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In recent years, determination of proteins and peptides has been gaining more popularity.  

However, one-dimensional separation systems cannot always offer sufficient sensitivity or 

selectivity, especially for more complex samples. Two-dimensional separation systems can 

provide more peak capacity by coupling two orthogonal separation methods together. To achieve 

better two-dimensional separation, two conditions must be satisfied: 1. the two coupled 

separation methods should have different separation mechanisms, so called orthogonal; 2. the 

second dimensional separation method should be much faster than the first dimension to ensure 

that more effluent from the first dimension be transferred to the second dimension. Capillary 

electrophoresis, with its different separation mechanism from HPLC, and its high separation 

speed, serves as a good candidate as the second dimension separation method when HPLC serves 

as the first dimension separation method. In addition, chip electrophoresis is more advantageous 

to us due to its faster speed and more efficiency compared to capillary electrophoresis. Therefore, 

we would like to set up a two-dimensional separation system with the first dimensional HPLC 

separation followed by the second dimensional chip electrophoresis separation.  

As for HPLC, elevated temperature is utilized to increase the separation speed. The 

viscosity of the solvent is related to temperature in such a way that higher temperature leads to 

lower viscosity. The diffusion coefficient of the solute is therefore decreased based on Stokes-
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Einstein equation (
Av

m
Nr

RT
D

6
 ). As a result, higher linear velocities can be achieved with 

regular pressure. It is suggested that diffusion coefficient plays such an important role in 

affecting the separation speed that efforts are deserved to investigate how diffusion coefficient 

changes with temperatures. In our experiment, we would like to determine the diffusion 

coefficients of several peptides and compare the experimental values with estimation values from 

various empirical equations.  
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1.0  INTRODUCTION 

1.1  BETTER SEPARATION 

In recent years, better separation, especially for more complex biological samples, becomes more 

and more necessary. Over the past few years, many efforts have been made towards this end. In 

this context, we will focus on multi-dimensional separation and high temperature 

chromatography, both of which enhanced the separation efficiency and resolution over 

traditional one-dimensional separation method. 

1.2 MULTI-DIMENSIONAL SEPARATION 

Several decades ago, multi-dimensional separation techniques, which have better selectivity and 

resolution over individual one-dimensional separation, were developed. The separation power of 

the separation systems is best expressed by peak capacity (this concept will be discussed in 

details in the following context). For example, for the separation of peptides and proteins, the 

peak capacities achieved in multi-dimensional separations (> 1000) are much higher than the 

highest peak capacities obtained in one-dimensional separation (400 – 1000). 
1-4
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1.2.1 Introduction of multi-dimensional separation 

The earliest work of multi-dimensional separation was performed by Martin along two axes of a 

sheet of filter paper (two dimensional (2D) chromatography   chromatography) in 1944.
5
 Later, 

chromatography   electrophoresis
6, 7

 and electrophoresis  electrophoresis
7
 separations were 

also used by other researchers.  

In 1984, Giddings proposed that “2D separations are those techniques in which a sample 

is subjected to two displacement processes oriented at right angles to one another”.
8
 In the mean 

while, several other groups made considerable contributions to the development of the 2D 

technology. For example, O’Farrel and co-workers
9
 coupled two modes of gel electrophoresis 

(isoelectric focusing and SDS polyacrylamide gel electrophoresis) together. This system is 

capable of resolving 1100 proteins. Also, Zakaria
10

 et al. utilized 2D LC through separation in 

the first column followed by the elution in the second column.  

Up to now, a variety of separation mechanisms have been coupled in multidimensional 

separation, and very high peak capacities have been achieved.  

 

Theory: 

As mentioned before, the resolution power of a multi-dimensional system is best 

expressed by peak capacity
8
, which was introduced by Giddings in 1967. It is defined as “the 

maximum number of separated peaks that can be fit (with adjacent peaks at some specified 

resolution value taken as 1.0 in all equations below) into the path length or space provided by the 

separation method”.
11

 According to Giddings’ peak capacity theory, the peak capacity of a 

comprehensive multi-dimensional separation ( iDcn , ) equals to the product (not the sum) of the 
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peak capacities of the component one-dimension step ( c

i

cc nnn ...,21 ), when the separation 

mechanism in each dimension is orthogonal.  

c

i

cciDc nnnn  ...21

,   

Therefore, the resolving power of multi-dimensional separations is greatly enhanced over 

one-dimensional separations under ideal conditions.  

In a multi-dimensional separation system, a sample is first separated in the first 

dimension, and the effluent is further separated by at least one more method. In principle, the 

more dimensions of methods are coupled together, the higher resolving power can be obtained. 

However, due to the practical constrains, the majority of the reported multi-dimensional systems 

are 2D systems.  

2D separation can be conducted by colleting the effluent from the first dimension, and 

then transporting it to the second dimension for further separation, which is considered as “off-

line system”; or by connecting the two dimensions with tubes, valves or columns to ensure direct 

transfer of the first dimension effluent to the second dimension, which is referred to as “on-line 

system”.  

In off-line systems, effluent collection enables sample treatment before the second 

dimension separation, thus optimization of the system becomes relatively easier compared to on-

line systems. On the other hand, on-line systems enable direct transport of the sample into the 

second dimension, which shortens the experiment time. While both off-line and on-line systems 

have their own advantages, most of the research is focused on the on-line 2D systems.   

For the on-line systems, the effluent transfer makes the interface connecting the first and 

second dimensions very important. If the complete sample is separated and analyzed in all 

dimensions, the system is considered as comprehensive
12

. However, if only one fraction of the 
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sample from the first dimension is separated in the second dimension, the system is called a 

heart-cut system
13

.  

Regardless of off-line or on-line, comprehensive or heart-cut systems, two criteria, which 

were set out by Giddings
8, 11

, have to be met for ideal separations. First, the separation 

mechanisms should be orthogonal, which means the separation mechanism for each dimension 

must be totally independent of each other. For example, reversed-phase liquid chromatography 

(RPLC), whose separation mechanism is based on hydrophobicity, is orthogonal to capillary 

zone electrophoresis (CZE), whose separation mechanism is based on difference in the 

electrophoretic mobility of the analytes. Second, no resolution achieved in the first dimension 

may be lost in any subsequent dimension. To achieve this, the second dimension should be much 

faster than the first dimension, so that after a portion of the effluent from first dimension is 

injected into the second dimension, the analysis in the second dimension can be finished before 

the next injection. Murphy et al
14

 demonstrated that 3-4 fractions of the width of a first 

dimension peak must be collected to prevent the resolution or peak capacity loss in the 2D 

systems, which further stresses the necessity for very fast second dimension separations.  

