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HEMOGLOBINOPATHIES IN CHILDREN WITHIN A MALARIA
HOLOENDEMIC REGION OF WESTERN KENYA 

 

Allison M. Remo, M.S. 

University of Pittsburgh, 2007

 

Plasmodium falciparum malaria is one of the predominant causes of morbidity and 

mortality in children under five years of age in sub-Saharan Africa.  In malaria endemic regions, 

the intensity of transmission and the age at which malaria is first acquired are important in 

conditioning disease outcomes. In addition, inter-individual variability in disease severity among 

age-matched children (aged <3 yrs) with similar levels of parasite exposure is largely determined 

by genetic variability.  Historical exposure to malaria in endemic populations has exerted 

tremendous selective pressure on the human genome, particularly in the host-immune response 

genes that mediate susceptibility and clinical outcomes.  Hemoglobinopathies, such as the alpha 

thalassemia 3.7 kb deletion (-α3.7) and sickle-cell trait (HbAS) also confer protection against 

severe malaria through a mechanism(s) that are yet to be fully elucidated. As such, this study 

examined the role of -α3.7 and HbAS in protection against severe malaria anemia (SMA) in 

children (n=468; aged 3-36 months) residing in a holoendemic P. falciparum transmission region 

of western Kenya. These investigations demonstrated that successful genotyping of the -α3.7 

required high-quality genomic DNA from large volumes of whole blood that was unavailable for 

most of the small, underweight-for-age, severely anemic children in which DNA was isolated 

from dried blood spots. Results presented here further demonstrated that the HbAS genotype was 

significantly associated with a reduced burden of both low (<10%; P=0.03) and high (≥10%; 
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P<0.001) pigment-containing monocytes (PCM). In addition, hemoglobin (Hb; P=0.05) and red 

blood cell (RBC; P=0.04) counts were significantly higher in the HbAS group relative to 

children with the HbAA genotype. The HbAS genotype was also significantly associated with 

protection against SMA using both the World Health Organization (i.e., <5.0 g/dL; P=0.04) and 

modified definitions of SMA (i.e., <6.0 g/dL; P=0.02).  Taken together, results presented here 

suggest that the HbAS genotype confers protection against SMA by reducing the natural 

acquisition of malarial pigment (hemozoin) in monocytes.  This study has significant public 

health importance by demonstrating that one of the mechanisms by which HbAS provides 

protection against SMA is through reducing the overall burden of hemozoin in monocytes.   

 v 



TABLE OF CONTENTS 

PREFACE.................................................................................................................................XIII 

1.0 INTRODUCTION........................................................................................................ 1 

1.1 MALARIA BACKGROUND ............................................................................. 1 

1.2 MALARIA PATHOGENESIS ........................................................................... 3 

1.2.1 Parasite Lifecycle .......................................................................................... 3 

1.2.2 Hemozoin ....................................................................................................... 6 

1.2.3 Immune Response ......................................................................................... 7 

1.2.4 Severe Malaria Anemia (SMA).................................................................. 11 

1.3 HEMOGLOBIN SYNTHESIS ......................................................................... 13 

1.3.1 Heme Synthesis............................................................................................ 13 

1.3.2 Globin Synthesis.......................................................................................... 14 

1.3.3 Oxygen Transport....................................................................................... 16 

1.4 α - THALASSEMIA.......................................................................................... 17 

1.4.1 Molecular Basis of α-Thalassemia............................................................. 17 

1.4.2 Genetic Variants of α-Thalassemia ........................................................... 18 

1.4.3 Pathophysiology of α-Thalassemia............................................................ 19 

1.4.3.1 Silent Carrier (αα / α-)........................................................................ 20 

1.4.3.2 α-Thalassemia Minor (αα / - -) / (α- / α-)........................................... 20 

 vi 



1.4.3.3 HbH Disease (α- / - -) .......................................................................... 21 

1.4.3.4 Hydrops Fetalis with Hb Bart’s (- - / - -) .......................................... 22 

1.4.4 -α3.7 and Falciparum Malaria..................................................................... 23 

1.5 SICKLE-CELL HEMOGLOBIN (HBS)......................................................... 25 

1.5.1 Molecular Basis of Sickle-Cell Hemoglobin ............................................. 25 

1.5.2 Allele Frequency of Sickle-Cell Hemoglobin............................................ 26 

1.5.3 Pathophysiology of Sickle-Cell Disease (SCD) ......................................... 27 

1.5.3.1 Molecular Basis of Sickling/Polymerization..................................... 27 

1.5.3.2 Cellular Hydration of Sickled RBC .................................................. 28 

1.5.4 Treatment of SCD....................................................................................... 29 

1.6 SICKLE-CELL TRAIT (HBAS)...................................................................... 30 

1.6.1 Background of Sickle-Cell Trait................................................................ 30 

1.6.2 Sickle-Cell Trait and Falciparum Malaria............................................... 31 

1.7 CO-INHERITANCE OF -α3.7 AND HBAS AND THE EFFECT ON 

FALCIPARUM MALARIA .............................................................................................. 32 

2.0 HYPOTHESES AND OBJECTIVES....................................................................... 34 

2.1 SPECIFIC AIM 1 .............................................................................................. 35 

2.2 SPECIFIC AIM 2 .............................................................................................. 36 

3.0 MATERIALS AND METHODS .............................................................................. 37 

3.1 STUDY LOCATION AND PARTICIPANTS ................................................ 37 

3.2 α-THALASSEMIA 3.7 KB GENOTYPE STUDY DESIGN......................... 38 

3.2.1 Chong Protocol for -α3.7 Genotyping......................................................... 38 

3.2.2 Liu Protocol for -α3.7 Genotyping .............................................................. 39 

 vii 



3.2.3 GC-Rich PCR System for -α3.7 Genotyping.............................................. 40 

3.2.4 PCR Enhancer System for -α3.7 Genotyping ............................................ 41 

3.3 SICKLE-CELL STUDY DESIGN ................................................................... 41 

3.3.1 Clinical Definitions...................................................................................... 42 

3.3.2 Laboratory Procedures .............................................................................. 42 

3.3.3 Hemoglobin Electrophoresis ...................................................................... 44 

3.3.4 Statistical Analysis ...................................................................................... 44 

4.0 RESULTS ................................................................................................................... 45 

4.1 SPECIFIC AIM 1:  TO DETERMINE IF THE -α3.7 POLYMORPHISM IS 

ASSOCIATED WITH PROTECTION AGAINST SEVERE MALARIAL ANEMIA 

IN CHILDREN RESIDING IN A HOLOENDEMIC P. FALCIPARUM REGION.... 45 

4.1.1 -α3.7 Genotyping........................................................................................... 45 

4.1.2 -α3.7 Specialty Kit Genotyping.................................................................... 51 

4.2 SPECIFIC AIM 2: TO DETERMINE IF SICKLE-CELL TRAIT (HBAS) 

IS ASSOCIATED WITH PROTECTION AGAINST SEVERE MALARIAL 

ANEMIA IN CHILDREN RESIDING IN A HOLOENDEMIC P. FALCIPARUM 

REGION BY REDUCING THE OVERALL BURDEN OF PARASITEMIA ............ 58 

4.2.1 Demographic and Clinical Characteristics............................................... 58 

4.2.2 Treatment-Seeking Behavior ..................................................................... 60 

4.2.3 Parasite Burden........................................................................................... 62 

4.2.4 Malaria Pigment Characteristics............................................................... 65 

4.2.5 Hematological Characteristics................................................................... 70 

4.2.6 Leukocyte and Platelet Indices .................................................................. 75 

 viii 



4.2.7 Association of HbAS with SMA, HDP, and PCM.................................... 77 

5.0 DISCUSSION ............................................................................................................. 79 

6.0 BIBLIOGRAPHY ...................................................................................................... 89 

 ix 



 LIST OF TABLES 

 

Table 1: -a3.7 Primer Sequences .................................................................................................... 47 

Table 2: -a3.7 Genotype Expected Band Sizes................................................................................ 47 

Table 3: Demographic and Clinical Characteristics.................................................................... 59 

Table 4: Fever History as an Index of Disease Staging................................................................ 61 

Table 5: Red Blood Cell Indices According to Sickle-Cell Status ................................................ 73 

Table 6: Leukocyte and Platelet Indices According to Sickle-Cell Gene Status........................... 76 

Table 7: Association of Sickle-Cell Trait with SMA, HDP, and PCM.......................................... 78 

 x 



LIST OF FIGURES 

 

Figure 1: Map of Endemic Malaria within Africa .......................................................................... 3 

Figure 2: Life Cycle of Plasmodium falciparum in Humans........................................................... 5 

Figure 3: Diagram of Hemozoin Formation ................................................................................... 7 

Figure 4: Model of the Cytokine Response to Malaria ................................................................. 10 

Figure 5: Schematic of the Alpha Chain of Hb ............................................................................. 14 

Figure 6: Schematic of the Beta Chain of Hb ............................................................................... 15 

Figure 7: Allele Frequency of -α3.7 within Africa.......................................................................... 19 

Figure 8: Allele Frequency of HbS within Africa.......................................................................... 26 

Figure 9: Agarose Gel of Kenyan Genomic DNA using the Chong Protocol ............................... 48 

Figure 10: Agarose Gel of Tahitian Genomic DNA using the Chong Protocol............................ 49 

Figure 11: Agarose Gel of Kenyan Genomic DNA using the Liu Protocol .................................. 50 

Figure 12: Agarose Gel of Tahitian Repli-G®, Kenyan Genomic and Repli-G® DNA using the 

GC-Rich PCR Kit and Chong Primer Sequence........................................................................... 53 

Figure 13: Agarose Gel of Tahitian Genomic and Repli-G® DNA using the GC-Rich PCR Kit and 

Liu Primer Sequence..................................................................................................................... 54 

Figure 14: Agarose Gel of Tahitian Genomic DNA using the PCR Enhancer System and Chong 

Primer Sequence ........................................................................................................................... 55 

 xi 



Figure 15: Agarose Gel of Kenyan Genomic DNA using the PCR Enhancer System and Liu 

Primer Sequence ........................................................................................................................... 56 

Figure 16: Agarose Gel of Tahitian Genomic DNA using the PCR Enhancer System and Liu 

Primer Sequence ........................................................................................................................... 57 

Figure 17: (A) Parasitemia and (B) Geomean Parasitemia According to Sickle-Cell Gene Status

....................................................................................................................................................... 63 

Figure 18: (A) Absolute Count and (B) Percent PCM According to Sickle-Cell Gene Status...... 67 

Figure 19:  (A) Absolute Count and (B) Percent PCN According to Sickle-Cell Gene Status ..... 68 

Figure 20: Low and High PCM According to Sickle-Cell Gene Status ........................................ 69 

Figure 21: (A) Hemoglobin and (B) Red Blood Cell Measurements According to Sickle-Cell 

Status............................................................................................................................................. 72 

Figure 22: Proportion of Children with SMA According to Sickle-Cell Gene Status................... 74 

 xii 



PREFACE 

 

I would like to thank my thesis advisor, Dr. D.J. Perkins, for the opportunity to work on this 

project, and for his guidance. Additionally, I would like to thank Dr. Gordon Awandare and Greg 

Davenport, for their effort, “helpful” discussions, and overall assistance, none of this would have 

been possible without the two of you. Finally I would like to thank my committee members Dr. 

Bob Ferrell and Dr. Jeremy Martinson for all the time you spent helping me, even when it went 

above and beyond your role as a committee member.  

 

I have been extremely lucky to have family and friends who have supported me throughout my 

two years here in IDM, without them, I have no idea where I would be! Special thanks to Lance 

Presser and Kelly Ogrodnik, you were and are my family here in Pittsburgh and I swear I would 

not have made it through without the two of you.

 xiii 



1.0  INTRODUCTION 

1.1 MALARIA BACKGROUND 

Malaria is the leading cause of childhood mortality, with 90% of this mortality occurring 

in Sub-Saharan Africa (Figure 1) (WHO 2000; McCombie 2002).  Endemic to tropical and 

subtropical regions of the world, malaria causes 300-600 million clinical episodes and mortality 

in one to three million children under the age of five each year. (WHO 2000; Stevenson and 

Riley 2004; Struik and Riley 2004; Kwiatkowski 2005; Snow et al. 2005).  The disease results 

from the transmission of the protozoan parasite(s), Plasmodium falciparum, Plasmodium 

malariae, Plasmodium ovale, and Plasmodium vivax, to the human host during the bite of an 

infected female Anopheles mosquito. Plasmodium falciparum is the most pathogenic species of 

protozoan, accounting for the majority of morbidity and mortality (Stevenson and Riley 2004; 

Struik and Riley 2004; Good et al. 2005). Children under the age of five are the most vulnerable 

to malaria morbidity and mortality due to their immune-naïve status (Perkins et al. 1999; Breman 

et al. 2001; Williams et al. 2005b). However, until the age of approximately six months children 

are protected from malaria by maternal antibodies (Crawley 2004). As maternal protection 

wanes, susceptibility to clinical disease and mortality increases greatly (Crawley 2004). The 

clinical manifestations associated with mortality in children with malaria include severe anemia 

(SMA), cerebral malaria (CM), hypoglycemia, hypoxia, and respiratory distress (Clark and 
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Cowden 2003). However, CM is uncommon in P. falciparum holoendemic transmission areas 

(Clark and Cowden 2003; Ong'echa et al. 2006). In rural settings, by the time many of the 

children reach the hospital they are exceedingly ill and have been medicated at home. In Kenya, 

the course of treatment typically involves chemotherapy with artemether-lumefantrine, 

(artemisin-based combination therapy; ACT), as drug resistance strains of P. falciparum have 

rendered chloroquine (CQ) and sulphadoxine/pyrimethamine (S/P) treatments ineffective (Amin 

et al. 2007). By adulthood, residents in holoendemic regions acquire partial immunity from 

frequent bouts of clinical malaria during childhood, which helps them manage future malaria 

complications such as SMA (Bloland et al. 1999b; Struik and Riley 2004). These adults co-exist 

with a parasite load with or without mild clinical presentation of disease (fever) for the duration 

of their residency in a malaria endemic region (Petersen et al. 1991).  
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Figure 1: Map of Endemic Malaria within Africa 

The distribution of endemic malaria, a consistent transmission region, and marginal malaria, an unstable 

transmission region affected by low ambient temperatures within Africa (Shanks et al. 2005). Reprinted with 

permission from Macmillian Publishers Ltd: Nature Genetics (Wellems and Fairhurst 2005).   

1.2 MALARIA PATHOGENESIS 

1.2.1 Parasite Lifecycle 

Infection of the human host occurs when a female Anopheles mosquito injects 

sporozoites during a blood meal into the dermis of the host (Miller et al. 2002)(Figure 2). 

Sporozoites migrate to the liver and invade hepatocytes utilizing the thrombospondin domain and 

the thrombospondin-related adhesive protein, which binds heparin sulphate proteoglycans on 
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hepatocytes (Miller et al. 2002; Jones and Good 2006). During the liver stage, the host is 

asymptomatic. Over a period of about one week, sporozoites develop by asexual mitosis into 

exoerythrocytic schizonts containing approximately 30,000 merozoites, which subsequently 

rupture the infected hepatocyte and infect red blood cells (RBC) (Jones and Good 2006), 

marking the onset of a 48-hour intraerythrocytic cycle within the newly parasitized RBC 

(pRBC). The merozoite in the newly invaded RBC develop asexually into the ring stage 

trophozoite, followed by a mature trophozoite, and finally, the schizont (Good et al. 2005) 

(Figure 2). During the occupation of the RBC, the parasite catabolizes hemoglobin using globin 

as a source of amino acids. The parasite renders the heme into an insoluble biomineralized 

product called hemozoin (Hz). The mature schizont gives rise to approximately 16 daughter 

merozoites, which are released upon the rupture of the pRBC (Good et al. 2005). This release 

marks the start of clinical disease presentation with fever (>37.5oC), chills, headache, fatigue, 

seizures, and coma, primarily due to dysregulation of the cytokine response (Good et al. 2005). 

The life cycle of the parasite is complete when another female Anopheles mosquito ingests a 

gametocyte, a sexual stage parasite formed from merozoites, during a blood meal. Within the 

mosquito gut where the temperature is lower, male and female gametocytes emerge from the 

ingested pRBC and fuse in sexual replication to produce a zygote (Good et al. 2005). The zygote 

imbeds in the mid-gut of the mosquito and forms an oocyte that contains immature sporozoites 

(Figure 2). These sporozoites travel to the mosquitoes’ salivary glands where they continue to 

develop prior to injection into the human host to start the parasitic life cycle anew (Good et al. 

