I. LEWIS BASE-CATALYZED ALDOL REACTION IN THE TOTAL SYNTHESIS OF ERYTHRONOLIDE B

II. EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H
by

Dezhi Fu

Bachelor of Science, Lanzhou University, 2002
Master of Science, Brown University, 2006

Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH
 FACULTY OF ARTS AND SCIENCES

This dissertation was presented
by

Dezhi Fu

It was defended on
April 8,2011 and approved by

Theodore Cohen, Professor, Department of Chemistry
Craig S. Wilcox, Professor, Department of Chemistry
Billy W. Day, Professor, Department of Pharmaceutical Sciences
Dissertation Advisor: Scott G. Nelson, Professor, Department of Chemistry

Copyright © by Dezhi Fu 2011

I. LEWIS BASE-CATALYZED ALDOL REACTION IN THE TOTAL SYNTHESIS OF ERYTHRONOLIDE B
 II. EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H

Dezhi Fu, PhD

University of Pittsburgh, 2011

Lewis base (trimethylsilylquinine and trimethylsilylquinidine) catalyzed acyl halide-aldehyde cyclocondensation (AAC) reactions have been developed to prepare synthetically important bispropionate units previously by the Nelson group. A new Lewis base-catalyzed diastereoselective Mukaiyama aldol reaction has extended this bispropionate unit preparation methodology to all-syn bispropionates which widely occurred in polypropionate natural products. By using phenoxides as Lewis base catalysts, enol silanes were activated and underwent a Felkin attack on an aldehyde through an antiperiplanar transition state to generate all-syn bispropionate product in high yields and excellent diastereoselectivities.

$$
\boldsymbol{s i}=\text { silyl protecting group } \quad \mathrm{R}_{\mathrm{L}}=\bigwedge_{\mathrm{R}}^{\text {OTBS }}
$$

All-syn bispropionate prepared from the Lewis base-catalyzed diastereoselective Mukaiyama aldol reaction has been untilized in natural product synthesis of erythronolide B establishing "syn,syn,syn" stereochemical relationships from $\mathrm{C}_{2}-\mathrm{C}_{5}$.

Studies towards the total synthesis of the cytotoxic marine macrolide amphidinolide H (89) have been disclosed. By exploiting AAC methodology, several key stereochemical relationships present in major fragments 198 and 199 were established. A highly enantioselective synthesis of methyl ketone 200 was realized from commercially available (S)-(-)-glycidol. Iodide 198 was coupled with boronic ester 199 via an efficient Suzuki reaction to form a $\mathrm{C}_{7}-\mathrm{C}_{20}$ fragment.

TABLE OF CONTENTS

1.0 LEWIS BASE-CATALYZED DIASTEREOSELECTIVE MUKAIYAMA
ALDOL REACTION FOR ALL-SYN BISPROPIONATE UNITS 1
1.1 INTRODUCTION 1
1.1.1 Aldol Reaction 1
1.1.2 Synthesis of Polyketide and Polypropionate Units 3
1.1.3 Lewis Base-Catalyzed Mukaiyama Aldol Reaction 8
1.2 LEWIS BASE-CATALYZED DIASTEREOSELECTIVE MUKAIYAMA
ALDOL REACTION FOR ALL-SYN BISPROPIONATE UNITS 13
1.2.1 Bispropionate Units in the Total Synthesis of Erythronolide B 13
1.2.2 Design of Enol Silane for Mukaiyama Aldol Reaction 15
1.2.3 \quad BF $_{3}$-Mediated Mukaiyama Aldol Reaction 17
1.2.4 Lewis Base-Catalyzed Mukaiyama Aldol Reaction 20
1.3 CONCLUSION 36
1.4 EXPERIMENTALS 38
EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H 54
2.1 INTRODUCTION 54
2.1.1 The Amphidinolides 54
2.1.1.1 Isolation 54
2.1.1.2 Structural Features and Biological Activity 55
2.1.2 Previous Approaches to the Total Synthesis of Amphidinolide H1 57
2.1.3 Application of AAC Reaction Technology in the Total Synthesis of
Amphidinolide H1 66
2.2 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H 69
2.2.1 The Retrosynthesis of Amphidinolide H1 69
2.2.2 The First Generation of Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment 70
2.2.2.1 Model Study for preparing Fragment $\mathbf{C}_{14}-\mathbf{C}_{26}$. 70
2.2.2.2 Synthesis of the $\mathbf{C}_{14}-\mathbf{C}_{21}$ Fragment 148 72
2.2.2.3 Synthesis of the $\mathbf{C}_{22}-\mathrm{C}_{26}$ Model Fragment 74
2.2.2.4 Model Study of Aldol Coupling of $\mathrm{C}_{14}-\mathrm{C}_{21}$ Fragment With $\mathrm{C}_{22}-\mathrm{C}_{26} 76$
2.2.3 The Second Generation of Synthesis of the $C_{14}-C_{26}$ Fragment 77
2.2.3.1 The Retrosynthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment 77
2.2.3.2 The Synthesis of Fragment 168 78
2.2.3.3 The Synthesis of Fragment 169 80
2.2.3.4 Dithiane Addition Trials 85
2.2.4 Revised Synthesis of Amphidinolide H1 87
2.2.4.1 The Revised Retrosynthesis of Amphidinolide H1 87
2.2.4.2 Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ Fragment $199{ }^{100}$ 88
2.2.4.3 Synthesis of the $\mathbf{C}_{14}-\mathbf{C}_{18}$ Fragment 211 90
2.2.4.4 Synthesis of the $\mathbf{C}_{19}-\mathbf{C}_{26}$ Fragment 200 92
2.2.4.5 Fragments Coupling. 93
2.3 CONCLUSIONS 95

2.4 EXPERIMENTALS

APPENDIX.. 112
BIBLIOGRAPHY ... 161

LIST OF TABLES

Table 1. Initial trial of Lewis base for Mukaiyama aldol reaction 22
Table 2. Screen of counter ions of theLewis base for Mukaiyama aldol reaction 23
Table 3. Lithium phenoxide-catalyzed Mukaiyama aldol reaction 25
Table 4. Screen of substituents on phenoxide 27
Table 5. Solvents screened for tetrabutylammonium phenoxide-catalyzed Mukaiyama aldol
reaction. 29
Table 6. Temperature screen of tetrabutylammonium phenoxide-catalyzed Mukaiyama aldol
reaction 30
Table 7. Comparison of Lewis base-catalyzed Mukaiyama aldol reaction and Lewis acid-
mediated Mukaiyama aldol reaction for all-syn bispropionate synthesis 32
Table 8. Comparison of enol silanes for electronic properties 34
Table 9. Enol silane comparisons 35
Table 10. Scope of enol silanes. 36
Table 11. Crystal data and structure refinement for $\mathbf{8 4}$ 113
Table 12. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \mathrm{x}$
103) for 81 114
Table 13. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{8 4}$ 115
Table 14. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 84 119

Table 15. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 84.. 120

Table 16. Crystal data and structure refinement for 68 .. 121
Table 17. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{X}\right.$

Table 18. lengths [\AA] and angles [$\left.{ }^{\circ}\right]$ for 68 .. 124

Table 20. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for
\qquad
Table 21. Crystal data and structure refinement for 81 .. 130
Table 22. Atomic coordinates $\left(\mathrm{x} 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 81 132

Table 23. Bond lengths [\AA] and angles [${ }^{\circ}$] for 81... 133

Table 25. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for
\qquad
Table 26. Crystal data and structure refinement for 78 .. 139
Table 27. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{X}\right.$
\qquad
Table 28. Bond lengths [\AA] and angles [${ }^{\circ}$] for 78... 143
Table 29. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 78.. 150

Table 30. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 78. 152

Table 31. Crystal data and structure refinement for 188 .. 154
Table 32. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \mathrm{x}\right.$ 10^{3}) for 188 156

Table 33. Bond lengths [$\AA \AA$] and angles [$]$ for 188.. 157
Table 34. Aisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 188... 159
Table 35. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 188. 160

LIST OF FIGURES

Figure 1. Zimmerman-Traxler model 2
Figure 2. Open transition state model for Lewis acid mediated Mukaiyama aldol reaction 3
Figure 3. Examples of Lewis base-catalyzed Mukaiyama aldol reactions 9
Figure 4. Proposed catalytic cycle of AcOLi-catalyzed aldol reaction in DMF 10
Figure 5. Erythronolide A and B. 13
Figure 6. X-ray crystal structure $\mathbf{6 8}$ generated with ORTEP 3 v2 and visualized with POV-Ray®
software 19
Figure 7. X-ray crystal structure of $\mathbf{8 1}$. 26
Figure 8. The proposed transition state for 79 26
Figure 9. X-ray crystal structure of 78. 31
Figure 10. X-ray crystal structure of $\mathbf{8 4}$ 33
Figure 11. Amphidinolide H and G family 55
Figure 12. X-ray Crystal structure of amphidinolide H1 56
Figure 13. Chakraborty's approach to the synthesis of fragments of amphidinolide H1 58
Figure 14. Kalesse's approach to the synthesis of fragments of amphidinolide H2 59
Figure 15. Murga's approach to amphidinolide H1 fragments 60
Figure 16. Crews's approach to amphidinolide H1 fragments 61
Figure 17. Zhao's approach to amphidinolide H1 fragments. 62
Figure 18. Fürstner's total synthesis of amphidinolide H1 64
Figure 19. Our approach to the synthesis of amphidinolide B1 65
Figure 20. Accessible structural motifs from enantioenriched β-lactones 68
Figure 21. Retrosynthetic analysis of amphidinolide H1 70
Figure 22. Copper-catalyzed asymmetric O-H bond insertion reaction 72
Figure 23. Retrosynthesis of top fragment 166 78
Figure 24. Retrosynthesis of right fragment 169 81
Figure 25. Synthesis of 187 and structure verification 83
Figure 26. Dithiane addition strategy in amphidinolide B synthesis 86
Figure 27. Dithiane coupling for making $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 87
Figure 28. Revised retrosynthesis of amphidinolide H1 88

LIST OF SCHEMES

Scheme 1. Iterative AAC application to polypropionate units 5
Scheme 2. Evans strategy of preparing all-syn bispropionate units 6
Scheme 3. Crimmins auxiliary controlled all-syn bispropionates 6
Scheme 4. Lewis acid-mediated Mukaiyama aldol reaction to prepare an all-syn bispropionate 7
Scheme 5. BF_{3}-mediated Mukaiyama aldol reaction to prepare an all-syn bispropionate 7
Scheme 6. TBAF-catalyzed Mukaiyama aldol reaction 8
Scheme 7. Mukaiyama aldol reaction example 11
Scheme 8. Retrosynthesis of erythronolide B 14
Scheme 9. Reduction of acyl pyrrole by catalytic hydrogenation 16
Scheme 10. Design of a new enol silane for Mukaiyama aldol reaction 17
Scheme 11. BF_{3}-mediated Mukaiyama aldol reaction. 18
Scheme 12. BF_{3}-mediated Mukaiyama aldol reaction trial 20
Scheme 13. The control experiment for Lewis base screen 22
Scheme 14. Two versions of β-lacton formation reactions 67
Scheme 15. Plan to set up upper fragment 71
Scheme 16. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ subunit 70 74
Scheme 17. Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ model fragment 76
Scheme 18. Aldol coupling for making $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment 77
Scheme 19. Synthesis of fragment 79 80
Scheme 20. Synthesis of 186 82
Scheme 21. Completion of fragment 169 85
Scheme 22. Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ fragment 199 90
Scheme 23. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ fragment 211 91
Scheme 24. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ fragment 198 92
Scheme 25. An alternative synthesis of intermediate 214 92
Scheme 26. Synthesis of the $\mathrm{C}_{19}-\mathrm{C}_{26}$ fragment 200 93
Scheme 27. Fragments coupling. 94

LIST OF ABBREVIATIONS

AAC	Acyl halide-aldehyde cyclocondensation
APCI	Atmospheric-pressure chemical ionization
aq.	aqueous
Bn	Benzyl
CSO	Camphorsulfonyl oxaziridine
DIBAL	Diisopropylaluminum hydride
DMAP	4-Dimethylaminopyridine
DMF	Dimethyl sulfoxide
DMSO	2,3-Dichloro-5,6-Dicyanobenzoquinone
DDQ	Diastereomeric excess
De	1,1'-Bis(diphenylphosphino)ferrocene
Dppf	Diastereomer ratio
Dr	Enantiomeric excess
Ee	Electron Ionization
EI	Equivalent
Equiv.	Ethyl acetate
ESI	NAAc

GC	Gas chromatography
HPLC	High pressure liquid chromatography
HRMS	High resolution mass spectrum
LDA	Lithium diisopropylamide
MOM	Methoxymethyl
MsCl	Methanesulfonyl chloride
KHMDS	Potassium bis(trimethylsilyl)amide
PMB	p-Methoxybenzyl
RCM	Ring-closing metathesis
TBAF	Tetrabutylammonium fluoride
TBS	tert-Butyldimethylsilyl
TBSCl	tert-Butyldimethylsilyl chloride
TEA	Triethylamine
TES	Triethylsilyl
TESCl	Triethylsilyl chloride
Tf	Trifluoromethanesulfonyl
TFA	Trifluoroacetic acid
$\mathrm{Tf}_{2} \mathrm{O}$	Trifluoromethanesulfonic anhydride
THF	Tetrahydrofuran
TIPS	Triisopropylsily
TLC	Thin-layer chromatography
TMS	Trimethylsilyl
TMSCl	Chlorotrimethylsilane

TMSQd Trimethylsilylquinidine
TMSQn Trimethylsilylquinine
Ts Tosyl

ACKNOWLEDGEMENT

I would like to thank my advisor, Professor Scott G. Nelson, for providing me with the opportunity to work on the challenging and rewarding projects. It has been Dr. Nelson's scientific insight that has guided my research projects enabled my success. I truly appreciate the time and effort that you have devoted to helping me to become a better chemist.

I would like to thank Professors Theodore Cohen, Craig S. Wilcox and Billy W. Day for the guidance they gave me as my committee members, and thank Professor Cohen again for serving as my proposal mentor.

To the past and present members of the Nelson group, I wish to thank all of you for your friendship and for your help during my time at Pittsburgh. I would especially like to thank Binita Chandra whose work has directly enabled the successful completion of erythronolide B.

I would like to thank my wife, Na Ji , for her constant support over the past years. I am eternally indebted to her for taking full resposiblity of family and business. Finally I would like to thank my parents for their encouragement and support during the past few years and throughout whole life

1.0 LEWIS BASE-CATALYZED DIASTEREOSELECTIVE MUKAIYAMA ALDOL REACTION FOR ALL-SYN BISPROPIONATE UNITS

1.1 INTRODUCTION

1.1.1 Aldol Reaction

The aldol reaction is one of the most important reactions for stereoselectively constructing carbon-carbon bonds. ${ }^{1}$ This reaction typically involves the addition of an enolate (1, nucleophile) to an aldehyde or ketone (2, electrophile) (eq 1$)^{2}$ to afford β-hydroxy carbonyl compound 3. The β-hydroxy carbonyl motif is a widely occurring subunit in polypropionates, polyketides natural products and various pharmaceutical agents. ${ }^{3}$. Since the resulting β-hydroxy carbonyl compound 3 has newly formed stereocenters, the control of the stereochemical outcome of this reaction becomes very important and challenging. Highly enantio- and diastereoselctive aldol reactions continue to be an active area of research. ${ }^{4,5}$

In order to achieve a highly enantio- and diastereoselective aldol reaction, many transition state models have been proposed to predict and explain the overall stereoselectivities of the aldol product. In 1957, Zimmerman and Traxler proposed that some aldol reactions proceed through a six-membered closed transition state, in a chair conformation. ${ }^{6}$ This became known as the Zimmerman-Traxler model. This model demonstrated that E-enolates gave rise to anti products; whereas Z-enolates gave rise to syn products (Figure 1). Other than closed transition state models, open transition state models have also been proposed to explain the stereochemistry in Lewis acid-mediated Mukaiyama aldol reactions (Figure 2) ${ }^{5}$. Transition states B, C, and \mathbf{F} are not favored due to steric and dipolar interactions, but transition states \mathbf{A}, \mathbf{D} and \mathbf{E} are close in energy. When substituent R_{3} is small and R_{2} is bulky, the transition state \mathbf{D} is favored giving the syn-diastereomer as the major product. In some cases, the stereochemical outcome of the aldol reaction is unpredictable. Fortunately, the Zimmerman-Traxler model and open transition state models are effective and widely used to explain and predict the stereochemistry of aldol products.

Figure 1. Zimmerman-Traxler model

A

B

C

F

Figure 2. Open transition state model for Lewis acid mediated Mukaiyama aldol reaction

1.1.2 Synthesis of Polyketide and Polypropionate Units

The aldol reaction has frequently been used to construct polyketides and polypropionates. ${ }^{3}$ To address these types of natural products, synthetic chemists have been challenged to develop methods to iteratively assemble repeating acetate or propionated units stereospecifically. ${ }^{7-9}$ Frequently, auxiliary-controlled aldol reactions have proven to be a reliable method to install repeating polypropionate units. ${ }^{10-12}$ Auxiliaries are not atom economical, however, and can add many extra steps along with expensive chiral reagents. Catalytic aldol reactions have always been the goal of many scientists, including our group. Though many catalytic asymmetric aldol reactions have been successfully developed to form a single propionate unit, ${ }^{4}$ few examples have been used to set repeating networks of acetates or propionates.

The acyl halide-aldehyde cyclocondensation (AAC) reaction recently developed in the Nelson group has consistently demonstrated the reliable construction of bispropionate units (Scheme 1). ${ }^{13}$ Thus far, syn, anti, syn-bispropionate precursor 8 and syn, anti, anti-bispropionate precursor 9 have been prepared by AAC chemistry starting from syn-aldehyde 5 . The synaldehyde 5 can be prepared from simple aldehyde 4 by $1^{\text {st }}$ generation AAC chemistry. ${ }^{14}$ Unfortunately, aldol precursors 6 and 7 cannot be made by AAC chemistry, due to the chirality mismatch between catalyst and substrates. There is, however, a need for these all-syn bispropionate units. One such natural product containing this pattern of repeating units is erythronolide B .

Scheme 1. Iterative AAC application to polypropionate units

$P=$ Protecting group

Although all-syn polypropionate units are not currently available via AAC chemistry, two ways to prepare all-syn aldol products are commonly used. First is the auxiliary-controlled aldol reaction, the second is a Lewis acid-mediated Mukaiyama aldol reaction. In 1990, the Evans group developed a two-step protocol to make all-syn bispropionates (Scheme 2). ${ }^{11}$ The titanium (IV) Z-enolate of the β-keto imide $\mathbf{1 0}$ undergoes a diastereoselective aldol reaction to afford the hydroxy β-keto imide 11. Compound $\mathbf{1 1}$ is then stereoselectively reduced with $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ to provide the syn-diol carboximides 12, thus establishing the all-syn bispropionate synthon.

Scheme 2. Evans strategy of preparing all-syn bispropionate units

10

11

12

Another single step protocol has been developed in Crimmins group (Scheme 3, eq 2). ${ }^{10}$ With titanium tetrachloride and 2.5 equiv. of $(-)$-sparteine as the base, N-methyl-2-pyrrolidinone 13 reacts with aldehyde $\mathbf{1 4}$ to provide all-syn bispropionate 15 with 97:3 diastereoselectivity.

Scheme 3. Crimmins auxiliary controlled all-syn bispropionates

The Evans group also used a Lewis acid-mediated Mukaiyama aldol reaction to prepare an all-syn bispropionate (Scheme 4). ${ }^{15}$ This method displayed excellent Felkin control through an open transition state. When the chiral enol silane 17 was sterically matched with the chiral aldehyde 16, excellent diastereoselectivity was observed (98:2).

Scheme 4. Lewis acid-mediated Mukaiyama aldol reaction to prepare an all-syn bispropionate

18

The achiral enol silane in eq 4 (Scheme 5) provided, however, only moderate selectivity. ${ }^{15,16}$ Generally, the methods mentioned above provide some solutions concerning the construction of all-syn bispropionate units. Unfortunately, most of those reactions employed stoichiometric chiral auxiliary coupled with harsh Lewis acids. Also, the auxiliary-controlled aldol reaction involved multiple steps to install, recycle and remove the chiral auxiliary. Poor diastereoselectivities have been obtained for achiral enolates. Thus, our goal is to find a mild and catalytic method to perform these reactions without using any harsh stoichiometric Lewis acids or a lengthly, stepwise process. A solution to this problem would be to employ a Lewis base-catalyzed Mukaiyama aldol reaction to synthesize the all-syn bispropionates catalytically and stereospecifically.

Scheme 5. BF_{3}-mediated Mukaiyama aldol reaction to prepare an all-syn bispropionate

syn : anti 91:9
Felkin:anti-Felkin 87:13
syn and anti relationship refers to the relative stereochemistry along the red bond. Felkin and anti-Felkin relationship refers to the relative stereochemistry along the blue bond.

1.1.3 Lewis Base-Catalyzed Mukaiyama Aldol Reaction

The Lewis base-catalyzed Mukaiyama aldol reaction is an underappreciated topic compared to the Lewis acid-mediated Mukaiyama aldol reaction. ${ }^{1}$ One of the earliest examples was a tetrabutylammonium fluoride (TBAF) catalyzed Mukaiyama aldol reaction demonstrated in the Noyori group in 1977 (Scheme 6, eq 5). ${ }^{17}$ With a catalytic amount (5-10 $\mathrm{mol} \%$) of TBAF, the enol trimethylsilyl ether 23 reacted with an equivalent of benzaldehyde 24 in THF smoothly at low temperatures, providing the aldol silyl ether 25 in an 80% yield.

Scheme 6. TBAF-catalyzed Mukaiyama aldol reaction

New methods of silyl activation with Lewis base catalyst by formation of hypervalent silicon intermediates were also extensively studied in the Demark ${ }^{6}$, Hasimori ${ }^{18}$ and Mukaiyama ${ }^{19}$ labs. Many Lewis bases have been used to activate various sily enol ethers, such as $\mathrm{CaCl}_{2},{ }^{18}$ carbenes, ${ }^{20}$ lithium acetate, and lithium phenoxide (Figure 3). ${ }^{21,22}$

Based on these examples, Lewis base-catalyzed Mukaiyama aldol reactions have only been used to provide racemic aldol products. There is much room to improve on the afformentioned chemistry and provide specific products, namely all-syn bispropionate type compounds.

