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A systematic study on the structure/reactivity relationships of bicyclic epoxonium ions
towards tethered nucleophiles has been conducted. The cyclization results show that
bicyclo[3.1.0] epoxonium ions have a significant to exclusive preference for exo-cyclizations
while bicyclo[4.1.0] epoxonium ions have a strong preference for endo-cyclizations.

A convergent approach towards the total synthesis of polycyclic ether natural product (+)-
lactodehydrothyrsiferol and its analogs is currently being pursued. This route includes the
stereoselective reduction of the bicyclo[3.2.1] ketal which could be prepared from coupling of
the functionalized aldehyde and vinyl iodide. Both enantiopure fragments can be obtained from
cyclizations of the diepoxide and the monoepoxide, respectively. Key transformations involve
two asymmetric epoxidations, a cascade cyclization of diepoxide, a Cr/Ni-mediated coupling
reaction and a stereoselective reduction of bicyclo[3.2.1] ketal.

An efficient one-pot synthesis of oxidized amides from nitrile hydrozirconation has been
developed. From the common acylimine intermediates, acyl aminals can be accessed through
alcohol addition, acyl hemiaminals can be accessed through water addition and enamides can be

accessed through tautomerization.
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1.0 STUDIES ON THE STRUCTURE/REACTIVITY RELATIONSHIPS OF

BICYCLIC EPOXONIUM IONS AND TETHERED NUCLEOPHILES

11 INTRODUCTION

Polycyclic ether structures (Figure 1), which have been discovered in a number of marine
natural products, have gained considerable attention from synthetic community due not only to
their intrinsically complex structures but also to their interesting biological activities." From a
biosynthetic view of point, these compounds have been proposed to arise from cascade
cyclizations from the requisite polyepoxide precursors.>” A key issue associated in this process
is the strict regiochemical control, i.e., exo- vs endo-cyclization (Figure 2). As can be envisioned
in Figure 1, hemibrevetoxin B> could be prepared from the polyepoxide through all endo-
cyclization, bullatacin® could be prepared from the polyepoxide precursor through all exo-
cyclization and lactodehydrothyrsiferol’ could be prepared from the polyepoxide through a

combination of exo- and endo-cyclizations.

Hemibrevetoxin B Bullatacin Lactodehydrothyrsiferol

Figure 1. Representative polyether natural products
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Figure 2. Exo- vs endo-cyclization

The exo-pathway is well known and commonly observed from studies on intramolecular
cyclizations through epoxide opening. For example, epoxy alcohol 1.1, under acidic conditions,
afforded tetrahydrofuran derivative 1.3 predominantly through exo-pathway transition state 1.2
(Figure 3).* However, in the presence of the catalytic antibody IgG26D9 elicited from amine
oxide antigen 1.4, tetrahydropyran 1.6 was isolated as the sole product from endo-cyclization,®

which formally violated the Baldwin’s rules’ for ring closure reactions.

H HO
ot o
acid 574 0 —_—
R

R
- - ‘0
© OH . . AT
4
R H-O* HO 1.4
11 lgG26D9 50 N
R =PMB R H o
R
1.6

Figure 3. Cyclizations of epoxy alcohol under acid- and antibody-catalyzed conditions

Ab initio calculations performed by Houk'®'' and Coxon'*"’ showed that under acid-
catalyzed conditions, the exo-transition structure (TS) has a nearly ideal trajectory for the attack
of the hydroxyl oxygen atom via an Sxy2 manner and therefore has lower energy than endo-TS,

resulting in the formation of 1.3 as the major product through a kinetically and chemically
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favored process. The exclusive formation of 1.6 under antibody-catalyzed (enzymatic) conditions
was attributed to the similarity between endo-TS 1.5 and N-oxide 1.4. Calculations showed that
endo-cyclization proceeds through an Sx1-type transition structure.

Due to the difficulty in the polycyclic ether formation through endo-pathway and the high
efficiency in increasing complexity in cascade cyclizations of polyepoxides, a number of
researchers have been involved in investigating the epoxide opening cascades. Murai and co-
workers'* first reported endo-selective cascade cyclizations of polyepoxides (Figure 4). Diepoxy
alcohol 1.7, when treated with La(OTY);, provided fused bicyclic product 1.8 in 52% yield.
Unfortunately, when the conditions were applied to triepoxy alcohol 1.9, the cyclization
efficiency decreased drastically and only 9.3% of the desired tricycle 1.10 was obtained from all
endo-cyclization. In addition, the proposed mechanism requires the presence of chelation of
La(Ill) ion with the epoxide oxygen and the pendent methoxy oxygen to promote the endo-

selectivity, which also limits its potential applications in natural product synthesis.

OMe " OMe
o La(OTf)s (1.1 eq), LayO5 (0.28 eq) \/E)/\Ej
' OH H,0 (3.3 eq), CH,Cly, 1t, 2 days, 52% HO =20
OMe MeO™
17 18
OMe OMe MeO OMe

La(OTf); (1.1 eq), La,O3 (0.28 eq)

(©)
o)
o
Y
T
o)
o)
. T
o)
o)

OH H,0 (5.5 eq), CH,Cl,, rt, 3 days, 9.3%
OMe OMe
1.9 1.10

Figure 4. Endo-selective cascade cyclizations of polyepoxides in Murai group

15,16

At nearly the same time, McDonald and co-workers studied epoxide opening cascades

under Lewis-acid-promoted conditions, and demonstrated that endo-cyclizations could be

3



achieved in high efficiency with rationally designed substrates. Some representative examples

are shown in Figure 5.

H Me H Me Oo. _O
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-
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pyridine, 30%

Figure 5. Representative endo-selective cyclizations of polyepoxides in McDonald group

McDonald postulated that bicyclic epoxonium ions are key intermediates in cascade
cyclizations of epoxides to generate polycyclic ethers and that endo-cyclizations were favored
over exo-cyclizations due to the increased ring strain in exo-TSs (bicyclo[3.1.0] epoxonium
ions)."” As illustrated in Figure 6, bicyclo[4.1.0] epoxonium ion 1.20 (from endo-cyclization) is
presumed to be energetically lower than bicyclo[3.1.0] intermediate 1.19 (from exo-cyclization)
in the initial cyclization as well as a similar comparison between bicyclo[4.1.0] ion 1.22 and
bicyclo[3.1.0] ion 1.21 in the ensuing cyclization, leading to the formation of trans-fused tricycle

1.23 with excellent endo-selectivity.
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1.19 bicyclo[3.1.0] ion 1.23 1.22 bicyclo[4.1.0] ion 1.21 bicyclo[3.1.0] ion

Figure 6. Hypothesis for regioselective cascade cyclizations

McDonald also observed that terminal nucleophiles can also affect the stereochemical
outcomes and/or regioselectivity (Figure 7).!” Cyclization of diepoxide 1.24 with a r-butyl
carbonate group as the terminal nucleophile provided cis-fused bicycle 1.28 which arose from
the addition of the carbonate carbonyl to the tertiary carbocation 1.26 via an Sy1 fashion as the
predominant product. Alternatively, the cyclization of diepoxide 1.29 with the better terminal
nucleophile dimethyl carbamate gave trans-fused bicycle 1.27 as the major product which came
from direct attack of the carbamate carbonyl to the epoxonium ion 1.25 through an Sn2 pathway.
Interestingly, triepoxy #-butyl carbonate 1.30, upon cyclization, afforded mainly tricyclic
structure 1.32 which came from a combination of endo-cyclization and exo-cyclization and has a
cis-ring fusion between the six- and five-membered cyclic ethers. In this case, only trace amount
of all-fused trans,trans-tricycle 1.31 was obtained. On the other hand, reaction of
dimethylcarbamate triepoxide 1.33 produced desired tricycle 1.31 in good yield, with 1.32 not

being observed.
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Figure 7. Impact of terminal nucleophiles on stereospecificity and regioselectivity

Besides acidic conditions, cyclizations of epoxides can also be performed under basic'®,

1 . . 20,21
neutral’® and oxidative®®

conditions. Jamison and co-workers demonstrated that diepoxide
1.34A and triepoxide 1.35A, under basic conditions in the protic solvent MeOH, provided THP
triad 1.34B and tetrad 1.35B, respectively, in good yields, with the TMS group as a
“disappearing” directing group.'® Without the “disappearing directing groups”, the diepoxide
1.36A and triepoxide 1.37A, under essentially neutral conditions, delivered triad 1.36B and
tetrad 1.37B, respectively, in excellent yields."” In the total synthesis of hemibrevetoxin B,

Holton developed a novel intramolecular epoxide opening cascade initiated by oxidation of the

alkene with N-(phenylseleno)phthalimide to effect the formation of 1.39 in excellent yield, with



the B and C rings assembled in a single operation (Figure 9).%° In this process, the highly polar

solvent hexafluoroisopropanol was selected for the endo-selective epoxide opening through the

S1-type transition state, which is consistent with the computational analysis.'*"!

H H

H
(a) Cs,CO3, CsF, MeOH ACOI\/EO;IO
(b) Ac,0O, Pyr, DMAP Me” >0 ~0

H H H

1.34B 35%

H H H_H

(a) Cs,COs, CSF, MeOH Mem
(b) Ac,0, Pyr, DMAP AcO H H 0 =0

H H

1.35B 20%

water, 70 °C, 24 h Acomj
Me 20" : e}

Me.JO o
water, 70°C, 72h m
A z z z z
00 0

1.37A dr 3:1 1.37B 53%

Figure 8. Regioselective epoxide opening cascades under basic and neutral conditions

(CF3),CHOH, 83%

1.38 1.39

Figure 9. Key transformation in Holton’s total synthesis of hemibrevetoxin B



Cascade cyclizations of epoxides/polyepoxides were also studied in my laboratory** under
electron transfer initiated cyclization (ETIC**) conditions. These photochemical conditions use
medium-pressure mercury lamp as the excitation source, catalytic amount of N-
methylquinolinium hexafluorophosphate as the sensitizer, O, as the ultimate oxidant, 4 A
molecular sieves as moisture scavenger, NaOAc as the base, Na,S,0; as the peroxide remover,
1,2-dichloroethane as the solvent and toluene as the co-sensitizer. Two typical examples are
depicted in Figure 10. Under ETIC conditions, homobenzylic ether 1.40 was oxidized to radical
cation 1.41A which fragmented to form the benzyl radical and oxocarbenium ion 1.41B in a
reversible manner. The tethered epoxide attacked the electrophile 1.41B to generate bicyclic
epoxonium ion 1.41C. The terminal nucleophile THP ether opened the bicyclo[3.1.0] epoxonium
ion through exo-pathway to deliver bis-THF product 1.42 irreversibly in good yield. Similarly,
reaction of diepoxide 1.44 gave rise to the consecutive exo,exo-cyclization product 1.45 in high
efficiency. After removal of the anomeric center with Jones reagent,” lactones 1.43 and 1.46
were obtained as single diastereomers, respectively. The regioselectivity observed herein is in
accord with Houk and Coxon’s computational studies with 5-exo-pathway being preferred over

6-endo-pathway.
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Conditions: (a) hv, O,, NMQPFg (cat.), NaOAc, Na,S,03, 1,2-dichloroethane (DCE)/PhMe (6:1, v/v). (b) Jones reagent. (c) Ac,0.

Figure 10. Epoxide opening cascades under electron transfer initiated cyclization conditions

The oxocarbenium ion (Lewis acid) generated under ETIC conditions has the merit that it
is able to activate the proximal epoxide specifically so that the complication from possible
random activation of epoxides by a Bronsted or Lewis acid can be eliminated, making this
method ideal for investigating the reactivity of epoxonium ions with specific structures. In order
to examine the factors that can affect the reaction pathways in epoxide opening cascades, a
systematic study on the cascade cyclizations of monoepoxides/diepoxides under ETIC conditions

has been conducted” and details will be discussed in the following context.



1.2 STUDIES ON EPOXIDE OPENING CASCADES UNDER ETIC CONDITIONS

As previously described, regioselectivity in epoxide opening cascades could be influenced
by ring strain in the forming bicyclic epoxonium ions, nucleophiles and solvents. Besides these, I
was interested in whether other factors such as bicyclic epoxonium structure and Lewis acid
selection can also affect the reaction pathways. Towards this end, we prepared substrates shown
in Figure 11.

From monoepoxides 1.47-1.50, oxocarbenium-activated bicyclic epoxonium ion
intermediates (bicyclo[3.1.0] epoxonium and bicyclo[4.1.0] epoxonium) with different
substitution patterns (disubstituted and trisubstituted) will be formed and compared in terms of
their regioselectivity towards terminal nucleophiles. Diepoxides 1.51-1.55 were designed to
study the impact of different Lewis acid-activating groups (oxocarbenium ion and non-stabilized
carbenium ion) on the regiochemical outcomes as well as the effect of relative stereochemical
orientations of epoxides on the cyclization efficiency. Figure 12 shows the corresponding
bicyclic epoxonium ion intermediates that will be compared in this study. Also of note is that the
more reactive diphenylmethyl group was employed in the monoepoxide substrates 1.47-1.50
instead of benzyl group (cf- Figure 10) as the electroauxiliary to initiate the oxocarbenium ion
formation due to the reduced nucleophilicity of epoxides by the proximal #-butyl carbonate
groups. For consistency throughout the studies, the diphenylmethyl group was also incorporated

in the diepoxide substrates 1.51-1.55 though benzyl group is sufficiently reactive for this

purpose.

10
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Figure 11. Substrates for cyclizations

MeO = R QH Rg\/%:)/

9%
R 9% s el

Figure 12. Bicyclic epoxonium ion intermediates to be investigated

1.2.1 Synthesis of epoxide substrates

The synthesis of disubstituted monoepoxide 1.47 proceeded from commercially available
4-pentenal in a straightforward manner (Figure 13). Addition of diphenylmethyllithium to 4-
pentenal followed by methylation of the secondary alcohol and cleavage of the terminal alkene

afforded aldehyde 1.56. A sequence of Horner-Emmons olefination, ester reduction, allylic

11



alcohol epoxidation and primary hydroxyl group protection with Boc,O*' provided carbonate
1.47. Likewise, epoxide 1.48 was prepared from 5-hexenal which was obtained from Swern

oxidation of 5-hexen-1-ol.

() Ph,CH,, n-BuLi, THF, 0 °C, 83% H
o (b) NaH, DMF, 0 °C, then Mel, rt, 97% Ph CHM
X > 2 e}
Y\/\ (C) 03, CH2C|2, -78 OC, then PPhs, rt, 96% OMe

H

1.56
(d) (Et0),P(0)CH,CO,Et, NaH, THF, 0 °C, 94%

(@]
() DIBAL-H, THF, -78 °C Ph.CH o
> 2 \(\/Q/\OJJ\OtBu
OMe

() m-CPBA, NaHCO3, CH,Cl,, 0 °C, 70%
(g) Boc,0O, N-methylimidazole, PhMe, 0 °C to rt, 90%

1.47
(h) (COCl),, DMSO, -78 °C, then Et3N
(i) Ph,CH,, n-BuLi, THF, 0 °C, 70%
P ; @
(i) NaH, DMF, 0 °C, then Mel, rt, 95%
(k) O3, CH,Cl,, -78 °C, then PPh, rt, 96% OMe H
1.57 1.58

(I) (Et0),P(O)CH,CO,Et, NaH, THF, 0 °C, 93% o

(m) DIBAL-H, THF, -78 °C _ PhZCHY\/WOTOtBu

(n) m-CPBA, NaHCO3, CH,Cl, 0 °C, 91% OMe 0
(o) Boc,0, N-methylimidazole, PhMe, 0 °C to rt, 84% 1.48

Figure 13. Synthesis of disubstituted monoepoxides 1.47 and 1.48

The synthesis of trisubstituted monoepoxides 1.49 and 1.50 is illustrated in Figure 14.

Opening of epoxide 1.59 using Yamamoto’s aluminum-amide promoted protocol®®

followed by
Johnson-Claisen rearrangement®’ of the allylic alcohol and reduction of the ethyl ester provided
aldehyde 1.60, which was converted into 1.49 through a sequence of diphenylmethyllithium
addition, methylation, silyl ether deprotection, epoxidation and protection of the primary alcohol
with Boc,O. For the synthesis of homologous substrate, aldehyde 1.60 was homologated through

Wittig olefination and mercury-mediated enol ether hydrolysis® to give the corresponding

aldehyde which was further transformed into 1.50 in a similar manner.
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(a) 2,2,6,6-Tetramethylpiperidine, n-BuLi
Et,AICI, benzene, 0 °C, 90%
’ , , H
)<?/\ > \H/\)\/\OTBS
OTBS

(b) (Et0)3CCHg, EtCO,H, 145 °C, 96%

c) DIBAL-H, THF, -78 °C
1.59 ©

(d) Ph,CH,, n-BuLi, THF, 0 °C, 70% o

(e) NaH, DMF, 0 °C, them Mel, rt (o)

(f) TBAF, THF, 100% u
(g) m-CPBA, NaHCOj3, CH,Cl,, 0 °C, 95% OMe

(h) Boc,0, N-methylimidazole, PhMe, 0°C to rt, 86% 1.49

" _

(i) PhsPCH,OMeCl, NaHMDS, THF, -78 °C
then Hg(OAc),, THF, H,0, Kl, 82%.

(i) Ph,CH,, n-BuLi, THF, 0 °C, 79%

(k) NaH, DMF, 0 °C, them Mel, rt [e)
H\H/\)\/\OTBS - PhZCHY\/\‘)\/O\"/otBU
OMe O

(o] (I) TBAF, THF, 97%
(m) m-CPBA, NaHCO3, CH,Cl,, 0 °C, 99%
1.60 (n) Boc,O, N-methylimidazole, PhMe, 0°C to rt, 89% 1.50

Figure 14. Synthesis of trisubstituted monoepoxides 1.49 and 1.50

The trisubstituted diepoxides 1.51-1.52 were prepared similar to 1.49 and 1.50.
Monoepoxide 1.61 was converted into aldehyde 1.62 in excellent yields through epoxide
opening, Johnson-Claisen rearrangement and reduction (Figure 15). Dienol 1.63 was obtained in
good yields after a three-step sequence of diphenylmethyllithium addition, methylation and silyl
group removal. To ensure the high enantiomeric and diastereomeric control in the epoxidations,
asymmetric epoxidation methods were utilized. Dienol 1.63 was converted into diepoxy
carbonate 1.51 through double Shi epoxidation®' and protection of the primary hydroxyl group
with Boc,O in excellent yields. A sequence of Sharpless epoxidation,*® Shi epoxidation and the
primary hydroxyl group protection of 1.63 efficiently provided diastereomeric counterpart 1.52.
The stereochemical orientations of the epoxides in 1.51 and 1.52 were given based on the

mechanistic analysis.
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a) 2,2,6,6-tetramethylpiperidine, "BuLi
(a) ylpip

o Et,AlCI, benzene, 0 °C, 92% (d) Ph,CH,, "BuLi, THF, 0 °C, 80%
_ H N N
oTBS OTBS

(b) (EtO)3CCHg, EtCO,H, 145 °C, 94% o (e) NaH, DMF, 0 °C, them Mel, rt
1.61 (c) DIBA LH, THF, -78 °C, 92% 1.62 (f) TBAF, THF, 97%, two steps

(h) Shi ketone, Oxone, (MeO),CH, (0] (0] )OL
CH4CN, H,0, 0 °C, 88% Ph,CH o OBy
(i) Boc,0, N-methylimidazole )(
PhMe, 0 °C to 1t, 93% OMe N
151 (/\L/
0" Y o
)VO

o Shi ketone

Ph,CH
oC MOH

OMe
1.63

() (+)-Diisopropyl tartrate, '‘BuOOH Ph,CH =
Ti(O'Pr),, CH,Cly, -25 °C, 96% 0~ "O'Bu
(k) Shi ketone, Oxone, (MeO),CH, OMe
CH4CN, H,0, 0 °C, 91% 1.52
() Boc,O, N-methylimidazole
PhMe, 0 °C to rt, 86%

Figure 15. Synthesis of diepoxides 1.51 and 1.52

Aldehyde 1.62 was homologated to aldehyde 1.64 to prepare diepoxides 1.53 and 1.54
through olefination and mercury-mediated enol ether hydrolysis in 91% yield (Figure 16). Dienol
1.65 was obtained in a similar manner to 1.63 through diphenylmethyllithium addition,
methylation and deprotection. Subsequently, dienol 1.65 was converted into carbonate 1.53
through double Shi epoxidation and carbonate formation, or carbonate 1.54 through a sequence

of Sharpless epoxidation, Shi epoxidation and carbonate formation.
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(a) Ph,CH,, "BuLi, THF

+ - o)
H “ “ PhsPCH,0MeCl, NaHMDS, THF, -78 °C W 0°C, 80%
oTBS H OTBS

o) then Hg(OAc),, THF, H,0, KI, 91% (b) NaH, DMF, 0 °C, them Mel, rt
1.62 1.64 (c) TBAF, THF, 98%

(d) Shi ketone, Oxone, (MeO),CH,
CH3CN, H,0, 0 °C, 64%
(e) Boc,O, N-methylimidazole
PhMe, 0 °C to rt, 78%

O'Bu

® (J‘r)-DusopropyI tartrate, '‘BUOOH Ph,CH - O. _OBu
Ti(O'Pr)4, CH,Cl,, -25 °C, 97% A

(9) Shi ketone, Oxone, (MeO),CH, OMe o
CH3CN, H,0, 0 °C 1.54

(h) Boc,0, N-methylimidazole

PhMe, 0 °C to rt, 82%, two steps

Figure 16. Synthesis of diepoxides 1.53 and 1.54

Diepoxide 1.55 was prepared in a convergent manner (Figure 17). Reduction of d-lactone
followed by diphenylmethyllithium addition to the crude lactol provided the diol in 82% yield
over the two steps, which was converted to sulfone 1.66 through a sequence of Mitsunobu
reaction, methylation and oxidation® of the resulting sulfide with mCPBA. A Kocienski-
modified Julia olefination®® between sulfone 1.66 and aldehyde 1.60 afforded the desired diene
in 63% yield. Further operations similar to the synthesis of 1.51 and 1.53 provided carbonate

1.55 in excellent yields.
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(a) DIBAL-H, CH,Cl,, -78 °C

(b) Ph,CH,, BuLi, THF, 0 °C, 82%, two steps o Ph
O © (c) 1-Phenyl-1-H-tetrazole-5-thiol, PPhg, DIAD, THF, 97% 2
D _ PhZCHMSYN\N
\ ]
(d) NaH, DMF, 0 °C, then Mel, rt, 85% OMe N—=N
(e) mCPBA, NaHCOj3, CH,Cl,, 0 °C, 95%
1.66

(f) KHMDS, 1,2-dimethoxyethane, -78°C, then

H
X"oTBS

O 1.60 63%

(g) TBAF, THF, 95%

(h) Shi ketone, Oxone, (MeO),CH, 1.55
CH3CN, H,0, -5 °C, 94%
(i) Boc,0O, N-methylimidazole, PhMe, 83%

Figure 17. Synthesis of diepoxide 1.55

1.2.2 Cyclizations of epoxide substrates under ETIC conditions

With these epoxides in hand, I examined their reactions under ETIC conditions to explore
the factors that could affect the regioselectivity in the opening of bicyclic epoxonium ions by
pendent nucleophiles. First, I carried out the reactions of disubstituted monoepoxides and the
cyclization results are illustrated in Figure 18. The reaction of 1.47 exclusively provided 5-exo-
product 1.68 through a disubstituted bicyclo[3.1.0] epoxonium ion intermediate, which is
consistent with the previous observations that disubstituted bicyclo[3.1.0] ions prefer 5-exo-
cyclization (cf. Figure 10).” Interestingly, cyclization of the homologated epoxide 1.48 gave a
mixture of 5-exo- and 6-endo-products 1.71 and 1.72, respectively, with exo-pathway being
slightly favored. The difference between these two reactions is that the initial cyclization of 1.47
forms a bicyclo[3.1.0] intermediate while the cyclization of 1.48 forms a bicyclo[4.1.0] ion. The

exo-products were fully characterized by oxidation to the corresponding lactones.” %’
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(0] t
o Oy_O'Bu
Ph,CH \’/\/Q/\O)LotBu hv, NMQPFs (10 mol%), O, . w
OMe 4A mol. sieves, Na,S,04 MeO™ O o
NaOAc, DCE/PhMe (5:1) 7/

1.47 bicyclo[3.1.0] epoxonium ion 1.67

|

(0] (0]
Jones reagent
OM\A\O Meo“’Q_j/\i)*O
(0] (@) o H H (@)

H H acetone, 83%
1.69 1.68 59%, dr 1.9:1

v H
PhZCHWoTOtBu hv, NMQPFg (10 mol%), O, 5 %3\
(0] MeO 9 g OtBU

OMe 0 4A mol. sieves, Na,S,05
NaOAc, DCE/PhMe (5:1)

1.48 bicyclo[4.1.0] epoxonium ion 1.70

H
0._0
o~ o o0 = MeooHHOO+ 0o

H,Cl,, then EtsN .
H H CzCz,ten t3 MeO OH

1.73 1.71 30%, dr 2:1 1.72 22%, dr 3.4:1

Figure 18. Cyclizations of disubstituted monoepoxides 1.47 and 1.48

Cyclization of trisubstituted epoxide 1.49 produced a complex mixture of exo- and endo-
products from trisubstituted bicyclo[3.1.0] ion 1.74. The trans-fused endo-product 1.77 arose
from the Sn2 attack of the carbonate to the epoxonium ion 1.74 while the syn-fused endo-product
1.78 was from the addition of the carbonate carbonyl oxygen to the tertiary carbocation 1.75 in
an Sx1 manner. The formation of 1.78 is in accord with McDonald’s observation'’ of cis-fused
bicycle 1.28 from 1.24 (cf. Figure 7). On the contrary, the reaction of 1.50 cleanly afforded
trans-fused bicycle 1.81 as the only isolable product in excellent yield. These cyclization results

clearly demonstrate that the combination of both the methyl substitution and the bicyclo[4.1.0]
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epoxonium ion can reverse the regiochemical outcomes from complete exo-pathway to exclusive

endo-pathway.

(0] t t
o) 4, | Os_OBuU Os__O'Bu
Ph,CH hv, NMQPFg (10 mol%), O / +
Y\)Q/\OJJ\OIBU v, QPFg ( 6), O, = 7)/ | j)/
OMe MeO™ "O MeO" ~O H

4A mol. sieves, Na,S,04
NaOAc, DCE/PhMe (5:1)

1.49 bicyclo[3.1.0] epoxonium ion 1.74 1.75

l 40% l 8%
0.0
0 O O :
IV e S S G UG
0 o MeO 0 Lo NG
(@) H O (@) H O Meo\ O |i| MeO (@) |:|
177

acetone

1.79 1.76 . 1.78
4.8 : 1
. 0.__0O
Ph,CH 0.__0Bu hv, NMQPFs (10 mol%), O, e Y
W \n/ > 'y )\\ . I o )
OMe o) 4A mol. sieves, Na,S,03 MeO” "0 g ©OBu Meo™ © A
NaOAc, DCE/PhMe (5:1)
1.50 bicyclo[4.1.0] epoxonium ion 1.80 1.81 73%, dr 1.2:1

Figure 19. Cyclizations of disubstituted monoepoxides 1.49 and 1.50

Having obtained the general information on the regioselectivity of monoepoxide
opening/cyclization with carbonates as the nucleophile, I next investigated the cyclizations of
diepoxides. Diepoxide 1.51, under ETIC conditions, provided a mixture of consecutive exo,exo-
and endo,endo-products 1.85 and 1.86, respectively, in a combined 40% yield and with a 5.5:1
ratio (Figure 20). Mechanistic analysis suggests that initial cyclization formed bicyclo[3.1.0]
epoxonium intermediate 1.82, which could be opened by the epoxide either in an exo-mode to
form a second bicyclo[3.1.0] epoxonium 1.83, or in an endo-mode to form bicyclo[4.1.0]
epoxonium 1.84. It is noteworthy that no endo-cyclization product from 1.83 was isolated,

indicating that bicyclo[3.1.0] epoxonium ions activated by non-stabilized carbeniums (stronger
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Lewis acids) prefer exo-pathway towards tethered nucleophiles. Also of note is that no cis-fused
endo-product was observed from 1.84, indicating that epoxides are better nucleophiles than
carbonates or that the addition of carbonate to the epoxonium ion is reversible before the loss of
the #-butyl cation. A similar regioselectivity was observed and a better overall yield was obtained

when diastereomeric counterpart 1.52 was exposed to the ETIC conditions.

o , O_ O'Bu
Ph,CH JIS hv, NMQPFg (10 mol%), O, 4A mol. sieves e
2 L) ) 0~ “o'Bu > o, o
MeO

OMe Na,S,05, NaOAc, DCE/PhMe (5:1), 40%

+

1.51
sl
MeO™ o7l LO0N—0" “oBU
1.83 1.84
l exo only l endo only
H o]
Wlo ) °>:O
MeO™ O (o] (o] : %
H H MeO™ "O"7 g
1.85 1.86
55 : !
. H o>:
ETIC conditions e} O ()
Ph,CH : o™ ’ : <o ©
) o oBu 61% MeO™ o 0: o O :
T e HO = § MeO”™ O i
1.52 1.87 1.88
6.1 : 1

Figure 20. Cyclizations of diepoxides 1.51 and 1.52

Following the completely endo-selective opening of bicyclo[4.1.0] epoxonium ions 1.80
and 1.84, reaction of diepoxides 1.53 and 1.54 afforded trans,syn,trans-fused tricycles 1.91 and

1.93 in all endo-modes as expected since the intermediates were trisubstituted bicyclo[4.1.0]
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epoxonium ions. The cyclization of 1.54 is highly efficient in consideration of the product
complexity. The higher yield observed in cyclization of 1.54 compared with 1.53 is probably due
to the diminished steric interactions in the cyclization processes. To simplify characterizations,
acetals 1.91 and 1.93 were oxidized by treatment with mCPBA and BF3<OEt, followed by
addition of Et;N***7 to form lactones 1.92 and 1.94. The structure of 1.92 was unambiguously

confirmed through single crystal X-ray analysis (Figure 22).**

O. _oBu hv. NMQPFg (10 mol%), Oy, 4A mol. sieves

o Na,S,03, NaOAc, DCE/PhMe (5:1) o)
MeO *
1.53 bicyclo[4.1.0] ion 1.89
O__0OBu H o)
T o )>=0 mCPBA, BFyOEt,
_— O —_— —0 >
Q “ then Eth, 67%
o oG
MeO H MeO
bicyclo[4.1.0] ion 1.90 1.91 54%, dr 1:1
H 0
O -
t O mCPBA, BF;-OEt.
Ph,CH OYO Bu ETIC o>: g0t
OMe 0 0 0 o then Et;N, 80%
MeO H
1.54 1.93 79%, dr 1:1 1.94

Figure 21. Cyclizations of diepoxides 1.53 and 1.54
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Figure 22. ORTEP structure of lactone 1.92

Since no selectivity was observed in the cyclization of 1.42, I was not surprised to observe
that when diepoxide 1.55 was subjected to ETIC conditions, consecutive exo,exo- and
endo,endo-products 1.97 and 1.98 were obtained in comparable yields, with the disubstituted
bicyclo[4.1.0] epoxonium 1.95 from initial cyclization being non-regioselective (Figure 23).
Tricycle 1.98 was converted into lactone 1.99 and its stereochemical outcomes were established

through single crystal X-ray analysis (Figure 24).%

21



hv, NMQPF (10 mol%), O,
O. OBu 4Amol sieves, Na,S,05

o) NaOAc, DCE/PhMe (5:1)

1.55 - 1.95

MCPBA, BF;-OFEt,

Meo” CH

1.97 25%, dr 2:1 1.99 1.98 30%, dr 2.3:1

then EtzN, 70%

Figure 23. Cyclization of diepoxide 1.55

Figure 24. ORTEP structure of lactone 1.99
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1.3 COMPUTATIONAL ANALYSIS

The cyclization results of the epoxide opening cascades under ETIC conditions show that
the regioselectivity is highly dependent on the bicyclic epoxonium ion structures. Trisubstituted
bicyclo[4.1.0] epoxonium ions prefer exclusive endo-pathways while disubstituted bicyclo[4.1.0]
epoxonium ions essentially show no preference towards exo- or endo-pathways. I also found that
trisubstituted bicyclo[3.1.0] epoxonium ions, when formed from attack of epoxides to non-
stabilized carbenium ions, favor exo-selectivity exclusively; when formed from attack of
epoxides to oxocarbenium ions, give lower selectivity towards exo-cyclization. In order to better
understand the origin of the regioselectivity, especially endo-selectivity in cascade cyclizations
of epoxides, computational analysis was initiated using the B3LYP/6-31G(d) method***' to
mimic the cyclization transition structures in the gas phase. This was performed by using
Gaussian03** program in the Houk group at UCLA.

Initial study was carried out on a model reaction of bimolecular nucleophilic addition of
dimethyl carbonate to 1,2,2,3-tetramethyloxiranium ion (Figure 25). The dimethyl carbonate can
add to either the tertiary or secondary center of the epoxonium ion, with no geometrical
constraints in either case. As shown in Figure 25, TS1 corresponds to the transition structure for
nucleophilic addition to the secondary center and TS2 corresponds to the transition structure for
nucleophilic addition to the tertiary center. In both TSs, the breaking and forming C-O bond
distances are within the range of 2.0 and 2.2 A, indicating that both reactions proceed through
Sn1-like transition states. The observation of the longer partial C-O bonds in TS2 is an indicative
of a looser Sx1 transition state, resulting from the formation of a partial tertiary carbocation. The
partial tertiary carbocation formation can better stabilize the transition state, making TS2 lower

in energy than TS1 by 4.3 kcal/mol. The dihedral angles in the absence of geometrical
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constraints in TS1 (Ogp-Cep-H-O) and TS2 (Ogp-Cep-C-O) are 141.3° and 147.4°, respectively.
The bond distances in TS1 and TS2 will be used as the references in the following context, with

shorter bond distances being Sx2-like transition structures.

6 OMe
e
+ OME/ Meo
=
Me OME\ MeO oMo
Q/J\OMe
‘ —
2.00- \
—-— \—.zb_ ‘E - ’ E l
: ; ~ 2.19
> 212 | *‘\\\-3 ~
k /0 . —'""" o
b1294=147.4 — -, 215‘ln '¢1234'141-3
I ¥ e
TS1 TS2
AH, (kcal/mol) 4.3 0.0
AGyg (kcal/mol) 5.0 0.0

Figure 25. Transition structures for the addition of dimethyl carbonate to the 1,2,2,3-tetramethyl-

oxiranium ion. The distances are given in A.

A model reaction was studied to elucidate the origin of the exclusive endo-selectivity from
trisubstituted bicyclo[4.1.0] epoxonium ions. As shown in Figure 26, the difference between the
model reaction and the real reaction (1.50 — 1.81, Figure 19) is the replacement of the anomeric
methoxy group with a hydrogen atom and the fert-butyl carbonate with a methyl carbonate. This
model reaction can also be employed to account for the formation of 1.86, 1.88, 1.91, 1.93 and

1.98 in the terminal cyclizations of the corresponding substrates.
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The methyl carbonate carbonyl can add either to the secondary or tertiary center of

bicyclo[4.1.0] epoxonium ion to form 5-exo- or 6-endo-cyclization products. The transition

structure for endo-cyclization (TS3_endo) has a lower energy than that of exo-cyclization

(TS3_exo) by 4.5 kcal/mol, which is nearly identical to the energy difference in the

unconstrained system. The longer forming C-O bond in TS3_endo means a looser Syl-like

transition state presumably due to the partial formation of the tertiary carbocation. However,

TS3_exo has an Sn2-like transition state as evidenced by the shorter breaking and forming C-O

bond distances. The dihedral angle in TS3_exo has a greater distortion from the unconstrained

system (161.1° vs 147.4°) than that in TS3_endo (135.5° vs 141.3°). The higher energy and

greater distortion of the dihedral angle of TS3 exo than those of TS3_endo result in the

complete preference towards endo-cyclization pathway.

TS3_exo

AH, (kcal/mol) 4.5

AGyg (kcal/mol) 4.6

$1234=135.5

/
Vs

TS3_endo

0.0

0.0

Figure 26. Transition structures for the 5-exo- and 6-endo-cyclizations from trisubstituted

bicyclo[4.1.0] epoxonium ion. The distances are given in A.
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The effect of the anomeric methoxy group was investigated using the model reaction
illustrated in Figure 27. The methoxy group can be either cis or trans to the epoxonium ion ring,
with the cis-isomer being more stable than the trans-isomer by 0.3 kcal/mol in the gas phase. It is
clear that the incorporation of the methoxy group has negligible effect on the geometries of the
transition structures, though TS4_trans_endo shows a slightly better leaving group departure
and enhanced bond formation compared with TS3_endo. The trans- and cis-methoxy isomers
favor the endo-cyclization pathway by 4.6 and 4.8 kcal/mol relative to the corresponding exo-
pathway, respectively, which is similar to the energy difference (4.5 kcal/mol) observed between

TS3 endo and TS3_exo.

H B
MeO o Meo” © H
exo endo
| | | | \
“* - -ﬂ “r | __‘ - - .-,o_‘ — -
j-..‘& 3 - —-‘\’ ko \ ¥ ‘\a
4\ \ + - \' 181,78\ _ NEQ N
183 \ #y™ \1.99 0 g
Ll - . oo 3= % N\ i o ,2 |
V2= ) /-z:l, -7 \ ~/ ;.;,
12.08 ~ y 12.14 . I
] . i ’ ;262
# & o2 ; o
ko'm‘,zmu,?“ ) 11?34“3?‘8” Siemr 2 ( $1234=136.3°
’ - 4
- P | P
T54_trans_exo TS4_trans_endo TS4_cis_exo TS4_cis_endo
AHg (kcal/mol) 5.8 1.2 4.8 0.0
AGyg (kcal/mol) 5.9 1.5 52 0.0

Figure 27. Transition structures for 5-exo- and 6-endo-cyclizations of cis- and trans-methoxy
trisubstituted bicyclo[4.1.0] epoxonium ions. The distances are given in A.
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As depicted in Figure 18, almost no regioselectivity was obtained from the cyclization of
disubstituted epoxide 1.48 which does not have the methyl group on the epoxide. To explain the
role of the methyl group, an additional model was employed with the angular methyl group being
replaced by a hydrogen atom, in which both 5-exo- and 6-endo-cyclization modes would have
partially formed secondary carbocations (Figure 28).

The calculations in the gas phase revealed that the absence of the methyl group has
negligible influence on the 5-exo-transition structures. However, the two 6-endo-transition
structures are perturbed substantially, with shorter breaking and forming bond distances being
observed, indicating more Sny2-like character in the transition states. The corresponding dihedral
angles are also distorted significantly from 137.8° to 154.3°, and from 136.3° to 154.2° for the
trans- and cis-isomers, respectively. The transition structures of endo-modes are energetically
lower than the corresponding transition structures of exo-modes by 1.4 kcal/mol for both cis- and
trans-isomers, meaning that endo-cyclization is slightly favored over exo-cyclization for
disubstituted bicyclo[4.1.0] epoxonium ions. While experimental results show that exo- and
endo-cyclizations are two competitive pathways as illustrated in Figure 18, computational studies
still support that bicyclo[4.1.0] epoxonium ions have a strong tendency towards endo-

cyclizations.
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Figure 28. Transition structures for 5-exo- and 6-endo-cyclizations of cis- and trans-methoxy

disubstituted bicyclo[4.1.0] epoxonium ions. The distances are given in A.

In the terminal annulations of diepoxides 1.51 and 1.52, the bicyclo[3.1.0] epoxonium ions
(activated by non-stabilized carbenium ions) preferentially generated 5-exo-cyclization products,
which is in accord with Baldwin’s ring closure rules. This was mimicked by a model reaction
depicted in Figure 29. The transition structure for exo-cyclization (TS6_exo0) is similar to the
transition structure for the bicyclo[4.1.0] epoxonium ion (TS3_exo0) in terms of the forming and
breaking bond distances and the dihedral angle. The transition structure for endo-cyclization
(TS6_endo), though having similar bond breaking and forming features to the corresponding
transition structure for the bicyclo[4.1.0] epoxonium ion (TS3_endo), shows a significant

decrease in the dihedral angle (123.6° vs 135.5°). As a result, this perturbation leads to the
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increase of the energy for TS3_endo, making 5-exo-pathway energetically favored over 6-endo-

pathway by 2.7 kcal/mol.
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Figure 29. Transition structures for 5-exo- and 6-endo-cyclizations of trisubstituted

bicyclo[3.1.0] epoxonium ion. The distances are given in A.

When the epoxide was activated by the oxocarbenium ion instead of a non-stabilized
carbenium ion, a small amount of trans-fused endo-cyclization product 1.78 was also isolated
from trisubstituted bicyclo[3.1.0] epoxonium ion 1.74. To elucidate the impact of the anomeric
methoxy group on the regiochemical outcomes, another model reaction was employed, as shown
in Figure 30. Similar to the transition structures in Figure 27, the methoxy group could be cis or

trans to the epoxonium ion ring. The trans-isomer 1.0 kcal/mol more stable than the cis-isomer
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because of the stabilization between the lone pair of the epoxide oxygen and the anti-bonding
orbital of the C-O (methoxy) bond when they are antiperiplanarly oriented.

For the transition structures for the two cis-isomers, TS7_cCiS_exo shows a greater leaving
group departure in the presence of the anomeric methoxy group while the bond forming
character and the dihedral angle remain approximately the same. TS7_cis_endo, however, has
enhanced bond formation and a widened dihedral angle which is close to those in the transition
structures (TS3_endo, TS4 cis_endo and TS4_trans_endo) of trisubstituted bicyclo[4.1.0]
epoxonium ions. For the trans-isomers, the geometry of TS7_trans_exo is essentially unaffected
by the incorporation of the methoxy group. Although the breaking and forming bond distances
remain nearly the same in TS7_trans_endo, the dihedral angle is distorted from 123.6° to
132.9°, which is similar to that in TS7_cis_endo. From an energetic view of point,
TS7_trans_endo has the lowest energy which is attributed to the stabilization of the anomeric
effect when the electronegative methoxy group assumes a pseudoaxial position in the forming
tetrahydropyran ring. The two transition structures for exo-cyclizations have slightly higher
energy. In addition, TS7_cis_endo, without benefiting from the developing anomeric effect, is

the highest in energy.
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Figure 30. Transition structures for 5-exo- and 6-endo-cyclizations of cis- and trans-methoxy

trisubstituted bicyclo[3.1.0] epoxonium ions. The distances are given in A.

The role of the methoxy group is consistent with the previous observations that the 5-exo-
regioselectivity decreased when bicyclo[3.1.0] epoxonium ions were generated from
combination of epoxides with oxocarbenium ions (1.74 and 1.82) rather than non-stabilized

carbenium ions (1.83 and 1.96A). Also of note is the isolation of trans-fused bicycle 1.77 as a

single anomer with the methoxy group adopting an axial position.
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1.4  CONCLUSIONS

A systematic study has been carried out on the oxocarbenium ion-initiated cascade
cyclizations of epoxides under ETIC conditions, in which the impact of the epoxide substitution
pattern, ring size of the bicyclic epoxonium ions and the Lewis acidic carbocation structures on
regiochemical outcomes was fully investigated. These results clearly revealed that ring size is an
important determinant on the regioselectivity of bicyclic epoxonium ion opened by tethered
nucleophiles. That is, bicyclo[3.1.0] epoxonium ions show significant to exclusive preference
towards exo-cyclization pathways while bicyclo[4.1.0] epoxonium ions show a strong tendency
towards endo-cyclizations. This observation could be explained from the computational studies
that larger rings can adopt a looser transition state with more Sy1 character, thereby favoring
endo-cyclizations. As for smaller rings, endo-TSs are more distorted than exo-TSs, making endo-
TSs energetically higher and exo-pathways more favorable. In addition, epoxide substitution
pattern also has significant influence on the regioselectivity, especially when bicyclo[4.1.0]
epoxonium ions serve as the key intermediates. Trisubstituted bicyclo[4.1.0] epoxonium ions
prefer exclusive endo-cyclization pathways with the cyclization proceeding through an Sy1-like
transition state due to the better stabilization from a partially formed tertiary carbocation.
However, disubstituted bicyclo[4.1.0] epoxonium ions show almost no preference towards exo-
or endo-cyclizations. Though Lewis acid selection has negligible effect on the regiochemical
outcomes of bicyclo[4.1.0] intermediates, it can affect the reaction pathways in a subtle manner
when reactions proceed through bicyclo[3.1.0] epoxonium ions. That is, when bicyclo[3.1.0]
epoxonium ions are formed from combination of epoxides and non-stabilized carbenium ions,
exclusive exo-selectivity is observed; when bicyclo[3.1.0] epoxonium ions are formed from

combination of epoxides and oxocarbenium ions, exo-selectivity decreases to some extent. The
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endo-cyclization in this process arises from the anomeric effect that generates from the forming
tetrahydropyran ring through endo-pathway when the methoxy group adopts a pseudoaxial
position, which makes endo-transition structure lower in energy. This delicate effect undoubtedly
demonstrates that endo-cyclization can be achieved to generate tetrahydropyran rings through
modification of bicyclic epoxonium ions. The current studies definitely provide a solid base for

designing new epoxide substrates to provide polycyclic ether structures efficiently.
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20 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF (+)-

LACTODEHYDROTHYRSIFEROL AND ITS ANALOGS

2.1 INTRODUCTION

(+)-Lactodehydrothyrsiferol (2.1), a marine polycyclic ether natural product, was isolated
as an amorphous white solid by Fernandez and co-workers in 2002 from seeds of Laurencia
viridis around the Canary Islands (Figure 31).” Spectroscopic analysis shows that it has a central
trans-fused pyranopyran structure with a pendent 5-membered lactone ring and an aliphatic side
chain that connects the central unit to a trans-tetrahydrofuran ring. It is interesting to note that
the B ring assumes a chair conformation while the C ring adopts a twist-boat-like conformation.
This has also been observed in structurally related natural products through X-ray and NMR
spectroscopic analyses.”**™*

Biological assay shows that 2.1 has modest inhibitory effect on serine/threonine protein
phosphatase (PP2A) with ICsy value of 100 ,uM.46 The structurally related natural product
thyrsiferyl-23-acetate (TA) is more potent toward the inhibition of PP2A with ICsg values of 4-
16 uM depending on the enzyme concentration. It is worth noting that TA exhibits specific
inhibitory effect on PP2A, and has no effect on protein phosphatase 1 (PP1), 2B (PP2B), 2C

(PP2C), or protein tyrosine phosphatases (PTP).*” Though other structurally diverse natural

products, such as polyether okadaic acid, polyketide tautomycin, and terpenoid cantharidin, are
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much more potent inhibitors of PP2A (ICsp = 0.2 ~ 40 nM) than 2.1 and TA, they also show
inhibitory effect on PP1 and/or PP2B (Figure 31).*** The exclusive selectivity of TA is
presumably due to its unique structural features and makes itself an ideal tool to study the
cellular processes mediated by PP2A. However, it is unclear whether 2.1 can affect the activity
of other protein phosphatases besides PP2A. Up to now, no total synthesis of 2.1 has been
reported. I am currently pursuing a convergent approach toward the total synthesis of 2.1 and its

analogs to further explore their biological activity.

