Asymmetric Alkenyl Zirconocene/Zinc Additions to Aldehydes and Synthetic Efforts Toward Pseudotrienic Acid A

by
Nilukshi Renuka Jayasuriya
B. A., Rutgers University, 1998

Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH

 FACULTY OF ARTS AND SCIENCES

 FACULTY OF ARTS AND SCIENCES}

This dissertation was presented

by

Nilukshi Renuka Jayasuriya

It was defended on
July 5, 2007
and approved by
Dr. Eric Beckman, Department of Engineering
Dr. Kay Brummond, Department of Chemistry
Dr. Kazunori Koide, Department of Chemistry

Dissertation Director: Dr. Peter Wipf, Department of Chemistry

Copyright © by Nilukshi Renuka Jayasuriya 2007

Abstract
 Asymmetric Alkenyl Zirconocene/Zinc Additions to Aldehydes and Synthetic Efforts Toward Pseudotrienic Acid A

Nilukshi Renuka Jayasuriya, PhD
University of Pittsburgh, 2007

The in situ hydrozirconation-transmetalation-aldehyde addition process is a convenient method for the generation of allylic alcohols. Ongoing research has focused on enhancing the enantioselectivity and substrate scope of this process and will be the focus of Chapter 1. Investigations have shown that both amino alcohols and amino thiols show moderate to high enantioselectivity. Non-linear effects were analyzed in order to gain mechanistic insight into the asymmetric addition process. Additionaly, analogues of both classes of ligands have been synthesized and evaluated. Amino thiol ligands tend to show the highest enantioselectivities due to the higher affinity of sulfur for zinc over zirconium. A new class of valine-based ligands was identified to be quite effective, in terms of ligand loading and $\%$ ee in the formation of allylic alcohols.

In Chapter 2, progess toward pseudotrienic acid A is discussed. The goal of this project was the synthesis of pseudotrienic acid A utilizing alkenylzirconium/zinc methodology cultivated in the Wipf group and to elucidate the absolute configuration at $\mathrm{C}(20)$ of the target molecule. A brief summary of the only reported synthesis of pseudotrienic acid B by Cossy et al. is outlined, followed by the retrosynthetic plan and synthesis of the 3 main fragments of this molecule. Lastly, the current progress towards the coupling of these fragments is examined.

Acknowledgements

I would like to extend my sincere gratitude towards my research advisor, Dr. Peter Wipf, for his guidance and patience during my Ph.D. studies. His genuine dedication to the success of his students is unquestionable. I would also like to extend thanks to Professors Brummond, Nelson, Cohen, Koide, and Beckman for their assistance and discussions regarding my proposal examination and dissertation studies. I have also had the pleasure of interacting with many talented individuals in the Wipf group and owe many thanks to them. In particular, I would like to acknowledge my former lab mates; Joshua Pierce, Dr. Steve Lynch, Dr. Graciela Mahler, and Marija Manojlovic for discussions, encouragement, music, and laughs. I have made many life long friends during my graduate studies and I would especially like to acknowledge Dr. Jamie M^{c} Cabe, Dr. Corey Stephenson, Julia Vargas, and Michelle Paul for being there for me through the good and not so good times. I would also like to acknowledge Dr. Fu-Tyan Lin and Dr. Damodaran Krishnan for help with NMR experiments and Dr. Kasi Somayajula and Dr. John Williams for mass spectral analysis.

I would like to thank my mom, dad, brother, and Hugo (our dog) for advice, encouragement, making frequent trips to see me, planning a beautiful wedding, and above all endless love. Without the support of my family, my accomplishments thus far would not be possible. I would also like to thank the Bungards for cards, emails, phone calls, and pressies. I would also like to give a big hug to Chlöe (my cat), who was found on the $5^{\text {th }}$ floor patio of Chevron and adopted, for waking me up each morning and greeting me when I get home. Lastly, I would like to thank my knight in shining armor, my husband, Dr. Christopher Bungard, for seeing me through the last few years of graduate school. From driving to see me every other weekend for the last 3 years to providing encouragement and support at every hurdle I faced, I can't put into words the gratitude and love I feel towards you. I feel very lucky to have you in my life.

List of Abbreviations

	Ac...........................acetyl
	$\mathrm{Ac}_{2} \mathrm{O}$........................acetic anhydride
	$\mathrm{BH}_{3} \bullet$ DMSborane dimethylsulfide complex
	Boct-butoxycarbonyl
	Bn............................benzyl
	Bu............................butyl
	Cbz.........................benzyloxycarbonyl
	Cp...........................cyclopentadienyl
	DAIB.......................dimethylaminoisoborneol
	DEADdiethylazodicarboxylate
	DIAD.......................diisopropylazodicarboxylate
	DIBALdiisobutylaluminum hydride
	DIEAdiisopropylethyl amine
	DMAP4-dimethylaminopyridine
	DMF.........................N,N-dimethylformamide
	DMI........................1,3-dimethylimidazolidinone
	Dpm.........................diphenylmethyl
	DMP........................Dess-Martin periodane
	DMSOmethyl sulfoxide
	DPPAdiphenylphosphoryl azide ee enantiomeric excess
	Et............................ethyl
	HOBT......................1-hydroxybenzotriazole
	HMDShexamethyldisilazane
	HMPAhexamethylphosphoramide
	Imidimidazole
	LAHlithium aluminum hydride
	LDAlithium diisopropylamide
	MIBmorpholinoisoborneol
	MICminimum inhibitory concentration
	Msmethanesulfonyl
	Nap.........................naphthyl
	NBS.........................N-bromosuccinimide
	PCC.........................pyridinium chlorochromate
	PDC.........................pyridinium dichromate

Table of Contents

Abstract iv
Acknowledgements v
List of Abbreviations vi
List of Tables
List of Figures xii
List of Schemes xiv
1.0 Asymmetric Alkenylzirconocene/Zinc Additions To Aldehydes 1
1.1 Introduction 1
1.1.1 Reactivity of Carbonyl Groups 1
1.1.2 Asymmetric Additions to Carbonyl Compounds 2
1.1.3 Organozinc Additions to Carbonyl Groups 3
1.1.4 Non-Linear Effects 6
1.1.5 Alkenylmetal Additions to Carbonyl Compounds 9
1.1.6 Asymmetric Addition of Alkenylzinc Reagents to Aldehydes 11
1.1.7 Allylic Alcohols 14
1.1.8 Alkenylzirconocene/Zinc Addition to Aldehydes 14
1.1.9 Previous Wipf Group Work 17
1.2 Proline-Based Amino Alcohol Ligands 19
1.2.1 Synthesis of Proline-Based Analogues 19
1.2.2 Detemination of Non-linear Effect with Ligand 21 27
1.2.3 Synthesis of Thiol Analogues of Proline-based Amino Alcohols 31
1.3 Thiol Benzylamines 33
1.3.1 Preparation of 2-(1-dimethylamino-2-methylpropyl)benzenethiol 33
1.3.2 Preparation of 2-(1-Dimethylamino-2-methylbutyl)benzenethiol 41
1.4 Alternative Ligand Scaffolds 45
1.4.1 Alternate Ligand Survey 45
1.4.2 Synthesis and Evaluation of β-Amino Thiol Ligands 48
1.5 Conclusions 54
1.6 Experimental 55
2.0 Pseudotrienic Acid 119
2.1 Introduction 119
2.1.1 Previous Synthesis of Pseudotrienic Acid B 122
2.2 Pseudotrienic Acid A: Retrosynthesis 128
2.3 Synthesis of the Trienic Acid Segment 129
2.4 Synthesis of the γ-Amino- β-Hydroxy Acid Segment 133
2.4.1 Desymmetrization/Alkylation Approach 133
2.4.2 Acyl Halide-Aldehyde Cyclocondensation Approach 138
2.4.3 Alternate Approaches Towards the Synthesis of the $\boldsymbol{\gamma}$-Amino- β-Hydroxy Acid Segment 140
2.4.4 Revised Alkylation Approach 142
2.5 Synthesis of the Hydroxy-Diene Segment. 143
2.5.1 Alkenylzirconium/zinc Addition Approach 143
2.5.2 Alternate Alkenylzirconium/zinc Addition Approach 145
2.5.3 Suzuki Approach 148
2.6 Fragment Coupling. 152
2.6.1 Coupling of Segments 156 and 157 152
2.7 Conclusions. 154
2.8 Experimental 155
Bibliography 175

List of Tables

Table 1.1. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presenceof ligands 21 and 23-25.21
Table 1.2. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence ligands 29, 30, and 32. 24
Table 1.3. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence ligand $\mathbf{3 8}$ 26
Table 1.4. Asymmetric additions of 26 to benzaldehyde in the presence ligands 62-64. 40
Table 1.5. Chiral HPLC analysis of 27 with tandem detection by ELSD and UV. 41
Table 1.6. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands $\mathbf{7 0}$. 44
Table 1.7. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 72-86 46
Table 1.8. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands $\mathbf{8 7 - 8 9}, 92$, and 96 47
Table 1.9. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 97 and 98 48
Table 1.10. Asymmetric addition of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 103a-103c. 50
Table 1.11. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 110-112. 52
Table 1.12. Asymmetric addition in the presence of ligand 112 53
Table 1.13. Enantioselective formation of 27 using ligand 112. 114
Table 2.1. Formation of bisallylic alcohol 169. 132
Table 2.2. Formation of $\mathbf{1 6 4}$ via a 2 -step protocol. 133
Table 2.3. Curtius rearrangement of $\mathbf{1 7 0}$ 135
Table 2.4. Deprotection of TBDPS ether 174 to afford alcohol 176. 136
Table 2.5. Attempted Frater-Seebach alkylation 137

Table 2.6. Deprotection of 226... 150
Table 2.7. Oxidation of 227. .. 151
Table 2.8. Deprotection of TBS-ether in the presence of TIPS-ester of 164. 153
Table 2.9. Conversion of TBS-ether to the bromide in the presence of TIPS-ester of 164. 154

List of Figures

Figure 1.1. Sites for electrophilic and nucleophilic attack. 1
Figure 1.2. Non-linear dependence of product ee vs. ligand ee for the $\mathrm{Et}_{2} \mathrm{Zn}$addition to benzaldehyde.7Figure 1.3. Homochiral and heterochiral aggregates formed in theligand-accelerated diethylzinc addition to benzaldehyde.8
Figure 1.4. Versatility of allylic alcohols in synthetic methodology 14
Figure 1.5. Natural products synthesized using alkenylzirconium/zinc methodology. 16
Figure 1.6. Modification of the diphenyl moiety of ligand $21(\mathrm{R}=\mathrm{Ph})$. 19
Figure 1.7. Loading effects of ligand 21 on the ee of allylic alcohol 27. 22
Figure 1.8. Modification of substituents at amine site of ligand $21(\mathrm{R}=\mathrm{Me})$ 22
Figure 1.9. Multicenter approach in activation of substrate and reagent. 25
Figure 1.10. Possible transition state model for the proline-derived amino alcohol
ligand 21 catalyzed alkenyl zirconocene/zinc addition to benzaldehyde. 27
Figure 1.11. Non-linear effect for ligand 21 at $15 \mathrm{~mol} \%$ loading in the formation
of allylic alcohol 27. 28
Figure 1.12. Formation of homo- and heterochiral metal-ligand complexesthat are in equilibrium with the catalytically active monomeric complex in the presenceof ligand 2129
Figure 1.13. Positive non-linear effect for ligand 20a at $10 \mathrm{~mol} \%$ loading in the formation of allylic alcohol 27. 30Figure 1.14. Formation of homo- and heterochiral metal-ligand complexes that arein equilibrium with the catalytically active monomeric complex in the presenceof ligand 20a.31
Figure 1.15. Modification to ethyl-substituted aminothiol 20b 33

Figure 1.16. HPLC chromatogram of 59. R_{t} enantiomer $\mathrm{A}=7.01 \mathrm{~min}$ and R_{t} enantiomer $B=11.77 \mathrm{~min}$.38

Figure 1.17. Possible transition state model for the thiol benzylamine catalyzed alkenyl zirconocene/zinc addition to benzaldehyde.44

Figure 1.18. Possible transition state model for the β-amino thiol 112 catalyzed alkenyl zirconocene/zinc addition to benzaldehyde.54

Figure 1.19. Ligands effective in the asymmetric alkenylzirconium/zinc addition to aldehydes.54

Figure 2.1. Flowers of Brassica rapa subsp. Rapa L. (Brassicaceae). 119
Figure 2.2. Antimicrobial compounds isolated from Pseudomonas sp. MF381-IODS............ 120
Figure 2.3. Elucidation of configuration at $\mathrm{C}(11)$ and $\mathrm{C}(12)$ of pseudotrienic acids by NOE and ${ }^{3} J_{\mathrm{HH}}$ analysis.121

Figure 2.4. Proposed mechanism for the 1,2-metallate rearrangement. 146
Figure 2.5. Stereoselectivity of the initial hydrozirconation in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and temperature

List of Schemes

Scheme 1.1. Asymmetic cyanohydrin formation using a (S)-binaphthol-based Ti complex........ 2
Scheme 1.2. Asymmetric transfer hydrogenation employing ruthenium complex 2.................... 2
Scheme 1.3. Asymmetric Mukaiyama aldol... 3
Scheme 1.4. Asymmetric diethylzinc addition catalyzed by (-)-DAIB... 3
Scheme 1.5. Asymmetric diethylzinc addition catalyzed by TADDOLate 5................................ 4
Scheme 1.6. Asymmetric diphenylzinc addition catalyzed by binaphthyl ligand 6...................... 4
Scheme 1.7. Asymmetric diphenylzinc addition catalyzed by ferrocenyl 7. 5
Scheme 1.8. Asymmetric alkynylzinc addition catalyzed by amino alcohol 8. 5
Scheme 1.9. Asymmetric alkynylzinc addition catalyzed by pseudoephederine-derived 9.......... 5
Scheme 1.10. Nozakai-Hiyama-Kishi reaction. .. 9
Scheme 1.11. Asymmetric $\mathrm{Ni}(\mathrm{II}) / \mathrm{Cr}(\mathrm{II})$-mediated coupling reaction. .. 9
Scheme 1.12. Formation of allylic alcohols via nickel-catalyzed reductive coupling. 10
Scheme 1.13. Asymmetric reductive coupling employing the chiral phosphine ligand 13. 10
Scheme 1.14. Nickel-catalyzed cyclization/alkylation of ynals with organozinc reagents......... 10
Scheme 1.15. Enantioselective hydrogen-mediated coupling. .. 11
Scheme 1.16. Srebnik's hydroboration followed by transmetalation protocol. 11
Scheme 1.17. Hydroboration/transmetalation protocol.. 12
Scheme 1.18. Asymmetric addition of alkenylzincs catalyzed by chiral
paracyclophane ketimines... 12
Scheme 1.19. Utilization of chiral aminonaphthol ligand in the asymmetric vinylzinc
additions.
Scheme 1.20. Utilization of a morpholino-derived binaphthyl ligand in the asymmetric vinylzinc additions.

Scheme 1.21. Utilization of a chiral β-amino alcohol ligand in the asymmetric
vinylzinc additions. 13
Scheme 1.22. The in situ hydrozirconation-transmetalation addition protocol. 15
Scheme 1.23. Scope of the alkenylzirconium/zinc addition using ligand 20b. 17
Scheme 1.24. The alkenylzirconium/zinc addition to benzaldehyde using ligand 21 18
Scheme 1.25. Synthesis of analogues at the diphenyl moiety of ligand 21 20
Scheme 1.26. Synthesis of analogues at amine site of ligand 21. 23
Scheme 1.27. Synthesis of C_{2}-symmetric bis- β-amino alcohol 34 25
Scheme 1.28. Synthesis of ligand 38. 26
Scheme 1.29. Synthesis of ligand 42 32
Scheme 1.30. Conversion of alcohol 21 to corresponding thioacetate using
Lawesson's reagent. 32
Scheme 1.31. Conversion of alcohol 44 to thioacetate to $\mathbf{4 5}$ using an activation/displacement protocol. 33
Scheme 1.32. Synthesis of 2-(1-dimethylamino-2-methylpropyl)benzenethiol (52) 34
Scheme 1.33. Synthesis of thioethers using POPd (53). 35
Scheme 1.34. Conversion of aryl bromide 51 to thioether using POPd 53 35
Scheme 1.35. Revised synthesis of 2-(1-dimethylamino-2-methylpropyl)benzenethiol 62 36
Scheme 1.36. Conversion of thiol 62 to thioacetate 64 37
Scheme 1.37. Enzymatic resolution of amines. 37
Scheme 1.38. Assigment of configuration to enantiomers of $\mathbf{6 2}$. 39
Scheme 1.39. Synthesis of benzylamine 68. 42
Scheme 1.40. Synthesis and separation of Cbz-intermediate 69. 43
Scheme 1.41. Synthesis of thiol benzylamine (\boldsymbol{S})-71 43
Scheme 1.42. Synthesis of β-amino alcohol and thiol ligands. 49
Scheme 1.43. Synthesis of β-amino alcohol 112. 51
Scheme 2.1. Lactone formation under acidic conditions 122
Scheme 2.2. Cossy's retrosynthetic analysis of pseudotrienic acid B 123
Scheme 2.3. Synthesis of the trienic acid fragment 140. 124
Scheme 2.4. Utililization of crotyltitanocene in the synthesis of fragment 148. 125
Scheme 2.5. Synthesis of vinyl iodide 139 126
Scheme 2.6. Synthesis of vinyl stannane 137 126
Scheme 2.7. Coupling of fragments towards the synthesis of pseudotrienic acid B 127
Scheme 2.8. Retrosynthetic analysis of pseudotrienic acid A. 129
Scheme 2.9. Retrosynthetic analysis of trienic acid $\mathbf{1 6 4}$. 130
Scheme 2.10. Preparation of aldehyde and alkyne for coupling. 130
Scheme 2.11. Initial retrosynthesis of the γ-amino- β-hydroxy segment. 134
Scheme 2.12. Synthesis of enantiomerically enriched hemiester 170 134
Scheme 2.13. Attempted deprotection of TBDPS-ether 179 138
Scheme 2.14. Retrosynthesis of γ-amino- β-hydroxy ester via an AAC reaction. 138
Scheme 2.15. Application of AAC-reaction to formation of $\mathbf{1 8 2}$. 139
Scheme 2.16. Previously reported enolization-alkylation reactions of β-lactones. 140
Scheme 2.17. Alternative approaches towards the synthesis of the γ-amino- β-hydroxy acid segment. 141
Scheme 2.18. Frater-Seebach alkylation of malic acid derivative. 142
Scheme 2.19. Synthesis of the amino acid fragment 200. 142
Scheme 2.20. Retrosynthetic analysis of the hydroxy diene segment. 143
Scheme 2.21. Synthesis of enyne 210 144
Scheme 2.22. Alkenylzirconocene/zinc addition and subsequent attempted hydrolysis of trithioester 206 145
Scheme 2.23. Retrosynthetic analysis for the C(14)-C(29) segment. 146
Scheme 2.24. Synthesis of vinyliodide 216 using a 1,2-metallate rearrangement. 147
Scheme 2.25. Synthesis of 217 147
Scheme 2.26. Deuterium quenching studies 147
Scheme 2.27. Pd-mediated approach to the $C(14)-C(29)$ segment. 148
Scheme 2.28. Synthesis of propargyl alcohol 225. 148
Scheme 2.29. Hydroboration of propargyl alcohol 225 149
Scheme 2.30. Synthesis of 226 150
Scheme 2.31. 2-Step oxidation of 229 152

1.0 Asymmetric Alkenylzirconocene/Zinc Additions To Aldehydes

1.1 Introduction

1.1.1 Reactivity of Carbonyl Groups

The carbonyl group is a key functional group in organic synthesis. It can act as either an electrophile or nucleophile (Figure 1.1). Electrophilicity is generally expressed at the carbon atom whereas its nucleophilic character is most obvious in the enolate form. When used as an electrophile, the carbonyl moiety serves as a precursor to alcohol functionality. Organometallic reagents, such as Grignard and alkyllithium reagents add to aldehydes and ketones to produce secondary and tertiary alcohols in a 1,2-addition manner. Hydrides can react with carbonyls to produce the reduced product, an alcohol. Electrophilic carbonyl compounds also provide useful precursors to amines. Primary amines react with carbonyls to form imines whereas secondary amines condense to form enamines. Carbonyls exhibit both electrophilic and nucleophilic character in aldol condensations, when the enolate is used to produce α, β-unsaturated compounds or β-hydroxy ketones and aldehydes.

Figure 1.1. Sites for electrophilic and nucleophilic attack.

1.1.2 Asymmetric Additions to Carbonyl Compounds

A wide variety of reactions mentioned above can now be performed in an asymmetric fashion. The first asymmetric cyanohydrin formation was reported by Reetz et al. in 1986; their best result involved using $20 \mathrm{~mol} \%$ of an (S)-binaphthol-based Ti complex in the addition of TMSCN to an aliphatic aldehyde to give the cyanohydrin adduct in 85% yield and 82% ee. ${ }^{1}$ Another report by Narasaka et al. showed that by using 1 equivalent of an alkoxy titantium(IV) complex, both aromatic and aliphatic aldehydes could be coverted to the corresponding cyanohydrins in more than 85% yield and up to 96% ee. ${ }^{2}$ Hayashi et al. have proposed a catalytic asymmetric variant using $20 \mathrm{~mol} \%$ of complex $\mathbf{1}$. The asymmetric addition of TMSCN to p-methoxy benzaldehyde resulted in an ee of 91% (Scheme 1.1). ${ }^{3}$

Scheme 1.1. Asymmetic cyanohydrin formation using a (S)-binaphthol-based Ti complex.

Noyori et al. have reported an asymmetric variant of a transfer hydrogenation using a ruthenium complex as a catalyst (Scheme 1.2). ${ }^{4}$ In this reaction, a prochiral ketone can be converted to a chiral alcohol in the presence of a ruthenium catalyst and potassium hydroxide in isopropanol. This process occurs through six-membered transition state 2, where hydride and proton are simultaneously delivered from MH and NH , respectively.

Scheme 1.2. Asymmetric transfer hydrogenation using ruthenium catalysis.

Mukaiyama et al. have discovered that in the presence of $20 \mathrm{~mol} \%$ of catalyst 3, different aldehydes react with the silyl enol ether of (S)-ethyl propanethiolate to produce aldol adducts with excellent relative and absolute stereochemical control (Scheme 1.3). ${ }^{5}$ These chiral products are formed in a procedure that utilizes amine ligand and tin(II) triflate.

$\mathrm{Sn}(\mathrm{OTf})_{2}(20 \mathrm{~mol} \%)$
$\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$

Scheme 1.3. Asymmetric Mukaiyama aldol.

1.1.3 Organozinc Additions to Carbonyl Groups

Research on asymmetric organozinc additions to carbonyl compounds has expanded dramatically in the past 20 years. ${ }^{6}$ Most of the work in this area has focused on alkylzinc additions to aldehydes. Ordinarily, dialkylzinc compounds are inert to carbonyl substrates, but in the presence of certain additives, their reactivity can be enhanced. The first noteworthy observation in this field was that of Oguni and Omi in $1984 .{ }^{7}$ In the presence of $20 \mathrm{~mol} \%(S)$ leucinol, the reaction of diethylzinc with benzaldehyde provided optically enriched $(R)-1-$ Phenyl-1-propanol in 49% ee and 96% yield. This significant discovery led to a rapid growth of research in this area. In 1986, Noyori et al. discovered the first highly efficient ligand for enantioselective dialkylzinc additions to aldehydes. ${ }^{8}$ In the presence of $2 \mathrm{~mol} \%$ of 4 , the reaction of diethylzinc with benzaldehyde gave (S)-1-phenylethanol in 98% ee (Scheme 1.4).

Scheme 1.4. Asymmetric diethylzinc addition catalyzed by (-)-DAIB.

TADDOL complexes are also effective catalysts for the asymmetric addition of organozinc reagents to aldehydes, as reported by Ito et al. ${ }^{9}$ Enantioselectivities of 95-99\% ee were obtained using a mixture of $20 \mathrm{~mol} \%$ of chiral titanium TADDOLate 5 and excess $\mathrm{Ti}(\mathrm{O} i \mathrm{Pr})_{4}($ Scheme 1.5).

Scheme 1.5. Asymmetric diethylzinc addition catalyzed by TADDOLate 5.

In contrast, it is more challenging to develop an enantioselective arylzinc addition because of the fast background reaction even in the absence of catalyst. The faster background reaction produces racemic product, thus lowering the enantioselectivity of the reaction. There are only a few enantioselective variants of this reaction. In 1999, Huang and Pu found that $20 \mathrm{~mol} \%$ binaphthyl ligand 6 was enantioselective for the addition of diphenyl zinc to aldehydes (Scheme 1.6). ${ }^{10}$ Initially, low ee's were obtained due to the competitive background reaction but they soon discovered that pretreating $\mathbf{6}$ with diethylzinc led to ee's of up to 98%.

Scheme 1.6. Asymmetric diphenylzinc addition catalyzed by binaphthyl ligand 6.

Bolm et al. also reported a similar finding in their research of diphenylzinc addition to aldehydes (Scheme 1.7). ${ }^{11}$ Using $10 \mathrm{~mol} \%$ of ligand 7, diphenylzinc additions proceeded in 3$75 \%$ ee, but with the use of a 1:2 mixture of diphenylzinc and diethylzinc the ee of the product was increased to $83-99 \%$ ee.

Scheme 1.7. Asymmetric diphenylzinc addition catalyzed by ferrocenyl 7.

Alkynylzinc additions to aldehydes lead to the formation of propargyl alcohols. Li et al. have described this process in the presence of amino alcohol ligand 8 (Scheme 1.8). Using 10 $\mathrm{mol} \%$ of this ligand and 1.2 equiv. of dimethylzinc, ee of up to 85% and yields in the range of $65-94 \%$ were observed. ${ }^{12}$ It was also possible to suppress the methyl addition product in this reaction by using a mixture of toluene and THF (2.75:1).

Scheme 1.8. Asymmetric alkynylzinc addition catalyzed by amino alcohol 8.

Carreira et al. have used 1.2 equivalents of 9 in the presence of $\mathrm{Zn}(\mathrm{OTf})_{2}$ with a variety of aromatic and aliphatic aldehydes and observed ee's ranging from 92-99\% (Scheme 1.9). ${ }^{13}$ An interesting aspect of this reaction is that it can be carried out in air using reagent grade solvents without loss of enantioselectivity of the propargylic alcohol formed.

Scheme 1.9. Asymmetric alkynylzinc addition catalyzed by pseudoephederine-derived 9.

1.1.4 Non-Linear Effects

An interesting aspect of a ligand-accelerated catalytic asymmetric process is the possibility for non-linear stereoinduction. The observance of a non-linear effect offers insight into the reaction mechanism, specifically relating to species involved in the catalytic cycles and species present in solution. Non-linear effects were first discovered by Kagan and Agami in 1984. ${ }^{14}$ The first reactions studied in this context were asymmetric oxidation, asymmetric epoxidation and the proline-catalyzed Hajos-Parrish reaction. All of these processes resulted in a substantial departure from the linear correlation of the enantiomeric excess of the ligand and the enantiomeric excess of the product. ${ }^{15}$ This anomaly can arise when more than one chiral ligand participates in the stereoselectivity-determining step of the catalytic cycle. Kagan has developed mathematical models to explain this behavior. ${ }^{16}$ The use of a ligand that shows a (+)-NLE can be quite beneficial, as it allows the use of lower ee ligand while still retaining a high enantiomeric excess in the product. Tedious resolutions or absolute control in ligand synthesis become unnecessary when a small enantiomeric excess in the ligand is sufficient for a high enantiocontrol of the asymmetric transformation. This benefit, however, comes often at the expense of a slower rate of reaction due to the decreased concentration of catalyst available to take part in the catalytic cycle. In 1989, Noyori et al. published a mechanistic study on the addition of dialkylzinc reagents to benzaldehyde. ${ }^{17}$ They demonstrated that diethylzinc additions to benzaldehyde in the presence of (-)-DAIB ligand of only 15% ee produced 95% ee of the alkylated alcohol product. This is the most pronounced asymmetric amplification reported to date with an asymmetric amplification value (I) of 32 in the presence of 15% ligand ee (Figure 1.2). I equals the enantiomeric excess of the observed product divided by the enantiomeric excess of the linear product (the expected enantiomeric excess based on a linear relationship with ligand ee).

Figure 1.2. Non-linear dependence of product ee vs. ligand ee for the $\mathrm{Et}_{2} \mathrm{Zn}$ addition to benzaldehyde.

Noyori concluded that this strong $(+)$-NLE was a result of the association between DAIB and the organozinc reagent. In solution, this association leads to the formation of dimeric complexes. When a mixture of (R) and (S)-DAIB was used, two types of dimeric complexes were formed: homochiral (R)(R)-11 or (S) (S)-11 and heterochiral (R) (S)-11 (Figure 1.3). ${ }^{18}$ The departure from linearity is due in part to the stability of these complexes. Noyori did extensive work with NMR and X-ray diffraction analysis to determine the stability of the homochiral-11 vs. heterochiral-11. ${ }^{17}$ It was concluded that the heterochiral-11 is more stable, thus it is the homochiral-11 that dissociates at a faster rate and its monomer is the active catalyst in this
reaction. A $(+)$-NLE is observed while the minor enantiomer of the ligand is retained in the heterochiral-11.
homochiral

(S) $\cdot(S)-11$

$(R) \cdot(R)-11$
\uparrow

Figure 1.3. Homochiral and heterochiral aggregates formed in the ligand-accelerated diethylzinc addition to benzaldehyde.

1.1.5 Alkenylmetal Additions to Carbonyl Compounds

Transition metal-mediated coupling reactions which rely on the addition of an alkenylmetal reagent to a carbonyl group represent a popular route for the generation of allylic alcohols. These processes have a strategic advantage because both a new C-C bond and a new stereogenic center are formed in one step. Many of these alkenylmetal reagents are generated in situ and then immediately reacted with the corresponding carbonyl compound.

In the Nozaki-Hiyama-Kishi reaction, an alkenyl halide or triflate is reacted with a carbonyl acceptor in the presence of a nickel catalyst and excess $\mathrm{CrCl}_{2}, \mathrm{Mn}$, or Zn to produce an allylic alcohol (Scheme 1.10). ${ }^{19}$

Scheme 1.10. Nozakai-Hiyama-Kishi reaction.

Kishi et al. has extended this protocol to a stoichiometric asymmetric process by employing a chiral sulfonamide ligand (Scheme 1.11). ${ }^{20}$ Moderate asymmetric induction is observed in the presence of ligand $\mathbf{1 2}$.

$\mathrm{CrCl}_{2}, \mathrm{NiCl}_{2}$
12, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$

$R, S=12: 1$
Scheme 1.11. Asymmetric $\mathrm{Ni}(\mathrm{II}) / \mathrm{Cr}(\mathrm{II})$-mediated coupling reaction.

Jamison et al. has developed a catalytic intermolecular reductive coupling of alkynes and aldehydes to yield di- and trisubstituted allylic alcohols in high stereo- and regioselectivity (Scheme 1.12). ${ }^{21}$ This work has been extended to an asymmetric protocol utilizing a (+)(neomenthyl)diphenylphosphine $\mathbf{1 3}$ as the chiral phosphine. ${ }^{22}$ Aliphatic as well as aromatic aldehydes show moderate to high enantioselectivity in the coupling process. Functional groups such as protected alcohols, protected amines, and silyl groups are inert to the reaction conditions.

Scheme 1.12. Formation of allylic alcohols via nickel-catalyzed reductive coupling.

Scheme 1.13. Asymmetric reductive coupling employing the chiral phosphine ligand 13.

Related to this method is work reported by Montgomery et al., where a protocol has been developed for the nickel-catalyzed cyclization and alkylation of ynals with organozincs to produce cyclic allylic alcohols and also effect a three component coupling of alkynes, aldehydes, and organozincs to produce acyclic allylic alcohols with complete control of alkene stereochemistry. ${ }^{23}$ This process is envisioned to occur via an oxametallacycle, which in the presence of organozinc reagent would produce a common vinyl nickel intermediate for both alkylative and reductive cyclization products (Scheme 1.14).

Scheme 1.14. Nickel-catalyzed cyclization/alkylation of ynals with organozinc reagents.

A different approach towards allylic alcohols was taken by Krische et al. in the development of an enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic aldehydes and ketones via rhodium catalysis. In the presence of a chiral phosphoric acid derived from BINOL 14, highly optically active products are obtained under standard coupling conditions (Scheme 1.15). ${ }^{24}$

Scheme 1.15. Enantioselective hydrogen-mediated coupling.

1.1.6 Asymmetric Addition of Alkenylzinc Reagents to Aldehydes

Allylic alcohols can also be accessed via alkenylzinc additions to aldehydes. Compared to alkylzinc addition, asymmetric alkenyl zinc additions are more challenging and only a few reported cases have been published. Srebnik illustrated the first preparation of bis(alkenyl) zinc reagents via hydroboration of an alkyne followed by subsequent transmetalation to form an organozinc reagent. ${ }^{25}$ These reagents were successfully added to aldehydes in the presence of a catalytic amount of N -methylpiperdine to afford the allylic alcohols in good yields (Scheme 1.16).

Scheme 1.16. Srebnik's hydroboration followed by transmetalation protocol.

Inter- and intramolecular variants of this reaction as well as a chiral ligand catalyzed enantioselective addition have been shown to work successfully. ${ }^{26}$ In the latter process, Oppolzer et al. has taken advantage of Noyori's (+)-DAIB ligand to promote an enantioselective addition with a variety of aldehydes with ee's in the range of $73-96 \%$ using $4.5 \mathrm{~mol} \%$ of the
chiral ligand. ${ }^{27}$ In recent years, Walsh et al. has shown that $2 \mathrm{~mol} \%$ of the morpholino analogue of the (+)-DAIB ligand, Nugent's (-)-MIB, also shows promotion of the enantioselective addition reaction of a variety of terminal alkynes with ee's between 88-97\% (Scheme 1.17). ${ }^{28}$

Scheme 1.17. Hydroboration/transmetalation protocol.

Bräse et al. has established a successful application of paracyclophane based ketimine ligands in the enantioselective alkenylation. ${ }^{29}$ High enantioselectivities are realized for straightchain aliphatic as well as branched aliphatic aldehydes with utilization of $\mathbf{1 6}$ (Scheme 1.18). A survey of transmetallating agents for this process was also examined.

Scheme 1.18. Asymmetric addition of alkenylzincs catalyzed by chiral paracyclophane ketimines.

Chan et al. has also reported an effective aminonaphthol ligand for asymmetric vinylzinc addition reactions. ${ }^{30}$ The ligand is conveniently made in one step from the multicomponent reaction of 2-naphthol, benzaldehyde, and (S) - N - α-dimethylbenzylamine 17 to afford the optically active tertiary amino naphthol in high purity. Yields and enantioselectivities are quite high for the addition process which works effectively not only with aromatic aldehyde but also with aliphatic aldehydes (Scheme 1.19).

17
Scheme 1.19. Utilization of chiral aminonaphthol ligand in the asymmetric vinylzinc additions.

A morpholino derivative of a binaphthyl-based N, O-ligand has been disclosed by Ha et $a l .{ }^{31}$ Utilization of ligand 18 resulted in moderate enantioselectivity ($72-82 \%$) with aromatic aldehydes and a decrease in enantioselectivity for aliphatic aldehydes (32-55\%) (Scheme 1.20).

Scheme 1.20. Utilization of a morpholino-derived binaphthyl ligand in the asymmetric vinylzinc additions.

Recently, Yang et al. have reported a new β-amino thiol scaffold for the enantioselective addition of alkenylzinc reagents to aldehydes. ${ }^{32}$ Using amino thiol ligand 19, high enantioselectivities are observed even at $1 \mathrm{~mol} \%$ loading (Scheme 1.21).

19

Scheme 1.21. Utilization of a chiral β-amino alcohol ligand in the asymmetric vinylzinc additions.

1.1.7 Allylic Alcohols

Allylic alcohols represent convenient building blocks for a variety of synthetic applications. These transformations include [3,3] sigmatropic rearrangements, ${ }^{33}$ enantio- and diastereoselective hydroxyl-directed additions to alkenes, ${ }^{34} \mathrm{~S}_{\mathrm{N}} 2^{\prime}$-displacements with cuprates, ${ }^{35}$ palladium catalyzed π-allyl substitution, ${ }^{36}$ and cationic cyclizations (Figure 1.4). ${ }^{37}$ Due to this versatility, our lab has also sought efficient ways to synthesize allylic alcohols.

Figure 1.4. Versatility of allylic alcohols in synthetic methodology.

1.1.8 Alkenylzirconocene/Zinc Addition to Aldehydes

The in situ hydrozirconation-transmetalation process pioneered in our labs is another method for the convenient generation of allylic alcohols. In this method, hydrozirconation of an alkyne is followed by transmetalation at $-65^{\circ} \mathrm{C}$; upon reaction with an aldehyde the corresponding allylic alcohol product is generated in a one-pot reaction and in high yields (Scheme 1.22). ${ }^{38}$

Scheme 1.22. The in situ hydrozirconation-transmetalation addition protocol.
This methodology has been used in the synthesis of a variety of natural products by the Wipf as well as other groups. For example, the syntheses of leucascandrolide A^{39} and (+)curacin A^{40} by the Wipf group, (+)-halichlorine by the Danishefsky group ${ }^{41}$, lobatamide C by the Porco group ${ }^{42}$, and $(+)$-acutiphycin ${ }^{43}$ by Jamison showcase this methodology (Figure 1.5).

(+)-Curacin A

(+)-Halichlorine

(+)-Acutipycin

Figure 1.5. Natural products synthesized using alkenylzirconium/zinc methodology.

In order to increase the scope of this reaction, a chiral ligand which provides allylic alcohol products in uniformly high ee would be desirable. This ligand would dictate the specific enantiomer of the allylic alcohol that is formed. Although, countless ligands have shown superior enantioselectivity in simple alkylzinc additions to aldehydes, a ligand that affects the in situ hydrozirconation-transmetalation-aldehyde addition process with high asymmetric induction for all substrates remains to be identified.

1.1.9 Previous Wipf Group Work

Past work in our group has lead to the discovery of a class of thiol-containing ligands that show high enantioselectivity in the alkenyl zirconium-zinc addition to most aromatic aldehydes. ${ }^{44}$ Thiols proved to have a higher affinity towards zinc than zirconium. ${ }^{45}$ This selectivity is quite important since in our in situ method both zinc and zirconium are present in the reaction medium and differential affinity of the ligand for zinc is desirable. Thiolates also have less of a tendency to lower the Lewis acidity of a metal than alcoholates. This feature is important since the Lewis acidity of the metal activates the carbonyl group towards addition. Specifically, the amino thiol 20b has been shown to provide high enantioselectivity in the addition of vinylzinc species to electron-poor aromatic aldehydes. ${ }^{46}$ However, lower ee's (64$74 \%$) were found for aliphatic and aromatic aldehydes with electron-donating groups in the para- or ortho-positions (Scheme 1.23).

Scheme 1.23. Scope of the alkenylzirconium/zinc addition using ligand 20b.

Proline-based amino alcohols are another class of ligands that have been shown to provide satisfactory enantioselectivity in the hydrozirconation-transmetalation addition to
aldehydes. We were able to determine that in the presence of $10-15 \mathrm{~mol} \%$ of the prolinederived amino alcohol 21 the benzaldehyde-derived allylic alcohol was formed in 81% ee (Scheme 1.24). ${ }^{44}$

Scheme 1.24. The alkenylzirconium/zinc addition to benzaldehyde using ligand $\mathbf{2 1}$.

Thus, we decided that further modifications of these two classes of ligands were warranted with the hope of identifying a ligand that shows high asymmetric induction with a wide variety of aldehydes and alkynes.

1.2 Proline-Based Amino Alcohol Ligands

1.2.1 Synthesis of Proline-Based Analogues

Based on the promising preliminary data obtained with the proline-derived amino alcohol, substitution of the diphenyl moiety for smaller and larger substituents was further explored in hopes of increasing the enantioselectivity above the current maximum of 81% ee (Figure 1.6).

Figure 1.6. Modification of the diphenyl moiety of ligand $21(\mathrm{R}=\mathrm{Ph})$.

This series of amino alcohols was accessed quite conveniently starting from L-proline (Scheme 1.25). Conversion to the N-carbamate proline methylester 22 using ethyl chloroformate in the presence of potassium carbonate and MeOH proceeded in 90% yield. ${ }^{47}$ Double reduction of the carbamate and the methylester using LiAlH_{4} gave $\mathbf{2 3}$ in $\mathbf{7 2 \%}$ yield. Grignard addition of a variety of nucleophiles to the methylester 22 afforded the corresponding tertiary alcohols. Reduction of the carbamate with LiAlH_{4} gave the N-methylated amino alcohols 24, 21, and 25 in 67-87\% yield.

Scheme 1.25. Synthesis of analogues at the diphenyl moiety of ligand 21.

Amino alcohols 21,23-25 were tested at 10 and $15 \mathrm{~mol} \%$ loading (Table 1.1). Ligand 21 showed the most promise, providing alcohol 27 with 81% ee at $15 \mathrm{~mol} \%$ loading (Entry 6). A possible rationale for the dramatic difference between ligands $\mathbf{2 3}, \mathbf{2 4}, \mathbf{2 1}$ and $\mathbf{2 5}$ is that the side chain substituents strongly influence the nature of the dimerization equilibria that lead to catalytically active species. Ligands $\mathbf{2 3}$ and $\mathbf{2 4}$ might be too small to bias the facial selectivity in the alkenyl zinc addition to the aldehyde moiety; on the other hand, the naphthyl substituents on $\mathbf{2 5}$ may also be too bulky to allow tight substrate binding in the transition state, resulting in lower facial selectivity.

Table 1.1. Asymmetric additions of 26 to benzaldehyde in the presence of ligands 21 and 23-25.

		1. $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. 2. $\mathrm{Me}_{2} \mathrm{Zn}$, Toluene, $-65^{\circ} \mathrm{C}$		
	26	3. L*; $1 \mathrm{~h},-65^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ 4. PhCHO, $-30^{\circ} \mathrm{C}, 15 \mathrm{~h}$		27 OH
Entry	Ligand (L*)	Ligand loading (mol\%)	Yield (\%) of 27	ee (\%) ${ }^{\text {a }}$ of 27
1	23	10	79	17
2	23	15	78	18
3	24	10	85	17
4	24	15	78	17
5	21	10	73-77	$40^{\text {b }}$
6	21	15	74-76	$81^{\text {b }}$
7	25	10	81	20
8	25	15	80	20

${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector, ${ }^{\text {b }}$ ee given is the average of 2 runs.

Due to its relative promise, loading studies of ligand 21 from 5 to $50 \mathrm{~mol} \%$ were performed. The graph in Figure 1.7 demonstrates that $15 \mathrm{~mol} \%$ loading is indeed the optimal loading for this ligand while lower and higher loadings show a decrease in ee of product 26.

Figure 1.7. Loading effects of ligand 21 on the ee of allylic alcohol 27.

Figure 1.8. Modification of substituents at amine site of ligand $21(\mathrm{R}=\mathrm{Me})$.

Further modifications to proline ligand 21 were examined, targeting modifications at the amine site (Figure 1.8). The synthesis of the analogues commenced with phenyl magnesium bromide addition to N-carbamate proline methylester 22 followed by hydrolysis of the ethyl carbamate with KOH to give $\mathbf{2 8}$ in 63% yield over 2 steps (Scheme 1.26). Alkylation of the amine with either benzyl bromide or ethyl bromide in the presence of Hünig's base resulted in the desired analogues 29 and 30 in 55% and 14% yield, respectively. Analogously, methyl magnesium bromide addition to N -carbamate proline methyl ester 22 and subsequent hydrolysis
yielded $\mathbf{3 1}$ in 71% yield. Alkylation of the secondary amine with benzyl bromide in the presence Hünig's base afforded $\mathbf{3 2}$ in 59\% yield.

