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ION/MOLECULE REACTIONS STUDIED WITH THE FLOWING AFTERGLOW 

AND THEORETICAL METHODOLOGY 

 

Kyle Richard Tilger, M.S. 

University of Pittsburgh, 2006

 

Initial interest in ion/molecule chemistry was because of its importance in atmospheric 

chemistry, but researchers have moved to investigating other interests involving organic reaction 

mechanisms.  The study of ion/molecule reactions has flourished with the invention of 

instruments, such as the flowing afterglow instrument, and the advances in computational 

chemistry.   

 The hydronium ion has been utilized as a reagent ion in ion/molecule chemistry for the 

detection of volatile organic compounds (VOCs).  A limitation to the utility of the hydronium ion 

is that it is susceptible to clustering reactions with water.  The propensity to cluster can be 

eliminated by replacing the hydrogens on the hydronium ion with trimethylsilyl groups to form 

the tris-trimethylsilyloxonium ion, (TMS)3O+. This strategy takes advantage of the trimethylsilyl 

cation’s proclivity to react as if it were a proton.   

Hexamethyldisiloxane was allowed to react with TMS+, (TMS)2Cl+, TMSOH2
+, and 

TMSC6H6
+ in an attempt to form (TMS)3O+.  However, every attempt to create the novel 

(TMS)3O+ via a gas phase approach was unsuccessful.  The available data suggests that the target 

ion may be formed, but is so reactive under the experimental conditions that it reacts away prior 

to detection.   
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An investigation of the formation and reactions of the bis-trimethylsilylmethyloxonium 

ion ((TMS)2OCH3
+) was conducted to gain further understanding of the chemistry of the 

formation and reactivity of oxonium ions.  After successful formation of the bis-

trimethylsilylmethyloxonium ion, six neutrals (water, dimethylsulfide, acetonitrile, ethyl acetate, 

triethylamine, and acetone) were allowed to react one at a time with it.  Trimethylsilyl transfer 

was the primary reaction pathway, which bodes well for our goal of creating a novel reagent ion. 

The oxygen radical anion, O·-, has been studied by others with respect to atmospheric 

chemistry and has been utilized for chemical ionization reactions.  To better understand its 

reactivity, a theoretical study of the reaction of the O·- with methanol has been analyzed.  

Reaction schemes and potential energy diagrams for observable products and for all possible 

products were created.  The potential energy surface computed during this study suggests that at 

298 K the expected product distribution is proton transfer.  
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1.0  INTRODUCTION 

1.1 ION/MOLECULE CHEMISTRY 

In 1925 the first ion/molecule reaction was performed; however, not much work was performed 

in this field until approximately 30 years later.1,2  One reason that ion/molecule chemistry 

became a focus of researchers is because of its importance in atmospheric chemistry.3  

Technological advances, such as the creation of the flowing afterglow, provided researchers with 

the tools necessary to explore ion-molecule reactions.4  Many of the chemical processes 

occurring in our atmosphere are well understood and explained because of ion/molecule 

reactions performed with this technology.5  

1.2 FLOWING AFTERGLOW 

In the 1960’s the flowing afterglow method was developed by Ferguson, Fehsenfeld, 

Schmeltekopf, and coworkers at the National Oceanic and Atmospheric Administration 

Laboratories.4  Originally this technique was developed for the study of reactions occurring in 

the earth’s atmosphere, but since then the technique has been utilized for other types of studies.  

Some examples are organic reaction mechanisms and ion solvation phenomenon.6,7 
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Figure 1.1 Schematic of the Flowing Afterglow 
 
 
 
Figure 1.1 depicts a flowing afterglow apparatus.  In the production region, both helium 

gas and a precursor gas are introduced.  The precursor gas is ionized in the ion source and the He 

is used as a buffer gas to thermalize and carry the ions from the production region.  Next, the 

ions flow thru the reaction region where neutral reagents are introduced and allowed to react 

with these ions which were created upstream.  At the end of the reaction region, a portion of the 

ions remaining from the reactions in the flow tube are directed through the sampling orifice by 

an electrical field while the roots pump removes most of the helium.  After passing through the 

sampling orifice, the ions are directed by lenses into a quadrupole mass filter.  Finally after 

passing through the quadrupole mass filter, the ions reach a detector.   
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1.3 COMPUTATIONAL CHEMISTRY 

The advancement of computational chemistry has been beneficial to gas-phase ion-molecule 

chemistry.  The ability to model complex molecules and gas phase reactions accurately and 

efficiently has increased with the creation of powerful programs like Gaussian and CAChe along 

with the increased processing power of computers.8,9  Because many of the experiments 

performed in ion/molecule chemistry are under low pressure, the experimental conditions are 

close to a truly isolated system, which can be the conditions used by the theory programs.10  This 

makes molecular orbital and density functional theory calculations ideal for modeling gas-phase 

ion chemistry.   

Computational work has been used to predict thermodynamic stability of species never 

synthesized, guide experimental work, and clarify structure and properties of non-conventional 

species.11  An example of a molecule that were predicted to exist theoretically before being 

discovered experimentally is ammonia oxide.11  Theoretical methods have also been used in 

tandem with other techniques to aid in the explanation of experimental products observed.12   
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2.0  THE TRIS-TRIMETHYLSILYLOXONIUM ION 

2.1 INTRODUCTION 

The hydronium ion has been utilized as a reagent ion for the detection of volatile organic 

compounds (VOCs).13  One limitation of using this ion is that it is susceptible to clustering 

reactions, which can complicate analysis of results.  One way to eliminate this clustering 

limitation is to replace the hydrogen in the hydronium ion with trimethylsilyl groups (Figure 2.1) 

to form the tris-trimethylsilyloxonium ion (m/z 235). Trimethylsilyl groups have been chosen  

 
 

O

Si(CH3)3

Si(CH3)3(H3C)3Si  

 
 

Figure 2.1 Tris-trimethylsilyloxonium Ion 
 
 
 
because the trimethylsilyl cation is similar in reactivity to a proton and has even been referred to 

as a “large proton”.14  This idea was tested by Hwu and Wetzel who showed that Me3SiOTf can 

be used as an acid to catalyze a dioxolanation reaction.15  By using Me3SiOTf and 1,2-

bis[(trimethylsilyl)oxy]ethane, they were able to differentiate between two carbonyl groups by 
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taking advantage of steric effects.  By doing so it was possible to selectively put a protecting 

group on a desired carbonyl.   

