
 

TRANSCRIPTIONAL REGULATION OF TUMOR NECROSIS FACTOR-alpha BY 
HUMAN IMMUNODEFICIENCY VIRUS-1 VPR 

 
 
 
 
 
 
 
 

by 

Shaylee M. O’Leary 

             BS in Biology, The Pennsylvania State University, 2006 

 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

The Department of Infectious Diseases and Microbiology 

The Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Master of Science 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2008 



 ii 

UNIVERSITY OF PITTSBURGH 

GRADUATE SCHOOL OF PUBLIC HEALTH 
 
 
 
 
 
 
 
 

This thesis was presented 

 
by 

 
 

Shaylee M. O’Leary 
 
 
 

It was defended on 

June 2, 2008 

and approved by 

YuanPu Di, PhD, Assistant Professor, Environmental and Occupational Health, 

Graduate School of Public Health, University of Pittsburgh 

       Jeremy Martinson, PhD, Assistant Professor, Infectious Diseases and Microbiology 

                                                      Graduate School of Public Health, University of Pittsburgh

                  Thesis Director: Velpandi Ayyavoo, PhD, Assistant Professor, Infectious Diseases and 

                       Microbiology, Graduate School of Public Health, University of Pittsburgh 

 

 



 iii 

Copyright © by Shaylee M. O’Leary 

2008 



 iv 

 

HIV-1 Vpr is known to regulate both viral and host cellular promoters resulting in transcriptional 

regulation of various cellular factors in host immune cells, such as T cells, macrophages and 

dendritic cells.  It has been shown that Vpr has a role in the upregulation of proinflammatory 

cytokine TNF-α, which affects immune regulation during infection. However, the mechanisms 

by which TNF-α is regulated by HIV-1 Vpr are not well understood.  A goal of this project is to 

determine the effects of Vpr in its biologically relevant forms and identify the domains of Vpr 

involved in TNF-α production. Additionally, we also sought to determine whether TNF-α is up-

regulated in infected/exposed cells and/or bystander cells. From our experiments, we conclude 

that HIV-1 Vpr increases TNF-α production in the context of infection as well as exposure in the 

absence of other viral proteins. Furthermore, HIV-1 Vpr has multiple domains capable of 

inducing TNF-α production. However, the increase in TNF-α production in DC is dependent on 

LPS stimulation. We were unable to conclusively determine the cell type that is responsible for 

this observed phenotype however the results from our studies indicate that infected/exposed cells 

could be the dominant producers. 

 

Due to the association of Vpr with transcriptional regulation of various cellular factors, we 

investigated the domains of the TNF-α promoter involved in Vpr-mediated TNF-α regulation.  

Using the HeLa T4 cell line, TNF-α promoter mediated transactivation was increased by two 
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fold when exposed to HIV-1 Vpr(+) as opposed to HIV-1 Vpr(-) as detected by luciferase 

reporter assay. A six fold increase was observed in the transactivation of full length and mutant 

TNF-α promoter in macrophage-derived microglia cell line in the presence of Vpr expression.  

Results from mapping studies indicate that HIV-1 Vpr can regulate TNF-α production via 

multiple domains of the TNF-α promoter, however for maximum transactivation, the full-length 

promoter is required.   

 

Statement of Public Health Significance: By determining the details of HIV-1 Vpr and TNF-α 

interaction and the mechanisms for which they interact could reveal novel targets for the 

development of HIV-1 therapeutics in the fight against this epidemic.  

 

 v 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..................................................................................................... XII 

1.0 CHAPTER ONE: INTRODUCTION ........................................................................ 1 

1.1 THE AIDS PANDEMIC ..................................................................................... 1 

2.0 CHAPTER TWO: BACKGROUND.......................................................................... 3 

2.1 HIV-1: VIRUS STRUCTURE AND PATHOGENESIS.................................. 3 

2.2 VIRAL PROTEIN R (VPR) ............................................................................... 5 

2.3 TUMOR NECROSIS FACTOR-ALPHA AND HIV-1 INFECTION ............ 6 

2.4 DC IMMUNOLOGY AND HIV-1 INFECTION.............................................. 7 

3.0 CHAPTER THREE: THESIS AIMS......................................................................... 9 

4.0 CHAPTER FOUR: MATERIALS AND METHODS ............................................ 11 

4.1 CELL LINES ..................................................................................................... 11 

4.2 CLONING .......................................................................................................... 12 

4.3 TRANSFECTION METHODS ........................................................................ 13 

4.3.1 Calcium Phosphate ..................................................................................... 13 

4.3.2 Lipid-Mediated Transfection..................................................................... 13 

4.4 VIRUS................................................................................................................. 14 

4.4.1 Virus Production......................................................................................... 14 

4.4.2 Virus Labeling............................................................................................. 14 

 vi 



4.5 WESTERN BLOT ............................................................................................. 15 

4.6 VPR PEPTIDES................................................................................................. 16 

4.7 RECOMBINANT PROTEIN ........................................................................... 17 

4.8 CYTOKINE ANALYSIS OF HIV-1 EXPOSED DC ..................................... 17 

4.8.1 Detection of TNF-alpha by ELISA............................................................ 17 

4.8.2 Flow cytometry............................................................................................ 18 

4.9 TNF PROMOTER-LUCIFERASE ASSAY.................................................... 19 

4.9.1 Promoter-Luciferase Constructs ............................................................... 19 

4.9.2 Luciferase Reporter Assay......................................................................... 19 

4.10 STATISTICAL ANALYSIS ............................................................................. 20 

5.0 CHAPTER FIVE: RESULTS ................................................................................... 21 

5.1 AIM #1: TO INVESTIGATE THE EFFECTS OF HIV-1 VPR ON THE 

TNF-ALPHA PRODUCTION BY DENDRITIC CELLS.............................................. 21 

5.1.1 Characterization of Viruses ....................................................................... 21 

5.1.2 Induction of TNF-α by HIV-1 Vpr............................................................ 24 

5.1.2.1 Affect on TNF-α by Vpr in the Context of HIV-1 Infection............ 24 

5.1.2.2 Affect on TNF-α by de novo synthesized Vpr ................................... 27 

5.1.2.3 Effect on TNF-α Expression by Recombinant Vpr Protein ............ 29 

5.1.2.4 Domains of Vpr Involved in TNF-α Production .............................. 30 

5.1.3 Differentiation of DC Populations Responsible for Enhanced TNF-α 

Production................................................................................................................... 31 

5.1.3.1 Intracellular staining for p24 and TNF-α ......................................... 31 

5.1.3.2 Cy5 labeled NL43 virus ...................................................................... 33 

 vii 



5.2 AIM #2: TO DETERMINE THE MECHANISMS IN THE REGULATION 

OF TNF-ALPHA EXPRESSION BY HIV-1 VPR.......................................................... 37 

5.2.1 Introduction................................................................................................. 37 

5.2.2 Assay Parameters........................................................................................ 37 

5.2.3 Promoter activation by HIV-1 Vpr in Microglia cells............................. 42 

5.2.4 Promoter induction by HIV-1 Vpr in HeLa T4 cells ............................... 44 

6.0 CHAPTER SIX: DISCUSSION................................................................................ 46 

7.0 CHAPTER SEVEN: FUTURE DIRECTIONS....................................................... 50 

BIBLIOGRAPHY....................................................................................................................... 52 

 viii 



 LIST OF TABLES 

 

Table 1: Current Estimations of the HIV/AIDS Epidemic by Region (2007). ................................ 2 

Table 2: HIV-1 VPR Peptides. ...................................................................................................... 16 

Table 3: TNF-α Promoter Activation (RLU) in Microglia Cells. ................................................. 42 

Table 4: TNF-α Promoter Transactivation (RLU) in HeLa T4 Cells. .......................................... 44 

 ix 



LIST OF FIGURES 

 

Figure 1: The HIV-1 Genome.......................................................................................................... 3 

Figure 2: HIV-1 Viral Life Cycle. ................................................................................................... 4 

Figure 3: HIV-1 Vpr Protein Structure. .......................................................................................... 5 

Figure 4: Viral protein Characterization of Viruses..................................................................... 22 

Figure 5: Characterization of Vpr-EGFP expressing lentivirus constructs by 

immunofluorescence. .................................................................................................................... 23 

Figure 6: Increase in TNF-alpha expression by HIV-1 Vpr in the context of virus infection....... 25 

Figure 7: Increase in TNF-alpha expression by HIV-1 Vpr in the context of 89.6 infection........ 26 

Figure 8: Effect of HIV-1 Vpr IL-15 expression............................................................................ 27 

Figure 9: Increase in TNF-alpha production by de novo synthesized HIV-1 Vpr. ....................... 28 