2005). 
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Figure 2: Life Cycle of Plasmodium falciparum in Humans 

The female Anopheline mosquito injects sporozoites into the human hosts’ dermis where they migrate to the liver 

and invade hepatocytes. The invading sporozoites undergo 5-7 days of asexual replication to produce merozoites 

which rupture the hepatocyte. Merozoites migrate and invade the RBC initiating the intraerythrocytic cycle. During 

this 48 hour cycle, merozoites develop into trophozoites and schizonts. Schizogony gives rise to daughter merozoites 

that cause the rupture of the RBC. Many of these daughter merozoites will invade new RBC, but some differentiate 

into male and female gametocytes. Gametocytes are taken up by a new female Anopheles mosquito and migrate to 

the mid-gut to fuse in sexual reproduction forming a zygote containing immature sporozoites. These sporozoites will 

migrate to the mosquito’s salivary glands for final development and inoculation into a new host. Adapted from Jones 

et al., 2006. 
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1.2.2 Hemozoin 

During the intraerythrocytic cycle of infection, malaria pigment, (hemozoin, Hz), is 

synthesized from heme molecules (hematin, ferriprotoporphyrin IX) (Figure 3). Hz is formed and 

visible microscopically within the digestive vacuoles of late trophozoites and early schizonts and 

released as a by-product of parasitic proteolysis of host erythrocyte hemoglobin (Lawrence and 

Olson 1986; Sullivan et al. 1996; Egan 2002; Sullivan 2002). The parasite is unable to cleave the 

porphyrin ring therefore it must detoxify the heme by converting it to the insoluble Hz molecule 

(Figure 3). Upon pRBC rupture, free Hz is released into the blood stream where it is responsible 

for the induction of both pro- and anti-inflammatory cytokines and ingested by 

monocytes/macrophages and neutrophils (Schwarzer et al. 1998; Schwarzer et al. 2001; Lyke et 

al. 2003). However, monocytes/macrophages are unable to degrade ingested Hz and 

accumulation of this parasitic product leads to an inability to further ingest senescent pRBC, free 

Hz, and dysregulation in a number of cellular immunological functions (Ndungu et al. 2005).  

Previous studies have demonstrated that the presence of circulating Hz is an important marker of 

malaria severity both in adults and children (Nguyen et al. 1995; Amodu et al. 1998; Luty et al. 

2000; Lyke et al. 2003) and is associated with increased mortality (Lyke et al. 2003).  
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Figure 3: Diagram of Hemozoin Formation 

The parasite breaks down Hb as a source of amino acids creating heme as a by-product. Heme is toxic to the parasite 

and is converted to an insoluble biomineralized product called hemozoin. The mechanism(s) responsible for 

converting heme into hemozoin have yet to be elucidated, but are believed to involve phospholipids (Tripathi et al. 

2002) and/or the histidine rich protein II, which is present in the RBC and secreted by the parasite (Sullivan et al. 

1996; Egan 2002).  

1.2.3 Immune Response 

Clinical disease occurs during the intraerythrocytic cycle when pRBC rupture releasing 

merozoites and Hz into the blood leading to a cytokine response that can quickly become 

dysregulated (Struik and Riley 2004). When pRBC are phagocytized by scavenger 

monocytes/macrophages and neutrophils malaria pigment/Hz is ingested during this cellular 

process. The phagocytosis of pRBC, free Hz, and dead pigment-containing 

monocytes/macrophages aids greatly to the hosts’ parasite management, clearance, and initial 
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immune response. However, the ingestion of Hz can lead to monocyte/macrophage dysfunction, 

reducing the ability to repeat phagocytosis, generate oxidative burst upon stimulation, and 

activate protein kinase C (Ndungu et al. 2005). It is the induction of cytokines from scavenger 

monocytes/macrophages, which are intended to protect the host, that have been implicated in the 

severity of disease. Activated monocytes/macrophages bind to pRBC through CD36 and 

subsequent phagocytosis results in the secretion of tumor necrosis factor-α (TNF-α), a pro-

inflammatory cytokine that has potent anti-parasitic properties (Othoro et al. 1999). However 

when present systemically in high amounts, TNF-α has been implicated in severe disease 

(Othoro et al. 1999). Nitric oxide (NO), also secreted from monocytes/macrophages, has anti-

parasitic properties by increasing parasite clearance through oxidative damage to the pRBC 

(Ekvall 2003). However, long-term expression of NO has been shown to suppress erythropoiesis 

and induce apoptosis of CD34+ hematopoietic stem cells, thereby contributing to SMA 

(Kremsner et al. 1996; Reykdal et al. 1999). Interleukin-12 (IL-12) secreted from 

monocytes/macrophages plays a vital role in the regulation of immunological cells through its 

ability to up-regulate the secretion of TNF-α and interferon-γ (IFN-γ) (Luty et al. 2000; Perkins 

et al. 2000; Watford et al. 2003). Furthermore, IL-12 activates naïve T-cells to differentiate into 

T-helper 1 cells (TH1) that further activate B cells to secrete IgG antibodies, which in turn 

opsonize pRBC (Struik and Riley 2004). TH1 cells secrete IFN-γ and interleukin-2 (IL-2) thereby 

activating NK cells to secrete IFN-γ. IFN-γ is released early in the immune response and has 

been shown to be a strong modulator of the pro-inflammatory response (Stevenson and Riley 

2004).Due to the ability of IFN-γ to up-regulate the secretion of TNF-α and interleukin-1 (IL-1), 

it has been linked to sev ere disease when present systemically in high amounts (Artavanis-

Tsakonas et al. 2003). Furthermore, IFN-γ is implicated in the activation of naïve T cells, the 
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maturation of dendritic cells (DC), and the activation of monocytes/macrophages (Figure 4) 

(Stevenson and Riley 2004).  

Increased ingestion of Hz by monocytes/macrophages leads to decreased IL-12 and 

increased TNF-α production (Keller et al. 2006). Furthermore, low plasma levels of IL-10 are 

insufficient to effectively down-regulate TNF-α production, which may lead to the suppression 

of erythropoiesis, a contributor to SMA (Ho et al. 1995; Othoro et al. 1999; Perkins et al. 2000; 

Good et al. 2005). Low IL-12 levels have also been implicated in severe disease due to the 

inability of the host to mount an effective immune response to clear and manage the infection 

(Luty et al. 2000; Perkins et al. 2000; Dodoo et al. 2002). Therefore, the balance between pro- 

and anti-inflammatory mediators determines if the response will be detrimental or protective 

(Kurtzhals et al. 1999; Othoro et al. 1999). 
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Figure 4: Model of the Cytokine Response to Malaria 

Immunity against malaria is regulated by pro- and anti-inflammatory cytokines.  Pro-inflammatory cytokines are 

represented in red text, anti-inflammatory cytokines in blue text, and effector molecules in green text. When 

monocytes/macrophages ingest pRBC or free Hz a cytokine cascade is initiated through the secretion of IL-12. IL-

12, together with B cells, promote the differentiation of naïve T cells into TH1 cells and the secretion of IFN-γ.  Both 

IL-12 and IFN-γ stimulate monocytes/macrophages to secrete TNF-α. TH1 cells secrete IL-2 to activate NK cells, 

which are also activated through DC-secreted IL-12, to secrete IFN-γ. The release of anti-inflammatory cytokines 

such as IL-10 and transforming growth factor -β (TGF-β) causes the down-regulation of IL-12, IFN-γ, and TNF-α 

thereby preventing elevated pro-inflammatory levels, which can lead to severe disease. Adapted from Stevenson and 

Riley, 2004. 
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1.2.4 Severe Malaria Anemia (SMA) 

The pathophysiology of severe malaria anemia (SMA) is complex and multifactorial. 

SMA is the leading cause of mortality in children under the age of five with malaria (WHO 

2000). In acute childhood malaria, suppression of bone marrow responsivness and the increased 

phagocytosis of pRBC and non-parasitized RBC (n-pRBC) play a major role in SMA 

pathogenesis (Price et al. 2001; Ekvall 2003). Although pregnant women are at risk for 

developing SMA, it is estimated that they comprise only ~10% of SMA cases in sub-Saharan 

Africa, and the ensuing anemia is more likely due to malnutrition, hookworm infection, and HIV 

complication (Ekvall 2003).  

The destruction of pRBC in SMA occurs via rupture and phagocytosis of these RBC by 

monocytes/macrophages and neutrophils. However, destruction of RBC alone does not 

adequately account for the profound decrease in Hb observed in children with SMA. Previous 

results show that monocytes/macrophages clear n-pRBC and this process accounts for more than 

90% of the loss in the hosts’ RBC (Price et al. 2001; Ekvall 2003). Susceptibility of n-pRBC to 

increased phagocytosis is multifactorial and results from several mechanisms i.e., circulating 

monocytes/macrophages release oxygen and nitrogen radicals that can damage both the pRBC 

and n-pRBC membranes, leading to enhanced clearance of the overall RBC population (Greve et 

al. 1999; Perkins et al. 2000; Griffiths et al. 2001). Furthermore, oxidative stress causes the RBC 

membranes to undergo a conformational change, which leads to an increase in IgG binding to the 

band 3 protein on the RBC surface resulting in increased phagocytosis (Ekvall 2003; Turrini et 

al. 2003). Additionally, reduction in RBC deformability, characterized by membrane rigidity, 

and exposure of phosphatidylserine on the outer surface of the cell has been linked to disease 

severity (Dondorp et al. 2003; Lang et al. 2004). Reduced deformability is also implicated in the 
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removal of RBC in the spleen, where RBC can become entangled within splenic cords and 

subsequently removed (Ekvall 2003). Complement can also act synergistically with 

immunoglobulins for both enhanced induction of phagocytosis as well as the direct lysis of 

normal RBC  (Ekvall 2003). n-pRBC are usually protected from complement activation, 

however the absence of CR1 and CD55 regulatory proteins, which protects the RBC from 

complement-mediated lysis, leads to increased phagocytosis and possibly SMA (Waitumbi et al. 

2000).  

Children with SMA characteristically exhibit bone marrow suppression and 

dyserythropoiesis. Normal erythropoiesis occurs when the erythroid progenitor, primitive 

erythroid burst-forming unit (pBRU-E), matures, loses the ability to divide and migrate, and 

becomes the erythroid colony–forming unit (CFU-E) (Roberts et al. 2005).  During bone marrow 

dysfunction in malaria, there is a decreased responsiveness of erythroid progenitor cells and 

potential impairment in erythropoietin production; a potential consequence of increased 

inflammatory cytokine production (Ekvall 2003).  Pro-inflammatory cytokines such as TNF-α 

and IFN-γ, and anti-inflammatory cytokines including IL-10, have been implicated in promoting 

dyserythropoiesis (Ekvall 2003). Elevated levels of TNF-α and IL-10 are found in children with 

severe malaria, with a low IL-10 to TNF-α ratio associated with childhood SMA (Kurtzhals et al. 

1998; Othoro et al. 1999; Luty et al. 2000; Zamai et al. 2000; Ekvall 2003). Normally, IL-10 

down-regulates the production of TNF-α, but due to decreased secretion of IL-10 the normally 

beneficial TNF-α levels become excessively elevated and contribute to SMA (Roberts et al. 

2005). 
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1.3 HEMOGLOBIN SYNTHESIS 

1.3.1 Heme Synthesis 

Hemoglobin synthesis is the concerted effort between heme, a prosthetic group that 

mediates the reversible binding of oxygen (O2) to Hb, and globin. 

Heme synthesis is a step-wise process that involves enzymes in the mitochondria and 

cytosol of the cell. Within the mitochondria, condensation of succinyl coenzyme A (CoA) and 

glycine forms α-amino-β-ketoadipate, which become decarboxylated to form Δ-aminolevulinate 

(ALA) (Baggott and Dennis 1995). ALA is then transported to the cytosol where two ALA 

molecules undergo dehydration to release two molecules of water forming four molecules of 

porphobilinogen, the first pyrrole. The porphobilinogen molecules undergo three step-wise 

reactions before becoming coporphyringen III. Catalyzation of porphobilinogen by 

uroporphyrinogen I synthase results in the loss of amino groups (Baggott and Dennis 1995). 

Porphobilinogen then becomes a linear tetrapyrrole with alternating acetic and propionic acid 

groups, which slowly cyclize to create uroporphyrinogen I. The second reaction transforms the 

tetrapyrrole to cyclic uroporphyrinogen III through the enzymatic activity of uroporphyrinogen 

III cosynthase. The cyclic uroporphyrinogen III acetic acid groups are then decarboxylated by 

uroporphyrinogen decarboxylase to form methyl groups that become coproporphyrinogen III 

(Baggott and Dennis 1995). Coproporphyrinogen III within the mitochondria utilizes the enzyme 

coproporphyrinogen III oxidase to convert the propionic acid groups on ring I and III to vinyl 

groups, creating the product protoporphyrinogen IX. Protoporphyrinogen IX oxidase then 

converts the methylene bridges between the pyrrole rings of protoporphyrinogen IX to methyl 

bridges allowing for resonance around the entire ring structure and enhanced stabilization. 
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Lastly, synthesis of heme occurs when ferrochelatase adds iron (Fe2+), aided by ascorbic acid and 

cysteine as reducing agents, to protoporphyrinogen IX to form heme (Baggott and Dennis 1995).  

1.3.2 Globin Synthesis 

There are two separate globin chains with their respective heme molecules coming 

together to form Hb. The alpha globin chain expresses the 141 residue alpha genes that are 

encoded on chromosome 16 (Figure 5). Chromosome 16 has two alpha globin genes, referred to 

as alpha 1 and alpha 2, that are identical and aligned one after the other.  Each cell has two sets 

of chromosomes resulting in four alpha genes per cell. Each alpha gene produces approximately 

one quarter of the required alpha globin per Hb molecule (Bridges 2003).                                                               

 

 

30 kb

α1 α2ψζζ ψα

3’5’ 

 

 

 

Figure 5: Schematic of the Alpha Chain of Hb 

The Hb alpha chain is 30 kb long and encoded on chromosome 16. Each chromosome 16 has two alpha genes, α1 

and α2, which are identical, as well as a zeta (ζ) gene and two pseudogenes: pseudo-zeta (ψζ) and pseudo-alpha 

(ψα). Each of the four alpha genes produce exactly one quarter of the needed alpha globin required per Hb molecule. 

 

The beta chain is 146 residues and is encoded on chromosome 11 (Figure 6). The beta 

globin genes are sequentially expressed from the 5’ to 3’ end during various developmental time 

points. The beta chain expresses epsilon (ε) during the first 12 weeks of embryogenesis then 
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moves to gamma (γ), delta (δ), and/or beta (β). On chromosome 11, there are two copies of the 

gamma gene, while the remaining genes are singularly present (Bridges 2003).  

 

5’ 3’ 60 kb 

β δAγε ψβ1Gγ

Hb F Hb A2 Hb A 

Figure 6: Schematic of the Beta Chain of Hb 

The beta chain within the Hb molecule is 60 kb long and encoded on chromosome 11. Expression of the beta genes 

begin during the first 12 weeks of embryogenesis with epsilon (ε) which then moves sequentially to gamma (γ), 

delta (δ), and/or beta (β). Both gamma genes comprise fetal hemoglobin (HbF), which is the predominate Hb until 

~18 weeks of age. The delta A2 Hb constitutes approximately 3% of adult Hb, although it is not commonly 

During the first 12 weeks of embryogenesis Hb Gower 1 is expressed with the zeta gene 

of the alpha globin gene cluster (there is no alpha gene being expressed at this time) coupled 

with the epsilon gene as the non-alpha (Bridges 2003). The Gower 2 Hb is formed shortly after 

replacing the short-lived zeta gene with an alpha gene. Hb Portland is formed when the epsilon 

gene is replaced with the gamma genes on the non-alpha chain and the zeta gene expressed on 

the alpha chain (Bridges 2003). The combination of two alpha chains and two gamma chains 

form fetal Hb, which is the predominate Hb until approximately 18 weeks post-birth when adult 

Hb is formed from two alpha and two beta chains. However, it has been noted that the delta 

gene, located between gamma and beta, can be expressed in children and adults producing 

produced. 
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hemoglobin A2. Hb A2 is comprised of two alpha and two delta chains, however, the delta 

globin normally comprises less then 3% of A2 Hb (Bridges 2003; Campbell and Farrell 2006).  

