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The Development of Novel Electron Transfer Initiated Cyclization (ETIC) Reactions: Discovery
of the Diastereoselective ETIC Reaction and Its Application toward the Total Synthesis of
Leucascandrolide A.

John Robert Seiders, 11, PhD

University of Pittsburgh, 2005

The electron transfer initiated cyclization (ETIC) reaction has been shown to provide the
efficient formation of cyclic acetals through the selective activation of carbon-carbon c-bonds.
A simple arithmetical equation has been used to design new substrates with enhanced
chemoselectivity and reactivity. The ability to design new cyclization substrates has expanded
the scope of the ETIC reaction by providing access to more diverse products. Lowering the
oxidation potential of the ETIC substrates led to the development of a ground state chemical-
mediated protocol. This also allowed for the incorportation of electron rich olefins as carbon-
centered nucleophiles. Substrates which undergo endo-cyclizations have shown excellent levels
of stereocontrol in the synthesis of syn-2,6-dialkyl tetrahydropyranones, which are useful

building blocks in natural product synthesis.
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A highly stereoselective sequence has been developed for the synthesis of
leucascandrolide A with the key transformation utilizing the diastereoselective endo-ETIC
reaction. The homopropargylic ether required for installation of the enol acetate was obtained
through the stereoselective opening of a cyclic acetal with allenyltributyltin in the presence of a
Lewis acid. A metal mediated addition of acetic acid to the alkyne provided the homobenzylic
ether with a suitably tethered enol acetate. The enol acetate was then subjected to the chemical
mediated ETIC conditions to afford the desired syn-2,6-tetrahydropyranone as a single

diastereomer.
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Chapter 1 Tuning the Reactivity and Chemoselectivity of Electron Transfer Initiated
Cyclization (ETIC) Reactions: Effects of Aryl and Benzyl Substitution

1.1. Introduction

l. General

The activation of functional groups which are generally inert to a wide range of reaction
conditions in a transient and selective manner would provide a powerful approach to designing
new synthetic transformations. Due to the rich chemistry available for the formation of carbon-
carbon o-bonds, a method that allows for their selective activation to form potent and transient
electrophiles would be of great synthetic utility. Owing to their tendacy to undergo mesolyic
cleavage (the fragmentation of a radical ion to provide a radical and an ion) radical cations are
attractive candidates for such a process.! Generating electrophilic species via radical cation
fragmentation is also attractive due to the wide variety of sensitive functional groups that are
tolerant of the mild reaction conditions. This high level of functional group compatibility arises
from the chemoselectivity of single transfer being dependant on the oxidation potential of the
molecule.”

Recent studies conducted on the kinetics of fragmentation for a series of radical cations
by Freccero and coworkers' have provided insight toward predicting their reactive pathways.
Studies by Arnold and coworkers have also provided vital information for predicting the

reactivity of radical cations based on the substitution of arylalkyl radical cations.’



Understanding the elements needed for the predictable and controllable mesolytic bond
cleavage of radical cations provides a powerful method of forming highly reactive species for
use in organic synthesis. Producing such reactive moieties under single electron transfer allows
for novel approaches to the synthesis of natural and non-natural molecules of biological interest.
The ability to form potent electrophiles without the use of Lewis-acid mediated activation allows
for the incorporation of sensitive functionality, and provides a method to solve problems which

. . 2
were previously insoluble.

Il. Radical Cations

Crich and co-workers® have recently developed a nonoxidative method for the formation
of radical cation intermediates. This method generates the radical cation intermediate through
formation of a radical followed by izonization. However, the most common method of
generating radical cations in solution is the single electron oxidation of neutral molecules. The
radical cation may then undergo mesolytic cleavage to generate a benzyl radical and a cationic
intermediate. Nucleophilic attack on the cationic intermediate leads to the newly formed product
of substitution, and the benzyl radical is further oxidized to the cation and readily trapped by a
nucleophile (Figure 1).> Tt has been observed that generation of the radical cation in low

concentration leads to clean reactivity.
-le + - .
. e N Nu
+1e” +  X-Nu
. + _
©/ e ©/ Nu @ANU
- —_——>

Figure 1: Chemical oxidation of an alkylarene in the presence of a nucleophile



Photoinduced electron transfer (PET) is a powerful method of oxidation that is used for
the formation of radical cations. Two mechanisms are possible for the formation of radical
cations under PET conditions. The first exploits the ability of electronically excited acceptors to
act as strong oxidizing agents, while the second exploits the tendency of electronically excited
donor molecules to undergo more facile electron transfer (Figure 2). A drawback of PET
oxidation is the tendacy for return electron transfer to occur, which leads to formation of the
neutral substrate. The rate of return electron transfer may be altered through the proper choice of

. 2
solvent, the acceptor and the use of cosensitizers.

h .
a) D+A ————> DipA* —— D+ AT
h . : -~
b) D+tA — » D'+A —— DA

Figure 2: Photoinduced electron transfer of excited state acceptors (a) and donors (b).

Removing an electron from a neutral substrate leads to bond weakening within the
resulting radical cation. As a consequence of the bond weakening, mesolytic cleavage can occur
to generate a radical fragment and a cationic fragment. Aryl radical cations are known to
undergo carbon-hydrogen (deprotonation), carbon-carbon and carbon-silicon bond fragmentation
to form a benzyl radical and a cation. The cation generated may then be trapped by a suitable

nuecleophile to give the desired substitution product (Figure 3).'

+ -
j' Nu
O e O

X =H, CR;, SiR;

Figure 3: Nucleophilic assisted mesolytic fragmentation of radical cations.



The tendency of a carbon-carbon bond to undergo mesolytic cleavage, as defined by its
bond dissociation energy (BDEgc), may be approximated thermodynamically by knowing the
bond dissociation energy of that bond in the neutral substrate (BDEs), the oxidation potential of
the substrate (Epa(S)) and the oxidation potential of the radical which becomes the electrophilic
fragment (Epa(E)). The extent of bond weakening can be explained by Equation 1:* A schematic

representation of the fragmentation of a monoalkyl arene was used to derive Equation 1 (Figure

4).

BDEg = ©/\X e — ©/ + X
g (I e (7

-e +
Epa(E) = Xo —F— X

+ L]
BDEgc = ©/\X —_— ©/ + )2-

Figure 4: Schematic representation of radical cation mesolytic fragmentation.

BDEgc = BDEs — Epo(S) + Ep(E)  (Eq. 1)

While Equation 1 predicts the proclivity of a particular bond to cleave in a radical cation,
the rate with which the bond cleaves is dependent upon the conformation of the molecule.
Placing the o-bond of interest parallel to the arene’s m-system leads to the greatest extent of bond

weakening (Figure 5).



X

Figure 5: Orbital overlap requirement for mesolytic bond fragmentation.

I1l.  Carbon-Hydrogen Bond Activation

The cyclic voltammetry (CV) studies conducted by Kochi and coworkers® on a series of
alkylarenes have shown the lifetimes of the radical cations to be less then 100 ps. The short
lifetimes and irreversible nature of the CV experiments were attributed to the rapid deprotonation
of the benzylic position.

Carbon-hydrogen bond activation was also observed in Freccero and coworkers kinetic
studies on the reaction parameters of radical cation fragmentation.! In their studies, several
substituted anisole derivatives were subjected to single electron oxidation (ceric ammonium
nitrate, 355 nm irradiation, acetonitrile) with benzyl nitrates being the major products observed.
The proposed mechanism for this apparent substitution reaction is formation of the radical cation
through single electron transfer to the nitrate radical. This is followed by the rapid deprotonation
of a benzyl hydrogen to form the benzyl radical, which is further oxidized to the benzyl cation by
excess cerium (IV) present in the reaction. Finally, the cation is trapped by a nitrate anion

(Figure 6).



N
. CAN, CHyCN mE NOs :
hv - +  HNOs
MeO MeO MeO
. +
Q/ Ce(IV) Q/ NO5 /@AONoz
MeO MeO MeO

Figure 6: C-H o-bond activation by single electron oxidation.

IV. Carbon-Carbon o-Bond Actvation

The ability to selectively activate carbon-carbon G-bonds to form reactive intermediates
in a predictable manner would be of great synthetic utility. Single electron oxidation of
alkylarenes to radical cations furnishes such an opportunity. However, studies by Kochi and
coworkers have shown tert-butyl benzene in contrast to toluene displays reversible behavior
when subjected to cyclic voltametry (CV) conditions.” These data suggest that sufficient carbon-
carbon o-bond activation to promote bond cleavage is not favorable for simple alkylarenes.

Arnold and coworkers examined the reactivity of a series of alkylarene radical cations
under photoinitiated electron transfer (PET) conditions.* This work was directed toward
developing a way to predict the reactivity of alkylaryl radical cations. Arnold’s results showed
selective carbon-carbon bond activation was possible with the proper substitution on the alkyl
portion of the molecule. For example, in the case of homobenzylic ethers, Arnold observed
fragmentation of the radical cation to give exclusively the benzyl radical and the o-
alkoxycarbocation. This is demonstrated in the reaction of homobenzylic ether radical cations
with methanol to form the dimethyl acetal of acetaldehyde and products consistent with the

formation of benzyl radicals (Figure 7). The regiochemistry of fragmentation can be explained



by the observation that fragmentation occurs to give the carbocation of the radical with the lower
oxidation potential (see Eq 1). In the present case of homobenzylic ethers, the a-alkoxy radical’s

oxidation potential is approximately 0.6 V lower than that of the benzyl radical.’

1,4-dicyanobenzene MeO. _OMe
OMe  CH;CN, MeOH, hy e +

Figure 7: C-C o-bond activation by photoinitiated electron transfer.

V.  Electron Transfer Initiated Cyclization (ETIC) Reactions

Studies in our lab have shown single electron oxidation of homobenzylic ethers, amides
and carbamates with pendent nucleophiles leads to the formation of furanosides, pyranosides and
acyl aminals.” The reaction proceeds through carbon-carbon o-bond activation via photoinitiated
single electron transfer to form the radical cation. The radical cation then undergoes mesolytic
carbon-carbon bond cleavage to form a benzyl radical and a potent electrophile (stabilized

carbocations in the present case) followed by nucleophilic ring closure (Figure 8).

n
z z Nu

Z = electron donating group
Nu = Nucleophilic group

Figure 8: General ETIC reaction.

Homobenzylic ethers and amides were chosen as the substrates for carbon-carbon bond

activation based on three criteria: 1) the benzyl group is inert to a wide range of organic reaction



conditions and can be incorporated early in the substrate synthesis, 2) the essentially neutral
reaction conditions allow for the presence of acid-sensitive functionality and 3) the potent
electrophile generated under the reaction conditions allows for a wide range of nucleophiles to be
employed.

The mechanism of the ETIC reaction (Figure 9) was proposed based on the study of a
series of substrates.”* The first step is the reversible electron transfer from the aromatic
cosolvent to photoexcited sensitizer to form the radical cation of the cosolvent. The substrate
then undergoes electron transfer to the radical cation of the aromatic cosolvent leading to
formation of the radical cation. The radical cation can then undergo an associative (Sn2)
nucleophilic cyclization, or a dissociative (Sy1) cyclization. Product ratios from cyclization
reactions of diastereomerically pure substrates indicated both pathways were contributing. The
extent to which one pathway dominates over the other can be controlled through substrate
design. The associative pathway could be suppressed by introducing steric bulk around the
electrophilic carbon, building strain in the transition state or by using less reactive bulky
nucleophiles. When the rate of cyclization for the dissociative pathway proceeds slowly, the
intermediate oxocarbenium ion can recombine with the benzyl radical. This results in formation
of the radical cation which may be reduced by tert-butylbenzene to regenerate the starting
material. This reactive pathway was evidenced by taking a slow reacting single diastereomer to

partial conversion and recovering the starting material as a 1:1 mixture of diastereomers.
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Figure 9: Proposed mechanistic pathway for the ETIC reaction.

An alternative mechanism in which the rate of associative ring closure is slow for one
diastereomer and fast for the other could be envisioned. In order for this to occur, the radical
cation would have to fragment into a solvated radical-cation pair whose lifetime is such that
rotation is faster than recombination. The population of the faster reacting diastereomer is then
depleted by rapid cyclization to give the apparent dissociative product, while the slower

diasterecomer reacts to a lesser extent to give the associative product (Figure 10).

R R R
R + H - +
Dissociation . Recombination W
PR U N B o+ [ U7 NuH - P TV, Nu
OR OR OR
+
Slow Associative Fast Associative
Cyclization Cyclization
R" R
L (S
RO™ NG RO ™\

Figure 10: Alternative mechanistic pathway for the ETIC reaction.



VI.  Tuning the Chemoselectivity and Reactivity

The ability to design new ETIC substrates with enhanced chemoselectivity and reactivity
would provide enhanced synthetic utility for the ETIC reaction. While preferential oxidation of
the arene over the nucleophile leads to enhanced chemoselectivity, the reactivity of a substrate is
dependent upon the strength of the fragmenting bond.  This suggests the relative
chemoselectivity and reactivity of a substrate may be controlled through making logical

structural alterations to the general ETIC substrate design (Figure 11).

X = oxidation potential modulating group

Y = benzylic bond strength modulating group
Z = electron donating group

Nu = nucleophilic group

Figure 11: Design of ETIC substrates with greater chemoselectivity and reactivity.

The chemoselectivity of a substrate is dependent upon the ability to oxidize the arene in
preference to the nucleophile. To ensure the arene is preferentially oxidized, its oxidation
potential must be lower than that of the nucleophile. The oxidation potential of the arene may be
tuned through the introduction of substituents. Incorporation of electron donating groups would
result in a lowering of the arene’s oxidation potential. For example, the oxidation potential of p-

methoxytoluene is roughly a 0.5 V (11.5 Kcal/mol)"* lower than toluene (Figure 12).
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Figure 12: Modulator of oxidation potential.

While lowering the oxidation potential will allow for greater chemoselectivity through
selective oxidation of the arene, Equation 1 predicts that lowering the substrate’s oxidation
potential (Epa(S)) will lead to an increase in the radical cation’s bond dissociation energy
(BDERrc). This increase in the BDEgrc may result in cleavage of the radical cation becoming a
disfavored process. If fragmentation of the radical cation is slowed down, the reactivity of the
substrate may be negatively impacted.

The reactivity of a substrate is dependent upon the radical cation’s ability to undergo
fragmentation. The bond dissociation energy of the radical cation (BDEgrc) has a strong
influence on the extent to which fragmentation occurs. This suggests the reactivity of a substrate
may be tuned through manipulation of the BDErc. The BDEgrc must be lowered in order to
increase the reactivity of the substrate. Equation 1 shows a direct relationship between the BDEg
and the BDEgrc. Therefore, lowering the BDEg is expected to result in an increase in the
reactivity of a substrate. Introducing substituents along the alkyl backbone of the substrate
allows for the BDEg to be decreased.’ Placing radical stabilizing groups in the benzylic position

leads to a decrease in benzylic bond strength (Figure 13).8
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A BDE values are relative to the CH,CH; bond of ethyl benzene

Figure 13: Modulators of benzylic bond strength.

VIlI.  Chemical Oxidants in ETIC Reactions

With the design of substrates possessing lower oxidation potentials, single electron
chemical oxidants could be used to initiate ETIC reactions. Chemical oxidation is advantageous
for several reasons: 1) the reactions may be run on large scale, 2) the reactions may be conducted
using simplified experimental apparati, 3) the reactions can be run with substrates containing
photo-labile functionality.

Ceric ammonium nitrate (CAN) is an attractive candidate for chemical oxidation because
it is inexpensive (500g of CAN costs $82.50 from Aldrich, approximately 9 cents per mmol),
easy to handle and readily available through commercial sources. CAN has been used in the
single electron oxidative removal of electron rich arene protecting groups,'® and the oxidative
demethylation of functionalized hydroquinones."" The functional group compatibility found in

the hydroquinone reactions demonstrates the mildness of CAN oxidations.
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o

\C o 2.3 Dichloro-5,6 dicyano-1,4-benzoquinone (DDQ) is a strong single electron oxidant
Ncﬁc' which is commercially available, may be stored in the freezer for several months and
reacts under essentially neutral reaction conditions.'”> However, DDQ is an expensive reagent
(100g of DDQ costs $212.40 from Aldrich, approximately $2.07 per mmol) typically used in
stoichometric amounts, making it a less desirable oxidant especially for large scale reactions."
Another difficulty encountered with DDQ is the removable of HDDQ (reduced by-product) from
reaction mixtures. For this reason, several methods have been developed to use DDQ as a
catalytic oxidant in the presence of either FeCl;'? or Mn(OAc)s' as the stoichometric oxidants.
X\©\ /©/x Triarylaminium salts are widely used single electron chemical oxidants in
S; organic chemistry. As a group they are attractive candidates due to the ability to
x tune the reduction potential through arene substitution. [(CsHsBr-4);N]-[SbCle]
is commercially available, and the other analogs are readily prepared from the corresponding
amine.'* Triarylaminium salts have been used in the oxidative catalysis of Diels-Alder reactions
that had not be accomplished through other methods. Oxidation of the dienophile lowers the
barrier of cycloaddition to give the radical cation of the Diels-Alder adduct. The product radical
cation is then readily reduced by the resulting amine to regenerate the triarylaminium radical
cation.”
Iron (III) phenanthroline complexes are mild oxidants that have been shown to
Fei) { SQN\> react solely through an outer-sphere electron transfer process.”” The reduction
potential of thgese complexes can be easily tuned through substitution of the phenanthroline
ligands.'® This oxidant appears to be a good candidate for small scale reactions, however, the

need for 2 equivalents of oxidant to substrate would make isolation and purification of large

scale reactions quite difficult.'®
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Ferrocenium salts are extremely mild single electron oxidants that are readily

(

Fer [BF4]
< prepared from inexpensive precursors. These oxidants have also been proven to

react solely through an outer-sphere electron transfer process, and the reduction potential is
easily modulated through substitution on the cyclopentadiene ring.'* The range of reduction
potential available may be too low for use with p-methoxy substituted substrates. However, if
the oxidation potential of the arene had to be lowered significantly to obtain chemoselective
oxidation, these compounds would become useful oxidants.

The polyoxometalate HsPV,Mo0,904 is a mild single electron oxidant and is very stable
and easy to handle. While this oxidant is not available from commercial sources, it is easily
prepared and only needed in catalytic amounts. This polyoxametalate reacts under extremely
mild conditions, and kinetic investigations on the mechanism of electron transfer indicate solely

1
an outer-sphere electron transfer process.'’

VIIl.  Goals and Objectives of the Project

The ability to expand the scope and limitations of the ETIC reaction will be explored.
This will be accomplished through the generation of substrates that possess greater
chemoselectivity and reactivity, development of a chemically initiated method and the formation
of carbon-carbon bonds.

The design of substrates for cyclization with lower oxidation potentials requires an
understanding of the relationship between the oxidation potential of the substrate and the

reactivity of the radical cation. This relationship will be investigated through the synthesis of a
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series of substrates containing a p-methoxy group on the arene and various radical stabilizing

groups in the benzylic position (Figure 14).

Yo Y )
X OcgHy7 CgH170™ NG

X = oxidation potential modulating group
Y = benzylic bond strength modulating group

Figure 14: Exploring the scope of the ETIC reaction through substrate design.

With an understanding of the relationship between the oxidation potential and reactivity,
the design of an ETIC substrate that undergoes an endo-cyclization will be explored (Figure 15).
This will be explored by placing the modulator of benzylic bond strength in the homobenzylic
position. Incorporation of the bond weakening group within the electrophilic fragment would
lead to greater atom economy,'® as well as, the ability to generate more diverse products using

the ETIC reaction.

Y e o
T — (o
X ~ - Nu Nu

X = modulator of oxidation potential
Y = modulator of benzylic bond strength
Nu = nucleophilic group

Figure 15: Design of an endo-ETIC reaction substrate.

While the photo-initiated ETIC reaction has become a well developed method for the
formation of heterocyclic compounds, efforts to use chemical oxidants as initiators have failed.

Therefore, the benefit of substrates with lower oxidation potentials will be demonstrated in the

15



development of a chemically initiated variant of the ETIC reaction. Substrates possessing lower
oxidation potentials should also display enhanced chemoselectivity allowing for the use of
electron rich olefins as nucleophiles (Figure 16). The ability to use such nucleophiles would

demonstrate the ability to form carbon-carbon bonds using the ETIC reaction.

/©Y><YMT z -le” Z'UOCSHN
X OCgH17

X = oxidation potential modulating group

Y = benzylic bond strength modulating group

Z = electron donating group (e.g. CH,SiMes, OAc, etc...)
7’ = CH,, O, etc...

Figure 16: Incorporation of electron rich olefins as nucleophiles in ETIC reactions.
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1.2. Results and Discussion

I. Determining the Relationship between Oxidation Potential and Reactivity

The ETIC reaction developed in our lab’ has demonstrated carbon-carbon o-bonds of
homobenzylic ethers and amides can be selectively activated toward nucleophilic attack under
photoinduced single electron transfer. While this method has proven to be successful for the
synthesis of heterocyclic molecules, we would like to broaden the scope and applicability of the
ETIC reaction through the synthesis of substrates with greater chemoselectivity and comparable
reactivity. In order to design such substrates, an understanding of the relationship between the
substrate’s oxidation potential (OPs) and the reactivity of the radical cation must be established.
Therefore, several substrates containing p-methoxy arenes and various benzylic substituents
were prepared and subjected to our standard photochemical cyclization conditions.”

The first substrate to be prepared and subjected to the ETIC reaction conditions is shown
in Scheme 1. Alcohol 2 was obtained in 96% yield by the copper (I) iodide mediated opening of
epoxypropyl anisole (1) with vinyl magnesium bromide. The alcohol was then converted to
octyl ether 3 with sodium hydride and octyl iodide in DMF at 0 °C in 64%. Hydroboration of 3
with BH3; ' THF followed by quenching with basic hydrogen peroxide provided substrate 4 in 34%
yield.

Substrate 4 was then subjected to photo-initiated ETIC reaction conditions using a
catalytic amount of the sensitizer N-methylquinolinium hexafluorophophate (NMQPF¢). The
substrate (4) was added to a suspension of NMQPF (sensitizer), sodium acetate (insoluble base)

and sodium thiosulfate (peroxide reducing agent) in toluene (aromatic cosensitizer) and 1,2-
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dichloroehtane (solvent). Air (terminal oxidant) was gently bubbled through the mixture as it
was irradiated through a Pyrex filter from a medium pressure mercury lamp. After prolonged

reaction times, no consumption of substrate 4 was noted and starting material (4) was recovered.

MeO MeO OoH
2

1

MeO OCgHy7 MeO gH17

3 4

Reagents and Conditions: a) Cul, vinyl magnesium bromide, THF, - 78 °C — RT, 2h (96%); b) NaH, octyl iodide,
DMF, 0 °C — RT, 12h (64%); c¢) BH;'THF, THF, then NaOH and H,0, (34%) ; d) NMQPF,, PhMe, NaOAc,
Na28203, hV, 02, DCE.

Scheme 1: Synthesis of the parent p-methoxy ETIC substrate.

The failure of substrate 4 to cyclize was in contrast to a similar cyclization conducted in
our laboratory. An analogous substrate without the p-methoxy group cyclizes efficiently when
subjected to identical conditions (Figure 17).” Therefore lowering the oxidation potential of
substrate 4 by incorporating the p-methoxy group must account for the lack of reactivity. As
stated earlier, Equation 1 predicts that lowering the oxidation potential of a substrate increases
the bond dissociation energy of the radical cation (BDEgrc). The loss of reactivity observed for
substrate 4 indicates the increased BDEgc is negatively impacting fragmentation of the resultant

radical cation.
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H g
OC8H17 C8H17O O

Reagents and Conditions: a) NMQPFg, hv, O,, NaS,0;, NaOAc,
DCE, tol. (88%).

Figure 17: Cyclization of the parent ETIC substrate.”

To regain reactivity in substrates containing electron rich arenes, their design must be re-
evaluated. If the lack of reactivity is due to the increase in the BDEgc, substrates containing
bond weakening groups must be designed. Introducing bond weakening groups in the benzylic
position will lead to a lowering of the substrate’s bond dissociation energy (BDEs). Equation 1
shows that lowering the BDEg leads to a decrease in the BDEgRc, which is expected to increase
the tendacy of the radical cation to undergo fragmentation. Therefore, a series of substrates were

synthesized with radical stabilizing groups in the benzylic position (Figure 18).”

XY
MeO OCgH17 CgH170™ NG
X,Y =Me
X=viny, Y=H
X=Ph,Y=H

Nu = nucleophilic group

Figure 18: ETIC reaction of substrates containing modulators of benzylic bond strength.

I1. Synthesis of ETIC Substrates with Weakened Benzylic Bonds

The substrate with a geminal methyl group was quickly synthesized in 5 steps (Scheme
2) beginning with ozonolysis of p-allyl anisole followed by reduction with triphenylphospine to

give aldehyde 5 in 65% yield. The resulting aldehyde (5) was then bis- alkylated with
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potassium tert-butoxide and methyl iodide in THF at -78 °C to give dimethyl aldehyde 6 in
21%."  Addition of allyl magnesium bromide to aldehyde 6 led to the formation of
homobenzylic alcohol 7 in 83% yield. Etherification of the homobenzylic alcohol (7) was
accomplished with sodium hydride and octyl iodide in DMF at 0 °C to give homobenzylic ether
8 in 60% yield. The terminal olefin was then transformed to a primary alcohol via hydroboration

with BH3;-THF at 0 °C in 62% yield to give the desired substrate 9.

—_—
(0] (6]
MeO MeO MeO
: /©><N d = e
- OH T T
MeO MeO OCgH17
7
ISn e
OCgH
MeO gH17

9

Reagents and Conditions: a) Os;, CH,Cl,, -78 °C, then PPhs, -78 °C — RT (65%); b) KO'Bu, Mel, THF, -78 °C
(21%); c) allyl magnesium bromide, THF, -78 °C (83%); d) NaH, octyl iodide, DMF, 0 °C (60%); ¢) BH; THF,
THF, then NaOH and H,0, (62%).

Scheme 2: Synthesis of the geminal dimethyl ETIC substrate.

Attempts to prepare a substrate with a vinyl group in the benzylic position proved to be
quite difficult, and led to the in situ palladium catalyzed preparation of an allyl stannane
followed by addition to an aldehyde (Figure 19).*° This reaction begins with the reduction of
Pd(II) by SnCl, to give Pd(0) and SnCls. The SnCls then coordinates to the allyl alcohol
followed by oxidative instertion of Pd(0) to form the m-allyl palladium complex. The m-allyl

palladium complex is then reduced to the allyl stannane by SnCl,. The allyl stannane then
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undergoes addition to the aldehyde with excellent diastereoselectivity due to the well defined

transition state.’!

Pd(CNPh),Cl,

N
R'CHO -

OH R snCly, — 7~ , __R

Pd(0) NN R
R)v/ /\(‘)/H
R~ H__snci
an snCl, R /%\v 3
pd* R o

Figure 19: Addition to aldehydes by in situ Pd(0) catalyzed allyl stannane formation.

The synthesis of the vinyl-substituted substrate (Scheme 3) began with the addition of
vinyl magnesium bromide to p-anisaldehyde, to give alcohol 10 in 83% yield. Allyl alcohol 10
was converted to the allyl stannane in situ, followed by addition to aldehyde 11 providing

alcohol 12 as a single diastereomer (36%).%°

The relative stereochemistry of alcohol 12 was
assigned through the literature precedent of an analogous reaction.”’ Conversion of alcohol 12 to
the octyl ether with sodium hydride and octyl iodide in DMF at 0 °C afforded an inseparable
mixture of the desired ether and an unknown by-product. The mixture was then subjected to
lithium aluminum hydride to remove the pivalate. Deprotection of the pivalate ester was quite

slow and complete conversion was never obtained. However, 8% of the desired substrate (13)

was isolated, which provided a sufficient amount to test our hypothesis.
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MeO MeO o

10 11
X ~
/@A‘MOPW c,d WOH
H
MeO OH MeO OCgH17
12 13

Reagents and Conditions: a) vinyl magnesium bromide, THF, -78 °C (83%); b) Pd(PhCN)Cl,, SnCl,, DMI (36%);
¢) NaH, octyl iodide, DMF, 0 °C; d) LAH, THF, 0 °C — RT (8%).

Scheme 3: Synthesis of a vinyl-substituted ETIC substrate.

The extent to which the BDEg is lowered is dependent on the stability of the radical
formed during homolytic cleavage. Therefore, if two different isomers of a substrate lead to the
formation of the same radical, they should possess similar BDEg and comparable reactivity. To
test this hypothesis, a p-methoxy cinnamyl substrate (Scheme 4) was prepared. The mesolytic
cleavage of this substrate would lead to the same radical as that generated in the fragmentation
the vinyl-substrate (13). Mono-protection of 1,4 butane diol with tert-butyldimethylsilyl
chloride (TBSCI) provided alcohol 14 in 87% yield.*> The primary alchohol was then oxidized
with trichloroisocyanuric acid (stoichometric oxidant) and TEMPO (catalytic oxidant) in CH,Cl,
at 0 °C to give the desired aldehyde (15) in 95% yield.” Homoallylic alcohol 16 was obtained
by the addition of allyl magnesium bromide to the aldehyde 15 in 55%. Etherification of alcohol
16 with sodium hydride and octyl iodide in DMF at 0 °C lead to formation of the ether 17 in
63% yield. Cross metathesis®® of 17 with p-methoxy styrene provided the TBS-protected
cinnamyl compound 18 (39%). Deprotection of the TBS-ether with TBAF afforded the desired
cyclization substrate 19 with 17% isolated yield. The low isolated yields associated with the

isolation of compounds 18 and 19 are most likely due to their instability.
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18 19

Reagents and Conditions: a) NaH, TBSCI, THF (87%); b) trichloroisocyanuric acid, TEMPO, CH,Cl,, 0 °C — RT,
15 min. (95%); ¢) Allyl magnesium bromide, THF, -78 °C (55%); e) i. NaH, octyl iodide, DMF, 0 °C — RT (63%);
ii.  benzylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(tricyclohexylphosphine)ruthenium,
p-methoxy styrene, CH,Cl,, 40 °C, 12h (39%); f) TBAF, THF, 3h (17%).

Scheme 4: Synthesis of a p-methoxy cinnamyl ETIC substrate.

The final substrate synthesized to test the effect of bond weakening groups in ETIC
substrates contained a phenyl group in the benzylic position (Scheme 5). Sonogashira coupling25
of iodobenzene and 4-pentyn-1-ol led to the formation of alkynyl arene 20 (99%). Reduction of
the alkyne with lithium aluminum hydride (LAH) in refluxing THF furnished the desired
arylalkene (99%).%° Protection of the resulting primary alcohol with TBSCI provided TBS-ether
21 in 95% yield. Epoxide 22 was obtained through the m-CPBA epoxidation of olefin 21 in 72%
yield. The copper (I) mediated opening of epoxide 22 with p-methoxyphenyl magnesium
bromide gave homobenzylic alcohol 23 (71%).>” Secondary alcohol 23 was then alkylated with
sodium hydride and octyl iodide in a 40% isolated yield to afford ether 24. While the isolated

yield of ether 24 was low, unreacted alcohol 23 was easily recovered and re-subjected to the
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etherification conditions. Deprotection of the TBS-ether (24) with acetic acid, water in refluxing

THF furnished the desired di-aryl cyclization substrate (25) (89%).

= OH
20 21

(0]
d e f
@/Q/WOTBS e O oTBS v
OH
MeO
22

23

oTBS 9 oH
OCgH
MeO OCgHq7 MeO gH17
24 25

Reagents and Conditions: a) Pd(PPhs),, Cul, THF, i-Pr,NH (99%); b) LAH, THF, reflux, 18 h (99%); c) TBSCI,
imidazole, DMF, 0 °C (95%); d) m-CPBA, CH,Cl,, NaOAc, 0 °C — RT (72%); e) Cul, p-methoxy phenyl
magnesium bromide, THF, -40 °C (71%); f) NaH, octyl iodide, DMF, 0 °C (40%); g) Acetic acid, water, THF
(89%).

Scheme 5: Synthesis of a phenyl substituted ETIC substrate.

I11. Cyclization of ETIC Substrates with Weakened Benzylic Bonds

The substrates 9, 13 and 25 were subjected to our standard photochemical cyclization
conditions.”” A typical cyclization is conducted by adding the substrate to a suspension of
NMQPF; (sensitizer), sodium acetate (insoluble base) and sodium thiosulfate (peroxide reducing
agent) in toluene (aromatic cosensitizer) and 1,2-dichloroehtane (solvent). Air (terminal oxidant)

was gently bubbled through the mixture as it was irradiated through a Pyrex filter from a medium

24



pressure mercury lamp. "> While substrates 9, 13, and 25 provided the acetal 26 in moderate to
good yield, substrate 19 led to unidentified decomposition products (Table 1). The longer
reaction times may explain slightly lower yields obtained for the cyclization of subtrates 9 and
13 due to the volatility of the product (26). The successful cyclization of substrates 9, 13 and 25
indicates the introduction of benzylic bond weakening groups had a favorable impact on the

fragmentation of the intermediate radical cations generated.

Entry Substrate Product Yield (%)*  Rxn Time (h)°
OH C.H OD
OCgH 70
1 MeO sH17 62 3.0
9 26
\
2 MeO OCgHyy 62 4.75
13 26

N
OH
3 OCgH;4 - Decomposition
MeO

4 /©/W o C8H'70@ 88
o OCgH,; 1.5

25 26

*Isolated yields after flash column chromatography;
" Reaction times are determined by observing the consumption of starting material by TLC

Table 1: ETIC reactions of substrates with weakened benzylic bonds.

This observation demonstrates the predictive capacity of Equation 1 in the design of
ETIC substrates. However Equation 1 does not allow for predictions on the rate of
fragmentation for a substrate. Freccero and co-workers investigation of the kinetics of radical

cation reactions has shown thermodynamic data alone is insufficient to predict relative rates of
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reactivity.! Therefore, another factor must be responsible for the difference in the rate of
cyclization. Because intramolecular attack of the nucleophile has the same rate for all reactions,
the rate of cyclcization must be dependent upon the rate of fragmentation. As mentioned earlier
the rate of fragmentation is impacted most by the conformation of the molecule. In cases where
the breaking bond is aligned with the m-system of the arene, the rate of fragmentation will be
enhanced.” This suggests substrates 9, 13 and 25 do not share a common ground state
conformation.

Substrate 9 has several factors which may be influencing the rate at which cyclization
occurs. The sterically conjested neo-pentyl electrophilic center could lead to a disfavored
approach of the nucleophile. There is not going to be a strong conformational preference for
placing the alkyl group which leads to favorable fragmentation parallel to the arene’s m-system.
This is due to the similar steric bulk of the methyl groups with regard to the alkyl chain
containing the homo-benzylic ether. Therefore, the rate of fragmentation of the radical cation is
not going to be enhanced by stereo-electronic effects.

Fragmentation of substrate 13 was predicted to be the most facile due to the roughly 8
kcal/mol decrease in benzylic bond strength.” Although substrate 13 provided the desired
cyclization reaction, it was shown to be the slowest of the series. While Freccero and co-
workers' have demonstrated the impact thermodynamics have on the rate of radical cation
fragmentation, this observation re-enforces that thermodynamics alone do not govern the overall
rate of reactivity for radical cations. The slow reactivity of substrate 13 can best be rationalized
by the absence of a conformational bias to place the desired alkyl group perpendicular to the

aromatic plane.
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Substrate 25 demonstrated excellent reactivity, and provided the desired acetal (26) in
good yield. The enhanced reactivity indicates this substrate’s ground state conformation is
consistent with having the appropriate alkyl group’s o-bond aligned with the m-system of the
arene. The reactivity of substrate 25 essentially matched that of the parent ETIC substrate.”
While a thorough kinetic study was not performed, the ability to tune the chemoselectivity and

reactivity through logical substitutions has been demonstrated.

IV. Development of a Ground State Initiated Chemical Variant of the ETIC Reaction

The photoinitiated ETIC reaction developed in our lab’ has proven to be an efficient
method for the synthesis of heterocyclic compounds. However, photochemical processes require
special equipment and are not easily amenable to large scale synthesis. A chemically initiated
variant of the ETIC reaction was developed to allow greater synthetic utility. The electron rich
substrates developed in our lab have sufficiently low oxidation potentials for use with known
chemical oxidants of alkoxyarenes.'""?

The first ground state chemical oxidant to be explored as an initiator of ETIC reactions
was Ceric ammonium nitrate (CAN). This choice was based on the wide use of CAN in the
oxidative deprotection of electron rich arenes.'' Two equivalents of CAN are needed to ensure
oxidation of the electron rich arene and the resulting arylradical. Addition of a base was needed
to buffer the nitric acid generated with the use of CAN. Due to the exceptional reactivity

observed under the standard photochemical ETIC conditions, substrate 25 was used as to explore

the ability of CAN to initiate cyclization. The feasibility of this method was tested by
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introducing CAN (oxidant) to mixture of substrate 25 and NaHCO; (insoluble base) in

dichloroethane and acetonitrile (7:3) (Figure 20).

Ph

/@)\NOH CAN, CH3CN, DCE @
MeO OCgH17 NaHCO3 o OCgHj7
25 45% 26

Figure 20: Chemically initiated ETIC reaction with CAN as the oxidant.

Within 5 minutes of adding the CAN, the starting material was consumed and acetal 26
was present. The mixture was then simply filtered, concentrated and purified via flash column
chromatography. While this method led to the successful formation of acetal 26 the isolated
yield was only 45%. The low isolated yield of acetal 26 was attributed to the formation of acetal
27 (tentatively assigned by crude 'H NMR). This by-product (27) is believed to be generated by

the Lewis acid activation of acetal 26 by Ce(III) followed the intermolecular attack of alcohol 25

(Figure 21).
Ph
on  CAN, CH3CN Ce(ill
o e . Cabyy
MeO OC8H17 DCE, NaHCO3 fe) OCsH17 (0) (P

T L)
- Q)Wo o
e
OCgH
MeO 817

27

Figure 21: Ce(IIl) mediated formation of by products.
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Another possible explanation for the low isolated yield is the generation of nitric acid
during the reaction. The insolubility of NaHCO; in dichloroethane and acetonitrile hinders its
ability to act as a sufficient buffer. Therefore in an attempt to optimize the reaction conditions,
several soluble pyridine bases were examined to determine the impact of base concentration on
the reaction. Substrate 25 was again subjected to CAN (2 equivalents), a soluble base, and

dichloroethane and acetonitrile as solvents (Table 2).

Entry Substrate Product Base T(°C) t(min)* Yield (%)°

P
P
P
P
P

RT N.R.

Y

| A
“ 35 N.R.

h
OH
MeO oc
25
h
/@)\(\/\OH
MeO OCsH 1y
25
h
OH
MeO 8117
25
h
OH
MeO oc
25
h
OH
MeO oc
25

N

A
L
N
A
cole I
S
L
N

26
m -- %/Hj\ﬂ RT Decomposition

* Reaction times were monitored by TLC; " Isolated yields after flash column chromatography.

Table 2: Exploring the effect of the base used in chemically initiated ETIC reactions.

The use of pyridine as the base provided no reaction and the starting material was
recovered. Gentle warming of the reaction to 35 °C had to no obvious impact on the reaction.
The loss of reactivity was attributed to the Lewis acid-base interactions of Ce(IV) and pyridine.

When the reaction was run with 2,6-lutidine as base at room temperature, the was no noticeable
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consumption of starting material (25). However, increasing the reaction temperature to 40 °C in
the presence of 2,6-lutidine led to complete consumpion of substrate 25, although the isolated
yield of acetal 26 was still only 42%. The improved reactivity from pyridine to 2,6-lutidine
suggests increasing the steric bulk around the nitrogen may have an impact on the reaction. To
test this hypothesis 2,6-di-tert-butyl-4-methyl pyridine was used as the base. However, no
desired reaction occurred and the starting material decomposed. The decomposition of the
starting material was attributed to the inability of 2,6-di-tertbutyl-4-methylpyridine to buffer the
HNOj; generated under the reaction conditions.