Figure 10: Increase in TNF-alpha production by recombinant Vpr protein. ............................... 29 

Figure 11: TNF-alpha production by Vpr Peptides. ..................................................................... 30 

Figure 12: Dual staining of HIV-1 virus exposed DCs for TNF-alpha and p24 Gag................... 32 

Figure 13: DC uptake and TNF-α production by Cy-5 labeled virus. .......................................... 33 

Figure 14: Detection of Soluble TNF-α in DC supernatants. ....................................................... 35 

Figure 15: IL-15 modulation by HIV-1 Vpr (+) and Vpr (-) Cy-5 labeled virus. ......................... 36 

Figure 16: Representation of TNF-alpha Promoter and Deletion Mutants.................................. 38 

 x 



Figure 17: Assay Parameter Development using the full length TNF-α promoter in Microgila 

cells. .............................................................................................................................................. 40 

Figure 18: Transactivation of TNF-alpha by Various Concentrations of HIV-1 Vpr in HeLa T4 

cells. .............................................................................................................................................. 41 

Figure 19: Fold activation of the TNF-α promoter by HIV-1 Vpr in Microglia cells................... 43 

Figure 20: Fold activation of the TNF-α promoter by HIV-1 Vpr in HeLa T4 cells. ................... 45 

 xi 



ACKNOWLEDGEMENTS 

First I would like to thank Dr. Velpandi Ayyavoo for her mentorship and for giving me the 

opportunity to complete my thesis work in her laboratory.  She allowed me to go through all the 

experiences a young scientist should, showing me that diligence, focus and especially patience 

get you far in this field of work.  As I leave her lab, I know that I have been given the education 

and the training to be successful wherever I may end up.  I would also like to thank my 

committee members Dr. Jeremy Martinson and Dr. Peter Di for their support and guidance while 

completing my thesis project. 

 

I absolutely could not have made it to this day without the help, support and friendship of 

my fellow lab members.  To Jay and Bisu, I have learned so much from working with you and I 

cannot thank you enough!  Everything that I know about working in the lab I have learned from 

the two of you. I also learned what not to do from you Jay; I will never pull an all-nighter in the 

lab no matter what the circumstances (I hope I don’t eat my words one day).  Good luck Jay with 

finishing up your dissertation and residency.  Bisu, I wish you and your family luck back in India 

and not to worry, I told you the Port Authority wasn’t out to get you! To Krisztina, I thank you 

for your companionship and constant encouragement!  I depended on you numerous times to 

keep me on track and optimistic and you always were there for me! We have both come such a 

long way these past two years, personally and professionally, and I am so glad that we have 

 xii 



become such good friends (how could we not, we spent 60 hours together every week!).  I feel 

proud to have walked across the stage at graduation with you, and I could only hope to have been 

a fraction as influential to you as you were to me. Hey, I had a car so I was at least good for that! 

My thanks to Tim for being a fellow sports guru since no one else could care less, and our 

endless and still ongoing argument for I will forever stand my ground (my loyalties are with 

Penn State especially if they ever play Pitt again).  My appreciation goes to Yaming for her help 

with my protein experiments and I give all my best to you and your family. 

 

I would like to thank the department of Infectious Diseases and Microbiology and all the 

students, faculty and staff that made it such a pleasure to work and learn here. Thank you 

especially to Robin Leaf and Nancy Heath for keeping me on track and for all your kindness and 

support. Many thanks to Joe Pawlak for giving me a job and for someone to chat with no matter 

when or what the topic turned in to (and for not embarrassing me too much when I fell in the 

hallway)! Thank you to my professors for sharing your knowledge and experiences of this field; 

it has been a privilege to be your student. Special thanks to my classmates for your constant 

support and friendship. I could always count on you to be there to give advice or to just listen, 

and of course to have some fun every now and then (ok, maybe more often than that)! You all 

have a special place in my heart and I wish you all the best of luck in the future. Keep in touch! 

 

I would like to give a lifetime of thanks to my parents, Jim and Ginny O’Leary, and my 

sister Kelsey, for the all around support they have selflessly given to me especially during the 

past two years.  Mom and dad, you have been incredibly supportive not only financially but with 

all the love and encouragement that has gotten me through all times.  I owe this to you for I 

 xiii 



would never have made it to this point if it weren’t your values and expectations for your little 

girl. I would also like to thank my grandmother, Margaret O’Leary, for always seeing the best in 

me, and a special dedication to my Nan and Pap, Mary and Richard Davis, whom I miss terribly 

but know, are smiling down on me with the utmost pride. Thank you to my aunts, uncles, cousins 

and friends (there are far too many to name) for I am blessed to have such a large cheering 

section. 

 

Thank you to Dave Masilunas for being my rock throughout the process of getting to 

graduate school and then getting through it.  You have been forever patient with me, especially 

on rough days, and you always knew when a pep talk was needed (pretty much daily)!  You 

never minded on a Saturday afternoon when I had to run in the lab for “only 10 minutes” though 

was never short of 30, or by cutting our weekend short because work had to be done.  You have 

been such an inspiration to me as you work while going to school, making me glad I decided to 

go full-time.  I look forward to the times we will share building a wonderful life together. 

 

 

 

 xiv 



1.0  CHAPTER ONE: INTRODUCTION 

1.1 THE AIDS PANDEMIC 

HIV/AIDS (Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome) is a 

disease that is now pandemic throughout the world. As of November 2007, the estimated number 

of infected individuals worldwide was 33.2 million, with an incidence of 2.5 million [1]. Sixty-

eight percent of these new cases occurred in sub-Saharan Africa. Over two million people died 

from AIDS in 2007 (Table 1). Since 2001, the number of infected individuals in Eastern Europe 

and Asia has increased by 150%. However, it has been reported that the overall prevalence of 

HIV has leveled off and the number of new infections has decreased [1]. 

 

In the twenty-five years since the discovery of the AIDS virus, the epidemic patterns 

have constantly evolved and the schematic maps continued to change colors.  Though every year 

the numbers have increased, the world is beginning to see the pay off from all the efforts put 

forth to help eliminate the devastation caused from this disease.  In countries in just about every 

region, there has been decreased prevalence in adults credited to signs of decreased risky 

behavior. Due to anti-retroviral therapy, HIV/AIDS mortality rate in many countries have 

declined in recent years [2].  Young women who attend antenatal have a lower prevalence that 

shows efforts are in fact beneficial in many of the most affected countries.  Many countries of 
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Sub-Saharan Africa such as Kenya and Zimbabwe, though still the region with the highest 

number of infected individuals, show steadying or declining numbers. 

 

Though success is apparent, much effort is still necessary.  In some countries, there have 

been reversals from declining to increasing numbers of affected individuals.  In areas like Latin 

America and the Middle East, there are existing stigmas and prejudices that inhibit proper 

surveillance and prevention and treatment efforts that need to be overcome [2].  With advances 

in this area, more accurate estimations will enable efforts tailored to the populations with most 

need. 

Table 1: Current Estimations of the HIV/AIDS Epidemic by Region (2007). 

World Region Total People 
Living with HIV 

New HIV 
Infections 

Adult 
Prevalence 

Total Deaths 
Due to AIDS 

Asia 4.9 Million 440,000 0.1% 300,000 

Sub-Saharan 
Africa 22.5 Million 1.7 Million 5.0% 1.6 Million 

Caribbean 230,000 17,000 1.0% 11,000 

Eastern 
Europe and 
Central Asia 

1.6 Million 150,000 0.9% 55,000 

North 
America and 

Western 
Europe 

2.1 Million 78,000 0.5% 32,000 

Latin 
America 1.6 Million 100,000 0.5% 58,000 

Middle East 
and North 

Africa 
380,000 35,000 0.3% 25,000 

Oceania 75,000 14,000 0.4% 1,200 

Total 33.2 Million 2.5 Million 0.8% 2.1 Million 
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2.0  CHAPTER TWO: BACKGROUND 

2.1 HIV-1: VIRUS STRUCTURE AND PATHOGENESIS 

The Human Immunodeficiency Virus type 1 (HIV-1), the causal agent of AIDS, is of the genus 

lentivirus and family Retroviridae.  The virus contains two copies of its single-stranded RNA 

genome which encodes for structural and functional proteins as well as the promoter that allows 

for transcription of viral genes in host cells (Figure 1).  This promoter is called the long-terminal 

repeat (LTR) and is flanked on each end of the coding region of the genome.  Structural proteins 

include Gag, Pol, and Env which also are involved in the pathogenesis of HIV-1.  Auxiliary or 

regulatory proteins comprise of Tat and Rev which are essential for viral replication.  Nef, Vif, 

Vpr, and Vpu are accessory proteins, which while not necessary for viral reproduction, do aid in 

the efficient replication and pathogenesis of the virus. 