Scheme 1.26. Synthesis of analogues at amine site of ligand 21.

The analogues synthesized were tested at 10 and $15 \mathrm{~mol} \%$ loading in the alkenylzirconocene/zinc addition process (Table 1.2). Disappointingly, the enantioselectivity observed for 29, 30, and 32 was low in all cases (3-20\%). Based on this data, substitution at the amine is an important factor in determining enantioselectivity. Methyl substitution seems to be ideal while larger alkyl groups (ethyl and benzyl) at this site decrease the enantioselectivity drastically.

Table 1.2. Asymmetric additions of 26 to benzaldehyde in the presence ligands 29, 30, and $\mathbf{3 2}$.

${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i - $\mathrm{PrOH} /$ hexanes (1:99)) with a Dynamax UV-1 absorbance detector.

Proline-derived C_{2}-symmetric bis- β-amino alcohol 33 has been reported by Chan et al. to catalyze enantioselective diethylzinc additions to aldehydes. ${ }^{48}$ The high enantioselectivity observed is attributed to the rigid and bulky nature of the ligand. It was hoped that this sterically more demanding ligand would enhance enantioselectivity in our protocol. C_{2}-symmetrical bis- β amino alcohol was conveniently prepared starting from (S)-(+)-diphenyl-pyrrolidin-2-ylmethanol 28 (Scheme 1.27). The amine was reacted with phthaloyl dichloride in the presence of triethylamine to afford the diamide $\mathbf{3 3}$, followed by reduction of the amides using LiAlH_{4} to afford 34 in 62% yield over 2 steps. Utilization of ligand 34 in the alkenyl zirconium/zinc addition protocol resulted in no enantiodifferentiation with an enantiomeric excess of only 2% at $5 \mathrm{~mol} \%$ and 4% at $10 \mathrm{~mol} \%$.

28

33

34

Scheme 1.27. Synthesis of C_{2}-symmetric bis- β-amino alcohol 34.

Shibasaki et al. disclosed a strategy for the development of poly-coordinating ligands for the enantioselective dimethylzinc addition to ketoesters. ${ }^{49}$ This ligand strategy relies on the need for both Lewis acid activation of the substrate as well as Lewis base activation of the reagent to efficiently promote the reaction (Figure 1.9). Through dual activation of nucleophilic dimethylzinc and a catalytic amount of $i-\mathrm{PrOH}$, high enantioselectivities were afforded. The multicenter approach was appealing and could possibly improve the enantioselectivity of alkenylzirconium-zinc addition reaction by providing an extra Lewis basic site.

Figure 1.9. Multicenter approach in activation of substrate and reagent.

Ligand 38 was synthesized as reported by Shibasaki et al., 2,4-cis-4-hydroxy-D-proline was converted to the methylester in the presence of thionyl chloride and MeOH to afford 36, which was alkylated with benzyl bromide to give 37 in 62% yield over 2 steps. Lastly, phenyl magnesium bromide addition to the methylester $\mathbf{3 7}$ resulted in the formation of $\mathbf{3 8}$ in 42% yield.

38

Scheme 1.28. Synthesis of ligand 38.

The multicentered approach with ligand $\mathbf{3 8}$ did not show useful levels of enantioselectivity under our reaction conditions (Table 1.3).

Table 1.3. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligand $\mathbf{3 8}$.

${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector.

In the proline-derived scaffold, ligand 21 shows the highest enantioselectivity. The proposed transition state model for this reaction using ligand 21 is shown below (Figure 1.10). All analogues synthesized using the proline scaffold afforded a drastic decrease in enantioselectivity. Both the diphenyl moiety and the methyl-substituted amine are vital
components of this ligand and any manipulation of these moieties leads to almost no enantiodifferentiation and results in low enantioselectivity.

Figure 1.10. Possible transition state model for the proline-derived amino alcohol ligand 21 catalyzed alkenyl zirconocene/zinc addition to benzaldehyde.

1.2.2 Detemination of Non-linear Effect with Ligand 21

The use of ligand 21 resulted in the highest enantioselectivity of 81% ee at $15 \mathrm{~mol} \%$ loading and thus this ligand was used in the ensuing mechanistic investigation. In order to gain more information about the aggregation state of ligand 21, a study of non-linear effects was conducted. Using the optimal loading of $15 \mathrm{~mol} \%$, the reaction with 1 -hexyne and benzaldehyde was studied while varying the \%ee of the ligand. Each reaction was repeated 2 times and the data point shown is the average of the runs. The ee of the resulting alcohol 27 was measured by chiral HPLC ${ }^{50}$ and plotted against the ligand ee\%.

Figure 1.11. Non-linear effect for ligand 21 at $15 \mathrm{~mol} \%$ loading in the formation of allylic alcohol 27.

When the ee of the resulting allylic alcohol was plotted as a function of the \%ee of ligand 21, a linear decrease from 81% to 24% ee of product resulted at 100% to 50% ligand ee (Figure 1.11). At 35% ligand ee, a dramatic reversal of enantioselectivity, now favoring the opposite enantiomer of the allylic alcohol product, was seen. This reversal of selectivity diminished with 20\% ligand ee.

Figure 1.12. Formation of homo- and heterochiral metal-ligand complexes that are in equilibrium with the catalytically active monomeric complex in the presence of ligand $\mathbf{2 1}$.

We interpret this unusual dependence on chiral loading and the switch in the product configuration by the participation of both monomeric and aggregated metal-ligand species in the catalytic cycle (Figure 1.12). This complex mechanism could result from the presence of Lewisacidic zirconocene coordinating to the alcohol and perturbing the dynamic equilibria of aggregates that are formed in solution. This abnormal behavior is unique for ligand $\mathbf{2 1}$ and quite in contrast to the non-linear studies performed by Seth Ribe on the methyl amino thiol ligand 20a (Figure 1.13). ${ }^{51}$

Figure 1.13. Positive non-linear effect for ligand $\mathbf{2 0 a}$ at $10 \mathrm{~mol} \%$ loading in the formation of allylic alcohol 27.

In the presence of ligand 20a, a positive non-linear effect was observed in agreement with Kagan's ML_{2} model (Figure 1.14). This behaviour is indicative of a fast ligand exchange at the metal center of a reactive species bearing two chiral ligands. We postulate that with ligand 20a, zirconocene byproducts do not affect the aggregates that are formed due to the high affinity that sulfur has for zinc. ${ }^{45}$ Based on the strong asymmetric amplification effect it is reasonable to assume that the heterochiral dimer is more stable than the homochiral dimer. The instability of the homochiral dimer results in its rapid dissociation into monomeric species, which then take part in the catalytic cycle. Because the homochiral dimer is composed of a single enantiomer of the ligand, an asymmetric amplification is observed.

Figure 1.14. Formation of homo- and heterochiral metal-ligand complexes that are in equilibrium with the catalytically active monomeric complex in the presence of ligand $\mathbf{2 0 a}$.

In comparison, the aminoalcohol ligand 21 is inferior to the sulfur containing ligands 20a and 20b. Much of the enhancement of the chiral induction appears to be an effect of the presence of a sulfur ligand, and therefore our next avenue of exploration was to convert the proline-based amino alcohols into amino thiols in the hope of improving the enantioselectivity of the alkenylzinc addition process and decrease chiral ligand loading.

1.2.3 Synthesis of Thiol Analogues of Proline-based Amino Alcohols

Amino thiol 42 was synthesized from the common intermediate 22, prepared as part of the initial series of proline-based amino alcohols. The methyl ester 22 was reduced to the corresponding alcohol 39 in 78% yield using LiAlH_{4}. The alcohol was then converted to tosylate 40 in 52% yield and subsequent displacement with potassium thioacetate furnished thioacetate 41 in 62% yield. This reaction was followed by a low yielding double reduction of the acetate as well as the carbamate to provide thiol 42. Using ligand 42, the addition of hexenylzinc to benzaldehyde at a loading of $10 \mathrm{~mol} \%$ gave product of 83% ee; at $15 \mathrm{~mol} \%$ ligand loading, product of 84% ee was obtained. This was a significant improvement over the enantioselectivity (17% ee and 18% ee) observed with the corresponding amino alcohol analogue 23.

Scheme 1.29. Synthesis of ligand 42.

Encouraged by these results, transformation of diphenylamino alcohol 21 into the corresponding thiol 45a was investigated. Compound 45a was previously synthesized from 21 by Gibson et al. using Lawesson's reagent $\mathbf{4 3}$ by heating the reaction mixture at reflux for 7 min (Scheme 1.30). ${ }^{52}$ Disappointingly, in our hands these conditions resulted in decomposition of the starting material.

21
Scheme 1.30. Conversion of alcohol 21 to corresponding thioacetate using Lawesson's reagent.

An alternative route was also proposed whereby in the presence of zinc iodide and thioacetic acid the tertiary alcohol 44 is converted to the corresponding thioacetate. Initially, this reaction at room temperature cleanly afforded the acyclic compound $\mathbf{4 5 b}$ as the only product. Cooling the reaction to $0{ }^{\circ} \mathrm{C}$ for 5 h , afforded the desired product $\mathbf{4 5 a}$, acyclic product $\mathbf{4 5 b}$, and starting material. To ensure complete conversion, the reaction mixture was stirred for 24 h at 0 ${ }^{\circ} \mathrm{C}$ to give 30% of the desired product $\mathbf{4 5 a}, 66 \%$ of the acyclic product $\mathbf{4 5 b}$, and a trace of starting material. Further attempts to inhibit the formation of the acyclic product 45b were not pursued. Disappointingly, application of ligand 46 in the alkenylzirconocene/zinc addition led to
a low enantioselectivity of 18% ee at $10 \mathrm{~mol} \%$ loading. It is unclear at this time what causes the dismal enantioselectivity shown by the tertiary thiol ligand 46.

Scheme 1.31. Conversion of alcohol 44 to thioacetate to 45 using an activation/displacement protocol.

1.3 Thiol Benzylamines

1.3.1 Preparation of 2-(1-dimethylamino-2-methylpropyl)benzenethiol

Figure 1.15. Modification to ethyl-substituted aminothiol 20b.

After further examination of the data reported by Seth Ribe for the enantioselectivity obtained using methyl-(20a) and ethyl-substituted (20b) aminothiols, it was postulated that increasing the steric bulk of the R group from an ethyl to an isopropyl substituent would increase the enantioselectivity beyond the current maximum of 95% ee (Figure 1.15). In attempts to access this isopropyl amino thiol ligand, we felt that installation of the sulfur moiety at a late stage would be beneficial due to the chemical instability of free thiols. Introduction of the sulfur moiety would be performed analogously to the synthesis of the methyl- and ethylaminothiol ligands (Scheme 1.32). We felt installation of bromine at the ortho-position would facilitate the introduction of the thiol. Although there are no enantiomerically pure building blocks for this synthesis, we were confident that a resolution at some point along the route would be feasible.

Scheme 1.32. Synthesis of 2-(1-dimethylamino-2-methylpropyl)benzenethiol (52).

Addition of ortho-bromobenzaldehyde to diphenylphosphinamide in the presence of TiCl_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ resulted in an 83% yield of imine 48. Isopropyl magnesium chloride addition to the imine resulted in a 79% yield of $\mathbf{4 9}$. Treatment of 49 with 20% aq. HCl at reflux furnished the free amine 50 in 83% yield. Eschweiler-Clarke methylation of the resulting amine provided the dimethylated product 51 in 55% yield. Finally, halogen-metal exchange using t-BuLi, followed by reaction of the aryllithio species with elemental sulfur was expected to furnish the ortho-substituted thiol 52. Unfortunately, this last step proved to be very problematic. Varying
the lithiating agent and also varying reaction times for the halogen-metal exchange still afforded no product. This could be due to the added steric bulk of the isopropyl group compared to the ethyl and methyl analogues. At this point, an alternate method for conversion of the bromine to the thiol was required. A possible solution was through the use of the air-stable palladium catalyst 53, introduced by Li (Scheme 1.33). ${ }^{53}$

Scheme 1.33. Synthesis of thioethers using POPd (53).

It has been shown that in the presence of a catalytic amount of POPd 53, an aryl halide can be coupled to thiophenol to give the thioether in 66% yield. However, in our substrate no reaction resulted (Scheme 1.34). This lack of reactivity could be partially due to the added steric bulk present in 51. Thus, coupling of the thiol at the ortho-position might present a significant challenge.

Scheme 1.34. Conversion of aryl bromide $\mathbf{5 1}$ to thioether using POPd 53.

The route was thus modified in order to install the thiol functionality at an earlier stage (Scheme 1.35). The most convenient solution was to start from thiosalicylic acid followed by protection of the thiol. This enabled further elaboration of the ligand while not affecting the thiol group.

Thiosalicylic acid was treated with LiAlH_{4} to afford the reduced product 55 in 68% yield. ${ }^{82}$ Protection of thiol 55 with benzylbromide and NaOH gave 56 in 73% yield. Oxidation of the alcohol with barium manganate furnished aldehyde 57 in 86% yield. This aldehyde was then reacted with diphenylphosphinamide in the presence of TiCl_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ to afford imine 58 in 80\% yield. Isopropyl magnesium chloride addition to the imine afforded the alkylated $\mathbf{5 9}$ in 78% yield. Treatment of $\mathbf{5 9}$ with 20% aq. HCl at reflux furnished the free amine $\mathbf{6 0}{ }^{54}$ EschweilerClarke methylation of the amine afforded the dimethylated product $\mathbf{6 1}$ in 54% yield over 2 steps. Deprotection of the benzyl group with $\mathrm{Na} / \mathrm{NH}_{3}$ gave isopropyl aminothiol ligand 62 in 36% yield. ${ }^{55}$ Low yields in the deprotection of $\mathbf{6 1}$ were obtained due to the instability of the free thiol product 62 upon exposure to air. After workup, crude NMR analysis revealed $<10 \%$ disulfide formation. But after purification by column chromatography on SiO_{2}, the amount of disulfide formed was increased. Thus, exposure to air facilitates formation of disulfide 63.

Scheme 1.35. Revised synthesis of 2-(1-dimethylamino-2-methylpropyl)benzenethiol 62.

Due to the instability of the free thiol, a more stable analogue was desired. Transformation of $\mathbf{6 2}$ to the acetate $\mathbf{6 4}$ was carried out using acetyl chloride and triethylamine to give $\mathbf{6 4}$ in 56% yield (Scheme 1.36). With a viable route to $\mathbf{6 2}$ and $\mathbf{6 4}$ in hand, separation of racemic intermediates was necessary.

Scheme 1.36. Conversion of thiol 62 to thioacetate 64.

Resolution of racemic amine $\mathbf{6 0}$ was explored first. (R, S)-Tartaric acid, camphorsulfonic acid, and (S)-mandelic acid were used as potential resolving agents in the presence of different solvents. Recrystallization from $\mathrm{CHCl}_{3}, \mathrm{EtOH}$, and $20 \% \mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}$ was attempted. However, the resolution of the amine failed while a solvent with the ideal properties for resolution was not found. The solvents and salts examined did not differentiate between the enantiomers in order for a resolution to be viable. Next, an enzymatic resolution using Candida antarctica lipase was tried. It has been shown by the group of Wong that primary amines can be resolved quite easily using Candida antarctica lipase and dibenzylcarbonate (Scheme 1.37). ${ }^{56}$ However, the resolution via this route was unsuccessful since no enzymatic protection of either enantiomer of amine was observed.

Scheme 1.37. Enzymatic resolution of amines.

Another technique for separation of enantiomers involves using chiral HPLC. Using both OD and AD-H analytical columns, ${ }^{57}$ intermediates 59-61 were tested for adequate separation. It was found that intermediate 59 could be separated to baseline resolution using $30 \% \mathrm{i}$ propanol/hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ (Figure 1.16) on the Chiralcel AD-H analytical column.

Figure 1.16. HPLC chromatogram of 59. R_{t} enantiomer $A=7.01 \mathrm{~min}$ and R_{t} enantiomer $B=$ 11.77 min .

Separation of racemic-59 on an AD-H Chiralpack Semi-Prep column ($2 \mathrm{~cm} \times 25 \mathrm{~cm}$) at a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ with 30%-propanol/hexanes afforded each enantiomer in $>99 \%$ ee. ${ }^{58}$ The pure enantiomers were then further elaborated to give optically pure 2-(1-dimethylamino-2methylpropyl)benzenethiols, (\boldsymbol{R}) - and (S)-62. The assignment of (R) - and (S) - to this new ligand is based on the data for the ethyl analogue $\mathbf{2 0}$. In the case of $\mathbf{2 0}$, the (R)-configuration of the ligand gave the (S)-configuration of allylic alcohol 27. Based on the major enantiomer of allylic alcohol 27 formed, it was therefore possible to assign the configuration of the ligand (Scheme 1.38).

Enantiomer A
$\mathrm{R}_{\mathrm{t}}=7.01 \mathrm{~min}$

Enantiomer B
$\mathrm{R}_{\mathrm{t}}=11.77 \mathrm{~min}$

Scheme 1.38. Assigment of configuration to enantiomers of 62.

Table 1.4. Asymmetric additions of 26 to benzaldehyde in the presence ligands 62-64.

Entry	Ligand (\mathbf{L}^{*})	Ligand Loading (mol\%)	63:62 ${ }^{\text {b }}$	$\begin{gathered} \text { Yield (\%) of } \\ 27 \end{gathered}$	ee (\%) ${ }^{\text {a }}$ of $\mathbf{2 7}$
1	(S)-62	5	1:4	78	56
2	(S)-62	10	1:4	74	66
3	(S) $-62^{\text {b }}$	10	1:10	80	62
4	(R)-62	5	1:7	70	68
5	(R)-62	10	1:7	76	96
6	(R)-62	10	1:15	79	99
7	(R) $-62^{\text {b }}$	5	1:10	82	87
8	(R)-62 ${ }^{\text {b }}$	10	1:10	80	97
9	(S)-63	5	1:0	45	26
10	(S)-63	10	1:0	65	27
11	(R)-64	5	-	75	11
12	(R)-64	10	-	79	18

${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a PLELS 1000 detector, ${ }^{\mathrm{b}}$ ligand was used crude, before chromatographic purification, ${ }^{\mathrm{c}}$ ratio of free thiol to disulfide by NMR was determined by measuring doublet at $3.82 \mathrm{ppm}(63)$ and $3.50 \mathrm{ppm}(62)$.

The preliminary data with ligand $\mathbf{6 2}$ in the alkenyl zirconocene/zinc addition to aldehydes is shown in Table 1.4. At a ligand loading of $10 \mathrm{~mol} \%$, (\mathbf{S}) $\mathbf{- 6 2}$ shows enantioselectivities between 62-66\% for the allylic alcohol (R)-27 (Entry 2, 3). This is in sharp contrast to enantioselectivities between $96-99 \%$ observed for (\boldsymbol{R}) - $\mathbf{6 2}$ (Entry $5,6,8$). This discrepancy is quite puzzling since both enantiomers should show similar enantioselectivities in forming allylic alcohol 19. It is unclear at this time if the enantioselectivity of the reaction is perturbed by the presence of disulfide. The disulfide (\boldsymbol{R})- $\mathbf{6 3}$ was also tested because of its stability compared to the free thiol but showed a low enantioselectivity of $\sim 27 \%$ ee (Entry 9, 10). The thioacetate (R)64 showed low enantioselectivities of 11 and 18% ee (Entry 11, 12).

After preliminary data with ligand $\mathbf{6 2}$ were obtained, Wipf et al. reported on the inherent discrepancy between enantiomeric ratios formulated from ELSD and UV detectors. ${ }^{59}$ By comparing values for enantiomeric excess of a mixture of standards, the UV detector in all cases
showed more accurate results. The ELSD grossly exaggerated the enantiomeric excess of the standards. This difference can potentially be derived from the non-linear response of the ELS detector.

In light of this inconsistency, the reactions with isopropyl thiol benzylamine 62 were repeated and the enantiomeric excess was determined using both ELSD and UV detectors. Disappointingly, the enantiomeric excesses were inflated when ELSD was used as the method of detection. The enantiomeric excess detected by the UV was much lower, 31\% ee using (\boldsymbol{S})-62 and 84% ee using $(\boldsymbol{R})-\mathbf{6 2}$ (Table 1.5). The divergence in enantioenrichment of product between (\boldsymbol{R}) - and (S)-62 are still apparent even with UV detection. At this time, no clear reason for this effect can be given. The discrepancy can be as a result of varying amounts of disulfide in the ligand mixture, which can possibly perturb the asymmetric system.

Table 1.5. Chiral HPLC analysis of 27 with tandem detection by ELSD and UV.

Entry	Ligand	Ligand Loading $(\mathrm{mol} \%)$	Yield (\%) of $\mathbf{2 7}$	ee (\%) of 27 ELSD	ee (\%) ${ }^{\text {a }}$ of 27 UV
1	$\mathbf{(S) - 6 2}$	10	82	76	31
2	$(\boldsymbol{R}) \mathbf{- 6 2}$	10	80	99	84

${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector followed in tandem with PL-ELS 1000 detector. The UV detector was connected to the ELSD in a tandem manner.

1.3.2 Preparation of 2-(1-Dimethylamino-2-methylbutyl)benzenethiol

An isobutyl analogue was synthesized analogously to the isopropyl analogue, 70. Aldehyde 57 was improved by employing a copper mediated coupling between orthobromobenzaldehyde and benzylmercaptan to afford 57 in 71% yield. ${ }^{60}$ This aldehyde was then reacted with diphenylphosphinamide in the presence of TiCl_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ to afford imine $\mathbf{5 8}$ in 80% yield. Isobutyl magnesium chloride addition to the imine afforded the alkylated product $\mathbf{6 6}$ in 72% yield. Treatment of $\mathbf{6 6}$ with 20% aq. HCl at reflux furnished the free amine $\mathbf{6 7} .{ }^{61}$

Eschweiler-Clarke methylation of the amine afforded the dimethylated product 68 in 52% yield over 2 steps.

Scheme 1.39. Synthesis of benzylamine 68.

Using both OD and AD-H analytical columns, intermediates 66-68 were tested for adequate separation. It was found that intermediate $\mathbf{6 6}$ could be separated to baseline resolution using $5 \% i$-propanol/hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ (Figure 10) on the Chiralcel OD analytical column. However, transferring these conditions to the semi-preparative AD column resulted in no baseline separation. Cbz-protected amine was examined as an alternative intermediate to be examined on HPLC. Inital protection of amine 67 using benzylchlorofomate and $\mathrm{K}_{2} \mathrm{CO}_{3}$ resulted in 69 in 65% yield (Scheme 1.40). It was found that intermediate 69 could be separated to baseline separation using $5 \% i-\mathrm{PrOH} /$ hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ on the Chiralcel OD analytical column. Gratifyingly, separation of racemic-69 on an AD-H Chiralpack Semi-Prep column ($2 \mathrm{~cm} \times 25 \mathrm{~cm}$) at a flow rate of $10 \mathrm{~mL} / \mathrm{min}$ with 5%-propanol/hexanes afforded each enantiomer in $>92 \%$ ee. ${ }^{62}$

Scheme 1.40. Synthesis and separation of Cbz-intermediate 69.

The pure enantiomers were then further elaborated to give enantiomerically enriched 2-(1-dimethylamino-3-methylbutyl)-benzenethiol, (\boldsymbol{R})- and (S)-71 (Scheme 1.41). The configuration of ligand 71 was assigned based on the rationale previously used to assign the configuration of ligand 62 (Scheme 1.38).

Scheme 1.41. Synthesis of thiol benzylamine (S)-71.

The preliminary data obtained with both enantiomers of ligand 71 in the alkenyl zirconocene/zinc addition to aldehydes is shown in Table 1.6. At a ligand loading of $10 \mathrm{~mol} \%$, (S)-71 and (R)-71 show ee's between 61-69\% for the formation of allylic alcohol 27 (Entry 2, 3).

Table 1.6. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 71.

Entry	Ligand	Ligand Loading $($ mol\% $)$	Yield (\%) of 27	ee (\%) of 27
1	$(\boldsymbol{S}) \mathbf{- 7 1}$	5	81	44
2	$(\boldsymbol{S}) \mathbf{- 7 1}$	10	78	61
3	$(\boldsymbol{R})-\mathbf{7 1}$	10	84	69
4	$(\boldsymbol{R})-\mathbf{7 1}$	15	80	70

[^0]Unfortunately, increasing the steric bulk of the R group to isopropyl and isobutyl showed no further increase in enantioselectivity. The proposed transition state model for using this ligand scaffold is shown in Figure 1.17. The increase in added steric bulk of the R group must inhibit to some degree the formation of this transition state. This could possibly arise from steric crowding of the R group with the amine substituents and thus disrupting the rigidity of the transition state.

Figure 1.17. Possible transition state model for the thiol benzylamine catalyzed alkenyl zirconocene/zinc addition to benzaldehyde.

1.4 Alternative Ligand Scaffolds

1.4.1 Alternate Ligand Survey

Alternate ligands surveyed in the alkenylzirconocene/zinc addition to aldehydes are shown in Tables 1.7, 1.8, and 1.9. Norephedrine-based amino alcohols and thiocarboxylates ligands have shown promise in diethylzinc addition to aldehydes with ee's of up to $99 \%{ }^{63}$ The data shown below indicates little selectivity with this ligand scaffold although an increase in enantioselectivity was observed between the alcohol $\mathbf{7 2}$ and thioacetate 73 (entry 1). This slight increase might again be due to the higher affinity of zinc for thiolates as compared to the corresponding alcoholates. Anderson et al. have demonstrated the importance of the substituents on nitrogen in chiral amino thiol ligands for the asymmetric addition of diethylzinc to aromatic aldehydes. ${ }^{64}$ These valine-based ligands, 77-79, were tested in our methodology and showed very little selectivity (entry 3). Aziridine-based β-amino alcohols also have proven to be successful in the enantioselective addition of diethylzinc to aromatic aldehydes. ${ }^{65}$ Ligands of this type also posses the diphenylalcohol moiety that was so effective in the proline-based ligands. However, as shown below, no significant enantioselectivity in the alkenyl zirconocene/zinc addition to benzaldehyde was observed with ligands $\mathbf{8 3}, \mathbf{8 5}$, and $\mathbf{8 6}$ (entry 4).

Table 1.7. Asymmetric additions of 26 to benzaldehyde in the presence of ligands 72-86.

| Entry | Ligand Loading
 $($ mol\% $)$ | Yield (\%) of 27 | ee (\%) of $\mathbf{2 7}$ |
| :--- | :---: | :---: | :---: | :---: |

"aee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector.

In 2003, Chan et al. reported on the alkenylations of aldehydes using aminonaphthol 87. This ligand was easily prepared via a one step procedure and used in Oppolzers' hydroborationtransmetalation to zinc followed by addition to aldehyde that resulted in high ee's of up to $99 \%{ }^{30}$ This methodology is quite similar to ours and thus this ligand was considered as a viable candidate for further exploration. Unfortunately, these ligands did not provide significant stereoinduction in our methodology (Table 1.8, entries 1 and 2). Possibly, $\mathrm{B}-\mathrm{Zn}$ and $\mathrm{Zr}-\mathrm{Zn}$ allylic alcohol formations occur via different mechanisms and the presence of zirconocene byproducts plays a crucial role in the overall control of the catalytic asymmetric process. A binaphthyl backbone was also considered as a viable option since ligands of this type have shown moderated enantioselectivity in asymmetric alkenylzinc addition to aldehydes. ${ }^{31}$

Unfortunately, racemic 27 was afforded with ligand 92 (entry 3). Dahmen has used paracyclophanes-based ketimine ligands in asymmetric alkylzinc additions as well as alkenylzinc additions. ${ }^{29}$ In our reaction manifold, a low enantioselectivity of 6% was observed with ligand 96 (entry 4).

Table 1.8. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands 87-89, 92, and 96.
Entry

[^1]Oxazolines have shown good stereochemical control properties in metal-mediated catalysis. ${ }^{66}$ Ligands of this type, 97 and 98 , also contain a second donor group in the form of a thiophene. Incorporation of sulfur via a thiophene moiety might induce some extra rigidity which may have positive effects on the enantioselective addition of alkenylzinc reagents. Ligand 97 proved to be slightly more enantioselective in the alkenyl zirconocene/zinc addition to benzaldehyde than ligand 98, but neither showed the desired level of enantioselectivity (Table 1.9 , entries 1 and 2).

Table 1.9. Asymmetric additions of $\mathbf{2 6}$ to benzaldehyde in the presence of ligands $\mathbf{9 7}$ and $\mathbf{9 8}$.

Entry	Ligand	Ligand Loading (mol\%)	Yield (\%) of 27	ee (\%) ${ }^{\text {a }}$ of 27
1		97; 15	83	21
2		98; 15	79	7

1.4.2 Synthesis and Evaluation of $\boldsymbol{\beta}$-Amino Thiol Ligands

In an effort to investigate alternate ligand scaffolds, conformationally relatively restricted compounds containing the amino and thiol moieties in a 1,2-relationship were considered. The desired analogues were synthesized starting from (L)-valine and (S)-t-leucinol (Scheme 1.42). (L)-Valine was reduced using Meyer's reduction protocol to afford (L)-valinol 100a in 77% yield. ${ }^{67}$ Dialkylation of the amine employing 1,4-dibromobutane and 1,5-dibromopentane in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ resulted in the formation of $\mathbf{1 0 1 a}$ and $\mathbf{1 0 1 b}$ in 86% and 76% yield,
respectively. Conversion of the hydroxy moiety to the thioacetate utilizing Mitsunobu reaction conditions followed by LiAlH_{4} reduction afforded the desired ligands 103a and 103b. ${ }^{68}$ Analogously, ligand 103c was synthesized starting from (S)- t-leucinol in the manner described above.

101a, $R=H, n=1 ; 86 \%$
101b, $R=H, n=2 ; 76 \%$
101c, $R=M e, n=2 ; 75 \%$

102a, $R=H, n=1 ; 66 \%$
102b, $R=H, n=2 ; 56 \%$
102c, $R=M e, n=2 ; 63 \%$

103a, $R=H, n=1 ; 72 \%$
103b, $R=H, n=2 ; 63 \%$
103c, $R=M e, n=2 ; 73 \%$

Scheme 1.42. Synthesis of β-amino alcohol and thiol ligands.

The β-amino thiol ligands 103a, 103b, and 103c were screened in the alkenyl zirconium/zinc addition. Initial results showed good yields (80-81\%) and moderate enantioselectivities ($71-77 \%$) in the presence of ligands 103b and 103c at $15 \mathrm{~mol} \%$ ligand loading (Table 1.10). Thiol 103a was rather ineffective (22% ee). Not unexpectedly, the corresponding β-amino alcohol ligands also showed a dramatic decrease in enantioselectivity (2$3 \%$). The latter effect can be attributed to the characteristics of sulfur atoms and the presence of at least two metal complexes as previously mentioned.

Table 1.10. Asymmetric addition of 26 to benzaldehyde in the presence of ligands 103a-103c.

${ }^{\text {a }} e e$'s were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)).

Our preliminary results with these rather simple β-amino thiol ligands prompted a further exploration of the β-amino alcohol scaffold. In the hope of increasing the enantioselectivity to appreciable levels, steric bulk was introduced at the α-carbon next to the thiol. Ligands with this specific substitution pattern have previously been reported by Yang et al. for the alkenylboron/zinc addition to aldehydes. ${ }^{32}$ High enantioselectivity was observed by Yang when employing β-amino alcohol 112.
β-Amino alcohol 112 was synthesized and examined in the alkenylzirconocene/zinc addition protocol. The amino thiol ligand was synthesized from readily available (L)-valine (Scheme 1.43). Using benzyl chloride in the presence of NaOH gave the N, N-dibenzylamino benzyl ester $\mathbf{1 0 4}$ in 79% yield. Reduction of the benzyl ester using LiAlH_{4} afforded the resulting alcohol, which was further oxidized to the corresponding aldehyde 106 using Swern oxidation conditions in 96% yield. Isopropylmagnesium bromide addition to the aldehyde resulted in the bis-isopropyl amino alcohol $\mathbf{1 0 7}$ with high diastereoselectivity in 27% yield. A major byproduct of the Grignard reaction was the reduced alcohol 108. Cleavage of the benzyl group employing hydrogenolysis conditions using $\mathrm{Pd}(\mathrm{OH})_{2}$ afforded the free amine 109 in 97% yield. Alkylation of the amine using 1,4-dibrombutane resulted in the formation of the pyrrolidine alcohol $\mathbf{1 1 0}$ in
75% yield. In order to install the thiolacetate, the alcohol 110 was converted to the mesylate followed by displacement with thiolacetic acid. This process occurs via initial displacement of the mesylate by the tertiary amine to form the intermediate aziridine. The aziridine undergoes facile ring opening in the presence of thiolacetate to give the corresponding thiolacetate. Finally, LiAlH_{4} reduction results in the amino thiol ligand $\mathbf{1 1 2}$ in 96% yield.

Scheme 1.43. Synthesis of β-amino alcohol 112.

In our standard reaction, β-amino thiol 112 showed the highest enantioselectivity at 94% ee at a ligand loading of $10 \mathrm{~mol} \%$ (Table 1.11, entry 6). A high enantioselectivity for the formation of 27 could be retained even at $2.5 \mathrm{~mol} \%$ loading. In comparison to the corresponding
amino alcohol ligand 110, the amino thioacetate and amino thiol ligands both showed higher enantioselectivities (entries 1,2, and 6).

Table 1.11. Asymmetric additions of 26 to benzaldehyde in the presence of ligands 110-112.

\(\left.\begin{array}{ccccc}\hline Entry \& \left.Ligand (\mathbf{L}^{*}\right) \& \begin{array}{c}Loading Loading

(\mathbf{m o l} \%)\end{array} \& Yield (\%) \& ee (\%) of 27\end{array}\right]\)| 1 | $\mathbf{1 1 0}$ | 10 | 81 |
| :---: | :---: | :---: | :---: |
| 2 | $\mathbf{1 1 1}$ | 10 | 77 |
| 3 | $\mathbf{1 1 2}$ | 1 | 75 |
| 4 | $\mathbf{1 1 2}$ | 2.5 | 82 |
| 5 | $\mathbf{1 1 2}$ | 5 | 79 |
| 6 | $\mathbf{1 1 2}$ | 10 | 81 |
| 7 | $\mathbf{1 1 2}$ | 15 | 76 |

${ }^{\text {a }} e e$'s were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using $i-\mathrm{PrOH} / \mathrm{hexanes}(1: 99)$).

The scope of the alkenylzirconocen/zinc addition process in the presence of the β aminothiol ligand $\mathbf{1 1 2}$ is further illustrated in Table 1.12. It was observed that amino thiol $\mathbf{1 1 2}$ catalyzed reactions resulted in moderate enantioselectivity for aliphatic aldehydes (73-79\% ee, entries 1 and 8). A decrease in enantioselectivity was found for the electron rich p-anisaldehyde (entry 3). Attempts at optimizing this reaction resulted in no appreciable increase in enantioselectivity (entries 4-6). The reaction scope was further investigated using internal alkynes. Promising results were obtained in the reaction of 3-hexyne with benzaldehyde, which resulted in an 89% yield and 90% ee for the corresponding allylic alcohol 118 (entry 10). The analogous reaction with p-anisaldehyde resulted in 87% ee, although at a lower yield of 63% (entry 12). Utilization of a silyl ester functionalized alkyne provided the substituted allylic alcohol $\mathbf{1 2 2}$ in 72% yield with an enantioselectivity of 71% (entry 13).

Table 1.12. Asymmetric addition in the presence of ligand 112.

		1. $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt. 2. $\mathrm{Me}_{2} \mathrm{Zn}$, Toluene, $-65{ }^{\circ} \mathrm{C}$ 3. 112; $1 \mathrm{~h},-65^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$ 4. R"CHO, $-30^{\circ} \mathrm{C}, 15 \mathrm{~h}$				
Entry	$\begin{aligned} & \text { Alkyne } \\ & \left(R, R^{\prime}\right) \end{aligned}$	Aldehyde (R")	Ligand Loading (mol\%)	Product	Yield (\%)	$\begin{aligned} & \text { ee }(\%)^{\mathrm{e}} \\ & \text { of } \mathbf{1 1 4} \end{aligned}$
1	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$\mathrm{Ph} \mathrm{CH2CH2}$	5	115	78	79
2	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	5	116	72	36
3	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	10	116	65	42
$4^{\text {a }}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	10	116	60	14
$5^{\text {b }}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	10	116	62	5
$6^{\text {c }}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	10	116	15	10
7	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{11}$	5	117	65	$72^{\text {f }}$
8	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{11}$	10	117	70	$73^{\text {f }}$
$9{ }^{\text {d }}$	$n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{H}$	$\mathrm{C}_{6} \mathrm{H}_{11}$	10	117	23	$24^{\text {f }}$
10	$\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2}$	Ph	10	118	89	$90^{\text {g }}$
11	$\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{Ph} \mathrm{CH} 2 \mathrm{CH}_{2}$	10	119	65	$53^{\text {g }}$
12	$\mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2}$	$(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$	10	120	63	$87^{\text {g }}$
13	TIPSOC(O) $\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{H}$	Ph	10	122	72	$71^{\text {h }}$

${ }^{\text {a }}$ no premixing of ligand, ${ }^{\mathrm{b}}$ reaction mixture was stirred at $-50{ }^{\circ} \mathrm{C}$ for $15 \mathrm{~h},{ }^{\mathrm{c}}$ reaction mixture was stirred for 1 h , ${ }^{\mathrm{d}}$ ligand was premixed at $0{ }^{\circ} \mathrm{C}$ and stirred at $0^{\circ} \mathrm{C}$ for 15 h , $e e^{e}$'s were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i - $\mathrm{PrOH} /$ hexanes (1:99)), ${ }^{\mathrm{f}} e e$'s were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the derivatized product using Mosher's ester, ${ }^{\mathrm{g}} e e^{\prime}$'s were determined by chiral HPLC analysis (Chiralcel AD-H, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using $i-\mathrm{PrOH} /$ hexanes (1:99)), hthe corresponding allylic alcohol was treated with LiAlH_{4} followed by ee determination of the resulting diol by chiral HPLC analysis (Chiralcel AD-H, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i $\mathrm{PrOH} /$ hexanes (5:95)).

The proposed transition state with ligand $\mathbf{1 1 2}$ is shown below in Figure 1.18. While simple β-amino thiol ligands, 103b and 103c, displayed mediocre enantioselectivity, the bisisopropyl β-amino thiol ligand afforded the best enantioselectivity. This is also the first ligand that has shown promising results in both our hydrozirconation/transmetalation protocol as well as the reported hydroboration/transmetalation protocol.

Figure 1.18. Possible transition state model for the β-amino thiol 112 catalyzed alkenyl zirconocene/zinc addition to benzaldehyde.

1.5 Conclusions

Among the ligands surveyed in the alkenyl zirconium-zinc addition to aldehydes, prolinederived 21, thiol benzylamine 20b, and β-amino thiol $\mathbf{1 1 2}$ show the most promise (Figure 1.19). The amino thiol ligand 20b has demonstrated a positive NLE and remains the optimal ligand investigated thus far. The amino alcohol ligand 21 shows an unusual dependence on ligand ee\% and loading, but it offers an attractive alternative due to its ease of synthesis and inherent stability. Ligand 112 represents a new β-amino thiol scaffold that was found to be effective in the alkenylzirconium/zinc addition process. In comparison to thiol benzylamine 20b, β-amino thiol 112 shows comparable enantioselectivity at a lower ligand loading of $5 \mathrm{~mol} \%$. Prolinebased 21 and β-amino thiol $\mathbf{1 1 2}$ can potentially increase the asymmetric induction in substrates where ligand 20b has been shown to be mediocre.

21

20b

112

Figure 1.19. Ligands effective in the asymmetric alkenylzirconium/zinc addition to aldehydes.

1.6 Experimental

General: All moisture-sensitive reactions were performed under an atmosphere of N_{2}. Glassware was dried in an oven at $140^{\circ} \mathrm{C}$ prior to use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried by distillation over Na /benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified by filtration through activated alumina. $\mathrm{Me}_{2} \mathrm{Zn}$ was purchased from the Aldrich Chemical Company and $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ was prepared according to a modification of a literature protocol. ${ }^{69}$ Unless otherwise stated, solvents and reagents were used as received. Analytical thin layer choromatography was performed on pre-coated silica gel 60 F 254 plates (particle size $0.040-0.055 \mathrm{~mm}, 230-400 \mathrm{mesh}$) and visualization was accomplished with a 254 nm UV light or by staining with an anisaldehyde solution $(7.5 \mathrm{~mL}$ of p-anisaldehyde, 25 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 7.5 mL of glacial acetic acid in 675 mL of 95% ethanol) or a KMnO_{4} solution $\left(1.5 \mathrm{~g}\right.$ of $\mathrm{KMnO}_{4}, 10 \mathrm{~g}$ of potassium carbonate and 2.5 mL of 5% aqueous NaOH in 150 mL of $\mathrm{H}_{2} \mathrm{O}$). Flash chromatography on SiO_{2} was used to separate and purify the crude reaction mixtures. NMR spectra were recorded at $300 \mathrm{MHz} / 75 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR $/{ }^{13} \mathrm{C}$ NMR) at $21{ }^{\circ} \mathrm{C}$ in CDCl_{3} unless otherwise noted. Chemical shifts (δ) are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, $\mathrm{sx}=$ sextet, $\mathrm{sp}=$ septet, $\mathrm{o}=$ octet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{dq}=$ doublet of quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=\mathrm{broad}$), integration, and coupling constants. Mass spectra were obtained on a double focusing instrument. Optical rotations were measured on a Perkin-Elmer 241 polarimeter at $\mathrm{T}=25^{\circ} \mathrm{C}$. IR spectra obtained on a Nicolet AVATAR 360 FT-IR E.S.P. Spectrometer. Chiral HPLC analysis was performed on a Dynamax SD-200 delivery system in conjunction with a Dynamax UV-1 absorbance detector or PL-ELS 1000 detector. A Chiralcel OD ($0.46 \mathrm{~cm} \times 2.5 \mathrm{~cm}$) or AD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$) column was used for analytical separation, and a Chiralcel AD-H ($2 \mathrm{~cm} \times 25 \mathrm{~cm}$) column for semipreparative separations.

\boldsymbol{N}-Ethoxycarbonyl- L-proline methyl ester (22). ${ }^{70}$ To a solution of $2.50 \mathrm{~g}(21.7 \mathrm{mmol})$ of L proline and $3.00 \mathrm{~g}(21.7 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 40 mL of MeOH at $0^{\circ} \mathrm{C}$ was added $4.48 \mathrm{~mL}(46.9$ mmol) of ethyl chloroformate over 10 min . The resulting solution was stirred for 15 h at room temperature, concentrated in vacuo, diluted with 30 mL of $\mathrm{H}_{2} \mathrm{O}$, and extracted with 25 mL of CHCl_{3} (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $4.47 \mathrm{~g}(90 \%)$ of $\mathbf{2 2}$ as a clear, oily mixture of rotamers (1:1) that was used without further purification: $[\alpha]_{\mathrm{D}}{ }^{25}-59.1$ (c 1.0, CHCl_{3}); lit. ${ }^{70}[\alpha]_{\mathrm{D}}{ }^{25}-60.3$ (c 1.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR δ 4.36-4.26 (m, 1 H$), 4.21-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.70(\mathrm{~s}, 1.5 \mathrm{H}), 3.62-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.52-$ $3.40(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{t}, 1.5 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.18(\mathrm{t}, 1.5 \mathrm{H}$, $J=7.1 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 201 ($\mathrm{M}^{+}, 19$), 142 (100), 128 (20), 114 (13).