O R
Br

21 Thyrsiferyl-23-acetate (TA)

T
™0
T
—_—
T
)

Okadaic acid

Tautomycin Cantharidin

Figure 31. Biologically active natural products and the conformation of the B and C rings in 2.1

and TA
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2.2  SYNTHETIC PROGRESS
2.2.1 Preliminary results

Previous studies on the cascade cyclizations of epoxides showed that the reaction of
diepoxide 2.2 under ETIC conditions gave a mixture of exo,exo-product 2.3 and endo,endo-
product 2.4 in a combined 61% yield and with a 6.1:1 ratio. In this reaction, tricycle 2.5 from an
exo-cyclization followed by an endo-cyclization was not observed (Figure 32).%° Therefore,
construction of the A, B and C rings of 2.1 in a single operation from the diepoxide similar to 2.2

is difficult and a new strategy is required for this purpose.

MeO ag)Qo
ol Lo i o

o)
Ph,CH _ P ETIC conditions 2.3
z == 0O~ "OBu >
o ©) 61%, 2.3:2.4 = 6.1:1

+
OMe
H (e}
2.2 o e >:
(6]
: O\(O MeO oﬁ
0O o (0] 2.4
MeO H H
25

Figure 32. Cyclization of diepoxide 2.2

As depicted in Figure 33, an alternative approach was proposed. The reaction of diepoxide
2.6 under ETIC conditions is expected to give bicyclic epoxonium ion 2.7 and the terminal
cyclization will proceed through addition of carbonate carbonyl to the proximal tertiary center in
a kinetically favored fashion to generate tricycle 2.8. With 2.8 in hand, further elaborations will

provide tetracyclic compound 2.9 with the A, B and C rings being installed.
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Figure 33. Proposed cyclization of diepoxide 2.6

To validate the transformation from 2.7 to 2.8, I prepared epoxy carbonate 2.14, which
will form an epoxonium ion intermediate similar to 2.7 upon cyclization (Figure 34). Oxidation
of known alkene 2.10% with KMnO, afforded o-hydroxyl ketone 2.11 in 57% yield.”
Olefination of the ketone under Lebel’s Rh-catalyzed conditions provided allylic alcohol 2.12 in
72% vyield.”! Epoxidation® of 2.12 catalyzed by VO(acac), in the presence of fert-butyl
hydroperoxide followed by protection of the primary hydroxyl group with Boc,0*' gave

carbonate 2.14 in excellent yield.
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Figure 34. Synthesis of epoxide 2.14

Reaction of 2.14 under ETIC conditions cleanly afforded the desired spiro product 2.17 in
excellent yield through addition of carbonate to the tertiary center of bicyclic epoxonium ion

2.16, which was completely consistent with my expectations (Figure 35).

0CO,'Bu Q
hv, NMQPFg, Na,S,03, NaOAc \/Qo
Ph,CH 0
0 4A MS, DCE, PhCHg, 79%, dr 1.1:1 MeO”™ O
OMe
2.14 2.17
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T | (@7
© MeO™ O o)\
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t
| o O'Bu
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Figure 35. Cyclization of epoxide 2.14

2.2.2 Current progress

Following the smooth conversion of 2.14 into bicycle 2.17, I proposed a retrosynthetic

approach toward 2.1. As shown in Figure 36, 2.1 can be obtained from a stereoselective
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reduction of ketal 2.18 which will be prepared from coupling of aldehyde 2.19 and vinyl iodide
2.20.>® These two coupling components can be accessed from cyclizations of diepoxide 2.21 and

2.22, respectively.

Nej
[ 0 = HOM
PGO H OPG OH

2.20 2.22

Figure 36. Retrosynthetic analysis of 2.1

Due to the availability of the chiral reagents for asymmetric epoxidations, ent-2.21 was
initially prepared to explore the feasibility of the above route (Figure 37). Coupling of known
vinyl bromide 2.23°* and aldehyde 2.24 under Firstner-modified Nozaki-Hiyama-Kishi
conditions™ provided allylic alcohol 2.25 in 85% yield. It was subsequently converted into ethyl
ester 2.26 through a Johnson-Claisen rearrangement.>* Trost™* emphasized that the rearrangement
efficiency of a similar allylic alcohol is highly dependent on the reaction temperature, with
higher temperatures leading to decreased Z/E stereoselectivity and lower temperatures leading to
decreased yields. Subsequently, 2.26 was converted into allylic alcohol 2.27 through reduction
with DIBAL-H and addition with isopropenylmagnesium bromide. Another Johnson-Claisen

rearrangement of 2.27 followed by reduction/addition gave homobenzylic alcohol 2.29 in 65%
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yield over two steps. Methylation of the secondary alcohol followed by removal of the two silyl
groups provided diol 2.30 in good yield. A sequence of Sharpless asymmetric epoxidation,** Shi
asymmetric epoxidation,’’ and protection of the two hydroxyl groups with Boc,O afforded the
cyclization substrate ent-2.21. It is worth noting that the first epoxidation gave modest yield due
to the unexpected cyclization through addition of the distal hydroxyl group to the epoxide and

the diastereoselectivity after the two epoxidations was low (dr ~ 2:1) based on NMR analysis.
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=z OH > ;
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Figure 37. Synthesis of ent-2.21
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Subjecting diepoxide ent-2.21 to ETIC conditions produced desired tricycle 2.31 in 43%
yield which contained small amounts of unknown materials (Figure 38). Also isolated from this
reaction was tricycle 2.32. Both 2.31 and 2.32 were oxidized by Jones reagent to the
corresponding lactones 2.33 and 2.34, respectively. The relative stereochemical outcomes of the
central cis-tetrahydropyran and the orientation of the 5-membered carbonate ring in lactone 2.33
were fully confirmed through 2D NMR NOESY studies. Subsequently, the Boc group was
removed with TMSOTT in the presence of 2,6-lutidine™ to give primary alcohol 2.35 in nearly
quantitative yield. Oxidation of the hydroxyl group with Dess-Martin periodinane®®>’ provided

aldehyde ent-2.19 in 61% yield.
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Figure 38. Synthesis of advanced intermediate ent-2.19

The above results clearly revealed that aldehyde 2.19 can be prepared from diepoxide 2.21.
As previously mentioned, there are two problems in this sequence. One is the low yield in
Sharpless epoxidation and the other is low diastereoselectivity in the epoxidations of 2.30
presumably because of the interference of the hydroxyl group in Sharpless and/or Shi

epoxidations. In order to circumvent these two problems, I proposed an alternative route to 2.19
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with replacement of one of the tert-butyl carbonates with a terminal alkene (Figure 39). I

envisioned that oxidative cleavage of the terminal alkene would yield the desired aldehyde.

OBoc

an
— N X
(e) (0)

OMe

2.36

Figure 39. An alternative approach to 2.19

The synthesis of 2.36 began with known dienol 2.37, which was prepared from methyl
acrylate and 4-pentenal through a Morita-Baylis-Hillman reaction (Figure 40).**° Reduction of
the methyl ester followed by selective protection of the primary hydroxyl group with TBDPSCI
provided silyl ether 2.38. Conversion of 2.38 into trienol 2.40 was achieved through a sequence
similar to the synthesis of 2.30. After Sharpless epoxidation, Shi epoxidation and protection of
the hydroxyl group with Boc,0, diepoxide 2.36 was obtained in higher efficiency compared to
ent-2.21. Additionally, in this case, the diastereoselectivity in the epoxidations is about 4.6:1
with regard to the stereochemical orientations of the two epoxide functionalities.

Under ETIC conditions, diepoxide 2.36 underwent a cascade cyclization to afforded
tricyclic product 2.37 (Figure 40). After removal of the anomeric center with Jones reagent, the
corresponding lactone was obtained in 17% yield over two steps as a single diastereomer. The
lower efficiency in the cascade cyclization is attributed to the intervention of the nucleophilic
terminal alkene in the final cyclization process, suggesting that the terminal alkene must be
replaced by non-nucleophilic groups. The ensuing cleavage of the terminal olefin under

ozonolytic conditions smoothly afforded aldehyde 2.19 in 83% yield.
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Figure 40. New approach to aldehyde 2.19

With aldehyde 2.19 in hand, I next addressed to the preparation of vinyl iodide 2.45
(Figure 41). Sharpless asymmetric epoxidation of geraniol followed by Sharpless asymmetric
dihydroxylation®® gave a mixture of triol 2.22 and tetrahydrofuran 2.42, which was converted
into 2.42 completely with the promotion by pyridinium 10-camphorsulfonate complex.®' The
stereochemical outcome in 2.42 was established through mechanistic analysis. Activation of the
primary hydroxyl group with TsCl followed by elimination under basic conditions provided the
epoxide® whose tertiary hydroxyl group was protected as silyl ether 2.43 in excellent yield. The
epoxide was opened by 1,3-dilithiopropyne® and the nascent secondary hydroxyl group was

protected with TESCI to give bis-silyl ether 2.44. The terminal alkyne was transformed into the
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vinylstannane in the presence of the BusSn-AlEt, complex and CuCN in 29% (59% brsm) yield,

which was further converted into vinyl iodide 2.45 in good yield.®**
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A N > HO. NG + B
VY\/Y : : . HO o o
(b) Sharpless dihydroxylation OH OH H
2.22 2.42
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— > 242 > 7 0} TotES >
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Figure 41. Synthesis of vinyl iodide 2.45

23 FUTURE WORK

Though aldehyde 2.19 could be produced from diepoxides 2.21 and 2.36, the efficiency for
the substrate preparation or cascade cyclization was still low. Therefore, a better substrate is
necessary for the total synthesis. I am intended to prepare a new diepoxide 2.49 from known

vinyl bromide 2.46°%

to differentiate the protecting groups for the two primary hydroxyl groups
(Figure 42). Coupling of 2.46 with aldehyde 2.24 will afford the allylic alcohol, which will be
converted into ethyl ester 2.47 through a Johnson-Claisen rearrangement. Similarly, 2.48 can be

obtained through a repeated ester reduction/nucleophilic addition protocol followed by

methylation of the secondary alcohol. Removal of the PMB group with DDQ followed by
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epoxidations and carbonate formation will deliver diepoxide 2.49. Since no extra hydroxyl group
in the two epoxidations, a better yield from Sharpless epoxidation can be expected and the
diastereoselectivity can be retained at a level of 4~5:1. Cyclization of 2.49 under ETIC
conditions will give a comparable yield to that of ent-2.21 due to the bulky and non-nucleophilic

tert-butyldiphenylsilyloxy group.
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Figure 42. New approach to aldehyde 2.19

With sufficient amounts of aldehyde 2.19 and vinyl iodide 2.42 in hand, I will next
investigate the coupling of these two fragments under Fiirstner-modified Nozaki-Hiyama-Kishi
conditions (Figure 43).®> Once 2.50 is formed, the allylic alcohol can be selectively oxidized
with MnO; and the rest two hydroxyl group will be appropriately protected to give 2.51.
Opening of the 5-member carbonate under basic conditions® followed by BiBr;-promoted ketal

formation® will afford pentacycle 2.18.
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Figure 43. Future plan for completion of the total synthesis

From the retrosynthetic analysis, a challenging stereoselective reduction is required to
complete the total synthesis. In the presence of suitable Lewis acids, ketal 2.18 will be opened to
form oxocarbenium ion 2.52, and various hydride sources will be examined in hope that bulkier
hydrides will provide a better diastereoselectivity by favoring approach from the bottom face in
order to avoid the severe steric repulsion from the axial substitution groups when approaching
from the top face.”’ Subsequently, the hydroxyl group can be removed through sulfonate
formation and reduction’"” to give desired angular methyl group. Removal of the two hydroxyl
groups will furnish the natural product 2.1. Modification of C-12 stereochemical orientation or at

other positions will generate a number of analogs. Biological activity of 2.1 and these analogs
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will be investigated toward a series of protein phosphatases and the structure-activity relationship

pattern can be established accordingly.

24  SUMMARY

I am currently pursuing a convergent approach to the total synthesis of (+)-
lactodehydrothyrsiferol and its analogs. This route includes the coupling of two functionalized
intermediates aldehyde 2.19 and vinyl iodide 2.42, both of which result from cyclizations of
chiral epoxides with the former being obtained through oxocarbenium ion-initiated cascade
cyclizations under ETIC conditions and the latter being obtained through a Bronsted acid-
mediated cyclization. All the stereocenters in 2.1 will be ultimately derived from chiral reagents
except the stereochemical outcome at the C-12 center which will be formed through a
stereoselective reduction controlled by both substrate and the reducing agent. This remains a

challenge to be explored.
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3.0 MULTICOMPONENT APPROACH TO THE SYNTHESIS OF OXIDIZED

AMIDES THROUGH NITRILE HYDROZIRCONATION

3.1 BACKGROUND

Oxidized amides, in which the carbon atom connected to the nitrogen has a higher
oxidation state than the normal (+1) valence, have been discovered in a number of natural
products. These compounds usually possess acyl aminal, acyl hemiaminal or enamide
functionalities, as exemplified by protein synthesis inhibitors pederin’* and psymberin,”>"

cytotoxin zampanolide,”” and cytotoxins apicularen A™ and salicylihalamide A,” respectively

(Figure 44).

OH o
o) N |
o H
e |
OH

Zampanolide Apicularen A Salicylihalamide A
Figure 44. Representative natural products containing oxidized amides
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Structure-activity relationship studies have shown that the oxidized amide moieties are

closely related to the biological acitivities of these complex compounds (Figure 45).*% F

or
example, apicularen A shows strong growth inhibitory effect against the human melanoma cell
line SK-MEL-5 with Gls, value of 6 nM. However, its synthetic analogs, with the enamide side
chain being replace by simple alkenes or other enamides, have significantly reduced activity.*

Due to the structural complexity and interesting biological activities, these natural products have

attracted considerable attention from synthetic organic community.

OH OH OH
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N ‘ © = N)L‘Bu
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., O ., O | ., O
OH OH OH

Glgo (SK-MEL-5) > 20000 nM 60 nM 900 nM

Figure 45. Apicularen A analogs

As for the synthesis of acyl aminals, a common method is through a Curtius rearrangement
of acyl azide followed by nucleophilic addition to the isocyanate intermediate, as evidenced in
the synthetic efforts towards mycalamides A and B (Figure 46, A).* A direct coupling of the
activated carboxylic acid with a-alkoxy amine provides acyl aminal and this strategy has been
successfully applied to the total synthesis of mycalamides A and B by Kishi (Figure 46, B).*
Alternatively, coupling of carboxylic acid chlorides with alkyl imidates followed by reduction of
the newly-formed acyl imines could also deliver acyl aminals (Figure 46, C), whereas the

diastereoselectivity in the reduction varies with the substrates.®” Our group also developed an
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efficient approach to the acyl aminals through addition of oxygen-containing nucleophiles to

oxidatively generated acyl iminium ions under very mild conditions (Figure 46, D).**
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Figure 46. Preparation of acyl aminals

Acyl hemiaminals are relatively more difficult to prepare than acyl aminals. In the total
synthesis of (+)-zampanolide, Smith employed a Curtius rearrangement of the acyl azide to set
up the acyl aminal functionality (Figure 47, A).¥ After installation of the side chain, the PMB

group was removed with DDQ and the desired acyl hemiaminal was obtained as a 1.3:1 mixture
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of the two epimers, with the desired antipode of the natural product being slightly favored.
Subsequently, Hoye developed a unique approach to the total synthesis of naturally occurring (-)-
zampanolide through an aluminum-mediated aza-aldol reaction of the aluminum imidate with (-)
-dactylolide and a mixture of 1:1 diastereomers was obtained (Figure 47, B).” In an effort
toward the model synthesis of the zampanolide side chain, Porco’' studied the oxidative
decarboxylation of the amino acid derivative and obtained a-acyloxy amide (Figure 47, C).

Hydrolysis of the acetate yielded the desired acyl hemiaminal in good yield.

(a) i-BUOCOCI, i-Pr,NEt
(b) NaN3, H,0 NaHMDS, then

_

(c) PhMe, A
(d) TMSCH,CH,O0H, A, 75%

+ C-20 epimer

(®)

+ C-20 epimer

HaN DIBAL-H {\_\—O/}i‘BUz
— o =2 | NH

(-)-dactylolide 1 : 1

COZH OAC
Pb(OAC), e} le)
cu(OAc)2 /K/ | YbOTD; /k/ \
oyr 76% | Thyo 88%

Figure 47. Preparation of acyl hemiaminals
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Enamide synthesis has been extensively investigated. A Curtius rearrangement has also
been employed to generate isocyanate intermediate from o,B-unsaturated acyl azides, which can
be added by alkyllithium or Grignard reagents to afford enamides (Figure 48, A).”* This strategy
has been utilized in the total synthesis of salicylihalamide A**** and palmeralide.”” Fiirstner
developed an approach to either E-enamides or Z-enamides from FE- or Z-alkenylsilanes
stereospecifically (Figure 48, B).” Starting from alkenylsilanes, a sequence of epoxidation,
epoxide opening with NaN3 and reduction gives a-silyl amines which are further converted into
the corresponding enamides through acylation and Peterson olefination. Coupling of amides with
vinyl iodides, cyclic enol triflates or tosylates under Cu (I)- or Pd (0)-catalyzed conditions

delivers enamides (Figure 48, C and D).””*

Recently, Goossen reported a stereoselective
enamide formation via a Ru(Il)-catalyzed hydroamination of terminal alkynes, with E-enamides
being favored in the presence of tributylphosphine and Z-enamides being preferred when
bis(dicyclohexylphosphino)methane was used as the ligand (Figure 48, E).” A traditional Wittig
olefination of N-acyl formamides with phosphonium ylides have also been utilized to generate E-
enamides (Figure 48, F).'%

While most of the aforementioned methods provide entries into oxidized amides

specifically, a general and mild route to all these three types of oxidized amides from a common

intermediate needed to be developed. Details will be followed in the subsequent section.
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(0]
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(o} R
+
R')J\NH N 0
R " J
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(@] (6]
PhsP CO,Et
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H X

R' N H > R'
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Figure 48. Preparation of enamides
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3.2 RESEARCH DESIGN AND RESULTS

Based on the structural features, I proposed that oxidized amides can be accessed from

common acylimine intermediates. As depicted in Figure 49, acyl aminals can be prepared from

1

acylimines through alcohol addition,'” acyl hemiaminals can be prepared from acylimines

through water addition and enamides can be prepared from acylimines through a

tautomerization.
0 o) OH O
1 + -
R\/\NLRZ H orB leN)LRz H0 RI\)\N -
H H
l ROH
OR O
Rl
N~ "R?
H

Figure 49. Oxidized amides from acylimines

For the preparation of the key intermediates acylimines, the common known method is

102-104

condensation of aldehyde with amide (Figure 50). However, when enolizable aldehydes are

used, tautomerization of the forming acylimines could be a problem. Though this problem can be

tackled by addition of sulfinic acids or sulfinate salts to the reaction system to form a-amido

105,106 107

sulfones, reforming and isolating the acylimine is still inefficient, although it is possible.
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R3SO,Na
l leNJLRZ
Ris0, 0 y
2
Rl
g
H

Figure 50. Generation of acylimines

Metalloimines could be acylated with acid chlorides or carboxylic acid anhydrides to give

108,109 1110

acylimines. Majoral " reported that when sterically hindered nitriles were treated with

Schwartz’ reagent (Cp,Zr(H)CI)''"''* followed by acylation with sterically hindered acid

chlorides, acylimines were obtained in excellent yields (Figure 51).“3'115

My approach to
acylimines begins with simple nitriles as well. Hydrometallation of nitriles will be expected to
give metalloimines which will react with acid chlorides to afford desired acylimines (Figure 52).

Once acylimines are successfully prepared, investigations of the formation of acyl aminals, acyl

hemiaminals and enamides under different conditions can be performed.

N H H CO®Bu
></ Cp,Zr(H)Cl (1 eq.) >§N_[Zr] 'BuCOCI (1 eq.) ><:N
A\ N\ A\
N N N
92%
N H H  COBu
4 Cp,Zr(H)CI (2 eq.) N—[zr] 'BUCOCI (2 eq.) =N
N N—[Zr] =N
N H H CO'Bu

94%

Figure 51. Hydrozirconation of nitriles
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(0]
H

A 0
P H-M cl” "R?
Rl\/c//N R%N,M Rl\i\NJLRZ

Figure 52. Proposed acylimine formation from nitriles through hydrometallation and acylation

I initiated my study by using the known a-methoxy nitrile 1''® as the substrate, which was
prepared from addition of TMSCN to the corresponding dimethyl acetal mediated by BiBr3
(Figure 53).""" Subjecting 3.1 to Schwartz’ reagent in CH,Cl, followed by sequential addition of
PhOC(O)CI and MeOH provided acyl aminals 3.2 and 3.3 in combined 55% yield and with a
2.4:1 diastereomeric ratio (see below for stereochemical assignment). The observation confirmed
the formation of acylimine intermediate 3.4 from acylation of N-zircono-imine that arose from
the nitrile reduction. From a mechanistic point of view, the major product 3.2 resulted from
chelation-controlled MeOH addition while the minor product 3.3 was from addition of MeOH

through a Felkin pathway.

szzr(H)CI, CH2C|2

NCW then PhOC(0)Cl j\ OMe i OMe
OMe 4 then MeOH PhO HW +  PhO HW
55%, dr=2.4:1 OMe OMe
3.1 3.2 3.3
hydrozirconation addition via addition via
then acylation chelation Felkin pathway
0 OMe o}
0 PhOJL,{’lee R NJ\OPh

J\ MeOH
PhO NW il QD—OMe
M
OMe R H H\ MeOH /H H
35 36

3.4

Figure 53. Acyl aminal formation in initial studies
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To assign the relative stereochemical outcomes of the two products, I prepared the ao,f3-
dimethoxy carboxylic acid 3.8 from a,B-unsaturated ester 3.7 through Sharpless asymmetric
dihydroxylation,”” double methylation''® and hydrolysis of the ethyl ester (Figure 54).
Subsequently, 3.8 was converted into acyl azide 3.9 which underwent a spontaneous Curtius
rearrangement to form isocyanate 3.10.""” The phenoxide anion, which arose from hydrolysis of
diphenylphosphoryl azide with adventitious moisture, added to the isocyanate to form (-)-3.3 as a

single enantiomer which showed identical spectroscopic features to racemate 3.3.

(a) AD'miX'B, CH3SOZNH2 OMe
t]
EtOM BUOH, H,0, 92% _ HOM (PhO),P(O)N;
4
o (b) Mel, Ag,0, Et,0, 31% o ome * EtsN, CgHe, 52%
(c) LiOH, H,0, DME, 79%
3.7 3.8
OMe o OMe )J\ OMe
N ~Cs
4 4 H 4
OMe OMe OMe
3.9 3.10 ()-3.3

Figure 54. Confirmation of stereochemical outcomes

Having established the reactivity pattern, I next addressed the formation of acyl aminals
and acyl hemiaminals extensively. Ethoxy nitrile 3.11 (prepared in a similar manner to 3.1) was
used as the substrate for exploring the diastereocontrol in the alcohol addition and the acyl
aminal formation with different acylating reagents and nucleophiles.

When 3.11 was subjected to hydrozirconation, acylation with isobutyryl chloride and
MeOH addition at 0 °C, both CH,Cl, and THF were suitable solvents, with the products 3.12 and
3.13 being isolated in combined 75% and 64% yields, respectively (entries 1 and 2, Figure 55). It

is worth noting that chelation control was preferred in CH,Cl, while Felkin-pathway was slightly

58



favored in THF. The reversed stereoselectivity may be explained by the formation of hydrogen
bonds between THF and MeOH, which results in the weakening of chelation control. Since
CH,Cl, is a good solvent for chelation control, several conditions were tested to improve it.
Simply lowering down the temperature for MeOH addition to -78 °C gave a slightly better result
(entry 3). When proper chelating Lewis acids were employed, chelation control could be
enhanced to a synthetically useful level. As shown in entries 4 and 5, when MeOH addition was
carried out in the presence of a stoichiometric amount of Zn(OTf), or Mg(ClO4),, a decent
diastereocontrol (dr = 5.0:1 or 5.7:1) was accomplished with the reaction efficiency being

retained.

Cp,Zr(H)Cl,solvent

NC then 'Prc(0O)Cl X 0 QMe O OMe
m then Lewis acid YJ\HW * %HW
then MeOH, temperature OFt OEt
3.11 3.12 3.13
entry solvent Lewis acid temperature yield (3.12:3.13)
1 CH,Cl, N/A 0°C 75% (2.3:1)
2 THF N/A 0°C 64% (1:1.4)
3 CH,Cl, N/A 0°C N/A (3.5:1)
4 CH,Cl, Zn(OTf), 78 °C 70% (5.0:1)
5 CH,Cl, Mg(ClO,), 78 °C 71% (5.7:1)

Figure 55. Optimization of chelation control

Electrophiles other than isobutyryl chloride were also investigated (Figure 56). Acylation
of the metalloimine with a-methoxyacetyl chloride give a mixture of 3.14 and 3.15 in a
combined 69% yield and 1.7:1 diastereomeric ratio. The products are electronically similar to the

acyl aminals in pederin and psymberin. CbzCl is also a suitable acylating reagent, with N,O-
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acetals 3.16 and 3.17 being isolated in 64% overall yield. In this case, the Cbz group can serve as
a protecting group and can be removed readily. Unfortunately, when the metalloimine was
acylated with methanesulfonic anhydride, only modest yield of sulfonyl aminals 3.18 and 3.19
were obtained. From this reaction, considerable amounts of the aldehyde from hydrolysis of the

metalloimine were also isolated.

szzr(H)Cl, CH2C|2
then MeOCH,C(O)Cl O  OMe O OMe

NC = R
m MeO\)J\NW + Meo\)j\NW
OEt then MeOH, 0 °C, 69% H OEt 4 H Okt 4
3.11 3.14 3.15
1.7 : 1
szZl’(H)CI, CHchZ
O OMe O OMe
NCW then BnOC(O)CI ; J\ = J\
BnO N +
OEt ©  thenMeOH, 0 °C, 64% HW Bno™ N [
3.11 3.16 3.17
1.5 1
szzr(H)CI, CHchZ
OMe
NCW then Ms,0 - o, 0 ¢ O\\S/’O OMe
- ‘N + P
OEt *  thenMeOH, 0°C, 24% Hm N I s
3.11 3.18 3.19
2.4 : 1

Figure 56. Acyl aminal formation from 3.11 with various electrophiles

Besides MeOH, other heteronucleophiles also afforded satisfactory results when acylimine
3.20 was utilized as the common intermediate (Figure 57). Sterically hindered ‘BuOH had no
influence on the reactivity, with the desired acyl aminals being isolated in 71% yield and the
Felkin-pathway being favored. PhAOH and PhSH are also suitable for this reaction, providing
69% and 72% yields, respectively. It is noteworthy that the chelation-controlled product 3.23

was dominant in the case of PhOH while the product 3.26 from Felkin-type pathway was
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predominantly formed in the case of PhSH as the nucleophile. This observation is consistent with

the hydrogen-bond-forming abilities of these two nucleophiles.

O OBu O OBu

NCW
4
OEt t HW * HW
BuOH
3.11 OFEt OEt
71%
then 'Prc(0)Cl 1 : 2.0

OEt
3.23 3.24

5 o oph 0 oPh
PhOH W . %NW
R N 4
%NW 69% H 4 H Omt
OEt
3.20 5.6 : 1
\ O SPh
PhSH %NW
+
4
H o Ot

O SPh
72% :
OFEt
3.25 3.26
1 .

7.0

Figure 57. Acyl aminal formation from 3.11 with various nucleophiles

Nitriles with different substitutions are good substrates for the synthesis of acyl aminals
and acyl hemiaminals (Figure 58). Subjecting a-benzoyloxy nitrile 3.27'* to hydrozirconation,
acylation with isobutyryl chloride and MeOH addition, acyl aminal 3.28 was isolated in 64%
yield (contaminated with 4% BnOH), indicating that ester groups can be tolerated in

12! Tnstead of MeOH addition, a simple aqueous workup after the acylimine

hydrozirconation.
formation provided acyl hemiaminal 3.29 in 52% yield, which is structurally relevant to the
zampanolide side chain. Also isolated from this reaction was 3.29A in 13% yield which resulted
from addition of BnOH to the acylimine intermediate. It is worth noting that from the reactions

of 3.27, the side product from migration of the benzoyl group to the metalloimine nitrogen was

not observed. Octyl cyanide 3.30, with no branching at the a-carbon, afforded the desired acyl
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aminal 3.31 and acyl hemiaminal 3.32 in good yields as well. It was found that THF is a better
solvent than CH,Cl, to suppress the acylimine tautomerization to the corresponding enamide.
Aromatic nitriles also proved to be excellent substrates, with acyl aminal 3.34 being obtained in
73% isolated yield from phenyl cyanide 3.33 though it underwent a much slower

hydrozirconation than aliphatic nitriles.

szZl’(H)Cl, CH2C|2

NG then IPrC(0)Cl Q j’:e/\@/
> + BnOH
Y \HL \ 4
OBz

OBz then MeOH
3.27 3.28 64% dr 1.4:1

CpZZI’(H)CI, CH2C|2 OBn

then 'PrC(O)ClI \H?\ ).:/\ﬁ/ 0
- N + %NW
4 4
H OBz H

then H,O OBz
3.2953% dr 3.0:1 3.29A 13% (structure tentative)

CpoZr(H)CI, THF

: O OMe
NC then 'PrC(O)CI
M - s
3.31

then MeOH, 62%
3.30

CpZZI’(H)Cl, CH2C|2

then 'PrC(0O)Cl, EtzN Q )Oi/\ﬁ/
> W)LH 5
3.32

then H,0, 54%

Cp,Zr(H)CI, THF O OMe

NC\@ then 'PrC(0)Cl W)J\
N \[ j
H

\

then MeOH, 73%
3.33 3.34

Figure 58. Acyl aminal and acyl hemiaminal synthesis from various nitriles

Having achieved smooth transformations from nitriles to acyl aminals and acyl
hemiaminals, I next examined the enamide synthesis. Octyl cyanide 3.30 and isobutyryl chloride
were used to explore the optimum reaction conditions (Figure 59). In CH,Cl,, 22% of the desired

E-enamide 3.36 was obtained when the metalloimine was acylated in the presence of Et;N
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followed by addition of Lewis acid BF3;*OEt, (entry 1, Table 1). In the absence of BF;*OEt,, a
mixture of 3.36 and 3.37 in ~1:1 ratio resulted from acylimine 3.35 (entry 2); without Et;N base,
no product (3.36 or 3.37) was observed (entry 3). When the reaction was conducted in THF,
acylimine 3.35 was successfully generated in the presence of Et;N and was smoothly
tautomerized to afford £-enamide 3.36 in 57% yield in the presence of BF3;*OEt; (entry 4). From
this reaction, only minimum amount of Z-enamide 3.37 was observed. When the tautomerization
was performed in the absence of BF;*OEt,, only trace amount of 3.36 was observed (entry 5);
and when the metalloimine was acylated in the absence of Et;N, less than 10% yield of 3.36 was
isolated (entry 6). These results convincingly demonstrated that both Et;N and BF;*OEt, are
crucially important in this reaction, presumably due to their synergistic effect in converting 3.35
to 3.36. Also of note is that use of more than 1 equiv. of isobutyryl chloride would result in the
formation of significant amount of diacylation product 3.38. Following the established
conditions, allylic nitrile 3.40, prepared in four steps from methacrolein and 1-dodecene, gave

rise to E,E-dienamide 3.41 in 62% yield (Figure 60).

e} (0]
Cp,Zr(H)Cl, solvent Lewis acid
NC - =~ > X

then 'PrC(O)Cl, base

3.30 3.35 3.36
y o]
3.37 3.38

Figure 59. Synthesis of enamide 3.36 from octyl cyanide 3.30
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Table 1. Optimization of reaction conditions for enamide formation

entry solvent  base (3.0 eq.) Lewisacid (1.3-1.5eq.) yield (3.36)

1 CH,Cl, Et;N BF;+OEt, 22%

2 CH,Cl, Et;N N/A EZ~1:1
3 CH,Cl, N/A BF;*OEt, no product
4 THF Et;N BF;OEt, 57%

5 THF Et;N N/A trace

6 THF N/A BF;+OEt, <10%

(a) Grubbs' 2" catalyst (10 mol%)

H CH,Cl,, reflux (c) MsCl, Et3N, CH,Cl,, then LiBr
+ Vj\ > HOM - >
o 9 (b) NaBH,, MeOH, 58%, two steps 9 (d)NaCN, DMF, 56%, two steps

3.39

Cp,Zr(H)CI, THF 9 BF4+0Et, i
NC N > 2 A T T A
N N™X
9 9 H 9

then 'PrC(0)Cl, EtsN 62%
3.40 3.41

Figure 60. Synthesis of E,E-dienamide 3.41 from allylic nitrile 3.40

With successful synthesis of oxidized amides from simple nitrile substrates, I next applied

this methodology to the synthesis of a more complex model compound that is related to pederin
and psymberin. For this purpose, tetrahydropyranyl nitrile 3.43 was prepared (by Michael Green
in the Floreancig group at the University of Pittsburgh) in its racemic form from known ketone

3.42* through methylation, aluminum-mediated reduction of ketone,'** cleavage of the terminal

alkene, acylation and displacement of the anomeric acetate group with cyanide (Figure 61).
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Reaction of 3.43 through a sequence of hydrozirconation, acylation with isobutyryl
chloride and MeOH addition at 0 °C provided desired acyl aminal 3.44 and its diastereomer 3.45
in a combined 75% yield and with a 1.9:1 ratio favoring the chelation control (entry 1, Table 2).
Also isolated for this reaction was amide 3.46 in 8% yield, which resulted from direct reduction
of the acylimine intermediate by the slightly excess amount of Cp,Zr(H)Cl. Conducting the
MeOH addition at lower temperature (-78 °C) was found to slightly improve the
diastereoselectivity (entry 2). Employment of Mg(ClO4),, which promoted chelation control to a
considerable extent (cf. Figure 55), did not provide a better diastereocontrol, with acyl aminals
being obtained in 77% yield and 2.3:1 ratio (entry 3). Although only moderate diastereocontrol
was obtained under the conditions studied here, the high yield of the acyl aminal together with
the desired stereochemical orientation still makes this method attractive for the synthesis of acyl

aminals with similar structures in natural products and their analogues.

(a) 2,6-di-tert-butylpryidine, MeOTf, CH,Cl,, 81% :
(@] (b) BU3SnH, MezAlcl, CH2C|2 (@)
., (c) O3, CH,Cl,, then PPhs, 48%, two steps )
= ‘OH > NC “OMe

(d) ACZO, Et3N, CH2C|2, 75%

3.42 (e) TMSCN, BF3®OEt,, CH,Cl,, 85% 3.43
Cp,ZI(H)CI, CH,Cl, : : :
then 'PPrC(0)Cl, 0 °C to 1t H 9 H 9 Ho 9
- N > ‘ + N - vy, + N R y
o o s ‘OMe R OMe a OMe
then Lewis acid (1.0 eq) o Med OoMeo 1 o

then MeOH, temperature
3.44 3.45 3.46

Figure 61. Synthesis of tetrahydropyranyl acyl aminals
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Table 2. Reaction of 3.43 under various conditions

entry temperature Lewisacid (1 eq.) yield (3.44+3.45) dr(3.44/3.45) yield (3.46)

1 0°C N/A 75% 1.9:1 8%
2 -78 °C N/A 71% 2.3:1 10%
3 =78 °C Mg(ClOs), 77% 2.3:1 10%

3.3  CONCLUSIONS

An efficient one-pot approach to the synthesis of oxidized amides from nitriles was
developed. In this process, the acylimines, which are generated from hydrozirconation of nitriles
followed by acylation with suitable electrophiles, serve as the common intermediates to deliver
acyl aminals, acyl hemiaminals or enamides through nucleophilic addition or tautomerization. In
the acyl aminal formation, moderate to good diastereocontrol could be achieved with the
assistance of Lewis acids through chelation-controlled nucleophilic addition. It was also found
that the base and Lewis acid played a synergistic role in the E-enamide syntheses. In the absence
of base or Lewis acid, low efficiency for E-enamide formation was observed. With the known
methods for the synthesis of nitriles, along with various available electrophiles and nucleophiles,
this method will provide a convenient and effective access to oxidized amides with diverse

structures.
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APPENDIX A

STUDIES ON THE STRUCTURE/REACTIVITY REALTIONSHIPS OF BICYCLIC
EPOXONIUM IONS AND TETHERED NUCLEOPHILES (SUPPORTING

INFORMATION)

General Experimental Proton (‘"H NMR) and carbon (?°C NMR) nuclear magnetic resonance
spectra were recorded at ambient temperatures on Bruker Avance 300 spectrometer at 300 MHz
and 75 MHz, respectively, Bruker Avance 500 spectrometer at 500 MHz and 125 MHz, or at
Bruker Avance 600 spectrometer at 600 MHz and 151 MHz if specified. The chemical shifts are
given in parts per million (ppm) on the delta (5) scale. The solvent peak was used as a reference
value, for '"H NMR: CDCl; = 7.27 ppm, C¢Ds = 7.15 ppm, for °C NMR: CDCl; = 77.23. Data
are reported as follows: (s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublets;
dt = doublet of triplets; br = broad; app = apparently). High resolution mass spectra were
recorded on a MICROMASS AUTOSPEC (for EI) or WATERS Q-TOF API-US (for ESI)
spectrometer. Infrared (IR) spectra were collected on a Mattson Cygnus 100 spectrometer.
Samples for IR were prepared as a thin film on a NaCl plate by dissolving the compound in
CH,Cl; and then evaporating the CH,Cl,. Optical rotations were measured on a Perkin-Elmer

241 polarimeter. Activated 4 A molecular sieves were obtained through drying in oven at 150 °C
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overnight. Tetrahydrofuran and diethyl ether were dried by passage through an activated alumina
column under positive N, pressure. Methylene chloride and benzene were distilled under N,
from CaH,. Diphenylmethane was purchased from Aldrich and used without further purification.
Anhydrous DMF and Mel were purchased from Acros. mCPBA was purchased from Acros and
purified according to the standard procedure (cf. Purification of Laboratory Chemicals, 4™ Ed.,
by Armarego, W. L. F. and Perrin, D. D.). Boc,O and N-methylimidole were purchased from
Acros and used without further purification. Anhydrous Na;S,0; was purchased from Aldrich
and used as received. Toluene and 1,2-dichloroethane were purchased from Fisher Scientific and
dried with 4 A molecular sieves overnight prior to use. Analytical TLC was performed on E.
Merck pre-coated (0.25 mm) silica gel 60F-254 plates. Visualization was done under UV (254
nm). Flash chromatography was done using ICN SiliTech 32-63 60 A silica gel. Reagent grade
ethyl acetate, diethyl ether, and hexanes (commercial mixture) were purchased from EM Science
and used as is for chromatography. All reactions were performed in oven or flame-dried

glassware under a positive pressure of N, with magnetic stirring unless otherwise noted.

1,1-Diphenylhex-5-en-2-ol (A1)

PhZCHM A solution of diphenylmethane (1.262 g, 7.50 mmol) in THF (7.5 ml) in a
OH two-necked round-bottom flask was treated dropwise n-BuLi (1.6 M in

hexanes, 4.7 mL, 7.5 mmol). The resulting deep orange solution was refluxed for 1 h and then

cooled to 0 °C. A solution of 4-pentenal (0.252g, 3.00 mmol) in THF (3.0 mL) was added

dropwise and the flask formerly containing 4-pentenal was rinsed with THF (2 x 1.0 mL). The

reaction mixture was stirred at 0 °C for 1 h, then warmed to room temperature and quenched by

slow addition of saturated NH4Cl solution (10 mL). The mixture was poured onto water (20 mL)
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and extracted with Et;O (3 x 30 mL). The organic extracts were dried over MgSQOy, filtered and
concentrated. The residue was purified by flash chromatography (3% - 12% Et,0 in hexanes) to
give the secondary alcohol Al (0.628 g, 83.0%) as a colorless oil: '"H NMR (300 MHz, CDCl;) &
7.42-7.17 (m, 10H), 5.80 (ddt, /= 17.0, 13.4, 6.8 Hz, 1H), 5.06-4.94 (m, 2H), 4.42-4.35 (m, 1H),
3.90 (d, J = 8.4 Hz, 1H), 2.35-2.12 (m, 2H), 1.67-1.41 (m, 2H); °C NMR (75 MHz, CDCl3) &
142.5, 141.6, 138.7, 129.0, 129.0, 128.9 128.4, 127.1, 126.8, 115.1, 73.4, 59.1, 34.4, 30.4; IR
(neat) 3560, 3062, 2916, 1640, 1598, 1494, 1451, 1080, 913, 745, 703 cm™; HRMS (EI): m/z

caled for C1gH,00 (M) 252.1514, found 252.1523.

5-Methoxy-6,6-diphenylhex-1-ene (A2)
thCHM The secondary alcohol Al (0.585 g, 2.32 mmol) in anhydrous DMF (14.0
OMe mL) at 0 °C was treated with NaH (60% dispersion in mineral oil, 0.232 g,
5.80 mmol) and the suspension was stirred at 0 °C for 30 min. Mel (0.58 mL, 9.28 mmol) was
added dropwise and the cold bath was then removed. After stirred for 2 h at room temperature,
the reaction was quenched with water (20 mL) cautiously and extracted with Et;O (3 x 40 mL).
The organic extracts were dried over MgSQOys, filtered and concentrated. The resulting residue
was purified by flash chromatography (3% - 6% Et,O in hexanes) to give the secondary alcohol
A2 (0.598 g, 96.8%) as a colorless oil: 'H NMR (300 MHz, CDCl;) & 7.44-7.16 (m, 10H), 5.80
(ddt, J=17.0, 13.3, 6.7 Hz, 1H), 5.06-4.95 (m, 2H), 4.05 (d, J = 8.2 Hz, 1H), 3.98 (m, 1H), 3.19
(s, 3H), 2.25-2.15 (m, 2H), 1.70-1.54 (m, 2H); °C NMR (75 MHz, CDCl;) & 142.9, 142.5,
138.7, 129.1, 128.7, 128.4, 126.5, 126.4, 114.9, 83.2, 58.1, 56.4, 31.8, 29.6; IR (neat) 3027,

2928, 1640, 1599, 1495, 1451, 1101, 911, 745, 701 cm™'; HRMS (EI): m/z caled for C;5H;s0 (M-

C4H7) ™ 211.1123, found 211.1125.
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4-Methoxy-5,5-diphenylpentanal (1.56)

H At -78 °C, the terminal olefin A2 (193 mg, 0.724 mmol) in CH,Cl, (7.5
PhZCH\mO mL) was bubbled gently with ozone until the solution retained a deep blue
color and then PPh; (570 mg, 2.17 mmol) was added in one portion. The mixture was warmed to
room temperature, stirred for 3 h and then concentrated. The residue was purified by column
chromatography (20% - 30% Et,O in hexanes) to give the aldehyde 1.56 (186 mg, 95.8%) as a
colorless oil: 'H NMR (300 MHz, CDCl3) & 9.74 (t, J = 1.7 Hz, 1H), 7.44-7.21 (m, 10H), 4.04-
3.96 (m, 2H), 3.12 (s, 3H), 2.60-2.45 (m, 2H), 2.05-1.95 (m, 1H), 1.80-1.68 (m, 1H); °C NMR
(75 MHz, CDCl3) 6 202.3, 142.3, 142.2, 128.8, 128.6, 128.5, 126.8, 126.6, 83.0, 58.3, 56.6, 39.8,

25.3; IR (neat) 2928, 2827, 2726, 1722, 1495, 1451, 1113, 747, 704 cm™'; HRMS (EI): m/z caled

for C;5sH;50 (M-C3Hs0) "™ 211.1123, found 211.1124.

(E)-Ethyl 6-methoxy-7,7-diphenylhept-2-enoate (A3)

@) At 0 °C, triethyl phosphonoacetate (0.25 mL, 1.27 mmol) was
added dropwise to a suspension of NaH (60% dispersion in mineral

OMe
oil, 51.0 mg, 1.27 mmol) in THF (4.0 mL) and the resulting solution was stirred at 0 °C for 30

min. The aldehyde 1.56 (171 mg, 0.637 mmol, dissolved in 1.0 mL THF) was introduced
dropwise and the flask formerly containing the aldehyde was rinsed with THF (2 x 0.5 mL). The
reaction mixture was stirred at 0 °C for 1 h, then quenched with saturated NH4Cl (5 mL) and
poured onto water (10 mL). The mixture was extracted with CH,Cl, (3 x 25 mL) and the organic
extracts were dried (MgSO4) and concentrated. The residue was purified by column

chromatography (10% - 15% EtOAc in hexanes) to give the ethyl ester A3 (202 mg, 93.8%) as a
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colorless oil: 'H NMR (300 MHz, CDCl;) § 7.50-7.17 (m, 10H), 6.96 (dt, J = 15.6, 6.9 Hz, 1H),
582 (brd,J=15.6 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.04 (d, J = 8.5 Hz, 1H), 3.99-3.94 (m,
1H), 3.19 (s, 3H), 2.44-2.25 (m, 2H), 1.75-1.50 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H); °*C NMR (75
MHz, CDCls) 6 166.8, 149.0, 142.5, 142.2, 128.9, 128.8, 128.5, 128.5, 126.7, 126.5, 121.6, 83.0,
60.3, 58.2, 56.4, 30.8, 27.9, 14.4; IR (neat) 2980, 2931, 1717, 1653, 1495, 1451, 1267, 1202,
1109, 1043, 746, 704 cm™'; HRMS (EI): m/z caled for Co0Hy 0, (M-C,Hs0) ™ 293.1542, found

293.1538.