The formation of the tris-trimethylsilyloxonium ion has been reported in the condensed 

phase by Olah et al.16  Trityl-TPFPB salt, Ph3C+B(C6F5)4
-, was allowed to react with 

trimethylsilane in the presence of hexamethyldisiloxane at -78°C to form the tris-

trimethylsilyloxonium ion.  The ion’s structure was confirmed by 29Si, 1H, and 13C NMR 

spectroscopy at -70°C.16  The HF/6-31G* optimized geometry shown in Figure 2.2 is in 

agreement with their experimental data.16  To the best of my knowledge, this ion has not been 

reported as having been studied or formed in the gas phase.   

 
 

 
 

Figure 2.2 HF/6-31G* Optimized Geometry of (TMS)3O+ 16 

 

2.2 EXPERIMENTAL 

The flowing afterglow system has been described in detail; only unique aspects relevant to this 

work will be reported here.17  Helium pressures were maintained near 0.3 Torr for each of the 

reactions examined.  The reagents used without further purification were oxygen (grade 2.6, 
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Valley National Gas, Pittsburgh, PA), tetramethylsilane (99.9%, Sigma Aldrich), trimethylsilyl 

chloride (99.0%, Sigma Aldrich), benzene (99.9% HPLC Grade, Fisher Scientific), and 

hexamethyldisiloxane (98% Sigma Aldrich). Qualitative experiments were performed to 

determine the m/z of the ionic products of the studied reactions.  Since the desired ion was never 

detected, the reaction rate constants and branching ratios were not pursued. 

2.3 RESULTS 

In the first attempt to form the tris-trimethylsilyloxonium ion (Equations 2.1-2.3), oxygen was 

ionized at the ion source to form O2
·+, which was then allowed to react with tetramethylsilane to 

form the trimethylsilyl cation.  The trimethylsilyl cation was allowed to react with 

hexamethyldisiloxane in an attempt to form the tris-trimethylsilyloxonium ion.  The reaction 

distance was varied from 76.7 to 16.1 cm at 10.1 cm distances, and the pressure of 

hexamethyldisiloxane was varied from 0 to 2 Torr in an effort to form the ion being sought.  The 

only product ion detected was m/z 163, which had an isotopic distribution that corresponded to 

protonated hexamethyldisiloxane as shown in Table 2.1.   

 
 

Table 2.1 Isotopic Distribution for the Reaction of Me3Si+ with Hexamethyldisiloxane 
 
 

m/z Theoretical Observed
163 100.0 100.0
164 16.8 16.3
165 8.0 7.8
166 0.8 0.9
167 0.1 0.1  
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O2

O2 
+ Me4Si

Me3Si+
(Me3Si)2O

O2 
+

Me3Si+ + Me + O2

(Me3Si)3O+ (Me3Si)2O
(Me3Si)2OH+ + (Me3Si)2O + Me2SiCH2

ei/pi
0.3 Torr He

2.1 

 
 
 

2.2 

 
 

2.3 

 
 
 

In a second approach to forming the tris-trimethylsilyloxonium ion, the bis-trimethylsilyl 

chloronium ion was formed by electron ionization and penning ionization of trimethylsilyl 

chloride at the ion source and allowing it to react with trimethylsilyl chloride in the flow tube.  

Next the bis-trimethylsilyl chloronium ion was allowed to react with hexamethyldisiloxane 

(Equations 2.4-2.6).  Up to 1.5 Torr of hexamethyldisiloxane was added and the reaction distance 

was varied from 76.7 to 16.1 cm in an effort to form the tris-trimethyloxonium ion.  The product 

ion was m/z 163, and is hypothesized to be protonated hexamethyldisiloxane.  

 
 

2.4 

 

 
2.5 

 

Me3SiCl

Me3SiClMe3Si+

(Me3Si)2Cl+ (Me3Si)2O

(Me3Si)2Cl+

Me3Si+ + Cl-ei/pi
0.3 Torr He

(TMS)2OH+ + (CH3)3SiCl + (CH3)2SiCH2
 

2.6 

 
 
 
In a third attempt to form the tris-trimethylsilyloxonium ion, the protonated form of 

trimethylsilanol was created by allowing O2
·+ to react with tetramethylsilane to form the 
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trimethylsilyl cation, and then allowing that ion to react with water (equations 2.1, 2.2, 2.7).18  

Protonated trimethylsilanol was also allowed to react with hexamethyldisiloxane in an attempt to 

form the tris-trimethylsilyloxonium ion (equation 2.8).  This also gave a product ion at m/z 163, 

which according to the isotopic distributions in Table 2.2 corresponds to protonated 

hexamethyldisiloxane.   