To test the general applicability of CAN as an initiator of ETIC reactions, substrates 4
and 9 were subjected to 2 equivalents of CAN (oxidant) with sodium bicarbonate (insoluble
base) in dichloroethane and acetonitrile (Table 3). The lack of reactivity noted for substrate 4
was consistent with the photochemical data. The stability of the radical cation is too great to
allow for efficient fragmentation to occur. Formation of 26 from 9 demonstrated the ability of
CAN to initiate cyclization. The isolation of acetal 26 in 39% yield was consistent with
cyclization of substrate 25. However, the relative rate of reaction was again much slower than
that of substrate 25. Due to the difficulty of obtaining large amounts of the vinyl-substrate 13, it
was not subjected to the chemical cyclization conditions. While the successful cycilization of
substrates 9 and 25 demonstrates the ability of CAN to promote ETIC reactions, the low isolated

yields suggests this method may not be suitable for acid sensitive functional groups.
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Entry Substrate Product Yield (%)? Rxn Time (min)®

J@AN o - N.R
1 MeO OCgH,; BN

4
(S0 e
2 MeO OCgH,; 87 o 39 45
9 26

* jsolated yield after flash column chromatography; ® Reacion times were monitored by TLC

Table 3: Exploring the general applicability of CAN in ETIC reactions.

An exploration of various other chemical oxidants was initiated in an attempt to optimize
the isolated yield of the reaction. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) is another
oxidant which is commonly used for the removal of electron rich aromatic protecting groups.'*
There is also precedent for the use of polyoxometalate (HsPV2Mo10040)'” and iron phthalcyanine
in the single electron oxidation of electron rich arenes. The oxidants listed above also share the

benefit of being able to effect oxidation under catalytic conditions.'*"?

Entry Substrate Product® Oxidant Yield (%) Rxn Time (h)b

Ph Ar,

OH

2 o m - Polyoxometalate N.R.
OH .

3 Meom - Iron Phthalcyanine N.R.

25

* Ar = p-methoxy phenyl; ® Reaction times were monitored by TLC; yields refer to isolated
purified product.

Table 4: Exploring other chemical oxidants.
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The efficacy of the above oxidants to promote ETIC reactions was investigated using
compound 25 as the model substrate. Substrate 25 was again chosen due to the enhanced
reactivity observed under the photochemical conditions. Treatment of the substrate (25) with
both the polyoxometalate and iron phthalcyanine provided no reaction, and starting material was
recovered. However treatment of substrate 25 with two equivalents of DDQ led to the slow
consumption of starting material. After 3 hours, the starting material was consumed and cyclic
ether (28) resulting from preferential carbon-hydrogen activation was isolated in 55% yield.

While the carbon-hydrogen bond activation which led to the isolation of ether 28 was
unexpected, the result can be explained by examining the mechanism of DDQ oxidation
(Scheme 6). The first step is the electron transfer from the alkylarene to DDQ forming the
radical cation of the alkylarene and the radical anion of DDQ. The radical cation is then
deprotonated by the radical anion followed by further oxidation of the benzyl radical by the
oxygen stabilized radical of DDQ to give the benzyl cation. The benzyl cation is then trapped by

the appended nucleophile to give the cyclized product (28).
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Scheme 6: Mechanism of carbon-hydrogen bond activation by DDQ.

V. Demonstrating the Feasibility of endo-ETIC Reactions

To expand the scope of the products which are available via the ETIC reaction, the design
of a substrate to undergo an endo-cyclization was explored. The new substrate was designed to
maintain both chemoselectivity and reactivity. The choice of a p-methoxy arene as the
electrophore remained unchanged. However, the modulator of benzylic bond strength was now
to be placed in the homo-benzylic position, and the nucleophile was tethered through the ether
linkage (Figure 22). By placing a vinyl group in the homo-benzylic position, there will be two
factors working in concert to lower the BDEgrc. The vinyl group is still expected to lower the
BDE; by roughly 8 kcal/mol.” Moreover, the vinyl group is also expected to lower the oxidation

potential of the resulting electrophilic fragment (OPg). According to Equation 1 decreasing the

33



value of these terms will result in a lowering of the BDErc. In addition to providing a greater
range of products available, these substrate design changes will provide improved atom
economy."® This is the result of the modulator of benzylic bond strength being incorporated into

the fragment which becomes the product.

X -le” Q
W
MeO O._~_-Nu Nu :

Figure 22: Development of an ETIC substrate to undergo endo-cyclizations.

The synthesis of a substrate with the structural attributes mentioned above was developed
to test the practicality of endo-ETIC reaction (Scheme 7). Addition of the lithium anion of 1-
decyne to aldehyde 5 provided propargyl alcohol 29 in 69% yield. Reduction of the propargyl
alcohol (29) with lithium aluminum hydride in refluxing THF afforded the homobenzylic alcohol
(30) in 87% yield. Treatment of alcohol 30 with sodium hydride and allyl bromide led to the
formation of bis-allyl ether 31. Hydroboration of the terminal olefin in ether 31 would lead to
the desired cyclization substrate 32. However, the presence of both an internal and a terminal
olefin made this transformation difficult. Use of the BH;*"THF complex would be expected to
readily react with both olefins. Therefore a more selective hydroboration reagent was needed to
ensure exclusive reactivity of the terminal olefin. The use of hindered alkyl boranes have been
shown to provide such selectivity. Several dialkyl boranes including 9-BBN,*® di-cyclohexyl
borane” and di-siamyl borane®® were reacted with ether 31. Disiamyl borane proved to be the

best reagent for the conversion of terminal olefin of ether 31 to primary alcohol 32 (55%).
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Reagents andConditions: a) 1-decyne, n-BuLi, -78 °C (69%); b) LAH, THF, reflux, 18h (87%); c¢) NaH, allyl
bromide, DMF, 0 °C (77%); d) di-siamyl borane, THF, -10 °C, then NaOH, H,0, (55%).

Scheme 7: Synthesis of a substrate to undergo an endo-ETIC reaction.

To examine the validity of the new substrate design, substrate 32 was subjected to the
standard photoinduced ETIC conditions. The photochemical method was explored first due to
the greater efficiency noted for the other substrates. A mixture of substrate (32), NMQPFs
(sensitizer), NaOAc (insoluble base), Na;S,03 (peroxide reducing agent), air (terminal oxidant)
and toluene (aromatic co-sensitizer) in 1,2-dichloroethane was irradiated using a medium
pressure mercury lamp for 4 hours (Figure 23). While the consumption of substrate 32 was
quite slow, the desired cyclic acetal (33) was isolated in 77% yield. The successful cyclization

of compound 32 re-affirms the ability to use Equation 1 to design new ETIC substrates.

A NMQ, hv, O,, NaOAc O>_/—€/7
O Na,S,0;, DCE, tol.

MeO S~ OoH 77% ©

32 33

Figure 23: Photoinduced cyclicization of an endo-ETIC substrate.

Substrate 32 was then subjected to the Ce(IV) mediated chemical cyclization conditions

to examine the reactivity. A solution of CAN in acetonitrile was added dropwise to the
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suspension of the substrate (32) and NaHCOj in 1,2-dichloroethane. Consumption of the starting
material was evident within five minutes of adding the oxidant. Although analysis of the crude
reaction mixture via 'H NMR spectroscopy did not show the desired cyclic acetal, the only
discernible product was enal 34 (Figure 24). While subjecting compound 32 to chemical
oxidation conditions affected starting material consumption, the in ability to isolate the desired
product demonstrated the incapability of the CAN conditions with substrate 32.
. Ce(lll)
[ e T

MeO \/\OH o
32 33

H+
> HM
o)
34
Figure 24: Propsed mechanism of Ce(III) mediated hydrolysis of the cyclic acetal.

Addition of water to the oxocarbenium ion resulting from mesolytic cleavage of the
radical cation was initially thought to be causing the formation of enal 34. To examine this
hypothesis, the reaction was performed taking great care to exclude the presence of water.
Therefore substrate 32 was re-subjected to the chemical ETIC reaction conditions with the
addition of molecular sieves to sequester any water present. However, enal 34 was still the only
product obtained from the reaction. This suggests the slight Lewis acidic nature of Ce (III) may

be sufficient to promote the hydrolysis of cyclic acetal 33.
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VI. Carbon-Carbon Bond Formation using the ETIC Reation

The design of substrates to undergo oxidative carbon-carbon bond formation would
further expand the synthetic utility of the ETIC reaction. Initial attempts to form carbocycles via
the ETIC reaction led to decomposition of the substrate. The decomposition was attributed to the
preferential oxidation of the nucleophile over the arene. This result indicates the need to design
substrates which possess greater chemoselectivity. The chemoselectivity of electron transfer
processes is dependent upon the oxidation potential of the electrophore. To ensure selective
activation of the benzylic bond, the oxidation potential of the arene must be lower than that of
the electron rich olefin. Therefore, substrates with enhanced chemoselectivity and reactivity will
be designed with the incorporation of electron rich olefins as carbon centered nucleophiles
(Figure 25). While oxidation of the electron rich arenes is expected to occur in preference to
oxidation of the electron rich olefin, this is merely a first approximation. The ability of the
radical cation to undergo intramolecular electron transfer from the olefin to the arene suggests

the reactivity may be under Curtin-Hammett contol.

Ph

Q)\M e ZUOC8H17
I

z

MeO OCeHu7

Z = electron donating group

Figure 25: Designing ETIC substrates to undergo carbon-carbon bond formation.

Compound 25 was chosen as the precursor from which to synthesize the first carbon-
carbon bond forming ETIC substrate (Scheme 8), because of its exceptional reactivity under the

standard photochemical reaction conditions. The sequence began with the conversion of alcohol
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25 to the corresponding tosylate (35). This was followed by displacement of the tosylate to give
the desired alkyne (36) in 62% yield over two steps. Propargyl silane 37 was then obtained

through the alkylation of alkyne 36 with n-butyllithium and iodomethyltrimethylsilane (82%).”'

ph Ph
a b
OCgH
MeO 87 MeO OCgH17
25 35
Ph Ph
C
OCgH = OCgH % SiMes
MeO 817 MeO 817
36 37

Reagents and Conditions: a) TsCl, Et;N, CH,Cl,, 0 °C — RT; b) lithium acetylide-ethylene
diamine complex, DMSO, 0 °C — RT (62% 2 steps); ¢) n-BuLi, -40 °C — 0 °C, then
iodomethyl trimethylsilane, 0 °C - 55 °C (82%).

Scheme 8: Synthesis of a carbon-carbon bond forming ETIC substrate.

Chemical mediated oxidation conditions were chosen to test the ability to form carbon-
carbon via an ETIC reaction. Because CAN exhibits milder oxidative conditions with respect to
the photochemical process. Subjecting a mixture of propargyl silane 37 and NaHCO3 (insoluble
base) in acetonitrile with two equivalents of CAN (oxidant) led to the formation of exocyclic
allene 38 (Figure 26). The isolation of allene 38 in only 47% yield was believed to partially due
to the compound’s volatility, and no efforts were made to optimize this reaction. While the
isolated yield of the reaction was low, the successful cyclization of substrate 37 demonstrated the

ability to form carbon-carbon bonds.
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37 38

Figure 26: ETIC reaction of a propargyl silane to form a carbon-carbon bond.

To explore the scope of carbon-carbon bonding forming ETIC reactions, a few substrates
were designed to undergo an endo-cyclization (Scheme 9). Their synthesis began with the
conversion of alcohol 32 to the tosylate 39. The tosylate (39) was then displaced with lithium
acetylide to provide alkyne 40 in 61% over two steps. Propargyl silane (41) was prepared via the
alkylation of alkyne 40 with n-butyl lithium and iodomethyl trimethylsilane (87%).>' The
propargyl silane was further manipulated to give allylsilane 42 using Lindlar’s catalyst under a

hydrogen atmosphere (93%).

NV a Y b
MeO O OH MeO O OTos
32 39
T c W
MeO O~ = " meo O = s
40 41
d W
MeO O\/\/:\/TMS
42

Reagents and Conditions: a) TsCl, Et;N, CH,Cl,, 0 °C — RT; b) lithium acetylide-ethylene
diamine complex, DMSO, 0 °C — RT (61%); ¢) n-BuLi, -40 °C — 0 °C, then
iodomethyl trimethylsilane, 0 °C - 55 °C (82%); d) Lindlar’s cat., H,, MeOH (93%)).

Scheme 9: Synthesis of a carbon-carbon bond forming substrate via an endo-cyclization.
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To examine the reactivity of propargyl silane 41, it was subjected to chemical mediated
ETIC conditions. Addition of a solution of CAN in acetonitrile to a mixture of the substrate
(41), NaHCO; (insoluble base), 4A molecular sieves (water scavenger) in 1,2-dichloroethane
(solvent) provided no reaction at room temperature. The reaction was then run at 40 °C and 50
°C in an attempt to improve the reactivity, however, the substrate (41) failed to provide the
desired cyclization product. Substrate 41 was then subjected to the more forcing photochemical
reaction conditions. Once again no reaction was observed and the starting material was

recovered (Table 5).

Entry Substrate Product T(°C) Yield (%)

2 W B - RT, 40 & 50 NR.
MeO =

T™MS

41

a) Reaction conditions: CAN (2 eq.), NaHCOs, mol. sieves, DCE, CH;CN
b) Reaction conditions: NMQPFg, hv, O,, NaOAC, Na,S,03, DCE, PhMe

Table 5: Attempts to form carbon-carbon bonds via endo-cyclizations.

The ability to successfully cyclize ETIC substrates containing hydroxyl nucleophiles via
an endo-cyclic pathway demonstrates the reactivity of such substrates. Therefore, the failure of
substrate 41 to cyclize suggests the reactivity of the nucleophile may be insufficient to affect
cyclization. While propargyl silanes have been noted to deomonstrate poor nucleophilicity,’>
another possible explanation for he lack of reactivity could be the significant steric crowding

present in the transition state (Figure 27).
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Figure 27: Sterically congested transition state of 6 endo-cyclization.

Attempts to cyclize allylsilane 42 under our chemical mediated oxidation conditions led
to the unexpected formation of allyl nitrate 43. The rate of allyl nitrate (43) formation was
essentially instantaneous at room temperature. While allyl nitrate 43 was not easily purified and
isolated, analysis of the crude 'H NMR spectrum showed diagnostic peaks of an electron
deficient allyl group. Similar allylsilanes have been shown to resist oxidation when subjected to
CTAN for extended reaction times.” However, an a-tributylstannyl ether served as the
electrophore in this case. This suggests the arene may be responsible for the difference in
reactivity noted for substrate 42. The mechanism for this process is postulated to begin with
oxidation of the arene in preference to the allylsilane (Figure 28).>* This initial oxidation is then
followed by intramolecular electron transfer from the arene to the allylsilane. The rate of this
intramolecular electron transfer occurs faster than the desired benzylic bond cleavage, and results
in the formation of an allylsilane centered radical cation. The generation of an allyl radical
procedes rapidly through the nucleophile (acetonitrile) assisted cleavage of the silane.”> The
resulting allyl radical may be further oxidized to the allyl cation, which is trapped with a nitrate
anion to form 43. Moeller has noted similar antenna effects in the electrochemical oxidations of

tertiary amides that contain electron rich arenes.™
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Figure 28: Mechanism to explain the antenna effect of allylsilane oxidation.

VII. Exploring the Range of Nucleophiles Tolerated by ETIC Conditions

The successful cyclization of propargy silane 37 demonstrated the ability to form carbon-
carbon bonds via ETIC reactions. However, the low isolated yield and poor efficiency of the
reaction prompted further examination of this process. Due to the excellent reactivity
demonstrated by substrate 25 with hydroxyl nucleophiles, the lack of reactivity must be
dependent upon the nature of the nucleophile. To test this hypothesis, Lijun Wang prepared
several substrates with various electron rich olefins as nucleophiles.”” The general structure of
these substrates was modeled from compound 25. This provided a control in the experiment, and

allowed for the effect of the nucleophile to be explored (Table 6).
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Entry? Substrate® Product Yield (%)°

OMOM
14 ArzHcW bOMOM 71
OCeH17 ~gime,

CgH170
(0]
2 ArzHC\KV\/ 94
OCgH;70Ac CgH170
X
3¢ AFZHCM.\ 91
OCgH17 SiMe CgH170

*Reaction conditions: 2.2 equiv CAN in CH3CN was added to a suspension of
the substrate, NaHCO3, and 4 A mol. sieves in DCE at room temperature (Entry 1)
or 40 °C (Entries 2 and 3); ® Ar,CH = p-MeOPhC(H)Ph; © isolated yields after flash
column chromatography; ¢ products isolated as a 1.7:1 ratio of diastereomers;

¢ reaction provided a 1.2:1 (trans:cis) ratio of diastereomers.

Table 6: Exploring other carbon nucleophiles in ETIC reactions.

The smooth conversion of allylsilane (Table 6, entry 1) was quite remarkable given the
difficulties in cyclizing previous allylsilanes. However, the difference in reactivity may be
explained by the inductively withdrawing protected hydroxyl group present. While entries 2 and
3 required gentle heating to effect reactivity, the process was extremely efficient. The successful
cyclization of these substrates once again demonstrates the ability to rationally design substrates
through rational structural changes. Incorporation of the above nucleophiles in the design of
new ETIC substrates will allow for greater diversity in product formation.

To test the general efficiency of enol acetates to act undergo ETIC reactions, a substrate
was designed to undergo an endo-cyclic carbon-carbon bond formation. The substrate was
designed to reflect the general structure of compound 32 (Scheme 10). Therefore, the synthesis
began with the oxidation of alcohol 32 to provide aldehyde 44. The aldehyde (44) was then
converted to the terminal alkyne (45) via Ohira reaction® in 18% over two steps. Installation of

the enol acetate (46) was then affected through the ruthenium catalyzed Markovnikov addition of
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acetic acid to alkyne 45.>° This method provides a mild and efficient process for the conversion
of terminal alkynes to the Markovnikov enol acetate with excellent levels of regiochemical
control. The postulated mechanism™® for this reaction suggests coordination of the ruthenium
complex with the alkyne. The complex then undergoes a regioselective addition of the
carboxylic acid. The regioselectivity of the reaction is dependent upon the ligands surrounding
the ruthenium center (bulky ligands lead to Markovnikov addition). Finally the catalyst is turned

over through deprotonation of the vinyl ruthenium species.

NV, a s b
MeO O OH MeO OW "
32 44 (@]
AN 5 c W
(@) (@)
MeO V\\\ MeO WOAC
45 46

Reagents and Conditions: a) Dess-Martin periodane, NaHCOj;, CH,Cly; b) dimethyl (1 — diazo — 2 —
oxopropyl) phosphonate, K,CO;, MeOH, 0 °C — RT (18% 2 steps); ¢) Ru[(p-cymene)PPh;Cl], acetic
acid, toluene, 80 °C (39%)

Scheme 10: Synthesis and endo-cyclization of an enol acetate.

The efficiency with which enol acetates participate in endo-cyclic ETIC reactions was
determined using the standard chemical mediated oxidation conditions. A mixture of substrate
46, NaHCO;s (insoluble base) and 4A molecular sieves (water scavenger) in 1,2-dichloroethane

was treated with a solution of CAN in acetonitrile dropwise at 40 °C.  After 45 minutes,
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tetrahydropyranone 47 was obtained in 91% yield (Figure 29). The ability to form the desired
tetrahydropyranone in high isolated yield demonstrated the general applicability of enol acetates

as nucleophiles in ETIC reactions.

NS 7 CAN, NaHCO3, DCE (e} NS C8H17
@) OAC mol. sieves, CH3CN
MeO W 91%

o]
46 a7

Figure 29: Endo-cyclization of an enol acetate to form a 2-alkyltetrahydropyranone.
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1.3.  Conclusion

The ability to predict the thermodynamic tendacy of a carbon-carbon bond to cleave in a
radical cation has been demonstrated using a simple arithematical equation. This requires only
knowledge regarding the bond dissociation energy of the desired bond in the ground state, the
oxidation potential of the electrophore and the oxidation potential of the radical leading to the
cationic fragment. The generality of this relationship is somewhat limited and is most applicable
when comparing compounds of a particular series. In the comparison of a series, the relative
oxidation potentials and bond dissociation energies are sufficient in predicting trends in radical
cation cleavage. This study has demonstrated that lowering the oxidation potential of the
substrate leads to stabilization of the radical cation and disfavors the desired fragmentation.
However, the propensity of the radical cation to undergo cleavage may be recovered by lowering
the bond dissociation energy of the benzylic carbon-carbon bond. This was accomplished
through the placement of substituents (radical stabilizing groups) in the benzylic or
homobenzylic position.

These structural alterations have allowed for exploration of the ETIC reaction’s scope
and limitations. The design of substrates with lower oxidation potentials led to the development
of a mild chemically initiated variant of the ETIC reaction conditions using ceric ammonium
nitrate (CAN). A new method of activating the benzylic position toward nucleophilic attack was
also discovered through the use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). In
addition to the experimental advances, the ability to gain access to more diverse products has
been realized. This was accomplished through designing substrates to undergo endo-cyclic
transformations, as well as, the introduction of electron rich olefins as carbon centered

nucleophiles.

46



1.4.  Experimental

General Experimental:

All reactions were performed in oven or flame dried glassware under a nitrogen atmosphere with
magnetic stirring unless otherwise noted.

Proton (‘"H NMR) and carbon (*C NMR) nuclear magnetic resonance spectra were recorded on
Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively. The chemical shifts
are given in parts per million (ppm) on the delta (8) scale. The solvent peak or the internal
standard tetramethylsilane were used as reference values. For '"H NMR: CDCl; = 7.27 ppm,
TMS = 0.00 ppm. For *C NMR: CDCl; = 77.23, TMS = 0.00. For proton data: s = singlet; d =
doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; dt = doublet of triplets; ddt
= doublet of doublet of triplets; br = broad; m = multiplet; app t = apparent triplet; app q =
apparent quartet; app p = apparent pentet.

High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer.
Infrared (IR) spectra were collected on a Mattson Gygnus 100 spectrometer.

Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (25 nm)
silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash column
chromatography was preformed using ICN SiliTech 32-63 60A silica gel. Reagent grade ethyl
acetate and hexanes (commercial mixture) were purchased from EM Science and used as is for
chromatography. Reagent grade methylene chloride (CH,Cl,), dicholoroethane (C,H4Cly),
acetonitrile (CH3CN), benzene and toluene were distilled from CaH,. Diethyl ether (Et,O) and

tetrahydrofuran (THF) were distilled from sodium benzophenone ketyl prior to use. Anhydrous

47



N,N-dimthylformamide (DMF), methanol (MeOH), dimethyl sulfoxide (DMSO) were purchased

from Aldrich and used as is.

2-(4-Methoxybenzyl)oxirane (1)

To 4-allylanisole (5.00 g, 33.73 mmol) in CH,Cl, (90 mL) at 0 °C was added

o

Meo NaOAc (27.68 g, 337.30 mmol). The mixture was stirred for 5 minutes and m-

CPBA (14.50 g, 50.60 mmol) was added, and the reaction was slowly warmed to room
temperature. The reaction mixture was stirred for 4.5 hours and additional m-CPBA (9.67 g,
33.73 mmol) was added. The reaction was then stirred overnight and quenched by adding
aqueous Na,SOs. The reaction mixture was extracted with ethyl acetate (2x). The organic layers
were then combined and washed with aqueous NaOH (10%), water and brine. The organic layer
was then dried (Na,SO,), filtered and concentrated. The resulting residue was purified by flash
column chromatography ((15% EtOAc in hexanes) to provide the desired product (1.42 g, 26%):
'H NMR (300 MHz, CDCl3) & 7.18 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 3.15-3.10 (m,
1H), 2.80 (dd, J = 14.5, 5.5 Hz, 1H), 2.77 (dd, J = 14.6, 5.4 Hz, 1H), 2.77-2.74 (m, 1H), 2.53

(dd, J=4.9,2.6 Hz, 1H)."!

1-(4-Methoxyphenyl)but-3-en-2-ol (2)

/@AN
MeO oH

mixture was stirred for 20 minutes and 2-(4-methoxybenzyl)oxirane (1.21 g, 7.36 mmol) was

To a suspension of Cul (140.1 mg, 0.736 mmol) in THF (10 mL) at -78 °C

was added vinyl magnesium bromide (1.0 M, 25.77 mL, 25.77 mmol). The

added. The reaction was stirred at -78 °C for 2 hours and then slowly warmed to room
temperature. The reaction was then quenched by adding aqueous NH4Cl. Air was then gently

bubbled through the mixture for 2 hours. The mixture was extracted with ethyl acetate (2x). The
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organic layers were then combined and washed with water and brine. The organic layer was
then dried (Na,S0O,), filtered and concentrated. The resulting residue was then purified by flash
column chromatography (25% EtOAc in hexanes) to provide the desired product (1.36 g, 96%):
'H NMR (300 MHz, CDCl3) § 7.14 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6, 2H), 5.92-5.80 (m, 1H),
5.20-16 (m, 1H), 5.14-5.13 (m, 1H), 3.86-3.82 (m, 1H), 3.80 (s, 3H), 2.77 (dd, J = 13.7, 4.9 Hz,
1H), 2.67 (dd, J = 13.7, 7.8 Hz, 1H), 2.38-2.31 (m, 1H), 2.27-2.21 (m, 1H), 1.70 (br, 1H);"C
NMR (75 MHz, CDCl;) § 158.6, 135.0, 130.7, 118.3, 114.3, 72.0, 55.6, 42.7, 41.4; IR (neat)
3421, 2933, 2835, 1612, 1512, 1246, 807 cm™'; HRMS (EI) caled for Cj,H 60, 192.1150, found

192.1151.

1-Methoxy-4-(2-octyloxybut-3-enyl)benzene (3)

/@AN To 1-(4-methoxyphenyl)but-3-en-2-o0l (1.30 g, 6.76 mmol) in DMF (20 mL) at
e o 0 °C was added sodium hydride (1.018 g, 25.46 mmol). The mixture was
stirred for 15 minutes and octyl iodide (7.64 g, 31.83 mmol) was added. The reaction was
slowly warmed to room temperature and stirred overnight, then was quenched with the addition
of water at 0 °C. The mixture was extracted with ethyl acetate (2x), and the organic layers were
combined and washed with water and brine. The organic layer was then dried Na,SOy, filtered
and concentrated. The resulting residue was purified by flash column chromatography (5%
EtOAc in hexanes) to provide the desired product (1.32 g, 64%): 'H NMR (300 MHz, CDCls)
8 7.10 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 5.90-5.84 (m, 1H), 5.10-5.04 (m, 2H), 3.79
(s, 3H), 3.50-3.30 (m, 3H), 2.76 (dd, J = 13.8, 6.5 Hz, 1H), 2.69 (dd, J = 13.8, 5.9 Hz, 1H), 2.25-
2.23 (m, 2H), 1.50 (p, J = 6.5 Hz, 2H), 1.24 (bs, 10H), 0.88 (t, J = 7.1 Hz, 3H); °C NMR (75
MHz, CDCls) 6 158.3, 135.5, 131.6, 130.7, 117.1, 113.9, 80.9, 69.9, 63.3, 55.5, 39.9, 38.5, 32.1,

30.8,29.7, 29.6, 26.5, 22.9, 14.4; IR (neat) 2927, 2855, 1512, 1247, 1039 cm™.
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4-(4-Methoxyphenyl)-3-octyloxybutan-1-ol (4)

SR
OCgH
MeO 817

reaction was stirred for 10 minutes and quenched by adding water (1 mL) dropwise followed by

To 1-methoxy-4-(2-octyloxbut-3-enyl)benzene (1.30 g, 4.03 mmol) in THF

(5 mL) at 0 °C was added BH3'THF (1M, 12.09 mL, 12.09 mmol). The

20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide (1 mL) and saturated Na,SO3 (2
mL). The mixture was stirred for an addition 45 minutes. The mixture was extracted with ethyl
acetate (2x), and the organic layers were combined and washed with water and brine. The
organic layer was dried (Na,SO,), filtered and concentrated. The resulting residue was purified
by flash column chromatography (20% EtOAc in hexanes) to provide the desired product (447.9
mg, 34%): 'H NMR (300 MHz, CDCl3) § 7.10 (d, J = 8.5 Hz, 2H), 6.8 (d, J = 8.5 Hz, 2H), 3.78
(s, 3H), 3.61 (t, J = 5.8 Hz, 2H), 3.49-3.37 (m, 3H), 2.85 (dd, J = 13.7, 5.8 Hz, 1H), 2.64 (dd, J =
13.7, 6.7 Hz, 1H), 2.10 (s, 1H), 1.70-1.60 (m, 2H), 1.59-1.43 (m, 4H), 1.25 (bs, 10H), 0.88 (t, J =
6.4 Hz, 3H); °C NMR (75 MHz, CDCl3) & 158.29, 131.28, 130.63, 113.99, 81.30, 69.95, 55.53,
39.71, 32.14, 30.84, 30.35, 29.73, 29.57, 29.13, 26.48, 22.96, 14.41; IR (neat) 3445, 2928, 2855,

1612, 1512, 1247, 819 cm™.

(4-Methoxyphenyl)acetaldehyde (5)

mH
o
MeO

slowly warmed to room temperature and stirred for 2 hours. The reaction was quenched by the

To 2-(4-methoxyphenyl)ethanol (2.00 g, 13.10 mmol) in CH,CI, (25 mL) at 0 °C

was added Dess-Martin Periodane (8.37 g, 19.70 mmol). The mixture was then

addition of aqueous NaHCO; (10 mL) followed by aqueous Na,S,03; (15 mL) and water. The
mixture was stirred 2 hours and filtered to remove the insoluble material. The filtrate was

extracted with CH,Cl, (2x), and the organic layers were combined and washed with water and
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brine. The organic layer was then dried (Na,SO,), filtered and concentrated. The product was
obtained without any further purification (1.97 g, 100%): "H NMR (300 MHz, CDCls) § 9.73 (t,

J=2.4Hz, 1H), 7.12 (d, J = 8.6 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.64 (s, 2H).?

2-(4-Methoxyphenyl)-2-methylpropionaldehyde (6)

., To (4-methoxyphenyl)ethanol (581.6 mg, 3.87 mmol) in THF (5 mL) at -78 °C
Meo/©>§OT was added potassium tert-butoxide (956.2 mg, 8.52 mmol) and methyl iodide
(1.2093 g, 8.52 mmol). The reaction was stirred at -78 °C for 4 hours and then slowly warmed to
room temperature. The reaction mixture was then quenched by the addition of aqueous NH4Cl.
The mixture was extracted with ethyl acetate (2x), and the organic layers were combined and
washed with water and brine. The organic layer was then dried (Na,SO,), filtered and
concentrated. The resulting residue was purified by flash column chromatography (10% EtOAc
in hexanes) to provide the desired product (145.5 mg, 21%): "H NMR (300 MHz, CDCl3) & 9.45
(s, 1H), 7.20 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 1.46 (s, 6H); °C NMR
(75 MHz, CDCls) & 202.0, 168.9, 158.6, 132.9, 127.7, 114.1, 55.1, 49.6, 22.4; IR (neat) 2971,
2935, 2836, 1723, 1609, 1513, 1465, 1252, 1185, 1034, 909, 829, 796 cm™'; HRMS (EI) calcd

for C11H40, 178.0994, found 178.0994.

2-(4-Methoxyphenyl)-2-methylhex-5-en-3-ol (7)

/©><N To 2-(4-methoxyphenyl)-2-methylpropionaldehyde (145.5 mg, 0.816 mmol)
Meo " in THF (5 mL) at -78 °C was added allyl magnesium bromide (1.0 M, 4.08
mL, 4.08 mmol). The mixture was then slowly warmed to room temperature over 30 minutes,
and stirred at room temperature for an additional 2 hours. The reaction was then quenched by

the addition of aqueous NH4Cl at 0 °C. The mixture was extracted with ethyl acetate (2x), and
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the organic layers were combined and washed with water and brine. The organic layer was then
dried (Na,SOy), filtered and concentrated. The resulting residue was purified by flash column
chromatography (20% EtOAc in hexanes) to provide the desired product (149.6 mg, 83%): 'H
NMR (300 MHz, CDCls) & 7.15 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 5.88-5.74 (m, 1H),
5.11-5.08 (m, 1H), 5.05-5.03 (m, 1H), 3.81 (s, 3H), 3.63 (dd, J = 10.4, 2.1 Hz, 1H), 2.24-2.17
(m, 2H), 1.35 (s, 3H), 1.33 (s, 3H); °C NMR (75 MHz, CDCl3) & 158.1, 136.7, 127.9, 117.5,
113.9, 78.7, 55.5, 41.9, 36.9, 24.7, 24.3; IR (neat) 3481, 2970, 1610, 1513, 1251, 1185, 1035,

829 cm™'; HRMS (EI) caled for C14H200, 220.1463, found 220.1465.

1-(1,1-Dimethyl-2-octyloxypent-4-enyl)-4-methoxybenzene (8)

/©><N To 2-(4-methoxyphenyl)-2-methylhex-5-en-3-ol (171.6 mg, 0.778 mmol) in
o *“™  DMF (5 mL) at 0 °C was added NaH (124.6 mg, 3.11 mmol). The mixture
was stirred for 15 minutes and octyl iodide (935.2 mg, 3.89 mmol) was added. The mixture was
then slowly warmed to room temperature and stirred for 18 hours. The reaction was quenched
by the addition of water. The mixture was then extracted with hexanes (2x), and the organic
layers were then combined and washed with water and brine. The organic layer was then dried
(NaySOQ,), filtered and concentrated. The residue was then purified by flash column
chromatography (5% EtOAc in hexanes) to provide the desired product (155.5 mg, 60%): 'H
NMR (300 MHz, CDCls) 6 7.31 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 5.84-5.72 (m, 1H),
4.99-4.98 (m, 1H), 4.93-4.90 (m, 1H), 3.81 (s, 3H), 3.50 (dt, J = 8.6, 6.3 Hz, 1H), 3.27-3.20 (m,
2H), 2.01 (app t, 2H), 1.51-1.48 (m, 2H), 1.34 (s, 3H), 1.32 (s, 3H), 1.27-1.25 (m, 10H), 0.91 (4,
J = 5.8 Hz, 3H); °C NMR (75 MHz, CDCls) & 157.6, 140.0, 137.3, 127.6, 115.6, 113.2, 88.3,

73.2,55.2,42.5,36.4,31.9, 30.3, 29.5, 29.3, 26.2, 23.6, 22.6, 14.0; IR (neat) 2924, 2853, 1613,
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1512, 1464, 1246, 1177, 1040, 920, 806 cm™'; HRMS (EI) caled for CioH3,0, (M — 41)

291.2324, found 291.2329.

5-(4-Methoxyphenyl)-5-methyl-4-octyloxyhexan-1-ol (9)

/@><NOH To 1-(1,1-dimethyl-2-octyloxypent-4-enyl)-4-methoxybenzene (155.5 mg,
MeO %™ 0.467 mmol) in THF (3 mL) at 0 °C was added BH;-THF (1.0 M, 1.402
mL, 1.402 mmol). The mixture was stirred for 20 minutes and quenched by the drop wise
addition of water followed by 20% aqueous NaOH (1 mL), 30% aqueous hydrogen peroxide (1
mL) and saturated Na,SOs3 (2 mL). The mixture was stirred for an addition 45 minutes. The
mixture was then extracted with EtOAc (2x), and the organic layers were then combined and
washed with water and brine. The organic layer was then dried (Na,SO,), filtered and
concentrated. The residue was then purified by flash column chromatography (20% EtOAc in
hexanes) to provide the desired product (101.0 mg, 62%): 'H NMR (300 MHz, CDCl3) & 7.30
(d, J = 8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.55 (t, J = 6.4 Hz, 2H), 3.45 (dt, J =
8.6, 6.6 Hz, 1H), 3.27-3.16 (m, 2H), 1.72-1.66 (m, 1H), 1.52-1.46 (m, 6H), 1.34 (s, 3H), 1.30 (s,
3H), 1.28-1.22 (m, 10H), 0.89 (t, J = 6.9 Hz, 3H); °C NMR (75 MHz, CDCl3) & 157.6, 140.2,
127.5,113.3,96.9, 73.8, 66.6, 63.2, 55.2, 42.5, 31.8, 30.5, 30.4, 29.7, 29.5, 29.3, 27.9, 26.3, 26.1,
24.6, 23.9, 22.7, 14.1; IR (neat) 3374, 2928, 2855, 1513, 1465, 1249, 1184, 1094, 1038, 828

-1
cm .

1-(4-Methoxyphenyl)prop-2-en-1-ol (10)
on  To p-anisaldehyde (2.00 g, 14.69 mmol) in THF (20 mL) at — 78 °C was added
MeO vinyl magnesium bromide (1.0 M, 29.37 mmol, 29.37 mL). The reaction was

then slowly warmed to room temperature over 8 hours and quenched by the addition of NH4Cl
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(aq). The mixture was extracted with EtOAc (2x), and the organic layers were then combined
and washed with water and brine. The organic layer was then dried (Na,SO,), filtered and
concentrated. The residue was purified by flash column chromatography (20% EtOAc in
hexanes) to provide the desired product (1.99 g, 83%): "H NMR (300 MHz, CDCls) & 7.30 (d, J
= 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.08-6.00 (m, 1H), 5.34 (d, J = 16.8 Hz, 1H), 5.21-5.19

(m, 2H), 3.81 (s, 3H), 1.93 (d, J = 3.8 Hz, 1H).”*

2,2-Dimethylpropionic acid-4-hydroxybutyl ester

To 1,4 butane diol (10.00 g, 111.0 mmol) in CH,Cl, (100 mL) at 0 °C was added
pivo” O

DMAP (10 mg) and pyridine (17.56 g, 222.0 mmol). The mixture was stirred at 0
°C for 10 minutes and 2,2-dimethyl-propionic acid chloride (5.35 g, 44.38 mmol) was added.
The reaction was then slowly warmed to room temperature over 12 hours and quenched by the
addition of water. The mixture was then extracted with CH,Cl, (2x), and the organic layers were
then combined and washed with water and brine. The organic layer was then dried (Na;SOy),
filtered and concentrated. The residue was purified by flash column chromatography (20%

EtOAc in hexanes) to provide the desired product (6.07 g, 79%): 'H NMR (300 MHz, CDCl;) &

4.16 (t, J = 6.6 Hz, 2H), 3.68 (t, J = 6.2 Hz, 2H), 1.73-1.64 (m, 4H), 1.21 (s, 9H).*’

2,2-Dimethylpropionic acid-4-oxobutyl ester (11)
' ., To 2,2-dimethylpropionic acid-4-hydroxy butyl ester (1.50 g, 8.61 mmol) in
Plvow

° CH,Cl, (15 mL) at 0 °C was added trichloroisocyanuric acid (2.19 g, 9.47 mmol).
The slurry was stirred at 0 °C for 10 minutes and TEMPO (13.4 mg, 0.0861 mmol) was added.

The mixture was then slowly warmed to room temperature over 20 minutes. The reaction

mixture was then filtered over celite, and the filtrate was washed with NaHCOs (aq), 1N HCI,
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water and brine. The organic layer was then dried (Na,SOs), filtered and concentrated. The
desired product was obtained without the need for further purification (1.3136 g, 89%): 'H
NMR (300 MHz, CDCl3) 6 9.81 (s, 1H), 4.10 (t, J = 6.0 Hz, 2H), 2.52 (t, J = 5.9 Hz, 2H), 2.01

(app p, 2H), 1.20 (s, 9H).*

2,2-Dimethylpropionic acid-4-hydroxy-5-(4-methoxyphenyl)hept-6-enyl ester (12)

X To 2,2-dimethylpropionic acid-4-oxobutyl ester (1.31 g, 7.63 mmol), 1-(4-
Meo/©AC‘>HM o methoxyphenyl)prop-2-en-1-ol (1.88 g, 11.44 mmol) and SnCl, (4.33 g,
22.88 mmol) in DMI (30 mL) was added PdCl,(CNPh), (58.5 mg, 0.152 mmol). The reaction
was then stirred for 24 hours and was diluted with 240 mL of ether:CH,Cl, (2:1). The mixture
was then washed with 10% HCI, NaHCO; (aq), water and brine. The organic layer was then
dried (Na,SQO,), filtered and concentrated. The residue was then purified by flash column
chromatography (10% EtOAc in hexanes) to provide the desired product in a greater than 10:1
anti:syn ratio (875.0 mg, 36%): 'H NMR (300 MHz, CDCl;) 8 7.11 (d, J = 8.7 Hz, 2H), 6.87, (d,
J =18.7 Hz, 2H), 6.10 (ddd, J = 19.6, 10.5, 9.1 Hz, 1H), 5.18 (d, J = 19.3 Hz, 1H), 5.14 (d, J =
10.5 Hz, 2H), 4.12 (t, J = 6.5 Hz, 2H), 3.84-3.74 (m, 2H), 3.79 (s, 3H), 1.89 (br, 1H), 1.88-1.78
(m, 1H), 1.77-1.61 (m, 1H), 1.45-1.28 (m, 2H), 1.12 (s, 9H); °C NMR (75 MHz, CDCl;) &
178.75, 158.7, 138.8, 133.6, 129.2, 117.9, 114.6, 73.9, 64.5, 56.7, 55.5, 38.9, 30.8, 27.4, 25.3;

HRMS (EI) calcd for Ci9Hy603 (M — 18) 302.1882, found 302.1887.