(3-(3-Methoxy-4,4-diphenylbutyl)oxiran-2-yl)methanol (A4)
thCH\MCl)AOH At -78 °C, DIBAL-H (1 M in hexanes, 1.5 mL, 1.5 mmol) was
OMe added dropwise to a solution of the ethyl ester A3 (202 mg, 0.598
mmol) in THF (6.0 mL). The mixture was stirred at -78 °C for 30 min, then quenched with
saturated sodium tartrate (6.0 mL) and diluted with water (5 mL). The mixture was warmed to
room temperature and stirred vigorously for 2 h. After that time, the mixture was extracted with
CHCI; (3 x 30 mL) and the extracts were dried (MgSQO4) and concentrated. The residue was
dissolved in CH,Cl, (6.0 mL) and cooled to 0 °C. NaHCO; (100 mg, 1.20 mmol) and mCPBA
(pure, 134 mg, 0.777 mmol) were added sequentially. The suspension was stirred at 0 °C for 1.5
h, then quenched with saturated Na,S,03 (3 mL) and water (10 mL). The mixture was stirred at
room temperature for 30 min, and extracted with CH,Cl, (3 x 40 mL). The extracts were dried
(MgS0,), and concentrated and the residue was purified by column chromatography (40% - 70%
EtOAc in hexanes containing 0.5% Et;N) to give the epoxy alcohol A4 (132 mg, 70.4%, dr ~

1:1) as a colorless oil: "H NMR (300 MHz, CDCls) & 7.39-7.17 (m, 10H), 4.02-3.94 (m, 2H),

3.91-3.82 (m, 1H), 3.66-3.56 (m, 1H), 3.17/3.16 (s, 3H), 2.93-2.86 (m, 2H), 1.81-1.47 (m, 4H);
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C NMR (75 MHz, CDCl;) § 142.6, 142.3, 1422, 128.9, 128.8, 128.8, 128.6, 128.5, 126.7,
126.5, 83.2, 83.1, 61.9, 61.8, 58.6, 58.6, 58.2, 57.9, 56.5, 56.1, 56.0, 28.8, 28.0, 27.4, 27.1; IR
(neat) 3428, 2928, 1495, 1451, 1095, 746, 704 cm™'; HRMS (ESI): m/z caled for CaoHa4O3Na

[M+Na]" 335.1623, found 335.1636.

tert-Butyl (3-(3-methoxy-4,4-diphenylbutyl)oxiran-2-yl)methyl carbonate (1.47)

o 0 The epoxy alcohol A4 (124.0 mg, 0.397 mmol) in dry toluene

OMe ! (4.0 mL) at 0 °C was treated with 1-methylimidazole (32 pL,

0.397 mmol) followed by Boc,O (173 mg, 0.794 mmol). The mixture was stirred at 0 °C for 2 h,
then at room temperature for 1 h. After that time, the reaction was quenched with water (15 mL)
and extracted with CH,Cl, (3 x 20 mL). The organic extracts were dried over MgSQ,, filtered
and concentrated. The residue was azeotroped with hexanes (3 x 10 mL) and then purified by
flash chromatography (15% - 20% EtOAc in hexanes containing 0.5% Et;N) to give the #-butyl
carbonate 1.47 (146.8 mg, 89.7%, dr ~ 1:1) as a colorless oil: 'H NMR (300 MHz, CDCl3) &
7.38-7.16 (m, 10H), 4.23-4.18 (m, 1H), 3.99-3.92 (m, 3H), 3.14/3.13 (s, 3H), 2.94-2.91 (m, 1H),
2.81-2.77 (m, 1H), 1.79-1.42 (m, 4H), 1.48 (s, 9H); *C NMR (75 MHz, CDCl;) & 153.4, 142.6,
142.3, 142.2, 128.9, 128.9, 128.8, 128.6, 128.5, 126.7, 126.5, 83.1, 83.0, 82.7, 67.2, 67.1, 58.3,
57.9, 56.8, 56.6, 56.5, 56.2, 55.2, 28.8, 28.0, 27.9, 27.4, 27.1; IR (neat) 2981, 2933, 1743, 1495,
1452, 1370, 1281, 1163, 1101, 912, 733, 704 cm™'; HRMS (ESI): m/z caled for CpsH3,0sNa

[M+Na]" 435.2147, found 435.2140.

1,1-Diphenylhept-6-en-2-ol (A5)

thCHW At -78 °C, a solution of DMSO (1.1 mL, 15.0 mmol) in CH,Cl, (2 mL)
OH
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was added dropwise to a mixture of (COCI), (0.65 mL, 7.5 mmol) in CH,Cl, (20 mL). After 10
min, a solution of 5-hexen-1-ol (0.60 mL, 5.0 mmol) in CH,Cl, (5 mL) was introduced. The
white suspension was stirred at -78 °C for 30 min, then Et;N (4.2 mL, 30.0 mmol) was added
and the suspension was stirred for 30 min. After that time, the reaction was warmed to room
temperature, diluted with CH,Cl, (80 mL) and washed with saturated NaHCO; (80 mL). The
organic layer was dried (Na,SOy), filtered and concentrated to give crude 5-hexenal.

A solution of diphenylmethane (2.52 g, 15.0 mmol) in THF (15 ml) in a two-necked round-
bottom flask was treated dropwise n-BuLi (1.6 M in hexanes, 9.4 mL, 15.0 mmol). The resulting
deep orange solution was refluxed for 1 h and then cooled to 0 °C. A solution of as-prepared
crude 5-hexenal in THF (3.0 mL) was added dropwise and the flask formerly containing 4-
pentenal was rinsed with THF (2 x 1.0 mL). The reaction mixture was stirred at 0 °C for 1 h,
then warmed to room temperature and quenched by slow addition of saturated NH4Cl solution
(15 mL). The mixture was poured onto water (40 mL) and extracted with Et,O (3 x 50 mL). The
organic extracts were dried over MgSQ,, filtered and concentrated. The residue was purified by
flash chromatography (3% - 15% Et,O in hexanes) to give the secondary alcohol A5 (0.928 g,
70%, two steps) as a colorless oil: 'H NMR (300 MHz, CDCl3) § 7.43-7.19 (m, 10H), 5.80 (tdd,
J=16.9,13.2, 6.6 Hz, 1H), 5.02-4.93 (m, 2H), 4.40-4.36 (m, 1H), 3.92 (d, /= 8.3 Hz, 1H), 2.12-
1.96 (m, 2H), 1.76-1.37 (m, 5H); C NMR (75 MHz, CDCl3) & 142.6, 141.6, 138.9, 129.0,
128.8, 128.4, 127.0, 126.7, 114.7, 73.8, 59.0, 34.6, 33.8, 25.3; IR (neat) 3561, 3453, 3026, 2918,
1640, 1598, 1494, 1451, 1080, 911, 746, 703 cm™'; HRMS (ESI): m/z caled for C9H,,ONa

[M+Na]" 289.1568, found 289.1600.
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6-Methoxy-7,7-diphenylhept-1-ene (A6)
PhZCHW The secondary alcohol A5 (0.918 g, 3.45 mmol) in anhydrous DMF (20
OMe mL) at 0 °C was treated with NaH (60% dispersion in mineral oil, 0.345
g, 8.62 mmol) and the suspension was stirred at 0 °C for 30 min. Mel (0.86 mL, 13.8 mmol) was
added dropwise and the cold bath was then removed. After stirred overnight, the reaction was
quenched with water (40 mL) cautiously and extracted with Et,0 (3 x 60 mL). The organic
extracts were dried over MgSQOy, filtered and concentrated. The resulting residue was purified by
flash chromatography (1% - 5% Et,0O in hexanes) to give the secondary alcohol A6 (0.921 g,
95.4%) as a colorless oil: '"H NMR (300 MHz, CDCls) & 7.45-7.20 (m, 10H), 5.81 (tdd, J = 16.9,
13.1, 6.7 Hz, 1H), 5.05-4.96 (m, 2H), 4.06 (d, J = 8.3 Hz, 1H), 3.98-3.94 (m, 1H), 3.22 (s, 3H),
2.15-1.95 (m, 2H), 1.70-1.43 (m, 4H); >C NMR (75 MHz, CDCl3) & 143.1, 142.6, 129.0, 128.7,

128.4, 126.5, 126.4, 114.7, 83.6, 58.0, 56.3, 34.0, 31.7, 24.5; IR (neat) 2934, 1640, 1495, 1451,

1101, 910, 737, 701 cm™'; HRMS (EI): m/z calcd for CooHp4O (M) 280.1827, found 280.1823.

5-Methoxy-6,6-diphenylhexanal (1.58)
Ph,CH O At -78 °C, the terminal olefin A6 (400 mg, 1.43 mmol) in CH,Cl, (145
m mL) was bubbled gently with ozone until the solution retained a deep
blue color and then PPh; (750 mg, 2.86 mmol) was added in one portion. The mixture was
warmed to room temperature, stirred overnight and then concentrated. The residue was purified
by column chromatography (20% - 30% Et,O in hexanes) to give the aldehyde 1.58 (386 mg,
95.9%) as a colorless oil: '"H NMR (300 MHz, CDCl3) 8 ) & 9.71 (t, J = 1.6 Hz, 1H), 7.39-7.16
(m, 10H), 4.02 (d, J = 8.4 Hz, 1H), 3.94-3.88 (m, 1H), 3.12 (s, 3H), 2.38 (dt, J = 7.2, 1.5 Hz,

2H), 1.79-1.70 (m, 2H), 1.58-1.53 (m, 1H), 1.48-1.42 (m, 1H),;"*C NMR (75 MHz, CDCl;) &
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202.2, 142.7, 142.3, 128.9, 128.7, 128.6, 128.4, 126.6, 126.5, 83.5, 58.1, 56.2, 44.0, 31.7, 17.9;
IR (neat) 2929, 2825, 2721, 1722, 1495, 1451, 1112, 747, 704 cm™'; HRMS (ESI): m/z calcd for

C1oH2,0Na [M+Na]" 305.1517, found 305.1564.

(E)-Ethyl 7-methoxy-8,8-diphenyloct-2-enoate (A7)
PthH\(\/\/ﬁ(OEt At 0 °C, triethyl phosphonoacetate (0.52 mL, 2.60 mmol) was
OMe © added dropwise to a suspension of NaH (60% dispersion in
mineral oil, 104 mg, 2.60 mmol) in THF (9.0 mL) and the resulting solution was stirred at 0 °C
for 30 min. The aldehyde 1.58 (367 mg, 1.30 mmol, dissolved in 3.0 mL THF) was introduced
dropwise and the flask formerly containing the aldehyde was rinsed with THF (2 x 0.5 mL). The
reaction mixture was stirred at 0 °C for 1 h, then quenched with saturated NH4CI (10 mL) and
poured onto water (20 mL). The mixture was extracted with CH,Cl, (3 x 30 mL) and the organic
extracts were dried (MgSO4) and concentrated. The residue was purified by column
chromatography (10% - 15% EtOAc in hexanes) to give the ethyl ester A7 (426 mg, 93%) as a
colorless oil: "H NMR (300 MHz, CDCls) 6 7.44-7.20 (m, 10H), 6.96 (td, J = 15.6, 6.8 Hz, 1H),
5.82 (d, J=15.6 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 4.05 (d, J = 8.4 Hz, 1H), 3.98-3.92 (m, 1H),
3.21 (s, 3H), 2.25-2.10 (m, 2H), 1.71-1.44 (m, 4H), 1.34 (t, J= 7.1 Hz, 3H); *C NMR (75 MHz,
CDCl) 6 166.8, 149.0, 142.8, 142.4, 128.9, 128.7, 128.5, 128.4, 126.6, 126.4, 121.6, 83.5, 60.3,
58.1, 56.3, 32.3, 31.8, 23.6, 14.4; IR (neat) 2979, 2934, 1718, 1654, 1495, 1451, 1368, 1269,
1186, 1098, 1043, 746, 703 cm™'; HRMS (EI): m/z caled for C2Hp303 (M-C,Hs0) ™ 307.1698,

found 307.1684.
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(3-(4-Methoxy-5,5-diphenylpentyl)oxiran-2-yl)methanol (A8)
Ph2CH\(\/\?>\/OH At -78 °C, DIBAL-H (1 M in hexanes, 2.9 mL, 2.9 mmol) was
OMe added dropwise to a solution of the ethyl ester A7(413 mg, 1.17
mmol) in THF (12 mL). The mixture was stirred at -78 °C for 30 min, then quenched with
saturated sodium tartrate (12 mL) and diluted with water (10 mL). The mixture was warmed to
room temperature and stirred vigorously for 2 h. After that time, the mixture was extracted with
CH,CI; (3 x 40 mL) and the extracts were dried (MgSQO4) and concentrated. The residue was
passed through a short silica gel column and eluted with 50% EtOAc in hexanes. The product
was concentrated and dissolved in CH,Cl, (12 mL) and cooled to 0 °C. NaHCOs (196 mg, 2.34
mmol) and mCPBA (pure, 262 mg, 1.52 mmol) were added sequentially. The suspension was
stirred at 0 °C for 3.5 h, then quenched with saturated Na,S,0; (10 mL) and water (20 mL). The
mixture was stirred at room temperature for 20 min, and extracted with CH,Cl, (3 x 30 mL). The
extracts were dried (MgSO,), and concentrated and the residue was purified by column
chromatography (50% - 70% EtOAc in hexanes containing 0.5% Et;N) to give the epoxy alcohol
A8 (348 mg, 91%, dr ~ 1:1) as a colorless oil: 'H NMR (300 MHz, CDCls) & 7.39-7.17 (m, 10H),
4.00 (d, J = 8.4 Hz, 1H), 3.93-3.81 (m, 2H), 3.61-3.53 (m, 1H), 3.17/3.16 (s, 3H), 2.89-2.84 (m,
2H), 1.66-1.40 (m, 6H); *C NMR (75 MHz, CDCls) & 142.8, 142.4, 128.9, 128.6, 128.5, 128.4,
126.5, 126.4, 83.5, 61.8, 58.6, 58.5, 58.1, 58.0, 56.2, 56.0, 55.9, 32.0, 31.7, 21.6; IR (neat) 3435,
2929, 1599, 1495, 1451, 1098, 910, 732, 703 cm™'; HRMS (ESI): m/z caled for Cy Hy603Na

[M+Na]" 349.1780, found 349.1792.

tert-Butyl (3-(4-methoxy-5,5-diphenylpentyl)oxiran-2-yl)methyl carbonate (1.48)

O

Ph,CH \(\/\p\/o\”/otsu

OMe (@]
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The epoxy alcohol A8 (336 mg, 1.03 mmol) in anhydrous toluene (10 mL) at 0 °C was treated
with 1-methylimidazole (82 pL, 1.03 mmol) followed by Boc,O (449 mg, 2.06 mmol). The
mixture was stirred at 0 °C for 30 min, then at room temperature for 1.5 h. After that time, the
reaction was quenched with water (15 mL) and extracted with CH,Cl, (3 x 30 mL). The organic
extracts were dried over MgSQ,, filtered and concentrated. The residue was azeotroped with
hexanes (3 x 10 mL) and then purified by flash chromatography (15% - 20% EtOAc in hexanes
containing 0.5% Et3;N) to give the #-butyl carbonate 1.48 (369 mg, 84%, dr ~ 1:1) as a colorless
oil: '"H NMR (300 MHz, CDCl;) § 7.39-7.16 (m, 10H), 4.23-4.18 (m, 1H), 4.00 (d, J = 8.4 Hz,
1H), 3.97-3.88 (m, 2H), 3.16/3.16 (s, 3H), 2.96-2.91 (m, 1H), 2.81-2.79 (m, 1H), 1.59-1.43 (m,
6H), 1.50 (s, 9H); *C NMR (75 MHz, CDCl3) 5 153.4, 142.8, 142.4, 129.0, 128.7, 128.6, 128.4,
126.6, 126.4, 83.6, 82.7, 67.2, 58.2, 58.1, 56.6, 56.5, 56.3, 55.2, 55.2, 32.0, 32.0, 31.7, 27.9, 21.6,
21.6; IR (neat) 2980, 2936, 1742, 1495, 1452, 1370, 1280, 1163, 1099, 858, 733, 704 cm’;

HRMS (ESI): m/z caled for CyH3405Na [M+Na]Jr 449.2304, found 449.2308.

((3,3-Dimethyloxiran-2-yl)methoxy)(tert-butyl)dimethylsilane (1.59)
)<?/\ A solution of (3-methylbut-2-enyloxy)(tert-butyl)dimethylsilane (6.012 g, 30.0
OTES mmol) in CH,Cl, (300 mL) at 0 °C was treated with NaHCO; powder (5.04 g,
60.0 mmol) followed by m-chloroperbenzoic acid (70-75%, 7.25 g, 31.5 mmol). The reaction
mixture was stirred at 0 °C for 1.5 h and then quenched with saturated Na,S,03 solution (100
mL). After warmed to room temperature, the biphasic mixture was poured into water (100 mL)
and the two layers were separated. The aqueous layer was extracted with CH,Cl, (2 x 150 mL)
and the combined organic extracts were dried over MgSQ,, filtered and concentrated. The

residue was purified by flash chromatography (15% Et,O in hexanes) to give the epoxide 1.59
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(6.312 g, 97.2%) as a colorless liquid: '"H NMR (300 MHz, CDCls) & 3.75 (d, J = 5.3 Hz, 1H),
3.74 (d, J=5.4 Hz, 1H), 2.91 (t,J = 5.4 Hz, 1H), 1.34 (s, 3H), 1.29 (s, 3H), 0.92 (s, 9H), 0.10 (s,
3H), 0.09 (s, 3H); °C NMR (75 MHz, CDCls) & 64.2, 62.5, 58.3, 26.1, 24.9, 19.0, 18.5, -5.0, -

5.2; IR (neat) 2958, 2930, 2886, 2858, 1472, 1379, 1256, 1140, 1086, 838, 778 cm’".

1-(tert-Butyldimethylsilanyloxy)-3-methylbut-3-en-2-ol (A9)

A solution of 2,2,6,6-tetramethylpiperidine (2.825 g, 20.0 mmol) in anhydrous
)\CQOTBS benzene (12.0 mL) at 0 °C was treated dropwise with n-BulLi (1.6 M in
hexanes, 12.5 mL, 20.0 mmol). After 10 min, diethylaluminum chloride (1.0 M in heptanes, 20.0
mL, 20.0 mmol) was added dropwise and the resulting white suspension was stirred at 0 °C for
30 min. The epoxide 1.59 (1.731 g, 8.00 mmol, dissolved in 8.0 mL of anhydrous benzene) was
added dropwise and the flask formerly containing the epoxide was rinsed twice with benzene (2
X 4.0 mL). The reaction mixture was stirred further for 1.5 h at 0 °C and then quenched with
saturated sodium tartrate solution (50 mL). The biphasic mixture was poured onto water (100
mL) and extracted with Et,;O (3 x 50 mL). The organic extracts were dried over MgSOQy, filtered
and concentrated in vacuo. The resulting residue was purified by column chromatography (15%
Et,0 in hexanes) to give allylic alcohol A9 (1.5581 g, 90.0%) as a colorless liquid: "H NMR
(300 MHz, CDCls) & 5.04 (m, 1H), 4.92 (m, 1H), 4.12 (m, 1H), 3.71 (dd, J = 9.9, 3.6 Hz, 1H),
3.48 (dd, J=9.9, 8.0 Hz, 1H), 2.66 (d, J = 3.0 Hz, 1H), 1.75 (s, 3H), 0.92 (s, 9H), 0.09 (s, 6H);
*C NMR (75 MHz, CDCls) & 144.0, 112.0, 75.4, 66.4, 26.0, 19.0, 18.4, -5.2; IR (neat) 3446,

2955, 2929, 2858, 1472, 1256, 1113, 899, 836, 777 cm™; HRMS (EI): m/z caled for C;H;5s0,Si

(M-C4Ho)™ 159.0841, found 159.0811.
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Ethyl (E)-6-(tert-butyldimethylsilanyloxy)-4-methylhex-4-enoate (A10)
E’EOMOTBS A mixture of allylic alcohol A9 (2.7093 g, 12.52 mmol), triethyl
o) orthoacetate (freshly distilled, 9.2 mL, 50.1 mmol) and propionic
acid (46.4 mg, 0.626 mmol) in a round-bottom flask was equipped with a fractional distillation
apparatus to allow for removal of ethanol. The mixture was heated to 145 °C for 4 h. (During
this period of time, a lot of volatiles were distilled out.) The unreacted triethyl orthoacetate was
removed by simple distillation and the residue was purified by column chromatography (5%
EtOAc in hexanes) to give ethyl ester A10 (3.433 g, 95.7%) as a colorless liquid: "H NMR (300
MHz, CDCls) & 5.32 (qt, J = 6.3, 1.2 Hz, 1H), 4.20 (d, /= 6.3 Hz, 2H), 4.13 (q, J = 7.1 Hz, 2H),
2.46-2.40 (m, 2H), 2.37-2.30 (m, 2H), 1.64 (s, 3H), 1.26 (t,J= 7.1 Hz, 3H), 0.90 (s, 9H), 0.07 (s,
6H); °C NMR (75 MHz, CDCl3) § 173.5, 135.3, 125.3, 60.5, 60.4, 34.6, 33.0, 26.2, 18.6, 16.6,
14.5, -4.9; IR (neat) 2956, 2930, 2857, 1739, 1472, 1255, 1158, 1110, 1068, 836, 776 cm™;

HRMS (EI): m/z calcd for C15H005Si1 (M—H)+' 285.1886, found 285.1840.

(E)-7-(tert-Butyldimethylsilanyloxy)-5-methyl-1,1-diphenylhept-5-en-2-ol (Al11)
Ethyl ester A10 (1.000 g, 3.49 mmol) in CH,Cl, (10.0 mL) at -78
Ph,CH NNoTES
OH °C was treated dropwise with DIBAL-H (1.0 M in hexanes, 3.7
mL, 3.7 mmol). The reaction mixture was stirred at -78 °C for 1 h and then quenched with
saturated sodium tartrate solution (15 mL). After warmed up to room temperature, the mixture
was stirred vigorously for 30 min and extracted with CH,Cl, (3 x 30 mL). The organic extracts

were dried over MgSOy, filtered and concentrated. The crude aldehyde 1.60 was used in the next

step without further purification.
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In a separate two-necked round-bottom flask, a solution of diphenylmethane (1.76 g, 10.5 mmol)
in THF (10.0 ml) was treated dropwise with n-BuLi (1.6 M in hexanes, 6.5 mL, 10.5 mmol). The
resulting deep orange solution was refluxed for 1 h, and then cooled to 0 °C. The as-prepared
crude aldehyde (dissolved in 2.0 mL of THF) was added dropwise and the flask formerly
containing the aldehyde was rinsed with THF (2 x 0.5 mL). The reaction mixture was stirred at 0
°C for 1 h, then warmed to room temperature and quenched by slow addition of saturated
NaHCOj; solution (10 mL). The mixture was poured onto water (20 mL) and extracted with Et,O
(3 x 40 mL). The organic extracts were dried over MgSQy, filtered and concentrated. The residue
was purified by flash chromatography (3% - 12% EtOAc in hexanes) to give the secondary
alcohol A11 (0.997 g, 69.6%, two steps) as a colorless oil: '"H NMR (300 MHz, CDCls) & 7.42-
7.17 (m, 10H), 5.32 (qt, J = 6.4, 1.2 Hz, 1H), 4.40-4.29 (m, 1H), 4.18 (d, J = 6.2 Hz, 2H), 3.92
(d, J = 8.4 Hz, 1H), 2.30-2.20 (m, 1H), 2.17-2.07 (m, 1H), 1.66 (d, J = 3.4 Hz, 1H), 1.70-1.44
(m, 2H), 1.56 (s, 3H), 0.92 (s, 9H), 0.08 (s, 6H); °C NMR (75 MHz, CDCl3) & 142.6, 141.7,
136.9, 129.0, 128.8, 128.4, 127.0, 126.7, 125.0, 73.5, 60.4, 59.0, 35.9, 33.1, 26.2, 18.6, 16.4, -
4.8; IR (neat) 3458, 2954, 2928, 2856, 1599, 1494, 1451, 1386, 1254, 1112, 1067, 835, 776, 702

cm'l; HRMS (ESI): m/z caled for CyH330,SiK [MJrK]+ 449.2278, found 449.2287.

(E)-6-Methoxy-3-methyl-7,7-diphenylhept-2-en-1-ol (A12)
The secondary alcohol A1l (0.908 g, 2.21 mmol) in anhydrous
Ph,CH Non
OMe DMF (10.0 mL) at 0 °C was treated with NaH (60% dispersion in
mineral oil, 0.221 g, 5.52 mmol) and the suspension was stirred at 0 °C for 30 min. Mel (0.55
mL, 8.84 mmol) was added dropwise and the reaction mixture was allowed to warm up to room

temperature. After stirred for 3 h, the reaction was quenched with water (30 mL) cautiously and
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extracted with Et;0 (3 x 50 mL). The organic extracts were dried over MgSQ,, filtered and
concentrated. The resulting residue was dissolved in THF (11.0 mL) and TBAF monohydrate
(0.693 g, 5.730 mmol) was added in one portion. The yellow solution was stirred for 1.5 h and
then concentrated. The residue was purified by column chromatography (30% - 40% EtOAc in
hexanes) to give allylic alcohol A12 (0.684 g, 99.7%, two steps) as a colorless oil: '"H NMR (300
MHz, CDCls) 6 7.40-7.08 (m, 10H), 5.37 (qt, /= 6.9, 1.2 Hz, 1H), 4.12 (d, J = 6.8 Hz, 2H), 4.02
(d, J= 8.4 Hz, 1H), 3.92 (ddd, J = 8.2, 6.4, 4.1 Hz, 1H), 3.17 (s, 3H), 2.22-2.03 (m, 2H), 1.73-
1.48 (m, 2H), 1.58 (s, 3H), 1.30 (br s, 1H); °C NMR (75 MHz, CDCl3) § 142.9, 142.5, 139.7,
129.0, 128.7, 128.4, 126.6, 126.4, 123.8, 83.4, 59.5, 58.1, 56.4, 35.1, 30.5, 16.4; IR (neat) 3396,
3026, 2929, 1599, 1494, 1451, 1374, 1241, 1102, 1002, 756, 703 cm™'; HRMS (ESI): m/z calcd

for Cy1Hp60,Na [M+Na]" 333.1831, found 333.1817.

(3-(3-Methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)methanol (A13)
on CHW A solution of allylic alcohol A12 (252 mg, 0.812 mmol) in CH,Cl,
2 OMe o (8.0 mL) at 0 °C was treated with NaHCO; powder (136 mg, 1.62
mmol) followed by mCPBA (pure, 147 mg, 0.852 mmol). The reaction mixture was stirred at 0
°C for 1 h and then quenched with saturated Na,S,0; solution (2.0 mL). After warmed to room
temperature, the biphasic mixture was poured onto water (5 mL) and the two layers were
separated. The aqueous layer was extracted with CH,Cl, (2 x 20 mL) and the combined organic
extracts were dried over MgSOy, filtered and concentrated. The residue was purified by flash
chromatography (40% - 50% EtOAc in hexanes) to give the epoxy alcohol A13 (251 mg, 94.9%,

dr ~ 1:1) as a colorless oil: "H NMR (300 MHz, CDCls) § 7.38-7.17 (m, 10H), 4.00-3.91 (m,

2H), 3.81-3.73 (m, 1H), 3.68-3.59 (m, 1H), 3.16/3.14 (s, 3H), 2.91-2.85 (m, 1H), 1.80-1.38 (m,
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4H), 1.19/1.17 (s, 3H); °C NMR (75 MHz, CDCls) & 142.7, 142.4, 142.3, 128.9, 128.8, 128.6,
128.4, 126.7, 126.5, 83.4, 83.3, 63.0, 62.7, 61.5, 61.5, 61.4, 61.4, 58.1, 57.9, 56.4, 56.2, 33.9,
33.7,27.5,27.2, 17.0, 16.7; IR (neat) 3418, 2931, 1599, 1495, 1452, 1385, 1099, 1032, 747, 704

cm™; HRMS (ESI): m/z caled for CH603Na [M+Na]™ 349.1780, found 349.1766.

tert-Butyl (3-(3-methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)methyl carbonate (1.49)
(o) Epoxy alcohol Al13 (192 mg, 0.588 mmol) in anhydrous
I:’hZCHj/\)QDAOJ\OtBu : .
OMe toluene (5.8 mL) at 0 °C was treated with 1-methylimidazole
(46.9 pL, 0.588 mmol) followed by Boc,O (321 mg, 1.47 mmol). The reaction mixture was
stirred at 0 °C for 4 h, then diluted with CH,Cl, (20 mL) and poured onto water (10 mL). The
biphasic mixture was separated and the aqueous layer was washed with CH,Cl, (3 x 15 mL). The
combined organic extracts were dried over MgSO,, filtered and concentrated. The residue was
purified by flash chromatography (10% - 12.5% EtOAc in hexanes containing 0.5% Et;N) to
give the #-butyl carbonate 1.49 (216 mg, 86.3%, dr ~ 1:1) as a colorless oil: 'H NMR (300 MHz,
CDCls) 6 7.39-7.17 (m, 10H), 4.20-4.14 (m, 1H), 4.09 (dd, J = 11.8, 6.1 Hz, 1H), 3.99-3.91 (m,
2H), 3.15/3.14 (s, 3H), 2.97-2.91 (m, 1H), 1.83-1.42 (m, 4H), 1.50 (s, 9H), 1.20/1.18 (s, 3H); °C
NMR (75 MHz, CDCls) & 153.5, 142.6, 142.4, 142.3, 128.9, 128.9, 128.7, 128.6, 128.4, 126.7,
126.5, 83.2, 83.0, 82.7, 65.7, 65.6, 60.8, 60.6, 59.6, 59.2, 58.1, 57.8, 56.4, 56.2, 33.5, 33.3, 27.9,
27.4,27.1, 17.1, 16.7; IR (neat) 2980, 2933, 1743, 1495, 1453, 1370, 1327, 1279, 1163, 1098,

859, 738, 704 cm'l; HRMS (ESI): m/z caled for CysH34OsNa [MJrNa]+ 449.2304, found

449.2278.
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(E)-6-(tert-Butyldimethylsilanyloxy)-4-methylhex-4-enal (1.60)
H\{(\)\/\OTBS Ethyl ester A10 (5.84 g, 20.4 mmol) in CH,Cl, (58.0 mL) at -78 °C
0 was treated dropwise with DIBAL-H (1.0 M in hexanes, 21.4 mL,
21.4 mmol). The reaction mixture was stirred at -78 °C for 2 h and then quenched with saturated
sodium tartrate solution (120 mL). After warmed up to room temperature, the mixture was
extracted with CH,Cl, (3 x 70 mL) and the organic extracts were dried over MgSQy, filtered and
concentrated. The residue was purified by flash chromatography (6% - 8% EtOAc in hexanes) to
give the aldehyde 1.60 (4.31 g, 87.4%) as a colorless liquid: '"H NMR (300 MHz, CDCl3) & 9.79
(t, J=1.7 Hz, 1H), 5.33 (qt, J = 6.2, 1.3 Hz, 1H), 4.19 (d, J = 6.2 Hz, 2H), 2.59-2.54 (m, 2H),
2.35 (app t, J = 7.7 Hz, 2H), 1.65 (s, 3H), 0.91 (s, 9H), 0.07 (s, 6H); *C NMR (75 MHz, CDCl;)
0 202.4, 135.0, 125.6, 60.3, 42.1, 31.7, 26.2, 18.6, 16.7, -4.9; IR (neat) 2955, 2929, 2857, 2714,
1728, 1472, 1255, 1114, 1074, 836, 776 cm™; HRMS (EI): m/z caled for Ci3H50,Si (M-H)"™

241.1624, found 241.1606.

(E)-7-(tert-Butyldimethylsilanyloxy)-5-methylhept-5-enal (A14)
HM\/OTBS (Methoxymethyl)triphenylphosphonium chloride (2.587 g, 7.55
© mmol) in a dry flask under high vacuum was heated with heat gun
for 3 min to remove the moisture. The flask was cooled to 0 °C and THF (8.0 mL) was added in.
NaHMDS (7.55 mL, 7.55 mmol) was added dropwise and the resulting deep orange suspension
was stirred at 0 °C for 1 h. Aldehyde 1.60 (0.610 g, 2.52 mmol, dissolved in 1.0 mL of THF) was
added dropwise and the flask formerly containing the aldehyde was rinsed twice with THF (2 x
0.5 mL). The reaction mixture was stirred at 0 °C for 1 h, then quenched with saturated NaHCO3

(10 mL) and extracted with Et;O (3 x 30 mL). The organic extracts were dried over MgSOs,
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filtered and concentrated. The residue was purified by flash chromatography (3.5% EtOAc in
hexanes) to give the crude methyl vinyl ether.

The methyl vinyl ether in THF-H,O (10:1, 40 mL) was treated with Hg(OAc), (1.277 g, 4.01
mmol). The reaction mixture was stirred for 20 min and saturated KI (20 mL) was added. The
resulting yellowish green mixture was stirred for 1 h and then diluted with Et,O (50 mL). The
two layers were separated and the organic layer was washed with saturated KI (40 mL), dried
over MgSQy, filtered and concentrated. The residue was purified by flash chromatography (4% -
6% EtOAc in hexanes) to give the title aldehyde Al4 (0.526 g, 81.6%) as a colorless oil: 'H
NMR (300 MHz, CDCl3) 8 9.78 (t, J = 1.5 Hz, 1H), 5.32 (qt, J = 6.2, 1.0 Hz, 1H), 4.19 (d, J =
6.3 Hz, 2H), 2.42 (dt, J= 7.3, 1.5 Hz, 2H), 2.04 (t, J = 7.3 Hz, 2H), 1.76 (pent, J = 7.6 Hz, 2H),
1.62 (s, 3H), 0.91 (s, 9H), 0.07 (s, 6H); °C NMR (75 MHz, CDCl3) § 202.6, 136.0, 125.9, 60.5,
43.5, 39.0, 26.3, 20.3, 18.7, 16.4, -4.8; IR (neat) 2930, 2856, 2713, 1728, 1472, 1387, 1255,
1115, 1080, 836, 776 cm™'; HRMS (ESI): m/z caled for C4H,50,SiNa [M+Na]™ 279.1756, found

279.1745.

(E)-8-(tert-Butyldimethylsilanyloxy)-6-methyl-1,1-diphenyl-oct-6-en-2-ol (A15)

Ph,CH W\/OTBS A solution of diphenylmethane (0.80 mL, 4.77 mmol) in THF
OH (4.5 mL) was treated with #n-BuLi (1.6 M in hexanes, 2.74 mL,

4.39 mmol) and the resulting deep-orange solution was refluxed for 2 h. After cooling to room

temperature, the solution was cooled further to 0 °C and the aldehyde A14 (0.489 g, 1.91 mmol,

dissolved in 1.0 mL of THF) was added dropwise. The flask formerly containing the aldehyde

was rinsed with THF (2 x 0.5 mL). The deep-orange solution was stirred at 0 °C for 1 h, then

quenched by slow addition of saturated NaHCOs (10 mL). The biphasic mixture was diluted with
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Et,0 (10 mL) and poured onto water (10 mL). The two layers were separated and the aqueous
layer was extracted with Et;0 (3 x 20 mL). The combined organic extracts were dried over
MgSO,, filtered and concentrated. The residue was purified by flash chromatography (7% - 13%
EtOAc in hexanes) to give the alcohol A15 (0.638 g, 78.7%) as a colorless oil: "H NMR (300
MHz, CDCls) 6 7.41-7.16 (m, 10H), 5.26 (qt, J = 6.4, 1.2 Hz, 1H), 4.36 (dt, J = 8.3, 3.0 Hz, 1H),
4.16 (d, J= 6.3 Hz, 2H), 3.88 (d, J = 8.3 Hz, 1H), 1.99-1.92 (m, 2H), 1.70-1.35 (m, 4H), 1.57 (s,
3H), 0.91 (s, 9H), 0.07 (s, 6H); >C NMR (75 MHz, CDCl3) & 142.6, 141.6, 137.1, 129.0, 128.8,
128.4, 127.1, 126.7, 124.7, 73.8, 60.5, 59.0, 39.6, 34.8, 26.2, 24.0, 18.6, 16.4, -4.8; IR (neat)
3458, 2928, 2856, 1599, 1494, 1386, 1254, 1082, 835, 702 cm™'; HRMS (ESI): m/z calcd for

C,7H400,SiNa [M+Na]" 447.2695, found 447.2741.

(E)-7-Methoxy-3-methyl-8,8-diphenyloct-2-en-1-ol (A16)
thCH\(\/\K\/OH The secondary alcohol A15 (0.638g, 1.50 mmol) in anhydrous
OMe DMF (10 mL) at 0 °C was treated with NaH (60% dispersion in
mineral oil, 150 mg, 3.75 mmol) and the yellow suspension was stirred at 0 °C for 30 min. Mel
(0.37 mL, 6.00 mmol) was added dropwise and the reaction mixture was stirred overnight at
room temperature. The flask was cooled to 0 °C and the reaction was quenched with ice chips.
The mixture was poured into water (20 mL) and extracted with Et;O (3 x 30 mL). The organic
extracts were dried over MgSQy, filtered and concentrated. The residue was dissolved in THF
(7.5 mL) and TBAF monohydrate (0.471 g, 1.80 mmol) was added in. The yellow solution was
stirred for 1.5 h and then concentrated in vacuo. The residue was purified by flash
chromatography (25% - 35% EtOAc in hexanes) to give the allylic alcohol Al16 (0.475 g, 97.4%)

as a colorless oil: "H NMR (300 MHz, CDCl3) & 7.42-7.19 (m, 10H), 5.36 (qt, J = 6.9, 1.0 Hz,

85



1H), 4.11 (d, J = 6.9 Hz, 2H), 4.04 (d, J = 8.4 Hz, 1H), 3.97-3.92 (m, 1H), 3.19 (s, 3H), 1.98-
1.96 (m, 2H), 1.62 (s, 3H), 1.58-1.41 (m, 4H); '°C NMR (75 MHz, CDCls) § 142.9, 142.5, 139.4,
128.9, 128.6, 128.4, 126.5, 126.4, 123.7, 83.6, 59.3, 58.0, 56.2, 39.5, 31.6, 22.9, 16.2; IR (neat)
3386, 2934, 1667, 1599, 1495, 1451, 1380, 1186, 1100, 1002, 746, 703 cm™'; HRMS (ESI): m/z

caled for CorHas0oNa [M+Na]" 347.1987, found 347.1966.

(3-(4-Methoxy-5,5-diphenylpentyl)-3-methyloxiran-2-yl)methanol (A17)
Ph,CH o OH A solution of allylic alcohol Al6 (85.0 mg, 0.262 mmol) in
m CH,CI; (2.6 mL) at 0 °C was treated with NaHCO; powder (55.0
mg, 0.655 mmol) followed by m-chloroperbenzoic acid (pure, 47.5 mg, 0.275 mmol). The
reaction mixture was stirred at 0 °C for 50 min and then quenched with saturated Na;S,0;
solution (2.0 mL). After warmed to room temperature, the biphasic mixture was poured into
water (5 mL) and the two layers were separated. The aqueous layer was extracted with CH,Cl, (5
x 10 mL) and the combined organic extracts were dried over MgSQO,, filtered and concentrated.
The residue was purified by flash chromatography (40% - 45% EtOAc in hexanes containing
0.5% Et;N) to give the epoxy alcohol A17 (88.7 mg, 99.4%, dr ~ 1:1) as a colorless oil: "H NMR
(300 MHz, CDCls) & 7.38-7.17 (m, 10H), 4.00 (d, J = 8.4 Hz, 1H), 3.91-3.89 (m, 1H), 3.80-3.74
(m, 1H), 3.65 (dd, J = 12.1, 6.6 Hz, 1H), 3.17/3.16 (s, 3H), 2.92-2.87 (m, 1H), 1.64-1.34 (m,
6H), 1.23 (s, 3H); °C NMR (75 MHz, CDCls) & 142.8, 142.4, 128.9, 128.9, 128.7, 128.6, 128.4,
126.6, 126.4, 83.6, 83.5, 63.1, 63.0, 61.5, 61.4, 58.1, 58.0, 56.3, 38.6, 32.1, 32.0, 20.7, 20.6, 16.8,
16.7; IR (neat) 3420, 2935, 1599, 1495, 1452, 1385, 1249, 1100, 1031, 862, 747, 704 cm™;

HRMS (ESI): m/z caled for Cy;H,303Na [MJrNa]+ 363.1936, found 363.1947.
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tert-Butyl (3-(4-methoxy-5,5-diphenylpentyl)-3-methyloxiran-2-yl)methyl carbonate (1.50)
Ph,CH ) 6. OBu Epoxy alcohol Al7 (72.9 mg, 0.214 mmol) in anhydrous
m \[C])/ toluene (2.0 mL) at 0 °C was treated with 1-
methylimidazole (22 pL, 0.278 mmol) followed by Boc,O (187 mg, 0.856 mmol, dissolved in
0.5 mL of toluene). The reaction mixture was stirred at 0 °C for 4 h, then diluted with CH,Cl,
(5.0 mL) and poured into water (6 mL). The biphasic mixture was separated and the aqueous
layer was washed with CH,Cl, (3 x 5 mL). The combined organic extracts were dried over
MgSO,, filtered and concentrated. The residue was purified by flash chromatography (10% -
15% EtOAc in hexanes containing 0.5% Et;N) to give the #-butyl carbonate 1.50 (83.9 mg,
89.0%, dr ~ 1:1) as a colorless oil: '"H NMR (300 MHz, CDCl;) & 7.39-7.17 (m, 10H), 4.18 (dd, J
=11.9, 4.8 Hz, 1H), 4.09 (dd, J=11.9, 6.3 Hz, 1H), 4.00 (d, J = 8.4 Hz, 1H), 3.93-3.87 (m, 1H),
3.17 (br s, 3H), 2.98-2.94 (m, 1H), 1.64-1.41 (m, 6H), 1.52 (s, 9H), 1.24 (br s, 3H); °C NMR (75
MHz, CDCls) & 153.4, 142.8, 142.4, 128.9, 128.6, 128.5, 128.4, 126.5, 126.4, 83.5, 82.6, 65.7,
60.6, 59.5, 59.4, 58.1, 58.0, 56.2, 38.3, 32.0, 27.9, 20.5, 20.5, 16.8, 16.8; IR (neat) 2934, 1742,
1495, 1452, 1369, 1279, 1255, 1163, 1098, 859, 704 cm™; HRMS (ESI): m/z caled for

Cy7H360sNa [M+Na]" 463.2460, found 463.2462.

((E)-3-Methyl-5-(3,3-dimethyloxiran-2-yl)pent-2-enyloxy)(tert-butyl)dimethylsilane (1.61)

o ((E)-3,7-dimethylocta-2,6-dienyloxy)(tert-butyl)dimethylsilane
(5.370 g, 20.0 mmol) in CHCI; (180 mL) at 0 °C was treated with
mCPBA (70-75%, 5.621 g, 22.8 mmol) in small portions. The white suspension was stirred at 0

°C for 30 min, and then quenched with saturated Na,S,0s3 solution (20 mL) and saturated

NaHCOj; solution (100 mL). The mixture was warmed up to room temperature and the two
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layers were separated. The aqueous was washed with CH,Cl, (2 x 100 mL) and the combination
of the organic extracts were dried over MgSO4 and evaporated. The residue was purified by
column chromatography (8%-12% Et,O in hexanes) to give the desired monoepoxide 1.61
(4.375 g, 76.9%) as a colorless oil: '"H NMR (300 MHz, CDCls) & 5.36 (qt, J= 6.3, 1.2 Hz, 1H),
4.20 (d, J = 6.3, Hz, 1H), 4.20 (d, J = 6.3, Hz, 1H), 2.72 (t, J = 6.2 Hz, 1H), 2.25-2.06 (m, 2H),

1.65 (s, 3H), 1.71-1.61 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H), 0.91 (s, 9H), 0.08 (s, 6H).

(E)-8-(tert-Butyldimethylsilanyloxy)-2,6-dimethylocta-1,6-dien-3-ol (A18)

A solution of 2,2,6,6-tetramethylpiperidine (5.297 g, 37.5 mmol) in

MOTBS o
OH anhydrous benzene (25.0 mL) at 0 °C was treated dropwise with n-
BuLi (1.6 M in hexanes, 23.4 mL, 37.5 mmol). After 10 min, diethylaluminum chloride (1.0 M
in heptanes, 37.5 mL, 37.5 mmol) and the resulting white suspension was stirred at 0 °C for 30
min. Monoepoxide 1.61 (4.268 g, 15.0 mmol, dissolved in 5.0 mL of anhydrous benzene) was
added dropwise and the flask formerly containing the epoxide was rinsed twice with benzene (2
x 2.5 mL). The reaction mixture was stirred further at 0 °C for 1.5 h and then quenched with
saturated sodium tartrate solution (100 mL). The biphasic mixture was poured into water (100
mL) and extracted with Et,0 (3 x 150 mL). The organic extracts were dried over MgSQOy, filtered
and concentrated in vacuo. The resulting residue was purified by column chromatography (12%-
21% Et,0 in hexanes) to give the allylic alcohol A18 (3.924 g, 91.9%) as a colorless liquid: 'H
NMR (300 MHz, CDCl;) & 5.34 (qt, /= 6.3, 1.2 Hz, 1H), 4.94 (t, /= 0.8 Hz, 1H), 4.84 (t, J=1.5
Hz, 1H), 4.19 (d, J = 6.3 Hz, 2H), 4.05 (t, J = 6.2 Hz, 1H), 2.17-1.95 (m, 2H), 1.73 (s, 3H), 1.64
(s, 3H), 1.70-1.60 (m, 2H), 0.90 (s, 9H), 0.07 (s, 6H); °*C NMR (75 MHz, CDCls) & 147.6,

136.8, 124.9, 111.3, 75.8, 60.4, 35.6, 33.0, 26.2, 18.6, 17.8, 16.6, -4.8; IR (neat) 3382, 2929,
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2857, 1472, 1382, 1255, 1112, 1070, 836, 776 cm™'; HRMS (EI): m/z caled for C1,H,30,Si (M-

C4Ho)™ 227.1467, found 227.1450.

(4E,8E)-Ethyl 10-(tert-butyldimethylsilanyloxy)-4,8-dimethyl-deca-4,8-dienoate (A19)
Eto\[(\)\/\)\ﬁoﬂas A mixture of allylic alcohol A18 (3.671 g, 12.90 mmol),
o triethyl orthoacetate (freshly distilled, 10.46 g, 64.50
mmol) and propionic acid (47.8 mg, 0.645 mmol) in a round-bottom flask was equipped with a
fractional distillation apparatus to allow for removal of ethanol. The mixture was heated to 145
°C for 1.5 h. (During this period of time, a lot of volatiles were distilled out.) The unreacted
triethyl orthoacetate was removed by simple distillation and the residue was purified by column
chromatography (3% EtOAc in hexanes) to give the ethyl ester A19 (4.281 g, 93.6%) as a
colorless liquid: '"H NMR (300 MHz, CDCl3) 6 5.30 (qt, J= 6.3, 1.2 Hz, 1H), 5.14 (qt, /= 6.9,
1.2 Hz, 1H), 4.19 (d, J = 6.3 Hz, 1H), 4.19 (d, J = 6.3 Hz, 1H), 4.12 (q, J = 7.1 Hz, 2H), 2.42-
2.35 (m, 2H), 2.31-2.26 (m, 2H), 2.14-2.06 (m, 2H), 2.02-1.97 (m, 2H), 1.62 (s, 3H), 1.61 (s,
3H), 1.25 (t, J = 7.1 Hz, 3H), 0.90 (s, 9H), 0.07 (s, 6H); *C NMR (75 MHz, CDCls) & 173.7,
136.9, 133.7, 125.0, 124.7, 60.5, 60.4, 39.6, 34.9, 33.5, 26.4, 26.2, 18.6, 16.5, 16.1, 14.5, -4.8; IR
(neat) 2929, 2856, 1738, 1463, 1254, 1158, 1063, 836, 776 cm™; HRMS (ESI): m/z calcd for

C0H330;SiNa [M+Na]" 377.2488, found 377.2513.