 

Figure 1: The HIV-1 Genome. 
This schematic represents the HIV-1 genome including both structural and accessory 
proteins in which are flanked at either end by the HIV-1 LTR (long terminal repeat) 
promoter region. The structural proteins include gag, pol, and env while the remaining genes 
have various regulatory and accessory roles. 
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Figure 2 depicts the general HIV-1 virus life cycle.  Briefly, the virus attaches to the 

target cell surface via CD4 and the coreceptors, CCR5 or CXCR4, depending on the viral strain 

and target cell type, and the viral capsid is deposited into the cytoplasm [3, 4].  The viral RNA 

genome is reverse transcribed by virus encoded reverse transcriptase (RT) into double stranded 

DNA and translocalized to the nucleus where it integrates into the host genome.   

 

 

Figure 2: HIV-1 Viral Life Cycle.  
This schematic represents the basic steps in HIV-1 infection at the cellular level. 
 

Transcription of proviral DNA by the host RNA polymerase II produces full-length transcripts 

that are used to produce viral proteins or genomic RNA.  Env is translated in the endoplasmic 

reticulum and processed via the Golgi apparatus.  Virion components assemble at budding sites 

at the interface of the cellular plasma membrane. Maturation continues after egress with protein 
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modification by virus encoded protease. The target cells for HIV-1 are dividing CD4+ T-cells 

and non-dividing cells of the macrophage-phagocytic system [3, 4].  These cells are functionally 

disrupted and/or depleted during the course of infection, disrupting the host immune system. 

2.2 VIRAL PROTEIN R (VPR) 

As previously mentioned Vpr is one of the four accessory proteins of HIV-1 and is the focus of 

this thesis.  Vpr is described as a virion associated pleiotropic protein that has been associated 

with cell cycle arrest, apoptosis, immune regulation and evasion, translocation of the pre-

integration complex (PIC) into the nucleus, and viral gene transactivation [5-8].  Viral protein R 

(Vpr) is a 14-kDa protein that consists of ninety six amino acids and structurally contains three α 

helical domains flanked by amino and carboxyl terminal ends (Figure 3) [7].  

 

Figure 3: HIV-1 Vpr Protein Structure. 
This schematic depicts Vpr’s three alpha helices and the amino (N) terminal and carboxyl 
(C) terminal ends. Permission granted by Mary Ann Leibert, Inc. Publishers for use of this 
figure [7]. 
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These N-terminal and central regions have shown to play a role in the ability of Vpr to affect 

virion packaging, transcriptional activation and apoptosis [5, 7, 9]. The C-terminal region is 

arginine-rich and is also known to affect nuclear localization and the host cell cycle but it is not 

involved in virion incorporation [7, 9].   

 

The focus of this thesis is on Vpr and its role in transcriptional regulation. Vpr has been 

specifically associated with activation of the HIV-1 LTR promoter, though modestly, and of 

several other heterologous promoters [7, 10]. Vpr is known to interact with transcription factors 

SP1 and TFIIB, as well as NFκB and AP-1 in primary macrophages, and the host cellular factors 

glucocorticoid receptor (GR) as well as progesterone and estrogen receptors [7, 11-13]. Vpr has 

the ability to accomplish these functions in multiple contexts. It has been shown that Vpr exists 

not only as virion or cell associated, but also as free Vpr (cell and virus-free) [14]. This thesis 

will cover the transcriptional regulation of host cytokine expression by Vpr in its various forms. 

 

2.3 TUMOR NECROSIS FACTOR-ALPHA AND HIV-1 INFECTION 

It has been proposed that immune dysregulation is an effect caused by HIV-1 infection and that 

cytokines play a large role. Tumor necrosis factor-alpha, referred to as TNF-α, is a 

proinflammatory cytokine secreted by cells of myeloid lineage and is known to be involved in 

inflammation and apoptosis. TNF-α is synthesized as a 233 amino acid structure which is 

cleaved, and trimerizes into its active state and acts extrinsically through its receptors TNFR1 

and TNFR2 [13, 15, 16]. TNF-α matures and activates antigen presenting cells (APCs) as well as 
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other immune cells. Many studies have shown TNF-α and other inflammatory molecules to be 

associated with HIV-1 infection itself and also its associated anomalies such as lipodistrophy and 

AIDS-associated dementia.  More specifically, recent studies have shown relationships between 

HIV pathogenesis, viral proteins and TNF-α signaling especially in the central nervous system 

and the brain.   

 

It is generally accepted that TNF-α and TNFR levels are increased during the early 

phases of disease.  These levels correlate with viral load and CXCR4 expression, and inversely 

correlate with CD4+ T-cell counts [17, 18]. TNF-α produced by antigen-presenting cells (APCs) 

can cause secretion of other cytokines which affect infected and also bystander cells [19]. 

Interestingly, HIV-1 proteins including Nef, Vpr, and Tat have been proposed to act in a similar 

pathway as TNF-α, activating NFκB, AP-1 and mitogen-activated protein kinase (MAPK) to 

modulate cellular machinery [13, 18, 19]. This give strong evidence that TNF-α should be more 

closely studied in the context of HIV-1 infection.  

2.4 DC IMMUNOLOGY AND HIV-1 INFECTION 

During initial HIV-1 infection, especially when transmitted by sexual contact, it is understood 

that the first interaction between immune cells and virus occurs in the genital and oral mucosal 

surfaces [20].  Since dendritic cells (DCs) are located here, they are proposed to be one of the 

first cell types to encounter HIV.  Though DCs express low levels of CCR5 and CXCR4 

receptors, they have the ability to uptake virus due to their endocytotic characteristic as well as 

the expression of multiple C-type lectins such as DC-SIGN that are able to bind to HIV Env [21].   
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DCs travel into the lymphoid tissues where they act as antigen presenting cells to CD4+ and 

CD8+ T cells [20].  This is a proposed route of virus spread to the localized T-cell populations 

[20, 22].  HIV-1 is able to modulate normal DC function in infected individuals. For example, 

infected DCs express lower levels of surface co-stimulatory molecules such as CD80 and CD86 

and are significantly less efficient at inducing DC dependent T cell responses [20].   

 

HIV-1 Vpr is known to modulate normal DC phenotype and function as well as 

differentially regulate the expression of TNF-α. HIV-1 replication in DCs occurs very 

inefficiently.  However, cellular factors such as cytokines including TNF-α are able to influence 

viral replication in macrophages, DCs, and T cells.  Dendritic cells play a large role in the 

induction of a proinflammatory response by activation of cytokine signaling cascades.  However, 

there is a constant battle between proinflammatory molecules which aids in viral replication due 

to enhanced immune cell migration, and the viral suppressive activity of other cytokines [23]. 

For example, TNF-α enhances HIV-1 replication in macrophages and DCs as well trigger 

apoptosis of bystander T cell populations; however IL-15 is a potent inhibitor of the TNF-α 

apoptosis pathway [18, 19, 24].  IL-15 production is impaired during HIV-1 infection 

specifically in the presence of Vpr in DCs [24, 25].  Therefore, Vpr differentially regulates 

multiple cellular factors that can modulate normal immune function and the mechanisms 

involved are of importance for further understanding of HIV-1 infection. 
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3.0  CHAPTER THREE: THESIS AIMS 

HIV-1 Vpr differentially regulates cytokine expression during HIV-1 infection causing alteration 

of normal immune cell function. Several viral proteins, including Vpr are implicated in this 

immune modulation induced by HIV-1. Proinflammatory cytokine TNF-α is known to be 

regulated during early infection. We hypothesize those viral proteins that are a part of the virus 

particle, particularly HIV-1 Vpr, might have an impact on TNF-α production.  

 

AIM #1:   To investigate the effects of HIV-1 Vpr on the TNF-α production by dendritic  

 cells. 

A. Explore the effects of Vpr in its various forms on TNF-α production 

B. To map the domains of Vpr responsible for the induction of TNF-α in 

dendritic cells 

C. Determine whether infected cells and/or uninfected bystander cells are 

responsible for the increased TNF-α expression by Vpr 
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Vpr is known to transactivate viral and host cellular promoters as well as act as a co-activator of 

viral andgene expression during infection.  We hypothesize that regulation of TNF-α expression 

by HIV-1 Vpr might be mediated at the TNF-α promoter level. 

