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Data from our group and others have demonstrated that tumor-derived factors directly 

skew T-cell differentiation from an effective tumor fighting Th1 state to a less effective Th2 

state, allowing for tumor growth. Why the Th1 response is more effective is largely still 

unknown. The recently discovered microRNAs (miRNAs) are a large family of small regulatory 

RNAs that control diverse aspects of cell functions such as cell proliferation, apoptosis, 

development, differentiation and immune regulation.  We thereby sought to examine miRNAs 

differentially expressed in Th1 and Th2 cells in an effort to better understand the enhanced 

ability of Th1 cells in tumor immunity. MicroRNA microarray analyses revealed that the miR-

17-92 cluster of microRNAs (miR-17-92) is consistently over-expressed in murine Th1 cells 

compared to Th2 cells. Quantitative RT-PCR confirmed that the miR-17-92 cluster expression 

was consistently higher in Th1 cells than Th2 cells. Furthermore, disruption of IL-4 signaling 

through either IL-4 neutralizing antibody or knockout of STAT6 reversed the miR-17-92 cluster 

suppression in Th2 cells.  MiR-17-92 expression correlated with differential proliferation 

capacity as Th1 cells proliferated at higher levels than Th2 cells, dependent on IL-4 and STAT6. 

Th1 cells consistently expressed lower levels of anti-proliferative transcription factors E2F1 and 

E2F2, which are the known targets of miR-17-92.  Collectively, our data suggests that the Th2 

skewing tumor microenvironment can induce the down-regulation of miR-17-92 expression in 

CD4+T cells, thereby diminishing the effective proliferation of tumor-specific T cells and tumor 
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destruction.  This has significant public health relevance as we propose that therapy targeting 

miR-17-92 cluster may provide enhanced T-cell function and prevent tumor growth.  
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1.0  INTRODUCTION 

1.1 GLIOBLASTOMA MULTIFORME 

Glioblastoma Multiforme (GBM) is the most common and one of the most malignant forms of 

brain tumors. The primary factors that cause GMBs are still mostly unknown. However these 

factors lead to epidermal growth factor receptor (EGFR) and phosphatase and tensin homolog 

(PTEN) mutations with P53 deletions in many cases. Furthermore GBMs are characterized by 

necrosis, microvascular proliferation and glial cell mitosis 1. 

 As reviewed by Ohgaki 2, GBM occurrence seems most prevalent in industrialized 

countries with Caucasians having greater incidence than both African and Asian populations. 

Limited data is available on causes of GBM however many occupational exposures have been 

shown to be associated with GMB such as plastics, formaldehyde and lead. Other factors such as 

smoking and electromagnetic field have shown no association with GMB (in most studies). 

According to Ohgaki the only factor “unequivocally associate” with GBM is X-irradiation, a 

therapy used to treat acute lymphoblastic leukemia.   

  With over 12,000 new cases diagnosed in the United States each year and a median 

survival time of less than 15 months GBM tumors represent a significant public health problem. 

One of the most common forms of GMB is the astrocytoma. Of the astrocytomas the World 
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Health Organization-designated stages of malignancy from I-IV, GBMs represent the highest 

grade IV tumors 3.  

Current treatments for GBM include: chemotherapy, radiotherapy, and surgical resection 

4. However, even the most effective treatments over the past 25 years have at best added 3 

months to the 15-month median survival time. There are many challenges in effectively treating 

GBMs. GBM’s malignant nature tumor cells spread to areas throughout the brain and tumor 

recurrence after resection is typically unavoidable. Additionally, the microvasculature around the 

brain and the blood brain barrier restricts the passage of many drugs into the  brain 3. For these 

reason, together with the findings that immune cells do enter the brain, much work has been 

devoted to immunotherapy, and enhancing the natural response to control the tumor.  

 

 

1.2 MICRORNA 

1.2.1 MicroRNA Biology  

MicroRNAs (miRNAs) are endogenous small single-stranded RNA molecules which are 18-24 

nucleotides in length 5. MiRNAs are highly conserved between species and have been identified 

in plants, animals and viruses 6, 7. These small RNA are located in various parts of the genome, 

usually in segments not associated with known genes. Mature miRNA molecules have the ability 

to repress translation and therefore serve an important role in regulating post transcriptional 
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activities 8. There are over 300 microRNAs in the human genome which are predicted to 

regulated 2/3 of all genes 9, 10.  

1.2.2 MiRNA Processing and Function  

Genes encoding miRNAs are transcribed by RNA polymerase II into long primary miRNA 

sequences (pri-miRNAs) with a 5’ cap, 3’ untranslated region (UTR), and a hairpin sequence that 

encodes the mature miRNA. The hairpin of the pri-miR is then cleaved by the enzyme Drosha to 

form precursor microRNAs (pre-miRNAs). Pre-miRNAs and are then transported via Exportin V 

to the cytoplasm. Once in the cytoplasm dicer, an Rnase III superfamily member cleaves one of 

the strands and attaches the mature miRNA to an RNA-induced silencing complex (RISC) 

complex. The full RISC complex (miRNA and RISC) are then able to bind to 3’ UTR regions of 

mRNAs, and inhibit translation. Translational inhibition may occur either through mRNA 

degradation or translational suppression. When there is complete complementarity of the miRNA 

to the mRNA 3’ UTR, the mRNA is degraded, however, partial complementarity of the miRNA 

to the 3’ UTR sequence results in inhibition of the circularization of the mRNA needed for 

ribosomal attachment 11. 

1.2.3 MiR-17-92 Cluster of MiRNAs 

 Findings over the past five years strongly support a role for miRNAs in the regulation of crucial 

processes such as cell proliferation 12, apoptosis 13, development 14, differentiation 15, metabolism 

16, and immune regulation17, 18.  
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Many of the known microRNAs appear in clusters on single polycistronic transcripts 19.  