(4E,8E)-10-(tert-Butyldimethylsilanyloxy)-4,8-dimethyldeca-4,8-dienal (1.62)

Ethyl ester A19 (2.3345g, 6.58 mmol) in CH,Cl, (20.0 mL)

H\[(\)\/\)\/\
OTBS 4t -78 °C was treated dropwise with DIBAL-H (1.0 M in

O

hexanes, 6.91 mL, 6.91 mmol). The reaction mixture was stirred at -78 °C for 40 min and
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DIBAL-H (1.0 M in hexanes, 0.66 mL, 0.66 mmol) were added. The mixture was stirred for 30
min more and then quenched with saturated sodium tartrate solution (30 mL). After warmed up
to room temperature, the mixture was extracted with CH,Cl, (3 x 40 mL) and the organic
extracts were dried over MgSOy, filtered and concentrated. The residue was purified by flash
chromatography (4% - 20% EtOAc in hexanes) to give the aldehyde 1.62 (1.884 g, 92.1%) as a
colorless liquid: "H NMR (300 MHz, CDCl3) & 9.75 (t, J= 1.9 Hz, 1H), 5.30 (qt, J= 6.3, 1.1 Hz,
1H), 5.15 (qt, J= 6.8, 1.0 Hz, 1H), 4.19 (d, J = 6.3 Hz, 2H), 2.52 (dt, /= 7.9, 1.7 Hz, 2H), 2.32
(t,J=17.5 Hz, 2H), 2.15-2.08 (m, 2H), 2.03-1.98 (m, 2H), 1.62 (s, 6H), 0.91 (s, 9H), 0.08 (s, 6H);
BC NMR (75 MHz, CDCl3) & 202.8, 136.8, 133.4, 125.3, 124.8, 60.5, 42.4, 39.5, 32.0, 26.4,
26.2, 18.6, 16.5, 16.3, -4.8; IR (neat) 2928, 2856, 1728, 1472, 1386, 1254, 1110, 1066, 836, 776

cm™'; HRMS (ESI): m/z caled for C3gH350,Si [M+H]" 311.2406, found 311.2386.

(5E,9E)-11-(tert-Butyldimethylsilanyloxy)-5,9-dimethyl-1,1-diphenylundeca-5,9-dien-2-ol
(A20)
Ph,CH \(\)\/\)\/\OTBS A solution of diphenylmethane (1.625 g, 9.66 mmol) in
OH THF (9.0 ml) was treated dropwise with n-BuLi (1.6 M
in hexanes, 6.04 mL, 9.66 mmol). The resulting deep orange solution was stirred at 75 °C for 1 h
and cooled to 0 °C. Dienal 1.62 (1.000 g, 3.22 mmol, dissolved in 2.0 mL of THF) was added
dropwise and the flask formerly containing the aldehyde was rinsed with THF (2 x 0.5 mL). The
reaction mixture was stirred at 0 °C for 1 h and quenched by slow addition of saturated NaHCO;
solution (10 mL). The mixture was poured onto water (15 mL) and extracted with Et,O (3 x 30
mL). The organic extracts were dried over MgSOQ,, filtered and concentrated. The residue was

purified by flash chromatography (4% - 10% EtOAc in hexanes) to give the secondary alcohol
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A20 (1.243 g, 80.6%) as a colorless oil: '"H NMR (300 MHz, CDCl3) & 7.41-7.16 (m, 10H), 5.30
(qt, J= 6.3, 1.1 Hz, 1H), 5.14 (app t, J = 6.2 Hz, 1H), 4.38-4.30 (m, 1H), 4.18 (d, J = 6.3 Hz,
2H), 3.91 (d, J = 8.4 Hz, 1H), 2.20-2.00 (m, 6H), 1.62 (s, 3H), 1.52 (s, 3H), 1.67-1.42 (m, 2H),
0.92 (s, 9H), 0.08 (s, 6H); °C NMR (75 MHz, CDCl3) § 142.7, 141.8, 137.1, 135.2, 129.0,
129.0, 128.8, 128.5, 127.0, 126.7, 124. 8, 124.6, 73.6, 60.5, 58.9, 39.7, 36.1, 33.3, 26.5, 26.2,
18.6, 16.6, 16.1, -4.8; IR (neat) 3466, 2928, 2855, 1598, 1494, 1450, 1384, 1254, 1067, 835, 776,

702 cm'l; HRMS (ESI): m/z caled for C3;H460,SiNa [M+Na]Jr 501.3165, found 501.3150.

(2E,6E)-10-Methoxy-3,7-dimethyl-11,11-diphenylundeca-2,6-dien-1-ol (1.63)
PhZCH\(\)\/\)\/\OH The secondary alcohol A20 (1.200 g, 2.507 mmol) in
OMe anhydrous DMF (14.0 mL) at 0 °C was treated with NaH
(60% dispersion in mineral oil, 0.251 g, 6.268 mmol) and the suspension was stirred at 0 °C for
30 min. Mel (0.62 mL, 10.0 mmol) was added dropwise and the reaction mixture was allowed to
warm up to room temperature. After stirred for 3 h, the reaction was quenched with water (25
mL) cautiously and extracted with Et;0O (3 x 35 mL). The organic extracts were dried over
MgSOs, filtered and concentrated. The resulting residue was dissolved in THF (12.5 mL) and
TBAF monohydrate (0.787 g, 3.01 mmol) was added in one portion. The yellow solution was
stirred for 1.3 h and then concentrated. The residue was purified by flash chromatography (20% -
30% EtOAc in hexanes) to give the allylic alcohol 1.63 (0.923 g, 97.2%) as a colorless oil: 'H
NMR (300 MHz, CDCls) 6 7.40-7.16 (m, 10H), 5.40 (qt, J = 6.9, 1.1 Hz, 1H), 5.10 (t, J=5.5
Hz, 1H), 4.14 (d, J= 6.7 Hz, 2H), 4.02 (d, J = 8.3 Hz, 1H), 3.92-3.87 (m, 1H), 3.16 (s, 3H), 2.11-
2.01 (m, 6H), 1.68 (s, 3H), 1.51 (s, 3H), 1.62-1.46 (m, 2H), 0.92 (br s, 1H); °C NMR (75 MHz,

CDCl) 6 143.0, 142.5, 139.8, 135.3, 129.1, 128.7, 128.6, 128.4, 126.5, 126.4, 124.3, 123.6, 83.3,
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59.6, 58.0, 56.2, 39.7, 35.3, 30.8, 26.4, 16.5, 16.1; IR (neat) 3388, 3026, 2925, 1599, 1494, 1451,
1382, 1189, 1102, 1002, 755, 703 cm™; HRMS (ESI): m/z caled for CysH34,0,Na [M+Na]"

401.2457, found 401.2477.

((2R,3R)-3-(2-((2R,3R)-3-(3-Methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)ethyl)-3-
methyloxiran-2-yl)methanol (A21)
PhZCH\(\MOH To a solution of dienol 1.63 (100 mg, 0.264 mmol) in
OMe CH;CN/DMM (8.0 mL, 1:2, v/v) were added a 0.05 M
solution of Na,B407 in 4x10™* M Nay(EDTA) (5.2 mL), BuyNHSOy4 (7.2 mg, 21.1 umol) and Shi
ketone (68.2 mg, 0.264 mmol) sequentially. The mixture was cooled to 0 °C, and the Oxone (448
mg, 0.729 mmol), dissolved in 4x10* M Nay(EDTA) (3.4 mL), and K,CO;3 (424 mg, 3.06
mmol), dissolved in water (3.4 mL), were added simultaneously via a syringe pump over 2.0 h.
After the addition was completed, the slightly blue reaction mixture was stirred further for 15
min at 0 °C, then diluted with water (10 mL) and extracted with CH,Cl, (3 x 30 mL). The
organic extracts were dried over MgSQ,, filtered and concentrated. The residue was purified by
flash chromatography (40% - 80% EtOAc in hexanes) to give the diepoxy alcohol A21 (95.8 mg,
88.4%, dr ~ 1:1 regarding the stereochemical outcomes of the homobenzylic center and the two
epoxide groups) as a colorless oil: 'H NMR (300 MHz, CDCl3) & 7.42-7.17 (m, 10H), 4.00-3.85
(m, 2H), 3.81-3.61 (m, 2H), 3.16/3.14 (s, 3H), 2.96 (t, J = 6.0 Hz, 1H), 2.64-2.60 (m, 1H), 2.01
(br s, 1H), 1.86-1.73 (m, 2H), 1.66-1.42 (m, 6H), 1.31/1.30 (s, 3H), 1.15/1.13 (s, 3H); °C NMR
(75 MHz, CDCls) & 142.7, 142.4, 142.2, 129.0, 128.9, 128.7, 128.7, 128.6, 128.4, 126.7, 126.5,
83.3, 63.1, 62.6, 62.5, 61.4, 61.2, 61.1, 61.0, 60.7, 58.2, 57.9, 56.4, 56.1, 35.2, 33.9, 33.8, 27.6,

27.3,24.4,17.1, 16.8, 16.4; IR (neat) 3435, 3026, 2929, 1495, 1452, 1386, 1100, 1032, 747, 704
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em’'; HRMS (ESI): m/z caled for CogH3404Na [M+Na]" 433.2355, found 433.2348; [o]p = +13.3

(CHCls, ¢ 1.34).

tert-Butyl ((2R,3R)-3-(2-((2R,3R)-3-(3-methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)eth-
yl)-3-methyloxiran-2-yl)methyl carbonate (1.51)

o To a solution of diepoxy alcohol A21 (112 mg,

Ph,CH § § )]\
2 O~ "O'Bu 0.273 mmol) in anhydrous toluene (2.7 mL) at 0

OMe
°C were added N-methylimidazole (22 pL, 0.273 mmol) and Boc,O (119 mg, 0.546 mmol) and

the reaction mixture was stirred overnight, allowing the temperature to warm to room
temperature slowly. After that time, the reaction was quenched with water (10 mL) and extracted
with CH,Cl, (3 x 25 mL). The organic extracts were dried over MgSQO,, filtered and
concentrated. The residue was azeotroped with hexanes (3 x 10 mL) and then purified by column
chromatography (20% - 25% EtOAc in hexanes containing 0.5% Et;N) to give the tert-butyl
carbonate 1.51 (129 mg, 92.7%, dr ~ 1:1 regarding the stereochemical outcomes of the
homobenzylic center and the two epoxide groups) as a colorless oil: 'H NMR (300 MHz, CDCl;)
0 7.39-7.17 (m, 10H), 4.27-4.10 (m, 2H), 4.00-3.88 (m, 2H), 3.17/3.16 (s, 3H), 3.02 (t, J = 5.8
Hz, 1H), 2.63-2.59 (m, 1H), 1.84-1.38 (m, 8H), 1.52 (s, 9H), 1.32 (s, 3H), 1.14/1.13 (s, 3H); °C
NMR (75 MHz, CDCls) & 153.5, 142.7, 142.4, 142.3, 129.0, 128.9, 128.8, 128.7, 128.6, 128.4,
126.7, 126.5, 83.3, 82.8, 65.6, 61.1, 61.0, 60.3, 59.2, 58.2, 57.9, 56.4, 34.8, 33.9, 33.8, 27.9, 27 .4,
24.3,17.2, 16.9, 16.8, 16.4; IR (neat) 2978, 2932, 1743, 1495, 1453, 1370, 1279, 1256, 1163,
1098, 858, 756, 704 cm'l; HRMS (ESI): m/z caled for C3;H4O¢Na [MJrNa]+ 533.2879, found

533.2859; [o]p = +17.3 (CHCLs, ¢ 1.49).
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((2S,3S)-3-((E)-7-Methoxy-4-methyl-8,8-diphenyloct-3-enyl)-3-methyloxiran-2-yl)methanol
(A22)
Ph,CH “ \Q o A suspension of the activated 4A molecular sieves
OMe powder (95 mg) in CH,Cl; (2.4 mL) was treated with (+)-
diisopropyl tartrate (8.0 uL, 38.0 pmol) and the mixture was cooled to -35 to -30 °C. The mixture
was stirred for 10 min and Ti(O-i-Pr)4 (9.5 pL, 31.7 pmol) was added and the mixture was stirred
for 15 min more. After that time, #-butyl hydroperoxide (5.0-6.0 M in decane, 0.19 mL, ~0.951
mmol) was added dropwise and the mixture was stirred for 30 min. Dienol 1.63 (120.0 mg,
dissolved in 0.5 mL of CH,Cl,) was added dropwise and the flask formerly containing the dienol
was rinsed with CH,Cl, (2 x 0.1 mL). The reaction mixture was stirred at -35 to -30 °C for 40
min and then water (0.5 mL) was added. The mixture was allowed to warm up to 0 °C and stirred
for 1 h. A solution of 30% of NaOH saturated with NaCl (0.3 mL) was added and the mixture
was warmed up to room temperature and stirred for 1.5 h. The suspension was filtered through a
pad of Celite and the filtrate was dried over MgSOy, filtered and concentrated. The residue was
purified by flash chromatography (30% - 40% EtOAc in hexanes) to give the monoepoxy alcohol
A22 (120.0 mg, 95.9%) as a colorless oil: 'H NMR (300 MHz, CDCls) § 7.39-7.17 (m, 10H),
5.07 (app t, J = 6.7 Hz, 1H), 4.01 (d, J = 8.3 Hz, 1H), 3.92-3.86 (m, 1H), 3.81-3.75 (m, 1H),
3.71-3.63 (m, 1H), 3.15 (s, 3H), 2.94 (dd, J = 6.5, 4.5 Hz, 1H), 2.11-2.04 (m, 4H), 1.74-1.43 (m,
4H), 1.51 (s, 3H), 1.29 (s, 3H); °C NMR (75 MHz, CDCls) & 142.9, 142.5, 135.8, 135.7, 129.0,
128.6, 128.4, 126.5, 126.4, 123.7, 123.6, 83.3, 83.2, 63.1, 61.6, 61.2, 58.0, 57.8, 56.2, 38.6, 35.2,
30.7, 30.6, 23.8, 16.9, 16.0; IR (neat) 3424, 3026, 2930, 1598, 1494, 1451, 1384, 1103, 1032,

862, 746, 704 cm'l; HRMS (ESI): m/z caled for CysH34O3Na [MJrNa]+ 417.2406, found

417.2436; [a]p = -3.8 (CHCL, ¢ 1.08).
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((2S,3S)-3-(2-((2R,3R)-3-(3-Methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)ethyl)-3-
methyloxiran-2-yl)methanol (A23)
Ph,CH 0 \Q o To a solution of monoepoxy alcohol A22 (170.0 mg,
OMe 0.431 mmol) in CH;CN/DMM (6.5 mL, 1:2, v/v) were
added a 0.05 M solution of Na;B40; in 4x10™* M Nay(EDTA) (4.3 mL), BuNHSO, (5.8 mg,
17.2 umol) and Shi ketone (55.6 mg, 0.216 mmol) sequentially. The mixture was cooled to 0 °C,
and the Oxone (366 mg, 0.595 mmol), dissolved in 4x10™ M Nay(EDTA) (2.8 mL), and K,CO;
(346 mg, 2.50 mmol), dissolved in water (2.8 mL), were added simultaneously via a syringe
pump over 2.0 h. After the addition was completed, the blue reaction mixture was stirred further
for 15 min at 0 °C, then diluted with water (15 mL) and extracted with CH,Cl, (3 x 30 mL). The
organic extracts were dried over MgSQ,, filtered and concentrated. The residue was purified by
flash chromatography (50% - 80% EtOAc in hexanes) to give the diepoxy alcohol A23 (160.6
mg, 90.8%, dr ~ 1:1 regarding the stereochemical outcomes of the homobenzylic center and the
two epoxide groups): 'H NMR (300 MHz, CDCl3) & 7.38-7.17 (m, 10H), 3.99-3.95 (m, 1H),
3.93-3.87 (m, 1H), 3.83-3.73 (m, 1H), 3.71-3.60 (m, 1H), 3.15/3.14 (s, 3H), 2.98-2.90 (m, 1H),
2.67-2.60 (m, 1H), 2.35-2.28 (m, 1H), 1.91-1.86 (m, 1H), 1.78-1.71 (m, 2H), 1.69-1.55 (m, 3H),
1.52-1.44 (m, 3H), 1.30 (s, 3H), 1.16/1.14 (s, 3H); >C NMR (75 MHz, CDCl;) & 142.6, 142.6,
142.3, 142.2, 128.9, 128.8, 128.7, 128.6, 128.4, 126.6, 126.5, 83.3, 83.1, 63.6, 63.0, 63.0, 61.4,
61.2, 61.0, 60.8, 58.2, 57.8, 56.2, 56.0, 36.1, 34.0, 33.7, 27.6, 27.1, 24.7, 16.9, 16.5, 16.4; IR

(neat) 3438, 3026, 2929, 1495, 1452, 1385, 1100, 1032, 746, 704 cm™'; HRMS (ESI): m/z calcd

for CgH3;0;Na [M+Na]" 433.2355, found 433.2346; [o]p = +19.3 (CHCL, ¢ 1.55).
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tert-Butyl ((2S,3S)-3-(2-((2R,3R)-3-(3-methoxy-4,4-diphenylbutyl)-3-methyloxiran-2-yl)eth-
yD)-3-methyloxiran-2-yl)methyl carbonate (1.52)
o To a solution of diepoxy alcohol A23 (145.1 mg,

Ph,CH g 2
? *~ 70" "O'BU (0.353 mmol) in anhydrous toluene (3.5 mL) at 0

OMe
°C were added 1-methylimidazole (28 pL, 0.353 mmol) and Boc,O (154 mg, 0.706 mmol). The
reaction mixture was stirred overnight, allowing the temperature to warm to room temperature
slowly. The reaction was quenched with water (15 mL) and extracted with CH,Cl, (3 x 25 mL).
The organic extracts were dried over MgSOy, filtered and concentrated. The residue was purified
by flash chromatography (20% - 25% EtOAc in hexanes containing 0.5% Et;N) to give the fert-
butyl carbonate 1.52 (154.8 mg, 85.8%, dr ~ 1:1 regarding the stereochemical outcomes of the
homobenzylic center and the two epoxide groups) as a colorless oil: 'H NMR (300 MHz, CDCl5)
0 7.41-7.18 (m, 10H), 4.29-4.21 (m, 1H), 4.19-4.11 (m, 1H), 4.02-3.92 (m, 2H), 3.18/3.17 (s,
3H), 3.04 (dd, J = 6.2, 4.8 Hz, 1H), 2.63-2.59 (m, 1H), 1.82-1.40 (m, 8H), 1.53 (s, 9H), 1.32 (s,
3H), 1.17/1.15 (s, 3H); °C NMR (75 MHz, CDCls) & 153.5, 142.7, 142.4, 142.2, 129.0, 128.7,
128.6, 128.4, 126.6, 126.4, 83.3, 82.7, 65.6, 63.1, 62.7, 60.9, 60.3, 59.8, 58.1, 57.8, 56.3, 56.1,
35.2,33.9, 33.8, 27.9, 27.6, 27.3, 24.5, 16.9, 16.8, 16.4; IR (neat) 2977, 2932, 1742, 1495, 1453,

1370, 1279, 1256, 1163, 1097, 858, 704 cm'l; HRMS (ESI): m/z caled for C3;H4,06Na [M+Na]"

533.2879, found 533.2857; [a]p = +1.3 (CHCL, ¢ 2.15).

(5E,9E)-11-(tert-Butyldimethylsilanyloxy)-5,9-dimethylundeca-5,9-dienal (1.64)

(Methoxymethyl)triphenylphosphonium chloride (1.656

0]
/LK/\)\/\)\A ' :
H OTBS g, 4.830 mmol) in a dry flask under high vacuum was

heated with heat gun for 3 min to remove the moisture. After the flask was cooled to room
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temperature, THF (8.0 mL) was added in and the suspension was cooled to 0 °C. NaHMDS (1 M
in THF, 4.83 mL, 4.83 mmol) was added dropwise and the resulting deep orange suspension was
stirred at 0 °C for 1 h. Dienal 1.62 (0.500 g, 1.61 mmol, dissolved in 2.0 mL of THF) was added
dropwise and the flask formerly containing the aldehyde was rinsed with THF (2 x 1.0 mL). The
reaction mixture was stirred at 0 °C for 1 h, then quenched with saturated NaHCO; (10 mL) and
poured into water (20 mL). The mixture was extracted with Et,0O (3 x 30 mL). The organic
extracts were dried over MgSOy, filtered and concentrated. The residue was purified by flash
chromatography (3.5% EtOAc in hexanes) to give the methyl vinyl ether.

The methyl vinyl ether in THF-H,O (10:1, 16.5 mL) was treated with Hg(OAc), (0.558 g, 1.65
mmol). The reaction mixture was stirred for 30 min and saturated KI (30 mL) was added. The
resulting yellowish green mixture was stirred for 1 h, then diluted with Et;O (30 mL). The two
layers were separated and the aqueous layer was extracted with Et;O (2 x 40 mL). The
combination of the organic extracts were dried over MgSQO,, filtered and concentrated. The
residue was purified by flash chromatography (3% - 5% EtOAc in hexanes) to give the titled
aldehyde (0.474 g, 90.7%) as a colorless oil: 'H NMR (300 MHz, CDCl3) & 9.77 (t, J = 1.7 Hz,
1H), 5.30 (qt, /= 6.3, 1.1 Hz, 1H), 5.12 (qt, J = 6.9, 1.1 Hz, 1H), 4.20 (d, J = 6.3 Hz, 2H), 2.39
(dt,J=17.3, 1.7 Hz, 2H), 2.17-2.08 (m, 2H), 2.01 (app t, J = 7.9 Hz, 4H), 1.74 (pent, J = 7.3 Hz,
2H), 1.62 (s, 3H), 1.59 (s, 3H), 0.91 (s, 9H), 0.07 (s, 6H); *C NMR (75 MHz, CDCls) & 202.8,
136.9, 134.2, 125.5, 124.8, 60.5, 43.4, 39.6, 39.0, 26.4, 26.2, 20.4, 18.6, 16.5, 15.9, -4.8; IR
(neat) 2929, 2856, 2712, 1728, 1472, 1386, 1254, 1110, 1068, 836, 776 cm™; HRMS (ESI): m/z

calcd for C19H360,SiNa [MJrNa]+ 347.2382, found 347.2402.
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(6E,10E)-12-(tert-Butyldimethylsilanyloxy)-6,10-dimethyl-1,1-diphenyldodeca-6,10-dien-2-
ol (A24)
thCH\(\/\K\/\K\/OTBS A solution of diphenylmethane (0.66 mL, 3.93
OH mmol) in THF (3.9 mL) was treated with n-BuLi
(1.6 M in hexanes, 2.46 mL, 3.93 mmol) and the resulting deep-orange solution was refluxed for
1 h. After cooling to room temperature, the solution was cooled further to 0 °C and the above
aldehyde 1.64 (0.426 g, 1.31 mmol, dissolved in 1.0 mL of THF) was added dropwise. The flask
formerly containing the aldehyde was rinsed with THF (2 x 0.5 mL). The deep-orange solution
was stirred at 0 °C for 2 h, then quenched with saturated NaHCO; (5 mL). The biphasic mixture
was poured into water (25 mL) and extracted with Et;O (3 x 25 mL). The combined organic
extracts were dried over MgSOy, filtered and concentrated. The residue was purified by flash
chromatography (3% - 9% EtOAc in hexanes) to give the secondary alcohol A24 (0.519 g,
80.3%) as a colorless oil: '"H NMR (300 MHz, CDCl;) & 7.38-7.13 (m, 10H), 5.28 (qt, J = 6.3,
1.1 Hz, 1H), 5.03 (qt, /= 6.9, 1.0 Hz, 1H), 4.37-4.29 (m, 1H), 4.18 (d, /= 6.3 Hz, 2H), 3.86 (d, J
= 8.3 Hz, 1H), 2.08-2.00 (m, 2H), 1.96-1.85 (m, 4H), 1.60 (s, 3H), 1.52 (s, 3H), 1.69-1.30 (m,
4H), 0.89 (s, 9H), 0.06 (s, 6H); >°C NMR (75 MHz, CDCls) & 142.8, 141.7, 137.1, 135.2, 129.0,
129.0, 128.8, 128.5, 127.0, 126.7, 124.6, 124.3, 73.9, 60.6, 59.0, 39.7, 39.6, 34.8, 26.5, 26.2,
24.2, 18.6, 16.6, 16.0, -4.8; IR (neat) 3467, 2928, 2856, 1599, 1494, 1451, 1384, 1253, 1107,
1065, 1005, 835, 775, 702 cm'l; HRMS (ESI): m/z calcd for C3,Hy30,SiNa [M+Na]™ 515.3321,

found 515.3317.

(2E,6E)-11-Methoxy-3,7-dimethyl-12,12-diphenyldodeca-2,6-dien-1-ol (1.65)

PhZCH\(\/\K\/\K\/OH The secondary alcohol A24 (0.473 g, 0.960 mmol) in
OMe
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anhydrous DMF (5.0 mL) at 0 °C was treated with NaH (60% dispersion in mineral oil, 96.0 mg,
2.40 mmol) and the yellow suspension was stirred at 0 °C for 30 min. Mel (0.24 mL, 3.84 mmol)
was added dropwise and the reaction mixture was stirred for 2.5 h at room temperature. The
reaction was quenched with water (10 mL) and extracted with Et;O (3 x 30 mL). The organic
extracts were dried over MgSQy, filtered and concentrated. The residue was dissolved in THF
(5.0 mL) and TBAF monohydrate (0.301 g, 1.15 mmol) was added in. The yellow solution was
stirred for 2 h and then concentrated in vacuo. The residue was purified by flash chromatography
(20% - 30% EtOAc in hexanes) to give the dienol 1.65 (0.368 g, 97.5%) as a colorless oil: 'H
NMR (300 MHz, CDCls) & 7.40-7.16 (m, 10H), 5.40 (qt, J = 6.9, 1.2 Hz, 1H), 5.05 (qt, J = 6.8,
1.0 Hz, 1H), 4.16 (d, J = 6.8 Hz, 2H), 4.02 (d, J = 8.3 Hz, 1H), 3.94-3.88 (m, 1H), 3.18 (s, 3H),
2.13-1.98 (m, 4H), 1.93-1.90 (m, 2H), 1.68 (s, 3H), 1.54 (s, 3H), 1.58-1.30 (m, 4H); °C NMR
(75 MHz, CDCl3) 6 143.1, 142.6, 139.7, 135.4, 129.1, 128.7, 128.6, 128.4, 126.5, 126.4, 124.2,
123.7, 83.8, 59.6, 58.0, 56.3, 39.8, 39.7, 31.7, 26.4, 23.4, 16.4, 16.0; IR (neat) 3388, 3026, 2931,
1667, 1599, 1495, 1451, 1382, 1186, 1102, 1003, 745, 703 cm™; HRMS (ESI): m/z calcd for

Cy7H360,Na [M+Na]™ 415.2613, found 415.2607.

((2R,3R)-3-(2-((2R,3R)-3-(4-methoxy-5,5-diphenylpentyl)-3-methyloxiran-2-yl)ethyl)-3-
methyloxiran-2-yl)methanol (A25)

Ph,CH OH To a solution of monoepoxy alcohol A24 (112 mg,

OMe 0.287 mmol) in CH3;CN/DMM (4.3 mL, 1:2, v/v) were

added a 0.05 M solution of Na;B407 in 4x10* M Nay(EDTA) (2.9 mL), BuyNHSO, (7.8 mg,
22.9 umol) and Shi ketone (74 mg, 0.287 mmol) sequentially. The mixture was cooled to 0 °C,

and the Oxone (486 mg, 0.791 mmol), dissolved in 4x10™* M Nay(EDTA) (3.7 mL), and K,COs
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(460 mg, 3.32 mmol), dissolved in water (3.7 mL), were added simultaneously via a syringe
pump over 1.5 h. After the addition was completed, the blue reaction mixture was stirred further
for 15 min at 0 °C, then diluted with water (20 mL) and extracted with CH,Cl, (3 x 30 mL). The
organic extracts were dried over MgSQ,, filtered and concentrated. The residue was purified by
flash chromatography (35% - 85% EtOAc in hexanes containing 0.5% Et;N) to give diepoxy
alcohol A25 (78 mg, 64%, dr ~ 1:1 regarding the stereochemical outcomes of the homobenzylic
center and the two epoxide groups) as a colorless oil: '"H NMR (300 MHz, CDCls) & 7.62-7.16
(m, 10H), 4.00 (J = 8.4 Hz, 1H), 3.92-3.83 (m, 1H), 3.82-3.79 (m, 1H), 3.75-3.64 (m, 1H),
3.17/3.16 (s, 3H), 3.01-2.96 (m, 1H), 2.68-2.63 (m, 1H), 1.96-1.70 (m, 2H), 1.64-1.40 (m, 8H),
1.33 (s, 3H), 1.20/1.19 (s, 3H); °C NMR (75 MHz, CDCl3) & 142.8, 142.4, 128.9, 128.9, 128.7,
128.6, 128.4, 126.6, 126.4, 83.6, 63.0, 62.9, 62.6, 61.4, 61.2, 61.1, 60.7, 58.1, 58.0, 56.2, 38.8,
38.7,35.2,32.1, 24.4, 20.8, 20.7, 17.0, 16.5, 16.5; IR (neat) 3433, 2930, 1599, 1495, 1452, 1386,

1102, 1032, 734, 704 cm™.

tert-Butyl ((2R,3R)-3-(2-((2R,3R)-3-(4-methoxy-5,5-diphenylpentyl)-3-methyloxiran-2-yl)et-
hyl)-3-methyloxiran-2-yl)methyl carbonate (1.53)

The diepoxy alcohol A25 (74 mg, 0.174 mmol)

Ph,CH O.__O'Bu

OMe o was dissolved in dry toluene (1.7 mL) and
cooled to 0 °C. N-Methylimidazole (18 pL, 0.226 mmol) and Boc,O (152 mg, 0.696 mmol) were
added sequentially. The reaction mixture was stirred overnight, allowing the temperature to
warm to room temperature slowly. The reaction was quenched with water (10 mL) and extracted

with CH,Cl, (3 x 20 mL). The extracts were dried over MgSQOy, filtered and concentrated. The

residue was purified by column chromatography (20% - 25% EtOAc in hexanes containing 0.5%
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Et;N) to give the desired product 1.53 (72 mg, 78%, dr ~ 1:1 regarding the stereochemical
outcomes of the homobenzylic center and the two epoxide groups) as a colorless oil: 'H NMR
(300 MHz, CDCl3) 6 7.41-7.18 (m, 10H), 4.30-4.14 (m, 2H), 4.02 (d, J = 8.4 Hz, 1H), 3.98-3.85
(m, 1H), 3.19/3.18 (s, 3H), 3.05 (t, J = 5.7 Hz, 1H), 2.66-2.63 (m, 1H), 1.81-1.39 (m, 8H), 1.52
(s, 9H), 1.35 (s, 3H), 1.20/1.19 (s, 3H); °C NMR (75 MHz, CDCl;) & 153.5, 142.9, 142.5, 142.4,
129.0, 128.9, 128.7, 128.6, 128.4, 126.6, 126.4, 83.7, 83.6, 82.7, 65.6, 62.9, 62.8, 61.0, 60.3,
59.3, 58.1, 58.0, 56.3, 38.8, 38.8, 34.8, 32.2, 27.9, 24.4, 20.9, 20.8, 17.1, 16.5, 16.5; IR (neat)
3026, 2934, 1743, 1495, 1453, 1370, 1279, 1256, 1163, 1098, 859, 747, 705 cm™'; HRMS (ESI):

m/z caled for C3Ha406Na [M+Na]" 547.3036, found 547.3002; [o]p = +11.0 (CHCls, ¢ 2.01).

((2S,3S)-3-((E)-8-Methoxy-4-methyl-9,9-diphenylnon-3-enyl)-3-methyloxiran-2-yl)methanol
(A26)
PhZCH\(\/\K\/\Kl\/OH A suspension of the activated 4A molecular sieves
OMe 7 powder (115.0 mg) in CH,Cl, (3.3 mL) was treated
with (+)-diisopropyl tartrate (9.6 puL, 45.8 umol) and the mixture was cooled to -35 to -30 °C.
The mixture was stirred for 10 min and Ti(O-i-Pr)s (11.4 pL, 38.2 pmol) was added and the
mixture was stirred for 15 min more. After that time, #-butyl hydroperoxide (5.0-6.0 M in decane,
0.23 mL, ~1.15 mmol) was added dropwise and the mixture was stirred for 30 min. Dienol 1.65
(150.0 mg, 0.382 mmol, dissolved in 1.0 mL of CH,Cl,) was added dropwise and the flask
formerly containing the allylic alcohol was rinsed with CH,Cl, (2 x 0.5 mL). The reaction
mixture was stirred at -35 to -30 °C for 1.5 h and then water (0.6 mL) was added. The mixture
was allowed to warm up to 0 °C and stirred for 1 h. A solution of 30% of NaOH saturated with

NaCl (0.2 mL) was added and the mixture was warmed up to room temperature and stirred for
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1.5 h. The suspension was filtered through a pad of Celite and the filtrate was dried over MgSOs,
filtered and concentrated. The residue was purified by flash chromatography (30% - 40% EtOAc
in hexanes) to give the monoepoxy alcohol A26 (156.0 mg, 97.3%) as a colorless oil: '"H NMR
(300 MHz, CDCls) 6 7.44-7.23 (m, 10H), 5.09 (t, /= 6.6 Hz, 1H), 4.06 (d, J = 8.3 Hz, 1H), 3.99-
3.93 (m, 1H), 3.86-3.83 (m, 1H), 3.70 (dd, J = 12.0, 6.6 Hz, 1H), 3.22 (s, 3H), 3.02-2.99 (m,
1H), 2.46 (br s, 1H), 2.10 (q, J = 7.7 Hz, 2H), 1.96-1.91 (m, 2H), 1.72-1.43 (m, 6H), 1.59 (s,
3H), 1.33 (s, 3H); °C NMR (75 MHz, CDCl;) & 143.0, 142.5, 135.7, 128.9, 128.6, 128.3, 126.4,
126.3, 123.5, 83.6, 63.2, 61.5, 61.2, 57.9, 56.2, 39.6, 38.6, 31.6, 23.6, 23.2, 16.9, 15.9; IR (neat)
3425, 3027, 2934, 1599, 1495, 1452, 1385, 1103, 1032, 910, 733, 703 cm™'; HRMS (ESI): m/z

caled for Co7H3605Na [M+Na]" 431.2562, found 431.2556; [o]p = -3.8 (CHCL, ¢ 1.17).

tert-Butyl ((2S,3S)-3-(2-((2R,3R)-3-(4-methoxy-5,5-diphenylpentyl)-3-methyloxiran-2-yl)et-
hyl)-3-methyloxiran-2-yl)methyl carbonate (1.54)
Ph,CH O. _OBu A solution of monoepoxy alcohol A26 (145.0
OMe © ° o mg, 0.3549 mmol) in CH;CN/DMM (5.3 mL,
1:2, v/v) was treated a 0.05 M solution of Na,B40; in 4x10* M Nay(EDTA) (3.5 mL),
Buy,NHSO4 (4.8 mg, 14.2 umol) and Shi ketone (45.8 mg, 0.177 mmol) sequentially. The
mixture was cooled to 0 °C, and the Oxone (301 mg, 0.490 mmol), dissolved in 4x10* M
Nay(EDTA) (2.3 mL), and K,CO; (284 mg, 2.06 mmol), dissolved in water (2.3 mL), were
added simultaneously via a syringe pump over 2.0 h. After the addition was completed, the blue
reaction mixture was stirred further for 15 min at 0 °C, then diluted with water (5 mL) and

extracted with CH,Cl, (3 x 25 mL). The organic extracts were dried over MgSQOy,, filtered and

concentrated. The residue was dissolved in dry toluene (3.5 mL) and cooled to 0 °C. N-
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Methylimidazole (36.8 pL, 0.4614 mmol) and Boc,O (232 mg, 1.06 mmol) were added
sequentially. The reaction mixture was stirred overnight, allowing the temperature to warm to
room temperature slowly. The reaction was quenched with water (5 mL) and extracted with
CH,Cl; (3 x 20 mL). The extracts were dried over MgSQy, filtered and concentrated. The residue
was azeotroped with hexanes (3 x 20 mL) to removed -BuOH and the residue was purified by
column chromatography (12% - 24% EtOAc in hexanes containing 0.5% Et;N) to give the
desired product 1.54 (153.5 mg, 82.4%, dr ~ 1:1 regarding the stereochemical outcomes of the
homobenzylic center and the two epoxide groups) as a colorless oil: 'H NMR (300 MHz, CDCl5)
0 7.43-7.20 (m, 10H), 4.29 (dd, J=11.9, 4.8 Hz, 1H), 4.17 (dd, J=11.9, 6.3 Hz, 1H), 4.04 (d, J
= 8.4 Hz, 1H), 3.99-3.90 (m, 1H), 3.20/3.19 (s, 3H), 3.07 (t, /= 5.3 Hz, 1H), 2.67-2.62 (m, 1H),
1.77-1.42 (m, 10H), 1.54 (s, 9H), 1.35 (s, 3H), 1.22 (br s, 3H); °C NMR (75 MHz, CDCl;) &
153.4, 142.8, 142.4, 142.4, 128.9, 128.8, 128.6, 128.5, 128.3, 126.5, 126.4, 83.5, 83.5, 82.6, 65.6,
63.0, 62.9, 60.8, 60.8, 60.3, 59.7, 58.0, 57.9, 56.2, 38.7, 38.7, 35.1, 32.1, 27.8, 24.4, 20.8, 20.6,
16.8, 16.5, 16.4; IR (neat) 2979, 2935, 1743, 1495, 1453, 1370, 1279, 1163, 1098, 912, 859, 733,
704 cm'l; HRMS (ESI): m/z calcd for C3;H4406Na [MJrNa]+ 547.3036, found 547.3031; [a]p =

+0.5 (CHCL, ¢ 1.21).

6,6-Diphenylhexane-1,5-diol (A27)

Ph,CH \(\/\/OH In a round-bottomed flask, the d—valerolactone (1.82 mL, 20.0 mmol)
OH

in CH,Cl, (20.0 mL) at -78 °C was treated dropwise with DIBAL-H (1

M in hexanes, 22.0 mL, 22.0 mmol). The mixture was stirred at -78 °C for 1h, then quenched

with saturated sodium tartrate (80 mL) and extracted with Et;O (3 x 100 mL). The extracts were
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dried over MgSOy, filtered and concentrated. The crude lactol was used in the next step without
further purification.

In another two-necked round-bottomed flask, diphenylmethane (13.4 mL, 80.0 mmol) in THF
(50.0 mL) was treated dropwise with n-BuLi (1.6 M in hexanes, 50.0 mL, 80.0 mmol). The
resulting deep orange solution was refluxed for 1 h and then cooled to 0 °C. The as-prepared
crude lactol (dissolved in 5 mL THF) was added dropwise and the flask formerly containing the
lactol was rinsed with THF (2 x 1.5 mL). The deep-orange mixture was stirred at 0 °C for 0.5 h,
then quenched with saturated NH4Cl (80 mL) and extracted with Et,0 (3 x 100 mL). The
combined extracts were dried over MgSO4 and evaporated. The resulting residue was purified by
column chromatography (40% - 80% EtOAc in hexanes) to give the diol A27 (4.42 g, 81.8%) as
a white solid: 'H NMR (300 MHz, CDCl3) § 7.57-7.18 (m, 10H), 4.38 (app t, J = 8.0 Hz, 1H),
3.90 (d, J = 8.5 Hz, 1H), 3.59 (t, /= 5.7 Hz, 2H), 1.88 (br s, 1H), 1.81 (br s, 1H), 1.67-1.42 (m,
6H); °C NMR (75 MHz, CDCls) & 142.6, 141.7, 129.0, 129.0, 128.8, 128.4, 127.0, 126.7, 73.9,
62.7, 59.0, 34.6, 32.6, 22.0; IR (neat) 3358, 3023, 2948, 1596, 1493, 1450, 1345, 1039, 696 cm';

HRMS (ESI): m/z caled for C1gH»,0,Na [M+Na]" 293.1517, found 293.1537.

6-(1-Phenyl-1H-tetrazol-5-ylthio)-1,1-diphenylhexan-2-ol (A28)

ph At 0 °C, to a mixture of diol A27 (1.000 g, 3.699 mmol), 1-

/

Ph,CH S N.

? \(\/\/ \« N phenyl-1H-tetrazole-5-thiol (0.791 g, 4.44 mmol) and Ph;P
OH N—N

(1.164 g, 4.44 mmol) in THF (30.0 mL) was added dropwise diisopropyl azodicarboxylate (0.82

mL, 4.07 mmol). The mixture was warmed to room temperature and stirred for 20 min. The

reaction was quenched with water (60 mL) and extracted with Et;O (3 x 70 mL). The organic

extracts were dried over MgSO, and evaporated. The resulting residue was purified by column
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chromatography (25% - 40% EtOAc in hexanes) to give the crude product which was further
purified by column chromatography (3.5% Et,O in CH,Cl,) to give A28 (1.542 g, 96.8%) as a
colorless oil: 'H NMR (300 MHz, CDCl3) & 7.60-7.50 (m, 5H), 7.40-7.15 (m, 10H), 4.39-4.33
(m, 1H), 3.86 (d, J = 8.5 Hz, 1H), 3.35 (t, J = 7.1 Hz, 2H), 1.86-1.38 (m, 6H); °C NMR (75
MHz, CDCls) & 154.6, 142.4, 141.5, 133.8, 130.2, 129.9, 129.0, 128.9, 128.8, 128.3, 127.0,
126.8, 124.0, 73.6, 59.1, 34.4, 33.4, 29.1, 25.0; IR (neat) 3439, 3026, 2942, 1597, 1499, 1451,
1387, 1243, 1088, 1015, 910, 760, 733, 704 cm™'; HRMS (ESI): m/z calcd for CpsHasN4OSNa

[M+Na]" 453.1725, found 453.1705.

5-(5-Methoxy-6,6-diphenylhexylthio)-1-phenyl-1H-tetrazole (A29)
Ph  The secondary alcohol A28 (1.444 g, 3.354 mmol) in anhydrous

Ph,CH SN,
Ylll— NN DMF (17.0 mL) at 0 °C was treated with NaH (60% dispersion

OMe
in mineral oil, 0.335 g, 8.38 mmol) and the yellow suspension was stirred at 0 °C for 30 min.
Mel (0.84 mL, 13.42 mmol) was added dropwise and the reaction mixture was stirred for 4 h at
room temperature. The reaction was quenched with water (60 mL) and extracted with Et,O (3 x
50 mL). The organic extracts were dried over MgSOy, filtered and concentrated. The residue was
purified by flash chromatography (13% - 20% EtOAc in hexanes) to give the desired product
A29 (1.268 g, 85.0%) as a pale yellow oil: 'H NMR (300 MHz, CDCl;) & 7.59-7.56 (m, 5H),
7.38-7.17 (m, 10H), 3.98 (d, /= 8.4 Hz, 1H), 3.93-3.88 (m, 1H), 3.34 (t,J = 7.2 Hz, 2H), 3.15 (s,
3H), 1.86-1.70 (m, 2H), 1.65-1.40 (m, 4H); °*C NMR (75 MHz, CDCl;) & 154.6, 142.8, 142.4,
133.9, 130.2, 129.9, 128.9, 128.7, 128.6, 128.4, 126.6, 126.4, 124.0, 83.5, 58.1, 56.3, 33.4, 31.7,

29.3, 24.2; IR (neat) 3026, 2938, 1597, 1498, 1451, 1386, 1242, 1102, 759, 697 cm™'; HRMS

(ESI): m/z caled for CogH,sN4OSNa [M+Na]™ 467.1882, found 467.1876.
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5-(5-Methoxy-6,6-diphenylhexylsulfonyl)-1-phenyl-1H-tetrazole (1.66)
0, Ph At 0 °C, NaHCOs3 (312 mg, 3.71 mmol) was added to a solution

Ph,CH SN,
\(Ill— 'QN of the thioether A29 (330 mg, 0.742 mmol) in CH,Cl, (10.0 mL)

OMe
and then mCPBA (pure, 435 mg, 2.52 mmol) was added in small portions. The mixture was
stirred at 0 °C for 15 min, then at room temperature overnight. The reaction was quenched with
saturated Na,S,0; solution (20 mL), stirred for 30 min and extracted with CH,Cl, (3 x 25 mL).
The extracts were dried over MgSQy, filtered and concentrated. The residue was purified by flash
chromatography (16% - 24% EtOAc in hexanes) to give the desired sulfone 1.66 (336 mg,
95.0%) as a colorless oil: "H NMR (300 MHz, CDCl3) & 7.70-7.60 (m, 5H), 7.38-7.17 (m, 10H),
3.99 (d, J= 8.5 Hz, 1H), 3.94-3.88 (m, 1H), 3.72-3.64 (m, 2H), 3.15 (s, 3H), 1.96-1.84 (m, 2H),
1.68-1.53 (m, 3H), 1.49-1.43 (m, 1H); °C NMR (75 MHz, CDCls) & 153.7, 142.6, 142.3, 133.2,
131.6, 129.9, 128.9, 128.8, 128.6, 128.5, 126.7, 126.6, 125.3, 83.4, 58.2, 56.4, 56.1, 31.7, 23.9,

22.3; IR (neat) 3027, 2934, 2828, 1597, 1496, 1452, 1342, 1153, 1103, 762, 705 cm™'; HRMS

(ESI): m/z caled for Cy6H23N4O3SNa [MJrNa]+ 499.1780, found 499.1787.

((2E,6E)-11-Methoxy-3-methyl-12,12-diphenyldodeca-2,6-dienyloxy)(tert-butyl)dimethyl-
silane (A30)
PhZCHWOTBS A solution of sulfone 1.66 (300 mg, 0.630 mmol,
OMe . . . .
azeotropically dried with benzene) in anhydrous 1,2-
dimethoxyethane (3.8 mL) at -78 °C was treated dropwise with KHMDS (0.5 M in 1,2-
dimethoxyethane, 1.51 mL, 0.755 mmol) and the resulting yellow mixture was stirred at this

temperature for 1 h. After that time, aldehyde 1.60 (183 mg, 0.755 mmol, dissolved in 0.5 mL of
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1,2-dimethoxyethane) was added dropwise. The reaction mixture was stirred at -78 °C for 1.5 h,
then at room temperature overnight. The reaction was quenched with saturated NH4Cl solution (5
mL), poured onto water (10 mL) and extracted with Et;O (3 x 30 mL). The extracts were dried
over MgSQy, filtered and concentrated. The residue was purified by flash chromatography (2% -
3% EtOAc in hexanes) to give the desired diene A30 (196.4 mg, 63.3%) as a pale yellow oil: 'H
NMR (500 MHz, CDCls) 6 7.38-7.17 (m, 10H), 5.35-5.33 (m, 2H), 5.30 (qt, /= 6.3, 1.0 Hz, 1H),
4.20 (d, J= 6.3 Hz, 1H), 4.00 (d, J = 8.2 Hz, 1H), 3.91-3.88 (m, 1H), 3.17 (s, 3H), 2.09-2.05 (m,
2H), 2.20-1.99 (m, 2H), 1.92-1.91 (m, 2H), 1.61 (s, 3H), 1.52-1.48 (m, 2H), 1.45-1.40 (m, 2H),
0.92 (s, 9H), 0.08 (s, 9H); °C NMR (75 MHz, CDCl3) § 143.2, 142.6, 136.9, 130.4, 130.3,
129.1, 128.7, 128.6, 128.4, 126.5, 126.4, 124.7, 83.8, 60.5, 58.0, 56.3, 39.8, 32.7, 31.7, 31.1,
26.2, 25.2, 18.6, 16.6, -4.8; IR (neat) 3027, 2928, 2855, 1599, 1495, 1451, 1381, 1254, 1105,
1062, 836, 775, 701 cm™'; HRMS (ED): m/z calcd for CagH300Si (M-C4Ho) ™ 435.2719, found

435.2706.

