
 
 

NOVEL ANTIVIRAL STRATEGIES TARGETING HUMAN  
IMMUNODEFICIENCY VIRUS TYPE 1 (HIV-1) VIRAL PROTEIN R AND 

ITS CELLULAR PARTNER, THE GLUCOCORTICOID RECEPTOR 
  

 
by 
 
 

Elizabeth Ann Schafer 
 
 

B.S., Biology, Grove City College, 2000 
 

B.A., English, Grove City College 2000 
 
 
 
 
 

 
Submitted to the Graduate Faculty of 

 
 

The Department of Infectious Diseases and Microbiology  
 
 

The Graduate School of Public Health in partial fulfillment 
 
 

of the requirements for the degree of 
 
 

Master of Science 
 
 

 
 
 
University of Pittsburgh 

 
 

2005 



  
UNIVERSITY OF PITTSBURGH 

 
GRADUATE SCHOOL OF PUBLIC HEALTH 

 
 

This thesis was presented  
 
 

by 
 

 
Elizabeth Ann Schafer 

 
 
 

It was defended on 
 
 

13 July 2005 
 
 

and approved by 
 

 
 

Velpandi Ayyavoo, Ph.D 
Thesis Advisor  

 Assistant Professor 
 Infectious Diseases and Microbiology 

Graduate School of Public Health 
University of Pittsburgh 

 
 

 Phalguni Gupta, Ph.D 
Committee Member 

Assistant Chairman and Professor  
Infectious Diseases and Microbiology 

Graduate School of Public Health 
University of Pittsburgh 

 
 
          Meryl H. Karol, Ph.D 

Committee Member 
Professor and GSPH Associate Dean  

Environmental and Occupational Health 
Graduate School of Public Health 

University of Pittsburgh 
       

 ii



 
 

 
NOVEL ANTIVIRAL STRATEGIES TARGETING HUMAN IMMUNODEFICIENCY 
VIRUS TYPE 1 (HIV-1) VIRAL PROTEIN R AND ITS CELLULAR PARTNER, THE 

GLUCOCORTICOID RECEPTOR 
 
 
 
 
 

Elizabeth Ann Schafer, MS 
 

University of Pittsburgh, 2005 
 
 

 

Most highly active anti-retroviral treatment (HAART) regimens eventually fail to provide 

complete and long-term suppression of virus replication due to the inability to fully clear virus 

from cellular reservoirs.  The HIV-1 viral protein R, Vpr, increases virus replication in T cells 

and is necessary for the optimal infection of primary monocytes/macrophages and other non-

dividing cells. In this essay, it is demonstrated that Vpr interacts with the cellular Glucocorticoid 

Receptor (GR) and transactivates the HIV-1 LTR through GRE and that this event can be 

blocked by the GR antagonist, mifepristone.  Based on these observations, it is shown that 

targeting Vpr-mediated virus transcription with the glucocorticoid antagonist, mifepristone, can 

demonstrate a potent anti-retroviral therapy.  

 

Results demonstrated that Vpr-induced transactivation of both autologous and heterologous 

promoters was inhibited by mifepristone in a dose-dependent manner by >90% at a 1 µM 

concentration.  Infectivity assays using T-tropic, dual-tropic, and macrophage-tropic viruses 

demonstrated antiviral effects on a dose-dependent regimen of mifepristone.  The effects of 

 iii



mifepristone were also tested in HIV-1 latent cells that could be activated with extra-cellular 

viral protein and results exhibited a greater than 90% inhibition of re-activation in the presence 

of this antagonist. Cytotoxic effects of mifepristone demonstrated a CT50 from 10 to 100 µM in 

normal human primary cells, HeLa, HEK293, and CV-1 cells.   

 

Statement of Public Health Relevance:  By utilizing the interaction between Vpr and the 

glucocorticoid receptor, glucocorticoid antagonists such as mifepristone hold promise for anti-

retroviral therapy by both preventing viral transactivation in currently-infected cell populations 

as well as preventing the reactivation of latent virus.     

 iv



ACKNOWLEDGEMENTS 
 

 

I would like to first thank Dr. Velpandi Ayyavoo, who on faith took in an English major and 

molded her into a molecular virologist.  I cannot begin to describe how much her patience and 

mentoring have affected me both as a student as well as professionally.  Through her guidance, I 

have learned not only the fundamental values of research, but also how to succeed in a field as 

intricate as this.  With her support, I have been granted innumerable opportunities to grow both 

as a student as well as a scientist. 

 

I would next like to thank Dr. Phalguni Gupta, who first not only introduced me to this 

department, but gave me a chance to succeed and earn a degree I eagerly sought.  It was through 

his original guidance, support, and trust that both focused my path as well as allowed me to 

succeed in obtaining my goals in receiving this degree.  For this, I will always be grateful.   

 

I would also like to thank Dr. Meryl Karol, who has supported my thesis project with such 

enthusiasm and guidance.  Your kind words of encouragement were a definite blessing, and your 

insight into my project was invaluable. 

 

I could not have done any of this without the support and friendship of my lab members.  As I 

have mentioned to all of you before, I have been so amazingly blessed with the honor of 

managing such a wonderful group of students and post-docs.  Coming into this position, now 

three years ago, I would have never imagined that I could work with such a remarkable group of 

researchers, who work and focus together as a team and support one another, myself not 

 v



excluded, so openly and whole-heartedly throughout whatever duration they may stay.  I hope 

that I have been able to support, guide, and influence all of you in a positive manner, as your 

optimism and encouragement have been more than evident every day that I have stepped into the 

lab.  So in the order in which I have known you, here are my thanks: 

 

I would like to thank Michelle, whose admirable research skills as well as tremendous talent 

have brought me both focus as well as an understanding of the intricacies of science. But most 

importantly, the support, patience, and guidance you have granted have been such an asset to me 

throughout the several years we have worked together.  I want to thank Bisu for both steadfast 

focus and determination.  You have constantly demonstrated a true research ethic, and have 

exampled a fundamental support and encouragement that have allowed me to excel in this 

department.  Next I want to thank Elizabeth Wheeler, who has influenced me in so many ways 

and who has shown me the true meaning of endurance.  You have constantly supported me in so 

many facets of my career.   I would like to thank Danielle for all her cloning and sequencing, and 

who has saved me endless hours with all her help.  But especially the never ending optimism and 

vivacity which you displayed every day, which has encouraged me at all times.  I want to thank 

Anamika for the protein work which supported my later projects, and who with a prior managing 

background has helped facilitate ideas and taken on responsibilities that have supported many 

efforts in the lab.  I want to thank Nabanita for not only protein work, but her upbeat personality 

which helped me focus on what was really important on days when I was bogged down with 

frustrating results.  I would also like to thank Jay, whose constant endurance and scrutinizing 

analysis of data have been an example of true research conduct.  Your support and 

encouragement also helped get me through some frustrating trials.  I would next like to thank 

 vi



Melissa, who demonstrated the real meaning of organization as well as endless hours pursuing 

and accomplishing her goals.  I want to thank Elizabeth Mukisa for her cloning as well as her 

constant encouragement the time she was in this lab.  And a special thanks goes to Jamie 

Slingluff for all of her wise words of advice as well as understanding. 

 

I would like to extend my gratitude to Dr. Andrew Baum, Dr. Frank Jenkins, and Dr. David 

Rowe for their influence on my decision of attending this program and allowing me to succeed in 

my goals, as well as their support of my efforts in this field. 

 

I would also like to thank the department of Infectious Diseases and Microbiology and all the 

faculty, students, and staff which make working here not only enjoyable, but who take care of so 

many meticulous details, namely Debbie Laurie, Cheryl Austin, Nancy Heath, and Robin Tierno 

who have made managing especially enjoyable with all their constant help and support as well as 

Robin Leaf who has helped me in my student endeavors in such a friendly and organized 

manner. 

 

Countless thanks go out to Jason Schmidt, who has been with me through many years, constantly 

supporting me throughout the duration of my graduate education.  I could have never succeeded 

without your never ending patience, your kind words on rough days, your insight into human 

perspective, and your laughter, which reminded me on days when little details became a source 

of fixation, what is really important in life.  All the late nights you stayed waiting in the car for 

“another five minutes” which lasted sometimes an hour, and all the midnights you stayed to 

 vii



listen to presentations or project ideas.  I cannot demonstrate in words how much your friendship 

and support have gotten me through some of the toughest times.  Thank you. 

 

I would like to extend a lifetime of gratitude to my parents, Tim and Rita Schafer, and my sister, 

Sarah (Schafer) Rice.  You have all supported me financially but most importantly with a love 

and support that has gotten me through all times.  I would have never gotten this far if I had not 

been demonstrated such high values by your actions and your moral standards.  Mom and dad, 

you have stayed up innumerable late nights discussing both personal issues as well as decision-

making issues, and have correctly guided me through the many paths of my life, especially in the 

past few years.  Sarah, you have taught me patience as well as given me total support when I 

needed it most, I will always cherish the many lessons you have taught me.  I would also like to 

thank Rita Lancaster, Mary Miller, and Irene Preisinger, as well as Mark and Cathy Schafer

who have all supported me whole-heartedly throughout my many endeavors and pursuits. 

 

Finally, I would like to thank God for the blessings with which I have been given, and to whom 

all credit is owed.  His guidance led me to this department and has enabled me to overcome 

many trials and frustrations, of which I am truly thankful. 

 

 

 

 

 viii



 
 
 
 

TABLE OF CONTENTS 
 

 

 1. CHAPTER ONE: INTRODUCTION ................................................................................... 1 
1.1. AIDS:  The Epidemic ................................................................................................................. 1 

2. CHAPTER TWO:  BACKGROUND..................................................................................... 3 
2.1. HIV-1:  STRUCTURE, REPLICATION, PATHOGENESIS .................................................. 3 
2.2. THE ACCESSORY PROTEIN, VPR......................................................................................... 6 
2.3. THE GLUCOCORTICOID RECEPTOR AND ITS ROLE IN VPR-MEDIATED VIRAL                     

TRANSACTIVATION................................................................................................................ 7 
2.4. THE GR ANTAGONIST, MIFEPRISTONE.......................................................................... 10 
2.5. THE PROPOSED RELATIONSHIP BETWEEN VPR, GR, AND MIFEPRISTONE ........ 11 
2.6. CURRENT ANTI-RETROVIRAL THERAPY........................................................................ 12 
2.7. PUBLIC HEALTH SIGNIFICANCE ..................................................................................... 14 

3. CHAPTER THREE: THESIS AIMS.................................................................................. 16 

4. CHAPTER FOUR: MATERIALS AND METHODS ........................................................ 18 
4.1. Cell Lines .................................................................................................................................. 18 

4.1.1. Established Cell Lines .........................................................................................................................18 
4.1.2. Primary Cells.......................................................................................................................................19 

4.2. Plasmids .................................................................................................................................... 21 
4.3. Transfection Methods............................................................................................................... 22 

4.3.1. Calcium Phosphate ..............................................................................................................................22 
4.3.2. Lipid-Mediated Transfection ...............................................................................................................22 

4.4. Virus .......................................................................................................................................... 23 
4.5. Mifepristone and Analogs ........................................................................................................ 24 
4.6. TZM Assay ................................................................................................................................ 24 
4.7. Cytotoxicity Assay ..................................................................................................................... 25 
4.8. Luciferase Reporter Assay........................................................................................................ 27 
4.9. PBMC Antiviral Assay.............................................................................................................. 28 
4.10. Macrophage Antiviral Assay .................................................................................................... 29 
4.11. CEM Antiviral Assay and FACS analysis ............................................................................... 31 

5. CHAPTER FIVE:  RESULTS ............................................................................................ 32 
5.1. AIM#1:   To Determine the Relationship between Vpr and GR and Their Resulting Role in 

Virus Replication .......................................................................................................................... 32 

 ix



5.1.1. Effects of Vpr on Heterologous Transactivation..................................................................................32 
5.1.2. Parameters for Transactivation Reporter Assays ................................................................................33 
5.1.3. Vpr-Mediated Transactivation of the Autologous GRE Promoter.......................................................35 
5.1.4. Interaction between GR and Vpr Occurs at the LxxLL Motifs of Vpr..................................................37 
5.1.5. Summary to Aim#1...............................................................................................................................39 

5.2. Aim#2:  To assess whether the GR antagonist, mifepristone, is able to inhibit Vpr-mediated   
transactivation............................................................................................................................... 40 

5.2.1. The effects of Mifepristone on Vpr-mediated Transactivation.............................................................40 
5.2.2. Effects of Dexamethasone on Vpr-mediated Transactivation ..............................................................41 
5.2.3. Cytotoxicity of Mifepristone.................................................................................................................47 
5.2.4. Effects of Mifepristone on Virus Infection ...........................................................................................48 

5.2.4.1.     Antiviral Properites of Mifepristone in the established T-cell line, CEMx174.............................49 
5.2.4.2. Antiviral Effects of Mifepristone in PBMCs Infected with Replication Competent   Dual-tropic    

89.6 Virus .....................................................................................................................................51 
5.2.4.3.     Antiviral Effects of Mifepristone on PBMCs infected with the Patient Isolate, H112..................52 
5.2.4.4.     Antiviral Effects of Mifepristone in Human Macrophages Infected with the Macrophage-Tropic 
                 Viral Isolate Ba-L.........................................................................................................................53 

5.3. AIM#3:  Clinical Applications of Mifepristone ....................................................................... 57 
5.3.1. Pre- versus Post-Treatment with Mifepristone ....................................................................................57 

5.3.1.1.     Pre-Treatment of PBMCs and Macrophages with Mifepristone Prior to Infection .....................57 
5.3.1.2.     Effects of Pre-Treatment of the Virus in Comparison to Cell Pre-Treatment in PBMCs.............59 

5.3.2. Effects of Mifepristone on Latent Viral Reservoirs..............................................................................60 
5.3.3. The Effects of Mifepristone Analogs on Promoter Transactivation and Antiviral Activity..................62 

5.3.3.1.     Cytotoxicity of Mifepristone Analogs ..........................................................................................63 
5.3.3.2.     Effects of Mifepristone Analogs on Promoter-Driven Transactivation .......................................64 
5.3.3.3.     Effects of Mifepristone Analogs on Wild-Type Infection in PBMCs............................................68 
5.3.3.4.     Effect of Mifepristone Analogs on Ba-L Macrophage Infection..................................................70 

5.3.4. Summary to AIM#3 ..............................................................................................................................72 
6. CHAPTER SIX:  DISCUSSION ......................................................................................... 73 

7. FUTURE DIRECTIONS..................................................................................................... 83

8. BIBLIOGRAPHY............................................................................................................... 835 

 
 

 x



 
 
 
 

LIST OF TABLES 
 
 
Table 1. Regional HIV and AIDS statistics (2003). .......................................................................................................2
 
Table 2. Functions of HIV-1 Proteins.  .........................................................................................................................4
 
Table 3. Four Classes of Retroviral Therapy and Associated Drugs by Common Name and Abbreviation.  ............13
 
Table 4. In Vitro Cytotoxicity of Mifepristone. ............................................................................................................47 
 
 

 xi



 
 
 
 