(S)-1-Methyl-2-pyrrolidinemethanol (23). To a solution of $2.00 \mathrm{~g}(9.94 \mathrm{mmol})$ of $\mathbf{2 2}$ in 20 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $1.13 \mathrm{~g}(29.8 \mathrm{mmol})$ of LiAlH_{4}. The reaction mixture was heated at reflux for 4 h , cooled to $0^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 3 with 1 N HCl , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered through a plug of celite. The celite was washed with EtOAc and the organic layer was separated. The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $1.05 \mathrm{~g}(72 \%)$ of 23 as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}-49.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ lit. $^{70}[\alpha]_{\mathrm{D}}{ }^{25}-49.5\left(c 5.0, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.62$ (dd, $1 \mathrm{H}, J=3.5,10.8 \mathrm{~Hz}), 3.48-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, 1.95-1.75 (m, 2 H), 1.74-1.60 (m, 2 H); MS (EI) m / z (rel intensity) 115 ($\mathrm{M}^{+}, 26$), 84 (100).

24
(S)-(+)-Dimethyl(1-methylpyrrolidin-2-yl)methanol (24). ${ }^{71}$ To a solution of 9.71 g (48.3 $\mathrm{mmol})$ of $\mathbf{2 2}$ in 60 mL of THF at $0^{\circ} \mathrm{C}$ was added $64.0 \mathrm{~mL}(193 \mathrm{mmol})$ of a 3 M solution of methyl magnesium bromide in THF. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield an orange oil. This oil was used in the subsequent step without further purification. A solution of the oil in 75 mL of THF at $0^{\circ} \mathrm{C}$ was treated portionwise with $3.60 \mathrm{~g}(43.9 \mathrm{mmol})$ of LiAlH_{4}, heated at reflux for 3 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 3 with 1 N HCl , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered through a plug of celite. The celite was washed with EtOAc and the organic layer was separated. The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($20 \% \mathrm{EtOAc} /$ Hexanes) to yield $4.64 \mathrm{~g}(67 \%)$ of $\mathbf{2 4}$ as a slightly orange oil: $[\alpha]_{\mathrm{D}}{ }^{25}+6.7\left(c 0.15, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{71}[\alpha]_{\mathrm{D}}{ }^{25}-5.8(R)\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 3.07-2.99 (m, 1 H), 2.47 (s, 3 H), 2.45-2.30 (m, 2 H), 1.87-1.73 (m, 1 H), 1.74-1.62 (m, 3 H), 1.17 ($\mathrm{s}, 3 \mathrm{H}$), 1.08 (s, 3 H); MS (EI) m / z (rel intensity) 145 ($\mathrm{M}^{+}, 11$), 128 (14), 84 (100).

21
(S)-(+)-Diphenyl(1-methylpyrrolidin-2-yl)methanol (21). ${ }^{72}$ To a solution of $4.47 \mathrm{~g}(21.9$ mmol) of 22 in 30 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $87.8 \mathrm{~mL}(87.8 \mathrm{mmol})$ of 1 M phenyl magnesium bromide in THF. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 8.50 g of an orange oil. This oil was used in the subsequent step without further purification. A solution of the oil in 60 mL of THF at $0{ }^{\circ} \mathrm{C}$ was treated portionwise with $1.60 \mathrm{~g}(43.9 \mathrm{mmol})$ of LiAlH_{4}, heated at reflux for 3 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 3 with 1 N HCl , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered through a
plug of celite. The celite washed with EtOAc and the organic layer was separated. The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} /$ Hexanes $)$, and further purified by Kugelrohr distillation at $180{ }^{\circ} \mathrm{C}(0.1$ Torr) to yield $4.40 \mathrm{~g}(75 \%)$ of 21 as a beige solid: Mp $64-66{ }^{\circ} \mathrm{C}$ (EtOAc/Hexanes, lit. 68.5-68.9); $[\alpha]_{\mathrm{D}}{ }^{25}+53.4\left(c \quad 0.9, \mathrm{CHCl}_{3}\right) ;$ lit. $^{72}[\alpha]_{\mathrm{D}}{ }^{23}+57.0\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.80-7.70(\mathrm{~m}, 2 \mathrm{H})$, 7.62-7.52 (m, 2 H), 7.48-7.30 (m, 4 H), 7.25-7.12 (m, 2 H), 4.88 (bs, 1 H), $3.70(\mathrm{dd}, 1 \mathrm{H}, J=5.2$, $9.5 \mathrm{~Hz}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}$, 1 H); MS (EI) m / z (rel intensity) 268 ($\mathrm{M}^{+}, 7$), 249 (14), 190 (27), 181 (129), 165 (27), 152 (22), 105 (17).

25
(S)-(+)-Dinaphthyl(1-methylpyrrolidin-2-yl)methanol (25). To a solution of 1.26 g (6.26 mmol) of $\mathbf{2 2}$ in 35 mL of THF at $0^{\circ} \mathrm{C}$ was added 50.0 mL (25.0 mmol) of a 0.5 M solution of 2naphthyl magnesium bromide in THF. The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 2.00 g of an orange oil. This oil was used in the subsequent step without further purification. A solution of the oil in 50 mL of THF at $0^{\circ} \mathrm{C}$ was treated portionwise with 0.360 g (9.40 mmol) of LiAlH_{4}, heated at reflux for 4 h , cooled to $0^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, acidified to pH 3 with 1 N HCl , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered through a plug of celite. The celite was washed with EtOAc and the organic layer was separated. The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude residue was precipitated from $50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$ to give $2.00 \mathrm{~g}(87 \%)$ of off-white solid 25: Mp 202-204 ${ }^{\circ} \mathrm{C}$ (EtOAc/Hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}+65.2$ (c 1.0, CHCl_{3}); IR (KBr) 3525, 3008, 2900, 1210, 1071, $935 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.24$ (s, 1 H), 8.11 (s, 1 H), 7.82 (td, $2 \mathrm{H}, J$ $=1.4,7.3 \mathrm{~Hz}), 7.76-7.66(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}, 9.2 \mathrm{~Hz}), 3.19-$ $3.09(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{td}, 1 \mathrm{H}, J=6.8,9.8 \mathrm{~Hz}), 2.06-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.59(\mathrm{~m}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 135.7,133.3,132.1,128.3,127.7,127.4,125.9,125.6,124.5,124.5,124.3$,
124.0, 58.9, 43.2, 30.0, 24.1; MS (EI) m / z (rel intensity) 349 ([M- $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 30$), 282 (28), 252 (8), 155 (20), 127 (21); HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) 349.1831$, found 349.1819.

General Protocol for formation of allylic alcohol, (S)-1-Phenylhept-2-en-1-ol (27) using 15 $\mathbf{m o l} \%$ of ligand 21. To a suspension of $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} was added $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne at room temperature. After 5 min , an additional $80 \mu \mathrm{~L}(0.70 \mathrm{mmol})$ of 1-hexyne was added. The reaction mixture was stirred for an additional 10 min , and the solution was concentrated in vacuo. To a solution of the resulting orange oil in 4 mL of toluene at $-65^{\circ} \mathrm{C}$ was added $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0$ M solution in toluene). After $10 \mathrm{~min}, 52 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand 21 was added. The reaction mixture was then warmed to $-30^{\circ} \mathrm{C}$ over a period of 1 h , and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde was added. The solution was stirred for 15 h at $-30^{\circ} \mathrm{C}$, quenched by addition of NaHCO_{3} solution, filtered through a plug of florisil and extracted with EtOAc. The organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 190 $\mathrm{mg}(80 \%)$ of 27 as a colorless oil. The enantiomeric excess was determined using chiral HPLC (Chiralcel OD) using $1 \% i-\mathrm{PrOH} /$ hexane at a flow rate of $1 \mathrm{~mL} / \mathrm{min}\left(\mathrm{R}_{\mathrm{t}}\right.$ minor $=18.1 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ major $=26.8 \mathrm{~min})$ with a Dynamax UV-1 absorbance detector: ${ }^{1} \mathrm{H}$ NMR δ 7.37-7.22 (m, 5 H), $5.70(\mathrm{dt}, 1 \mathrm{H}, J=6.2,15.3 \mathrm{~Hz}), 5.61(\mathrm{dd}, 1 \mathrm{H}, J=6.5,15.4 \mathrm{~Hz}), 5.13(\mathrm{~d}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.10-$ $2.00(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{bs}, 1 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 23 . According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $15 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand 23, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $197 \mathrm{mg}(79 \%)$ of 27 with an ee of $17 \%{ }^{73}$
(\boldsymbol{S})-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 23 . According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne,
$650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}$ (2.0 M solution in toluene), $22 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand 23, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $195 \mathrm{mg}(78 \%)$ of 27 with an ee of 18%.
(\boldsymbol{S})-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 24 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 9.2 \mathrm{mg}(0.06 \mathrm{mmol})$ of ligand $\mathbf{2 4}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $105 \mathrm{mg}(85 \%)$ of 27 with an ee of 17%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 24 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $14 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand 24, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $96 \mathrm{mg}(78 \%)$ of $\mathbf{2 7}$ with an ee of 17%.
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{~ m o l} \%$ of ligand 21. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 43 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand 21, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $180 \mathrm{mg}(73 \%)$ of 27 with an ee of 46%. Run 2 was conducted on the same scale to yield $190 \mathrm{mg}(77 \%)$ of 27 with an ee of 35%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 21 . According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 63 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand 21, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $185 \mathrm{mg}(76 \%)$ of 27 with an ee of 79%. Run 2 was conducted on the same scale to yield $180 \mathrm{mg}(74 \%)$ of 27 with an ee of $83 \%{ }^{73}$
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 25 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne,
$325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $22 \mathrm{mg}(0.06 \mathrm{mmol})$ of ligand $\mathbf{2 5}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $100 \mathrm{mg}(81 \%)$ of 27 with an ee of 20%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 25 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $33 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand $\mathbf{2 5}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(80 \%)$ of $\mathbf{2 7}$ with an ee of 20%.

Chiral loading: (S)-1-Phenylhept-2-en-1-ol (27) using $5 \mathrm{~mol} \%$ of ligand (S)-21: According to the general protocol, $510 \mathrm{mg}(1.98 \mathrm{mmol})$ of zirconocene hydrochloride, $179 \mu \mathrm{~L}(1.55 \mathrm{mmol})$ of 1-hexyne, $660 \mu \mathrm{~L}(1.32 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 22 \mathrm{mg}(0.08 \mathrm{mmol})$ of $(\boldsymbol{S}) \mathbf{- 2 1}$, and $134 \mu \mathrm{~L}(1.32 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $192 \mathrm{mg}(75 \%)$ of $\mathbf{2 7}$ with an ee of 9%. The numerical value of each data point is listed below (Table 8).

Table 1.13. Enantioselective formation of 27 using ligand 21.

ligand loading $(\mathbf{m o l} \%)$ of $(\boldsymbol{S}) \mathbf{- 2 1}$	$\mathrm{ee}^{73}(\%)$ of $(\boldsymbol{S}) \mathbf{2 7}$
0	0
5	9
10	41^{a}
15	81^{a}
20	60
30	66
40	68
50	53

${ }^{\text {a }}$ At the specified chiral ligand loading, 2 runs were conducted and the average was reported.

Non-linear effect: (S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand (S)-21 (65\% ee): According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $179 \mu \mathrm{~L}$ (1.54 mmol) of 1-hexyne, $660 \mu \mathrm{~L}(1.31 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), 52 mg
$(0.19 \mathrm{mmol})$ of $\mathbf{(S)} \mathbf{- 2 1}$ and $11 \mathrm{mg}(0.04 \mathrm{mmol})$ of $(\boldsymbol{R}) \mathbf{- 2 1}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided 180 mg (74%) of 27 with an ee of 41%. Data points in Figure 1.13 are the average of 2 or 3 runs conducted at the specified $\%$ ee of ligand. The numerical value of each data point is listed below (Table 9).

Table 1.14. Enantioselective formation of 27 using ligand 21 at $15 \mathrm{~mol} \%$ loading.

ee (\%) of $\boldsymbol{(S) - \mathbf { 2 1 }}$	$\mathrm{ee}^{73}(\%)$ of $\mathbf{2 7}$
100	$81(\mathrm{~S})$
80	$65(\mathrm{~S})$
65	$46(\mathrm{~S})$
50	$24(\mathrm{~S})$
35	$13(\mathrm{R})$
20	$1.5(\mathrm{R})$
0	0

(S)-2-Hydroxymethylpyrrolidine-1-carboxylic acid ethyl ester (39). ${ }^{74}$ To a solution of 3.50 g (15.2 mmol) of 22 in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added portionwise $421 \mathrm{mg}(11.1 \mathrm{mmol})$ of LiAlH_{4}. The resulting slurry was stirred for 5 h at $0^{\circ} \mathrm{C}$ and quenched with EtOAc and 20\% potassium hydroxide. The organic layer was extracted with EtOAc (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting 2.4 g (78\%) of clear oil were found to contain a $6: 1$ mixture of $\mathbf{3 9}$ and $\mathbf{2 2}$ and used in subsequent steps without further purification. A portion of this crude oil was purified by chromatography on $\mathrm{SiO}_{2}(10 \%$ EtOAc/Hexanes) to yield pure 39 for characterization purposes: ${ }^{1} \mathrm{H}$ NMR $\delta 4.16$ (q, $2 \mathrm{H}, J=7.1$ $\mathrm{Hz})$, 4.05-3.95 (m, 1 H), 3.70-3.56 (m, 2 H), 3.55-3.47 (m, 1 H$), 3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.98$ (m, 1 H), 1.97-1.73 (m, 2 H), 1.70-1.50 (bs, 1 H), 1.28 (t, $3 \mathrm{H}, J=7.1 \mathrm{~Hz}$); MS (EI) $\mathrm{m} / \mathrm{z}(\mathrm{rel}$ intensity) $173\left(\mathrm{M}^{+}, 2\right), 142$ (88), 128 (12), 114 (14), 98 (38).

40
(S)-2-Toluene-4-sulfonyloxymethylpyrrolidine-1-carboxylic acid ethyl ester (40). ${ }^{52}$ To a solution of $2.40 \mathrm{~g}(11.9 \mathrm{mmol})$ of a $6: 1$ mixture of $\mathbf{3 9}$ and 22 in 20 mL of pyridine at room temperature was added $3.17 \mathrm{~g}(16.6 \mathrm{mmol})$ of p-toluenesulfonyl chloride. The reaction mixture was stirred for 4 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $1 \mathrm{M} \mathrm{HCl}, \mathrm{NaHCO}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the crude residue on SiO_{2} ($50 \% \mathrm{EtOAc} /$ Hexanes) yielded $2.45 \mathrm{~g}(52 \%)$ of a $1: 10$ mixture of $\mathbf{2 2}$ and $\mathbf{4 0}$ as a clear oil. This mixture was used without further purification in subsequent steps. A sample of this mixture was re-purified by chromatography on $\mathrm{SiO}_{2}(33 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield pure 40 as a $1: 1$ mixture of rotamers for characterization purposes: ${ }^{1} \mathrm{H}$ NMR $\delta 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$), 7.38-7.30 (m, 2 H), 4.20-3.85 (m, 6 H$), 3.45-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.22\left(\mathrm{t}, 1.5 \mathrm{H}, J=7.1 \mathrm{~Hz}\right.$), $1.13\left(\mathrm{t}, 1.5 \mathrm{H}, J=6.8 \mathrm{~Hz}\right.$); MS (EI) m / z (rel intensity) $327\left(\mathrm{M}^{+}, 9\right)$, 297 (17), 155 (12), 142 (100).

(S)-2-Acetylsulfanylmethylpyrrolidine-1-carboxylic acid ethylester (41). A solution of 2.45 $\mathrm{g}(6.79 \mathrm{mmol})$ of a $10: 1$ mixture of $\mathbf{4 0}$ and $\mathbf{2 2}$ in 50 mL of DMF was treated with 3.92 g (34.4 mmol) of potassium thioacetate. The resulting solution was heated at reflux for 1 h , diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $1.07 \mathrm{~g}(62 \%)$ of 41 as an orange, oily $2: 1$ mixture of rotamers: $[\alpha]_{\mathrm{D}}{ }^{25}+59.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.25-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{bs}, 2$ H), $3.19(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.67(\mathrm{~m}, 5 \mathrm{H}), 1.25(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $232\left(\mathrm{M}^{+}, 7\right), 224(43), 188(27), 155(25), 142(100), 114$ (14).

42
(S)-(1-Methylpyrrolidin-2-yl)-methanethiol (42). A solution of $1.07 \mathrm{~g}(4.62 \mathrm{mmol})$ of $\mathbf{4 1}$ in 40 mL of THF was added dropwise to a slurry of $1.07 \mathrm{~g}(20.8 \mathrm{mmol})$ of LiAlH_{4} in 60 mL of THF. The resulting solution was heated at reflux for 8 h , cooled to $0^{\circ} \mathrm{C}$, quenched with 1.3 mL of $\mathrm{H}_{2} \mathrm{O}$ and 16 mL of 1 M HCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered through celite, and concentrated in vacuo. The resulting oil was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 151 mg (25%) of 42 as a clear oil: $[\alpha]_{D}{ }^{25}-84.0\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{71}[\alpha]_{\mathrm{D}}{ }^{20}-85.7\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.04(\mathrm{t}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 3.02(\mathrm{dd}, 1 \mathrm{H}, J=3.4,12.9 \mathrm{~Hz}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=8.2,12.9 \mathrm{~Hz})$, 2.45-2.37(m, 1 H$), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 3 \mathrm{H})$.
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand $\mathbf{4 2}$. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $7.9 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 42, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $100 \mathrm{mg}(81 \%)$ of 27 with an ee of 83%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 42 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 12 \mathrm{mg}(0.090 \mathrm{mmol})$ of ligand $\mathbf{4 2}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $120 \mathrm{mg}(98 \%)$ of 27 with an ee of 84%.

45a
(S)-2-(Acetylsulfanyldiphenylmethyl)-pyrrolidine-1-carboxylic acid ethyl ester (45a). ${ }^{52}$ To $2.00 \mathrm{~g}(6.13 \mathrm{mmol})$ of 44 and $2.15 \mathrm{~g}(6.74 \mathrm{mmol})$ of ZnI_{2} at $0^{\circ} \mathrm{C}$ in 110 mL of dichloroethane was added $0.94 \mathrm{~mL}(13.3 \mathrm{mmol})$ of thiolacetic acid. The resulting reaction was stirred for 26 h , diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude residue was purified by chromatography on SiO_{2} (100% Hexanes- 30% EtOAc/Hexanes) to yield $700 \mathrm{mg}(30 \%)$ of $\mathbf{4 5 a}$ as white solid: $\mathrm{Mp} 136-140{ }^{\circ} \mathrm{C}$ (EtoAc/Hexanes); $[\alpha]_{\mathrm{D}}{ }^{25}-229.1 .0\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;$ lit. $^{52}[\alpha]_{\mathrm{D}}{ }^{25}-231.4\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ $7.54(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.45-7.19(\mathrm{~m}, 8 \mathrm{H}), 5.74(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.30-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.58-$ 3.20 (bs, 1 H), $2.70(\mathrm{dt}, 1 \mathrm{H}, J=3.9,10.2 \mathrm{~Hz}$), 2.35-2.10 (m, 1 H), 2.14 (s, 3 H), 2.06-1.90 (m, 1 H), $1.45-1.18(\mathrm{~m}, 5 \mathrm{H}), 0.3-0.0(\mathrm{bs}, 1 \mathrm{H})$; MS (EI) m / z (rel intensity) 307 ($\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OS}\right]^{+}, 15$), 234 (11), 206 (10), 165 (11), 142 (100), 115 (7), 105 (25), 84 (25); HRMS (EI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}-\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OS} 307.1572$, found 307.1569 .

(S)-(1-Methylpyrrolidin-2-yl)diphenylmethanethiol (46). ${ }^{52}$ To $225 \mathrm{mg}(5.92 \mathrm{mmol})$ of LiAlH_{4} in 14 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $650 \mathrm{mg}(1.69 \mathrm{mmol})$ of 45 in 19 mL of THF. The reaction was heated at reflux for 7 h , cooled, quenched with 9 mL of $\mathrm{H}_{2} \mathrm{O}, 4.5 \mathrm{~mL}$ of 1 N HCl , filtered through celite, washed with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude residue was purified by chromatography on neutral alumina (100% Hexanes) to yield 70 $\mathrm{mg}(15 \%)$ of 46 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.45$ (m, 2 H), 7.40-7.30 (m, 2H), 7.29-7.15 (m, 6 H), $3.54(\mathrm{dd}, 1 \mathrm{H}, J=3.1,9.1 \mathrm{~Hz}$), $3.09(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.45-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.05$ (m, 2 H), 1.95-1.59 (m, 2 H), 1.63 ($\mathrm{s}, 3 \mathrm{H}$); MS (EI) m/z (rel intensity) 283 ($\mathrm{M}^{+}, 6$), 250 (17), 220 (10), 198 (64), 182 (30), 165 (100), 152 (12), 121 (85), 115 (20); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{1} \mathrm{~S} 283.1395$, found 283.1388.
(S)-1-Phenylhept-2-en-1-ol (27) using $5 \mathbf{~ m o l} \%$ of ligand 46. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 18 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 46,
and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $204 \mathrm{mg}(83 \%)$ of 27 with an ee of 5%.
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 46. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $36 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand $\mathbf{4 6}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $197 \mathrm{mg}(83 \%)$ of 27 with an ee of 18%.

31
(S)-(+)-Dimethylpyrrolidin-2-yl-methanol (31). ${ }^{75}$ To $2.00 \mathrm{~g}(9.94 \mathrm{mmol})$ of $\mathbf{2 2}$ in 30 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $13.3 \mathrm{~mL}(39.8 \mathrm{mmol})$ of 3 M methyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$. The resulting reaction was stirred for 6 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with CHCl_{3}, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield 1.5 g (68%) of ethyl carbamate as a colorless oil. To $700 \mathrm{mg}(3.12 \mathrm{mmol})$ of the resulting oil in 6.25 mL of MeOH was added $1.75 \mathrm{~g}(3.12 \mathrm{mmol})$ of KOH . The reaction was heated at reflux for 4 h , cooled, and concentrated in vacuo to remove MeOH . The resulting residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to yield $550 \mathrm{mg}(63 \%)$ of $\mathbf{3 1}$ as an orange oil. The crude material was used without purification in the next step: $[\alpha]_{\mathrm{D}}{ }^{25}-14.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;$ lit. $^{76}[\alpha]_{\mathrm{D}}{ }^{25}-16.6\left(c 0.57, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.64$ (dt, $1 \mathrm{H}, J=7.8,11.1 \mathrm{~Hz}), 3.51(\mathrm{dd}, 1 \mathrm{H}, J=5.4,10.5 \mathrm{~Hz}), 3.19$ (ddd, $1 \mathrm{H}, J=3.3,9.0,11.4 \mathrm{~Hz}$), 2.14-2.04 (m, 1 H$), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, 1.39 (s, 3 H); MS (EI) m / z (rel intensity) 155 (7), 142 (12), 113 (12), 110(24), 96 (20), 91 (39), 82 (66), 69 (100), 63 (9), 53 (48).

32
(S)-(+)-2-(1-Benzylpyrrolidin-2-yl)propan-2-ol (32). ${ }^{78}$ To $550 \mathrm{mg}(3.6 \mathrm{mmol})$ of $\mathbf{3 1}$ in 30 mL of toluene was added $0.47 \mathrm{~mL}(4.0 \mathrm{mmol})$ of diisopropylethylamine and $1.6 \mathrm{~mL}(9.0 \mathrm{mmol})$ of benzyl bromide. The solution was heated at $110^{\circ} \mathrm{C}$ for 4 h , cooled, quenched with NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(75 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 450 mg (59%) of $\mathbf{3 2}$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}-39.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{76}[\alpha]_{\mathrm{D}}{ }^{25}-40.2\left(c 2.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR δ 7.47-7.10 (m, 5 H$), 4.15(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=13.9 \mathrm{~Hz}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H})$, 2.80-2.72 (m, 1 H), 2.67 ($\mathrm{s}, 1 \mathrm{H}$), 2.48-2.30(m, 1 H), 1.97-1.63 (m, 4 H$), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}$, 3 H); MS (EI) m / z (rel intensity) 294 (5), 210 ($\mathrm{M}^{+}, 90$), 181 (19), 160 (18), 106 (19), 91 (100).

28
(S)-(+)-Diphenylpyrrolidin-2-yl-methanol (28). ${ }^{77}$ To $2.00 \mathrm{~g}(9.94 \mathrm{mmol})$ of $\mathbf{2 2}$ in 25 mL of THF at ${ }^{\circ} \mathrm{C}$ was added $13.3 \mathrm{~mL}(39.8 \mathrm{mmol})$ of 3 M phenyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$. The reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with CHCl_{3}, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 2.30 g of ethyl carbamate as an off white solid. The crude material was used without purification in the next step. To 2.30 g of crude ethylcarbamate in 20 mL of MeOH was added $5.6 \mathrm{~g}(10 \mathrm{mmol})$ of KOH . The reaction was heated at reflux for 4 h , cooled, and concentrated in vacuo to remove MeOH . The resulting residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, extracted with CHCl_{3}, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to yield $1.60 \mathrm{~g}(63 \%)$ of 28 as off white solid: $\mathrm{Mp} 75-78{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$; $[\alpha]_{\mathrm{D}}{ }^{25}-71.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{77}[\alpha]_{\mathrm{D}}{ }^{25}-68.1\left(c 3.17, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.58(\mathrm{~s}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.34-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 3.10-3.88 (m, 2 H), 1.81-1.50 (m, 4 H); MS (EI) m / z (rel intensity) 254 ($\mathrm{M}^{+}, 42$), 234 (64), 206 (61), 191 (11), 165 (15), 152 (7), 105 (17), 77 (20), 70 (100).

29
(S)-(+)-(1-Ethylpyrrolidin-2-yl)-diphenylmethanol (29). ${ }^{48}$ To $500 \mathrm{mg}(1.98 \mathrm{mmol})$ of $\mathbf{2 8}$ in 15 mL of toluene at rt was added $0.86 \mathrm{~mL}(4.94 \mathrm{mmol})$ of diisopropylethylamine and $0.16 \mathrm{~mL}(2.17$ mmol) of ethylbromide. The solution was heated at $120^{\circ} \mathrm{C}$ for 24 h , cooled, quenched with NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $80 \mathrm{mg}(14 \%)$ of 29 as a white solid: Mp $77-80^{\circ} \mathrm{C}\left(\mathrm{EtOAc} /\right.$ Hexanes, lit. ${ }^{48} 78-79{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{25}+6.1\left(c 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{48}[\alpha]_{\mathrm{D}}{ }^{25}+6.3\left(c 0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.21$ (m, 4 H), 7.20-7.10 (m, 2 H), 5.15-4.80 (bs, 1 H), 3.79 (dd, $1 \mathrm{H}, J=4.2,9.1 \mathrm{~Hz}$), 3.28-3.20 (m, 1 H), 2.42-2.34 (m, 1 H$), 2.10-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 3 \mathrm{H}), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.6,128.0,127.9,126.1,125.7,125.5,70.7,54.6,49.8,29.7,24.3,13.5$; MS (EI) m / z (rel intensity) 305 (5), $282\left(\mathrm{M}^{+}, 6\right), 272$ (8), 263 (25), 204 (45), 182 (24), 165 (30), 98 (100); HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}\left(\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right) 344.2000$, found 344.2014.

30
(S)-(+)-(1-Benzylpyrrolidin-2-yl)-diphenylmethanol (30). ${ }^{75}$ To $400 \mathrm{mg}(1.58 \mathrm{mmol})$ of $\mathbf{2 8}$ in 15 mL of toluene was added $0.69 \mathrm{~mL}(3.95 \mathrm{mmol})$ of diisopropylethylamine and $0.21 \mathrm{~mL}(1.74$ mmol) of benzylbromide. The solution was heated at $110{ }^{\circ} \mathrm{C}$ for 4 h , cooled, quenched with NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield 300 $\mathrm{mg}(55 \%)$ of 30 as a white solid: $\mathrm{Mp} 120-124{ }^{\circ} \mathrm{C}$ (Hexanes, lit. $.^{78} 120-122{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{25}(c 0.5$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{78}[\alpha]_{\mathrm{D}}{ }^{25}\left(c, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 7.36-7.00 (m, 11 H), $4.95(\mathrm{bs}, 1 \mathrm{H}), 3.99(\mathrm{dd}, 1 \mathrm{H}, J=4.5,9.3 \mathrm{~Hz}), 3.24(\mathrm{~A}$ of AB, $1 \mathrm{H}, J=12.6$ Hz), $3.04(\mathrm{~B}$ of $\mathrm{AB}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 2.92(\mathrm{p}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}), 2.37(\mathrm{q}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 2.08-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 148.0,246.7,139.7,128.6$, $128.2,128.1,128.1,126.8,126.4,126.2,125.6,125.6,70.7,60.6,55.5,29.8,24.2$; MS (EI) m / z (rel intensity) 325 ([M-OH] ${ }^{+}$, 7), 167 (10), 160 (100), 105 (15), 91 (73); HRMS (EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO} 344.2000$, found 344.2014 .
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 29. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $18 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 29, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $101 \mathrm{mg}(82 \%)$ of $\mathbf{2 7}$ with an ee of 3%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 29 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 27 \mathrm{mg}(0.098 \mathrm{mmol})$ of ligand $\mathbf{2 9}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $102 \mathrm{mg}(83 \%)$ of $\mathbf{2 7}$ with an ee of $13 \%{ }^{73}$
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 30. According to the general protocol, $300 \mathrm{mg}(1.16 \mathrm{mmol})$ of zirconocene hydrochloride, $105 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of 1-hexyne, $388 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $27 \mathrm{mg}(0.078 \mathrm{mmol})$ of ligand $\mathbf{3 0}$, and $79 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $114 \mathrm{mg}(76 \%)$ of 27 with an ee of 4%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 30. According to the general protocol, $300 \mathrm{mg}(1.16 \mathrm{mmol})$ of zirconocene hydrochloride, $105 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of 1-hexyne, $388 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $40 \mathrm{mg}(0.116 \mathrm{mmol})$ of ligand 30, and $79 \mu \mathrm{~L}(0.78 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $117 \mathrm{mg}(78 \%)$ of $\mathbf{2 7}$ with an ee of 6%.
(S)-1-Phenylhept-2-en-1-ol (27) using $5 \mathbf{~ m o l} \%$ of ligand 32. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $14 \mathrm{mg}(0.033 \mathrm{mmol})$ of ligand 32, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(79 \%)$ of 27 with an ee of $20 \%{ }^{73}$
(\boldsymbol{S})-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 32. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $27 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 32, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $96 \mathrm{mg}(78 \%)$ of $\mathbf{2 7}$ with an ee of 4%.

$\boldsymbol{N}, \boldsymbol{N}$ - - Phthaloyl-bis-((S)-2-(1-hydroxy-1,1-diphenylmethyl)pyrolidine) (33). ${ }^{48}$ To 0.51 mL (3.62 mmol) of phthaloyl chloride in 1 mL of benzene was added $360 \mathrm{mg}(1.42 \mathrm{mmol})$ of $\mathbf{2 8}$ in 3 mL of benzene. The resulting solution was stirred for 4 h at rt , filtered through celite, washed with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{NaCl}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($25 \% \mathrm{EtoAc} /$ Hexanes) to yield 270 mg (60%) of 33 as a white solid: Mp $114-117{ }^{\circ} \mathrm{C}\left(\right.$ EtOAc/Hexanes, lit. $\left.{ }^{48} 114-116{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+12.9$ (c 0.5, CHCl_{3}); lit. ${ }^{48}[\alpha]_{\mathrm{D}}{ }^{25}+13.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.62-7.23(\mathrm{~m}, 24 \mathrm{H}), 6.95(\mathrm{~s}, 2$ H), $6.71(\mathrm{dd}, 2 \mathrm{H}, J=3.9,6.7 \mathrm{~Hz}), 3.76(\mathrm{t}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.28(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.80-2.65$ (m, 2 H), 2.30-2.14 (m, 2 H), 2.04-1.80 (m, 2 H), 1.79-1.46 (m, 2H), 1.45-1.30 (m, 2 H); HRMS (EI) Calcd for $\mathrm{C}_{42} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})$ 659.2886, found 659.2863.

34
\mathbf{N}, \mathbf{N} '- α, α^{6}-o-Xylene-bis-((S)-2-(1-hydroxy-1,1-diphenylmethyl)pyrrolidine) (34). ${ }^{48}$ Tо 250 $\mathrm{mg}(0.39 \mathrm{mmol})$ of $\mathbf{3 3}$ in 9 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $61 \mathrm{mg}(1.61 \mathrm{mmol})$ of LiAlH_{4} portionwise. The gray slurry was heated at reflux for 2 h , quenched with $\mathrm{H}_{2} \mathrm{O}$, filtered, filtrate washed with EtOAc , washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtoAc} / \mathrm{Hexanes})$ to yield $148 \mathrm{mg}(62 \%)$ of $\mathbf{3 4}$ as a white solid: Mp 112-113 ${ }^{\circ} \mathrm{C}\left(\right.$ EtOAc/Hexanes, lit. $\left.{ }^{48} 110-112{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}$ $+5.1\left(c 0.5, \mathrm{CHCl}_{3}\right) ;$ lit. $^{48}[\alpha]_{\mathrm{D}}{ }^{25}+4.5\left(c 0.53, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.67(\mathrm{~d}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.58$ $(\mathrm{d}, 4 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.40-7.05(\mathrm{~m}, 10 \mathrm{H}), 3.97(\mathrm{dd}, 2 \mathrm{H}, J=4.5,9.0 \mathrm{~Hz}), 3.05(\mathrm{~A}$ of AB, $2 \mathrm{H}, J=$ $13.5 \mathrm{~Hz}), 2.95(\mathrm{~B}$ of $\mathrm{AB}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{q}, 2 \mathrm{H}, J=$ 8.4 Hz), 2.07-1.90 (m, 2 H), 1.80-1.45 (m, 4 H); MS (EI) m / z (rel intensity) 711 (23), $609\left(\mathrm{M}^{+}\right.$, 100), 458 (27), 356 (30), 236 (28), 167 (20).
(S)-1-Phenylhept-2-en-1-ol (27) using $5 \mathbf{~ m o l} \%$ of ligand 34. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $19 \mathrm{mg}(0.033 \mathrm{mmol})$ of ligand 34, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $97 \mathrm{mg}(78 \%)$ of 27 with an ee of $2 \%{ }^{73}$
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 34. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $39 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 34, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $91 \mathrm{mg}(73 \%)$ of 27 with an ee of 4%.

1-Benzyl-4-hydroxypyrrolidine-2-carboxylic acid methyl ester (37). ${ }^{49}$ To 1.00 g (7.62 mmol) of cis-4-hydroxy-D-proline in 7.64 mL of MeOH was added $0.56 \mathrm{~mL}(7.62 \mathrm{mmol})$ of thionyl chloride at $0^{\circ} \mathrm{C}$. The reaction was heated at reflux for 4.5 h , cooled, and concentrated in vacuo to yield $1.10 \mathrm{~g}(100 \%)$ of $\mathbf{3 6}$ as a white solid. The crude material was used without purification in the next step. To $1.00 \mathrm{~g}(6.89 \mathrm{mmol})$ of $\mathbf{3 6}$ in 7 mL of toluene was added $3.00 \mathrm{~mL}(17.2 \mathrm{mmol})$ of diisopropylethylamine and $0.91 \mathrm{~mL}(7.58 \mathrm{mmol})$ of benzylbromide. The solution was heated at $110{ }^{\circ} \mathrm{C}$ for 6 h , cooled, quenched with NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $1.1 \mathrm{~g}(62 \%)$ of $\mathbf{3 7}$ as an orange/brown oil: $[\alpha]_{\mathrm{D}}{ }^{25}+90.0$ (c 0.5, CHCl_{3}); lit. $[\alpha]_{\mathrm{D}}{ }^{25}+92.5\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 1$ H), $3.91(\mathrm{~A}$ of $\mathrm{AB}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}$), $3.75(\mathrm{~B}$ of AB, $1 \mathrm{H}, J=13.1 \mathrm{~Hz}$), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, 1$ $\mathrm{H}, J=3.9,10.0 \mathrm{~Hz}$), $3.21(\mathrm{bd}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 2.67(\mathrm{dd}, 1 \mathrm{H}, J=3.9$, 9.8 Hz), 2.30-2.50(m, 1 H$), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H})$; MS (EI) m / z (rel intensity) 258 (6), $235\left(\mathrm{M}^{+}\right.$, 45), 215 (47), 176 (85), 91 (99), 65 (19); HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$ 235.1219, found 235.1208 .

1-Benzyl-5-(hydroxydiphenylmethyl)pyrrolidin-3-ol (38). ${ }^{49} \quad 1.00 \mathrm{~g}(4.25 \mathrm{mmol})$ of $\mathbf{3 7}$ in 12 mL of THF at $0^{\circ} \mathrm{C}$ was added $5.67 \mathrm{~mL}(17.0 \mathrm{mmol})$ of a 3 M solution of phenyl magnesium bromide in $\mathrm{Et}_{2} \mathrm{O}$. The resulting reaction was stirred for 3 h at $0^{\circ} \mathrm{C}$, quenched with NaHCO_{3}, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \%$ Hexanes $)$ to yield $700 \mathrm{mg}(46 \%)$ of $\mathbf{3 8}$ as off white solid: $\mathrm{Mp} 126-128{ }^{\circ} \mathrm{C}$ (Hexanes, lit. $\left.{ }^{79} 127-130^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+128.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.74(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.56(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.40-7.10(\mathrm{~m}, 9 \mathrm{H}), 7.01(\mathrm{~d}, 2 \mathrm{H}, J=$
$6.3 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=3.0,10.5 \mathrm{~Hz}), 4.14-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~A}$ of AB, $1 \mathrm{H}, J=12.6 \mathrm{~Hz}$), $3.05(\mathrm{~B}$ of $\mathrm{AB}, 1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 3.00(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=3.6,10.2 \mathrm{~Hz})$, 2.40 (ddd, $1 \mathrm{H}, J=6.0,10.5,16.5 \mathrm{~Hz}$), $1.76(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}$), $1.57(\mathrm{bs}, 1 \mathrm{H})$; MS (EI) $m / z(\mathrm{rel}$ intensity) $358\left(\mathrm{M}^{+}, 7\right), 341$ (22), 232 (14), 246 (8), 176 (100), 159(12), 105 (26).
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{m o l} \%$ of ligand 38. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $46 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand $\mathbf{3 8}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $186 \mathrm{mg}(76 \%)$ of 27 with an ee of 9%.
(S)-1-Phenylhept-2-en-1-ol (27) using $20 \mathrm{~mol} \%$ of ligand 38. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $93 \mathrm{mg}(0.26 \mathrm{mmol})$ of ligand $\mathbf{3 8}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $208 \mathrm{mg}(85 \%)$ of 27 with an ee of $21 \%{ }^{73}$

$$
\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}
$$

$\boldsymbol{P}, \boldsymbol{P}$-Diphenylphosphinamide. ${ }^{80}$ A solution of $20.0 \mathrm{~g}(84.6 \mathrm{mmol})$ of diphenylphosphinyl chloride in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78^{\circ} \mathrm{C}$, treated with $\sim 50.0 \mathrm{~g}(3.0 \mathrm{mmol})$ of liquid ammonia, warmed to room temperature and stirred for 16 h , diluted with CHCl_{3}, filtered, and concentrated in vacuo. The resulting solid residue was recrystalized from toluene to yield 15.5 g (84%) of $\mathbf{6 3}$ as a white solid: Mp 164-165 ${ }^{\circ} \mathrm{C}$ (toluene, lit. ${ }^{81}$ 164-166 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.80$ (m, 4 H), 7.55-7.35 (m, 6 H), 3.55 (bs, 2 H); MS (EI) m/z (rel intensity) 216 (M ${ }^{+}$, 100), 199 (82), 140 (57), 124 (67).

2-Bromo- $\boldsymbol{P}, \boldsymbol{P}$-diphenylphosphinamide (48). A suspension of $3.00 \mathrm{~g}(13.9 \mathrm{mmol})$ of o bromobenaldehyde, $2.51 \mathrm{~g}(21.5 \mathrm{mmol})$ of P, P-Diphenylphosphinamide, and $5.75 \mathrm{~mL}(41.3$ mmol) of triethylamine in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0^{\circ} \mathrm{C}$, treated dropwise with a solution of $832 \mu \mathrm{~L}(7.55 \mathrm{mmol})$ of TiCl_{4} in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over 30 min , gradually warmed to room temperature and stirred for 8 h . The reaction mixture was poured into $150 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$, stirred for 5 min , filtered through a plug of celite, washed with 300 mL of $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($10 \% \mathrm{EtOAc} /$ Hexanes) to yield 3.80 g (83%) of 48 as a yellow solid: $\mathrm{Mp} 198-200^{\circ} \mathrm{C}$ (EtOAc/Hexanes); IR (KBr) 3431, 3057, 2360, 1635, 1203, 1123, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.62(\mathrm{~d}, 1 \mathrm{H}, J=31.2 \mathrm{~Hz}$), $8.25(\mathrm{dd}, 1 \mathrm{H}, J=2.2$, $7.4 \mathrm{~Hz}), 8.00-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.57(\mathrm{dd}, 1 \mathrm{H}, J=1.6,5.9 \mathrm{~Hz}) 7.50-7.28(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $172.5,134.4,134.0,133.7,133.3,131.8,131.4,129.6,128.4,127.9,127.5$; MS (EI) $m / z(r e l$ intensity) 386 (53), $384\left(\mathrm{M}^{+}, 55\right), 348$ (8), 306 (4), 201 (100), 183 (7); HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NOPBr} 384.0153$, found 384.0137.

1-(2-Bromophenyl)-2-methylpropyl-P,P-diphenylphosphinamide (49). A solution of 4.00 g (4.90 mmol) of $\mathbf{4 8}$ in 40 mL of THF was added to 13.0 mL of a 2 M solution of isopropyl magnesium chloride in THF at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was gradually warmed to room temperature and stirred for 5 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $3.5 \mathrm{~g}(79 \%)$ of 49 as a white solid that was used without further purification: Mp 198-200 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3057, 2961, 1590, 1359, $1105 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.73-7.66$ (m, 2 H), 7.52-7.42 (m, 4 H), 7.41-7.32 (m, 4 H), 7.31-7.23 (2 H), 7.22-7.15 (m, 1 H$), 7.04-6.96(\mathrm{~m}, 1$ H), $5.64(\mathrm{bt}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.23(\mathrm{bq}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 1.98-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}), 0.71(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.1,133.8,132.7$, 132.6, 132.5, 132.3, 131.8,
131.7, 131.6, 131.6, 131.4, 130.9, 128.4, 128.2, 128.1, 127.9, 127.1, 34.3, 19.8, 18.2; MS (EI) m / z (rel intensity) $430(3), 428\left(\mathrm{M}^{+}, 4\right), 386$ (10), 384 (10), 338 (15), 294 (11), 248 (12), 201 (22), 127 (16), 107 (32), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NOPBr}\left(\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$ 384.0153, found 384.0157.

1-(2-Bromophenyl)-2-methylpropylamine (50). A solution of $1.00 \mathrm{~g}(2.34 \mathrm{mmol})$ of 49 in 10 mL of 20% aqueous HCl was heated at reflux for 1 h , cooled to $0^{\circ} \mathrm{C}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was basified with NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $440 \mathrm{mg}(75 \%)$ of 50 as a light yellow oil that was used without further purification: IR (neat) 3251, 3010, 1605, $1098,924 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.52(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.25(\mathrm{t}, 1 \mathrm{H}, J=$ $3.9 \mathrm{~Hz}), 7.11(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.99-1.92(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.7 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.4,133.2,129.4,128.4,127.9,124.2,60.1$, 33.2, 19.4, 18.5; MS (EI) m / z (rel intensity) $226\left(\mathrm{M}^{+}, 6\right), 224$ (5), 212 (7), 184 (100), 182 (98), 130 (8), 115 (6), 104 (30); HRMS (EI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NBr} 224.0070$, found 224.0075.

