Hydrozirconation/Zr-Zn Transmetalation/Aldimine Addition:
 One-pot Synthesis of Allylic, C-Cyclopropylalkyl, and Homoallylic Amines from Alkynes.

by

Christopher Nicholas Owen Kendall
B. Sc., University of Waterloo, 1997
M. Sc., Queen's University, 2000

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

University of Pittsburgh

Faculty of Arts and Sciences

This dissertation was presented
by

Christopher Kendall

It was defended on

October 20, 2004
and approved by

Dennis Curran

Scott Nelson

Billy Day

Peter Wipf
Dissertation Director

Abstract
Hydrozirconation/Zr-Zn Transmetalation/Aldimine Addition:
One-pot Synthesis of Allylic, C-Cyclopropylalkyl, and Homoallylic Amines from Alkynes.
Christopher Kendall, PhD
University of Pittsburgh, 2004

The $\mathrm{Zr}-\mathrm{Zn}$ transmetalation, aldehyde addition methodology developed in the Wipf group was extended to the synthesis of allylic amines. The use of toluene as a reaction solvent was required to obtain high yields and low reaction times. N-Phosphinoyl-, N-sulfonoyl-, and N carbamoylimines were excellent substrates for this transformation. Many chiral ligands were tested for asymmetric catalysis, but minimal ee was achieved. Addition to chiral phosphinimines was also attempted, but the diastereoselectivities were low.

A novel three-component C-cyclopropylalkylamine synthesis was discovered while attempting to perform the allylic amine synthesis in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mechanism of this transformation is not fully understood; however, this is the first reported example of a high-yielding Simmons-Smith cyclopropanation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the carbene precursor. This reaction was optimized by adding $\mathrm{CH}_{2} \mathrm{I}_{2}$ to the reaction mixture once all imine was consumed. Addition of $\mathrm{CH}_{2} \mathrm{I}_{2}$ prior to imine substrate resulted in homoallylic amine formation.

List of Abbreviations

Ac acetyl

BDPS..............tert-butyldiphenylsilyl
Bn \qquad benzyl

Boc \qquad tert-butyloxycarbonyl
cat. \qquad catalytic

Cbzbenzyloxycarbonyl
cod.................1,5-cyclooctadiene
Cp...................cyclopentadienyl
dba..................dibenzylideneacetone
DBU1,8-diazabicyclo[5.4.0]undec-7-ene
DEADdiethyl azodicarboxylate
DEIPSdiethylisopropylsilyl
DEPCdiethyl cyanophosphonate
DMAP4-dimethylaminopyridine
DME...............ethylene glycol dimethyl ether
DMF............... N, N-dimethylformamide
DMP...............Dess-Martin periodinane
DMSOdimethylsulfoxide
DPPAdiphenylphosphoryl azide
dppf1,1'-bis(diphenylphosphino)ferrocene
$d r$....................diastereomeric ratio
ee....................enantiomeric excess
ent. enantiomer

HPLChigh pressure liquid chromatography
KHMDSpotassium bis(trimethylsilyl)amide
L* \qquad
NIS
N-iodosuccinimide
NMO4-methylmorpholine N-oxide
PG \qquad protecting group

PMB \qquad 4-methoxybenzyl
p-Tol...............4-tolyl
rtroom temperature
TBAFtetrabutylammonium fluoride
TBStert-butyldimethylsilyl
TEStriethylsilyl
Tf....................trifluoromethanesulfonyl
TFAtrifluoroacetic acid
THFtetrahydrofuran
TIPStriisopropylsilyl
TLCthin layer chromatography
TMStrimethylsilyl
TPAP..............tetrapropylammonium perruthenate
Ts....................p-toluenesulfonyl

Table of Contents

Abstract iii
List of Abbrevations iv
List of Tables vii
List of Figures viii
List of Schemes ix

1. Introduction 1
1.1. Hydrozirconation 1
1.2. The $\mathrm{Zr}-\mathrm{Zn}$ Transmetalation Methodology 4
1.3. Allylic Amines 15
1.4. Diethylzinc Additions to Aldimines 22
1.5. Simmons-Smith Cyclopropanation 27
2. Results and Discussion 32
2.1. Synthesis of Allylic Amines 32
2.2. Asymmetric Synthesis of Allylic Amines 37
2.3. Synthesis of C-Cyclopropylalkylamines 48
2.4. Synthesis of Homoallylic Amines 56
2.5. Application of an Alternate Preparation of Alkenylzirconocenes 60
3. Conclusions 63
4. Experimental Part. 65
Appendix A 131
X-ray Structure and Data of Binaphthyl-Phenyl Phosphinimine 219 131
Appendix B 136
X-ray Structure and Data of Benzamide 268. 136
Appendix C 141
X-ray Structure and Data of a Derivative of Cyclopropane 267 141
Appendix D 146
X-ray Structure and Data of Lactam anti-287 146
Cited Literature 149

List of Tables

Table 1. Representative examples for asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ addition to $\mathbf{1 0 4}$ 24
Table 2. Representative examples for catalytic asymmetric $\mathrm{R}_{2} \mathrm{Zn}$ addition to aromatic imines. 26
Table 3. Substituent effects on syn/anti selectivity for (E)-disubstituted allylic ethers 28
Table 4. Imine addition optimization studies. 33
Table 5. Synthesis of allylic amines using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation methodology. 34
Table 6. Attempted asymmetric addition reactions with imine 104 and ligands 55 and 181. 38
Table 7. Attempted asymmetric addition reactions with more reactive imines. 40
Table 8. Attempted asymmetric addition reactions with in situ-generated imines. 41
Table 9. Diastereoselective addition to chiral phosphinimines. 45
Table 10. Synthesis of novel aryl-phenyl phosphinamides. 47
Table 11. C-Cyclopropylalkylamine reaction optimization 50
Table 12. Synthesis of C-cyclopropylalkylamines. 50
Table 13. Synthesis of homoallylic amines. 58

List of Figures

Figure 1. Hydrozirconation to form alkyl- and alkenylzirconium reagents. \qquad
Figure 2. Unsuccessful $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in an attempted total synthesis of macrolactin A.11
Figure 3. Transition state models for anti- and syn-selective cyclopropanations 29
Figure 4. Ligands tested and ee's obtained for the attempted 43
Figure 5. Proposed mechanism for formation of C-cyclopropylalkylamide 257 54
Figure 6. Transition state models for cyclopropanation of allylic amide 274. 56
Figure 7. Proposed mechanism for formation of homoallylic amide syn-279. 60
Figure 8. Proposed mechanism for formation of homoallylic amide 296. 62
Figure 9. Diversity-oriented synthesis of imine addition products. 64

List of Schemes

Scheme 1. Alkenylzirconocene addition to aldehydes catalyzed by AgClO_{4}. 3
Scheme 2. Pd-catalyzed alkenylzirconocene and vinyl bromide coupling in Negishi's total synthesis of lissoclinolide 4
Scheme 3. One-pot synthesis of prostaglandins by conjugate addition, enolate trapping. 5
Scheme $4 . \mathrm{ZnCl}_{2}$-accelerated coupling of alkenyl zirconocenes 5
Scheme 5. Two applications of alkenylzirconocenes in Panek's total synthesis of callystatin A 6
Scheme 6. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation and in situ addition to aldehydes 7
Scheme 7. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Wipf's total synthesis of curacin A 8
Scheme 8. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Williams' total synthesis of ratjadone 8
Scheme 9. Zr-Zn transmetalation/aldehyde addition in Williams' synthesis of laulimalide 9
Scheme 10. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in the diastereoselective synthesis of sphingosines 10
Scheme 11. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/ketone addition in Jacobsen's total synthesis of fostriecin. 11
Scheme 12. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition 12
Scheme 13. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Danishefsky's total synthesis of halichlorine 13
Scheme 14. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Wipf's total synthesis of leucascandrolide A. 14
Scheme 15. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Porco's total synthesis of lobatamide C 14
Scheme 16. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/ketone addition. 15
Scheme 17. An Overman rearrangement in the total synthesis of antofine by Kim et al 17
Scheme 18. Asymmetric allylic amination in Mori's total synthesis of strychnine 17
Scheme 19. Buchwald's Zr-mediated synthesis of allylic amines 19
Scheme 20. Hydrozirconation of propargylic amines to form allylic amines. 19
Scheme 21. $\mathrm{Et}_{2} \mathrm{Zn}$-mediated addition of alkenyl zirconocenes to nitrones. 20
Scheme 22. Rhodium(I)-catalyzed addition of alkenyl zirconocenes to imines 20
Scheme 23. Diastereoselective addition of alkenyl alanes to sulfinimines. 21
Scheme 24. Racemic Ni-catalyzed reductive coupling of alkynes, boranes, and imines. 21
Scheme 25. Asymmetric Ni-catalyzed reductive coupling of alkynes, boranes, and imines 22
Scheme 26. Soai's asymmetric addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to N-diphenylphosphinoylimine 104. 23
Scheme 27. Comparison of asymmetric alkylation of N-diphenylphosphinoylimine 114 and diastereoselective hydrogenation by the process group at Bristol-Myers Squibb. 25
Scheme 28. Alcohol-directed Simmons-Smith cyclopropanation 28
Scheme 29. Amide-directed Simmons-Smith cyclopropanation 30
Scheme 30. Amine-directed Simmons-Smith cyclopropanation 30
Scheme 31. Zr-Zn transmetation/Simmons-Smith cyclopropanation. 31
Scheme 32. Synthesis of C-cyclopropyl alcohols from vinyloxiranes using Schwartz reagent. 31
Scheme 33. Facile one-pot deprotection and derivitization of allylic phosphinamide 172. 36
Scheme 34. Highest ee achieved for addition to an imine other than 104 41
Scheme 35. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of stoichiometric $\mathrm{Me}_{2} \mathrm{Zn}$. 42
Scheme 36. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic ZnCl_{2} 42
Scheme 37. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic CuBr 43
Scheme 38. Attempted diastereoselective addition to a chiral sulfinimine. 44
Scheme 39. Synthesis and of binaphthyl-phenyl phosphinimine 219. 46
Scheme 40. One-step synthesis of phosphinamide 226 48
Scheme 41. Synthesis of aryl bromide 252 48
Scheme 42. Unexpected formation of amino cyclopropane 257 49
Scheme 43. Deprotection of phosphinamide 257 52
Scheme 44. Relative stereochemistry determination of 263 by chemical correlation to 257 52
Scheme 45. Relative stereochemistry determination of $\mathbf{2 6 4}$ by an alternate synthesis. 53
Scheme 46. Mitsunobu reaction on anti-271. 53
Scheme 47. Relative stereochemistry determination of 262 by chemical correlation to 264 53
Scheme 48. Unsuccessful attempts to obtain cyclopropanation products 55
Scheme 49. Tandem carboalumination, aldimine additions with and without cyclopropanation 57
Scheme 50. Unexpected formation of homoallylic amide 279. 57
Scheme 51. Assignment of homoallylic amine stereochemistry 59
Scheme 52. Unsuccessful one-pot vinylzinc homologation/electrophile allylation 60

Scheme 53. Allylic amine and amino cyclopropane syntheses using Takahashi's protocol......... 61
Scheme 54. Effect of a deuterium quench on the unexpected homoallylic amide 293. 61
Scheme 55. Homoallylic amine synthesis using Takahashi’s protocol. .. 62

1. Introduction

1.1. Hydrozirconation ${ }^{1}$

Hydrozirconation with $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ (Schwartz reagent) is one of the few general methods available for the direct conversion of readily available alkenes and alkynes into organometallic reagents (Figure 1). ${ }^{2}$ Another advantage zirconocenes have over other organometallics are reaction conditions that are compatible with the presence of many functional groups. The majority of synthetic applications utilize alkenylzirconocenes (4), since the reaction of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ with alkynes is very fast and highly regioselective, whereas alkenes are not as reactive, and furthermore internal alkylzirconocenes are rapidly isomerized into terminal alkylzirconocenes. ${ }^{3}$ If this isomerization can be avoided, the hydrozirconation of an internal alkene generates a stereocenter, but very little effort has been made towards asymmetric hydrozirconation. ${ }^{4}$

Figure 1. Hydrozirconation to form alkyl- and alkenylzirconium reagents.

While hydrozirconation is the most common method for forming organozirconocenes, $\mathrm{Cp}_{2} \mathrm{ZrEt}_{2}$ and $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}$ (easily prepared by reacting $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with the appropriate alkyllithium reagent) can be used to form zirconacyclopentanes, -cyclopentenes, and -cyclopentadienes, ${ }^{5}$ which then react very similarly to acyclic organozirconocenes. $\mathrm{Cp}_{2} \mathrm{ZrR}_{2}$ reagents can also be inserted into vinyl halides, ${ }^{6}$ methoxy enol ethers, ${ }^{7}$ enolsilanes, ${ }^{8}$ and vinyl sulfides, sulfoxides, and sulfones ${ }^{9}$ to form alkenylzirconocenes.
$\mathrm{Cp}_{2} \mathrm{ZrHCl}$ was first prepared in 1970^{10} and used to hydrozirconate alkenes ${ }^{11}$ and alkynes ${ }^{12}$ by Wailes and co-workers. Subsequently, Schwartz and co-workers treated the resulting alkyl- ${ }^{13}$ and alkenylzirconocenes ${ }^{14}$ with inorganic electrophiles, and used transmetalation (from Zr to Al) to increase their reactivity towards organic electrophiles. ${ }^{15}$ Schwartz reagent is a moderately air-, moisture-, and light-sensitive colorless solid that can be handled and
weighed on a balance. The hydrozirconation of terminal alkynes proceeds rapidly ($5-15 \mathrm{~min}$) at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF , and is very easily monitored visually since $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ is insoluble in most organic solvents whereas the colored organozirconocenes 4 are highly soluble.

In general, amides, ketones, aldehydes and nitriles are not compatible with hydrozirconation conditions, but alkynes can be selectively hydrozirconated in the presence of certain esters. Functional groups that are recovered unchanged after exposure to Schwartz reagent include carbamates, acetals, epoxides, ethers, halides, and sulfides. Alcohols undergo an acidbase reaction with one equivalent of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ and thereafter do not significantly interfere with alkene or alkyne hydrozirconation. Schwartz reagent has been used as a reducing agent by Ganem and co-workers for the deoxygenation of β-ketoesters to α, β-unsaturated esters, ${ }^{16}$ and for the reduction of amides to imines. ${ }^{17} \mathrm{Cp}_{2} \mathrm{ZrHCl}$ also reduces N, N-disubstituted amides to aldehydes, ${ }^{18}$ and phosphine oxides to phosphines. ${ }^{19}$

Though the ionic character of the $\mathrm{C}-\mathrm{Zr}$ bond is almost equivalent to that of the $\mathrm{C}-\mathrm{Mg}$ bond, organozirconocenes are much weaker nucleophiles than Grignard reagents due to steric shielding at the metal center by the two cyclopentadienyl ligands. Small electrophiles such as halogens, protons, dioxygen, $\mathrm{CO},{ }^{20}$ and isocyanides, ${ }^{21}$ can be directly added to the $\mathrm{C}-\mathrm{Zr}$ bond. One of the most widely used applications of organozirconocenes is for the preparation of (E) vinyl halides by alkyne hydrozirconation followed by halogenation. (Z)-Vinyl halides can also be prepared by hydrozirconating stannylacetylenes. ${ }^{22}$ Regiospecific deuterium labeling can be achieved by quenching organozirconocenes with $\mathrm{D}_{2} \mathrm{O}$ or by using $\mathrm{Cp}_{2} \mathrm{ZrDCl}$ for hydrozirconation. ${ }^{23}$ Hanzawa, Taguchi and co-workers have developed the synthetic utility of acylzirconocenes (formed by CO insertion into the $\mathrm{C}-\mathrm{Zr}$ bond) and demonstrated their reactivity in aldehyde additions, ${ }^{24}$ imine additions, ${ }^{25}$ Pd-catalyzed cross-coupling, ${ }^{26}$ and Pd-catalyzed 1,2- or 1,4 -additions to α, β-unsaturated ketones. ${ }^{27}$

Suzuki and co-workers have prepared allylzirconocenes by hydrozirconation of allenes. These reagents readily converted aldehydes into homoallylic alcohols in high diastereoselectivities. ${ }^{28}$ Along with acylzirconocenes, however, allylzirconocenes are the only classes of organozirconium reagents that will react directly with organic electrophiles such as aldehydes.

One way to increase alkenylzirconocene reactivity towards organic electrophiles is to reduce the steric congestion about zirconium by chloride abstraction. Suzuki and co-workers reported that cationic zirconocenes prepared in situ reacted rapidly with aldehydes to generate
allylic alcohols (Scheme 1). ${ }^{29}$ For example, when 6, the product of hydrozirconation of 1hexyne, was treated with aldehyde 5 in the presence of $5 \mathrm{~mol} \%$ of AgClO_{4}, alcohol 7 was isolated in 90% yield after only a 10 min reaction time. In the absence of the $\operatorname{Ag}(\mathrm{I})$ salt, only 17% conversion was observed after 2 h . Wipf and Xu have shown that cationic alkenylzirconocenes promote an epoxide rearrangement/[1,2]-hydrogen shift of terminal epoxides, followed by vinylation of the resulting aldehyde, affording secondary allylic alcohols. ${ }^{30}$

Scheme 1. Alkenylzirconocene addition to aldehydes catalyzed by AgClO_{4}.

A second general solution to the lack of reactivity of alkenylzirconocenes is transmetalation. Many metals can be used for transmetalation from alkyl- and alkenylzirconocenes; ${ }^{\text {b }}$ however, the most synthetically useful are Pd and Ni, Cu, and Zn . Negishi and co-workers discovered that alkenylzirconocenes could be coupled to aryl or alkenyl halides under Ni^{31} or Pd-catalysis. ${ }^{32}$ A recent total synthesis of lissoclinolide demonstrates a typical application of this methodology (Scheme 2). ${ }^{33}$ Protected propargyl alcohol 9 was hydrozirconated with an in situ generated reagent ${ }^{34}$ and the resulting alkenylzirconocene 10 was iodinated to form (E)-vinyl iodide 11. Pd-catalyzed coupling with propargyl alcohol 8, Swern oxidation and then a CoreyFuchs reaction converted 11 into 1,1-dibromide 12. Pd-catalyzed Negishi coupling of vinyl bromide $\mathbf{1 2}$ with zirconocene 10 occurred exclusively at the trans-position. Carboxylic acid $\mathbf{1 3}$ was then formed by lithium-halogen exchange of the remaining vinyl bromide with a CO_{2} quench. Finally, the natural product was formed by Ag^{+}-catalyzed lactonization of $\mathbf{1 3}$, and deprotection. The Zr - Pd coupling methodology has aslo been used in a total synthesis of papulacandin. ${ }^{35}$

Fu and co-workers have extended the Pd-catalyzed coupling of alkenylzirconocenes to alkyl halides, ${ }^{36}$ and Lipshutz and Frieman have recently reported that the heterogeneous Nicatalyzed coupling of alkenylzirconocenes and aryl halides can be significantly accelerated by using microwaves. ${ }^{37}$

Scheme 2. Pd-catalyzed alkenylzirconocene and vinyl bromide coupling in Negishi's total synthesis of lissoclinolide.

Transmetalation from Zr to Cu combines the ease of preparation of organozirconocenes with the wide scope of reactions of organocopper reagents. ${ }^{38}$ Wipf and co-workers showed that $\mathrm{Cu}(\mathrm{I})$-catalyzed addition of alkenylzirconocenes to acid chlorides afforded α, β-unsaturated ketones, ${ }^{39}$ and that Cu catalyzes the conjugate addition of alkylzirconocenes to enones. ${ }^{40,41}$ Lipshutz and co-workers have worked extensively on the preparation of cyanocuprates using a hydrozirconation, transmetalation sequence. ${ }^{42}$ These cuprate reagents can be alkylated with epoxides or activated (benzylic or allylic) halides, ${ }^{43}$ and used in conjugate additions to α, β unsaturated ketones. ${ }^{44}$ Lipshutz and Wood reported a three-component coupling of cyanocuprates, cyclopentenones and aldehydes (or propargylic triflates) for the synthesis of prostaglandin-like compounds (Scheme 3). ${ }^{45}$ For example, disubstituted cyclopentenone 18 was prepared in one pot and 74% yield as a $12: 1$ mixture of stereoisomers using alkyne 14,2 -cyclopentene-1-one and aldehyde 17. The same sequence has also been performed on a solid support. ${ }^{46}$

1.2. The Zr-Zn Transmetalation Methodology ${ }^{47}$

Negishi and co-workers discovered a significant acceleration in the $\operatorname{Pd}(0)$-catalyzed cross coupling of alkenylzirconocenes with alkenyl, aryl, and alkynyl halides upon addition of ZnCl_{2}
to the reaction mixture (Scheme 4). ${ }^{48}$ For example, the $\operatorname{Pd}(0)$-catalyzed coupling of zirconocene 20 with vinyl bromide 19 yielded no trace of product after 6 h , whereas a 72% isolated yield of the desired diene 21 was obtained after 1 h when the reaction was performed in the presence of a stoichiometric amount of ZnCl_{2}. This acceleration is likely due to a transmetalation of the alkenyl organometallic from the large zirconocene to the much smaller zinc, followed by another transmetalation, to palladium, and continuing in the standard $\operatorname{Pd}(0)$-coupling catalytic cycle. ${ }^{49}$

Scheme 3. One-pot synthesis of prostaglandins by conjugate addition, enolate trapping.

Scheme 4. ZnCl_{2}-accelerated coupling of alkenyl zirconocenes.

Panek and Hu optimized ${ }^{50}$ this process for their synthesis of the unnatural amino acid Adda. ${ }^{51}$ The recent total synthesis of callystatin A by Langille and Panek used a ZnCl_{2}-assisted $\mathrm{sp}^{2}-\mathrm{sp}^{2}$ coupling of an alkenylzirconocene, and a second hydrozirconation to prepare a (Z)-vinyl halide (Scheme 5). ${ }^{52}$ Trimethylsilylalkyne 22 was hydrozirconated at $50{ }^{\circ} \mathrm{C}$ and the resulting terminal zirconocene 23 was quenched selectively at Zr with iodine, affording (E)-vinyl iodide 25. Negishi coupling replaced the iodine with an ethyl group and, after several steps, iododesilylation and another Negishi coupling (selectively at the vinyl bromide) formed (Z)-vinyl iodide 27. A second hydrozirconation was used to prepare alkenylzirconocene 28, which was coupled to 27 to form the carbon skeleton of the natural product. Completion of the total
synthesis required only two deprotections and an oxidation. The $\mathrm{Zr}-\mathrm{Zn}-\mathrm{Pd}$ transmetalation sequence has also been used in the total syntheses of reveromycin $B,{ }^{53}$ motuporin, ${ }^{54}$ FR $901464,{ }^{55}$ eunicenone $\mathrm{A},{ }^{56} \beta$-carotene, ${ }^{57}$ pitiamide $\mathrm{A},{ }^{58}$ and xerulin. ${ }^{59}$

Scheme 5. Two applications of alkenylzirconocenes in Panek's total synthesis of callystatin A.

Wipf and Xu reported in 1993 a high yielding preparation of allylic alcohols from alkenylzirconocenes and aldehydes mediated by dialkylzinc reagents (Scheme 6). ${ }^{60}$ For example, hexenyl zirconocene 6 was added to benzaldehyde in the presence of $\mathrm{Me}_{2} \mathrm{Zn}$ to afford allylic alcohol 33 in 93% isolated yield (based on benzaldehyde). The reaction mechanism is thought to involve a $\mathrm{Zr}-\mathrm{Zn}$ transmetalation, forming alkenyl zinc species 31, followed by a Zr accelerated $^{61} 1,2$-addition of exclusively the alkenyl group of 31 to aldehyde $32 .{ }^{62}$ When the reaction solvent is $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, this one-pot reaction is completed within 10 h on an 18 mmol scale. ${ }^{63}$ Substituted benzaldehydes and aliphatic aldehydes were also effective electrophiles, and
functional groups tolerated on the alkynes included silyl ethers and benzyl esters. The allylic alcohols were isolated in $54-94 \%$ yield. $\mathrm{Me}_{2} \mathrm{Zn}$ can be used in catalytic quantities, ${ }^{64}$ and this same net transformation has been shown to be mediated by both $\mathrm{ZnBr}_{2}{ }^{65}$ and MeLi. ${ }^{66}$

Scheme 6. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation and in situ addition to aldehydes.

Wipf and Xu used the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition strategy to rapidly prepare triene 36, an early intermediate in their total synthesis of curacin A (Scheme 7). ${ }^{67}$ Hydrozirconation of alkyne 34 and transmetalation with $\mathrm{Et}_{2} \mathrm{Zn}$ was followed by addition of tiglic aldehyde to the reaction mixture, and then the expected allylic alcohol was immediately oxidized to the corresponding ketone 35 , isolated in 85% overall yield. $\operatorname{Pd}(0)$-catalyzed $\mathrm{Bu}_{3} \mathrm{SnH}$ reduction of the triflate formed by trapping of the kinetic enolate afforded the all-trans-triene 36 in 71% yield. A similar sequence was used to prepare the all-(E)-polyene fragments of asukamycin ${ }^{68}$ and nisamycin. ${ }^{69}$

Williams and co-workers have used the $\mathrm{Zr}-\mathrm{Zn}$ exchange methodology in their total synthesis of ratjadone (Scheme 8). ${ }^{70}$ Construction of the 5,6-dihydropyran-2-one was initiated by addition to aldehyde 38 of the alkenylzirconocene prepared from alkyne 37. Allylic alcohol 39 was isolated as a 1:1 mixture of diastereomers in very high yield. To set the stereochemistry of the newly formed stereocenter, the alcohol was oxidized and the resulting enone immediately subjected to an assymetric reduction, which gave a 5:1 mixture of diastereomers.

Scheme 7. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Wipf's total synthesis of curacin A.

Scheme 8. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Williams' total synthesis of ratjadone.

Williams and co-workers again used this methodology in their total synthesis of laulimalide (Scheme 9). ${ }^{71}$ To set the desired C_{20} stereocenter, a chelation-controlled addition to aldehyde 43 of the alkenylzinc reagent, derived from hydrozirconation of alkyne 42 and transmetalation with $\mathrm{Me}_{2} \mathrm{Zn}$, was used. The desired allylic alcohol 44 was obtained as a $4: 1$ mixture of diastereomers. The next step in their sequence involved another popular organometalic reaction of alkenes, namely a ring-closing metathesis. The one-pot $\mathrm{Zr}-\mathrm{Zn}$ transmetalation protocol was preferable in this case to addition of an alkenylzincate reagent, which required preparation and isolation of the corresponding vinyl iodide, then lithium-halogen exchange with
t - BuLi , and finally transmetalation with $\mathrm{Me}_{2} \mathrm{Zn}$. Though the addition of this zincate gave a higher diastereoselectivity, the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition protocol was considered more practical. The same zincate strategy was earlier used to form the same C_{20} stereocenter, using very similar substrates, by Messenger and Davidson. ${ }^{72}$ Through the diastereoselectivity of the addition was very high (only one stereoisomer was obtained), the yield was low (45\%) and the reaction mixture was contaminated with 15% of a difficult to separate by-product resulting from methyl addition to the aldehyde.

Scheme 9. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Williams' synthesis of laulimalide.

Murakami and Furusawa used the $\mathrm{Zr}-\mathrm{Zn}$ methodology to prepare both erythro- and threosphingosine, using a highly diastereoselective addition of alkenylzirconocene 47 to Garner's aldehyde (46) in the presence of $\mathrm{Et}_{2} \mathrm{Zn}$ (Scheme 10). ${ }^{73}$ Interestingly, the choice of solvent used for the reaction dictated the relative stereochemistry of the allylic alcohol product. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the syn-alcohol 48 was formed in high diastereoselectivity and high yield. However, keeping all other conditions identical but performing the entire one-pot reaction in THF, anti-alcohol 49 was favored with a diastereoselectivity of $12: 1$ and an isolated yield of 67%. An improved yield of 70% and a selectivity of $20: 1$ was achieved by using half an equivalent of ZnBr_{2} instead of one equivalent of $\mathrm{Et}_{2} \mathrm{Zn}$.

Scheme 10. $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in the diastereoselective synthesis of sphingosines.

Chavez and Jacobsen extended the $\mathrm{Zr}-\mathrm{Zn}$ methodology to the addition to ketones, specifically epoxyketone 51. ${ }^{74}$ Their total synthesis of fostriecin required a diastereoselective, chelation-controlled vinylation of enantiomerically pure 51 (Scheme 11). The most successful model study was hydrozirconation of 1-octyne, transmetalation with $\mathrm{Me}_{2} \mathrm{Zn}$ and addition to $\mathbf{5 1}$, which afforded the expected tertiary allylic alcohol with a diastereoselectivity of $>30: 1$ and in 75% isolated yield. Using alkyne 50 in place of 1-octyne also afforded the desired allylic alcohol (isolated as TES-ether 52 in 45% combined overall yield) with $>30: 1$ diastereoselectivity. The $\mathrm{Zr}-\mathrm{Zn}$ methodology has also been extended to α-ketoesters by Wipf and Stephenson. ${ }^{75}$

Unsuccessful use of this methodology has been reported in stereocontrolled additions to in situ formed oxacarbenium ions (due to competitive alkyl group transfer) ${ }^{76}$ and in studies towards the nautral products halicholactone, ${ }^{77}$ constanolactone $\mathrm{A},{ }^{78}$ and macrolactin $\mathrm{A} .{ }^{79}$ In the latter synthesis, a late-stage hydrozirconation of enyne 54 , transmetalation to $\mathrm{Me}_{2} \mathrm{Zn}$, and addition to aldehyde 53 was planned (Figure 2). Though a test addition to benzaldehyde did afford the desired 1,2-addition product in 50% yield, no addition to aldehyde 53 was observed and the approach was abandoned.

Scheme 11. Zr-Zn transmetalation/ketone addition in Jacobsen's total synthesis of fostriecin.

Figure 2. Unsuccessful $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in an attempted total synthesis of macrolactin A.

In their initial communication on the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition methodology, Wipf and Xu reported that performing the reaction detailed in Scheme 6 in the presence of $8 \mathrm{~mol} \%$ of proline-derived ligand 55 and at $-20^{\circ} \mathrm{C}$ afforded enantiomerically enriched allylic alcohol (S)-33, though with a low ee of 38%. Wipf and Ribe improved the ee to 95% by performing the reaction at $-30^{\circ} \mathrm{C}$ in toluene, in the presence of $10 \mathrm{~mol} \%$ of amino thiol 56 (Scheme 12)..80 Critically, the process also required a 60 min incubation, at $-30{ }^{\circ} \mathrm{C}$, of the zirconocene $/ \mathrm{Me}_{2} \mathrm{Zn} /$ chiral ligand mixture prior to addition to the electrophile. Without this added step, which was believed to allow for complete solvation of the chiral ligand, the ee's of the reaction product were not reproducible. ${ }^{81}$ The amino thiol ligand 56 gave generally moderate to high ee's for all substrates tested, including electron-rich aromatic aldehydes and aliphatic aldehydes (63-74\% ee), and benzaldehyde and more electron-deficient aromatic aldehydes (83-
$99 \% e e$). When performed in the presence of amino thiol 56, the reaction ee displayed a strong, positive non-linear effect. ${ }^{82}$

(S)-33, 38\% ee

Scheme 12. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition.

The catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition has been used in several natural product total syntheses. Danishefsky and Trauner used this reaction at a very late stage of their total synthesis of halichlorine (Scheme 13). ${ }^{83}$ Since Horner-Wadsworth-Emmons homologation of the aldehyde prepared by oxidation of alcohol 57 was unsuccessful, alkyne 58 was instead prepared and used in an asymmetric vinylation of aldehyde 59, catalyzed by amino alcohol 55. The desired bis-allylic alcohol $\mathbf{6 0}$ was isolated in 67% yield as a $4: 1$ mixture of diastereomers. In the absence of ligand 55, the ratio of diastereomers was 1:1. Completion of the total synthesis required only protection of the newly formed allylic alcohol, deprotection of the primary alcohol and ester and their subsequent coupling under Keck macrolactonization conditions, and a final deprotection.

Wipf and Reeves used this asymmetric methodology in their formal synthesis of leucascandrolide A (Scheme 14). ${ }^{84}$ The zirconocene 62 was added to aldehyde 61 in the presence of $\mathrm{Me}_{2} \mathrm{Zn}$ and $25 \mathrm{~mol} \%$ of amino thiol 56. Allylic alcohol 63 was isolated in 62% yield as a $5: 1$ mixture of diastereomers, though the major diastereomer had a configuration at the new alcohol stereocenter that was opposite to that predicted. This forced a change in strategy for completion of the macrocyclic core. In the absence of an external chiral ligand, the $\mathrm{Me}_{2} \mathrm{Zn}$-mediated alkenylzirconocene addition to aldehyde 61 afforded a 1.8:1 mixture of diastereomers. ${ }^{85}$

Williams and co-workers also used the $\mathrm{Zr}-\mathrm{Zn}$ methodology to construct the same C - C bond in their approach to leucascandrolide A, though as with their approach to ratjadone (Scheme 8), no chiral ligand was employed and the newly formed allylic alcohol was immediately oxidized and then stereoselectively reduced. ${ }^{86}$

$60, d r=4: 1$
halichlorine
Scheme 13. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Danishefsky's total synthesis of halichlorine.

Porco and co-workers used the asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in their total synthesis of lobatamide C (Scheme 15)..87 Again, amino thiol 56 was used in catalytic quantities ($10 \mathrm{~mol} \%$), here to affect the $\mathrm{Et}_{2} \mathrm{Zn}$-mediated addition of alkenylzirconocene $\mathbf{6 6}$ to aldehyde 65. The desired allylic alcohol was isolated in 68% yield but only as a $2: 1$ mixture of diastereomers, however, other methods evaluated for setting this stereocenter, including lipase reduction, asymmetric reduction of the corresponding dienone, and catalytic asymmetric alkynylation of the aldehyde, were no more effective. In the absence of 56 , the alcohol 67 was isolated in 87% yield as a 1:1 mixture of diastereomers.

Scheme 14. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Wipf's total synthesis of leucascandrolide A.

lobatamide C
Scheme 15. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition in Porco's total synthesis of lobatamide C.

Li and Walsh have recently reported the catalytic asymmetric vinylation of ketones using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation strategy (Scheme 16). ${ }^{88}$ Though Walsh and co-workers had previously reported a catalytic asymmetric vinylation of aldehydes using a $\mathrm{B}-\mathrm{Zn}$ transmetalation/aldehyde
addition, ${ }^{89}$ in the presence of the chiral amino alcohol (-)-MIB, ${ }^{90}$ a different approach was required for ketones. High levels of enantiocontrol were achieved using $\mathrm{Zr}-\mathrm{Zn}$ transmetalation and catalytic quantities of the chiral Ti complex prepared from $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$ and diol 70. ${ }^{91}$ Under these conditions, tertiary alcohols were formed in high yield (84-98\%) and with good ee (7997\%). For example, vinylation of acetophenone (68) with alkenylzirconocene 6 in the presence of stoichiometric $\mathrm{Me}_{2} \mathrm{Zn}$ and $\mathrm{Ti}(\mathrm{Oi}-\mathrm{Pr})_{4}$, and catalytic diol 70, afforded tertiary allylic alcohol 71 in 85% isolated yield with an ee of 93% (the absolute stereochemistry was not determined). The analogous vinylation of propiophenone (69) afforded alcohol 72 in 90% yield and 94% ee. Other ketones succesfully tested included various arene-substituted acetophenones, 4-methyl-2pentanone, and a few α, β-unsaturated ketones.

Scheme 16. Catalytic asymmetric $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/ketone addition.

The goal of the research presented here was to develop an asymmetric synthesis of allylic amines by extending the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation methodology to imines. Though an obvious disconnection, the 1,2 -addition of functionalized organometallic reagents to imines has not been widely exploited for the synthesis of allylic amines. An asymmetric synthesis of α-chiral benzylamines (by addition to benzaldimines) would produce valuable building blocks which could be used to prepare analogues of ligand 56 and improve the asymmetric allylic alcohol synthesis detailed in Scheme 12.

1.3. Allylic Amines

Allylic amines are important chiral intermediates in organic synthesis, for example in the preparation of unnatural amino acids. ${ }^{92}$ This moiety is found in such natural products as
motuporin, ${ }^{93}$ hemiasterlin, ${ }^{94}$ cyclotheonamide B, ${ }^{95}$ and curacin $\mathrm{A},{ }^{96}$ and is also used as a peptide isostere. ${ }^{97}$ As such, the preparation of allylic amines has long received considerable attention from the synthetic community. ${ }^{98}$

motuporin

hemiasterlin

cyclotheonamide B

Though chiral allylic amines have been traditionally prepared by olefination of amino aldehydes, ${ }^{-, 99}$ this approach suffers from the low stability and ease of epimerization of the aldehydes. The most used modern method for the preparation of allylic amines is the Overman rearrangement. ${ }^{100}$ This process is a [3,3]-sigmatropic rearrangement, without loss of stereochemical integrity, of allylic imidates into allylic trichloroacetamides. A recent demonstration of the methodology was reported in the asymmetric total synthesis of antofine by Kim and coworkers (Scheme 17). ${ }^{101}$ Chiral allylic alcohol 73 was converted into allylic amide 74 under standard Overman rearrangement conditions. Due in part to the relatively harsh conditions needed to deprotect the trichloroacetamide formed, alternate [3,3]-processes continue to be explored, including rearrangements of allyl cyanates, ${ }^{102}$ phosphorimidates ${ }^{103}$ and phospholidines. ${ }^{104}$ Significantly, the metal-catalyzed preparation of enantiomerically enriched allylic amines from racemic imidates has been achieved ${ }^{105}$ and continues to be improved. ${ }^{106}$

The most developed catalytic asymmetric preparation of allylic amines are allylic aminations of π-allyl complexes, pioneered by Trost. ${ }^{107}$ A recent demonstration of this methodology was reported by Nakanishi and Mori as the first key step in their asymmetric total synthesis of strychnine (Scheme 18). ${ }^{108}$ Allylic carbonate 76 was aminated by sulfonamide 77
via its chiral π-allyl Pd-complex, affording allylic sulfonamide 78 in 75% yield with an ee of 84%. Though this transformation has not been as extensively used by the synthetic community as the Overman rearrangement, the methodology continues to be developed. ${ }^{109}$

Scheme 17. An Overman rearrangement in the total synthesis of antofine by Kim et al.

Scheme 18. Asymmetric allylic amination in Mori's total synthesis of strychnine.

Two other catalytic asymmetric preparations of allylic amines that have recently been described are $\mathrm{Ni}(\mathrm{II})$-catalyzed hydroamination of dienes, ${ }^{110}$ and the aza-Baylis-Hilman reaction, using the modified cinchona alkaloid β-isocepeidine. ${ }^{111}$ Several methods have been reported for the preparation of chiral allylic amines from non-racemic precursors, including nucleophilic displacement of allylic bromides; ${ }^{112}$ tellurium-mediated reductive opening of aziridine methanol derivatives ${ }^{113}$ and the closely related indium-mediated opening of 2-iodo-methyl aziridines; ${ }^{114}$ deoxygenation of 3 -amino-1,2-diols; ${ }^{115}$ and dehydration of β-hydroxy- γ-amino sulfones. ${ }^{116}$ The
lipase ${ }^{117}$ or chiral acid ${ }^{118}$ mediated resolution of racemic primary allylic amines has also been used to prepare enantiomerically pure allylic amines.

The 1,2-addition of alkenylorganometallic reagents to imines has not been widely exploited as a general method for the preparation of allylic amines. ${ }^{119}$ One reason could be dimerization of the alkenylorganometallic reagent resulting in α-selective crotylation. ${ }^{120}$ Many examples of catalytic asymmetric ${ }^{121}$ and diastereoselective ${ }^{122}$ additions of vinyllithium or vinyl Grignard reagent to imines and imine derivatives have been reported, though these are usually simply scope of a particular nucleophilic addition methodology. A number of examples of diastereoselective additions of a highly substituted alkenyllithium to sulfonylimines were reported by Braun and Opdenbusch; however, the allylic double bonds were immediately oxidatively cleaved to form amino acids. ${ }^{123}$ In some cases, diastereoselective addition of nucleophiles to imines for the preparation of analogues of ligands, ${ }^{124}$ peptides, ${ }^{125}$ sugars, ${ }^{126}$ or the antibiotic anisomycin, ${ }^{127}$ included one example of addition of vinyllithium or vinyl Grignard. Diastereoselective addition of vinylmagnesium bromide to a chiral α-hydroxy imine was a key step in the total synthesis of 4a,5-dihydrostreptazolin, ${ }^{128}$ and diastereoselective addition of vinyllithium to a chiral oxime ether was the key step in the synthesis of CP-99,994. ${ }^{129}$ A related preparation of allylic amines, by catalytic asymmetric ${ }^{130}$ or diastereoselective ${ }^{131} 1,2$-addition of nucleophiles to α, β-unsaturated imines, has been reported. Very few examples of racemic ${ }^{132}$ or asymmetric ${ }^{133}$ additions of vinylzinc reagents to imines have been reported.

Buchwald and co-workers have reported a zirconocene-mediated synthesis of allylic amines starting from alkynes and imines (Scheme 19). ${ }^{134}$ Lithiation of amine $\mathbf{8 0}$ and addition to $\mathrm{Cp}_{2} \mathrm{ZrMeCl}$ afforded, after loss of methane, azazirconacyclopropane 82. Coupling of $\mathbf{8 2}$ with alkynes such as 1-hexyne formed allylic amines such as $\mathbf{8 4}$ after methanolysis of the $\mathrm{Zr}-\mathrm{C}$ and $\mathrm{Zr}-\mathrm{N}$ bonds. The regioselectivity of alkyne coupling was excellent if one of the substituents in the 3 - or 5-position of azazirconacyclopentene 83 was aromatic. Yields ranged from 48 to 80% with examples of primary aliphatic and benzylic amines, and both terminal and internal alkynes. An asymmetric, auxiliary-based variant was subsequently reported. ${ }^{135}$ Whitby, ${ }^{136}$ Mori, ${ }^{137}$ and others ${ }^{138}$ have expanded this methodology, and the equivalent $\mathrm{Ta}-{ }^{139}$ and Ti-mediated ${ }^{140}$ transformations have been reported.

Scheme 19. Buchwald's Zr -mediated synthesis of allylic amines.

Another synthesis of allylic amines involving zirconium was reported by Hauske and coworkers (Scheme 20). ${ }^{141}$ Non-racemic propargylic amines were prepared and then the triple bond was hydrozirconated and functionalized via iodination or $\mathrm{Ni}(\mathrm{II})$-catalyzed 1,4-addition. For example, valine-derived propargyl carbamate 86 was converted into vinyl iodide 87 in modest yield. To demonstrate the scope of this transformation, seven simple amino acid derivatives were selected. The derivatized allylic amines were isolated in only $20-54 \%$ yield.

Scheme 20. Hydrozirconation of propargylic amines to form allylic amines.

A few methods for the construction of allylic amines using alkynes and imines, related to the research presented herein, have recently been reported. The $\mathrm{Zr}-\mathrm{Zn}$ transmetalation strategy described in the previous section was extended by Vallée and co-workers to the preparation of allylhydroxylamines, using nitrones as electrophiles (Scheme 21). ${ }^{142}$ For example treatment of nitrone 88 with hexenylzirconocene $\mathbf{6}$ in the presence of $\mathrm{Et}_{2} \mathrm{Zn}$ afforded hydroxylamine 89 in 62% yield. Both aliphatic and aromatic nitrones were used in this process. The isolated yields for unfunctionalized, terminal and internal alkynes were in the range of 29-83\%, whereas yields for functionalized alkynes ranged from 5-60\%. The same transformation using hydroboration in place of hydrozirconation was subsequently reported. ${ }^{143}$

Scheme 21. $\mathrm{Et}_{2} \mathrm{Zn}$-mediated addition of alkenyl zirconocenes to nitrones.

A $\mathrm{Rh}(\mathrm{I})$-catalyzed addition of alkenyl zirconocenes to N-tosyl aldimines was reported by Kakuuchi, Taguchi and Hanzawa (Scheme 22). ${ }^{144}$ For example, addition of hexenylzirconocene 6 to aldimine 90 in the presence of $2 \mathrm{~mol} \%$ of the rhodium catalyst afforded sulfonamide 91 in near quantitative yield. The authors suggest a transmetalation of the alkenyl group from Zr to Rh prior to 1,2 -addition to the aldimine. They observed no alkyl group transfer from substrates prepared by hydrozirconation of alkenes. The hydrozirconation step was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then the solvent switched to dioxane prior to addition of the aldimine and $\mathrm{Rh}(\mathrm{I})$ catalyst to the reaction mixture. Both aromatic and aliphatic aldimines as well as functionalized alkynes all formed the desired sulfonamides in high (58-99\%) yield.

Scheme 22. Rhodium(I)-catalyzed addition of alkenyl zirconocenes to imines.

Water-accelerated carboalumination of alkynes is another effective method for the preparation of reactive alkenyl organometallics. ${ }^{145}$ Wipf, Nunes and Ribe showed that direct addition of vinyl alanes to enantiopure N-sulfinimines ${ }^{146}$ afforded trisubstituted allylic amines in high yield and good diastereoselectivity (Scheme 23). ${ }^{147}$ For example 93, the methylaluminated product derived from 1-octyne, was added to sulfinimine $\mathbf{9 2}$ affording sulfinamide $\mathbf{9 4}$ with an 80% isolated yield and diastereomeric ratio of $20: 1$. Functional group tolerance on the alkyne segment is not as broad for carboalumination as for hydrozirconation, nevertheless a range of unfunctionalized alkynes were used as well as a triisopropylsilyl ether-substituted terminal alkyne. Aromatic, cinnamyl and cyclohexyl sulfinimines were used as substrates, with isolated
yields ranging from 65-85\%, and all diastereoselectivities were at least 6:1. An alkyne carbocupration, imine-addition strategy has also been used to prepare allylic amines. ${ }^{148}$

Scheme 23. Diastereoselective addition of alkenyl alanes to sulfinimines.

A three-component $\mathrm{Ni}(0)$-catalyzed coupling of alkynes, organoboron reagents, and aldimines, forming tetrasubstituted allylic amines, was reported by Patel and Jamison (Scheme 24). ${ }^{149}$ For example the reaction of alkyne $\mathbf{9 6}$, benzaldimine $\mathbf{9 5}$, and triethylborane, catalyzed by $5 \mathrm{~mol} \%$ of a $\mathrm{Ni}(0) /$ trialkylphosphine complex afforded allylic amines $\mathbf{9 7 - 9 9}$ in 78% combined yield. The scope of this reaction was limited to internal alkynes and the regioselectivity of the double bond formed was high (9:1) only for alkyne substrates that included one aryl and one alkyl substituent. When trialkylboranes were used, the reductive coupled product 99 was formed in $c a .10 \%$ yield; however, when boronic acids were used, only the alkylative coupled products (for example regioisomers $\mathbf{9 7}$ and 98) were isolated. Both aromatic and aliphatic aldimines were used and the isolated yields of the product mixtures ranged from 30-98\%.

Scheme 24. Racemic Ni-catalyzed reductive coupling of alkynes, boranes, and imines.

Recently, this reaction was extended to an asymmetric synthesis of allylic amines by using chiral phosphine 101 and alkylimines such as $\mathbf{1 0 0}$ (Scheme 25). ${ }^{150}$ Not only were most of the desired allylic amines obtained in good yield (42-95\%) and high enantioselectivity (51-89\% $e e$), but the undesired products of reductive coupling, such as $\mathbf{9 9}$, were avoided under these
reaction conditions. The enantioenriched allylic amines formed were oxidatively deprotected with no loss of enantiomeric purity to afford the corresponding primary amines. No explanation for determination of the absolute stereochemistry of the allylic amines was given.

Scheme 25. Asymmetric Ni-catalyzed reductive coupling of alkynes, boranes, and imines.

1.4. Diethylzinc Additions to Aldimines

Despite the vast body of knowledge for dialkylzinc $\left(\mathrm{R}_{2} \mathrm{Zn}\right)$ additions to aldehydes, ${ }^{151}$ the corresponding addition to aldimines has not been as widely studied due to their significantly lower electrophilicity. ${ }^{152}$ Most examples have been limited to the addition of strongly basic reagents such as Grignard reagents or alkyllithiums. Katritzky and Harris reported the asymmetric addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to N -(amidobenzyl)-benzotriazoles (masked N -acylimines) in up to 76% ee in the presence of one equivalent of N, N-dibutylnorephedrine. ${ }^{153}$ Soai and co-workers soon afterwards reported that N-diphenylphosphinoylimines such as 104 were sufficiently active for $\mathrm{R}_{2} \mathrm{Zn}$ addition, and the easily deprotected phosphinamide products 106 could be prepared in up to 90% ee and recrystallized to higher enantiomeric purities (Scheme 26). ${ }^{154}$ Again, one equivalent of a norephedrine ligand was used. Similar levels of enantiocontrol (84\% ee and 76\% isolated yield) were obtained when the same reaction was performed in neat $\mathrm{Et}_{2} \mathrm{Zn} .{ }^{155}$

Scheme 26. Soai's asymmetric addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to N-diphenylphosphinoylimine 104.

Soai has subsequently developed polymer- ${ }^{156}$ and dendrimer-supported ${ }^{157}$ norephedrine ligands for use in this asymmetric transformation, and other groups have developed amino alcohols 108, ${ }^{158} 109,{ }^{159} 110,{ }^{160} 111,{ }^{161} 112,{ }^{162}$ and 113. ${ }^{163}$ A survey of results is presented in

108

111

109

110

113 (cinchonidine)

Table 1. The isolated yields of $\mathbf{1 0 6}$ were in general high, normally within the range of $65-90 \%$, and the reaction required at least three equivalents of $\mathrm{Et}_{2} \mathrm{Zn}$. Highest $e e$ was achieved when one equivalent of the chiral ligand was used (compare Entries 1 with $2 ; 3$ with $4 ; 5$ with 6 ; and 10 with 11 and 12). The reaction times were long and usually required room temperature for acceptable rates. Pericàs and co-workers developed an amino alcohol/silyl halide protocol that allowed performing the reaction at $-20^{\circ} \mathrm{C}$, though no significant improvement in yield or ee was observed with the asymmetric ligands tested (Entry 7). Recently, Beresford has found that using catalytic quantities of the natural alkaloid cinchonidine (113) as the amino alcohol and two equivalents of MeOH afforded α-ethylbenzylamine 106 with a similar yield and ee (entry 13) as when one equivalent of $\mathbf{1 1 3}$ was used (entry 10).

Table 1. Representative examples for asymmetric $\mathrm{Et}_{2} \mathrm{Zn}$ addition to 104.

Entry	L^{*} (Equiv)	Temperature	Yield (\%)	ee (\%)	Reference
1	$\mathbf{1 0 5}(1.0)$	$0^{\circ} \mathrm{C}$	89	$90(S)$	154
2	$\mathbf{1 0 5}(0.5)$	$0^{\circ} \mathrm{C}$	69	$85(S)$	154
3	$\mathbf{1 0 8}(1.0)$	rt	63	$94(R)$	158 a
4	$\mathbf{1 0 8}(0.5)$	rt	76	$87(R)$	158 a
5	$\mathbf{1 0 9}(1.0)$	rt	75	$97(S)$	159 c
6	$\mathbf{1 0 9}(0.5)$	rt	68	$92(S)$	159 c
7^{a}	$\mathbf{1 1 0}(1.0)$	$-20^{\circ} \mathrm{C}$	75	$92(S)$	160 b
8^{b}	$\mathbf{1 1 1}(1.0)$	rt	92	$97(R)$	161 b
9^{b}	$\mathbf{1 1 2}(1.0)$	rt	77	$91(S)$	162 a
10^{c}	$\mathbf{1 1 3}(1.0)$	rt	76	$93(R)$	163 a
11^{c}	$\mathbf{1 1 3}(0.5)$	rt	77	$87(R)$	163 a
12^{c}	$\mathbf{1 1 3}(0.05)$	rt	50	$69(R)$	163 b
13^{c}	$\mathbf{1 1 3}(0.2)^{d}$	rt	70	$93(R)$	163 b

${ }^{a} 1$ equiv TIPS- Cl added to the reaction mixture. ${ }^{b_{5}}$ equiv $\mathrm{Et}_{2} \mathrm{Zn}$ used. ${ }^{c} 12$ equiv $\mathrm{Et}_{2} \mathrm{Zn}$ used. ${ }^{d} 2$ equiv MeOH added.