LIST OF FIGURES 
 
 
Figure 1.  The HIV-1 Genome .......................................................................................................................................3 
Figure 2.  HIV-1 Long Terminal Repeat (LTR).. ...........................................................................................................4 
Figure 3.  Replication of HIV-1 Genome.......................................................................................................................5 
Figure 4.   NMR Structure of HIV-1 Vpr and Schematic Diagram of Helices I, II, and III...........................................7 
Figure 5.   The Normal GR Pathway .............................................................................................................................8 
Figure 6.   Structure of the Glucocorticoid Receptor (GR) interacting with DNA. .......................................................9 
Figure 7.   Structure of mifepristone............................................................................................................................10 
Figure 8.   Schematic Representation of Vpr-mediated LTR transactivation. .............................................................12 
Figure 9.   Targets for Antiviral Therapy within the HIV-1 Life Cycle .......................................................................14 
Figure 10.  Fully Differentiated Macrophages............................................................................................................20 
Figure 11.  Effects of Vpr on HIV-1 LTR-mediated transactivation............................................................................33 
Figure 12.  Optimal Concentrations of pVpr for Reporter Transactivation Assays in Different Cell Types...............34 
Figure 13.  Effects of Vpr on the heterologous promoter, GRE.. ................................................................................36 
Figure 14.  Representation of Leucine Mutants...........................................................................................................37 
Figure 15.  Effect of HIV-1 Vpr leucine mutants on GRE and HIV-1 LTR-mediated Transactivation........................38 
Figure 16.  Effects of Mifepristone on HIV-1 LTR promoter activity ..........................................................................41 
Figure 17.  Effects of Media on Vpr-mediated Transactivation. .................................................................................42 
Figure 18.  Comparison between the effects of Vpr and dexamethasone on HIV-1 LTR-driven transcription.. .........44 
Figure 19.  Vpr and Dexamethasone Transactivate HIV-1 LTR-promoted transcription in an additive manner.  . ...45 
Figure 20.  Effects of Mifepristone on Vpr + Dexamethasone-Mediated Transactivation..........................................46 
Figure 21.  Percent Viability of Mifepristone after Seven Days. .................................................................................48 
Figure 22.  Effects of Mifepristone on NL4-3-EGFP infection as determined by FACS analysis.  ............................50 
Figure 23.  Effects of Mifepristone on CEMx174 infected with NL4-3-EGFP by p24 analysis ..................................50 
Figure 24.  Antiviral Effects of Mifepristone on 89.6wt-infected PBMCs in three separate donors. ..........................52 
Figure 25.  Antiviral Effects of Mifepristone onPBMCs infected with the Patient Isolate H112. ...............................53 
Figure 26.  The effects of mifepristone on macrophage infection with the  Ba-L virus isolate ...................................55 
Figure 27.  Pre-Treatment versus Post-Treatment of PBMCs and Macrophages with Mifepristone..........................58 
Figure 28.  Effects of Mifepristone on Viral Pre-Treatment in Comparison to Cellullar Pre-Treatment in PBMCs..60 
Figure 29.  Effects of mifepristone on re-activation from latency as determined by U1/HIV-1 viral production. ......61 
Figure 30.  Structure of mifepristone analogs .............................................................................................................62 
Figure 31.  Cytotoxic effect of mifepristone analogs in PBMC, HeLa, and Macrophages..........................................63 
Figure 32.  Effects of Mifepristone Analogs on HIV-1 LTR Transactivation in HeLa Cells.. .....................................64 
Figure 33.  Effects of Mifepristone and Analogs on HIV-1 LTR-mediated transactivation in CV-1 cells...................65 
Figure 34.  Effects of Mifepristone Analogs on HIV-1 LTR-mediated transactivation in CV-1 and HEK293 cells.. ..67 
Figure 35.  Three-day Effects of Mifepristone Analogs on NL4.3 wild-type infection of PBMCs...............................68 
Figure 36.  Effects of Mifepristone Analogs on Viral Replication in PBMCs infected with 89.6.. ..............................69 
Figure 37.  Effects of Mifepristone Analogs on Macrophages infected with Ba-L. .....................................................71 
 
 
 

 xii



 

1. CHAPTER ONE: INTRODUCTION 

 

1.1. AIDS:  The Epidemic 

 

There are currently an estimated 42 million people infected world-wide with HIV/AIDS (Human 

Immunodeficiency Syndrome/Acquired Immune Deficiency Syndrome), with approximately 

14,000 new infections occurring every day (1) (Table 1).  While current therapies including 

highly active anti-retroviral drug therapy (HAART) have without doubt prolonged the lives of 

many fighting HIV and have prevented innumerable new infections, the drug regimen is costly 

and adherence is generally low due to both toxicity and drug failure (2,3). Studies have shown 

that a regimen adherence of 95-98% is necessary to control infection and that missing even a 

single dose in a 28-day period can predict treatment failure (4,5). The evolution of drug-resistant 

viral strains has been shown to occur due to the non-adherence of therapy in a “bell-shaped 

manner”: medium regimen adherence increases drug resistance in comparison to low or high 

adherence (6,7).   

 

Four major classes of antiviral therapy are currently prescribed, which include the new fusion 

inhibitors, protease inhibitors, and reverse transcriptase inhibitors. Generally, HAART is 

administered as “triple therapy” consisting of a protease inhibitor (PI) or a non-nucleoside 

reverse transcriptase inhibitor (NNRTI) as well as two nucleoside reverse transcriptase inhibitors 

(NRTI) (8).  Unfortunately, these therapies often lead to toxic side effects including 

mitochondrial toxicity, lipodystropy, lactic acidosis, hepatatoxicity, and cardiomyopathy (9-12). 

Currently, other antiviral targets are being explored including integrase inhibitors, CXCR4 and 
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CCR5 inhibitors, and cellular proteins including APOBEC3G and TRIM5α that demonstrate 

antiviral behavior (13-18). 

 

Viral reservoirs such as macrophages and resting T cells prevent total viral clearance even during 

an extensive HAART regimen (19-22). Though there is some speculation that patients treated 

with HAART <6 months post-seroconversion are able to decrease latent viral loads to less than 

detectable levels, it is hypothesized that patients would have to undergo 60 years of HAART to 

clear all viral reservoirs (23,24). While there is great pursuit to find new therapies or vaccines, 

there is a substantial need to find additional novel compounds which will target areas of virus 

replication not yet investigated for antiviral intervention.    
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Table 1. Regional HIV and AIDS statistics (2003).  There are currently an estimated 42 million people infected 
with HIV/AIDS around the world. UNAIDS and WHO statistics show the largest number of HIV/AIDS cases 
occurring in Sub-Saharan Africa and South or South-East Asia.    
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2. CHAPTER TWO:  BACKGROUND 

 

2.1. HIV-1:  STRUCTURE, REPLICATION, PATHOGENESIS 

 

The human immunodeficiency virus type 1 (HIV-1), the etiologic agent of AIDS, is classified as 

a member of the Retroviridae family; more specifically, as a member of the Lentiviral genus.  

The 9.8 kilobase single-stranded HIV-1 genome is composed of at least nine genes coding for  

structural/enzymatic (gag, env, pol), regulatory (tat, rev) and accessory (vif, vpr, nef, vpu) 

proteins (Figure 1, Table 2).  

 

Figure 1. The HIV-1 Genome.  The schematic representation of the HIV-1 genome includes both structural 
and accessory genes including gag, pol, vif, tat, vpr, rev, vpu, env, and nef.  These genes are flanked on both 
ends by the HIV-1 LTR (long terminal repeat) promoter region. 
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Table 2. Functions of HIV-1 Proteins.  The nine proteins composing HIV-1 are listed along with their 
respective functions. 
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The long terminal repeat (LTR) flanks both ends of the viral genome, and serves as the major 

promoter region for viral transcription (Figure 2).  The HIV-1 LTR contains multiple binding 

sites for transcription factors including the glucocorticoid receptor, SP-1, NF-AT, and NF-ĸB. 

 

Figure 2.  HIV-1 Long Terminal Repeat (LTR).  The LTR is the main promoter region for HIV-1 viral genes.  
The main transcription factor binding sites are found in the U3 region of the LTR and are schematically 
represented. 
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Briefly, upon entry into host cells, HIV-1 RNA is reverse transcribed into DNA in the cytoplasm 

of the cell, resulting in the entry of viral DNA into the nucleus of the cell and leading to 

subsequent integration with host DNA (Figure 3). Target cells of HIV-1 infection include both 

the dividing CD4+ T cells and non-dividing macrophages (25-27). Post-infection, latent 

reservoirs are established in various cell types including both T cells and macrophages and serve 

as the cause for both initial asymptomatic infection as well as the inability to fully expel virus 

from infected patients (28). 
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Figure 3. Replication of HIV-1 Genome.  HIV-1 attaches and fuses through the cellular membrane.  The RNA 
uncoats in the cytoplasm and reverse transcription (RT) occurs.  Viral DNA integrates with cellular DNA, 
leading to the production of viral proteins which in conjunction with viral RNA, assemble at the cellular 
membrane where the virus fully assembles, matures, and egresses into the extra-cellular environment. 
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2.2. THE ACCESSORY PROTEIN, VPR 

 

As aforementioned, HIV-1 is composed of at least four accessory proteins. One of these 

accessory proteins and the one in which the focus of this thesis concerns, viral protein R (Vpr), is 

96-amino acids in length with a molecular weight of approximately 14 kDa.  Vpr can be defined 

as a pleiotropic protein, as it has been shown to serve in an array of varying functions including 

cell cycle arrest at the G2/M phase, immune regulation and evasion, apoptosis, involvement with 

the pre-integration complex (PIC), and viral transactivation (29-39).  It is this final function, viral 

transactivation, which will be further investigated throughout this essay.      

 

While defined as an accessory protein, Vpr is evolutionarily conserved in HIV-1, HIV-2, and 

SIV, demonstrating its importance as a viral protein (40). Vpr is also packaged within the virion, 

possibly transactivating viral genes prior to the production of Tat (41). Studies have shown that 

Vpr, while important during infection of dividing cells such as T cells, is vital to the infection of 

non-dividing cells such as macrophages, possibly due to its involvement with PIC (42-44).  

Important to note is that macrophages are the primary initial targets of HIV-1, specifically 

located within the mucosa of the skin (45).  The importance of Vpr in the initial stages of 

infection, therefore, can be demonstrated by the necessity of Vpr for optimal macrophage 

infection during initial virus/host cell contact.        

 

Vpr is composed of three helices (Helix I, II, and III) connected by loop regions (Figure 4) (46).  

Each helix contains the motif LxxLL, which has been shown to interact with cellular proteins 

(47,48). These LxxLL motifs are involved in the interaction of Vpr with the cellular protein, the 
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glucocorticoid receptor (GR) (49).  Thus the specific interaction between Vpr and GR, which 

increases transactivation of viral proteins, is a probable target for antiviral intervention. 
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Figure 4. (A) Schematic Representation of Vpr. (B) Schematic Representation of Helices I, II, and III.   

 

2.3. THE GLUCOCORTICOID RECEPTOR AND ITS ROLE IN VPR-MEDIATED 
VIRAL TRANSACTIVATION 

 

The Glucocorticoid Receptor (GR) is a host cellular ligand-dependent transcription factor and a 

member of the nuclear hormone receptor family.  Under normal conditions, GR serves mainly as 

a negative regulator of NF-κB- and AP-1-induced gene transcription (cytokine production) 

(50,51). 
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GR

 

Figure 5.  The GR Pathway.  The Glucocorticoid Receptor is held in the cytoplasm by heat shock proteins and 
other chaperones.  Cortisol binds the GR within the Ligand-Binding Domain and activates GR.  A 
conformational change after ligand binding dislodges the chaperones and presents nuclear localization 
signals.  GR then translocates into the nucleus where it bind the Glucocorticoid Response Element (GRE) 
promoter region within the cellular DNA, leading to the transactivation of downstream genes.  GR is also able 
to bind to negative GRE elements, regulating NF-ĸB-driven gene expression. 

 

GR is held in the cytoplasm of the cell by a heteromeric complex composed of several proteins 

including HSP90, HSP70, P23, and other chaperone proteins (52-55).  Once ligand binds the GR 

within its ligand-binding domain region (LBD), GR is released from this complex and 

translocates into the nucleus of the cell where it binds specific promoter response elements 

termed Glucocorticoid Response Elements, or GREs (56,57) (Figure 5).  One of the ways in  

which GR is able to negatively regulate the effects of the pro-inflammatory response is by 

binding to negative GREs or nGREs, which decreases gene transcription (58).  GR also interacts 

with other transcription factors through direct protein-protein interaction, inhibiting gene 
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transactivation, as well as enhancing transactivation of anti-inflammatory cytokines, thereby 

combating the effects of cytokine-enhancing transcription factors such as NF-κB (59,60)  

 

The Glucocorticoid Receptor contains three specific domains:  AF-1 domain, DNA-binding 

domain, and the Ligand-binding domain (Figure 6) (61). The N-terminus AF-1 domain, 

consisting of amino acids 1-421, is a transcriptional activation function domain (62).  The GR 

DNA-binding domain (DBD) is comprised of the next 65 amino acids and contains a zinc-finger 

DNA-binding motif which interacts with GREs (63).  The C-terminus Ligand-binding domain 

(LBD) is made of 250 amino acids and both interacts with ligand as well as is involved in 

protein-protein interaction with chaperones and co-regulators (64).  GR consists of at least two 

nuclear localization signals found in both the DBD and LBD regions (65). 

1   77   262                 407         545   573                                              777

 

Figure 6. Schematic Representation of the Glucocorticoid Receptor.  The Glucocorticoid Receptor is made of 
the N-terminus AF-1 domain, the DNA binding domain, and the C-terminus Ligand binding domain. 

 

Vpr is able to directly interact with GR and act as ligand, increasing the transactivation of GRE-

driven downstream genes.  While it is currently unknown where Vpr binds GR, we have shown 

that the Vpr and GR interaction is mediated through the LxxLL motifs present in Vpr helices II 

and III (49). 

 

LBDDBD LBD  AF-2t2AF-1
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2.4. THE GR ANTAGONIST, MIFEPRISTONE 

 

Mifepristone, (11β-[p-(Dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-

one),  empirical formula C29H35NO2, and a derivative of norethindrone, is a yellow powder with 

a molecular weight of 429.6 and a melting point of 191-196oC (Figure 7).  It is soluble in 

methanol, chloroform, and acetone (66).  

 

{H3C}2N

Figure 7.  Structure of mifepristone. 
 

Mifepristone was originally synthesized by scientists at Roussel-Uclaf in Romainville, France 

while searching for steroidal compounds with anti-hormone properties (67-69). Defined as a 

class II GR antagonist, mifepristone demonstrates strong antagonistic effects on GR and the 

Progesterone Receptor (PR) with some sited instances of agonist activity towards GR, dependent  

upon receptor concentration (70,71).  Mifepristone, which binds at the GR ligand-binding 

domain in the same pocket as dexamethasone, is able to exert antagonistic effects on GR-

mediated transactivation by both tightening the bind between GR and GRE, thereby decreasing  
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the rate of speed in which gene transcription occurs (72,73), and by recruiting co-repressors 

rather than co-activators to the transcription complex, thus decreasing transactivation (74).  It is 

this interaction between mifepristone and GR that produces a possible target for antiviral 

therapy. 

