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Hypersusceptibility (HS) to non-nucleoside reverse transcriptase inhibitors (NNRTI) 

improves HIV infected patients’ virological responses to NNRTI-containing regimens. NNRTI 

HS is associated with nucleoside RT inhibitor (NRTI) mutations, especially those conferring 

resistance to 3′azidothymidine (AZT). Recent logistic regression analyses of a large genotype-

phenotype dataset showed the NRTI mutations most strongly associated with NNRTI HS are 

T215Y, H208Y and V118I. We hypothesized that NRTI mutations V118I, H208Y, and T215Y 

in combination cause NNRTI HS and that this phenotype is due to multiple mechanisms 

including a decrease in enzyme activity and/or deficient viral replication due to decreased virion 

packaged RT.  Therefore we sought to:  (1) determine the phenotypic effects of these mutations 

alone and in combination on the susceptibility of infectious molecular clones and recombinant 

reverse transcriptase proteins to efavirenz, delavirdine, and nevirapine; and (2) elucidate 

differences in viral replication, protein production and packaging for virus containing mutations 

V118I, H208Y, and/or T215Y.  We established different patterns of NNRTI HS and replication 

capacity depending on the combination of mutations present.   HIV-1 viruses containing H208Y 

+ T215Y were HS to all NNRTI; whereas the V118I + T215Y virus was only HS to delavirdine 

and nevirapine.  H208Y + T215Y viruses exhibited reduced replication capacity compared to 

wildtype HIV-1.  In comparison, the V118I + T215Y virus replicated as efficiently as wildtype 
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virus. Upon further investigation we found the amount of HIV-1 RT incorporated into the 

H208Y + T215Y viruses was significantly reduced compared with wildtype virus due to 

decreased viral packaging of GagPol precursors. Interestingly, the RT content in the V118I + 

T215Y virus was similar to wildtype virus.  Furthermore, purified recombinant RT containing 

the H208Y+ T215Y mutations were not NNRTI HS. By contrast, the V118I/T215Y mutant RT 

showed five-fold increased susceptibility to NNRTI.  Our work highlights the complexity of the 

HS phenotype and provides an in-depth understanding of how NRTI mutations V118I, H208Y, 

and T215Y contribute to increased NNRTI susceptibility.  This work has significant public 

health impact because it can help facilitate the design of inhibitors of HIV that exploit the 

mechanisms of hypersusceptibility during rational drug design and can increase the overall 

knowledge of interactions between drug classes for improved patient therapy.  
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1.0  INTRODUCTION 

1.1 HIV AND AIDS PANDEMIC 

Human immunodeficiency virus (HIV) is the causative agent of acquired 

immunodeficiency syndrome (AIDS).  Progression to AIDS is most notably characterized by a 

depletion of the host immune system, especially CD4 T cells, leading to severe clinical 

manifestations.  According to the Centers for Disease Control (CDC) AIDS is diagnosed if an 

HIV infected person has 1) a CD4 T cell count less than 200 cells/mm
3
 of blood and/or 2) an 

AIDS defining condition such as candidiasis, Pneumocystis carinii pneumonia, or Kaposi’s 

sarcoma.   

There are two types of HIV described as HIV-1 and HIV-2.  HIV-2 is primarily found in 

West Africa and although infection also leads to the development of AIDS, HIV-2 is less 

pathogenic and the progression to AIDS caused by HIV-2 infection is usually slower than that 

caused by HIV-1 infection (Bock and Markovitz 2001).  This work focuses solely on HIV-1.  

HIV is primarily transmitted through sexual contact or percutaneous infection, such as through 

contaminated needles for injected drug use.  In addition, HIV can be vertically transmitted from 

mother to child during child birth or breast feeding (Hirschel and Francioli 1998; Palella, 

Delaney et al. 1998) .  
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Ninety-six percent of the 6800 new HIV-1 infections per day in 2007 were in people 

living in low and middle income countries (Figure 1). Moreover, 68% of the total number of 

people living with HIV worldwide reside in Sub-Saharan Africa with more than 60% of the 

adults (age 15 and older) infected with HIV being women (UNAIDS 2007 AIDS epidemic 

update).  In South and Southeast Asia, the number of people living with HIV increased from 3.5 

million in 2001 to 4 million in 2007.  Although the rising number of people in Asia becoming 

HIV infected is alarming, evidence from some African nations suggests behavior modifications 

and prevention practices are effective methods for reducing viral transmission and incidence of 

new infections.  In 2006, Kenya reported that sex with non-regular partners (among women) 

decreased and condom use with non-regular partners (among men and women) increased, 

coinciding with a 9% decrease in the prevalence of HIV from 2001-2005 (UNAIDS 2007 AIDS 

epidemic update).  Decreases in the prevalence of HIV infection have also been reported in 

Botswana, Sierra Leone, and Cameroon during this same period. 

Although low income countries generally bear the largest HIV burden, certain 

populations in high-income countries are disproportionately infected.  The Centers for Disease 

Control (CDC) reported that in 2004 in the United States, HIV infection was the leading cause 

of death among black women aged 25-34 years.  Additionally, black Americans comprised 13% 

of the US population in 2006 but accounted for 49% of the AIDS cases (www.CDC.gov).  

Though HIV is far more prevalent in some regions/populations of the world, the HIV/AIDS 

pandemic is a health, social, and economic burden on the entire global community.  
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Figure 1. Global HIV/AIDS Statistics 

According to the Joint United Nations Programme on HIV/AIDS (UNAIDS) there were 

2.5 million new HIV infections globally  in 2007, down from 3.2 million in 2001.    The number 

of deaths attributed to AIDS went from 1.7 million in 2001 to 2.1 million in 2007. Shauna, the 

reduction in infections is probably not from treatment. UNAIDS revised their estimates based 

on further surveillance  data.  
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1.2 HIV OVERVIEW 

1.2.1 Key Elements of HIV 

HIV belongs to the family retroviridae, genus lentivirus, characterized by retroviruses 

with a long incubation period and slow progression to disease.  HIV-1 can be divided into three 

groups M, N, and O (Gurtler, Hauser et al. 1994; Simon, Mauclere et al. 1998; Gao, Bailes et al. 

1999).  Group M can be further divided into nine subtypes or clades (A, B, C, D, F, G, H, J, K) 

based on phylogenetic comparison of structural genes (Gao, Bailes et al. 1999).   

HIV-1 virions contain two copies of a single-stranded positive RNA genome encoding 

nine viral genes (gag, pol, env, vif, tat, rev, nef, vpr, and vpu, Figure 2) along with the enzymes 

reverse transcriptase (RT), protease (PR), and integrase (IN), and proteins nucleocapsid and p6. 

The viral RNA is surrounded by capsid proteins (Figure 3).  Surrounding the capsid are matrix 

proteins that are further enclosed in a highly glycosylated envelope composed of a lipid bilayer 

from the host cell and viral proteins gp120 and gp41.    
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Figure 2. HIV-1 Genome Organization. 

HIV-1 encodes genes for 9 viral proteins.  The gag gene, shown in orange, encodes the structural 

proteins capsid (CA), matrix (MA), nucleocapsid (NC), and p6.  pol (shown in blue) encodes the viral 

enzymes protease (PR), reverse transcriptase (RT), and integrase (IN). The viral env gene encodes the 

surface (SU or gp120) and transmembrane (TM or gp41) coat proteins.  The remaining accessory genes 

encode proteins that regulate various aspects of the HIV life cycle.   

 

1.2.2 Life cycle
1
 

1.2.2.1 Early Events  

The life cycle of HIV-1 begins with recognition and binding of the viral surface protein 

gp120 to the host cell receptor CD4 found mainly on T-cells and macrophages (Figure 3).  

During the complex interaction of gp120 with CD4, a conformational change occurs in the viral 

                                                   

1
 This section provides an overview of the HIV-1 life cycle modified from the Retroviruses textbook 

(Coffin et al 1997) except where noted.   
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transmembrane protein gp41, including exposure of the fusion peptide at the amino terminus of 

gp41, allowing fusion of viral and cellular membranes (Kilby, Hopkins et al. 1998).  Recently, 

the three dimensional structures of the native trimeric Env structure (formed by gp41 and 

gp120) in both CD4 liganded and unliganded states were derived through electron tomography 

and molecular modeling (Liu, Bartesaghi et al. 2008).    It is now clear that CD4 binding results 

in reorganization of the Env trimer causing displacement of each of the gp120 monomers as 

well as rearrangement of gp41 leading to intimate contact between the virus and cellular target 

(Liu, Bartesaghi et al. 2008). Although CD4 is required for viral binding to T-cells and 

macrophages it is not sufficient for infection.  Either chemokine receptor CCR5 or CXCR4 can 

act as a co-receptor for viral entry (Deng, Liu et al. 1996; Feng, Broder et al. 1996).   

 

Reverse Transcription 

Although it is generally accepted that once the viral core has entered the host cell the 

viral genomic RNA is released from the surrounding capsid proteins (Auewarakul, 

Wacharapornin et al. 2005; Warrilow, Meredith et al. 2008), there is evidence suggesting 

uncoating occurs after reverse transcription (Arhel, Souquere-Besse et al. 2007). In any event, it 

is at this stage that the single-stranded viral RNA is converted to double-stranded DNA (Figure 

3) via the viral enzyme reverse transcriptase (RT).    Using genomic RNA as a template and 

transfer RNA (tRNA) as a primer, a short minus strand DNA is the first product of reverse 

transcription.  The RNA portion of the RNA/DNA heteroduplex is then degraded by the RNase 

H activity of reverse transcriptase. A strand transfer occurs allowing the 3’ end of the genomic 

RNA to be used as a template for further synthesis of the minus strand DNA.  A small portion 

of the genomic RNA containing a polypurine tract resists degradation by RNase H and is used 
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as a primer for plus strand DNA synthesis.  Plus strand synthesis continues until the tRNA 

primer is removed allowing complementation of the plus strand DNA to sequences near the 5’ 

end of the minus strand DNA.  After a second strand transfer occurs, both plus and minus strand 

DNA synthesis resume until a full length double-stranded DNA is formed.  

 

Integration 

Upon completion of a full length double-stranded DNA intermediate by RT another viral 

enzyme, integrase (IN), is responsible for the integration of the double stranded viral DNA 

(vDNA) into host chromosomal DNA.    IN is a 32 kD protein made up of 288 amino acids 

(Katz and Skalka 1994).  The 3’ termini of the double-stranded DNA are cleaved by integrase 

providing the site for attachment of the vDNA to host DNA.   A pre-integration complex 

consisting of both cellular and viral proteins along with the vDNA enters the nucleus of the host 

cell and integrates into host DNA (Shimotohno and Temin 1980; Fujiwara and Mizuuchi 1988; 

Neamati, Marchand et al. 2000; Freed 2001).   

1.2.2.2 Late Events 

Transcription and Translation 

Integrated proviral DNA requires host RNA polymerase II for transcription as well as 

the viral transcription transactivator Tat.  Post-transcriptional modification including 5’ capping 

and 3’ polyadenylation occurs for all synthesized viral RNAs.  Large transcripts are either 

packaged in virions as genomic RNA or used as mRNA for translation of polyprotein precursors 

for Gag and GagPol, while smaller transcripts encode other structural and accessory proteins 

(Figure 3).   
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Figure 3. HIV-1 Life Cycle 

This figure depicts key aspects in the HIV life cycle and highlights them as targets of 

current HIV therapy.  Fusion/binding inhibitors inhibit the entry of virions into a new target cell. 

Reverse transcription is targeted using nucleoside analogues or non-nucleoside reverse-

transcriptase inhibitors (NRTI and NNRTI, respectively). Integrase inhibitors prevent strand 

transfer of the viral DNA into the host chromosome. Protease inhibitors block proteolytic 

processing of the viral Gag and GagPol polyproteins, resulting in the production of non-

infectious particles. Electron micrograph showing the budding of virions is courtesy of P. 

Bieniasz, Aaron Diamond AIDS Research Center, USA. (Simon and Ho 2003)  

Integrase 
inhibitors 
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Assembly and Maturation 

Following viral protein synthesis, genomic RNAs and polyprotein precursors are 

assembled at the plasma membrane.  Targeting to the membrane occurs due to myristylation of 

the N terminal of the Gag polyprotein (Zhou, Parent et al. 1994).   Budding of the assembled 

viral components takes place at the plasma membrane due to signals in the p6 portion of Gag 

referred to as late or L domains (Garnier, Bowzard et al. 1998) 

Cleavage of the Gag and GagPol polyproteins by the viral enzyme PR occurs quickly 

after the release of immature particles and marks virion maturation.  Active PR is required for 

viral infectivity (Kohl, Emini et al. 1988). The mature enzyme is a 10 kD homodimer and is 

formed from two GagPol polyprotein precursors (hereafter referred to as GagPol).  HIV PR is 

an aspartyl protease, characterized by its active site triad including Asp-Thr/Ser-Gly 

corresponding to amino acids 25-27.  The two catalytic Asp 25 residues are adjacent in the 

protein cleft and both subunits of the enzyme contain parallel β sheets called flaps (Tozser, Yin 

et al. 1997).  In their native conformation the flaps overlap and form an intersubunit hydrogen 

bond that would prevent substrate binding (Tozser, Yin et al. 1997).  However, these flaps are 

flexible and act during catalysis by “pinning” the substrate in the active site (Tozser, Yin et al. 

1997; Louis, Weber et al. 2000).  
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1.3 A CLOSER LOOK AT REVERSE TRANSCRIPTASE 

Reverse transcriptase (RT) is a product of the pol gene whose 5’ end overlaps with the 

gag gene (Figure 2).  Pol is translated as a GagPol fusion protein due to a -1 ribosomal frame 

shift and requires proteolytic processing to form mature heterodimeric RT (Jacks, Power et al. 

1988; Pettit, Simsic et al. 1991; Pettit, Clemente et al. 2005). This ribosomal frame shift occurs 

infrequently allowing a 20:1 ratio of Gag:GagPol (Jacks, Power et al. 1988).  The ratio of 

GagPol produced relative to Gag is important for viral assembly. In murine leukemia virus 

(MLV), a mutation that resulted in the production of 100% GagPol (no Gag) prevented 

proteolytic processing of GagPol and the assembly of virions (Felsenstein and Goff 1988). 

GagPol is incorporated into assembling particles through interactions within the capsid (CA) 

domains of Gag and GagPol (Srinivasakumar, Hammarskjold et al. 1995; Huang and Martin 

1997; Hill, Tachedjian et al. 2005), although it has been shown that Pol can be packaged outside 

of the GagPol context (Cen, Niu et al. 2004).  Defects at any of these steps could compromise 

viral particle assembly, incorporation, and/or processing leading to decreases in viral replication 

and the amount of virion associated RT. 

 

 

1.3.1 Enzyme Structure 

 RT is responsible for the conversion of the single-stranded RNA genome into a double-

stranded DNA intermediate and is essential for HIV replication .   RT is a heterodimeric protein 

consisting of 66 kD (p66) and 51 kD (p51) subunits.  Two models have been proposed to 
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explain the formation of the mature heterodimer (Sluis-Cremer, Arion et al. 2004). The first is 

the concerted model in which each of the subunits arises from proteolytic cleavage of two 

separate GagPol polyproteins that then assemble to form the heterodimer.  The second, more 

favored model is referred to as sequential, whereby two 66 kD subunits derived from proteolytic 

cleavage of two GagPol polyproteins, form a homodimer followed by additional processing of 

one of the 66 kD subunits into a smaller 51 subunit (Sluis-Cremer, Arion et al. 2004).    The 

polymerase domain of the p66 subunit has been likened to a right hand containing fingers, palm, 

and thumb subdomains (Kohlstaedt, Wang et al. 1992).  In addition, the p66 subunit contains a 

connection and RNase H domain.  There is a large cleft in the polymerase domain similar to the 

Klenow fragment of E.coli DNA polymerase I (Kohlstaedt, Wang et al. 1992). Unlike p66, p51 

has no cleft and the aspartic acid residues involved in catalysis are buried (Kohlstaedt, Wang et 

al. 1992) leaving the smaller subunit to serve a predominantly structural function.  

 

1.3.2 Enzymatic Function 

1.3.2.1 Polymerase 

There are two polymerase functions of RT: (1) RNA Dependent DNA polymerase 

activity (RDDP) and (2) DNA Dependent DNA polymerase activity (DDDP).  RDDP is the 

polymerization of the initial (-) DNA strand using RNA as the template while DDDP uses a 

DNA template for synthesis.  DNA synthesis follows a series of steps that have been described 

mechanistically by several groups (Cheng, Dutschman et al. 1987; Huber, McCoy et al. 1989; 

Kati, Johnson et al. 1992; Hsieh, Zinnen et al. 1993).   Free RT binds the template/ primer (T/P) 

forming a binary complex followed by binding of the incoming dNTP; to form the ternary 



 12 

complex RT-T/P-dNTP.  Formation of the ternary complex allows nucleophilic attack, 

facilitated by Mg
2+

, of the 3’ hydroxyl group of the primer on the α-phosphate of the newly 

bound dNTP (Parniak and Sluis-Cremer 2000).  Pyrophosphate is released with the formation of 

the phosphodiester bond.  At this point reverse transcription can continue in a processive 

manner in which the binary complex+1dNTP immediately continues incorporating dNTPs or in 

a distributive manner in which RT and the T/P+1dNTP dissociate (Parniak and Sluis-Cremer 

2000).  In distributive polymerization after dissociation of the binary complex RT either binds a 

new T/P or re-binds T/P+1.  The processive form of polymerization is a more efficient enzyme 

activity.  In addition, RT lacks formal proofreading ability and is consequently error prone 

leading to a high rate of genomic mutation (Roberts, Bebenek et al. 1988; Bebenek, Abbotts et 

al. 1993).    