(2E,6E)-11-Methoxy-3-methyl-12,12-diphenyldodeca-2,6-dien-1-ol (A31)
PthH\(\/\/\/\K\/OH To a solution of silyl ether A30 (196.4 mg, 0.398
OMe mmol) in THF (4.0 mL) was added TBAF
monohydrate (125 mg, 0.478 mmol). The yellow solution was stirred for 1.5 h and the
concentrated. The resulting residue was purified by flash chromatography (20% - 30% EtOAc in
hexanes) to give the allylic alcohol A31 (143.1 mg, 94.8%) as a colorless oil: 'H NMR (300
MHz, CDCls) 6 7.49-7.18 (m, 10H), 5.44-5.36 (m, 3H), 4.15 (d, /= 6.8 Hz, 2H), 4.04 (d, J=8.3
Hz, 1H), 3.96-3.91 (m, 1H), 3.19 (s, 3H), 2.14-2.02 (m, 4H), 2.00-1.90 (m, 2H), 1.75 (br s, 1H),

1.68 (s, 3H), 1.60-1.39 (m, 4H); '*C NMR (75 MHz, CDCl3) § 143.0, 142.5, 139.1, 130.4, 130.0,
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129.0, 128.6, 128.3, 126.4, 126.3, 123.8, 83.7, 59.3, 57.9, 56.2, 39.6, 32.6, 31.6, 30.9, 25.0, 16.4;
IR (neat) 3390, 3026, 2930, 1599, 1495, 1451, 1101, 1003, 969, 745, 703 cm™'; HRMS (ESI):

m/z caled for CysH340,Na [M+Na]Jr 401.2457, found 401.2464.

((2R,3R)-3-(2-((2R,3R)-3-(4-Methoxy-5,5-diphenylpentyl)oxiran-2-yl)ethyl)-3-methyloxiran-
2-yl)methanol (A32)

Ph,CH OH To a solution of dienol A31(100.0 mg, 0.264 mmol) in

OMe CH3;CN/DMM (7.9 mL, 1:2, v/v) were added a 0.05 M

solution of Na,B407 in 4x10™* M Nay(EDTA) (5.3 mL), BuyNHSOy4 (7.2 mg, 21.1 umol) and Shi
ketone (102 mg, 0.396 mmol) sequentially. The mixture was cooled to -5 °C, and the Oxone
(672 mg, 1.09 mmol), dissolved in 4x10* M Nay(EDTA) (3.4 mL), and K,CO3 (635 mg, 4.59
mmol), dissolved in water (3.4 mL), were added simultaneously via a syringe pump over 2.0 h.
After the addition was completed, the slightly blue reaction mixture was stirred further for 15
min at 0 °C, then diluted with water (10 mL) and extracted with CH,Cl, (4 x 20 mL). The
organic extracts were dried over MgSQ,, filtered and concentrated. The residue was purified by
flash chromatography (50% - 70% EtOAc in hexanes) to give the diepoxy alcohol A32 (101.9
mg, 94.0%, dr ~ 1:1 regarding the stereochemical outcomes of the homobenzylic center and the
two epoxide groups) as a colorless oil: 'H NMR (300 MHz, CDCls) & 7.39-7.15 (m, 10H), 4.01
(d, /= 8.4 Hz, 1H), 3.94-3.89 (m, 1H), 3.79 (dd, J=12.1, 4.7 Hz, 1H), 3.69 (dd, J=12.0, 6.3 Hz,
1H), 3.17/3.16 (s, 3H), 2.98-2.95 (m, 1H), 2.66-2.60 (m, 2H), 1.86-1.46 (m, 10H), 1.3 (s, 3H);
C NMR (75 MHz, CDCl3) & 142.8, 142.4, 128.9, 128.7, 128.6, 128.4, 126.5, 126.4, 83.6, 62.6,

61.4, 60.7, 58.9, 58.8, 58.3, 58.2, 58.1, 58.0, 56.2, 34.5, 32.1, 32.0, 27.6, 21.6, 17.1; IR (neat)
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3426, 2934, 1495, 1452, 1097, 1032, 732, 704 cm™'; HRMS (EI): m/z caled for CosH3404 (M™)

410.2457, found 410.2447; [a]p = +14.3 (CHCls, ¢ 1.20).

tert-Butyl ((2R,3R)-3-(2-((2R,3R)-3-(4-methoxy-5,5-diphenylpentyl)oxiran-2-yl)ethyl)-3-me-
thyloxiran-2-yl)methyl carbonate (1.55)

0. 0By A solution of diepoxy alcohol A32 (99.2 mg,

b

OMe o) 0.242 mmol) in toluene (2.4 mL) at 0 °C was

Ph,CH

added 1-Methylimidazole (19 pL, 0.24 mmol) and Boc,O (106 mg, 0.484 mmol) sequentially.
The reaction mixture was stirred overnight, allowing the temperature to warm to room
temperature slowly. After that time, the reaction was quenched with water (10 mL) and extracted
with CH,Cl, (3 x 25 mL). The extracts were dried over MgSQ,, filtered and concentrated. The
residue was azeotroped with hexanes (2 x 20 mL) to remove ~-BuOH and the residue was
purified by column chromatography (16% - 20% EtOAc in hexanes containing 0.5% Et;N) to
give the desired product 1.55 (102.0 mg, 82.6%, dr ~ 1:1 regarding the stereochemical outcomes
of the homobenzylic center and the two epoxide groups) as a colorless oil: "H NMR (300 MHz,
CDCl) 6 7.39-7.17 (m, 10H), 4.22 (dd, J = 11.8, 4.7 Hz, 1H), 4.14 (dd, J = 11.9, 6.0 Hz, 1H),
4.00 (d, J = 8.3 Hz, 1H), 3.93-3.88 (m, 1H), 3.17/3.16 (s, 3H), 3.02 (t, /= 5.4 Hz, 1H), 2.64-2.60
(m, 2H), 1.75-1.44 (m, 10H), 1.50 (s, 9H), 1.32 (s, 3H); *C NMR (75 MHz, CDCls)  153.5,
142.9, 142.4, 129.0, 128.7, 128.6, 128.4, 126.6, 126.4, 83.7, 82.8, 65.6, 60.2, 59.3, 58.8, 58.8,
58.2,58.1,56.3,34.2,32.2,27.9,27.6,21.7, 17.1; IR (neat) 2978, 2934, 1743, 1495, 1453, 1370,
1279, 1256, 1163, 1097, 859, 746, 704 cm'l; HRMS (ESI): m/z caled for C3;H4,06Na [M+Na]”

533.2879, found 533.2866; [a]p = +19.1 (CHCls, ¢ 1.08).
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(S)-4-((R)-Tetrahydro-5-methoxyfuran-2-yl)-1,3-dioxolan-2-one (1.68)

o To tert-butyl carbonate 1.47 (92.0 mg, 0.223 mmol) in
Meo%ko dichloroethane/toluene (8.6 mL, 5:1, v/v) in borosilicate flask at room
temperature were added the activated 4A molecular sieves (184 mg), anhydrous Na,S,03 (184
mg), NaOAc (184 mg) and N-methylquinolinium hexafluorophosphate (6.4 mg, 22.3 pmol). The
mixture was photoirradiated with gentle air bubbling for 3 h while stirring at room temperature.
The reaction mixture was filtered through a small plug of silica gel and the residue was washed
with Et,0 (40 mL). The filtrate was concentrated and the resulting residue was purified by flash
chromatography (45% - 55% EtOAc in hexanes) to give the product 1.68 (24.8 mg, 59.0%) in a
1.9:1 ratio as a colorless oil: '"H NMR (300 MHz, CDCls) 6 5.04 (dd, J = 4.5, 1.8 Hz, 66% of
1H), 5.01-4.99 (m, 34% of 1H), 4.67-4.46 (m, 2.4H), 4.39-4.20 (m, 1.6H), 3.33/3.32 (s, 3H),
2.26-1.93 (m, 3H), 1.74-1.66 (m, 1H); °C NMR (75 MHz, CDCl;) & 155.1 (minor), 154.9
(major), 105.7 (minor), 105.6 (major), 79.4 (minor), 77.8 (minor), 77.1 (major), 66.8 (major),
66.4 (minor), 55.1 (major), 32.7 (minor), 31.7 (major), 25.9 (minor), 25.5 (major); IR (neat)
2920, 1807, 1464, 1376, 1170, 1088, 1031, 955 cm™; HRMS (EI): m/z caled for C-HoO4 (M-

CH;0) " 157.0501, found 157.0499.

(S)-4-((R)-Tetrahydro-5-oxofuran-2-yl)-1,3-dioxolan-2-one (1.69)

o At 0 °C, the acetal 1.68 (6.4 mg, 34.0 umol) in acetone (1.0 mL) was
OX;AH_H‘/\;\/QO treated with Jones reagent (2.67M, 60 pL, 0.160 mmol). The mixture was
stirred at 0 °C for 1 h, and Jones reagent (2.67M, 60 uL, 0.160 mmol) was added. The mixture

was stirred at 0 °C fro 30 min, then at room temperature for 2 h. After that time, the mixture was

purified by column chromatography (10% - 20% EtOAc in CH,Cl,) to give the lactone 1.69 (4.3
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mg, 74.1%) as a pale yellow solid: "H NMR (300 MHz, CDCl;) 6 4.74 (ddd, J = 8.0, 6.7, 5.8 Hz,
1H), 4.64 (t, J = 8.9 Hz, 1H), 4.65-4.58 (m, 1H), 4.40 (dd, J = 8.9, 5.6 Hz, 1H), 2.68-2.62 (m,
2H), 2.60-2.50 (m, 1H), 2.20-2.10 (m, 1H); °C NMR (75 MHz, CDCl3) & 175.2, 154.0, 78.1,
76.2, 66.7, 27.5, 24.0; IR (neat) 2919, 1778, 1462, 1401, 1328, 1173, 1087, 1048 cm™'; HRMS

(EI): m/z calcd for C7HgOs [M+H]Jr 173.0450, found 173.0455.

To monoepoxide 1.48 (102.0 mg, 0.239 mmol) in dichloroethane/toluene (9.2 mL, 5:1, v/v) in
borosilicate flask at room temperature were added the activated 4A molecular sieves (204 mg),
anhydrous Na,S,0; (204 mg), NaOAc (204 mg) and N-methylquinolinium hexafluorophosphate
(6.9 mg, 23.9 umol). The mixture was photoirradiated with gentle air bubbling for 3 h while
stirring at room temperature. The reaction mixture was filtered through a small plug of silica gel
and the residue was washed with Et,O (50 mL). The filtrate was concentrated and the resulting
yellowish-green residue was dissolved in CH,Cl, (2.0 mL). To this solution were added Et;N
(0.22 mL, 1.6 mmol), Ac,O (57 pL, 0.6 mmol) and DMAP (2.4 mg, 20 umol) sequentially. The
mixture was stirred at room temperature for 3 h, then concentrated and purified by column
chromatography (20% - 50% EtOAc in hexanes) to provide the cyclization products, which were
further purified by column chromatography (4% - 10% EtOAc in CH,Cl,) to give exo-product

1.71 (14.6 mg, 30%, dr = 2:1) and endo-product 1.72 (10.6 mg, 22%, dr = 3.4:1) as colorless oils.

(S)-4-((R)-Tetrahydro-6-methoxy-2H-pyran-2-yl)-1,3-dioxolan-2-one (1.71)

o 'H NMR (300 MHz, CDCl;) & 4.74 (app d, J = 2.5 Hz, 67% of 1H),
MeOJJ\/O?L_H‘/:OkO 4.62-4.45 (m, 3H), 4.37 (dd, J = 9.3, 2.2 Hz, 33% of 1H), 3.96 (ddd, J

=11.8, 4.4, 1.9 Hz, 67% of 1H), 3.66 (ddd, J = 11.2, 5.6, 2.2 Hz, 33% of 1H), 3.46 (s, 33% of
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3H), 3.36 (s, 67% of 3H), 1.98-1.16 (m, 6H); °C NMR (75 MHz, CDCls) § 155.1 (major), 155.0
(minor), 103.4 (minor), 98.4 (major), 78.0 (major), 77.4 (minor), 75.3 (minor), 68.2 (major), 66.4
(minor), 66.1 (major), 56.4 (minor), 55.0 (major), 30.9 (minor), 29.5 (major), 26.6 (minor), 26.5
(major), 21.2 (minor), 17.2 (major); IR (neat) 2952, 2851, 1799, 1389, 1174, 1078, 1031 cm'l;

HRMS (EI): m/z caled for CsH; 104 (M™) 171.0657, found 171.0650.

(4aR,9aS)-Hexahydro-6-methoxy-4H-[1,3]dioxino[5,4-b]oxepin-2-one (1.72)

o o 'HNMR (300 MHz CDCL;) 8 4.74 (t, J = 4.2 Hz, 23% of 1H), 4.66 (dd, J
m = 8.6, 5.7 Hz, 77% of 1H), 4.42 (dd, J = 10.6, 5.8 Hz, 23% of 1H), 4.36-

O Z

MeO H

4.29 (m, 77% of 1H), 4.22-4.06 (m, 2.8H), 3.79 (dt, J = 9.7, 5.8 Hz, 23%
of 1H), 3.42 (s, 23% of 3H), 3.36 (s, 77% of 3H), 2.37-2.14 (m, 3H), 1.96-1.93 (m, 23% of 1H),
1.77-1.42 (m, 5H); BC NMR (75 MHz, CDCl3) ¢ 148.5 (minor), 148.1 (major), 104.9 (minor),
102.8 (major), 81.2 (minor), 80.8 (major), 69.3 (major), 69.2 (minor), 68.2 (minor), 61.5 (major),
56.4 (minor), 55.8 (major), 35.5 (major), 34.2 (major), 33.5 (minor), 27.9 (minor), 17.7 (major),
16.6 (minor); IR (neat) 2943, 1760, 1403, 1382, 1224, 1140, 1057 cm'l; HRMS (EI): m/z calcd
for CgH 104 (M+') 171.0657, found 171.0651; an analytical sample of the major diastereomer
was obtained through purifying the above mixture by column chromatography (35% - 45%
EtOAc in hexanes): '"H NMR (300 MHz, C¢Dg) & 4.02 (dd, J = 8.9, 5.8 Hz, 1H), 3.60 (dd, J =
10.1, 5.5 Hz, 1H), 3.42 (t, J=10.2 Hz, 1H), 3.34-3.27 (m, 2H), 2.85 (s, 3H), 1.76-1.67 (m, 1H),
1.57-1.47 (m, 1H), 1.10 (dddd, J = 15.3, 11.6, 8.9, 1.0 Hz, 1H), 0.95-0.85 (m, 2H), 0.82-0.71

(m, 1H).
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(R)-Tetrahydro-6-((S)-2-oxo0-1,3-dioxolan-4-yl)pyran-2-one (1.73)

11_‘/:0 A solution of acetal 1.71 (6.0 mg, 29.7 pmol) in CH,Cl, (0.6 mL) at 0 °C
0" O4 4 O/\§O was treated with mCPBA (pure, 6.7 mg, 38.6 umol) and BF;°OEt, (4.5
uL, 35.6 umol) sequentially. After stirred at 0 °C for 10 min and then at room temperature for
1.5 h, the mixture was cooled to 0 °C and Et;N (20.7 pL, 148 pmol) was added dropwise. The
mixture was stirred at 0 °C for 1 h, then concentrated, and the resulting residue was purified by
column chromatography (15% - 25% EtOAc in CH,Cl,) to give the desired lactone 1.73 (4.6 mg,
83.6%) as a colorless liquid: '"H NMR (300 MHz, CDCls) & 4.69-4.59 (m, 2H), 4.56-4.41 (m,
2H), 2.69 (dddd, J = 18.0, 6.8, 4.8, 1.1 Hz, 1H), 2.54 (ddd, J = 17.9, 9.3, 7.0 Hz, 1H), 2.24-2.16
(m, 1H), 2.08-1.90 (m, 2H), 1.64 (dtd, J=13.8, 11.0, 5.2 Hz, 1H); >C NMR (75 MHz, CDCl;) &

169.3, 154.2, 79.0, 76.3, 66.9, 29.8, 24.6, 18.2; IR (neat) 2919, 1790, 1732, 1376, 1239, 1166,

1056 cm'l; HRMS (EI): m/z calcd for CgH;¢Os (M+°) 186.0528, found 186.0536.

4-(Tetrahydro-5-methoxy-2-methylfuran-2-yl)-1,3-dioxolan-2-one  (1.76), Hexahydro-6-
methoxy-8a-methylpyrano[3,2-d][1,3]dioxin-2-one (1.77) and (4aR,6S,8aR)-Hexahydro-6-
methoxy-8a-methylpyrano[3,2-d][1,3]dioxin-2-one (1.78)

= o To tert-

WeVsUNe e cr
Ol RO MeO™ 0" Meo" o >0 butyl

H
carbonate 1.49 (125.2 mg, 0.294 mmol) in dichloroethane/toluene (11.3 mL, 5:1, v/v) in

borosilicate flask at room temperature were added the activated 4A molecular sieves (250 mg),
anhydrous Na;S,03 (250 mg), NaOAc (250 mg) and N-methylquinolinium hexafluorophosphate
(8.5 mg, 29.4 pmol). The mixture was photoirradiated with gentle air bubbling for 2.5 h while

stirring at room temperature. The reaction mixture was filtered through a small plug of silica gel
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and the residue was washed with EtOAc (30 mL). The filtrate was concentrated and the resulting
residue was purified by flash chromatography (30% - 45% EtOAc in hexanes) to provide a
mixture of 1.76 and 1.77 (19.7 mg, 33.2%, a pale yellow oil) with a molar ratio of 4.8:1 and cis-
fused endo-product 1.78 (3.8 mg, 8.0%) as a white solid. For the mixture of 1.76 and 1.77: IR
(neat) 2928, 2835, 1791, 1755, 1463, 1375, 1170, 1084, 1034, 951 cm™. For cis-fused endo-
product 1.78: '"H NMR (300 MHz, CDCl;) & 4.78 (app d, J = 2.0 Hz, 1H), 4.66 (dd, J = 12.1, 2.7
Hz, 1H), 4.34 (dd, J=12.1, 0.4 Hz, 1H), 3.86 (app d, J = 2.0 Hz, 1H), 3.41 (s, 3H), 2.12-2.00 (m,
1H), 1.94 (dd, J = 12.8, 4.0 Hz, 1H), 1.87-1.81 (m, 1H), 1.67-1.61 (m, 1H), 1.45 (s, 3H); °C
NMR (75 MHz, CDCl;) & 148.5, 98.3, 78.6, 69.3, 63.2, 55.4, 29.4, 25.3, 25.1; IR (neat) 2932,
1748, 1212, 1178, 1130, 1060, 1024 cm™; HRMS (EI): m/z calcd for CoH,505 [M+H]" 203.0919,

found 203.0929.

(S)-4-((R)-Tetrahydro-2-methyl-5-oxofuran-2-yl)-1,3-dioxolan-2-one (1.79)

o To a solution of the mixture of 1.76 and 1.77 (18.9 mg, 93.5 umol) in
O%)io acetone (3.0 mL) at 0 °C was added Jones reagent (0.3 mL). The mixture
was stirred at 0 °C for 15 min and then at room temperature for 3 h. After that time, the reaction
was quenched with isopropyl alcohol (1 drop), concentrated and purified by column
chromatography (2% - 20% EtOAc in CH,Cl,) to give the unreacted acetal 1.77 (2.9 mg, 15.3%)
as a white solid and the title lactone 1.79 (11.0 mg, ~74.8% based on unreacted acetal): 'H NMR
(300 MHz, CDCls) 6 4.72 (dd, J = 8.4, 6.2 Hz, 1H), 4.57 (t, J = 9.0 Hz, 1H), 4.36 (dd, J = 9.2,
6.1 Hz, 1H), 2.70 (t. J = 8.8 Hz, 2H), 2.34-2.24 (m, 1H), 2.19-2.09 (m, 1H), 1.47 (s, 3H); °C

NMR (75 MHz, CDCl3) 6 175.0, 154.1, 83.9, 78.7, 65.4, 30.0, 28.2, 20.8; IR (neat) 2920, 1789,
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1463, 1267, 1167, 1082 cm’'; HRMS (ED): m/z caled for CsH;;0s [M+H]" 187.0606, found

187.0612.

(4aR,6S,8aS)-Hexahydro-6-methoxy-8a-methylpyrano[3,2-d][1,3]dioxin-2-one (1.77)

b

(ﬁ o 'HNMR (300 MHz, CDCl;) § 4.75-4.71 (app d, J = 2.4 Hz, 1H), 4.37 (dd,
Meo" Nor O J=8.0, 4.4 Hz, 1H), 4.18 (d, J = 8.2 Hz, 1H), 4.16 (d, J = 4.7 Hz, 1H),

H
3.38 (s, 3H), 2.13-2.04 (m, 1H), 1.95-1.76 (m, 3H), 1.50 (s, 3H); *C NMR (75 MHz, CDCl;) &

148.1, 98.3, 77.5, 67.0, 62.7, 55.3, 31.1, 27.8, 17.5; IR (neat) 2917, 1757, 1464, 1196, 1111,

1068 cm'l; HRMS (EI): m/z calcd for CoH;505 [MJrH]+ 203.0919, found 203.0930.

(4aR,9aS)-Hexahydro-6-methoxy-9a-methyl-4H-[1,3]dioxino[5,4-b]oxepin-2-one (1.81)

0. .0 To  tert-butyl carbonate 150 (658 mg, 149 pumol) in
goj/\:ol// dichloroethane/toluene (5.7 mL, 5:1, v/v) in borosilicate flask at room
MeO H
temperature were added the activated 4A molecular sieves (132 mg),
anhydrous Na;S,03 (132 mg), NaOAc (132 mg) and N-methylquinolinium hexafluorophosphate
(4.3 mg, 14.9 pmol). The mixture was photoirradiated with gentle air bubbling for 2 h while
stirring at room temperature. The reaction mixture was filtered through a small plug of silica gel
and the residue was washed with EtOAc (20 mL). The filtrate was concentrated and the resulting
residue was purified by flash chromatography (5% - 15% EtOAc in CH,Cl,) to provide the
desired compound 1.81 (23.7 mg, 73.4%) as a mixture of two diastereomers in a 1.2:1 ratio: 'H
NMR (300 MHz, CDCls) 6 4.76 (t, J = 3.8 Hz, 46% of 1H), 4.66 (dd, J = 8.8, 5.8 Hz, 54% of

1H), 4.34 (dd, J = 10.8, 6.4 Hz, 46% of 1H), 4.29-4.18 (m, 54% of 2H), 4.19 (t, J = 10.8 Hz,

46% of 1H ), 3.88 (dd, J = 10.6, 6.4 Hz, 46% of 1H), 3.42 (s, 46% of 3H), 3.35 (s, 54% of 3H),
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2.23-2.01 (m, ~1.5H), 1.96-1.92 (m, 46% of 1H), 1.75-1.58 (m, ~3.5H), 1.51 (s, 46% of 3H),
1.48 (s, 54% of 3H), 1.45-1.35 (m, 1H); °C NMR (75 MHz, CDCls) & 148.2, 148.0, 104.3,
102.8, 84.2, 83.0, 68.1, 66. 7, 66.3, 62.7, 56.3, 55.7, 43.2, 41.6, 34.5, 34.4, 19.5, 19.3, 18.3, 16.7;
IR (neat) 2941, 1755, 1464, 1384, 1252, 1199, 1128, 1091, 1050, 969 cm™; HRMS (EI): m/z
caled for Cy9H;304Na (M-CH30)+' 185.0814, found 185.0811. An analytical sample of the
slightly major diastereomer was obtained through purifying the above mixture by column
chromatography (35% - 40% EtOAc in hexanes): '"H NMR (300 MHz, C¢Ds) & 4.00 (dd, J = 8.8,
5.9 Hz, 1H), 3.60 (d, J = 10.4 Hz, 1H), 3.58 (d, J = 6.8 Hz, 1H), 3.44 (dd, J = 10.4, 6.8 Hz, 1H),
2.85 (s, 3H), 1.56-1.48 (m, 2H), 1.19-1.10 (m, 2H), 0.98-0.88 (m, 1H), 0.94 (s, 3H), 0.75-0.66 (m,

1H).

(S)-4-((2R,5S)-Tetrahydro-5-((R)-tetrahydro-5-methoxy-2-methylfuran-2-yl)-2-
methylfuran-2-yl)-1,3-dioxolan-2-one (1.85) and (4aR,5aS,9aR,11aS)-8-Methoxy-5a,11a-
dimethyldecahydro-1,3,5,9-tetraoxadibenzo[a,d]cyclohepten-2-one (1.86)

To diepoxide 1.51 (129.1 mg,

OH 2
O
o/\: 0.253 mmol) in

) S
MeO O e o o 7
H H MeO® O

T

dichloroethane/toluene (9.7
mL, 5:1, v/v) in borosilicate flask at room temperature were added the activated 4A molecular
sieves (258 mg), anhydrous NaS;03; (258 mg), NaOAc (258 mg) and N-methylquinolinium
hexafluorophosphate (7.3 mg, 25.3 pumol). The mixture was photoirradiated with gentle air
bubbling for 4.5 h while stirring at room temperature. The reaction mixture was filtered through
a small plug of silica gel and the residue was washed with EtOAc (40 mL). The filtrate was

concentrated and the resulting residue was purified by flash chromatography (35% - 50% EtOAc
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in hexanes) to provide a mixture of the above two products (28.7 mg, 39.6%) as a colorless oil:

IR (neat) 2926, 1796, 1754, 1460, 1374, 1166, 1085, 1036, 1006, 952 cm™.

(S)-4-((2R,5S)-Tetrahydro-5-((R)-tetrahydro-2-methyl-5-oxofuran-2-yl)-2-methylfuran-2-
yl)-1,3-dioxolan-2-one (A33)

o} A mixture of acetals 1.85 and 1.86 (20.8 mg, 72.6 umol) in
Ow)io acetone (2.1 mL) at 0 °C was treated dropwise with Jones reagent
(0.2 mL). The mixture was stirred at 0 °C for 10 min, then at room temperature for 1.5 h and
purified without workup by column chromatography (50% - 90% EtOAc in hexanes) to give the
unreacted acetal 1.86 (3.2 mg, 15.4%, nearly pure) and lactone A33 (13.8 mg, ~80%). For
lactone A33: 'H NMR (300 MHz, CDCl;) § 4.60 (dd, J = 8.4, 6.2 Hz, 1H), 4.50 (t, J = 8.6 Hz,
1H), 4.38 (dd, /= 8.7, 6.2 Hz, 1H), 4.08 (dd, J = 8.6, 6.3 Hz, 1H), 2.64-2.58 (m, 2H), 2.31-2.19
(m, 1H), 2.10-2.04 (m, 2H), 1.94-1.73 (m, 3H), 1.39 (s, 3H), 1.27 (s, 3H); °*C NMR (75 MHz,
CDCl3) 6 176.7, 155.1, 86.9, 83.5, 83.2, 79.5, 66.0, 34.1, 29.3, 29.2, 26.7, 23.8, 21.0; IR (neat)

2958, 2924, 2853, 1790, 1770, 1456, 1382, 1248, 1166, 1085, 1020, 944, 770, 728 cm™'; HRMS

(EI): m/z caled for C13H ;306 (M) 270.1103, found 270.1094; [a]p = +4.5 (CHCI;, c 0.24).

(4aR,5aS,9aR,11aS)-5a,11a-Dimethyloctahydro-1,3,5,9-tetraoxadibenzo[a,d]cycloheptene-
2,8-dione (A34)
A solution of acetal 1.86 (2.9 mg, 11.2 pmol) in CH,Cl, (0.5 mL) at 0

°C was treated with mCPBA (pure, 2.5 mg, 14.6 pmol) and BF;*OEt;

(1.9 pL, 13.4 pmol) sequentially. After stirred at 0 °C for 10 min and

then at room temperature for 30 min, the mixture was cooled to 0 °C and Et;N (7.8 pL, 56.0
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umol) was added dropwise. The mixture was stirred at 0 °C for 30 min, and purified by column
chromatography (10% - 20% EtOAc in CH,Cl,) to give the desired lactone A34 (1.8 mg, 66.7%)
as colorless needles: '"H NMR (300 MHz, CDCl5) 6 4.28 (dd, J= 8.6, 5.1 Hz, 1H), 4.21-4.14 (m,
1H), 4.09 (dd, J=10.1, 8.6 Hz, 1H), 4.06 (dd, J=11.0, 2.9 Hz, 1H), 2.80 (ddd, J=18.3,9.4, 5.5
Hz, 1H), 2.64 (ddd, J = 18.3, 8.7, 7.4 Hz, 1H), 2.35-2.28 (m, 1H), 2.17-1.88 (m, 5H), 1.50 (s,
3H), 1.38 (s, 3H); °C NMR (75 MHz, CDCl;) & 170.4, 148.2, 83.1, 82.7, 77.4, 75.7, 66.5, 65.2,
37.2, 34.3,27.5, 24.8, 22.4, 16.0; IR (neat) 2923, 1747, 1463, 1408, 1229, 1124, 1068 cm™'; 'H
NMR (300 MHz, C¢Dg) 6 3.44 (d, J= 7.7 Hz, 1H), 3.43 (d, /= 9.6 Hz, 1H), 3.18 (dd, /= 9.6, 7.7
Hz, 1H), 2.93 (dd, J=10.9, 3.0 Hz, 1H), 2.02-1.97 (m, 2H), 1.65 (td, J=15.3, 4.8 Hz, 1H), 1.43-
1.26 (m, 3H), 1.17-1.04 (m, 2H), 0.81 (s, 3H), 0.48 (s, 3H); HRMS (ESI): m/z calcd for

C13H1506Na [M+Na]" 293.1001, found 293.1020; [o]p = +101 (CHCLs, ¢ 0.15).

(R)-4-((2S,5S)-tetrahydro-5-((R)-tetrahydro-5-methoxy-2-methylfuran-2-yl)-2-
methylfuran-2-yl)-1,3-dioxolan-2-one (1.87) and (4aS,5aS,9aR,11aR)-8-Methoxy-5a,11a-
dimethyldecahydro-1,3,5,9-tetraoxadibenzo[a,d]cyclohepten-2-one (1.88)

H o To diepoxide 1.52 (150 mg,

-

(o8

0 )=o0 _
W P o + o] 0.294 mmol) in
Meo™ o'l Loz 7o MeO”™ "O FI

dichloroethane/toluene (11.3
mL, 5:1, v/v) in borosilicate flask at room temperature were added the activated 4A molecular
sieves (300 mg), anhydrous NaS;03; (300 mg), NaOAc (300 mg) and N-methylquinolinium
hexafluorophosphate (8.5 mg, 29.4 pumol). The mixture was photoirradiated with gentle air
bubbling for 4.5 h while stirring at room temperature. The reaction mixture was filtered through

a small plug of silica gel and the residue was washed with EtOAc (40 mL). The filtrate was
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concentrated and the resulting residue was purified by flash chromatography (35% - 50% EtOAc
in hexanes) to provide a mixture of the above two products (51.2 mg, 60.9%): IR (neat) 2925,

1797, 1750, 1462, 1384, 1259, 1167, 1120 cm™.

(R)-4-((2S,5S)-tetrahydro-5-((R)-tetrahydro-2-methyl-5-oxofuran-2-yl)-2-methylfuran-2-
yl)-1,3-dioxolan-2-one (A35)
0 A mixture of acetals 1.87 and 1.88 (34.9 mg, 122 pmol) in

o) G o)
ol Jo= o

acetone (1.8 mL) at 0 °C was treated dropwise with Jones reagent
(0.3 mL). The mixture was stirred at 0 °C forl0 min, then at room temperature for 1.5 h and
purified without workup by column chromatography (50% - 90% EtOAc in hexanes) to give the
unreacted acetal 1.88 (4.9 mg, nearly pure) and lactone A35 (22.1 mg, ~81%). For lactone A35:
'H NMR (300 MHz, CDCl3) & 4.58 (dd, J = 8.3, 6.1 Hz, 1H), 4.48 (t, J= 8.4 Hz, 1H), 4.32 (dd, J
= 8.8, 6.1 Hz, 1H), 4.08 (dd, J = 8.8, 5.6 Hz, 1H), 2.65-2.59 (m, 2H), 2.24 (ddd, J=12.9, 9.6, 6.9
Hz, 1H), 2.07-1.81 (m, 5H), 1.38 (s, 3H), 1.27 (s, 3H); °C NMR (75 MHz, CDCls) & 176.7,
155.0, 86.9, 85.1, 83.1, 80.3, 66.2, 34.5, 29.4, 29.1, 27.0, 23.4, 21.3; IR (neat) 2979, 2880, 1790,
1767, 1454, 1382, 1170, 1111, 1085, 944 cm™; HRMS (EI): m/z caled for Ci3H;306 (M)

270.1103, found 270.1095; [o]p = -11.3 (CHCLs, ¢ 1.03).

(4aS,5aS,9aR,11aR)-5a,11a-Dimethyloctahydro-1,3,5,9-tetraoxadibenzo[a,d]cycloheptene-

2,8-dione (A36)
OH/- O/\:O A solution of acetal 1.88 (4.5 mg, 15.7 pmol) in CH,Cl, (0.5 mL) at 0
M o °C was treated with mCPBA (pure, 3.5 mg, 20.4 umol) and BF;*OEt,
(2.7 puL, 18.8 umol) sequentially. After stirred at 0 °C for 10 min and
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at room temperature for 20 min, the mixture was cooled to 0 °C and Et;N (10.9 pL, 78.5 pmol)
was added dropwise. The mixture was stirred at 0 °C for 30 min and purified by column
chromatography (15% - 25% EtOAc in CH,Cl,) to give the desired lactone A36 (3.0 mg, 71.4%)
as colorless needles: 'H NMR (300 MHz, CDCls) 6 4.40 (app dd, J=10.0, 2.2 Hz, 1H), 4.23 (dd,
J=10.5, 6.1 Hz, 1H), 4.09 (t, J = 10.2, Hz, 1H), 4.00 (dd, J = 10.1, 6.1 Hz, 1H), 2.88 (ddd, J =
18.3, 11.2, 4.7 Hz, 1H), 2.72 (ddd, J = 18.3, 9.6, 5.5 Hz, 1H); 2.21-1.76 (m, 6H), 1.49 (s, 3H),
1.24 (s, 3H); C NMR (75 MHz, CDCl;) & 170.7, 147.4, 83.8, 81.4, 77.4, 66.6, 64.9, 39.1, 30.8,
28.1, 24.4, 20.5, 19.5; IR (neat) 2924, 1748, 1463, 1408, 1229, 1124, 1068 cm™'; HRMS (ESI):

m/z calcd for C13H 306Na [M+Na]" 293.1001, found 293.0988; [a]p = +48.7 (CHCl3, ¢ 0.23).

(4aR,5aS,10aR,12aS)-9-Methoxy-5a,12a-dimethyldecahydro-1,3,5,10-tetraoxabenzo[b]-
heptalen-2-one (1.91)
H To diepoxide 1.53 (145 mg, 276 pmol) in dichloroethane/toluene

9 O

/ . \/QO (10.6 mL, 5:1, v/v) in borosilicate flask at room temperature were
MeO™ ~O 3 =0

added the activated 4A molecular sieves (290 mg), anhydrous
Na,S;03 (290 mg), NaOAc (290 mg) and N-methylquinolinium hexafluorophosphate (8.0 mg,
27.6 umol). The mixture was photoirradiated with gentle air bubbling for 2 h while stirring at
room temperature. The reaction mixture was filtered through a small plug of silica gel and the
residue was washed with EtOAc (40 mL). The filtrate was concentrated and the resulting residue
was purified by flash chromatography (25% - 35% EtOAc in hexanes) to provide the product
1.91 (44.8 mg, 54.0%, pale yellow liquid) as two diastereomers in about 1:1 ratio: '"H NMR (300
MHz, CDCls) & 4.54-4.48 (m, 1H), 4.25-3.98 (m, 3H), 3.92-3.85 (m, 0.5H), 3.56 (dd, J=11.2,

2.4 Hz, 0.5H), 3.40/3.37 (s, 3H), 3.24 (dd, J = 10.8, 3.8 Hz, 0.5H), 2.26-1.94 (m, 2.5H), 1.91-
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1.72 (m, 3.5H), 1.65-1.52 (m, 3.5H), 1.47/1.44 (s, 3H), 1.33/1.29 (s, 3H), 1.21-1.18 (m, 0.5H);
3C NMR (75 MHz, CDCls) § 149.0, 148.6, 105.2, 102.6, 83.3, 83.2, 81.4, 80.3, 79.7, 75.6, 67.0,
67.0, 65.2, 63.8, 56.1, 55.9, 4.6, 43.3, 37.5, 37.0, 35.3, 33.6, 27.6, 26.2, 22.3, 21.6, 19.2, 17.7,
17.0, 16.7; IR (neat) 2940, 1759, 1454, 1384, 1209, 1111, 1053, 1008, 921 cm’'; HRMS (ESI):

m/z caled for CisHa4O6Na [M+Na]" 323.1471, found 323.1500; [o]p = +31.5 (CHCLs, ¢ 1.45).

(4aR,5aS,10aR,12aS)-5a,12a-Dimethyldecahydro-1,3,5,10-tetraoxabenzo[b]heptalene-2,9-
dione (1.92)
H A solution of acetal 1.91 (15.6 mg, 51.9 umol) in CH,Cl, (0.5 mL) at

o O
\ O\AO 0 °C was treated with mCPBA (pure, 11.6 mg, 67.5 pmol) and

07 -
7 " ] BF;OEt; (7.2 pL, 57.1 pmol) sequentially. After stirred at 0 °C for 10
min, then at room temperature for 1 h, the mixture was cooled to 0 °C and Et;N (36.2 pL, 256
umol) was added dropwise. The mixture was stirred at 0 °C for 1.5 h, the quenched with a
mixture of saturated NaHCOs/saturated Na;S;03 (4 mL, 1:1, v/v). The mixture was poured onto
water (5 mL) and extracted with Et;O (3 x 25 mL). The extracts were dried over MgSOy, filtered
and concentrated, and the resulting residue was purified by column chromatography (10% - 20%
EtOAc in CH,Cl) to give the desired lactone 1.92 (9.9 mg, 66.9%) as a white crystalline solid:
'H NMR (300 MHz, CDCls) & 4.26-4.20 (m, 2H), 4.14-4.06 (m, 2H), 2.70-2.55 (m, 2H), 2.35-
2.23 (m, 2H), 1.99-1.81 (m, 4H), 1.77-1.68 (m, 2H), 1.46 (s, 3H), 1.31 (s, 3H); °C NMR (75
MHz, CDCls) 6 173.3, 148.6, 84.3, 82.2, 78.9, 66.8, 64.3, 43.2, 36.2, 33.6, 26.6, 22.0, 20.0, 15.8;
IR (neat) 2989, 2941, 2871, 1748, 1727, 1501, 1454, 1365, 1328, 1272, 1212, 1098, 1040 cm’’;

HRMS (ESI): m/z caled for Ci4H»0O¢Na [MJrNa]+ 307.1158, found 307.1158. [a]p = +50.4

(CHCI;, ¢ 0.42).
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(4aS,5aS,10aR,12aR)-9-Methoxy-5a,12a-dimethyldecahydro-1,3,5,10-tetraoxabenzo[b]-
heptalen-2-one (1.93)
To diepoxide 1.54 (48.2 mg, 91.9 pmol) in dichloroethane/toluene

\A\O (3.5 mL, 5:1, v/v) in borosilicate flask at room temperature were
0]

added the activated 4A molecular sieves (96 mg), anhydrous
Na,S,03 (96 mg), NaOAc (96 mg) and N-methylquinolinium hexafluorophosphate (2.6 mg, 9.2
umol). The mixture was photoirradiated with gentle air bubbling for 3 h while stirring at room
temperature. The reaction mixture was filtered through a small plug of silica gel and the residue
was washed with EtOAc (30 mL). The filtrate was concentrated and the resulting residue was
purified by flash chromatography (25% - 35% EtOAc in hexanes) to provide the product 1.93
(21.7 mg, 78.6%, pale yellow solid) as two diastereomers in about 1:1 ratio: '"H NMR (300 MHz,
CDCls) 6 4.69 (dd, J=3.8, 2.2 Hz, 0.5H), 4.54 (dd, J = 8.9, 5.7 Hz, 0.5H), 4.17 (dd, J=10.7, 6.6
Hz, 1H), 4.02 (t, J=10.7 Hz, 1H), 3.90 (dd, /= 10.7, 6.6 Hz, 1H), 3.90-3.85 (m, 0.5H), 3.52 (dd,
J=10.1, 0.8 Hz, 0.5H), 3.40/3.37 (s, 3H), 2.08-2.00 (m, 2H), 1.89-1.53 (m, 8H), 1.44 (s, 3H),
1.21/1.17 (s, 3H); *C NMR (75 MHz, CDCls) & 151.6, 148.0, 102.7, 102.4, 83.6, 83.6, 81.3,
80.6, 78.8, 74.1, 67.0 (2C), 64.0, 63.9, 56.0, 55.8, 40.5, 40.2, 39.8, 39.5, 33.7, 33.4, 27.3 (2C),
20.8,20.3, 19.4, 19.3, 19.3, 17.5; IR (neat) 2940, 1755, 1461, 1382, 1246, 1223, 1116, 1051, 913
cm'l; HRMS (ESI): m/z calcd for CisH4O¢Na [MJrNa]+ 323.1471, found 323.1462; [a]p = +26.6

(CHCL, ¢ 0.55).

122



(4aS,5aS,10aR,12aR)-5a,12a-Dimethyldecahydro-1,3,5,10-tetraoxabenzo[b]heptalene-2,9-
dione (1.94)
A solution of acetal 1.93 (19.0 mg, 63.2 umol) in CH,ClI, (2.0 mL) at

O
O)QO 0 °C was treated with mCPBA (pure, 14.2 mg, 82.2 pumol) and

BF;°OEt; (9.5 puL, 75.8 pmol) sequentially. The mixture was stirred at
0 °C for 10 min, and then at room temperature for 1 h. After that time, the mixture was cooled to
0 °C and Et3;N (44.0 pL, 316 umol) was added dropwise. The mixture was stirred at 0 °C for 30
min, then concentrated, and the resulting residue was purified by column chromatography (15% -
25% EtOAc in CH,Cl,) to give the desired lactone 1.94 (14.4 mg, 80.0%) as a white solid: 'H
NMR (600 MHz, CDCls) 6 4.47 (dd, J=10.4 Hz, 1H), 4.20 (dd, J = 10.7, 6.4 Hz, 1H), 4.05 (t,J
=10.7 Hz, 1H), 3.98 (dd, J = 10.5, 6.4 Hz, 1H), 2.70 (dt, J = 14.1, 2.2 Hz, 1H), 2.64 (ddd, J =
14.1, 5.8, 1.3 Hz, 1H), 2.12 (ddd, J = 13.6, 5.9, 2.0 Hz, 1H), 2.07-1.98 (m, 3H), 1.90 (dddd, J =
14.7, 5.8, 2.6, 1.0 Hz, 1H), 1.84 (app dt, J = 13.6, 1.7 Hz, 1H), 1.78-1.70 (m, 2H), 1.48 (s, 3H),
1.14 (s, 3H); °C NMR (151 MHz, CDCls) & 173.4, 147.8, 83.6, 82.7, 79.0, 66.8, 64.6, 39.3,
38.3, 33.4, 26.4, 20.4, 19.14, 19.10; IR (neat) 2984, 2941, 1747, 1732, 1444, 1388, 1274, 1252,
1200, 1116, 1100, 1070, 1049 cm'l; HRMS (EI): m/z caled for C14H2006 (M) 284.1260, found
284.1254; [a]p = +17.2 (CHCl;, ¢ 0.52).

Key NOESY enhancements observed in lactone 1.94:

NOE enhancements
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(S)-4-((2R,5S)-tetrahydro-5-((R)-tetrahydro-6-methoxy-2H-pyran-2-yl)-2-methylfuran-2-
yl)-1,3-dioxolan-2-one (1.97) and (4aR,5aS,10aR,12aS)-9-Methoxy-12a-methyldecahydro-
1,3,5,10-tetraoxabenzo[b]heptalen-2-one (1.98)
H H To diepoxide 1.55 (52.8 mg,
0] @] O
Meo%ko N Meo%ﬁo 103 umol) in
dichloroethane/toluene 4.0
mL, 5:1, v/v) in borosilicate flask at room temperature were added the activated 4A molecular
sieves (106 mg), anhydrous Na,S,0; (106 mg,), NaOAc (106 mg) and N-methylquinolinium
hexafluorophosphate (3.0 mg, 10.3 pumol). The mixture was photoirradiated with gentle air
bubbling for 4 h while stirring at room temperature. The reaction mixture was filtered through a
small plug of silica gel and the residue was washed with EtOAc (20 mL). The filtrate was
concentrated and the resulting residue was purified by flash chromatography (5% - 20% EtOAc
in CH,Cl,) to provide the exo, exo-product 1.97 (7.3 mg, 24.7%) as a white solid and endo, endo-
product 1.98 (8.8 mg, 29.7%) as a colorless oil. For exo, exo-product 1.97 (dr = 2:1): 'H NMR
(600 MHz, CDCl3) 6 4.71 (br s, 67% of 1H), 4.61-4.56 (m, 1H), 4.54-4.50 (m, 1H), 4.44-4.41 (m,
1H), 4.32 (dd, J = 9.5, 2.0 Hz, 33% of 1H), 4.02 (dd, J = 7.1, 4.9 Hz, 33% of 1H), 3.98 (dd, J =
7.4,4.4 Hz, 67% of 1H), 3.72 (ddd, J=11.6, 4.2, 2.0 Hz, 67% of 1H), 3.48 (s, 33% of 3H), 3.40
(ddd, J=11.3, 4.7, 1.9 Hz, 33% of 1H), 3.33 (s, 67% of 3H), 2.05-1.95 (m, 4H), 1.90-1.78 (m,
3H), 1.73-1.65 (m, 1H), 1.60 (s, 3H), 1.55-1.48 (m, 1H), 1.31-1.22 (m, 1H), 1.28 (s, 3H); °C
NMR (75 MHz, CDCls) 8 155.3 (major), 151.1 (minor), 103.7 (minor), 98.7 (major), 82.2 (major,
2C), 81.9 (minor), 79.6 (minor), 79.2 (major), 69.7 (major), 66.0 (major), 56.3 (minor), 54.7

(major), 35.1 (major), 34.7 (minor), 31.3 (minor), 29.9 (major), 27.6 (minor), 27.3 (major), 26.7
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(minor), 26.3 (major), 22.0 (minor), 20.9 (minor), 20.5 (major), 17.8 (major); IR (neat) 2943,
1798, 1455, 1374, 1166, 1033, 949 cm™'; HRMS (EI): m/z caled for Ci4HnOg (M) 286.1416,
found 286.1419; [a]p = -24.1 (CHCls, ¢ 0.71). For endo, endo-product 1.98 (dr = 2.3:1): 'H
NMR (600 MHz, CDCl3) & 4.56 (dd, J = 8.8, 5.8 Hz, 70% of 1H), 4.49-4.46 (m, 30% of 1H),
4.39-4.34 (m, 1H), 4.11 (t, J = 10.6 Hz, 70% of 1H), 4.10 (t, J = 10.6 Hz, 30% of 1H), 3.94 (dd,
J=113,6.5 Hz, 70% of 1H), 3.84 (dd, J=11.0, 6.3 Hz, 30% of 1H), 3.68 (dt, J = 8.5, 4.5 Hz,
70% of 1H), 3.62-3.59 (m, 30% of 1H), 3.49-3.47 (m, 30% of 1H), 3.42 (s, 30% of 3H), 3.38 (s,
70% of 3H), 3.37-3.33 (70% of 1H), 2.22-1.97 (m, 4H), 1.92-1.78 (m, 2H), 1.65-1.59 (m, 2H),
1.46 (s, 30% of 3H), 1.43 (s, 70% of 3H), 1.38-1.33 (m, 1H), 1.28-1.25 (m, 1H); *C NMR (151
MHz, CDCls) 6 149.0 (minor), 148.9 (major), 106.9 (minor), 102.6 (major), 86.4 (major), 83.3
(minor), 82.6 (minor), 82.4 (major), 79.5 (minor), 75.2 (minor), 74.0 (major), 73.2 (minor), 73.1
(major), 66.5 (major), 56.1 (minor), 55.9 (major), 39.5 (minor), 36.7 (major), 35.9 (minor), 35.6
(major), 34.9 (minor), 33.5 (major), 29.7 (major), 28.6 (minor), 28.0 (minor), 21.0 (major), 18.9
(major),17.9 (minor); IR (neat) 2939, 1755, 1455, 1384, 1255, 1205, 1109, 1042, 999 cm'l;
HRMS (EI): m/z caled for Ci4H»,04 (M+') 286.1416, found 286.1414; [a]p = +11.8 (CHCl;, ¢

0.85).