 

2.5. THE PROPOSED RELATIONSHIP BETWEEN VPR, GR, AND MIFEPRISTONE 

 

 
We have shown that Vpr and GR specifically interact, and that Vpr is able to act as ligand in a 

similar manner to that of dexamethasone, increasing GR-mediated transactivation (49). Looking 

more specifically at viral transcription, found within the HIV-1 LTR promoter region are GRE 

sequences (75).  Therefore, during infection, GR-mediated transactivation of GRE-promoted 

downstream gene does not only occur in the context of cellular DNA, but can also occur with the 

integrated HIV-1 proviral DNA, thereby increasing viral transcription (viral production).  We 

therefore propose that Vpr, either nascently transcribed within the host cell, or Vpr which has 

transduced through the cellular membrane (free Vpr), is able to bind GR similar to ligand, 

leading to the binding of GR to the GRE promoter region found within the HIV-1 LTR, thereby 

promoting the transactivation of viral genes.  And that the GR antagonist, mifepristone, is able to 

therefore decrease or inhibit Vpr/GR-mediated viral gene transactivation in infected cells (Figure 

8).  The decrease or prevention of Vpr-mediated transactivation of viral genes also allows for the 

opportunity to inhibit or decrease reactivation from viral reservoirs, as the integrated proviral 

DNA will be less likely to transactivate (reactivate) in the presence of the GR antagonist, 

mifepristone.  This is especially important in the context of macrophages in which Vpr is 

necessary to infect, and in which viral reservoirs are often present.  
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Figure 8. Schematic Representation of Vpr-mediated LTR transactivation.  Vpr interacts with GR as ligand, 
similar to cortisol, leading to the transactivation of GRE-driven genes, including those found in the HIV-1 
LTR. Mifepristone is able to decrease this transactivation via several different mechanisms.   

  

 

 

2.6. CURRENT ANTI-RETROVIRAL THERAPY 

 

Currently, there are four classes of anti-viral therapy targeting different steps in HIV-1 

replication within the host cell (Table 3, Figure 9).  Briefly, these therapies target either reverse 

transcription (AZT, efavirenz, 3TC), protease maturity (indinavir, ritonavir), or fusion (Fuzeon).  

Other classes of drugs are being investigated and offer hope for HIV-1 infected patients, as drug-

resistant viral strains are becoming more and more frequent within infected populations, and as 

the adverse effects to the drugs themselves often cause patients to fail therapy.  
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Table 3.  Four Classes of Retroviral Therapy and Associated Drugs.  The current HIV-1 antiviral drugs which 
are FDA-approved are listed as follows along with their common names and abbreviations. 

 
Common Name Abbreviation Drug 

Nucleoside and 
Nucleotide RT 

Inhibitors 
(NRTIs)Trade name 

    

Combivir CBV AZT+3TC 
Emtriva FTC Emtricitabine 
Epivir 3TC 3TC, lamivudine 
Hivid ddC ddC, zalcitabine 
Kivexa   3TC+ABC 
Retrovir AZT AZT, zidovudine 
Trizivir TZV AZT+3TC+ABC 
Truvada   FTC+TDF 
Videx ddI ddI, didanosine 
Viread TDF Tenofovir 
Zerit d4T d4T, stavudine 
Ziagen ABC Abacavir 

Non-Nucleoside RT 
Inhibitors (NNRTIs) 

    

Rescriptor DLV Delavirdine 
Sustiva EFV Efavirenz 
Viramune NVP Nevirapine 

Protease Inhibitors 
(PIs) 

    

Agenerase APV Amprenavir 
Crixivan IDV Indinavir 
Fortovase SQV-FTV Saquinavir soft gel 
Invirase SQV-INV Saquinavir hard gel 
Kaletra LPV Lopinavir/ritonavir 
Lexiva/Telzir FPV Fosamprenavir 
Norvir RTV Ritonavir 
Reyataz ATV Atazanavir 
Viracept NFV Nelfinavir 

Fusion inhibitors     

Fuzeon T-20 Enfuvirtide 
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Fusion Inhibitors

 

 

Figure 9. Targets for Antiviral Therapy within the HIV-1 Life Cycle. Current antiviral therapy (Fusion 
Inhibitors, RT Inhibitors, and Protease Inhibitors) in conjunction with possible antivirals (Integrase 
Inhibitors, CXCR4 and CCR5 Inhibitors, Cellular Inhibitors, and Transactivation Inhibitors) are 
schematically represented. 

 

2.7. PUBLIC HEALTH SIGNIFICANCE 

 

With an estimated 42 million people infected with HIV/AIDS around the world, there is great 

need for new therapies targeting HIV-1 infection that are both inexpensive as well as easily 

accessible.   While current HAART therapy has increased the lifespan of thousands of people 

and prevented many new infections by both vertical and horizontal transmission, the inability of 

many infected patients to correctly follow the drug regimen along with the development of viral 

reservoirs and drug-resistant strains, results in the need for the presentation of new antivirals, 
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targeting different stages of the viral lifecycle.  Recently, accessory proteins such as Vif and Nef 

have been investigated to determine if these proteins hold any answers for finding new antiviral 

drugs.  Along that line, the interruption of Vpr-mediated transactivation via mifepristone could 

give rise to a new class of antiviral drugs, one which could target both active replication as well 

as viral reservoirs.  Conceding that this therapy would not be the end-all-be-all of therapies, we 

propose that it could, in fact, be incorporated into current HAART therapy as a combative 

antiviral. 
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3. CHAPTER THREE: THESIS AIMS 

 

With the development of HAART, HIV-1-infected patients have been able to prolong their lives 

as well as help prevent the spread of virus to others.  However, HAART therapy almost always 

eventually fails leading ultimately to the death of the patient due to complications of 

opportunistic infection.  Viral reservoirs are often established within the patients and viral-

resistant species develop within those infected, leading to a down-hill battle concerning 

overcoming the fight with HIV-1.   

 

The necessity of developing new antiviral compounds to combat HIV-1 infection has led to the 

investigation of specific proteins encoded by the virus, including the accessory protein Vpr.  Vpr 

has been implicated in a variety of functions including G2M cell cycle arrest, apoptosis, immune 

regulation, viral escape, and finally, an increase in viral transactivation.  It has been determined 

that one of the mechanisms underlying Vpr-mediated transactivation is through the utilization of 

the pathway established by the Glucocorticoid Receptor (GR).  Vpr is able to activate GR in a 

ligand-dependent manner, similar to that of cortisol, leading to the transactivation of GRE-driven 

genes.  The HIV-1 LTR, which contains GRE sequences, promotes the transcription of viral 

genes in the presence of Vpr, mediated by the interaction between Vpr and GR.   The GR 

antagonist, mifepristone, is able to inhibit Vpr-mediated transactivation by interfering on several 

levels with the transcription of GRE-promoted genes.   

 

The three major aims of this thesis included first defining the relationship between Vpr and GR 

and the subsequent increase in viral transactivation.   Secondly, we wanted to assess whether or 
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not the GR antagonist, mifepristone, was able to inhibit viral gene transactivation and viral 

replication in both transactivation models and infectivity models.  Third, we wanted to view the 

effects of  mifepristone in a clinical manner, to determine if mifepristone worked differently in a 

pre- versus post-treatment regimen and to investigate the effects of mifepristone on reactivation 

from latency.  Mifepristone analogs were also investigated to assess their ability to inhibit HIV-1 

LTR-mediated transactivation as well as viral replication. 

 

AIM #1:  To determine the relationship between Vpr and GR and their role in virus  

      replication   
 
   

A)  To test the effects of Vpr on LTR-mediated transactivation 
  B)  Determine how Vpr increases LTR-mediated transactivation 
  C)  Determine the specific interaction between Vpr and GR resulting 
        in downstream transactivation   
 
AIM #2:   To assess whether the GR antagonist, mifepristone, is able to inhibit viral  

       transactivation and virus replication  
 
  A)  Determine the cytotoxicity of mifepristone 
  B)  Study effects of mifepristone on transactivation models 
  C)  Assess effects of mifepristone in T-tropic, dual-tropic, and M-tropic infection 
        models 
  D)  Determine effects of mifepristone patient isolate infection models 
 
AIM #3:  Clinical Applications of Mifepristone 
 

A)  Determine if mifepristone works differently in a Pre vs. Post Antiviral   
       Infection Study              
B)  Determine if mifepristone is able to prevent reactivation of virus from  

        latency 
  C)  Study the effects of mifepristone analogs on viral transactivation and infection 
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4. CHAPTER FOUR: MATERIALS AND METHODS 

 

4.1. Cell Lines 

4.1.1. Established Cell Lines 

HeLa, HEK293, HEK293T, and TZM cell lines were grown in DMEM (Gibco, Carlsbad, 

California) supplemented with 10% FBS (HyClone, Logan, Utah), 1% Penicillin-Streptomycin, 

and 1% L-Glutamine.  Both HeLa and TZM cells were grown in 5% CO2 at 37˚ C; HEK293 and 

HEK293T cell lines were grown in 10% CO2 at 37˚ C.  CV-1 cells were sustained in DMEM 

supplemented with 10% charcoal/dextran-stripped FBS (HyClone, Logan, Utah) at 5% CO2 at 

37˚ C.  HeLa cells were obtained from the NIH AIDS Research and Reference Reagent program 

from Dr. Richard Axel (76).  CV-1 cells were obtained from Dr. Frank Jenkins at the University 

of Pittsburgh and TZM-bl cells were received from the AIDS Research and Reference Reagent 

program from Drs. John C Knappes, Xiaoyun Wu, and Tranzyme, Inc.  HEK293T cells were a 

generous gift from Dr. Michelle Calos, Stanford University, CA.  HEK293 cells were from NIH 

AIDS Research and Reference Reagent Program.  U1/HIV-1 and CEM cell lines were grown in 

RPMI 1640 (Gibco, Carlsbad, California) and supplemented with 10% FBS, 1% L-Glutamine, 

and 1% Penicillin-Streptomycin as.  174xCEM cells were provided by Dr. Peter Cresswell (77) 

and were received from the AIDS Research and Reference Reagent Program.  The U1/HIV-1 

cell line was acquired through the AIDS Research and Reference Reagent Program as 

contributed by Dr. Thomas Folks (78).   
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4.1.2. Primary Cells 

PBMCs:  Peripheral Blood Mononuclear Cells (PBMCs) were isolated using blood from healthy 

male HIV-1-negative donors.  Male donors were used to avoid the irregulation of hormone 

cycling in women.  Blood was isolated using Lymphocyte Separation Media (Mediatech, 

Herndon, Virginia) gradient centrifugation.  Post-isolation, PBMCs were resuspended in RPMI 

1640 supplemented with 10% FBS and stimulated with phytohemoagglutinin (PHA-P) (Sigma, 

St. Louis, Missouri) (5µg/mL) for three days.  After stimulation, cells were cultured in RPMI 

supplemented with 10% FBS in the presence of IL-2 (Chiron, Emoryville, California)   (5U/mL). 

 

Human Monocyte-Derived Macrophages:  Monocyte-derived macrophages were isolated from 

PBMCs by adhesion.  PBMCs were resuspended in DMEM supplemented with 1% Penicillin-

Streptomycin and 1% L-Glutamine without the presence of serum and were plated in either 

100mM plates (20 x 106), 6-well plates (3 x 106/well), 12-well plates (1.5 x 106/well), or 96-well 

plates (1.5 x 105/well) for two hours at 37˚ C, to allow the monocytes to settle and adhere to the 

plates.  After the two-hour incubation, non-adherent cells (primary blood lymphocytes) were 

excluded by removing the cells and the adherent cells were washed two times in phosphate 

buffered saline (PBS) to remove all particulates including fat, debris, and other cells attached to 

the monocytes.  DMEM supplemented with 10% FBS, 10% either horse or human sera, 1% 

Penicillin-Streptomycin, 1% L-Glutamine, 500 U/mL GM-CSF (granulocyte-macrophage colony 

stimulating factor) (Berlex Labs, Richmond, California), and 15ng/mL M-CSF (macrophage 

colony stimulating factor) (Amgen, Thousand Oaks, California) were added to the cells to begin 

the differentiation of the monocytes into macrophages.  After five days, the monocyte media was 
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removed and spun down to remove any floating cells (not of monocyte lineage) and other debris.  

Half of this media was placed back on the cells and an equal quantity of fresh monocyte media 

was placed on the cells to ensure the proper cytokines and nutrients were administered to the 

cells.  After eight to ten days, macrophages were differentiated as determined by visual 

assessment (Figure 10) and CD14 FACS analysis.   

 

Figure 10.  Fully Differentiated Macrophages.  Human monocytes were isolated as described and 
differentiated into macrophages in the presence of GM-CSF and M-CSF for approximately 8-10 days.  When 
macrophages were fully differentiated, which was determined by both CD14 and visual assessment 
(“pancake” morphology), they were able to be infected with virus.   

 
 
 
 
 

20 



 

4.2. Plasmids 

 

For transactivation studies, the HIV-1 LTR reporter construct was obtained from NIH AIDS 

Research and Reference Reagent Program.  The GRE (5X)-Luciferase reporter plasmid was 

constructed by PCR amplification of the 5X GRE consensus sequence from pGRE5/EBV vector 

(USB, CA) using specific forward (5’ ATACGCGGATCCTCTAGA AGATCCGCT3’) and 

reverse (5’ ATCATACTCGAGGGCCCTCGCAGACA3’) primers.  Amplified PCR product 

(290bp) was cloned upstream of a firefly luciferase gene reporter construct.  The human 

Glucocorticoid Receptor-alpha gene (hGRα) was PCR amplified using specific forward (5’ 

ATCGGGGATCCGATGGACTCCAAAGAATCA3’) and reverse (5’ 

GTGGTCCTCGAGCTTGATGAAACAGAAG 3’) primers and cloned into the pcDNA 3.1 

(Invitrogen) vector for futher expression studies.  Mutants of HIV-1 Vpr were generated using 

overlap PCR and/or by Quick-change mutagenesis (79) and were cloned under the control of the 

CMV promoter in pCDNA3.1 (Invitrogen, California) with a flag epitope.  All plasmids were 

generated by propagation in DH5α bacterial cells and DNA was extracted by using either DNA-

binding columns (Qiagen, Valencia, California)  The integrity of the plasmid DNA was tested by 

both digest and electrophoresis followed by DNA sequence analysis (ABI 7700, CA). 
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4.3. Transfection Methods 

 

4.3.1. Calcium Phosphate 

 

The calcium phosphate method was used on HEK293 and HEK293T cell lines.  Cells were 

plated to reach an approximate confluency of 75%.  Three to four hours prior to cell transfection, 

old media was removed and 9mL fresh DMEM supplemented with 10% FBS was added to a 

100mM plate; plates were moved from 10% CO2 to 5% CO2.  The transfection was conducted 

adding DNA (450µL) to water (450µL) to 2.5M CaCl2  (50µL).  To the DNA-water-CaCl2 mix, 

50 mM BES (BES,  250mM NaCl, 0.5mM Na2HPO4) (500µL) was added and the mixture was 

incubated at room temperature for 30 minutes.  After incubation, the mixture was added drop-

wise to the surface of the cell media.   Within 12-16 hours, the media on the cells was removed, 

the cells were washed two times with PBS to remove all precipitate and excess DNA, and fresh 

DMEM supplemented with 10% FBS, 1% Penicillin-Streptomycin, and 1% L-Glutamine was 

added.  For transfections conducted in a smaller plate, all volumes were proportioned so that 

volume ratios were equivalent.     

 

4.3.2. Lipid-Mediated Transfection 

 

Lipid-mediated transfection was used on HeLa and CV-1 cells.  Cells were plated and grown in 

penicillin-streptomycin-free media overnight to 85% confluency.  DNA was mixed with 

Lipofectamine (3µL per approximately 3-5µg DNA) (Invitrogen, Carlsbad, California) and either 

OptiMEM (GIBCO, Carlsbad, California ) or DMEM was mixed to a total volume of 200µL.  

