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 Phytophthora are parasitic fungi like species that attack the roots and stems of plants. The 

heterothallic species of phytophthora consist of two mating types A1 and A2. A hormone α1 

secreted by the A1 mating type induces the formation of sexual oospores in the A2 mating type. 

In 2005 by Ojika and coworkers reported the isolation and constitutional characterization of the 

hormone α1. The absolute configuration of the hormone α1 was later assigned by comparison of 

the hormonal activity of a synthetic sample with the natural sample. Assignment of absolute 

configuration on the basis of hormonal activity can however be error prone because the activity 

of any particular sample will depend on its isomeric purity. 

 In order to provide a spectroscopic method to assign the absolute configuration of 

hormone α1, we have synthesized eight stereoisomers of hormone α1 by Fluorous Mixture 

Synthesis. During the FMS, stereoisomeric starting materials were tagged with different fluorous 

PMB groups and mixed together. The resulting mixture was taken through a series of steps to 

make the fluorous-tagged products, which were separated by fluorous HPLC followed by 

hydrogenolysis to provide pure products. The NMR spectra of the eight isomers of hormone α1 

provided only limited information about their absolute configuration. 
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 v 

 The synthetic isomers of hormone α1 were subsequently converted to the corresponding 

bis-R and S Mosher ester derivatives. By comparison of the 1H NMR spectra of the sixteen bis-

Mosher ester derivatives with the bis-Mosher ester derivatives of the natural product, we 

confirmed the partial configuration of hormone α1 as (3R,7R,15R). 
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1.0  MIXTURE SYNTHESIS AND SPECTROSCOPIC ANALYSIS OF THE 

PHYTOPHTHORA MATING HORMONE α1 AND THE CORRESPONDING BIS-

MTPA ESTERS 

1.1 INTRODUCTION 

1.1.1 Fluorous mixture synthesis (FMS) 

Natural products are small molecules isolated from living organisms. They generally 

have interesting pharmacological and biological activities and play a highly significant role in 

the drug discovery and development process.1 A natural product is often chemically synthesized 

because of its challenging and complex molecular architecture. Such syntheses also provide 

opportunities for discovery of new synthetic methods, which could be used in a wider range of 

applications. At times, chemical synthesis is pursued to produce a scarce but intriguing natural 

product in larger quantities for more extensive biological analysis. Chemical syntheses of natural 

products also serve as absolute proof of their assigned structures. 

 Assigning the constitutional structure and absolute configuration of complex natural 

products with multiple stereocenters is not only laborious but also error prone.2 Total synthesis 

of all of the stereoisomers of the natural products can be used to prove or disprove a structural 

assignment by comparison of various physical and spectral data of a natural product with the 
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synthetic samples.3 The recent proofs of structures of natural products like murisolins,3 

cytostatin4 and petrocortyne A5 by comparison of a natural sample with a library of their 

stereoisomers shows the power of having multiple stereoisomers for comparison. Furthermore, 

the syntheses of stereoisomer libraries of natural products also provide valuable samples for 

biological testing. 

However, synthesis of multiple stereoisomers of a natural product one at a time by 

traditional solution phase synthesis is a time consuming and labor intensive process. For 

example, in order to assign the complete stereochemistry of the natural product khafrefungin, 

Kobayashi and coworkers had to synthesize five stereoisomers one by one.6 

Mixture synthesis, wherein one reaction sequence leads to multiple products, is emerging 

as an efficient tool for synthesis of stereoisomer libraries of natural products. Recently, 

Waldmann and coworkers reported the synthesis of a complete stereoisomer library of 

cryptocarya diacetate using polymer-bound mixture synthesis.7 Takahashi and coworkers have 

also reported the combinatorial synthesis of a 122-membered macrosphelide library on polymer-

support.8  

In solid-phase or polymer-bound mixture synthesis, each bead contains a single 

compound and can be physically separated from every other bead providing individual products 

at the end of the synthesis. However, in comparison to the conventional solution-phase synthesis, 

solid-phase synthesis sacrifices the reactivity of the solid supported substrates because of 

unfavorable kinetics of heterogeneous reactions. The polymer-bound substrates are also difficult 

to characterize. 

Fluorous mixture synthesis (FMS) is the first mixture synthesis technique which provides 

the benefits of solution phase mixture synthesis while maintaining the predictable isolation and 
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identification of individual pure products at the end.9 A typical FMS consists of three stages: 

premix, mixture synthesis, and postmix. In the premix stage, individual substrates are prepared 

and tagged (protected) with homologous fluorous groups, then the tagged compounds are mixed 

together. During the mixture synthesis stage, the mixture of fluorous-tagged precursors is taken 

through the desired multiple-step synthesis. It is during this stage that the benefits of FMS are 

reaped because the number of reactions and separations required is divided by the number of 

tagged compounds present in the mixture. The mixture synthesis stage ends with demixing, 

where the fluorous mixture is separated into the individual tagged compounds by preparative 

HPLC over fluorous silica gel (silica gel with a fluorocarbon bonded phase). The fluorous HLPC 

separates the compounds based on their fluorine content with molecules of higher fluorine 

content having longer retention time.10 In the final postmix stage, the tags are removed to 

produce the target molecules. 

 

 

Figure 1. Schematic representation of a typical FMS.  

 

 FMS has been successfully applied to synthesis of enantiomers, diastereomers, and 

natural product analogs. For synthesis of enantiomeric products by FMS, the two enantiomers of 

the starting substrate are tagged with different fluorous tags to obtain the two quasienantiomers. 

According to Curran and coworkers, quasienantiomers are pair of compounds that can be turned 
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into true enantiomers by simple changes in the chemical composition of one or two 

substituents.11 The quasienantiomers are mixed in equimolar amount to obtain a quasiracemic11 

mixture, which is carried though the entire synthesis. Although not true racemates, the 

components of the quasiracemic mixtures usually have effectively identical physical and 

spectroscopic properties and chemical reactivities towards achiral reagents. Finally, the two 

target enantiomers are obtained after demixing and detagging. Both the enantiomers of 

pyridovercin and mappicine have been synthesized by this quasiracemic synthesis approach.12  

For synthesis of diastereomeric products by FMS, diastereomers of the starting material 

are attached to different fluorous tags to obtain quasidiastereomers. Like quasienantiomers, 

quasidiastereomers are compounds that can be converted into true diastereomers by simple 

changes in one or two substituents.11 These quasidiastereomers are mixed in equimolar ratio and 

carried through a synthetic sequence. Individual diastereomers are obtained after final demixing 

and detagging. This approach has been applied towards synthesis of sixteen isomers of pine 

sawfly sex pheromone,13 sixteen isomers of passifloricin,14 twenty eight isomers of murisolin,15 

four isomers of cytostatin4 and four stereoisomers of lagunapyrone B.16  

FMS is also useful to generate a library of structurally diverse analogs of a natural 

product. Here, nonisomeric starting materials of a common structure with different substituents 

are tagged with different fluorous tags and mixed together. The mixture is carried through the 

entire synthetic sequence, final demixing and detagging provides the target natural product 

analogs. A 560-compound library of mappicine analogs has been synthesized by FMS.17 
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Figure 2. Representative examples of natural products and their stereoisomers synthesized by FMS. 

 

Expanding the use of FMS to rapidly obtain the stereoisomer libraries of natural products, 

we aim to synthesize a stereoisomer library of the recently isolated phytophthora mating 

hormone α1.18 The principle goal is to compare the spectroscopic data of the synthetic 

stereoisomers of the hormone α1 with the natural sample and to provide rigorous prove of its 

stereochemical configuration. 
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1.1.2 Phytophthora mating hormone α1 

Phytophthora, derived from Greek ‘the plant destroyer’, are parasitic fungi-like species 

that live in the soil and attack the roots and basal stems of plants.19 The members of this genus 

are among the most destructive plant pathogens, causing plant diseases of worldwide importance. 

For example, the late blight of potato, caused by Phytophthora infestans, resulted in the Irish 

potato famine during the mid-19th century.19 Among the other diseases caused by phytophthora 

species are the black pod of cacao, caused by Phytophthora palmivora, the sudden oak death, 

caused by Phytophthora ramorum, and the root rot of avocado, caused by Phytophthora 

cinnamoni. The control of these organisms by use of fungicides remains difficult. 

Sexual reproduction is an important event in the life cycle of phytophthora because it 

provides a means of propagation and enhances the fitness of the progenies by spawning 

recombinant genotypes that may be more pathogenic or resistant to fungicides compared to their 

parents. Phytophthora are classified as homothallic and heterothallic depending on whether they 

reproduce asexually or sexually. The heterothallic species consist of two mating types, A1 and 

A2. Although each individual can produce both male (anthenidia) and female (oogonia) organs, 

geographical proximity of the two mating types is essential for sexual reproduction.20 After 

sexual reproduction, the oogonia develops into sexual spores called oospores, which can survive 

for months without a living host.21 The sexual behavior of heterothallic species of phytophthora 

is different from all other known organisms in that sexual reproduction readily occurs between 

morphologically and physiologically distinct species, for example between the P. cinnamomi and 

the P. infestans.19 

In 1929, Ashby proposed that sexual reproduction in phytophthora is regulated by a 

hormone-like compound.22 Later, Galloway and Kouyears reported data supporting a mechanism 
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of chemical stimulation for oospore formation.23 A factor secreted by the A1 mating type induces 

the formation of oospores in the A2 mating type, while a factor secreted by A2 induces the 

formation of oospores in A1. These factors are known as hormones α1 and α2 respectively. 

Although extensive studies have been conducted with the aim of isolating and characterizing 

these hormones, their structures remained obscure until recently due to their scarcity.24  

In 2005, Ojika and coworkers finally succeeded in isolating 1.2 mg of hormone α1 from 

a 1830 L of cultural broth of the A1 mating type of P. nicotianae.18 The two-dimensional 

structure of the hormone α1 was elucidated through 1D and 2D NMR spectroscopy, mass 

spectroscopy and infrared analysis of the natural product and its bis-p-bromobenzoate derivative. 

Based on these data, the constitutional structure of hormone α1 was assigned to be 1,11,16-

trihydroxy-3,7,11,15-tetramethylhexadecan-4-one (Figure 3). Thus, hormone α1 is a novel 

acyclic diterpene with an array of 1,5-stereocenters. The hormone α1 was also found to induce 

oospore formation in the A2 mating types of three other phytophthora species (P. capsici, P. 

cambivora, and P. infestans), indicating that this hormone is not specific to P. nicotianane but is 

a common mating hormone in all heterothallic phytophthora. 

 

  

Figure 3. 2D structures of the phytophthora mating hormone α1 (1) and its bis-p-bromobenzoate 2. 

 

The constitutional structure of hormone α1 was confirmed when Yajima and co-workers 

reported its first synthesis as a stereoisomeric mixture, presumably containing all 16 

stereoisomers.25 Their racemic synthesis of all stereoisomers of 1 started from the known alcohol 

OR
OH

O
RO

R = H; Hormone !1 (1)
R = 4-BrC6H5CO (2)

3 15117
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rac-3 and is summarized in Scheme 1. The alcohol rac-3 was converted to the iodide rac-4 

through a series of functional group transformations. Halogen-metal exchange of rac-4 with t-

BuLi followed by addition of aldehyde rac-5, afforded the coupled product, which upon acid 

hydrolysis of the ketal provided the ketone 6. Addition of the ketone 6 to lithiated iodide rac-7 

gave the diol 8. Deprotection of the two benzyl groups by hydrogenolysis and protection of the 

resulting primary alcohols with p-bromobenzoyl group provided the compound 9. Oxidation of 

the remaining secondary hydroxy group afforded the racemic bis-p-bromobenzoate 2. Hydrolysis 

of the p-bromobenzoyl groups gave the stereoisomeric mixture of 1, presumably containing all 

sixteen isomers in an equimolar ratio. 

Both the synthetic samples of 1 and 2 were reported to exhibit simple 1H (400 MHz) and 

13C (100 MHz) NMR spectra, as though they contained only a single diastereomer. These spectra 

were in good agreement with those reported for the natural product and its bis-p-bromobenzoyl 

derivative. Hence, the 2D structure of the hormone α1 was confirmed. At that time, these results 

indicated that differentiation between the diastereomers of 1 and 2 by NMR analysis alone would 

be difficult. However, later it was found that there are differences in the 1H NMR spectra of the 

sixteen isomers of hormone α1. But, because the isolated natural product itself is a mixture of 

isomers, the 1H NMR spectrum of the stereoisomeric mixture of 1 matched the 1H NMR 

spectrum of the natural product. The oospore-inducing activity of this synthetic sample of 1 was 

about five times weaker than that of the natural product, indicating that all stereoisomers of 1 do 

not exhibit identical hormonal activity. 
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Scheme 1. Yajima’s synthesis of a stereoisomeric mixture of hormone α1. 

 

 

 

To gain insight into the absolute configuration of hormone α1, Ojika and coworkers 

converted the natural sample of hormone α1 to the corresponding (R) and (S) bis-α-methoxy-α-

trifluoromethylphenylacetates (bis-MTPA esters) 10.26 The analysis of 1H NMR spectra of the 

two bis-MTPA esters elucidated the C15 configuration of hormone α1 as (R) and C3 

configuration as a 3:2 mixture of (R) and (S). Although natural products are not always 

isomerically pure,27 Ojika and coworkers suggested that the natural hormone α1 originally has a 

(3R,15R) configuration corresponding to the major isomers in the two bis-MTPA esters. Because 

the C3 stereocenter is adjacent to a carbonyl group, epimerization can occur during isolation or 

esterification of the natural product. However, the 3:2 R:S composition of the C3 stereocenter 

mixture may represent the equilibrium composition and it is possible that the actual 

configuration at the C3 stereocenter in the hormone α1 is the minor 3S isomer. 
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If Ojika’s assumption that the C3 configuration of hormone α1 is R is true, this 

stereochemical analysis reduced the number of unassigned stereocenters of hormone α1 from 

four to two. The structures of the two bis-MTPA esters obtained from hormone α1 are shown in 

Figure 4. 

 

 

Figure 4. Structures of the two bis-MTPA esters obtained from the natural hormone α1. 

 

Following upon Ojika’s partial assignment of hormone α1,26 Yajima and coworkers 

attempted the asymmetric synthesis of the four stereoisomers of hormone α1 with fixed (3R,15R) 

configuration.28 Their approach towards the synthesis of (3R,7R,11R,15R)-1 is summarized in 

Scheme 2. They disconnected the C8-C9 bond of hormone α1 to divide it into fragments 11 and 

12. The synthesis of the aldehyde 11 commenced with addition of the organotin compound (S)-

14 to the aldehyde (R)-13 to obtain the alcohol 15 as a diastereomeric mixture. Removal of the t-

butyldiphenylsilyl (TBDPS) protecting group, saturation of the double bond and subsequent 

Swern oxidation provided the aldehyde 11. 

The synthesis of fragment 12 was achieved by a Wittig reaction between aldehyde (R)-16 

and iodide (R)-17. Reduction of the resulting double bond and simultaneous removal of both p-

methoxybenzyl and benzyl protecting groups by hydrogenolysis provided the diol 18. 

Reprotection of the C11 and C16 hydroxyl groups as benzyl ethers, removal of the MOM group 

under acidic conditions, and subsequent iodination provided the fragment 12. 

OR
OH

O
RO

(R)-10, R = (R)-MTPA
(S)-10, R = (S)-MTPA

MTPA = !-methoxy-!-trifluoromethylphenylacetate

3 15117
R/S = 3:2
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The coupling of the fragments 11 and 12 was achieved by a Wittig reaction. Removal of 

the three benzyl groups and simultaneous saturation of the double bond by hydrogenolysis 

afforded the final product. The 1H NMR analysis of the bis-(R)-MTPA ester from this synthetic 

isomers of 1 showed about 50% epimerization at the C3 stereocenter and 33% epimerization at 

the C15 stereocenter. The final product (3RS,7R,11R,15RS)-1 was thus a mixture of four 

isomers. They suggested that epimerization at C3 must have occurred during Wittig coupling of 

fragment 11 and 12 under strongly basic conditions and at C15 during simultaneous 

hydrogenation and hydrogenolysis to obtain alcohol 18.29 The four-isomer mixtures 

(3RS,7R,11S,15RS)-1, (3RS,7S,11S,15RS)-1 and (3RS,7S,11R,15RS)-1 were analogously 

synthesized by changing the configurations of the fragments 14 and 16.  

The four-isomer mixture (3RS,7R,11R,15RS)-1 induced significant oospore formation in 

the A2 mating type of P. nicotianae. The other three four-isomer mixtures (3RS,7R,11S,15RS)-

1, (3RS,7S,11R,15RS)-1 and (3RS,7S,11S,15RS)-1 did not show any considerable hormonal 

activity. 
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Scheme 2. Yajima’s synthesis of four four-isomer mixtures of hormone α1. 

 

  

After obtaining the four four-isomer mixtures of hormone α1, Yajima and coworkers 

reattempted the synthesis of four isomers of 1 with fixed 3R and 15R configuration.28 Their 

revised synthetic route to obtain (3R,7R,11R,15R)-1 is shown in Scheme 3. Halogen-metal 

exchange of (R)-citronellyl iodide (R-20) with t-BuLi, followed by coupling with aldehyde (R)-
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group of 22 with a benzyl group, oxidative cleavage of double bond, and Wittig condensation of 

the resulting aldehyde with (carbethoxyethylidene)triphenylphosphorane 23 afforded 24. The 

ester 24 was reduced with DIBAL and the resulting primary alcohol was converted to allylic 

bromide 25. Coupling of 25 with sulfone 26, followed by desulfonation, afforded 27 with the full 

carbon skeleton of 1.  

Stereoselective dihydroxylation of 27 with AD-mix-α gave diol 28 with a 95:5 

diastereomeric ratio. Monomesylation of 28, demesylation with K2CO3 and regioselective 

reduction of the epoxide with DIBAL gave the tertiary alcohol 29. Removal of the benzyl group, 

followed by Dess-Martin oxidation of the resulting alcohol and removal of the two t-

butyldimethylsilyl (TBS) groups afforded (3R,7R,11R,15R)-1. Diastereomers (3R,7R,11S,15R)-

1, (3R,7S,11S,15R)-1 and (3R,7S,11R,15R)-1 were also successively prepared in a similar 

fashion. The stereochemical purities of the four isomers at C3 and C15 stereocenters were 

confirmed by 1H NMR analysis of their corresponding bis-(R)-MTPA esters. 
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Scheme 3. Yajima’s asymmetric synthesis of four stereoisomers of 1. 

 

 

 

A comparison of the 400 MHz 1H NMR spectra of the four isomerically pure compounds 

(3R,7R,11R,15R)-1, (3R,7S,11R,15R)-1, (3R,7R,11S,15R)-1 and (3R,7S,11S,15R)-1 with each 
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isomers (3R,7S,11R,15R)-1 and (3R,7S,11S,15R)-1, the two C5 methylene protons were 

ITBSO
H

O OH
TBSO

OBn
TBSO Br

PhO2S OTBS

TBSO
OTBS

OBn

TBSO
OTBS

OBn OH

OH

TBSO
OTBS

OBn

OH

HO
OH

O

OH

+
t-BuLi

Et2O, !78 °C

COOEt
OBn

TBSO

1. NaH, BnBr, Bu4NI, DMF
2. O3, DCM, !78 °C, Me2S

C6H6, reflux
    39% over 3 steps

1. DIBAL, DCM, 92%

2. n-BuLi, MsCl, LiBr,
    !78 °C to 20 °C

1. (R)-26, n-BuLi, !78 °C,
     then 25

2. 5% Na/Hg, Na2HPO4,
    MeOH, !15 °C
    72% over 3 steps

 AD-mix-", MeSO2NH2,
t-BuOH, H2O, 0 °C

1. MsO2, Et3N, DCM, 0 °C
2. K2CO3, MeOH, 95%

3. DIBALH, DCM, 
    hexanes, !80 °C, 83%

1. Li, Liquid NH3, THF,
    !70 °C, 100%

2. DMP, NaHCO3, DCM, 
    0 °C, 88%
3. TBAF, AcOH, THF, 87%

+

(R)-20(R)-21 22

24 25, dr = 1:1 (R)-26

27

28, dr = 95:5

(3R,7R,11R,15R)-1
(3R,7S,11R,15R)-1, (3R,7R,11S,15R)-1, (3R,7S,11S,15R)-1, not shown

similarly synthesized

29

88%, dr = 95:5

PPh3EtOOC
3.

3R 7R 11R 15R

23

3 7

15

3 7 15

3 7 1511



 15 

observed as multiplets between δ 2.61–2.47. These results are summarized in Figure 5. A 

comparison of the 1H NMR spectra of these four isomers with the 1H NMR spectrum of the 

natural product revealed that the natural product spectrum showed mixed syn and anti isomer 

signals for the two C5 methylene protons. This is consistent with the natural hormone α1 being a 

mixture of isomers at the C3 stereocenter 

 

 

Figure 5. Partial structures of the C3,C7-anti and syn isomers of 1 synthesized by Yajima and coworkers and the 

appearance of the C5 methylene protons in their 1H NMR spectra. 

 

No other differences were seen in the 1H NMR spectra of the four isomers. Because the 

stereoisomeric mixture of hormone α1 synthesized earlier by Yajima and coworkers (Scheme 1) 

was also a mixture of C3,C7-syn and anti isomers (as is the natural hormone α1) its 1H NMR 

spectrum matched the 1H NMR spectrum of the natural product. The 13C NMR spectra of 

(3R,7R,11R,15R)-1, (3R,7S,11R,15R)-1, (3R,7S,11R,15R)-1 and (3R,7S,11S,15R)-1 were 

reported to show very small insignificant differences.  

 The oospore-inducing activities of the four synthetic isomers were also compared to that 

of the natural hormone α1. Similar to the behavior of natural hormone α1, the diastereomer 

(3R,7R,11R,15R)-1 induced significant oospore formation in the A2 mating type of P. 

nicotinane. No noteworthy oospore formation was induced by the other three isomers. Based on 

these results, the absolute configuration of hormone α1 was assigned as (3R,7R,11R,15R). Also, 
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because only (3R,7R,11R,15R)-1 and the four-isomer mixture (3RS,7R,11R,15RS)-1 exhibited 

hormonal activity similar to that of the natural product, Yajima and coworkers concluded that 

(7R,11R) configuration is essential for hormonal activity of 1. 

Around the same time, Feringa and coworkers reported catalytic enantioselective 

synthesis of the (3S,7S,11S,15S) and (3S,7R,11S,15S) stereoisomers of 1. Their synthetic 

approach involved iterative catalytic enantioselective conjugate addition of MeMgBr to the 

corresponding α,β-unsaturated thioesters to install the C3, C7 and C15 stereocenters, as 

summarized in Scheme 4.30 Conjugate addition of MeMgBr to 30 catalyzed by (R,S)-31 resulted 

in thioester 32. DIBALH reduction of ester 32 to aldehyde, followed by a Wittig reaction 

provided ketone 33. Hydrogenation of 33 with Pd/C resulted in the corresponding saturated 

ketone. The chiral tertiary alcohol was installed through catalytic asymmetric vinylogous 

Mukaiyama aldol condensation of the aliphatic ketone with 34 to obtain lactone 35. After 

hydrogenation of the alkene moiety, the lactone was reduced with DIBALH to the corresponding 

lactol. A Wittig reaction on this lactol and protection of the resulting tertiary alcohol as 

triethylsilyl (TES) ether yielded α,β-unsaturated thioester 36. The C7 stereocenter was installed 

through conjugate addition of MeMgBr to 36 in presence of (S,R)-31. The resulting thioester was 

converted efficiently to the corresponding alcohol and subsequently to the iodide 37.  

The iodide 37 was reacted with lithiated dithiane 38 to obtain the product 39. Unmasking 

the ketone, using MeI in presence of CaCO3 and desilylation with TBAF provided 

(3S,7S,11S,15S)-1. Diastereomer (3S,7R,11S,15S)-1, differing at C7 configuration, was 

prepared in a similar manner by employing (R,S)-enantiomer of the catalyst 31 during the 

conjugate addition of MeMgBr to 36. 
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Scheme 4. Feringa’s enantioselective synthesis of two stereoisomers of 1. 

 

  

 

Both (3S,7S,11S,15S)-1 (C3,C7-syn isomer) and (3S,7R,11S,15S)-1 (C3,C7-anti isomer) 
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of the natural product. Considering that Yajima and coworkers saw significant differences in the 
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A2 mating type stains of P. infestans, P. capsici, and P. nicotianae. This is also in contradiction 

to Yajima’s conclusion that (7R,11R) configuration is necessary for biological activity of 1. 

Because Yajima’s and Feringa’s papers appeared almost simultaneously, Feringa and coworkers 

were not aware of the difference in the 1H NMR spectra of the C3,C7-syn and anti stereoisomers 

of hormone α1. Also neither of them knew about the oospore-inducing activity of the 

stereoisomers of hormone α1 synthesized by the others. 

 The synthesis of enantiopure hormone α1 and its stereoisomers is challenging especially 

due to the presence of an easily epimerizable C3 stereocenter. Also, assignment of the complete 

stereochemistry of hormone α1 by NMR analysis appears to be difficult. Assignment of its 

configuration by comparison of biological activity of synthetic isomers with each other and with 

that of the natural product is also problematic, because the hormonal activity of any particular 

sample will depend on its isomeric purity (as evident by the contradicting results of biological 

activity of isomers of 1 reported by Yajima and Feringa).  

 We envisioned that it would be useful to have a reliable spectroscopic method to assign 

the complete stereochemistry of hormone α1 and its stereoisomers. We plan to employ FMS to 

synthesize a stereoisomer library of hormone α1 and the corresponding bis-MTPA esters. The 

spectroscopic data of the synthetic isomers of 1 and the bis-MTPA esters will then be compared 

with each other and with the data reported for the natural product.  

1.1.3 Mosher ester analysis for the determination of enantiomeric composition of chiral 

alcohols 

Establishment of the absolute configuration of a chiral molecule or determination of its 

enantiomeric composition is a difficult task because enantiomers have identical physical and 
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spectral properties. In many cases, this can be achieved by reacting the molecule with a chiral 

derivatizing agent (CDA) of known absolute configuration.31 This converts the mixture of 

enantiomers into a mixture of diastereomers, with different physical and spectroscopic 

properties.  

The requirement of such derivatizing methods to determine the enantiomeric ratio of 

chiral molecules is that neither kinetic resolution nor racemization of the reactants occurs during 

the derivatization reaction. This is usually achieved by using excess of the enantiopure 

derivatizing reagents and reactions that are fast and irreversible. 

Mosher acid or α-methoxy-α-trifluoromethylphenylacetic acid (MTPA; Figure 6) is the 

most commonly used derivatizing reagent for the determination of the absolute configuration of 

chiral secondary alcohols.32 In the standard approach known as advanced Mosher ester 

analysis,33 a secondary alcohol with unknown configuration is coupled with both R and S Mosher 

acid. This acylation reaction can be performed by using either MTPA acid or MTPA acid 

chloride and results in the formation of two diastereomeric MTPA esters. Subtraction of the 

chemical shifts of the protons of the R-MTPA ester from the S-MTPA ester in the vicinity of the 

ester-bearing stereocenter then provides differences (∆δ), the signs of which are used to assign 

the configuration of the secondary alcohols. The Mosher ester method has also been extended to 

facilitate the assignment of the primary alcohols with β stereocenters.34 

 It is important to note that while the R-MTPA acid gives rise to the R-MTPA ester, it is the 

S-MTPA acid chloride that gives rise to the R-MTPA ester. This is because of a change in the 

relative CIP priority of the groups in going from the acid chloride to the ester: the CIP priority of 

the CF3 group is lower than the COCl in MTPA acid chloride but is higher than the COOR in the 

MTPA ester. 
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Figure 6. Structures of (R) and (S)-MTPA acid and chloride. 

 

 Mosher esters can also be used to determine the enantiomeric ratio in the given alcohol by 

measuring the relative intensities of analogous resonances (19F and/or 1H) in each of the 

diastereomeric MTPA esters derivative. MTPA is a useful CDA for analyzing enantiomeric 
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protons. Finally, the presence of the trifluoromethyl group allows for straightforward analysis of 

diastereomeric excess by 19F NMR spectroscopy,32b which is uncomplicated by signals from the 
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resolved.32a,33,35  
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products and their stereoisomers have also been used prove or disprove the assigned structures of 
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reported for the natural product and its bis-R and S MTPA esters might facilitate a rigorous 
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stereochemical assignment of the hormone α1. 

1.2 FIRST-GENERATION MIXTURE SYNTHESIS AND COMPARISON OF FOUR 

STEREOISOMERS OF HORMONE α1 

We started pursuing the synthesis of hormone α1 soon after Ojika’s report on isolation. 

At that time only its 2D structure was assigned. As a prelude to employing the technique of FMS 

to make a library of hormone α1, we decided to first execute a traditional synthesis of one 

isomer of hormone α1. The goals of this synthesis were: (1) to put in place a route for 

subsequent FMS, (2) to prove the constitution of hormone α1, and (3) to gather preliminary 

information about the configuration of hormone α1. 

1.2.1 Retrosynthetic analysis of hormone α1 

The retrosynthetic analysis to assemble the backbone of the target structure 1 is shown in 

Scheme 5. Cleavage of the C5–C6 bond provides the ketoalcohol 40 (C1–C5 fragment) and 

aldehyde 41 (C6–C16 fragment). The aldehyde 41 can be derived from the symmetrical 

protected triol 42.  

The triol 42 has four stereoisomers, two of these have a mirror plane of symmetry and the 

other two have a pseudo-C2 symmetry. The syntheses of these stereoisomers are facilitated by 

their symmetry. However, in order to take advantage of the symmetry towards their synthesis, 

the symmetry of fragment 42 must be broken prior to the union of the two fragments.37 

Purposefully refusing to do that, we decided to generate a two-compound mixture during the 
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symmetry-breaking step and to see if it would be possible to differentiate and/or separate the two 

stereoisomers at any stage of the synthesis.  

The aldehyde 41 will thus be prepared as a mixture of diastereomers at C11. With no 

information available about the absolute configuration of hormone α1, we decided to keep the 

configuration at C7 and C15 as R. The two compound mixture (R,RS,R)-41 will be coupled 

separately with both enantiomeric ketoalcohols (R)-40 and (S)-40 to obtain two two-isomer 

mixtures (S,R,RS,R)-1 and (R,R,RS,R)-1. 

We envisioned two different routes to synthesize the triol (R,R)-42. First, (R,R)-42 can 

be prepared by a double conjugate addition of 2 equiv of iodide (S)-43 to the divinyl ketone 44, 

followed by methylation at the carbonyl carbon and TBS protection of the resulting tertiary 

alcohol. Second, trisilyl ether (R,R)-42 can also be prepared by addition of 2 equiv of aldehyde 

(S)-45 to the dialkyne 46, followed by deoxygenation of the resulting free hydroxy groups and 

saturation of the two triple bonds. 

 

Scheme 5. Retrosynthesis of hormone α1. 
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1.2.2 Initial efforts towards synthesis of triol (R,R)-42 by Dr. Yang 

Initial efforts towards the synthesis of triol (R,R)-42 were carried out by Dr. Fanglong 

Yang as summarized in Scheme 6. The synthesis of trisilyl ether (R,R)-42 was first targeted by 

double conjugate addition of 2 equiv of the known iodide (S)-4350 to divinyl ketone 44. 

However, the literature synthesis of ketone 4438 by oxidation of divinylcarbinol 47, proved to be 

challenging due to its high volatility (lit bp = 90 °C) and tendency to polymerize. All attempts to 

synthesize 44 in reasonable quantity and purity were unsatisfactory. Accordingly, this route 

towards the synthesis of (R,R)-42 was abandoned. Attempts to synthesize the carbon skeleton of 

(R,R)-42 by metal mediated addition of iodide (S)-43 to the dichloride 49 or by alkylation of one 

equiv of diyne 46 with 2 equiv of the iodide (S)-43 were also unsuccessful. 

 

Scheme 6. Dr. Yang’s initial attempts towards synthesis of the (R,R)-42. 
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Further efforts towards the synthesis of (R,R)-42 are summarized in Scheme 7. 

Deprotonation of dialkyne 46 with n-BuLi and reaction with 2 equiv of aldehyde (S)-45 provided 

the desired diol 51 in 84% yield. Hydrogenation of the diol 51 with Pd/C under hydrogen 

atmosphere gave the saturated diol 52 in 80% yield. Unfortunately, all attempts to effect radical 

deoxygenation on either 52 or 51 were unsuccessful. 

Although, these efforts towards the synthesis of trisilyl ether (R,R)-42 were unsuccessful, 

they did lead us to a successful synthesis of a C6–C16 fragment. The further synthesis was 

carried out by me. 

 

Scheme 7. Dr. Yang’s final attempts towards synthesis of (R,R)-42. 
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diyne (R,R)-53, which in turn can be synthesized by the addition of 2 equiv of alkyne (R)-54 to 

one equiv of acetyl chloride (CH3COCl). 

Scheme 8. Revised retrosynthesis of the triol (R,R)-42. 
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silylation of the remaining tertiary alcohol with TMSCl provided the C6-C16 fragment 

(R,RS,R)-61, again as an inseparable mixture of epimers at the C11 stereocenter. 

Scheme 9. Synthesis of C6–C16 fragment aldehyde (R,RS,R)-61. 
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Scheme 10. Hydrogenation of (R,RS,R)-59. 
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Scheme 11. Synthesis of the oxazolidinone derivatives 68. 

 

 

  

 Conversion of the oxazolidinone derivative (S,S)-68 to the corresponding Weinreb 

amide36b was next attempted by reaction with trimethylaluminium and N,O-dimethylhydroxyl-

amine hydrochloride (Scheme 12).46 However, this reaction gave urea (S,S)-69, resulting from 

the attack on the oxazolidinone carbonyl, as the only product in 63% yield.47 

 

Scheme 12. Attempted conversion of (S,S)-68 to the corresponding Weinreb amide. 
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dimethylhydroxylamine hydrochloride in presence of carbonyl diimidazole (CDI) afforded the 

Weinreb amides 71.49 Addition of CH3MgBr to the Weinreb amides provided the C1–C5 

fragment 40 in good overall yield.50  

 

Scheme 13. Completion of the synthesis of fragment (S)-40. 

 

  

The enantiopurities of the ketones (S)-40 and (R)-40 were confirmed by GC analysis 

using chiral capillary column, chiraldex GTA. The chromatogram of the racemic ketone rac-40 

showed two equal intensity peaks at 49.5 and 50.2 min, the GC chromatogram of ketone (R)-40 

showed a single peak corresponding to the first peak of rac-40 and the GC chromatogram of 

ketone (S)-40 showed a single peak corresponding to the second peak of rac-40. 

1.2.5 Coupling of ketoalcohol 40 with aldehyde 61 and completion of the synthesis of 1 

 The coupling of the two fragments was accomplished by an aldol reaction of the ketone  

(S)-40 and aldehyde (R,RS,R)-61 with LDA as base to obtain 72 as a mixture of diastereomers at 

C6 and C11, in 80% yield (Scheme 14).51 Mesylation of the free secondary alcohol with MsCl 

TBSO
N

O

O

O

Ph
(S,S)-68

(R,R)-68, not shown

TBSO
OH

O

(S)-70, 95%
(R)-70, 95%, not shown

TBSO
N

O
O

TBSO
O

(S)-71, 94% 
(R)-71, 95%, not shown

(S)-40, 91%
(R)-40, 73%, not shown

LiOH•H2O

H2O2

CDI

NHMeOMe•HCl

MeMgBr



 30 

and triethylamine and in situ elimination provided the ene-diyne 73 in 85% yield. The ene-diyne 

73 must again be a mixture of two isomers with different configuration at C11. The alkene and 

alkynes were reduced by catalytic hydrogenation to afford the protected ketotriol 74.52 

Deprotection of 74 with TBAF in THF provided the first two compound mixture (S,R,RS,R)-1 in 

65% yield. The second two compound mixture (R,R,RS,R)-1 was similarly prepared by coupling 

(R)-40 with (R,RS,R)-61, then carrying the coupled product through the same sequence of steps. 

Both the samples of 1 were also converted to the corresponding bis-p-bromobenzoate derivatives 

(S,R,RS,R)-2 and (R,R,RS,R)-2 by acylation with p-bromobenzoyl chloride in pyridine for 

comparison with the bis-p-bromobenzoate of the natural product.18 

 

Scheme 14. Fragment coupling and completion of the synthesis of 1. 
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 The 500 MHz 1H NMR spectra of (S,R,RS,R)-1 and (R,R,RS,R)-1 were substantially 

identical, and there was no indication that these samples were a mixture of two isomers. Both 

these spectra were also identical to that of the natural product. The 150 MHz 13C NMR spectra of 

the two samples did show doubling of a few resonances indicating small differences in the 13C 

resonances of the isomers of 1. The 1H NMR spectra of (S,R,RS,R)-1 and (R,R,RS,R)-1 are 

shown in Figure 7. The Table 1 summarizes the 1H and 13C NMR spectral data of the natural 

hormone α1 and the two synthetic isomers of 1. 

 

 

Figure 7. 1H (500 MHz) NMR spectra of (S,R,RS,R)-1 (top) and (R,R,RS,R)-1 (bottom). 
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Table 1. 1H and 13C NMR data for hormone α118 (600 MHz and 150 MHz) and the two synthetic isomers 

(S,R,RS,R)-1 and (R,R,RS,R)-1 (500 MHz and 125 MHz).  

δ Hormone α1 δ (S,R,RS,R)-1 δ (R,R,RS,R)-1 C No. 
1H (J Hz) 13C 1H (J Hz) 13C 1H (J Hz) 13C 

1 3.52 br t (6.6) 60.6 3.52 t (6.0) 60.63 3.53 t (6.0) 60.63 

2 1.48, 1.88 m 36.7 1.89 sxt (7.0) 

1.52–1.46 m 

36.75 

36.72 

1.88 sxt (7.0) 

1.52–1.45 m 

36.75 

36.72 

3 2.77 sxt (6.9) 44.0 2.77 sxt (6.9) 43.97 2.77 sxt (6.9) 43.98 

4 - 217.6 - 217.49 - 217.48 

5 2.53 m 40.0 2.60–2.46 m 39.97 2.60-2.47 m 39.97 

6 1.35, 1.60 m 31.7 1.62–1.55 m 

1.46–1.28 m 

31.74 1.62–1.56 m 

1.45–1.25 m 

31.74 

7 1.42 m 33.6 1.46–1.28 m 33.58 1.45–1.25 m 33.59 

8 1.13, 1,31 m 38.6 1.46–1.28 m 
1.15–1.05 m 

38.62 
38.60 

1.45–1.25 m 

1.15–1.05 m 
38.62 

9* 1.41 m 22.3 1.46–1.28 m 22.37 

22.34 

1.45–1.25 m 22.36 

22.34 

10# 1.41 m 43.0 1.46–1.28 m 42.93 

42.89 

1.45–1.25 m 42.91 

11 - 73.4 - 73.38 - 73.37 

12# 1.41 m 43.0 1.46–1.28 m 43.00 

42.97 

1.45–1.25 m 43.02 

42.98 

13* 1.31, 1.41 m 22.4 1.46–1.28 m 22.32 

22.30 

1.45–1.25 m 22.32 

22.30 

14 1.08, 1.42 m 35.1 1.46–1.28 m  

1.15–1.05 m 

35.04 1.15–1.05 m 

1.45–1.25 m  

35.05 

15 1.58 m 36.9 1.62-1.55 m 36.88 1.62–1.56 m 36.88 

16 3.41 dd (6.0, 10.8) 

3.33 dd (10.8, 4.2) 

68.5 3.41 dd (6.0, 10.5) 

3.33 dd (7.0, 11.0) 

68.45 3.41 dd (6.0, 10.5) 

3.33 dd (6.5, 11.0) 

68.45 

17 0.91 d (7.2) 17.7 0.91 d (7.0) 17.09 0.91 d (6.5) 17.11 

18 1.12 s 26.9 1.12 s 26.96 

26.94 

26.91 

1.12 s 26.97 

26.94 

26.92 

19 0.89 d (6.6) 19.9 0.89 d (6.5) 19.89 0.89 d (6.5) 19.90 

20 1.07 d (6.6) 16.9 1.07 d (7.0) 16.90 1.07 d (6.5) 16.90 
The assignments of peaks marked with * and # are interchangeable. 
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Ojika and coworkers had reported that the spectra of the natural product showed the 

presence of trace amounts of unknown impurities18 and we saw similar small peaks (<10%) in 

the 1H NMR spectra of the two synthetic samples (S,R,RS,R)-1 and (R,R,RS,R)-1. We suspected 

that these small peaks might be arising from the hemiacetal 75 (addition of OH at C1 to ketone at 

C4) present at equilibrium (Scheme 15).53 

 

Scheme 15. Proposed ketoalcohol–hemiacetal equilibrium. 