1.3.2.2 RNase H 

In addition to its polymerase functions RT also exhibits endonuclease activity conferred 

by the RNase H domain in the C-terminus of the p66 subunit (Hansen, Schulze et al. 1988). 

RNase H degrades the RNA strand of RNA: DNA duplexes removing the polypurine tract and 

tRNA primers to continue synthesis of double-stranded DNA.  The RNase H primer grip, which 

is adjacent to the RNase H active site, plays a role in substrate binding at both the polymerase 

and RNase H active sites.  Therefore this region of RNase H can influence both polymerization 

and RNA degradation (Schultz and Champoux 2008). 
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1.4 THERAPEUTICS DIRECTED AGAINST RT  

Due to the essential role of reverse transcriptase in the HIV-1 life cycle, it has long been 

a major target of therapeutic intervention.   To date there are twenty-five FDA approved drugs 

for the treatment of HIV infection (not including combination drugs) 

(www.fda.gov/oashi/aids/virals.html).  Fifty percent of those drugs target the reverse 

transcriptase enzyme highlighting its importance in the viral life cycle and its relative ease as a 

target.  Currently, there are two major types of approved inhibitors targeting RT: nucleoside 

reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors 

(NNRTI).    NRTIs block viral DNA synthesis by acting as DNA chain terminators (Mitsuya, 

Weinhold et al. 1985; Yarchoan, Mitsuya et al. 1989) whereas NNRTI bind to a hydrophobic 

pocket near the RT active site distorting the conformation of the enzyme required for efficient 

catalysis (Spence, Kati et al. 1995).   

 

1.4.1 Nucleoside Reverse Transcriptase Inhibitors (NRTI)  

Until 3’ azido-3’-deoxythymidine (commonly referred to as zidovudine or AZT) was 

approved for treatment of HIV/AIDS on March 19, 1987 being infected with HIV-1 had a bleak 

prognosis with no recourse.  It wasn’t until October 9, 1991 that the next nucleoside analog, 

didanosine (ddI), would be approved for therapeutic use in HIV infected patients.  To date there 

are eight FDA approved NRTIs (not including varying formulations) for clinical use.  Initially 

inhibitors were used sequentially, however early on it was discovered that NRTIs used in 

combination were more effective than monotherapy (Meng, Fischl et al. 1990; 1996; Hammer, 
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Katzenstein et al. 1996).  At the third Conference on Retroviruses and Opportunistic Infections 

(CROI) data was reported on the benefits of using the protease inhibitors indinavir, ritonavir, 

and saquinavir in combination with NRTI as potent anti-HIV therapy (Grossman 2006).  At the 

World AIDS Conference later that year there were reports of a “new AIDS cocktail” that would 

include RT inhibitors as well as protease inhibitors and the expression highly active 

antiretroviral therapy (HAART) was coined (www.hivmedicine2007.org).   

 

1.4.1.1 Mechanism of Action 

NRTIs are competitive substrate inhibitors that structurally mimic naturally occurring 

nucleosides but lack the 3’ hydroxyl necessary for phosphodiester bond formation with the 

incoming deoxynucleotide triphosphate resulting in termination of DNA chain elongation 

(Figure 4).  Nucleosides must be phosphorylated once inside the cell to their active triphosphate 

form by cellular kinases.  Once triphosphorylated, NRTIs can also inhibit cellular DNA 

polymerases resulting in cytotoxicity. 

 

1.4.1.2 Resistance     

NRTI therapy is initially successful in reducing plasma viral load but long-term use 

results in the development of drug resistance by viral RT rendering the inhibitors less effective.   

Resistance to NRTI is caused by two major known mechanisms.  The first allows reverse 

transcriptase to discriminate between the natural substrate and the analog with a single point 

mutation (Figure 5A). In the second mechanism, referred to as excision, a specific group of 

http://www.hivmedicine2007.org/
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mutations enable the enzyme to remove the chain terminating analog and continue DNA 

synthesis (Figure 5B).    

 

 

 

Figure 4. NRTI Mechanism of Action. 

The left panel illustrates the incorporation of a normal thymine with a 3’ hydroxyl 

(shown in green) that allows bond formation with the incoming dNTP for DNA chain elongation.  

The right two panels (AZT in the middle, d4T on the right) illustrate NRTI that lack this 

3’hydroxyl thereby preventing further dNTP incorporation.   
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An example of a discrimination inducing mutation is the methionine to valine change at 

position 184 (M184V).  M184V confers substantial resistance to 3TC as shown in a study by 

Schinazi et al.    By week seven of a selection experiment in which HIV-1 was grown in 

increasing concentrations of 3TC, viruses containing the M184V mutation were more than 1000 

fold resistant to 3TC (Schinazi, Lloyd et al. 1993).  The substantial resistance caused by M184V 

was later attributed to dramatic decreases for incorporation efficiency of 3TC-triphosphate 

(3TC-TP) versus the natural substrate dCTP caused by reduction in binding affinity of 3TC-TP 

to the enzyme/template-primer complex (Feng and Anderson 1999).  

The mechanism of resistance to AZT posed a conundrum to investigators for many 

years.  In 1989 multiple mutations including D67N, K70R, T215F/Y, and Q219K conferring 

high level to resistance to AZT were identified (Larder and Kemp 1989).  Later mutations 

M41L and L210W were added to the list of mutations conferring high level resistance to AZT 

now referred to as thymidine analog mutations or “TAMS” (Kellam, Boucher et al. 1992; 

Harrigan, Kinghorn et al. 1996; Hooker, Tachedjian et al. 1996). However it soon became clear 

that the mechanism of resistance to AZT was not due to the inability of the TAM containing 

enzyme to incorporate AZT-TP (Lacey, Reardon et al. 1992; Kerr and Anderson 1997) but 

rather an ATP- dependent reaction catalyzed by HIV-1 RT could remove the chain terminating 

inhibitor (Figure 5B), allowing primer extension to occur (Meyer, Matsuura et al. 1998; Meyer, 

Matsuura et al. 1999). 
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Figure 5.   Mechanisms of NRTI resistance. 

In discrimination (A) RT preferentially incorporates the natural dNTP substrate over the 

NRTI.  In the excision mechanism (B) the chain terminator is catalytically removed by RT in the 

presence of a phosphate donor such as ATP.  

A. Discrimination 

B.  Excision 
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1.4.2 Non-nucleoside Reverse transcriptase inhibitors (NNRTI)  

There are currently four non-nucleoside RT inhibitors (NNRTI) approved for therapeutic 

use by the U.S. FDA including etravirine, efavirenz, delavirdine, and nevirapine.  NNRTI are 

non-competitive RT inhibitors that are structurally distinct (Figure 6), small hydrophobic 

compounds (Sluis-Cremer and Tachedjian 2008) which bind to a site within the palm subdomain 

of the p66 subunit of RT (Kohlstaedt, Wang et al. 1992; Ren and Stammers 2008).  This 

“pocket” is located approximately 10Å away from the polymerase active site (Smerdon, Jager et 

al. 1994; Ren, Esnouf et al. 1995). 

     

                       

 

Figure 6. Structure of FDA approved NNRTI  

At the initiation of this study three NNRTI were FDA approved for clinical use including 

efavirenz, delavirdine, and nevirapine.  A fourth NNRTI, etravirine, was FDA approved for 

clinical use January 2008.  The drugs are structurally distinct and bind to a hydrophobic pocket 

in the p66 subunit of RT. Scheme obtained from Sluis-Cremer and Tachedjian Virus Research 

2008 Vol. 134 (1-2):147-56, used with permission from Elsevier Limited. 
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1.4.2.1 Mechanism of Action 

Binding of NNRTI to RT forms a hydrophobic binding pocket in which the side chains of 

the crucial tyrosine 181 and tyrosine 188 residues move from a down to an  up position (Figure 

6) (Esnouf, Ren et al. 1995; Rodgers, Gamblin et al. 1995; Spence, Kati et al. 1995; Ren and 

Stammers 2008).    Several mechanisms have been proposed to explain the inhibition of HIV-1 

replication by NNRTIs.   Early on, using crystallography, Kohlstaedt et al. proposed two 

mechanisms responsible for the inhibition of RT by nevirapine.  The first included the inhibitor 

acting as a stick or a pole being jammed in the gears of a machine preventing movement of the 

thumb subdomain thereby preventing catalytic function (Kohlstaedt, Wang et al. 1992).  

However, examination of different crystal structures bound with various NNRTI showed 

significant variations in relative domain position leaving no clear evidence that NNRTI binding 

induces a single positioning of the p66 thumb subdomain (Esnouf, Ren et al. 1998; Ren and 

Stammers 2008). The second mechanism proposed by Kohlstaedt et al. was that nevirapine could 

indirectly affect the conformation of critical active site aspartic residues (Kohlstaedt, Wang et al. 

1992).  Comparison of NNRTI-bound and unbound RT showed that inhibitor specificity was 

achieved by emulating the protein-protein interactions that stabilize the structure of the p51 

subunit, resulting in a distortion of the polymerase active site by movement of the key aspartic 

acid residues (Esnouf, Ren et al. 1995).  A third mechanism of NNRTI action has been proposed 

in which the position of the polymerase primer grip is significantly displaced in RT bound to 

NNRTI versus unbound enzyme (Das, Ding et al. 1996).  Displacement of the primer grip would 

affect the positions of the primer terminus and the polymerase active site, possibly explaining 

biochemical data that showed NNRTI binding to HIV-1 RT reduced efficiency of the chemical 

step of DNA polymerization, but does not prevent binding of either dNTPs or DNA (Das, Ding 
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et al. 1996). More recently studies have shown that NNRTIs also inhibit reverse transcription by 

altering RNase H function (Shaw-Reid, Feuston et al. 2005; Hang, Li et al. 2007; Radzio and 

Sluis-Cremer 2008; Sluis-Cremer and Tachedjian 2008).  Current studies also show that NNRTI 

can influence other areas of the viral life cycle including GagPol processing (Tachedjian, Moore 

et al. 2005; Figueiredo, Moore et al. 2006) and RT dimerization (Tachedjian, Orlova et al. 2001; 

Mulky, Sarafianos et al. 2005; Figueiredo, Zelina et al. 2008).  
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Figure 7. Conformational changes in RT due to NNRTI binding.  

NNRTI bind to a hydrophobic pocket in the p66 subunit of RT.  Unliganded RT is 

pictured in black and RT with an NNRTI bound is shown in grey.  For comparison, the 

conformational changes due to binding of the RNase H inhibitor dihydroxyl benzoyl naphthyl 

hydrazone (DHBNH) are shown in color.  When binding occurs Tyr188 and Tyr 181 move from 

a down to an up position (shown in grey).   NNRTI binding also causes a change in the position 

of the primer grip region of RT when compared to the unliganded structure.  This figure was 

obtained from Himmel et al ACS Chemical Biology 2006 Vol.1 (11): 702-12 and used with 

permission from American Chemical Society (Himmel, Sarafianos et al. 2006). 
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1.4.2.2 Resistance 

First generation inhibitors (including nevirapine and delavirdine) generally bind to the 

same pocket region of RT and interact with two crucial tyrosine residues.  There are significant 

ring stacking interactions between the first generation NNRTI and tyrosines 181 and 188.  

Replacement of the tyrosines with cysteine residues results in dramatic loss of the ring stacking 

interactions leading to first generation NNRTI resistance and cross- resistance (Ren and 

Stammers 2008).  No doubt this is why Y181C and Y188C were two of the first NNRTI 

resistance mutations identified (Mellors, Dutschman et al. 1992; De Clercq 1994; Ren and 

Stammers 2008).  However, inhibitors such as efavirenz have less extensive interaction with the 

tyrosine residues.  Therefore, mutations at these regions show smaller losses in efavirenz 

potency.  Inhibitor flexibility has also been proposed as a reason some second generation 

NNRTIs, such as etravirine, are less susceptible to the effects of mutations at these key residues 

(Hsiou, Das et al. 1998; Ren and Stammers 2008).   

K103N is a commonly reported mutation associated with NNRTI resistance.  Loss of 

NNRTI efficacy when lysine is substituted by asparagines at 103 is not as easily explained as the 

aforementioned substitutions because most NNRTI do not directly contact the side chains of 

lysine 103 (Ren and Stammers 2008).  The exception is delavirdine which makes hydrogen 

bonds to the main chain of lysine 103 (Esnouf, Ren et al. 1997).  It has been proposed that the 

substitution of K103N leads to the formation of a hydrogen bond with the side chain of Tyr188 

(Figure 8) stabilizing the residue in its apo-conformation and creating a barrier to NNRTI 

binding (Maga, Amacker et al. 1997).  
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Figure 8. NNRTI resistance caused by K103N mutation.   

Residue 103 is near the entrance to the NNRTI pocket.   The two figures show the region 

around the entrance to the NNRTI binding pocket for wild-type RT (A) and the K103N mutant 

(B).  An additional hydrogen bond between K103N and Y188 (dotted line in B) keeps the 

entrance to the pocket closed, making it more difficult for NNRTIs to enter the pocket. 

Obtained from Sarafianos et al. http://www.retrovirus.info/rt/NNRTI_fig4.html 

A. 

B. 
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1.5 HYPERSUSCEPTIBILITY  

1.5.1 A Common Example 

HIV-1 resistance to each type of inhibitor readily occurs when used independently; 

therefore the compounds are typically used in combination leading to more effective control of 

viral replication than either class alone.  Although the inhibitors have different mechanisms of 

action and act at different sites in RT, there are examples of mutations induced by one class of 

compounds that increase viral susceptibility to the other class of inhibitors.  A firmly 

established example is the Y181C mutation which arises in response to NNRTI exposure.  

Y181C in the NNRTI-binding pocket has been shown to increase viral susceptibility to the 

NRTI zidovudine (AZT) in the presence of AZT resistance mutations (Larder 1992; Selmi, 

Deval et al. 2003).  Introduction of the Y181C mutation in a background of TAMS suppresses 

the excision phenotype (Larder 1992) by reducing ATP binding to the enzyme thereby re-

sensitizing the enzyme to AZT (Selmi, Deval et al. 2003). 

1.5.2 NNRTI Hypersusceptibility 

Recently, a phenotype was observed due to regular drug resistance testing of HIV-1 infected 

patients in which some viral strains demonstrated significantly increased drug susceptibility to 

NNRTIs compared with wild type virus (Shulman, Zolopa et al. 2001; Haubrich, Kemper et al. 

2002; Whitcomb, Huang et al. 2002; Katzenstein, Bosch et al. 2003).  The increased sensitivity 

to NNRTI, termed NNRTI hypersusceptibility (HS),   was positively correlated with previous 

NRTI experience.  In fact, a longer duration of NRTI therapy and reduced NRTI susceptibility 
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was associated with efavirenz HS (Shulman, Zolopa et al. 2001; Haubrich, Kemper et al. 2002). 

In a study examining over 17,000 patient-derived plasma samples, NNRTI HS was observed 

more frequently among viruses from NRTI experienced/NNRTI naïve patients than among 

patients whom experienced both drug classes or were NRTI naïve (Whitcomb, Huang et al. 

2002).   

1.5.2.1 Prevalence and Statistical Cut-offs 

The prevalence of NNRTI HS has been reported in 11-50 % of viral isolates containing 

no major NNRTI mutations from NRTI-experienced/NNRTI naïve patients (Shulman, Zolopa et 

al. 2001; Haubrich, Kemper et al. 2002; Whitcomb, Huang et al. 2002; Shulman, Bosch et al. 

2004).   

 In the previously mentioned studies, hypersusceptibility was defined as a fold change in 

viral sensitivity to a compound < 0.4 when compared to wildtype sensitivity to the same 

compound.  Originally this cut-off was determined based on assay variability, however in a 

2003 study a more clinically relevant threshold for efavirenz hypersusceptibility was sought 

(Bosch, Downey et al. 2003).  Multiple potential cut-offs were examined in the ACTG 364 trial 

database.  The variable cut-offs were related to the virological outcome of treatment over 144 

weeks.  It was determined that the 0.4 fold change cut-off for NNRTI HS showed the maximum 

likelihood estimate and provided the smallest hazard ratio (Bosch, Downey et al. 2003).   

1.5.2.2 Clinical Relevance 

In a prospective cohort analysis, more than 100 NNRTI naïve HIV-1
+
 patients that were 

failing a stable antiretroviral regimen were placed on an NNRTI containing regimen (Haubrich, 

Kemper et al. 2002).  After six months of treatment the mean change in log10 HIV RNA was 
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greater in patients with hypersusceptible virus than in patients without hypersusceptible virus at 

baseline and persisted for twelve months.  CD4
+
 T cell increases were also greater in those 

patients with NNRTI HS virus at baseline compared to patients without NNRTI HS virus 

(Figure 9).  In a randomized trial of multi-drug regimens containing efavirenz in NRTI-

experienced patients, baseline EFV HS increased the likelihood of HIV-1 RNA suppression to 

below 200 copies /mL at 24 and 48 weeks after the initiation of the regimen (Hammer, Vaida et 

al. 2002). 

 

 

 

 

Figure 9. Increase in CD4 T cell count in patients with HS virus. 