The DNA-Lipofectamine complex was incubated at room temperature for 20 minutes.  Post-
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incubation, cell media was removed and cells were washed two times to remove any serum.  The 

DNA-Lipofectamine complex was added drop-wise to the cell surface and OptiMEM or DMEM 

without penicillin-streptomycin was added to a volume just covering the cell monolayer.  The 

cells were incubated at 37˚C for 3-4 hours.  After incubation, the DNA-Lipofectamine-

containing media was removed, cells were washed to remove any excess DNA or Lipofectamine, 

and fresh media was added.   

4.4. Virus 

 

HIV-1 89.6 was received from the NIH AIDS Research and Reference Reagent Program from 

contributor Dr. Ronald Collman (80) and propagated in PBMCs for two weeks with the addition 

of feeder PBMCs after seven days of infection. 89.6 is a dual-tropic virus specific for R5- and 

X4-expressing cells. HIV-1 Ba-L was received from the NIH AIDS Research and Reference 

Program, contributed by Drs. Suzanne Gartner, Mikulas Popovic, and Robert Gallo (81), and was 

propagated in PBMCs for two weeks, with the addition of feeder PBMCs after seven days.  Ba-L 

utilizes the R5 receptor. The patient isolate, H112, was from the NIH AIDS Research and 

Reference Reagent Program.  pNL4-3wt was contributed by NIH AIDS Research and Reference 

Reagent Program.  pNL4-3-EGFP was a kind gift from Dr. David Levy (University of Alabama) 

and was constructed as described (82).  For all viruses, viral titer was determined through p24 

ELISA and number of infectious particles were determined by TZM assay. 
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4.5. Mifepristone and Analogs 

 

Mifepristone was purchased from Sigma, St. Louis, Missouri. Mifepristone analogs were a 

generous gift from the National Cancer Institute from Dr. Robert Schultz.   Analogs were 

dissolved in DMSO.   The compound mifepristone will not dissolve in water, and is dissolved in 

methanol.  Initial studies involved a comparison between dissolving mifepristone with both 

methanol and ethanol in both transactivation studies as well as antiviral studies. Results 

demonstrated no significant difference in the effects of mifepristone on either transactivation or 

antiviral assays, therefore ethanol was used to dissolve mifepristone for all subsequent assays.  In 

order to assess the effects of ethanol on transactivation and antiviral studies, ethanol controls 

were used.  With the exception of U1 latent reservoir studies, ethanol demonstrated no 

significant effect in any assay conducted. 

 

4.6. TZM Assay 

 

The TZM cell line is an R5 and X4 indicator cell line that enables the analysis of HIV-1-infected 

cells containing both the luciferase and β-gal reporter genes.  Receptor-mediated viral entry 

results in the transactivation of the luciferase and β-gal reporter genes which are downstream of 

the LTR promoter region.  TZM cells were plated in a 96-well plate (15,000 cells/well) overnight 

to allow adherence. After adherence, virus was added to the cells in triplicate in serial dilutions. 

Cells and virus were incubated for eight hours in 37˚C to duplicate the normal amount of time 

cells were infected in subsequent assays.  After incubation, the virus-containing media was 

removed and cells are washed two times in PBS to remove all excess virus and fresh media were 
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then added to the cells. In order to determine the actual number of infectious particles prior to 

virus replication, twenty-four hours post-viral addition, cells were fixed in 0.5% Gluteraldehyde 

for 15 minutes and washed two times in PBS after fixation.  In order to determine the number of 

infectious particles as determined by β-gal, an X-gal reaction mix (40mg/mL MgCl2, 0.5M X-

gal, K Ferrous Cyanide, K Ferric Cyanide) as added to the cells for thirty minutes at 37˚ C.  After 

color had developed, cells were washed once in PBS and PBS was then added to the cells to 

allow for counting.  Cells were counted per well and the number of infectious particles/mL were 

calculated. 

4.7. Cytotoxicity Assay 

 

To determine the percent of cytotoxicity in vitro of cells in the presence of mifepristone and 

analogs, the MTT Tetrazolium Assay, developed by T. Mosmann (83) was performed as follows:   

 

Adherent cells: HeLa, HEK293, or CV-1 cells were plated (15,000/well) in a 96-well plate 

overnight for adherence.  Mifepristone and analogs were then administered in triplicate in serial 

dilutions of differing concentrations for three days in a total volume of 200µL.  After the three-

day incubation, MTT (3-(4,5,dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye 

solution (5mg/mL in phosphate buffer pH 7.4) (Sigma, St. Louis, Missouri) was added 

(20µL/well) for 4-5 hours at 37˚C in 5% CO2.  After incubation with the MTT dye solution, cell 

media was removed and 200µL of DMSO was added by flushing so that the MTT salt crystals 

would fully dissolve.  The cells were placed back in 37˚C for five minutes and read on a 

colormetric plate reader at 490nm. 
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Macrophages:  After isolation, PBMCs were plated on a 96-well plate (150,000/well) for two 

hours while monocytes adhered to the plate.  After two hours, non-adherent cells (PBLs) were 

removed and macrophage media (containing GM-CSF and M-CSF) was added to the cells.  After 

five days, half the media was removed and fresh macrophage media was added.  Once full 

differentiation of monocytes to macrophages had occurred (approximately 8-10 days), 

mifepristone and analogs were added in triplicate in serial dilutions in varying concentrations for 

three days.  After the three-day incubation with the compounds, 20µL MTT dye solution was 

added to the media.  The solution was incubated with the cells at 37˚C in 5% CO2 for 4-5 hours.  

Cell media was then removed and DMSO was flushed to dissolve MTT crystals.  Cells were 

incubated an additional 5 minutes at 37˚C to fully dissolve all crystals and results were 

determined by reading optical density on a colormetric plate reader at 490nm.  For the seven-day 

timepoint, mifepristone was administered at day one and at day four .  After seven days, the 

MTT assay was performed as described and percent viability was calculated based on O.D. 

 

PBMCs:  After PHA-P stimulation, PBMCs were resuspended in IL-2-containing media and 

plated (15,000 cells/well) in a 96-well plate.  Mifepristone and analogs were added in triplicate 

in serial dilutions to the cells in varying concentrations for three days.  After three days, MTT 

dye solution was added (20µL) and incubated at 37˚C for 4-5 hours.  Cells were then spun down 

at 1000 rpm for 5 minutes and media was removed.  DMSO (200µL) was added to the cells by 

flushing to dissolve all MTT crystals.  Cells were incubated an additional 5 minutes at 37˚C to 

further dissolve salt crystals and results were determined by reading on a colormetric plate reader 

at 490nm.   In order to determine percent viability at a seven-day timepoint, infected cells were 

counted by trypan blue exclusion and results presented as percent viability. 
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Calculations:  To determine percent cytotoxicity, the O.D. results from the samples were 

divided by the O.D. from the positive control (cells without the presence of compound) and 

multiplied by 100.   

 

4.8. Luciferase Reporter Assay 

 

Dose Parameters: HeLa, CV-1, and HEK293 cells were co-transfected with the HIV-1 LTR-

luciferase reporter construct (2.5µg) or the GRE-luciferase reporter construct (2.5µg) and 

varying doses of pVpr (0.1-5.0µg) in order to determine the optimal transactivation response.  

For the CV-1 cell line, phGRα was co-transfected (2.0µg) with reporter and Vpr or vector 

constructs. Forty-eight hours post-transfection, cells were washed and lysed using 500µL of 1X 

Reporter Lysis Buffer (Promega, Madison, Wisconsin). Cell lysates were spun down to remove 

cell debris and supernatant was collected for further use. Luciferase substrate was added to 20µL 

cell lysate. (Promega, Madison, Wisconsin).  Luciferase was analyzed for expression by a 

Veritas luminometer and results were based on Relative Light Units (RLU).  Protein estimation 

of the cell lysate was determined by the Bradford Protein Assay (Bio-Rad, Richmond, CA) and 

results were quantitated accordingly.  Transfection efficiency was normalized by transfecting 

with pEGFP and analyzed by fluorescence expression. 

  

Effects of Mifepristone on HIV-1 LTR or GRE-mediated Transactivation:  HeLa, CV-1, or 

HEK293 cells were co-transfected with the HIV-1 LTR-luc (2.5µg) or GRE-luc (2.5µg) reporter 

constructs in the presence of pVpr.  For CV-1 cell transfection, phGRα was also added (2.0µg).  
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Mifepristone, mifepristone analogs, and/or dexamethasone were added twenty-fours hours prior 

to cell lysis in a dose-dependent manner.  Since mifepristone and analogs were solubilized in 

ethanol, all concentrations were in an equal volume to ensure that the presence of the solvent was 

not a variable to any results.  Forty-eight hours post-transfection, cells were washed in PBS and 

lysed in 500µL 1X Reporter Lysis Buffer.  Luciferase activity was measured by RLU and 

quantitated by protein estimation. 

 

4.9. PBMC Antiviral Assay 

 

PBMC Infection:  To determine the effects of mifepristone on wild-type infection, PBMCs were 

isolated as described and stimulated with PHA-P (5µg/mL) for three days.  After stimulation, 

cells were washed two times in PBS and resuspended in IL-2-containing media.  For viral 

infection, total cells were infected with an MOI of 0.1 of either the 89.6wt, pNL4-3,  or H112 

viruses for eight hours at 37˚C.  After infection, virus-containing media was removed and cells 

were washed two times in PBS and re-suspended in fresh IL-2-containing media.  Cells were 

plated in 6- or 12-well plates at 5 x 106 cells/well in a total volume of 3mL.  Mifepristone or its 

analogs or the EtOH control were added in a dose-dependent manner to each well directly after 

infection. Supernatant samples (500µL) were removed every two to three days at which time 

mifepristone, compounds, or EtOH were re-administered due to the half-life (48-72 hours) of the 

compounds.  To determine the concentration of viral p24, an ELISA (NIH, AIDS Vaccine 

Program, Frederick, MD) was performed as per the manufacturer’s directions.  

 

28 



 

Pre-Cellular and Pre-Viral Treatment with Mifepristone:  In order to determine if 

mifepristone decreased transactivation of viral genes more efficiently when either the cells or the 

virus were pre-treated with mifepristone, prior to infection cells were washed in PBS and re-

suspended in IL-2-containing media.  For cellular pre-treatment, PBMCs  (5 x 106/well) were 

plated in 6- or 12-well plates in a total volume of 1mL and mifepristone was added in a dose-

dependent manner to the cell media for two hours at 37˚C prior to infection.  Cells were infected 

with an MOI of 0.1 of either 89.6wt, pNL4-3, or H112 viruses for eight hours at 37˚C.  Post-

infection, virus-containing media was removed and cells were washed two times in PBS.  Cells 

were re-suspended in 3mL of IL-2 containing media and mifepristone was re-administered to the 

cells in a dose-dependent manner similar to initial treatment with the compound.  Every two to 

three days, supernatant samples were collected for analysis by p24 and mifepristone was re-

administered in a dose-dependent manner.  For viral pre-treatment, virus-containing media was 

incubated at 37˚C in the presence of mifepristone in a dose-dependent manner for two hours.  

Post-incubation, virus-containing media in the presence of mifepristone was added to the cells at 

an MOI of 0.1 and incubated for eight hours at 37˚C.  After infection, cells were washed two 

times in PBS and re-suspended in IL-2-containing media.  Mifepristone was administered in a 

dose-dependent manner similar to initial treatment with the compound.  Samples were taken 

every two or three days for analysis by p24 ELISA and mifepristone was re-administered at that 

time. 

4.10. Macrophage Antiviral Assay 

 

Macrophage Infection: Monocyte-derived human macrophages were isolated from PBMCs by 

adhesion as described and plated in either 6- or 12-well plates.  After 7-10 days differentiation by 
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GM-CSF and M-CSF, macrophages were infected with an MOI of 0.1 of either Ba-L, 89.6wt,  or 

H112 viruses for eight hours at 37˚C.  After infection, virus-containing supernatant was removed 

and cells were washed two times to remove excess virus.  1.5mL fresh macrophage media 

(DMEM supplemented with 10% FBS, 10% Human or horse serum, 1% penicillin-streptomycin, 

1% L-Glutamine) and 1.5mL media collected from macrophages prior to infection were added to 

the cells for a total volume of 3mL.  Mifepristone, compounds, or the EtOH control were added 

in a dose-dependent manner post-infection.  Supernatant samples were collected every two to 

three days for analysis by p24 ELISA and mifepristone, compounds, or the EtOH control were 

re-administered during that time. 

 

Pre-Cellular or Pre-Viral Treatment:  Prior to infection, cells were washed in PBS and 1mL 

macrophage media was added to the cells.  Mifepristone, mifepristone analogs, or the EtOH 

control were administered to the cell media in a dose-dependent manner for two hours at 37˚C 

pre-infection.  After the two-hour incubation, virus was added at an MOI of 0.1 of either Ba-L, 

89.6wt, or H112, and cells were incubated at 37˚C for eight hours.  Post-infection, virus-

containing media was removed and cells were washed two times in PBS.  1.5mL fresh 

macrophage media and 1.5mL macrophage media taken from cells prior to infection were added 

to the cells for a total volume of 3mL.  Mifepristone or the EtOH control were added in a dose-

dependent manner similar to original administration.  Supernatant samples (500µL) were taken 

every two to three days for p24 analysis and mifepristone or the EtOH control were re-

administered at that time. 
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4.11. CEM Antiviral Assay and FACS analysis 

 

To demonstrate the effects of mifepristone specifically within a T-cell population, 174xCEM T-

cells were infected with an MOI of 0.5 of the pNL4-3-EGFP wild-type virus for eight hours.  

Post-infection, cells were spun down and washed two times with PBS to remove all excess virus.  

Cells were plated in a 12-well plate (2.5x105/well) in a 2mL total volume and mifepristone was 

added in a dose-dependent manner to the cells.  Mifepristone was re-administered to the cells 

after two days and at three days post-infection, cells were collected, washed two times in FACS 

buffer (PBS, 1% FBS, 1% Sodium Azide) and fixed in 2% paraformaldehyde for 30 minutes at 

4˚C.  After fixation, cells were washed to remove paraformaldehyde, resuspended in 500µL 

FACS buffer, and analyzed by FACS analysis.      
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5. CHAPTER FIVE:  RESULTS 

 

5.1. AIM#1:   To Determine the Relationship between Vpr and GR and Their Resulting 
Role in Virus Replication 

 

 
5.1.1.  Effects of Vpr on Heterologous Transactivation 

 

It is well-established by our group and others that Vpr increases the transactivation of viral 

genes.  To demonstrate the effects of Vpr on viral gene transactivation, a luciferase reporter 

assay was utilized to measure the amount of transactivation occurring downstream from the 

heterologous promoter region, HIV-1 LTR.  The HIV-1 LTR promoter region was constructed 

upstream of a firefly luciferase gene therefore upon promoter activation, downstream genes are 

transactivated, resulting in the production of the luciferase enzymatic protein. When substrate is 

added to this luciferase protein, light wavelengths are emitted and are quantitated in the form of 

Relative Light Units (RLU).  To determine the effects of Vpr on promoter-driven transactivation, 

HEK293 or HeLa cells were co-transfected with the HIV-1 LTR-luciferase reporter construct 

(2.5µg) in the presence of varying doses of the Vpr expression plasmid (pVpr) (Figure 11).  