  

 

To support this assumption, we synthesized ketoalcohol 76, a structural analog of 1 

(Scheme 16) to see if its 1H NMR spectrum would show similar hemiacetal peaks. Treatment of 

the Weinreb amide (S)-71 with n-BuLi afforded the silylether (S)-77, which was deprotected 

with TBAF in THF to obtain the target compound (S)-76. The 1H NMR spectrum of ketoalcohol 

(S)-76 did show small peaks corresponding to the hemiacetal 78. These additional hemiacetal 

peaks were similar to the small ‘impurity’ peaks present in the natural product 1H NMR 

spectrum (Figure 8). Accordingly, we concluded that the natural product 1 exists in equilibrium 

with the hemiacetal 75.  

 

Scheme 16. Synthesis of (S)-76, a structural analog of 1. 
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Figure 8. A comparison of the 1H NMR spectra of the hormone α1 (bottom, taken from Science 2005, 309, 1828) 

and (S)-76 (top), the peaks marked with asterisk correspond to the hemiacetal 75 and (S)-78 present in equilibrium 

with 1 and (S)-76 respectively. 
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isomerically pure. The 1H NMR spectra of the two synthetic bis-p-bromobenzoates 2 along with 

an expansion of the C19 methyl peak are shown in are shown in Figure 9. 

 

 

Figure 9. 1H NMR (500 MHz) spectra of the bis-p-bromobenzoates (S,R,RS,R)-2 (top) and (R,R,RS,R)-2 (bottom) 

along with a expansion of the C19 methyl peak. 

 

 The 13C spectra of the two synthetic samples of 2 showed single resonances for many of 

the carbons. However, some of the resonances were doubled, and the C18 resonance was even 

quadrupled. Figure 10 summarizes the doubled and quadrupled resonances. The 13C NMR 

spectra (S,R,RS,R)-2 and (R,R,RS,R)-2 are shown on page 198 and 199 of the Appendix. HPLC 

analysis of (S,R,RS,R)-2 and (R,R,RS,R)-2 on a chiralcel OD column showed four overlapping 
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peaks for both the samples. These results suggested that the two samples of 2 were a mixture of 

more than two isomers. 

 

  

Figure 10. Doubled and quadrupled 13C NMR resonances of the two samples of 2. 
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same time by Ojika and coworkers by Mosher ester analysis of the natural product.26 We also 

learned that 1 exists in equilibrium with the hemiacetal form 75.  

Finally, although this purposeful synthesis of 1 as a mixture of epimers at C11 did prove 

helpful in looking for differences in spectra, it is not a good strategy for an expanded synthesis of 

a stereoisomer library of 1. It did not prove practical to separate the C11 epimers at any stage of 

the synthesis. The results were further complicated by the observed epimerization at the C3 

stereocenter. Our further efforts were directed towards FMS of an isomerically pure stereoisomer 

library of hormone α1 by a revised synthetic route.  

1.3 FLUOROUS MIXTURE SYNTHESIS OF EIGHT ISOMERS OF HORMONE α1 

1.3.1 Fluorous para-methoxybenzyl groups as fluorous tags 

Before deciding the retrosynthetic strategy for synthesis of a stereoisomer library of 

hormone α1, we had to decide the fluorous tags to be used in its FMS. Our group has previously 

reported the use of fluorous triisopropylsilyl (TIPSF)4-5,14,16,54 and fluorous para-methoxybenzyl 

(PMBF)13,55 groups as fluorous tags for syntheses of stereoisomer libraries of natural products. 

We choose to use the PMBF groups as the fluorous tags. PMBF groups are a fluorous analogue of 

the popular para-methoxybenzyl (PMB) protecting group. Instead of a methoxy substituent at 

the para position of the benzyl ring they have a (perfluoroalkyl)propyl (–O(CH2)3Rf) substituent, 

Rf being a perfluoroalkyl chain of varying length. The structures of the various PMBF groups 

used in the FMS of hormone α1 are shown in Figure 11.  
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Throughout this document, PMBF or PMBFn will be used as an abbreviation of fluorous 

PMB group, with n being the number of fluorine atoms present in the given tag. During the 

course of this synthesis, the compounds bearing different PMBF groups will be mixed, the PMBF 

groups of such mixtures will be depicted as PMBFm,n, where m and n are the number of fluorine 

atoms in the fluorous tags of the mixed compounds. Also, the letter “M” before any compound 

number will indicate that the particular compound is a mixture of fluorous-tagged quasiisomers. 

For example, compound M79 in Scheme 17 is a mixture of four fluorous-tagged quasiisomers. 

When same compounds have different fluorous-tags suffix a, b or c has been used to indicate 

C4F9, C6F13 and CF3 bearing PMBF group respectively. For example PMBF9OH, PMBF13OH and 

PMBF3OH have been named as 95a, 95b and 95c respectively. 

The reactivity of the PMBF groups is very similar to the reactivity of the conventional 

PMB protecting group. They are stable to a wide range of reaction conditions and provide for 

easy protection and deprotection.55a,56 The fluorous PMBF groups also provide a chromophore 

for the UV detection of compounds during preparative HPLC demixing of the fluorous-tagged 

products before detagging.  

 

  

Rf Abbreviation Name 

C6F13 PMBF13 4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyl 

C4F9 PMBF9 4-(4,4,5,5,6,6,7,7-nonafluoroheptyloxy)benzyl 

CF3 PMBF3 4-(4,4,4-trifluorobutoxy)benzyl 

 

Figure 11. Structures, abbreviations and names of the PMBF groups used in the FMS of hormone α1. 

ORf
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1.3.2 Retrosynthetic analysis for FMS of hormone α1 

The hormone α1 has four stereocenters, so its complete stereoisomer library will have 16 

members, grouped as eight pairs of enantiomers. Since enantiomers have same physical, 

chemical and spectroscopic properties, the 16 isomers of hormone α1 will give up to eight 

unique 1H and 13C NMR spectra. We targeted the synthesis of eight isomers of 1 with fixed C11 

R configuration and all possible configurations at C3, C7 and C15. Because all eight synthetic 

isomers will have same configuration at C11, they will be diastereomers of each other. Thus, by 

synthesizing these eight isomers we will have access to all the possible 1H and 13C NMR spectra 

from the stereoisomers of hormone α1. We choose to fix the C11 configuration as R because the 

configuration of the natural hormone α1 at C11 has been assigned as R.28 

 Our retrosynthesis and tagging strategy to synthesize the target isomers of 1 is shown in 

Scheme 17. We envisioned that 1 can be readily obtained from the diene M79 by reduction, 

demixing over fluorous HPLC, and deprotection. We plan to prepare two mixtures of diene M79 

each containing four quasiisomers. The two mixtures M79 will have fixed configurations at C7 

(R or S) and C11 (R) and all possible configurations at C3 and C15. The PMBF groups in the 

mixture M79 at the C1 and C16 hydroxy groups will encode the C3 and C15 configuration, 

respectively.  

Now the two mixtures M79 can be obtained by a Kocienski-modified Julia olefination57 

of one two-compound mixture aldehyde M81 with two two-compound mixtures sulfones M80. 

The synthesis of the two-compound mixture aldehyde M81 can be accomplished by another 

Kocienski-modified Julia olefination57 of the aldehyde (R)-82 with a two-compound mixture 

sulfone M83. 
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Scheme 17. Retrosynthesis for FMS of eight stereoisomers of hormone α1. 

 

  

  

 The planned synthesis of C16-C14 fragment M83 as a mixture of two quasienantiomers 

with different fluorous tags is shown Scheme 18. The PMBF groups here will encode the C15 

configuration of the final products. The quasiracemate M83 will be obtained by a Mitsunobu 

reaction58 of alcohol M84 with 1-phenyl-1H-tetrazole-5-thiol (PTSH),59 followed by oxidation of 

the sulfide to sulfone. The quasiracemic alcohol M84 can be prepared by protection of 

commercially available (R) and (S) methyl 3-hydroxy-2-methylpropionate 85 with two different 

PMBF groups, followed by mixing and reduction of the ester to the alcohol. 
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Scheme 18. Retrosynthesis of fragment M83. 

 

 

 

 As shown in Scheme19, the aldehyde (R)-82 can be obtained by bis-triethylsilyl (TES) 

protection of the diol (S)-86 followed by oxidation of the primary TES ether to the 

corresponding aldehyde under Swern conditions.43 The diol (S)-86 will be synthesized by 

Sharpless asymmetric epoxidation60 and subsequent ring opening of the allylic alcohol 87. The 

alcohol 87 will be obtained from ester 88, which in turn will be prepared from the commercially 

available 3-butyn-1-ol 89. 

 

Scheme 19. Retrosynthesis of aldehyde (R)-82. 
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group. The retrosynthesis of (7R)-M80 is summarized in Scheme 20. The sulfone (7R)-M80 can 

be obtained by a Mitsunobu reaction58 of diol (7R)-M90 with PTSH and subsequent oxidation of 

the sulfide to the corresponding sulfone. The diol (7R)-M90 can be synthesized by alkynylation61 

of aldehyde M92 with the known dibromide (R)-9162. The quasiracemic aldehyde M92 can be 

prepared from the mixture of differently protected quasienantiomeric amides M93. The PMBF 

groups in the amides 93 encode the C3 configuration. The amides 93 can be obtained by the 

Myers alkylation63 of the (1R,2R)- and (1S,2S)-pseudoephedrine propionamide with two 

differentially tagged 2-iodoethanols 94a and 94c. The second mixture (7S)-M80 will be similarly 

prepared by coupling of quasiracemic aldehyde M92 with bromide (S)-9164. 

 

Scheme 20. Retrosynthesis of fragment (7R)-M80. 
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1.3.3 Synthesis of C14-C16 fragment M83 

The synthesis of fragment M83 starts from commercially available (R) and (S)-methyl 3-

hydroxy-2-methylpropionate ((S)-85 and (R)-85) as summarized in Scheme 21. The hydroxy 

groups in (S)-85 and (R)-85 were individually tagged with two different fluorous tags. The 

alcohol (S)-85 was protected as a PMBF ether bearing a perfluorobutyl (C4F9) group to encode 

the C15 R configuration in M79. The required PMBF9 trichloroacetimidate 96a was prepared by 

reaction of commercially available PMBF9OH 95a with sodium hydride and trichloroaceto-

nitrile.65 Reaction of crude 96a with (S)-85 in presence of pyridinium p-toulenesulfonate (PPTS) 

gave the ester (S)-97a.65 Likewise, protection of the hydroxy group in (R)-85 as a PMBF ether 

bearing perfluorohexyl (C6F13) chain to encode the C15 S configuration in M79, provided (R)-

97b.  

Equimolar amounts of quasienantiomers (S)-97a (3.54 g, 7.32 mmol) and (R)-97b (4.28 

g, 7.32 mmol) were weighed and mixed to generate the quasiracemic mixture M97 (7.82 g, 14.64 

mmol). The quasiracemate M97 was reduced with DIBAL to afford M84 in 98% yield. The 

alcohol M84 was converted to the corresponding sulfide M98 by a Mitsunobu reaction58 with 

PTSH in the presence of triphenylphosphine and DIAD in 91% yield.59 Oxidation of M98 with 

ammonium molybdate/H2O2
66 in EtOH afforded the C14-C16 fragment M83 in 90% yield.59 A 

total of 8.01 g (11.50 mmol) of the M83 was synthesized. 
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Scheme 21. Synthesis of C14-C16 fragment M83. 

  

Throughout the FMS, the 19F NMR spectra of the intermediates have been used to 

confirm that the 1:1 ratio of the tagged compounds is maintained. The 19F NMR spectra of the 

esters (S)-97a, (R)-97b and the mixture M84 are shown in Figure 12. The 19F NMR spectrum of 

the PMBF9 protected ester (S)-97a shows a peak at δ −81.80 and three peaks at δ –114.55, –

124.40, and –126.03. Based on the integration ratio, these peaks are assigned to the CF3 group 

and to the three CF2 groups in the PMBF9 tag respectively. The 19F NMR spectrum of the 

PMBF13 protected ester (R)-97b, exhibits a peak at –80.85 for the CF3 group and peaks at –

114.26, –121.89, –122.86, –123.46, –126.13 for the five CF2 groups in the PMBF13 tag. The 19F 

NMR spectrum of the quasiracemic mixture M84, containing PMBF9 and PMBF13 tagged 

quasienantiomers, is effectively an addition of 19F NMR spectra of PMBF9 tagged (S)-97a and 

PMBF13 tagged (R)-97b. The integration ratio of the two CF3 peaks at −81.80 and –80.85 is 1:1, 

confirming that the two quasienantiomers in M84 are present in 1:1 molar ratio. The 19F NMR 
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CF3                                                                                                                         CF2 

 

 

 

spectra of the quasiracemates M98 and M83 were similar to that of M84 and confirmed that the 

ratio of the quasienantiomers was maintained as 1:1 throughout the synthesis of fragment M83. 

 

 

Figure 12. 19F NMR spectra of PMBF9 tagged (S)-97a, PMBF13 tagged (R)-97b and M84. 

 

1.3.4 Synthesis of C9-C13 aldehyde fragment (R)-82 

The synthesis of fragment (R)-82 starts from 3-butyn-1-ol (89) and is shown in Scheme 

22. Protection of the free alcohol group in 89 as a TBS ether by reaction with TBSCl, imidazole 

and DMAP afforded the alkyne 99. Deprotonation of the terminal alkyne proton of 99 with LDA 

followed by addition of ethyl chloroformate afforded the acetylenic ester 88 in 86% yield. 

Conjugate addition of (dimethylcopper)lithium67 (prepared by the reaction of copper iodide with 

methyllithium) furnished the known Z unsaturated ester 10068 in 64% isolated yield.69 Reduction 

of the ester 100 with LiAlH4 provided the allylic alcohol 87,68 which upon epoxidation by 

Sharpless method60 using L(+)-diethyl tartrate yielded the epoxy alcohol (2S,3R)-101.70 
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Scheme 22. Synthesis of epoxide (2S,3R)-101. 

 

 

 

The enantiopurity purity of epoxide (2S,3R)-101 was determined by 1H NMR analysis of 

the corresponding Mosher ester32a,32d (Scheme 23). The epoxy alcohol (2S,3R)-101 was reacted 

with S-MTPA chloride to obtain the R-MTPA ester (R,2S,3R)-102. An authentic sample of 

racemic epoxide (rac)-101 (synthesis and structure not shown) was prepared by the MCPBA 

epoxidation of alcohol 87 and converted to the R-MTPA ester (R,rac)-102 under identical 

conditions. In the 300 MHz 1H NMR spectrum of (R,rac)-102, one of the C1 methylene protons 

appeared as two equal intensity doublets of doublets at δ 4.66 and δ 4.59. The 1H NMR spectrum 

of (R,2S,3R)-102 showed only a minor doublet of doublets at δ 4.66 and a major doublet of 

doublets at δ 4.59. Based on the integration ratio of the major peaks to minor peaks, the 

enantiomeric ratio of the epoxide (2S,3R)-101 was calculated as 12:1.  
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Scheme 23. Conversion of the epoxide (2S,3R)-101 to the corresponding Mosher ester. 

 

  

 

The epoxy alcohol (2S,3R)-101 was subsequently reduced with LiAlH4 to afford the diol 

(S)-8670 in 65% yield after flash chromatography (Scheme 24). Silylation of the two free 

hydroxy groups as TES ethers afforded the protected triol (S)-103. Finally, selective oxidation of 

the primary TES ether to the corresponding aldehyde under Swern conditions afforded the C9-

C13 fragment (R)-82.71 About 4.8 g (10.23 mmol) of the triethylsilyl ether (S)-103 was 

synthesized and stored. Only the required amount of aldehyde (R)-82 was prepared before each 

use. 

 

Scheme 24. Completion of the synthesis of (R)-82. 
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1.3.5 Synthesis of iodides 94a and 94c 

The preparation of iodide 94a was initially attempted by protection of commercially 

available 2-iodoethanol 104 as a PMBF9 ether, and these results are summarized in Scheme 25. 

Protection by reaction of 104 with PMBF9 trichloroacetimidate 96a in presence of PPTS was 

unsuccessful. Protection of alcohol 104 was also attempted by deprotonation with 1 equiv NaH 

and treatment with PMBF9 bromide 105a (obtained by bromination of alcohol 95a with 

phosphorous tribromide)72 and tetrabutylammonium iodide (TBAI). The TLC of this reaction 

mixture indicated disappearance of the 2-iodoethanol, but no target product was obtained and 

only the bromide 105a was recovered. 

 

Scheme 25. Unsuccessful attempts towards the synthesis of PMBF9 protected iodide 94a. 

 

 

 

 The iodide 94a was successfully prepared in two steps starting from ethylene glycol 106 
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followed by the addition of 1 equiv of PMBF9Br 105a and catalytic amount of TBAI.73 The 

alcohol 107a was converted to the iodide 94a in 92% yield by reaction with triphenylphosphine, 

imidazole and iodine.74 

 

Scheme 26. Alternate synthesis of the iodide 94a. 

 

 

 

We decided to use a PMBF group bearing a trifluoromethyl (CF3) chain as the second 

fluorous tag to encode the C3 stereocenter in M79. The PMBF3 alcohol 95c is not commercially 

available and was synthesized in three steps from 4,4,4-trifluorobutanol 108 (Scheme 27). 

Mesylation of 108 followed by reaction with 4-hydroxybenzaldehyde in presence of K2CO3 

provided the aldehyde 111. Reduction of 111 with NaBH4 in methanol provided the desired 

PMBF3 alcohol 95c in 99% yield. This alcohol was converted to the corresponding bromide 105c 

by reaction with PBr3.72 Once again, deprotonation of excess ethylene glycol with 1 equiv NaH 

followed by the addition of the bromide 105c and TBAI provided the PMBF3 monoprotected 

alcohol 107c.73 Reaction of 107c with triphenylphosphine, imidazole and iodine, provided the 

iodide 94c.74 
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Scheme 27. Preparation of PMBF3 protected iodide 94c. 

 

  

1.3.6 Synthesis of the aldehyde M92 

 The synthesis of aldehyde M92 commenced with the Myers alkylation63 of amides (S,S)-

and (R,R)-pseudoephedrine propionamides (S,S)-112 and (R,R)-112 with iodides 94a and 94c 

respectively (Scheme 28). Enolization of (S,S)-112 with LDA in the presence of anhydrous 

lithium chloride, followed by the addition of iodide 94a led to the efficient formation of the 

alkylation product (3R,S,S)-93a.75 Considering that alkylation of (S,S)-pseudoephedrine (S,S)-

112 will take place from the same face as the carbon-bound methyl group of the 

pseudoephedrine auxiliary (1,4-syn) as described by Myers,63 we assigned the configuration of 

the C3 stereocenter of the amide 93a as R. The amide (3S,R,R)-93c was similarly obtained by 

the alkylation of (R,R)-112 with the CF3 tagged iodide 94c. 
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The 1H and 13C NMR spectra of the amides (3R,S,S)-93a and (3S,R,R)-93c were 

complicated because of the presence of the amide rotamer and it was not possible to determine 

their diastereomeric ratio by spectral analysis. We decided to postpone this analysis till after their 

conversion to the aldehyde M92.76 

Equimolar amounts of the two quasienantiomeric amides (3R,S,S)-93a (3.40 g, 5.38 

mmol) and (3S,R,R)-93c (2.59 g, 5.38 mmol) were mixed to obtain the quasiracemate M93 (5.99 

g, 10.76mmol). Reduction of M93 with lithiumamidotrihydroborate (LAB),77 prepared by 

deprotonation of commercial borane-ammonia complex with LDA, provided the alcohol M113.78 

Subsequent oxidation of M113 under Swern conditions43 provided the aldehyde M92. A total of 

2.95 g (7.51 mmol) of M92 was obtained. 

 

Scheme 28. Synthesis of aldehyde M92. 
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fragment M83. It showed a peak at δ −81.80 for the CF3 group and peaks at δ –114.55, –124.40, 

and –126.03 for the three CF2 groups. The 19F NMR spectrum of amide (3S,R,R)-93c, showed a 

single resonance at −66.31 for the CF3 in the PMBF3 tag. The 19F NMR spectrum of the 

quasiracemic mixture M113 showed a resonance at −66.31 for the CF3 group in PMBF3, at 

−81.80 for the CF3 group in PMBF9, and three peaks at δ –114.55, –124.40, and –126.03 for the 

three CF2 groups in PMBF9. The integration ratio of the two CF3 peaks was 1:1, confirming that 

the two quasienantiomers in M113 were present in 1:1 molar ratio. The 19F NMR spectrum of 

M92 was substantially identical to that of M113 and confirmed that the ratio of the 

quasienantiomers was maintained as 1:1 in aldehyde M92. 

 Because we did not determine the diastereomeric ratio of the amides 93a and 93c, we 

evaluated the enantiomeric purity of the two quasienantiomeric aldehydes in the mixture M92. 

These results are summarized in Scheme 29. About 40 mg of aldehyde M92 was demixed into 

two individual quasienantiomers by preparative fluorous HPLC. Demixing was conducted on a 

Waters high-performance liquid chromatograph over a FluoroFlashTM PFC8 column (10 

mL/min) under a gradient elution with 60:40 CH3CN:H2O to 100% CH3CN in 30 min. The 

demixed quasienantiomeric aldehydes (R)-92a (15 mg) and (S)-92c (13 mg) were reduced with 

DIBAL, and the resulting primary alcohols were converted to the corresponding Mosher esters 

by treatment with (R)- and (S)-MTPA chloride in the presence of triethylamine and DMAP. Four 

crude esters (S,3R)-114a, (R,3R)-114a, (S,3S)-114c and (R,3S)-114c were obtained. 

 In the 500 MHz 1H NMR spectrum of the S-MTPA ester (S,3R)-114a, the two C4 

methylene protons were observed as two major doublets of doublets signals centered at δ 4.28 

and 4.12 and two minor doublets of doublets δ 4.21 and 4.18. In the 1H NMR spectrum of the R-

MTPA ester (R,3R)-114a these two protons appeared as two minor doublets of doublets at δ 4.28 
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and 4.12 and two major doublets of doublets δ 4.21 and 4.18 (Figure 13). Based on the 

integration ratio of the respective major and the minor peaks in the 1H NMR spectra of two the 

MTPA esters, the enantiomeric ratio of aldehyde (R)-92a was found to be 16:1. Similarly 

comparison of 1H NMR spectra of (S,3S)-114c and (R,3S)-114c revealed an enantiomeric ratio 

of 13:1 for aldehyde (S)-92c. Because the enantiomeric ratio of the quasienantiomers in mixture 

M92 is good, we can conclude that the diastereomeric ratio of their precursor amides 93a and 

93b was high. 

 

Scheme 29. Synthesis of Mosher esters (S,3R)-114a, (R,3R)-114a, (S,3S)-114c, (S,3S)-114c. 

 

 

 

 

Figure 13. An expansion of the C4 methylene peaks in the 1H NMR spectra (500 MHz) of the MTPA esters (S,3R)-

114a (bottom) and (R,3R)-114a (top). 
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1.3.7 Synthesis of dibromides (R)-91 and (S)-91 

The dibromides (R)-91 and (S)-91 were synthesized from commercially available (R) and 

(S)-methyl 3-hydroxy-isobutyrate ((S)-85 and (R)-85) according to the procedure described by 

Schreiber and coworkers (Scheme 30).79 TBS protection of the free hydroxyl group in 85 under 

standard conditions followed by DIBAL-H reduction of the ester afforded the aldehyde 116, 

which was transformed to the corresponding dibromide 91 following the Corey-Fuchs protocol.80  

 

Scheme 30. Synthesis of dibromides (R)-91 and (S)-91. 

 

 

1.3.8 Synthesis of C1-C8 fragment M80 

The fragment M80 was prepared with both C7 R and S configuration and the synthesis of 

(7R)-M80 is summarized in Scheme 31. Treatment of (R)-91 with 2 equiv of n-BuLi followed by 

the addition of aldehyde M92 provided the propargylic alcohol (7R)-M117. In the 300 MHz 1H 

NMR spectrum of (7R)-M117, the C4 proton appears as two equal intensity multiplets between δ 

4.32–4.27 and δ 4.25–4.21. This suggests that the product (7R)-M117 may be a 1:1 mixture of 

diastereomers at C4. However, because (7R)-M117 is also a mixture of quasidiastereomers (with 

different configurations at C3) these separate signals might also originate from the different 
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quasidiastereomers. Because the C4 hydroxy group will ultimately be oxidized to a ketone, its 

absolute configuration is not important and we did not further investigate it.  

Deprotection of the TBS ether with TBAF buffered with acetic acid provided the diol 

(7R)-M90. Mitsunobu reaction of the primary hydroxyl group with PTSH in presence of DIAD 

and triphenylphosphine afforded the phenyltetrazolyl sulfide (7R)-M118.81 On standard SiO2 

TLC plates, the sulfide (7R)-M118 had very similar Rf as that of the hydrazine byproduct 

(iPrO2CNHNHCO2
iPr) from the Mitsunobu reaction.58 Even after repeated column 

chromatography, sulfide (7R)-M118 was contaminated with about 10–15% of the hydrazine 

byproduct. This impure sulfide was oxidized to the corresponding sulfone by reaction with 

hydrogen peroxide and ammonium molybdate66 in ethanol to afford the desired C1–C8 fragment 

(7R)-M80.59 At this stage, the hydrazine impurity was removed by flash column 

chromatography. A total of 1.35 g (2.11 mmol) of  (7R)-M80 was obtained for coupling with 

aldehyde M81. Fragment (7S)-M80 (0.45 mg, 0.64 mmol) with C7 S configuration was 

analogously prepared by coupling the dibromide (S)-91 with aldehyde M92, and carrying the 

coupled product through the same sequence of steps. 

The 19F NMR spectra of mixtures M117, M90, M118 and M80 were substantially 

identical to the 19F NMR spectra of M113 and M92, described previously and they confirmed 

that the ratio of the quasidiastereomers in all these mixtures was about 1:1. 
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Scheme 31. Synthesis of C1-C8 fragment (7R)-M80. 

 

  

1.3.9 Synthesis of aldehyde M81 by coupling of fragments M83 and (R)-82 

The quasiracemate M83 was coupled to the aldehyde (R)-82 by a Kocienski-Julia 

olefination (Scheme 32).57,82 Deprotonation of sulfone M83 with LDA in THF at −78 °C 

followed by the addition of aldehyde (R)-82 provided the olefin (3S)-M119 in 83% yield. The 

olefinic proton region of the 300 MHz 1H NMR spectrum of (3S)-M119 showed two major 

doublets of doublets at δ 5.40 (J = 6.6, 15.6 Hz) and 5.49 (J = 6.6, 15.6 Hz) along with two 

minor multiplets between δ 5.55–5.45 and 5.31–5.23. Because of the large coupling constant 

(15.6 Hz), we assigned the major peaks to the E alkene and the minor multiplets to the Z alekne. 

By calculating the ratio of integrations of the major and minor peaks the E:Z ratio of (3S)-M119 

was found to be 4:1. 
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 The monodeprotection of the primary TBS group was next attempted by treatment of 

(3S)-M119 with TBAF buffered with acetic acid. After 1 h, the TLC analysis of this reaction 

mixture showed three spots: a first very nonpolar spot corresponding to the unreacted starting 

material, a second moderately polar spot and a third very polar spot. After 24 h, both the non-

polar spots were completely consumed and only the most polar spot remained. After workup and 

purification, this product was identified as the bis-desilylated diol (3S)-M120 (100% isolated 

yield). Silylation of both the hydroxy groups in (3S)-M120 with TESOTf and 2,6-lutidine gave 

(3S)-M121 in 78% yield. Oxidation of the primary TES ether71 under Swern conditions provided 

the aldehyde (3S)-M81, which was split into two parts for coupling with the sulfones (7R)-M80 

and (7S)-M80. 

The 19F NMR spectra of mixtures M119, M120, M121 and M81 were substantially 

identical to the 19F NMR spectra of M83, M84 and M98, described previously and they 

confirmed that the ratio of the quasidiastereomers in all these mixtures was about 1:1. 

 

Scheme 32. Synthesis of aldehyde (3S)-M81 by coupling of sulfone M83 with aldehyde (R)-82. 
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1.3.10 Coupling of aldehyde (3S)-M81 with fragment (7R)-M80 

The coupling of aldehyde (3S)-M81 and sulfone (7R)-M80 was affected by a Kocienski-

Julia olefination.57,82 Deprotonation of the sulfone (7R)-M80 with 2 equiv of NaHMDS (to 

deprotonate both the free hydroxyl group and the sulfone) followed by addition of the aldehyde 

(3S)-M81 provided the desired coupled product (7S,11R)-M122 with full carbon skeleton of 1, 

in an isolated yield of only 35% (Scheme 33).  

 

Scheme 33. Coupling of aldehyde (3S)-M81 with fragment (7R)-M80. 

 

 

 

The yield of the coupling reaction was improved by protection of the free secondary 

hydroxyl group in sulfone (7R)-M80 (Scheme 34). Silylation of (7R)-M80 with TESOTf and 

2,6-lutidine provided the sulfone (7R)-M123. Deprotonation of (7R)-M123, with 1 equiv of 

NaHMDS and addition of the aldehyde (3S)-M81 afforded the coupled product (7S,11R)-M124 

in 87% isolated yield after column chromatography.  

Due to significant overlap of the peaks due to the four olefinic protons in the 1H NMR 

spectrum of the diene (7S,11R)-M124, it was not possible to determine the E/Z ratio of the diene 
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(7S,11R)-M124. Because the two alkenes will be soon reduced, we did not investigate their 

stereochemistry further. Although (7S,11R)-M124 is a mixture of up to 32 compounds (four 

differently tagged fluorous compound, each of which is a mixture of diastereomers at C4 and 

also E and Z isomers of both alkenes), it showed a single spot on silica gel TLC plates and came 

as a single fraction during column chromatography.  

 

Scheme 34. Coupling of modified (7R)-M80 with aldehyde (3S)-M81. 

 

  

1.3.11 Completion of the synthesis of first mixture of four fluorous tagged isomers of 1 

The coupled product (7S,11R)-M124 was desilylated under acidic conditions by 

treatment with 2 N aqueous HCl to obtain the diol (7S,11R)-M125 in 98% (Scheme 35).83 

Because it is known that metal-catalyzed hydrogenations of an alkene can epimerize 

stereocenters at the allylic carbon through reversible hydrometalation,84 diimide reduction85 was 
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secondary alcohol (7S,11R)-M126 obtained after the diimide reduction, was oxidized to the 
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obtain the first mixture of four differently tagged isomers of 1 (7S,11R)-M127 in 92% yield. The 

four quasiisomers in mixture (7S,11R)-M127 have fixed C7 R and C11 S configuration and all 

possible configurations at C3 and C15. 

 

Scheme 35. Completion of the synthesis of the first mixture of four fluorous tagged isomers of 1, with all four 

possible configurations at C3 and C15 and fixed (7S,11R) configuration. 
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peaks of PMBF3 and PMBF13 groups because the PMBF9 group has been used twice (both at C1 

and C16 hydroxy group). Thus, the 1:1:2 integration ratio of the three CF3 peaks confirmed that 

the four quasidiastereomers in mixture M124 were present in 1:1:1:1 molar ratio. The 19F NMR 

spectra of the other four-compound mixtures M125, M126 and M127 were substantially 

identical to that of M124 and confirmed that the ratio of the four quasidiastereomers was 

maintained as 1:1:1:1 throughout the synthetic sequence. 

1.3.12 Demixing of the mixture (7S,11R)-M127 

The mixture (7S,11R)-M127 was demixed into four individual quasiisomers by 

preparative fluorous HPLC. Demixing was conducted on a Waters high-performance liquid 

chromatograph over a FluoroFlash semiprep HPLC column (20 × 250 mm) under a gradient 

elution from 80:20 CH3CN:H2O to 100% CH3CN in 30 min. The four fractions were well 

separated and eluted in order of increasing fluorine content to give the four quasiisomers 

(3S,7S,11R,15R)-127ca, (3S,7S,11R,15S)-127cb, (3R,7S,11R,15R)-127aa and (3R,7S,11R, 

15S)-127ab. The results of the demixing experiments are summarized in Scheme 36 and a 

representative preparative HPLC demixing chromatogram of mixture (7S,11R)-M127 is shown 

in Figure 14. Up to 40 mg of the mixture was demixed in a single injection, and five injections 

were needed to demix 200 mg of (7S,11R)-M127. The overall mass recovery during the 

demixing of (7S,11R)-M127 was 83% and the mole ratio of the four tagged compounds isolated 

after demixing (127ca:127cb:127aa:127ab) was about 1:1:1:1. 
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Scheme 36. Results of the HPLC demixing of the mixture (7S,11R)-M127. 

 

 

 

 

Figure 14. Representative semiprep HPLC chromatogram for demixing of (7S,11R)-M127; conditions: 80:20 

CH3CN:H2O to 100% CH3CN in 30 min, then 100% CH3CN for 70 min at a flow rate of 7 mL/min. 
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The purities of the four individual PMBF ethers were confirmed by spectroscopic 

methods. The 19F NMR spectra of these four compounds showed the presence of only the 

relevant fluorous tags. Because each fluorous tag has a unique spectrum, this confirms that none 

of these PMBF ethers were contaminated with any other.  

The 1H NMR spectra of the four PMBF ethers were also informative about their isomeric 

purity. Yajima and coworkers have reported that it is possible to differentiate the C3,C7-syn and 

anti isomers of 1 by 1H NMR spectroscopy.28 We could see such differences in the 1H NMR (600 

MHz) spectra the four PMBF ethers of 1 (Figure 15). In the spectra of the C3,C7-anti compounds 

(3S,7S,11R,15R)-127ca and (3S,7S,11R,15S)-127cb, the C5 methylene protons appear as triplet 

at δ 2.44. In the C3,C7-syn compounds (3R,7S,11R,15R)-127aa and (3R,7S,11R,15S)-127ab, 

the two C5 methylene protons appear as two separate multiplets between δ 2.51–2.45 and 2.44–

2.37. The minor peaks between δ 2.51–2.45 and 2.44–2.37 in the 1H NMR spectra of 

(3S,7S,11R,15R)-127ca and (3S,7S,11R,15S)-127cb and at δ 2.44 in the 1H NMR spectra of 

(3R,7S,11R,15R)-127aa and (3R,7S,11R,15S)-127ab indicated some epimerization at the C3 

stereocenter. By calculating the ratios of the integrations of major and the minor peaks we 

estimated about 10% epimerization for (3S,7S,11R,15R)-127ca, 12% for (3S,7S,11R,15S)-

127cb, 7% for (3R,7S,11R,15R)-127aa and 6% for  (3R,7S,11R,15S)-127ab. However, these 

estimates might have large error due to significant overlap of the major and minor C5 methylene 

proton peaks in these 1H NMR spectra of the four PMBF ethers. 

 The partial 1H NMR spectra of the four PMBF ethers shown in Figure 15, also exhibit 

minor differences in the multiplet pattern between δ 2.37–2.27. This multiplet is assigned to a 

CH2 group in the PMBF tags. So the difference in its pattern is due to the different PMBF tags in 

127ca, 127cb, 127aa and 127ab and not due to difference in their configurations.  



 64 

 

Figure 15. Partial 1H NMR spectra (600 MHz) of (3S,7S,11R,15R)-127ca, (3S,7S,11R,15S)-127cb, (3R,7S,11R, 

15R)-127aa, and (3R,7S,11R,15S)-127ab (top to bottom); peaks marked with asterisk correspond to the C3 

epimerized minor diastereomer. 

1.3.13 Synthesis of the second mixture of four fluorous tagged isomers of 1 

The synthesis of the second mixture of four fluorous tagged quasiisomers of 1 is 

summarized in Scheme 37. The free hydroxy group in sulfone (7S)-M80 was protected as the 

TES ether, and the resulting sulfone was coupled with aldehyde (3S)-M81 by a Kocienski-Julia 

olefination57,82 in 80% yield. The product (7R,11R)-M124 was carried through the same 

sequence of steps as for the synthesis of (7S,11R)-M127. The final mixture (7R,11R)-M127 was 

demixed by fluorous HPLC as before to obtain four PMBF ethers (3S,7R,11R,15R)-127ca, 

(3S,7R,11R,15S)-127cb, (3R,7R,11R,15R)-127aa and (3R,7R,11R,15S)-127ab.  
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The purities of these PMBF ethers were evaluated by 19F and 1H NMR spectroscopy. The 

19F NMR spectra of these four PMBF ethers showed only the peaks corresponding to the relevant 

tags, implying that the demixing was successful. Their 1H NMR spectra revealed the presence of 

about 10-15% of the C3 epimerized isomer. The overall mass recovery from this demixing was 

of 85% and the mole ratio of the four PMBF ethers obtained was about 1:1:1:1. These results 

were similar to those described previously for the demixing of (7S,11R)-M127.  

 

Scheme 37. Synthesis of a second mixture of four fluorous tagged isomers of 1. 
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1.3.14 Global deprotection of the eight PMBF ethers 127 

The global deprotection of the PMBF ethers 127 was first attempted with DDQ as 

summarized in Scheme 38. Addition of 2 equiv DDQ to a solution of (3R,7S,11R,15S)-127ab in 

DCM:pH 7 buffer (10:1) at 0 °C followed by warming to room temperature led to significant 

decomposition of the starting material as did reaction with of 5 equiv of DDQ at 0 °C. Addition 

of 2 equiv of DDQ to a solution of (3R,7S,11R,15S)-127ab in DCM:pH 7 buffer (10:1) at 0 °C 

for 4 h gave the desired product in 44% yield along with a mixture of recovered starting material 

and partially deprotected products. No increase in the isolated yield was observed if the reaction 

was allowed to stir at this temperature for longer time.  

 

Scheme 38. Global deprotection of (3R,7S,11R,15S)-127ab with DDQ. 

 

Starting Material Equiv of DDQ Reaction temp/Time Yield 

(3R,7S,11R,15S)-127ab 2 0 °C, 2 h then rt, 2 h - 

(3R,7S,11R,15S)-127ab 5 0 °C, 4 h - 

(3R,7S,11R,15S)-127ab 2 0 °C, 4 h 44% 
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balloon for 48 h followed by filtration through Celite. The final pure product (3S,7S,11R,15R)-1 

(8.0 mg, 0.03 mmol, 62%) was obtained after column chromatography of the concentrated 

filterate. The remaining 15 PMBF ethers were also subjected to hydrogenolysis under similar 

conditions. The Table 2 summarizes the results of the hydrogenolysis reactions to obtain eight 

isomers of 1, their amounts obtained and the percentage yields. The structures of the eight 

isomers of hormone α1 obtained are shown in Figure 16. 

 

Scheme 39. Deprotection of the fluorous PMBF (3S,7S,11R,15R)-127ca by hydrogenolysis with Pd/C. 

 

 

Table 2. The results of hydrogenolysis reactions of PMBF ethers 127, the amount of products isolated and the 

percentage yields. 
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hydroxy group 
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From the mixture (7S,11R)-127 

127ca PMBF3 PMBF9 (3S,7S,11R,15R)-1 8.0 62 

127cb PMBF3 PMBF13 (3S,7S,11R,15S)-1 9.2 69 

127aa PMBF9 PMBF9 (3R,7S,11R,15R)-1 6.2 69 

127ab PMBF9 PMBF13 (3R,7S,11R,15S)-1 5.3 86 

From the mixture (7R,11R)-127 

127ca PMBF3 PMBF9 (3S,7R,11R,15R)-1 
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127cb PMBF3 PMBF13 (3S,7R,11R,15S)-1 6.3 66 
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127ab PMBF9 PMBF13 (3R,7R,11R,15S)-1 4.8 63 
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Figure 16. Structures of the eight isomers of 1 obtained after hydrogenolysis of PMBF ethers 127. 

 

The 1H NMR spectra of the eight isomers of 1 were obtained at the 700 MHz. These 

spectra exhibited significant differences at about δ 2.55, for the peaks corresponding to the C5 

methylene protons. These differences were same as those noticed by Yajima and coworkers.28 

For the C7,C3-anti isomers, the two C5 methylene protons appeared as a triplet at δ 2.55, while 

for the C7,C3-syn compounds these proton came as multiplet at δ 2.60–2.48. Figure 17 shows 
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and C3,C7-syn isomer (3S,7R,11R,15S)-1 as a representative example to highlight this 

difference in the 1H NMR spectra of the isomers of 1. The presence of the minor multiplets 

between δ 2.60–2.48 in the 1H NMR spectra of the C3,C7-anti isomers (these peaks are marked 

with an asterisk in the Figure 17) indicated some epimerization at the C3 center during the 
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synthesis. Again the exact extent of epimerization could not be determined due to significant 

overlap, but we estimated about 15-20% epimerization of all eight isomers of 1.  

The 1H NMR spectra of the eight isomers are shown in Figure 18 and the data is 

tabulated in Table 3 and 4. The 13C NMR spectra of these eight isomers were also very similar 

and this data is summarized in Table 5. 

 

 

Figure 17. Partial 1H NMR spectra of (3S,7S,11R,15S)-1 (C3,C7-anti, bottom) and (3S,7R,11R,15S)-1 (C3,C7-syn, 

top) showing the expansion of the C3 and C5 protons. The peaks due to the minor epimer are indicated by an 

asterisk. 

