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Nitrosation of the free sulfhydryl group in pep tides and proteins lead to one of t heir  

important biological  functions; as nitr ic oxid e carr iers.  Nitric ox ide, an im portant 

signally free radical m olecule cannot travel to m any of its im portant targets by itself due 

to its sho rt half-life.  T he S-NO bond in S- nitrosopeptides or proteins, however, is both 

thermolytically and photolytically  labile, leading to release of NO which can then attack 

other targets such as other am ino acids a nd nucleotides.   In this thesis, photodynamic 

activity of NO released  from a model peptid e (glutathione) and a m odel protein (bovine 

serum albumin) is studied utilizing various spectroscopic tools.  The more sim ple linear 

transient a bsorption s pectroscopy gives inf ormation on the time-sca le of  the 

photocleavage as well as that of the subsequence geminate recombination, while the more 

difficult tra nsient c ircular dichro ism will give  m ore insig htful into the conf ormation 

changes of the peptide and protein surroundi ng the chromophore and the direction at 

which the N O is being  released which will enab le us to exp lore possible ta rgets of  the  

photoreleased  NO.  In a ddition to experimental study, many theoretical calcu lations are 

performed to aid understanding of the results.      
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1.0 OVERALL GOALS 
 
 
 

♦ To characterize the set of  equilib rium and reactive conform ations of NO bound to 

peptides or protein nitrosothiols using spectroscopy and computer simulation. 

♦ To use time-resolved infrared absorbance and visible circular dichroism spectroscopy 

to measure the kinetics of photocleaved NO m igration and to identify the response of  

the protein and solvent. 
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2.0  INTRODUCTION 
 
 
 
 

2.1  WHAT IS NITRIC OXIDE? 

 
 

Nitric oxide is one sim plest heteronuclear diatomic molecules known to chem ists, yet it 

can perform  m any sophisticated  functions in both physical and biological system s.  

During the past 50 years, it has becom e one of  the m olecules most studied.  This sm all 

molecule can do both good and harm.  In addition to being a common air pollutant, it can 

also safeguard life on Earth by playing an im portant role in  the rate of  the reduc tion of 

the ozone layer.1,2  Much research addresses roles of nitric oxide in living bodies.  Robert 

Furchgott, Louis Ignarro, and Ferid Murad w ho  received the Nobe l Prize for Physiology 

and Medicine in 1998, showed that the endothe lium-derived relaxing factor is in fact 

nitric oxide and that the drug nitroglycerine reduces chest pain by re leasing nitric o xide 

which affects the vascular smooth muscle.3-5  The vasodiatory role of  nitric oxide led to a 

recently d iscovered drug with the comm ercial name “Viagra” (sild enafil citrate) .  The 

drug works by releasing nitric oxide in th e corpus cavernosum in response to sexual 

stimulation.  NO activ ates the en zyme guanylate cyc lase, which results in lo cally 

increased levels of cGMP, thereby producing smooth muscle relaxation. In addition to its 

signaling role in cardiovascular system , it also acts as a signal m olecule in the nervous  

system6,7, as a blood pressure regulator, and preven ts the formation of thrombi.  When it 

is produced  in large q uantity in white bl ood cells, it can becom e t oxic to invading 

bacteria and parasites.8,9  It can cau se cell apop tosis which makes it a center of interest 

for many cancer researchers.10,11    
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2.2  HOW IS NO REGULATED IN LIVING BODIES? 

 
 
In living bodies, nitric oxide  is synthesized f rom the am ino acid L -arginine by the 

enzyme nitric oxide syntase (NOS).  NO r eacts quickly with oxygen and superoxide and 

forms other oxides of nitrogen, som e of which are toxic.  However , in vivo, the lif etime 

of NO is lengthened and the concentration of the free NO is regulated through binding 

with several acceptors such as m etals (an example is the binding of NO with the heam in 

heamoglobin) and thiols.12 Figure 1 illustrates how NO is regulated in biological systems. 
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Figure 1: Schematic representation of biological NO regulation pathways.   
Many roads lead to nitrosothiols 

 
 
 

Recent studies have shown that nitrosothiols could be used therapeutically as NO-

producing drugs in place of the glycerol trin itrate, which is comm only used to treat 

cardiac disease.13  The most abundant of S-nitrosothi ols among peptides and proteins are 

S-nitrosoglutathione (GS-NO) and S-nitros oalbumin (SA-NO).  NO binds to the 

sulfhydryl cysteine.  Glutathione, because of its  small size, is a m ain intercellular carrier 

of nitric oxide and consequen tly is r egarded as a  main scavenger of NO both inside and 

outside the cell, leading to its  role as a de toxification agent.  GS-NO has been m easured 

at m icromolar concen trations in hum an bronchial fluid and been shown to be 

vasodilatory.14 However, its low sta bility and its lo w concentration in plasm a prohibit it 

from being the main carrier of nitric oxide in  the body.  The protein species regarded as a 
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main carrie r of  nitric oxide in most m ammals is the p lasma protein called se rum 

albumin.15  

 
 
 
 

2.3  RELEVANCE OF PHOTODYNAMICS OF S-NITROSOTHIOL OF 

PEPTIDES AND PROTEINS 

 
  

The S-NO bond breaks when the system  is photoexcited from S 0  S1 or S0 S2, which 

means that NO. (or NO+ if the bond cleaves heteroly tically) will be released. 16  Since the 

concentration of free NO is critical for any living body, identifying the fate of the 

photoreleased NO becom es a very interestin g subject for research.  Even though the 

photolytic pathway cannot occur deep with in m ammalian bodies, our prelim inary 

calculation has shown that the rate of NO p hotocleavage in sk in capillaries d ue to  

sunlight (mM/hr) can exceed the rate due to th ermal pathways 17.  Moreover, there has  

been a suggestion that photoinduced processe s in NO metabolism influence the circadian 

rhythm18.  So far there have been no m echanistic studies of photoinduced NO-cleavage 

from the m ain carrier, SA-NO and no de tailed m easurements on nitrosopeptides, 

therefore this work will be the first study that tr ies to answer one f undamental question: 

“What are the paths and products of photoi nduced NO loss from  SA-NO and GS-NO, 

and what are their biochemical implications?” 
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3.0 BACKGROUND AND THEORY 

 
 
 
 

3.1 WHY DO THIOLS HOST NO? 

 
 

Thiols are com pounds that contain the S-H functional group.  The cloud of electrons 

surrounding the nucleus of the sulfer atom  is highly polarizable, m aking the sulfhydryl 

group a good nucleophile for reactions with el ectrophilic com pounds such as NO.  S-

Nitrosothiols (RSNOs), som etimes called thionitrites, are the sulfur analogs of the alkyl 

nitrites RONO.  They have com e to prom inence in NO biochem istry because they are 

believed to decom pose nonenzym atically in vivo to yield NO.  Nevertheless, how S-

nitrosothiols are initially for med in vivo is still heavily debated.  NO itself is a very 

unlikely direct nitrosati ng agent.  Several groups 19,20 have studied the kinetics of 

nitrosation of thiols with  oxygenated NO solution and have concluded that the most  

likely nitrosating agent is N 2O3.  Goldstein and co-workers 19, for example, argue that S-

Nitrosothiol for mation from free NO in vivo is unlikely.  Others  pathway m aybe more  

likely such as transnitrosation.21 

 S-Nitrosothiols have not r eceived extensive attention in ch emistry because many 

of them are unstable at room  temperature.  Pep tides and pro teins, however, form stable 

nitrosothiols which range in color from  green to  red/orange; generally tertiary structures 

are green and primary ones (such as cysteine containing NOs ) are red/orange.  In vitro, 

nitrosothiols are  re adily f ormed f rom thiols an d any e lectrophillic n itrosating age nt21, 

XNO, which acts as a reagent capable of delivering NO+ as outlined in Equation 1. 