Figure 11 demonstrates that Vpr was able to increase the transactivation of heterologous 

promoter-controlled genes approximately 3.5-fold as represented by the downstream production 
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Figure 11. Effects of Vpr on HIV-1 LTR-mediated transactivation  The reporter construct, HIV-1 LTR-luc, was 
transfected in HEK293 cells in the presence of different concentrations of Vpr (0.1, 0.5, and 1.0µg) to 
determine the effects of Vpr on transactivation. Forty-eight hours post-transfection, cell lysates were analyzed 
for luciferase activity. pcDNA3.1 represents vector control; Vpr represents the Vpr expression plasmid. 

 

of luciferase driven by the HIV-1 LTR promoter.  These results exemplify that the presence of 

Vpr is able to increase the transactivation of the LTR promoter driven reporter in a dose-

dependent manner.  Since Vpr is present in the virion prior to the production of Tat, this initial 

transactivation may in part play a role in the initial production of viral proteins. 

 

5.1.2. Parameters for Transactivation Reporter Assays 

 

Initial transactivation studies prompted the analysis of the optimal concentrations of DNA to 

administer to the reporter-based transactivation models.  In order to ensure that the appropriate 

concentrations of plasmid DNA were transfected, and therefore achieve optimal transactivation, 
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parameters were determined to standardize all luciferase reporter assays specifically in the 

presence of pVpr, as this protein demonstrates toxic behavior at higher concentrations. To 

investigate the appropriate concentrations of plasmid DNA, dose-dependent transactivation 

assays were conducted in which one specific parameter was varied in each set of assays in order 

to test for optimal reporter activity in the various cells lines.   
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Figure 12. Optimal Concentrations of pVpr for Reporter Transactivation Assays in Different Cell Types.  (A) 
HeLa, (B) CV-1, or (C) HEK293 cells were transfected with the heterologous promoter HIV-1 LTR in the 
presence of varying doses of pVpr.  Forty-eight hours post-transfection, cells were lysed and luciferase 
activity was determined as RLU.  Fold induction is represented.  All assays were conducted at least three 
times. 
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Figure 12 demonstrates cell-dependent effects of varying doses of pVpr on HIV-1 LTR 

promoter-driven transactivation. In HeLa cells, the optimal concentration of pVpr was 0.5µg, 

leading to an approximate 3.5-fold Vpr-mediated increase in transactivation. CV-1 and HEK293 

cells demonstrated optimal concentrations at 0.25µg and 2.5µg leading to a 7-fold and 7.5-fold 

increase, respectively.  Similar results were noted when both the GRE-luciferase promoter 

construct and HIV-1 LTR-luc promoters were transfected.  All three cell types, HeLa, CV-1, and 

HEK293, demonstrated a loss of transactivation activity when the pVpr concentrations reached a 

higher level.  This could be due to the toxicity of Vpr at high concentrations.  Interestingly, this 

was also cell-dependent; HeLa cells lost transactivation activity at 1.0µg, CV-1 cells at 0.5µg, 

and HEK293 cells at 5µg concentrations. 

 

5.1.3. Vpr-Mediated Transactivation of the Autologous GRE Promoter 

 

Since the presence of Vpr increased transactivation in a dose-dependent manner, establishing the 

importance of Vpr to promoter-driven transactivation, it was important to next determine a 

mechanism by which Vpr was able to drive transactivation of promoter-driven genes.  The 

structure of Vpr includes three helices, each containing LxxLL motifs, which have been 

established as protein-interacting motifs, including in the context of transcription factors.   We 

had shown previously that Vpr interacted directly with GR, and that this interaction led to the 

transactivation of the cellular Glucocorticoid Response Element (GRE) promoter-driven genes 

(49,75).  To further exemplify that Vpr interacted with GR, and that this relationship led to 

promoter transactivation, reporter assays were conducted using the endogenously GR-negative 

cell line, CV-1 (Figure 13).  The heterologous promoter, GRE, was constructed as described 
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containing the downstream luciferase reporter gene (GRE-luc).  CV-1 cells were co-transfected 

with pGRE-luc in the presence or absence of pGR.  When pGRE-luc was transfected without 

pGR, there was little to no promoter activation.  When pGR was added in the presence of pGRE-

luc alone, there was minimal transactivation.  However when pVpr was co-transfected with both 

pGRE-luc and pGR, transactivation increased in a dose-dependent manner up to 3-fold, 

demonstrating that Vpr-mediated transactivation occurred in the presence of GR.   
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Figure 13.  Effects of Vpr on the heterologous promoter, GRE.  CV-1 cells were transfected with the reporter 
construct GRE-luciferase in the presence of GR alone as well as in the presence of Vpr.  Forty-eight hours 
post-transfection, cells were lysed and analyzed for luciferase activity as determined by RLUs.  Results are 
shown as  fold induction with the vector alone control as one.  Results represent three separate experiments. 
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5.1.4. Interaction between GR and Vpr Occurs at the LxxLL Motifs of Vpr 

 

To investigate the Vpr domains involved in the interaction between Vpr and GR, Vpr leucine 

mutants were constructed by site-directed mutagenesis as described (Figure 14).  

    

 

Figure 14. Representation of Leucine Mutants.  Diagram of leucine mutants as constructed by site-directed 
mutagenesis.  Leucines within the LxxLL motifs on each of the three helices of Vpr were point mutated to 
either alanine (A) or glycine (G).   

 
As was previously stated, each of the three Vpr helices contains the LxxLL motif, which have 

been shown to be involved in protein-protein interaction.  It is also known that several 

transcription factors are able to bind directly with this motif.  By mutating each of the leucines 

within the Vpr protein, if in fact GR did interact with these motifs, we hypothesized that this 

interaction could be disrupted when the LxxLL motifs were altered.   Using reporter 

transactivation assays, Vprwt and Vpr mutants were co-transfected with either the GRE-luciferase 

reporter construct or the HIV-1 LTR-luciferase reporter construct in both HeLa and CV-1 cells 

(Figure 15).  As demonstrated in Figure 15A and 15B, Vpr-mediated transactivation of GRE-

driven genes was altered in the presence of different Vpr mutants in both HeLa and CV-1 cell 
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lines.  For example, the leucine mutant L22A increased transactivation approximately 11-fold.  

In contrast, the leucine mutants L42A and L67A decreased transactivation by 50% in comparison 

to wild-type Vpr.  Similar results were seen in Figure 15C and 15D in the context of Vpr-

mediated HIV-1 LTR promoter transactivation in both HeLa and CV-1 cells. 

 

 

Figure 15. Effect of HIV-1 Vpr leucine mutants on GRE and HIV-1 LTR-mediated Transactivation.  (A) HeLa 
cells were transfected with the GRE-luciferase reporter construct in the presence of Vpr and Vpr leucine 
mutants.  (B)  CV-1 cells were transfected with GRE-luciferase reporter construct in the presence of GR and 
Vpr mutants. (C) HeLa cells were transfected with the reporter construct HIV-1 LTR-luciferase in the 
presence of Vpr mutants.  (D)  CV-1 cells were transfected with the HIV-1 LTR-luciferase reporter, GR, and 
Vpr mutants. 
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5.1.5. Summary to Aim#1 

 
The focus of AIM#1 was to determine the role of Vpr in HIV-1 LTR-mediated transactivation. 

By utilizing the luciferase reporter assay, the presence of Vpr demonstrated an increase in HIV-1 

LTR-mediated transactivation in a dose-dependent manner.  Optimal transactivation parameters 

were determined, specifically in the context of pVpr, in order to accurately conduct all following 

reporter assays.  Furthermore, Vpr increased transactivation through the GRE region located 

within the HIV-1 LTR.  More specifically, Vpr was able to interact with the cellular 

Glucocorticoid Receptor, leading the transactivation of GRE-driven gene expression.  The 

LxxLL motifs found within the three helices of Vpr were implicated in the interaction with GR 

as determined by utilization of Vpr leucine mutants, leading to variances in transactivation levels 

of both HIV-1 LTR and GRE promoter-driven genes.
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5.2. Aim#2:  To assess whether the GR antagonist, mifepristone, is able to inhibit Vpr-
mediated transactivation and virus replication 

 

5.2.1. The Effects of Mifepristone on Vpr-mediated Transactivation 

 

The ability of Vpr to transactivate viral genes by hijacking the cellular transfection pathway 

utilized by GR, possibly initiating viral protein production by transactivating viral genes prior to 

the production of Tat, allows for the infiltration by an antiviral prohibiting or decreasing this 

transactivation.  The GR antagonist, mifepristone, is able to decrease GR-mediated 

transactivation of GRE-dependent downstream genes via several mechanisms (73).  In order to 

determine if mifepristone was able to inhibit the transactivation of viral genes driven by the HIV-

1 LTR promoter, a series of reporter assays were conducted to determine the effects of 

mifepristone on Vpr-mediated autologous promoter-activated gene transcription (Figure 16). The 

HIV-1 LTR-luciferase construct was transfected in the presence of Vpr in both HeLa (Figure 

16A) and HEK293 (Figure 16B) cell lines.  Results demonstrated that mifepristone was able to 

inhibit the transactivation of HIV-1 LTR-driven genes in a dose-dependent manner by greater 

than 95% at concentrations of 1, 5, and 10µM, thereby demonstrating the effectiveness of this 

compound in decreasing the Vpr-mediated transactivation of viral promoters as represented by 

HIV-1 LTR. 

40 



 

  

0

0.2

0.4

0.6
0.8

1

1.2

1.4

1.6

V ector Vp r 0 .5u M 1.0um 5.0uM 10 .0u M

Fo
ld

 A
ct

iv
at

io
n

 

Figure 16. Effects of Mifepristone on HIV-1 LTR promoter activity.  (A) HeLa cells were transfected with HIV-
1 LTR and Vpr in the presence of different concentrations of mifepristone.  (B) HEK293 cells were 
transfected with HIV-1 LTR-luc in the presence of Vpr and varying concentrations of mifepristone.  Results 
represent the results of at least three separate experiments. 

 

5.2.2. Effects of Dexamethasone on Vpr-mediated Transactivation 

 

Under normal conditions, the cellular GR is held in the cytoplasm by chaperones.  Upon binding 

of ligand, heat shock proteins and other chaperones are dislodged from GR allowing the 

transcription factor to translocate into the nucleus and bind its associated promoter response 

element, GRE.  GR has also been shown to translocate into the nucleus without the presence of 

ligand and impact gene transactivation in a similar manner to that of ligand-bound GR.  In order 
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to determine the role of ligand in Vpr-mediated transactivation, it was important to first establish 

what role the hormones and steroids in the cell media played in Vpr-mediated transactivation.  A 

series of reporter assays were thus conducted, in both HEK293 and CV-1 (no endogenous GR 

present) cell lines, in the presence of either DMEM supplemented with 10% fetal bovine serum 

(FBS) or in DMEM supplemented with charcoal-dextran-treated stripped serum (stripped), in 

which the majority of hormones and steroids were removed (Figure 17).   
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Figure 17. Effects of Media on Vpr-mediated Transactivation.  (A) HEK293 cells were transfected with HIV-1 
LTR-luciferase in the presence of Vpr in both DMEM supplemented with 10% FBS (FBS) and DMEM 
supplemented with 10% dextran charcoal-stripped serum (stripped).  (B)  CV-1 cells were transfected with 
HIV-1 LTR-luciferase in the presence of Vpr in both DMEM supplemented with 10% FBS (FBS) or DMEM 
supplemented with 10% dextran charcoal-stripped serum (stripped).  Results reflect at least three separate 
experiments in each cell line. 
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Results demonstrated that in the presence of either FBS-supplemented DMEM or dextran 

stripped-supplemented DMEM, HEK293 cell transactivation only varied slightly, with greater 

dose-dependent Vpr-mediated transactivation demonstrated in FBS-containing media (Figure 

17A). In the presence of stripped serum, there was slight elevation of transactivation levels, 

noted also in the vector control (HIV-1 LTR-luciferase alone).  In the case of CV-1 transfection 

(Figure 17B), there was a significant increase in the amount of transactivation demonstrated 

when cells were transfected in stripped serum; transactivation increased an average of 3-4-fold.  

Because the stripped serum lacked steroid and hormone ligand for GR to bind thereby enforcing 

the transactivation of GRE-controlled genes, it is unknown as to why there was such an increase 

in transactivation of the reporter gene.  Quite possibly, other factors which limit GR-controlled 

transactivation, such as NF-ĸB, are also prevented from entering the nucleus thereby preventing 

the control of GR-mediated transactivation of NF-ĸB-regulated gene expression.   

 

To futher determine the extent to which ligand influences Vpr-mediated transactivation, the 

steroid dexamethasone was used, a well-known and well-proven agonist of GR-mediated 

transactivation.  Our group had shown previously that Vpr and dexamethasone bind GR and 

mediate the GR interaction with GRE in a similar manner (49).   In order to establish if Vpr and 

dexamethasone transactivate HIV-1 promoter-driven genes in a similar manner, HEK293 cells 

were transfected with the reporter HIV-1 LTR-luc in the presence of either Vpr or 

dexamethasone or both Vpr and dexamethasone (Figure 18).   
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Figure 18. Comparison between the Effects of Vpr and Dexamethasone on HIV-1 LTR-driven transcription.  
HEK293 cells were transfected with HIV-1 LTR-luciferase in the presence of either Vpr, dexamethasone, or 
both.  Forty-eight hours post-transfection, cells were lysed and assayed for luciferase expression.  Results are 
representative of three separate trials. 

 

Results indicated that Vpr was able to transactivate GRE- or HIV-1 LTR-driven transactivation 

in a dose-dependent manner similar to that of dexamethasone, correlating with results previously 

demonstrated by EMSA (49).  Since it was not known exactly where Vpr binds GR, it was 

unknown as to if the mediating of transactivation would occur in a competitive manner, or in an 

additive manner.  To investigate this further, HEK293 cells were transfected with the reporter 

HIV-1 LTR-luc in the presence of Vpr, and Vpr and dexamethasone added together (Figure 19). 
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Figure 19. Vpr and Dexamethasone Transactivate HIV-1 LTR-promoted transcription in an additive manner.  
HEK293 cells were transfected with HIV-1 LTR-luc in the presence of Vpr or Vpr and dexamethasone.  
Results reflect the analyses of at least three separate experiments. 

 

Results indicated that dexamethasone and Vpr were able to increase transactivation of HIV-1 

LTR-driven genes in an additive manner.  Interestingly, when both Vpr and dexamethasone were 

added together, there was a saturation in promoter activity.  In other words, when both Vpr and 

dexamethasone were added with increasing concentrations, there was no further increase in 

transactivation.  Taken together, it is possible that Vpr and dexamethasone do not bind in the 

same ligand-binding domain pocket and are therefore are able to instigate HIV-1 LTR-driven 

transactivation in an additive manner. 

 

Dexamethasone and mifepristone share a binding pocket in the ligand binding domain (LBD) of 

the glucocorticoid receptor.  To determine if mifepristone would be able to inhibit the 

transactivation of  HIV-1 LTR-driven genes in the presence of both Vpr and dexamethasone, 

HIV-1 LTR-luc was transfected in the presence of pVpr in HeLa and HEK293 cells (Figure 20). 
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Figure 20. Effects of Mifepristone on Vpr + Dexamethasone-Mediated Transactivation.  (A) HeLa or (B) 
HEK293 cells were transfected with the HIV-1 LTR-luc promoter construct in the presence of both Vpr and 
Dexamethasone (1µM).  Mifepristone was added in a dose-dependent manner.  Forty-eight hours post-
transfection, cells were lysed and analyzed for luciferase activity.   