1.3.3 Oxygen Transport 

Oxygenation of Hb is favored within the alveoli of the lungs due to an acidic 

environment with high O2 pressure (100 Torr) and low amounts of H+ and CO2. As Hb enters the 

lungs, it releases a H+ molecule that is picked up in the capillary beds and exchanged for O2 

(Campbell and Farrell 2006). One Hb molecule is able to strongly bind four molecules of O2 

aided by the high O2 pressure resulting in 100% saturation. The H+ expelled from local tissues 

during metabolic activity binds to the bicarbonate ion (HCO-
3) creating carbonic acid (H2CO3), 

which is then transported to the lungs. The secession of CO2 from H2CO3 occurs immediately 

upon H2CO3 formation and then is subsequently expelled during exhalation (Campbell and 

Farrell 2006).  

As Hb-containing RBC move into the capillaries O2 pressure drops to around 20 Torr, 

this would typically yield an Hb saturation of approximately 50%. This drop in pressure is a 

physiological mechanism promoting Hb to release O2 (Campbell and Farrell 2006).  Within the 

capillary bed there is a reduced pH (~6.35) due to the production of CO2, which rapidly forms 

H2CO3. Since the pH in blood is typically 7.4, approximately 90% of the dissolved CO2 will take 

the form of bicarbonate ions and release H+ to maintain the pH level within blood. Hb then 

releases the O2 molecules that bind to the free H+ that is carried back to the lungs to bind with 

HCO3
- to start the process over again (Campbell and Farrell 2006). 
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1.4 α - THALASSEMIA 

α-thalassemia was first identified in 1925 when Detroit pediatrician Dr. Thomas Cooley 

described a syndrome he observed in Italian children characterized by extreme anemia, 

splenomegaly, and bone deformities (Wintrobe and Lee 1999). Prior to genetic screening, 

individuals with α-thalassemia were classified based on the severity of their clinical presentation. 

Patients presenting with severe clinical disease were considered thalassemic major. Those with 

mild-to-moderate anemia were classified as thalassemic intermedia (Wintrobe and Lee 1999; 

Bridges 2003).  

1.4.1 Molecular Basis of α-Thalassemia 

The α-thalassemia hemoglobinopathy occurs when one or more of the α genes become 

deleted or non-functional on chromosome 16 p13.3 (Wintrobe and Lee 1999; Bridges 2003). The 

α globin genes are prone to deletions due to their tandem duplicate α gene clusters (Wintrobe and 

Lee 1999). These deletions lead to unbalanced pairing of α and β chains and depending on how 

many deletions are present, these deletions can be life-threatening (Wintrobe and Lee 1999; 

Bridges 2003). There are two α-thalassemia variants designated αo and α+. The αo variant is the 

deletion of both alpha globin genes, where the α+ variant results in the deletion of only one of the 

two alpha globin genes (Wintrobe and Lee 1999).  

  17



1.4.2 Genetic Variants of α-Thalassemia 

α-thalassemia is the most common genetic disorder worldwide with geographically 

specific variants. The highest frequencies of thalassemia are in Southeast Asia, Mediterranean, 

Middle East, and Africa (Figure 7)(Wintrobe and Lee 1999).  In Saudi Arabia, greater than 50% 

of the population has the clinically silent form of thalassemia with the common deletional variant 

-α4.2. The -α4.2 genotype involves the deletion of a 4.2 kb segment of DNA from the 3’ Ψα gene 

to the 3’ α2-gene (Wintrobe and Lee 1999). The αo variant is prevalent in Mediterranean 

populations, affects both α globin genes, and includes 3 different deletions. The (--MED) deletion 

occurs on the 5’ end of the Ψζ gene and extends through both α globin genes (Wintrobe and Lee 

1999). The (-(α) 20.5) deletes the Ψζ, Ψα, α2-gene, and the first 56 codons of the α1-gene, while 

the smaller deletion variant (-(α)5.2) removes the α2-gene and part of the α1-gene. In Southeast 

Asia, the αo variant is also common, but with the (--SEA) deletion. This deletion extends from the 

3’ end of the ζ gene through the α1-gene. In Africa, the -α3.7 deletion is the most common, 

causing a 3.7 kb fragment of DNA to be deleted, affecting only one of the alpha globin genes 

(Figure 7)(Wintrobe and Lee 1999). 
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Figure 7: Allele Frequency of -α3.7 within Africa 

Allelic frequency of the -α3.7 genotype in Africa. Reprinted with permission from Macmillian Publishers Ltd: Nature 

Genetics (Wellems and Fairhurst 2005). 

 

1.4.3 Pathophysiology of α-Thalassemia 

There are four α-thalassemia syndromes currently recognized; silent carrier, α-

thalassemia minor, HbH disease, and hydrops fetalis with Hb Bart’s (Wintrobe and Lee 1999). 

However, depending on the specific variant of thalassemia, some syndromes may be rarer than 

others. Historically, testing for α-thalassemia required cord blood measurement to determine the 

amount of Hb Bart’s, characterized by gamma chains that aggregate in groups of four causing an 
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abnormal Hb variant. However, PCR reactions have recently been optimized to genotype and 

diagnose α-thalassemic individuals (Wintrobe and Lee 1999; Liu et al. 2000; Chong et al. 2000a; 

Chong et al. 2000b; Bridges 2003). 

1.4.3.1  Silent Carrier (αα / α-) 

The silent carrier has the loss of only one functional α globin gene causing a slight 

reduction in protein production with no clinical or hematological abnormalities (Bridges 2003). 

Diagnosis of the silent carrier is most easily made at birth by PCR or by measuring the 

percentage of Hb Bart’s (2-10%) in cord blood. The severity of thalassemia is directly 

proportional to the percentage of Hb Bart’s (Wintrobe and Lee 1999). This method is highly 

effective in Indian, Asian, and Malaysian populations, whereas in the African, African-

American, and Caribbean populations this methodology is less reliable. Within the African-

American and Caribbean populations cord blood can only accurately predict 12% and 10%, 

respectively, of the expected silent carrier cases (Wintrobe and Lee 1999). In adults, one reliable 

method of detection is through gene mapping by measuring the α:β globin mRNA ratios, which 

can distinguish the number of functional α genes. (Wintrobe and Lee 1999). 

1.4.3.2  α-Thalassemia Minor (αα / - -) / (α- / α-) 

α-thalassemia minor is the most commonly detected form of thalassemia in Asian, 

Mediterranean, and African populations and may manifest in the heterozygous (αα / - -) or 

homozygous (α- / α-) form (Wintrobe and Lee 1999). Although fairly benign, the loss of two α 

globin genes does cause minor anemia that can be detected during routine blood testing (Bridges 

2003). Individuals appear functionally normal but have a microcytic, hypochromic, and 

anisopoikilocytotic RBC morphology, characterized as small RBC with a pink coloration and an 
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irregular shape (Wintrobe and Lee 1999).  The diagnosis of thalassemia minor is easily assessed 

at birth by measuring the percentage of Hb Bart’s (10-20%) in cord blood and by determining the 

mean corpuscular volume (MCV; the measurement of the average RBC size and  volume), and 

mean corpuscular hemoglobin (MCH; the measurement of Hb mass within a RBC) (Wintrobe 

and Lee 1999). 

1.4.3.3  HbH Disease (α- / - -) 

The loss of three α globin genes results in a serious disorder called HbH disease that is 

prevalent in South East Asia, parts of the Middle East, and Mediterranean. However, HbH 

disease is rarely found in African populations (Wintrobe and Lee 1999). HbH occurs when the β 

chains associate in groups of four due to the lack of α chains (Bridges 2003). Because of this 

anomaly, individuals experience severe anemia that often requires blood transfusions for 

survival. Additionally, HbH does not properly carry oxygen, making it functionally useless to the 

RBC resulting in membrane damage that leads to increased cell death. Affected individuals also 

typically exhibit bone abnormalities, i.e. bone flairs in the cheek and forehead region leading to 

facial disfigurement (Wintrobe and Lee 1999; Bridges 2003). In addition, the spleen will become 

enlarged and the individual will present as small and malnourished, even though they receive 

appropriate caloric intake (Bridges 2003). The malnourished presentation occurs because energy 

from consumed foods is utilized for the bone hyper-erythropoiesis, an accelerated process that 

mimics high-energy aerobic activity (Bridges, 2003 #201). 

Detection of HbH can be achieved with 3 to 4 drops of blood added to 0.5 mL of 1% 

brilliant cresyl blue and incubated at room temperature for 20 minutes, which causes the 

precipitation of HbH (Wintrobe and Lee 1999). Another method is using Hb electrophoresis to 

measure the amount of Hb Bart’s that is present, usually 20-40% of the individuals total Hb. The 
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concentration of Hb Bart’s will decrease during the first months of life and will be replaced by 

HbH (Wintrobe and Lee 1999). 

1.4.3.4  Hydrops Fetalis with Hb Bart’s (- - / - -) 

Hydrops fetalis is the most severe form of α-thalassemia with the loss of all four 

functional α globin genes and is incompatible with life. Hydrops fetalis is observed in South East 

Asia, occasionally in the Mediterranean, and rarely in African populations (Wintrobe and Lee 

1999). The rarity of hydrops in African and Mediterranean populations is due to the geographic 

distribution of the αo and α+ haplotypes. Haplotypes αo (- -) and α+ (α-) occur in equal frequency 

in Asia, whereas the αo (- -) haplotype is rare in the Mediterranean, and even more rare in Africa. 

Therefore, the Asian population has a (α- / α-) or (- - / αα) genotype for minor thalassemia, and 

the (α- / α-) genotype is present in Mediterranean and African populations (Wintrobe and Lee 

1999). 

The development of hydrops fetalis varies, with some fetuses developing normally until 

the third trimester, while others become severely hydropic with numerous abnormalities in the 

second trimester (Chui 2005). The infant is commonly delivered stillborn or with significant 

cardio-respiratory distress. Death usually occurs within an hour of birth, but there have been 

documented cases of survival after an immediate serial exchange transfusion followed by a red 

cell transfusion (Chui 2005).  

Hematologically, the hydrops infant has Hb in the range of 4-10 g/dL, with a peripheral 

blood smear characterized by anisopoikilocytosis, severe hypochromia, and nucleated red blood 

cells (Chui 2005). When Hb electrophoresis is performed, HbF and HbA are absent, but there is 

a large, fast migrating band representing Hb Bart’s, and a smaller band representing HbH (Chui 
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2005). However, there has been some promise with detecting fetal erythrocytes in maternal 

circulation early in pregnancy by immunofluorescence. Earlier detection offers the possibility of 

an in utero transfusion (Chui 2005). 

1.4.4 -α3.7 and Falciparum Malaria 

The relationship between -α3.7 and falciparum malaria is unclear and no mechanism(s) has 

been found to elucidate its protection. Interestingly, the genetic frequency of α3.7 mirrors the 

endemicity of both falciparum and vivax malaria (Williams et al. 2005c; Urban et al. 2006; 

Wambua et al. 2006b). Documentation from Africa to New Guinea has demonstrated frequencies 

as high as 70% in the population (Oppenheimer et al. 1987). On the islands of Vanuatu and New 

Guinea, protection was limited to severe malaria episodes only in homozygotes (α- / α-). 

Additionally, blood smears from homozygotous individuals had higher parasite counts than 

heterozygous and wild type individuals (Oppenheimer et al. 1987). However, another study from 

Vanuatu documented an increase in uncomplicated malaria in both heterozygous and 

homozygous α-thalassemia children (Williams et al. 1996).  

A recent study in Kilifi, Kenya, found that -α3.7 heterozygotes and homozygotes had a 

40% and 60% reduced risk of death, respectively, when presenting with severe malaria at the 

hospital; however, there was no effect of -α3.7 on parasite density or prevalence of symptomless 

carriage (Williams et al. 2005c). Further research in Kilifi confirmed that protection is afforded 

to both the heterozygous and homozygous individuals with the 3.7 kb deletion with no effect on 

parasitemia, suggesting that parasite density is not altered in -α3.7 individuals (Wambua et al. 

2006a; Wambua et al. 2006b). 
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Studies from Ghana show that protection from severe falciparum malaria was only 

observed in heterozygotous individuals (Mockenhaupt et al. 2004). However, it is important to 

note that seasonal transmission of malaria and the low frequency of the -α3.7 genotype in Ghana, 

may result in -α3.7 protection not being as prominent (Mockenhaupt et al. 2004). 

Several studies have been carried out to elucidate the mechanism(s) of protection in -α3.7. 

One study demonstrated that -α3.7 caused a reduced parasite invasion rate and/or a reduction in 

parasite growth within thalassemic RBC (Pattanapanyasat et al. 1999). Additionally, thalassemic 

RBC age more quickly due to oxidative stress leading to membrane damage and decreased 

parasite invasion (Yuthavong et al. 1988; Pattanapanyasat et al. 1999; Destro-Bisol et al. 1999b; 

Cheng et al. 2005; Senok et al. 2006). However, physiological studies showed that thalassemic 

RBC have no detectable protection against parasite load when compared to those from wild type 

individuals, suggesting that thalassemics have similar parasite invasion rates (Mockenhaupt et al. 

2004; Williams et al. 2005c; Wambua et al. 2006b). Parasite growth may be reduced in RBC due 

to oxidative stress induced by the -α3.7 genotype. Oxidative stress increases when the parasite 

breaks-down cellular Hb leading to membrane damage and increased phagocytosis (Luzzi et al. 

1991a; Luzzi et al. 1991b; Pattanapanyasat et al. 1999; Destro-Bisol 1999a; Destro-Bisol et al. 

1999b; Cheng et al. 2005). Furthermore, surface antigens on the RBC undergo conformational 

changes when the parasite enters the cell. Previous studies documented increased phagocytosis 

by macrophages in thalassemic individuals, possibly due to conformational changes of surface 

antigens (Yuthavong et al. 1988). Additional studies also demonstrated a marked increase in the 

binding of IgG to the pRBC caused by a conformational change in band 3 protein on the RBC 

membrane (Luzzi et al. 1991a; Luzzi et al. 1991b).  
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1.5 SICKLE-CELL HEMOGLOBIN (HBS) 

Sickle-cell disease was one of the first human genetic variants associated with a specific 

molecular defect (Pauling et al. 1949). The first formally documented case occurred in 1910 

when Chicago cardiologist Dr. James Herrick recorded observations made during a physical 

exam of a 20-year-old West Indian student (Embury 1994).  

1.5.1 Molecular Basis of Sickle-Cell Hemoglobin 

The sickle-cell genotype is due to a mutation in the beta globin subunit located on the 

short arm of chromosome 11. A point mutation substituting thymine for adenine at the sixth 

codon of the β gene, (GAG → GTG), leads to valine incorporation, rather than glutamine. This 

single point mutation causes substantial changes in the molecular formation of Hb, resulting in 

deoxygenation, and polymerization (Embury 1986). 
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Figure 8: Allele Frequency of HbS within Africa 

Allele frequency of HbS in Africa. Reprinted with permission from Macmillian Publishers Ltd: Nature Genetics 

(Wellems and Fairhurst 2005). 

1.5.2 Allele Frequency of Sickle-Cell Hemoglobin 

The greatest prevalence of HbS occurs in Africa (Figure 8), with lower frequencies in the 

Middle East, Asia, parts of India, and Mediterranean basin region. Studies from these various 

locations revealed that the sickle gene arose from three independent mutations within Africa 

(Pagnier et al. 1984; Serjeant et al. 1994). The most common haplotype developed in 

Benin/Central West Africa, while the second and third haplotypes developed within the 

Senegal/African west coast and Central African Republic (Pagnier et al. 1984; Serjeant et al. 

1994). All three haplotypes are prevalent among African-American and Jamaican populations 

who frequently have HbS. The HbS variant present in the eastern Middle East and central India 
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population is not associated with any of the three African haplotypes and contains a different 

DNA structure, indicating the fourth haplotype developed independently from the three African 

haplotypes (Serjeant et al. 1994). The Benin and Senegal haplotypes are prevalent among North 

Africans, Greeks, and Italians, suggesting that this haplotype may have been distributed through 

trade routes, intermarriage, and slave trade (Mears et al. 1981; Antonarakis et al. 1984).   