1-(2-Bromophenyl)-2-methylpropyldimethylamine (51). To 150 mg (0.650 mmol) of $\mathbf{5 0}$ was added $220 \mu \mathrm{~L}$ (2.92 mmol) of a 37% aqueous solution of formaldehyde, $260 \mu \mathrm{~L}(6.06 \mathrm{mmol})$ of aqueous 88% formic acid, and 3 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction mixture was heated at reflux for 16 h , cooled to $0^{\circ} \mathrm{C}$, basified with NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were dried with MgSO_{4}, filtered, and concentrated in vacuo to yield 93 mg (55\%) of $\mathbf{5 1}$ as a clear oil: IR (neat) 3054, 2930, 1245, 1120, $654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.53$ (d, $1 \mathrm{H}, J=7.9 \mathrm{~Hz}$), 7.31-7.18
(m, 2 H), 7.08-6.98(m, 1 H$), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 0.98$ $(\mathrm{d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.71(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 137.6,132.9,129.5,128.0,126.9$, 126.5, 72.2, 41.7, 29.7, 20.1, 18.6; MS (EI) m / z (rel intensity) 257 (19), 255 ($\mathrm{M}^{+}, 21$), 214 (98), 212 (100), 198 (6), 169 (7), 132 (37), 115 (10).

(2-Mercaptophenyl)methanol (55). ${ }^{82}$ A solution of $10.0 \mathrm{~g}(64.8 \mathrm{mmol})$ of thiosalicylic acid in 50 mL of THF was added portionwise to a slurry of $4.50 \mathrm{~g}(112 \mathrm{mmol})$ of LAH in 100 mL of THF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to room temperature, stirred for 15 h , cooled to $0{ }^{\circ} \mathrm{C}$, diluted with 22 mL of EtOAc and 90 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$, filtered through a pad of celite, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($5 \% \mathrm{EtOAc} /$ Hexanes) to yield 6.20 g (68%) of $\mathbf{5 5}$ as a clear oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.33$ (m, 2 H), 7.30-7.13 (m, 2 H), 5.16 (s, 2 H), 3.47 (s, 1 H), 2.09 (s, 1 H); MS (EI) m / z (rel intensity) $122\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 100\right), 111$ (18).

(2-Benzylsulfanylphenyl)methanol (56)..83 A solution of $6.20 \mathrm{~g}(44.3 \mathrm{mmol})$ of $\mathbf{5 5}$ in 75 mL of $95 \% \mathrm{EtOH}$ was added to a solution of $1.86 \mathrm{~g}(1.05 \mathrm{mmol})$ of NaOH in 100 mL of $95 \% \mathrm{EtOH}$. The resulting solution was stirred at room temperature for 45 min , followed by the addition of $5.27 \mathrm{~mL}(44.3 \mathrm{mmol})$ of benzyl bromide in 100 mL of $95 \% \mathrm{EtOH}$ at $0^{\circ} \mathrm{C}$. The reaction mixture was heated at reflux for 15 h , cooled to $0^{\circ} \mathrm{C}$, concentrated in vacuo, diluted with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{Et}_{2} 0$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \%$ EtOAc/Hexanes) to yield $7.40 \mathrm{~g}(73 \%)$ of 56 as a white solid: Mp $48-49{ }^{\circ} \mathrm{C}(\mathrm{EtOAc} / \mathrm{Hexanes}$, lit. $\left.48-49{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.13(\mathrm{~m}, 7 \mathrm{H}), 4.62(\mathrm{~d}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.07(\mathrm{~s}$, 2 H); MS (EI) m / z (rel intensity) 182 ([M-?] ${ }^{+}$, 23), 139 (15), 122 (100), 109 (10).

57
2-Benzylsulfanylbenzaldehyde (57). To $4.50 \mathrm{~g}(19.5 \mathrm{mmol})$ of 56 in 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added portionwise $25.0 \mathrm{~g}(97.5 \mathrm{mmol})$ of barium manganate. The resulting black solution was stirred for 15 h at room temperature, filtered through a pad of celite, and concentrated in vacuo to yield $3.60 \mathrm{~g}(86 \%)$ of 57 as a white solid: $\mathrm{Mp} 78-79^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. $\left.78-79^{\circ} \mathrm{C}\right)$; MS (EI) m / z (rel intensity) $230\left(\mathrm{M}^{+}, 7\right), 212(7), 139$ (100), 121 (9), 111 (22), 109 (9); ${ }^{1} \mathrm{H}$ NMR $\delta 10.26$ (s, 1 H); $7.80(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}) ; 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}) ; 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}) ; 4.18(\mathrm{~s}, 2 \mathrm{H})$.

2-Benzylsulfanyl-P,P-diphenylphosphinamide (58). A suspension of $3.77 \mathrm{~g}(16.5 \mathrm{mmol})$ of $57,2.30 \mathrm{~g}(10.6 \mathrm{mmol})$ of, and $4.41 \mathrm{~mL}(31.7 \mathrm{mmol})$ of triethylamine in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$, treated dropwise over 20 min with a solution of $640 \mu \mathrm{~L}$ of $\left(5.79 \mathrm{mmol}^{2} \mathrm{TiCl}_{4}\right.$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually warmed to room temperature, and stirred for 8 h . The reaction mixture was poured into 150 mL of $\mathrm{Et}_{2} \mathrm{O}$, stirred for 5 min , filtered through a plug of celite, washed with 300 mL of $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($10 \% \mathrm{EtOAc} /$ Hexanes) to yield 3.8 g (83%) of 58 as a yellow solid: Mp $116-118^{\circ} \mathrm{C}$ (EtOAc/Hexanes); IR (KBr) 3058, 3028, 1690, 1585, 2738, 2359, 1264, $829 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 9.69(\mathrm{~d}, 1 \mathrm{H}, J=31.9 \mathrm{~Hz}), 8.13-7.98(\mathrm{~m}, 5 \mathrm{H})$, 7.58-7.43 (m, 8 H), 7.40-7.27 (m, 5 H), 7.25-7.18 (m, 1 H), $4.18(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.0,141.3,136.2,134.6,134.3,133.9,133.0$, $132.2,131.6,129.8,128.9,128.4,128.2,127.3,126.0,39.1$; MS (EI) m / z (rel intensity) $428\left(\mathrm{M}^{+}\right.$, 9), 336 (12), 201 (24), 91 (79), 77 (100).

1-(2-Benzylsulfanylphenyl)-2-methylpropyl-P, P-diphenylphosphinamide (59). A solution of $2.10 \mathrm{~g}(4.90 \mathrm{mmol})$ of $\mathbf{5 8}$ in 50 mL of THF was added to 6.13 mL of a 2 M solution of isopropyl magnesium chloride in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to room temperature and stirred for 5 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $1.80 \mathrm{~g}(78 \%)$ of 59 as an off white solid. The enantiomers were separated using Chiral HPLC (Chiralcel AD-H semi-prep column) with $\sim 85 \mathrm{mg} /$ injection of 59 and eluting with $30 \% i$ - $\mathrm{PrOH} / \mathrm{Hexanes}$ at a flow rate of $10 \mathrm{~mL} / \mathrm{min}$.
(S)-59: Mp 133-138 ${ }^{\circ} \mathrm{C}(i-\mathrm{PrOH} / \mathrm{Hexanes}) ; \mathrm{R}_{\mathrm{t}}=11.2 \mathrm{~min} ;[\alpha]_{\mathrm{D}}{ }^{25}-31.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr})$ 3050, 2945, 1558, 1248, 1346, $1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.74-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.28$ (m, 6 H), 7.19-6.97 (m, 11 H), 5.46 (bt, $1 \mathrm{H}, J=10.6 \mathrm{~Hz}$), $4.54(\mathrm{bs}, 1 \mathrm{H}), 3.67(\mathrm{bd}, 1 \mathrm{H}, J=11.9$ $\mathrm{Hz}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.70(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.66(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.2,137.0,132.7,132.6,131.9,131.8,131.6,131.4,129.0,128.4,128.1,127.9,127.0$, 126.6, 64.2, 39.9, 34.8, 25.4, 20.2; MS (EI) m / z (rel intensity) 471 ($\mathrm{M}^{+}, 10$), 428 (69), 336 (19), 306 (77), 270 (42), 201 (100); HRMS (EI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{30}$ NOPS 471.1785, found 471.1807.
(R)-59: $\mathrm{Mp} 132-135{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+45.3\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{t}}=20.2 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.75-$ 7.65 (m, 2 H); 7.57-7.29 (m, 6 H), 7.23-6.97 (m, 11 H), 5.48 (bt, $1 \mathrm{H}, J=10.7 \mathrm{~Hz}$), 4.53 (bs, 1 H), $3.70(\mathrm{bd}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}), 3.40-3.60(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$, $0.68(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.2,137.0,132.6,132.5,131.8,131.6,131.3,129.0$, $128.3,128.0,127.8,127.1,126.9,126.6,39.9,34.7,22.5,20.1$; MS (EI) m / z (rel intensity) 471 $\left(\mathrm{M}^{+}, 20\right), 428$ (75), 270 (35), 201 (88), 136 (18); HRMS (EI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{30}$ NOPS 471.1785, found 471.1785 .

1-(2-Benzylsulfanylphenyl)-2-methylpropylamine (60). A solution of $900 \mathrm{mg}(1.91 \mathrm{mmol})$ of 59 in 10 mL of 20% aqueous HCl was heated at reflux for 45 min , cooled to $0^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the aqueous layer was basified with NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting yellow oil $\mathbf{6 0}$ was used without further purification.
(S)-60: $[\alpha]_{\mathrm{D}}{ }^{25}+52.5\left(c \quad 0.3, \mathrm{CHCl}_{3}\right)$; IR (neat) 3444, 3060, 2361, 1650, 1472, $1361 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.55-7.42 (m, 2 H), 7.39-7.10 (m, 9 H), 4.19 (d, $1 \mathrm{H}, J=7.4 \mathrm{~Hz}$), 4.16, 4.11 (AB, $2 \mathrm{H}, J$ $=12.6 \mathrm{~Hz}), 1.92(\mathrm{o}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.6,137.5,133.5,130.9,128.9,128.4,127.2,127.0,126.9,126.6,57.9,40.1,34.5$, 20.1, 18.4; MS (EI) m / z (rel intensity) 271 (${ }^{+}$, 30), 254 (43), 228 (100), 163 (17), 136 (29), 106 (32); HRMS (EI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{21}$ NS 271.1380, found 271.1395.
(R)-60: $[\alpha]_{\mathrm{D}}{ }^{25}-44.3\left(c=0.6, \mathrm{CHCl}_{3}\right)$; IR (neat) $3430,2967,2122,1590,1266,1190 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.14(\mathrm{~m}, 7 \mathrm{H}), 4.16(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 4.09,4.04(\mathrm{AB}, 2 \mathrm{H}, J$ $=12.7 \mathrm{~Hz}), 1.86(\mathrm{o}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.77(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 146.4,137.5,134.5,130.9,128.8,128.4,127.1,126.9,126.8,126.6,57.8,40.0,34.5$, 20.1, 18.3; MS (EI) m / z (rel intensity) 270 (M^{+}, 20), 254 (33), 244 (43), 228 (100), 136 (32), 106 (18).

1-(2-Benzylsulfanylphenyl)-2-methylpropyldimethylamine (61). To 450 mg (1.66 mmol) of 60 was added $652 \mu \mathrm{~L}(7.80 \mathrm{mmol})$ of a 37% aqueous formaldehyde solution, $752 \mu \mathrm{~L}(15.4$ mmol) of 88% aqueous formic acid, and 5 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was heated at reflux for 20 h , cooled to $0{ }^{\circ} \mathrm{C}$, basified with NaOH , and extracted with CHCl_{3} (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 310 mg (54\%) of 61 over 2 steps as a clear oil.
(S)-61: $[\alpha]_{\mathrm{D}}{ }^{25}+87.0\left(c 0.4, \mathrm{CHCl}_{3}\right)$; IR (neat) $3145,2899,2710,1704,1211,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.12(\mathrm{~m}, 8 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 2.27-2.04(\mathrm{~m}, 1$ H), $2.13(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.70(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.8,137.4$, 130.3, 128.9, 128.5, 128.4, 127.1, 126.9, 125.6, 69.7, 42.1, 39.9, 29.6, 20.3, 18.5; MS (EI) m/z (rel intensity) $299\left(\mathrm{M}^{+}, 33\right), 256$ (100), 179 (27), 164 (32), 150 (19); HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NS} 299.1697$, found 299.1708.
(R)-61: $[\alpha]_{\mathrm{D}}{ }^{25}-30.7\left(c 0.3, \mathrm{CHCl}_{3}\right)$; IR (neat) 3053, 2802, 2705, $1625,1287 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ 7.43-7.37 (m, 1 H), 7.33-7.11 (m, 8 H), 4.07 ($\mathrm{s}, 2 \mathrm{H}$), $3.95(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 2.29-2.05(\mathrm{~m}, 1$ H), $2.15(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 138.8,137.3$, $130.1,128.8,128.3,128.3,127.0,126.7,125.4,69.6,42.0,39.8,29.6,20.3,18.6$; MS (EI) m / z (rel intensity) 298 ($\mathrm{M}^{+}, 8$), 256 (100), 209 (37), 164 (21).

(R)-2-(1-Dimethylamino-2-methylpropyl)benzenethiol (62). A solution of 140 mg (0.47 mmol) of $\mathbf{6 1}$ in 5 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was treated with 27 mL of liquid NH_{3}, followed by addition of $432 \mathrm{mg}(0.187 \mathrm{mmol})$ of Na , stirred for 45 min at $-78^{\circ} \mathrm{C}$, and quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solution was evaporated under N_{2}, the residue dissolved in $\mathrm{H}_{2} \mathrm{O}$, and
extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \%$ EtOAc/Hexanes) to yield $35 \mathrm{mg}(36 \%)$ of crude 62 as a clear oil and $10 \mathrm{mg}(10 \%)$ of disulfide compound 63.
(S)-62: ${ }^{1} \mathrm{H}$ NMR $\delta 7.34(\mathrm{~d}, 1 \mathrm{H}), 7.10-6.90(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.40(\mathrm{~s}, 6 \mathrm{H})$, 2.50-2.30 (m, 1 H$), 0.99$ (d, $3 \mathrm{H}, J=6.7 \mathrm{~Hz}$), $0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$
(R)-62: $[\alpha]_{\mathrm{D}}{ }^{25}-30.7\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.34(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.11-6.95(\mathrm{~m}, 3 \mathrm{H})$, $3.50(\mathrm{~d}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.44-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3$ $\mathrm{H}, J=6.7 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 208 (M ${ }^{+}$, 44), 166 (64), 149 (18), 125 (20), 111 (34), 97 (48); HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NS} 208.1155$, found 208.1160.

(S)-(1-(2-(2-(1-Dimethylamino-2-methylpropyl)-phenyldisulfanyl)phenyl)-2-methylpropyl)dimethylamine) (63). IR (KBr) 3060, 2955, 2816, 1585, 1459, 1248, 1152, 872, 524 cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.25-7.08(\mathrm{~m}, 6 \mathrm{H}), 3.82(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 2.30-2.08$ (m, 2 H), $2.16(\mathrm{~s}, 12 \mathrm{H}), 0.96(\mathrm{~d}, 6 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.74(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 0.72(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.0$ Hz).

2-(1-Dimethylamino-2-methylpropyl)benzenethiolacetate (64). To 140 mg (0.67 mmol) $\mathbf{6 1}$ in 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $0.10 \mathrm{~mL}(0.74 \mathrm{mmol})$ of triethylamine. The resulting solution was stirred for 5 min , followed by addition of $47.5 \mu \mathrm{~L}(0.679 \mathrm{mmol})$ of acetyl chloride and continued to stir at room temperature for 6 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}\left(5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $95 \mathrm{mg}(56 \%)$ of $\mathbf{6 4}$ as a clear oil: $[\alpha]_{\mathrm{D}}{ }^{25}-30.7\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.37(\mathrm{~m}, 3$ H), 7.33-7.27 (m, 1 H), 3.69 (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}$), 2.43 ($\mathrm{s}, 3 \mathrm{H}$), 2.27-2.10 (m, 1 H), 2.12 ($\mathrm{s}, 6 \mathrm{H}$), $0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.70(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) 224 (M^{+}-?, 7), 208 (39), 166 (42), 91 (34).
(R)-1-Phenylhept-2-en-1-ol (27) using ligand (\boldsymbol{S})-62, (\boldsymbol{S})-63. According to the general protocol, runs were conducted on a 500 mg or 250 mg scale of Schwartz reagent at both 5 and 10 $\mathrm{mol} \%$ chiral ligand loading. Resulting yields and \%ee of 27 are listed in Table 2.
(S)-1-Phenylhept-2-en-1-ol (27) using of ligand (\boldsymbol{R})-62, (\boldsymbol{R})-64. According to the general protocol, runs were conducted on a 500 mg or 250 mg scale of Schwartz reagent at both 5 and 10 $\mathrm{mol} \%$ chiral ligand loading. Resulting yields and $\% \mathrm{oe}^{84}$ of $\mathbf{2 7}$ are listed in Table 2.

2-Benzylsulfanylbenzaldehyde (57). A suspension of $9.5 \mathrm{mg}(0.5 \mathrm{mmol})$ of CuI, $0.12 \mathrm{~mL}(1.0$ $\mathrm{mmol})$ of 2-bromobenzaldehyde (1.00 mmol), and $276 \mathrm{mg}(2.0 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added to a screw-capped sealed tube. The tube was evacuated and backfilled with nitrogen (3 cycles). 1.0 mL of i-PrOH, 0.11 mL of ethylene glycol, and $0.12 \mathrm{~mL}(1.0 \mathrm{mmol})$ of benzylmercaptan were added at rt . The tube was heated to $80^{\circ} \mathrm{C}$ for 20 h , cooled, filtered through frit, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \%$ hexanes $)$ to yield $200 \mathrm{mg}(71 \%)$ of 57 as a yellow solid: $\mathrm{Mp} 78-79{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. $\left.78-79{ }^{\circ} \mathrm{C}\right)$; MS (EI) m / z (rel intensity) $230\left(\mathrm{M}^{+}, 7\right), 212$ (7), 139 (100), 121 (9), 111 (22), 109 (9); ${ }^{1} \mathrm{H}$ NMR $\delta 10.26$ ($\mathrm{s}, 1$ H), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H})$.

66

1-(2-Benzylsulfanylphenyl)-3-methylbutyl-P,P-diphenylphosphinamide (66). A solution of $2.70 \mathrm{~g}(6.31 \mathrm{mmol})$ of $\mathbf{5 9} \mathrm{in} 50 \mathrm{~mL}$ of THF was added to $7.90 \mathrm{~mL}(15.8 \mathrm{mmol})$ of a 2 M solution of isobutyl magnesium chloride in THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 5 h at $0^{\circ} \mathrm{C}$, quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $2.20 \mathrm{~g}(72 \%)$ of 66 as a white foamy solid: Mp $109-111{ }^{\circ} \mathrm{C}$; IR (KBr) 3193, 3056, 2952, 2866, 2360, 1437, 1188, 1122, $722 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.92(\mathrm{dd}, 2 \mathrm{H}, J$ $=7.8,11.7 \mathrm{~Hz}), 7.77(\mathrm{dd}, 2 \mathrm{H}, J=7.8,11.7 \mathrm{~Hz}), 7.52-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.18-$ $7.07(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{bs}, 1 \mathrm{H}), 3.95-3.70(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.45(\mathrm{~s}, 1 \mathrm{H}), 0.95(\mathrm{~d}$, $3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta 145.5,137.0,134.0,133.1,132.9,132.40$, $132.3,131.9,131.8,131.7,131.4,131.4,131.2,131.2,128.7,128.5,128.2,128.2,128.0,128.0$, $127.8,127.1,126.9,51.8,39.8,24.7,22.9,21.8 ; \mathrm{MS}(E I) m / z$ (rel intensity) $485\left(\mathrm{M}^{+}, 20\right), 428$ (37), 362 (14), 306 (50), 284 (98), 201 (96), 135 (20), 91 (100), 77 (47); HRMS (EI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{32}$ NOPS 485.1942, found 485.1936 .

67

1-(2-Benzylsulfanylphenyl)-3-methylbutylamine (67). A solution of 2.2 g (mmol) of 66 in 20 mL of 20% aqueous HCl was heated at reflux for 1 h , cooled to $0^{\circ} \mathrm{C}$, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and filtered. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the aqueous layer was basified with NaOH , and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting yellow oil 67 was used without further purification: IR (KBr) 3280, 3124, 2956, 2675, 1280, $567 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.58(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.40(\mathrm{~d}, 1$ $\mathrm{H}, J=7.5 \mathrm{~Hz}), 7.35-7.15(\mathrm{~m}, 7 \mathrm{H}), 5.54(\mathrm{bs}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.10(\mathrm{dt}, 2 \mathrm{H}, J=4.5,12.6 \mathrm{~Hz})$, 1.80-1.65 (m, 1 H), 1.66-1.50(m, 2 H$), 0.94(\mathrm{~d}, 6 \mathrm{H}, J=3.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.5,137.4$,
134.1, 132.3, 128.9, 128.4, 127.8, 127.7, 127.1, 126.4, 50.2, 45.9, 40.4, 24.9, 22.9, 22.1; MS (EI) m / z (rel intensity) 286 ($\mathrm{M}^{+}, 12$), 285 (45), 269 (12), 268 (40), 228 (64), 211 (25), 194 (61), 135 (41), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NS} 285.1551$, found 285.1541.

[1-(2-Benzylsulfanylphenyl)-3-methylbutyl]carbamic acid benzyl ester (69). To 2.2 g (7.72 $\mathrm{mmol})$ of $\mathbf{6 7}$ in 10 mL of THF was added $1.60 \mathrm{~g}(11.6 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by 1.21 mL (8.49 mmol) of benzyl chloroformate. The resulting reaction was stirred for 15 h at rt , quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by chromatography on $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $2.10 \mathrm{~g}(65 \%)$ of $\mathbf{6 7}$ as an off white solid:
(S)-69: Mp 63-64 ${ }^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ Hexanes $) ; ~[\alpha]_{\mathrm{D}}{ }^{25}+12.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 7.43-7.12 (m, $14 \mathrm{H}), 5.38-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 1$ H), $0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $\delta 155.5,144.5,137.4,136.5$, 133.7, 132.9, 129.0, 128.4, 128.1, 127.5, 127.4, 127.1, 126.5, 66.7, 51.9, 45.9, 40.2, 25.3, 23.1, 21.9; MS (EI) m/z (rel intensity) 419 ($\mathrm{M}^{+}, 25$), 362 (13), 318 (27), 284 (50), 268 (30), 211 (19), 179 (20), 150 (41), 123 (30), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S} 419.1919$, found 419.1934.
(R)-69: $\mathrm{Mp} 61-65{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-11.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 7.40-7.10 (m, 14 H$)$, 5.35-5.15 (m, 2 H), $5.30(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.4 \mathrm{~Hz}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}), 0.92$ (d, $3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR $\delta 155.5,144.4,137.4,136.5,133.7$, 132.9, 129.0, 128.4, 128.1, $127.5,127.4,127.1,126.5,66.6,51.9,45.9,40.2,25.2,23.1,21.9$; MS (EI) m / z (rel intensity) $419\left(\mathrm{M}^{+}, 25\right), 362$ (13), 318 (27), 284 (50), 268 (30), 211 (19), 179 (20), 150 (41), 123 (30), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 442.1817$, found 442.1852 .

1-(2-Benzylsulfanylphenyl)-3-methylbutyldimethylamine (70). To $1.00 \mathrm{~g}(2.38 \mathrm{mmol})$ of $\mathbf{6 9}$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10^{\circ} \mathrm{C}$ was added of $11.9 \mathrm{~mL}(11.9 \mathrm{mmol})$ of a 1 M solution of BBr_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting reaction was stirred at $-10{ }^{\circ} \mathrm{C}$ for 1 h , rt for 15 h , cooled to $0{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was used without further purification.

To $760 \mathrm{mg}(2.67 \mathrm{mmol})$ of amine was added $1.05 \mathrm{~mL}(12.6 \mathrm{mmol})$ of a 37% aqueous formaldehyde solution, $1.21 \mathrm{~mL}(24.8 \mathrm{mmol})$ of 88% aqueous formic acid, and 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting solution was heated at reflux for 20 h , cooled to $0^{\circ} \mathrm{C}$, basified with NaOH , and extracted with $\mathrm{CHCl}_{3}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $250 \mathrm{mg}(33 \%)$ of 70 over 2 steps as a clear oil.
(S)-70: $[\alpha]_{\mathrm{D}}{ }^{25}+1.7\left(c 0.9, \mathrm{CHCl}_{3}\right)$; IR (neat) 3190, 3145, 2886, 1620, 1301, 760, $642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.42-7.15(\mathrm{~m}, 9 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.68(\mathrm{t}, 2 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 1.31-1.18(\mathrm{sp}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 141.0,137.4,137.4,129.5,129.0,128.5,127.8,127.2,127.1,125.9,62.8,42.2,40.8$, 39.4, 25.2, 23.9, 22.5; MS (EI) m / z (rel intensity) 313 (${ }^{+}$, 25), 256 (67), 222(35), 164 (33), 135 (54), 91 (90); HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NS} 313.1853$, found 313.1864.
(R)-70: $[\alpha]_{\mathrm{D}}{ }^{25}-7.3\left(c 0.02, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3205, 3156, 2863, 1560, 1309, $927 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.10(\mathrm{~m}, 9 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{t}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 1.67(\mathrm{t}, 2 \mathrm{H}, J=7.5$ $\mathrm{Hz}), 1.32-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 140.9$, $137.4,137.3,129.4,129.0,128.5,127.7,127.2,127.1,125.8,62.7,42.2,40.8,39.3,25.2,23.9$, 22.5; MS (EI) m/z (rel intensity) 313 ($\mathrm{M}^{+}, 8$), 268 (8), 256 (100), 222 (65), 164 (30), 135 (60), 91 (95); HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NS} 313.1854$, found 313.1864.

71
2-(1-Dimethylamino-3-methylbutyl)benzenethiol (71). A solution of $160 \mathrm{mg}(0.51 \mathrm{mmol})$ of 70 in 5 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was treated with 26.0 mL of liquid NH_{3}, followed by addition of $345 \mathrm{mg}(0.15 \mathrm{mmol})$ of Na , stirred for 45 min at $-78^{\circ} \mathrm{C}$, and quenched with solid $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solution was evaporated under N_{2}, the residue dissolved in $\mathrm{H}_{2} \mathrm{O}$, and extracted with CHCl_{3} (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 120 mg (97%) of crude 71 as a clear oil.
(S)-71: $[\alpha]_{\mathrm{D}}{ }^{25}+9.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.75-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.10(\mathrm{~m}, 3 \mathrm{H}) .3 .91(\mathrm{dd}$, $1 \mathrm{H}, J=4.2,6.2 \mathrm{~Hz}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.83(\mathrm{qd}, 1 \mathrm{H}, J=3.9,9.9 \mathrm{~Hz}), 1.67(\mathrm{qd}, 1 \mathrm{H}, J=4.2,9.3$ $\mathrm{Hz}), 1.43-1.28(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 140.6, $138.3,128.4,127.6,127.4,125.9,63.9,41.8,39.0,25.3,24.0,22.3$; MS (EI) m / z (rel intensity) 233 (5), 222 (48), 190 (10), 177 (24), 166 (70), 149 (58), 135 (100), 123 (42).
(R)-71: $[\alpha]_{\mathrm{D}}{ }^{25}-6.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.76-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.10(\mathrm{~m}, 3 \mathrm{H}), 3.91$ (dd, $1 \mathrm{H}, J=4.2,10.5 \mathrm{~Hz}$), $2.25(\mathrm{~s}, 6 \mathrm{H}), 1.85(\mathrm{qd}, 1 \mathrm{H}, J=3.9,9.9 \mathrm{~Hz}$), $1.67(\mathrm{qd}, 1 \mathrm{H}, J=4.2,9.3$ $\mathrm{Hz}), 1.45-1.30(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 140.6, $138.3,128.4,127.6,127.4,125.9,63.9,41.8,39.0,25.3,24.0,22.3$; MS (EI) m / z (rel intensity) 233 (4), 222 (40), 190 (10), 177 (20), 166 (68), 149 (58), 135 (100), 123 (38).

72
(1R,2S)-1-Phenyl-2-(1-pyrrolidinyl)propan-1-ol (72). ${ }^{85}$ A solution of $500 \mathrm{mg}(3.30 \mathrm{mmol})$ of $(1 R, 2 S)$-(-)-norephedrine, $0.79 \mathrm{~mL}(6.6 \mathrm{mmol})$ of 1,4-dibromobutane, and $2.28 \mathrm{~g}(16.5 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 5 mL of EtOH was heated at reflux for 24 h . The resulting heterogeneous solution was filtered and 345 mg (52%) of $\mathbf{7 2}$ was obtained as a solid: $\mathrm{Mp} 44-46{ }^{\circ} \mathrm{C}$ (acetonitrile); $[\alpha]_{\mathrm{D}}{ }^{25}$ $+13.0\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ lit. ${ }^{85}[\alpha]_{\mathrm{D}}{ }^{25}+13.1\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{~d}, 1$ $\mathrm{H}, J=2.1 \mathrm{~Hz}$), $3.60(\mathrm{bs}, 1 \mathrm{H}), 2.91-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ 1.83 (m, 4 H), 0.85 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 204 ($\mathrm{M}^{+}, 25$), 187 (33), 160 (14), 105 (21), 98 (100).

(1R, 2S)-1-Acetylthio-1-phenyl-2-(1-pyrrolidinyl)propane (73). ${ }^{85}$ To a solution of 250 mg $(1.22 \mathrm{mmol})$ of $\mathbf{7 2}$ and $0.260 \mathrm{~mL}(1.83 \mathrm{mmol})$ of triethylamine in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $0.100 \mathrm{~mL}(1.35 \mathrm{mmol})$ of methanesulfonylchloride. The reaction mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$, concentrated in vacuo, redissolved in 5 mL of $\mathrm{H}_{2} \mathrm{O}$, warmed to room temperature, treated with $418 \mathrm{mg}(3.66 \mathrm{mmol})$ of potassium thioacetate, stirred for 2 h at room temperature, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $0.070 \mathrm{~g}(21 \%)$ of 73 as a clear oil: $[\alpha]_{\mathrm{D}}{ }^{25}+29.1$ (c 0.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.94(\mathrm{bs}, 1 \mathrm{H}), 2.65-2.49(\mathrm{~m}, 5 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.75-$ $1.55(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$.

(1R,2S)-1-Phenyl-2-(1-morpholin)propan-1-ol (74). ${ }^{85}$ A solution of $500 \mathrm{mg}(3.30 \mathrm{mmol})$ of $(1 R, 2 S)$-(-)-norephedrine, $0.420 \mathrm{~mL}(3.30 \mathrm{mmol})$ of 1,4-dibromoethylether, and $456 \mathrm{mg}(3.30$ mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was heated at reflux for 20 h . The heterogeneous solution was filtered and $350 \mathrm{mg}(48 \%)$ of 74 was obtained as a beige solid: $\mathrm{Mp} 204-205^{\circ} \mathrm{C}$ (acetonitrile, lit. ${ }^{85}$ 198-199); $[\alpha]_{\mathrm{D}}{ }^{25}-30.7$ (c 0.3, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-7.25(\mathrm{~m}, 4 \mathrm{H}), ~ 7.24-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.10-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.30(\mathrm{~m}$, $2 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $220\left(\mathrm{M}^{+}, 14\right), 203$ (14), 176 (12), 144 (11), 114 (100), 105 (10).
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 72. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 13 \mathrm{mg}(0.060 \mathrm{mmol})$ of ligand 72, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $104 \mathrm{mg}(85 \%)$ of 27 with an ee of 19%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 73. According to the general protocol, $125 \mathrm{mg}(0.484 \mathrm{mmol})$ of zirconocene hydrochloride, $44 \mu \mathrm{~L}(0.38 \mathrm{mmol})$ of 1-hexyne, $0.16 \mu \mathrm{~L}(0.32 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 14 \mathrm{mg}(0.050 \mathrm{mmol})$ of ligand 73 , and $38 \mu \mathrm{~L}(0.32 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $50 \mathrm{mg}(81 \%)$ of $\mathbf{2 7}$ with an ee of 46%.
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{m o l} \%$ of ligand 74. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $29 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand 74 , and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $196 \mathrm{mg}(80 \%)$ of 27 with an ee of $20 \%{ }^{73}$

Methyl-(S)-[\boldsymbol{N}-phenyl-2-amino-3-methyl]butanoate (75). To a solution of 4.00 g (34.1 mmol) of L-valine methylester hydrochloride and $3.59 \mathrm{~mL}(34.1 \mathrm{mmol})$ of phenylbromide in 60 mL of dimethylacetamide was added $0.650 \mathrm{~g}(3.41 \mathrm{mmol})$ of copper iodide (I) and $7.07 \mathrm{~g}(34.1 \mathrm{mmol})$ of potassium carbonate. The resulting solution was heated at reflux for 60 h , cooled to room temperature, diluted with 120 mL of EtOAc and 60 mL of $\mathrm{H}_{2} \mathrm{O}$, and adjusted to pH 3 using concentrated HCl . The organic layer was separated and aqueous layer extracted with EtOAc (3x). The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \%$ EtOAc/Hexanes) to yield $7.00 \mathrm{~g}(99 \%)$ of 75 as a gray oil: $[\alpha]_{\mathrm{D}}{ }^{25}-94\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ lit. $^{86}[\alpha]_{\mathrm{D}}{ }^{22}$ -92 (c 0.8, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 7.25-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, J=9.6$ $\mathrm{Hz}), 4.11(\mathrm{bs}, 1 \mathrm{H}), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.8 \mathrm{~Hz}), 1.01(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.

Methyl-(S)-[\mathbf{N}-formyl- \boldsymbol{N}-phenyl-2-amino-3-methyl]butanoate (76). To 8.18 mL (86.5 mmol) of acetic anhydride was added 4.07 mL of 88% aqueous formic acid at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at $60^{\circ} \mathrm{C}$ for 1 h , treated with a solution of $7.00 \mathrm{~g}(33.8 \mathrm{mmol})$ of $\mathbf{7 5}$ in 10 mL of THF, stirred for 2.5 h at $65^{\circ} \mathrm{C}$, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($20 \% \mathrm{EtOAc} /$ Hexanes) to yield $5.40 \mathrm{~g}(67 \%)$ of 76 as an orange oil: $[\alpha]_{\mathrm{D}}{ }^{25}-80.1\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{86}[\alpha]_{\mathrm{D}}{ }^{22}-82.5\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.20$ (m, 5 H$), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $235\left(\mathrm{M}^{+}, 8\right), 198$ (17), 176 (70), 148 (100), 104 (81).

(S)- \boldsymbol{N}-Methyl- \boldsymbol{N}-phenyl-2-amino-3-methylbutan-1-ol (77). A solution of 4.00 g (17.0 mmol) of 76 in 60 mL of THF was added portionwise to a slurry of $3.22 \mathrm{~g}(85.1 \mathrm{mmol})$ of LAH in 60 mL of THF at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred for a further 15 min , quenched at $0^{\circ} \mathrm{C}$ with 3 mL of $\mathrm{H}_{2} \mathrm{O}, 3 \mathrm{~mL}$ of aqueous NaOH , and 9 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered through a pad of celite, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($5 \% \mathrm{EtOAc} /$ Hexanes) to yield $6.20 \mathrm{~g}(68 \%)$ of 77 as a yellow solid: Mp $74-77{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc} / \mathrm{Hexanes}\right.$, lit. $78-79{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{25}-145.2$ (c $0.41, \mathrm{CHCl}_{3}$); lit. ${ }^{86}[\alpha]_{\mathrm{D}}{ }^{22}-153.8$ (c 2.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 7.33-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{bd}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.77(\mathrm{bt}, 1 \mathrm{H}, J=7.1$ Hz), 3.90-3.72 (m, 1 H$), 3.70-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.75(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.6 Hz), 0.77 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 193 ($\mathrm{M}^{+}, 27$), 162 (100), 150 (46), 132 (32), 107 (44).

(S)- \boldsymbol{N}-Methyl- \boldsymbol{N}-phenyl-2-amino-3-methyl-1-thiolacetylbutane (78). To a solution of 2.19 g $(8.33 \mathrm{mmol})$ of triphenylphosphine in 30 mL of THF at $0^{\circ} \mathrm{C}$ was added $1.64 \mathrm{~mL}(8.33 \mathrm{mmol})$ of diisopropyl azodicarboxylate. The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$, followed by simultaneous addition of $0.59 \mathrm{~mL}(8.33 \mathrm{mmol})$ of thioacetic acid in 5 mL of THF and 800 mg (4.17 mmol) of 77 in 3 mL of THF. The reaction mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$, concentrated in vacuo to $1 / 3$ its' volume, and washed with sodium bicarbonate. The organic layer was filtered through SiO_{2} and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} ($5 \% \mathrm{EtOAc} /$ Hexanes) to yield $548 \mathrm{mg}(49 \%)$ of 78 as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 6.62(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 3.61(\mathrm{td}, 1 \mathrm{H}, J=$ $3.8 \mathrm{~Hz}, 11.0 \mathrm{~Hz}$), $3.47(\mathrm{dd}, 1 \mathrm{H}, J=3.8,13.7 \mathrm{~Hz}$), $2.96(\mathrm{dd}, 1 \mathrm{H}, J=11.1,13.7 \mathrm{~Hz}), 2.69(\mathrm{~s}, 3$ H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.20-1.99(\mathrm{bs}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.80(\mathrm{~d}, 3 \mathrm{H}$, $J=6.7 \mathrm{~Hz}$).

(S)- \boldsymbol{N}-Methyl- \boldsymbol{N}-phenyl-2-amino-3-methylbutan-1-thiol (79). A solution of 550 mg (2.03 mmol) of 78 in 21 mL of THF was added portionwise to a slurry of $307 \mathrm{mg}(8.11 \mathrm{mmol})$ of LAH in 18 mL of THF at $0^{\circ} \mathrm{C}$. The suspension was stirred at room temperature for 30 min , cooled to 0 ${ }^{\circ} \mathrm{C}$, quenched with 3 mL of $\mathrm{H}_{2} \mathrm{O}, 3 \mathrm{~mL}$ of aqueous NaOH , and 9 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered through a pad of celite, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} (Hexanes) to yield 297 mg (70%) of 79 as a clear oil: $[\alpha]_{\mathrm{D}}{ }^{25}$ -89.5 (c 1.2, CHCl_{3}); lit. ${ }^{86}[\alpha]_{\mathrm{D}}{ }^{22}-93.8\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.21(\mathrm{t}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 6.84$ $(\mathrm{d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.70-6.60(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dt}, 1 \mathrm{H}, J=5.0,9.4 \mathrm{~Hz}), 2.85-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.74$ (s, 3 H), 1.92-1.78 (m, 1 H), 1.39 (dd, $1 \mathrm{H}, J=5.4,8.8 \mathrm{~Hz}$); 0.97 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); 0.79 (d, 3 $\mathrm{H}, J=6.7 \mathrm{~Hz}$).
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{~ m o l} \%$ of ligand 77. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 12 \mathrm{mg}(0.060 \mathrm{mmol})$ of ligand 77, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $91 \mathrm{mg}(74 \%)$ of $\mathbf{2 7}$ with an ee of 10%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 78. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 53 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand 78, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $183 \mathrm{mg}(75 \%)$ of 27 with an ee of 16%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 79. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 19 \mathrm{mg}(0.090 \mathrm{mmol})$ of ligand 79 ,
and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(80 \%)$ of 27 with an ee of 17%.

(\boldsymbol{L})-Serine methylester hydrochloride (80). ${ }^{87}$ To a solution of $1.46 \mathrm{~mL}(20.0 \mathrm{mmol})$ of thionyl chloride in 20 mL of MeOH at $0^{\circ} \mathrm{C}$ was added $2.10 \mathrm{~g}(20.0 \mathrm{mmol})$ of L-serine. The reaction mixture was heated at reflux for 1 h and concentrated in vacuo. The resulting solid residue was resubjected to 2 M HCl as before, heated at reflux for an additional 1 h , and concentrated in vacuo to yield $3.00 \mathrm{~g}(97 \%)$ of $\mathbf{8 0}$ as a white solid: Mp 51-56 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$, lit. $\left.163-166^{\circ} \mathrm{C}\right)$; $[\alpha]_{\mathrm{D}}{ }^{25}$ +3.7 (c 0.9, MeOH); lit. ${ }^{87}[\alpha]_{\mathrm{D}}{ }^{22}+4.0\left(c 4.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.03(\mathrm{bt}, 3 \mathrm{H}, J=4.2$ Hz), 3.90, 3.80 (d of AB, $2 \mathrm{H}, J=4.5,11.8 \mathrm{~Hz}$), 3.75 (s, 3 H); MS (EI) m / z (rel intensity) 120 $\left(\mathrm{M}^{+}, 38\right), 88(61), 74$ (17), $60(100)$.

(L)-Triphenylmethyl serine methylester (81). ${ }^{88}$ To a solution of $3.00 \mathrm{~g}(19.5 \mathrm{mmol})$ of $\mathbf{8 0}$ and $5.43 \mathrm{~mL}(5.54 \mathrm{mmol})$ of triethylamine in 10 mL of CHCl_{3} at $0{ }^{\circ} \mathrm{C}$ was added dropwise a solution of $5.43 \mathrm{~mL}(19.5 \mathrm{mmol})$ of chlorotriphenylmethane in 10 mL of CHCl_{3}. The resulting solution was stirred for 24 h and concentrated in vacuo. The residue was dissolved in EtOAc, washed with sodium chloride, 10% citric acid, sodium bicarbonate, and sodium chloride. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $4.50 \mathrm{~g}(64 \%)$ of $\mathbf{8 1}$ as an off white solid. The solid was used in subsequent steps without further purification: ${ }^{1} \mathrm{H}$ NMR δ 7.55-7.45 (m, 6 H), 7.35-7.20 (m, 6 H), 7.19-7.10 (m, 3 H), 3.71-3.62 (m, 1 H), 3.57-3.47 (m, 2 H), $3.28(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.90(\mathrm{bs}, 1 \mathrm{H}), 2.2(\mathrm{bs}, 1 \mathrm{H})$.

82

1-Tritylaziridine-2-carboxylate methyl ester (82). To a solution of $3.50 \mathrm{~g}(9.72 \mathrm{mmol})$ of $\mathbf{8 1}$ and $2.70 \mathrm{~mL}(21.4 \mathrm{mmol})$ of triethylamine in 21 mL of THF was added dropwise a solution of 0.69 mL (19.5 mmol) of methanesulfonyl chloride. The resulting solution was heated at reflux for 48 h at room temperature, and concentrated in vacuo. The residue was dissolved in EtOAc, washed with 10% citric acid and sodium bicarbonate solution, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by titration of the crude residue with hexanes, followed by filtration of the precipitate to yield $1.85 \mathrm{~g}(56 \%)$ of $\mathbf{8 2}$ as an off-white solid: Mp 105-106 ${ }^{\circ} \mathrm{C}$ (hexanes, lit. 127-129 ${ }^{\circ} \mathrm{C}$); $[\alpha]_{D}{ }^{25}-87.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{88}[\alpha]_{D}{ }^{22}-96.8$ (c 1.1, $\left.\mathrm{CH}_{3} \mathrm{OH}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.10(\mathrm{~m}, 10 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, 1 \mathrm{H}$, $J=1.6,2.7 \mathrm{~Hz}$), $1.87(\mathrm{dd}, 1 \mathrm{H}, J=2.7,6.2 \mathrm{~Hz}$), 1.39 (dd, $1 \mathrm{H}, J=1.6,6.2 \mathrm{~Hz}$); MS (EI) $\mathrm{m} / \mathrm{z}(\mathrm{rel}$ intensity) 342 ($\mathrm{M}^{+}, 10$), 302 (31), 266 (34), 243 (100), 165 (49), 115 (5).