 

1.2.2 Typical 2D systems 

The most commonly used techniques for peptide separation are high performance liquid 

chromatography (HPLC) and capillary electrophoresis (CE). Combinations of various modes of 

HPLC (normal-phase: NP, reversed-phase: RPLC, ion exchange: IEC, size exclusion: SEC, 

affinity) and CE (capillary zone: CZE, capillary isoelectric focusing: CIEF, capillary gel 

electrophoresis: CGE, isotachophoresis: ITP, affinity, micellar electrokinetic chromatography: 
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MEKC) are used in 2D systems.  These 2D systems are generally classified into three categories: 

LC-LC, LC-CE and CE-CE systems.  

 

LC-LC system:  

The various modes of HPLC offer a lot of possible combinations for 2D LC-LC systems. 

In these systems, valves or columns are usually utilized to transfer the effluent from the first 

dimension to second dimension. However, some problems arise from the liquid transfer:  

(1) There might be solvent incompatibility of the mobile phase between the first 

dimension and second dimension systems. This means, the solvents for the two dimensions 

should not be immiscible. Otherwise, different strategies should be developed to solve this 

problem. For example, Sonnefeld and co-workers transferred the sample of interest from the first 

dimension to a packed column, in which the solvent of the trapped sample was removed by gas 

and the sample was desorbed by another solvent for further separation in the second dimension.
15

 

(2) The transfer of the analytes through the valve or column introduces extra band 

broadening. This can be solved by sample pre-concentration prior to transferring to the second 

dimension.  

(3) The second dimension LC should be much faster than the first dimension, if 

comprehensive separation is desired. Therefore, various methods, such as the application of 

monolithic columns
16-19

 and elevated temperatures
4, 20-25

 have been used to accelerate the second 

dimensional LC.  

An example of the LC-LC systems is a comprehensive IEC-RPLC system which was 

developed by Jorgenson and co-workers
26

 to separate peptides from porcine adrenal gland. The 

two LC systems are connected with an eight-port valve equipped with two sample loops. In this 
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system, a whole separation completes in 32 h, with high sensitivity (3-16 pmol) and resolution 

being achieved.  

 

CE-CE system:  

With different CE modes coupled together, orthogonal 2D CE systems are also possible. 

However, the low injection volume in CE will result in a sensitivity problem for the second 

dimension. Normally when a low concentration sample is injected, large volume has to be used 

to enhance its sensitivity. Due to the low injection volume in both dimensions, this is not 

applicable in CE-CE systems. Therefore, samples can be pre-concentrated by field 

amplification
27, 28

 or sample stacking
27, 28

, or more sensitive detectors can be used to reach better 

detection
29, 30

.   

An example of CE-CE system is the 2D CZE-CGE system which was devised by 

Sweedler and co-workers
31

 for the analysis of some target peptides, a tryptic digest of 

trypsinogen and an individual B2 neuron from the marine mollusk Aplysia californica.  

 

Figure 1. Schematic diagram of the CZE-CGE separation system showing the CZE capillary, gel 

channel, interface, and the power supply arrangement.
31
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In this system, the second dimensional CGE separation is equipped with several gel-filled 

channels which serve as parallel separation capillaries. As depicted in Figure 1, after the sample 

is separated in the first dimension CZE, the end of the CZE capillary is moved across the 

entrances of the gel-filled channels so that multiple injections will be accomplished in the second 

dimension and several CGE separations can be performed in parallel. Therefore, comprehensive 

sample separation is achieved.  

 

LC-CE system:  

Since Giddings’ criterion states that best multidimensional separation is achieved when 

two systems with totally different separation mechanism are coupled, LC-CE system was 

therefore a reasonable combination which is generally more orthogonal than LC-LC or CE-CE 

systems. Capillary electrophoresis, a faster method than HPLC, is no doubt a very good 

candidate to couple with HPLC. As a result, we would like to set-up an HPLC-CE system in our 

laboratory.  

There are some problems associated with the LC-CE systems:  

(1) As stated before, the injection volume of CE is extremely small. As a result, the large 

difference between the injection volume between LC (µL range) and CE (nL range) makes 

comprehensive analysis of samples more complicated. This problem can be solved by using a T-

piece, through which a majority of the sample goes to the waste while a small part of sample 

goes to CE. In this case, the second dimension CE must be sensitive enough to diminish the 

effect of the material loss during the transfer process. Alternatively, nano LC, which has 

comparable injection volume as CE, can be used instead of the regular LC column.
32

 However, 
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this will result in a tremendous sensitivity loss in the first dimension. Thus other approaches are 

required to solve this problem.  

2) The voltage applied in CE might have some influence on the first dimension LC 

detection, when electrochemical detector is used in LC. This problem can usually be addressed 

by using an electrical decoupler to isolate the detector from the separation voltage.
4, 33, 34

 More 

interestingly, Lunte and co-workers developed an electrically isolated potentiostat, which uses 

digital communication with an on-board microcontroller to control all the analog signal and 

isolate the separation voltage. 
35

  

 

The first LC-CE system was developed by Jorgenson and co-workers
36, 37

 in 1990. They 

used a regular LC column in the first dimension and a sample loop as the interface. While micro 

LC columns are more suitable than regular LC columns for small sample analysis because of 

their higher separation efficiency and increased mass sensitivity, transfer of the small volume 

effluent from the micro columns to the second dimension becomes problematic due to extra band 

broadening. Therefore, Jorgenson designed an interface to couple SEC with CZE (Figure 2)
32

.  