In an analysis of more than 100 NNRTI naïve HIV
+
 patients failing an 

antiretroviral regimen, those patients with hypersusceptible (HS) virus at baseline (dotted 

line) had superior increases in CD4 T cell counts compared to patients who did not have 

NNRTI HS virus (solid line) at baseline. *P = 0.1, **P = 0.06. {Haubrich, 2002 #29} 
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1.5.2.3 Genetic Correlates of NNRTI HS 

Recently, a study of paired baseline genotypes and phenotypes were obtained from 444 subjects 

entering one of five ACTG studies (290, 359, 364, 370, or 398) that statistically correlated 

specific NRTI mutations with NNRTI HS (Shulman, Bosch et al. 2004).  All subjects were 

NRTI experienced and NNRTI naïve at the beginning of the study.  Using Fishers exact tests, 

recursive partitioning (Classification and Regression Trees, CART), and logistic regression, RT 

mutations at positions 118, 208, and 215 were predictive of and most associated with efavirenz 

HS (Figure 10).    
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Figure 10. Genetic Correlates of Efavirenz Hypersusceptibility. 

Statistical analyses including recursive partitioning and Classification and Regression 

Tree (CART) were used to identify reverse transcriptase mutations associated with efavirenz 

hypersusceptibility. Combinations of mutations at RT codons 215, 208, and 118 were most 

associated with efavirenz hypersusceptibility: of 26 isolates with mutations at 208 and 215 

85% were HS to EFV and of 55 isolates with mutations at 118 and 215 67% were HS to 

EFV. Figure obtained from Shulman et al AIDS 18(13):1781-178 2004, reprinted with 

permission from Lippincott Williams & Wilkins.  
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1.6 THE ROLE OF MUTATIONS 118I, 208Y, AND 215Y IN NRTI RESISTANCE 

Mutation T215Y is firmly established as a drug resistance mutation evidenced by its 

inclusion in the current list of HIV-1 drug resistance mutations by the International AIDS 

Society (IAS) and the Stanford University HIV Drug Resistance Database (Stanford DB).  

V118I is not included in the IAS panel of resistance mutations but is listed by the Stanford DB 

as causing “low-level resistance to 3TC and possibly other NRTI” when in the presence of other 

resistance mutations.   Although mutations at residue 208 are not included on the most current 

IAS list or the Stanford DB of HIV-1 drug resistance mutations there is growing evidence 

supporting a role for both V118I and H208Y in drug resistance (Johnson et al Topics in HIV 

Medicine 2008). 

 

1.6.1 V118I  

In 2000, a new mutational pattern that leads to moderate resistance to the NRTI 

lamivudine (3TC) in the absence of M184V was reported (Hertogs, Bloor et al. 2000).  When 

present in a background of TAMS viral isolates with V118I alone or in combination with E44D 

showed 4-50 fold resistance to 3TC (Hertogs, Bloor et al. 2000).  Analysis of two HIV-1 

treatment and resistance databases revealed a prevalence of approximately 12% for the valine to 

isoleucine mutation at codon 118 in RT in NRTI treated patients (Romano, Venturi et al. 2002). 

Genotypic analysis of 344 patient plasma samples found V118I in 78 out of 261 isolates from 

patients previously treated with antiretrovirals (Delaugerre, Mouroux et al. 2001).  The valine to 

isoleucine change was always found in an AZT resistance background (the mutation was never 
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found in drug naïve patients) and although the change was associated with 3TC resistance, its 

presence was independent of the M184V mutation (Hertogs, Bloor et al. 2000; Delaugerre, 

Mouroux et al. 2001; Montes and Segondy 2002; Romano, Venturi et al. 2002).  In a study of 

1083 patient samples, V118I was found at high frequencies in the presence of ZDV resistance 

(Hertogs, Bloor et al. 2000).  V118I occurred at the highest frequency (approximately 40%) 

when AZT resistance was greater than 10 fold and 3TC resistance was between 4-50 fold 

(Figure 11).   The V118I mutation was also implicated in resistance to d4T and ddI (Larder, 

Hertogs et al. 2000). Biochemical studies determined that V118I-containing RT enzymes 

showed dramatic reductions in rates of incorporation of AZT-MP and 3TC-MP indicating the 

V118I mutation conferred increased discrimination of the inhibitor compared to the natural 

substrate.   This same study also showed decreased unblocking of an AZT-terminated primer 

when V118I was present.   However a mutation at codon 116 was also present in these enzymes 

leaving the sole contribution of V118I undefined (Girouard, Diallo et al. 2003).  V118 is 

proximal to the ATP binding site ( Figure 12) allowing mutations at this residue to affect the 

binding and positioning of ATP (Sarafianos, Das et al. 2004). 
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Figure 11. Frequency of V118I in clinical samples. 

The frequency and distribution of NRTI associated mutation V118I according to 3TC and 

AZT susceptibility.  Data from 1083 plasma samples obtained during routine clinical testing in 

Europe and US.  Bars represent frequency of V118I in samples with:  less than 4 fold resistance 

to AZT and 3TC (blue bar); > 10 fold AZT resistance and < 4 fold 3TC resistance (red bar); > 10 

fold AZT resistance and moderate (4-50 fold) 3TC resistance (green bar); > 10 fold AZT 

resistance and high (> 50 fold) 3TC resistance (purple bar).  V118I is present at low frequencies 

in the absence of AZT resistance.  V118I occurred at the highest frequency when AZT resistance 

was greater than 10 fold and 3TC resistance was between 4-50 fold.  (Hertogs, Bloor et al. 2000) 

 

 

 

> 10 fold AZT resistance 

3TC resistance 
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1.6.2 H208Y 

In 1995 while doing an in vitro selection of HIV-1 replication in the presence of the 

pyrophosphate analog foscarnet, a histidine to tyrosine change at residue 208 of RT (along with 

other mutations) resulted in approximately 8.5 fold resistance to foscarnet (Mellors, Bazmi et al. 

1995).  Further investigation of the individual contributions of the mutations showed that 

H208Y alone contributed 2.4 fold resistance to foscarnet.   In an investigation of AZT resistance 

in 223 clinical samples a mutation at 208 enhanced AZT resistance in the presence of TAMS 

and M184V (Sturmer, Staszewski et al. 2003). The H208Y mutation (present with 211K and 

214F) increased AZT resistance 21 fold and was only detected in highly AZT resistant samples.  

This group found that although H208Y was present in 12.56% of the study population, the 

presence of M41L and T215Y was a prerequisite for the appearance of H208Y (Sturmer, 

Staszewski et al. 2003). 

Residue 208 is located at the C terminus of an alpha helix in the palm domain (Figure 

12), and has been implicated in the stabilization of this secondary structure (Meyer, Matsuura et 

al. 2003; Sturmer, Staszewski et al. 2003; Svicher, Sing et al. 2006). In a comparison of the 

“open” binary and “closed” ternary configurations of crystallized RT, H208 occupied the same 

position in both structures and did not play a role in positioning of the incoming dNTP (Meyer, 

Matsuura et al. 2003).   However, 208 is proximal to the ATP binding site (Figures 12 and 13) 

and alteration of the geometry of this site may allow efficient excision even in the presence of 

M184V (Meyer, Matsuura et al. 2003; Sarafianos, Das et al. 2004).     
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Figure 12. Site of Drug Resistance Mutations in HIV-1 RT. 

The structure of HIV-1 RT in the region near the polymerase active site is shown. The 

subdomains are color coded (palm, magenta; thumb, green; fingers, cyan). A template–primer is 

shown; the van der Waals volume of the incoming dNTP is colored maroon. The NNRTI binding 

pocket (NNIBP) is labeled; the ATP binding cleft that would participate in the excision reaction 

is shown. The catalytic aspartates are shown in yellow circles; residues that enhance the excision 

reaction are shown in green circles; other residues involved in NRTI resistance are shown in gray 

circles; residues that cause NNRTI resistance are shown in red circles.  Mutations most 

associated with efavirenz HS are highlighted with orange arrows.  Figure obtained from 

Sarafianos et al. Current Opinion in Structural Biology 14:716-730, 2004, reprinted with 

permission from Elsevier Ltd. 
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A study to define an association of H208Y with NRTI exposure and NRTI resistance 

showed that a tyrosine residue at position 208 was prevalent in only 0.2% of treatment naïve 

and approximately 4% of treatment experienced patients and 11.3% in patients having 

experience with four or more NRTI (Svicher, Sing et al. 2006; Nebbia, Sabin et al. 2007). 

H208Y was strongly associated with prolonged NRTI-selective pressure (Nebbia, Sabin et al. 

2007).   

 

1.6.3 T215Y 

The role of T215Y in AZT resistance was established with the first reports of the genetic 

basis of AZT resistance in patients (Larder and Kemp 1989).  Larder et al. examined 12 HIV-1 

isolates from patients, and 7 of the 12 isolates showed phenotypic resistance to AZT.  All of the 

AZT sensitive isolates had wildtype threonine at position 215 while the resistant isolates had 

either phenylalanine or tyrosine at residue 215.  In that study 70% of the resistant isolates had a 

tyrosine at 215 instead of phenylalanine.   Through modeling experiments it was shown that a 

crucial component of AZT resistance was the direct contact of T215Y with the adenine ring of 

ATP (Figure 12), which enhances binding of ATP by properly positioning ATP and allows 

more efficient use of the substrate for the excision reaction (Boyer, Sarafianos et al. 2001).    

This positioning allows the γ-phosphate of ATP to be near the phosphate that joins the last two 

nucleotides of the primer (Sarafianos, Das et al. 2004).  
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

2.1 STUDY RATIONALE 

Waning therapeutic options available to HIV-1 infected patients due to NRTI drug 

resistance leads to loss of viral suppression and ultimately increased morbidity and mortality in 

the infected population. A benefit of specific NRTI resistance mutations such as V118I, H208Y, 

and T215Y is that they improve NNRTI susceptibility, which is associated with better virologic 

outcome (Shulman, Zolopa et al. 2001; Hammer, Vaida et al. 2002; Haubrich, Kemper et al. 

2002; Whitcomb, Huang et al. 2002).  One of the current standards of care for HIV-infected 

patients consists of combination therapy using NRTI with NNRTI.  Therefore, defining 

mechanisms of NNRTI hypersusceptibility due to NRTI-induced resistance mutations is critical 

in improving combination therapies, particulary for patients with limited treatment options.   In 

addition, elucidating mechanisms of NNRTI HS caused by mutations V118I, H208Y, and 

T215Y is intrinsic to the rational design and development of RT inhibitors capable of exploiting 

these mechanisms to enhance therapeutic regimens.   

Patient isolates demonstrating phenotypic HS often contain a multitude of resistance-

associated mutations (Shulman, Zolopa et al. 2001; Haubrich, Kemper et al. 2002; Whitcomb, 

Huang et al. 2002) making it difficult to discern the contribution of specific NRTI resistance 

mutations to NNRTI HS.   Although statistical correlations linking NRTI mutations V118I, 
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H208Y, and T215Y with NNRTI HS have been made (Shulman, Bosch et al. 2004), causality 

has not been determined and the mechanistic basis of NNRTI HS remains undefined. 

NRTIs and NNRTIs have different antiretroviral mechanisms and are active in different 

regions of RT, leaving the correlation between NRTI resistance mutations and NNRTI HS 

unclear (Figure 13).   Therefore mutations in RT that cause NRTI resistance may contribute to 

HS through impaired viral replication, decreased amounts of virion-associated RT, and/or 

diminished enzyme susceptibility resulting in an overall reduction in the concentration of 

NNRTI needed to inhibit production of infectious virus. This study aimed to define the impact 

of specific mutations involved in NNRTI HS and to elucidate mechanisms leading to 

phenotypic HS.   
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Figure 13. Location in RT of Codons V118, H208, and T215. 

A ribbon diagram of HIV-1 RT with the p66 subunit highlighted in yellow and the p51 

subunit highlighted in blue.  The positions of amino acids V118, H208, and T215 in both 

subunits are space filled along with the NNRTI binding pocket (NNRTI-BP).  

How Do NRTI Mutations V118I, H208Y, and T215Y Affect NNRTI Susceptibility? 
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2.2 HYPOTHESIS 

We hypothesize that NRTI mutations 118I, 208Y, and 215Y in combination cause NNRTI 

HS and that this phenotype is due to multiple mechanisms including deficient viral replication 

due to decreased virion packaged RT and decreased enzyme NNRTI susceptibility. 

2.3 SPECIFIC AIMS 

The overall objective of this project was to assess the contribution of HIV-1 reverse 

transcriptase mutations V118I, H208Y, and T215Y alone and in combination to NNRTI 

hypersusceptibility and to elucidate mechanisms responsible for the HS phenotype.  The 

hypothesis was tested by the following specific aims: 

 

1) Establish the contribution of mutations 118I, 208Y, and 215Y to the NNRTI 

hypersusceptibility phenotype using: 

a.  Cell based viral drug susceptibility assays 

b. Cell free purified enzyme NNRTI susceptibility assays 

2)  Elucidate differences in viral replication, protein production and packaging for 

virus containing mutations 118I, 208Y, and/or 215Y.  
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3.0  CHAPTER ONE.  NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITOR 

INDUCED MUTATIONS 118I, 208Y, AND 215Y CAUSE HIV-1 HYPERSUSCEPTIBILITY TO 

NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS 

PREFACE 

This chapter is adapted from a published study (Clark SA
1
, Shulman NS

2
, Bosch RJ

3
, and 

Mellors JW
1
. 2006. Reverse Transcriptase Mutations 118I, 208Y, and 215Y Cause HIV-1 

Hypersusceptibility to Nonnucleoside Reverse Transcriptase Inhibitors. AIDS 20:981-984) 

reprinted with permission from Lippincott Williams & Wilkins Publishing.  Work described in 

this chapter is in fulfillment of specific aim one.  
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3.1 ABSTRACT 

HIV-1 hypersusceptibility (HS) to non-nucleoside reverse transcriptase inhibitors (NNRTI) 

improves the response to NNRTI-containing regimens. The genetic basis for NNRTI HS was 

partially defined in our prior analyses of a paired genotype-phenotype dataset of viral isolates 

from treatment-experienced patients, in which reverse transcriptase (RT) mutations V118I, 

H208Y, and T215Y were strongly associated with NNRTI HS.  We evaluated the role of these 

mutations in NNRTI HS by site-directed mutagenesis and phenotypic analysis of HIV-1 

recombinants.  Drug susceptibility was determined in viral single and multiple cycle replication 

assays as well as in cell free enzyme susceptibility assays.  HS was defined by a statistically 

significant (P <0.01; Student’s t-test) mean fold change (FC) in IC50 of < 0.4.   The single 

mutations V118I, H208Y, and T215Y did not increase viral NNRTI susceptibility.  The 

H208Y/T215Y and V118I/H208Y/T215Y mutants showed marked viral HS to efavirenz.  

Additionally, viruses containing mutation combinations H208Y/T215Y, V118I/T215Y, and 

V118I/H208Y/T215Y were also hypersusceptible to delavirdine and nevirapine.  When assessed 

for enzyme NNRTI susceptibility, RT containing mutations at codons 208 and 215 were not 

hypersusceptible to NNRTI.  In contrast, the V118I/T215Y RT showed significantly increased 

susceptibility to efavirenz and nevirapine (Fold-change = 0.2, P = 0.001 and Fold-change = 0.2, 

P = 0.002, respectively). These findings indicate that combinations of NRTI mutations V118I, 

H208Y, and T215Y produce NNRTI HS and depending on the mutation profile virus may be HS 

to some NNRTI and not others. In addition, a lack of HS for mutant enzymes containing H208Y 
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and T215Y combined with the significant increases in enzyme susceptibility for V118I/T215Y 

mutants provide the first evidence of distinct mechanisms of NNRTI HS. 
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3.2  INTRODUCTION 

Phenotypic testing of HIV-1 infected patient samples identified viral variants that were 

more susceptible to non-nucleoside reverse transcriptase inhibitors (NNRTI) than wildtype virus 

(Shulman, Zolopa et al. 2001).  This phenotype has been termed NNRTI hypersusceptibility 

(HS).  HS is generally defined by a fold change in the test virus IC50 of < 0.4 compared to 

wildtype control virus run in parallel.  NNRTI HS is more common in viral isolates from patients 

who are NRTI-experienced and NNRTI-naïve than in patients who are treatment naïve or 

experienced to both NRTI and NNRTI (Whitcomb, Huang et al. 2002).  Overall, NNRTI HS is 

common; 17% of approximately 18,000 patient plasma samples tested during a two year period 

showed HS to at least one of the three FDA-approved NNRTI (Whitcomb, Huang et al. 2002).  

Several studies have shown that patients with virus that is NNRTI HS have better virologic and 

CD4 responses to NNRTI-containing regimens than patients without NNRTI HS virus (Shulman, 

Zolopa et al. 2001; Hammer, Vaida et al. 2002; Haubrich, Kemper et al. 2002; Whitcomb, Huang 

et al. 2002; Katzenstein, Bosch et al. 2003).  For example, in a randomized trial of multi-drug 

regimens containing efavirenz (EFV) in NRTI -experienced patients, baseline HS to EFV 

significantly increased the likelihood of plasma HIV RNA suppression to below 200 copies/mL 

at 48 weeks after initiation of the regimen (Hammer, Vaida et al. 2002).  

Previously, we reported genetic correlates of NNRTI HS among 444 NRTI-experienced 

patients having paired genotypes and phenotypes (Shulman, Bosch et al. 2004).  Several 

statistical methods were used to identify mutations associated with NNRTI HS including 

univariate analyses, stepwise binary regression, and recursive partitioning (classification and 
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regression trees, CART).  Mutations at RT codons 118, 208, and 215 were most predictive of 

EFV HS (Shulman, Bosch et al. 2004).  In the CART analysis, EFV HS was present in 51% of 

the isolates with mutations at codon 215, 69% with mutations at codons 118 and 215, and 85% 

with mutations at codons 215 and 208.  The role of these mutations in NNRTI HS was inferred 

but not directly demonstrated.  Therefore, the goal of this study was to assess the specific 

contribution of mutations at codons 118, 208, and 215, alone and in combination, to NNRTI HS 

by phenotypic testing of site-directed mutant virus and enzyme.  Defining the contribution of 

specific mutations to NNRTI HS is an essential step in elucidating the virological mechanisms 

involved. 