 RSH  +  XNO RSNO  +  X  +  H- +
           (1) 

 The most commonly used reagent  s olution is an aqueous solution of nitrous acid 

generated from sodium nitrite and a mineral acid.  Nitrosothiol formation from thiols is a 

very rapid process and when equimolar solutio ns of thiol and nitrite are m ixed at room 
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temperature, the nitrosothiol is formed quantitatively within minutes.  After adjustment of 

the solution pH, these solutions are  sufficiently stable to allow experim ents that require 

hours.  It is equally possible to form  nitrosothiols from thiols and alkylnitrites in aqueous 

acid or alkaline solutions or in som e non- aqueous solvents such as acetone and 

chloroform.22  The reaction m echanism, which is an electrophillic attac k at the  sulf ur 

similar to the nitrosation of a mines, alcohols and som e aliphatic and arom atic systems, 

has been establish ed for the n itrous acid reactio n.23  The re action is catalyzed by  acids 

and nucleophiles such as halides.   

 
 

 

 

3.2 NO HOST BEING STUDIED 

 
 

3.2.1 Cysteine 
 
 
Cysteine is one of 20 known am ino acids cont aining a thiol functiona l group as its side 

chain.  The structure of S-nitrosocysteine (Cys-NO) is as shown in Figure 2 

 
 
 
 
 
  
 
 
 
 

Figure 2: Chemical structure of Cys-NO 

 
 
 

3.2.2 Glutathione  
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Glutathione (GSH) is a tr ipeptide g-L-glu tamyl-L-cysteinylglycine (s ee Figure 3  for  

structure of S-nitrosoglutat hione (GS-NO)).  It is th e most abundant cellular low -

molecular-mass thiol; hum an erythrocytes co ntain 2 m M GSH and hepatocytes, greater 

than 10 m M.  It is the sulfhydr yl group of cysteine that play s a very im portant role in 

carrying NO24. 

 
 

 
 
 
 
 
 

 

Figure 3: Chemical structure of GS-NO 

 
 
 

3.2.3 Serum Albumin 
 
 
Serum Album in is a predom inant protein in  m any m ammalian bodies.  It binds water, 

cations such as Ca 2+, Na +, K+, fatty acids, hormones, bilirubin and drugs.   Despite the 

fact that its detailed structure varies from species to species, all known mammalian serum 

albumins have a similar pattern of intramolecular disulfide bonds (about 17 cystines) and 

contain one free cysteine at position 34.  Th is cysteine does not participate in the 

intramolecular disulfide bonding so it is av ailable for binding a ligand and form ing 

intermolecular disulfide bonds.  This free cysteine 34 and it s dominance in blood plasma 

(60% total and about 42 g/L) cau se serum albumin to be a main carrier of nitric oxide in 

most mammalian bodies via the nitrosothiol form ation at th e cysteine 34.  In this study, 

only bovine serum  albumin and hum an serum albumin proteins are to be studied.  The 

two serum albumins are very similar.  There is only one notable difference; HSA has only 

one tryptophan while BSA has two tryptophans.  Many structural and chemical aspects of 

the two serum  albumins (HSA a nd BSA) are well characterized. 25-27  BS A contains 580 

amino acids per chain while HSA c ontains 585 am ino acids.  F igure 5  shows a 

comparison of the am ino acid seq uences of BSA and HSA.  X-ray crystal structure 
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studies have shown that the tertiary structur e of  HSA is heart-shaped o r an equilateral 

triangular molecule 80 Å on a side with average thickness of 30 Å. Cys-34 is found in the 

non-helical turn between helix 2 and helix 3 of  domain IA.  Severa l studies have shown 

that this free thiol lies in  a sterically restricted e nvironment that has a hydrophobic  

character.28  Figure 4 shows x-ray cr ystal structure of one ch ain of HSA in which the  

position of Cys-34 clearly indicated.  The figur e also shows the position of tyrosine and 

tryptophan, both of whi ch are susceptible to nitrosylation though with the sm aller rate 

constant than Cys-34.29   

 

 

Figure 4: The heart-shaped HSA 

The position of cysteine 34 is indicated by the yellow area.  The blue spots correspond to 
positions of  tyros ine an d red is f or tryptoph an.  The chain  is colo red accord ing to its  
domains.  The light red is domain I, green is domain II and the purple is domain III.  
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Figure 5:  Human Serum Albumin (HSA), left and Bovine Serum Albumin (BSA), right 

They are very sim ilar.  The a mino acids  are grouped based on their properties. The  
albumin chain is generally grouped into 3 domains.  Each dom ain contains two long 
loops and one short loop. 
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3.3 ELECTRONIC PROPERTIES OF THE SYSTEMS 

 
 

3.3.1 UV-visible spectra 

 
 
The UV spectra of S-nitrosocysteine (Cys- NO), S-nitrosoglutathione (GS-NO) and S-

nitroso bovine serum albumin (BSA-NO) as shown in Figure 6 reveal two bands centered 

at 550 nm and 335 nm, corresponding to S0 S1 and S0 S2 transitions respectively.  The 

extinction coefficient of the 335 nm band is much higher than that of 550 nm band, which 

agrees well with m y theoretical calculations (see calculation section) indicating th at the 

335 nm transition is electric dipole allowed whereas the 550 nm band is nearly forbidden.  

The extinction coefficient of BSA-NO at 335 nm  is alm ost triple those of GS-NO and 

Cys-NO.  The additional absorptivity m ight be partially due to a ni trosylated tryptophan 

chromophore, which reacts m ore slowly with nitrosating species (eith er N 2O3 or NO x) 

than Cys-34.  N-nitrotrytophan also has an  absorption band centered around 335 nm , and 

can be produced in acidic sodium nitrite solution.29   
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Figure 6: UV-Vis spectra 

BSA-NO (red), GS-NO (blue) and Cys-NO (green) 
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3.3.1 Infrared spectra 

 
 
Figure 7 shows the FTIR difference spectra of deuterated Cys-NO and GSNO.  These 

spectra are plotted as the IR spectrum of RSNO minus the IR spectrum of RSH, with 

solvent and water vapor corrections.  NO resonance frequencies and bandwidths depend 

on the peptide studied.  In Cys-NO the NO band is found at ca. 1560 cm-1, whereas it is 

found at ca. 1530 cm-1 in glutathione.  These bands are quite wide in Cys-NO  (78 cm-1) 

and in GS-NO (67 cm-1).  They are too wide to result from a single characteristic 

chromophore.  Rather, they probably result from the overlap of two or more species.  
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Figure 7: Infrared difference spectra 

They reveal the characteristic feature of S-NO at ca. 1530 cm-1. Other perturbations of the 
peptide backbone are described in the text. The Cys-NO (blue) and GS-NO (red) spectra 
are obtained as the IR spectrum of RSNO minus the IR spectrum of RSH, with solvent 
and vapor corrections. 
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The FTIR spectra show perturbations to the peptide backbone resonances in GS-

NO, in the amide I’ (~ 1650 cm-1) and II’ (~ 1450 cm-1) regions.  The amide I’ band is 

frequency up-shifted by nitrosylation. The amide II’ resonance is broadened. The 

integrated area of the amide I’ response suggests that the effect corresponds to the 

displacement of ca. 20% of the oscillator strength.  Interestingly, the change in the 

cysteine resonance is even smaller, suggesting that in GS-NO it is the non-cysteine 

carbonyls that are perturbed by nitrosylation of cysteine.  The decreased quantum yield 

for dissociation of GS-NO over Cys-NO30 is consistent with this observation, and 

suggests the larger peptide harbors the NO better. 