2,2-Dimethylpropionic acid-5-(4-methoxyphenyl)-4-octyloxyhept-6-enyl ester
~ To 2,2-dimethylpropionic acid-4-hydroxy-5-(4-methoxyphenyl)hept-6-
OPiv
Meom enyl ester (800.0 mg, 2.49 mmol) in DMF (10 mL) at 0 °C was added

NaH (399.5 mg, 9.98 mmol). The mixture was stirred at 0 °C for 10 minutes and octyl iodide
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(2.99 g, 12.48 mmol) was added. The reaction was then slowly warmed to room temperature
over 12 hours and quenched by the addition of water. The mixture was then extracted with
hexanes (2x) and the organic layers were combined and washed with water and brine. The
organic layer was then dried (Na,SOy), filtered and concentrated. The desired product was

obtained as an impure mixture which could not be separated.

5-(4-Methoxyphenyl)-4-octyloxyhept-6-en-1-ol (13)

~ To 2,2-dimethyl-propionic acid 5-(4-methoxyphenyl)-4-octyloxyhept-6-
Meom " enyl ester (400.0 g, 0.924 mmol) in THF (5 mL) at 0 °C was added LAH
(42.1 mg, 1.10 mmol). The reaction was then slowly warmed to room temperature over 4 hours
and quenched by the addition of 10% NaOH. The mixture was then extracted with EtOAc (3x)
and the organic layers were combined and washed with water and brine. The organic layer was
then dried (Na,SO,), filtered and concentrated. The residue was purified by flash column
chromatography (30% EtOAc in hexanes) to provide the desired product with a ratio of greater
than 10:1 anti:syn isomers (11.1 mg, 3%): 'H NMR (300 MHz, CDCI3) & 7.13 (d, J = 8.6 Hz,
2H), 6.85 (d, J = 8.6 Hz, 2H), 6.15 (ddd, J = 17.1, 9.9, 2.7 Hz, 1H), 5.10 (d, J = 10.0 Hz, 1H),
5.02 (d,J=17.4 Hz, 1H), 3.79 (s, 3H), 3.58 (t,J = 5.0 Hz, 2H), 3.51-3.41 (m, 4H), 1.93 (br, 1H),
1.67-1.47 (m, 4H), 1.35-1.28 (m, 12H), 0.89 (t, J = 6.4 Hz, 3H); °C NMR (75 MHz, CDCl3) &
158.1, 139.1, 134.0, 129.2, 116.0, 113.8, 83.0, 70.63, 63.0, 55.2, 53.0, 31.8, 30.0, 29.4, 29.3,
28.6, 26.2, 22.6, 14.0; IR (neat) 3386, 2928, 2856, 1610, 1511, 1465, 1246, 1178, 1098, 1038,

914, 829 cm'l; HRMS (EI) caled for C»;,H340, (M — 18) 330.2558, found 330.2565.

4-(tert-Butyldimethylsilanyloxy)butan-1-ol (14)%

o~—~or To l.4-butane diol (5.00 g, 55.5 mmol) in THF (50 mL) was added NaH (2.22 g,

TBS
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55.5 mmol). The mixture was then stirred for 45 minutes and TBSCI (8.36 g, 55.5 mmol) was
added. The reaction was then allowed to stir for 8 hours and was quenched by the addition of
water. The mixture was then extracted with EtOAc (2x) and the organic layers were combined
and washed with water and brine. The organic layer was then dried (Na,SO,), filtered and
concentrated. The desired product was obtained without the need for further purification (9.83 g,
87%): 'H NMR (300 MHz, CDCl3) & 3.60-3.65 (m, 4H), 1.67-1.63 (m, 4H), 0.90 (s, 9H), 0.04

(s, 6H).

4-(tert-Butyldimethylsilanyloxy)butyraldehyde (15)

TBSOWH To 4-tert-butyldimethylsilanoxy)butan-1-ol (1.00 g, 4.89 mmol) in CH,Cl, (10

(0]
mL) at 0 °C was added trichloroisocyanuric acid (1.25 g, 5.25 mmol). The slurry

was then stirred at 0 °C for 10 minutes and TEMPO (0.0076 g, 4.89x10~ mmol) was added. The
reaction was then slowly warmed to room temperature over 20 minutes. The mixture was then
filtered through celite and the filtrate was washed with NaHCO; (aq), 1N HCI, water and brine.
The organic layer was then dried (Na,SOy), filtered and concentrated. The desired product was
obtained without the need for further purification (941.7 mg, 95%): 'H NMR (300 MHz, CDCl;)
5 9.80 (d, J = 1.6 Hz, 1H), 3.66 (t, J = 6.2 Hz, 2H), 2.50 (td, J = 7.0, 1.6 Hz, 2H), 1.86 (app p,

2H), 0.89 (s, 12H), 0.05 (s, 6H).*

7-(tert-Butyldimethylsilanyloxy)hept-1-en-4-ol (16)

e _ To 4-(tert-butyldimethylsilanyloxy)butyraldehyde (5.88 g, 29.1 mmol) in THF

(50 mL) at — 78 °C was added allyl magnesium bromide (1.0M, 145.5 mmol,
145.5 mL) dropwise. The reaction was then slowly warmed to room temperature over 12 hours

and quenched by the addition of NH4Cl (aq). The mixture was then extracted with EtOAc (2x)
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and the organic layers were combined and washed with water and brine. The organic layer was
then dried (Na,SOs), filtered and concentrated. The residue was then purified by flash column
chromatography (15% EtOAc in hexanes) to provide the desired product (3.88 g, 55%): 'H
NMR (300 MHz, CDCI3) 6 5.86-5.81 (m, 1H), 5.15-5.09 (m, 2H), 3.68-3.62 (m, 3H), 2.25-2.23

(m, 2H), 1.67-1.63 (m, 4H), 1.28 (br, 1H), 0.90 (s, 9H), 0.06 (s, 6H).*’

tert-Butyldimethyl(4-octyloxyhept-6-enyloxy)silane (17)

eo _ To 7-(tert-butyldimethylsilanyloxy)hept-1-en-4-ol (3.88 g, 15.88 mmol) in

OCgH17

DMF (40 mL) at 0 °C was added NaH (2.54 g, 63.52 mmol). The mixture was
then stirred at 0 °C for 20 minutes and octyl idodide (19.07 g, 79.44 mmol) was added. The
reaction was then slowly warmed to room temperature over 12 hours and the reaction was
quenched by the addition of water. The mixture was then extracted with hexanes (2x) and the
organic layers were combined and washed with water and brine. The organic layer was then
dried (Na,SQO,), filtered and concentrated. The residue was then purified by flash column
chromatography (5% EtOAc in hexanes) to provide the desired product (3.59 g. 63%): 'H NMR
(300 MHz, CDCI3) 6 5.89-5.76 (m, 1H), 5.10-5.04 (m, 2H), 3.67-3.59 (m, 2H), 3.49-3.28 (m,
3H), 2.29-2.25 (m, 2H), 1.62-1.57 (m, 4H), 1.29-1.27 (m, 12H), 0.92-0.88 (m, 3H), 0.91 (s, 9H),
0.03 (s, 6H); °C NMR (75 MHz, CDCls) & 135.5, 117.5, 79.1, 69.4, 63.5, 38.8, 33.2, 32.1, 30.5,
30.1, 29.8, 29.6, 29.0, 26.6, 22.9, 18.6, 14.3, -4.9; HRMS (EI) calcd for C;;H430,S1 (M — 1)

355.3032, found 355.3035.

tert-Butyl[7-(4-methoxyphenyl)-4-octyloxyhept-6-enyloxy]dimethylsilane (18)

To tert-butyldimethyl(4-octyloxyhept-6-enyloxy)silane (1.00 g, 2.8
~ OTBS
Meom mmol) and 4-vinyl anisole (1.88 g, 14.0 mmol) in CH,Cl, (10 mL)
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was added Grubbs II (119.1 mg, 0.14 mmol). The reaction mixture was then warmed to 40 °C
for 12 hours. The mixture was then cooled to room temperature and filtered through silicia gel
(20% EtOAc in hexanes). The filtrate was then concentrated and the residue was purified by
flash column chromatography (5% EtOAc in hexanes) to provide the desired product as 3:1
inseperable mixture of isomers (506.6 mg, 39%): 'H NMR (300 MHz, CDCls, major isomer) &
7.27 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.36 (d, J = 15.8 Hz, 1H), 6.10 (dt, J = 15.8,
7.2 Hz, 1H), 3.80 (s, 3H), 3.63-3.60 (m, 2H), 3.54-3.51 (m, 1H), 3.47-3.40 (m, 2H), 2.44-2.36
(app q, 2H), 1.67-1.60 (m, 4H), 1.34-1.28 (m, 10H), 0.88-0.87 (m, 3H), 0.87 (s, 9H), 0.05 (s,
6H); °C NMR (75 MHz, CDCl3) & 159, 131.4, 131.3, 130.9, 129.9, 129.3, 127.8, 127.4, 125.2,
114.3, 81.1, 79.6, 69.5, 63,6, 59.9, 55.6, 32.6, 32.1, 30.7, 30.5, 30.3, 29.8, 29.6, 29.2, 29.1, 26.6,

26.3,22.9,18.6, 14.3,-4.9.

7-(4-Methoxyphenyl)-4-octyloxyhept-6-en-1-ol (19)

AN
/@N\NOH
MeO OCgH17

added TBAF (372.0 mg, 1.42 mmol). The reaction was stirred at room temperature for 4 hours

To tert-butyl[7-(4-methoxyphenyl)-4-octyloxyhept-6-

enyloxy]dimethylsilane (506.6 mg, 1.09 mmol) in THF (5 mL) was

and quenched by the addition of water. The mixture was extracted with EtOAc (2x) the organic
layers were combined and washed with water and brine. The organic layer was then dried
(NayS0,), filtered and concentrated. The residue was purified by flash column chromatography
(15% EtOAc in Hexanes) to provide the desired product (63.1 mg, 17%): 'H NMR (300 MHz,
CDCI3) 6 7.30 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 6.39 (d, J = 15.8 Hz, 1H), 6.03 (dt, J
=15.5,7.6 Hz, 1H), 3.80 (s, 3H), 3.65-3.57 (m, 2H), 3.56-3.54 (m, 1H), 3.52-3.46 (m, 2H), 2.51-
2.37 (m, 2H), 2.27 (app t, 1H), 1.74-1.71 (m, 4H), 1.59-1.57 (m, 4H), 1.26-1.23 (m, 12H), 0.90-

0.88 (m, 3H).
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5-Phenylpent-4-yn-1-ol (20)
©WOH To a suspension of Pd(PPhs), (549.2 mg, 0.475 mmol) in THF (50 mL) were
added 4-pentyn-1-ol (2.00 g, 23.7 mmol), iodobenzene (9.69 g, 47.5 mmol) and
diisopropylamine (20 mL). The mixture was stirred at room temperature for 20 minutes and Cul
(45.3 mg, 0.237 mmol) was added. The reaction was allowed to stir for 12h. The solvent was
then removed under reduced pressure and the resulting residue was dissolved in hexanes. The
mixture was then passed through a plug of celite and concentrated. The resulting residue was
purified by flash column chromatography (20% EtOAc in hexanes) to provide the desired
product (3.74 g, 99%): 'H NMR (300 MHz, CDCl3) & 7.37 — 7.41 (m 2H), & 7.26 — 7.29 (m,
3H), 3.82 (t, J = 6.1 Hz, 2H), 2.54 (t, J = 6.9 Hz, 2H), 1.86 (p, J = 6.5 Hz, 2H), 1.59 (s, 1H); "°C
NMR (75 MHz, CDCls) & 137.9, 131.8, 128.6, 128.5, 127.9, 124.0, 89.6, 85.9, 81.5, 62.1, 31.7,
16.3, 12.7; IR (neat) 3351, 3079, 2947, 2878, 2390, 2200, 1597, 1489, 1441, 1060, 914, 756, 691

cm™'; HRMS (EI) caled for C;H;,0 160.0888, found 160.0890.

(E)-5-Phenylpent-4-en-1-ol

©A\MOH

at 0 °C for 20 minutes and slowly warmed to reflux. The reaction was then stirred at reflux for

To a suspension of LAH (3.10 g, 81.86 mmol) in THF (40 mL) at 0 °C was

added 5-phenylpent-4-yn-1-ol (3.74 g, 23.38 mmol). The mixture was stirred

20 hours. The reaction was then quenched by adding aqueous Na, K tartrate at 0 °C. The
reaction mixture was extracted with Ethyl Acetate (2x), and then the organic layers were
combined and washed with water and brine. The organic layers were then dried (Na,;SOy),
filtered and concentrated. The resulting residue was purified by flash column chromatography
(20% EtOAc in hexanes) to provide the desired product (3.76 g, 99%): 'H NMR (300 MHz,

CDCly) 8 7.29 — 7.36 (m, 5H), 6.45 (d, J = 15.8 Hz, 1H), 6.23 (dt J = 15.8, 6.7 Hz, 1H), 3.71 (t, J
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= 6.4 Hz, 2H), 2.30 (q, J = 6.8 Hz, 2H), 1.73 (pentet, J = 6.9 Hz, 2H), 1.40 (s, 1H); °C NMR (75
MHz, CDCls) § 137.6, 130.3, 130.0, 128.5, 126.9, 125.9, 62.4, 32.2, 29.3; IR (neat) 3342, 3024,
2935, 2875, 1494, 1447, 1057, 965, 741, 692 cm™; HRMS (EI) caled for Ci1H140 162.1045,

found 162.1050.

tert-Butyldimethyl-(E)-(5-phenylpent-4-enyloxy)silane (21)
©\WOTBS To (E)-5-phenyl-pent-4-en-1-o0l (3.76 g, 23.19 mmol) in DMF (40 mL) at 0
°C was added imidazole (3.47g, 51.01 mmol) with stirring. The mixture was
stirred for 10 minutes and TBSCI (3.84 g, 25.5 mmol) was added. The reaction was slowly
warmed to room temperature overnight. The reaction mixture was quenched with water. The
reaction mixture was extracted with diethyl ether (2x), and then the organic layers were
combined and washed with aqueous NaHCO3, water and brine. The organic layers were then
dried (Na;SO,), filtered and concentrated. The desired product was obtained without further
purification (6.06 g, 95%): 'H NMR (300 MHz, CDCl3) & 7.20 — 7.57 (m, 4H), 7.17 — 7.19 (m,
1H), 6.41 (d, J =15.8 Hz, 1H), 6.21 (dt, J = 15.8, 6.7 Hz, 1H), 3.65 (t, J = 6.3 Hz, 2H), 2.25 (q, J
= 6.9 Hz, 2H), 1.64 (p, J = 6.4 Hz, 2H), 0.90 (s, 9H), 0.057 (s, 6H); °C NMR (75 MHz, CDCls)
S 138.20, 130.85, 130.43, 128.79, 127.14, 126.22, 62.83, 32.79, 29.67, 26.32, 25.40, 18.69, -

4.92; HRMS (EI) calcd for C17H230S1 276.1909, found 276.1907.

tert-Butyldimethyl-[3-(3-phenyloxiranyl)propoxy]silane (22)

o To tert-butyldimethyl-(E)-(5-phenylpent-4-enyloxy)silane (6.06 g, 21.9
WOTBS mmol) dissolved in CH,Cl, (90 mL) at 0 °C was added NaOAc (18.00 g,
219.5 mmol). The mixture was stirred for 10 minutes and m-CPBA (5.6 g, 32.92 mmol) was

added. The reaction was slowly warmed to room temperature and stirred for 6 hours. The
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reaction was then quenched by adding aqueous Na,S,0s3. The mixture was stirred vigorously for
45 minutes and extracted with diethyl ether (2x). The organic layers were then combined and
washed with aqueous NaHCOs, water and brine. The organic layer was then dried (Na;SOy),
filtered and concentrated. The resulting residue was purified by flash column chromatography
(10% EtOAc in hexanes) to provide the desired product (4.63 g, 72%): 'H NMR (300 MHz,
CDCl3) 6 7.24 — 7.44 (m, 5H), 3.68 (m, 2H), 3.62 (br, 1H), 2.99 (br, 1H), 1.75 (m, 4H), 0.89 (s,
9H), 0.07 (s, 6H); °C NMR (75 MHz, CDCl3) & 138.15, 128.73, 128.30, 125.83, 63.23, 62.88,
59.48, 58.94, 29.39, 29.19, 26.23, - 5.00; IR (neat) 2954, 2929, 2885, 1471, 1462, 1255, 1099,

1005, 966, 835 cm™'; HRMS (EI) calcd for C17H30,Si 292.1859, found 292.1848.

5-(tert-Butyldimethylsilanyloxy)-1-(4-methoxyphenyl)-1-phenylpentan-2-ol (23)

O To a suspension of Cul (602.3 mg, 3.17 mmol) in THF (50 mL) at -40 °C
O orss Was added 4-methoxy-phenyl magnesium bromide (1.5 M, 42.28 mL,
Meo > 63.42 mmol). The mixture was stirred for 15 minutes and epoxide tert-
butyldimethyl-[3-(3-phenyloxiranyl)propoxy]silane (4.63 g, 15.85 mmol) was added. The
reaction was slowly warmed to room temperature and stirred for 6 hours. The reaction mixture
was then quenched by adding aqueous NH4Cl and bubbling air through the mixture overnight.
The mixture was extracted with ethyl acetate (2x), and the combined organic layers were washed
with water and brine. The organic layer was then dried (Na,SOys), filtered and concentrated. The
resulting residue was purified by flash column chromatography (20% EtOAc in hexanes) to
provide the desired product (4.50 g, 71%): 'H NMR (300 MHz, CDCl3) & 7.25 — 7.38 (m, 5H),
7.20 (d, J = 8.7 Hz, 1H), 6.78 (d, J = 8.6 Hz, 2H), 4.32 (t, J = 7.8 Hz, 1H), 3.80 (d, J = 8.3 Hz,
1H), 3.75 (s, 3H), 3.59 (m, 2H), 2.13 (br, 1H), 1.64 (m, 4H), 0.87 (s, 9H), 0.01 (s, 6H); °C NMR

(75 MHz, CDCls), 6 142.3, 135.2, 129.7, 129.5, 129.0, 128.9, 126.8, 120.9, 114.3, 114.2, 73.9,
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63.5,58.2, 55.5,32.2,29.4, 26.2, 18.6, -5.0; IR (neat) 3445, 3028, 2999, 2953, 2856, 1610, 1511,
1463, 1249, 1178, 1037, 835, 700 cm™; HRMS (EI) caled for CosHs705Si (M + 1) 401.2512,

found 401.2505.

tert-Butyl[5-(4-methoxyphenyl)-4-octyloxy-5-phenylpentyloxy]dimethylsilane (24)

phenylpentan-2-ol (4.50 g, 11.24 mmol) in DMF (50 mL) at 0 °C was

O OTBS
MeO OCgHj7

15 minutes and octyl iodide (13.50 g, 56.22 mmol) was added. The reaction mixture was slowly

To 5-(tert-butyldimethylsilanyloxy)-1-(4-methoxyphenyl)-1-

added sodium hydride (1.79 g, 44.96 mmol). The mixture was stirred for

warmed to room temperature and stirred for 5 hours. The reaction was quenched by adding
water and extracted with hexanes (2x). The organic layers were then combined and washed with
water and brine. The organic layer was then dried (Na,SOy), filtered and concentrated. The
resulting residue was purified by flash column chromatography (5% EtOAc in hexanes to 20%
EtOAc in hexanes) to provide the starting material (1.11 g, 2.78 mmol) and the desired product
(2.33 g, 40% isolated): 'H NMR (300 MHz, CDCl3) & 7.36 (d, J = 8.5 Hz, 2H), 7.28-7.23 (m,
2H), 7.19-7.15 (m, 3H), 6.80 (d, J = 8.7 Hz, 2H), 3.4-3.91 (m, 2H), 3.77 (s, 3H), 3.57-3.51 (m,
2H), 3.37 (dt, J = 8.7, 6.4 Hz, 1H), 3.04 (dt, J = 8.7, 6.7 Hz, 1H), 1.63-1.54 (m, 4H), 1.39-1.06
(m, 12H) 0.88-0.85 (m, 12 H), 0.008 (s, 3H), 0.0001 (s, 3H); °C NMR (75 MHz, CDCl;) &
158.3, 143.3, 135.5, 129.7, 129.2, 128.3, 126.3, 114.1, 82.6, 70.6, 63.5, 55.9, 55.5, 32.1, 30.4,
29.7, 29.5, 29.3, 28.9, 24.2, 22.9, 18.6, 14.4; IR (neat) 2928, 2855, 1511, 1463, 1249, 1098,

1039, 835, 775 cm'l; HRMS (EI) caled for CysH4303S1 (M — 57) 455.2981, found 455.2981.
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5-(4-Methoxyphenyl)-4-octyloxy-5-phenylpentan-1-ol (25)

O To tert-butyl[5-(4-methoxyphenyl)-4-octyloxy-5-

O OH
OCgH
MeO 817

overnight and neutralized with NaHCO;. The mixture was extracted with ethyl acetate (2x).

phenylpentyloxy]dimethylsilane (2.33 g, 4.57 mmol) in THF (5 mL) was

added acetic acid (15 mL) and water (5 mL). The mixture was stirred

The organic layers were then combined and washed with NaHCOs, water and brine. The organic
layer was then dried (Na,SQ,), filtered and concentrated. The resulting residue was purified by
flash column chromatography (20% EtOAc in hexanes) to provide the desired product (1.61 g,
89%): 'H NMR (300 MHz, CDCl3) § 7.34 (d, J = 7.2, Hz, 2H), 7.24 (t, J = 7.0 Hz, 3H), 7.17 (d,
J = 8.6 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 4.00 (d, J = 8.8 Hz 1H), 3.98-3.93 (m, 1H), 3.75 (s,
3H), 3.63-3.47 (m, 2H), 3.38 (dt, J = 15.0, 6.3 Hz, 1H), 3.02 (dt, J = 15.4, 6.7 Hz, 1H), 2.07 (br,
1H), 1.71-1.61 (m, 3H), 1.56-1.48 (m, 1H), 1.37-1.09 (m, 12H), 0.87 (t, J = 6.7 Hz, 3H); °C
NMR (75 MHz, CDCls) & 158.0, 142.8, 134.7, 129.8, 129.3, 128.7, 128.4, 128.3, 18.1, 126.1,
113.8, 113.5, 82.2, 70.5, 63.0, 55.2, 55.1, 31.8, 29.9, 29.3, 29.2, 29.1, 28.3, 25.9, 22.6, 14.0; IR
(neat) 3431, 2928, 2855, 1610, 1511, 1247, 1178, 1101, 1042, 699 cm™; HRMS (EI) calcd for

CisH200, (M —130) 268.1463, found 268.1462.

General procedure for photoinduced ETIC reactions

o To substrate 9 in dichloroethane (6 mL) in a borosilicate flask at 20 °C were added
N-methylquinolinium hexafluorophosphate, sodium acetate, anhydrous sodium thiosulfate and
toluene (I mL). The mixture was stirred at room temperature while bubbling air gently and
irradiating with a medium pressure mercury lamp for 3 hours. The reaction mixture was filtered

through a small plug of silica and the filtrate was concentrated. The resulting residue was

purified by flash column chromatography (5% EtOAc in hexanes) to provide the desired product
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(35.2 mg, 62%): '"H NMR (300 MHz, CDCl3) & 5.11 (dd, J = 3.9, 1.5 Hz, 1H), 3.93-3.82 (m,
2H), 3.65 (dt, J = 9.5, 6.8 Hz, 1H), 3.37 (dt, J = 9.5, 6.7 Hz, 1H), 2.04-1.79 (m, 4H), 1.58-1.51
(m, 2H), 1.31-1.28 (m, 10H), 0.88 (t, J = 6.4 Hz, 3H). The 'H NMR data and Ry of compound 26

was consistent with an authentic sample prepared by V. S. Kumar.”

2-Octyloxytetrahydrofuran (26)
To alcohol 13 (37.3 mg, 0.107 mmol) in dichloroethane (6 mL) in a borosilicate flask
0" 9% at 20 °C were added N-methylquinolinium hexafluorophosphate (1.5 mg, 0.0051
mmol), sodium acetate (74.0 mg, 0.88 mmol), anhydrous sodium thiosulfate (74.0 mg, 0.46
mmol) and toluene (1 mL). The mixture was stirred at room temperature while bubbling air
gently and irradiating with a medium pressure mercury lamp for 4 hours to provide acetal 26

(13.3 mg, 62%). The 'H NMR data and R¢ of compound 26 was consistent with an authentic

sample prepared by V. S. Kumar.”

2-Octyloxytetrahyrdofuran (26)

& =0CHs To alcohol 25 (100.0 mg, 0.251 mmol) in dichloroethane (6 mL) in a borosilicate
flask at 20 °C were added N-methylquinolinium hexafluorophosphate (7.2 mg, 0.0251 mmol),
sodium acetate (200.0 mg, 2.44 mmol), anhydrous sodium thiosulfate (200.0 mg, 1.26 mmol)
and toluene (1 mL). The mixture was stirred at room temperature while bubbling air gently and
irradiating with a medium pressure mercury lamp for 1.5 hours to give acetal 26 (44.6 mg, 88%).

The 'H NMR data and R¢ of compound 26 was consistent with an authentic sample prepared by

V. S. Kumar.”
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Ceric ammonium nitrate (CAN) cyclization to give 2-octyloxytetrahydrofuran (26)
To alcohol 25 (100.0 g, 0.251 mmol) in dichloroethane (7.0 mL) was added NaHCO;
or O (200.0 mg, 2.38 mmol). The mixture was stirred at room temperature for 10 minutes.
Ceric ammonium nitrate (0.275 g, 0.501 mmol) was then added dropwise in acetonitrile (3.0
mL). The reaction was stirred for 5 minutes and filtered through a plug of silica. The filtrate
was then concentrated and the residue was purified by flash column chromatography (5% EtOAc
in hexanes) to provide the desired product (21.0 mg, 45%): 'H NMR (300 MHz, CDCl3) & 5.11
(dd, J=3.9, 1.5 Hz, 1H), 3.93-3.82 (m, 2H), 3.65 (dt, J = 9.5, 6.8 Hz, 1H), 3.37 (dt, J =9.5, 6.7

Hz, 1H), 2.04-1.79 (m, 4H), 1.58-1.51 (m, 2H), 1.31-1.28 (m, 10H), 0.88 (t, J = 6.4 Hz, 3H).”

(See Table 2)

2-(4-Methoxyphenyl)-3-octyloxy-2-phenyltetrahydropyran (28)

A To 25 (50.0 mg, 0.125 mmol) in DCE (2 mL) was added NaHCO; (100.0 mg,
) . OCs:]Hnl 1.20 mmol) and DDQ (56.9 mg, 0.250 mmol). The reaction was then stirred at
r = p-methoxypheny

room temperature for 3 hours and filtered through a silica plug. The filtrate was then
concentrated under reduced pressure. The resulting residue was then purified via flash column
chromatography (5% EtOAc in Hexanes) to provide ether 28 (27.0 mg, 55%): 'H NMR (300
MHz, CDCls) & 7.60-7.56 (m, 2H), 7.36-7.17 (m, 5H), 6.84-6.78 (m, 2H), 3.82-3.78 (m, 1H),
3.79 (s, 3H), 3.62-3.60 (m, 2H), 3.36-3.33 (m, 1H), 2.85-2.83 (m, 1H), 1.98-1.95 (m, 4H), 1.55-
1.53 (m, 2H), 1.29-1.23 (m, 12H), 0.89 (t, J = 6.7 Hz, 3H); C NMR (300 MHz, CDCls) &

158.3, 158.1, 145.8, 143.9, 137.5, 135.3, 129.5, 128.4, 127.8, 127.2, 126.7, 126.4, 113.2, 82.4,

82.2, 81.5, 70.7, 62.2, 55.2, 31.9, 29.9, 29.4, 29.3, 26.2, 26.1, 25.8, 25.5, 23.8, 22.7, 14.2; IR
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(neat) 2928, 2855, 1509, 1249, 1080, 1036 cm™; HRMS (EI) calcd for CaH3603 (M") 396.2664,

found 396.2676.

1-(4-Methoxyphenyl)dodec-3-yn-2-ol (29)

To 1-decyne (2.71 g, 19.65 mmol) in THF (20 mL) at -78 °C was added n-

AN

MeO oH Butyl lithium (1.6 M, 22.27 mmol, 13.91 mL). The mixture was stirred for
20 minutes and (4-methoxy-phenyl)-acetaldehyde (1.96 g, 13.10 mmol) was added drop wise.
The reaction was then slowly warmed to room temperature overnight. The reaction was then
quenched by the addition of NH4Cl (aq) and extracted with EtOAc (2x). The organic layers were
then combined and washed with water and brine. The organic layer was then dried (Na;SOy),
filtered and concentrated. The resulting residue was purified by flash column chromatography
(15% EtOAc in hexanes) to provide the desired product (2.59 g, 69%): 'H NMR (300 MHz,
CDCls) 6 7.20 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 4.53 (tt, J = 6.3, 1.8 Hz, 1H), 3.80 (s,
3H), 2.95 (dd, J = 13.6, 6.1 Hz, 1H), 2.90 (dd, J = 13.5, 6.1 Hz, 1H), 2.20 (td, J = 6.9, 1.9 Hz,
2H), 1.90 (s, 1H), 1.49 (app pentet, 2H), 1.36-1.28 (m, 12H), 0.90 (t, J = 6.5 Hz, 3H); °C NMR
(75 MHz, CDCl3) 6 158.5, 130.7, 128.7, 86.5, 80.6, 63.5, 55.2, 43.5, 31.8, 29.3, 29.0, 28.8, 28.6,
22.6, 18.6, 14.0; IR (neat) 3418, 2927, 2855, 1613, 1512, 1464, 1246, 1177, 1036, 819, 760 cm™;

HRMS (EI) calcd for Ci9H»30, 288.2089, found 288.2088.

1-(4-Methoxyphenyl)dodec-3-en-2-ol (30)
To a suspension of LAH (786.2 mg, 20.72 mmol) in THF (20 mL) at 0 °C
MeO o was slowly added 1-(4-methoxyphenyl)dodec-3-yn-2-0l (1.99 g, 6.90

mmol). The mixture was then warmed to reflux and stirred for 18 hrs. The reaction was then

cooled to 0 °C and quenched by the addition of NaOH (10% aq). The mixture was then
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extracted with EtOAc (2x) and the organic layers were combined and washed with water and
brine. The organic layer was then dried (Na,SO,), filtered and concentrated. The resulting
residue was purified by column chromatography (15% EtOAc in hexanes) to provide the desired
product (1.74 g, 87%): 'H NMR (300 MHz, CDCl3) & 7.14 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6
Hz, 2H), 5.64 (dt, J=15.4, 6.5 Hz, 1H), 5.51 (dd, J=15.4, 6.5 Hz, 1H), 4.25 (app q, J = 6.2 Hz,
1H), 3.80 (s, 3H), 2.80 (dd, J = 13.6, 5.3 Hz, 1H), 2.72 (dd, J = 13.6, 7.6 Hz, 1H), 2.02 (app q, J
= 6.6 Hz, 2H), 1.56 (s, 1H), 1.38-1.27 (m, 12H), 0.89 (t, J = 6.5 Hz, 3H); °C NMR (75 MHz,
CDCl3) 6 158.6, 132.6, 132.2, 130.8, 130.3, 114.2, 73.9, 55.5, 43.5, 32.5, 32.2, 29.7, 29.5, 29.4,
22.9, 14.3; IR (neat) 3396, 2924, 2853, 1612, 1512, 1464, 1300, 1246, 1177, 1038, 969, 820

-1
cm .

1-(2-Allyloxydodec-3-enyl)-4-methoxybenzene (31)

o
O
MeO N

N mL) at 0 °C was added NaH (136.4 mg, 3.41 mmol). The mixture was

To 1-(4-methoxyphenyl)dodec-3-en-2-o0l (330.0 mg, 1.14 mmol) in DMF (5

stirred for 20 minutes and ally bromide (412.3 mg, 3.41 mmol) was added. The mixture was
then slowly warmed to room temperature and stirred for 12 hours. The reaction was quenched
by the addition of water. The mixture was extracted with hexanes (2x) and the organic layers
were combined and washed with water and brine. The organic layer was then dried (Na;SOy),
filtered and concentrated. The resulting residue was purified by flash column chromatography
(5% EtOAc in hexanes) to provide the desired product (291.3 mg, 77%): 'H NMR (300 MHz,
CDCls) 6 7.12 (d, J=8.57 Hz, 2H), 6.81 (d, 8.59 hz, 2H), 5.85 (ddd, J=17.2, 10.4, 5.2 Hz, 1H),
5.47 (dt, J =154, 6.7 Hz, 1H), 5.24 (dd J = 15.3, 8.0, Hz, 1H), 5.19 (dd, J = 17.2, 1.7 Hz, 1H),
5.10 (dd, J = 10.38, 1.4 Hz, 1H), 4.01 (dd, J = 12.9, 7.7 Hz, 1H), 3.85 — 3.77 (m, 2H), 3.77 (s,

3H), 2.87 (dd J = 13.7, 6.7 Hz, 1H), 2.70 (dd, J = 13.7, 6.4 Hz, 1H), 2.00 (q, J = 6.7 Hz, 2H),

68



1.30-1.24 (m, 12H), 0.88 (t, J = 6.5 Hz, 3H); '°C NMR (75 MHz, CDCls) § 157.9, 135.3, 134.4,
130.7, 130.6, 130.0, 116.2, 113.4, 81.3, 68.9, 55.2, 41.6, 32.2, 31.8, 29.7, 29.4, 29.3, 29.2, 29.0,
22.6, 14.0; IR (neat) 2927, 2854, 1613, 1513, 1464, 1300, 1247, 1177, 1109, 1074, 1039, 970,

821, 734 cm™; HRMS (EI) caled for C1oHO; (M — 57) 273.2218, found 273.2206.

3-[1-(4-Methoxybenzyl)undec-2-enyloxy]propan-1-ol (32)

N
(e}
MeO

7 —on (10 mL) at -10 °C was added BH3-THF (1.0 M, 1.76 mmol, 1.76 mL) drop

To a stirred solution of 2-methyl butene (247.2 mg, 3.52 mmol) in THF

wise. The mixture was stirred for 45 minutes and 1-(2-allyloxydodec-3-enyl)-4-methoxybenzene
(291.3 mg, 0.882 mmol) was added. The reaction was stirred for 3 hours and quenched by the
addition of water, NaOH (10% aq) and H>O; (30%). The mixture was then vigorously stirred
overnight and extracted with EtOAc (2x). The organic layers were then combined and washed
with water and brine. The organic layer was then dried (Na;SO,), filtered and concentrated. The
resulting residue was purified by flash column chromatography (10% EtOAc in hexanes) to
provide the desired product (169.0 mg, 55%): 'H NMR (300 MHz, CDCl;) & 7.08 (d, J = 8.6 Hz,
2H), 6.81 (d, J = 8.6 Hz, 2H), 5.53 (dt, J = 15.4, 6.7 Hz, 1H), 5.26 (dd, J = 15.4, 8.0 Hz, 1H),
3.79-3.75 (m, 1H), 3.78 (s, 3H), 3.70-3.63 (m, 3H), 3.35 (dt, J=11.4, 5.7 Hz, 1H), 2.79 (dd, J =
13.8, 7.2 Hz, 1H), 2.69 (dd, J = 13.8, 5.8 Hz, 1H), 2.01 (app q, J = 6.7 Hz, 2H), 1.75 (app p, J =
5.5 Hz, 2H), 1.35-1.25 (m, 12H), 0.88 (t, J = 6.4 Hz, 3H); *C NMR (75 MHz, CDCl;) & 158.0,
134.4, 130.5, 130.4, 129.9, 113.6, 82.5, 67.7, 62.3, 55.2, 41.7, 32.1, 32.0, 31.8, 29.4, 29.2, 29.1,
29.0, 22.6, 14.0; IR (neat) 3388, 2955, 2925, 2854, 1512, 1464, 1442, 1300, 1247, 1087, 1040,

970 cm™'; HRMS (EI) caled for CorHsqO3 (M — 76) 272.2140, found 272.2145.
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2-Dec-1-enyl-[1,3]dioxane (33)
CZWCBHn To 3-[1-(4-methoxybenzyl)undec-2-enyloxy]propan-1-ol (101.0 mg, 0.287 mmol)
in dichloroethane (6 mL) in a borosilicate flask at 20 °C were added N-
methylquinolinium hexafluorophosphate (7.2 mg, 0.0251 mmol), sodium acetate (200.0 mg, 2.44
mmol), anhydrous sodium thiosulfate (200.0 mg, 1.26 mmol) and toluene (1 mL). The mixture
was stirred at room temperature while bubbling air gently and irradiating with a medium pressure
mercury lamp for 4 hours. The reaction mixture was filtered through a small plug of silica and
the filtrate was concentrated. @ The resulting residue was purified by flash column
chromatography (5% EtOAc in hexanes) to provide the desired product (50.0 mg, 77.02%): 'H
NMR (300 MHz, CDCl3) 6 5.91 (dt, J =15.7, 6.6 Hz, 1H), 5.50 (ddt, J = 15.7, 5.1, 1.3 Hz, 1H),
493 (d, J=5.1 Hz, 1H), 4.14 (dd, J = 10.6, 4.9 Hz, 2H), 3.83 (td, J = 12.3, 2.4 Hz, 2H), 2.20-
2.02 (m, 4H), 1.41-1.26 (m, 12 H), 0.88 (t, J = 6.4 Hz, 3H); °C NMR (75 MHz, CDCl3) § 135.7,
126.8, 101.2, 66.9, 32.0, 31.9, 29.4, 29.2, 28.6, 25.7, 22.6, 14.0; IR (neat) 2955, 2924, 2852,

1377, 1237, 1142, 1087, 996, 967 cm™; HRMS (EI) calcd for C14H,50, (M — 1) 225.1854, found

225.1853.

1-Methoxy-4-(2-octyloxy-1-phenylhept-6-ynyl)benzene (36)

oh To 5-(4-methoxyphenyl)-4-octyloxy-5-phenylpentanl-ol (1.00 g, 2.5
Meom mmol) in CH,Cl, (10 mL) at 0 °C was added triethyl amine (1.0155 g,
10.0 mmol). The mixture was stirred for 5 minutes and tosyl chloride (716.8 mg, 3.76 mmol)
was added. The mixture was slowly warmed to room temperature over 5 hours and quenched by
the addition of water. The mixture was then extracted with CH,Cl, (2x) and the organic layers

were combined and washed with water and brine. The organic layer was then dried (Na;SOy),
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filtered and concentrated under reduced pressure. The tosylate 35 was then used without further
purification.