 

AIM #2:   To determine the domains of the TNF-α promoter involved in the 

transactivation of TNF-α expression by HIV-1 Vpr. 
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4.0  CHAPTER FOUR: MATERIALS AND METHODS 

4.1 CELL LINES 

HEK293T, 293FT, microglia, and HeLa T4 cells were maintained in DMEM (GIBCO) 

supplemented with 10% FBS, 1% L-glutamine (Cambrex), 1% penicillin-streptomycin (GIBCO), 

and 1% 10mM Non-Essential Amnio Acids (GIBCO);  medium for 293FT additionally 

contained 500µl/ml Geneticin.  293FT cells were purchased from Invitrogen as a component of 

the pLenti/V5 Directional TOPO Cloning Kit.  HEK293T cells were given by Dr. Michelle 

Calos, Stanford University, CA.  HeLa T4 cells were from the NIH AIDS Research and 

Reference Reagent Program, Division of AIDS, UNAID, NIH contributed by Dr. Richard Axel 

[26].  Microglia cells were provided by Dr. Bassel Sawaya at Temple University, Philadelphia, 

PA. 

 

Monocyte-derived dendritic cells (DC) were derived from human peripheral blood 

mononuclear cells (PBMC) from heparinized blood obtained from anonymous healthy, HIV-1 

negative, donors by the Central Blood Bank of Pittsburgh, PA with appropriate IRB approval.  

PBMC were isolated by Fycoll-Hypague gradient centrifugation.  From these cells, CD14+ 

monocytes were purified by positive selection using anti-CD14 monoclonal antibody-coated 

magnetic microbeads (Miltenyi Biotech, Auburn, CA) as the protocol suggests. Briefly, to obtain 
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monocyte-derived DC, CD14+ cells (0.5X106 cells/ml) were cultured in 60 mm culture plates in 

a total volume of 6 mL RPMI (GIBCO, Gaithersburg, MD) media containing 10% FBS, 1% L-

glutamine (Cambrex, Walkersville, MD), 1% penicillin-streptomycin (GIBCO), 25 ng/ml IL-4 

(R&D Systems, Minneapolis, MN) and 50 ng/ml recombinant GM-CSF (R&D Systems). Half 

the volume of media was replaced every second or third day with fresh media containing IL-4 

and GM-CSF throughout the entire culture period. 

4.2 CLONING 

The Vpr-EGFP lentiviral plasmid was cloned using the pLenti/V5 Directional TOPO Cloning Kit 

(Invitrogen).  The Vpr-EGFP fusion gene, previously constructed, was amplified by PCR using 

forward primer: 5’CACCATGGAACAAGCCCCAGAGA3’ and reverse primer: 

5’TTACTTGTACAGCTCGTCCAT3’ producing a blunt-end product for proper fusion to the V5 

epitope flag of the cloning vector.  The PCR product was transformed into One Shot® Stbl3™ 

competent cells, cultured in S.O.C. media for one hour, then plated on LB agar plates containing 

ampicillin (100µg/ml).  Single colonies were cultured in ampicillin containing media and DNA 

was screened by restriction digest analysis for positive clones.  The Vpr lentivirus plasmid was 

obtained by restriction digest of Vpr-EGEF lentivirus plasmid removing the EGFP fragment with 

Age I.  The EGFP lentivirus was obtained similarly.  
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4.3 TRANSFECTION METHODS 

4.3.1 Calcium Phosphate 

The calcium phosphate method was used for DNA transfection of HEK293T cell line.  Briefly, 

cells were cultured in 10mm dishes to approximately 75% confluency.  Four hours prior to 

transfection, old media was replaced with 6 ml DMEM supplemented with 10% FBS and cells 

were placed in 5% CO2. The transfection was conducted by adding DNA (up to 25µg) to 450µl 

water, then subsequently adding CaCl2 (50µl) and 50mM BES (BES, 250mM NaCl, 0.5mM 

Na2HPO4) (450µl).  The transfection mixture was allowed to incubate at room temperature for 30 

minutes.  The mixture was then added drop-wise to the cell media.  Twelve to 16 hours later, the 

cell media was removed and replaced with fresh complete media. 

4.3.2 Lipid-Mediated Transfection 

Lipid-mediated transfection method was performed using 293FT, HeLa T4, and Microglia cell 

lines.  Cells were plated in antibiotic-free media for approximately twelve hours prior to 

transfection to 90% confluency.  For a 12-well plate, DNA (1-2µg) was added to Opti-MEM 

(GIBCO) (50µl).  Lipofectamine 2000 transfection reagent (Invitrogen) (1µl) was added to Opti-

MEM (50µl) and incubated at room temperature for 5 minutes, then added to the DNA mixture.  

The DNA-Lipofectamine complex was incubated at room temperature for 20 minutes.  Post-

incubation, cell culture media was replaced with fresh antibiotic-free DMEM and the 

transfection mixture was added drop-wise to the culture.  The cells were incubated at 37ºC for 4-
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6 hours, then the medium was replaced with fresh DMEM supplemented with 10% FBS, 1% L-

glutamine, 1% penicillin-streptomycin, and 1% 10mM Non-Essential Amino Acids. 

4.4 VIRUS 

4.4.1 Virus Production 

HIV-1 NL43 and 89.6 wild-type and ∆VPR viruses were obtained by transfection of HEK293T 

cells with pNL43 or 89.6 WT or ∆VPR proviral plasmids by calcium phosphate method. Virus 

released in the supernatant was collected seventy-two hours post transfection. Lentiviruses were 

produced by lipid-mediated transfection of the specified lentiviral plasmid accompanied by the 

Virapower® Packaging Mix (Rev, Gag/pol, VSV/G) in the 293FT cell line. All viruses were 

purified by centrifugation and filtration to remove cellular debris, and concentrated by 

ultracentrifugation at 22,000 rpm for 1 hour at 4ºC.  Viral titer was determined through p24 

antigen ELISA. 

4.4.2 Virus Labeling 

NL43 wild-type and NL43 ∆VPR viruses were labeled directly with Cy5 mono-reactive dye as 

suggested by the manufacturer’s protocol (Amersham). Initial protein estimations of the virus 

samples were taken by Bradford protein assay. One milligram of total virus protein was 

dissolved in 1mL of 0.1M sodium carbonate buffer and then added to one vial of dye. This was 

mixed thoroughly by inverting the vial, and then incubated at room temperature mixing every ten 
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minutes. Labeled virus was separated from free dye through the use of a G-25 M Sephadex 

column (Amersham). Column was equilibrated with DPBS twice. Reaction mix was added to the 

column and further DPBS was added to allow flow through. Two bands were seen, the faster 

moving band was labeled virus, while the slower moving band was the free dye. Virus titer was 

measured by p24 antigen ELISA post-labeling. 

4.5 WESTERN BLOT 

For virus characterization, HEK293T and 293FT cells were derived from untransfected and 

transfected cells and virus pellet was obtained as described above.  Cells were washed twice with 

PBS and lysed in RIPA buffer containing 50mM Tris (pH 7.5), 150mM NaCl, 1% Triton-X100, 

1mM sodium orthovanadate, 10mM sodium fluoride, 1.0mM phenylmethyl-sulfonylfluoride, 

0.05% deoxycholate, 10% SDS, 0.07 trypsin inhibitor units/ml aprotinin, and protease inhibitors 

Leupeptin, Chymostatin, and Pepstatin (1 µg/ml; Sigma). Cell lysates were clarified by 

centrifugation and total cell lysates (50 µg) were separated on a SDS-PAGE gel, transferred to a 

membrane, and immunoblotted for with anti-HIV-1 p24 (NIH AIDS Research and Reference 

Reagent Program), anti-HIV-1 Vpr (gift from John Kappes, University of Alabama), and/or anti-

GFP (Abcam) for detection of mentioned proteins. Loading was based on protein concentration.  

 

Western Blots were also done on virus pellets to confirm the concentration of the p24 gag 

protein. Vpr was also detected in HIV-1 Vpr(+) virus pellets.  Pellets were separated on a SDS-

PAGE gel, transferred to a membrane, and the expression of the above mentioned proteins were 

detected as described before. 
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4.6 VPR PEPTIDES 

VPR peptides used in DC stimulation experiments were obtained through the AIDS Research 

and Reference Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 Consensus B VPR (15-

mer) Peptides - Complete Set. Sets used in these specific experiments were made by combining 

various 15-mer peptides to obtain desired sequence (Table 2).  

 

Table 2: HIV-1 VPR Peptides. 

 Peptide Sequence 

1-19 MEQAPEDQGPQREPHNEWT 

21-35 ELLEELKNEAVRHFP 

37-55 IWLHGLGQHIYETYGDTWA 

45-63 HIYETYGDTWAGVEAIIRI 

65-83 QQLLFIHFRIGCRHSRIGV 

81-96 IGVTRQRRARNGASRS 

 

DCs were isolated and cultured as previously described.  Four days after isolation, DCs 

were exposed to different Vpr peptides (100ng/ml).  Forty eight hours after stimulation, LPS was 

added or not added to the cell culture medium.  Cell supernatants were collected after an 

additional 24 hours and stored at -80ºC until analysis by TNF-α ELISA as described below.  