The process chemistry group at Bristol-Myers Squibb tested the asymmetric alkylation of N-diphenylphosphinoylimines during the large-scale synthesis of a candidate for the treatment of cystic fibrosis and rheumatoid arthritis, DMP 777 (Scheme 27). ${ }^{164}$ Alkylation of imine 114 with $n-\operatorname{Pr}_{2} \mathrm{Zn}$ in the presence of 1.5 equivalents of norephedrine-derived amino alcohol ent-105 was performed on a 30 mmol scale, affording (R) - $\mathbf{1 1 5}$ in 67% conversion, but 50% isolated yield (after crystallization), and 89% ee. Phosphinamide 115 was then deprotected using TFA/MeOH at reflux. Ultimately, a diastereoselective hydrogenation of chiral ketimine $\mathbf{1 1 8}$ was selected to prepare large quantities of chiral amine 116, despite destruction of the chiral auxiliary in this process. The phosphinimine alkylation method was undesirable due to the relatively low ee of 89% obtained, and the need to use stoichiometric quantities of ent-105.

1. H_{2} (150 psi), cat. Ra-Ni, toluene/EtOH, rt
2. H_{2} (150 psi), cat. $\mathrm{Pd}-\mathrm{C}$, AcOH/toluene/EtOH, rt
3. HCl, i-PrOH/toluene, $20^{\circ} \mathrm{C}$ (60-70\%)

Scheme 27. Comparison of asymmetric alkylation of N-diphenylphosphinoylimine 114 and diastereoselective hydrogenation by the process group at Bristol-Myers Squibb.

Tomioka and co-workers reported an asymmetric alkylation of N-tosylimines, catalyzed by $\mathrm{Cu}(\mathrm{OTf})_{2}$ and phosphine 119. ${ }^{165}$ Several other groups have subsequently investigated this Cu -catalyzed reaction, using ligands $\mathbf{1 2 2},{ }^{166} \mathbf{1 2 3},{ }^{167} \mathbf{1 2 4},{ }^{168}$ and $\mathbf{1 2 5}$. ${ }^{169}$ A survey of their results (for alkylation of imines derived from aromatic aldehydes) is shown in Table 2. Tomioka and co-workers improved their ligand's selectivity by preparing 120 (for $\mathrm{Et}_{2} \mathrm{Zn}$ addition, entry 1) and 121 (for $\mathrm{Me}_{2} \mathrm{Zn}$ and $i-\mathrm{Pr}_{2} \mathrm{Zn}$ addition, entries 2 and 3). Charette and co-workers have developed ligand 122 for the alkylation of phosphinimines (entries 4-6), resulting in a superior process due to the significantly milder deprotection conditions of diphenylphosphinamides compared to sulfonamides. High ee's were reported for $\mathrm{Et}_{2} \mathrm{Zn}, \mathrm{Me}_{2} \mathrm{Zn}$ and $i-\mathrm{Pr}_{2} \mathrm{Zn}$ additions to both aromatic and in situ generated aliphatic imines. Hoveyda, Snapper and co-workers have successfully developed a Zr -catalyzed asymmetric addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to imines derived from condensation of aryl aldehydes and o-anisidine, in the presence of as little as $0.1 \mathrm{~mol} \%$ of peptide 126 (entry
10). ${ }^{170}$ Dahmen and Bräse have reported that in situ generated N-formylimines can be alkylated by $\mathrm{Et}_{2} \mathrm{Zn}$ in the presence of catalytic quantities of paracyclophane amino alcohol 127 affording adducts in very high yield and enantioselectivity (entry 11). ${ }^{171}$

Table 2. Representative examples for catalytic asymmetric $\mathrm{R}_{2} \mathrm{Zn}$ addition to aromatic imines.

Entry	R (Equiv)	PG	Metal (mol\%)	L* (mol\%)	Yield (\%)	ee (\%)	Reference
1^{a}	Et (2)	Ts	$\mathrm{Cu}(\mathrm{OTf})_{2}(5)$	120 (6.5)	97	96 (S)	165c
$2^{\text {b }}$	Me (8)	Ts	$\mathrm{Cu}(\mathrm{OTf})_{2}(20)$	121 (15)	97	87 (S)	165c
3^{a}	$i-\operatorname{Pr}(2)$	Ts	$\mathrm{Cu}(\mathrm{OTf})_{2}(20)$	121 (15)	$92^{\text {c }}$	78 (S)	165 c
4^{a}	Et (2)	$\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$	$\mathrm{Cu}(\mathrm{OTf})_{2}(6)$	122 (3)	96	98 (S)	166b
5^{b}	Me (3)	$\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$	CuOTf (5)	122 (5)	87	97 (S)	166b
6^{a}	$i-\operatorname{Pr}$ (3)	$\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$	$\mathrm{Cu}(\mathrm{OTf})_{2}(10)$	122 (5)	84	95 (S)	166b
7^{a}	Et (2)	Ts	CuBF_{4} (3)	123 (6)	93	86 (S)	167b
8^{a}	Et (2)	Ts	$\mathrm{CuClO}_{4}(3)$	124 (6)	92	68 (S)	168
$9^{\text {d }}$	Et (4)	Ts	$\mathrm{Cu}(\mathrm{OTf})_{2}(10)$	125 (12)	58	77 (S)	169
$10^{\text {b }}$	Et (3)	$2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$	$\mathrm{Zr}(\mathrm{Oi}-\mathrm{Pr})_{4}(20)$	126 (0.1)	82	93 (S)	170a
11^{e}	Et (6)	CHO	none	127 (2)	99	95 (R)	171

${ }^{a}$ Reaction in toluene at $0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Reaction in toluene at rt . ${ }^{c} 5 \%$ of BnNHTs also isolated. ${ }^{d}$ Reaction in toluene at $-20^{\circ} \mathrm{C}$. ${ }^{e}$ Reaction in hexane at $10{ }^{\circ} \mathrm{C}$.

1.5. Simmons-Smith Cyclopropanation

In the course of the research presented here, a one-pot imine vinylation/cyclopropanation was discovered. The mechanism was thought to involve an allylic amide-directed SimmonsSmith cyclopropanation. ${ }^{172}$ Cyclopropane amino acids are of considerable interest as many, such as ($2 S, 1$ 'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) ${ }^{173,174}$ and ($2 S, 4 R$)-hypoglycin A, ${ }^{175}$ show biological activity. ${ }^{176}$ They are also increasingly used in the pharmaceutical industry, in active compounds such as BILN 206. ${ }^{177}$

L-CCG-I

hypoglycin A

Simmons and Smith discovered that the cyclopropanation of alkenes could be accomplished using the product of a zinc/copper couple and $\mathrm{CH}_{2} \mathrm{I}_{2} .{ }^{178}$ The active reagent was believed to be the electrophilic zinc carbenoid $\mathrm{ZnCH}_{2} \mathrm{I}$. Furukawa and co-workers found that a similar cyclopropanating reagent, presumably $\mathrm{EtZnCH}_{2} \mathrm{I}$, could be formed by mixing $\mathrm{Et}_{2} \mathrm{Zn}$ and $\mathrm{CH}_{2} \mathrm{I}_{2} .{ }^{179}$ A number of metal/ $\mathrm{CH}_{2} \mathrm{X}_{2}(\mathrm{X}=$ halogen $)$ combinations, with or without additional ligands, have been subsequently developed. ${ }^{\text {b,180 }}$

The Simmons-Smith reaction has gained wide use for the cyclopropanation of alkenes due to its tolerance of most common functional groups including alkynes, alcohols, ethers, aldehydes, ketones, and carboxylic acids and their derivatives. Dihalides other than $\mathrm{CH}_{2} \mathrm{I}_{2}$, such as $\mathrm{CH}_{3} \mathrm{CHI}_{2}$, can be used to form trisubstituted cyclopropanes. ${ }^{181} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ is the solvent of choice for this reaction, since it is "non-basic, unreactive towards the zinc reagents, and polar enough to solubilize the substrates." ${ }^{\text {a }}$

An important characteristic of the Simmons-Smith cyclopropanation is that it can be directed by allylic alcohols and ethers. ${ }^{182}$ For example, the more sterically hindered β-face of the allylic double bond of alcohol 128 was diastereoselectively and chemoselectively cyclopropanated using the Simmons-Smith reagent (Scheme 28). ${ }^{183}$

Scheme 28. Alcohol-directed Simmons-Smith cyclopropanation.
(Z)-Disubstituted and trisubstituted allylic double bonds nearly always give very high syn-selectivities when cyclopropanated; however, selectivities with (E)-disubstituted double bonds are much lower, and highly reagent- and substituent-dependant. ${ }^{184}$ In some cases (E)disubstituted allylic ethers can favor anti-selectivity (Table 3). ${ }^{185}$ Two trends can be observed: as the size of R^{2} increases, syn-selectivity increases as well; however, the size of the R^{1} ether has the opposite effect, increasing anti-selectivity.

Table 3. Substituent effects on syn/anti selectivity for (E)-disubstituted allylic ethers.

Transition state models that explain these trends are shown in Figure 3. The allylic $\mathrm{A}^{1,3}$ strain of transition state I, normally used to explain syn-selectivity for allylic alcohol-directed cyclopropanation (i.e. $\mathrm{R}^{1}=\mathrm{H}$ for the allylic alcohol substrate), decreases relative to the strain between the R^{1} and R^{2} groups in transition state II for sufficiently large R^{1} and small R^{2} groups. Allylic $\mathrm{A}^{1,3}$-strain is the dominant interaction for (Z)-allylic ethers.

Figure 3. Transition state models for anti- and syn-selective cyclopropanations of allylic ethers. ${ }^{\text {a }}$

Amides can also be strong directing groups in the Simmons-Smith reaction, though there are very few published examples. Cyclopentenylamide $\mathbf{1 3 0}$ was cyclopropanated exclusively syn to the amide, despite the presence of an allylic alcohol on the opposite face of the ring (Scheme 29). ${ }^{186}$ Reversal of selectivity was observed when the fully N-protected cyclopentene 132 was subjected to the same reaction conditions. The related cyclopropanation of α, β-unsaturated amides using $\mathrm{SmI}_{2} / \mathrm{CH}_{2} \mathrm{I}_{2}$ was proposed to involve co-ordination of Sm to the carbonyl oxygen. ${ }^{187}$

Amines are normally not directing groups for Simmons-Smith cyclopropanation, likely due to competitive formation of zinc-complexed ammonium ylides. ${ }^{188}$ Aggarwal and co-workers have found that a suitably proximal hydroxyl group inhibited ylide formation between allylic amines and bis-iodomethylzinc, thus allowing cyclopropanation of the alkene (Scheme 30). ${ }^{189}$ For example, pseudoephedrine-containing allylic amine 134 was cyclopropanated to afford 135 as a single diastereomer in very high yield. Tertiary amines were required, and no additional functional groups, such as alcohols or esters, were tolerated as substituents on the substrate. The
chiral auxiliary was removed in high yield by quaternizing the amine followed by heating with NaH .

Scheme 29. Amide-directed Simmons-Smith cyclopropanation.

Scheme 30. Amine-directed Simmons-Smith cyclopropanation.

Oshima and co-workers have combined the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation strategy with Simmons-Smith cyclopropanation conditions for a net synthesis of trans-disubstituted cyclopropanes from alkynes (Scheme 31). ${ }^{190}$ For example, hydrozirconation of 1-dodecyne and transmetalation with $i-\mathrm{PrZnCl}$ formed alkenylzinc reagent 139. Addition of the Furukawa reagent to the reaction mixture, stirring at room temperature for 1 h , and quenching with deuterated acetic acid afforded cyclopropane 141 (via trans-cyclopropylzinc species 140). Cumediated allylation of $\mathbf{1 4 0}$ afforded the corresponding allyl-substituted cyclopropane.

Taguchi, Hanzawa and co-workers have reported another Zr -mediated synthesis of cyclopropanes. They prepared cyclopropyl alcohols from vinyloxiranes by simply treating the substrate with Schwartz reagent in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 32). ${ }^{191}$ This reaction was very diastereoselective for cis-vinyloxirane 142, as C-cyclopropyl alcohol 145 was the only diastereomer isolated from the reaction mixture. When the trans-vinyloxirane was used, the diastereomeric
ratio of the anti,trans-cyclopropane (vs. anti,cis-) was 80:20. The analogous hydrozirconation of vinylaziridines afforded C-cyclopropylalkylamines. Allylic ethers have also been converted into cyclopropanes by the same mechanism, however, a Lewis acid was needed for deoxygenation. ${ }^{192}$

Scheme 31. Zr-Zn transmetation/Simmons-Smith cyclopropanation.

Scheme 32. Synthesis of C-cyclopropyl alcohols from vinyloxiranes using Schwartz reagent.

2. Results and Discussion

2.1. Synthesis of Allylic Amines ${ }^{193}$

The research project described here was initiated to extend the $\mathrm{Zr}-\mathrm{Zn}$ methodology developed in the Wipf group to an asymmetric synthesis of allylic amines. Optimization of a racemic transformation analogous to the allylic alcohol synthesis detailed in Scheme 6 was undertaken using 1-hexyne (30) and benzaldimine 104. The hydrozirconation of terminal alkynes is very rapid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF at room temperature, thus initially the one-pot reaction was attempted in either of these two solvents (Table 4). Standard conditions were as follows: 1.5 equivalents of 30 were hydrozirconated with an equimolar quantity of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$. Once the reaction mixture was homogeneous ($\sim 10 \mathrm{~min}$), it was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with 1.5 equivalents of $\mathrm{Me}_{2} \mathrm{Zn}$, rapidly warmed to room temperature, cannulated into a solution of aldimine 96, and stirred until TLC analysis showed consumption of the imine. Performing the reaction under these standard conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded only 41% of the desired allylic amide 146 after 18 h (entry 1). The reaction time was decreased significantly by heating the reaction mixture to reflux (entry 2), though the isolated yield increased only to 59%. Increasing the number of equivalents of reagents and heating at reflux (entries 3 and 4) had a detrimental effect on the yield (vide infra). There was no trace of 1,2 -addition in the absence of $\mathrm{Me}_{2} \mathrm{Zn}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after 4 h (entry 5).

Under standard conditions in THF, only 54% of $\mathbf{1 4 6}$ was isolated after 36 h (Table 4, entry 6). Either doubling the number of equivalents (entry 7), heating the reaction mixture (entry 8), or both (entry 10) reduced the reaction time but did not increase the isolated yield. The optimal conditions in THF consisted of heating the reaction mixture to $40^{\circ} \mathrm{C}$ and using 2 equivalents of all reagents, which gave a 65% yield of 146 , based on aldimine 104 , after 16 h (entry 9). Additives such as TMS-Cl, ${ }^{194} \mathrm{MeOH}$ or an amino alcohol, each of which accelerate $\mathrm{Et}_{2} \mathrm{Zn}$ addition to aldimines, did not improve the isolated yield or rate of reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or THF (entries 11-13).

The results in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were not promising, so toluene was investigated as the reaction solvent. When the entire one-pot reaction, including hydrozirconation at $40^{\circ} \mathrm{C}$ for 1 h , was performed in toluene, 59% of $\mathbf{1 4 6}$ was isolated (Table 4, entry 14). However, when hydrozirconation was first performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then the solvent switched to toluene, gratifyingly
a 76% yield of 146 was isolated after 2 h (entry 15). When $\mathrm{Me}_{2} \mathrm{Zn}$ was omitted from the reaction mixture, again no addition product was observed (entry 16); however, a catalytic amount of $\mathrm{Me}_{2} \mathrm{Zn}$ resulted in nearly as high a yield as when using 1.5 equivalents of $\mathrm{Me}_{2} \mathrm{Zn}$, though the reaction time was significantly increased (entry 17). Again, additives such as MeOH or BnOH had no affect on the reaction yield (entries 18 and 19).

Table 4. Imine addition optimization studies.

$\bar{\equiv}{ }_{30} \mathrm{C}_{4} \mathrm{H}_{9}$	$\xrightarrow{\mathrm{Cp}_{2} \mathrm{ZrHCl}}$		${ }^{\mathrm{Zr}} \wedge \mathrm{C}_{4}$		$\xrightarrow{\mathrm{h}_{2}}{ }_{\mathrm{Zn}} \mathbf{1 0 4}$	
Entry	Equiv 6	Equiv $\mathrm{Me}_{2} \mathrm{Zn}$	Solvent	Temperature	Time (h)	Yield (\%) ${ }^{\text {a }}$
1	1.5	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	16	41
2	1.5	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	59
3	2.0	2.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	43
4	3.0	3.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	11
5	1.5	0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	4	0
6	1.5	1.5	THF	rt	36	54
7	3.0	3.0	THF	rt	16	50
8	1.5	1.5	THF	$30^{\circ} \mathrm{C}$	20	49
9	2.0	2.0	THF	$40^{\circ} \mathrm{C}$	16	65
10	3.0	3.0	THF	$40^{\circ} \mathrm{C}$	4	52
11	1.5	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	16	$40^{\text {b }}$
12	1.5	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	$64^{\text {c }}$
13	1.5	1.5	THF	rt	36	$45^{\text {d }}$
14	1.5	1.5	toluene	rt	4	59
15	1.5	1.5	toluene ${ }^{e}$	rt	2	76
16	1.5	0	toluene ${ }^{e}$	rt	16	0
17	1.5	0.2	toluene ${ }^{e}$	rt	16	72
18	1.5	1.5	toluene ${ }^{e}$	rt	6	$74^{\text {c }}$
19	1.5	1.5	toluene ${ }^{e}$	rt	6	74^{f}

${ }^{a}$ Yields of isolated products are based on aldimine 104. ${ }^{b} 0.1$ equiv of $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}$ was added. ${ }^{c} 0.5$ equiv of MeOH was added. ${ }^{d} 1$ equiv of TMS-Cl was added. ${ }^{e}$ Hydrozirconation was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was subsequently removed in vacuo and replaced with toluene. ${ }^{f} 0.5$ equiv of $\mathrm{PhCH}_{2} \mathrm{OH}$ was added.

Using the optimized reaction conditions (Table 4, entry 15), the reaction scope was investigated (Table 5). Trisubstituted alkene 147 was prepared in high yield from 3-hexyne (entry 2). Functional groups on the alkyne such as silyl ethers (entry 3), silyl esters (entry 4), sulfonamides and carbamates (entry 5) were tolerated. Bulky trimethylsilylacetylene did not yield any significant quantities of the desired allylic amide 155 (entry 6). In contrast to $\mathrm{Et}_{2} \mathrm{Zn}$ addition to $\mathbf{1 0 4}$, electron-withdrawing groups on the benzaldimine did not affect the reaction (entry 7), whereas the presence of electron-donating groups significantly reduced the isolated yield (entry 8).

Other N-diphenylphosphinoylimines derived from non-enolizable aldehydes were prepared and subjected to these reaction conditions. Thus α, β-unsaturated aldimines 160 and 162 were converted to bis-allylic amides 161 and 163, and alkynlimine 164 was converted to propargylamide 165 in 85% yield (Table 5, entries $9-11$). The N-tosyl group was also suitable for activating benzaldimine 90 under these conditions (entry 12), and N-tosylimines 166, 168 and 170, derived from enolizable aldehydes, formed amides 167, 169 and 171 (entries 13-15).

Table 5. Synthesis of allylic amines using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation methodology.

Entry	Alkyne	Aldimine	Allylic Amine	Yield (\%)
1	1-hexyne (30)			76
2	3-hexyne	104	 147	72
3		104		73
4		104		65
5		104		59

Table 5 (continued). Synthesis of allylic amines using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation methodology.
Entry

Table 5 (continued). Synthesis of allylic amines using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation methodology.

Entry	Alkyne	Aldimine	Allylic Amine	Yield (\%)
15	$\mathbf{3 0}$			

${ }^{a}$ Reaction conditions: (i) 1.5 equiv of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 1.5$ equiv of alkyne, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 10 min ; (ii) 1.5 equiv of $\mathrm{Me}_{2} \mathrm{Zn}$, toluene, $-78^{\circ} \mathrm{C}$, 5 min ; (iii) 1.0 equiv of aldimine, toluene, rt, 2-5 h. ${ }^{b}$ Yields of isolated products are based on aldimines.

Like benzyl phosphinamide 106, the allylic phosphinamides prepared were easily deprotected under mild conditions. ${ }^{195}$ For example, anhydrous HCl in MeOH removed the diphenylphosphinoyl group of 172, and in one pot the allylic amine was reprotected as amide 173, carbamate 174 or sulfonamide 175 (Scheme 33).

Scheme 33. Facile one-pot deprotection and derivitization of allylic phosphinamide 172.

Several other aldimines were tested using the conditions of Table 5. Carbamoylimines such as $\mathbf{1 7 5}$, and N-acetylimine 177 were significantly more reactive than phosphinimine 104 or sulfonimine 90 (vide infra). All benzaldimines that did not have an activating (strongly withdrawing) group on nitrogen, including N-aryl imine 178, N-silyl imine 179, and oxime 180, were unreactive under the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation conditions.

176

177

178

179

180

2.2. Asymmetric Synthesis of Allylic Amines

Development of an asymmetric synthesis of $\mathbf{1 4 4}$, through the use of chiral amino alcohol or thiol promoters that were effective for the enantioselective allylic alcohol reaction detailed in Scheme 13, was unsuccessful. Amino alcohol 55 and amino thiophenol 181 were used for the

55

181
attempted ee optimization studies (Table 6). Both were effective asymmetric catalysts for the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition reaction, and both can easily be prepared in large scale in two steps from inexpensive, commercially available starting materials.

Optimization was performed for the addition of alkenylzirconocene 6 to imine 104. Using the standard conditions of toluene as the reaction solvent and performing the reaction at room temperature gave acceptable yields of $\mathbf{1 4 6}$ but less than 5% ee when 10 or $50 \mathrm{~mol} \%$ of 55 was added to the reaction mixture (Table 6, entries 1 and 2). The same occured when amino thiol 181 was used with a reaction temperature of $0{ }^{\circ} \mathrm{C}$ (entries 3 and 4). For phosphinimine 104, when the reaction was performed at $-20^{\circ} \mathrm{C}$ there was a significant drop in the rate of reaction, and only a very small ee was measured by chiral HPLC (entry 5).

Table 6. Attempted asymmetric addition reactions with imine 104 and ligands 55 and 181.

Entry	Equiv $\mathrm{Me}_{2} \mathrm{Zn}$	L^{*}	Equiv L*	Temperature	Yield (\%) ${ }^{a}$	ee (\%) $)^{b}$
1	1.2	$\mathbf{5 5}$	0.1	rt	65	<5
2	1.2	$\mathbf{5 5}$	0.5	rt	71	<5
3	1.5	$\mathbf{1 8 1}$	0.1	$0^{\circ} \mathrm{C}$	68	<5
4	1.5	$\mathbf{1 8 1}$	0.5	$0^{\circ} \mathrm{C}$	69	<5
5	1.5	$\mathbf{1 8 1}$	0.1	$-20^{\circ} \mathrm{C}$	39	10
6	1.0	$\mathbf{5 5}$	1.0	rt	0	-
7	3.0	$\mathbf{5 5}$	1.0	rt	66	24
8	3.0	$\mathbf{5 5}$	1.0	$10^{\circ} \mathrm{C}$	75	23
9	3.0	$\mathbf{5 5}$	1.0	$0^{\circ} \mathrm{C}$	27	29
10	3.0	$\mathbf{1 8 1}$	1.0	$10^{\circ} \mathrm{C}$	56	34
11	0.2	$\mathbf{1 8 1}$	0.5	$50^{\circ} \mathrm{C}$	56	18

${ }^{a}$ Yields of isolated products based on $104 .{ }^{b}$ Measured by chiral HPLC using a Chiracel OD or AD Column.

Though the reaction was largely unaffected by the presence of substoichiometric quantities of ligand when at least one equivalent of $\mathrm{Me}_{2} \mathrm{Zn}$ was used, addition of one equivalent of 55 to an equal amount of $\mathrm{Me}_{2} \mathrm{Zn}$ suppressed addition of alkenylzirconocene $\mathbf{6}$ to imine $\mathbf{1 0 4}$ (Table 6, entry 6). The use of stoichiometric quantities of 55 required 3 equivalents of $\mathrm{Me}_{2} \mathrm{Zn}$ for an acceptable isolated yield of $\mathbf{1 4 6}$, but the $e e$ of the reaction was still not high (entry 7). Lowering the temperature did not significantly increase the $e e$, and once again reduced the rate of reaction (entries 8 and 9). The highest ee of allylic phosphinamide 146 (34\%) was achieved using three equivalents of $\mathrm{Me}_{2} \mathrm{Zn}$, one equivalent of $\mathbf{1 8 1}$, and performing the reaction in toluene at $10^{\circ} \mathrm{C}$ (entry 10). The reaction could be forced to completion when equal or greater amounts of amino alcohol than $\mathrm{Me}_{2} \mathrm{Zn}$ were used, by heating to $50^{\circ} \mathrm{C}$. However, when 0.2 equivalents of $\mathrm{Me}_{2} \mathrm{Zn}$ and 0.5 equivalents of 181 were used at $50^{\circ} \mathrm{C}$, the reaction ee was only 18% (entry 11). The observed $e e$'s, though low, were reproducible. Repeating reactions using one equivalent of ligand that gave ee's in the range of $20-30 \%$ gave a result that was within 5% ee of the originally measured value. In every set of reaction conditions tested for an asymmetric synthesis of 146,
where less than one equivalent of ligand but at least one equivalent of $\mathrm{Me}_{2} \mathrm{Zn}$ was used, the $e e$ was always $<10 \%$.

Several other ligands were prepared and tested using the conditions of Table 6, entries 8 and 10. These included amino alcohols 108, ${ }^{\text {b }} \mathbf{1 1 2},{ }^{\text {b }} \mathbf{1 2 7},{ }^{196} \mathbf{1 8 2}, \mathbf{1 8 3},{ }^{197} \mathbf{1 8 4},{ }^{198} 185,{ }^{199} \mathbf{1 8 6},{ }^{200}$ 187, and 188, alcohols 189 and 190, and amines 191-193. In all cases, the ee was $<30 \%$. Pyridine 189 was prepared as a racemic mixture and then separated by semi-preparative chiral

182 [(-)-MIB]

183

184

185

188 (cinchonine)

189

194 [(+)-BINOL]

195

HPLC using a Chiralcel AD column. The enantiomerically pure ligand (S)-189 was effective for $\mathrm{Et}_{2} \mathrm{Zn}$ addition to phosphinimine $\mathbf{1 0 4}$ using the conditions of Table 1 (α-ethylbenzylamine (S)106 was isolated in 74% yield with an ee of 93%), but was ineffective for the preparation of enantiomerically enriched allylic phosphinamide 146. Based on the results of Scheme 14, alcohol 190 was also prepared as a racemic mixture and separated by chiral HPLC, but was also inneffective. Diols 70, ${ }^{201} 194$ and $195{ }^{202}$ were also tested, in combination with $\mathrm{Ti}(\mathrm{IV})$ reagents. Regardless of the conditions used, when Ti was present in the reaction mixture, the ee was zero. N-Tosylimine 90 was also completely ineffective, with only racemic product formed. Using ZnCl_{2} in place of $\mathrm{Me}_{2} \mathrm{Zn}$ was also briefly investigated, however the ee's were zero in all reactions tested.
N-Carbamate, -amide, and -urea benzaldimines 176, 177, 197, 199, and 202 were significantly more reactive than phosphinimine 96, thus temperatures lower than those of Table 6 could be investigated (Table 7). Again, no ee higher than 35% was obtained. The allylic amine derivatives were however typically isolated in higher yield.

Table 7. Attempted asymmetric addition reactions with more reactive imines.

Entry	R	Imine	L^{*}	Yield (\%) a	$e e(\%)^{b}$	Allylic Amine
1^{c}	Ot -Bu	$\mathbf{1 7 6}$	$\mathbf{5 5}$	81	22	$\mathbf{1 9 6}$
2	OEt	$\mathbf{1 9 7}$	$\mathbf{1 8 1}$	94	7	$\mathbf{1 9 8}$
3^{d}	OMe	$\mathbf{1 9 9}$	$\mathbf{5 5}$	86	6	$\mathbf{2 0 0}$
4	Me	$\mathbf{1 7 7}$	$\mathbf{1 8 1}$	44	1	$\mathbf{2 0 1}$
5	NMe_{2}	$\mathbf{2 0 2}$	$\mathbf{1 8 1}$	69	6	$\mathbf{2 0 3}$

${ }^{a}$ Yields of isolated products, based on imines. ${ }^{b}$ Measured by chiral HPLC using a Chiracel OD or AD Column. ${ }^{c} 1$ equiv of $\mathrm{Me}_{2} \mathrm{Zn}$ used. ${ }^{d} 3$ equiv of $\mathrm{Me}_{2} \mathrm{Zn}$ and 1 equiv of L^{*} used, and reacted at $-20^{\circ} \mathrm{C}$.

The benzaldimines 176, 177, 197, and 199 could be prepared in situ using the method of Dahmen and Bräse (Table 8). The advantage of this method was the ease of preparation and the stability of the solid sulfonamide sulfones, compared to the aldimines which were all moisturesensitive oils. However, as can be seen by comparing Table 7, entry 2 and Table 8, entry 1, the isolated yield of ethyl carbamate 198 was much lower using the in situ generated imine protocol. The isolated yield of acetamide 201 was very slightly increased (Table 7, entry 4 vs. Table 8, entry 2), likely due to the difficulty in handling the very unstable imine 177. This approach was abandoned because no ee above 10% was obtained using in situ generated imines.

The highest $e e$ achieved using an imine other than 104 was from addition to 199 , in the presence of 1 equivalent of both $\mathrm{Me}_{2} \mathrm{Zn}$ and amino alcohol 55, which yielded 80% of allylic carbamate 200 in 32\% ee (Scheme 34).

Table 8. Attempted asymmetric addition reactions with in situ-generated imines.

Scheme 34. Highest ee achieved for addition to an imine other than 104.

Following a recently published protocol, ${ }^{203}$ in situ generated acyliminium ions were used as electrophiles in the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation reaction, and found to be significantly more reactive than any other imines tested. Quantitative formation of acyliminium chloride 206 took 15 min at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and could be monitored by TLC. Treatment of $\mathbf{2 0 6}$ with hexenylzirconocene 6 and an equivalent of $\mathrm{Me}_{2} \mathrm{Zn}$ resulted in very rapid 1,2-addition, though a significant amount of methyl addition also occurred. When the reaction was performed at room temperature, 51% of the desired allylic amide 207 was isolated, as well as 32% of methyl-adduct 208 (Scheme 35).

To avoid methyl transfer to acyliminium $206, \mathrm{ZnCl}_{2}$ was successfully used in place of $\mathrm{Me}_{2} \mathrm{Zn}$ (Scheme 36). During optimization of these reaction conditions, it was discovered that as little as 1 drop of a 1.0 M solution of ZnCl_{2} in $\mathrm{Et}_{2} \mathrm{O}$ was sufficient to catalyze the addition of hexenylzirconocene 6; after only a 15 min reaction time at $0^{\circ} \mathrm{C}, 82 \%$ of $\mathbf{2 0 7}$ was isolated. There was no addition when ZnCl_{2} was excluded from the reaction.

Scheme 35. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of stoichiometric $\mathrm{Me}_{2} \mathrm{Zn}$.

Scheme 36. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic ZnCl_{2}.

Despite the presence of a significantly more reactive electrophile and the high yield of addition product 207 with only $2 \mathrm{~mol} \%$ of ZnCl_{2} added, no $e e$ was obtained when the reaction was performed in the presence of chiral amino alcohols or thiols. As previously, using an equal amount of ligand and ZnCl_{2} had a detrimental affect on the rate of reaction, whereas if more ZnCl_{2} than ligand was used only racemic product was formed. Unlike all of the other imines tested; however, the addition of $\mathbf{6}$ to 206 was also catalyzed by $\mathrm{Cu}(\mathrm{I})$ salts (Scheme 37). In the presence of $10 \mathrm{~mol} \%$ of CuBr , allylic amide 207 was isolated in 86% yield after a 30 min reaction time at $0{ }^{\circ} \mathrm{C}$.

All $\mathrm{Cu}(\mathrm{I})$ salts tested were almost equally effective, so CuCl was selected for asymmetric studies since $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ (the Zr complex formed after transmetalation in this case) is not highly soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Several known asymmetric ligands for Cu -catalyzed reaction were tested, including 209-217 (Figure 4) No ligand was found that delivered any enantioselectivity ($<10 \%$
$e e$ for each catalyst system tested), and again the rate of reaction was decreased upon addition of an external ligand to the reaction mixture.

Scheme 37. Hexenylzirconocene 6 addition to acyliminium chloride 206 in the presence of catalytic CuBr .

181

211

209

212 [(R,R)-Me-DuPHOS]

210

213

216

217
no reaction

Figure 4. Ligands tested and $e e$'s obtained for the attempted Cu-catalyzed asymmetric synthesis of 207.

Lacking success using external chiral ligands for an asymmetric synthesis of allylic amines using the $\mathrm{Zr}-\mathrm{Zr}$ transmetalation methodology, other strategies were explored. Diastereo-
selective addition to chiral sulfinimine 92 was attempted; however, this aldimine was not sufficiently reactive, even at elevated temperatures (Scheme 38).

Scheme 38. Attempted diastereoselective addition to a chiral sulfinimine.

Several chiral phosphinamides were prepared and tested as potential substrates for diastereoselective addition of alkenylzirconocene 6 (Table 9). The first imine tested was binaphthyl-phenyl phosphinimine 219, which was prepared as a single diastereomer (vide infra). Addition of 6 to this imine at room temperature afforded the desired allylic amide 220 with a modest diastereomeric ratio of 72:28 (entry 1). The benzaldimines of known phosphinamides $\mathbf{2 2 1}{ }^{204}$ and $\mathbf{2 2 4}{ }^{205}$ were then tested and identical diastereoseletivities of 69:31 were obtained for both (entries 2 and 3). Since there was no change in selectivity for all three substrates tested, it was assued that the bulky R group was not as hoped involved in stereodifferentiation, instead the constant $d r$ of 7:3 was due to the difference in size between the phenyl and oxygen substituents on phosphorous.

Preliminary molecular modeling showed that ortho-substituted phenyl rings blocked one face of the aldimine and oriented the oxygen away from the $\mathrm{C}=\mathrm{N}$ double bond. A series of novel phosphinamides were prepared to test the modeling findings. Though the first two imines tested, 227 and 230, had poorer selectivities of nearly 1:1 (Table 9, entries 4-6), the reaction was much slower, and imine 227 required $40^{\circ} \mathrm{C}$ for an isolated yield of 68%. In these cases, due to the lower rate of reaction, it appeared that the transition state was more crowded thus the model appeared to be correct. Imines 233 and 236 were then tested (entries 7 and 8). In both cases a reaction temperature of $40^{\circ} \mathrm{C}$ was required, and the diastereoselectivity was increased, though it was still much too low to be useful. Imine 239 showed no improvement over 233 (entry 9).

Table 9. Diastereoselective addition to chiral phosphinimines.

[^0]The imines were prepared using the method of Jennings and Lovely, ${ }^{206}$ and initially isolated, with difficulty, by precipitation. Imines 225 and 227 could not be isolated by this method, and so they were used as crude mixtures of imine and benzaldehyde. Imines 230, 233, 236, and 239 were purified by column chromatography after it was discovered that unlike diphenylphosphinamide 104, these imines were stable on deactivated SiO_{2}.

Binaphthyl-phenyl phosphinimine 219 was prepared from the known phosphinic acid 241^{207} in three steps (Scheme 39). Thermal opening of phosphole oxide $\mathbf{2 4 0}$ with NaOH was very low yielding. The subsequent one-pot acid chloride formation and amidation was nearly quantitative. Imine formation afforded a 64:38 mixture of diastereomers, and fortunately, crystalization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes afforded an x-ray quality (Appendix A) single crystal that was characterized and tested in the diastereoselective addition.

219:242 = 1.8:1

Scheme 39. Synthesis and of binaphthyl-phenyl phosphinimine 219.

The novel phosphinamides $243,246,248,250$, and 252 were prepared by adapting the literature procedure used for mesityl-phenyl phosphinamide 221 (Table 10). Aryl Grignard addition to $\mathrm{ClP}(\mathrm{OEt})_{2}$ was followed by mild acid-promoted rearrangement to afford ethyl phosphinates with a characteristic P-H coupling of $\sim 550 \mathrm{~Hz}$. Only $244(\mathrm{R}=t-\mathrm{Bu})$ was isolated (entry 1), in all other cases the crude material was used in the subsequent Pd-catalyzed coupling with iodobenzene. Phosphinates 245, 247, 249, 251, and 253 were isolated in modest to high yield. For entries 2-5, a three-step, high yielding sequene of dealkylation, acid chloride formation, and amidation was used for ester to amide conversion. Non-racemic phosphinamide 221 has been prepared by treating its corresponding acid chloride with one enantiomer of α methylbenzylamine, separating the resulting diastereomers by chromatography on SiO_{2}, and removal of the benzylic group by hydrogenation. This resolution strategy was not explored here since no highly diastereoselective alkenylzirconocene addition was found.

Table 10. Synthesis of novel aryl-phenyl phosphinamides.

${ }^{a}$ Isolated yield of Aryl Phosphinates. ${ }^{b}$ Isolated yield of Aryl-Phenyl Phosphinates. ${ }^{c}$ Isolated yield of Primary Amides.

For the conversion of ester 245 to amide 226, a known one-step protocol using NaNH_{2} was followed, but the yield was low and the reaction was not clean (Scheme 40). This appraoch failed completely for the conversion of $\mathbf{2 4 7}$ to $\mathbf{2 2 8}$, so the three-step sequence shown in Table 10 was used for all other substrates.

Scheme 40. One-step synthesis of phosphinamide 226.

Known aryl bromides 243, ${ }^{208} \mathbf{2 4 6},{ }^{209}$ and $\mathbf{2 5 0}{ }^{210}$ were prepared according to literature procedures. Tolyl-substituted bromobenzene 252 was prepared by Suzuki coupling of 4-methylphenylboronic acid (255) with 1,2-dibromobenzene (Scheme 41).

This diastereolective addition strategy was abandonded since the diastereoselectivities obtained were not promising, and preparation of the chiral phosphinimines required up to eight chemical steps, not including the needed resolution should the method be used for the synthesis of non-racemic allylic amines.

Scheme 41. Synthesis of aryl bromide 252.

2.3. Synthesis of C-Cyclopropylalkylamines

While investigating the alkenylzinc addition to aldimines in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 4), it was observed that increasing the number of equivalents of the organometallic reagents when
performing the reaction at reflux reduced the isolated yield of the desired allylic amide 146. This was due to formation of a second phosphinamide, cyclopropane 257 (Scheme 42). Only the amino cyclopropane with anti-configuration (determined by X-ray analysis of benzyl derivative 268, Appendix B) was identified by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. By repeating the reaction in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, bis-deuterated cyclopropane 258 was formed, whereas 257 remained the major product formed if $\mathrm{Me}_{2} \mathrm{Zn}$ was replaced with $\mathrm{Et}_{2} \mathrm{Zn}$, thus the origin of the new cyclopropyl carbon was shown to be the solvent.

Scheme 42. Unexpected formation of amino cyclopropane 257.

Allowing the reaction to continue for a longer period of time increased the yield of 257 and decreased that of $\mathbf{1 4 6}$ (Table 11, Entry 2). Lowering the number of equivalents of the organometallic reagents reduced the yield of 257, even after prolonged reaction times (Entries 3 and 4). Even as little as 10 equivalents of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added to a reaction performed in toluene resulted in formation of substantial quantities of 257, though heating was necessary to keep the reaction time under 24 h (Entries 5 and 6). Whenever $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used, 257 was not the only product formed, thus, in order to increase the yield and rate of the reaction, $\mathrm{CH}_{2} \mathrm{I}_{2}$ was added to the reaction mixture, resulting in the isolation of 257 in 74% yield (Entry 7).

The scope of the optimized reaction conditions (Table 11, entry 7) is shown in Table 12. Silyl ether, silyl ester, sulfonamide, and carbamate functional groups were again tolerated on the alkyne moiety (entries 2-4). ${ }^{211}$ Alkynylimine 164 was converted into propargylamine $262{ }^{212}$ in modest yield (entry 5); however, the α, β-unsaturated imines 159 and 161 gave only complex mixtures of mono- and bis-cyclopropanated amides. Use of N-tosylimine $\mathbf{9 0}$ in place of $\mathbf{1 0 4}$
retained the excellent diastereoselectivity displayed by all reactions thus far (entry 6); however, with alkylimines 166 and 170, the diastereoselectivity was lower (entries 7 and 8).

Table 11. C-Cyclopropylalkylamine reaction optimization.

Entry	Equiv 6 and $\mathrm{Me}_{2} \mathrm{Zn}$	Solvent	Temperature	Time (h)	Yield 257 ${ }^{a}$	Yield $\mathbf{1 4 6}^{a}$
1	3.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	1	29%	43%
2	3.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	58%	11%
3	2.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	18%	43%
4	1.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	reflux	16	4%	42%
5	3.0	toluene b	rt	36	43%	26%
6	3.0	toluene b	$40{ }^{\circ} \mathrm{C}$	16	49%	19%
7	3.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{c}$	reflux	3	74%	---

${ }^{a}$ Yields of isolated products based on 104. ${ }^{b} 10$ equiv $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added to reaction mixture. ${ }^{c} 5$ equiv $\mathrm{CH}_{2} \mathrm{I}_{2}$ added to the reaction mixture after 1 h .

Table 12. Synthesis of C-cyclopropylalkylamines.

Entry	Alkyne	Aldimine	C-Cyclopropylalkylamine ${ }^{\text {a,b }}$	Yield ${ }^{\text {c }}$	$d r$
1	1-hexyne (30)	104		74\%	97:3 ${ }^{\text {d }}$
2	148	104		68\%	98:2 ${ }^{\text {d }}$
3	150	104		71\%	$>95: 5^{e}$
4	152	104		45\%	>95:5 ${ }^{e}$

Table 12 (continued). Synthesis of C-cyclopropylalkylamines.

Entry	Alkyne	Aldimine	C-Cyclopropylalkylamine ${ }^{\text {a,b }}$	Yield ${ }^{\text {c }}$	$d r$
5	30	164		60\%	$>95: 5^{e}$
6	30	90		66\%	$>95: 5^{e}$
7	30	166		67\%	87:13 ${ }^{\text {e }}$
8^{f}	30	170		62\%	40:60 ${ }^{\text {e,g }}$
9	3-hexyne	104		46\%	96:4 ${ }^{\text {d }}$
$10^{h, i}$	30	104	 267	52\%	$>95: 5^{e, j}$
11^{k}	30	104	257	91\%	>95:5 ${ }^{e}$

${ }^{a}$ Only the major isomer is shown. ${ }^{b}$ Reaction conditions: (i) 3 equiv of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, 3 equiv of alkyne, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 10 min ; (ii) 3 equiv of $\mathrm{Me}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 5$ min ; (iii) 1 equiv of aldimine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $1-2 \mathrm{~h}$; (iv) 5 equiv of $\mathrm{CH}_{2} \mathrm{I}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 2-12 h. ${ }^{c}$ Yields of isolated products are based on aldimines. ${ }^{d}$ Determined by HPLC analysis of the crude reaction mixture. ${ }^{e}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. ${ }^{f}$ Additional $\mathrm{Me}_{2} \mathrm{Zn}$ (3 equiv) and $\mathrm{CH}_{2} \mathrm{I}_{2}$ (10 equiv) were added to the reaction mixture. ${ }^{g}$ Major diastereomer was not assigned. ${ }^{h} \mathrm{Et}_{2} \mathrm{Zn}$ (6 equiv) and $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ (12 equiv) were added to the reaction mixture. ${ }^{i}$ Hydrozirconation was performed in THF, and the solvent exchanged to $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ for the remainder of the reaction. ${ }^{j}$ Relative stereochemistry determined by x-ray analysis of a derivative (Appendix C). ${ }^{k} 1$ equiv of $\mathrm{PhCH}_{2} \mathrm{OH}$ was added to the reaction mixture.

1,1,2-Trisubstituted cyclopropanes could be prepared in modest yield using internal alkynes in the hydrozirconation step (Table 12, entry 9), and 1,2,3-trisubstituted cyclopropanes
could also be prepared using $\mathrm{CH}_{3} \mathrm{CHI}_{2}$ in place of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (entry 10). Using $\mathrm{I}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}{ }^{213}$ afforded only trace amounts of the desired tetrasubstituted cyclopropane. When either of these 1,1diiodoalkanes were used in place of $\mathrm{CH}_{2} \mathrm{I}_{2}$, hydrozirconation had to be performed in a solvent other than $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, otherwise 257 was the major product formed. The isolated yield of 257 was increased to 91% when one equivalent of benzyl alcohol was added to the reaction mixture (entry 11).

The C-cyclopropylalkylphosphinamides produced could be easily deprotected in quantitative yield in anhydrous methanol and acid (Scheme 43). Upon acylation, benzamide 268 (used for X-ray analysis to determine the relative stereochemistry, Appendix B) was formed in 99\% yield from 257.

Scheme 43. Deprotection of phosphinamide 257.

The anti-configuration was observed for the major diastereomer of all C-cyclopropylalkylamines but 265. The stereochemistry of 259-261 and 266 were assigned by analogy to 257 . Deprotection and N-tosylation of 257 afforded 263, confirming an identical relative configuration for the major diastereomers of N-phosphinoyl and N-sulfonyl amides (Scheme 44).

Scheme 44. Relative stereochemistry determination of 263 by chemical correlation to 257.

The relative stereochemistry of 264 was determined by chemical correlation (Scheme 45). Known allylic alcohol 270 was prepared using the $\mathrm{Zr}-\mathrm{Zn}$ transmetalation/aldehyde addition reaction. Simmons-Smith cyclopropanation of 270 with the Furukawa reagent afforded an 86:14 mixture of easily separable diastereomers, with the major isomer assigned a syn-relative
stereochemistry based on literature precedent. Mitsunobu substitution of the secondary alcohol of syn-271 with DPPA ${ }^{214}$ gave a 78:22 mixture of diastereomeric azides. The major epimer was assigned as the $\mathrm{S}_{\mathrm{N}} 2$ product (anti relative stereochemistry), since subjecting the minor diastereomer from Simmons-Smith cyclopropanation (anti-271) to the Mitsunobu reaction afforded the azides as a 15:85 mixture of diastereomers, favoring the syn-stereoisomer (Scheme 46). ${ }^{215}$ Reduction of the mixture of azides followed by N-tosylation and epimer separation by chromatography on SiO_{2} afforded 264 in 66% overall yield.

Scheme 45. Relative stereochemistry determination of 264 by an alternate synthesis.

Scheme 46. Mitsunobu reaction on anti-271.

The relative configuration of 262 was determined chemically by reduction, deprotection, and tosylation to give 264 (Scheme 47).

Scheme 47. Relative stereochemistry determination of 262 by chemical correlation to 264.

A Simmons-Smith-type cyclopropanation was postulated to explain the formation of 257 (Figure 5). Hydrozirconation of 1-hexyne followed by transmetalation with $\mathrm{Me}_{2} \mathrm{Zn}$ afforded alkenylzinc 31. Addition to aldimine 104 resulted in metalated allylic amide 273, which reacted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give zinc carbenoid 274. Intramolecular cyclopropanation of 274 gave anticyclopropane 257. No reaction occurred in the absence of $\mathrm{Me}_{2} \mathrm{Zn}$. TLC analysis of the reaction mixture clearly showed formation of allylic amide 146 prior to formation of cyclopropane 257, and there was no addition of a cyclopropylzinc species (prepared according to the conditions of Scheme 31) to imine 104.

Figure 5. Proposed mechanism for formation of C-cyclopropylalkylamide 257.

No cyclopropane was formed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at reflux if the aldimine $\mathbf{1 0 4}$ was replaced with benzaldehyde, or if the alkenylzinc species was generated by a hydroboration, B-Zn transmetalation ${ }^{216}$ (even in the presence of $\mathrm{CH}_{2} \mathrm{I}_{2}$, see Scheme 52) or carboalumination, Al-Zn transmetalation strategy (Scheme 48). Simmons-Smith cyclopropanation of allylic phosphinamide 146 afforded 257 as a 71:29 (anti:syn) mixture of diastereomers, and allylic sulfonamide 91 afforded 263 as an 81:19 (anti:syn) mixture of diastereomers. In both cases the diastereoselectivity was significantly lower than for the one-pot alkenylzirconocene addition/cyclopropanation. Thus, both the zirconocene complex and the aldimine may play a role in the reaction mechanism.

Scheme 48. Unsuccessful attempts to obtain cyclopropanation products
in aldehyde or imine additions.

The high level of diastereoselectivity for anti-257 can be rationalized using the allylic ether-directed cyclopropanation model ${ }^{\text {a }}$ (Figure 6). Transition state III, normally invoked to explain syn-selective allylic alcohol directed cyclopropanation, minimizes allylic $\mathrm{A}^{1,3}$ strain. Transition state IV instead minimizes steric interactions of the phenyl substituent with the bulky phosphinoyl protecting group on nitrogen. The zirconocene complex could act as a Lewis acid, activating the halomethyl zinc carbenoid, and forming a significantly larger cyclopropanation reagent via a bridged $\mathrm{Zr}-\mathrm{Zn}$ complex, ${ }^{217}$ which increases anti-selectivity compared to the ($\mathrm{Zr}-$ free) cyclopropanations of allylic amides 91 and 146.

The isolated yield of allylic amide 276, prepared by carboalumination/Al-Zn transmetalation/imine addition was improved to 73% using the optimized addition conditions (toluene, room temperature), and the one-pot aldimine vinylation/cyclopropanation to form the corresponding 1,2,2-trisubstituted cyclopropane 278 was achieved using the optimized conditions for this transformation (Scheme 49). A mixture of 276 and 278 was obtained, and the cyclopropane 278 was formed as a 9:1 mixture of diastereomers. In this case, $\mathrm{Me}_{2} \mathrm{Zn}$ was not necessary for cyclopropanation. Pure 278 was prepared by Simmons-Smith cyclopropanation of 276, affording 278 as a single diastereomer. The relative stereochemistry of the isomer was
identical to that of the major diastereomer in the one-pot vinylation/cyclopropanation, and was assigned as syn based on literature precedent.

transition state IV

Figure 6. Transition state models for cyclopropanation of allylic amide 274.

2.4. Synthesis of Homoallylic Amines ${ }^{218}$

Interestingly, the order of addition of reactants for the optimized C-cyclopropylalkylamine synthesis proved to be crucial for product formation. Addition of $\mathrm{CH}_{2} \mathrm{I}_{2}$ to the reaction mixture prior to imine 104 lead to a switch from the expected cyclopropylamide 257 to homoallylic amide 279, in 58% yield and $5: 1$ diastereoselectivity, favoring the syn-isomer (Scheme 50). ${ }^{219}$ This yield was slightly increased by lowering the temperature, but the effect on diastereoselectivity was minimal.

Scheme 49. Tandem carboalumination, aldimine additions with and without cyclopropanation.

Scheme 50. Unexpected formation of homoallylic amide 279.