(4aR,5aS,10aR,12aS)-12a-Methyldecahydro-1,3,5,10-tetraoxa-benzo[b]heptalene-2,9-dione
(1.99)

To a solution of acetal 1.98 (8.0 mg, 27.9 pmol) in CH,Cl, (0.5 mL) at

m \/%O °C were added mCPBA (pure, 6.2 mg, 36.3 pmol) and BF;*OEt,

(4.2 uL, 33.5 umol) sequentially. After stirred at room temperature for

30 min, the mixture was cooled to 0 °C and Et;N (19.4 pL, 140 umol) was added dropwise. The
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mixture was stirred at 0 °C for 30 min, then concentrated, and the resulting residue was purified
by column chromatography (10% - 20% EtOAc in CH,Cl,) to give lactone 1.99 (5.3 mg, 70.2%)
as a white crystalline solid: 'H NMR (600 MHz, CDCl5) & 4.43-4.39 (m, 1H), 4.40 (dd, J=10.4,
6.5 Hz, 1H), 4.13 (dd, J=11.2, 10.5 Hz, 1H), 3.86 (dd, J=11.3, 6.5 Hz, 1H), 3.53 (ddd, J = 10.6,
8.0, 3.4 Hz, 1H), 2.70-2.61 (m, 2H), 2.22-2.17 (m, 3H), 2.07-2.01 (m, 2H), 1.92 (ddd, J = 15.4,
9.6, 2.2 Hz, 1H),1.77-1.73 (m, 2H), 1.48 (s, 3H); °C NMR (151 MHz, CDCl;) § 173.9, 148.2,
85.5, 81.9, 81.2, 78.4, 66.5, 35.7, 34.5, 33.6, 27.5, 21.0, 19.2; "H NMR (500 MHz, CsDs) & 3.58
(dd, J = 10.0, 6.6 Hz, 1H), 3.46 (dd, J = 11.2, 10.2 Hz, 1H), 3.38-3.34 (m, 1H), 2.66 (dd, J =
11.2, 6.6 Hz, 1H), 2.58 (ddd, J = 11.2, 7.8, 3.3 Hz, 1H), 2.22-2.18 (m, 1H), 1.73-1.65 (m, 2H),
1.52 (dddd, J = 15.8, 8.8, 3.8, 1.4 Hz, 1H), 1.42-1.38 (m, 1H), 1.30 (ddd, J = 14.4, 8.8, 1.4 Hz,
1H), 1.22 (dddd, J = 17.1, 11.6, 5.2, 1.5 Hz, 1H), 1.16-1.11 (m, 2H), 0.92-0.84 (m, 1H), 0.80 (s,
3H); IR (neat) 2922, 2850, 1747, 1453, 1387, 1273, 1204, 1106, 1058, 1015 cm™'; HRMS (EI):

m/z caled for Ci3H 506 (M) 270.1103, found 270.1111; [a]p = +12.7 (CHCls, ¢ 0.26).

(R)-Tetrahydro-6-((2S,5R)-tetrahydro-5-methyl-5-((S)-2-oxo0-1,3-dioxolan-4-yl)furan-2-yl)-
pyran-2-one (A37)

To a solution of acetal 1.97 (6.8 mg, 23.7 umol) in CH,Cl, (0.5
O%LO mL) at 0 °C were added mCPBA acid (pure, 5.3 mg, 30.8 umol)
and BF;°OEt; (4.0 puL, 28.4 umol) sequentially. After stirred at room temperature for 30 min, the
mixture was cooled to 0 °C and Et;N (16.5 pL, 118 pmol) was added dropwise. The mixture was
stirred at 0 °C for 30 min, then concentrated, and the resulting residue was purified by column
chromatography (15% - 25% EtOAc in CH,Cl,) to give the desired lactone A37 (5.2 mg, 81.2%)

as a white solid: '"H NMR (500 MHz, CDCls) & 4.64 (dd, J = 8.4, 6.0 Hz, 1H), 4.52 (t, J = 8.8
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Hz, 1H), 4.45 (dd, J= 8.8, 6.0 Hz, 1H), 4.30 (dd, J = 11.4, 4.6, 3.0 Hz, 1H), 4.10 (dt, J= 7.2, 4.6
Hz, 1H), 2.62 (dddd, J = 17.8, 6.6, 4.8, 1.4 Hz, 1H), 2.46 (ddd, J = 17.8, 9.3, 7.0 Hz, 1H), 2.19-
2.12 (m, 1H), 2.07-2.02 (m, 1H), 2.01-1.93 (m, 3H), 1.90-1.85 (m, 1H), 1.84-1.79 (m, 1H), 1.50-
1.44 (m, 1H), 1.28 (s, 3H); '°C NMR (125 MHz, CDCL3) 171.1, 155.2, 83.0, 81.1, 80.7, 79.0,
66.1, 34.5, 29.9, 26.4, 24.8, 20.7, 18.5; IR (neat) 2957, 2929, 1789, 1731, 1242, 1173, 1084,

1049, 1018, 771 cm™; HRMS (EI): m/z caled for Ci3H 506 (M) 270.1103, found 270.1104; [o]p

= _42.8 (CHCls, ¢ 0.50).
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APPENDIX B

EFFORTS TOWARDS THE TOTAL SYNTHESIS OF (+)-
LACTODEHYDROTHYRSIFEROL AND ITS ANALOGS (SUPPORTING

INFORMATION)

General Experimental Proton (‘"H NMR) and carbon (?°C NMR) nuclear magnetic resonance
spectra were recorded at ambient temperature on Bruker Avance 300 spectrometer at 300 MHz
and 75 MHz or Bruker Avance 500 spectrometer at 500 MHz and 125 MHz if specified. The
chemical shifts are given in parts per million (ppm) on the delta (8) scale. The solvent peak was
used as a reference value, for 'H NMR: CDCl; = 7.27 ppm, for *C NMR: CDCl; = 77.23. Data
are reported as follows: (s = singlet; d = doublet; t = triplet; q = quartet; dd = doublet of doublets;
ddd = doublet of doublet of doublets; dt = doublet of triplets; td = triplet of doublets; br = broad).
High resolution mass spectra were recorded on a MICROMASS AUTOSPEC (for EI) or
WATERS Q-TOF API-US (for ESI) spectrometer. Infrared (IR) spectra were collected on a
Mattson Cygnus 100 spectrometer. Samples for IR were prepared as a thin film on a NaCl plate
by dissolving the compound in CH,Cl, and then evaporating the CH,Cl,. Tetrahydrofuran was
distilled from sodium and benzophenone. Activated 4 A molecular sieves were obtained through

drying in oven at 150 °C overnight. Boc,O and N-methylimidole were purchased from Acros and
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used without further purification. Anhydrous Na,S,03 was purchased from Aldrich and used as
received. Toluene and 1,2-dichloroethane were purchased from Fisher Scientific and dried with 4
A molecular sieves overnight prior to use. Anhydrous DMF and Mel were purchased from
Acros. NiCl,, CrCl;, Mn, and anhydrous LiCl were purchased from Aldrich and used without
further purification. TMSCI (purchased from Aldrich) was distilled from anhydrous K,COs
before use. Analytical TLC was performed on E. Merck pre-coated (25 mm) silica gel 60F-254
plates. Visualization was done under UV (254 nm). Flash chromatography was done using ICN
SiliTech 32-63 60 A silica gel. Reagent grade ethyl acetate, diethyl ether and hexanes
(commercial mixture) were purchased from EM Science and used as is for chromatography. All
reactions were performed in flame-dried glassware under nitrogen with magnetic stirring unless

otherwise noted.

1-Hydroxy-5-methoxy-6,6-diphenylhexan-2-one (2.11)

o To a solution of terminal olefin 2.10 (407 mg, 1.53 mmol) in

thcH\NJ\/OH acetone/H,O (15 mL, 4.5:1, v/v) and AcOH (0.58 mL) was added

OMe
dropwise a solution of KMnOy4 (435 mg, 2.75 mmol) in acetone/H,O

(6.9 mL). The mixture was stirred for 5 min and EtOH (0.8 mL) was added. After 20 min, the
mixture was filtered through Celite and the residue was washed with acetone (50 mL). The
filtrate was concentrated and the residue was azeotroped with acetone (3 x) and purified by
column chromatography (35% - 40% EtOAc in hexanes) to give hydroxyl ketone 2.11 (258 mg,
57%) as a colorless oil: "H NMR (300 MHz, CDCls) & 7.38-7.18 (m, 10H), 4.29-4.14 (m, 2H),
4.02-3.95 (m, 2H), 3.10 (s, 3H), 3.08-3.06 (m, 1H), 2.58-2.38 (m, 2H), 2.07-1.95 (m, 1H), 1.73-

1.64 (m, 1H); *C NMR (75 MHz, CDCl5) § 209.7, 142.2, 128.9, 128.8, 128.6, 126.9, 126.7, 82.6,
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68.2, 58.1, 56.4, 33.9, 26.3; IR (neat) 3435, 2931, 1718, 1494, 1451, 1102, 748; HRMS (ESI):

m/z caled for CoH»O03K [M+K]" 337.1206, found 337.1176.

5-Methoxy-2-methylene-6,6-diphenylhexan-1-ol (2.12)

To a solution of hydroxyl ketone 2.11 (235 mg, 0.788 mmol) in THF
PhZCH\(\)j\/OH
(7 mL) were added PPh; (227 mg, 0.867 mmol), (Ph;P);RhCl (18.2

OMe
mg, 19.7 umol) and ‘PrOH (0.6 mL, 7.88 mmol) sequentially. After 5 min, TMSCHN (0.63 mL,

1.26 mmol) was added. The yellow mixture was stirred for 18 h, PPh; (200 mg, 0.788 mmol)
was added followed by TMSCHN; (0.63 mL, 1.26 mmol). The reaction was stirred for another
18 h and TBAF (1 M in THF, 3.0 mL, 3.0 mmol) was added. The mixture was stirred for 30 min,
then treated with saturated NH4Cl1 (15 mL) and extracted with Et,O (4 x 20 mL). The extract was
dried (MgSQOy), filtered and concentrated. The residue was purified column chromatography
(20% - 45% EtOAc in hexanes) to give allylic alcohol 2.12 (168 mg, 72%) and unreacted starting
material 2.11 (23 mg, 10%). For allylic alcohol 2.12: 'H NMR (300 MHz, CDCl;) & 7.40-7.18
(m, 10H), 5.00 (br s, 1H), 4.82 (d, J = 0.9 Hz, 1H), 4.04 (d, J = 8.4 Hz, 1H), 4.00 (br s, 2H),
3.97-3.90 (m, 1H), 3.16 (s, 3H), 2.27-2.09 (m, 2H), 1.78-1.52 (m, 3H); *C NMR (75 MHz,
CDCls) 6 149.0, 142.8, 142.4, 129.0, 128.8, 128.7, 128.5, 126.7, 126.5, 109.8, 83.4, 66.1, 58.1,
56.4, 30.6, 28.7; IR (neat) 3397, 2928, 1599, 1494, 1451, 1103, 1030, 898, 745; HRMS (ESI):

m/z caled for CyoH240,K [MJrK]+ 335.1413, found 335.1404.

(2-(3-Methoxy-4,4-diphenylbutyl)oxiran-2-yl)methanol (2.13)

oH To a solution of allylic alcohol 2.12 (157 mg, 0.530 mmol) in benzene

Ph2CH\(\/L (3.0 mL) was added VO(acac), (2.8 mg, 10.6 umol) followed by
@)

OMe
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dropwise addition of ‘BuOOH (5-6 M in decane, 0.12 mL, ~0.65 mmol). The mixture was heated
to 80 °C for 20 min, then cooled to room temperature and saturated Na,SO; (2 mL) was added.
The mixture was stirred for 10 min, the treated with saturated NaHCO; (10 mL) and extracted
with Et;0 (4 x 20 mL). The extract was dried (MgSQ,), filtered and concentrated. The residue
was purified column chromatography (30% - 60% EtOAc in hexanes containing 0.5% Et;:N) to
give epoxy alcohol 2.13 (148 mg, 90%, dr ~ 1:1) as a colorless oil: "H NMR (300 MHz, CDCl;)
0 7.39-7.19 (m, 10H), 3.98 (d, J = 8.5 Hz, 1H), 3.96-3.90 (m, 1H), 3.65 (ddd, J = 12.3, 6.6, 4.4
Hz, 1H), 3.53 (dd, J = 12.2, 8.4 Hz, 1H), 3.16/3.15 (s, 3H), 2.81 (dd, J = 4.6, 2.2 Hz, 1H), 2.56
(dd, J = 4.6, 1.4 Hz, 1H), 1.98-1.56 (m, 4H), 1.56-1.38 (m, 1H); °*C NMR (75 MHz, CDCl;) &
142.6, 142.3, 128.9, 128.8, 128.6, 128.5, 126.8, 126.6, 83.4, 83.3, 63.2, 62.9, 59.8, 59.7, 58.2,
58.1, 56.3, 56.3, 50.2, 49.7, 27.5, 27.2, 27.0, 26.8; IR (neat) 3432, 2929, 1642, 1600, 1494, 1452,

1101, 747; HRMS (ESI): m/z calcd for Cy0H»403Na [MJrNa]+ 335.1623, found 335.1607.

tert-Butyl 2-(3-methoxy-4,4-diphenylbutyl)oxiranylmethyl carbonate (2.14)
0CO,'Bu To a solution of epoxy alcohol 2.13 (135 mg, 0.432 mmol) in dry
PhZCH\(\/’; toluene (4.3 mL) at 0 °C were added 1-methylimidazole (34 pL,
OMe ° 0.432 mmol) and di-fert-butyl dicarbonate (188 mg, 0.864 mmol).
The reaction mixture was stirred overnight, allowing the temperature to warm to room
temperature slowly. After that time, water (2 drops) was added. After 10 min, the mixture was
concentrated and the residue was azeotroped with acetone (5 mL), then hexanes (2 x 5 mL) and
purified by flash chromatography (10% - 20% EtOAc in hexanes containing 0.5% Et;N) to give
the fert-butyl carbonate 2.14 (162 mg, 91%, dr ~ 1:1) as a colorless oil: 'H NMR (300 MHz,

CDCl3) § 7.41-7.19 (m, 10H), 4.12-3.94 (m, 4H), 3.18/3.17 (s, 3H), 2.72 (t, J = 4.2 Hz, 1H), 2.58
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(dd, J = 4.5, 2.0 Hz, 1H), 1.97-1.58 (m, 4H), 1.51 (s, 9H); °C NMR (75 MHz, CDCl;)  153.4,
153.4, 142.6, 142.3, 142.3, 129.0, 128.9, 128.8, 128.8, 128.6, 128.5, 126.7, 126.7, 126.5, 83.2,
82.6, 68.5, 68.1, 58.0, 58.0, 57.3, 57.2, 56.2, 56.2, 50.8, 50.3, 27.9, 27.4, 26.9, 26.8, 26.6; IR
(neat) 2979, 2933, 1742, 1494, 1453, 1279, 1161, 1102, 743; HRMS (ESI): m/z calcd for

C,sH3,05Na [M+Na]" 435.2147, found 435.2150.

(5S)-8-Methoxy-1,3,7-trioxaspiro[4.5]decan-2-one (2.17)
o To epoxide 2.14 (70 mg, 0.17 mmol) in dichloroethane/toluene (5.6 mL,

. (@] . e
do 5:1, v/v) in borosilicate flask at room temperature were added the
MeO O

activated 4A molecular sieves (140 mg), anhydrous Na,S,03 (140 mg),
NaOAc (140 mg) and N-methylquinolinium hexafluorophosphate (24.6 mg, 85 pmol). The
mixture was photoirradiated with gentle air bubbling for 8 h while stirring at room temperature.
The reaction mixture was filtered through a small plug of silica gel and the residue was washed
with Et;O (30 mL). The filtrate was concentrated and the resulting residue was purified by flash
chromatography (30% - 60% EtOAc in hexanes) to produce the bicycle 2.17 (25.2 mg, 79%, dr
1.1:1) as a pale yellow oil: 'H NMR (300 MHz, CDCl5) § 4.70 (t, J = 2.3 Hz, 0.5H), 4.60 (app dd,
J=3.0, 2.3 Hz, 0.5H), 4.50 (d, J = 8.6 Hz, 0.5H), 4.20 (dd, J = 8.6, 1.4 Hz, 0.5H), 4.10 (d, J =
8.8 Hz, 0.5H), 4.06 (d, J = 8.8 Hz, 0.5H), 3.88 (dd, J=11.0, 1.0 Hz, 0.5H), 3.72 (d, /= 12.4 Hz,
0.5H), 3.66 (dd, J=12.4, 2.2 Hz, 0.5H), 3.52 (dd, J=11.1, 2.4 Hz, 0.5H), 3.39 (s, 1.5H), 3.38 (s,
1.5H), 2.33 (dt, J = 12.8, 4.5 Hz, 0.5H), 2.15-2.00 (m, 1H), 1.99-1.90 (m, 1H), 1.84 (dtd, J =
12.4, 4.1, 2.4 Hz, 0.5H), 1.76-1.57 (m, 1H); *C NMR (75 MHz, CDCl;) & 154.2, 154.2, 97.6,

96.9, 79.4, 78.6, 72.8, 71.7, 64.5, 63.3, 55.5, 55.3, 28.2, 28.1, 27.4, 26.1; IR (neat) 2921, 1804,
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1389, 1183, 1125, 1050, 772; HRMS (EI): m/z caled for CgH;;0s (M) 187.0606, found

187.0606.

6-(tert-Butyldiphenylsilanyloxy)-2-(tert-butyldiphenylsilanyloxymethyl)hex-1-en-3-ol (2.25)
OTBDPS To a mixture of (2-bromoallyloxy)(tert-butyl)diphenylsilane 2.23
/I//\NOTBDPS (2.764 g, 7.36 mmol), aldehyde 2.24 (1.200 g, 3.68 mmol), CrCl; (116
OH mg, 0.736 mmol), NiCl, (95 mg, 0.736 mmol) and Mn (1.011 g, 18.4
mmol) in anhydrous DMF (6 mL, degassed with argon prior to use) was added TMSCI (1.12 mL,
8.83 mmol). After stirring overnight, the reaction was quenched with water (15 mL) and
transferred to a beaker. HCI (1 N) was added until all the manganese metal was completely
consumed. The mixture was extracted with Et,0 (4 x 40 mL), and the extract was dried
(MgS04) and concentrated. The residue was purified by column chromatography (2% - 10%
EtOAc in hexanes) to give allylic alcohol 2.25 (1.948 g, 85%) as a colorless oil: '"H NMR (300
MHz, CDCls) & 7.71-7.64 (m, 8H), 7.46-7.34 (m, 12H), 5.20 (q, J = 1.5 Hz, 1H), 5.12 (s, 1H),
4.30 (d, J=13.6 Hz, 1H), 4.23-4.19 (m, 2H), 3.65 (app t, J = 6.0 Hz, 2H), 2.63 (d, J = 4.9 Hz,

1H), 1.70-1.51 (m, 4H), 1.07 (s, 9H), 1.04 (s, 9H).

Ethyl (2)-8-(tert-butyldiphenylsilanyloxy)-4-(tert-butyldiphenylsilanyloxymethyl)oct-4-eno-
ate (2.26)

OTBDPS A mixture of allylic alcohol 2.25 (1.868 g, 3.00), triethyl

Eto\ﬂ/\);/\AoTBDPS orthoacetate (2.2 mL, 12.0 mmol) and propionic acid (11

© pL, 0.15 mmol) was heated to 100 °C for 4 h and the

unreacted triethyl orthoacetate was distilled out under reduced pressure. The residue was purified
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by column chromatography (1% - 3% EtOAc in hexanes) to give the ethyl ester 2.26 (1.724 g,
83%) as a colorless oil: 'H NMR (300 MHz, CDCl3) & 7.69-7.60 (m, 8H), 7.43-7.32 (m, 12H),
5.19 (t, J=7.3 Hz, 1H), 4.20 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 3.53 (t, /= 6.4 Hz, 2H), 2.51-2.41
(m, 4H), 1.86 (q, J = 7.3 Hz, 2H), 1.52-1.43 (m, 2H), 1.23 (t, /= 7.4 Hz, 3H), 1.04 (s, 9H), 1.00

(s, 9H).

(2)-10-(tert-Butyldiphenylsilanyloxy)-6-(tert-butyldiphenylsilanyloxymethyl)-2-methyldeca-
1,6-dien-3-ol (2.27)

OTBDPS A solution of ethyl ester 2.26 (1.700 g, 2.45 mmol) in

)\(\);MOTBDPS CHCl, (3 mL) at -78 °C was treated with DIBAL-H (1 M in

OH
hexanes, 2.6 mL, 2.6 mmol) over 15 min. After 30 min,

DIBAL-H (0.36 mL, 0.36 mmol) was added over 2 min. The mixture was stirred for 15 min and
isopropenylmagnesium bromide (0.5 M in THF, 9.8 mL, 4.9 mmol) was added dropwise. The
reaction was stirred at -78 °C for 1 h, then warmed to room temperature and quenched with
saturated NH4Cl solution (10 mL) and saturated sodium tartrate solution (25 mL). The mixture
was stirred vigorously for 1 h and extracted with Et;O (3 x 30 mL). The organic extract was
dried (MgSO4) and concentrated. The residue was purified by column chromatography (3% -
12% EtOAc in hexanes) to give secondary alcohol 2.27 (1.333 g, 79%) as a colorless oil: 'H
NMR (300 MHz, CDCls) 8 7.70-7.63 (m, 8H), 7.45-7.34 (m, 12H), 5.23 (t, J = 7.3 Hz, 1H),
4.97-4.96 (m, 1H), 4.87-4.86 (m, 1H), 4.22 (d, J = 2.5 Hz, 2H), 4.08-4.05 (m, 1H), 3.56 (t, J =
6.5 Hz, 2H), 2.28-2.21 (m, 2H), 1.91 (q, J = 7.2 Hz, 2H), 1.78-1.67 (m, 5H), 1.56-1.49 (m, 2H),

1.06 (s, 9H), 1.02 (s, 9H).
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Ethyl (4E,82)-12-(tert-butyldiphenylsilanyloxy)-8-(tert-butyldiphenylsilanyloxymethyl)-4-
methyldodeca-4,8-dienoate (2.28)
OTBDPS A mixture of allylic alcohol 2.27 (1.333 g, 1.93
EtO\H/\)\/\);M OTBDPS mmol), triethyl orthoacetate (1.4 mL, 7.72 mmol)
© and propionic acid (7 pL, 96 umol) was heated to
115 °C for 2 h and the unreacted triethyl orthoacetate was distilled out under reduced pressure.
The residue was purified by column chromatography (2% - 4% EtOAc in hexanes) to give the
ethyl ester 2.28 (1.216 g, 83%) as a colorless oil: "H NMR (300 MHz, CDCls) & 7.69-7.60 (m,
8H), 7.41-7.32 (m, 12H), 5.16 (t, J = 6.8 Hz, 2H), 4.18 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 3.55 (4,
J = 6.4 Hz, 2H), 2.42-2.37 (m, 2H), 2.32-2.28 (m, 2H), 2.19-2.06 (m, 4H), 1.89 (q, J = 7.4 Hz,

2H), 1.60 (br s, 3H), 1.54-1.47 (m, 2H), 1.25 (t, /= 7.1 Hz, 3H), 1.04 (s, 9H), 1.00 (s, 9H).

(5E,92)-13-(tert-Butyldiphenylsilanyloxy)-9-(tert-butyldiphenylsilanyloxymethyl)-5-methyl-
1-phenyltrideca-5,9-dien-2-ol (2.29)
OTBDPS A solution of ethyl ester 2.28 (600 mg, 0.788
Bn\(\)\/\);MOTBDPS mmol) in CH,Cl, (4 mL) at -78 °C was treated
OH with DIBAL-H (1 M in hexanes, 0.83 mL, 0.83
mmol) over 10 min. After 30 min, DIBAL-H (0.12 mL, 0.12 mmol) was added and the mixture
was stirred for 30 min.
In a separate round-bottom flask, a mixture of CuCN (282 mg, 3.15 mmol) and LiCl (294 mg,
6.93 mmol) in THF (10 mL) at -78 °C was treated with BnMgCl (2 M in THF, 1.6 mmol, 3.2
mmol) dropwise. After 1 h, BF;*OEt, (0.28 mL, 2.26 mmol) was added and the mixture was

stirred for 5 min. The reaction mixture from the first reaction was cannulated into the second

199



flask followed by rinse (2 x 0.5 mL THF). The mixture was stirred at -78 °C for 1 h and then at
room temperature for 1 h. After that time, the reaction was quenched with saturated NH4Cl
solution (10 mL) /saturated sodium tartrate solution (5 mL) and stirred vigorously for 1 h. The
mixture was extracted with Et;O (4 x 20 mL) and the organic extract was dried (MgSO,) and
concentrated. The residue was purified by column chromatography (3% - 12% EtOAc in
hexanes) to give secondary alcohol 2.29 (496 mg, 78%) as a colorless oil: 'H NMR (300 MHz,
CDCl) 6 7.70-7.62 (m, 8H), 7.44-7.30 (m, 12H), 7.30-7.20 (m, 5H), 5.21-5.15 (m, 2H), 4.19 (s,
2H), 3.86-3.76 (m, 1H), 3.55 (t, J = 6.5 Hz, 2H), 2.84 (dd, J = 13.6, 4.4 Hz, 1H), 2.67 (dd, J =

13.5, 8.3 Hz, 1H), 2.23-1.98 (m, 2H), 1.60 (s, 3H), 1.66-1.47 (m, 6H), 1.05 (s, 9H), 1.01 (s, 9H).

(2)-6-((E)-7-Methoxy-4-methyl-8-phenyloct-3-enyl)-2,2-13,13-tetramethyl-3,3,12,12-
tetraphenyl-4,11-dioxa-3,12-disilatetradec-6-ene (B1)
OTBDPS A solution of alcohol 2.29 (486 mg, 0.600 mmol)
Bn \(\)\/\);MOTBDPS in DMF (5§ mL) at 0 °C was treated with NaH
OMe (60% weight in mineral oil, 60 mg, 1.50 mmol).
After 20 min, Mel (0.15 mL, 2.4 mmol) was added and the mixture was stirred overnight at room
temperature. After that time, the reaction was quenched with water (20 mL) cautiously and
extracted with Et,O (3 x 20 mL). The organic extract was dried (MgSO4) and concentrated. The
residue was purified by column chromatography (2% - 5% EtOAc in hexanes) to give methyl
ether B1 (431 mg, 87%) as a colorless oil: 'H NMR (300 MHz, CDCls) & 7.69-7.61 (m, 8H),
7.43-7.30 (m, 12H), 7.29-7.26 (m, 2H), 7.22-7.18 (m, 3H), 5.20-5.10 (m, 2H), 4.19 (s, 2H), 3.55

(t, J= 6.5 Hz, 2H), 3.36-3.30 (m, 1H), 3.31 (s, 3H), 2.84 (dd, J = 13.7, 6.2 Hz, 1H), 2.72 (dd, J =
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13.8, 6.2 Hz, 1H), 2.22-1.96 (m, 6H), 1.89 (q, J = 7.3 Hz, 2H), 1.58-1.48 (m, 7H), 1.04 (s, 9H),

1.00 (s, 9H).

(22)-2-((E)-7-Methoxy-4-methyl-8-phenyloct-3-enyl)hex-2-ene-1,6-diol (2.30)
OH To a solution of silyl ether B1 (409 mg, 0.497 mmol) in
BHMOH THF (5 mL) was added TBAF-H,O (312 mg, 1.19
OMe mmol). The reaction was stirred for 4 h, then
concentrated and the residue was purified by column chromatography (50% - 60% EtOAc in
hexanes) to give the diol 2.30 (144 mg, 84%) as a colorless oil: 'H NMR (300 MHz, CDCl5) &
7.32-7.19 (m, 5H), 5.28 (t, J = 7.8 Hz, 1H), 5.16-4.99 (m, 1H), 4.17 (s, 2H), 3.63 (t, J= 5.9 Hz,
2H), 3.39-3.35 (m, 1H), 3.32 (s, 3H), 2.86 (dd, J = 13.7, 6.2 Hz, 1H), 2.71 (dd, J=13.7, 6.3 Hz,

1H), 2.24 (q, J = 7.1 Hz, 2H), 2.15-1.97 (m, 8H), 1.68-1.60 (m, 2H), 1.58-1.49 (m, 5H).

3-((2S,3R)-3-(Hydroxymethyl)-3-((E)-7-methoxy-4-methyl-8-phenyloct-3-enyl)oxiran-2-
yl)propan-1-ol (B2)
OH To a mixture of diol 2.30 (138 mg, 0.398 mmol) and
Bn X N oH activated 4 A molecular sieves (120 mg) in CH,Cl, (4
OMe mL) at -20 °C was added D--diisopropyl tartrate (8 pL,
48 pmol). After 10 min, Ti(OPr), (12 pL, 40pmol) was introduced. The mixture was stirred for
30 min, and ‘BuOOH (5-6 M in decane, 0.22 mL, ~1.2 mmol) was added dropwise. The reaction
was stirred for 5 h at -20 °C, and then stored in at -20 °C overnight. Water (0.5 mL) was added

the mixture was stirred at 0 °C for 1 h. After that time, 30% NaOH saturated with NaCl (0.5 mL)

was added and the mixture was stirred at room temperature for 2.5 h. The mixture was filtered
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through a 1:1 mixture of MgSQOy/Celite and the residue was washed with CH,Cl, (20 mL). The
combined filtrates were concentrated and the residue was purified by column chromatography
(60% - 80% EtOAc in hexanes containing 1% Et;N) to give monoepoxy diol B2 (47 mg, 33%) as
a colorless oil: '"H NMR (300 MHz, CDCls) & 7.32-7.19 (m, 5H), 5.11 (t, J = 6.8 Hz, 1H), 3.78-
3.65 (m, 4H), 3.39-3.34 (m, 1H), 3.32 (s, 3H), 2.90-2.83 (m, 2H), 2.70 (ddd, J =13.8, 6.3, 2.5 Hz,

1H), 2.38 (br s, 1H), 2.16-1.95 (m, 6H), 1.86-1.49 (m, 10H).

3-((2S,3R)-3-(Hydroxymethyl)-3-(2-((2R,3R)-3-(3-methoxy-4-phenylbutyl)-3-methyloxiran-
2-yl)ethyl)oxiran-2-yl)propan-1-ol (B3)
OH A solution of monoepoxide B2 (45 mg, 0.124 mmol) in

(0] NO)
Bn : o4 CH;CN/DMM (1.8 mL, 1:2, v/v) was treated with 0.05

oe M solution of Na,B40; in 4x10™* M Nay(EDTA) (1.2
mL), BusNHSO4 (1.7 mg, 4.5 pmol) and Shi ketone (16.0 mg, 62 pmol) sequentially. The
mixture was cooled to -5 °C. Oxone (122 mg, 0.198 mmol), dissolved in 4x10™* M Nay(EDTA)
(0.8 mL), and K,CO3; (115 mg, 0.831 mmol), dissolved in water (0.8 mL), were added
simultaneously via a syringe pump over 2.0 h. After the addition was completed, the blue
mixture was stirred further for 10 min, and anhydrous Na,SO4 was added in portions until all the
water disappeared. The mixture was filtered and the residues was washed with CH,Cl, (30 mL).
The combined filtrates were concentrated and the residue was purified by flash chromatography
(80% - 100% EtOAc in hexanes containing 1% Et;N) to give diepoxide B3 (42 mg, 89%) as a
colorless oil: "H NMR (300 MHz, CDCl5) & 7.30-7.18 (m, 5H), 3.90-3.49 (m, 4H), 3.38-3.34 (m,

1H), 3.32 (s, 3H), 2.91-2.82 (m, 2H), 2.76-2.64 (m, 2H), 2.20-1.41 (m, 14H), 1.22/1.22/1.21 (s,

3H).
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tert-Butyl  3-((2S,3R)-3-tert-butoxycarbonyloxymethyl-3-(2-[3-(3-methoxy-4-phenylbutyl)-
(2R,3R)-3-methyloxiranyl]ethyl)oxiranyl)propyl carbonate (ent-2.21)
OBoC A solution of the diepoxide B3 (39 mg, 0.103 mmol)
BHWOBOC in dry toluene (1.0 mL) at 0 °C was treated with N-
OMe methylimidazole (16 pL, 0.206 mmol) followed by di-
tert-butyl dicarbonate (90 mg, 0.412 mmol). The reaction mixture was stirred overnight,
allowing the temperature to warm to room temperature slowly. After that time, the reaction was
quenched with water (5 mL) and extracted with CH,Cl, (3 x 15 mL). The organic extracts were
dried (MgSO0,), filtered and concentrated. The residue was purified by flash chromatography
(15% - 25% EtOAc in hexanes containing 1% Et;N) to give the tert-butyl carbonate ent-2.21 (31
mg, 52%, dr ~ 2:1 regarding the stereochemical outcomes of the two epoxide groups) as a
colorless oil: '"H NMR (300 MHz, CDCls) & 7.32-7.18 (m, 5H), 4.20-4.05 (m, 4H), 3.36-3.34 (m,
1H), 3.31 (s, 3H), 2.90-2.81 (m, 2H), 2.72-2.63 (m,, 2H), 1.90-1.70 (m, 6H), 1.66-1.56 (m, SH),

1.54-1.43 (m, 1H), 1.49 (s, 9H), 1.20/1.20/1.19 (s, 3H).

tert-Butyl  3-[8-((R)-2-methyl-5-oxotetrahydrofuran-2-yl)-(5S,6S,8S)-2-0x0-1,3,7-trioxaspi-
ro[4.5]dec-6-yl]propyl carbonate (2.32)

Diepoxide ent-2.21 (30 mg, 51.8 pmol) in
dichloroethane/toluene (1.7 mL, 5:1, v/v) in borosilicate flask

OBoc
at room temperature was treated with the activated 4A

molecular sieves (60 mg), anhydrous Na;S,0; (60 mg), NaOAc (60 mg) and N-

methylquinolinium hexafluorophosphate (7.5 mg, 26 umol). The mixture was photoirradiated
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with gentle air bubbling for 3.5 h while stirring at room temperature. The reaction mixture was
filtered through a small plug of silica gel and the residue was washed with Et,O (25 mL). The
filtrate was concentrated and the resulting residue was purified by column chromatography (25%
- 40% EtOAc in hexanes) to provide a pale yellow oil 2.31 (9.5 mg, 43%, containing small
amounts of unknown materials) and another pale yellow oil (3.0 mg, 13%). For the major
product 2.31: IR (neat) 2976, 1809, 1739, 1280, 1163, 1067.

The acetal 2.31 (3.2 mg) was dissolved in acetone (0.3 mL) at 0 °C and Jones reagent (16 uL)
was added. The mixture was stirred for 1 h, then purified by column chromatography (50% -
80% EtOAc in hexanes) to give title lactone 2.33 (2.6 mg, 84%) as a colorless oil: 'H NMR (500
MHz, CDCl;) 6 4.54 (d, J = 8.9 Hz, 1H), 3.41 (d, J = 9.0 Hz, 1H), 4.08 (t, /= 5.8 Hz, 2H), 3.50
(dd, J=10.6, 1.4 Hz, 1H), 3.46 (dd, J=11.6, 2.0 Hz, 1H), 2.62-2.58 (m, 2H), 2.24 (ddd, J = 13.1,
9.6, 6.9Hz, 1H), 2.18 (td, J = 12.8, 3.8 Hz, 1H), 2.10 (dt, J = 13.4, 4.4 Hz, 1H), 1,96-1.91 (m,
2H), 1.90-1.86 (m, 1H), 1.74-1.70 (m, 2H), 1.53-1.46 (m, 1H), 1.49 (s, 9H), 1.39-1.33 (m, 1H),

1.35 (s, 3H).

(5S,6S,8S)-6-(3-Hydroxypropyl)-8-((R)-2-methyl-5-oxotetrahydrofuran-2-yl)-1,3,7-
trioxaspiro[4.5]decan-2-one (2.35)

A solution of lactone 2.33 (7.2 mg, 17.4 pmol) in CH,Cl, (0.8
mL) at 0 °C was treated with 2,6-lutidine (7.1 pL, 61 pmol)

followed by TMSOTT (10 puL, 52 pmol). The reaction was stirred

at 0 °C for 1 h, and then quenched with saturated NaHCO; (0.5 mL). Anhydrous Na,SO4 was
added and the mixture was filtered. The residue was washed with EtOAc (40 mL) and the filtrate

was concentrated. The resulting residue was purified by column chromatography (70% - 100%

204



EtOAc in hexanes) to give the alcohol 2.35 (5.4 mg, 98%) as a white solid: "H NMR (500 MHz,
CDCl3) 6 4.54 (d, J = 8.8 Hz, 1H), 4.11 (d, J = 8.8Hz, 1H), 3.67 (br s, 2H), 3.54 (dd, J = 11.9,
1.8 Hz, 1H), 3.50 (dd, J=11.8, 2.2 Hz, 1H), 2.68-2.54 (m, 2H), 2.24 (ddd, /= 13.1, 10.2, 5.5 Hz,
1H), 2.19 (ddd, J = 3.0, 4.2, 3.0 Hz, 1H), 2.11 (dt, J = 13.4, 4.6 Hz, 1H), 1.94-1.88 (m, 2H),
1.78-1.69 (m, 2H), 1.66-1.60 (m, 2H), 1.66-1.60 (m, 1H), 1.53-1.48 (m, 1H), 1.40-1.32 (m, 1H),

1.37 (s, 3H).

3-(5S,6S,8S)-[8-((R)-2-Methyl-5-oxotetrahydrofuran-2-yl)-2-oxo-1,3,7-trioxaspiro[4.5]dec-
6-yl]propionaldehyde (ent-2.19)

A solution of alcohol 2.35 (5.2 mg, 16 pmol) in CH,Cl, (0.5 mL)
was treated with NaHCO; (5.5 mg, 66 pmol) and Dess-Martin

periodinane (10.5 mg, 25 pumol) sequentially. The mixture was

stirred for 30 min, then loaded onto column and purified (60% -
80% EtOAc in hexanes) to give the aldehyde ent-2.19 (3.2 mg, 61%) as a colorless oil: '"H NMR
(500 MHz, CDCls) 6 9.77 (s, 1H), 4.57 (d, J = 8.9 Hz, 1H), 4.13 (d, /= 9.0 Hz, 1H), 3.52 (dd, J
=11.1, 2.4 Hz, 1H), 3.47 (dd, J = 11.8, 2.2 Hz, 1H), 2.67-2.54 (m, 4H), 2.23-2.17 (m, 2H), 2.10

(dt, J = 8.6, 4.6 Hz, 1H), 1.99-1.86 (m, 3H), 1.84-1.76 (m, 1H), 1.39-1.32 (m, 2H), 1.34 (s, 3H).

2-(tert-Butyldiphenylsilanyloxymethyl)hepta-1,6-dien-3-ol (2.38)

OTBDPS A solution of methyl ester 2.37 (2.050 g, 12.0 mmol) in Et,O (24 mL) at 0 °C

/I//\M was treated with LiAlH4 (1 M in Et;O, 12.0 mL) dropwise over 20 min. The

OH . . .
reaction was stirred at 0 °C for 1 h and then quenched with saturated NH4Cl

(20 mL) cautiously. Saturated sodium tartrate solution (40 mL) was added and the mixture was
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stirred vigorously for 2 h. The mixture was extracted with EtOAc (3 x 60 mL) and the organic
extract was dried (MgSQ,), filtered and concentrated. The crude product was purified by column
chromatography (40% - 60% EtOAc in hexanes) to give a colorless oil (1.033 g). This oil was
separated into two parts (325 mg and 708 mg). The first part (325 mg) was dissolved in CH,Cl,
(10 mL) and treated with TBDPSCI (0.47 mL, 1.83 mmol) and imidazole (155 mg, 2.28 mmol)
at 0 °C. The mixture was stirred at 0 °C for 15 min, then quenched with water (20 mL) and
extracted with CH,Cl, (3 x 25 mL). The organic extract was dried (MgSQOy4) and concentrated.
The crude product was purified by column chromatography (5% - 10% EtOAc in hexanes) to
give desired silyl ether. The second part (708 mg) was treated in a similar manner with
TBDPSCI (1.15 mL, 4.48 mmol) and imidazole (373 mg, 5.48 mmol) in CH,Cl, (10 mL). The
combined silyl ether 2.38 (1.180g, 26%, two steps) was obtained as a colorless oil: '"H NMR (300
MHz, CDCls) & 7.71-7.69 (m, 4H), 7.48-7.38 (m, 6H), 5.89-5.75 (m, 1H), 5.18 (q, J = 1.4 Hz,
1H), 5.12 (s, 1H), 5.06-4.96 (m, 2H), 4.32 (d, J = 13.5 Hz, 1H), 4.24-4.18 (m, 2H), 2.25 (d, J =

4.9 Hz, 1H), 2.20-2.01 (m, 2H), 1.71-1.63 (m, 2H), 1.08 (s, 9H).

Ethyl (Z2)-4-(tert-butyldiphenylsilanyloxymethyl)nona-4,8-dienoate (B4)
OTBDPS A mixture of allylic alcohol 2.38 (1.180 g, 3.10 mmol), triethyl
EtO\H/\);/W orthoacetate (2.3 mL, 12.4 mmol) and propionic acid (11 pL, 0.16
© mmol) was heated to 100 °C for 6 h and the unreacted triethyl
orthoacetate was removed by distillation under reduced pressure. The residue was purified by
column chromatography (1% - 4% EtOAc in hexanes) to give ethyl ester B4 (0.903 g, 65%) as a

colorless oil: "H NMR (300 MHz, CDCl;) & 7.71-7.68 (m, 4H), 7.47-7.36 (m, 6H), 5.76-5.63 (m,

206



1H), 5.24 (t, J= 7.1 Hz, 1H), 4.97-4.89 (m, 2H), 4.21 (s, 2H), 4.14 (q, J = 7.1 Hz, 2H), 2.56-2.45

(m, 4H), 2.01-1.85 (m, 4H), 1.26 (t, J= 7.1 Hz, 3H), 1.05 (s, 9H).

(2)-6-(tert-Butyldiphenylsilanyloxymethyl)-2-methylundeca-1,6,10-trien-3-ol (2.39)
OTBDPS A solution of the ethyl ester B4 (897 mg, 1.99 mmol) in CH,Cl, (6
)\(\);/\/\ mL) at -78 °C was treated with DIBAL-H (1 M in hexanes, 2.10
OH mL, 2.1 mmol) over 30 min. After 40 min, DIBAL-H (0.30 mL,
0.30 mmol) was added over 5 min. The mixture was stirred for 15 min and
isopropenylmagnesium bromide (0.5 M in THF, 6.0 mL, 3.0 mmol) was added dropwise. The
reaction was stirred at -78 °C for 15 min, then warmed to room temperature and quenched with
saturated NH4Cl solution (10 mL) and saturated sodium tartrate solution (8 mL). The mixture
was stirred vigorously for 1 h and extracted with Et,O (3 x 30 mL). The organic extract was
dried (MgSQO4) and concentrated. The residue was purified by column chromatography (3% -
10% EtOAc in hexanes) to give secondary alcohol 2.39 (678 mg, 76%) as a colorless oil: 'H
NMR (300 MHz, CDCls) 6 7.71-7.68 (m, 4H), 7.47-7.36 (m, 6H), 5.76-5.65 (m, 1H), 5.26 (t, J =
7.0 Hz, 1H), 4.99-4.90 (m, 3H), 4.87-4.85 (m, 1H), 4.24-4.16 (m, 2H), 4.11-4.06 (m, 1H), 2.29-
2.22 (m, 2H), 2.04-1.89 (m, 4H), 1.79-1.66 (m, 2H), 1.74 (s, 3H), 1.62 (d, J = 3.9 Hz, 1H), 1.06

(s, 9H).

Ethyl (4E,8Z)-8-(tert-butyldiphenylsilanyloxymethyl)-4-methyltrideca-4,8,12-trienoate (B5)
OTBDPS A mixture of allylic alcohol 2.39 (670 mg, 1.49 mmol),
EtO X X X (riethyl orthoacetate (1.1 mL, 6.0 mmol) and propionic

acid (5.5 pL, 74 pmol) was heated to 135 °C for 2 h and
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then purified by column chromatography (1% - 3% EtOAc in hexanes) to give ethyl ester B5
(594 mg, 77%) as a colorless oil: '"H NMR (300 MHz, CDCls) & 7.71-7.68 (m, 4H), 7.46-7.36
(m, 6H), 5.76-5.65 (m, 1H), 5.23-5.15 (m, 2H), 5.01-4.91 (m, 2H), 4.19 (s, 2H), 4.13 (q, J = 7.2
Hz, 2H), 2.43-2.37 (m, 2H), 2.35-2.28 (m, 2H), 2.22-2.10 (m, 4H), 2.03-1.88 (m, 4H), 1.61 (s,

3H), 1.26 (t, J= 7.1 Hz, 3H), 1.05 (s, 9H).

(5E,92)-9-(tert-Butyldiphenylsilanyloxymethyl)-5-methyl-1-phenyltetradeca-5,9,13-trien-2-
ol (B6)

OTBDPS A solution of the ethyl ester BS (588 mg, 1.13 mmol) in

B”\(\)\/\);/\/\ CH,CI; (5.6 mL) at - 78 °C was added DIBAL-H (1 M in

OH
hexanes, 1.2 mL, 1.2 mmol) over 15 min. After 30 min,

DIBAL-H (0.20 mL, 0.20 mmol) was added over 5 min. The mixture was stirred for 20 min.