MiR-17-92 cluster codes for 7 mature miRNAs. Mir17-92 has two paralog clusters, miR-106a 

cluster and miR-106b cluster 19. Mir-17-92 and its paralog clusters together consist of miR-17, 

miR-18, miR-19a, miR-19b, miR-20, miR-25, miR-92, miR-93, miR-106a, and miR-106b 19.  

MiRNAs in miR-17-92 clusters are reported to be amplified in various tumor types, such as B-

cell lymphoma and lung cancers 5, 20-22 .  Recently, these miRNAs have been found to induce 

proliferation and confer anti-apoptotic function in tumors thereby promoting tumor-progression, 

and function as oncogenes 6, 20, 21.  

Knockout and transgenic studies of the miR-17-92 cluster in mice have demonstrated the 

importance of this cluster in mammalian biology. While knockout of the mir-17-92 cluster 

results in immediate post natal death of all progeny, knockout of either or both the miR-106a or 

miR-106b cluster demonstrated no apparent change in phenotype. However, when the miR-17-

92 cluster was knocked out together with miR-106a or 106b cluster the result was embryonic 

lethality 23. Further studies have been done in transgenic mice with miR-17-92 overexpressed in 

lymphocytes through the CD2-CRE in a CRE-Lox system. These mice demonstrated 

lymphoproliferative disorder and autoimmunity but not cancer 24. However, transgenic mice 

overexpressing both miR-17-92 and c-Myc in lymphocytes develop early onset 

lymphomagenesis disorders. These findings demonstrate a critical role for miR-17-92 cluster in 

T-cell cell biology. 

Many transcription factors have been identified that regulate expression of this cluster, 

including the E2 transcription factor (E2F) family members 25, c-Myc 5, and signal transducer 

and activator of transcription-3 (STAT3) 26. Additionally, miR-17-92 cluster miRNAs have been 

shown to regulate many genes including: E2F1, E2F2, E2F3, P21, TSP1, CTGF, BIM and 



 5 

PTEN5, 25, 27-29. These genes are all involved in cell cycle regulation, further supporting the 

importance of miR-17-92 cluster in T-cell biology. 

1.3 T-CELL FUNCTION IN CANCER  

1.3.1 Relevance of Th1 and Th2 Cell Response in Cancer 

T-cell immune responses are classified into distinct effector cell types based on their cytokine-

secreting profiles 30-32.  Type-2 T-cells include T-helper (Th2) and T-cytotoxic cells (Tc2), which 

preferentially secrete interleukin IL-4, IL-5, and IL-10, whereas type-1 T cells [T-helper (Th1) 

and T-cytotoxic cell (Tc1)] predominantly secrete interferon(IFN)-γ.   

Data from our group and others indicate that a type-1 T-cell response is favorable for 

anti-tumor immunity 33, 34. Cancers, including GBMs, secrete numerous Type-2 driving 

cytokines 35-38 that serve to promote tumor proliferation 35, 39, 40, immune escape 41, 42, and skew 

the T-cell response towards the Type-2 41-43.  All of these events commonly correlated with poor 

prognosis in cancer patients 43-45.  However, the exact mechanisms as to why type-1 immune 

responses are favorable for anti-tumor immunity are largely unknown. We therefore seek to 

better understand T-cell biology to establish the means to skew the T-cell response toward type-

1. 
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1.3.2 Immunotherapeutic Approaches to GBMs 

A major challenge in current immunotherapy for progressive malignant glioma is the systemic 

suppression of immunity due to chemo-/radiotherapy, tumor elaboration of immunosuppressive 

substances, and Th2 skewing factors 46-48.  While active immunization for GBM relies on intact 

host-immune reactivity in order to elicit potent anti-tumor immune responses, it seems promising 

to generate genetically-modified tumor-specific T-cells ex vivo, which are resistant to tumor-

mediated immune suppression and possess robust anti-tumor responses. As previously discussed, 

miR-17-92 miRNAs have the potential to regulate the cell cycle and confer resistance of 

adoptively transferred T-cells to tumor-derived immunosuppressive factors. Therefore, further 

characterization of the role of miR-17-92 cluster may provide us with strong bases to develop 

novel immunotherapy strategies with genetically engineered T cells with improved abilities to 

mediate anti-tumor effects. 
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2.0  THESIS AIMS 

Enhancing the host immunological response to tumors remains a challenge for glioma 

researchers. As mentioned previously a Th1 immune response is favorable for anti-tumor 

immunity. As miRNAs represent a novel class of regulatory molecules we decided to examine 

the differential expression of miRNAs in Th1 versus the tumor-skewed Th2 cells. We 

hypothesize that miRNAs overexpressed in Th1 cells may play a critical role in the promoting 

the anti-tumor response. Therefore, the overall goal of this study was to examine differences in 

miRNA expression between Th1 and Th2 cells and study immunoregulatory factors present in 

the tumor microenvironment that may regulate these important miRNA.   
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2.1 SPECIFIC AIMS 

Specific Aim #1: Characterize miRNA expression profile and phenotype of Th1 and Th2 cells. 

Hypothesis: We expect to identify miRNA that are upregulated in Th1 over Th2.  

Results: Th1 cells demonstrated increased miR-17-92 cluster expression, better ability to 

proliferate, and decreased expression of anti proliferative factors E2F1 and E2F2 than Th2 cells. 

 

Specific Aim #2: Examine specific mechanisms that regulate miRNA-17-92 expression. 

Hypothesis: Type-2 cytokines and their intracellular signaling pathway affect the expression 

levels of differentially expressed microRNAs. 