 

2.352.402.452.502.552.602.652.702.752.802.852.902.95 ppm

                                            C3H                                                                        C5H 

          (3S,7R,11R,15S)-1, C3,C7-syn 

 

 
 

          (3S,7S,11R,15S)-1, C3,C7-anti                                                                             

                                                                                                                                  *                         * 
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Figure 18. The 1H NMR spectra (700 MHz) of the eight isomers of 1 in MeOD. 
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                     (3R,7S,11R,15S)-1, (C3,C7-syn) 
 
 
 
 

 
 
 
 
 
                     (3S,7R,11R,15R)-1, (C3,C7-syn) 
 
 
 
 
 
 
 
 
 
 
 
                    (3S,7R,11R,15S)-1, (C3,C7-syn) 
 
 
 
 
 
 
 
 
 
 
                     (3R,7R,11R,15R)-1, (C3,C7-anti) 
 
 
 
 
 
 
 
 
                     (3R,7R,11R,15S)-1, (C3,C7-anti) 
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Table 3. 700 MHz 1H NMR data for (3S,7S,11R,15R)-1, (3S,7S,11R,15S)-1, (3R,7S,11R,15R)-1,  

(3R,7S,11R,15S)-1. 

C No. (3S,7S,11R,15R)-1 (3S,7S,11R,15S)-1 (3R,7S,11R,15R)-1 (3R,7S,11R,15S)-1 

1 3.520 (m, 2H) 3.518 (m, 2H) 3.523 (m, 2H) 3.520 (m, 2H) 

2 1.887 (sxt, 7.0, 1H) 

1.511–1.464 (m, 1H) 

1.885 (sxt, 6.9, 1H) 

1.508–1.462 (m, 1H) 

1.886 (sxt, 6.9, 1H) 

1.508–1.470 (m, 1H) 

1.885 (sxt, 7.0, 1H) 

1.507–1.460 (m, 1H) 

3 2.764 (sxt, 7.0, 1H) 2.765 (sxt, 6.9, 1H) 2.766 (sxt, 6.8, 1H) 2.766 (sxt, 7.0, 1H) 

5 2.534 (t, 7.0, 2H) 2.536 (t, 7.1, 2H) 2.593–2.483 (m, 2H) 2.592–2.482 (m, 2H) 

1.621–1.562 (m, 1H) 1.615–1.549 (m, 1H) 1.620–1.550 (m, 1H) 1.621–1.552 (m, 1H) 6 

1.455–1.282 (m, 1H) 1.445–1.281 (m, 1H) 1.449–1.282 (m, 1H) 1.446–1.282 (m, 1H) 

7 1.455–1.282 (m, 1H 1.445–1.281 (m, 1H) 1.449–1.282 (m, 1H) 1.451–1.280 (m, 1H) 

8 1.455–1.282 (m, 1H) 

1.152–1.050 (m, 1H) 

1.445–1.281 (m, 1H) 

1.152–1.050 (m, 1H) 

1.449–1.282 (m, 1H) 

1.152–1.050 (m, 1H) 

1.451–1.280 (m, 1H) 

1.160–1.050 (m, 1H) 

9 1.455–1.282 (m, 2H) 1.445–1.281 (m, 2H) 1.449–1.282 (m, 2H) 1.446–1.282 (m, 1H) 

10 1.455–1.282 (m, 2H) 1.445–1.281 (m, 2H) 1.449–1.282 (m, 2H) 1.446–1.282 (m, 1H) 

12 1.455–1.282 (m, 2H) 1.445–1.281 (m, 2H) 1.449–1.282 (m, 2H) 1.446–1.282 (m, 1H) 

13 1.455–1.282 (m, 2H) 1.445–1.281 (m, 2H) 1.449–1.282 (m, 2H) 1.446–1.282 (m, 1H) 

14 1.455–1.282 (m, 1H) 

1.152–1.050 (m, 1H) 

1.615–1.549 (m, 1H) 

1.152–1.050 (m, 1H) 

1.449–1.282 (m, 1H) 

1.152–1.050 (m, 1H) 

1.446–1.282 (m, 1H) 

1.160–1.050 (m, 1H) 

15 1.621–1.562 (m, 1H) 1.615–1.549 (m, 1H) 1.620–1.550 (m, 1H) 1.621–1.552 (m, 1H) 

16 3.409 (dd, 10.5, 6.3) 

3.318 (dd, 10.5, 7.0) 

3.409 (dd, 10.6, 5.6) 

3.316 (dd, 10.6, 6.7) 

3.409 (dd, 10.6, 5.9) 

3.317 (dd, 10.6, 6.6) 

3.409 (dd, 10.5, 5.6) 

3.316 (dd, 11.2, 7.0) 

17 0.906 (d, 6.3, 3H) 0.905 (d, 6.7, 3H) 0.906 (d, 6.6, 3H) 0.905 (d, 7.0, 3H) 

18 1.121 (s, 3H) 1.121 (s, 3H) 1.121 (s, 3H) 1.121 (s, 3H) 

19 0.889 (d, 6.3, 3H) 0.888 (d, 6.6, 3H) 0.889 (d, 6.6, 3H) 0.889 (d, 6.3, 3H) 

20 1.071 (d, 7.0, 3H) 1.070 (d, 7.0, 3H) 1.070 (d, 6.9, 3H) 1.070 (d, 6.3, 3H) 
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Table 4. 700 MHz 1H NMR data for (3S,7R,11R,15R)-1, (3S,7R,11R,15S)-1, (3R,7R,11R,15R)-1, 

(3R,7R,11R,15S)-1. 

C No. (3S,7R,11R,15R)-1 (3S,7R,11R,15S)-1 (3R,7R,11R,15R)-1 (3R,7R,11R,15S)-1 

1 3.519 (m, 2H) 3.519 (m, 2H) 3.519 (m, 2H) 3.520 (m, 2H) 

2 1.885 (sxt, 6.7, 1H) 1.885 (sxt, 7.0, 1H) 1.886 (sxt, 6.9, 1H) 1.886 (sxt, 7.0, 1H) 

 1.508–1.465 (m, 1H) 1.507–1.460 (m, 1H) 1.509–1.472 (m, 1H) 1.507–1.450 (m, 1H) 

3 2.765 (sxt, 6.9, 1H) 2.765 (sxt, 7.0, 1H) 2.765 (sxt, 7.0 Hz) 2.764 (sxt, 7.0, 1H) 

5 2.594–2.482 (m, 2H) 2.592–2.482 (m, 2H) 2.535 (t, 6.7, 2H) 2.534 (t, 6.5, 2H) 

6 
1.616–1.562 (m, 1H) 

1.462–1.281 (m, 1H) 

1.620–1.550 (m, 1H) 

1.450–1.280 (m, 1H) 

1.631–1.549 (m) 

1.455–1.281 (m, 1H) 

1.627–1.520 (m, 1H) 

1.450–1.281 (m, 1H) 

7 1.462–1.281 (m, 1H) 1.450–1.280 (m, 1H) 1.455–1.281 (m, 1H) 1.450–1.281 (m, 1H) 

8 
1.462–1.281 (m, 1H) 

1.160–1.050 (m, 1H) 

1.450–1.280 (m, 1H) 

1.160–1.050 (m, 1H) 

1.455–1.281 (m, 1H) 

1.160–1.050 (m, 1H) 

1.450–1.281 (m, 1H) 

1.161–1.049 (m, 1H  

9 1.462–1.281 (m, 2H) 1.450–1.280 (m, 2H) 1.455–1.281 (m, 2H) 1.450–1.281 (m, 2H) 

10 1.462–1.281 (m, 2H) 1.450–1.280 (m, 2H) 1.455–1.281 (m, 2H) 1.450–1.281 (m, 2H) 

12 1.462–1.281 (m, 2H) 1.450–1.280 (m, 2H) 1.455–1.281 (m, 2H) 1.450–1.281 (m, 2H) 

13 1.462–1.281 (m, 2H) 1.450–1.280 (m, 2H) 1.455–1.281 (m, 2H) 1.450–1.281 (m, 2H) 

14 
1.462–1.281 (m, 1H) 

1.160–1.050 (m, 1H) 

1.450–1.280 (m, 1H) 

1.160–1.050 (m, 1H) 

1.455–1.281 (m, 1H) 

1.160–1.050 (m, 1H) 

1.450–1.281 (m, 1H) 

1.161–1.049 (m, 1H  

15 1.616–1.562 (m, 1H) 1.620–1.550 (m, 1H) 1.631–1.549 (m) 1.627–1.520 (m, 1H) 

16 3.408 (dd,10.6, 5.9) 3.408 (dd, 10.5, 5.6) 3.409 (dd, 10.6, 6.0) 3.405 (dd, 10.5, 6.0) 

 3.322 (dd, 10.8, 6.5) 3.315 (dd, 11.2, 7.0) 3.322 (dd, 11.0, 6.7) 3.315 (dd, 11.2, 7.0) 

17 0.905 (d, 6.7, 3H) 0.905 (d, 7.0, 3H) 0.905 (d, 6.7, 3H) 0.906 (d, 6.5, 3H) 

18 1.121 (s, 3H) 1.121 (s, 3H) 1.121 (s, 3H) 1.121 (s, 3H) 

19 0.889 (d, 6.6, 3H) 0.888 (d, 7.0, 3H) 0.888 (d, 6.5, 3H) 0.889 (d, 6.5, 3H) 

20 1.070 (d, 7.0, 3H) 1.069 (d, 7.0, 3H) 1.070 (d, 7.0, 3H) 1.071 (d, 7.0, 3H) 
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Table 5. 13C NMR data (175 MHz) for (3S,7S,11R,15R)-1, (3S,7S,11R,15S)-1, (3R,7S,11R,15R)-1, (3R,7S,11R, 

15S)-1, (3S,7R,11R,15R)-1, (3S,7R,11R,15S)-1, (3R,7R,11R,15R)-1 and (3R,7R,11R,15S)-1. 

 

C No (S,S,R,R-1 (S,S,R,S)-1 (R,S,R,R)-1 (R,S,R,S)-1 (S,R,R,R)-1 (S,R,R,S)-1 (R,R,R,R)-1 (R,R,R,S)-1 

1 60.62 60.61 60.61 60.61 60.62 60.63 60.61 60.61 

2 36.88 36.88 36.88 36.87 36.88 36.89 36.88 36.82 

3 43.97 43.95 43.95 43.95 43.96 43.97 43.95 43.97 

4 217.48 217.48 217.50 217.50 217.51 217.52 217.47 217.48 

5 39.97 39.98 39.99 39.98 39.98 39.99 39.97 39.97 

6 31.74 31.71 31.73 31.72 31.72 31.74 31.71 31.74 

7 33.57 33.56 33.58 33.57 33.59 33.59 33.57 33.57 

8 38.62 38.62 38.60 38.60	   38.61	   38.61	   38.62	   38.62	  

9# 22.36 22.34 22.36 22.33 22.37 22.37 22.36 22.36 

10* 43.00 43.00 42.99 43.00 42.96 42.97 42.95 43.00 

11 73.37 73.37 73.37 73.37 73.38 73.38 73.36 73.37 

12* 42.96 42.87 42.94 42.88 42.96 42.90 42.95 42.96 

13# 22.29 22.32 22.30 22.33 22.30 22.33 22.30 22.30 

14 35.03 35.02 35.02 35.02 35.03 35.04 35.02 35.03 

15 36.71 36.70 36.74 36.74 36.74 36.75 36.70 36.71 

16 68.45 68.42 68.44 68.42 68.44 68.45 68.43 68.45 

17 17.08 17.10 17.08 17.11 17.09 17.10 17.09 17.09 

18 26.88 26.93 26.88 26.94 26.91 26.97 26.91 26.88 

19 19.86 19.87 19.88 19.89 19.88 19.89 19.88 19.86 

20 16.90 16.91 16.91 16.91 16.90 16.91 16.91 
16.90 

The assignments of the peaks marked with # and * are interchangeable with each other. 
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 We learned from this sequence of experiments that the 1H NMR spectra of the eight 

isomers of 1 do not provide any information about the stereochemistry of 1 except for the 

relative configuration of the C3 and C7 stereocenters. The 13C NMR spectra of the eight isomers 

show very small differences that are not a reliable indicator of the stereochemistry of 1. Next, we 

decided to convert all the eight stereoisomers of 1 to the corresponding R and S bis-MTPA esters 

and compare the spectroscopic data of the synthetic bis-MTPA esters with each other and with 

the bis-MTPA ester of the natural product 

1.4 SYNTHESIS AND SPECTROSCOPIC ANALYSIS OF 16 BIS-MTPA ESTERS OF 

HORMONE α1 

1.4.1 Synthesis and purification of the 16 bis-MTPA esters 

Each of the eight isomers of 1 was converted to both bis-R and S-MTPA esters to obtain a 

16-stereoisomer library of the bis-MTPA esters of hormone α1. In the typical esterification 

reaction,32e a solution of (3S,7S,11R,15R)-1 (1.5 mg, 0.04 mmol) in DCM (0.33 mL) was treated 

with DCC (27.0 mg, 0.13 mmol) and S-MTPA acid (31.0 mg, 0.13 mmol). After 24 h, the 

reaction mixture was filtered and the filtrate was concentrated. The crude mixture was purified 

by flash column chromatography (SiO2, 30% EtOAc in hexanes) to obtain 6.2 mg (72%) of the 

bis-MTPA ester (S,3S,7S,11R,15R,S)-10 (Scheme 40). Although the bis-MTPA ester 

(S,3S,7S,11R,15R,S)-10 showed a single spot on the standard silica gel TLC plate, its 1H NMR 

spectrum indicated the presence of 19% of a minor isomer. This was expected since the 

precursor was partially epimerized. The remaining 15 bis-MTPA esters were similarly prepared 
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by esterification of the eight isomers of 1 with R or S-MTPA acid. The 1H NMR spectra of all 

these 15 bis-MTPA esters also indicated the presence of 16–34% of a minor isomer.  

 

Scheme 40. Synthesis of bis-MTPA ester (S,3S,7S,11R,15R,S)-10. 

  

 

 Because we have all diastereomers, the minor isomer from one sample should match the 

major isomer from the other sample. Accordingly, we compared the 1H NMR spectra of all the 

bis-S-MTPA esters with each other and the bis-R-MTPA esters with each other. We found that 

the minor peaks in the 1H NMR spectrum of (S,3S,7S,11R,15R,S)-10 matched only the major 

peaks in the 1H NMR spectrum of (S,3R,7S,11R,15R,S)-10 and vice versa. The partial 1H NMR 

spectra of these two bis-MTPA esters are shown in Figure 19. For example, the 1H NMR 

spectrum of the bis-MTPA ester (S,3S,7S,11R,15R,S)-10 shows two major doublets of doublets 

of doublets at δ 2.42 and 2.33 and two minor doublets of doublets of doublets at δ 2.47 and 2.31. 

While the 1H NMR spectrum of the MTPA ester (S,3R,7S,11R,15R,S)-10 shows two minor 

doublets of doublets of doublets at δ 2.42 and 2.33 and two major doublets of doublets of 

doublets at δ 2.47 and 2.31. The bis-MTPA esters, (S,3S,7S,11R,15R,S)-10 and 

(S,3R,7S,11R,15R,S)-10 differ only in their configuration at the C3 stereocenter. The major and 

minor peaks in the corresponding bis-R-MTPA esters (R,3S,7S,11R,15R,R)-10 and 

(R,3R,7S,11R,15R,R)-10 also matched. Thus, we assigned the minor peaks in the 1H NMR 

spectrum of (S,3S,7S,11R,15R,S)-10 to the C3 epimerized isomer. The minor peaks in the 1H 
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NMR spectra of the remaining bis-MTPA esters were similarly assigned to the corresponding C3 

epimers.  

The Table 6 summarizes the results of the synthesis of the 16 bis-MTPA esters from the 

eight isomers of 1, their amounts obtained, the percentage yields of the esterification reactions, 

the C3 epimer impurity, and the percentage of the C3 epimer present. The extent of the C3 

epimerization in the 16 bis-MTPA esters ranged from 16–34%. As expected the pairs of the bis-

MTPA esters obtained from the same isomer of 1 showed approximately equal epimerization. 

For example the two bis-MTPA esters (R,3S,7S,11R,15R,R)-10 and (S,3S,7S,11R,15R,S)-10 

prepared by the esterification of (3S,7S,11R,15R)-1 show 18% and 19% epimerization 

respectively. 

 

 

Figure 19. Partial 1H NMR spectra of bis-MTPA esters (S,3S,7S,11R,15R,S)-10 (bottom) and 

(S,3R,7S,11R,15R,S)-10 (top). 
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Table 6. The results of the esterification reactions of the eight isomers of 1, the amount of bis-MTPA esters isolated, 

the percentage yield of the esterification reaction, the C3 epimer impurity in each bis-MTPA ester and the 

percentage of the C3 epimer present. 

 

starting material MTPA acid product amount (mg) (%) C3 epimer, % epimerization 

(3S,7S,11R,15R)-1 R (R,3S,7S,11R,15R,R)-10 6.2 (72%) (R,3R,7S,11R,15R,R)-10, 18% 

(3S,7S,11R,15R)-1 S (S,3S,7S,11R,15R,S)-10 6.4 (73%) (S,3R,7S,11R,15R,S)-10, 19% 

(3S,7S,11R,15S)-1 R (R,3S,7S,11R,15S,R)-10 5.7 (63%) (R,3R,7S,11R,15S,R)-10, 33% 

(3S,7S,11R,15S)-1 S (S,3S,7S,11R,15S,S)-10 5.5 (61%) (S,3R,7S,11R,15S,S)-10, 34% 

(3R,7S,11R,15R)-1 R (R,3R,7S,11R,15R,R)-10 4.8 (82%) (R,3S,7S,11R,15R,R)-10, 23% 

(3R,7S,11R,15R)-1 S (S,3R,7S,11R,15R,S)-10 6.1 (64%) (S,3S,7S,11R,15R,S)-10, 21% 

(3R,7S,11R,15S)-1 R (R,3R,7S,11R,15S,R)-10 2.3 (68%) (R,3S,7S,11R,15S,R)-10, 26% 

(3R,7S,11R,15S)-1 S (S,3R,7S,11R,15S,S)-10 2.6 (77%) (S,3S,7S,11R,15S,S)-10, 26% 

(3S,7R,11R,15R)-1 R (R,3S,7R,11R,15R,R)-10 4.5 (79%) (R,3R,7R,11R,15R,R)-10, 28% 

(3S,7R,11R,15R)-1 S (S,3S,7R,11R,15R,S)-10 4.8 (78%) (S,3R,7R,11R,15R,S)-10, 28% 

(3S,7R,11R,15S)-1 R (R,3S,7R,11R,15S,R)-10 5.2 (77%) (R,3R,7R,11R,15S,R)-10, 17% 

(3S,7R,11R,15S)-1 S (S,3S,7R,11R,15S,S)-10 3.3 (73%) (S,3R,7R,11R,15S,S)-10, 16%  

(3R,7R,11R,15R)-1 R (R,3R,7R,11R,15R,R)-10 6.5 (64%) (R,3S,7R,11R,15R,R)-10, 24%  

(3R,7R,11R,15R)-1 S (S,3R,7R,11R,15R,S)-10 5.4 (80%) (S,3S,7R,11R,15R,S)-10, 25% 

(3R,7R,11R,15S)-1 R (R,3R,7R,11R,15S,R)-10 1.9 (77%) (R,3S,7R,11R,15S,R)-10, 19%  

(3R,7R,11R,15S)-1 S (S,3R,7R,11R,15S,S)-10 3.7 (63%) (S,3S,7R,11R,15S,S)-10, 20% 

 

Mosher esters are usually used for spectroscopic analysis and not diastereomeric 

separation. Nonetheless, we subjected the bis-S-MTPA ester (S,3S,7S,11R,15S,S)-10 to 

purification with semi-prep HPLC with Chiral (S,S)-Whelk-O column (2 x 20 cm) in an attempt 

to remove the minor C3 epimer. The column was eluted under isocratic conditions with 97:3 

hexanes/2-propanol. The flow rate was maintained at 3 mL/min. The HPLC chromatogram of 
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bis-S-MTPA ester (S,3S,7S,11R,15S,S)-10 under these conditions is shown in Figure 20. The 

major isomer eluted at 52.2 min and the minor C3 epimer eluted at about 52.5 min as a shoulder 

to the major peak. Because, of considerable overlap of the two peaks, peak shaving was 

necessary to obtain pure fractions. 

 The bis-S-MTPA ester (S,3S,7S,11R,15S,S)-10 (major peak in HPLC chromatogram) 

obtained after HPLC purification was found to be isomerically pure and the peaks corresponding 

to the corresponding C3 epimer were no longer seen in the 1H NMR spectrum of the purified 

sample. Only 1.2 mg of pure (S,3S,7S,11R,15S,S)-10 was obtained by HPLC purification of 5.0 

mg of the epimerized sample. Figure 21 shows a comparison of the 1H NMR spectra of 

(S,3S,7S,11R,15S,S)-10 before and after HPLC purification.  

 

 
Conditions: (S,S) Whelk-O column (2 x 20 cm), elution with 97:3 hexanes:2-propanol at a flow rate of 3 mL/min. 

Figure 20. Semi prep HPLC chromatogram of the bis-MTPA ester (S,3S,7S,11R,15S,S)-10. 
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Figure 21. 1H NMR (700 MHz) spectra of (S,3S,7S,11R,15S,S)-10 before (bottom) and after (top) HPLC 

purification. The peaks corresponding to the minor C3 epimer are indicated by an asterisk. 

 

 Inspired by the successful purification of bis-S-MTPA ester (S,3S,7S,11R,15S,S)-10, we 

also subjected the remaining 15 bis-MTPA esters to HPLC purification under identical 

conditions and the 1H NMR (700 MHz) spectra of the purified samples were recorded. We found 

that 12 out of these 15 esters were essentially pure after HPLC purification and the peaks of the 

minor isomer (C3 epimer) were no longer seen in their 1H NMR spectra. The remaining three 

bis-MTPA esters (S,3S,7R,11R,15R,S)-10, (S,3R,7R,11R,15R,S)-10 and (R,3R,7S,11R,15S,R)-

10 were still contaminated with 28% (28% before HPLC), 17% (16% before HPLC) and 11% 

(26% before HPLC) of the corresponding C3 epimer, respectively. Because there was 

considerable overlap of peaks of the major and minor isomers in the HPLC chromatogram, peak 

shaving was needed to obtain pure fractions. It is possible that these three bis-MTPA esters could 

have been purified by resubmission to chiral HPLC. However, because we could assign all the 

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5 ppm

                 *                                              
                                                   *  
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minor peaks we did not make any further attempts to purify these sample. The Table 7 

summarizes the results of the HPLC purification of the 16 bis MTPA esters. 

 

Table 7. Results of HPLC purification of the 16 bis-MTPA esters, along with their configuration at C3, C7, C11, 

C15 and MTPA ester configurations. 

bis-MTPA ester MTPA ester 

configuration 

C3 C7 C11 C15 amount (mg) 

after HPLC 

% C3 epimer 

after HPLC 

(R,3S,7S,11R,15R,R)-10 R S S R R 1.6 n.d. 

(S,3S,7S,11R,15R,S)-10 S S S R R 1.4 n.d. 

(R,3S,7S,11R,15S,R)-10 R S S R S 0.7 n.d. 

(S,3S,7S,11R,15S,S)-10 S S S R S 1.2 n.d. 

(R,3R,7S,11R,15R,R)-10 R R S R R 0.8 n.d. 

(S,3R,7S,11R,15R,S)-10 S R S R R 1.3 n.d. 

(R,3R,7S,11R,15S,R)-10 R R S R S 0.5 11% 

(S,3R,7S,11R,15S,S)-10 S R S R S 1.0 n.d. 

(R,3S,7R,11R,15R,R)-10 R S R R R 1.5 n.d. 

(S,3S,7R,11R,15R,S)-10 S S R R R 1.6 28% 

(R,3S,7R,11R,15S,R)-10 R S R R S 0.4 n.d. 

(S,3S,7R,11R,15S,S)-10 S S R R S 1.5 n.d. 

(R,3R,7R,11R,15R,R)-10 R R R R R 0.5 n.d. 

(S,3R,7R,11R,15R,S)-10 S R R R R 1.2 17% 

(R,3R,7R,11R,15S,R)-10 R R R R S 1.1 n.d. 

(S,3R,7R,11R,15S,S)-10 S R R R S 0.8  n.d. 

n.d. = not determined by 1H NMR spectroscopy 
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1.4.2 Spectroscopic analysis of the 16 bis-MTPA esters 

The 19F NMR spectra of the 16 bis-MTPA esters were obtained at 282 MHz and are 

shown in Figure 22. In the 19F NMR spectra of eight bis-MTPA esters, the peaks due to the two 

CF3 groups overlap and these spectra show a single peak at about δ −72.53. The 19F NMR 

spectra of the remaining eight bis-MTPA esters show two well-resolved peaks at about δ −72.53 

and −72.47.  

We suggest that the CF3 group of the C16 MTPA ester has a chemical shift value of 

about δ −72.53 in all the 16 bis-MTPA esters, independent of the ester configuration and of the 

C15 configuration. The CF3 group in the C1 MTPA ester also appears at δ −72.53 for bis-R-

MTPA esters of C3 R isomers and for bis-S-MTPA esters of C3 S isomers. In these eight bis-

MTPA esters, the peaks of the two CF3 groups overlap and only one peak is seen in their 19F 

NMR spectra. The CF3 group in the C1 MTPA ester group appears at about δ −72.47 for bis-R-

MTPA esters of C3 S isomers and for bis-S-MTPA esters of C3 R isomers. The 19F NMR spectra 

of these eight isomers show two separate peaks, one for each CF3 group. 

Taken together, the 19F NMR spectra give information only about the C3 configuration. 

In bis-MTPA esters that show one peak in the 19F NMR spectrum, the C3 configuration is same 

as the MTPA ester configuration. In the bis-MTPA esters that show two peaks in the 19F NMR 

spectrum, the C3 configuration is opposite to the MTPA ester configuration. 
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a. (S,3S,7S,11R,15R,S)-10 
 
 
 

b. (S,3S,7S,11R,15S,S)-10 
 
 
 
 

c. (R,3R,7S,11R,15R,R)-10  
 
 
 

 
 

d. (R,3R,7S,11R,15R,R)-10 
 
 
  
 

e. (R,3S,7S,11R,15R,R)-10 
 
 

 
 

f. (R,3S,7S,11R,15S,R)-10 
 
 
 
 

g. (S,3R,7S,11R,15R,S)-10 
 
 
 
 

h. (S,3R,7S,11R,15S,S)-10 
 

       i. (S,3S,7R,11R,15R,S)-10     * 
 
 
 
 

       j. (S,3S,7R,11R,15S,S)-10      *                  k. (R,3R,7R,11R,15S,R)-10  
 
 
 
 

        l. (R,3R,7R,11R,15S,R)-10       
 

       m. (R,3S,7R,11R,15R,R)-10 
 

  
 
 

       n. (R,3S,7R,11R,15S,R)-10       
       o. (S,3R,7R,11R,15R,S)-10        
       p. (S,3R,7R,11R,15S,S)-10 

 

!
−71.2 −71.4 −71.6 −71.8 −72.0 −72.2 −72.4 −72.6 −72.8 −73.0 −73.2 −73.4 −73.6 ppm−71.2 −71.4 −71.6 −71.8 −72.0 −72.2 −72.4 −72.6 −72.8 −73.0 −73.2 −73.4 −73.6 ppm

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 22. 19F NMR spectra of the 16 bis-MTPA esters, the peaks marked with an asterisk correspond to the minor 

C3 epimer impurity. In the 19F NMR spectrum of the bis-MTPA ester (R,3R,7S,11R,15S,R)-10 (spectra d) a minor 

isomer must be present but the peak due to the minor product is very small.  

 

We also obtained the 700 MHz 1H NMR spectra of the 16 bis-MTPA esters and assigned 

all the non-overlapping peaks by a combination of 1H NMR and 1H-1H COSY data. 1H NMR 

spectra of the 16 bis-MTPA esters were then carefully compared with each other. Because we 

could see differences in the 1H NMR spectra of C3,C7-syn and anti compounds in the PMBF 

ethers 127 and in the eight isomers of 1, we first looked for such differences in the 1H NMR 

spectra of the 16 bis-MTPA esters.  

Indeed it is possible to determine the relative configuration of C3 and C7 stereocenters by 

the 1H NMR analysis of the bis-MTPA esters. The Figure 23 shows the expansion of the C5 
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(S,3S,7S,11R,15S,S)-10 

C3,C7-anti 

 

 

  
(S,3S,7R,11R,15S,S)-10 

C3,C7-syn 

 

C3H                                            C5H                             C5H’ 

 

 

 

 

C3H                                  C5H                                                   C5H’ 

 

methylene protons in the 1H NMR spectra of the bis-MTPA esters (S,3S,7R,11R,15S,S)-10 and 

(S,3S,7S,11R,15S,S)-10. These two bis-MTPA esters differ only in their configuration at the C7 

stereocenter. In (S,3S,7R,11R,15S,S)-10 the C3 and C7 methylene groups are syn while in 

(S,3S,7S,11R,15S,S)-10 C3 and C7 methyl groups are anti. In the C3,C7-syn compound 

(S,3S,7R,11R,15S,S)-10, the two C5 methylene protons appear as two doublets of doublets of 

doublets centered at δ 2.45 and δ 2.29 (Δδ = 0.16 ppm). In the C3,C7-anti compound 

(S,3S,7S,11R,15S,S)-10 these two doublets of doublets of doublets come closer together at δ 

2.43 and δ 2.35 (Δδ = 0.08 ppm). Table 8 summarizes the chemical shift values of the two C5 

methylene protons in the 16 bis-MTPA esters, and the difference in the chemical shift values of 

the two C5 methylene protons (Δδ), and the relative configuration of the C3 and C7 stereocenters 

(syn or anti). 

 

 

 

Figure 23. An expansion of the C5 methylene protons in the 1H NMR (700 MHz) spectra of (S,3S,7S,11R,15S,S)-

10 (top, C3,C7-anti) and (S,3S,7R,11R,15S,S)-10 (bottom, C3,C7-syn). 

 

 

 

2.302.352.402.452.502.552.602.652.702.75 ppm
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Table 8. Chemical shift values of the C5 methylene protons in the 16 bis-MTPA esters (δ H5 and δ H5ʹ′) and the 

difference δ H5 − δ H5ʹ′ (ppm) in relation to the C3 and C7 relative configuration. 

 

bis-MTPA ester δ H5 δ H5ʹ′ δ H5 − δ H5ʹ′ (ppm) C3 and C7  

(R,3S,7S,11R,15R,R)-10 2.43 2.35 0.08 anti 

(S,3S,7S,11R,15R,S)-10 2.42 2.33 0.09 anti 

(R,3S,7S,11R,15S,R)-10 2.43 2.35 0.08 anti 

(S,3S,7S,11R,15S,S)-10 2.42 2.34 0.08 anti 

(R,3R,7S,11R,15R,R)-10 2.45 2.29 0.16 syn 

(S,3R,7S,11R,15R,S)-10 2.47 2.31 0.16 syn 

(R,3R,7S,11R,15S,R)-10 2.45 2.30 0.15 syn 

(S,3R,7S,11R,15S,S)-10 2.47 2.31 0.16 syn 

(R,3S,7R,11R,15R,R)-10 2.47 2.31 0.16 syn 

(S,3S,7R,11R,15R,S)-10 2.45 2.30 0.15 syn 

(R,3S,7R,11R,15S,R)-10 2.47 2.31 0.16 syn 

(S,3S,7R,11R,15S,S)-10 2.45 2.29 0.16 syn 

(R,3R,7R,11R,15R,R)-10 2.41 2.33 0.08 anti 

(S,3R,7R,11R,15R,S)-10 2.43 2.35 0.08 anti 

(R,3R,7R,11R,15S,R)-10 2.42 2.33 0.09 anti 

(S,3R,7R,11R,15S,S)-10 2.43 2.35 0.08 anti 

 

 

There were also significant differences in the signals for C1 and C16 methylene protons 

in the 1H NMR spectra of the 16 bis-MTPA esters as depicted in Figure 24. In the 1H NMR 

spectra of the eight bis-MTPA esters with C3 S configuration, the two C1 methylene protons 
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appear as a triplet at δ 4.31 in the bis-R-MTPA esters (spectra b, c, e and g) and as two separate 

signals (a triplet of doublet centered at δ 4.38 and a doublet of doublets of doublets at δ 4.25) in 

bis-S-MTPA esters (spectra j, k, m and o). In the 1H NMR spectra of the eight isomers with C3 R 

configuration, this pattern is reversed and the C1 methylene protons appear as separate signals (a 

td at δ 4.38 and a ddd at δ 4.25) in bis-R-MTPA esters (spectra i, l, n and p) and as a triplet at δ 

4.31 in bis-S-MTPA esters (spectra a, d, f and h).  

When the C15 configuration is R, the C16 methylene protons appear as two doublets of 

doublets centered at δ 4.19 and 4.16 (Δδ = 0.03 ppm) in the 1H NMR spectra of the bis-S-MTPA 

esters (spectra a, d, m and o) and at δ 4.26 and 4.09 ppm (Δδ = 0.17 ppm) in the 1H NMR spectra 

of bis-R-MTPA esters (spectra e, g, i and l). In the isomers with C15 S configuration the C16 

methylene protons appear at δ 4.26 and 4.09 (Δδ = 0.17 ppm) in the 1H NMR spectra of bis-S-

MTPA esters (spectra f, h, j and k) and at δ 4.19 and 4.16 ppm (Δδ = 0.03 ppm) in the 1H NMR 

spectrum of bis-R-MTPA esters (spectra b, c, n and p). 
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Figure 24. Expansions of the C1 and C16 methylene protons in the 1H NMR (700 MHz) spectra of the 16 bis-

MTPA esters. The peaks marked with an asterisk are due to the minor C3 epimer 

 

On careful comparison of the 1H NMR spectra of the 16 bis-MTPA esters, we found that 

the 1H NMR spectra of the pairs bis-MTPA esters that have different configuration at all 

stereocenters except at the tertiary C11 stereocenter (the C11 configuration was R in all our 16 

bis-MTPA esters) are substantially identical. For example 1H NMR spectrum of (R,3R,7R,11R, 

15R,R)-10 was substantially identical to the 1H NMR spectrum of (S,3S,7S,11R,15S,S)-10. An 

overlap of these two 1H NMR spectra is shown in Figure 25.  

 

 

4.054.104.154.204.254.304.354.404.45 ppm 4.054.104.154.204.254.304.354.404.45 ppm

m. (S,3S,7R,11R,15R,S)-10 
 
 
 

 
n. (R,3R,7R,11R,15S,R)-10 

 
 
 
 
o. (S,3S,7S,11R,15R,S)-10 

 
 
 
p. (R,3R,7S,11R,15S,R)-10 

 

 

a. (S,3R,7R,11R,15R,S)-10  
 
 
 
 
 

b. (R,3S,7R,11R,15S,R)-10 
 

 
 
 
c. (R,3S,7S,11R,15S,R)-10 

 
 
 
d. (S,3R,7S,11R,15R,S)-10 

i. (R,3R,7R,11R,15R,R)-10  
 
 
 

 
j. (S,3S,7R,11R,15S,S)-10 

 
  
 
k. (S,3S,7S,11R,15S,S)-10 
 
 

 
 
l. (R,3R,7S,11R,15R,R)-10 
 

* 

 

 

 

 

 

* 

e. (R,3S,7R,11R,15R,R)-10  
 

 
 

 
f. (S,3R,7R,11R,15S,S)-10 

 
 
 
 
g. (R,3S,7S,11R,15R,R)-10 

 
 
 
h. (S,3R,7S,11R,15S,S)-10 
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Figure 25. 1H NMR (700 MHz) spectra of (S,3S,7S,11R,15S,S)-10 (top) and (R,3R,7R,11R,15R,R)-10 (bottom). 

 

To learn if there were any meaningful differences in the 13C NMR spectra of these two 

bis-MTPA esters, we also compared the 2D 1H-13C HMQC spectra of (R,3R,7R,11R,15R,R)-10 

and (S,3S,7S,11R,15S,S)-10 with each other. These spectra were obtained at the 700 MHz NMR 

instrument and are shown on page 224 and 225 of the Appendix. The two HMQC spectra were 

also substantially identical and no differences were seen in the non-overlapping cross-peaks. 

Thus it is not currently possible to differentiate (R,3R,7R,11R,15R,R)-10 and (S,3S,7S,11R,15S, 

S)-10 by NMR analysis. 

Since (S,3S,7S,11R,15S,S)-10 will also have the same 1H and 13C NMR spectra as its 

enantiomer (R,3R,7R,11S,15R,R)-10 (C11 S configuration, not synthesized in this work) we can 

conclude that the 1H and 1H-13C HMQC (and hence 13C) NMR spectra of (R,3R,7R,11R,15R,R)-

10 will be substantially identical to that of (R,3R,7R,11S,15R,R)-10. These results suggest that it 
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is not be possible to differentiate the pairs of the bis-MTPA esters that differ only in their C11 

configuration by NMR spectroscopy under current conditions. 

1.4.3 Comparison of spectroscopic data of the 16 bis-MTPA esters with previous bis-

MTPA esters of 1 

We first compared the 1H NMR spectrum of the bis-R-MTPA ester of the natural 

hormone α1 with the 1H NMR spectra of our 16 bis-MTPA esters. The FID of the 1H NMR 

spectrum of the natural hormone α1 was kindly provided by Dr. Ojika.26 

The peaks of the major isomer in the 1H NMR spectrum of bis-R-MTPA ester of the 

natural product match with the 1H NMR spectrum of bis-R-MTPA ester (R,3R,7R,11R,15R,R)-

10 and the peaks of the minor isomer in the 1H NMR spectrum of the natural bis-R-MTPA ester 

match the 1H NMR spectrum of (R,3S,7R,11R,15R,R)-10. An overlap of the partial 1H NMR 

spectra of the bis-R-MTPA of the natural product, (R,3R,7R,11R,15R,R)-10 and (R,3S,7R,11R, 

15R,R)-10 are shown in Figure 26.  
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Figure 26. Partial 1H NMR spectra of the bis-R-MTPA ester from the natural hormone α1 (bottom), (R,3R,7R,11R, 

15R,R)-10 (middle) and (R,3S,7R,11R,15R,R)-10 (top). 

  

 This confirms the assignment of the C3, C7 and C15 stereocenters in natural hormone α1 

as R by Yajima and coworkers.28 However, the assignment of the C11 configuration as R cannot 

be confirmed by this analysis because according to our results the 1H NMR spectrum of 

(R,3R,7R,11R,15R,R)-10 will be substantially identical to the 1H NMR spectrum of 

(R,3R,7R,11S,15R,R)-10, which differs only at its C11 configuration. 

Yajima and coworkers have previously converted their four synthetic isomers of 1 to the 

corresponding bis-R-MTPA esters.28 The structures of the four bis-R-MTPA esters synthesized 

by them are shown in Figure 27. They provided the copies of the 1H NMR (400 MHz) spectra of 

the four bis-R-MTPA esters as a part of the supporting information to their publication28 but did 

not report the tabulated 1H NMR data for their bis-R-MTPA esters. 

 

1.52.02.53.03.54.0 ppm
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Figure 27. The four bis-R-MTPA esters synthesized by Yajima and coworkers. 

 

Because, all the four bis-MTPA esters synthesized by Yajima and coworkers have 

(3R,15R) configuration, their 1H NMR spectra are expected to show similar resonances for the 

C1 and C16 methylene protons. Out of these four bis-MTPA esters, (R,3R,7R,11R,15R,R)-10 

and (R,3R,7R,11S,15R,R)-10 are C3,C7-anti while (R,3R,7S,11S,15R,R)-10 and (R,3R,7S,11R, 

15R,R)-10 are C3,C7-syn. According to our results these two sets of bis-MTPA esters should 

have different chemical shift for the two C5 methylene protons. However, because their 1H NMR 

spectra were recorded at 400 MHz it is possible that the two C5 methylene protons were not well 

resolved. 

The bis-MTPA esters (R,3R,7R,11R,15R,R)-10 and (R,3R,7R,11S,15R,R)-10 only differ 

in their C11 configuration so they should have substantially identical 1H NMR spectra. Similarly 

the bis-R-MTPA esters (R,3R,7S,11R,15R,R)-10 and (R,3R,7S,11S,15R,R)-10 also differ only in 

their C11 configuration and will have identical 1H NMR spectra. Thus the four bis-MTPA esters 

synthesized by Yajima and coworkers should give two pairs of 1H NMR spectra at 700 MHz. 

Even though they did report a through analysis of the 1H NMR spectra of the four bis-MTPA 

esters, their spectra look pure and their synthetic isomers of 1 must be isomerically pure. 