To tosylate 35 (1.38 g, 2.5 mmol) in DMSO (10 mL) at 0 °C was added lithium acetylide (690.5
g, 7.5 mmol). The reaction was then warmed to room temperature and stirred for 12 hours. The
reaction was then quenched by the addition of NH4ClI (aq) and extracted with ethyl acetate (2x).
The organic layers were then combined and washed with water and brine. The organic layer was
then dried (Na;SQ,), filtered and concentrated under reduced pressure. The residue was then
purified by flash column chromatography (5% EtOAc in hexanes) to provide the desired product
(627.0 mg, 62%): 'H NMR (300 MHz, CDCls)  7.37 (d, J = 7.3 Hz, 2H), 7.27 (t, J = 7.3 Hz,
3H), 7.19 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 3.97-3.90 (m, 2H), 3.77 (s, 3H), 3.37 (dt,
J=28.6, 6.3 Hz, 1H), 3.03 (dt, J = 8.6, 6.5 Hz, 1H), 2.13 (td, J = 6.6, 2.5 Hz, 2H), 1.91 (t, J=2.5
Hz, 1H), 1.75-1.59 (m, 4H), 1.35-1.13 (m, 12H), 0.89 (t, J = 6.6 Hz, 3H); °C NMR (75 MHz,
CDCl) 6 157.9, 142.7, 134.9, 129.3, 128.8, 128.4, 128.0, 126.0, 113.7, 84.4, 81.9, 70.4, 68.3,

55.5,55.1,31.9,31.8, 30.0, 29.3, 29.2, 26.0, 24.3, 22.6, 18.5, 14.0.

[8-(4-Methoxyphenyl)-7-octyloxy-8-phenyloct-2-ynyl]trimethylsilane (37)

o To 1-methoxy-4-(2-octyloxy-1-phenylhept-6-ynyl)benzene (200.0
Meo/©)\oc8¢ﬂ\S‘M'33 mg, 0.492 mmol) in THF (5 mL) at -30 °C was added n-butyl
lithium (1.6M, 0.500 mL, 0.738 mmol). The mixture was then stirred at -30 °C for 15 minutes
and warmed to 0 °C for 15 minutes. The iodomethy trimethylsilane (158.0 mg, 0.738 mmol)
was then added drop wise. The reaction flask was then covered in aluminum foil and heated to
55 °C for 12 hours. The reaction was then cooled to room temperature and quenched by the
addition of water. The mixture was extracted with ethyl acetate (2x) and the combined organic

layers were washed with water and brine. The organic layer was then dried (Na,SOy), filtered
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and concentrated under reduced pressure. The resulting residue was purified by flash column
chromatography (3% EtOAc in hexanes) to provide the desired product (173.1 mg, 82%): 'H
NMR (300 MHz, CDCls) 6 7.36 (d, J = 7.2 Hz, 2H), 7.26 (t, J = 7.1 Hz, 3H), 7.17 (d, J = 8.3 Hz,
2H), 6.81 (d, J = 8.7 Hz, 2H), 3.96-3.84 (m, 2H), 3.77 (s, 3H), 3.35 (dt, J = 8.7, 6.4 Hz, 1H),
3.03 (dt, J = 8.7, 6.6 Hz, 1H), 2.06-1.94 (m, 2H), 1.63-1.48 (m, 4H), 1.39 (t, J = 2.5 Hz, 2H),
1.33-1.12 (m, 12H), 0.88 (t, J = 7.1 Hz, 3H), 0.06 (s, 9H); °C NMR (75 MHz, CDCl3) & 158.3,
143.2, 135.5, 129.7, 129.3, 128.3, 127.9, 126.3, 114.1, 82.5, 78.9, 74.5, 55., 55.5, 32.4, 32.1,
304, 29.7, 26.4, 25.7, 22.9, 19.4, 14.4, 7.22, -1.8; HRMS (EI) calcd for C;,H430,Si 492.3424,

found 492.3418.

1-Octyloxy-2-vinylidene-cyclopentane (38)

To [8-(4-methoxyphenyl)-7-octyloxy-8-phenyloct-2-ynyl]trimethylsilane (50.0 mg,

o—

o7 0.101 mmol) in acetonitrile (5 mL) at room temperature was added NaHCOs (100.0

mg, 1.20 mmol). The mixture was then stirred for 10 minutes and CAN (138.4 mg, 0.252 mmol)
was added. The reaction was then allowed to stir for 1.5 hours and the mixture was filtered
through a silica plug. The filtrate was concentrated under reduced pressure. The resulting
residue was purified by flash column chromatography (5% EtOAc in hexanes) to provide the
desired product (10.6 mg, 47.3%): 'H NMR (300 MHz, CDCl;) & 4.77 (td, J = 6.1, 1.9 Hz, 2H),
4.29 (br, 1H), 3.56 (dt, J = 9.3, 6.8 Hz, 1H), 3.36 (dt, J = 9.3, 6.6 Hz, 1H), 2.53-2.51 (m, 1H),
2.39-2.31 (m, 1H), 1.85-1.78 (m, 4H), 1.53-1.51 (m, 4H), 1.28-1.25 (m, 12H), 0.88 (t, J = 6.5

Hz, 3H).

1-Methoxy-4-(2-pent-4-ynyloxydodec-3-enyl)benzene (40)

W To 3-[1-(4-methoxybenzyl)undec-2-enyloxy]propan-1-ol (1.63 g, 4.70
MeO O =
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mmol) in CH,Cl, (15 mL) at 0 °C was added triethyl amine (1.904 g, 18.8 mmol). The mixture
was stirred for 5 minutes and tosyl chloride (1.34 g, 7.05 mmol) was added. The mixture was
slowly warmed to room temperature over 5 hours and quenched by the addition of water. The
mixture was then extracted with CH,Cl, (2x) and the organic layers were combined and washed
with water and brine. The organic layer was then dried (Na,SO,), filtered and concentrated
under reduced pressure. The tosylate 39 was then used without further purification.

To tosylate 39 (2.67 g, 4.70 mmol) in DMSO (20 mL) at 0 °C was added lithium acetylide
(865.4 mg, 9.40 mmol). The reaction was then warmed to room temperature and stirred for 4
hours. The reaction was then quenched by the addition of NH4Cl (aq) and extracted with ethyl
acetate (2x). The organic layers were then combined and washed with water and brine. The
organic layer was then dried (Na,SQy), filtered and concentrated under reduced pressure. The
residue was then purified by flash column chromatography (5% EtOAc in hexanes) to provide
the desired product (1.01 g, 61%): "H NMR (300 MHz, CDCls) & 7.11 (d, J = 8.5 Hz, 2H), 6.81
(d, J=8.5Hz, 2H), 5.51 (dt, J =15.4, 6.7 Hz, 1H), 5.29 (dd, J = 15.4, 7.7 Hz, 1H), 3.79 (s, 3H),
3.79-3.71 (m, 1H), 3.55 (dt, J = 9.6, 6.1 Hz, 1H), 3.28 (dt, J = 9.6, 6.1 Hz, 1H), 2.83 (dd, J =
13.7, 7.0 Hz, 1H), 2.67 (dd, J = 13.7, 5.9 Hz, 1H), 2.18 (td, J = 7.1, 2.6 Hz, 2H), 2.00 (app q,

2H), 1.91 (t, J = 2.6 Hz, 1H), 1.71 (app p, 2H), 1.31-1.26 (m, 12H), 0.89 (t, J = 6.3 Hz, 3H).

{6-[1-(4-Methoxybenzyl)undec-2-enyloxy]hex-2-ynyl}trimethylsilane (41)

W
MeO ©

8
= “tws 2.80 mmol) in THF (10 mL) at -30 °C was added n-butyl lithium

To 1-methoxy-4-(2-pent-4-ynyloxydodec-3-eny)benzene (1.00 g,

(1.6M, 2.63 mL, 4.20 mmol). The mixture was then stirred at -30 °C for 15 minutes and warmed
to 0 °C for 15 minutes. The iodomethy trimethylsilane (1.01 g, 4.76 mmol) was then added drop

wise. The reaction flask was then covered in aluminum foil and heated to 55 °C for 12 hours.
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The reaction was then cooled to room temperature and quenched by the addition of water. The
mixture was extracted with ethyl acetate (2x) and the combined organic layers were washed with
water and brine. The organic layer was then dried (Na,SOy), filtered and concentrated under
reduced pressure. The resulting residue was purified by flash column chromatography (3%
EtOAc in hexanes) to provide the desired product (1.0872 g, 88%): 'H NMR (300 MHz,
CDCI3) 6 7.12 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.48 (dt, J = 15.4, 6.6 Hz, 1H), 5.29
(dd, J =154, 7.8 Hz, 1H), 3.79 (s, 3H), 3.79-3.69 (m, 1H), 3.54 (dt, J = 9.4, 6.3 Hz, 1H), 3.27
(dt, J=9.4, 6.3 Hz, 1H), 2.84 (dd, J = 13.7, 6.8 Hz, 1H), 2.66 (dd, J = 13.7, 6.2 Hz, 1H), 2.19-
2.12 (m, 2H), 2.08-2.00 (app q, 2H), 1.67 (app p, 2H), 1.41 (t, J = 2.6 Hz, 2H), 1.27-1.25 (m,

10H), 0.89 (t, J = 6.5 Hz, 3H), 0.08 (s, 9H).

{6-[1-(4-Methoxybenzyl)undec-2-enyloxy]hex-2-enyl}trimethylsilane (42)

To {6-[1-(4-methoxybenzyl)undec-2-enyloxy|hex-2-
Meomes ynyl}trimethylsilane (54.0 mg, 0.121 mmol) in MeOH (5 mL) was
added Linlard’s catalyst (5.0 mg) with stirring. The reaction mixture was then purged with
hydrogen (3x) and allowed to stir for 18 hours. The mixture was then filtered over celite and the
filtrate was concentrated under reduced pressure. The resulting residue was then purified by
flash column chromatography (3% EtOAc in hexanes) to provide the desired product (50.0 mg,
93%): 'H NMR (300 MHz, CDCI3) & 7.15 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 5.52-
5.22 (m, 4H), 3.79 (s, 3H), 3.69-3.64 (m, 1H), 3.46-3.30 (m, 2H), 3.29-3.20 (m, 1H), 2.82 (dd, J
=12.5, 6.7 Hz, 1H), 2.70 (dd, J = 12.5, 7.6 Hz 1H), 2.05-2.00 (m, 4H), 1.96-1.87 (m, 2H), 1.46-

1.44 (m, 2H), 1.29-1.26 (m, 12H), 0.89 (t, J = 6.4 Hz, 3H), 0.02 (s, 9H).
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3-[1-(4-Methoxybenzyl)undec-2-enyloxy]propionaldehyde (44)
st To 3-[1-(4-methoxybenzyl)undec-2-enyloxy]propan-1-ol (500.0 mg, 1.43
(@)

MeO WH .

o mmol) in CH,Cl, (5§ mL) at 0 °C was added NaHCO; (1.201 g, 14.3 mmol).
The mixture was stirred at 0 °C for 5 minutes and DMPI (915.0 mg, 2.15 mmol) was added. The
reaction was then slowly warmed to room temperature and stirred for 2 hours. The reaction was
then quenched by the addition of water and Na,S,0s (aq). The mixture was then filtered through
celite and the organic layer was washed with water and brine. The organic layer was then dried
(NaySOy), filtered and concentrated under reduced pressure. The aldehyde was used without

further purification.

1-(2-But-3-ynyloxydodec-3-enyl)-4-methoxybenzene (45)
To dimethyl (1-diazo-2-oxopropyl) phosphonate®” (533.0 mg, 2.77 mmol) in

S

MeO 0“7\\ methanol (3 mL) at 0°C was added K,COs (193.3 mg, 1.39 mmol). The
mixture was stired at 0 °C for 30 minutes and 3-[1-(4-methoxbenzyl)undec-2-
enyloxy]propionaldehyde (481.1 mg, 1.39 mmol) was added in methanol. The reaction was then
slowly warmed to room temperature over 12 hours, and the solvent was removed under reduced
pressure. The resulting residue was purified by flash column chromatography (5% EtOAc in
hexanes) to provide the desired product (134.2 mg, 28%): 'H NMR (300 MHz, CDCls) & 7.12
(d, J=8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.51 (dt, J = 15.4, 6.6 Hz, 1H), 5.30 (dd, J = 154,
7.9 Hz), 3.80-3.77 (m, 1H), 3.79 (s, 3H), 3.59 (dt, J = 9.3, 7.2 Hz, 1H), 3.36 (dt, J = 9.4, 7.1 Hz),
2.86 (dd, J = 13.7, 6.8 Hz, 1H), 2.67 (dd, J = 13.7, 6.2 Hz, 1H), 2.38 (td, J = 7.2, 2.6 Hz, 2H),
2.02 (app q, 2H), 1.95 (t, J = 2.6 Hz, 1H), 1.35-1.25 (m, 12H), 0.89 (t, J = 6.5 Hz, 3H); °C NMR

(75 MHz, CDCl3) 6 157.9, 134.3, 130.7, 130.5, 129.9, 113.5, 82.3, 81.6, 69.0, 66.4, 55.2, 41.6,
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32.1,31.9,29.4,29.3, 29.1, 29.0, 22.6, 19.9, 14.0; IR (neat) 3311, 2925, 2854, 1740, 1512, 1246,

1092, 1040 cm'l; HRMS (EI) calcd for Cy3H340, 342.2559, found 342.2549.

Acetic acid-3-[1-(4-methoxybenzyl)undec-2-enyloxy]-1-methylenepropyl ester (46)

W
O.
MeO

%% mmol) in toluene (5 mL) was added Ru(p-cymene)PPh;Cl (2.2 mg, 0.0039

To 1-(-but-3-ynyloxydodec-3-enyl)-4-methoxybenzene (134.2 mg, 0.39

mmol) and acetic acid (23.4 mg, 0.39 mmol). The mixture was then warmed to 80 °C and stirred
for 12 hours. The reaction was then cooled to room temperature and the solvent was removed
under reduced pressure. The resulting residue was purified by flash column chromatography
(10% EtOAc in hexanes) to provide the desired product (61.7 mg, 39%): 'H NMR (300 MHz,
CDCl3) 6 7.10 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.48 (dt, J = 15.4, 6.7 Hz, 1H), 5.30
(ddt, J=15.4, 8.0, 1.1 Hz, 1H), 4.71 (d, J = 1.3 Hz, 1H), 4.68 (d, J = 1.5 Hz, 1H), 3.79-3.74 (m,
1H), 3.78 (s, 3H), 3.62 (dt, J = 9.5, 6.6 Hz, 1H), 3.35 (dt, J =9.5, 6.6 Hz, 1H), 2.84 (dd, J = 13.7,
6.8 Hz, 1H), 2.62 (dd, J=13.7, 6.1 Hz, 1H), 2.43 (app t, J = 6.2 Hz, 2H), 2.11 (s, 3H), 2.08 (app
q, 2H), 1.37-1.27 (m, 12H), 0.89 (t, J = 6.5 Hz); °C NMR (75 MHz, CDCI3) & 168.9, 157.9,
153.7, 134.8, 130.7, 130.6, 130.0, 113.3, 102.4, 65.0, 55.1, 41.6, 34.0, 32.1, 29.5, 29.3, 29.1,
28.9, 22.6, 20.9, 14.0; IR (neat) 2925, 2854, 1758, 1667, 1612, 1441, 1465, 1370, 1300, 1246,
1179, 1090, 1039, 1020, 970, 880, 827, 733 cm™'; HRMS (ESI) calcd for C,5H3304Na (M + Na®)

425.2668, found 425.2668.

2-dec-1-enyltetrahydropyran-4-one (47)
@mcwu To acetic acid-3-[1-(4-methoxybenzyl)undec-2-enyloxy]-1-methylenepropyl ester
o (61.7 mg, 0.153 mmol) in dichloroethane (3.5 mL) was added 4 A molecular

sieves (120.0 mg), and NaHCOs3 (120.0 mg, 1.42 mmol). The mixture was then warmed to 40 °C
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and stirred for 15 minutes. Ceric Ammonium Nitrate (168.0 mg, 0.306 mmol) was then added
dropwise in CH;CN (1.5 mL) and the reaction was stirred at 40 °C for 1 hour. The reaction
mixture was then filtered through silica and the filtrate was concentrated. The resulting residue
was purified by flash column chromatography (5% EtOAc in hexanes) to provide the desired
product (33.1 mg, 90.83%): "H NMR (300 MHz, CDCl3) & 5.75 (dt, J = 15.5, 6.6 Hz, 1H), 5.55
(ddt, J=15.5,6.3, 1.3 Hz, 1H), 4.31 (ddd, J=11.5, 7.2, 1.8 Hz), 4.10 (m, 1H), 3.72 (td, J = 11.6,
3.0 Hz, 1H) 2.61 (m, 1H), 2.45 (s, 1H), 2.43 (m, 1H), 2.37 (m, 1H), 2.05 (app q, 2H), 1.38-1.26
(m, 12H), 0.88 (t, J = 6.5 Hz, 3H); *C NMR (75 MHz, CDCl3) 8 206.5, 134.1, 128.8, 78.3, 66.1,
48.3,42.2,32.2,31.8, 31.6, 29.7, 29.4, 29.2, 29.1, 28.9, 22.6, 14.0; IR (neat) 2925, 2853, 1721,
1466, 1369, 1247, 1156, 1082, 969 cm™; HRMS (EI) caled for C;sHyO, 238.1933, found

238.1940.
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Chapter 2 Development of the Diastereoselective Electron Transfer Initiated Cyclization
(ETIC) Reaction: Synthesis of 2,6-syn-Disubstituted Tetrahydropyranones.

2.1. Introduction

The ETIC reaction has proven to be an excellent method for generating reactive
intermediates such as oxocarbenium and acyliminium ions. When an appropriate nucleophile is
appended, these electrophiles undergo efficient cyclization to provide a variety of products. A
major limitation of the ETIC reaction has been the inability to obtain high levels of
stereochemical control. The lack of diastereoselectivty exhibited in ETIC reactions has been
attributed to the lack of a conformational preference in the transition state.

However, in exploring the functional group compatibility of homobenzylic amides as
cyclization substrates, it was noted that incorporation of methyl group in the bishomobenzylic
position led to preferential formation of the anti cyclic acyl aminal." While the stereoselectivity
observed for the cyclization of secondary homobenzylic amides was poor (2:1), excellent levels
of diastereoselectivity were observed in the cyclization of tertiary homobenzylic amides (>19:1).
Cyclization of the tertiary amide led to excellent levels of diastereoselectivity whether the
substrate was a single diastereomer or a mixture of diastereomers. This indicates the formation
of a discrete acyliminum ion intermediate, followed by diastereoselective attack of the appended
nucleophile (Figure 30). The extent of stereochemical control is attributed to the development

of steric interactions in the transition state to form the syn product.

83



OH | o |
WNTCSHH WNWCSHH

) o] O

Bn OH -le W Major
}

N._CsHyy

-
\
H4//+ WCSHM /NYCSHH
o (0]
Minor

Figure 30: Diastercoselective cyclic acyl aminal formation.

Synthetically useful levels of diastereoselectivity have also been noted in the formation of
amido trioxadecalin ring systems.” Single electron oxidation of the substrate led to the formation
of the acyliminium ion intermediate, which upon attack of the tethered nucleophile provided a
10:1 mixture in favor of the undesired amido trioxadecalin product (Figure 31). The unexpected
stereochemical outcome suggests a late transition state where the conformation is controlled by

the stability of the cis trioxadecalin ring system.
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Figure 31: Oxidative cyclization to provide the amido trioxadecalin ring system.
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While the ETIC reaction provided excellent levels of diastereocontrol in the synthesis of
some cyclic acyl aminals' and amido trioxadecalins,” exo-cylclizations utilizing carbon centered
nucleophiles have shown poor levels of stereocontrol.’  However, excellent levels of
diastereoselectivity are expected for suitably substituted ETIC substrates which under 6-endo-
cyclizations. This is based on the strong preference of 6-endo-cyclizations to proceed through
chair transition states is well precedented.4 This conformational bias coupled with the (E)-
configuration of the resulting intermediate oxocarbenium ion’ is expected to provide excellent
levels of diastereocontrol. The efficiency of the enol acetate as a nucleophile in 6-endo-
cyclizations along with the prevalence of 2,4,6-trisubstituted tetrahydropyrans in biologically
active® molecules prompted an investigation into the synthesis of substrates to provide syn-2,6-

disubstituted tetrahydropyranones (Figure 32).
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Figure 32: Diastereoselective cyclization in an endo-ETIC reaction.

To synthesize substrates with this general design, a solution to the nontrivial construction
of an ether linkage between two secondary carbons was required (Figure 33). The Lewis acid-
mediated opening of cyclic acetals in the presence of a metalloallene provided the requisite bond
connectivity.  Manipulation of the resulting primary alcohol provides access to the
homopropargylic ether which may be directly converted to the desired enol acetate.” The ability
to obtain a stable easily handled nucleophile under mild, inexpensive and non-toxic conditions

further illustrates the utility of enol actates in ETIC reactions.
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Figure 33: Retrosynthesis of the diastereoselective ETIC substrate.

This sequence allows for the possibility of a highly diastereoselective synthesis of the
ETIC substrates provided the acetal opening occurs in a stereoselective manner. Several groups®
have demonstrated the ability to obtain high levels of diastereocontrol in the ring opening
reactions with careful control of the reaction conditions. The high levels of stereocontrol may be
explained through the mechanism of the reaction (Figure 34). Initial complex formation
between the Lewis acid and the least congested oxygen of the acetal leads to the formation of an
(E)-oxocarbenium ion’ intermediate. The Si face of the intermediate is blocked due to ion

pairing, and the nucleophile attacks from the Re face.
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Figure 34: Mechanism for diastereoselective cyclic acetal opening.

Of note for this sequence, is the formation of the homopropargylic stereocenter relative to

that of the benzylic stereocenter in the cyclic acetal opening reaction. These roles are then
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reversed during the ETIC reaction, and the stereogenicity of the benzylic bond is dictated by the
homopropargylic stereocenter. This method could therefore be considered as a cationic variant
of Seebach’s’ self-reproduction of chirality. Given the strong precedent for the
diastereoselective opening of cyclic acetals, this sequence allows for the enantioselective

synthesis of syn-2,6-disubstituted tetraydropyranones from enantiopure acetals.

87



2.2. Results and Discussion

I. Synthesis of Vinyl ETIC Substrates to Undergo Stereoselective Cyclization

A substrate containing an E-disubstituted olefin as the bond weakening group was
synthesized to test validity of this design (Scheme 1). Known'® diol 1 was prepared as a single
enantiomer via an asymmetric dihydroxylation'' of 4-allylanisole. Condensation of 1 with
heptanal led to the formation of acetal 2 as a 1.7:1 mixture of inseparable diastereomers (84%).
Acetal 2 was then treated with TiCly'? in the presence of allenyltributyltin to provide
homopropargylic ether 3 as a single diastereomer in 84% yield. The excellent level of
stereocontrol noted for this reaction is consistent with the formation of a rapidly equilibrating
oxocarbenium ion to give the (E)-configuration.” Reaction of the nucleophile then occurred from
the face opposite the metal oxide/oxocarbenium ion pair. To the best of our knowledge, this is
the first example of a diastereoselective cyclic acetal opening via an allenylstannane reagent.
Oxidation of the primary alcohol (3) with Dess-Martin periodinane followed by a Julia-
Kocienski olefination'® furnished compound 4. While the yield of compound 4 was quite low, a
single geometric isomer was isolated. Exposure of compound 4 to a mixture of [Ru(p-
cymene)Cly], and tri-2-furylphosphine led to the Markovnikov addition of acetic acid to give

enol acetate 5.
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Reagents and conditions: a) n-Heptanal, p-TsOH, benzene, reflux, 12h (84%); b) Allenyltributyltin, TiCly,

CH,Cl,, - 78 °C (84%); c) Dess-Martin periodinane, NaHCO;, CH,Cl,; d) Ethyl 1-phenyl-1H-tetrazolyl-
Sulfone, KHMDS, DME, - 60 °C (19%, 2 steps); €) HOAc, Na,CO;, P(Fur);, [Ru(p-cymene)Cl,],, PhMe

80 °C (42%).

Scheme 11: Synthesis a trans-olefin substrate.

To determine whether the introduction of a Z-olefin would have an effect on the outcome

of the cyclization, substrate 7 was prepared (Scheme 12). The synthesis began with oxidation of

primary alcohol 3 followed by a Wittig reaction'* with n-propyltriphenylphosphonium bromide

and LHMDS to provide cis alkene 6. Compound 6 was isolated as a single geometric isomer.

The resulting homopropargylic alkyne was converted to the enol acetate (7) via a [Ru(p-

cymene)Cl,],/tri-2-furylphosphine mediated addition of acetic addition.’
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Reagents and Conditions: a) ) i. Dess-Martin periodinane, NaHCO3, CH,Cl,;
ii. propyltriphenylphosphonium bromide, LHMDS, THF, 0 °C (47% 2 steps);
b) HOAc, Na,COs;, P(fur); [Ru(p-cymene)Cl,],, 80 °C (64%).

Scheme 12: Synthesis of a cis-olefin substrate.

A substrate possessing a trisubstituted olefin was synthesized to explore the limitations of
olefin substitution in the endo-cyclization of enol acetates (Scheme 13). Once again this
sequence began with the oxidation of alcohol 3 followed by a Wittig reaction with
isopropyltriphenylphosphonium iodide and n-butyl lithium"® provided alkyne 8. Installation of
the enol acetate was accomplished through the addition acetic acid across the alkyne in the

presence of [Ru(p-cymene)Cly], and tri-2-furylphosphine to provide substrate 9.’
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Reagents and Conditions: a) ) i. Dess-Martin periodinae, NaHCO;, CH,Cl,;
ii. i-propyltriphenylphosphonium iodide, n-BuLi, THF, 0 °C (10% 2 steps);
b) HOAc, Na,CO;, P(fur); [Ru(p-cymene)Cl,],, 80 °C (39%).

Scheme 13: Synthesis of a substrate containing a trisubstituted olefin.

In an effort to explore the range of functional groups tolerated under the cyclization
conditions, a substrate (13) was prepared with an allyl siloxy ether (Scheme 14). The synthesis
began with a Horner-Wittig'® reaction on the aldehyde obtained from oxidation of alcohol 3 to
provide o,pB-unsaturated ester 10 as a single geometrical isomer. The ester was then reduced to
allylic alcohol 11 with DIBAL, followed by silyl protection to yield compound 12. Substrate 13
was obtained through conversion of the alkyne in 12 to the corresponding enol acetate via the
Markovnikov addition of acetic acid in the presence of [Ru(p-cymene)Cl],/tri-2-

furylphosphine.’
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Reagents and Conditions: a) Dess-Martin periodinane, NaHCO;, CH,Cl,;

b) Triethylphosphonoacetate, NaH, THF, 0 °C (72% 2 steps); ¢) DIBAL-H, CH,Cl,,

- 78 °C (49%); d) TBSCI, imidazole, DMAP, CH,Cl, (82%); ¢) HOAc, Na,CO;, P(fur)s,,
[Ru(p-cymene)Cl,],, 80 °C (45%).

Scheme 14: Synthesis of a substrate containing an allylic siloxy ether.

Finally, to determine whether a terminal olefin was sufficient to promote the cyclization
reaction, substrate was synthesized (Scheme 15). The synthesis began with ozonolysis of
known® homoallyic alcohol 14 and reduction with sodium borohydride to give diol 15. The diol
(15) was then condensed with n-heptanal in refluxing benzene to give acetal 16.
Homopropargylic ether 17 was obtained as a single diastereomer via the Lewis acid mediated®
opening of acetal 16 in the presence of allenyltributyltin. The stereoselectivity of this reaction
was consistent with previous results. The primary alcohol was then transformed to the terminal
olefin (18) following Greico’s'’ protocol. Substrate 19 was prepared through the Markovnikov

addition of acetic acid to the alkyne in the presence of [Ru(p-cymene)Cl]»/trifurylphospine.”’
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Reagents and Conditions: a) i. O;(g), CH,Cl,, - 78 °C, ii. MeOH, NaBHy, 0 °C — rt (71%);

b) heptanal, p-TsOH, benzene, reflux (58%); c) allenyltributyltin, TiCly/Ti(iPrO), (6:5), CH,Cl,,
- 78 °C (80%); d) i. PhSeCN, PBu3;, THF, 0 °C; ii. H,O,, THF, 0 °C —rt (96% 2 steps);

f) HOAc, Na,CO;, P(fur);, [Ru(p-cymene)Cl,],, 80 °C (62%).

Scheme 15: Synthesis of substrate with a terminal olefin.

I1. Cyclization of First Generation Substrates to Exhibit Diastereocontrol

To examine the validity of our first generation substrate design to provide excellent levels
of diastereocontrol, substrate 5 was subjected to our standard chemical oxidation conditions.?
Exposure of 5 to CAN at room temperature resulted in oxidative cleavage and cyclization to
form tetrahydropyranone 20 in 80% isolated yield within 20 minutes as a single stereoisomer
(Figure 35). The selective formation of the syn-2,6-stereoisomer was consistent with the
formation of a discrete oxoxcarbenium ion intermediate followed by cyclization to give the

product with retention of configuration.
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Figure 35: Stercoselective endo-cyclization to form a syn-2,6-disubstituted tetrahydropyranone.

The efficient cyclization of substrate 5 demonstrated the ability to construct syn-2.6-
disubstituted tetrahydropyranones. To explore the generality of the first generation substrate
design the remaining substrates were subjected to the chemical mediated oxidative cyclization
conditions (Table 7). The isolation of compound 21 as a single geometric isomer from the
cyclization of substrate 7 established that olefin geometry is retained throughout the reaction
(entry 1). The syn-relationship between the C2 and C6 hydrogens was verified through an
enhancement observed in the nOe spectrum. Trisubstituted olefins (entry 2) have also been
shown to be effective substrates in the process. Despite the potential for a competitive
vinylogous pinacol rearrangement upon oxocarbenium ion formation, allylic silyl ethers (entry 3)
are tolerated under the oxidative cyclization conditions. Surprisingly, simple terminal olefins
(entry 4) do not sufficiently weaken the benzylic carbon-carbon bond to promote oxocarbenium
ion formation and cyclization. Instead, an alternative pathway in which the arene is attack by
nitrate occurs to form compound 24 as the only discernible product. Because olefin substitution
has a small impact on allylic bond strength, but significantly lowers the oxidation potential of

allylic radicals,'® the importance of Epa(E) in Equation 1 is highlighted.
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Reagents and Conditions: A solution of CAN (2-4 eq) in CH;CN was added
to the substrate (1 eq), NaHCO; (4-9 eq) and powdered 4A mol. sieves (2 wt eq)
in DCE at room temp. * All substrates were single isomers. ® Yields refer to pure
isolated material.

-

Table 7: Exploring the effect of olefin substitution on endo-ETIC reactions.

I11. Synthesis of Substrates to Generate Non-Stabilized Oxocarbenium lons

While the first generation of substrates provided excellent levels of stereocontrol, their
generality is limited by the need for a stabilized oxocarbenium ion. In order to facilitate
cyclization in the absence of the homobenzylic olefin, substrates would have to be designed with
weakened carbon-carbon bonds. Previous studies’ have shown the introduction of methyl groups

in the benzylic position leads to sufficient benzylic carbon-carbon bond weakening. Therefore, a
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series of substrates were designed with this premise to explore the scope of the diastereoselective

carbon-carbon bond forming reactions (Figure 36).
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Figure 36: Incorporation of benzylic substituents in the design of endo-ETIC substrates.

The synthesis of the first substrate (Scheme 16) to test the validity of this design began
with aldehyde 24 which is readily prepared in gram quantities through a two step sequence.'’
Allylation of aldehyde 24 followed by ozonolysis and reduction with sodium borohydride
provided diol 25. While the allylation was conducted to provide a racemic mixture, enantiopure
material can be readily obtained through the use of various nucleophilic chiral allylation
reagents.20 The diol (25) was then converted to acetal 26 through acid-mediated condensation in
refluxing benzene. Acetal 26 was then subjected to the Lewis acidic cyclic acetal opening
conditions in the presence of allenyltributyltin to afford homopropargylic ether 27. This reaction
also proceeded with excellent levels of diasterocontrol, which is consistent with previous
opening of this type. The resulting primary alcohol was protected as the silyl ether (28), and

converted to the enol acetate (29).
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Reagents and Conditions: a) i. Allyl magnesium bromide, THF, - 78 °C (99.5%); ii. O;(g),

CH,Cl,, - 78 °C, iii. MeOH, NaBHj, 0 °C — rt (68%); b) n-heptanal, p-TsOH, benzene, reflux (80%);
¢) allenyltributyltin, TiCly/Ti(iPrO), (6:5), CH,Cl,, - 78 °C (86%); d) TBSCI, imidazole, DMF (85%);
e) HOAc, Na,CO;, P(fur);, [Ru(p-cymene)Cl,],, 80 °C (48%).

Scheme 16: Synthesis of an endo-ETIC substrate containing benzylic bond weakening groups.

A substrate with a terminal olefin was prepared to examine the extent to which the
incorporation of the methyl groups weakened the benzylic carbon-carbon bond (Scheme 17).
The synthesis began with conversion of primary alcohol 27 to the terminal olefin (30) according
to Greico’s protocol. The resulting compound was then subjected to the ruthenium mediated

addition of acetic acid to provide the desired enol acetate 31.
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Reagents and Conditions: a) i. PhSeCN, PBu;, 0 °C, THF; ii. nCPBA, pyr. DHP, CH,Cl,
- 78 °C -0 °C (75%); b) HOAc, Na,COs, P(fur);, [Ru(p-cymene)Cl,],, 80 °C (45%).

Scheme 17: Incorporation of a terminal olefin and benzylic weakening groups.

97



To test the capacity of the reaction to be used in complex molecule synthesis, a substrate
was prepared that contained a stereocenter in the side chain (Scheme 18). The synthesis began
with methallylation of aldehyde 24 to provide homoallyic alcohol 32. Ozonolysis of the
resulting olefin led to B-keto alchol 33, which was selectively reduced with sodium borohydride
in the presence of diethylboron methoxide' to give a 15:1 mixture of separable diastereomers in
favor of syn-1,3-diol 34. Diol 34 was then condensed with heptanal in refluxing benzene to give
acetal 35. The acetal was then opened with allenyltributyltin in the presence of a mixed titanium
Lewis acid to provide 36 as a 3:1 inseparable mixture of diastereomers. Methylation of the
resulting alcohol led to a separable mixture of methyl ethers. The major diastereomer, whose

structure was defined via literature precedent,® (37) was then converted to the enol acetate (38).
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Reagents and Conditions: a) Methallyl lithium, THF, - 78 °C — 1t (76%); b) i. O3(g), CH,Cl,, -78°C;
ii. PPh;, - 78 °C —rt (81%); ¢) Et,BOMe, NaBH,, THF, - 78 °C (15:1 dr; 76%); d) n-heptanal, p-TsOH,
benzene, reflux (84%); e) allenyltributyltin, TiCly/Ti(iPrO)4 (9:3), CH,Cl,, - 78 °C ( 3:1 dr; 54%);
f) NaH, Mel, DMF, 0 °C —rt (38%), g) HOAc, Na,COs, P(fur);, [Ru(p-cymene)Cl,],, 80 °C (63%).

Scheme 18: Synthesis of a substrate with a stereocenter in the side chain.
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To determine whether incorporation of a stereocenter in the side chain impacted the
stereoselectivity of the reaction, the other possible diastereomers were synthesized (Scheme 19).
The synthesis began with the tetra-N-methylammonium triacetoxyborohydride® reduction of p-
keto alcohol 33 to give anti-1,3-diol 39 as the only isolable product. Attempts to condense diol
39 with n-heptanal in refluxing benzene under acid catalysis failed to produce the desired acetal.
Therefore, diol (39) was converted to the bis-trimethylsilyl ether, which upon treatment with
TMSOTT in the presence of n-heptanal provided acetal 40.>> The acetal (40) was then subjected
to the Lewis acid mediated opening conditions in the presence of allenyltributyltin to afford a 1:1
inseparable mixture of diastereomers (41). The lack of stereoselectivity in this reaction is
consistent with the oxocarbenium ion existing in the non-ion paired conformation. Opening of
the anti [1,3] dioxane to give the non-ion paired conformation is believed to result from the
strain associated with the equatorial neopentyl group. This strain may be relieved through bond
rotations to give an acyclic oxocarbenium ion. The tendacy of this oxocarbenium ion to exist in
an extended conformation is consistent with the difficulties associated with acetal formation.
Due to the non-ion paired nature of the intermediate oxocarbenium ion, both the re and si faces
are equally accessible to nucleophilic attack. Alkylation of alcohol 41 with methyl iodide
afforded a separable mixture of methyl ethers 42 and 43. The alkynes were then transformed to

the corresponding enol acetates 44 and 45.
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Reagents and Conditions: a) Me;NBH(OAc);, CH;CN:AcOH (2:1), -78 °C — - 20 °C (94%);

b) i. TMSCI, imidazole, CH,Cl,; ii. TMSOTT, n-heptanal, CH,Cl,, - 78 °C (70% 2 steps);

¢) allenyltributyltin, TiCly/Ti(iPrO), (6:5), CH,Cl,, - 78 °C (98%); NaH, Mel, DMF, 0 °C — 1t (69%)
e) HOAc, Na,CO;, P(fur);, [Ru(p-cymene)Cl,],, 80 °C (43%); f) HOAc, Na,COs, P(fur)s,
[Ru(p-cymene)Cl,],, 80 °C (34%).

Scheme 19: Synthesis of the remaining diastereomers containing secondary methyl ethers.

The ability to open the acetal (26) with a variety of nucleophiles prompted the synthesis
of a substrate containing an allylsilane as the nucleophile (Scheme 20). This synthesis began
with the Lewis acid-mediated opening of 26 in the presence of 2-bromoallyltrimethylsilane to

furnish homoallylic ether 46 with moderate stereocontrol (~2:1). This result is consistent with
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the use of a less potent nucleophile in the acetal opening reaction, weaker nucleophiles do not
react with the less electophilic ion paired intermediate.* The primary alcohol was then protected
as the MOM-ether, and the vinyl bromide was coupled with trimethylsilyl methylmagnesium

chloride in the presence of palladium (0) to give substrate 47.

OH OMOM
0. O 0
MeO T o Br ™S

CeH13 H13Cs H13Cs
26 46 47

Reagents and Conditions: a) 2-bromoallyltrimethylsilane, TiCly, CH,Cl,, - 78 °C (63%);
b) i. MOMCI, N-N-diisopropyl-N-ethyl amine, CH,Cl,, reflux (95%); ii. trimethylsilylmethyl
magnesium chloride, Pd(PPh;),, THF, reflux (64%).

Scheme 20: Synthesis of a substrate with an allylsilane nucleophile.

IV. Cyclization of Non-Stabilized Oxocarbenium lons

Substrate 29 was subjected to our standard chemical oxidation® conditions to test the
necessity of a stabilized oxocarbenium ion to obtain efficient and stereoselective cyclization.
Within minutes of adding the oxidant (CAN) to the reaction mixture the starting material was
consumed, and the desired syn-2,6-disubstituted tetrahydropyranone (48) was obtained in 88%
yield as a single sterecoisomer (Figure 37). Validation of the syn-relationship between the C2
and C6 protons was determined through the strong correlation observed in the NOESY spectrum.
The reactivity exhibited by 29 demonstrates that conjugated oxocarbenium ion intermediates are
not required for efficient endo-cyclization to occur, and that substrates containing bond weaking

groups in the benzylic position are well-suited for this reaction.
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oTBS OAC
a + h ;\/\
MeO 0 OAc {CGH g NOE " otes
(¢

m TBSO ™ "0 “CgHis

29 48

Reagents and Conditions: a) NaHCOj (s), 4A mol. sieves, DCE; CAN (4 eq) in CH;CN (88%).

Figure 37: Cyclization of a non-stabilized oxocarbenium ion.