As illustrated in Figure 2a, the SEC column and the electrophoresis capillary are 

connected by a home-made flow gating interface which consists of two stainless steel plates with 

a 125 μm Teflon gasket in between. The expanded view of the center region of the flow gating 

interface is shown in Figure 2b, in which the SEC column is coupled with a fused-silica 

connecting tubing through a piece of Teflon tubing. The fused-silica tubing directly faces the 

inlet of CZE capillary, which is separated only by the thickness of the Teflon gasket. The gasket 

has a 1-mm channel cut in it, through which flush buffer passes to control the injection of the 

SEC effluent into the CZE capillary. Normally the CZE buffer is flushed from the top of the flow 
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gating interface to the bottom, which at the same time prevents the SEC effluent from entering 

the CZE capillary. The injection is hence realized when the buffer flow is interrupted.  

 

Figure 2. a) Schematic view of instrumental setup for 2D SEC-CE using a Transverse Flow 

Gating Interface; b) expanded view of the central region of the flow gating interface. 
32

  

 

In general, multi-dimensional separation systems offer higher sensitivity and peak 

capacities which enable more efficient analysis for complex biological samples. Our purpose of 

the experiment is to set up an HPLC-CE system, and we have carried out some preliminary work 

on the interface of the 2D system which will be discussed in Chapter 2.   

 

 

 

a

) 

b

) 
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1.3  HIGH TEMPERATURE CHROMATOGRAPHY 

1.3.1 Fast liquid chromatography 

The overall goal of separation is to achieve sufficient selectivity and resolution within the 

shortest time. A lot of researchers, especially Guiochon, Knox, Horvath and Poppe, made 

tremendous contributions, which help us in better understanding of the factors that limit the 

speed in HPLC. 
20, 28, 38-45

 

Based on Knox equation, which is a reduced form of plate height equation, the column 

performance can be evaluated:  

vC
v

B
vAh  31          (1) 

C
v

B
vA

v

h
 

2

32          (2) 

Where h  and v  stand for the reduced plate height and reduced velocity, respectively.  

Also, in 1980 Guiochon
39

 introduced the following equation which clearly reveals the 

relationship between the analysis time and other chromatographic parameters:  

2
'1

p

m

analysis d
v

h

D

k
Nt 


         (3) 

In this equation, N  is the required column efficiency, 
'k is the retention factor of the last 

eluting peak, mD  is the analyte’s diffusion coefficient in the mobile phase, and pd  is the packing 

material particle diameter. 
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For fast separation where v  becomes very large, it is more reasonable to focus on 
v

h
 

rather than h  itself. We assume that when v  is large enough, term C in equation 2 becomes 

dominant, and the first two terms (A & B terms) become negligible. As a result,  

2
'1

p

m

analysis
d

D

k
C

N

t



          (4) 

This equation tells us that the time required to generate one plate is proportional to the 

square of the packing material particle diameter with other parameters (column length, eluent 

linear velocity, column temperature, etc.) being constant. In other words, with smaller particle 

diameter, faster analysis can be achieved.
46

 However, when other conditions such as column 

length, eluent linear velocity and column temperature remain constant, the use of smaller particle 

size requires the increase of pressure, which is limited to the highest pressure that the pump can 

provide and the resulting back pressure that valves, columns and injector, etc can endure. 

Therefore, other methods are needed for fast separation.  

In addition, these equations don’t give the direct correlation between the separation 

efficiency and the speed in HPLC. 

 

1.3.2 Poppe plots 

In 1997, Poppe introduced the Poppe plots, which help us a lot to understand reveal the 

correlation of speed with separation efficiency.
41

 Also, poppe plots are widely used for the 

selection of proper column parameters (e.g., particle size and column length) under specified 

conditions (e.g., maximum N  at a given analysis time).  
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In Poppe plot, the logarithm of the “plate time” (
u

H  or 
N

t0 ) is plotted against the 

logarithm of the plate number ( N ). And the plot is generated as follows: the chromatographic 

parameters, such as the particle size, maximum pressure, and temperature, are set. For a chosen 

plate number rN , the 0u  value was increased successively to calculate the resulting plate height 

H , the column length L , and the resulting pressure. When the resulting pressure reaches the 

maximum pressure, the iteration ends, and the maximum value of 0u  is thus found.  The 

generated plot is represented in Figure 3.  

 

Figure 3. Poppe plot for packed bed columns with different particle sizes. 

Conditions: barP 400 , CT 40 , 500 , cP69.0 , 
s

cmDm

25101  . Coefficients in 

reduced van Deemter equation were: 04.1A , 98.15B  and 033.0C . Each dotted line represents 

a constant column dead time. 
47

  

 

As shown in Figure 3, there are a set of dotted lines which represent different dead time 

( 0t ). The reason is that, when N  is multiplied by )( 0

0 N
t

u
H  , the unretained time 0t  is 

obtained. Since the Poppe plot is logarithmic, each constant dead time turns out to be a straight 
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line in the plot. Furthermore, the lower left of the plot represents faster separation while the 

upper right part refers to slower separation but with higher N values, from which we can come to 

the conclusion that fastest separation time and highest N value cannot be accomplished 

simultaneously. This means, compromise must be made between the analysis time and resolution.   

 

1.3.3 Effect of elevated temperature on HPLC 

Based on equation 3, the speed of the system is also dependent on diffusion coefficient mD . 

According to Stokes-Einstein equation (equation 5) in which mD  is related to the temperature of 

the system and the viscosity of the solvent, it is absolutely true that the temperature (T ) can 

influence the speed of HPLC system.  

Av

m
Nr

RT
D

6
           (5) 

In Equation 5, R , T , r and AvN  represent the gas constant, temperature (K), radius of the 

diffuser (assumed spherical), and Avogodro’s number, respectively. Since these four parameters 

are temperature independent, we lump them into a constant (


 1 ), and Equation 5 is 

substituted into Equation 4 to form a new equation:  

2
'1

p

analysis
d

T

k
C

N

t



          (6) 

This equation suggests that with higher temperature and lower eluent viscosity, less time 

is needed to generate one plate.  
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It is also well known that there is a strong relationship between temperature (T ) and 

viscosity ( ). For example, the viscosity in different acetonitrile-water (ACN/water) mixtures 

can be calculated using the following equation
48

:   

))346(504.0)62(071.0)602(063.2( 22

10
ACNACNACNACN X

T
XX

T
X

T


     (7) 

In Equation 4, T  is the temperature in Kelvin, and X  is the volumetric fraction of ACN 

in the mixture.  