26

29

32

24

24

30

30

30
$30^{\circ} \mathrm{C}, 24 \mathrm{~h}$
(90\%)

 (50-100\%)
 (54-96\%)

28

31

33

34

Lewis base $=A c O L i$, PhCOOLi, PhOLi

Figure 3. Examples of Lewis base-catalyzed Mukaiyama aldol reactions

In order to understand the mechanism of Lewis base-catalyzed Mukaiyama aldol reaction, a catalytic cycle has been proposed involving a hypervalent silicate intermediate..21,23 The open transition state model has been used to explain the stereochemistry of Lewis base-catalyzed Mukaiyama aldol reactions. This transition state model will be the foundation of the design of our experiments.

As shown in Figure 4, a polar solvent and base catalyst coordinates to silicon and forms the hexacoordintated hypervalent silicate 37. This high energy intermediate 37 nucleophilically attacks the aldehyde to form lithium aldolate 39, which reacts with trimethyl

Figure 4. Proposed catalytic cycle of AcOLi-catalyzed aldol reaction in DMF
silyl acetate $\mathbf{3 8}$ to give O-silyl 40 and regenerate lithium acetate. The open transition state $\mathbf{4 1}$ is also proposed to explain the syn steric outcome. To avoid unfavorable interaction between
phenyl and methyl groups, they chose to be oriented in an anti position to one another. For the same reason, the phenyl group is proposed to be away from bulkyl hypervalent silyl group. ${ }^{21}$ The Z-enolate will be a good enolate to satisfy this steric demand. Based on the catalytic cycle and the transition state of the Lewis base-catalyzed Mukaiyama aldol reaction, the syn-aldol is formed preferentially from the Z-enolate.

The reactivity of the enol silane also plays an important role in any Mukaiyama aldol reaction. The Lewis base can only activate the enol silane component, however, the Lewis acidmediated aldol reaction can activate the aldehyde part. Electron rich enol silanes typically exhibit high reactivities. With the amide derived enol silane 42, the aldol reaction proceeds automatically without any catalyst (eq 6). ${ }^{24}$ It has also been established that non-catalyzed aldol reactions using silyl ketene acetals proceed at the high temperatures, ${ }^{25}$ and in $\mathrm{H}_{2} \mathrm{O},{ }^{26}$ DMSO, DMF and DME. ${ }^{27}$ Based on the research stated above, solvent polarity, electron dense enol silanes and high temperature have a dramatic impact in reactivity.

Scheme 7. Mukaiyama aldol reaction example

The catalytic asymmetric approach to all possible polypropionates is always desired in the organic synthesis. Based on the previous research of AAC chemistry in our group, we have obtained a reliable strategy to iteratively prepare many stereochemistry patterns of
bispropionated units (Scheme 1). ${ }^{13}$ As a complement to AAC chemistry, we are trying to develop a new method to set up the all-syn bispropionate unit in a catalytic and diastereoselective fashion. As a solution, we examined Lewis base-catalyzed Mukaiyama aldol reactions and tried to find suitable conditions to prepare all-syn bispropionate units and furnished an all-syn moieties in the total synthesis of erythronolide B.

1.2 LEWIS BASE-CATALYZED DIASTEREOSELECTIVE MUKAIYAMA ALDOL REACTION FOR ALL-SYN BISPROPIONATE UNITS

1.2.1 Bispropionate Units in the Total Synthesis of Erythronolide B

The erythromycins A and B, isolated from Saccharopolyspera erythraea, are 14membered macrolide antibiotics and owe their potent antibiotic activity to the efficient inhibition of ribosomal-dependent protein biosynthesis. ${ }^{28}$ Their therapeutic value and densely functionalized architecture have made these macrolides an attractive target for synthesis. Over the last few decades, many total syntheses have been reported for the erythromycins themselves as well as a number of their aglycon derivatives including erythronolide $A(44)^{29,30}$ and $B(45){ }^{31-}$ ${ }^{33}$ (Figure 5). To date three total syntheses of erythronolide B have been reported, the first of which was completed by Corey in $1978,{ }^{31}$ later Kochetkov (1987) ${ }^{32}$ and finally Mulzer (1991). ${ }^{33}$

Erythronolide A (44)

Erythronolide B (45)

Figure 5. Erythronolide A and B

Scheme 8. Retrosynthesis of erythronolide B

As shown in Scheme 8, erythronolide B contains two key bispropionate units. One is syn, anti, syn configuration and the other is the syn, syn, syn configuration. Based on the AAC chemistry developed in our group (Scheme 8), a bispropionate unit can be synthesized by two consecutive AAC reactions. Based on previous research in our group, the syn, syn, syn bispropionate 50 cannot be synthesized by AAC chemistry due to the stereochemistry mismatch between chiral substrates and chiral ligands. In order to perform a highly stereoselective and catalytic synthesis of erythronolide B, we were driven to develop a new method to effectively generate the syn, syn, syn bispropionate unit 27. The Mukaiyama aldol reaction has been established as an efficient way to provide syn aldol products, however we employed the Lewis base-catalyzed and Lewis acid-mediated Mukaiyama aldol reaction to
efficiently and diastereoselectively provide syn, syn, syn bispropionate units of the type exemplified by 27.

1.2.2 Design of Enol Silane for Mukaiyama Aldol Reaction

In order to design an enol silane for a diastereoselective Mukaiyama aldol reaction, several requirements needed to be satisfied. First, a highly reactive enol silane was needed. Second, the E, Z selectivity of the enol silane should be easily controlled. Third, the product needed to be easily converted to the aldehyde for subsequent rounds of aldol reactions. Enol silanes could be generated from a variety of carbonyl groups, such as ketones, aldehydes, esters, thioesters and amides. Enol silanes derived from these carbonyl compounds have very different electronic properties. Among these enosilanes, amide derived enol silanes should have the highest nucleophilicity, because the amide nitrogen is a good electron donating group. Acyl pyrrole was a good candidate to enhance the nucleophilicity of enol silanes, because the lone pair on the pyrrole nitrogen increases the electron density of enol silane. Furthermore, our goal was to find an enol silane which was not only very reactive but also demonstrated a good Z selectivity. The Z enol silane is preferred due to its tendency to provide syn aldol products. ${ }^{15}$ In order to get only the Z isomer, we used propionyl pyrrole 52 to generate enol silane 53 (eq 7). Due to $\mathrm{A}^{1,3}$ interactions, the E isomer experiences repulsion between the methyl and pyrrole group. The Z isomer was the only isomer obtained from the reaction of 52 with LDA and TMSCl (eq 7). Considering the aromaticity of acyl pyrrole 52, acyl pyrrole might show a similar reactivity with aryl ketone to give hydroxyl functionality (Scheme 9). Based on this assumption, the acyl pyrrole derived all-syn bispropionate 56 can be reduced by catalytic hydrogenation to aldehyde 62 which can be used for further aldol reactions. Thus, the acyl pyrrole derived enol
silane 53 could satisfy all three requirements for our Lewis base-catalyzed Mukaiyama aldol reaction.

Scheme 9. Reduction of acyl pyrrole by catalytic hydrogenation

$\boldsymbol{S i}=\mathrm{TBS}, \mathrm{TBDPS}$, etc.

Based on the recent research in the Mukaiyama group, a Lewis base catalyst could attack a silyl group to form a hypervalent silane $54(\text { Scheme } 10)^{21}$. The activated enol silane 54 bearing higher electron density would undergo a Felkin attack to an aldehyde through antiperiplanar transition state 55. As shown in transition state 55, because of the bulky silyl group, the methyl group would be oriented away from the alkyl group of aldehyde and the flat pyrrole group would be oriented towards alkyl side of aldehyde, Z enol silane would match the steric requirement of the transition state. ${ }^{34}$ This is our reasoning behind using Z enol silanes to produce all-syn bispropionate units. The resulting acyl pyrrole 56 could also inhibit α -
deprotonation, due to the $\mathrm{A}^{1,3}$ interactions between pyrrole and methyl in the corresponding enolate form 57. Once compound 56 is formed in Scheme 10 , it would be stable to basic reaction conditions reducing the chance of epimerization of α-methyl group.

Scheme 10. Design of a new enol silane for Mukaiyama aldol reaction

1.2.3 $\quad \mathrm{BF}_{3}$-Mediated Mukaiyama Aldol Reaction

Our research started with the BF_{3}-mediated Mukaiyama aldol reaction, because the allsyn product 65 could be easily prepared with moderate diastereoselectivity (Scheme 11). ${ }^{34}$ The syn aldehyde 63 and 67 reacted with enol silane 53 at $-78{ }^{\circ} \mathrm{C}$ to afford a 71% yield of the all-syn product 65 with a 80:20 diastereomeric ratio (eq 8). This result demonstrated excellent Felkin selectivity, which suggested an open transition state pathway. The X-ray crystal structure of $\mathbf{6 8}$ was obtained verifying the all-syn configration (Figure 6).

Scheme 11. BF_{3}-mediated Mukaiyama aldol reaction

$$
\mathrm{R}=\sim \mathrm{Ph}
$$

68

Figure 6. X-ray crystal structure $\mathbf{6 8}$ generated with ORTEP 3 v2 and visualized with POV-Ray® software.

As a comparison, the reaction of enol silane $\mathbf{7 0}$ with the same aldehyde $\mathbf{6 3}$ was examined (Scheme 12, eq 10). Unfortunately, two diastereomers were observed in a 1:1 ratio, based on ${ }^{1} \mathrm{H}$ NMR. Acyl pyrrole derived Mukaiyama aldol 53 demonstrated better selectivity than the thioester derived enol silane 70. However, when aldehyde 72 was used, diastereoselectivity was not observed (1:1 ratio). Aldehyde 73, our target substrate for the total synthesis of
erythronolide B gave a moderate $3: 1$ diastereoselectivity (eq 12). These results have shown that selectivity with BF_{3}-mediated Mukaiyama aldol reaction was very poor and not very useful in the total synthesis of erythronolide B. Also, these results promoted the exploration to find an alternate and efficient method to improve the selectivity of this reaction.

Scheme 12. BF_{3}-mediated Mukaiyama aldol reaction trial

1.2.4 Lewis Base-Catalyzed Mukaiyama Aldol Reaction

Based on the reaction design (Scheme 10), a Lewis base-catalyzed Mukaiyama aldol reaction should demonstrate predominantly syn selectivity. However, a diastereoselective Lewis base-catalyzed Mukaiyama aldol reaction has not been explored up to this point, especially diastereoselectively constructing bispropionate units. We tried to investigate the Lewis basecatalyzed Mukaiyama aldol reaction and find if there is any all-syn stereochemistry preference to
fit our designed model (Scheme 10). Based on the recent research in the Mukaiyama group, lithium amide, lithium acetate and lithium phenoxide were good base catalysts for Mukaiyama aldol and Michael reactions. ${ }^{21}$ So our first trials targeted these Lewis bases. The initial test reactions employed enol silane 53 as the nucleophile and syn aldehyde 63 in DMF at $-45{ }^{\circ} \mathrm{C}$, which is the same condition as used in the Mukaiyama group. ${ }^{21}$ Lewis base ($10 \mathrm{~mol} \%$) was then added under a N_{2} atmosphere at $-45^{\circ} \mathrm{C}$ (eq 13, Table 1). Table 1 showed most catalysts gave a small amount of product. Different solvents and temperatures were screened to improve the yield, but no improvement was observed. It was determined via a control experiment (Scheme 13) that the base catalyst decomposed the aldehyde 63. When $10 \mathrm{~mol} \%$ of NaOPh was mixed with aldehyde 63 at $-45^{\circ} \mathrm{C}$ in DMF, aldehyde 63 disappeared in 5 min . It meant that there was a competing side reaction, enolization, between aldehyde 63 and Lewis base catalyst. This reactivity pattern was also observed by Mukaiyama that aliphatic aldehydes gave low yields with Lewis base as catalyst. ${ }^{22}$

Table 1. Initial trial of Lewis base for Mukaiyama aldol reaction

entry	Lewis base	\% yield
1	Pho ${ }^{-}{ }^{+}$	32\%
2	Pho Li^{+}	28\%
3	$\mathrm{AcCO}_{2} \mathrm{Li}^{+}$	23\%
4		trace

Scheme 13. The control experiment for Lewis base screen.

In order to address the side-reaction of eq 13, 5 equiv. of enol silane were used to accelerate the reaction between aldehyde and enol silane. Fortunately, the yield was improved dramatically to 70%, and the diastereoselectivity was improved to $5: 1$ as measured by ${ }^{1} \mathrm{H}$ NMR. However, aldehyde 72 (entry1, Table 2) just gave a poor selectivity $60: 40$. Since previous $\mathrm{BF}_{3}{ }^{-}$
mediated Mukaiyama aldol reactions also gave poor selectivity (eq 11), these results indicated that aldehyde 72 could be a difficult substrate for good selectivity. We began with aldehyde 72 to optimize our catalysts and conditions. For the systematic investigation of the Lewis basecatalyzed Mukaiyama aldol reaction, several factors needed to be addressed, such as the counter ions of the Lewis base, substitutions on the phenoxide, solvent and temperature.

Table 2. Screen of counter ions of theLewis base for Mukaiyama aldol reaction

entry

At first, a standard condition was chosen to perform the catalyst screen: one equivalent of aldehyde and 5 equiv. of enol silane were mixed in DMF at $-45^{\circ} \mathrm{C}$, followed by $20 \mathrm{~mol} \%$ of Lewis base catalyst. Lithium, sodium, potassium, lanthanum and tetrabutylammonium phenoxides were tested under these conditions. The lanthanum phenoxide gave just trace amount of aldol product (Table 2, entry 3). In Table 2, most results indicated that the all-syn product was the major product except with the lithium phenoxide-catalyzed reaction. However, tetrabutylammonium phenoxide showed some improvements in diastereoselectivity over the sodium phenoxide-catalyzed reaction (Table 2, entry 4). Attention was therefore focused on tetrabutylammonium phenoxide and changed other variables to further optimize the reaction.

Surprisingly, lithium phenoxide-catalyzed the reaction quickly and smoothly with good selectivity and excellent yield (Table 2, entry 2). However, the product was not our desired stereoisomer. After compound 79 was deprotected with HF, the stereochemistry of compound 79 was confirmed via X-ray crystallographic analysis of diol 81 (Figure 7). Unfortunately, as substitutions changed, the diastereoselectivity and yield dropped (Table 3).

Table 3. Lithium phenoxide-catalyzed Mukaiyama aldol reaction
1
 85\%, 85:8:6
72
2

62\%, 80:10:8
73
3

58\%, 70:30
82
${ }^{a}$ Monitored by gas chromotography.

81

Figure 7. X-ray crystal structure of 81.
Generated with ORTEP 3 v2 and visualized with POV-Ray® software.

Figure 8. The proposed transition state for 79

The transition state of this anti, anti, syn-product $\mathbf{8 1}$ continued to be elusive. It was not the anticipated open transition state typical for a Mukaiyama aldol reaction or the ZimmermanTraxler model, since the Felkin product was not observed. A boat transition state could explain the stereochemistry of 79 (Figure 8).

Table 4. Screen of substituents on phenoxide

The substitutions on the phenoxides in Table 4 would impact on the electronic properties of the phenoxide which would then effecte the electron properties of silyl activation. Several substituents have been screened (Table 4), but they all demonstrated similar reactivities and selectivities. One observation was that the weakest base, p-nitro phenoxide did retard the reaction rate. This result provided a potential way to modulate reactivity, potentially minimizing undesired side reactions.

A variety of polar and non-polar solvents was screened and is listed in Table 5. Since polar solvents have been shown to accelerate Mukaiyama aldol reactions ${ }^{27}$ and help solvate phenoxides, polar solvents were the first solvents tested. Methylene chloride gave a poor yield. DME demonstrated excellent syn/anti selectivity, but Felkin/anti-Felkin selectivity was only about $4: 1$. Acetonitrile gave a moderate selectivity for both syn/anti and Felkin/anti-Felkin product. Solubility problems with tetrabutylammonium p-nitro phenoxide in toluene prevented this base from interacting sufficiently with the substrate to provide any appreciable amount of product. Diglyme is structurally similar to DME and demonstrated similar selectivity. Most polar solvents didn't have low melting points, THF was chosen as a suitable solvent for further temperature investigation. It seems that acyclic and cyclic ethers helped the syn/anti selectivity. However, since THF has demonstrated potential to be a suitable solvent to get further improvement of the reaction, no further experiments to investigate the solvent effect to this reaction was performed.

Table 5. Solvents screened for tetrabutylammonium phenoxide-catalyzed Mukaiyama aldol reaction

syn and anti relationship refers to the relative stereochemistry along the red bond.
Felkin and anti-Felkin relationship refers to the relative stereochemistry along the blue bond.

Attention was next turned to screening of different temperature ranges (Table 6). The best result was obtained at $-70{ }^{\circ} \mathrm{C}$. Both yield and selectivity were improved to an acceptable
level to give $62 \%, 90: 10 \mathrm{dr}$ (entry 2, Table 6). The reaction rate was slowed down dramatically at $-90{ }^{\circ} \mathrm{C}$. In entry 3 , at $-90^{\circ} \mathrm{C}$ the crude ${ }^{1} \mathrm{H}$ NMR showed a very clean reaction after 30 min . Only product and starting materials was observed without any noticeable side product. However, low yield was obtained due to short reaction time (30 min). However, full conversion and a better yield were obtained if the reaction mixture was stirred for 6 hours (entry 4, Table 6). The absolute stereochemistry of compound $\mathbf{7 8}$ was confirmed by X-ray crystal analysis of $\mathbf{7 8}$ (Figure 9).

Table 6. Temperature screen of tetrabutylammonium phenoxide-catalyzed Mukaiyama aldol reaction

78
Figure 9. X-ray crystal structure of 78.
Generated with ORTEP 3 v2 and visualized with POV-Ray® software.

Different aldehydes were screened to determine the scope of this reaction (Table 7). Entry 1 and entry 3 demonstrated excellent diastereoselectivities and yields. Compared to the Lewis acid-mediated Mukaiyama aldol reaction (Table 7), overall selectivity was improved from moderate to excellent. The most important aldehyde 73, which was used in total synthesis of
erythronolide B in our group, demonstrated excellent selectivity (94:6). The absolute stereochemistry of aldol product 83 also was confirmed by an X-ray crystal structure of the deprotected form of $\mathbf{8 4}$ (Figure 10).

Table 7. Comparison of Lewis base-catalyzed Mukaiyama aldol reaction and Lewis acidmediated Mukaiyama aldol reaction for all-syn bispropionate synthesis

Figure 10. X-ray crystal structure of 84
Generated with ORTEP 3 v2 and visualized with POV-Ray® software.

Since tetrabutylammonium phenoxide worked well in THF, lithium phenoxide was reexamined in the same solvent. It turned out that the reaction just stalled when the catalyst was switched from tetrabutylammonium phenoxide to lithium phenoxide. It appears that the counter ion had a significant impact on the reactivity of the Lewis base in THF.

Different enol silanes were explored under the optimized condition (Table 8). At $-78{ }^{\circ} \mathrm{C}$, tetrabutylammonium phenoxide was added to the solution of enol silane and aldehyde in THF. In Table 8, p-nitro phenoxides could only catalyze the reaction involving electron rich enol silane 53. Enol silanes $\mathbf{7 0}$ and $\mathbf{8 6}$ had no conversion with this base catalyst in THF.

Table 8. Comparison of enol silanes for electronic properties

${ }^{a}$ Monitored by GC-FID.

Next, in the presence of a stronger Lewis base, tetrabutylammonium p-methoxy phenoxide, the reaction of aldehyde $\mathbf{6 3}$ with enol silane $\mathbf{7 0}$ or $\mathbf{8 6}$ was repeated. The electron rich enol silane 70 reacted smoothly in 90% conversion, whereas ketone derived enol silane $\mathbf{8 6}$ gave no conversion. These results indicated that the reactivity of Lewis base-catalyzed Mukaiyama aldol relied on the electronic properties of the enol silane along with the electronic properties of Lewis base catalyst.

Table 9. Enol silane comparisons

Enol silane 86 has shown similar reactivity with aldehyde 63 and demonstrated high diastereoselectivity. But enol silane $\mathbf{8 7}$ didn't react with aldehyde $\mathbf{6 3}$ under the standard set of conditions. The steric bulk of the isopropyl group should be considered as the reason for its lack of reactivity. Enol silane $\mathbf{8 8}$ has also shown no reaction with aldehyde $\mathbf{6 3}$. The non-reactivity of 88 probably resulted from low electron density on the enol moiety due to the α-effect. ${ }^{35}$ The starting material did not decompose during this reaction. This behavior was different from our previous results in DMF. In DMF, aldehyde 63 was consumed completely if the reaction worked or not.

Table 10. Scope of enol silanes.

1.3 CONCLUSION

Thus far, a new methodology to synthesize all-syn bispropionate units has been developed in good yield and with excellent selectivity. In this endeavor, the catalysts, solvents and temperatures have been optimized to ultimately provide the best overall catalytic system. Through changing several couterions of the Lewis base catalyst, we discovered that tetrabutylammonium phenoxide dramatically improved the selectivity of these reactions. Through changing different substitutions on the aryl component of catalyst, the very mild Lewis
base catalyst tetrabutylammonium p-nitro phenoxide reduced the chance of deprotonation of the aldehyde. Next, several solvents were screened. THF was used to further temperature screen, since other solvents have high melting points. Gratifyingly, lower temperatures improved the selectivity to $90: 10$. We also applied this condition to other aldehydes and achieved similar yields and selectivity. The absolute stereochemistry of each bispropionate product was confirmed by X-ray crystallographic analysis. Furthermore, the target building block of erythronolide B has been synthesized by this method.

Compared to the known synthetic methods used to generate all-syn bispropionate units, ours is both catalytic and diastereoselective. In addition to a catalyst screen, we also investigated the reactivity of different enosilanes. Amide derived enol silane 53 demonstrated better reactivity compared to other enol silanes. Furthermore, the stronger Lewis base showed better reactivity to catalyze this reaction with unreactive enol silanes. Steric bulkiness of the enol silane also had dramatic effect on the reactivity. Lithium phenoxide ultimately catalyzed reaction to give an anti-Felkin product in good yield and selectivity. This indicated that this reaction might also provide us with a new route to construct anti, anti, syn-bispropionate units. A boat transition state was proposed to explain this product. Unfortunately, this reaction only gave good selectivity for two substrates. In summary, we havdeveloped the only known way to generate all-syn bisproprionate aldol products which is both catalytic and diastereoselective.

