 (m, 0.22 H), 0.41-0.32 (m, 1.56 H); ¹³C NMR (major isomer) δ 141.39, 128.39, 128.33, 125.91, 66.54, 36.42, 33.36, 32.28, 31.30, 22.70, 22.46, 17.80, 13.99, 10.04; EIMS *m*/*z* 230 ([M-N₂+H]⁺, 56), 215 (100), 186 (23), 172 (50), 158 (47), 144 (48), 131 (42), 117 (86), 106 (38); HRMS (EI) *m*/*z* calcd for C₁₆H₂₃N [M-N₂] 229.1831, found 229.1834.

According to a literature procedure, a solution of 76.0 mg (0.327 mmol) of *anti*-**271** in 3 mL of THF was treated with 62.0 μ L (0.394 mmol) of DEAD, 85.0 μ L (0.422 mmol) of diphenylphosphoryl azide and 103 mg (0.393 mmol) of PPh₃, stirred at room temperature for 16 h, diluted with Et₂O, filtered through a pad of SiO₂, and concentrated *in vacuo*. The residue was

chromatographed on SiO₂ (50:1, hexanes/EtOAc) to yield 49 mg (58%) of **272** as an (inseparable) 15:85 (*anti:syn*) mixture of diastereomers.

Conversion of *anti*-272 into 264. A solution of 77.0 mg (0.299 mmol) of a 78:22 (*anti*: *syn*) mixture of 272 in 2 mL of THF was treated with 12.0 mg of 10% Pd on activated charcoal, stirred under an H₂ atmosphere (1 atm) for 12 h, filtered through Celite, and concentrated *in vacuo*. A solution of the residue in 3 mL of CH₂Cl₂ was treated with 228 mg (1.20 mmol) of TsCl 10.0 mg (0.0819 mmol) of DMAP, and 170 μ L (1.75 mmol) of Et₃N, stirred at room temperature for 16 h, diluted with Et₂O, washed with H₂O and brine, dried (MgSO₄), and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/ EtOAc) to yield 76 mg (66%) of **264** as a colorless oil.

Preparation of 257 by Simmons-Smith Cyclopropanation of Allylic Amide 146. N- $\{(S^*)-[(1R^*,2R^*)-2-Butylcyclopropyl](phenyl)methyl\}-P,P-diphenylphosphinamide$ (syn-257). A solution of 1.50 mL (1.50 mmol) of Et₂Zn (1.0 M solution in hexanes) in 4 mL of CH₂Cl₂ was cooled to 0 °C and treated with 250 µL (310 mmol) of CH₂I₂ and a solution of 289 mg (0.742 mmol) of phosphinamide 146 in 4 mL of CH₂Cl₂, stirred at room temperature for 16 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated in *vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc, containing 1% Et₃N) to yield 242 mg (81%) of 257 as a 71:29 (anti:syn) mixture of diastereoisomers. syn-257 (colorless solid): mp 142-143 °C (EtOAc/hexanes); IR (thin film) 3179, 2959, 2918, 2850, 1437, 1183, 1124, 725, 696 cm⁻¹; ¹H NMR δ 7.96-7.90 (m, 2 H), 7.78-7.72 (m, 2 H), 7.53-7.39 (m, 4 H), 7.34-7.22 (m, 7 H), 3.65 (t, 1 H, J = 9.2 Hz), 3.31 (bs, 1 H), 1.10-0.97 (m, 6 H), 0.96-0.88 (m, 1 H), 0.73 (t, 3 H, J = 6.6 Hz), 0.60-0.53 (m, 2 H), 0.32-0.27 (m, 1 H); ¹³C NMR δ 132.42, 132.29, 132.10, 131.98, 131.71, 131.56, 128.44, 128.28, 128.13, 127.01, 126.69, 59.67, 33.15, 31.38, 27.16, 22.18, 18.14, 13.87, 12.64; ESIMS *m/z* 426 ([M+Na]⁺, 100), 404 ([M+H]⁺, 45); HRMS (ESI) m/z calcd for C₂₆H₃₀NOPNa 426.1963, found 426.1947.

Preparation of 263 by Simmons-Smith Cyclopropanation of Allylic Amide 91. N- $\{(S^*)-[(1R^*, 2R^*)-2-Butylcyclopropyl]$ phenylmethyl $\}-S-(4-methylphenyl)$ sulfonamide (syn-263). A solution of 1.50 mL (1.50 mmol) of Et₂Zn (1.0 M solution in hexanes) in 4 mL of CH₂Cl₂ was cooled to 0 °C and treated with 250 µL (310 mmol) of CH₂I₂ and a solution of 238 mg (0.693 mmol) of sulfonamide 91 in 4 mL of CH₂Cl₂, stirred at room temperature for 16 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with brine, dried (MgSO₄), filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on SiO₂ (4:1, hexanes/ EtOAc) to yield 231 mg (93%) of 263 as a 81:19 (anti:syn) mixture of diastereoisomers. syn-263: IR (thin film) 3277, 2957, 2920, 2852, 1432, 1324, 1160, 1050, 812, 699, 666 cm⁻¹; ¹H NMR δ 7.56-7.51 (m, 2 H), 7.17-7.07 (m, 7 H), 5.06 (d, 1 H, J = 5.6 Hz), 3.66 (dd, 1 H, J = 8.8, 5.7 Hz), 2.35 (s, 3 H), 1.13-0.97 (m, 6 H), 0.80-0.73 (m, 1 H), 0.70 (t, 3 H, J = 6.9 Hz), 0.63-0.60 (m, 1 H), 0.35 (dt, 1 H, J = 8.6, 4.9 Hz), 0.26 (dt, 1 H, J = 8.0, 5.1 Hz); ¹³C NMR δ 142.91, 140.73, 137.66, 129.20, 128.17, 127.21, 127.11, 126.67, 62.33, 32.95, 31.24, 25.74, 22.12, 21.44, 18.01, 13.92, 11.65; EIMS m/z 357 (M⁺, 1), 273 (53), 260 (38), 160 (49), 155 (46), 129 (22), 118 (63), 104 (37), 91 (100); HRMS (EI) *m/z* calcd for C₂₁H₂₇NO₂S 357.1763, found 357.1751.

Attempted preparation of (2-butylcyclopropyl)phenylmethanol. (*E*)-1-Phenylhept-2en-1-ol (33). A suspension of 390 mg (1.51 mmol) of Cp₂ZrHCl in 3 mL of CH₂Cl₂ was treated at room temperature with 190 μ L (1.65 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with 50.0 μ L (0.492 mmol) of PhCHO, heated at reflux for 48 h, quenched with saturated NH₄Cl, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 84 mg (90%) of **33** as a colorless oil: ¹H NMR δ 7.37-7.25 (m, 5 H), 5.77 (dt, 1 H, *J* = 15.4, 6.4 Hz), 5.65 (dd, 1 H, *J* = 15.4, 6.4 Hz), 5.14 (d, 1 H, *J* = 6.3 Hz), 2.15 (s, 1 H), 2.09-2.03 (m, 2 H), 1.43-1.29 (m, 4 H), 0.90 (t, 3 H, *J* = 7.0 Hz).

Attempted preparation of 266 using a B-Zn transmetalation. A solution of 190 μ L (1.67 mmol) of 3-hexyne in 2.5 mL of CH₂Cl₂ was cooled to 0 °C, and treated with 500 μ L (0.500 mmol) of borane (1.0 M solution in THF). The mixture was stirred at 0 °C for 1 h, treated with 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature, treated with a solution of 152 mg (0.498 mmol) of imine 104 in 1 mL of CH₂Cl₂, heated at reflux for 16 h, quenched with saturated NH₄Cl, diluted with EtOAc, filtered through Celite, washed with H₂O, saturated NaHCO₃ and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/ EtOAc containing 1% Et₃N) to yield 96 mg (50%) of 147.

Attempted preparation of 278 using an Al-Zn transmetalation. (E)-N-(3-Methyl-1phenylhept-2-envl)-P,P-diphenylphosphinamide (276). A suspension of 15.0 mg (0.0513 mmol) of Cp₂ZrCl₂ in 5 mL of CH₂Cl₂ was treated at 0 °C with 208 mg (2.89 mmol) of Me₃Al, 27.0 µL (1.50 mmol) of H₂O, and 175 µL (1.52 mmol) of 1-hexyne. The mixture was stirred at 0 °C for 30 min, cooled to -78 °C, treated with 750 µL (1.50 mmol) of Me₂Zn, warmed to room temperature, treated with a solution of 153 mg (0.501 mmol) of imine **104** in 1 mL of CH₂Cl₂, heated at reflux for 12 h, cooled to room temperature, guenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with 2 N HCl, H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc, containing 1% Et₃N) to yield 109 mg (54%) of **276** as a colorless oil: IR (thin film) 3057, 2957, 2927, 1669, 1437, 1185, 1126, 753, 724, 696 cm⁻¹; ¹H NMR δ 7.98-7.91 (m, 2 H), 7.88-7.81 (m, 2 H), 7.50-7.17 (m, 11 H), 5.34 (dd, 1 H, J = 9.3, 1.2 Hz), 5.05 (q, 1 H, J = 9.0 Hz), 3.25 (t, 1 H, J = 7.2 Hz), 1.91 (t, 2 H, J = 7.0 Hz), 1.37 (d, 3 H, J= 1.3 Hz), 1.35-1.21 (m, 4 H), 0.88 (t, 3 H, J = 7.0 Hz); ¹³C NMR δ 143.72, 143.65, 137.41, 133.81, 133.65, 132.55, 132.42, 132.11, 131.92, 131.79, 131.58, 128.43, 128.30, 128.22, 128.13, 126.94, 126.74, 126.21, 126.15, 52.81, 39.12, 30.47, 29.74, 22.40, 16.22, 13.94; EIMS m/z 403

 $(M^+, 1)$, 346 (1), 306 (2), 216 (82), 201 (35), 199 (66), 140 (46), 124 (58), 105 (46), 77 (100); HRMS (EI) *m/z* calcd for C₂₆H₃₀NOP 403.2065, found 403.2067.

Preparation of 276 using the General Protocol A. A suspension of 15.0 mg (0.0513 mmol) of Cp₂ZrCl₂ in 5 mL of toluene was treated at 0 °C with 210 mg (2.91 mmol) of Me₃Al, 27.0 μ L (1.50 mmol) of H₂O, and 175 μ L (1.52 mmol) of 1-hexyne. The mixture was stirred at 0 °C for 30 min, treated with 750 μ L (1.50 mmol) of Me₂Zn, warmed to room temperature, cannulated into a suspension of 153 mg (0.501 mmol) of imine **104** in 1 mL of toluene, stirred at room temperature for 6 h, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/ EtOAc, containing 1% Et₃N) to yield 147 mg (73%) of **276** as a colorless oil.

N-{(*S**)-[(1*R**,2*R**)-2-Butyl-2-methyl-cyclopropyl](phenyl)methyl}-*P*,*P*-diphenyl-

phosphinamide (278). A suspension of 15.0 mg (0.0513 mmol) of Cp₂ZrCl₂ in 5 mL of CH₂Cl₂ was treated at 0 °C with 208 mg (2.89 mmol) of Me₃Al, 27.0 µL (1.50 mmol) of H₂O, and 175 µL (1.52 mmol) of 1-hexyne. The mixture was stirred at 0 °C for 30 min, cooled to -78 °C, treated with 750 µL (1.50 mmol) of Me₂Zn, warmed to room temperature, treated with a solution of 153 mg (0.501 mmol) of imine 104 in 1 mL of CH₂Cl₂, heated at reflux for 4 h, cooled to room temperature, treated with 200 µL (2.48 mmol) of CH₂I₂, heated at reflux for 12 h, cooled to room temperature, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc, containing 1% Et₃N) to yield 59 mg (28%) of 278 as an 88:12 (syn:anti) mixture of diastereomers, and 94 mg (46%) of 276 as a colorless oil. 278 (colorless solid): mp 116-118 °C (EtOAc/hexanes); IR (KBr) 3189, 3059, 2953, 2923, 2871, 1435, 1186, 1124, 1107, 1065, 931, 749, 723, 698 cm⁻¹; ¹H NMR δ 7.93-7.86 (m, 2 H), 7.77-7.69 (m, 2 H), 7.47-7.34 (m, 5 H), 7.31-7.14 (m, 6 H), 3.81 (q, 1 H, J = 9.3 Hz), 3.35 (t, 1 H, J = 7.8 Hz), 1.25-0.95 (m, 7 H), 0.81 (s, 3 H), 0.73 (t, 3 H, J = 6.8Hz), 0.47 (dd, 1 H, J = 8.4, 4.8 Hz), 0.31 (t, 1 H, J = 5.1 Hz); ¹³C NMR δ 144.57, 144.50, 134.35, 133.38, 132.65, 132.24, 132.13, 132.02, 131.56, 131.44, 128.26, 128.13, 128.04, 126.86,

126.70, 56.76, 40.63, 32.10, 28.39, 22.61, 21.79, 19.68, 17.81, 13.94; EIMS m/z 417 (M⁺, 6), 374 (7), 319 (31), 306 (64), 218 (45), 201 (100), 129 (31), 106 (34), 91 (44), 77 (65); HRMS (EI) m/z calcd for C₂₇H₃₂NOP 417.2222, found 417.2222.

Preparation of 278 using a modified General Protocol C (no Al-Zn transmetalation). A suspension of 15.0 mg (0.0513 mmol) of Cp₂ZrCl₂ in 5 mL of toluene was treated at 0 °C with 210 mg (2.91 mmol) of Me₃Al, 27.0 μ L (1.50 mmol) of H₂O, and 175 μ L (1.52 mmol) of 1-hexyne. The mixture was stirred at 0 °C for 30 min, warmed to room temperature, cannulated into a suspension of 153 mg (0.501 mmol) of imine **104** in 1 mL of toluene, stirred at room temperature for 7 h, and treated with 320 μ L (4.05 mmol) of CH₂I₂, stirred at room temperature for 12 h, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc, containing 1% Et₃N) to yield 99 mg (47%) of **278** as an 90:10 (*syn:anti*) mixture of diastereomers, and 64 mg (32%) of **276** as a colorless oil.

Preparation of 278 by Simmons-Smith Cyclopropanation of Allylic Amide 276. A solution of 147 mg (0.364 mmol) of phosphinamide **276** in 4 mL of CH_2Cl_2 was cooled to 0 °C and treated with 180 µL (2.23 mmol) of CH_2I_2 and 1.00 mL (1.10 mmol) of Et_2Zn (1.1 M solution in toluene), stirred at room temperature for 16 h, quenched with saturated NaHCO₃, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through Florisil, and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (3:7, hexanes/EtOAc) to yield 86 mg (57%) of **278** as a colorless solid, and 21 mg (14%) of phosphinamide **276** was recovered.

N-[(1S*,2R*)-2-Butyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (syn-279) and N-[(1S*,2S*)-2-butyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (anti-279). General Protocol D. A suspension of 195 mg (0.756 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated at room temperature with 95.0 μ L (0.827 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 560 μ L (1.12 mmol) of Me₂Zn (2.0 M solution in toluene), and warmed to room temperature over a period of 5 min. The mixture was

treated with 60.0 µL (0.745 mmol) of CH₂I₂, stirred for 2 min, treated with a solution of 76.0 mg (0.249 mmol) of imine 104 in 1 mL of CH₂Cl₂, stirred at room temperature for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated in *vacuo.* The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 71 mg (71%) of **279** as an 85:15 mixture of diastereomers. syn-279 (colorless solid): mp 158-159 °C (EtOAc/hexane); IR (KBr) 3221, 3059, 2951, 2914, 2858, 1436, 1185, 1123, 1108, 1068, 919, 723, 702, 692 cm⁻¹; ¹H NMR δ 7.90-7.83 (m, 2 H), 7.73-7.65 (m, 2 H), 7.54-7.38 (m, 4 H), 7.32-7.24 (m, 5 H), 7.07-7.04 (m, 2 H), 5.43 (dt, 1 H, J = 17.2, 9.7 Hz), 5.25 (dd, 1 H, J = 17.5, 2.2 Hz), 5.21 (dd, 1 H, J = 9.8, 2.4 Hz), 4.23 (td, 1 H, J = 11.2, 4.6 Hz), 3.75 (dd, 1 H, J = 10.8, 6.5 Hz), 2.59 (tt, 1 H, J = 10.0, 4.2 Hz), 1.47-1.38 (m, 1 H), 1.33-1.13 (m, 4 H), 1.02-0.86 (m, 1 H), 0.83 (t, 3 H, J = 6.7 Hz); ¹³C NMR δ 140.89, 140.82, 137.80, 134.13, 132.68, 132.61, 132.55, 132.45, 131.76, 131.72, 131.66, 131.57, 131.53, 130.86, 128.51, 128.35, 128.16, 128.00, 127.71, 127.61, 126.85, 119.07, 57.72, 52.11, 52.07, 31.65, 29.57, 22.53, 13.98; EIMS m/z 403 (M⁺, 1), 306 (100), 201 (98), 77 (22); HRMS (EI) m/z calcd for C₂₆H₃₀NOP 403.2065, found 403.2068. anti-279 (colorless solid): mp 160-161 °C (EtOAc/ hexane); IR (KBr) 3181, 2953, 2928, 2852, 1435, 1180, 1126, 1109, 915, 745, 726, 696 cm⁻¹; ¹H NMR δ 7.87-7.80 (m, 2 H), 7.70-7.62 (m, 2 H), 7.54-7.34 (m, 4 H), 7.30-7.19 (m, 5 H), 7.13-7.09 (m, 2 H), 5.72 (ddd, 1 H, J = 17.2, 10.3, 8.8 Hz), 5.25 (dd, 1 H, J = 10.3, 1.9 Hz), 5.11 (ddd, 1 H, J = 17.2, 1.8, 0.7 Hz), 4.14 (dt, 1 H, J = 10.1, 7.4 Hz), 3.45 (t, 1 H, J = 6.1 Hz), 2.40-2.31 (m, 1 H), 1.35-1.09 (m, 6 H), 0.81 (t, 3 H, J = 6.6 Hz); ¹³C NMR δ 142.78, 142.74, 139.25, 132.72, 132.57, 132.44, 132.34, 131.78, 131.73, 131.70, 131.66, 131.42, 131.39, 130.98, 128.48, 128.32, 128.04, 128.00, 127.87, 127.74, 127.65, 127.28, 126.86, 118.09, 58.13, 51.86, 51.79, 30.31, 29.39, 22.45, 13.97; EIMS m/z 404 ([M+H]⁺, 3), 306 (100), 201 (96), 77 (67); HRMS (EI) m/z calcd for C₂₆H₃₁NOP [M+H] 404.2143, found 404.2142.