 

Figure 4. Effect of mobile phase composition (acetonitrile/water) and temperature on viscosity. 

Temperature from top to bottom: 15; 20; 25; 30; 35; 40; 45; 50; 55; 60.
49

  

 

Figure 4 graphically shows the dependence of viscosity on temperature and mobile phase 

composition (ACN/water mixture) based on Equation 7.
49

 It is obvious that there is a maximum 

viscosity at certain mobile phase composition. Meanwhile, as temperature rises, e.g., from 25 °C 

to 60 °C, the viscosity for the mixture decreases by a factor of 2.  
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Figure 5. Plots of reduced plate height against the reduced velocity scaled to 25,mD  with the temperature 

as the parameter. Conditions: totally porous particles, rapid sorption kinetics, 
7

25, 106 mD  and 

md p 3 .
42

  

 

Through theoretical calculation, Horvath
42

 demonstrated that by increasing temperature, 

the optimum velocity increases, and the limiting slope at high velocities decreases, when the 

column parameters, such as plate count, retention and pressure drop are held constant (Figure 5). 

Therefore, with higher temperature, viscosity decreases and diffusion increases. As a result, 

higher linear velocities can be achieved with regular pressure.  Later Yan and co-workers
23

 

proved Horvath’s predictions, and the results are illustrated in Figure 6. However, from both 

Figure 5 and Figure 6, the increase of temperature does not result in the decrease of the minimum 

value of H.  
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Figure 6. Plate height versus linear velocity at various temperatures.
42

  

 

Furthermore, Hancock and co-workers
50-52

 studied the selectivity of peptides and proteins 

on sterically protected C8 and C18 columns at different temperatures and with mobile phase 

compositions, with the conclusion that high temperature is able to improve the selectivity.  

Although elevated temperature leads to higher separation speed and better selectivity, the 

high temperature liquid chromatography are not very widely used due to the following problems:  

First, the silica-based stationary phases are unstable at high temperature. This problem 

can be solved by using thermally stable stationary phases which can stand up to 200 °C.  
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Second, a large temperature mismatch between the incoming eluent and the column (> 

5 °C) will cause severe band broadening and peak splitting as pictured in Figure 7.
45, 53-55

 

Therefore, pre-heating of the incoming eluent is performed.  

 

 

Figure 7. Schematic view of the effect of the eluent-column temperature mismatch. (A) No eluent-

column temperature mismatch leads only to column and extracolumn broadening. (B) The eluent is not 

fully thermally equilibrated. The cool eluent produces a radial gradient in retention factor and viscosity, 

thereby broadening the band and destroying peak shape and efficiency.
45

  

 

Third, the analyte might be unstable at high temperature. However, in fast separation, we 

just need to ensure that the analytes are stable within the time of the chromatography run. And 

Carr and co-workers confirmed that most of the analytes are thermally stable during the on-

column residence times of 10-20s. 
20, 42, 46, 56

 

 

In conclusion, elevated temperature can be widely used in HPLC to improve both 

separation speed and selectivity. However, the diffusion coefficients used in the chromatography 

are usually estimated by correlation equations such as the Wilke-Chang equation. In Chapter 3, 
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we would like to experimentally determine the diffusion coefficients of peptides to evaluate the 

accuracy of the correlation equations.  
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2.0  ZIPTIP EXPERIMENT 

2.1 BACKGROUND 

As discussed in Chapter 1, new approaches are needed to solve the volume difference problem in 

LC-CE systems.  

In LC-LC and CE-CE systems, pre-concentration is usually (sometimes) performed in 

order to increase the concentration of the trace level analytes to reach the detection limit of the 

detector. In the various pre-concentration methods, solid phase extraction (SPE) is most 

frequently used. 
57-61

 

SPE is able to solve two problems: first, it can be used to concentrate the analytes. The 

analytes are retained in the sorbent followed by the elution of the analytes with a smaller amount 

of elution solvent; second, impurities can be removed. Therefore, SPE is a potential candidate in 

the LC-CE interface so that the analytes can be transferred from the first dimensional LC to the 

second dimensional CE with reduced volume and increased concentration.  

In our experiment, we would like to use the Ziptip
®
 pipette tips (C18 resin) as a SPE 

model to test whether it can efficiently retain the analyte – Cu(II)-peptides complex (the 

postcolumn derivatization product from the first dimension LC system), and then elute the 

complex with organic solvent. If this is accomplished, the C18 resin will be used in the interface 

of our LC-CE system so that comprehensive 2D separation can be achieved.  



 20 

2.2 MATERIALS AND METHODS 

2.2.1 Materials 

The organic solvents used in this experiment, acetonitrile (ACN) and 4-methylmorpholine, were 

of analytical grade and purchased from Sigma (St. Louis, MO). Water for all studies was purified 

with Milli-Q system (Millipore Synthesis A10, Billerica, MA). Trifluoroacetic acid (TFA) and 

Leu-Enkephalin were both purchased from Sigma (St. Louis, MO). All other compounds were of 

analytical grade and purchased from commercial sources. The Ziptip
®

 pipette tips used for the 

sample treatment were obtained from Millipore (Billerica, MA).  

 

2.2.2 Preparation of samples 

The peptide solutions were prepared by dissolving Leu-Enkephalin (YGGFL) in milli-Q water 

with 0.1 % TFA at approximately milli-molar concentrations.  

The derivatization solution (Cu(II) solution) contains 2.0 mM CuSO4, 12.0 mM Na2Tar 

(sodium tartrate), 0.24 M Na2CO3 and 0.24 M of NaHCO3 in milli-Q water.  

The Cu(II)-YGGFL solutions were prepared by mixing the peptide solution and Cu(II) 

solution in a 1:1 volume ratio.  
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2.2.3 Sample treatment 

The Cu(II)-YGGFL samples were treated as follows (Figure 8):  

(1) Rinsing: Attach the Zip-tip column to an Eppendorf pipet. Carefully withdraw 10 μL of 

ACN to rinse the Zip-tip column, and then dispense it.  

(2) Adsorption: Carefully withdraw and dispense the Cu(II)-YGGFL solution 10 times to 

ensure complete adsorption of complex to the resin. Store the resulting solution in Vial A.  