1.4 EXPERIMENTALS

General Information: Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\lambda}$ (c $\mathrm{g} / 100 \mathrm{~mL}$). Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. NMR spectra were recorded on a Bruker Avance-300 $\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ spectrometer with chemical shifts reported relative to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for 1 H and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectra. Unless otherwise stated, all reactions were carried out in flame-dried glassware under a nitrogen atmosphere using standard inert atmosphere techniques for the manipulation of solvents and reagents. Analytical gas-liquid chromatography (GLC) was performed on a Varian 3900 gas chromatography equipped with a flame ionization detector and split mode capillary injection system using a Chiraldex ${ }^{\text {TM }}$ G-TA column ($20 \mathrm{~m} \times 0.25 \mathrm{~mm}$) (Advanced Separation Technologies Inc.). Helium was used as the carrier gas at the indicated pressures. Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

Unless otherwise stated, all reactions were carried out in dry glassware under a nitrogen atmosphere using standard inert atmosphere techniques for the manipulation of solvents and reagents. Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, THF, DMF, diethyl ether, pentane and toluene) were obtained by passage through successive alumina and Q5 reactant-packed columns on a solvent purification system. N, N-Diisopropylethylamine and triethylamine were distilled under nitrogen from CaH_{2}. All the commercial chemicals are purchased from Aldrich Chemical Co. Flash chromatography was performed on EM silica gel 60 (230-240 mesh) unless noted otherwise. ${ }^{36}$ If
the reaction was worked up with aqueous extraction, dr (diastereomer ratio) was determined from crude NMR or GLC. Enol silanes $\mathbf{5 3}, \mathbf{8 6}, \mathbf{8 7},{ }^{37} \mathbf{8 8},{ }^{\mathbf{3 8}}$ and $\mathbf{7 0}^{\mathbf{3 9}}$ were prepared according to the known procedures. Mass spectra were obtained on a VG-7070 or Fisons Autospec high resolution magnetic sector mass spectrometer.

63

(2R,3S)-3-Hydroxy-N-methoxy-N,2-dimethyl-5-
 $(1.06 \mathrm{~g}, 10 \mathrm{mmol})$ were dissolved in 20 mL diethyl ether and $40 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the above cooled mixture was added N, N-diisopropylethylamine ($8.8 \mathrm{~mL}, 5 \mathrm{mmol}$), followed by hydrocinnamaldehyde ($2.64 \mathrm{~mL}, 20 \mathrm{mmol}$). A solution of propionyl chloride ($3.6 \mathrm{~mL}, 40 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was then added over 2 h by syringe pump. After being stirred overnight, the reaction was quenched at the reaction temperature by
adding $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica gel column and concentrated. The resulting crude product $(2.96 \mathrm{~g})$ was used without further purification. To a solution of Weinreb's salt ($3.04 \mathrm{~g}, 31.2 \mathrm{mmol}$) in $80 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{AlCl}(32 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 32 mmol) was added dropwise and then warmed to ambient temperature. After being stirred for 2 hours, a solution of crude lactone $90(2.96 \mathrm{~g}, 15.6 \mathrm{mmol})$ in $40 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ was added $-25{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred 2 h , then quenched with aqueous Rochelle's solution and the biphasic mixture was stirred vigorously for an hour. Then the organic layer was separated and the aqueous layer was extracted with ether. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude oil was then purified with flash column with 30% ethyl acetate in hexanes, affording 3.77 g (75% over 2 steps) of the title compound as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.92-3.89(\mathrm{br}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.83$ $(\mathrm{m}, 2 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (m, 9H), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$;

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methyl-5-phenylpentanal (63): To a solution of $91(1.00 \mathrm{~g}, 3.98 \mathrm{mmol})$ in 40 mL of DMF at ambient temperature was added imidazole $(0.80 \mathrm{~g}, 11.7 \mathrm{mmol})$ followed by TBSCl $(1.20 \mathrm{~g}, 7.96 \mathrm{mmol})$. The reaction mixture was stirred overnight then was quenched by adding 100 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted by ether ($3 \times 100 \mathrm{~mL}$). The organic extracts were washed by brine, dried and concentrated. The crude product mixture was further condensed under high vacuum. The crude product was used without further purification. To a solution of crude product $92(1.33 \mathrm{~g}, 3.64 \mathrm{mmol})$ in 30 mL of THF at $-78^{\circ} \mathrm{C}$ was slowly added DIBAL ($4.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 4.0 mmol). The reaction mixture was
stirred for 3 h then was quenched by adding 50 mL aqueous Rochelle's solution. The mixture was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The organic extracts were combined and washed with Rochelle solution, brine and dried and concentrated. The crude product mixture was purified by flash chromatography (10% ethyl acetate in hexane) gave 826 mg (67% over 2 steps) of the title compound as a colorless oil. IR (thin film): 2953, 2857, 1726, 1254, $1034 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-26.8$ (c 1.24, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.15$ $(\mathrm{td}, \mathrm{J}=3.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.07, $141.60,128.48,128.22,125.99,71.80,51.27,36.41,32.15,25.77,18.03,7.89,-4.23,-4.57$; HRMS (EI) m/z calcd for $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+.} \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$: 291.1780 ; found: 291.1778.

(2R,3S)-3-(tert-Trimethylsilyloxy)-2-methyl-5-phenylpentanal (67) ${ }^{41}$: To a solution of $91(125 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 5 mL of DMF at ambient temperature was added imidazole ($67 \mathrm{~g}, 1.0 \mathrm{mmol}$) followed by TMSCl ($108 \mathrm{mg}, 1.0 \mathrm{mmol}$). The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ overnight then was quenched by adding 15 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted by ether (3 x 50 mL). The organic extracts were washed by brine, dried and concentrated. The crude product mixture was further condensed under high vacuum. The crude product was used without further purification. To a solution of crude product 92 in 10 mL of THF at $-78^{\circ} \mathrm{C}$ was slowly added DIBAL ($0.60 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 0.6 mmol). The reaction mixture was stirred for 3 h then was quenched by adding 15 mL aqueous Rochelle's solution. The mixture was extracted by $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$). The organic extracts were combined and washed with Rochelle solution, brine and dried and concentrated. The crude product mixture was purified by flash chromatography (10%
ethyl acetate in hexane) gave 105 mg (79% over 2 steps) of the title compound as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.19(\mathrm{~m}, 5 \mathrm{H}), 4.16(\mathrm{dt}, \mathrm{J}=3.9,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.80-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.15$ (s, 9H);

72

(2R,3S)-3-(tert-Butyldimethylsilyloxy)- N-methoxy- $N, 2,4-$ trimethylpentanamide (72b): TMSQn (400 mg, 1 mmol) and $\mathrm{LiClO}_{4}(2.1$ $\mathrm{g}, 20 \mathrm{mmol}$) were dissolved in 10 mL diethyl ether and $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the above cooled mixture was added N, N diisopropylethylamine ($4.4 \mathrm{~mL}, 2.5 \mathrm{mmol}$), followed by isobutyraldehyde ($720 \mathrm{mg}, 10 \mathrm{mmol}$). A solution of propionyl chloride ($1.8 \mathrm{~mL}, 20 \mathrm{mmol}$) in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added over 2 h by
syringe pump. After being stirred overnight, the reaction was quenched at the reaction temperature by adding $50 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica gel column and concentrated. The resulting crude product was used without further purification. To a solution of Weinreb's salt $(1.36 \mathrm{~g}, 14.0 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{AlCl}(14.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 14.0 mmol) was added dropwise and then warmed to ambient temperature. After being stirred for 2 h , a solution of crude lactone $93(0.90 \mathrm{~g}, 7.1 \mathrm{mmol})$ in $60 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added at $-30{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h , then quenched with aqueous Rochelle solution and the biphasic mixture was filtered through celite. Then the organic layer was separated and the aqueous layer was extracted with ether. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product (1.35 g) was used without purification. The crude product 94 was then dissolved in 50 ml DMF at ambient temperature. Imidazole ($1.43 \mathrm{~g}, 21 \mathrm{mmol}$) was added followed by $\mathrm{TBSCl}(3.15 \mathrm{~g}, 21 \mathrm{mmol})$. The reaction mixture was stirred for overnight then was quenched by adding $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. The mixture was extracted with ether ($5 \times 50 \mathrm{~mL}$). The organic extracts were washed with brine and dried over MgSO_{4} and concentrated. The crude product mixture was purified by flash chromatography (5-20\% ethyl acetate in hexane) gave 1.93 g (63% over 3 steps $)$ of the title compound as a colorless oil.
 (2R,3S)-3-(tert-Butyldimethylsilyloxy)-2,4-dimethylpentanal (72): To a solution of $95(1.9 \mathrm{~g}, 6.3 \mathrm{mmol})$ in 15 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was slowly added DIBAL ($8.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 8.1 mmol). The reaction mixture was stirred for 2 h then was quenched by adding 50 mL aqueous Rochelle's solution. The mixture was extracted by $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 50 mL). The organic extracts were combined and washed with Rochelle's solution, brine, dried and concentrated. The crude product mixture was purified by flash chromatography ($2-5 \%$ ethyl
acetate in hexane) gave $1.2 \mathrm{~g}(79 \%)$ of the title compound as a colorless oil. IR (thin film): 2958, 2858, 1727, 1471, 1254, $1054 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}+55\left(c 0.82, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.79(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.50(, 1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 205.5,76.4,50.6,32.2,19.6,18.3,8.6,-4.0,-4.2 ;$ HRMS $(E I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}]^{+}$. $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$: 244.1858 ; found:244.1855.

73a

73b

73c

73
 (3R,4R)-3-Methyl-4-(prop-1-en-2-yl)oxetan-2-one (73a) ${ }^{42}$: TMSQn (1.20 g, $3.00 \mathrm{mmol})$ and $\mathrm{LiClO}_{4}(6.36 \mathrm{~g}, 30.0 \mathrm{mmol})$ were dissolved in 30 mL diethyl ether and $60 \mathrm{mLCH} \mathrm{Cl}_{2}$ at room temperature and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the above cooled mixture was added N, N-diisopropylethylamine ($13.2 \mathrm{~mL}, 7.50 \mathrm{mmol}$), followed
by methacrolein ($2.1 \mathrm{~g}, 30 \mathrm{mmol}$). A solution of propionyl chloride $(5.55 \mathrm{mg}, 60 \mathrm{mmol})$ in 15 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added over 3 h by syringe pump. After being stirred overnight, the reaction was quenched at the reaction temperature by adding $100 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica gel column and concentrated. The resulting crude product was purified by flash chromatography (5% ethyl acetate in pentane) giving 1.91 g (51% yield with a tiny amount of ethyl acetate) of the title compound as a colorless volatile liquid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 3.86($ pentet, $\mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.18(\mathrm{br} \mathrm{s}$, 1H);

(2R,3R)-N-Methoxy-N,2,4-trimethyl-3-(trimethylsilyloxy)pent-4enamide (73b) ${ }^{42}$: To a solution of Weinreb's salt ($1.95 \mathrm{~g}, 20 \mathrm{mmol}$) in $40 \mathrm{mLCH} \mathrm{CH}_{2}$ at $0^{\circ} \mathrm{C}, \mathrm{Me}_{2} \mathrm{AlCl}(20 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 20 mmol$)$ was added dropwise and then warmed to ambient temperature. After being stirred for 2 h , a solution of lactone $\mathbf{9 6}(1.26 \mathrm{~g}$, 10 mmol) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added at $-30^{\circ} \mathrm{C}$. The resulting mixture was stirred for 2 h , then quenched with aqueous Rochelle solution and the biphasic mixture was filtered through celite. Then the organic layer was separated and the aqueous layer was extracted with ether. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product (1.35 g) was used without purification. To a solution of crude product $97(600 \mathrm{mg}, 3.20 \mathrm{mmol})$ in 20 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, 2,6-lutidine $(0.560 \mathrm{~mL}, 3.85 \mathrm{mmol})$ was added. The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ and TMSOTf ($0.7 \mathrm{~mL}, 4.81 \mathrm{mmol}$) was added dropwise. The reaction was then warmed up to room temperature and stirred for 2 h . The reaction was quenched with 50 mL saturated aq. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. All the organic extracts were then washed with brine, dried and concentrated. The crude oil was purified with
flash column (30% ethyl acetate in hexanes) giving 771 mg (90% yield over 3 steps) of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
 (2R,3R)-2,4-Dimethyl-3-(trimethylsilyloxy)pent-4-enal (73) ${ }^{42}$: To a solution of Weinreb amide $61(0.72 \mathrm{~g}, 2.78 \mathrm{mmol})$ in 30 mL THF at -78 ${ }^{\circ} \mathrm{C},{ }^{i} \mathrm{Bu}_{2} \mathrm{AlH}(3.6 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexane, 3.6 mmol$)$ was added dropwise. After being stirred for 3 h , the reaction was quenched with aqueous Rochelle salt solution at $-78^{\circ} \mathrm{C}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were combined and washed with brine, dried and concentrated. The crude oil was purified with flash column (10% ethyl acetate in hexanes), affording 484 mg (88% yield) of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.09(\mathrm{~s}, 9 \mathrm{H}), 1.04$ $(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.54(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}$, $1 \mathrm{H}), 9.67(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$.

(2R,3S,4S,5S)-5-(tert-Butyldimethylsilyloxy)-3-hydroxy-2,4,6-trimethyl-1-(1H-pyrrol-1-yl)heptan-1-one (74): To a solution of aldehyde $72(36 \mathrm{mg}, 0.13 \mathrm{mmol})$ and enol silane $53(24 \mathrm{mg}, 0.13 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(0.015 \mathrm{~mL}, 0.16 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$, The reaction was then stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction was quenched with aqueous sat. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with ether (3 x $20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product mixture was purified by column chromatography (10% ethyl acetate in hexane) to give $20 \mathrm{mg}(43 \%)$ of title compound as colorless oil and 20 mg . IR (thin film): $3517,2957,2857,1710,1468,1251,1047 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-4.3\left(c 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 6.34(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{ddd}, \mathrm{J}=8.7,4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ $(\mathrm{dd}, \mathrm{J}=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30($ pentet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}$, 2H), $1.39(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.90(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, 3H), $0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,119.0,113.6,80.4,75.3$, $41.5,37.6,32.7,26.1,19.0,18.9,18.4,14.3,9.2,-3.5,-4.1 ;$ HRMS $(E S I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{NaSi}$: 390.2440 ; found: 390.2411

(2R,3S,4S,5S)-5-(tert-Butyldimethylsilyloxy)-3-hydroxy-4-dimethyl-7-phenyl-1-(1H-pyrrol-1-yl)heptan-1-one(65): To a solution of aldehyde $63(77 \mathrm{mg}, 0.25 \mathrm{mmol})$ and enol silane $53(48 \mathrm{mg}, 0.25 \mathrm{mmol})$ in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(35 \mathrm{mg}, 0.31 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was then stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous sat. $\mathrm{NaHCO}_{3} 5 \mathrm{~mL}$ and extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product mixture was purified by column chromatography (10% ethyl acetate in hexane) to give $76 \mathrm{mg}(71 \%)$ of title compound as colorless oil. $[\alpha]_{\mathrm{D}}+23\left(c 0.21, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3524, 2953, 2857, 1710, 1467, 1251, $1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.12(\mathrm{~m}$, $7 \mathrm{H}), 6.36(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{ddd}, \mathrm{J}=7.5,3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.87(\mathrm{ddd}, \mathrm{J}=8.4,5.1,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36-3.30($ pentet, $\mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.86-1.78(m, 3H), $1.40(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) $\delta 174.0,141.5,128.4,128.2,126.0,119.0,113.5,76.8,75.5,41.7,37.5,36.0$, $31.9,25.8,18.0,14.7,7.0,-3.8,-4.5$; HRMS $(E S I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{25} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{SiNa}:$ 452.2597; found:452.2566.
 pyrrol-1-yl)-5-(trimethylsilyloxy)heptan-1-one (68): To a solution of aldehyde $67(66 \mathrm{mg}, 0.25 \mathrm{mmol})$ and enol silane 53 ($49 \mathrm{mg}, 0.25 \mathrm{mmol}$) in $2 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(35 \mathrm{mg}, 0.313 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was then stirred for 1 hour at $-78^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3} 5 \mathrm{~mL}$ and extracted with ether (3 x 100 mL). The organic layer was washed by brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified with column chromatography (10% ethyl acetate in hexane) to give 64 mg (66%) of title compound as a white solid. mp 69-70 ${ }^{\circ} \mathrm{C}$; IR (thin film): $3509,2954,1710,1467,1250 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}+27\left(c 0.43, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{ddd}, \mathrm{J}=8.7,3.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{ddd}, \mathrm{J}=7.8,5.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38($ pentet, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.9,141.5,128.4,128.2,126.0,119.1,113.5$, $77.1,75.6,41.9,37.8,35.9,32.1,14.8,7.1,0.6 ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{NaSi}$: 410.2127; found:410.2123.
(2R,3S,4R,5S)-5-(t-Butyldimethylsilyloxy)-2,4-dimethyl-
 7-phenyl-1-(1H-pyrrol-1-yl)-3-(trimethylsilyloxy) heptan-1-one (64): To a solution of aldehyde $63(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ and enol silane 53 ($58 \mathrm{mg}, 0.3 \mathrm{mmol}$) in 1 mL of THF, was added 0.01 mL tetrabutylammonium p-nitrophenoxide (2 M in THF) at $-78{ }^{\circ} \mathrm{C}$. The reaction was then stirred for overnight at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with ether 5 mL and filtered through a plug of silica gel. The crude
product was purified by column chromatography (3% ethyl acetate in hexane) to give 40 mg (80%) of title compound as colorless oil. $[\alpha]_{\mathrm{D}}+12$ (c $0.85, \mathrm{CHCl}_{3}$); IR (thin film): 2954, 2857, 1711, 1466, 1250, $1072 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.21(\mathrm{~m}, 7 \mathrm{H}), 6.32(\mathrm{t}, \mathrm{J}=2.4$ Hz, 2H), $4.21(\mathrm{dd}, \mathrm{J}=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dt}, \mathrm{J}=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40($ pentet, $\mathrm{J}=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99-0.89(\mathrm{~m}, 12 \mathrm{H})$, $0.13(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.2,142.9,128.5$, 128.5 125.7, 119.1, 113.3, 74.2, 73.3, 42.9, 40.9, 36.2, 26.0, 18.2, 14.8, 11.2, $0.8,-4.0,-4.3$; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Na}$: 524.2992; found:524.3037.

(2R,3S,4R,5S)-5-(tert-Butyldimethylsilyloxy)-2,4,6-trimethyl-1-(1H-pyrrol-1-yl)-3-(trimethylsilyloxy)heptan-1-one (78): To a solution of aldehyde $72(24 \mathrm{mg}, 0.1 \mathrm{mmol})$ and enol silane $53(96 \mathrm{mg}$, 0.5 mmol) in 1 mL THF, was added 0.01 mL tetrabutylammonium p-nitrophenoxide (2 M in THF) at $-88{ }^{\circ} \mathrm{C}$. The reaction was then stirred for 6 h at $-88{ }^{\circ} \mathrm{C}$. The reaction was quenched with ether 5 mL and filtered through a plug of silica gel. The crude product was purified by column chromatography (3% ethyl acetate in hexane) to give 27 mg (61%) of title compound as colorless oil. IR (thin film): 2957, 2928, 1714, 1466, 1251, $1052 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-20.9$ (c 1.04, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.33(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{dd}, \mathrm{J}=$ 7.8, 2.7 Hz, 1H), $3.40(\mathrm{dd}, \mathrm{J}=8.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.30($ pentet, $\mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 12 \mathrm{H})$, $0.81(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0,06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$173.3,119.0,113.4,77.5,74.9,43.0,40.8,30.7,26.3,21.2,18.6,15.7,15.1,11.5,0.9,-3.1,-3.4$; HRMS (EI) m/z calcd for $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) \mathrm{C}_{22} \mathrm{H}_{42} \mathrm{NO}_{3} \mathrm{Si}_{2}$: 424.2703; found: 424.2700.

(2R,3S,4S,5R)-2,4,6-trimethyl-1-(1H-pyrrol-1-yl)-3,5-bis(trimethylsilyloxy)hept-6-en-1-one (83): To a solution of aldehyde 73 ($26 \mathrm{mg}, 0.11 \mathrm{mmol}$) and enol silane $53(96 \mathrm{mg}, 0.50 \mathrm{mmol})$ in 1 mL THF, was added 0.01 mL tetrabutylammonium p-nitrophenoxide (2 M in THF) at $-70^{\circ} \mathrm{C}$. The reaction was then stirred for 6 h at $-70^{\circ} \mathrm{C}$. The reaction was quenched with ether 5 mL and filtered through a plug of silica gel. The crude product was purified by column chromatography (3% ethyl acetate in hexane) to give 38 mg (79\%) of title compound as colorless oil. IR (thin film): 2959, 1713, 1466, 1250, $1071 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-19\left(c \quad 0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~s}, 2 \mathrm{H})$, $6.31(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{dd}, \mathrm{J}=8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ $(\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dq}, \mathrm{J}=8.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0,08(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,146.6,119.0$, $114.3,113.4,79.0,74.1,43.2,40.6,16.4,16.0,9.9,1.1,0.2 ;$ HRMS $(E S I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{2 \mathrm{~d} 0} \mathrm{H}_{37} \mathrm{NO}_{3} \mathrm{Si}_{2} \mathrm{Na}: 418.2210$; found: 418.2190.