In a separate round-bottom flask, to a mixture of CuCN (405 mg, 4.52 mmol) and LiCl (422 mg,
9.94 mmol) in THF (14 mL) at -78 °C was added BnMgCl (2 M in THF, 2.3 mmol, 4.6 mmol)
dropwise over 15 min. After 1 h, BF;*OEt; (0.28 mL, 2.26 mmol) was added and the mixture
was stirred for 5 min. The reaction mixture from the first reaction was cannulated to the second
flask followed by rinse (2 x 1 mL THF). The mixture was stirred at -78 °C for 1 h and then at
room temperature for 2 h. After that time, the reaction was quenched with saturated NH4Cl
solution (10 mL)/saturated sodium tartrate solution (8 mL) and stirred vigorously for 1 h. The
mixture was extracted with Et;O (3 x 30 mL) and the organic extract was dried (MgSO,) and
concentrated. The residue was purified by column chromatography (3% - 12% EtOAc in
hexanes) to give secondary alcohol B6 (520 mg, 81%) as a colorless oil: 'H NMR (300 MHz,

CDCls) § 7.73-7.70 (m, 4H), 7.48-7.37 (m, 6H), 7.35-7.22 (m, SH), 5.77-5.66 (m, 1H), 5.24-5.19
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(m, 2H), 4.99-4.91 (m, 2H), 4.20 (s, 2H), 3.87-3.78 (m, 1H), 2.84 (dd, J = 13.5, 4.4 Hz, 1H),
2.68 (dd, J = 13.5, 8.3 Hz, 1H), 2.24-2.08 (m, 6H), 2.06-1.88 (m, 4H), 1.62 (s, 3H), 1.66-1.58

(m, 2H), 1.07 (s, 9H).

((2Z,5E)-9-Methoxy-6-methyl-2-(pent-4-enylidene)-10-phenyldec-5-enyloxy)(tert-
butyl)diphenylsilane (B7)

A solution of the secondary alcohol B6 (510 mg, 0.900

OTBDPS
mmol) in DMF (8 mL) at 0 °C was treated with NaH (60%

X
OMe weight in mineral oil, 90 mg, 2.25 mmol). After 30 min,

Bn N NS

Mel (0.22 mL, 3.60 mmol) was added and the mixture was stirred overnight at room
temperature. After that time, the reaction was quenched with water (20 mL) cautiously and
extracted with Et,O (3 x 30 mL) and the organic extract was dried (MgSO,) and concentrated.
The residue was purified by column chromatography (1% - 4% EtOAc in hexanes) to give the
methyl ether B7 (474 mg, 91%) as a colorless oil: 'H NMR (300 MHz, CDCls) & 7.72-7.66 (m,
4H), 7.47-7.36 (m, 6H), 7.32-7.25 (m, 2H), 7.23-7.18 (m, 3H), 5.79-5.66 (m, 1H), 5.21 (app t, J
=7.0 Hz, 1H), 5.14 (app qt, J = 6.8, 1.0 Hz, 1H), 4.99-4.91 (m, 2H), 4.20 (s, 2H), 3.39-3.32 (m,
1H), 3.32 (s, 3H), 2.86 (dd, J = 13.7, 6.1 Hz, 1H), 2.72 (dd, J = 13.7, 6.2 Hz, 1H), 2.25-2.07 (m,

5H), 2.04-1.88 (m, 5H), 1.59-1.51 (m, 2H), 1.54 (br s, 3H), 1.06 (s, 9H).

(2Z,5E)-9-Methoxy-6-methyl-2-(pent-4-enylidene)-10-phenyldec-5-en-1-ol (2.40)

OH A solution of the silyl ether B7 (464 mg, 0.799 mmol) in
Bn\(\)\/\)/\/w THF (5 mL) was treated with TBAF (1 M in THF, 1.9 mL,

OMe 1.9 mmol). The reaction was stirred for 4 h, then
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concentrated and the residue was purified by column chromatography (10% - 22% EtOAc in
hexanes) to give the trienol 2.40 (230 mg, 84%) as a colorless oil: "H NMR (300 MHz, CDCl3) &
7.32-7.28 (m, 2H), 7.23-7.18 (m, 3H), 5.82 (tdd, J = 16.8, 10.2, 6.5 Hz, 1H), 5.31 (t, /= 6.8 Hz,
1H), 5.14-5.10 (m, 1H), 5.06-4.98 (m, 2H), 4.12 (d, J = 5.6 Hz, 2H), 3.38-3.30 (m, 1H), 3.32 (s,
3H), 2.86 (dd, J = 13.7, 6.1 Hz, 1H), 2.72 (dd, J =13.7, 6.2 Hz, 1H), 2.23-1.96 (m, 10H), 1.57-

1.50 (m, 2H), 1.55 (s, 3H), 1.15 (t, J= 5.7 Hz, 1H).

((2S,3R)-3-(But-3-enyl)-2-((E)-7-methoxy-4-methyl-8-phenyloct-3-enyl)oxiran-2-
yl)methanol (B8)

OH A mixture of trienol 2.40 (223 mg, 0.651 mmol) and

Bn\(\)\/\/og/\/\ activated 4 A molecular sieves (195 mg) in CH,Cl, (6 mL)

OMe
at -20 °C was treated with L-diisopropyl tartrate (16 pL,

78 umol). After 15 min, Ti(O'Pr)s (20 pL, 65umol) was introduced. The mixture was stirred for
30 min, and ‘BuOOH (5-6 M in decane, 0.36 mL, ~1.9 mmol) was added dropwise. The reaction
was stirred for 40 min at -20 °C, and then water (0.3 mL) was added. The mixture was stirred at
0 °C for 1 h. After that time, 30% NaOH saturated with NaCl (0.3 mL) was added and the
mixture was stirred at room temperature for 4 h. The mixture was filtered through a 1:1 mixture
of MgSO./Celite and the residue was washed with CH,Cl, (30 mL). The combined filtrates were
concentrated and the residue was purified by column chromatography (20% - 25% EtOAc in
hexanes containing 0.5% Et;N) to give a colorless oil (150 mg, containing 7 mol% (+)-DIPT)
which was treated with a mixture of 30% NaOH saturated with NaCl (0.3 mL) and CH,Cl, (3
mL) for 5 h. The mixture was concentrated and the residue was purified by column

chromatography (20% - 25% EtOAc in hexanes containing 0.5% Et;N) to give the monoepoxide
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B8 (134 mg, 58%) as a colorless oil: 'H NMR (500 MHz, CDCls) § 7.31-7.20 (m, 5H), 5.84 (tdd,
J=16.9,10.2, 6.6 Hz, 1H), 5.10-5.02 (m, 3H), 3.76 (dd, /= 11.8, 6.8 Hz, 1H), 3.67 (dd, J=11.8,
5.3 Hz, 1H), 3.36-3.34 (m, 1H), 3.32 (s, 3H), 2.90-2.84 (m, 2H), 2.71 (dd, J = 13.7, 6.2 Hz, 1H),

2.28-1.99 (m, 6H), 1.94-1.90 (m, 1H), 1.78-1.45 (m, 6H), 1.55 (s, 3H).

((2S,3R)-3-(But-3-enyl)-2-(2-((2S,3S)-3-(3-methoxy-4-phenylbutyl)-3-methyloxiran-2-
ylethyl)oxiran-2-yl)methanol (B9)
OH A solution of B8 (125 mg, 0.349 mmol) in CH;CN/DMM
B”\W (5.2 mL, 1:2, v/v) was treated with a 0.05 M solution of
oMe Na,;B,0; in 4x10* M Nay(EDTA) (3.5 mL), BuyNHSO,
(4.7 mg, 14.0 umol) and ent-Shi ketone (27.0 mg, 0.105 mmol) sequentially. The mixture was
cooled to - 5 °C. Oxone (268 mg, 0.436 mmol), dissolved in 4x10™* M Nay(EDTA) (2.0 mL), and
K,COs (253 mg, 1.83 mmol), dissolved in water (2.0 mL), were added simultaneously via a
syringe pump over 2.0 h. After the addition was completed, the slightly blue reaction mixture
was stirred further for 15 min, then diluted with water (10 mL) and extracted with CH,Cl, (4 x
15 mL). The organic extracts were dried (MgSOs, filtered and concentrated. The residue was
purified by flash chromatography (25% - 38% EtOAc in hexanes) to give unreacted starting
material B8 (37.4 mg, 30%) and the diepoxide B9 (79.7 mg, 61%) as a colorless oil: 'H NMR
(300 MHz, CDCl3) & 7.32-7.19 (m, 5H), 5.91-5.78 (m, 1H), 5.11-5.01 (m, 2H), 3.73-3.71 (m,
2H), 3.38-3.34 (m, 1H), 3.32 (s, 3H), 2.92-2.83 (m, 2H), 2.71-2.65 (m, 1H), 2.32-2.18 (m, 2H),

2.03-1.91 (m, 1H), 1.87 (dt, J= 5.9, 2.2 Hz, 1H), 1.81-1.41 (m, 8H), 1.22 (s, 3H).
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tert-Butyl ((2S,3R)-3-(but-3-enyl)-2-(2-((2S,3S)-3-(3-methoxy-4-phenylbutyl)-3-methyloxira-
n-2-ylethyl)oxiran-2-yl)methyl carbonate (2.36)
OBoc A solution of the diepoxy alcohol B9 (78 mg, 0.208

Bn o N mmol) in dry toluene (2.0 mL) at 0 °C was treated with di-
&

OMe tert-butyl dicarbonate (91 mg, 0.416 mmol) and 1-

methylimidazole (16 pL, 0.208 mmol). The reaction mixture was stirred overnight, allowing the
temperature to warm to room temperature slowly. After that time, the reaction was quenched
with water (10 mL) and extracted with CH,Cl, (3 x 15 mL). The organic extracts were dried
(MgS0y), filtered and concentrated. The residue was purified by flash chromatography (15% -
20% EtOAc in hexanes containing 0.5% Et;N) to give the tert-butyl carbonate 2.36 (90 mg,
91%, dr ~ 4.6:1 regarding the stereochemical outcomes of the two epoxide groups) as a colorless
oil: "H NMR (500 MHz, CDCl;) & 7.31-7.28 (m, 2H), 7.23-7.19 (m, 3H), 5.85-5.80 (m, 1H),
5.08 (td, J=17.1, 1.6 Hz, 1H), 5.02 (dd, /= 10.4, 1.2 Hz, 1H), 4.21-4.12 (m, 2H), 3.38-3.33 (m,
1H), 3.31 (s, 3H), 2.89-2.83 (m, 2H), 2.70-2.65 (m, 2H), 2.29-2.21 (m, 2H), 1.85-1.81 (m, 1H),

1.78-1.60 (m, 7H), 1.54-1.42 (m, 2H), 1.45 (s, 9H), 1.21/1.20 (s, 3H).

(5R,6R,8R)-6-But-3-enyl-8-((S)-2-methyl-5-oxo-tetrahydrofuran-2-yl)-1,3,7-
trioxaspiro[4.5]decan-2-one (B10)
Diepoxide 2.36 (44 mg, 92.7 umol) in dichloroethane/toluene (3.1

mL, 5:1, v/v) in borosilicate flask at room temperature was treated

with activated 4A molecular sieves (88 mg), anhydrous Na,S,03
(88 mg), NaOAc (88 mg) and N-methylquinolinium hexafluorophosphate (13.4 mg, 46.4 pmol).

The mixture was photoirradiated with gentle air bubbling for 6.5 h while stirring at room
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temperature. The reaction mixture was filtered through a small plug of silica gel and the residue
was washed with EtOAc (20 mL). The filtrate was concentrated and the resulting residue was
purified by flash chromatography (25% - 35% EtOAc in hexanes) to provide a pale yellow oil
(10.5 mg), which was dissolved in acetone (1.0 mL) at 0 °C. Jones reagent (2.67 M, 6 drops) was
added dropwise (1 drop/5 min). After completion of addition, the mixture was stirred for 1 h and
then concentrated. The residues was purified by column chromatography (50% - 70% EtOAc in
hexanes) to give the lactone B10 (4.6 mg, 17%, two steps) as a colorless oil: '"H NMR (300 MHz,
CDCl) 6 5.83-5.69 (m, 1H), 5.11-5.01 (m, 2H), 4.54 (d, J = 8.8 Hz, 1H), 4.12 (d, J = 9.0 Hz,
1H), 3.50 (dd, J = 10.8, 2.0 Hz, 1H), 3.46 (dd, J = 11.7, 2.3 Hz, 1H), 2.64-2.57 (m, 2H), 2.32-
2.05 (m, 5H), 1.97-1.87 (m, 2H), 1.69 (dtd, J = 13.6, 8.1, 2.2 Hz, 1H), 1.49 (dtd, J = 13.6, 5.7,

2.9 Hz, 1H), 1.40-1.32 (m, 1H), 1.36 (s, 3H).

3-((5R,6R,8R)-[8-((S)-2-Methyl-5-oxotetrahydrofuran-2-yl)-2-oxo-1,3,7-trioxaspiro[4.5]dec-
6-yl])propionaldehyde (2.19)

A solution of the lactone B10 (3.3 mg, 10.6 umol) in CH,Cl, (0.8
mL) at - 78 °C was treated dropwise with a saturated solution of

O; in CH,Cl; at -78 °C until all the starting material disappeared.

PPh; (a crystal) was added and the cold bath was removed. The reaction was stirred for 10 h,
then concentrated and the residues was purified by column chromatography (60% - 80% EtOAc
in hexanes) to give the aldehyde 2.19 (3.6 mg (containing ~17% Ph;P=0, 83%) as a colorless oil,

which has identical spectral data to ent-2.19.
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(S)-1-((2R,5R)-Tetrahydro-5-(2-hydroxypropan-2-yl)-2-methylfuran-2-yl)ethane-1,2-diol
(2.42)

A mixture of AD-mix-B (12.35 g) in ‘BuOH/H,0 (88 mL, 1:1, v/v) at 0

HO“KQ,:{OH °C was treated with CH3SO,NH, (0.839 g, 8.82 mmol). After 15 min,

OH
the epoxy alcohol (1.50 g, 8.82 mmol, prepared from geraniol through Sharpless asymmetric

epoxidation) was added dropwise and the flask formerly containing the epoxy alcohol was rinsed
with ‘BuOH/H,O (2 x 2 mL, 1:1, v/v). The mixture was stirred at 0 °C for 2 days, then
concentrated to ~50 mL and extracted with EtOAc (25 x 30 mL). The combined organic extracts
were dried (Na,SO,), filtered and concentrated. The residue was purified by column
chromatography (90% - 100% EtOAc in hexanes followed by 5% - 15% MeOH in EtOAc) to
give a mixture of 2.22 and 2.42 (1.720 g). This mixture was dissolved in PhMe (200 mL) at 0 °C
and CSA -pyridine (262 mg, 0.842 mmol) was added. The reaction was stirred for 1.5 h, and Et;N
(1 mL) was added. The solvent was removed under reduced pressure and the residue was
purified by column chromatography (90% - 100% EtOAc in hexanes followed by 5% - 15%
MeOH in EtOAc) to give triol 2.42 (1.627 g, 90%, two steps) as a colorless oil: 'H NMR (300
MHz, CDCl3) ¢ 3.79 (t, J = 8.2 Hz, 1H), 3.75-3.70 (m, 2H), 3.58-3.52 (m, 1H), 2.88 (br s, 1H),
2.53-2.51 (m, 1H), 2.18 (s, 1H), 2.10 (td, J = 11.3, 10.2 Hz, 1H), 1.90-1.81 (m, 2H), 1.65-1.57
(m, 1H), 1.22 (s, 3H), 1.18 (s, 3H), 1.14 (s, 3H); HRMS (ESI): m/z calcd for C;oH20O4sNa (M +

Na") 227.1259, found 227.1246.

214



(R)-2-Hydroxy-2-[(5R)-5-(1-hydroxy-1-methylethyl)-(2R)-2-methyltetrahydrofuran-2-
yl]ethyl toluene-4-sulfonate (B11)

A solution of triol 2.42 (1.627 g, 7.96 mmol) in CH,Cl, (20 mL) was

TsO O OH

OH H treated with pyridine (1.3 mL, 15.9 mmol), TsCl (1.670 g, 8.76 mmol)

ey

and DMAP (49 mg, 0.40 mmol) sequentially. The reaction was stirred overnight, then
concentrated and the residue was purified by column chromatography (30% - 60% EtOAc in
hexanes) to give the tosylate B11 (1.284 g, 45%) as a colorless oil: '"H NMR (300 MHz, CDCl5)
0 7.82 (td, J = 8.4, 1.9 Hz, 2H), 7.38-7.35 (m, 2H), 4.26 (dd, J = 10.4, 2.6 Hz, 1H), 4.02 (dd, J =
10.5, 7.8 Hz, 1H), 3.78 (td, J = 7.6, 2.9 Hz, 1H), 3.72 (dd, J = 8.9, 6.8 Hz, 1H), 2.52 (d, /= 3.2
Hz, 1H), 2.46 (s, 3H), 2.06 (td, /= 11.9, 9.2 Hz, 1H), 1.96 (s, 1H), 1.89-1.81 (m, 2H), 1.66 (ddd,
J=119,6.2,3.5 Hz, 1H), 1.18 (s, 3H), 1.13 (s, 3H), 1.11 (s, 3H); HRMS (ESI): m/z calcd for

C17H2606NaS [M+Na]* 381.1348, found 381.1340.

2-((2R,5R)-Tetrahydro-5-methyl-5-((S)-oxiran-2-yl)furan-2-yl)propan-2-ol (B12)

A solution of the tosylate B11 (270 mg, 0.753 mmol) in dry MeOH (21
o ENe) H | OH mL) was treated with anhydrous K,CO; (104 mg, 0.753 mmol). The
mixture was stirred for 1.5 h, then concentrated and the residue was purified by column
chromatography (50% EtOAc in hexanes containing 0.5% Et;N) to give the epoxide B12 (134
mg, 96%) as a colorless oil: 'H NMR (300 MHz, CDCls) & 3.81-3.76 (m, 1H), 3.04 (dd, J = 4.1,
2.8 Hz, 1H), 2.74 (dd, J = 5.0, 4.2 Hz, 1H), 2.58 (dd, /= 5.0, 2.8 Hz, 1H), 2.11 (s, 1H), 1.90-1.78
(m, 2H), 1.68-1.58 (m, 1H), 1.28 (s, 3H), 1.23 (s, 3H), 1.13 (s, 3H); °C NMR (75 MHz, CDCl5)

0 86.8,81.4,70.7,57.2,43.9, 32.8, 27.5, 26.3, 24.3, 24.3.
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(2-((2R,5R)-Tetrahydro-5-methyl-5-((S)-oxiran-2-yl)furan-2-yl)propan-2-yloxy)triethyl-
silane (2.43)

A solution of the tertiary alcohol B12 (178 mg, 0.956 mmol) in DMF
o) e H | OSEtz (5.8 mL) at 0 °C were treated with imidazole (130 mg, 1.91 mmol),
TESCI (0.24 mL, 1.43 mmol) and DMAP sequentially. The mixture was stirred at 0 °C for 2 h
and then at room temperature overnight. After that time, the reaction was quenched with water
(15 mL) at 0 °C and extracted with Et,O (3 x 20 mL). The organic extract was dried (MgSQO,),
filtered and concentrated. The residue was purified by column chromatography (2% - 8% Et,0 in
hexanes containing 0.5% Et;N) to give the silyl ether 2.43 (261 mg, 91%) as a colorless oil: 'H
NMR (300 MHz, CDCl3) 6 3.72 (t, J = 7.0 Hz, 1H), 2.99 (dd, /= 4.1, 2.8 Hz, 1H), 2.73 (dd, J =
4.9, 4.2 Hz, 1H), 2.58 (dd, J = 5.1, 2.8 Hz, 1H), 1.98-1.73 (m, 3H), 1.58 (ddd, J = 13.7, 8.2, 5.2
Hz, 1H), 1.24 (s, 3H), 1.20 (s, 3H), 1.19 (s, 3H), 0.95 (t, J = 8.1 Hz, 9H), 0.58 (q, J = 7.8 Hz,
6H); °C NMR (75 MHz, CDCls) & 87.7, 81.6, 74.3, 57.4, 44.2, 33.1, 28.1, 26.6, 25.5, 24.0, 7.3,
6.9; IR (neat) 2958, 2876, 1240, 1174, 1044, 726. HRMS (ESI): m/z calcd for C;sH3,O3;NaSi

[M+Na]" 323.2018, found 323.1993.

(R)-2-Methyl-(5R)-5-(1-methyl-1-triethylsilanyloxyethyl)-2-((S)-1-triethylsilanyloxypent-4-
ynyl)tetrahydrofuran (B13)

A mixture of n-BuLi (1.6 M in hexanes, 23.2 mL, 37.2 mmol) in

7

20
OH
tetramethylethylenediamine (1.4 mL, 9.3 mmol) followed by dropwise addition of propargyl

H | OSiEty Et,0 8 mL) at -78 °C was treated with

bromide (80% weight in PhMe, 2.1 mL, 18.6 mmol). The resulting yellow suspension was stirred

at -78 °C for 20 min, then transferred to a solution of epoxide 2.43 (180 mg, 0.6 mmol) in
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anhydrous Et,O (1.0 mL) at -78 °C quickly via syringe. The mixture was stirred at -78 °C for 1
h, then quenched with saturated NH4Cl (20 mL)/water (10 mL) and extracted with Et,O (3 x 20
mL). The ether solution was dried (MgSQ,), filtered and concentrated. The residue was purified
by column chromatography (4% - 12% Et;O in hexanes) to give starting material 2.43 (65 mg,
36%) and the terminal alkyne B13 (128 mg, 63%) as a colorless oil: "H NMR (300 MHz, CDCl;)
0 3.71-3.61 (m, 2H), 2.49-2.40 (m, 2H), 2.33 (ddd, J = 16.8, 8.0, 2.6 Hz, 1H), 2.04 (td, J = 11.2,
8.2 Hz, 1H), 1.97 (t, J = 2.7 Hz, 1H), 1.96-1.83 (m, 2H), 1.74-1.65 (m, 1H), 1.56-1.44 (m, 2H),
1.22 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H), 0.96 (t, J = 7.7 Hz, 9H), 0.59 (q, J = 8.0 Hz, 6H); °C
NMR (75 MHz, CDCl;) & 88.9, 85.9, 84.7, 75.6, 74.1, 68.6, 31.1, 30.9, 27.7, 26.9, 26.1, 24.0,

16.1,7.3,7.0.

(S)-1-[(2R)-2-Methyl-(5R)-5-(1-methyl-1-triethylsilanyloxy-ethyl)-tetrahydro-furan-2-yl]-
pent-4-yn-1-ol (2.44)
S _ A solution of the secondary alcohol B13 (120 mg, 0.352 mmol)
O | OsiEt; . o e

OSiEts in CH,Cl; (3.5 mL) at 0 °C was treated with imidazole (27 mg,
0.396 mmol), TESCI (65 pL, 0.387 mmol) and DMAP (2.1 mg, 17 umol) sequentially, and the
cold bath was removed. After 1 h, the reaction mixture was concentrated and the residue was
purified by column chromatography (1% - 3% Et,O in hexanes) to give the bis-silyl ether 2.44
(145 mg, 91%) as a colorless oil: 'H NMR (300 MHz, CDCl3) & 3.67-3.63 (m, 2H), 2.38-2.29 (m,
1H), 2.23 (ddd, J = 16.9, 7.9, 2.6 Hz, 1H), 1.99-1.74 (m, 5H), 1.59-1.47 (m, 2H), 1.19 (s, 3H),

1.17 (s, 3H), 1.09 (s, 3H), 1.00-0.93 (m, 18H), 0.68-0.55 (m, 12H); *C NMR (75 MHz, CDCl5) &

87.4,85.8,85.2,76.3,74.3, 68.4, 34.6, 32.8, 28.1, 26.5, 25.7,22.7, 15.9,7.3, 7.3, 7.0, 5.7.
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(2R)-2-Methyl-(5R)-5-(1-methyl-1-triethylsilanyloxyethyl)-2-((1S)-4-tributylstannanyl-1-
triethylsilanyloxypent-4-enyl)tetrahydrofuran (B14)

A solution of Pr,NH (0.57 mL, 4.05 mmol) in THF (3.5

Bu3snjj\/\l/QHPﬁOSiEts mL) at 0 °C was treated with n-BuLi (1.6 M in hexanes, 2.3

OSiEt,
mL, 3.6 mmol). After 30 min, the flask was cooled to -30 °C and a solution of #-Bu3;SnH (0.97

mL, 3.6 mmol) in THF (2.1 mL) was added dropwise. The pale yellow solution was stirred for 1
h and Et,AICI (1 M in heptane, 3.0 mL, 3.0 mmol) was added. The mixture was stirred at -30 °C
for 5 h to form an n-BuzSnAlIEt, solution (~0.244 M).

A solution of terminal alkyne 2.44 (140 mg, 0.308 mmol) in THF (11 mL) at -30 °C was treated
with n-BusSnAlEt, solution (6.2 mL, ~1.5 mmol) followed by CuCN (8.3 mg, 92.4 pmol). After
1 h, the n-Bu3SnAlEt; solution (2.0 mL, ~0.5 mmol) and CuCN (8.0 mg, 89 umol) were added.
The mixture was stirred at -30 °C for 5 h, and then stored at -20 °C overnight. The reaction was
quenched with saturated NH4Cl (20 mL) and extracted with Et,;O (3 x 20 mL). The ether solution
was dried (MgSO,), filtered and concentrated. The residue was purified by column
chromatography (2% - 2.5% Et,O in hexanes) to give the desired vinyl stannane B14 (67.8 mg,
29%) and unreacted starting material 2.44 (71.9 mg, 51%). For vinyl stannane: 'H NMR (500
MHz, CDCls) 6 5.70 (J = 84.6, 0.8 Hz, 1H), 5.10 (/= 38.7, 1.5 Hz, 1H), 3.64 (dd, J= 5.5, 3.7 Hz,
1H), 3.52 (dd, /= 5.0, 1.9 Hz, 1H), 2.42 (dt, J = 8.2, 2.8 Hz, 1H), 2.22 (dt, /= 7.5, 2.8 Hz, 1H),
1.97 (dt, /= 6.5, 4.8 Hz, 1H), 1.92-1.84 (m, 1H), 1.82-1.76 (m, 1H), 1.66 (tt, /= 8.0, 2.0 Hz, 1H),
1.57-1.29 (m, 14H), 1.19 (s, 3H), 1.17 (s, 3H), 1.08 (s, 3H), 0.99-0.88 (m, 33H), 0.66-0.56 (m,

12H).
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2-((1S)-4-1odo-1-triethylsilanyloxypent-4-enyl)-(2R)-2-methyl-(5R)-5-(1-methyl-1-
triethylsilanyloxy-ethyl)tetrahydrofuran (2.45)

A solution of the vinyl stannane B14 (62 mg, 83 pmol) in

'WOSE% CH,Cl, (1.6 mL) was treated with I, (23 mg, 91umol). The

OSiEts
slightly purple solution was stirred for 10 min, then quenched with saturated Na,S,03 solution (5

mL) and extracted with CH,Cl, (3 x 15 mL). The organic extract was dried (Na,SOy), filtered
and concentrated. The residue was purified by column chromatography (2% Et,O in hexanes
containing 0.5% Et;N) to give the vinyl iodide 2.45 (41.7 mg, 86%) as a colorless oil: '"H NMR
(300 MHz, CDCl) 6 6.04 (q, J = 1.4 Hz, 1H), 5.69 (d, J = 0.8 Hz, 1H), 3.66-3.61 (m, 1H), 3.54
(dd, J=17.5, 4.1 Hz, 1H), 2.60-2.41 (m, 2H), 1.99-1.73 (m, 4H), 1.60-1.50 (m, 2H), 1.19 (s, 3H),
1.17 (s, 3H), 1.10 (s, 3H), 1.00-0.93 (m, 18H), 0.67-0.54 (m, 12H); C NMR (75 MHz, CDCl;)
0 125.2, 113.1, 87.4, 85.9, 76.8, 74.2, 42.9, 34.9, 33.9, 28.0, 26.5, 25.8, 22.6, 7.4, 7.0, 5.7; IR
(neat) 2956, 2876, 1459, 1238, 1173, 1099, 1068. HRMS (ESI): m/z calcd for C,sHs;103;NaSi

[M+Na]" 605.2319, found 605.2341.
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APPENDIX C

MULTICOMPONENT APPROACH TO THE SYNTHESIS OF OXIDIZED AMIDES

THROUGH NITRILE HYDROZIRCONATION (SUPPORTING INFORMATION)

General Experimental Proton (‘"H NMR) and carbon (?C NMR) nuclear magnetic resonance
spectra were recorded at ambient temperature on Bruker Avance 300 spectrometer at 300 MHz
and 75 MHz or Bruker Avance 500 spectrometer at 500 MHz and 125 MHz if specified. The
chemical shifts are given in parts per million (ppm) on the delta (8) scale. The solvent peak was
used as a reference value, for 'H NMR: CDCl; = 7.27 ppm, CD;0D = 3.31, for BC NMR: CDCl,
= 77.23, CD3;0D = 49.00. Data are reported as follows: (s = singlet; d = doublet; t = triplet; q =
quartet; sept = septet; sext = sextet; dd = doublet of doublets; ddd = doublet of doublet of
doublets; dt = doublet of triplets; td = triplet of doublets; dtd = doublet of triplet of doublets; br =
broad; app = apparently). High resolution mass spectra were recorded on a MICROMASS
AUTOSPEC (for EI) or WATERS Q-TOF API-US (for ESI) spectrometer. Infrared (IR) spectra
were collected on a Mattson Cygnus 100 spectrometer. Samples for IR were prepared as a thin
film on a NaCl plate by dissolving the compound in CH,Cl, and then evaporating the CH,Cl,.
Optical rotations were measured on a Perkin-Elmer 241 polarimeter at ambient temperature.

Tetrahydrofuran and diethyl ether were distilled from sodium and benzophenone. Methylene
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chloride and benzene was distilled under N, from CaH,. Anhydrous CH,Cl, was obtained
through distillation from CaH,. PhOCOCI, ‘PrCOCI, MeOCH,COC]I, CbzCl, PhSH, Et;N, and
BF;+OEt, were distilled prior to use. MeOH and ‘BuOH were distilled from Mg and stored over
4 A molecular sieves prior to use. PhOH was azeotroped with toluene and dried under high
vacuum before use. Methanesulfonic anhydride was purchased from Aldrich and used without
further purification. Anhydrous Mg(ClO4), and Zn(OTf), were purchased from Aldrich and
Fluka, respectively, stored in dessicator, and used as received. Analytical TLC was performed on
E. Merck pre-coated (25 mm) silica gel 60F-254 plates. Visualization was done under UV (254
nm). Flash chromatography was done using ICN SiliTech 32-63 60 A silica gel. Reagent grade
ethyl acetate, diethyl ether and hexanes (commercial mixture) were purchased from EM Science
and used as is for chromatography. All reactions were performed in oven or flame-dried
glassware under Ar with magnetic stirring unless otherwise noted. Schwartz’ reagent, though

112

commercially available, was prepared according to the literature.” ~ All the compounds in this

work were prepared in their racemic form unless otherwise noted.

Phenyl (1R,2R)-1,2-dimethoxyoctylcarbamate (3.2) and phenyl (1S,2R)-1,2-dimethoxy-
octylcarbamate (3.3)

e A solution of 2-methoxyoctanenitrile 3.1

12 1
PhO” NG, + PhOTON . (70.0 mg, 0.451 mmol) in CH,Cl, (43.5
OMe OMe

mL) was treated with Cp,Zr(H)CI (140 mg, 0.541 mmol). The reaction was stirred for 15 min,
then cooled to 0 °C and phenyl chloroformate (79 pL, 0.631 mmol) was added dropwise. The
cold bath was removed and the mixture was stirred for 10 min. After that time, the flask was

cooled to 0 °C and phenyl chloroformate (56 pL, 0.451 mmol) was added. The mixture was
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stirred at room temperature for 15 min and then cooled to 0 °C. A solution of MeOH (0.36 ml,
9.02 mmol) in CH,Cl, (0.6 mL) was added dropwise. The reaction was stirred for 15 min at 0 °C
and then quenched with saturated NaHCO3 (25 mL). The mixture was extracted with CH,Cl, (4
x 20 mL) and the combined organic extracts were dried (Na;SO4) and concentrated. The residue
was purified by column chromatography (6% - 120% EtOAc in hexanes containing 0.5% Et;N)
to give the desired product (77.2 mg, 55.3%) as a colorless oil in a 2.4:1.0 diastereomeric ratio.
Further purification by column chromatography (8% - 14% EtOAc in hexanes containing 0.5%
Et;N) yielded analytically pure samples. For faster eluting anti-product 3.2: "H NMR (300 MHz,
CDCls) 7.38 (app t, J = 7.7 Hz, 2H), 7.24-7.12 (m, 3H), 5.90 (d, J = 9.8 Hz, 1H), 4.88 (d, J =
10.0 Hz, 1H), 3.59-3.49 (m, 1H), 3.52 (s, 3H), 3.44 (s, 3H), 1.55-1.27 (m, 10H), 0.90 (t, J = 6.9
Hz, 3H); °C NMR (75 MHz, CDCl;) 155.2, 151.0, 129.5, 125.6, 121.7, 85.6, 82.4, 59.7, 56.0,
31.9, 31.4, 29.5, 25.6, 22.8, 14.3; IR (neat) 3322, 2930, 2857, 1747, 1515, 1487, 1334, 1206,
1103, 1025, 952, 738; HRMS (ESI): m/z caled for C;7H,7NO4Na [M+Na]™ 332.1838, found
332.1830. For slower eluting syn-product 3.3: 'H NMR (300 MHz, CDCls) 7.40-7.34 (m, 2H),
7.29-7.22 (m, 3H), 5.82 (d, /=9.7 Hz, 1H), 5.00 (dd, /= 10.0, 2.9 Hz, 1H), 3.41 (s, 3H), 3.40 (s,
3H), 3.18 (dt, J = 6.8, 2.9 Hz, 1H), 1.62-1.55 (m, 2H), 1.40-1.24 (m, 8H), 0.90 (t, J = 6.8 Hz,
3H); *C NMR (75 MHz, CDCls) 154.9, 151.0, 129.5, 125.7, 121.7, 82.9, 82.6, 58.4, 56.5, 31.9,
29.7, 29.0, 25.6, 22.8, 14.3; IR (neat) 3324, 2928, 2857, 1747, 1523, 1488, 1356, 1209, 1086,

954; HRMS (ESI): m/z caled for C;7H,7NO4Na [M+Na]" 332.1838, found 332.1841.

(E)-Ethyl non-2-enoate (3.7)
'H NMR (300 MHz, CDCl5) 6.97 (td, J = 15.6, 7.0 Hz, 1H), 5.81 (td, J =

EtOM
4

o 15.7, 1.5 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.20 (qd, J = 7.0, 1.5 Hz, 2H),
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1.50-1.41 (m, 2H), 1.36-1.27 (m, 9H), 0.89 (t, J = 6.9 Hz, 3H); °C NMR (75 MHz, CDCl;)

167.0, 149.7, 121.4, 60.3, 32.4, 31.8, 29.0, 28.2, 22.8, 14.5, 14.3.

(2S,3R)-Ethyl 2,3-dihydroxynonanoate (C1)

OH A mixture of AD-mix-p in ‘BuOH/H,O (20 mL, 1:1, v/v) at 0 °C was

EtO
M treated with CH3SO,NH; (0.190 g, 2.00 mmol) followed by a solution of
O OH

enoate 3.7 (0.368 g, 2.00 mmol) in‘BuOH (0.5 mL). The mixture was stirred at 0 °C for 6 h and
then at room temperature for 10 h. The reaction was cooled to 0 °C and quenched with Na,SO;
solution (10%, 30 mL). After stirred at 0 °C for 1 h, the mixture was extracted with CH,Cl, (3 x
30 mL). The organic extracts were dried (MgSQO4) and concentrated. The residue was purified by
column chromatography (30% - 40% EtOAc in hexanes) to give the diol C1 (0.402 g, 92.0%) as
a white solid: 'H NMR (300 MHz, CDCl3) 4.29 (q, J = 7.1 Hz, 2H), 4.08 (dd, J = 5.3, 2.0 Hz,
1H), 3.88 (dtd, /= 8.9, 6.9, 2.1 Hz, 1H), 3.12 (d, /= 5.3 Hz, 1H), 1.98 (d, /= 9.2 Hz, 1H), 1.64-
1.58 (m, 2H), 1.52-1.44 (m, 1H), 1.39-1.25 (m, 10H), 0.89 (t, J = 6.9 Hz, 3H); *C NMR (75
MHz, CDCls) 173.9, 73.2, 72.7, 62.3, 34.0, 32.0, 29.4, 25.9, 22.8, 14.4, 14.3; IR (neat) 3377,
2925, 2854, 1737, 1462, 1294, 1136, 1099, 1072; HRMS (ESI): m/z caled for C;1H04Na

[M+Na]" 241.1416, found 241.1420; [o]p = +12.6 (CHCLs, ¢ 0.98).

(2S,3R)-Ethyl 2,3-dimethoxynonanoate (C2)

OMe A solution of the diol C1 (170.0 mg, 0.779 mmol) in CH,Cl, (4.0 mL) were
EtO
M treated with Ag,O (271 mg, 1.17 mmol) and Mel (0.22 mL, 3.50 mmol).
O OMe

The reaction was refluxed for 10 h, and Ag,O (271 mg, 1.17 mmol) and Mel (0.22 mL, 3.50

mmol) were added sequentially. After 12 h, Ag,O (271 mg, 1.17 mmol) and Mel (0.22 mL, 3.50
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mmol) were added. The mixture was refluxed for another 6 h, then filter through Celite and the
residue was washed with CH,Cl, (30 mL). The combined filtrate was concentrated and the
resulting residue was purified by column chromatography (5% - 15% EtOAc in hexanes) to give
the desired product C2 (59.4 mg, 31.0%) as a colorless oil: '"H NMR (300 MHz, CDCls) 4.32-
421 (m, 2H), 3.78 (d, J = 4.1 Hz, 1H), 3.51 (dt, J = 6.5, 4.1 Hz, 1H), 3.44 (s, 3H), 3.39 (s, 3H),
1.61-1.54 (m, 2H), 1.34-1.26 (m, 11H), 0.89 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCl5)
171.4, 82.7, 82.0, 61.1, 59.2, 58.6, 32.0, 30.1, 29.6, 25.8, 22.8, 14.5, 14.3; IR (neat) 2927, 1747,
1464, 1261, 1190, 1143, 1105, 1031; HRMS (ESI): m/z caled for Ci3HyOsNa [M+Na]®

269.1729, found 269.1713; [a]p = -29.7 (CHCl3, ¢ 0.63).

(2S,3R)-2,3-Dimethoxynonanoic acid (3.8)

OMe A solution of the ethyl ester C2 (40.0 mg, 0.162 mmol) in 1,2-

HOM dimethoxyethane/H,O (2.8 mL, 4:1, v/v) was treated with LIOH-H,O (13.6

O OMe
mg, 0.324 mmol). After 3 and 4 h, LiOH-H,O (6.8 mg, 0.162 mmol) was

added, respectively. The reaction was stirred for another 3 h, then quenched with HCI (0.5 N,
~1.0 mL) to pH~1.5 and extracted with Et,;O (5 x 10 mL). The combined organic extracts were
dried (Na,SO4) and concentrated. The residue was purified by column chromatography (30%
EtOAc in hexanes followed by 50% MeOH in EtOAc) to give the unreacted ester (7.6 mg,
19.0%) and carboxylic acid 3.8 (28.1 mg, 79.4%) as a white sticky solid: 'H NMR (300 MHz,
CD;0D) 3.66 (d, J= 3.0 Hz, 1H), 3.54 (dt, /= 6.7, 3.1 Hz, 1H), 3.42 (s, 3H), 3.41 (s, 3H), 1.69-
1.57 (m, 2H), 1.46-1.29 (m, 8H), 0.91 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CD;0D) 178.2,

84.9, 83.9, 59.4, 58.9, 32.9, 31.2, 30.5, 26.8, 23.7, 14.4; IR (neat) 3401, 2926, 2856, 1618, 1418,
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1194, 1091; HRMS (ESI): m/z caled for C;1H»04Na [M+Na]" 241.1416, found 241.1407; [a]p =

-26.0 (CH30H, ¢ 0.77).

Phenyl (1S,2R)-1,2-dimethoxyoctylcarbamate ((-)-3.3)
e A stirred solution of the carboxylic acid 3.8 (15.4 mg, 70.5 pumol) in

B
PhO H 4 benzene (2.0 mL) was treated with EtzN (0.12 ml, 0.846 mmol) and

OMe
diphenyl phosphoryl azide (61 pL, 0.282 mmol). After 2 h, diphenylphosphoryl azide (30 pL,

0.140 mmol) was added. The reaction was stirred for 2 h, then quenched with water (10 mL) and
extracted with Et;O (3 x 20 mL). The organic extracts were dried (Na,SO4) and concentrated.
The residue was purified by column chromatography (5% - 15% EtOAc in hexanes) to give the
carbamate (-)-3.3 (11.4 mg, 52.3%) as a colorless oil: [a]p = -3.8 (CHCl;, ¢ 0.52). No other

diastereomer was observed.

2-Ethoxyoctanenitrile (3.11)
NC W A mixture of heptanal (4.00 g, 35.0 mmol), absolute EtOH (80 ml), (EtO);CH
OEt * (5.8 mL, 35.0 mmol) and the activated 4A molecular sieves (4.00 g) at 0 °C was
treated dropwise with concentrated H,SO4 (2.0 ml) and the mixture was stirred at room
temperature overnight. After that time, the reaction mixture was concentrated to ~30 mL and
slowly poured onto a cold saturated NaHCO; solution (80 mL) at 0 °C. The resulting mixture
was filtered through Celite. The filtrate was extracted with CH,Cl, (3 x 80mL) and the extracts
were dried (Na,SO4) and concentrated. The resulting residue was dissolved in CH,Cl, (70 mL),
and BiBr; (1.57 g, 3.50 mmol) and TMSCN (5.60 ml, 42.0 mmol) were added sequentially. The

reaction was stirred overnight, then quenched with saturated NaHCOs3 solution (50 mL)/water
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(20 mL) and extracted with CH,Cl, (3 x 100mL). The combined extracts were dried (Na,SO,)
and concentrated. The residue was purified by column chromatography (2% - 5% EtOAc in
hexanes) to give the ethoxy nitrile 3.11 (4.51 g, 76.0%) as a colorless liquid. "H NMR (300
MHz, CDCl;) 4.11 (t, J = 6.6 Hz, 1H), 3.82 (qd, J = 8.8, 6.9 Hz, 1H), 3.51 (qd, J = 8.9, 7.0 Hz,
1H), 1.87-1.80 (m, 2H), 1.52-1.44 (m, 2H), 1.38-1.30 (m, 6H), 1.26 (t,J = 7.0 Hz, 3H), 0.89 (t, J
= 6.7 Hz, 3H); >C NMR (75 MHz, CDCls) 118.9, 69.0, 66.4, 33.8, 31.7, 28.9, 24.9, 22.7, 15.0,
14.2; IR (neat) 2957, 2930, 2860, 1468, 1335, 1126, 1108, 735; HRMS (EI): m/z caled for

CioH1oNO (M) 169.1467, found 169.1474.

Representative procedure for the preparation of acyl aminals:
N-((1R,2R)-2-Ethoxy-1-methoxyoctyl)isobutyramide (3.12) and N-((1S,2R)-2-ethoxy-1-
methoxyoctyl)isobutyramide (3.13)
OMe A solution of ethoxynitrile 3.11 (100.0
\HJ\ W + W)J\ W mg, 0.591 mmol) in CH,Cl, (4.5 mL)
was treated with Cp,Zr(H)CI (229 mg,
0.886 mmol). The reaction was stirred for 15 min, then cooled to 0 °C and isobutyryl chloride
(94 pL, 0.886 mmol) was added dropwise. The mixture was stirred for 15 min at 0 °C and
MeOH (1.0 mL, 23.6 mmol) was added dropwise. The reaction was stirred for 15 min at 0 °C
and quenched with AcOH (2.0 mL)/water (20 mL). The mixture was extracted with CH,Cl, (3 x
25 mL) and the combined organic extracts were washed with saturated NaHCO; (15 mL), dried
(Na;S0y4) and concentrated. The residue was purified by column chromatography (15% - 30%
EtOAc in hexanes) to give the desired product (121.3 mg, 75.1%) as a white solid in a 2.3:1.0

diastereomeric ratio. Further purification (15% - 30% EtOAc in hexanes) yielded analytically
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pure samples. For faster eluting anti-product 3.12: '"H NMR (300 MHz, CDCl3) 6.20 (d, J = 9.5
Hz, 1H), 5.01 (dd, J=9.7, 1.4 Hz, 1H), 3.74 (qd, J = 9.4, 7.0 Hz, 1H), 3.54 (qd, 9.4, 7.1 Hz, 1H),
3.47-3.43 (m, 1H), 3.29 (s, 3H), 2.40 (sept, J = 6.9 Hz, 1H), 1.37-1.23 (m, 10H), 1.18-1.14 (m,
9H), 0.84 (app t, J = 6.8 Hz, 3H); >°C NMR (75 MHz, CDCls) 177.9, 82.6, 80.6, 67.3, 55.8, 36.1,
31.9,31.8,29.4,25.6,22.7,19.8, 19.7, 15.8, 14.2; IR (neat) 3271, 2965, 2920, 1653, 1540, 1467,
1233, 1113, 1101; HRMS (EI): m/z calcd for C14H,sNO, (M-CH;0) " 242.2120, found 242.2123.
For slower eluting syn-product 3.13: "H NMR (300 MHz, CDCls) 6.20 (d, J = 9.7 Hz, 1H), 5.17
(dd, J = 9.8, 2.9 Hz, 1H), 3.66 (qd, J = 9.4, 7.0 Hz, 1H), 3.46 (qd, J = 9.3, 7.0 Hz, 1H), 3.36 (s,
3H), 3.24 (dt, J = 6.8, 2.9 Hz, 1H), 2.42 (sept, J = 6.9 Hz, 1H), 1.63-1.55 (m, 2H), 1.40-1.25 (m,
10H), 1.23-1.17 (m, 9H), 0.88 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCls) 177.5, 81.0, 80.0,
66.1, 56.4, 36.2, 31.9, 29.8, 29.7, 25.6, 22.8, 19.9, 19.7, 15.8, 14.2; IR (neat) 3273, 2971, 2921,
1651, 1538, 1467, 1154, 1103, 1072; HRMS (EI): m/z caled for C;4H;sNO, (M-CH;0)"

242.2120, found 242.2119.