 Figure 8 shows the FTIR  spectrum of deuterated BSA-NO.  The assign  peaks are 

COOH (1680-1710 cm -1), Amide I'  (1650 cm -1), Amide II'  (1450 cm -1), COO -
ss (1560-

1400 cm-1), Tyr (1517 cm-1), side chain resonance (ca. 1450 cm-1). 
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Figure 8: The infrared absorption spectrum 

Sample is 755 μM deuterated BSA in D2O (pH=7.20) after solvent subtraction. 

 12



3.3.3 Circular dichroism spectra 
 
 
Circular dichroism (CD) is the difference in abs orbance between left and right circu larly 

polarized light.  For peptides or proteins, it has been used  as a tool to study protein 

conformation or peptide folding.  Most of the CD measured in peptides or protein is due 

to conformation of the backbone since the tran sitions giving rise to the C D are usually n 

 π* or π  π* of the amide.  This type of CD is typically broad, and usually appears at 

wavelengths below 300 nm.  Fortunately for the S-nitrosothiol systems being studied, we 

found an isolated CD band of Cys-NO,  GS-NO and BSA-NO center around 550 nm. 31  

This band corresponds to the S 0  S1 transitio n, which mainly invo lves the ele ctron 

cloud around S-N bond rather than that around  the backbone am ide.  Furtherm ore, for 

Cys-NO and GS-NO which do not have any CD signal due to the backbone in the region 

300-400 nm, we see another distinct but rath er weak CD ba nd at 335 nm corresponding 

to the S0  S2 transition.  BSA-NO has CD response from other amino acid side chains 

between 300-400 nm; and these signals interfere with the 335 nm band.  The shape of the 

rotatory signal in the CD sp ectrum is similar to that of the absorption band although the 

two signals are shifted by ca.10 nm of one another (Figure 9.1). 
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Figure 9: Circular dichroism spectra 

(9.1)  The uv-vis circular dichroism  spect rum of L-cysteine-NO (blue), D-cysteine-NO 
(green), glutathione-NO (red) at pH=2.5.  ( 9.2) Circular dichroism spectrum of BSA-NO 
at pH=2.5 (blue) and pH=7.0 (red). 
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Rotational s trength, which is propo rtional direc tly to the C D signal, c an orig inate 

from either μμ rr
•  or mrr

•μ  terms (Rosenfield's equation: equation 2)31 

( )00Im0 miiRi •= μ        (2) 

 When the cysteine amino acid is changed from d isomer to l isomer, the CD signal 

is constant in m agnitude but changes in sign.   This shows that the magnetooptical signal 

derives from the influence of  the nearby chiral center env ironment since neither S nor N 

itself is a chiral center.  The absence of nearby, str ongly m agnetic dipole-allowed 

transitions further suggests that the rota tional strength does not derive from  the μμ rr
•  

term but rather from  the mrr
•μ  term.  When the ch iral center is ch anged from d to l, mr  

changes its direction by 180 o giving rise to the inversion of  the signal.  The difference in 

the rotational strengths in Cys-No and GS-NO may be accounted for by the differences in 

μ  contributions. 

 The pH dependence of the CD signal has also been studied as shown in Figure 

9.2.  Only the BSA-NO shows a pH depende nt signal.  The 550 nm  band of BSA-NO 

decreases, and is finally partially inverted as the pH goes from  2 to 7.  It is not the 

magnitude of  or mv μv  that gives rise to the pH dependent  signal but rather the change in 

the angle between the magnetic and electric dipole moment vectors32 which is believed to 

be related to the CS-NO dihedral angle.  Our temperature dependence studies of Cys-NO 

show that Δε revers ibly decreases with tem perature from 10 to 80 oC.  Com bining with 

the ab initio calculations, which predicts two minima for the cis and trans confor mers, as 

discussed later, we conclude that as the temperature changes, the equilibrium between the 

two conformers change.  The cis and trans conformer have roughly the sam e CD signal 

but opposite in sign, as μr  in this case has a direction change of roughly 180o.   
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4.0 PROGRESS SO FAR 
 
 
 
 

4.1  AB INITIO CALCULATIONS TO AID OUR UNDERSTANDING OF 

ELECTRONIC PROPERTIES 

 
 

4.1.1 Model Used 
 
 
S-nitrosocysteine is chosen as a re presentative model for ab initio calculations due to its 

affordable size.   

 
 
4.1.2 Geometric optimization and potential energy surface of ground electronic state  

          of the system 

 
  
The geometry of nitrosylated cysteine was fully optimized and the si ngle point energy is 

calculated by Gaussian 94 at HF/6-31(d,p). 33  The polarizable function d and p were 

added to the Gaussian basis set in order to  better account for the sulfur atom .   The  

starting geom etry was obtained from the defa ult am ino acid cys teine tem plate in the  

Spartan program (the D -enantiomer is u sed) with th e H on sulfur being  replaced by the 

NO group.  A C-S-N= O di hedral angle of 180 o was used as an initial geom etry.  The 

detailed coo rdinates of  fully optim ized tran s-cysteine-NO are incl uded in Appendix A.  

The ground state single point energy of this fully optimized geometry which has the C-S-

N=O dihedral angle of 179.4 o, was found to be -848.0200438 hartees or –532141 

kcal/mol.  This m olecule has tota l of 39 in ternal degrees of freedom , and the C-S-N=O 

dihedral angle is of particular interest. 
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 Schinke 34 and his cow orkers studied a sim ilar system of  m ethyl thio nitrite and 

produced a potential energy surface cut along the S-N bond length degree of freedom and 

C-S-N=O dihedral angle.  The C-S-N=O dihedral angle is be lieved to b e the sign ificant 

one in controlling the confor mations of  the molecules, theref ore, the PES f or the  

cysteine-NO was calculated using the above opt imized geometry as a starting point.  The 

PES was scanned along the C-S-N=O only, k eeping all other coor dinates f rozen to 

minimize the calculatio n tim e.  Figure 10 shows this potential energ y surface which 

reveals two well-defined m inima at the dihedral angles of ca.180o and 0 o (trans and cis 

conformer), respectively.  In a ddition to this prelim inary calculation o f restric ted PES, 

Ramachandra Kondru, a graduate student in Beratan group kindly helped to calculate a 

relaxed PES along the sam e coordinate with slightly lower basis set at 6-31G*.  This 

relaxed PES (also show n in Figure 10) stil l re veals two well-def ined poten tial w ells.  

However, the energy of the cis confor mer reduces greatly, down close to the trans 

conformer energy.  In addition, the barr ier between the two wells reduces to 

approximately 8 kcal/m ol.  This is not su rprising as the relaxe d PES  is obtained by 

scanning along the coordinate of interest a nd allowing other coordi nates to relax.  In 

conclusion, the calculations support the use of cis and tr ans as two representative 

conformers. 
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Figure 10: Calculated potential Energy Surface 

Restricted PES along the CS-NO dihedral angle calculated at HF/6-31G** compared 
with the relaxed PES calculated at slightly lower level basis set HF/6-31G*.  The two 
surfaces are put at the scale so that the lowest point lies at 0 kcal/mol. Please note that 
since the relaxed surface was calculated with lower basis set, its energy is about 174 
kcal/mol above the restricted PES which was calculated with additional polarized basis 
set(6-31G**) 
 
 
 
4.1.3 CIS calculations help understand the absorption spectra 
 
 
CIS (Configuration Interaction with Singlet Ex citation Only) is an af fordable calculation 

for calculating the excited state wavefunctions.   It is a ve ry low level calcu lation as it 

ignores m any correlations by using only the in teractions between si nglet excitations.  