OMTPA-RR-MTPAO

OH

O

(R,3R,7R,11R,15R,R)-10

OMTPA-RR-MTPAO

OH

O

OMTPA-RR-MTPAO

HO

O

OMTPA-RR-MTPAO

HO

O

(R,3R,7S,11R,15R,R)-10

C3,C7-syn
same C3, C7 and C15 configuration and different C11 configuration

(R,3R,7S,11S,15R,R)-10

(R,3R,7R,11S,15R,R)-10

C3,C7-anti
same C3, C7 and C15 configuration and different C11 configuration
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Feringa and coworkers have also reported the synthesis of two isomers of 1,30 but they 

did not do the Mosher ester analysis of their final products. However, they report identical 1H 

NMR spectra for their two synthetic isomers of 1 (one of then is C3,C7-syn and the other is 

C3,C7-anti). If this is true then it is likely that their final products were epimerized at the C3 

stereocenter during the synthesis. 

1.5 CONCLUSIONS 

Eight stereoisomers of the hormone α1 were synthesized by FMS. Based on the 1H NMR 

spectra of these eight isomers it is only possible to assign the relative configuration of the C3 and 

C7 stereocenters. The 13C NMR spectra of these eight isomers show very small differences. 

These eight stereoisomers were subsequently converted to the corresponding R and S bis-MTPA 

esters.  

The analysis of the 1H NMR spectra of these 16 Mosher esters suggested about 16-34% 

epimerization at the C3 stereocenter of the eight stereoisomers of 1. All the sixteen bis-MTPA 

esters were purified by chiral HPLC over (S,S)-Whelk-O column to get rid of the minor C3 

epimer impurity. The 700 MHz 1H NMR and 282 MHz 19F NMR spectra of the 16 bis-Mosher 

esters were obtained and compared with each other. While the 19F NMR spectra provide 

information only about the C3 stereochemistry, the configurations of the C3, C7 and C15 

stereocenters can be successfully assigned by 1H NMR analysis of the bis-MTPA esters. 

However, assignment of the C11 configuration by 1H and 19F NMR analysis of the 16 bis-MTPA 

esters is not possible. 
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By comparison of the 1H NMR spectrum of the bis-R-MTPA ester of the natural hormone 

α1 with the 1H NMR spectra of the 16 synthetic bis-MTPA esters, we confirmed the assignment 

of the C3, C7 and C15 stereocenters in natural product as R. The assignment of the C11 

stereocenter in the natural product as R could not be confirmed by this analysis.  

1.6 EXPERIMENTAL 

General Information: 

 All reactions were performed under an atmosphere of argon unless otherwise 

noted. Reaction solvents were freshly dried either by distillation or by passing through a column 

of activated alumina. THF was freshly distilled from Na/benzophenone. Methylene chloride, 

diethyl ether and toluene were dried by activated alumina according to literature.86 All reagents 

were purchased commercially and used without further purification unless stated otherwise. 

Reaction mixtures were magnetically stirred and reaction progress was monitored by TLC with 

0.25 mm E. Merck precoated silica gel plates. Flash chromatography was performed with silica 

gel 60 (particle size 0.040–0.063 mm) supplied by Sorbent Technologies. 

Products and reactions were analyzed by 1H NMR, 13C NMR, 19F NMR, FT-IR, low and 

high resolution mass spectroscopy, and HPLC. NMR spectra were taken on a Bruker WH-300, 

IBM AF-300, a Bruker AvanceTM 500 NMR, Bruker AvanceTM 600 NMR, and a Bruker 

AvanceTM 700 NMR spectrometer. Spectra were recorded at room temperature in the indicated 

deuteriated solvents and chemical shifts were reported in parts per million (ppm) downfield 

relative to TMS using the residual solvent proton resonance of CDCl3 (7.27 ppm) or central 

CDCl3 carbon peak (77.00 ppm) as the internal standard. In reporting spectral data, the following 
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abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, sxt = sextet, m = 

multiplet, dd = doublet doublet, td = triplet doublet, ddd = doublet doublet doublet. Infrared 

spectra were taken on a Mattson Genesis Series FTIR using thin film on NaCl plate. Peaks are 

reported in wave numbers (cm−1). Low resolution mass spectra was obtained on a V/G 70/70 

double focusing machine and were reported in units of m/z. Optical rotations were measured on a 

Perkin-Elmer 241 polarimeter at a Na D-line (λ = 589 nm) using a 1 dm cell. HPLC analyses 

were performed on a Waters 600 E system with a Waters 2487 dual λ absorption detector. 

Compound names have been obtained from ChemDraw Ultra 12.0 (Cambridge Soft Corp.). 

General conditions for analytical fluorous HPLC experiments: 

A solution of the fluorous sample in THF was injected into the Waters HPLC system 

(Waters 600 Controller and Waters 2487 dual λ Absorbance Detector) with a FluoroFlashTM 

PF-C8 column (5 µm, 10 A°, 4.6 ×  150 mm). The flow rate was 1.0 mL/min. The UV wave-

lengths for detection were 230 nm and 254 nm. The three frequently used elution conditions 

were: 

Conditions 1: The gradient elution started at 80:20 CH3CN:H2O, and changed to 100% CH3CN 

in 30 min. 

Conditions 2: The gradient elution started at 70:30 CH3CN:H2O, and changed to 100% CH3CN 

in 30 min. 

Conditions 3: The gradient elution started at 60:40% CH3CN:H2O, and changed to 100% CH3CN 

in 30 min. 

 TBSO
OH
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4-(tert-Butyldimethylsilyloxy)butan-1-ol (64):42 Sodium hydride (60% suspension in mineral 

oil, 2.2 g, 55.6 mmol) was washed with hexanes and suspended in dry THF (110 mL). 1,4-

Butanediol 63 (5.0 g, 55.6 mmol) was added to this suspension and the reaction mixture was 

stirred at room temperature for 45 min during which time a large amount of opaque white 

precipitate formed. tert-Butyldimethylsilyl chloride (8.4 g, 55.6 mmol) was then added and the 

mixture was stirred at room temperature for 45 min. The reaction mixture was diluted with Et2O 

and washed with 10% aqueous solution of potassium carbonate. The layers were separated and 

the aqueous layer was further extracted with Et2O. The combined organic extracts were washed 

with brine, dried over anhydrous MgSO4, filtered and concentrated under vacuum. Purification 

by flash column chromatography (SiO2, 30% ethyl acetate/hexanes) gave 9.6 g (85%) of the 

desired alcohol 64 as colorless oil: 1H NMR (300 MHz, CDCl3) δ 3.70–3.63 (m, 4H), 2.54 (br s, 

1H), 1.71–1.60 (m, 4H), 0.91 (s, 9H), 0.08 (s, 6H). 

 

 

4-(tert-Butyldimethylsilanyloxy)butanal (65):87 A solution of DMSO (4.9 mL, 68.2 mmol) in 

DCM (100 mL) was added dropwise to a solution of oxalyl chloride (6.5 mL, 74.4 mmol) in 

DCM (90 mL) at −78 °C. After 5 min, a solution of starting alcohol 64 (12.7 g, 62.0 mmol) in 

DCM (80 mL) was added dropwise. The reaction mixture was stirred at −78 °C for 15 min, then 

triethylamine (43.7 mL, 310.2 mmol) was added in one portion. The mixture was stirred at −78 

°C for 10 min and at room temperature for 2 h. The reaction mixture was diluted with DCM, 

water was added and the layers were separated. The aqueous layer was further extracted with 

DCM. The combined organic extracts were washed with saturated NH4Cl solution and brine, 

dried over anhydrous MgSO4 and concentrated under vacuum. Purification by flash column 

TBSO
O

H
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chromatography (SiO2, 10% ethyl acetate/hexanes) gave 11.3 g (90%) of pure aldehyde 65 as 

colorless oil: 1H NMR (300 MHz, CDCl3) δ 9.80 (t, J = 1.8 Hz, 1H), 3.66 (t, J = 6.0 Hz, 2H), 

2.51 (td, J = 7.2, 1.8 Hz, 2H), 1.91–1.82 (m, 2H), 0.89 (s, 9H), 0.05 (s, 6H). 

 

 

4-(tert-Butyldimethylsilyloxy)butanoic acid (66):88 NaH2PO4•H2O (1.80 g, 12.9 mmol), 2-

methyl-2-butene (2 M in THF, 19.0 mL, 38.0 mmol) and NaClO2 (1.3 g, 11.5 mmol) were added 

to a solution of the starting aldehyde 65 (0.77 g, 3.8 mmol) in 3:1 t-BuOH:H2O (96 mL) at room 

temperature. The resulting yellowish green mixture was stirred vigorously at room temperature 

for 15 h.  Most of the reaction solvent was then removed under vacuum. The remaining aqueous 

portion was diluted with EtOAc and the layers were separated. The aqueous layer was further 

extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by flash chromatography (SiO2, 20% ethyl 

acetate/hexanes) afforded 0.71 mg (86%) of the desired carboxylic acid 66 as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 10.84 (br s, 1H), 3.68 (t, J = 6.0 Hz, 2H), 2.47 (t, J = 7.2 Hz, 2H), 

1.90–1.82 (m, 2H), 0.90 (s, 9H), 0.06 (s, 6H). 

 

 

(S)-4-Benzyl-3-(4-(tert-butyldimethylsilyloxy)butanoyl)oxazolidin-2-one ((S)-67):41  

Triethylamine (6.3 mL, 44.8 mmol) was added dropwise to a solution of the starting carboxylic 

acid 66 (8.5 g, 38.9 mmol) in diethyl ether (370 mL) and the resulting mixture was stirred at 
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room temperature for 15 min. The reaction mixture was cooled to 0 °C and ethyl chloroformate 

(3.8 mL, 38.9 mmol) was added. The mixture was warmed to room temperature and stirred for 1 

h. In a separate flask n-BuLi (1.6 M in hexanes, 28.0 mL, 44.8 mmol) was added dropwise to a 

solution (4S)-benzyloxazolidinone (6.9 g, 38.9 mmol) in THF (55 mL) at −78  °C. The 

oxazolidinone anion solution was then transferred dropwise via cannula to the reaction mixture 

containing the carboxylic acid. The mixture was stirred at − 78 °C for 30 min and at room 

temperature for 3 h. The reaction was quenched by addition of saturated NH4Cl solution, water 

was added and the layers were separated. The aqueous layer was further extracted with Et2O. 

The combined organic extracts were washed with brine, dried over MgSO4 and concentrated 

under vacuum. Purification by flash chromatography (SiO2, 10% ethyl acetate/hexanes) gave 8.4 

g (57%) of pure (S)-67 as colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.38–7.28 (m, 3H), 7.24–

7.20 (m, 2H), 4.72–4.64 (m, 1H), 4.23–4.14 (m, 2H), 3.71 (t, J = 6.2 Hz, 2H), 3.32 (dd, J = 3.3, 

13.4 Hz, 1H), 3.03 (dd, J = 6.8, 7.7 Hz, 2H), 2.77 (dd, J = 9.7, 13.3 Hz, 1H), 1.97–1.88 (m, 2H), 

0.91 (s, 9H), 0.07 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.2, 153.4, 135.3, 129.4, 128.9, 

127.3, 66.1, 62.0, 55.2, 37.9, 32.1, 27.2, 25.9, 18.3, − 5.4; IR (neat) 2954, 2928, 1786, 1701, 

1388, 1257, 1100, 837 cm−1; EIMS m/z 377 (M)+; HRMS (EI) (M)+ calcd for C20H31NO4Si, 

377.2022; found, 377.2010; [α]  +32.32 (c 0.95, CHCl3). 

 

 

(R)-4-Benzyl-3-(4-(tert-butyldimethylsilyloxy)butanoyl)oxazolidin-2-one ((R)-67):41  
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This compound was prepared by reaction of the carboxylic acid 66 with (4R)-

benzyloxazolidinone according to the procedure described for preparation of (S)-67. The spectral 

data was in good accordance to that reported for (S)-67: [α] −32.84 (c 0.81, CHCl3). 

 

 

(S)-4-Benzyl-3-((S)-4-(tert-butyldimethylsilyloxy)-2-methylbutanoyl)oxazolidin-2-one ((S,S)-

68):45 A solution of oxazolidinone derivative (S)-67 (8.4 g, 22.2 mmol) in THF (30 mL) was 

added dropwise to a solution of NaHMDS (1.0 M in THF, 31.0 mL, 31.0 mmol) in THF (30 mL) 

at −78 °C. After 1 h MeI (7.0 mL, 110.8 mmol) was added dropwise and the reaction mixture 

was stirred at −78 °C for 3 h. The reaction was quenched by addition of acetic acid (1.5 mL) and 

the mixture was warmed to room temperature. The reaction mixture was diluted with EtOAc, 

water was added and the layers were separated. The aqueous layer was further extracted with 

EtOAc. The combined organic extracts were washed with brine, dried over anhydrous MgSO4 

and concentrated under vacuum. Purification by flash column chromatography (SiO2, 10% ethyl 

acetate/hexanes) afforded 7.5 g (87%) of (S,S)-68 as white solid (mp 51–52 °C): 1H NMR (300 

MHz, CDCl3) δ 7.37–7.28 (m, 3H), 7.26–7.20 (m, 2H), 4.71–4.63 (m, 1H), 4.19–4.14 (m, 2H), 

3.93–3.81 (m, 1H), 3.72–3.60 (m, 2H), 3.27 (dd, J = 3.3, 13.3 Hz, 1H), 2.77 (dd, J = 9.6, 13.3 

Hz, 1H), 2.11–1.99 (m, 1H), 1.70–1.60 (m, 1H), 1.26 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H), 0.03 (s, 

6H); 13C NMR (75 MHz, CDCl3) δ 176.9, 152.9, 135.4, 129.4, 128.9, 127.3, 65.9, 61.0, 55.3, 

37.9, 36.0, 34.7, 25.9, 18.3, 17.9, −5.5; IR (thin film) 2953, 2929, 2882, 2856, 1766, 1696, 1462, 

1101 cm−1; EIMS m/z 391 (M)+; HRMS (EI) (M)+ calcd for C21H33NO4Si, 391.2179; found 

391.2160; [α]  +59.83 (c 0.43, CHCl3). 
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(R)-4-Benzyl-3-((R)-4-(tert-butyldimethylsilyloxy)-2-methylbutanoyl)oxazolidin-2-one 

((R,R)-68):45 This compound was prepared from (R)-67 in 85% yield according to the procedure 

described above for preparation of (S,S)-68: mp 51–52 °C; [α] −60.37 (c 0.46, CHCl3); other 

spectroscopic data were in good accordance to that reported for (S,S)-68. 

 

 

1-((S)-4-(tert-Butyldimethylsilyloxy)-2-methylbutanoyl)-1-((S)-1-hydroxy-3-phenylpropan-

2-yl)-3-methoxy-3-methylurea ((S,S)-69):46 A solution of AlMe3 (2 M in toluene, 1.0 mL, 2.0 

mmol) was added dropwise to a solution of N,O-hydroxylamine hydrochloride (200.2 mg, 2.0 

mmol) in dry DCM (10 mL) at 0 °C. The reaction mixture was stirred at room temperature for 1 

h and then cooled to −50 °C. A solution of (S,S)-68 (387.5 mg, 0.10 mmol) in dry DCM (1 mL) 

was added and the mixture was stirred at room temperature overnight. The reaction mixture was 

cooled to 0 °C, quenched with 1 M aqueous tartaric acid, and stirred vigorously for 1 h. Water 

was added and the layers were separated. The aqueous layer was further extracted twice with 

DCM. The combined organic extracts were washed with brine, dried over MgSO4 and 

concentrated under vacuum. Purification by flash column chromatography (SiO2, 20% ethyl 

acetate/hexanes) gave 280 mg (63%) of the urea (S,S)-69 as a colorless oil: 1H NMR (300 MHz, 

CDCl3) δ 7.36–7.24 (m, 5H), 6.00 (d, J = 8.4 Hz, 1H), 4.40–4.24 (m, 1H), 4.14 (d, J = 5.1 Hz, 
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2H), 3.70 (t, J = 6.0 Hz, 2H,), 3.61 (s, 3H), 3.10 (s, 3H), 3.03–2.86 (m, 2H), 2.74 (sextet, J = 6.9 

Hz, 1H), 2.01 (dtd, J = 6.3, 6.6, 13.5 Hz, 1H), 1.65 (dtd, J = 6.3, 6.5, 13.8 Hz, 1H), 1.25 (d, J = 

6.9 Hz, 3H), 0.94 (s, 9H), 0.10 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 176.4, 159.4, 137.0, 129.1, 

128.3, 126.5, 64.5, 61.0, 60.4, 50.1, 37.7, 36.1, 35.8, 35.1, 25.7, 18.1, 16.8, −5.6; IR (neat) 3338, 

2931, 2857, 1733, 1683, 1456, 1099, 835 cm−1; EIMS m/z 453 (M + H)+; HRMS (EI) (M)+ calcd 

for C23H40N2O5Si, 452.2707; found, 452.2704. 

 

 

(S)-4-(tert-Butyldimethylsilyloxy)-2-methylbutanoic acid ((S)-70):48 Hydrogen peroxide (30% 

aqueous solution, 7.1 mL, 62.9 mmol) and LiOH•H2O (1.3 g, 31.5 mmol) were added to a 

solution of (S,S)-68 (6.2 g, 15.7 mmol) in THF (37 mL) and water (37 mL) at 0 °C. The reaction 

mixture was stirred at 0 °C for 3 h. Most of the THF was then evaporated under vacuum and the 

remaining aqueous portion was extracted with DCM. The combined organic extracts were dried 

over anhydrous MgSO4, filtered and concentrated under vacuum. Purification by flash column 

chromatography (SiO2, 20–50% ethyl acetate/hexanes) gave 3.5 g (95%) of the pure carboxylic 

acid (S)-70 as a colorless oil: 1H NMR (500 MHz, CDCl3) δ 10.94 (br s, 1H), 3.77–3.65 (m, 2H), 

2.71–2.60 (m, 1H), 2.03–1.91 (m, 1H), 1.70–1.60 (m, 1H), 1.22 (d, J = 7.0 Hz, 3H), 0.90 (s, 9H), 

0.07 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 182.7, 60.8, 36.2, 36.0, 25.9, 18.3, 17.0, −5.5; IR 

(neat) 2930, 2858, 2663, 1713, 1416, 1105, 1006, 882 cm−1; EIMS m/z 217 (M − CH3)+; HRMS 

(EI) (M − CH3)+ calcd for C10H21O3Si, 217.1260; found, 217.1258;  [α]  −14.06 (c 1.8, CHCl3). 
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(R)-4-(tert-Butyldimethylsilyloxy)-2-methylbutanoic acid ((R)-70):48 This compound was 

prepared from (R,R)-68 in 95% yield, according to the procedure described above for 

preparation of (S)-70: [α]  +13.51 (c 1.8, CHCl3); other spectroscopic data was in good 

accordance to that reported above for (S)-70. 

 

 

(S)-4-(tert-Butyldimethylsilyloxy)-N-methoxy-N,2-dimethylbutanamide ((S)-71):49 

1,1′-Carbonyldiimidazole (3.9 g, 23.7 mmol) was added in equal portions over a period of 15 

min to a solution of carboxylic acid (S)-70 (3.5 g, 14.9 mmol) in DCM (80 mL) at room 

temperature. After final addition the reaction mixture was stirred at room temperature for 1 h. 

N,O-dimethylhydroxylamine hydrochloride (3.7 g, 37.1 mmol) was added in one portion and the 

resulting mixture was stirred overnight. The reaction mixture was diluted with ether and filtered. 

The filtrate was diluted with diethyl ether and was washed with 5% aq. citric acid and brine, 

dried over anhydrous MgSO4 and concentrated under vacuum. Purification by flash 

chromatography (SiO2, 20% ethyl acetate/hexanes) gave 3.9 g (95%) of Weinreb amide (S)-71 as 

a colorless oil: 1H NMR (300 MHz, CDCl3) δ 3.70 (s, 3H), 3.69–3.55 (m, 2H), 3.20 (s, 3H), 

3.18–3.06 (m, 1H), 1.99–1.88 (m, 1H), 1.60–1.50 (m, 1H), 1.13 (d, J = 6.9 Hz, 3H), 0.89(s, 9H), 

0.04 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 177.8, 61.4, 60.7, 36.5, 32.2, 31.4, 25.9, 18.3, 17.2, 

−5.40; IR (neat) 2956, 2931, 2857, 1667, 1463, 1255, 1101, 836 cm−1; EIMS m/z 260 (M − 

CH3)+; HRMS (EI) (M −  CH3)+ calcd for C12H26O3NSi, 260.1682; found, 260.1693; [α]  

+20.60 (c 0.03, CHCl3). 
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(R)-4-(tert-Butyldimethylsilyloxy)-N-methoxy-N,2-dimethylbutanamide ((R)-71):49  

This compound was prepared in 95% yield from (R)-70 according to the procedure described 

above for preparation of (S)-71: [α]  −21.48 (c 2.0, CHCl3); other spectroscopic data was in 

good accordance to that reported for (S)-71. 

 

 

(S)-5-(tert-Butyldimethylsilyloxy)-3-methylpentan-2-one ((S)-40):50 MeMgBr (3 M in ether, 

7.0 mL, 20.9 mmol) was added dropwise to a solution of starting Weinreb amide (S)-71 (3.8 g, 

13.9 mmol) in dry THF (60 mL) at −78 °C. The reaction mixture was stirred at −78 °C for 1 h 

and then gradually warmed to 0 °C and stirred for 3.5 h. The reaction was quenched by slow 

addition of saturated NH4Cl solution. Water was added and the layers were separated. The 

aqueous layer was extracted with EtOAc. The combined organic extracts were washed with 

brine, dried over anhydrous MgSO4, and concentrated under vacuum. Purification by flash 

column chromatography (SiO2, 5% ethyl acetate/hexanes) gave 2.9 g (91%) of pure ketone (S)-

40 as a pale yellow oil: 1H NMR (300 MHz, CDCl3) δ 3.62 (t, J = 6.2 Hz, 2H), 2.71 (sxt, J = 6.9 

Hz, 1H), 2.16 (d, J = 0.19 Hz, 3H), 1.97–1.87 (m, 1H), 1.60–1.47 (m, 1H), 1.10 (d, J = 7.0 Hz, 

3H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 212.5, 60.7, 43.7, 35.7, 28.3, 25.9, 

18.8, 16.2, −5.45; IR (neat) 2956, 2930, 2857, 1716, 1472, 1256, 1100, 836 cm−1; EIMS m/z 215 

(M −  CH3)+; HRMS (EI) (M −  H)+ calcd for C12H25O2Si, 229.1624; found, 229.1622; [α]  

+13.21 (c 1.20, CHCl3). 
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(R)-5-(tert-Butyldimethylsilyloxy)-3-methylpentan-2-one ((R)-40):89 This compound was 

prepared in 73% yield from Weinreb amide (S)-71 according to the procedure described for 

preparation of (S)-40: [α]  −12.97 (c 0.61, CHCl3); other spectroscopic data was in good 

accordance to that reported for (S)-40. 

 

 

(S)-(3-Bromo-2-methylpropoxy)(tert-butyl)dimethylsilane ((S)-56):90 TBSCl (9.0 g, 59.7 

mmol) was added to a stirred mixture of (S)-3-bromo-2-methylpropan-1-ol (S)-55 (7.3 g, 47.7 

mmol) and imidazole (8.2 g, 119.4 mmol) in DMF (180 mL). The resulting mixture was stirred 

at room temperature for 5 h. The reaction was quenched by addition of saturated NH4Cl solution. 

The reaction mixture was diluted with pentanes, water was added and the layers were separated. 

The aqueous layer was further extracted with pentanes. The combined organic extracts were 

washed with water and brine, dried over anhydrous MgSO4 and concentrated under vacuum. 

Purification by flash column chromatography (SiO2, 2% ethyl acetate/hexanes) gave 11.9 g 

(94%) of pure bromide (S)-56 as colorless oil: 1H NMR (300 MHz, CDCl3) δ 3.58 (dd, J = 5.0, 

10.0 Hz, 1H), 3.50 (dd, J = 5.3, 9.6 Hz, 1H), 3.49 (dd, J = 6.8, 9.9 Hz, 1H), 3.45 (dd, J = 5.5, 9.7 

Hz, 1H), 2.05–1.93 (m, 1H), 0.99 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 6H). 
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(R)-tert-Butyldimethyl(2-methylpent-4-ynyloxy)silane ((R)-54):90 A solution of the above 

bromide (S)-56 (11.5 g, 43.0 mmol) in DMPU (115 mL) was added dropwise to a suspension of 

lithium acetylide ethylene diamine complex (8.8 g, 86.1 mmol) in THF (230 mL) at 0 °C. The 

cooling bath was removed and the reaction mixture was stirred at room temperature for 2 h (the 

reaction was monitored by GC). The reaction was quenched by addition of saturated NH4Cl 

solution. The resulting mixture was diluted with pentanes, water was added, and the layers were 

separated. The aqueous layer was further extracted with pentanes. The combined organic extracts 

were washed with water and brine, dried over anhydrous MgSO4 and concentrated under 

vacuum. Purification by flash column chromatography (SiO2, 2% ethyl acetate/hexanes) gave 5.3 

g of alkyne (R)-54 as an inseparable mixture with the elimination product 57 (ratio 9:1 based on 

1H NMR spectroscopic analysis): 1H NMR (major product) (300 MHz, CDCl3) δ 3.52 (dd, J = 

5.5, 9.9 Hz, 1H), 3.47 (dd, J = 6.7, 9.9 Hz, 1H), 2.30 (ddd, J = 2.7, 5.7, 16.7 Hz, 1H), 2.13 (ddd, 

J = 2.7, 6.9, 16.7 Hz, 1H), 1.95 (dd, J = 2.7, 2.7 Hz, 1H), 1.90–1.79 (m, 1H), 0.98 (d, J = 6.8 Hz, 

3H), 0.90 (s, 9H), 0.06 (s, 6H). 

 

 

(2R,10R)-1,11-Bis(tert-butyldimethylsilyloxy)-2,6,10-trimethylundeca-4,7-diyn-6-ol ((R,R)-

53): A solution of alkyne (R)-54 (1.2 g, 4.6 mmol) in Et2O (2.5 mL) was added dropwise to a 

solution of ethylmagnesium bromide (3 M in ether, 1.3 mL, 3.9 mmol) in Et2O (2.5 mL) and the 

resulting mixture was stirred at reflux temperature for 2 h. The reaction mixture was cooled to 0 

°C and acetyl chloride (0.1 mL, 1.5 mmol) in THF (0.8 mL) was added dropwise. The resulting 

mixture was stirred at 0 °C for 1 h and at 45 °C overnight. The reaction mixture was cooled to 

room temperature and was quenched by addition of saturated NH4Cl solution. Water was added 
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and the layers were separated. The aqueous layer was further extracted Et2O. The combined 

organic extracts were washed with brine, dried over anhydrous MgSO4 and concentrated under 

vacuum. Purification by flash chromatography (SiO2, 8% ethyl acetate/hexanes) gave 650 mg 

(90%) of pure (R,R)-53 as a pale yellow oil: 1H NMR (300 MHz, CDCl3) δ 3.50 (dd, J = 5.6, 9.8 

Hz, 2H), 3.46 (dd, J = 6.6, 9.8 Hz, 2H), 2.36 (br s, 1H), 2.32 (dd, J = 5.8, 16.7 Hz, 2H), 2.14 (dd, 

J = 6.8, 16.6 Hz, 2H), 1.89–1.78 (m, 2H), 1.72 (s, 3H), 0.96 (d, J = 6.8 Hz, 6H), 0.90 (s, 18H), 

0.5 (s, 12H); 13C NMR (75 MHz, CDCl3) δ 83.3, 81.4, 66.8, 60.2, 35.3, 32.5, 25.9, 22.2, 18.3, 

16.0, −5.4; IR (neat) 3431, 2956, 2929, 2857, 2244, 1471, 1256, 1096, 837 cm−1; EIMS m/z 451 

(M − CH3)+; HRMS (EI) (M − CH3)+  calcd for C25H47O3Si2, 451.3064; found, 451.3066. 

 

 

(2R,10R)-2,6,10-Trimethylundeca-4,7-diyne-1,6,11-triol ((R,R)-58): TBAF (1 M in THF, 2.4 

mL, 2.4 mmol) was added dropwise to a solution of the disilylether (R,R)-53 (183.0 mg, 0.4 

mmol) in THF (2.2 mL) at 0 °C. The reaction mixture was stirred at this temperature for 30 min 

and at room temperature for 5 h. The reaction was quenched by addition of saturated aqueous 

NH4Cl solution, diluted with EtOAc and the layers were separated. The aqueous layer was 

further extracted with EtOAc. The combined organic layers were dried over anhydrous MgSO4, 

filtered and concentrated under vacuum. Purification by flash column chromatography (SiO2, 

100% ethyl acetate) gave 91.4 mg (96%) of the desired triol (R,R)-58 as a colorless oil: 1H NMR 

(300 MHz, CDCl3) δ 3.92 (br s, 1H), 3.57 (d, J = 6.0 Hz, 4H), 2.87 (br s, 2H), 2.30 (dd, J = 6.3, 

16.8 Hz, 2H), 2.23 (dd, J = 6.3, 16.8 Hz, 2H), 1.97–1.82 (m, 2H), 1.71 (s, 3H), 0.98 (d, J = 6.6 

Hz, 6H); 13C NMR (75 MHz, CDCl3) δ 83.8, 80.9, 66.7, 59.8, 34.8, 32.2, 22.5, 16.3; IR (neat) 
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3421, 2961, 2274, 1458 cm−1; EIMS m/z 223 (M −  CH3)+; HRMS (EI) (M −  CH3)+ calcd for 

C13H19O3, 223.1334; found 223.1328. 

 

 

(2R,6RS,10R)-11-(tert-Butyldimethylsilyloxy)-2,6,10-trimethylundeca-4,7-diyne-1,6-diol 

((R,RS,R)-59):39 Triethylamine (0.20 mL, 1.50 mmol) and DMAP (4.0 mg, 0.03 mmol) were 

added to a solution of the starting triol (R,R)-58 (332.0 mg, 1.40 mmol) in DCM (4 mL). The 

mixture was stirred for 5 min and tert-butyldimethylsilyl chloride (236.3 mg, 1.50 mmol) was 

added. The resulting mixture was stirred at room temperature for 15 h during which some white 

precipitate was formed. The reaction was quenched by the addition of saturated aqueous NH4Cl 

solution, diluted with Et2O, water was added and the layers were separated. The aqueous layer 

was further extracted with Et2O. The combined organic extracts were washed with brine, dried 

over anhydrous MgSO4, filtered, and concentrated under vacuum. The residue was purified by 

gradient flash column chromatography. First elution with (8% ethyl acetate/hexanes) gave 172.1 

mg (26%) of the bisprotected product (R,R)-53, second elution with (50% ethyl acetate/hexanes) 

gave 240.4 mg (49%) of the desired monoprotected mixture (R,RS,R)-59 and third elution with 

(100% ethyl acetates) gave 76.2 mg (23%) of the recovered triol (R,R)-58. Spectroscopic data 

for (R,RS,R)-59: 1H NMR (500 MHz, CDCl3) δ 3.58 (t, J = 5.0 Hz, 2H), 3.51 (dd, J = 5.5, 10.0 

Hz, 1H), 3.47 (dd, J = 7.0, 10.0 Hz, 1H), 2.37 (br s, 1H), 2.32 (dd, J = 5.5, 16.5 Hz, 1H), 2.31 

(dd, J = 6.5, 17.0 Hz, 1H), 2.25 (dd, J = 6.5, 16.5 Hz, 1H), 2.15 (dd, J = 7.0, 17.0 Hz, 1H), 1.95–

1.87 (m, 1H), 1.87–1.81 (m, 1H), 1.73 (s, 3H), 1.01 (d, J = 6.5 Hz, 3H), 0.97 (d, J = 7.0 Hz, 3H), 

0.90 (s, 9H), 0.06 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 83.7, 83.0, 81.6, 80.8, 67.0, 66.8, 60.1, 

35.2, 35.1, 32.5, 25.9, 22.5, 22.2, 18.3, 16.2, 16.0, −5.4; IR(neat) 3369, 2956, 2929, 2857, 2247, 
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1471, 1456, 1092 cm−1; EIMS m/z 337 (M − CH3)+; HRMS (EI) (M − CH3)+ calcd for 

C19H33O3Si, 337.2199; found 337.2204. 

 

 

(2R,6RS,10R)-10-((tert-Butyldimethylsilyloxy)methyl)-6-hydroxy-2,6 dimethylundeca-4,7-di 

ynal ((R,RS,R)-60):40 Dess-Martin periodinane (315.0 mg, 0.74 mmol) was added to a solution 

of the starting alcohol mixture (R,RS,R)-59 (238.0 mg, 0.68 mmol) and pyridine (0.55 mL, 6.80 

mmol) in DCM (108 mL) at 0 °C. The resulting mixture was stirred at 0 °C for 2 h. If the TLC 

indicated incomplete completion an additional 1 equiv of DMP was added at 0 °C and the 

reaction was stirred for 1 h. The reaction was then quenched by the addition of a 1:1 mixture of 

saturated aqueous NaHCO3 solution and saturated aqueous Na2SO3 solution (70 mL) and the 

mixture was stirred until two layers could be seen. The layers were separated and the aqueous 

layer was further extracted twice with DCM. The combined organic extracts were washed with 

brine, dried over anhydrous MgSO4 and concentrated under vacuum. Flash column 

chromatography (SiO2, 20% ethyl acetate/hexanes) gave 193.3 mg (82%) of the desired aldehyde 

(R,RS,R)-60 as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 9.70 (s, 1H), 3.51 (dd, J = 5.5, 9.9 

Hz, 1H), 3.45 (dd, J = 6.7, 9.9 Hz, 1H), 2.60-2.50 (m, 2H), 2.39 (dd, J = 9.0, 18.3 Hz, 1H), 2.30 

(dd, J = 5.7, 16.5 Hz, 1H), 2.13 (dd, J = 6.9, 16.8 Hz, 1H), 1.88–1.77 (m, 1H), 1.71 (s, 3H), 1.22 

(d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.04 (s, 6H); 13C NMR (75 MHz, 

CDCl3) δ 203.0, 84.3, 82.8, 81.7, 79.1, 66.7, 60.0, 45.0, 35.1, 32.4, 25.9, 22.1, 19.9, 18.3, 16.0, 

13.1, −5.4 ; IR (neat) 3435, 2930, 2857, 2246, 1728, 1462, 1256, 1095 cm−1; EIMS m/z 335 (M − 

CH3)+; HRMS (EI) (M − CH3)+ calcd for C19H31O3Si, 335.2036; found, 335.2043. 
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(2R,6RS,10R)-11-(tert-Butyldimethylsilyloxy)-2,6,10-trimethyl-6-(trimethylsilyloxy) undeca-

4,7-diynal ((R,RS,R)-61): Chlorotrimethylsilane (0.24 mL, 1.63 mmol) was added to a stirred 

mixture of the tertiary alcohol (R,RS,R)-60 (190.0 mg, 0.54 mmol), triethylamine (0.30 mL, 2.17 

mmol) and DMAP (6.0 mg, 0.05 mmol) in DCM (5.60 mL) at room temperature. The reaction 

mixture was stirred at room temperature for 1 h. The reaction was quenched by addition of 

saturated NaHCO3 solution. The mixture was diluted with DCM, water was added and the layers 

were separated. The aqueous layer was further extracted with DCM. The combined organic 

extracts were washed with brine, dried over anhydrous MgSO4 and concentrated under vacuum. 

Purification by flash column chromatography (SiO2, 5% ethyl acetate/hexanes) gave 200.1 mg 

(88%) of the pure aldehyde (R,RS,R)-61 as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 9.72 

(s, 1H), 3.51 (dd, J = 6.0, 9.9 Hz, 1H), 3.47 (dd, J = 6.6, 9.9 Hz, 1H), 2.65–2.50 (m, 2H), 2.43–

2.28 (overlapping dd, 2H), 2.13 (dd, J = 6.9 Hz, 16.8 Hz, 1H), 1.93–1.78 (m, 1H), 1.71 (s, 3H), 

1.24 (d, J = 7.2 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.23 (s, 9H), 0.05 (s, 6H); 13C 

NMR (125 MHz, CDCl3) δ 203.1, 85.2, 83.5, 81.7, 78.8, 66.8, 61.0, 45.1, 35.2, 35.0, 25.9, 22.3, 

20.1, 18.3, 16.1, 13.2, 1.6, −5.4; IR (neat) 2958, 2930, 2857, 2241, 1733, 1472, 1463, 843 cm−1; 

EIMS m/z 407 (M −  CH3)+; HRMS (EI) (M −  CH3)+ calcd for C22H39O3Si2, 407.2438; found, 

407.2422. 
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(3S,6RS,7R,11RS,15R)-1,16-Bis(tert-butyldimethylsilyloxy)-6-hydroxy-3,7,11,15-

tetramethyl-11-(trimethylsilyloxy)hexadeca-9,12-diyn-4-one (S,RS,R,RS,R)-72):51 n-BuLi 

(1.6 M in hexanes, 0.30 mL, 0.48 mmol) was added dropwise to a stirring solution of 

diisopropylamine (0.07 mL, 0.50 mmol) in THF (0.4 mL) at 0 °C. The reaction mixture was 

stirred at this temperature for 5 min and then cooled to −78 °C. A solution of starting ketone (S)-

40 (103.5 mg, 0.45 mmol) in THF (0.4 mL) was added dropwise and the mixture was stirred at 

−78 °C for 30 min. A solution of aldehyde (R,RS,R)-61 (127.0 mg, 0.30 mmol) in THF (0.4 mL) 

was added dropwise and the resulting mixture was stirred at −78 °C for 3.5 h. The reaction was 

quenched by addition of saturated NH4Cl solution and warmed to room temperature. The mixture 

was diluted with Et2O, water was added and the layers were separated. The aqueous layer was 

further extracted with Et2O. The combined organic extracts were washed with brine, dried over 

anhydrous MgSO4, and concentrated under vacuum. Purification by flash column 

chromatography (SiO2, polarity was gradually increased from 5% ethyl acetate/hexanes to 10% 

ethyl acetate/hexanes) gave 157.0 mg (80%) of the desired aldol product (S,RS,R,RS,R)-72 as a 

colorless oil: 1H NMR (300 MHz, CDCl3) δ 4.12–4.00 (m, 0.5H), 3.93–3.80 (m, 0.5H), 3.61 (t, J 

= 6.0 Hz, 2H), 3.47 (d, J = 6 Hz, 2H), 3.31–3.14 (m, 1H), 2.81–2.65 (m, 1H), 2.65–2.36 (m, 2H), 

2.36–2.05 (m, 3H), 2.00–1.73 (overlapping multiplets, 3H), 1.70 (s, 3H), 1.60–1.45 (m, 1H), 

1.09 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.6 Hz, 1.5 H), 1.00 (d, J = 6.9 Hz, 1.5H), 0.95 (d, J = 6.6 

Hz, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 0.21 (s, 9H), 0.04 (s, 12H); 13C NMR (75 MHz, CDCl3) δ 

216.0, 215.8, 84.23, 84.20, 83.8, 83.7, 81.32, 81.28, 81.2, 81.1, 81.02, 80.99, 70.7, 70.6, 69.8, 

69.7, 66.8, 61.1, 60.7, 60.6, 44.9, 44.8, 44.6, 43.64, 43.56, 43.42, 43.40, 37.7, 37.6, 37.5, 35.44, 

35.41, 35.4, 35.3, 35.1, 25.9, 22.72, 22.68, 22.3, 21.9, 18.3, 16.3, 16.2, 16.1, 15.8, 15.7, 14.01, 
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13.97, 1.6, −5.4, IR (neat) 3503, 2955, 2929, 2856, 2240, 1700, 1458 cm−1; EIMS m/z 637 (M − 

CH3)+; HRMS (EI) (M)+ calcd for C35H68O5Si3, 652.4375; found, 652.4363. 

 

 

(3S,7R,11RS,15R,E)-1,16-Bis(tert-butyldimethylsilyloxy)-3,7,11,15-tetramethyl-11-

(trimethylsilyl-oxy)hexadeca-5-en-9,12-diyn-4-one ((S,R,RS,R)-73): Methanesulfonyl chloride 

(0.03 mL, 0.42 mmol) was added dropwise to a stirring mixture of aldol adduct ((S,RS,R,RS,R)-

72 (139.0 mg, 0.21 mmol) and triethylamine (0.12 mL, 0.84 mmol) in DCM (0.65 mL) at 0 °C. 