Results: Suppression of IL-4 or IL-4 signaling resulted in increased miR-17-92 expression and 

increased proliferative ability of CD4+ T-cells. 
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3.0  MATERIALS AND METHODS  

3.1 REAGENTS 

RPMI 1640, FBS, L-glutamine, sodium pyruvate, 2-mercaptoethanol, nonessential amino acids, 

and penacilin/streptomycin all were obtained from Invitrogen Life Technologies. Recombinant 

murine (rm) IL-12 was purchased from Cell Sciences Technologies. RmIL-4 and recombinant 

human IL-2 were purchased from PeproTech. Purified mAbs against IL-12 (C15.6), IFN-γ (R4 – 

6A2), IL-4 (11B11), CD3 (145-2C11), were all purchased from BD Pharmingen. All quantitative 

real time PCR (quantitative RT-PCR) reagents and primers were purchased from Applied 

Biosystems and analyzed on a BioRad IQ5. WST-1 reagent was purchased from Roche. 

C57BL/6 mice (5–9 wk of age) and C57BL/6 background STAT6 deficient mice were purchased 

from The Jackson Laboratory in Bar Harbor, Maine. Animals were handled in the Hillman 

Cancer Center Animal Facility at University of Pittsburgh per an Institutional Animal Care and 

Use Committee-approved protocol. 
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3.2 TH1 AND TH2 CELL CULTURE 

Th1 and Th2 cells were differentiated from immunomagnetically-separated CD4+ splenic T-

cells. Magnetic activated cell separation (MACS) was carried out using positive selection. 

Briefly, spleens were minced in complete media, resuspended in red blood cell lysis buffer and 

stained with immunomagnetically labeled anti-CD4 antibody. Cells were then washed and placed 

through the magnetic column in 500ul of MACS buffer. The column was then washed 3 times 

with 3ml of buffer and then removed from the magnet and labeled cells were extracted in 3ml of 

MACS buffer. 

For the differentiation of  T-cells, purified CD4+ cells were stimulated in 96 well plates 

previously coated with 100µl of anti-CD3ε mAb (5µg/ml) for 24 hours at 4°C . Cells were then 

incubated with irradiated C57BL/6 spleen cells (3000 Rad, 2.3 minutes) as feeder cells.  RmIL-

12 (ng/ml), rmIFN-γ (ng/ml), anti-IL-4 (ng/ml) mAb and rhIL-2 (100U/ml) was added for Th1 

development.  Th2 cells were generated from the same CD4+ cell precursors stimulated with 

anti-CD3 mAb and feeder cells in the presence of rmIL-4 (ng/ml), two anti-IFN-γ mAbs (ng/ml), 

anti-IL-12 mAb (ng/ml) and rhIL-2 (100U/mL). After 10 days cells were stained for IL-4 and 

IFN-γ to confirm differentiation.  Neutral cell culture included anti-CD3, feeder cells and IL2. 

For studies involving IL-4 blocking, 12.5ng/ml was used in human experiments and 50ng/ml in 

murine studies. For FACs analysis, cells were incubated at 4°C for 30 min, washed twice in 

staining buffer, and fixed in 500 μl of 1% paraformaldehyde in PBS. Cells were stored in the 

dark at 4°C until analysis. Flow was carried out on the Coulter XL four-color flow cytometer at 

the flow cytometry core facility of the University of Pittsburgh Cancer Institute. 
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3.3 MIRNA MICROARRAY 

Total RNA was harvested from Th1 and Th2 using the Qiagen RNeasy kit and quality was 

confirmed with a A260/A280 ratio greater than 1.85. RNA was labeled with either Cy5 (red; 

Th1) or Cy3 (yellow; Th2) fluorescent dyes. The total RNA samples were next mixed and 

applied to miRNA array slides prepared by Drs. Ena Wang and Francesco Marincola (the NIH) 

using robotics for the spotting of 714 murine, human and viral sequences complementary to 

different mammalian miRNAs, and analyzed with a microarray chip reader. Differentially 

expressed miRNAs were analyzed by hierarchical clustering of Th1/Th2 pair of miRNA 

microarray signal.  MiRNAs changed with ratio>2fold were considered significant. 

3.4 QUANTITATIVE RT-PCR 

Total RNA was extracted using the Qiagen RNeasy kit and quality was confirmed with a 

A260/A280 ration greater than 1.85. RNA (10 ng) was subjected to quantitative RT-PCR 

analysis using the TaqMan microRNA Reverse Transcription Kit, microRNA Assays (Applied 

Biosystems), and the Real-Time thermocycler iQ5 (Bio-Rad). The small nucleolar SNO202 was 

used as the housekeeping small RNA reference gene for all murine samples. All reactions were 

done in triplicate and relative expression of RNAs was calculated using the ΔΔCT method. 
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3.5 PROLIFERATION ASSAYS  

For WST-1 proliferation assays 1x 104 cells were cultured in a 96 well plate for 24-48 hours in 

100ul of complete media. After this time 10ul of WST-1 reagent was added to each well. Cells 

were incubated at 370C, 5% CO2 for 4 hours, and placed on a shaker for 1 min. The plates were 

then read on a micro plate reader with a wavelength of 420 nm and a reference at 620 nm.  

For CFSE assays 5 x 105 immunomagnetically-separated CD4+ splenic T-cells were cultured 

under Th1 or Th2 polarizing conditions. On day 10 cells were labeled with 0.5uM CFSE and on 

day 15 cells were then harvested and CFSE dilution was assessed by flow-cytometry. 
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4.0  AIM 1 RESULTS  

4.1 IN VITRO DIFFERENTIATION OF TH1 AND TH2 CELLS   

As discussed in the Background section, functional effecter T-cells include those polarized to 

either Th1 or Th2 phenotypes by environmental instruction. There are also less prevalent 

functionally-differentiated T-cells such as: Tregs and Th17 [Th17 follow a similar trend in miR-

17-92 expression as Th1 (data not shown)]. 