(2R,3S,4R,5S)-5-(t-Butyldimethylsilyloxy)-2-ethyl-4- methyl-7-phenyl-1-(1H-pyrrol-1-yl)-3-(trimethylsilyloxy) heptan-1one (86) : To a solution of aldehyde $63(30 \mathrm{mg}, 0.10 \mathrm{mmol})$ and enol silane $86(96 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 1 mL of THF, was added 0.01 mL tetrabutylammonium p-nitrophenoxide (2 M in THF) at $-78{ }^{\circ} \mathrm{C}$. The reaction was then stirred for 6 h at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with ether 5 mL and filtered through a plug of silica gel. The crude
product was purified by column chromatography (3% ethyl acetate in hexane) to give 38 mg (74\%) of title compound as colorless oil. $[\alpha]_{\mathrm{D}}+21.2$ (c 1.02, CHCl_{3}); IR (thin film): 2955, 2829, $1708,1465,1252,838 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.20(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}$, 2H), 4.17 (dd, J = 8.1, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{qd}, \mathrm{J}=11.4,5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.93-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 15 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,143.0,128.5,128.4,125.6,119.1,113.4,74.2,73.0$, $50.6,41.0,36.5,29.3,26.0,23.6,18.2,11.8,10.9,0.9,-4.1,-4.4 ;$ HRMS (ESI) m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{3} \mathrm{Na}$: 538.3149; found:538.3198.
 (2R,3S,4R,5S)-S-t-Butyl 5-(tert-Butyldimethylsilyloxy) -
2,4-dimethyl-7-phenyl-3-(trimethylsilyloxy)
heptanethioate (89) : To a solution of aldehyde 63 (61 mg , 0.2 mmol) and enol silane $70(132 \mathrm{mg}, 0.6 \mathrm{mmol})$ in 2 mL of THF, was added 0.02 mL of tetrabutylammonium p-methoxyphenoxide solution (2 M in THF) at $-70^{\circ} \mathrm{C}$. The reaction was then stirred for 5 h at $-70^{\circ} \mathrm{C}$. The reaction was quenched with ether (5 mL) and filtered through a plug of silica gel. The crude product was purified by column chromatography (3% ethyl acetate in hexane) to give $47 \mathrm{mg}(45 \%)$ of title compound as colorless oil. IR (thin film): 2956, 2857, $1675,1455,1252,1033 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-6.2\left(c \quad 0.39, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-$ $7.19(\mathrm{~m}, 5 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.63(\mathrm{dt}, \mathrm{J}=2.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.79$ (pentet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}) 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96-0.94(\mathrm{~m}, 12 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 203.1, 142.9, 128.4, 128.4, 125.6, 74.2, 72.9, 52.7, 47.8, 40.8, 36.6, 29.8, 26.0, 18.2, 14.1, 10.8,
0.88, -4.0, -4.3; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \quad \mathrm{C}_{28} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{NaSi}_{2} \mathrm{~S}$: 547.3073 ; found:547.3068.
 of aldehyde $72(24 \mathrm{mg}, 0.10 \mathrm{mmol})$ and enol silane $53(98 \mathrm{mg}, 0.50 \mathrm{mmol})$ in 1 mL of DMF, was added 0.01 mL lithium phenoxide $\left(2 \mathrm{M}\right.$ in THF) at $-45^{\circ} \mathrm{C}$. The reaction was then stirred for 5 h at $-70^{\circ} \mathrm{C}$. The reaction was quenched with ether (5 mL) and filtered through a plug of silica gel. The crude product was purified with column chromatography (3% ethyl acetate in hexane) to give 34 mg (78\%) of title compound as colorless oil. IR (thin film): 2957, 1716, 1467, 1252, $1071 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-26.3\left(c 1.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{t}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{dd}, \mathrm{J}=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, \mathrm{J}=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.37(\mathrm{dq}, \mathrm{J}=8.7$, 6.9 Hz, 1H), 1.98-1.87 (m, 2H), $1.22(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.89(\mathrm{~m}$, $15 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,119.5,112.8$, $78.4,76.8,43.1,41.2,32.7,26.3,20.1,18.6,16.2,14.2,13.9,0.19,-3.3,-3.4 ;$ HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{23} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{Si}_{2} \mathrm{Na}$: 462.2836; found:462.2800.
(2R,3R,4R,5S)-3,5-Dihydroxy-2,4,6-trimethyl-1-(1H-pyrrol-1-yl)heptan-1-one (81): To a ader and The reaction was then stirred for overnight at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3} 1 \mathrm{~mL}$ and filtered through a plug of silica gel and concentrated and dissolved in $2 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$. To this solution was added 2 drops of 48% aqueous HF at $0^{\circ} \mathrm{C}$, the reaction
was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3} 0.5 \mathrm{~mL}$ and filtered through a plug of silica gel and concentrated. The crude product was purified with column chromatography (20% ethyl acetate in hexane) to give 22 mg (88%) of title compound as a white wax. IR (thin film): $3374,2964,2933,1707,1283,1071 \mathrm{~cm}^{-1} ;[\alpha]_{\mathrm{D}}-40\left(c 0.73, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{td}, \mathrm{J}=8.1$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dt}, \mathrm{J}=9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49($ pentet, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.78(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{qdd}, \mathrm{J}=6.9,4.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.4,119.2,113.6,78.2,76.8,41.2,35.1,31.2,19.8,18.9,15.5,10.4$; HRMS (ESI) m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}: 276.1576$; found:276.1562.

(2R,3S,4S,5R)-3,5-Dihydroxy-2,4,6-trimethyl-1-(1H-pyrrol-1-yl)hept-6-en-1-one (84): To a solution of compound 83 ($27 \mathrm{mg}, 0.061$ mmol) in 2 mL THF, was added 2 drops of TFA at $0^{\circ} \mathrm{C}$. The reaction was then stirred for 8 h at room temperature. The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3} 0.5 \mathrm{~mL}$ and filtered through a plug silica gel and concentrated. The crude product was then purified with column chromatography (30% ethyl acetate in hexane) to give $14 \mathrm{mg}(91 \%)$ of title compound as a white solid. $[\alpha]_{\mathrm{D}}-42\left(c 0.63, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 101{ }^{\circ} \mathrm{C}$; IR (thin film): 3392, 2974, 1705, 1467, $1275 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{~s}, 2 \mathrm{H}), 6.33(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=0.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{br}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=2.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.29$ (pentet, $\mathrm{J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,145.9,119.1,113.6,110.3,78.8,76.3,42.0,36.7,19.4,15.0$, 5.7; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}: 251.1521$; found:251.1521.

2.0 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H

2.1 INTRODUCTION

2.1.1 The Amphidinolides

2.1.1.1 Isolation

Dinoflagellates Amphidinium sp., which are symbionts of Okinawan marine flatworms Amphiscolops sp, produce a series of macrolide natural products, called amphidinolides. ${ }^{43-46}$ Due to their unique structures and potent cytotoxicity, amphidinolides have been attractive targets for total synthesis. ${ }^{47-67}$ Amphidinolide H1 is one of the most structurally interesting and biologically significant molecules in this class of macrolides. Amphidinolide H 1 was isolated from the Y-72 strain of cultured dinoflagellate Amphidinium sp by the Kobayashi group in 1991, as well as amphidinolide G1. ${ }^{44}$ In 2002, the Kobayashi group continued to discover four derivatives (amphidinolides $\mathrm{H} 2, \mathrm{H} 3, \mathrm{H} 4, \mathrm{H} 5, \mathrm{H} 6$) of amphidinolide H and two derivatives (amphidinolides G2, G3) of amphidinolide G from the dinoflagellate Amphidinium sp. (Y-42 strain) was isolated from an acoel flatworm Amphiscolops sp (Figure 11). ${ }^{68}$

amphidinolide H1

amphidinolide H4

amphidinolide H2

amphidinolide H5

amphidinolide H3

amphidinolide G1

amphidinolide G2

amphidinolide G3

Figure 11. Amphidinolide H and G family

2.1.1.2 Structural Features and Biological Activity

The absolute stereochemistry of amphidinolides G and H was determined by a singlecrystal X-ray diffraction analysis and interconversion between each other by the Kobayashi group in 2000 (Figure 12). ${ }^{45}$ Amphidinolides G and H are 27- and 26-membered macrolides, respectively, with nine stereogenic centers and a unique allylic epoxide moiety. The final X-ray structure of amphidinolide H 1 shows a rectangular shape that was bridged in across the
macrolactone by an intramolecular hydrogen bond between C_{21} - OH and the epoxide oxygen $\left(\mathrm{O}_{3}\right)$. The intramolecular hydrogen bond caused a significant distortion on the epoxide. Specifically the $\mathrm{C}_{8}-\mathrm{O}$ bond $(1.470 \AA)$ is much longer than its $\mathrm{C}_{9}-\mathrm{O}$ counterpart $(1.448 \AA)$. Through another intramolecular hydrogen bond between the $\mathrm{C}_{22}-\mathrm{OH}$ and the oxygen atom at C_{18}, an envelope-boat-shaped eight-membered ring was constructed. In the X-ray structure the S-cis diene portion at $\mathrm{C}_{15}-\mathrm{C}_{14}-\mathrm{C}_{13}-\mathrm{C}_{29}$ was revealed to be twisted [torsion angle, $-35.6(5)^{\circ}$], resulted in the diene moiety non-conjugated in the natural product. ${ }^{45}$

Figure 12. X-ray Crystal structure of amphidinolide H1

Amphidinolide H1 exhibited extremely strong cytotoxic activities against L1210 murine leukemia cells in vitro with an IC_{50} value of $0.48 \mathrm{ng} / \mathrm{mL}$ and KB human epidermoid carcinoma cells in vitro with an IC_{50} value of $0.52 \mathrm{ng} / \mathrm{mL}$, respectively. ${ }^{43,44,46}$ Amphidinolide H 1 was known to disrupt the actin organization in the cells, and the polymerization/depolymerization assay using purified actin indicated that amphidinolide H 1 (8) stimulated actin polymerization and stabilized F-actin. The MALDI-TOF-MS analysis ${ }^{69}$ and anlysis with the halo assay using the yeast harboring site-directed mutagenized actin revealed that the covalent binding of amphidinolide H1 (8) to actin and the binding site was Tyr200 of actin subdomain 4. Impressive SAR studies performed with the naturally occurring amphidinolide derivatives, amphidinolide B1, B2, B3, B4, B5, B6, B7, D, H1, H2, H3, H4, H5, G1, G2, and G3 demonstrated that the sensitive S-cis-diene, the ketone at C_{20}, as well as the allylic epoxide are mandatory structural elements for high biological activity. ${ }^{70,71}$

2.1.2 Previous Approaches to the Total Synthesis of Amphidinolide H1

In 1998, Chakraborty reported the first approach towards the total synthesis of amphidinolide H1 (Figure 13). ${ }^{72}$ The left fragment 92 was constructed by coupling the $E-\alpha, \beta-$ unsaturated aldehyde 96 and the functionalized sulfone unit 97 . The lower fragment, triphenylphosphine salt 93, then underwent a wittig reaction to give a mixture of olefins (trans:cis $=55: 45$) which was separated by preparative TLC to furnish the desired $\mathrm{C}_{1}-\mathrm{C}_{18}$ fragement 90. Methyl ketone $\mathbf{9 1}$ was formed from aldehyde $\mathbf{9 5}$ by application of Evans' aldol reaction and the C_{16} - tertiary alcohol center was set by Seebach alkylation methodology.

Figure 13. Chakraborty's approach to the synthesis of fragments of amphidinolide H1

In 2002, amphidinolide H 2 was isolated by the Kobayashi group. As an amphidinolide H type macrolide, amphidinolide H 2 has been assigned as a $\mathrm{C}_{16^{-}}$and $\mathrm{C}_{18^{-}}$epimer of amphidinolide H1 (Figure 14). ${ }^{68}$ In 2005 and 2006, Kalesse proposed a retrosynthesis of amphidinolide H2 and synthesized fragments 99 and 100 (Figure 14)..73,74 Kalesse proposed an aldol coupling between methyl ketone $\mathbf{1 0 0}$ and aldehyde 99. It was further planned to construct the S-cis-diene moiety through an alkene-alkyne metathesis, followed by a macrolactonization, which should establish the carbon skeleton of amphidinolide H2. A vinylogous Mukaiyama aldol reaction was used to construct the $\mathrm{C}_{23}-\mathrm{C}_{24}$ bond using enolsilane $\mathbf{1 0 3}$ to add to 2,3-O-isopropylidene- L -
glyceraldehyde 104 with a substoichiometric amount of the sterically hindered Lewis acid tris(pentafluorophenyl)borane to afford fragment 102 in good yield and diastereoselectivity. However, the aldol coupling between methyl ketone 100 and aldehyde 99 turned out to be problematic. Only poor stereoselectivities were observed under a variety of conditions.

amphidinolide H 2 (98)
\square

Figure 14. Kalesse's approach to the synthesis of fragments of amphidinolide H2

Murga's approach proceeded from the right fragment 105 that was prepared from lactone 109. Enolation of 109 followed by methylation afforded 108 in 80% yield and $92: 8 \mathrm{dr}$ (Figure 15). ${ }^{75}$ Reduction of $\mathbf{1 0 8}$ with DIBAL gave an aldehyde, which was immediately subjected to Wittig olefination. The resulting ester $\mathbf{1 0 7}$ was then submitted to a Sharpless asymmetric
dihydroxylation to afford triol 106 as a single stereoisomer. Protecting vicinal diol as an acetonide, followed by sillylation of the remaining free hydroxyl group, furnished 105, with all the stereogenic centers already in place. After hydrolysis and Weinreb amide formation, the methyl ketone 105 was achieved by methyl Grignard addition.

Figure 15. Murga's approach to amphidinolide H1 fragments

In Murga's publication in 2007, described an efficient synthetic route to the $\mathrm{C}_{3}-\mathrm{C}_{18}$ subunit 110 of amphidinolides G and H (Figure 16). ${ }^{76}$ This paper demonstrated that the 1,3diene moiety $\mathbf{1 1 6}$ can be assembled by an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction of an allenic acetate 117. A Negishitype cross-coupling between a vinyl iodide $\mathbf{1 1 6}$ and an alkylzinc species $\mathbf{1 1 5}$ was then used to assemble the left fragment 114, which was combined with bottom fragment 113 by a lithiation/nucleophilic addition sequence to provide ketone 112. Furthermore, they have shown that the allylic epoxide moiety of amphidinolides H was effectively synthesized from the protected anti mesylate 111.

Figure 16. Crews's approach to amphidinolide H1 fragments

In the same year, the Zhao group has reported a nearly finished synthesis route of amphidinolide H1 (Figure 17). ${ }^{77,78}$ The core structure was completed by an intramolecular ring closing metathesis (RCM) reaction from alkene 118, which was prepared by employing a highly diastereoselective aldol reaction between the aldehyde 119 and MOM protected methyl ketone 120. The aldehyde $\mathbf{1 1 9}$ was assembled through a Stille coupling of fragments $\mathbf{1 2 1}$ and 122. The

Methyl ketone 120 was achieved via Mitsunobu esterification from the bottom fragment 123 and the right fragment 124. Murga's approach was employed to synthesize the right fragment 124 which was prepared from commercially available starting material 109 (Figure 15). However, the final deprotection of the MOM groups failed to achieve the completion of amphidinolide H 1 .

Figure 17. Zhao's approach to amphidinolide H1 fragments.

Finally, the first total synthesis of amphidinolide H1 was achieved in the Fürstner group in 2007 (Figure 18). ${ }^{49,79}$ The retrosynthesis was similar to the precedents of amphidinolid H : the
basic skeleton was assembled from four building blocks A - D by esterification, aldol reaction, Pd-catalyzed Stille coupling reaction, and olefin metathesis. The order of these crucial steps is the key to successfully accomplishing this complex molecule synthesis. The vinyl iodide fragment 126 was prepared through a multistep process from the itaconic acid monoester 130, which delivered the C_{16} methyl stereocenter through an asymmetric hydrogenation at C_{16} alkene. The synthesis of $\mathrm{C}_{7}-\mathrm{C}_{13}$ fragment 128 commenced with chiral pool (S)-citronellal. Chakraborty's approach was then employed to deliver methyl ketone 127 by an Evans aldol reaction. The ultimate successful route relied on the early installation of the unsaturated ester, which was accomplished by esterification of alcohol 127 with acid 131 to give 129 as a fully functional surrogate of the 'south-eastern' part of amphidinolide H1. The fragments $\mathbf{1 2 6}$ and 129 were then coupled by an LDA-mediated aldol reaction to form an exclusive $R \mathrm{C}_{18}$ hydroxyl functionality. Followed by a Stille-Migita coupling reaction with stannane 128 under the newly developed condition, the RCM precursor $\mathbf{1 2 5}$ was provided. The vinyl oxirane $\mathbf{1 2 5}$ proceeded a productive RCM reaction to form the required E isomer only, which eventually underwent a global deprotection to give the first total synthesis of amphidinolide H1.

125

130

126

Figure 18. Fürstner's total synthesis of amphidinolide H1

In 2006, our group reported a catalytic asymmetric approach towards the total synthesis of amphidinolide B1 which has a very similar structure as amphidinolide H1 (Figure 19). The top fragment 137 and the left fragment 136 were coupled by an efficient Suzuki coupling to form sterically hindered diene and deliver $\mathrm{C}_{7}-\mathrm{C}_{20}$ subunit 135 in 80% yield. Catalytic asymmetric acyl
halidealdehyde cyclocondensation (AAC) methodology has been applied to efficiently generate the $\mathrm{C}_{11^{-}}$and the C_{18} - stereocenters in the requisite fragments 136 and 137 through β-lactones 138 and 139 respectively.

Figure 19. Our approach to the synthesis of amphidinolide B1

2.1.3 Application of AAC Reaction Technology in the Total Synthesis of Amphidinolide H1

Methodology developed recently in our research group encouraged our pursuit of the total synthesis of amphidinolide H1. ${ }^{13,14,80,81}$ The catalytic, asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions gave us a powerful tool for efficiently preparing the highly enantioenriched β-lactones from a wide variety of aldehydes (Scheme 14, eq 1 and 2). ${ }^{13,14,80,81}$ As masked aldol products, β-lactones have proven useful in polypropionate and ployketide natural product total syntheses, (-)-pironetin, ${ }^{13}$ erythronolide B^{42} and apoptolidin $\mathrm{C} .{ }^{82}$ Two versions of the AAC reactions have been developed in our group: 1) Lewis acid-catalyzed AAC reaction and 2) Lewis base-catalyzed AAC reaction. The Lewis acid-catalyzed AAC reaction employs substoichiometric amounts (10-15 $\mathrm{mol} \%$) of a chiral aluminum triamine catalyst $\mathbf{1 4 0}$ to promote an in situ generation between ketene and aldehyde to form a variety of enantiomerically enriched β-lactones. ${ }^{80}$ Cinchona alkaloid Lewis bases O-trimethylsilylquinine (TMSQn) or O trimethylsilyl qinidine (TMSQd) have also been used to catalyze AAC reaction from in situ generated ketene through an aldol process with a chair transition state 141. ${ }^{14}$

Scheme 14. Two versions of β-lacton formation reactions

74-93\%
89-92\% ee
1)

Enantioenriched β-lactones are useful building blocks in organic synthesis due to their unique electrophilicity (Figure 20). The addition of hard nucleophiles such as alkoxides, amine, and metal amide species into the carbonyl of the β-lactone could form β-hydroxyl carboxylic acids. ${ }^{83}$ Soft nucleophiles such as dialkylcuprate reagents and azide could undergo nucleophilic attack in an $\mathrm{S}_{\mathrm{N}} 2$ fashion at the C_{4} position of the lactone to generate optically active β disubstituted carboxylic acids. ${ }^{84,85}$ Use of the asymmetric AAC reaction in an iterative fashion leads to the formation of 1,3 -stereochemical relationships, which is another important structural feature in our planned total synthesis. It was, therefore, speculated that the versatile reactivity demonstrated by enantiomerically enriched β-lactones would provide a novel and efficient approach to the total synthesis of amphidinolide H 1 .

Figure 20. Accessible structural motifs from enantioenriched β-lactones

2.2 EFFORTS TOWARDS THE TOTAL SYNTHESIS OF AMPHIDINOLIDE H

2.2.1 The Retrosynthesis of Amphidinolide H1

Our retrosynthetic analysis of amphidinolide H 1 is outlined in Figure 21. As in previous approaches, bond cleavages along the $\mathrm{C}_{1}-\mathrm{O}$ macrolatone and $\mathrm{C}_{6}-\mathrm{C}_{7}$ of E-olefin divided the target molecule into two fragments, aldehyde 142 and the corresponding sulfone fragment 143. Julia olefination was expected to unite the major fragments, to form the E-olefin moiety, and subsequent Yamaguchi macrolactonization would be employed to close the 26 -membered ring. Palladium-mediated Suzuki coupling of the upper fragment vinyl iodide 144 and the pinacol boronate ester moiety 145 was expected to form the acid-sensitive diene moiety. Further disconnection at the $\mathrm{C}_{21}-\mathrm{C}_{22}$ bond in fragment 144 showed that aldol coupling between diazomethyl ketone 146 and enantioenriched 147 might selectively generate the C_{22} hydroxyl group.

Figure 21. Retrosynthetic analysis of amphidinolide H1.

2.2.2 The First Generation of Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment

2.2.2.1 Model Study for preparing Fragment $\mathrm{C}_{14}-\mathrm{C}_{26}$

Three consecutive stereocenters from C_{21} to C_{23} posed a special challenge to set them up stereospecifically (Scheme 15). An aldol reaction was designed to couple fragments $\mathrm{C}_{14}-\mathrm{C}_{21}$ and $\mathrm{C}_{22}-\mathrm{C}_{26}$ in a Felkin fashion to construct the C_{22} stereocenter directed by the preformed C_{23} methyl stereocenter. Subsequently, a stereoselective O-H bond insertion to diazaoketone was proposed to form the C_{21} stereocenter.

Scheme 15. Plan to set up upper fragment

It is well known that carboxylic esters can be formed by the reaction of carboxylic acids with diazomethane. Likewise, the α-diazoketone compounds also demonstrated the same reaction property to form the α-acetoxyketone with an acetic acid (Figure 22, eq 3). ${ }^{86}$ Furthermore, the asymmetric $\mathrm{O}-\mathrm{H}$ insertion reaction catalyzed by $\mathrm{Rh}(\mathrm{II})$ or $\mathrm{Cu}(\mathrm{I})$ showed potential to be an ideal synthetic strategy for preparing optically pure α-alkoxy, α-aryloxy, and α-hydroxy carboxylic acid derivatives, which are valuable building blocks for the construction of natural products and other biologically active molecules. ${ }^{87-92}$ Through the use of copper catalysts carrying chiral ligands, the groups of Fu and Zhou have independently made remarkable advances in highly enantioselective insertions of α-diazocarbonyl compounds into the $\mathrm{O}-\mathrm{H}$ bonds of alcohols, ${ }^{93}$ phenols ${ }^{94}$ and water ${ }^{95}$ (Figure 22, eq 4). Through the O-H insertion reaction with a suitable ligand and protection group on the neighboring hydroxyl, α-diazocarbonyl compound 150 showed potential to be diastereoselectively converted into the upper fragment 151.