However, it provides basic insight into wh ich m olecular orbitals have significantly 

participated in the f irst two excita tions of  interest.  The calculations are perform ed for  

both cis and trans conform ers at 2 levels of  basis sets, 6-31G and 6-31G**.  Table 1 lists 
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the values of oscillator strengths of the two lowest transitions calculated at two d ifferent 

levels of basis sets.  The S0  S1 has lower oscillator strength leading to the weaker band 

being observed in the uv-vis ab sorption spectra.  One notable  result, at both levels of 

basis set used, is that the cis conform er has much higher oscillator strengths for both S 0 

 S1 and S0  S2 transitions. 

 
 
 
Table 1: The calculated oscillator strength 

 
CIS/6-31G CIS/6-31G** Conformers 

Oscillator 
Strength of S0 

 S1 

Oscillator 
Strength of 

S0  S2 

Oscillator 
Strength of S0 

 S1 

Oscillator 
Strength of S0 

 S1 
TRANS 0.0006 0.008 0.0005 0.0030 

CIS 0.0011 0.0226 0.0007 0.028 
 
 
 
 A detailed molecular orbital analysis coupled with the exc itation vectors from 

from the CIS calcula tions indica ted that for both cis and trans conformer, the S 0  S1 

transition mainly involves the m ovement of electron density from  the molecular orbital 

that has mostly π* character of the NO bond into a molecular orbital that has mainly S-N-

O π* character.  Thes e two MO orbitals h ave sim ilar lo cal symm etry but they  are 

perpendicular as shown in Figure 11, therefore, the S0  S1 is weak for both conformers.  

The S0  S2 transition in the tran s conformer mainly involves the m ovement of electron 

density from a m olecular orbital that ha s m ostly non-bonding character on the S atom 

into a molecular orbital that has mainly non-bonding character on S and N (there is a little 

bit of σ* character m ixing in.) as shown in Figure 12 (top).  The two MO' s are not as 

perpendicular as seen in the S 0 S1 transition so the trans ition is s tronger as conf irmed 

by experiment and calculated oscillator strength.  The S 0  S2 transition in th e cis  

conformer mainly involves the m ovement of electron density from  the m olecular orbital 

that has m ostly non-bonding ch aracter on  the S atom  into a m olecular orbital tha t has  

mainly S-N-O π* character as show n in Figure 12 (bottom ).  The S 0  S2 transition is 

stronger in the cis conform er than in the tr ans conformer.  The fact that in both S 0  S1 

 19



and S0  S2, the electron density moves into the MO that has S-N anti-bonding character 

explains why both transitions lead to the S-N bond breaking. 

CIS Conformer

0.68903

 [MO38-->MO40]

Isosurface of
MO38 of CIS
at density
value of 0.1

Isosurface of
MO40 of CIS
at density
value of 0.1

Isosurface of
MO40 of CIS
at density
value of 0.032

TRANS Conformer

Isosurface of
MO38 of
TRANS at
density value
of 0.1

Isosurface of
MO40 of
TRANS at
density value
of 0.1

0.67765

 [MO38-->MO40]

38

40

38

40

Isosurface of
MO40 of
TRANS at
density value
of 0.032

36

-0.10337

 [MO36-->MO40]

Isosurface of
MO36 of
TRANS at
density value
of 0.1

 
 

Figure 11:  Molecular orbitals involving S0 to S1 transition 

The diagram shows the m olecular orbitals  involved in S0 to S 1 transition of the cis and  
trans conform ers obtained from  the CIS calculation.  The num ber under the arrow 
indicates the coefficient of the interaction vector.  The HOMO is MO 39 and the LUMO 
is MO 40.  The orbitals are calculated and drawn by Spartan.35 
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Figure 12: Molecular orbitals involving S0 to S1 transition 

The diagram showing the molecular orbitals involved in the S0  S2 transition of the cis 
and trans confor mers obtained from the CIS calculation.  The num ber under the arrow 
indicates the coefficient of the interaction vector.  The HOMO is MO 39 and the LUMO 
is MO 40.  There are m ore orbitals involve d but only those which have the two highest 
coefficients of interaction vectors are shown. 
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 The CIS calculations als o yield the direc tion of the electric di pole moment of the 

transitions.  This information coupled with geometry of both conformers is represented in 

Table 2 which shows the angles between both 
10 SS →μr  and NOμr , and 20 SS →μr  and NOμr . 

( NOμr  refers to NO stretching dipole so this vibrational transition dipole moment is along 

the NO bond)  These angles are important in  interpreting anisotropy m easurements of 

visible pump and inf rared probe ex periments, as will b e discussed later.  W e also have 

predictions of the angles be tween the two low est trans ition dipole m oments and other 

bonds.  Some of these are IR accessible as lo cal modes, thus providing a redundant set of 

measurements f or g eometry dete rmination to  co mpare with  theory.   Co mparing 6-3 1G 

and 6-31G** levels, we find that the addition  of polarized functions (d function on 

second row elem ents) has very little effect on the S 0  S1 trans ition whereas it h as a 

significant effect on the S 0  S2 transition.  This signifies th e lack of part icipation of d 

orbitals in the S0 S1 transition and a significant participation of d orbitals in the S0  S2 

transition. 

 
 
 
Table 2:The angles between the transition electric dipole moments of the two conform ers with 
respect to the relevant bonds. (~local modes) 

 

6-31G 6-31G** 6-31G 6-31G** 6-31G 6-31G** 6-31G 6-31G**
N-C 45.32°     45.15°  61.09°     55.66°     32.7°     32.7°     61° 161.8°
C-C 110.4°     111°     16.52°     15.87°     98.76°     99.54°     71.56° 95.51°
C=O 61.4°     62.6°    39.66°     41.66°     59.95°     61.48°     106.4° 107.3°
C-O 150.2°     148.8°    83.3°     81.39°     134.2°     133.1°     49.44° 77.71°
C-C 27.95°     29.41°     93.82°     95.47°     34.65°     35.68°     119.4° 113.5°
C-S 92.4°     93.96°     71.74°     79.46°     94.02°     95.56°     151° 60.6°
S-N 87.63°     87.7°     147.6°     155.4°     87.55°     87.2°     125.4° 71.59°
N=O 88.68°     87.3°     150°     142.6°     92.43°     93.73°     168.2° 57.37°

Bond
CIS Conformer TRANS Conformer

S0-->S1 S0-->S2 S0-->S1 S0-->S2
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4.1.4 Calculation of rotational strength 

 
 
The calculation of rotational strength of the system was performed on conformers along a 

restricted potential (varying the CS-NO dihedr al angle).  The calculation program  Dalton 

was used. 36  This program  uses a special type of atom ic orbital called London Type 

Atomic Orbital to avoid gauge-origin depende nce of magnetic properties combining with 

the Random Phase Approximation.37  The results show that the rotational strength is very 

dependent on the CS-NO dihedral angle as shown in Figure 13. 
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Figure 13: Calculated rotational strength as a function of CS-NO dihedral angle. 
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4.2 PHOTOINDUCED RELEASE OF NITRIC OXIDE FROM S-

NITROSOGLUTATHIONE CHARACTERIZED BY ULTRAFAST INFRARED 

AND VISIBLE SPEPTROSCOPY 

 
 

In this study, we have performed tim e-resolved experim ents.  Photocleavage of 

nitrosothiols caused by the S 1 or S 2 excitation is prob ed in the  in frared to re veal 

population and relaxation dynamics for both the NO and the parent peptide. 