The reaction scope is illustrated in Table 13. Some functional groups on the alkyne segment, such as silyl ethers (Entry 3) did not interfere with the reaction; however, the use of silyl esters or internal alkynes resulted in both lower yield and reduced diastereoselectivity (Entries 4 and 2). Electron-donating and -withdrawing groups on the aldimine were tolerated and had no effect on product ratios (Entries 5 and 6). N-Tosylimines such as 90 and 166 were also suitable substrates, though $\mathbf{9 0}$ resulted in decreased diastereoselectivity (Entry 7), whereas 166 provided the homoallylated product 286 in excellent diastereoselectivity. Trace amounts of the corresponding C-cyclopropylalkylamines (e.g. 257 for Entry 1) were the only identifiable side products.

Table 13. Synthesis of homoallylic amines.

Entry	Alkyne	Aldimine	Homoallylic Amide ${ }^{\text {a,b }}$	Yield (\%) ${ }^{\text {c }}$	$d r^{d}$
1	1-hexyne (30)	104		71	85:15
2	3-hexyne	104		49	75:25
3	148	104		72	85:15
4	150	104		48	62:38
5	148	156		69	85:15
6	30	158		79	83:17
7	148	90		81	60:40
8	148	166		87	>95:5

${ }^{a}$ Only the major isomer is shown. ${ }^{b}$ Reaction conditions: (i) 3 equiv of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 3$ equiv of alkyne, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 10 min ; (ii) 4 equiv of $\mathrm{Me}_{2} \mathrm{Zn}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (iii) 5 equiv $\mathrm{CH}_{2} \mathrm{I}_{2}, 1$ equiv of aldimine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2-12 \mathrm{~h}$. ${ }^{c}$ Yields of isolated products are based on aldimines. ${ }^{d}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.

The assignment of the relative stereochemistry of these addition products was first based on the coupling constant analysis of lactams 287, formed by hydrolysis and cyclization of homoallylic amides 282 (Scheme 51), and later confirmed by an X-ray analysis of anti-287 (Appendix D). ${ }^{1} \mathrm{H}$ coupling constants of anti- and syn- 287 were characteristic for 1,2-diaxial and gauche relationships and were in good agreement with literature values. ${ }^{220}$

anti-282

Scheme 51. Assignment of homoallylic amine stereochemistry.

A rationalization of the formation of the homoallylic product is shown in Figure 7. First, hydrozirconation of 1-hexyne followed by transmetalation with $\mathrm{Me}_{2} \mathrm{Zn}$ afforded alkenylzinc 31. Rapid reaction of 31 with $\mathrm{CH}_{2} \mathrm{I}_{2}$ formed, after [1,2]-shift, allylic zinc 289, which added to aldimine 104 to form the observed homoallylic amide 279. ${ }^{221}$ A similar vinyl zinc to allyl zinc homologation mechanism was proposed by Marek and co-workers in their four-component coupling of alkynyl sulfoxides, organocopper reagents, electrophiles (aldehydes or aldimines) and bis(iodomethyl)zinc. ${ }^{222}$ A closed transition state is likely for this reaction and minimization of allylic strain explains the preference for syn-configuration. Indirect support for a preferred cyclic transition state came from the dependence of the diastereoselectivity on the nature of the pseudoaxial imine substituents: the bulkier aromatic aldimines significantly eroded synselectivity versus an aliphatic chain (Table 13, Entries 7 and 8). Attempts to prepare the analogous homoallylic alcohols by replacing aldimines with aldehyde substrates were unsuccessful, and furthermore, efforts to prepare $\mathbf{2 8 0}$ using a B-Zn transmetalation strategy have also failed (Scheme 52). In either case, only allylic products were formed, and thus once again both the aldimine and a zirconocene complex may be important in the mechanism.

Figure 7. Proposed mechanism for formation of homoallylic amide syn-279.

Scheme 52. Unsuccessful one-pot vinylzinc homologation/electrophile allylation.

2.5. Application of an Alternate Preparation of Alkenylzirconocenes

Application of Takahashi's protocol for generating vinylzirconocenes (oxidative insertion of $\mathrm{Cp}_{2} \mathrm{Zr}$ into a vinyl halide) to the optimized reaction conditions developed for allylic amide, C cyclopropylalkylamine and homoallylic amide syntheses produced yet another unexpected result. Upon addition of $\mathrm{Me}_{2} \mathrm{Zn}$ to vinylzirconocene 292, followed by imine 104, homoallylic amide 293 was the major product isolated, not the expected allylic amide 294 (Scheme 53). A similar result was obtained when $\mathrm{CH}_{2} \mathrm{I}_{2}$ was added (last) to the reaction mixture. Again homoallylic amide 293 was the major product formed, with cyclopropane 295 isolated in only 14% yield.

Scheme 53. Allylic amine and amino cyclopropane syntheses using Takahashi's protocol.

Mechanistic insight was obtained by quenching the reaction mixture with deuterated acetic acid (Scheme 54). In this case, bis-deuterated homoallylic amide 296 was isolated, in a very similar yield to 293.

Scheme 54. Effect of a deuterium quench on the unexpected homoallylic amide 293.

The bis-deuterated product 296 supported a zirconocycle precursor; a possible mechanism is shown in Figure 8. Oxidative insertion of $\mathrm{Cp}_{2} \mathrm{Zr}$ into 2-bromopropene afforded alkenylzirconocene 292. Ligand exchange on 292 with a second equivalent of $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2}$ resulted in 297, which could eliminate butane to form propyne complexed to $\mathrm{Cp}_{2} \mathrm{Zr}$ (298). Alternatively ligand exchange could have occurred with $\mathrm{Me}_{2} \mathrm{Zn}$, followed by elimination of methane. Takahashi and co-workers have postulated this type of mechanism, by purposely treating 292 with a second equivalent of $\mathrm{Cp}_{2} \mathrm{ZrBu}_{2} .{ }^{223}$ In their case, bis-zirconocene complex 300 was isolated and characterized. In the present case, however, addition of $\mathrm{Me}_{2} \mathrm{Zn}$ and imine $\mathbf{1 0 4}$ to the reaction mixture could result in oxidative cyclization of the propyne- $\mathrm{Cp}_{2} \mathrm{Zr}$ complex 298 and allylic amide 302 (formed by a $\mathrm{Zr}-\mathrm{Zn}$ transmetalation on 292 or 297, followed by addition to imine 104). Deuterolysis of both $\mathrm{C}-\mathrm{Zr}$ bonds of zirconacycle 303 would give the product with
correct deuterium substitution. Attempts to optimize or minimize the yield of 293 were unsuccessful, as were attempts to intercept the proposed mechanism with external alkynes.

Figure 8. Proposed mechanism for formation of homoallylic amide 296.

Under the optimized homoallylic amide reaction conditions shown in Table 13, $\mathbf{3 0 4}$ was formed in 75% yield, and no trace of 293 was detected in the reaction mixture (Scheme 55).

Scheme 55. Homoallylic amine synthesis using Takahashi's protocol.

3. Conclusions

The $\mathrm{Zr}-\mathrm{Zn}$ transmetalation, aldehyde addition methodology developed in the Wipf group has been extended to the synthesis of allylic amines. ${ }^{\text {b }}$ The use of toluene as a reaction solvent was required to obtain high yields and low reaction times. N-phosphinoyl-, N-sulfonoyl-, and N carbamoylimines were excellent substrates for this transformation.

Many chiral ligands were tested for asymmetric catalysis, but minimal ee was achieved. A successful asymetric synthesis of allylic amines by alkenylzirconocene addition to imines will likely require conditions where transmetalation must take place with a chiral organometallic complex that will subsequently add to the imine or imine derivative without a significant decrease in reaction rate. No such conditions were found in this study.

A novel three-component C-cyclopropylalkylamine synthesis was discovered while attempting to perform the allylic amine synthesis in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mechanism of this transformation is not fully understood, however this is the first reported example of a high-yielding Simmons-Smith cyclopropanation with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the carbene precursor. This reaction was optimized by adding $\mathrm{CH}_{2} \mathrm{I}_{2}$ to the reaction mixture once all imine was consumed. Addition of $\mathrm{CH}_{2} \mathrm{I}_{2}$ prior to imine substrate resulted in homoallylic amine formation.

Takahashi's alkenylzirconocene protocol was applied to the allylic amine, C-cyclopropylalkylamine and homoallylic amine syntheses, allowing formation of products regioisomeric to those derived from hydrozirconation of terminal alkynes. A novel homoallylic amide was formed, believed to result from a zirconacyclopentene intermediate.

The amides prepared in Table 5, Table 12, and Table 13 were screened for acticvity against the estrogen receptor ER α. Cyclopropane 261 was found to be an antagonist comparable to tamoxifen (the first clinically successful antiestrogen) of 17β-estradiol (E2)-induced transcription $\left(\mathrm{IC}_{50}\right.$ of $\left.11 \mu \mathrm{M}\right)$ in cell based and protein-ligand displacement assays.

In summary, the multi-component reaction of alkenylzirconocenes, imines, $\mathrm{Me}_{2} \mathrm{Zn}$ and $\mathrm{CH}_{2} \mathrm{I}_{2}$ can form three different amide products, depending simply on the order of addition of reagents (Figure 9). Due to the functional group tolerance of both Zr and Zn chemistry, libraries of nitrogen-containing alkenes and cyclopropanes with many common functional groups can be rapidly prepared using inexpensive starting materials.

or

Figure 9. Diversity-oriented synthesis ${ }^{224}$ of imine addition products.

4. Experimental Part

All moisture-sensitive reactions were performed using syringe-septum cap techniques under an N_{2} or Ar atmosphere and all glassware was dried in an oven at $140{ }^{\circ} \mathrm{C}$ for 1 h prior to use. Reactions carried out at $-78{ }^{\circ} \mathrm{C}$ employed a CO_{2}-acetone bath. THF was distilled over sodium/benzophenone ketyl, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled from $\mathrm{CaH}_{2} . \mathrm{Me}_{2} \mathrm{Zn}$, $\mathrm{Me}_{3} \mathrm{Al}, \mathrm{TsNH}_{2}, \mathrm{CH}_{2} \mathrm{I}_{2}, N, N$-dimethylurea, $\mathrm{Pd}(\mathrm{OAc})_{2}$, dppf, and 2-bromobiphenyl were purchased from Aldrich Company. $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ was purchased from Boulder Scientific. (R, R)-DIOP (215) was purchased from Strem Chemical. $\mathrm{Cp}_{2} \mathrm{ZrHCl}_{2}{ }^{225} \mathrm{CH}_{3} \mathrm{CHI}_{2},{ }^{226} P$, P-diphenylphosphin-amide, imines 90, 104, 158, 168, ${ }^{227} 170,176,{ }^{228} 177,{ }^{229} 178,{ }^{230} 197$, and 199, alkyne 148, allylic phosphinamide $172,{ }^{231}$ and ligands 55,56 , and $181,{ }^{232}$ were prepared according to literature procedures.

Reactions were monitored by TLC analysis (EM Science pre-coated silica gel $60 \mathrm{~F}_{254}$ plates, 250μ m layer thickness) and visualization was accomplished with a 254 nm UV light and by staining with a PMA solution (5 g of phosphomolybdic acid in 100 mL of $95 \% \mathrm{EtOH}$), panisaldehyde solution (2.5 mL of p-anisaldehyde, 2 mL of AcOH , and 3.5 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL of $95 \% \mathrm{EtOH})$, Vaughn's reagent $\left(4.8 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and 0.2 g of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}$ in 100 mL of a $3.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution) or a KMnO_{4} solution (1.5 g of KMnO_{4} and 1.5 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 100 mL of a $0.1 \% \mathrm{NaOH}$ solution). Flash chromatography on SiO_{2} or deactivated $\mathrm{SiO}_{2}(1 \%$ $\mathrm{Et}_{3} \mathrm{~N}$ in mobile phase) was used to purify the crude reaction mixtures.

Melting points were determined using a Laboratory Devices Mel-Temp II. Infrared spectra were determined on a Nicolet Avatar 360 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker Avance 300 instrument in CDCl_{3} unless otherwise noted. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were run at 300 MHz and are tabulated as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet), number of protons, and coupling constant(s). ${ }^{13} \mathrm{C}$ NMR spectra were run at 76 MHz using the protondecoupled pulse sequence with a d_{1} of 4 s , and are tabulated by observed peak for compounds 146-148, 151, 153, 156, 157, 159-165, 249, 257-262, 266, 267, 276, 278-284, 293-296, and 304, and by chemical shift for all other compounds. Mass spectra were obtained on a Micromass Autospec double focusing instrument.

146
(E)-N-(1-Phenylhept-2-enyl)-P,P-diphenylphosphinamide (146). General Protocol A. A suspension of $208 \mathrm{mg}(0.807 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $105 \mu \mathrm{~L}$ (0.914 mmol) of 1-hexyne, stirred for 5 min , and concentrated in vacuo. A solution of the residue in 2 mL of toluene was cooled to $-78^{\circ} \mathrm{C}$, treated with $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), warmed to room temperature over a period of 5 min and cannulated into a suspension of $155 \mathrm{mg}(0.508 \mathrm{mmol})$ of imine 104 in 2 mL of toluene. The mixture was stirred at room temperature for 2 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $151 \mathrm{mg}(76 \%)$ of 146 as a colorless solid: mp 139-140 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3127, 2952, 2922, 2859, 1456, 1437, 1194, 1182, 1121, 1109, 722, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.82$ (m, 2 H), 7.55-7.23 (m, 11 H$), 5.69$ (ddt, $1 \mathrm{H}, J=15.3,6.2,1.2 \mathrm{~Hz}$), 5.53 (dtd, $1 \mathrm{H}, J=15.3,6.6$, $1.1 \mathrm{~Hz}), 4.83(\mathrm{td}, 1 \mathrm{H}, J=9.4,6.4 \mathrm{~Hz}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=9.4,6.2 \mathrm{~Hz}), 2.01(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz})$, 1.34-1.26 (m, 4 H), $0.90\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}\right.$); ${ }^{13} \mathrm{C}$ NMR $\delta 143.03,142.96,133.73,133.39,132.45$, 132.29, 132.17, 132.06, 132.01, 131.67, 128.44, 128.37, 128.21, 127.10, 126.92, 56.87, 31.77, 31.12, 22.19, 13.88; EIMS m/z 389 (${ }^{+}$, 15), 332 (19), 306 (25), 216 (98), 201 (92), 188 (100), 172 (35), 143 (55), 129 (87), 115 (35), 91 (33), 77 (60); HRMS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOP}$ 389.1909, found 389.1906.

Representative attempted asymmetric preparation of 146 (catalytic ligand).

A suspension of $77.0 \mathrm{mg}(0.299 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 40.0 $\mu \mathrm{L}(0.348 \mathrm{mmol})$ of 1-hexyne, stirred for 5 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cooled to $-78^{\circ} \mathrm{C}$, treated with $150 \mu \mathrm{~L}(0.300 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), warmed to room temperature over a period of 5 min and cannulated into a suspension of $76.0 \mathrm{mg}(0.249 \mathrm{mmol})$ of imine 104 and $7.0 \mathrm{mg}(0.026 \mathrm{mmol})$ of ligand 55 in 1 mL of toluene. The mixture was stirred at room temperature for 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $63 \mathrm{mg}(65 \%)$ of

146 as a colorless solid. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (12% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=5.1$ and 6.9 min): 2% ee.

Representative attempted asymmetric preparation of 146 (stoichiometric ligand).
A suspension of $85.0 \mathrm{mg}(0.330 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 40.0 $\mu \mathrm{L}(0.348 \mathrm{mmol})$ of 1-hexyne, stirred for 5 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cannulated into a suspension, cooled to $-78{ }^{\circ} \mathrm{C}$, of $50.0 \mathrm{mg}(0.164$ mmol) of imine $104,44.0 \mathrm{mg}(0.163 \mathrm{mmol})$ of ligand 55 , and $250 \mu \mathrm{~L}(0.500 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene) in 1 mL of toluene. The mixture was stirred at $10^{\circ} \mathrm{C}$ for 24 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $48 \mathrm{mg}(75 \%)$ of 146 as a colorless solid. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (12% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=5.1$ and 6.8 min): 23% ee.

147
(E)-N-(2-Ethyl-1-phenylpent-2-enyl)-P,P-diphenylphosphinamide (147). According to the General Protocol A, $205 \mathrm{mg}(0.795 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 105 \mu \mathrm{~L}(0.924 \mathrm{mmol})$ of 3hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 (4 h reaction time) afforded 140 mg (72%) of 147 as a colorless solid: mp 129-130 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3165, 2959, 2931, 2872, 1436, 1187, 1179, 1107, 727, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.21(\mathrm{~m}, 11 \mathrm{H}), 5.56(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $4.76(\mathrm{t}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=10.1,6.2 \mathrm{~Hz}), 2.19-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{dq}, 1 \mathrm{H}, J=$ $14.5,7.5 \mathrm{~Hz}), 1.06(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 142.53,142.48$, $140.94,140.87,133.50,133.40,132.49,132.36,132.13,132.01,131.80,131.75,131.70,131.66$, 128.56, 128.34, 128.20, 128.16, 127.44, 127.04, 59.11, 21.86, 20.84, 14.43, 13.49; EIMS m/z $389\left(\mathrm{M}^{+}, 15\right), 306(20), 218$ (55), 201 (88), 188 (100), 143 (33), 129 (15), 91 (27), 77 (29); HRMS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOP} 389.1909$, found 389.1905.

149

(E)-N-\{5-[(tert-Butyldiphenylsilyl)oxy]-1-phenylpent-2-enyl\}-P,P-diphenylphos-

phinamide (149). According to the General Protocol A, $205 \mathrm{mg}(0.795 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, $300 \mathrm{mg}(0.972 \mathrm{mmol})$ of alkyne $\mathbf{1 4 8}, 380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 153 mg (0.501 mmol) of imine 104 (12 h reaction time) afforded 226 mg (73%) of 149 as a colorless solid: mp 118-119 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexane $)$; $\mathrm{IR}(\mathrm{KBr}) 3131,3052$, 2928, 2857, 1457, 1438, 1428, 1192, 1111, 1088, 740, 723, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.90-$ $7.83(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.25(\mathrm{~m}, 17 \mathrm{H}), 5.80(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.0 \mathrm{~Hz}), 5.57$ (dtd, $1 \mathrm{H}, J=15.3,6.8,1.2 \mathrm{~Hz}), 4.86(\mathrm{td}, 1 \mathrm{H}, J=9.4,6.2 \mathrm{~Hz}), 3.68(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.33$ (dd, $1 \mathrm{H}, J=9.6,6.3 \mathrm{~Hz}), 2.32(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.63,142.56$, $135.47,133.77,133.69,133.58,133.29,132.25,132.19,132.12,132.06,131.86,131.74,131.69$, $131.65,131.58,129.50,128.69,128.43,128.37,128.20,127.55,127.15,126.99,63.27,56.69$, 35.48, 26.75, 19.11; EIMS m/z $600\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 3\right), 558$ (82), 201 (24), 199 (32), 143 (24), 91 (20), 77 (37), 61 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{PSi}$ [M- CH_{3}] 600.2488, found 600.2465 .

150
O-Triisopropylsilyl-4-pentynoate (150). According to a literature procedure, a solution of $1.17 \mathrm{~g}(11.9 \mathrm{mmol})$ of 4-pentynoic acid in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $2.29 \mathrm{~g}(11.9$ $\mathrm{mmol})$ of TIPS-Cl and $0.812 \mathrm{~g}(11.9 \mathrm{mmol})$ of imidazole. The mixture was stirred at room temperature for 2 h , filtered through Celite, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was Kugelrohr distilled to yield $3.04 \mathrm{~g}(100 \%)$ of 150 as a colorless oil: IR (neat) $3315,2945,2870,1722,1466,1372,1268,1191,1068,1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{t}, 1 \mathrm{H} J=2.6 \mathrm{~Hz}), 1.35-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.07$ (d, $18 \mathrm{H}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 171.64,82.71,68.90,34.90,17.71,14.67,11.87$; EIMS m / z $211\left(\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}, 100\right), 155$ (18), 131 (22), 103 (47); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si}$ [M$\mathrm{C}_{3} \mathrm{H}_{7}$] 211.1154, found 211.1158.

151
(E)-O-Triisopropylsilyl-6-(diphenylphosphinyl)amino-6-phenylhex-4-enoate (151).

According to the General Protocol A, $260 \mathrm{mg}(1.01 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 285 \mathrm{mg}(1.10 \mathrm{mmol})$ of alkyne $\mathbf{1 5 0}, 500 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and $153 \mathrm{mg}(0.501$ mmol) of imine 104 (12 h reaction time) afforded 184 mg (65%) of 151 as a colorless oil: IR (neat) $3167,2945,2868,1718,1464,1437,1186,1123,1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.94-7.77$ (m, 4 H), 7.50-7.19 (m, 11 H$), 5.70(\mathrm{dd}, 1 \mathrm{H}, J=15.3,6.2 \mathrm{~Hz}), 5.51(\mathrm{dt}, 1 \mathrm{H}, J=15.5,5.8 \mathrm{~Hz}), 4.79$ (dt, $1 \mathrm{H}, J=9.2,6.6 \mathrm{~Hz}$), $3.30(\mathrm{dd}, 1 \mathrm{H}, J=9.1,6.1 \mathrm{~Hz}), 2.53-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 3 \mathrm{H})$, 1.02 (d, $18 \mathrm{H}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 172.81,142.65,132.88,132.28,132.19,132.07,131.74$, $130.40,128.53,128.43,128.27,127.27,126.93,56.90,35.11,27.58,17.72,11.86$; EIMS m/z $561\left(\mathrm{M}^{+}, 8\right), 518(40), 361(41), 346(25), 330(58), 301$ (17), 218 (52), 201 (100), 158 (20), 143 (24), 128 (29), 115 (37), 103 (41); HRMS (EI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{NO}_{3} \mathrm{PSi} 561.2828$, found 561.2849 .

152
O-Ethyl-N-but-3-ynyl- N-[(4-methylphenyl)sulfonyl]carbamate (152). According to a literature procedure, ${ }^{233}$ a solution of $5.39 \mathrm{~g}(20.5 \mathrm{mmol})$ of PPh_{3} and $2.50 \mathrm{~g}(10.3 \mathrm{mmol})$ of $\mathrm{TsNHCO}_{2} \mathrm{Et}^{234}$ in 100 mL of THF was treated with $520 \mu \mathrm{~L}(6.85 \mathrm{mmol})$ of 3-butyn-1-ol and $2.70 \mathrm{~mL}(17.1 \mathrm{mmol})$ of DEAD, stirred at room temperature for 16 h , and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(80: 20$, hexanes/EtOAc) to yield $1.95 \mathrm{~g}(96 \%)$ of 152 as a colorless solid: $\mathrm{mp} 63-65{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3307, 2993, 2941, 2121, 1734, 1353, 1329, 1268, 1168, 1028, 964, 866, 812, 769, 741, $657 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.83(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 4.00(\mathrm{dd}, 2 \mathrm{H}, J=8.0,7.0 \mathrm{~Hz}), 2.64$ $(\mathrm{td}, 2 \mathrm{H}, J=7.5,2.7 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{t}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 1.18(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 152.06,144.67,136.44,129.31,128.37,80.17,70.53,63.52,45.26,21.62,19.91,13.96 ;$ EIMS m/z 295 (M ${ }^{+}, 4$), 256 (31), 184 (58), 155 (100), 91 (89); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ 295.0878, found 295.0892.

153

(E)-O-Ethyl- N-\{5-[(diphenylphosphinyl)amino]-5-phenylpent-3-enyl\}- N-[(4-methyl-

 phenyl)sulfonyl]carbamate (153). According to the General Protocol A, 205 mg (0.795 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 253 \mathrm{mg}(0.857 \mathrm{mmol})$ of alkyne $152,380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $\mathbf{1 0 4}(12 \mathrm{~h}$ reaction time) afforded 177 $\mathrm{mg}(59 \%)$ of 153 as a colorless solid: $\mathrm{mp} 159-160^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexane $)$; IR (KBr) 3168, 3064, 2960, 2871, 1736, 1436, 1370, 1359, 1277, 1186, 1160, 1125, 970, 726, 702, $679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ס 7.99-7.92 (m, 2 H), 7.89-7.80 (m, 4 H), 7.53-7.44 (m, 4 H), 7.41-7.35 (m, 2 H), 7.33-7.24 (m, 7 H), $5.85(\mathrm{dd}, 1 \mathrm{H}, J=15.4,5.8 \mathrm{~Hz}), 5.54(\mathrm{dtd}, 1 \mathrm{H}, J=15.4,7.1,1.3 \mathrm{~Hz}), 4.84(\mathrm{td}, 1 \mathrm{H}, J=9.6$, $6.0 \mathrm{~Hz}), 4.09(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.85(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=9.5,6.8 \mathrm{~Hz}), 2.50-$ $2.44(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 152.08,144.97$, 142.35, $142.28,136.69,135.19,135.13,133.62,133.15,132.28,132.15,132.03,131.91,131.76,131.72$, $131.69,131.66,131.43,129.19,128,43,128.35,128.26,128.20,127.47,127.19,127.00,63.24$, 56.47, 46.40, 32.63, 21.54, 13.92; EIMS m/z 602 (30), 401 (63), 358 (25), 346 (41), 332 (15), 230 (31), 218 (17), 201 (100), 158 (50), 155 (30), 91 (53), 77 (19); HRMS (EI) calcd for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$ 602.2004, found 602.2004.

156
Methyl 4-[(diphenylphosphinylimino)methyl]benzoate (156). General Protocol B.
According to a literature procedure, a suspension of $1.50 \mathrm{~g}(6.91 \mathrm{mmol})$ of P, P-diphenylphosphinamide, $1.25 \mathrm{~g}(7.61 \mathrm{mmol})$ of methyl 4-formylbenzoate, and $3.00 \mathrm{~mL}(20.8 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated dropwise with a solution of $3.50 \mathrm{~mL}(3.50$ mmol) of $\mathrm{TiCl}_{4}\left(1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 10 min , warmed to room temperature and stirred for 1 h . The mixture was poured into 150 mL of $\mathrm{Et}_{2} \mathrm{O},{ }^{235}$ stirred for 5 min , filtered through a pad of Florisil, and concentrated in vacuo. The residue was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with hexanes to yield $1.19 \mathrm{~g}(47 \%)$ of 156 as a colorless solid: $\mathrm{mp} 143-145{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexanes); IR (KBr) 3226, 3060, 3037, 1725, 1613, 1568, 1438, 1280, 1203, 1127, 1107,

861, 834, 766, 750, 729, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=31.7 \mathrm{~Hz}), 8.15-8.12(\mathrm{~m}, 2 \mathrm{H})$, 8.06-8.03 (m, 2 H), 7.96-7.89 (m, 4 H$), ~ 7.48-7.36(\mathrm{~m}, 6 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 172.62, $172.52,166.09,139.22,138.89,134.15,133.20,131.91,131.88,131.76,131.63,131.53,131.41$, $129.95,129.85,128.55,128.38,128.26,52.40$; EIMS $m / z 363$ (M ${ }^{+}$, 24), 201 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{P} 363.1024$, found 363.1018.

157
(E)-Methyl 4-\{1-[(diphenylphosphinyl)amino]hept-2-enyl\}benzoate (157). According to the General Protocol A, $103 \mathrm{mg}(0.399 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 51.0 \mu \mathrm{~L}(0.444 \mathrm{mmol})$ of $1-$ hexyne, $190 \mu \mathrm{~L}(0.380 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $94.0 \mathrm{mg}(0.259 \mathrm{mmol})$ of imine 156 (1 h reaction time) afforded 97 mg (84%) of 157 as a colorless solid: mp 129-130 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3122, 2956, 2928, 2872, 1722, 1437, 1276, 1194, 1109, 724, 695 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.01-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.85-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.34(\mathrm{~m}, 8 \mathrm{H}), 5.68(\mathrm{ddt}, 1 \mathrm{H}, \mathrm{J}=$ $15.3,6.2,1.2 \mathrm{~Hz}$), $5.51(\mathrm{dtd}, 1 \mathrm{H}, J=15.3,6.6,1.1 \mathrm{~Hz}), 4.87(\mathrm{td}, 1 \mathrm{H}, J=9.7,6.3 \mathrm{~Hz}), 3.93(\mathrm{~s}, 3$ H), $3.42(\mathrm{dd}, 1 \mathrm{H}, J=9.4,6.4 \mathrm{~Hz}), 2.01(\mathrm{q}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.34-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.83,148.10,148.04,133.37,133.18,133.11,132.26,132.14,132.02$, $131.88,131.83,131.79,131.66,131.40,131.08,131.02,129.77,128.91,128.47,128.43,128.31$, $128.26,126.98,56.59,52.03,31.78,31.05,22.17,13.86$; EIMS m/z $447\left(\mathrm{M}^{+}, 3\right), 246$ (15), 230 (21), 201 (21), 141 (19), 129 (35), 87 (100), 84 (45); HRMS (EI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{P}$ 447.1963, found 447.1961.

159

(E)-N-[1-(4-Methoxyphenyl)hept-2-enyl]-P,P-diphenylphosphinamide (159).

According to the General Protocol A, $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and $149 \mathrm{mg}(0.444$ mmol) of imine 158 (4 h reaction time) afforded 65 mg (35%) of 159 as a colorless oil: IR (thin film) $2957,2929,2871,2836,1604,1511,1439,1251,1175,1127,1035,986,755,721,697$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.95-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.32(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H})$, 6.85-6.80 (m, 2 H$)$,
5.63 (dd, $1 \mathrm{H}, J=15.3,6.1 \mathrm{~Hz}), 5.48(\mathrm{dtd}, 1 \mathrm{H}, J=15.3,6.7,1.0 \mathrm{~Hz}), 4.74(\mathrm{td}, 1 \mathrm{H}, J=9.5,6.1$ Hz), 3.77 (s, 3 H), 3.20 (dd, $1 \mathrm{H}, J=9.2,6.2 \mathrm{~Hz}$), 2.00-1.93 (m, 2 H), 1.29-1.22 (m, 4 H), 0.86 (t, $3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.63,135.27,135.20,133.73,133.49,132.33,132.20,132.07$, $132.01,131.84,131.78,131.74,131.70,131.66,128.41,128.24,128.12,113.95,113.79,56.32$, 55.23, 31.79, 31.19, 22.23, 13.91; EIMS m/z 419 (M^{+}, 6), 336 (24), 218 (42), 202 (92), 173 (100), 159 (48); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P} 419.2014$, found 419.2007.

160
(2E)- N-(3-Phenylallylidene)- $\boldsymbol{P}, \boldsymbol{P}$-diphenylphosphinamide (160). According to the General Protocol B, $2.00 \mathrm{~g}(9.21 \mathrm{mmol})$ of P, P-diphenylphosphinamide, $1.50 \mathrm{~mL}(11.9 \mathrm{mmol})$ of trans-cinnamaldehyde, $4.00 \mathrm{~mL}(28.7 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $600 \mu \mathrm{~L}(5.47 \mathrm{mmol})$ of TiCl_{4} afforded $1.39 \mathrm{~g}(46 \%)$ of $\mathbf{1 6 0}$ as a colorless solid: mp $142-143{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$; IR (KBr) 3065, 3020, 1629, 1591, 1438, 1207, 1125, 1106, 869, 802, 757, 727, 703, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.04$ (dd, $1 \mathrm{H}, J=31.7,9.0 \mathrm{~Hz}$), 7.93-7.86 (m, 4 H), 7.56-7.34 (m, 12 H), 7.10 (ddd, $J=15.8,9.0,2.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.83,174.72,150.57,134.60,133.69,132.02,131.72,131.68,131.55$, 131.43, 130.75, 128.98, 128.79, 128.50, 128.41, 128.34, 128.22; EIMS m/z 331 ($\mathrm{M}^{+}, 7$), 201 (48), 130 (100), 77 (52); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NOP} 331.1126$, found 331.1114.

161
(E)- N-[1-(2-Phenylvinyl)hept-2-enyl]-P,P-diphenylphosphinamide (161). According to the General Protocol A, $200 \mathrm{mg}(0.776 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 100 \mu \mathrm{~L}(0.870 \mathrm{mmol})$ of $1-$ hexyne, $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $165 \mathrm{mg}(0.498 \mathrm{mmol})$ of imine 160 (4 h reaction time) afforded 57 mg (28%) of 161 as a colorless solid: $\mathrm{mp} 141-142{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane); IR (KBr) 3089, 2954, 2923, 2855, 1438, 1200, 1183, 1122, 1109, 965, 747, 723, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.96-7.88(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=15.9,1.1 \mathrm{~Hz}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.5 \mathrm{~Hz}), 5.60-5.57(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (dd, $1 \mathrm{H}, J=9.5,5.9 \mathrm{~Hz}), 2.04-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 136.85,133.81,133.77,132.59,132.42,132.39,132.29,132.26,132.09,132.05,131.90$,
$131.40,131.33,130.78,130.71,130.35,128.62,128.57,128.45,127.65,126.60,54.96,32.05$, 31.36, 22.36, 14.06; EIMS m/z 415 (${ }^{+}$, 26), 358 (55), 216 (48), 214 (100), 201 (83), 199 (32), 155 (43), 124 (22), 91 (37), 77 (34); HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NOP} 415.2065$, found 415.2105 .

(2E)- N-(2-Methyl-3-phenylallylidene)- P, P-diphenylphosphinamide (162). According to the General Protocol B, $2.00 \mathrm{~g}(9.21 \mathrm{mmol})$ of P, P-diphenylphosphinamide, $1.50 \mathrm{~mL}(10.7$ $\mathrm{mmol})$ of α-methylcinnamaldehyde, $4.00 \mathrm{~mL}(28.7 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $600 \mu \mathrm{~L}(5.47 \mathrm{mmol})$ of TiCl_{4} afforded $1.47 \mathrm{~g}(46 \%)$ of 162 as a colorless solid: mp $153-154{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$; IR (KBr) 3049, 3026, 2952, 2883, 1603, 1443, 1437, 1196, 1128, 1108, 1021, 887, 846, 754, 729, $706,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.98(\mathrm{~d}, 1 \mathrm{H}, J=31.2 \mathrm{~Hz}), 7.96-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 11 \mathrm{H})$, $7.22(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 177.91, 177.81, 148.09, 137.74, 137.40, 135.62, 134.16, $132.48,131.61,131.55,131.42,129.94,129.07,128.53$, 128.45, 128.29, 12.43; EIMS m/z 345 $\left(\mathrm{M}^{+}, 43\right), 201$ (85), 144 (100), 77 (75); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NOP} 345.1283$, found 345.1278.

(E)-N-[1-(1-Methyl-2-phenylvinyl)hept-2-enyl]-P,P-diphenylphosphinamide (163).

According to the General Protocol A, $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 100 \mu \mathrm{~L}(0.870 \mathrm{mmol})$ of 1-hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 173 mg (0.501 mmol) of imine 162 (4 h reaction time) afforded 154 mg (72%) of 163 as a colorless oil: IR (thin film) $3176,3054,2954,2927,2855,1437,1192,1124,1109,972,916,748,724,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 8.11-8.03 (m, 4 H), 7.65-7.53 (m, 6 H), 7.49-7.33 (m, 5 H), $6.50(\mathrm{~s}, 1 \mathrm{H}), 5.79$ (dtd, 1 H , $J=15.3,6.4,1.0 \mathrm{~Hz}$), $5.66(\mathrm{dd}, 1 \mathrm{H}, J=15.4,5.7 \mathrm{~Hz}), 4.42(\mathrm{td}, 1 \mathrm{H}, J=9.4,5.7 \mathrm{~Hz}), 3.28$ (dd, 1 $\mathrm{H}, J=9.2,5.9 \mathrm{~Hz}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.74,138.68,137.58,133.78,133.52,132.52,132.31,132.19,132.16$, 132.07, 132.03, 131.79, 131.72, 130.36, 130.29, 128.86, 128.62, 128.52, 128.44, 128.38, 128.27,
$128.21,127.96,126.32,126.26,60.17,31.86,31.18,22.17,14.82,13.89$; EIMS m/z $429\left(\mathrm{M}^{+}\right.$, 16), 32 (21), 358 (61), 228 (86), 218 (49), 201 (100), 155 (19), 91 (19), 77 (29); HRMS (EI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NOP} 429.2222$, found 429.2238.

164
N-(3-Phenylprop-2-ynylidene)-P,P-diphenylphosphinamide (164). A solution of 2.20 $\mathrm{mL}(20.0 \mathrm{mmol})$ of phenylacetylene in 50 mL of THF was cooled to $-40^{\circ} \mathrm{C}$, treated with 12.5 $\mathrm{mL}(20.0 \mathrm{mmol})$ of $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes), stirred at $-40^{\circ} \mathrm{C}$ for 10 min , treated with $3.10 \mathrm{~mL}(40.0 \mathrm{mmol})$ of DMF, warmed to room temperature over 30 min , and stirred for 30 min . The mixture was quenched by pouring into a biphasic mixture of $10.0 \mathrm{~g}(73.4 \mathrm{mmol})$ of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in 90 mL of $\mathrm{H}_{2} \mathrm{O}$ and 100 mL of MTBE at $0{ }^{\circ} \mathrm{C} .{ }^{236}$ The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo and filtered through a pad of $\mathrm{SiO}_{2}(9: 1$, hexanes/EtOAc). The residue $(2.10 \mathrm{~g}, 81 \%)$ was used in the next step without further purification. According to the General Protocol B, $1.50 \mathrm{~g}(6.91 \mathrm{mmol})$ of P, P-diphenylphosphinamide, $1.35 \mathrm{~g}(10.4 \mathrm{mmol})$ of the crude aldehyde, $3.00 \mathrm{~mL}(21.5 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $450 \mu \mathrm{~L}(4.10 \mathrm{mmol})$ of TiCl_{4} afforded $914 \mathrm{mg}(40 \%)$ of 164 as a yellow solid: $\mathrm{mp} 109-110{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexanes); IR (KBr) 3056, 2199, 1585, 1439, 1214, 1124, $1109 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.72(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=31.2 \mathrm{~Hz}), 7.90-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.37(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.12,132.88,132.03$, $131.68,131.56,131.06,130.72,128.60,128.44,120.45,100.65,88.38,87.90$; EIMS m/z 329 ($\mathrm{M}^{+}, 30$), 216 (30), 201 (74), 130 (32), 102 (42), 77 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NOP}$ 329.0970 , found 329.0960 .

(E)-N-(1-Phenethynylhept-2-enyl)-P,P-diphenylphosphinamide (165). According to the General Protocol A, $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $165 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 164 (2 h reaction time) afforded 176 mg (85%) of 165 as a colorless oil: IR (neat) 3144, 2957, 2928, 2853, 1592, 1490, 1438, 1190, 1124, 1110, $1058 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.09-8.02(\mathrm{~m}, 2 \mathrm{H})$,
7.98-7.90 (m, 2 H), 7.56-7.37 (m, 9 H), 7.35-7.30 (m, 2 H), 5.95 (dtd, $1 \mathrm{H}, J=15.1,6.8,1.5 \mathrm{~Hz}$), 5.71 (ddt, $1 \mathrm{H}, J=15.2,5.2,1.3 \mathrm{~Hz}), 4.75$ (td, $1 \mathrm{H}, J=9.0,5.2 \mathrm{~Hz}$), 3.42 (dd, $1 \mathrm{H}, J=9.4,7.5$ $\mathrm{Hz}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 133.63, 132.96, 132.52, 132.40, 131.87, 131.75, 131.53, 131.17, 128.79, 128.41, 128.24, 128.07, 126.62, 122.75, 88.44, 84.86, 45.04, 31.40, 30.97, 22.10, 13.76; EIMS m/z 413 (${ }^{+}, 17$), 370 (24), 356 (13), 216 (56), 212 (39), 201 (100), 196 (25), 167 (27), 154 (46), 124 (33), 115 (29), 91 (24), 77 (83); HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NOP} 413.1909$, found 413.1902.

91
(E)-N-(1-Phenylhept-2-enyl)-S-(4-methylphenyl)sulfonamide (91). According to the General Protocol A, $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne, 380 $\mu \mathrm{L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and $130 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 90 (4 h reaction time) afforded $138 \mathrm{mg}(80 \%)$ of 91 as a colorless oil: IR (neat) 3272, 3030, 2956, 2927, 2858, 1454, 1433, 1328, 1161, 1094, 1043, 1027, 970, 932, 813, 749, 699, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.65-7.61 (m, 2 H), 7.24-7.12 (m, 7 H), 5.48-5.34 (m, 2 H), 5.18 (d, $1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}$), $4.89(\mathrm{dd}, 1 \mathrm{H}, J=7.3,5.2 \mathrm{~Hz}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{t}, 3 \mathrm{H}$, $J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.92,140.27,137.83,133.72,129.25,128.64,128.40,127.37,127.18$, 126.90, 59.52, 31.66, 30.87, 22.11, 21.40, 13.83; EIMS m/z 343 (${ }^{+}$, 4), 286 (40) 188 (90), 172 (29), 155 (44), 144 (21), 129 (32), 117 (46), 104 (39), 91 (100), 77 (21), 65 (30); HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S} 343.1606$, found 343.1607 .

166
N-(3-Phenylpropylidene)-S-(4-methylphenyl)sulfonamide (166). According to a literature procedure, a solution of $1.85 \mathrm{~g}(11.3 \mathrm{mmol})$ of sodium benzenesulfinate, $1.71 \mathrm{~g}(10.0$ mmol) of TsNH_{2}, and $1.32 \mathrm{~mL}(10.0 \mathrm{mmol})$ of hydrocinnamaldehyde in 30 mL of 50% formic acid was stirred at room temperature for 16 h , diluted with 20 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered and rinsed with $\mathrm{H}_{2} \mathrm{O}$ and pentane. The filter cake was dissolved in 75 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred with 75 mL of saturated NaHCO_{3} for 2 h . The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo.

The residue was precipitated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with hexanes to yield $2.03 \mathrm{~g}(71 \%)$ of $\mathbf{1 6 6}$ as a colorless solid: mp $61-63{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$; IR (KBr) 3271, 3030, 2938, 1634, 1613, 1494, 1453, 1318, 1159, 1091, 784, 705, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.67(\mathrm{t}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}), 7.38-7.15(\mathrm{~m}, 7 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $177.36,144.69,139.53,134.36,129.75,128.58,128.25,128.09,126.41,37.30,30.53,21.61$; EIMS m/z $287\left(\mathrm{M}^{+}, 4\right), 171$ (12), 155 (25), 132 (100), 105 (16), 91 (20); HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S} 287.0980$, found 287.0979.

167
(E)-N-(1-Phenethylhept-2-enyl)-S-(4-methylphenyl)sulfonamide (167). According to the General Protocol A, $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $144 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 166 (5 h reaction time) afforded $168 \mathrm{mg}(90 \%$) of 167 as a colorless oil: IR (neat) 3166, 3058, 2955, 2924, 2855, 1490, 1438, 1189, 1124, 1110, 1070, 755, 723, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.73-7.69$ (m, 2 H), 7.27-7.06 (m, 7 H), $5.30(\mathrm{dtd}, 1 \mathrm{H}, J=15.3,6.7,0.8 \mathrm{~Hz}$), 5.07 (ddt, $1 \mathrm{H}, J=15.3,7.4$, $1.4 \mathrm{~Hz}), 4.84(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 3.73(\mathrm{qn}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, 1.83-1.69 (m, 4 H), 1.20-1.10 (m, 4 H), $0.84(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 142.97, 141.28, $138.18,133.23,129.39,128.80,128.34,128.31,127.19,125.83,55.77,37.67,31.69,31.65$, 30.94, 22.09, 21.43, 13.86; EIMS m/z 371 ($\mathrm{M}^{+}, 2$), 314 (4), 288 (4), 267 (100), 216 (71), 200 (97), 155 (60), 143 (60), 139 (33), 117 (37), 105 (93); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}$ 371.1919, found 371.1913.

169
(E)-N-(1-Isopropylhept-2-enyl)-S-(4-methylphenyl)sulfonamide (169). According to the General Protocol A, $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 190 \mu \mathrm{~L}(1.65 \mathrm{mmol})$ of 1-hexyne, $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and $113 \mathrm{mg}(0.502 \mathrm{mmol})$ of imine 168 (4 h reaction time) afforded 111 mg (72%) of 169 as a colorless oil: IR (neat) 3278, 2961, 2926, 2873, 1467, 1437, 1323, 1162, 1096, 1041, 972, 814, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.75$ (d, $2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 5.21(\mathrm{dt}, 1 \mathrm{H}, J=15.6,6.6), 5.05(\mathrm{ddt}, 1 \mathrm{H}, J=15.3,7.6,1.3$
$\mathrm{Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.53(\mathrm{td}, 1 \mathrm{H}, J=7.8,5.7 \mathrm{~Hz}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 3 \mathrm{H})$, 1.23-1.05 (m, 4 H), $0.87(\mathrm{t}, 6 \mathrm{H}, J=6.5 \mathrm{~Hz}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.66$, $138.32,133.33,129.19,127.15,126.87,61.58,32.99,31.65,30.94,22.01,21.34,18.33,18.14$, 13.79; EIMS m/z 308 ([M-H] ${ }^{+}$1), 266 (90), 226 (59), 155 (86), 139 (29), 111 (39), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}-\mathrm{H}] 308.1684$, found 308.1687.

171
(E)-N-(1-Cyclohexylhept-2-enyl)-S-(4-methylphenyl)sulfonamide (171). According to the General Protocol A, $97.0 \mathrm{mg}(0.376 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 50.0 \mu \mathrm{~L}(0.435 \mathrm{mmol})$ of 1-hexyne, $190 \mu \mathrm{~L}(0.380 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $66.0 \mathrm{mg}(0.249 \mathrm{mmol})$ of imine 170 (2 h reaction time) afforded 70 mg (81%) of 171 as a colorless solid: mp $102-103{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexanes $)$; $\mathrm{IR}(\mathrm{KBr}) 3287,2921,2851,1439,1326,1151,1090,1044 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.70-7.67 (m, 2 H), 7.24-7.21 (m, 2 H), 5.13 (dt, $1 \mathrm{H}, J=15.3,6.4 \mathrm{~Hz}$), $4.99(\mathrm{ddt}, 1 \mathrm{H}, J=15.3$, $7.6,1.2 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 3.49(\mathrm{td}, 1 \mathrm{H}, J=8.0,6.1 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.56(\mathrm{~m}$, $7 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.01(\mathrm{~m}, 7 \mathrm{H}), 0.99-0.86(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.78,138.43,133.32,129.28,127.28,127.22,61.10,42.83,31.73,31.03,28.92$, 28.83, 26.28, 25.99, 22.12, 21.43, 13.87; EIMS m/z 349 ($\mathrm{M}^{+}, 1$), 266 (100), 155 (48), 91 (84); HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S} 349.2076$, found 349.2074.

173
(E)-Methyl 4-(1-benzoylamino-2-propylhex-2-enyl)benzoate (173). A solution of 48.0 $\mathrm{mg}(0.101 \mathrm{mmol})$ of phosphinamide 172 in 5.7 mL of a 2 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at $0^{\circ} \mathrm{C}$ and stirring at room temperature for 30 min) was stirred at room temperature for 12 h , concentrated in vacuo, dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. A solution of the residue in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $27.0 \mu \mathrm{~L}(0.233 \mathrm{mmol})$ of $\mathrm{PhCOCl}, 60.0 \mu \mathrm{~L}(0.344 \mathrm{mmol})$ of $(i-\mathrm{Pr})_{2} \mathrm{NEt}$, and $2.0 \mathrm{mg}(0.016 \mathrm{mmol})$ of DMAP. The mixture was stirred at room temperature for 1 h , concentrated to $\sim 0.5 \mathrm{~mL}$ by rotary evaporation, and chromatographed on SiO_{2} (80:20, hexanes/

EtOAc) to afford 32 mg (84%) of $\mathbf{1 7 3}$ as a colorless oil: IR (thin film) 3571, 3311, 2959, 2869, $1725,1637,1525,1277,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.01(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.55-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.81(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 5.33(\mathrm{t}, 1 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.18-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}$, $J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.83,166.40,146.27,138.81,134.38,131.63,129.84$ (2 C), 129.26, $129.10,128.65$ (2 C), 127.34 (2 C), 126.93 (2 C), 57.84, 52.02, 31.77, 29.82, 22.82, 22.14, 14.20, 13.83; EIMS m/z 379 (M+ 46), 336 (59), 322 (56), 105 (100), 77 (48); HRMS (EI) m/z calc’d for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} 379.2147$, found 379.2143.

174
(E)-Methyl 4-(1-phenoxycarbonylamino-2-propylhex-2-enyl)benzoate (174).

A solution of $44.0 \mathrm{mg}(0.0925 \mathrm{mmol})$ of phosphinamide 172 in 5.7 mL of a 2 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at $0^{\circ} \mathrm{C}$ and stirring at room temperature for 30 min) was stirred at room temperature for 12 h , concentrated in vacuo, dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. A solution of the residue in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $55.0 \mu \mathrm{~L}(0.316 \mathrm{mmol})$ of ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{NEt}, 26.0 \mu \mathrm{~L}$ (0.207 mmol) of $\mathrm{ClCO}_{2} \mathrm{Ph}$, and $2.0 \mathrm{mg}(0.016 \mathrm{mmol})$ of DMAP. The mixture was stirred at room temperature for 1 h , concentrated to $\sim 0.5 \mathrm{~mL}$ by rotary evaporation, and chromatographed on SiO_{2} ($80: 20$, hexanes/EtOAc) to afford $33 \mathrm{mg}(90 \%)$ of $\mathbf{1 7 4}$ as a colorless oil: IR (thin film) 3336, 2957, 2869, 1723, 1524, 1490, 1281, 1207, 1112, $1018 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.03$ (d, $2 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 7.46-7.12(\mathrm{~m}, 7 \mathrm{H}), 5.40-5.36(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.46-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 166.77, 150.96, 145.99, 138.44, 129.85 (2 C), 129.51, 129.38, 129.22 (2 C), 127.20 (2 C), 125.31, 121.45 (2 C), 120.86, 52.03, 31.43, 29.75, 22.78, 22.05, 14.14, 13.80; EIMS m/z 395 ($\left.\mathrm{M}^{+}, 2\right), 364$ (8), 301 (23), 259 (100), 227 (22), 214 (45), 170 (24), 141 (34), 128 (34), 94 (95), 77 (63); HRMS (EI) m / z calc'd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{4} 395.2097$, found 395.2101.

175

(E)-Methyl 4-(1-Benzenesulfonylamino-2-propylhex-2-enyl)benzoate (175).

A solution of $43.0 \mathrm{mg}(0.0904 \mathrm{mmol})$ of phosphinamide 172 in 5.7 mL of a 2 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH (prepared by treating 5 mL of MeOH with 0.7 mL of acetyl chloride at $0{ }^{\circ} \mathrm{C}$ and stirring at room temperature for 30 min) was stirred at room temperature for 12 h , concentrated in vacuo, dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo. A solution of the residue in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $53.0 \mu \mathrm{~L}(0.304 \mathrm{mmol})$ of ($\left.i-\mathrm{Pr}\right)_{2} \mathrm{NEt}, 26.0 \mu \mathrm{~L}$ (0.204 mmol) of $\mathrm{PhSO}_{2} \mathrm{Cl}$, and $2.0 \mathrm{mg}(0.016 \mathrm{mmol})$ of DMAP. The mixture was stirred at room temperature for 1 h , concentrated to $\sim 0.5 \mathrm{~mL}$ by rotary evaporation, and chromatographed on SiO_{2} ($80: 20$, hexanes/EtOAc) to afford 29 mg (77%) of 175 as a colorless oil: IR (thin film) 3285, 2957, 2873, 1723, 1447, 1442, 1329, 1280, 1163, $1110 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.85$ (d, $2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.52-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.3$ $\mathrm{Hz}), 5.19-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.12$ $(\mathrm{m}, 4 \mathrm{H}), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.77(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.70,144.98,140.53$, 137.74, 132.42, 130.08, 129.57 (2 C), 129.24, 128.76 (2 C), 127.25 (2 C), 127.09 (2 C), 61.76, 52.02, 30.88, 29.70, 22.54, 21.94, 14.06, 13.75; EIMS m/z 415 (${ }^{+}, 1$), 384 (1), 372 (1), 340 (1), 304 (16), 274 (19), 258 (17), 141 (31), 132 (20), 77 (100); HRMS (EI) m/z calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S} 415.1817$, found 415.1819.