3.3 MATERIALS AND METHODS 

3.3.1 Chemicals  

The non-nucleoside reverse transcriptase inhibitors (4S)-6-chloro-4-cyclopropylethynyl-

4-trifluoro methyl-1,4-dihydro-beno[d][1,3]oxazin-2-one  (Efavirenz),           and    11-

cyclopropyl-4-methyl-5,11-dihydro-6H-dipyrido[3,2-b: 2’3’-e][1,4][diazepin-6-one] 

(Nevirapine)  were provided by the NIH AIDS Reference and Reagent Program, Division of 

AIDS NIAID. The non-nucleoside reverse transcriptase inhibitor 1-[3-[(1-methylethyl) amino]2-

pyridinyl]-4-[[5-[(methylsulfonyl)amino]-1H-indol-2-yl] carbonyl]-piperazine  (Delavirdine) 

was purchased from Biomol International (Plymouth Meeting, PA).  The nucleoside reverse 

transcriptase inhibitor (R)-9-(2-phosphonylmethoxypropyl) adenine (Tenofovir) was provided 

by Gilead Sciences (Foster City, CA).   3’-azido-3’deoxythymidine (AZT) was obtained from 
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Sigma Chemical Corporation (St. Louis, MO).  2’,3’-deoxy-2’-3’-didehydrothymidine (d4T) 

was provided by Raymond Schinazi, PhD (Emory University).  The following inhibitors were 

obtained from the NIH AIDS Research and Reference Reagent Program:  protease inhibitors  

1,3-thiazol-5-ylmethyl[3-hydroxy-5-[3-methyl-2[methyl-[(2-propan-2-yl-1,3-thiazol-4-

yl)methyl] carbamoyl]amino-butanoyl] amino-1,6-diphenyl-hexan-2-yl] amino formate 

(Ritonavir), and (2S-N-[(2S,4S,5S)-5{2-(2,6-dimethylphenoxy) acetyl]amino}-4-hydroxy-1,6-

diphenyl-hexan-2-yl]-3methyl-2-(2-oxo-1,3-diazinan-1-yl) butanamide (Lopinavir), fusion 

inhibitor acetyl-YTSLIHSLIEESQNQQEKNEQELLELDKWASLWNWF-amide (Enfuvirtide), 

and integrase inhibitor 4-[3-(azidomethyl) phenyl]-2-hydroxy-4-oxo-2-butenoic acid (118-d-24). 

The compounds were dissolved in the appropriate buffers and stored at -20°C.  

Compounds were diluted immediately before use to the desired concentrations in RPMI 1640 

culture medium (Whittaker MA Bioproducts, Walkersville, MD), Dulbecco’s Modified Eagle 

Medium, phenol red free (DMEM-PRF: Gibco-BRL, Grand Island, NY), or dimethyl sulfoxide 

(DMSO). 

3.3.2 Cells 

The P4/R5 reporter cell line (provided by Ned Landau, Salk Institute, LaJolla, CA) is a 

CCR5 tropic HeLa cell line stably transfected to express a Tat-activated β-galactosidase gene 

under the control of an HIV-1 LTR promoter.  P4/R5 cells were cultured in DMEM-PRF 

supplemented with 10% fetal bovine serum (FBS: HyClone, Logan, UT), 50 IU/mL penicillin, 

50 µg/mL streptomycin, and 0.5 µg/mL puromycin (Clonetech, Palo Alto, CA).  MT-2 cells 

(AIDS Research and Reference Reagent Program National Institute of Allergy and Infectious 
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Diseasee, National Institutes of Health) were cultured in RPMI 1640 supplemented with 10% 

FBS, 10 mM Hepes buffer, 50 IU/mL penicillin,  and 50 µg/mL streptomycin.  

3.3.3 Generation of Recombinant HIV-1 

Mutations were introduced into the RT gene of the xxHIV-1LAI infectious clone using the 

QuikChange Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA).  Silent 5’ XmaI and 3’ 

XbaI restriction sites allowed subcloning of the mutated RT fragments into the xxHIV-1LAI clone 

(Shi and Mellors 1997).  The presence of the desired mutations was verified by DNA 

sequencing. 

3.3.4 Generation of Virus 

Virus was produced by transfection of wildtype or HIV-1LAI plasmids containing 

mutations V118I alone; H208Y alone; T215Y alone; V118I/T215Y; H208Y/T215Y; and 

V118I/H208Y/T215Y ( Figure 14) by electroporating (BIO-RAD Gene Pulser ®, Hercules, CA) 

5-10 µg DNA  into MT-2 cells.   Culture supernatants were harvested seven days post-

transfection and stored at -80°C.  The genotype of harvested virus was confirmed by extracting 

RNA from virions (QIAamp kit, QIAGEN, Valencia, CA), treating the extract with DNase I 

(Roche, Indianapolis, IN), amplifying the RT coding region using RT-PCR, purifying the PCR 

product (Wizard PCR Purification System, Promega, Madison, WI), and sequencing the PCR 

product.  The 50% tissue culture infectious dose (TCID50) of each virus stock was determined in 

P4/R5 or MT-2 cells by three fold endpoint dilution assay and calculated using the Reed and 

Muench equation.   
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Site directed mutants containing these mutations were used to study NNRTI 

hypersusceptibility.   *The H208Y/V118I mutant combination was never found in patient 

isolates in the five ACTG studies used to determine statistical correlates of HS and was therefore 

not included in this study.   

 

 

V118I 

H208Y/V118I* 

H208Y 

V118I/T215Y 

H208Y/T215Y 

V118I/H208Y/T215Y 

T215Y 

Figure 14.  NRTI mutant combinations studied 
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3.3.5 Single Cycle Drug Susceptibility Assay 

Serial 2-fold drug dilutions were added in triplicate to 5 x 10
3 

P4/R5 cells/well in a 96 

well plate.  Wells were inoculated with sufficient virus to produce 100 relative light units (RLU) 

in no-drug control wells.  Forty-eight hours after infection, a cell lysis buffer and luminescent 

substrate (Gal-Screen; Tropix/Applied Biosystems) were added to each well, and the RLU values 

were determined using a luminometer (ThermoLabSystems, Waltham, MA).  The 50% inhibitory 

concentration (IC50) was calculated as the concentration of drug needed to inhibit 50% of viral 

replication.  The fold-change (FC) in virus susceptibility was calculated by dividing the IC50 of 

mutant virus by the IC50 values of wildtype HIVLAI.   

3.3.6 Multiple Cycle Drug Susceptibility Assay 

Serial dilutions of an inhibitor were added in triplicate to MT-2 cells in a 96-well plate.  

The cells were infected at an MOI of 0.01 determined by endpoint dilution in MT-2 cells.  Cells 

were monitored daily for syncytium formation.  Seven days post-infection, culture supernatants 

were harvested and treated with 0.5% Triton-X 100.  The p24 antigen concentration in the 

supernatants was determined using a commercial ELISA assay (DuPont, NEN Products, 

Wilmington DE).  IC50 and fold-change were calculated as described above.   
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3.3.7 Protein Purification and Expression 

Mutant HIV-1LAIxx (Shi and Mellors 1997) RT made using the Quickchange site directed 

mutagenesis kit (Stratagene LaJolla, California USA) was inserted into the protein expression 

plasmid p6HRT-PR-xx (p6HRT) which contains XmaI and XbaI restriction sites, a six 

consecutive histidine residue tag at the N-terminus, and the complete protease (PR) sequence (Le 

Grice and Gruninger-Leitch 1990). Expression of an HIV-1 protease sequence allows processing 

of RT into the p51 and p66 subunits during protein generation.  p6HRT and pDMI.1 (expresses a 

lac repressor) were co-transformed  into E. coli JM109 cells. Cultures were grown in 

PowerPrime broth to an OD600nm 0.4 at 37°C.  Protein production was induced with the addition 

of 1 M isopropyl β D-1-thiogalactopyranoside (IPTG) with overnight incubation at 30°C.    

Proteins were purified using TALON
®

 Polyhistidine-Tag Purification Resins and 2 mL 

disposable gravity columns (ClonTech Mountainview, CA).  RT concentrations were determined 

by spectrophotometry at 280 nm using an extinction coefficient (ε280) of 260450 M
-1

cm
-1

 and by 

Bradford assay (Bradford 1976).  Samples were subjected to sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and visualized with a VersaDoc imaging 

system (BioRad Laboratories, Inc., Hercules, CA) to ensure equal amounts of p66 and p51 

subunits.  Following the addition of glycerol, proteins were stored at -20°C or -80°C until further 

use. 
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3.3.8 Generating Primer/Template 

SPA primer/ template 

Polyadenylic acid (Poly rA) obtained from Amersham Biosciences (USA) and a biotinylated 

thymidine primer were dissolved in Tris-EDTA (TE) buffer.  Poly rA –biotin dT were annealed 

in TE buffer by heating for 15 minutes at 100°C followed by slow cooling to room temperature.  

3.3.1 Enzyme NNRTI Susceptibility Assays (SPA) 

The NNRTI concentration effective at inhibiting 50% (IC50) of RT activity for wildtype 

and mutant enzymes was measured by incubating 25 nM wildtype or mutant RT, 600 nM rA-dT 

template-primer,   25 mM Tris, 10 mM MgCl2 and 25 µM [
3
H]-TTP at 37°C for 20 minutes in 

the presence and absence of varying drug concentrations.  The reactions were stopped with the 

addition of streptavidin coated scintillation beads (GE Healthcare, Piscataway, NJ USA) diluted 

in EDTA.  Reaction mixtures and beads were agitated for thirty minutes at room temperature and 

plates were read on a MicroBeta TriLux Scinitllation Counter (Perkin Elmer, Shelton, CT). 

 

3.3.2 Statistical Analyses 

Student’s t-test was used to assess the statistical significance of differences in IC50 values 

between mutant and wild type virus or protein.  P-values less than or equal to 0.01 were 

considered to be statistically significant.  Hypersusceptibility was defined by two criteria: IC50 

values significantly less than wildtype (P < 0.01) and fold change values of < 0.4. 
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3.4 RESULTS 

3.4.1 Role of mutations 118I, 208Y, and 215Y in HIV-1 Efavirenz hypersusceptibility 

To assess the role of mutations at RT codons 118, 208, and 215 in NNRTI HS, mutant 

recombinant viruses encoding each of these mutations alone and in combination (combinations 

of mutations are shown in Figure 14) were produced and assayed initially for susceptibility to 

EFV, the most widely used NNRTI.   Table 1 shows the mean EFV IC50 values for each of the 

mutants, the fold-change (FC) in IC50 compared to wildtype, and the statistical significance of 

the difference in mean IC50 values.  The single mutants V118I, H208Y, and T215Y did not show 

significantly increased susceptibility to EFV, having FC values of 0.58, 0.55, and 0.70, 

respectively.  The H208Y/T215Y double mutant showed HS to EFV with a mean IC50 value of 

0.39 ± 0.2 (FC of 0.27; P = 0.0007). By contrast, the V118I/T215Y mutant was not HS to EFV 

with a mean IC50 value of 1.04 ± 0.61 nM and FC of 0.71 (P = 0.73).  The triple mutant 

containing V118I/H208Y/T215Y showed the greatest HS to EFV of the isolates tested, with a 

mean IC50 value of 0.29 ± 0.18 nM and FC of 0.20 (P= 0.00001).  Testing the same site-directed 

mutants in a pNL43 background gave similar results (Table 7, Appendix). 
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Table 1. Viral susceptibility to Efavirenz 

 

Mean IC50 ± standard deviation from at least three independent experiments.  Fold-change comparing 

mutant and WT IC50.  Single cycle assay in P4/R5 cells was used to determine drug susceptibility.  

Specifically, 2 fold drug dilutions were added in triplicate to P4/R5 cells.  Viral replication in the 

presence and absence of drug was detected 48 h post-infection; relative light unit values were determined 

using a luminometer.  The Students t-test was used to assess statistical significance.  P-values less than 

or equal to 0.01 were considered statistically significant. *Indicates hypersusceptibility (Fold change < 

0.4 and P < 0.01). 

 

 

 

 

 

 

 

Mean IC50 (nM) ± Standard Deviation (fold-change) 

HIVLAI Efavirenz P-value 

WT 1.46 + 0.29                    

118I 0.85 ± 0.25      (0.58) 0.01 

208Y 0.81 ± 0.24      (0.55)          0.001 

215Y 1.02 ± 0.27      (0.70) 0.12 

118I/215Y 1.04 ± 0.61      (0.71) 0.73 

208Y/215Y 0.39 + 0.20      (0.27)*       0.0007 

118I/208Y/215Y 0.29 ± 0.18       (0.20)*          0.00001 
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3.4.2 Role of mutations 118I, 208Y, and 215Y in HIV-1 Delavirdine Susceptibility 

We next determined the susceptibility of the mutants to delavirdine (DLV) another FDA-

approved NNRTI (Table 2).  None of the single mutants were hypersusceptible to DLV.  The 

H208Y/215Y double mutant was HS to both DLV with FC values of 0.19 (P < 0.001), as was the 

triple V118I/H208Y/T215Y mutant with a FC value of 0.14 (P < 0.001).  Although the 

V118I/T215Y double mutant was not HS to EFV (mean FC 0.71, P = 0.73), it was HS to DLV 

with a mean FC of 0.25 (P = 0.002). 

 

Table 2. Viral Susceptibility to Delavirdine 

Mean IC50 ± Standard Deviation (fold-change) 

HIVLAI Delavirdine P-value 

WT 63.3 ± 19               

118I 36.5 ± 23           (0.58)     0.02 

208Y 52.3 ± 19           (0.83)      0.3 

215Y 39.5 ± 6.0          (0.62)       0.02 

118I/215Y 15.5 ± 3.9          (0.25)*       0.002 

208Y/215Y 12.3 ± 4.3          (0.19)*       0.0004 

118I/208Y/215Y 8.90 ± 0.6          (0.14)*      0.0002 
 

Mean IC50 ± standard deviation from at least three independent experiments.  Fold change compared to 

WT.  Single cycle assay in P4/R5 cells were used to determine drug susceptibility.  Specifically, 2 fold 

drug dilutions were added in triplicate to P4/R5 cells.  Viral replication in the presence and absence of 

drug was detected 48 h post-infection; relative light unit values were determined using a luminometer.  

The Student’s t-test was used to assess statistical significance.  P-values less than or equal to 0.01 were 

considered statistically significant. *Indicates hypersusceptibility (Fold change < 0.4 and P < 0.01). 



 53 

3.4.3 Role of mutations 118I, 208Y, and 215Y in HIV-1 Nevirapine Susceptibility 

Finally, the susceptibility of the mutants to the FDA approved NNRTI nevirapine (NVP) 

was determined (Table 3).  None of the single mutants were hypersusceptible to NVP.  Although 

both V118I and H208Y had approximately 0.55 fold changes in NVP susceptibility, these 

susceptibility increases were not statistically significant.  The H208Y/215Y double mutant was 

HS to NVP with a FC value of 0.25 (P < 0.001), as was the triple V118I/H208Y/T215Y mutant 

with a FC value of 0.16 (P < 0.001).  Interestingly, the V118I/T215Y double mutant was also 

hypersusceptible to NVP with a FC of 0.34 (P = 0.003). 

 

Table 3. Viral Susceptibility to Nevirapine 

Mean IC50 ± Standard Deviation (fold-change) 

HIVLAI   Nevirapine P-value 

WT   85.5 + 27                  

118I   48.1 + 17    (0.56)     0.016 

208Y   48.5 + 13    (0.57)        0.016 

215Y   60.1 + 29    (0.70)        0.170 

118I/215Y   29.2 + 12    (0.34)*       0.003 

208Y/215Y   21.6 + 8.5   (0.25)*        0.001 

118I/208Y/215Y   13.3 + 8.8   (0.16)*          0.0005 
 

Mean IC50 ± standard deviation from at least three independent experiments.  Fold change compared to 

WT.  Single cycle assay in P4/R5 cells were used to determine drug susceptibility.  Specifically, 2 fold 

drug dilutions were added in triplicate to P4/R5 cells.  Viral replication in the presence and absence of 

drug was detected 48 h post-infection; relative light unit values were determined using a luminometer.  

The Student’s t-test was used to assess statistical significance.  P-values less than or equal to 0.01 were 

considered statistically significant. *Indicates hypersusceptibility (Fold change < 0.4 and P < 0.01) 
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 Figure 15. Summary of HIV-1 Susceptibility to Non-nucleoside RT Inhibitors 

The dotted red line indicates a 0.4 fold change in drug susceptibility.  All bars below the 

dotted line specify hypersusceptibility to the respective drug. 
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3.4.4 Susceptibility of HIV-1 Mutants to NRTI 

Although mutations V118I, H208Y, and T215Y have been implicated in decreased 

susceptibility of HIV-1 to NRTI in the context of additional mutations (such as thymidine analog 

mutations or TAMs), the individual contribution of these mutations to NRTI resistance is not 

clear and no studies to date have assessed the contribution of mutant combinations 

V118I/T215Y, H208Y/T215Y, and V118I/H208Y/T215Y to NRTI resistance.  Therefore 

susceptibility to stavudine, tenofovir, and zidovudine was tested in single cycle replication 

assays.  Table 4 shows that although none of the single mutants were significantly resistant to 

any of the NRTI tested, the H208Y single mutant did reduce susceptibility to stavudine by 

almost two fold and the T215Y mutant decreased susceptibility to zidovudine by three fold.  All 

three mutant combinations showed decreased susceptibility to stavudine though only the 

difference in susceptibility between the triple mutant and wildtype virus was statistically 

significant (fold change 2.3; P = 0.007).  All three combinations also showed decreases in 

susceptibility to zidovudine and tenofovir, with the V118I/T215Y combination reducing 

zidovudine susceptibility by almost three fold; however the differences from wildtype were not 

statistically significant (Table 4). 