1.5.3 Pathophysiology of Sickle-Cell Disease (SCD) 

1.5.3.1  Molecular Basis of Sickling/Polymerization 

Sickling of HbS-containing RBC results from Hb polymerization, poor solubility, and 

deoxygenation (Embury 1986; Embury 1994). The deoxygenated HbS polymer is a helical 

structure with fourteen Hb tetramers in each layer forming a central core of four strands and an 

outer sheath of ten additional strands. Only two of the β6 valine residues participate in the 

intermolecular bonding. The presence of this polymer is responsible for the reversible properties 

of the sickle RBC. Upon oxygenation, these polymers “melt” and the sickle RBC loses the 

characteristic sickle shape (Embury 1986; Embury 1994). Polymerization of the HbS RBC 

occurs in several stages. Normally, the RBC spends one to two seconds in arterial circulation, 

one second in microcirculation, and then requires about fifteen seconds to return to the lungs. If 

there is a delay greater then fifteen seconds during this process, the cell can return to the lungs to 

be reoxygenated before polymerization occurs (Embury 1986; Embury 1994). However in HbS 

RBC, if the delay time is between one and fifteen seconds, gelation (formation of a semi-solid 

crystalline HbS structure) will occur while the cell is in venous circulation. Sickling of the RBC 

within large veins does not cause vaso-occulsion, but the RBC membrane will be damaged, 

resulting in loss of water and a shorter delay in subsequent cycles through circulation (Embury 
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1986; Embury 1994).  If the delay time is less than one second, gelation can occur while the 

RBC are in one of the narrow vessels of the microcirculation. This results in significant problems 

since the RBC are no longer deformable and may not be able to circulate though the narrow 

vessel, therefore, causing vaso-occulsion by being permanently or temporarily lodged (Embury 

1986; Embury 1994; Wintrobe and Lee 1999). Additionally, sickled RBC may never fully regain 

their normal morphological shape upon reoxgenation in the lungs. This incomplete 

depolymerization can occur due to the total Hb concentration being at, or greater, than the 

solubility of arterial pressure, leading to a slower depolymerization rate. Therefore, when RBC 

enters the microcirculation it will polymerize faster than it did during the first circulating cycle 

since it has not fully depolymerized (Embury 1986; Embury 1994; Wintrobe and Lee 1999). 

1.5.3.2  Cellular Hydration of Sickled RBC 

During deoxygenation, sickled RBC lose the intracellular, monovalent cation, potassium 

(K+). A decrease in potassium results in the loss of water from the cell, leading to increased 

concentrations of Hb. Even the small Hb concentration increases can have serious effects on the 

delay time of the HbS RBC, leading to increased sickling. In addition, there is an intracellular 

increase in calcium (Ca2+) during the sickling process that is due to the disruption of the lipid 

bilayer from the RBC cytoskeleton, thereby, increasing the permeability of the RBC to Ca2+ 

(Embury 1986; Embury 1994).  

In irreversibly sickled cells (ISC), the RBC is permanently in the crescent sickle shape, 

even in the presence of 100% O2. These cells are characterized by a low MCV and high MCHC, 

properties of dehydrated RBC (Embury 1986; Embury 1994). ISC are usually formed shortly 

after release from the marrow and are quickly removed from the circulation. ISC contain 

substantially lower HbF than reversibly sickled cells and may be the primary cause of ISC 

  28



(Embury 1986; Embury 1994). ISC have a reduced K+ concentration that exceeds the Na+ gain, 

and an increase in Ca2+ concentration (Embury 1986; Embury 1994; Wintrobe and Lee 1999). 

1.5.4 Treatment of SCD 

Access and availability to treatment for SCD varies greatly depending on the patient’s 

location. Within Africa resources can be plentiful or scarce depending on location. There is 

infrequent post-natal screening and many times the diagnosis of SCD occurs during the child’s 

first crisis and treatment availability can be limited (Diallo and Tchernia 2002). More than half 

of the children with SCD in Africa will die before the age of five (Diallo and Tchernia 2002; 

WHO April 24, 2006). Many areas lack the resources to import needed drugs as well 

as the proper medical equipment for monitoring and follow-up care, and even then improperly 

treated children due to misleading information is likely (Diallo and Tchernia 2002). Many areas 

have access to chemotherapeutics such as penicillin, although not usually given prophylactically 

and hydroxyurea may be found in larger city hospitals and the occasional research clinic (Diallo 

and Tchernia 2002). Hydroxyurea targets the cell cycle and inhibits DNA synthesis of HbS while 

increasing the synthesis of HbF, thereby reducing the amount of HbS within cells and reducing 

the chance of sickling (Embury 1994; Wintrobe and Lee 1999; De Franceschi and Corrocher 

2004).  Blood transfusions are common, but pose a considerable health threat as the blood is not 

always properly screened prior to transfusion (Diallo and Tchernia 2002).  Finally, in 2006 the 

WHO declared SCD a major health issue by outlining health care infrastructure to be 

implemented in all countries i.e.: surveillance, research, early detection, management programs 

for families (WHO April 24, 2006). 
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1.6 SICKLE-CELL TRAIT (HBAS) 

1.6.1 Background of Sickle-Cell Trait  

Sickle-cell trait is the heterozygous form of SCD where the individual has one HbA 

(normal) and one HbS (sickle-cell) gene. There is a 60/40 ratio between HbA and HbS, and 

although this ratio may change slightly, HbA is always the dominant globin form (Wintrobe and 

Lee 1999). Sickle-cell trait is prevalent in Africa where allele frequencies have reached 0.07 in 

coastal Kenya (Urban et al. 2006) and 0.26 in the western Kenya lowlands (Moormann et al. 

2003). HbAS is also frequent in parts of the Mediterranean, India, and Asia. More interesting is 

the geographic prevalence of HbAS in relation to the distribution of falciparum malaria. The 

aforementioned countries are endemic areas of falciparum malaria and the higher the frequency 

of HbAS within the population is directly proportional to the malaria transmission rate 

(Moormann et al. 2003). 

 HbAS is associated with little or no clinical illness and the only consistent hematological 

abnormality is a mildly reduced MCV and MCH (Serjeant 1992). Life expectancy and overall 

mortality rate for an HbAS individual is the same as it would be for an HbAA individual 

(Serjeant 1992). There has been documentation, although rare, of sudden death occurring in 

soldiers or athletes participating in physically strenuous activity. However, these cases lack vital 

information as to the HbA/HbS ratio or the presence of any undetected underlying conditions 

(Embury 1994; Wintrobe and Lee 1999).  
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1.6.2 Sickle-Cell Trait and Falciparum Malaria 

The first connection between malaria and sickle-cell trait occurred during 1946 and 1947 

in Northern Rhodesia where Dr. E. A. Beet noted in two separate communities that malaria 

parasites occurred less frequently in blood films from individuals with HbAS (Embury 1994).  

Soon following in 1954 Dr. A. C. Allison, a British physician, observed that the HbS gene was 

highest in the areas of greatest malaria transmission, HbAS individuals developed less malaria 

with milder severity than those without HbAS, and parasite density was greatly reduced in HbAS 

individuals (Serjeant 1992; Embury 1994). This sparked a debate, as many researchers could not 

replicate Dr. Allison’s results, or had contradictory findings. However, Dr. Allison is credited 

with having been the first investigator to link HbAS with a protective effect against malaria. 

Sickle-cell trait affords carriers a 60%-90% protection against acute uncomplicated 

malaria, severe malaria, and malaria mortality (Allison 1954c; Raper 1955; Friedman 1978; 

Marsh et al. 1989; Greenwood et al. 1991; Hill et al. 1991; Aluoch 1997; Ntoumi et al. 1997a; 

Lell et al. 1999; Stirnadel et al. 1999; Aidoo et al. 2002). However, the mechanism(s) of 

protection is poorly understood, although several studies have been carried out to elucidate the 

protective pathway(s). One such study demonstrated a reduction in intracellular parasite growth 

due to the hypoxic environment of the sickle trait RBC.  It is believed that the invading parasite’s 

growth and development can be inhibited by this oxygen deprivation resulting in a break-down 

of the parasite’s ability to carry out metabolic functions (Friedman 1978). Additionally, 

enhanced phagocytosis of the parasitized sickle trait RBC by monocytes has been hypothesized 

to modulate disease severity. When the hypoxic HbAS RBC is invaded by a parasite, oxidative 

stress is two-fold; one from the host’s genetics and a second from the parasite’s break-down of 

cellular Hb, causing the RBC to sickle (Ayi et al. 2004). This phenotypic change of the sickle 

  31



trait RBC causes an aggregation of band 3 protein, located on the RBC membrane, which then 

binds free iron and hemichromes. Band 3 protein aggregation causes the increased binding of 

IgG to the band 3 cluster on the RBC surface that leads to increased phagocytosis (Ayi et al. 

2004). Furthermore, higher levels of antibodies to malarial antigens in peripheral blood 

mononuclear cells (PBMC) from children with HbAS, as compared to HbAA, were found in the 

Sudan (Bayoumi et al. 1990; Abu-Zeid et al. 1992b) and in The Gambia (Marsh et al. 1989).  In 

Nigeria, HbAS children had higher plasma concentrations of IgG, IgM, and IgA than wild type 

children (Odegbemi and Williams 1995). Finally, HbAS children had higher levels of IgG3 and 

IgG2 in plasma samples whereas only IgG3 was detected in children with HbAA. This increase 

in IgG levels was associated with enhanced pRBC clearance (Ntoumi et al. 2002).  

1.7 CO-INHERITANCE OF -α3.7 AND HBAS AND THE EFFECT ON FALCIPARUM 

MALARIA 

Recent studies were conducted to investigate the co-inheritance of -α3.7 and HbAS and 

their subsequent protection from falciparum malaria (Williams et al. 2005c; Urban et al. 2006; 

Wambua et al. 2006a). In Kilifi, Kenya, recent reports documented that -α3.7 and HbAS co-

inherited nullified each gene’s protective qualities, leaving these children as susceptible to 

falciparum malaria as wild type children (Williams et al. 2005c; Urban et al. 2006). However, 

the available population with -α3.7 and HbAS was small in both studies (n=37 within the 

Williams study; and n=24 within the Urban study), therefore, these results may not be an 

accurate representation of the effects of co-inheritance of these hemoglobinopathies on 

falciparum malaria. In the same study population, Wambua et al., investigated the hematological 
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characteristics of co-inheritance, and noted that the HbAS genotype ameliorated some of the -α3.7 

hematological abnormalities by reducing microcytosis, and hypochromia. Furthermore, the co-

inheritance of both disorders resulted in the loss of malarial protection, possibly due to the 

interaction of the altered α and β chains (Wambua et al. 2006a). The α chains have a high affinity 

for normal β chains, which is greatly enhanced in thalassemia due to the lack of normal α chains, 

that can reduce the cellular HbS concentration and ameliorate protection. In summary, co-

inheritance of -α3.7 and HbAS and the subsequent effect on falciparum malaria is not well 

understood and requires further validation. 
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2.0  HYPOTHESES AND OBJECTIVES 

The strongest known selective pressure upon the human genome is malaria – a disease 

endemic to tropical and sub-tropical regions of the world where it kills at least two million 

children annually (WHO 2000; Stevenson and Riley 2004; Struik and Riley 2004; Kwiatkowski 

2005).  Plasmodium falciparum is the major cause of malaria-related morbidity and mortality, 

particularly in children less than five years of age within malaria endemic regions (WHO 2000; 

Breman et al. 2001; Rowe et al. 2006). Host defense mechanisms against P. falciparum and the 

molecular determinates of pathogenesis are complex and not fully understood. Human genetic 

factors, such as erythrocytic polymorphisms, -α3.7 and HbAS, can influence the disease severity 

and outcomes (Allison 1954c; Migot-Nabias et al. 2000; Mockenhaupt et al. 2004; Williams et 

al. 2005a; Williams et al. 2005b; Williams et al. 2005c; Williams et al. 2005c; Verra et al. 2006; 

Wambua et al. 2006a; Williams 2006a; Wambua et al. 2006b; WHO April 24, 2006). 

These polymorphisms are believed to have arisen from evolutionary selection on the human 

genome in endemic malarial populations (Kwiatkowski 2005). However the mechanism(s) of 

protection that affords -α3.7 and HbAS individuals against malaria is unknown. Therefore, the 

role of -α3.7 and HbAS, in the protection of P. falciparum malaria morbidity and mortality was 

investigated. 
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2.1 SPECIFIC AIM 1 

To determine if the -α3.7 polymorphism is associated with protection against severe malarial 

anemia in children residing in a holoendemic P. falciparum region. 

 

Hypothesis: Children with the -α3.7 genotype will have reduced prevalence of severe malarial 

anemia and fatal malaria. 

 

To investigate the role of the α-thalassemia 3.7 kb deletion in children with falciparum 

malaria, finger-prick blood was drawn from children residing in a holoendemic P. falciparum 

transmission region of western Kenya. Genomic DNA was isolated from blood spots obtained 

from each participant (n=48), followed by α-thalassemia genotyping utilizing four different 

protocols. 
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2.2 SPECIFIC AIM 2 

To determine if sickle-cell trait (HbAS) is associated with protection against severe malarial 

anemia in children residing in a holoendemic P. falciparum region by reducing the overall 

burden of parasitemia. 

 

Hypothesis: Carriage of HbAS protects against severe malaria by reducing parasitemia, 

which results in decreased severe malarial anemia. 

 

To investigate the role of HbAS in children with falciparum malaria, finger-prick blood 

was obtained from children residing in a holoendemic P. falciparum transmission region of 

western Kenya. Children with a positive blood smear for P. falciparum and negative for HIV-1 

and bacterial infections were included in the study. Study participants (n=467) were genotyped 

by Hb electrophoresis to determine HbAS status and placed into appropriate genotypic groups 

(HbAA=399; HbAS=68). To identify individuals with hematological abnormalities, complete 

blood counts were performed, along with parasite density and absolute counts of pigment 

containing monocytes (PCM) and neutrophils (PCN).  
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3.0  MATERIALS AND METHODS 

3.1 STUDY LOCATION AND PARTICIPANTS 

This study was conducted as part of an on-going prospective study of SMA in children 

(n=822, aged 3-36 months) at Siaya District Hospital in western Kenya.  This area is 

holoendemic for P. falciparum infections with perennial transmission (Bloland et al. 1999a).  

Malaria anemia (MA; Hb <8.0 g/dL) and hyperparasitemia (≥50,000 parasites/μL) are the most 

common presentations of malaria, with cerebral malaria rarely occurring (Ong'echa et al. 2006).  

Residents of this area receive 100-300 infective mosquito bites per annum (Bloland et al. 1999a) 

and there is little seasonal variation in parasite prevalence and density in the region (Beier et al. 

1994).  The population in this area is socially and culturally homogeneous, with greater than 

99% of the study participants being Luo (Bloland et al. 1999a).  All blood samples were obtained 

prior to treatment with antimalarials and/or antipyretics.  Routine clinical evaluations and 

laboratory measures were used to evaluate the patients.  Children with malaria were given 

antimalarials and the appropriate supportive therapy according to Kenya Ministry of Health 

guidelines.  

 Informed consent was obtained from the parents/guardians of participating children.  

The study was approved by the ethics committees of the University of Pittsburgh Investigational 

Review Board and the Kenya Medical Research Ethical Review Board.  
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3.2 α-THALASSEMIA 3.7 KB GENOTYPE STUDY DESIGN 

Genomic DNA from Tahitian subjects that were heterozygous or homozygous for the α-

thalassemia 3.7 kb deletion were used as positive controls and supplied by Dr. Jeremy Martinson 

of the University of Pittsburgh, Graduate School of Public Health, Department of Infectious 

Diseases and Microbiology.  