Values were compared to TNF-alpha production from stimulation with irrelevant Vif peptides 

obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, 

NIAID, NIH (HIV-1 Consensus B VIF (15-mer) Peptides - Complete Set). 
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4.7 RECOMBINANT PROTEIN 

Vpr recombinant protein was produced using the pET Duet vector and protein expression system 

(Novagen). Glutathione S-transferase (GST) recombinant protein was used as an irrelevant 

control protein. Both Vpr and GST were produced in E. coli following IPTG induction and 

purified according to the manufacturer’s instructions (Novagen). Bacterial contaminants were 

removed by high-performance liquid chromatography (HPLC) purification and absence of 

endotoxin was confirmed as described by our laboratory previously [19]. 

 

DCs were cultured as described before.  Recombinant Vpr or GST protein was added to 

the cells in various concentrations and incubated for 48 hours.  Cells were then treated with or 

without LPS for an additional 24 hours.  Supernatants were collected and used for cytokine 

analysis by TNF-α ELISA as described below. 

 

4.8 CYTOKINE ANALYSIS OF HIV-1 EXPOSED DC 

4.8.1 Detection of TNF-alpha by ELISA 

Dendritic cells were isolated and cultured as previously described.  Four days after initial culture, 

DCs were exposed to HIV-1 wild-type or HIV-1 ∆VPR.  After forty-eight hours post-

transduction, cells were stimulated with LPS (1µg/ml).  Twenty-four hours post LPS stimulation, 

supernatants and cells were collected for further analysis.  Cell debris was removed from the 
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supernatants by centrifugation.  Soluble TNF-α was measured in these supernatants by TNF 

ELISA Set as per manufacturer’s instructions (BD Biosciences). 

4.8.2 Flow cytometry 

DCs were treated as mentioned above.  For flow cytometry, cells were collected and washed two 

times with FACS buffer (PBS supplemented with 3% FBS). For surface staining to detect 

expression of IL-15, cells were stained with IL-15 antibody (Santa Cruz Biotechnologies) for 30 

minutes on ice. Cells were washed and conjugated with anti-IgG1-PE (Santa Cruz 

Biotechnologies) also on ice for 30 minutes. Cells were washed twice with FACS buffer to 

remove residual antibody.  Cells were fixed in 2% paraformaldehyde at 4ºC. 

 

For intracellular detection of TNF-α and/or p24, virus exposed cells were treated with 

GolgiStop® (BD Biosciences) in addition to LPS as described above.  This inhibits anterograde 

transport of cytokines from the golgi apparatus to the cell surface.  Cells were collected and 

washed two times with FACS buffer.  For detection of intracellular proteins, fixation and 

permeabilization was carried out using the Cytofix/Cytoperm kit (BD Bioscience).  The cells 

were incubated in the Cytofix/Cytoperm solution for 20 minutes at room temperature, followed 

by two washes with the Perm/Wash buffer (BD Bioscience).  Intracellular staining was 

performed at room temperature for one hour then washed with Perm/Wash and analyzed by flow 

cytometry in FACS buffer.  Antibodies used include anti-mouse TNF-PE (BD), anti-rat TNF-

APC (Abcam), and for p24 detection anti-K562-FITC (Beckman Coulter).  Analysis was done 

using the computer program, FlowJo.  
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4.9 TNF PROMOTER-LUCIFERASE ASSAY 

4.9.1 Promoter-Luciferase Constructs 

TNF-luciferase constructs were kindly provided by Dr. Bassel Sawaya, Temple University, 

Philadelphia, PA. Constructs were confirmed by enzyme digest and sequencing reactions. 

4.9.2 Luciferase Reporter Assay 

Cells were cultured in a 12-well plate format. TNF-α promoter luciferase constructs (1µg) were 

transfected using the lipid-mediated transfection method mentioned above. In microglia cells, 

pVPR or pcVector (pcDNA3.1/V5 HIS TOPO Expression Vector, Invitrogen), was co-

transfected with the luciferase construct. Twenty-four hours post-transfection, LPS (1µg) was 

added to the cells.  In HeLa T4 cells, transfection of the TNF-α promoter-luciferase constructs 

was performed by lipid-mediated transfection.  HIV-1 NL43 wild-type or ∆VPR (100ng p24 

equivalent per ml) was added in addition to PMA (20ng) and ionomycin (5µM) 24-hours post-

transfection. The assay was performed using the Luciferase Assay System (Promega) as the 

protocol suggested. Briefly, forty-eight hours post-transfection, culture medium was removed 

and discarded. Cells were washed with PBS and all liquid was removed.  Passive Lysis Buffer 

(200µl of 1X) was added to the cells and cell lysate was separated from cell debris by 

centrifugation.  Cell lysates (20µl) were added to Reporter Assay Substrate (100µl) and relative 

light units were detected by luminometer.  Transfection efficiency was normalized by co-

transfecting pEGFP with the promoter-luciferase constructs and determining equivalency by 

fluorescence microscope. 
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4.10 STATISTICAL ANALYSIS 

Results were analyzed using 1-tailed, paired student t-test using Microsoft Excel. P value less 

than ≤0.05 was considered as statistically significant. 
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5.0  CHAPTER FIVE: RESULTS 

5.1 AIM #1: TO INVESTIGATE THE EFFECTS OF HIV-1 VPR ON THE TNF-

ALPHA PRODUCTION BY DENDRITIC CELLS 

5.1.1 Characterization of Viruses 

To identify the effects of HIV-1 Vpr multiple virus constructs were used.  First, HIV-1 NL43 

(CXCR4-tropic) and 89.6 (dual tropic) viruses, and lentiviruses expressing Vpr or control protein 

(EGFP) were generated as described in the above section.  Characterization was completed for 

the presence of p24 Gag antigen as well as for Vpr using specific antibodies.  As seen in Figure 

4A, p24 Gag was detected by protein analysis of concentrated virus pellet by western blot.  

Presence or absence of Vpr was also determined by western blot. As expected, viruses containing 

Vpr mutations had no trace of the protein.  p24 Gag was also detected in virus exposed dendritic 

cells by flow cytometry confirming the occurrence and efficiency of virus transduction (Figure 

4B).  Equal to reduced transduction was typically seen by HIV-1 Vpr(-) virus compared to Vpr-

containing wild type virus. 
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A. 

   

B. 

Figure 4: Viral protein Characterization of Viruses.  
(A)Virus pellets analyzed for the presence or absence of p24 Gag and Vpr by western blot, 
(B) Virus transduction in exposed DCs determined by flow cytometry after intracellular 
staining for Gag p24 antigen. 
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Lentiviruses expressing EGFP were further characterized by fluorescence microscopy in 

293FT cells during virus production (Figure 5). Expected patterns were observed as the pLenti-

EGFP transfected cells showed protein expression localized in the cytoplasm.  Cells transfected 

with pLenti-Vpr-EGFP were seen with expression in both the cytoplasm and the nucleus. This 

would occur due to Vpr nuclear localization with the fusion protein remaining intact. 

 

 

Figure 5: Characterization of Vpr-EGFP expressing lentivirus constructs by 
immunofluorescence. 
Characterization of lentiviral constructs was performed by transfecting 293FT cells with the 
appropriate plasmid, followed by fluorescent microscopy. The cell nucleus was stained with 
Dapi stain (blue) and EGFP expression (green) was observed using FITC filters. Localization 
of protein expression can be seen with the overlay. 
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5.1.2 Induction of TNF-α by HIV-1 Vpr 

Vpr is known to play a role in activation of viral protein expression and signaling cascades that 

elicit proviral and antiviral responses. In dendritic cells, our laboratory has shown that HIV-1 

Vpr(+) virus exposure causes an upregulation of TNF-α mRNA synthesis and protein expression 

[19]. Similar effects were observed in DCs exposed to noninfectious virus containing Vpr as well 

as Vpr-GST recombinant protein.  This section reiterates previous findings and gives further 

insight to Vpr’s role in TNF-α production by dendritic cells in regards to its multiple forms and 

protein domains.  