 

Even when both Vpr and dexamethasone, two complimenting agonists of GR, were present, 

mifepristone was able to inhibit transactivation of HIV-1 LTR-driven genes in a dose-dependent 

manner.  While there was slight inhibition of transactivation demonstrated when both Vpr and 

dexamethasone were present in HeLa cells (Figure 20A), mifepristone was still able to inhibit 

transactivation by  >90% in HEK293 cells (Figure 20B).  These results demonstrated the effects 

of mifepristone even when both Vpr and dexamethasone instigated HIV-1 LTR promoter-driven 

transactivation. 
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5.2.3. Cytotoxicity of Mifepristone 

 

To assess the toxicity of mifepristone in vitro, trypan blue exclusion or MTT assays were 

conducted in HeLa, HEK293, CV-1, PBMCs, and monocyte-derived macrophages for three days 

as described (Table 4). For both PBMCs and macrophages, cytotoxicity was measured for one 

week to determine if mifepristone was toxic when more than one dose was administered 

(mifepristone was added every three days as described) (Figure 21).  For the seven-day PBMC 

trypan blue exclusion assay, cells were infected with either 89.6wt  virus or the patient isolate 

H112 virus in the presence of mifepristone.  Results indicated that even after seven days in the 

presence of mifepristone, both PBMCs and macrophages demonstrated little cell death, with the 

exception of the 10µM dose of mifepristone administered to PBMCs, which after one week 

resulted in 80% toxicity.   

  CT25 (µM) CT50 (µM) CT95 (µM) 

HeLa 25 35 50 

HEK293 12 50 95 

CV-1 20 48 80 

Macrophage 75 100 200 

PBMC 5 25 45 

 

Table 4.  In Vitro Cytotoxicity of Mifepristone. Three-day MTT assay was conducted as described in HeLa, 
HEK293, CV-1, monoctye-derived macrophages, and PBMCs.  Results reflect concentration dose to incur 
25% cytotoxicity (CT25), 50% cytotoxicity (CT50), and 95% cytotoxicity (CT95). 
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Figure 21. Percent Viability of Mifepristone after Seven Days.  (A)  PBMCs.  Percent Viability of PBMCs was 
determined through trypan blue exclusion while infected using two separate viruses.  (B) Macrophages.  
Percent Viability was determined by MTT assay as described.   

 

5.2.4. Effects of Mifepristone on Virus Infection 

Vpr-mediated transactivation occurs through the interaction of Vpr with the cellular 

Glucocorticoid Receptor.  By use of the GR antagonist mifepristone, the transactivation of HIV-

1 LTR promoter-driven genes is able to be repressed by greater than 90%.  In assessing 

mifepristone for its efficacy as compound with possible antiviral properties, a series of infection 

assays were conducted in CEMx174 (established T cell line), PBMCs, and monocyte-derived 

macrophages to determine if, in fact, mifepristone was able to inhibit replication-competent 

viruses of different tropism. 
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5.2.4.1. Antiviral Properties of Mifepristone in the established T-cell line, CEMx174 
 
 
In order to determine if mifepristone could inhibit viral replication in T cells, the T-cell line 

CEMx174 was infected with the NL4.3wt virus which also expressed the fluorescent protein 

EGFP (NL4.3-EGFP) at an MOI of 0.5.  Eight hours post-infection, cells were washed to remove 

unbound virus and mifepristone was added to the cells in a dose-dependent manner.  At day 

three, cells were analyzed for the expression of EGFP as a measure of virus replication. Figure 

22 demonstrates a dose-dependent decrease in cell infectivity in the presence of mifepristone as 

determined by FACS analysis.  Mifepristone, when administered at a 10µM concentration, was 

able to inhibit viral replication by as much as 88% compared to the untreated culture or vehicle-

treated culture.  Even at the 0.5µM concentration, mifepristone was able to inhibit viral 

replication by 51%.  FACS analysis also demonstrated little to no cell death in the presence of 

mifepristone at the 3-day timepoint, exemplifying that there were no toxic effects that played a 

role in the inhibition of viral replication.  To further confirm these results, p24 samples were 

taken at the time of FACS analysis (Figure 23).  Results demonstrated by p24 that mifepristone 

was able to inhibit the production of p24 in a dose-dependent manner. 
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Figure 22.  Effects of Mifepristone on NL4-3-EGFP infection as determined by FACS analysis.  CEM cells were 
infected with an MOI of 0.5 of the EGFP-expressing wild-type NL4-3 virus.  Mifepristone was added post-
infection in a dose-dependent manner.  Samples were taken three days post-infection and analyzed by FACS 
analysis. Percentages reflect the number of cells infected.  Results are representative of two separate 
experiments. 

 

 

Figure 23.  Effects of Mifepristone on CEMx174 infected with NL4-3-EGFP by p24 analysis.  CEM were 
infected with the NL4-3 virus at an MOI of 0.5 and treated with mifepristone in a dose-dependent manner. 
Three days post-infection, samples were taken and analyzed by p24 ELISA. 
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5.2.4.2. Antiviral Effects of Mifepristone in PBMCs Infected with Replication 
Competent   Dual-tropic 89.6 Virus 

 
 
To further assess the properties of mifepristone as an antiviral in the context of infection in 

primary cells, PBMCs from normal healthy donors were isolated by the lymphocyte gradient 

isolation method.  The virus isolate, 89.6, is a commonly used strain to demonstrate wild-type 

infection as it is dual-tropic in nature and therefore able to infect both X4 and R5 receptor-

expressing cells, including both T-cells and macrophages.  PBMCs were stimulated with PHA-P 

(5ug/mL) for three days.  Post-stimulation, cells were infected with the 89.6wt virus at an MOI of 

0.1 for eight hours.  Cells were then washed two times in PBS to remove excess virus.  PBMCs  

were cultured at a concentration of 5 x 106 and mifepristone was added in a dose-dependent 

manner.  Supernatant samples were taken every two to three days for p24 analysis and 

mifepristone was re-administered at that time.  Figure 24 shows that mifepristone was able to 

inhibit viral replication in a dose-dependent manner in three separate donors.  The highest 

concentrations of mifepristone, 10 and 5µM inhibited viral replication by greater than 90%, 

similar to results seen in transactivation assays. 
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Figure 24.  Antiviral Effects of Mifepristone on 89.6wt-infected PBMCs in three separate donors.  PBMCs were 
infected with an MOI of 0.1 of the dual-tropic 89.6.  Post-infection, mifepristone was added in a dose-
dependent manner and supernatant samples were collected every two or three days and analyzed for p24.  
Panels A-C represent the antiviral effect of mifepristone in PBMCs from different donors. 

 

5.2.4.3. Antiviral Effects of Mifepristone on PBMCs infected with the Patient Isolate, 
H112 

 
To further determine if mifepristone would be able to inhibit viral replication of primary isolates, 

PBMCs were infected with the patient isolate H112.  Briefly, PBMCs were infected with the 

H112 isolate at an MOI of 0.1 for eight hours.  Mifepristone was administered in a dose-

dependent manner to the cells and samples were removed every three days for analysis by p24 

ELISA (Figure 25).  Results demonstrate that mifepristone is able to inhibit viral replication of 

this patient isolate in a dose-dependent manner.  While viral replication is not totally inhibited by 
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mifepristone at the 10µM concentration as was demonstrated in previous experiments using 

89.6wt , this concentration was able to prevent viral replication by 85% while the 5µM 

concentration was able to prevent replication by approximately 45%.   

 

Figure 25.  Antiviral Effects of Mifepristone on PBMCs infected with the Patient Isolate H112.  PBMCs were 
infected with an MOI of 0.1 of the patient isolate H112 virus.  Mifepristone was added in a dose-dependent 
manner and samples were collected every three days and assessed for the presence of p24.  Results 
representative of two separate experiments. 

 

 

5.2.4.4. Antiviral Effects of Mifepristone in Human Macrophages Infected with the 
Macrophage-Tropic  Viral Isolate, Ba-L 

 
 
As was previously stated, macrophages are initial targets of HIV-1, specifically in mucosal 

tissues (45).  Vpr has been shown to be necessary for the infection of macrophages (42-44).  

Therefore, the finding of an antiviral specifically targeting Vpr-mediated viral replication could 
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possibly prevent and/or decrease the infection of these target cells.  To assess the antiviral 

properties of mifepristone in macrophages, infection using the R5-tropic virus Ba-L was 

conducted to determine if similar results of dose-dependent mifepristone inhibition, as seen in 

both T-cells and PBMCs, could also occur in the infection of macrophages.  Macrophages were 

isolated by adherence, as described in methods.  Briefly, normal human PBMCs were isolated 

using the lymphocyte gradient isolation method.  Directly after isolation, PBMCs were plated in 

either 6- or 12-well plates (3.5 x 106 or 1.5 x 106 PBMCs per well, respectively) for two hours, 

during which time the monocytes adhered to the plates, consisting of approximately 10% of the 

total PBMC population.   Non-adherent cells were removed.  Monocytes were differentiated into 

macrophages for approximately eight to ten days by the addition of GM-CSF and M-CSF, 

macrophage-stimulating cytokines. After monocytes were fully matured into macrophages, 

which was determined by both CD14 staining and cell morphology, macrophages were infected 

with an MOI of 0.1 of the Ba-Lwt virus for eight hours.  Post-infection, cells were washed to 

remove all virus and mifepristone was added in a dose-dependent manner.  Supernatant samples 

were taken every two to three days, and mifepristone was re-administered to the cells at the time 

of sample collection.   Figure 26 demonstrates the effects of mifepristone on macrophage 

infection with Ba-L virus. 
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Figure 26. The Effects of Mifepristone on Macrophage Infection with the  Ba-L Virus Isolate.  Monoctye-
derived macrophages were infected with an MOI of 0.1 Ba-Lwt.  Post-infection, mifepristone was added to the 
cells in a dose-dependent manner.  Supernatant samples were collected every three days and assessed for the 
presence of p24.  Results are representative of three separate experiments.  

 

Results from Figure 26 indicate that similar to T-cell and PBMC infection with wild-type virus, 

mifepristone inhibits the replication of macrophage-tropic Ba-L virus in the context of macrophage 

infection.  At a 5µM concentration of mifepristone, infection was inhibited by greater than 70% 

compared to the untreated control.  These results further support the antiviral effect of 

mifepristone in macrophages, in a manner similar to established CD4+ T cells and primary 

PBMCs.
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Summary for AIM#2 

 

The GR antagonist, mifepristone, was tested as a possible antiviral compound interrupting the 

Vpr-mediated transactivation of genes promoted by the HIV-1 LTR promoter specifically 

through the GRE promoter region.  It was established both in reporter transactivation models, 

and in antiviral models, that mifepristone disrupted HIV-1 LTR-promoted transactivation and 

thereby inhibited the replication of HIV-1.  The ability of mifepristone to disrupt Vpr-mediated 

transactivation in the context of GR demonstrates a possible mechanism for antiviral treatment. 

Combined with low toxicity levels established in primary cells, mifepristone has the potential of 

becoming a new antiviral, adding a new class of therapeutics to the currently used therapies.  The 

next chapter with futher discuss the potential of mifepristone in clinical application by analyzing 

the effects of this compound on viral re-activation from latency as well as investigate the 

possibility of utilizing mifepristone analogs as therapeutics. 
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5.3. AIM#3:  Clinical Applications of Mifepristone 

 

5.3.1. Pre- versus Post-Treatment with Mifepristone 

 

The hope for mifepristone originated with the idea that this compound could be used not only to 

treat infection, but to prevent infection as well.  Initial studies included adding mifepristone post-

infection, and not prior to or during infection.  While most antivirals are used to treat patients 

post-infection, few are used in emergency prophylaxis, such as AZT, and none are currently 

utilized as a preventative drug.  Since mifepristone is able to inhibit Vpr-mediated 

transactivation, this compound holds the possibility of being used to prevent infection by not 

allowing the initial transactivation of viral-promoted genes, especially in the context of 

macrophages where the presence of Vpr is imperative for infection.  To determine if 

mifepristone was able to inhibit the infection of cells when the compound was present either 

prior to or during infection, assays were constructed to compare the amount of inhibition of viral 

infectivity in the presence of mifepristone.  Furthermore, virus was also pre-treated with 

mifepristone to determine the effects of viral replication in the context of compound-treated 

virus. 

 

5.3.1.1. Pre-Treatment of PBMCs and Macrophages with Mifepristone Prior to 
Infection 

 
 
To assess the difference between pre-treatment of PBMCs prior to and during infection and post-

treatment of PBMCs after infection, cells at a concentration of 5 x 106 were treated with 
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mifepristone in a dose-dependent manner two hours prior to infection with 89.6wt virus.  

Similarly, monoctye-derived macrophages were pre-treated with mifepristone for two hours prior 

to infection with the macrophage-tropic Bal virus.  During the eight-hour infection, mifepristone 

was present in the media to ensure the presence of the compound throughout the process of 

infection.  Post-infection, cells were washed and mifepristone was re-administered in a dose-

dependent manner.  As controls, a second set of PBMCs or macrophages were infected 

simultaneously with the pre-treatment PBMCs without the presence of mifepristone. Post-

infection, cells were washed and mifepristone was added in a dose-dependent manner.  Similar to 

previous antiviral experiments, supernatant samples were collected every two to three days and 

assessed for the presence of p24 by ELISA (Figure 27). 
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Figure 27. Pre-Treatment versus Post-Treatment of PBMCs and Macrophages with Mifepristone. (A) PBMCs  
were pre-treated with mifepristone prior to and during infection and compared to (B) PBMCs treated with 
mifepristone post-infection.  (C) Macrophages pre-treated with mifepristone prior to and during infection 
compared to (D) Macrophages treated with mifepristone post-infection. Supernatant samples from both sets 
of PBMCs and macrophages were taken every three days and analyzed for the presence of p24. Results are 
representative of at least two experiments for both PBMCs and macrophages. 
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Results presented in Figure 27 demonstrated no significant difference between pre- and post-

treatment of cells with mifepristone either in PBMCs (panels A and B) or monocyte-derived 

macrophages (panels C and D).   Further studies need to be conducted to determine if, in fact, 

mifepristone is able to inhibit viral replication to a greater extent when cells are pre-treated with 

this compound prior to infection.   

 

5.3.1.2. Effects of Pre-Treatment of the Virus in Comparison to Cell Pre-Treatment in 
PBMCs 

 
 
Mifepristone has been demonstrated to alter the effects of transcription in several ways, 

including recruiting different co-factors to the transcriptional machinery and altering the 

conformation of GR around GRE, slowing down the transcriptional process.  In order to 

determine if mifepristone could work through a different mechanism directly affecting the virus, 

PBMCs were pre-treated with a dose-dependent regimen of mifepristone two hours prior to 

PBMC infection with the dual-tropic 89.6wt virus.  Cells were infected for eight hours, washed 

to remove excess virus, and mifepristone was added post-infection.  To compare the effects of 

viral pre-treatment to cellular pre-treatment, a second set of PBMCs were similarly pre-treated 

with a dose-dependent regimen of mifepristone for two hours, infected in the presence of 

mifepristone for eight hours, washed to remove excess virus, and mifepristone was re-

administered in a dose-dependent manner.  Supernatant samples were removed from both sets at 

three-day intervals and analyzed by p24 ELISA; mifepristone was re-administered in a dose-

dependent manner at that time (Figure 28). 

59 



 

 

 

Figure 28.  Effects of Mifepristone on Viral Pre-Treatment in Comparison to Cellular Pre-Treatment in PBMCs.  
(A)  PBMCs were infected with an MOI of 0.1 of the wild-type 89.6 which had been pre-treated in a dose-
dependent manner with mifepristone.  (B) PBMCs were pre-treated with mifepristone in a dose-dependent 
manner and subsequently infected with an MOI of 0.1 of 89.6wt.  Supernatant samples were removed every 
three days and assessed for the presence of p24. 