 
 
4.2.1 Experimental Method 
 
 
GSH was obtained from Sigma (St. Louis), D2O is obtained from Cambridge Isotope, and 

all other chemicals are obtained from Aldrich.  They were used without further 

purification.  GSNO solution was prepared by dissolving required amount of GSH into 

either H2O or D2O (D2O was used for IR probe measurement).  The solution was then 

acidified with HCl or DCl until the pH is ca. 3-4.  Then an equimolar amount of NaNO2 

solution was added and the mixture was stirred for 20 to 30 minutes.  The volume of the 

solution was then adjusted to obtain the desired concentration.   When a stream jet was 

used in the time-resolved measurements, the pH of the solution was adjusted to ca. 7-8 

with NaOH before the volume was adjusted. 

 The 400 nm pump/400 nm probe measurements were done at 180mM GSNO 

concentration in a 1mm pathlength flowing cell.  The 400 nm pump/IR probe 

measurements were done at 500 mM in a 100 μm pathlength CaF2 flowing cell or in a 

100 μm thick free jet. Flowing the sample prevented detrimental burning/bleaching of the 

sample and provided a fresh sample volume for each laser pulse.  It also eliminated 

problems from NO and/or O2 bubbles which formed in a closed, spinning sample cell. 

 The time-resolved data were collected using a pump-probe technique, pumping 

with 400nm which was an ultrashort light pulse generated from a solid-state Ti:sapphire 

system, combined with parametric light amplification techniques.  Probe pulses were 

either 400nm or a tunable IR probe which was generated using optical parametric 

amplifier (OPA) and different frequency generation (DFG).  A detailed description of the 
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laser and optic systems used for generation of pump and probe pulses can be found 

elsewhere.38  ΔOD is the absorbance measured by the laser probe pulse in the presence of 

the excitation pulse minus the absorbance measured by the probe pulse in the absence of 

the excitation pulse.  The time profile was controlled by the variable delay stage with 

delay the pump pulse to reach the sample at various times either before or after the probe 

pulse.  A multi-exponential functional form, ( ) ctAtA
i

ii +−=Δ ∑ )/exp( τ , was fit to the 

data.  The apparatus was as shown in Figure 14. 
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Figure 14: Schematic of pump/probe apparatus 

The apparatus is for collection of time-resolved transient spectra.  Please note that for 400 
nm pump/400 nm probe, the probe beam is directed directly into a photodiode without 
passing through the monochromator grating. 
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4.2.2 Results and Discussion 
 

 
4.2.2.1 400 nm pump/IR probe: In the 400 nm pum p/IR probe experim ent on GSNO, 

we observed bleaching of the N O stre tch in S-NO chrom ophore and gem inate 

recombination. Figure 15 shows the spectral kinetics in the NO stretch region(1528 cm-1).  

The induced transmission (bleach) s ignal is se en to recover on two time-scales, 2.6 and 

30 ps, respectively.    The data do not show a significan t time-dependent frequency shift.  

The early tim e bleach amplitude is consistent with the exc itation energy, 1 m icrojoule, 

and indicates that the earliest signal corres ponds to loss of NO.  The 2.6 ps com ponent 

appears to be caused prim arily by geminate recombination, with additional contributions 

from thermal relaxation; the longer 30 ps co mponent is dominated by thermal relaxation, 

corresponding to cooling of low frequency m odes of the nearby solvent m olecules.  The 

ground state cross section of GSNO at 1530 cm -1 decreases by 0.7%/K as tem perature 

increases. 

The gas phase NO absorbs around 1870 cm -1,39 while  the  NO radical in wate r 

absorbs around 1835 cm -1.40  Figure 16 shows the form ation of the solvated NO species  

in ca 2.7 ps. Detection of this species is novel. There is no evid ence of NO vibrational 

relaxation, consistent with gas phase photocleavage of methyl thionitrite.34  The solvation 

process for the NO radical is not pronounced in  the transient IR spectra, although there is 

detectable transient abso rbance between 1870 and 1835 c m-1  within the f irst sev eral 

picoseconds which may arise from solvation.  
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Figure 15: The absorbance change kinetics at the 1528 cm-1 

The frequency is corresponded to the center of  the NO stretch band of GSNO.  It exhibits 
a subpicosecond bleach  caused by  NO loss and a 2.6 ps recovery correspond ing to 
geminate recombination and cooling. 
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Figure 16: The time-dependent spectra in the region of 1815-1875 cm-1 

They reveal the formation of solvated  NO radical. The lines correspond to the 
photoinduced difference spectra at –6.0,  - 1.0, 0.6, 1.8, 3.5, 7.4 and 22.7 ps, respectively.  
The 1831 cm -1 band (th e inset) app ears with a 2.7 ps  time constant as illus trated in the 
transient data and corresponding fit. 
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The process of NO solvation is likely to be dominated by hydrogen bonding with 

water molecules.  The 2.7 ps is the average time required for the photocleaved NO to 

migrate to the first solvation shell and re orient for hydrogen bonding. This process is 

similar to the trapping of CO by a nearby doc king site once it is photocleaved from the 

heam in myoglobin. 41  Although free rotation of NO o ccurs on a tim e-scale of (kT/I) 1/2  

(~200 fs), prior association of NO with one water molecule cause the reorientation tim e 

to be ca 1-2 ps if single hydrogen bond dynam ics dom inate the process. 42   Future 

examination of  the solvent and par ent depende nce of  the rebinding ra te will tes t this 

simple model, which neglects details of the photocleavage environment. 

 
 

4.2.2.2 400 nm pump/400 nm probe: We have also perform ed 400nm pump/400nm  

probe studies of the kinetics of  the optically p repared electronic s tates.  These data are 

shown in Figure 17.  The data exhibit a pos itive induced absorbance that rises in circa 1 

ps and decays with ca 300 ps.  From  Figure 6, we can see that the ground state 

absorbance at 400 nm  is 170 cm -1 M-1. From the tr ansient data we c an estimate that the 

photoinduced species that is formed has a cross section of ca 500 M -1 cm-1 assuming that 

it corresponds to the ph otocleaved parent.  The literatur e value for the equilibrium  cross 

section of the GS • is ca 150 cm -1 M-1 at 400 nm .43  On this bas is we conclude that the 

absorbance we find is not caused by the thiyl radical absorbance. 

 The dominant photodynamic process is geminate recombination.  The temperature 

dependence of the S 0→S2 transition dipole strength at 4 00 nm  of  GSNO is le ss than  

0.2%/K (data not shown), and therefore the si gnal is not caused by a sample of Boltzman 

distributed but by warm ground s tate species.  W e suggest that the larger fraction of 

photocleaved m olecules subsequently recom bine in a m etastable conform ation.  As  

mentioned earlier, our preliminary calculations indicate that the S 0 → S2 transition in the 

higher energy cis conform er ha s significan tly greater dip ole strength  than the trans  

conformer.  The decay of the absorbance may then be interpreted to correspond to barrier 

crossing to the global minimum energy geometry.  Whether the cis-trans isomerization is 

the correct ground state relaxation process is the subject of ongoing studies. 
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Figure 17: 400 nm pump/400 nm probe transient spectrum of GSNO 

The tim e-dependent photoinduced absorban ce of GSNO as m easured by 400 nm 
photolysis and 400 nm  probe pulses is sh own in the transient data. The induced 
absorbance that appears in 1 ps and survives with a ca. 300 ps lifetim e is attributed to a 
metastable conformer of geminately rebound GSNO. 
  