To test the overall efficiency of this second generation design, substrates 31, 38, 44, 45
and 47 were subjected to our chemical-mediated oxidation conditions (Table 8).> The smooth
formation of compound 49 in 70% yield (entry 1), reinforces the benefit of placing bond
activating groups in the benzylic position. By introducing bond weakening groups in the
benzylic position, a simple terminal olefin may be tolerated under the reaction conditions. The
excellent efficiency exhibited by substrates 38, 44 and 45 (entries 2, 3 and 4) to provide single
stereoisomers confirms that secondary ethers do not inhibit the reaction and have no impact on
the stereoselectivity. In fact, these substrates showed the greatest efficiency of all the
compounds tested, with yields in excess of 95% for each cyclization. Isolation of compound 50
from the cyclization of both substrates 38 and 45 demonstrates the homobenzylic stereocenter is
inconsequential to the stereochemical outcome of the reaction. Of particular note, the
functionality of compound 50 maps well onto the C2 — C10 portion of the marine macrolide

leucascandrolide A.%**
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Entry Substrate® Product Yield (%)

<
Q
O
:? ;
g
/
=0

i V07 Gy 70
C(\HH
31 49
MeO,
(0]
OMe fﬁ
(6] OAc
2 MeO W A, e 100
CﬁHI.’r
38 50
MeO,
(0]
o OAc R
3 MeO w[ NN Cotis 97

CeHis
44 51

MeO,

i

4 MeO

OAc 96
/'\ 07 “CeHus
CeHys

45 50

OMOM /©><‘/\/OMOM
5 MeO - ™S MeO OWONOZ 75
CeHis CHys

47 52

i

Reagents and Conditions: A solution of CAN (2-4 eq) in CH;CN was added
to the substrate (1 eq), NaHCO; (4-9 eq) and powdered 4A mol. sieves (2 wt eq)
in DCE at room temp. * All substrates were single isomers. ® Yields refer to pure
isolated material.

Table 8: Exploring the scope of endo-substates containing bond activating groups.

An attempt to form a Syn-2,6-methylene tetrahydropyran from the cyclization of substrate
47 resulted in oxidation of the allylsilane to form nitrate 52 (Table 8, entry 5). Based on their
expected oxidation potentials, the arene is predicted to be oxidized in preference to the
allylsilane.” This result is consistent with oxidation of a similarly appendend allylsilane, and

suggests an antenna effect™® is resulting is intramolecular electron transfer to give the allylsilane
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centered radical cation. The radical cation rapidly losses a trimethylsilyl cation and the resulting
allyl radical is futher oxidized to the allyl cation, which reacts with a nitrate ion to give
compound 52. The unexpected reactivity exhibited by this substrate supports the hypothesis that
oxidation of a previous allylsilane nucleophile (Table 6, entry 1) was inhibited by the protective

induction through the allylic ether.
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2.3. Conclusion

A mild and efficient method has been developed for the stereoselective formation of
carbon-carbon bonds through 6-endo-ETIC reactions. The excellent diastereocontrol exhibited
in these reactions is attributed to the strong tendency of 6-endo-cyclizations to proceed through
well defined chairlike transition states. These reactions proceed within minutes at room
temperature to provide good to excellent yields of syn-2,6-disubstituted tetrahydropyranones,
which are useful intermediates in the synthesis of biologically active natural products.

The challenge of synthesizing substrates containing an ether linkage between two
secondary carbons was accomplished through the Lewis acid-mediated opening of a cyclic acetal
in the presence of allenyltributyltin. This method provided excellent levels of stereochemical
control, and allowed for the efficient synthesis of substrates as single diastereomers. To the best
of our knowledge, this is the first example of a diastereoselective opening of a cyclic acetal using
an allenylstannane. The homopropargylic ethers obtained from the acetal opening can be readily
converted to enol acetates via a ruthenium-catalyzed Markovnikov addition of acetic acid to

quickly obtain the desired cyclization substrates.
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2.4.  Experimental

General Experimental:

All reactions were performed in oven or flame dried glassware under a nitrogen atmosphere with
magnetic stirring unless otherwise noted.

Proton (‘"H NMR) and carbon (°C NMR) nuclear magnetic resonance spectra were recorded on
Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively. The chemical shifts
are given in parts per million (ppm) on the delta (5) scale. The solvent peak or the internal
standard tetramethylsilane were used as reference values. For 'H NMR: CDCl; = 7.27 ppm,
TMS = 0.00 ppm. For *C NMR: CDCl; = 77.23, TMS = 0.00. For proton data: s = singlet; d =
doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; dt = doublet of triplets; ddt
= doublet of doublet of triplets; br = broad; m = multiplet; app t = apparent triplet; app q =
apparent quartet; app p = apparent pentet.

High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer.
Infrared (IR) spectra were collected on a Mattson Gygnus 100 spectrometer.

Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (25 nm)
silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash column
chromatography was preformed using ICN SiliTech 32-63 60A silica gel. Reagent grade ethyl
acetate and hexanes (commercial mixture) were purchased from EM Science and used as is for
chromatography. Reagent grade methylene chloride (CH,Cl,), dicholoroethane (C,H4Cl,),
acetonitrile (CH3CN), benzene and toluene were distilled from CaH,. Diethyl ether (Et20) and
tetrahydrofuran (THF) were dried by passing through aluminum drying column.

Dimethoxyethane (DME) was distilled from Na/benzophenone. Anhydrous N,N-
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dimthylformamide (DMF), methanol (MeOH), dimethyl sulfoxide (DMSO) were purchased

from Aldrich and used as is.

2-Hexyl-4-(4-methoxybenzyl)-[1,3]dioxolane (2)

mo To 3-(4-methoxyphenyl)propane-1,2-diol" (3.32 g, 18.25 mmol) in benzene (30
" e, mL) was added freshly distilled heptaldehyde (2.08 g, 18.25 mmol, 2.54 mL)
and PTSA (10 mg). The reaction mixture was then warmed to reflux and stirred for 15 h, while
removing water via a Dean-Stark trap. After cooling to room temperature, the reaction was
neutralized by the addition of Et;N (2 mL) and the solvent was removed under reduced pressure.
The resulting residue was then purified via flash column chromatography (5% EtOAc in
Hexanes) to provide the desired product (4.27 g, 84%): '"H NMR (300 MHz, CDCl3) & 7.14 (d, J
= 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 5.02 (t, J = 4.8 Hz, 0.35H), 4.91 (t, J = 4.7 Hz, 0.65H),
4.28 (p, J — 6.7 Hz, 0.48H), 3.84 (dd, J = 7.7, 7.0 Hz, 0.74H), 3.78 (s, 3H), 3.62 (dd, J="7.7, 6.2
Hz, 0.73H), 3.55 (appt t, J = 4.3 Hz, 0.45H), 2.96 (dd, J = 13.8, 6.3 Hz, 1H), 2.73 (dd, J = 13.8,
7.0 Hz, 1H), 1.73-1.66 (m, 2H), 1.46-1.42 (m, 2H), 1.33-1.29 (m, 8H), 0.93-0.88 (m, 3H); "°C
NMR (75 MHz, CDCls) 6 158.0, 129.9, 129.2, 113.6, 104.7, 103.9, 76.3, 69.6, 68.8, 54.8, 38.8,

38.2,33.9,31.4,28.9,23.6,22.2, 13.8; IR (neat) 2929, 2858, 1612, 1513, 1441, 1248, 1037 cm’';

HRMS (EI) caled for Ci7H605 (M") 278.1882, found 278.1883.

3-(4-Methoxyphenyl)-2-(1-prop-2-ynylheptyloxy)-propan-1-ol (3)

To 2-hexyl-4-(4-methoxybenzyl)-[1,3]dioxolane (3.00 g, 10.7 mmol) and
"o Oj{\s allenyltributyl tin (4.25 g, 12.9 mmol, 3.84 mL) in CH,Cl, (50 mL) at -78 C
was added TiCly (2.44 g, 12.9 mmol, 1.41 mL) rapidly. The reaction was then stirred at -78 "C

for 15 min and methanol (2 mL) was added slowly. The mixture was then poured into water and
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extracted with EtoAc (2x). The combined organic layers were then washed with water and 10%
aqueous KF, dried over Na,SOy, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (15-20% EtOAc in Hexanes) to
provide the desired product (2.86 g, 84%): 'H NMR (300 MHz, CDCl;) & 7.13 (d, J = 8.5 Hz,
2H), 6.83 (d, J = 8.5 Hz, 2H), 3.79 (s, 3H), 3.67-3.60 (m, 2H), 3.55-3.37 (m, 2H), 2.89 (dd, J =
13.7, 5.9 Hz, 1H), 2.73 (dd, J=13.7, 7.1 Hz, 1H), 2.23 (dd, J = 5.7, 2.6 Hz, 2H), 1.99 (t, J = 2.6
Hz, 1H), 1.85-1.81 (m, 1H), 1.70-1.56 (m, 2H), 1.30-1.28 (m, 10H), 0.89 (t, J = 6.9 Hz, 3H); °C
NMR (75 MHz, CDCl3) 6 158.2, 130.5, 130.3, 113.9, 81.4, 80.0, 70.0, 63.7, 55.3, 37.3, 34.3,
31.8, 29.4, 25.5, 24.5, 22.7, 14.2; IR (neat) 3453, 3308, 2929, 2857, 1612, 1512, 1465, 1247,

1038 cm™'; HRMS (EI) caled for CooHz03 (M) 318.2195, found 318.2198.

1-Methoxy-4-[2-(1-prop-2-ynylheptyloxy)-pent-3-enyl]-benzene (4)

D94
o
MeO

cHis  mmol) in CH,Cl, (10 mL) at 0 C was added NaHCO; (2.63 g, 31.4 mmol). The

To 3-(4-methoxyphenyl)-2-(1-prop-2-ynylheptyloxy)-propan-1-ol (1.00 g, 3.14

mixture was then stirred for 10 min and DMPI (1.73 g, 4.08 mmol) was added. The reaction
mixture then slowly warmed to room temperature and stirred for 1.5 h, filtered to remove
insoluble materials and concentrated under reduced pressure. The resulting residue was then
taken up in DME (5 mL) and 5-ethylsulfonyl-1-phenyl-1H-tetrazole (971.0 mg, 4.08 mmol) was
added. The mixture was then cooled to -60 ‘C and KHMDS (919.0 mg, 4.61 mmol) in DME (10
mL) was added over 45 min via syringe pump. The reaction was then stirred at -60 ‘C for 12 h
and the quenched by the addition of water while warming to room temperature. The mixture was
then extracted with EtOAc (2x). The combined organic layers were then washed with water and
brine, dried over Na,SO,, filtered and concentrated under reduced pressure. The resulting

residue was then purified via flash column chromatography (3% EtOAc in Hexanes) to provide
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the desired product (191.8 mg, 19%): 'H NMR (300 MHz, CDCl;) & 7.11 (d, J = 8.4 Hz, 2H),
6.80 (d, J = 8.4 Hz, 2H), 5.50 (dq, J = 15.3, 6.4 Hz, 1H), 5.32 (dd, J = 15.3, 8.3 Hz, 1H), 3.86 (q,
J="1.5 Hz, 1H), 3.79 (s, 3H), 3.45-3.39 (m, 1H), 2.83 (dd, J = 13.7, 7.0 Hz, 1H), 2.66 (dd, J =
13.7, 6.1 Hz, 1H), 2.25-2.12 (m, 2H), 1.93 (t, J=2.5 Hz, 1H), 1.67 (d, J= 6.2 Hz, 3H), 1.56-1.41
(m, 4H), 1.29-1.27 (m, 8H), 0.89 (t, J = 6.6 Hz, 3H); °C NMR (75 MHz, CDCls) & 157.8, 131.9,
130.8, 130.6, 113.2, 81.8, 80.4, 74.0, 69.5, 55.1, 41.8, 34.5, 31.8, 29.1, 25.3, 23.5, 22.6, 17.6,
14.1; IR (neat) 3310, 2931, 2857, 1512, 1247, 1039 cm™'; HRMS (EI) calcd for Cy,H3,0, (M),

found 328.2393.

Acetic acid-3-[1-(4-methoxybenzyl)-but-2-enyloxy]-1-methylenenonyl ester (5)

X
/©A(‘)N OAc
MeO

m mg, 0.30 mmol) in toluene (3 mL) was added Na,COs (4.00 mg, 0.04 mmol)

To 1-methoxy-4-[2-(1-prop-2-ynylheptyloxy)-pent-3-enyl]-benzene (100.0

and acetic acid (36.0 mg, 0.60 mmol, 35.0 pL). The mixture was then stirred at room
temperature for 10 min and [Ru(p-cymene)Cl,], (6.0 mg, 0.012 mmol) and 2-trifurylphosphine
(4.0 mg, 0.024 mmol). The reaction mixture was then warmed to 80 ‘C and stirred for an
additional 15 h. The mixture was then cooled to room temperature and concentrated under
reduced pressure. The resulting residue was then purified via flash column chromatography (5%
EtOAc in Hexanes) to provide the desired product (48.9 mg, 42%): [a]p™ = -8.3 (¢ = 1.4 in
CHCl;); '"H NMR (300 MHz, CDCl3) 8 7.0 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 5.44 (dq
J =153, 6.1 Hz, 1H), 5.28 (ddd, J 15.3, 8.1, 1.3 Hz, 1H), 4.72 (s, 1H), 4.65 (s, 1H), 3.85-3.78
(m, 1H), 3.78 (s, 3H), 3.44 (p, J = 6.3 Hz, 1H), 2.83 (dd, J = 13.5, 6.3 Hz, 1H), 2.63 (dd, J =
13.5, 6.7 Hz, 1H), 2.33 (dd, J = 14.7, 5.5 Hz, 1H), 2.20 (dd, J = 14.7, 6.6 Hz, 1H), 2.11 (s, 3H),
1.65 (dd, J = 6.1, 1.0 Hz, 2H), 1.48-1.39 (m, 2H), 1.28-1.25 (m, 8H), 0.89 (t, J = 6.2 Hz, 3H);

C NMR (75 MHz, CDCl3) § 168.9, 157.8, 153.7, 132.4, 103.6, 130.3, 128.3, 113.3, 103.4, 80.2,
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72.8,55.1, 41.7, 38.7, 34.9, 31.8, 29.1, 25.4, 22.6, 21.0, 17.5, 14.0; IR (neat) 2930, 2857, 1758,

1512, 1369, 1039 cm™'; HRMS (EI) calcd for (C24H3404) 388.2613 found 388.26022.

1-Methoxy-4-[2-(1-prop-2-ynylheptyloxy)hex-3-enyl]benzene (6)

/@ij} To 3-(4-methoxyphenyl)-2-(1-prop-2-ynylheptyloxy)-propan-1-ol (1.50 g, 4.7
o Oﬁ\ mmol) in CH,Cl, (15 mL) at 0°C was added NaHCO;3 (3.94 g, 47.0 mmol). The
mixture was then stirred for 10 min and DMPI (2.60 g, 6.10 mmol) was added. The reaction
mixture then slowly warmed to room temperature and stirred for 1.5 h, filtered to remove
insoluble materials and concentrated under reduced pressure and the crude aldehyde was used
without further purification.

To n-propyltriphenylphosphonium bromide (913.1 mg, 2.37 mmol), dried via azeotroping
with benzene (3x), in THF (10 mL) at — 78 °C was addede LHMDS (2.37 mL, 2.37 mmol)
dropwise. The slurry was then warmed to room temperature and the mixture turned bright red.
The mixture was then cooled to — 78 °C and the crude aldehyde (500.0 mg, 1.58 mmol) was
added. The reaction mixture was then slowly warmed to room temperature and stirred for an
additional 15 h, and was quenched by the addition of water. The mixture was then extracted
with EtOAc (2x). The combined organic layers were then washed with water and brine, dried
over Na,SQOys, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (5% EtOAc in Hexanes) to provide the desired
product (254.2 mg, 47%): 'H NMR (300 MHz, CDCls) & 7.11 (d, J = 8.5 Hz, 2H), 6.78 (d, J =
8.5 Hz, 2H), 5.45 (dt, J=10.9, 7.3 Hz, 1H), 5.19 (dd, J = 10.9, 9.5 Hz, 1H), 4.30 (q, J = 7.9 Hz,
1H), 3.78 (s, 3H), 3.41 (p, J = 6.1 Hz, 1H), 2.87 (dd, J = 13.3, 5.8 Hz, 1H), 2.57 (dd, J = 13.3,
7.6 Hz, 1H), 2.34 (dd, J = 14.7, 8.9 Hz, 1H), 2.27 (dd, J = 14.7, 6.4 Hz, 1H), 1.97 (t, J = 2.7 Hz,

1H), 1.86 (dq, J = 14.7, 7.1 Hz, 1H), 1.73 (dq, J = 14.7, 7.4 Hz, 1H), 1.43-.134 (m, 2H), 1.33-
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1.25 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H), 0.74 (t, J = 7.5 Hz, 3H); *C NMR (75 MHz, CDCl;) &
157.9, 134.7, 130.5, 130.1, 129.9, 113.6, 81.3, 75.4, 67.1, 55.7, 41.8, 38.7, 35.3, 31.8, 29.2, 25.5,

22.5,21.3,20.8, 14.1.

Acetic acid-3-[1-(4-methoxybenzyl)-pent-2-enyloxy]-1-methylenenonyl ester (7)

CzHs

\ To 1-methoxy-4-[2-(1-prop-2-ynylheptyloxy)hex-3-enyl]benzene (243.0 mg,
Omom 0.71 mmol) in toluene (3 mL) was added Na,COs (12.0 mg, 0.11 mmol) and
acetic acid (85.0 mg, 1.40 mmol, 85.0 uL). The mixture was then stirred at room temperature for
10 min and [Ru(p-cymene)Cl,], (17.3 mg, 0.028 mmol) and tri-2-furyl phosphine (13.1 mg,
0.056 mmol) were added. The reaction mixture was then warmed to 80 °C and stirred for an
additional 15 h. The mixture was then cooled to room temperature and concentrated under
reduced pressure. The resulting residue was then purified via flash column chromatography (5%
EtOAc in Hexanes) to provide the desired product (182.5 mg, 64%): [a]p™ =-7.4 (¢ = 1.0 in
CHCl;); "H NMR (300 MHz, CDCl3) 8= 7.0, (d, J = 8.5 Hz, 2H), 6.79 (d, J = 8.5 Hz, 2H), 5.46
(dt, J=10.9, 7.3 Hz, 1H), 5.19 (dd, J = 10.9, 9.5 Hz, 1H), 4.76 (s, 1H), 4.71 (s, 1H), 4.30 (q, J =
7.9 Hz, 1H), 3.78 (s, 3H), 3.41 (p, J = 6.1 Hz, 1H), 2.87 (dd, J = 13.3, 5.8 Hz, 1H), 2.57 (dd, J =
13.3, 7.6 Hz, 1H), 2.34 (dd, J = 14.7, 8.9 Hz, 1H), 2.27 (dd, J = 14.7, 6.4 Hz, 1H), 2.11 (s, 3H),
1.86 (dq, J=14.7, 7.1 Hz, 1H), 1.73 (dq, J = 14.7, 7.4 Hz, 1H), 1.43-1.34 (m, 2H), 1.33-.125 (i,
8H), 0.88 (t, J = 6.9 Hz, 3H), 0.74 (t, J = 7.5 Hz, 3H); °C NMR (75 MHz, CDCl;) 8= 169.1,
158.0, 153.8, 134.5, 130.7, 130.5, 130.2, 113.5, 103.8, 74.6, 73.7, 55.3, 41.7, 38.9, 35.1, 31.9,
29.3, 255, 22.7, 21.2, 20.9, 14.2; IR (neat) 2931, 2857, 1758, 1665, 1612, 1464, 1246, 1196,

1038 cm'l; HRMS (EI): caled for CysH3g04 (M+) 402.2770, found 402.2754.
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1-Methoxy-4-[4-methyl-2-(1-prop-2-ynyl-heptyloxy)pent-3-enyl]benzene (8)

QAP/ To 3-(4-methoxyphenyl)-2-(1-prop-2-ynylheptyloxy)-propan-1-ol (689.0 mg,
Meo OE\ 2.16 mmol) in CH,Cl, (5 mL) at 0°C was added NaHCOs (1.81 g, 21.6 mmol).
The mixture was then stirred for 10 min and DMPI (1.19 g, 2.8 mmol) was added. The reaction
mixture then slowly warmed to room temperature and stirred for 1.5 h, filtered to remove
insoluble materials and concentrated under reduced pressure and the crude aldehyde was used
without further purification.

To i-propyltriphenylphosphonium iodide (553.0 mg, 1.27 mmol), dried via azeotroping
with benzene (3x), in THF (5 mL) at 0 °C was added n-butyl lithium (0.79 mL, 1.27 mmol)
dropwise. The mixture was then stirred at 0 °C for an additional 20 minutes and the crude
aldehyde (270.0 mg, 0.85 mmol) was added in THF (0.5 mL). The reaction mixture was then
slowly warmed to room temperature and stirred for an additional 14 h. The reaction was then
quenched by the addition of saturated NH4Cl (aq) and extracted with EtOAc (3x). The combined
organic layers were then washed with water and brine, dried over Na,SO,, filtere and
concentrated under reduced pressure. The resulting residue was then purified via flash column
chromatography (4% EtOAc in Hexanes) to give the desired product (28.4 mg, 10%): 'H NMR
(300 MHz, CDCls) 6 7.11 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.06 (d, J = 8.3 Hz, 1H),
4.23 (q, J = 6.7 Hz, 1H), 3.79 (s, 3H), 3.42-3.41 (m, 1H), 2.86 (dd, J = 13.3, 6.3 Hz, 1H), 2.59
(dd, J =13.6, 6.9 Hz, 1H), 2.28-2.18 (m, 2H), 1.95 (t, J = 2.6 Hz, 1H), 1.69 (s, 3H), 1.49-1.47
(m, 2H), 1.41 (s, 3H), 1.30-1.18 (m, 8H), 0.89 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCl;)
157.7, 135.1, 130.6, 126.1, 113.2, 81.9, 75.7, 74.1, 69.4, 55.1, 41.7, 34.7, 31.8, 29.1, 25.7, 25.3,

23.8,22.6,18.1, 14.1.
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Acetic acid-3-[1-(4-methoxybenzyl)-3-methylbut-2-enyloxy]-1-methylenenonyl ester (9)

QAP/ To 1-methoxy-4-[4-methyl-2-(1-prop-2-ynyl-heptyloxy)pent-3-enyl|benzene
MeO Omom (63.0 mg, 0.18 mmol) in toluene (2 mL) was added Na,COs (2.5 mg, 0.48
mmol) and acetic acid (18.0 mg, 0.36 mmol, 17.0 uL). The mixture was then stirred at room
temperature for 10 min and [Ru(p-cymene)Cl;], (3.8 mg, 0.007 mmol) and tri-2-furylphosphine
(2.7 mg, 0.014 mmol) were added. The reaction mixture was then warmed to 80 °C and stirred
for an additional 16 h. The mixture was then cooled to room temperature and concentrated under
reduced pressure. The resulting residue was then purified via flash column chromatography (4%
EtOAc in Hexanes) to provide the desired product (28.1 mg, 39%): [a]p™ = -7.7 (¢ = 0.7 in
CHCl;); "H NMR (300 MHz, CDCl3) 8= 7.07 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.6 Hz, 2H), 5.02
(d, J=9.3 Hz, 1H), 4.75 (s, 1H), 4.69 (s, 1H), 4.23-4.16 (m, 1H), 3.78 (s, 3H), 3.40 (p, J =5.9
Hz, 1H), 2.84 (dd, J = 13.3, 5.9 Hz, 1H), 2.55 (dd, J = 13.3, 7.4 Hz, 1H), 2.37 (dd, J = 14.6, 5.6
Hz, 1H), 2.24 (dd, J = 14.6, 6.5 Hz, 1H), 2.11 (s, 3H), 1.67 (s, 3H), 1.48-1.47 (m, 2H), 1.37 (s,
3H), 1.30-1.18 (m, 8H), 0.89 (t, J = 6.4 Hz, 3H); °C NMR (75 MHz, CDCl3) 8= 168.7, 157.9,
153.8, 134.7, 130.9, 130.8, 126.6, 113.7, 103.4, 75.6, 73.2, 55.2, 41.7, 38.8, 29.2, 25.6, 25.3,

22.6, 21.0, 17.9, 14.0; IR (neat) 2929, 2856, 1758, 1512,1052 cm™; MS: m/z(%): 281 (12)

[C17H2005"].

5-(4-Methoxyphenyl)-4-(1-prop-2-ynyl-heptyloxy)pent-2-enoic acid ethyl ester (10)

_ % To 3-(4-methoxyphenyl)-2-(1-prop-2-ynylheptyloxy)-propan-1-ol (689.0 mg,

"o Z‘\ 2.16 mmol) in CH,Cl, (5 mL) at 0°C was added NaHCOs (1.81 g, 21.6 mmol).
The mixture was then stirred for 10 min and DMPI (1.19 g, 2.8 mmol) was added. The reaction

mixture then slowly warmed to room temperature and stirred for 1.5 h, filtered to remove
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insoluble materials and concentrated under reduced pressure and the crude aldehyde was used
without further purification.

To a suspension of NaH (47.0 mg, 1.18 mmol) in THF (2.5 mL) at 0 °C was added
triethylphosphonoacetate (265.0 mg, 1.18 mmol) dropwise. The mixture was then stirred at 0 °C
for 45 minutes and the crude aldehyde (250.0 mg, 0.79 mmol) was added dropwise in THF (0.5
mL). The reaction mixture was then slowly warmed to room temperature and stirred for an
additional 16 hours. The reaction was then quenched by the addition of water and extracted with
EtOAc (2x). The combined organic layers were then washed with water and brine, dried over
NaySO,, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (10% EtOAc in Hexanes) to provide the desired
product (220.5 mg, 72%): 'H NMR (300 MHz, CDCl3) § 7.10 (d, J = 8.6 Hz, 2H), 6.86-6.77 (m,
3H), 5.88 (dd, J = 15.7, 1.0 Hz, 1H), 4.23 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 3.38 (p, J = 6.2 Hz,
1H), 2.88 (dd, J =13.7, 7.0 Hz, 1H), 2.73 (dd, J=13.7, 6.1 Hz, 1H), 2.17-2.15 (m, 2H), 1.95 (t, J
= 2.6 Hz, 1H), 1.56-1.50 (m 2H), 1.36-1.26 (m, 10H), 0.88 (t, J = 5.7 Hz, 3H); °C NMR (75
MHz, CDCl;) 6 166.0, 158.2, 148.3, 130.7, 129.6, 122.2, 113.8, 81.2, 79.1, 75.9, 69.8, 60.3,
55.1,41.1,34.4,31.7, 29.6, 25.0, 23.6, 22.5, 14.1, 14.0; IR (neat) 3293, 2931, 2857, 1720, 1513,

1248, 1037 cm™.

5-(4-Methoxyphenyl-4-(1-prop-2-ynyl-heptyloxy)pent-2-en-1-ol (11)

DA‘\MOH To 5-(4-methoxyphenyl)-4-(1-prop-2-ynyl-heptyloxy)pent-2-enoic acid ethyl
MeO O\L/\Q

CeHys

ester (192.0 mg, 0.49 mmol) in CH,CI, (2 mL) at — 78 °C was added DIBAL
(1.09 mL, 1.09 mmol) dropwise. The reaction was ten stirred at — 78 °C for 30 minutes and
quenched by the addition of saturated Na,K-tartrate (aq). The mixture was then stirred

vigorously for 1h at room temperature and the organic layer was separated. The aqueous layer
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was then extracted with CH,Cl, (2x). The combined organic layers were then washed with water
and brine, dried over Na,SOys, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (25% EtOAc in Hexanes) to furnish
the desired product (84.2 mg, 49%): 'H NMR (300 MHz, CDCl;) & 7.11 (d, J = 8.6 Hz, 2H),
6.81 (d, J = 8.6 Hz, 2H), 5.69 (dt, J = 15.6, 4.9 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 4.11 (d,
J=4.9 Hz, 2H), 3.98 (q, J = 6.8 Hz, 1H), 3.79 (s, 3H), 3.45-3.40 (m, 1H), 2.86 (dd, J = 13.6, 6.9
Hz, 1H), 2.68 (dd, J = 13.6, 6.2 Hz, 1H), 2.18-2.13 (m, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.62-1.51
(m, 2H), 1.28-1.26 (m, 8H), 0.89 (t, J = 6.4 Hz, 3H); °C NMR (75 MHz, CDCl;) & 158.1, 132.3,
131.7, 130.6, 130.4, 113.5, 81.6, 79.6, 74.9, 69.6, 62.9, 55.2, 41.7, 4.5, 31.8, 29.2, 25.3, 23.6,

22.6, 14.1.

tert-Butyl-[5-(4-methoxyphenyl)-4-(1-prop-2-ynylheptyloxy)pent-2-enyloxy]dimethylsilane
(12)

/@A‘\MOTBS To 5-(4-methoxyphenyl-4-(1-prop-2-ynyl-heptyloxy)pent-2-en-1-o0l (84.0 mg,

MeO

7

S

G 0.24 mmol) in DMF at 0 °C was added imidazole (35.0 mg, 0.52 mmol). The
mixture was then stirred at 0 °C for 5 minutes and TBSCI (40.0 mg, 0.26 mmol) and DMAP
(small crystal) were added. The reaction mixture was then slowly warmed to room temperature
over 12 hours and quenched by the addition of water. The mixture was then extracted with
EtOAc (2x). The combined organic layers were then washed with water and brine, dried over
Na,S0,, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (5% EtOAc in Hexanes) to give the desired product
(89.7 mg, 82%): "H NMR (300 MHz, CDCl;) & 7.12 (d, J = 8.5 Hz, 2H), 6.80 (d, J = 8.5 Hz,
2H), 5.58-5.56 (m, 2H), 4.13 (d, J = 2.2 Hz, 2H), 3.96 (q, J = 6.4 Hz, 1H), 3.79 (s, 3H), 3.45-

3.41 (m, 1H), 2.85 (dd, J = 13.6, 7.0 Hz, 1H), 2.68 (dd, J = 13.6, 5.9 Hz, 1H), 2.17-2.12 (m, 2H),
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1.93 (t, J = 1.3 Hz, 1H), 1.60-1.50 (m, 2H), 1.28-1.25 (m, 8H), 0.90 (s, 9H), 0.90-0.86 (m, 3H),
0.06 (s, 6H); °C NMR (75 MHz, CDCls) & 158.0, 132.2, 130.7, 130.3, 113.4, 81.8, 79.9, 74.7,
69.7, 63.0, 55.2, 41.9, 34.6, 31.9, 29.4, 26.0, 25.5, 23.6, 22.7, 18.4, 14.2, -5.1; IR (neat) 3312,

2929, 2856, 1612, 1512, 1248, 836 cm’.

Acetic acid-3-[4-(tert-butyldimethylsilanyloxy)-1-(4-methoxybenzyl)but-2-enyloxy]-1-

methylenenonyl ester (13)

/@/Woms To tert-butyl-[5-(4-methoxyphenyl)-4-(1-prop-2-ynylheptyloxy)pent-2-
c m enyloxy]dimethylsilane (89.7 mg, 0.195 mmol) in toluene (2 mL) was added

Na,COs (3.3 mg, 0.031 mmol) and acetic acid (23.0 mg, 0.39 mmol, 20.0 uL). The mixture was
then stirred at room temperature for 10 min and [Ru(p-cymene)Cl;], (4.0 mg, 0.007 mmol) and
tri-2-furylphosphine (3.0 mg, 0.014 mmol) were added. The reaction mixture was then warmed
to 80 °C and stirred for an additional 15 h. The reaction was then cooled to room temperature
and concentrated under reduced pressure. The resulting residue was then purified via flash
column chromatography (5% EtOAc in Hexanes) to provide the desired product (45.4 mg, 45%):
[a]p™’ = -7.5 (¢ = 0.5 in CHCl3); "H NMR (300 MHz, CDCl3) &= 7.09 (d, J = 8.6, Hz, 2H), 6.79
(d, J = 8.6 Hz, 2H), 5.58-5.47 (m, 2H), 4.72 (s, 1H), 4.64 (s, 1H), 4.12 (d, J = 2.8 Hz, 2H), 3.95
(app q, J = 6.6 Hz, 1H), 3.78 (s, 3H), 3.42 (p, J = 5.7 Hz, 1H), 2.83 (dd, J = 13.5, 6.5 Hz, 1H),
2.65 (dd, J=13.5, 6.5 Hz, 1H), 2.32 (dd, J = 14.7, 5.5 Hz, 1H), 2.21 (dd, J = 14.7, 6.4 Hz, 1H),
2.11 (s, 3H), 1.47-1.37 (m, 2H), 1.30-1.25 (m, 8H), 0.90 (s, 9H), 0.91-0.89 (m, 3H), 0.05 (s, 3H),
0.04 (s, 3H); °C NMR (75 MHz, CDCl;) 8= 168.8, 157.9, 153.7, 132.2, 130.6, 130.5, 113.4,
103.4, 98.2, 79.6, 73.5, 62.9, 55.1, 46.8, 41.8, 38.4, 34.9, 31.8, 29.3, 25.8, 25.4, 22.6, 21.0, 20.6,
18.3, 14.0, -5.2; IR (neat) 2954, 2929, 2856, 1758, 1512, 1463, 1248, 1196, 1108 cm™'; HRMS

(E): caled for CagHu OsSi (M' - C4Hs) 461.2723, found 461.2718.
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4-(4-Methoxyphenyl)butane-1,3-diol (15)

To 1-(4-methoxyphenyl)pent-4-en-2-ol (5.00 g, 26.0 mmol) in CH,Cl, (50 mL) at

OH OH
MCO/OAA

Na2(g) and MeOH (50 mL) and NaBH4 (4.9 g, 130.0 mmol) were added. The reaction mixture

— 78 °C was bubbled O;(g) gently for 25 min. The reaction was then purged with

was then slowly warmed to room temperature and stirred for an additional 14 h. The reaction
was then quenched by the careful addition of water and the mixture was extracted with EtOAc
(3x). The combined organic layers were then washed with water and brine, dried over Na;SOs,
filtered and concentrated under reduced pressure. The resulting residue was then purified via
flash column chromatography (45% EtOAc in Hexanes) to provide the desired product (3.64 g,
71 %): "H NMR (300 MHz, CDCl;) § 7.11 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 4.05-
4.02 (m, 1H), 3.91-3.76 (m, 2H), 3.79 (s, 3H), 2.75-2.70 (m, 2H), 2.40 (br s, 2H), 1.78-1.71 (m,

2H); C NMR (75 MHz, CDCl3) 8 159.5, 131.1, 130.2, 113.6, 70.9, 56.2, 55.7, 43.2, 40.1.

2-Hexyl-4-(4-methoxybenzyl)-[1,3]dioxane (16)
. @A@ To 4-(4-methoxyphenyl)butane-1,3-diol (669.1 mg, 3.41 mmol) in benzene (10
o mL) at room temperature was added heptaldehyde (370.0 mg, 3.24 mmol) and
pTsOH (64.7 mg, 0.34 mmol). The reaction mixture was then warmed to reflux and stirred at
that temperature for an additional 2.5 hours. The reaction was then cooled to room temperature
and quenched by the addition of EtsN (2.0 mL). The solvent was then removed under reduced
pressure and the resulting residue was purified via flash column chromatography (4% EtOAc in
Hexanes) to give the desired product (582.6 mg, 58%): 'H NMR (300 MHz, CDCl;) & 7.13 (d, J
= 8.2 Hz, 2H), 6.83 (d, J = 8.2 Hz, 2H), 4.49 (t, J = 5.3 Hz, 1H), 4.08 (dd, J=11.5, 4.9 Hz, 1H),
3.80 (s, 3H), 3.75-3.70 (m, 1H), 3.64 (dd, J=12.2, 1.7 Hz, 1H), 2.92 (dd, J = 13.7, 6.4 Hz, 1H),

2.62 (dd, J = 13.7, 6.8 Hz, 1H), 1.69-1.58 (m, 2H), 1.39-1.35 (m, 4H), 1.28-1.24 (m, 6H), 0.88 (t,
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J = 5.5 Hz, 3H); °C NMR (75 MHz, CDCls) & 159.5, 131.5, 130.1, 113.7, 101.2, 73.9, 65.6,

55.7,41.2,39.1, 36.5,32.1, 30.7, 24.1, 20.2, 14.1.

4-(4-Methoxyphenyl)-3-(1-prop-2-ynyl heptyloxy)butan-1-ol (17)
/@A(‘)NOH To 2-hexyl-4-(4-methoxybenzyl)-[1,3]dioxane (500.0 mg, 1.70 mmol) and
Meo ~
allenyltributyltin (1.11 g, 3.4 mmol) in CH,Cl, (20 mL) at — 78 °C was added
TiCly/Ti(i-PrO)4 (6:5) in CH,Cl; (30 mL) over 2 hour via a syringe pump. The reaction mixture
was then stirred at — 78 °C for an additional 1 hour and 2 equivalents (1.11 g, 3.4 mmol) of
allenyltributyltin were added. The reaction was then stirred at — 78 °C for 14 hours and
quenched by the addition of MeOH (2.0 mL) and poured into water. The mixture was then
extracted with EtOAc (3x). The combined organic layers were then washed with water and 10%
aqueous KF, dried over Na;SOy, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (10% EtOAc in Hexanes) to give the
desired product (467.9 mg, 83%): 'H NMR (300 MHz, CDCls) & 7.10 (d, J = 8.5 Hz, 2H), 6.82
(d, J=8.5 Hz, 2H), 3.79 (s, 3H), 3.79-3.75 (m, 3H), 3.53 (p, J = 5.8 Hz, 1H), 2.95 (dd, J = 13.6,
5.5 Hz, 1H), 2.65 (dd, J =13.6, 7.6 Hz, 1H), 2.47 (t, J = 4.7 Hz, 1H), 2.30-2.26 (m, 2H), 1.99 (t,
J=2.6 Hz, 1H), 1.74-1.62 (m, 2H), 1.37-1.26 (m, 8H), 0.89 (t, J = 6.7 Hz, 3H); °C NMR (75
MHz, CDCls) 8 157.8, 140.1, 127.6, 113.4, 82.3, 70.1, 61.1, 55.3, 42.3, 34.4, 33.3, 31.9, 29.5,

27.9,26.2,25.3,23.5,22.7, 14.2.

1-Methoxy-4-[2-(1-prop-2-ynyl-heptyloxy)but-3-enyl]benzene (18)

@A‘A\ To 4-(4-methoxyphenyl)-3-(1-prop-2-ynyl heptyloxy)butan-1-ol (288.0 mg,
MeO OV\

0.86 mmol) and phenylselenocyanate (236.7 mg, 1.3 mmol) in THF (10 mL) at

CiHi

— 10 °C was added PBu3 (263.0 mg, 1.3 mmol) dropwise. The reaction mixture was then stirred

118



at — 10 °C for 18 hours, and the solvent was removed under reduced pressure. The resulting
residue was passed through a short silica plug. The filtrate was then concentrated under reduced
pressure and taken up in CH,Cl, (5 mL). The solution was then cooled to — 78 °C and mCPBA
(148.9 mg, 0.86 mmol) was added. The reaction mixture was then stirred at — 78 °C for 30 min
and DHP (306.0 mg, 4.3 mmol) and pyridine (340.0 mg, 4.3 mmol) were added. The reaction
mixture was then warmed to 40 °C and stirred for an additional 14 hours. The solvent was then
removed under reduced pressure and the resulting residue was purified via flash column
chromatography (4% EtOAc in Hexanes) to provide the desired product (262.1 mg, 96%): 'H
NMR (300 MHz, CDCls) 6 7.13 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.68 (ddd, J =
17.5,10.2, 7.9 Hz, 1H), 5.12 (d, J=10.2 Hz, 1H), 5.07 (d, J = 17.5 Hz, 1H), 3.93 (q, J = 6.8 Hz,
1H), 3.79 (s, 3H), 3.48-3.40 (m, 1H), 2.86 (dd, J = 13.6, 6.9 Hz, 1H), 2.70(dd, J = 13.6, 6.2 Hz,
1H), 2.23-2.14 (m, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.60-1.38 (m, 2H), 1.28-1.27 (m. 10H), 0.89 (t,
J = 6.2 Hz, 3H); °C NMR (75 MHz, CDCls) & 157.9, 138.9, 130.6, 130.4, 116.9, 113.4, 81.6,

80.9,74.7, 69.6, 55.2, 41.6, 34.5, 31.8, 29.2, 25.3, 23.5, 22.6, 14.1.