3.2.1 Chong Protocol for -α3.7 Genotyping 

In 2000, a protocol for the PCR amplification of α-thalassemia was published from a 

group at John Hopkins University (Chong et al. 2000a; Chong et al. 2000b). Consistent with this  

protocol,  a total reaction volume of 50 µL was carried out with 100 ng of genomic DNA, 1 

mol/L Betaine (Sigma, St. Louis, MO; Cat#B-300),  0.2 mmol/L of each dNTP (Invitrogen™, 

Gaithersburg, MD; Cat#55082-5), 2.5 U of Platinum® Taq (Invitrogen™, Gaithersburg, MD; 

Cat#55082-5), 1.5 mmol/L of MgCl2 (Invitrogen™, Gaithersburg, MD; Cat#55082-5), 1X PCR 

buffer (Invitrogen™, Gaithersburg, MD; Cat#55082-5), and 200 nM per primer. Primer 

sequences were identical to those in the published manuscript (Table 1) (Chong et al. 2000a; 

Chong et al. 2000b). Amplification was performed in a PTC-100 thermacycler (MJ Research, 

Waltham, MA) with an initial heat inactivation step of 5 minutes at 95oC, followed by 30 cycles 

of denaturation at 97oC for 45 seconds, annealing at 60oC for 1 minute 15 seconds, extension at 

72oC for 2 minutes 30 seconds, and a final extension at 72oC for 5 minutes. A total volume of 7-

15 µL of PCR product and 5 µL of 1 kb ladder (Invitrogen™, Gaithersburg, MD; Cat#10488-

085) was electrophoresed on an ethidium bromide stained 1% agarose gel (Invitrogen™, 
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Gaithersburg, MD; Cat#15510-027) in 1X Tris-Base-EDTA (TBE) for 1 hour and visualized on 

an ultraviolet transilluminator (Eagle Eye, Stratagene, La Jolla, CA). 

3.2.2 Liu Protocol for -α3.7 Genotyping 

Another paper was published in 2000 with a protocol for the PCR amplification of α-

thalassemia from a group at Oxford University (Liu et al. 2000). Consistent with this protocol,  a 

total reaction volume of 25 µL was carried out with 100 ng of genomic DNA, 0.75 mol/L of 

Betaine (Sigma, St. Louis, MO; Cat#B-300), 5% DMSO (Sigma, St. Louis, MO; Cat#D2650), 

200 mmol/L of dNTPs (Invitrogen™, Gaithersburg, MD; Cat#55082-5), 1.25 U of Platinum® 

Taq (Invitrogen™, Gaithersburg, MD; Cat#10966-034), 1.5 mmol/L MgCl2 (Invitrogen™, 

Gaithersburg, MD; Cat#55082-5), 1X PCR buffer (Invitrogen™, Gaithersburg, MD; Cat#10966-

034), 300 nM forward primer, and 100 nM reverse 1 and 2 primers. Primer sequences were were 

identical to those in the published manuscript (Table 1) (Liu et al. 2000). Amplification was 

performed in a PTC-100 thermacycler (MJ Research, Waltham, MA) with an initial heat 

inactivation step of 15 minutes at 95oC, followed by 35 cycles of denaturation at 98oC for 1 

minute, annealing at 65oC for 1 minute, extension at 78oC for 2 minutes 30 seconds, and a final 

extension of 72oC for 10 minutes. A total volume of 7-15 µL of PCR product and 5 µL of 1 kb 

ladder (Invitrogen™, Gaithersburg, MD; Cat#10488-085) was electrophoresed on an ethidium 

bromide stained 1% agarose gel (Invitrogen™, Gaithersburg, MD; Cat#15510-027) in 1X TBE 

for 1 hour and visualized on an ultraviolet transilluminator (Eagle Eye, Stratagene, La Jolla, CA). 
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3.2.3 GC-Rich PCR System for -α3.7 Genotyping 

The GC-Rich PCR System is a propriety kit from Roche which enables the amplification 

of GC heavy regions by preventing DNA secondary structures. A total volume of 35 µL of 

master mix 1 containing 100 ng of DNA, 200 µM of each dNTP (Invitrogen™, Gaithersburg, 

MD; Cat#55082-5), varying concentration of 0-2 M of GC-Rich Resolution Solution (Roche 

Diagnostics, Mannheim, Germany; Cat#12657421), and 200 nM of each Chong and Liu primer 

was prepared (Table 1) (Liu et al. 2000; Chong et al. 2000a; Chong et al. 2000b).  Master mix 2 

had a total volume of 15 µL and was comprised of 1X GC-Rich reaction buffer (Roche 

Diagnostics, Mannheim, Germany; Cat#12657421), and 2 U of GC-Rich enzyme mix (Roche 

Diagnostics, Mannheim, Germany; Cat#12657421).  For each reaction, a total volume of 50 µL 

(35 µL of master mix 1 and 15 µL of master mix 2 combined on ice and mixed well) was placed 

in the PTC-100 thermacycler (MJ Research, Waltham, MA) immediately. The amplification 

protocol was as follows: an initial heat inactivation step of 3 minutes at 95oC, followed by 35 

cycles of denaturation at 95oC for 30 seconds, annealing at 65oC for 30 seconds, extension at 

72oC for 45 seconds with the addition of 5 seconds to the extension step per cycle, and a final 

extension of 72oC for 7 minutes. A total volume of 7-15 µL of PCR product and 5 µL of 1 kb 

ladder (Invitrogen™, Gaithersburg, MD; Cat#10488-085) was electrophoresed on an ethidium 

bromide stained 1% agarose gel (Invitrogen™, Gaithersburg, MD; Cat#15510-027) in 1X TBE 

for 1 hour and visualized on an ultraviolet transilluminator (Eagle Eye, Stratagene, La Jolla, CA). 
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3.2.4 PCR Enhancer System for -α3.7 Genotyping 

The PCR Enhancer System is a propriety kit from Invitrogen™ which enables the 

amplification of GC rich regions by preventing DNA secondary structures. A total reaction 

volume of 25 µL containing 100 ng of genomic DNA, 800 µM  of dNTPs (Invitrogen™, 

Gaithersburg, MD; Cat#55082-5), 1.25 U of Platinum® Taq (Invitrogen™, Gaithersburg, MD; 

Cat#55082-5), 1.5 mM of MgSO4 (Invitrogen™, Gaithersburg, MD; Cat#55082-5), 1X PCR 

buffer (Invitrogen™, Gaithersburg, MD; Cat#55082-5), 1.5X Enhancer Solution (Invitrogen™, 

Gaithersburg, MD; Cat#55082-5), Chong and Liu forward, reverse 1, and reverse 2 deletional 

primers at 600 nM, 200 nM, and 200 nM, respectively (Table 1) (Liu et al. 2000; Chong et al. 

2000a; Chong et al. 2000b). Amplification was performed in a PTC-100 thermacycler (MJ 

Research, Waltham, MA) with an initial heat inactivation step of 15 minutes at 95oC, followed 

by 35 cycles of denaturation at 95oC for 1 minute, annealing at 65oC for 1 minute, extension at 

72oC for 2 minutes 30 seconds, and a final extension of 72oC for 10 minutes. A total volume of 

7-15 µL of PCR product and 5 µL of 1 kb ladder (Invitrogen™, Gaithersburg, MD; Cat#10488-

085) was electrophoresed on an ethidium bromide stained 1% agarose gel (Invitrogen™, 

Gaithersburg, MD; Cat#15510-027) in 1X TBE for 1 hour and visualized on an ultraviolet 

transilluminator (Eagle Eye, Stratagene, La Jolla, CA). 

3.3 SICKLE-CELL STUDY DESIGN 

Samples for this study were obtained from children (n=467) from the Siaya District 

Hospital in western Kenya. Since previous studies carried out in the same study population 
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demonstrated that HIV-1 status is an important determinant of malarial anemia severity (Otieno 

et al. 2006), all children were tested for HIV-1 seropositivity and HIV-1 infection.  Children with 

a positive HIV-1 PCR test were subsequently removed from analyses.  Pre- and post-HIV test 

counseling was provided for the parents/legal guardians of all participants. Additionally, 

bacterial cultures were performed on all children. Children positive for bacteremia were also 

excluded from analyses as previous studies have demonstrated that bacteremia can aggravate 

SMA (Brent et al. 2006). Informed consent was obtained from the parent/guardians of 

participating children and study section was approved as previously described in section 3.1. 

3.3.1 Clinical Definitions 

Fever was defined by axillary temperature >37.50C.  Although the World Health 

Organization (WHO) defines SMA as Hb<5.0 g/dL (WHO 2000), childhood SMA in western 

Kenya is more appropriately defined as Hb<6.0 g/dL.  This modified definition of SMA is based 

on over 14,000 repeated Hb measurements in children from birth until four years of age in an 

age- and geographically matched reference population in western Kenya (McElroy et al. 1999), 

High density parasitemia (HDP) was defined as ≥10,000 parasites/μL of blood and was based on 

standard definitions (Aidoo et al. 2002; Hobbs et al. 2002; Awandare et al. 2006; Ong'echa et al. 

2006; Otieno et al. 2006). 

3.3.2 Laboratory Procedures  

Malaria diagnosis was performed using finger-prick blood on thin and thick blood smears 

stained with 3% Giemsa.  Asexual malaria trophozoites were counted against 300 leukocytes 
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based on absolute counts of white blood cells/µL of blood, while parasite density was estimated 

as follows: parasites/μL = WBC count/μL x trophozoites/300.  A total of 30 monocytes and 100 

neutrophils were examined per slide and the number of pigment-containing monocytes (PCM) or 

pigment-containing neutrophils (PCN) were expressed as a percentage of the total number of 

monocytes and neutrophils (Nguyen et al. 1995; Lyke et al. 2003). Hb levels were determined 

using a HemoCue system (HemoCue AB, Angelholm, Sweden). Complete blood counts were 

performed by an automated hematology analyzer (Beckman Coulter® AcT diff2™, Beckman-

Coulter Corporation, Miami, USA), while bacteremia was determined using the Wampole 

ISOLATOR 1.5-ml microbial system (Inverness Medical).  Reticulocyte counts were determined 

from thin blood films stained with new methylene blue. Reticulocyte index (RI) was calculated 

as reticulocyte count (%) x (hematocrit/0.36) (Were et al. 2006). Reticulocyte production indices 

(RPI) was calculated as RI/maturation factor (MF), where MF=b + (m)(x), b=1, m=0.05, and 

x=(average normal population hematocrit – patient’s hematocrit) (Were et al. 2006). The 

standard hematocrit (Hct) used to calculate RPI in western adults is 45%. However, the standard 

Hct in our calculations was 36%, since this value was age- and geographically matched by 

calculating the average Hct value in a cohort of non-anemic (Hb >11.0 g/dL), aparasitemic 

children in western Kenya (n=107) (Were et al. 2006). HIV-1 status was determined using two 

serological antibody tests (i.e., Unigold™ and Determine™) and HIV-1 DNA PCR analysis 

according to our previously published methods (Otieno et al. 2006).  Trimethoprim-

sulfamethoxazole was administered to all children that were positive for one or both serological 

tests.   
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3.3.3 Hemoglobin Electrophoresis 

Determination of Hb variants was performed using an alkaline cellulose acetate 

electrophoresis. Bands representing different variants were visualized after staining with 

Ponceau S (Helena BioSciences, Beaumont, TX, USA) and results compared with those of the 

control.  Titan III® cellulose acetate plates and the AFSC control were used according to the 

manufacturer’s instructions (Helena BioSciences, Beaumont, TX, USA), while red blood cell 

hemolysate was prepared from whole blood. 

3.3.4 Statistical Analysis 

Statistical analysis of data was performed using the software Minitab v. 14.0 (Minitab 

Inc., State College, PA) and SPSS v. 15.0 (SPSS Inc., Chicago, IL).  Proportional data were 

compared using χ2-test, geomeans between the two groups were compared using Paired t test, 

and Mann-Whitney U tests were used to compare medians between the two groups.  Statistical 

significance was set at P≤0.05. Logistical regression controlling for the confounding effect of 

age and gender was used to examine the association of different genotypes with susceptibility to 

SMA and HDP. 
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4.0  RESULTS 

4.1 SPECIFIC AIM 1:  TO DETERMINE IF THE -α3.7 POLYMORPHISM IS 

ASSOCIATED WITH PROTECTION AGAINST SEVERE MALARIAL ANEMIA IN 

CHILDREN RESIDING IN A HOLOENDEMIC P. FALCIPARUM REGION 

4.1.1 -α3.7 Genotyping 

Table 2 illustrates the different PCR fragments that are expected for each genotype per 

protocol primer sequence (Table 1). Thirteen randomly selected Kenyan genomic DNA samples 

were amplified utilizing the Chong protocol and electrophoresed on a 1% agarose gel (Chong et 

al. 2000a). Only twelve of the thirteen samples demonstrated banding at 1800 bp (Figure 9), 

which is indicative of the normal band for this primer set (Table 2). Additionally, one Kenyan 

sample failed to produce any visually detectable band(s). There was an absence of the deletional 

band at 2000 bp in all twelve samples. Furthermore, nine Tahitian genomic DNA samples were 

amplified utilizing the same protocol (Figure 10). Only two of the nine samples yielded results 

demonstrating the normal band at 1800 bp. 

In Figure 12, three Kenyan genomic DNA samples and one University of Pittsburgh PCR 

positive control DNA sample (Pittsburgh control) were amplified using the Liu protocol (Liu et 

al. 2000). The Pittsburgh control demonstrated banding at 2200 bp representing the normal 
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genotype for this primer sequence (Table 2).  However, the three amplified Kenyan DNA 

samples did not yield any banding and/or smears (Figure 11). 

These results demonstrate that the Chong protocol and primer set could amplify the 

normal band when used with the Kenyan DNA, but when attempting to amplify the Tahitian 

samples, only two of the nine samples yielded the normal band. Additionally, the Liu protocol 

and primer set did not yield any banding for the Kenyan samples; however the Pittsburgh control 

sample demonstrated the normal band at 2200 bp. 
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Table 1: -a3.7 Primer Sequences 

Primer Name Primer Sequence 

Chong Forward CCC CTC GCC AAG TCC ACC C 

Chong Reverse 1 AGA CCA GGA AGG GCC GGT G 

Chong Reverse Deletional AAA GCA CTC TAG GGT CCA GCG 

Liu Forward AAG TCC ACC CCT TCC TTC CTC ACC 

Liu Reverse 1 ATG AGA GAA ATG TTC TGG CAC CTG CAC TTG 

Liu Reverse Deletional TCC ATC CCC TCC TCC CGC TGC CTT TTC 

 
Primer Sequences based on published protocols (Liu et al. 2000; Chong et al. 2000a; Chong et al. 2000b). 

 

 

Table 2: -a3.7 Genotype Expected Band Sizes 

 

Primer Set Genotype αα / αα Genotype αα / α- 

Chong 1800 bp 1800  bp  & 2000  bp 

Liu 2200  bp 2200  bp  & 2000  bp 

Expected banding for each genotype according to published protocols (Liu et al. 2000; Chong et al. 2000a; Chong et 

al. 2000b). 
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Figure 9: Agarose Gel of Kenyan Genomic DNA using the Chong Protocol 

Thirteen Kenyan genomic DNA samples were amplified utilizing the Chong protocol. The amplified product was 

then electrophoresed on a 1% agarose gel. Only twelve of the thirteen samples demonstrated banding at 1800 bp, 

which is indicative of the normal band for this primer set. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Kenyan Genomic DNA #35; Lane 3, Kenyan Genomic DNA #36; Lane 

4, Kenyan Genomic DNA #37; Lane 5, Kenyan Genomic DNA #39; Lane 6, 1 kb Ladder; Lane 7, Kenyan Genomic 

DNA #40; Lane 8, Kenyan Genomic DNA #41; Lane 9, Kenyan Genomic DNA #43; Lane 10, Kenyan Genomic 

DNA #44; Lane 11, Kenyan Genomic DNA #45; Lane 12, 1 kb Ladder; Lane 13, Kenyan Genomic DNA #46; Lane 

14, Kenyan Genomic DNA #48; Lane 15, Kenyan Genomic DNA #50; Lane 16, Kenyan Genomic DNA #51; Lane 

17,  1 kb Ladder. 
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Figure 10: Agarose Gel of Tahitian Genomic DNA using the Chong Protocol 

Nine Tahitian genomic DNA samples were amplified utilizing the Chong protocol. The amplified product was then 

electrophoresed on a 1% agarose gel. Only two of the nine samples yielded results demonstrating the normal band at 

1800 bp. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Tahitian Homozygous Genomic DNA #460; Lane 3, Tahitian 

Heterozygous Genomic DNA #408; Lane 4, Tahitian Heterozygous Genomic DNA #412; Lane 5, Tahitian 

Heterozygous Genomic DNA #421; Lane 6, Tahitian Heterozygous Genomic DNA #433; Lane 7, Tahitian 

Heterozygous Genomic DNA #434; Lane 8, Tahitian Heterozygous Genomic DNA #435; Lane 9, Tahitian 

Heterozygous Genomic DNA #535.
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Figure 11: Agarose Gel of Kenyan Genomic DNA using the Liu Protocol 

Three Kenyan genomic DNA samples and one Pittsburgh control were amplified using the Liu protocol. The 

amplified products were then electrophoresed on a 1% agarose gel. The Pittsburgh control demonstrated banding at 

2200 bp representing the normal genotype for this primer sequence. The three amplified Kenyan DNA samples did 

not yield any banding and/or smears. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Pittsburgh Control; Lane 5, Negative Control; Lane 4, Kenyan Genomic 

DNA #10; Lane 5, Kenyan Genomic DNA #11; Lane 4, Kenyan Genomic DNA #12. 
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4.1.2 -α3.7 Specialty Kit Genotyping 

The GC-Rich kit from Roche Diagnostics and PCR Enhancer System from Invitrogen™ 

are propriety kits designed to aid in the amplification of GC rich regions during PCR. Their 

priority solution is designed to linearize the GC regions preventing secondary structures and 

uniform amplification.  