 
 

Table 2.2 Isotopic Distribution for the Reaction of Me3SiOH2
+ with Hexamethyldisiloxane 

 
 
 

m/z Theoretical Observed
163 100.0 100.0
164 16.8 16.0
165 8.0 8.4
166 0.8 0.9
167 0.1 0.1  

 
 
 
 
 

Me3Si+
H2O

Me3SiOH2
+

He

Me3SiOH2
+ (Me3Si)2O

(Me3Si)2OH+ + Me3SiOH

2.7 

 
 

2.8 

 
 

 
 
Table 2.3 Isotopic Distribution for the Reaction of Me3SiC6H6

+ with Hexamethyldisiloxane 
 
 

m/z Theoretical Observed
163 100.0 100.0
164 16.8 16.1
165 8.0 8.8
166 0.8 0.9
167 0.1 0.1  
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Me3Si+
C6H6 Me3SiC6H6

+

(Me3Si)2O
Me3SiC6H6

+ (Me3Si)2OH+ + Me3SiC6H5

2.9 

 
 
 

2.10 

 
 
 

Finally, the trimethylsilyl cation, formed from the reaction of O2
·+ and tetramethylsilane, 

was allowed to react with benzene to form the trimethylsilyl adduct (equations 2.1, 2.2, 2.9).  

This latter ion was then allowed to react with hexamethyldisiloxane (equation 2.10).  The 

product ion observed at m/z 163 was protonated hexamethyldisiloxane. 

2.4 DISCUSSION 

The reaction of the trimethylsilyl cation and hexamethyldisiloxane was designed to mimic the 

reaction of the trimethylsilyl cation with water.  In that reaction, TMSOH2
+ is formed at a rate 

close to the collisional rate of 2 x 10-9 cm3 molecule-1 s-1.18  However, the reaction of the 

trimethylsilyl cation with hexamethyldisiloxane did not produce the cluster ion, instead 

protonated hexamethyldisiloxane was formed.  While it remains uncertain as to how m/z 163 is 

formed, it is possible that it is formed as a secondary product from the reaction of the target ion 

((TMS)3O+) with hexamethyldisiloxane as summarized in equations 2.1-2.3. 

Squires et al. formed the trimethyloxonium ion in the gas phase at 298 K using a flowing 

afterglow apparatus by allowing Cl(CH3)2
+ to react with (CH3)2O.19  However in our hands an 

analogous approach by allowing Cl(Si(CH3)3)2
+ to react with O(Si(CH3)3)2 did not result in the 

formation of the tris-trimethylsilyloxonium ion.  Instead of the desired ion, protonated 
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hexamethyldisiloxane was observed which indicates the E2 reaction summarized in equation 2.6 

is occurring instead of the trimethylsilyl transfer reaction. 

In the reaction of the trimethylsilyl cation with hexamethyldisiloxane, proton transfer is 

endothermic by 24 kcal/mol.20  Since endothermic reactions are too slow to be observed in the 

time window accessible to ion/molecule reactions studied in the flowing afterglow, a different 

pathway must be occurring.  While we did not pursue the other pathway because our interest was 

in the tris-trimethylsilyloxonium ion, it is possible that the target was made but is so reactive that 

it does an E2 under our reaction conditions before we can detect it.  This possibility will be 

explored in the future.      

2.5 CONCLUSIONS 

A successful way of creating the tris-trimethylsilyloxonium ion in the gas phase has yet to be 

discovered.  In solution the tris-trimethylsilyloxonium ion has a stabilizing counterpart; however, 

to form it in the gas phase there is not a stabilizing counter ion.  The lack of that stabilizing ion 

may make the formation of the tris-trimethylsilyloxonium ion thermo chemically unstable.  

Another reason for the lack of observing of the tris-trimethylsilyloxonium ion may be the 

existence of another reaction pathway that is kinetically faster.  More studies are necessary to 

elucidate the chemistry of the formation process of this ion.  
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3.0  THE BIS-TRIMETHYLSILYLMETHYLOXONIUM ION 

3.1 INTRODUCTION 

An investigation of the formation and reactions of the bis-trimethylsilylmethyloxonium ion (m/z 

177), shown in Figure 3.1 below, was conducted.  (TMS)2OCH3
+ was chosen for study as a 

possible reagent ion for VOC detection.  Studying the reactions of (TMS)2OCH3
+ will provide 

information as to how different substituents affect the reactivity and selectivity of onium ions. It 

was hypothesized that the ion would have two dominant reaction pathways, methyl transfer and 

trimethylsilyl transfer.  

 
 

O

CH3

Si(CH3)3(H3C)3Si  
 
 

Figure 3.1 Bis-trimethylsilylmethyloxonium Ion 
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3.2 EXPERIMENTAL 

Qualitative experiments were performed to determine the m/z of the products of ion/molecule 

reactions.  Rate coefficients were determined by examining the change in reactant ion as the 

concentration of neutral was altered.  Measurements of the rate coefficients were performed at 

least five times over two experimental days, with an experimental day being defined as the 

complete startup and shutdown of the instrument.  Helium pressures were maintained near 0.3 

Torr for each of the reactions examined.  The reagents used are: argon (grade 4.8, Valley 

National Gas, Pittsburgh, PA), tetramethylsilane (99.9%, Sigma Aldrich), 

methoxytrimethylsilane (99%, Sigma Aldrich), deionized water, acetone (99%, Fisher Scientific, 

Pittsburgh, PA), triethylamine (99%, Fisher Scientific, Pittsburgh, PA), dimethylsulfide (99+%, 

Sigma Aldrich), acetonitrile (99%, Fisher Scientific, Pittsburgh, PA), and ethyl acetate (99.9% 

HPLC Grade, Fisher Scientific).  All of the liquid reagents were freeze-pump-thawed to remove 

dissolved gases prior to use.   