3.4.5 Susceptibility of HIV-1 Mutants to non-RT Inhibitors 

To further demonstrate that hypersusceptibility due to mutations V118I, H208Y, and 

T215Y is NNRTI specific, we tested the susceptibility of these mutants to inhibitors that exert 

their effects on other areas of the viral life cycle.  Four inhibitors were tested; ritonavir, 

lopinavir, 118-d-24, and T-20.  Ritonavir and lopinavir are FDA approved protease inhibitors, 
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while T-20 is an FDA approved fusion/entry inhibitor.  118-d-24 is an azido-containing diketo-

acid derivative that disrupts the strand transfer reaction of HIV integrase (Svarovskaia, Barr et al. 

2004). Table 5 shows that all three mutants exhibited wildtype susceptibility to the integrase and 

entry inhibitors.  H208Y/T215Y had wildtype susceptibility to both protease inhibitors and 

V118I/T215Y had increased susceptibility to ritonavir, though it did not meet the HS cut-offs. 

However, the triple mutant was hypersusceptible to the protease inhibitor ritonavir (FC = 0.1, P 

< 0.0001) but not lopinavir (FC = 1.3, P = 0.2) (Table 5).    
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Table 4. Viral NRTI Susceptibility 

HIVLAI Stavudine P-value Tenofovir P-value Zidovudine P-value

WT 4.98 ± 1.90            3.04 ± 1               0.44 ± .27

118I 5.41 ± 1.90 (1.1) 0.69 2.07 ± 0.39  (0.7) 0.05 0.27 ± 0.15  (0.6) 0.44

208Y 9.37 ± 3.97 (1.9) 0.15 2.42 ± 0.97  (0.8) 0.11 0.31 ± 0.19  (0.7) 0.57

215Y 4.35 ± 0.36 (0.9) 0.17 5.48 ± 1.80  (1.8) 0.36 1.31 ± 0.45  (3.0) 0.02

208/215 7.99 ± 1.70 (1.6)   0.11 3.22 ± 0.40  (1.1)     0.79 0.74 ± 0.33  (1.7) 0.29

118/215 8.23 ± 1.20 (1.7)   0.07 3.77 ± 0.60  (1.2)    0.36 1.28 ± 0.71  (2.9) 0.13

118/208/215 14.3 ± 3.10 ( 2.3) 0.007 5.49 ± 0.20  (1.8) 0.19 0.71 ± 0.41  (1.6) 0.39

Mean IC50 ( M) + Standard Deviation (FC)  

 

 

Means ± standard deviation from at least three independent experiments.  Fold change (FC) compared to WT.  Single cycle assay in 

P4/R5 cells were used to determine drug susceptibility.  Specifically, 2 fold drug dilutions were added in triplicate to P4/R5 cells. 

Viral replication in the presence and absence of drug was detected 48 h post-infection; relative light unit values were determined using 

a luminometer. Inhibiton concentrations calculated as stated in Materials and Methods.  The Student’s t-test was used to assess 

statistical significance.  
# 

P-values less than or equal to 0.01 were considered statistically significant.   

# 
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Table 5. Non-RT Inhibitor Susceptibility 

HIVLAI Ritonavir P-value Lopinavir (nM) P-value 118-d-24 (µM) P-value T-20 (µg/mL) P-value

WT 73.9 ± 8.3 7.00 ± 3.7 20.7 ± 5.8 0.57 ± 0.3

118I/215Y 38.5 ± 9.5  (0.5) 0.02 8.29 ± 3.2  (1.2) 0.2 21.8 ± 8.8  (1.1) 0.9 0.57 ± 0.2 (1.0) 0.4

208Y/215Y 62.6 ± 11   (0.9) 0.2 7.36 ± 4.2  (1.1) 0.2 24.2 ± 12   (1.2) 0.8 0.35 ± 0.1 (0.6) 0.7

118I/208Y/215Y 7.63 ± 4.5  (0.1)* < 0.0001 8.84 ± 4.5  (1.3) 0.2 22.3 ± 1.3  (1.1) 0.7 0.48 ± 0.2 (0.8) 0.3

Mean IC50 ± Standard Deviation (FC)

 

Values reported as means ± standard deviation (SD) from at least three independent experiments with fold-change (FC) in parenthesis.  

Integrase inhibitor (118-d-24) and entry inhibitor (T-20) susceptibility were determined in P4/R5 cells as described above.  Protease 

susceptibility was determined using a multiple cycle assay in MT-2 cells (see Materials and Methods for details).  The Student’s t-test 

was used to assess statistical significance between wildtype (WT) and mutant IC50 values.  P-values less than or equal to 0.01 were 

considered statistically significant. * denotes hypersusceptibility.  
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3.4.1 Enzyme NNRTI Susceptibility 

We determined that HIV-1 viruses harboring RT mutations V118I/T215Y, 

H208Y/T215Y, and V118I/H208Y/T215Y were hypersusceptible to NNRTI.  Resistance 

mutations in reverse transcriptase that decrease viral susceptibility often alter enzyme structure 

and/or function consequently eliciting the same drug susceptibility phenotype in purified 

enzymes that is seen in virus.        Therefore the susceptibility of purified recombinant RT 

enzymes to efavirenz, nevirapine, and delavirdine was evaluated.  Purified recombinant wildtype 

and mutant RT enzymes were incubated with MgCl2, rA/dT, and [
3
H]-TTP in the presence and 

absence of drug, and polymerase activity was measured by incorporation of 
3
H into the DNA 

chain.  Previous studies show that enzymes with the E138K mutation exhibited low level 

resistance (2-5 fold) to all NNRTIs in therapeutic use (hivdb.standford.edu; (Sato, Hammond et 

al. 2006) and were therefore used as a control for the detection of small differences in drug 

susceptibility.  Table 6 shows the susceptibility of each mutant RT combination to efavirenz, 

nevirapine, and delavirdine.  Enzyme V118I/T215Y was hypersusceptible to efavirenz and 

nevirapine with fold changes of 0.2 (P = 0.001), and 0.2 (P =0.002) respectively.  Susceptibility 

to delavirdine was increased compared to wildtype (fold-change 0.2; P =0.04) however the P-

value did not meet the specified cut-off of < 0.01.  Interestingly, neither H208Y/T215Y nor 

V118I/H208Y/T215Y was hypersusceptible to delavirdine, nevirapine, or efavirenz.   As 

expected E138K showed low-level decreases in NNRTI susceptibility. The lack of NNRTI 

hypersusceptibility of purified recombinant mutant proteins containing H208Y + T215Y  while 

V118I/T215Y enzymes showed increased susceptibility to all NNRTI tested provides evidence 

of multiple mechanisms of NNRTI HS depending on the mutation profile.
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   Table 6. NNRTI Susceptibility of Purified Enzymes 

Mean IC50 + Standard Deviation   (Fold-Change)        

RT Efavirenz (nM) P-value Delavirdine (µM) P-value Nevirapine (µM) P-value

WT 34.3 ± 11 3.48 ± 1.1 5.04 ± 0.2

118I/215Y 7.24 ± 4.9  (0.2)** 0.001 0.78 ± 0.2  (0.2)* 0.04 0.74 ± 0.15 (0.2)** 0.002

208Y/215Y 27.8 ± 6.0  (0.8) 0.2 2.35 ± 0.9  (0.7) 0.13 3.52 ± 1.3   (0.7) 0.253

118I/208Y/215Y 17.6 ± 3.4  (0.5) 0.1 2.82 ± 0.8  (0.8) 0.55 4.66 ± 0.08 (0.9) 0.136

138K 43.8 ± 4.4  (1.3) 0.36 6.83 ± 1.8  (2.0) 0.14 26.9 ± 15    (5.3) 0.17  

Values represent mean ± standard deviation from at least three independent experiments.  Scintillation proximity assay used to 

determine RT susceptibility to NNRTI. Briefly, RT added in duplicate to 96 well plates followed by varying concentrations of 

inhibitor and master mix (rA/dT, 
3
HTTP, MgCl2, KCl).  Reactions were incubated for 30 minutes at 37ºC followed by incubation with 

streptavidin scintillation beads for 1.5 hrs.  Plates were read on a liquid scintillation counter.  Student’s t-test was used to determine 

statistical significance. **P < 0.01 (hypersusceptible), *P < 0.05.  Interestingly, only the V118I/T215Y RT was hypersusceptible to 

NNRTI.
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3.5 DISCUSSION 

Our prior analyses of a large genotype-phenotype database identified V118I, H208Y, and 

T215Y to be strongly associated with NNRTI HS. It was not clear from these analyses, however, 

whether the mutations were genetic markers or causal of the NNRTI HS phenotype.  Through 

our current analysis of site-directed mutants we provide the first report of mutations at codons 

118, 208 and 215 causing NNRTI HS. We found that the V118I and H208Y single mutant 

viruses showed significantly increased EFV susceptibility, but the T215Y mutant did not.  No 

single mutants were HS to NVP or DLV.  Both HIVH208Y/T215Y and HIVTriple mutant viruses were 

HS to all three NNRTI, whereas HIVV118I/T215Y was HS to DLV and NVP but not EFV.   

Of note, mutations V118I and H208Y are not included as drug resistance mutations listed 

by the International AIDS Society panel, and are sometimes considered polymorphisms. 

However, a study of 344 plasma samples from HIV infected people analyzed by genotypic 

resistance testing showed that V118I was never found in the treatment naïve population and was 

present in 30% of those patients previously treated with antiretroviral therapy (Delaugerre, 

Mouroux et al. 2001).  In addition, a study of the prevalence of H208Y that examined 6352 

genotypic resistance tests linked to a clinical database  showed that H208Y was present in 0.3% 

of treatment naïve samples and 4.1% in treatment experienced samples (Nebbia, Sabin et al. 

2007).   Emergence of both V118I and H208Y were strongly associated with other NRTI 

mutations, especially TAMS (Delaugerre, Mouroux et al. 2001; Nebbia, Sabin et al. 2007).   In 

our analysis of the contribution of these mutations to NRTI susceptibility we found that the 
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H208Y and T215Y single mutants reduced susceptibility to stavudine (d4T) and zidovudine 

(AZT) by 2 and 3 fold respectively.  The single V118I mutant had no affect on the susceptibility 

of d4T, TNF, or AZT.  When assessing the contribution of the mutations in combination to NRTI 

susceptibility, all three mutants showed reduced susceptibility to the three inhibitors tested.   This 

data provides further evidence that mutations V118I and H208Y reduce NRTI susceptibility 

when combined with other mutations and these mutations should possibly be included in 

resistance mutation lists/panels. 

The origin of drug resistance due to mutations selected in the presence of drug can often 

be pinned on amino acid changes that alter protein structure and function.  For example, the 

lysine to arginine  at residue 103 in RT decreases NNRTI susceptibility by creating an additional  

hydrogen bond with the tyrosine at residue 188 that keeps the entrance to the pocket closed, 

making it more difficult for NNRTIs to enter the pocket causing a barrier to enzyme drug 

binding.  In order to determine if mutations V118I, H208Y, and T215Y have similar phenotypic 

effects on the enzyme as were seen in the virus we made site directed mutants in a protein 

expression vector to obtain purified recombinant proteins.  When RT containing V118I/T215Y, 

H208Y/T215Y, and V118I/H208Y/T215Y were assessed for NNRTI susceptibility we found 

that both enzymes containing H208Y and T215Y were not NNRTI HS.  In contrast, the 

V118I/T215Y mutant was HS to efavirenz and nevirapine, and had increased susceptibility to 

delavirdine (Table 6).   

 

  Interestingly, the V118I/H208Y/T215Y mutant was hypersusceptible to the protease 

inhibitor ritonavir but not lopinavir (Table 5). Studies of protease hypersusceptibility show that 

many viral isolates with increased susceptibility to ritonavir have low replication capacity 

(Martinez-Picado, Wrin et al. 2005).  Interestingly, although ritonavir hypersusceptibility was 
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associated with low replication capacity, lopinavir susceptibility had the lowest correlation with 

replication capacity (Martinez-Picado, Wrin et al. 2005) possibly explaining the divergent results 

for the two protease inhibitors.  It is possible that the V118I/H208Y/T215Y mutant is severely 

replication deficient, in this instance ritonavir but not lopinavir susceptibility would be affected. 

Notably, only 2% (9 of 444) of the viral isolates in our prior study had all three mutations, while 

combinations H208Y/T215Y and V118I/T215Y were present in 6% and 12% of the isolates 

tested, respectively (Shulman et al 2004). The low frequency of the triple mutant in that patient 

population may be due to impaired viral fitness. The replication capacity for the triple mutant 

may be defective and requires further investigation (see Chapter 2). 

The mechanistic role of each of the mutations studied in NNRTI HS is uncertain.  The 

V118I mutation has been reported to decrease ATP-catalyzed excision of chain terminators and 

to increase the selectivity of RT for normal substrate (Girouard, Diallo et al. 2003).  The H208Y 

mutation confers low-level resistance to the pyrophosphate analog foscarnet (Mellors, Bazmi et 

al. 1995) and is commonly associated with mutations at residue 215 (Shulman, Bosch et al. 

2004).  The T215Y mutation has been proposed to interact favorably with the adenine ring of 

ATP, improving the ability of RT to catalyze ATP-mediated excision of chain terminators 

(Boyer, Sarafianos et al. 2001).  How these mutations interact to cause HS is unknown and will 

require further investigation.  Our findings have facilitated this investigation by defining key 

mutations and combinations of mutations involved.  The variable effects of the mutations on HS 

at both the viral and enzyme levels suggest that more than one mechanism is likely to be 

involved in HS.  Investigation of the basis for NNRTI HS caused by the V118I, H208Y, and 

T215Y mutations are described further in chapter two.   
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4.0  CHAPTER 2.  DECREASED VIRION ASSOCIATED REVERSE 

TRANSCRIPTASE LEVELS CAUSED BY MUTATIONS H208Y + T215Y INCREASE 

HIV-1 SUSCEPTIBILITY TO NNRTI  

PREFACE 

The replication capacity studies in this chapter are adapted from a published study (Clark 

SA
1
, Shulman NS

2
, Bosch RJ

3
, and Mellors JW

1
. 2006. Reverse Transcriptase Mutations 118I, 

208Y, and 215Y Cause HIV-1 Hypersusceptibility to Non-nucleoside Reverse Transcriptase 

Inhibitors. AIDS 20:981-984) reprinted with permission from Lippincott Williams & Wilkins 

Publishing.   
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4.1 ABSTRACT 

Previous analysis of a large clinical genotype-phenotype dataset identified three NRTI mutations 

(118I, 208Y, and 215Y) statistically correlated with NNRTI hypersusceptibility (HS).  In chapter 

one we showed that site-directed mutant HIV-1 containing combinations of the three NRTI 

mutations V118I, H208Y, and T215Y elicited varying degrees of NNRTI hypersusceptibility. 

Specifically, single mutations moderately increased NNRTI susceptibility, with double and triple 

mutants exhibiting more dramatic increases in susceptibility.  However, the mechanism by which 

these mutations in RT led to NNRTI HS was not defined.   The goal of this study was to 

investigate the impact that these mutations have on the ability of the virus to replicate and 

package proteins in the absence of drug, providing mechanistic insights in to the cause of NNRTI 

HS.  Single cycle replication assays revealed reduced replication capacity in H208Y/T215Y and 

V118I/H208Y/T215Y mutant viruses (40% and 35% of wildtype, respectively) while the 

V118I/T215Y mutant virus replicated as efficiently as the wildtype virus. Western blot analysis 

showed significant reductions in virion associated HIV-1 RT in H208Y/T215Y and 

V118I/H208Y/T215Y mutant viruses compared to wildtype virus (47% and 30% of wildtype, 

respectively). The RT content in the V118I/T215Y virus was similar to the wildtype virus.  

Decreases in quantifiable viral RT and virion associated polymerase activity were found for the 

H208Y/T215Y and V118I/H208Y/T215Y mutants while V118I/T215Y had viral RT activity 

similar to wild type.  Therefore we conclude that NNRTI HS of viruses containing both NRTI 

mutations H208Y and T215Y is due to decreased levels of virion RT, however the level of virion 

associated RT for the V118I/T215Y mutant was the same as wildtype, suggesting an alternate 

mechanism of HIV-1 hypersusceptibility to NNRTI for V118I/T215Y mutants.   
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4.2 INTRODUCTION 

HIV-1 reverse transcriptase (RT) lacks formal proof reading activity leading to high error 

rates, with estimated mutation rates of 5 X 10
-4

 to 3 X 10
-5

 per nucleotide base per cycle of 

replication (Preston, Poiesz et al. 1988; Robertson, Sharp et al. 1995).  Together with a high 

mutation rate, rapid replication of HIV in vivo produces a large viral population carrying pre-

therapy mutations (Coffin 1995). Combining the high error rate and large viral population with 

drug pressure often leads to the preferential growth of viruses containing drug resistance 

mutations.  Mutations selected by drug pressure frequently decrease viral enzyme function, 

diminishing overall viral fitness.   