N-[(1S*,2R*)-2,3-Diethyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (*syn*-280) and N-[(1S*,2S*)-2,3-diethyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (*anti*-280). According to the General Protocol D, 387 mg (1.50 mmol) of Cp₂ZrHCl, 190 µL (1.65 mmol) of

3-hexyne, 1.25 mL (2.50 mmol) of Me₂Zn (2.0 M solution in toluene), 120 µL (1.49 mmol) of CH₂I₂, and 153 mg (0.501 mmol) of imine **104** (24 h reaction time) afforded 99 mg (49%) of **280** as a 75:25 mixture of diastereomers. syn-280 (colorless solid): mp 166-167 °C (EtOAc/hexane); IR (KBr) 3121, 2962, 2920, 2872, 2846, 1435, 1183, 1123, 1110, 1061, 897, 749, 726, 694 cm⁻¹; ¹H NMR δ 7.84-7.77 (m, 2 H), 7.67-7.61 (m, 2 H), 7.51-7.37 (m, 4 H), 7.29-7.17 (m, 5 H), 7.02-6.99 (m, 2 H), 4.79 (s, 1 H), 4.72 (s, 1 H), 4.12 (q, 1 H, J = 9.6 Hz), 3.39 (t, 1 H, J = 8.8 Hz),2.34 (ddd, 1 H, J = 11.3, 7.9, 3.5 Hz), 2.00 (dqd, 1 H, J = 14.7, 7.4, 3.6 Hz), 1.65 (dq, 1 H, J = 14.8, 7.4 Hz), 1.57-1.42 (m, 2 H), 0.84 (t, 3 H, J = 7.3 Hz), 0.80 (t, 3 H, J = 7.3 Hz); ¹³C NMR δ 149.63, 142.89, 142.84, 133.98, 132.74, 132.61, 132.29, 131.80, 131.77, 131.74, 131.68, 131.58, 131.54, 130.95, 128.49, 128.32, 128.15, 127.98, 127.78, 127.10, 126.68, 111.66, 58.61, 56.82, 56.76, 26.35, 23.12, 12.10, 11.54; EIMS m/z 404 ([M+H]⁺, 1), 306 (100), 201 (93), 77 (86); HRMS (EI) *m/z* calcd for C₂₆H₃₀NOP 403.2065, found 403.2052. *anti-***280** (colorless solid): mp 164-165 °C (EtOAc/hexane); IR (KBr) 3197, 2961, 2932, 2873, 1436, 1185, 1124, 1109, 747, 725, 695 cm⁻¹; ¹H NMR δ 7.77-7.69 (m, 2 H), 7.60-7.53 (m, 2 H), 7.51-7.27 (m, 4 H), 7.20-7.04 (m, 7 H), 5.04 (s, 1 H), 4.96 (s, 1 H), 4.14 (td, 1 H, J = 9.2, 6.2 Hz), 3.60-3.50 (m, 1 H), 2.29 (ddd, 1 H, J = 10.7, 8.8, 4.2 Hz), 2.05 (dq, 1 H, J = 14.7, 7.4 Hz), 1.84 (dq, 1 H, J = 14.6, 7.3)Hz), 1.32 (ddg, 1 H, J = 14.0, 10.8, 7.3 Hz), 1.16 (dgd, 1 H, J = 14.2, 7.4, 4.4 Hz), 1.07 (t, 3 H, J = 7.3 Hz), 0.69 (t, 3 H, J = 7.4 Hz); ¹³C NMR δ 150.73, 143.11, 134.08, 132.58, 132.45, 131.68, 131.65, 131.50, 131.37, 131.23, 130.79, 128.46, 128.29, 127.93, 127.89, 127.72, 127.46, 126.84, 112.49, 57.69, 57.60, 56.88, 24.31, 22.98, 12.09, 11.64; EIMS m/z 403 (M⁺, 1), 306 (100), 201 (62), 91 (12), 77 (19); HRMS (EI) *m/z* calcd for C₂₆H₃₀NOP 403.2065, found 403.2076.

N-{(1S*,2R*)-2-[2-(tert-Butyldiphenylsilyl)oxyethyl]-1-phenylbut-3-enyl}-P,P-

diphenylphosphinamide (*syn*-281). According to the General Protocol D, 387 mg (1.50 mmol) of Cp₂ZrHCl, 510 mg (1.65 mmol) of alkyne 148, 1.25 mL (2.50 mmol) of Me₂Zn (2.0 M solution in toluene), 120 μ L (1.49 mmol) of CH₂I₂, and 153 mg (0.501 mmol) of imine 104 (12 h reaction time) afforded 227 mg (72%) of 281 as an 85:15 mixture of diastereomers. *syn*-281 (colorless oil): IR (neat) 3196, 3070, 2930, 2857, 1438, 1428, 1191, 1110, 726, 700 cm⁻¹; ¹H

NMR δ 7.96-7.88 (m, 2 H), 7.80-7.72 (m, 2 H), 7.72-7.67 (m, 4 H), 7.57-7.30 (m, 14 H), 7.12-7.09 (m, 2 H), 5.47 (dt, 1 H, *J* = 17.2, 9.7 Hz), 5.22 (dd, 1 H, *J* = 17.3, 2.2 Hz), 5.20 (dd, 1 H, *J* = 9.8, 2.2 Hz), 4.26 (td, 1 H, *J* = 10.8, 5.1 Hz), 3.75 (dd, 1 H, *J* = 10.7, 6.9 Hz), 3.70-3.63 (m, 2 H), 2.89-2.80 (m, 1 H), 1.92 (dtd, 1 H, *J* = 13.4, 7.9, 3.3 Hz), 1.34-1.15 (m, 1 H), 1.10 (s, 9 H); ¹³C NMR δ 141.02, 140.96, 137.22, 135.49, 135.46, 133.94, 133.76, 133.71, 132.78, 132.54, 132.41, 132.24, 131.75, 131.62, 131.57, 131.05, 129.45, 128.50, 128.34, 128.19, 128.02, 127.80, 127.52, 126.89, 119.12, 61.73, 57.91, 48.28, 48.22, 34.54, 26.80, 19.08; EIMS *m*/*z* 628 ([M-H]⁺, 1), 572 (48), 306 (100), 201 (75); HRMS (EI) *m*/*z* calcd for C₃₆H₃₅NO₂PSi [M-C₄H₉] 572.2175, found 572.2174.

(4*R**)-*O*-Triisopropylsilyl-4-{(*S**)-[(diphenylphosphinyl)amino](phenyl)methyl}hex-5-enoate (syn-282) and (4S*)-O-triisopropylsilyl-4-{(S*)-[(diphenylphosphinyl)amino]-(phenyl)methyl}hex-5-enoate (anti-282). A solution of 324 mg (3.30 mmol) of 4-pentynoic acid in 6 mL of CH₂Cl₂ was treated with 710 µL (3.32 mmol) of TIPS-Cl and 225 mg (3.30 mmol) of imidazole, stirred at room temperature for 1 h, washed with H₂O and brine, dried (MgSO₄) and concentrated *in vacuo*. The residue was dissolved in 1 mL of CH₂Cl₂, transferred into a suspension of 780 mg (3.02 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂, strirred for 5 min and concentrated in vacuo. A solution of the residue in 3 mL of toluene was cooled to -78 °C, treated with 1.50 mL (3.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over a period of 5 min, treated with 400 µL (4.97 mmol) of CH₂I₂, stirred for 2 min, cannulated into a suspension of 305 mg (1.00 mmol) of imine 104 in 1 mL of toluene, stirred at room temperature for 6 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 278 mg (48%) of 282 as a 62:38 mixture of diastereomers. syn-282 (colorless oil): IR (neat) 3187, 2945, 2867, 1716, 1456, 1438, 1189, 1124, 1110, 1070, 918, 884, 751, 726, 700 cm⁻¹; ¹H NMR δ 7.85-7.78 (m, 2 H), 7.69-7.62 (m, 2 H), 7.50-7.39 (m, 4 H), 7.36-7.22 (m, 5 H), 7.03-7.00 (m, 2 H), 5.39 (dt, 1 H, J = 17.3, 9.6 Hz),

5.24-5.17 (m, 2 H), 4.18 (td, 1 H, J = 11.0, 5.1 Hz), 3.76 (dd, 1 H, J = 10.8, 6.4 Hz), 2.63-2.52 (m, 1 H), 2.30-2.24 (m, 2 H), 1.93-1.87 (m, 1 H), 1.29-1.14 (m, 4 H), 1.02 (d, 18 H, J = 7.3 Hz); ¹³C NMR δ 173.37, 140.50, 136.67, 133.92, 132.64, 132.51, 132.23, 131.72, 131.59, 131.46, 130.70, 128.49, 128.32, 128.17, 128.00, 127.85, 127.42, 126.99, 120.03, 57.97, 51.63, 33.56, 27.25, 17.67, 11.75; EIMS m/z 575 (M⁺, 1), 532 (46), 306 (100), 201 (91); HRMS (EI) m/z calcd for C₃₄H₄₆NO₃PSi 575.2985, found 575.2999. *anti*-**282** (colorless oil): IR (neat) 2924, 2863, 1712, 1439, 1416, 1185, 1161, 1124, 1109, 1069, 997, 920, 883, 753, 724, 698 cm⁻¹; ¹H NMR δ 7.92-7.85 (m, 2 H), 7.75-7.68 (m, 2 H), 7.57-7.42 (m, 4 H), 7.35-7.24 (m, 5 H), 7.18-7.15 (m, 2 H), 5.73 (ddd, 1 H, J = 17.1, 10.2, 9.0 Hz), 5.34 (dd, 1 H, J = 10.3, 1.7 Hz), 5.19 (dd, 1 H, J = 17.2, 1.1 Hz), 4.21 (dt, 1 H, J = 10.1, 7.9 Hz), 3.53 (dd, 1 H, J = 7.3 Hz); ¹³C NMR δ 173.33, 142.08, 142.04, 138.24, 133.93, 132.68, 132.55, 132.42, 132.24, 131.75, 131.62, 131.47, 130.95, 128.50, 128.33, 128.10, 127.91, 127.23, 127.03, 118.97, 58.30, 51.25, 51.17, 33.44, 25.98, 17.72, 11.81; EIMS m/z 575 (M⁺, 1), 532 (12), 306 (100), 201 (78); HRMS (EI) m/z calcd for C₃₄H₄₆NO₃PSi 575.2985, found 575.2985.

Methyl 4-[(1*S**,2*R**)-2-[2-(*tert*-butyldiphenylsilyl)oxyethyl]-1-(diphenylphosphinylamino)-but-3-enyl]benzoate (*syn*-283). According to the General Protocol D, 195 mg (0.756 mmol) of Cp₂ZrHCl, 255 mg (0.827 mmol) of alkyne 148, 500 μL (1.00 mmol) of Me₂Zn (2.0 M solution in toluene), 100 μL (1.24 mmol) of CH₂I₂, and 91.0 mg (0.250 mmol) of imine 156 (12 h reaction time) afforded 118 mg (69%) of 283 as an 85:15 mixture of diastereomers. *syn*-283 (colorless oil): IR (neat) 3191, 3071, 2952, 2931, 2857, 1721, 1437, 1282, 1190, 1110, 911, 728, 702 cm⁻¹; ¹H NMR δ 8.00 (d, 2 H, *J* = 8.3 Hz), 7.94-7.87 (m, 2 H), 7.77-7.65 (m, 6 H), 7.62-7.31 (m, 12 H), 7.17 (d, 2 H, *J* = 8.3 Hz), 5.40 (dt, 1 H, *J* = 17.9, 9.3 Hz), 5.21-5.15 (m, 2 H), 4.31 (td, 1 H, *J* = 10.6, 5.4 Hz), 4.01 (s, 3 H), 3.76 (dd, 1 H, *J* = 10.6, 6.9 Hz), 3.71-3.61 (m, 2 H), 2.89-2.79 (m, 1 H), 1.92 (dtd, 1 H, *J* = 13.3, 8.0, 3.2 Hz), 1.30-1.18 (m, 1 H), 1.09 (s, 9 H); ¹³C NMR δ 167.06, 146.68, 146.62, 136.96, 135.66, 135.63, 133.84, 133.78, 133.75, 132.76, 132.61, 132.48, 132.05, 131.91, 131.79, 131.03, 129.69, 129.33, 128.96, 128.76, 128.60, 128.44, 128.27, 127.73, 119.70, 61.74, 57.87, 52.23, 48.34, 48.28, 34.62, 26.97, 19.24; EIMS *m/z* 688 ([M+H]⁺, 1), 630 (80), 398 (19), 364 (100), 201 (99), 183 (33), 135 (46), 77 (70); HRMS (EI) *m/z* calcd for C₄₂H₄₅NO₄PSi [M-H] 686.2856, found 686.2840.

N-[(15*,2*R**)-2-Butyl-1-(4-methoxyphenyl)but-3-enyl]-*P*,*P*-diphenylphosphinamide (*syn*-284). According to the General Protocol D, 390 mg (1.51 mmol) of Cp₂ZrHCl, 190 μL (1.65 mmol) of 1-hexyne, 1.00 mL (2.00 mmol) of Me₂Zn (2.0 M solution in toluene), 200 μL (2.48 mmol) of CH₂I₂, and 168 mg (0.501 mmol) of imine **158** (12 h reaction time) afforded 169 mg (79%) of **284** as an 83:17 mixture of diastereomers. *syn*-**284** (colorless solid): mp 155-156 °C (Et₂O/hexane); IR (KBr) 3218, 2956, 2916, 2857, 1516, 1436, 1252, 1183, 1123, 1108, 1072, 909, 825, 748, 724, 694 cm⁻¹; ¹H NMR δ 7.94-7.86 (m, 2 H), 7.79-7.72 (m, 2 H), 7.56-7.44 (m, 4 H), 7.38-7.31 (m, 2 H), 7.03 (d, 2 H, *J* = 8.7 Hz), 6.87 (d, 2 H, *J* = 8.7 Hz), 5.48 (dt, 1 H, *J* = 17.3, 9.7 Hz), 5.29 (dd, 1 H, *J* = 17.2, 2.5 Hz), 5.25 (dd, 1 H, *J* = 9.7, 2.5 Hz), 4.23 (td, 1 H, *J* = 11.1, 4.5 Hz), 3.88 (s, 3 H), 3.74 (dd, 1 H, *J* = 10.8, 6.4 Hz), 2.61 (tt, 1 H, *J* = 9.9, 4.2 Hz), 1.51-1.40 (m, 1 H), 1.32-1.18 (m, 4 H), 1.07-0.96 (m, 1 H), 0.88 (t, 3 H, *J* = 6.7 Hz); ¹³C NMR δ 158.38, 137.92, 134.19, 133.09, 133.02, 132.77, 132.65, 132.52, 131.68, 131.65, 131.52, 131.49, 131.02, 128.59, 128.47, 128.31, 128.15, 127.98, 118.94, 113.05, 57.17, 55.14, 52.19, 52.15, 31.69, 29.53, 22.53, 13.96; FABMS *m*/*z* 456 ([M+Na]⁺, 5), 434 ([M+H]⁺, 28), 336 (20), 202 (17), 122 (100); HRMS (CI) *m*/*z* calcd for C₂₇H₃₃NO₂P [M+H] 434.2249, found 434.2227.

N-{(1*S**,2*R**)-2-[2-(*tert*-Butyldiphenylsilyl)oxyethyl]-1-phenylbut-3-enyl}-*S*-(4-

methylphenyl)sulfonamide (*syn*-285) and *N*-{(1*S**,2*S**)-2-[2-(*tert*-butyldiphenylsilyl)oxyethyl]-1-phenylbut-3-enyl}-*S*-(4-methylphenyl)sulfonamide (*anti*-285). According to the General Protocol D, 390 mg (1.51 mmol) of Cp₂ZrHCl, 510 mg (1.65 mmol) of alkyne 148, 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), 200 μ L (2.48 mmol) of CH₂I₂, and 130 mg (0.501 mmol) of imine 90 (2 h reaction time) afforded 238 mg (81%) of 285 as an (inseparable) 60:40 mixture of diastereomers: IR (neat) 3280, 3070, 2930, 2857, 1428, 1326, 1162, 1111, 1093, 736, 702, 667 cm⁻¹; ¹H NMR δ 7.72-7.35 (m, 12 H), 7.25-7.11 (m, 6 H), 7.01-6.98 (m, 1 H), 5.56-5.07 (m, 4 H), 4.46 (dd, 0.6 H, *J* = 8.6, 5.5 Hz), 4.22 (dd, 0.4 H, *J* = 8.3, 5.3 Hz), 3.70-3.55 (m, 2 H), 2.75-2.64 (m, 1 H), 2.41 (s, 1.2 H), 2.39 (s, 1.8 H), 1.90-1.80 (m, 0.6 H), 1.57-1.47 (m, 0.4 H), 1.44-1.19 (m, 1 H), 1.11 (s, 5.4 H), 1.07 (s, 3.6 H); ¹³C NMR δ 142.74, 139.30, 138.03, 137.71, 137.61, 137.40, 136.52, 135.49, 135.42, 133.62, 129.57, 129.50, 129.14, 129.02, 128.07, 127.80, 127.61, 127.58, 127.54, 127.23, 127.08, 127.04, 126.88, 119.67, 119.18, 61.19, 60.78, 60.71, 60.57, 46.77, 46.33, 33.90, 33.25, 26.81, 26.75, 21.38, 19.10; EIMS *m*/*z* 526 ([M-C₄H₉]⁺, 42), 352 (83), 260 (96), 199 (68), 155 (68), 135 (46), 91 (100); HRMS (EI) *m*/*z* calcd for C₃₁H₃₂NO₃SSi [M-C₄H₉] 526.1872, found 526.1869.