Fu's chiral bisazaferrocence ligand
$\mathrm{R}_{2}=$ alkyl, up to 98% ee

Zhou's chiral spirobox ligand:
$\mathrm{R}_{2}=$ aryl, up to 99.6% ee $R_{2}=H$, up to 94% ee

Figure 22. Copper-catalyzed asymmetric O-H bond insertion reaction

2.2.2.2 Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ Fragment 148

Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ synthon 148 commenced with the commercially available (triisopropylsilyl)acetylene (Scheme 16). Treating (triisopropylsilyl)acetylene with n - BuLi at $78{ }^{\circ} \mathrm{C}$, followed by adding excess DMF, provided aldehyde 152 quantitatively. ${ }^{96}$ The β-lactone 153 was prepared by an asymmetric AAC reaction with acetyl chloride and aldehyde 153, catalyzed by $10 \mathrm{~mol} \%$ TMSQn in 78% yield. The copper-mediated $\mathrm{S}_{\mathrm{N}} 2$ lactone ring opening reaction with methylmagnesium bromide established amphidinolide H 's C_{16} methyl-bearing
stereocenter in delivering carboxylic acid 154 in 54% yield. It was essential that the bulky TIPS group was used to prevent conjugate addition at the alkyne position because TMS protected alkyne only gave the conjugated addition product 154a. Even though several other Cu species, such as $\mathrm{CuI}, \mathrm{CuCN}, \mathrm{Li}_{2} \mathrm{CuCl}_{4}$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuI}$, were used to improve the selectivity, these catalysts just formed the allene 154a as the major product. After esterification of 154 with trimethylsilyldiazomethane, followed by a DIBAL reduction of resulting methyl ester, aldehyde 157 was then formed in 94% over two steps and ready to undergo another round of AAC reaction. The AAC reaction was firstly carried under a Lewis base-catalyzed condition with $10 \mathrm{~mol} \%$ TMSQn and 1 equiv. LiClO_{4}. However, a low yield (53\%) was obtained due to the instability of the alkyne bearing aldehyde 157. However, Lewis acid-catalyzed AAC reaction provided the solution for this problem. The aluminum catalyst $\mathbf{1 6 0}$ was used to improve the yield of the β lactone formation reaction to 72%. Ring-opening of β-lactone 158 with KOH at $55{ }^{\circ} \mathrm{C}$, protection of the resulting alcohol and carboxylic acid with a tert-butyldimethylsilyl group, followed by TFA deprotection of TBS ester gave carboxylic acid 159 in overall 90% yield for 3 steps. Finally, carboxylic acid 159 was then converted into an acid chloride with oxalyl chloride and then coupled with diazomethane to afford diazoketone in 78% yield over two steps.

Scheme 16. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{21}$ subunit 70^{a}

${ }^{\text {a }}$ Conditions: (a) n-BuLi, $\mathrm{Et}_{2} \mathrm{O}$,Then DMF, $-78{ }^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$; (b) $10 \mathrm{~mol} \%$ catalyst TMS-Qn, acetyl chloride, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt},-78{ }^{\circ} \mathrm{C}$; (c) $\mathrm{MeMgBr}, \mathrm{CuBr}, \mathrm{DMS}, \mathrm{THF}, \mathrm{TMSCI},-50^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$, then to rt ; 154:154a = 11:1;(d) trimethylsilyldiazomethane, methanol/toluene; (e) DIBAL-H, $-78{ }^{\circ} \mathrm{C}$; (f) catalyst 160, ($i-\mathrm{Pr})_{2} \mathrm{NEt}$, acetyl bromide; (g) $1 \mathrm{~N} \mathrm{KOH}, \mathrm{THF}, 55^{\circ} \mathrm{C}$; (h) TBSOTf, 2,6-lutidine; (i) TFA, THF/H ${ }_{2} \mathrm{O}$; (j) $(\mathrm{CO})_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (k) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$

2.2.2.3 Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ Model Fragment

The α-methyl bearing aldehyde 149 showed a very similar structure of the amphidinolide H1's right fragment 147 and was easily synthesized to test the aldol coupling between
diazoketone 148 and aldehyde 149. A rapid synthesis of 149 was explored by employing AAC chemistry (Scheme 17). Commercially available (S)-methyl lactate reacted with 4methoxybenzyl 2,2,2-trichloro-acetimidate catalyzed by substoichiometric amount of CSA at ambient temperature to yield the PMB protected ester in 74% yield, which was then reduced by 1.5 equiv. DIBAL to afford AAC precursor aldehyde 162 in 94% yield. Subsequently, the cyclocondensation of propionyl chloride with aldehyde $\mathbf{1 6 2}$ catalyzed by $10 \mathrm{~mol} \%$ TMSQn provided syn β-lactone 163 in 74% yield. It is worthwhile to point out that 2 equiv. of LiI are necessary to guarantee a good yield (74\%) and diastereoselectivity (syn:anti = 13:1). The conversion of β-lactone 163 into amide 164 was carried out by employing N, O dimethylhydroxylamine that mediated the β-lactone ring opening, and the subsequent BartonMccombie deoxygenation reaction ${ }^{97}$ afforded α-methyl amide 165 in 93% yield over 2 steps. Finally, synthesis of the aldehyde fragment 149 was accomplished by DIBAL reduction in 94% yield.

Scheme 17. Synthesis of the $\mathrm{C}_{22}-\mathrm{C}_{26}$ model fragment ${ }^{a}$

${ }^{\text {a}}$ Conditions: (a) 4-Methoxybenzyl-2,2,2-trichloroacetimidate, $10 \mathrm{~mol} \% \mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$; (b) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 94 \%$; (c) $10 \mathrm{~mol} \% \mathrm{TMSQn}, 2$ eq. Lil, propionyl chloride, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$, $-78{ }^{\circ} \mathrm{C}$; (d) MeO (Me) $\mathrm{NH}_{2} \mathrm{Cl}, \mathrm{Me}_{2} \mathrm{AlCl}, 0{ }^{\circ} \mathrm{C}$; (e) $\mathrm{NaH}, \mathrm{CS}_{2}, \mathrm{Mel}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}$ to rt; (f) AIBN, ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$, toluene, reflux; (g) DIBAL-H, $-78{ }^{\circ} \mathrm{C}$;

2.2.2.4 Model Study of Aldol Coupling of $\mathrm{C}_{14}-\mathrm{C}_{21}$ Fragment With $\mathrm{C}_{22}-\mathrm{C}_{\mathbf{2 6}}$

With diazoketone 148 and aldehyde 149 prepared, we metallated diazoketone 148 and subsequently added to aldehyde 149 under various conditions (Scheme 18, eq 5). Diazoketone 148 and aldehyde 149 had to be premixed in THF at $-78^{\circ} \mathrm{C}$ and then were treated with LDA to afford alcohol 150 in 79% yield. However, no diastereoselectvity was observed. We attempted to metallate diazoketone 148 through a transmetalation process from Li enolate to Zn and Mg enolate by using ZnCl_{2} and MgBr_{2}. Unfortunately, it turned out that they were detrimental to the reaction efficiency. Since the diastereoselectivity was not improved, we decided to change the synthetic route.

Scheme 18. Aldol coupling for making $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment

2.2.3 The Second Generation of Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment

2.2.3.1 The Retrosynthesis of the $\mathrm{C}_{14}-\mathrm{C}_{26}$ Fragment

As shown in Figure 23, the second generation synthesis of the fragment $\mathrm{C}_{14}-\mathrm{C}_{26}$ was explored, since the aldol coupling between diazoketone 148 and aldehyde 149 failed to achieve satisfactory diastereoselectivity. The $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment would be obtained from dithiane 167. This analysis would allow the $\mathrm{C}_{20}-\mathrm{C}_{21}$ bond to be constructed by dithiane coupling between dithiane 168 and aldehyde 169 . The synthesis of dithiane 168 started from entioenriched β lactone 170.

170

Figure 23. Retrosynthesis of top fragment 166

2.2.3.2 The Synthesis of Fragment 168

For the synthesis of $\mathrm{C}_{15}-\mathrm{C}_{20}$ dithiane subunit 168 (Scheme 19), we again sought the aid of the catalytic AAC reaction to prepare the enantioenriched β-lactone 171 in 68% yield and by employing $10 \mathrm{~mol} \%$ of the TMSQn catalyst. It was also documented by our group that the aluminum catalyst would provide β-lactone 171 in higher yield and selectivity (91% yield, 92% ee). Cuprate-mediated $\mathrm{S}_{\mathrm{N}} 2$ ring opening of lactone 171 afforded the corresponding carboxylic acid $\mathbf{1 7 2}$ in $\mathbf{7 1 \%}$ yield and efficiently installed the C_{16} methyl-bearing stereocenter. Anticipating the second AAC reaction to set up C_{18} stereocenter, acid 172 was transformed into the corresponding aldehyde 174 by first treating 172 with excess trimethylsilyldiazomethane to provide the requisite methyl ester. Reduction of $\mathbf{1 7 3}$ with DIBAL at $-78^{\circ} \mathrm{C}$ formed the aldehyde

174 in 84% yield. Further homologation of 173 proceeded by O-trimethylsilylquinidine (TMSQn)-catalyzed cyclocondensation with acetyl chloride to establish the C_{16} stereocenter in providing β-lactone 175 in 74% yield. β-Lactone 175 was then elaborated to thioester $\mathbf{1 7 6}$ via a two-step sequence: 1) thiolate-mediated ring opening and in situ alkoxide silylation in 72% yield; 2) DIBAL-mediated thioester reduction in 92% yield. Aldehyde 177 was then converted to dithiane $\mathbf{1 6 8}$ by treatment with propane 1, 3-dithiol, MgBr_{2} etherate in $\mathrm{Et}_{2} \mathrm{O}$ in 83% yield.

Scheme 19. Synthesis of fragment $\mathbf{7 9}^{a}$

 THF, TMSCI, $-50^{\circ} \mathrm{C}$ to $-30^{\circ} \mathrm{C}$, then to rt ; (c) trimethylsilyldiazomethane, methanol/toluene; (d) DIBAL, $-78{ }^{\circ} \mathrm{C}$; (e) $10 \mathrm{~mol} \%$ TMSQn, acetyl chloride, $i-\mathrm{Pr}_{2} \mathrm{NEt},-78^{\circ} \mathrm{C}$; (f) EtSH, $20 \mathrm{~mol} \%$, KHMDS, THF, $0{ }^{\circ} \mathrm{C}$; TBSOTf, 2,6-lutidine; (g) DIBAL, $-78{ }^{\circ} \mathrm{C}$; (h) $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}, 1,3-$ propanedithiol, $\mathrm{Et}_{2} \mathrm{O}$.

2.2.3.3 The Synthesis of Fragment 169

We aimed to prepare aldehyde 169 from alcohol 178 which possecesed all desired stereocenters of fragment 169 (Figure 24). Alcohol 178 can be made from lactone 179 via a diastereoselective Davis' hydroxylation. ${ }^{98}$ Lactone 179 would be the product of hydrogenation of α, β-unsaturated lactone $\mathbf{1 8 0}$ which in turn is produced from RCM reaction of diene $\mathbf{1 8 1}$. The diene 181 was prepared from commercially available (S)-(-)-glycidol 182.

Figure 24. Retrosynthesis of right fragment 169

As outlined in Scheme 20, the synthesis of the $\mathrm{C}_{19}-\mathrm{C}_{26}$ fragment 169 began with commercially available (S)-(-)-glycidol 183, which was converted into 182 by benzyl protection of the free hydroxyl group in 78\% yield. A CuI-catalyzed isoprenyl Grignard displacement followed by an esterification reaction with acryloyl chloride afforded ring closure metathesis precursor 185 in 89% yield. Exposure of 185 to substoichiometric amounts of the second generation Grubbs catalyst provided lactone 186 in 86% yield.

Scheme 20. Synthesis of $\mathbf{1 8 6}^{a}$

${ }^{\text {a }}$ Conditions: (a) $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$-rt; (b) Isopropenylmagnisium bromide, Cul, THF, $-78{ }^{\circ} \mathrm{C}$; (c) acryloyl chloride, DIPEA, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) Grubbs II, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux;

Diastereoselective reduction of $\mathbf{1 8 6}$ to establish the β-methyl stereocenter in lactone 187 was carried under various conditions to achieve the best selectivity (Figure 25, eq 6). Treatment of lactone $\mathbf{1 8 6}$ with Stryker's reagent ${ }^{99}$ in toluene led to a full conversion to the desired syn diastereomer of 187. However, the product was contaminated with large amounts of triphenylphosphine impurities which could not be separated. Pd / C catalyzed hydrogenation conditions were then employed to diastereoselectively reduce the $\mathrm{C}=\mathrm{C}$ double bond. These studies demonstrated that solvents played an important role in improving the diastereoselectivity. Two different solvents gave two completely different results: in methanol, the reduction underwent a complete non-selective process $(\mathrm{dr}=1: 1)$ and the benzyl group was cleaved simultaneously to form 188 in quantitive yield; benzene as a solvent slowed down the reaction rate and provided syn 187 in a 83% yield and excellent diastereoselectivity ($\mathrm{dr}=95: 5$). The reduction reaction of $\mathbf{1 8 6}$ in methanol proceeded much faster than the reaction in benzene and
led to benzyl deprotected product 188. However, the hydrogenation reaction of $\mathbf{1 8 6}$ in benzene proceeded in a much slower fashion and the benzyl group wasn't deprotected (an elongated reaction time would cause a slow deprotection of benzyl group). Therefore, the mild hydrogenation of 186 in benzene could not add hydrogens to the sterically hindered si face of alkene and only add hydrogens to re face to yield syn 188. After deprotection of the benzyl group of syn 187, the X-ray crystal structure of alcohol syn 188 was obtained, verifying the stereochemistry of syn 187.
1:195:5

Figure 25. Synthesis of 187 and structure verification

After generating lactone 187 with the correct absolute stereochemistry, we could then further elaborate this intermediate to the $\mathrm{C}_{21}-\mathrm{C}_{26}$ subunit of amphidinolide (Scheme 21). In
attempt to establish the α-hydroxyl group of 189 with the desired diastereoselectivity, lactone 187 was enolized with LDA with the assistance of TMEDA and then oxidized with Davis' reagent $\left([(-)-(10 \text {-camphorsulfonyl)oxaziridine }] \text { or }(-)-\mathrm{CSO})^{98}\right.$ at $-45^{\circ} \mathrm{C}$ to afford α-hydroxyl bearing lactone 189 in 63% yield as a single diastereomer. Completion of the right fragment required only a few routine synthetic manipulations (Scheme 21). After ring opening with N, O dimethylhydroxylamine, silylation of the newly formed C_{25} hydroxyl group with TESCl and imidazole furnished the fully protected upper synthon 191 in 92% yield. However, treating Weinreb's amide 191 with excess DIBAL provided only partial conversion to aldehyde fragment 169. After the temperature was elevated to room temperature, DIBAL could not transform all starting material to product 169. Surprisingly, the much stronger reducing reagent LiAlH_{4} was applied at $0{ }^{\circ} \mathrm{C}$ to provide aldehyde $\mathbf{1 6 9}$ in 89% yield.

Scheme 21. Completion of fragment 169^{a}

${ }^{\text {a }}$ Conditions: (a) (-)-CSO, LDA, TMEDA, $-45{ }^{\circ} \mathrm{C}$; (b) 4'-Methoxybenzyl-2,2,2-trichloroacetimidate, $\mathrm{BF}_{3} \cdot \mathrm{EtO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; (c) $\mathrm{MeO}(\mathrm{Me}) \mathrm{NH}_{2} \mathrm{Cl}, \mathrm{Me}_{3} \mathrm{Al}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (d) TESCl, imidazole, DMF, 92\%; (j) $\mathrm{LiAlH}_{4}, 0^{\circ} \mathrm{C}$;

2.2.3.4 Dithiane Addition Trials

With dithiane 168 and aldehyde 169 available, we attempted lithiation of the dithiane 168 and subsequent addition to aldehyde 169 (Figure 26, eq 7). The similar strategy has been explored in amphidinolide B synthesis. ${ }^{100}$ Under a variety of conditions with bases such as n BuLi, t-BuLi, and n-BuLi with HMPA, experiments to metalate dithiane 192 and add it to aldehyde 193 led to the complete recovery of dithiane 192. Further controlled experiments with the same metalation conditions and trapping of the dithiane anion with TMSCl demonstrated the resistance of dithiane 192 toward metalation.

Conditions:
(a) n-BuLi, THF, $-50^{\circ} \mathrm{C}$, then 193
(b) t-BuLi, THF, $-50^{\circ} \mathrm{C}-\mathrm{RT}$, then $-50^{\circ} \mathrm{C}, 193$
(c) n-BuLi, HMPA, $-50^{\circ} \mathrm{C}$, then 193

Figure 26. Dithiane addition strategy in amphidinolide B synthesis

Based on these experiments, we attempted to evaluate the efficiency of the metalation with our dithiane subunit 192 (Figure 27). Treatment of dithiane 168 with $t-\mathrm{BuLi}$ and HMPA at $-78{ }^{\circ} \mathrm{C}$ in THF and trapping of the dithiane anion with $\mathrm{D}_{2} \mathrm{O}$ provided complete deuteration of dithiane 168. Under the same condition, dithiane 194 also gave 25% deuterated product. Therefore, the metalated dithiane with t-BuLi and HMPA could generate dithiane anion which was then tested in the addition reaction to aldehyde $\mathbf{1 6 9}$ under a variety of conditions. Two equivalents of dithiane 194 were treated with t - BuLi and HMPA at $-78^{\circ} \mathrm{C}$ in THF and added to aldehyde 169 to form 195 in 38% yield and 1:1 dr. However, the addition of lithiated dithiane 168 to aldehyde 169 resulted in decomposition of the starting material aldehyde. Two additives, ZnCl_{2} and CeCl_{3}, were used to modify the reaction condition, but decomposition of the starting
material was also observed in these conditions. The unsuccessful attempts to add the anion of dithiane into aldehyde $\mathbf{1 6 9}$ prompted us to abandon this route.

Conditions:

1) t-BuLi, HMPA, THF, $-78^{\circ} \mathrm{C}$;
2) t-BuLi, HMPA, THF, $-78^{\circ} \mathrm{C}, \mathrm{ZnCl}_{2}$;
3) t-BuLi, HMPA, THF, $-78{ }^{\circ} \mathrm{C}, \mathrm{CeCl}_{3}$;

Figure 27. Dithiane coupling for making $\mathrm{C}_{14}-\mathrm{C}_{26}$ fragment

2.2.4 Revised Synthesis of Amphidinolide H1

2.2.4.1 The Revised Retrosynthesis of Amphidinolide H1

Since the dithiane addition route did not couple the top fragment with the right fragment in good yield and diastereoselectivity, our revised retrosynthetic approach is illustrated in Figure 28. The major disconnections in the molecule would be still across the $\mathrm{C}_{1}-\mathrm{O}$ bond via macrolactonization and the $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond by the Julia olefination reaction. The diene moiety in fragment 196 was planned to be installed via the Suzuki reaction between a vinyl boronate
fragment 199 and vinyl iodide 198. Aldehyde 198 and methyl ketone 200 would be connected via a diastereoselective aldol reaction in delivering C_{18} hydroxyl stereocenter.

Figure 28. Revised retrosynthesis of amphidinolide H1

2.2.4.2 Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ Fragment $199{ }^{100}$

Since the $\mathrm{C}_{7}-\mathrm{C}_{13}$ synthon 199 had a same structure as the left fragment of amphidinolide B which has been synthesized in our group before. The same route has been employed to complete the synthesis of fragment 199, which began with a highly enantioselective AAC reaction of 2-tbutylsilanyloxy propionaldehyde with acetyl bromide in the presence of $\mathrm{Al}(\mathrm{III})$ triamine catalyst 160, delivering β-lactone 202 in 86% yield and 95% ee (Scheme 22). β-lactone 202 was subjected to a cuprate-mediated ring opening with methylmagnesiumbromide and CuBr to give carboxylic acid 203 in 77\% yield. Coupling 203 with N, O-dimethylhydroxylamine and reacting
the resulting Weinreb amide with methyllithium provided methyl ketone 204 in 82% yield. Functionalizing 204 to serve as the requisite Suzuki cross-coupling partner proceeded by kinetic ketone enolization and enolate trapping with PhNTf_{2} to provide vinyl triflate 205 in 83% yield. In anticipation of the planned fragment uniting the Suzuki reaction, vinyl triflate 205 was then converted into the corresponding pinacol boronate ester 206 through $\operatorname{Pd}(0)$-catalyzed bis(pinacolato)diborane cross-coupling in 63% yield. The boronic ester functionality proved to be sufficiently robust that 207 could be further elaborated to the fully functionalized $\mathrm{C}_{7}-\mathrm{C}_{13}$ fragment. Thus, primary alcohol deprotection was followed by standard homologation to the allylic alcohol 208 by alcohol oxidation, Horner-Emmons-Wadsworth homologation, and enoate reduction. Subjecting allylic alcohol $\mathbf{2 0 8}$ to Sharpless epoxidation, therefore, afforded the epoxy alcohol 209 in 63% yield with subsequent protection of the primary alcohol affording the intact coupling partner 199 in 92% yield.

Scheme 22. Synthesis of the $\mathrm{C}_{7}-\mathrm{C}_{13}$ fragment $\mathbf{1 9 9}^{a}$

${ }^{\text {a Conditions: (a) } 20 \mathrm{~mol}}$ \% catalyst 160, $i-\mathrm{Pr}_{2} \mathrm{NEt},-78^{\circ} \mathrm{C}$. (b) $\mathrm{MeMgBr}, \mathrm{CuBr} \cdot \mathrm{DMS}$; (c)
(OMe) $\mathrm{MeNH}_{2} \mathrm{Cl}$, EDCI, DMAP. (d) MeLi, THF; (e) KHMDS, $\mathrm{PhNTf}_{2},-78{ }^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$; (f) Bpin-Bpin, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{PPh}_{3}$, PhOK, DMF, $50{ }^{\circ} \mathrm{C}$. (g)TBAF. (h) Dess-Martin/Py; (i) $\mathrm{NaH},(\mathrm{OiPr})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$. (j) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (k) Ti(O'Pr) ${ }_{4}$, (+)-DET, $t \mathrm{BuOOH}$. (l) TBSCI, imidazole, DMF.

2.2.4.3 Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ Fragment 211

Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ synthon 211 commenced with the known carboxylic acid 154 (Scheme 23). ${ }^{96}$ Converting carboxylic acid 154 into alkyne 210 was carried out by coupling with N, O-dimethylhydroxylamine and the subsequent desilylation reaction with TBAF afforded alkyne 210 in 64% yield over two steps, thereby providing the conduit for stereoselective installation of the $\mathrm{C}_{14}-\mathrm{C}_{15}$ trisubstituted olefin. Thus, addition of $\mathrm{Bu}_{3} \mathrm{SnCu}(\mathrm{Bu})(\mathrm{CN}) \mathrm{Li}_{2}{ }^{100}$ to 210 followed by the trapping of the intermediate alkenyl cuprate with MeI and stannane-iodine exchange provided vinyl iodide 211 in a low yield (37\%). An alternative route was explored to
improve the yield.