The resulting mixture was stirred at 0 °C for 30 min and at room temperature for 12 h. The 

reaction was quenched by addition of saturated NH4Cl solution. DCM was added and the layers 

were separated. The aqueous layer was further extracted with DCM. The combined organic 

extracts were washed with brine, dried over anhydrous MgSO4, filtered and concentrated under 

vacuum. Purification by flash column chromatography (SiO2, 10% ethyl acetate/hexanes) gave 

110.2 mg (83%) of the desired enone (S,R,RS,R)-73 as a colorless oil: 1H NMR (300 MHz, 

CDCl3) δ 6.83 (dd, J = 6.6, 15.6 Hz, 0.5H), 6.82 (dd, J = 7.2, 15.9 Hz, 0.5H), 6.16 (d, J = 15.6 

Hz, 1H), 3.70–3.55 (m, 2H), 3.49 (d, J = 6H, 2H), 3.05–2.90 (m, 1H), 2.63–2.48 (m, 1H), 2.40–

2.20 (overlapping dd, 3H), 2.13 (dd, J = 6.9, 16.5 Hz, 1H), 2.02–1.88 (m, 1H), 1.88–1.75 (m, 

1H), 1.71 (s, 3H), 1.60–1.43 (m, 1H), 1.18 (d, J = 6.6 Hz, 3H), 1.11 (d, J = 6.9 Hz, 3H), 0.97 (d, 

J = 6.6 Hz, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.23 (s, 9H), 0.05 (s, 6H), 0.04 (m, 6H); 13C NMR 

(125 MHz, CDCl3) δ 203.6, 203.5, 149.8, 149.7, 127.92, 127.85, 84.9, 83.6, 81.5, 79.7, 66.8, 

61.0, 60.6, 40.1, 40.0, 35.9, 35.8. 35.3, 35.1, 25.9, 25.4, 22.3, 18.8, 18.7, 18.3, 16.64, 16.55, 16.1, 

OTBS

TMSO
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1.6, −5.4; IR (neat) 2957, 2926, 2855, 2240, 1699, 1674, 1630, 1463 cm−1; EIMS m/z 619 (M − 

CH3)+; HRMS (EI) (M − CH3)+ calcd for C34H63O4Si3, 619.4034; found, 619.4024. 

 

 

(3S,7R,11RS,15R)-1,16-Bis(tert-butyldimethylsilyloxy)-3,7,11,15-tetramethyl-11-

(trimethylsilyl-oxy)hexadecan-4-one ((S,R,RS,R)-74):52 To a solution of enone (S,R,RS,R)-73 

(65.0 mg, 0.10 mmol) in methanol (0.5 mL) was added Pd/C (10% by wt., 5.2 mg) and the 

mixture was stirred under hydrogen from balloon for 3 h. The reaction mixture was filtered 

though a small pad of celite and concentrated under vacuum. Purification by flash column 

chromatography (SiO2, 5% ethyl acetate/hexanes) gave 60.1 mg (91%) of the pure product 

(S,R,RS,R)-74 as a colorless oil:  1H NMR (500 MHz, CDCl3) 3.64–3.56 (m, 2H), 3.454 (dd, J = 

6, 10 Hz, 0.5H), 3.450 (dd, J = 6.0, 10 Hz, 0.5H), 3.369 (dd, J = 6.5, 10 Hz, 0.5H), 3.367 (dd, J = 

6.5, 9.5 Hz, 0.5H), 2.75 (sxt, 2H), 2.54–2.39 (m, 2H), 1.94–1.88 (m, 1H), 1.64–1.55 (m, 2H), 

1.55–1.46 (m, 1H), 1.45–1.31 (m, 9H), 1.30–1.20 (m, 4H), 1.17 (s, 3H), 1.08 (d, J = 7.0 Hz, 3H), 

0.90 (s, 9H), 0.89 (s, 9H), 0.89-0.87 (overlapping doublets, 6H), 0.09 (s, 9H), 0.04 (s, 12H); 13C 

NMR (125 MHz, CDCl3) δ 214.9, 76.2, 68.4, 60.8, 42.8, 42.73, 42.71, 42.69, 42.6, 39.1, 37.4, 

35.78, 35.76, 33.7, 32.5, 30.8, 27.44, 27.42, 27.0, 26.0, 21.51, 21.46, 21.4, 19.4, 18.4, 18.3, 16.8, 

16.5, 2.7, −5.3 , −5.39 , −5.4 1, EIMS m/z 629 (M −  CH3)+; HRMS (EI) (M −  CH3)+ calcd for 

C34H73O4Si3, 629.4817; found, 629.4827. 
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(3S,7R,11RS,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one (S,R,RS,R)-1: 

TBAF (1 M in THF, 0.64 mL, 0.64 mmol) was added dropwise to a solution of the compound 

(S,R,RS,R)-74 (60.5 mg, 0.09 mmol) in THF (10 mL) at 0 °C. The resulting mixture was stirred 

at 0 °C for 30 min and then at room temperature for 15 h. The reaction was then quenched by the 

addition of saturated NH4Cl solution. The reaction mixture was diluted with Et2O and the layers 

were separated. The aqueous layer was further extracted with Et2O. The combined organic 

extracts were dried over anhydrous MgSO4, filtered and concentrated under vacuum. Purification 

by flash column chromatography (SiO2, polarity was gradually increased from 70% ethyl 

acetate/hexanes–100% EtOAc) gave 20.4 mg (65%) of the desired compound (S,R,RS,R)-1 as a 

colorless oil: 1H NMR (500 MHz, CD3OD) δ 3.52 (t, J = 7.0 Hz, 2H), 3.41 (dd, J = 6.0, 10.5 Hz, 

1H), 3.33 (dd, J = 7.0, 11.0 Hz, 1H), 2.77 (sxt, J = 6.9 Hz, 1H), 2.60–2.46 (m, 2H), 1.89 (sxt, J = 

7.0, 1H), 1.62–1.55 (m, 2H), 1.52–1.46 (m, 1H), 1.46–1.28 (m, 12H), 1.15–1.05 (m, 2H), 1.12 (s, 

3H), 1.07 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.5 Hz, 3H); 13C NMR (125 

MHz, CDCl3) δ 217.5, 73.4, 68.5, 60.6, 44.0, 43.0*, 42.9*, 40.0, 38.6, 36.9, 36.8*, 35.0, 33.6, 

31.7, 26.9*, 22.4*, 19.9, 17.1, 16.9; EIMS m/z 326 (M −  H2O)+; HRMS (EI) (M −  H2O)+ calcd 

for C20H38O3, 326.2821; found, 326.2824. 

* doublets or multiplets, see tabulated data in Table 1, page 32. 

 

 

(3R,7R,11RS,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one ((R,R,RS,R)-

1):18 This compound was prepared by aldol coupling of the ketone (R)-40 with the aldehyde 

mixture (R,RS,R)-61 followed by elimination, hydrogenation and global deprotection as 

OH

O
HO

HO
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described for the synthesis of (S,R,RS,R)-1. The NMR data was in good accordance to that 

reported for (S,R,RS,R)-1. See Table 1, page 32 for detailed data. 

 

 

Bis-4-bromobenzoate derivative (S,R,RS,R)-2:18 4-bromobenzoyl chloride (36.1 mg, 0.16 

mmol) was added to a solution of the alcohol (S,R,RS,R)-1 (6.5 mg, 0.02 mmol) in pyridine (2 

mL). The resulting mixture was stirred at room temperature for 4 h. The reaction was quenched 

by the addition of sat NH4Cl solution. DCM and water were added and the layers were separated. 

The aqueous layer was extracted with DCM. The combined organic layers were washed with 

10% aqueous CuSO4 solution, dried over saturated MgSO4 solution, filtered and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 20% ethyl acetate/hexanes) 

gave 9.5 mg (77%) of the desired bis-4-bromobenzoate as colorless oil: 1H NMR (600 MHz, 

CDCl3) δ 7.88 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 4H), 4.30 (t, J = 

6.6 Hz, 2H), 4.20 (dd, J = 6.0, 10.8 Hz, 1H)¸ 4.10 (dd, J = 6.6, 10.2 Hz, 1H), 2.72 (m, 1H), 2.58–

2.34 (m, 2H), 2.23–2.14 (m, 1H), 2.00–1.90 (m, 1H), 1.81–1.71 (m, 1H), 1.63–1.54 (m, 1H), 

1.53–1.20 (m, 14H), 1.16 (d, J = 8.4 Hz, 3H), 1.15 (s, 3H), 1.13–1.05 (m, 1H), 1.02 (d, J = 7.2 

Hz, 3H), 0.83 (d, J = 6 Hz, 1.5 H), 0.82 (d, J = 6.0 Hz, 1.5H) ); 13C NMR (125 MHz, CDCl3) δ 

213.75, 213.72, 165.91, 165.75, 131.73, 131,68, 131.08, 131.05, 129.35, 129.00, 128.12, 127.93, 

72.62, 70.04, 63.36, 63.35, 43.16, 43.12, 42.26, 42.23, 42.17, 42.14, 42.12, 42.10, 42.01, 39.10, 

37.37, 37.31, 33.98, 32.70, 32.38, 32.33, 31.48, 31.46, 30.54, 30.48, 26.94, 26.86, 26.80, 21.21, 

21.18, 21.16, 21.14, 19.34, 19.30, 16.97. 
 

 
 

Bis-4-bromobenzoate derivative (R,R,RS,R)-2: This compound was prepared from (R,R,RS,R) 

-1 by the procedure described for the synthesis of (S,R,RS,R)-2. The NMR data was in good 

accordance to that reported for (S,R,RS,R)-2: 1H NMR (600 MHz, CDCl3) δ 7.88 (d, J = 8.4 Hz, 
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2H), 7.86 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 4H), 4.30 (t, J = 6.6 Hz, 2H), 4.20 (dd, J = 6.0, 

10.8 Hz, 1H)¸ 4.10 (dd, J = 6.6, 10.2 Hz, 1H), 2.72 (m, 1H), 2.58–2.34 (m, 2H), 2.23–2.14 (m, 

1H), 2.00–1.90 (m, 1H), 1.81–1.71 (m, 1H), 1.63–1.54 (m, 1H), 1.53–1.20 (m, 14H), 1.16 (d, J = 

8.4 Hz, 3H), 1.15 (s, 3H), 1.13–1.05 (m, 1H), 1.02 (d, J = 7.2 Hz, 3H), 0.83 (d, J = 6 Hz, 1.5 H), 

0.82 (d, J = 6.0 Hz, 1.5H) ); 13C NMR (125 MHz, CDCl3) δ 213.76, 213.73, 213.71, 165.90, 

165.75, 131.72, 131,68, 131.07, 131.05, 129.34, 129.00, 128.11, 127.92, 72.62, 70.03, 63.36, 

43.16, 43.12, 42.25, 42.22, 42.16, 42.14, 42.11, 42.10, 42.00, 39.10, 37.36, 37.31, 33.98, 32.69, 

32.38, 32.33, 31.48, 31.46, 30.54, 30.48, 26.93, 26.85, 26.79, 21.21, 21.18, 21.16, 21.14 19.34, 

19.30, 16.97. 

 

 

(But-3-ynyloxy)(tert-butyl)dimethylsilane (99):91 Imidazole (10.3 g, 150.0 mmol), TBSCl 

(21.1 g, 140.0 mmol) and DMAP (1.0 g, 7.9 mmol) were added to a solution of but-3-ynol 89 

(3.0 g, 42.4 mmol) in THF (150 mL) and the resulting reaction mixture was stirred at room 

temperature for 4 h. The reaction was quenched by the addition of saturated NH4Cl solution, 

water and ether were added, and the layers were separated. The aqueous layer was further 

extracted with ether. The combined organic layers were dried over MgSO4, filtered, and 

concentrated under vacuum. Purification by flash column chromatography (SiO2, 5% EtOAc in 

hexanes) gave the desired alkyne 99 (7.8 mg, 99%) as colorless oil: 1H NMR (300 MHz, CDCl3) 

δ 3.35 (t, J = 7.2 Hz, 2H), 2.41 (dt, J = 2.4, 7.2 Hz, 2H), 1.97 (t, J = 2.4, 1H), 0.91 (s, 9H), 0.09 

(s, 6H). 

 

 

Ethyl 5-(tert-butyldimethylsilyloxy)pent-2-ynoate (88):92 n-BuLi (1.6 M in hexanes, 33.4 mL, 

53.4 mmol) was added dropwise to a solution of diisopropylamine (8.1 mL, 57.2 mmol) in THF 

OTBS

OTBS

O

EtO
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(108 mL) at −78 °C. The resulting solution was stirred at this temperature for 5 min and at room 

temperature for 2 min. The reaction mixture was cooled to −78 °C and a solution of the starting 

alkyne 99 (7.8 g, 42.4 mmol) in THF (40 mL) was added dropwise. The resulting mixture was 

stirred at −78 °C for 15 min followed by dropwise addition of ethylchloroformate (12.4 mL, 

127.1 mmol). The reaction mixture was stirred at this temperature for 10 min and at room 

temperature for 3 h. The reaction was quenched by the addition of saturated NH4Cl solution. 

Water and ether were added and the layers were separated. The aqueous layer was further 

extracted with ether. The combined organic layers were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by flash column chromatography (SiO2, 5% EtOAc 

in hexanes) gave the desired ester 88 (7.3 g, 86%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 

4.22 (q, J = 6.9 Hz, 2H), 3.79 (t, J = 6.9 Hz, 2H), 2.55 (t, J = 6.9, 2H), 1.31 (t, J = 6.9, 3H), 0.90 

(s, 9H), 0.09 (s, 6H). 

 

 

(Z)-Ethyl 5-(tert-butyldimethylsilyloxy)-3-methylpent-2-enoate (100):68 MeLi (1.6 M in Et2O, 

43.9 mL, 70.3 mmol) was added dropwise to a suspension of CuI (6.9 g, 35.3 mmol) in dry THF 

(270 mL) at 0 °C. The reaction mixture was stirred at this temperature for 5 min and cooled to 

−78 °C. A solution of the starting alkyne 88 (9.0 g, 35.1 mmol) in THF (90 mL) was added 

dropwise and the reaction mixture was stirred at this temperature for 1 h. The reaction was 

quenched by addition of water, stirred for 5 min, and allowed to warm to room temperature. The 

reaction mixture was filtered through celite and concentrated under vacuum. Purification by flash 

column chromatography (SiO2, 3% EtOAc in hexanes) gave the desired Z-alkene 100 (6.2 g, 

OEt

OTBS

O
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64%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 5.72 (d, J = 0.6 Hz, 1H), 4.14 (q, J = 7.2 

Hz, 2H), 3.80 (t, J = 6.6 Hz, 2H), 2.85 (t, J = 6.6 Hz, 2H), 1.96 (d, J = 1.2 Hz, 3H), 1.27 (t, J = 

7.2 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 6H). 

 

 

(Z)-5-(tert-Butyldimethylsilyloxy)-3-methylpent-2-en-1-ol (87):68 LiAlH4 (1 M in diethylether, 

18.0 mL, 18.0 mmol) was added dropwise to a solution of the starting ester 100 (6.2 g, 22.6 

mmol) in ether (27 mL). The reaction mixture was stirred at this temperature for 1 h. The 

reaction was quenched by slow and careful addition of saturated NH4Cl solution, water and ether 

were added, and the layers were separated. The aqueous layer was further extracted with ether. 

The combined organic extracts were dried over anhydrous MgSO4, filtered, and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 30% EtOAc in hexanes) 

gave the desired allylic alcohol 87 (4.6 mg, 88%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 

5.72 (t, J = 6.9 Hz, 1H), 4.05 (d, J = 6.0 Hz, 1H), 4.02 (s, 1H), 3.71 (t, J = 6.0 Hz, 2H), 2.36 (t, J 

= 6 Hz, 2H), 2.12 (bs, 1H), 1.76 (s, 3H), 0.91 (s, 9H), 0.08 (s, 6H). 

 

 

((2S,3R)-3-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyloxiran-2-yl)methanol  

(2S,3R)-101):70 t-BuOOH (~ 5–6 M in toluene, 2.2 mL, 10.9 mmol) stored over 4 A° molecular 

sieves was added dropwise to a solution of diisopropyl-L-tartrate (0.1 mL, 0.5 mmol) and 

Ti(OiPr)4 (123.4 mg, 0.4 mmol) over 4 A° molecular sieves in DCM (1.4 mL) at −20 °C. After 

30 min this solution was added via cannula to a solution of allylic alcohol 87 (1.0 g, 4.3 mmol) in 

OTBS

OH
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DCM (1.9 mL) over 4 °A molecular sieves. The resulting mixture was stirred at −20 °C for 18 h. 

A 10% aqueous solution of tartaric acid (11 mL) was added and the mixture was stirred at −20 

°C for 30 min and at room temperature for 1 h. The layers were separated and the aqueous layer 

was extracted with DCM. The combined organic layers were washed with brine, dried over 

anhydrous MgSO4, filtered, and concentrated under vacuum. Purification by flash column 

chromatography (SiO2, 60% EtOAc in hexanes) gave the desired epoxide (2S,3R)-101 (0.98 g, 

92%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 3.88 (dd, J = 3.9, 12.0 Hz, 1H), 3.74 (dd, J 

= 5.4, 6.9 Hz, 2H), 3.69 (dd, J = 6.9, 12.0 Hz, 1H), 3.07 (dd, J = 4.2, 6.9 Hz, 1H), 1.91 (td, J = 

5.4, 14.1 Hz, 1H), 1.67 (td, J = 6.9, 14.1 Hz 1H), 1.35 (s, 3H), 0.90 (s, 9H), 0.06 (s, 6H). 

 

 

(3-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyloxiran-2-yl)methanol (rac-101): MCPBA 

(56.5 mg, 0.2 mmol) was added to a solution of allylic alcohol 87 (48.0 mg, 0.2 mmol) in DCM 

(1.8 mL) and the reaction mixture was stirred at room temperature for 16 h, The reaction was 

quenched by addition of saturated NaHCO3 solution, water and DCM were added, and the layers 

were separated. The aqueous layer was further extracted with DCM. The combined organic 

layers were washed with brine, dried over anhydrous MgSO4, filtered, and concentrated under 

vacuum. Purification by flash column chromatography (SiO2, 60% EtOAc in hexanes) gave the 

desired epoxide rac-101 (49.0 mg, 99%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 3.88 

(dd, J = 3.9, 12.0 Hz, 1H), 3.74 (dd, J = 5.4, 6.9 Hz, 2H), 3.69 (dd, J = 6.9, 12.0 Hz, 1H), 3.07 

(dd, J = 4.2, 6.9 Hz, 1H), 1.91 (td, J = 5.4, 14.1 Hz, 1H), 1.67 (td, J = 6.9, 14.1 Hz 1H), 1.35 (s, 

3H), 0.90 (s, 9H), 0.06 (s, 6H). 
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(2R)-(3-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyloxiran-2-yl)methyl 3,3,3-trifluoro-2-

methoxy-2-phenylpropanoate ((R,rac)-102):32e Triethylamine (0.06 mL, 0.41 mmol), S-MTPA 

chloride (0.04 mL, 0.20 mmol) and DMAP (5.0 mg, 0.04 mmol) were added to a solution of the 

starting epoxyalcohol rac-101 (10.0 mg, 0.04 mmol) in DCM (1.3 mL). The reaction mixture 

was stirred at room temp for 30 min. The reaction was quenched by the addition of water, DCM 

was added and the layers were separated. The aqueous layer was extracted with DCM. The 

combined organic layers were washed with brine, dried over anhydrous MgSO4, filtered, and 

concentrated under vacuum. Purification by flash column chromatography (SiO2, 10% EtOAc in 

hexanes) gave the desired ester (R,rac)-102 (17.5 mg, 94%) as colorless oil: 1H NMR (500 MHz, 

CDCl3) δ 7.56–7.54 (m, 2H), 7.44–7.40 (m, 3H), 4.66 (dd, J = 3.5, 12.0 Hz, 0.5H), 4.59 (dd, J = 

3.5, 12.0 Hz, 0.5H), 4.34 (dd, J = 8.0, 12.0 Hz, 0.5H), 4.28 (dd, J = 8.0, 12.0 Hz, 0.5H), 3.77–

3.73 (m, 2H), 3.59 (s, 3H), 3.06 (dd, J = 3.5, 7.5 Hz, 0.5H), 3.04 (dd, J = 3.5, 7.5 Hz, 0.5H), 

1.90–1.84 (m, 1H), 1.77–1.69 (m, 1H), 1.37 (s, 1.5H), 1.36 (s, 1.5H), 0.91 (s, 9H), 0.08 (s, 6H); 

19F NMR (282 MHz, CDCl3) δ −71.71, −71.83. 
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(R)-((2S,3R)-3-(2-(tert-Butyldimethylsilyloxy)ethyl)-3-methyloxiran-2-yl)methyl 3,3,3-triflu-

oro-2-methoxy-2-phenylpropanoate ((R,2S,3R)-102):32e This compound was prepared from the 

epoxide (2S,3R)-101 using the same procedure as described above for (R,rac)-102. The 1H and 

19F NMR of the crude product were recorded to calculate the diastereomeric ratio (observed dr = 

92:8): 1H NMR of the major isomer (300 MHz, CDCl3) δ 7.56–7.54 (m, 2H), 7.44–7.40 (m, 3H), 

4.59 (dd, J = 3.3, 12.3 Hz, 1H), 4.34 (dd, J = 7.8, 12.3 Hz, 1H), 3.77–3.78 (dd, J = 5.7, 10.5 Hz, 

2H), 3.59 (s, 3H), 3.04 (dd, J = 3.0, 7.8 Hz, 1H), 1.90–1.82 (m, 1H), 1.78–1.67 (m, 1H), 1.37 (s, 

3H), 0.91 (s, 9H), 0.08 (s, 6H); 19F NMR (282 MHz, CDCl3) δ −71.71. 

 

 

(S)-5-(tert-Butyldimethylsilyloxy)-3-methylpentane-1,3-diol ((S)-86):70 A solution of starting 

epoxide (2S,3R)-101 (970.0 mg, 3.94 mmol) in THF (10 mL) was added dropwise to a 

suspension of LiAlH4 (299.0 mg, 7.88 mmol) in THF (10 mL) at −40 °C. The reaction mixture 

was stirred at this temperature for 30 min and then allowed to warm to 0 °C over a period of 3 h. 

The reaction mixture was stirred at 0 °C for 30 min and quenched by slow and careful addition 

of sat NH4Cl solution. Water and ether were added and the layers were separated. The aqueous 

layer was further extracted with ether. The combined organic extracts were dried over anhydrous 

MgSO4, filtered, and concentrated under vacuum. Purification by flash column chromatography 

(60% EtOAc in hexanes) gave the desired diol (S)-86 (635.4 mg, 65%) as colorless oil along 

with recovered epoxide (2S,3R)-101 (87.7 mg, 9%): 1H NMR of diol (300 MHz, CDCl3) δ 4.25 

(bs, 1H), 3.75 (bs, 1H), 4.10–3.60 (m, 4H), 2.10–1.50 (m, 4H), 1.29 (s, 3H), 0.91 (s, 9H), 0.10 (s, 

6H). 
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(S)-1-(tert-Butyldimethylsilyloxy)-3-methyl-3,5-bis(triethylsilyloxy)pentane ((S)-103): 

2,6-Lutidine (8.9 mL, 75.7 mmol) and TESOTf (13.0 mL, 56.8 mmol) were added dropwise to 

the solution of the starting diol (S)-86 (4.7 g, 18.9 mmol) in DCM (375 mL) at 0 °C. The 

resulting solution was stirred at this temperature for 30 min and at room temperature for 2 h. The 

reaction was quenched by the addition of water and the layers were separated. The aqueous layer 

was extracted with DCM. The combined organic layers were dried over anhydrous MgSO4, 

filtered, and concentrated. Purification by flash column chromatography (SiO2, 4% EtOAc in 

hexanes) gave the pure product (S)-103 (7.3 g, 90%) as colorless oil: 1H NMR (300 MHz, 

CDCl3) δ 3.72 (t, J = 7.8 Hz, 4H), 1.77–1.70 (m, 4H), 1.24 (s, 3H), 0.97 (t, J = 7.8 Hz, 9H), 0.95 

(t, J = 7.8 Hz, 9H), 0.90 (s, 9H), 0.60 (q, J = 7.8 Hz, 6H), 0.58 (q, J = 7.8 Hz, 6H) 0.05 (s, 6H); 

13C NMR (75 MHz, CDCl3) δ 73.8, 59.8, 59.4, 45.5 (2C), 28.6, 26.0, 18.3, 7.1, 6.83, 6.80, 4.4, 

−5.3; EIMS m/z 447 (M − C2H5)+; HRMS (EI) (M − C2H5)+ calcd for C22H51O3Si3, 447.3146; 

found 447.3126; IR (neat) 2955, 2878, 1462, 1414, 1252, 1090, 1009 cm−1; [α]D
25 −0.91 (c 0.72, 

CHCl3). 

 

 

(R)-5-(tert-Butyldimethylsilyloxy)-3-methyl-3-(triethylsilyloxy)pentanal ((R)-82):71  

A solution of oxalyl chloride (0.4 mL, 4.4 mmol) in DCM (2.2 mL) was added dropwise to a 

solution of DMSO (0.6 mL, 8.8 mmol) in DCM (4 mL) at −78 °C. The resulting solution was 

stirred at this temperature for 20 min and then a solution was starting bis-triethylsilyl ether (S)-

OTBS
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103 (476.7 mg, 1.0 mmol) in DCM (4.0 mL) was added dropwise. The reaction mixture was 

stirred at −78 °C for 20 min and at −40 °C for 20 min. The reaction mixture was cooled back to 

−78 °C and triethylamine (1.8 mL, 13.0 mmol) was added dropwise. The reaction mixture was 

stirred at −78 °C for 20 min followed by warming to room temperature over a period of 2 h. The 

reaction was quenched by the addition of water, the layers were separated and the aqueous layer 

was extracted with DCM. The combined organic layers were dried over anhydrous MgSO4, 

filtered, and concentrated. Purification with flash column chromatography (SiO2, 5% EtOAc in 

hexanes) gave the pure aldehyde (R)-82 (279.0 mg, 77%) as yellow oil: 1H NMR (500 MHz, 

CDCl3) δ 9.85 (t, J = 3.0 Hz, 1H), 3.77 (td, J = 6.5, 17.0 Hz, 1H), 3.74 (td, J = 6.5, 17.0 Hz, 1H), 

2.55 (dd, J = 3.0, 5.5 Hz, 2H), 1.86 (t, J = 6.5 Hz, 2H), 1.37 (s, 3H), 0.95 (t, J = 8.0 Hz, 9H), 

0.89 (s, 9H), 0.06 (q, J = 8.0 Hz, 6H), 0.05 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 202.6, 73.7, 

59.1, 55.3, 45.6, 29.0, 25.7, 18.0, 6.9, 6.6, −5.6; EIMS m/z 333 (M − C2H5)+; HRMS (EI) (M − 

CH3)+ calcd for C17H37O3Si2, 345.2281; found 345.2290; IR (neat) 2955, 2878, 1724, 1463, 1254 

cm−1; [α]D
25 −2.14 (c 0.73, CHCl3). 

 

 

(S)-Methyl-3-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-2-methylpropanoate 

((S)-97a):65 A solution of PMBF9OH 95a (1000.0 mg, 2.60 mmol) in ether (1.4 mL) was added 

to a suspension of NaH (60% in mineral oil, 10.4 mg, 0.26 mmol) in ether (1.7 mL). The reaction 

mixture was stirred at room temperature for 1 h and cooled to 0 °C. CCl3CN (375.4 mg, 2.60 

mmol) was added dropwise and resulting mixture was stirred at 0 °C for 5 min and at room 

temperature for 1 h. The reaction mixture was washed with saturated NaHCO3 solution and 
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brine, dried over anhydrous MgSO4, and concentrated under vacuum to afford the 

trichloroacetimidate 96a, which was used without further purification. The trichloroacetimidate 

96a was dissolved in DCM (3.5 mL) and (S)-methyl 3-hydroxy-2-methylpropanoate (S)-85 

(204.8 mg, 1.73 mmol) and PPTS (20 mg, 0.08 mmol) were added. The reaction mixture was 

stirred at room temperature for 24 h followed by addition of water. The layers were separated 

and the aqueous layer was further extracted with DCM. The combined organic layers were dried 

over anhydrous MgSO4, filtered, and concentrated under vacuum. Purification by flash column 

chromatography (SiO2, 4% EtOAc in hexanes) gave the pure product (S)-97a (805.4 mg, 96%) 

as colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 

4.47 (s, 2H), 4.05 (t, J = 6.0 Hz, 2H), 3.71 (s, 3H), 3.66 (dd, J = 7.2, 9.0 Hz, 1H), 3.48 (dd, J = 

6.0, 9.3 Hz, 1H), 2.84–2.73 (m, 1H), 2.42–2.24 (m, 2H), 2.16–2.06 (m, 2H), 1.19 (d, J = 7.2 Hz, 

3H); 19F NMR (282 MHz, CDCl3) δ −81.8 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.0 (m, 

2F); 13C NMR (75 MHz, CDCl3) δ 175.2, 158.2, 130.8, 129.2, 114.3, 72.7, 71.7, 66.3, 51.6, 40.2, 

27.9 (t, 2JCF = 22.5 Hz), 20.6, 14.0; EIMS m/z 507 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for 

C19H21O4F9Na, 507.1194; found 507.1153; IR (neat) 2953, 2869, 1739, 1613, 1513, 1358, 1243 

cm−1; [α]D
25 +5.2 (c 0.35, CHCl3). 

 

 

(R)-Methyl-3-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-2-methylprop-

anoate ((R)-97b):65 This compound was prepared in 95% yield starting from (R)-methyl 3-

hydroxy-2-methylpropanoate (R)-85 (1.2 g, 10.4 mmol) and PMBF13OH 95b (7.6 g, 15.6 mmol) 

following the procedure described above for preparation of compound (S)-97a: 1H NMR (300 
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MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.46 (s, 2H), 4.05 (t, J = 6.0 

Hz, 2H), 3.70 (s, 3H), 3.65 (dd, J = 7.5, 9.3 Hz, 1H), 3.47 (dd, J = 6.0, 9.3 Hz, 1H), 2.84–2.72 

(m, 1H), 2.42–2.23 (m, 2H), 2.15–2.06 (m, 2H), 1.18 (d, J = 7.2 Hz, 3H); 19F NMR (282 MHz, 

CDCl3) δ −80.9 (m, 3F), −114.3 (m, 2F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), 

−126.1 (m, 2F); 13C NMR (75 MHz, CDCl3) δ 175.3, 158.2, 130.8, 129.2, 114.4, 72.7, 71.7, 

66.4, 51.7, 40.2, 28.0 (t, 2JCF = 22.5 Hz), 20.6, 14.0; EIMS m/z 584 (M)+; HRMS (EI) (M)+ calcd 

for C21H21O4F13, 584.1232; found 584.1225; IR (neat) 2953, 2868, 1740, 1613, 1513, 1364, 1250 

cm−1; [α]D
25 −3.61 (c 0.71, CHCl3). 

 

 

(R)-3-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-2-methylpropan-1-ol  and (S)-3-

(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)benzyloxy)-2-methylpropan-1-ol 

(M84):55a Esters (S)-97a (3.5 g, 7.3 mmol) and (R)-97b (4.3 g, 7.3 mmol) were combined to 

obtain the mixture M97. DIBALH (1 M in hexanes, 32.2 mL, 32.2 mmol) was added dropwise to 

a solution of M97 (7.8 g, 14.6 mmol) in DCM (101 mL) at −78 °C. The reaction mixture was 

allowed to gradually warm to room temperature in 3 h and stirred at this temperature for 1 h. The 

reaction was quenched by the addition of saturated sodium potassium tartrate and the mixture 

was stirred at room temperature for 1 h. The layers were separated and the aqueous layer was 

extracted with DCM. The combined organic layers were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by column chromatography (SiO2, 30% EtOAc in 

hexanes) gave the desired alcohol mixture M84 (7.2 g, 98%) as a white solid: 1H NMR (300 

MHz, CDCl3) δ 7.26 (d, J = 7.2 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 4.46 (s, 2H), 4.05 (t, J = 5.9 

Hz, 2H), 3.68–3.52 (m, 3H), 3.40 (dd, J = 8.3, 8.9 Hz, 1H), 2.56 (dd, J = 4.4, 7.1 Hz, 1H), 2.41–
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2.23 (m, 2H), 2.16–2.04 (m, 3H), 0.89 (d, J = 7.0 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −80.9 

(m, 3F), −81.1 (m, 3F), −114.5 (m, 2F), −114.7 (m, 2F), −122.0 (m, 2F), −123.0 (m, 2F), −123.5 

(m, 2F), −124.5 (m, 2F), −126.2 (m, 4F); EIMS (R)-84a m/z 456 M+; (S)-84b m/z 556 M+; 

HRMS (ESI) (R)-84a (M + Na)+ calcd for C18H21O3F9Na 479.1245, found 479.1238; (S)-84b (M 

+ Na)+ calcd for C20H21N4O3F13Na 579.1181, found 579.1176; analytical fluorous HPLC 

(conditions 2) tR = 4.3 min ((R)-84a), 9.9 min ((S)-84b). 

 

 

(S)-5-(3-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-2-methylpropylthio)-1-phenyl 

-1H-tetrazole and (R)-5-(3-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy) benzyloxy)-2-

methylpropylthio)-1-phenyl-1H-tetrazole (M98):59 Triphenylphosphine (5.7 g, 14.2 mmol) 

was added to a solution of mixture M84 (7.2 g, 21.4 mmol) in THF (36 mL) and the resulting 

reaction mixture was cooled to 0 °C. A solution of DIAD (4.2 mL, 21.4 mmol) and PTSH (3.9 g, 

21.4 mmol) in THF (36 mL) was then added dropwise. The reaction mixture was stirred at 0 °C 

for 30 min and at room temperature for 1 h. The reaction was quenched by the addition of 

saturated NH4Cl solution, water and ether were added, and the layers were separated. The 

aqueous layer was further extracted with ether. The combined organic layers were dried over 

MgSO4, filtered, and concentrated under vacuum. Purification by flash column chromatography 

(SiO2, 18% EtOAc in hexanes) gave 8.6 g (91%) of pure product M98 as a white solid: 1H NMR 

(300 MHz, CDCl3) δ 7.57 (m, 5H), 7.25 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 4.45 (dd, J 

= 13.5, 12.0 Hz, 2H), 4.02 (t, J = 11.7 Hz, 2H), 3.57 (dd, J = 6.0, 12.6 Hz, 1H), 3.47 (dd, J = 5.1, 
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9.3 Hz, 1H), 3.41 (dd, J = 6.0, 9.3 Hz, 1H), 3.39 (dd, J = 6.6, 12.9 Hz, 1H), 2.40–2.22 (m, 3H), 

2.14–2.05 (m, 2H), 1.09 (d, J = 6.6 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −80.8 (t, J = 8.2 Hz, 

3F), −81.0 (m, 3F), −114.4 (m, 2F), −114.6 (m, 2F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 

2F), −124.4 (m, 2F), −126.1 (m, 4F); EIMS (S)-98a m/z 616 M+; (R)-98b m/z 716 M+; HRMS 

(ESI) (S)-98a M+ calcd for C25H25N4O2F9S 616.1554, found 616.1542; (R)-98b M+ calcd for 

C27H25N4O2F13S 716.1491, found 716.1458; analytical fluorous HPLC (conditions 2) tR = 12.1 

min ((S)-98a), 20.2 min ((R)-98b). 

 

 

(S)-5-(3-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-2-methylpropylsulfonyl)-1-

phenyl-1H-tetrazole and (R)-5-(3-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy) benzyl 

oxy)-2-methylpropylsulfonyl)-1-phenyl-1H-tetrazole (M83):59 A solution of (NH4)6Mo7O24• 

4H2O (3.2 g, 2.6 mmol) in H2O2 (30% aqueous solution, 29.0 mL, 255.2 mmol) was added 

dropwise to a solution of starting sulfide M98 (8.5 g, 12.8 mmol) in ethanol (80.8 mL) at 0 °C. 

The reaction mixture was stirred at this temperature for 30 min and at room temperature 

overnight. The mixture was diluted with DCM and quenched with saturated NaHCO3 solution. 

Water and ether were added and the layers were separated. The aqueous layer was extracted with 

ether. The combined organic layers were dried over MgSO4, filtered, and concentrated under 

vacuum. Purification by flash column chromatography (SiO2, 20% EtOAc in hexanes) gave the 

desired sulfone mixture M83 (8.0 g, 90%) as a white solid: 1H NMR (500 MHz, CDCl3) δ 7.65–

7.56 (m, 5H), 7.24 (d, J = 11.0 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.41 (q, J = 11.5 Hz, 2H), 4.05 
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(t, J = 6.0 Hz, 2H), 4.05 (dd, J = 5.0, 15.0 Hz, 1H), 3.57 (dd, J = 7.5, 14.5 Hz, 1H), 3.52 (dd, J = 

4.5, 9.5 Hz, 1H), 3.36 (dd, J = 6.5, 9.5 Hz, 1H), 2.65–2.56 (m, 1H), 2.38–2.27 (m, 2H), 2.14–

2.08 (m, 2H), 1.19 (d, J = 7.0 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −80.9 (m, 3F), −81.1 (m, 

3F), −114.5 (m, 2F), −114.7 (m, 2F), −122.0 (m, 2F), −123.0 (m, 2F), −123.5 (m, 2F), −124.5 

(m, 2F), −126.2 (m, 4F); EIMS (S)-83a m/z 671 M+; (R)-83b m/z 771 M+; HRMS (ESI) (S)-83a 

M+ calcd for C25H25N4O4F9SNa 671.1351, found 671.1290; (R)-83b M+ calcd for 

C27H25N4O4F9SNa 771.1287, found 771.1215; analytical fluorous HPLC (conditions 2) tR = 10.3 

min ((S)-83a), 18.6 min ((R)-83b). 

 

 

4,4,4-Trifluorobutyl methanesulfonate (109):93 Triethylamine (11.04 mL, 78.07 mmol) and 

trifluoromethanesulfonyl chloride (4.60 mL, 58.55 mL) were added to the solution of the starting 

4,4,4-trifluorobutanol 108 (5.00 g, 39.04 mmol) in DCM (210 mL) at 0 °C. The reaction mixture 

was stirred at this temperature for 1 h. The reaction was quenched with water, the layers were 

separated and the aqueous layer was extracted with DCM. The combined organic layers were 

dried over anhydrous MgSO4, filtered, and concentrated under vacuum to obtain 8.05 g of the 

desired mesolate 109 as yellow oil, which was used in the next step without further purification: 

1H NMR (300 MHz, CDCl3) δ 4.23 (t, J = 6.0 Hz, 2H), 3.04 (s, 3H), 2.35–2.19 (m, 2H), 2.08–

1.99 (m, 2H). 
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4-(4,4,4-Trifluorobutoxy)benzaldehyde (111):94 4-Hydroxybenzaldehye 110 (5.72 g, 46.84 

mmol) and K2CO3 (6.47 g, 46.84 mmol) were added to a solution of the starting mesolate 109 

(39.03 mmol) in DMF (115 mL). The resulting mixture was stirred at 70 °C for 12 h. The 

reaction was quenched by the addition of water, pentanes were added, and the layers were 

separated. The aqueous layer was further extracted with pentanes. The combined organic layers 

were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. Purification by 

flash column chromatography (SiO2, 10% EtOAc in hexanes) gave the aldehyde 111 (9.01 g, 

99%) as yellow oil: 1H NMR (300 MHz, CDCl3) δ 9.88 (s, 1H), 7.84 (d, J = 8.4 Hz, 2H), 6.99 (d, 

J = 8.7 Hz, 2H), 4.11 (t, J = 6.0 Hz, 2H), 2,41–2.25 (m, 2H), 2.14–2.04 (m, 2H). 

 

 

(4-(4,4,4-Trifluorobutoxy)phenyl)methanol (95c): NaBH4 (2.21 g, 58.14 mmol) was added to 

a solution of the starting aldehyde 111 (9.01 g, 38.76 mmol) in MeOH (345 mL) at 0 °C and the 

reaction mixture was stirred at this temperature for 1 h. The reaction was quenched by addition 

water and most of the MeOH was evaporated under vacuum. The remaining reaction mixture 

was extracted with ether. The combined organic layers were dried over anhydrous MgSO4, 

filtered, and concentrated under vacuum. Purification by flash column chromatography (SiO2, 

30% EtOAc in hexanes) gave the alcohol 95c (9.00 g, 99%) as a viscous oil: 1H NMR (300 

MHz, CDCl3) δ 7.30 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.9 Hz, 2H), 4.62 (s, 2H), 4.03 (t, J = 6.0 

Hz, 2H), 2,41–2.25 (m, 2H), 2.11–2.00 (m, 2H), 1.73 (bs, 1H); 13C NMR (75 MHz, CDCl3) δ 

158.2, 133.4, 128.7, 114.5, 66.0, 65.0, 30.7 (q, 2JCF = 29.3 Hz), 22.1 (q, 3JCF = 3.0 Hz); 19F NMR 

(282 MHz, CDCl3) δ −66.3 (t, J = 11.3 Hz, 3F). 
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1-(Bromomethyl)-4-(4,4,4-trifluorobutoxy)benzene (105c): PBr3 (0.94 mL, 9.70 mmol) was 

added dropwise to a solution of the starting alcohol 95c (4.55 g, 19.41 mmol) in DCM (39 mL) 

and the resulting mixture was stirred at room temperature for 4 h. The reaction mixture was then 

cooled to 0 °C and carefully quenched by addition of water. The layers were separated and 

aqueous layer extracted with DCM. The combined organic layers were washed with brine and 

NaHCO3, dried over anhydrous MgSO4, filtered, and concentrated under vacuum to obtain the 

target bromide 105c (5.52 g, 96%) as a white solid. The crude product was used in the next step 

without further purification: 1H NMR (300 MHz, CDCl3) δ 7.34 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 

8.7 Hz, 2H), 4.51 (s, 2H), 4.03 (t, J = 6.0 Hz, 2H), 2,41–2.25 (m, 2H), 2.11–2.02 (m, 2H); 13C 

NMR (75 MHz, CDCl3) δ 158.6, 130.5, 130.3, 114.7, 66.0, 33.8, 30.7 (q, 2JCF = 29.3 Hz), 22.1 

(q, 3JCF = 3.0 Hz); 19F NMR (282 MHz, CDCl3) δ −66.3 (t, J = 11.3 Hz, 3F). 