3.3 RESULTS 

Ar+, formed by ionizing argon at the source, was allowed to react with tetramethylsilane to form 

the trimethylsilyl cation, which was then allowed to react with methoxytrimethylsilane giving the 

desired bis-trimethylsilylmethyloxonium ion (equation 3.1 – 3.3).  The reaction of the 

trimethylsilyl cation and methoxytrimethylsilane went to completion, and the pressure 

independent rate constant was measured at 8.00 x 10-10 cm3 molecule-1 s-1 with 4.6% standard 

deviation.  The experimental isotopic distribution shown in Figure 3.2 matches the theoretical  
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Ar

Ar+

(CH3)3Si+

(CH3)4Si

Ar+

(CH3)3SiOCH3

(CH3)3Si+ + CH3 + Ar

((CH3)3Si)2OCH3

ei/pi
0.3 Torr He

He

3.1 

 
3.2 

 
3.3 

 
 
 
 
 

 
 
 

Figure 3.2 Bis-trimethylsilylmethyloxonium Ion Spectrum 
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Figure 3.3 Kinetic Plot for the Reaction of (Me3Si)2OMe+ with Ethyl Acetate 
 
 
 

distribution.  Figure 3.2 also reveals that no other ions are formed during the reaction of the 

trimethylsilyl cation and methoxytrimethylsilane. 

 The bis-trimethylsilylmethyloxonium ion was allowed to react with ethyl acetate to 

form the trimethylsilyl transfer product, CH3CO2EtSiCH3
+ (equation 3.4).  The reaction went to 

completion, had a rate constant of 3.50 (± 0.5) x 10-10 cm3 molecule-1 s-1, and has an efficiency of 

0.240.  Figure 3.3 is a sample kinetic plot for the reaction of the bis-trimethylsilylmethyloxonium 

ion with ethyl acetate.   
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((CH3)3Si)2OCH3

+ CH3CO2Et
CH3CO2EtSi(CH3)3

+ + (CH3)3SiOCH3 3.4 

 
 
 

 

 
 
 

Figure 3.4 Trimethylsilyl Adduct of Ethyl Acetate Spectrum 
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Next, ((CH3)3Si)2OCH3

+ was allowed to react with acetone (equation 3.5).  Up to 2.2 Torr 

of acetone was added during this reaction.  Trimethylsilyl transfer occurred; however, as 

depicted in equation 3.5, the reverse trimethylsilyl transfer from trimethylsilated acetone to 

methoxytrimethylsilane also occurred.  Because these two reactions are in competition, the 

kinetics plot collected is curved and an accurate rate constant is unattainable.   

 
 

  

O

CH
 

3.5 

3

Si(CH3)3(H3C)3Si

C

O

CH3H3C
C

O

CH3H3C

Si(CH3)3 CH3

O Si(CH3)3+ +
 
 
 
 
 

To support the supposition that the curved kinetics plots were due to the reverse reaction, 

two experiments were conducted.  In the first, the bis-trimethylsilylmethyloxonium ion was 

allowed to react with acetone in the presence of varying pressures of methoxytrimethylsilane.  

Figure 3.5 is a series of kinetic plots showing the reaction rate dependence on the amount of 

methoxytrimethylsilane present.  In the second reaction, the trimethylsilyl adduct of acetone, 

formed by allowing the trimethylsilyl cation to react with acetone, was allowed to react with 

methoxytrimethylsilane in the presence of different pressures of acetone.  Figure 3.6 is a kinetic 

plot showing the reaction rate dependence on the amount of acetone present.  Reactions with a 

constant rate are represented by a straight line on a kinetic plot.  Both plots are curved and then 

level out at longer reaction distance, which suggests that reaction 3.5 is reaching a state of 

equilibrium independent of which direction the process is started from.   
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Figure 3.5 Kinetic Plot of the Reaction of Bis-trimethylsilylmethyloxonium Ion with 

Acetone 
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Figure 3.6 Kinetic Plot of the Reaction of the Me2COTMS+ with Methoxytrimethylsilane 
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The bis-trimethylsilylmethyloxonium ion was allowed to react with acetonitrile as shown 

in equation 3.6 to form the trimethylsilyl transfer product.  This reaction did not go to completion 

even when up to 2.9 Torr of acetonitrile was added to the flow tube.  The rate constant for this 

reaction was measured as 3.07 (± 8) x 10-12 cm3 molecule-1 s-1, which corresponds to an 

efficiency of 0.001. 

 
 

 
((CH3)3Si)2OCH3

+
CH3CN

CH3CNSi(CH3)3
+ +  (CH3)3SiOCH3 3.6 

 
 
 

Both water and dimethylsulfide did not react with the bis-trimethylsilylmethyloxonium 

ion within the time window provided by the flowing afterglow.  The limit obtained for the 

reaction with water was ≤ 9 x 10-12 cm3 molecule-1 s-1, and the limit for the reaction of the bis-

trimethylsilylmethyloxonium ion with dimethylsulfide was found to be ≤ 3 x 10-14 cm3 molecule-

1 s-1.   

The products formed from the reaction of the bis-trimethylsilylmethyloxonium ion with 

triethylamine are protonated triethylamine, methylated triethylamine, and m/z 144.  A 

hypothesized molecular formula for m/z 144 is C7H18NSi+.  An analysis of the isotopic 

distribution could not be performed because of the interference from ((CH3)3Si)2
+ at m/z 146.  

This ion was produced when tetramethylsilane was ionized.  All of the products are primary 

products.  Protonated and methylated triethylamine are the major products, and C7H18NSi+ is a 

minor product.  The rate constant for this reaction was determined to be 3.15 (± .002) x 10-12 cm3 

molecule-1 s-1, and the reaction had an efficiency of .003.   
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Figure 3.7 Spectrum of the Reaction of the Bis-trimethylsilylmethyloxonium Ion with 
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Table 3.1 Rate Constants for the Reaction of (TMS)2OCH3
+ with Selected Neutrals 

 
 

Neutral kobs (Eff)a Reaction

H2O ≤ 0.009          No Reaction 
Obseved.

MeCN 0.00307 ± .008 
(0.001) 100% TMST

MeCOMe 100% TMST

Me2S ≤ 0.00003      No Reaction 
Obseved.