The methionine to valine change at position 184 (M184V) of RT is an example of a drug 

resistance mutation that diminishes overall viral fitness.  M184V arises in the presence of the 

NRTI 3TC pressure conferring up to 1000 fold drug resistance in cell culture and in vivo 

compared to wildtype 3TC susceptibility (Boucher, Cammack et al. 1993; Gao, Gu et al. 1993; 

Schinazi, Lloyd et al. 1993; Ait-Khaled, Rakik et al. 2003).  M184 is part of the highly conserved 

YMDD motif in the catalytic core of RT and mutations in this region drastically alter enzyme 

function and viral replication (Back, Nijhuis et al. 1996; Feng and Anderson 1999; Dykes and 

Demeter 2007).    

Replication of HIV-1 is dependent on the ability of RT to properly convert the viral RNA 

genome in to dsDNA for incorporation into host DNA.  RT is a product of the pol gene which is 

translated as a GagPol fusion protein due to a -1 ribosomal frame shift and requires proteolytic 

processing to form mature heterodimeric RT (Jacks, Power et al. 1988; Pettit, Simsic et al. 1991; 

Pettit, Clemente et al. 2005). This ribosomal frameshift occurs infrequently to maintain a 20:1 

ratio of Gag:GagPol (Jacks, Power et al. 1988). GagPol is incorporated into assembling particles 
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through interactions within the capsid (CA) domains of Gag and GagPol (Srinivasakumar, 

Hammarskjold et al. 1995; Huang and Martin 1997; Hill, Tachedjian et al. 2005). Defects at any 

of these steps could compromise viral particle assembly, incorporation, and/or processing 

leading to decreases in viral replication and the amount of virion associated RT. 

We previously found that nucleoside reverse transcriptase inhibitor (NRTI) mutations 

V118I, H208Y, and T215Y introduced as single mutations in viral RT did not significantly alter 

viral susceptibility to the FDA approved non-nucleoside reverse transcriptase inhibitors (NNRTI) 

nevirapine, delavirdine, and efavirenz (see Chapter 1, (Clark, Shulman et al. 2006)).  However, 

introduction of various combinations of these mutations (including V118I/T215Y; 

H208Y/T215Y; and V118I/ H208Y/T215Y) resulted in dramatic increases in viral NNRTI 

susceptibility.  Here, we investigated virological factors including replication capacity, protein 

packaging, and RT activity that may contribute to the increased NNRTI susceptibility caused by 

combining these NRTI-induced mutations.   

 

4.3 MATERIALS AND METHODS 

4.3.1 Cells 

The P4/R5 reporter cell line (provided by Ned Landau, Salk Institute, LaJolla, CA) is a 

HeLa cell line stably transfected to express a Tat-activated β-galactosidase gene under the 

control of an HIV-1 LTR promoter.  P4/R5 cells were cultured in Dulbecco’s Modified Eagle 

Medium- phenol red free (DMEM-PRF) supplemented with 10% FBS (HyClone, Logan, UT), 
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50 IU/mL penicillin, 0.5 µg/mL puromycin (Clonetech, Palo Alto, CA) and 50 µg/mL 

streptomycin (from here on referred to as D10). MT-2 cells (AIDS Research and Reference 

Reagent Program National Institute of Allergy and Infectious Disease, National Institutes of 

Health) were cultured in RPMI 1640 (Whittaker MA Bioproducts, Walkersville, MD) 

supplemented with 10% fetal bovine serum, 10 mM Hepes buffer, 50 IU/mL penicillin,  and 50 

µg/mL streptomycin (from here on referred to as R10).  

 

4.3.2 Generation of Recombinant HIV-1 

Virus was made as previously described in Chapter 1.  Briefly, wildtype or HIV-1 

plasmids containing mutations V118I/T215Y, H208Y/T215Y, and V118I/H208Y/T215Y were 

transfected by electroporating (BIO-RAD Gene Pulser ®, Hercules, CA) 5-10 µg of proviral 

DNA into MT-2 cells (AIDS Research and Reference Reagent Program, NIAID, NIH).  Culture 

supernatants were harvested seven days post-transfection and stored at -80°C.  The genotype of 

harvested virus was confirmed by extracting RNA from virions (QIAamp kit, QIAGEN, 

Valencia, CA), treating the extract with DNase I (Roche, Indianapolis, IN), amplifying the RT 

coding region using RT-PCR, purifying the PCR product (Wizard PCR Purification System, 

Promega, Madison, WI), and sequencing.  Culture supernatants were assessed for p24 antigen 

content using a commercially available enzyme-linked immunosorbent assay (Alliance HIV-1 

p24 ELISA kit; Perkin Elmer, Wellesley, MA). 
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4.3.3 Single Cycle Replication Capacity Assay 

Five-thousand
  
P4/R5 cells/well were added to a 96 well plate.  Cells were infected with a 

standard inoculum containing 10 ng p24 antigen and incubated at 37°C, 5% CO2 for 48 hours.  

Following infection, a cell lysis buffer and luminescent substrate (Gal-Screen; Tropix/Applied 

Biosystems) were added to each well and virus production assessed by measuring relative light 

units (RLU) on a luminometer (ThermoLabSystems, Waltham, MA).    Values shown are the 

mean ± standard deviation of three independent experiments. An asterisk indicates P < 0.01 

compared to WT (Student’s t-test). 

 

4.3.4 Quantification of virion associated Pol proteins  

Protein composition of mutant and wildtype virus was determined by ultracentrifugation 

(Sorvall Thermo-Scientific Waltham, MA USA) of transfection supernatants (175,000 X g) 

containing 5 µg p24 antigen through a 20% sucrose cushion.  Viral pellets were lysed with RIPA 

lysis buffer (20 mM Tris-Cl [pH 8.0] containing 120 mM NaCl, 2 mM EDTA, 0.5% [v/v] DOC, 

0.5% [v/v] NP-40 as well as 2 μg/mL PMSF, 10 μg/mL apoprotein and 10 μg/mL pepstatin A) 

and reassessed for p24 antigen content.  Protein loading buffer was then added to each sample 

and proteins separated by sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-

PAGE).  Following SDS-PAGE proteins were electrophoretically transferred to a PVDF 

membrane and blocked for two hours while shaking at room temperature with Tris-buffered 

saline containing Tween (T-TBS) and 5% milk.  T-TBS buffer (with 2% milk) containing either 

mouse anti-HIV-1 RT or anti-p24 monoclonal antibodies (NIH AIDS Research and Reference 
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Reagent Program) were used to probe PVDF membranes for proteins of interest for two hours at 

room temperature while shaking. After incubation the PVDF membranes were repeatedly 

washed in T-TBS and a secondary HRP-conjugated goat anti-mouse antibody (NIH AIDS 

Research and Reference Reagent Program) was added to the membrane and incubated at room 

temperature for 30 minutes while shaking.    Membranes were briefly incubated in the SuperPico 

ECL Substrate System for detection of peroxidase-labeled antibody (PIERCE, Rockford, IL, 

USA) and bands visualized using Versa Doc Imaging System followed by densitometric 

quantitation using Quantity One v4.3.0 software (BioRad, Hercules, CA).  Values shown are 

from five independent experiments where * denotes P < 0.01 using Student’s t-test.  

4.3.5 Virion associated RT activity  

Mutant and wildtype virus associated reverse transcriptase polymerase activity was 

assessed by ultracentrifugation of transfection supernatants (175,000 x g) containing 5 g p24 

through a 20% sucrose cushion.  Viral pellets were lysed with non-denaturing lysis buffer (0.5% 

Triton X-100, 0.8 M NaCl, 20% glycerol, 50 mM Tris pH 7.8, protease inhibitor tablet, and 

distilled water). Lysates were added to reaction mixtures containing 60 mM Tris pH 7.8, 12 mM 

MgCl2, 6 mM dithiothreitol, poly (rA)-oligo (dT) , [
3
H]-TTP (Moravek Biochemicals, Brea, 

CA), and dH20.   Reactions were incubated for 30, 60, 120, 180, and 240 minutes at 37ºC, 

followed by the addition of scintillate coated streptavidin beads (Amersham Biosciences, 

Piscataway, NJ) in EDTA. Plates were read on a MicroBeta TriLux scintillation counter (Perkin 

Elmer, Shelton, CT).  Values presented are the mean + standard deviation of three independent 

experiments.  Statistical significance was assessed using Student’s t-test to compare mutant and 

wildtype polymerase activity.  * denotes P < 0.01.  



 71 

4.3.6 HIV protein levels in the cell  

HIVLAI infected MT-2 cells were pelleted, washed extensively with fresh R10 media, 

lysed with RIPA lysis buffer and subjected to SDS-PAGE followed by Western blot.  

Membranes were probed with either HIV-Ig or mouse anti-RT (8CA) monoclonal antibody 

(AIDS Reference and Reagent Program, National Institutes of Health) followed by appropriate 

HRP-conjugated secondary antibody.  The mean values of three independent experiments are 

shown.  Student’s t- test was used to define statistical significance (P < 0.01) denoted by *. 

4.3.7 Virion associated precursor proteins 

Protein composition of mutant and wildtype virus grown in the presence of 10 µM 

ritonavir in R10 was determined by ultracentrifugation (175,000 x g) through a 20% sucrose 

cushion.  Viral pellets were lysed with RIPA lysis buffer and equivalent amounts of total protein 

determined by Bradford assay were subjected to SDS-PAGE followed by Western blot.  

Membranes were probed using mouse anti-HIV-1 RT and anti-p24 monoclonal antibodies for 

protein identification followed by secondary HRP-conjugated goat anti-mouse antibody.   Bands 

were visualized using Versa Doc Imaging System and quantified by densitometry.  
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4.4 RESULTS 

4.4.1 NNRTI HS mutations H208Y + T215Y decrease viral replication capacity 

We previously showed that combinations of mutations at codons 118, 208, and 215 in 

reverse transcriptase cause hypersusceptibility to efavirenz, delavirdine, and nevirapine (Chapter 

1; Clark 06).  The mechanisms by which mutations at these specific sites cause 

hypersusceptibility are unknown.  Recently, increased drug susceptibility was linked to defects in 

viral replication (Huang, Gamarnik et al. 2003; Martinez-Picado, Wrin et al. 2005; McColl, 

Chappey et al. 2008). In order to determine if defective viral replication may play a role in 

NNRTI hypersusceptibility we performed replication capacity assays.  Generally, viruses 

containing single mutations demonstrated no significant reduction in single cycle replication 

assays compared to wildtype (Figure 16), although HIV-1215Y replicated at 80% of wildtype, this 

difference was not statistically significant.  The V118I/T215Y mutant HIV-1 replicated as well 

as wildtype while the H208Y/T215Y and V118I/H208Y/T215Y mutants replicated at 42% and 

35% of wildtype, respectively (Figure 16).  A methionine to valine at position 184 in RT is 

known to diminish replication capacity (Sharma and Crumpacker 1999; Wei, Liang et al. 2002) 

and was used as a control for the detection of decreased replication. Similar to previous findings, 

replication of HIV-1 containing M184V was significantly reduced to less than 60% of wildtype 

virus.   
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Figure 16. Single cycle replication capacity. 

Briefly, P4/R5 cells were infected with a standard inoculum (10 ng p24) and incubated at 

37ºC for 48 hours. Viral replication was measured as described in Materials and Methods. 

Triple = V118I/H208Y/T215Y.  Bars represent the mean ± standard deviation of three 

independent experiments.  An asterisk indicates P < 0.01 compared to wildtype 

(Student’s t-test). 
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4.4.2 NNRTI HS mutations decrease RT packaged in virions 

A recent study investigating HIV-1 particles containing different levels of RT activity 

suggested a relationship between the level of RT packaged in virions and NNRTI susceptibility 

(Ambrose, Julias et al. 2006). The decrease in replication capacity of the H208Y/T215Y and 

V118I/H208Y/T215Y mutants and the unaltered viral replication capacity of V118I/T215Y HIV-

1 led us to explore the cause of this divergent pattern among the mutants.   Therefore, we 

investigated whether decreased levels of RT in the virion was a possible cause of the diminished 

replication and increased NNRTI susceptibility for the H208Y/T215Y and V118I/H208Y/T215Y 

mutants.   To assess RT incorporation, viral lysates were immunoblotted and probed with anti-

RT monoclonal or anti-p24 antibodies (Figure 17A).  RT and p24 bands were quantified by 

densitometry and the mean levels of viral RT corrected for lysate p24 content from five 

independent experiments are shown (Figure 17B).  We found that the V118I/T215Y mutant had 

levels of RT in the virion similar to wildtype virus which correlates well with the virus 

maintaining wildtype levels of replication.  However, the H208Y/T215Y and 

V118I/H208Y/T215Y mutants had significantly decreased levels of RT in the virion compared to 

wildtype virus (42% and 35% respectively), corresponding with decreases in replication capacity 

(Figures 16).  In previous reports, HIV-1 containing the G190S mutation showed decreased 

replication capacity, diminished virion associated RT, and increased delavirdine susceptibility 

(Huang, Gamarnik et al. 2003), thus virus containing the G190S mutation served as a control for 

decreased RT packaged in the virion.  In agreement with previously reported data, G190S 

mutants showed severe reductions in the amount of detectable virion associated RT (Figures 17A 

and 17B).  
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RT levels in viral lysates were determined as stated in Materials and Methods.  (A) Representa-

tive western blot of five individual experiments.  (B) Mean ± Standard Deviation (error bars) 

percent of wildtype RT in virions detected among the five individual experiments.   * and ** 

denote P < 0.01 and P < 0.001 respectively,  using Student’s t-test.   

 

 

Figure 17. Reverse Transcriptase levels in mutant and wildtype virus 
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4.4.3 Virion associated RT activity 

The intravirion reverse transcriptase activities for the hypersusceptible mutants as well as 

wildtype virus were also examined (Figure 18).  Due to the diminished level of RT detected in 

virus containing the H208Y/T215Y and V118I/H208Y/T215Y mutations it was expected that 

these viruses (containing less RT) would polymerize less efficiently compared to wildtype and 

V118I/T215Y HIV-1. Accordingly, virus containing the V118I/T215Y reverse transcriptase 

mutations elongated the homopolymeric poly rA-oligo dT template-primer as well as wildtype 

HIV-1 (Figure 18).  Both the H208Y/T215Y and V118I/H208Y/T215Y virion associated 

enzymes polymerized 50% (P < 0.01) and 62% (P < 0.01) of wildtype, respectively (Figure 18).  

The G190S reverse transcriptase had significantly impaired polymerase activity, yielding 

approximately 30% of wildtype activity (Figure 18), consistent with previous findings.  
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Figure 18. Crude virion associated RT activity. 

Crude virion associated RT activity of mutant and wildtype virus was assessed by 

incubating non-denatured viral lyaste with Tris, MgCl2, DTT, poly (rA)-oligo (dT), 

3
HTTP, and dH20 for 1 hour at 37ºC, followed by the addition of scintillate coated 

streptavidin beads. Plates were read on a scintillation counter. * and ** denotes P < 0.01 

and P < 0.001 respectively, using Student’s t-test.  Error bars represent the standard 

deviation of three independent experiments. 
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4.4.4 Effect of hypersusceptibility mutations on HIV protein levels in the cell 

 

A possible explanation for decreases in the amount of detectable RT for HS mutants is 

that the GagPol precursor is not efficiently produced. An alternative explanation is that GagPol 

may be degraded in the cell or mislocalized within the cell, and thus is not incorporated into 

virions.  To investigate the former possibility for the observed decreases in virion RT levels, an 

analysis of cell associated HIV precursor and fully processed proteins was performed.  Cell 

lysates infected with mutant or wildtype virus were probed with HIV-Ig or anti-RT monoclonal 

antibodies (mAb).  Figure 15A shows there was no difference between wildtype HIV-1 or the 

mutants when comparing all major cell associated HIV proteins detected with HIV-Ig.  Although 

there was a detectable band at 160 kD this position corresponds to the envelope precursor gp160, 

not the Pol precursor GagPol
160

.  When the membrane was probed specifically for RT with the 

anti-RT monoclonal mAb, there was no difference in the amount of p66/p51 in cell lysates 

normalized for p24 content when comparing infection with wildtype and V118I/T215Y HIV-

1(Figure 15B and 15C).  The H208Y/T215Y mutant and the triple mutant had less RT (71% and 

73% respectively; Figure 15B and 15C) in cell lysates compared to wildtype.  
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Figure 19. Cell associated HIV proteins. 

HIV protein levels in the cell.  Seven days post-transfection cells were washed, pelleted, and 

lysed.  Whole cell lysate was run on an SDS-PAGE followed by western blotting.  The blots were probed 

with either (A) HIV-Ig or (B) a monoclonal anti-RT antibody.   Bands from blot B were visualized using 

VersaDoc Imaging system and three independent blots were quantified (C) using densitometry.  Bars 

represent the mean of three independent experiments and error bars the standard deviation.  * denotes P ≤ 

0.01.  
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4.4.5 Effect of mutations on viral packaging of unprocessed precursors 

 

Another possible explanation for the diminished amount of detectable virion RT is that 

GagPol is made efficiently in the cell but is not incorporated into virions.  To explore this 

hypothesis, wildtype and mutant viruses were cultured in the presence of the protease inhibitor 

ritonavir which inhibits processing of viral proteins by viral protease allowing visualization of 

unprocessed viral precursors that would normally be processed too quickly to observe.  