 
 

4.2.2.3 Anisotropy measurements:  Anisotropy m easurements44 were m ade to 

determine the relative direction of  pumped and probed transition di pole moments. These 

measurements for 400nm pump and 1522-1580 cm-1 probe at 10 ps delay showed a single 

anisotropy of ca 0.26 0.04 corresponding to an ensem ble averaged angle between the 

electronic and vibrationa l transition dipoles of ca 30 o.  This angle should be roughly 

±

 29



corresponds to th e angle between 
20 SS →μr  and NOμr .  Before the pum p, the two 

conformers therm ally populated and since the trans conform er is lowe r in energy, this 

conformer is expected to dom inate the photoexcited population.  However, based on our 

previous assumption, these excited molecules will geminately recombine preferentially in 

the cis con former.  T herefore, th e best ca lculated angle to b e co mpared with this  

experimentally determ ined anisotropy is the angle between 
20 SS →μr of the trans 

conformers and NOμr  when t he two m olecules are overlay ed on top of each other.  The  

obtained angle is ca. 39 o.  Anisotropy m easurements m ade at 400 nm pum p/400 nm  

probe reveal a tim e de pendent anisotropy is circa 0.2 ± 0.04 between 0.4 and 3 ps.  

Assuming that this signal is  due to both the anisotropy of  the bleach and a new single 

absorbing species (e.g., the cis conformer), we conclude that the new species has an S0  

S2 transition moment that is at a ca 45o angle relative to the originally excited transition.   

 The sim plest angle calculated from  our theoretical work that will roughly 

represent th is anisotropy  value is th e angle between 
20 SS →μr of the trans conform er and 

20 SS →μr of the cis conformer.  This calculated angle is  1 07o. The discrepancy between the 

calculated values and the experimental values may arise from several factors. First of all, 

the whole population before th e excitation is not all in the trans conform er, unlike the 

calculation.  Furthermore, the molecules undergo rotation, therefore the calculated angle 

assumes the orientation of all o ther parts of the molecule to  be s tationary in s pace after 

excitation u ntil the rec ombination which is unrealistic.  In orde r to im prove our 

theoretically calcu lated angle, th e energy diffe rence of the two conform ers needs to be 

included so that the thermal distribution can be accounted for.   In addition, the m olecular 

rotational tim es have to be includ ed so th at the calculated a ngle may be used to 

accurately represent what happens  in the real  system.  Moreover, the  calculation sho uld 

be perform ed at higher level such as MCSC F which allows m ore configurations to 

interact.  T hese are all im provement that will be undertaken.  W hile the calculation is 

being improved, the an isotropy measurements will be expanded as well to im prove the 

experimental characterization. 
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4.3 INVESTIGATION OF POSSIBLE MIGRATION OF NO GROUP FROM 

CYSTEINE-34 TO OTHER AMINO ACID RESIDUES OF BOVINE SERUM 

ALBUMIN AFTER PHOTOCLEAVAGE OF S-NO 

 
 
In this pre liminary work, several U V-Vis and fluorescence spectra of nitrosylated BSA 

solution at pH ca. 3 and 8 were taken before and after irradiation by the YAG laser at 527 

nm which causes the S 0 S1 transition.  As a result of the excitation, the S-NO bond 

cleaves and NO. is released.  The question being raised here is “where does this NO. go?”  

Stamler has shown that 90% of the NO . radicals that cleave out make a gem inate 

recombination.15  What is about the other 10%?   If that 10% just com e off and goes into 

solution, then we would expect only a sm all local alte ration around the loop between 

helix 2 and helix 3 where Cys-34 resides due to the loss of  NO and we would expect to 

see m ainly bleach  bands of S 0 S1 and S 0 S2 centered at 550 nm  and 335 nm 

respectively in the spectral ra nge above 300 nm.  However, if  this is not the case and 

some of the cleaved NO m igrates to other amino acid residuals and nitrosylates them, 

then the BSA molecule could be altered functionally.  For example, if tyrosine residual is 

nitrosylated and becom es 3-nitrotyrosine, the most stable form of nitrosylated tyrosine, 

then it can becomes a marker for protein catabolism.   

 
 
4.3.1 Experimental Method 

 
 

BSA (98%), GSH (98%), and L-Cy steine (98%) were ob tained from Sigma (St. Lo uis).  

Other chem icals are from  Aldrich (St. Loui s).  They were used without further 

purification 

Bovine Serum Albumin solution was prepared by dissolving solid BSA into 100  

mM EDTA degassed solution to make about 1 mM BSA solution. The S-nitrosoBSA was 

synthesized following Stamler’s method.20  First the pH of the solution was adjusted to ca 

2.7. by adding HCl. An equimolar amount of 50 mM NaNO2 solution was added, and the 

mixture was stirred at room temperature for 30 minutes.  For the pH 8 solution, NaOH or  
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KOH were used to adju st the pH.  The prepar ed solutions were usually kept in dark and 

used within 2 hours.   

Irradiation was done us ing the 527  nm light from a frequency doubled Nd-YAG 

laser (Quantronix).  The beam  was passed through samples that are stirred in 1 cm  cells.  

Uv-vis spectra were collected after v arious irradiation times.  Fluorescence spectra were  

collected after 30 minutes irradiation. 

 The UV Visible spectra befo re and after irradiation were measured using a Diode 

Array Hewlett Packard Spectrophotom eter Model 8451.  The difference spectra are 

obtained by subtracting the spectrum  befo re irrad iation from  the spectrum afte r 

irradiation.  The spectrum of the dark control,  which is obtained by taking the spectra of 

the sample kept in dark for the same period as irradiation period, wa s subtracted out to 

exclude thermal decomposition products. The similar spectrum was also obtained for the 

case of BSA solution.  

 
 
4.3.2 Results and Discussion 

 
 
4.3.2.1 Is it really NO. that comes out of the protein after the photocleavage?: In 

small S-nitrosothiols species such as S- nitrosocysteine, S-NO bond photocleaves and 

yields thiyl radical and NO radical.  However, in the BSA-NO system, the pKa of thiol is 

lower than the free thiols, and it m ay be that photocleavages of the S-NO bond cleavage 

leads to the formation of thiyl anion and NO+.  Wood and his co-workers, who m easured 

millisecond transient uv-vis spectrum of the BSA-NO solution, did not observed th e NO. 

radical rele ased in to th e bulk so lution so they conclude d that eith er NO + is rele ased 

instead of the NO . radical or the released NO . reacts at another s ite in the protein before  

reaching the bulk m edium.45  NO+ can recombine with  thiy l anion or it can es cape the 

protein pocket and becom e available as nitros ating agent for other am ino acid residues.  

As we are not certain whether the photoreleased species is NO +, NO. or both, we refer to 

it hereafter as NOx.  
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4.3.2.2 What do the different UV-Vis spectra tell us?:  Figure 18 shows the  difference 

spectrum of the BSA-NO solution at pH 8 revealing a bleach band centered around 350 

nm and a sm all absorption band at ca 410 nm which has a shoulder extending to ca 500 

nm. The difference spectrum  of BSA solu tion shows no change between 200 to 250 nm  

(data not shown) indicating th at irradiation did not signif icantly affect the protein 

backbone. The difference spectrum of the BSA-NO sol ution at pH  3 shows a larger  

bleach band centered around 350 nm but there is  no apparent absorption band at 410 nm.  