Scheme 23. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ fragment $\mathbf{2 1 1}^{a}$

${ }^{\text {a }}$ Conditions: (a) $\mathrm{Me}(\mathrm{MeO}) \mathrm{NH}_{2} \mathrm{Cl}, \mathrm{DCC}$, DMAP. (b) TBAF, THF; (c) $\left(\mathrm{Bu}_{3} \mathrm{Sn}\right)_{2}, \mathrm{CuCN}$, BuLi, Mel, $-50^{\circ} \mathrm{C}$; (d) I_{2}, THF

The alternate route was commenced with carboxylic acid 172 (Scheme 24). Carboxylic acid 172 was converted into silyl ether 212 through a two-step sequence: reduction of carboxylic acid 172 with BH_{3} followed by silyl deprotection with TBAF in 92% yield over two steps. The resulting silyl ether 212 was hydrogenated with $10 \% \mathrm{Pd} / \mathrm{C}$ and then oxidized by the Dess-Matin reagent ${ }^{101}$ to deliver aldehyde 213 in 96% yield over two steps. Subsequently, the carbozirconation reaction with the alkyne 214, followed by I_{2} quenching afforded vinyl iodide 215 in 85% yield. Finally, vinyl iodide 215 was desilylated with TBAF followed by the DessMartin oxidation ${ }^{101}$ to afford fragment 198 in 82% yield over two steps.

Scheme 24. Synthesis of the $\mathrm{C}_{14}-\mathrm{C}_{18}$ fragment $\mathbf{1 9 8}^{a}$

${ }^{\text {a }}$ Conditions: (a) $\mathrm{BH}_{3}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ - rt; (b) TIPSOTf, $0^{\circ} \mathrm{C}$; (c) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{CH}_{3} \mathrm{OH}$; (d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) Ohira-Bestmann reagent, $\mathrm{NaOMe}, \mathrm{MeOH}$. (f) $\mathrm{AlMe}_{3},[\mathrm{ZrCp}]_{2} \mathrm{Cl}_{2} ; \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}$; (g)TBAF; (h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The intermediate 214 was also synthesized from ester 154 (Scheme 25). DIBAL reduction of ester 154, followed by desilylation with TBAF afforded the volatile alkyne 216 in 86% yield. Subsequently, exposure of $\mathbf{2 1 6}$ to TIPSOTf and 2,6-lutidine resulted in 214 in 92% yield.

Scheme 25. An alternative synthesis of intermediate 214^{a}

${ }^{\text {a }}$ Conditions: (a) DIBAL-H; (b) TBAF, THF; (c) TIPSOTf, 2,6-lutidine;

2.2.4.4 Synthesis of the $\mathbf{C}_{19}-\mathrm{C}_{\mathbf{2 6}}$ Fragment 200

The right wing of amphidinolide, fragment 200, was prepared from the previous
intermediate 200 (Scheme 26). A Cram-chelation ${ }^{102}$ type of isoprenyl Grignard addition to aldehyde 169 furnished 217 as the major isomer (dr 7:1). The newly formed hydroxyl group of 217 was then protected by p-anisyl acetal through anhydrous DDQ oxidation of PMB ether to provide 218. Subsequently, ozonolysis of alkene of 218 successfully delivered the desired methyl ketone fragment 200 in 88% yield.

Scheme 26. Synthesis of the $\mathrm{C}_{19}-\mathrm{C}_{26}$ fragment $\mathbf{2 0 0}^{a}$

2.2.4.5 Fragments Coupling

With three major fragments in hand, we are trying to develop a reliable assembly process. The potentially challenging Suzuki coupling of 199 and the sterically compromised iodide 198 was tested, which gave the desired diene 219 in 73% yield, provided that it was performed with a
combination of $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ba}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in DMF (Scheme 27). ${ }^{100}$ Reduction of 219 with DIBAL afforded aldehyde 220. Next, the LDA-mediated aldol reaction of methyl ketone 200 with aldehyde 220 proceeded with poor selectivity (dr 1.5:1). However, Kalesse has reported a low yield and poor selective aldol reaction when C_{21} and C_{22} diol was protected as the acetonide. ${ }^{73}$ In future work, protecting group adjustment at the C_{21} hydroxyl will be tested in order to get good selectivity in the aldol coupling reaction.

Scheme 27. Fragments coupling.

2.3 CONCLUSIONS

In efforts towards asymmetric synthesis of the cytotoxic macrolide amphidinolide H 1 , asymmetric AAC reactions have been used to set key stereochemical relationships in major fragments 211 and 199. Iodide 211 was coupled with boronic ester 199 via an efficient Suzuki reaction to form a $\mathrm{C}_{7}-\mathrm{C}_{18}$ fragment 219. Subsequent homologation was attempted by the aldol coupling between fragment 220 and 200. However, the low yield and low selectivity was obtained and needs to be improved in the further study.

2.4 EXPERIMENTALS

General Information: Optical rotations were measured on a Perkin-Elmer 241 digital polarimeter with a sodium lamp at ambient temperature and are reported as follows: $[\alpha]_{\lambda}$ (c $\mathrm{g} / 100 \mathrm{~mL}$). Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. NMR spectra were recorded on a Bruker Avance-300 $\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right)$ spectrometer with chemical shifts reported relative to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for 1 H and $\mathrm{CDCl}_{3}(77.0 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectra. Unless otherwise stated, all reactions were carried out in flame-dry glassware under a nitrogen atmosphere using standard inert atmosphere techniques for the manipulation of solvents and reagents. Analytical gas-liquid chromatography (GLC) was performed on a Varian 3900 gas chromatography equipped with a flame ionization detector and split mode capillary injection system using a Chiraldex ${ }^{\mathrm{TM}}$ G-TA column ($20 \mathrm{~m} \times 0.25 \mathrm{~mm}$) (Advanced Separation Technologies Inc.). Helium was used as the carrier gas at the indicated pressures.

Unless otherwise stated, all reactions were carried out in dry glassware under a nitrogen atmosphere using standard inert atmosphere techniques for the manipulation of solvents and reagents. Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, THF, DMF, diethyl ether, pentane and toluene) were obtained by passage through successive alumina and Q5 reactant-packed columns on a solvent purification system. N, N-Diisopropylethylamine and triethylamine were distilled under nitrogen from CaH_{2}.Anhydrous solvents Flash chromatography was performed on EM silica gel 60 (230240 mesh) unless noted otherwise. If the reaction was worked up with aqueous extraction, dr (diastereomer ratio) was determined from crude NMR or GLC. Compound 198 was prepared according to the procedure. ${ }^{72}$

(S)-(4-(Benzyloxy)-3-methylbutoxy)triisopropylsilane (212): To a solution mL of a 1.0 M solution of $\mathrm{BH}_{3} \cdot \mathrm{THF}(3.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The solution was then stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , warmed up to room temperature and the solvent evaporated in vacuo to afford 386 mg crude product and submit to next step without further purification. To a solution of 386 mg crude alcohol 212a (2.00 mmol) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.347 mL of a 2,6-lutidine (321 mg , 3.0 mmol) at $0{ }^{\circ} \mathrm{C}$, followed by adding 0.550 ml of TIPSOTf. The solution was then stirred at 0 ${ }^{\circ} \mathrm{C}$ for 3 h , warmed up to room temperature. The reaction was then quenched with aqueous saturated NaHCO_{3} and extracted with ether (3 x 20 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified with column chromatography $(5 \%$ ethyl acetate in hexane) to give $636 \mathrm{mg}(92 \%, 2$ steps $)$ of title compound as colorless oil. $[\alpha]_{\mathrm{D}}$ +4.5 (c 2.9, CHCl_{3}); IR (thin film): 2942, 2865, 1461, $1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.29-7.37 (m, 5H), 4.53(s, 1H), 3.74-3.77 (m, 1H), 3.40 (dd, J = 8.8 Hz, 5.7 Hz, 1H), $3.29(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dt}, \mathrm{J}=13.3 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dt}, \mathrm{J}=14.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07-1.16(\mathrm{~m}, 21 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 138.9,128.3$, $127.5,127.4,76.0,72.9,61.6,37.0,30.4,18.0,17.4,12.0$.

(S)-2-Methyl-4-(triisopropylsilyloxy)butan-1-ol (213a): To a solution of 84 mg of $212(0.25 \mathrm{mmol})$ in 5 mL of MeOH under nitrogen atmosphere, 12 mg of Pd / C was added. After two vacuum $/ \mathrm{H}_{2}$ cycles to replace nitrogen atmosphere with hydrogen, the reaction was stirred for over night under 1 atm pressure of hydrogen (balloon). The reaction mixture was then filter through a plug of celite, the filtrate was concentrated. The crude product
was submitted to the next step without further purification. $[\alpha]_{\mathrm{D}}-9.2\left(c 0.80, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3348,2942,2866,1462,1099 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.86(\mathrm{dt}, \mathrm{J}=10.3,1 \mathrm{H})$, 3.74-3.77 (m, 1H), 3.3 (pentet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.39$ $(\mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.90(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.10$ $(\mathrm{s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.2,119.0,113.6,80.4,75.3,41.5,37.6$, 32.7, 26.1, 19.0, 18.9, 18.4, 14.3, 9.2, $-3.5,-4.1$; HRMS (ESI) m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{14} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NaSi}: 283.2069$; found: 283.2052
 (S)-2-Methyl-4-(triisopropylsilyloxy)butanal (213): To a $0{ }^{\circ} \mathrm{C}$ solution of periodinane $(0.375 \mathrm{mmol})$. The reaction mixture was allowed to warm to ambient temperature and stirred for 2 h . It was then direct loaded on the silica gel column and carefully eluted with 5% ethyl acetate in hexanes to afford 64 mg the title compound as colorless oil ($96 \% 2$ steps); $[\alpha]_{\mathrm{D}}-12\left(c=12, \mathrm{CHCl}_{3}\right) ;$ IR (thin film): 2942, 2866, 1708, 1462, $1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(700$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.68(\mathrm{~s}, 1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 1 \mathrm{H}), 2.57($ sextet, J = 7.0 Hz, 1H), $1.99(\mathrm{td}, \mathrm{J}=7.0,14 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{td}, \mathrm{J}=7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.05$ (m, 21 H) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.0,60.6,43.5,33.9,18.0,13.1,11.9$; HRMS (EI) m / z calcd for $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+} . \mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}$: 215.1467 ; found: 215.1435

(S)-Triisopropyl(3-methylpent-4-ynyloxy)silane (214): To 2 mL of

MeOH , Na metal ($63 \mathrm{mg}, 2.7 \mathrm{mmol}$) was added. The mixture was stirred for 30 min and cooled to $-78^{\circ} \mathrm{C}$. Dimethyl-1-diazo-2-oxopropylphosphonate ($518 \mathrm{mg}, 2.70$ mmol) in 5 mL THF was added dropwise. The resulting mixture was stirred at this temperature
for 0.5 h . Aldehyde 213 ($174 \mathrm{mg}, 0.67 \mathrm{mmol}$) in 5 mL THF was slowly introduced. The mixture was stirred for 0.5 h at $-78^{\circ} \mathrm{C}$ and then warmed upto ambient temperature. After stirred overnight at ambient temperature, $5 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated, and the residue was purified by flash chromatography (1% hexanes in ethyl acetate) to give alkyne 214 as a pale yellow oil (104 mg, 61\%). [$\alpha]_{\mathrm{D}}+25\left(c 7.3, \mathrm{CHCl}_{3}\right.$); IR (thin film): 2942, 2866, 1708, 1462, $1106 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $3.84(\mathrm{br}, 2 \mathrm{H}), 3.70($ sextet, $\mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H})$, $1.69(\mathrm{dt}, \mathrm{J}=6.0,12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 88.9,68.2,61.0,39.8,22.1,20.9,18.0,12.0 ;$ HRMS (APCI) m / z calcd for $[\mathrm{M}]^{+}$. $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}$: 255.2144 ; found: 255.2165 .

(S,E)-(5-Iodo-3,4-dimethylpent-4-enyloxy)triisopropylsilane (215): To а suspension of $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(76 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, was added 0.40 mL of $\mathrm{AlMe}_{3}(2.0 \mathrm{M}, 0.80 \mathrm{mmol})$ under N_{2} atmosphere. After stirring for 0.5 h , a solution of alkyne $214(53 \mathrm{mg}, 0.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added dropwise. The resulting solution was stirred for 16 h at ambient temperature untill all starting material was consumed as monitored by TLC. The mixture was cooled to $-20^{\circ} \mathrm{C}$ and a solution of iodine ($318 \mathrm{mg}, 1.2 \mathrm{mmol}$) in THF (2 mL) was slowly introduced. After stirring for 30 min at $-20^{\circ} \mathrm{C}$, the reaction was warmed to $0{ }^{\circ} \mathrm{C}$. The reaction was then quenched with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ and extracted with ether ($3 \times 20 \mathrm{~mL}$). The organic layer was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (5% ethyl acetate in hexanes) to afford the title compound as a colorless oil (67 $\mathrm{mg}, 85 \%) .[\alpha]_{\mathrm{D}}-2.9\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2939, 2865, 1458, $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.97(\mathrm{~s}, 1 \mathrm{H}), 3.67-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.03($ sextet, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$, $1.67(\mathrm{dt}, \mathrm{J}=5.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 151.7,61.1,39.8,37.9,20.5,19.4,18.0,12.0 ; \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}$ calcd for $\left(\mathrm{M}^{+}+\mathrm{H}\right)$ $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{OSiI}$: 397.1424 ; found: 397.1438 .

(S)-4-((Triisopropylsilyl)ethynyl)oxetan-2-one (153): TMSQn (2.0 g, 5.00 $\mathrm{mmol})$ and $\mathrm{MgCl}_{2}(4.75 \mathrm{~g}, 50.0 \mathrm{mmol})$ were dissolved in 50 mL diethyl ether and $100 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature and then cooled to $-78^{\circ} \mathrm{C}$. To the above cooled mixture was added N, N-diisopropylethylamine ($21.8 \mathrm{~mL}, 125 \mathrm{mmol}$), followed by aldehyde $152(10.5 \mathrm{~g}, 50 \mathrm{mmol})$. A solution of acetyl chloride ($7 \mathrm{~mL}, 100 \mathrm{mmol}$) in 50 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was then added over 2 h by syringe pump. After being stirred overnight, the reaction was quenched at the reaction temperature by adding $200 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and filtered through a silica gel column and concentrated. The resulting crude product was purified by flash chromatography (10% ethyl acetate in hexanes) giving $9.88 \mathrm{~g}(78 \%$ yield $)$ of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}-0.76$ (c 0.92, CHCl_{3}); IR (thin film): 2944, 2866, 1839, 1458, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.06(\mathrm{dd}, \mathrm{J}=4.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=6.3,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{J}=4.9$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,101.2,92.9,58.7,46.6$, 18.5, 11.0; HRMS (APCI) m/z calcd for [M] ${ }^{+} \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}$ Si: 252.1546; found: 252.1585 .

(S)-3-Methyl-5-(triisopropylsilyl)pent-4-ynoic acid (154): To a -50 dimethylsulfide was added 6.0 mL of a 3 M ethereal solution of methylmagnesium bromide (18.0 mmol) slowly dropwise via syringe. The resulting heterogeneous mixture was stirred at -
$50^{\circ} \mathrm{C}$ for 30 min then warmed to $-30^{\circ} \mathrm{C}$ for 30 min . The reaction was then cooled to $-50^{\circ} \mathrm{C}$ and 1.50 g of lactone $153(6.0 \mathrm{mmol})$ in 10 mL of THF was added via cannula. The resulting mixture was maintained at $-50^{\circ} \mathrm{C}$ for 45 min , then 1.1 mL of $\mathrm{TMSCl}(9.0 \mathrm{mmol})$ was added and the reaction was allowed to warm to ambient temperature overnight. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(300 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(100 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100$ mL). The combined organics were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by MPLC three times $(0-5 \%$ EtOAc/hexanes, then $30-100 \%$, EtOAc/hexanes) to afford the title compound as a yellow oil (883 mg, 52% with about 5% of unisolatable impurity). $[\alpha]_{\mathrm{D}}+9.8$ (c 2.9, CHCl_{3}); IR (thin film): 2939, 2865, 2165, 1713, $1462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 3.00 (sextet, $\mathrm{J}=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=6.9,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, \mathrm{J}=8.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.9,3 \mathrm{H})$, 1.09-0.99 (m, 21H); ${ }^{13} \mathrm{C}$ NMR (175 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 176.9,111.1,81.0,41.5,23.6,20.8,18.5$, 11.1; HRMS (ESI) m/z calcd for (M-H) ${ }^{-} \mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}$: 267.1780; found: 267.1792.

(S)-Methyl 3-methyl-5-(triisopropylsilyl)pent-4-ynoate (155): To a solution of 1.34 g of carboxylic acid $154(5.0 \mathrm{mmol})$ in 21 mL of MeOH and 63 mL of toluene, was added 5.0 mL of a 2 M ethereal solution of trimethylsilyl diazomethane (10.0 mmol) slowly dropwise via syringe. The reaction was stirred for 2 h and concentrated. The residue was directly used to the next step with further purification. $[\alpha]_{\mathrm{D}}+13$ (c 0.6, CHCl_{3}); IR (thin film): 2943, 2865, 2165, 1744, 1462, $1168 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.01($ sextet, $\mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, \mathrm{J}=7.8,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}=$ $6.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$171.9,111.5,80.6,51.6,41.8,23.9,20.9,18.6,11.2 ; \operatorname{HRMS}(A P C I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}: 283.2093$; found: 283.2065

(S)-3-Methyl-5-(triisopropylsilyl)pent-4-yn-1-ol (216a): To a $0{ }^{\circ} \mathrm{C}$ solution of 187 mg of ester $154(0.66 \mathrm{mmol})$ in 10 mL of THF, was added 2.0 mL of a 1 M hexanes solution of DIBAL (2.0 mmol) dropwise via syringe. The reaction was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and quenched with a saturated aqueous Rochelle's solution. The mixture was extracted by $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were combined and washed with Rochelle solution, brine and dried and concentrated. The residue was purified with MPLC (5\%-20\% ethyl acetate in hexanes) to afford the tile compound as colorless oil (152 mg, 91\%). $[\alpha]_{\mathrm{D}}+21\left(c 2.6, \mathrm{CHCl}_{3}\right)$; IR (thin film): $3335,2941,2866,2164,1462,1052 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.84(\mathrm{~m}$, $2 \mathrm{H}), 2.68($ sextet, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{br}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.04(\mathrm{~m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 113.1,81.0,61.4,39.5,24.1$, 21.5, 18.6, 11.2; HRMS (APCI) m/z calcd for [M] ${ }^{+} \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}$ 255.2144; found: 255.2178

(S)-3-Methylpent-4-yn-1-ol (216): To a solution of alcohol 216a (152 mg, 0.60 $\mathrm{mmol})$ in 2 mL of THF, was added 0.72 mL of a 1 M solution of TBAF (0.72 mmol) dropwise via syringe. The reaction was stirred for 3 h and quenched by adding 0.5 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was filtered through a plug of silica gel with ether/pentane (1:1) solution and concentrated carefully with rotavapor (low boil point) to afford 58 mg product with a trace amount of solvent $(95 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $3.84(\mathrm{~m}, 2 \mathrm{H})$, $2.68(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 88.4,68.9,61.0,39.3,22.6,21.0,15.3,14.0 ;$

(R)-1-(Benzyloxy)-4-methylpent-4-en-2-yl acrylate (185): To a $0{ }^{\circ} \mathrm{C}$ solution of 2.06 g of alcohol $184(10.0 \mathrm{mmol}), 3.15 \mathrm{ml}$ of diisopropylethylamine ($2.34 \mathrm{~g}, 19 \mathrm{mmol}$) and 0.122 g of DMAP (1 mmol)
in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added 1.22 mL of acryloyl chloride (15 mmol) dropwise via syringe. The reaction was stirred for 24 h and quenched with aq. sat. NaHCO_{3} solution, extracted with ether, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by flash chromatography (10% ethyl acetate in hexane) to afford $2.32 \mathrm{~g}(89 \%)$ of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}+7.0\left(c 3.4, \mathrm{CHCl}_{3}\right) ;$ IR (thin film): 3073, 2862, 1723, 1453, 1405, 1269, $1193 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.40-7.28 (m, 5H), $6.16(\mathrm{dd}, \mathrm{J}=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, \mathrm{J}=17.1$, $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, \mathrm{J}=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{tdd}, \mathrm{J}=6.6,4.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, \mathrm{J}=$ 15.1, 1. Hz, 12H), $4.57(\mathrm{q}, \mathrm{J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,141.1,138.1,130.8,128.6,128.4,127.7$, 127.6, 113.6, 73.2, 71.0, 70.9, 39.3, 22.5; HRMS (APCI) m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}$: 261.1491; found: 261.1481.

(R)-6-(Benzyloxymethyl)-4-methyl-5,6-dihydropyran-2-one (186): 1.78 g of ester $185(6.8 \mathrm{mmol})$ was dissolved in 350 mL of degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and heated to reflux. A solution of 462 mg of Grubbs II catalyst (0.54 mmol) in 5 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added via cannula to the refluxed solution. The resulting mixture was refluxed for overnight and condensed. The residue was purified with flash chromatography ($20 \%, 50 \%$ ethyl acetate in hexanes) to yield 1.37 g of the title compound as a slightly red oil (86%). $[\alpha]_{\mathrm{D}}+117\left(\right.$ c $3.0, \mathrm{CHCl}_{3}$); IR (thin film): 2910, 2866, 1720, 1453, 1387, 1247, $1125 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) 7.41-7.27 (m, 5H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.59-4.52(\mathrm{~m}, 1 \mathrm{H})$, $3.68(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=12.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, \mathrm{J}=3.0,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}$,

3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,157.3,137.7,128.5,127.9,127.8,116.2,76.0,73.6$, 70.8, 31.4, 23.1; HRMS (APCI) m / z calcd for $[M]^{+.} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1178$; found: 233.1198.