N-{(**1***S**,**2***R**)-**2**-[**2**-(*tert*-**Butyldiphenylsily**)**oxyethy**]-**1**-**phenethylbut**-**3**-**eny**]-*S*-(**4**-**methylpheny**]**sulfonamide** (*syn*-**286**). According to the General Protocol D, 195 mg (0.756 mmol) of Cp₂ZrHCl, 255 mg (0.827 mmol) of alkyne **148**, 500 µL (1.00 mmol) of Me₂Zn (2.0 M solution in toluene), 100 µL (1.24 mmol) of CH₂I₂, and 72.0 mg (0.251 mmol) of imine **166** (4 h reaction time) afforded 134 mg (87%) of *syn*-**286** as a colorless oil: IR (thin film) 3280, 2930, 2857, 1428, 1327, 1160, 1111, 1094, 912, 816, 737, 702, 665 cm⁻¹; ¹H NMR δ 7.84 (d, 2 H, *J* = 8.3 Hz), 7.80-7.70 (m, 5 H), 7.54-7.45 (m, 6 H), 7.39-7.25 (m, 4 H), 7.20-7.15 (m, 2 H), 5.50 (dt, 1 H, *J* = 17.0, 9.9 Hz), 5.15 (dd, 1 H, *J* = 10.1, 1.9 Hz), 4.95 (dd, 1 H, *J* = 17.0, 1.8 Hz), 4.72 (d, 1 H, *J* = 9.7 Hz), 3.67-3.38 (m, 3 H), 2.84-2.71 (m, 1 H), 2.60-2.49 (m, 1 H), 2.44 (s, 3 H), 2.88-2.20 (m, 1 H), 1.92-1.81 (m, 1 H), 1.73-1.64 (m, 1 H), 1.61-1.32 (m, 2 H), 1.13 (s, 9 H); ¹³C NMR δ 143.17, 141.63, 138.51, 136.86, 135.48, 135.46, 133.64, 129.60, 128.35, 128.31, 127.60, 126.93, 125.84, 119.03, 61.65, 56.96, 44.89, 33.95, 32.88, 32.01, 26.80, 21.45, 19.08; EIMS *m*/z 554 ([M-C₄H₉]⁺, 66), 352 (46), 288 (70), 199 (67), 155 (31), 135 (37), 117 (69), 91 (100); HRMS (EI) *m/z* calcd for C₂₇H₃₂NO₂P [M-C₄H₉] 554.2185, found 554.2188.

(5*R**,6*S**)-6-Phenyl-5-vinylpiperidin-2-one (*anti*-287). A solution of 92.0 mg (0.160 mmol) of *syn*-282 in 5 mL of a 1 N solution of HCl(g) in MeOH was stirred at room temperature for 12 h and concentrated *in vacuo*. The residue was dissolved in 3 mL of CH₂Cl₂, treated with 220 μL (1.58 mmol) of Et₃N and 75.0 μL (0.494 mmol) of diethyl cyanophosphonate, stirred for 16 h, filtered through a pad of Florisil and concentrated *in vacuo*. The residue was purified by preparative TLC (EtOAc) to yield 18 mg (56%) of *anti*-287 as a colorless solid: mp 131-132 °C (Et₂O/hexane); IR (KBr) 3171, 3070, 2883, 1647, 1400, 1004, 917, 760, 702 cm⁻¹; ¹H NMR δ 7.38-7.22 (m, 5 H), 5.72 (bs, 1 H), 5.62 (ddd, 1 H, *J* = 17.3, 10.4, 7.1 Hz), 4.99 (d, 1 H, *J* = 10.4 Hz), 4.91 (d, 1 H, *J* = 17.2 Hz), 4.22 (d, 1 H, *J* = 9.3 Hz), 2.57-2.38 (m, 3 H), 2.03-1.95 (m, 1 H), 1.90-1.79 (m, 1 H); ¹³C NMR δ 171.61, 140.73, 137.32, 128.61, 128.22, 127.21, 116.86, 62.69, 45.40, 30.55, 26.14; EIMS *m*/*z* 201 (M⁺, 26), 173 (9), 147 (12), 118 (13), 106 (100); HRMS (EI) *m*/*z* calcd for C₁₃H₁₅NO 201.1154, found 201.1158.

(5*S**,6*S**)-6-Phenyl-5-vinylpiperidin-2-one (*syn*-287). A solution of 25.0 mg (0.0434 mmol) of *anti*-282 in 5 mL of a 1 N solution of HCl(g) in MeOH was stirred at room temperature for 12 h and concentrated *in vacuo*. The residue was dissolved in 3 mL of CH₂Cl₂, treated with 60.0 μL (0.430 mmol) of Et₃N and 20.0 μL (0.132 mmol) of diethyl cyanophosphonate, stirred for 16 h, filtered through a pad of Florisil and concentrated *in vacuo*. The residue was purified by preparative TLC (EtOAc) to yield 6.0 mg (69%) of *syn*-287 as a colorless solid: mp 108-109 °C (Et₂O/hexane); IR (thin film) 3200, 3061, 2933, 1660, 1404, 1353, 998, 915, 763, 700 cm⁻¹; ¹H NMR δ 7.37-7.26 (m, 3 H), 7.19-7.16 (m, 2 H), 5.89 (bs, 1 H), 5.46 (ddd, 1 H, *J* = 17.3, 10.1, 8.3 Hz), 5.01 (d, 1 H, *J* = 16.9 Hz), 4.99 (d, 1 H, *J* = 11.1 Hz), 4.68 (dd, 1 H, *J* = 4.9, 2.5 Hz), 2.82 (tt, 1 H, *J* = 8.7, 4.4 Hz), 2.67-2.44 (m, 2 H), 1.94-1.77 (m, 2 H); ¹³C NMR δ 172.03, 138.90, 136.63, 128.23, 127.87, 127.52, 117.12, 60.38, 42.65, 29.66, 23.33; EIMS *m*/*z* 201 (M⁺, 6), 173 (2), 147 (3), 119 (4), 106 (37), 84 (100); HRMS (EI) *m*/*z* calcd for C₁₃H₁₅NO 201.1154, found 201.1156.

Attempted preparation of 2-butyl-1-phenylbut-3-en-1-ol using the General Protocol **D.** A suspension of 97.0 mg (0.376 mmol) of Cp₂ZrHCl in 2 mL of CH₂Cl₂ was treated at room temperature with 45.0 μ L (0.392 mmol) of 1-hexyne. After 5 min, the yellow solution was cooled to -78 °C, treated with 190 μ L (0.380 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to 0 °C over a period of 5 min, treated with 90.0 μ L (1.12 mmol) of CH₂I₂, stirred for 2 min, treated with 25.0 μ L (0.246 mmol) of PhCHO, stirred at 0 °C for 30 min, quenched with saturated NH₄Cl, diluted with EtOAc, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on SiO₂ (4:1, hexanes/EtOAc) to yield 41 mg (88%) of **33**.

Attempted preparation of 280 using a B-Zn transmetalation. A solution of 190 μ L (1.67 mmol) of 3-hexyne in 2 mL of CH₂Cl₂ was cooled to 0 °C, treated with 500 μ L (0.500 mmol) of borane (1.0 M solution in THF), and stirred at 0 °C for 1 h. The mixture was treated with 750 μ L (1.50 mmol) of Me₂Zn (2.0 M solution in toluene), stirred for 2 min, treated with 200 μ L (2.48 mmol) of CH₂I₂, warmed to room temperature, treated with a solution of 153 mg (0.501 mmol) of imine 104 in 2 mL of CH₂Cl₂, stirred at room temperature for 16 h, quenched with saturated NH₄Cl, diluted with EtOAc, filtered through Celite, washed with H₂O, saturated NaHCO₃ and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc contain-ing 1% Et₃N) to yield 97 mg (50%) of 147.

(*E*)-*N*-(2,2-Dimethyl-1-phenylpent-3-enyl)-*P*,*P*-diphenylphosphinamide (293) and *N*-(2-methyl-1-phenylallyl)-*P*,*P*-diphenylphosphinamide (294). A solution of 876 mg (3.00 mmol) of Cp₂ZrCl₂ in 10 mL of THF was cooled to -78 °C, treated with 3.80 mL (6.08 mmol) of *n*-BuLi (1.6 M solution in hexanes), stirred at -78 °C for 1 h, treated with 300 μ L (3.38 mmol) of 2-bromopropene, warmed to room temperature over 5 min, stirred for 1 h and concentrated *in vacuo*. The residue was suspended in 2 mL of toluene, cooled to -78 °C, treated with 1.50 mL (3.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over 5 min, stirred for 2 h, treated with a solution of 153 mg (0.501 mmol) of imine **104** in 0.5 mL of THF

and 2 mL of toluene, stirred at room temperature for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 88 mg (45%) of **293** and 27 mg (16%) of **294** as colorless solids. **293**: R_f 0.61 (1:4, hexanes/EtOAc); mp 134-135 °C (Et₂O/hexane); IR (KBr) 3323, 3059, 3017, 2967, 2937, 2875, 1434, 1182, 1125, 1068, 754, 724, 707, 692 cm⁻¹; ¹H NMR δ 7.80-7.73 (m, 2 H), 7.59-7.52 (m, 2 H), 7.49-7.27 (m, 5 H), 7.21-7.15 (m, 4 H), 6.99-6.96 (m, 2 H), 5.53-5.36 (m, 2 H), 3.83 (t, 1 H, J = 10.6 Hz), 3.45 (t, 1 H, J = 8.7 Hz), 1.70 (d, 3 H, J = 5.1 Hz), 1.22 (s, 3 H), 0.81 (s, 3 H); ¹³C NMR δ 141.68, 141.64, 136.15, 134.37, 132.84, 132.80, 132.67, 131.91, 131.78, 131.53, 131.50, 131.10, 128.61, 128.45, 128.10, 127.94, 127.49, 126.84, 125.48, 63.77, 40.87, 40.81, 26.06, 25.92, 18.45; EIMS m/z 390 ([M+H]⁺, 1), 306 (100), 201 (93); HRMS (EI) m/z calcd for C₂₅H₂₉NOP [M+H] 390.1987, found 390.1971. **294**: R_f 0.53 (1:4, hexanes/EtOAc); mp 135-136 °C (Et₂O/hexane); IR (KBr) 3192, 1438, 1184, 1123, 1109, 725, 701 cm⁻¹; ¹H NMR δ 8.04-7.89 (m, 4 H), 7.61-7.31 (m, 11 H), 5.22 (s, 1 H), 5.13 (s, 1 H), 4.77 (t, 1 H, *J* = 10.6 Hz), 3.43 (dd, 1 H, *J* = 10.6, 6.6 Hz), 1.70 (s, 3 H); ¹³C NMR δ 145.72, 145.66, 141.69, 141.63, 133.50, 133.11, 132.39, 132.27, 132.20, 132.07, 131.89, 131.85, 131.82, 131.79, 131.40, 128.55, 128.51, 128.45, 128.34, 128.29, 127.31, 127.01, 126.68, 112.54, 60.21, 19.79; EIMS *m/z* 347 (M⁺, 19), 306 (26), 201 (72), 193 (43), 146 (95), 99 (100), 77 (59); HRMS (EI) m/z calcd for C₂₂H₂₂NOP 347.1439, found 347.1431.

N-[(1-Methylcyclopropyl)phenylmethyl]-*P*,*P*-diphenylphosphinamide (295).

A solution of 438 mg (1.50 mmol) of Cp₂ZrCl₂ in 5 mL of THF was cooled to -78 °C, treated with 1.88 mL (3.01 mmol) of *n*-BuLi (1.6 M solution in hexanes), stirred at -78 °C for 1 h, treated with 140 μ L (1.57 mmol) of 2-bromopropene, warmed to room temperature over 5 min, stirred for 1 h and concentrated *in vacuo*. The residue was dissolved in 3 mL of CH₂Cl₂, cooled to -78 °C, treated with 750 μ L (3.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over 5 min and treated with a solution of 153 mg (0.501 mmol) of imine **104** in 1 mL of CH₂Cl₂. The mixture was heated at reflux for 1 h, treated with 200 μ L (2.48 mmol)

of CH₂I₂, heated at reflux for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/EtOAc containing 1% Et₃N) to yield 81 mg (42%) of **293** and 25 mg (14%) of **295** as a colorless oil. **295**: IR (thin film) 3199, 3056, 2957, 2869, 1452, 1439, 1186, 1123, 1108, 1063, 751, 723, 698 cm⁻¹; ¹H NMR δ 7.93-7.86 (m, 2 H), 7.74-7.68 (m, 2 H), 7.52-7.36 (m, 4 H), 7.31-7.19 (m, 7 H), 3.77 (t, 1 H, *J* = 10.5 Hz), 3.42 (dd, 1 H, *J* = 9.5, 6.0 Hz), 1.01 (s, 3 H), 0.68-0.64 (m, 1 H), 0.60-0.54 (m, 1 H), 0.40-0.30 (m, 2 H); ¹³C NMR δ 142.44, 142.37, 132.67, 132.55, 132.19, 132.07, 131.93, 131.81, 128.65, 128.49, 128.42, 128.25, 128.18, 127.16, 127.02, 61.57, 21.57, 21.51, 19.89, 12.94, 12.40; EIMS *m*/*z* 361 (M⁺, 7), 306 (100), 201 (91), 160 (53), 91 (25), 77 (26); HRMS (EI) *m*/*z* calcd for C₂₃H₂₄NOP 361.1596, found 361.1592.

(*E*)-*N*-(4-Deutero-2-(deuteromethyl)-2-methyl-1-phenylpent-3-enyl)-*P*,*P*-diphenylphosphinamide (296). A solution of 590 mg (2.02 mmol) of Cp₂ZrCl₂ in 6 mL of THF was cooled to -78 °C, treated with 2.50 mL (4.00 mmol) of *n*-BuLi (1.6 M solution in hexanes), stirred at -78 °C for 1 h, treated with 270 μ L (3.04 mmol) of 2-bromopropene, warmed to room temperature over 5 min, stirred for 1 h and concentrated *in vacuo*. The residue was suspended in 3 mL of toluene, cooled to -78 °C, treated with 1.00 mL (2.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over 5 min, and cannulated into a suspension of 153 mg (0.501 mmol) of imine **104** in 1 mL of toluene. The mixture was stirred at room temperature for 12 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated *in vacuo*. The residue was chromatographed on deactivated SiO₂ (1:4, hexanes/ EtOAc containing 1% Et₃N) to yield 90 mg (46%) of **296** and 46 mg (6%) of **294** as a colorless solid. **296**: mp 133-134 °C (Et₂O/hexane); IR (thin film) 3207, 3055, 2958, 2929, 1454, 1436, 1183, 1125, 1107, 1068, 908, 749, 726, 696 cm⁻¹; ¹H NMR δ 7.82-7.75 (m, 2 H), 7.61-7.48 (m, 2 H), 7.47-7.32 (m, 4 H), 7.24-7.17 (m, 5 H), 7.01-6.98 (m, 2 H), 5.41 (bs, 1 H), 3.85 (t, 1 H, *J* = 10.6 Hz), 3.47 (dd, 1 H, J = 9.7, 7.7 Hz), 1.71 (d, 3 H, J = 0.8 Hz), 1.22 (s, 2 H), 0.83 (s, 3 H); ¹³C NMR δ 141.57, 141.53, 135.87, 134.26, 132.68, 132.55, 131.78, 131.66, 131.40, 131.36, 130.96, 128.48, 128.32, 127.97, 127.80, 127.35, 126.69, 125.09 (t, 1 C, J = 22.7 Hz), 63.61, 40.66, 40.59, 25.93, 25.48 (t, 1 C, J = 19.5 Hz), 18.19; ²H NMR (77 MHz) δ 5.51, 1.18; EIMS *m/z* 392 ([M+H]⁺, 1), 306 (100), 201 (77), 77 (24); HRMS (EI) *m/z* calcd for C₂₅H₂₇D₂NOP [M+H] 392.2112 found 392.2104.

N-(3-Methyl-1-phenylbut-3-enyl)-P,P-diphenylphosphinamide (304). A solution of 584 mg (2.00 mmol) of Cp₂ZrCl₂ in 6 mL of THF was cooled to -78 °C, treated with 2.50 mL (4.00 mmol) of *n*-BuLi (1.6 M solution in hexanes), stirred at -78 °C for 1 h, treated with 200 µL (2.25 mmol) of 2-bromopropene, warmed to room temperature over 5 min, stirred for 1 h and concentrated in vacuo. The residue was suspended in 2 mL of toluene, cooled to -78 °C, treated with 1.00 mL (2.00 mmol) of Me₂Zn (2.0 M solution in toluene), warmed to room temperature over 5 min, treated with 200 μ L (2.48 mmol) of CH₂I₂, stirred for 2 min, treated with a solution of 153 mg (0.501 mmol) of imine 104 in 0.5 mL of CH₂Cl₂ and 1.5 mL of toluene, stirred at room temperature for 4 h, quenched with saturated NH₄Cl, diluted with EtOAc and saturated NaHCO₃, filtered through Celite, washed with H₂O and brine, dried (MgSO₄), filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO₂ (1:9, hexanes/EtOAc containing 1% Et₃N) to yield 136 mg (75%) of **304** as a colorless solid: mp 165-166 °C (Et₂O/hexane); IR (thin film) 3182, 3058, 2910, 1437, 1186, 1123, 1109, 724, 696 cm⁻¹; ¹H NMR δ 7.87-7.79 (m, 2 H), 7.76-7.67 (m, 2 H), 7.51-7.33 (m, 4 H), 7.31-7.14 (m, 7 H), 4.77 (s, 1 H), 4.68 (s, 1 H), 4.36 (qn, 1 H, *J* = 6.3 Hz), 3.28 (dd, 1 H, *J* = 7.9, 6.0 Hz), 2.61 (dd, 1 H, J = 13.6, 7.3 Hz), 2.52 (dd, 1 H, J = 13.7, 7.0 Hz), 1.57 (s, 3 H); ¹³C NMR δ 143.49, 142.00, 133.88, 132.86, 132.51, 132.38, 132.19, 131.83, 131.71, 131.62, 131.13, 128.52, 128.35, 128.30, 128.26, 128.09, 127.06, 126.56, 114.40, 53.39, 48.20, 48.13, 22.26; EIMS m/z 361 (M^+ , 1), 306 (74), 201 (100); HRMS (EI) m/z calcd for C₂₃H₂₄NOP 361.1596, found 361.1593.

Appendix A

X-ray Structure and Data of Binaphthyl-Phenyl Phosphinimine 219

Appendix A, Table 1. Crystal data and structure refinement.