(3) Elution: Carefully withdraw and dispense the “elution solution” 10 times so that the 

adsorbed complex can be thoroughly washed out. Store the solution in Vial B.  

(4) Washing: Carefully withdraw the “wash solution”, and dispense it to Vial C.  

(5) Repeat step (2)-(4) until enough solutions were collected for UV detection.  

ACN

Withdraw & dispense

10 times

Withdraw & dispense

10 times

Withdraw & dispense

10 times

Cu(II)-YGGFL solution Vial A

Elution solutionVial C Wash solution Vial B

(1)

(2)

(3)(4)

Rinse

Adsorb

ElutionWash  

Figure 8. Sample treatment procedure.  
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However, during the experiment, different compositions of solutions were used. 

Therefore, two terms: “wash solution” and “elution solution”, which will be specified in the later 

context, were used in the sample treatment.  

 

2.2.4 UV detection 

The samples were detected with a Hewlett-Packard 8453 UV-Vis Spectrometer. Data collection 

and analysis were performed with 8453 UV-Vis system software.  

 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Condition 1 

In this experiment, two different concentrations of peptide solutions (0.1 mM and 0.2 mM) were 

investigated. At first, we chose 0.1 % TFA in milli-Q water as the “wash solution”, and the 1:1 

mixture of ACN and “wash solution” (0.1 % TFA in milli-Q water) as the “elution solution”.  

The UV results show that, under these conditions, the peptide YGGFL was retained to the 

C18 resin and was washed out with very good elution efficiency. (Table 1)  
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Table 1. The washed out percentage and elution efficiency of YGGFL complex.  

 Washed out percentage* Elution Efficiency* 

0.1 mM Cu(II)-YGGFL 96.9 % 96.9 % 

0.2 mM Cu(II)-YGGFL 85.2 % 102 % 

Note: Washed out percentage* %100
origconc

concSolutionC  

Elution efficiency* %100



solutionBsolutionAorig

SolutionC

concconcconc

conc
 

 

As shown in Table 1, 100 % and 82.9 % of YGGFL (for 0.1 mM Cu(II)-YGGFL solution 

and 0.2 mM Cu(II)-YGGFL solution, respectively) were adsorbed to the C18 resin of the ziptip. 

Although the elution efficiency is extremely high, it didn’t meet our expectation that Cu(II)-

YGGFL complex be retained followed by the elution. The reason why Cu(II)-YGGFL complex 

dissociates during the process is that both the “wash solution” and “elution solution” are acidic, 

in which the Cu(II)-YGGFL complex is unstable. Accordingly, we changed the experiment 

conditions to Condition 2.  

 

2.3.2 Condition 2 

In order to eliminate the dissociation of the Cu(II)-YGGFL complex, “wash solution” and 

“elution solution” were changed to milli-Q water and ACN, respectively, both of which are 

neutral. At this time, Cu(II)-YGGFL complex were washed out from the resin. However, the 

resulting elution efficiency is not satisfactory.  
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Table 2. The washed out percentage and elution efficiency of Cu(II)-YGGFL complex. 

 Washed out percentage Elution Efficiency 

0.1 mM Cu(II)-YGGFL 46.8 % 46.8 % 

0.2 mM Cu(II)-YGGFL 29.8 % 40.6 % 

 

As shown in Table 2, most of the Cu(II)-YGGFL complex was adsorbed to the C18 resin 

while less than half of the complex were eluted from the resin. There are two possible reasons: 

first, the complex dissociation still occurs under neutral conditions; second, Cu(II)-YGGFL 

complex is not so hydrophobic as YGGFL, therefore, it cannot be washed out thoroughly. 

Accordingly, the derivatization solution was added to both “wash solution” and “elution 

solution” so that even though the Cu(II)-YGGFL complex dissociates, the eluted YGGFL can 

still react with Cu(II) solution to reform the complex. Moreover, buffer solution was added to 

both “wash solution” and “elution solution” to adjust the pH value to 10, at which the Cu(II)-

YGGFL complex is stable.  

 

 

2.3.3 Condition 3 

The new “wash solution” and “elution solution” are 0.024 M Na2CO3 & 0.0048 M NaHCO3 

buffer, and a 1: 1: 2 mixture of Cu(II) solution, the new wash solution and ACN, respectively. 

The results are illustrated in Table 3.  
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Table 3. The washed out percentage and elution efficiency of Cu(II)-YGGFL complex.  

 Washed out percentage Elution Efficiency 

0.1 mM Cu(II)-YGGFL 46.4 % 78.6 % 

0.2 mM Cu(II)-YGGFL 31.8 % 42.8 % 

 

From Table 3, it is clear that there is only a little improvement after the addition of the 

buffer, which means that the complex is not that unstable under the neutral conditions and the 

relatively low elution efficiency is due to the low hydrophobicity of the Cu(II)-YGGFL complex. 

 

2.3.4 Summary 

All in all, although optimization of the experiment conditions are still required, we have shown 

that the Ziptip
®
 pipette tips do adsorb the Cu(II)-peptide complex, and the complex can also be 

desorbed by organic solvent with considerable eluted fraction. As a result, it can be applied in the 

interface of the LC-CE system.  
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3.0  EFFECT OF TEMPERATURE ON DIFFUSION COEFFICIENT 

3.1 BACKGROUND 

3.1.1 Different methods in determination of diffusion coefficient 

As mentioned in Chapter 1, diffusion coefficient is a very important factor in HPLC. Many 

researchers have made tremendous contributions to determine the diffusion coefficients.  

As early as 1850, the diffusion coefficient was measured by Graham.
62

 To date, a number 

of methods
49, 63-65

 have been widely used for the accurate determination of diffusion coefficients. 

One example is the Aris-Taylor open tube method, which was introduced by Wakeham
66

 and 

Kikta
67

 in 1974. In this method, a small amount of sample is injected into a long tube to achieve 

steady-flow. The diffusion coefficient was hence calculated through the dispersion of the sample 

as it leaves the tube. The advantage of this method is that it is an absolute method which requires 

no calibration, and it works best for near infinite dilution. However, the reported methods for the 

diffusion coefficient determination are quite complicated.  