(4R,6R)-6-(Benzyloxymethyl)-4-methyl-tetrahydropyran-2-one (187):
To a solution of 1.37 g of $\mathbf{1 8 6}(5.90 \mathrm{mmol})$ in 40 mL of benzene under nitrogen atmosphere, 611 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. After two vacuum $/ \mathrm{H}_{2}$ cycles to replace nitrogen with hydrogen, the reaction was stirred for overnight under 1 atm pressure of hydrogen (balloon). The reaction mixture was then filtered through a plug of celite, the filtrate was concentrated. The crude product was purified with flash chromatography (30-50\% ethyl acetate in hexanes) to afford 1.15 g of the title compound as colorless oil (83%). $[\alpha]_{\mathrm{D}}+4.7$ (c 2.0, CHCl_{3}); IR (thin film): 2910, 2866, 1720, 1453, 1387, 1247, $1125 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.38-7.28 (m, 5H), $5.80(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.47$ (dddd, 12.1, 4.5, 4.5, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{dd}, \mathrm{J}=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.9,137.7,128.4,127.7,127.6,79.2,73.5,71.9,38.1,33.4,26.5,21.5 ;$ HRMS (APCI) m / z calcd for $[\mathrm{M}]^{+} . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}: 233.1334$; found: 233.1365

(4R,6R)-6-(Hydroxymethyl)-4-methyl-tetrahydropyran-2-one (188):
To a solution of 240 mg of $187(1.0 \mathrm{mmol})$ in 20 mL of methanol under nitrogen atmosphere, 52 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ was added. After two vacuum $/ \mathrm{H}_{2}$ cycles to replace nitrogen with hydrogen, the reaction was stirred for overnight under 1 atm pressure of hydrogen (balloon). The reaction mixture was then filter through a plug of celite, the filtrate was concentrated to afford 142 mg of the title compound as white solid $(98 \%) .[\alpha]_{\mathrm{D}}-11$
(c 1.7, CHCl_{3}); IR (thin film): 3432, 2961, 2930, 1708, 1457, 1376, 1265, 1064, $1091 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $4.43(\mathrm{tdd}, \mathrm{J}=11.9,2.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ $(\mathrm{dd}, \mathrm{J}=11.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=16.8,4,2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{br}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H})$, 2.10-2.05 (m, 1H), $1.88(\mathrm{dd}, \mathrm{J}=16.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{q}, \mathrm{J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) δ 171.1, 81.1, 64.9, 38.0, 32.4, 26.4, 21.5; X-ray crystallography was used to verify the stereochemistry.

(3S,4R,6R)-6-(Benzyloxymethyl)-3-hydroxy-4-methyl-
tetrahydropyran-2-one (190a): To a $0{ }^{\circ} \mathrm{C}$ solution of diisopropylamine ($101 \mathrm{mg}, 1 \mathrm{mmol}$) in 3.4 mL THF, was added 0.63 mL BuLi (1.6 M in hexanes, 1 mmol). After stirred at $0{ }^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 4 \mathrm{~mL}$ LDA $(0.25 \mathrm{M})$ stock solution was made. A round bottom flask was charged with dry nitrogen and filled with 3.67 mL LDA (0.25 $\mathrm{M}, 0.91 \mathrm{mmol})$ and 0.3 mL of TMEDA (1.9 mmol) at $-45^{\circ} \mathrm{C}$. To the resulting solution, was added a solution of 180 mg of lactone 187 in 1 mL of THF. Reaction was stirred at the same temperature for 30 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $(1 R)-(-)-(10-$ camphorsulfonyl)oxaziridine ($351 \mathrm{mg}, 1.53 \mathrm{mmol}$) in 5 mL of THF was cannulated to the reaction and stirred for 2 h . The reaction was quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether ($3 \times 50 \mathrm{~mL}$), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified with MPLC (20% to 50% ethyl acetate in hexanes) to afford title compound as colorless oil ($125 \mathrm{mg}, 63 \%$, contains tiny amount of unisolatable impurities). To a $-78{ }^{\circ} \mathrm{C}$ solution of alcohol $189(680 \mathrm{mg}$, 2.72 mmol) and 4-methoxybenzyl-2,2,2-trichloroacetimidate ($1.15 \mathrm{~g}, 4.08 \mathrm{mmol}$) in 10 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added a solution of BF_{3} etherate ($0.4 \mathrm{~mL}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.4 \mathrm{mmol}$). After stirring for 4 h , the reaction was quenched by adding a saturated aqueous solution of NaHCO_{3} and
extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to provide a yellow oil that was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexanes and the resulting white solid was removed by filtration. The filtrate was concentrated and purified by flash chromatography ($2.5-5 \%$ ethyl acetate in hexanes) to afford $887 \mathrm{mg}(88 \%)$ of the title compound as a clear colorless oil. $[\alpha]_{\mathrm{D}}-40\left(c 2.3, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2917, 2851, 1736, 1161, 1511, 1454, 1243, 1094, $1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.39-7.31 (m, 7H), 6.90 $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.00(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4,59(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.55$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, \mathrm{J}=4.8,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H})$, $1.99(\mathrm{dt}, \mathrm{J}=14.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, \mathrm{J}=12.6,25.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,159.5,137.7,130.2,129.5,128.5,127.8,127.7,113.8,79.4$, 78.3, 73.6, 73.5, 71.7, 33.2, 32.9, 18.9; HRMS (ESI) m / z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}$: 393.1678; found: 393.1674.

(2S,3R,5R)-6-(Benzyloxy)-5-hydroxy-N-methoxy-2-(4-methoxybenzyloxy)-N,3-dimethylhexanamide (190): To a solution of Weinreb's salt ($624 \mathrm{mg}, 6.40 \mathrm{mmol}$) in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}, \mathrm{Me}_{3} \mathrm{Al}$ ($3.2 \mathrm{~mL}, 2.0 \mathrm{M}$ in hexane, 6.40 mmol) was added dropwise and then warmed to ambient temperature. After being stirred for 1 h , a solution of crude lactone 190a (470 $\mathrm{mg}, 1.28 \mathrm{mmol}$) in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred 1.5 h , then quenched with aqueous saturated Rochelle's solution and the biphasic mixture was stirred vigorously for 1 h . Then the organic layer was separated and the aqueous layer was extracted with ether. The organic extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography (70% ethyl acetate in hexanes), affording 495 mg (90%)
of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}-16\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3445, 2931, $1734,1698,1651,1512,1456,1247,1097,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) 7.40-7.25 $(\mathrm{m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.21(\mathrm{br}, 1 \mathrm{H}), 3.89-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, \mathrm{J}=9.0,3.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.32(\mathrm{dd}, \mathrm{J}=9.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{br}, 2 \mathrm{H}), 1.54(\mathrm{dddd}, \mathrm{J}=14.4,9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 1.44-1.35 (m, 1H), $0.99(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.7,159.3,138.0$, $130.2,129.6,128.5,127.8,127.8,113.7,78.3,75.1,73.4,71.2,68.5,61.2,55.3,36.9,33.2,32.1$, 14.2; HRMS (ESI) m/z calcd for [M+Na] ${ }^{+} \mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{6} \mathrm{Na}: 454.2206$; found: 454.2186.

(2S,3R,5R)-6-(Benzyloxy)-N-methoxy-2-(4-methoxybenzyloxy)-N,3-dimethyl-5-(triethylsilyloxy)hexanamide (191): To a solution of alcohol 190 ($43 \mathrm{mg}, 0.01 \mathrm{mmol}$) in 2 mL DMF was added imidazole (0.21 $\mathrm{mg}, 0.03 \mathrm{mmol})$. Triethylsilyl chloride ($23 \mathrm{mg}, 0.015 \mathrm{mmol}$) was added and the reaction was allowed to stir for overnight. The reaction was quenched by adding a saturated aqueous solution of NaHCO_{3} and extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by flash chromatography (30% ethyl acetate in hexanes), affording $50 \mathrm{mg}(92 \%)$ of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}-13.5$ (c 1.2, CHCl_{3}); IR (thin film): 2917, 2851, 1736, 1511, 1454, 1243, $1094,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.38-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ $(\mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{br}, 1 \mathrm{H}), 3.91-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.47$ $(\mathrm{m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.64-0.54(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8,159.2,138.4,130.1,129.6,128.3,127.6,127.5,113.7,79.3,75.4,73.3$,
$71.2,69.2,61.1,55.3,39.0,32.3,31.3,13.8,6.9,5.1 ;$ HRMS $(E S I) \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{NO}_{6} \mathrm{NaSi}$: 568.3070; found: 568.3074.

(2S,3R,5R)-6-(Benzyloxy)-2-(4-methoxybenzyloxy)-3-methyl-5(triethylsilyloxy)hexanal (169): To a solution of amide 191 in 20 mL mmol). The reaction was allowed to stir for 15 min at $0^{\circ} \mathrm{C}$ and quenched by adding a saturated aqueous solution of Rochelle salt and extracted with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The resulting crude oil was purified by flash chromatography (10-20\% ethyl acetate in hexanes), affording 135 mg (89%) of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}-2.3\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2954, 2875, 1731, 1612, 1513, 1456, 1248, 1110, 1033, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.63(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.27 (m, 7H), $6.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 2 \mathrm{H})$, $2.26(\mathrm{br}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.64-0.56(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.4,159.4,138.3,129.7,129.6,128.4,127.7,127.6,113.8,87.3,75.3,72.5,69.0$, 55.3, 38.0, 30.8, 14.2, 6.9, 5.1; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{28} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{NaSi}$ 509.2699; found: 509.2679.

(3S,4S,5R,7R)-8-(Benzyloxy)-4-(4-methoxybenzyloxy)-2,5-dimethyl-7-(triethylsilyloxy)oct-1-en-3-ol (217): A solution of isoprenyl magnesium bromide ($2.2 \mathrm{~mL}, 0.5 \mathrm{M}$ in THF, 0.55 mmol) was evaporated to dried under vaccuo at $-78^{\circ} \mathrm{C}$. The residue was redissolved
in $10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$. To the resulting solution, a solution of aldehyde $169(135 \mathrm{mg}$, 0.278 mol) in $5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added dropwise at $-78^{\circ} \mathrm{C}$. After stirred at the same temperature for 10 min , the reaction was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether $(3 \times 30 \mathrm{~mL})$. The combined organic extracts were dried and concentrated. The residue was purified by flash chromatography (10-20\% ethyl acetate in hexanes), affording $124 \mathrm{mg}(84 \%$, d.r 7:1) of the title compound as a colorless oil. $[\alpha]_{\mathrm{D}}+21\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (thin film): 3500, 2952, 2876, 1612, 1513, 1456, 1248, 1080, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.36-7.29 $(\mathrm{m}, 7 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s} .1 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.43-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.58$ $(\mathrm{m}, 2 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 12 \mathrm{H}), 0.64-0.58(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.3, 144.9, $138.3,130.6,129.5,128.3,127.7,127.5,113.8,113.6,84.9,76.1,75.5,74.4,73.3,69.1,55.3$, 40.0, 30.7, 17.8, 13.4, 6.9, 5.1; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{NaSi}: 551.3169$; found: 551.3150 .

((2R,4R)-1-(Benzyloxy)-4-((4S,5S)-2-(4-methoxyphenyl)-5-(prop-1-en-2-yl)-1,3-dioxolan-4-yl)pentan-2-yloxy)triethylsilane (218): To a mixture of azeotropically dried $113(37 \mathrm{mg}, 0.070 \mathrm{mmol})$ and 128 mg of activated powdered $4 \AA$ molecular sieves in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added the azeotropically dried DDQ $(19 \mathrm{mg}, 0.084 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ by syringe. After stirring 2 h , the reaction was load on silica gel column and eluted with 5-10\% EtOAc in hexanes to afford the title compound as colorless oil ($29 \mathrm{mg}, 74 \%$). [$\alpha]_{\mathrm{D}}+4.3\left(c 0.53, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2953, $2876,1615,1517,1457,1249,1080,1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$,
$2 H), 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s} .1 \mathrm{H}), 4.53(\mathrm{~s}$, $2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, \mathrm{J}=7.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.42-3.36(m, 2H), $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97$ $(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 12 \mathrm{H}), 0.67-0.58(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.4,143.4,138.3,130.3$, $128.3,128.2,127.7,127.6,113.7,113.2,103.7,84.9,82.3,75.5,73.4,69.1,55.3,39.5,30.9,18.0$, 13.4, 6.9, 5.1; HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{NaSi}$: 549.3012; found: 549.3027.

1-((4R,5S)-5-((2R,4R)-5-(Benzyloxy)-4-(triethylsilyloxy)pentan-2-yl)-2-(4-methoxyphenyl)-1,3-dioxolan-4-yl)ethanone (200): A gaseous stream of ozone in O_{2} (generated using a standard ozonizer) was bubbled through a $-78{ }^{\circ} \mathrm{C}$ solution of $218(17 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $5 \mathrm{~mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ until the reaction mixture becomes blue. Triphenylphosphine ($20 \mathrm{mg}, 0.076 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and the reaction was warmed to ambient temperature and stirred for 2 h . The reaction was then condensed under vacuuo. The residue was loaded on the a silica gel and firstly eluted with 5% ethyl acetate in hexanes to get rid of triphosphine then eluted with 20% ethyl acetate in hexanes to afford 15 mg of the tile compound as colorless oil $(88 \%) .[\alpha]_{\mathrm{D}}+14\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR (thin film): 2954, 2876, 1718, 1615, 1517, 1456, 1250, 1088, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.46(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.53$ $(\mathrm{s}, 2 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.42$ (dd, J = 9.1, 5.6 Hz, 1H), $3.37(\mathrm{dd}, \mathrm{J}=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}$, $1 \mathrm{H}), 1.52(\mathrm{ddd}, \mathrm{J}=13.8,10.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 9 \mathrm{H})$, $0.66-0.60(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.2,160.7,138.2,128.7,128.3,127.7,127.5$,
$113.8,104.4,83.4,82.9,75.3,73.3,69.0,55.3,38.7,31.9,26.8,14.0,6.9,5.1 ;$ HRMS (ESI) m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{30} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{NaSi}$: 551.2805 ; found: 551.2773.

(3S,8R,E)-9-((2S,3S)-3-((tert-Butyldimethylsilyloxy)methyl)oxiran-2-yl)- N-methoxy- $N, 3,4,8$ -tetramethyl-6-methylenenon-4-enamide (130): A mixture of of iodide 211 ($6 \mathrm{mg}, 0.02 \mathrm{mmol}$) boronic ester $199(12 \mathrm{mg}, 0.03$ mmol) and palladium(dppf)dichloride ($7 \mathrm{mg}, 0.008 \mathrm{mmol}$) was evacuated and refilled under nitrogen twice. To this was added DMF 0.5 mL and $\mathrm{Ba}(\mathrm{OH})_{2} 8 \mathrm{H}_{2} \mathrm{O}(19 \mathrm{mg}, 0.06 \mathrm{mmol})$ followed by 2 rapid evacuation and N_{2} refilling cycles. The resulting red solution was stirred at $45^{\circ} \mathrm{C}$ for 20 min , during which time it developed a dark brown color. The reaction mixture was directly loaded on the silica gel column and eluted with (10% ethyl acetate in hexanes) to afford 6.6 mg of title compound as colorless oil (73\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $5.62(\mathrm{~s}, 1 \mathrm{H}), 4.97$ $(\mathrm{s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=12.0,6.3, \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}$, $3 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=14.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dd}, \mathrm{J}=15.0,8.4,1 \mathrm{H}), 2.12(11.1$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, \mathrm{J}=13.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92$ (dd, J = $9.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.

APPENDIX

X-RAY DATA

84

Table 11. Crystal data and structure refinement for 84

Identification code	df82208s
Empirical formula	C14 H21 N O3
Formula weight	251.32
Temperature	203(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=10.009(3) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=6.8235(18) \AA & \beta=105.554(5)^{\circ} . \\ \mathrm{c}=10.630(3) \AA & \gamma=90^{\circ} . \end{array}$
Volume	699.4(3) \AA^{3}
Z	2
Density (calculated)	$1.193 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
F(000)	272
Crystal size	$0.32 \times 0.18 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	1.99 to 32.27°.
Index ranges	$-14<=\mathrm{h}<=14,-10<=\mathrm{k}<=9,-15<=\mathrm{l}<=15$
Reflections collected	8690
Independent reflections	$2512[\mathrm{R}(\mathrm{int})=0.0564]$
Completeness to theta $=30.00^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9983 and 0.9738
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2512 / $1 / 174$
Goodness-of-fit on F^{2}	0.963
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0607, \mathrm{wR} 2=0.1267$
R indices (all data)	$\mathrm{R} 1=0.1144, \mathrm{wR} 2=0.1524$
Largest diff. peak and hole	0.255 and -0.173 e. \AA^{-3}

Table 12. Atomic coordinates (x 104) and equivalent isotropic displacement parameters ($\AA 2 \mathrm{x} 103)$ for 81
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
N	$7338(3)$	$3655(4)$	$11854(2)$	$43(1)$
$\mathrm{O}(1)$	$6469(3)$	$6346(4)$	$10689(2)$	$68(1)$
$\mathrm{C}(1)$	$7566(4)$	$4581(7)$	$13058(3)$	$59(1)$
$\mathrm{O}(2)$	$8808(2)$	$5015(3)$	$9330(2)$	$35(1)$
$\mathrm{C}(2)$	$8053(4)$	$3240(7)$	$13991(4)$	$69(1)$
$\mathrm{O}(3)$	$8658(3)$	$-995(3)$	$8979(2)$	$43(1)$
$\mathrm{C}(3)$	$8150(4)$	$1417(7)$	$13377(3)$	$59(1)$
$\mathrm{C}(4)$	$7706(3)$	$1697(5)$	$12076(3)$	$46(1)$
$\mathrm{C}(5)$	$6788(3)$	$4658(5)$	$10667(3)$	$44(1)$
$\mathrm{C}(6)$	$6668(3)$	$3495(5)$	$9420(3)$	$38(1)$
$\mathrm{C}(7)$	$8128(3)$	$3164(3)$	$9236(3)$	$27(1)$
$\mathrm{C}(8)$	$8124(3)$	$2118(4)$	$7951(2)$	$28(1)$
$\mathrm{C}(9)$	$7631(3)$	$-15(4)$	$7983(2)$	$32(1)$
$\mathrm{C}(10)$	$7345(3)$	$-1002(4)$	$6666(3)$	$40(1)$
$\mathrm{C}(11)$	$6025(4)$	$-387(7)$	$5700(3)$	$66(1)$
$\mathrm{C}(12)$	$8194(5)$	$-2319(6)$	$6386(4)$	$63(1)$
$\mathrm{C}(13)$	$5688(3)$	$4576(7)$	$8271(3)$	$55(1)$
$\mathrm{C}(14)$	$9544(3)$	$2235(5)$	$7675(3)$	$36(1)$

Table 13. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 84

$\mathrm{N}-\mathrm{C}(4)$	1.389(5)
N-C(1)	1.391(4)
$\mathrm{N}-\mathrm{C}(5)$	1.411(4)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.197(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.341(6)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9400
$\mathrm{O}(2)-\mathrm{C}(7)$	1.425(3)
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O})$	0.86(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.421(6)
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9400
$\mathrm{O}(3)-\mathrm{C}(9)$	1.429(3)
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	0.81(6)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.348(5)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9400
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9400
$\mathrm{C}(5)-\mathrm{C}(6)$	1.521(4)
$\mathrm{C}(6)-\mathrm{C}(13)$	1.535(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.543(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{C}(8)$	1.540 (3)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9900
$\mathrm{C}(8)-\mathrm{C}(14)$	1.528(4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.540(4)
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{C}(10)$	1.510(4)
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9900
$\mathrm{C}(10)-\mathrm{C}(12)$	$1.325(5)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.499(5)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9700
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9400
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.9400

$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9700
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9700
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9700
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9700
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.9700
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.9700
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(1)$	108.0(3)
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	129.8(3)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	122.1(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}$	108.0(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	126.0
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	126.0
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O})$	103(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.3(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	125.9
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	125.9
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	108(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	107.6(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	126.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	126.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	108.1(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	126.0
$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	126.0
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}$	119.4(3)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	124.1(3)
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	116.5(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	109.1(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	109.3(2)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)$	113.2(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.4
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.4
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108.4
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	111.1(2)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	108.2(2)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	113.8(2)

$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	107.9
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	107.9
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	107.9
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(7)$	111.4(2)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(9)$	111.9(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	110.1(2)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	107.8
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	107.8
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	107.8
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	113.5(3)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	106.7(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	112.5(2)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.0
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.0
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	108.0
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	122.4(3)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	122.5(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	115.1(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{H}(11 \mathrm{~B})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	120.0
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	120.0
$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	120.0
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.5
$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	109.5

$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C}) \quad 109.5$
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C}) 109.5$
H(14B)-C(14)-H(14C) 109.5

Symmetry transformations used to generate equivalent atoms:

Table 14. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 84

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} b^{*} U^{12}\right]$

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~N} 44(1)$	$49(2)$	$38(1)$	$-7(1)$	$16(1)$	$1(1)$
$\mathrm{O}(1) 83(2)$	$52(2)$	$66(2)$	$-9(1)$	$18(1)$	$29(2)$
$\mathrm{C}(1) 65(2)$	$70(3)$	$48(2)$	$-15(2)$	$25(2)$	$-2(2)$
$\mathrm{O}(2) 36(1)$	$21(1)$	$44(1)$	$1(1)$	$2(1)$	$-1(1)$
$\mathrm{C}(2) 74(3)$	$97(4)$	$40(2)$	$-7(2)$	$21(2)$	$-1(3)$
$\mathrm{O}(3) 56(1)$	$21(1)$	$40(1)$	$4(1)$	$-9(1)$	$-4(1)$
$\mathrm{C}(3) 59(2)$	$75(3)$	$48(2)$	$14(2)$	$20(2)$	$1(2)$
$\mathrm{C}(4) 44(2)$	$53(2)$	$45(2)$	$2(2)$	$20(1)$	$-4(2)$
$\mathrm{C}(5) 38(2)$	$49(2)$	$46(2)$	$-3(2)$	$14(1)$	$10(2)$
$\mathrm{C}(6) 32(1)$	$41(2)$	$38(2)$	$-3(1)$	$6(1)$	$2(1)$
$\mathrm{C}(7) 28(1)$	$19(1)$	$30(1)$	$3(1)$	$2(1)$	$1(1)$
$\mathrm{C}(8) 32(1)$	$22(1)$	$27(1)$	$2(1)$	$3(1)$	$-1(1)$
$\mathrm{C}(9) 37(1)$	$25(1)$	$29(1)$	$0(1)$	$2(1)$	$-4(1)$
$\mathrm{C}(10) 53(2)$	$28(1)$	$32(1)$	$-4(1)$	$2(1)$	$-9(1)$
$\mathrm{C}(11) 65(2)$	$66(3)$	$48(2)$	$-10(2)$	$-17(2)$	$-8(2)$
$\mathrm{C}(12) 96(3)$	$44(2)$	$46(2)$	$-11(2)$	$15(2)$	$7(2)$
$\mathrm{C}(13) 37(2)$	$71(3)$	$54(2)$	$2(2)$	$4(1)$	$16(2)$
$\mathrm{C}(14) 40(1)$	$33(2)$	$36(2)$	$3(1)$	$13(1)$	$-2(1)$

Table 15. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 103\right.$) for

84

	x	y	Z	U(eq)
H(1A)	7407	5912	13194	71
H(2O)	9620(40)	4780(70)	9840(40)	59(11)
H(2A)	8289	3468	14896	83
H(3O)	8490(50)	-2150(90)	8920(40)	86(16)
H(3A)	8466	229	13801	71
H(4A)	7654	735	11431	55
H(6A)	6257	2202	9515	45
H(7A)	8654	2337	9967	32
H(8A)	7449	2801	7233	33
H(9A)	6757	2	8250	38
H(11A)	5921	-1100	4890	98
H(11B)	6056	1009	5535	98
H(11C)	5245	-671	6050	98
H(12A)	7978	-2906	5556	75
H(12B)	9012	-2668	7018	75
H(13A)	4833	4896	8490	83
H(13B)	5483	3742	7504	83
H(13C)	6128	5772	8092	83
H(14A)	9738	3582	7494	53
H(14B)	9545	1424	6926	53
H(14C)	10251	1771	8431	53

68

Table 16. Crystal data and structure refinement for 68

Identification code	df 2 s	
Empirical formula	C 15 H 20 O 3	
Formula weight	248.31	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	$\alpha=90^{\circ}$.
Space group	$\mathrm{P} 2(1) 2(1) 2(1)$	$\beta=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=7.3606(11) \AA$	$\gamma=90^{\circ}$.