\boldsymbol{N}-Tritylaziridin-2-yldiphenylmethanol (83). A solution of 5.83 mL (11.7 mmol) of phenyl magnesium bromide in 50 mL of THF was added to $1.00 \mathrm{~g}(2.92 \mathrm{mmol})$ of $\mathbf{8 2} \mathrm{in} 50 \mathrm{~mL}$ of THF at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 h at room temperature, quenched at $0{ }^{\circ} \mathrm{C}$ with ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $1.20 \mathrm{~g}(88 \%)$ of $\mathbf{8 3}$ as a white solid: Mp $130-132{ }^{\circ} \mathrm{C}\left(\mathrm{EtOAc} /\right.$ Hexanes, lit. 133.5-134.5 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-76.5\left(c 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{88}[\alpha]_{\mathrm{D}}{ }^{22}-78.8$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 15 \mathrm{H}), 4.46(\mathrm{~s}$, $1 \mathrm{H}), 2.38$ (dd, $1 \mathrm{H}, J=3.2,6.2 \mathrm{~Hz}$), 2.11 (bd, $1 \mathrm{H}, J=2.9 \mathrm{~Hz}$), 1.36 (d, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) $390\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}, 12\right), 243$ (100), 183 (10), 165 (77), 105 (26).

84
Aziridin-2-yldiphenylmethanol (84). ${ }^{89}$ A solution of $300 \mathrm{mg}(0.64 \mathrm{mmol})$ of $\mathbf{8 3}$ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and $\mathrm{MeOH}(1.5 \mathrm{~mL})$ was treated at $0{ }^{\circ} \mathrm{C}$ with 1.13 mL of trifluoroacetic acid. The resulting suspension was concentrated in vacuo, washed with sodium bicarbonate, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 140 mg (97%) of $\mathbf{8 4}$ as a white solid which was used without further purification in the next step: $\mathrm{Mp} 144-145{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. $145-147{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-16.1(c 0.5$, CHCl_{3}); lit. ${ }^{89}[\alpha]_{\mathrm{D}}{ }^{22}-16.3\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.25(\mathrm{~m}, 10 \mathrm{H}), 3.37(\mathrm{bt}, 1 \mathrm{H}, J=5.9$ Hz), $1.76(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 1.68(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{EI}) m / z$ (rel intensity) $260\left(\mathrm{M}^{+}, 43\right)$, 206 (28), 183 (93), 154 (38), 105 (100).

85
N-Benzylaziridin-2-yldiphenylmethanol (85). To a solution of $140 \mathrm{mg}(0.620 \mathrm{mmol})$ of $\mathbf{8 4}$ and $172 \mathrm{mg}(1.24 \mathrm{mmol})$ of potassium carbonate in 5.60 mL of THF was added 0.0700 mL $(0.620 \mathrm{mmol})$ of benzyl bromide. The reaction mixture was stirred at room temperature for 20 h , diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed successively with 1 M HCl and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting solid was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 88 mg (45\%) of 85 as a white solid: $\mathrm{Mp} 86-91{ }^{\circ} \mathrm{C}$ (EtOAc/Hexanes, lit. $88-92{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{25}-33.6$ (c 0.5, CHCl_{3}); lit. ${ }^{89}[\alpha]_{\mathrm{D}}{ }^{22}-35.4\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 15 \mathrm{H})$, $3.79(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.47(\mathrm{~d}, 1 \mathrm{H}, J=13.3 \mathrm{~Hz}), 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, 1 \mathrm{H}, J=3.4$ Hz), 1.57 (d, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) $315\left(\mathrm{M}^{+}, 42\right), 260(47), 183$ (95), 154 (37), 132 (34), 105 (100).

86
N-Benzhydrylaziridin-2-yldiphenylmethanol (86). To a solution of 500 mg (2.20 mmol) of $\mathbf{8 4}$ and 590 mg (5.60 mmol) of potassium carbonate in 15 mL of THF was added 680 mg (3.31 mmol) of benzhydryl chloride. The reaction mixture was heated at reflux for 5 d , quenched with $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed successively with 1 M HCl and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting solid was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $300 \mathrm{mg}(34 \%)$ of $\mathbf{8 6}$ as a white solid: Mp 192-193 ${ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. 192-194 $\left.{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}-36.2\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; lit. ${ }^{89}[\alpha]_{\mathrm{D}}{ }^{22}-$ $39.8\left(c 0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.45-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.08-6.98 (m, 6 H), 6.97-6.89 (m, 3 H), $3.90(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=3.6,6.4$ Hz), $2.11(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 1.58(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) 391 ($\mathrm{M}^{+}, 45$), 314 (31), 224 (37), 196 (71), 167 (100), 152 (21), 105 (13).
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 83 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $45 \mathrm{mg}(0.090 \mathrm{mmol})$ of ligand $\mathbf{8 3}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $105 \mathrm{mg}(85 \%)$ of $\mathbf{2 7}$ with an ee of 8%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 85 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $28 \mathrm{mg}(0.090 \mathrm{mmol})$ of ligand $\mathbf{8 5}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $91 \mathrm{mg}(74 \%)$ of $\mathbf{2 7}$ with an ee of 12%.
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{m o l} \%$ of ligand 86. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $25 \mathrm{mg}(0.060 \mathrm{mmol})$ of ligand $\mathbf{8 6}$,
and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(80 \%)$ of 27 with an ee of 48%.

87
1-(S)-Phenyl(((1'S)-1'-phenylethyl)methylamino)methyl)-2-naphthol (87). ${ }^{30}$ A solution of 500 mg (3.47 mmol) of 2-naphthol, $0.600 \mathrm{~mL}(4.13 \mathrm{mmol})$ of (S)-(-)- N, α-dimethylbenzylamine, and $0.440 \mathrm{~mL}(4.34 \mathrm{mmol})$ of benzaldehyde was stirred at $95^{\circ} \mathrm{C}$ for 30 h . The reaction mixture was treated with 1 mL of MeOH and stirred at room temperature for 15 h . The precipitated solid was washed with methanol and dried under vacuo to yield 360 mg (28%) of $\mathbf{8 7}$ as a light yellow solid: Mp 80-86 ${ }^{\circ} \mathrm{C}$ (methanol, lit. ${ }^{90} 128-129{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}{ }^{25}+230\left(c 0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.95-$ $7.75(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.29-6.95(\mathrm{~m}, 7 \mathrm{H}), 5.48(\mathrm{bs}, 1 \mathrm{H}), 4.36$ (bd, $1 \mathrm{H}, J=5.3 \mathrm{~Hz}$), 2.17 (bs, 3 H), 1.52 (bd, $3 \mathrm{H}, J=5.2 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 349 ([M-H2O] $\left.{ }^{+}, 40\right), 287(20), 246(40), 120(37)$.

88
1-(S)-Phenyl(((1'S)-1'-phenylethyl)methylamino)methyl)-2-thionaphthol (88). ${ }^{30}$ A solution of $500 \mathrm{mg}(3.12 \mathrm{mmol})$ of 2-thionaphthol, $0.540 \mathrm{~mL}(3.71 \mathrm{mmol})$ of (S)-(-)-N, $\alpha-$ dimethylbenzylamine, and $0.40 \mathrm{~mL}(3.90 \mathrm{mmol})$ of benzaldehyde was stirred at $95{ }^{\circ} \mathrm{C}$ for 30 h . The reaction mixture was treated with 1 mL of MeOH and stirred at room temperature for 15 h . The precipitated solid was washed with methanol and dried under vacuo to yield 350 mg (30%) of 88 as a off white solid: $\mathrm{Mp} 132-133{ }^{\circ} \mathrm{C}(\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}{ }^{25}+88.3\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR δ 7.90-7.75 (m, 1 H$), 7.74-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.27-6.80(\mathrm{~m}, 7 \mathrm{H}), 5.31(\mathrm{bs}, 1 \mathrm{H})$, 4.25-4.05 (m, 1 H), 3.51 ($\mathrm{s}, 3 \mathrm{H}$), 2.15 (bs, 3 H), 1.50 (bd, $3 \mathrm{H}, J=5.8 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) $\left.231\left(\left[\mathrm{M}-\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right]^{+}\right), 100\right), 202$ (25), 120 (51), 164 (21).

89
1-((S)-Propyl-(((1'S)-1'-phenylethyl)amino)methyl)-2-naphthol (89). To a solution of 0.390 $\mathrm{mL}(4.34 \mathrm{mmol})$ of isobutyraldehyde was added 500 mg (3.47 mmol) of 2-naphthol in 1 mL of EtOH followed by addition of $0.600 \mathrm{~mL}(4.13 \mathrm{mmol})$ of $(S)-(-)$-methylbenzylamine at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 6 d . The reaction mixture was treated with 1 mL of MeOH and stirred at room temperature for 15 h . The precipitated solid was washed with methanol, and dried under vacuo. The resulting 350 mg (32%) of off white solid $\mathbf{8 9}$ were slightly contaminated with residual 2-naphthol and were used without further purification: Mp 133-134 ${ }^{\circ} \mathrm{C}\left(\mathrm{MeOH}\right.$, lit. $\left.134-135{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+1.5 \quad\left(c \quad 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.03-7.15(\mathrm{~m}, 11$ H), $4.22(\mathrm{~d}, 1 \mathrm{H}, J=6.1 \mathrm{~Hz}), 3.73(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\mathrm{Hz}), 0.98(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $319\left(\mathrm{M}^{+}, 10\right)$, 276 (79), 198 (32), 144 (100), 115 (52), 105 (82).
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 87 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $33 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand $\mathbf{8 7}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(76 \%)$ of 27 with an ee of 2%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand $\mathbf{8 8}$. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), ~ \backslash 37 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand $\mathbf{8 8}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $101 \mathrm{mg}(81 \%)$ of 27 with an ee of $28 \%{ }^{73}$
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{~ m o l} \%$ of ligand $\mathbf{8 9}$. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $31 \mathrm{mg}(0.06 \mathrm{mmol})$ of ligand $\mathbf{8 9}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $97 \mathrm{mg}(80 \%)$ of $\mathbf{2 7}$ with an ee of $17 \%{ }^{73}$

90
(R)-2'-Trifluoromethanesulfonyloxy-[1,1']binaphthalenyl-2-carboxylic acid methyl ester (90). ${ }^{91} 3.6 \mathrm{~mL}$ of Methanol and 1.4 mL (mmol) of diisopropylethylamine were added to a solution of $1.00 \mathrm{~g}(1.83 \mathrm{mmol})$ of $(R)-(-)-1,1$ '-Bis-2-naphthol bis(trifluoromethanesulfonate) in 10 mL of DMSO. The resulting solution was degassed by freeze-pump-thaw cycles and transferred to a 3-neck round bottom flask containing $61 \mathrm{mg}(0.27 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and 113 $\mathrm{mg}(0.27 \mathrm{mmol})$ of bisdiphenylphosphinopropane. The reaction was stirred under a CO atmosphere at $80^{\circ} \mathrm{C}$ for 72 h . The resulting reaction mixture was diluted with NaCl , extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $350 \mathrm{mg}(42 \%)$ of $\mathbf{9 0}$ as an orange solid: $[\alpha]_{\mathrm{D}}{ }^{25}\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.10(\mathrm{~d}, 1 \mathrm{H}, J=6.2$ $\mathrm{Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 7.99(\mathrm{dd}, 2 \mathrm{H}, J=2.8,8.3 \mathrm{~Hz}), 7.64-6.55(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}$, 3 H), $7.17(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}$), $7.14(\mathrm{~d}, 1 \mathrm{H}, J=5.8 \mathrm{~Hz}$), $3.56(\mathrm{~s}, 3 \mathrm{H})$; MS (EI) $m / z(\mathrm{rel}$ intensity) $460\left(\mathrm{M}^{+}, 17\right), 327$ (14), 311 (80), 268 (100), 239 (31), 119 (7).

91
(R)-Trifluoromethanesulfonic acid $\mathbf{2 '}^{\prime}$-(morpholine-4-carbonyl)-[1,1']binaphthalenyl-2-yl ester (91). ${ }^{92}$ To a solution of $100 \mathrm{mg}(1.35 \mathrm{mmol})$ of $\mathrm{Me}_{3} \mathrm{Al}$ in 0.67 mL of toluene at $0{ }^{\circ} \mathrm{C}$ was added $0.12 \mathrm{~mL}(1.35 \mathrm{mmol})$ of morpholine in 4 mL of toluene. The resulting solution was stirred at rt for 1 h followed by the addition of $310 \mathrm{mg}(0.68 \mathrm{mmol})$ of $\mathbf{9 0}$. The mixture was heated at reflux for 3 h , quenched with 1 N HCl , extracted with EtOAc, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($75 \% \mathrm{EtOAc} /$ Hexanes) to yield 330 mg (95%) of 91 as a white solid: Mp 94-97 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}-24.1$ (c 0.5, CHCl_{3}); lit. ${ }^{93}[\alpha]_{\mathrm{D}}{ }^{25}-25.5\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.60(\mathrm{~d}$, $2 \mathrm{H}, J=8.7 \mathrm{~Hz}$), $7.97(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.70-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.10(\mathrm{~m}, 4 \mathrm{H}), 3.80-3.40(\mathrm{~m}$, 8 H); MS (EI) m / z (rel intensity) 515 (M ${ }^{+}, 35$), 429 (21), 382 (100), 366 (30), 297 (22), 239 (26), 114 (12), 91 (12), 70 (26).

92
(R)-2'-Morpholin-4-ylmethyl-[1, $\left.\mathbf{1}^{\prime}\right]$ binaphthalenyl-2-ol (92). ${ }^{93}$ To $300 \mathrm{mg}(0.58 \mathrm{mmol})$ of $\mathbf{9 1}$ in 11 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $88 \mathrm{mg}(2.33 \mathrm{mmol})$ of LiAlH_{4} portionwise. The solution was heated at reflux for 14 h , cooled, diluted with 40 mL of $\mathrm{H}_{2} \mathrm{O}$, filtered through celite, extracted with EtOAc, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(50 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $60 \mathrm{mg}(28 \%)$ of 92 as an off-white solid: $\mathrm{Mp} 102-104{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}-83.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{93}$ $[\alpha]_{\mathrm{D}}{ }^{25}-84.8\left(c 1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 8.00-7.84(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.48-7.40$ $(\mathrm{m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.35-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{ddd}, 1 \mathrm{H}, J=1.2,6.9,8.4 \mathrm{~Hz}), 7.12$
(ddd, $1 \mathrm{H}, J=1.2,6.9,8.4 \mathrm{~Hz}), 6.99(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 3.85-3.70(\mathrm{~m}$, $3 \mathrm{H}), 3.70-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 2.75-2.63(\mathrm{~m}, 2$ H), 2.37 (ddd, $2 \mathrm{H}, J=2.7,6.3,9.3 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 369 ($\mathrm{M}^{+}, 49$), 311 (4), 281 (43), 222 (100), 162 (55), 155 (76), 145 (88), 91 (61).
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathbf{~ m o l} \%$ of ligand 92 . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $24 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand $\mathbf{9 2}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $97 \mathrm{mg}(80 \%)$ of $\mathbf{2 7}$ with an ee of $17 \%{ }^{73}$

93
4-Bromo[2,2]paracyclophane (93). ${ }^{94}$ To $0.51 \mathrm{~mL}(9.9 \mathrm{mmol})$ of Br_{2} in 15 mL of CCl_{4} was added $12 \mathrm{mg}(0.2 \mathrm{mmol})$ of Fe powder and stirred for 15 min . The suspension was diluted with 45 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by the addition of $2.00 \mathrm{~g}(9.6 \mathrm{mmol})$ of [2,2]-paracyclophane. The resulting solution was stirred for 2 h , washed with NaHSO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $2.8 \mathrm{~g}(99 \%)$ as an off-white solid 93 and was used without further purification in the next step: Mp $136-137{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. $\left.{ }^{94} \mathrm{Mp} 134{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.17(\mathrm{~d}, 1 \mathrm{H}$, $J=6.9 \mathrm{~Hz}), 6.65-6.40(\mathrm{~m}, 6 \mathrm{H}), 3.48(\mathrm{ddd}, 1 \mathrm{H}, J=1.8,10.5,12.6 \mathrm{~Hz}), 3.27-3.02(\mathrm{~m}, 5 \mathrm{H}), 2.75-$ 3.02 (m, 2 H); MS (EI) m / z (rel intensity) $288\left(\mathrm{M}^{+}, 10\right), 182(12), 115$ (6), 104 (100).

94
4-Hydroxy[2,2]paracyclophane (94). ${ }^{95}$ To $2.7 \mathrm{~g}(9.4 \mathrm{mmol})$ of $\mathbf{9 3}$ in $118 \mathrm{~mL}^{2}$ of $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ was added $12.5 \mathrm{~mL}(18.8 \mathrm{mmol})$ of $n-\mathrm{BuLi}$. The resulting reaction was stirred for 20 minutes at $0{ }^{\circ} \mathrm{C}$ followed by addition of $2.10 \mathrm{~mL}(18.8 \mathrm{mmol})$ of $\mathrm{B}(\mathrm{OMe})_{3}$. The reaction was stirred for 1 h at rt , 2 mL of 0.5 M NaOH solution was added, 1.5 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $1.0 \mathrm{~g}(48 \%)$ of beige solid 94 and was used without further purification in the next step: Mp $220-223{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$, lit. $\left.{ }^{95} \mathrm{Mp} 225{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR δ $7.01(\mathrm{dd}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 6.55(\mathrm{dd}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.45(\mathrm{dd}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.39(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.1), 6.26(\mathrm{dd}, 1 \mathrm{H}, J=1.5,7.5 \mathrm{~Hz}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.00(\mathrm{~m}, 4 \mathrm{H}), 3.00-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.59(\mathrm{~m}, 1 \mathrm{H})$; MS (EI) m / z (rel intensity) 224 ($\mathrm{M}^{+}, 43$), 120 (100), 115 (14), 109 (17), 105 (23), 104 (56), 103 (15).

95
4-Acetyl-5-hydroxy[2.2]paracyclophane (95). ${ }^{96}$ To $1.00 \mathrm{~g}(4.46 \mathrm{mmol})$ of $\mathbf{9 4}$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added $0.64 \mathrm{~mL}(5.80 \mathrm{mmol})$ of TiCl_{4} followed by addition of $0.32 \mathrm{~mL}(4.46$ mmol) of acetyl chloride. The resulting reaction was stirred at rt for 2 h , cooled to $0{ }^{\circ} \mathrm{C}$, diluted with 50 mL of $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $1.15 \mathrm{~g}(97 \%)$ of yellow/brown solid 95 and was used without further purification: Mp $112-115{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, lit. ${ }^{96}$ Mp 115-116 ${ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 6.98(\mathrm{dd}, 1 \mathrm{H}, J=1.9,7.8 \mathrm{~Hz}), 6.63(\mathrm{dd}, 1 \mathrm{H}, J=1.9,7.8 \mathrm{~Hz}$), 6.54 $(\mathrm{d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.46(\mathrm{dd}, 1 \mathrm{H}, J=1.8,7.9 \mathrm{~Hz}), 6.32(\mathrm{dd}, 2 \mathrm{H}, J=2.1,7.8 \mathrm{~Hz}), 3.65(\mathrm{ddd}, 1$ $\mathrm{H}, J=1.6,9.6,11.2 \mathrm{~Hz}$), 3.45 (ddd, $1 \mathrm{H}, J=3.0,10.1,13.1 \mathrm{~Hz}$), $3.25-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.10-2.93$ (m, 2 H), 2.76 (dd, $1 \mathrm{H}, J=7.7,9.6 \mathrm{~Hz}), 2.72(\mathrm{dd}, 1 \mathrm{H}, J=7.7,9.5 \mathrm{~Hz}), 2.65-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (s, 3 H); MS (EI) m / z (rel intensity) 266 ($\mathrm{M}^{+}, 42$), 162 (71), 120 (20), 104 (100), 91 (27), 78 (20).

(S,S)-4-hydroxy-5-[1-(1-phenylethylamino)ethyl][2,2]paracyclophane. ${ }^{96}$ To a solution of 1.15 $\mathrm{g}(4.3 \mathrm{mmol})$ of 95 in 100 mL of toluene was added $0.55 \mathrm{~mL}(4.3 \mathrm{mmol})$ of (S) -phenyl ethylamine and $53 \mathrm{mg}(0.22 \mathrm{mmol})$ of $\mathrm{Et}_{2} \mathrm{SnCl}_{2}$. The resulting solution was heated at reflux for 28 h and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(40: 1 \mathrm{Benzene} / \mathrm{EtOH})$ to yield $450 \mathrm{mg}(28 \%)$ of 96 as an orange solid: $[\alpha]_{\mathrm{D}}{ }^{25}-215(c 0.5$, CHCl_{3}); lit. ${ }^{93}[\alpha]_{\mathrm{D}}{ }^{25}-232\left(c 0.4, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; Mp 165-168 ${ }^{\circ} \mathrm{C}$ (Benzene/EtOH, lit. ${ }^{96} \mathrm{Mp} 165-166^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.53(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.45(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.39-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.7 \mathrm{~Hz}), 6.57(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.46(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.18(\mathrm{~d}$, $1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.09(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 4.87(\mathrm{q}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.29-$ $3.13(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.32(\mathrm{~m}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, 3 \mathrm{H}, J=6.5 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) 404 (10), $370\left(\mathrm{M}^{+}, 100\right), 266$ (25).
(R)-1-Phenylhept-2-en-1-ol (19) using $10 \mathrm{~mol} \%$ of ligand 96. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $48 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand $\mathbf{9 6}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $194 \mathrm{mg}(79 \%)$ of 27 with an ee of $16 \%{ }^{84}$

(4S,5R)-4-Methyl-5-phenyl-2-(2-thienyl)-1,3-oxazoline (97). ${ }^{97}$ To $473 \mu \mathrm{~L}(5.09 \mathrm{mmol})$ of 2thiophene carbonitrile and $1.00 \mathrm{~g}(6.61 \mathrm{mmol})$ of $(1 S, 2 R)-(+)$-norephederine was added a solution of $34.7 \mathrm{mg}(0.25 \mathrm{mmol})$ of ZnCl_{2} in 15 mL of chlorobenzene. The solution was heated
at reflux for 48 h , cooled to $0{ }^{\circ} \mathrm{C}$, concentrated in vacuo, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and extracted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x})$. The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $660 \mathrm{mg}(53 \%)$ of 97 as a yellow oil: $[\alpha]_{\mathrm{D}}{ }^{25}-456\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{97}[\alpha]_{\mathrm{D}}{ }^{22}-553\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 7.68(\mathrm{dd}, 1 \mathrm{H}, J=1.2$, $3.6 \mathrm{~Hz}), 7.48(\mathrm{dd}, 1 \mathrm{H}, J=1.2,5.0 \mathrm{~Hz}$), 7.39-7.28 (m, 3 H), $7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J$ $=3.7,5.0 \mathrm{~Hz}$), $5.74(\mathrm{~d}, 1 \mathrm{H}, J=9.7 \mathrm{~Hz}), 4.70-4.55(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $243\left(\mathrm{M}^{+}, 21\right), 137$ (100), 109 (32), 105 (12).

(4S)-4-Isopropyl-2-(2-thienyl)-1,3-oxazoline (98). To $695 \mu \mathrm{~L}(7.47 \mathrm{mmol})$ of 2-thiophene carbonitrile and $1.00 \mathrm{~g}(9.71 \mathrm{mmol})$ of L-valinol was added a solution of $51.0 \mathrm{mg}(0.37 \mathrm{mmol})$ of ZnCl_{2} in 15 mL of chlorobenzene. The reaction was heated at reflux for 48 h , cooled to $0{ }^{\circ} \mathrm{C}$, concentrated in vacuo, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and extracted with $\mathrm{H}_{2} \mathrm{O}$ (3x). The aqueous layer was re-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \%$ EtOAc/Hexanes) to yield $1.40 \mathrm{~g}(96 \%)$ of 98 as a clear oil: $[\alpha]_{\mathrm{D}}{ }^{25}-88.2$ (c $\left.0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{97}$ $[\alpha]_{\mathrm{D}}{ }^{22}-89.3\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.57(\mathrm{dd}, 1 \mathrm{H}, J=1.2,3.7 \mathrm{~Hz}), 7.41(\mathrm{dd}, 1 \mathrm{H}, J=1.2,5.0$ $\mathrm{Hz}), 7.05(\mathrm{dd}, 1 \mathrm{H}, J=3.7,5.0 \mathrm{~Hz}), 4.44-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.02(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 1 \mathrm{H})$, $0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) $195\left(\mathrm{M}^{+}, 9\right), 152$ (100), 124 (23), 111 (16).
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 97 . According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 47 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand 97 , and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $203 \mathrm{mg}(83 \%)$ of 27 with an ee of 21%.
(S)-1-Phenylhept-2-en-1-ol (27) using $15 \mathrm{~mol} \%$ of ligand 98 . According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $37 \mathrm{mg}(0.19 \mathrm{mmol})$ of ligand $\mathbf{9 8}$, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $193 \mathrm{mg}(79 \%)$ of 27 with an ee of 7%. ${ }^{84}$

(L)-Valinol (100a). ${ }^{98}$ To a solution of $2.00 \mathrm{~g}(17.1 \mathrm{mmol})$ of (L)-valine in 75 mL of THF at $0^{\circ} \mathrm{C}$ was added $1.30 \mathrm{~g}(34.1 \mathrm{mmol})$ of LAH over 15 min . The resulting solution was heated at reflux for 20 h , cooled to $0^{\circ} \mathrm{C}$, quenched with 1 mL of $\mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~mL}$ of $15 \% \mathrm{NaOH}$, and 3 mL of $\mathrm{H}_{2} \mathrm{O}$, and filtered through celite. The celite was washed with $\mathrm{Et}_{2} \mathrm{O}$, and the combined solutions were concentrated in vacuo to yield $1.50 \mathrm{~g}(86 \%)$ of $\mathbf{1 0 0 a}$ as a clear oil: $[\alpha]_{\mathrm{D}}{ }^{25}+12.3\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{98}[\alpha]_{\mathrm{D}}{ }^{20}+12.4(c 0.9, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.60(\mathrm{dd}, 1 \mathrm{H}, J=4.0,10.5 \mathrm{~Hz}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.8,10.5 \mathrm{~Hz}$), 2.60-2.45 (m, 1 H), 1.62-1.43 (m, 1 H), 0.95-0.70 (m, 6 H); MS (EI) m/z (rel intensity) $128\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 33\right), 114$ (18).

(S)-3-Methyl-2-pyrrolidin-1-yl-butan-1-ol (101a). To a solution of $2.00 \mathrm{~g}(19.4 \mathrm{mmol})$ of (L) valinol in 80 mL of $\mathrm{CH}_{3} \mathrm{CN}$ were added $5.36 \mathrm{~g}(38.8 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 2.54 mL of $1,4-$ dibromobutane. The reaction mixture was heated at reflux for 18 h , cooled, filtered, and concentrated in vacuo. The resulting oil was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with EtOAc, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to yield $2.63 \mathrm{~g}(86 \%)$ of 101a as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}$ +39.2 (c 1.5, CHCl_{3}); IR (KBr) 3406, 2960, 2874, 1463, 1387, 1111, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.63$ (dd, $1 \mathrm{H}, J=4.8,10.5 \mathrm{~Hz}$), $3.41(\mathrm{dd}, 1 \mathrm{H}, J=6.9,10.5 \mathrm{~Hz}$), 2.73 (bs, 4 H), $2.34(\mathrm{q}, 1 \mathrm{H}, J=6.3$ $\mathrm{Hz}), 1.92(\mathrm{o}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.88-1.70(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=6.6$

Hz) ${ }^{13} \mathrm{C}$ NMR $\delta 67.0,60.0,49.4,28.6,23.7,21.7,18.7$; MS (EI) m / z (rel intensity) 126 ([M$\left.\mathrm{CH}_{2} \mathrm{OH}\right]^{+}, 100$), 114 (98), 96 (19), 84 (40), 70 (53), 55 (32); HRMS (EI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}$ 158.1545 , found 158.1540 .

Thioacetic acid (S)-(3-methyl-2-pyrrolidin-1-yl-butyl) ester (102a). To a well stirred solution of $2.68 \mathrm{~g}(10.2 \mathrm{mmol})$ of PPh_{3} in 75 mL of THF at $0{ }^{\circ} \mathrm{C}$ was added $2.00 \mathrm{~mL}(10.2 \mathrm{mmol})$ of diisopropylazodicarboxylate. The resulting solution was stirred for 30 min , followed by simultaneous addition of $0.73 \mathrm{~mL}(10.2 \mathrm{mmol})$ of thiolacetic acid and $800 \mathrm{mg}(5.10 \mathrm{mmol})$ of 101a. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ at rt , and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}\left(2 \% \mathrm{EtOAc} /\right.$ pet. $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to yield $725 \mathrm{mg}(66 \%)$ of 102a as an orange oil: $[\alpha]_{\mathrm{D}}{ }^{25}+52.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.17$ (A of $\mathrm{ABX}, 1 \mathrm{H}, J=4.5,13.8 \mathrm{~Hz}), 3.00(\mathrm{~B}$ of $\mathrm{ABX}, 1 \mathrm{H}, J=5.4,13.8 \mathrm{~Hz}), 2.68-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}$, $3 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.93$ (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 196.0,67.6,50.7,30.8,30.5,28.3,23.5,20.4,17.8$; HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{21}$ NOS 216.1422, found 216.1409.

(S)-3-Methyl-2-pyrrolidin-1-yl-butane-1-thiol (103a). To a suspension of 42 mg (1.1 mmol) of LiAlH_{4} in 4 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added $60 \mathrm{mg}(0.28 \mathrm{mmol})$ of $\mathbf{1 0 2 a}$ in 2 mL of $\mathrm{Et}_{2} \mathrm{O}$. The resulting slurry was stirred for 45 min at rt , cooled to $0^{\circ} \mathrm{C}$, and quenched with 1 mL of $\mathrm{H}_{2} \mathrm{O}, 1$ mL of $15 \% \mathrm{NaOH}, 3 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$, and filtered through celite. The resulting filtrate was concentrated in vacuo to yield $35 \mathrm{mg}(72 \%)$ of 103a as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+31.8$ (c 0.25 , CHCl_{3}); IR (KBr) 2959, 2872, 2790, 1462, 1365, 1296, $1118 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.80-2.55$ (m, 4
H), $2.33(\mathrm{q}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 1.96(\mathrm{o}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 1.82-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.61(\mathrm{bs}, 1 \mathrm{H}), 1.26$ $(\mathrm{s}, 1 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.94(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\delta 69.8,50.1,30.3,24.0$, 23.7, 20.6, 18.5; MS (EI) m / z (rel intensity) 173 (M^{+}, 43), 140 (36), 126 (100), 97 (13), 84 (6), 70 (17), 55 (8); HRMS (EI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NS}$ 173.1238, found 216.1232 .

(S)-3-Methyl-2-piperidin-1-yl-butan-1-ol (101b). ${ }^{99}$ According to the preparation of 101a, 101b (76%) was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+23.3\left(c 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.98(\mathrm{~s}, 1 \mathrm{H})$, 3.56-3.45 (dd, $1 \mathrm{H}, J=5.4,10.2 \mathrm{~Hz}$), $3.16(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}$), 2.91-2.78 (m, 2 H), 2.63-2.47 (m, 2 H), 2.35-2.21 (m, 1 H$), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$, 0.81 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 154 ([M-OH]+, 13), 140 (60), 128 (20), 98 (20), 91 (61), 84 (82), 69 (74), 63 (100).

Thioacetic acid (S)-(3-methyl-2-piperidin-1-yl-butyl) ester (102b). According to the preparation of $\mathbf{1 0 2 a}, \mathbf{1 0 2 b}(56 \%)$ was obtained as an orange oil: $[\alpha]_{\mathrm{D}}{ }^{25}+42.4\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.07(\mathrm{~d}, 2 \mathrm{H}, J=5.5 \mathrm{~Hz}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.83(\mathrm{o}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.53-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ Hz), $0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}\right.$); MS (EI) m / z (rel intensity) $229\left(\mathrm{M}^{+}, 31\right), 210(80), 186$ (93), 144 (76), 140 (100), 110 (49), 103 (70); HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NOS}$ 229.1500, found 229.1507.

(S)-3-Methyl-2-pyrrolidin-1-yl-butane-1-thiol (103b). According to the preparation of 103a, 103b (63%) was obtained as an orange oil: $[\alpha]_{\mathrm{D}}{ }^{25}+72.2\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.06$ (A of $\mathrm{ABX}, 1 \mathrm{H}, J=7.2,12.6 \mathrm{~Hz}$), 3.04 (B of ABX, $1 \mathrm{H}, J=4.8,12.9 \mathrm{~Hz}$), 2.65-2.53 (m, 2 H), 2.53$2.44(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{o}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.63-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.6 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 70.7,50.7,39.2,30.2,26.7,25.1,21.2,20.6$; MS (EI) m / z (rel intensity) $188\left(\mathrm{M}^{+}, 7\right), 186$ (10), 140 (100), 111 (16), 98 (6), 84 (18), 69 (7), 55 (13); HRMS (EI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{21}$ NS 187.1395, found 187.1397.

(S)-3,3-Dimethyl-2-piperidin-1-yl-butan-1-ol (101c). According to the preparation of 101a except starting from (S)-tert-leucinol, 101c (75\%) was obtained as a white flaky solid: $[\alpha]_{D}{ }^{25}$ +31.4 (c 0.5, CHCl_{3}); IR (KBr) 3269, 2931, 2801, 1043, $1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.58-3.40(\mathrm{~m}, 2$ H), 3.05-2.95 (m, 2 H), 2.75-2.60 (m, 2 H), $2.42(\mathrm{dd}, 1 \mathrm{H}, J=1.4,10.8 \mathrm{~Hz}), 1.52-1.43(\mathrm{~m}, 6 \mathrm{H})$, 0.97 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR $\delta 74.8,57.3,51.6,36.8,29.1,27.8,24.9$; MS (EI) m / z (rel intensity) 185 $\left(\mathrm{M}^{+}, 23\right), 170$ (70), 154 (72), 128 (100), 98 (60), 83 (57), 68 (48); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{NO}$ 185.1779, found 185.1780.

Thioacetic acid (S)-(3,3-dimethyl-2-piperidin-1-yl-butyl) ester (102c). According to the preparation of 102a, 102c (63%) was obtained as an orange solid: $[\alpha]_{\mathrm{D}}{ }^{25}+114\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3353, 2935, 2772, 2359, 1687, 1440, 1310, $1166,957 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.34(\mathrm{dd}, 1 \mathrm{H}, J=$
$3.2,13.6 \mathrm{~Hz}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=11.5,13.6 \mathrm{~Hz}), 2.85-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.28(\mathrm{dd}, 1 \mathrm{H}, J=3.1,11.6 \mathrm{~Hz}), 1.57-1.40(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR δ 196.2, 73.0, 52.9; 38.0, 30.6, 27.7, 27.6, 27.1, 25.0; MS (EI) m / z (rel intensity) 228 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 33$), 200 (6), 154 (15), 28 (144), 110 (9), 84 (100); HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{26}$ NOS 244.1735, found 244.1724.

(S)-(3,3)-Dimethyl-2-piperidin-1-yl-butane-1-thiol (103c). According to the preparation of 103a, 103c (73%) was obtained as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+64.6\left(c 0.85, \mathrm{CHCl}_{3}\right)$; IR (KBr) 2934, 2852, 1476, 1389, 1250, $1002 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.91-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.77(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}$), 2.69-2.56 (m, 1 H), 2.29 (dd, $1 \mathrm{H}, J=3.0,11.1 \mathrm{~Hz}$), 1.95 (bs, 1 H), 1.56-1.39 (m, 6 H), 0.91 ($\mathrm{s}, 9$ H); ${ }^{13} \mathrm{C}$ NMR $\delta 76.8,52.4,38.3,28.9,27.4,25.1,23.0$; MS (EI) m / z (rel intensity) 343 (40), 232 (5), $200\left(\left[\mathrm{M}_{-}-\mathrm{CH}_{3}\right]^{+}, 22\right), 154$ (77), 142 (100), 111 (44), 96 (17), 83 (27), 68 (13); HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{NS}-\mathrm{CH}_{3}$ 200.1473, found 200.1478.
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 103a. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}$ (0.645 mmol) of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $11 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 103a, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $86 \mathrm{mg}(69 \%)$ of $\mathbf{2 7}$ with an ee of 22%.
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 103b. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $12 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 103b, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $93 \mathrm{mg}(75 \%)$ of 27 with an ee of 64%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 103b. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 17 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand $\mathbf{1 0 3 b}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $101 \mathrm{mg}(82 \%)$ of 27 with an ee of 77%.
(R)-1-Phenylhept-2-en-1-ol (27) using $20 \mathbf{~ m o l} \%$ of ligand 103b. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $24 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand $\mathbf{1 0 3 b}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $98 \mathrm{mg}(79 \%)$ of $\mathbf{2 7}$ with an ee of $76 \%{ }^{73}$
(S)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 103 c . According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}$ (0.645 mmol) of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $13 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 103c, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $93 \mathrm{mg}(75 \%)$ of $\mathbf{1 0 3 c}$ with an ee of 61%.
(R)-1-Phenylhept-2-en-1-ol (27) using $15 \mathbf{~ m o l} \%$ of ligand 103c. According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $87 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 1-hexyne, $325 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $18 \mathrm{mg}(0.09 \mathrm{mmol})$ of ligand $\mathbf{1 0}$, and $66 \mu \mathrm{~L}(0.65 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $100 \mathrm{mg}(81 \%)$ of $\mathbf{2 7}$ with an ee of 71%.

(S)-2-Dibenzylamino-3-methylbutyric acid benzyl ester (104). ${ }^{100}$ A solution of $20.3 \mathrm{~mL}(171$ mmol) of benzyl bromide in 40 mL of EtOH was slowly added to a solution of $5.00 \mathrm{~g}(42.7$ $\mathrm{mmol})$ of (L)-Valine and $23.6 \mathrm{~g}(171 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a $5: 1$ mixture of $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$. The reaction mixture was heated under reflux for 14 h , concentrated in vacuo, and the resulting
slurry was extracted with EtOAc (3 x 150 mL). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($2.5 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield 13.0 g (79%) of $\mathbf{1 0 4}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.10(\mathrm{~m}, 15 \mathrm{H}), 5.31(\mathrm{~A}$ of AB, $1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 5.17(\mathrm{~B}$ of AB, $1 \mathrm{H}, J=12.3$ $\mathrm{Hz}), 3.97(\mathrm{~A}$ of $\mathrm{AB}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.29(\mathrm{~B}$ of $\mathrm{AB}, 1 \mathrm{H}, J=14.1 \mathrm{~Hz}), 2.92(\mathrm{~d}, 1 \mathrm{H}, J=10.8$ $\mathrm{Hz}), 2.28-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.78(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\mathrm{rel}$ intensity) $388(\mathrm{M}+, 5), 387(13), 344(50), 252(90), 181(29), 160(30), 92(80), 65(100)$.

(S)-2-Dibenzylamino-3-methyl-butan-1-ol (105). ${ }^{100}$ To a solution of $1.10 \mathrm{~g}(29.1 \mathrm{mmol})$ of LiAlH_{4} in 75 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ was added $1.10 \mathrm{~g}(24.3 \mathrm{mmol})$ of $\mathbf{1 0 4}$ in 25 mL of $\mathrm{Et}_{2} \mathrm{O}$. The reaction was stirred at rt for 1 h , quenched at $0^{\circ} \mathrm{C}$ with 1.1 mL of $\mathrm{H}_{2} \mathrm{O}, 1.1 \mathrm{~mL}$ of NaOH , and 3.4 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting slurry was flitered through a plug of celite and washed with EtOAc. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $5.8 \mathrm{~g}(84 \%)$ of $\mathbf{1 0 5}$ as a light yellow oil: $[\alpha]_{\mathrm{D}}{ }^{25}+23.1\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right)$; lit. ${ }^{101}[\alpha]_{\mathrm{D}}{ }^{25}+24.5\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.36-$ $7.15(\mathrm{~m}, 10 \mathrm{H}), 3.90(\mathrm{~A}$ of $\mathrm{AB}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz}$), $3.69(\mathrm{~B}$ of AB, $2 \mathrm{H}, J=13.2 \mathrm{~Hz}$), 3.64-3.52 $(\mathrm{m}, 1 \mathrm{H}), 3.45(\mathrm{t}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.09(\mathrm{sp}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ Hz), $0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 283 (M+, 12), 280 (10), 265 (56), 252 (37), 240 (20), 210 (38), 160 (7), 106 (11), 91 (100), 65 (21).

2-Dibenzylamino-3-methyl-butyraldehyde (106). ${ }^{102}$ To a solution of $730 \mu \mathrm{~L}(8.47 \mathrm{mmol})$ of oxalyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60{ }^{\circ} \mathrm{C}$ was added $1.00 \mathrm{~mL}(14.1 \mathrm{mmol})$ of DMSO in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise and was stirred for $15 \mathrm{~min} .2 .00 \mathrm{~g}(7.07 \mathrm{mmol})$ of $\mathbf{1 0 6}$ in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After the mixture was stirred for $30 \mathrm{~min}, 3.94 \mathrm{~mL}(28.2 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ was added. The
reaction was slowly warmed to rt , hydrolyzed by the addition of $\mathrm{H}_{2} \mathrm{O}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. $1.90 \mathrm{~g}(96 \%)$ of the resulting yellow oil, 106, was used without further purification in the next step: $[\alpha]_{\mathrm{D}}{ }^{25}+24.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 9.87(\mathrm{~d}, 1 \mathrm{H}), 7.50-7.00(\mathrm{~m}, 10 \mathrm{H}), 4.03(\mathrm{~A}$ of AB, 2 $\mathrm{H}, J=13.8 \mathrm{~Hz}$), $3.72(\mathrm{~B}$ of $\mathrm{AB}, 2 \mathrm{H}, J=13.8 \mathrm{~Hz}), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=3.3,10.2 \mathrm{~Hz}), 2.25-2.40(\mathrm{~m}$, 1 H), 1.09 (d, $3 \mathrm{H}, J=6.6 \mathrm{~Hz}$), $0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 369 (4), 314 (5), 278 (3), 263 (3), 252 (45), 106 (44), 91 (100).

(3R,4S)-4-(Dibenzylamino)-2,5-dimethylhexan-3-ol (107). ${ }^{32}$ To a stirred solution of 2.37 g (8.43 mmol) of $\mathbf{1 0 6}$ in 10 mL of THF at $0^{\circ} \mathrm{C}$ was added $8.43 \mathrm{~mL}(16.8 \mathrm{mmol})$ of a 2 M solution of isopropyl magnesium chloride in THF. The resulting reaction was stirred for 1 h at $0^{\circ} \mathrm{C}$ and warmed to rt. At rt, the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield $1.12 \mathrm{~g}(41 \%)$ of 107 as colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+20.3\left(c 0.5, \mathrm{CHCl}_{3}\right) ;[\alpha]_{\mathrm{D}}{ }^{25}+20.4\left(c 5.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 7.40-$ $7.10(\mathrm{~m}, 10 \mathrm{H}), 3.74(\mathrm{~A}$ of $\mathrm{AB}, 2 \mathrm{H}, J=13.8 \mathrm{~Hz}), 3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~B}$ of $\mathrm{AB}, 2 \mathrm{H}, J=$ $13.8 \mathrm{~Hz}), 2.39(\mathrm{dd}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.28(\mathrm{o}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.08(\mathrm{o}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.13(\mathrm{~d}$, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.03(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$; MS (EI) m/z (rel intensity) 324 ($\mathrm{M}^{+}, 2$), 282 (22), 252 (73), 210 (15), 181 (12), 160 (10), 91 (100), 65 (39).