Identification code	ck1203s	
Empirical formula	C ₃₃ H ₂₄ NOP	
Formula weight	481.50	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.5978(16) Å	$\alpha = 106.997(3)^{\circ}$
	b = 10.7312(16) Å	$\beta = 97.186(3)^{\circ}$
	c = 13.330(2) Å	$\gamma = 114.688(3)^{\circ}$
Volume	$1262.9(3) Å^3$	()) () () () () () () () () (
Z	2	
Density (calculated)	1.266 Mg/m^3	
Absorption coefficient	0.136 mm^{-1}	
F(000)	504	
Crystal size	0.27 x 0.18 x 0.18 mm ³	
Theta range for data collection	1.67 to 32.48°	
Index ranges	$-15 \le h \le 15, -16 \le k \le 15,$	$-19 \le l \le 19$
Reflections collected	16001	
Independent reflections	8473 [R(int) = 0.0551]	
Completeness to theta = 32.48°	92.9%	
Absorption correction	None	
Max. and min. transmission	0.9760 and 0.9643	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	8473 / 0 / 421	
Goodness-of-fit on F^2	1.011	
Final R indices [I>2sigma(I)]	R1 = 0.0736, $wR2 = 0.176$	66
R indices (all data)	R1 = 0.1153, wR2 = 0.199	96
Largest diff. peak and hole	$0.862 \text{ and } -0.484 \text{ e.}\text{Å}^{-3}$	

Appendix A, Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for ck1203s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	у	Z	U(eq)
Р	2297(1)	5153(1)	1897(1)	16(1)
0	2456(2)	4133(2)	961(1)	19(1)
Ν	3572(2)	5987(2)	3101(1)	17(1)
C(1)	3382(2)	7871(2)	1630(2)	16(1)
C(2)	2169(2)	6667(2)	1637(2)	16(1)
C(3)	783(2)	6561(2)	1372(2)	20(1)
C(4)	605(2)	7651(2)	1148(2)	22(1)
C(5)	1819(2)	8914(2)	1166(2)	20(1)
C(6)	1669(3)	10071(2)	944(2)	24(1)
C(7)	2839(3)	11246(2)	902(2)	29(1)
C(8)	4200(3)	11303(3)	1068(2)	28(1)
C(9)	4390(3)	10220(2)	1299(2)	23(1)
C(10)	3210(2)	9002(2)	1372(2)	17(1)
C(11)	4844(2)	7967(2)	1848(2)	17(1)
C(12)	5155(2)	7086(2)	1053(2)	19(1)
C(13)	6518(2)	7126(2)	1219(2)	24(1)
C(14)	7555(2)	8046(2)	2201(2)	25(1)
C(15)	7289(2)	8982(2)	3048(2)	20(1)
C(16)	8358(2)	9933(3)	4067(2)	25(1)
C(17)	8088(3)	10818(3)	4882(2)	26(1)
C(18)	6746(2)	10813(2)	4713(2)	22(1)
C(19)	5687(2)	9904(2)	3732(2)	18(1)
C(20)	5925(2)	8960(2)	2872(2)	17(1)
C(21)	4631(2)	5705(2)	3202(2)	19(1)
C(22)	5739(2)	6366(2)	4250(2)	19(1)
C(23)	5576(3)	7172(3)	5201(2)	25(1)
C(24)	6645(3)	7828(3)	6187(2)	30(1)
C(25)	7883(3)	7678(3)	6217(2)	33(1)
C(26)	8060(3)	6872(3)	5278(2)	34(1)
C(27)	6977(3)	6202(3)	4290(2)	28(1)
C(28)	705(2)	4212(2)	2290(2)	17(1)
C(29)	396(2)	4913(2)	3212(2)	22(1)
C(30)	-829(2)	4123(3)	3485(2)	25(1)
C(31)	-1745(3)	2622(3)	2853(2)	28(1)
C(32)	-1440(3)	1921(3)	1944(2)	28(1)
C(33)	-214(2)	2708(2)	1663(2)	21(1)

Appendix A. Table 3.	Bond lengths [Å] and	angles [°] for ck1203s.
ippendix ii, iubie ei	Dona longens [11] and	

P-O	1.4800(15)	O-P-N	118.46(9)	C(14)-C(13)-C(12)	119.6(2)	
P-N	1.6764(18)	O-P-C(28)	112.25(9)	C(13)-C(14)-C(15)	120.9(2)	
P-C(28)	1.802(2)	N-P-C(28)	100.60(9)	C(16)-C(15)-C(14)	121.1(2)	
P-C(2)	1.8114(19)	O-P-C(2)	113.64(9)	C(16)-C(15)-C(20)	119.49(19)	
N-C(21)	1.280(3)	N-P-C(2)	104.07(9)	C(14)-C(15)-C(20)	119.46(19)	
C(1)-C(2)	1.394(3)	C(28)-P-C(2)	106.38(9)	C(17)-C(16)-C(15)	120.7(2)	
C(1)-C(10)	1.427(3)	C(21)-N-P	119.98(15)	C(16)-C(17)-C(18)	120.2(2)	
C(1)-C(11)	1.494(3)	C(2)-C(1)-C(10)	119.27(18)	C(19)-C(18)-C(17)	120.5(2)	
C(2)-C(3)	1.415(3)	C(2)-C(1)-C(11)	121.10(17)	C(18)-C(19)-C(20)	120.7(2)	
C(3)-C(4)	1.367(3)	C(10)-C(1)-C(11)	119.60(17)	C(19)-C(20)-C(15)	118.37(18)	
C(4)-C(5)	1.418(3)	C(1)-C(2)-C(3)	120.11(18)	C(19)-C(20)-C(11)	122.79(18)	
C(5)-C(6)	1.423(3)	C(1)-C(2)-P	121.53(15)	C(15)-C(20)-C(11)	118.82(18)	
C(5)-C(10)	1.423(3)	C(3)-C(2)-P	118.26(15)	N-C(21)-C(22)	121.77(19)	
C(6)-C(7)	1.372(4)	C(4)-C(3)-C(2)	121.3(2)	C(23)-C(22)-C(27)	119.5(2)	
C(7)-C(8)	1.405(4)	C(3)-C(4)-C(5)	120.1(2)	C(23)-C(22)-C(21)	120.65(19)	
C(8)-C(9)	1.368(3)	C(4)-C(5)-C(6)	121.3(2)	C(27)-C(22)-C(21)	119.8(2)	
C(9)-C(10)	1.421(3)	C(4)-C(5)-C(10)	119.39(18)	C(22)-C(23)-C(24)	120.5(2)	
C(11)-C(12)	1.374(3)	C(6)-C(5)-C(10)	119.2(2)	C(25)-C(24)-C(23)	119.6(2)	
C(11)-C(20)	1.432(3)	C(7)-C(6)-C(5)	120.8(2)	C(26)-C(25)-C(24)	120.7(2)	
C(12)-C(13)	1.414(3)	C(6)-C(7)-C(8)	119.7(2)	C(25)-C(26)-C(27)	119.6(2)	
C(13)-C(14)	1.369(3)	C(9)-C(8)-C(7)	121.1(2)	C(22)-C(27)-C(26)	120.1(2)	
C(14)-C(15)	1.420(3)	C(8)-C(9)-C(10)	120.8(2)	C(29)-C(28)-C(33)	119.49(19)	
C(15)-C(16)	1.416(3)	C(9)-C(10)-C(5)	118.27(18)	C(29)-C(28)-P	122.66(15)	
C(15)-C(20)	1.425(3)	C(9)-C(10)-C(1)	122.05(19)	C(33)-C(28)-P	117.81(16)	
C(16)-C(17)	1.366(3)	C(5)-C(10)-C(1)	119.68(18)	C(30)-C(29)-C(28)	119.98(19)	
C(17)-C(18)	1.410(3)	C(12)-C(11)-C(20)	119.48(19)	C(29)-C(30)-C(31)	120.2(2)	
C(18)-C(19)	1.376(3)	C(12)-C(11)-C(1)	119.42(18)	C(32)-C(31)-C(30)	120.0(2)	
C(19)-C(20)	1.417(3)	C(20)-C(11)-C(1)	121.10(17)	C(31)-C(32)-C(33)	120.1(2)	
C(21)-C(22)	1.465(3)	C(11)-C(12)-C(13)	121.8(2)	C(32)-C(33)-C(28)	120.2(2)	
C(22)-C(23)	1.388(3)					
C(22)-C(27)	1.391(3)					
C(23)-C(24)	1.388(3)					
C(24)-C(25)	1.385(4)					
C(25)-C(26)	1.382(4)					
C(26)-C(27)	1.396(3)					
C(28)-C(29)	1.395(3)					
C(28)-C(33)	1.396(3)					
C(29)-C(30)	1.385(3)					
C(30)-C(31)	1.393(3)					
C(31)-C(32)	1.381(3)					
C(32)-C(33)	1.391(3)					
	T 11	T 122	T 133	I 123	T 113	I 1 ¹²
--------	-----------------	------------	-------	-----------	---------------------	--------------------------
D	17(1)	U 11(1)	10(1)	U ((1)	2(1)	$\frac{0}{(1)}$
P	$\frac{1}{(1)}$	11(1)	18(1)	6(1)	$\frac{3(1)}{5(1)}$	6(1)
U N	21(1)	14(1)	22(1)	5(1)	5(1)	9(1)
N	16(1)	13(1)	20(1)	8(1)	2(1)	5(1)
C(1)	19(1)	13(1)	17(1)	6(1)	4(1)	8(1)
C(2)	19(1)	13(1)	17(1)	6(1)	$\frac{3(1)}{2(1)}$	8(1)
C(3)	18(1)	18(1)	22(1)	8(1)	2(1)	8(1)
C(4)	23(1)	22(1)	21(1)	7(1)	3(1)	14(1)
C(5)	29(1)	17(1)	17(1)	6(1)	3(1)	15(1)
C(6)	35(1)	21(1)	19(1)	6(1)	0(1)	18(1)
C(7)	51(2)	18(1)	22(1)	8(1)	3(1)	21(1)
C(8)	40(1)	19(1)	28(1)	13(1)	6(1)	14(1)
C(9)	28(1)	15(1)	25(1)	10(1)	6(1)	9(1)
C(10)	22(1)	12(1)	18(1)	6(1)	3(1)	9(1)
C(11)	19(1)	12(1)	21(1)	8(1)	6(1)	9(1)
C(12)	23(1)	14(1)	21(1)	7(1)	7(1)	9(1)
C(13)	25(1)	23(1)	29(1)	11(1)	14(1)	14(1)
C(14)	22(1)	24(1)	34(1)	12(1)	10(1)	14(1)
C(15)	18(1)	18(1)	26(1)	11(1)	8(1)	9(1)
C(16)	20(1)	24(1)	30(1)	10(1)	4(1)	10(1)
C(17)	21(1)	22(1)	26(1)	7(1)	0(1)	6(1)
C(18)	23(1)	18(1)	24(1)	8(1)	6(1)	8(1)
C(19)	19(1)	15(1)	21(1)	8(1)	6(1)	8(1)
C(20)	18(1)	13(1)	22(1)	9(1)	7(1)	7(1)
C(21)	19(1)	15(1)	22(1)	8(1)	2(1)	8(1)
C(22)	19(1)	15(1)	24(1)	10(1)	2(1)	8(1)
C(23)	27(1)	24(1)	25(1)	9(1)	3(1)	13(1)
C(24)	36(1)	29(1)	23(1)	7(1)	0(1)	17(1)
C(25)	34(1)	29(1)	31(1)	9(1)	-8(1)	15(1)
C(26)	26(1)	31(1)	42(2)	12(1)	-2(1)	16(1)
C(27)	26(1)	29(1)	30(1)	9(1)	3(1)	16(1)
C(28)	18(1)	12(1)	19(1)	6(1)	2(1)	6(1)
C(29)	23(1)	17(1)	24(1)	5(1)	4(1)	8(1)
C(30)	25(1)	25(1)	24(1)	9(1)	7(1)	11(1)
C(31)	23(1)	26(1)	28(1)	14(1)	7(1)	4(1)
C(32)	25(1)	17(1)	29(1)	7(1)	4(1)	2(1)
C(33)	23(1)	15(1)	22(1)	6(1)	6(1)	7(1)

Appendix A, Table 4. Anisotropic displacement parameters (Å² x 10³) for ck1203s. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}(a^{*})^{2}U^{11} + ... + 2hk(a^{*})(b^{*})U^{12}]$.

х y z U(eq) -70(30) 5680(30) 1340(20) H(3) 24(6) 7500(30) H(4) -390(30)900(20) 32(7) H(6) 700(30) 10010(30) 870(20) 26(7) H(7) H(8) 2670(30) 780(20) 27(7) 12010(30) 5030(30) 12130(30) 1030(20) 27(7)H(9) 5320(30) 10270(30) 1380(20) 32(7) H(12) 4460(30) 6400(30) 360(20) 22(6) 640(20) H(13) 6750(30) 6530(30) 35(8) H(14) 8490(30) 8090(30) 2350(20) 33(7) H(16) 9310(30) 9960(30) 4190(20) 28(7) H(17) 8830(30) 11490(30) 5560(20) 31(7) H(18) 6580(30) 11450(30) 5310(20) 37(8) H(19) 33(7) 4710(30) 9890(30) 3610(20) H(21) 4790(30) 5110(30) 2570(20) 34(7) H(23) 4720(30) 7220(30) 5190(20) 37(8) 6840(20) 39(8) H(24) 6490(30) 8260(30) H(25) 8680(30) 8110(30) 6910(30) 44(8)H(26) 8980(30) 6820(30) 5280(30) 48(9) H(27) 7080(30) 5670(30) 3590(20) 41(8) H(29) 1030(30) 5980(30) 3670(20) 30(7) 22(6) -1030(30) 4140(20) H(30) 4650(30) H(31) -2590(30) 2090(30) 3070(20) 45(8) H(32) -2120(30) 850(30) 1510(20) 40(8) 50(30) 2280(30) 1070(20) H(33) 21(6)

Appendix A, Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for ck1203s.

Appendix B

X-ray Structure and Data of Benzamide 268.

Appendix B, Table 1. Crystal data and structure refinement for ck102s.

Identification code	ck102s	
Empirical formula	$C_{21}H_{25}NO$	
Formula weight	307.42	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 5.3218(6) Å	$\alpha = 82.892(2)^{\circ}$
	b = 9.5102(10) Å	$\beta = 82.762(2)^{\circ}$
	c = 17.900(2)Å	$\gamma = 87.377(3)^{\circ}$
Volume	$891.38(17) \text{ Å}^3$,
Ζ	2	
Density (calculated)	1.145 Mg/m^3	
Absorption coefficient	0.069 mm^{-1}	
F(000)	332	
Crystal size	$0.27 \ge 0.03 \ge 0.03 \text{ mm}^3$	
Theta range for data collection	2.16 to 32.52°	
Index ranges	$-8 \le h \le 8, -13 \le k \le 13, -26$	$5 \le 1 \le 25$
Reflections collected	11657	
Independent reflections	6038 [R(int) = 0.1076]	
Completeness to theta = 32.52°	93.6%	
Absorption correction	None	
Max. and min. transmission	0.9979 and 0.9815	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	6038 / 0 / 212	
Goodness-of-fit on F^2	0.987	
Final R indices [I>2sigma(I)]	R1 = 0.1098, wR2 = 0.1907	
R indices (all data)	R1 = 0.2921, $wR2 = 0.2549$	
Largest diff. peak and hole	$0.582 \text{ and } -0.362 \text{ e.}\text{Å}^{-3}$	

Appendix B, Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for ck102s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
0	8439(4)	451(2)	3148(1)	35(1)
Ν	4293(5)	714(3)	2976(2)	30(1)
C(1)	3226(6)	-916(3)	4470(2)	29(1)
C(2)	2738(6)	-1919(4)	5099(2)	34(1)
C(3)	4500(6)	-2986(4)	5266(2)	35(1)
C(4)	6784(7)	-3048(4)	4791(2)	37(1)
C(5)	7294(6)	-2053(3)	4174(2)	32(1)
C(6)	5516(6)	-981(3)	4004(2)	25(1)
C(7)	6202(6)	116(3)	3341(2)	28(1)
C(8)	4648(6)	1887(3)	2367(2)	29(1)
C(9)	3028(6)	1691(4)	1754(2)	34(1)
C(10)	3768(9)	2398(5)	967(2)	66(1)
C(11)	3993(7)	824(5)	1138(2)	52(1)
C(12)	2266(8)	-152(5)	854(2)	69(2)
C(13)	2236(11)	-1598(5)	1265(5)	128(3)
C(14)	554(13)	-2589(7)	926(6)	177(4)
C(15)	1253(14)	-3911(8)	932(5)	154(3)
C(16)	4131(6)	3307(3)	2662(2)	28(1)
C(17)	5892(6)	4370(4)	2498(2)	39(1)
C(18)	5424(7)	5657(4)	2777(2)	49(1)
C(19)	3178(7)	5912(4)	3230(2)	51(1)
C(20)	1429(6)	4871(4)	3390(2)	40(1)
C(21)	1874(6)	3584(4)	3112(2)	34(1)

Appendix B, Table 3. Bond lengths [Å] and angles [°] for ck102s.