N-((1R,2R)-2-Ethoxy-1-methoxyoctyl)-2-methoxyacetamide (3.14) and N-((1S,2R)-2-ethoxy-
1-methoxyoctyl)-2-methoxyacetamide (3.15)

O OMe he title compounds were

O OMe T
MeO - MeO
QKHW + QJ\HJ\&\% prepared by following the

OEt
representative procedure with the following amounts of reagents: ethoxynitrile 3.11 (100.0 mg,

0.591 mmol), CH,Cl; (4.5 mL), Cp,Zr(H)CI (168 mg, 0.650 mmol), methoxyacetyl chloride (65
uL, 0.709 mmol) MeOH (1.0 ml, 23.6 mmol). The reaction was quenched with 1 N HCI (2.0
mL)/water (15 mL) and extracted with CH,Cl, (3 x 25 mL). The combined organic extracts were

washed with saturated NaHCO; (15 mL), dried (Na,SO4) and concentrated. The residue was
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purified by column chromatography (20% - 40% EtOAc in hexanes) to give the desired product
(111.8 mg, 68.7%) as a colorless oil in a 1.7:1.0 diastereomeric ratio. Further purification (20% -
40% EtOAc in hexanes) yielded analytically pure samples. For the faster eluting anti-product
3.14: "H NMR (300 MHz, CDCl3) 7.18 (d, J = 9.8 Hz, 1H), 5.06 (dd, J = 10.0, 1.5 Hz, 1H), 3.98
(d, J=15.2 Hz, 1H), 3.90 (d, J=15.2 Hz, 1H), 3.76 (qd, J = 9.4, 7.0 Hz, 1H), 3.56 (qd, J = 9.3,
7.0 Hz, 1H), 3.49-3.45 (m, 1H), 3.43 (s, 3H), 3.33 (s, 3H), 1.45-1.25 (m, 10H), 1.18 (t, /= 7.0
Hz, 3H), 0.86 (t, J = 6.9 Hz, 3H); °C NMR (75 MHz, CDCl;) 170.8, 82.4, 80.5, 72.0, 67.3, 59.4,
56.1, 31.9, 31.8, 29.4, 25.7, 22.8, 15.8, 14.2; IR (neat) 3413, 2930, 2858, 1695, 1506, 1113;
HRMS (EI): m/z caled for C13Hy¢NO; (M-CH30)"™ 244.1913, found 244.1925. For the slower
eluting syn-product 3.15: '"H NMR (300 MHz, CDCl;) 7.22 (d, J = 10.0 Hz, 1H), 5.18 (dd, J =
10.1, 3.0 Hz, 1H), 3.98 (d, J=15.3 Hz, 1H), 3.92 (d, J = 15.3 Hz, 1H), 3.66 (qd, J=9.2, 7.0 Hz,
1H), 3.50 (qd, J = 9.2, 7.0 Hz, 1H), 3.43 (s, 3H), 3.36 (s, 3H), 3.26 (dt, J = 6.8, 3.0 Hz, 1H),
1.63-1.55 (m, 2H), 1.41-1.29 (m, 8H), 1.21 (t, J = 7.0 Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H); °C
NMR (75 MHz, CDCls) 170.4, 81.0, 79.8, 72.0, 66.5, 59.4, 56.5, 31.9, 29.9, 29.6, 25.7, 22.8,
15.7, 14.3; IR (neat) 3417, 2928, 2858, 1686, 1510, 1112, 1078; HRMS (EI): m/z calcd for

C13H26NO;3 (M-CH30) ™" 244.1913, found 244.1917.

Benzyl (1R,2R)-2-ethoxy-1-methoxyoctylcarbamate (3.16) and benzyl (1S,2R)-2-ethoxy-1-

methoxyoctylcarbamate (3.17)

O OMe O OMe The title compounds were prepared
BnO HW * BnO H 4 by following the representative
OEt OEt

procedure with the following amounts of reagents: ethoxynitrile 3.11 (60.0 mg, 0.354 mmol),

CH,Cl, (3.5 mL), CpoZr(H)Cl (110.0 mg, 0.425 mmol). After completion of hydrozirconation,
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the reaction mixture was cooled to 0 °C and benzyl chloroformate (71 pL, 0.500 mmol) was
added dropwise. The cold bath was removed and the mixture was stirred for 10 min. After that
time, the flask was cooled to 0 °C and benzyl chloroformate (50 pL, 0.354 mmol) was added.
The mixture was stirred at room temperature for 30 min and then cooled to 0 °C. A solution of
MeOH (0.28 ml, 7.08 mmol) in CH,ClI, (0.5 mL) was added dropwise. The reaction was stirred
for 10 min at 0 °C and then quenched with saturated NaHCO; (20 mL). The mixture was
extracted with CH,Cl, (3 x 20 mL) and the combined organic extracts were dried (Na,SO4) and
concentrated. The residue was purified by column chromatography (5% - 20% EtOAc in hexanes
containing 0.5% Et;:N) to give the desired product (76.3 mg, 63.8%) as a colorless oil ina 1.5:1.0
diastereomeric ratio. Further purification (10% - 13% EtOAc in hexanes containing 0.5% Et;N)
yielded analytically pure materials. For faster eluting anti-product 3.16: 'H NMR (300 MHz,
CDCls3) 7.39-7.30 (m, 5H), 5.66 (d, J = 9.8 Hz, 1H), 5.14 (s, 2H), 4.82 (dd, /= 9.9, 1.0 Hz, 1H),
3.74 (qd, J = 9.3, 7.0 Hz, 1H), 3.56 (qd, J = 9.2, 7.0 Hz, 1H), 3.48-3.44 (m, 1H), 3.37 (s, 3H),
1.46-1.28 (m, 10H), 1.17 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H); °C NMR (75 MHz,
CDCl) 156.8, 136.6, 128.7, 128.4, 128.2, 85.6, 80.6, 67.4, 67.1, 55.7, 31.9, 29.5, 25.7, 22.8,
15.9, 14.3; IR (neat) 3337, 2929, 2858, 1731, 1497, 1456, 1326, 1216, 1107, 966, 735; HRMS
(ESI): m/z calcd for Ci9H3NO4Na [M+Na]+ 360.2151, found 360.2148. For slower eluting syn-
product 3.17: 'H NMR (300 MHz, CDCl3) 7.40-7.31 (m, 5H), 5.54 (d, J = 10.0 Hz, 1H),
5.15/5.14 (two s, 2H), 4.94 (dd, /= 10.1, 2.9 Hz, 1H), 3.64 (qd, J=9.2, 7.0 Hz, 1H), 3.48 (qd, J
=9.2, 7.0 Hz, 1H), 3.38 (s, 3H), 3.28 (dt, /= 6.8, 2.9 Hz, 1H), 1.63-1.52 (m, 2H), 1.41-1.26 (m,
8H), 1.20 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCls) 156.6, 136.5,

128.8, 128.5, 128.4, 82.9, 81.1, 77.4, 67.2, 66.2, 56.3, 31.9, 29.7, 29.6, 25.7, 22.8, 15.8, 14.3; IR
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(neat) 3334, 2928, 2858, 1729, 1501, 1455, 1232, 1097, 737; HRMS (ESI): m/z calcd for

C1oH3NO4Na [M+Na]" 360.2151, found 360.2149.

N-(2-Ethoxy-1-methoxyoctyl)methanesulfonamide (3.18 and 3.19)

o, OMe 0, QMe The title compounds were prepared by
S\ ~ S\
d HW * d HW following the representative procedure with
OEt OEt

the following amounts of reagents: ethoxynitrile 3.11 (100.0 mg, 0.591 mmol), CH,Cl, (4.5 mL),
Cp2Zr(H)CI (228 mg, 0.886 mmol). After addition of methanesulfonic anhydride (144 mg, 0.827
mmol), The mixture was stirred for 2 min at 0 °C and MeOH (1.0 mL, 23.6 mmol) was added
dropwise. The reaction was stirred for 10 min at 0 °C and quenched with saturated NaHCO; (15
mL). The mixture was extracted with CH,Cl, (3 x 20 mL) and the combined organic extracts
were dried (Na;SO4) and concentrated. The residue was purified by column chromatography
(20% - 30% EtOAc in hexanes) to give the desired product (40.8 mg, 24.5%) as a colorless oil in
a 2.4:1.0 diastereomeric ratio: "H NMR (300 MHz, CDCl3) 5.42 (d, J = 9.4 Hz, 71% of 1H), 5.22
(d, J=9.5 Hz, 29% of 1H), 4.64 (dd, J=9.5, 3.1 Hz, 29% of 1H), 4.48 (dd, J=9.4,2.4 Hz, 71%
of 1H), 3.72-3.52 (m, 2H), 3.45 (s, 29% of 3H), 3.46-3.42 (m, 71% of 1H), 3.40 (s, 71% of 3H),
3.32(ddd, J= 7.2, 5.6, 3.1 Hz, 29% of 1H), 3.06 (s, 29% of 3H), 3.05 (s, 71% of 3H), 1.56-1.25
(m, 10H), 1.21 (t, J = 6.9 Hz, 29% of 3H), 1.18 (t, /= 7.0 Hz, 71% of 3H), 0.88 (app t, /= 6.8
Hz, 3H); °C NMR (75 MHz, CDCls) 88.1 (major), 86.0 (minor), 81.2 (minor), 79.5 (major),
67.2 (major), 66.4 (minor), 56.5, (minor), 55.7 (major), 43.3 (major), 43.2 (minor), 31.9, 31.6
(major), 29.6 (minor), 29.5 (major), 29.3 (minor), 25.8 (minor), 25.4 (major), 22.8, 15.8 (major),
15.7 (minor), 14.2; IR (neat) 3286, 2926, 2858, 1458, 1328, 1161, 1110, 978, 766; HRMS (EI):

m/z caled for C11H4NO3S (M—CH30)+' 250.1477, found 250.1466.
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N-((1R,2R)-2-Ethoxy-1-tert-butoxyoctyl)isobutyramide (3.21) and N-((1S,2R)-2-ethoxy-1-

tert-butoxyoctyl)isobutyramide (3.22)

O OBu O OBu The title compounds were prepared
\HJ\HW + \HJ\HW by following the representative
OEt OEt

procedure with the following amounts of reagents: ethoxynitrile 3.11 (60.0 mg, 0.354 mmol),
CH,CI; (3.5 mL), Cp2Zr(H)CI1 (110.0 mg, 0.425 mmol). After addition of isobutyryl chloride (52
uL, 0.500 mmol), the cold bath was removed and the mixture was stirred for 10 min. After that
time, the flask was cooled to 0 °C and a solution of ‘BuOH (0.67 ml, 7.08 mmol) in CH,Cl, (0.5
mL) was added dropwise to the reaction mixture over 3 min. The reaction was stirred for 10 min
at 0 °C, then diluted with CH,Cl, (10 mL) and quenched with saturated NaHCOj; (20 mL). The
organic layer was separated and the aqueous layer was extracted with CH,Cl, (3 x 15 mL). The
combined organic extracts were dried (Na,SO,) and concentrated. The residue was purified by
column chromatography (10% - 20% EtOAc in hexanes containing 0.5% Et;:N) to give the
desired product (79.2 mg, 70.8%) as a white solid in a 1.0:2.0 diastereomeric ratio. Further
purification (12% - 18% EtOAc in hexanes containing 0.5% Et;N) yielded analytically pure
samples. For faster eluting anti-product 3.21: '"H NMR (300 MHz, CDCl3) 6.10 (d, J = 9.2 Hz,
1H), 5.32 (dd, J=9.4, 2.0 Hz, 1H), 3.84 (qd, /= 9.6, 7.1 Hz, 1H), 3.58 (qd, /= 9.6, 7.0 Hz, 1H),
3.30-3.26 (m, 1H), 2.33 (sept, J = 6.9 Hz, 1H), 1.38-1.27 (m, 10H), 1.22 (s, 9H), 1.19-1.12 (m,
9H), 0.87 (t, J = 6.8 Hz, 3H), °C NMR (75 MHz, CDCl3) 175.8, 83.0, 75.5, 74.6, 67.6, 36.1,
32.0, 31.6, 29.5, 28.6, 25.9, 22.8, 19.7, 19.4, 15.9, 14.3; IR (neat) 3246, 2969, 2922, 2858, 1648,
1552, 1466, 1109, 1069; HRMS (ESI): m/z calcd for C;sH3;NO3;Na [M+Na]™ 338.2671, found

338.2663. For slower eluting syn-product 3.22: "H NMR (300 MHz, CDCls) 6.00 (d, J= 9.2 Hz,
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1H), 5.39 (dd, J = 9.4, 4.0 Hz, 1H), 3.64-3.54 (m, 2H), 3.14-3.09 (m, 1H), 2.30 (sept, J = 6.9 Hz,
1H), 1.51-1.38 (m, 2H), 1.35-1.24 (m, 8H), 1.20 (s, 9H), 1.19-1.11 (m, 9H), 0.87 (t, J = 6.9 Hz,
3H); *C NMR (75 MHz, CDCl3) 175.3, 82.1, 74.9, 74.3, 66.8, 36.1, 32.0, 30.2, 29.6, 28.5, 26.0,
22.8, 19.5, 19.4, 15.8, 14.3; IR (neat) 3254, 2960, 2920, 2856, 1646, 1544, 1459, 1365, 1193,

1109, 1072, 731; HRMS (ESI): m/z calcd for C;sH37NO3;Na [M+Na]4r 338.2671, found 338.2666.

N-((1R,2R)-2-Ethoxy-1-phenoxyoctyl)isobutyramide (3.23) and N-((1S,2R)-2-ethoxy-1-
phenoxyoctyl)isobutyramide (3.24)
o oph o  oph The title compounds were prepared
\HJ\H/\O(E:% + \HJ\H)\OKE:% by following the representative
procedure  with the following
amounts of reagents: ethoxynitrile 3.11 (60.0 mg, 0.354 mmol), CH,Cl, (3.5 mL), Cp,Zr(H)Cl
(110.0 mg, 0.425 mmol). After addition of isobutyryl chloride (52 pL, 0.500 mmol), the cold
bath was removed and the mixture was stirred for 10 min. The mixture was cooled to °C and a
solution of PhOH (333 mg, 3.54 mmol) in CH,Cl, (0.5 mL) was added dropwise. The reaction
was stirred at °C for 40 min, then quenched with saturated NaHCO; solution (20 mL) and
extracted with CH,Cl, (4 x 15 mL). The organic extracts were washed with saturated Na,COs3
solution (20 mL), dried (Na;SO4) and concentrated. The residue was purified by column
chromatography (7% - 10% EtOAc in hexanes containing 0.5% Et;N) to give the desired product
(81.7 mg, 68.7%) as a white solid in a 5.6:1.0 diastereomeric ratio. Further purification (7% -
10% EtOAc in hexanes containing 0.5% Et;N) yielded analytically pure samples. For faster
eluting anti-product 3.23: 'H NMR (300 MHz, CDCls) 7.30-7.23 (m, 2H), 7.03 ( app td, J=17.8,

1.0 Hz, 2H), 6.96 (app tt, J=7.3, 0.9 Hz, 1H), 6.36 (d, J= 9.9 Hz, 1H), 5.92 (dd, J=9.9, 1.4 Hz,
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1H), 3.96 (qd, J=9.4, 7.0 Hz, 1H), 3.72 (qd, J=9.5, 7.0 Hz, 1H), 3.68-3.64 (m, 1H), 2.37 (sept,
J=6.9 Hz, 1H), 1.47-1.37 (m, 4H), 1.33-1.24 (m, 9H), 1.15 (d, /= 6.9 Hz, 3H), 1.08 (d, /= 6.9
Hz, 3H), 0.88 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCl;) 177.1, 156.4, 129.7, 121.8, 116.5,
80.7, 80.0, 68.1, 36.0, 31.9, 29.4, 25.7, 22.8, 19.6, 19.5, 16.0, 14.2; IR (neat) 3290, 2964, 2929,
2859, 1657, 1595, 1534, 1495, 1222, 1107, 753; HRMS (ESI): m/z caled for C;0H33NOs;Na
[M+Na]" 358.2358, found 358.2359. For slower eluting syn-product 3.24 (containing trace
amount of unknown impurity): 'H NMR (300 MHz, CDCls) 7.30-7.24 (m, 2H), 7.07-7.04 (m,
2H), 6.97 (app tt, J = 7.3, 0.9 Hz, 1H), 6.24 (d, J = 9.8 Hz, 1H), 6.02 (dd, /= 9.8, 3.4 Hz, 1H),
3.72 (qd, J=9.4, 7.0 Hz, 1H), 3.62 (qd, J = 9.4, 7.0 Hz, 1H), 3.44 (dt, /= 7.0, 3.3 Hz, 1H), 2.36
(sept, J = 6.9 Hz, 1H), 1.71-1.62 (m, 2H), 1.47-1.21 (m, 11H), 1.15 (d, /= 6.9 Hz, 3H), 1.10 (d,
J = 6.9 Hz, 3H), 0.87 (app t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCls) 176.5, 156.8, 129.7,
121.9, 116.2, 81.2, 77.8, 66.8, 36.0, 31.9, 30.1, 29.6, 25.7, 22.8, 19.6, 19.5, 15.9, 14.3; IR (neat)
3288, 2963, 2926, 2857, 1653, 1535, 1495, 1220, 1109, 1042, 752; HRMS (ESI): m/z calcd for

C0H33NO;Na [M+Na]"™ 358.2358, found 358.2328.

N-((1R,2R)-2-Ethoxy-1-(phenylthio)octyl)isobutyramide (3.25) and N-((1S,2R)-2-ethoxy-1-
(phenylthio)octyl)isobutyramide (3.26)

sPh The title compounds were prepared
\HJ\ W \HJ\ W by following the representative
procedure w1th the following amounts of reagents. ethoxynitrile 3.11 (60.0 mg, 0.354 mmol),
CH,Cl; (3.5 mL), Cp2Zr(H)C1 (110.0 mg, 0.425 mmol). After addition of isobutyryl chloride (52
puL, 0.500 mmol), the cold bath was removed and the mixture was stirred for 10 min. The

mixture was cooled to °C and a solution of PhSH (117 mg, 1.06 mmol) in CH,Cl, (0.3 mL) was

280



added dropwise. The reaction was stirred at °C for 10 min, then quenched with saturated
NaHCO; solution (20 mL) and extracted with CH,Cl, (4 x 15 mL). The organic extracts were
dried (Na,SO4) and concentrated. The residue was purified by column chromatography (7% -
13% EtOAc in hexanes containing 0.5% Et;N) to give the desired product (89.4 mg, 71.7%) as a
white solid in a 1.0:7.1 diastereomeric ratio. Further purification (10% - 16% EtOAc in hexanes
containing 0.5% Et;N) yielded analytically pure samples. For faster eluting anti-product 3.25: 'H
NMR (300 MHz, CDCls) 7.49-7.45 (m, 2H), 7.31-7.20 (m, 3H), 6.00 (d, J = 9.9 Hz, 1H), 5.58
(dd, J =10.0, 1.8 Hz, 1H), 3.76-3.63 (m, 2H), 3.56 (dt, J = 6.5, 1.7 Hz, 1H), 2.29 (sept, J = 6.9
Hz, 1H), 1.60-1.48 (m, 1H), 1.40-1.14 (m, 12H), 1.08 (d, J = 6.9 Hz, 3H), 1.00 (d, J = 6.9 Hz,
3H), 0.87 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCl3) 176.3, 133.9, 132.3, 129.1, 127.5,
81.7, 67.3, 60.0, 35.9, 32.5, 31.9, 29.4, 25.7, 22.8, 19.7, 19.6, 15.9, 14.3; IR (neat) 3302, 2962,
2928, 2859, 1652, 1497, 1440, 1379, 1223, 1098, 739; HRMS (ESI): m/z calcd for
C,y0H33NO,SNa [M+Na]+ 374.2130, found 374.2130. For slower eluting syn-product 3.26: 'H
NMR (300 MHz, CDCls) 7.47-7.44 (m, 2H), 7.30-7.18 (m, 3H), 6.00 (d, J = 9.5 Hz, 1H), 5.63
(dd, J = 9.7, 3.2 Hz, 1H), 3.69-3.49 (m, 3H), 2.25 (sept, J = 6.9 Hz, 1H), 1.73-1.66 (m, 2H),
1.42-1.28 (m, 8H), 1.21 (t, J = 7.0 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.9 Hz, 3H),
0.88 (t, J = 6.8 Hz, 3H); °C NMR (75 MHz, CDCls) 176.0, 133.6, 132.0, 129.1, 127.3, 82.0,
66.0, 59.8, 35.8, 31.9, 31.6, 29.5, 25.8, 22.7, 19.6, 19.5, 15.7, 14.2; IR (neat) 3293, 2962, 2927,
2858, 1650, 1526, 1223, 1100, 736; HRMS (ESI): m/z caled for CyH33NO,SNa [M+Na]"

374.2130, found 374.2115.
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1-Cyanoheptyl benzoate (3.27)

NC A solution of 2-hydroxyoctanenitrile (0.600 g, 4.25 mmol) in CH,Cl, (14 mL)
m was treated with Et;N (1.2 mL, 8.50 mmol), DMAP (5.2 mg, 42.5 pumol) and

benzoyl chloride (0.60 mL, 5.10 mmol). The reaction was stirred for 1 h, then quenched with

water (30 mL) and extracted with CH,Cl, (3 x 30 mL). The organic extracts were dried (Na,SO4)

and concentrated. The residue was purified by column chromatography (5%- 10% Et;O in

hexanes) to give the benzoate 3.27 (1.042 g, 94.1%) as a colorless oil. For spectral data, see ref.

119.

1-(Isobutyramido)-1-methoxyoctan-2-yl benzoate (3.28)

O OMe The title compound was prepared by following the representative
\HJ\H OBz 4 procedure with the following amounts of reagents: benzoate 3.27 (100.0
mg, 0.408 mmol), CH,Cl, (4.0 mL), Cp,Zr(H)CI (158 mg, 0.612 mmol), isobutyryl chloride (52
uL, 0.490 mmol), MeOH (0.7 mL, 17.3 mmol). After the reaction was complete, it was quenched
with 1 N HCI (1.5 mL) and water (15 mL) and extracted with CH,Cl, (3 x 25 mL). The organic
extracts were washed with saturated NaHCO; (15 mL), dried (Na;SO4) and concentrated. The
residue was purified by column chromatography (15% - 30% EtOAc in hexanes) to give the
product 3.28 (90.4 mg, 63.5%, containing 4% BnOH) as a white solid in a 1.4:1.0 diastereomeric
ratio. Further purification (15% - 30% EtOAc in hexanes) yielded analytically pure materials.
For faster eluting product: 'H NMR (500 MHz, CDCl5) 8.03-8.01 (m, 2H), 7.60-7.56 (m, 1H),
7.48-7.44 (m, 2H), 5.97 (d, J = 9.5 Hz, 1H), 5.24 (dd, J = 9.6, 6.6 Hz, 1H), 5.19 (ddd, J = 8.6,
6.6, 3.8 Hz, 1H), 3.38 (s, 3H), 2.32 (sept, /= 7.0 Hz, 1H), 1.86-1.80 (m, 1H), 1.78-1.70 (m, 1H),

1.44-1.23 (m, 7H), 1.21-1.15 (m, 1H), 1.10 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.86 (t,
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J =7.0 Hz, 3H); ®C NMR (125 MHz, CDCl;) 178.0, 167.0, 133.5, 130.0, 129.9, 128.7, 81.9,
74.5,56.3, 36.1, 31.8, 31.3, 29.3, 25.3, 22.8, 19.6, 19.5, 14.2; IR (neat) 3295, 2959, 2929, 2858,
1721, 1663, 1529, 1452, 1273, 1113, 712; HRMS (ESI): m/z caled for CoH3NO4Na [M+Na]"
372.2151, found 372.2123. For slower eluting product: "H NMR (500 MHz, CDCls) 8.08 (app d,
J =173 Hz, 2H), 7.59 (app t, J = 7.4 Hz, 1H), 7.47 (app t, J = 7.8 Hz, 2H), 6.01 (d, J = 9.6 Hz,
1H), 5.33 (dd, J=9.8, 4.0 Hz, 1H), 5.12 (td, J = 8.6, 4.4 Hz, 1H), 3.38 (s, 3H), 2.40 (sept, /= 6.9
Hz, 1H), 1.82-1.73 (m, 2H), 1.44-1.26 (m, 8H), 1.18 (d, J = 7.0 Hz, 3H), 1.17 (d, J = 7.0 Hz,
3H), 0.87 (t, J = 6.7 Hz, 3H); °C NMR (125 MHz, CDCl3) 177.6, 166.7, 133.4, 130.1, 130.0,
128.7, 81.0, 75.8, 56.7, 36.1, 31.8, 30.6, 29.3, 25.4, 22.7, 19.8, 19.7, 14.2; IR (neat) 3299, 2929,
2858, 1722, 1661, 1527, 1453, 1273, 1113, 712; HRMS (ESI): m/z calcd for CyH3NOsNa

[M+Na]" 372.2151, found 372.2133.

1-(Isobutyramido)-1-hydroxyoctan-2-yl benzoate (3.29)

The title compound was prepared by following the representative
\HJ\ W procedure with the following amounts of reagents: benzoate 3.27 (100.0

mg, 0.408 mmol), CH,Cl, (4.0 mL), Cp,Zr(H)CI (158 mg, 0.612 mmol),
isobutyryl chloride (52 pL, 0.490 mmol). The reaction was quenched with water (15 mL) and
extraction of the mixture with EtOAc (3 x 25 mL). After evaporation of the solvent, the crude
product was purified by column chromatography (20% - 60% EtOAc in hexanes containing 0.5%
Et;N) gave the product 3.29 (71.6 mg, 52.4%, containing trace amount of impurity) as a colorless
oil in a 3.0:1.0 diastereomeric ratio. '"H NMR (300 MHz, CDCls) 8.10-8.07 (m, 1.5H), 8.03-7.99
(m, 0.5H), 7.61-7.56 (m, 1H), 7.48-7.42 (m, 2H), 7.11 (d, J= 7.5 Hz, 0.75H), 6.74 (d, J = 8.3 Hz,

0.25H), 5.53-5.36 (m, 1H), 5.22-5.17 (m, 0.25H), 5.15-5.10 (m, 0.75H), 4.74 (br s, 0.25H), 4.52
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(br s, 0.75H), 2.47-2.22 (m, 1H), 1.92-1.78 (m, 2H), 1.44-1.20 (m, 8H), 1.13 (d, J = 6.8 Hz,
2.25H), 1.11 (d, J= 6.8 Hz, 2.25H), 1.04 (d, /= 6.9 Hz, 0.75H), 0.99 (d, /= 6.9 Hz, 0.75H), 0.85
(t, J = 7.0 Hz, 3H); *C NMR (75 MHz, CDCl5) (for major diastereomer) 178.4, 167.7, 133.6,
130.1, 128.6, 76.2, 75.0, 35.6, 31.8, 30.7, 29.2, 25.5, 22.7, 19.5, 19.3, 14.2; IR (neat) 3338, 2959,
2928, 2858, 1720, 1657, 1530, 1451, 1274, 1119, 1070, 711; HRMS (EI): m/z caled for

C19H2sNO3 (M-OH)"™" 318.2069, found 318.2064.

N-(1-Methoxynonyl)isobutyramide (3.31)

The title compound was prepared by following the representative
\HJ\ )\/\Hg procedure with the following amounts of reagents: octyl cyanide 3.30
(84.0 mg, 0.603 mmol), THF (6.0 mL), CpZr(H)Cl (194 mg, 0.754 mmol). The
hydrozirconation reaction was stirred for 30 min, then cooled to 0 °C and isobutyryl chloride (95
uL, 0.904 mmol) was added dropwise. The reaction was stirred for 10 min at 0 °C and MeOH
(0.73 mL, 18.1 mmol) was added dropwise. The reaction was stirred at 0 °C for 15 min, then
quenched with a solution of Et;N (0.25 mL) in water (15 mL) and extracted with CH,Cl, (4 x 20
mL). The combined organic extracts were dried (Na;SO4) and concentrated in vacuo. The
residue was purified by column chromatography (15% - 25% EtOAc in hexanes containing 0.5%
Et;N) to gave the title product (91.7 mg, 62.3%) as a white solid: 'H NMR (300 MHz, CDCls)
5.66 (d, J=9.5 Hz, 1H), 5.10 (td, J = 9.8, 6.1 Hz, 1H), 3.31 (s, 3H), 2.37 (sept, J = 6.9 Hz, 1H),
1.66-1.59 (m, 1H), 1.52-1.43 (m, 1H), 1.38-1.24 (m, 12H), 1.18 (app d, J = 6.4 Hz, 3H), 1.16
(app d, J = 6.4 Hz, 3H), 0.86 (t, J = 6.9 Hz, 3H); °C NMR (75 MHz, CDCls) 177.4, 81.1, 55.9,

36.1, 35.8, 32.0, 29.6, 29.5, 29.4, 25.0, 22.8, 19.9, 19.7, 14.2; IR (neat) 3281, 2920, 2853, 1651,
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1538, 1466, 1377, 1236, 1081, 929, 720; HRMS (EI): m/z caled for Ci3HxNO (M- CH;0)"

212.2014 found 212.2010.

N-(1-Hydroxynonyl)isobutyramide (3.32)

The title compound was prepared by following the representative
\HJ\ )\/\H/ procedure with the following amounts of reagents: octyl cyanide 3.30
(84.0 mg, 0.603 mmol), CH,Cl, (4.5 mL), CpZr(H)Cl (171 mg, 0.663 mmol). After
hydrozirconation was complete, a solution of isobutyryl chloride (76 pL, 0.724 mmol) and Et;N
(0.25 mL, 1.81 mmol) in CH,Cl, (0.5 mL) was added dropwise at 0 °C. The reaction was stirred
for 15 min at 0 °C and quenched with water (20 mL). The mixture was acidified by adding 1 N
HCI to pH~1.0 and extracted with CH,Cl, (3 x 25 mL). The combined organic extracts were
washed with saturated NaHCOs3 (20 mL), dried (Na,SO4) and concentrated in vacuo. The residue
was purified by column chromatography (10% - 70% EtOAc in hexanes) to give acyl
hemiaminal 3.32 (74.7 mg, 54.0%) as white solids: 'H NMR (300 MHz, CDCl;) 6.17 (br s, 1H),
5.30 (q, J = 6.6 Hz, 1H), 4.27 (br s, 1H), 2.35 (sept, J = 6.9 Hz, 1H), 1.73-1.61 (m, 1H), 1.59-
1.48 (m, 1H), 1.40-1.26 (m, 12H), 1.15 (d, /= 6.9 Hz, 3H), 1.14 (d, J = 6.9 Hz, 3H), 0.87 (t, J =
6.9 Hz, 3H); >C NMR (75 MHz, CDCl;) 178.4, 74.5, 35.7, 35.3, 32.0, 29.6, 29.5, 29.4, 25.1,
22.8, 19.6, 19.4, 14.3; IR (neat) 3298, 2934, 2854, 1653, 1540, 1462, 1231, 1095; HRMS (EI):

m/z calced for C13HsNO (M—OH)+' 212.2014 found 212.2015.

N-(Methoxy(phenyl)methyl)isobutyramide (3.34)

By following the representative procedure, reaction of benzonitrile 3.33

\HJ\ )\© (60.0 mg, 0.582 mmol) with Cp,Zr(H)CI (240 mg, 0.931 mmol) in THF (5.8
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mL) for 2.5 h followed by acylation with isobutyryl chloride (92 pL, 0.873 mmol) and addition
of MeOH (0.71 mL, 17.5 mmol) in CH,Cl, (0.5 mL) gave the title product 3.34 (87.9 mg,
72.9%) as a white solid: '"H NMR (300 MHz, CDCl3) 7.42-7.30 (m, 5H), 6.14 (d, J = 9.4 Hz,
1H), 6.02 (d, J = 8.8 Hz, 1H), 3.45 (s, 3H), 2.40 (sept, J = 6.9 Hz, 1H), 1.21 (d, /= 6.9 Hz, 3H),
1.18 (d, J = 6.9 Hz, 3H); °C NMR (75 MHz, CDCl3) 177.4, 139.6, 128.8, 128.6, 126.0, 81.3,
56.1, 36.0, 19.8, 19.6; IR (neat) 3286, 2967, 1653, 1535, 1451, 1230, 1099, 1046, 951, 746;

HRMS (EI): m/z calcd for C;H;sNO, (M-CH;0)™ 192.1024, found 192.1031.

N-((E)-Non-1-enyl)isobutyramide (3.36)

A solution of octyl cyanide 3.30 (84.0 mg, 0.603 mmol) in THF (6.0 mL)
\HJ\ /\/\Hg was treated with Cp,Zr(H)CI (171 mg, 0.663 mmol). The reaction was
stirred for 20 min, then cooled to 0 °C and a solution of isobutyryl chloride (60 pL, 0.573 mmol)
and Et;N (0.25 mL, 1.81 mmol) in THF (4.0 mL) was added dropwise. The flask formerly
containing the isobutyryl chloride and Et;N was rinsed with THF (2 x 1 mL). The reaction was
stirred for 10 min at 0 °C and BF3*OEt, (98 pL, 0.784 mmol) was added dropwise. The cold bath
was removed and the mixture was stirred overnight. After that time, the reaction was quenched
with water (30 mL) and extracted with EtOAc (4 x 30 mL). The combined organic extracts were
washed with water (30 mL), dried (Na,SO,) and concentrated in vacuo. The residue was purified
by column chromatography (10% - 20% EtOAc in hexanes) to gave the title product 3.36 (73.1
mg, 57.3%) as a white solid: 'H NMR (300 MHz, CDCl3) 7.24 (d, J = 9.6 Hz, 1H), 6.74 (app dd,
J=14.2,10.5 Hz, 1H), 5.15 (td, J = 14.2, 7.1 Hz, 1H), 2.37 (sept, J = 6.9 Hz, 1H), 2.00 (q, J =
6.6 Hz, 2H), 1.36-1.22 (m, 10H), 1.17 (d, J= 6.9 Hz, 6H), 0.87 (t, J = 6.9 Hz, 3H); *C NMR (75

MHz, CDCly) 174.2, 122.7, 113.3, 35.7, 32.0, 30.1, 29.9, 29.3, 29.2, 22.8, 19.6, 14.3; IR (neat)
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3283, 2967, 2921, 2851, 1680, 1647, 1526, 1467, 1238, 950, 723; HRMS (EI): m/z calcd for

Ci13HasNO (M™) 211.1936, found 211.1938.

N-(Isobutyryl)-N-((E)-non-1-enyl)isobutyramide (3.38)

o 'H NMR (500 MHz, CDCly) 6.22 (td, J = 13.9, 1.4 Hz, 1H), 5.47 (td, J =

%NW 14.2,7.2 Hz, 1H), 3.21 (sept, J = 6.8 Hz, 1H), 2.16 (dq, J = 7.3, 1.4 Hz,
(e}

)\( 2H), 1.4 (pent, 2H), 1.34-1.26 (m, 8H), 1.17 (d, J = 6.8 Hz, 12H), 0.89

(t, J = 6.8 Hz, 3H); °C NMR (125 MHz, CDCls) 181.0, 132.6, 125.8, 35.0, 32.0, 30.1, 29.4,
29.3,29.1,22.8, 19.7, 14.3; IR (neat) 2962, 2928, 1706, 1466, 1383, 1187, 1162, 1092; HRMS

(ESI): m/z calcd for C17H3NO,Na [M+Na]" 304.2252, found 304.2246.

(E)-2-Methyltridec-2-en-1-ol (3.39)
HOM/ A solution of 1-dodecene (freshly distilled, 0.842 g, 5.00 mmol) and
8 methacrolein (90%, 3.89 g, 50.0 mmol) in CH,Cl, (50 mL) was treated with
Grubbs’ 2™ generation catalyst (64.0 mg, 75 pmol). The reaction was refluxed for 1.5 h and then
concentrated. The residue was purified by column chromatography (1% - 5% EtOAc in hexanes)
to give the desired product (1.222 g, contaminated with unknown impurities). This product was
dissolved in MeOH (29 mL) and cooled to 0 °C. NaBH4 (219 mg, 5.80 mmol) was added. The
reaction was stirred for 30 min and quenched with saturated NH4Cl solution (1 mL). The mixture
was stirred for 10 min while warming to room temperature and then concentrated. The residue
was purified by column chromatography (10% - 20% EtOAc in hexanes) to give the allylic
alcohol 3.39 (0.621 g, 58.5%) as a colorless oil: 'H NMR (300 MHz, CDCls) 5.41 (appt,J=7.1

Hz, 1H), 4.00 (s, 2H), 2.06-1.99 (m, 2H), 1.66 (s, 3H), 1.45 -1.27 (m, 16H), 0.88 (t, /= 7.0 Hz,

287



3H); °C NMR (75 MHz, CDCl3) 134.7, 126.9, 69.3, 32.1, 29.9, 29.8, 29.7, 29.6, 27.8, 22.9,
14.3, 13.8; IR (neat) 3335, 2924, 2854, 1464, 1378, 1012; HRMS (EI): m/z calcd for C;4H230

(M™) 212.2140, found 212.2150.

(E)-3-Methyltetradec-3-enenitrile (3.40)

A solution of allylic alcohol 3.39 (505 mg, 2.38 mmol) and Et;N (0.66 mL,
NCM 4.78 mmol) in CH,Cl, (12 mL)/THF (6 mL) was cooled to -42 °C and
methanesulfonyl chloride (0.24 mL, 3.09 mmol) was added dropwise. The mixture was stirred
for 30 min and anhydrous LiBr (620 mg, 7.14 mmol) was added followed by THF (18 mL). The
mixture was warmed to 0 °C and stirred for 1.5 h. After that time, the reaction was diluted with
hexanes (150 mL), washed with water (80 mL) and brine (50 mL), dried (Na,SO4) and
concentrated. The crude allylic bromide was dissolved in DMF (4.5 mL) and CuCN (213 mg,
2.38 mmol) was added in one portion. The reaction was stirred overnight, then quenched with
water (30 mL) and extracted with EtOAc (3 x 25 mL). The organic extract was dried (Na,SO4)
and concentrated. The resulting residue was purified by column chromatography (3% - 5%
EtOAc in hexanes) to give allylic nitrile 3.40 (295 mg, 56.0%) as a colorless oil: 'H NMR (300
MHz, CDCls) 5.49 (sext of t, J=7.2, 1.4 Hz, 1H), 3.03 (s, 2H), 2.04 (q, J = 7.0 Hz, 2H), 1.73 (s,
3H), 1.38-1.27 (m, 16H), 0.89 (t, J = 6.9 Hz, 3H); *C NMR (75 MHz, CDCls) 130.2, 124.0,

118.0, 32.0, 29.8, 29.6, 29.5, 29.4, 29.3, 28.2, 27.4, 22.8, 16.1, 14.2; IR (neat) 2925, 2854, 2249,

1464, 1412, 1114, 721; HRMS (EI): m/z caled for C1sHysN (M™) 221.2144, found 221.2152.

288



N-((1E,3E)-3-Methyltetradeca-1,3-dienyl)isobutyramide (3.41)
0) A solution of allylic nitrile 3.40 (90.0 mg, 0.406 mmol) in THF (5.0
%N N |
H 8 mL) was treated with Cp,Zr(H)Cl (157 mg, 0.609 mmol), The
reaction was stirred for 30 min, then cooled to 0 °C and a solution of isobutyryl chloride (51 pL,
0.487 mmol) and Et;N (0.18 mL, 1.26 mmol) in THF (2.0 mL) was added dropwise. The flask
formerly containing the isobutyryl chloride and Et;N was rinsed with THF (0.5 mL). The
reaction was stirred for 2 min at 0 °C and BF3*OEt, (76 pL, 0.609 mmol) was added dropwise.
The cold bath was removed and the mixture was stirred for 2 h. After that time, the reaction was
diluted with Et,O (3 mL) and filtered through a small plug of silica gel. The residue was washed
with Et,0 (30 mL) and the combined filtrate was dried (Na,SO,) and concentrated in vacuo. The
residue was purified by column chromatography (5% - 17% EtOAc in hexanes containing 0.5%
Et;N) to gave the title product 3.41 (74.1 mg, 62.1%) as a colorless oil: '"H NMR (300 MHz,
CDCl3) 7.10 (d, J = 10.3 Hz, 1H), 6.91 (dd, J = 14.2, 10.7 Hz, 1H), 5.83 (d, J = 14.3Hz, 1H),
5.34 (t, J=17.2 Hz, 1H), 2.40 (sept, J = 6.9 Hz, 1H), 2.10 (q, J = 7.0 Hz, 2H), 1.75 (s, 3H), 1.40-
1.27 (m, 16H), 1.20 (d, J = 6.9 Hz, 6H), 0.88 (t, J = 6.8 Hz, 3H); °*C NMR (75 MHz, CDCls)
174.3,131.8, 130.8, 120.4, 118.5, 35.9, 32.1, 30.0, 29.9, 29.8, 29.6, 28.4, 22.9, 19.7, 14.3, 12.7,
IR (neat) 3276, 2924, 2854, 1644, 1531, 1467, 1253, 950; HRMS (EI): m/z caled for C9H3sNO

(M™) 293.2719, found 293.2717.

(2S,4R,6R)-Tetrahydro-4-methoxy-5,5,6-trimethyl-2H-pyran-2-carbonitrile (3.43)

'"H NMR (300 MHz, CDCls) 4.90 (dd, J = 6.0, 1.2 Hz, 1H), 3.63 (q, J = 6.3

O

ﬁ Hz, 1H), 3.37 (s, 3H), 3.17 (dd, J = 11.7, 4.5 Hz, 1H), 2.06 (ddd, J = 13.5,
NC ‘OMe

4.5, 1.4 Hz, 1H), 1.84 (ddd, J = 13.4, 11.8, 6.1 Hz, 1H), 1.12 (d, J = 6.3 Hz, 3H), 0.96 (s, 3H),
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0.83 (s, 3H); °C NMR (75 MHz, CDCl3) 118.0, 81.4, 78.0, 64.2, 57.8, 39.4, 29.3, 22.6, 14.6,
12.2; IR (neat) 2980, 2941, 2874, 1470, 1450, 1391, 1164, 1104, 954, 867, 718; HRMS (EI): m/z

caled for C1oH7NO, (M*) 183.1259, found 183.1255.

N-((S)-((2S,4R,6R)-Tetrahydro-4-methoxy-5,5,6-trimethyl-2H-pyran-2-
yl)(methoxy)methyl)isobutyramide (3.44), N-((R)-((2S,4R,6R)-Tetrahydro-4-methoxy-5,5,6-
trimethyl-2H-pyran-2-yl)(methoxy)methyl)isobutyramide (3.45) and N-(((2S,4R,6R)-

Tetrahydro-4-methoxy-5,5,6-trimethyl-2H-pyran-2-yl)methyl)isobutyramide (3.46)

: : A
(@] @) .
H\)OL N H , + H\/OL solution
H ‘OMe “OMe I:| “OMe
o) of

OMed OMeo
tetrahydropyranyl cyanide 3.43 (50.0 mg, 0.273 mmol) in CH,Cl, (2.7 mL) was treated with

Schwartz reagent (84.5 mg, 0.328 mmol). The mixture was stirred for 15 min, then cooled to 0
°C and isobutyryl chloride (40 pL, 0.382 mmol) was added dropwise. The cold bath was
removed and the mixture was stirred for 10 min. After that time, the flask was cooled to -78 °C
and Mg(ClO4), (61 mg, 0.273 mmol) was added in one portion. After 30 min, a pre-cooled
solution (-78 °C) of MeOH (0.22 ml, 5.46 mmol) in CH,Cl, (0.5 mL) was cannulated dropwise
to the reaction mixture over 5 min. After completion of addition, the reaction was stirred at -78
°C for 15 min, then quenched with saturated NaHCO; solution (15 mL) and warmed to room
temperature. The biphasic mixture was extracted with CH,Cl, (3 x 20 mL) and the combined
organic extracts were dried (Na,SO,4) and concentrated. The residue was purified by column
chromatography (20% - 70% EtOAc in hexanes containing 0.5% Et:N) to give the desired

products 3.44 and 3.45 (60.2 mg, 76.8%) in a 2.3:1.0 diastereomeric ratio as a colorless oil and
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the over-reduction product 3.46 (6.8 mg, 9.7%) as a colorless oil. For 3.46: "H NMR (300 MHz,
CDCl) 5.77 (br s, 1H), 4.05-3.97 (m, 1H), 3.48-3.39 (m, 3H), 3.32 (s, 3H), 3.03 (t, /= 6.4 Hz,
1H), 2.38 (sept, J = 6.9 Hz, 1H), 1.74-1.69 (m, 2H), 1.18-1.14 (m, 9H), 0.96 (s, 3H), 0.88 (s,
3H); >C NMR (75 MHz, CDCls) 177.3, 82.0, 74.5, 69.0, 57.7, 41.0, 38.6, 35.9, 27.6, 24.5, 19.9,
19.8, 15.6, 15.5; IR (neat) 3305, 2970, 2933, 2874, 1651, 1548, 1468, 1386, 1243, 1103; HRMS
(ESI): m/z caled for Ci4H»;NOsNa [M+Na]™ 280.1889, found 280.1899. Further purification
(20% - 40% EtOAc in hexanes containing 0.5% Et;N) of the mixture of 3.44 and 3.45 yielded
analytically pure diastereomers. For the faster eluting product 3.44 (major, white solid): '"H NMR
(500 MHz, CDCls) 6.01 (d, J = 9.0 Hz, 1H), 5.26 (dd, J = 9.5, 6.5 Hz, 1H), 3.84-3.80 (m, 1H),
3.39 (s, 3H), 3.36 (q, J/ = 6.5 Hz, 1H), 3.33 (s, 3H), 3.04 (dd, J = 8.6, 4.1 Hz, 1H), 2.44 (sept, J =
6.9 Hz, 1H), 1.92 (td, J = 13.7, 4.5 Hz, 1H), 1.66 (ddd, J=13.8, 8.6, 5.2 Hz,1H), 1.20 (d, /= 6.9
Hz, 3H), 1.19 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 6.6 Hz, 3H), 0.94 (s, 3H), 0.86 (s, 3H); °C NMR
(125 MHz, CDCls) 178.2, 82.0, 80.0, 76.2, 70.9, 57.7, 56.4, 38.2, 36.2, 26.0, 24.5, 19.9, 19.8,
16.1, 15.3; IR (neat) 3300, 2972, 2938, 1659, 1536, 1468, 1387, 1103; HRMS (ESI): m/z calcd
for C;5Hy9NO4Na [MJrNa]+ 310.1994, found 310.1985. For the slower eluting product 3.45
(minor, colorless oil): '"H NMR (300 MHz, CDCls) 6.26 (d, J = 9.3 Hz, 1H), 5.16 (dd, J = 9.6,
3.9 Hz, 1H), 3.83-3.78 (m, 1H), 3.67 (q, J = 6.6 Hz, 1H), 3.38 (s, 3H), 3.31 (s, 3H), 3.18 (dd, J =
7.0, 3.8 Hz, 1H), 2.42 (sept, J = 6.9 Hz, 1H), 1.96 (ddd, J=13.7, 6.6, 3.9 Hz, 1H), 1.71-1.63 (m,
1H), 1.22-1.17 (m, 9H), 1.00 (s, 3H), 0.88 (s, 3H); °C NMR (75 MHz, CDCls) 177.5, 82.4, 81.7,
70.3, 57.8, 56.7, 38.0, 36.1, 26.3, 25.4, 19.9, 19.7, 17.6, 15.6; IR (neat) 3293, 2970, 2934, 1658,
1531, 1468, 1387, 1170, 1102; HRMS (ESI): m/z caled for C;sH)NO4Na [M+Na]™ 310.1994,

found 310.2002.
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