 

 

 

1-(Bromomethyl)-4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzene (105a):56a,95  

This compound was prepared in quantitative yield starting from PMBF9OH 95a (5.0 g, 13.0 

mmol) following the procedure described above for preparation of compound 105c. 1H NMR 

(300 MHz, CDCl3) δ 7.35 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 4.51 (s, 2H), 4.05 (t, J = 

6.0 Hz, 2H), 2.42–2.24 (m, 2H), 2.16–2.07 (m, 2H); 13C NMR (75 MHz, CDCl3) 158.6, 130.5, 

OF3C
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130.4, 114.7, 66.3, 33.8, 27.8 (m), 20.5 (m); 19F NMR (282 MHz, CDCl3) δ −81.2 (m, 3F), 

−114.7 (m, 2F), −124.5 (m, 2F), −126.1 (m, 2F). 

 

 

2-(4-(4,4,4-Trifluorobutoxy)benzyloxy)ethanol (107c):73 Ethylene glycol 106 (14.6 g, 235.50 

mmol) was added dropwise to a suspension of NaH (60% in mineral oil, 0.47 g, 11.78 mmol) in 

THF (20 mL). The reaction mixture was stirred at room temperature for 30 min followed by 

addition of a solution of the PMBF3 bromide 105c (3.50 g, 11.78 mmol) and TBAI (0.44 g, 1.18 

mmol) in THF (20 mL). The reaction mixture was stirred at reflux temperature for 12 h and 

quenched by the addition of water.  The mixture was allowed to cool to room temperature, ether 

was added, and the layers were separated. The aqueous layer was further extracted with ether. 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 30% EtOAc in hexanes) 

gave the desired alcohol 107c (3.21 g, 98%) as viscous oil: 1H NMR (300 MHz, CDCl3) δ 7.29 

(d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 4.51 (s, 2H), 4.03 (t, J = 6.0 Hz, 2H), 3.76 (t, J = 

4.8 Hz, 2H), 3.60–3.57 (m, 2H), 2.42–2.26 (m, 2H), 2.11–2.02 (m, 2H); 13C NMR (75 MHz, 

CDCl3) δ 158.3, 130.4, 129.4, 114.3, 72.8, 71.1, 66.0, 61.8, 30.6 (q, 2JCF = 28.5 Hz), 22.1; 19F 

NMR (282 MHz, CDCl3) δ −66.3 (t, 3F); EIMS m/z 287 M+; HRMS (EI) M+ calcd for 

C13H17O3F3, 278.1129; found 278.1126; IR (neat) 3418, 2867, 1613, 1514, 1299 cm−1. 
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2-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)ethanol (107a):73 This compound was 

prepared in 95% yield starting from PMBF9 bromide 105a (3.36 g, 7.50 mmol) and ethylene 

glycol 106 (9.32 g, 150.3 mmol) following the procedure described above for preparation of 

compound 107c: 1H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 8.1 Hz, 2H), 6.89 (d, J = 8.1 Hz, 

2H), 4.51 (s, 2H), 4.05 (t, J = 5.7 Hz, 2H), 3.76 (dd, J = 4.8, 9.0 Hz, 2H), 3.59 (t, J = 4.5 Hz, 

2H), 2.42–2.24 (m, 2H), 2.16–2.07 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 158.3, 130.5, 129.5, 

114.4, 72.9, 71.1, 66.3, 61.8, 27.8 (t, 2JCF = 22.5 Hz), 20.5 (m); 19F NMR (282 MHz, CDCl3) δ 

−81.2 (m, 3F), −114.7 (m, 2F), −124.5 (m, 2F), −126.1 (m, 2F); EIMS m/z 451 (M + Na)+; 

HRMS (ESI) (M + Na)+ calcd for C16H17O3F9Na, 451.0932; found 451.0945; IR (neat) 3419, 

2927, 2870, 1613, 1514, 1242 cm−1. 

 

 

1-((2-Iodoethoxy)methyl)-4-(4,4,4-trifluorobutoxy)benzene (94c):74 Imidazole (2.41 g, 35.35 

mmol) and iodine (4.49 g, 35.35 mmol) were added to a solution of PPh3 (4.68 g, 17.68 mmol) in 

DCM (46 mL) at room temperature. The resulting solution was cooled to 0 °C and a solution of 

the starting alcohol 107c (3.50 g, 12.59 mmol) in DCM (4.4 mL) was added dropwise. The 

reaction mixture was allowed to gradually warm to room temperature and stirred for 12 h. The 

reaction was quenched by the addition of saturated NH4Cl solution, water was added, and the 

layers were separated. The aqueous layer was further extracted with DCM. The combined 

organic extracts were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. 

Purification by flash column chromatography (SiO2, 5% EtOAc in hexanes) gave the desired 

iodide 94c (4.45 g, 91%) as a viscous oil: 1H NMR (300 MHz, CDCl3) δ 7.30 (d, J = 8.7 Hz, 

2H), 6.89 (d, J = 8.4 Hz, 2H), 4.52 (s, 2H), 4.02 (t, J = 6 Hz, 2H), 3.72 (t, J = 6.9 Hz, 2H), 3.28 
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(t, J = 6.9 Hz, 2H), 2.41–2.52 (m, 2H), 2.11–2.01 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 158.3, 

130.2, 129.4, 114.3, 72.4, 70.4, 65.9, 30.6 (q, 2JCF = 28.5 Hz), 22.1 (m), 3.1; 19F NMR (282 

MHz, CDCl3) δ −66.4 (t, 3F); EIMS m/z 388 (M)+; HRMS (EI) (M)+ calcd for C13H16O2F3I, 

388.0147; found 388.0140; IR (neat) 2953, 2867, 1612, 1513, 1387, 1256 cm−1. 

 

 

1-((2-Iodoethoxy)methyl)-4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzene (94a):74 This 

compound was prepared in 92% yield starting from alcohol 107a (3.36 g, 7.50 mmol) according 

to the procedure described above for preparation of iodide 94c. 1H NMR (300 MHz, CDCl3) δ 

7.31 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 4.53 (s, 2H), 4.50 (t, J = 6.0 Hz, 2H), 3.72 (t, J 

= 6.6 Hz, 2H), 3.28 (t, J = 6.6 Hz, 2H), 2.42–2.24 (m, 2H), 2.16–2.07 (m, 2H); 13C NMR (75 

MHz, CDCl3) δ 158.3, 130.3, 129.4, 114.4, 72.4, 70.4, 66.3, 27.8 (t, 2JCF = 22.5 Hz), 20.5 (t, 3JCF 

= 3.8 Hz), 3.0; 19F NMR (282 MHz, CDCl3) δ −81.1 (m, 3F), −114.7 (m, 2F), −124.5 (m, 2F), 

−126.1 (m, 2F); EIMS m/z 561 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for C16H16O2F9INa, 

560.9949; found 560.9955; IR (neat) 2952, 2868, 1612, 1513, 1299, 1237 cm−1. 

 

 

(R)-4-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-N-((1S,2S)-1-hydroxy-1-

phenylpropan-2-yl)-N,2-dimethylbutanamide ((3R,S,S)-93a):75 Anhydrous LiCl (3.0 g, 71.3 

mmol) was suspended in THF (8 mL) and the suspension was cooled to −78 °C. Diisopropyl-

amine (3.8 mL, 26.8 mmol) was slowly added to this suspension followed by the dropwise 
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addition of n-BuLi (1.6 M in hexanes, 15.6 mL, 25.0 mmol). The reaction mixture was stirred at 

0 °C for 10 min and cooled back to −78 °C. A solution of (S,S)-pseudoephiderine propionamide 

(S,S)-112 (2.6 g, 11.9 mmol) in THF (29 mL) was added and the reaction mixture was stirred at 

−78 °C for 1.25 h, 0 °C for 15 min, and at room temperature for 5 min. The reaction mixture was 

cooled back to 0 °C and a solution of iodide 94a (3.2 g, 5.7 mmol) in THF (3 mL) was added 

dropwise. The reaction mixture was stirred at this temperature for 12 h after which it was poured 

into a 0 °C mixture of saturated NH4Cl solution (40 mL), MeOH (20 mL), and ether (20 mL) and 

stirred for 15 min. The mixture was allowed to warm to room temperature and the layers were 

separated. The aqueous layer was further extracted with ether. The combined organic extracts 

were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. Purification by 

flash column chromatography (SiO2, 50% EtOAc in hexanes) gave the desired amide (3R,S,S)-

93a (3.6 g, 95%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ7.40–7.22 (m, 7H), 6.89–6.85 

(m, 2H), 4.65 (bt, J = 6.9 Hz, 1H), 4.51–4.31 (m, 3H), 4.22–4.11 (m, 0.3H), 4.06–4.02 (m, 2H), 

3.62–3.54 (m, 0.7H), 3.54–3.40 (m, 1H), 3.33–3.18 (m, 1H), 2.97–2.84 (m, 4H), 2.39–2.21 (m, 

2H), 2.21–2.06 (m, 2H), 2.06–1.89 (m, 1H), 1.80–1.58 (m, 1H), 1.16–1.04 (three overlapping 

doublets, J = 6.6, 6.9 and 6.9 Hz, 5H), 0.97 (d, J = 6.6 Hz, 1H); 19F NMR (282 MHz, CDCl3) δ 

−81.1 (m, 3F), −114.7 (m, 2F), −124.5 (m, 2F), −126.1  (m, 2F); 13C NMR (75 MHz, CDCl3) 

major rotamer δ 178.51, 158.11, 142.62, 130.94, 129.22, 128.23, 127.44, 126.27, 114.29, 76.22, 

72.45, 67.63, 66.28, 58.26, 34.01, 33.11, 27.78 (t, 2JCF = 22.5 Hz), 26.65, 20.51 (m), 17.28, 

14.27; minor rotamer δ 177.08, 141.44, 130.74, 129.49, 128.49, 127.99, 126.93, 75.31, 72.25, 

68.21, 33.95, 32.62, 18.39, 15.66; EIMS m/z 631 (M)+; HRMS (EI) (M)+ calcd for C29H34O4NF9, 

631.2344; found 631.2330; IR (neat) 3341, 2967, 2870, 2240, 1953, 1885, 1611, 1232 cm−1; 

[α]D
25 +2.7 (c 2.4, CHCl3). 
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(S)-4-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-

N,2-dimethylbutanamide ((3S,R,R)-93c):75 This compound was prepared in 95% yield starting 

from iodide 94c (4.2 g, 10.8 mmol) and (R,R)-pseudoephiderine propionamide (R,R)-112 (4.9 g, 

21.6 mmol) following the procedure described above for preparation of compound (3R,S,S)-93a. 

1H NMR (300 MHz, CDCl3) δ7.40–7.22 (m, 7H), 6.89–6.85 (m, 2H), 4.65 (bt, J = 6.9 Hz, 1H), 

4.51–4.31 (m, 3H), 4.22–4.11 (m, 0.3H), 4.06–4.02 (m, 2H), 3.62–3.54 (m, 0.7H), 3.54–3.40 (m, 

1H), 3.33–3.18 (m, 1H), 2.97–2.84 (m, 4H), 2.39–2.21 (m, 2H), 2.21–2.06 (m, 2H), 2.06–1.89 

(m, 1H), 1.80–1.58 (m, 1H), 1.16–1.04 (three overlapping doublets, J = 6.6, 6.9 and 6.9 Hz, 5H), 

0.97 (d, J = 6.6 Hz, 1H); 19F NMR (282 MHz, CDCl3) δ −66.31 (t, J = 11.3 Hz, 3F); 13C NMR 

(75 MHz, CDCl3) major rotamer δ 178.28, 157.99, 142.52, 130.69, 129.15, 128.10, 127.29, 

126.16, 114.12, 75.97, 72.33, 67.49, 65.81, 58.08, 33.88, 32.91, 30.48 (q, 2JCF = 28.5 Hz), 26.61, 

21.98 (q, 3JCF = 3.0 Hz), 17.20, 14.16; minor rotamer δ 176.97, 141.44, 130.56, 129.38, 128.36, 

127.84, 126.82, 114.08, 75.12, 72.12, 68.09, 57.90, 33.76, 32.46, 18.27, 15.57; 19F NMR (282 

MHz, CDCl3) δ −66.4 (t, 3F); EIMS m/z 481 (M)+; HRMS (EI) (M)+ calcd for C26H34O4NF3, 

481.2439; found 481.2452; IR (neat) 3399, 2966, 2214, 1956, 1886, 1619, 1247 cm−1; [α]D
25 

+3.8 (c 2.0, CHCl3). 
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(S)-4-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2-methylbutan-1-ol and (R)-4-(4-(4,4,5,5,6,6,7,7, 

7-Nonafluoroheptyloxy)benzyloxy)-2-methylbutan-1-ol (M113):78 The amides (3R,S,S)-93a 

(2.21 g, 3.50 mmol) and (3S,R,R)-93c (1.68 g, 3.50 mmol) were combined to obtain the mixture 

(3.89 g, 7.0 mmol) M93. n-BuLi (1.6 M in hexanes, 16.95 mL, 27.12 mmol) was added dropwise 

to a solution of diisoproplyamine (4.11 mL, 29.21 mmol) in THF (29 mL) at −78 °C. The 

resulting mixture was stirred at −78 °C for 10 min and then at 0 °C for 10 min. BH3•NH3 (0.96 g, 

27.87 mmol) was added and the reaction mixture was stirred at 0 °C for 15 min, at room 

temperature for 15 min, and cooled back to 0 °C. A solution of amide mixture M93 (3.88 g, 6.96 

mmol) in THF (19 mL) was added dropwise and the reaction mixture was stirred at 0 °C for 5 

min and at room temperature for 4 h. The reaction was quenched by the addition of 3 N HCl (70 

mL), water and ether were added, and the layers were separated. The aqueous layer was further 

extracted with ether. The combined organic extracts were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by flash column chromatography (SiO2, 35% 

EtOAc in hexanes) gave the desired alcohol M113 (2.39 g, 87%) as colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.27 (d, J = 7.8 Hz, 2H), 6.88 (d, J = 8.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 1H), 4.46 

(s, 2H), 4.03 (dd, J = 6.0, 12.6 Hz, 2H), 3.62–3.38 (m, 4H), 2.69 (bt, J = 5.7 Hz, 1H), 2.39–

2.21(m, 2H), 2.20–2.00 (m, 2H), 1.90–1.73 (m, 1H), 1.73–1.52 (m, 2H), 0.93 (d, J = 6.6 Hz, 

3H); 19F NMR (282 MHz, CDCl3) δ −66.4 (t, J = 11.3 Hz, 3F), −81.2 (m, 3F), −114.7 (m, 2F), 

−124.45 (m, 2F), −126.1 (m, 2F); EIMS (S)-113c m/z 320 M+; (R)-113a m/z 470 M+; HRMS (EI) 

(S)-113c M+ calcd for C16H23O3F3 320.1599, found 320.1589; (R)-113a M+ calcd for C19H23O3F9 

470.1504, found 470.1498; analytical fluorous HPLC (conditions 3) tR = 4.3 min ((S)-113c), 9.9 

min ((R)-113a). 
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(S)-4-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2-methylbutanal and (R)-4-(4-(4,4,5,5,6,6,7,7,7-

Nonafluoroheptyloxy)benzyloxy)-2-methylbutanal (M92):43 Oxalyl chloride (6.3 mL, 71.7 

mmol) was added dropwise to a solution of DMSO (11.4 mL, 160.1 mmol) in DCM (230 mL) at 

−78 °C. The resulting solution was stirred at this temperature for 15 min. A solution of starting 

alcohol M113 (9.45 g, 23.9 mmol) in DCM (120 mL) was then added dropwise and the mixture 

was stirred at −78 °C for 30 min. Diisopropylamine (41.8 mL, 239.0) was added dropwise and 

the mixture stirred at −78 °C for 30 min and then allowed to warm to room temperature over a 

period of 2 h. The reaction was quenched by the addition of saturated sodium bisulfate solution. 

Water was added and the layers were separated. The aqueous layer was extracted with DCM. 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 5% EtOAc in hexanes) gave 

the desired aldehyde mixture M92 (6.79 g, 72%) as yellow oil: 1H NMR (300 MHz, CDCl3) δ 

9.64 (d, J = 1.8 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.7 Hz, 1H), 6.87 (d, J = 8.7 Hz, 

1H), 4.42 (s, 2H), 4.03 (dd, J = 6.0, 12.6 Hz, 2H), 3.58–3.45 (m, 2H), 2.57–2.50 (m, 1H), 2.40–

2.24 (m, 2H), 2.15–1.99 (m, 3H), 1.75–1.64 (m, 1H), 1.11 (d, J = 7.2 Hz, 3H); 19F NMR (282 

MHz, CDCl3) δ −66.37 (m, 3F), −81.08 (m, 3F), −114.63 (m, 2F), −124.45 (m, 2F), −126.08 (m, 

2F); EIMS (S)-92c m/z 318 M+; (R)-92a m/z 468 M+; HRMS (ESI) (S)-92c (M + Na)+ calcd for 

C16H21O3F3Na 341.1340, found 341.1340; (R)-92a (M + Na)+ calcd for C19H21O3F9Na 491.1245, 

found 491.1282; analytical fluorous HPLC (conditions 3) tR = 6.2 min ((S)-92c), 16.8 min ((R)-

92a). 
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(R)-((R)-2-Methyl-4-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)phenoxy)butyl)3,3,3-trifluoro 

-2-methoxy-2-phenylpropanoate ((R,3R)-114a):32e Triethylamine (23.7 µL, 0.17 mmol), S-

MTPA chloride (16.0 µL, 0.09 mmol) and DMAP (1.0 mg, 0.01 mmol) were added to a solution 

of alcohol (R)-113a (4.0 mg, 0.01 mmol) in DCM (0.5 mL). The resulting mixture was stirred at 

room temperature for 1 h. The reaction was quenched by the addition of water, DCM was added 

and the layers were separated. The aqueous layer was further extracted with DCM. The 

combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under 

vacuum to obtain the crude MTPA ester (R,3R)-114a: 1H NMR major diastereomer (500 MHz, 

CDCl3) δ 7.53–7.51 (m, 2H), 7.43–7.38 (m, 3H), 7.25 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 

2H), 4.41 (dd, J = 11.5, 12.5 Hz, 2H), 4.28 (dd, J = 5.5, 11.0 Hz, 1H), 4.12 (dd, J = 6.5, 11.0 Hz, 

1H), 4.04 (t, J = 6.0 Hz, 2H), 3.55 (s, 3H), 3.51–3.46 (m, 2H), 2.38–2.26 (m, 2H), 2.14–2.03 (m, 

3H), 1.70 (sxt, J = 6.5 Hz, 1H), 1.51–1.44 (m, 1H), 0.94 (d, J = 6.5 Hz, 3H). 

 

 

(S)-((R)-2-Methyl-4-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)phenoxy)butyl)3,3,3-trifluoro-

2-methoxy-2-phenylpropanoate ((S,3R)-114a): This compound was prepared from alcohol (R)-

113a (4.0 mg, 0.01 mmol) by reaction with R-MTPA chloride, triethylamine and DMAP 

following the procedure described above for the preparation of the MTPA ester (R,3R)-114a. 

The 1H NMR spectrum of the crude product was obtained and compared with the 1H NMR 

spectrum of (R,3R)-114a. Based on these spectra the enantiomeric ratio of the alcohol (R)-113a 

was found to be 94:6. 1H NMR major diastereomer (500 MHz, CDCl3) δ 7.53–7.51 (m, 2H), 
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7.42–7.39 (m, 3H), 7.25 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 9.5 Hz, 2H), 4.06 (s, 2H), 4.21 (dd, J = 

0.5 Hz, 5.5 Hz, 1H), 4.18 (dd, J = 1.5, 6.0 Hz, 1H), 4.04 (t, J = 6.0 Hz, 2H), 3.55 (s, 3H), 3.49–

3.44 (m, 2H), 2.38–2.25 (m, 2H), 2.14–2.02 (m, 3H), 1.66 (sxt, J = 7.0 Hz, 1H), 1.50–1.44 (m, 

1H), 0.95 (d, J = 7.0 Hz, 3H). 

 

 

(R)-((S)-2-Methyl-4-(4-(4,4,4-trifluorobutoxy)phenoxy)butyl) 3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate ((R,3S)-114c): This compound was prepared from alcohol (S)-113c (5.0 mg, 

0.16 mmol) by reaction with S-MTPA chloride, triethylamine and DMAP following the 

procedure described above for the preparation of the MTPA ester (R,3R)-114a. The 1H NMR 

spectrum of the crude product was obtained. 1H NMR major diastereomer (500 MHz, CDCl3) δ 

7.53–7.51 (m, 2H), 7.42–7.39 (m, 3H), 7.25 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 9.5 Hz, 2H), 4.41 (s, 

2H), 4.21 (dd, J = 0.5 Hz, 5.5 Hz, 1H), 4.18 (dd, J = 1.5, 6.0 Hz, 1H), 4.04 (t, J = 6.0 Hz, 2H), 

3.55 (s, 3H), 3.49–3.44 (m, 2H), 2.38–2.25 (m, 2H), 2.14–2.02 (m, 3H), 1.66 (sxt, J = 7.0 Hz, 

1H), 1.50–1.44 (m, 1H), 0.95 (d, J = 6.0 Hz, 3H). 

 

 

(S)-((S)-2-Methyl-4-(4-(4,4,4-trifluorobutoxy)phenoxy)butyl) 3,3,3-trifluoro-2-methoxy-2-

phenylpropanoate ((S,3S)-114c): This compound was prepared from alcohol (S)-113c (5.0 mg, 

0.16 mmol) by reaction with R-MTPA chloride, triethylamine and DMAP following the 

procedure described above for the preparation of the MTPA ester (R,3R)-114a. The 1H NMR 

spectrum of the crude product was obtained and compared with the 1H NMR spectrum of major 
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diastereomer (500 MHz, CDCl3) δ 7.53–7.51 (m, 2H), 7.43–7.38 (m, 3H), 7.25 (d, J = 8.5 Hz, 

2H), 6.87 (d, J = 8.5 Hz, 2H), 4.41 (s, 2H), 4.28 (dd, J = 5.5, 11.0 Hz, 1H), 4.12 (dd, J = 6.5, 

11.0 Hz, 1H), 4.04 (t, J = 6.0 Hz, 2H), 3.55 (s, 3H), 3.51–3.46 (m, 2H), 2.38–2.26 (m, 2H), 2.14–

2.03 (m, 3H), 1.72–1.65 (m, 1H), 1.51–1.44 (m, 1H), 0.94 (d, J = 7.0 Hz, 3H). Based on these 

spectra the enantiomeric ratio of the alcohol (S)-113c was found to be 93:7. 

 

 

R-Methyl 3-(tert-butyldimethylsilyloxy)-2-methylpropanoate ((R)-115):96 Imidazole (4.3 g, 

63.5 mmol), TBSCl (8.9 g, 59.3 mmol) and DMAP (0.4 g, 3.4 mmol) were added to solution of 

(R)-methyl 3-hydroxy-2-methylpropanoate (R)-85 (5.0 g, 42.3 mmol) in THF (150 mL). The 

resulting mixture was stirred at room temperature for 4 h. The reaction was quenched by addition 

of water, ether was added, and the layers were separated. The aqueous layer was further 

extracted and with ether. The combined organic layers were dried over anhydrous MgSO4, 

filtered, and concentrated under vacuum. Purification by flash column chromatography (SiO2, 

5% EtOAc in hexanes) gave 9.6 g (97%) of pure compound (R)-115 as colorless oil: 1H NMR 

(300 MHz, CDCl3) δ 3.77 (dd, J = 6.9, 9.6 Hz, 1H), 3.67 (s, 3H), 3.65 (dd, J = 6.0, 9.9 Hz, 1H), 

2.65 (sxt, J = 6.9 Hz, 1H), 1.13 (d, J = 6.9 Hz, 3H), 0.87 (s, 9H), 0.33 (s, 6H). 

 

 

S-Methyl 3-(tert-butyldimethylsilyloxy)-2-methylpropanoate ((S)-115):62 This compound was 

prepared in 95% yield starting from (S)-methyl 3-hydroxy-2-methylpropanoate (S)-85 (5.0 g, 

TBSO OMe

O

TBSO OMe
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42.3 mmol) following the procedure described above for preparation of compound (R)-115. The 

1H NMR data of this compound was identical to that reported above for compound (R)-115. 

 

 

R-3-(tert-Butyldimethylsilyloxy)-2-methylpropanal ((R)-116):97 DIBAL (1 M in hexanes, 43.4 

mL, 43.4 mmol) was added dropwise to a solution of the ester (R)-115 (9.6 g, 41.3 mmol) in 

DCM (293 mL) at −78 °C. The resulting mixture was stirred at this temperature for 1.5 h. The 

reaction was quenched by addition of saturated sodium potassium tartrate solution (300 mL) and 

the mixture was allowed to stir at room temperature till the layers became clear. The layers were 

separated and the aqueous layer was extracted with DCM. The combined organic layers were 

then dried over MgSO4, filtered, and concentrated under vacuum to afford 8.2 g of the aldehyde 

(R)-116 as a yellow oil which was carried to the next step without further purification: 1H NMR 

(300 MHz, CDCl3) δ 9.75 (d, J = 1.8 Hz, 1H), 3.87 (dd, J = 5.1, 10.2 Hz, 1H), 3.81 (dd, J = 6.3, 

10.2 Hz, 1H), 2.57–2.48 (m, 1H), 1.10 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H), 0.06 (s, 6H). 

 

 

S-3-(tert-Butyldimethylsilyloxy)-2-methylpropanal ((S)-116):62 This compound was prepared 

from (S)-115 following the procedure described above for preparation of compound (R)-116. 

The NMR data of this compound was in accordance to that mentioned above for compound (R)-

116. 
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S-tert-Butyl(4,4-dibromo-2-methylbut-3-enyloxy)dimethylsilane ((S)-91):64 Carbon tetrabro-

mide (27.67 g, 82.59 mmol) was dissolved in DCM (300 mL) and the solution was cooled to 0 

°C. Triphenylphosphine (43.76 g, 165.18 mmol) was added and the resulting dark red solution 

was stirred at this temperature for 1 h followed by cooling to −78 °C. A solution of the aldehyde 

(R)-116 (8.36 g, 41.30 mmol) and 2,6-Lutidine (4.84 mL, 41.30 mmol) in DCM (20 mL) was 

added dropwise. After stirring at −78 °C for 1h the mixture was warmed to room temperature 

and stirred for 1 h. The reaction was quenched by the addition of hexanes. The reaction mixture 

was filtered and the filtrate was concentrated under vacuum. Purification by flash column 

chromatography (SiO2, 2% EtOAC in hexanes) gave the dibromoolefin (S)-91 (8.88 g, 60% over 

two steps) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 6.28 (d, J = 9.3 Hz, 1H), 3.52 (d, J = 

5.7, 2H), 2.71–2.57 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H), 0.91 (s, 9H), 0.06 (s, 6H). 

 

 

R-tert-Butyl(4,4-dibromo-2-methylbut-3-enyloxy)dimethylsilane ((R)-91):62 This compound 

was prepared in yield from aldehyde (S)-116 according to the procedure described above for 

preparation of compound (S)-91. The NMR data of this compound was in accordance to that 

mentioned for compound (S)-91. 
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(3R,7R)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-8-(tert-butyldimethylsilyl 

oxy)-3,7-dimethyloct-5-yn-4-ol and (3S,7R)-1-(4-(4,4,4-Trifluorobutoxy) benzyloxy)-8-(tert-

butyldimethylsilyloxy)-3,7-dimethyloct-5-yn-4-ol ((7R)-M117):98 n-BuLi (1.6 M in hexanes, 

11.21 mL, 17.94 mmol) was added dropwise to a solution of the dibromoolefin (R)-91 (3.18 g, 

8.54 mmol) in THF (70 mL) at −78 °C. The reaction mixture was stirred at this temperature for 1 

h and a solution of the aldehyde M92 (2.80 g, 7.12 mmol) in THF (35 mL) was added dropwise. 

The reaction mixture was stirred at −78 °C for 1 h followed by warming to room temperature 

over a period of 4 h. The reaction was quenched by the addition of saturated NH4Cl solution, 

water and ether were added and the layers were separated. The aqueous layer was further 

extracted with ether. The combined organic layers were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by flash column chromatography (SiO2, 15% 

EtOAc in hexanes) gave the desired alcohol (7R)-M117 (4.21 g, 100%) as colorless oil: 1H NMR 

(300 MHz, CDCl3) δ 7.26 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.7 Hz, 1H), 6.86 (d, J = 8.7 Hz, 1H), 

4.53–4.41 (m, 2H), 4.33–4.19 (m, 1H), 4.03 (dd, J = 6.0, 12.3 Hz, 2H), 3.73–3.64 (m, 1H), 3.64–

3.47 (m, 2H), 3.43 (dd, J = 8.1, 9.3 Hz, 1H), 3.27 (d, J = 7.2 Hz, 0.5H), 2.68 (d, J = 5.7 Hz, 

0.5H), 2.68–2.54 (m, 1H), 2.43–2.20 (m, 2H), 2.20–1.99 (m, 2H), 1.99–1.83 (m, 1H), 1.83–1.60 

(m, 1H), 1.60–1.14 (m, 1H), 1.17 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.9 Hz, 1.5H), 0.99 (d, J = 6.6 

Hz, 1.5 H), 0.90 (s, 9H), 0.06 (s, 6H); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 

3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.0 (m, 2F); EIMS (3S,7R)-117c m/z 516 M+; (3R,7R)-

117a m/z 666 M+; HRMS (ESI) (3S,7R)-117c (M + Na)+ calcd for C27H43O4F3SiNa 539.2780, 

found 539.2766; (3R,7R)-117a (M + Na)+ calcd for C30H43O4F9SiNa 689.2685, found 689.2676; 

analytical fluorous HPLC (conditions 3) tR = 15.3 min ((3S,7R)-117c), 26.4 min ((3R,7R)-117a). 
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(3R,7S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-8-(tert-butyldimethylsilyl 

oxy)-3,7-dimethyloct-5-yn-4-ol and (3S,7S)-1-(4-(4,4,4-Trifluorobutoxy) benzyloxy)-8-(tert-

butyldimethylsilyloxy)-3,7-dimethyloct-5-yn-4-ol ((7S)-M117):98 This compound was 

prepared in 80% yield starting from dibromide (S)-91 (3.65 g, 10.2 mmol) and aldehyde M92 

(3.34 g, 8.5 mmol) following the procedure described above for preparation of compound (7R)-

M117. 1H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.7 Hz, 1H), 6.86 (d, 

J = 8.7 Hz, 1H), 4.71 (q, J = 11.4 Hz, 1H), 4.45 (s, 1H), 4.31–4.20 (m, 1H), 4.03 (q, J = 6.0 Hz, 

2H), 3.71–3.64 (m, 1H), 3.63–3.47 (m, 2H), 3.43 (dd, J = 8.1, 9.3 Hz, 1H), 3.25 (d, J = 7.2 Hz, 

0.5H), 2.67 (d, J = 6.0 Hz, 0.5H), 2.68–2.55 (m, 1H), 2.42–2.23 (m, 2H), 2.17–2.02 (m, 2H), 

2.02–1.84 (m, 1H), 1.84–1.44 (m, 2H), 1.17 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.6 Hz, 1.5H), 0.99 

(d, J = 6.6 Hz, 1.5 H), 0.90 (s, 9H), 0.06 (s, 6H); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), 

−81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.0 (m, 2F); EIMS (3S,7S)-117c m/z 516 M+; 

(3R,7S)-117a m/z 666 M+; HRMS (ESI) (3S,7S)-117c (M + Na)+ calcd for C27H43O4F3SiNa 

539.2780, found 539.2775; (3R,7S)-117a (M + Na)+ calcd for C30H43O4F9SiNa 689.2685, found 

689.2634; analytical fluorous HPLC (conditions 3) tR = 14.2 min ((3S,7S)-117c), 24.3 min 

((3R,7S)-117a). 

 

 

(2R,6S)-8-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2,6-dimethyloct-3-yne-1,5-diol and (2R,6R)-

8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-2,6-dimethyloct-3-yne-1,5-diol 
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((7R)-M90):99 A mixture of TBAF (35 mL, 35 mmol) and CH3COOH (2 mL, 35 mmol) was 

added to a solution of the silyl ether (7R)-M117 (4.1 g, 7.0 mmol) in THF (50 mL) at 0 °C. The 

resulting solution was stirred at this temperature for 10 min and at room temperature for 24 h. 

The reaction was quenched by the addition of saturated NH4Cl solution, water and ether were 

added and the layers were separated. The aqueous layer was further extracted with ether. The 

combined organic layer were dried over MgSO4, filtered, and concentrated under vacuum. 

Purification by flash column chromatography (SiO2, 40%–60% EtOAc in hexanes) gave the diol 

(7R)-M90 (2.1 g, 91%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.29–7.26 (m, 2H), 6.89–

6.86 (m, 2H), 4.53–4.42 (m, 2H), 4.29–4.23 (m, 1H), 4.03 (q, J = 6.3 Hz, 2H), 3.65–3.40 (m, 

4H), 2.80–2.60 (m, 1H), 2.43–2.20 (m, 2H), 2.18–1.98 (m, 2H), 1.98–1.80 (m, 1H), 1.80–1.60 

(m, 1H), 1.60–1.44 (m, 1H), 1.17–1.14 (m, 3H), 1.02 (d, J = 7.2 Hz, 1.5 H), 0.99 (d, J = 6.9 Hz, 

1.5H); 19F NMR (282 MHz, CDCl3) −66.3 (3F), −81.0 (3F), −114.2 (2F), −124.4 (2F), −126.0 

(2F); EIMS (3S,7R)-90c m/z 425 M+; (3R,7R)-90a m/z 575 M+; HRMS (ESI) (3S,7R)-90c (M + 

Na)+ calcd for C21H29O4F3Na 425.1916, found 425.1911; (3R,7R)-90a (M + Na)+ calcd for 

C24H29O4F9Na 575.1820, found 575.1815; analytical fluorous HPLC (conditions 3) tR = 3.8 min 

((3S,7R)-90c), 11.8 min ((3R,7R)-90a). 

 

 

(2S,6S)-8-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2,6-dimethyloct-3-yne-1,5-diol and (2S,6R)-

8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-2,6-dimethyloct-3-yne-1,5-diol ((7S)-

M90):99 This compound was prepared in 91% yield starting from protected alcohol (7S)-M117 

(6.70 g, 1.13 mmol) following the procedure described above for preparation of compound (7R)-

OH
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M90: 1H NMR (300 MHz, CDCl3) δ 7.28–7.25 (m, 2H), 6.87(d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.7 

Hz, 1H), 4.47 (q, J = 11.4 Hz, 1H), 4.45 (s, 1H), 4.30–4.20 (m, 1H), 4.03 (q, J = 6.0 Hz, 2H), 

3.64–3.42 (m, 4H), 2.72–2.65 (m, 1H), 2.42–2.22 (m, 2H), 2.14–1.98 (m, 2H), 1.98–1.85 (m, 

1H), 1.85–1.46 (m, 2H), 1.16–1.13 (four overlapping doublets, J = 6.9 Hz, 3H), 1.01 (d, J = 6.9 

Hz, 1.5 H), 0.99 (d, J = 6.9 Hz, 1.5H); 19F NMR (282 MHz, CDCl3) δ −66.3 (3F), −81.0 (3F), 

−114.2 (2F), −124.4 (2F), −126.0 (2F); EIMS (3S,7S)-90c m/z 425 (M + Na)+; (3R,7S)-90a m/z 

575 (M + Na)+; HRMS (ESI) (3S,7S)-90c (M + Na)+ calcd for C21H29O4F3Na 425.1916, found 

425.1908; (3R,7S)-90a (M + Na)+ calcd for C24H29O4F9Na, 575.1820; found 575.1865; analytical 

fluorous HPLC (conditions 3) tR = 3.9 min ((3S,7S)-90c), 11.8 min ((3R,7S)-90a). 

 

 

(3S,7R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-yl-

thio)oct-5-yn-4-ol and (3R,7R)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7-

dimethyl-8-(1-phenyl-1H-tetrazol-5-ylthio)oct-5-yn-4-ol ((7R)-M118):81 PPh3 (549.4 mg, 2.1 

mmol) and PTSH (377.1 mg, 2.1 mmol) were added to a solution of stating alcohol (7R)-M90 

(900.0 mg, 1.9 mmol) in THF (22.6 mL) at 0 °C and the mixture was stirred to allow the reagents 

to dissolve. DIAD (0.4 mL, 2.1 mmol) was then added dropwise and the reaction mixture was 

stirred for 30 min at 0 °C. The reaction was quenched by the addition of sat NH4Cl solution, 

water and ether were added and the layers were separated. The aqueous layer was further 

extracted with ether. The combined organic layers were dried over saturated MgSO4, filtered, 

and concentrated under vacuum. Purification by flash column chromatography (SiO2, 25% 

EtOAc in hexanes) gave the desired sulfide (7R)-M118 (776.4 mg, 65%) contaminated with 
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about 10% of the hydrazine byproduct (1H NMR analysis). This product was used in next step 

without any further purification: 1H NMR (500 MHz, CDCl3) δ 7.59–7.53 (m, 5H), 7.24 (d, J = 

8.5 Hz, 2H), 6.86–6.84 (m, 2H), 4.44 (q, J = 11.5 Hz, 1H), 4.43 (s, 1H), 4.30–4.25 (m, 0.5H), 

4.21 (tt, J = 1.5, 5.5 Hz, 0.5 H), 4.04–3.99 (m, 2H), 3.57–3.39 (m, 4 H), 3.13–3.05 (m, 1H), 

2.36–2.26 (m, 2H), 2.12–2.01 (m, 2H), 1.98–1.85 (m, 1H), 1.76–1.40 (m, 2H), 1.33 (d, J = 7.0 

Hz, 3H), 0.97 (d, J = 7.0 Hz, 1.5H), 0.95 (d, J = 6.5 Hz, 1.5); 19F NMR (282 MHz, CDCl3) δ 

−66.3 (m, 3F), −81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.0 (m, 2F); EIMS (3S,7R)-

118c m/z 585 (M + Na)+; (3R,7R)-118a 735 (M + Na)+; HRMS (ESI) (3S,7R)-118c (M + Na)+ 

calcd for C28H33N4O3F3SNa 585.2123, found 585.2075; (3R,7R)-M118a (M + Na)+ calcd for 

C31H33N4O3F9SNa 735.2027, found 735.2050; analytical fluorous HPLC (conditions 3) tR = 6.6 

min ((3S,7R)-118c), 15.7 min ((3R,7R)-118a). 

 

 

(3S,7S)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-yl-

thio)oct-5-yn-4-ol and (3R,7S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7-

dimethyl-8-(1-phenyl-1H-tetrazol-5-ylthio)oct-5-yn-4-ol ((7S)-M118):81 This compound was 

prepared in 54% yield starting from diol (7S)-M90 (650.0 mg, 1.4 mmol) according to the 

procedure described above for preparation of compound (7R)-M118: 1H NMR (300 MHz, 

CDCl3) δ 7.59–7.53 (m, 5H), 7.24 (d, J = 8.4 Hz, 2H), 6.87–6.83 (m, 2H), 4.44 (q, J = 11.4 Hz, 

1H), 4.43 (s, 1H), 4.31–4.25 (m, 0.5H), 4.21 (tt, J = 6.0, 1.8 Hz, 0.5 H), 4.02 (q, J = 6.3 Hz, 2H), 

3.61–3.38 (m, 4.5 H), 3.15–3.05 (m, 1H), 2.85 (bd, J = 5.7 Hz, 0.5H), 2.40–2.23 (m, 2H), 2.14–

1.97 (m, 2H), 1.97–1.80 (m, 1H), 1.80–1.40 (m, 2H), 1.34 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 
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Hz, 1.5H), 0.95 (d, J = 6.9 Hz, 1.5); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 

3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.1 (m, 2F); EIMS (3S,7S)-118c m/z 585 (M + Na)+; 

(3R,7S)-118a m/z 735 (M + Na)+; HRMS (ESI) (3S,7S)-118c (M + Na)+ calcd for 

C28H33N4O3F3NaS 585.2123, found 585.2083; (3R,7S)-118a (M + Na)+ calcd for 

C31H33N4O3F9NaS 735.2027, found 735.2065; analytical fluorous HPLC (conditions 3) tR = 6.6 

min ((3S,7S)-118c), 15.8 min ((3R,7S)-118a). 