O-C(7)	1.242(3)	C(7)-N-C(8)	122.8(3)
N-C(7)	1.343(4)	C(2)-C(1)-C(6)	119.8(3)
N-C(8)	1.462(4)	C(3)-C(2)-C(1)	120.7(3)
C(1)-C(2)	1.389(4)	C(2)-C(3)-C(4)	119.0(3)
C(1)-C(6)	1.391(4)	C(5)-C(4)-C(3)	120.7(3)
C(2)-C(3)	1.381(4)	C(4)-C(5)-C(6)	120.3(3)
C(3)-C(4)	1.397(5)	C(5)-C(6)-C(1)	119.5(3)
C(4)-C(5)	1.370(4)	C(5)-C(6)-C(7)	118.3(3)
C(5)-C(6)	1.391(4)	C(1)-C(6)-C(7)	122.1(3)
C(6)-C(7)	1.499(4)	O-C(7)-N	122.3(3)
C(8)-C(16)	1.511(4)	O-C(7)-C(6)	120.8(3)
C(8)-C(9)	1.512(4)	N-C(7)-C(6)	116.9(3)
C(9)-C(11)	1.485(5)	N-C(8)-C(16)	111.7(3)
C(9)-C(10)	1.498(5)	N-C(8)-C(9)	109.7(3)
C(10)-C(11)	1.493(6)	C(16)-C(8)-C(9)	112.1(3)
C(11)-C(12)	1.509(5)	C(11)-C(9)-C(10)	60.1(2)
C(12)-C(13)	1.476(7)	C(11)-C(9)-C(8)	120.4(3)
C(13)-C(14)	1.553(8)	C(10)-C(9)-C(8)	118.8(3)
C(14)-C(15)	1.293(8)	C(11)-C(10)-C(9)	59.5(2)
C(16)-C(17)	1.389(4)	C(9)-C(11)-C(10)	60.4(2)
C(16)-C(21)	1.394(4)	C(9)-C(11)-C(12)	120.6(3)
C(17)-C(18)	1.379(5)	C(10)-C(11)-C(12)	122.1(4)
C(18)-C(19)	1.386(5)	C(13)-C(12)-C(11)	113.7(4)
C(19)-C(20)	1.369(5)	C(12)-C(13)-C(14)	112.0(6)
C(20)-C(21)	1.377(4)	C(15)-C(14)-C(13)	118.1(7)
		C(17)-C(16)-C(21)	118.0(3)
		C(17)-C(16)-C(8)	121.2(3)
		C(21)-C(16)-C(8)	120.8(3)
		C(18)-C(17)-C(16)	120.9(3)
		C(17)-C(18)-C(19)	120.4(3)
		C(20)-C(19)-C(18)	119.0(4)
		C(19)-C(20)-C(21)	121.1(3)
		C(20)-C(21)-C(16)	120.6(3)

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
0	18(1)	44(1)	41(1)	-2(1)	-4(1)	-4(1)
Ν	17(1)	33(2)	39(2)	-3(1)	-5(1)	-2(1)
C(1)	23(2)	31(2)	32(2)	-4(2)	-4(1)	4(1)
C(2)	26(2)	44(2)	33(2)	-9(2)	-1(2)	-2(2)
C(3)	36(2)	34(2)	34(2)	3(2)	-10(2)	-5(2)
C(4)	34(2)	34(2)	45(2)	-4(2)	-12(2)	6(2)
C(5)	21(2)	33(2)	42(2)	-6(2)	-6(2)	1(1)
C(6)	19(2)	28(2)	29(2)	-10(2)	-4(1)	-2(1)
C(7)	21(2)	29(2)	35(2)	-14(2)	-4(1)	-1(1)
C(8)	20(2)	36(2)	29(2)	-1(2)	-2(1)	0(1)
C(9)	27(2)	45(2)	30(2)	-7(2)	-1(2)	1(2)
C(10)	76(3)	77(3)	47(3)	3(2)	-13(2)	-30(3)
C(11)	38(2)	78(3)	43(2)	-31(2)	3(2)	-8(2)
C(12)	51(3)	106(4)	60(3)	-52(3)	8(2)	-21(3)
C(13)	79(4)	59(4)	266(9)	-45(5)	-77(5)	-3(3)
C(14)	103(6)	81(5)	367(14)	-89(7)	-41(7)	-5(4)
C(15)	144(7)	134(7)	196(8)	-59(6)	-24(6)	-18(6)
C(16)	20(2)	33(2)	32(2)	-5(2)	-6(1)	3(1)
C(17)	22(2)	44(2)	52(2)	-4(2)	-9(2)	-2(2)
C(18)	34(2)	37(2)	78(3)	-8(2)	-15(2)	-8(2)
C(19)	36(2)	39(2)	83(3)	-23(2)	-19(2)	7(2)
C(20)	26(2)	49(2)	52(2)	-21(2)	-12(2)	4(2)
C(21)	24(2)	37(2)	41(2)	-7(2)	-7(2)	-1(2)

Appendix B, Table 4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for ck102s. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2(a^*)^2\text{U}^{11} + ... + 2\text{hk}(a^*)(b^*)\text{U}^{12}]$.

Appendix B, Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for ck102s.

	Х	У	Z	U(eq)
H(1N)	2790(70)	270(30)	3136(19)	50(11)
H(1A)	2000	-188	4358	35
H(2A)	1175	-1870	5417	41
H(3A)	4163	-3668	5699	42
H(4A)	7996	-3788	4896	45
H(5A)	8871	-2095	3861	38
H(8A)	6461	1851	2139	35
H(9A)	1164	1651	1920	41
H(10A)	2396	2797	671	80
H(10B)	5350	2935	870	80
H(11A)	5769	443	1159	62
H(12A)	521	263	902	83
H(12B)	2810	-212	309	83
H(13A)	1590	-1550	1805	153
H(13B)	3989	-2000	1241	153
H(14A)	-1171	-2545	1206	213
H(14B)	424	-2195	394	213
H(15A)	78	-4399	679	231
H(15B)	1243	-4350	1457	231
H(15C)	2967	-3984	663	231
H(17A)	7440	4208	2189	47
H(18A)	6648	6372	2659	59
H(19A)	2857	6795	3426	61
H(20A)	-117	5040	3697	48
H(21A)	630	2879	3229	40

Appendix C

X-ray Structure and Data of a Derivative of Cyclopropane 267.

Appendix C, Table 1. Crystal data and structure refinement for ck502s.

Identification code	ck502s	
Empirical formula	$C_{22}H_{27}NO$	
Formula weight	321.45	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 5.3816(6) Å	$\alpha = 98.396(2)^{\circ}$
	b = 10.2141(11) Å	$\beta = 96.477(2)^{\circ}$
	c = 17.2013(19) Å	$\gamma = 94.354(2)^{\circ}$
Volume	925.31(18) $Å^3$	•
Ζ	2	
Density (calculated)	1.154 Mg/m ³	
Absorption coefficient	0.070 mm^{-1}	
F(000)	348	
Crystal size	$0.29 \ge 0.03 \ge 0.03 \text{ mm}^3$	
Theta range for data collection	2.02 to 25.00°	
Index ranges	$-6 \le h \le 6, -12 \le k \le 12, -20$	$\leq l \leq 20$
Reflections collected	7446	
Independent reflections	3268 [R(int) = 0.0545]	
Completeness to theta = 25.00°	100.0%	
Absorption correction	Sadabs	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	3268 / 0 / 325	
Goodness-of-fit on F^2	1.036	
Final R indices [I>2sigma(I)]	R1 = 0.0743, $wR2 = 0.1549$	
R indices (all data)	R1 = 0.1263, $wR2 = 0.1713$	
Largest diff. peak and hole	0.280 and -0.167 e.Å ⁻³	

Appendix C, Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for ck502s. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
0	3321(4)	5849(2)	1936(1)	38(1)
Ν	7560(5)	6105(3)	2092(2)	32(1)
C(1)	12461(13)	1826(6)	3554(4)	92(2)
C(2)	13152(9)	3254(5)	3954(3)	69(1)
C(3)	11184(8)	4172(4)	3713(3)	59(1)
C(4)	11701(7)	5569(4)	4179(2)	48(1)
C(5)	9688(7)	6423(3)	3939(2)	41(1)
C(6)	9965(7)	7915(4)	4142(2)	44(1)
C(7)	9965(6)	7261(3)	3309(2)	32(1)
C(8)	7811(6)	7311(3)	2681(2)	34(1)
C(9)	8037(5)	8546(3)	2288(2)	33(1)
C(10)	6417(6)	9519(3)	2398(2)	42(1)
C(11)	6623(7)	10634(4)	2029(2)	51(1)
C(12)	8443(6)	10776(4)	1539(2)	47(1)
C(13)	10084(7)	9814(3)	1432(2)	44(1)
C(14)	9897(6)	8707(3)	1800(2)	36(1)
C(15)	5326(5)	5481(3)	1745(2)	30(1)
C(16)	5411(5)	4349(3)	1101(2)	29(1)
C(17)	3435(6)	3339(3)	961(2)	33(1)
C(18)	3328(6)	2323(3)	337(2)	39(1)
C(19)	5169(6)	2284(3)	-156(2)	36(1)
C(20)	7137(6)	3264(3)	-22(2)	36(1)
C(21)	7267(6)	4274(3)	601(2)	34(1)
C(22)	12291(8)	8665(5)	4628(3)	62(1)

|--|

O-C(15)	1.233(3)	C(15)-N-C(8)	123.4(3)	N-C(8)-H(8)	105.3(15)
N-C(15)	1.349(4)	C(15)-N-H(1N)	117(2)	C(7)-C(8)-H(8)	110.9(16)
N-C(8)	1.462(4)	C(8)-N-H(1N)	120(2)	C(9)-C(8)-H(8)	106.5(16)
N-H(1N)	0.84(3)	C(2)-C(1)-H(1A)	104(2)	C(10)- $C(9)$ - $C(14)$	118.6(3)
C(1)-C(2)	1.519(7)	C(2)-C(1)-H(1B)	86(4)	C(10)-C(9)-C(8)	121.3(3)
C(1)-H(1A)	1.09(5)	H(1A)-C(1)-H(1B)	114(5)	C(14)-C(9)-C(8)	120.0(3)
C(1)-H(1B)	1.09(8)	C(2)-C(1)-H(1C)	100(3)	C(9)-C(10)-C(11)	120.8(4)
C(1)-H(1C)	1.09(6)	H(1A)-C(1)-H(1C)	119(4)	C(9)- $C(10)$ - $H(10)$	122 7(19)
C(2)-C(3)	1.529(6)	H(1B)-C(1)-H(1C)	123(5)	C(11)-C(10)-H(10)	116.5(19)
C(2)-H(2A)	1.13(8)	C(1)-C(2)-C(3)	112.1(4)	C(12)-C(11)-C(10)	120.2(4)
C(2)-H(2B)	1.15(7)	C(1)-C(2)-H(2A)	108(4)	C(12)- $C(11)$ - $H(11)$	123(2)
C(3)-C(4)	1.519(5)	C(3)-C(2)-H(2A)	109(4)	C(10)-C(11)-H(11)	117(2)
C(3)-H(3A)	1.00(3)	C(1)-C(2)-H(2B)	107(3)	C(11)-C(12)-C(13)	119.4(4)
C(3)-H(3B)	1.08(5)	C(3)-C(2)-H(2B)	100(3)	C(11)-C(12)-H(12)	118(2)
C(4)-C(5)	1.501(5)	H(2A)-C(2)-H(2B)	121(5)	C(13)-C(12)-H(12)	123(2)
C(4)-H(4A)	0.98(3)	C(4)-C(3)-C(2)	112.6(3)	C(14)-C(13)-C(12)	120.8(4)
C(4)-H(4B)	1.08(4)	C(4)-C(3)-H(3A)	1143(17)	C(14)-C(13)-H(13)	120(2)
C(5)-C(7)	1.490(5)	C(2)-C(3)-H(3A)	108.8(18)	C(12)-C(13)-H(13)	119(2)
C(5)- $C(6)$	1 505(5)	C(4)-C(3)-H(3B)	120(3)	C(12) - C(12) - C(12)	1202(3)
C(5)-H(5)	0.96(3)	C(2)-C(3)-H(3B)	104(3)	C(13)-C(14)-H(14)	120.9(19)
C(6)- $C(7)$	1.490(5)	H(3A)-C(3)-H(3B)	96(3)	C(9)-C(14)-H(14)	118.8(19)
C(6)-C(22)	1 511(5)	C(5)-C(4)-C(3)	1107(3)	O-C(15)-N	121 9(3)
C(6)-H(6)	0.94(3)	C(5)-C(4)-H(4A)	110(2)	O-C(15)-C(16)	121.8(3)
C(7)- $C(8)$	1.502(4)	C(3)-C(4)-H(4A)	109(2)	N-C(15)-C(16)	116 3(3)
C(7)-H(7)	0.92(3)	C(5)-C(4)-H(4B)	104.6(19)	C(21)-C(16)-C(17)	118 1(3)
C(8)-C(9)	1 518(4)	C(3)-C(4)-H(4B)	112 1(19)	C(21)-C(16)-C(15)	123 7(3)
C(8)-H(8)	0.96(3)	H(4A)-C(4)-H(4B)	111(3)	C(17)-C(16)-C(15)	118.1(3)
C(9)-C(10)	1.378(4)	C(7)-C(5)-C(4)	121.2(3)	C(18)-C(17)-C(16)	120.5(3)
C(9)-C(14)	1.393(4)	C(7)-C(5)-C(6)	59.7(2)	C(18)-C(17)-H(17)	124.7(17)
C(10)-C(11)	1.386(5)	C(4)-C(5)-C(6)	123.2(3)	C(16)-C(17)-H(17)	114.8(17)
C(10)-H(10)	0.94(3)	C(7)-C(5)-H(5)	111(2)	C(17)-C(18)-C(19)	120.3(3)
C(11)-C(12)	1.374(5)	C(4)-C(5)-H(5)	114(2)	C(17)-C(18)-H(18)	120(2)
C(11)-H(11)	0.95(4)	C(6)-C(5)-H(5)	116(2)	C(19)-C(18)-H(18)	120(2)
C(12)-C(13)	1.377(5)	C(7)-C(6)-C(5)	59.7(2)	C(18)-C(19)-C(20)	119.9(3)
C(12)-H(12)	0.93(4)	C(7)-C(6)-C(22)	122.3(3)	C(18)-C(19)-H(19)	119.2(16)
C(13)-C(14)	1.376(5)	C(5)-C(6)-C(22)	121.9(3)	C(20)-C(19)-H(19)	120.8(17)
C(13)-H(13)	0.91(4)	C(7)-C(6)-H(6)	113.3(19)	C(21)-C(20)-C(19)	120.1(3)
C(14)-H(14)	0.95(3)	C(5)-C(6)-H(6)	116.9(18)	C(21)-C(20)-H(20)	121.1(18)
C(15)-C(16)	1.487(4)	C(22)-C(6)-H(6)	112.9(18)	C(19)-C(20)-H(20)	118.7(18)
C(16)-C(21)	1.389(4)	C(5)-C(7)-C(6)	60.7(2)	C(20)-C(21)-C(16)	121.1(3)
C(16)-C(17)	1.399(4)	C(5)-C(7)-C(8)	120.5(3)	C(20)-C(21)-H(21)	118.4(17)
C(17)-C(18)	1.373(5)	C(6)-C(7)-C(8)	121.6(3)	C(16)-C(21)-H(21)	120.5(17)
C(17)-H(17)	0.98(3)	C(5)-C(7)-H(7)	113.0(17)	C(6)-C(22)-H(22A)	105.8(19)
C(18)-C(19)	1.375(5)	C(6)-C(7)-H(7)	114.8(16)	C(6)-C(22)-H(22B)	112(3)
C(18)-H(18)	0.96(3)	C(8)-C(7)-H(7)	115.2(17)	H(22A)-C(22)-H(22B)	113(3)
C(19)-C(20)	1.375(4)	N-C(8)-C(7)	109.8(3)	C(6)-C(22)-H(22C)	111(3)
C(19)-H(19)	0.92(3)	N-C(8)-C(9)	110.9(3)	H(22A)-C(22)-H(22C)	107(3)
C(20)-C(21)	1.367(4)	C(7)-C(8)-C(9)	113.1(3)	H(22B)-C(22)-H(22C)	107(4)
C(20)-H(20)	0.93(3)				
C(21)-H(21)	0.94(3)				
C(22)-H(22A)	1.02(3)				
C(22)-H(22B)	1.05(5)				

C(22)-H(22B) 1.05(5) C(22)-H(22C) 1.09(5)

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
0	20(1)	41(1)	52(1)	3(1)	5(1)	0(1)
Ν	18(1)	33(2)	44(2)	3(1)	3(1)	0(1)
C(1)	94(4)	70(4)	105(5)	-4(3)	0(4)	24(3)
C(2)	63(3)	63(3)	78(3)	4(3)	-8(3)	17(2)
C(3)	56(3)	59(3)	60(3)	9(2)	-3(2)	15(2)
C(4)	43(2)	49(2)	52(3)	16(2)	5(2)	0(2)
C(5)	30(2)	43(2)	50(2)	12(2)	2(2)	-1(2)
C(6)	35(2)	45(2)	50(2)	3(2)	5(2)	4(2)
C(7)	21(2)	37(2)	39(2)	7(2)	7(2)	0(1)
C(8)	25(2)	36(2)	40(2)	3(2)	4(2)	-1(1)
C(9)	20(2)	36(2)	39(2)	0(2)	-4(1)	-2(1)
C(10)	26(2)	45(2)	55(2)	3(2)	6(2)	1(2)
C(11)	31(2)	42(2)	80(3)	16(2)	0(2)	7(2)
C(12)	33(2)	43(2)	63(3)	17(2)	-11(2)	-10(2)
C(13)	29(2)	48(2)	53(2)	15(2)	-1(2)	-8(2)
C(14)	24(2)	36(2)	47(2)	6(2)	2(2)	3(2)
C(15)	23(2)	29(2)	39(2)	14(2)	3(1)	-3(1)
C(16)	22(2)	28(2)	34(2)	7(1)	-6(1)	-2(1)
C(17)	24(2)	37(2)	39(2)	11(2)	0(2)	-2(1)
C(18)	28(2)	37(2)	48(2)	8(2)	-1(2)	-8(2)
C(19)	32(2)	37(2)	37(2)	2(2)	-6(2)	2(2)
C(20)	28(2)	42(2)	38(2)	5(2)	5(2)	2(2)
C(21)	20(2)	34(2)	46(2)	9(2)	2(2)	-6(1)
C(22)	53(3)	62(3)	60(3)	-6(2)	-11(2)	-1(2)

Appendix C, Table 4. Anisotropic displacement parameters (Å² x 10³) for ck502s. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}(a^{*})^{2}U^{11} + ... + 2hk(a^{*})(b^{*})U^{12}]$.

Appendix C, Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for ck502s.

	X	У	Z	U(eq)
H(1N)	8850(60)	5770(30)	1960(17)	29(9)
H(1A)	14070(100)	1320(50)	3750(30)	107(16)
H(1B)	12600(130)	2210(70)	3000(50)	190(30)
H(1C)	10680(130)	1620(60)	3780(40)	160(30)
H(2A)	13290(130)	3270(70)	4610(50)	200(30)
H(2B)	14820(120)	3660(60)	3670(40)	170(30)
H(3A)	11020(50)	4130(30)	3120(20)	38(9)
H(3B)	9410(100)	3610(50)	3720(30)	130(19)
H(4A)	13330(70)	5950(30)	4080(20)	55(11)
H(4B)	11650(60)	5580(30)	4800(20)	63(11)
H(5)	8010(60)	6000(30)	3886(19)	50(10)
H(6)	8500(60)	8330(30)	4224(18)	35(9)
H(7)	11530(50)	7260(20)	3135(15)	22(7)
H(8)	6250(50)	7310(20)	2901(16)	22(7)
H(10)	5180(60)	9490(30)	2741(19)	38(9)
H(11)	5530(70)	11300(40)	2150(20)	76(13)
H(12)	8460(70)	11510(40)	1280(20)	62(12)
H(13)	11320(70)	9920(30)	1120(20)	54(11)
H(14)	10980(60)	8020(30)	1710(18)	41(9)
H(17)	2180(60)	3440(30)	1328(18)	40(9)
H(18)	1940(60)	1640(30)	240(20)	53(10)
H(19)	5020(50)	1620(30)	-590(16)	20(7)
H(20)	8380(60)	3210(30)	-359(18)	32(8)
H(21)	8630(50)	4920(30)	681(16)	24(7)
H(22Å)	13770(70)	8250(30)	4410(20)	51(10)
H(22B)	12290(80)	8640(40)	5240(30)	99(16)
H(22C)	12450(90)	9710(50)	4550(30)	126(19)

Appendix D

X-ray Structure and Data of Lactam anti-287

Appendix D, Table 1. Crystal data and structure refinement for chris601.