Acetic acid-3-[1-(4-methoxybenzyl)allyloxy]-1-methylenenonyl ester (19)

W To 1-methoxy-4-[2-(1-prop-2-ynyl-heptyloxy)but-3-enyl]benzene (0.95 g,

3.01 mmol) in toluene (15 mL) was added Na,CO; (51.0 mg, .48 mmol) and
acetic acid (.36 g, 6.02 mmol, (35.0 uL). The mixture was then stirred at room temperature for
10 min and [Ru(p-cymene)Cl,], (74.8 mg, 0.12 mmol) and tri-2-furylphosphine (55.9 mg, 0.24
mmol) were added. The reaction mixture was then warmed to 80 °C and stirred for an additional
16 h. The mixture was then cooled to room temperature and concentrated under reduced
pressure. The resulting residue was then purified via flash column chromatography (3% EtOAc

in Hexanes) to provide the desired product (699.0 mg, 62%): 'H NMR (300 MHz, CDCl;) &=
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7.10 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 5.73-5.60 (m, 1H), 5.11 (d, J = 10.2 Hz, 1H),
5.03 (d, J = 17.2 Hz, 1H), 4.73 (s, 1H), 4.66 (s, 1H), 3.90 (q, J = 6.7 Hz, 1H), 3.79 (s, 3H), 3.45
(p, J=5.6 Hz, 1H), 2.84 (dd, J = 13.5, 6.4 Hz, 1H), 2.66 (dd, J = 13.5, 6.7 Hz, 1H), 2.35 (dd, J =
14.7, 5.6 Hz, 1H), 2.22 (dd, J = 14.7, 6.5 Hz, 1H), 2.11 (s, 3H), 1.45-1.43 (m, 2H), 1.30-1.25 (m,
8H), 0.88 (t, J = 6.3 Hz, 3H); °C NMR (75 MHz, CDCL3) 8= 168.9, 157.9, 153.6, 139.2, 130.6,
130.2, 1117.0, 113.3, 103.5, 80.7, 73.4, 55.1, 41.5, 38.3, 34.8, 31.7, 30.9, 29.2, 25.3, 22.6, 21.0,
14.0; IR (neat) 2930, 2857, 1757, 1665, 1465, 1247, 1038 cm™'; HRMS (EI): caled for Ca3Hss04

(M") 374.2457, found 374.2461.

2-Hexyl-6-propenyltetrahydropyran-4-one (20)

o To acetic acid-3-[1-(4-methoxybenzyl)-but-2-enyloxy]-1-methylenenonyl ester
o ek (48.0 mg, 0.12 mmol) in DCE (2.2 mL) was added NaHCO03 (100.0 mg, 1.19 mmol)
and 4A molecular sieves (100.0 mg). The mixture was then stirred at room temperature for 10
min and CAN (275.0 mg, 0.50 mmol) in CH3CN (1.2 mL) was added dropwise. The reaction
was then stirred for an additional 30 min and filtered through a silica plug. The filtrate was then
concentrated under reduced pressure and purified via flash column chromatography (5% EtOAc
in Hexanes) to provide the desired product (21.5 mg, 80%): [a]p™’ =-2.3 (¢ =0.9 in CHCls); 'H
NMR (300 MHz, CDCls) 6 5.75 (dqd, J=15.3, 6.3, 0.8 Hz, 1H), 5.56 (ddq, J = 15.3, 6.2, 1.5 Hz,
1H), 4.09-4.01 (m, 1H), 3.64-3.56 (m, 1H), 2.38-2.20 (m, 4H), 1.74 (d, J = 6.3 Hz, 3H), 1.29-
1.26 (m, 10H), 0.88 (t, J = 6.6, 3H); °C NMR (75 MHz, CDCls) & 207.4, 130.4, 128.4, 47.8,
47.7,36.4,31.7,29.1, 25.1, 22.6, 17.7, 14.0; IR (neat) 2928, 2857, 1721 cm™'; HRMS (EI) calcd

for (C14H240,) 224.1776 found 224.1759.
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2-But-1-enyl-6-hexyltetrahydropyran-4-one (21)

o ﬁﬁ To acetic acid-3-[1-(4-methoxybenzyl)-pent-2-enyloxy]-1-methylenenonyl ester

N .
N o /C6H13

(100.0 mg, 0.25 mmol) in DCE (2.4 mL) was added NaHCO; (200.0 mg, 2.38
mmol) and 4A molecular sieves (200 mg). The mixture was then stirred at room temperature for
10 min and CAN (544.0 mg, 0.99 mmol) in CH3CN (1.5 mL) was added dropwise. The reaction
mixture was then stirred at room temperature for an additional 30 min and filtered through a
silica plug. The filtrate was then concentrated under reduced pressure, and the resulting residue
was purified via flash column chromatography (3% EtOAc in Hexanes) to provide the desired
product (41.1 mg, 70%): [a]p™ = -2.5 (¢ = 0.9 in CHCLs); 'H NMR (300 MHz, CDCl;) 8= 5.58
(dtd, J=10.9, 7.4, 0.9 Hz, 1H), 5.40 (ddt, J = 10.9, 7.6, 1.4 Hz, 1H), 4.38 (dddd, J =124, 7.6,
5.3, 0.8 Hz, 1H), 3.62 (dtd, J = 11.2, 4.7, 2.6 Hz, 1H), 2.40-2.24 (m, 2H), 2.16-2.00 (m, 2H),
1.75-1.62 (m, 2H), 1.58-1.40 (m, 2H), 1.38-1.25 (m, 8H), 0.99 (t, J= 7.5 Hz, 3H), 0.87 (t,J=6.9
Hz, 3H); °C NMR (75 MHz, CDCls) 8=207.3, 135.3, 128.2, 73.1, 48.0, 47.7, 36.4, 31.7, 29.1,
28.8, 25.1, 22.9, 22.5, 21.3, 14.1; IR (neat) 2959, 2939, 2858, 1722 cm'l; HRMS (EI) calcd for

C15Ha60, (MY 238.1933, found 238.1936.

2-Hexyl-6-(2-methylpropenyl)tetrahydropyran-4-one (22)

foﬁ To acetic acid-3-[1-(4-methoxybenzyl)-3-methylbut-2-enyloxy]-1-methylenenonyl
Ao, ester (28.0 mg, 0.06 mmol) in DCE (2.0 mL) was added NaHCO; (60.0 mg, 0.71
mmol) and 4A molecular sieves (60 mg). The mixture was then stirred at room temperature for
10 min and CAN (152.0 mg, 0.27 mmol) in CH3CN (1.0 mL) was added dropwise. The reaction
mixture was then stirred at room temperature for an additional 30 min and filtered through a

silica plug. The filtrate was then concentrated under reduced pressure, and the resulting residue

was purified via flash column chromatography (3% EtOAc in Hexanes) to provide the desired
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product (11.4 mg, 80%): [a]p™’ =-2.3 (¢ = 0.6 in CHCl3); '"H NMR (300 MHz, CDCls) &= 5.25
(d, J=7.8 Hz, 1H), 4.29 (dd, J = 14.0, 7.9 Hz, 1H), 3.66-3.57 (m, 1H), 2.40-2.20 (m, 4H), 1.76
(s, 3H), 1.69 (s, 3H), 1.53-1.37 (m, 2H), 1.33-1.26 (m, 8H) 0.88 (t, J = 6.8 Hz, 3H); °C NMR
(75 MHz, CDCls) 6=207.4, 137.3, 124.5, 74.1, 48.0, 47.8, 36.5, 31.7, 29.6, 29.1, 25.6, 25.2,
22.5, 18.4, 14.0; IR (neat) 2928, 2857, 1720, 1052 cm'l; HRMS (EI): calcd for C;5H»60, (M+)

238.1932 found 238.1935.

2-[3-(tert-Butyldimethylsilanyloxy)propenyl]-6-hexyltetrahydropyran-4-one (23)

i To acetic acid-3-[4-(tert-butyldimethylsilanyloxy)-1-(4-methoxybenzyl)but-2-
T o, enyloxy]-1-methylenenonyl ester (45.0 mg, 0.08 mmol) in DCE (2.2 mL) was
added NaHCO; (90.0 mg, 1.07 mmol) and 4A molecular sieves (90.0 mg). The mixture was
then stirred at room temperature for 10 min and CAN (190.0 mg, 0.34 mmol) in CH3CN (1.0
mL) was added dropwise. The reaction mixture was then stirred at room temperature for an
additional 10 min and filtered through a silica plug. The filtrate was then concentrated under
reduced pressure, and the resulting residue was purified via flash column chromatography (5%
EtOAc in Hexanes) to provide the desired product (24.2 mg, 79%): [a]p™ = -2.2 (¢ = 1.0 in
CHCl;); '"H NMR (300 MHz, CDCl3) &= 5.84 (dt, J = 15.5, 3.8 Hz, 1H), 5.76 (dd, J = 15.5, 4.9
Hz, 1H), 4.20 (dd, J = 3.8, 1.1 Hz, 2H), 4.14-4.08 (m, 1H), 3.66-3.57 (m, 1H), 2.46-2.41 (m,
2H), 2.40-2.37 (m, 1H), 2.30-2.21 (m, 1H), 1.75-1.70 (m, 1H), 1.59-1.50 (m, 1H), 1.30-1.26 (m,
8H), 0.92 (s, 9H), 0.93-0.90 (m, 3H), 0.08 (s, 6H); °C NMR (75 MHz, CDCls) 8=207,3, 131.4,

128.7, 63.0, 47.8, 36.4, 31.8, 29.2, 26.0, 25.3, 22.6, 18.5, 14.1, -5.1; IR (neat) 2929, 2856, 1722,

1254, 1057 cm'l; HRMS (EI): calcd for CyoH3303Si1 (M+) 354.2590, found 354.2553.
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Acetic acid-3-[1-(4-methoxy-3-nitrooxybenzyl)allyloxy]-1-methylenenonyl ester (24)

OzNom\ o To acetic acid-3-[1-(4-methoxybenzyl)allyloxy]-1-methylenenonyl ester

MeO

EnHll

(50.0 mg, 14 mmol) in DCE (2.2 mL) was added NaHCOs (100.0 mg, 1.19
mmol) and 4A molecular sieves (100.0 mg). The mixture was then stirred at room temperature
for 15 min and CAN in CH3CN (1.0 mL) was added dropwise. The reaction was then stirred for
an additional 20 min and passed through a silica plug. The filtrate was then concentrated under
reduced pressure, and the resulting residue was purified via flash column chromatography (20%
EtOAc in Hexanes) to provide the nitrated product (12.0 mg, 19%): "H NMR (300 MHz, CDCl5)
6=17.71 (s, 1H), 7.37 (d, J = 8.5 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 5.63 (ddd, J =17.3, 10.2, 8.3
Hz, 1H), 5.15 (d, J = 10.2 Hz, 1H), 5.07 (d, J = 17.3 Hz, 1H), 3.94 (s, 3H), 3.94-3.89 (m, 1H),
3.44 (p, J = 6.0 Hz, 1H), 2.83 (dd, J = 13.7, 6.9 Hz, 1H), 2.73 (dd, J = 13.7, 5.6 Hz, 1H), 2.31
(dd, J=14.6,5.7 Hz, 1H), 2.21 (dd, J = 14.6, 6.3 Hz, 1H), 2.11 (s, 3H), 1.44-1.42 (m, 2H), 1.26-
1.24 (m, 8H), 0.88 (t, J = 5.8 Hz, 3H); °C NMR (75 MHz, CDCl;) 8= 168.9, 153.4, 151.4,
138.7, 135.6, 130.7, 126.8, 117.7, 112.9, 103.6, 79.9, 73.4, 56.5, 41.0, 38.4, 34.8, 31.7, 29.2,

25.2,22.6,21.0, 14.0; MS: m/z(%): 389 (6) [M" - NO.], 360 (6) [M" - CH3NO,].

4-(4-Methoxyphenyl)-4-methylpentane-1,3-diol (25)

/©><m To 2-(4-methoxyphenyl)-2-methylhex-5-en-3-ol (3.09 g, 14.0 mmol) in CH,Cl,
" o (30 mL) at — 78 °C was gently bubble O; (g) for 20 min. The solution was then
purged with nitrogen, and MeOH (30 mL) was added followed by NaBH,4 (2.65 g, 70.3 mmol).
The reaction mixture was then warmed to 0 °C, and the reaction mixture was slowly warmed to
room temperature. After stirring at room temperature for 12 h, the reaction was quenched by the
careful addition of water. The CH,Cl, and MeOH were then removed under reduced pressure,

and the aqueous layer was extracted with EtOAc (2x). The combined organic layers were then
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washed with water and brine, dried over Na,SQ,, filtered and concentrated under reduced
pressure. The resulting residue was then purified via flash column chromatography (80% EtOAc
in Hexanes) to provide the desired product (2.13 g, 68%): 'H NMR (300 MHz, CDCl3) § 7.30
(d, J=8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 3.83-3.78 (m, 3H), 3.80 (s, 3H), 2.35 (s, 1H), 1.61-
1.56 (m, 2H), 1.33 (s, 3H), 1.30 (s, 3H); °C NMR (75 MHz, CDCl;) & 158.0, 138.7, 127.6,
113.8, 80.3, 62.6, 55.3, 41.9, 32.8, 24.4, 23.4; IR (neat) 3396, 2963, 2836, 1737, 1513, 1464,

1250, 1035 cm™'; HRMS (EI) caled for C 3Ha0O5 (MY) 224.1412, found 224.1416.

2-Hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-[1,3]dioxane (26)
To 4-(4-methoxyphenyl)-4-methylpentane-1,3-diol (1.59 g, 6.8 mmol) in benzene

o._ 0O

e L (15 mL) was added PTSA (10 mg) and freshly distilled heptaldehyde (778.4 mg,
6.8 mmol, 0.95 mL). The reaction mixture was then warmed to reflux and stirred for 15 h, while
removing water via a Dean-Stark trap. After cooling to room temperature, the reaction mixture
was neutralized by the addition of Et;N (2 mL), and the solvent was removed under reduced
pressure. The resulting residue was then purified via flash column chromatography (5% EtOAc
in Hexanes) to afford the desired product (1.75 g, 80%): 'H NMR (300 MHz, CDCl;) & 7.31 (d,
J=8.9 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 4.48 (t J = 5.1 Hz, 1H), 4.02 (ddd, J=11.2,4.8, 1.3
Hz, 1H), 3.79 (s, 3H), 3.63 (dd, J = 12.1, 2.5 Hz, 1H), 3.53 (dd, J = 12.1, 2.1 Hz, 1H), 2.41-2.20
(m, 1H), 1.64-1.57 (m, 4H), 1.34 (s, 3H), 1.32 (s, 3H), 1.03 (dq, J = 11.6, 2.2 Hz, 2H), 0,89 (t, J
= 6.7 Hz, 3H); C NMR (75 MHz, CDCl3) & 157.7, 138.8, 127.7, 113.2, 102.3, 84.1, 66.7, 55.1,

40.6, 35.0, 31.8, 29.1, 28.7, 25.9, 23.9, 22.8, 22.5, 14.0; IR (neat) 2956, 2856, 1513, 1465, 1250,

1185, 1036 cm™'; HRMS (EI) caled for CaoH3,05 (MY) 320.2351, found 320.2346.
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4-(4-Methoxyphenyl)-4-methyl-3-(1-prop-2-ynylheptyloxy)pentan-1-ol (27)

To 2-hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-[1,3]-dioxane (200.0 mg,

OH

Me ° ” . . .« m .
° E\ 0.62 mmol) in CH,Cl, (6 mL) at — 78 °C was added TiCl4/Ti(i-PrO)4 (6:5) in

CH,CI; (9 mL) over 2h (via syringe pump). The reaction mixture was then quenched by the
dropwise addition of MeOH (1 mL), and poured directly into water. The mixture was then
extracted with EtOAc (2x). The combined organic layers were then washed with water, 10%
aqueous KF and brine, dried over Na,SOy filtered, and concentrated under reduced pressure.
The resulting residue was then purified via flash column chromatography (15% EtOAc in
Hexanes) to provide the desired product as a 19:1 mixture of separable diastereomers (191.5 mg,
86%): 'H NMR (300 MHz, CDCl3) & 7.31 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 3.80 (s,
3H), 3.67 (dd, J = 6.9, 4.6 Hz, 1H), 3.52-3.49 (m, 2H), 3.31 (p, J = 5.8 Hz, 1H), 2.27 (dd, J =
5.2, 2.6 Hz, 2H), 1.99 (t, J = 2.6 Hz, 1H), 1.76-1.75 (m, 2H), 1.68-1.57 (m, 4H), 1.36 (s, 3H),
1.30 (s, 3H), 1.30-1.27 (m, 6H), 0.89 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCls) & 157.8,
140.1, 127.6, 113.4, 82.3, 81.6, 70.1, 61.1, 55.3, 42.3, 34.4, 33.3, 31.9, 29.5, 27.9, 26.2, 25.3,
23.9, 23.5, 22.7, 14.2; IR (neat) 3309, 2955, 2857, 1513, 1465, 1250, 1037 cm™; HRMS (EI)

caled for Ca3Hs605 (MY 360.2664, found 360.2674.

tert-Butyl-[4-(4-methoxyphenyl)-4-methyl-3-(1-prop-2-ynylheptyloxy)pentyloxy]
dimethylsilane (28)

s To 4-(4-methoxyphenyl)-4-methyl-3-(1-prop-2-ynylheptyloxy)pentan-1-ol
Meo Oa\\\ (325.4 mg, 0.90 mmol) in DMF (3 mL) was added imidazole (134.7 mg, 1.98
mmol) and DMAP (30 mg) at 0 °C. The mixture was then stirred for 5 min and TBSCI (149.0

mg, 0.99 mmol) and the cold bath was removed. The reaction mixture was then stirred at room

temperature for 1.5 h, and quenched by the addition of water. The mixture was then extracted
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with EtOAc (2x). The combined organic layers were then washed with water and brine dried
over Na,SQOy, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (5% EtOAc in Hexanes) to provide the desired
product (363.7 mg, 85%): 'H NMR (300 MHz, CDCl3) & 7.30 (d, J = 8.8 Hz, 2H), 6.84 (d, J =
8.8 Hz, 2H), 3.80 (s, 3H), 3.60 (dd, J = 6.4, 3.8 Hz, 1H), 3.50 (p, J = 6.3 Hz, 1H), 3.42-3.38 (m,
1H), 3.33-3.28 (m, 1H), 2.32 (dq, J = 16.7, 2.7 Hz, 1H), 2.20 (dd, J=16.7, 2.7 Hz, 1H), 1.97 (t, J
= 2.7 Hz, 1H), 1.45-1.38 (m, 4H), 1.34 (s, 3H), 1.31 (s, 3H), 1.34-1.30 (m, 8H), 0.92 (t, J = 5.0
Hz, 3H), 0.88 (s, 9H), -0.01 (s, 3H), -0.03 (s, 3H); °C NMR (75 MHz, CDCl;) & 157.5, 140.0,
127.6, 113.2, 81.9, 80.3, 75.7, 69.6, 60.6, 55.1, 42.0, 35.3, 33.9, 31.8, 29.4, 26.8, 25.9, 25.1, 23.2,
22.6, 18.2, 14.0, -5.4, -5.5; IR (neat) 3312, 2954, 2857, 1611, 1513, 1464, 1251, 1086, 1039,

833; HRMS (EI) caled for Ca3Hy60,Si (M) 474.3497, found 474.3508.

Acetic acid-3-[1-[2-(tert-butyldimethylsilanyloxy)ethyl]-2-(4-methoxyphenyl)-2-
methylpropoxy]-1-methylenenonyl ester (29)

/©>§/\/OTBS
oo o OAc

m ynylheptyloxy)pentyloxy] dimethylsilane (363.0 mg, 0.76 mmol) in toluene (5

To tert-butyl[4-(4-methoxyphenyl)-4-methy-3-(1-prop-2-

mL) was added Na,CO; (13.0 mg, 0.12 mmol) and acetic acid (46.0 mg, 0.76 mmol, 46.0 puL).
The mixture was then stirred at room temperature for 10 min and [Ru(p-cymene)Cl,], (18.7 mg,
0.03 mmol) and tri-2-furylphosphine (14.2 mg, 0.06 mmol) were added. The reaction mixture
was then warmed to 80 °C and stirred for an additional 20 h. The mixture was then cooled to
room temperature and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (5% EtOAc in Hexanes) to provide the desired
product (194.0 mg, 48%): '"H NMR (300 MHz, CDCl;) & 7.28 (d, J = 8.6 Hz, 2H), 6.83 (d, J =

8.6 Hz, 2H), 4.79 (s, 1h), 4.75 (s, 1H), 3.79 (s, 3H), 3.54 (dd, J = 7.1, 3.3 Hz, 1H), 3.42-3.28 (m,

126



3H), 2.42 (dd, J = 14.7, 5.1 Hz, 1H), 2.29 (dd, J = 14.7, 6.9 Hz, 1H), 2.11 (s, 3H), 1.59-1.48 (m,
4H), 1.33 (s, 3H), 1.27 (s, 3H), 1.33-1.27 (m, 8H), 0.91-0.85 (m, 3H), 0.85 (s, 9H), -0.03 (s, 3H),
-0.06 (s, 3H); *C NMR (75 MHz, CDCls) § 169.2, 157.8, 154.1, 140.5, 127.9, 110.7, 103.8,
80.2, 76.1, 61.1, 55.4, 42.6, 38.2, 35.8, 34.0, 32.1, 29.7, 26.9, 25.2, 23.8, 22.9, 21.4, 14.3, -5.0:
IR (neat) 2955, 2929, 1755, 1513, 1251, 1194 cm’'; HRMS (EI) caled for Co7HysOsSi (M)

477.3036, found 477.3027.

1-[1,1-Dimethyl-2-(1-methylbut-3-ynyloxy)but-3-enyl]-4-methoxybenzene (30)
N /©><6/>\ To 4-(4-methoxyphenyl)-4-methyl-3-(1-prop-2-ynylheptyloxy)pentan-1-ol
CHa(293.0 mg, 0.81 mmol) in THF (5 mL) at 0 °C was added phenylselenocyanate
(221.0 g, 1.2 mmol). The mixture was then stirred at 0 °C for 5 minutes and PBuj (244.8 mg, 1.2
mmol) was added dropwise. The reaction mixture was then slowly warmed to room temperature
and stirred for an additional 12 hours. The mixture was then filtered through a short silica plug
and the filtrate was concentrated under reduced pressure. The resulting residue was taken up in
CH,Cl; (5 mL) and cooled to — 78 °C. mCPBA (178.8 mg, 0.81 mmol) was then added and the
reaction mixture was stirred at — 78 °C for 1 hour. Pyridine (822.0 mg, 10.4 mmol) and DHP
(737.0 mg, 10.4 mmol) were then added and the reaction was warmed to room temperature and
stirred for an additional 18 hours. The solvent was then removed under reduced pressure and the
resulting residue was purified via flash column chromatography (5% EtOAc in Hexanes) to give
the desired product (208.2 mg, 75%): 'H NMR (300 MHz, CDCl3) & 7.12 (d, J = 8.5 Hz, 2H),
6.83 (d, J = 8.5 Hz, 2H), 5.79 (ddd, J = 17.4, 10.3, 7.3 Hz, 1H), 5.13 (d, J = 17.4 Hz, 1H), 5.08
(d, J=10.3 Hz, 1H), 4.07 (q, J = 6.9 Hz, 1H), 3.80-3.72 (m, 1H), 3.79 (s, 3H), 2.92 (dd, J = 13.7,
6.7 Hz, 1H), 2.68 (dd, J = 13.7, 6.9 Hz, 1H), 2.27-2.15 (m, 1H), 2.11-2.09 (m, 1H), 1.89 (t, J =

2.5 Hz, 1H), 1.54-1.52 (m, 2H), 1.30-1.27 (m, 12H), 0.89 (t, J = 5.8 Hz, 3H); °C NMR (75
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MHz, CDCls) 158.4, 135.3, 130.8, 130.6, 117.1, 114.1, 78.8, 61.0, 55.5, 40.2, 39.2, 36.0, 33.9,

32.0,29.8,25.4,22.9, 14.3.

Acetic acid-3-{1-[1-(4-methoxyphenyl)-1-methylethyl]allyloxy}-1-methylenenonyl ester (31)
To 1-[1,1-dimethyl-2-(1-methylbut-3-ynyloxy)but-3-enyl]-4-methoxybenzene

X

e (208.2 mg, 0.607 mmol) in toluene (5 mL) was added Na,COs (10.2 mg, 0.097
mmol) and acetic acid (72.0 mg, 1.21 mmol, 71.0 pL). The mixture was then stirred at room
temperature for 10 min and [Ru(p-cymene)Cl;], (14.8 mg, 0.024 mmol) and tri-2-furylphosphine
(11.2 mg, 0.048 mmol) were added. The reaction mixture was then warmed to 60 °C and stirred
for an additional 18 h. The mixture was then cooled to room temperature and concentrated under
reduced pressure. The resulting residue was then purified via flash column chromatography (4%
EtOAc in Hexanes) to provide the desired product (110.4 mg, 45%): '"H NMR (300 MHz,
CDCl3) 6= 7.29 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H), 5.42 (ddd, J = 17.2, 10.3, 8.4 Hz,
1H), 5.11 (dd, J =10.3, 2.0 Hz, 1H), 4.99 (dd, J = 17.2, 2.0 Hz, 1H), 4.73 (s, 1H), 4.67 (s, 1H),
3.80 (s, 3H), 3.64 (d, J = 8.4 Hz, 1H), 3.40-3.32 (m, 1H), 2.40 (dd, J = 14.7, 4.8 Hz, 1H), 2.19-
2.07 (m, 1H), 2,12 (s, 3H), 1.56-1.16 (m, 10 H), 1.28 (s, 3H), 1.16 (s, 3H), 0.87 (t, J = 6.4 Hz,
3H); °C NMR (75 MHz, CDCl3) 6= 168.9, 157.4, 153.8, 134.1, 136.9, 128.0, 118.3, 112.7,
103.4, 86.6, 72.7, 55.0, 40.9, 37.8, 34.5, 31.7, 29.2, 25.1, 25.0, 22.5, 21.0, 14.0; IR (neat) 2930,

2857, 1758, 1665, 1514, 1464, 1250, 1188, 1038 cm™; HRMS (EI) caled for CasHigO4 (M)

402.2770, found 402.2767.

2-(4-Methoxyphenyl)-2,5-dimethylhex-5-en-3-ol (32)

m To 2-(4-methoxyphenyl)-2-methylpropionaldehyde (3.00 g, 16.8 mmol) in THF

OH
MeO

(30 mL) at — 78 °C was added methyallyl lithium (42.0 ml, 42.0 mmol) dropwise. The reaction
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mixture was then slowly warmed to room temperature and stirred for an additional 1.5 hours.
The reaction was then quenched by the addition of saturated NH4Cl (aq), and extracted with
EtOAc (2x). The combined organic layers were then washed with water and brine, dried over
Na,SO,, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (7% EtOAc in Hexanes) to provide the desired
product (2.99 g, 76%): 'H NMR (300 MHz, CDCl3) § 7.32 (d, J = 8.9 Hz, 2H), 6.88 (d, J = 8.9
Hz, 2H), 4.84 (s, 1H), 4.75 (s, 1H), 3.81 (s, 3H), 3.75 (d, J = 10.5 Hz, 1H), 2.04 (d, J = 6.5 Hz,
1H), 1.88 (dd, J = 13.7, 11.0 Hz, 1H), 1.70 (s, 3H), 1.65 (s, 1H), 1.37 (s, 3H), 1.34 (s, 3H); "°C
NMR (75 MHz, CDCls) & 157.7, 143.6, 139.0, 127.5, 113.4, 112.9, 55.1, 41.4, 40.5, 25.0, 23.4,

22.1; IR (neat) 3557, 2967, 1611, 1513, 1251, 1184, 1036, 830 cm’".

4-Hydroxy-5-(4-methoxyphenyl)-5-methylhexan-2-one (33)

To 2-(4-methoxyphenyl)-2,5-dimethylhex-5-en-3-ol (3.00 g, 12.8 mmol) in

OH O
MeO

CH,Cl, (30 mL) at — 78 °C was gently bubbled Os(g) over 25 minutes. The
reaction was then purged with N,(g) followed by the addition of PPhs (3.35 g, 12.8 mmol). The
reaction mixture was then warmed to room temperature and stirred for 3 hours. The solvent was
then removed under reduced pressure and the resulting residue was purified via flash column
chromatography (35% EtOAc in Hexanes) to provide the desired product (2.46 g, 81%): 'H
NMR (300 MHz, CDCls) 6 7.29 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.12 (p, J = 4.1
Hz, 1H), 3.78 (s, 3H), 2.89 (s, 1H), 2.36-2.33 (m, 2H), 2.07 (s, 3H), 1.33 (s, 3H), 1.30 (s, 3H);
*C NMR (75 MHz, CDCls) 209.7, 157.8, 138.5, 127.5, 113.5, 74.7, 55.0, 45.3, 41.0, 30.6, 25.5,

22.7,14.0.
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5-(4-Methoxyphenyl)-5-methylhexane-2,4-diol (34)

/©>W To 4-hydroxy-5-(4-methoxyphenyl)-5-methylhexan-2-one (508.2 mg, 2.1 mmol)

OH OH

in THF at — 78 °C was added Et,BOMe (230.9 mg, 2.3 mmol) and the mixture

MeO

was stirred for 10 minutes. NaBH4 (476.4 mg, 12.6 mmol) was then added and the reaction
mixture was stirred for an additional 5 hours at — 78 °C. The reaction was then quenched by the
addition of saturated NH4Cl (aq) and warmed to room temperature. The mixture was then
extracted with EtOAc (3x). The combined organic layers were then washed with water and
brine, dried over Na,SOs, filtered and concentrated under reduced pressure. The resulting
residue taken up in THF (5 mL) and pH 7.0 buffer (10 mL) was added followed by 30% H,O, (7
mL). The mixture was then vigorously stirred at room temperature for 3 hours. The mixture was
then extracted with EtOAc (3x). The combined organic layers were then washed with water and
brine, dried over Na,SOs, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatograpy (25% EtOAc in Hexanes) to give the
desired product (378.7 mg, 76%, 15:1 dr): 'H NMR (300 MHz, CDCl3) & 7.28 (d, J = 8.6 Hz,
2H), 6.88 (d, J = 8.6 Hz, 2H), 4.01-3.99 (m, 1H), 3.85 (d, J=10.4 Hz, 1H), 3.81 (s, 3H), , 1.57-
1.55 (m, 2H), 1.32 (s, 3H), 1.29 (s, 3H), 1.17 (d, J = 6.2 Hz, 3H); °C NMR (75 MHz, CDCl;) &
158.1, 137.9, 127.3, 113.2, 75.4, 65.8, 55.5, 42.0, 39.1, 24.3, 23.7, 23.1; IR (neat) 3443, 2929,

1610, 1513, 1250, 1058, 829 cm™'; HRMS (EI) calcd for C14H»03 238.1568, found 238.1571.

2-Hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-6-methyl-[1,3]dioxane (35)
/©>W To 5-(4-methoxyphenyl)-5-methylhexane-2,4-diol (301.7 mg, 1.26 mmol) in

MeO OYO
c: CH,Cl, (5 mL) was added pTsOH (few crystals). The mixture was then stirred

for 5 minutes and 1,1-dimethoxyheptane (304.0 mg, 1.89 mmol) was added. The reaction was

then stirred for 12 hours at room temperature. The solvent was then removed under reduced
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pressure and the resulting reside was purified via flash column chromatography (7% EtOAc in
Hexanes) to provide the desired product (357.1 mg, 85%): 'H NMR (300 MHz, CDCls) & 7.30
(d, J=8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 4.49 (t, J = 5.2 Hz, 1H), 3.80 (s, 3H), 3.61-3.50 (m,
2H), 1.67-1.61 (m, 2H), 1.34 (s, 3H), 1.32 (s, 3H), 1.39-1.30 (m, 10H), 1.15 (d, J = 6.2 Hz, 3H),
0.89 (t, J = 6.6 Hz, 3H); °C NMR (75 MHz, CDCls) § 157.9, 139.2, 128.0, 113.5, 102.1, 84.1,

72.8,55.4,40.8,35.2,33.5,32.1,29.4,26.3, 24.4, 23.0, 22.8, 21.9, 14.3.

5-(4-Methoxyphenyl)-5-methyl-4-(1-prop-2-ynylheptyloxy)hexan-2-ol (36)

HO,. To 2-hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-6-methyl-[1,3]dioxane
Meo/©><°é;\\\ (100.0 mg, 0.29 mmol) and allenyltributyltin (588.0 mg, 1.78 mmol) in CH,Cl,
(2 mL) at — 78 °C was added TiCl;(i-PrO) (3.57 mmol) in CH,Cl, (5.0 mL) via syringe pump
over 2 hours. The reaction was then stirred for an additional 10 minutes and quenched by the
addition of MeOH (2.0 mL). The mixture was then poured into water and extracted with EtOAc
(3x). The combined organic layers were then washed with water nd 10% aqueous KF, dried over
Na,SOq, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (8% EtOAc in Hexanes) to give the desired produce
(58.1 mg, 54%; 3:1 dr): "H NMR (300 MHz, CDCl3) & 7.29 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7
Hz, 2H), 3.89-3.8 (m, 1H), 3.80 (s, 3H), 3.29 (p, J = 5.7 Hz, 1H), 3.12-3.01 (m, 1H), 2.44-2.16
(m, 2H), 2.00 (t, J = 2.5 Hz, 1H), 1.67-1.57 (m, 2H), 1.50-1.45 (m, 2H), 1.36 (s, 3H), 1.26 (s,
3H), 1.27-1.25 (m, 8H), 1.07-1.04 (m, 3H), 0.89 (t, J = 6.3 Hz, 3H); °C NMR (75 MHz, CDCl;)

157.7, 140.2, 140.0, 127.3, 113.4, 84.2, 83.5, 81.1, 80.8, 75.5, 70.4, 66.9, 55.1, 42.5, 42.2, 40.3,

39.8,34.3,31.7,29.4,29.3,25.4,25.0, 24.5, 23.6, 23.4, 22.9, 22.5, 14.0.
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1-Methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-ynyloxy)pentyl]benzene (37)

Moo To 5-(4-methoxyphenyl)-5-methyl-4-(1-prop-2-ynylheptyloxy)hexan-2-ol
Meo/©><02:\\\ (104.4 mg, 0.28 mmol) in DMF (2.0 mL) at 0 °C was added NaH (34.0 mg,
0.86 mmols).m The mixture was then stirred for 10 minutes and Mel (164.0 mg, 1.15 mmol) was
added dropwise. The reaction mixture was then slowly warmed to room temperature and stirred
for an additional 2.5 hours. The reaction was then quenched by the careful addition of water, and
extracted with EtOAc (2x). The combined organic layers were then washed with water and
brine, dried over Na,SOs, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (5% EtOAc in Hexanes) to give the
desired product (40.0 mg, 50%; 3:1 dr): "H NMR (300 MHz, CDCls) & 7.29 (d, J = 8.7 Hz, 2H),
6.83 (d, J = 8.7 Hz, 2H), 3.80 (s, 3H), 3.55-3.45 (m, 2H), 3.17 (s, 3H), 2.66 (app q, J = 6.0 Hz,
1H), 2.34 (ddd, J = 16.6, 6.8, 2.6 Hz, 1H), 2.23 (ddd, J = 16.7, 9.5, 2.6 Hz, 1H), 1.97 (t,J = 2.6
Hz, 1H), 1.61-1.56 (m, 2H), 1.47-1.38 (m, 2H), 1.34 (s, 3H), 1.28 (s, 3H), 1.30-1.26 (m, 8H),
0.90-0.88 (m, 6H); >C NMR (75 MHz, CDCls) & 157.5, 139.6, 127.8, 113.1, 82.1, 80.7, 75.2,

74.4, 69.5, 56.1, 55.1, 42.0, 40.0, 34.2, 31.8, 30.9, 29.4, 27.0, 25.1, 22.9, 22.6, 22.4, 19.0, 14.1.

Acetic acid-3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methyl]butoxy}-1-methylenenonyl

ester (38)
/@;%OJ/ To 1-methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-
v . T ynyloxy)pentyl]benzene (45.5 mg, 0.12 mmol) in toluene (3 mL) was added

Na,COs (2.1 mg, 0.02 mmol) and acetic acid (14.0 mg, 0.24 mmol, 14.0 uL). The mixture was
then stirred at room temperature for 10 min and [Ru(p-cymene)Cl,], (3.1 mg, 0.005 mmol) and
tri-2-furylphosphine (2.4 mg, 0.01 mmol) were added. The reaction mixture was then warmed to

80 °C and stirred for an additional 15 h. The mixture was then cooled to room temperature and
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concentrated under reduced pressure. The resulting residue was then purified via flash column
chromatography (4% EtOAc in Hexanes) to provide the desired product (33.1 mg, 63.4%): 'H
NMR (300 MHz, CDCls) 6 7.26 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 4.76 (s, 1H), 4.75
(s, 1H), 3.78 (s, 3H), 3.52 (p, J = 5.7 Hz, 1H), 3.45 (t, J = 4.9 Hz, 1H), 3.17 (s, 3H), 2.70-2.63
(m, 1H), 2.44 (dd, J=14.7, 6.8 Hz, 1H), 2.32 (dd, J = 14.7, 5.7 Hz, 1H), 1.55-1.46 (m, 4H), 1.32
(s, 3H), 1.26 (s, 3H), 1.28-1.25 (m, 8H), 0.92-0.87 (m, 6H); *C NMR (75 MHz, CDCl;) & 168.9,
157.6, 154.1, 139.9, 127.8, 113.1, 103.1, 80.9, 75.4, 73.7, 56.0, 55.1, 42.4, 40.0, 38.7, 33.1, 31.8,
29.6,26.7,25.1,22.9,21.1, 19.0, 14.0: IR (neat) 2929, 2858, 1758, 1513, 1465, 1250, 1038 cm™;

(HRMS) (EI) calcd fOI‘ C17H3104 (M+ - C10H130) 2992222, found 299.2214.

5-(4-Methoxyphenyl)-5-methylhexane-2,4-diol (39)
©><‘N To 4-hydroxy-5-(4-methoxyphenyl)-5-methylhexan-2-one (500.0 mg, 2.1 mmol)

OH OH

e in CH3;CN (10 mL) at — 78 °C was added a solution of MesNBH(OAc¢); (2.78 g,
10.5 mmol) in CH3CN (10 mL)/AcOH (10 mL) dropwise. The reaction was then warmed to —
20 ° C and stirred at that temperature for an additional 12 hours. The reaction was then diluted
with EtOAc and water followed by the addition of NaHCOs(s). The mixture was then warmed to
room temperature and stirred for 30 minutes. The organic layer was then separated and the
aqueous layer was extracted with EtOAc (3x). The combined organic layers were then washed
with water and brine, dried over Na,SOy, filtered and concentrated under reduced pressure. The
resulting residue was then purified via flash column chromatography (35% EtOAc in Hexanes)
to give the desired product (471.6 mg, 94%): 'H NMR (300 MHz, CDCl3) & 7.30 (d, J = 8.7 Hz,
2H), 6.87 (d, J = 8.7 Hz, 2H), 4.06-4.04 (m, 1H), 3.95 (dd, J = 9.3, 3.3 Hz, 1H), 3.80 (s, 3H),

2.05 (s, 2H), 1.48-1.43 (m, 2H), 1.32 (s, 3H), 1.30 (s, 3H), 1.20 (d, J = 6.3 Hz, 3H); °C NMR

(75 MHz, CDCls) 6 157.9, 138.9, 127.6, 113.7, 75.9, 65.7, 55.3, 41.7, 39.0, 24.5, 23.5, 23.4; IR
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(neat) 3404, 2966, 1610, 1513, 1251, 1185, 831 cm™'; HRMS (EI) calcd for C14H,,0; 238.1568,

found 238.1574.

2-Hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-6-methyl-[1,3]dioxane (40)

©>§N To 5-(4-methoxyphenyl)-5-methylhexane-2,4-diol (1.10 g, 4.6 mmol) in DMF at
0.0

cris 0 °C was added imidazole (1.39 g, 20.4 mmol) and TMSCI (1.11 g, 10.2 mmol).