(3R,4S)-4-Amino-2,5-dimethylhexan-3-ol (109). ${ }^{32}$ To a solution of $580 \mathrm{mg}(1.78 \mathrm{mmol})$ of $\mathbf{1 0 8}$ in 10 mL of MeOH was added 192 mg of $20 \% \mathrm{Pd}(\mathrm{OH})_{2}$. An atmosphere of H_{2} was introduced via a balloon (1 atm) and stirred for 3 h at rt . The resulting solution was filtered through celite and washed with MeOH . The filtrate was concentrated in vacuo to yield $250 \mathrm{mg}(97 \%)$ of $\mathbf{1 0 9}$
as a white solid and was used without further purification in the next step: $\mathrm{Mp} 86-89{ }^{\circ} \mathrm{C}$; lit. ${ }^{32}$ Mp 87-88 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{25}+6.1\left(c 0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{lit}^{32}{ }^{32}[\alpha]_{\mathrm{D}}{ }^{25}+6.8(c 2.8, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.31(\mathrm{dd}, 1$ $\mathrm{H}, J=4.4,6.9 \mathrm{~Hz}$), $2.63(\mathrm{dd}, 1 \mathrm{H}, J=4.0,6.9 \mathrm{~Hz}), 2.06-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) 147 (10), 146 (M+), 102 (24), 72 (100), 55 (30).

110
(3R,4S)-2,5-Dimethyl-4-(pyrolidin-1-yl)hexan-3-ol (110). ${ }^{32}$ To a mixture of $624 \mathrm{mg}(4.29$ $\mathrm{mmol})$ of $\mathbf{1 0 9}$ and $1.18 \mathrm{~g}(8.58 \mathrm{mmol})$ of potassium carbonate in 40 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $616 \mathrm{mg}(5.15 \mathrm{mmol})$ of 1,4-dibromobutane. The reaction was heated at reflux for 16 h and filtered, and concentrated in vacuo. The resulting residue was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with EtoAc, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield 650 mg (76\%) of $\mathbf{1 1 0}$ as a colorless oil.

111
(3R,4S)-2,5-Dimethyl-4-(pyrolidin-1-yl)hexan-3-yl ethanethioate (111). ${ }^{32}$ To a solution of $550 \mathrm{mg}(2.75 \mathrm{mmol})$ of $\mathbf{1 1 0}$ and $1.15 \mathrm{~mL}(8.24 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $0.426 \mathrm{ml}(5.50 \mathrm{mmol})$ of MsCl . The resulting solution was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and concentrated in vacuo. The resulting residue was dissolved in 20 mL of benzene followed by $1.15 \mathrm{~mL}(8.24 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ and $0.391 \mathrm{~mL}(5.50 \mathrm{mmol})$ of thiolacetic acid. The reaction was heated to reflux for 8 h and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $650 \mathrm{mg}(76 \%)$ of 111 as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25}+52.8\left(c 0.5, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{lt} .{ }^{32}[\alpha]_{\mathrm{D}}{ }^{25}+53.9\left(c 1.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.80(\mathrm{t}, 1 \mathrm{H}, J=$ $6.3 \mathrm{~Hz}), 2.75-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 1 \mathrm{H})$,
$1.75-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$. MS (EI) m / z (rel intensity) 215 ([M-C $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right]^{+}, 10$), 214 (65), 138 (5), 126 (100), 110 (9), 96 (5), 70 (15).

112
(3R,4S)-2,5-Dimethyl-4-(pyrolidin-1-yl)hexan-3-thiol (112). To a suspension of $58 \mathrm{mg}(1.5$ mmol) of LiAlH_{4} in 3 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ was added $200 \mathrm{mg}(0.77 \mathrm{mmol})$ of 111 in 6 mL of $\mathrm{Et}_{2} \mathrm{O}$. The resulting slurry was stirred for 1 h , quenched with 2 M NaOH , and filtered through a pad of celite. The resulting filtrate was concentrated in vacuo to yield $160 \mathrm{mg}(96 \%)$ of $\mathbf{1 1 2}$ as a yellow oil: $[\alpha]_{\mathrm{D}}{ }^{25}+13.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; lit. ${ }^{32}[\alpha]_{\mathrm{D}}{ }^{25}+13.7\left(c 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.00(\mathrm{~m}, 1$ H), 2.80-2.69 (q, $4 H, J=6.0 \mathrm{~Hz}$), $2.56(\mathrm{dd}, 1 \mathrm{H}, J=4.0,7.8 \mathrm{~Hz}), 2.30-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.80$ (m, 1 H), 1.75-1.55 (m, 4 H$), 1.01(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}) ; 1.00(\mathrm{~d}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}) ; 0.99$ (d, $3 \mathrm{H}, J=$ $3.4 \mathrm{~Hz}) ; 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 215 (M+, 10), 214 (20), 182 (22), 170 (48), 126 (95), 110 (55), 86 (83), 70 (90), 61 (100).
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 110. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 26 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand 110, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $200 \mathrm{mg}(81 \%)$ of 27 with an ee of 7%.
(R)-1-Phenylhept-2-en-1-ol (27) using $10 \mathrm{~mol} \%$ of ligand 111. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 33 \mathrm{mg}(0.13 \mathrm{mmol})$ of ligand 111, and $134 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $190 \mathrm{mg}(77 \%)$ of 27 with an ee of 84%.

Chiral loading: (R)-1-Phenylhept-2-en-1-ol (27) using $1 \mathbf{m o l} \%$ of ligand 112. According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $2.8 \mathrm{mg}(0.013 \mathrm{mmol})$ of ligand $\mathbf{1 7}$, and $134 \mu \mathrm{~L}$ (1.29 mmol) of freshly distilled benzaldehyde provided $185 \mathrm{mg}(75 \%)$ of 27 with an ee of 66%. The numerical value of each data point is listed below (Table 1.13).

Table 1.13. Enantioselective formation of 27 using ligand 112.

ligand loading (mol\%) of $\mathbf{(S) - 1 1 2}$	$\mathrm{ee}^{73}(\%)$ of $(\boldsymbol{S}) \mathbf{- 2 7}$
1	66
2.5	90
5	93
10	94
15	94

(R)-1-Phenylnon-4-en-1-ol (115) using $5 \mathbf{~ m o l} \%$ of ligand $112 .{ }^{46}$ According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $14 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 112, and $170 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled hydrocinnamaldehyde provided 220 mg (79\%) of 115 with an ee of 84% : ${ }^{1} \mathrm{H}$ NMR $\delta 5.70-5.39(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{sx}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 2.04(\mathrm{q}, 2 \mathrm{H}, J$ $=6.8 \mathrm{~Hz}), 1.78-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.05(\mathrm{~m}, 10 \mathrm{H}), 1.05-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.90$ (t, $3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}$).

(R)-1-(4-Methoxyphenyl)-pent-2-en-1-ol (116) using $10 \mathbf{~ m o l} \%$ of ligand $112 .{ }^{46}$ According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of

1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 28 \mathrm{mg}(0.129 \mathrm{mmol})$ of ligand $\mathbf{1 1 2}$, and $156 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled p-anisaldehyde provided $185 \mathrm{mg}(65 \%)$ of 116 with an ee of 42% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.82-$ $5.60(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{dd}, 1 \mathrm{H}, J=3.7,5.9 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.80(\mathrm{~d}, 1$ $\mathrm{H}, J=3.5 \mathrm{~Hz}), 1.45-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.

(R)-1-Phenylnon-4-en-1-ol (117) using $5 \mathbf{m o l} \%$ of ligand $112 .{ }^{46}$ According to the general protocol, $500 \mathrm{mg}(1.93 \mathrm{mmol})$ of zirconocene hydrochloride, $175 \mu \mathrm{~L}(1.52 \mathrm{mmol})$ of 1-hexyne, $650 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $14 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 117 , and $156 \mu \mathrm{~L}(1.29 \mathrm{mmol})$ of freshly distilled cyclohexanecarbaldehyde provided $177 \mathrm{mg}(70 \%)$ of 27 with an ee of 73% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.42(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.00(\mathrm{~m}, 2 \mathrm{H})$, 2.80-2.60 (m, 2 H), 2.04 (q, $2 \mathrm{H}, J=6.3 \mathrm{~Hz}$), 1.95-1.70 (m, 2 H), 1.43 (d, $1 \mathrm{H}, J=3.8 \mathrm{~Hz}$), 1.41$1.25(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

118
(R)-2-Ethyl-1-phenylpent-2-en-1-ol (118) using $\mathbf{1 0} \mathbf{~ m o l} \%$ of ligand $\mathbf{1 1 2 .}{ }^{46}$ According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $86 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 3hexyne, $323 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 14 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 112 , and $78 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $110 \mathrm{mg}(89 \%)$ of 118 with an ee of 90% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.60(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.18(\mathrm{~s}, 1 \mathrm{H})$, 2.20-1.96 (m, 4 H$), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{bs}, 1 \mathrm{H}), 1.51(\mathrm{~d}, 1 \mathrm{H}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $0.84(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}){ }^{13} \mathrm{C} \operatorname{NMR} \delta 142.7,142.1,128.6,128.2,127.3,126.5,78.1,20.7,20.5$, 14.4, 14.2; MS (EI) m / z (rel intensity) 190 ($\mathrm{M}^{+}, 33$), 172 (15), 161 (100), 157 (13), 143 (82), 128 (44), 105 (45).

(R)-4-Ethyl-1-phenylhept-4-en-3-ol (119) using $10 \mathbf{~ m o l} \%$ of ligand $112 .{ }^{46}$ According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $86 \mu \mathrm{~L}(0.76 \mathrm{mmol})$ of 3hexyne, $323 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), $14 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 112 , and $95 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of freshly distilled hydrocinnamaldehyde provided 91 mg (65%) of $\mathbf{1 1 9}$ with an ee of 53% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.34-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.39(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 4.06 (ddd, $1 \mathrm{H}, J=2.4,3.9,6.3 \mathrm{~Hz}), 2.81-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{q}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $1.41(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 1.03(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 1.00(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.53$, $142.18,128.54,128.42,128.31,125.71,76.23,37.26,32.30,20.66,20.13,14.64,14.37$; MS (EI) m / z (rel intensity) $218\left(\mathrm{M}^{+}, 56\right), 200(45), 189(74), 171$ (47), 126 (62), 113 (83), 109 (100).

120
(R)-2-Ethyl-1-(4-methoxyphenyl)pent-2-en-1-ol (120) using $10 \mathrm{~mol} \%$ of ligand $112 .{ }^{46}$ According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $86 \mu \mathrm{~L}$ (0.76 mmol) of 3-hexyne, $323 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene), 14 mg $(0.065 \mathrm{mmol})$ of ligand 112 , and $78 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of freshly distilled p-anisaldehyde provided $90 \mathrm{mg}(63 \%)$ of $\mathbf{1 2 0}$ with an ee of 87% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.29(\mathrm{~d}, 2 \mathrm{H}, J=9.9 \mathrm{~Hz}), 6.87$ (d, 2 $\mathrm{H}, J=8.7 \mathrm{~Hz}), 5.59(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 2.11(\mathrm{p}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 2.02$ (dq, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}, 15.3 \mathrm{~Hz}$), $1.88(\mathrm{dq}, 1 \mathrm{H}, J=7.5,15.0 \mathrm{~Hz}), 1.79(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 1.03(\mathrm{t}$, $3 \mathrm{H}, J=7.5 \mathrm{~Hz}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 158.9,142.2,134.9,127.9,127.8,113.6$, 77.4, 55.2, 20.7, 20.7, 14.4, 14.1; MS (EI) m / z (rel intensity) 220 (${ }^{+}$, 20), 202 (47), 191 (65), 173 (79), 158 (43), 137 (100), 121 (48), 115 (30), 109 (24).

121
Pent-4-ynoic acid triisopropyl silyl ester (121). ${ }^{46}$ To a solution of $1.00 \mathrm{~g}(10.2 \mathrm{mmol})$ of 4pentynoic acid and $2.18 \mathrm{~mL}(10.2 \mathrm{mmol})$ of TIPSCl in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 694 mg (10.2 mmol) of imidazole. The reaction was stirred for 5 h , quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. . The resulting crude residue was purified by chromatography on SiO_{2} ($25 \% \mathrm{EtOAc} /$ Hexanes) to yield 2.20 g (85%) of $\mathbf{1 2 1}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR 2.65-2.55 (m, 2 H), 2.54-2.44 (m, 2H), 2.10-1.93 (m, 1 H), 1.30 ($\mathrm{sx}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 1.08 (d, $18 \mathrm{H}, J=7.2 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 295 (20), 271 (20), 257 (13), 211 ([M-i$\left.\mathrm{Pr}]^{+}, 100\right), 155$ (5), 131 (14), 103 (21), 75 (37), 61 (37).

(S)-6-Hydroxy-6-phenylhex-4-enoic acid triisopropyl silylester (122) using $10 \mathrm{~mol} \%$ of ligand 112. ${ }^{46}$ According to the general protocol, $250 \mathrm{mg}(0.820 \mathrm{mmol})$ of zirconocene hydrochloride, $193 \mathrm{mg}(0.76 \mathrm{mmol})$ of TIPS alkyne, $323 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene $), 14 \mathrm{mg}(0.065 \mathrm{mmol})$ of ligand 112 , and $65 \mu \mathrm{~L}(0.645 \mathrm{mmol})$ of freshly distilled benzaldehyde provided $168 \mathrm{mg}(72 \%)$ of $\mathbf{1 2 2}$ with an ee of 71% : ${ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 5.87-5.68(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{t}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 2.51-2.34(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~d}, 1 \mathrm{H}, J=3.6$ Hz), 1.27 ($\mathrm{sp}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 1.06 (d, $18 \mathrm{~h}, J=7.2 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 344 ([M$\left.\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}, 65$), 317 (68), 301 (100), 157 (7), 141 (5), 131 (11), 103 (14), 75 (20), 61 (11).

(S)-1-Phenylhex-2-ene-1,6-diol (123). To $80 \mathrm{mg}(2.21 \mathrm{mmol})$ of LiAlH_{4} in 4 mL of $\mathrm{Et}_{2} \mathrm{O}$ at 0 ${ }^{\circ} \mathrm{C}$ was added $80 \mathrm{mg}(0.22 \mathrm{mmol})$ of $\mathbf{1 2 2}$ in 2 mL of $\mathrm{Et}_{2} \mathrm{O}$. The resulting reaction was heated at reflux for 3 h , quenched with $\mathrm{NaSO}_{4} \bullet \mathrm{H}_{2} \mathrm{O}$, filtered through celite, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield $36 \mathrm{mg} \mathrm{g}(86 \%)$ of $\mathbf{1 2 3}$ as colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.44-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.86-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.20$ $(\mathrm{dd}, 1 \mathrm{H}, J=3.0,3.6 \mathrm{~Hz}), 3.66(\mathrm{q}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.17(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.90(\mathrm{~d}, 1 \mathrm{H}, J=$ 3.3 Hz), $1.69(\mathrm{p}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.26(\mathrm{t}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz})$; MS (EI) m / z (rel intensity) 174 (M+, 30), 143 (5), 131 (17), 104 (17), 86 (64), 84 (100).

2.0 Pseudotrienic Acid

2.1 Introduction

Figure 2.1. Flowers of Brassica rapa subsp. Rapa L. (Brassicaceae). ${ }^{103}$

Pseudotrienic acids A and B , differing only in the length of their side chains, are secondary metabolites isolated in 2005 using bioassay-guided fractionation of a liquid culture broth of Pseudomonas sp. isolate MF381-IODS by Pohanka et al. ${ }^{104}$ The Pseudomonas sp. was isolated from the roots of a Brassica rapa subsp. Rapa L. (Brassicaceae) plant specimen collected in Switzerland (Figure 2.1). ${ }^{105}$ Pseudotrienic acids were isolated using a combination of solid phase extraction and preparative HPLC. During the chromatography, the activity of the fractions was monitored by an in vitro bioassay based on inhibition of growth of cells or spore germination of the organisms Fusarium culmorum, Drechslera sorokiniana and Staphylococcus aureus. ${ }^{106}$ Along with pseudotrienic acids A and B, 2,3-deepoxy-2,3-didehydrorhizoxin(DDR) and pyrrolnitrin were also isolated from the broth (Figure 2.2).

Minimum inhibitory concentrations of the pseudotrienic acids were determined for human and agricultural pathogens as well as bacteria. Both acids inhibited the growth of Staphylococcus aureus and Pseudomonas syringae pv. Syringae at a MIC of $70 \mu \mathrm{~g} / \mathrm{mL}$ and were not selective towards the inhibition of Aspergillus fumigatus, and Candida albicans at concentrations of up to $100 \mu \mathrm{~g} / \mathrm{mL}$.

130: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$
Pseudotrienic Acid A
131: $\mathrm{R}=\mathrm{H}$
Pseudotrienic Acid B

132: Pyrrolnitrin

133: 2,3-Deepoxy-2,3-didehydrorhizoxin (DDR)

Figure 2.2. Antimicrobial compounds isolated from Pseudomonas sp. MF381-IODS.

The structural features of pseudotrienic acids include an (E, E, E)-trienic acid segment and a trisubstituted conjugated (E, E)-diene at $\mathrm{C}(16)-\mathrm{C}(19)$. The alkene portions of the molecule are connected by two amide linkages to a γ-amino- β-hydroxy acid with $(11 S, 12 R)$-configuration. The carbon skeleton of the pseudotrienic acids was assigned based on ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and MS. The trans-configuration of all double bonds was established using NOE experiments and determined further by the magnitude of the three bond coupling constants (${ }^{3} J_{\mathrm{HH}}=14.8-16.0 \mathrm{~Hz}$). The relative configurations at $\mathrm{C}(11)$ and $\mathrm{C}(12)$ were assigned using NOE (Figure 2.3). The absolute configuration was determined by a chiral resolution method. A resolution is achieved
by derivatizing a chiral compound of interest with an enantiomerically pure reagent. ${ }^{107}$ In this case, the natural product was degraded through chemical transformations into smaller segments that were analyzed using chiral resolution. The absolute stereochemistry of the γ-amino β hydroxy acid was determined to be $(11 S, 12 R)$ in comparison to bistramide A which also contains a γ-amino β-hydroxy acid moiety with a (S, R)-configuration. ${ }^{108}$ The stereochemistry at $\mathrm{C}(20)$ was concluded to be a 1:1 mixture of epimers after degradation and GC-MS experiments.

(11R,12S)

$(11 S, 12 R)$

Figure 2.3. Elucidation of configuration at $\mathrm{C}(11)$ and $\mathrm{C}(12)$ of pseudotrienic acids by NOE and ${ }^{3} J_{\mathrm{HH}}$ analysis.

The biosynthetic origin of the pseudotrienic acids is uncertain. They may be derived from a ring opening of a macrolactone. In the presence of $0.1 \% \mathrm{TFA}$, pseudotrienic acids are converted readily to the lactone form (Scheme 2.1). The isolated lactones have the same bonding pattern as macrolides FR252922 and FR252921 which were previously described by Fujine et al. ${ }^{109}$ The macrolides were isolated from a Pseudomonas fluorescence strain and demonstrate immunosuppressive activity. ${ }^{110}$ The absolute configurations of the three stereogenic carbons in FR2529922 and FR252921 have yet to be assigned. However, it is suspected that FR252922 and FR252921 possess configurations at $\mathrm{C}(11)$ and $\mathrm{C}(12)$ identical to those present in pseudotrienic acids. Biosynthetically, pseudotrienic acids may be derived from ring opening of the lactone by nucleophilic attack of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{C}(20)$, leading to a mixture of epimers. This proposed mechanism is in agreement with the formation of epimers at $\mathrm{C}(20)$ of the pseudotrienic acids. However, this is contrary to the usually very stereospecific biosynthesis of polyketides. ${ }^{111}$ Thus, the epimerization at the $C(20)$ stereogenic carbon could have occured during the isolation of the natural product.

Scheme 2.1. Lactone formation under acidic conditions.

The intrinsic structure as well as the ambiguous biosynthetic pathway makes the pseudotrienic acids an attractive synthetic target. By synthesizing a single enantiomer at $\mathrm{C}(20)$, the origin of the mixture of diastereomers isolated can be further investigated. A single diastereomer could be resubjected to isolation conditions to determine if epimerization of the $\mathrm{C}(20)$ center is as a result of isolation conditions. The synthesis of pseudotrienic acid can also provide valuable insights that could be relayed to establish the absolute configurations of FR252922 and FR252921 and obtain clues for their biosynthesis.

2.1.1 Previous Synthesis of Pseudotrienic Acid B

To date, one total synthesis of pseudotrienic acid B has been reported by Cossy et al., affording pseudotrienic acid B as a mixture of epimers at $\mathrm{C}(20) .{ }^{112}$ Their retrosynthetic strategy is depicted in Scheme 2.2. The analysis requires a late stage palladium catalyzed Stille coupling between a vinyl iodide and vinyl stannane to generate the (E, E)-diene. The vinyl iodide stems from amide formation between a trienic protected amine and carboxylic acid. The trienic ester portion was synthesized based on a cross metathesis and a Horner-Wadsworth-Emmons reaction sequence.

\downarrow

Cross-metathesis

Horner-Wadsworth Emmons

141

Scheme 2.2. Cossy's retrosynthetic analysis of pseudotrienic acid B.

The synthesis of the trienic acid segment was initiated by the metathesis of methyl sorbate with allyl bromide in the presence of $5 \mathrm{~mol} \%$ of Grubbs-Hoveyda catalyst ${ }^{113}$ to afford 142 in 48% yield with good stereoselectivity $(E, E / E, Z>95: 5)$ (Scheme 2.3). Phosphonation of allylic bromide $\mathbf{1 4 2}$ under Michaelis-Arbuzov conditions employing $\mathrm{P}(\mathrm{OEt})_{3}$ led to the formation of $\mathbf{1 4 3}$ in 99% yield. Diethylphosphonate $\mathbf{1 4 3}$ was coupled with Boc-protected amino aldehyde 144 in a Horner-Wadsworth-Emmons olefination followed by subsequent deprotection to provide the trienic ester fragment $\mathbf{1 4 0}$ in 52% yield over 2 steps and 25% overall yield.

Scheme 2.3. Synthesis of the trienic acid fragment 140.

The contiguous stereocenters of the γ-amino acid segment were installed using HafnerDuthaler crotylation methodology. ${ }^{114}$ Initial reduction of methylester 145 with DIBAL-H resulted in the formation of the requisite aldehyde. The aldehyde underwent reaction with crotyltitanocene to afford the homoallylic amino alcohol, 147, in 57% yield with a diastereomeric ratio of $95: 5$ and an enantiometric excess of 95% (Scheme 2.4). The amino alcohol was protected as an N, O-acetonide followed by oxidative cleavage of the terminal alkene
under Sharpless conditions, using catalytic RuCl_{3} and NaIO_{4}, to afford $\mathbf{1 4 8}$ in 75% yield over 2 steps.

Scheme 2.4. Utililization of crotyltitanocene in the synthesis of fragment 148.

Vinyl iodide fragment 139 was synthesized via stannylcupration of pent-3-yn-1-ol to give a mixture of vinyl stannane regioisomers favoring the desired regioisomer (9:1) in a combined yield of 74% (Scheme 2.5). The desired isomer was subject to iododestannylation, resulting in iodide 152. Lastly, oxidation with Jones' reagent afforded the desired carboxylic acid 139 in 92% yield.

Scheme 2.5. Synthesis of vinyl iodide 139.

Vinyl stannane 137 was synthesized from octanal following a synthetic sequence beginning with ethynyl magnesium bromide addition to give 154 in 81% yield (Scheme 2.6). Conversion of the alkyne to the bromoalkyne in the presence of NBS and AgNO_{3} resulted in 93% yield of $\mathbf{1 5 5}$ followed by hydrostannylation to afford the desired (E)-vinyl stannane 137 in 70\% yield.

Scheme 2.6. Synthesis of vinyl stannane 137.

With the desired fragments in hand, elaboration toward pseudotrienic acid B began with a standard HOBT-coupling of carboxylic acid 148 with trienic amine 140 , affording the desired product in 96% yield (Scheme 2.7). Removal of the the acetonide using TFA, deprotection of the t-butyloxycarbonyl group using $p \mathrm{TsOH}$ and MeOH , followed by HOBT-coupling of the resulting amine with acid $\mathbf{1 3 9}$ afforded the $\mathrm{C}(1)-\mathrm{C}(19)$ segment of the natural product in 78% yield over 2 steps. The resulting vinyl iodide underwent a $\left[\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}\right]$-catalyzed Stille cross-coupling followed by saponification of the methylester to furnish pseudotrienic acid B in 75% yield. The Cossy synthesis of pseudotrienic acid B is highly convergent with the longest linear sequence consisting of 10 steps from methyl sorbate proceeding in 5.8% overall yield.

Scheme 2.7. Coupling of fragments towards the synthesis of pseudotrienic acid B.

2.2 Pseudotrienic Acid A: Retrosynthesis

The unassigned hydroxy-bearing stereogenic carbon $\mathrm{C}(20)$ is a salient feature of this molecule, which provides an incentive to test the asymmetric alkenylzirconium/zinc methodology, utilizing the ligands synthesized in Chapter 1 . Using the asymmetric methodology, both enantiomers at $\mathrm{C}(20)$ can be synthesized easily by using both enantiomers of the ligand. The retrosynthetic disassembly is depicted in Scheme 2.8. Pseudotrienic acid A originates from three distinct segments. The trienic acid portion $\mathbf{1 5 6}$ would arise from an alkenyl zirconocene/zinc addition to the α, β-unsaturated aldehyde $\mathbf{1 6 0}$ followed by base-induced 1,4elimination. ${ }^{120}$ Formation of the $\mathrm{C}(10)-\mathrm{C}(14)$ fragment would arise form desymmetrization of cyclic anhydride 161 followed by Frater-Seebach alkylation, providing the desired (S, R)configuration at $C(11)$ and $C(12) .{ }^{133}$ As mentioned earlier, the $C(20)$ stereocenter would be formed using an asymmetric zirconocene/zinc addition of eneyne $\mathbf{1 6 2}$ to decyl aldehyde.

1

Scheme 2.8. Retrosynthetic analysis of pseudotrienic acid A.

2.3 Synthesis of the Trienic Acid Segment

Retrosynthetically, the $\mathrm{C}(1)-\mathrm{C}(9)$ segment 156 was envisioned to arise from intermediate 164. Fragment 164 would arise from an alkenylzirconocene/zinc addition followed by baseinduced 1,4-elimination (Scheme 2.9). Fragment 164 can be simplified into α, β-unsaturated aldehyde $\mathbf{1 6 0}$ and alkyne 159. Both of these intermediates conveniently originate from 3-butyn-1-ol.

Scheme 2.9. Retrosynthetic analysis of trienic acid 164.

The total synthesis of pseudotrienic acid A commenced with the synthesis of trienic acid 164. Synthesis of 163 was initiated by TBS protection of 3-butyn-1-ol followed by hydroxymethylation of the resulting alkyne to afford propargyl alcohol 167 in 79% yield (Scheme 2.10). ${ }^{115}$ Red-Al reduction of the alkyne generated the desired trans-allylic alcohol in 75% yield. ${ }^{116} \mathrm{LiAlH}_{4}$ was also tested in the reduction but resulted in concurrent desilylation of the TBS ether along with the desired reduction of the internal alkyne. ${ }^{17}$ Lastly, oxidation of the allylic alcohol using MnO_{2} gave α, β-unsaturated aldehyde 160 in 73% yield. ${ }^{118}$ In contrast, use of Dess-Martin periodane for the ensuing alcohol to aldehyde conversion resulted in only 50% yield of the α, β-unsaturated aldehyde. ${ }^{119}$ The alkyne partner was synthesized via Jones oxdiation of 3-butyn-1-ol followed by TIPS protection of the resultant acid to afford ester 159 in 53% yield over 2 steps. ${ }^{120}$

Scheme 2.10. Preparation of aldehyde and alkyne for coupling.

With both aldehyde 160 and alkyne 159 in hand, the feasibility of the alkenyl zirconium/zinc addition to form the desired bisallylic alcohol was investigated (Table 2.1). ${ }^{121}$ Investigation of the desired hydrozirconation of alkyne 159, followed by transmetalation and aldehyde addition revealed that 1.1 equivalents of Schwartz reagent ${ }^{122}$ did not result in full conversion of the aldehyde. Increasing the amount of Schwartz reagent to 2 equivalents and also employing a different solvent, toluene, in place of dichloromethane after the initial hydrozirconation resulted in 100% conversion and 36% yield (entry 2). In an effort to improve the yield, methods employing carbonyl activation utilizing cationic zirconocene were also explored. ${ }^{123}$ Suzuki et al. reported a remarkable rate enhancement by employing a catalytic amount of AgClO_{4} in alkenylzirconium additions to carbonyl compounds. The in situ generated cationic species is hypothesized to be responsible for the observed enhancement of rate. ${ }^{124}$ Analogously, silver hexafluoroarsenate $\left(\mathrm{AgAsF}_{6}\right)$ is reported as a safe alternative to AgClO_{4} and works effectively in both alkyl and alkenylzirconocene additions. ${ }^{125}$ The use of both AgClO_{4} and the more reactive AgAsF_{6} in catalytic amounts resulted in isolation of $37-38 \%$ of the desired product 169 (entries 3-5). While both alkenyl zirconium/zinc addition and cationic zirconocene addition provided similarly low yields, the ${ }^{1} \mathrm{H}$ NMR spectra of all reaction mixtures were quite clean and the mass balance before purification was quite high. It is conceivable that the bisallylic alcohol 169 could be somewhat unstable under the slightly acid chromatography conditions and could partly decompose to give lower yields. To avoid this decomposition pathway, the mixture was used without purification and tested in the ensuing activationelimination reaction sequence.

Table 2.1. Formation of bisallylic alcohol 169.

[^2]Initially, trifluoroacetic anhydride was used to activate the alcohol. In the presence of diisopropylethyl amine, the resulting trifluoracetate underwent a 1,4-elimination to give the desired all-trans trienyl ester $\mathbf{1 6 4}$ as a single stereoisomer in 39% yield over 2 steps (Table 2.2, entry 1). ${ }^{126}$ We were pleased to note that switching to 1 -(trifluoroacteyl)imidazole as the activating agent resulted in a respectable yield of 60% over 2 steps (entry 3). When employing TFAA, the lower yield could be attributed to the formation of trifluoracetic acid as the byproduct, whereas benign imidazole is generated as the byproduct from 1(trifluoroacteyl)imidazole. We thus obtained the trienic acid fragment 164 in 6 steps and 26\% overall yield.

Table 2.2. Formation of $\mathbf{1 6 4}$ via a 2 -step protocol.

Entry \quad Conditions \quad Yield (\%) of $\mathbf{1 6 4}$
a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{AgClO}_{4}(5 \mathrm{~mol} \%), 3 \mathrm{~h}$;
b) i. $\mathrm{CF}_{3} \mathrm{CO}$-imid., pyridine, ii. i - $\mathrm{Pr}_{2} \mathrm{NEt}$
b) i.TFAA, pyridine, ii. $i-\mathrm{Pr}_{2} \mathrm{NEt}$
a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{AgClO}_{4}$ ($10 \mathrm{~mol} \%$), 30 min ;
b) i.TFAA, pyridine, ii. $i-\mathrm{Pr}_{2} \mathrm{NEt}$
a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{AgClO}_{4}(10 \mathrm{~mol} \%), 30 \mathrm{~min}$;

39\%
1

2

3
60\%

2.4 Synthesis of the γ-Amino- β-Hydroxy Acid Segment

2.4.1 Desymmetrization/Alkylation Approach

At the outset, synthesis of the $\mathrm{C}(10)-\mathrm{C}(13)$ segment was envisioned based on the desymmetrization of cyclic anhydride $\mathbf{1 6 1}$ to form the enantiomerically enriched hemiester $\mathbf{1 7 0}$ (Scheme 2.11). Utilization of a Frater-Seebach alkylation would install the correct configuration of the methyl substituent at $\mathrm{C}(11)$.

Scheme 2.11. Initial retrosynthesis of the γ-amino- β-hydroxy segment.

The pursuit of this strategy was initiated by silyl protection of diethyl 3-hydroxyglutarate followed by ester saponification and dehydration to afford the cyclic anhydride $\mathbf{1 6 1}$ (Scheme 2.12). ${ }^{127}$ A catalytic desymmetrization using a modified cinchona alkaloid, (DHQD) 2 AQN , in the presence of methanol produced the optically active methyl ester 170 in 73% yield and in 94% $e e .{ }^{128}$

Scheme 2.12. Synthesis of enantiomerically enriched hemiester 170.

Initial attempts to convert $\mathbf{1 7 0}$ to the Boc-protected amine via a Curtius rearrangment ${ }^{129}$ using t - BuOH as the nucleophile afforded dimer $\mathbf{1 7 5}$ as the major product (Table 2.3, entries 13). The formation of $\mathbf{1 7 5}$ can be attributed to the hydrolysis of the intermediate isocyanate by residual water, decarboxylation of the carbamic acid and attack of the resulting amine onto the isocyanate. Alternatively, utilizing the more nucleophilic BnOH (1.5 equiv) to trap the intermediate isocyanate resulted in the desired product 174 in 66% yield along with an unidentified byproduct (entry 4). ${ }^{130}$ Gratifyingly, increasing the amount of BnOH to 3 equivalents resulted in the exclusive formation of $\mathbf{1 7 4}$ in 80% yield (entry 5).

Table 2.3. Curtius rearrangement of $\mathbf{1 7 0}$.

Entry	Conditions	Product and Isolated Yields
1	DPPA, $\mathrm{Et}_{3} \mathrm{~N}, t$-BuOH, 1 h at rt, 18 h , reflux	175
2	DPPA, $\mathrm{Et}_{3} \mathrm{~N}, t$ - BuOH (distilled), 1 h at $\mathrm{rt}, 18 \mathrm{~h}$, reflux	175
3	DPPA, $\mathrm{Et}_{3} \mathrm{~N}, 1 \mathrm{~h}$ at rt, 3 h at reflux, t - BuOH (distilled), 18 h , reflux	175
4	DPPA, $\mathrm{Et}_{3} \mathrm{~N}, 1 \mathrm{~h}$ at rt, 3 h at reflux, BnOH (1.5 equiv), 18 h , reflux	174; 66\%
5	DPPA, $\mathrm{Et}_{3} \mathrm{~N}, 1 \mathrm{~h}$ at rt, 3 h at reflux, BnOH (3.0 equiv), 18 h , reflux	174; $80 \%{ }^{131}$

A brief survey of deprotection conditions for the removal of the TBDPS group was conducted (Table 2.4). ${ }^{132}$ Optimal yields were obtained with HF-pyridine in THF, affording the desired secondary alcohol 176 in 80% yield (entry 1).

Table 2.4. Deprotection of TBDPS ether 174 to afford alcohol 176.

	Conditions	Conditions
Entry		Yield (\%) of $\mathbf{1 7 6}$
1	HF-pyridine $/ \mathrm{THF}, 3 \mathrm{~d}$	80%
2	$\mathrm{TBAF}, 3 \mathrm{~h}$	44%
3	AcCl, MeOH	66%

It was envisioned that α-methylation using Frater-Seebach conditions would lead to the desired product 157 in a highly diastereoselective fashion (Table 2.5). ${ }^{133}$ However, under the standard conditions none of the desired product 157 was formed, only cyclic amide 177 could be isolated in 46% yield (entry 1). At elevated temperatures, using 2.3 equiv. of freshly prepared LDA and 2.2 equiv. of HMPA, methylation occurred at the amine to give 178 in 55% yield. This result suggested the formation of the dianion at the alcohol and amine sites. Increasing the amount of LDA to 3.3 equivalents in order to facilitate the formation of the trianion afforded methylation of the amine as well as the desired $\mathrm{C}(11)$, resulting in a 35% yield of $\mathbf{1 7 9}$ (entry 3). Switching the base to LHMDS and KHMDS resulted in the alkylation of the amine to afford 178. According to these results, the least acidic site is $C(11)$ and in theory this should be the site of alkylation, but in the majority of these reactions the dianion predominates and alkylation occurs at the amine.

Table 2.5. Attempted Frater-Seebach alkylation.

To prevent the formation of the anion on the secondary amine, the bis-CBZ protected amine $\mathbf{1 7 9}$ was synthesized (Scheme 2.13). Attempted deprotection of $\mathbf{1 7 9}$ using acetyl chloride/ MeOH or $\mathrm{HF} \bullet$ pyridine was unsuccessful and resulted in migration of the Cbz group to the alcohol.

Scheme 2.13. Attempted deprotection of TBDPS-ether 179.

2.4.2 Acyl Halide-Aldehyde Cyclocondensation Approach

The Acyl Halide-Aldehyde Cyclocondensation (AAC) reaction was also examined as a way to gain direct access to this segment. ${ }^{134}$ The AAC reaction offers a convenient tool by which enantioenriched β-lactone can be accessed. Retrosynthetically, this segment could arise from a nucleophilic ring opening of a β-lactone, which in turn could be synthesized under AAC reaction conditions (Scheme 2.14).

Scheme 2.14. Retrosynthesis of γ-amino- β-hydroxy ester via an AAC reaction.

The aldehyde necessary to probe the feasibility of the AAC reaction was synthesized from allyl amine (Scheme 2.15). Allyl amine was bis-Boc protected followed by ozonolysis to give the desired aldehyde 186. The AAC reaction between acetyl chloride and aldehyde $\mathbf{1 8 6}$ employing a Lewis base catalyst, TMS-quinidine (TMSQ), and LiClO_{4} afforded the desired β lactone 182 in 66% yield with 98% ee. ${ }^{135}$ The high enantiomeric excess was encouraging, as
aldehyde substrates containing amine functionalities have not been previously reported by the Nelson group.

Scheme 2.15. Application of AAC-reaction to the formation of $\mathbf{1 8 2}$.

With β-lactone 182 in hand, conditions for enolization and subsequent methylation were explored. Seebach et al. disclosed the first example of alkylation at $\mathrm{C}(3)$ of a β-lactone to afford the trans-3,4-disubstituted lactone 188 in low yield (31\%) but with good levels of diasteroselectivity (Scheme 2.16). ${ }^{136}$ Another example has been reported more recently by Parsons et al. in the total synthesis of (-)tetrahydrolipstatin. ${ }^{137}$ In this report, enolization utilizing NaHMDS in the presence of the alkylating agent, 1-iodohex-2-ene, resulted in 36% of the desired monoalkylated product 190 along with 26% of the dialkylated β-lactone 191.

Scheme 2.16. Previously reported enolization-alkylation reactions of β-lactones.

Attempts at enolization in conjunction with methylation using LDA or NaHMDS as bases resulted in no reaction. Alternatively, the use of LHMDS and KHMDS resulted in the recovery of starting material along with an unidentified byproduct.

2.4.3 Alternate Approaches Towards the Synthesis of the γ-Amino- β-Hydroxy Acid Segment

Alternative routes to the α-amino- β-hydroxy acid segment were subsequently investigated. Standard Brown ${ }^{138}$ crotylation of $\mathbf{1 8 6}$ gave the desired product 193 in 60% yield but with low diastereoselectivity (Scheme 2.17). Asymmetric aldol ${ }^{139}$ reactions are convenient methods for introducing two-stereocenters in high enantioselectivity. Retrosynthetically, the stereochemistry inherent in the γ-amino- β-hydroxy acid fragment could arise from an anti-aldol. Currently, there are very few general approaches for anti-aldol reaction of aliphatic aldehyde substrates. Anti-aldol reactions using chiral auxillaries reported by Ghosh ${ }^{140}$ and Masamune ${ }^{141}$ were considered as viable approached to this fragment, but unfortunately these protocols were low yielding. The chromium-Reformatsky ${ }^{142}$ reaction was also considered as a possible option, but low yield and low diastereoselectivity deterred from further exploration.

Brown-Crotylation

Masamune-Aldol

Ghosh-Aldol

Cr-Reformatsky

Scheme 2.17. Alternative approaches towards the synthesis of the γ-amino- β-hydroxy acid segment.

2.4.4 Revised Alkylation Approach

Scheme 2.18. Frater-Seebach alkylation of malic acid derivative.

An alternative approach was initiated by a Fischer esterification of (D)-malic acid to give the corresponding ethyl diester 202 in 80% yield (Scheme 2.19). A diastereoselective methylation employing Frater-Seebach conditions gave 203 in 64% yield with a dr of 6:1 (trans:cis). A combination of $\mathrm{BH}_{3} \bullet \mathrm{DMS}$ and catalytic NaBH_{4} affected the chemoselective reduction of the vicinal hydroxy-ester to the desired 1,2-diol. ${ }^{143}$ This selective reduction is proposed to occur through a 5 -membered boron chelate between the neighboring hydroxy group and the ethyl ester. The resulting crude diol was converted to tosylate $\mathbf{2 0 4}$ employing catalytic $\mathrm{Bu}_{2} \mathrm{SnO}$-mediated sulfonylation conditions, proceeding via formation of the tin acetal intermediate to afford 56% of $\mathbf{2 0 4}$ over 2 steps. ${ }^{144}$ The tin acetal plays the dual role of activating the primary alcohol while temporarily protecting the secondary alcohol. Lastly, displacement of the tosylate by sodium azide gave the desired fragment 200 in 65% yield.

205

Scheme 2.19. Synthesis of the amino acid fragment 200.

2.5 Synthesis of the Hydroxy-Diene Segment

2.5.1 Alkenylzirconium/zinc Addition Approach

The retrosynthetic disconnection of this fragment at the $\mathrm{C}(19)-\mathrm{C}(20)$ bond $\mathbf{2 0 5}$ gives 206 and decylaldehyde as precursors (Scheme 2.20). Enyne 206 can be conveniently synthesized via a palladium coupling.

Scheme 2.20. Retrosynthetic analysis of the hydroxy diene segment.

Construction of 205 begins with utilization of a palladium-catalyzed cross coupling method developed by Trost et al., in which 3-methylbutynoate (the activated internal alkyne acceptor) is cross-coupled to TMS-acetylene (donor alkyne) (Scheme 2.21). The reaction proceeded smoothly in the presence of $3 \% \operatorname{Pd}(\mathrm{OAc})_{2}$ and 3% tris(2,6dimethoxyphenyl)phosphine to afford the cross-coupled product 209 in 77% yield (Scheme 5). ${ }^{145}$ The resulting methylester was reduced using DIBAL-H to afford the corresponding alcohol $\mathbf{2 1 0}$ in 84% yield. Alcohol 210 was then converted to the mesylate ${ }^{146}$ followed by displacement with the carbanion of tris(methylthio)methane. ${ }^{147}$ Seebach et al. has widely researched the umpolung reactivity of carbonyl compounds through these and other sulfur-containing reagents. ${ }^{148}$ The Umpolung reactivity of tris(methylthio)methane can be harnessed by reaction with n-BuLi to affect formation of the carbanion. ${ }^{149}$ Tris(methylthio)methane is used in synthesis as a masked acid derivative. ${ }^{150}$ It provides essentially a route by which homologation and oxidation take place concurrently by introduction of tris(methylthio)methane. The TMS-group is hydrolyzed using $\mathrm{K}_{2} \mathrm{CO}_{3}$ and MeOH to provide 206 in 51% yield over 3 steps. ${ }^{151}$

Scheme 2.21. Synthesis of enyne 210.