Interestingly, the levels of GagPol
160

 incorporated into V118I/T215Y mutant virions were similar 

to wildtype (Figure 16A and 16B).  The H208Y/T215Y and V118I/H208Y/T215Y mutants had 

55% and 61%, respectively, of the amount of GagPol
160

 in the virion compared with wildtype 

virus.  The G190S mutant had the least amount of detectable GagPol
160

 in the virion (20%) when 

compared to wildtype HIV-1.   Decreased levels of unprocessed precursor protein per particle 

indicate that GagPol
160

 is not as efficiently incorporated into the H208Y/T215Y, 

V118I/H208Y/T215Y, and G190S mutant virions when compared to wildtype.  
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Figure 20. Accumulation of Polyprotein Precursors in Virions 

  Protein composition of mutant and wildtype virus grown in the presence of 10 µM RTV was 

determined by ultracentrifugation (175,000 X g) through a 20% sucrose cushion followed by lysis of viral 

pellets and subjecting equivalent amounts of total protein by Bradford assay to SDS-PAGE followed by 

Western blot.  A) Mouse anti-HIV-1 RT or anti-p24 monoclonal antibodies were used to probe the 

membrane for proteins of interest followed by secondary HRP-conjugated goat anti-mouse antibody.  B) 

Bands were visualized using Versa Doc Imaging System and quantified by densitometry. GagPol was 

normalized by Gag content and graphed as percent of wildtype. Shown is the mean ± standard deviation 

of three independent experiments. Student’s t-test was used to determine statistical significance. * denotes 

P < 0.01. 
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4.5 DISCUSSION 

We previously showed that viruses containing reverse transcriptase (RT) mutations 

V118I/T215Y, H208Y/T215Y, and V118I/H208Y/T215Y exhibit varying degrees of 

hypersusceptibility to the NNRTIs efavirenz, delavirdine, and nevirapine in cell based assays 

(Chapter 1; (Clark, Shulman et al. 2006).  However, possible causes of the hypersusceptible 

phenotype were not examined.  In this study, replication kinetics, virion and cell associated RT 

and GagPol protein levels, and virion associated RT activity were compared for wildtype and 

NNRTI HS mutants to determine causes of hypersusceptibility.   

4.5.1 Replication Kinetics 

Efficient replication of HIV-1 is dependent upon properly functioning viral enzymes (protease, 

integrase, and reverse transcriptase).  Virus inhibited at any of the three enzymatic steps can 

reduce or abrogate production of infectious virions.   Hypersusceptibility to protease inhibitors 

has been associated with low viral replication capacity (Ziermann, Limoli et al. 2000; Resch, 

Ziermann et al. 2002; Leigh Brown, Frost et al. 2004; Martinez-Picado, Wrin et al. 2005). 

Therefore, examining the ability of the NNRTI HS mutants to replicate was done to determine if 

defective replication is a factor in NNRTI HS.  The single cycle assay directly measures the 

ability of virus to efficiently perform the early stages of the viral life cycle.  In this system, an 

increase in relative light units is expected when the production of tat-activated β-galactosidase 

increases due to HIV-1 infection of the cells.    
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In single cycle replication assays HIV-1 containing V118I/T215Y replicated at levels 

equal to wildtype virus.  Strikingly, the H208Y/T215Y mutant showed a dramatic reduction in 

single cycle replication (42% of wildtype HIV-1) which was further decreased in the presence of 

all three mutations (118I/208Y/215Y, 35% of wildtype; Figure 12).  Our studies of viral 

replication capacity showed that NNRTI hypersusceptibility was not always associated with 

impaired replication capacity. In particular, the V118I/215Y mutant was hypersusceptible to 

nevirapine and delavirdine (Chapter 1, Tables 2 and 3) but replicated as well as wildtype. By 

contrast, the V118I/H208Y/T215Y mutant showed the greatest reduction in replication capacity 

and was the most hypersusceptible to NNRTI.  Interestingly, H208Y/T215Y and 

V118I/H208Y/T215Y mutants showed significant decreases in replication capacity and were 

found in 5.8% and 2.0%, respectively, of the 444 patient isolates from various ACTG clinical 

studies tested for hypersusceptibility, while the V118I/T215Y mutant combination was detected 

in 12.4% of the isolates tested (Shulman, Bosch et al. 2004).   Deficiencies in replication may 

explain why mutants carrying the H208Y+T215Y mutations are less prevalent in NRTI 

experienced patients than the V118I/T215Y mutant.  However, the therapeutic regimen of the 

patient population is also a key factor in the evolution of drug resistance mutations.  Perhaps 

more patients were receiving drugs that were more likely to select V118I instead of H208Y.  

Despite similar decreases in replication capacities of the H208Y/T215Y and 

V118I/H208Y/T215Y mutants the H208Y/T215Y genotype was found in almost three times 

more patient isolates than isolates containing all three mutations.  One possible explanation is 

that the combination of all three mutations may render the virus replication defective below a 

certain threshold for efficient growth.  In addition, it is possible that other mutations exist in the 

patient isolates that may compensate for the loss of replication in the H208Y/T215Y mutants that 
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are not selected in mutants containing all three mutations, which could explain the higher 

prevalence of H208Y/T215Y versus V118I/H208Y/T215Y.      

4.5.2 The effect of NRTI mutations on virion-associated RT 

Although drug resistance mutations offer an advantage to viruses under the selective 

pressure of therapy, they are often at least partially detrimental to the viral life cycle.  A range of 

effects on the virus have been defined for a variety of mutations or mutation profiles.  Mutations 

in highly conserved regions of the viral genome can completely abrogate viral infectivity, virion 

particle formation, or enzymatic functions.  For example, substituting the glycine at residue 190 

in reverse transcriptase with cysteine, serine, glutamic acid, glutamine, threonine, or valine is 

associated with significant decreases in the viruses’ ability to replicate (Huang, Gamarnik et al. 

2003).  Diminished replication has been associated with reduced amounts of reverse transcriptase 

packaged in virions (Garcia Lerma, Yamamoto et al. 1998; Bleiber, Munoz et al. 2001; Huang, 

Gamarnik et al. 2003; Marozsan, Fraundorf et al. 2004; Ambrose, Julias et al. 2006; Olivares, 

Mulky et al. 2007).   Therefore we determined if NNRTI HS mutants packaged decreased 

amounts of RT.  Again, differences among the mutants were evident based on the mutation 

profile.  Virus containing mutations H208Y and T215Y had a significant decrease in the amount 

of detectable RT packaged in virions and this decrease correlated with diminished viral 

replication capacity.  The V118I/T215Y mutant had levels of virion associated RT similar to 

wildtype virus, also correlating with the data obtained in replication capacity studies. Our data 

show that hypersusceptibility for virus containing mutations H208Y and T215Y is due to 

decreased virion associated reverse transcriptase and that hypersusceptibility of V118I/T215Y is 

due to a different mechanism.     
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We evaluated different causes of the reductions in RT proteins packaged into NNRTI HS virions 

including decreased cellular RT and decreased incorporation of GagPol into virions. 

The mature protein may be unstable with increased susceptibility to proteolytic degradation.  In 

this instance, one would expect that premature degradation would also occur in the HIV infected 

cell, decreasing the amount of p66/p51 detected in cell lysates.  Our data show that the level of 

detectable RT in infected cells is similar to wildtype for V118I/T215Y, decreased for mutants 

containing H208Y + T215Y, and drastically decreased for G190S.  The decrease in cell 

associated proteins for mutants containing H208Y + T215Y is not as great as the decreased RT 

in virions suggesting that other factors may be involved. One possibility is that the precursor 

proteins may not be efficiently incorporated into virions.   

Lack of GagPol incorporation could be due to defects in trafficking to the cytoplasm and/or 

inefficient assembly at the membrane.  In cells infected with wildtype virus, GagPol polyproteins 

are trafficked to the cell membrane via interactions within the matrix (MA) domains of Gag and 

GagPol (Freed, Orenstein et al. 1994; Chazal, Gay et al. 1995).  The major homology region 

(MHR) in CA is required for efficient incorporation and oligomerization of GagPol into 

assembling viral particles (Trono, Feinberg et al. 1989; Hong and Boulanger 1993; Mammano, 

Ohagen et al. 1994).  Reportedly, mutations in the CA-MHR can inhibit GagPol packaging 

without affecting the formation of Gag particles indicating that different sequences are involved 

in Gag/Gag interactions compared to Gag/GagPol interactions (Tachedjian, Moore et al. 2005).   

Our data show less GagPol detected in virions containing mutations H208Y + T215Y compared 

to wildtype, possibly indicating a defect in the interactions necessary for proper membrane 

trafficking and/or packaging.    Therefore, we conclude that diminished levels of detectable 

virion associated RT are due to reduced packaging of the polyprotein precursor (Figure 21).  

Interestingly, both HIV-1 and murine leukemia virus (MLV) Pol proteins have been shown to be 
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packaged when not expressed in the context of GagPol, indicating that sequences in Pol may be 

important for packaging (Buchschacher, Yu et al. 1999; Cen, Niu et al. 2004) and that 

GagPol/Gag interactions and trafficking may be affected by amino acid changes in the Pol 

region.  Further investigation is needed to determine if trafficking and assembly play a role in 

NNRTI HS. 
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Figure 21. Cartoon summary of NNRTI HS due to mutations H208Y and T215Y 

(Left panel) In wildtype virions, GagPol (yellow and green bars) is incorporated and 

proteolytically processed into mature RT (dark green partial circles).  NNRTIs (red diamonds) 

bind to RT and inhibit the enzyme’s ability to polymerize. (Right panel)  In HS mutant virus 

containing RT mutations H208Y and T215Y, less GagPol (yellow and purple bars) is 

incorporated into virions leading to a decrease in the amount of mature RT (purple partial 

circles) formed.  This decrease in RT reduces the amount of NNRTI needed for inhibition of 

reverse transcription. 
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4.5.3 Virion Associated RT Activity 

The observation that NNRTI HS mutant viruses package less RT in virions than wildtype 

virus leads to questions concerning the functionality of the virion associated enzyme.  

Specifically, do the HS mutants with decreased virion associated RT exhibit less RT activity than 

wildtype or does the virus/enzyme select mutations that compensate for the decrease in protein 

by increasing activity? The G190S mutation (and viruses with other G190X mutations) was 

shown to significantly reduce virion associated RT activity (Huang, Gamarnik et al. 2003).  We 

therefore determined if RT activity of HS mutants was altered compared to wildtype virion 

associated RT activity.  Significant losses in RT activity were seen for the G190S mutant virus, 

and viruses containing H208Y + T215Y mutations polymerized less efficiently than wildtype in 

samples normalized for p24 content.  However, both H208Y/T215Y and V118I/H208Y/T215Y 

virion associated enzymes made more detectable polymerase product in crude virion associated 

assays (Chapter 2, Figure 18) than expected considering the large decreases in virion associated 

protein.  This finding suggests that the enzymes present in the H208Y + T215Y HS mutant 

viruses are functional and capable of synthesizing DNA but the low level of enzyme present is 

largely responsible for the replication impairment and HS phenotype.  
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5.0  OVERALL DISCUSSION 

HIV-1 resonates around the world as one of the most significant public health issues 

facing the human race. The advent of therapy options to treat HIV-1 infection has considerably 

reduced the associated morbidity and mortality.  Currently, two major classes of inhibitors 

(nucleoside and non-nucleoside RT inhibitors) target the reverse transcriptase enzyme due to its 

importance in the viral life cycle.  The inhibitors drastically reduce viral load and slow disease 

progression, however emergence of mutations conferring resistance to the available inhibitors 

can increase viral load comparable to pre-therapy levels and ultimately limit therapeutic options.  

Interestingly, there are usually costs (or side effects) to viral fitness due to these mutations.  A 

benefit of resistance mutations has been reported in patients that are NNRTI naïve and NRTI 

experienced (Shulman, Zolopa et al. 2001; Haubrich, Kemper et al. 2002; Whitcomb, Huang et 

al. 2002).  Patient isolates containing NRTI resistance mutations have been shown to exhibit 

increased susceptibility to NNRTI.  Often these patient isolates contain a multitude of 

resistance-associated mutations (Shulman, Zolopa et al. 2001; Haubrich, Kemper et al. 2002; 

Whitcomb, Huang et al. 2002) making it difficult to discern the contribution of specific NRTI 

resistance mutations to NNRTI HS.   This study provided evidence that combinations of NRTI 

resistance mutations V118I, H208Y, and T215Y cause HIV-1 hypersusceptibility to NNRTI. 

Not only did our study offer evidence that mutations induced through NRTI experience 

significantly increase susceptibility to NNRTI, we also presented two mechanisms that can 
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potentially be exploited during rational drug design aimed at suppressing HIV-1 replication in 

patients.   

 

NNRTI HS Mechanism 1 - H208Y + T215Y  

Neither single mutation H208Y or T215Y elicited viral HS to efavirenz, nevirapine, or 

delavirdine.  There was a statistically significant increase in efavirenz (P = 0.001) and nevirapine 

(P = 0.016) susceptibility conferred by the H208Y single mutant, but the fold-change in 

susceptibility did not meet the clinically relevant 0.4 cut-off (Tables 1-3).  However, combining 

the two mutations on the same genome conferred viral hypersusceptibility to all NNRTI.  

Interestingly the addition of V118I to H208Y/T215Y considerably increased viral susceptibility 

to NNRTI. 

We have provided evidence of the involvement of H208Y in HIV-1 NNRTI HS.  We 

found that H208Y alone did not significantly change NRTI susceptibility and when combined 

with T215Y susceptibility was decreased although not significantl from wildtype HIV-1 

susceptibility.  However, when all three mutations V118I, H208Y, and T215Y were combined 

there was a significant decrease in stavudine susceptibility.  This data suggests that H208Y on 

its own is not sufficient to cause resistance but like other known resistance mutations, such as 

T215Y and other TAMS; it requires the presence of other mutations to significantly alter NRTI 

susceptibility.  Currently, H208Y is not included as a resistance mutation in the Stanford HIV 

Drug Resistance Database or the International AIDS Society (IAS) panel of resistance 

mutations.  However, in addition to the in vitro susceptibility data from our study, there is 

growing clinical evidence that H208Y should be considered an NRTI resistance mutation.  

Recent studies have correlated the presence of H208Y with prolonged NRTI exposure (Svicher, 
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Sing et al. 2006; Nebbia, Sabin et al. 2007).  In an analysis of 6352 genotypic resistance tests in 

a clinical database H208Y was prevalent in only 0.3% of a treatment naïve patient population 

but was present at greater than 11% in patients experienced with four or more NRTI (Nebbia, 

Sabin et al. 2007) .   In fact, the prevalence of H208Y was higher in genotypes with M184V and 

TAMs than in genotypes without these mutations (P = 0.0001), possibly suggesting a role for 

H208Y in resistance to zidovudine and stavudine in the presence of M184V. 

 

 To our surprise, when testing the susceptibility of H208Y + T215Y viruses to non-RT 

inhibitors we found that V118I/H208Y/T215Y (but not H208Y/T215Y) was hypersusceptible to 

the protease inhibitor ritonavir, though this virus showed wildtype susceptibility to lopinavir 

(another protease inhibitor).  Ritonavir hypersusceptibility is related to low replication capacity 

(Leigh Brown, Frost et al. 2004; Martinez-Picado, Wrin et al. 2005). In a large group of clinical 

samples lacking major protease inhibitor resistance mutations, decreased replication capacity 

was significantly correlated with increased susceptibility to ritonavir, however replication 

ability was not correlated with lopinavir susceptibility (Martinez-Picado, Wrin et al. 2005).  Our 

study showed that virus with mutations H208Y + T215Y had considerable decreases in 

replication capacity (Chapter 2), with the triple mutant showing the most significant reduction 

in replication compared to wildtype; suggesting that the triple mutant was HS to ritonavir (and 

not lopinavir) due to severely compromised replication. One way to investigate this theory 

would be to determine PR inhibitor susceptibility of additional viruses with mutations in RT 

that cause severe decreases in replication capacity (i.e. G190S). One would expect that the 

significantly replication deficient viruses would also be ritonavir HS with no change in 

lopinavir susceptibility.  Our findings of reduced viral replication for NNRTI HS mutants are 

important because reductions in viral replication may improve HIV-1 disease outcome. 
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Inefficient viral replication is associated with reduced plasma viremia, delayed emergence of 

resistance mutations, and improved immunological response (Coffin 1995; Petrella and 

Wainberg 2002).  In fact it was hypothesized that a two-fold reduction in the number of 

productively infected cells could reflect similar increases in mean clinical latency (Coffin 1995).   

 

 Although decreased replication capacity may contribute to NNRTI hypersusceptibility, it 

is not the main contributing factor to this phenotype as there are other NRTI mutations that 

decrease replication capacity but do not cause NNRTI hypersusceptibility. For example in the 

2004 statistical analysis of genetic correlates of EFV HS, M184V was not associated with EFV 

HS despite its deleterious affect on replication capacity (Shulman, Bosch et al. 2004; Clark, 

Shulman et al. 2006).  Importantly in our study, loss of replication ability of NNRTI HS viruses 

with mutations H208Y + T215Y (with and without V118I) was attributed to significant 

reductions in virion associated RT (Figure 17), leading to the NNRTI HS phenotype. This 

finding is in agreement with previous findings in the field in which the NNRTI HS was caused 

by decreased virion associated RT (Huang, Gamarnik et al. 2003; Ambrose, Julias et al. 2006).  

However, this is the first description to my knowledge of NRTI selected mutations causing 

decreased levels of virion associated RT.   

 

We also showed significant decreases in the amount of virion associated GagPol in 

mutants with H208Y + T215Y mutations (54% and 61% of wildtype for H208Y/T215Y and 

V118I/H208Y/T215Y, respectively).   Reductions in viral GagPol and RT were caused by the 

inability of H208Y + T215Y viruses to properly package the GagPol polyprotein. Reverse 

transcriptase is a product of the pol gene whose 5’ end overlaps with the gag gene.  Pol is 

translated as a GagPol fusion protein due to a -1 frame shift and requires proteolytic processing 
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to form mature heterodimeric RT (Jacks, Power et al. 1988; Pettit, Clemente et al. 2005). 