 

 

(3S,7R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-yl-

sulfonyl)oct-5-yn-4-ol and (3R,7R)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-

3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-ylsulfonyl)oct-5-yn-4-ol ((7R)-M80):59 A solution of 

(NH4)6Mo7 O24•4H2O (100.2 mg, 0.08 mmol) in H2O2 (30% in water, 0.45 mL, 4.00 mmol) was 

added dropwise to a solution of the sulfide (7R)-M118 (130.0 mg, 0.20 mmol) in EtOH (1.3 mL) 

at 0 °C. The resulting yellow mixture was stirred at 0 °C for 30 min and at room temperature for 

24 h. The reaction was quenched by the addition of saturated NaHCO3 solution, water and DCM 

were added, and the layers were separated. The aqueous layer was further extracted with DCM. 

The combined organic extracts were dried over anhydrous MgSO4, filtered, and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 5% EtOAc in DCM) gave 

the desired sulfone (7R)-M80 (121.7 mg, 90%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 

7.72–7.57 (m, 5H), 7.26 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 

4.52–4.40 (m, 2H), 4.23–3.90 (m, 4H), 3.78–3.62 (m, 1H), 3.62–3.40 (m, 2.5H), 3.38–3.20 (m, 

1H), 2.93 (d, J = 6.0 Hz, 0.5H), 2.36–2.23 (m, 2H), 2.14–1.97 (m, 2H), 1.97–1.80 (m, 1H), 1.80–
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1.40 (m, 2H), 1.39 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.6 Hz, 1.5H), 0.94 (d, J = 6.6 Hz, 1.5); 19F 

NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), 

−126.0 (m, 2F); EIMS (3S,7R)-80c m/z 617 (M + Na)+; (3R,7R)-80a m/z 767 (M + Na)+; HRMS 

(ESI) (3S,7R)-80c (M + Na)+ calcd for C28H33N4O5F3SNa 617.2021, found 617.2016; (3R,7R)-

80a (M + Na)+ calcd for C31H33N4O5F9SNa 767.1926, found 767.1976; analytical fluorous 

HPLC (conditions 3) tR = 6.6 min ((3S,7R)-80c), 15.7 min ((3R,7R)-80a). 

 

 

(3S,7S)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-yl-

sulfonyl)oct-5-yn-4-ol and (3R,7S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-

3,7-dimethyl-8-(1-phenyl-1H-tetrazol-5-ylsulfonyl)oct-5-yn-4-ol ((7S)-M80):59  

This compound was prepared in 87% yield from sulfide (7S)-M118 (466.9 mg, 0.7 mmol) 

according to the procedure described above for preparation of compound (7R)-M80: 1H NMR 

(300 MHz, CDCl3) δ 7.72–7.54 (m, 5H), 7.26 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.51–

4.40 (m, 2H), 4.31–4.25 (m, 0.5H), 4.21 (tt, J = 6.0, 1.8 Hz, 0.5 H), 4.02 (q, J = 6.3 Hz, 2H), 

3.61–3.38 (m, 4.5 H), 3.15–3.05 (m, 1H), 2.85 (bd, J = 5.7 Hz, 0.5H), 2.40–2.23 (m, 2H), 2.14–

1.97 (m, 2H), 1.97–1.80 (m, 1H), 1.80–1.40 (m, 2H), 1.34 (d, J = 6.9 Hz, 3H), 0.97 (d, J = 6.9 

Hz, 1.5H), 0.95 (d, J = 6.9 Hz, 1.5); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 

3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.0 (m, 2F); EIMS (3S,7S)-80c m/z 617 (M + Na)+; 

(3R,7S)-80a m/z 767 (M + Na)+; HRMS (ESI) (3S,7S)-80c (M + Na)+ calcd for 

C28H33N4O5F3SNa 617.2021, found 617.2028; (3R,7S)-80a (M + Na)+ calcd for 
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C31H33N4O5F9SNa 767.1926, found 767.1976; analytical fluorous HPLC (conditions 3) tR = 6.6 

min ((3S,7S)-80c), 15.7 min ((3R,7S)-80a). 

 

  

5-((2R,6S)-8-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2,6-dimethyl-5-(triethylsilyloxy)oct-3-yn-

ylsulfonyl)-1-phenyl-1H-tetrazole and 5-((2R,6R)-8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyl-

oxy)benzyloxy)-2,6-dimethyl-5-(triethylsilyloxy)oct-3-ynylsulfonyl)-1-phenyl-1H-tetrazole 

((7R)-M123): 2,6-Lutidine (1.20 mL, 10.30 mmol) and TESOTf (1.60 mL, 7.70 mmol) were 

added dropwise to the solution of the starting alcohol (7R)-M80 (1.15 g, 1.71 mmol) in DCM 

(36 mL) at −78 °C. The reaction mixture was stirred at −78 °C for 30 min, allowed to warm to 

room temperature, and stirred for 30 min. The reaction was quenched by the addition of water 

and the layers were separated. The aqueous layer was further extracted with DCM. The 

combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated under 

vacuum. Purification by flash column chromatography (SiO2, 15% EtOAc in hexanes) gave the 

sulfone (7R)-M123 (1.13 g, 84%) as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.69–7.66 (m, 

2H), 7.65–7.58 (m, 3H), 7.28 (d, J = 7.0 Hz, 2H), 6.89 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 8.5 Hz, 

1H), 4.48–4.42 (m, 2H), 4.25–4.22 (m, 1H), 4.06–3.97 (m, 3H), 3.82–3.76 (m, 1H), 3.54–3.46 

(m, 2H), 3.37–3.31 (m, 1H), 2.36–2.27 (m, 2H), 2.14–2.00 (m, 2H), 1.98–1.75 (m, 2H), 1.50–

1.40 (m, 1H), 1.42 (d, J = 7.0 Hz, 3H), 1.02–0.93 (m, 12H), 0.71–0.60 (m, 6H); 19F NMR (282 

MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.1 (m, 2F); 

EIMS (3S,7R)-123c m/z 731 (M + Na)+; (3R,7R)-123a m/z 881 (M + Na)+; HRMS (ESI) 

(3S,7R)-123c (M + Na)+ calcd for C34H47N4O5F3SSiNa 731.2886, found 731.2908; (3R,7R)-
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123a (M + Na)+ calcd for C37H47N4O5F9SSiNa 881.2790, found 881.2762; analytical fluorous 

HPLC (conditions 3) tR = 16.1 min ((3S,7R)-123c), 24.8 min ((3R,7R)-123a). 

 

 

5-((2S,6S)-8-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-2,6-dimethyl-5-(triethylsilyloxy)oct-3-yn-

ylsulfonyl)-1-phenyl-1H-tetrazole and 5-((2S,6R)-8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyl-

oxy)benzyloxy)-2,6-dimethyl-5-(triethylsilyloxy)oct-3-ynylsulfonyl)-1-phenyl-1H-tetrazole 

((7S)-M123): This compound was prepared in 78% yield from alcohol (7S)-M80 (419.1 mg, 0.6 

mmol) according to the procedure described above for preparation of compound (7R)-M123. 1H 

NMR (300 MHz, CDCl3) δ 7.70–7.57 (m, 5H), 7.28–7.25 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.7 

Hz, 1H), 6.86 (d, J = 8.7 Hz, 1H), 4.43 (dd, J = 11.7, 15.0 Hz, 2H), 4.23–4.17 (m, 1H), 4.06–

3.95 (m, 3H), 3.83–3.74 (m, 1H), 3.52–3.45 (m, 2H), 3.35–3.29 (m, 1H), 2.41–2.25 (m, 2H), 

2.14–2.00 (m, 2H), 1.97–1.76 (m, 2H), 1.70–1.40 (m, 1H), 1.41 (d, J = 6.9 Hz, 3H), 0.99–0.89 

(m, 12H), 0.66–0.57 (m, 6H); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −81.0 (m, 3F), 

−114.6 (m, 2F), −124.4 (m, 2F), −126.1 (m, 2F); EIMS (3S,7S)-123c m/z 731 (M + Na)+; 

(3R,7S)-123a m/z 881 (M + Na)+; HRMS (ESI) (3S,7S)-123c (M + Na)+ calcd for 

C34H47N4O5F3SiSNa 731.2886, found 731.2941; (3R,7S)-123a (M + Na)+ calcd for 

C37H47N4O5F9SiSNa 881.2790, found 881.2712; analytical fluorous HPLC (conditions 3) tR = 

16.1 min ((3S,7S)-123c), 24.9 min ((3R,7S)-123a). 
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1-(((2R,6S)-8-(tert-Butyldimethylsilyloxy)-2,6-dimethyl-6-(triethylsilyloxy)oct-3-enyloxy)-

methyl)-4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzene and 1-(((2S,6S)-8-(tert-Butyldi-

methylsilyloxy)-2,6-dimethyl-6-(triethylsilyloxy)oct-3-enyloxy)methyl)-4-(4,4,5,5, 6,6,7,7,8,8, 

9,9,9-tridecafluorononyloxy)benzene ((3S)-M119):59 n-BuLi (1.6 M in hexanes, 0.37 mL, 0.60 

mmol) was added dropwise to a solution of diisopropylamine (0.09 mL, 0.63 mmol) in THF (0.6 

mL) at 0 °C. The resulting reaction mixture was stirred at 0 °C for 10 min and then at room 

temperature for 2 min. This solution of LDA was then transferred dropwise to a solution of the 

sulfone M83 (387.2 mg, 0.55 mmol) in THF (2.8 mL) at −78 °C. The resulting yellow reaction 

mixture was stirred at this temperature for 30 min after which a solution of aldehyde (R)-82 

(142.80 mg, 0.40 mmol) in THF (0.6 mL) was added dropwise. The reaction mixture was stirred 

at −78 °C for 3 h and quenched by the addition of saturated NH4Cl solution. Water and ether 

were added and the layers were separated. The aqueous layer was further extracted with ether. 

The combined organic layers were dried over anhydrous MgSO4, filtered, and concentrated 

under vacuum. Purification by flash column chromatography (SiO2, 2% EtOAc in hexanes) gave 

(274.5 mg, 83%) of the desired product (3S)-M119 as colorless oil: 1H NMR (300 MHz, CDCl3) 

δ 7.27 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.55–5.46 (m, 1H), 5.43–5.29 (m, 1H), 4.45 

(s, 2H), 4.05 (t, J = 11.7 Hz, 2H), 3.74 (t, J = 7.5 Hz, 2H), 3.36 (dd, J = 6.3, 9.0 Hz, 1H), 3.24 

(dd, J = 7.2, 9.0 Hz, 1H), 2.51–2.42 (m, 1H), 2.39–2.22 (m, 3H), 2.20–2.06 (m, 3H), 1.77–1.62 

(m, 2H), 1.18 (s, 3H), 1.03 (d, J = 6.6 Hz, 3H), 0.96 (t, J = 8.1 Hz, 9H), 0.90 (s, 9H), 0.58 (q, J = 

8.1 Hz, 6H), 0.06 (s, 6H); 19F NMR (282 MHz, CDCl3) δ −80.7 (m, 3F), −81.0 (m, 3F), −114.5 

(m, 2F), −114.7 (m, 2F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −124.4 (m, 2F), 

−126.1 (m, 4F); EIMS (3S,7R)-119a m/z 805 (M + Na)+; (3S,7S)-119b m/z 905 (M + Na)+; 

HRMS (ESI) (3S,7R)-119a (M + Na)+ calcd for C36H59O4F9Si2Na 805.3706, found 805.3740; 
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(3S,7S)-119b (M + Na)+ calcd for C38H59O4F13Si2Na 905.3642, found 905.3732; analytical 

fluorous HPLC (conditions 2) tR = 32.4 min ((3S,7R)-119a), 36.9 min ((3S,7S)-119b). 

 

 

(3S,7R)-8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7-dimethyloct-5-ene-1,3-

diol and (3S,7S)-8-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)benzyloxy)-3,7-di- 

methyloct-5-ene-1,3-diol ((3S)-M120):99 A mixture of TBAF (1 M in THF, 28.8 mL, 28.8 

mmol) and CH3COOH (1.7 mL, 28.8 mmol) was added dropwise to the solution of the starting 

bis-silyl ether (3S)-M119 (2.4 g, 2.9 mmol) in THF (16.5 mL) at 0 °C. The resulting mixture was 

stirred at this temperature 30 min and at room temperature for 24 h. The reaction was quenched 

by the addition of saturated NH4Cl solution. Water and ether were added and the layers were 

separated. The aqueous layer was further extracted with ether. The combined organic layers were 

dried over anhydrous MgSO4, filtered, and concentrated under vacuum. Purification by column 

chromatography (SiO2, 40% EtOAc in hexanes–60% EtOAc in hexanes) gave the pure diol (3S)-

M120 (1.7 g, 100%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25 (d, J = 9.9 Hz, 2H), 

6.87 (d, J = 8.7 Hz, 2H), 5.53–5.46 (m, 2H), 4.44 (s, 2H), 4.05 (t, J = 5.7 Hz, 2H), 3.98–3.75 (m, 

2H), 3.39–3.14 (m, 2H), 2.60–2.41 (m, 1H), 2.41–2.19 (m, 4H), 2.19–2.02 (m, 3H), 1.88–1.50 

(m, 3H), 1.23 (s, 1.5 H), 1.20 (s, 1.5 H), 1.03 (d, J = 6.9 Hz, 1.5H), 1.01 (d, J = 6.6 Hz, 1.5H); 

19F NMR (282 MHz, CDCl3) δ −80.7 (m, 3F), −81.0 (m, 3F), −114.5 (m, 2F), −114.7 (m, 2F), 

−121.9 (m, 2F), 122.9 (m, 2F), 123.5 (m, 2F), 124.4 (m, 2F), 126.1 (m, 4F); analytical fluorous 

HPLC (conditions 2) tR = 7.3 min ((3S,7R)-120a), 15.7 min ((3S,7S)-120b). 
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1-(((2R,6S)-2,6-Dimethyl-6,8-bis(triethylsilyloxy)oct-3-enyloxy)methyl)-4-(4,4,5,5,6,6,7,7,7-

nonafluoroheptyloxy)benzene and 1-(((2S,6S)-2,6-Dimethyl-6,8-bis(triethylsilyloxy)oct-3-

enyloxy)methyl)-4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzene ((3S)-M121): 

2,6-Lutidine (1.28 mL, 10.90 mmol) and TESOTf (1.86 mL, 8.15 mmol) were sequentially 

added dropwise to a solution of the starting diol (3S)-M120 (1.64 g, 2.72 mmol) in DCM (58 

mL) at −30 °C. The resulting solution was stirred at this temperature for 2 h. The reaction was 

quenched by the addition of water. The layers were separated and the aqueous layer was 

extracted with DCM. The combined organic layers were dried over anhydrous MgSO4, filtered, 

and concentrated under vacuum. Purification by column chromatography (SiO2, 2% EtOAc in 

hexanes) gave the desired product (3S)-M121 (1.76 g, 78%) as a colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.27 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.54–5.23 (m, 2H), 4.45 (s, 

2H), 4.04 (t, J = 6.0 Hz, 2H), 3.74 (t, J = 7.5 Hz, 2H), 3.35 (dd, J = 6.3, 9.3 Hz, 1H), 3.23 (dd, J 

= 7.2, 9.0 Hz, 1H), 2.53–2.06 (m, 7H), 1.79–1.63 (m, 2H), 1.73 (s, 3H), 1.02 (d, J = 6.9 Hz, 3H), 

0.95 (t, J = 7.8 Hz, 9H), 0.96 (t, J = 7.5 Hz, 9H), 0.64–0.53 (m, 12H); 19F NMR (282 MHz, 

CDCl3) δ −80.7 (m, 3F), −81.0 (m, 3F), −114.5 (m, 2F), −114.7 (m, 2F), −121.9 (m, 2F), −122.9 

(m, 2F), −123.5 (m, 2F), −124.4 (m, 2F), −126.1 (m, 4F); EIMS (3S,7R)-121a m/z 805 (M + 

Na)+; (3S,7S)-121b m/z 905 (M + Na)+; HRMS (ESI) (3S,7R)-121a (M + Na)+ calcd for 

C36H59O4F9Si2Na 805.3706, found 805.3688; (3S,7S)-121b (M + Na)+ calcd for 

C38H59O4F13Si2Na 905.3642, found 905.3641; analytical fluorous HPLC (conditions 2) tR = 30.9 

min ((3S,7R)-121a), 35.9 min ((3S,7S)-121b). 
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(3S,7R)-8-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7-dimethyl-3-(triethylsilyl 

oxy)oct-5-enal and (3S,7S)-8-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)benzyloxy)-

3,7-dimethyl-3-(triethylsilyloxy)oct-5-enal ((3S)-M81):71 A solution of oxalyl chloride (0.19 

mL, 2.11 mmol) in DCM (2.4 mL) was added dropwise to a solution of DMSO (0.30 mL, 4.23 

mmol) in DCM (4.8 mL) at −78 °C. The resulting solution was stirred at this temperature for 20 

min after which a solution of the starting bis triethylsilyl ether (3S)-M121 (400.0 mg, 0.48 

mmol) in DCM (4.8 mL) was added dropwise. The reaction mixture was stirred at −78 °C for 20 

min, at −40 °C for 20 min and cooled back to −78 °C. Triethylamine (0.88 mL, 6.24 mmol) was 

added dropwise and the reaction mixture was stirred at −78 °C for 30 min followed by warming 

to room temperature over a period of 2 h. The reaction was quenched by the addition of water, 

the layers were separated, and the aqueous layer was further extracted with DCM. The combined 

organic layers were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. 

Purification by column chromatography (SiO2, 4% EtOAc in hexanes) gave the pure aldehyde 

(3S)-M81 (265.1 mg, 77%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 9.86 (q, J = 2.4 Hz, 

1H), 7.26 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 5.53–5.29 (m, 2H), 4.44 (s, 2H), 4.04 (q, 

J = 6.0 Hz, 2H), 3.37–3.24 (m, 2H), 2.54–2.45 (m, 2H), 2.45–2.24 (m, 5H), 2.16–2.05 (m, 2H), 

1.32 (s, 3H), 1.02–0.93 (m, 12H), 0.66–0.56 (m, 6H); 19F NMR (282 MHz, CDCl3) δ −80.7 (m, 

3F), −81.0 (m, 3F), −114.5 (m, 2F), −114.7 (m, 2F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 

2F), −124.4 (m, 2F), −126.1 (m, 4F); EIMS (3S,7R)-81a m/z 689 (M + Na)+; (3S,7S)-81b m/z 

789 (M + Na)+; HRMS (ESI) (3S,7R)-81a (M + Na)+ calcd for C30H43O4F9SiNa 689.2685, found 

689.2651; (3S,7S)-81b (M + Na)+ calcd for C32H43O4F13SiNa 789.2621, found 789.2628; 

analytical fluorous HPLC (conditions 2) tR = 21.1 min ((3S,7R)-81a), 28.7 min ((3S,7S)-81b). 
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1-(((3S,7S,11R,15R)-16-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7,11,15-tet-

ramethyl-4,11-bis(triethylsilyloxy)hexadeca-8,13-dien-5-ynyloxy)methyl)-4-(4,4,4-trifluoro-

butoxy)benzene, 1-(((3S,7S,11R,15S)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)-

benzyloxy)-3,7,11,15-tetramethyl-4,11-bis(triethylsilyloxy)hexadeca -8,13-dien-5-ynyloxy)-

methyl)-4-(4,4,4-trifluorobutoxy)benzene, 1-(((3R,7S,11R,15R)-16-(4-(4,4,5,5,6,6,7,7,7-Non-

afluoroheptyloxy)benzyloxy)-3,7,11,15-tetramethyl-4,11-bis(triethylsilyloxy)hexadeca-8,13-

dien-5-ynyloxy)methyl)-4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzene, and 1-(((3R,7S, 

11R,15S)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)benzyloxy)-3,7,11,15-tetra-

methyl-4,11-bis(triethylsilyloxy)hexadeca-8,13-dien-5-ynyloxy)methyl)-4-(4,4,5,5,6,6,7,7,7-

nonafluoroheptyloxy)benzene ((7S,11R)-M124): NaHMDS (1.0 M in THF, 0.88 mL, 0.88 

mmol) was added dropwise to a solution of the starting sulfone (7R)-M123 (659.6 mg, 0.84 

mmol) in THF (15 mL) at −78 °C. The resulting yellow solution was stirred at this temperature 

for 30 min followed by the addition of a solution of aldehyde (3S)-M81 (500.0 mg, 0.70 mmol) 

in THF (11 mL). The reaction mixture was stirred at −78 °C for 2 h and quenched by the addition 

of saturated NH4Cl solution. The mixture was allowed to warm to room temperature and the 
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layers were separated. The aqueous layer was further extracted with ether. The combined organic 

layers were dried over anhydrous MgSO4, filtered, and concentrated under vacuum. Purification 

by flash column chromatography (SiO2, 5% EtOAc in hexanes) afforded the desired product 

(7S,11R)-M124 (485.1 mg, 55%) as colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 8.4 

Hz, 4H), 6.87 (d, J = 8.7 Hz, 4H), 5.69–5.23 (m, 4H), 4.49–4.39 (m, 4H), 4.31–4.22 (m, 1H), 

4.04 (t, J = 6.0 Hz, 4H), 3.56–3.44 (m, 2H), 3.36 (dd, J = 6.6, 9.3 Hz, 1H), 3.31–3.20 (m, 1H), 

3.20–3.05 (m, 1H), 2.54–2.43 (m, 1H), 2.43–2.20 (m, 4H), 2.20–1.99 (m, 8H), 1.99–1.75 (m, 

2H), 1.53–1.38 (m, 1H), 1.24–1.14 (m, 6H), 1.04–0.93 (m, 24H), 0.68–0.54 (m, 12H); 19F NMR 

(282 MHz, CDCl3) δ −66.4 (3F), −80.8 (3F), −81.1 (6F), −114.4 (2F), −114.7 (4F), −121.9 (2F), 

−122.9 (2F), −123.5 (2F), −124.4 (4F), −126.11 (6F); EIMS (3S,7S,11R,15R)-124ca m/z 1172 

(M + Na + H)+; (3S,7S,11R,15S)-124cb m/z 1272 (M + Na + H)+; (3R,7S,11R,15R)-124aa m/z 

1322 (M + Na + H)+; (3R,7S,11R,15S)-124ab m/z 1422 (M + Na + H)+; HRMS (ESI) 

(3S,7S,11R,15R)-124ca (M + Na)+ calcd for C57H84O6F12Si2Na 1171.5513, found 1171.5521; 

(3S,7S,11R,15S)-124cb (M + Na)+ calcd for C59H84O6F16Si2Na 1271.5449, found 1271.5408; 

(3R,7S,11R,15R)-124aa (M + Na)+ calcd for C60H84O6F18Si2Na 1321.5417, found 1321.5359; 

(3R,7S,11R,15S)-124ab (M + Na)+ calcd for C62H84O6F22Si2Na 1421.5353, found 1421.5298; 

analytical fluorous HPLC (conditions 2) tR = 29.2 min ((3S,7S,11R,15R)-M124ca), 34.4 min 

((3S,7S,11R,15S)-M124cb), 36.2 min ((3R,7S,11R,15R)-M124aa), 41.9 min ((3R,7S,11R,15S)-

M124ab). 
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(1-(((3S,7R,11R,15R)-16-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-3,7,11,15-tet-

ramethyl-4,11-bis(triethylsilyloxy)hexadeca-8,13-dien-5-ynyloxy)methyl)-4-(4,4,4-trifluoro-

butoxy)benzene, 1-(((3S,7R,11R,15S)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyl-

oxy)benzyloxy)-3,7,11,15-tetramethyl-4,11-bis(triethylsilyloxy)hexadeca -8,13-dien-5-ynyl-

oxy)methyl)-4-(4,4,4-trifluorobutoxy)benzene, 1-(((3R,7R,11R,15R)-16-(4-(4,4,5,5,6,6,7,7,7-

Nonafluoroheptyloxy)benzyloxy)-3,7,11,15-tetramethyl-4,11-bis(triethylsilyloxy)hexadeca-

8,13-dien-5-ynyloxy)methyl)-4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzene, and 1-(((3R, 

7R,11R,15S)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononyloxy)benzyloxy)-3,7,11,15-tet-

ramethyl-4,11-bis(triethylsilyloxy)hexadeca-8,13-dien-5-ynyloxy)methyl)-4-(4,4,5,5,6,6,7,7, 

7-nonafluoroheptyloxy)benzene ((7R,11R)-M124): This compound was prepared in 89% yield 

starting from sulfone (7S)-M123 (170.1 mg, 0.22 mmol) and aldehyde (3S)-M81 (130.0 mg, 

0.18 mmol) according to the procedure described above for preparation of compound (7S,11R)-

M124: 1H NMR (300 MHz, CDCl3) δ 7.27 (d, J = 8.7 Hz, 4H), 6.89–6.88 (d, J = 8.7 Hz, 4H), 

5.79–5.24 (m, 4H), 4.50–4.39 (m, 4H), 4.32–4.23 (m, 1H), 4.04 (t, J = 6.0 Hz, 4H), 3.57–3.45 

(m, 2H), 3.55–3.45 (m, 3H), 2.52–2.22 (m, 5H), 2.22–1.78 (m, 10H), 1.55–1.39 (m, 1H), 1.27–
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1.14 (m, 6H), 1.05–0.94 (m, 24H), 0.71–0.55 (m, 12H); 19F NMR (282 MHz, CDCl3) δ −66.4 

(m, 3F), −80.8 (m, 3F), −81.1 (m, 6F), −114.4 (m, 2F), −114.7 (m, 4F), −121.9 (m, 2F), −122.9 

(m, 2F), −123.5 (m, 2F), −124.5 (m, 4F), −126.1 (m, 6F); EIMS (3S,7R,11R,15R)-M124ca m/z 

1172 (M + Na + H)+; (3S,7R,11R,15S)-M124cb m/z 1272 (M + Na + H)+; (3R,7R,11R,15R)-

M124aa m/z 1322 (M + Na + H)+; (3R,7R,11R,15S)-M124ab m/z 1422 (M + Na + H)+; HRMS 

(ESI) (3S,7R,11R,15R)-M124ca (M + Na)+ calcd for C57H84O6F12Si2Na 1171.5513, found 

1171.5459; (3S,7R,11R,15S)-M124cb (M + Na)+ calcd for C59H84O6F16Si2Na 1271.5449, found 

1271.5374; (3R,7R,11R,15R)-M124aa (M + Na)+ calcd for C60H84O6F18Si2Na 1321.5417, found 

1321.5513; (3R,7R,11R,15S)-M124ab (M + Na)+ calcd for C62H84O6F22Si2Na 1421.5353, found 

1421.5436; analytical fluorous HPLC (conditions 2) tR = 29.6 min ((3S,7R,11R,15R)-M124ca), 

34.8 min ((3S,7R,11R,15S)-M124cb), 36.5 min ((3R,7R,11R,15R)-M124aa), 42.2 min 

((3R,7R,11R,15S)-M124ab). 

 

  

 

(3S,7S,11R,15R)-3,7,11,15-Tetramethyl-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)-
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benzyloxy)-1-(4-(4,4,4-trifluorobutoxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol, 

(3S,7S,11R,15S)-3,7,11,15-Tetramethyl-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoronon-

yloxy)benzyloxy)-1-(4-(4,4,4-trifluorobutoxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol, 

(3R,7S,11R,15R)-3,7,11,15-Tetramethyl-1,16-bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)-

benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol and (3R,7S,11R,15S)-3,7,11,15-Tetramethyl-

1-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridec-

afluorononyloxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol ((7S,11R)-M125):83 2N HCl 

(32.3 mL, 64.6 mmol) was added dropwise to a solution of the starting bis-silyl ether (7S,11R)-

M124 (450.2 mg, 0.35 mmol) in THF (111 mL) at 0 °C. The resulting mixture was stirred at 0 

°C for 10 min and at room temperature for 4 h. The reaction was quenched by addition of water. 

Ether was added and the layers were separated. The aqueous layer was further extracted with 

ether. The combined organic layers were washed with brine, dried over anhydrous MgSO4, 

filtered, and concentrated. Purification by flash column chromatography (SiO2, 40% EtOAc in 

hexanes) gave the product (7S,11R)-M125 (360.0 mg, 98%) as colorless oil: 1H NMR (300 

MHz, CDCl3) δ 7.27–7.24 (overlapping doublets, J = 8.4 Hz, 4H), 6.87 (d, J = 8.7 Hz, 4H), 

5.78–5.30 (m, 4H), 4.44 (s, 4H), 4.38–4.18 (m, 1H), 4.03 (t, J = 6.0 Hz, 4H), 3.64–3.40 (m, 2H), 

3.40–3.25 (m, 2H), 3.25–3.10 (m, 1H), 2.95–2.60 (m, 1H), 2.60–2.43 (m, 1H), 2.43–2.22 (m, 

5H), 2.22–2.00 (m, 7H), 2.00–1.83 (m, 1H), 1.83–1.58 (m, 2H), 1.58–1.43 (m, 1H), 1.26–1.22 

(m, 3H), 1.17–1.13 (m, 3H), 1.02 (d, J = 6.6 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H); 19F NMR (282 

MHz, CDCl3) δ −66.4 (m, 3F), −80.9 (m, 3F), −81.1 (m, 6F), −114.4 (m, 2F), −114.7 (m, 4F), 

−121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −124.5 (m, 4F), −126.1 (m, 6F); EIMS 

(3S,7S,11R,15R)-M125ca m/z 943 (M + Na)+; (3S,7S,11R,15S)-M125cb m/z 1043 (M + Na)+; 

(3R,7S,11R,15R)-M125aa m/z 1093 (M + Na)+; (3R,7S,11R,15S)-M125ab m/z 1193 (M + Na)+; 
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HRMS (ESI) (3S,7S,11R,15R)-M125ca (M + Na)+ calcd for C45H56O6F12Na 943.3783, found 

943.3704; (3S,7S,11R,15S)-M125cb (M + Na)+ calcd for C47H56O6F16Na 1043.3719, found 

1043.3619; (3R,7S,11R,15R)-M125aa (M + Na)+ calcd for C48H56O6F18Na 1093.3687, found 

1093.3583; (3R,7S,11R,15S)-M125ab (M + Na)+ calcd for C50H56O6F22Na 1193.3623, found 

1193.3634; analytical fluorous HPLC (conditions 2) tR = 7.9 min ((3S,7S,11R,15R)-M125ca), 

14.6 min ((3S,7S,11R,15S)-M125cb), 17.5 min ((3R,7S,11R,15R)-M125aa), 25.6 min 

((3R,7S,11R,15S)-M125ab). 

 

  

(3S,7R,11R,15R)-3,7,11,15-Tetramethyl-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benz-

yloxy)-1-(4-(4,4,4-trifluorobutoxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol, (3S,7R,11 

R,15S)-3,7,11,15-Tetramethyl-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyl 

oxy)-1-(4-(4,4,4-trifluorobutoxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol, (3R,7R,11R, 

15R)-3,7,11,15-Tetramethyl-1,16-bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy) 

hexadeca-8,13-dien-5-yne-4,11-diol and (3R,7R,11R,15S)-3,7,11,15-Tetramethyl-1-(4-(4,4,5, 

5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoronon- 
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yloxy)benzyloxy)hexadeca-8,13-dien-5-yne-4,11-diol ((7R,11R)-M125): This compound was 

prepared in 95% yield starting from bis-silyl ether (7R,11R)-M124 (196.0 mg, 0.16 mmol) 

according to the procedure described above for preparation of compound (7S,11R)-M125: 1H 

NMR (300 MHz, CDCl3) δ 7.27–7.24 (overlapping doublets, J = 8.4 Hz, 4H), 6.87 (d, J = 8.7 

Hz, 4H), 5.76–5.31 (m, 4H), 4.46 (q, J = 11.7 Hz, 2H), 4.44 (s, 2H), 4.37–4.20 (m, 1H), 4.03 (t, J 

= 6.0 Hz, 4H), 3.61–3.43 (m, 2H), 3.38–3.17 (m, 3H), 2.95–2.60 (m, 1H), 2.60–2.42 (m, 1H), 

2.42–2.00 (m, 12H), 2.00–1.83 (m, 1H), 1.83–1.44 (m, 3H), 1.27–1.22 (m, 3H), 1.18–1.25 (m, 

3H), 1.03–0.92 (m, 6H); 19F NMR (282 MHz, CDCl3) δ −66.4 (m, 3F), −80.9 (m, 3F), −81.1 (m, 

6F), −114.4 (m, 2F), −114.7 (m, 4F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −124.5 

(m, 4F), –126.1 (m, 6F); EIMS (3S,7R,11R,15R)-M125ca m/z 943 (M + Na)+; (3S,7R,11R,15S)-

M125cb m/z 1043 (M + Na)+; (3R,7R,11R,15R)-M125aa m/z 1093 (M + Na)+; 

(3R,7R,11R,15S)-M125ab m/z 1193 (M + Na)+; HRMS (ESI) (3S,7R,11R,15R)-M125ca (M + 

Na)+ calcd for C45H56O6F12Na 943.3783, found 943.3789; (3S,7R,11R,15S)-M125cb (M + Na)+ 

calcd for C47H6O6F16Na 1043.3719, found 1043.3619; (3R,7R,11R,15R)-M125aa (M + Na)+ 

calcd for C48H56O6F18Na 1093.3687, found 1093.3726; (3R,7R,11R,15S)-M125ab (M + Na)+ 

calcd for C50H56O6F22Na 1193.3623, found 1193.3723; analytical fluorous HPLC (conditions 2) 

tR = 8.0 min ((3S,7R,11R,15R)-M125ca), 14.9 min ((3S,7R,11R,15S)-M125cb), 17.8 min 

((3R,7R,11R,15R)-M125aa), 26.1 min ((3R,7R,11R,15S)-M125ab). 
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(3S,7S,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, (3S,7S,11R,15S)-1-(4-(4,4, 

4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyl-

oxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, (3R,7S,11R,15R)-1,16-Bis(4-(4,4,5,5,6,6,7,7, 

7-nonafluoroheptyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, and (3R,7S, 

11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9, 

9,9-tridecafluorononyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol ((7S,11R)-

M126):13,55a CuSO4•5H2O (3.32 g, 13.31 mmol) was added to solution of the starting diene 

(7S,11R)-M125 (0.35 g, 0.34 mmol) in THF/EtOH (1:1, 9.2 mL) followed by careful dropwise 

addition (exothermic reaction) of anhydrous hydrazine (4.2 mL, 135.0 mmol). The resulting 

mixture was stirred at room temperature for 15 min and at 65 °C for 24 h. The reaction mixture 

was cooled to room temperature, filtered over celite, water and Et2O were added, and the layers 

were separated. The aqueous layer was extracted with ether. The combined organic layers were 

dried over MgSO4, filtered, and concentrated under vacuum. If the reaction was found to be 

incomplete by crude 1H NMR spectroscopy, it was restarted under similar conditions and 

allowed to stir at 65 °C for 24 h. Purification by flash column chromatography (SiO2, 40% 
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EtOAc in hexanes) gave the desired product (7S,11R)-M126 (0.31 g, 89%) as a colorless oil: 1H 

NMR (300 MHz, CDCl3) δ 7.28–7.25 (m, 4H), 6.90–6.85 (m, 4H), 4.45 (s, 2H), 4.44 (s, 2H), 

4.04 (t, J = 6.0 Hz, 4H), 3.61–3.42 (m, 2H), 3.45–3.30 (m, 1H), 3.30 (dd, J = 6.3, 9.0 Hz, 1H), 

3.23 (dd, J = 6.6, 9.0 Hz, 1H), 2.41–2.20 (m, 4H), 2.20–2.00 (m, 4H), 1.84–1.48 (m, 6H), 1.48–

1.20 (m, 14H), 1.20–1.02 (m, 3H), 1.15 (s, 3H), 0.94–0.86 (m, 9H); 19F NMR (282 MHz, CDCl3) 

δ −66.3 (m, 3F), −80.8 (m, 3F), −81.0 (m, 6F), −114.4 (m, 2F), −114.7 (m, 4F), −121.9 (m, 2F), 

−122.9 (m, 2F), −123.5 (m, 2F), –124.4 (m, 4F), −126.1 (m, 6F); EIMS (3S,7S,11R,15R)-126ca 

m/z 951 (M + Na)+; (3S,7S,11R,15S)-126cb m/z 1051 (M + Na)+; (3R,7S,11R,15R)-126aa m/z 

1101 (M + Na)+; (3R,7S,11R,15S)-126ab m/z 1201 (M + Na)+; HRMS (ESI) (3S,7S,11R,15R)-

126ca (M + Na)+ calcd for C45H64O6F12Na 951.4409, found 951.4335; (3S,7S,11R,15S)-126cb 

(M + Na)+ calcd for C47H64O6F16Na 1051.4345, found 1051.4413; (3R,7S,11R,15R)-126aa (M + 

Na)+ calcd for C48H64O6F18Na 1101.4313, found 1101.4382; (3R,7S,11R,15S)-126ab (M + Na)+ 

calcd for C50H64O6F22Na 1201.4249, found 1201.4335; analytical fluorous HPLC (conditions 2) 

tR = 9.5 min ((3S,7S,11R,15R)-126ca), 17.0 min ((3S,7S,11R,15S)-126cb), 19.9 min 

((3R,7S,11R,15R)-126aa), 28.0 min ((3R,7S,11R,15S)-126ab). 
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(3S,7R,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, (3S,7R,11R,15S)-1-(4-(4, 

4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benz-

yloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, (3R,7R,11R,15R)-1,16-Bis(4-(4,4,5,5,6,6, 

7,7,7-nonafluoroheptyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol, and (3R, 

7R,11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7, 

8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-3,7,11,15-tetramethylhexadecane-4,11-diol 

((7R,11R)-M126):13,55a This compound was prepared in 40% yield starting from diol (7R,11R)-

M125 (150.0 mg, 0.14 mmol) according to the procedure described above for preparation of 

compound (7S,11R)-M126: 1H NMR (300 MHz, CDCl3) δ 7.28–7.25 (m, 4H), 6.90–6.85 (m, 

4H), 4.45 (s, 2H), 4.44 (s, 2H), 4.04 (t, J = 6.0 Hz, 4H), 3.61–3.42 (m, 2H), 3.45–3.35 (m, 1H), 

3.32 (dd, J = 6.3, 9.0 Hz, 1H), 3.22 (dd, J = 6.6, 9.0 Hz, 1H), 2.44–2.20 (m, 4H), 2.20–2.00 (m, 

4H), 1.84–1.48 (m, 6H), 1.48–1.20 (m, 14H), 1.20–1.02 (m, 3H), 1.15 (s, 3H), 0.94–0.86 (m, 

9H); 19F NMR (282 MHz, CDCl3) δ −66.3 (m, 3F), −80.8 (m, 3F), −81.0 (m, 6F), −114.4 (m, 

2F), −114.7 (m, 4F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), –124.4 (m, 4F), −126.1 (m, 

6F); EIMS (3S,7R,11R,15R)-126ca m/z 951 (M + Na)+; (3S,7R,11R,15S)-126cb m/z 1051 (M + 

Na)+; (3R,7R,11R,15R)-126aa m/z 1101 (M + Na)+; (3R,7R,11R,15S)-126ab m/z 1201 (M + 

Na)+; HRMS (ESI) (3S,7R,11R,15R)-126ca (M + Na)+ calcd for C45H64O6F12Na 951.4409, 

found 951.4334; (3S,7R,11R,15S)-126cb (M + Na)+ calcd for C47H64O6F16Na 1051.4345, found 

1051.4338; (3R,7R,11R,15R)-126aa (M + Na)+ calcd for C48H64O6F18Na 1101.4313, found 

1101.4351; (3R,7R,11R,15S)-126ab (M + Na)+ calcd for C50H64O6F22Na 1201.4249, found 

1201.4144; analytical fluorous HPLC (conditions 2) tR = 9.6 min ((3S,7R,11R,15R)-126ca), 16.8 
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min ((3S,7R,11R,15S)-126cb), 19.8 min ((3R,7R,11R,15R)-126aa), 27.9 min ((3R,7R,11R,15S) 

-126ab). 