Application of the alkenylzirconocene/zinc methodology in the addition of 206 to decylaldehyde gave the desired allylic alcohol 211 in an unoptimized yield of 41% (Scheme 2.22). The asymmetric reaction was also tested briefly using $15 \mathrm{~mol} \%$ of 21 to produce 27% of the allylic alcohol 211 in 15% ee. The reaction conditions were not optimized due to the problems encountered in the ensuing step. Attempted hydrolysis of the trithioorthoester under the Stork protocol utilizing PIFA or PIDA was unsuccessful. ${ }^{152}$ Hydrolysis conditions using PIFA and PIDA were also tested on the shorter fragment 206, but these also resulted in no product formation. Not many alternatives exist for the hydrolysis of the trithioorthoester, and thus this route was abandoned in favor of an alternate process.

206

1. $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
2. $\mathrm{Me}_{2} \mathrm{Zn}$, Toluene, $-65^{\circ} \mathrm{C}$
3. Decylaldehyde, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$ 41\%

211

206
4. $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt.
5. $\mathrm{Me}_{2} \mathrm{Zn}$, Toluene, $-65{ }^{\circ} \mathrm{C}$
6. 21(15 mol\%); $-65^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}, 1 \mathrm{~h}$
7. Decylaldehyde, $-30^{\circ} \mathrm{C}$, 15 h 27\%

211

Scheme 2.22. Alkenylzirconocene/zinc addition and subsequent attempted hydrolysis of trithioester 206.

2.5.2 Alternate Alkenylzirconium/zinc Addition Approach

Retrosynthetic scission of the $\mathrm{C}(19)-\mathrm{C}(20)$ bond of $\mathbf{2 0 5}$ in hopes of utilizing the alkenylzirconocen/zinc methodology furnishes decyl aldehyde and enyne 213 as precursors (Scheme 2.23). Enyne 213 can be readily obtained from 2,3-dihydrofuran by employing a 1,2metallate rearrangement. Enyne $\mathbf{2 1 3}$ was used in attempts to avoid the problem encountered with deprotection of trithioorthoester 211; the requisite carbons are already contained within this alkyne.

Scheme 2.23. Retrosynthetic analysis for the C(14)-C(29) segment.

The vinyl iodide 216 was synthesized in a straightforward manner by utilizing the 1,2metallate rearrangment strategy described by Kocienski et al. ${ }^{153}$ 2,3-Dihydrofuran has been shown to undergo a facile 1,2 metallate rearrangement in the presence of a higher order cuprate to afford upon alkylation of the alkenyl cuprate the trisubstituted alkene 215 (Figure 2.4). The alcohol of the vinyl stannane is readily protected, followed by subsequent iododestannylation to afford vinyl iodide 216 in 73\% yield over 3 steps (Scheme 2.24).

Figure 2.4. Proposed mechanism for the 1,2-metallate rearrangement.

Scheme 2.24. Synthesis of vinyliodide 216 using a 1,2-metallate rearrangement.

Vinyliodide 216 was coupled with ethynyl magnesium chloride in the presence of $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4}$ to furnish 213 in 71% yield. Use of alkenylzirconocene/zinc methodology in the addition of $\mathbf{2 1 3}$ to decylaldehyde resulted in formation of the allylic alcohol 217 in 23% yield (Scheme 2.25). The major isolated byproduct was the reduced alkyne. Deuterium studies revealed that the low yield was due to protonation of the alkenylzirconium intermediate prior to the transmetallation step. When the hydrozirconation product of $\mathbf{2 1 3}$ was quenched with an excess of $\mathrm{CD}_{3} \mathrm{OD}$, a ratio of $1.5: 1(\mathrm{H}: \mathrm{D})$ of the alkenyl product was observed by ${ }^{1} \mathrm{H}$ NMR (Scheme 2.26).

Scheme 2.25. Synthesis of 217.

Scheme 2.26. Deuterium quenching studies.

Unfortunately, the low yield in the alkenylzirconocene/zinc addition as a consequence of the inability to inhibit the formation of the diene byproduct 219 did not enable the use of our methodology as a viable approach to this fragment.

2.5.3 Suzuki Approach

221
Scheme 2.27. Pd-mediated approach to the C(14)-C(29) segment.

The requisite bond formation at $\mathrm{C}(17)-\mathrm{C}(18)$ could conceivably be derived from a Suzuki reaction between vinyl iodide 216 and alkenyl borane intermediate 221 (Scheme 2.27). Addition of the lithium anion of TMS-acetylene to decyl aldehyde gave the corresponding alcohol $\mathbf{2 2 3}$ in 78% yield (Scheme 2.28). ${ }^{154}$ The resulting alcohol was protected with TBSCl , and subsequent hydrolysis of the TMS group provided 225 in 99% yield. ${ }^{155}$

Scheme 2.28. Synthesis of propargyl alcohol 225.

Hydroboration of $\mathbf{2 2 5}$ using pinacolborane in the presence of $10 \mathrm{~mol} \% \mathrm{Cp}_{2} \mathrm{ZrHCl}$ and 10 $\mathrm{mol} \% \mathrm{Et}_{3} \mathrm{~N}$ gave exclusively the (E)-vinylboronic ester (Scheme 2.29). ${ }^{156}$ In hydroboration reactions of alkynes containing oxygen atoms, it is speculated that intramolecular chelation between zirconium and oxygen favors the formation of the pseudo-(Z)-intermediate, which in turn leads to the (Z)-vinylboronic esters. ${ }^{157}$ However, the equilibrium can be shifted with the use of a catalytic amount of $\mathrm{Et}_{3} \mathrm{~N} . \mathrm{Et}_{3} \mathrm{~N}$ acts to distrupt the intramolecular $\mathrm{Zr}-\mathrm{O}$ interaction, yielding the (E)-vinylboronic ester (Figure 2.4).

Scheme 2.29. Hydroboration of propargyl alcohol 225.

Figure 2.5. Stereoselectivity of the initial hydrozirconation in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and temperature.

With the (E)-vinylboronic ester in hand, the requisite vinyl iodide coupling partner 216 was synthesized as mentioned above. The (E)-vinylboronic ester was coupled via a Suzuki reaction ${ }^{158}$ with vinyl iodide 216 in the presence of thallium ethoxide and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to furnish the conjugated diene 226 in 66% yield over 2 steps (Scheme 2.30). TlOEt is an alternative base to TlOH , and has been shown by Kishi et al. to significantly enhance rates of Suzuki reactions. ${ }^{159}$ TlOEt has the advantages over TlOH in terms of commercial availability, stability, and ease of use. ${ }^{160}$ Deprotection of the primary alcohol using TBAF while maintaining the temperature between $5^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ resulted in a 83% yield of 227 (Table 2.6, entry 3).

Scheme 2.30. Synthesis of fragment 226.

Table 2.6. Deprotection of 226.

		 BS 7
Entry	Conditions	Yield (\%) of 227
1	TBAF, $0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$	66\% conversion ${ }^{\text {a }}$
2	TBAF, rt, 2.5 h	37\%
3	TBAF, rt, 20 h	37\% + bisdeprotection
4	TBAF, $5{ }^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$	83\%
5	HF/pyridine, $0^{\circ} \mathrm{C}$ to rt, 12 h	45% + bisdeprotection

[^3]A variety of conditions for oxidation of the homoallylic alcohol, 227, were investigated to complete the synthesis of this fragment (Table 2.7). Disappointingly, attempts at oxidation via a two-step sequence or a one-step procedure directly to the acid led to none of the desired acid 229. It is conceivable that 228 and 229 are unstable while isomerization of the diene into conjugation with the newly formed carbonyl group can occur. Partial or total migration of the double bond to the corresponding more stable α, β-unsaturated aldehyde has been reported in the oxidation of β, γ-unsaturated alcohols. ${ }^{161}$

Table 2.7. Oxidation of 227.

Entry	Conditions	Result ${ }^{\text {a }}$
1	PDC, DMF 162	no reaction
2	DMP, pyridine ${ }^{163}$	many aldehyde peaks
3	TEMPO, PIDA ${ }^{164}$	aldehyde, messy
4	$\mathrm{NaClO}_{2}, \mathrm{NaOCl}, \mathrm{TEMPO}{ }^{165}$	sm
5	$\mathrm{CrO}_{3}(1.2 \mathrm{~mol} \%), \mathrm{H}_{5} \mathrm{IO}_{6}$, wet $\mathrm{CH}_{3} \mathrm{CN}^{166}$	messy
6	$\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone ${ }^{167}$	decomposition
7	trichloroisocyanuric acid, TEMPO (0.01 equiv), $\mathrm{NaBr}(0.05 \text { equiv })^{168}$	many aldehyde peaks

${ }^{\text {a b }}{ }^{1}{ }^{1} \mathrm{H}$ NMR of crude material

It is, however, possible to take a slightly different approach in order to circumvent the problematic oxidation. Initial oxidation of the alcohol 229 to the aldehyde $\mathbf{2 3 0}$ using DessMartin reagent followed by subsequent oxidation resulted in formation of the desired acid 231 (Scheme 2.31).

Scheme 2.31. 2-Step oxidation of 229.

2.6 Fragment Coupling

2.6.1 Coupling of Segments 156 and 157

Preparation of the trienic acid segement 164 for peptide coupling necessitated a deprotection of the TBS-ether in the presence of the TIPS-ester. ${ }^{169}$ Conditions were examined using mild acid (Table 2.8). In the presence of 5 equivalents of PPTS, facile deprotection of both TBS-ether along with the TIPS-ester occurred (entry 3). Lowering the amount of PPTS to 2 equivalents and carrying out the reaction at room temperature led to a facile deprotection of the TIPS-ester to give 233 in 75% yield. Use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and BiBr_{3} also resulted in cleavage of the TIPS-ester (entry 5 and 6). These results are indicative of the higher lability of the TIPS-ester in comparison to the TBS-ether under acid conditions.

Table 2.8. Deprotection of TBS-ether in the presence of TIPS-ester of $\mathbf{1 6 4}$.

Entry	Conditions	Products and Isolated Yields
1	PPTS (2 equiv), EtOH, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$	$\mathrm{SM}+\mathbf{2 3 2}$
2	PPTS (2 equiv), $\mathrm{EtOH}, \mathrm{rt}, 4.5 \mathrm{~h}$	$\mathbf{2 3 3} ; 75 \%$
3	PPTS (5 equiv), EtOH, rt, $2.5 \mathrm{~h}^{170}$	$\mathbf{2 3 4} ; 82 \%$
4	$\mathrm{HOAc}\left(1\right.$ equiv), THF, $\mathrm{H}_{2} \mathrm{O}, \mu \mathrm{W}, 125^{\circ} \mathrm{C}, 5$ min..171	$\mathbf{2 3 4} ; 84 \%$
5	$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}: \mathrm{H}_{2} \mathrm{O}(10: 1)^{172}$	$\mathbf{2 3 3} ; 71 \%$
6	$\mathrm{BiBr}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{H}_{2} \mathrm{O}^{173}$	$\mathbf{2 3 3} ; \mathbf{7 8 \%}$

Alternatively, conversion of the TBS-ester to the alkyl bromide was examined as a possible solution to this problem. ${ }^{174}$ Treatment of $\mathbf{1 6 4}$ with $\mathrm{Ph}_{3} \mathrm{PBr}_{2}$ resulted in the formation of the desired product 235 along with acid 236.

Table 2.9. Conversion of TBS-ether to the bromide in the presence of TIPS-ester of $\mathbf{1 6 4}$.

2.7 Conclusions

In summary, the synthesis of the 3 major fragments of pseudotrienic acid A was achieved. The trienic acid fragment was synthesized via a cationic zirconocene addition followed by a base induced 1,4-elimination. The synthesis of the γ-amino- β-hydroxy acid segment was accomplished via a Frater-Seebach alkylation. The $\mathrm{C}(17)-\mathrm{C}(18)$ bond was readily made utilizing a Suzuki coupling reaction. Coupling of these fragments remains to be investigated and might ultimately lead to the synthesis of pseudotrienic acid A. Further investigation must also focus on formation of the $\mathrm{C}(20)$ hydroxy moiety in an enantioselective fashion.

2.8 Experimental

General: All moisture-sensitive reactions were performed under an atmosphere of N_{2}. Glassware was dried in an oven at $140{ }^{\circ} \mathrm{C}$ prior to use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were dried by distillation over $\mathrm{Na} /$ benzophenone. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified by filtration through activated alumina. $\mathrm{Me}_{2} \mathrm{Zn}$ was purchased from the Aldrich Chemical Company and $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ was prepared according to a modification of a literature protocol. ${ }^{175}$ Unless otherwise stated, solvents and reagents were used as received. Analytical thin layer choromatography was performed on pre-coated silica gel 60 F 254 plates (particle size $0.040-0.055 \mathrm{~mm}, 230-400 \mathrm{mesh}$) and visualization was accomplished with a 254 nm UV light or by staining with an anisaldehyde solution $(7.5 \mathrm{~mL}$ of p-anisaldehyde, 25 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 7.5 mL of glacial acetic acid in 675 mL of 95% ethanol) or a KMnO_{4} solution (1.5 g of $\mathrm{KMnO}_{4}, 10 \mathrm{~g}$ of potassium carbonate and 2.5 mL of 5% aqueous NaOH in 150 mL of $\mathrm{H}_{2} \mathrm{O}$). Flash chromatography on SiO_{2} was used to separate and purify the crude reaction mixtures. IR spectra obtained on a Nicolet AVATAR 360 FT-IR E.S.P. Spectrometer. NMR spectra were recorded at $300 \mathrm{MHz} / 75 \mathrm{MHz}\left({ }^{1} \mathrm{H} N M R /{ }^{13} \mathrm{C}\right.$ NMR) at $21{ }^{\circ} \mathrm{C}$ in CDCl_{3} unless otherwise noted. Chemical shifts (δ) are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=\mathrm{pente}$, $\mathrm{s}=$ =sextet, $\mathrm{sp}=$ septet, $\mathrm{o}=$ octet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{dq}=$ doublet of quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=\mathrm{broad}$), integration, and coupling constants. Mass spectra were obtained on a double focusing instrument.

tert-Butylbut-3-ynyloxydimethylsilane (166). ${ }^{176}$ To a solution of $1.00 \mathrm{~g}(14.3 \mathrm{mmol})$ of 3-butyn-1-ol, $2.39 \mathrm{~mL}(17.1 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $174 \mathrm{mg}(1.43 \mathrm{mmol})$ of DMAP in 45 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $2.36 \mathrm{~g}(15.7 \mathrm{mmol})$ of TBSCl . The reaction mixture was stirred under N_{2} for 3 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, and extracted with $\mathrm{NH}_{4} \mathrm{Cl}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($10 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield $2.66 \mathrm{~g}(99 \%)$ of $\mathbf{1 6 6}$ as a colorless oil:
${ }^{1} \mathrm{H} \operatorname{NMR} \delta 3.74(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.39(\mathrm{td}, 2 \mathrm{H}, J=2.4,6.9 \mathrm{~Hz}), 1.95(\mathrm{t}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 0.90$
(s, 9 H), 0.07 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR $\delta 81.45,69.28,61.72,25.86,22.83,18.30,-5.33$; MS (EI) m / z (rel intensity) 127 ([M-C4H9] ${ }^{+}$13), 84 (8), 74 (62), 59 (100).

167
5-(tert-Butyl-dimethyl-silanyloxy)-pent-2-yn-1-ol (167). ${ }^{176}$ A solution of $3.37 \mathrm{~mL}(5.40 \mathrm{mmol})$ of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes) was added dropwise to a solution of $1.00 \mathrm{~g}(5.40 \mathrm{mmol})$ of $\mathbf{1 6 6}$ in 11 mL of THF at $-40^{\circ} \mathrm{C}$. The resulting mixure was stirred for 15 min and then added to a solution of $486 \mathrm{mg}(16.2 \mathrm{mmol})$ of paraformaldehyde in 6 mL of THF at $-45^{\circ} \mathrm{C}$. The reaction mixture was further stirred at $-45^{\circ} \mathrm{C}$ for 1 h followed by 1 h at room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}$, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield $913 \mathrm{mg}(79 \%)$ of $\mathbf{1 6 7}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.25(\mathrm{dt}, 2 \mathrm{H}, J=2.1,6.0 \mathrm{~Hz}), 3.73(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.44$ $(\mathrm{tt}, 2 \mathrm{H}, J=2.1,7.2 \mathrm{~Hz}), 1.58(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.6 Hz); ${ }^{13} \mathrm{C}$ NMR $\delta 83.4,79.5,61.8,51.3,25.9,23.1,18.3,-5.3$; MS (EI) m / z (rel intensity) 157 ($\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}, 29$), 139 (37), 125 (15), 105 (87), 89 (21), 75 (100), 59 (10); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{OSi}-\mathrm{C}_{4} \mathrm{H}_{9} 157.0684$, found 157.0678 .

168
5-(tert-Butyldimethylsilanyloxy)-pent-2-en-1-ol (168). ${ }^{177}$ To a solution of $4.31 \mathrm{~g}(20.1 \mathrm{mmol})$ of 167 in 175 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added $12.5 \mathrm{~mL}(40.2 \mathrm{mmol})$ of Red-Al ($65 \mathrm{wt} \%$). The resulting reaction mixture was stirred for 4 h and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The layers were extracted with EtOAc, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield $3.25 \mathrm{~g}(75 \%)$ of $\mathbf{1 6 8}$ as a colorless oil: IR (neat) $3352,1675,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.71-5.65(\mathrm{~m}$, $2 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.26(\mathrm{qd}, 2 \mathrm{H}, J=1.2,4.2 \mathrm{~Hz}), 1.65(\mathrm{t}, 2 \mathrm{H}, J$ $=5.7 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 130.9,129.3,63.6,62.8,35.8,25.9,18.3,-5.3$; MS (EI) m / z (rel intensity) 215 ($\mathrm{M}^{+}, 15$), 199 (13), 159 (18), 145 (22), 129 (10), 115 (27), 105 (100); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{OSi} 199.1518$, found 199.1515.

160
5-(tert-Butyldimethylsilanyloxy)-pent-2-enal (160). ${ }^{177}$ To a suspension of $63.9 \mathrm{~g}(734 \mathrm{mmol})$ of MnO_{2} in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $3.18 \mathrm{~g}(14.7 \mathrm{mmol})$ of $\mathbf{1 6 8}$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was stirred at rt for 4 h , filtered through celite, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield 2.29 g (73\%) of 160 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.52(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.90(\mathrm{dt}, 1 \mathrm{H}, J=6.9,15.7$ $\mathrm{Hz}), 6.18(\mathrm{qt}, 1 \mathrm{H}, J=1.4,7.9 \mathrm{~Hz}), 3.80(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.55(\mathrm{qd}, 2 \mathrm{H}, J=1.4,6.2 \mathrm{~Hz}), 0.90$ (s, 9H), 0.07 ($\mathrm{s}, 6 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR $\delta 193.9,155.5,134.2,61.1,36.0,25.8,18.2,-5.4$; MS (EI) m / z (rel intensity) $214\left(\mathrm{M}^{+}, 25\right), 212(20), 172$ (45), 155 (33), 125 (40), 103 (55), 73 (100).

But-3-ynoic acid (159a). ${ }^{120}$ To a solution of $14.0 \mathrm{~g}(139 \mathrm{mmol})$ of CrO_{3} and 96 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 360 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ was added via addition funnel a solution of $5.00 \mathrm{~g}(71.3 \mathrm{mmol})$ of 3-butyn-1-ol in 70 mL of acetone over a period of 1.5 h . The reaction mixture was stirred for 3.5 h at $0^{\circ} \mathrm{C}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \mathrm{x})$, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give $3.41 \mathrm{~g}(57 \%)$ of $\mathbf{1 5 9 a}$ as an off-white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 3.39(\mathrm{t}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}$), 3.39 (d, $2 \mathrm{H}, J=2.7 \mathrm{~Hz}$); MS (EI) m / z (rel intensity) 122 (7), 121 (50), 91 (9), 84 (${ }^{+}, 33$), 74 (62), 59 (100).

Triisopropylsilyl 3-butynoate (159). ${ }^{120}$ To a solution of $223 \mathrm{mg}(2.65 \mathrm{mmol})$ of $\mathbf{1 5 9 a}$ and 0.56 $\mathrm{mL}(2.65 \mathrm{mmol})$ of TIPSCl in 13 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt was added $180 \mathrm{mg}(2.65 \mathrm{mmol})$ of imidazole. The resulting reaction mixture was stirred for 1.5 h and diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give $636 \mathrm{mg}(100 \%)$ of $\mathbf{1 5 9}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 3.27$ (d, $2 \mathrm{H}, J$
$=2.7 \mathrm{~Hz}), 2.15(\mathrm{t}, 2 \mathrm{H}, J=2.7 \mathrm{~Hz}), 1.37-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~d}, 18 \mathrm{H}, J=7.5 \mathrm{~Hz}), \mathrm{MS}(\mathrm{EI}) m / z$ (rel intensity) 197 ([M-C3H7] ${ }^{+}$, 100); 157 (126), 153 (64), 125 (22), 111 (60), 97 (23), 83 (63), 75 (53), 61 (47), 59 (45).

164
9-(tert-Butyldimethylsilanyloxy)-nona-2E,4E,6E-trienoic acid triisopropylsilylester (164).
To a solution of $241 \mathrm{mg}(0.93 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $224 \mathrm{mg}(0.93$ mmol) of $\mathbf{1 5 9}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred for 15 min followed by the addition of $100 \mathrm{mg}(0.46 \mathrm{mmol})$ of 160 in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $9.6 \mathrm{mg}(0.046 \mathrm{mmol})$ of AgClO_{4}. The reaction mixture was stirred for 30 min , filtered through florisil, and washed with EtOAc. The filtrate was concentrated in vacuo to give $\mathbf{1 6 9}$ as an orange oil which was used without further purification.

To a $-10^{\circ} \mathrm{C}$ solution of 169 in 5 mL of THF was added $0.16 \mathrm{~mL}(1.40 \mathrm{mmol})$ of $1-$ (trifluoroacteyl)imidazole followed by $0.13 \mathrm{~mL}(1.63 \mathrm{mmol})$ of pyridine. The mixture was allowed to warm to $5^{\circ} \mathrm{C}$ over 1 h , treated with $0.41 \mathrm{~mL}(2.33 \mathrm{mmol})$ of DIEA, and allowed to warm to $15^{\circ} \mathrm{C}$ over 3.5 h . The solution was poured into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The layers were separated and the organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and NaCl . The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude material was titurated with hexanes and the soluble material was used for chromatography. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield 122 mg (60%) over 2 steps of $\mathbf{1 6 4}$ as a colorless oil: IR (neat) 2930, 1695, 1620, 1006, $976,835 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.27(\mathrm{dd}, 1 \mathrm{H}, J=11.5,15.1 \mathrm{~Hz}), 6.53(\mathrm{dd}, 1 \mathrm{H}, J=10.3,14.9 \mathrm{~Hz}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz})$, $6.17(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 6.00-5.82(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.37(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, 1.42-1.23 (m, 3 H), $1.09(\mathrm{~d}, 18 \mathrm{H}, J=7.3 \mathrm{~Hz}), 0.09(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 166.7, $145.1,140.7,136.4,131.6,128.3,122.2 .62 .5,36.6,25.9,18.3,17.8,12.1,-5.3$; MS (EI) $\mathrm{m} / \mathrm{z}(\mathrm{rel}$ intensity) 395 ([M-C $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}, 100$), 381 (17), 169 (13), 133 (7), 115 (13), 89 (26), 73 (49), 59 (20); HRMS (EI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{O}_{3} \mathrm{Si}_{2} 439.3064$, found 439.3060 .

3-((tert-Butyldiphenylsilyl)oxy)pentanedioic acid, diethylester (172). ${ }^{178}$ To a solution of 16.7 mL (245 mmol) of imidazole in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $30.2 \mathrm{~mL}(116 \mathrm{mmol})$ of TBDPSCl. After stirring for 10 min at rt , a solution of 25.0 g (122 mmol) of diethyl 3hydroxyglutarate in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. The reaction mixture was stirred at rt for 16 h and diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with NaCl . The aqueous layers were combined and re-extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $51.0 \mathrm{~g}(99 \%)$ of $\mathbf{1 7 2}$ as a yellow solid: Mp 44-46 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.72-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.26(\mathrm{~m}, 6 \mathrm{H}), 4.55(\mathrm{p}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 4.10-3.93$ (m, 4 H), 2.58 (A of ABX, $2 \mathrm{H}, J=6.3,15.0 \mathrm{~Hz}$), 2.57 (B of ABX, $2 \mathrm{H}, J=6.0,15.0 \mathrm{~Hz}$), 1.19 (t, $6 \mathrm{H}, J=6.9 \mathrm{~Hz}$), $1.03(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ (rel intensity) 467 (10), 466 (30), 465 ([M-Na] , 74); HRMS (EI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 465.2073$, found 465.2083.

3-[(tert-Butyldiphenylsilyl)oxy)]pentanedioic anhydride (161). ${ }^{178}$ To a solution of 8.85 g (20.0 mmol) of $\mathbf{1 7 2}$ in 30 mL of MeOH was added $2.00 \mathrm{~g}(50.5 \mathrm{mmol})$ of NaOH pellets and the mixture was stirred at rt for 36 h . The resulting suspension was concentrated in vacuo. The crude residue was crushed into fine particles and suspended in 40 mL of benzene and 30 mL of $\mathrm{Ac}_{2} \mathrm{O}$. The mixture was heated at reflux for 1.5 h , quenched with NaCl , and extracted with CHCl_{3}. The organic layers were washed with NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes containing $1 \% \mathrm{Ac}_{2} \mathrm{O}$ to $20 \% \mathrm{EtOAc} /$ Hexanes containing $1 \% \mathrm{Ac}_{2} \mathrm{O}$) to yield 3.79 $\mathrm{g}(61 \%)$ of 161 as peach-colored oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.71-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.31(\mathrm{~m}, 6 \mathrm{H}), 4.30-$ $4.70(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~A}$ of $\mathrm{ABX}, 2 \mathrm{H}, J=3.6,16.2 \mathrm{~Hz}), 2.60(\mathrm{~B}$ of $\mathrm{ABX}, 2 \mathrm{H}, J=2.7,16.0 \mathrm{~Hz})$,
1.05 (s, 9 H); MS (EI) m/z (rel intensity) 311 ([M-C4 $\left.\mathrm{H}_{9}\right]^{+}, 74$), 291 (21), 240 (17), 225 (74), 199 (100), 183 (27), 105 (8), 78 (31).

170
(S)-((3-tert-Butyldiphenylsilyl)oxy)pentanedioic acid, monomethylester (170). ${ }^{178}$ To a solution of $1.09 \mathrm{~g}(2.96 \mathrm{mmol})$ of 161 in 100 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$ was added $760 \mathrm{mg}(0.887$ $\mathrm{mmol})$ of (DHQD$)_{2} \mathrm{AQN}$. The mixture was stirred for 20 min , treated with $1.20 \mathrm{~mL}(29.6 \mathrm{mmol})$ of MeOH and stirred for 72 h at $-40^{\circ} \mathrm{C}$. The reaction mixture was quenched with $10 \% \mathrm{aq} . \mathrm{HCl}$ at $-40^{\circ} \mathrm{C}$, warmed to rt , and extracted with EtOAc. The aqueous layer was reextracted with EtOAc. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield $865 \mathrm{mg}(73 \%)$ of $\mathbf{1 7 0}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.75-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 6 \mathrm{H})$, 4.51 (p, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}$), 3.56 (s, 3 H), 2.71-2.50 (m, 4 H), 1.03 (s, 9H); MS (EI) m/z (rel intensity) 357 ([M-CO2 H$\left.]^{+}, 5\right), 343$ (58), 265 (66), 225 (15), 199 (100), 179 (32), 78 (30).

(R)-4-Benzyloxycarbonylamino-3-(tert-butyldiphenylsilyloxy)-butyric acid methyl ester (174). To $600 \mathrm{mg}(1.50 \mathrm{mmol})$ of $\mathbf{1 7 0} \mathrm{in} 10 \mathrm{~mL}$ of toluene was added $0.39 \mathrm{~mL}(1.80 \mathrm{mmol})$ of DPPA and $0.25 \mathrm{~mL}(1.80 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$. The solution was stirred at rt for 30 min and further heated at reflux for 3.5 h . At rt , $0.47 \mathrm{~mL}(4.50 \mathrm{mmol})$ of BnOH was added. The resulting reaction mixture was heated at reflux for 18 h , quenched with NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($3 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) to yield 596 mg (80%) of $\mathbf{1 7 4}$ a colorless oil: IR (neat) 3004, 2866, 1745, 1645, 1525, 1260, $993 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.62$ (t, $5 \mathrm{H}, J=7.0 \mathrm{~Hz}$), 7.42$7.23(\mathrm{~m}, 10 \mathrm{H}), 4.97(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{t}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.54-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\delta 171.0,156.2,136.4,135.7,135.6,133.3,133.0,129.9$, $129.8,128.4,128.0,127.9,127.7,127.6,127.7,69.2,66.5,51.5,46.1,39.6,26.8,19.2$; MS (EI) m / z (rel intensity) $449\left(\mathrm{M}^{+}, 6\right), 448$ (15), 340 (10), 319 (13), 283 (6), 236 (10), 199 (14), 135 (11), 105 (8), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NOSi} 448.1580$, found 448.1580.

176
(R)-4-Benzyloxycarbonylamino-3-hydroxybutyric acid methyl ester (176). To a solution of $50 \mathrm{mg}(0.10 \mathrm{mmol})$ of $\mathbf{1 7 4} \mathrm{in} 2 \mathrm{~mL}$ THF in a polyethylene vial at rt was added $0.13 \mathrm{~mL}(4.94$ mmol) of $70 \% \mathrm{HF}$ pyr. The reaction mixture was stirred for 4 d , quenched with NaHCO_{3}, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $20 \mathrm{mg}(80 \%)$ of 176 a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.20(\mathrm{bs}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1$ $\mathrm{H}, J=3.5 \mathrm{~Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.47-3.35(\mathrm{~m}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 3.27-3.12(\mathrm{~m}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz})$, 2.59-2.42 (m, 2 H); MS (EI) m/z (rel intensity) 267 ($\mathrm{M}^{+}, 25$), 263 (4), 249 (5), 236 (6), 165 (5), 108 (11), 104 (15), 91 (100); HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}$ 267.1096, found 267.1107.

Bis-tert-butoxycarbonyl allylamine (184). ${ }^{179}$ To $0.75 \mathrm{~mL}(10 \mathrm{mmol})$ of allyl amine and 12 mg $(0.1 \mathrm{mmol})$ of DMAP in 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added $2.18 \mathrm{~g}(10 \mathrm{mmol})$ of $\mathrm{Boc}_{2} \mathrm{O}$ in 20 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture was stirred at rt for 6 h , diluted with 10 mL of toluene and concentrated in vacuo. The resulting solid was redissolved in 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ followed by addition of $12 \mathrm{mg}(0.1 \mathrm{mmol})$ of DMAP and $2.18 \mathrm{~g}(10 \mathrm{mmol})$ of $\mathrm{Boc}_{2} \mathrm{O}$. The solution was heated to $60^{\circ} \mathrm{C}$ for 14 h and concentrated in vacuo. The resulting oil was washed with NaHCO_{3}, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $1.03 \mathrm{~g}(40 \%)$ of $\mathbf{1 8 4}$ a white solid: Mp $43-44{ }^{\circ} \mathrm{C}(E t O A c / H e x a n e s) ;$ lit. $43-44{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $5.92-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{dq}, 1 \mathrm{H}, J=1.5,26.8 \mathrm{~Hz}), 5.15-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dt}, 2 \mathrm{H}, J=1.5$, 5.5 Hz), 1.51 (s, 9 H); MS (EI) m / z (rel intensity) $280\left(\mathrm{M}^{+}, 82\right), 224$ (53), 168 (100), 140 (13), 124 (90).

1-(Bis-tert-butoxycarbonyl amino)-2-ethanal (186). To solution of $1.66 \mathrm{~g}(6.45 \mathrm{mmol})$ of $\mathbf{1 8 4}$ in 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was introduced O_{3} for 30 min until blue color persisted. The reaction mixture was purged with N_{2} for 30 min followed by quenching with 4 mL of DMS and stirred for 16 h at rt . The reaction mixture was poured into dilute NaCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} ($5 \% \mathrm{EtOAc} /$ Hexanes) to yield 1.67 g (59\%) of $\mathbf{1 8 6}$ a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 9.54(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR 196.7, 151.8, 83.4, 55.2, 27.9; HRMS (EI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5}$ 282.1317, found 282.1311.

(\boldsymbol{R})-4-(Dicarbamic acid-t-butylester)-oxetane-2-one (39). To a solution of $20 \mathrm{mg}(0.05 \mathrm{mmol})$ of TMSQ and $160 \mathrm{mg}(1.5 \mathrm{mmol})$ of LiClO_{4} in 0.5 mL of diethyl ether was added 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, and treated with $0.21 \mathrm{ml}(1.3 \mathrm{mmol})$ of $N, N-$ diisopropylethylamine followed by the addition of $130 \mathrm{mg}(0.5 \mathrm{mmol})$ of $\mathbf{1 8 6}$. A solution of 72 $\mu \mathrm{L}(0.5 \mathrm{mmol})$ of acetyl chloride in $0.3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added over 1 h by syringe pump. The reaction mixture was stirred for 16 h at $-78^{\circ} \mathrm{C}$ and was quenched at $-78^{\circ} \mathrm{C}$ by adding 5 mL of $\mathrm{Et}_{2} \mathrm{O}$, filtered through silica gel, washed with $\mathrm{Et}_{2} \mathrm{O}$, and concentrated in vacuo. The crude material was triturated with hexanes to remove impurities to yield $100 \mathrm{mg}(66 \%)$ of $\mathbf{1 8 2}$ as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta 4.71(\mathrm{p}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}$), 4.07 (A of AB, $1 \mathrm{H}, J=5.5,14.9 \mathrm{~Hz}$), 4.01 (B of $\mathrm{AB}, 1 \mathrm{H}, J=5.4,14.9$), $3.52(\mathrm{~A}$ of $\mathrm{AB}, 1 \mathrm{H}, J=5.9,16.5 \mathrm{~Hz}), 3.34(\mathrm{~B}$ of $\mathrm{AB}, 1 \mathrm{H}, J=4.3$, $16.6 \mathrm{~Hz}), 1.52(\mathrm{~s}, 18 \mathrm{H})$.

202
(\boldsymbol{R})-Diethyl malate (202). ${ }^{180}$ To a solution of $5.00 \mathrm{~g}(37.3 \mathrm{~g})$ of (D)-malic acid in 32 mL of EtOH was added $120 \mu \mathrm{~L}$ of HCl . The resulting solution was stirred at reflux for 15 h , concentrated in vacuo, purified by chromatography on $\mathrm{SiO}_{2}(20 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 5.68 $\mathrm{g}(80 \%)$ of 202 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.48(\mathrm{q}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 4.28(\mathrm{qd}, 2 \mathrm{H}, J=1.2,7.2$ $\mathrm{Hz}), 4.18(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.21(\mathrm{~d}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}), 2.83(\mathrm{~A}$ of $\mathrm{ABX}, 1 \mathrm{H}, J=4.5,16.2 \mathrm{~Hz})$, $2.82(\mathrm{~B}$ of $\mathrm{ABX}, 1 \mathrm{H}, J=6.0,16.2 \mathrm{~Hz}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\delta 173.1,170.3,67.0,61.6,60.6,38.5,13.8$.

Diethyl (2R, 3S)-3-methylmalate (203). ${ }^{180}$ To a solution of $6.38 \mathrm{~mL}(45.8 \mathrm{mmol})$ of diisopropylamine in 21 mL of THF was added $26.3 \mathrm{~mL}(42.1 \mathrm{mmol})$ of n-BuLi dropwise via an addition funnel at $0{ }^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min and further cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $3.48 \mathrm{~g}(18.3 \mathrm{mmol})$ of $\mathbf{2 0 2}$ in 5 mL of THF was added slowly to the LDA solution. The resulting solution was stirred for 50 min at $-78^{\circ} \mathrm{C}$, warmed to $-20^{\circ} \mathrm{C}$ over 2 h , stirred at -20 ${ }^{\circ} \mathrm{C}$ for 20 min , and recooled to $-78{ }^{\circ} \mathrm{C}$. At $-78{ }^{\circ} \mathrm{C}, 1.71 \mathrm{~mL}(27.5 \mathrm{mmol})$ of MeI was added, and the mixture was stirred for 30 min and warmed to $-30^{\circ} \mathrm{C}$ over 1 h . After 1 h at $0^{\circ} \mathrm{C}$, the reaction mixture was warmed to rt during a 1 h period and stirred at rt for 1 h . The mixture was quenched with 1.0 M citric acid and extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(5 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 2.40 g (64\%) of 203 as a yellow oil in a $6: 1$ ratio of diastereomers based on integration of ${ }^{1} \mathrm{H}$ NMR signals at 3.03 ppm (major) and 2.92 ppm (minor): ${ }^{1} \mathrm{H}$ NMR $\delta 4.36-4.21(\mathrm{~m}, 3 \mathrm{H}), 4.15$ (qd, $2 \mathrm{H}, J=1.5,7.2 \mathrm{~Hz}$), 3.14 (bd, $1 \mathrm{H}, J=5.4$ $\mathrm{Hz}), 3.03(\mathrm{qd}, 1 \mathrm{H}, J=3.6,7.2 \mathrm{~Hz}), 1.32(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.31(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.26(\mathrm{t}, 3$
$\mathrm{H}, J=7.2 \mathrm{~Hz}$); Major isomer: ${ }^{13} \mathrm{C}$ NMR δ 173.0, 172.6, 72.2, 61.7, 60.7, 42.9, 13.9, 12.6, 10.4. Minor isomer: ${ }^{13} \mathrm{C}$ NMR $\delta 173.0,172.6,71.2,61.6,60.6,42.8,13.8,12.6,10.4$.

204
(2S,3R)-3-Hydroxy-2-methyl-4-(toluene-4-sulfonyloxy)-butyric acid ethyl ester (204). ${ }^{180}$ To a solution of $400 \mathrm{mg}(1.96 \mathrm{mmol})$ of $\mathbf{2 0 3} \mathrm{in} 4 \mathrm{~mL}$ of THF was added $1.01 \mathrm{~mL}(2.20 \mathrm{mmol})$ of BH_{3} DMS over 15 min . The resulting solution was stirred for 20 min at rt and cooled to $0{ }^{\circ} \mathrm{C}$. At $0{ }^{\circ} \mathrm{C}, 3.7 \mathrm{mg}(0.098 \mathrm{mmol})$ of NaBH_{4} was added. The mixture was stirred for 2 h , quenched with 1 mL of EtOH and 18.6 mg of $p-\mathrm{TsOH}$, stirred for 30 min at rt , and concentrated in vacuo. The resulting residue was dissolved in 4 mL of $1: 1$ mixture of EtOH : benzene and concentrated in vacuo (repeated three times). The crude 204a was used in the next step without further purification.

To a solution of crude 204a in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt was added $25 \mathrm{mg}(0.099 \mathrm{mmol})$ of dibutyltin oxide, $0.27 \mathrm{~mL}(1.96 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$, and $374 \mathrm{mg}(1.96 \mathrm{mmol})$ of TsCl . The reaction mixture was stirred for 15 h at rt , filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield 348 mg (56% over 2 steps) of 204 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.15(\mathrm{q}$, $2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.09(\mathrm{~d}, 2 \mathrm{H}, J=4.8 \mathrm{~Hz}), 3.89(\mathrm{q}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 2.69(\mathrm{p}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.

205
(2S,3R)-4-Azido-3-hydroxy-2-methylbutyric acid ethyl ester (205). ${ }^{180}$ To $110 \mathrm{mg}(0.35$ mmol) of $\mathbf{2 0 4}$ in 2 mL of DMF was added $45 \mathrm{mg}(0.70 \mathrm{mmol})$ of NaN_{3}. The reaction mixture was heated at reflux for 5.5 h , cooled to rt , and diluted with EtOAc. The solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to yield 39 mg of 204 (65%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.16(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}$), 3.85 (ddd, $1 \mathrm{H}, J=6.3,10.2,12.6$

Hz), 3.38 (A of ABX, $1 \mathrm{H}, J=3.6,12.6 \mathrm{~Hz}$), 3.36 (B of ABX, $1 \mathrm{H}, J=6.0,12.3 \mathrm{~Hz}$), $3.30(\mathrm{~d}, 1$ $\mathrm{H}, J=6.3 \mathrm{~Hz}), 2.65(\mathrm{p}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.26(\mathrm{t}, 3 \mathrm{H}, J=11.1 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 175.2,72.5,60.9,54.3,42.6,14.0,13.9$; Major isomer: ${ }^{13} \mathrm{C}$ NMR $\delta 175.2,72.5,60.9$, 54.3, 42.6, 14.0, 13.9. Minor isomer: ${ }^{13} \mathrm{C}$ NMR δ 175.2, 70.5, 60.9, 54.0, 42.4, 14.0, 13.9.

3-Methyl-5-(trimethyl-silanyl)-pent-2-en-4-ynoic acid methyl ester (209). ${ }^{145}$ A solution of $132 \mathrm{mg}(0.30 \mathrm{mmol})$ of TDMPP and $136 \mathrm{mg}(0.30 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in 10 mL of THF was stirred for 15 min , followed by the addition of $1.00 \mathrm{~mL}(10 \mathrm{mmol})$ of 3-methylbutynoate. The resulting solution was stirred for 5 min , followed by the addition of $1.41 \mathrm{~mL}(10 \mathrm{mmol})$ of trimethylsilylacetylene. The reaction mixture was stirred for 75 min at rt and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \%$ Hexanes $)$ to yield $1.51 \mathrm{~g}(77 \%)$ of 209 as an orange oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 0.18$ (s, 9 H); ${ }^{13} \mathrm{C}$ NMR $\delta 166.4,137.8,124.4,106.4,99.3,51.1,19.6,-0.4$; MS (EI) m / z (rel intensity) $196\left(\mathrm{M}^{+}, 20\right), 181$ (100), 165 (27), 151 (60), 122 (100), 113 (47); HRMS (EI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{Si} 196.0920$, found 196.0914.

3-Methyl-5-(trimethyl-silanyl)-pent-2-en-4-yn-1-ol (210). To a solution of $1.80 \mathrm{~g}(9.18 \mathrm{mmol})$ of $\mathbf{2 0 9}$ in 48 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added $20.2 \mathrm{~mL}(20.2 \mathrm{mmol})$ of diisobutylaluminum hydride (1 M in hexanes). The resulting reaction mixture was stirred for 1 h , quenched with aqueous sodium potassium tartrate, and stirred for 2 h at rt . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(25 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $1.30 \mathrm{~g}(84 \%)$ of $\mathbf{2 1 0}$ as an orange oil: IR (neat) $3345,2959,2900,2144,1680,1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.01(\mathrm{td}, 1 \mathrm{H}, J=$ $1.2,6.6 \mathrm{~Hz}), 4.21(\mathrm{dd}, 2 \mathrm{H}, J=0.6,6.6 \mathrm{~Hz}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\delta 136.5,120.7,107.3,92.1,59.1,17.4,-0.1 ; \mathrm{MS}(\mathrm{EI}) m / z$ (rel intensity) 181 (7), $168\left(\mathrm{M}^{+}, 14\right)$, 153 (28), 141 (20), 125 (48), 109 (16), 99 (27), 83 (55), 75 (84), 73 (100); HRMS (EI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NOSi} 168.0970$, found 198.0964.

3-Methyl-6,6,6-trismethylsulfanyl-hex-3-en-1-ynyl (206). To a solution of $1.90 \mathrm{~g}(11.3 \mathrm{mmol})$ of 210 and $2.67 \mathrm{~mL}(19.2 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-10{ }^{\circ} \mathrm{C}$ was added 0.95 mL $(12.4 \mathrm{mmol})$ of methanesulfonylchloride. The reaction mixture was stirred for 30 min at $-10^{\circ} \mathrm{C}$, 1 h at $0^{\circ} \mathrm{C}$, and 15 h at rt . The mixture was washed with cold $\mathrm{H}_{2} \mathrm{O}, 10 \% \mathrm{HCl}, \mathrm{NaHCO} 3, \mathrm{NaCl}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to yield the mesylate. The mesylate was immediately used in the next step without further purification.