180
Methyl 4-(phenoxyiminomethyl)benzoate (180). According to a literature procedure, ${ }^{237}$ a solution of $400 \mathrm{mg}(2.75 \mathrm{mmol})$ of O-phenylhydroxylamine hydrochloride and 361 mg (2.20 mmol) of methyl 4-formylbenzoate in 10 mL of pyridine was stirred at room temperature for 12 h , and concentrated in vacuo. The residue was dissolved in EtOAc, washed with saturated $\mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (4:1, hexanes/EtOAc) to yield 533 mg (95%) of $\mathbf{1 8 0}$ as a pale
yellow solid: mp 61-63 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (thin film) 1720, 1591, 1489, 1435, 1285, 1215, 1115, 935, 768, 746, 698, $687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.11$ (dt, $2 \mathrm{H}, J=8.3,1.7 \mathrm{~Hz}$), 7.80 (dt, $2 \mathrm{H}, J=8.2,1.6 \mathrm{~Hz}$), $7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.08(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 3.96 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.44,159.20,150.50,135.65,131.72,130.02$ (2 C), 129.38 (2 C), 127.44 (2 C), 122.67, 114.57 (2 C), 52.32; EIMS m/z 255 ($\mathrm{M}^{+}, 19$), 162 (25), 130 (38), 94 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$ 255.0895, found 255.0893.

189
Phenyl(pyridin-2-yl)methanol (189). ${ }^{238}$ A solution of $890 \mu \mathrm{~L}(9.36 \mathrm{mmol})$ of 2pyridinecarboxaldehyde in 20 mL of THF was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with a solution of $3.70 \mathrm{~mL}(11.1 \mathrm{mmol})$ of $\mathrm{PhMgBr}\left(3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ in 20 mL of THF. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with 1 N HCl (2x). The aqueous extracts were basified with $\mathrm{K}_{2} \mathrm{CO}_{3}$ to pH 8 , extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{x})$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford $1.21 \mathrm{~g}(70 \%)$ of 189 as a colorless solid: ${ }^{1} \mathrm{H}$ NMR $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.15$ (m, 2 H), 5.77 (s, 1 H), 5.16 (bs, 1 H). Approximately 600 mg of racemic 189 was separated by HPLC on a Chiracel AD semi-preparative column (solvent system: 15\% i-PrOH in hexanes; flow rate: $10 \mathrm{~mL} / \mathrm{min}$). (R)-Enantiomer: $\mathrm{R}_{\mathrm{t}} 16.0 \mathrm{~min} ; 99.9 \%$ ee (HPLC chiracel AD analytical column, 15% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min})$; $\alpha_{\mathrm{D}}-156\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.00\right)$, lit. ${ }^{239}-163\left(\mathrm{CHCl}_{3}, \mathrm{c}\right.$ $=0.4$). (S)-Enantiomer: $\mathrm{R}_{\mathrm{t}} 19.5 \mathrm{~min} ; 99.9 \%$ ee (HPLC chiracel AD analytical column, $15 \% \mathrm{i}$ PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}) ; \alpha_{\mathrm{D}}+158\left(\mathrm{CHCl}_{3}, \mathrm{c}=1.00\right)$, lit. $+163\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.4\right)$.

(S)-106
(S)-N-(1-Phenylpropyl)-P,P-diphenylphosphinamide (106). ${ }^{162}$ A solution of 75.0 mg (0.246 mmol) of imine $\mathbf{1 0 4}, 46.0 \mathrm{mg}(0.248 \mathrm{mmol})$ of $(S)-\mathbf{1 8 9}$, and $670 \mu \mathrm{~L}(0.737 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}$ (1.1 M solution in toluene) in 1 mL of toluene was stirred at room temperature for 48 h . The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2x), washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc) to yield $61 \mathrm{mg}(74 \%)$ of $(S)-106$ as a colorless solid: ${ }^{1} \mathrm{H}$ NMR $\delta 7.87$ (ddt, $2 \mathrm{H}, \mathrm{J}=$
$11.9,6.6,1.6 \mathrm{~Hz}), 7.76(\mathrm{ddt}, 2 \mathrm{H}, J=12.1,6.9,1.5 \mathrm{~Hz}), 7.52-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 5 \mathrm{H})$, 7.16 (dt, $2 \mathrm{H}, J=6.5,1.6 \mathrm{~Hz}), 4.16-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.91-1.77 (m, 1 H), $0.79(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column ($15 \% i-\mathrm{PrOH}$ in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=5.7$ and 6.9 $\mathrm{min}): 93 \% e e$.

(Tetrahydro-2H-pyran-2-yl)diphenylmethanol (190). A suspension of 1.23 g (50.6 mmol) of Mg in 40 mL of THF was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $5.30 \mathrm{~mL}(50.3 \mathrm{mmol})$ of bromobenzene. The mixture was stirred at room temperature for 30 min , heated at reflux for 1 h , cooled to $0^{\circ} \mathrm{C}$, treated dropwise with a solution of $2.00 \mathrm{~g}(12.6 \mathrm{mmol})$ of ethyl tetrahydro- $2 \mathrm{H}-$ pyran-2-carboxylate ${ }^{240}$ in 10 mL of THF, slowly warmed to room temperature over 16 h , quenched with cold saturated $\mathrm{NH}_{4} \mathrm{Cl}$ then 1 N HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(9: 1$, hexanes/EtOAc) to yield $2.34 \mathrm{~g}(69 \%)$ of 190 as a pale yellow solid: mp $95-96{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (thin film) 3479, 2935, 2856, 1492, 1448, 1330, 1172, 1090, 1048, 873, 748, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.16(\mathrm{~m}, 8 \mathrm{H})$, $4.24(\mathrm{dd}, 1 \mathrm{H}, J=10.7,1.9 \mathrm{~Hz}), 4.10-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{td}, 1 \mathrm{H}, J=11.0,3.5 \mathrm{~Hz}), 3.24(\mathrm{~s}, 1$ H), 1.88-1.83 (m, 1 H$), 1.67-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.52,143.86$, 127.94 (2 C), 127.90 (2 C), 126.83 (2 C), 126.68, 126.47, 125.80 (2 C), 80.19, 79.19, 68.75, 25.83, 24.89, 23.31; EIMS m/z $250\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 11\right), 206$ (18), 183 (35), 160 (32), 131 (59), 124 (100), 105 (42), 91 (43), 77(52); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ [M- $\left.\mathrm{H}_{2} \mathrm{O}\right] 250.1358$, found 250.1360. Approximately 500 mg of racemic 190 was separated by HPLC on a Chiracel AD semi-preparative column (solvent system: 1.2% i-PrOH in hexanes; flow rate: $10 \mathrm{~mL} / \mathrm{min}$). Enantiomer 1: $\mathrm{R}_{\mathrm{t}} 19.5 \mathrm{~min}$; 93.4\% ee (HPLC chiracel AD analytical column, $1.2 \% \mathrm{i}-\mathrm{PrOH}$ in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}) ; \alpha_{\mathrm{D}}+170\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.88\right)$. Enantiomer 2: $\mathrm{R}_{\mathrm{t}} 22.0 \mathrm{~min} ; 86.7 \%$ ee (HPLC chiracel AD analytical column, 1.2% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min})$; $\alpha_{\mathrm{D}}-146\left(\mathrm{CHCl}_{3}, \mathrm{c}=\right.$ $0.14)$.

196
(E)-O-tert-Butyl-N-(1-phenylhept-2-enyl)carbamate (196). A suspension of 95.0 mg (0.368 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $50.0 \mu \mathrm{~L}(0.435 \mathrm{mmol})$ of 1hexyne, stirred at room temperature for 5 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was treated with $5.3 \mathrm{mg}(0.027 \mathrm{mmol})$ of amino thiol 56 , cooled to $50^{\circ} \mathrm{C}$, and treated with $190 \mu \mathrm{~L}(0.380 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene). The mixture was slowly warmed from $-50^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ over 1 h , treated with a solution of $51.0 \mathrm{mg}(0.248$ mmol) of imine 176 in 1 mL of toluene, stirred at $-30^{\circ} \mathrm{C}$ for 12 h , quenched with saturated NaHCO_{3}, diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromato-graphed on SiO_{2} (9:1, hexanes/EtOAc) to yield 58 mg (81%) of 196 as a colorless solid: $\mathrm{mp} 39-40{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3332, 2961, 2927, 1699, 1495, 1366, 1248, 1171, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.50(\mathrm{~m}, 2 \mathrm{H}), 5.21$ (bs, 1 H), 4.89 (bs, 1 H), 2.04 (q, $2 \mathrm{H}, \mathrm{J}=$ $6.4 \mathrm{~Hz}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR δ 154.97, 142.04, $132.45,129.73,128.43,127.10,126.73,79.42,56.10,31.83,31.2128 .31,22.13,13.84$; EIMS $\mathrm{m} / \mathrm{z} 289\left(\mathrm{M}^{+}, 1\right), 233$ (56), 176 (100), 132 (86); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$ 289.2042, found 289.2047. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (0.1% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=13.1$ and 14.3 min): 22% ee.

198
(E)-O-Ethyl-N-(1-phenylhept-2-enyl)carbamate (198). A suspension of $220 \mathrm{mg}(0.853$ mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $115 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ of 1-hexyne, stirred at room temperature for 10 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cannulated into a cold $\left(-30^{\circ} \mathrm{C}\right)$ solution of $10.2 \mathrm{mg}(0.0563 \mathrm{mmol})$ of amino thiol 181, and $420 \mu \mathrm{~L}(0.840 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene) in 1 mL of toluene. The mixture was stirred at $-30^{\circ} \mathrm{C}$ for 30 min , treated with a solution of $100 \mathrm{mg}(0.564 \mathrm{mmol})$ of imine 197 in 1 mL of toluene, stirred at $-30^{\circ} \mathrm{C}$ for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and
concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(4: 1$, hexanes/EtOAc) to yield 138 mg (94\%) of 198 as a colorless oil: IR (thin film) $3324,2959,2925,1698,1528,1245,1074$, 1040, 969, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.70-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{bs}, 1 \mathrm{H}), 5.00$ (bs, $1 \mathrm{H}), 4.13(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.07(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 1.42-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, 3 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 155.75,141.76,132.76,129.44,128.55$ (2 C), 127.31, 126.79 (2 C), 60.90, 56.42, 31.88, 31.21, 22.19, 14.56, 13.90; ESIMS m/z 300 ([M+K] ${ }^{+}, 100$), 284 ([M+Na] ${ }^{+}$, 78); HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}$ [M+Na] 284.1626, found 284.1640. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column ($3.5 \% \mathrm{i}$-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=7.2$ and 12.6 min): 7% ee.

Preparation of 198 using a modified General Protocol A (in situ imine formation).

A suspension of $161 \mathrm{mg}(0.624 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $80.0 \mu \mathrm{~L}$ (0.696 mmol) of 1-hexyne, stirred at room temperature for 10 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cannulated into a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of 100 mg (0.313 mmol) of sulfonamide $2 \mathbf{2 0 4},{ }^{241} 8.4 \mathrm{mg}(0.031 \mathrm{mmol})$ of amino alcohol 55 , and $240 \mu \mathrm{~L}$ (0.420 mmol) of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene) in 2 mL of toluene. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 6 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, diluted in hexanes, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(4: 1$, hexanes/EtOAc) to yield $42 \mathrm{mg}(51 \%)$ of $\mathbf{1 9 8}$ as a colorless oil. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (3.5% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=5.6,12.6 \mathrm{~min}$): 5% ee.

200
(E)-O-Methyl- N -(1-phenylhept-2-enyl)carbamate (200). A suspension of 127 mg (0.492 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 1 mL of THF was treated with $60.0 \mu \mathrm{~L}(0.522 \mathrm{mmol})$ of 1-hexyne, stirred at room temperature for 15 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cannulated into a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $27.0 \mathrm{mg}(0.165 \mathrm{mmol})$ of imine $199,44.0 \mathrm{mg}(0.163 \mathrm{mmol})$ of amino alcohol 55 , and $250 \mu \mathrm{~L}(0.500 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene) in 1 mL of toluene. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(4: 1$, hexanes/EtOAc) to yield
$35 \mathrm{mg}(86 \%)$ of 200 as a colorless oil: IR (thin film) 3324, 2959, 2929, 1707, 1527, 1453, 1248, 1069, 1021, 970, 774, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $87.37-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.68-5.54(\mathrm{~m}, 2 \mathrm{H}), 5.29$ (bs, 1 H), $5.07(\mathrm{bs}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{q}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.13,141.72,132.82,129.46,128.53(2 \mathrm{C}), 127.30,126.74$ (2 C), 56.64, 52.08, 31.82, 31.20, 22.14, 13.80; EIMS m/z 247 (${ }^{+}, 13$), 190 (74), 147 (42), 143 (50), 129 (84), 115 (65), 105 (100), 91 (34), 77 (58); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}$ 247.1572, found 247.1578. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column (5% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=8.5,15.0 \mathrm{~min}$): 6% ee.

201
(E)- N-(1-Phenylhept-2-enyl)acetamide (201). A suspension of $100 \mathrm{mg}(0.388 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $50.0 \mu \mathrm{~L}(0.435 \mathrm{mmol})$ of 1-hexyne, stirred at room temperature for 10 min , and concentrated in vacuo. A solution of the residue in 1.5 mL of toluene was cooled to $-30^{\circ} \mathrm{C}$, and treated with $5.0 \mathrm{mg}(0.028 \mathrm{mmol})$ of amino thiol 181 and 200 $\mu \mathrm{L}(0.400 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$. The mixture was stirred for 30 min at $-30{ }^{\circ} \mathrm{C}$, treated with a solution of $42.0 \mathrm{mg}(0.285 \mathrm{mmol})$ of imine 177 in 0.5 mL of toluene, stirred at $-30{ }^{\circ} \mathrm{C}$ for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(1: 1$, hexanes/EtOAc) to yield $29 \mathrm{mg}(44 \%)$ of 201 as a colorless oil: IR (thin film) 3279, 2957, 2927, 1652, 1538, 1372, 1292, 970, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.37-$ $7.23(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{bd}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.64-5.55(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.01(\mathrm{~s}, 3$ H), 1.41-1.25 (m, 4 H), $0.89(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 168.92,141.44,132.86,128.91$, 128.55 (2 C), 127.33, 126.98 (2 C), 54.59, 31.88, 31.19, 23.37, 22.20, 13.88; ESIMS m/z 270 $\left([\mathrm{M}+\mathrm{K}]^{+}, 28\right), 254\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]$ 254.1521, found 254.1527. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column ($10 \% \mathrm{i}$-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=6.8$ and 7.8 min): $1 \% e e$.

Preparation of $\mathbf{2 0 0}$ using a modified General Protocol A (in situ imine formation).

A suspension of $161 \mathrm{mg}(0.624 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $80.0 \mu \mathrm{~L}$ (0.696 mmol) of 1-hexyne, stirred at room temperature for 10 min , and concentrated in vacuo. A solution of the residue in 1 mL of toluene was cannulated into a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of 91.0
$\mathrm{mg}(0.314 \mathrm{mmol})$ of sulfonamide $\mathbf{2 0 5},{ }^{242} 8.4 \mathrm{mg}(0.0312 \mathrm{mmol})$ of amino alcohol $\mathbf{5 5}$, and $240 \mu \mathrm{~L}$ (0.420 mmol) of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene) in 2 mL of toluene. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (1:1, hexanes/EtOAc) to yield 35 mg (48%) of 201 as a colorless oil. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column ($1.0 \mathrm{~mL} / \mathrm{min}$, $10 \% i-\mathrm{PrOH}$ in hexanes, $\mathrm{R}_{\mathrm{T}}=6.4$ and 8.0 min$): 6 \%$ ee.

203
(E)-1,1-Dimethyl-3-(1-phenylhept-2-enyl)urea (203). A solution of $3.00 \mathrm{~g}(34.0 \mathrm{mmol})$ of 1,1-dimethylurea, $5.0 \mathrm{mg}(0.026 \mathrm{mmol})$ of $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, and $3.50 \mathrm{~mL}(34.4 \mathrm{mmol})$ of PhCHO in 50 mL of toluene was heated at reflux with a Dean-Stark trap for 16 h , and concentrated in vacuo. The residue was purified by Kugelrohr distillation ($80^{\circ} \mathrm{C}, \sim 1 \mathrm{~atm}$) to afford $4.49 \mathrm{~g}(75 \%)$ of a pale yellow oil which was an 86:14 mixture of imine 202 to 1,1-dimethylurea. This mixture was used without further purification in the subsequent reaction. A suspension of $110 \mathrm{mg}(0.427$ mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $55.0 \mu \mathrm{~L}$ (0.479 mmol) of 1-hexyne, stirred at room temperature for 5 min , and concentrated in vacuo. A solution of the residue in 2 mL of toluene was cooled to $-30^{\circ} \mathrm{C}$, and treated with $5.1 \mathrm{mg}(0.028 \mathrm{mmol})$ of amino thiol $\mathbf{1 8 1}$ and $210 \mu \mathrm{~L}(0.420 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene). The mixture was stirred for 30 \min at $-30^{\circ} \mathrm{C}$, treated with a solution of $50.0 \mathrm{mg}(0.244 \mathrm{mmol})$ of imine $202(86 \%$ purity $)$ in 0.5 mL of toluene, stirred at $-30{ }^{\circ} \mathrm{C}$ for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (3:2, hexanes/EtOAc) to yield 44 mg (69\%) of 203 as a colorless solid: $\mathrm{mp} 65-66{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3330, 2925, 1631, 1527, 1376, 1214, 969, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.66-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.49(\mathrm{bd}, 1$ $\mathrm{H}, J=5.5 \mathrm{~Hz}), 4.63(\mathrm{bd}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H})$, $0.89(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 157.46, 142.90, 132.38, 130.47, 128.46 (2 C), 127.01, 126.95 (2 C), 55.95, 36.19 (2 C), 31.92, 31.31, 22.22, 13.83; EIMS m/z 260 ($\mathrm{M}^{+}, 7$), 172 (33), 143 (59), 129 (100), 115 (37), 91 (30); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} 260.1889$, found
260.1888. The enantioselectivity was measured by chiral HPLC using a Chiracel OD column ($5 \% \mathrm{i}-\mathrm{PrOH}$ in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=13.4$ and 15.0 min): 6% ee.

(E)- N-(4-Methoxyphenyl)- N-(1-phenylhept-2-enyl)acetamide (207) and N-(4-meth-oxyphenyl)- N-(1-phenylethyl)acetamide (208). A solution of $100 \mathrm{mg}(0.473 \mathrm{mmol})$ of imine 178 in 2 mL of toluene was cooled to $0^{\circ} \mathrm{C}$, treated with $35.0 \mu \mathrm{~L}(0.492 \mathrm{mmol})$ of AcCl , warmed to room temperature and stirred for 1 h . Separately, a suspension of $183 \mathrm{mg}(0.710 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $90.0 \mu \mathrm{~L}$ (0.783 mmol) of 1-hexyne, stirred at room temperature for 15 min , concentrated in vacuo, and dissolved in 2 mL of toluene. The two solutions were combined at room temperature, cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $240 \mu \mathrm{~L}(0.480$ mmol) of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene). The mixture was warmed to room temperature, stirred for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (2:1, hexanes/EtOAc) to yield $82 \mathrm{mg}(51 \%)$ of 207 and $41 \mathrm{mg}(32 \%)$ of 208 as brown oils. 207: IR (thin film) 2957, 2927, 2858, 1658, 1511, 1383, 1295, 1250, 1033, 975, 837, 733, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.13(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{bs}, 4 \mathrm{H}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.83(\mathrm{dt}, 1 \mathrm{H}, J=15.2$, $6.6 \mathrm{~Hz}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=15.3,8.7 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.79(\mathrm{~s}, 3 \mathrm{H})$, 1.44-1.24 (m, 4 H), $0.88(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.25,158.96,140.62,135.50,132.71$, 131.12 (2 C), 128.15 (2 C), 127.96 (2 C), 127.03, 126.57, 113.88 (2 C), 59.96, 55.21, 31.98, 31.05, 23.02, 22.06, 13.73; ESIMS m/z $360\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 338\left([\mathrm{M}+\mathrm{H}]^{+}, 13\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}] 360.1939$, found 360.1931. 208: IR (thin film) 2974, 2937, $1653,1510,1454,1387,1315,1292,1248,1032,835,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.29-7.17(\mathrm{~m}, 5 \mathrm{H})$, 6.76 (bs, 4 H$), 6.29(\mathrm{q}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), 1.77 ($\mathrm{s}, 3 \mathrm{H}$), 1.40 (d, $3 \mathrm{H}, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 170.53,159.08,141.25,131.65,131.26$ (2 C), 128.10 (2 C), 128.01 (2 C), 127.31, 113.93 (2 C), 55.29, 51.73, 23.25, 17.07; ESIMS m/z 292 ([M+Na] $\left.{ }^{+}, 100\right), 270\left([\mathrm{M}+\mathrm{H}]^{+}, 18\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$ 292.1313, found 292.1313.

Preparation of 207 using catalytic $\mathbf{Z n C l}_{\mathbf{2}}$. A solution of $100 \mathrm{mg}(0.473 \mathrm{mmol})$ of imine 178 in 2 mL of toluene was cooled to $0^{\circ} \mathrm{C}$, treated with $35.0 \mu \mathrm{~L}(0.492 \mathrm{mmol})$ of AcCl , warmed
to room temperature and stirred for 15 min . Separately, a suspension of $185 \mathrm{mg}(0.717 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $90.0 \mu \mathrm{~L}(0.783 \mathrm{mmol})$ of 1-hexyne and stirred at room temperature for 10 min . The two solutions were combined at room temperature, cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $10.0 \mu \mathrm{~L}(0.0100 \mathrm{mmol})$ of $\mathrm{ZnCl}_{2}\left(1.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (2:1, hexanes/EtOAc) to yield $131 \mathrm{mg}(82 \%)$ of 207 as a brown oil.

Preparation of 207 using catalytic CuBr. A solution of $100 \mathrm{mg}(0.473 \mathrm{mmol})$ of imine 178 in 2 mL of toluene was cooled to $0^{\circ} \mathrm{C}$, treated with $35.0 \mu \mathrm{~L}(0.492 \mathrm{mmol})$ of AcCl , warmed to room temperature and stirred for 15 min . Separately, a suspension of $185 \mathrm{mg}(0.717 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $90.0 \mu \mathrm{~L}(0.783 \mathrm{mmol})$ of 1-hexyne and stirred at room temperature for 10 min . The two solutions were combined at room temperature, cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $5.0 \mathrm{mg}(0.035 \mathrm{mmol})$ of CuBr . The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (2:1, hexanes/ EtOAc) to yield 137 mg (86%) of 207 as a brown oil.

Representative attempted asymmetric preparation of 207 using $\mathbf{C u}$ catalysis.

A suspension of $50.0 \mathrm{mg}(0.237 \mathrm{mmol})$ of imine $\mathbf{1 7 8}, 1.9 \mathrm{mg}(0.019 \mathrm{mmol})$ of CuCl , and 12.0 $\mathrm{mg}(0.0241 \mathrm{mmol})$ of (R, R)-DIOP (215) in 1 mL of toluene was cooled to $0^{\circ} \mathrm{C}$, treated with 17.0 $\mu \mathrm{L}(0.239 \mathrm{mmol})$ of AcCl , warmed to room temperature and stirred for 15 min . Separately, a suspension of $90.0 \mathrm{mg}(0.349 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $45.0 \mu \mathrm{~L}$ (0.392 mmol) of 1-hexyne and stirred at room temperature for 10 min . The two solutions were combined at room temperature, stirred for 12 h , quenched with with 1 N HCl , extracted with EtOAc, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (2:1, hexanes/EtOAc) to yield 57 mg (71%) of 207 as a brown oil. The enantioselectivity was measured by chiral HPLC using a Chiracel AD column (5\% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{R}_{\mathrm{T}}=13.6$ and 15.3 min): 3% ee.

218
\boldsymbol{P}-2-(1,1’-Binaphthyl)-P-phenylphosphinamide (218). A mixture of $1.34 \mathrm{~g}(3.56$ mmol) of phosphole oxide 240 and $500 \mathrm{mg}(12.5 \mathrm{mmol})$ of crushed NaOH was slowly heated at $280^{\circ} \mathrm{C}$ over 3 h . The mixture was stirred at $280^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature, and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 N NaOH . The aqueous layer was separated, cooled to $0{ }^{\circ} \mathrm{C}$, acidified to pH 4 with conc. HCl , and filtered. The filter cake was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. A solution of the residue in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with $600 \mu \mathrm{~L}(6.88 \mathrm{mmol})$ of $(\mathrm{COCl})_{2}$ and 2 drops of DMF, stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , at room temperature for 1 h , and concentrated in vacuo. A solution of the residue in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-7{ }^{\circ} \mathrm{C}$, treated with 10 mL of NH_{3}, slowly warmed to room temperature over 12 h , filtered and concentrated in vacuo. The residue was chromatographed on SiO_{2} (95:5, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to yield $261 \mathrm{mg}(19 \%)$ of 218 as a colorless foam: $\mathrm{mp} 105-107{ }^{\circ} \mathrm{C}$ $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (thin film) 3407, 3217, 3053, 1591, 1436, 1184, 1120, 902, 824, 802, 783, 744, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.69-7.61$ (m, 8 H), 7.56-7.40 (m, 12 H); EIMS m/z 393 ($\mathrm{M}^{+}, 64$), 375 (33), 277 (51), 252 (100), 77 (15); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{NOP}$ 393.1283, found 393.1275.

219
N-Benzylidene- P-2-(1,1’-binaphthyl)-P-phenylphosphinamide (219). According to the General Protocol B, $220 \mathrm{mg}(0.559 \mathrm{mmol})$ of phosphinamide $218,230 \mu \mathrm{~L}(1.65 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}, 90.0 \mu \mathrm{~L}(0.885 \mathrm{mmol})$ of PhCHO , and $35.0 \mu \mathrm{~L}(0.319 \mathrm{mmol})$ of TiCl_{4} afforded a 1.8:1 mixture of diastereomers. The mixture was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to yield 42 mg (16%) of 219 as a colorless solid: mp 204-205 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes); IR (thin film) 3055,1618 , 1577, 1196, 1113, 852, 831, 752, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.47(\mathrm{~d}, 1 \mathrm{H}, J=33.2 \mathrm{~Hz}$), 7.94-7.00 (m,
$23 \mathrm{H})$; ESIMS m/z $504\left([\mathrm{M}+\mathrm{Na}]^{+}, 62\right), 482\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{NOP}[\mathrm{M}+\mathrm{H}] 482.1674$, found 482.1652 .

220
(E)-P-2-(1,1’-Binaphthyl)-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide (220).

According to the General Protocol A, $28.0 \mathrm{mg}(0.109 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 15.0 \mu \mathrm{~L}(0.131$ $\mathrm{mmol})$ of 1-hexyne, $27.0 \mathrm{mg}(0.0561 \mathrm{~mol})$ of imine 219 , and $50.0 \mu \mathrm{~L}(0.100 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene) afforded 24 mg (76%) of 220 as an (inseparable) $72: 28$ mixture of diastereomers: IR (thin film) 3381, 3207, 3055, 2954, 2924, 2858, 1452, 1439, 1184, 1113, 1026, 972, 783, 746, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.01-6.83(\mathrm{~m}, 23 \mathrm{H}), 5.17-5.04(\mathrm{~m}, 1.7 \mathrm{H}), 4.91(\mathrm{dtd}, 0.3 \mathrm{H}$, $J=15.3,6.6,1.4 \mathrm{~Hz}), 4.50(\mathrm{td}, 0.7 \mathrm{H}, J=9.4,4.2 \mathrm{~Hz}), 4.39(\mathrm{td}, 0.3 \mathrm{H}, J=9.9,5.7 \mathrm{~Hz}), 2.88-$ 2.79 (m, 1 H), 1.93-1.75 (m, 2 H), 1.24-1.08 (m, 4 H), 0.83 (t, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$); ESIMS m/z 588 $\left([\mathrm{M}+\mathrm{Na}]^{+}, 70\right), 566\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{NOP}[\mathrm{M}+\mathrm{H}] 566.2613$, found 566.2621.

222
\boldsymbol{N}-Benzylidene- \boldsymbol{P}-mesityl- \boldsymbol{P}-phenylphosphinamide (222). According to the General Protocol B, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of P-mesityl- P-phenylphosphinamide (221), $290 \mu \mathrm{~L}$ (2.85 $\mathrm{mmol})$ of $\mathrm{PhCHO}, 810 \mu \mathrm{~L}(5.81 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $120 \mu \mathrm{~L}(1.09 \mathrm{mmol})$ of TiCl_{4} afforded 235 mg (35%) of 222 as a colorless solid: $\mathrm{mp} 166-167{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $)$; IR (thin film) 3441 , 3058, 2969, 2931, 1610, 1575, 1449, 1435, 1197, 1116, 850, 821, 753, 691, $645 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $9.32(\mathrm{~d}, 1 \mathrm{H}, J=32.8 \mathrm{~Hz}), 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.37(\mathrm{~m}, 6 \mathrm{H}), 6.88-6.87$ (m, 2 H), 2.53 ($\mathrm{s}, 6 \mathrm{H}$), 2.26 ($\mathrm{s}, 3 \mathrm{H}$); EIMS m/z 347 (${ }^{+}$, 100), 270 (26), 256 (20), 243 (68), 106 (85), 91 (32), 77 (22); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NOP} 347.1439$, found 347.1443 .

223
(E)-P-Mesityl-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide (223). According to the General Protocol A, $95.0 \mathrm{mg}(0.368 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 50.0 \mu \mathrm{~L}(0.435 \mathrm{mmol})$ of 1-hexyne, $190 \mu \mathrm{~L}(0.380 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$, and $87.0 \mathrm{mg}(0.250 \mathrm{mmol})$ of imine 222 afforded $57 \mathrm{mg}(53 \%)$ of 223 as an (inseparable) 69:31 mixture of diastereomers: mp 122-125 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3204, 2957, 2927, 2854, 1607, 1453, 1435, 1176, 1116, 748, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.75-7.67 (m, 1.4 H), 7.60-7.53 (m, 0.6 H), 7.46-7.15 (m, 8 H), 6.87 (d, 0.6 H, J = 3.7 Hz), 6.80 (d, 1.4 H, J = 3.7 Hz), $5.77(\mathrm{dd}, 0.7 \mathrm{H}, J=15.3,6.2 \mathrm{~Hz}), 5.66-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dt}, 0.3 \mathrm{H}, J=$ $15.3,6.6 \mathrm{~Hz}), 5.08(\mathrm{td}, 0.3 \mathrm{H}, J=8.9,7.1 \mathrm{~Hz}), 4.97(\mathrm{td}, 0.7 \mathrm{H}, J=9.2,6.4 \mathrm{~Hz}), 3.19(\mathrm{t}, 0.3 \mathrm{H}, J$ $=9.1 \mathrm{~Hz}), 3.13(\mathrm{t}, 0.7 \mathrm{H}, J=8.9 \mathrm{~Hz}), 2.45(\mathrm{~s}, 1.8 \mathrm{H}), 2.35(\mathrm{~s}, 4.2 \mathrm{H}), 2.28(\mathrm{~s} .0 .9 \mathrm{H}), 2.26(\mathrm{~s}, 2.1$ H), $2.05(\mathrm{q}, 1.4 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.86(\mathrm{q}, 0.6 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.40-1.26(\mathrm{~m}, 2.8 \mathrm{H}), 1.23-1.14(\mathrm{~m}$, $1.2 \mathrm{H}), 0.89(\mathrm{t}, 2.1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.83(\mathrm{t}, 0.9 \mathrm{H}, J=6.8 \mathrm{~Hz})$; ESIMS m/z $454\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$, $432\left([\mathrm{M}+\mathrm{H}]^{+}, 75\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}] 454.2276$, found 454.2280 .

225
(E)-P-(tert-Butyl)-P-phenyl- N-(1-phenylhept-2-enyl)phosphinamide (225). According to the General Protocol B, $500 \mathrm{mg}(2.54 \mathrm{mmol})$ of P-(tert-butyl)- P-phenylphosphinamide (224), $1.17 \mathrm{~mL}(8.39 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}, 390 \mu \mathrm{~L}(3.84 \mathrm{mmol})$ of PhCHO , and $150 \mu \mathrm{~L}(1.34 \mathrm{mmol})$ of TiCl_{4} afforded a 1.6:1 mixture of imine and PhCHO , which was used without further purification in the subsequent reaction. According to the General Protocol A, 390 mg (1.51 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, $200 \mu \mathrm{~L}(1.74 \mathrm{mmol})$ of 1-hexyne, $500 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$, and $200 \mathrm{mg}(0.571 \mathrm{mmol})$ of crude imine (81% purity) afforded 67 mg (32%) of 225 as an (inseparable) 69:31 mixture of diastereomers: IR (thin film) 3228, 2060, 2954, 2929, 2862, 1687, 1475, 1437, 1165, 1113, 1057, $748,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.88-7.81(\mathrm{~m}, 0.6 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1.4 \mathrm{H}), 7.51-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ 7.13 (m, 6 H), 5.71 (ddt, $0.7 \mathrm{H}, J=15.4,5.4,1.3 \mathrm{~Hz}$), $5.52-5.37$ (m, 1.3 H), 4.79 (td, $0.3 \mathrm{H}, J=$ $8.8,5.7 \mathrm{~Hz}), 4.70(\mathrm{td}, 0.7 \mathrm{H}, J=9.5,5.3 \mathrm{~Hz}), 2.98-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{q}, 1.4 \mathrm{H}, J=7.0 \mathrm{~Hz})$,
$1.89(\mathrm{q}, 0.6 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.36-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~d}, 6.3 \mathrm{H}, J=14.8 \mathrm{~Hz}), 1.09(\mathrm{~d}, 2.7 \mathrm{H}, J=$ $14.8 \mathrm{~Hz}), 0.85-0.80(\mathrm{~m}, 3 \mathrm{H})$; ESIMS m/z 392 ([M+Na] ${ }^{+}$, 68), 370 ([M+H] ${ }^{+}$, 100); HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NOP}[\mathrm{M}+\mathrm{H}] 370.2300$, found 370.2290.

244
Ethyl (2-tert-butylphenyl)phosphinate (244). According to a literature procedure, ${ }^{243} \mathrm{a}$ suspension of 220 mg (9.05 mmol) of Mg in 10 mL of THF was treated with a solution of 2.00 g (9.38 mmol) of ortho-bromo-tert-butybenzene (243) in 10 mL of THF. The reaction was initiated with 2 drops of $\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$, and the mixture was heated at reflux for 2 h , cooled to room temperature, treated with a solution of $910 \mu \mathrm{~L}(5.66 \mathrm{mmol})$ of $\mathrm{ClP}(\mathrm{OEt})_{2}(90 \%$ purity $)$ in 10 mL of THF, heated at reflux for 2 h , cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation ($120^{\circ} \mathrm{C}, \sim 1 \mathrm{~atm}$) of the residue afforded a colorless oil that was dissolved in 10 mL of THF, treated with 20 mL of 0.1 M HCl , stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield $1.21 \mathrm{~g}(95 \%)$ of 244 as a colorless oil: IR (thin film) 2966, 2906, 2870, 1475, 1433, 1365, 1192, 1122, 1024, 960, $762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=566 \mathrm{~Hz}$), 7.95-7.86 (m, 1 H$)$, 7.55-7.43 (m, 2 H), 7.33-7.27 (m, 1 H$), 4.24-4.04(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ $153.88(\mathrm{~d}, 1 \mathrm{C}, ~ J=10.2 \mathrm{~Hz}), 133.00(\mathrm{~d}, 1 \mathrm{C}, J=13.9 \mathrm{~Hz}), 132.55(\mathrm{~s}, 1 \mathrm{C}), 128.70(\mathrm{~d}, 1 \mathrm{C}, J=$ 126 Hz), $127.09(\mathrm{~d}, 1 \mathrm{C}, J=12.8 \mathrm{~Hz}), 125.67(\mathrm{~d}, 1 \mathrm{C}, J=14.7 \mathrm{~Hz}), 62.36(\mathrm{~d}, 1 \mathrm{C}, J=6.1 \mathrm{~Hz})$, 37.04 (s, 1 C), 32.32 (s, 3 C), 16.10 (d, $1 \mathrm{C}, ~ J=6.4 \mathrm{~Hz}$); EIMS m/z 226 ($\mathrm{M}^{+}, 52$), 211 (43), 183 (80), 156 (58), 147 (100), 115 (49), 91 (77), 84 (42), 77 (54); HRMS (EI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P} 226.1123$, found 226.1124 .

245
Ethyl (2-tert-butylphenyl)phenylphosphinate (245). According to a literature procedure, a suspension of $1.00 \mathrm{~g}(4.42 \mathrm{mmol})$ of ethyl phosphinate $244,30.0 \mathrm{mg}(0.134 \mathrm{mmol})$
of $\operatorname{Pd}(\mathrm{OAc})_{2}, 320 \mathrm{mg}(0.577 \mathrm{mmol})$ of dppf, $1.23 \mathrm{~mL}(8.82 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $490 \mu \mathrm{~L}(4.38$ mmol) of iodobenzene in 25 mL of MeCN was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to room temperature, diluted with EtOAc, filtered through Celite, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (50:50, hexanes/EtOAc) to yield 800 mg (60%) of 245 as an orange oil: IR (thin film) 2960, 2902, 2870, 1473, 1439, 1228, 1122, 1030, 947, 746, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.95-7.87 (m, 1 H), 7.70-7.57 (m, 3 H), 7.47-7.34 (m, 4 H), 7.26-7.20 (m, 1 H), 4.12-4.02 (m, 2 H$), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 156.53(\mathrm{~d}, 1 \mathrm{C}, J=$ $10.1 \mathrm{~Hz}), 136.11(\mathrm{~d}, 1 \mathrm{C}, J=9.8 \mathrm{~Hz}), 134.37(\mathrm{~d}, 1 \mathrm{C}, J=136 \mathrm{~Hz}), 131.93(\mathrm{~s}, 1 \mathrm{C}), 131.39(\mathrm{~s}, 1$ C), $131.33(\mathrm{~d}, 2 \mathrm{C}, J=9.9 \mathrm{~Hz}), 128.70(\mathrm{~d}, 1 \mathrm{C}, J=128 . \mathrm{Hz}), 128.21(\mathrm{~d}, 2 \mathrm{C}, J=13.1 \mathrm{~Hz})$, $127.65(\mathrm{~d}, 1 \mathrm{C}, J=13.0 \mathrm{~Hz}), 125.08(\mathrm{~d}, 1 \mathrm{C}, J=12.6 \mathrm{~Hz}), 60.73(\mathrm{~d}, 1 \mathrm{C}, J=5.5 \mathrm{~Hz}), 37.22(\mathrm{~s}, 1$ C), 32.20 (s, 3 C), 16.33 (d, $1 \mathrm{C}, ~ J=3.4 \mathrm{~Hz}$); EIMS m/z 302 ($\mathrm{M}^{+}, 71$), 287 (61), 259 (39), 217 (27), 202 (34), 163 (28), 141 (31), 115 (44), 91 (55), 77 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P} 302.1436$, found 302.1444 .

226
\boldsymbol{P}-(2-tert-Butylphenyl)-P-phenylphosphinamide (226). According to a literature procedure, ${ }^{204}$ a solution of $200 \mathrm{mg}(8.70 \mathrm{mmol})$ of Na in 30 mL of NH_{3} was stirred at $-35^{\circ} \mathrm{C}$ for 1 h , treated with a solution of $760 \mathrm{mg}(2.51 \mathrm{mmol})$ of ethyl phosphinate 245 in 10 mL of THF, stirred at $-35^{\circ} \mathrm{C}$ for 5 h and slowly warmed to room temperature over 12 h . The mixture was quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$ then wet THF, poured into 1 N HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x). The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was chromatographed on SiO_{2} ($50: 50$, hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) to yield $187 \mathrm{mg}(27 \%)$ of 226 as a colorless solid: mp 139-140 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$, hexanes); IR (thin film) 3225, 3078, 2954, 1567, 1475, 1436, 1194, 1118, 893, 762, 750, 735, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.91$ (ddd, $1 \mathrm{H}, J=16.1,7.8,1.5 \mathrm{~Hz}$), 7.79-7.72 (m, 2 H), 7.61-7.56 (m, 1 H), 7.48-7.35 (m, 4 H), 7.21-7.15 (m, 1 H), 3.05 (bs, 2 H), 1.57 (s, 9 $\mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 156.63(\mathrm{~d}, 1 \mathrm{C}, J=9.3 \mathrm{~Hz}), 136.70(\mathrm{~d}, 1 \mathrm{C}, J=128.4 \mathrm{~Hz}), 136.63(\mathrm{~d}, 1 \mathrm{C}, J=$ $11.9 \mathrm{~Hz}), 131.78(\mathrm{~s}, 1 \mathrm{C}), 131.40(\mathrm{~d}, 2 \mathrm{C}, J=9.2 \mathrm{~Hz}), 131.34(\mathrm{~s}, 1 \mathrm{C}), 131.01(\mathrm{~d}, 1 \mathrm{C}, J=116.8$ $\mathrm{Hz}), 128.43(\mathrm{~d}, 2 \mathrm{C}, J=12.8 \mathrm{~Hz}), 127.79(\mathrm{~d}, 1 \mathrm{C}, J=12.1 \mathrm{~Hz}), 125.20(\mathrm{~d}, 1 \mathrm{C}, J=13.1 \mathrm{~Hz})$,
37.51 (s, 1 C), 32.46 (s, 3 C); EIMS m/z 273 (${ }^{+}, 90$), 258 (100), 241 (45), 199 (50), 163 (28), 91 (20), 77 (32); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NOP} 273.1283$, found 273.1283.

227

(E)-P-(2-tert-Butylphenyl)-P-phenyl- N-(1-phenylhept-2-enyl)phosphinamide (227).

According to the General Protocol B, $166 \mathrm{mg}(0.607 \mathrm{mmol})$ of phosphinamide 226, $320 \mu \mathrm{~L}(1.84$ $\mathrm{mmol})$ of $(i-\mathrm{Pr})_{2} \mathrm{NEt}, 100 \mu \mathrm{~L}(0.984 \mathrm{mmol})$ of PhCHO , and $40.0 \mu \mathrm{~L}(0.365 \mathrm{mmol})$ of TiCl_{4} afforded the crude imine, which was used without further purification in the subsequent reaction. According to the General Protocol A, $46.0 \mathrm{mg}(0.178 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 23.0 \mu \mathrm{~L}(0.200$ $\mathrm{mmol})$ of 1-hexyne, $90.0 \mu \mathrm{~L}(0.180 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 32.4 mg (0.0896 mmol) of crude imine at a reaction temperature of $40^{\circ} \mathrm{C}$ afforded $27 \mathrm{mg}(68 \%)$ of 227 as an (inseparable) 54:46 mixture of diastereomers: IR (thin film) 3213, 2922, 2870, 1589, 1435, 1197, 1113, 1051, 1028, 970, 924, 739, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.94-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.04(\mathrm{~m}$, 10 H), 5.75-5.44 (m, 2 H), 4.94-4.82 (m, 1 H$), 2.99-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96$ (m, 2 H), 1.61 (s , $4.9 \mathrm{H}), 1.55(\mathrm{~s}, 4.1 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.82(\mathrm{~m}, 3 \mathrm{H})$; ESIMS m/z 468 ([M+Na] ${ }^{+}, 84$), $446\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NOP}[\mathrm{M}+\mathrm{H}] 446.2613$, found 446.2603.

247
Ethyl [2-(trimethylsilyl)phenyl]phenylphosphinate (247). According to a literature procedure, a suspension of $190 \mathrm{mg}(7.82 \mathrm{mmol})$ of Mg in 10 mL of THF was treated with a solution of 1.75 g (7.64 mmol) of (2-bromophenyl)trimethylsilane (246) in 10 mL of THF. The reaction was initiated with 2 drops of 1,2-dibromoethane, and the mixture was heated at reflux for 4 h , cooled to room temperature, treated with a solution of $1.23 \mathrm{~mL}(7.65 \mathrm{mmol})$ of $\mathrm{ClP}(\mathrm{OEt})_{2}(90 \%$ purity $)$ in 10 mL of THF, heated at reflux for 12 h , cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation $\left(110^{\circ} \mathrm{C}, \sim 1 \mathrm{~atm}\right)$ of the residue afforded a colorless oil that was dissolved in 10 mL of THF, treated with 20 mL of 0.1 M HCl , stirred at $60^{\circ} \mathrm{C}$ for 6 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and
concentrated in vacuo. A suspension of the residue, $33.0 \mathrm{mg}(0.147 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 164 \mathrm{mg}$ (0.296 mmol) of dppf, $770 \mu \mathrm{~L}(4.42 \mathrm{mmol})$ of $(i-\operatorname{Pr})_{2} \mathrm{NEt}$, and $400 \mu \mathrm{~L}(3.57 \mathrm{mmol})$ of iodobenzene in 25 mL of MeCN was stirred at $70^{\circ} \mathrm{C}$ for 18 h . The mixture was cooled to room temperature, diluted with EtOAc, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} ($30: 70$, hexanes/EtOAc) to yield $646 \mathrm{mg}(28 \%)$ of 247 as a yellow oil: IR (thin film) 3055, 2980, 2947, 2899, 1439, 1230, 1134, 1119, 1032, 949, 845, 742, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.78-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, 3$ $\mathrm{H}, J=7.1 \mathrm{~Hz}), 0.38(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 145.84(\mathrm{~d}, 1 \mathrm{C}, J=18.6 \mathrm{~Hz}), 136.18(\mathrm{~d}, 1 \mathrm{C}, J=138.1$ $\mathrm{Hz}), 136.04(\mathrm{~d}, 1 \mathrm{C}, ~ J=16.8 \mathrm{~Hz}), 133.33(\mathrm{~d}, 1 \mathrm{C}, J=13.4 \mathrm{~Hz}), 132.77(\mathrm{~d}, 1 \mathrm{C}, J=133.0 \mathrm{~Hz})$, $131.74(\mathrm{~s}, 1 \mathrm{C}), 131.67(\mathrm{~d}, 2 \mathrm{C}, J=10.1 \mathrm{~Hz}), 130.83(\mathrm{~d}, 1 \mathrm{C}, J=3.1 \mathrm{~Hz}), 128.30(\mathrm{~d}, 2 \mathrm{C}, J=12.9$ $\mathrm{Hz}), 128.18(\mathrm{~d}, 1 \mathrm{C}, J=13.4 \mathrm{~Hz}), 60.79(\mathrm{~d}, 1 \mathrm{C}, J=5.8 \mathrm{~Hz}), 16.39(\mathrm{~d}, 1 \mathrm{C}, J=6.7 \mathrm{~Hz}), 1.35(\mathrm{~s}, 3$ C); EIMS m/z 303 ([M-CH3] $]^{+}$100), 275 (86), 197 (29), 183 (24), 135 (22), 107 (18), 77 (21); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PSi}\left[\mathrm{M}-\mathrm{CH}_{3}\right]$ 303.0970, found 303.0976.

228
\boldsymbol{P}-[2-(Trimethylsilyl)phenyl]-P-phenylphosphinamide (228). A solution of 2.07 g (6.50 mmol) of ethyl phosphinate 247 in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with 1.72 mL (13.0 mmol) of TMS-Br. ${ }^{244}$ The mixture was stirred at room temperature for 4 h , treated with 25 mL of MeOH , stirred at room temperature for 1 h , and concentrated in vacuo. A solution of the residue in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $1.13 \mathrm{~mL}(13.0 \mathrm{mmol})$ of $(\mathrm{COCl})_{2}$ and 3 drops of DMF. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , at room temperature for 5 h , and concentrated in vacuo. A solution of the residue in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with 10 mL of NH_{3}, slowly warmed to room temperature over 5 h , filtered, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}\left(99: 1, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ to yield $1.65 \mathrm{~g}(88 \%)$ of 228 as a yellow solid: mp $141-142{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}^{2} \mathrm{Et}_{2} \mathrm{O}\right)$; IR (thin film) 3413,3213 , 3065, 1571, 1436, 1243, 1197, 1117, 896, 848, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.88$ (ddd, $1 \mathrm{H}, J=13.1$, $7.5,1.1 \mathrm{~Hz}), 7.82-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.34(\mathrm{~m}, 5 \mathrm{H}), 3.12(\mathrm{bs}, 2 \mathrm{H}), 0.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $146.14(\mathrm{~d}, 1 \mathrm{C}, ~ J=18.3 \mathrm{~Hz}), 138.26(\mathrm{~d}, 1 \mathrm{C}, J=131.8 \mathrm{~Hz}), 136.14(\mathrm{~d}, 1 \mathrm{C}, J=16.2 \mathrm{~Hz}), 134.74$ $(\mathrm{d}, 1 \mathrm{C}, J=125.1 \mathrm{~Hz}), 133.71(\mathrm{~d}, 1 \mathrm{C}, J=13.2 \mathrm{~Hz}), 131.70(\mathrm{~d}, 2 \mathrm{C}, J=9.9 \mathrm{~Hz}), 131.47(\mathrm{~d}, 1 \mathrm{C}, J$
$=2.2 \mathrm{~Hz}), 130.57(\mathrm{~d}, 1 \mathrm{C}, J=2.7 \mathrm{~Hz}), 128.25(\mathrm{~d}, 2 \mathrm{C}, J=12.5 \mathrm{~Hz}), 128.17(\mathrm{~d}, 1 \mathrm{C}, J=12.8 \mathrm{~Hz})$, 1.72 (s, 3 C); EIMS m/z $289\left(\mathrm{M}^{+}, 1\right), 288$ (3), 274 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NOPSi}$ $\left[\mathrm{M}-\mathrm{CH}_{3}\right] 274.0817$, found 274.0944.

229

N-Benzylidene-P-[2-(trimethylsilyl)phenyl]-P-phenylphosphinamide (229).

According to the General Protocol B, $1.09 \mathrm{~g}(3.77 \mathrm{mmol})$ of phosphinamide 228, $1.97 \mathrm{~mL}(11.3$ $\mathrm{mmol})$ of ($\mathrm{i}-\mathrm{Pr})_{2} \mathrm{NEt}, 570 \mu \mathrm{~L}(5.61 \mathrm{mmol})$ of PhCHO , and $250 \mu \mathrm{~L}(2.28 \mathrm{mmol})$ of TiCl_{4} afforded the crude imine, which was chromatographed on SiO_{2} (80:20, hexanes/EtOAc, containing 2\% $\mathrm{Et}_{3} \mathrm{~N}$) to yield $1.23 \mathrm{~g}(87 \%)$ of 229 as a yellow glass: IR (thin film) 3057, 2945, 2895, 1703, $1618,1577,1452,1437,1242,1205,1113,1057,852,822,739,688,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.28$ (d, $1 \mathrm{H}, J=31.4 \mathrm{~Hz}$), 8.21 (ddd, $1 \mathrm{H}, J=12.0,6.8,2.0 \mathrm{~Hz}$), $7.99(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.83-7.75$ (m, 3 H), 7.59-7.38 (m, 8 H$), 0.41(\mathrm{~s}, 9 \mathrm{H}) ;$ ESIMS m/z $400\left([\mathrm{M}+\mathrm{Na}]^{+}, 72\right), 378\left([\mathrm{M}+\mathrm{H}]^{+}, 58\right)$, 362 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 100$); HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NOPSi}[\mathrm{M}+\mathrm{H}] 378.1443$, found 378.1452.