Besides measuring diffusion coefficients experimentally, diffusion coefficients can also 

be estimated by a few empirical equations, such as Wilke-Chang equation
68

 and others
69-72

. The 

problem is, the accuracy of these empirical equations is doubtful.  
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Therefore, a simple method, which was developed by Beisler et al.
73

 in our laboratory, 

has been used in this experiment to evaluate the accuracy of these empirical equations.  

 

3.1.2 Theory for our experiment 

According to the plate height theory
11

, the plate height in units of time, tH  has the following 

relationship with the plate height in units of length, LH :  

v
tL

H tl
L  )(

22


        (8) 

In Equation 8, 
2

L and 
2

t  represent the second central moments in units of length and 

time, respectively. L  and t  are the distance and time that the band travelled. And v  is the linear 

velocity of the solute.  

Also, as shown in Equation 9, plate height is related to the solute dispersion coefficient, 

D :  

v
DH L
 2           (9) 

Moreover, solute dispersion coefficient, D  is related to molecular diffusion coefficient, 

molD , as displayed in Equation 10:  

molD
avD




48

22

         (10) 

As a result,  

t
D

a

mol

t 



24

2
2

          (11) 
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Based on Equation 11, when the second central moment 
2

t  is plotted against the first 

central moment t , the slope equals to 
molD

a

24

2

, which can be used to calculate molD .   

 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 

All the reagents used in this experiment, including the organic solvent ACN, trifluoroacetic acid 

(TFA) and all the peptides, such as Insulin (from Bovine pancreas), Insulin B chain (oxidized 

from Bovine insulin pancreas), Gly-Phe, etc., were purchased from Sigma (St. Louis, MO). ACN 

and TFA are of chromatography grade and analytical grade, respectively. Water for all studies 

was purified with Milli-Q system (Millipore Synthesis A10, Billerica, MA). Peptides were 

dissolved in 0.1 % TFA in milli-Q water at 2 mLmg . The mobile phase and the peptide 

solutions are all filtered with 0.1 µm nylon filters (Cameo 25NS) prior to use.  

In addition, two compositions of mobile phases were utilized: mobile phase 1 (0.1 % 

TFA in 50:50 ACN/milli-Q water) and mobile phase 2 (0.1 % TFA in 25:75 ACN/milli-Q water).  
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3.2.2 Experimental conditions 

In our experiment, a large volume sample is injected to produce a steady-state signal. In addition, 

several parameters, such as temperature, the linear velocity of the fluid, and capillary diameter 

and length, are controlled to ensure diffusion in the Taylor regime, which is determined by the 

Peclet number ( rrre DavP  ) and the capillary diameter and length
74

.   

 

Figure 9. Taylor regime
74

.  

 

As shown in Figure 9, to be in the Taylor regime, two conditions: 8.1log eP  and 

eP
a

L  5.2  , have to be satisfied. In our system, eP  ranges from 150 to 2000, and aL  equals 

to 25680, which is much higher than eP5.2 . Therefore, the diffusion in this experiment does 

perform in the Taylor regime.  
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3.2.3 Experiment Set-up and data treatment 

Three different flow rates (1 minL , 2 minL  and 3 minL ) were controlled by a syringe 

pump (Harvard, Holliston, MA), while five different temperatures (25 C , 30 C , 40 C , 60 C  

and 75 C ) were set by two home-made temperature controllers (Minco, Minneapolis, MA) 

which control the temperature of the injector (model: EM2M28954, VICI, Houston, TX) and the 

capillary.  

 

3.2.4 UV detector 

 

Figure 10. (a) UV signal of Insulin B Chain (Ocean Optics); (b) Relationship between the second 

central moment and first central moment for analytes that have passed through the capillaries from the 

injector to the detector.  

 

The samples were initially detected by USB4000 miniature fiber optic spectrometer (Ocean 

optics). Figure 10 shows an example of the chromatogram of the insulin B chain solution 

(concentration: 2.0 mg/mL). As shown in the figure, there is detectable UV absorbance for 
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insulin B chain at wavelength 215 nm. However, the baseline is so noisy that very bad detection 

efficiency was obtained.   

Therefore, better detectors are required, and we replaced the Ocean optics with the UV 

detector in Capillary Electropherograph (ISCO, model 3850). The samples were detected at 215 

nm and the signal was collected by Peaksimple 3.29 (SRI Inc.). As illustrated in Figure 11, the 

sensitivity is greatly enhanced compared to the results obtained with Ocean Optics.  
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Figure 11. UV signal of Insulin Chain B at three different flow rates (UV detector 2).  

 

3.2.5 Data processing 

The data were imported into Origin 7.5 (OriginLab Cooperation) for differentiation, followed by 

the determination of the first and second central moments using PeakFit version 4 (AISN 

Software, Inc.). A linear plot of second moment versus first moment was made, an example of 

which is illustrated in Figure 12. The diffusion coefficient of the peptide was hence calculated 
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based on the slope of the plot (
slope

a
Dmol




24

2

). In addition, the errors for the diffusion 

coefficient were calculated based on the errors of the slope, assuming that there is no error in the 

flow rate, capillary length and capillary diameter.   
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Figure 12. Relationship between the second central moment and first central moment for Insulin 

at 40 C . 

 

3.3 RESULTS 

During the experiment, 4 different peptides: Gly-Phe, Phe-Phe, Insulin and Insulin B chain were 

studied.  
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3.3.1 Diffusion coefficient with different mobile phase composition 

It is predicted that when the viscosity of the mobile phase increases, the diffusion coefficient of 

the solute increases as well. As shown in Table 4, the experimentally determined diffusion 

coefficient for Insulin does show the same trend as predicted since mobile phase 1 (50: 50 

ACN/milli-Q water) has lower viscosity than mobile phase 2 (25: 75 ACN/milli-Q water).   

 

Table 4. Diffusion coefficients of Insulin at different temperatures. 

C
T

  

Diffusion Coefficient 

50: 50 ACN/milli-Q water 25: 75 ACN/milli-Q water 

scm

Dmol
2

610
 

scm
Error

2

610  
scm

Dmol
2

610
 

scm
Error

2

610  

24 1.79 0.03 1.37 0.03 

40 2.30 0.09 1.88 0.04 

 

 

3.3.2 Diffusion coefficient with different temperatures 

As discussed in previous context, the diffusion coefficient of peptides increases with temperature. 