MeCO2CH2Me 0.350 ± .05 
(0.240) 100% TMST

Et3N
0.00315 ± .002 

(0.003)

40% MeT, 
40% E2,    

20% Other  
 
a—Units of 10-9 cm3 molecule-1 s-1.  Eff = kobs/kcoll.  kcoll is calculated via the VTST theory of Su 

and Bowers. (TMST – trimethylsilyl transfer, MeT – methyl transfer, PT – proton transfer) 

3.4 DISCUSSION 

For the reaction of the bis-trimethylsilylmethyloxonium ion with acetone, it is apparent that 

trimethylsilyl transfer is occurring from the trimethylsilyl adduct of acetone to 

methoxytrimethylsilane.  This is supported by the curvature in the kinetic plots displayed in 

Figure 3.5, which shows that as the amount of methoxytrimethylsilane present is increased, the 

rate of reaction is decreased. For the reaction of the trimethylsilyl adduct of acetone with 

methoxytrimethylsilane shown in Figure 3.6, as the amount of acetone present was increased the 

apparent rate of that reaction decreased.   
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None of these neutrals show a reverse trimethylsilyl transfer reaction when allowed to 

react with protonated hexamethyldisiloxane.  All of the rate constants for the reactions of the bis-

trimethylsilylmethyloxonium ion are lower than the rate constants determined for protonated 

hexamethyldisiloxane with the same selected neutrals.  For instance the rate constant for the 

reaction of protonated hexamethyldisiloxane with ethyl acetate has been recorded at 1.19 (± .01) 

x 10-9 cm3 molecule-1 s-1, and the rate constant for the reaction of ethyl acetate with the bis-

trimethylsilylmethyloxonium ion is 3.50 (± 0.5) x 10-10 cm3 molecule-1 s-1.  Both reactions occur 

by trimethylsilyl transfer.  The differences in apparent rates between the reactions with 

protonated hexamethyldisiloxane and the bis-trimethylsilylmethyloxonium ion is likely an 

artifact due to the erroneous rates reported in this work due to the facile back reaction noted 

above. 

3.5 CONCLUSIONS 

The products of the initial reaction are altering the rate constants collected and causing the 

reaction rates to appear slow.  Trimethylsilyl transfer was the primary reaction pathway, which 

bodes well for our goal of creating a novel reagent ion.  The reaction system needs to be set up 

so that the back reaction does not occur and true rate constants can be obtained.   
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4.0  THE ATOMIC OXYGEN RADICAL ANION CHEMICAL IONIZATION 

PROCESS 

4.1 INTRODUCTION 

The need to understand the reactions taking place within our atmosphere lead to an interest in the 

chemistry of O·-.21  Studies have focused on the role of O·- in flames and the postulated role in 

plasmas.22  Negative ion chemical ionization mass spectrometry and atmospheric pressure 

chemical ionization have utilized the O·- as a reagent ion.23  Specifically O·- has been used to 

generate didehydro organic radical anions.24  For instance, in equation 4.1 below, the 

cyanomethylene radical anion was readily synthesized from the reaction of O·- with 

acetonitrile.25  A similar reaction shown in equation 4.2 below was used to generate the 

tetramethyleneethane radical anion, TME·-, for a negative ion photoelectron spectroscopy study 

to determine the singlet-triplet gap of diradical tetramethyleneethane.  In contrast to TME·- being  
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readily formed, a similar species, trimethylenemethane radical anion or TMM·-, is formed in very 

low yield via chemical ionization also shown in equation 4.3.26 

 
 

 
 

4.2 

 
 
 
 
 
 
 

4.3 

 
 
 

O
C

C

CH3CH2

H2C CH3

O C

CH3

CH3CH2

C

C

CH2CH2

H2C CH2

C

CH2

CH2CH2

TMM

TME

H2O

H2O

+ +

+ +

55.8%

6.7%

 
 

To gain a greater understanding of the reactions of O·-, a theoretical study of the reaction 

of O·- with methanol was performed.  This reaction was chosen because it involves a small 

number of heavy atoms and it has the possibility of competitive reaction channels.  Experimental 

data has been published on the reaction of O·- with methanol and various deuterated forms of 

methanol.  The data collected by Futrell and Tiernan as well as Jager and coworkers suggests 

that hydrogen atom transfer is the dominant process.27,28  Houriet and coworkers in an ICR study 

of the reaction found that proton transfer was the only process occurring.29,30  The variation in 

these results was likely due to the varying experimental conditions.  In the experiments by Futrell 

and Tiernan as well as Jager and coworkers O·- had a higher energy than in the experiments by 

Houriet and coworkers.  This added energy allowed a different portion of the potential surface to 

be sampled with the result that the product yields changed (with respect to Houriet’s 

experiment).   
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4.2 COMPUTATIONAL METHODS 

All calculations in this work were performed by my collaborator Dr. Gab-Yong Lee using the 

Gaussian 94 program.31  The calculations used to create the potential energy surface (PES) for 

the reaction of O·- with CH3OH were carried out using density functional theory(DFT)32,33 at 

Becke3LYP34,35 level with the 6-31+G* basis set.  As a form of method validation the gas phase 

acidities of MeOH, HO, and H2O were calculated at 298K.   

The equilibrium geometries and transition states for the all structures were fully 

optimized without any constraints.  All calculations were performed with a self-consistent field 

convergence of 10-7 on the RMS density matrix and with 5D functions.  At this level of theory, 

we have also calculated the harmonic vibrational frequencies to verify the nature of the 

corresponding true local minima or transition state, to provide the zero point vibrational energy 

(ZPE), and to obtain the thermodynamic contributions to the enthalpy.  

Stationary points were characterized by the calculated Hessian matrix.  Stable structures, 

corresponding to energy minima, were identified by possessing no negative eigenvalues of the 

Hessian, while transition states were identified by having one negative eigenvalue and one 

imaginary frequency.  The identities of the transition state structures were verified by calculation 

of intrinsic reaction coordinates36-38 (IRC) at this level of theory.  