230

(E)-P-[2-(Trimethylsilyl)phenyl]-P-phenyl- N-(1-phenylhept-2-enyl)phosphinamide

(230). According to the General Protocol A, $115 \mathrm{mg}(0.446 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 56.0 \mu \mathrm{~L}(0.487$ mmol) of 1-hexyne, $220 \mu \mathrm{~L}(0.440 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 85.0 mg (0.225 mmol) of imine 229 afforded 73 mg (70%) of 230 as an (inseparable) 51:49 mixture of diastereomers: IR (thin film) 3333, 3059, 2957, 2929, 1691, 1452, 1437, 1243, 1191, 1116, 843, 754, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.96-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.22(\mathrm{~m}, 10 \mathrm{H}), 5.75-5.46(\mathrm{~m}, 2 \mathrm{H}), 4.88-4.76$ $(\mathrm{m}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.90-0.85(\mathrm{~m}, 3 \mathrm{H}), 0.44(\mathrm{~s}$, 4.5 H), 0.42 (s, 4.5 H$)$; EIMS m/z 461 (M^{+}, 13), 446 (56), 388 (14), 362 (18), 274 (100), 258 (54), 188 (85), 117 (52), 91 (41); HRMS (EI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{NOPSi}$ 461.2304, found 461.2312 .

249
Ethyl (2-biphenyl)phenylphosphinate (249). According to a literature procedure, a suspension of $420 \mathrm{mg}(17.3 \mathrm{mmol})$ of Mg in 40 mL of THF was treated with $4.00 \mathrm{~g}(17.2 \mathrm{mmol})$ of 2-bromobiphenyl (248). The reaction was initiated with 1 drop of $\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$, and the mixture was heated at reflux for 2 h , cooled to room temperature, treated with $1.80 \mathrm{~mL}(11.2 \mathrm{mmol})$ of $\mathrm{ClP}(\mathrm{OEt})_{2}(90 \%$ purity $)$, heated at reflux for 2 h , cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation ($120{ }^{\circ} \mathrm{C}, \sim 1$ atm) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl , stirred at $50^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{x})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. A suspension of the residue, $75.0 \mathrm{mg}(0.334 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 372 \mathrm{mg}(0.671 \mathrm{mmol})$ of dppf, $2.90 \mathrm{~mL}(16.6 \mathrm{mmol})$ of $(i-\mathrm{Pr})_{2} \mathrm{NEt}$, and $1.50 \mathrm{~mL}(13.4 \mathrm{mmol})$ of iodobenzene in 100 mL of MeCN was stirred at $70^{\circ} \mathrm{C}$ for 16 h . The mixture was cooled to room temperature, diluted with EtOAc, filtered through Celite, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (1:2, hexanes/EtOAc) to yield $2.95 \mathrm{~g}(82 \%)$ of 249 as a pink solid: $\mathrm{mp} 115-116{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3461, 3055, 2977, 1437, 1221, 1033, 951, 753, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.04(\mathrm{dd}, 1 \mathrm{H}, J=12.2,7.7 \mathrm{~Hz}), 7.50(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}$), 7.41 (t, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.36$7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 8 \mathrm{H}), 3.99-3.78(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ $146.46,146.31,140.71,140.66,132.95,132.84,131.69,131.56,131.37,131.32,131.22,129.73$, $127.91,127.74,127.22,127.11,126.72,126.56,60.49,60.42,16.21,16.13$; EIMS m/z $322\left(\mathrm{M}^{+}\right.$, 64), 321 (43), 293 (41), 277 (39), 245 (100), 217 (65), 199 (60), 152 (56); HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P} 322.1123$, found 322.1113.

231
\boldsymbol{P}-2-Biphenyl-P-phenylphosphinamide (231). A solution of $2.50 \mathrm{~g}(7.76 \mathrm{mmol})$ of ethyl phosphinate 249 in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $2.05 \mathrm{~mL}(15.5 \mathrm{mmol})$ of $\mathrm{TMS}-\mathrm{Br}$. The mixture was stirred at room temperature for 2 h , treated with 25 mL of MeOH , stirred at
room temperature for 1 h , and concentrated in vacuo. A solution of the residue in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $1.35 \mathrm{~mL}(15.5 \mathrm{mmol})$ of $(\mathrm{COCl})_{2}$ and 3 drops of DMF. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at room temperature for 4 h , and concentrated in vacuo. A solution of the residue in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with 10 mL of NH_{3}, slowly warmed to room temperature over 5 h , filtered, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}\left(95: 5, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ to yield $2.15 \mathrm{~g}(95 \%)$ of 231 as a colorless solid: $\mathrm{mp} 149-150{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; IR (thin film) 3411, 3219, 3055, 1567, 1465, 1437, 1188, 1134, 1117, 898, 749, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.85$ (ddd, $1 \mathrm{H}, J=14.0,7.7,1.3 \mathrm{~Hz}$), 7.59-7.19 (m, 13 H), 2.89 (bs, 2 H); ${ }^{13} \mathrm{C}$ NMR $\delta 144.94$ (d, $1 \mathrm{C}, J=9.5 \mathrm{~Hz}$), 140.99 (d, $1 \mathrm{C}, J=$ $3.8 \mathrm{~Hz}), 134.05(\mathrm{~d}, 1 \mathrm{C}, J=129.2 \mathrm{~Hz}), 132.61(\mathrm{~d}, 1 \mathrm{C}, J=10.7 \mathrm{~Hz}), 132.58(\mathrm{~d}, 1 \mathrm{C}, J=125.8$ $\mathrm{Hz}), 131.63(\mathrm{~d}, 2 \mathrm{C}, J=10.1 \mathrm{~Hz}), 131.44(\mathrm{~d}, 1 \mathrm{C}, J=2.4 \mathrm{~Hz}), 131.11(\mathrm{~d}, 1 \mathrm{C}, J=6.0 \mathrm{~Hz})$, $131.02(\mathrm{~d}, 1 \mathrm{C}, J=2.0 \mathrm{~Hz}), 129.57(\mathrm{~s}, 2 \mathrm{C}), 128.05(\mathrm{~d}, 2 \mathrm{C}, J=12.8 \mathrm{~Hz}), 127.89(\mathrm{~s}, 2 \mathrm{C}), 127.67$ (s, 1 C), 126.86 (d, $1 \mathrm{C}, J=12.7 \mathrm{~Hz}$); EIMS m/z 293 (${ }^{+}$, 37), 292 (43), 275 (36), 216 (100), 199 (63), 152 (26); HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NOP}$ 293.0970, found 293.0983.

232
N-Benzylidene- \boldsymbol{P}-2-biphenyl- \boldsymbol{P}-phenylphosphinamide (232). According to the General Protocol B, $1.15 \mathrm{~g}(3.92 \mathrm{mmol})$ of phosphinamide 231, $2.05 \mathrm{~mL}(11.8 \mathrm{mmol})$ of (i$\operatorname{Pr})_{2} \mathrm{NEt}, 600 \mu \mathrm{~L}(5.90 \mathrm{mmol})$ of PhCHO , and $260 \mu \mathrm{~L}(2.37 \mathrm{mmol})$ of TiCl_{4} afforded the crude imine, which was chromatographed on SiO_{2} (20:80, hexanes/EtOAc, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $1.23 \mathrm{~g}(82 \%)$ of 232 as a colorless solid: mp $54-57^{\circ} \mathrm{C}$ (solvent); IR (thin film) 3445,3055 , $1615,1450,1438,1201,1115,852,829,752,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.79(\mathrm{~d}, 1 \mathrm{H}, J=32.6 \mathrm{~Hz})$, 7.74-7.64 (m, 5 H), 7.51-7.22 (m, 11 H$), ~ 7.12-7.09(\mathrm{~m}, 3 \mathrm{H})$; ESIMS m/z 404 ([M+Na] ${ }^{+}, 100$), $382\left([\mathrm{M}+\mathrm{H}]^{+}, 26\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}]$ 404.1180, found 404.1187.

233
(E)-P-2-Biphenyl-P-phenyl-N-(1-phenylhept-2-enyl)phosphinamide (233). According to the General Protocol A, $135 \mathrm{mg}(0.523 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 66.0 \mu \mathrm{~L}(0.574 \mathrm{mmol})$ of $1-$ hexyne, $260 \mu \mathrm{~L}(0.520 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, and $100 \mathrm{mg}(0.262 \mathrm{mmol})$ of imine 232 at a reaction temperature of $40{ }^{\circ} \mathrm{C}$ afforded $109 \mathrm{mg}(89 \%)$ of 233 as an (inseparable) 65:35 mixture of diastereomers: mp 101-104 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3197, 3058, 2955, 2925, 2857, 1465, 1436, 1188, 1115, 753, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.75-7.64$ (m, $2 \mathrm{H}), 7.54-7.15(\mathrm{~m}, 15 \mathrm{H}), 7.04(\mathrm{dd}, 1.3 \mathrm{H}, J=7.5,1.7 \mathrm{~Hz}), 6.93$ (dd, $0.7 \mathrm{H}, J=7.2,2.1 \mathrm{~Hz}$), 5.38-5.25 (m, 1.65 H), $5.16(\mathrm{dt}, 0.35 \mathrm{H}, J=15.3,6.6 \mathrm{~Hz}$), 4.73-4.61 (m, 1 H$), 2.82-2.73(\mathrm{~m}, 1$ H), 1.90-1.80 (m, 2 H), 1.27-1.18 (m, 4 H), 0.90-0.83 (m, 3 H); EIMS m/z $465\left(\mathrm{M}^{+}, 21\right), 292$ (23), 277 (59), 199 (53), 188 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NOP} 465.2222$, found 465.2235.

251
Ethyl [2-(1-adamantyl)phenyl]phenylphosphinate (251). According to a literature procedure, a suspension of $190 \mathrm{mg}(7.82 \mathrm{mmol})$ of Mg in 40 mL of THF was treated with 2.29 g (7.86 mmol) of 1-(2-bromophenyl)adamantane (250). The reaction was initiated with 3 drops of $\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$, and the mixture was heated at reflux for 6 h , cooled to $0{ }^{\circ} \mathrm{C}$, treated with 1.05 mL (6.53 mmol) of $\mathrm{ClP}(\mathrm{OEt})_{2}\left(90 \%\right.$ purity), heated at $40^{\circ} \mathrm{C}$ for 12 h , cooled to room temperature, diluted with 30 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation ($130{ }^{\circ} \mathrm{C}, \sim 1 \mathrm{~atm}$) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl , stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. A suspension of the residue, $45.0 \mathrm{mg}(0.200 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 217 \mathrm{mg}$ $(0.391 \mathrm{mmol})$ of dppf, $1.71 \mathrm{~mL}(9.82 \mathrm{mmol})$ of $(i-\operatorname{Pr})_{2} \mathrm{NEt}$, and $880 \mu \mathrm{~L}(7.86 \mathrm{mmol})$ of iodobenzene in 75 mL of MeCN was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was cooled to room
temperature, diluted with hexanes/EtOAc (1:1), filtered through Celite, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(2: 1$, hexanes/EtOAc) to yield $1.20 \mathrm{~g}(48 \%)$ of 251 as an orange solid: mp 129-130 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 2901, 2848, 1437, 1226, 1125, 1031, 947, 750, 725, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.97$ (ddd, $1 \mathrm{H}, J=14.6,7.9,1.5 \mathrm{~Hz}$), 7.69-7.57 (m, 3 H), 7.53-7.34 (m, 4 H), 7.29-7.23 (m, 1 H), 4.21-4.02 (m, 2 H), 2.32 (d, $3 \mathrm{H}, \mathrm{J}=$ $12.1 \mathrm{~Hz}), 2.24(\mathrm{~d}, 3 \mathrm{H}, J=12.1 \mathrm{~Hz}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, 3 \mathrm{H}, J=11.3 \mathrm{~Hz}), 1.71(\mathrm{~d}, 3 \mathrm{H}, J=$ $11.9 \mathrm{~Hz}), 1.36(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 157.58(\mathrm{~d}, 1 \mathrm{C}, J=10.6 \mathrm{~Hz}), 136.48(\mathrm{~d}, 1 \mathrm{C}, J=$ $9.7 \mathrm{~Hz}), 135.09(\mathrm{~d}, 1 \mathrm{C}, J=138.1 \mathrm{~Hz}), 132.02(\mathrm{~d}, 1 \mathrm{C}, J=2.5 \mathrm{~Hz}), 131.24(\mathrm{~s}, 1 \mathrm{C}), 131.17(\mathrm{~s}, 2$ $\mathrm{C}, ~ J=9.7 \mathrm{~Hz}$), $128.78(\mathrm{~d}, 1 \mathrm{C}, J=125.6 \mathrm{~Hz}), 128.16(\mathrm{~d}, 2 \mathrm{C}, ~ J=13.1 \mathrm{~Hz}), 127.19(\mathrm{~d}, 1 \mathrm{C}, J=$ $13.3 \mathrm{~Hz}), 124.97(\mathrm{~d}, 1 \mathrm{C}, J=12.8 \mathrm{~Hz}), 60.73(\mathrm{~d}, 1 \mathrm{C}, J=5.8 \mathrm{~Hz}), 42.57(\mathrm{~s}, 3 \mathrm{C}), 39.03(\mathrm{~s}, 1 \mathrm{C})$, 36.46 (s, 3 C), 29.38 (s, 3 C), 16.39 (d, 1 C, J = 6.8 Hz); EIMS m/z 380 (${ }^{+}$, 20), 348 (29), 85 (65), 83 (99), 71 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P} 380.1905$, found 380.1904.

234
\boldsymbol{P}-2-(1-Adamantyl)phenyl-P-phenylphosphinamide (234). A solution of 1.16 g (3.05 mmol) of ethyl phosphinate 251 in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $760 \mu \mathrm{~L}(5.76 \mathrm{mmol})$ of TMS-Br. The mixture was stirred at room temperature for 5 h , treated with 20 mL of MeOH , stirred at room temperature for 30 min , and concentrated in vacuo. A solution of the residue in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated with $530 \mu \mathrm{~L}(6.08 \mathrm{mmol})$ of $(\mathrm{COCl})_{2}$ and 5 drops of DMF, stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , room temperature for 4 h , and concentrated in vacuo. A solution of the residue in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with 10 mL of NH_{3}, slowly warmed to room temperature over 6 h , filtered, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}\left(50: 50, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$ to yield $656 \mathrm{mg}(61 \%)$ of 234 as a colorless solid: $\mathrm{mp} 216-217{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}\right)$; IR (thin film) 2899, 2846, 1564, 1435, 1191, 1115, 890, $749,693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.80$ (dd, $2 \mathrm{H}, J=12.3,7.9 \mathrm{~Hz}$), $7.71(\mathrm{dd}, 1 \mathrm{H}, J=16.8,7.8 \mathrm{~Hz}$), 7.58 (t, 1 H, J = 7.0 Hz), 7.50-7.42 (m, 4 H), $7.15(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.96(\mathrm{bs}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H})$, 2.13 (s, 3 H), $1.90(\mathrm{bd}, 3 \mathrm{H}, J=11.3 \mathrm{~Hz}), 1.74(\mathrm{bd}, 3 \mathrm{H}, J=11.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 157.42(\mathrm{~d}, 1$ $\mathrm{C}, ~ J=9.0 \mathrm{~Hz}), 137.20(\mathrm{~d}, 1 \mathrm{C}, J=134.4 \mathrm{~Hz}), 136.39(\mathrm{~d}, 1 \mathrm{C}, J=13.3 \mathrm{~Hz}), 131.61(\mathrm{~d}, 1 \mathrm{C}, J=$
$2.2 \mathrm{~Hz}), 131.14(\mathrm{~d}, 2 \mathrm{C}, ~ J=9.7 \mathrm{~Hz}), 131.08(\mathrm{~s}, 1 \mathrm{C}), 131.07(\mathrm{~d}, 1 \mathrm{C}, J=117.1 \mathrm{~Hz}), 128.30(\mathrm{~d}, 2$ $\mathrm{C}, ~ J=12.9 \mathrm{~Hz}), 127.12(\mathrm{~d}, 1 \mathrm{C}, J=12.3 \mathrm{~Hz}), 124.85(\mathrm{~d}, 1 \mathrm{C}, J=13.6 \mathrm{~Hz}), 42.71(\mathrm{~s}, 3 \mathrm{C}), 39.06$ (s, 1 C), 36.50 (s, 3 C), 29.46 ($\mathrm{s}, 3 \mathrm{C}$); ESIMS m/z 413 ($[\mathrm{M}+\mathrm{Na}+\mathrm{K}]^{2+}, 27$), 374 ([M+Na] $]^{+}, 100$), 335 (32); HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}]$ 374.1650, found 374.1665.

235
\boldsymbol{P}-2-(1-Adamantyl)phenyl- N-benzylidene- P-phenylphosphinamide (235). According to the General Protocol B, $620 \mathrm{mg}(1.76 \mathrm{mmol})$ of phosphinamide $234,920 \mu \mathrm{~L}(5.28 \mathrm{mmol})$ of ($i-\operatorname{Pr})_{2} \mathrm{NEt}, 270 \mu \mathrm{~L}(2.66 \mathrm{mmol})$ of PhCHO , and $120 \mu \mathrm{~L}(1.09 \mathrm{mmol})$ of TiCl_{4} afforded the crude imine, which was chromatographed on SiO_{2} (80:20, hexanes/EtOAc, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 749 mg (97%) of 235 as a colorless solid: $\mathrm{mp} 172-173{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 2899, 2848, 1617, 1578, 1452, 1206, 1113, 817, 754, $691 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.29(\mathrm{~d}, 1 \mathrm{H}, J=30.9$ $\mathrm{Hz}), 8.42(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,7.9,1.4 \mathrm{~Hz}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.74-7.35(\mathrm{~m}, 10 \mathrm{H}), 7.31-$ $7.25(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{bs}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~d}, 3 \mathrm{H}, J=11.3 \mathrm{~Hz}), 1.73(\mathrm{~d}, 3 \mathrm{H}, J=11.9 \mathrm{~Hz})$; ESIMS m/z $462\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 440\left([\mathrm{M}+\mathrm{H}]^{+}, 72\right.$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{NOP}$ [M+H] 440.2143, found 440.2147.

236

(E)-P-2-(1-Adamantyl)phenyl-P-phenyl- N-(1-phenylhept-2-enyl)phosphinamide

(236). According to the General Protocol A, $117 \mathrm{mg}(0.454 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 60.0 \mu \mathrm{~L}(0.522$ mmol) of 1-hexyne, $230 \mu \mathrm{~L}(0.460 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 100 mg $(0.228 \mathrm{mmol})$ of imine 235 at a reaction temperature of $40^{\circ} \mathrm{C}$ afforded $103 \mathrm{mg}(86 \%)$ of 236 as an (inseparable) 59:41 mixture of diastereomers: mp $138-140{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 2901, 2846, 1433, 1186, 1113, 755, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.87-7.01 (m, 14 H), 5.78-5.45 (m, 2 H), 5.06-4.91 (m, 1 H$), 3.04-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 2.4 \mathrm{H}), 2.29(\mathrm{~s}, 3.6 \mathrm{H}), 2.12-1.67(\mathrm{~m}$,
$11 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.83(\mathrm{~m}, 3 \mathrm{H})$; ESIMS m/z 546 ($[\mathrm{M}+\mathrm{Na}]^{+}, 100$), 335 (15); HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}] 546.2902$, found 546.2914.

252
2-Bromo-4'-methylbiphenyl (252). A solution of $4.88 \mathrm{~g}(28.5 \mathrm{mmol})$ of 4-bromotoluene (254) in 125 mL of THF was cooled to $-78^{\circ} \mathrm{C}$ and treated with $12.0 \mathrm{~mL}(30.0 \mathrm{mmol})$ of n-BuLi (2.5 M solution in hexanes). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , treated with $6.70 \mathrm{~mL}(58.7 \mathrm{mmol})$ of $\mathrm{B}(\mathrm{OMe})_{3}$, slowly warmed to room temperature over 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. According to a literature procedure, ${ }^{245}$ a solution of the residue in 50 mL of DME and 100 mL of $\mathrm{H}_{2} \mathrm{O}$ was treated with 3.50 mL (29.0 mmol) of 1,2-dibromobenzene (255), $11.8 \mathrm{~g}(85.4 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and $1.65 \mathrm{~g}(1.43 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. The mixture was heated at reflux for 12 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}\left(99: 1\right.$, hexanes $\left./ \mathrm{Et}_{2} \mathrm{O}\right)$ to yield $4.86 \mathrm{~g}(69 \%)$ of 252 as a colorless oil: IR (neat) 3053, 3027, 2918, 1464, 1434, 1027, 1005, 818, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.71(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.25-7.20(\mathrm{~m}, 1$ H), $2.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.57,138.23,137.28,133.04,131.27,129.20$ (2 C), 128.64 (2 C), 128.45, 127.27, 122.72, 21.20; EIMS m/z $248\left({ }^{81} \mathrm{Br}-\mathrm{M}^{+}, 92\right), 246\left({ }^{79} \mathrm{Br}^{-} \mathrm{M}^{+}, 100\right), 167$ (42), 165 (83), 152 (35); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{11}{ }^{79} \mathrm{Br} 246.0044$, found 246.0043.

253
Ethyl [2-(4'-methylbiphenyl)]phenylphosphinate (253). According to a literature procedure, a suspension of $410 \mathrm{mg}(16.9 \mathrm{mmol})$ of Mg in 50 mL of THF was treated with 4.20 g (17.0 mmol) of aryl bromide 252. The reaction was initiated with 2 drops of $\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{2}$, and the
mixture was heated at reflux for 3 h , cooled to $0^{\circ} \mathrm{C}$, treated with $1.82 \mathrm{~mL}(11.3 \mathrm{mmol})$ of $\mathrm{ClP}(\mathrm{OEt})_{2}(90 \%$ purity $)$, heated at reflux at 4 h , cooled to room temperature, diluted with 100 mL of dioxane, filtered through Celite, and concentrated in vacuo. Kugelrohr distillation ($120{ }^{\circ} \mathrm{C}, \sim 1$ atm) of the residue afforded a colorless oil that was dissolved in 20 mL of THF, treated with 40 mL of 0.1 M HCl , stirred at $50^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. A suspension of the residue, $76.0 \mathrm{mg}(0.339 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 377 \mathrm{mg}(0.608 \mathrm{mmol})$ of dppf, $2.40 \mathrm{~mL}(17.2 \mathrm{mmol})$ of $(i-\operatorname{Pr})_{2} \mathrm{NEt}$, and $1.52 \mathrm{~mL}(13.6 \mathrm{mmol})$ of iodobenzene in 100 mL of MeCN was stirred at $70{ }^{\circ} \mathrm{C}$ for 16 h . The mixture was cooled to room temperature, diluted with hexanes/EtOAc (1:1), filtered through Celite, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (1:2, hexanes/EtOAc) to yield 2.04 g (54%) of 253 as a yellow oil: IR (thin film) $3463,3053,2980,1466,1436,1223,1134,1119,1033,948,817,763,750,693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.06$ (ddd, $1 \mathrm{H}, J=12.9,7.6,1.3 \mathrm{~Hz}$), 7.54-7.18 (m, 8 H), $6.99(\mathrm{~s}, 4 \mathrm{H}), 4.01-3.84(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.41(\mathrm{~d}, 1 \mathrm{C}, J=11.4 \mathrm{~Hz}), 137.73(\mathrm{~d}$, $1 \mathrm{C}, J=4.3 \mathrm{~Hz}), 136.73(\mathrm{~s}, 1 \mathrm{C}), 132.85(\mathrm{~d}, 1 \mathrm{C}, J=9.0 \mathrm{~Hz}), 132.23(\mathrm{~d}, 1 \mathrm{C}, J=116.3 \mathrm{~Hz})$, 131.57 (d, 2 C, $J=10.3 \mathrm{~Hz}$), 131.57 (d, $1 \mathrm{C}, ~ J=2.8 \mathrm{~Hz}$), 131.33 (d, $1 \mathrm{C}, ~ J=8.1 \mathrm{~Hz}), 131.23$ (s, 1 C), $129.54(\mathrm{~s}, 2 \mathrm{C}), 128.73(\mathrm{~d}, 1 \mathrm{C}, J=137.3 \mathrm{~Hz}), 127.86(\mathrm{~s}, 2 \mathrm{C}), 127.69(\mathrm{~d}, 2 \mathrm{C}, J=13.2 \mathrm{~Hz})$, $126.46(\mathrm{~d}, 1 \mathrm{C}, J=12.4 \mathrm{~Hz}), 60.39(\mathrm{~d}, 1 \mathrm{C}, J=5.6 \mathrm{~Hz}), 21.10(\mathrm{~s}, 1 \mathrm{C}), 16.16(\mathrm{~d}, 1 \mathrm{C}, J=6.8$ $\mathrm{Hz})$; ESIMS m/z $359\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 337\left([\mathrm{M}+\mathrm{H}]^{+}, 13\right) ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Pna}[\mathrm{M}+\mathrm{Na}] 359.1177$, found 359.1168 .

237
\boldsymbol{P}-2-(4’-Methylbiphenyl)-P-phenylphosphinamide (237). A solution of 2.02 g (6.01 mmol) of ethyl phosphinate 253 in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $1.59 \mathrm{~mL}(12.0 \mathrm{mmol})$ of TMS-Br. The mixture was stirred at room temperature for 2 h , treated with 25 mL of MeOH , stirred at room temperature for 1 h , and concentrated in vacuo. A solution of the residue in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$, treated with $1.05 \mathrm{~mL}(12.0 \mathrm{mmol})$ of $(\mathrm{COCl})_{2}$ and 3 drops of DMF, stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , at room temperature for 4 h , and concentrated in vacuo. A solution
of the residue in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$ and treated with 10 mL of NH_{3}, slowly warmed to room temperature over 12 h , filtered, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}\left(95: 5, \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ to yield 1.60 g (87%) of 237 as a colorless solid: $\mathrm{mp} 93-97{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$; IR (thin film) 3420, 3225, 3046, 1591, 1563, 1464, 1437, 1191, 1134, 1119, 899, 819, 763, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.77$ (ddd, $1 \mathrm{H}, J=14.2,7.7,1.2 \mathrm{~Hz}$), 7.63 (ddt, $2 \mathrm{H}, J=12.5,6.9,1.3 \mathrm{~Hz}$), $7.52-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{ddd}, 1 \mathrm{H}, J=7.5$, $4.6,1.1 \mathrm{~Hz}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 2.65(\mathrm{bs}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.76(\mathrm{~d}, 1 \mathrm{C}, J=8.9 \mathrm{~Hz}), 138.10(\mathrm{~d}, 1 \mathrm{C}, J=3.8 \mathrm{~Hz}), 137.60(\mathrm{~s}, 1 \mathrm{C}), 134.05(\mathrm{~d}, 1 \mathrm{C}, J$ $=129.3 \mathrm{~Hz}), 132.65(\mathrm{~d}, 1 \mathrm{C}, J=132.6 \mathrm{~Hz}), 132.52(\mathrm{~d}, 1 \mathrm{C}, J=11.2 \mathrm{~Hz}), 131.77(\mathrm{~d}, 2 \mathrm{C}, J=9.9$ Hz), $131.54(\mathrm{~d}, 1 \mathrm{C}, ~ J=3.0 \mathrm{~Hz}), 131.14(\mathrm{~d}, 1 \mathrm{C}, J=11.5 \mathrm{~Hz}), 131.02(\mathrm{~d}, 1 \mathrm{C}, J=2.4 \mathrm{~Hz})$, 129.41 (s, 2 C), 128.73 ($\mathrm{s}, 2 \mathrm{C}$), 128.08 (d, 2 C, $J=12.9 \mathrm{~Hz}$), 126.72 (d, $1 \mathrm{C}, J=12.8 \mathrm{~Hz}$), 21.18 (s, 1 C); ESIMS m/z $346\left([\mathrm{M}+\mathrm{K}]^{+}, 6\right), 330\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 291$ (12); HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}]$ 330.1024, found 330.1009.

238
N-Benzylidene- P-2-(4'-methylbiphenyl)-P-phenylphosphinamide (238). According to the General Protocol B, $1.01 \mathrm{~g}(3.29 \mathrm{mmol})$ of phosphinamide 237 , $400 \mu \mathrm{~L}(3.94 \mathrm{mmol})$ of $\mathrm{PhCHO}, 1.70 \mathrm{~mL}(9.76 \mathrm{mmol})$ of $(i-\mathrm{Pr})_{2} \mathrm{NEt}$, and $210 \mu \mathrm{~L}(1.91 \mathrm{mmol})$ of TiCl_{4} afforded the crude imine, which was chromatographed on SiO_{2} ($40: 60$, hexanes/EtOAc, containing $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $1.15 \mathrm{~g}(88 \%)$ of $\mathbf{2 3 8}$ as a colorless solid: mp $145-146{ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) $3439,3055,1612,1575,1467,1452,1436,1201,1132,1114,851,828,760,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.73(\mathrm{~d}, 1 \mathrm{H}, J=32.8 \mathrm{~Hz}), 7.81-7.26(\mathrm{~m}, 14 \mathrm{H}), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=7.7$ $\mathrm{Hz}), 2.18(\mathrm{~s}, 3 \mathrm{H})$; ESIMS m$/ \mathrm{z} 813\left([2 \mathrm{M}+\mathrm{Na}]^{+}, 100\right), 418\left([\mathrm{M}+\mathrm{Na}]^{+}, 88\right), 396\left([\mathrm{M}+\mathrm{H}]^{+}, 20\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NOPNa} 418.1337$, found 418.1337.

239

(E)-P-2-(4'-Methylbiphenyl)-P-phenyl- N-(1-phenylhept-2-enyl)phosphinamide

(239). According to the General Protocol B, 98.0 mg (0.380 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 52.0 \mu \mathrm{~L}$ (0.453 mmol) of 1-hexyne, $130 \mu \mathrm{~L}(0.260 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and 100 $\mathrm{mg}(0.253 \mathrm{mmol})$ of imine 238 at a reaction temperature of $45^{\circ} \mathrm{C}$ afforded $105 \mathrm{mg}(87 \%)$ of 239 as an (inseparable) 63:37 mixture of diastereomers: IR (thin film) 3059, 2957, 2927, 2871, 1691, 1453, 1435, 1184, 1110, 817, 762, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.77-7.12(\mathrm{~m}, 15 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H})$, 6.93-6.89 (m, 1 H), 5.38-5.13 (m, 2 H), 4.68-4.60 (m, 1 H$), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 1.2 \mathrm{H})$, $2.32(\mathrm{~s}, 1.8 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.13(\mathrm{~m}, 4 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 3 \mathrm{H})$; ESIMS m/z 518 $\left([\mathrm{M}+\mathrm{K}]^{+}, 11\right), 502\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 291(15) ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NOPNa}[\mathrm{M}+\mathrm{Na}]$ 502.2276, found 502.2299.

257

$N-\left\{\left(R^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-2-Butylcyclopropyl](phenyl)methyl\}-P,P-diphenylphosphin-

amide (257). A suspension of $389 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $200 \mu \mathrm{~L}(1.74 \mathrm{mmol})$ of 1-hexyne. After 5 min , the yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over a period of 5 min , treated with a solution of $155 \mathrm{mg}(0.508 \mathrm{mmol})$ of imine 104 in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heated at reflux for 16 h , quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}\left(1: 3\right.$, hexanes/EtOAc containing $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $119 \mathrm{mg}(58 \%)$ of 257 as a colorless solid and 21 mg (11\%) of 146 as a colorless solid. 257: mp 150-151 ${ }^{\circ} \mathrm{C}(E t O A c / h e x a n e) ; ~ I R ~$ (KBr) 3185, 3059, 2957, 2923, 2856, 1456, 1437, 1183, 1123, 1110, 1086, 1065, 724, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR δ 7.97-7.90 (m, 2 H), 7.80-7.73 (m, 2 H$), 7.53-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 7 \mathrm{H}), 3.80$ $(\mathrm{q}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 3.33(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.36-1.29(\mathrm{~m}, 5 \mathrm{H}), 1.10-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, 3$
$\mathrm{H}, J=7.0 \mathrm{~Hz}), 0.78-0.72(\mathrm{~m}, 1 \mathrm{H}), 0.41(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.8 \mathrm{~Hz}), 0.26(\mathrm{dt}, 1 \mathrm{H}, J=8.3,5.0 \mathrm{~Hz}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 143.37,143.30,134.30,133.15,132.60,132.42,132.29,131.96,131.84,131.71$, $131.67,131.57,131.54,131.43,128.42,128.29,128.23,128.09,127.74,127.62,126.96,126.77$, 58.84, 33.22, 31.69, 26.85, 26.79, 22.52, 18.92, 14.10, 10.61; EIMS m/z 403 ($\mathrm{M}^{+}, 7$), 360 (3), 319 (17), 306 (81), 256 (27), 201 (100), 91 (36), 77 (37); HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NOP}$ 403.2065, found 403.2066.

Preparation of 257 in the presence of Diiodomethane. General Protocol C.
A suspension of $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $190 \mu \mathrm{~L}$ (1.65 mmol) of 1-hexyne. After 5 min , the yellow solution was cooled to $-78^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over a period of 5 min , treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and heated at reflux for 1 h . The mixture was cooled to room temperature, treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, heated at reflux for a further 2 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing 1\% $\mathrm{Et}_{3} \mathrm{~N}$) to yield $149 \mathrm{mg}(74 \%)$ of $\mathbf{2 5 7}$ [$d r=97: 3$ (HPLC)] as a colorless solid.

Preparation of 257 in the presence of Diiodomethane and Benzyl Alcohol.

A suspension of $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $200 \mu \mathrm{~L}$ (1.74 mmol) of 1-hexyne. After 5 min , the yellow solution was cooled to $-78^{\circ} \mathrm{C}$, treated with $1.00 \mathrm{~mL}(2.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over a period of 5 min , treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 and 55.0 mg (0.509 mmol) of $\mathrm{PhCH}_{2} \mathrm{OH}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and heated at reflux for 90 min . The mixture was cooled to room temperature, treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, heated at reflux for a further 3 h , quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $183 \mathrm{mg}(91 \%)$ of 257 as a colorless solid.

258

$N-\left\{\left(R^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-2-Butyl-3,3-bisdeuterocyclopropyl](phenyl)methyl\}-P,P-

diphenylphosphinamide (258). A suspension of $192 \mathrm{mg}(0.745 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 1.2 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne. After 5 min , the yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0$ M solution in toluene), warmed to room temperature over a period of 5 min , treated with a solution of $78.0 \mathrm{mg}(0.255 \mathrm{mmol})$ of imine 104 in 2 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, and heated at reflux for 16 h , cooled to room temperature, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , washed with 1 N HCl and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $35 \mathrm{mg}(34 \%)$ of 258 as a colorless solid: mp 151-152 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3176, 2954, 2922, 2851, 1437, 1185, 1124, 1110, 1083, $1062 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 4$ H), 7.32-7.18 (m, 7 H), $3.76(\mathrm{q}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$), $3.37(\mathrm{dd}, 1 \mathrm{H}, J=8.4,6.0 \mathrm{~Hz}), 1.32-1.20(\mathrm{~m}, 5$ H), 1.06-0.95 (m, 2 H), $0.85(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.79-0.66(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.34,143.28$, $134.20,133.07,132.51,132.38,132.25,131.93,131.80,131.69,131.65,131.55,131.52,131.35$, $128.43,128.26,128.23,128.20,128.06,126.93,126.73,58.76,33.12,31.68,26.62,26.56,22.49$, 18.67, 14.08, 9.94; ${ }^{2} \mathrm{H}$ NMR (77 MHz) $\delta 0.35, ~ 0.20$; EIMS m/z $405\left(\mathrm{M}^{+}, 9\right), 319$ (28), 306 (85), 258 (45), 204 (45), 201 (100), 106 (21), 77 (37); HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{D}_{2}$ NOP 405.2191, found 405.2179.

$N-\left\{\left(R^{*}\right)-\left[\left(1 S^{*}, 2 R^{*}\right)\right.\right.$-2-\{2-[(tert-Butyldiphenylsilyl)oxy]ethyl\}cyclopropyl](phenyl)-

methyl\}-P,P-diphenylphosphinamide (259). According to the General Protocol C, 390 mg (1.51 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 531 \mathrm{mg}(1.72 \mathrm{mmol})$ of alkyne $\mathbf{1 4 8}, 750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), 153 mg (0.501 mmol) of imine 104 (2 h reaction time), and $200 \mu \mathrm{~L}$ (2.48 mmol) of $\mathrm{CH}_{2} \mathrm{I}_{2}(12 \mathrm{~h}$ reaction time) afforded $216 \mathrm{mg}(68 \%)$ of $\mathbf{2 5 9}[d r=98: 2$ (HPLC) $]$ as a colorless oil: IR (neat) $3189,3070,2930,2857,1456,1437,1428,1390,1191,1123,1068$, 1028, 823, 722, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.95-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 10$
H), 7.34-7.26 (m, 7 H), $3.87-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=8.7,5.7 \mathrm{~Hz}), 1.59(\mathrm{dq}, 1 \mathrm{H}, J=$ $13.5,6.8 \mathrm{~Hz}$), $1.39(\mathrm{dq}, 1 \mathrm{H}, J=13.7,6.8 \mathrm{~Hz}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.08-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.87-0.76(\mathrm{~m}, 1$ H), $0.44(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.9 \mathrm{~Hz}), 0.30(\mathrm{dt}, 1 \mathrm{H}, J=8.4,5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.22,143.15$, $135.50,135.47$, $134.11,133.93,133.89,133.05,132.38,132.25,131.88,131.75,131.65,131.62$, $131.52,131.49,131.33,129.45,128.40,128.20,128.04,127.53,127.50,126.94,126.70,63.98$, 58.54, 36.40, 26.83, 26.57, 26.51, 19.07, 15.53, 10.20; EIMS m/z 629 (${ }^{+}, 3$), 573 (100), 398 (28), 319 (17), 306 (92), 256 (17), 218 (18), 201 (94), 183 (20); HRMS (EI) m/z calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{PSi} 629.2879$, found 629.2887 .

260
O-Triisopropylsilyl-4-[(1R*,2R*)-2-\{($\left.R^{*}\right)$-[(diphenylphosphinyl)amino](phenyl)methyl\}cyclopropyl]propanoate (260). According to the General Protocol C, 390 mg (1.51 $\mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 426 \mathrm{mg}(1.65 \mathrm{mmol})$ of alkyne $150,750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $\mathbf{1 0 4}(4 \mathrm{~h}$ reaction time), and $200 \mu \mathrm{~L}(2.48$ mmol) of $\mathrm{CH}_{2} \mathrm{I}_{2}(16 \mathrm{~h}$ reaction time) afforded 205 mg (71%) of 260 as a colorless oil: IR (neat) 3183, 2947, 2866, 1716, 1462, 1437, 1186, 1125, $1111 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.94-7.87$ (m, 2 H), 7.76-7.69 (m, 2 H), 7.52-7.37 (m, 4 H), 7.32-7.19 (m, 7 H), $3.79(\mathrm{q}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.50(\mathrm{dd}, 1$ $\mathrm{H}, J=8.8,6.1 \mathrm{~Hz}), 2.46-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{dq}, 1 \mathrm{H}, J=14.5,7.1 \mathrm{~Hz}), 1.48-1.17(\mathrm{~m}, 5 \mathrm{H}), 1.06$ (d, $18 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 0.87-0.75 (m, 1 H), $0.44(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.9 \mathrm{~Hz}), 0.30(\mathrm{dt}, 1 \mathrm{H}, J=8.4$, $5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 173.61, 143.12, 134.35, 133.19, 132.44, 132.31, 131.91, 131.79, 128.47, $128.29,128.10,127.04,126.73,58.59,35.74,29.12,26.91,18.27,17.75,11.88,10.57$; EIMS $\mathrm{m} / \mathrm{z} 575\left(\mathrm{M}^{+}, 1\right), 532(21), 330(32), 319$ (20), 306 (50), 256 (19), 218 (27), 201 (100), 143 (20), 115 (21), 103 (23), 91 (23); HRMS (EI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PSi} 575.2985$, found 575.2979.

261
O-Ethyl- N-\{2-[(1S*,2R*)-2-\{($\left.R^{*}\right)-[($ diphenylphosphinyl)amino](phenyl)methyl\}-cyclopropyl]ethyl\}- N-[(4-methylphenyl)sulfonyl]carbamate (261). According to the General Protocol C, $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 495 \mathrm{mg}(1.68 \mathrm{mmol})$ of alkyne 152, $750 \mu \mathrm{~L}(1.50$ $\mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), 153 mg (0.501 mmol) of imine $\mathbf{1 0 4}$ (2 h reaction
time), and $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (12 h reaction time) afforded $138 \mathrm{mg}(45 \%)$ of 261 as a colorless oil: IR (neat) $3344,3187,3060,2990,1731,1438,1370,1353,1274,1187,1170,1123$, 1089, 728, 700, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 4 \mathrm{H})$, 7.38-7.25 (m, 9 H), 4.11 (q, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $3.90(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 3.85-3.72 (m, 1 H), 3.51 $(\mathrm{dd}, 1 \mathrm{H}, J=8.5,6.3 \mathrm{~Hz}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{dq}, 1 \mathrm{H}, \mathrm{J}=13.7,6.9 \mathrm{~Hz}), 1.53(\mathrm{dq}, 1 \mathrm{H}, J=13.7$, $7.7 \mathrm{~Hz}), 1.20-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.82-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.47(\mathrm{dt}, 1 \mathrm{H}, J=8.6$, $5.2 \mathrm{~Hz}), 0.39(\mathrm{dt}, 1 \mathrm{H}, J=8.4,5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 152.22,144.31,143.05,142.98,136.75$, $134.18,133.01,132.39,132.27,131.93,131.80,131.63,131.60,131.29,129.21,128.51,128.32$, $128.22,128.15,127.97,127.46,127.09,126.75,63.15,58.61,46.96,34.06,26.53,26.47,21.58$, 16.11, 13.96, 10.39; EIMS m/z 616 ($\mathrm{M}^{+}, 2$), 461 (8), 415 (10), 360 (9), 319 (17), 306 (100), 256 (15), 243 (24), 216 (23), 201 (89), 155 (39), 91 (52), 77 (28); HRMS (EI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS} 616.2161$, found 616.2154 . Approximately 2.5 mg of racemic 261 was separated by HPLC on a Chiracel OD analytical column (solvent system: 7.5% i-PrOH in hexanes; flow rate: $1 \mathrm{~mL} / \mathrm{min}$). Enantiomer $1: \mathrm{R}_{\mathrm{T}} 11.2 \mathrm{~min} ; ~>99 \%$ ee (HPLC chiracel OD analytical column, $7.5 \% i-\mathrm{PrOH}$ in hexanes, $1.0 \mathrm{~mL} / \mathrm{min})$; $\alpha_{\mathrm{D}}-10.9\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.1\right)$. Enantiomer 2: $\mathrm{R}_{\mathrm{T}} 16.8 \mathrm{~min}$; $>99 \%$ ee (HPLC chiracel OD analytical column, 7.5% i-PrOH in hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$); α_{D} $+11.1\left(\mathrm{CHCl}_{3}, \mathrm{c}=0.1\right)$.

262

N-\{1-($\left.R^{*}\right)$-[(1R*,2R*)-2-Butylcyclopropyl]-3-phenylprop-2-ynyl\}-P,P-diphenyl-phos-

phinamide (262). According to the General Protocol C, $395 \mathrm{mg}(1.53 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 195$ $\mu \mathrm{L}(1.70 \mathrm{mmol})$ of 1-hexyne, $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 168 \mathrm{mg}$ (0.510 mmol) of imine 164 (3 h reaction time), and $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (4 h reaction time) afforded 131 mg (60%) of 262 as a colorless oil: IR (neat) $3166,3058,2955,2924,2855$, $1490,1438,1189,1124,1110,1070,755,723,692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 MHz) $\delta 8.04-8.00(\mathrm{~m}, 2$ H), 7.91-7.87 (m, 2 H), 7.52-7.41 (m, 6 H), 7.34-7.28 (m, 5 H$), 4.24(\mathrm{td}, 1 \mathrm{H}, J=9.4,5.6 \mathrm{~Hz}$), $3.30(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 1.33-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.11(\mathrm{dq}, 1 \mathrm{H}, J=9.9,5.0 \mathrm{~Hz}), 0.90-0.84(\mathrm{~m}, 1 \mathrm{H})$, $0.85(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.69(\mathrm{dt}, 1 \mathrm{H}, J=9.0,4.6 \mathrm{~Hz}), 0.31(\mathrm{dt}, 1 \mathrm{H}, J=8.2,4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}) \delta 133.38,132.77,132.71,132.54,132.38,131.91,131.78,131.72,131.65,131.50$,
128.52, 128.44, 128.19, 122.78, 87.91, 87.86, 83.84, 46.40, 32.94, 31.64, 24.97, 22.48, 17.58, 14.08, 8.79; EIMS m/z 427 ($\mathrm{M}^{+}, 2$), 370 (9), 330 (16), 201 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NOP} 427.2065$, found 427.2063.

Conversion of 262 to 264. A solution of $50.0 \mathrm{mg}(0.117 \mathrm{mmol})$ of cyclopropane 262 in 5 mL of EtOH was treated with 8.0 mg of $10 \% \mathrm{Pd}$ on activated charcoal, stirred under an H_{2} atmosphere (1 atm) for 16 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through Celite and concentrated in vacuo. A solution of the residue in 5 mL of a 1 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH was stirred at room temperature for 4 h , basified with $5 \% \mathrm{NaOH}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, dissolved in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and treated with $65.0 \mathrm{mg}(0.341 \mathrm{mmol})$ of $\mathrm{TsCl}, 10.0 \mathrm{mg}(0.0819 \mathrm{mmol})$ of DMAP, and $60.0 \mu \mathrm{~L}(0.619 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was stirred at room temperature for 16 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(9: 1$, hexanes/EtOAc) to yield 31 mg (68%) of 264 as a colorless oil.

263

$N-\left\{\left(R^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-2-Butylcyclopropyl]phenylmethyl\}-S-(4-methylphenyl)sulfon-

amide (263). According to the General Protocol C, $193 \mathrm{mg}(0.748 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 95.0 \mu \mathrm{~L}$ (0.827 mmol) of 1-hexyne, $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), 64.0 mg $(0.247 \mathrm{mmol})$ of imine $90\left(1 \mathrm{~h}\right.$ reaction time), and $100 \mu \mathrm{~L}(1.24 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ (12 h reaction time) afforded $58 \mathrm{mg}(66 \%)$ of $\mathbf{2 6 3}$ [dr $=96: 4\left({ }^{1} \mathrm{H}\right.$ NMR)] as a colorless oil: IR (neat) 3277, 2956, 2925, 2856, 1455, 1435, 1326, 1161, 1095, 1056, 1022, 813, 700, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.58-7.54 (m, 2 H), 7.17-7.08 (m, 7 H), $5.23(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.71(\mathrm{dd}, 1 \mathrm{H}, J=8.6,6.3 \mathrm{~Hz})$, 2.35 (s, 3 H), 1.25-1.13 (m, 5 H), 1.07-0.97 (m, 1 H), 0.88-0.77 (m, 1 H$), 0.86$ (t, $3 \mathrm{H}, \mathrm{J}=7.1$ $\mathrm{Hz}), 0.57-0.46(\mathrm{~m}, 1 \mathrm{H}), 0.39(\mathrm{dt}, 1 \mathrm{H}, J=8.6,4.8 \mathrm{~Hz}), 0.23(\mathrm{dt}, 1 \mathrm{H}, J=8.4,5.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta 142.87,140.62,137.76,129.22,128.16,127.16,127.02,126.73,62.07,33.05,31.52,25.36$, 22.42, 21.39, 18.53, 14.02, 10.95; CIMS m/z 358 ($[\mathrm{M}+\mathrm{H}]^{+}, 37$), 273 (15), 260 (50), 187 (100), 173 (39), 117 (37), 105 (24), 91 (39); HRMS (CI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}] 358.1841$, found 358.1856 .

Conversion of 257 to 263. A solution of $88.0 \mathrm{mg}(0.218 \mathrm{mmol})$ of cyclopropane 257 in 5 mL of a 1 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH (prepared by treating 4.5 mL of MeOH with 0.5 mL
of AcCl at $0^{\circ} \mathrm{C}$ and stirring at room temperature for 30 min) was stirred at room temperature for 4 h , basified with $5 \% \mathrm{NaOH}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and treated with 166 mg $(0.871 \mathrm{mmol})$ of $\mathrm{TsCl}, 10.0 \mathrm{mg}(0.0819 \mathrm{mmol})$ of DMAP, and $130 \mu \mathrm{~L}(1.34 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$. The mixture was stirred at room temperature for 16 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (4:1, hexanes/EtOAc) to yield $56 \mathrm{mg}(72 \%)$ of $\mathbf{2 6 3}$ as a colorless oil.

264

N-\{1-($\left.S^{*}\right)$-[(1R*,2R*)-2-Butylcyclopropyl]-3-phenylpropyl\}-S-(4-methylphenyl)-

sulfonamide (264). According to the General Protocol C, $392 \mathrm{mg}(1.52 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, $190 \mu \mathrm{~L}(1.65 \mathrm{mmol})$ of 1-hexyne, $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $)$, 144 mg (0.501 mmol) of imine 166 (1.5 h reaction time), and $400 \mu \mathrm{~L}(4.96 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}(17 \mathrm{~h}$ reaction time) afforded $130 \mathrm{mg}(67 \%)$ of $\mathbf{2 6 4}\left[d r=87: 13\left({ }^{1} \mathrm{H}\right.\right.$ NMR) $]$ as a colorless oil: IR (neat) 3278, 2954, 2925, 2857, 1454, 1325, 1160, 1095, 814, 700, $665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.76-7.74 (m, 2 H), 7.28-7.15 (m, 5H), 7.09-7.06 (m, 2 H), $4.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}$), 2.66-2.60 (m, 3 H$), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.01(\mathrm{~m}, 5 \mathrm{H}), 0.94-0.78(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.55-$ 0.46 (m, 1 H$), 0.30-0.16(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.04,141.65,138.38,129.53,128.26$ (2 C), $127.00,125.73,58.25,37.55,33.18,31.56,31.50,23.64,22.41,21.43,17.41,14.03,11.29$; CIMS m/z 386 ([M+H] ${ }^{+}$, 76), 288 (61), 280 (32), 215 (74), 172 (81), 131 (67), 119 (48), 117 (100), 105 (36), 91 (82); HRMS (CI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 386.2154, found 386.2161 .

265
N-[(2-Butylcyclopropyl)cyclohexylmethyl]-S-(4-methylphenyl)sulfonamide (265). A suspension of $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $100 \mu \mathrm{~L}(0.870 \mathrm{mmol})$ of 1-hexyne. After 10 min , the yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature and cannulated into a solution of $66.0 \mathrm{mg}(0.249 \mathrm{mmol})$ of imine

170 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was heated at reflux for 2 h , cooled to $0{ }^{\circ} \mathrm{C}$, treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ and $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), heated at reflux for 12 h , cooled to room temperature, quenched with saturated NaHCO_{3}, diltued with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was purified on SiO_{2} (80:20, hexanes/EtOAc) to yield 66 mg of a $85: 15$ mixture of 265 (major isomer: 37%, minor isomer: 25\%) to 171 (11\%). 265 (major isomer, colorless oil): IR (neat) 3281, 2924, 2843, 1445, 1327, 1161, 1088, $1015 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.73$ (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$), $7.25(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.88(\mathrm{~d}, 1$ $\mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.23-0.92(\mathrm{~m}, 11 \mathrm{H}), 0.82$ (t, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}$), 0.51-0.40 (m, 2 H), $-0.08(\mathrm{dt}, 1 \mathrm{H}, J=7.7,5.2 \mathrm{~Hz}$), $-0.16(\mathrm{dt}, 1 \mathrm{H}, J=8.4$, $4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.79,138.77,129.32,127.01,63.54,43.39,33.29,31.34,28.93,28.70$, 26.42, 26.37, 26.22, 22.44, 21.45, 21.20, 18.77, 13.99, 10.27; CIMS m/z 364 ([M+H] ${ }^{+}, 22$), 266 (100), 193 (27); HRMS (CI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 364.2310, found 364.2321.