From immunomagnetically isolated murine CD4+ splenic T-cells, Th1 cells were induced by 

culture in complete media containing IL-2, IL-12 and anti-IL-4 neutralizing antibody for 10 

days, whereas Th2 cells were generated in media containing IL-4, neutralizing antibodies against 

IFN-γ and IL-12. Both groups were stimulated with anti-CD3 antibody and feeder cells on days 0 

and 2, and further maintained with hIL2. After 10 days these differentiated T-cells exhibited 

expected cytokine profiles as shown using flow cytometry (Figure 1). Th1 cells predominantly 

produced IFN-γ but not IL-4, while Th2 cells produced mostly IL-4 consistent with what we 

expected.   
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Figure 1: Flow cytometry analysis of Th1 and Th2 differentiated T-cells. Cells were gated on live lymphocyte 

populations.  Intracellular IFN-γ and IL-4 expression was examines for the by Th1 and Th2 cells induced from wild-

type CD4+ splenic T cells in vitro. Flow was carried out to confirm differentiation of all cultured T-cells.  

4.2 MICRORNA MICROARRAY OF TH1 AND TH2 CELLS 

Total RNA was extracted from day 10 confirmed differentiated CD4+ T-cells. Th1 cell RNA 

was labeled with Cy5 (red) and Th2 cell RNA were labeled with Cy3 (yellow) and analyzed for 

miRNA expression by miRNA microarray (Figure 2). As expected of 714 miRNAs, many were 

differentially expressed between our in-vitro cultured Th1 and Th2 cells. Hierarchical clustering 

of differentially expressed microRNAs revealed distinct miRNA expression profiles between 

Th1 and Th2 cells (Figure 3 and Table 1).  Surprisingly, of the upregulated miRNA, all the 

miRNA from the miR-17-92 cluster seemed to all be upregulated in Th1 cells. As this miRNA 
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cluster has been shown to regulate many genes we decided to further examine expression of this 

miRNA cluster.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MiRNA microArray Chip. A representative miRNA array chip hybridized with Th1 and Th2 

derived total RNA. Total RNA was harvested from Th1 and Th2 cells and labeled with either Cy5 (red; Th1) 

or Cy3 (yellow; Th2) fluorescent dyes. The total RNA samples were next mixed and applied to miRNA array 

slides prepared by using robotics for the spotting of 714 murine, human and viral sequences complementary to 

different mammalian miRNAs. Each dot represents one mature miRNA. Red dots represent miRNAs 

upregulated in Th1 cells and yellow dots represent miRNAs upregulated in Th2 cells 
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Table 1 

                                                                                          

                                                                              

  

  

Figure 3: Hierarchal clustering of Th1 vs. Th2 
differentially expressed miRNAs. Differentially 
expressed miRNAs were analyzed by hierarchical 
clustering. Red indicates upregulation in Th1 cell RNA 
and green represents up-regulation in Th2 cell RNA. 
MiRNAs changed with ratio>2 fold are shown. 

Table 1:  MiRNA overexpression in Th1/Th2 cells. 
MiRNA were ranked in terms of relative fold 
expression of Th1/Th2 cells. Arrows indicate 
members of the miR-17-92 cluster. miRNAs with a 
relative expression of >2 fold are shown 
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4.3 QUANTITATIVE RT-PCR OF MATURE MIRNA ISOLATED FROM TH1 AND 

TH2 CELLS 

To confirm expression of miR-17-92 as seen in the microRNA microarray we performed 

quantitative RT-PCR for each of the mature miRNA in the miR-17-92 cluster (Figure 4). 

 

 

Figure 4:  Quantitative RT-PCR of all miRNA from the miR-17-92 cluster.  Data represent relative expression 

of mature microRNA expression of each miRNA from Th1 or Th2 cell RNA. SNO202 was used as the internal 

control and 2ΔΔCT method was used to examine expression relative to the Th2 cell value.   Error bars indicate the 

standard deviation. Columns indicate the mean of 2 separate experiments, each experiment with 3 wells and Error 

Bars indicate standard deviation across these 2 experiment. Statistical analysis was carried out on graphpad prism 

using the student t test. All values were significant with a p<.01 for miR-92 and p<.0001 for all others. 
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We thus concluded that relative expression of all miRNAs from miR-17-92 cluster were 

consistently upregulated  in Th1 vs. Th2.   

4.4 EXPRESSION OF MIR-17-92 PARALOG CLUSTERS   

As mentioned previously, miR-17-92 cluster has 2 paralog clusters: miR-106a-92 and miR-106b-

25. These paralog clusters target similar mRNAs as miR-17-92 cluster 49 . If Th2 cells 

overexpressed the 2 paralog clusters and Th1 cells overexpressed miR-17-92 cluster similar 

mRNAs would be suppressed in both cell types and no resulting change in phenotype would be 

expected.  However if these 2 paralog clusters were overexpressed in Th1 we could expect to see 

an amplified response and further downregulation of mIR-17-92 targets.  To establish if these 

paralog microRNA clusters were overexpressed in our Th1 versus Th2 cells we next ran 

quantitative RT-PCR for multiple miRNAs in each of these clusters. Representative for these 

paralog clusters are miR-106a and miR106b (Figure 5). 
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Figure 5: Quantitative RT-PCR of miR-106a and miR-106b expression in Th1 and Th2 cultured cells. Data 

represent relative expression of each mature miRNA from Th1 or Th2 cell RNA. SNO202 was used as the internal 

control and 2ΔΔCT method was used to examine expression relative to the Th2 cell value. Data is representative of 2 

experiments.   Data represent the mean of a single experiment containing triplicate samples for quantitative RT-PCR. 

Error Bars indicate standard deviation of the triplicate samples. Statistical analysis was carried out on graphpad 

prism using the student t test. Samples are significant with a p<.001 for miR-16a and a p<.05 for miR106b. 