5.1.2.1 Affect on TNF-α by Vpr in the Context of HIV-1 Infection 

To assess Vpr and its ability to induce TNF-α expression in the context of infection, DCs were 

cultured as described and exposed to VSV-G pseudotyped HIV-1 NL43 wild-type or Vpr 

defective virus (Figure 6).  VSV-G enables the NL43 variant to be taken up by dendritic cells 

due to the X4 tropism of the viral strain and low expression of the CXCR4 co-receptor on DC 

surfaces. TNF-α was detected in the DC supernatant by ELISA and intracellularly by flow 

cytometry. There was an average two fold increase in TNF-α production by NL43 Vpr(+) virus 

infected DCs upon LPS stimulation. Similar results were observed in six separate donors. A 

similar increase in TNF-α expression was also detected by flow cytometry with over twenty 

percent more in cells exposed to Vpr(+) virus.   
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Figure 6: Increase in TNF-alpha expression by HIV-1 Vpr in the context of virus infection. 
(A) DCs were exposed to NL43 Vpr(+) or NL43 Vpr(-) virus for 48 hours then stimulated 
with LPS for an additional 24 hours.  Supernatants were then collected for analysis by TNF-
α ELISA. Solid lines indicate donor averages. (B) DCs were exposed to NL43 Vpr(+) or 
NL43 Vpr (-) for 48 hours then stimulated with LPS in the presence of GolgiStop for 6 
hours.  Cells were permeablized for intracellular staining of TNF-alpha and expression was 
detected by FACS analysis (representative of six donors).   

 

 

Similar experiments were done next using HIV-1 89.6 wild-type and 89.6 ∆Vpr viruses 

(Figure 7).  HIV-1 89.6 viral strain is CCR5/CXCR4 dual-tropic and have the ability to infect 

macrophages without VSV-G, however to keep consistency between experiments, these viruses 

were pseudotyped as well.  After virus transduction of DC and stimulation with LPS as 

previously mentioned, TNF-α was measured intracellularly or by secretion in the cell 
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supernatants.  On average, there was a 2.7 fold increase in TNF-α secretion by Vpr containing 

virus compared to in counterpart, which was statistically significant.  Minimal two-fold 

differences in TNF-α expression were also consistently seen by intracellular staining.  Together, 

these results indicate a similar induction of TNF-α expression by Vpr independent of the HIV-1 

viral strains used to transduce DCs. 

 

 

 

Figure 7: Increase in TNF-alpha expression by HIV-1 Vpr in the context of 89.6 infection.  
(A) DCs were exposed to 89.6 Vpr(+) or 89.6 Vpr(-) for 48 hours then stimulated with LPS 
for an additional 24 hours.  Supernatants were then collected for analysis by TNF-α ELISA.  
Results include standard error across two separate donors. (B) DCs were exposed to 89.6 
Vpr (+) or 89.6 Vpr (-) for 48 hours then stimulated with LPS in the presence of GolgiStop 
for 6 hours.  Cells were permeablized for intracellular staining of TNF-alpha and expression 
was detected by FACS analysis (representative of two donors).   
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To control for specificity of this effect seen on TNF-α, production of IL-15 by DCs was 

also detected by flow cytometry.  In this case, an opposite effect on IL-15 expression on the DC 

cell surface was observed by the same donors used for the previous experiments as shown in 

Figure 8.  As expected, induction of IL-15 expression in the presence of HIV-1 Vpr was 

decreased in comparison to Vpr defective virus.  Similar results were observed when using either 

virus construct. This indicated that the increase in TNF-α expression by HIV-1 Vpr is a specific 

effect. 

 

 

Figure 8: Effect of HIV-1 Vpr IL-15 expression. 
DCs were obtained as described previously and exposed to HIV-1 Vpr(+) or HIV-1 Vpr(-) 
virus for 48 hours then stimulated with LPS for an additional 24 hours.  Cells were stained 
for surface IL-15, fixed and analyzed by flow cytometry. 
 

5.1.2.2 Affect on TNF-α by de novo synthesized Vpr 

Next, to assess the role of de novo synthesized HIV-1 Vpr and its affect on the production 

of TNF-α in DCs, cells were infected with lentiviruses expressing Vpr alone, the Vpr-EGFP 

fusion protein or EGFP alone, which was used as a control.  By using a lentiviral construct, the 

encoded viral genome has the ability to integrate into the infected cell’s genome and be 

expressed in this fashion.  For initial infection ability, virus constructs were packaged with Gag, 

Rev, and VSV-G Env. As Figure 9 displays, de novo synthesized Vpr increased the production of 
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TNF-α as compared to EGFP alone.  Vpr expressed as a fusion with EGFP induced an average 

1.6 fold increase in TNF-α secretion by DCs where as Vpr alone induced a significant 3.5 fold 

difference compared to EGFP alone (Figure 9A).  An increase was also seen by intracellular 

staining for TNF-α (Figure 9B).  This gives insight to the difference de novo synthesis of viral 

proteins can make on the pathogenesis of HIV-1. 

 

 

 

Figure 9: Increase in TNF-alpha production by de novo synthesized HIV-1 Vpr. 
(A) DCs were infected with Vpr and/or EGFP containing lentiviruses for 48 hours and 
additionally with LPS for 24 hours.  After stimulation supernatants were collected for TNF-
α quantification by ELISA.  (B) DCs were infected with Vpr or EGFP containing lentiviruses 
for 48 hours and stimulated with LPS in the presence of GolgiStop for 6 hours.  Cells were 
permeablized and quantified for TNF-α by intracellular staining and FACS analysis 
(representative of three separate donors). 
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5.1.2.3 Effect on TNF-α Expression by Recombinant Vpr Protein 

To evaluate the effect of TNF-α expression by cell and virion free Vpr, DCs from three 

separate donors were exposed to multiple concentrations of recombinant Vpr and GST proteins 

in culture (Figure 10). As the concentrations increased, ultimately so did the level of TNF-α 

released by the DCs exposed to Vpr whereas the TNF-α secretions remained minimal when 

exposed to GST protein. Interestingly, there was a significant jump between exposure to 1µg/ml 

and 10µg/ml free Vpr which then tapered off up to 50µg/ml. Notably, the values measured for 

TNF-α after Vpr protein exposure were greatly increased compared to Vpr in the context of 

infection or de novo protein synthesis indicating a strong role of free Vpr during infection. 

 

 

Figure 10: Increase in TNF-alpha production by recombinant Vpr protein.   
DCs were cultured as described and exposed to Vpr or GST recombinant protein for 48 
hours and stimulated with LPS for an additional 24 hours in 1ml of culture.  Supernatants 
were collected and analyzed by TNF-α ELISA.  Results include standard error between 
three separate donors. 
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5.1.2.4 Domains of Vpr Involved in TNF-α Production 

Next, to identify the domains of Vpr involved in the induction of TNF-α, human DCs were 

exposed to different Vpr peptides (15-mers). TNF-α was measured in the cell supernatants. TNF-

α production was compared to that of irrelevant Vif peptides. Between the Vpr peptide groups, 

slight fluctuations were seen but no significant difference was measured (Figure 11). Results 

were consistent among five separate donors. The six domains studied show each set are equally 

involved in the ability of Vpr to induce the production of TNF-alpha. 

 

Figure 11: TNF-alpha production by Vpr Peptides. 
DCs were exposed to 100µg of the indicated peptides for 48 hours. Cells were stimulated 
with LPS and supernatants were collected after 24 hours. Fold induction calculated by TNF 
production induced from 100ug Vpr peptides compared to production from irrelevant Vif 
peptides.  
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5.1.3 Differentiation of DC Populations Responsible for Enhanced TNF-α Production 

5.1.3.1 Intracellular staining for p24 and TNF-α 

It has been established that HIV-1 infection can cause inflammatory affects in those specific cells 

or in uninfected bystander cells. Using DCs from the same donors as previous experiments, it 

was sought out to distinguish whether the induction of TNF-α expression by Vpr occurred in 

infected cells or bystander cells. Cells were transduced with virus and stimulated with LPS then 

stained intracellularly for TNF-α or p24 Gag antigen, or both, and analyzed by flow cytometry 

(Figure 12). In Figure 12A, the top panel shows that TNF-α production was detected when 

stimulated cells were singly stained. The middle panel shows a shift of p24 positive cells when 

exposed to virus, however, in those only exposed to LPS as well. When stained for both markers, 

a similar pattern is seen in the uninfected cells with a p24 positive shift indicating nonspecific 

binding of the p24 antibody. This was seen in multiple donors, and without an alternative p24 

antibody available, the same results were revealed after changing other assay parameters (Figure 

12B). With this nonspecific p24 antibody staining, no conclusion could be drawn as to the 

percentages of infected/exposed or uninfected cells, nor which cells were the dominant producers 

of TNF-α. 
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A. 

 

 

B. 

Figure 12: Dual staining of HIV-1 virus exposed DCs for TNF-alpha and p24 Gag.  
DCs were cultured and exposed to HIV-1 89.6 WT or HIV-1 89.6 ∆Vpr for 48 hour then 
exposed to LPS in the presence of GolgiStop for six hours.  Cells were permeablized and 
stained for (A) TNF-α, p24 or (A and B) both and analyzed by flow cytometry. 
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5.1.3.2 Cy5 labeled NL43 virus 

To attempt to distinguish cell type specificity for the enhanced production of TNF-α in virus 

exposed DCs, a second methodology was used.  VSV-G complemented NL43 Vpr(+) and NL43 

(Vpr-) viruses were labeled using Cy5 dye as described in the Materials and Methods section.  