266

$N-\left\{\left(R^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-1,2-Diethylcyclopropyl](phenyl)methyl\}-P,P-diphenylphosphin-

amide (266). According to the General Protocol C, $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 190 \mu \mathrm{~L}$ $(1.67 \mathrm{mmol})$ of 3-hexyne, $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), 153 mg (0.501 mmol) of imine $\mathbf{1 0 4}$ (3 h reaction time), and $200 \mu \mathrm{~L}(2.48 \mathrm{mmol}) \mathrm{CH}_{2} \mathrm{I}_{2}$ (12 h reaction time) afforded 93 mg (46%) of 266 [$d r=96: 4$ (HPLC)] as a colorless solid: $\mathrm{mp} 136-137{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3188, 3058, 2961, 2930, 2870, 1453, 1426, 1185, 1123, 1109, 1094, 1063, 752, 720, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.91-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 4 \mathrm{H})$, 7.34-7.21 (m, 5 H), 7.19-7.16 (m, 2 H$), 4.24(\mathrm{t}, 1 \mathrm{H}, J=10.7 \mathrm{~Hz}), 3.23(\mathrm{dd}, 1 \mathrm{H}, J=10.0,7.0$ $\mathrm{Hz}), 1.69(\mathrm{dq}, 1 \mathrm{H}, J=14.8,7.4 \mathrm{~Hz}), 1.50(\mathrm{dq}, 1 \mathrm{H}, J=13.9,6.9 \mathrm{~Hz}), 1.31-1.16(\mathrm{~m}, 2 \mathrm{H}), 0.97-$ $0.84(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.66(\mathrm{tt}, 1 \mathrm{H}, J=8.5,6.1 \mathrm{~Hz}),-$ 0.03 (dd, $1 \mathrm{H}, J=5.5,4.8 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 142.31,142.25,134.18,132.79,132.60,132.47$, $131.92,131.79,131.72,131.69,131.57,131.53,131.06,128.47,128.31,128.15,127.99,127.20$, $126.81,58.08,30.69,30.62,23.69,22.92,21.95,14.36,14.07,11.57$; EIMS m/z $403\left(\mathrm{M}^{+}, 7\right), 306$
(46), 284 (59), 218 (45), 201 (100), 157 (17), 146 (15), 129 (19), 91 (10), 77 (16); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NOP} 403.2065$, found 403.2075.

N-($\left.R^{*}\right)$-\{[(1R*,2R*,3R*)-2-Butyl-3-methylcyclopropyl]phenylmethyl\}-P,P-diphenyl-

phosphinamide (267). A suspension of $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of THF was treated at room temperature with $100 \mu \mathrm{~L}(0.870 \mathrm{mmol})$ of 1-hexyne, stirred for 10 min and concentrated in vacuo. A solution of the resulting yellow solid in 2 mL of $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $380 \mu \mathrm{~L}(0.760 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature and cannulated into a suspension of $76.0 \mathrm{mg}(0.249 \mathrm{mmol})$ of imine $\mathbf{1 0 4}$ in 1 mL of $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$. The mixture was stirred for 2 h at $40^{\circ} \mathrm{C}$, cooled to $-78^{\circ} \mathrm{C}$, treated with $680 \mu \mathrm{~L}$ $(0.748 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}\left(1.1 \mathrm{M}\right.$ solution in toluene) and $130 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{CHI}_{2}$, stirred for 16 h at $40{ }^{\circ} \mathrm{C}$, cooled to room temperature, treated with a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $680 \mu \mathrm{~L}$ (0.748 mmol) of $\mathrm{Et}_{2} \mathrm{Zn}\left(1.1 \mathrm{M}\right.$ solution in toluene), $130 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{CHI}_{2}$, and 80.0 $\mu \mathrm{L}(0.770 \mathrm{mmol})$ of DME in 1 mL of $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$, and stirred for 24 h at $40^{\circ} \mathrm{C}$, quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 20 mg (21%) of 146 and $54 \mathrm{mg}(52 \%)$ of 267 as colorless solids. 267: mp $152-153{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (KBr) 3200, 2955, 2923, 2861, 1435, 1185, 1123, 1107, 1067, 749, 726, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.92-7.85 (m, 2 H), 7.77-7.70 (m, 2 H), 7.49-7.40 (m, 4 H), 7.38-7.22 (m, 9 H$), 3.76$ (q, $1 \mathrm{H}, \mathrm{J}=$ $8.9 \mathrm{~Hz}), 3.25(\mathrm{bt}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.31-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 6 \mathrm{H}), 0.70-0.67(\mathrm{~m}, 2 \mathrm{H})$, $0.61(\mathrm{dt}, 1 \mathrm{H}, J=8.0,4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.76,143.70,133.18,132.58,132.45,132.33$, $132.03,131.90,131.73,131.69,131.60,131.57,128.47$, 128.30, 128.23, 128.12, 126.87, 126.74, $58.92,34.06,33.99,32.32,27.49,23.13,22.73,15.95,14.17,12.33$; EIMS m/z $417\left(\mathrm{M}^{+}, 2\right), 306$ (100), 201 (56), 106 (19); HRMS (EI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NOP} 417.2222$, found 417.2237.

268
N-\{($\left.R^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.$-2-Butylcyclopropyl](phenyl)methyl\}benzamide (268). A solution of $91.0 \mathrm{mg}(0.226 \mathrm{mmol})$ of 257 in 5 mL of a 1 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH was stirred at room temperature for 3 h , basified with $5 \% \mathrm{NaOH}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and treated with $205 \mathrm{mg}(0.906 \mathrm{mmol})$ of $(\mathrm{PhCO})_{2} \mathrm{O}, 10.0 \mathrm{mg}(0.0819 \mathrm{mmol})$ of DMAP, and $240 \mu \mathrm{~L}(1.38 \mathrm{mmol})$ of $(i-\operatorname{Pr})_{2} \mathrm{NEt}$. The mixture was stirred at room temperature for 1 h , poured into EtOAc, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on SiO_{2} ($80: 20$, hexanes/EtOAc) to yield 69 mg (99%) of 268 as a colorless solid: mp $115-116{ }^{\circ} \mathrm{C}$ (hexane); IR (KBr) 3354, 2955, 2921, 2954, 1632, 1524, 1490, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $7.85-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.28(\mathrm{~m}, 8 \mathrm{H}), 6.54(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 4.72(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 1.44-$ $1.32(\mathrm{~m}, 5 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.65(\mathrm{dt}, 1 \mathrm{H}, J=$ $8.2,4.9 \mathrm{~Hz}), 0.49(\mathrm{dt}, 1 \mathrm{H}, J=8.0,5.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 166.60,141.99,134.67,131.41,128.54$, 128.47, 127.24, 126.88, 126.67, 57.15, 33.42, 31.86, 24.31, 22.42, 17.87, 14.05, 11.38; EIMS m/z 307 ($\mathrm{M}^{+}, 19$), 292 (4), 264 (6) 250 (14), 236 (16), 222 (31), 210 (40), 160 (15), 152 (22), 105 (100), 77 (53); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO} 307.1936$, found 307.1935.

syn-271

anti-271

1-($\left.R^{*}\right)$-[(1R*,2R*)-2-Butylcyclopropyl]-3-phenylpropan-1-ol (syn-271) and 1-(S*)-
 mmol) of 1-phenylnon-4-en-3-ol (270) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $530 \mu \mathrm{~L}(6.58 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, cooled to $0{ }^{\circ} \mathrm{C}$, treated with $3.40 \mathrm{~mL}(3.40 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}$ (1.0 M solution in hexanes), stirred at room temperature for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (4:1, hexanes/EtOAc) to yield $47 \mathrm{mg}(12 \%)$ of anti-271 and 300 mg (78\%) of syn-271 as colorless oils. anti-271: IR (neat) 3394, 3062, 3026, 2992, $2855,1716,1602,1496,1454,1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.47-7.30(\mathrm{~m}, 5 \mathrm{H}), 3.10(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.8$
$\mathrm{Hz}), 3.02-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.58-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.05(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ $7.0 \mathrm{~Hz}), 0.88-0.76(\mathrm{~m}, 2 \mathrm{H}), 0.54-0.44(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.28,128.36,128.30,125.68$, $75.57,38.54,33.37,32.03,31.92,25.57,22.50,16.81,14.07,9.92$; EIMS m/z $232\left(\mathrm{M}^{+}, 7\right), 215$ (7), 148 (15), 130 (51), 109 (28), 105 (29), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}$ 232.1827, found 232.1824. syn-271: IR (neat) $33913026,2919,2855,1496,1454,1031 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR δ 7.47-7.31 (m, 5 H$), 3.10-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 1 \mathrm{H}), 1.53-1.35$ $(\mathrm{m}, 6 \mathrm{H}), 1.05(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.88-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.69(\mathrm{~m}, 1 \mathrm{H}), 0.58(\mathrm{dt}, 1 \mathrm{H}, J=8.8$, $4.4 \mathrm{~Hz}), 0.45(\mathrm{dt}, 1 \mathrm{H}, J=8.0,4.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.27,128.36,128.33,125.71,75.67,38.75$, 33.32, 32.01, 31.66, 25.76, 2250, 17.01, 14.05, 9.97; EIMS m/z 232 ($\left.{ }^{+}, 2\right), 214$ (6), 130 (25), 109 (20), 109 (20), 91 (86); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}$ 232.1827, found 232.1827.

3-($\left.S^{*}\right)$-Azido-3-[(1R*,2R*)-2-butylcyclopropyl]propylbenzene (anti-272) and 3-(S*)-Azido-3-[(1R*,2R*)-2-butylcyclopropyl]propylbenzene (syn-272). According to a literature procedure, a solution of $68.0 \mathrm{mg}(0.293 \mathrm{mmol})$ of syn- 271 in 3 mL of THF was treated with 55.0 $\mu \mathrm{L}(0.349 \mathrm{mmol})$ of DEAD, $76.0 \mu \mathrm{~L}(0.352 \mathrm{mmol})$ of diphenylphosphoryl azide and 92.0 mg (0.351 mmol) of PPh_{3}, stirred at room temperature for 16 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (9:1, hexanes/EtOAc) to yield 64 mg (85%) of 272 as an (inseparable) 78:22 (anti: syn) mixture of diastereomers: IR (neat) 3027, 2998, 2922, 2856, 2097, 1496, 1454, 1248, $1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.34-7.28 (m, 2 H$), ~ 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 2.86-2.63(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.19(\mathrm{~m}, 6$ H), $0.93(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}), 0.87-0.73(\mathrm{~m}, 1.78 \mathrm{H}), 0.64-0.54(\mathrm{~m}, 0.44 \mathrm{H}), 0.54-0.43(\mathrm{~m}, 0.22$ H), 0.41-0.32 (m, 1.56 H); ${ }^{13} \mathrm{C}$ NMR (major isomer) $\delta 141.39$, 128.39, 128.33, 125.91, 66.54, 36.42 , 33.36, 32.28, 31.30, 22.70, 22.46, 17.80, 13.99, 10.04; EIMS m/z $230\left(\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}, 56\right)$, 215 (100), 186 (23), 172 (50), 158 (47), 144 (48), 131 (42), 117 (86), 106 (38); HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}\left[\mathrm{M}-\mathrm{N}_{2}\right]$ 229.1831, found 229.1834.

According to a literature procedure, a solution of $76.0 \mathrm{mg}(0.327 \mathrm{mmol})$ of anti- 271 in 3 mL of THF was treated with $62.0 \mu \mathrm{~L}(0.394 \mathrm{mmol})$ of $\mathrm{DEAD}, 85.0 \mu \mathrm{~L}(0.422 \mathrm{mmol})$ of diphenylphosphoryl azide and $103 \mathrm{mg}(0.393 \mathrm{mmol})$ of PPh_{3}, stirred at room temperature for 16 h, diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of SiO_{2}, and concentrated in vacuo. The residue was
chromatographed on SiO_{2} (50:1, hexanes/EtOAc) to yield 49 mg (58\%) of 272 as an (inseparable) 15:85 (anti:syn) mixture of diastereomers.

Conversion of anti-272 into 264. A solution of $77.0 \mathrm{mg}(0.299 \mathrm{mmol})$ of a $78: 22$ (anti: syn) mixture of 272 in 2 mL of THF was treated with 12.0 mg of $10 \% \mathrm{Pd}$ on activated charcoal, stirred under an H_{2} atmosphere (1 atm) for 12 h , filtered through Celite, and concentrated in vacuo. A solution of the residue in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $228 \mathrm{mg}(1.20 \mathrm{mmol})$ of $\mathrm{TsCl} 10.0 \mathrm{mg}(0.0819 \mathrm{mmol})$ of DMAP, and $170 \mu \mathrm{~L}(1.75 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, stirred at room temperature for 16 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(4: 1$, hexanes/ EtOAc) to yield $76 \mathrm{mg}(66 \%)$ of 264 as a colorless oil.

syn-257
Preparation of 257 by Simmons-Smith Cyclopropanation of Allylic Amide 146. N-$\left\{\left(S^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-2-Butylcyclopropyl](phenyl)methyl\}-P,P-diphenylphosphinamide (syn257). A solution of $1.50 \mathrm{~mL}(1.50 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ solution in hexanes) in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $250 \mu \mathrm{~L}(310 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ and a solution of 289 $\mathrm{mg}(0.742 \mathrm{mmol})$ of phosphinamide 146 in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirred at room temperature for 16 h, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}(1: 4$, hexanes/EtOAc, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 242 mg (81%) of 257 as a 71:29 (anti:syn) mixture of diastereoisomers. syn257 (colorless solid): mp 142-143 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (thin film) 3179, 2959, 2918, 2850, 1437, 1183, 1124, 725, $696 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.39$ (m, 4 H), 7.34-7.22 (m, 7 H), $3.65(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}$), $3.31(\mathrm{bs}, 1 \mathrm{H}), 1.10-0.97(\mathrm{~m}, 6 \mathrm{H}), 0.96-$ $0.88(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.60-0.53(\mathrm{~m}, 2 \mathrm{H}), 0.32-0.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $132.42,132.29,132.10,131.98,131.71,131.56,128.44,128.28,128.13,127.01,126.69,59.67$, 33.15, 31.38, 27.16, 22.18, 18.14, 13.87, 12.64; ESIMS m/z $426\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right), 404\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 45); HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30}$ NOPNa 426.1963, found 426.1947.

Preparation of 263 by Simmons-Smith Cyclopropanation of Allylic Amide 91. N-$\left\{\left(S^{*}\right)-\left[\left(1 R^{*}, 2 R^{*}\right)\right.\right.$-2-Butylcyclopropyl]phenylmethyl\}-S-(4-methylphenyl)sulfonamide (syn263). A solution of $1.50 \mathrm{~mL}(1.50 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ solution in hexanes) in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with $250 \mu \mathrm{~L}(310 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ and a solution of 238 $\mathrm{mg}(0.693 \mathrm{mmol})$ of sulfonamide 91 in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirred at room temperature for 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (4:1, hexanes/ EtOAc) to yield 231 mg (93\%) of 263 as a 81:19 (anti:syn) mixture of diastereoisomers. syn-263: IR (thin film) 3277, 2957, 2920, 2852, 1432, 1324, 1160, 1050, 812, 699, $666 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.56-7.51$ (m, 2 H), 7.177.07 (m, 7 H), $5.06(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.66(\mathrm{dd}, 1 \mathrm{H}, J=8.8,5.7 \mathrm{~Hz}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.13-0.97$ $(\mathrm{m}, 6 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 1 \mathrm{H}), 0.70(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.63-0.60(\mathrm{~m}, 1 \mathrm{H}), 0.35(\mathrm{dt}, 1 \mathrm{H}, J=8.6$, $4.9 \mathrm{~Hz}), 0.26(\mathrm{dt}, 1 \mathrm{H}, J=8.0,5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.91,140.73,137.66,129.20,128.17$, $127.21,127.11,126.67,62.33,32.95,31.24,25.74,22.12,21.44,18.01,13.92,11.65$; EIMS m/z 357 ($\mathrm{M}^{+}, 1$), 273 (53), 260 (38), 160 (49), 155 (46), 129 (22), 118 (63), 104 (37), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S} 357.1763$, found 357.1751.

33

Attempted preparation of (2-butylcyclopropyl)phenylmethanol. (E)-1-Phenylhept-2-

en-1-ol (33). A suspension of $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $190 \mu \mathrm{~L}(1.65 \mathrm{mmol})$ of 1-hexyne. After 5 min , the yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over a period of 5 min , treated with $50.0 \mu \mathrm{~L}(0.492 \mathrm{mmol})$ of PhCHO , heated at reflux for 48 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on $\mathrm{SiO}_{2}(4: 1$, hexanes/EtOAc) to yield $84 \mathrm{mg}(90 \%)$ of 33 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}), 5.77(\mathrm{dt}, 1 \mathrm{H}, J=15.4,6.4$
$\mathrm{Hz}), 5.65(\mathrm{dd}, 1 \mathrm{H}, J=15.4,6.4 \mathrm{~Hz}), 5.14(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.43-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

Attempted preparation of 266 using a B-Zn transmetalation. A solution of $190 \mu \mathrm{~L}$ (1.67 mmol) of 3-hexyne in 2.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $500 \mu \mathrm{~L}$ $(0.500 \mathrm{mmol})$ of borane (1.0 M solution in THF). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature, treated with a solution of $152 \mathrm{mg}(0.498 \mathrm{mmol})$ of imine 104 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heated at reflux for 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/ EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $96 \mathrm{mg}(50 \%)$ of 147.

276
Attempted preparation of 278 using an Al-Zn transmetalation. (E)-N-(3-Methyl-1-phenylhept-2-enyl)-P,P-diphenylphosphinamide (276). A suspension of 15.0 mg (0.0513 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $208 \mathrm{mg}(2.89 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{Al}$, $27.0 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{O}$, and $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min , cooled to $-78^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$, warmed to room temperature, treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heated at reflux for 12 h , cooled to room temperature, quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $2 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/EtOAc, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $109 \mathrm{mg}(54 \%)$ of 276 as a colorless oil: IR (thin film) 3057, 2957, 2927, 1669, 1437, 1185, 1126, 753, 724, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.98-7.91 (m, 2 H), 7.88-7.81 (m, 2 H), 7.50-7.17 (m, 11 H), 5.34 (dd, $1 \mathrm{H}, J=9.3,1.2$ $\mathrm{Hz}), 5.05(\mathrm{q}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.25(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.91(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.37(\mathrm{~d}, 3 \mathrm{H}, J$ $=1.3 \mathrm{~Hz}), 1.35-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.72,143.65,137.41$, $133.81,133.65,132.55,132.42,132.11,131.92,131.79,131.58,128.43,128.30,128.22,128.13$, $126.94,126.74,126.21,126.15,52.81,39.12,30.47,29.74,22.40,16.22,13.94$; EIMS m/z 403
$\left(\mathrm{M}^{+}, 1\right), 346$ (1), 306 (2), 216 (82), 201 (35), 199 (66), 140 (46), 124 (58), 105 (46), 77 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{30}$ NOP 403.2065, found 403.2067.

Preparation of 276 using the General Protocol A. A suspension of $15.0 \mathrm{mg}(0.0513$ mmol) of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 5 mL of toluene was treated at $0^{\circ} \mathrm{C}$ with $210 \mathrm{mg}(2.91 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{Al}$, $27.0 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{O}$, and $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min , treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$, warmed to room temperature, cannulated into a suspension of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of toluene, stirred at room temperature for 6 h , quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/ EtOAc, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $147 \mathrm{mg}(73 \%)$ of 276 as a colorless oil.

278

N-\{($\left.S^{*}\right)$-[(1R*,2R*)-2-Butyl-2-methyl-cyclopropyl](phenyl)methyl\}-P,P-diphenyl-

phosphinamide (278). A suspension of $15.0 \mathrm{mg}(0.0513 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at $0{ }^{\circ} \mathrm{C}$ with $208 \mathrm{mg}(2.89 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{Al}, 27.0 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{O}$, and 175 $\mu \mathrm{L}(1.52 \mathrm{mmol})$ of 1-hexyne. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$, warmed to room temperature, treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, heated at reflux for 4 h , cooled to room temperature, treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, heated at reflux for 12 h , cooled to room temperature, quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}(1: 4$, hexanes/EtOAc, containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 59 mg (28%) of 278 as an 88:12 (syn:anti) mixture of diastereomers, and 94 $\mathrm{mg}(46 \%)$ of 276 as a colorless oil. 278 (colorless solid): mp 116-118 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexanes); IR (KBr) 3189, 3059, 2953, 2923, 2871, 1435, 1186, 1124, 1107, 1065, 931, 749, 723, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.93-7.86 (m, 2 H), 7.77-7.69 (m, 2 H), 7.47-7.34 (m, 5 H), 7.31-7.14 (m, 6 H), 3.81 (q, $1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 3.35(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.25-0.95(\mathrm{~m}, 7 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{t}, 3 \mathrm{H}, J=6.8$ Hz), $0.47(\mathrm{dd}, 1 \mathrm{H}, J=8.4,4.8 \mathrm{~Hz}), 0.31(\mathrm{t}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR} \delta 144.57,144.50$, $134.35,133.38,132.65,132.24,132.13,132.02,131.56,131.44,128.26,128.13,128.04,126.86$,
126.70, 56.76, 40.63, 32.10, 28.39, 22.61, 21.79, 19.68, 17.81, 13.94; EIMS m/z $417\left(\mathrm{M}^{+}, 6\right), 374$ (7), 319 (31), 306 (64), 218 (45), 201 (100), 129 (31), 106 (34), 91 (44), 77 (65); HRMS (EI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NOP} 417.2222$, found 417.2222.

Preparation of 278 using a modified General Protocol C (no Al-Zn transmetalation). A suspension of $15.0 \mathrm{mg}(0.0513 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 5 mL of toluene was treated at $0{ }^{\circ} \mathrm{C}$ with $210 \mathrm{mg}(2.91 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{Al}, 27.0 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{H}_{2} \mathrm{O}$, and $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of $1-$ hexyne. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , warmed to room temperature, cannulated into a suspension of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of toluene, stirred at room temperature for 7 h , and treated with $320 \mu \mathrm{~L}(4.05 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, stirred at room temperature for 12 h , quenched with saturated NaHCO_{3}, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}\left(1: 4\right.$, hexanes/EtOAc, containing $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield 99 mg (47%) of 278 as an 90:10 (syn:anti) mixture of diastereomers, and 64 mg (32%) of 276 as a colorless oil.

Preparation of 278 by Simmons-Smith Cyclopropanation of Allylic Amide 276. A solution of $147 \mathrm{mg}(0.364 \mathrm{mmol})$ of phosphinamide 276 in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$ and treated with $180 \mu \mathrm{~L}(2.23 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ and $1.00 \mathrm{~mL}(1.10 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{Zn}(1.1 \mathrm{M}$ solution in toluene), stirred at room temperature for 16 h , quenched with saturated NaHCO_{3}, diluted with EtOAc , filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through Florisil, and concentrated in vacuo. The residue was chromatographed on SiO_{2} (3:7, hexanes/EtOAc) to yield $86 \mathrm{mg}(57 \%)$ of 278 as a colorless solid, and $21 \mathrm{mg}(14 \%)$ of phosphinamide 276 was recovered.

N-[(1S*,2R*)-2-Butyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide
(syn-279)
and $\quad N-\left[\left(1 S^{*}, 2 S^{*}\right)\right.$-2-butyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (anti-279).
General Protocol D. A suspension of $195 \mathrm{mg}(0.756 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $95.0 \mu \mathrm{~L}(0.827 \mathrm{mmol})$ of 1-hexyne. After 5 min , the yellow solution was cooled to $-78^{\circ} \mathrm{C}$, treated with $560 \mu \mathrm{~L}(1.12 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), and warmed to room temperature over a period of 5 min . The mixture was
treated with $60.0 \mu \mathrm{~L}(0.745 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, stirred for 2 min , treated with a solution of 76.0 mg (0.249 mmol) of imine 104 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirred at room temperature for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $71 \mathrm{mg}(71 \%)$ of 279 as an $85: 15$ mixture of diastereomers. syn-279 (colorless solid): mp 158-159 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3221, 3059, 2951, 2914, 2858, 1436, 1185, 1123, 1108, 1068, 919, 723, 702, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.90-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.65(\mathrm{~m}, 2 \mathrm{H})$, 7.54-7.38 (m, 4 H), 7.32-7.24 (m, 5 H), 7.07-7.04 (m, 2 H), 5.43 (dt, $1 \mathrm{H}, \mathrm{J}=17.2,9.7 \mathrm{~Hz}$), 5.25 (dd, $1 \mathrm{H}, J=17.5,2.2 \mathrm{~Hz}$), $5.21(\mathrm{dd}, 1 \mathrm{H}, J=9.8,2.4 \mathrm{~Hz}$), $4.23(\mathrm{td}, 1 \mathrm{H}, J=11.2,4.6 \mathrm{~Hz}$), 3.75 $(\mathrm{dd}, 1 \mathrm{H}, J=10.8,6.5 \mathrm{~Hz}), 2.59(\mathrm{tt}, 1 \mathrm{H}, J=10.0,4.2 \mathrm{~Hz}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.13(\mathrm{~m}, 4$ H), 1.02-0.86 (m, 1 H$), 0.83(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta 140.89,140.82,137.80,134.13$, $132.68,132.61,132.55,132.45,131.76,131.72,131.66,131.57,131.53,130.86,128.51,128.35$, $128.16,128.00,127.71,127.61,126.85,119.07,57.72,52.11,52.07,31.65,29.57,22.53,13.98 ;$ EIMS m/z 403 ($\mathrm{M}^{+}, 1$), 306 (100), 201 (98), 77 (22); HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{30}$ NOP 403.2065, found 403.2068. anti-279 (colorless solid): mp $160-161^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{hexane})$; IR (KBr) 3181, 2953, 2928, 2852, 1435, 1180, 1126, 1109, 915, 745, 726, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.87-7.80 (m, 2 H), 7.70-7.62 (m, 2 H), 7.54-7.34 (m, 4 H), 7.30-7.19 (m, 5 H), 7.13-7.09 (m, 2 H), 5.72 (ddd, $1 \mathrm{H}, J=17.2,10.3,8.8 \mathrm{~Hz}$), $5.25(\mathrm{dd}, 1 \mathrm{H}, J=10.3,1.9 \mathrm{~Hz}), 5.11$ (ddd, $1 \mathrm{H}, J=$ $17.2,1.8,0.7 \mathrm{~Hz}), 4.14(\mathrm{dt}, 1 \mathrm{H}, J=10.1,7.4 \mathrm{~Hz}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H})$, 1.35-1.09 (m, 6 H), $0.81(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.78,142.74,139.25,132.72$, 132.57, $132.44,132.34,131.78,131.73,131.70,131.66,131.42,131.39,130.98,128.48,128.32,128.04$, $128.00,127.87,127.74,127.65,127.28,126.86,118.09,58.13,51.86,51.79,30.31,29.39,22.45$, 13.97; EIMS m/z 404 ([M+H] ${ }^{+}$3), 306 (100), 201 (96), 77 (67); HRMS (EI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NOP}[\mathrm{M}+\mathrm{H}] 404.2143$, found 404.2142 .

$N-\left[\left(1 S^{*}, 2 R^{*}\right)\right.$-2,3-Diethyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (syn-280) and N-[(1S*,2S*)-2,3-diethyl-1-phenylbut-3-enyl]-P,P-diphenylphosphinamide (anti-280). According to the General Protocol D, $387 \mathrm{mg}(1.50 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 190 \mu \mathrm{~L}(1.65 \mathrm{mmol})$ of

3-hexyne, $1.25 \mathrm{~mL}(2.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 120 \mu \mathrm{~L}(1.49 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $104(24 \mathrm{~h}$ reaction time) afforded $99 \mathrm{mg}(49 \%)$ of 280 as a $75: 25$ mixture of diastereomers. syn- 280 (colorless solid): mp $166-167^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{hexane})$; IR (KBr) 3121, 2962, 2920, 2872, 2846, 1435, 1183, 1123, 1110, 1061, 897, 749, 726, $694 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.84-7.77$ (m, 2 H), 7.67-7.61 (m, 2 H), 7.51-7.37 (m, 4 H), 7.29-7.17 (m, 5 H), 7.02$6.99(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 3.39(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz})$, 2.34 (ddd, $1 \mathrm{H}, J=11.3,7.9,3.5 \mathrm{~Hz}$), 2.00 (dqd, $1 \mathrm{H}, J=14.7,7.4,3.6 \mathrm{~Hz}$), 1.65 (dq, $1 \mathrm{H}, J=$ $14.8,7.4 \mathrm{~Hz}), 1.57-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ $149.63,142.89,142.84,133.98,132.74,132.61,132.29,131.80,131.77,131.74,131.68,131.58$, $131.54,130.95,128.49,128.32,128.15,127.98,127.78,127.10,126.68,111.66,58.61,56.82$, 56.76, 26.35, 23.12, 12.10, 11.54; EIMS m/z 404 ([M+H] ${ }^{+}$1), 306 (100), 201 (93), 77 (86); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NOP} 403.2065$, found 403.2052. anti- 280 (colorless solid): mp $164-165{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); IR (KBr) 3197, 2961, 2932, 2873, 1436, 1185, 1124, 1109, 747, $725,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.77-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.04$ (m, 7 H), $5.04(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{td}, 1 \mathrm{H}, J=9.2,6.2 \mathrm{~Hz}), 3.60-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.29$ (ddd, $1 \mathrm{H}, J=10.7,8.8,4.2 \mathrm{~Hz}), 2.05(\mathrm{dq}, 1 \mathrm{H}, J=14.7,7.4 \mathrm{~Hz}), 1.84(\mathrm{dq}, 1 \mathrm{H}, J=14.6,7.3$ Hz), 1.32 (ddq, $1 \mathrm{H}, J=14.0,10.8,7.3 \mathrm{~Hz}$), $1.16(\mathrm{dqd}, 1 \mathrm{H}, J=14.2,7.4,4.4 \mathrm{~Hz}), 1.07(\mathrm{t}, 3 \mathrm{H}, J$ $=7.3 \mathrm{~Hz}), 0.69(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 150.73, 143.11, 134.08, 132.58, 132.45, 131.68, $131.65,131.50,131.37,131.23,130.79,128.46,128.29,127.93,127.89,127.72,127.46,126.84$, 112.49, 57.69, 57.60, 56.88, 24.31, 22.98, 12.09, 11.64; EIMS m/z $403\left(\mathrm{M}^{+}, 1\right), 306(100), 201$ (62), 91 (12), 77 (19); HRMS (EI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NOP} 403.2065$, found 403.2076.

syn-281

N-\{(1S*,2R*)-2-[2-(tert-Butyldiphenylsilyl)oxyethyl]-1-phenylbut-3-enyl\}-P,P-

diphenylphosphinamide (syn-281). According to the General Protocol D, $387 \mathrm{mg}(1.50 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 510 \mathrm{mg}(1.65 \mathrm{mmol})$ of alkyne $148,1.25 \mathrm{~mL}(2.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $120 \mu \mathrm{~L}(1.49 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $104(12 \mathrm{~h}$ reaction time) afforded 227 mg (72%) of 281 as an $85: 15$ mixture of diastereomers. syn- 281 (colorless oil): IR (neat) $3196,3070,2930,2857,1438,1428,1191,1110,726,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR δ 7.96-7.88 (m, 2 H), 7.80-7.72 (m, 2 H), 7.72-7.67 (m, 4 H), 7.57-7.30 (m, 14 H), 7.12$7.09(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{dt}, 1 \mathrm{H}, J=17.2,9.7 \mathrm{~Hz}), 5.22(\mathrm{dd}, 1 \mathrm{H}, J=17.3,2.2 \mathrm{~Hz}), 5.20(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.8,2.2 \mathrm{~Hz}$), $4.26(\mathrm{td}, 1 \mathrm{H}, J=10.8,5.1 \mathrm{~Hz}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=10.7,6.9 \mathrm{~Hz}), 3.70-3.63(\mathrm{~m}, 2 \mathrm{H})$, 2.89-2.80 (m, 1 H), 1.92 (dtd, $1 \mathrm{H}, J=13.4,7.9,3.3 \mathrm{~Hz}), 1.34-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.02,140.96,137.22,135.49,135.46,133.94,133.76,133.71,132.78,132.54,132.41$, $132.24,131.75,131.62,131.57,131.05,129.45,128.50,128.34,128.19,128.02,127.80,127.52$, $126.89,119.12,61.73,57.91,48.28,48.22,34.54,26.80,19.08$; EIMS m/z 628 ([M-H] $\left.{ }^{+}, 1\right), 572$ (48), 306 (100), 201 (75); HRMS (EI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{PSi}$ [M-C4 H_{9}] 572.2175, found 572.2174.

(4R*)-O-Triisopropylsilyl-4-\{(S^{*})-[(diphenylphosphinyl)amino](phenyl)methyl\}hex-

 5-enoate (syn-282) and (4S*)-O-triisopropylsilyl-4-\{(S^{*})-[(diphenylphosphinyl)amino]-(phenyl)methyl\}hex-5-enoate (anti-282). A solution of $324 \mathrm{mg}(3.30 \mathrm{mmol})$ of 4-pentynoic acid in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $710 \mu \mathrm{~L}(3.32 \mathrm{mmol})$ of TIPS-Cl and $225 \mathrm{mg}(3.30$ mmol) of imidazole, stirred at room temperature for 1 h , washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was dissolved in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, transferred into a suspension of $780 \mathrm{mg}(3.02 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, strirred for 5 min and concentrated in vacuo. A solution of the residue in 3 mL of toluene was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $1.50 \mathrm{~mL}(3.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over a period of 5 min , treated with $400 \mu \mathrm{~L}(4.97 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, stirred for 2 min , cannulated into a suspension of $305 \mathrm{mg}(1.00 \mathrm{mmol})$ of imine 104 in 1 mL of toluene, stirred at room temperature for 6 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}(1: 4$, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $278 \mathrm{mg}(48 \%)$ of 282 as a $62: 38$ mixture of diastereomers. syn-282 (colorless oil): IR (neat) 3187, 2945, 2867, 1716, 1456, 1438, 1189, 1124, 1110, 1070, 918, 884, 751, 726, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.85-7.78$ (m, 2 H), 7.69-7.62 (m, 2 H), $7.50-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=17.3,9.6 \mathrm{~Hz})$,5.24-5.17 (m, 2 H), 4.18 (td, $1 \mathrm{H}, J=11.0,5.1 \mathrm{~Hz}$), 3.76 (dd, $1 \mathrm{H}, J=10.8,6.4 \mathrm{~Hz}$), 2.63-2.52 (m, 1 H$), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.14(\mathrm{~m}, 4 \mathrm{H}), 1.02(\mathrm{~d}, 18 \mathrm{H}, J=7.3 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\delta 173.37$, 140.50, 136.67, 133.92, 132.64, 132.51, 132.23, 131.72, 131.59, 131.46, $130.70,128.49,128.32,128.17,128.00,127.85,127.42,126.99,120.03,57.97,51.63,33.56$, 27.25, 17.67, 11.75; EIMS m/z 575 (${ }^{+}, 1$), 532 (46), 306 (100), 201 (91); HRMS (EI) m/z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NO}_{3} \mathrm{PSi} 575.2985$, found 575.2999. anti-282 (colorless oil): IR (neat) 2924, 2863, $1712,1439,1416,1185,1161,1124,1109,1069,997,920,883,753,724,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.92-7.85 (m, 2 H$), ~ 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), ~ 7.57-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2$ H), 5.73 (ddd, $1 \mathrm{H}, J=17.1,10.2,9.0 \mathrm{~Hz}), 5.34(\mathrm{dd}, 1 \mathrm{H}, J=10.3,1.7 \mathrm{~Hz}), 5.19(\mathrm{dd}, 1 \mathrm{H}, J=$ $17.2,1.1 \mathrm{~Hz}$), $4.21(\mathrm{dt}, 1 \mathrm{H}, J=10.1,7.9 \mathrm{~Hz}), 3.53(\mathrm{dd}, 1 \mathrm{H}, J=8.4,6.0 \mathrm{~Hz}), 2.52-2.22(\mathrm{~m}, 3 \mathrm{H})$, $1.79-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, 18 \mathrm{H}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 173.33,142.08,142.04,138.24,133.93,132.68,132.55,132.42,132.24,131.75,131.62$, $131.47,130.95,128.50,128.33,128.10,127.91,127.23,127.03,118.97,58.30,51.25,51.17$, 33.44, 25.98, 17.72, 11.81; EIMS m/z 575 (${ }^{+}, 1$), 532 (12), 306 (100), 201 (78); HRMS (EI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{NO}_{3}$ PSi 575.2985, found 575.2995.

syn-283

Methyl 4-[(1S*,2R*)-2-[2-(tert-butyldiphenylsilyl)oxyethyl]-1-(diphenylphosphinyl-

 amino)-but-3-enyl]benzoate (syn-283). According to the General Protocol D, 195 mg (0.756 $\mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 255 \mathrm{mg}(0.827 \mathrm{mmol})$ of alkyne $148,500 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 100 \mu \mathrm{~L}(1.24 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and $91.0 \mathrm{mg}(0.250 \mathrm{mmol})$ of imine 156 (12 h reaction time) afforded $118 \mathrm{mg}(69 \%)$ of $\mathbf{2 8 3}$ as an $85: 15$ mixture of diastereomers. syn- $\mathbf{2 8 3}$ (colorless oil): IR (neat) 3191, 3071, 2952, 2931, 2857, 1721, 1437, 1282, 1190, 1110, 911, 728, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.65(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.31$ ($\mathrm{m}, 12 \mathrm{H}$), $7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 5.40(\mathrm{dt}, 1 \mathrm{H}, J=17.9,9.3 \mathrm{~Hz}), 5.21-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{td}$, $1 \mathrm{H}, J=10.6,5.4 \mathrm{~Hz}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=10.6,6.9 \mathrm{~Hz}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.89-$ $2.79(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{dtd}, 1 \mathrm{H}, J=13.3,8.0,3.2 \mathrm{~Hz}), 1.30-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 167.06,146.68,146.62,136.96,135.66,135.63,133.84,133.78,133.75,132.76,132.61$, $132.48,132.05,131.91,131.79,131.03,129.69,129.33,128.96,128.76,128.60,128.44,128.27$,$127.73,119.70,61.74,57.87,52.23,48.34,48.28,34.62,26.97,19.24$; EIMS m/z $688\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 1), 630 (80), 398 (19), 364 (100), 201 (99), 183 (33), 135 (46), 77 (70); HRMS (EI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{PSi}[\mathrm{M}-\mathrm{H}] 686.2856$, found 686.2840.

syn-284
$N-\left[\left(1 S^{*}, 2 R^{*}\right)\right.$-2-Butyl-1-(4-methoxyphenyl)but-3-enyl]-P,P-diphenylphosphinamide (syn-284). According to the General Protocol D, 390 mg (1.51 mmol) of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 190 \mu \mathrm{~L}$ $(1.65 \mathrm{mmol})$ of 1-hexyne, $1.00 \mathrm{~mL}(2.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $200 \mu \mathrm{~L}$ (2.48 mmol) of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and $168 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $158(12 \mathrm{~h}$ reaction time) afforded 169 $\mathrm{mg}(79 \%)$ of 284 as an 83:17 mixture of diastereomers. syn-284 (colorless solid): mp 155-156 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (KBr) 3218, 2956, 2916, 2857, 1516, 1436, 1252, 1183, 1123, 1108, 1072, 909, 825, 748, 724, $694 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 4$ H), 7.38-7.31 (m, 2 H$), 7.03(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 5.48(\mathrm{dt}, 1 \mathrm{H}, J=$ $17.3,9.7 \mathrm{~Hz}), 5.29(\mathrm{dd}, 1 \mathrm{H}, J=17.2,2.5 \mathrm{~Hz}), 5.25(\mathrm{dd}, 1 \mathrm{H}, J=9.7,2.5 \mathrm{~Hz}), 4.23(\mathrm{td}, 1 \mathrm{H}, J=$ $11.1,4.5 \mathrm{~Hz}$), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J=10.8,6.4 \mathrm{~Hz}$), $2.61(\mathrm{tt}, 1 \mathrm{H}, J=9.9,4.2 \mathrm{~Hz}$), 1.51$1.40(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.07-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ $158.38,137.92,134.19,133.09,133.02,132.77,132.65,132.52,131.68,131.65,131.52,131.49$, 131.02, 128.59, 128.47, 128.31, 128.15, 127.98, 118.94, 113.05, 57.17, 55.14, 52.19, 52.15, 31.69, 29.53, 22.53, 13.96; FABMS m/z $456\left([\mathrm{M}+\mathrm{Na}]^{+}, 5\right), 434\left([\mathrm{M}+\mathrm{H}]^{+}, 28\right), 336$ (20), 202 (17), 122 (100); HRMS (CI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{P}[\mathrm{M}+\mathrm{H}] 434.2249$, found 434.2227.

N-\{(1S*,2R*)-2-[2-(tert-Butyldiphenylsilyl)oxyethyl]-1-phenylbut-3-enyl\}-S-(4methylphenyl)sulfonamide (syn-285) and N-\{(1S*,2S*)-2-[2-(tert-butyldiphenylsilyl)oxy-ethyl]-1-phenylbut-3-enyl\}-S-(4-methylphenyl)sulfonamide (anti-285). According to the General Protocol D, $390 \mathrm{mg}(1.51 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 510 \mathrm{mg}(1.65 \mathrm{mmol})$ of alkyne $\mathbf{1 4 8}, 750$ $\mu \mathrm{L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}\left(2.0 \mathrm{M}\right.$ solution in toluene), $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and 130 mg (0.501 mmol) of imine 90 (2 h reaction time) afforded 238 mg (81%) of 285 as an
(inseparable) 60:40 mixture of diastereomers: IR (neat) 3280, 3070, 2930, 2857, 1428, 1326, 1162, 1111, 1093, 736, 702, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.72-7.35(\mathrm{~m}, 12 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.01-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.07(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{dd}, 0.6 \mathrm{H}, J=8.6,5.5 \mathrm{~Hz}), 4.22(\mathrm{dd}, 0.4 \mathrm{H}, J=8.3,5.3$ Hz), 3.70-3.55 (m, 2 H), 2.75-2.64 (m, 1 H$), 2.41(\mathrm{~s}, 1.2 \mathrm{H}), 2.39(\mathrm{~s}, 1.8 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 0.6$ H), 1.57-1.47 (m, 0.4 H), 1.44-1.19 (m, 1 H$), 1.11(\mathrm{~s}, 5.4 \mathrm{H}), 1.07(\mathrm{~s}, 3.6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 142.74, $139.30,138.03,137.71,137.61,137.40,136.52,135.49,135.42,133.62,129.57,129.50,129.14$, 129.02, 128.07, 127.80, 127.61, 127.58, 127.54, 127.23, 127.08, 127.04, 126.88, 119.67, 119.18, $61.19,60.78,60.71,60.57,46.77,46.33,33.90,33.25,26.81,26.75,21.38,19.10$; EIMS m/z 526 ($\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 42$), 352 (83), 260 (96), 199 (68), 155 (68), 135 (46), 91 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{SSi}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right] 526.1872$, found 526.1869.

N-\{(1S*,2R*)-2-[2-(tert-Butyldiphenylsilyl)oxyethyl]-1-phenethylbut-3-enyl\}-S-(4-
methylphenyl)sulfonamide (syn-286). According to the General Protocol D, $195 \mathrm{mg}(0.756$ $\mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 255 \mathrm{mg}(0.827 \mathrm{mmol})$ of alkyne $148,500 \mu \mathrm{~L}(1.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $100 \mu \mathrm{~L}(1.24 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, and $72.0 \mathrm{mg}(0.251 \mathrm{mmol})$ of imine $\mathbf{1 6 6}(4 \mathrm{~h}$ reaction time) afforded 134 mg (87%) of syn- 286 as a colorless oil: IR (thin film) 3280, 2930, 2857, 1428, 1327, 1160, 1111, 1094, 912, 816, 737, 702, $665 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ 8.3 Hz), 7.80-7.70 (m, 5 H), 7.54-7.45 (m, 6 H), 7.39-7.25 (m, 4 H$), 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{dt}$, $1 \mathrm{H}, J=17.0,9.9 \mathrm{~Hz}), 5.15(\mathrm{dd}, 1 \mathrm{H}, J=10.1,1.9 \mathrm{~Hz}), 4.95(\mathrm{dd}, 1 \mathrm{H}, J=17.0,1.8 \mathrm{~Hz}), 4.72(\mathrm{~d}$, $1 \mathrm{H}, J=9.7 \mathrm{~Hz}$), 3.67-3.38 (m, 3 H), 2.84-2.71 (m, 1 H$), 2.60-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.28-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.17,141.63,138.51,136.86,135.48,135.46,133.64,129.60,128.35,128.31,127.60$, 126.93, 125.84, 119.03, 61.65, 56.96, 44.89, 33.95, 32.88, 32.01, 26.80, 21.45, 19.08; EIMS m/z $554\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 66\right), 352$ (46), 288 (70), 199 (67), 155 (31), 135 (37), 117 (69), 91 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{P}\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]$ 554.2185, found 554.2188.

anti-287
(5 $\boldsymbol{R}^{\boldsymbol{*}, \mathbf{6 S}}{ }^{*}$)-6-Phenyl-5-vinylpiperidin-2-one (anti-287). A solution of $92.0 \mathrm{mg}(0.160$ mmol) of syn-282 in 5 mL of a 1 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH was stirred at room temperature for 12 h and concentrated in vacuo. The residue was dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, treated with $220 \mu \mathrm{~L}(1.58 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $75.0 \mu \mathrm{~L}(0.494 \mathrm{mmol})$ of diethyl cyanophosphonate, stirred for 16 h , filtered through a pad of Florisil and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc) to yield 18 mg (56\%) of anti-287 as a colorless solid: $\mathrm{mp} 131-132{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O} /$ hexane); IR (KBr) 3171, 3070, 2883, 1647, 1400, 1004, 917, 760, $702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.38-7.22 (m, 5H), $5.72(\mathrm{bs}, 1 \mathrm{H}), 5.62(\mathrm{ddd}, 1 \mathrm{H}, J=17.3,10.4,7.1 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=10.4$ $\mathrm{Hz}), 4.91(\mathrm{~d}, 1 \mathrm{H}, J=17.2 \mathrm{~Hz}), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz})$, 2.57-2.38(m, 3 H$), 2.03-1.95(\mathrm{~m}, 1 \mathrm{H})$, 1.90-1.79 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.61,140.73,137.32,128.61,128.22,127.21,116.86,62.69$, 45.40, 30.55, 26.14; EIMS m/z 201 (${ }^{+}$, 26), 173 (9), 147 (12), 118 (13), 106 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$ 201.1154, found 201.1158.

syn-287
(5S*,6S*)-6-Phenyl-5-vinylpiperidin-2-one (syn-287). A solution of 25.0 mg (0.0434 mmol) of anti-282 in 5 mL of a 1 N solution of $\mathrm{HCl}(\mathrm{g})$ in MeOH was stirred at room temperature for 12 h and concentrated in vacuo. The residue was dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, treated with $60.0 \mu \mathrm{~L}(0.430 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $20.0 \mu \mathrm{~L}(0.132 \mathrm{mmol})$ of diethyl cyanophosphonate, stirred for 16 h , filtered through a pad of Florisil and concentrated in vacuo. The residue was purified by preparative TLC (EtOAc) to yield 6.0 mg (69\%) of syn-287 as a colorless solid: mp 108-109 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (thin film) 3200, 3061, 2933, 1660, 1404, 1353, 998, 915, 763, $700 \mathrm{~cm}^{-1}$; ${ }^{1}{ }^{1} \mathrm{H}$ NMR δ 7.37-7.26 (m, 3 H), 7.19-7.16 (m, 2 H), 5.89 (bs, 1 H), 5.46 (ddd, $1 \mathrm{H}, J=17.3,10.1$, $8.3 \mathrm{~Hz}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=16.9 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}), 4.68(\mathrm{dd}, 1 \mathrm{H}, J=4.9,2.5 \mathrm{~Hz})$, $2.82(\mathrm{tt}, 1 \mathrm{H}, J=8.7,4.4 \mathrm{~Hz}), 2.67-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.03$, $138.90,136.63,128.23,127.87,127.52,117.12,60.38,42.65,29.66,23.33$, EIMS m/z $201\left(\mathrm{M}^{+}\right.$, 6), 173 (2), 147 (3), 119 (4), 106 (37), 84 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$ 201.1154, found 201.1156.

Attempted preparation of 2-butyl-1-phenylbut-3-en-1-ol using the General Protocol D. A suspension of $97.0 \mathrm{mg}(0.376 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated at room temperature with $45.0 \mu \mathrm{~L}(0.392 \mathrm{mmol})$ of 1-hexyne. After 5 min , the yellow solution was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $190 \mu \mathrm{~L}(0.380 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to $0{ }^{\circ} \mathrm{C}$ over a period of 5 min , treated with $90.0 \mu \mathrm{~L}(1.12 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, stirred for 2 min , treated with $25.0 \mu \mathrm{~L}(0.246 \mathrm{mmol})$ of PhCHO , stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc , filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on SiO_{2} (4:1, hexanes/EtOAc) to yield $41 \mathrm{mg}(88 \%)$ of 33.

Attempted preparation of 280 using a B-Zn transmetalation. A solution of $190 \mu \mathrm{~L}$ (1.67 mmol) of 3-hexyne in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$, treated with $500 \mu \mathrm{~L}(0.500$ mmol) of borane (1.0 M solution in THF), and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was treated with $750 \mu \mathrm{~L}(1.50 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), stirred for 2 min , treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, warmed to room temperature, treated with a solution of 153 mg (0.501 mmol) of imine 104 in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, stirred at room temperature for 16 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc contain-ing 1% $E t_{3} \mathrm{~N}$) to yield $97 \mathrm{mg}(50 \%)$ of 147.

(E)- N-(2,2-Dimethyl-1-phenylpent-3-enyl)-P,P-diphenylphosphinamide (293) and N -(2-methyl-1-phenylallyl)-P,P-diphenylphosphinamide (294). A solution of $876 \mathrm{mg}(3.00$ mmol) of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 10 mL of THF was cooled to $-78^{\circ} \mathrm{C}$, treated with $3.80 \mathrm{~mL}(6.08 \mathrm{mmol})$ of $n-\operatorname{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes), stirred at $-78^{\circ} \mathrm{C}$ for 1 h , treated with $300 \mu \mathrm{~L}(3.38 \mathrm{mmol})$ of 2-bromopropene, warmed to room temperature over 5 min , stirred for 1 h and concentrated in vacuo. The residue was suspended in 2 mL of toluene, cooled to $-78^{\circ} \mathrm{C}$, treated with 1.50 mL (3.00 mmol) of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), warmed to room temperature over 5 min , stirred for 2 h , treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine $\mathbf{1 0 4} \mathrm{in} 0.5 \mathrm{~mL}$ of THF
and 2 mL of toluene, stirred at room temperature for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield 88 mg (45%) of 293 and $27 \mathrm{mg}(16 \%)$ of 294 as colorless solids. 293: $\mathrm{R}_{\mathrm{f}} 0.61$ ($1: 4$, hexanes/EtOAc); $\mathrm{mp} 134-135^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (KBr) 3323, 3059, 3017, 2967, 2937, 2875, 1434, 1182, 1125, 1068, 754, 724, 707, $692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.80-7.73$ (m, 2 H), 7.59-7.52 (m, 2 H), 7.49-7.27 (m, $5 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 4 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.36(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 3.45$ $(\mathrm{t}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 1.70(\mathrm{~d}, 3 \mathrm{H}, J=5.1 \mathrm{~Hz}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 141.68$, $141.64,136.15,134.37,132.84,132.80,132.67,131.91,131.78,131.53,131.50,131.10,128.61$, $128.45,128.10,127.94,127.49,126.84,125.48,63.77,40.87,40.81,26.06,25.92,18.45$; EIMS $\mathrm{m} / \mathrm{z} 390\left([\mathrm{M}+\mathrm{H}]^{+}, 1\right), 306$ (100), 201 (93); HRMS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NOP}[\mathrm{M}+\mathrm{H}]$ 390.1987, found 390.1971. 294: $\mathrm{R}_{\mathrm{f}} 0.53$ (1:4, hexanes/EtOAc); mp $135-136{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (KBr) 3192, 1438, 1184, 1123, 1109, 725, $701 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.04-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.31$ $(\mathrm{m}, 11 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{t}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=10.6,6.6 \mathrm{~Hz})$, 1.70 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 145.72,145.66,141.69,141.63,133.50,133.11,132.39,132.27$, $132.20,132.07,131.89,131.85,131.82,131.79,131.40,128.55,128.51,128.45,128.34,128.29$, 127.31, 127.01, 126.68, 112.54, 60.21, 19.79; EIMS m/z 347 ($\mathrm{M}^{+}, 19$), 306 (26), 201 (72), 193 (43), 146 (95), 99 (100), 77 (59); HRMS (EI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NOP}$ 347.1439, found 347.1431 .