And the results of diffusion coefficients of peptides at different temperatures are summarized as 

follows:  
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1. Results for Gly-Phe  

Table 5. Diffusion coefficients of Gly-Phe at different temperatures.  

C
T

  

Diffusion Coefficient 

12610   scm

Dmol  12610   scm
Error  

24 5.13 0.10 

30 5.50 0.13 

40 6.15 0.14 

60 9.01 0.28 

75 11.4 0.46 

 

 

2.  Results for Phe-Phe 

Table 6. Diffusion coefficients of Phe-Phe at different temperatures.  

C
T

  

Diffusion Coefficient 

12610   scm

Dmol  12610   scm
Error  

26 5.14 0.23 

30 5.46 0.13 

40 6.34 0.13 

60 9.86 0.26 

75 12.08 1.49 
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3. Results for Insulin 

Table 7. Diffusion coefficients of Insulin at different temperatures.  

C
T

  

Diffusion Coefficient 

12610   scm

Dmol  12610   scm
Error  

24 1.37 0.03 

30 1.44 0.04 

40 1.88 0.04 

60 2.23 0.03 

75 2.30 0.14 

 

 

4. Results for insulin B chain 

Table 8. Diffusion coefficients of Insulin B chain at different temperatures.  

C
T

  

Diffusion Coefficient 

12610   scm

Dmol  12610   scm
Error  

26 5.14 0.23 

30 5.46 0.13 

40 6.34 0.13 

60 9.86 0.26 

75 12.08 1.49 
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3.4 DISCUSSION 

3.4.1 Empirical equations 

The diffusion coefficients of peptides can be estimated by several empirical equations, which are 

summarized as follows:  

1. Stokes-Einstein equation 

Av

m
Nr

RT
D

6
          (5) 

In this equation, R and AvN
 
are the gas constant and Avogodro’s number, T  

represents the temperature of the system ( K ), r  stands for the hydrodynamic radius of the 

diffusion molecule (assumed spherical), and   represents viscosity of the solvent 

( 11   smkg ).  

 

2. Wilke-Chang Estimation Method
67

 



 


6.0

82

, 104.7)(

AB

BB

BA

V

TMW
scmD




      (12) 

In this equation, A  and B  represent solute and solvent, respectively. 


AV  is the molar 

volume ( molmL ) of the liquid solute at its normal boiling point. BMW , B  and B  

represent the molecular weight ( molg ), viscosity ( cP ) and solvent/solvent interaction 

coefficient (1 for nonassociated solvents, 1.5 for ethanol, 1.9 for methanol, 2.6 for water) of 

the solvent. T  stands for the temperature of the system.  
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3. Scheibel Correlation
71

 






































32

31

2

,

3
1)(

A

B

AB

S
BA

V

V

V

TA
scmD



      (13) 

In this equation, 


BV  is the molar volume of the solvent ( molmL ), 
SA  is a constant 

which equals to 
8102.8  . All other symbols are the same as those in Equation 8.  

 

4. Reddy-Doraiswamy Correlation
70

 

31

2

,

)(

'
)(






BAB

B

BA

VV

TMWK
scmD



       (14) 

In this equation, 
81010' K                 5.1



AB VV  

   
8105.8' K                5.1



AB VV      

All other symbols are the same as those in Equation 12 and 13.   

 

5. Lusis-Ratcliff Correlation
69

 































A

B

A

B

BB

BA

V

V

V

V

V

T
scmD 31

31

8
2

, )(40.1
1052.8

)(



    (15) 

All other symbols are the same as those in Equation 12 and 13.   

 

6.  Hayduk-Laudie Correlation
68

 


  589.04.152

, 1026.13)( ABBA VscmD        (16) 

All other symbols are the same as those in Equation 12 and 13.   
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3.4.2 Comparison of experimental values versus estimation value by empirical equations 

1. Gly-Phe 

As displayed in Figure 13, the five navy dots represent experimentally determined diffusion 

coefficients of Gly-Phe, and six different colored lines stand for the estimation value from six 

empirical equations. It seems that among the six equations, Stokes-Einstein equation and 

Scheibel correlation work better than the other equations. In addition, the relative error 

compared to the experimental values is illustrated in Figure 14.  The relative error for Stokes-

Einstein equation and Scheibel correlation is within 25 % and 37 %, respectively.  
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Figure 13. Experimental diffusion coefficients of Gly-Phe versus estimation value by empirical 

equations.  
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Figure 14. Relative error between (a) Stokes-Einstein equation (b) Scheibel correlation and 

experimental value.  

 

2. Phe-Phe 
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Figure 15. Experimental diffusion coefficients of Phe-Phe versus estimation value by empirical 

equations.  
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Figure 16. Relative error between (a) Stokes-Einstein equation (b) Scheibel correlation and 

experimental value.  

 

As shown in Figure 15, the five navy dots represent experimentally obtained diffusion 

coefficients of Phe-Phe, and six different colored lines stand for the estimation value from the six 

empirical equations. Similar to Gly-Phe, Stokes-Einstein equation and Scheibel correlation, with 

relative error of within 12 % and 22 % (shown in Figure 16), perform better than other 

correlations in the case of Phe-Phe.   

 

3. Insulin 

As shown in Figure 17, the experimental values are plotted together with the estimation 

values from empirical equations. Similar to Gly-Phe and Phe-Phe, the Stokes-Einstein equation 

and Scheibel correlation give satisfactory results for insulin. Moreover, Lusis-Ratcliff correlation 

also works well in this case.  

The fact that insulin is rather considered as a small protein is a possible reason for its 

slightly different behavior from the small peptides (Gly-Phe and Phe-Phe). In addition, the 

hydrodynamic radius of insulin is obtained from its crystal structure, while those of other 
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peptides are obtained at http://www.molinspiration.com/. The different sources of hydrodynamic 

radius may also account for why insulin behaves differently from other peptides. 
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Figure 17. Experimental diffusion coefficients of Insulin versus estimation value by empirical 

equations.  
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Figure 18. Relative error between Reddy-Doraiswamy correlation and experimental value.  
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Furthermore, it is worth noting from Figure 17 that when the temperatures are lower than 

333.15 K, the diffusion coefficient increases with temperature. However, at 348.15 K, the 

diffusion coefficient wasn’t as high as expected. From Bohidar’s research work, it is suggested 

that insulin tends to aggregate at high temperature and under acidic conditions.
75

 Since the 

mobile phase is acidic, it is possible that insulin aggregates or denatures at high temperature, 

which results in larger hydrodynamic radius. As a result, the diffusion coefficient is smaller than 

expected. The relative errors of those correlations in the temperature range of 298.15K and 

333.15 K are shown in Figure 18.  

 

4. Insulin B chain 
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Figure 19. Experimental diffusion coefficients of Insulin B chain versus estimation value by 

empirical equations.  