 
Results from this experiment demonstrated that 89.6wt virus pre-treatment in comparison to 

PBMC pre-treatment with mifepristone yielded no significant difference in viral replication post-

infection.  Therefore, there is no conclusive evidence demonstrating the viral pre-treatment with 

mifepristone is able to increase the inhibition of viral replication in the context of explicative 

virus.   

 

5.3.2. Effects of Mifepristone on Latent Viral Reservoirs 

 
 
One of the mechanisms in which HIV-1 remains elusive to total viral clearance during therapy is 

due to its ability to establish viral reservoirs (19-22).  In order to determine if mifepristone was 

able to prevent reactivation from latency, the promonocytic cell line U1/HIV-1 was used.  This 

cell line contains two copies of the proviral HIV-1 DNA which upon stimulation by viral 

proteins or other factors such as TNF-α, leads to the production of virus, which can be 
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quantitated by p24 ELISA (86,87).  In this setting, U1/HIV-1 cells are able to be defined as latent 

HIV-1 reservoirs.  To establish if mifepristone was able to prevent the re-activation of the 

proviral DNA contained within the U1/HIV-1 cells, cells were activated by both TNF-α and by 

AT-2-treated inactivated NL4-3 virus. Therefore, any activation by the AT-2 inactivated virus is 

due to the presence of viral proteins in the particle and not due to infection.  Mifepristone was 

added in a dose-dependent manner during activation by both TNF and AT-2 –treated virus 

(Figure 29).  Results demonstrated that both U1/HIV-1 cells activated by TNF-α and AT-2 -

treated NL4-3 virus led to the production of p24, which was inhibited in a dose-dependent 

manner by mifepristone.  Interesting to note, the addition of EtOH (used as a vehicle control) 

increased viral production by the U1/HIV-1 cells, demonstrating further the effectiveness of 

mifepristone.   
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Figure 29.  Effects of mifepristone on re-activation from latency as determined by U1/HIV-1 viral production.  
(A) TNF-alpha stimulated U1/HIV-1 cells or (B) AT-2 treated U1/HIV-1 cells.  Cells were treated with 
mifepristone in a dose-dependent manner.  Virus replication was assayed on day three following activation 
and samples were assessed for the presence of p24. 
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5.3.3. The Effects of Mifepristone Analogs on Promoter Transactivation and Antiviral     

Activity 

 

 Mifepristone is able to inhibit the transactivation of GRE-driven downstream genes, and 

consequently is able to inhibit the transactivation of LTR-driven downstream genes, thereby 

preventing viral gene expression.  Mifepristone binds to the glucocorticoid receptor in a manner 

similar to that of dexamethasone, binding in the same pocket within the ligand binding domain of 

GR in a competitive manner.  To identify a more potent and less toxic compound, we 

collaborated with the NCI drug discovery program.  Based on the structure of mifepristone, 

analogs were composed with slight differences in structure (Figure 30).  To determine if 

mifepristone analogs, similar to mifepristone with few molecular changes, would work in a 

manner similar to that of mifepristone, possibly with better efficacy in preventing viral 

transcription, several mifepristone analogs were assessed for their ability to inhibit HIV-1 LTR-

transactivation by Vpr. 

 

A. B.

D.C.

Figure 30.  Structure of mifepristone analogs.  (A) Analog 666510, (B) Analog 92336, (C) Analog 641295, and 
(D) Analog 15432. 
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5.3.3.1. Cytotoxicity of Mifepristone Analogs 
 
As these mifepristone analogs were previously unexplored compounds, MTT cytotoxicity assays 

were performed as described to determine if these analogs would prove to be toxic to HeLa, 

PBMCs, or macrophages (Figure 31).  The CT50 of analogs in PBMCs and HeLa cells is 

approximately 45µM, in macrophages approximately 60µM.  In comparison, the CT50 in the 

presence of mifepristone is approximately 35µM in HeLa, 25µM in PBMCs, and 100µM in 

macrophages.  Therefore, in PBMCs and HeLa these analogs are less toxic when compared to 

mifepristone however in macrophages there is an increase in toxicity demonstrated in the 

presence of analogs. 

(B)(A) (B)(A)

Figure 31.  Cytotoxic effect of mifepristone analogs in PBMC, HeLa, and Macrophages.  MTT assays were 
performed as described in methods in  (A) PBMC, (B) HeLa, and (C) Macrophages.  Percent viability (%) 
was calculated based on considering untreated cells as 100%.  Results reflect average of at least three 
separate experiments. 
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5.3.3.2. Effects of Mifepristone Analogs on Promoter-Driven Transactivation 
 
In order to assess whether or not mifepristone analogs inhibited the transactivation of either 

autologous or heterologous promoters, a series of reporter assays were established in HeLa, CV-

1, and HEK293 cell lines. Briefly, the reporter constructs GRE-luciferase or HIV-1 LTR-

luciferase were transfected with pVpr (and pGR in the context of CV-1) and a dose-dependent 

concentration of mifepristone analogs in these cell lines.  Figure 32 demonstrates the effects of 

mifepristone analogs on HIV-1 LTR promoter transactivation in HeLa cells.  Initial experiments 

were conducted on each of the compounds to determine their effects on transactivation.  All 

compounds demonstrated a dose-dependent decrease in transactivation similar to mifepristone, 

though not all compounds inhibited transactivation to the same degree. 

 

Figure 32. Effects of Mifepristone Analogs on HIV-1 LTR Transactivation in HeLa Cells.  (A)  Comparison of 
the effects of analogs 92336, 66510, 641295, and 671271 on HIV-1 LTR-driven transactivation.  (B) Dose-
dependent effect of analog 92336 on HIV-1 LTR-driven transactivation.  (C)  Dose-dependent effect of analog 
641295 on HIV-1 LTR-driven transactivation.  Fold activation is calculated considering the vector control as 
one. 
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Similar results were demonstrated in CV-1 cells.  Cells were transfected with HIV-1 LTR and 

Vpr in the presence of 10µM of mifepristone and analogs.  Post-transfection, cell lysates were 

analyzed for the presence of luciferase.   Percent inhibition was calculated for compounds 

mifepristone, 641295, 666510, and 92336.  Results demonstrated that mifepristone was able to 

inhibit viral transactivation at a greater extent in CV-1 cells than the mifepristone analogs 

(Figure 33). 

0

20

40

60

80

100

120

Mifepristone c641295 c666510 c92336

Compounds Used (10uM)

%
 In

hi
bi

tio
n

 

Figure 33.  Effects of Mifepristone and Analogs on HIV-1 LTR-mediated transactivation in CV-1 cells.  CV-1 
cells were transfected with the HIV-1 LTR luciferase reporter construct in the presence of pVpr and pGR.  
Cell lysates were analyzed for the presence of luciferase. 

 

While mifepristone analogs do inhibit transactivation, a comparison to the inhibition induced by 

mifepristone on viral transactivation demonstrates that mifepristone decreases transactivation 

more effectively (greater than 90% inhibition by mifepristone, and only 15-60% inhibition by 

analogs 641295, 666510, and 92336) in CV-1 cells.   
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Final transactivation studies to determine the effectiveness of mifepristone analogs on HIV-1 

LTR-driven transcription included the addition of dexamethasone.  Dexamethasone, which, as 

stated before, acts as ligand similar to cortisol, increases transactivation by binding to the 

glucocorticoid receptor and subsequently transactivating genes downstream of the GRE promoter 

region.  In order to determine if mifepristone analogs would be able to interfere with HIV-1 LTR 

promoter transactivation, CV-1 or HEK293 cells were transfected with the HIV-1 LTR-

luciferase reporter construct in the presence of pVpr, pGR in CV-1 cells, and the addition of 

dexamethasone 24 hours prior to cell lysis (Figure 34).  Results indicated that mifepristone 

analogs, while able to inhibit the transactivation of HIV-1 LTR-driven genes, were not able to 

inhibit transactivation to the extent that was seen when mifepristone was added.    
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Figure 34.  Effects of Mifepristone Analogs on HIV-1 LTR-mediated transactivation in CV-1 and HEK293 cells.  
(A)  CV-1 cells were co-transfected with the HIV-1 LTR luciferase construct in the presence of pGR and 
pVpr.  Mifepristone and analogs were added at a concentration of 10µM in the presence of dexamethasone. 
(B) HEK293 cells were transfected with HIV-1 LTR luciferase in the presence of pVpr.  Mifepristone and 
analogs were added at a 1µM concentration and dexamethasone was added 24 hours prior to cell lysis.  (C) 
HEK293 cells were transfected with the HIV-1 LTR luciferase in the presence of pVpr.  Mifepristone and 
analogs were added at a 10µM concentration and dexamethasone was added 24 hours prior to cell lysis.  
Forty-eight hours post-transfection, cells were lysed and luciferase concentration was determined.  Final 
results are presented as fold induction, the HIV-1 LTR control as having a fold of one. 
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5.3.3.3. Effects of Mifepristone Analogs on Virus Infection in PBMCs 
 

After determining that mifepristone analogs were able to inhibit the transactivation of the HIV-1 

LTR promoter-driven genes, antiviral assays were performed using NL43wt-infected PBMCs.  

Cells were infected with virus for eight hours and washed to remove all residual virus.  Post-

infection, cells were treated with  similar doses of mifepristone and analogs.  Samples were taken 

after three days and assessed for inhibition of viral replication (Figure 35). 

 

0

500

1000

1500

2000

0 3

Days Post-Infection

p2
4 

(p
g/

m
L) 92336 1 uM

641295 1uM

666510 1uM

Mifepristone
No Treatment

A 

B 

0

500

1000

1500

2000

0 3

Days Post-Infection

p2
4 

(p
g/

m
L)

92336 0.5uM

641295 0.5uM

666510 0.5uM

Mifepristone
0.5uM

No Treatment

Figure 35. Three-day Effects of Mifepristone Analogs on NL4.3 wild-type infection of PBMCs.  Cells were 
infected with an MOI of 0.1.  Post-infection, mifepristone and analogs were administered in (A)1.0uM and (B) 
0.5uM concentrations.  Supernatant samples were taken at day 3 and assessed for the presence of p24. 
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Results demonstrated that analogs were able to inhibit wild-type virus in PBMCs.  At a 1µM 

concentration (panel A), analogs 92336 and 66510 were able to inhibit virus greater than 90%.  

At a 0.5µM concentration, however (panel B), only mifepristone was able to inhibit viral 

replication greater than 90%.  

 

To further determine the effects of mifepristone analogs in virus infection, PBMCs were infected 

with 89.6wt for eight hours and post-infection mifepristone analogs were added at a concentration 

of 1µM (Figure 36).  The analog 671271 which is included in this study is AZT and was used

as a blind-folded control. 
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Figure 36.  Effects of Mifepristone Analogs on Viral Replication in PBMCs infected with 89.6.  PBMCs were 
infected with an MOI of 0.1 of the dual-tropic 89.6 wild-type virus.  Post-infection, compounds were added at 
a 1uM concentration.  Every three days, supernatant samples were collected and assessed for the presence of 
p24.   
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Results demonstrated that the mifepristone analog 92336 was able to inhibit viral replication by 

80%.  Analogs 641295 and 66510 were able to inhibit virus by 70 and 60%, respectively. 

Therefore, it is possible to conclude that mifepristone analogs are able to inhibit viral replication 

in a manner similar to that of mifepristone, however mifepristone inhibits replication at a higher 

efficiency. 

 
 

5.3.3.4. Effect of Mifepristone Analogs on Ba-L Macrophage Infection 
 
In order to fully determine the effects of mifepristone analogs on viral infection, macrophages 

were infected with the Ba-L virus and the inhibitory effects of mifepristone analogs were 

analyzed.  Monoctye-derived macrophages were infected with an MOI of 0.1 for eight hours.  

Post-infection, cells were washed to remove residual virus and mifepristone analogs were added 

in a dose-dependent manner.  Every three days supernatant samples were collected, analogs were 

re-administered, and p24 analysis was conducted to determine the presence of viral peptides 

released in the media.  Figure 37 demonstrates the effects of each compound individually on 

macrophage infection based on a dose-dependent regimen. 
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Figure 37.  Effects of Mifepristone Analogs on Macrophages infected with Ba-L.  Macrophages were infected 
with an MOI of 0.1 of the wild-type Ba-L virus.  Post-infection, mifepristone analogs were added in a dose-
dependent manner.  Supernatant samples were collected every three days and analyzed for p24 by ELISA.   

 

Results demonstrated the dose-dependent inhibition of virus replication by individual analogs.  

With the exception of 10µM, other concentrations, while still maintaining dose-dependent 

inhibition, are not able to completely inhibit the virus.  This assay was conducted using two 

separate donors with similar results. 
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5.3.4. Summary to AIM#3 

 

Because viral reservoirs are often established within macrophages, mifepristone was analyzed for 

the ability to prevent the reactivation of virus from latency using the promonocytic U1/HIV-1 

cell line.  Results demonstrated in a dose-dependent manner that mifepristone was able to inhibit 

reactivation from latency.  To further pursue the development of antivirals targeting viral 

transcription, mifepristone analogs were analyzed to determine cytotoxicity, inhibition of 

transactivation, and inhibition of viral replication.  Results exemplified that while mifepristone 

analogs were able to inhibit both transactivation and replication, none of the chosen analogs were 

able to work in a more effective manner than mifepristone. Taken together, mifepristone 

demonstrates characteristics complementary to the development of this compound as a new 

antiviral, in conjunction with the current HAART regimen. 

 

 

 

 

 

 

72 



 

 

6. CHAPTER SIX:  DISCUSSION 

 

There exists an obvious and urgent need to find the elusive “cure” for HIV/AIDS, whether it be 

by vaccine, antiviral, or microbicide.  Frustrations have been mounting in the scientific and 

political communities over the lack of such a cure, even after now over twenty years of HIV 

research and funding.  The phenomenon of HAART, prolonging the lives of possible millions 

and preventing the spread of this virus, was and is an amazing and currently evolving 

achievement.  The problem arises, however, with the fact that HAART is not the “cure” that so 

many are searching for; instead it is a way to prolong the life of those infected.  Unfortunately, 

the inability to follow the toxic and strict drug regimen that is HAART, combined with the 

evolution of HIV leading to drug-resistant strains as well as viral reservoirs, leads to an often 

similar outcome: the eventual succumbing of the patient to the viral parasite that ultimately leads 

to death.   

 

The relatively small virus that is HIV is composed of only nine proteins, functioning in 

structural, enzymatic, and accessory roles.  HAART focuses on only a few of these proteins:  the 

envelope, reverse transcriptase and protease, along with targeting nucleotide/nucleoside addition 

involved with basic replication.  While vaccine studies currently involve few genes found within 

the viral genome, as of yet there have been no vaccines that have fully protected human subjects, 

though studies in non-human primates have demonstrated otherwise (86-90).    

 

The 96-amino acid HIV-1 accessory protein Viral Protein R (Vpr) is evolutionarily conserved 

within the various species of virus, including HIV-1, HIV-2 and SIV (40).  Further studies into 
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the relevance of this protein, however, have demonstrated that Vpr is active in several different 

pathways and serves a variety of functions including locating the pre-integration complex, G2/M 

cell cycle arrest, apoptosis, evasion strategies, regulation of cellular immune function, and 

increasing transactivation (29-39).   