295

N-[(1-Methylcyclopropyl)phenylmethyl]-P,P-diphenylphosphinamide (295).

A solution of $438 \mathrm{mg}(1.50 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 5 mL of THF was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $1.88 \mathrm{~mL}(3.01 \mathrm{mmol})$ of $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes), stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , treated with $140 \mu \mathrm{~L}(1.57 \mathrm{mmol})$ of 2-bromopropene, warmed to room temperature over 5 min , stirred for 1 h and concentrated in vacuo. The residue was dissolved in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $750 \mu \mathrm{~L}(3.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over 5 min and treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was heated at reflux for 1 h , treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$
of $\mathrm{CH}_{2} \mathrm{I}_{2}$, heated at reflux for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated $\mathrm{SiO}_{2}\left(1: 4\right.$, hexanes/EtOAc containing $\left.1 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $81 \mathrm{mg}(42 \%)$ of 293 and 25 mg (14%) of 295 as a colorless oil. 295: IR (thin film) 3199, 3056, 2957, 2869, 1452, 1439, 1186, 1123, 1108, 1063, 751, 723, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.93-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 2 \mathrm{H})$, 7.52-7.36 (m, 4 H), 7.31-7.19 (m, 7 H), 3.77 (t, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}$), 3.42 (dd, $1 \mathrm{H}, J=9.5,6.0 \mathrm{~Hz}$), $1.01(\mathrm{~s}, 3 \mathrm{H}), 0.68-0.64(\mathrm{~m}, 1 \mathrm{H}), 0.60-0.54(\mathrm{~m}, 1 \mathrm{H}), 0.40-0.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.44$, $142.37,132.67,132.55,132.19,132.07,131.93,131.81,128.65,128.49,128.42,128.25,128.18$, 127.16, 127.02, 61.57, 21.57, 21.51, 19.89, 12.94, 12.40; EIMS m/z 361 (M+, 7), 306 (100), 201 (91), 160 (53), 91 (25), 77 (26); HRMS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NOP}$ 361.1596, found 361.1592 .

296

(E)-N-(4-Deutero-2-(deuteromethyl)-2-methyl-1-phenylpent-3-enyl)-P,P-diphenyl-

phosphinamide (296). A solution of $590 \mathrm{mg}(2.02 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 6 mL of THF was cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $2.50 \mathrm{~mL}(4.00 \mathrm{mmol})$ of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ solution in hexanes), stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , treated with $270 \mu \mathrm{~L}(3.04 \mathrm{mmol})$ of 2-bromopropene, warmed to room temperature over 5 min , stirred for 1 h and concentrated in vacuo. The residue was suspended in 3 mL of toluene, cooled to $-78^{\circ} \mathrm{C}$, treated with $1.00 \mathrm{~mL}(2.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over 5 min , and cannulated into a suspension of 153 $\mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 1 mL of toluene. The mixture was stirred at room temperature for 12 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:4, hexanes/ EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $90 \mathrm{mg}(46 \%)$ of 296 and $46 \mathrm{mg}(6 \%)$ of 294 as a colorless solid. 296: mp 133-134 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (thin film) 3207, 3055, 2958, 2929, 1454, 1436, 1183, 1125, 1107, 1068, 908, 749, 726, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.82-7.75$ (m, 2 H), 7.61-7.48 (m, 2 H), 7.47-7.32 (m, 4 H), 7.24-7.17 (m, 5 H), 7.01-6.98 (m, 2 H), 5.41 (bs, 1 H), 3.85 (t, $1 \mathrm{H}, \mathrm{J}=$
$10.6 \mathrm{~Hz}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=9.7,7.7 \mathrm{~Hz}), 1.71(\mathrm{~d}, 3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 1.22(\mathrm{~s}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\delta 141.57,141.53,135.87,134.26,132.68,132.55,131.78,131.66,131.40,131.36$, 130.96, 128.48, 128.32, 127.97, 127.80, 127.35, 126.69, 125.09 (t, $1 \mathrm{C}, J=22.7 \mathrm{~Hz}$), 63.61, 40.66, 40.59, 25.93, $25.48\left(\mathrm{t}, 1 \mathrm{C}, J=19.5 \mathrm{~Hz}\right.$), 18.19; ${ }^{2} \mathrm{H}$ NMR (77 MHz) $\delta 5.51,1.18$; EIMS $m / z 392\left([\mathrm{M}+\mathrm{H}]^{+}, 1\right), 306$ (100), 201 (77), 77 (24); HRMS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{D}_{2} \mathrm{NOP}$ $[\mathrm{M}+\mathrm{H}] 392.2112$ found 392.2104 .

N-(3-Methyl-1-phenylbut-3-enyl)-P,P-diphenylphosphinamide (304). A solution of $584 \mathrm{mg}(2.00 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ in 6 mL of THF was cooled to $-7{ }^{\circ} \mathrm{C}$, treated with 2.50 mL $(4.00 \mathrm{mmol})$ of $n-\mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ solution in hexanes), stirred at $-78^{\circ} \mathrm{C}$ for 1 h , treated with $200 \mu \mathrm{~L}$ (2.25 mmol) of 2-bromopropene, warmed to room temperature over 5 min , stirred for 1 h and concentrated in vacuo. The residue was suspended in 2 mL of toluene, cooled to $-78{ }^{\circ} \mathrm{C}$, treated with $1.00 \mathrm{~mL}(2.00 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), warmed to room temperature over 5 min , treated with $200 \mu \mathrm{~L}(2.48 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$, stirred for 2 min , treated with a solution of $153 \mathrm{mg}(0.501 \mathrm{mmol})$ of imine 104 in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.5 mL of toluene, stirred at room temperature for 4 h , quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with EtOAc and saturated NaHCO_{3}, filtered through Celite, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through a pad of Florisil and concentrated in vacuo. The residue was chromatographed on deactivated SiO_{2} (1:9, hexanes/EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $136 \mathrm{mg}(75 \%)$ of 304 as a colorless solid: mp $165-166{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$; IR (thin film) 3182, 3058, 2910, 1437, 1186, 1123, 1109, 724, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.67$ (m, 2 H), 7.51-7.33 (m, 4 H), 7.31-7.14 $(\mathrm{m}, 7 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{qn}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.28(\mathrm{dd}, 1 \mathrm{H}, J=7.9,6.0 \mathrm{~Hz})$, $2.61(\mathrm{dd}, 1 \mathrm{H}, J=13.6,7.3 \mathrm{~Hz}), 2.52(\mathrm{dd}, 1 \mathrm{H}, J=13.7,7.0 \mathrm{~Hz}), 1.57(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $143.49,142.00,133.88,132.86,132.51,132.38,132.19,131.83,131.71,131.62,131.13,128.52$, $128.35,128.30,128.26,128.09,127.06,126.56,114.40,53.39,48.20,48.13,22.26$; EIMS m/z $361\left(\mathrm{M}^{+}, 1\right), 306$ (74), 201 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NOP}$ 361.1596, found 361.1593.

Appendix A

X-ray Structure and Data of Binaphthyl-Phenyl Phosphinimine 219

Appendix A, Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=32.48^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
ck1203s
$\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{NOP}$
481.50

100(2) K
$0.71073 \AA$
Triclinic
P-1

$$
\begin{array}{ll}
\mathrm{a}=10.5978(16) \AA & \alpha=106.997(3)^{\circ} \\
\mathrm{b}=10.7312(16) \AA & \beta=97.186(3)^{\circ} \\
\mathrm{c}=13.330(2) \AA & \gamma=114.688(3)^{\circ}
\end{array}
$$

$$
1262.9(3) \AA^{3}
$$

2
$1.266 \mathrm{Mg} / \mathrm{m}^{3}$
$0.136 \mathrm{~mm}^{-1}$
504
$0.27 \times 0.18 \times 0.18 \mathrm{~mm}^{3}$
1.67 to 32.48°
$-15 \leq h \leq 15,-16 \leq k \leq 15,-19 \leq 1 \leq 19$
16001
$8473[\mathrm{R}(\mathrm{int})=0.0551]$
92.9\%

None
0.9760 and 0.9643

Full-matrix least-squares on F^{2}
8473 / 0 / 421
1.011
$\mathrm{R} 1=0.0736, \mathrm{wR} 2=0.1766$
$R 1=0.1153, w R 2=0.1996$
0.862 and -0.484 e. \AA^{-3}

Appendix A, Table 2. Atomic coordinates (x 10^{4}) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck1203s. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	Z	U(eq)
P	2297(1)	5153(1)	1897(1)	16(1)
O	2456(2)	4133(2)	961(1)	19(1)
N	3572(2)	5987(2)	3101(1)	17(1)
C(1)	3382(2)	7871(2)	1630(2)	16(1)
C(2)	2169(2)	6667(2)	1637(2)	16(1)
C(3)	783(2)	6561(2)	1372(2)	20(1)
C(4)	605(2)	7651(2)	1148(2)	22(1)
C(5)	1819(2)	8914(2)	1166(2)	20(1)
C(6)	1669(3)	10071(2)	944(2)	24(1)
C(7)	2839(3)	11246(2)	902(2)	29(1)
C(8)	4200(3)	11303(3)	1068(2)	28(1)
C(9)	4390(3)	10220(2)	1299(2)	23(1)
C(10)	3210(2)	9002(2)	1372(2)	17(1)
C(11)	4844(2)	7967(2)	1848(2)	17(1)
C(12)	5155(2)	7086(2)	1053(2)	19(1)
C(13)	6518(2)	7126(2)	1219(2)	24(1)
C(14)	7555(2)	8046(2)	2201(2)	25(1)
C(15)	7289(2)	8982(2)	3048(2)	20(1)
C(16)	8358(2)	9933(3)	4067(2)	25(1)
C(17)	8088(3)	10818(3)	4882(2)	26(1)
C(18)	6746(2)	10813(2)	4713(2)	22(1)
C(19)	5687(2)	9904(2)	3732(2)	18(1)
C(20)	5925(2)	8960(2)	2872(2)	17(1)
C(21)	4631(2)	5705(2)	3202(2)	19(1)
C(22)	5739(2)	6366(2)	4250(2)	19(1)
C(23)	5576(3)	7172(3)	5201(2)	25(1)
C(24)	6645(3)	7828(3)	6187(2)	30(1)
C(25)	7883(3)	7678(3)	6217(2)	33(1)
C(26)	8060(3)	6872(3)	5278(2)	34(1)
C(27)	6977(3)	6202(3)	4290(2)	28(1)
C(28)	705(2)	4212(2)	2290(2)	17(1)
C(29)	396(2)	4913(2)	3212(2)	22(1)
C(30)	-829(2)	4123(3)	3485(2)	25(1)
C(31)	-1745(3)	2622(3)	2853(2)	28(1)
C(32)	-1440(3)	1921(3)	1944(2)	28(1)
C(33)	-214(2)	2708(2)	1663(2)	21(1)

Appendix A, Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for ck1203s.

P-O	1.4800(15)	O-P-N	118.46(9)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	119.6(2)
P-N	1.6764(18)	O-P-C(28)	112.25(9)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.9(2)
P-C(28)	1.802(2)	N-P-C(28)	100.60(9)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.1(2)
P-C(2)	1.8114(19)	O-P-C(2)	113.64(9)	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	119.49(19)
$\mathrm{N}-\mathrm{C}(21)$	1.280(3)	N-P-C(2)	104.07(9)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(20)$	119.46(19)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.394(3)$	$\mathrm{C}(28)-\mathrm{P}-\mathrm{C}(2)$	106.38(9)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	120.7(2)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.427(3)	C(21)-N-P	119.98 (15)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	120.2(2)
$\mathrm{C}(1)-\mathrm{C}(11)$	1.494(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	119.27(18)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	120.5(2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.415(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	121.10(17)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	120.7(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.367(3)	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)$	119.60(17)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(15)$	118.37(18)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.418(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.11(18)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(11)$	122.79(18)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.423(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{P}$	121.53(15)	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(11)$	118.82(18)
$\mathrm{C}(5)-\mathrm{C}(10)$	1.423(3)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{P}$	118.26(15)	$\mathrm{N}-\mathrm{C}(21)-\mathrm{C}(22)$	121.77(19)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.372(4)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	121.3(2)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(27)$	119.5(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.405(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	120.1(2)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.65(19)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.368(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.3(2)	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(21)$	119.8(2)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.421(3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(10)$	119.39(18)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.5(2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.374(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	119.2(2)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	119.6(2)
$\mathrm{C}(11)-\mathrm{C}(20)$	1.432(3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	120.8(2)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	120.7(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.414(3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.7(2)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	119.6(2)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.369(3)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	121.1(2)	$\mathrm{C}(22)-\mathrm{C}(27)-\mathrm{C}(26)$	120.1(2)
$\mathrm{C}(14)$-C(15)	1.420(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.8(2)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(33)$	119.49(19)
C(15)-C(16)	1.416(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	118.27(18)	C(29)-C(28)-P	122.66(15)
$\mathrm{C}(15)-\mathrm{C}(20)$	1.425(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(1)$	122.05(19)	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{P}$	117.81(16)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.366(3)	$\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(1)$	119.68(18)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	119.98(19)
$\mathrm{C}(17)-\mathrm{C}(18)$	1.410(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)$	119.48 (19)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	120.2(2)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.376(3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(1)$	119.42(18)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	120.0(2)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.417(3)	$\mathrm{C}(20)-\mathrm{C}(11)-\mathrm{C}(1)$	121.10(17)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	120.1(2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.465(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.8(2)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(28)$	120.2(2)
$\mathrm{C}(22)$-C(23)	1.388(3)				
C(22)-C(27)	1.391(3)				
C(23)-C(24)	1.388(3)				
C(24)-C(25)	1.385(4)				
C(25)-C(26)	$1.382(4)$				
C(26)-C(27)	1.396(3)				
C(28)-C(29)	1.395(3)				
C(28)-C(33)	1.396(3)				
C(29)-C(30)	1.385(3)				
$\mathrm{C}(30)-\mathrm{C}(31)$	1.393(3)				
C(31)-C(32)	1.381(3)				
C(32)-C(33)	1.391(3)				

Appendix A, Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck1203s. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2}\left(a^{*}\right)^{2} U^{11}+\ldots+2 h k\left(a^{*}\right)\left(b^{*}\right) U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
P	17(1)	11(1)	18(1)	6(1)	3(1)	6(1)
O	21(1)	14(1)	22(1)	5(1)	5(1)	9(1)
N	16(1)	13(1)	20(1)	8(1)	2(1)	5(1)
$\mathrm{C}(1)$	19(1)	13(1)	17(1)	6(1)	4(1)	8(1)
C(2)	19(1)	13(1)	17(1)	6(1)	3(1)	8(1)
C(3)	18(1)	18(1)	22(1)	8(1)	2(1)	8(1)
C(4)	23(1)	22(1)	21(1)	7(1)	3(1)	14(1)
C(5)	29(1)	17(1)	17(1)	6(1)	3(1)	15(1)
$\mathrm{C}(6)$	35(1)	21(1)	19(1)	6(1)	0(1)	18(1)
$\mathrm{C}(7)$	51(2)	18(1)	22(1)	8(1)	3(1)	21(1)
C(8)	40(1)	19(1)	28(1)	13(1)	6(1)	14(1)
C(9)	28(1)	15(1)	25(1)	10(1)	6(1)	9(1)
$\mathrm{C}(10)$	22(1)	12(1)	18(1)	6(1)	3(1)	9(1)
$\mathrm{C}(11)$	19(1)	12(1)	21(1)	8(1)	6(1)	9(1)
C (12)	$23(1)$	14(1)	$21(1)$	7(1)	7(1)	9(1)
C (13)	$25(1)$	23(1)	29(1)	11(1)	14(1)	14(1)
C (14)	22(1)	24(1)	34(1)	12(1)	10(1)	14(1)
C (15)	18(1)	18(1)	$26(1)$	11(1)	8(1)	9(1)
C(16)	20(1)	24(1)	30(1)	10(1)	4(1)	10(1)
$\mathrm{C}(17)$	21(1)	22(1)	26(1)	7(1)	0 (1)	6(1)
C (18)	23(1)	18(1)	24(1)	8(1)	6(1)	8(1)
$\mathrm{C}(19)$	19(1)	15(1)	21(1)	8(1)	6(1)	8(1)
C(20)	18(1)	13(1)	22(1)	9(1)	7(1)	7(1)
C(21)	19(1)	15(1)	22(1)	8(1)	2(1)	8(1)
C(22)	19(1)	15(1)	24(1)	10(1)	2(1)	$8(1)$
C(23)	27(1)	24(1)	25(1)	9(1)	3(1)	13(1)
C (24)	$36(1)$	$29(1)$	23(1)	7(1)	$0(1)$	17(1)
C (25)	34(1)	29(1)	31(1)	9(1)	-8(1)	15(1)
C(26)	$26(1)$	31(1)	42(2)	12(1)	-2(1)	16(1)
C(27)	$26(1)$	29(1)	30(1)	9(1)	3(1)	16(1)
C(28)	18(1)	12(1)	19(1)	6(1)	2(1)	6(1)
C(29)	23(1)	17(1)	24(1)	5(1)	4(1)	8(1)
C(30)	25(1)	25(1)	24(1)	9(1)	7(1)	11(1)
C(31)	23(1)	26(1)	28(1)	14(1)	7(1)	4(1)
C(32)	25(1)	17(1)	29(1)	7(1)	4(1)	2(1)
C(33)	23(1)	15(1)	22(1)	6(1)	6(1)	7(1)

Appendix A, Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (\AA^{2} x 10^{3}) for ck1203s.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(3)$	$-70(30)$	$5680(30)$	$1340(20)$	$24(6)$
$\mathrm{H}(4)$	$-390(30)$	$7500(30)$	$900(20)$	$32(7)$
$\mathrm{H}(6)$	$700(30)$	$10010(30)$	$870(20)$	$26(7)$
$\mathrm{H}(7)$	$2670(30)$	$12010(30)$	$780(20)$	$27(7)$
$\mathrm{H}(8)$	$5030(30)$	$12130(30)$	$1030(20)$	$27(7)$
$\mathrm{H}(9)$	$5320(30)$	$10270(30)$	$1380(20)$	$32(7)$
$\mathrm{H}(12)$	$4460(30)$	$6400(30)$	$360(20)$	$22(6)$
$\mathrm{H}(13)$	$6750(30)$	$6530(30)$	$640(20)$	$35(8)$
$\mathrm{H}(14)$	$8490(30)$	$8090(30)$	$2350(20)$	$33(7)$
$\mathrm{H}(16)$	$9310(30)$	$9960(30)$	$4190(20)$	$28(7)$
$\mathrm{H}(17)$	$8830(30)$	$11490(30)$	$5560(20)$	$31(7)$
$\mathrm{H}(18)$	$6580(30)$	$11450(30)$	$5310(20)$	$37(8)$
$\mathrm{H}(19)$	$4710(30)$	$9890(30)$	$3610(20)$	$33(7)$
$\mathrm{H}(21)$	$4790(30)$	$5110(30)$	$2570(20)$	$34(7)$
$\mathrm{H}(23)$	$4720(30)$	$7220(30)$	$5190(20)$	$37(8)$
$\mathrm{H}(24)$	$6490(30)$	$8260(30)$	$6840(20)$	$39(8)$
$\mathrm{H}(25)$	$8680(30)$	$8110(30)$	$6910(30)$	$44(8)$
$\mathrm{H}(26)$	$8980(30)$	$6820(30)$	$5280(30)$	$48(9)$
$\mathrm{H}(27)$	$7080(30)$	$5670(30)$	$3590(20)$	$41(8)$
$\mathrm{H}(29)$	$1030(30)$	$5980(30)$	$3670(20)$	$30(7)$
$\mathrm{H}(30)$	$-1030(30)$	$4650(30)$	$4140(20)$	$22(6)$
$\mathrm{H}(31)$	$-2590(30)$	$2090(30)$	$3070(20)$	$45(8)$
$\mathrm{H}(32)$	$-2120(30)$	$850(30)$	$1510(20)$	$40(8)$
$\mathrm{H}(33)$	$50(30)$	$2280(30)$	$1070(20)$	$21(6)$

Appendix B

X-ray Structure and Data of Benzamide 268.

Appendix B, Table 1. Crystal data and structure refinement for ck102s.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=32.52^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Largest diff. peak and hole
ck102s
$\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}$
307.42

150(2) K
$0.71073 \AA$
Triclinic
P-1
$a=5.3218(6) \AA \quad \alpha=82.892(2)^{\circ}$
$b=9.5102(10) \AA \quad \beta=82.762(2)^{\circ}$
$\mathrm{c}=17.900(2) \AA \quad \gamma=87.377(3)^{\circ}$
891.38(17) \AA^{3}

2
$1.145 \mathrm{Mg} / \mathrm{m}^{3}$
$0.069 \mathrm{~mm}^{-1}$
332
$0.27 \times 0.03 \times 0.03 \mathrm{~mm}^{3}$
2.16 to 32.52°
$-8 \leq \mathrm{h} \leq 8,-13 \leq \mathrm{k} \leq 13,-26 \leq 1 \leq 25$
11657
$6038[\mathrm{R}(\mathrm{int})=0.1076]$
93.6\%

None
0.9979 and 0.9815

Full-matrix least-squares on F^{2}
6038 / 0 / 212
0.987
$R 1=0.1098, w R 2=0.1907$
$\mathrm{R} 1=0.2921, \mathrm{wR} 2=0.2549$
0.582 and $-0.362 \mathrm{e} . \AA^{-3}$

Appendix B, Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck102s. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
O	$8439(4)$	$451(2)$	$3148(1)$	$35(1)$
N	$4293(5)$	$714(3)$	$2976(2)$	$30(1)$
$\mathrm{C}(1)$	$326(6)$	$-916(3)$	$4470(2)$	$29(1)$
$\mathrm{C}(2)$	$2738(6)$	$-1919(4)$	$5099(2)$	$34(1)$
$\mathrm{C}(3)$	$4500(6)$	$-2986(4)$	$5266(2)$	$35(1)$
$\mathrm{C}(4)$	$6784(7)$	$-3048(4)$	$4791(2)$	$37(1)$
$\mathrm{C}(5)$	$7294(6)$	$-2053(3)$	$4174(2)$	$32(1)$
$\mathrm{C}(6)$	$5516(6)$	$-981(3)$	$4004(2)$	$25(1)$
$\mathrm{C}(7)$	$6202(6)$	$116(3)$	$3341(2)$	$28(1)$
$\mathrm{C}(8)$	$4648(6)$	$1887(3)$	$2367(2)$	$29(1)$
$\mathrm{C}(9)$	$3028(6)$	$1691(4)$	$1754(2)$	$34(1)$
$\mathrm{C}(10)$	$3768(9)$	$2398(5)$	$967(2)$	$66(1)$
$\mathrm{C}(11)$	$3993(7)$	$824(5)$	$1138(2)$	$52(1)$
$\mathrm{C}(12)$	$2266(8)$	$-152(5)$	$854(2)$	$69(2)$
$\mathrm{C}(13)$	$2236(11)$	$-1598(5)$	$1265(5)$	$128(3)$
$\mathrm{C}(14)$	$554(13)$	$-2589(7)$	$926(6)$	$177(4)$
$\mathrm{C}(15)$	$1253(14)$	$-3911(8)$	$932(5)$	$154(3)$
$\mathrm{C}(16)$	$4131(6)$	$3307(3)$	$2662(2)$	$28(1)$
$\mathrm{C}(17)$	$5892(6)$	$4370(4)$	$2498(2)$	$39(1)$
$\mathrm{C}(18)$	$5424(7)$	$5657(4)$	$2777(2)$	$49(1)$
$\mathrm{C}(19)$	$3178(7)$	$5912(4)$	$3230(2)$	$51(1)$
$\mathrm{C}(20)$	$1429(6)$	$4871(4)$	$3390(2)$	$40(1)$
$\mathrm{C}(21)$	$1874(6)$	$3584(4)$	$3112(2)$	$34(1)$

Appendix B, Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for ck102s.

O-C(7)	1.242 (3)	$\mathrm{C}(7)-\mathrm{N}-\mathrm{C}(8)$	122.8(3)
$\mathrm{N}-\mathrm{C}(7)$	1.343 (4)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	119.8(3)
$\mathrm{N}-\mathrm{C}(8)$	1.462(4)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	120.7(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.389(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.0(3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.391 (4)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	120.7(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.381(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.3(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.397(5)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	119.5(3)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.370 (4)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.3(3)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.391(4)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.1(3)
C(6)-C(7)	1.499 (4)	$\mathrm{O}-\mathrm{C}(7)-\mathrm{N}$	122.3(3)
$\mathrm{C}(8)-\mathrm{C}(16)$	$1.511(4)$	$\mathrm{O}-\mathrm{C}(7)-\mathrm{C}(6)$	120.8(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.512(4)$	$\mathrm{N}-\mathrm{C}(7)-\mathrm{C}(6)$	116.9(3)
$\mathrm{C}(9)-\mathrm{C}(11)$	$1.485(5)$	N-C(8)-C(16)	111.7(3)
C(9)-C(10)	$1.498(5)$	$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(9)$	109.7(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.493(6)$	$\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(9)$	112.1(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.509(5)$	$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)$	60.1(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.476 (7)	$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	120.4(3)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.553(8)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	118.8(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.293(8)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	59.5(2)
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.389(4)$	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(10)$	60.4(2)
$\mathrm{C}(16)-\mathrm{C}(21)$	1.394(4)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{C}(12)$	120.6(3)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.379(5)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	122.1(4)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.386(5)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	113.7(4)
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.369(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	112.0(6)
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.377(4)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	118.1(7)
		$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(21)$	118.0(3)
		$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(8)$	121.2(3)
		$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(8)$	120.8(3)
		$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.9(3)
		$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.4(3)
		$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	119.0(4)
		$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	121.1(3)
		$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	120.6(3)

Appendix B, Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck102s. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2}\left(a^{*}\right)^{2} U^{11}+\ldots+2 h k\left(a^{*}\right)\left(b^{*}\right) \mathrm{U}^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O	$18(1)$	$44(1)$	$41(1)$	$-2(1)$	$-4(1)$	$-4(1)$
N	$17(1)$	$33(2)$	$39(2)$	$-3(1)$	$-5(1)$	$-2(1)$
$\mathrm{C}(1)$	$23(2)$	$31(2)$	$32(2)$	$-4(2)$	$-4(1)$	$4(1)$
$\mathrm{C}(2)$	$26(2)$	$44(2)$	$33(2)$	$-9(2)$	$-1(2)$	$-2(2)$
$\mathrm{C}(3)$	$36(2)$	$34(2)$	$34(2)$	$3(2)$	$-10(2)$	$-5(2)$
$\mathrm{C}(4)$	$34(2)$	$34(2)$	$45(2)$	$-4(2)$	$-12(2)$	$6(2)$
$\mathrm{C}(5)$	$21(2)$	$33(2)$	$42(2)$	$-6(2)$	$-6(2)$	$1(1)$
$\mathrm{C}(6)$	$19(2)$	$28(2)$	$29(2)$	$-10(2)$	$-4(1)$	$-2(1)$
$\mathrm{C}(7)$	$21(2)$	$29(2)$	$35(2)$	$-14(2)$	$-4(1)$	$-1(1)$
$\mathrm{C}(8)$	$20(2)$	$36(2)$	$29(2)$	$-1(2)$	$-2(1)$	$0(1)$
$\mathrm{C}(9)$	$27(2)$	$45(2)$	$30(2)$	$-7(2)$	$-1(2)$	$1(2)$
$\mathrm{C}(10)$	$76(3)$	$77(3)$	$47(3)$	$3(2)$	$-13(2)$	$-30(3)$
$\mathrm{C}(11)$	$38(2)$	$78(3)$	$43(2)$	$-31(2)$	$3(2)$	$-8(2)$
$\mathrm{C}(12)$	$51(3)$	$106(4)$	$60(3)$	$-52(3)$	$8(2)$	$-21(3)$
$\mathrm{C}(13)$	$79(4)$	$59(4)$	$26(9)$	$-45(5)$	$-77(5)$	$-3(3)$
$\mathrm{C}(14)$	$103(6)$	$81(5)$	$367(14)$	$-89(7)$	$-41(7)$	$-5(4)$
$\mathrm{C}(15)$	$144(7)$	$134(7)$	$196(8)$	$-59(6)$	$-24(6)$	$-18(6)$
$\mathrm{C}(16)$	$20(2)$	$33(2)$	$32(2)$	$-5(2)$	$-6(1)$	$3(1)$
$\mathrm{C}(17)$	$22(2)$	$44(2)$	$52(2)$	$-4(2)$	$-9(2)$	$-2(2)$
$\mathrm{C}(18)$	$34(2)$	$37(2)$	$78(3)$	$-8(2)$	$-15(2)$	$-8(2)$
$\mathrm{C}(19)$	$36(2)$	$39(2)$	$83(3)$	$-23(2)$	$-19(2)$	$7(2)$
$\mathrm{C}(20)$	$26(2)$	$49(2)$	$52(2)$	$-21(2)$	$-12(2)$	$4(2)$
$\mathrm{C}(21)$	$24(2)$	$37(2)$	$41(2)$	$-7(2)$	$-7(2)$	$-1(2)$

Appendix B, Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters $\left(\AA^{2}\right.$ x 10^{3}) for ck102s.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{~N})$	$2790(70)$	$270(30)$	$3136(19)$	$50(11)$
$\mathrm{H}(1 \mathrm{~A})$	2000	-188	4358	35
$\mathrm{H}(2 \mathrm{~A})$	1175	-1870	5417	41
$\mathrm{H}(3 \mathrm{~A})$	4163	-3668	5699	42
$\mathrm{H}(4 \mathrm{~A})$	7996	-3788	4896	45
$\mathrm{H}(5 \mathrm{~A})$	8871	-2095	3861	38
$\mathrm{H}(8 \mathrm{~A})$	6461	1851	2139	35
$\mathrm{H}(9 \mathrm{~A})$	1164	1651	1920	41
$\mathrm{H}(10 \mathrm{~A})$	2396	2797	671	80
$\mathrm{H}(10 B)$	5350	2935	870	80
$\mathrm{H}(11 \mathrm{~A})$	5769	443	1159	62
$\mathrm{H}(12 \mathrm{~A})$	521	263	902	83
$\mathrm{H}(12 B)$	2810	-212	309	83
$\mathrm{H}(13 \mathrm{~A})$	1590	-1550	1805	153
$\mathrm{H}(13 B)$	3989	-2000	1241	153
$\mathrm{H}(14 \mathrm{~A})$	-1171	-2545	1206	213
$\mathrm{H}(14 B)$	424	-2195	394	213
$\mathrm{H}(15 \mathrm{~A})$	78	-4399	679	231
$\mathrm{H}(15 B)$	1243	-4350	1457	231
$\mathrm{H}(15 \mathrm{C})$	2967	-3984	663	231
$\mathrm{H}(17 \mathrm{~A})$	7440	4208	2189	47
$\mathrm{H}(18 \mathrm{~A})$	6648	6372	2659	59
$\mathrm{H}(19 \mathrm{~A})$	2857	6795	3426	61
H(20A)	-117	5040	3697	48
H(21A)	630	2879	3229	40

Appendix C

X-ray Structure and Data of a Derivative of Cyclopropane 267.

Appendix C, Table 1. Crystal data and structure refinement for ck502s.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
ck502s
$\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}$
321.45

150(2) K
$0.71073 \AA$
Triclinic
P-1
$\mathrm{a}=5.3816(6) \AA \quad \alpha=98.396(2)^{\circ}$
$b=10.2141(11) \AA$
$\beta=96.477(2)^{\circ}$
$c=17.2013(19) \AA$
$\gamma=94.354(2)^{\circ}$
$925.31(18) \AA^{3}$
2
$1.154 \mathrm{Mg} / \mathrm{m}^{3}$
$0.070 \mathrm{~mm}^{-1}$
348
$0.29 \times 0.03 \times 0.03 \mathrm{~mm}^{3}$
2.02 to 25.00°
$-6 \leq \mathrm{h} \leq 6,-12 \leq \mathrm{k} \leq 12,-20 \leq 1 \leq 20$
7446
$3268[R($ int $)=0.0545]$
100.0\%

Sadabs
Full-matrix least-squares on F^{2}
3268 / 0 / 325
1.036
$\mathrm{R} 1=0.0743, w R 2=0.1549$
$\mathrm{R} 1=0.1263, w R 2=0.1713$
0.280 and $-0.167 \mathrm{e} . \AA^{-3}$

Appendix C, Table 2. Atomic coordinates (x 10^{4}) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck502s. $U(e q)$ is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
O	$3321(4)$	$5849(2)$	$1936(1)$	$38(1)$
N	$7560(5)$	$6105(3)$	$2092(2)$	$32(1)$
$\mathrm{C}(1)$	$12461(13)$	$1826(6)$	$3554(4)$	$92(2)$
$\mathrm{C}(2)$	$13152(9)$	$3254(5)$	$3954(3)$	$69(1)$
$\mathrm{C}(3)$	$11184(8)$	$4172(4)$	$3713(3)$	$59(1)$
$\mathrm{C}(4)$	$11701(7)$	$5569(4)$	$4179(2)$	$48(1)$
$\mathrm{C}(5)$	$9688(7)$	$6423(3)$	$3939(2)$	$41(1)$
$\mathrm{C}(6)$	$9965(7)$	$7915(4)$	$4142(2)$	$44(1)$
$\mathrm{C}(7)$	$9965(6)$	$7261(3)$	$3309(2)$	$32(1)$
$\mathrm{C}(8)$	$7811(6)$	$7311(3)$	$2681(2)$	$34(1)$
$\mathrm{C}(9)$	$8037(5)$	$8546(3)$	$2288(2)$	$33(1)$
$\mathrm{C}(10)$	$6417(6)$	$9519(3)$	$2398(2)$	$42(1)$
$\mathrm{C}(11)$	$6623(7)$	$10634(4)$	$2029(2)$	$51(1)$
$\mathrm{C}(12)$	$8443(6)$	$10776(4)$	$1539(2)$	$47(1)$
$\mathrm{C}(13)$	$10084(7)$	$9814(3)$	$1432(2)$	$44(1)$
$\mathrm{C}(14)$	$9897(6)$	$8707(3)$	$1800(2)$	$36(1)$
$\mathrm{C}(15)$	$5326(5)$	$5481(3)$	$1745(2)$	$30(1)$
$\mathrm{C}(16)$	$5411(5)$	$4349(3)$	$1101(2)$	$29(1)$
$\mathrm{C}(17)$	$3435(6)$	$3339(3)$	$961(2)$	$33(1)$
$\mathrm{C}(18)$	$3328(6)$	$2323(3)$	$337(2)$	$39(1)$
$\mathrm{C}(19)$	$5169(6)$	$2284(3)$	$-156(2)$	$36(1)$
$\mathrm{C}(20)$	$7137(6)$	$3264(3)$	$-22(2)$	$36(1)$
$\mathrm{C}(21)$	$7267(6)$	$4274(3)$	$601(2)$	$34(1)$
$\mathrm{C}(22)$	$12291(8)$	$8665(5)$	$4628(3)$	$62(1)$

Appendix C, Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for ck502s.

O-C(15)	1.233(3)	$\mathrm{C}(15)-\mathrm{N}-\mathrm{C}(8)$	123.4(3)	$\mathrm{N}-\mathrm{C}(8)-\mathrm{H}(8)$	105.3(15)
N-C(15)	1.349(4)	$\mathrm{C}(15)-\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	117(2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	110.9(16)
$\mathrm{N}-\mathrm{C}(8)$	1.462(4)	$\mathrm{C}(8)-\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	120(2)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	106.5(16)
$\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	0.84(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	104(2)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	118.6(3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.519(7)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	86(4)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	121.3(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	$1.09(5)$	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	114(5)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{C}(8)$	120.0(3)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	1.09(8)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	100(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.8(4)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	1.09(6)	$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	119(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	122.7(19)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.529(6)	$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	123(5)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	116.5(19)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1.13(8)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.1(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.2(4)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	1.15(7)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	108(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	123(2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.519(5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	109(4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	117(2)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	1.00(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	107(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.4(4)
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$1.08(5)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	100(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	118(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.501(5)	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	121(5)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	123(2)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.98(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	112.6(3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.8(4)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	1.08(4)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	114.3(17)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	120(2)
$\mathrm{C}(5)-\mathrm{C}(7)$	1.490 (5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	108.8(18)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.505(5)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	120(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	120.2(3)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.96 (3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	104(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.9(19)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.490 (5)	$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	96(3)	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	118.8(19)
$\mathrm{C}(6)-\mathrm{C}(22)$	1.511(5)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	110.7(3)	$\mathrm{O}-\mathrm{C}(15)-\mathrm{N}$	121.9(3)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.94(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	110(2)	O-C(15)-C(16)	121.8(3)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.502(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109(2)	$\mathrm{N}-\mathrm{C}(15)-\mathrm{C}(16)$	116.3(3)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.92(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	104.6(19)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(17)$	118.1(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.518(4)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	112.1(19)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(15)$	123.7(3)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.96(3)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	111(3)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)$	118.1(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.378(4)	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(4)$	121.2(3)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.5(3)
C(9)-C(14)	1.393(4)	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{C}(6)$	59.7(2)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	124.7(17)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.386(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	123.2(3)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	114.8(17)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.94(3)	$\mathrm{C}(7)-\mathrm{C}(5)-\mathrm{H}(5)$	111(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.3(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.374(5)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	114(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120(2)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.95(4)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	116(2)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120(2)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.377(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	59.7(2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	119.9(3)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.93(4)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(22)$	122.3(3)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{H}(19)$	119.2(16)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.376(5)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(22)$	121.9(3)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{H}(19)$	120.8(17)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.91(4)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	113.3(19)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	120.1(3)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.95(3)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	116.9(18)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	121.1(18)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.487(4)	$\mathrm{C}(22)-\mathrm{C}(6)-\mathrm{H}(6)$	112.9(18)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	118.7(18)
$\mathrm{C}(16)-\mathrm{C}(21)$	1.389(4)	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	60.7(2)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(16)$	121.1(3)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.399(4)	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	120.5(3)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	118.4(17)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.373(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	121.6(3)	$\mathrm{C}(16)-\mathrm{C}(21)-\mathrm{H}(21)$	120.5(17)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.98(3)	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{H}(7)$	113.0(17)	$\mathrm{C}(6)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	105.8(19)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.375(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	114.8(16)	$\mathrm{C}(6)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	112(3)
$\mathrm{C}(18)-\mathrm{H}(18)$	0.96 (3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	115.2(17)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	113(3)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.375(4)	$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(7)$	109.8(3)	$\mathrm{C}(6)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	111(3)
$\mathrm{C}(19)-\mathrm{H}(19)$	0.92(3)	$\mathrm{N}-\mathrm{C}(8)-\mathrm{C}(9)$	110.9(3)	$\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	107(3)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.367(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113.1(3)	$\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	107(4)
$\mathrm{C}(20)-\mathrm{H}(20)$	0.93(3)				
$\mathrm{C}(21)-\mathrm{H}(21)$	0.94(3)				
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	1.02(3)				
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	$1.05(5)$				
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	1.09(5)				

Appendix C, Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ck502s. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2}\left(a^{*}\right)^{2} U^{11}+\ldots+2 h k\left(a^{*}\right)\left(b^{*}\right) U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O	$20(1)$	$41(1)$	$52(1)$	$3(1)$	$5(1)$	$0(1)$
N	$18(1)$	$33(2)$	$44(2)$	$3(1)$	$3(1)$	$0(1)$
$\mathrm{C}(1)$	$94(4)$	$70(4)$	$105(5)$	$-4(3)$	$0(4)$	$24(3)$
$\mathrm{C}(2)$	$63(3)$	$63(3)$	$78(3)$	$4(3)$	$-8(3)$	$17(2)$
$\mathrm{C}(3)$	$56(3)$	$59(3)$	$60(3)$	$9(2)$	$-3(2)$	$15(2)$
$\mathrm{C}(4)$	$43(2)$	$49(2)$	$52(3)$	$16(2)$	$5(2)$	$0(2)$
$\mathrm{C}(5)$	$30(2)$	$43(2)$	$50(2)$	$12(2)$	$2(2)$	$-1(2)$
$\mathrm{C}(6)$	$35(2)$	$45(2)$	$50(2)$	$3(2)$	$5(2)$	$4(2)$
$\mathrm{C}(7)$	$21(2)$	$37(2)$	$39(2)$	$7(2)$	$7(2)$	$0(1)$
$\mathrm{C}(8)$	$25(2)$	$36(2)$	$40(2)$	$3(2)$	$4(2)$	$-1(1)$
$\mathrm{C}(9)$	$20(2)$	$36(2)$	$39(2)$	$0(2)$	$-4(1)$	$-2(1)$
$\mathrm{C}(10)$	$26(2)$	$45(2)$	$55(2)$	$3(2)$	$6(2)$	$1(2)$
$\mathrm{C}(11)$	$31(2)$	$42(2)$	$80(3)$	$16(2)$	$0(2)$	$7(2)$
$\mathrm{C}(12)$	$33(2)$	$43(2)$	$63(3)$	$17(2)$	$-11(2)$	$-10(2)$
$\mathrm{C}(13)$	$29(2)$	$48(2)$	$53(2)$	$15(2)$	$-1(2)$	$-8(2)$
$\mathrm{C}(14)$	$24(2)$	$36(2)$	$47(2)$	$6(2)$	$2(2)$	$3(2)$
$\mathrm{C}(15)$	$23(2)$	$29(2)$	$39(2)$	$14(2)$	$3(1)$	$-3(1)$
$\mathrm{C}(16)$	$22(2)$	$28(2)$	$34(2)$	$7(1)$	$-6(1)$	$-2(1)$
$\mathrm{C}(17)$	$24(2)$	$37(2)$	$39(2)$	$11(2)$	$0(2)$	$-2(1)$
$\mathrm{C}(18)$	$28(2)$	$37(2)$	$48(2)$	$8(2)$	$-1(2)$	$-8(2)$
$\mathrm{C}(19)$	$32(2)$	$37(2)$	$37(2)$	$22(2)$	$-6(2)$	$2(2)$
$\mathrm{C}(20)$	$28(2)$	$42(2)$	$38(2)$	$5(2)$	$5(2)$	$2(2)$
$\mathrm{C}(21)$	$20(2)$	$34(2)$	$46(2)$	$9(2)$	$2(2)$	$-6(1)$
$\mathrm{C}(22)$	$53(3)$	$62(3)$	$60(3)$	$-6(2)$	$-11(2)$	$-1(2)$

Appendix C, Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (\AA^{2} x 10^{3}) for ck502s.

	x	y	z	U(eq)
H(1N)	8850(60)	5770(30)	1960(17)	29(9)
H(1A)	14070(100)	1320(50)	3750(30)	107(16)
H(1B)	12600(130)	2210(70)	3000(50)	190(30)
H(1C)	10680(130)	1620(60)	3780(40)	160(30)
H(2A)	13290(130)	3270(70)	4610(50)	200(30)
H(2B)	14820(120)	3660(60)	3670(40)	170(30)
H(3A)	11020(50)	4130(30)	3120(20)	38(9)
H(3B)	9410(100)	3610(50)	3720(30)	130(19)
H(4A)	13330(70)	5950(30)	4080(20)	55(11)
H(4B)	11650(60)	5580(30)	4800(20)	63(11)
H(5)	8010(60)	6000(30)	3886(19)	50(10)
H(6)	8500(60)	8330(30)	4224(18)	35(9)
H(7)	11530(50)	7260(20)	3135(15)	22(7)
H(8)	6250(50)	7310(20)	2901(16)	22(7)
H(10)	5180(60)	9490(30)	2741(19)	38(9)
H(11)	5530(70)	11300(40)	2150(20)	76(13)
H(12)	8460(70)	11510(40)	1280(20)	$62(12)$
H(13)	11320(70)	9920(30)	1120(20)	54(11)
H(14)	10980(60)	8020(30)	1710(18)	41(9)
H(17)	2180(60)	3440(30)	1328(18)	40(9)
$\mathrm{H}(18)$	1940(60)	1640(30)	240(20)	53(10)
H(19)	5020(50)	1620(30)	-590(16)	20(7)
H(20)	8380(60)	3210(30)	-359(18)	$32(8)$
H(21)	8630(50)	4920(30)	681(16)	24(7)
H (22A)	13770(70)	8250(30)	4410(20)	51(10)
H(22B)	12290(80)	8640(40)	5240(30)	99(16)
$\mathrm{H}(22 \mathrm{C})$	12450(90)	9710(50)	4550(30)	126(19)

Appendix D

X-ray Structure and Data of Lactam anti-287

Appendix D, Table 1. Crystal data and structure refinement for chris601.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected Independent reflections
Completeness to theta $=25.03^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
chris601
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}$
201.26

210(2) K
0.71073 Å

Monoclinic
P2(1)/c
$\begin{array}{ll}\mathrm{a}=12.024(2) \AA & \alpha=90^{\circ} \\ \mathrm{b}=6.1680(12) \AA & \beta=96.28(3)^{\circ} \\ \mathrm{c}=15.437(3) \AA & \gamma=90^{\circ}\end{array}$
1138.0(4) \AA^{3}

4
$1.175 \mathrm{Mg} / \mathrm{m}^{3}$
$0.074 \mathrm{~mm}^{-1}$
432
$0.35 \times 0.14 \times 0.04 \mathrm{~mm}^{3}$
2.65 to 25.03°
$0 \leq h \leq 14,0 \leq k \leq 7,-18 \leq 1 \leq 18$
2119
$2016[\mathrm{R}(\mathrm{int})=0.0341]$
100.0\%

Sadabs
0.9970 and 0.9745

Full-matrix least-squares on F^{2}
2016 / 0 / 197
1.055
$\mathrm{R} 1=0.0500, \mathrm{wR} 2=0.0886$
$\mathrm{R} 1=0.1103, \mathrm{wR} 2=0.1077$
0.017(3)
0.111 and -0.118 e. \AA^{-3}

Appendix D, Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for chris601. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
O	$10119(2)$	$84(3)$	$11145(1)$	$66(1)$
N	$9090(2)$	$2373(3)$	$10251(1)$	$45(1)$
$\mathrm{C}(1)$	$9491(2)$	$1678(4)$	$11045(1)$	$47(1)$
$\mathrm{C}(2)$	$9136(3)$	$2849(5)$	$11820(2)$	$58(1)$
$\mathrm{C}(3)$	$8558(3)$	$4990(5)$	$11625(2)$	$56(1)$
$\mathrm{C}(4)$	$7729(2)$	$4854(4)$	$10802(1)$	$45(1)$
$\mathrm{C}(5)$	$8389(2)$	$4283(4)$	$10038(1)$	$41(1)$
$\mathrm{C}(6)$	$7111(3)$	$6958(5)$	$10638(2)$	$61(1)$
$\mathrm{C}(7)$	$6028(4)$	$7211(9)$	$10602(2)$	$92(1)$
$\mathrm{C}(8)$	$7645(2)$	$3901(4)$	$9195(1)$	$40(1)$
$\mathrm{C}(9)$	$7470(2)$	$5552(5)$	$8586(2)$	$55(1)$
$\mathrm{C}(10)$	$6756(3)$	$5232(6)$	$7824(2)$	$70(1)$
$\mathrm{C}(11)$	$6234(2)$	$3296(6)$	$7667(2)$	$71(1)$
$\mathrm{C}(12)$	$6404(2)$	$1640(6)$	$8256(2)$	$69(1)$
$\mathrm{C}(13)$	$7110(2)$	$1955(4)$	$9018(2)$	$55(1)$

Appendix D, Table 3. Bond lengths [\AA] and angles [${ }^{\circ}$] for chris 601.