4.3 RESULTS 

A reaction scheme and potential energy diagram for the possible products resulting from the 

reaction of the atomic oxygen radical anion with methanol was created.  Scheme 4.1 shows three 

potential reaction pathways which would lead to the observable products: proton transfer from  
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Scheme 4.1 Reaction Scheme for the Atomic Oxygen Radical Anion & Methanol 
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methanol’s oxygen to yield hydroxide radical and methoxy anion, hydrogen atom transfer from 

methanol’s carbon to yield hydroxide anion and the CH2OH radical, and hydrogen atom transfer 

from methanol’s oxygen to yield the hydroxide anion and methoxy radical.  In addition, scheme 

4.1 shows the formation of complex 6 leading to O-O containing products.  The products from 

the pathways by which complex 6 might break down are not reported for a lack of the 

experimental data available to date. Scheme 4.1 also shows the reactive detachment pathway 

(complex 9) in which the products cannot be observed because they are uncharged.  

Optimizations were attempted to obtain data for complex 6, however, this complex was found to 

collapse to complex 1 in all studies performed.  In Scheme 4.1 all species shown have been 

located and characterized by theory except for complex 5 and 6.  

 Table 4.2 contains the thermodynamic data used to create the potential energy diagram.  

On the potential energy diagram, Figure 4.1, line drawing structures are the authors imagination, 

while ball and stick structures are B3LYP/6-31+G* minimized entities.  Likewise on Figure 4.1, 

numbers in parenthesis are experimental thermodynamic values and dashed lines are used to 

denote intermediates or transition states where no theoretical data has been found.   
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Table 4.1 Literature Data for the Reaction of O·- with Methanol and Various Deuterated 
Forms of Methanol27-30 

 
 

Neutral kobs (cm3 molecule-1 s-1)

Ion Product 
(observed and 
corresponding 

neutral)

CH3OH 2.5 x 10-10 67% HO- + CH3O
·         

33% CH3O
- + HO·    

CH3OH
75% HO- + CH3O

·         

25% CH3O
- + HO·    

CH3OD 2.0 x 10-10

7% HO- + ·CH2OD     
61% DO- + CH3O

·     

32% CH3O
- + DO·

CH3OD
24% HO- + ·CH2OD   
52% DO- + CH3O

·     

25% CH3O
- + DO·

CD3OH 2.0 x 10-10

65% HO- + CD3O
·       

5% DO- + ·CD2OH     
30% CD3O

- + HO·

CD3OD 1.7 x 10-10 69% DO- + CD3O
·         

31% CD3O
- + DO·    
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Table 4.2 Heat of Formation Data for the Potential Energy Diagram 

 
 

CH3OO- -190.215717 -190.2616677 0.045950 -190.215718
H· -0.497912 -0.5002728 0.002360 -0.497913

Complex 7 -190.723077 -190.7729112 0.049834 -190.723077 43.1
CH3 -39.807970 -39.8418687 0.033898 -39.807971

HOO- -150.927319 -150.9440878 0.016769 -150.927319
Complex 8 -190.743965 -190.7970427 0.053078 -190.743965 30.0

CH3O
- -115.070820 -115.1098256 0.039006 -115.070820

HO· -75.720646 -75.7322173 0.011571 -75.720646
CH3OH -115.667942 -115.7234888 0.055547 -115.667942

O·- -75.123818 -75.1261784 0.002360 -75.123818
ts23 -190.795951 -190.8447650 0.048814 -190.795951 -2.6

CH3O
· -115.017130 -115.0576859 0.040556 -115.017130

HO- -75.783752 -75.7953691 0.011617 -75.783752
·CH2OH -115.019667 -115.0612052 0.041538 -115.019667

HO- -75.783752 -75.7953691 0.011617 -75.783752
Complex 2 -190.803539 -190.8607317 0.057193 -190.803539 -7.4
Complex 2 -190.803547 -190.8607315 0.057184 -190.803547 -7.4

CH4 -40.471084 -40.5198904 0.048807 -40.471083
O2

- -150.341177 -150.3471683 0.005992 -150.341176
ts9 -190.814668 -190.8641261 0.049459 -190.814667 -14.4

Complex 3 -190.815969 -190.8701474 0.054178 -190.815969 -15.2
Complex 10 -190.817146 -190.8730449 0.055899 -190.817146 -15.9

ts14 -190.838332 -190.8931330 0.054801 -190.838332 -29.2
Complex 1 -190.841925 -190.8955589 0.053634 -190.841925 -31.5
Complex 4 -190.844336 -190.8966019 0.052266 -190.844336 -33.0
Complex 4 -190.844337 -190.8966068 0.052270 -190.844337 -33.0

H2CO- -114.456939 -114.4841815 0.027243 -114.456938
H2O -76.396387 -76.4212203 0.024834 -76.396386

H2C=O -114.476511 -114.5070884 0.030577 -114.476511
H2O -76.396387 -76.4212203 0.024834 -76.396386

Complex 9 -190.883103 -190.9376636 0.054560 -190.883104 -57.3

Name
ΔHf,(298K)   

(a.u.)
E(0K)         

(a.u.)
Thermal Energy 

(a.u.)

35.4

0.2

0.0

E(0K) + Thermal Energy 
(a.u.)