Using the Chong and Liu primer sequences (Table 1), Tahitian genomic DNA, Kenyan 

genomic, and Repli-G® samples (whole genome amplified DNA) were amplified. The Pittsburgh 

controls demonstrated consistent banding at 1800 bp for the normal band with the Chong primer 

sequence, while the Tahitian Repli-G® and Kenyan genomic DNA samples showed no visible 

banding. However, the Kenyan Repli-G® DNA samples showed bright and thick smears (Figure 

12). Utilizing the Liu primer sequence, the Pittsburgh controls demonstrated normal banding at 

2200 bp, while Tahitian genomic DNA homozygous sample #460 demonstrated a single band at 

approximately 2000 bp (Figure 13), hence showing the expected single deletion band. 

Additionally, three samples of Tahitian Repli-G® DNA were represented as smears with no 

distinct banding (Figure 13). Finally, the four heterozygous Tahitian genomic DNA samples did 

not produce clear banding, and only smears resulted (Figure 13).  

In Figure 14, the Chong primer sequence was used with three Pittsburgh controls, which 

demonstrated the normal band at 1800 bp, while the four Tahitian genomic samples did not 

display any banding. In Figure 15, the Liu primer sequence was used with three Pittsburgh 

controls and four Kenyan genomic DNA samples. All three Pittsburgh controls displayed 

banding at 2200 bp representing the normal genotype. However, the four Kenyan genomic DNA 

samples did not exhibit any banding patterns or smears. Furthermore, in Figure 16 using the Liu 
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primer sequence, one Pittsburgh control demonstrated the normal genotype banding at 2200 bp 

but three Tahitian heterozygous genomic DNA samples did not exhibit any banding, although 

Tahitian sample #410 presented with a large smear. 

Taken together, these results demonstrate that the specialty GC-rich PCR kits, GC-Rich, 

and PCR Enhancer have a high variability in the amplification of DNA samples. The GC-Rich 

kit was able to amplify the normal bands of two genomic Tahitian samples, two Pittsburgh 

controls, and the deletional band for a Tahitian homozygote. The PCR Enhancer kit amplified the 

normal band for the Pittsburgh controls with both primer sequences, but none of the Tahitian 

DNA samples, using the identical Tahitian samples between the two assays. 
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2000 bp 
1650 bp 

Figure 12: Agarose Gel of Tahitian Repli-G®, Kenyan Genomic and Repli-G® DNA using the 

GC-Rich PCR Kit and Chong Primer Sequence 

Two University of Pittsburgh controls, four Tahitian Repli-G®, four Kenyan Repli-G® and genomic DNA samples 

were utilized with the GC-Rich kit in conjunction with the Chong primer sequence. The amplified products were 

then electrophoresed on a 1% agarose gel. The Pittsburgh controls demonstrated banding at 1800 bp for the normal 

band while the Tahitian Repli-G® and Kenyan genomic DNA showed no visible banding and the Kenyan Repli-G® 

DNA showed bright and thick smears. 

 

Gel Legend: Lane 1, Tahitian Homozygous Repli-G® #460;  Lane 2, Tahitian Heterozygous Repli-G® #435; Lane 3, 

Tahitian Heterozygous Repli-G® #408; Lane 4, Tahitian Heterozygous Repli-G® #410; Lane 5, Pittsburgh Control 

#627; Lane 6, Pittsburgh Control #629; Lane 7, Kenyan Genomic DNA #40; Lane 8, Kenyan Genomic DNA #41;   

Lane 9, Kenyan Genomic DNA #43;  Lane 10, Kenyan Genomic DNA #44;  Lanes 11,  Kenyan Repli-G® #40; 

Lanes 12,  Kenyan Repli-G® #41; Lanes 13,  Kenyan Repli-G® #43;  Lanes 14,  Kenyan Repli-G® #44;  Lanes 15, 1 

kb Ladder. 
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Figure 13: Agarose Gel of Tahitian Genomic and Repli-G® DNA using the GC-Rich PCR Kit 

and Liu Primer Sequence  

Two Pittsburgh controls, four Tahitian Repli-G® and genomic DNA samples were utilized with the GC-Rich kit in 

conjunction with the Liu primer sequence. The amplified products were then electrophoresed on a 1% agarose gel. 

The two Pittsburgh controls demonstrated normal banding at 2200 bp while one Tahitian homozygous sample 

demonstrated a single band at approximately 2000 bp. Three of the four Tahitian Repli-G® DNA samples presented 

as smears with no distinct banding.  

 

Gel Legend: Lane 1, Tahitian Homozygous Genomic DNA #460;  Lane 2, Tahitian Heterozygous Genomic DNA 

#435; Lane 3, Tahitian Heterozygous Genomic DNA #408; Lane 4, Tahitian Heterozygous Genomic DNA #410; 

Lane 5, Tahitian Homozygous Repli-G® #460;  Lane 6, Tahitian Repli-G® #435; Lane 7, Tahitian Heterozygous 

Repli-G® #408; Lane 8, Tahitian Heterozygous Repli-G® #410; Lane 9, Pittsburgh Control #627; Lane 10, Pittsburgh 

Control #629;  Lane 11, 1 kb Ladder. 
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Figure 14: Agarose Gel of Tahitian Genomic DNA using the PCR Enhancer System and 

Chong Primer Sequence  

Three Pittsburgh controls and four Tahitian genomic DNA samples were amplified with the PCR Enhancer System 

in conjunction with the Chong primer sequence. The amplified products were then electrophoresed on a 1% agarose 

gel. The three Pittsburgh controls demonstrated the normal banding at 1800 bp while the four Tahitian genomic 

samples did not display any banding. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Negative Control; Lane 3, Pittsburgh Control #631; Lane 4, Pittsburgh 

Control #627; Lane 5, Pittsburgh Control #629; Lane 6, Tahitian Homozygous Genomic DNA #460; Lane 7, 

Tahitian Heterozygous Genomic DNA #408; Lane 8, Tahitian Heterozygous Genomic DNA #412; Lane 9, Tahitian 

Heterozygous Genomic DNA #435. 
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Figure 15: Agarose Gel of Kenyan Genomic DNA using the PCR Enhancer System and Liu 

Primer Sequence 

Three Pittsburgh controls and four Kenyan genomic DNA samples were amplified with the PCR Enhancer System 

in conjunction with the Liu primer sequence. The amplified products were then electrophoresed on a 1% agarose 

gel. All three Pittsburgh controls displayed banding at 2200 bp. The four Kenyan genomic DNA samples did not 

exhibit any banding or smears. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Pittsburgh Control #627; Lane 3, Pittsburgh Control #629; Lane 4, 

Pittsburgh Control #631; Lane 5, Negative Control; Lane 6, 1 kb Ladder; Lane 7, Kenyan Genomic DNA #40; Lane 

8, Kenyan Genomic DNA #41; Lane 9, Kenyan Genomic DNA #43; Lane 10, Kenyan Genomic DNA #44. 
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Figure 16: Agarose Gel of Tahitian Genomic DNA using the PCR Enhancer System and Liu 

Primer Sequence 

One Pittsburgh control and four Tahitian genomic DNA samples were amplified with the PCR Enhancer System in 

conjunction with the Liu primer sequence. The amplified products were then electrophoresed on a 1% agarose gel. 

The one Pittsburgh control demonstrated the normal genotype banding at 2200 bp. The three Tahitian genomic DNA 

samples did not exhibit any banding while Tahitian sample #410 presented with a large smear. 

 

Gel Legend: Lane 1, 1 kb Ladder; Lane 2, Pittsburgh Control  #627; Lane 3, Tahitian Homozygous Genomic DNA 

#460; Lane 4, Tahitian Heterozygous Genomic DNA #435; Lane 5, Tahitian Heterozygous Genomic DNA #408; 

Lane 6, Tahitian Heterozygous Genomic DNA #410. 
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4.2 SPECIFIC AIM 2: TO DETERMINE IF SICKLE-CELL TRAIT (HBAS) IS 

ASSOCIATED WITH PROTECTION AGAINST SEVERE MALARIAL ANEMIA IN 

CHILDREN RESIDING IN A HOLOENDEMIC P. FALCIPARUM REGION BY 

REDUCING THE OVERALL BURDEN OF PARASITEMIA 

4.2.1 Demographic and Clinical Characteristics 

Previous studies investigating the role of HbAS have demonstrated that after six months 

of age, maternal protection against malaria wanes and susceptibility to life threatening malarial 

infection increases (Lell et al. 1999; Aidoo et al. 2002; Williams et al. 2005a; Williams et al. 

2005b). Additionally, children with HbAS from six months to five years demonstrate protective 

characteristics, therefore, making children of that age group ideal study participants (Lell et al. 

1999; Aidoo et al. 2002; Williams et al. 2005a; Williams et al. 2005b).  A total of 467 children 

were genotyped for the sickle-cell trait. When classified into different genotypic groups, 399 

individuals were HbAA while 68 individuals were HbAS. Table 3 presents the clinical and 

demographic characteristics of the study participants. Mann-Whitney U test revealed no 

significant differences in age (P=0.969) and temperature (P=0.758; Table 3), and a 

proportionality test revealed no significant differences in the proportion of males vs. females 

(P=0.075). Since hypoglycemia (<2.2mmol/L) is a common complication of P. falciparum 

infection in endemic areas (Marsh et al. 1995; Planche et al. 2003; Planche et al. 2005), blood 

glucose levels were measured on all the enrolled children. However, blood glucose levels were 

comparable between HbAA and HbAS groups (P=0.599; Table 3).   

Taken together, these results indicate that these parameters are not the predisposing 

determinants of malaria disease severity in children with different Hb variants. 
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Table 3: Demographic and Clinical Characteristics 

 

Characteristics HbAA HbAS P 

Number of subjects (n) 399 68  

Age (mos.) 10.0 (6.0 – 16.0) 10.00 (6.00 – 17.00) 0.969a

Gender    

Male (n, %) 201 (50.4) 42 (61.8) 0.075b

Female (n, %) 198 (49.6) 26 (38.2) 0.075b

Temperature (°C) 37.5 (36.7 – 38.4) 37.3 (36.8 – 38.3) 0.758a

Glucose (mmol/L) 5.0 (4.4 – 5.8) 5.2 (4.7 – 5.8) 0.599a

Data presented as medians (Q1-Q3) unless otherwise stated. 

 a Mann-Whitney U test 

b χ2 test 
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4.2.2 Treatment-Seeking Behavior 

Elevated host body temperature (fever, >37.5°C) is a common clinical manifestation of 

malarial disease that leads to seeking of treatment at health facilities (Oakley et al. 2007).  To 

determine if the history of malaria was comparable in the two groups, we investigated whether 

children with HbAS had a comparable fever history to children with HbAA.  As such, children 

were stratified by their genetic group, and the history of fever was determined (Table 4).  

Children with the HbAS genotype had a similar history of fever as the HbAA children and there 

were no significant differences between the groups fever histories (no fever history: P=0.960, 

fever of 1-3 days: P=0.403, fever of 4-14 days: P=0.289, fever greater than 14 days: P=0.607; 

Table 4). Proportions of children having no fever history in both the HbAA and HbAS groups 

were also comparable (3.05% for HbAA vs. 2.94% for HbAS). Taken together, these results 

illustrate that both HbAS and HbAA children have a similar fever history and present to the 

hospital for treatment with comparable parameters. Thus, differences observed between the two 

groups is not likely due to one of the groups delaying presentation at the hospital, and therefore 

in a more advanced state of disease.  
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Table 4: Fever History as an Index of Disease Staging 

 

Fever History HbAA (n=393) HbAS (n=68) P 

None (n, %) 12 (3.05) 2 (2.94) 0.960 

1 - 3 Days (n, %) 204 (51.91) 39 (57.35) 0.403 

4 - 14 Days (n, %) 165 (41.98) 24 (35.29) 0.289 

>14 Days (n, %) 12 (3.05) 3 (4.41) 0.607 

Data presented as medians (Q1-Q3) unless otherwise stated. 

Differences between the proportions were calculated by χ2 test. 
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4.2.3 Parasite Burden 

Previous studies carried out at a neighboring study site within western Kenya (Aidoo et 

al. 2002) and in the coastal regions of Kenya (Lell et al. 1999; Aidoo et al. 2002; Williams et al. 

2005a; Williams et al. 2005b) showed that children with the HbAS, genotype have significantly 

reduced parasite burden in both mild and severe disease. To further investigate this observation, 

we examined parasite loads in HbAA and HbAS individuals. Results show that relative to the 

HbAA group, there were reduced peripheral parasitemia levels in the HbAS group; however, this 

relationship did not reach significance (P=0.202; Figure 17a). Furthermore, the geomean 

parasitemia in the HbAA group was non-significantly increased compared to the HbAS group 

(P=0.651; Figure 17b).  Since high-density parasitemia (HDP; ≥10,000/μL) is a common clinical 

presentation in children from this holoendemic area (Ong'echa et al. 2006), we determined if the 

proportion of children with HDP differed among the groups. Figure 17c shows the proportion of 

children with HDP stratified according to sickle-cell status. A total of 294 children (74.43%) in 

the HbAA group and 44 children (70.59%) in the HbAS group had HDP (P=0.117; Figure 17c). 

These results suggest that, despite the lack of statistical significance, differences in the 

proportions of HDP between HbAA and HbAS groups represent a decreased parasite load in the 

HbAS group.  
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Figure 17: (A) Parasitemia and (B) Geomean Parasitemia According to Sickle-Cell Gene 

Status 
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Figure 17: (C) Proportion of HDP According to Sickle-Cell Gene Status 

(A) Peripheral blood smears were prepared and stained with Giemsa reagent and examined for malaria parasites in 

children with HbAA (n=395) and HbAS (n=68) genotypes. Data is presented as a box plot where the box represents 

the interquartile range, the line through the box represents the median, whiskers indicate the 10th and 90th 

percentiles, and individual symbols are outliers. Differences in parasitemia between HbAA and HbAS genotypes 

were not found to be statistically significant (P=0.202, Mann-Whitney U test). (B) Geomean parasitemia was 

calculated for HbAA (n=395) and HbAS (n=68) genotypes. Bars represent ± SEM of the genotypes parasite load 

with differences in geomean parasitemia between HbAA and HbAS genotypes not found to be statistically 

significant (P=0.651, Paired t test).  (C) Children who presented with HDP (≥10,000/μL) were stratified by sickle-

cell gene status, HbAA (n=294) and HbAS (n=44), with bars representing the percentage of the genotype with HDP. 

Differences in HDP between HbAA and HbAS genotypes were not found to be statistically significant (P=0.117, 

χ2test). 
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4.2.4  Malaria Pigment Characteristics 

Previously, we and others have shown that the ingestion of malarial pigment by 

monocytes contributes to the impairment of the immune response (Huy et al. 2006; Awandare et 

al. 2007) and is an important marker of malaria morbidity and mortality (Nguyen et al. 1995; 

Amodu et al. 1998; Lyke et al. 2003).  However, since the role of monocyte/macrophage-

acquired Hz has not been documented in HbAS individuals, we examined pigment containing 

monocytes (PCM) and pigment containing neutrophils (PCN) in each of the genetic groups.  