$\mathrm{O}-\mathrm{C}(1)$	$1.239(3)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	$127.2(2)$	$\mathrm{N}-\mathrm{C}(5)-\mathrm{H}(5)$	$110.2(11)$
$\mathrm{N}-\mathrm{C}(1)$	$1.338(3)$	$\mathrm{C}(1)-\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	$113.7(16)$	$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{H}(5)$	$106.7(12)$
$\mathrm{N}-\mathrm{C}(5)$	$1.465(3)$	$\mathrm{C}(5)-\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	$119.0(16)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	$106.8(12)$
$\mathrm{N}-\mathrm{H}(1 \mathrm{~N})$	$0.90(3)$	$\mathrm{O}-\mathrm{C}(1)-\mathrm{N}$	$121.5(2)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(4)$	$125.6(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.498(3)$	$\mathrm{O}-\mathrm{C}(1)-\mathrm{C}(2)$	$120.4(2)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	$121.0(18)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.507(4)$	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$118.1(2)$	$\mathrm{C}(4)-\mathrm{C}(6)-\mathrm{H}(6)$	$113.3(18)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$0.92(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$115.4(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$123(2)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$1.00(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$104.5(18)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$113.7(19)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.528(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$111.5(18)$	$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$123(3)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	$0.96(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$107.9(16)$	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(9)$	$118.3(2)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$0.96(3)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$111.0(16)$	$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(5)$	$121.7(2)$
$\mathrm{C}(4)-\mathrm{C}(6)$	$1.504(3)$	$\mathrm{H}(2 \mathrm{~A})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$106(2)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(5)$	$120.0(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.534(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$111.2(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.2(3)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$1.00(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	$113.0(14)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	$120.5(15)$
$\mathrm{C}(5)-\mathrm{C}(8)$	$1.514(3)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	$107.0(14)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	$119.3(15)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$1.01(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$109.4(15)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$120.3(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.306(4)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$110.5(14)$	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	$121.7(17)$
$\mathrm{C}(6)-\mathrm{H}(6)$	$0.97(3)$	$\mathrm{H}(3 \mathrm{~A})-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~B})$	$106(2)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	$117.9(18)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$0.97(3)$	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(3)$	$111.0(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.3(3)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$1.01(3)$	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{C}(5)$	$110.9(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	$122.1(18)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.375(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.9(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	$117.6(18)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.386(3)$	$\mathrm{C}(6)-\mathrm{C}(4)-\mathrm{H}(4)$	$109.3(11)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$119.5(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.393(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	$110.2(12)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	$122.6(14)$
$\mathrm{C}(9)-\mathrm{H}(9)$	$1.00(3)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	$107.5(12)$	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	$117.9(14)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.359(4)$	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(8)$	$109.85(19)$	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	$121.4(3)$
$\mathrm{C}(10)-\mathrm{H}(10)$	$0.98(3)$	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4)$	$110.13(18)$	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13)$	$119.8(15)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.368(4)$	$\mathrm{C}(8)-\mathrm{C}(5)-\mathrm{C}(4)$	$112.99(19)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	$118.9(15)$
$\mathrm{C}(11)-\mathrm{H}(11)$	$0.95(3)$				
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.386(3)$				
$\mathrm{C}(12)-\mathrm{H}(12)$	$1.01(3)$				

Appendix D, Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for chris601. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2}\left(a^{*}\right)^{2} U^{11}+\ldots+2 h k\left(a^{*}\right)\left(b^{*}\right) U^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
O	$73(1)$	$78(1)$	$45(1)$	$7(1)$	$-6(1)$	$33(1)$
N	$42(1)$	$58(1)$	$36(1)$	$2(1)$	$0(1)$	$10(1)$
$\mathrm{C}(1)$	$43(1)$	$57(2)$	$40(1)$	$4(1)$	$-2(1)$	$2(1)$
$\mathrm{C}(2)$	$65(2)$	$68(2)$	$39(2)$	$3(1)$	$-2(1)$	$12(2)$
$\mathrm{C}(3)$	$63(2)$	$61(2)$	$41(2)$	$-4(1)$	$-2(1)$	$8(2)$
$\mathrm{C}(4)$	$47(1)$	$47(2)$	$40(1)$	$-3(1)$	$3(1)$	$11)$
$\mathrm{C}(5)$	$41(1)$	$41(1)$	$40(1)$	$5(1)$	$-1(1)$	$1(1)$
$\mathrm{C}(6)$	$69(2)$	$66(2)$	$46(2)$	$-5(1)$	$-7(1)$	$17(2)$
$\mathrm{C}(7)$	$91(3)$	$113(3)$	$68(2)$	$-14(2)$	$-10(2)$	$46(3)$
$\mathrm{C}(8)$	$40(1)$	$45(1)$	$35(1)$	$3(1)$	$5(1)$	$4(1)$
$\mathrm{C}(9)$	$65(2)$	$56(2)$	$43(2)$	$6(1)$	$4(1)$	$6(2)$
$\mathrm{C}(10)$	$81(2)$	$84(2)$	$43(2)$	$10(2)$	$-4(2)$	$20(2)$
$\mathrm{C}(11)$	$57(2)$	$100(3)$	$50(2)$	$-14(2)$	$-13(1)$	$22(2)$
$\mathrm{C}(12)$	$58(2)$	$71(2)$	$72(2)$	$-12(2)$	$-14(2)$	$-2(2)$
$\mathrm{C}(13)$	$53(2)$	$54(2)$	$56(2)$	$7(1)$	$-8(1)$	$0(1)$

Appendix D, Table 5. Hydrogen coordinates (x 10^{4}) and isotropic displacement parameters (\AA^{2} x 10^{3}) for chris601.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{~N})$	$9320(20)$	$1570(40)$	$9814(17)$	$70(9)$
$\mathrm{H}(2 \mathrm{~A})$	$8680(20)$	$1890(40)$	$12063(18)$	$80(10)$
$\mathrm{H}(2 \mathrm{~B})$	$9810(20)$	$3030(40)$	$12251(18)$	$91(9)$
$\mathrm{H}(3 \mathrm{~A})$	$9070(19)$	$6150(40)$	$11537(15)$	$57(8)$
$\mathrm{H}(3 \mathrm{~B})$	$8182(19)$	$5420(40)$	$12115(17)$	$66(8)$
$\mathrm{H}(4)$	$7178(17)$	$3660(30)$	$10859(13)$	$40(6)$
$\mathrm{H}(5)$	$8870(17)$	$5580(30)$	$9938(13)$	$45(6)$
$\mathrm{H}(6)$	$7600(20)$	$8190(50)$	$10597(18)$	$93(11)$
$\mathrm{H}(7 \mathrm{~A})$	$5660(30)$	$8600(50)$	$10490(20)$	$109(12)$
$\mathrm{H}(7 \mathrm{~B})$	$5600(30)$	$5810(60)$	$10660(20)$	$113(14)$
$\mathrm{H}(9)$	$7830(20)$	$6990(40)$	$8699(16)$	$74(9)$
$\mathrm{H}(10)$	$6660(20)$	$6430(50)$	$7403(19)$	$95(10)$
$\mathrm{H}(11)$	$5750(20)$	$3030(50)$	$7150(19)$	$91(9)$
$\mathrm{H}(12)$	$6040(20)$	$170(40)$	$8157(15)$	$74(8)$
$\mathrm{H}(13)$	$7222(19)$	$780(40)$	$9431(16)$	$69(8)$

Cited Literature

1. Wipf, P.; Kendall, C. In Topics in Organometallic Chemistry, Vol. 8: Metallocenes in Stereoselective Synthesis; Takahashi, T. Ed.; Springer-Verlag: Berlin, 2004.
2. Reviews: (a) Schwartz, J.; Labinger, J. A. Angew. Chem. Int. Ed. 1976, 15, 333; (b) Labinger, J. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, pp 667-702; (c) Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853; (d) Wipf, P.; Nunes, R. L. Tetrahedron 2004, 60, 1269. For a theoretical study of hydrozirconation, see (e) Endo, J.; Koga, N.; Morokuma, K. Organometallics 1993, 12, 2777.
3. (a) Wipf, P.; Takahashi, H.; Zhuang, N. Pure Appl. Chem. 1998, 70, 1077; (b) Annby, U.; Karlsson, S.; Grnowitz, S.; Hallberg, A.; Alvhall, J.;Svenson, R. Acta Chem. Scand. 1993, 47, 425; (c) Chirik, P. J.; Day, M. W.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1999, 121, 10308. (d) Azemi, T.; Kitamura, M.; Narasaka, K. Tetrahedron 2004, 60, 1339.
4. Zhang, Y.; Keaton, R. J.; Sita, L. R. J. Am. Chem. Soc. 2003, 125, 8746.
5. Most recent review: Negishi, E.; Takahashi, T. Bull. Chem. Soc. Jpn. 1998, 71, 755.
6. Takahashi, T.; Kotora, M.; Fischer, R.; Nishihara, Y.; Nakajima, K. J. Am. Chem. Soc. 1995, 117, 11039.
7. (a) Liard, A.; Marek, I. J. Org. Chem. 2000, 65, 7218; (b) Liard, A.; Kaftanov, J.; Chechik, H.; Farhat, S.; Morlender-Vais, N.; Averbuj, C.; Marek, I. J. Organomet. Chem. 2001, 624, 26.
8. Ganchegui, B.; Bertus, P.; Szymoniak, J. Synlett 2001, 123.
9. (a) Farhat, S.; Marek, I. Angew. Chem. Int. Ed. 2002, 21, 1410; (b) Farhat, S.; Zouev, I.; Marek, I. Tetrahedron 2004, 60, 1329.
10. Wailes, P. C.; Weigold, H. J. Organomet. Chem. 1970, 24, 405.
11. Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1972, 43, C32.
12. Wailes, P. C.; Weigold, H.; Bell, A. P. J. Organomet. Chem. 1971, $27,373$.
13. Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
14. Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679.
15. Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1979, 101, 3521.
16. (a) Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1992, 33, 7461; (b) Trauner, D.; Danishefsky, S. J. Tetrahedron Lett. 1999, 40, 6513.
17. Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115.
18. White, J. M.; Tunoori, A. R.; Georg, G. I. J. Am. Chem. Soc. 2000, 122, 11995.
19. Zablocka, M.; Delest, B.; Igau, A.; Skowronska, A.; Majoral, J.-P. Tetrahedron Lett. 1997, 38, 5997.
20. Bertelo, C. A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 228.
21. Negishi, E.; Swanson, D. R.; Miller, S. R. Tetrahedron Lett. 1988, 29, 1631.
22. (a) Lipshutz, B. H.; Keil, R.; Barton, J. C. Tetrahedron Lett. 1992, 33, 5861; (b) Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64, 23.
23. Bray, K. L.; Lloyd-Jones, G. C. Eur. J. Org. Chem. 2001, 1635.
24. Harada, S.; Taguchi, T.; Taguchi, N.; Narita, K.; Hanzawa, Y. Angew. Chem. Int. Ed. 1998, 37, 1696.
25. (a) Kakuuchi, A.; Taguchi, N.; Hanzawa, Y. Tetrahedron Lett. 2001, 42, 1547; (b) Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Eur. J. Org. Chem. 2003, 116.
26. Hanzawa, Y.; Tabuchi, T.; Taguchi, T. Tetrahedron Lett. 1998, 39, 6249.
27. (a) Hanzawa, Y.; Tabuchi, T.; Taguchi, T. Tetrahedron Lett. 1998, 39, 8141; (b) Hanzawa, Y.; Tabuchi, N.; Saito, K.; Noguchi, S.; Taguchi, T. Angew. Chem. Int. Ed. 1999, 38, 2395.
28. (a) Chino, M.; Matsumoto, T.; Suzuki, K. Synlett 1994, 359. See also (b) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y. Tetrahedron 1995, 51, 4507.
29. (a) Maeta, H.; Hashimoto, T.; Hasegawa, T.; Suzuki, K. Tetrahedron Lett. 1992, 33, 5965; (b) Suzuki, K.; Hasegawa, T.; Imai, T.; Maeta, H.; Ohba, S. Tetrahedron 1995, 51, 4483; (c) Richter, F.; Bauer, M.; Perez, C.; Maichle- Mössmer, C.; Maier, M. E. J. Org. Chem. 2002, 67, 2474.
30. (a) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 825; (b) Wipf, P.; Xu, W. J. Org. Chem. 1993, 58, 5880; (c) Wipf, P.; Methot, J.-L. Org. Lett. 1999, 1, 1253.
31. Negishi, E.; Van Horn, D. E. J. Am. Chem. Soc. 1977, 99, 3168.
32. (a) Okukado, N.; Van Horn, D. E.; Klima, W. L.; Negishi, E. Tetrahedron Lett. 1978, 19, 1027; (b) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393.
33. Xu, C. D.; Negishi, E. Tetrahedron Lett. 1999, 40, 431.
34. (a) Swanson, D. R.; Nguyen, T.; Noda, Y.; Negishi, E. J. Org. Chem. 1991, 56, 2590; (b) Makabe, H.; Negishi, E. Eur. J. Org. Chem. 1999, 969.
35. Barrett, A. G. M.; Peña, M.; Willardsen, J. A. J. Org. Chem. 1996, 61, 1082.
36. Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 82.
37. Lipshutz, B. H.; Frieman, B. Tetrahedron 2004, 60, 1309.
38. Wipf, P. Synthesis 1993, 537.
39. (a) Wipf, P.; Xu, W. Synlett 1992, 718; (b) El-Batta, A.; Hage, T. R.; Plotkin, S.; Bergdahl, M. Org. Lett. 2004, 6, 107.
40. (a) Wipf, P.; Xu, W.; Smitrovich, J. H.; Lehmann, R.; Venanzi, L. M. Tetrahedron 1994, 50, 1935; (b) Wipf, P.; Takahashi, H. J. Chem. Soc., Chem. Commun. 1996, 2675.
41. For a racemic Rh-catalyzed 1,4-addition of alkenylzirconocenes, see: (a) Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron 2004, 60, 1293. For an asymmetric Rh-catalyzed addition, see: (b) Oi, S.; Sato, T.; Inoue, Y. Tetrahedron Lett. 2004, 45, 5051.
42. Lipshutz, B. H.; Bhandari, A.; Lindsley, C.; Keil, R.; Wood, M. R. Pure Appl. Chem. 1994, 66, 1493.
43. Lipshutz, B. H.; Kato, K. Tetrahedron Lett. 1991, 32, 5647.
44. (a) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440; (b) Babiak, K. A.; Behling, J. R.; Dygos, J. H.; McLaughlin, K. T.; Ng, J. S.; Kalish, V. J.; Kramer, S. W.; Shone, R. L. J. Am. Chem. Soc. 1990, 112, 7441.
45. (a) Lipshutz, B. H.; Wood, M. R. J. Am. Chem. Soc. 1994, 116, 11689; (b) Lipshutz, B. H.; Wood, M. R. Tetrahedron Lett. 1994, 35, 6433.
46. Manzotti, R.; Tang, S.-Y.; Janda, K. D. Tetrahedron 2000, 56, 7885.
47. Wipf, P.; Kendall, C. Chem. Eur. J. 2002, 8, 1778.
48. Negishi, E.; Okukado, N.; King, A. O.; Van Horn, D. E.; Spiegel, B. I. J. Am. Chem. Soc. 1978, 100, 2254.
49. InCl_{3} was recently shown to be superior to ZnCl_{2} : Qian, M.; Huang, Z.; Negishi, E. Org. Lett. 2004, 6, 1531.
50. Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4912.
51. Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4914.
52. Langille, N. F.; Panek, J. S. Org. Lett. 2004, 6, 3203.
53. Drouet, K. E.; Theodorakis, E. A. Chem. Eur. J. 2000, 6, 1987.
54. Hu, T.; Panek, J. S. J. Am. Chem. Soc. 2002, 124, 11368.
55. Thompson, C. F.; Jamison, T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 9974.
56. Lee, T. W.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 1872.
57. Zeng, F.; Negishi, E. Org. Lett. 2001, 3, 719.
58. Ribe, S.; Kondru, R. K.; Beratan, D. N.; Wipf, P. J. Am. Chem. Soc. 2000, 122, 4608.
59. Negishi, E.; Alimardanov, A.; Xu, C. Org. Lett. 2000, 2, 65.
60. Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197.
61. For a recent review of Zr complexes as chiral Lews acids, see: Yamasaki, S.; Kanai, M.; Shibasaki, M. Chem. Eur. J. 2001, 7, 4067.
62. This mechanism is supported by ${ }^{1} \mathrm{H}$ NMR evidence: upon addition of $\mathrm{Me}_{2} \mathrm{Zn}$ to a solution of hexenylzirconocene $\mathbf{6}$ there is a significant reduction in the intensity of the doublet at 7.00 ppm and concomitant appearance of a new doublet at 6.24 ppm. See ref. 60 .
63. Wipf, P.; Xu, W. Org. Synth. 1997, 74, 205.
64. Wipf, P.; Xu, W.; Takahashi, H.; Jahn, H.; Coish, P. D. G. Pure Appl. Chem. 1997, 69, 639.
65. Zheng, B.; Srebnick, M. J. Org. Chem. 1995, 60, 3278.
66. Maier, M. E.; Oost, T. J. Organomet. Chem. 1995, 505, 95.
67. Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556.
68. Wipf, P.; Coish, P. D. G. Tetrahedron Lett. 1997, 38, 5073.
69. Wipf, P.; Coish, P. D. G. J. Org. Chem. 1999, 64, 5053.
70. Williams, D. R.; Ihle, D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383.
71. Williams, D. R.; Mi, L.; Mullins, R. J.; Stites, R. E. Tetrahedron Lett. 2002, 43, 4841.
72. Messenger, B. T.; Davidson, B. S. Tetrahedron Lett. 2001, 42, 801.
73. Murakami, T.; Furusawa, K. Tetrahedron 2002, 58, 9257.
74. Chavez, D. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2001, 40, 3667.
75. Wipf, P.; Stephenson, C. R. J. Org. Lett. 2003, 5, 2449.
76. Powell, N. A.; Rychnovsky, S. D. J. Org. Chem. 1999, 64, 2026.
77. Critcher, D. J.; Connolly, S.; Wills, M. J. Org. Chem. 1997, 62, 6638.
78. Barloy-Da Silva, C.; Benkouider, A.; Pale, P. Tetrahedron Lett. 2000, 41, 3077.
79. Fukuda, A.; Kobayashi, Y.; Kimachi, T.; Takemoto, Y. Tetrahedron 2003, 59, 9305.
80. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454.
81. Ribe, S. D. Ph. D. Thesis, University of Pittsburgh, 2003.
82. Wipf, P.; Jayasuriya, N.; Ribe, S. Chirality 2003, 15, 208.
83. Trauner, D.; Shwarz, J. B.; Danishefsky, S. J. Angew. Chem. Int. Ed. 1999, 38, 3542.
84. Wipf, P.; Reeves, J. T. J. Chem. Soc., Chem. Commun. 2002, 2066.
85. Reeves, J. T. Ph. D Thesis, University of Pittsburgh, 2002.
86. Williams, D. R.; Plummer, S. V.; Patnaik, S. Angew. Chem. Int. Ed. 2003, 42, 3934.
87. Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco Jr.; J. A. J. Am. Chem. Soc. 2003, 125, 7889.
88. Li, H.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 6538.
89. Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 12225.
90. Nugent, W. A. J. Chem. Soc., Chem. Commun. 1999, 1369.
91. García, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970.
92. (a) ref 89; (b) Imogaï, H.; Petit, Y.; Larchevêque, M. Tetrahedron Lett. 1996, 37, 2573.
93. Total Syntheses: (a) Valentekovich, R. J.; Schreiber, S. L. J. Am. Chem. Soc. 1995, 117, 9069; (b) Samy, R.; Kim, H. Y.; Brady, M.; Toogood, P. L. J. Org. Chem. 1999, 64, 2711;
(c) Bauer, S. M.; Armstrong, R. W. J. Am. Chem. Soc. 1999, 121, 6355; (d) ref. 54.
94. Total Syntheses: (a) Andersen, R. J.; Coleman, J. E.; Piers, E.; Wallace, D. J. Tetrahedron Lett. 1997, 38, 317; (b) Vedejs, E.; Kongkittingam, C. J. Org. Chem. 2001, 66, 7355; (c) Nieman, J. A.; Coleman, J. E.; Wallace, D. J.; Piers, E.; Lim, L. Y.; Roberge, M.; Andersen, R. J. J. Nat. Prod. 2003, 66, 183.
95. Total Syntheses: (a) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570; (b) Wipf, P.; Kim, H. J. Org. Chem. 1993, 58, 5592; (c) Maryanoff, B. E.; Greco, M. N.; Zhang, H.-C.; Andrade-Gordon, P.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem. Soc. 1995, 117, 1225; (d) Deng, J.; Hamada, Y.; Shiori, T.; Matsunaga, S.; Fusetani, N. Angew. Chem. Int. Ed. 1994, 33, 1729; (e) Bastiaans, H. M. M.; van der Baan, J. L.; Ottenheijm, H. C. J. J. Org. Chem. 1997, 62, 3880; (f) Wasserman, H. H.; Zhang, R. Tetrahedron 2002, 58, 6277.
96. Total Syntheses: (a) White, J. D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1997, 119, 103; (b) Hoemann, M. Z.; Agrios, K. A.; Aubé, J. Tetrahedron 1997, 53, 11087; (c) Ito, H.; Imai, N.; Takao, K.; Kobayashi, S. Tetrahedron Lett. 1996, 37, 1799; (d) Onoda, T.; Shirai, R.; Koiso, Y.; Iwasaki, S. Tetrahedron Lett. 1996, 37, 4397; (e) Lai, J.-Y.; Yu, J.; Mekonnen, B.; Falck, J. R. Tetrahedron Lett. 1996, 37, 7167; (f) Muir, J. C.; Pattenden, G.; Ye, T. J. Chem. Soc., Perkin Trans. 1 2002, 2243; (g) ref. 67.
97. (a) Wipf, P.; Fritch, P. C. J. Org. Chem. 1994, 59, 4875; (b) Wipf, P.; Henninger, T. C. J. Org. Chem. 1997, 62, 1586; (c) Wipf, P.; Henninger, T. C.; Geib, S. J. J. Org. Chem. 1998, 63, 6088. For general reviews of peptide isosteres, see: (d) Bursavich, M. G.; Rich, D. H. J. Med. Chem. 2002, 45, 541; (e) Gante, J. Angew. Chem. Int. Ed. 1994, 33, 1699. For recent examples, see: (f) Masse, C. E.; Knight, B. S.; Stavropoulos, P.; Panek, J. S. J. Am. Chem. Soc. 1997, 119, 6040; (g) Tamamura, H.; Yamashita, M.; Nakajima, Y.; Sakano, K.; Otaka, A.; Ohno, H.; Ibuka, T.; Fujii, N. J. Chem. Soc., Perkin Trans. 1 1999, 2983; (h) Vasbinder, M. M.; Miller, S. J. J. Org. Chem. 2002, 67, 6240 and references cited therein.
98. (a) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98, 1689; (b) Cheikh, R. B.; Chaabouni, R.; Laurent, A.; Mison, P.; Nafti, A. Synthesis 1983, 685.
99. (a) Wei, Z.-Y.; Knaus, E. E. Synthesis 1994, 1463; (b) Katritzky, A. R.; Cheng, D.; Li, J. J. Org. Chem. 1998, 63, 3438.
100. (a) Overman, L. E. Acc. Chem. Res. 1980, 13, 218; (b) Overman, L. E.; Zipp, G. G. J. Org. Chem. 1997, 62, 2288; (c) see ref. 2 of Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125, 12412.
101. Kim, S.; Lee, T.; Lee, E.; Lee, J.; Fan, G.; Lee, S. K.; Kim, D. J. Org. Chem. 2004, 69, 3144.
102. Ichikawa, Y.; Ito, T.; Nishiyama, T.; Isobe, M. Synlett 2003, 1034.
103. Chen, B.; Mapp, A. K. J. Am. Chem. Soc. 2004, 126, 5364.
104. Lee, E. E.; Batey, R. A. Angew. Chem. Int. Ed. 2004, 43, 1865.
105. Hollis, T. K.; Overman, L. E. J. Organomet. Chem. 1999, 576, 290.
106. Overman, L. E.; Owen, C. E.; Pavan, M. M.; Richards, C. J. Org. Lett. 2003, 5, 1809.
107. Reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395; (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921; (c) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
108. (a) Nakanishi, M.; Mori, M. Angew. Chem. Int. Ed. 2002, 41, 1934; (b) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato, Y. Org. Lett. 2001, 3, 1913.
109. For recent leading references, see: (a) Konno, T.; Nagata, K.; Ishihara, T.; Yamanaka, H. J. Org. Chem. 2002, 67, 1768; (b) Evans, P. A.; Robinson, J. E.; Moffett, K. K. Org. Lett. 2001, 3, 3269; (c) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164; (d) Leitner, A.; Shu, C.; Hartwig, J. F. Proc. Nat. Acad. Sci. 2004, 101, 5830; (e) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem. Int. Ed. 2004, 43, 4797; (f) Lipowsky, G.; Helmchen, G. J. Chem. Soc., Chem. Commun. 2004, 116; (g) Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.
110. Löber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123, 4366.
111. (a) Shi, M.; Xu, Y.-M. Angew. Chem. Int. Ed. 2002, 41, 4507; (b) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.; Hatakeyama, S. Org. Lett. 2003, 5, 3103; (c) Balan, D.; Adolfsson, H. Tetrahedron Lett. 2003, 44, 2521; (d) Shi, M.; Zhao, G.-L. Adv. Synth. Catal. 2004, 346, 1205. A chiral auxiliary-based aza-Baylis-Hilman reaction has also been described: (e) Aggarwal, V. K.; Castro, A. M. M.; Mereu, A.; Adams, H. Tetrahedron Lett. 2002, 43, 1577.
112. Cardillo, G.; Fabbroni, S.; Gentilucci, L.; Perciaccante, R.; Tolomelli, A. Tetrahedron: Asymmetry 2004, 15, 593.
113. Chao, B.; Dittmer, D. C. Tetrahedron Lett. 2001, 42, 5789.
114. (a) Yadav, J. S.; Bandyopadhyay, A.; Reddy, B. V. S. Synlett 2001, 1608; (b) Yadav, J. S.; Bandyopadhyay, A.; Reddy, B. V. S. Tetrahedron Lett. 2001, 42, 6385.
115. Martín, R.; Alcón, M.; Pericàs, M. A.; Riera, A. J. Org. Chem. 2002, 67, 6896.
116. Picó, A.; Moyano, A.; Pericàs, M. A. J. Org. Chem. 2003, 68, 5075.
117. Castagnolo, D.; Armaroli, S.; Corelli, F.; Botta, M. Tetrahedron: Asymmetry 2004, 15, 941.
118. Pallavicini, M.; Valoti, E.; Villa, L.; Piccolo, O. Tetrahedron: Asymmetry 2000, 11, 4017.
119. (a) Castelhano, A. L.; Horne, S.; Billedeau, R.; Krantz, A. Tetrahedron Lett. 1986, 27, 2435; (b) Dondoni, A.; Merchán, F. L.; Merino, P.; Tejero, T. Synth. Commun. 1994, 24, 2551; (c) Agami, C.; Couty, F.; Evano, G. Org. Lett. 2000, 2, 2085.
120. Betz, J.; Heuschmann, M. Tetrahedron Lett. 1995, 36, 4043.
121. (a) Inoue, I.; Shindo, M.; Koga, K.; Tomioka, K. Tetrahedron 1994, 50, 4429; (b) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C. J. Am. Chem. Soc. 1994, 116, 8797; (c) Andersson, P. G.; Johansson, F.; Tanner, D. Tetrahedron 1998, 54, 11549.
122. (a) Claremon, D. A.; Lumma, P. K.; Phillips, B. T. J. Am. Chem. Soc. 1986, 108, 8265; (b) Denmark, S. E.; Weber, T.; Piotrowski, D. W. J. Am. Chem. Soc. 1987, 109, 2224; (c) Chang, Z.-Y.; Coates, R. M. J. Org. Chem. 1990, 55, 3475; (d) Reetz, M. T.; Jaeger, R.; Drewlies, R.; Hübel, M. Angew. Chem. Int. Ed. 1991, 30, 103; (e) Hamon, D. P. G.; MassyWestropp, R. A.; Razzino, P. Tetrahedron 1992, 48, 5163; (f) Beresford, K. J. M.; Howe, G. P.; Procter, G. Tetrahedron Lett. 1992, 33, 3355; (g) Matsubara, S.; Ukita, H.; Kodama, T.; Utimoto, K. Chem. Lett. 1994, 831; (h) Alexakis, A.; Lensen, N.; Tranchier, J.-P.; Mangeney, P.; Feneau-Dupont, J.; Declercq, J. P. Synthesis 1995, 1038; (i) Cogan, D. A.; Liu, G.; Ellman, J. Tetrahedron 1999, 55, 8883; (j) Badorrey, R.; Cativiela, C.; Díaz-de-
Villegas, M. D.; Díez, R.; Gálvez, J. A. Eur. J. Org. Chem. 2003, 2268.
123. Braun, M.; Opdenbusch, K. Liebigs Ann. Recueil 1997, 141.
124. Scialdone, M. A.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 7533.
125. Martin, S. F.; Horn, R. K. Tetrahedron Lett. 1999, 40, 2887.
126. Masson, G.; Compain, P.; Martin, O. R. Org. Lett. 2000, 2, 2971.
127. Schwardt, O.; Veith, U.; Gaspard, C.; Jäger, V. Synthesis 1999, 1473.
128. Cossy, J.; Pévet, I.; Meyer, C. Synlett 2000, 122.
129. Yamazaki, N.; Atobe, M.; Kibayashi, C. Tetrahedron Lett. 2002, 43, 7979.
130. Hayashi, T.; Ishigedani, M. Tetrahedron 2001, 57, 2589.
131. Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3, 2847.
132. (a) Bettiol, J.-L.; Sundberg, R. J. J. Org. Chem. 1993, 58, 814; (b) ref. 119c.
133. (a) Xu, Z.; Johannes, C. W.; La, D. S.; Hofilena, G. E.; Hoveyda, A. H. Tetrahedron 1997, 53, 16377; (b) Alvaro, G.; Pacioni, P.; Savoia, D. Chem. Eur. J. 1997, 3, 726.
134. Buchwald, S. L.; Watson, B. T.; Wannamaker, M. W.; Dewan, J. C. J. Am. Chem. Soc. 1989, 111, 4486.
135. Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem. Soc. 1991, 113, 2321.
136. (a) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Tetrahedron Lett. 1992, 33, 5655; (b) Coles, N.; Harris, M. C. J.; Whitby, R. J.; Blagg, J. Organometallics 1994, 13, 190; (c) Davis, J. M.; Whitby, R. J.; Jaxa-Chamiec, A. Synlett 1994, 110; (d) Probert, G. D.; Whitby, R. J.; Coote, S. J. Tetrahedron Lett. 1995, 36, 4113; (e) Harris, M. C. J.; Whitby, R. J.; Blagg, J. Tetrahedron Lett. 1995, 36, 4287.
137. (a) Honda, T.; Satoh, S.-i.; Mori, M. Organometallics 1995, 14, 1548; (b) Honda, T.; Mori, M. J. Org. Chem. 1996, 61, 1196; (c) Honda, T.; Mori, M. Organometallics 1996, 15, 5464.
138. (a) Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1989, 111, 4495; (b) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 1992, 33, 4469; (c) Barluenga, J.; Sanz, R.; Fañanás, F. J. J. Org. Chem. 1997, 62, 5953; (d) Barluenga, J.; Rodríguez, F.; Álvarez-Rodrigo, L.; Zapico, J. M.; Fañanás, F. J. Chem. Eur. J. 2004, 10, 109.
139. Takai, K.; Odata, H.; Kataoka, Y.; Utimoto, K. Tetrahedron Lett. 1994, 35, 1893.
140. (a) Gao, Y.; Harada, K.; Sato, F. Tetrahedron Lett. 1995, 36, 5913; (b) Gao, Y.; Yoshida, Y.; Sato, F. Synlett 1997, 1353; (c) Fukuhara, K.; Okamoto, S.; Sato, F. Org. Lett. 2003, 5, 2145.
141. Hauske, J. R.; Dorff, P.; Julin, S.; Martinelli, G.; Bussolari, J. Tetrahedron Lett. 1992, 33, 3715.
142. Pandya, S. U.; Garçon, C.; Chavant, P. Y.; Py, S.; Vallée, Y. J. Chem. Soc., Chem. Commun. 2001, 1806.
143. (a) Pandya, S. U.; Pinet, S.; Chavant, P. Y.; Vallée, Y. Eur. J. Org. Chem. 2003, 3621. The addition of alkenylboronic acids to in situ prepared α-hydroxyimines has also been reported: (b) Petasis, N. A.; Zavialov, I. A. J. Am. Chem. Soc. 1998, 120, 11798.
144. Kakuuchi, A.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett. 2003, 44, 923.
145. Wipf, P.; Lim, S. Angew. Chem. Int. Ed. 1993, 32, 1068.
146. Review: Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.
147. Wipf, P.; Nunes, R. L.; Ribe, S. Helv. Chim. Acta 2002, 85, 3478.
148. (a) Germon, C.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1980, 21, 3763; (b) Germon, C.; Alexakis, A.; Normant, J. F. Synthesis 1984, 40.
149. Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364.
150. Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2004, 43, 3941.
151. Pu, L.; Yu, H.-B. Chem. Rev. 2001, 101, 757 and reviews cited therein.
152. Recent reviews: (a) Bloch, R. Chem. Rev. 1998, 98, 1407. (b) Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069. (c) Charette, A. B.; Côté, A. Latvian J. Chem. 2004, 2, 263.
153. Katritzky, A. R.; Harris, P. Tetrahedron: Asymmetry 1992, 3, 437.
154. Soai, K.; Hatanaka, T.; Miyazawa, T. J. Chem. Soc., Chem. Commun. 1992, 1097.
155. Sato, I.; Kodaka, R.; Soai, K. J. Chem. Soc., Perkin Trans. I 2001, 2912.
156. (a) Soai, K.; Suzuki, T.; Shono, T. J. Chem. Soc., Chem. Commun. 1994, 317; (b) Suzuki, T.; Narisada, N.; Shibata, T.; Soai, K. Tetrahedron: Asymmetry 1996, 7, 2519; (c) Suzuki, T.; Shibata, T.; Soai, K. J. Chem. Soc., Perkin Trans. I 1997, 2757; (d) Suzuki, T.; Narisada, N.; Shibata, T.; Soai, K. Polym. Adv. Tech. 1999, 10, 30.
157. (a) Suzuki, T.; Hirokawa, Y.; Ohtake, K.; Shibata, T.; Soai, K. Tetrahedron: Asymmetry 1997, 8, 4033; (b) Sato, I.; Kodaka, R.; Shibata, T.; Hirokawa, Y.; Shirai, N.; Ohtake, K.; Soai, K. Tetrahedron: Asymmetry 2000, 11, 2271; (c) Sato, I.; Hosoi, K.; Kodaka, R.; Soai, K. Eur. J. Org. Chem. 2002, 3115.
158. (a) Andersson, P. G.; Guijarro, D.; Tanner, D. Synlett 1996, 727; (b) Andersson, P. G.; Guijarro, D.; Tanner, D. J. Org. Chem. 1997, 62, 7364.
159. (a) Guijarro, D.; Pinho, P.; Andersson, P. G. J. Org. Chem. 1998, 63, 2530; (b) Brandt, P.; Hedberg, C.; Lawonn, K.; Pinho, P.; Andersson, P. G. Chem. Eur. J. 1999, 5, 1692; (c) Pinho, P.; Andersson, P. Tetrahedron 2001, 57, 1615.
160. (a) Jimeno, C.; Vidal-Ferran, A.; Moyano, A.; Pericàs, M. A.; Riera, A. Tetrahedron Lett. 1999, 40, 777; (b) Jimeno, C.; Reddy, K. S.; Solà, L.; Moyano, A.; Pericàs, M. A.; Riera, A. Org. Lett. 2000, 2, 3157.
161. (a) Zhang, X.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron Lett. 2001, 42, 6369; (b) Zhang, H.-L, Zhang, X.-M.; Gong, L.-Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. Org. Lett. 2002, 4, 1399; (c) Zhang,
H.-L.; Jiang, F.; Zhang, X.-M.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Chem. Eur. J. 2004, 10, 1481.
162. (a) Zhang, X.; Lin, W.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron Lett. 2002, 43, 1535; (b) Zhang, X.-M.; Zhang, H.-L.; Lin, W.-Q.; Gong, L.Z.; Mi, A.-Q.; Cui, X.; Jiang, Y.-Z.; Yu, K.-B. J. Org. Chem. 2003, 68, 4322.
163. (a) Beresford, K. J. M. Tetrahedron Lett. 2002, 43, 7175; (b) Beresford, K. J. M. Tetrahedron Lett. 2004, 45, 6041.
164. Storace, L.; Anzalone, L.; Confalone, P. N.; Davis, W. P.; Fortunak, J. M.; Giangiordano, M.; Haley Jr., J. J.; Kamholz, K.; Li, H.-Y.; Ma, P.; Nugent, W. A.; Parsons Jr., R. L.; Sheeran, P. J.; Silverman, C. E.; Waltermire, R. E.; Wood, C. C. Org. Proc. Res. Dev. 2002, 6, 54.
165. (a) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055; (b) Nagai, K.; Fujihara, H.; Kuriyama, M.; Yamada, K.; Tomioka, K. Chem. Lett. 2002, 8; (c) Soeta, T.; Nagai, K.; Fujihara, H.; Kuriyama, M.; Tomioka, K. J. Org. Chem. 2003, 68, 9723.
166. (a) Boezio, A. A.; Charette, A. J. Am. Chem. Soc. 2003, 125, 1692; (b) Boezio, A. A.; Pytkowicz, J.; Côté, A.; Charette, A. J. Am. Chem. Soc. 2003, 125, 14260; (c) Côté, A.; Boezio, A. A.; Charette, A. Proc. Nat. Acad. Sci. 2004, 101, 5405.
167. (a) Shi, M.; Wang, C.-J. Adv. Synth. Cat. 2003, 345, 971; (b) Wang, C.-J.; Shi, M. J. Org. Chem. 2003, 68, 6229.
168. Shi, M.; Zhang, W. Tetrahedron: Asymmetry 2003, 14, 3407.
169. Li, X.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Tetrahedron: Asymmetry 2003, 14, 3819.
170. (a) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 984; (b) Porter, J. R.; Traverse, J. F.; Hoveyda, A. H.; Snapper, M. L. J. Am. Chem. Soc. 2001, 123, 10409; (c) Akullian, L. C.; Snapper, M. L.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42, 4244.
171. Dahmen, S.; Bräse, S. J. Am. Chem. Soc. 2002, 124, 5940.
172. Recent reviews: (a) Charette, A. B.; Beauchemin, A. Org. React. 2001, 58, 1; (b) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977. For recent theoretical studies of Simmons-Smith cyclopropanation, see: (c) Fang, W.-H.; Phillips, D.
L.; Wang, D.; Li, Y.-L. J. Org. Chem. 2002, 67, 154; (d) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc. 2003, 125, 2341.
173. Syntheses of L-CCG-I: (a) Shimamoto, K.; Ohfune, Y.; Watanabe, K.; Li, P. N.; Takeuchi, H. Tetrahedron Lett. 1988, 29, 1181; (b) Shimamoto, K.; Ohfune, Y. Tetrahedron Lett. 1989, 30, 3803; (c) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y. J. Org. Chem. 1991, 56, 4167; (d) Shimamoto, K.; Ohfune, Y. Synlett 1993, 919; (e) Pellicciari, R.; Natalini, B.; Marinozzi, M. Tetrahedron Lett. 1990, 31, 129; (f) Alcaraz, C.; Bernabé, M. Tetrahedron: Asymmetry 1994, 5, 1221; (g) Ma, D.; Ma, Z. Tetrahedron Lett. 1997, 38, 7599; (h) Demir, A. S.; Tanyeli, C.; Cagir, A.; Tahir, M. N.; Ulku, D. Tetrahedron: Asymmetry 1998, 9, 1035; (i) Rifé, J.; Ortuño, R. M.; Lajoie, G. A. J. Org. Chem. 1999, 64, 8958; (j) Pajouhesh, H.; Chen, J.; Pajouhesh, S. H. Tetrahedron: Asymmetry 2000, 11, 4537; (k) Mohapatra, D. K. J. Chem. Soc., Perkin Trans. I 2001, 1851; (1) Wallock, N. J.; Donaldson, W. A. Tetrahedron Lett. 2002, 43, 4541; (m) Chavan, S. P.; Sharma, P.; Sivappa, R.; Bhadbhade, M. M.; Gonnade, R. G.; Kalkote, U. R. J. Org. Chem. 2003, 68, 6817.
174. Synthesis of L-CCG-I analogues: (a) Kurokawa, N.; Ohfune, Y. Tetrahedron Lett. 1985, 26, 83; (b) Shimamoto, K.; Ohfune, Y. Tetrahedron Lett. 1990, 31, 4049; (c) de Frutos, P.; Fernández, D.; Fernández-Alvarez, E.; Bernabé, M. Tetrahedron 1992, 48, 1123; (d) Zindel, J.; de Meijere, A. Synthesis 1994, 190; (e) Chavan, S. P.; Venkatraman, M. S.; Sharma, A. K.; Chittiboyina, A. G. Tetrahedron Lett. 1996, 37, 2857; (f) Fishlock, D.; Guillemette, J. G.; Lajoie, G. A. J. Org. Chem. 2002, 67, 2352; (g) Demir, A. S.; Sesenoglu, Ö.; Ülkü, D.; Arici, C. Helv. Chim. Acta 2004, 87, 106.
175. (a) Jain, R. P.; Vederas, J. C. Org. Lett. 2003, 5, 4669; (b) Baldwin, J. E.; Adlington, R. M.; Bebbington, D.; Russell, A. T. Tetrahedron 1994, 50, 12015.
176. Reviews: (a) Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625; (b) Faust, R. Angew. Chem. Int. Ed. 2001, 40, 2251; (c) Burgess, K.; Ho, K.-K.; MoyeSherman, D. Synlett 1994, 575. For recent reports on cyclopropane amino acids, see: (d) Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Sheperd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. J. Org. Chem. 2003, 68, 9433; (e) Adams, L. A.; Charmant, J. P. H.; Cox, R. J.; Walter, M.; Whittingham, W. G. Org.

Biomol. Chem. 2004, 2, 542; (f) Boaz, N. W.; Debenham, S. D.; Large, S. E.; Moore, M. K. Tetrahedron: Asymmetry 2003, 14, 3575; (g) Wurz, R. P.; Charette, A. B. J. Org. Chem. 2004, 69, 1262; (h) Sakai, R.; Suzuki, K.; Shimamoto, K.; Kamiya, H. J. Org. Chem. 2004, 69, 1180; (i) Gnad, F.; Poleschak, M.; Reiser, O. Tetrahedron Lett. 2004, 45, 4277; (j) Zlatopolskiy, B. D.; Loscha, K.; Alvermann, P.; Kozhushkov, S. I.; Nikolaev, S. J.; Zeeck, A.; de Meijere, A. Chem. Eur. J. 2004, 10, 4708; (k) Zlatopolskiy, B. D.; de Meijere, A. Chem. Eur. J. 2004, 10, 4718.
177. Faucher, A.-M.; Bailey, M. D.; Beaulieu, P. L.; Brochu, C.; Duceppe, J.-S.; Ferland, J.-M.; Ghiro, E.; Gorys, V.; Halmos, T.; Kawai, S. H.; Poirier, M.; Simoneau, B.; Tsantrizos, Y. S.; Llinas-Brunet, M. Org. Lett. 2004, 6, 2901.
178. (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323; (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
179. (a) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 33, 3353; (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron 1968, 24, 53.
180. Lorenz, J. C.; Lon, J.; Yang, Z.; Xue, S.; Xie, Y.; Shi, Y. J. Org. Chem. 2004, 69, 327.
181. (a) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1968, 35, 3495; (b) Kawabata, N.; Nakagawa, T.; Nakao, T.; Shinzo, Y. J. Org. Chem. 1977, 42, 3031; (c) Friedrich, E. C.; Biresaw, G. J. Org. Chem. 1982, 47, 2426; (d) Molander, G. A.; Etter, J. B. J. Org. Chem. 1987, 52, 3942; (e) Momose, T.; Nishio, T.; Kirihara, M. Tetrahedron Lett. 1996, 37, 4987.
182. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
183. Moss, R. A.; Chen, E. Y.; Banger, J.; Matsuo, M. Tetrahedron Lett. 1978, 45, 4365.
184. Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966.
185. (a) Charette, A. B.; Lebel, H.; Gagnon, A. Tetrahedron 1999, 55, 8845; (b) Charette, A. B.; Lacasse, M.-C. Org. Lett. 2002, 4, 3351.
186. Russ, P.; Ezzitouni, A.; Marquez, V. E. Tetrahedron Lett. 1997, 38, 723.
187. Concellón, J. M.; Rodríguez-Solla, H.; Gómez, C. Angew. Chem. Int. Ed. 2002, 41, 1917.
188. (a) Aggarwal, V. K.; Fang, G.; Charmant, J. P. H.; Meek, G. Org. Lett. 2003, 5, 1757; (b) Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1.
189. Aggarwal, V. K.; Fang, G. Y.; Meek, G. Org. Lett. 2003, 5, 4417.
190. Yachi, K.; Shinokubo, H.; Oshima, K. Angew. Chem. Int. Ed. 1998, 37, 2515.
191. Harada, S.; Kowase, N.; Tabuchi, N.; Taguchi, T.; Dobashi, Y.; Dobashi, A.; Hanzawa, Y. Tetrahedron 1998, 54, 753.
192. Gandon, V.; Szymoniak, J. J. Chem. Soc., Chem. Commun. 2002, 1308. See also: Gandon, V.; Bertus, P.; Szymoniak, J. Eur. J. Org. Chem. 2000, 3713.
193. Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2001, 123, 5122; (b) Wipf, P.; Kendall, C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2003, 125, 761.
194. Hou, X. L.; Zheng, X. L.; Dai, L. X. Tetrahedron Lett. 1998, 39, 6949.
195. Ramage, R.; Hopton, D.; Parrott, M. J.; Kenner, G. W.; Moore, G. A. J. Chem. Soc., Perkin Trans I 1984, 1357.
196. Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontsov, E.; Starikova, Z.; Lysenko, K.; Belokon, Y. Eur. J. Org. Chem. 2000, 3295.
197. Bulman, P. C.; Allin, S. M.; Maddocks, S. J.; Elsegood, M. R. J. J. Chem. Soc., Perkin Trans. I 2002, 2827.
198. Soai, K.; Ookawa, A.; Kaba, T.; Ogawa, K. J. Am. Chem. Soc. 1987, 109, 7111.
199. Soai, K.; Ohno, Y.; Inoue, Y.; Tsuruoka, T.; Hirose, Y. Recl. Trav. Chim. Pays-Bas 1995, 114, 145.
200. Brunet, J.-J.; Chauvin, R.; Chiffre, J.; Huguet, S.; Laglaye, P. J. Organomet. Chem. 1998, 566, 117.
201. Garcia, C.; LaRochelle, L. K.; Walsh, P. J. J. Am. Chem. Soc. 2002, 124, 10970.
202. Seebach, D.; Beck, A. K.; Imwinkelreid, R.; Roggo, S.; Wonnacott, A. Helv. Chim. Acta 1987, 70, 954.
203. Fischer, C.; Carreira, E. M. Org. Lett. 2004, 6, 1497.
204. Hamor, T. A.; Jennings, W. B.; Lovely, C. J.; Reeves, K. A. J. Chem. Soc., Perkin Trans. 2 1992, 843.
205. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 1 1975, 514.
206. Jennings, W. B.; Lovely, C. J. Tetrahedron 1991, 47, 5561.
207. Gladiali, S.; Dore, A.; Fabbri, D.; De Lucchi, O.; Valle, G. J. Org. Chem. 1994, 59, 6363.
208. Meisters, A.; Mole, T. Aust. J. Chem. 1974, 27, 1665.
209. Chen, L. S.; Chen, G. J.; Tamborski, C. J. Organomet. Chem. 1980, 193, 283.
210. Testaferri, L.; Tiecco, M.; Spagnolo, P.; Zanirato, P.; Martelli, G. J. Chem. Soc., Perkin Trans. 2 1976, 662.
211. Cyclopropane 261 is a novel ER α antagonist: Janjic, J. M.; Mu, Y.; Kendall, C.; Stephenson, C. R. J.; Balachandran, R.; Raccor, B. S.; Lu, Y.; Zhu, G.; Xie, W.; Wipf, P.; Day, B. W. Bioorg. Med. Chem. accepted.
212. Performing this reaction under more forcing conditions lead to formation of a C, C dicyclopropylamide: Wipf, P.; Stephenson, C. R. J.; Okumura, K. J. Am. Chem. Soc. 2003, 125, 14694.
213. Charette, A. B.; Wilb, N. Synlett 2002, 176.
214. Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 18, 1977.
215. For examples of Mitsunobu reactions with incomplete inversion of a secondary alcohol stereocenter due to competing $\mathrm{S}_{\mathrm{N}} 1$ substitution, see (a) Sakamoto, S.; Tsuchiya, T.; Umezawa, S.; Umezawa, H. Bull. Chem. Soc. Jpn. 1987, 60, 1481; (b) Farina, V. Tetrahedron Lett. 1989, 30, 6645. See also Hughes, D. L. Org. React. 1992, 42, 335.
216. Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
217. Potentially bridged $\mathrm{Zr}-\mathrm{Zn}$ complexes: (a) Tucker, C. E.; Knochel, P. J. Am. Chem. Soc. 1991, 113, 9888; (b) Tucker, C. E.; Greve, B.; Klein, W.; Knochel, P. Organometallics 1994, 13, 94. Bridged Zr -Al complexes (characterized): (c) Hartner Jr., F. M.; Schwartz, J. J. Am. Chem. Soc. 1981, 103, 4979; (d) Hartner Jr., F. M.; Clift, S. M.; Schwartz, J.; Tulip, T. H. Organometallics 1987, 6, 1346.
218. Wipf, P.; Kendall, C. Org. Lett. 2001, 3, 2773.
219. For selected recent reports of asymmetric imine allylations, see: (a) Sugiura, M.; Hirano, K.; Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 7182; (b) Cook, G. R.; Maity, B. C.; Kargbo, R. Org. Lett. 2004, 6, 1741; (c) Dalmolen, J.; van der Sluis, M.; Nieuwenhuijzen, J. W.; Meetsma, A.; de Lange, B.; Kaptein, B.; Kellogg, R. M.; Broxterman, Q. B. Eur. J. Org. Chem. 2004, 1544; (d) Berger, R.; Duff, K.; Leighton, J. L. J. Am. Chem. Soc. 2004, 126, 5686.
220. (a) Bhagwatheeswaran, H.; Gaur, S. P.; Jain, P. C. Synthesis 1976, 615; (b) Desai, M. C.; Thadeio, P. F.; Lefkowitz, S. L. Tetrahedron Lett. 1993, 34, 5831.
221. For a related syn-selective allylation of in situ generated imines with allylzinc reagents, see:

Petrini, M.; Profeta, R.; Righi, P. J. Org. Chem. 2002, 67, 4530.
222. (a) Sklute, G.; Amsallem, D.; Shabli, A.; Varghese, J. P.; Marek, I. J. Am. Chem. Soc. 2003, 125, 11776. For a review of zinc carbenoid homologation, see: (b) Marek, I. Tetrahedron 2002, 58, 9463.
223. Takahashi, T.; Nishihara, Y.; Sun, W.-H.; Fischer, R.; Nakajima, K. Organometallics 1997, 16, 2216.
224. (a) Burke, M. D.; Schreiber, S. L. Angew. Chem. Int. Ed. 2004, 43, 46; (b) Spring, D. R. Org. Biomol. Chem. 2003, 1, 3867.
225. Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B. Org. Synth. 1993, 71, 77.
226. (a) Friedrich, E. C.; Falling, S. N.; Lyons, D. E. Synth. Commun. 1975, 5, 33; (b) Pross, A.; Sternhell, S. Aust. J. Chem. 1970, 23, 989.
227. Chemla, F.; Hebbe, V.; Normant, J.-F. Synthesis 2000, 75.
228. Kanazawa, A. M.; Denis, J.-N.; Greene, A. E. J. Org. Chem. 1994, 59, 1238.
229. Kupfer, R.; Meier, S.; Würthwein, E.-U. Synthesis 1984, 688.
230. Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. Tetrahedron 1992, 48, 6985.
231. Wipf, P.; Janjic, J.; Stephenson, C. R. J. Org. Biomol. Chem. 2004, 2, 443.
232. Knotter, D. M.; van Maanen, H. L.; Grove, D. M.; Spek, A. L.; van Koten, G. Inorg. Chem. 1991, 30, 3309.
233. Henry, J. R.; Marcin, L. R.; McIntosh, M. C.; Scola, P. M.; Harris Jr., G. D.; Weinreb, S. M. Tetrahedron Lett. 1989, 30, 5709.
234. Gensler, W. J.; Frank, F. J.; Dheer, S. K.; Lauther, J. W. J. Org. Chem. 1971, 36, 4102.
235. Yamada, K.-i.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem. Int. Ed. 1999, 38, 3504.
236. Journet, M.; Cai, D.; DiMichele, L. M.; Larsen, R. D. Tetrahedron Lett. 1998, 39, 6427.
237. Keck, G. E.; Wager, T. T.; McHardy, S. F. Tetrahedron 1999, 55, 11755.
238. Stoner, E. J.; Cothron, D. A.; Balmer, M. K.; Roden, B. A. Tetrahedron 1995, 51, 11043.
239. Bojadiev, S. E.; Tsankov, D. T.; Ivanov, P. M.; Berova, N. D. Bull. Chem. Soc. Jpn. 1987, 60, 2651.
240. (a) Enholm, E. J.; Schreier, J. A. J. Heterocyclic Chem. 1995, 32, 109; (b) Rychnovsky, S. D.; Hata, T.; Kim, A. I.; Buckmelter, A. J. Org. Lett. 2001, 3, 807.
241. Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031.
242. Messinger, P.; Gompertz, J. Arch der Pharm. 1974, 307, 653.
243. Schuman, M.; Lopez, X.; Karplus, M.; Gouverneur, V. Tetrahedron 2001, 57, 10299.
244. McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. Tetrahedron Lett. 1977, 18, 155.
245. Nishimura, M.; Ueda, M.; Miyaura, N. Tetrahedron 2002, 58, 5779.

[^0]: ${ }^{a}$ Isolated yields of Imines. ${ }^{b}$ Isolated yields of Allylic Amides.