 

These data demonstrate that the paralog clusters of miRNA were also overexpressed in 

Th1 cells over Th2 and that the effect of the miR-17-92 cluster can be enhances 49. Despite the 

similar trend relative expression levels seemed varied between the miR-17-92 cluster and its 

paralog clusters. Because these miRNA are on separate chromosomes it is likely that other 

factors also participate in their regulation.  
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4.5 PROLIFERATION OF TH1 AND TH2 CELLS IN CULTURE 

4.5.1 CFSE Staining of Th1 and Th2 Cells  

As previously discussed, miR-17-92 and its paralog clusters have been predicted and 

demonstrated to regulate many genes involved in proliferation and the cell cycle 12-14. We thus 

next sought to examine if proliferation of our Th1 and Th2 cells correlated with miR-17-92 

cluster expression using a CFSE proliferation assay (Figure 6).  

                           

Figure 6: Proliferative ability of Th1 vs. Th2 cells examined through CFSE assay. immunomagnetically-

separated CD4+ splenic T cells derived from Wild-type mice and then cultured with Th1 or Th2 cytokine conditions 

on day 10 cells were labeled with 0.5µM of CFSE on day 15, cells were harvested and CFSE dilution was assessed 

by flow-cytometry. 

 

As CFSE labeled cells proliferate CFSE intensity is diluted and mean florescent intensity 

(MFI) of is decreased 50. Here we demonstrate that Th1 cells exhibited increased growth relative 

to Th2 cultured cells. 
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4.5.2 WST-1 Proliferation Assay of Th1 and Th2 Cells  

To further examine the proliferative capacity of Th1 cells compared to Th2 cells we next 

performed a WST-1 proliferation assay. Briefly, day 10-differentiated proliferating cells were 

cultured overnight and then incubated in the presence of WST-1 reagent for 4 hours.  

Absorbance of each wells were then measured on an ELISA plate reader (Figure 7). 

                                   

Figure 7: WST-1 Assay of Th1 and Th2 cultured cells. 1x 104 cells were cultured in a 96 well plate for 24-48 

hours in 100ul of complete media. After this time 10ul of WST-1 reagent was added to each well. Cells were 

incubated at 370C, 5% CO2 for 4 hours, and placed on a shaker for 1 min. The plates were then read on a micro plate 

reader with a wavelength of 420 nm. Columns represent the mean of 2 separate Th1 and Th2 cultures, each run in 

quadruplicate; error bars represent standard deviation of all 8 samples. Statistical analysis was carried out on 

graphpad prism using the student t test. Values are significant with a p<.01 

 

WST-1 absorbance directly correlates with proliferation and cell viability. To this end 

Th1 and Th2 cell proliferation followed a similar trend with miR-17-92 expression, further 

suggesting the importance of miR-17-92 in Th1 and Th2 cells.  
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4.6 EXPRESSION OF E2F’S IN TH1 AND TH2 

The E2F family members are predicted targets of miR-17-92. E2Fs are transcription factors 

known to be important in regulating many cell cycle genes 51.  Specifically, E2F1 and E2F2 are 

known negative regulators of T-cell proliferation. We therefore proposed that miR-17-92 may be 

downregulating the E2F pathways in Th1 cells resulting in the observed enhanced proliferation 

over Th2. We collected protein lysates from Th1 and Th2 cells and ran a western blot to examine 

E2F1 and E2F2 expression (Figure 8). 

 

Figure 8: Western blot Analysis of E2F1 and E2F2 from Th1 and Th2 protein lysates. Protein fractions were 

extracted from day 10-confirmed Th1 and Th2 cells on 2 independent occasions. Twenty micrograms of protein 

from each sample were then loaded onto 3 separate 10% SDS-PAGE gels(one gel for each antibody). Proteins were 

transferred to a Polyvinylidene fluoride (PVDF) membrane and each membrane was immunostained for E2F1, E2F2 

or b-Actin primary antibody followed by horseradish peroxidase HRP conjugated secondary antibody and exposed 

using Millipore western blot exposure reagent.  

 



 23 

Our results demonstrate that as expected Th1 cells with upregulated miR-17-92 have 

lower expression of E2F1 and E2F2 molecules. This supports our hypothesis that miR-17-92 

promotes better proliferation of differentiated T-cells. 
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5.0  AIM 1 CONCLUSION  

Our conclusion for Aim 1 is that many miRNAs are differentially expressed between Th1 and 

Th2 cells. Of these differentially expressed miRNA, the miR-17-92 cluster and its paralog 

clusters all were overexpressed in Th1 cultured cells relative to Th2 cultured cells. Since these 

miRNAs have been implicated in cell growth, we also demonstrated that overexpression of these 

miRNAs correlated with higher proliferation in Th1 versus Th2 cells and reduced expression of 

the anti-proliferative transcription factors E2F1 and E2F2. 
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6.0  AIM 2 RESULTS 

6.1 BLOCKING IL-4 REGULATED THE EXPRESSION OF MIR-17-92 CLUSTER 

After demonstrating the difference in miR-17-92 cluster expression between Th1 and Th2 cells 

we next aimed to determine factors that may regulate the cluster. After addition of IL-4 

neutralizing antibodies to neutral cell cultures RNA was extracted from these cells and 

quantitative RT-PCR was used to examine expression of the first and last microRNA in the miR-

17-92 cluster (Figure 9). 
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Figure 9: MiR-17-5p and miR-92 expression on neutral CD4+ T-cells after addition of IL-4 neutralizing 

antibody.   Neutral treated (anti-CD3, feeder cells, and hIL2) cells were cultured from immunomagnetically isolated 

CD4+ T-cells with 5µg/ml plated anti-CD3, feeder cells and 100U/mL hIL2. Two and one half µg/mL of anti-IL-4 

was added to the appropriate wells and cultured for 5 days prior to extraction of RNA. Quantitative RT-PCR data is 

representative of 2 identical experiments. Columns represent the mean of triplicates from a single experiment and 

error bars represent standard deviation. Statistical analysis was carried out on graphpad prism using the student t 

test. MiR-17-5p and miR-92 were significant with p<.001 and p<.005, respectively.   

 

These data suggest that blockade of endogenously produced IL-4 is sufficient to 

upregulate miR-17-92 expression by approximately 50%, and IL-4 produced in the tumor 

microenvironment can potentially cause a decrease in miR-17-92 cluster expression.  