There was a statistically significant difference in the absolute count of PCM between the two 

genetic groups (P=0.002; Figure 19a).  The HbAA group presented with a higher absolute PCM 

count (mean [SEM], 17.92 [1.99]) than the HbAS group (11.54 [0.89]).  This trend was reflected 

in the percent PCM where HbAA children had a significantly higher percentage of PCM (6.43% 

[1.73]) than their HbAS counterparts (4.75% [1.11]) (P=0.002; Figure 19b). However, for the 

absolute PCN counts, both genetic groups had comparable measurements (HbAA, 12.96 [3.07], 

HbAS, 6.1 [2.83]; P=0.790; Figure 20a).  Furthermore, the genetic groups demonstrated a non-

significant relationship of PCN (HbAA, 0.26% [0.05]; HbAS, 0.15% [0.07]; P=0.814; Figure 

20b). 

Since the HbAS genotype was significantly associated with PCM, we decided to 

investigate the role that HbAS plays in modulating the amount of PCM, thereby possibly 

reducing immune dysfunction.  In order to test this, children were stratified by sickle-cell gene 

status, low pigment-containing monocytes (Low PCM; <10% PCM), and high pigment-

containing monocytes (High PCM; ≥10% PCM). There were significant differences in 

proportions (P=0.031; Figure 21) of children having low PCM in HbAA (41.21%; n=164) 

relative to HbAS (29.41%, n=20). Furthermore, 11.31% (n=45) of HbAA children presented 
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with high PCM, while there was a significant reduction in the percentage of those having high 

PCM in the HbAS children, only 1.47% (n=1, P=0.001; Figure 21). Taken together, these results 

demonstrate that HbAS children have a reduced absolute PCM and percent PCM count 

suggesting a reduced ingestion of malarial pigment by monocytes that may lead to less 

immunological dysregulation and enhanced protection against severe malaria.  
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Figure 18: (A) Absolute Count and (B) Percent PCM According to Sickle-Cell Gene Status 

(A) The absolute count of PCM was calculated for HbAA (n=399) and HbAS (n=68) genotypes. Bars represent ± 

SEM of the absolute count of PCM. Differences in the absolute count of PCM between HbAA and HbAS genotypes 

were found to be statistically significant (P=0.002, Mann-Whitney U test). (B) The percent of PCM was calculated 

for HbAA (n=399) and HbAS (n=68) genotypes. Bars represent ± SEM of the percent of PCM with differences 

between HbAA and HbAS genotypes found to be statistically significant (P=0.002, Mann-Whitney U test). 
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Figure 19:  (A) Absolute Count and (B) Percent PCN According to Sickle-Cell Gene Status 

(A) The absolute count of PCN was calculated for HbAA (n=399) and HbAS (n=68) genotypes. Bars represent ± 

SEM of the absolute count of PCN. Differences in the absolute count of PCN between HbAA and HbAS genotypes 

were not found to be statistically significant (P=0.790, Mann-Whitney U test).  (B) The percent of PCN was 

calculated for HbAA (n=399) and HbAS (n=68) genotypes. Bars represent ± SEM of the percent of PCN with 

differences between HbAA and HbAS genotypes not found to be statistically significant (P=0.814, Mann-Whitney 

U test). 
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Figure 20: Low and High PCM According to Sickle-Cell Gene Status 

Children were stratified by low pigment containing monocytes (Low PCM; <10% PCM), high pigment containing 

monocytes (High PCM; ≥10% PCM), and sickle-cell gene status. Low PCM HbAA (n=164), Low PCM HbAS 

(n=20); High PCM HbAA (n=45), High PCM HbAS (n=1). Bars represent percent of children with low/high PCM. 

Differences in the low PCM between HbAA and HbAS genotypes were found to be statistically significant (P=0.03, 

χ2test). Differences in the high PCM between HbAA and HbAS genotypes were found to be statistically significant 

(P<0.001, χ2test).  
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4.2.5 Hematological Characteristics 

Hematological measurements were obtained for all study participants to characterize the 

hematological profile of the two groups of children. The Hb concentrations were significantly 

reduced in the HbAA group, (median [Q1-Q3]), (6.40 g/dL [5.20 – 8.30 g/dL]) when compared 

to the HbAS group (7.10 g/dL [5.80 – 8.55 g/dL]; P=0.05; Figure 22a). Additionally, HbAA 

children had a significantly reduced RBC count, (3.08 x 106/μL [2.29 – 3.92 x 106/μL]) relative 

to the HbAS children 3.62 x 106/μL [2.88– 4.13 x 106/μL], P=0.004; Figure 22b). However, the 

MCV and the MCH in the HbAA group were significantly increased (MCV, 70.35 fL [64.80 – 

76.60 fL]), (MCH, 22.60 pg [20.60 – 24.70 pg]) compared to the HbAS group (MCV, 65.70 fL 

[59.88 – 72.10 fL]; P<0.001; Table 5), (MCH, 21.05 pg [18.70 – 23.07 pg]; P<0.0001; Table 5). 

There were no significant differences between the genetic groups’ median cell Hb concentration 

(MCHC; HbAA, (32.10 g/dL [30.70 – 33.10 g/dL]; HbAS (32.10 g/dL [30.32 – 33.20 g/dL]); 

P=0.816; Table 5). HbAA children had significantly reduced red cell distribution width (RDW; 

21.30% [19.00 – 23.70%], compared to children in the HbAS genetic group (22.75% [19.50 - 

26.22%]; P=0.026; Table 5). There were no significant differences between the genetic groups 

medians for absolute reticulocyte number (ARN; HbAA, 0.09 x 109/L [0.04 – 0.17 x 109/L]; 

HbAS, 0.09 x 109/L [0.05 – 0.16 x 109/L]; P=0.686; Table 5). The HbAS group had a similar 

proportion of children with a suppression of erythropoiesis [reticulocyte production indices (RPI) 

less than 2.0 (<2.0)] relative to the HbAA group (HbAA, 305 (76.4%); HbAS, 57 (83.8%); 

P=0.135; Table 5). Additionally, the HbAS group had a significantly lower proportion of 

children with an appropriate erythropoietic response [RPI greater than and including 3.0 (≥3.0)] 

when compared to the HbAA group (HbAA, 15 (3.75%); HbAS, 0 (0%); P=0.0001; Table 5). 
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To examine the relationship between HbAS and severe malaria disease we compared the 

proportion of enrolled children with SMA and non-SMA in the HbAA and HbAS groups. In this 

analyses, we used both the defined WHO criteria (Hb<5.0 g/dL (WHO 2000) and the modified 

definition of SMA in western Kenya (Hb<6.0 g/dL; (McElroy et al. 1999).  When stratified 

according to the WHO definition of SMA, the HbAA group (n=89, 22.42%) had a significantly 

higher proportion of children with SMA relative to the HbAS group (n=9, 13.23%, P=0.046; 

Figure 23).  The same pattern was maintained when the modified definition of SMA was used. 

The HbAA group had a significantly higher proportion of children with SMA (n=164, 41.41%) 

as compared to HbAS group (n=19, 27.94%, P=0.024; Figure 23). 

These results illustrate that the presence of either AA or AS genotype resulted in 

identifiable hematological phenotypes as displayed by distinct red cell characteristics such as Hb, 

RBC counts, MCV, MCH, RDW, and RPI. In addition, children with HbAS genotype were 

protected against SMA whether the WHO or modified definitions of SMA was used. 
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Figure 21: (A) Hemoglobin and (B) Red Blood Cell Measurements According to Sickle-Cell 

Status 

Data presented as box plots where the box represents interquartile range, the line through the box represents the 

median, whiskers indicate the 10th and 90th percentiles, and individual symbols are outliers. (A) Hb levels of 

parasitemic children with HbAA (n=399) and HbAS (n=68) genotypes were measured with the HemoCue system. 

Differences in Hb levels between HbAA and HbAS genotypes were statistically significant (P=0.05, Mann-Whitney 

U test). (B) RBC counts of parasitemic children with HbAA (n=399) and HbAS (n=68) genotypes were measured by 

a Beckman Coulter AcT diff2 counter. Differences in RBC counts between the HbAA and HbAS genotypes were 

statistically significant (P=0.04, Mann-Whitney U test). 
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Table 5: Red Blood Cell Indices According to Sickle-Cell Status 

Characteristics HbAA (n=399) HbAS (n=68) P 

Red blood Cell Indices    

Mean cell volume (fL) 70.35 (64.80 – 76.60) 65.70 (59.88-72.10) 0.00001a

Mean cell hemoglobin (pg) 22.60 (20.60 – 24.70) 21.05 (18.7–23.07) 0.0002 a

Mean cell hemoglobin concentration
(g/dL) 32.10 (30.70 – 33.10) 32.10 (30.32-33.20) 0.816 a

Red cell distribution width (%) 21.30 (19.00 – 23.70) 22.75 (19.50-26.22) 0.026 a

Absolute reticulocyte number  

 

(x 109/L) 0.09 (0.04 – 0.17) 0.09 (0.05 – 0.16) 0.686 a

Reticulocyte Production Index <2.0, n
(%) 305 (76.4) 57 (83.8) 0.135b

Reticulocyte Production Index ≥3.0, n 
(%) 15 (3.7) 0 (0) 0.0001 b

Hematological measurements were obtained using heel/finger-prick blood with a Beckman Coulter AcT diff2 

counter. 

Data presented as medians (Q1-Q3), unless other wise noted. 

a Mann-Whitney U test 

b χ2 test 
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Figure 22: Proportion of Children with SMA According to Sickle-Cell Gene Status 

The proportion of children with SMA was investigated using the definition of SMA by the WHO as Hb<5.0 g/dL 

(WHO 2000), HbAA (n=89) and HbAS (n=9), and by the modified definition of Hb<6.0 g/dL (McElroy et al. 1999), 

HbAA (n=164) and HbAS (n=19), then stratified by their sickle-cell gene status. Bars represent percentage of 

children with SMA. Differences in SMA, Hb<5.0 g/dL and Hb<6.0 g/dL, between HbAA and HbAS genotypes 

were found to be statistically significant (P=0.04, and P=0.02; χ2test). 
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4.2.6 Leukocyte and Platelet Indices 

Leukocyte and platelet indices were obtained for all study participants to characterize any 

anomalies between the groups. When leukocyte and platelet indices were compared, results 

revealed that were no significant differences between the genetic groups for white blood cell 

counts (WBC; HbAA, 11.00 x 103/L [8.60 – 15.30 x 103/L]; HbAS, 12.20, x 103/L [9.12 – 14.97 

x 103/L]; P=0.305), percent lymphocytes (LY; HbAA 50.70% [40.25 – 59.05%]; HbAS, 49.00% 

[39.58 – 59.78%]; P=0.733), percent monocytes (MO; HbAA, 9.00% [6.60 – 12.27%]; HbAS, 

8.40% [5.80 – 11.32%]; P=0.287), and percent granulocytes (GR; HbAA, 39.65 [28.25 – 

50.60%]; HbAS, 40.65% [30.03 – 52.15%]; P=0.505) (Table 6).  

Similarly, there were no significant differences between the genetic groups for platelet 

counts (Plt; HbAA, 160.50 x 103/L [108.00 – 235.50 x 103/L]; HbAS, 159.00 x 103/L [106.50 – 

271.50 x 103/L]; P=0.603), mean platelet volume (MPV; HbAA, 8.30 fL [7.50 – 13.90 fL]; 

HbAS, 8.60 fL [7.70 – 9.80 fL]; P=0.070), plateletcrit (Pct; HbAA, 0.14% [0.10 – 0.19%]; 

HbAS, 0.14% [0.10 – 0.23%]; P=0.382), and platelet distribution width (PDW; HbAA, 17.50% 

[16.70 – 18.20%]; HbAS, 17.55% [17.00 – 18.20%]; P=0.804) (Table 6). 

These results showing comparable leukocyte and platelet indices indicate that these 

parameters are not significantly altered between the HbAA and HbAS genotypes. 
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Table 6: Leukocyte and Platelet Indices According to Sickle-Cell Gene Status 

 

Characteristics HbAA (n=399) HbAS (n=68) P 

Leukocyte Indices Median (Q1 – Q3) Median (Q1 – Q3) 

White blood cells  (x 103/L) 11.00 (8.60 – 15.30) 12.20 (9.12 – 14.97) 0.305 

Lymphocytes (%) 50.70 (40.25 – 59.05) 49.00 (39.58 – 59.78) 0.733 

Monocytes (%) 9.00 (6.60 – 12.27) 8.40 (5.80 – 11.32) 0.287 

Granulocytes (%) 39.65 (28.25 – 50.60) 40.65 (30.03 – 52.15) 0.505 

Platelet Indices   

Platelet counts (x 103/L) 160.50 (108.00 – 236.50) 159.00 (106.50 – 271.50) 0.603 

Mean platelet volume (fL) 8.30 (7.50 – 13.90) 8.60 (7.70 – 9.80) 0.070 

Plateletcrit (%) 0.14 (0.10 – 0.19) 0.14 (0.10 – 0.23) 0.382 

Platelet distribution width (%) 17.50 (16.70 – 18.20) 17.55 (17.00 – 18.20) 0.804 

The leukocyte and platelets measurements were obtained using heel/finger-prick blood with a Beckman Coulter AcT 

diff2 counter. 

Data presented as medians (Q1-Q3). 

Differences between the two genetic groups medians were calculated using Mann-Whitney U test, and p<0.05 was 

considered statistically significant.   
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4.2.7 Association of HbAS with SMA, HDP, and PCM 

The association of HbAS and malaria disease severity was determined by binary logistic 

regression analyses.  SMA (defined by Hb<5.0 g/dL and Hb<6.0 g/dL), HDP, and high PCM 

were independent variables, while controlling the confounding effects of age and gender.  

Results reveal that relative to the HbAA group, children with the HbAS genotype had a 47% and 

45% reduced risk of developing SMA, according to the WHO (Hb<5.0 g/dL; P=0.091) and 

modified definitions (Hb<6.0 g/dL; P=0.038; Table 7), respectively.  Additionally, children with 

the HbAS genotype had a 37% (P=0.097) decreased risk of developing HDP than children with 

the HbAA genotype.  Furthermore, HbAS children had a 58% (P=0.0001; Table 7) reduction in 

high PCM.   

Taken together, these results illustrate that children with HbAS have a decreased 

susceptibility to SMA, independent of parasite burden.  In addition, the HbAS individuals are 

protected against increased pigment burden relative to the HbAA group.  

 

 

 

 

 



The association of sickle-cell trait with SMA, HDP and high PCM was examined in 68 parasitemic HbAS children, while the HbAA genotype was used as a 

reference for this analysis. 
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Table 7: Association of Sickle-Cell Trait with SMA, HDP, and PCM 

 

Abbreviations: SMA, severe malaria anemia; HDP, high-density parasitemia; PCM, pigment containing monocytes. 

Data presented are results of a binary logistic regression analysis controlling for age and gender.  

Characteristic  HbAA   HbAS  

 OR 95% CI P OR 95% CI P 

SMA (Hb<5.0 g/dL) 1.00 - - 0.53 0.25 – 1.11 0.091 

SMA (Hb<6.0 g/dL) 1.00 - - 0.55 0.31 – 0.97 0.038 

HDP (10,000/µL) 1.00 - - 0.63 0.36 – 1.09 0.097 

0.0001 0.26 – 0.68 

  

0.42 - - 1.00 High PCM (≥10%) 



5.0  DISCUSSION 

P. falciparum is the major cause of malaria-related morbidity and mortality, particularly 

in children less than five years of age residing in malaria endemic regions (Breman et al. 2001; 

Williams et al. 2005a).  The host defense mechanisms that mediate protection against P. 

falciparum are complex and only partially defined. Genetic factors, such as the erythrocytic 

polymorphisms -α3.7 and HbAS appear to condition susceptibility to malaria and the consequent 

outcomes of infection (Allison 1954c; Williams et al. 1996; Migot-Nabias et al. 2000; 

Mockenhaupt et al. 2004; Williams et al. 2005a; Williams et al. 2005b; Williams et al. 2005c; 

Williams et al. 2005c; Verra et al. 2006; Wambua et al. 2006a; Williams 2006a; Wambua et al. 

2006b; Williams 2006b). However, for more than fifty years, the mechanism(s) responsible for 

protection against falciparum malaria in individuals with -α3.7 and HbAS have remained elusive.  