 

The focus of this thesis is two-fold:  First, to identify the role of Vpr in viral transactivation and 

secondly, to determine a way of inhibiting this transactivation.  Vpr is present in the virion prior 

to the production or presence of Tat, therefore Vpr may help transactivate initial viral genes. Vpr 

has also been shown as necessary for the  optimal infection of non-dividing cells such as 

macrophages. Macrophages are initial targets of the virus, specifically in the mucosa in both 

vertical and horizontal transmission (25).  Taken together, the presence of Vpr in the virion as 

well as the necessity of Vpr to infect initial targets such as macrophages, enables one to both 

investigate the mechanism(s) underlying Vpr-mediated transactivation as well as view this 

protein as a possible target for antiviral therapy.   

 

Initial studies were performed in order to demonstrate an increased transactivation of the 

autologous promoter HIV-1 LTR in the presence of Vpr.  By exampling an increase in 

transactivation directly correlating with an increase in the concentration of Vpr, or put more 

simply, a dose-dependent increase in transactivation in the presence of Vpr, this strong example 

was demonstrative of the role of Vpr in HIV-1 LTR-driven transactivation (Figure 11).  The 

question subsequently and obviously became then how exactly was Vpr able to increase 

transactivation?   
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Previous work from our group determined that the GRE sequences present within the HIV-1 

LTR is the region specifically influenced by the presence of Vpr (49,75).  To further this 

investigation, a series of reporter assays were constructed utilizing the reporter construct GRE-

luciferase in the presence of Vpr in the CV-1 cell line, chosen for its lack of endogenous GR 

(Figure 13 ).  Results demonstrated that Vpr was specifically influencing the promoter response 

element GRE by increasing transactivation in a dose-dependent manner, further confirming our 

published reports (49).     

 

Vpr, comprised of three helices each containing the motif LxxLL, is known to interact with a 

variety of proteins, supporting studies that implicate the LxxLL motif in protein-protein 

interactions (47,48).  Transcription factors are also known to interact with this LxxLL motif.  

The knowledge that Vpr was able to increase the transactivation of GRE-driven genes as 

determined by reporter assay, combined with studies on transcription factors implementing their 

interaction with LxxLL motifs, supported the theory that the transcription factor interacting with 

the GRE promoter region, the Glucocorticoid Receptor (GR), could be the key factor to the 

increased transactivation.  Protein-interaction studies where therefore completed, showing a 

direct interaction between Vpr and GR (49).  Further studies also demonstrated that Vpr 

increased the binding of GR to its response element, GRE, in a similar manner to that of 

dexamethasone (49).  

 

It was of the utmost importance to determine the appropriate concentrations of DNA to add to 

luciferase reporter assay transfections.  As seen in Figure 12, each cell line necessitated a 

different concentration of Vpr to achieve optimal transactivation.  Results showed that the 
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highest amount of Vpr-mediated transactivation occurred when using 0.5µg pVpr in HeLa and 

0.25µg in CV-1 cells, whereas 2.5µg of pVpr was needed to observe optimal transactivation in 

HEK293 cells.  These studies were conducted using both autologous and heterologous promoters 

in HeLa, CV-1, and HEK293 cells, with similar results independent of promoter used. 

Interestingly, in comparing both GRE- and HIV-1 LTR-promoted transactivation, the HIV-1 

LTR promoter activation gave a much higher luciferase reading than that of GRE.  This could be 

due to the fact that GRE promoter activation is dependent mainly on the presence of GR whereas 

the HIV-1 LTR promoter contains various binding areas for a number of different transcription 

factors.  Therefore, the HIV-1 promoter will ultimately have a much higher transactivation of 

downstream genes than that of GRE alone, as there are many more factors that are able to 

activate the promoter region in an additive manner.  

 

After establishing that Vpr increased transactivation through an interaction with the cellular GR, 

leading to the increased transcription of GRE- ,or subsequently HIV-1 LTR-, driven genes, the 

next aim of this thesis became finding out how to disrupt this increase in transcription.  Because 

Vpr-mediated viral transactivation occurred in the presence of GR, the GR antagonist 

mifepristone was investigated, to determine if this compound could intervene with the Vpr-GR 

interaction, leading to a decrease in viral transcription. Mifepristone has been well-studied, at 

least in the context of short-term use, and is currently being researched for a variety of reasons 

including having anti-cancer properties, for neuroprotection, and for the treatment of 

Alzheimer’s disease (91-93).   When applied to reporter transactivation models, mifepristone was 

able to decrease Vpr-mediated transactivation by greater than 90% in different cell lines (HeLa,  

and HEK293; Figure 16).  As the mifepristone-induced inhibition of transactivation was dose-
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dependent, it was therefore concluded that the effects of this GR antagonist were able to 

decrease, almost completely, the effects of Vpr-mediated transactivation. 

 

Dexamethasone is the researcher’s cortisol for in vitro studies, as it acts in a similar manner to 

cortisol and other steroids in the presence of hormone receptors such as GR.  While initial results 

complemented by theory demonstrated that Vpr was able to work in a manner similar to that of 

dexamethasone, it was important to determine how effective both ligands were in mediating 

transactivation.  As was concluded, Vpr did work in a manner of effectiveness similar to 

dexamethasone.  And most interesting was the fact that when both Vpr and dexamethasone were 

added together, rather than acting as ligand competitors, Vpr and dexamethasone worked in an 

additive manner, leading to an eventual saturation, if you will, of transactivation (Figures 18 and 

19).  The inhibitory effects of mifepristone on promoter-driven transactivation were further 

exemplified when even in the presence of both dexamethasone and Vpr, a dose-dependent 

inhibition of transactivation was still demonstrated in the presence of the GR antagonist.    

 

Initial results from the transactivation models gave rise to the further investigation into 

mifepristone as a possible antiviral compound.  The fact that mifepristone demonstrated 

relatively low toxicity in both MTT and trypan blue exclusion assays allowed the continuation of 

the conducting of antiviral assays.  To investigate the ability of mifepristone to inhibit HIV-1 

infection, wild-type infectivity assays were developed  In order to assess the efficacy of 

mifepristone in the context of wild-type infection, the T-cell line, CEMx174, was infected with 

an MOI of 0.5 of the EGFP-expressing virus, NL4-3-EGFPwt.  This NL4-3 wild-type virus 

expresses the EGFP protein, in which infected cells can be analyzed by fluorescent microscopy 
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as well as FACS analysis.  Mifepristone was added post-infection to the CEM cells and samples 

were taken 24 hours after a second dose of mifepristone on day three.  FACS analysis and p24 

analysis revealed that mifepristone was able to inhibit viral replication in a dose-dependent 

manner, even at low concentrations of the compound (0.5µM) (Figures 22 and 23).     

 

To further determine the effects of mifepristone on the inhibition of infection, it was determined 

to next investigate the effects of this compound on virus-infected PBMCs.  The use of PBMCs 

demonstrates a relevant system in which to test mifepristone, as these cells include varying 

populations of initial viral targets, including both CD4-expressing T cells as well as monocytes.  

To conduct these assays, initial trials were conducted to determine the appropriate MOI in which 

to infect the donor PBMCs. After comparing p24 to MOI, it was determined that the only 

accurate way to infect cells was to determine the number of infectious particles per mL of each 

virus rather than p24, as comparative studies between p24 and MOI demonstrated that the 

number of infectious particles could change dramatically within different stocks of virus, even if 

the p24 was equivalent.  In several different donors, cells were infected with various MOIs of 

virus, to see which would be most appropriate for this compound.  If the viral titer was too high, 

infection overcame the cells immediately, with no chance of mifepristone, AZT, or analogs 

working appropriately.  If the MOI was too low, there was little to no infection, which would 

obviously not prove either way if mifepristone was or was not able to inhibit virus replication.  

Each donor was different, however; some would infect at a much higher rate than others, and 

others would not infect at all even after the correct MOI was determined and used.  Such are the 

trials of research.  
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After the appropriate MOI was established, PBMCs were infected with the dual-tropic 89.6 

virus, as this virus is able to infect both R5 and X4 receptor-expressing cells including both 

initial target populations, T-cells and monocytes.  Mifepristone was added post-infection in a 

dose-dependent manner to the PBMCs and supernatant samples were analyzed for the presence 

of p24, indicative of viral replication.  Results demonstrated that mifepristone was able to inhibit 

the viral replication within these cells in a dose-dependent manner, exemplifying the efficacy of 

this compound.    

 

To take this PBMC infection antiviral one step further, the patient isolate H112 was used to 

infect PBMCs at an MOI of 0.1.  Post-infection, mifepristone was administered in a dose-

dependent manner and supernatant samples were taken every three days and analyzed for p24.  

Results demonstrated that mifepristone was able to inhibit viral replication in a dose-dependent 

manner.  Though the treatment with mifepristone did not inhibit replication when the lower 

concentrations were used, this compound was still effective at inhibiting viral replication when 

the higher concentrations were administered.  This demonstrates that mifepristone was still able 

to combat patient isolates in a similar manner to the often-used lab isolate 89.6.   

 

Vpr has an integral role in the infection of macrophages.  In order to assess the effects of 

mifepristone on macrophage infection, macrophages were infected with the macrophage-tropic 

viral strain, Ba-L at an MOI of 0.1.  Post-infection, mifepristone was added in a dose-dependent 

manner and similar to the PBMC antivirals, supernatant was collected every two or three days 

and p24 concentration was determined by ELISA.  Again, mifepristone was able to inhibit viral 

replication in a dose-dependent manner as seen in several different donors.  These experiments 
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were useful in determining the efficacy of mifepristone when used specifically for not only an 

initial cellular target of HIV-1, but one in which Vpr plays a major role in allowing viral 

infection. 

 

Mifepristone inhibits the transactivation of viral genes, based on its interference with the 

mechanism of promoter activation.  In order to determine if there was a difference in the efficacy 

of mifepristone dependent on when it was administered in comparison to when supernatant 

samples were taken, several trials were conducted by altering not only the time mifepristone was 

added (every two days versus every three days), but also by altering the time samples were taken 

(24 hours post-compound addition versus 48 hours post-compound addition).  Results concluded 

that there was no significant difference when any of the parameters were altered as to the amount 

of inhibition that was demonstrated in the presence of mifepristone.  

 

 

The possibility of mifepristone as an antiviral in its ability to decrease transactivation was 

demonstrated in these experiments.  However, in order to determine if structural analogs of 

mifepristone exhibited less toxicity or greater efficacy at inhibiting virus, mifepristone analogs 

were assessed to determine the effects of compounds on both viral promoter transactivation as 

well as viral replication.  Several compounds were acquired from NCI: mifepristone analogs 

92336, 641295, and 666510. These compounds were analyzed in the context of both inhibition of 

viral transactivation as well as inhibition of viral replication. Toxicity results of these compounds 

were very similar to those of mifepristone, though they were slightly more toxic to macrophages.  

Though transactivation models demonstrated a dose-dependent decrease in Vpr-mediated 
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transactivation and antiviral models demonstrated similar inhibition, mifepristone was able to 

work in a more effective manner than any of these compounds.  Therefore, it was concluded that 

these mifepristone analogs, while inhibiting the transactivation of viral genes, were not as 

effective as mifepristone. 

 

Since mifepristone specifically targets Vpr-mediated transactivation in the presence of GR, 

initial aspirations on the purpose of mifepristone were as a microbicide.  In order to determine 

the effects of mifepristone on a pre- versus post-treatment regimen, cells or virus were pre-

treated with the compound prior to infection and were compared to cells or virus treated post-

infection.  Results demonstrated that there was no significant difference in the effects of 

mifepristone on PBMCs or macrophages.  

 

One of the major dilemmas in combating HIV-1 infection is the presence of viral reservoirs.  As 

Vpr is present in the virion prior to the production of Tat, initial transactivation of HIV-1 LTR-

driven genes may in fact not only jumpstart viral transcription, but may re-activate latent virus 

hidden in these reservoirs.  Vpr has already been shown to re-activate latent virus (84, 85). To 

assess the efficacy of mifepristone in preventing the reactivation of viral production from 

reservoirs, U1/HIV-1 cells were activated by TNF-α as well as by AT-2 –inactivated NL4-3 in 

the presence of a dose-dependent regimen of mifepristone. TNF-alpha was used as it is one of 

the major cytokines which regulates viral transcription mediated by the HIV-1 LTR through the 

NF-ĸB transcription factor.  AT-2 -inactivated virus particle-triggered reactivation is due solely 

to the proteins present within the virion, one of which is Vpr.  Tat is not present as the virus is 

non-functional and Tat is a late expressing protein.  Therefore, we are able to implicate Vpr as a 
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transactivating factor leading to the re-activation of latent virus.   After four days, samples were 

taken for p24 analysis.  Results demonstrated that mifepristone was able to prevent the re-

activation of viral production from latency in a dose-dependent manner, not only in the presence 

of cytokine-induced re-activation, but also by viral protein-induced reactivation.   These initial 

studies demonstrated the effectiveness of mifepristone in combating viral reservoirs, and 

possibly allowing the prevention of reactivation from latency.   

 

Taken together, Vpr was able to mediate transactivation by acting as ligand and utilizing the 

Glucocorticoid Receptor pathway.  The GR antagonist, mifepristone, inhibited Vpr-mediated 

transactivation of both autologous (GRE) and heterologous (LTR) promoter-driven genes in a 

dose-dependent manner.  Mifepristone was also able to inhibit wild-type and viral

isolate infection in primary cells in a dose-dependent manner.  Finally, this compound effectively 

decreased the re-activation of latent viral reservoirs in a dose-dependent manner.  Therefore, we 

conclude that mifepristone could possibly compose a new class of antivirals, targeting the 

accessory protein Vpr and preventing transcription of viral genes, both in active infection as well 

as viral reservoirs.  While mifepristone alone would be unable to fully combat infection, this 

compound could be used in conjunction with current HAART regimens to not only prevent viral 

transcription, but also combat viral reservoirs, preventing the reactivation from latency. 

82 



 

 

 

7. FUTURE DIRECTIONS 

 

Initial studies on the antiviral effects of mifepristone include the mechanism behind Vpr-induced 

transactivation and the effects of mifepristone on the transactivation of autologous and 

heterologous promoters, the inhibition of viral replication in wild-type infectivity assays,  and 

the inhibition of viral reactivation from latency.   To further these studies: 

 

1) A more detailed determination of the interaction between Vpr and GR should be conducted 

based on GR mutant studies including reporter transactivation assays, protein-protein interaction 

studies, and immunofluorescence to determine co-localization of GR and Vpr within the cell.  In 

this way, the location of the interaction between Vpr and GR within the GR protein could be 

established, and possible other antivirals preventing this interaction could be investigated.   

 

2) An animal model such as rhesus macaques could be investigated in order to determine the 

effects of mifepristone using SHIV.  Mifepristone could be given in pre- versus post-treatment 

both as a microbicide as well as orally in order to determine if this compound can prevent viral 

replication. 

 

3)  The effects of mifepristone on latent viral reservoirs could be more fully established.  For 

example, rather than using U1/HIV-1 cell lines, macrophages could be infected and brought to 

latency.  Re-activation could be induced in the presence of mifepristone and the effects of this 
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compound could be determined.  Also, resting T-cell reservoirs could be investigated as well as 

macrophage reservoirs. 

 

4)  The effects of mifepristone on pregnancy.  Because mifepristone has abortive properties, 

pregnant women should not take this compound as an antiviral.  Further studies need to be 

conducted to determine the effects of mifepristone on late stages of pregnancy. 
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