ΔHf,(298) 

(kcal/mol)

49.0

-38.6

-50.9

-5.7

-7.3

-12.9
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Figure 4.1 Potential Energy Diagram for the Reaction of O·- with Methanol 
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4.4 DISCUSSION 

Houriet and coworkers data shows that proton transfer is the only process occurring under their 

experimental conditions.  This correlates with the potential energy diagram provided by the 

theoretical study.29,30  Proton transfer is the favored pathway because the formation of complex 1 

is more energetically favorable than complex 2 or 6 and because there is a smaller activation 

barrier for proton transfer versus hydrogen atom transfer from methanol’s oxygen.  The reactive 

detachment pathway might be expected to produce the next greatest amount of product because it 

has a smaller activation barrier than forming the hydrogen atom transfer from methanol’s oxygen 

products.  Experimentally the products from this channel can not be observed since none have a 

charge.  This leaves the hydrogen atom transfer from methanol’s carbon to produce the least 

amount of product.  Therefore, the potential energy surface computed during this study suggests 

that at 298 K the expected product distribution would be only proton transfer, consistent with 

Houriet’s observations.   

The data provided by Futrell and Tiernan as well as Jager, Henglein, and Simic in Table 

4.1 shows that hydrogen atom transfer from methanol’s oxygen is favored at 67% and 75%.27,28  

Because hydrogen abstraction has a higher activation barrier than proton transfer from 

methanol’s oxygen, it would be expected that proton transfer would be the dominant process.  It 

is likely that the conditions used during these latter experiments provide extra energy needed to 

the system in order to access a different portion of the potential energy surface.   

Other products from the pathway beginning with complex 6 are not seen because 

complex 1 and 2 are more energetically favorable, there is a large energy barrier to overcome in 

 31 



order to form transition state 67 and 68, and all of the products resulting from these pathways 

except for one are endothermic. 

4.5 CONCLUSIONS 

The potential energy surface computed during this study would suggest that at 298 K the 

expected product distribution would be only proton transfer. 
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APPENDIX A 

KINETIC DATA FOR THE REACTIONS OF THE BIS-
TRIMETHYLSILYLMETHYLOXONIUM ION 

RXN = (TMS)2OCH3
+ + ethyl acetate

Data XXLII-11-55 XXLII-11-55A XXLII-11-55B XXLII-11-56 XXLII-11-56A
Date (data collected) 9/22/2005 9/22/2005 9/22/2005 9/24/2005 9/24/2005
P(He) 0.2978 0.2984 0.2988 0.3701 0.3719
P(He) err 0.0004 0.0003 0.0001 0.0013 0.0006
P(He) err % 0.1% 0.1% 0.0% 0.4% 0.2%
F(He) (STP cc/s) 105.51 105.51 105.51 148.89 148.89
F(He) err 0.00 0.00 0.00 0.00 0.00
F(He) err % 0.0% 0.0% 0.0% 0.0% 0.0%
He calib: 4/27/1992 4/27/1992 4/27/1992 4/27/1992 4/27/1992
Quench Gas? No No No No No
T 299.1 299.1 299.1 298.1 298.1
Pvr (Port min) 0.739 0.728 0.758 0.836 0.856
Pvr (Port max) 0.769 0.767 0.802 0.879 0.881
k 3.13E-10 3.18E-10 3.15E-10 3.95E-10 4.10E-10
m-err (%) 5.7% 6.0% 6.2% 3.8% 3.9%
R 0.9904 0.9893 0.9886 0.9956 0.9954
F(neut) 2.41E-02 2.37E-02 2.40E-02 2.44E-02 2.36E-02
F(neut) err 7.11E-04 6.35E-04 5.49E-04 1.60E-04 1.02E-03
F(neut) err % 3.0% 2.7% 2.3% 0.7% 4.3%
Vac Rack used bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb
Vac Rack calib 10/6/2004 10/6/2004 10/6/2004 10/6/2004 10/6/2004
z Varies Varies Varies Varies Varies
falloff 33.1 34.4 35.56 27.56 30.30
# of half-lives 5.05 5.11 5.15 4.78 4.92
Plot quality
Comments

k = 3.50E-10
std dev = 4.80697E-11

std dev (%) = 13.7%
Count = 5

alpha = 8.62E-24 Source = CRC 2000 Elect
dipole = 1.78 ± .09 Source = CRC 2000 Elect

k(ADO) = 1.26E-09 Eff(ADO) = 27.9%

k(SC) = 1.46E-09 Eff(SC) = 24.0%  
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Kinetic Plots for the Reaction of Bis-Trimethylsilylmethyloxonium Ion with Ethyl Acetate 
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RXN = (TMS)2OCH3

+ + Acetonitrile
Data XXLII-11-52 XXLII-11-52A XXLII-11-54 XXLII-11-54B XXLII-11-54C
Date (data collected) 9/15/2005 9/15/2005 9/22/2005 9/22/2005 9/22/2005
P(He) 0.3252 0.3262 0.4232 0.4268 0.4279
P(He) err 0.0005 0.0005 0.0008 0.0004 0.0006
P(He) err % 0.2% 0.2% 0.2% 0.1% 0.1%
F(He) (STP cc/s) 120.87 120.87 168.5 168.50 168.50
F(He) err 0.00 0.00 0.00 0.00 0.00
F(He) err % 0.0% 0.0% 0.0% 0.0% 0.0%
He calib: 4/27/1992 4/27/1992 4/27/1992 4/27/1992 4/27/1992
Quench Gas? No No No No No
T 300.1 300.1 299.1 299.1 299.1
Pvr (Port min) 1.876 1.795 1.872
Pvr (Port max) 2.028 1.939 1.998
k 2.29E-12 2.09E-12 3.57E-12 3.88E-12 3.50E-12
m-err (%) 8.6% 5.4% 16.6% 24.9% 22.6%
R 0.9785 0.9913 0.9265 0.8540 0.8744
F(neut) 1.93E-01 1.84E-01 1.59E-01 1.63E-01 1.57E-01
F(neut) err 4.81E-03 1.18E-03 8.20E-03 7.86E-04 7.79E-04
F(neut) err % 2.5% 0.6% 5.2% 0.5% 0.5%
Vac Rack used bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb
Vac Rack calib 10/6/2004 10/6/2004 10/6/2004 10/6/2004 10/6/2004
z Varies Varies Varies Varies Varies
falloff 1.3 1.3 1.33 1.37 1.38
# of half-lives 0.36 0.35 0.41 0.45 0.46
Plot quality
Comments

k = 3.07E-12
std dev = 8.15432E-13

std dev (%) = 26.6%
Count = 5

alpha = 4.48E-24 Source = CRC 2000 Elect
dipole = 3.92519 Source = CRC 2000 Elect

k(ADO) = 8.59E-10 Eff(ADO) = 0.4%

k(SC) = 3.18E-09 Eff(SC) = 0.1%  
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Kinetic Plots for the Reaction of the Bis-trimethylsilylmethyloxonium Ion and Acetonitrile 
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RXN = (TMS)2OCH3