The center of both bleach bands is not at 336 nm , as one would expect for the S-NO 

bleach.  This indicates that there has to be a new species that absorbs s ignificantly at 330 

nm and causes the bleach band to shift. 
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Figure 18: The difference spectra of the BSA- NO solution before and af ter irradiation at 
two difference pHs, 3 (red) and 8 (blue) 
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4.3.2.3 Which amino acid residuals are most likely to harbor the photocleaved NO?: 

We now examine the protein for site that may be attached by NOx.  Aromatic amino acids 

are most likely to be nitrosated  through electrophilic addition of NOx.  Aliphatic residues 

usually do not exhibit spectral transition in the visible wavelength region.  Candidates for 

nitrosation therefore include tyrosine, tryptophan, and phenylalanine. 

Phenylalanine has been shown by others 46 and us to be non-reactive to nitrosation 

using either NOBF4 or acidified NaNO2.  Thus, we exclude potenti al nitrosation products 

of phenylalanine even though there are two phe nylalanine residues nearby cys-34 in the  

NO binding pocket.  Therefore, we are lef t with two more aromatic residues most likely 

to be nitrosated, tyrosine and tryptophan. 

 

 

4.3.2.4 Fluorescence spectra before and after irradiation show tryptophan is an 

unlikely site as there is no observable perturbation of the residues: Tryptophan by 

itself was found to react with s odium nitrite in aqueous acidic solution to give the nitroso 

derivative in which n itrosation has occurred at the indo lic nitrogen.29  However, in BSA 

there are on ly two tryptophans at th e 134 and 214 position s.  The closest one, which is 

tryptophan 134, lies 20 Å  away; tryptophan 214 lies even further away at 35 Å.  It is 

unlikely that the photoreleased NO from  cys-34 will travel through the protein that far 

without first reacting with a closer site such  as tyrosine.  To  check whether tryp tophan 

residuals have been perturbed by the photor elease of the NO or not, the fluorescence 

spectroscopy is used.  Fluorescence spectrosc opy can be used as a tool to monitor 

tryptophan chrom ophores in m ost proteins, especially when tyrosine residues are 

excluded by exciting at wavelengths longer than 296 nm.  In this experim ent, the 

emission spectra of BSA solution at pH ca. 7.4  were obtained before and after irradiation 

as shown in Figure 19.  W e found the em ission intensity increas es after irradi ation.  In 

another experiment, when tryptophan is nitr osylated, the fluorescence intensity reduces 

greatly as shown in Figure 20.  Therefore, if  any tryptophan residue is the site being 

nitrosylated after the photoc leavage of NO from  cys-34, we  would expect to see an 

observable decrease in fluorescence intens ity after irradiation which we do not.  This  
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indicated that tryptophan is unlikely to b e nitro sated as a con sequence o f the 

photocleavage.   
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Figure 19: Fluorescence spectra of BSA-NO solution at pH 7.4 

The spectra were taken  before and  after irra diation.  Also shown are the dark co ntrol 
spectrum and the spectrum of the solution left under room light.  The error bars show the  
standard deviation based on three measurements. 
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Figure 20: Comparison of fluorescence spectra of tryptophan and  its nitrosylated form 

 35



4.3.2.5 Is tyrosine residual nitrosated? : Based on its prevalence B SA (15 tyrosine 

residuals) and its positi on inside the binding pocket near Cys-34 (see Figure 4), tyrosine 

has a h igh potential to be an accepting site of photoreleased NO x.  Possible nitrosated 

products of  tyrosine include 3- nitrotyrosine, 3-nitrosotyros ine and O-nitrosotyrosine.  

Figure 21 shows how these products can be obta ined.   F urthermore, 3-nitrosotyrosine 

can react w ith nitric oxide to give 3,4- dihydroxyphenylalanine (dopa ).  The electronic  

properties of 3-nitrotyrosine are well char acterized.  It has a band at 360 nm  (2790 M -

1cm-1) in an acidic solution and a band at 427 nm in basic solution (4100 M -1cm-1).29  We 

do not see any induced abso rption band centered at 430 nm  which leads us to the 

conclusion that 3-nitrotyros ine is  not d irectly f ormed as a consequence of the 

photoexcitation.  However, we are s till left with 3 m ore products (3 -nitrosotyrosine, O-

nitrosotyrosine, and dopa) whose electronic pr operties have not been as  well 

characterized as 3-nitrotyrosine.  The for mation of these products and their subsequent 

transformations are under further investigation. 
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Figure 21: Nitrosation pathway of tyrosine 
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4.3.3 Conclusion 

 
 
We are still investigating the species or chromophore that is responsible for the new 

absorption band at 400 nm.  
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5.0 FUTURE WORK 
 
 
 
 

5.1 BUILDING OF TRANSIENT CIRCULAR DICHROISM TO MONITOR THE 

CONFORMATIONAL CHANGE OF PROTEINS AND PEPTIDES AFTER THE 

PHOTOCLEAVAGE OF S-NO AND THE GEMINATE RECOMBINATION 

 
 

5.1.1 Goals 
 
 
♦ To use the transien t circular dichro ism to monitor the tim e course of confor mational 

change of S-NO after the photoexcitation. 

♦ To test the hypothesis that there exists a preferred direction from whi ch the NO  

geminately recombines with its pare nt peptide or protein, and that it is this pref erred 

conformation that give rise to the induced abs orption se en in th e tra nsient lin ear 

absorption spectrum of GSNO.   If t here is a preferred direction, i.e. cis, at which the 

NO recom bines, we would expect to see a transient circular dich roism signal as a  

result of this and th is signal wo uld decay as there sho uld be a confor mational 

relaxation to reach thermal equilibrium.  

 
 
5.1.2 Background 
 
 
Transient circular is a pow erful tool for monitoring th e secondary, tertiary, and 

quaternary structural relaxa tion of biological m acromolecules after a pertu rbation 

induced by a photoexcitation.  There have been a very fe w works on transient circular 

dichroism especia lly in the tim e scale shorter than nanosecond due to  its need for high 

sensitivity and stability of the system ( the transient CD signal is usu ally very small).  

Lewis and Kliger are the m ain pioneers of transient circular d ichroism taken fro m 
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nanoseconds to seconds. 47-49  Their technique is based on th e change in ellipticity of the  

probe beam after passing through the sam ple.  Xie and Simon at UC San Diego were the 

first and only group to build a system  that is capable of measuring the spectrum  in the 

picosecond time scale.50  However, their technique is based on direct measurement of the 

difference in the absorption of the left and right circularly polarized light.  The tim e 

resolution is limited mainly by the pulse width.  They have used their apparatus to study 

the protein confor mational relaxation following photodissociat ion of CO from 

carbonmonoxymyoglobin51, and photosynthetic r eaction centers fro m Rhodobacter 

sphaeroides.52 

 
 
5.1.3 Method 
 
 
Our design is m odeled after that of Xie and Simon. 47  For th e transient linear absorption 

spectroscopy, we would need only 2 probe puls es to get the difference signal  when there 

is a pum p pulse and when ther e is not.   However, to m easure the  tran sient c ircular 

dichroism, we need 4 probe pul ses to obtain the signal as (A PL-APR)-(AUL-AUR) where  

APL and A PR are the sig nals when there are pu mp pulses and the sam ple is probed with 

the left and right circularly polarized pulses, respectively, and AUL and AUR are the signal 

when there are no pum p pulse and the sample is probed with the left and right circularly 

polarized pulses respectively.   