6.2 MIR-17-92 EXPRESSION IN STAT6 DEFICIENT T-CELLS  

To further illustrate the effect of IL-4 signaling on miR-17-92 cluster expression we next isolated 

CD4+ T-cells from mice deficient of the critical IL-4 signaling molecule, STAT6. After isolation 
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we cultured these cells in Th1- or Th2-skewing conditions for 10 days. Quantitative RT-PCR 

analysis from these cells demonstrated that STAT6 deficient Th2 cultured cells exhibited no 

reduction in either miR-17-5p expression (Figure 10).  

        

Figure 10: Down-regulation of miR-17-5 and miR-92 in Th2 cultured cells is STAT6-dependent.  Th1 and Th2 

cultured cells were induced from CD4+ T cells isolated from either wild-type or STAT6 knockout mouse-derived 

splenocytes.  Total RNA was extracted from each cells and quantitative RT-PCR was performed using specific 

primers against miR-17-5p. Columns represent the mean of triplicates from a single experiment and error bars 

represent standard deviation. Statistical analysis was carried out on graphpad prism using Bonferroni’s multiple 

comparison test. All values were significantly different from each other column with a p<.001. 

 

These data further supports our hypothesis that IL-4 signaling is responsible for the 

suppression of miR-17-92 cluster in T-cells. IL-4 suppression of miR-17-92 potentially occurs in 

vivo where tumor-derived factors result in the secretion of IL-4, and promotion of a Th2-skewed 

ineffective response.  
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6.3 DOSE RESPONSE OF CD4+ T-CELLS TO IL-4 

To determine if the dose of IL-4 plays a role in the suppression of miR-17-92 cluster we next 

treated CD4+ T-cells with increasing doses of IL-4 at either 0ng/ml, 10ng/ml, 50ng/ml or 

100ng/ml and measured miR-17-5p expression with quantitative RT-PCR (Figure 11).  

    

 

                     

Figure 11: Dose response of miR-17-5p to IL-4 treatment. Neutral treated (anti-CD3, feeder cells, and hIL2) cells 

were cultured with anti-CD3, feeder cells, and hIL-2 and varying amounts of IL-4 for 5 day. RNA was then 

extracted and analyzed by quantitative RT-PCR for miR-17-5p expression. Columns represent mean of a single 

experiment carried out in triplicate. **indicates P<.001 using ANOVA test. Curve was further analyzed using post 

test for linear trend (graphpad prism) and was significant (p<.001)   

 

These data demonstrate that the mIR-17-92 suppression occurs in a dose-dependent manner and 

that partial blockade of IL-4 should be sufficient to enhance T-cell microRNA levels.  
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6.4 NEUTRALIZATION OF IL-4 ENHANCES CD4+ T-CELL PROLIFERATION 

To further examine our hypothesis that IL-4 regulation of miR-17-92 and the E2F pathways 

control proliferation of CD4+ T-cells through E2F signaling we next evaluated proliferation of 

non differentiated T-cells in the presence of IL-4-neutralizing antibody (Figure 12).  

 

Figure 12: Proliferation of CD4+ cells in the presence of IL-4 neutralizing antibody examined through a 

CFSE assay. Immunomagnetically-separated CD4+ splenic T-cells derived from wild-type mice and then cultured 

with or without IL-4 neutralizing antibody in neutral conditions (anti-CD3, feeder cells, and hIL2). On day 10 cells 

were labeled with 0.5µM of CFSE.  On day 15, cells were harvested and CFSE dilution was assessed by flow-

cytometry. 

 

Our results demonstrate that in the presence of IL-4-neutralizing antibody there is 

increase in CD4+ T-cell proliferation. Additionally, cells treated with IL-4-neutralizing antibody 

had decreased expression of E2F1 and E2F2 as determined by western blot (data not shown). 
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These results support our hypothesis that enhanced CD4+ T-cell proliferation is associated with 

increased miR-17-92 cluster expression. 

6.5 STAT6 DEFICIENT CD4+ T-CELLS ENHANCE TH2 PROLIFERATION 

To further examine our hypothesis we next examined proliferation of day FACs 10 confirmed 

Th1 and Th2 cells derived from either wild type C57BL/6 mice or STAT6 deficient mice 

(Figure 13). 

 

Figure 13: STAT6 deficient Th2 cells have enhanced proliferation that is not enhanced by neutralization of 

IL-4.  Immunomagnetically-separated CD4+ splenic T cells derived from Wild-type or STAT6 -/- mouse CD4+ 

cells were labeled with 0.5µM CFSE and then cultured under Th1, Th2 Neutral, or Neutral+anti-IL-4 mAb cytokine 

conditions as described in the methods.  At day 15, cells were harvested and CFSE dilution was assessed by flow-

cytometry. 
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Our results demonstrate that unlike wild-type mice, STAT6-deficient mice exhibit 

increased proliferation of CD4+ splenocytes cultured in Th2 conditions relative to those in Th1 

culture conditions. Additionally, this increased proliferation is not accelerated by neutralization 

of IL-4. These data further support our hypothesis that miR-17-92 cluster is involved in T-cell 

proliferation and regulated by IL-4. 
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7.0  AIM 2 CONCLUSION 

Based on the present data we conclude that IL-4 suppresses miR-17-92 through a STAT6 

dependant pathway in a dose dependent manner. Furthermore, enhanced proliferation of Th1 

cells vs. Th2 cells is dependent on the IL-4 and STAT6 signaling pathway as STAT6 deficient 

mice and addition of IL-4 neutralizing ab resulted in an increase in proliferation of cells cultured 

under Th2 cytokine conditions. 
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8.0  DISCUSSION 

Based on the present data we conclude that miR-17-92 is more highly expressed in the Th1 cells 

phenotype as compared to Th2 cells. We have shown that in Th2 cells IL-4 suppresses this miR-