+ + H2O
Data XXLII-11-49
Date (data collected) 9/8/2005
P(He) 0.3257
P(He) err 0.001
P(He) err % 0.3%
F(He) (STP cc/s) 121.04
F(He) err 0.00
F(He) err % 0.0%
He calib: 4/27/1992
Quench Gas? No
T 299.1
Pvr (Port min)
Pvr (Port max)
k 9.05E-13
m-err (%) 28.9%
R 0.8157
F(neut) 1.50E-01
F(neut) err 3.55E-03
F(neut) err % 2.4%
Vac Rack used bottom arm, w/bulb
Vac Rack calib 10/6/2004
z Varies
falloff 1.1
# of half-lives 0.12
Plot quality
Comments

k = 9.05E-13
std dev = 

std dev (%) = 
Count = 1

alpha = 1.45E-24 Source = CRC 2000 Elect
dipole = 1.8546 ± 0.0040 Source = CRC 2000 Elect

k(ADO) = 1.75E-09 Eff(ADO) = 0.1%

k(SC) = 2.22E-09 Eff(SC) = 0.0%  
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Kinetic Plot for the Reaction of the Bis-trimethylsilylmethyloxonium Ion and Water 
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RXN = (TMS)2OCH3
+ + Me2S

Data XXLII-11-59D
Date (data collected) 10/5/2005
P(He) 0.3457
P(He) err 0.0001
P(He) err % 0.0%
F(He) (STP cc/s) 131.67
F(He) err 0.00
F(He) err % 0.0%
He calib: 4/27/1992
Quench Gas? No
T 298.4
Pvr (Port min) 1.750
Pvr (Port max) 1.899
k 2.79E-14
m-err (%) 484.6%
R 0.1026
F(neut) 9.62E-02
F(neut) err 3.83E-04
F(neut) err % 0.4%
Vac Rack used bottom arm, w/bulb
Vac Rack calib 10/6/2004
z Varies
falloff
# of half-lives
Plot quality
Comments

k = 2.79E-14
std dev = 

std dev (%) = 
Count = 1

alpha = 7.41E-24 Source = CRC 2000 Elect
dipole = 1.554 ± .004 Source = CRC 2000 Elect

k(ADO) = 1.29E-09 Eff(ADO) = 0.0%

k(SC) = 1.48E-09 Eff(SC) = 0.0%  
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Kinetic Plot for the Reaction of the Bis-trimethylsilylmethyloxonium Ion and Dimethyl 
Sulfide 
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RXN = (TMS)2OCH3
+ + Et3N

Data XLII-11-51 XLII-11-51A XLII-11-51B XLII-11-59B XLII-11-59C
Date (data collected) 9/12/2005 9/12/2005 9/12/2005 10/5/2005 10/5/2005
P(He) 0.331 0.3314 0.3317 0.359 0.3593
P(He) err 0.0002 0.0001 0.0001 0.0001 0.0002
P(He) err % 0.1% 0.0% 0.0% 0.0% 0.1%
F(He) (STP cc/s) 122.73 122.73 122.73 138.42 138.42
F(He) err 0.00 0.00 0.00 0.00 0.00
F(He) err % 0.0% 0.0% 0.0% 0.0% 0.0%
He calib: 4/27/1992 4/27/1992 4/27/1992 4/27/1992 4/27/1992
Quench Gas? No No No No No
T 298.4 298.4 298.4 298.4 298.4
Pvr (Port min) 2.011 2.063
Pvr (Port max) 2.171 2.228
k 4.54E-12 4.46E-12 4.35E-12 1.09E-12 1.31E-12
m-err (%) 6.8% 5.4% 3.8% 18.1% 41.3%
R 0.9863 0.9915 0.9964 0.9145 0.7028
F(neut) 1.26E-01 1.24E-01 1.21E-01 9.59E-02 9.60E-02
F(neut) err 7.09E-04 3.72E-04 3.96E-03 3.92E-04 3.40E-04
F(neut) err % 0.6% 0.3% 3.3% 0.4% 0.4%
Vac Rack used bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb bottom arm, w/bulb
Vac Rack calib 10/6/2004 10/6/2004 10/6/2004 10/6/2004 10/6/2004
z Varies Varies Varies Varies Varies
falloff 1.3 1.3 1.27 1.05 1.09
# of half-lives 0.38 0.35 0.35 0.08 0.13
Plot quality
Comments

k = 3.15E-12
std dev = 1.78307E-12

std dev (%) = 56.6%
Count = 5

alpha = 1.34E-23 Source = CRC 2000 Elect
dipole = 0.66 ± 0.05 Source = CRC 2000 Elect

k(ADO) = 1.11E-09 Eff(ADO) = 0.3%

k(SC) = 1.17E-09 Eff(SC) = 0.3%  
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Kinetic Plots for the Reaction of the Bis-trimethylsilylmethyloxonium Ion and 
Triethylamine 
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STRUCTURES OF TRANSITION STATES AND COMPLEXES FOR THE REACTION 

OF O·- WITH METHANOL 

CH3OO-
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Complex 2 
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Complex 4 
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