MeO

The reaction mixture was then slowly warmed to room temperature and stirred for an additional
12 hours. The reaction was then quenched by the addition of water, and the mixture was
extracted with hexanes (3x). The combined organic layers were then washed with water and
brine, dried over Na,SO,, filtered and concentrated under reduced pressure. The resulting
residue was then taken up in CH,Cl, (10 mL) and cooled to — 78 °C. Heptaldehyde (818.0 mg,
3.8 mmol) was then added followed by the dropwise addition of TMSOTT (84.0 mg, 0.38 mmol).
The reaction mixture was then stirred at — 78 °C for 45 minutes and pyridine (36.0 mg, 0.45
mmol) was added. The mixture was then warmed to room temperature and poured into water.
The organic layer was then separated and the aqueous layer was extracted with CH,Cl, (2x).
The combined organic layers were then wahed with water and brine, dried over Na;SOy, filtered
and concentrated under reduced pressure. The resulting residue was then purified via flash
column chromatography (6% EtOAc in Hexanes) to give the desired product (1.08 g, 85%): 'H
NMR (300 MHz, CDCls) 6 7.28 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 4.80 (t, J = 5.1 Hz,
1H), 4.21 (p, J = 6.6 Hz, 1H), 3.80 (s, 3H), 3.73 (dd, J=11.9, 1.5 Hz, 1HO, 1.69 (td, J=12.3, 6.0
Hz, 1H), 1.57-1.52 (m, 2H), 1.33, (s, 3H), 1.31 (s, 3H), 1.33-1.25 (m, 11H), 0.89 (t, J = 5.6 Hz,
3H); *C NMR (75 MHz, CDCls) & 157.7, 138.8, 127.8, 113.2, 94.8, 78.7, 68.0, 55.2, 40.6, 35.3,
31.9, 29.6,29.2, 26.1, 24.1, 22.9, 22.7, 17.3, 14.2; IR (neat) 2930, 2857, 1741, 1612, 1514,1464,

1250, 829 cm™'; HRMS (EI) caled for C;H3403 334.2507, found 334.2497.
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1-Methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-ynyloxy)pentyl]benzene (41)

HO To 2-hexyl-4-[1-(4-methoxyphenyl)-1-methylethyl]-6-methyl-[1,3]dioxane
Meo/©><‘gjj;\ (400.0 mg, 1.1 mmol) and allenlytributyltin (1.56 g, 4.76 mmol) in CH,Cl, (10
mL) was added TiCls/Ti(i-PrO), (6:5) in CH,Cl, (20 mL) via syringe pump over 2 hours at — 78
°C. The reaction mixture was then stirred for an additional 20 minutes and quenched by the
addition of MeOH (4.0 mL). The mixture was then poured into water and extracted with EtOAc
(3x). The combined organic layers were then washed with water and 10% aqueous KF, dried
over NaySQOys, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (10% EtOAc in Hexanes) to give the desired product
(420.3 mg, 98%; 1:1 dr): '"H NMR (300 MHz, CDCl3) & 7.35-7.27 (m, 2H), 6.85 (d, J = 8.7 Hz,
2H), 4.05-4.00 (m, 1H), 3.80 (s, 3H), 3.83-3.73 (m, 1H), 3.47 (app p, J = 5.6 Hz, 1H), 3.25 (app
p,J =5.2 Hz, 1H), 2.56-2.25 (m, 2H), 1.99 (t, J = 2.5 Hz, 1H), 1.64-1.55 (m, 2H), 1.35 (s, 3H),
1.32 (s, 3H), 1.45-1.26 (m, 10H), 1.11-1.06 (m, 3H), 0.89 (t, J = 6.4 Hz, 3H); °*C NMR (75
MHz, CDCls) 6 157.7, 140.5, 140.2, 127.7, 127.5, 113.4, 81.8, 81.4, 70.3, 70.0, 65.2, 64.3, 55.2,
425,423, 41.5,41.0, 34.1, 33.6, 31.9, 29.5, 26.7, 26.0, 25.6, 25.1, 24.8, 24.5, 24.0, 23.5, 22.9,

22.7,14.2.

1-Methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-ynyloxy)pentyl]benzene (42 & 43)

/@;ﬂ%?:( To 1-methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-
MeO v\\

N ynyloxy)pentyl]benzene (420.3 mg, 1.16 mmol) in DMF at 0 °C was added

H1366

NaH (186.0 mg, 4.66 mmol), and the mixture was stirred for an additional 15

Meo/©>?:\ minutes. Mel (496.0 mg, 3.49 mmol) was then added dropwise and the reaction

H13Cs

43 mixture was slowly warmed to room temperature. The reaction mixture was

then stirred for an additional 12 hours and quenched by the careful addition of water. The
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mixture was then extracted with EtOAc (3x). The combined organic layers were then washed
with water and brine, dried over Na,SOy, filtered and concentrated under reduced pressure. The
resulting residue was then purified via flash column chromatography (4% EtOAc in Hexanes) to
give a separable mixture of diastereomers (297.9 mg, 69%; 1:1 dr): Faster diastereomer (42) 'H
NMR (300 MHz, CDCl3) 6 7.32 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.69
(dd, J = 8.8, 2.1 Hz 1H), 3.38-3.29 (m, 2H), 3.21 (s, 3H), 2.25 (ddd, J = 16.8, 7.4, 2.6 Hz, 1H),
2.15 (ddd, J =16.8, 8.9, 2.6 Hz, 1H), 1.97 (t, J = 2.6 Hz, 1H), 1.63-1.57 (m, 2H), 1.52-1.42 (m,
1H), 1.33 (s, 3H), 1.30 (s, 3H), 1.33-1.25 (m, 9H), 1.03 (d, J = 6.0 Hz, 3H), 0.90 (t, J = 6. Hz,
3H); °C NMR (75 MHz, CDCl3) 157.5, 140.3, 127.7, 113.1, 81.9, 80.2, 72.9, 69.7, 55.1, 54.9,
41.9, 39.9, 33.6, 31.8, 29.5, 26.0, 25.1, 24.6, 23.4, 22.5, 19.0, 14.0; IR (neat) 3310, 2929, 1611,
1513, 1465, 1250, 829 cm™; HRMS (EI) caled for CysHy0O3 388.2977, found 388.2985. Slower
diastereomer (43) "H NMR (300 MHz, CDCls) & 7.28 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz,
2H), 3.80 (s, 3H), 3.46 (t, J=5.0 Hz, 1H), 3.39 (t, J =5.6 Hz, 1H), 3.18 (s, 3H), 2.81 (app q, J =
6.3 Hz, 1H), 2.37-2.35 (m, 2H), 1.97 (t, J = 2.5 Hz, 1H), 1.63-1.56 (m, 2, H) 1.34 (s, 3H), 1.29
(s, 3H), 1.44-1.27 (m, 10H), 0.93-0.88 (m, 6H); °C NMR (75 MHz, CDCl3) & 157.6, 139.8,
127.6, 113.1, 81.8, 81.7, 74.9, 69.7, 55.9, 55.1, 42.5, 40.210, 33.5, 31.8, 29.5, 26.5, 25.1, 23.6,

22.8,22.6,19.0, 14.1; IR (neat) 3310, 2929, 1611, 1513, 1250, 1185, 1088, 829 cm™,

Acetic acid-3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methylethyl]butoxy}-1-methylenenonyl
ester (44)

/©>M%OJ/ To I-methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-

MeO

ﬁo’“ ynyloxy)pentyl]benzene (33.0 mg, 0.08 mmol) in toluene (2 mL) was added

Na,COs (1.2 mg, 0.0012 mmol) and acetic acid (9.6 mg, 0.16 mmol, 16 pL). The mixture was

then stirred at room temperature for 10 min and [Ru(p-cymene)Cl,], (2.0 mg, 0.003 mmol) and
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tri-2-furylphosphine (1.6 mg, 0.006 mmol) were added. The reaction mixture was then warmed
to 60 °C and stirred for an additional 15 h. The mixture was then cooled to room temperature
and concentrated under reduced pressure. The resulting residue was then purified via flash
column chromatography (5% EtOAc in Hexanes) to provide the desired product (14.9 mg, 43%):
'H NMR (300 MHz, CDCl;) 8= 7.28 (d, J = 8.8 Hz, 2H), 6.83, (d, J = 8.8 Hz, 2H), 4.78 (s, 1H),
4.74 (s, 1H), 3.79 (s, 3H), 3.71 (dd, J = 9.0, 1.9 Hz, 1H), 3.34-3.26 (m, 2H), 3.21 (s, 3H), 2.62
(dd, J=14.4,49 Hz, 2.16 (dd, J = 14.4, 7.7 Hz, 1H), 2.11 (s, 3H), 1.51-1.47 (m, 1H), 1.45-1.42
(m, 3H), 1.31 (s, 3H), 1.27 (s, 3H), 1.28-1.19 (m, 8H), 1.03 (d, J = 5.9 Hz, 0.90 (t, J = 6.5 Hz,
3H); C NMR (75 MHz, CDCl3) 8= 168.8, 157.5, 154.0, 140.5, 127.6, 113.7, 103.1, 79.5, 75.9,
72.8, 55.1, 54.9, 42.1, 39.8, 38.2, 34.0, 31.8, 29.6, 25.6, 25.1, 22.6, 21.1, 18.9, 14.0; IR (neat)
2929, 2857, 1758, 1513, 1465, 1250, 1194, 1038 cm™'; HRMS (EI): caled for C,7H304 (M" -

CioH130) 299.2222, found 299.2224.

Acetic acid-3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methylethyl]butoxy}-1-methylenenonyl
ester (45)

Meo To 1-methoxy-4-[4-methoxy-1,1-dimethyl-2-(1-methylbut-3-
MeO%OAC ynyloxy)pentyl]benzene (146.4 mg, 0.39 mmol) in toluene (3 mL) was added
Na,COs (6.0 mg, 0.062 mmol) and acetic acid (46.9 mg, 0..78 mmol, 44.0 uL). The mixture was
then stirred at room temperature for 10 min and [Ru(p-cymene)Cl;], (9.0 mg, 0.015 mmol) and
tri-2-furylphosphine (7.0 mg, 0.030 mmol) were added. The reaction mixture was then warmed
to 60 °C and stirred for an additional 15 h. The mixture was then cooled to room temperature
and concentrated under reduced pressure. The resulting residue was then purified via flash

column chromatography (6% EtOAc in Hexanes) to provide the desired product (60.0 mg, 34%):

'"H NMR (300 MHz, CDCls) 8= 7.30 (d, J = 8.9 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 4.78 (s, 1H),
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4.73 (s, 1H), 3.79 (s, 3H), 3.64 (dd, J = 8.7, 2.4 Hz, 1H), 3.36-3.27 (m, 2H), 3.20 (s, 3H), 2.39
(dd, J=14.7, 4.9 Hz, 1H), 2.24 (dd, J = 14.7, 7.1 Hz, 1H), 2.09 (s, 3H), 1.55-1.42 (m, 4H), 1.31-
1.21 (m, 8H), 1.31 (s, 3H), 1.27 (s, 3H), 1.02 (d, J = 6.0 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H); '°C
NMR (75 MHz, CDCl3) 8= 168.9, 157.5, 153.8, 140.3, 127.7, 113.1, 103.5, 79.8, 72.9, 55.1,
54.9,42.1,39.9, 37.8, 33.2, 31.8, 29.5, 25.0, 24.7, 22.6, 21.0, 18.9, 14.0; IR (neat) 2930, 2858,
1758, 1513, 1465, 1250, 1038 cm™'; HRMS (EI) caled for Ci7H3 04 (M - C1oH130) 299.2222,

found 299.2224.

3-[1-(2-Bromoallyl)heptyloxy]-4-(4-methoxyphenyl)-4-methylpentan-1-ol (46)
©><‘ON°“& To 26 (200.0 mg, 0.62 mmol) and 2-bromoallyltrimethyl silane (239.0 mg, 1.24
e m mmol) in CH,Cl; (5.0 mL) at — 78 °C was added TiCl4 (130.0 mg, 0.68 mmol).
The reaction mixture was then stirred at — 78 °C for an additional 15 minutes and quenched by
the addition of NaHCOs (aq). The mixture was then warmed to room temperature and extracted
with CH,ClI, (3x). The combined organic layers were then washed with water and brine, dried
over Na,SQOy, filtered and concentrated under reduced pressure. The resulting residue was then
purified via flash column chromatography (8% EtOAc in Hexanes) to give the desired product as
a 2:1 inseparable mixture of diastereomers (171.3 mg, 63%): 'H NMR (300 MHz, CDCl3) &
7.28 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 5.60 (s, 1H), 5.44 (s, 1H), 3.79 (s, 3H), 3.73-
3.71 (m, 1H), 3.65-3.60 (m, 1H), 3.52-3.48 (m, 2H), 2.76-2.70 (m, 1H), 2.46-2.42 (m, 1H), 1.71-

1.57 (m, 4H), 1.31 (s, 3H), 1.29 (s, 3H), 1.33-1.27 (m, 8H), 0.92-0.89 (m, 3H).

{4-[1-(2-Methoxymethoxyethyl)-2-(4-methoxyphenyl)-2-methylpropoxy]-2-
methylenedecyl}trimethylsilane (47)

womﬂ To 46 (161.5 mg, 0.37 mmol) in CH,Cl, (1.0 mL) at room temperature was
MeO Omms
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added DIPEA (1.0 mL) and MOMCI (44.0 mg, 0.55 mmol). The reaction mixture was then
warmed to 40 °C and stirred at that temperature for an additional 5 hours. The reaction mixture
was then cooled to room temperature and quenched by the addition of water. The mixture was
then extracted with CH,Cl, (2x). The combined organic layers were then washed with water and
brine, dried over Na,SOs, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (5% EtOAc in Hexanes) to give the
desired product (171.6 mg, 95%) which was used immediately in the following reaction.

To 1-{2-[1-(2-Bromoallyl)heptyloxy]-4-methoxymethoxy-1,1-dimethylbutyl}-4-methoxy
benzene (170.0 mg, 0.35 mmol) in THF (2.0 mL) at room temperature was added Pd(PPhs),
(20.0 mg, 0.017 mmol) and trimethylsilylmethyl magnesium chloride (1.75 mL, 1.75 mmol).
The reaction mixture was then warmed to 80 °C and stirred at that temperature for an additional
4 hours. The reaction mixture was then cooled to room temperature and the solvent was
removed under reduced pressure. The resulting residue was then purified via flash column
chromatography (5% EtOAc in Hexanes) to give the desired product (109.8 mg, 64%): "H NMR
(300 MHz, CDCl3) & 7.30 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.60-4.54 (m, 2H), 4.51-
4.48 (m, 2H), 3.79 (s, 3H), 3.60-3.55 (m, 2H), 3.36-3.30 (m, 2H), 3.28 (s, 3H), 2.27 (td, J = 13.1,
4.8 Hz, 1H), 1.90 (td, J = 13.1, 7.6 Hz, 1H), 1.6-1.63 (m, 2H), 1.55-1.52 (m, 4H), 1.34 (s, 3H),
1.30 (s, 3H), 1.30-1.27 (m, 6H), 0.92-0.88 (m, 3H), 0.05 (s, 9H); °C NMR (75 MHz, CDCl3) &
157.6, 145.0, 127.7, 113.3, 109.7, 96.3, 80.1, 55.3, 55.2, 42.5, 32.33, 32.0, 29.8, 27.2, 25.3, 22.8,
14.2, -1.1; IR (neat) 2930, 1513, 1465, 1296, 1249, 1109, 1077 cm™'; HRMS (EI) calcd for

C31Hs104S8i (M) 515.3557, found 515.3535.
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2-[2-(tert-Butyldimethylsilanyloxy)ethyl]-6-hexyltetrahydropyran-4-one (48)

i To acetic acid-3-[1-[2-(tert-butyldimethylsilanyloxy)ethyl]-2-(4-
s o e methoxyphenyl)-2-methylpropoxy]-1-methylenenonyl ester (30.0 mg, 0.056
mmol) in DCE (1.2 mL) was added NaHCO; (60.0 mg, 0.7 mmol) and 4 A molecular sieves
(60.0 mg). The mixture was then stirred at room temperature for 10 min and CAN (122.0 mg,
0.22 mmol) in CH3CN (0.5 mL) was added dropwise. The reaction was then stirred for an
additional 20 min and filtered through a silica plug. The filtrate was then concentrated under
reduced pressure. The resulting residue was then purified via flash column chromatography (7%
EtOAc in Hexanes) to provide the desired product (16.8 mg, 88%): 'H NMR (500 MHz, CDCl5)
d 3.86-3.75 (m, 3H), 3.60-3.56 (m, 1H), 2.40 (d, J = 14.2 Hz, 2H), 2.31-2.22 (m, 2H), 1.86-1.82
(m, 1H), 1.77-1.74 (m, 2H), 1.52-1.50 (m, 2H), 1.33-1.28 (m, 8H), 0.92 (s, 9H), 0.92-0.89 (m,
3H), 0.08 (s, 6H); °C NMR (75 MHz, CDCls) & 207.6, 73.6, 58.9, 48.0, 39.4, 36.5, 31.7, 29.1,

25.9, 25.3, 22.5, 14.0, -5.3; IR (neat) 2930, 2856, 1723, 1470, 1252, 1093 cm’'; HRMS (EI)

calced for C19H37,05Si1 (M+ - H): 341.2512, found 341.2520.

2-Hexyl-6-vinyltetrahydropyran-4-one (49)

o To acetic acid-3-{1-[1-(4-methoxyphenyl)-1-methylethyl]allyloxy}-1-
0T s methylenenonyl ester (33.0 mg, 0.08 mmol) in DCE (2.2 mL) was added NaHCO;
(66.0 mg, 0.78 mmol) and 4A molecular sieves (66.0 mg). The mixture was then stirred at room
temperature for 15 min and CAN (190.0 mg, 0.34 mmol) in CH3CN (1.0 mL) was added
dropwise. The reaction was then stirred for an additional 20 min and filtered through a silica

plug. The filtrate was then concentrated and the resulting residue was purified via flash column

chromatography (4% EtOAc in Hexanes) to provide the desired product (12.1 mg, 70%): 'H
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NMR (300 MHz, CDCls) 8= 5.92 (ddd, J = 17.2, 10.5, 5.4 Hz, 1H), 5.32, (dt, J = 17.2, 1.3 Hz,
1H), 5.21 (dt, J = 10.5, 1.2 Hz, 1H), 4.10 (dddd, J = 11.2, 6.5, 3.0, 1.2 Hz, 1H), 3.63 (dtd, J =
14.5, 4.7, 2.7 Hz, 1H), 2.47-2.39 (m, 2H), 2.38-2.21 (m, 2H), 1.73-1.67 (m, 1H), 1.60-1.52 (m
1H), 1.36-1.24 (m, 8H), 0.88 (t, J = 6. Hz, 3H); '*C NMR (75 MHz, CDCl3) &= 206.9, 137.3,
115.9,47.8,47.4,36.4,31.7, 29.1, 25.1, 22.5, 14.0; IR (neat) 2929, 2857, 1722, 1251, 1061 cm™;

HRMS (EI): caled for C3H20, (MY 210.1619, found 210.1609.

2-Hexyl-6-(2-methoxypropyl)tetrahydropyran-4-one (50)

0 To  acetic  acid-3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methyl]butoxy}-1-
owe

o7 SHs methylenenonyl ester (33.1 mg, 0.076 mmol) in DCE (1.2 mL) was added NaHCO;
(66.0 mg, 0.78 mmol) and 4A molecular sieves (66.0 mg). The mixture was then stirred at room
temperature for 15 min and CAN (167.0 mg, 0.30 mmol) in CH3CN (0.5 mL) was added
dropwise. The reaction mixture was then stirred for an additional 15 min and filtered through a
silica plug. The filtrate was then concentrated under reduced pressure and the resulting residue
was purified via flash column chromatography (6% EtOAc in Hexanes) to provide the desired
product (19.4 mg, 100%): "H NMR (300 MHz, CDCl;) & 3.83-3.76 (m, 1H), 3.63-3.53 (m, 1H),
3.33 (s, 3H), 2.35 (ddt, J = 12.6, 7.7, 1.9 Hz, 2H), 2.25-2.16 (m, 2H), 1.73-1.63 (m, 2H), 1.54-
1.44 (m, 2H), 1.32-1.28 (m, 8H), 1.17 (d, J = 6.1 Hz, 3H), 0.89 (t, J = 7.1 Hz, 3H); ’C NMR (75
MHz, CDCl; 6 207.5, 73.7, 73.1, 56.3, 48.2, 48.1, 44.2, 36.4, 31.7, 29.0, 25.4, 22.6, 19.4, 14.0:

IR (neat) 2929, 2857, 1721, 1091 cm™'; HRMS (EI) caled for CisHas05 (M') 256.2038, found

256.2035.
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2-Hexyl-6-(2-methoxypropyl)tetrahydropyran-4-one (51)

i To acetic acid-3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methylethyl]butoxy}-1-

OMe
NN e, methylenenonyl ester (40.5 mg, 0.09 mmol) in DCE (2.2 mL) was added NaHCOs

(80.0 mg, 0.95 mmol) and 4A molecular sieves (80.0 mg). The mixture was then stirred at room
temperature for 15 min and CAN (195.0 mg, 0.36 mmol) in CH3CN (1.0 mL) was added
dropwise. The reaction mixture was then stirred for an additional 10 min and filtered through a
silica plug. The filtrate was then concentrated under reduced pressure, and the resulting residue
was purified via flash column chromatography (6% EtOAc in Hexanes) to provide the desired
product (22.3 mg, 97%): 'H NMR (300 MHz, CDCl3) &= 3.73-3.66 (m, 1H), 3.56-3.46 (m, 2H),
3.31 (s, 3H), 2.37 (ddt, J = 14.5, 9.2, 2.3 Hz, 2H), 2.26-2.17 (m, 2H), 2.02 (p, J = 6.8 Hz, 1H),
1.68-1.50 (m, 5H), 1.34-1.25 (m, 6H), 1.18 (d, J = 3.1 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H); °C
NMR (75 MHz, CDCls) 6= 207.4, 74.0, 73.3, 55.9, 48.0, 47.9, 42.7, 36.4, 31.7 29.0, 25.3, 22.5,
18.9, 14.0; IR (neat) 2929, 2857, 1721, 1375, 1091 cm'l; HRMS (EI): caled for Ci5H,303 (M+)

256.2038 found 256.2035.

2-Hexyl-6-(2-methoxypropyl)tetrahydropyran-4-one (50)

o To acetic acid 3-{3-methoxy-1-[1-(4-methoxyphenyl)-1-methylethyl]butoxy}-1-
ﬂe o” e methylenenonyl ester (60.4 mg, 0.13 mmol) in DCE (2.2 mL) was added NaHCO3
(120.0 mg, 1.4 mmol) and 4A molecular sieves (120.0 mg). The mixture was then stirred at
room temperature for 15 min and CAN (295.0 mg) in CH3CN (1.0 mL) was added dropwise.
The reaction mixture was then stirred for an additional 15 min and filtered through a silica plug.
The filtrate was then concentrated under reduced pressure, and the resulting residue was purified

via flash column chromatography (6% EtOAc in Hexanes) to provide the desired product (32.1

mg, 96%): 'H NMR (500 MHz, CDCls) 8= 3.81-3.77 (m, 1H), 3.62-3.55 (m, 2H), 3.33 (s, 3H),
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2.35 (app. t, J = 7.6 Hz, 2H), 2.24-2.18 (m, 2H), 1.71-1.68 (m, 1H), 1.63-1.57 (m, 1H), 1.51-1.47
(m, 2H), 1.30-1.26 (m, 8H), 1.16 (d, J = 6.1 Hz, 3H), 0.89 (t, J = 6.5 Hz, 3H); °C NMR (75
MHz, CDCls) 6= 207.9, 73.4, 72.9, 56.5, 48.1, 44.0, 36.3, 31.7, 29.0, 25.5, 22.6, 19.3, 14.1; IR
(neat) 2929, 2857, 1721, 1091 cm™; HRMS (EI): caled for C;sHx03 (M") 256.2038, found

256.3031.

1-Methoxy-4-{4-methoxymethoxy-1,1-dimethyl-2-[1-(2-nitrooxymethylallyl)
heptyloxy]butyl}benzene (52)
/©><‘/VOMOM To {4-[1-(2-methoxymethoxyethyl)-2-(4-methoxyphenyl)-2-

WONOQ
CH

methylpropoxy]-2-methylenedecyl} trimethylsilane (40.4 mg, 0.08 mmol) in

MeO

DCE (2.5 mL) was added 4A molecular sieves (80.0 mg) and NaHCOj; (80.0 mg, 0.9 mmol).
The reaction mixture was then stirred for 10 min and CAN (89.0 mg, 0.16 mmol) in CH3CN (1.2
mL) dropwise. After 5 min, the reaction mixture was concentrated under reduced pressure. The
resulting residue was then purified via flash column chromatography (7% EtOAc in Hexanes) to
provide the nitrated product (28.7 mg, 75%): 'H NMR (300 MHz, CDCls) & 7.27 (d, J = 8.7 Hz,
2H), 6.83 (d, J = 8.7 Hz, 2H), 5.17 (s, 1H), 5.06 (s, 1H), 4.87 (s, 2H), 4.51 (s, 2H), 3.79 (s, 3H),
3.54 (dd, 6.4, 3.9 Hz, 1H), 3.34-3.22 (m, 3H), 3.29 (s, 3H), 2.30 (dd, J = 14.0, 6.4 Hz, 1H), 2.20
(dd, J=14.0, 5.5 Hz, 1H), 1.75-1.65 (m, 2H), 1.44-1.36 (m, 4H), 1.32 (s, 3H), 1.28 (s, 3H), 1.25-
1.23 (m, 6H), 0.90 (t, J = 6.5 Hz, 3H); °C NMR (75 MHz, CDCl;) & 157.8, 139.9, 139.0, 127.7,
117.4,113.3,96.3, 80.4, 75.7, 65.7, 55.3, 42.1, 38.2, 33.2,32.3,31.9, 29.7, 26.1, 25.3, 24.0, 22.7,
14.2; IR (neat) 2931, 1633, 1513, 1252, 1037 cm™; HRMS (EI) caled for CosHyoNO; (M)

504.2961, found 504.2921.
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Chapter 3 Efforts toward the Total Synthesis of Leucascandrolide A

3.1. Introduction

I. Background

(+)-Leucascandrolide A (1), a marine macrolide, was isolated in 1996 off the coast of
New Caledonia from the calcareous sponge Leucascandra caveolata Borojevic and Klautau by
Pietra and co-workers (Figure 38). While leucocandrolide A was isolated in significant
quantities from sponges collected in 1989 (0.03%), sponge samples collected in 1994 did not
provide any leucascandrolide A.> The exact origin of leucascandrolide A is still unknown,
however, the samples of sponge collected in 1989 showed extensive dead portions and are
believed to have been heavily colonized. This, along with the failure to isolate 1 from the 1994
harvest, suggests leucascandrolide A was produced by microorganisms. Due to the inability to
reliably isolate 1 from natural sources, total synthesis provides the only predictable method of

obtaining access to this interesting molecule.

-
\ NHCO,Me

Figure 38: (+)-Leucascandrolide A.
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The structure of leucascandrolide A (1) was assigned using HR-EI-MS, °C NMR, DEPT
and advanced two dimensional NMR experiments.' The core of leucascandrolide A consists of a
18-membered macrolactone containing two bridging tetrahedrapyran rings, one of which
contains a 2,6-Syn-substitution pattern. Leucascandrolide A’s structure is characterized by
extensive 1,3 dioxygenation throughout the macrolide core, and contains an unusual ester side
chain with an o,-unsaturated oxazole at C5. The absolute configuration of leucascandrolide A
was determined through hydrolysis of the C5 ester followed by inversion of the C5 stereocenter
and formation of the Mosher esters. Analysis of the 'H data provided an unambiguous
assignment of leucascandrolide A’s absolute configuration.

Leucascandrolide A was the first potently biologically active metabolite isolated from a
calcareous sponge.” The raw sponge extracts proved to be highly antimicrobial, toxic and
cyctoxic with the activity being attributed to leucascandrolide A.' Purified samples of
leucascandrolide A exhibited potent cyctoxic acitivity in vitro on human KB throat epithelial
cancer cells (ICso = 71.0 nM), and slightly less potent activity against P388 murine leukemia
cells (ICso = 350.0 nM).! Leucascandrolide A has also shown potent antifungal activity against
Candida albicans, a pathogenic yeast that attacks AIDS patients. Pietra and co-workers' were
able to isolate macrolide (2) away from the oxzaole containing side chain (3) and analyzed their
respective biological activities (Figure 39). These experiments demonstrated that macrolide (2)
is essential for cyctoxicity while the oxazole containing side chain (3) is necessary for antifungal

activity.
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Figure 39: Macrolide (2) and oxazole containing side chain (3) of leucascandrolide A.

I1. Previous Syntheses

The first total synthesis of leucascandrolide A was reported 2000 by Leighton and co-
workers.* Leighton’s synthesis proceeds in 20 steps (longest linear sequence) and is highlighted
by the efficient use of carbonylation chemistry to introduce the requisite oxygenation present.
The C11-C15 trans-2,6-tetrahydropyran was obtained through an anomeric alkylation, while an
intramolecular alkoxycarbonylation was used to introduce the C3-C7 syn-2,6-tetrahydropyran
according to Semmelhack’s protocol.” Both reactions provided the respective tetrahydropyrans

with excellent levels of diastercocontrol (> 10:1) (Scheme 21).

m 5 steps - . Ti(O-i-Pr),Cl,

- O 0. 0O oTBS

OH OTBS x N -TMS
OAc

OTBDPS  pycl,, cucl, co

MeOH:PhCN

5 steps

Scheme 21: Leighton’s synthesis of Leucascandrolide A’s bis-THP backbone.
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Elaboration of the C15 side chain was achieved through the diastereoselective addition of
a vinylzinc species to the C17 aldehyde. Although this method provided the desired bond
construction, the selectivity of the addition was a modest 3:1. The macrolide synthesis was then
completed by exposure of the seco-acid and immediate macrolactonization using the
Yaonemitsu-modified Yamaguchi protocol.’ The C5 ester side chain was appended via
esterification followed by a Still-Gennari coupling to provide a 7:1 mixture of olefin isomers in

favor of the required (Z)-isomer (Scheme 22).

: H i. KOSiMe3
~ OTBDPS OTBDPS ii. EtzN, DMAP
_ EtpZn PhMe ,

N,N-dibutylaminoethanol a o

Ti(O-i-Pr)4, PhMe

COyMe _— COoMe Cl
WBC)’Z o

Cl

0

0~
) P(OCH,CF3)
0 KHMDS, 18-C-6

__ THE ,

(¢] H

N

Q//

NHCO,Me

N

\
o}
\  NHCO,Me

Scheme 22: Completion of Leucascandrolide A.
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In 2001, Kozmin’ reported an elegant and efficient stereocontrolled synthesis of the C1-
C15 fragment of leucascandrolide A. The synthesis began with a highly selective construction of
the all syn-2,4,6-tetrahydropyran using a Prins desymmetrization strategy (Scheme 23). The all
equatorial arrangemet was confirmed through DQF COSY and NOESY NMR experiments.
With the desired relative stereochemistry of the tetrahydropyran, Kozmin implemented a boron-
enolate mediated aldol with excellent levels of 1,5-anti diastereocontrol (>95:5) following
Paterson’s protocol.® A samarium mediated’ anti-selective reduction of the resulting B-hydroxy
ketone provided the requiste 1,3-anti dioxygenation. A hydrosilyation/desilyation protocol was

effective in providing the remaining stereocenter as an 87:13 mixture of diastereomers.
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Scheme 23: Kozmin’s approach to the C1-C15 fragment of leucascandrolide A.

Kozmin’s total synthesis of leucascandrolide A began with formation of the trans-2,6-
tetrahydropyran and subsequent incorporation of the CI15 side chain (Scheme 24). This
proceeded through removal of the C15 acetal followed by trapping of the intermediate lactol with
acetic anhydride. Lewis acid mediated C-glycosidation of the acyl lactol provided the trans-2,6-
tetrahydropyran as a single diastereomer with incorporation of the C15 side chain’s carbon
skeleton. Moderate levels of diastereocontrol were obtained in setting the C17, however the

undesired isomer is also a viable synthetic intermediate. In addition to the elegant use of
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substrate control to establish leucascandrolide A’s relative stereochemistry, Kozmin observed an

unprecedented macrolactolization while completing the synthesis. While this provided an

expedient method for closing the macrolactone, it also demonstrates the unusual thermodynamic

stability of this macrocycle.

OTMS

: i, .0OBn
</O W
|

X

.

Pb(OAC),

1. THF-H,0, H*;
Ac,0, pyridine
_ e W T .

2. ZnClp, CHyCl,

.OBn

Scheme 24: Kozmin’s unexpected route to macrolactonization.

The ability to efficiently set the C17 stereocenter with high levels of selectivity was

established by Paterson and co-workers in their 2003 total synthesis of leucascandrolide A.

Paterson envisioned a 1,3-syn-selective reduction (Figure 40) of the enone resulting from C-
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glycosidation, with subsequent Mitsunobu macrolactonization. Therefore, several reducing
agents were screened in the presence of chelating Lewis acids with lithium
tritertbutoxyaluminum hydride/zinc bromide providing only moderate control (5:1).
Interestingly, use of lithium tritert-butoxyaluminum hydride alone resulted in formation of the
C17 stereocenter with excellent levels of diastereocontrol (>32:1). This suggests the reduction
may be proceeding through a non-chelated intermediate and that Evans polar model'? may

explain the high levels of stereocontrol.

.OBn ‘", .OBn
CO ZnBra OMe CO

: LiAIH(t-Bu)s OH :
5:1dr )
OPMB OPMB
. .OBn R :
- LiAIH(t-Bu) 0
OMe _AEPR)s
- >32:1dr 0) R’
H"H
OPMB H

Figure 40: Paterson’s stereocontrolled reduction of the C17 stereocenter.
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I11. Retrosynthesis

The retrosynthesis of leucascandrolide A outlined in Figure 41 allows for introduction of
the C3-C7 syn-2,6-tetrahydropyran ring to be introduced via a diastereoselective endo-ETIC
reaction. The initial disconnection at the C5 ester side chain leads to the leucascandrolide A
macrolide 2, which contains all of the stereogenic centers found in the natural product.
Elaboration of the C15 side chain of 4 followed by macrolactonization would provide the desire
macrolide 2. The syn-2,6-tetrahydropyranone was to arise from the diastereoselective
cyclization of enol acetate 5 using the ETIC reaction developed in our lab."> Enol acetate 5 can
be derived from the metal mediated addition of acetic acid to homopropargylic ether 6, which
arises from a diastereoselective opening of a cyclic acetal. The cyclic acetal was expected to
come from the syn-1,3-diol obtaining by the directed reduction of B-hydroxy ketone 7. The -
hydroxy ketone (7) would be formed through a Mukaiyama aldol between silyl enol ether 8 and
aldehyde 9. Aldehyde 9, was envisioned to arise from a straight forward four step sequence from
lactone 10. Lactone 10 was to be derived from a tandem hydroesterification/lactonization'* of a

homoallylic alcohol.
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MeO

Ar = p-methoxyphenyl.

Figure 41: Retrosynthetic approach to leucascandrolide A.

3.2.  Results and Discussion

The synthesis of leucascandrolide A began with the preparation of trans-2,6-
tetrahydropyran 14 (Scheme 25). This proceeded through a highly diastercoselective four step
sequence beginning with the known racemic alcohol 11."”° Alcohol 11 was subjected to the
ruthenium catalyzed hydroesterification/lactonization protocol developed in our labs'* to give
lactone 10 in 51% yield. Lactone 10 was then converted to the acyl lactol 12 according to

Rychnovsky’s'® one pot reduction/acylation condtions. Treatment of the acyl lactol 12 with
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BF;-OEt; in the presence of allyltrimethylsilane provided tetrahydropyran 13 as a single
diastereomer.'” The conformation of 13 was determined through coupling constant analysis of

the 'H NMR spectrum. The p-methoxybenzyl ether was then oxidatively removed using DDQ

to give alcohol 14 in nearly quantitative yield.

OH E :

/\\/J\v/\\ a 7 OPMB b : OPMB
PMBO X L
H o o

11 10 12

13 14

Reagents and Conditions: a) i. Ruz(CO);; (5 mol%), 2-pyridylmethyl formate, NMO (15 mol%),
110 °C; ii. HOAC/THF/H,0 (1:2:1), 85 °C (51%); b) i. DIBAL, CH,Cl,, - 78 °C; ii. pyridine, DMAP,
Acy0, - 78 °C — - 35 °C (92%); ¢) BF;-OEt,, allyltrimethylsilane, CH,Cl,, - 78 °C (78%), d) DDQ,
CH,Cl,:pH 7 buffer (10:1) (quant).

Scheme 25: Synthesis of the trans-2,6-tetrahydropyran.

The highly stereoselective nature of the C-glycosidation reaction results axial attack of
the ground state conformation in which both the akyl groups occupy pseudo equatorial positions.
Axial delivery of the nucleophile from the ring flip conformation is highly disfavored due to the

developing Syn-pentane interaction, and the pseudo axial orientation of the alkyl groups (Figure

42).
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Figure 42: Mechanism for the stereocontrol in the C-glycosidation reaction.
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Oxidation of alcohol 14 with Dess-Martin periodinane provided aldehyde 9 which was
used immediately in the following reaction (Scheme 26). Treatment of aldehyde 9 BF5-OEt; in
the presence of silyl enol ether 8'® provided B-hydroxy ketone 7 as a single diastereomer in 76%
yield. The B-hydroxy ketone (7) was then selectively reduced to the syn-1,3-diol (15) with
LiBH; and Et;BOMe'’ as a chelating group as a 5:1 mixture of separable diastereomers.
Condensation of the major diastercomer with known®® aldehyde (16) under refluxing benzene
with catalytic p-TsOH failed to provide the desired acetal. However following Noyori’s
protocol,?! diol 15 was converted to the bis-trimethylsilyl ether and reacted with aldehyde 16 in

the presence of catalytic TMSOTT afforded acetal 17 in 76% over 2 steps.
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Reagents and Conditions: a) Dess-Martin periodinane, pyridine, CH,Cl, (89%); b) 9, BF;-OEt,,
propionitrile, - 78 °C (76%); ¢) i. E,BOMe, THF, -78°C, 1h; ii. LiBH,, THF, - 78 °C (84%, 3.2:1 dr);
d) i. TMSOTT, 2,6-lutidine, - 78 °C; ii. 18, TMSOTT, - 78 °C — - 55 °C (76% over 2 steps).

Scheme 26: Formation of cyclic acetal 17.

Excellent levels of 1,3-anti diastereocontrol may be obtained in additions to B-alkoxy
aldehydes through the use of a chelating Lewis acid in the presence of a nucleophile.”> However,
the Mukaiyama aldol used to construct -hydroxy ketone 7 was performed with BF5-OEt,, which

is non-chelating Lewis acid. Evans’ polar model provides a transition state which explains the
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highly selective nature of this transformation.'> This model predicts the reactive conformer will
exist in a dipole minimized arrangement, and places the largest alkyl group perpendicular to the
aldehyde’s m-system. The alkyl group then blocks one face of the aldehyde from nucleophilic

attack, and the nucleophile attacks from the opposite face (Figure 43).

? H Nu :
m _BReORL Ho M O OH O
; NG HEJo-BFy | ——= OMe
z H Z
) ; )
9 7
—

Figure 43: Transition state for the Mukaiyama aldol to form B-hydroxy ketone 9.