Cy5 can be detected by the APC channel of the cytometer and therefore can signify infected 

cells.  Cy5-labeled virus was quantified by total protein due to p24 Gag antigen levels being low 

to undetectable after labeling by p24 ELISA.  After virus exposure and LPS stimulation, cells 

were stained intracellularly for TNF-α and analyzed by flow cytometry.   

 

First, to determine the ability of DCs to uptake this virus, multiple concentrations of the 

virus were added to the cells. Shown in Figure 13, as the added virus concentration increased, the 

virus uptake also increased reaching close to 100% Cy5+ positive cells, indicating the ability of 

the cells to uptake this virus and do so in a dose dependent manner. 

 

 

Figure 13: DC uptake and TNF-α production by Cy-5 labeled virus.   
DCs were cultured as described and exposed to Cy-5 labeled HIV-1 WT or ∆Vpr for 48 
hours and stimulated with LPS in the presence of GolgiStop for 6 hours.  Cells were 
harvested, permeablized and stained intracellularly for TNF-α and analyzed by flow 
cytometry (representative of at least three separate donors). 
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Next, to assess the TNF-α production of DCs after Cy5-labeled virus exposure, the 

secretion of this cytokine was detected by ELISA (Figure 14A). At each concentration, both 

HIV-1 Vpr(+) and HIV-1 Vpr(-) virus exposure induced the expression of TNF-α at similar 

levels as non-labeled virus shown previously. Interestingly, a large difference between the two 

viruses was only seen when exposed to a higher virus dose. This is likely due to the increased 

concentration of p24 Gag present in this higher dosage.  Due to this, 250ng was used in further 

experiments where DCs were stained for TNF-α for analysis by flow cytometry.  As seen in 

Figure 14B, TNF-α was detected only in the double positive population demonstrating that 

responsible DC population is virus infected/exposed. This shows that virus exposed cells might 

be the primary producers of TNF-α.  
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Figure 14: Detection of Soluble TNF-α in DC supernatants.   
Cells were cultured as described and exposed to Cy-5 labeled virus for 48 hours and 
stimulated with LPS for an additional 24 hours.  (A) Supernatants were collected and the 
presence of soluble TNF-α was detected by ELISA.  (B) Cells were stimulated with LPS for 
six hours with GolgiStop and stained for TNF-α and analyzed by FACS analysis 
(representative of three donors). 
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To control for the increase in TNF-α seen by exposure to Cy5 labeled HIV-1 WT, IL-15 

was detected by flow cytometry as well. The expected trend of decreased surface IL-15 in the 

presence of labeled HIV-1 Vpr(+) virus compared to Vpr-defective virus was seen, representing 

that TNF-α production by Vpr is a specific effect (Figure 15).  This also shows evidence of virus 

functionality after the labeling process. 

 

 

Figure 15: IL-15 modulation by HIV-1 Vpr (+) and Vpr (-) Cy-5 labeled virus.  
DCs were cultured as described and exposed to Cy-5 labeled HIV-1 WT or HIV-1 ∆Vpr 
virus (250µg total protein/ml) for 48 hours and additionally stimulated with LPS for 24 
hours.  Cells were harvested and stained for surface IL-15 expression which was quantified 
by FACS analysis. 
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5.2 AIM #2: TO DETERMINE THE MECHANISMS IN THE REGULATION OF 

TNF-ALPHA EXPRESSION BY HIV-1 VPR 

5.2.1 Introduction 

In our laboratory and in others, it has been well established that HIV-1 Vpr transactivates several 

viral and cellular genes [12, 19]. We also know that Vpr is involved in the upregulation of TNF-

α as virion associated and as free Vpr at the transcriptional level [19]. To further understand the 

transcriptional regulation of TNF-α by Vpr, transactivation assays were performed using full-

length and deletion mutant TNF-α promoter constructs placed upstream of the firefly luciferase 

reporter gene. Upon activation of the TNF-alpha promoter, production of the luciferase 

enzymatic protein occurs and can be detected using a luciferase substrate kit. Transactivation 

was measured by relative light units (RLU). 

5.2.2 Assay Parameters 

To investigate Vpr and the transactivation of the TNF-alpha promoter, we used a full length and 

deletion mutant promoter sequences constructed directly upstream of firefly luciferase gene as 

shown (Figure 16).  The full length promoter construct is -958bp and includes transcription 

factors SP1 and NFκB which have been shown previously to interact with Vpr. 
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A. 

B. 

 

Figure 16: Representation of TNF-alpha Promoter and Deletion Mutants.   
(A) Sequences highlighted in green indicate those that are homologous to the full-length 
promoter (-958) ending at the TATA box. (B) A schematic depicting the promoter constructs 
and their transcription factor orientations. 
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Initial experiments were performed in order to determine the optimal DNA concentration 

of Vpr plasmid for transfection, which will result in optimal transactivation of the TNF-alpha 

promoter without inducing apoptosis. The concentration of the full length promoter-luciferase 

construct (-958) remained constant (1µg) and the concentrations of the Vpr expression plasmid 

(pVpr) or an empty vector plasmid (pVector) ranged (0.1 µg, 0.2 µg, 0.5 µg, 1.0 µg) as seen in 

Figure 17 and 18.  For consistency, LPS was used for stimulation as transactivation could not to 

be distinguished with expression plasmids alone (data not shown). PMA and ionomycin was 

used for stimulation in HeLa T4 cells because they do not express TLR4 and are unresponsive to 

LPS.   

 

In macrophage derived microglia cells (Figure 17A), promoter activation by Vpr 

remained steady but greatly dropped above 0.5µg. This could be a result of cytotoxicity by Vpr 

at higher concentrations as a great amount of cell death was observed in culture by microscopy. 

To further analyze the lower DNA concentrations for optimization, transactivation by the empty 

expression vector was subtracted from that by pVpr.  This revealed 0.5µg to be the best for use 

in these experiments.  Similar results were observed in HeLa T4 cells, with transactivation by 

Vpr greatly decreasing at 1.0 µg and 0.5µg showing to be the optimal DNA concentration of 

pVpr or pVector for transfection (Figure 18).  This selected concentration was used in all further 

promoter transactivation experiments. 
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Figure 17: Assay Parameter Development using the full length TNF-α promoter in Microgila 
cells.  
(A) Various concentrations of pVpr or pVector were cotransfected with the -958bp full 
length TNF-α promoter-luciferase construct.  Forty eight hours post transfection, promoter 
transactivation was detected by luciferase reporter assay.  (B) Transactivation by pVpr was 
measured by subtracting the RLU values observed in pVector transfected lysates from pVpr 
transfected lysates. 

 

  

 40 



 

 

Figure 18: Transactivation of TNF-alpha by Various Concentrations of HIV-1 Vpr in HeLa T4 
cells.  
HeLaT4 cells were co-transfected with the TNF promoter and varying concentrations of 
pVpr or pVector. (A) Forty-eight hours post-transfection, cell lysates were collected and 
promoter transactivation was determined as RLU.  (B) Transactivation by pVpr was 
measured by subtracting the RLU values observed in pVector transfected lysates from pVpr 
transfected lysates. 
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5.2.3 Promoter activation by HIV-1 Vpr in Microglia cells 

Due to the apparent induction of TNF-alpha in the presence of Vpr, and Vpr’s ability to regulate 

host and viral gene expression at the transcriptional level, it was important to study the 

transcriptional regulation of the TNF-α promoter.  Transactivation assays were performed using 

a full length and four additional truncated promoter constructs.  As shown in Figure 19, promoter 

activation by Vpr occurs at the highest level when the full length promoter is present. Fold 

activation of the truncated promoters still occurred, though reduced by half. These results point 

out that in order for Vpr to fully activate TNF-α production, presence of the full length promoter 

is necessary. 

 

Table 3: TNF-α Promoter Activation (RLU) in Microglia Cells. 
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Figure 19: Fold activation of the TNF-α promoter by HIV-1 Vpr in Microglia cells.   
Cells were co-transfected with said promoter construct and pVpr or pVector expression 
plasmids.  Cells were stimulated 24 hours post-transfection with LPS and cell lysates were 
collected.  This figure is representative of five independent experiments. 
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5.2.4 Promoter induction by HIV-1 Vpr in HeLa T4 cells 

To further look at the activation of the TNF-α promoter by HIV-1 Vpr, a second transactivation 

assay was performed using the HeLa T4 cell line and whole virus. HeLa T4 cells express CD4 

and can be productively infected. This allowed for insight in the promoter’s interaction with Vpr 

in the context of infection. Experiments were completed in the same manner; however promoter 

constructs were transfected alone. HIV-1 Vpr(+) or HIV Vpr(-) was added with PMA and 

ionomycin 24 hours post-transfection. 