To $2.53 \mathrm{~mL}(19.0 \mathrm{mmol})$ of tris(methylthio)methane in 40 mL of THF at $-78^{\circ} \mathrm{C}$ was added $12.3 \mathrm{~mL}(18.4 \mathrm{mmol})$ of $n-\mathrm{BuLi}(1.5 \mathrm{M} /$ Hexanes $)$. The resulting solution was stirred at $78^{\circ} \mathrm{C}$ for 15 min followed by the addition of the above prepared mesylate in 5 mL of THF. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , warmed to $-40^{\circ} \mathrm{C}$ and quenched with ether. The organic layer was washed with $\mathrm{NaHCO}_{3}, \mathrm{NaCl}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting residue was purified by chromatography on SiO_{2} (100% hexanes) to yield 3.27 g of $206 \mathbf{a}$ and excess tris(methylthio)methane as an yellow/orange oil. This material was used in the next step.

To a solution of $3.27 \mathrm{~g}(10.7 \mathrm{mmol})$ of 206a in 40 mL of distilled MeOH at rt was added $1.63 \mathrm{~g}(11.8 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was stirred at rt for 15 h , quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, washed with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \%$ Hexanes) to yield 1.27 g (51% over 3 steps) of 206 as a yellow oil: IR (neat) 3287, 2982, 2916, 2093, 1403, 962, $754 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.29-6.20(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 1 \mathrm{H}), 2.74(\mathrm{~d}, 2$ $\mathrm{H}, J=6.7 \mathrm{~Hz}), 2.12(\mathrm{~s}, 9 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 133.2,118.8,86.1,74.6,69.5,37.2$, 17.6, 13.0; MS (EI) m / z (rel intensity) 249 (10), 217 (67), 201 (15), 184 ([M-SMe] ${ }^{+}, 100$), 153 (50),

138 (30), 123 (30), 112 (28); HRMS (EI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~S}_{2}\left(\mathrm{M}-\mathrm{SCH}_{3}\right)$ 185.0459, found 185.0456.

211
4-Methyl-1,1,1-trismethylsulfanylhexadeca-3,5-dien-7-ol (211). To a suspension of 126 mg $(0.49 \mathrm{mmol})$ of zirconocene hydrochloride in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} was added $100 \mathrm{mg}(0.43$ mmol) of $\mathbf{2 0 6}$ at room temperature. The reaction mixture was stirred for 15 min , cooled to -65 ${ }^{\circ} \mathrm{C}$, and was treated with $0.21 \mathrm{~mL}(0.43 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene). After 5 min , the mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 30 min , treated with $74 \mu \mathrm{~L}(0.39 \mathrm{mmol})$ of decylaldehyde, stirred for 3 h at $0^{\circ} \mathrm{C}$, quenched by addition of NaHCO_{3} solution, filtered through a plug of florisil and extracted with EtOAc. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield 62 mg (41%) of 211 as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.14(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 5.66(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.49(\mathrm{dd}, 1 \mathrm{H}, J=7.0$, $15.7 \mathrm{~Hz}), 3.96(\mathrm{q}, 1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.70(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.99(\mathrm{~s}, 9 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.50-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.20(\mathrm{bs}, 14 \mathrm{H}), 0.80(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 136.1,135.8$, $131.8,127.5,73.8,71.5,38.6,38.0,33.1,30.8,30.7,30.7,30.5,26.7,23.8,14.5,13.4,13.2$; MS (EI) m / z (rel intensity) 803 (38), 621 (22), 524 (38), 413 ([M+Na] $\left.]^{+}, 100\right), 381$ (28), 325 (23); HRMS (EI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{OS}_{3} \mathrm{Na} 413.1983$, found 413.2002.

tert-Butyl-(4-iodopent-3-enyloxy)dimethylsilane (216). ${ }^{181}$ To a solution of 448 mg (5 mmol) of CuCN in 10 mL of a $1: 1$ solution of THF: ether at $-40^{\circ} \mathrm{C}$ was added $7.1 \mathrm{~mL}(10 \mathrm{mmol})$ of n BuLi ($1.4 \mathrm{M} /$ hexanes). After 5 min , the solution was stirred at rt for 15 min , cooled to $-40^{\circ} \mathrm{C}$, treated with $2.69 \mathrm{~mL}(10 \mathrm{mmol})$ of $\mathrm{Bu}_{3} \mathrm{SnH}$, and stirred for 70 min at $-40^{\circ} \mathrm{C}$. In a separate flask,
to a solution of $0.38 \mathrm{~mL}(5 \mathrm{mmol})$ of 2,3-dihydrofuran in 5 mL of THF was added 7.06 mL (12 mmol) of $t-\mathrm{BuLi}(1.7 \mathrm{M} / \mathrm{Hexanes})$. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 10 min and at $0{ }^{\circ} \mathrm{C}$ for 55 min before it was added via cannula to the above reaction mixture. The resulting solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h , treated with $2.18 \mathrm{~mL}(35 \mathrm{mmol})$ of MeI, allowed to warm to rt during a period of 1 h and stirred at rt for another 3 h . The mixture was poured into an aqueous mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ and stirred for 30 min . The aqueous layer was extracted with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo.

To a solution of the resulting oil in 45 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of 1.4 $\mathrm{g}(5 \mathrm{mmol})$ of I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ until the brown color persisted. The mixture was treated with 1.0 g (15 mmol) of imidazole followed by the addition of $2.23 \mathrm{~g}(15 \mathrm{mmol})$ of TBSCl . The resulting reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , quenched with aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield 1.22 g (76%) of 216 a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.17(\mathrm{td}, 1 \mathrm{H}, J=1.5,7.8 \mathrm{~Hz}), 3.62(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{q}, 2 \mathrm{H}, J=$ $6.9 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 137.7,95.3,61.7,34.2,27.7,25.9,18.3,-5.3$; MS (EI) m / z (rel intensity) $325\left(\mathrm{M}^{+}, 10\right), 311$ (33), 269 (100), 215 (5), 185 (20), 141 (6); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{OSiI}\left(\mathrm{M}-\mathrm{CH}_{3}\right) 311.0328$, found 311.0313 .

213
tert-Butyldimethyl-(4-methylhex-3-en-5-ynyloxy)silane (213). To a solution of $199 \mathrm{mg}(0.02$ $\mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in 6 mL of THF was added at $\mathrm{rt} 1.12 \mathrm{~g}(3.44 \mathrm{mmol})$ of 216 and 10.3 mL $(5.15 \mathrm{mmol})$ of ethynylmagnesium chloride. The reaction mixture was stirred for 2 h and quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with pentane, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}\left(100 \%\right.$ pet. $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to yield 550 mg (71%) of 213 a colorless oil: IR (neat) $3351,2899,2144,1250,1677,1014,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.96(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.77(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{q}, 2 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\delta 135.9,118.5,86.7,73.3,62.0,32.3$,
25.9, 18.3, 17.2, -5.3; MS (EI) m / z (rel intensity) 167 ([M- t-Bu] ${ }^{+}, 73$), 132 (12), 89 (43); HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{OSi}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 209.1369, found 209.1362.

1-(tert-Butyldimethylsilanyloxy)-4-methylhexadeca-3,5-dien-7-ol (217). To a suspension of $125 \mathrm{mg}(0.49 \mathrm{mmol})$ of zirconocene hydrochloride in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} was added 100 $\mathrm{mg}(0.45 \mathrm{mmol})$ of $\mathbf{2 1 3}$ at room temperature. The reaction mixture was stirred for 10 min , cooled to $-65^{\circ} \mathrm{C}$, and treated with $0.21 \mathrm{~mL}(0.43 \mathrm{mmol})$ of $\mathrm{Me}_{2} \mathrm{Zn}(2.0 \mathrm{M}$ solution in toluene). After 5 min , the mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 30 min , treated with $74 \mu \mathrm{~L}(0.41 \mathrm{mmol})$ of decylaldehyde, and stirred for 4 h at $0^{\circ} \mathrm{C}$. The solution was quenched by addition of sat. NaHCO_{3} solution, filtered through a plug of florisil and extracted with EtOAc. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} /$ Hexanes $)$ to yield 35 mg (23%) of 217 as a colorless oil: IR (neat) $3312,2928,1682,1005,1361,938,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.23(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 5.58(\mathrm{dd}, 1 \mathrm{H}, J=7.3,15.7 \mathrm{~Hz}), 5.40(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 4.10-4.25$ $(\mathrm{m}, 1 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}) 2.38(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.20$ (bs, 14 H), 0.95-0.83 (t, 3 H), 0.91 (s, 9 H), 0.07 (s, 6 H).

223
1-(Trimethylsilanyl)dodec-1-yn-3-ol (223). To a solution of 1.41 mL (10 mmol) of trimethylsilylacetylene in 4 mL of THF at $-12{ }^{\circ} \mathrm{C}$ was added $6.67 \mathrm{~mL}(10 \mathrm{mmol})$ of $n-\mathrm{BuLi}(1.5$ $\mathrm{M} / \mathrm{hexanes}$). After stirring for 1 h at $-12{ }^{\circ} \mathrm{C}$, a pre-cooled solution of 1.88 mL (10 mmol) of decylaldehyde in 4 mL of THF was added. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min, and at $-12{ }^{\circ} \mathrm{C}$ for 1 h , quenched with $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The
resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtoAc} / \mathrm{Hexanes})$ to yield $1.98 \mathrm{~g}(78 \%)$ of $\mathbf{2 2 3}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 4.36$ (bs, 1 H), 1.80-1.60 (m, 2 H), 1.57 (s, 1 H), 1.50-1.40(m, 2 H), $1.28(\mathrm{bs}, 12 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 107.0, 89.3, 62.9, 37.7, 31.9, 29.5, 29.3, 29.2, 25.1, 22.7, 14.1, -0.1; MS (EI) m / z (rel intensity) $275\left([\mathrm{M}+\mathrm{Na}]^{+}, 5\right), 249$ (28), 239 (7), 221 (8), 181 (25), 153 (12), 127 (95), 99 (91), 78 (65), 72 (100); HRMS (EI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 239.1831, found 239.1841.

224
3-(tert-Butyldimethylsilanyloxy)-1-(trimethylsilanyl)dodec-1-yne (224). To a solution of 1.98 $\mathrm{g}(7.78 \mathrm{mmol})$ of 224 in 21 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ was added $1.59 \mathrm{~g}(23.3 \mathrm{mmol})$ of imidazole and $1.76 \mathrm{~g}(11.7 \mathrm{mmol})$ of TBSCl . The resulting reaction mixture was stirred at rt for 20 h , quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with NaCl , dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on SiO_{2} (100% Hexanes) to yield $2.47 \mathrm{~g}(86 \%)$ of $\mathbf{2 2 4}$ a colorless oil: IR (neat) 3333, 2925, 2855, 2171, 1464, 1250, 1017, $844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.32(\mathrm{t}, 1 \mathrm{H}, J=$ $6.3 \mathrm{~Hz}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.20(\mathrm{~m}, 14 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.93-0.82(\mathrm{~m}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H})$, $0.13(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 108.1, 88.3, 63.4, 38.5, 31.9, 29.5, 29.3, 29.2, 25.9, 25.3, 22.7, 18.3, 14.1, -0.1, -4.4, -4.9; MS (EI) m / z (rel intensity) 354 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 13$), 353 (35), 311 (100), 241 (76), 213 (72), 185 (78), 155 (98), 147 (89), 133 (77), 109 (57); HRMS (EI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{OSi}_{2}\left(\mathrm{M}-\mathrm{CH}_{3}\right) 353.2696$, found 353.27 .

225
3-(tert-Butyldimethylsilanyloxy)-1-(trimethylsilanyl)dodec-1-yne (225). To a solution of 2.74 $\mathrm{g}(7.43 \mathrm{mmol})$ of 224 in 30 mL of dry MeOH was added $1.13 \mathrm{~g}(8.17 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The reaction mixture was stirred for 16 h at rt , quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by
chromatography on SiO_{2} (100% Hexanes) to yield 2.20 g (99%) of 225 a colorless oil: IR (neat) 3312, 2927, 2856, 1713, 1466, 1254, 1095, $838778 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.34$ (td, $1 \mathrm{H}, J=1.8,6.6$ $\mathrm{Hz}), 2.37(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 1.72-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 14 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, 3$ $\mathrm{H}, J=7.2 \mathrm{~Hz}), 0.13(\mathrm{~d}, 6 \mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 85.5,71.8,62.8,38.6,31.9,29.6,29.3$, 29.3, 25.8, 25.1, 22.7, 18.2, 14.1, -4.6, -5.1; MS (EI) m / z (rel intensity) $296\left(\mathrm{M}^{+}, 10\right), 239$ (38), 221 (24), 169 (27), 113 (100); HRMS (EI) Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{OSi} 296.56$, found 296.25.

226
1,7-Bis-(tert-butyldimethylsilanyloxy)-4-methylhexadeca-3,5-diene (216). To a mixture of $500 \mathrm{mg}(1.69 \mathrm{mmol})$ of 225 and $0.26 \mathrm{~mL}(1.77 \mathrm{mmol})$ of 4,4,5,5-tetramethyl[1,3,2]dioxaborolane was added $44 \mathrm{mg}(0.169 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ and $24 \mu \mathrm{~L}(0.169 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$. The resulting mixture was heated for 16 h and diluted with EtOAc. The resulting precipitate was filtered through a plug of celite and washed with EtOAc. The filtrate was concentrated in vacuo to yield 756 mg of $\mathbf{2 2 1}$ as a light yellow oil that was used in the next step without further purification.

A solution of the crude boronic ester ($717 \mathrm{mg}, 1.69 \mathrm{mmol}$) prepared above and 799 mg (2.45 mmol) of 216 in THF- $\mathrm{H}_{2} \mathrm{O}$ ($32 \mathrm{~mL}: 15 \mathrm{~mL}$) was degassed using freeze-pump-thaw $(3 \mathrm{x}$), treated with $195 \mathrm{mg}(0.169 \mathrm{mmol})$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and stirred for 5 min in the dark. The resulting mixture was treated with $0.181 \mathrm{~mL}(2.54 \mathrm{mmol})$ of TlOEt, stirred for 20 h in the dark, filtered through a plug of celite and separated from the aqueous layer. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The resulting residue was purified by chromatography on $\mathrm{SiO}_{2}(100 \%$ Hexanes) to yield 551 mg (66% over 2 steps) of 226 as a yellow oil: IR (neat) 3011, 2985, 1683, 1245, 1003, 910, $845 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.11(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}$), $5.52(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.9,15.9 \mathrm{~Hz}), 5.43(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}), 4.12(\mathrm{q}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.36$ (q, $2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 14 \mathrm{H}), 0.89(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, 3$ H), $0.05(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~d}, 6 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 134.8,133.8,130.9,127.8,73.9,62.8$, $38.7,32.1,31.9,29.6,29.6,29.3,26.0,25.4,22.7,18.4,18.3,14.1,12.6,-4.2,-4.7,-5.3$; MS (EI)
m / z (rel intensity) $497\left(\mathrm{M}^{+}, 50\right), 439$ (40), 369 (40), 307 (87), 271 (10), 237 (65), 89 (29), 75 (100); HRMS (EI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{60} \mathrm{O}_{2} \mathrm{Si}_{2} 496.957$, found 496.4124 .

227
7-(tert-Butyldimethylsilanyloxy)-4-methylhexadeca-3,5-dien-1-ol (227). To a solution of 551 $\mathrm{mg}(1.11 \mathrm{mmol})$ of 226 in 10 mL of THF was added $0^{\circ} \mathrm{C} 1.11 \mathrm{~mL}(1.11 \mathrm{mmol})$ of TBAF (1 $\mathrm{M} / \mathrm{THF}$). The reaction mixture was slowly warmed from $0{ }^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ over a period of 3.5 h , quenched with $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}(10 \% \mathrm{EtOAc} / \mathrm{Hexanes})$ to yield $354 \mathrm{mg}(83 \%)$ of 227 a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\delta 6.17(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.7,15.6 \mathrm{~Hz}), 5.43(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 4.13(\mathrm{q}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.70(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.43$ (q, $2 \mathrm{H}, J=6.7 \mathrm{~Hz}$), 1.77 (s, 3 H), 1.52-1.30 (m, 2 H), 1.26 (s, 14 H), 0.92-0.83 (t, 3H), $0.90(\mathrm{~s}, 9$ H), $0.04(\mathrm{~d}, 6 \mathrm{H}, J=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 135.8,133.5,131.3,127.0,73.8,62.2,38.6,31.9,31.8$, 29.6, 29.6, 29.3, 25.9, 25.3, 22.7, 18.2, 14.1, 12.7, -4.2, -4.8 ; MS (EI) m / z (rel intensity) 382 $\left(\mathrm{M}^{+}, 13\right), 325$ (20), 255 (40), 199 (23), 151 (15), 135 (37), 123 (45), 107 (75), 93 (100); HRMS (EI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}$ 382.3267, found 382.3271 .

233
9-(tert-Butyldimethylsilanyloxy)-nona-2E,4E,6E-trienoic acid (233). To a solution of 50 mg (0.114 mmol) of $\mathbf{1 6 4} \mathrm{in} \mathrm{MeOH}$ was added $57 \mathrm{mg}(0.228 \mathrm{mmol})$ of PPTS. The resulting mixture was stirred at rt for 4.5 h and concentrated in vacuo. The residue was redissolved in EtOAc, washed with $\mathrm{NaCl}, \mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield 32 mg (75\%) of 233 a white solid: IR (KBr) 3010, 2837, 1634, 1590, $1345 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.17$ (dd, 1 $\mathrm{H}, J=11.1,15.0 \mathrm{~Hz}), 6.49(\mathrm{dd}, 1 \mathrm{H}, J=10.8,14.4 \mathrm{~Hz}), 6.17(\mathrm{td}, 2 \mathrm{H}, J=11.4,15.6 \mathrm{~Hz}), 5.92-$ $5.78(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~d}, 1 \mathrm{H}, J=15.3 \mathrm{~Hz}), 3.60(\mathrm{t}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.25(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz})$.

9-Hydroxynona-2 $\boldsymbol{E}, \mathbf{4} \boldsymbol{E}, \mathbf{6} \boldsymbol{E}$-trienoic acid (234). To a solution of $50 \mathrm{mg}(0.114 \mathrm{mmol})$ of $\mathbf{1 6 4}$ in MeOH was added $142 \mathrm{mg}(0.570 \mathrm{mmol})$ of PPTS. The resulting mixture was stirred at rt for 4.5 h and concentrated in vacuo. The residue was redissolved in EtOAc, washed with NaCl and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $30 \mathrm{mg}(82 \%)$ of 233 a white solid: IR (KBr) 3104, 2967, 1620, 1520, 945, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.29(\mathrm{dd}, 1 \mathrm{H}, J=11.1$, $15.3 \mathrm{~Hz}), 6.61(\mathrm{dd}, 1 \mathrm{H}, J=10.8,15.0 \mathrm{~Hz}), 6.38-6.21(\mathrm{~m}, 2 \mathrm{H}), 6.06-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.84(\mathrm{~d}, 1 \mathrm{H}$, $J=15.0 \mathrm{~Hz}), 3.62(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.37(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\delta 169.0,146.8,142.5$, 137.7, 133.1, 129.7, 121.6, 62.4, 37.4.

235
9-Bromonona-2E,4E,6E-trienoic acid triisopropylsilylester (235). To a suspension of 126 mg $(0.30 \mathrm{mmol})$ of $\mathrm{PPh}_{3} \mathrm{Br}_{2}$ in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $119 \mathrm{mg}(0.27 \mathrm{mmol})$ of $\mathbf{1 6 4}$ in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction mixture was stirred for 10 min , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The resulting crude residue was purified by chromatography on $\mathrm{SiO}_{2}\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield $10 \mathrm{mg}(10 \%)$ of 235 as a white solid and 25 mg (24%) of 236 as a white solid: IR (KBr) 3082, 2960, 1622, 1301, $1090,980,625 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.35-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{dd}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.27(\mathrm{td}, 2 \mathrm{H}, J$ $=14.4 \mathrm{~Hz}), 5.90-5.60(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.73(\mathrm{q}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 1.50-1.20(\mathrm{~m}$, $3 \mathrm{H}), 1.07$ (d, $9 \mathrm{H}, J=7.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR δ 166.6, 144.7, 139.9, 135.1, 132.4, 129.5, 122.9, 36.0, 31.6, 17.8, 12.0.

9-Bromonona-2E,4E,6E-trienoic acid (236). ${ }^{1} \mathrm{H}$ NMR $\delta 7.39$ (dd, $1 \mathrm{H}, J=11.4,15.0 \mathrm{~Hz}$), 7.65-6.50 (m, 1 H$), 6.45-6.20(\mathrm{~m}, 2 \mathrm{H}), 6.05-5.80(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.74(\mathrm{q}, 2$ $\mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 172.1,146.7,141.2,136.1,132.2,129.1,119.9,36.0,31.4$.

Bibliography

1. Reetz, M.T.; Kyung, S.; Bolm, C.; Zierke, T. Chem. Ind. 1986, 824.
2. Narasaka, K.; Yamada, T.; Minamikawa, H. Chem. Lett. 1987, 2073.
3. Hayashi, M.; Miyamoto, Y.; Inoue, T.; Oguni, N. J. Chem. Soc. Chem. Commun. 1991, 1752.
4. Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7931.
5. Mukaiyama, M.; Furuya, A.; Ohtsubo, A.; Kobayashi S. Chem. Lett. 1991, 989.
6. Pu, L.; Yu, H-B. Chem. Rev. 2001, 101, 757.
7. Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823.
8. Noyori R.; Kitamura, M.; Suga, S.; Kawai, K. J. Am. Chem. Soc. 1986, 108, 6071.
9. Seebach, D.; Ito, Y.; Beck, A.; Bohac, A.; Ganter, C.; Gawley, R.; Kuhnle, F.; Tuleja, J.;

Wang, Y. Helv. Chim. Acta. 1994, 77, 2071
10. Pu, L.; Huang, W. J. Org. Chem. 1999, 64, 4222.
11. Bolm, C.; Hermanns, N.; Hildebrand, J.; Muniz, K. Angew. Chem. Int. Ed. 2000, 39, 3465.
12. Li, E.; Upadhyay, V.; DeCamp, A.E.; DiMichele, L.; Reider, P. Synthesis 1999, 1453.
13. Carreira, E.; Frantz, D.; Fassler, R. J. Am. Chem. Soc. 2000, 122, 1806.
14. Kagan, H.; Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C. J. Am. Chem. Soc. 1986, 108, 2353.
15. Kagan, H. Synlett 2001, 888.
16. Kagan, H.; Guillaneux D.; Zhao S.; Samuel, O.; Rainford, D. J. Am. Chem. Soc. 1994, 116, 9430.
17. Noyori, R.; Kitamura, M.; Okada, S.; Suga, S. J. Am. Chem. Soc. 1989, 111, 4028.
18. Kagan, H., Girard, C. Angew. Chem. Int. Ed. 1998, 37, 2922.
19. Nozaki, H.; Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, H. J. Am. Chem. Soc. 1977, 99, 3179.
20. Kishi, Y.; Wan, Z.-K.; Choi, H.-W.; Kang, F-A.; Nakajima, K.; Demeke, D. Org. Lett. 2002, 4, 4431.
21. Jamison, T.; Huang, W.; Chan, J. Org. Lett. 2000, 2, 4221.
22. Jamison, T. F.; Miller, K. M.; Huang, W.-S. J. Am. Chem. Soc. 2003, 125, 3442.
23. Montgomery, J.; Oblinger, E. J. Am. Chem. Soc. 1997, 119, 9065.
24. Kirsche, M. J.; Komanduri, V. J. Am. Chem. Soc. 2006, 128, 16448.
25. Srebnik, M. Tetrahedron Lett. 1991, 32, 2449.
26. Oppolzer, W.; Radinov, R. Helv. Chim. Acta 1992, 75, 170.
27. Oppolzer, W.; Radinov, R.; El-Sayed, E. J. Org. Chem. 2001, 66, 4766.
28. Walsh, P.; Chen, Y.; Lurain, A. J. Am. Chem. Soc. 2002, 124, 12225.
29. Dahmen, S.; Brase, S. Org. Lett. 2001, 3, 4119.
30. Chan, A. S.; Ji, J.-X.; Qiu, L.-Q.; Yip, C.-W. J. Org. Chem. 2003, 68, 1589.
31. Ha, D.-C.; Ko, D.-H.; Kang, S.-W.; Kim, K. H.; Chung, Y. Bull. Korean Chem. Soc. 2004, 25, 35.
32. Yang, T.-K.; Tseng, S.-L. Tetrahedron: Asymmetry 2005, 16, 773.
33. Wipf, P. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p. 827.
34. Denmark, S.; O’Connor, S. J. Org. Chem. 1997, 62, 584.
35. Lipshutz, B.; Sengupta, S. In Organic Reactions; Wiley: New York, NY, 1992; Vol. 41, p. 135.
36. Godelski, S. In Comprehensive Organic Synthesis; Trost, B. M.; Ed.; Pergamon Press:

Oxford, 1991; Vol. 4, p. 585.
37. Overman, L. Acc. Chem. Res. 1992, 25, 352.
38. Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12853.
39. Wipf, P.; Reeves, J. Chem. Commun. 2002, 2066.
40. Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556.
41. Trauner, D.; Schwarz, J. B.; Danishefsky, S. J. Angew. Chem. 1999, 111, 3756.
42. Porco, J. A., Jr.; Shen, R.; Lin, C. J. Am. Chem. Soc. 2002, 124, 5650.
43. Jamison, T. F.; Moslin, R. M. J. Am. Chem. Soc. 2006, 128, 15106.
44. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454.
45. Kang, J.; Kim, D. S.; Kim, J. I. Synlett 1994, 842.
46. Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454.
47. Tang, C.; Kangying, L.; Zhenghong, Z.; Wang, L.; Chen, Q.; Zhao, G.; Zhou, G.

Tetrahedron: Asymmetry 2003, 14, 95.
48. Chan, A. S. C.; Xu, Q.; Zhu, G.; Pan, X. Chirality 2002, 14, 716.
49. Shibasaki, M.; Funabashi, K.; Jachmann, M.; Kanai, M. Angew. Chem. 2003, 115, 5647.
50. ee Determinations were carried out using chiral HPLC (Chiralcel OD) using $1 \% i$ -
propanol/hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}(\mathrm{Rt}$ minor $=18.1 \mathrm{~min}, \mathrm{Rt}$ major $=26.8 \mathrm{~min})$.
51. Wipf, P.; Jayasuriya, N.; Ribe, S. Chirality 2003, 15, 208.
52. Gibson, C. Tetrahedron: Asymmetry 1999, 10, 1551.
53. Li, G. J. Org. Chem. 2002, 67, 3643.
54. Zwierzak, A., Napieraj, A. Synthesis 1999, 6, 930.
55. Koreeda, M.; Yang, W. Synlett 1994, 201.
56. Wong, C.; Takayama, S.; Lee, S.; Hung, S. Chem. Commun. 1999, 127.
57. Separation was detected on a Dynamax UV-1 absorbance detector at 254 nm .
58. Maximum loading on the semi-prep column while retaining baseline separation was $\sim 80 \mathrm{mg} /$ injection; $\sim 38 \mathrm{mg}$ of each enantiomer was recovered.
59. Wipf, P.; Werner, S.; Twining, L. A.; Kendall, C. Chirality 2007, 19, 5.
60. Buchwald, S. L.; Kwong, F. Y. Org. Lett. 2002, 4, 3517.
61. Zwierzak, A., Napieraj, A. Synthesis 1999, 6, 930.
62. Maximum loading on the semi-prep column while retaining baseline separation was $\sim 100 \mathrm{mg} / \mathrm{injection} ; \sim 40 \mathrm{mg}$ of each enantiomer was recovered.
63. Kang, J.; Kim, J.; Lee, J.; Kim, D.; Kim , J. Bull. Korean Chem. Soc. 1996, 17, 1135.
64. Anderson, J.; Harding, M. Chem. Comm. 1998, 394.
65. Pu, L. Chem. Rev. 2001, 101, 757.
66. Myers, A.; Shipman, M. J. Org.Chem. 1991, 56, 7098.
67. Meyers, A.; McKennon, M. J.; Drauz, K.; Schwarm, M. J. Org. Chem. 1993, 58, 3568.
68. Anderson, J. C.; Cubbon, R.; Harding, M.; James, D. S. Tetrahedron: Asymmetry 1998, 9, 3461.
69. Buchwald, S. L.; La Marie, S. J.; Nielsen, R. B. Org. Synth. 1993, 71, 77.
70. Tang, C.; Kangying, L.; Zhenghong, Z.; Wang, L.; Chen, Q; Zhao, G.; Zhou, G.; Tang, C.

Tetrahedron: Asymmetry 2003, 14, 95.
71. Gawley, R.; Zhang, Q. J. Org. Chem. 1995, 60, 5763.
72. Ogawa, K.; Soai, K.; Ookawa, A.; Tatsuya, K. J. Am. Chem. Soc. 1987, 109, 7111.
73. ee Determinations were carried out using chiral HPLC (Chiralcel OD) using 1%
i-propanol/hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ with a Dynamax UV-1 absorbance detector.
74. Cran, G.; Gibson, C.; Handa, S. Tetrahedron Asymm. 1995, 6, 1553.
75. Wong, K.-Y.; Yang, X.; Shen, J.; Da, C.; Wang, R.; Choi, M. C. K.; Yang, L. Tetrahedron: Asymmetry 1999, 10, 133.
76. Sibi, M.; Zhang, R.; Shakar, M. J. Am. Chem. Soc. 2003, 125, 9306.
77. Periasamy, M.; Kanath, J. V. B. Tetrahedron 1993, 49, 5127.
78. Shen, Y.; Feng, X.; Liu, Y.; Zhand, G.; Jiang, Y. Eur. J. Org. Chem. 2004, 129.
79. Ellman, J.; Liu, G. J. Org. Chem. 1995, 60, 7712.
80. Day, B. W.; Kendall, C.; Stephenson, C. R. J.; Shafer, Y. A.; Fodor, M. D.; Iyer, P. S.;

Janjic, J. M.; Coleman, C. M.; Wipf, P. J. Comb. Chem. 2005, 7, 322.
81. Harger, M. J. Chem. Soc., Perkin Trans. 2 1980, 2, 154.
82. Arnoldi, A.; Carughi, M. Synthesis 1998, 155.
83. Wong, W.; Lee, S.; Cheung, K. J. Organomet. Chem. 1995, 494, 273.
84. ee Determinations were carried out using chiral HPLC (Chiralcel OD) using $1 \% i$ propanol/hexanes at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ with a PL-ELS 1000 detector.
85. Kang, J.; Kim, J.; Lee, J.; Kim, D.; Kim, J. J. Bull. Korean Chem. Soc. 1996, 17, 1135.
86. Anderson, J. Tetrahedron:Asymmetry 1998, 9, 3461.
87. Hulme, A.; Montgomery, C.; Henderson, D. J. Chem. Soc., Perkin Trans 1 2000, 1837.
88. Zwanenburg, B.; Willems, J.; Hermis, M.; Gelder, R.; Smits, J.; Hammink, J.; Dommerholt, F.; Thijs, L. J. Chem. Soc., Perkin Trans. 1 1997, 963.
89. Elsegood, M.; Page, P.; Allin, S.; Maddocks, S. J. Chem. Soc., Perkin Trans. 1 2002, 2827.
90. Chan, A.; Liu, D.; Zhang, L.; Wang, Q.; Da, C.; Xin, Z.; Wang, R.; Choi, M. Org. Lett. 2001, 3, 2733.
91. Procter, D.; Rayner, C. Synth. Commun. 2000, 30, 2975.
92. Weinreb, S. M.; Basha, A.; Lipton, M. Tetrahedron Lett. 1977, 48, 4171.
93. Ha, D.-C.; Ko, D.-H.; Kim, K. H. Org. Lett. 2002, 4(21), 3759.
94. Wittkowski, L.; Ernst, L. Eur. J. Org. Chem. 1999, 1653.
95. Doring, J. D.; Jones, P. G.; Barrett, D.; Hopf, H.; Rieger, H. Chem. Ber. 1990, 1729.
96. Belokon, Y.; Rozenberg, V.; Danilova, T.; Sergeeva, E.; Vorontosov, E.; Starrikova, Z.;

Lysenko, K. Eur. J. Org. Chem. 2000, 3295.
97. Williams, M.; Allen, J.; Dawson, G.; Frost, C. Tetrahedron 1994, 50, 799.
98. Koskinen, A.; Myllymaki, V.; Lindvall, M. Tetrahedron 2001, 57, 4629.
99. Anderson, J. C.; Harding, M. Chem. Commun. 1998, 393.
100. Reetz, M. T.; Drewes, M. W.; Schmitz, A. Angew. Chem. Int. Ed. 1987, 26, 1141.
101. Cossy, J.; Appenzeller, J.; Pardo, D. G. Org. Lett. 2006, 8, 5309.
102. Novogrocki, G.; Bastin, S.; Ginij, M.; Brocard, J.; Pelinski, L. Tetrahedron: Asymmetry 2003, 14, 1701.
103. http://en.wikipedia.org/wiki/Turnip
104. Pohanka, A.; Broberg, A.; Johansson, M.; Kenne, L.; Levenfors, J. J. Nat. Prod. 2005, 68, 1380.
105. Johansson, P. M.; Wright, S. A. I. Appl. Environmen. Microbiol. 2003, 69, 6464.
106. Pohanka, A., Doctoral Dissertation, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2006.
107. Jacques, J.; Collet, A.; Wilen, S. H. Enantiomers, Racemates, and Resolutions; Wiley Interscience: New York, NY, 1981.
108. Wipf, P.; Hopkins, T. D. Chem. Commun. 2005, 3421.
109. Fujine, K.; Tanaka, M.; Ohsumi, K.; Hashimoto, M.; Takase, S.; Ueda, H.; Hino, M.; Fujii, T. J. Antibiot. 2003, 56, 55.
110. Fujine, K.; Abe, F.; Seki, N.; Ueda, H.; Hino, M.; Fujii, T. J. Antibiot. 2003, 56, 62.
111. Rawling, B. J. Nat. Prod. Rep. 1997, 14, 523.
112. Cossy, J.; Amans, D.; Bellosta, V. Angew. Chem. Int. Ed. 2006, 45, 5870.
113. Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.
114. Hafner, A.; Duthaler, R. O.; Marti, R.; Rihs, G.; Rothe-Streit, P.; Swartzenbach, F. J. Am. Chem. Soc. 1992, 114, 2321.
115. Undheim, K.; Efskind, J.; Rooming, C. J. Chem. Soc., Perkin Trans 1, 2001, 2697.
116. Bates, R. W.; Diez-Martin, D.; Kerr, W. J.; Knight, J. G.; Ley, S. V.; Sakellaridis, A.

Tetrahedron 1990, 46, 4063.
117. Rao, K. S.; Mukkanti, K.; Reddy, D. S.; Pal. M.; Iqbal, J. Tetrahedron Lett. 2005, 46, 2287.
118. Hirano, M.; Yakabe, S.; Chikamori, H.; Clark, J. H.; Morimoto, T. J. Chem. Res., Synopses 1998, 12, 770.
119. Judd, T.; Bischoff, A.; Kishi, Y.; Adusumilli, S.; Small, P.L. Org. Lett. 2004, 6, 4901.
120. Wipf, P.; Coish, P. J. Org. Chem. 1999, 64, 5053.
121. a) Wipf, P.; Xu, W. Tetrahedron Lett. 1994, 35, 5197; b) Wipf, P.; Xu, W. Org. Syn. 1996, 74, 205; c) Wipf, P.; Jahn, H. Tetrahedron 1996, 52, 12583.
122. Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Org. Synth. 1993, 71, 77.
123. Suzuki, K. Pure \& Appl. Chem. 1994, 66, 1557.
124. Suzuki, K.; Hasegawa, T.; Hashimoto, T.; Maeta, H Tetrahedron Lett. 1992, 33, 5972.
125. Suzuki, K.; Hasegawa, T.; Imai, T.; Maeta, H.; Ohba, S. Tetrahedron 1995, 51, 4483.
126. Wipf, P.; Coish, P. Tetrahedron Lett. 1997, 38, 5073.
127. Heathcock, C.; Rosen, T.; Watanabe, M. J. Org. Chem. 1984, 49, 3657.
128. Li, D.; Chen, Y.; Tian, S.-K. J. Am. Chem. Soc. 2000, 122, 9542.
129. Turnbull, K.; Scriven, E. Chem. Rev. 1988, 88, 297.
130. Shioiri, T.; Yamada, S. Org, Synth. 1990, 7, 206.
131. After column chromatography, residue was left on high vacuum to remove excess BnOH .
132. Greene, T. W.; Wuts, P. G. M. Protective groups in organic synthesis; John Wiley \& Sons:

New York, NY, 1999.
133. Frater, G. Helv. Chim. Acta 1979, 62, 2825; Frater, G.; Muller, U.; Gunther, W.;

Tetrahedron 1984, 40, 1269.
134. Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14; Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 5352.
135. ee was determined by synthesis of the opposite enantiomer of β-lactone and comparing HPLC retention times on a Chiralcel AD-H column in $2 \% i \mathrm{PrOH} /$ hexanes at $1 \mathrm{~mL} / \mathrm{min}$.
136. Seebach, D.; Griesbeck, A. Helv. Chim. Acta 1987, 70, 1320.
137. Parsons, P. J.; Cowell, J. K. Synlett 2000, 1, 107.
138. Bhat, K. S.; Brown, H. C. J. Am. Chem. Soc. 1986, 108, 293.
139. Heathcock, C. H. In Comprehensive Organic Synthesis; Pergmon Press: Oxford, 1994; p. 133.
140. Ghosh, A. K.; Fidanze, S.; Onishi, M.; Hussain, K. A. Tetrahedron Lett. 1997, 38, 7171.
141. Masamune, S.; Abiko, A.; Liu, J.-F. J. Am. Chem. Soc. 1997, 119, 2586.
142. Wessjohann, L.; Gabriel, T. Tetrahedron Lett. 1997, 38, 4387.
143. Moriwake, T.; Saito, S.; Ishikawa, T.; Kuroda, A.; Koga, K. Tetrahedron 1992, 48, 4067.
144. Martinelli, M.; Nayyar, N.; Moher, E.; Dhotke, U.; Pawlak, J.; Vaidyanathan, R. Org. Lett. 1999, 1, 447.
145. Trost, B.; Sorum, M.; Chan, C.; Harms, A.E.; Ruhter, G. J. Am. Chem. Soc. 1997, 119, 698.
146. Kurth, M. J.; Decker, O. W. H. J. Org. Chem. 1985, 50, 5769.
147. Seebach, D. Angew. Chem. Int. Ed. 1967, 6, 442.
148. Seebach, D.; Grobel, B. T. Synthesis 1977, 357.
149. Fochi, R.; Barbero, M.; Cadamuro, S.; Degani, I.; Dughera, S. J. Am. Chem. Soc. Perkins Trans. 1 1993, 2075.
150. Wipf, P.; Uto, Y.; Yoshimura, S. Chem. Eur. J. 2002, 8, 1670.
151. Damon, R. E.; Schlessinger, R. H. Tetrahedron Lett. 1976, 1561.
152. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 287.
153. Kocienski, P.; Pommier, A. Chem. Commun. 1997, 1139; Kocienski, P.; Pommier, A.;

Stepanenko, V.; Jarowicki, K. J. Org. Chem. 2003, 86, 4008; Kocienski, P.; Jarowicki, K. Synlett 2005, $1,167$.
154. Baldwin, J. E.; Kirkham, J. E. D.; Courtney, T. D. L.; Lee, V. Tetrahedron 2005, 61, 7219. 155. Jung, M. E.; Min, S.-J. J. Am. Chem. Soc. 2005, 127, 10834.
156. Wang, Y.; Wang, Y. D.; Kimball, G.; Prashad, A. S. Tetrahedron Lett. 2005, 46, 8777.
157. Pereira, S.; Srebnik, M. Organometallics 1995, 14, 3127.
158. Suzuki, A.; Miyaura, N. J. Chem. Soc., Chem. Commun. 1979, 866.
159. Kishi, Y.; Uenishi, J.-I.; Beau, J.-M.; Armstrong, R. W. J. Am. Chem. Soc. 1993, 115, 11446.
160. Roush, W. R.; Frank, S. A.; Chen, H.; Kunz, R. K.; Schnaderbeck, M. J. Org. Lett. 2000, 2, 2691.
161. Viala, J.; Wavrin, L. Synthesis 2002, 3, 326.
162. Kerdesky, F. A. J.; Schmidt, S. P.; Holms, J. H.; Dyer, R. D.; Carter, G. W.; Brooks, D. W. J. Med. Chem. 1987, 30, 1177.
163. Parrain, J.-L.; Commeiras, L.; Santelli, M. Org. Lett. 2001, 3, 1713.
164. Piancatelli, G.; De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A. J. Org. Chem. 1997, 62, 6974.
165. Reider, P. J.; Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J. J. Org. Chem. 1999, 64, 2564.
166. Reider, P. J.; Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J. Tetrahedron Lett. 1998, 39, 5323.
167. Yadav, J. S.; Reddy, E. J.; Ramalingam, T. New J. Chem. 2001, 25, 223.
168. Giacomelli, G.; De Luca, L.; Masala, S.; Porcheddu, A. J. Org. Chem. 2003, 68, 4999.
169. Rucker, C. Chem. Rev. 1995, 95, 1009.
170. Blair, I. A.; Prakash, C.; Saleh, S. Tetrahedron Lett. 1989, 30, 19.
171. Crouch, R. David; Williams, A. B. Synth. Commun. 2006, 36, 959.
172. Wang, Y.-G.; Jiang, Z.-Y. Tetrahedron Lett. 2003, 44, 3859.
173. Bajwa, J. S.; Vivelo, J.; Slade, J.; Repic, O.; Blacklock, T. Tetrahedron Lett. 2000, 41, 6021.
174. Palomo, C.; Aizpurua, J. M.; Cossio, F. P. J. Org. Chem. 1986, 51, 4941.
175. Buchwald, S. L.; La Marie, S. J.; Nielsen, R. B. Org. Synth. 1993, 71, 77.
176. Undheim, K.; Efskind, J.; Romming, C. J. Chem. Soc., Perkin Trans. 1 2001, 2697.
177. Lee, D.-H.; Jang, M.-Y.; Kim, J.-W. Bull. Korean Chem. Soc. 2005, 26, 1497.
178. Wipf, P.; Grenon, M. Can. J. Chem. 2006, 84, 1226.
179. Varney, M.; Romines, W.; Palmer, C. Processes for preparing antiproliferative GARFTinhibiting compounds. U.S. Patent 94-282293, 1997.
180. Wipf, P.; Uto, Y.; Yoshimura, S. Chem. Eur. J. 2002, 8, 1670.
181. Sulikowski, G. A.; Jin, B.; Liu, Q. Tetrahedron 2005, 61, 410.

[^0]: ${ }^{\text {a }}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector.

[^1]: ${ }^{\text {a}}$ ee's were determined by chiral HPLC analysis (Chiralcel OD, flow rate $1 \mathrm{~mL} / \mathrm{min}$ using i-PrOH/hexanes (1:99)) with a Dynamax UV-1 absorbance detector.

[^2]: ${ }^{\text {a }}$ conversion of $\mathbf{1 6 0}$ measured by ${ }^{1} \mathrm{H}$ NMR.

[^3]: ${ }^{\text {a conversion of } 226}$ measured by ${ }^{1} \mathrm{H}$ NMR.