Identification code	chris601	
Empirical formula	$C_{13}H_{15}NO$	
Formula weight	201.26	
Temperature	210(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 12.024(2) Å	$\alpha = 90^{\circ}$
	b = 6.1680(12) Å	$\beta = 96.28(3)^{\circ}$
	c = 15.437(3) Å	$\gamma = 90^{\circ}$
Volume	$1138.0(4) Å^{3}$	•
Ζ	4	
Density (calculated)	1.175 Mg/m^3	
Absorption coefficient	0.074 mm^{-1}	
F(000)	432	
Crystal size	$0.35 \ge 0.14 \ge 0.04 \text{ mm}^3$	
Theta range for data collection	2.65 to 25.03°	
Index ranges	$0 \le h \le 14, 0 \le k \le 7, -18 \le$	$l \leq 18$
Reflections collected	2119	
Independent reflections	2016 [R(int) = 0.0341]	
Completeness to theta = 25.03°	100.0%	
Absorption correction	Sadabs	
Max. and min. transmission	0.9970 and 0.9745	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	2016 / 0 / 197	
Goodness-of-fit on F^2	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0500, wR2 = 0.0886	
R indices (all data)	R1 = 0.1103, $wR2 = 0.1077$	
Extinction coefficient	0.017(3)	
Largest diff. peak and hole	0.111 and -0.118 e.Å ⁻³	

Appendix D, Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å² x 10^3) for chris601. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
0	10119(2)	84(3)	11145(1)	66(1)
Ν	9090(2)	2373(3)	10251(1)	45(1)
C(1)	9491(2)	1678(4)	11045(1)	47(1)
C(2)	9136(3)	2849(5)	11820(2)	58(1)
C(3)	8558(3)	4990(5)	11625(2)	56(1)
C(4)	7729(2)	4854(4)	10802(1)	45(1)
C(5)	8389(2)	4283(4)	10038(1)	41(1)
C(6)	7111(3)	6958(5)	10638(2)	61(1)
C(7)	6028(4)	7211(9)	10602(2)	92(1)
C(8)	7645(2)	3901(4)	9195(1)	40(1)
C(9)	7470(2)	5552(5)	8586(2)	55(1)
C(10)	6756(3)	5232(6)	7824(2)	70(1)
C(11)	6234(2)	3296(6)	7667(2)	71(1)
C(12)	6404(2)	1640(6)	8256(2)	69(1)
C(13)	7110(2)	1955(4)	9018(2)	55(1)

Appendix D, Table 3. Bond lengths [Å] and angles [°] for chris601.

O-C(1)	1.239(3)	C(1)-N-C(5)	127.2(2)	N-C(5)-H(5)	110.2(11)
N-C(1)	1.338(3)	C(1)-N-H(1N)	113.7(16)	C(8)-C(5)-H(5)	106.7(12)
N-C(5)	1.465(3)	C(5)-N-H(1N)	119.0(16)	C(4)-C(5)-H(5)	106.8(12)
N-H(1N)	0.90(3)	O-C(1)-N	121.5(2)	C(7)-C(6)-C(4)	125.6(4)
C(1)-C(2)	1.498(3)	O-C(1)-C(2)	120.4(2)	C(7)-C(6)-H(6)	121.0(18)
C(2)-C(3)	1.507(4)	N-C(1)-C(2)	118.1(2)	C(4)-C(6)-H(6)	113.3(18)
C(2)-H(2A)	0.92(3)	C(1)-C(2)-C(3)	115.4(2)	C(6)-C(7)-H(7A)	123(2)
C(2)-H(2B)	1.00(3)	C(1)-C(2)-H(2A)	104.5(18)	C(6)-C(7)-H(7B)	113.7(19)
C(3)-C(4)	1.528(3)	C(3)-C(2)-H(2A)	111.5(18)	H(7A)-C(7)-H(7B)	123(3)
C(3)-H(3A)	0.96(2)	C(1)-C(2)-H(2B)	107.9(16)	C(13)-C(8)-C(9)	118.3(2)
C(3)-H(3B)	0.96(3)	C(3)-C(2)-H(2B)	111.0(16)	C(13)-C(8)-C(5)	121.7(2)
C(4)-C(6)	1.504(3)	H(2A)-C(2)-H(2B)	106(2)	C(9)-C(8)-C(5)	120.0(2)
C(4)-C(5)	1.534(3)	C(2)-C(3)-C(4)	111.2(2)	C(8)-C(9)-C(10)	120.2(3)
C(4)-H(4)	1.00(2)	C(2)-C(3)-H(3A)	113.0(14)	C(8)-C(9)-H(9)	120.5(15)
C(5)-C(8)	1.514(3)	C(4)-C(3)-H(3A)	107.0(14)	C(10)-C(9)-H(9)	119.3(15)
C(5)-H(5)	1.01(2)	C(2)-C(3)-H(3B)	109.4(15)	C(11)-C(10)-C(9)	120.3(3)
C(6)-C(7)	1.306(4)	C(4)-C(3)-H(3B)	110.5(14)	C(11)-C(10)-H(10)	121.7(17)
C(6)-H(6)	0.97(3)	H(3A)-C(3)-H(3B)	106(2)	C(9)-C(10)-H(10)	117.9(18)
C(7)-H(7A)	0.97(3)	C(6)-C(4)-C(3)	111.0(2)	C(10)-C(11)-C(12)	120.3(3)
C(7)-H(7B)	1.01(3)	C(6)-C(4)-C(5)	110.9(2)	C(10)-C(11)-H(11)	122.1(18)
C(8)-C(13)	1.375(3)	C(3)-C(4)-C(5)	107.9(2)	C(12)-C(11)-H(11)	117.6(18)
C(8)-C(9)	1.386(3)	C(6)-C(4)-H(4)	109.3(11)	C(11)-C(12)-C(13)	119.5(3)
C(9)-C(10)	1.393(4)	C(3)-C(4)-H(4)	110.2(12)	C(11)-C(12)-H(12)	122.6(14)
C(9)-H(9)	1.00(3)	C(5)-C(4)-H(4)	107.5(12)	C(13)-C(12)-H(12)	117.9(14)
C(10)-C(11)	1.359(4)	N-C(5)-C(8)	109.85(19)	C(8)-C(13)-C(12)	121.4(3)
C(10)-H(10)	0.98(3)	N-C(5)-C(4)	110.13(18)	C(8)-C(13)-H(13)	119.8(15)
C(11)-C(12)	1.368(4)	C(8)-C(5)-C(4)	112.99(19)	C(12)-C(13)-H(13)	118.9(15)
C(11)-H(11)	0.95(3)				
C(12)-C(13)	1.386(3)				
C(12)-H(12)	1.01(3)				
C(13)-H(13)	0.97(3)				

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
0	73(1)	78(1)	45(1)	7(1)	-6(1)	33(1)
Ν	42(1)	58(1)	36(1)	2(1)	0(1)	10(1)
C(1)	43(1)	57(2)	40(1)	4(1)	-2(1)	2(1)
C(2)	65(2)	68(2)	39(2)	3(1)	-2(1)	12(2)
C(3)	63(2)	61(2)	41(2)	-4(1)	-2(1)	8(2)
C(4)	47(1)	47(2)	40(1)	-3(1)	3(1)	1(1)
C(5)	41(1)	41(1)	40(1)	5(1)	-1(1)	1(1)
C(6)	69(2)	66(2)	46(2)	-5(1)	-7(1)	17(2)
C(7)	91(3)	113(3)	68(2)	-14(2)	-10(2)	46(3)
C(8)	40(1)	45(1)	35(1)	3(1)	5(1)	4(1)
C(9)	65(2)	56(2)	43(2)	6(1)	4(1)	6(2)
C(10)	81(2)	84(2)	43(2)	10(2)	-4(2)	20(2)
C(11)	57(2)	100(3)	50(2)	-14(2)	-13(1)	22(2)
C(12)	58(2)	71(2)	72(2)	-12(2)	-14(2)	-2(2)
C(13)	53(2)	54(2)	56(2)	7(1)	-8(1)	0(1)

Appendix D, Table 4. Anisotropic displacement parameters (Å² x 10³) for chris601. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}(a^{*})^{2}U^{11} + ... + 2hk(a^{*})(b^{*})U^{12}]$.

Appendix D, Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for chris601.

	Х	у	Ζ	U(eq)
H(1N)	9320(20)	1570(40)	9814(17)	70(9)
H(2A)	8680(20)	1890(40)	12063(18)	80(10)
H(2B)	9810(20)	3030(40)	12251(18)	91(9)
H(3A)	9070(19)	6150(40)	11537(15)	57(8)
H(3B)	8182(19)	5420(40)	12115(17)	66(8)
H(4)	7178(17)	3660(30)	10859(13)	40(6)
H(5)	8870(17)	5580(30)	9938(13)	45(6)
H(6)	7600(20)	8190(50)	10597(18)	93(11)
H(7A)	5660(30)	8600(50)	10490(20)	109(12)
H(7B)	5600(30)	5810(60)	10660(20)	113(14)
H(9)	7830(20)	6990(40)	8699(16)	74(9)
H(10)	6660(20)	6430(50)	7403(19)	95(10)
H(11)	5750(20)	3030(50)	7150(19)	91(9)
H(12)	6040(20)	170(40)	8157(15)	74(8)
H(13)	7222(19)	780(40)	9431(16)	69(8)

Cited Literature

- 1. Wipf, P.; Kendall, C. In *Topics in Organometallic Chemistry, Vol. 8: Metallocenes in Stereoselective Synthesis*; Takahashi, T. Ed.; Springer-Verlag: Berlin, 2004.
- Reviews: (a) Schwartz, J.; Labinger, J. A. Angew. Chem. Int. Ed. 1976, 15, 333; (b) Labinger, J. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, pp 667-702; (c) Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853; (d) Wipf, P.; Nunes, R. L. Tetrahedron 2004, 60, 1269. For a theoretical study of hydrozirconation, see (e) Endo, J.; Koga, N.; Morokuma, K. Organometallics 1993, 12, 2777.
- (a) Wipf, P.; Takahashi, H.; Zhuang, N. Pure Appl. Chem. 1998, 70, 1077; (b) Annby, U.; Karlsson, S.; Grnowitz, S.; Hallberg, A.; Alvhall, J.;Svenson, R. Acta Chem. Scand. 1993, 47, 425; (c) Chirik, P. J.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1999, 121, 10308. (d) Azemi, T.; Kitamura, M.; Narasaka, K. Tetrahedron 2004, 60, 1339.
- 4. Zhang, Y.; Keaton, R. J.; Sita, L. R. J. Am. Chem. Soc. 2003, 125, 8746.
- 5. Most recent review: Negishi, E.; Takahashi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755.
- Takahashi, T.; Kotora, M.; Fischer, R.; Nishihara, Y.; Nakajima, K. J. Am. Chem. Soc. 1995, 117, 11039.
- 7. (a) Liard, A.; Marek, I. J. Org. Chem. 2000, 65, 7218; (b) Liard, A.; Kaftanov, J.; Chechik, H.; Farhat, S.; Morlender-Vais, N.; Averbuj, C.; Marek, I. J. Organomet. Chem. 2001, 624, 26.
- 8. Ganchegui, B.; Bertus, P.; Szymoniak, J. Synlett 2001, 123.
- (a) Farhat, S.; Marek, I. Angew. Chem. Int. Ed. 2002, 21, 1410; (b) Farhat, S.; Zouev, I.; Marek, I. Tetrahedron 2004, 60, 1329.
- 10. Wailes, P. C.; Weigold, H. J. Organomet. Chem. 1970, 24, 405.
- 11. Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1972, 43, C32.
- 12. Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1971, 27, 373.
- 13. Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
- 14. Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679.
- 15. Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521.

- 16. (a) Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1992, 33, 7461; (b) Trauner, D.;
 Danishefsky, S. J. Tetrahedron Lett. 1999, 40, 6513.
- 17. Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115.
- 18. White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2000, 122, 11995.
- 19. Zablocka, M.; Delest, B.; Igau, A.; Skowronska, A.; Majoral, J.-P. *Tetrahedron Lett.* **1997**, *38*, 5997.
- 20. Bertelo, C. A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 228.
- 21. Negishi, E.; Swanson, D. R.; Miller, S. R. Tetrahedron Lett. 1988, 29, 1631.
- 22. (a) Lipshutz, B. H.; Keil, R.; Barton, J. C. *Tetrahedron Lett.* 1992, *33*, 5861; (b) Mapp, A. K.; Heathcock, C. H. *J. Org. Chem.* 1999, *64*, 23.
- 23. Bray, K. L.; Lloyd-Jones, G. C. Eur. J. Org. Chem. 2001, 1635.
- 24. Harada, S.; Taguchi, T.; Taguchi, N.; Narita, K.; Hanzawa, Y. Angew. Chem. Int. Ed. 1998, 37, 1696.
- 25. (a) Kakuuchi, A.; Taguchi, N.; Hanzawa, Y. *Tetrahedron Lett.* 2001, 42, 1547; (b) Kakuuchi,
 A.; Taguchi, T.; Hanzawa, Y. *Eur. J. Org. Chem.* 2003, 116.
- 26. Hanzawa, Y.; Tabuchi, T.; Taguchi, T. Tetrahedron Lett. 1998, 39, 6249.
- 27. (a) Hanzawa, Y.; Tabuchi, T.; Taguchi, T. *Tetrahedron Lett.* 1998, *39*, 8141; (b) Hanzawa,
 Y.; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. *Angew. Chem. Int. Ed.* 1999, *38*, 2395.
- 28. (a) Chino, M.; Matsumoto, T.; Suzuki, K. *Synlett* 1994, 359. See also (b) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y. *Tetrahedron* 1995, *51*, 4507.
- 29. (a) Maeta, H.; Hashimoto, T.; Hasegawa, T.; Suzuki, K. *Tetrahedron Lett.* 1992, *33*, 5965;
 (b) Suzuki, K.; Hasegawa, T.; Imai, T.; Maeta, H.; Ohba, S. *Tetrahedron* 1995, *51*, 4483; (c) Richter, F.; Bauer, M.; Perez, C.; Maichle- Mössmer, C.; Maier, M. E. J. Org. Chem. 2002, 67, 2474.
- 30. (a) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 825; (b) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 5880; (c) Wipf, P.; Methot, J.-L. Org. Lett. 1999, 1, 1253.
- 31. Negishi, E.; Van Horn, D. E. J. Am. Chem. Soc. 1977, 99, 3168.
- 32. (a) Okukado, N.; Van Horn, D. E.; Klima, W. L.; Negishi, E. *Tetrahedron Lett.* 1978, 19, 1027; (b) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393.

- 33. Xu, C. D.; Negishi, E. Tetrahedron Lett. 1999, 40, 431.
- 34. (a) Swanson, D. R.; Nguyen, T.; Noda, Y.; Negishi, E. J. Org. Chem. 1991, 56, 2590; (b)
 Makabe, H.; Negishi, E. Eur. J. Org. Chem. 1999, 969.
- 35. Barrett, A. G. M.; Peña, M.; Willardsen, J. A. J. Org. Chem. 1996, 61, 1082.
- 36. Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 82.
- 37. Lipshutz, B. H.; Frieman, B. Tetrahedron 2004, 60, 1309.
- 38. Wipf, P. Synthesis 1993, 537.
- 39. (a) Wipf, P.; Xu, W. Synlett 1992, 718; (b) El-Batta, A.; Hage, T. R.; Plotkin, S.; Bergdahl, M. Org. Lett. 2004, 6, 107.
- 40. (a) Wipf, P.; Xu, W.; Smitrovich, J. H.; Lehmann, R.; Venanzi, L. M. *Tetrahedron* 1994, 50, 1935; (b) Wipf, P.; Takahashi, H. J. Chem. Soc., Chem. Commun. 1996, 2675.
- For a racemic Rh-catalyzed 1,4-addition of alkenylzirconocenes, see: (a) Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. *Tetrahedron* 2004, *60*, 1293. For an asymmetric Rh-catalyzed addition, see: (b) Oi, S.; Sato, T.; Inoue, Y. *Tetrahedron Lett.* 2004, *45*, 5051.
- 42. Lipshutz, B. H.; Bhandari, A.; Lindsley, C.; Keil, R.; Wood, M. R. Pure Appl. Chem. 1994, 66, 1493.
- 43. Lipshutz, B. H.; Kato, K. Tetrahedron Lett. 1991, 32, 5647.
- 44. (a) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440; (b) Babiak, K. A.; Behling, J. R.; Dygos, J. H.; McLaughlin, K. T.; Ng, J. S.; Kalish, V. J.; Kramer, S. W.; Shone, R. L. J. Am. Chem. Soc. 1990, 112, 7441.
- 45. (a) Lipshutz, B. H.; Wood, M. R. J. Am. Chem. Soc. 1994, 116, 11689; (b) Lipshutz, B. H.;
 Wood, M. R. Tetrahedron Lett. 1994, 35, 6433.
- 46. Manzotti, R.; Tang, S.-Y.; Janda, K. D. Tetrahedron 2000, 56, 7885.
- 47. Wipf, P.; Kendall, C. Chem. Eur. J. 2002, 8, 1778.
- Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc.
 1978, 100, 2254.
- 49. InCl₃ was recently shown to be superior to ZnCl₂: Qian, M.; Huang, Z.; Negishi, E. *Org. Lett.*2004, 6, 1531.
- 50. Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4912.
- 51. Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4914.