 

Table 4: TNF-α Promoter Transactivation (RLU) in HeLa T4 Cells. 
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Interestingly, transactivation was apparent with the full-length promoter as well as the -732bp 

and -615bp truncated mutants, but was not seen in the -91bp and -25bp mutants (Figure 20).  

Fold increase of transactivation by HIV-1 Vpr(+) compared to HIV-1 Vpr(-) is shown below. 

This supports previous experiments in that Vpr can induce TNF-α production by interaction with 

the downstream domains of the promoter however, maximum activation occurs in the presence 

of the full length promoter. 

 

 

Figure 20: Fold activation of the TNF-α promoter by HIV-1 Vpr in HeLa T4 cells.  
Cells were co-transfected with said promoter construct.  Cells were stimulated 24 hours 
post-transfection with PMA and ionomycin in addition to NL43 HIV-1 WT or ∆Vpr and cell 
lysates were collected.  This figure is representative of three independent experiments. 
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6.0  CHAPTER SIX: DISCUSSION 

In the more than twenty-five years since the start of the HIV/AIDS epidemic, scientists have 

faced constant challenges in discovering therapeutics and developing an effective vaccine.  One 

large barrier has been the ability of viral proteins to interact with host encoded components.  This 

can occur through direct interaction or indirectly by signaling.  It has been proposed that this is a 

possible factor for viral pathogenesis and its ability to invade immunologically privileged areas 

of the body including the lymph nodes and the brain. TNF-alpha has proved to be an important 

component in HIV-associated dementia in AIDS patients as well as other ailments like 

rheumatoid arthritis and advancement of opportunistic infections [13, 27-29].  Vpr has also been 

found in brain tissue of infected patients [30]. This provides important relevance for 

understanding how HIV-1 Vpr affects TNF-α and the cell types that are involved. 

 

As seen in Figures 6, 7, 9, and 10, it is apparent that HIV-1 Vpr plays a role in the 

induction of TNF-α in dendritic cells. The levels of TNF-α detected by ELISA and flow 

cytometry are significantly increased in the presence of Vpr containing virus or recombinant Vpr 

protein compared to the absence of functional Vpr.  However, this was not observed unless cells 

were additionally stimulated by LPS. This could indicate that Vpr effects TNF-α by interaction 

with the Toll-like Receptor 4 (TLR4) signaling cascade for which LPS acts. Alternatively, Vpr 
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might act as a coactivator of TNF-α transactivation, as shown previously for other cellular 

factors [7, 31]. 

 

To identify the domains of Vpr responsible for the induction of TNF-α, monocyte derived 

DCs were exposed to six peptide pools covering the 96-amino acids of the Vpr protein.  In this 

setting, there was no significant difference between the levels of expression of soluble TNF-α in 

the presence of these peptide subsets in comparison to that induced by irrelevant peptide 

exposure (Figure 11).  This indicates that Vpr has multiple domains that have a role in increased 

TNF-α expression in dendritic cells.  It would be interesting to compare this data to TNF-α 

production by intact Vpr and to also look at these peptide sets structurally to see if the 

conformation plays a role it their ability to induce this effect. 

 

Next, we attempted to identify the specific population of the monocyte-derived DC 

cultures responsible for the increase in TNF-α production. Because it has been previously shown 

that TNF-α production by HIV-1 exposed, particularly HIV-1 Vpr(+) virus, DCs affects 

bystander T-cell subsets, it is unknown if DCs are acting from infection or simply exposure to 

virus. If deciphered, this would also allow for further understanding of the overall immunology 

of dendritic cells during HIV-1 infections and the effects they may have on each other and on 

other cells.  We were unable to conclusively determine the DC subset responsible for the 

enhanced TNF-α in the context of infection by intracellular staining however by using Cy-5 

labeled virus, results indicate that TNF-α production is enhanced in virus exposed cells (Figure 

14).   
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Issues with intracellular staining were addressed in multiple ways in order to produce 

dependable results.  First, cells were stained with TNF-α and p24 (Gag) antibodies 

simultaneously.  The p24 antibody was staining cells not exposed to virus and therefore showed 

nonspecific binding. This was addressed by staining DCs in a step-wise fashion however, either 

way, p24 was the dominant signal seen using a flow cytometer.  Because the p24 and TNF-α 

antibodies were both anti-mouse and there is no alternate antibody for p24 available, an anti-rat 

antibody for TNF-α was used in replacement.  This and use of alternate permeablization methods 

did not change the outcome. Further assays need to be developed to specifically differentiate 

infected or uninfected DCs and their separate cytokine profiles. 

  

 The Cy5 labeled viruses were used as an alternative way to detect infected cells by flow 

cytometry allowing intracellular staining for TNF-α without the competition of any other 

antibody.  Though TNF-α producing Cy5 positive cells were able to be detected, several 

limitations inhibit us into drawing conclusions.  One factor is that during the labeling process, 

the total protein detectable in the virus diminished as well as p24 levels becoming low.  

Therefore the amount of actual virus used was predictably less than in previous experiments.  

Another issue was that the DCs in culture became increasingly positive for Cy5 with increased 

added virus. This was expected, however, since the 250µg was used in the later studies, it did not 

allow us to look at the unexposed DC population.  Also, the overall TNF-α induction was low in 

comparison to previous experiments.   

 

Another aspect of HIV-1 Vpr and its differential regulation on TNF-α production can be 

addressed by determining the domains of the TNF-α promoter involved in activation.  To do this, 
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we first analyzed TNF-α promoter activation by Vpr using a luciferase reporter assay in two 

ways.  First, TNF-α promoter-luciferase constructs were co-transfected with a Vpr or empty 

expression plasmid in a monocyte derived cell line.  An increase in promoter activation was 

observed using all promoter constructs by Vpr; however the strongest signal was seen in the 

presence of the full length TNF-α promoter.  This is probably due to the lack of required 

transcription factors of the promoter or simply the dysfunction of the promoter itself due to its 

truncations. 

 

To determine whether a similar effect could be observed during infection as well, another 

luciferase reporter assay was performed using the TNF-α promoter-luciferase construct 

transfected in HeLa T4 cells which are easily transfectable as well as infectable due to its 

expression of the HIV-1 receptor CD4.  After transfection, cells were infected with HIV-1 NL43 

WT or NL43 ∆Vpr virus (100ng/ml).  Activation of the TNF-α promoter by Vpr containing virus 

was up to four fold greater than that of Vpr deficient virus.  Notably, transactivation was not 

observed when using the -91bp and -25bp promoter mutants. This reiterates that the full length 

TNF-α promoter is important for TNF-α production especially that induced by HIV-1 Vpr. 

Transcription factors Sp1 and NFκB might be involved in this transactivation.  To further look at 

the specific interactions between the TNF-α promoter, experiments should be done using the 

promoter luciferase assay using various Vpr mutants as the method of activation. 
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7.0  CHAPTER SEVEN: FUTURE DIRECTIONS 

It is clear that HIV-1 Vpr upregulates the expression of TNF-α in dendritic cells. However, it is 

still not clear whether this effect is seen primarily in the exposed or bystander DC population. In 

order to determine the particular DC population(s) responsible for the TNF-α production induced 

by HIV-1 Vpr, other methods can be used.  One possible alternative could be to develop other 

virus labeling methods that are specific for viral proteins such as p24 Gag; a sort of backwards 

approach to traditional staining methods for flow cytometry.  This way cells positive for the label 

could confidently be said as infected and not just randomly engulfing any labeled protein.  

Another approach that our laboratory has been working on is to make noninfectious virus-like 

particles (VLPs) containing Gag-EGFP, Vpr, and VSV-G by plasmid co-transfection. This 

method, theoretically, would be an ideal way to answer this question.  However, there has been 

some difficulty with seeing a strong EGFP signal after DC uptake by flow cytometry under the 

FITC channel (data not shown).  With successful troubleshooting of this method and use of other 

virus tracking technology, our question will be answered. 

 

To further identify the specific domains of HIV-1 Vpr and the TNF-α promoter involved 

in TNF-α transactivation, we will combine the two approaches shown here. Cells can be 

transfected with the TNF-α promoter luciferase constructs along with various Vpr mutant 

molecules. This can help further identify the domains of HIV-1 Vpr based on differential TNF-α 
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promoter induction. To assess the TNF-α promoter more in depth, gel shift assays using specific 

transcription factor motifs should be done to understand the specific transcription factors 

necessary for transactivation. 
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