 The experimental plan is to probe the conform ation of t he S-NO when the NO 

geminately recombines after the pho todissociation.  We have previously characterize the 

well isolated CD band centered at 550 nm  and shown that the CD signal depends on the 

conformation of the S-NO chrom ophore (whether it is cis  or trans),  therefore we will 

probe the system  in the wave length region of this band.  Th e signal will be too sm all if 

we excite S 0  S2 due to the larg e difference in extinc tion coefficients.  Hence, we will 

pump the system using the S0  S1 band. 
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5.1.4 Design of apparatus 
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Figure 22: The proposed transient CD apparatus 
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The diagram for the experim ental apparatus is shown in Figure 22.    We will 

use a co mmercially available Nd-YAG laser that is capable of producing a 

pulse at 532 nm  with ener gy higher than 1 m J and th e width less than 100 ps 

with the hig hest repetition rate poss ible.   From the laser so urce, we pass the 

beam to the beam splitter which is a mirror that have about 20%:80% reflection 

to transm ission ratio in order to sep arate the be am into the  pum p beam (the 

transmitted beam ~80% of the power of the original beam) and the probe beam 

(the ref lected beam  ~20% of  the orig inal be am) The pump beam   will be 

directed by mirrors M1 to M4 into a  variable delay stage which  will allo w the 

optical pathlength of the pum p beam  to be changed and allo w us to collect a 

signal as a function of this variable delay time.  After the delay stage, the pump 

beam is directed by a m irror M5 a nd passed through a m echanical chopper.  

The chopper exists to block every other tw o pump pulses so that we are able to 

obtain the signal when there are no pum p puls es (A UL and A UR).  After the  

chopper, the pump beam strikes mirror M6 which will direct the pump beam to 

intersect the probe beam  at the angle of about 10 degr ee at the sam ple.  Afte r 

the m irror, the pum p beam  is passed through two im portant optics, the 

depolarizer and rotating half-wave plate.   Th ese two op tics rem ove any 

unwanted pump induced linear dichroism  contributions to the detected signal 

as shown by Sim on and Xie using Jones matrix.   Af ter the two op tics, th e 

pump beam is focused into the sample to obtain the beam  diameter of ca. 50 –

100 microns (the smaller the beam, the bigger the detected signal).  The probe  

beam then will be pass ed through the pol arizer to linearly polarize the bea m.  

Then it will be passed through a piezo-el ectric modulator wh ich will create a 

sequence of  left and right circularly pol arized pulses.  A clock regulates the 

chopper an d the m odulator.  After th e m odulator, the probe beam  will b e 

passed through mirror M7 in order to direct the beam into the focusing lens L2.  

The probe beam is focused into the sam ple and when it pass out, it is directed 

by mirror M8 to a collim ating lens L3 be fore it reaches the photo diode.    The 

signal from the photo d iode will then be amplified by preamplifier before it is 
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sent to the sam ple and hold unit.  Fi nally the  signal will pass throu gh the 

analog to digital converter and data will be processed by a computer.  

 

 

5.1.5 Prediction of the signal 

 
 

In order to get an insight in to how big the signal that we  are looking for, an initial  

signal has been predicted based on several assumptions and known: 

Nitrosylated glutathione exists m ainly in two confor mations, one with the trans 

orientation of the S-NO bond and the other with the cis orientation.  

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

♦ 

− 

− 

− 

Potential E nergy calculations of the tw o confor mers coupled with the steric 

consideration yield the trans conformer to be lower in energy for the GS-NO system.   

The calcu lations of electric tran sition di pole m oment and magnetic dipole m oment 

predict the opposite sign w ith approxim ately equal m agnitude for the rotational 

strength (which is proportional to the CD signal) of these two conformations 

The temperature dependent circular dichroism predicts the energy gap between the cis 

and trans conformers to be about 3100 cal/mol 

When GS-NO is excited  either f rom S0 to S 1 or S 0 to S 2, the S-NO bond is cleaved 

and NO. is released.  Within 1 ps, approximately 95% of releases NO . recombines. In 

this model, we assume the preferred orientation for the geminate recombination is cis 

(assume all that recombine do so into the cis conformation). 

The linear cross s ection of the cis  and tran s conformations are v ery similar for 55 0 

nm band with the ratio of ca. 7:5 (see calculation section) 

Assuming the following parameters, 

Overlap pathlength: 500 micron 

Pump beam diameter: 100 micron 

Pump wavelength ~530 nm 
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Probe wavelength ~530 nm − 

− 

− 

− 

− 

− 

Cross section at pump wavelength ~12 M-1cm-1 

Cross section at probe wavelength ~12 M-1cm-1 

Δε(rotational strength) at RT ~0.1 M-1cm-1 

RT~25 degree Celsius 

Concentration of GSNO=1M 

We can calculate the signal as a function of pump energy as shown in the Figure 23. 
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Figure 23: Predicted CD signal as a function of the pump energy. 

A 100 ps pulse will be used. 
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5.2 CONTINUATION OF INVESTIGATION OF HARVEST SITES OF NO 

AFTER PHOTORELEASE IN THE SYSTEM OF SERUM ALBUMIN 

 
 
So far we have used only uv-visible sp ectroscopy and fluores cence spectroscopy to 

investigate the potential site for binding photoreleased N O.  These two techniques  

provided us som e useful inform ation.  Nevertheless, they cannot provide enough 

evidence to  m ake any concrete con clusion.  To  f urther inv estigate th is we will try  the  

followings: 

Hydrolyze sample of BSA-NO solution before  and after irradiation and use chem ical 

separation technique such as  HPLC to separate the com ponents and com pare them 

between before and after irradiation. 

♦ 

♦ Use 15N NMR spectro scopy as a tool to iden tify the site.   W e will n itrosylate th e 

protein with Na 15NO2 and obtain the 15N NMR spectra bef ore and after irradiation.  

Different environments around 15N will lead to different chemical shift.  We expect to 

see a decrease in a peak corresponding to cys- 15NO and  an incre ase in  a peak 

corresponding to the formation of new species as a result of irradiation. 
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APPENDIX A 
 

Detailed corrdinates of cysteine-NO used in various calculation 

The detailed coordinates of the cis and trans conformer used in m ost calculation is as 

follow: 

  TRANS 

Conformer 

 CIS Conformer 

Atom 

Number 

Atomic 

Number 

X Y Z X Y Z 

1 7 -0.8225 1.74079 -0.4525 -0.4938 1.7048 -0.3781 

2 6 -1.0582 0.70678 0.52733 -0.8204 0.65966 0.56146 

3 6 -2.0008 -0.3385 -0.0522 -1.9469 -0.2111 0.02018 

4 8 -1.7161 -1.4846 -0.1989 -1.9095 -1.4001 -0.0159 

5 1 -0.2366 1.4224 -1.1979 -0.0925 1.34161 -1.2192 

6 8 -3.1882 0.15069 -0.3552 -2.9984 0.48357 -0.3701 

7 1 -0.4016 2.54669 -0.0387 0.14823 2.35891 0.01942 

8 1 -1.5993 1.16294 1.35184 -1.2369 1.14172 1.44351 

9 6 0.18438 0.03123 1.12307 0.34331 -0.217 1.04382 

10 16 1.28595 -0.744 -0.0919 1.25873 -1.0572 -0.2759 

11 7 2.63477 0.35311 0.12869 2.67572 -0.0681 -0.5011 

12 1 0.78493 0.77302 1.63617 1.05588 0.39222 1.58358 

13 1 -0.1054 -0.7256 1.83859 -0.0129 -0.9953 1.70373 

14 1 -3.7185 -0.5474 -0.7166 -3.66 -0.1233 -0.6755 

15 8 3.56208 0.11118 -0.5366 2.77399 0.91066 0.13113 
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