 

For Insulin B chain, which is a large peptide, the relationship between the experimental 

value and estimation value is slightly different from that for the small peptides, such as Gly-Phe 
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and Phe-Phe. In this case, besides Scheibel correlation and Stokes-Einstein equation, two more 

correlations: Hayduk-Laudie correlation and Wilke-Chang correlation fit better than the other 

correlations. (Figure 19)  

 

 

Figure 20. Relative error between (a) Wilke-Chang correlation (b) Hayduk-Laudie correlation (c) 

Stokes-Einstein equation and (d) Scheibel correlation and experimental value.  

 

In addition, similar to Insulin, the diffusion coefficient of Insulin B chain increases with 

temperature when temperature is below 333.15 K, and flattens out at 348.15 K. The possible 

reason is that insulin B chain may also aggregate or denature at high temperature. The relative 

errors for Insulin B chain in the temperature range of 298.15K and 333.15 K are illustrated in 
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Figure 20, which are within 5%, 6 %, 32 % and 24 % for Wilke-Chang correlation, Hayduk-

Laudie Correlation, Stokes-Einstein equation and Scheibel correlation, respectively. 

 

3.4.3 Hydrodynamic radius 

The current results suggest that the accuracy of the empirical equations is dependent on the 

accuracy of hydrodynamic radius which is used in those calculations. Therefore, we utilized the 

experimentally obtained diffusion coefficients and Stokes-Einstein equation to calculate the 

hydrodynamic radius at different temperatures. The results are summarized in Table 9.  

 

Table 9. Hydrodynamic radius of peptides at various temperatures.  

Peptides 

icHydrodynam radius
m1010

 

Used in the 

calculation 

298 K 303 K 313 K 333 K 348 K 

Insulin 18.6
a
 16.2 17.2 15.7 18.4 22.2 

Insulin B chain 9.70
b 

13.1 13.4 13.0 13.3 16.6 

Gly-Phe 3.65
b 

4.32 4.51 4.81 4.55 4.48 

Phe-Phe 4.12
b 

4.48 4.54 4.67 4.15 4.23 

 

Note:  a – hydrodynamic radius is calculated from crystal structure;  

 b – hydrodynamic radius is obtained from http://www.molinspiration.com/.  
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As mentioned before, the hydrodynamic radius of insulin is calculated from its crystal 

structure while those of insulin B chain, Gly-Phe and Phe-Phe are obtained from 

http://www.molinspiration.com. The different sources of hydrodynamic radius could introduce 

errors in evaluating the hydrodynamic radius of empirical equations. From Table 9, it is obvious 

that the hydrodynamic radius of Insulin used in the empirical equation calculations significantly 

deviates from the values calculated with Stokes-Einstein equation.  

It is also notable that though the hydrodynamic radius of the peptides is close to the 

radius used in the empirical equation calculations, there are still some differences between them. 

This is probably due to the non-spherical shape of the peptides since the hydrodynamic radius 

used in the empirical equation calculations are calculated by the volume of the molecules and the 

relationship between the radius and volume of a sphere. As a result, the hydrodynamic radius is 

not that accurate. Another possible reason is the hydration of the peptides, which leads to higher 

experimentally obtained hydrodynamic radius than the estimated value.  

 

3.4.4 Summary 

From the current information we have obtained, both Stokes-Einstein equation and Scheibel 

correlation seem to work for the tested peptides. Although the relative error is still large (overall 

within 32% and 43%, respectively), they perform better than all the other correlations. In 

addition, for some peptides such as Gly-Phe and Phe-Phe, Stokes-Einstein equation works even 

better than Scheibel correlation. We still need to do more experiments in order to test whether 

Stokes-Einstein equation and Scheibel correlation will work for other peptides as well. In 

addition, more work need to be carried out in order to find a better way to estimate the 
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hydrodynamic radius of peptides, which will provide more accurate estimation values from 

empirical equations. 
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4.0   FUTURE WORK 

4.1 LC-CE INTERFACE 

As discussed previously, the elution efficiency of Cu(II)-YGGFL complex under the current 

conditions are not good enough. If it is used in the LC-CE interface, comprehensive LC-CE 

separation will be difficult to actualize due to the considerable resolution loss in the interface. 

Therefore, optimization of the conditions must be performed to achieve higher eluted fraction. In 

addition, since the previous study is rather considered as an off-line detection, an on-line 

detection (Figure 21) will be performed to examine whether the C18 resin can be used in the 

interface.  

HPLC effluent

WasteDetection

Elution solution

C18 column

HPLC column

 

Figure 21. Schematic view of the on-line detection.   
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4.2 BATTERY-OPERATED POTENTIOSTAT 

In the above context, methods to isolate the separation current with the detection signal are 

discussed. In our experiment, we would like to use the electrically isolated potentiostat 

developed by Lunt’s group. A battery-operated potentiostat is currently under construction in 

electronic shop. With the potentiostat, we will test whether it can efficiently separate the 

separation voltage from the detection current of the electrochemical detection of the CE system.  

 

4.3 CHIP ELECTROPHORESIS 

Chips for electrophoresis are made in University of Virginia. (Figure 23) Experiments will be 

performed together with the battery-operated potentiostat for separation of peptides.  

 

Figure 22. Schematic of the chip.  
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4.4 DIFFUSION COEFFICIENT DETERMINATION 

An autosampler (Hewlett-Packard) will be programmed and attached to the injector, so that 

automatic injections can be realized. In addition, more peptides, such as Neurotensin 1-8 and 

substance B, will be studied. With the diffusion coefficients of a series of peptides, we may be 

able to add a correction coefficient into a specific correlation so that it can work for all the 

peptides.  
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