Therefore, if GagPol is not properly packaged in the virion, the amount of RT in the virion 

would subsequently be decreased.  However, the cause of decreased GagPol in virions remains 

undefined.  Although the levels of virion associated GagPol were decreased in HIV-1 containing 

H208Y + T215Y mutations leading to NNRTI HS, viral susceptibility to IN and PR was largely 

unaltered (except the triple mutant ws ritonavir HS).  One explanation for the unaltered protease 

and integrase susceptibility despite decreased amounts of protein may be that these inhibors are 

less sensitive to changes in the amount of protein present in the virion.  

In our study we investigated the levels of cellular GagPol by measuring the amount of RT 

detectable in cell lysates, in retrospect a more prudent method would have been to directly 

measure the amount of GagPol in cell lysates.  The levels of detectable cellular RT were similar 

for all mutants (except G190S which showed significant decreases), providing no further 

information on the cause of the decrease in virion associated GagPol.    

Interestingly, enzymes containing H208Y+T215Y showed wildtype susceptibility to all 

NNRTI tested supporting our findings that the mechanism of HS conferred by this mutant 

combination is reduced virion RT and is not related to enzyme function.   

 

NNRTI HS Mechanism 2 - V118I/T215Y 

HIV-1 with a valine to isoleucine substitution at codon 118 in RT showed increased drug 

susceptibility to efavirenz (fold-change 0.58, P = 0.01), delavirdine (fold-change 0.58, P = 0.02), 

and nevirapine (fold-change 0.56, P = 0.016).  However, as with the H208Y single mutant, the 

increases did not meet the clinically relevant 0.4 fold-change cut-off.   Interestingly, when 

mutation V118I was combined with T215Y the virus was not hypersusceptible to efavirenz 
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(fold-change 0.71, P = 0.73) but was hypersusceptible to delavirdine (fold-change 0.25, P = 

0.002) and nevirapine (fold-change 0.34, P = 0.003).  The reasons for the drug dependent 

increases in NNRTI susceptibility remain unclear, however similar discordant patterns of NNRTI 

susceptibility have been observed for other resistance mutations.  In fact, the NNRTI resistance 

mutation G190S confers high level resistance to efavirenz and nevirapine, intermediate 

resistance to etravirine (recently FDA approved NNRTI), and increased susceptibility to 

delavirdine (www.hivdb.stanford.edu).  Another example of a drug resistance mutation causing 

discordant NNRTI susceptibility is the P236L mutation.  P236L is found at the entrance of the 

NNRTIBP, and causes high level delavirdine resistance but does not alter the susceptibility of 

HIV-1 to efavirenz, nevirapine, or etravirine (Fan, Evans et al. 1995; Sarafianos, Das et al. 

2004).   In both examples the differences may be due to the structural variability of the inhibitors 

and the residues in RT with which they contact upon binding.  Crystallographic studies of RT 

bound to various NNRTI show the diverse conformations of the drugs when complexed with RT.  

For instance most first-generation NNRTIs, such as nevirapine, bind in what is considered a 

“butterfly-like” mode, whereas delavirdine binds in an extended mode, and occupies additional 

pocket volume near P236 (Ding, Das et al. 1995; Ren, Esnouf et al. 1995; Esnouf, Ren et al. 

1997; Sarafianos, Das et al. 2004).  This additional volume may explain why a mutation at 

residue 236 causes high level resistance to delaviridine, but does not change susceptibility of 

HIV-1 to the other NNRTI.  In addition, diarylpyrimidine (DAPY) drugs like etravirine and the 

compound rilpivirine have the ability to bind RT in more than one conformation, potentially 

explaining their effectiveness even in the presence of traditional NNRTI resistance mutations  

(Das, Clark et al. 2004; Das, Bauman et al. 2008).   

The increased susceptibility caused by V118I/T215Y was not due to any of the viral 

parameters we investigated.  Indeed, viral replication and the amount of RT packaged were 
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similar to wildtype for this mutation profile (Figures 12-13).   In addition, virion associated RT 

activity was similar to wildtype for the mutant V118I/T215Y (Figure 14).  Therefore another 

mechanism of NNRTI HS was investigated. 

 Drug resistance to HIV detected in cell culture systems is caused by mutations in RT that 

often affect enzyme susceptibility and function as well.   Biochemical data typically correlates 

with phenotypic data obtained in cell culture.   In fact, biochemical data has elucidated two major 

mechanisms of HIV resistance to NRTI as being that of increased discrimination between 

analogs and normal substrate or increased excision of therapeutic analogs. The role that 

biochemical investigations have played in elucidating mechanisms of resistance prompted us to 

investigate whether NNRTI HS mutations increased NNRTI susceptibility at the enzyme level in 

cell free polymerization assays. Consequently, the susceptibility of purified recombinant RT 

enzymes to efavirenz, nevirapine, and delavirdine was evaluated. Interestingly, purified 

recombinant RT
118I/215Y 

showed increased susceptibility to all three NNRTI tested (Table 6).    

The finding that RT
118I/215Y

 was HS to efavirenz was unexpected because HIV-1 with these same 

mutations was not efavirenz HS.   Possible explanations for these divergent findings could lie 

within the assays used.  Reportedly, HIV-1 with a methionine to valine change at RT codon 184 

replicated as well as wildtype in some cell culture systems but showed moderate to severely 

defective polymerase activity in cell free biochemical systems (Wakefield, Jablonski et al. 1992; 

Back, Nijhuis et al. 1996; Feng and Anderson 1999; Feng and Anderson 1999).  There are both 

cellular and viral factors that are present in cell culture susceptibility assays that are not present 

in cell free susceptibility assays that could be responsible for differences observed between the 

two methodologies.  For example, both viral accessory proteins Vif and Tat have been implicated 

in optimal reverse transcription efficiency in HIV infected cells, although the mechanisms by 

which these proteins increase efficiency is not known (Apolloni, Hooker et al. 2003; Warrilow 
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and Harrich 2007).  In addition, Nef deficient virions showed a reduction in reverse transcription 

in cells (Schwartz, Marechal et al. 1995).  These and other viral factors could increase the 

efficiency of reverse transcription in cell culture systems and this increased efficiency would be 

lost in virion-free biochemical assays.  Cellular factors such as a survival motor neuron (SMN)-

interacting protein 1 (Gemin2) which is thought to associate with IN as part of a reverse 

transcriptase complex (RTC), have also been implicated in the efficient conversion of the HIV 

RNA genome into its DNA intermediate (Hamamoto, Nishitsuji et al. 2006).   

In this report we did not define a cause of the increased NNRTI susceptibility of 

RT
V118I/T215Y

.  The major mechanism of action of NNRTI is distortion of the enzyme upon 

binding which interrupts enzyme function.   Resistance to NNRTI is often attributed to decreased 

inhibitor-enzyme binding (Ren, Nichols et al. 2001; Ren, Nichols et al. 2004; Sarafianos, Das et 

al. 2004; Ren, Nichols et al. 2006; Ren and Stammers 2008), therefore a possible explanation for 

increases in enzyme susceptibility could be increased RT-NNRTI binding.  However, the NNRTI 

HS causing mutations that we have investigated here are approximately 10 Ångstrom away from 

the NNRTIBP in close proximity to the polymerase active site, specifically V118I and T215Y 

are close to the ATP binding cleft and may therefore also affect polymerase function.   A 

decrease in polymerase function would also result in increased NNRTI sensitivity.  Imagine that 

a runner (wildtype RT) is asked to run a race carrying a sack that will be filled with bricks 

(NNRTI) until the athlete can no longer run due to the weight of the sack.  Now imagine that the 

runner is injured (mutant RT) and is asked to run with increasing amounts of bricks until she is 

unable to perform.  In this situation one would expect that the already injured runner would be 

hampered by less bricks than the runner in good physical condition.  One would also expect that 

the injured athlete would perform worse than the non-injured athlete even in the absence of 

bricks.  Future studies of enzyme function could shed light on NNRTI HS mediated by 
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V118I/T215Y.   In addition, studies of other NRTI resistance mutations show altered polymerase 

function for the mutant enzymes compared to wildtype as a mechanism of resistance.  For 

example K65R reportedly decreases dNTP affinity and increases processivity of the enzyme 

resulting in viral replication that is similar to wildtype (Arion, Borkow et al. 1996; Deval, 

Navarro et al. 2004).  Perhaps the V118I/T215Y mutant enzyme also has defects that hinder one 

enzyme function necessitating the use of lower concentrations of NNRTI for effective inhibition, 

but increase another enzyme function resulting in no overall change in viral replication.     The 

correlation of RT function and viral replication capacity however is complex, especially when 

considering the impact of these parameters on hypersusceptibility across drug class, and requires 

further investigation.   

 

Overall, our findings support two distinct mechanisms of NNRTI HS.  HIV-1 with 

mutations H208Y +T215Y have decreased virion associated RT leading to a decrease in the 

amount of NNRTI necessary to inhibit viral growth.  The diminished levels of virion RT, caused 

by decreased GagPol polyprotein precursor in the virion, decreases the amount of NNRTI 

necessary to inhibit reverse transcription.   A second, less characterized mechanism includes RT 

enzymes with mutations V118I/T215Y having increased susceptibility to NNRTI.    Factors 

involved in NNRTI HS for the V118I/T215Y mutant may include defective polymerase activity, 

changes in RNase H activity, and/or altered enzyme drug-binding.   

5.1 FUTURE DIRECTIONS 

NNRTI HS in primary human cells 
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Examining HIV-1 containing mutations V118I, H208Y, or T215Y  in human peripheral 

blood mononuclear cells (PBMC), which contain 33-1000 fold-less dNTP than cell lines (see 

Table 7), would provide more information on the ability of these mutants to replicate in the 

presence and absence of NNRTI.  Reports of dNTP dependent polymerase activity (Back, 

Nijhuis et al. 1996; Giacca, Borella et al. 1996; Back and Berkhout 1997; Bouchonnet, Dam et 

al. 2005; Jamburuthugoda, Chugh et al. 2006; Jamburuthugoda, Santos-Velazquez et al. 2008) 

confirm that studies of this nature are also warranted to further substantiate the hypothesis that 

low dNTP concentrations result in a less replication competent V118I/T215Y virus.   

In addition, replication and drug susceptibility experiments in the P4R5 and MT-2 cell 

lines used in this study could be done in the presence of a compound that inhibits ribonucleotide 

reductase, such as hydroxyurea (HU).  Ribonucleotide reductases are responsible for the 

reduction of ribonucleotides to deoxyribonucleotides.  Using HU to deplete cellular dNTP pools 

in the P4 cell line (similar to P4R5 cell line) led to the conclusion that the impact of resistance 

mutations on viral replication is more profound in cell populations characterized by small dNTP 

pools (Bouchonnet, Dam et al. 2005). Pre-treating cell lines with HU in a dose dependent manner 

would gradually reduce the cellular dNTP pool allowing comparison of decreasing levels of 

dNTP pools on viral replication between HS and wildtype HIV-1 within the same cell culture 

system used in our previous work (Chapters 1 and 2).   

 

 

Enzyme kinetics 

The underlying cause of increased enzyme NNRTI susceptibility in the V118I/T215Y RT 

and the unaltered susceptibility of the H208Y/T215Y mutant enzymes should be further 
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investigated.  Preliminary studies of the ability of NNRTI HS RT to efficiently catalyze multiple 

rounds of polymerization showed decreases in polymerase activity.  Differences between 

wildtype and HS mutant enzymes detected during multiple rounds of steady state polymerase 

activity should be investigated in the presence and absence of drug.  Also, additional studies 

using a transient kinetic approach would allow closer examination of each step in the 

polymerization pathway (Kati, Johnson et al. 1992).  Single turnover experiments would allow 

investigation of chemical catalysis during a single enzyme turnover.  For instance, Feng and 

Anderson used transient kinetics to show that M184V reduced the efficiency of incorporation of 

dCTP and 3TC-TP during RNA dependent polymerization (Feng and Anderson 1999). 

Investigation of kinetic parameters such as maximum rate of nucleotide incorporation (kpol), 

nucleotide binding affinity (Kd), and incorporation efficiency (kpol/Kd) would provide further 

mechanistic insight into NRTI resistance mutation induced NNRTI HS.   

 

Effect of NNRTI HS mutations on enzyme-drug binding 

 

Although residues 118, 208, and 215 are not part of the NNRTIBP, it is possible that 

mutations at these residues could have long range effects on the binding of NNRTI.  Preliminary 

studies of the binding affinity of radio-labeled delavirdine to recombinant HIV-1 RT using 

equilibrium dialysis showed no significant difference in the ability of wildtype and H208Y + 

T215Y containing enzymes to bind delavirdine.  However, further analysis is necessary to 

definitively rule on altered RT-drug binding as a mechanism of NNRTI HS especially for the 

V118I/T215Y mutant RT.  Additionally, the NNIBP is flexible and its shape depends on the size 

and structure of the bound NNRTI (Ren, Nichols et al. 2001; Ren, Nichols et al. 2004; 
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Sarafianos, Das et al. 2004), therefore efavirenz and nevirapine should be included in the 

analysis since all NNRTI are structurally distinct and have diverse interactions with RT. 

 

Investigation of the origin of decreased virion GagPol 

 

 The origin of decreases in virion GagPol could provide insight into basic HIV virology as 

well as offer further insight into mechanisms of NNRTI HS.   A variety of possible explanations 

for the decrease should be investigated such as mislocalization of the GagPol polyproteins in the 

cell, defective trafficking of the oligomerized polyproteins to the plasma membrane, and 

decreased assembly of the precursors into viral particles.  Using immunofluorescence 

microscopy to study subcellular localization of RT showed that although HIV-1 RT can be 

efficiently incorporated into virus like particles (VLP) outside of the GagPol context, 

mislocalization of RT was common and accounted for decreases in RT incorporation into VLP 

(Liao, Huang et al. 2007).  To determine the cellular localization, trafficking, and assembly of 

GagPol polyproteins, immunofluorescence experiments could be performed.  In these 

experiments a comparison of the localization of wildtype and NNRTI HS GagPol would 

determine if mislocalization is responsible for decreases in the amount of precursor packaged 

into virions.    These experiments could also determine possible trafficking defects of NNRTI HS 

HIV-1 by taking images of the immunofluorescently labeled proteins at different time points to 

visualize the movement and oligomerization of polyprotein precursors.    

 

Etravirine 

 

In the time that this manuscript was being prepared the HIV-1 non-nucleoside reverse 

transcriptase inhibitor etravirine (ETR) was approved for clinical use by the FDA.  ETR is a 
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diarylpyrimidine (DAPY) compound that exhibits flexibility and isomerism allowing the drug to 

bind to RT in multiple conformations (Das, Clark et al. 2004).  Interestingly, K103N (which 

confers high level resistance to NVP, DLV, and EFV) by itself has no effect on HIV-1 

susceptibility to ETR, likely due to its ability to change conformation.  It would be interesting to 

determine if the NNRTI HS mutations would affect HIV-1 susceptibility to ETR.   

 

Investigation of V118I/H208Y HIV-1 

 In the analysis of 444 patient isolates for EFV HS, the V118I/H208Y viral variant was 

never found, we therefore excluded this mutant from our study.  However, including this mutant 

in future investigations may provide helpful insight into the mechanisms of NNRTI HS and 

could further elucidate the role of each of these mutations in the HS phenotype.  Perhaps the 

combination of these mutations is severely detrimental to viral replication and/or enzyme 

function, indicating that T215Y may compensate for such defects.   

 

 

 

 

Selection of NNRTI resistance mutations in the presence of pre-existing NNRTI HS mutations 

 

The low genetic barrier to acquiring high level resistance to DLV, NVP, and EFV can 

limit therapeutic options.  Allowing HIV-1 containing NNRTI HS mutations to replicate in the 

presence of increasing concentrations of NNRTI could help determine if these mutations slow 

the selection of virus with NNRTI resistance mutations such as K103N that cause resistance to 

three of the four FDA approved inhibitors in this class.   
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 APPENDIX – ADDITIONAL FIGURES 

 

 

 

 

 

 

 

Figure 22. Amino Acid Changes in RT Associated with NNRTI HS. 

Molecular depiction of the NRTI resistance mutations T215Y (top), V118I (middle), and 

H208Y (bottom) are shown using RasMol.    

Valine  (V)      Isoleucine (I) 

(GTT)             (ATT) 

Histidine (H)      Tyrosine (Y) 

(CAT)             (TAT) 

Threonine (T)     Tyrosine (Y) 

(ACC)             (TAC) 
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Figure 23. Structure of NRTIs used in this study. 

Thymidine analogues zidovudine and stavudine along with nucleotide analogue tenofovir 

were used in viral drug susceptibility assays (Chapter 1).   
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Table 7. HIV-1pNL43 NNRTI Susceptibility 

HIVpNL43 Efavirenz Nevirapine Delavirdine

118I ND ND ND

208Y 0.12 0.21 0.1

215Y 0.46 0.55 0.31

208Y/215Y 0.23 0.29 0.13

118I/215Y ND ND ND

118I/208Y/215Y 0.12 0.21 0.06

Fold Change in Mean IC50 (nM) Compared to Wildtype

 

Values represent the fold change in NNRTI susceptibility when comparing wildtype and mutant 

virus from three independent experiments using Phenosense HIV Assay (Monogram 

Biosciences, INC. San Francisco, CA).   ND = not determined.  Fold change < 0.4 indicates HS. 
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