The role of -α3.7 and HbAS in mediating protection against SMA was, therefore, investigated in 

children residing in a holoendemic P. falciparum transmission region of equatorial Africa.   

3.7To investigate the role of -α  and HbAS in protection against SMA, we examined a 

cohort of children, aged 3-36 months, in a holoendemic P. falciparum transmission region of 

western Kenya: an area in which SMA is the most common clinical manifestation of severe 

malaria (McElroy et al. 1999; Ong'echa et al. 2006). In addition, all children were examined for 

HIV-1 infection and bacteremia, and those children found to be positive for either or both of 

these infections were excluded from the current study.  This is a novel and important aspect of 
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the current study since previous investigations have not taken into account these co-infections.  

Since we and others have shown that HIV-1 and bacteremia influence hematological 

characteristics and progression of severe malaria (Crawley 2004; Brent et al. 2006; Otieno et al. 

2006), the current investigations provide one of the first well controlled studies examining the 

relationship between -α3.7, HbAS, and SMA.  

The -α3.7 genotype was previously detected by Southern blot analysis (Dozy et al. 1979), 

a technique that requires high quantity and quality of genomic DNA.  However, in 2000, two 

separate papers were published outlining the detection of α-thalassemia variants in a single tube 

multiplex PCR reaction (Liu et al. 2000; Chong et al. 2000a; Chong et al. 2000b). This proved to 

be an advantageous method due to the short time required to generate reliable results, and by 

being more affordable and sensitive than Southern blotting.  However, both of these protocols 

require high quality and large quantities of genomic DNA (100 ng).   Since the amplification 

regions contained in the amplified sequence have a high GC content, DMSO and/or betaine are 

required to prevent the formation of secondary structure(s).  

The availability of both high quality and quantity of genomic DNA was limited in our 

study since DNA was isolated from dried blood spots.  This DNA collection was used since the 

amount of blood that can be drawn from severely anemic children is limited.  In addition, DNA 

isolated from dried blood spots can contain residual hemolysate that can interfere with the PCR 

reaction.  The starting material for the PCR-based reactions utilized to identify variation in the α-

thalassemia gene appears to, therefore, have generated significant technical limitations.  

The two primary protocols used for amplifying the α-thalassemia gene, published by 

Chong et al., and Liu et al., (Liu et al. 2000; Chong et al. 2000a; Chong et al. 2000b) 

consistently yielded amplification of the “normal” fragment for Pittsburgh controls; malaria 

  80



naïve donors from the University of Pittsburgh used as PCR positive controls. Additionally, with 

the Chong protocol, there was consistent amplification of the expected 1800 bp band using 100 

ng of Kenyan genomic DNA and Pittsburgh control DNA. The conclusion of these results was 

that the PCR reactions worked well for detecting the normal band; but was never able to amplify 

the deletional band in Kenyan genomic DNA isolated from dried blood spots. 

To more fully develop the PCR conditions, we utilized a positive control for -α3.7 

represented by genomic DNA isolated from a Tahitian population. However, when using these 

positive controls for the -α3.7 in the Chong and Liu protocols, we observed inconsistent 

amplification of the normal bands at 1800 bp and 2200 bp, respectively, and never identified the 

deletional band at 2000 bp.  

Further failure to amplify the deletional band with the positive control Tahitian genomic 

and the Kenyan genomic DNA samples led us to hypothesize that the high GC content could be 

interfering with the amplification. Although these protocols use DMSO and/or Betaine that 

stabilize and prevent secondary structures of GC rich regions, it is possible that these two 

reagents were not linearizing DNA to the extent required for proper amplification. Therefore, we 

attempted to optimize the PCR reactions using two commercially available PCR amplification 

kits, the GC-Rich kit from Roche Diagnostics and the PCR Enhancer System by Invitrogen™, 

both of which are capable of amplifying GC rich regions.  

Utilizing the GC-Rich kit, and working in conjunction with the University of Pittsburgh, 

Graduate School of Public Health, Department of Human Genetics, we attempted the PCR 

amplifications with both the Chong and Liu primer sequence using Tahitian genomic DNA, 

Pittsburgh control genomic DNA, and Kenyan genomic DNA. Additionally, since we had a 

limited amount of Tahitian and Kenyan genomic DNA available, we performed whole genome 
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amplification on a number of the samples using the Repli-G® kit from Qiagen. Whole genome 

amplification is a PCR reaction requiring a limited amount of template genomic DNA (~10 ng), 

and through strand displacement, makes carbon copies of the starting material, yielding 

approximately 45 ng/μL in a reaction volume of 50 μL.  With the Chong and Liu primer 

sequences, the Pittsburgh controls amplified the normal band consistently; the Kenyan genomic 

DNA did not yield any bands, and the Repli-G® DNA for both the Tahitian and Kenyan samples 

demonstrated smears when run out on an agarose gel.  Interestingly, only one of the Tahitian 

genomic samples (a homozygous individual) demonstrated banding at 2000 bp with the Liu 

primer sequence; the correct position for the deletional band. Although this was a promising 

result, it could not be reproduced after many attempts with additional DNA samples. 

Finally, the PCR Enhancer System was utilized with both the Chong and Liu primer 

sequences, along with the Tahitian genomic DNA, Pittsburgh control genomic DNA, and 

Kenyan genomic DNA (all at 100 ng). The Pittsburgh control normal band (at 1800 bp and 2200 

bp) using the two primer sequences was amplified consistently with the majority of the samples. 

However, the Tahitian samples did not produce any banding with the Chong primer sequence, 

while the Liu primer sequence yielded one sample that produced a smear and additional Tahitian 

samples that produced neither banding patterns nor smears.  Additional genomic positive 

controls for the -α3.7 will be required to appropriately optimize the PCR methodologies required 

for genotyping the Kenyan samples.  Taken together, these results suggest that high quality and 

quantities of genomic DNA are required to utilize the current methodologies available for 

determining variation in the α-thalassemia gene.    

The role of HbAS in protection against SMA was examined in a Kenyan cohort of 

children (3-36 months) that were age- and gender-matched.  Since this was a cross-sectional 
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study, we wanted to determine if children in the HbAA or HbAS groups presented at hospital 

during the same clinical stage of disease.  To accomplish this, we utilized the fever histories that 

were available for the two groups.  The malarial fever typically occurs immediately after rupture 

of malaria-infected RBC through cytokine generation and the release of other fever-inducing 

mediators from host cells (Karunaweera et al. 1992; Kwiatkowski et al. 1993).  Although fever is 

a generalized clinical response to most infectious pathogens, it serves as an indicator for 

caregivers to seek medical attention since fever is associated with malaria in most African 

countries (Lubanga et al. 1997; Olaleye et al. 1998; Amin et al. 2003; Guyatt and Snow 2004; 

Beausoleil 1984; Bruce-Chwatt 1987; Dicko et al. 2005).  As such, our finding that children in 

the HbAA or HbAS groups presented at hospital within comparable time-frames, based on their 

fever history, indicates that the two groups were in the same phase of disease upon presentation 

at hospital.  This data allowed us to further explore the relationship between HbAS and 

protection against malaria without the concern of having the case (HbAS) and control (HbAA) 

groups at differing continuums of infection.  

Previous studies showed that children with the HbAS genotype had significantly reduced 

parasite density, median parasitemia, and HDP to children with the HbAA genotype (Allison 

1954c; Carnevale 1981; Gendrel et al. 1991; Le Hesran et al. 1999; Aidoo et al. 2002; Williams 

et al. 2005a; Williams et al. 2005b).  However, findings presented here demonstrate that parasite 

density was not significantly associated with carriage of HbAS.  The reason for this apparent 

difference is presently unclear.  It is possible that results presented here differed from previous 

investigations due to the fact that children in the previous studies likely included a significant 

number of children with additional co-infections, such as HIV-1 and bacteremia that can 

influence the course of a malaria infection. It is also important to note that the previous study in a 

  83



comparable area of falciparum endemicity was performed as a community-based longitudinal 

investigation in which both malaria morbidity and all-cause mortality was assessed in children 

from birth to five years of age (Aidoo et al. 2002). Thus, it is possible that the children 

investigated here in a cross-sectional study design that presented at hospital with their first 

episode of malaria may be clinically very distinct from those children residing in the community 

that are presumably less ill than those recruited in a hospital setting. 

Our findings that children with the HbAS genotype have a similar parasite burden and 

HDP to the HbAA group prompted us to investigate if the hemozoin burden was comparable in 

the two groups.  These studies showed for the first time that HbAA individuals have an increased 

number of PCM compared to HbAS individuals with acute malaria.  During a malaria infection, 

monocytes and neutrophils ingest Hz (Nguyen et al. 1995; Lyke et al. 2003).  Monocytes and 

neutrophils play a vital role in the defense against invading pathogens through responses such as 

phagocytosis, enhanced cytotoxicity, and increased cytokine production (Abdalla and Pasvol 

2004).  Although the role of Hz in malaria severity is not completely understood, the presence of 

Hz in circulating monocytes and neutrophils has been associated with increased morbidity and 

mortality in both children and adults (Nguyen et al. 1995; Lyke et al. 2003). Elevated PCM 

relative to PCN is an indicator of a chronic malarial infection, whereas higher predominance of 

PCN is indicative of a more acute malarial infection (Day et al. 1996; Awandare et al. 2007).  

This rationale is based on the fact that PCM have a longer half-life (days to weeks) than PCN (9 

hours) due to the clearance kinetics of the two populations of white blood cells in circulation 

(Day et al. 1996; Awandare et al. 2007). During a malarial infection, Hz ingestion severely 

impairs the function of monocytes by creating a cellular milieu that can no longer generate 

oxidative burst, repeat phagocytose, and activate protein kinase C signaling pathways 
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(Schwarzer et al. 1998).  Other studies have also shown that phagocytosis of opsonized Hz 

impairs the expression of major histocompatibility complex (MHC) class II antigens, CD54, and 

CD11c in human monocytes (Schwarzer et al. 1998).  Recently, Hz was shown to activate 

leukocytes, including monocytes and neutrophils that leads to enhanced severity of severe 

malaria (Huy et al. 2006).   

Based on differences in PCM between the two groups, it was of interest to stratify the Hz 

burden into high versus low for both monocytes and neutrophils.  These results demonstrated 

that the HbAS group was significantly protected against both high and low PCM compared to the 

HbAA genotype.  The precise mechanism(s) responsible for this observed difference remains to 

be determined.  However, we hypothesize that there may be more efficient control of parasitemia  

in the early ring stage of parasitemia due to the more hypoxic nature of the RBC in the HbAS 

group.  Although this mechanism may not significantly limit the overall parasite burden, it may 

limit efficient formation of Hz within pRBC in individuals with the HbAS genotype.  Additional 

studies are required to verify this hypothesis. 

The hematological data presented here unique in that individuals with HIV-1 and 

bacteremia were excluded from the analyses.  To our knowledge, this represents the first 

investigation comparing hematological indices in children with HbAS and HbAA that took into 

account the important influence of these co-pathogens.  This fact is illustrated by previous 

studies conducted by our group demonstrating that HIV-1 promotes enhanced SMA (Crawley 

2004; Otieno et al. 2006). Additionally, bacteremia significantly enhances anemia severity in 

individuals with malaria (Brent et al. 2006). Taken together, the hematological data presented 

here more accurately reflect the true effect of carriage of HbAS on hematological outcomes 

relative to those with HbAA genotype.  
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Children with the HbAS genotype presented with a significantly higher median Hb and 

RBC count than children with the HbAA genotype. Both Hb and RBC counts are used as early 

indictors of anemia.  An increase in Hb and RBC count has been attributed to limiting 

parasitemia that leads to reductions in anemia (Desai et al. 2005; Wambua et al. 2006a).  

However, the fact that Hb and RBC counts were significantly different in the two groups, despite 

non-significant differences in parasitemia does not support previous investigations.  Additional 

results presented here demonstrate that the children with HbAS genotype had significantly 

reduced MCV and MCH compared to children with the HbAA genotype; this finding is 

consistent with previous studies carried out in both adults and children (Sheehan and Frenkel 

1983; Mockenhaupt et al. 2000; Wambua et al. 2006a).  Although the implications of reduced 

MCV and MCH in individuals with HbAS has not been definitively determined, MCV and MCH 

are additional hematological indices that can contribute to anemia (Davidson and Hamilton 1978; 

George-Gay and Parker 2003).  For example, increased MCV and MCH are important markers 

of underlying dyserythropoiesis caused by deficiencies of B12 and/or folic acid (George-Gay and 

Parker 2003).  HbAS individuals also presented with significantly higher RDW than those with 

the HbAA genotype.  RDW is used to account for the amount of variation in RBC volume, and is 

typically increased in both iron deficiency and megaloblastic anemia’s (Helleberg et al. 2005).  

Increased RDW has been previously observed in malaria, and this increase has been attributed to 

the red cells response to the parasite (Bunyaratvej et al. 1993).  The clinical value associated 

with determining the RDW is due to its ability to reflect active erythropoiesis (Roberts and El 

Badawi 1985).  In a previous study carried out in Ghana, RDW was used as a marker for the 

release of young erythrocytes and reticulocytes, an indication of appropriate bone marrow 

responsiveness (Kurtzhals et al. 1997).  In a different study conducted in malaria-infected 
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children, the RDW increased in response to low Hb values and was used as an index of a positive 

erythropoietic response, while a reduced RDW was associated with bone marrow suppression 

(Helleberg et al. 2005). Therefore, the increased RDW in HbAS children may indicate increased 

erythropoiesis and the release of young RBC into circulation.  However, this phenomenon was 

not supported by our measurement of the reticulocytes production indices (RPI) in the two 

groups. The RPI is a standard index that accounts for reticulocyte production in the bone marrow 

of anemic patients taking into account the degree of anemia (Were et al. 2006). An index of less 

then 2.0 implies suppression of erythropoiesis, while an index of greater than 3.0 is indicative of 

an appropriate erythropoietic response. The majority of children with HbAS had a RPI indices 

<2.0, a hallmark of suppression of erythropoiesis.  Therefore, this decrease in RPI contradicts the 

RDW measurements that suggested increased bone marrow responsiveness, suggesting that 

protection against anemia in children with the HbAS may not be due to an enhanced 

erythropoietic response.  

In agreement with previous findings in children with malaria, there was a greater 

proportion of children with SMA in the HbAA group compared to the HbAS group (Aidoo et al. 

2002).  Although the cause of anemia in tropical and sub-tropical areas is multifactorial, P. 

falciparum infection is a major contributory factor to its etiology in children living in 

holoendemic malaria areas (WHO 2000; Crawley 2004). Based on all of the findings presented 

here, we hypothesize that protection against SMA in the HbAS group is due to a reduced burden 

of Hz in monocytes.  Previous results show that Hz can contribute to enhanced anemia through 

suppression of erythropoiesis (Casals-Pascual et al. 2006).  Additional studies examining the 

erythropoietic response in longitudinal fashion will be required to determine if children with 

HbAS have more efficient production of RBC.   
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Taken together, results from this study demonstrate that although we were unsuccessful 

in genotyping -α3.7 in the Kenyan cohort, we now have a better understanding of the starting 

material required to successfully genotype this cohort of children in the future. For example, 

isolation of DNA from whole blood will be essential to yield both high quality and quantity 

genomic DNA that will be required for these investigations.  Additionally, the acquisition of a 

positive -α3.7 sample from Kenyan descent will provide an accurate positive control for the PCR 

reactions. Results presented here also demonstrate that HbAS is protective against SMA when 

appropriately controlling for the confounding effects of common co-pathogens, such as HIV-1 

and bacteremia that occur at high percentages in malaria endemic areas.  In addition, these 

investigations showed that protection against SMA in children with the HbAS genotype is not 

significantly associated reduced parasite burden.  This study demonstrates the novel finding that 

HbAS is associated with significantly reduced levels of PCM.  The underlying mechanism(s) for 

this finding require additional investigations that may provide important insight into the 

pathogenesis of childhood SMA.   

This study has important public health implications since malaria is one of the major 

causes of childhood morbidity and mortality around the globe (WHO 2000; Breman et al. 2001; 

Rowe et al. 2006). An improved understanding of how hemoglobinopathies protect against fatal 

malaria may provide important information required for the development of novel therapeutics in 

the future.  
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