17-92 through the STAT6 signaling pathway. Furthermore, as miR-17-92 expression is predicted 

to regulate the cell cycle, we have shown that miR-17-92 cluster expression correlated with cell 

proliferation, and that predicted miR-17-92 targets E2F1 and E2F2 were downregulated. We 

propose a model in which IL-4 from Th2 skewing cells or from the tumor environment 52 are 

able to decrease the proliferative ability of T-cells and how Th1 skewing conditions can increase 

the proliferative ability(Figure 14). 
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Figure 14: Model of miR-17-92 signaling pathway. Based on our current data we propose that IL-4 from Th2 

skewing conditions such as the tumor environment downregulates miR-17-92 through the STAT6 pathway. This 

downregulation of mIR-17-92 results in upregulation of anti proliferative E2F1 and E2F2 molecules resulting in 

decreased proliferation relative to Th1. Conversely Th1 conditions lack activation of STAT6 and therefore have 

upregulation of miR-17-92, decreased E2F1 and E2F2, and increase proliferation relative to Th2. 

 

To be able to potentially regulate this cluster, it is important to better understand how IL-

4-STAT6 controls miR-17-92 expression. Although we are uncertain of the mechanism in which 

IL-4-STAT6 regulates miR-17-92 cluster, we have identified a potential STAT6 binding site 

between miR-19a and miR20a. We acknowledge that transcription factors bind and regulate at 

the promotor regions of genes, however, this may represent a novel method of transcriptional 

regulation. In this regulation, the transcription factor STAT6 could bind directly to the miR-17-

92 cluster and blocks transcription. There are however no known reports of STAT molecules 

inhibiting translation.  We will also examine the effect of STAT6 on other factors that have the 

ability to regulate miR-17-92 expression at its promotor.  
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The Th1 and Th2 cells used in our model were induced in vitro from murine CD4+ cells. 

While this allowed for a very controlled system to study differentiated T-cells we acknowledge 

that there are inherent issues that must be addressed in the future. The ability of IL-4, a single 

cytokine to skew miR-17-92 expression raises the possibility that other factors from the tumor 

environments may interfere and regulate miR-17-92 expression.  Another concern of our current 

system is the use of only one animal strain. This raises the concern that a single strain might be 

unique and not representative. Ideally we would like to examine our system in multiple animal 

strains and eventually in human Th1 and Th2 cells.  

We acknowledge that some of our experiments were only done one time and therefore 

lack statistical proof. However we believe that taken together our data strongly illustrates the role 

of IL-4-STAT6 in miR-17-92 expression and that this pathway reflects the proliferative ability of 

CD4+ T-cells.  

Future work is needed to demonstrate a direct linkage between miR-17-92 and T-cell 

proliferation. Our results together with the results of others strongly suggest that miR-17-92 

overexpression will enhance T-cell proliferation. Our future studies will aim at overexpressing 

and knocking down of miR-17-92 to determine how proliferation is affected by this cluster.  

Furthermore, we will examine other potentially therapeutic benefits of this cluster, including 

resistance to activation induced cell death, chemotherapeutic responses and TGF-β suppression.  

One of the major limitations to cancer immunotherapy is the short duration of T-cell 

survival after adoptive transfer 53. Therefore we hypothesize that transgene-mediated expression 

of miR17-92 will promote the survival and function of anti-tumor T cells.  Our future goal will 

be to test the ability of miR-17-92 cluster to provide better T-cell immunity in GMB patients in a 

clinical trial. We propose that overexpression of miR-17-92 cluster in T-cells of GBM patients 
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alone or in combination with other immunotherapy strategies will lead to an enhance immune 

response, able to fight the tumor.   
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9.0  FUTURE DIRECTIONS  

9.1 MURINE STUDIES  

9.1.1 Mir-17-92 Expression from Tumor Bearing Mice  

To further our findings in an in vivo system we will examine the miR-17-92 expression in CD4+ 

T-cells from tumor bearing mice. In order to skew the systemic immune response and have 

sufficient numbers of T-cells for analysis we will use an invasive melanoma model tumor.  One 

million B16 tumor cells will be inoculated into the right flank of C57BL/6 mice. After 2 weeks 

we will harvest the spleen, isolate CD4+ cells with negative immuno-magnetic separation and 

examine miR-17-92 expression. We will also confirm using an ELISA for IFN-γ whether the 

cells are Th1 or Th2 skewed phenotype cells. Our hypothesis is that miR-17-92 expression will 

be downregulated and these cells will be Th2 skewed. 

9.1.2 Overexpression of MiR-17-92 in CD4+ T-cells  

To show that miR-17-92 cluster directly affects proliferation and function of CD4+ T-cells we 

will next produce stable miR-17-92 overexpressing CD4+ T-cells. For this we will use 

nucleofection of 2 plasmids in a transposon/ transposase system. We have cloned the entire miR-

17-92 gene segments under a CMV promotor and GFP under its own SV40 promotor between 
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two IR/DR site (sites needed for transposase). With an Amaxa neucleofection kit we will 

nucleofect our miR-17-92 plasmid together with another plasmid encoding the transposase 

enzyme.  This will allow us to create stable miR-17-92 overexpressing cells. These cells will be 

selected using GFP and miR-17-92 overexpression will be confirmed. We will then examine a 

variety of functional tests on these cells including: WST-1 proliferation assay, chemotherapy 

drug resistance assay, activation induced cell death/apoptosis assay, and other in vitro assays. We 

will also examine the effect of Th1 and Th2 skewing under various cytokine conditions. Our 

hypothesis is that miR-17-92 overexpression in CD4+ T-cells will skew Th1 and that these cells 

will proliferate better in suppressive and inhibitory conditions.  