 

  

(3S,7S,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one, (3S,7S,11R,15S)-

1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyl-

oxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one, (3R,7S,11R,15R)-1,16-

Bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethyl-

hexadecan-4-one, and (3R,7S,11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benz-

yloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11, 

15-tetramethylhexadecan-4-one ((7S,11R)-M127): NaHCO3 (87.2 mg, 1.04 mmol) and DMP 

(193.4 mg, 0.44 mmol) were added to a solution of the starting diol (7S,11R)-M126 (202.0 mg, 

0.19 mmol) in DCM (3 mL). The resulting solution was stirred at 0 °C for 2 h and at room 

temperature for 1 h. The reaction was quenched by the addition of saturated Na2S2O3 solution 

and the mixture was stirred until the organic layer became clear. The layers were separated and 

the aqueous layer was extracted with DCM. The combined organic layers were dried over 

MgSO4, filtered, and concentrated under vacuum. Purification by flash column chromatography 
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(SiO2, 30% EtOAc in hexanes) gave the ketone (7S,11R)-M127 (185.0 mg, 92%) as colorless 

oil: 1H NMR (300 MHz, CDCl3) δ 7.28–7.23 (m, 4H), 6.89–6.85 (m, 4H), 4.44 (s, 2H), 4.39 (s, 

2H), 4.03 (t, J = 6.0 Hz, 4H), 3.48–3.36 (m, 2H), 3.30 (dd, J = 6.3, 9.0 Hz, 1H), 3.23 (dd, J = 6.6, 

8.9 Hz, 1H), 2.75 (sxt, J = 7.0 Hz, 1H), 2.55–2.23 (m, 6H), 2.14–1.95 (m, 5H), 1.82–1.71 (m, 

1H), 1.65–1.54 (m, 2H), 1.46–1.24 (m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.09 (m, 

1H), 1.07 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 5.9 Hz, 3H); 19F NMR (282 

MHz, CDCl3) δ −66.4 (t, J = 11.0 Hz, 3F), −80.8 (m, 3F), −81.1 (m, 6F), −114.4 (m, 2F), −114.7 

(m, 4F), −122.0 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −124.4 (m, 4F), −126.1 (m, 6F). 

Demixing of mixture (7S,11R)-M127. 

 The mixture (7S,11R)-M127 (200.0 mg, 0.19 mmol) was dissolved in THF (2.5 mL) and 

demixed by semi-preparative fluorous HPLC (FluoroFlashTM PFC8 column, CH3CN:H2O = 

80:20 to 100:0 in 30 min, then 100:0 for further 50 min). The following four compounds were 

obtained: 

 

 

(3S,7S,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one ((3S,7S,11R,15R)-

127ca): 35.0 mg, tR = 30.8 min: 1H NMR (500 Hz, CDCl3) δ 7.27 (d, J = 8.5 Hz, 2H), 7.24 (d, J 

= 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.44 (dd, J = 11.5, 13.5 Hz, 

2H), 4.39 (s, 2H), 4.04 (t, J = 6.0 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.47–3.39 (m, 2H), 3.32 (dd, 

J = 6.5, 9.0 Hz, 1H), 3.23 (dd, J = 7.0, 9.0 Hz, 1H), 2.74 (sxt, J = 7.0 Hz, 1H), 2.44 (t, J = 7.5 

Hz, 2H), 2.37–2.27 (m, 4H), 2.13–1.96 (m, 5H), 1.81–1.72 (m, 1H), 1.62–1.56 (m, 2H), 1.50–

1.24 (m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.09 (m, 1H), 1.08 (d, J = 7.0 Hz, 3H), 
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0.93 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 214.8, 158.2, 

158.0, 131.3, 130.9, 129.3, 129.2, 114.3, 114.3, 75.8, 72.7, 72.6, 72.5, 67.7, 66.3, 66.0, 43.1, 

42.2, 39.1, 37.4, 34.2, 33.5, 32.8, 32.4, 30.7 (q, 2JCF = 27.1 Hz), 30.6, 27.7 (t, 2JCF = 22.5 Hz), 

26.8, 22.2  (m), 21.2, 20.6 (m), 19.4, 17.1, 16.7; 19F NMR (282 MHz, CDCl3) δ −66.3 (t, J = 11.3 

Hz, 3F), −81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.1 (m, 2F); IR (neat) 2933, 1711, 

1613, 1513, 1242, 1135 cm−1; EIMS m/z 949 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for 

C45H62O6F12Na 949.4252, found 949.4304; [α]D
25 +5.19 (c 2.8, CHCl3). 

 

 

(3S,7S,11R,15S)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tri-

decafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one ((3S,7S, 

11R,15S)-127cb): 39.7 mg, tR = 40.7 min: 1H NMR (600 MHz, CDCl3) δ 7.27 (d, J = 8.5 Hz, 

2H), 7.24 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.44 (dd, J = 

12.0, 13.5 Hz, 2H), 4.39 (s, 2H), 4.04 (t, J = 6.0 Hz, 2H), 4.01 (t, J = 6 Hz, 2H), 3.47–3.38 (m, 

2H), 3.30 (dd, J = 6.0, 9.0 Hz, 1H), 3.23 (dd, J = 7.0, 9.0 Hz, 1H), 2.75 (sxt, J = 7.0 Hz, 1H), 

2.44 (t, J = 7.5 Hz, 2H), 2.40–2.27 (m, 4H), 2.16–1.97 (m, 5H), 1.83–1.74 (m, 1H), 1.62–1.56 

(m, 2H), 1.46–1.27 (m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.10 (m, 1H), 1.07 (d, J = 

7.0 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.5 Hz, 3H); 13C NMR (125 MHz, CDCl3) 

214.8, 158.1, 158.0, 131.3, 130.8, 129.3, 129.2, 114.3, 114.3, 75.7, 72.7, 72.6, 72.5, 67.7, 66.3, 

66.0, 43.1, 42.2, 42.1, 39.1, 37.4, 34.2, 33.4, 32.8, 32.4, 30.7 (q, 2JCF = 28.8 Hz), 30.5, 27.9 (q, 

2JCF = 21.3 Hz), 26.8, 22.2 (m), 21.2, 21.2, 20.6 (m), 19.4, 17.1, 16.7; 19F NMR (282 MHz, 

CDCl3) δ −66.4 (t, J = 11.3 Hz, 3F), −80.8 (m, 3F), −114.3 (m, 2F), −121.9 (m, 2F), −122.8 (m, 
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2F), −123.4 (m, 2F), −126.1 (m, 2F); IR (neat) 2933, 1711, 1613, 1513, 1242, 1135 cm−1; EIMS 

m/z 1049 (M + Na)+; HRMS (ESI) (M + Na)+ calcd C47H62O6F16Na, 1049.4189; found 

1049.4155; [α]D
25  +3.27 (c 1.4, CHCl3). 

 

 

(3R,7S,11R,15R)-1,16-Bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-11-hydroxy-

3,7,11,15-tetramethylhexadecan-4-one ((3R,7S,11R,15R)-127aa). 42.1 mg, tR = 44.3 min: 1H 

NMR (600 MHz, CDCl3) δ 7.27 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 

Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 4.43 (dd, J = 12.6, 15.0 Hz, 2H), 4.39 (dd, J = 12.0, 13.8 Hz, 

2H), 4.04 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 6.0 Hz, 2H), 3.47–3.39 (m, 2H), 3.30 (dd, J = 6.0, 9.0 

Hz, 1H), 3.23 (dd, J = 6.6, 9.0 Hz, 1H), 2.75 (sxt, J = 7.2 Hz, 1H), 2.51–2.45 (m, 1H), 2.42–2.37 

(m, 1H), 2.37–2.27 (m, 4H), 2.13–2.08 (m, 4H), 2.00 (sxt, J = 7.2 Hz, 1H), 1.80–1.73 (m, 1H), 

1.63–1.55 (m, 2H), 1.46–1.25 (m, 12H), 1.25–1.18 (m, 1H), 1.14 (s, 3H), 1.15–1.10 (m, 1H), 

1.07 (d, J = 7.2 Hz, 3H), 0.93(d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, 

CDCl3) δ 214.8, 158.1, 131.3, 130.9, 129.3, 129.2, 114.30, 114.25, 75.7, 72.7, 72.6, 72.5, 67.7, 

66.3, 43.1, 42.3, 42.2, 39.0, 37.4, 34.2, 33.4, 32.8, 32.4, 30.6, 27.8 (t, 2JCF = 22.5 Hz), 26.8, 21.2, 

20.5, 19.4, 17.1, 16.7; 19F NMR (282 MHz, CDCl3) δ −81.1 (m, 6F), −114.5 (m, 4F), −124.4 (m, 

4F), −126.0 (m, 4F); IR (neat) 2933, 1711, 1613, 1513, 1242, 1135 cm−1; EIMS m/z 1099 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd C48H62O6F18Na, 1099.4157; found 1099.4122; [α]D
25 −3.83 

(c 0.36, CHCl3). 
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(3R,7S,11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7, 

7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-

4-one ((3R,7S,11R,15S)-127ab): 45.3 mg, tR = 61.2 min: 1H NMR (600 Hz, CDCl3) δ 7.26 (d, J 

= 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.43 

(dd, J = 12.0, 15.0 Hz, 2H), 4.39 (dd, J = 12.0, 13.8 Hz, 2H), 4.04 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 

6.0 Hz, 2H), 3.47–3.39 (m, 2H), 3.30 (d, J = 6.0, 9.0 Hz, 1H), 3.23 (dd, J = 6.6, 9.0 Hz, 1H), 

2.75 (sxt, J = 7.2 Hz, 1H), 2.51–2.45 (m, 1H), 2.44–2.37 (m, 1H), 2.37–2.27 (m, 4H), 2.13–2.07 

(m, 4H), 2.03–1.98 (m, 1H), 1.80–1.73 (m, 1H), 1.63–1.55 (m, 2H), 1.44–1.25 (m, 12H), 1.20–

1.17 (m, 1H), 1.15 (s, 3H), 1.15–1.10 (m, 1H), 1.08 (d, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 

0.86 (d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 214.8, 158.1, 158.2, 131.3, 130.9, 

129.3, 129.1, 114.3, 114.3, 75.7, 72.7, 72.6, 72.5, 67.7, 66.3, 43.1, 42.3, 42.1, 39.0, 37.8, 34.2, 

33.4, 32.8, 32.4, 30.6, 27.9 (q, JCF = 22.5 Hz), 26.9, 21.2, 21.2, 20.6 (m), 19.4, 17.1, 16.6; 19F 

NMR (282 MHz, CDCl3) –80.0 (m, 3F), −81.0 (m, 3F), −114.4 (m, 2H), −114.7 (m, 2F), −121.9 

(m, 2F),–122.9 (m, 2F), –123.5 (m, 2F), −124.4 (m, 2F), −126.1 (m, 4F); IR (neat) 2933, 2867, 

1710, 1613, 1513, 1239 cm−1; EIMS m/z 1199 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for 

C50H62O6F22Na 1199.4093, found 1199.4063; [α]D
25 +3.35 (c 1.2, CHCl3). 
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(3S,7R,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one, (3S,7R,11R,15S)-

1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyl- 

oxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one, (3R,7R,11R,15R)-1,16-

Bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethyl-

hexadecan-4-one, and (3R,7R,11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)-benzyl-

oxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11,15-

tetramethylhexadecan-4-one ((7R,11R)-M127): This mixture was prepared in 82% yield 

starting from alcohol (7R,11R)-M126 (80.0 mg, 0.76 mmol) according to the procedure 

described above for preparation of compound (7S,11R)-M127: 1H NMR (300 MHz, CDCl3) δ 

7.28–7.23 (m, 4H), 6.89–6.85 (m, 4H), 4.44 (s, 2H), 4.39 (s, 2H), 4.03 (t, J = 6.0 Hz, 4H), 3.48–

3.36 (m, 2H), 3.30 (dd, J = 6.3, 9.0 Hz, 1H), 3.23 (dd, J = 6.6, 8.9 Hz, 1H), 2.75 (sxt, J = 7.0 Hz, 

1H), 2.55–2.23 (m, 6H), 2.14–1.95 (m, 5H), 1.82–1.71 (m, 1H), 1.65–1.54 (m, 2H), 1.46–1.24 

(m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.09 (m, 1H), 1.07 (d, J = 7.0 Hz, 3H), 0.93 (d, 

J = 6.7 Hz, 3H), 0.86 (d, J = 5.9 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −66.4 (t, J = 11.0 Hz, 
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3F), −80.8 (m, 3F), −81.1 (m, 6F), −114.4 (m, 2F), −114.7 (m, 4F), −122.0 (m, 2F), −122.9 (m, 

2F), −123.5 (m, 2F), −124.4 (m, 4F), −126.1 (m, 6F). 

 

Demixing of mixture (7R,11R)-M127.  

 The mixture (7R,11R)-M127 (165.2 mg, 0.16 mmol) was dissolved in THF (2.0 mL) and 

demixed by semi-preparative fluorous HPLC under same conditions as used for demixing of 

mixture (7S,11R)-M127. The following four compounds were obtained. 

 

 

(3S,7R,11R,15R)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,7-nonafluoro-

heptyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one ((3S,7R,11R,15R)-

127ca): 32.3 mg, tR = 30.8 min: 1H NMR (500 Hz, CDCl3) δ 7.27 (d, J = 8.6 Hz, 2H), 7.24 (d, J 

= 8.6 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.43 (dd, J = 11.8, 14.0 Hz, 

2H), 4.39 (s, 2H), 4.04 (t, J = 5.9 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.47–3.39 (m, 2H), 3.30 (d, J 

= 6.2, 9.0 Hz, 1H), 3.23 (dd, J = 6.7, 9.0 Hz, 1H), 2.75 (sxt, J = 7.0 Hz, 1H), 2.52–2.45 (m, 1H), 

2.42–2.38 (m, 1H), 2.37–2.27 (m, 4H), 2.13–1.97 (m, 5H), 1.82–1.71 (m, 1H), 1.62–1.55 (m, 

2H), 1.47–1.23 (m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.10 (m, 1H), 1.07 (d, J = 7.0 

Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 

214.8, 158.1, 158.0, 131.3, 130.8, 129.3, 129.2, 114.29, 114.26, 75.7, 72.7, 72.6, 72.5, 67.7, 66.3, 

66.0, 43.1, 42.3, 42.1, 39.0, 37.4, 34.2, 33.4, 32.8, 32.4, 30.7 (q, 2JCF = 28.5 Hz), 30.6, 27.8 (t, 

2JCF = 22.5 Hz), 26.8, 22.2 (m), 21.23, 21.21, 20.5 (m), 19.4, 17.1, 16.7; 19F NMR (282 MHz, 

CDCl3) δ −66.3 (t, J = 11.3 Hz, 3F), −81.0 (m, 3F), −114.6 (m, 2F), −124.4 (m, 2F), −126.1 (m, 
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2F); IR (neat) 2934, 1711, 1613, 1513, 1242 cm−1; EIMS m/z 949 (M + Na)+; HRMS (ESI) (M + 

Na)+ calcd C45H62O6F12Na 949.4252, found 949.4288; [α]D
25 +3.66 (c 0.92, CHCl3). 

 

 

(3S,7R,11R,15S)-1-(4-(4,4,4-Trifluorobutoxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tri-

decafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3S,7R,11R,15S)-127cb): 35.7 mg, tR = 40.8 min: 1H NMR (500 Hz, CDCl3) δ 7.27 (d, J = 8.6 

Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.5 Hz, 2H), 4.43 (dd, J = 

11.8, 14.0 Hz, 2H), 4.39 (s, 2H), 4.04 (t, J = 5.9 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.47–3.39 (m, 

2H), 3.30 (d, J = 6.2, 9.0 Hz, 1H), 3.23 (dd, J = 6.7, 9.0 Hz, 1H), 2.75 (sxt, J = 7.0 Hz, 1H), 

2.52–2.45 (m, 1H), 2.42–2.38 (m, 1H), 2.37–2.27 (m, 4H), 2.13–1.97 (m, 5H), 1.82–1.71 (m, 

1H), 1.62–1.55 (m, 2H), 1.47–1.23 (m, 12H), 1.20–1.15 (m, 1H), 1.15 (s, 3H), 1.15–1.10 (m, 

1H), 1.07 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.7 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H); 13C NMR (125 

MHz, CDCl3) δ 214.8, 158.1, 158.0, 131.3, 130.8, 129.3, 129.1, 114.3, 114.2, 75.8, 72.7, 72.6, 

72.5, 67.7, 66.3, 66.0, 43.1, 42.1, 39.0, 37.4, 34.2, 33.4, 32.8, 32.4, 30.7 (q, 2JCF = 28.5 Hz), 

30.6, 27.9 (t, 2JCF = 22.5 Hz), 26.9, 22.2 (q, 3JCF = 3.0 Hz), 21.2, 20.6 (t, 3JCF = 3.0 Hz), 19.4, 

17.1, 16.6; 19F NMR (282 MHz, CDCl3) δ −66.3 (t, J = 11.3 Hz, 3F), −80.8 (m, 3F), −114.4 (m, 

2F), −121.9 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −126.2 (m, 2F); IR (neat) 2933, 1712, 

1614, 1514, 1245 cm−1; EIMS m/z 1049 (M + Na)+; HRMS (ESI) (M + Na)+ calcd 

C47H62O6F16Na 1049.4189, found 1049.4155; [α]D
25 +4.59 (c 0.97, CHCl3). 
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(3R,7R,11R,15R)-1,16-Bis(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-11-hydroxy-

3,7,11,15-tetramethylhexadecan-4-one ((3R,7R,11R,15R)-127aa): 37.4 mg, tR = 44.4 min: 1H 

NMR (500 Hz, CDCl3) δ 7.27 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 8.5 Hz, 

2H), 6.87 (d, J = 9.0 Hz, 2H), 4.44 (dd, J = 12.0, 13.5 Hz, 2H), 4.39 (s, 2H), 4.04 (t, J = 6.0 Hz, 

4H), 3.47-3.39 (m, 2H), 3.30 (d, J = 6.0, 8.5 Hz, 1H), 3.23 (dd, J = 6.5, 9.0 Hz, 1H), 2.75 (sxt, J 

= 7.0 Hz, 1H), 2.44 (t, J = 7.5 Hz, 2H), 2.37–2.26 (m, 4H), 2.13–2.08 (m, 4H), 2.01 (sxt, J = 7.0 

Hz, 1H), 1.82–1.73 (m, 1H), 1.62–1.56 (m, 2H), 1.44–1.22 (m, 12H), 1.20–1.05 (m, 2H), 1.15 (s, 

3H), 1.08 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 6.0 Hz, 3H); 13C NMR (75 

MHz, CDCl3) δ 214.8, 158.1, 158.0, 131.3, 130.9, 129.3, 129.1, 114.3, 114.2, 75.71, 72.69, 72.6, 

72.5, 67.7, 66.3, 43.1, 42.2, 42.1, 39.1, 37.4, 34.2, 33.4, 32.8, 32.4, 30.5, 27.8 (t, 2JCF = 22.5 Hz), 

26.8, 21.2, 21.2, 25.5 (m), 19.4, 17.1, 16.7; 19F NMR (282 MHz, CDCl3) δ −82.1 (m, 6F), −115.6 

(m, 4F), −125.4 (m, 4F), −127.1 (m, 4F); IR (neat) 2928, 1711, 1613, 1514, 1242 cm−1; EIMS 

m/z 1099 (M + Na)+; HRMS (ESI) (M + Na)+ calcd C48H62O6F18Na 1099.4157, found 

1099.4167; [α]D
25 = −5.98 (c 0.8, CHCl3). 

 

 

(3R,7R,11R,15S)-1-(4-(4,4,5,5,6,6,7,7,7-Nonafluoroheptyloxy)benzyloxy)-16-(4-(4,4,5,5,6,6,7, 

7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-11-hydroxy-3,7,11,15-tetramethylhexadecan-

4-one ((3R,7R,11R,15S)-127ab): 40.8 mg, tR = 61.3 min: 1H NMR (500 Hz, CDCl3) δ 7.26 (d, J 

= 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 4.43 

(dd, J = 12.0, 15.0 Hz, 2H), 4.39 (dd, J = 12.0, 13.8 Hz, 2H), 4.04 (t, J = 6.0 Hz, 2H), 4.04 (t, J = 

6.0 Hz, 2H), 3.47–3.39 (m, 2H), 3.30 (d, J = 6.0, 9.0 Hz, 1H), 3.23 (dd, J = 6.6, 9.0 Hz, 1H), 
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2.75 (sxt, J = 7.2 Hz, 1H), 2.51–2.45 (m, 1H), 2.44–2.37 (m, 1H), 2.37–2.27 (m, 4H), 2.13–2.07 

(m, 4H), 2.03–1.98 (m, 1H), 1.80–1.73 (m, 1H), 1.63–1.55 (m, 2H), 1.44–1.25 (m, 12H), 1.20–

1.17 (m, 1H), 1.15 (s, 3H), 1.15–1.10 (m, 1H), 1.08 (d, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 

0.86 (d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 214.8, 158.1, 158.0, 131.3, 130.9, 

129.3, 129.1, 114.3, 114.2, 75.7, 72.7, 72.6, 72.5, 67.7, 66.3, 43.1, 42.1, 39.1, 37.4, 34.2, 33.4, 

32.8, 32.4, 30.5, 27.9 (t, 2JCF = 22.5 Hz), 27.8 (t, 2JCF = 22.5 Hz), 26.9, 21.2, 20.5 (m), 19.4, 

17.1, 16.7; 19F NMR (282 MHz, CDCl3) δ −80.8 (m, 3F), −81.1 (m, 3F), −114.4 (m, 2F), 114.5 

(m, 2F), −122.0 (m, 2F), −122.9 (m, 2F), −123.5 (m, 2F), −124.4 (m, 2F), −126.2 (m, 4F); IR 

(neat) 2928, 1711, 1613, 1514, 1242 cm−1; EIMS m/z 1199 (M + Na)+; HRMS (ESI) (M + Na)+ 

calcd C50H62O6F22Na 1199.4093, found 1199.4080; [α]D
25 −4.68 (c 0.86, CHCl3). 

 

General procedure for hydrogenolysis of PMBF ether 127: The starting fluorous PMB ether 

(3S,7S,11R,15R)-127ca (35.0 mg, 0.04 mmol) was dissolved in ethyl acetate (2.7 mL) and Pd/C 

(10% w/v, 4.4 mg) was added. The resulting black mixture was stirred under hydrogen from 

balloon for 48 h. The reaction mixture was filtered through celite and the filtrate was 

concentrated under vacuum. Purification by flash column chromatography (SiO2, 70–100% 

EtOAc in hexanes) gave desired triol (3S,7S,11R,15R)-1 (8.0 mg, 62%) as colorless oil.  

 

 

(3S,7S,11R,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3S,7S,11R,15R)-1)). 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 6.3, 10.5 Hz, 

1H), 3.32 (dd, J = 10.5, 7.0 Hz, 1H), 2.76 (sxt, J = 7.0 Hz, 1H), 2.53 (t, J = 7.0 Hz, 2H), 1.89 
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(sxt, J = 7.0 Hz, 1H), 1.62–1.56 (m, 2H), 1.51–1.46 (m, 1H), 1.46–1.28 (m, 12H), 1.15–1.05 (m, 

2H), 1.12 (s, 3H), 1.07 (s, J = 7.0 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H), 0.89 (d, J = 6.3 Hz, 3H); 13C 

NMR (175 MHz, CD3OD) δ 217.48, 73.37, 68.45, 60.62, 43.97, 43.00, 42.96, 39.97, 38.62, 

36.88, 36.71, 35.03, 33.57, 31.74, 26.88, 22.36, 22.29, 19.86, 17.08, 16.90; EIMS m/z 367 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2802.  

 

 

(3S,7S,11R,15S)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3S,7S,11R,15S)-1)): 9.2 mg, 69%: 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

5.6, 10.6 Hz, 1H), 3.32 (dd, J = 6.7, 10.6 Hz, 1H), 2.77 (sxt, J = 6.9 Hz, 1H), 2.54 (t, J = 7.1 Hz, 

2H), 1.89 (sxt, J = 6.9 Hz, 1H), 1.62–1.55 (m, 2H), 1.51–1.46 (m, 1H), 1.45–1.28 (m, 12H), 

1.15–1.05 (m, 2H), 1.12 (s, 3H), 1.07 (s, J = 7.0 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 

6.6 Hz, 3H); 13C NMR (175 MHz, CD3OD) δ 217.48, 73.37, 68.42, 60.61, 43.95, 43.00, 42.87, 

39.98, 38.62, 36.88, 36.70, 35.02, 33.56, 31.71, 26.93, 22.34, 22.32, 19.87, 17.10, 16.91; EIMS 

m/z 367 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2820. 

 

 

(3R,7S,11R,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3R,7S,11R,15R)-1)): 6.2 mg, 69%: 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

5.9, 10.6 Hz, 1H), 3.32 (dd, J = 6.6, 10.6 Hz, 1H), 2.77 (sxt, J = 6.8 Hz, 1H), 2.59–2.48 (m, 2H), 

1.88 (sxt, J = 6.9 Hz, 1H), 1.62–1.55 (m, 2H), 1.51–1.47 (m, 1H), 1.45–1.28 (m, 12H), 1.15–1.05 

(m, 2H), 1.12 (s, 3H), 1.07 (s, J = 6.9 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H); 
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13C NMR (150 MHz, CD3OD) δ 217.50, 73.37, 68.44, 60.61, 43.95, 42.99, 42.94, 39.99, 38.60, 

36.88, 36.74, 35.02, 33.58, 31.73, 26.88, 22.36, 22.30, 19.88, 17.08, 16.91; EIMS m/z 367 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2816. 

 

 

(3R,7S,11R,15S)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3R,7S,11R,15S)-1)). 5.3 mg, 86%: 1H NMR (700 MHz, CH3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

5.6, 10.5 Hz, 1H), 3.32 (dd, J = 7.0, 11.2 Hz, 1H), 2.77 (sxt, J = 7.0 Hz, 1H), 2.59–2.48 (m, 2H), 

1.89 (sxt, J = 7.0 Hz, 1H), 1.62–1.55 (m, 2H), 1.50–1.46 (m, 1H), 1.45–1.28 (m, 12H), 1.16–1.05 

(m, 2H), 1.12 (s, 3H), 1.07 (s, J = 6.3 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 6.3 Hz, 3H); 

13C NMR (75 MHz, CD3OD) δ 217.50, 73.37, 68.42, 60.61, 43.95, 43.00, 42.88, 39.98, 38.60, 

36.87, 36.74, 35.02, 33.57, 31.72, 26.94, 22.33, 22.33, 19.89, 17.01, 16.91; EIMS m/z 367 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2812. 

 

 

(3S,7R,11R,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3S,7R,11R,15R)-1)). 4.3 mg, 64%: 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

5.9, 10.6 Hz, 1H), 3.32 (dd, J = 6.5, 10.8 Hz, 1H), 2.77 (sxt, J = 6.9 Hz, 1H), 2.59–2.48 (m, 2H), 

1.89 (sxt, J = 6.7 Hz, 1H), 1.62–1.56 (m, 2H), 1.50–1.47 (m, 1H), 1.46–1.28 (m, 12H), 1.16–1.05 

(m, 2H), 1.12 (s, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H); 

13C NMR (175 MHz, CD3OD) δ 217.51, 73.38, 68.44, 60.62, 43.96, 42.96, 42.90, 39.98, 38.61, 
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36.88, 36.74, 35.03, 33.59, 31.72, 26.91, 22.37, 22.30, 19.88, 17.09, 16.90; EIMS m/z 367 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2816. 

 

 

(3S,7R,11R,15S)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3S,7R,11R,15S)-1)). 6.3 mg, 66%: 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

5.6, 10.5 Hz, 1H), 3.32 (dd, J = 7.0, 11.2 Hz, 1H), 2.77 (sxt, J = 7.0 Hz, 1H), 2.59–2.48 (m, 2H), 

1.89 (sxt, J = 7.0 Hz, 1H), 1.62–1.55 (m, 2H), 1.51–1.46 (m, 1H), 1.46–1.28 (m, 12H), 1.16–1.05 

(m, 2H), 1.12 (s, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.89 (d, J = 7.0 Hz, 3H); 

13C NMR (150 MHz, CD3OD) δ 217.52, 73.38, 68.45, 60.63, 43.97, 42.97, 42.90, 39.99, 38.61, 

36.89, 36.75, 35.04, 33.59, 31.74, 26.97, 22.37, 22.33, 19.89, 17.10, 16.91; EIMS m/z 367 (M + 

Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na, 367.2824; found 367.2796. 

 

 

(3R,7R,11R,15R)-1,11,16-Trihydroxy-3,7,11,15-tetramethylhexadecan-4-one 

((3R,7R,11R,15R)-1)): 9.0 mg, 85%; 1H NMR (700 MHz, CD3OD) δ 3.52 (m, 2H), 3.41 (dd, J = 

6.0, 10.6 Hz, 1H), 3.32 (dd, J = 6.7, 11.0 Hz, 1H), 2.77 (sxt, J = 7.0 Hz, 1H), 2.55 (t, J = 6.7 Hz, 

2H), 1.89 (sxt, J = 6.9 Hz, 1H), 1.63–1.55 (m, 2H), 1.51–1.47 (m, 1H), 1.46–1.28 (m, 12H), 

1.16–1.05 (m, 2H), 1.12 (s, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 

6.5 Hz, 3H); 13C NMR (150 MHz, CD3OD) δ 217.47, 73.36, 68.43, 60.61, 43.95, 42.95, 42.95, 

39.97, 38.62, 36.88, 36.70, 35.02, 33.57, 31.71, 26.91, 22.36, 22.30, 19.88, 17.09, 16.91; EIMS 

m/z 367 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na 367.2824, found 367.2812. 
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((3R,7R,11R,15S)-1)): 4.8 mg, 63%; 1H NMR (700 MHz, CD3OD) δ 3.53 (m, 2H), 3.41 (dd, J = 

6.0, 10.5 Hz, 1H), 3.32 (dd, J = 7.0, 11.2 Hz, 1H), 2.77 (sxt, J = 7.0 Hz, 1H), 2.53 (t, J = 6.5 Hz, 

2H), 1.89 (sxt, J = 7.0 Hz, 1H), 1.62–1.52 (m, 2H), 1.51–1.46 (m, 1H), 1.45–1.28 (m, 12H), 

1.16–1.05 (m, 2H), 1.12 (s, 3H), 1.07 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 

6.5 Hz, 3H); 13C NMR (150 MHz, CD3OD) δ 217.48, 73.37, 68.45, 60.61, 43.97, 43.00, 42.96, 

39.97, 38.62, 36.82, 36.71, 35.03, 33.57, 31.74, 26.88, 22.36, 22.30, 19.86, 17.09, 16.90; EIMS 

m/z 367 (M + Na)+; HRMS (ESI) (M + Na)+ calcd for C20H40O4Na 367.2824, found 367.2802. 

 

General procedure for synthesis of bis-MTPA esters 10:32e The starting triol (3S,7S,11R, 

15R)-1 (1.5 mg, 0.04 mmol, 1 equiv) was dissolved in DCM (0.33 mL) and treated with DCC 

(27 mg, 0.13 mmol) and S-MTPA acid (31 mg, 0.13 mmol). The resulting reaction mixture with 

thick white precipitate was stirred at room temperature for 24 h. The reaction mixture was 

filtered through a plug of cotton and the filtrate was concentrated under vacuum. The crude 

product was purified by flash column chromatography (SiO2, 30% EtOAc in hexanes) to obtain 

the bis-S-MTPA ester (S,3S,7S,11R,15R,S)-10 contaminated with 19% of the corresponding C3 

epimer. This mixture of epimers was subjected to HPLC purification with a chiral (S,S) whelk 

column (25 cm X 10.0 mm ID) to obtain the major isomer as a colorless oil. The column was 

eluted under isocratic condition with 97:3 hexanes/2-propanol for 70 min. The flow rate was 

maintained at 3 mL/min.  
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(S,3S,7S,11R,15R,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.44–7.39 (m, 6H), 

4.38 (td, J = 6.3, 10.5 Hz, 1H), 4.25 (ddd, J = 5.6, 7.0 Hz, 1H), 4.19 (dd, J = 6.3, 10.5 Hz, 1H), 

4.16 (dd, J = 6.3, 11.2 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.42 (ddd, J 

= 5.6, 9.1, 16.8 Hz, 1H), 2.33 (ddd, J = 4.9, 9.1, 16.8 Hz, 1H), 2.12–2.06 (m, 1H), 1.90–1.86 (m, 

1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.14 (s, 

3H), 1.09 (d, J = 7.7 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.3 Hz, 3H); 19F NMR (282 

MHz, CDCl3) δ −72.54. 

 

 

(R,3S,7S,11R,15R,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 7.0 Hz, 2H), 4.26 (dd, J = 5.6, 11.2 Hz, 1H), 4.09 (dd, J = 7.0, 10.5 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.43 (ddd, J = 6.3, 9.8, 16.8 Hz, 1H), 2.35 (ddd, J = 

5.6, 9.8, 16.8 Hz, 1H), 2.12–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 

7.0 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.46, −72.54. 

 

 

(S,3S,7S,11R,15S,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.38 (td, J = 6.3, 11.2 Hz, 1H), 4.26 (dd, J = 5.6, 10.5 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 

1H), 4.09 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.42 
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(ddd, J = 6.3, 9.5, 16.5 Hz, 1H), 2.34 (ddd, J = 5.6, 9.5, 16.5 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.3 Hz, 3H); 19F 

NMR (282 MHz, CDCl3) δ −72.53. 

 

 

 

(R,3S,7S,11R,15S,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 5.6 Hz, 2H), 4.18 (dd, J = 6.3, 10.5 Hz, 1H), 4.16 (dd, J = 5.6, 10.5 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.43 (ddd, J = 5.6, 9.1, 16.8 Hz, 1H), 2.35 (ddd, J = 

4.9, 9.1, 16.8 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 

7.0 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.46, −72.54. 

 

 

(S,3R,7S,11R,15R,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 5.6 Hz, 2H), 4.19 (dd, J = 7.0, 11.2 Hz, 1H), 4.16 (dd, J = 5.6, 10.5 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.47 (ddd, J = 5.6, 9.8, 15.4 Hz, 1H), 2.31 (ddd, J = 

5.6, 9.8, 15.4 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 

6.3 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.47, −72.54. 
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(R,3R,7S,11R,15R,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.38 (td, J = 6.3, 11.2 Hz, 1H), 4.26 (dd, J = 5.6, 10.5 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 

1H), 4.09 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.57 (sxt, J = 7.0 Hz, 1H), 2.45 

(ddd, J = 5.6, 9.8, 15.4 Hz, 1H), 2.29 (ddd, J = 6.3, 9.8, 15.4 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.85 (d, J = 6.3 Hz, 3H); 19F 

NMR (282 MHz, CDCl3) δ −72.53. 

 

 

(S,3R,7S,11R,15S,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.39 (td, J = 6.3, 11.2 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 1H), 4.18 (dd, J = 6.3, 10.5 Hz, 

1H), 4.16 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.45 

(ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.30 (ddd, J = 5.6, 9.1, 16.1 Hz, 1H), 2.11–2.06 (m, 1H), 1.91–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H);19F NMR 

(282 MHz, CDCl3) δ −72.47, −72.52. 

 

 

(R,3R,7S,11R,15S,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.39 (td, J = 6.3, 11.2 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 1H), 4.18 (dd, J = 6.3, 10.5 Hz, 
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1H), 4.16 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.45 

(ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.30 (ddd, J = 5.6, 9.1, 16.1 Hz, 1H), 2.11–2.06 (m, 1H), 1.91–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 7.0 Hz, 3H); 19F 

NMR (282 MHz, CDCl3) δ −72.54. 

 

 

(S,3S,7R,11R,15R,S)-10: 1H NMR major isomer (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–

7.40 (m, 6H), 4.39 (td, J = 6.3, 11.2 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 1H), 4.19 (dd, J = 

6.3, 11.2 Hz, 1H), 4.16 (dd, J = 6.3, 11.2 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 

Hz, 1H), 2.45 (ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.30 (ddd, J = 5.6, 9.1, 16.1 Hz, 1H), 2.11–2.06 

(m, 1H), 1.91–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–

1.10 (m, 2H), 1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.87 (d, J = 7.0 Hz, 

3H); 19F NMR (282 MHz, CDCl3) δ −72.54. 

 

 

(R,3S,7R,11R,15R,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 7.0, 2H), 4.26 (dd, J = 5.6, 10.5 Hz, 1H), 4.09 (dd, J = 7.0, 11.2 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.47 (ddd, J = 4.9, 9.8, 16.8 Hz, 1H), 2.31 (ddd, J = 

5.6, 9.8, 16.8 Hz, 1H), 2.12–2.07 (m, 1H), 1.91–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 

7.0 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.46, −72.52. 
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(S,3S,7R,11R,15S,S)-10: 1H NMR major isomer (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–

7.40 (m, 6H), 4.39 (td, J = 6.3, 11.2 Hz, 1H), 4.26 (dd, J = 5.6, 10.5 Hz, 1H), 4.25 (ddd, J = 6.3, 

7.0, 11.2 Hz, 1H), 4.09 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 

Hz, 1H), 2.45 (ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.29 (ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.11–2.07 

(m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–

1.10 (m, 2H), 1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.3 Hz, 

3H); 19F NMR (282 MHz, CDCl3) δ −72.53. 

 

 

(R,3S,7R,11R,15S,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 6.3 Hz, 2H), 4.19 (dd, J = 6.3, 11.2 Hz, 1H), 4.16 (dd, J = 5.6, 11.2 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.47 (ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.31 (ddd, J = 

5.6, 9.8, 16.8 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 

6.3 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.47, −72.54. 

 

 

(S,3R,7R,11R,15R,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 6.3 Hz, 2H), 4.18 (dd, J = 7.0, 11.2 Hz, 1H), 4.16 (dd, J = 5.6, 10.5 Hz, 1H), 3.56 (s, 
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3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.43 (ddd, J = 6.3, 9.8, 16.8 Hz, 1H), 2.35 (ddd, J = 

5.6, 9.8, 16.8 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 

7.0 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.46, −72.54. 

 

 

(R,3R,7R,11R,15R,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.38 (td, J = 6.3, 11.2 Hz, 1H), 4.26 (dd, J = 5.6, 10.5 Hz, 1H), 4.25 (ddd, J = 6.3, 7.0, 11.2 Hz, 

1H), 4.09 (dd, J = 6.3, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.42 

(ddd, J = 5.6, 9.1, 16.8 Hz, 1H), 2.34 (ddd, J = 5.6, 9.8, 16.8 Hz, 1H), 2.11–2.07 (m, 1H), 1.90–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.15 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.3 Hz, 3H), 0.86 (d, J = 6.3 Hz, 3H); 19F 

NMR (282 MHz, CDCl3) δ −72.53. 

 

 

(S,3R,7R,11R,15S,S)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.43–7.40 (m, 6H), 

4.31 (t, J = 6.3 Hz, 2H), 4.26 (dd, J = 5.6, 11.2 Hz, 1H), 4.09 (dd, J = 7.0, 10.5 Hz, 1H), 3.56 (s, 

3H), 3.54 (s, 3H), 2.60 (sxt, J = 7.0 Hz, 1H), 2.43 (ddd, J = 6.3, 9.8, 16.8 Hz, 1H), 2.35 (ddd, J = 

5.6, 9.8, 16.8 Hz, 1H), 2.12–2.07 (m, 1H), 1.90–1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 

1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 1.15 (s, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 

7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H); 19F NMR (282 MHz, CDCl3) δ −72.46, −72.54. 
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(R,3R,7R,11R,15S,R)-10: 1H NMR (700 MHz, CDCl3) δ 7.53–7.51 (m, 4H), 7.44–7.39 (m, 6H), 

4.38 (td, J = 6.3, 11.2 Hz, 1H), 4.25 (ddd, J = 5.6, 7.0, 11.2 Hz, 1H), 4.18 (dd, J = 6.3, 10.5 Hz, 

1H), 4.16 (dd, J = 5.6, 10.5 Hz, 1H), 3.56 (s, 3H), 3.55 (s, 3H), 2.56 (sxt, J = 7.0 Hz, 1H), 2.42 

(ddd, J = 6.3, 9.8, 16.8 Hz, 1H), 2.33 (ddd, J = 4.9, 9.8, 16.8 Hz, 1H), 2.12–2.06 (m, 1H), 1.90–

1.86 (m, 1H), 1.70–1.65 (m, 1H), 1.61–1.54 (m, 1H), 1.42–1.22 (m, 13H), 1.18–1.10 (m, 2H), 

1.14 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.94 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.3 Hz, 3H); 19F 

NMR (282 MHz, CDCl3) δ −72.54. 
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1.8 APPENDIX 

 

1. 1H and 13C NMR spectra of (S,R,RS,R)-1 and (R,R,RS,R)-1. 

2. 1H and 13C NMR spectra of (S,R,RS,R)-2 and (R,R,RS,R)-2. 

3. 1H and 13C NMR spectra of eight isomers of 1 synthesized by FMS. 

4. 1H NMR of the 16-bis MTPA esters. 

5. 1H-13C HMQC spectra of (R,3R,7R,11R,15R,R)-10 and (S,3S,7S,11R,15S,S)-10. 
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