- 52. Langille, N. F.; Panek, J. S. Org. Lett. 2004, 6, 3203.
- 53. Drouet, K. E.; Theodorakis, E. A. Chem. Eur. J. 2000, 6, 1987.
- 54. Hu, T.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 11368.
- 55. Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 9974.
- 56. Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 1872.
- 57. Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 719.
- 58. Ribe, S.; Kondru, R. K.; Beratan, D. N.; Wipf, P. J. Am. Chem. Soc. 2000, 122, 4608.
- 59. Negishi, E.; Alimardanov, A.; Xu, C. Org. Lett. 2000, 2, 65.
- 60. Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197.
- For a recent review of Zr complexes as chiral Lews acids, see: Yamasaki, S.; Kanai, M.; Shibasaki, M. Chem. Eur. J. 2001, 7, 4067.
- 62. This mechanism is supported by ¹H NMR evidence: upon addition of Me₂Zn to a solution of hexenylzirconocene **6** there is a significant reduction in the intensity of the doublet at 7.00 ppm and concomitant appearance of a new doublet at 6.24 ppm. See ref. 60.
- 63. Wipf, P.; Xu, W. Org. Synth. 1997, 74, 205.
- 64. Wipf, P.; Xu, W.; Takahashi, H.; Jahn, H.; Coish, P. D. G. Pure Appl. Chem. 1997, 69, 639.
- 65. Zheng, B.; Srebnick, M. J. Org. Chem. 1995, 60, 3278.
- 66. Maier, M. E.; Oost, T. J. Organomet. Chem. 1995, 505, 95.
- 67. Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556.
- 68. Wipf, P.; Coish, P. D. G. Tetrahedron Lett. 1997, 38, 5073.
- 69. Wipf, P.; Coish, P. D. G. J. Org. Chem. 1999, 64, 5053.
- 70. Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383.
- 71. Williams, D. R.; Mi, L.; Mullins, R. J.; Stites, R. E. Tetrahedron Lett. 2002, 43, 4841.
- 72. Messenger, B. T.; Davidson, B. S. Tetrahedron Lett. 2001, 42, 801.
- 73. Murakami, T.; Furusawa, K. Tetrahedron 2002, 58, 9257.
- 74. Chavez, D. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2001, 40, 3667.
- 75. Wipf, P.; Stephenson, C. R. J. Org. Lett. 2003, 5, 2449.
- 76. Powell, N. A.; Rychnovsky, S. D. J. Org. Chem. 1999, 64, 2026.
- 77. Critcher, D. J.; Connolly, S.; Wills, M. J. Org. Chem. 1997, 62, 6638.
- 78. Barloy-Da Silva, C.; Benkouider, A.; Pale, P. Tetrahedron Lett. 2000, 41, 3077.

- 79. Fukuda, A.; Kobayashi, Y.; Kimachi, T.; Takemoto, Y. Tetrahedron 2003, 59, 9305.
- 80. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454.
- 81. Ribe, S. D. Ph. D. Thesis, University of Pittsburgh, 2003.
- 82. Wipf, P.; Jayasuriya, N.; Ribe, S. Chirality 2003, 15, 208.
- 83. Trauner, D.; Shwarz, J. B.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1999, 38, 3542.
- 84. Wipf, P.; Reeves, J. T. J. Chem. Soc., Chem. Commun. 2002, 2066.
- 85. Reeves, J. T. Ph. D Thesis, University of Pittsburgh, 2002.
- 86. Williams, D. R.; Plummer, S. V.; Patnaik, S. Angew. Chem. Int. Ed. 2003, 42, 3934.
- Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco Jr.; J. A. J. Am. Chem. Soc. 2003, 125, 7889.
- 88. Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538.
- 89. Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225.
- 90. Nugent, W. A. J. Chem. Soc., Chem. Commun. 1999, 1369.
- 91. García, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970.
- 92. (a) ref 89; (b) Imogaï, H.; Petit, Y.; Larchevêque, M. Tetrahedron Lett. 1996, 37, 2573.
- 93. Total Syntheses: (a) Valentekovich, R. J.; Schreiber, S. L. J. Am. Chem. Soc. 1995, 117, 9069; (b) Samy, R.; Kim, H. Y.; Brady, M.; Toogood, P. L. J. Org. Chem. 1999, 64, 2711; (c) Bauer, S. M.; Armstrong, R. W. J. Am. Chem. Soc. 1999, 121, 6355; (d) ref. 54.
- 94. Total Syntheses: (a) Andersen, R. J.; Coleman, J. E.; Piers, E.; Wallace, D. J. *Tetrahedron Lett.* 1997, *38*, 317; (b) Vedejs, E.; Kongkittingam, C. *J. Org. Chem.* 2001, *66*, 7355; (c) Nieman, J. A.; Coleman, J. E.; Wallace, D. J.; Piers, E.; Lim, L. Y.; Roberge, M.; Andersen, R. J. J. Nat. Prod. 2003, *66*, 183.
- 95. Total Syntheses: (a) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570; (b) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592; (c) Maryanoff, B. E.; Greco, M. N.; Zhang, H.-C.; Andrade-Gordon, P.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem. Soc. 1995, 117, 1225; (d) Deng, J.; Hamada, Y.; Shiori, T.; Matsunaga, S.; Fusetani, N. Angew. Chem. Int. Ed. 1994, 33, 1729; (e) Bastiaans, H. M. M.; van der Baan, J. L.; Ottenheijm, H. C. J. J. Org. Chem. 1997, 62, 3880; (f) Wasserman, H. H.; Zhang, R. Tetrahedron 2002, 58, 6277.

- 96. Total Syntheses: (a) White, J. D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1997, 119, 103;
 (b) Hoemann, M. Z.; Agrios, K. A.; Aubé, J. Tetrahedron 1997, 53, 11087; (c) Ito, H.; Imai, N.; Takao, K.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 1799; (d) Onoda, T.; Shirai, R.; Koiso, Y.; Iwasaki, S. Tetrahedron Lett. 1996, 37, 4397; (e) Lai, J.-Y.; Yu, J.; Mekonnen, B.; Falck, J. R. Tetrahedron Lett. 1996, 37, 7167; (f) Muir, J. C.; Pattenden, G.; Ye, T. J. Chem. Soc., Perkin Trans. 1 2002, 2243; (g) ref. 67.
- 97. (a) Wipf, P.; Fritch, P. C. J. Org. Chem. 1994, 59, 4875; (b) Wipf, P.; Henninger, T. C. J. Org. Chem. 1997, 62, 1586; (c) Wipf, P.; Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088. For general reviews of peptide isosteres, see: (d) Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541; (e) Gante, J. Angew. Chem. Int. Ed. 1994, 33, 1699. For recent examples, see: (f) Masse, C. E.; Knight, B. S.; Stavropoulos, P.; Panek, J. S. J. Am. Chem. Soc. 1997, 119, 6040; (g) Tamamura, H.; Yamashita, M.; Nakajima, Y.; Sakano, K.; Otaka, A.; Ohno, H.; Ibuka, T.; Fujii, N. J. Chem. Soc., Perkin Trans. 1 1999, 2983; (h) Vasbinder, M. M.; Miller, S. J. J. Org. Chem. 2002, 67, 6240 and references cited therein.
- 98. (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689; (b) Cheikh, R. B.;
 Chaabouni, R.; Laurent, A.; Mison, P.; Nafti, A. Synthesis 1983, 685.
- 99. (a) Wei, Z.-Y.; Knaus, E. E. Synthesis 1994, 1463; (b) Katritzky, A. R.; Cheng, D.; Li, J. J. Org. Chem. 1998, 63, 3438.
- 100. (a) Overman, L. E. Acc. Chem. Res. 1980, 13, 218; (b) Overman, L. E.; Zipp, G. G. J. Org. Chem. 1997, 62, 2288; (c) see ref. 2 of Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125, 12412.
- 101. Kim, S.; Lee, T.; Lee, E.; Lee, J.; Fan, G.; Lee, S. K.; Kim, D. J. Org. Chem. 2004, 69, 3144.
- 102. Ichikawa, Y.; Ito, T.; Nishiyama, T.; Isobe, M. Synlett 2003, 1034.
- 103. Chen, B.; Mapp, A. K. J. Am. Chem. Soc. 2004, 126, 5364.
- 104. Lee, E. E.; Batey, R. A. Angew. Chem. Int. Ed. 2004, 43, 1865.
- 105. Hollis, T. K.; Overman, L. E. J. Organomet. Chem. 1999, 576, 290.
- 106. Overman, L. E.; Owen, C. E.; Pavan, M. M.; Richards, C. J. Org. Lett. 2003, 5, 1809.

- 107. Reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395; (b) Trost, B. M.;
 Crawley, M. L. Chem. Rev. 2003, 103, 2921; (c) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
- 108. (a) Nakanishi, M.; Mori, M. Angew. Chem. Int. Ed. 2002, 41, 1934; (b) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. Org. Lett. 2001, 3, 1913.
- 109. For recent leading references, see: (a) Konno, T.; Nagata, K.; Ishihara, T.; Yamanaka, H. J. Org. Chem. 2002, 67, 1768; (b) Evans, P. A.; Robinson, J. E.; Moffett, K. K. Org. Lett. 2001, 3, 3269; (c) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164; (d) Leitner, A.; Shu, C.; Hartwig, J. F. Proc. Nat. Acad. Sci. 2004, 101, 5830; (e) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem. Int. Ed. 2004, 43, 4797; (f) Lipowsky, G.; Helmchen, G. J. Chem. Soc., Chem. Commun. 2004, 116; (g) Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.
- 110. Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366.
- 111. (a) Shi, M.; Xu, Y.-M. Angew. Chem. Int. Ed. 2002, 41, 4507; (b) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103; (c) Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521; (d) Shi, M.; Zhao, G.-L. Adv. Synth. Catal. 2004, 346, 1205. A chiral auxiliary-based aza-Baylis-Hilman reaction has also been described: (e) Aggarwal, V. K.; Castro, A. M. M.; Mereu, A.; Adams, H. Tetrahedron Lett. 2002, 43, 1577.
- 112. Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Tolomelli, A. *Tetrahedron: Asymmetry* **2004**, *15*, 593.
- 113. Chao, B.; Dittmer, D. C. Tetrahedron Lett. 2001, 42, 5789.
- 114. (a) Yadav, J. S.; Bandyopadhyay, A.; Reddy, B. V. S. Synlett 2001, 1608; (b) Yadav, J. S.;
 Bandyopadhyay, A.; Reddy, B. V. S. Tetrahedron Lett. 2001, 42, 6385.
- 115. Martín, R.; Alcón, M.; Pericàs, M. A.; Riera, A. J. Org. Chem. 2002, 67, 6896.
- 116. Picó, A.; Moyano, A.; Pericàs, M. A. J. Org. Chem. 2003, 68, 5075.
- 117. Castagnolo, D.; Armaroli, S.; Corelli, F.; Botta, M. Tetrahedron: Asymmetry 2004, 15, 941.
- 118. Pallavicini, M.; Valoti, E.; Villa, L.; Piccolo, O. Tetrahedron: Asymmetry 2000, 11, 4017.

- 119. (a) Castelhano, A. L.; Horne, S.; Billedeau, R.; Krantz, A. *Tetrahedron Lett.* 1986, 27, 2435; (b) Dondoni, A.; Merchán, F. L.; Merino, P.; Tejero, T. *Synth. Commun.* 1994, 24, 2551; (c) Agami, C.; Couty, F.; Evano, G. *Org. Lett.* 2000, 2, 2085.
- 120. Betz, J.; Heuschmann, M. Tetrahedron Lett. 1995, 36, 4043.
- 121. (a) Inoue, I.; Shindo, M.; Koga, K.; Tomioka, K. *Tetrahedron* 1994, 50, 4429; (b) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C. J. Am. Chem. Soc. 1994, 116, 8797; (c) Andersson, P. G.; Johansson, F.; Tanner, D. *Tetrahedron* 1998, 54, 11549.
- (a) Claremon, D. A.; Lumma, P. K.; Phillips, B. T. J. Am. Chem. Soc. 1986, 108, 8265; (b) Denmark, S. E.; Weber, T.; Piotrowski, D. W. J. Am. Chem. Soc. 1987, 109, 2224; (c) Chang, Z.-Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3475; (d) Reetz, M. T.; Jaeger, R.; Drewlies, R.; Hübel, M. Angew. Chem. Int. Ed. 1991, 30, 103; (e) Hamon, D. P. G.; Massy-Westropp, R. A.; Razzino, P. Tetrahedron 1992, 48, 5163; (f) Beresford, K. J. M.; Howe, G. P.; Procter, G. Tetrahedron Lett. 1992, 33, 3355; (g) Matsubara, S.; Ukita, H.; Kodama, T.; Utimoto, K. Chem. Lett. 1994, 831; (h) Alexakis, A.; Lensen, N.; Tranchier, J.-P.; Mangeney, P.; Feneau-Dupont, J.; Declercq, J. P. Synthesis 1995, 1038; (i) Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883; (j) Badorrey, R.; Cativiela, C.; Díaz-de-Villegas, M. D.; Díez, R.; Gálvez, J. A. Eur. J. Org. Chem. 2003, 2268.
- 123. Braun, M.; Opdenbusch, K. Liebigs Ann. Recueil 1997, 141.
- 124. Scialdone, M. A.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 7533.
- 125. Martin, S. F.; Horn, R. K. Tetrahedron Lett. 1999, 40, 2887.
- 126. Masson, G.; Compain, P.; Martin, O. R. Org. Lett. 2000, 2, 2971.
- 127. Schwardt, O.; Veith, U.; Gaspard, C.; Jäger, V. Synthesis 1999, 1473.
- 128. Cossy, J.; Pévet, I.; Meyer, C. Synlett 2000, 122.
- 129. Yamazaki, N.; Atobe, M.; Kibayashi, C. Tetrahedron Lett. 2002, 43, 7979.
- 130. Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589.
- 131. Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3, 2847.
- 132. (a) Bettiol, J.-L.; Sundberg, R. J. J. Org. Chem. 1993, 58, 814; (b) ref. 119c.
- 133. (a) Xu, Z.; Johannes, C. W.; La, D. S.; Hofilena, G. E.; Hoveyda, A. H. *Tetrahedron* 1997, 53, 16377; (b) Alvaro, G.; Pacioni, P.; Savoia, D. *Chem. Eur. J.* 1997, *3*, 726.

- 134. Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem. Soc.
 1989, 111, 4486.
- 135. Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321.
- 136. (a) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. *Tetrahedron Lett.* 1992, *33*, 5655; (b) Coles, N.; Harris, M. C. J.; Whitby, R. J.; Blagg, J. *Organometallics* 1994, *13*, 190; (c) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. *Synlett* 1994, 110; (d) Probert, G. D.; Whitby, R. J.; Coote, S. J. *Tetrahedron Lett.* 1995, *36*, 4113; (e) Harris, M. C. J.; Whitby, R. J.; Blagg, J. *Tetrahedron Lett.* 1995, *36*, 4287.
- 137. (a) Honda, T.; Satoh, S.-i.; Mori, M. Organometallics 1995, 14, 1548; (b) Honda, T.; Mori, M. J. Org. Chem. 1996, 61, 1196; (c) Honda, T.; Mori, M. Organometallics 1996, 15, 5464.
- 138. (a) Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1989, 111, 4495; (b) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1992, 33, 4469; (c) Barluenga, J.; Sanz, R.; Fañanás, F. J. J. Org. Chem. 1997, 62, 5953; (d) Barluenga, J.; Rodríguez, F.; Álvarez-Rodrigo, L.; Zapico, J. M.; Fañanás, F. J. Chem. Eur. J. 2004, 10, 109.
- 139. Takai, K.; Odata, H.; Kataoka, Y.; Utimoto, K. Tetrahedron Lett. 1994, 35, 1893.
- 140. (a) Gao, Y.; Harada, K.; Sato, F. *Tetrahedron Lett.* 1995, *36*, 5913; (b) Gao, Y.; Yoshida, Y.; Sato, F. *Synlett* 1997, 1353; (c) Fukuhara, K.; Okamoto, S.; Sato, F. *Org. Lett.* 2003, *5*, 2145.
- 141. Hauske, J. R.; Dorff, P.; Julin, S.; Martinelli, G.; Bussolari, J. *Tetrahedron Lett.* 1992, *33*, 3715.
- 142. Pandya, S. U.; Garçon, C.; Chavant, P. Y.; Py, S.; Vallée, Y. J. Chem. Soc., Chem. Commun. 2001, 1806.
- 143. (a) Pandya, S. U.; Pinet, S.; Chavant, P. Y.; Vallée, Y. *Eur. J. Org. Chem.* 2003, 3621. The addition of alkenylboronic acids to *in situ* prepared α-hydroxyimines has also been reported: (b) Petasis, N. A.; Zavialov, I. A. *J. Am. Chem. Soc.* 1998, *120*, 11798.
- 144. Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 2003, 44, 923.
- 145. Wipf, P.; Lim, S. Angew. Chem. Int. Ed. 1993, 32, 1068.
- 146. Review: Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.
- 147. Wipf, P.; Nunes, R. L.; Ribe, S. Helv. Chim. Acta 2002, 85, 3478.

- 148. (a) Germon, C.; Alexakis, A.; Normant, J. F. *Tetrahedron Lett.* 1980, 21, 3763; (b) Germon, C.; Alexakis, A.; Normant, J. F. *Synthesis* 1984, 40.
- 149. Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364.
- 150. Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2004, 43, 3941.
- 151. Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757 and reviews cited therein.
- Recent reviews: (a) Bloch, R. Chem. Rev. 1998, 98, 1407. (b) Kobayashi, S.; Ishitani, H.
 Chem. Rev. 1999, 99, 1069. (c) Charette, A. B.; Côté, A. Latvian J. Chem. 2004, 2, 263.
- 153. Katritzky, A. R.; Harris, P. Tetrahedron: Asymmetry 1992, 3, 437.
- 154. Soai, K.; Hatanaka, T.; Miyazawa, T. J. Chem. Soc., Chem. Commun. 1992, 1097.
- 155. Sato, I.; Kodaka, R.; Soai, K. J. Chem. Soc., Perkin Trans. I 2001, 2912.
- 156. (a) Soai, K.; Suzuki, T.; Shono, T. J. Chem. Soc., Chem. Commun. 1994, 317; (b) Suzuki, T.; Narisada, N.; Shibata, T.; Soai, K. Tetrahedron: Asymmetry 1996, 7, 2519; (c) Suzuki, T.; Shibata, T.; Soai, K. J. Chem. Soc., Perkin Trans. I 1997, 2757; (d) Suzuki, T.; Narisada, N.; Shibata, T.; Soai, K. Polym. Adv. Tech. 1999, 10, 30.
- 157. (a) Suzuki, T.; Hirokawa, Y.; Ohtake, K.; Shibata, T.; Soai, K. *Tetrahedron: Asymmetry* 1997, *8*, 4033; (b) Sato, I.; Kodaka, R.; Shibata, T.; Hirokawa, Y.; Shirai, N.; Ohtake, K.; Soai, K. *Tetrahedron: Asymmetry* 2000, *11*, 2271; (c) Sato, I.; Hosoi, K.; Kodaka, R.; Soai, K. *Eur. J. Org. Chem.* 2002, 3115.
- 158. (a) Andersson, P. G.; Guijarro, D.; Tanner, D. Synlett 1996, 727; (b) Andersson, P. G.; Guijarro, D.; Tanner, D. J. Org. Chem. 1997, 62, 7364.
- 159. (a) Guijarro, D.; Pinho, P.; Andersson, P. G. J. Org. Chem. 1998, 63, 2530; (b) Brandt, P.;
 Hedberg, C.; Lawonn, K.; Pinho, P.; Andersson, P. G. Chem. Eur. J. 1999, 5, 1692; (c)
 Pinho, P.; Andersson, P. Tetrahedron 2001, 57, 1615.
- 160. (a) Jimeno, C.; Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A. *Tetrahedron Lett.* **1999**, 40, 777; (b) Jimeno, C.; Reddy, K. S.; Solà, L.; Moyano, A.; Pericàs, M. A.; Riera, A. *Org. Lett.* **2000**, *2*, 3157.
- 161. (a) Zhang, X.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. *Tetrahedron Lett.* 2001, 42, 6369; (b) Zhang, H.-L, Zhang, X.-M.; Gong, L.-Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. *Org. Lett.* 2002, 4, 1399; (c) Zhang,

H.-L.; Jiang, F.; Zhang, X.-M.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. *Chem. Eur. J.* **2004**, *10*, 1481.