9.1.3  Adoptive Therapy of MiR-17-92 Overexpressing T-cells 

As T-cell suppression remains a potent mechanism of tumor immune escape and because Th1 

skewed T-cells has been shown to be preferential in tumor immunity over Th2 we predict miR-

17-92 overexpressing cells will restrict tumor growth and provide increased protection against 

the tumor. To test this hypothesis we will evaluate the effect of adoptively transferred T-cells in 

protection against a GL261 tumor.  Using a Hamilton syringe, 1 x 105 GL261 cells will be 

stereotactically injected through an entry site at the bregma, 3 mm to the right of sagittal suture 

and 4 mm below the surface of the skull of anesthetized mice using a stereotactic frame. On day 

10, 5 mice per group will receive an i.v. injection with 2 x 107 miR-17-92 overexpressing or 

control transduced CD4+ cells, and cultured for 9 days with 100 U/ml of hIL-2. Mice will be 

closely monitored for any neurological signs, or any signs of weakness or malaise, which are 

considered to be an endpoint and mice will be sacrificed. Additionally some mice will be 

sacrificed 6 days after adoptive transfer, brain infiltrating lymphocytes (BILs) will be isolated 
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and GFP+ cells will be analyzed for proliferation and apoptosis between the two groups. We 

hypothesize that animals with miR-17-92 overexpressing CD4+ T-cells will have longer survival 

than those without miR-17-92 overexpression.  Additionally the adoptively transferred miR-17-

92 CD4+ cells will have better ability to proliferate and decreased levels of apoptosis than 

control cells.  

9.2 HUMAN STUDIES  

9.2.1 Mir17-92 Expression in Human Th1 vs. th2 

To determine if the data obtained from mouse Th1 and Th2 cells are relevant to the human 

immune system, we will induce Th1 and Th2 cells from human PBMC in vitro and examine the 

miR-17 cluster expression.  Human Th1 and Th2 cells will be generated from naïve 

CD4+CD45RA+ T cells as described previously54.  Briefly, naïve CD4+CD45RA+ T cells will be 

isolated using naïve CD4+ T cell isolation kit (Myltenyi Biotec) and be stimulated with plate-

bound anti-CD3 (1 µg/ml; clone OKT3) and anti-CD28 (2 µg/ml; clone 15E8; BioLegends) and 

rIL-2 (50 units/ml; Peprotech).  For Th1 differentiation, rIL-12 (2.5 ng/ml; R&D Systems), anti-

IL-4 mAb (5 µg/ml; clone MP4–25D2; BD Biosciences), and anti-IL-10 mAb (5 µg/ml; clone 

JES3–9D7; BioLegends) will be added.  For Th2 differentiation, rIL-4 (12.5 ng/ml; R&D 

Systems), anti-IFN-γ mAb (5 µg/ml; clone B-B1; BioLegends), and anti-IL-10 mAb (5 µg/ml; 

clone JES3–9D7; BioLegends) will be added.  After 4 days, the cells will be expanded under the 

same conditions in the absence of anti-CD3 or anti-CD28.   
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Total RNA will be isolated from resting Th1/Th2 cells or cells that will have been 

activated for 4 h with PMA/ionomycin  after 14, 21, or 28 days of differentiation, and 

quantitative RT-PCR  will be carried out with primers for miRNAs in miR-17-92 cluster. 

Following analysis of miR-17-92 cluster we will examine the proliferative ability of these T-cells 

with a WST-1 and a CFSE assay. 

9.2.2 MiR-17-92 Expression in GBM patient CD4+ T-cells  

To further examine the role of miR-17-92 cluster we next will obtain frozen PBMCs from 

glioma patients as well as healthy donors. From these cells we will isolate CD4+ cells. A fraction 

of the cells will be stimulated with anti-CD3 (OKT3 or UCHT1) used for human IFN-γ ELISA 

to determine whether these cells are Th1 or Th2 skewed. RNA will then be extracted and miR-

17-92 cluster expression will be analyzed from both ex vivo CD4+ cells and stimulated CD4+ 

cells. We hypothesize that GBM patient CD4+ cells are Th2 skewed and that miR-17-92 will be 

down regulated.  

9.2.3 Overexpression of MiR-17-92 in Human CD4+ T-cells 

As described in 9.1.2 we will utilize a transposon/transposase system to examine miR-17-92 

overexpression in murine CD4+ T-cells. We will use the same systems to overexpress mIR-17-

92 in human CD4+ T-cells.  Human CD4+ T-cells will be isolated from fresh PBMCs using 

negative magnetic bead selection. Cells will be stimulated for 24 hours followed by 

neucleofection. We will continue culture for 7 days and then confirm stable expression of miR-

17-92 expression and functional analysis of these cells.  
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9.3 OTHER FUTURE PLANS 

All future plans mentioned to this point focused on the role of Th1 and Th2 CD4+ T-cells. 

Differentiated Tc1 vs. Tc2 CD8+ T-cells may follow a similar trend to Th1 vs. Th2 and also 

have improved proliferative ability. For this reason all our experiments and future plans will be 

adapted for Tc1 and Tc2 and CD8+ human and murine cells. 

Furthermore our methods of transduction may also include lenti viral vector system 

which we are currently working on. This will allow for a less invasive method of transfection. 

The reason we have chosen the transposon/transposase based system is for its relative safety in 

patient use.  

Although not mentioned, in addition to overexpression studies we would like to do 

knockdown studies. In these studies we will use anti-sense microRNA to bind to the miR-17-92 

cluster block the miR-17-92 function. We will expect to see decreased proliferation and opposite 

phenotype as when we overexpress the same miRNA. 

We have also obtained mice with miR-17-92 flanked by lox-p sites and Lck-Cre mice. 

This will allow us to overexpress miR-17-92 cluster in T cells of mice and will hopefully lead to 

the development of more projects. 

Finally in these experiments we have been examining miR-17-92 cluster expression as a 

whole which contains 7 mature microRNAs. Before miR-17-92 can be used in patients we will 

examine each mature miRNA individually in different combinations to find the most effective 

strategy of bettering T-cells  
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