Efficient formation of cyclic acetal 17 provided a suitable intermediate to undergo a
diastereoselective Lewis acid-mediated acetal opening (Scheme 27). This method has been
demonstrated to give synthetically useful levels of diastereocontrol with the careful choice of
reaction conditions, and allows for the construction of an ether between two secondary carbons."
Therefore, acetal 17 was opened with allenyltributyltin in the presence of a mixed Lewis acid
(TiCly/Ti(i-PrO)4 (9:3) to give the homopropargylic ether 18 as a single diastereomer. The
resulting hindered alcohol was then alkylated with MeOTf and 2,6-ditertbutylpyridine to give
compound 19.2 Attempts to convert the alkyne of 19 to the enol acetate under metal mediated
conditions led to no reaction and recovery of starting material. Exposure of 19 to prolonged
reaction conditions gave non-descript decomposition. The lack of desired reactivity prompted an
investigation on the impact of the protecting group used for the primary alcohol. Removal of the

tertbutyldiphenylsilyl group with TBAF provided alcohol 20, which was converted to the
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corresponding acetate 21. Subjecting compound 21 to [Ru(p-cymene)Cl,],, fursP, Na,CO; and

acetic acid in toluene at 80 °C furnished the desired enol acetate 22 in a moderate 44% yield.24

L OMe _

OTBDPS

18
19

Mr d - - Ar o
O OMeO - O OMeO —

w 7\0 W EAC

20 21

- - Ar
O OMeO OAc

© ey
T

22

Reagents and Conditions: a) allenyltributyltin, TiCly/Ti(iPrO), (9:3), CH,Cl,, - 42 °C (89%);

b) MeOTf, 2,6-ditertbutylpyridine, CH,Cl,, 0 °C — 1t (83%); ¢) TBAF, THF(wet), 0 °C — rt (94%);
d) Ac,0, pyridine, DMAP, CH,Cl,, 0 °C — rt (94%); ) HOAc, Na,CO;, P(fur);, [Ru(p-cymene)Cl,],,
80 °C (44%). Ar = p-methoxyphenyl.

Scheme 27: Synthesis of enol acetate 24.
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The key transformation in the synthesis involved the stereoselective formation of the C3-
C7 syn-2,6-tetrahydropyran ring utilizing the ETIC method developed in our lab. The successful
synthesis of enol acetate 22 allowed for the general applicability of this cyclization to the
synthesis of complex molecules to be examined (Scheme 28). Therefore, 22 was subjected to
our standard chemical mediated ETIC conditions,” and within 45 minutes complete
consumption of starting material was observerd. Purification of the crude reaction product led to
the isolation of the desired bis-tetrahydropyran backbone (23) of leucascandrolide A in 67% as a
single diastereomer. The highly stereoselective ring closure was consistent with previous studies
performed on analogous substructures.”> The 2,6-syn relationship between the C3 and C7

hydrogens was established through a strong correlation in NOESY spectrum of 23.

- OAc
N N Ar a MeOQ /\M
O OMe OWOAC > Hlmﬁg oAc | ———
W OAc

22

: 0, (0]
B 7
30
OAc

23

Reagents and Conditions: a) NaHCOj (s), 4A mol. sieves, DCE; CAN (4 eq) in CH;CN (67%).
Ar = p-methoxyphenyl

Scheme 28: Formation of the syn-2,6-tetrahydropyranone ring via an endo-ETIC reaction.
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3.3. Outlook

While an efficient synthesis for the C1-C18 fragment of leucascandrolide A has been
developed, several aspects of the sequence have yet to be optimized. For example the current
synthetic sequence would provide a racemic mixture of leucascandrolide A. However, the high
levels of stereocontrol obtained throughout the sequence, suggest an enantiopure synthesis would
arise from an asymmetric crotylation. Although the tandem hydroesterification/lactonizaiton
reaction provides quick access to the desired lactone, efforts are underway to improve the yield
of this reaction. Attempts to minimize the number of synthetic steps are being explored through
the use of an alternative protecting group for the C1 alcohol. Identification of a single protecting
group that withstand both acetal opening and not inhibit enol acetate formation would eliminate
two steps from the sequence. Continued synthetic effort will also be directed toward an elegant

method for assembling the C15 side chain as well as the macrolactone.
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3.4. Conclusion

The synthesis of leucascandrolide A is currently being pursued through a highly
stereoselective sequence.  Utilizing the tandem hydroesterification/lactonization method
developed in our lab,"* provides expedient access to the 2,6-trans-tetrahydropyran (C11-C15
ring). A 1,3-anti-selective Mukaiyamma aldol led to a B-hydroxy ketone which was reduced to
the 1,3-syn-diol and subjected to acetal formation. The acetal was then opened with
allenytributyltin in the presence of a Lewis acid to give the homopropargylic ether as a single
diastereomer. Alkylation of the hindered secondary alcohol followed by protecting group
manipulation of the CI1 alcohol gave the suitably functionalized alkyne for enol acetate
formation. Introduction of the enol acetate via a ruthenium mediated addition of acetic acid
provided the key intermediate for conducting the ETIC reaction. The ETIC reaction furnished
the desired syn-2,6-tertrahydropyranone as a single diastereomer, as well as, completing a

racemic synthesis of the C1-C18 fragment of leucascandrolide A.
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3.5.  Experimental

General Experimental:

All reactions were performed in oven or flame dried glassware under a nitrogen atmosphere with
magnetic stirring unless otherwise noted.

Proton (‘"H NMR) and carbon (°C NMR) nuclear magnetic resonance spectra were recorded on
Bruker Avance 300 spectrometers at 300 MHz and 75 MHz, respectively. The chemical shifts
are given in parts per million (ppm) on the delta (5) scale. The solvent peak or the internal
standard tetramethylsilane were used as reference values. For 'H NMR: CDCl; = 7.27 ppm,
TMS = 0.00 ppm. For *C NMR: CDCl; = 77.23, TMS = 0.00. For proton data: s = singlet; d =
doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; dt = doublet of triplets; ddt
= doublet of doublet of triplets; br = broad; m = multiplet; app t = apparent triplet; app q =
apparent quartet; app p = apparent pentet.

High resolution and low resolution mass spectra were recorded on a VG 7070 spectrometer.
Infrared (IR) spectra were collected on a Mattson Gygnus 100 spectrometer.

Analytical thin layer chromatography (TLC) was performed on E. Merck pre-coated (25 nm)
silica gel 60F-254 plates. Visualization was done under UV (254 nm). Flash column
chromatography was preformed using ICN SiliTech 32-63 60A silica gel. Reagent grade ethyl
acetate and hexanes (commercial mixture) were purchased from EM Science and used as is for
chromatography. Reagent grade methylene chloride (CH,Cl,), dicholoroethane (C,H4Cl,),
acetonitrile (CH3CN), benzene and toluene were distilled from CaH,. Diethyl ether (Et20) and
tetrahydrofuran (THF) were dried by passing through aluminum drying column.

Dimethoxyethane (DME) was distilled from Na/benzophenone. Anhydrous N,N-
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dimthylformamide (DMF), methanol (MeOH), dimethyl sulfoxide (DMSO) were purchased

from Aldrich and used as is.

6-[2-(4-Methoxybenzyloxy)-ethyl]-5-methyltetrahydropyran-2-one (10)

q{vopms To a slurry of NMO (1.75 g, 14.9 mmol) and Ru3(CO);, (3.19 g, 4.99 mmol) in 2-
° pyridyl methyl formate (29.8 g, 219.5 mmol) was added 1-(4-methoxybenzyloxy)-4-
methylhex-5-en-3-0l"> (25.0 g, 99.8 mmol). The flask was then sealed with a wired rubber
septum and heated to 110 °C for 40 hours. The reaction mixture was then cooled to room
temperature and carefully vented. THF (100 mL), AcOH (200 mL) and water (100 mL) were
then added and the mixture was heated to 85 °C for an additional 12 hours. The mixture was
then poured into water and thoroughly washed with saturated NaHCOs (aq), water and brine,
dried over Na,SOy, filtered and concentrated under reduced pressure. The resulting residue was
then purifiend via flash column chromatography (25% EtOAc in Hexanes) to give the desired
product (14.1 g, 51%): "H NMR (300 MHz, CDCl3) & 7.23 (d, J = 8.6 Hz, 2H), 6.85 (d, J = 8.6
Hz, 2H), 4.42 (s, 1H), 4.41 (s, 1H), 4.07 (td, J = 9.4, 2.4 Hz, 1H), 3.77 (s, 3H), 3.67-3.60 (m,
2H), 2.63-2.52 (m, 1H), 2.49-2.37 (m, 1H), 2.09-1.99 (m, 1H), 1.92-1.61 (m, 3H), 1.58-1.45 (m,
1H), 0.98 (d, J = 6.5 Hz, 3H); *C NMR (75 MHz, CDCl3) & 171.8, 159.5, 130.7, 129.5, 114.1,

83.1,73.1, 65.9, 55.5, 34.2, 32.9, 29.7, 28.0, 17.6; IR (neat) 2958, 1731, 1612, 1513, 1093, 1034,

820 cm™'; HRMS (EI) caled for C4H,,04 278.1518, found 278.1511.

Acetic acid-6-[2-(4-methoxybenzyloxy)ethyl]-5-methyltetrahydropyran-2-yl ester (12)

X oPMB
CO(\/

oA mmol) in CH,Cl, (45 mL) at — 78 °C was added DIBAL (19.7 mL, 19.7 mmol)

To 6-[2-(4-methoxybenzyloxy)-ethyl]-5-methyltetrahydropyran-2-one (5.00g, 17.9

dropwise. The reaction mixture was then stirred at — 78 °C for 2 hours and pyridine (4.26 g, 53.8
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mmol). The reaction mixture was then stirred for 5 minutes and DMAP (2.41 g, 19.7 mmol) was
added in CH,Cl, (5 mL) followed by acetic anhydride (7.33 g, 71.8 mmol). The reaction mixture
was then allowed to warm to — 35 °C and stirred for an additional 12 hours. The reaction was
then quenched by the addition of Na,K-tartrate (aq) and warmed to room temperature. After
stirring at room temperature for 30 minutes, the mixture was passed through a pad of Celite. The
organic layer was then separated and dried over Na,SOy, filtered and concentrated under reduced
pressure. The resulting residue was then filtered through a short plug of silica and used

immediately.

6-Allyl-2-[2-(4-methoxybenzyloxy)ethyl]-3-methyltetrahydropyran (13)
C?(Vows To acetic acid-6-[2-(4-methoxybenzyloxy)ethyl]-5-methyltetrahydropyran-2-yl ester
\‘ (5.30 g, 16.4 mmol) and allyltrimethyl silane (3.75 g, 32.8 mmol) in CH,Cl, (50
mL) at — 78 °C was added BF5-OEt; (2.56 g, 18.0 mmol). The reaction mixture was then stirred
for an additional 1 hour at — 78 °C and quenched by the addition of NaHCOs (aq). The mixture
was then warmed to room temperature and the organic layer was separated. The aqueous layer
was then extracted with CH,Cl, (2x). The combined organic layers were then washed with water
and brine, dried over Na,;SOy, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (6% EtOAc in Hexanes) to provide
the desired product (3.90 g, 78%): 'H NMR (300 MHz, CDCl;) & 7.27 (d, J = 8.6 Hz, 2H), 6.87
(d, J=8.6 Hz, 2H), 5.79 (ddt, J=17.0, 10.1, 3.1 Hz, 1H), 5.06 (d, J = 17.0 Hz, 1H), 5.03 (d, J =
10.1 Hz, 1H), 4.43 (s, 2H), 3.81 (s, 3H), 3.54 (td, J = 7.5, 2.2 Hz, 2H), 3.43 (ddd, J =9.8, 7.1, 3.2
Hz, 1H), 2.46 (ddd, J = 144, 6.7, 6.4 Hz, 1H), 2.17 (ddd, J = 13.8, 6.8, 6.6 Hz, 1H), 1.90-1.83
(m, 1H), 1.79-1.74 (m, 1H), 1.70-1.59 (m, 2H), 1.53-1.49 (m, 2H), 1.43-1.30 (m, 2H), 0.93 (d, J

= 6.3 Hz, 3H); °C NMR (75 MHz, CDCl5) § 159.0, 135.5, 130.7, 129.1, 116.2, 113.6, 73.1,
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72.6,71.1, 67.0, 55.1, 36.5, 34.0, 32.9, 27.3, 26.6, 18.1; IR (neat) 2929, 1640, 1613, 1247, 820;

HRMS (EI) calcd for Ci9H»303 304.2038, found 304.2047.

2-(6-Allyl-3-methyltetrahydropyran-2-yl)ethanol (14)
C(VOH To 6-allyl-2-[2-(4-methoxybenzyloxy)ethyl]-3-methyltetrahydropyran (3.90 g, 12.8
\O mmol) in CH,CI, (40 mL) and pH 7.0 buffer (4 mL) was added DDQ (2.90 g, 12.8
mmol). The reaction mixture was then stirred at room temperature for 2.5 hours and the solvent
was removed under reduced pressure. The resulting residue was then purified via flash column
chromoatography (20% EtOAc in Hexanes) to give the desired product (2.36 g, 100%): 'H
NMR (300 MHz, CDCls) 6 5.82 (ddt, J=17.5, 10.0, 2.6 Hz, 1H), 5.12 (d, J=17.5 Hz, 1H), 5.08
(d, J =10.0 Hz, 1H), 4.00-3.92 (m, 1H), 3.80-3.67 (m, 2H), 3.46 (td, J = 9.0, 2.8 Hz, 1H), 2.60
(ddd, J=14.4, 8.8, 5.5 Hz, 1H), 2.17 (ddd, J = 13.6, 7.2, 6.4 Hz, 1H), 1.84-1.25 (m, 8H), 0.87 (d,
J = 6.4 Hz, 3H); °C NMR (75 MHz, CDCl;) & 135.3, 116.8, 71.6, 61.7, 35.6, 34.9, 34.6, 27.7,

26.8, 18.0; IR (neat) 3418, 2930, 1641, 1459, 1439, 1052, 912 cm™; HRMS (EI) calced for

C11H210, 185.1541, found 185.1536.

2-(4-methoxyphenyl-2-methyl-1-methylenepropoxy]trimethylsilane (8)

To 3-(4-methoxyphenyl)-3-methylbutan-2-one (1.92 g, 10.0 mmol) in THF at — 78

OTMS
MeO

OC was added a centrifuged solution of Ets;N/TMSCI (2.85 mL, 10.0 mmol) followed by the
addition of LHMDS (13.0 mL, 13.0 mmol). The reaction mixture was then stirred at — 78 °C for
an additional 1 hour and poured into saturated NaHCO; (aq). The organic layer was then
separated and the aqgeous layer was extracted with Et,O (2x). The combined organic layers were

then washed with brine and dried over MgSQO,, filtered and concentrated under reduced pressure.
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The resulting residue was then placed in a Kugelrohr and heated at 100 °C at ~1.0 mmHg for

lhour and used immediately.

(6-allyl-3-methyltetrahydropyran-2-yl)acetaldehyde (9):
mH To 2-(6-allyl-3-methyltetrahydropyran-2-yl)ethanol (500.0 mg, 2.7 mmol) in CH,Cl, (5
; O mL) was added pyridine (854.0 mg, 10.8 mmol) followed by the addition of Dess-
Martin periodinane (2.30 g, 5.4 mmol) at 0 °C. The reaction mixture was then warmed to room
temperature and stirred for an additional 1 hour, and quenched by the addition of Na,S,0; (aq) :
NaHCOs (aq) (1:5 v:v). The mixture was then stirred vigorously for 15 minutes, and the organic
layer was separated. The aqueous layer was then extracted with CH,Cl, (2x). The combined
organic layers were then washed with NH4Cl (aq) and brine, dried over Na,;SQO, filtered and

concentrated under reduced pressure. The resulting residue was then used without further

purification.

6-(6-Allyl-3-methyl-tetrahydropyran-2-yl)-5-hydroxy-2-(4-methoxyphenyl)-2-methylhexan-

3-one (7)

O OH O OMe

W mmol) and 2-(4-methoxyphenyl-2-methyl-1-
\

methylenepropoxy]trimethylsilane (1.84 g, 6.99 mmol) in propionitrile (10 mL) at — 78 °C was

To (6-allyl-3-methyltetrahydropyran-2-yl)acetaldehyde (850.0 mg, 4.66

added freshly distilled BF3-OEt, (661.9 mg, 4.66 mmol) dropwise. The reaction mixture was
then stirred at — 78 °C for an additional 45 minutes and quenched by the addition of saturated
aqueous NH4Cl (10 mL). After warming to room temperature, the organic layer was separated
and the aqueous layer was extracted with EtOAc (2x). The combined organic layers were then

washed with water and brine, dried over Na,SO,, filtered and concentrated under reduced
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pressure. The resulting residue was then purified via flash column (15% EtOAc in Hexanes) to
provide the desired product (1.32 g, 76%): 'H NMR (300 MHz, CDCl;) & 7.16 (d, J = 8.7 Hz,
2H), 6.85 (d, J = 8.7 Hz, 5.75 (ddd, J = 17.1, 10.2, 6.9 Hz, 1H), 5.08 (d, J = 17.1 Hz, 1H), 5.01
(d, J =10.2 Hz, 1H), 4.22-4.16 (m, 1H), 3.90-3.81 (m, 1H), 3,79 (s, 3H), 3.38 (td, J = 8.6, 2.7
Hz, 1H), 2.49-2.39 (m, 3H), 2.13 (ddd, J = 13.5, 6.7, 6.5 Hz, 1H), 1.73-1.17 (m, 8H), 1.47 (s,
3H), 1.43 (s, 3H), 0.83 (d, J = 7.2 Hz, 3H); °C NMR (75 MHz, CDCls) 213.5, 158.4, 135.6,
127.2, 116.4, 114.1, 72.7, 71.6, 65.0, 55.1, 51.5, 44.2, 38.7, 35.6, 34.4, 27.5, 26.9, 25.3, 24.8,
17.9; IR (neat) 3489, 2932, 1702, 1609, 1512, 1462, 1034, 736 cm™'; HRMS (EI) calcd for

C3H3404 374.2457, found 374.2445.

1-(6-Allyl-3-methyltetrahydropyran-2-yl)-5-(4-methoxyphenyl)-5-methylhexane-2,4-diol

(15)
M To 6-(6-allyl-3-methyl-tetrahydropyran-2-yl)-5-hydroxy-2-(4-
W o methoxyphenyl)-2-methylhexan-3-one (2.00 g, 5.34 mmol) in THF (20 mL)

at — 78 °C was added Et,BOMe (587.0 mg, 5.87 mmol) dropwise. The mixture was then stirred
for 1 hour and LiBH4 (348.9 mg, 16.0 mmol) was added. The reaction mixture was then stirred
at — 78 °C for an additional 16 hours and quenched by the addition of 10% NaOH (aq) (15 mL)
and 30% HO; (15 mL). The mixture was then warmed to room temperature and vigorously
stirred for 2 hours. The organic layer was then separated and the aqueous layer was extracted
with EtOAc (3x). The combined organic layers were then washed with water, Na,SO; (aq) and
brine, dried over Na,SO,, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (25% EtOAc in Hexanes) to afford a
5:1 separable mixture of diastereomers (1.53 g, 76%): 'H NMR (300 MHz, CDCl3) & 7.31 (d, J

= 8.6 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 5.82 (ddd, J = 17.3, 11.1, 6.1 Hz, 1H), 5.12 (d, J=17.3
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Hz, 1H), 5.07 (d, J = 11.1 Hz, 1H), 4.04-3.94 (m, 2H), 3.88 (dd, J = 6.3, 4.9 Hz, 1H), 3.79 (s,
3H), 3.41 (td, J = 9.0, 2.9 Hz, 1H), 3.29-3.18 (br s, 2H), 2.58 (ddd, J = 14.6, 8.8, 5.8 Hz, 1H),
2.14 (ddd, J = 13.2, 6.0, 5.9 Hz, 1H), 1.81-1.74 (m, 1H), 1.63-1.58 (m, 2H), 1.54-1.48 (m, 2H),
1.42-1.30 (m, 4H), 1.32 (s, 3H), 1.30 (s, 3H), 0.82 (d, J = 6.1 Hz, 3H); *C NMR (75 MHz,
CDCl3) 157.6, 139.4, 135.9, 127.5, 116.7, 113.4, 80.2, 72.4, 71.8, 70.0, 55.1, 41.6, 39.9, 37.4,
35.3,34.9, 27.8,27.0, 25.1, 23.1, 17.9; IR (neat) 3443, 2931, 1640, 1513, 1461, 1036, 830 cm’;

HRMS (ESI) caled for Cy3H3604Na 399.2511, found 399.2530.

(2-{4-(6-Allyl-3-methyltetrahydropyran-2-ylmethyl)-6-[1-(4-methoxyphenyl)-1-

methylethyl]-[1,3]dioxin-2-yl}-ethoxy)-tertbutyldiphenyl silane (17)

M To 1-(6-allyl-3-methyltetrahydropyran-2-yl)-5-(4-methoxyphenyl)-5-
:W \ methylhexane-2,4-diol (550.0 mg, 1.46 mmol) in CH,Cl, (5 mL) at — 78 °C

OTBDPS

was added 2,6-lutidine (923.0 mg, 5.84 mmol). The mixture was then stirred for 5 minutes and
TMSOTT (714.0 mg, 3.21 mmol) was added dropwise. The reaction mixture was then stirred for
an additional 20 minutes at — 78 °C and poured into water. The organic layer was then separated
and the aqueous layer was extracted with CH,Cl, (2x). The combined organic layers were then
washed with 10% HCI, water and brine, dried over Na,SQ,, filtered and concentrated under
reduced pressure. The resulting residue was then taken up in CH,Cl, (5 mL) and cooled to — 78
°C. 3-(tertbutyldiphenylsilanoxy) propionaldehyde'’ (344.9 mg, 1.10 mmol) was then added
followed by TMSOTTf (24.4 mg, 0.11 mmol). The reaction mixture was then slowly warmed to —
45 °C and stirred for an additional 12 hours. The reaction was then quenched by the addition of
pyridine (12.6 mg, 0.16 mmol) and poured into water. The organic layer was then separated and

the ageous layer was extracted with CH,Cl, (2x). The combined organic layers were then
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washed with water and brine, dried over Na,SQ,, filtered and concentrated under reduced
pressure. The resulting residue was then purified via flash column chromatography (4% EtOAc
in Hexanes) to give the desired product (738.0 mg, 76%): 'H NMR (300 MHz, CDCl3) 7.69-
7.67 (m, 4H), 7.45-7.37 (m, 6H), 7.23 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 5.73 (ddd, J
=17.0, 10.1, 6.9 Hz, 1H), 5.03 (d, J=17.0 Hz, 1H), 5.00 (d, J=10.1 Hz, 1H), 4.71 (dd, J = 6.4,
4.0 Hz, 1H), 3.84-3.77 (m, 4H), 3.77 (s, 3H), 3.55-3.51 (m, 1H), 3.43 (app t, J = 8.1 Hz, 1H),
2.49 (ddd, J =153, 8.0, 7.3 Hz, 1H), 2.14-1.84 (m, 5H), 1.77-1.57 (m, 5H), 1.50-1.46 (m, 2H),
1.35-1.27 (m, 3H), 1.29 (s, 3H), 1.27 (s, 3H), 1.07 (s, 9H), 0.85 (d, J = 6.0 Hz, 3H); °C NMR
(75 MHz, CDCl3) 157.6, 138.8, 135.6, 134.0, 129.6, 127.8, 116.5, 113.2, 99.2, 83.9, 72.9, 71.7,
71.3, 60.0, 55.2, 40.6, 39.7, 38.2, 35.9, 34.8, 32.3, 28.0, 27.2, 26.9, 26.2, 22.9, 19.3, 18.2; IR
(neat) 2930, 1612, 1513, 1250, 702 cm™; HRMS (ESI) calced for C4,Hs3OsNaSi 693.3951, found

693, 3951.

1-(6-Allyl-3-methyl-tetrahydropyran-2-yl)-4-{1-[2-(tertbutyldiphenylsilanoxy)ethyl]but-3-

ynyloxy}-5-(4-methoxyphenyl)-5-methylhexan-2-ol (18)

M r To (2-{4-(6-allyl-3-methyltetrahydropyran-2-ylmethyl)-6-[ 1-(4-
- O OH éiv\ o .
3 N methoxyphenyl)-1-methylethyl]-[ 1,3]dioxin-2-yl}-ethoxy)-tertbutyldiphenyl

OTBDPS

silane (200.0 mg, 0.29 mmol) and allenyltributyltin (294.0 mg, 0.89 mmol) in CH,Cl, (3 mL) at
— 40 °C was added TiCl;(i-PrO) (3.4 mmol) in CH,Cl, (5 mL). The reaction mixture was then
stirred for an addition 25 minutes at — 40 °C, and poured into saturated NaHCO; (aq). The
organic layer was then separated and the aqeous layer was extracted with EtOAc (3x). The
combined organic layers were then washed with water and 10 KF (aq), dried over Na,SOy,
filtered and concentrated under reduced pressure. The resulting residue was then purified via

flash column chromatography (7% EtOAc in Hexanes) to give the desired product (187.4 mg,
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89%): 'H NMR (300 MHz, CDCL3) & 7.68-7.64 (m, 4H), 7.46-7.40 (m, 6H), 7.29 (d, J = 8.8 Hz,
2H), 6.79 (d, J = 8.8 Hz, 2H), 5.77 (ddd, J = 16.9, 10.1, 3.1 Hz, 1H), 5.05 (dd, J = 16.9, 1.8 Hz,
1H), 4.99 (dd, J = 10.1, 1.8 Hz, 1H), 3.83-3.75 (m, 3H), 3.68 (t, J = 5.3 Hz, 2H), 3.35-3.32 (m,
2H), 3.25 (s, 1H), 2.63-2.41 (m, 1H), 2.39-2.27 (m, 1H), 2.16-2.10 (m, 1H), 1.96 (t, J = 2.5 Hz,
1H), 1.94 (dd, J = 12.2, 6.12 Hz, 1H), 1.70-1.62 (m, 1H), 1.55-1.53 (m, 2H), 1.48-1.41 (m, 4H),
1.34 (s, 3H), 1.26 (s, 3H), 1.37-1.26 (m, 4H), 1.05 (s, 9H), 0.73 (d, J = 5.9 Hz, 3H); '°*C NMR
(75 MHz, CDCls) & 157.9, 140.1, 136.0, 135.8, 134.3, 134.2, 129.8, 128.2, 128.0, 127.9, 116.7,
113.5, 81.9, 73.2, 72.4, 71.8, 70.3, 67.0, 61.0, 55.4, 42.5, 39.9, 36.7, 35.8, 34.3, 28.0, 27.3, 27.0,
23.5,23.2, 19.5, 18.3; IR (neat) 3497, 3308, 2930, 1610, 1513, 1427, 1251, 1098, 829, 703 cm";

HRMS (ESI) caled for C4sHs,OsNaSi 733.4264, found 733.4268.

(3-{4-(6-Allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-1-[1-(4-methoxyphenyl)-1-
methylethylbutoxy}hex-5-ynyloxy)tertbutyldiphenyl silane (19)

- - Ar
,—V\\\

w 7\OTBDPS
methylhexan-2-ol (100.0 mg, 0.14 mmol) in CH,Cl, (I mL) at 0 °C was added 2,6-

To 1-(6-allyl-3-methyl-tetrahydropyran-2-yl)-4-{1-[2-

(tertbutyldiphenylsilanoxy)ethyl]but-3-ynyloxy } -5-(4-methoxyphenyl)-5-

ditertbutylpyridine (107.0 mg, 0.56 mmol). The mixture was then stirred for 10 minutes at 0 °C
and MeOTTf (69.0 mg, 0.42 mmol) was added dropwise. The reaction was then slowly warmed
to room temperature over 12 hours and quenched by the addition of saturated NaHCOs (aq).
The organic layer was then separated and the aqueous layer was extracted with CH,Cl, (2x).
The combined organic layers were then washed with water and brine, dried over Na,SOy, filtered
and concentrated under reduced pressure. The resulting residue was then purified via flash
column chromatography (4% EtOAc in Hexanes) to give the desired product (84.7 mg, 83%):

'"H NMR (300 MHz, CDCls) & 7.73-7.69 (m, 4H), 7.44-7.37 (m, 6H), 7.28 (d, J = 8.8 Hz, 2H),
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6.79 (d, J = 8.8 Hz, 2H), 5.72 (ddd, J = 17.0, 10.1, 6.72 Hz, 1H), 5.04 (d, J = 17.0 Hz, 1H), 4.98
(d, J = 10.1 Hz, 1H), 3.80-3.76 (m, 3H), 3.77 (s, 3H), 3.73-3.66 (m, 1H), 3.41 (t, J = 4.1 Hz, 1H),
3.29-3.21 (m, 1H), 3.16 (s, 3H), 2.99-2.91 (m, 1H), 2.39-2.32 (m, 2H), 2.21-2.14 (m, 1H), 1.96
(t, J = 2.5 Hz, 1H), 1.95-1.91 (m, 2H), 1.69-1.54 (m, 4H), 1.50-1.41 (m, 2H), 1.39-1.25 (m, 4H),
1.31 (s, 3H), 1.26 (s, 3H), 1.05 (s, 9H), 0.81 (d, J = 6.5 Hz, 3H); *C NMR (75 MHz, CDCl3) &
157.9, 142.7, 139.9, 135.9, 135.8, 134.3, 129.7, 128.2, 127.8, 116.6, 113.4, 82.1, 80.6, 73.1, 72.0,
71.2, 70.1, 61.2, 57.5, 55.4, 51.7, 42.6, 38.7, 38.1, 37.5, 37.2, 35.7, 34.3, 29.9, 27.3, 27.2, 27.0,
26.8, 23.4, 23.3, 19.5, 18.5; IR (neat) 3309, 2930, 1610, 1513, 1462, 1298, 1251, 1184, 1036,

828 cm™'; HRMS (ESI) caled for C4sHgqOsNaSi 747.4421, found 747.4431.

3-{4-(6-Allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-1-[1-(4-methoxyphenyl)-1-
methylethyl]butoxy}hex-5-ynyl-1-ol (20):

- To (3-{4-(6-allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-1-[1-(4-

- - Ar

LR
(160.0 mg, 0.22 mmol) in wet THF (3 mL) at 0 °C was added TBAF (115.3 mg, 0.44 mmol).

methoxyphenyl)-1-methylethylbutoxy } hex-5-ynyloxy)tertbutyldiphenyl  silane

The reaction mixture was then slowly warmed to room temperature over 12 hours and quenched
by the addition of water. The mixture was then extracted with EtOAc (3x). The combined
organic layers were then washed with water and brine, dried over Na,SO,, filtered and
concentrated under reduced pressure. The resulting residue was then purified via flash column
chromatography (25% EtOAc in Hexanes) to give the desired product (100.1 mg, 94%): 'H
NMR (300 MHz, CDCl3) 6 7.28 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz, 2H), 5.79 (ddd, J =
16.8, 10.1, 6.6 Hz, 1H), 5.15 (d, J = 16.8 Hz, 1H), 5.05 (d, J = 10.1 Hz, 1H), 3.93 (app sep, J =
4.4 Hz, 1H), 3.83-3.66 (m, 3H), 3.80 (s, 3H), 3.50 (t, J = 4.4 Hz, 1H), 3.34 (s, 3H), 3.34-3.30 (m,

1H), 3.10 (app p, 6.5 Hz, 1H), 2.47-2.34 (m, 2H), 2.27-2.12 (m, 2H), 1.9 (t, J = 2.5 Hz, 1H),
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1.89-1.80 (m, 3H), 1.63-1.50 (m, 4H), 1.35 (s, 3H), 1.31 (s, 3H), 1.35-1.29 (m, 4H), 0.86 (d, J =
6.3 Hz, 3H); *C NMR (75 MHz, CDCL3) 157.6, 138.9, 135.5, 127.7, 116.4, 113.1, 81.7, 81.1,
74.8,72.6, 71.1, 70.1, 60.3, 57.2, 55.0, 41.9, 38.2, 36.5, 36.4, 34.1, 29.5, 27.0, 26.4, 23.1, 18.1;
IR (neat) 3450, 3308, 2929, 1610, 1513, 1462, 1251, 1083, 830 cm’'; HRMS (ESI) calc for

C30H460sNa 509.3243, found 509.3259.

Acetic acid-3-{4-(6-allyl-3-methyltetrhydropyran-2-yl)-3-methoxy-1-[1-(4-methoxyphenyl)-

1-methylethyl]butoxy}hex-5-ynyl ester (21)

M To 3-{4-(6-allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-1-[ 1-(4-
W N ~ methoxyphenyl)-1-methylethyl]butoxy} hex-5-ynyl-1-ol (50.0 mg, 0.10 mmol)

OAc

in CH,Cl, (2 mL) at 0 °C was added pyridine (23.7 mg, 0.30 mmol) and DMAP (1 crystal). The
mixture was then stirred at 0 °C for 10 minutes and acetic anhydride (21.9 mg, 0.20 mmol) was
added. The reaction mixture was then warmed to room temperature over 3 hours and quenched
by the addition of water. The organic layer was then separated and the aqueous layer was
extracted with CH,Cl, (2x). The combined organic layers were then washed with water and
brine, dried over Na,SO,, filtered and concentrated under reduced pressure. The resulting
residue was then purified via flash column chromatography (15% EtOAc in Hexanes) to provide
the desired product (51.2 mg, 94%): 'H NMR (300 MHz, CDCl;) & 7.29 (d, J = 8.7 Hz, 2H),
6.84 (d, J = 8.7 Hz, 2H), 5.78 (ddd, J = 16.9, 10.3, 6.6 Hz, 1H), 5.07 (d, J = 16.9 Hz, 1H), 5.02
(d, J=10.3 Hz, 1H), 4.27-4.11 (m, 2H), 3.77-3.64 (m, 3H), 3.77 (s, 3H), 3.42 (t, J = 4.4 Hz, 1H),
3.26 (s, 3H), 2.96 (app p, J = 6.8 Hz, 1H), 2.38-2.31 (m, 2H), 2.25-2.20 (m, 2H), 2.03 (s, 3H),
1.98 (t, J=2.5 Hz, 1H), 1.96-1.93 (m, 1H), 1.61-1.57 (m, 2H), 1.51-1.44 (m, 2H), 1.36-1.26 (m,
6H), 1.32 (s, 3H), 1.30 (s, 3H), 0.84 (d, J = 6.5 Hz, 3H); °C NMR (75 MHz, CDCls) & 171.2,

158.0, 139.8, 135.9, 128.2, 123.1, 116.6, 113.5, 81.5, 80.9, 73.1, 71.5, 71.3, 70.5, 66.8, 61.7,
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57.6, 55.4, 42.4, 38.8, 38.2, 37.2, 34.9, 34.4, 33.6, 27.3, 26.8, 23.3, 21.2, 18.5; IR (neat) 3306,
2931, 1739, 1641, 1513, 1440, 1251, 1036, 914, 830 cm™; HRMS (ESI) caled for C3,H406Na

551.3349, found 551.3337.

Acetic acid-5-acetoxy-3-{4-(6-allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-1-[1-(4-
methoxyphenyl)-1-methylethyl]butoxy}-1-methylenepentyl ester (22)

Mr To acetic acid-3-{4-(6-allyl-3-methyltetrhydropyran-2-yl)-3-methoxy-1-[1-(4-
O OMeO OAc

3 N methoxyphenyl)-1-methylethyl]butoxy}hex-5-ynyl ester (10.0 mg, 0.018

OAc

mmol) was added a solution of [Ru(p-cymene)Cl;], (0.4 mg, 0.75 umol), fursP (0.3 mg, 1.5
pmol) and AcOH (2.2 mg, 0.037 mmol) in toluene (1 mL) followed by Na,CO; (0.3 mg, 3.0
pmol). The reaction mixture was then warmed to 80 °C and stirred for an additional 14 hours.
The mixture was then cooled to room temperature and the solvent was removed under reduced
pressure. The resulting residue was then purified via flash column chromagtography (8% EtOAc
in Hexanes) to give the desired product (4.9 mg, 44%): 'H NMR (500 MHz, CDCl;) & 7.28 (d, J
= 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 5.77 (ddd, J = 17.0, 10.1, 7.0 Hz, 1H), 5.06 (d, J=17.0
Hz, 1H), 5.03 (d, J = 10.1 Hz, 1H), 4.80 (s, 1H), 4.78 (s, 1H), 4.24-4.20 (m, 1H), 4.19-4.11 (m,
1H), 3.78 (s, 3H), 3.75-3.70 (m, 1H), 3.69-3.64 (m, 1H), 3.39 (t, J = 4.4 Hz, 1H), 3.29-3.24 (m,
1H), 3.27 (s, 3H), 2.97-2.92 (m, 1H), 2.59 (dd, J = 14.7, 3.92 Hz, 1H), 2.39 (dd, J=13.8, 6.7 Hz,
1H), 2.28-2.20 (m, 1H), 2.12 (s, 3H), 2.11-2.04 (m, 1H), 2.03 (s, 3H), 1.98-1.93 (m, 1H), 1.80-
1.73 (m, 1H), 1.64-1.60 (m, 2H), 1.51-1.44 (m, 2H), 1.30 (s, 3H), 1.27 (s, 3H), 1.34-1.27 (m,
5H), 0.82 (d, J = 6.6 Hz, 3H); °C NMR (CDCls) & 171.1, 169.2, 158.0, 153.6, 140.0, 135.9,
128.2, 116.6, 113.5, 80.7, 72.9, 71.4, 71.3, 61.9, 57.5, 55.4, 42.5, 39.0, 38.3, 38.1, 37.0, 34.6,
33.4,29.9,27.7,26.8,26.7,23.3,21.3, 20.9, 18.4; IR (neat) 2931, 1740, 1513, 1462, 1368, 1250,

1036, 914, 733 cm'l; HRMS (ESI) calcd for C34Hs,0gNa 611.3560, found 611.3552.
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Acetic acid-2-{6-[3-(6-allyl-3-methyltetrahydropyran-2-yl)-2-methoxypropyl]-4-
oxotetrahydropyran-2-yl}ethyl ester (23)
@/ Cro To acetic acid 5-acetoxy-3-{4-(6-allyl-3-methyltetrahydropyran-2-yl)-3-methoxy-
W e i\OAC 1-[1-(4-methoxyphenyl)-1-methylethyl|butoxy}-1-methylenepentyl ester (10.0
mg, 0.016 mmol) in DCE (0.75 mL) was added NaHCO; (20.0 mg) and 4 A molecular sieves
(20.0 mg). The mixture was then stirred for 20 minutes and a solution of CAN (37.2 mg, 0.067
mmol) in CH3CN (0.40 mL) was added dropwise. The reaction mixture was then stirred for an
additional 45 minutes and filtered through a small silica plug. The filtrate was then concentrated
under reduced pressure and the resulting residue was purified via flash column chromatography
(40% EtOAc in Hexanes) to provide the desired product (4.5 mg, 67%): 'H NMR (500 MHz,
CDCl) 6 5.81 (ddd, J=17.0, 10.2, 6.8 Hz, 1H), 5.08 (d, J=17.0 Hz, 1H), 5.04 (d, J=10.2 Hz,
1H), 4.29-4.25 (m, 1H), 4.20-4.15 (m, 1H), 3.84-3.81 (m, 1H), 3.75-3.69 (m, 1H), 3.58-3.56 (m,
1H), 3.49-3.46 (m, 2H), 2.50-2.44 (m, 2H), 2.42-2.37 (m, 2H), 2.04 (s, 3H), 1.97-1.90 (m, 3H),
1.88-1.83 (m, 2H), 1.73-1.16 (m, 3H), 1.58-1.50 (m, 3H), 0.94 (d, J = 6.2 Hz, 3H); "°C (75 MHz,
CDCl) 6 2069, 171.2, 135.9, 116.6, 74.7, 74.1, 73.9, 72.9, 71.6, 61.0, 57.0, 48.4, 47.9, 40.7,
38.9, 36.9, 35.4, 34.7, 27.7, 27.0, 21.1, 18.5; IR (neat) 2926, 1740, 1238, 1090 cm™'; HRMS

(ESI) caled for C1oH;O06 (M - C3Hs) 355.2121, found 355.2115.
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APPENDIX A

Tuning the Reactivity and Chemoselectivity of Electron Transfer Initiated Cyclization
(ETIC) Reactions: Effects of Aryl and Benzyl Substitution
(Supporting Information)
(*H and *C NMR Spectra)
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APPENDIX B

Development of the Diastereoselective Electron Transfer Initiated Cyclization (ETIC)
Reaction: Synthesis of 2,6-syn-Tetrahydropyranones
(Supporting Information)
(*H and *C NMR Spectra and Selected 2-D Spectra)
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APPENDIX C

Efforts toward the Total Synthesis of Leucascandrolide A
(Supporting Information)
(*H and *C NMR Spectra and Selected 2-D Spectra)
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