- 162. (a) Zhang, X.; Lin, W.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. *Tetrahedron Lett.* 2002, 43, 1535; (b) Zhang, X.-M.; Zhang, H.-L.; Lin, W.-Q.; Gong, L.-Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Yu, K.-B. J. Org. Chem. 2003, 68, 4322.
- 163. (a) Beresford, K. J. M. *Tetrahedron Lett.* 2002, 43, 7175; (b) Beresford, K. J. M. *Tetrahedron Lett.* 2004, 45, 6041.
- Storace, L.; Anzalone, L.; Confalone, P. N.; Davis, W. P.; Fortunak, J. M.; Giangiordano, M.; Haley Jr., J. J.; Kamholz, K.; Li, H.-Y.; Ma, P.; Nugent, W. A.; Parsons Jr., R. L.; Sheeran, P. J.; Silverman, C. E.; Waltermire, R. E.; Wood, C. C. Org. Proc. Res. Dev. 2002, 6, 54.
- 165. (a) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055; (b) Nagai, K.; Fujihara, H.; Kuriyama, M.; Yamada, K.; Tomioka, K. Chem. Lett. 2002, 8; (c) Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.; Tomioka, K. J. Org. Chem. 2003, 68, 9723.
- 166. (a) Boezio, A. A.; Charette, A. J. Am. Chem. Soc. 2003, 125, 1692; (b) Boezio, A. A.;
 Pytkowicz, J.; Côté, A.; Charette, A. J. Am. Chem. Soc. 2003, 125, 14260; (c) Côté, A.;
 Boezio, A. A.; Charette, A. Proc. Nat. Acad. Sci. 2004, 101, 5405.
- 167. (a) Shi, M.; Wang, C.-J. Adv. Synth. Cat. 2003, 345, 971; (b) Wang, C.-J.; Shi, M. J. Org. Chem. 2003, 68, 6229.
- 168. Shi, M.; Zhang, W. Tetrahedron: Asymmetry 2003, 14, 3407.
- Li, X.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. *Tetrahedron: Asymmetry* 2003, 14, 3819.
- 170. (a) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984; (b) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 10409; (c) Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42, 4244.
- 171. Dahmen, S.; Bräse, S. J. Am. Chem. Soc. 2002, 124, 5940.
- 172. Recent reviews: (a) Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1; (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977. For recent theoretical studies of Simmons-Smith cyclopropanation, see: (c) Fang, W.-H.; Phillips, D.

L.; Wang, D.; Li, Y.-L. J. Org. Chem. 2002, 67, 154; (d) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 2341.

- 173. Syntheses of L-CCG-I: (a) Shimamoto, K.; Ohfune, Y.; Watanabe, K.; Li, P. N.; Takeuchi, H. *Tetrahedron Lett.* **1988**, *29*, 1181; (b) Shimamoto, K.; Ohfune, Y. *Tetrahedron Lett.* **1989**, *30*, 3803; (c) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. *J. Org. Chem.* **1991**, *56*, 4167; (d) Shimamoto, K.; Ohfune, Y. *Synlett* **1993**, 919; (e) Pellicciari, R.; Natalini, B.; Marinozzi, M. *Tetrahedron Lett.* **1990**, *31*, 129; (f) Alcaraz, C.; Bernabé, M. *Tetrahedron: Asymmetry* **1994**, *5*, 1221; (g) Ma, D.; Ma, Z. *Tetrahedron Lett.* **1997**, *38*, 7599; (h) Demir, A. S.; Tanyeli, C.; Cagir, A.; Tahir, M. N.; Ulku, D. *Tetrahedron: Asymmetry* **1998**, *9*, 1035; (i) Rifé, J.; Ortuño, R. M.; Lajoie, G. A. J. Org. Chem. **1999**, *64*, 8958; (j) Pajouhesh, H.; Chen, J.; Pajouhesh, S. H. *Tetrahedron: Asymmetry* **2000**, *11*, 4537; (k) Mohapatra, D. K. *J. Chem. Soc., Perkin Trans. I* **2001**, 1851; (l) Wallock, N. J.; Donaldson, W. A. *Tetrahedron Lett.* **2002**, *43*, 4541; (m) Chavan, S. P.; Sharma, P.; Sivappa, R.; Bhadbhade, M. M.; Gonnade, R. G.; Kalkote, U. R. *J. Org. Chem.* **2003**, *68*, 6817.
- 174. Synthesis of L-CCG-I analogues: (a) Kurokawa, N.; Ohfune, Y. *Tetrahedron Lett.* 1985, 26, 83; (b) Shimamoto, K.; Ohfune, Y. *Tetrahedron Lett.* 1990, 31, 4049; (c) de Frutos, P.; Fernández, D.; Fernández-Alvarez, E.; Bernabé, M. *Tetrahedron* 1992, 48, 1123; (d) Zindel, J.; de Meijere, A. *Synthesis* 1994, 190; (e) Chavan, S. P.; Venkatraman, M. S.; Sharma, A. K.; Chittiboyina, A. G. *Tetrahedron Lett.* 1996, 37, 2857; (f) Fishlock, D.; Guillemette, J. G.; Lajoie, G. A. *J. Org. Chem.* 2002, 67, 2352; (g) Demir, A. S.; Sesenoglu, Ö.; Ülkü, D.; Arici, C. *Helv. Chim. Acta* 2004, 87, 106.
- 175. (a) Jain, R. P.; Vederas, J. C. Org. Lett. 2003, 5, 4669; (b) Baldwin, J. E.; Adlington, R. M.;
 Bebbington, D.; Russell, A. T. Tetrahedron 1994, 50, 12015.
- 176. Reviews: (a) Wessjohann, L. A.; Brandt, W.; Thiemann, T. *Chem. Rev.* 2003, *103*, 1625;
 (b) Faust, R. *Angew. Chem. Int. Ed.* 2001, *40*, 2251; (c) Burgess, K.; Ho, K.-K.; Moye-Sherman, D. *Synlett* 1994, 575. For recent reports on cyclopropane amino acids, see: (d) Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Sheperd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. *J. Org. Chem.* 2003, *68*, 9433;
 (e) Adams, L. A.; Charmant, J. P. H.; Cox, R. J.; Walter, M.; Whittingham, W. G. *Org.*

Biomol. Chem. 2004, 2, 542; (f) Boaz, N. W.; Debenham, S. D.; Large, S. E.; Moore, M. K.
Tetrahedron: Asymmetry 2003, 14, 3575; (g) Wurz, R. P.; Charette, A. B. J. Org. Chem.
2004, 69, 1262; (h) Sakai, R.; Suzuki, K.; Shimamoto, K.; Kamiya, H. J. Org. Chem. 2004,
69, 1180; (i) Gnad, F.; Poleschak, M.; Reiser, O. Tetrahedron Lett. 2004, 45, 4277; (j)
Zlatopolskiy, B. D.; Loscha, K.; Alvermann, P.; Kozhushkov, S. I.; Nikolaev, S. J.; Zeeck,
A.; de Meijere, A. Chem. Eur. J. 2004, 10, 4708; (k) Zlatopolskiy, B. D.; de Meijere, A.

- 177. Faucher, A.-M.; Bailey, M. D.; Beaulieu, P. L.; Brochu, C.; Duceppe, J.-S.; Ferland, J.-M.; Ghiro, E.; Gorys, V.; Halmos, T.; Kawai, S. H.; Poirier, M.; Simoneau, B.; Tsantrizos, Y. S.; Llinas-Brunet, M. Org. Lett. 2004, 6, 2901.
- 178. (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323; (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
- 179. (a) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Lett.* 1966, *33*, 3353; (b) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron* 1968, 24, 53.
- 180. Lorenz, J. C.; Lon, J.; Yang, Z.; Xue, S.; Xie, Y.; Shi, Y. J. Org. Chem. 2004, 69, 327.
- 181. (a) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Lett.* 1968, *35*, 3495; (b) Kawabata, N.; Nakagawa, T.; Nakao, T.; Shinzo, Y. J. Org. Chem. 1977, *42*, 3031; (c) Friedrich, E. C.; Biresaw, G. J. Org. Chem. 1982, *47*, 2426; (d) Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, *52*, 3942; (e) Momose, T.; Nishio, T.; Kirihara, M. *Tetrahedron Lett.* 1996, *37*, 4987.
- 182. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
- 183. Moss, R. A.; Chen, E. Y.; Banger, J.; Matsuo, M. Tetrahedron Lett. 1978, 45, 4365.
- 184. Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966.
- 185. (a) Charette, A. B.; Lebel, H.; Gagnon, A. *Tetrahedron* 1999, 55, 8845; (b) Charette, A. B.;
 Lacasse, M.-C. *Org. Lett.* 2002, *4*, 3351.
- 186. Russ, P.; Ezzitouni, A.; Marquez, V. E. Tetrahedron Lett. 1997, 38, 723.
- 187. Concellón, J. M.; Rodríguez-Solla, H.; Gómez, C. Angew. Chem. Int. Ed. 2002, 41, 1917.
- 188. (a) Aggarwal, V. K.; Fang, G.; Charmant, J. P. H.; Meek, G. Org. Lett. 2003, 5, 1757; (b)
 Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1.
- 189. Aggarwal, V. K.; Fang, G. Y.; Meek, G. Org. Lett. 2003, 5, 4417.

- 190. Yachi, K.; Shinokubo, H.; Oshima, K. Angew. Chem. Int. Ed. 1998, 37, 2515.
- 191. Harada, S.; Kowase, N.; Tabuchi, N.; Taguchi, T.; Dobashi, Y.; Dobashi, A.; Hanzawa, Y. *Tetrahedron* 1998, 54, 753.
- 192. Gandon, V.; Szymoniak, J. J. Chem. Soc., Chem. Commun. 2002, 1308. See also: Gandon,
 V.; Bertus, P.; Szymoniak, J. Eur. J. Org. Chem. 2000, 3713.
- 193. Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2001, 123, 5122; (b) Wipf,
 P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761.
- 194. Hou, X. L.; Zheng, X. L.; Dai, L. X. Tetrahedron Lett. 1998, 39, 6949.
- 195. Ramage, R.; Hopton, D.; Parrott, M. J.; Kenner, G. W.; Moore, G. A. J. Chem. Soc., Perkin Trans I 1984, 1357.
- Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontsov, E.; Starikova, Z.; Lysenko, K.; Belokon, Y. Eur. J. Org. Chem. 2000, 3295.
- 197. Bulman, P. C.; Allin, S. M.; Maddocks, S. J.; Elsegood, M. R. J. J. Chem. Soc., Perkin Trans. I 2002, 2827.
- 198. Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111.
- 199. Soai, K.; Ohno, Y.; Inoue, Y.; Tsuruoka, T.; Hirose, Y. Recl. Trav. Chim. Pays-Bas 1995, 114, 145.
- 200. Brunet, J.-J.; Chauvin, R.; Chiffre, J.; Huguet, S.; Laglaye, P. J. Organomet. Chem. 1998, 566, 117.
- 201. Garcia, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970.
- Seebach, D.; Beck, A. K.; Imwinkelreid, R.; Roggo, S.; Wonnacott, A. *Helv. Chim. Acta* 1987, 70, 954.
- 203. Fischer, C.; Carreira, E. M. Org. Lett. 2004, 6, 1497.
- 204. Hamor, T. A.; Jennings, W. B.; Lovely, C. J.; Reeves, K. A. J. Chem. Soc., Perkin Trans. 2 1992, 843.
- 205. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 1 1975, 514.
- 206. Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.
- 207. Gladiali, S.; Dore, A.; Fabbri, D.; De Lucchi, O.; Valle, G. J. Org. Chem. 1994, 59, 6363.
- 208. Meisters, A.; Mole, T. Aust. J. Chem. 1974, 27, 1665.
- 209. Chen, L. S.; Chen, G. J.; Tamborski, C. J. Organomet. Chem. 1980, 193, 283.

- Testaferri, L.; Tiecco, M.; Spagnolo, P.; Zanirato, P.; Martelli, G. J. Chem. Soc., Perkin Trans. 2 1976, 662.
- 211. Cyclopropane 261 is a novel ERα antagonist: Janjic, J. M.; Mu, Y.; Kendall, C.; Stephenson, C. R. J.; Balachandran, R.; Raccor, B. S.; Lu, Y.; Zhu, G.; Xie, W.; Wipf, P.; Day, B. W. *Bioorg. Med. Chem.* accepted.
- 212. Performing this reaction under more forcing conditions lead to formation of a C,Cdicyclopropylamide: Wipf, P.; Stephenson, C. R. J.; Okumura, K. J. Am. Chem. Soc. 2003, 125, 14694.
- 213. Charette, A. B.; Wilb, N. Synlett 2002, 176.
- 214. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 18, 1977.
- 215. For examples of Mitsunobu reactions with incomplete inversion of a secondary alcohol stereocenter due to competing S_N1 substitution, see (a) Sakamoto, S.; Tsuchiya, T.; Umezawa, S.; Umezawa, H. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 1481; (b) Farina, V. *Tetrahedron Lett.* **1989**, *30*, 6645. See also Hughes, D. L. *Org. React.* **1992**, *42*, 335.
- 216. Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
- 217. Potentially bridged Zr-Zn complexes: (a) Tucker, C. E.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 9888; (b) Tucker, C. E.; Greve, B.; Klein, W.; Knochel, P. Organometallics 1994, 13, 94. Bridged Zr-Al complexes (characterized): (c) Hartner Jr., F. M.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 4979; (d) Hartner Jr., F. M.; Clift, S. M.; Schwartz, J.; Tulip, T. H. Organometallics 1987, 6, 1346.
- 218. Wipf, P.; Kendall, C. Org. Lett. 2001, 3, 2773.
- 219. For selected recent reports of asymmetric imine allylations, see: (a) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182; (b) Cook, G. R.; Maity, B. C.; Kargbo, R. Org. Lett. 2004, 6, 1741; (c) Dalmolen, J.; van der Sluis, M.; Nieuwenhuijzen, J. W.; Meetsma, A.; de Lange, B.; Kaptein, B.; Kellogg, R. M.; Broxterman, Q. B. Eur. J. Org. Chem. 2004, 1544; (d) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686.
- 220. (a) Bhagwatheeswaran, H.; Gaur, S. P.; Jain, P. C. Synthesis 1976, 615; (b) Desai, M. C.;
 Thadeio, P. F.; Lefkowitz, S. L. Tetrahedron Lett. 1993, 34, 5831.

- 221. For a related *syn*-selective allylation of *in situ* generated imines with allylzinc reagents, see: Petrini, M.; Profeta, R.; Righi, P. J. Org. Chem. 2002, 67, 4530.
- 222. (a) Sklute, G.; Amsallem, D.; Shabli, A.; Varghese, J. P.; Marek, I. J. Am. Chem. Soc. 2003, 125, 11776. For a review of zinc carbenoid homologation, see: (b) Marek, I. Tetrahedron 2002, 58, 9463.
- Takahashi, T.; Nishihara, Y.; Sun, W.-H.; Fischer, R.; Nakajima, K. Organometallics 1997, 16, 2216.
- 224. (a) Burke, M. D.; Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43, 46; (b) Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867.
- 225. Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B. Org. Synth. 1993, 71, 77.
- 226. (a) Friedrich, E. C.; Falling, S. N.; Lyons, D. E. Synth. Commun. 1975, 5, 33; (b) Pross, A.;
 Sternhell, S. Aust. J. Chem. 1970, 23, 989.
- 227. Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
- 228. Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238.
- 229. Kupfer, R.; Meier, S.; Würthwein, E.-U. Synthesis 1984, 688.
- 230. Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. *Tetrahedron* **1992**, *48*, 6985.
- 231. Wipf, P.; Janjic, J.; Stephenson, C. R. J. Org. Biomol. Chem. 2004, 2, 443.
- 232. Knotter, D. M.; van Maanen, H. L.; Grove, D. M.; Spek, A. L.; van Koten, G. *Inorg. Chem.* **1991**, *30*, 3309.
- 233. Henry, J. R.; Marcin, L. R.; McIntosh, M. C.; Scola, P. M.; Harris Jr., G. D.; Weinreb, S. M. *Tetrahedron Lett.* 1989, *30*, 5709.
- 234. Gensler, W. J.; Frank, F. J.; Dheer, S. K.; Lauther, J. W. J. Org. Chem. 1971, 36, 4102.
- 235. Yamada, K.-i.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem. Int. Ed. 1999, 38, 3504.
- 236. Journet, M.; Cai, D.; DiMichele, L. M.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 6427.
- 237. Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999, 55, 11755.
- 238. Stoner, E. J.; Cothron, D. A.; Balmer, M. K.; Roden, B. A. Tetrahedron 1995, 51, 11043.
- Bojadiev, S. E.; Tsankov, D. T.; Ivanov, P. M.; Berova, N. D. Bull. Chem. Soc. Jpn. 1987, 60, 2651.

- 240. (a) Enholm, E. J.; Schreier, J. A. J. Heterocyclic Chem. 1995, 32, 109; (b) Rychnovsky, S. D.; Hata, T.; Kim, A. I.; Buckmelter, A. J. Org. Lett. 2001, 3, 807.
- 241. Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031.
- 242. Messinger, P.; Gompertz, J. Arch der Pharm. 1974, 307, 653.
- 243. Schuman, M.; Lopez, X.; Karplus, M.; Gouverneur, V. Tetrahedron 2001, 57, 10299.
- 244. McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. *Tetrahedron Lett.* **1977**, *18*, 155.
- 245. Nishimura, M.; Ueda, M.; Miyaura, N. Tetrahedron 2002, 58, 5779.