Z	4
Density (calculated)	$1.214 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	536
Crystal size	$0.45 \times 0.40 \times 0.02 \mathrm{~mm}^{3}$
Theta range for data collection	1.67 to 28.35°.
Index ranges	$-9<=\mathrm{h}<=9,-10<=\mathrm{k}<=10,-32<=1<=32$
Reflections collected	13924
Independent reflections	$3380[\mathrm{R}(\mathrm{int})=0.0652]$
Completeness to theta $=28.35^{\circ}$	99.7%
Absorption correction	$\mathrm{multi-scan}(\mathrm{SADABS})$
Max. and min. transmission	0.9983 and 0.9635
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$3380 / 0 / 243$
Goodness-of-fit on F^{2}	1.123
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0715, \mathrm{wR} 2=0.1442$
R indices (all data)	$\mathrm{R} 1=0.1097, \mathrm{wR} 2=0.1605$
Largest diff. peak and hole	0.579 and $-0.197 \mathrm{e} . \AA^{-3}$

Table 17. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 68
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

		y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$4908(3)$	$5279(3)$	$7123(1)$	$48(1)$
$\mathrm{O}(2)$	$-1419(3)$	$4503(3)$	$7181(1)$	$53(1)$
$\mathrm{O}(3)$	$46(2)$	$4285(3)$	$7952(1)$	$38(1)$
$\mathrm{C}(1)$	$1732(4)$	$4065(4)$	$8269(1)$	$33(1)$
$\mathrm{C}(2)$	$3296(4)$	$5053(4)$	$8008(1)$	$33(1)$
$\mathrm{C}(3)$	$3465(4)$	$4441(4)$	$7414(1)$	$38(1)$
$\mathrm{C}(4)$	$1756(4)$	$4792(5)$	$7093(1)$	$45(1)$
$\mathrm{C}(5)$	$27(4)$	$4463(4)$	$7411(1)$	$36(1)$
$\mathrm{C}(6)$	$1249(4)$	$4607(4)$	$8846(1)$	$36(1)$
$\mathrm{C}(7)$	$-341(5)$	$3594(5)$	$9100(1)$	$44(1)$
$\mathrm{C}(8)$	$-2069(4)$	$5672(4)$	$9711(1)$	$43(1)$
$\mathrm{C}(9)$	$-2515(5)$	$6343(5)$	$10217(1)$	$54(1)$
$\mathrm{C}(10)$	$-1774(5)$	$5658(5)$	$10683(1)$	$55(1)$
$\mathrm{C}(11)$	$-579(5)$	$4286(5)$	$10640(1)$	$54(1)$
$\mathrm{C}(12)$	$-117(4)$	$3597(4)$	$10133(1)$	$47(1)$
$\mathrm{C}(13)$	$-857(3)$	$4289(4)$	$9656(1)$	$35(1)$
$\mathrm{C}(14)$	$5056(4)$	$4740(5)$	$8323(1)$	$42(1)$
$\mathrm{C}(15)$	$1711(5)$	$3873(5)$	$6543(1)$	$46(1)$

Table 18. lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for 68

$\mathrm{O}(1)-\mathrm{C}(3)$	1.425(3)
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	1.12(5)
$\mathrm{O}(2)-\mathrm{C}(5)$	1.203(3)
$\mathrm{O}(3)-\mathrm{C}(5)$	1.323(3)
$\mathrm{O}(3)-\mathrm{C}(1)$	1.472(3)
$\mathrm{C}(1)-\mathrm{C}(6)$	1.507(4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.514(4)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.98(3)
$\mathrm{C}(2)-\mathrm{C}(14)$	1.524(4)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.525(4)$
$\mathrm{C}(2)-\mathrm{H}(2)$	0.95(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.505(4)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$1.05(3)$
$\mathrm{C}(4)-\mathrm{C}(15)$	1.510(4)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.511(4)
$\mathrm{C}(4)-\mathrm{H}(4)$	1.17(4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.530(4)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.94(3)
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	1.00(3)
$\mathrm{C}(7)-\mathrm{C}(13)$	1.501(4)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	1.01(3)
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.86(3)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.373(4)
$\mathrm{C}(8)-\mathrm{C}(13)$	1.383(4)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.96(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.362(5)$
$\mathrm{C}(9)-\mathrm{H}(9)$	0.88(3)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.366(5)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.89(3)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.383(5)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.89(3)
$C(12)-C(13)$	$1.386(4)$
$\mathrm{C}(12)-\mathrm{H}(12)$	0.91(3)

$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.98(3)
C(14)-H(14B)	0.93(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.94(4)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.92(4)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	1.04(4)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.93(4)
$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{H}(1 \mathrm{O})$	99(2)
$\mathrm{C}(5)-\mathrm{O}(3)-\mathrm{C}(1)$	122.9(2)
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(6)$	105.1(2)
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{C}(2)$	111.3(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	115.9(2)
$\mathrm{O}(3)-\mathrm{C}(1)-\mathrm{H}(1)$	104.6(16)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{H}(1)$	110.2(16)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	109.0(17)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(14)$	110.9(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.1(2)
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{C}(3)$	111.2(2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	105.5(16)
$\mathrm{C}(14)-\mathrm{C}(2)-\mathrm{H}(2)$	107.0(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	114.1(15)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	106.7(2)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	113.3(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	111.8(2)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{H}(3)$	111.0(14)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	101.2(14)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	112.1(13)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	113.4(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	114.1(3)
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(5)$	111.2(3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	99.7(19)
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{H}(4)$	111.1(18)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	106.6(19)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{O}(3)$	118.4(2)
$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$	120.1(3)
$\mathrm{O}(3)-\mathrm{C}(5)-\mathrm{C}(4)$	121.2(2)

$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	114.9(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	106.9(15)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	107.1(16)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	109.6(17)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	107.5(17)
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	111(2)
$\mathrm{C}(13)-\mathrm{C}(7)-\mathrm{C}(6)$	112.5(2)
$\mathrm{C}(13)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	111.4(17)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	106.8(19)
$\mathrm{C}(13)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	114(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	112(2)
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	100(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	121.4(3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	120.2(18)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{H}(8)$	118.4(18)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	120.7(3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	123(2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	117(2)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	119.0(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	122(2)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.9(3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	125(2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	114(2)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.6(3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120(2)
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$	117.4(3)
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(7)$	121.0(3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(7)$	121.6(3)
$\mathrm{C}(2)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	106.2(17)
$\mathrm{C}(2)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	111.1(16)
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B}$	113(2)
$\mathrm{C}(2)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	110(2)
$\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C}$	105(3)
$\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C}$	111(3)

```
C(4)-C(15)-H(15A) 110(2)
C(4)-C(15)-H(15B) 110.3(19)
H(15A)-C(15)-H(15B) 118(3)
C(4)-C(15)-H(15C) 115(3)
H(15A)-C(15)-H(15C) 106(3)
H(15B)-C(15)-H(15C) 98(3)
```

Symmetry transformations used to generate equivalent atoms:

Table 19. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 68

The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1) 33(1)$	$57(1)$	$53(1)$	$7(1)$	$1(1)$	$-4(1)$
$\mathrm{O}(2) 25(1)$	$81(2)$	$54(1)$	$6(1)$	$-3(1)$	$-2(1)$
$\mathrm{O}(3) 24(1)$	$52(1)$	$40(1)$	$-3(1)$	$0(1)$	$-2(1)$
$\mathrm{C}(1) 26(1)$	$34(2)$	$40(2)$	$-2(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(2) 25(1)$	$33(1)$	$41(2)$	$0(1)$	$-3(1)$	$-4(1)$
$\mathrm{C}(3) 31(1)$	$40(2)$	$43(2)$	$1(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(4) 31(1)$	$58(2)$	$45(2)$	$-6(2)$	$3(1)$	$-3(2)$
$\mathrm{C}(5) 27(1)$	$40(1)$	$43(2)$	$-1(1)$	$-2(1)$	$0(1)$
$\mathrm{C}(6) 30(1)$	$37(2)$	$40(2)$	$-4(1)$	$1(1)$	$0(1)$
$\mathrm{C}(7) 43(2)$	$45(2)$	$44(2)$	$-10(2)$	$5(2)$	$-6(2)$
$\mathrm{C}(8) 43(2)$	$48(2)$	$38(2)$	$0(2)$	$-5(1)$	$4(1)$
$\mathrm{C}(9) 49(2)$	$58(2)$	$55(2)$	$-10(2)$	$5(2)$	$10(2)$
$\mathrm{C}(10) 63(2)$	$62(2)$	$39(2)$	$-10(2)$	$10(2)$	$-8(2)$
$\mathrm{C}(11) 64(2)$	$61(2)$	$38(2)$	$15(2)$	$-12(2)$	$-11(2)$
$\mathrm{C}(12) 41(2)$	$41(2)$	$59(2)$	$5(2)$	$-8(2)$	$1(2)$
$\mathrm{C}(13) 30(1)$	$37(2)$	$37(2)$	$-1(1)$	$2(1)$	$-6(1)$
$\mathrm{C}(14) 26(1)$	$54(2)$	$45(2)$	$4(2)$	$-2(1)$	$-7(2)$
$\mathrm{C}(15) 36(2)$	$61(2)$	$41(2)$	$2(2)$	$1(2)$	$-6(2)$

Table 20. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 103\right.$) for 68

	X	y	z	$\mathrm{U}(\mathrm{eq})$
H(1O)	6060(70)	4460(70)	7280(17)	115(16)
H(1)	1980(40)	2800(40)	8255(10)	33(7)
H(2)	3010(30)	6270(40)	8046(10)	24(7)
H(3)	3560(30)	3070(30)	7383(9)	20(6)
H(4)	1880(50)	6330(50)	$7039(14)$	77(11)
H(6A)	910(30)	5800(30)	8832(10)	24(7)
H(6B)	2330(40)	4440(40)	9093(12)	45(8)
H(7B)	40(40)	2320(40)	9120(12)	51(9)
H(7A)	-1240(50)	3500(40)	8875(13)	52(10)
H(8)	-2590(40)	6170(40)	9383(12)	41(8)
H(9)	-3340(50)	7180(40)	10222(13)	60(11)
H(10)	-2090(40)	6030(40)	11017(13)	46(9)
H(11)	-60(50)	3740(40)	10924(14)	62(10)
H(12)	750(40)	2740(50)	10112(13)	51(9)
H(14A)	4870(40)	5250(40)	8688(12)	36(7)
H(14B)	6050(40)	5240(40)	8140(11)	30(7)
H(14C)	5240(50)	3530(50)	8382(14)	66(11)
H(15A)	2730(50)	4160(50)	6346(14)	69(11)
H(15B)	1400(50)	2550(50)	6592(14)	74(11)
H(15C)	730(60)	4170(60)	6320(16)	80(13)

Table 21. Crystal data and structure refinement for $\mathbf{8 1}$

Identification code	dfu226s	
Empirical formula	C 14 H 23 N O 3	
Formula weight	253.33	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	$\alpha=90^{\circ}$.
Space group	$\mathrm{P} 2(1) 2(1) 2(1)$	$\beta=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=7.563(2) \AA$	$\gamma=90^{\circ}$.

Volume	$1421.5(6) \AA^{3}$
Z	4
Density (calculated)	$1.184 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.082 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	552
Crystal size	$0.30 \times 0.25 \mathrm{x} 0.14 \mathrm{~mm}^{3}$
Theta range for data collection	1.99 to 32.62°.
Index ranges	$-11<=\mathrm{h}<=10,-13<=\mathrm{k}<=13,-30<=1<=30$
Reflections collected	17492
Independent reflections	$2912[\mathrm{R}(\mathrm{int})=0.0432]$
Completeness to theta $=32.62^{\circ}$	98.8%
Absorption correction	None
Max. and min. transmission	0.9886 and 0.9757
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$2912 / 0 / 255$
Goodness-of-fit on F^{2}	1.023
Final R indices [I>2sigma(I)	$\mathrm{R} 1=0.0471, \mathrm{wR} 2=0.1131$
R indices (all data)	$\mathrm{R} 1=0.0616, \mathrm{wR} 2=0.1212$
Absolute structure parameter	$-1.2(11)$
Largest diff. peak and hole	0.345 and $-0.175 \mathrm{e} . \AA^{-3}$

Table 22. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 81
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{i j}$ tensor.

	x	y	z	U(eq)
N	9901(2)	1942(1)	3424(1)	29(1)
$\mathrm{O}(1)$	11255(2)	368(1)	2745(1)	44(1)
C(1)	10827(3)	1518(2)	3979(1)	49(1)
$\mathrm{O}(2)$	6517(2)	610(1)	2601(1)	33(1)
C(2)	10271(4)	2334(3)	4486(1)	53(1)
$\mathrm{O}(3)$	4825(2)	2847(1)	2027(1)	28(1)
C(3)	8961(3)	3289(2)	4252(1)	43(1)
C(4)	8742(2)	3039(2)	3605(1)	34(1)
C(5)	10173(2)	1329(2)	2808(1)	28(1)
C(6)	9124(2)	1927(2)	2236(1)	24(1)
C(7)	7686(2)	816(2)	2055(1)	25(1)
C(8)	6657(2)	1199(2)	1432(1)	25(1)
C(9)	5887(2)	2755(2)	1447(1)	22(1)
C(10)	4822(2)	3150(2)	835(1)	28(1)
C(11)	4128(3)	4703(2)	866(1)	37(1)
C(12)	5935(3)	2951(3)	224(1)	43(1)
C(13)	10419(2)	2209(2)	1675(1)	35(1)
C(14)	5250(3)	37(2)	1305(1)	40(1)

Table 23. Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{8 1}$

N-C(4)	1.385(2)
$\mathrm{N}-\mathrm{C}(1)$	1.389(2)
$\mathrm{N}-\mathrm{C}(5)$	1.398(2)
$\mathrm{O}(1)-\mathrm{C}(5)$	1.210(2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.347(3)
$\mathrm{C}(1)-\mathrm{H}(1)$	0.90(3)
$\mathrm{O}(2)-\mathrm{C}(7)$	1.4378(19)
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O})$	0.84(3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.408(3)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.99(3)
$\mathrm{O}(3)-\mathrm{C}(9)$	1.4366(17)
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	0.86(3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.354(3)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.91(3)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.98(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.517(2)
$\mathrm{C}(6)-\mathrm{C}(13)$	1.532(2)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.537(2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.91(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.534(2)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.95(2)
$\mathrm{C}(8)-\mathrm{C}(14)$	1.529(2)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.543(2)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.932(19)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.533(2)
$\mathrm{C}(9)-\mathrm{H}(9)$	0.964(19)
$\mathrm{C}(10)-\mathrm{C}(12)$	1.519(2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.521(3)
$\mathrm{C}(10)-\mathrm{H}(10)$	0.92(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.98(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	1.02(2)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.95(3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.98(2)

$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	1.00 (3)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.96(2)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.96(2)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.92(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.95(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$	0.96(2)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.98(3)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$	0.99(3)
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(1)$	107.75(14)
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	128.83(13)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	123.42(15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}$	108.43(18)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$	134.0(16)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(1)$	117.3(16)
$\mathrm{C}(7)-\mathrm{O}(2)-\mathrm{H}(2 \mathrm{O})$	102.3(17)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.70(18)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	125(2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	127(2)
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	114.0(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	108.24(18)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	126.2(17)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	125.6(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	107.88(16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	132.4(13)
$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(4)$	119.6(13)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}$	119.26(14)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	122.43(14)
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	118.30(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(13)$	107.80(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	108.44(12)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)$	112.54(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	112.2(11)
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{H}(6)$	107.3(11)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	108.6(12)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	111.33(13)

$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	109.54(12)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	114.06(12)
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	106.6(11)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	107.0(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	108.0(11)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(7)$	109.58(14)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(9)$	112.76(13)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	112.81(12)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{H}(8)$	108.1(12)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	105.4(11)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	107.8(13)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(10)$	111.57(12)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)$	106.32(11)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	113.67(12)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{H}(9)$	107.3(10)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	108.3(10)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	109.5(11)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(11)$	109.73(16)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{C}(9)$	110.69(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	111.69(13)
$\mathrm{C}(12)-\mathrm{C}(10)-\mathrm{H}(10)$	109.3(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	107.8(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	107.5(13)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	112.7(15)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	108.7(15)
$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	107.5(18)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.7(14)
$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.2(19)
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B}$	109.0(19)
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	114.2(14)
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	113.0(16)
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$	102(2)
$\mathrm{C}(10)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	112.4(13)
$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A}$	107.0(19)
$\mathrm{H}(12 \mathrm{C})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A}$	108(2)
$\mathrm{C}(6)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	112.8(14)

```
C(6)-C(13)-H(13C) 108.5(15)
H(13B)-C(13)-H(13C) 110(2)
C(6)-C(13)-H(13A) 110.4(17)
H(13B)-C(13)-H(13A) 107(2)
H(13C)-C(13)-H(13A) 108(2)
C(8)-C(14)-H(14C) 112.9(16)
C(8)-C(14)-H(14A) 108.7(15)
H(14C)-C(14)-H(14A) 104(2)
C(8)-C(14)-H(14B) 106.1(15)
H(14C)-C(14)-H(14B) 113(2)
H(14A)-C(14)-H(14B) 112(2)
```

Symmetry transformations used to generate equivalent atoms:

Table 24. Anisotropic displacement parameters $\left(\AA^{2}{ }^{2} 10^{3}\right)$ for $\mathbf{8 1}$
The anisotropic displacement factor exponent takes the form: $-2{ }^{2}\left[h^{2} a^{*} \mathrm{U}^{11}+\ldots+2\right.$ hka* $b^{*} U^{12}$]

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~N} 33(1)$	$26(1)$	$28(1)$	$-1(1)$	$-7(1)$	$5(1)$
$\mathrm{O}(1) 53(1)$	$34(1)$	$44(1)$	$-7(1)$	$-12(1)$	$19(1)$
$\mathrm{C}(1) 60(1)$	$47(1)$	$40(1)$	$-6(1)$	$-23(1)$	$23(1)$
$\mathrm{O}(2) 34(1)$	$31(1)$	$33(1)$	$8(1)$	$5(1)$	$-3(1)$
$\mathrm{C}(2) 72(2)$	$56(1)$	$33(1)$	$-6(1)$	$-16(1)$	$14(1)$
$\mathrm{O}(3) 31(1)$	$29(1)$	$23(1)$	$-1(1)$	$5(1)$	$2(1)$
$\mathrm{C}(3) 51(1)$	$45(1)$	$32(1)$	$-5(1)$	$1(1)$	$9(1)$
$\mathrm{C}(4) 36(1)$	$34(1)$	$32(1)$	$1(1)$	$-1(1)$	$10(1)$
$\mathrm{C}(5) 30(1)$	$22(1)$	$33(1)$	$-2(1)$	$-6(1)$	$1(1)$
$\mathrm{C}(6) 25(1)$	$21(1)$	$27(1)$	$1(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(7) 25(1)$	$22(1)$	$29(1)$	$-2(1)$	$1(1)$	$-2(1)$
$\mathrm{C}(8) 23(1)$	$25(1)$	$26(1)$	$-5(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(9) 21(1)$	$26(1)$	$20(1)$	$-1(1)$	$1(1)$	$-3(1)$
$\mathrm{C}(10) 26(1)$	$35(1)$	$23(1)$	$-2(1)$	$-3(1)$	$-1(1)$
$\mathrm{C}(11) 38(1)$	$41(1)$	$31(1)$	$4(1)$	$-5(1)$	$5(1)$
$\mathrm{C}(12) 45(1)$	$60(1)$	$23(1)$	$0(1)$	$3(1)$	$8(1)$
$\mathrm{C}(13) 24(1)$	$44(1)$	$37(1)$	$6(1)$	$1(1)$	$-5(1)$
$\mathrm{C}(14) 37(1)$	$30(1)$	$54(1)$	$-11(1)$	$-9(1)$	$-8(1)$

Table 25. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 103\right.$) for

81

	X	y	Z	$\mathrm{U}(\mathrm{eq})$
H(1)	11690(40)	850(30)	3926(12)	53(7)
$\mathrm{H}(2 \mathrm{O})$	5760(30)	1270(40)	2543(12)	57(8)
H(2)	10720(40)	2250(40)	4938(16)	92(10)
$\mathrm{H}(3 \mathrm{O})$	4420(30)	3700(30)	2105(11)	48(7)
H(3)	8380(30)	3980(30)	4495(13)	59(7)
H(4)	7940 (30)	3460(30)	3277(10)	41(6)
H(6)	8590(20)	2790(20)	2333(9)	19(4)
H(7)	8250(20)	-90(20)	1978(9)	23(4)
H(8)	7480 (30)	1160(20)	1095(9)	28(5)
H(9)	6840(20)	3450(20)	1493(8)	18(4)
H(10)	3860(30)	2530(20)	817(10)	35(5)
H(11C)	3310(30)	4860(30)	1228(11)	42(6)
H(11A)	3460(30)	4920(30)	443(11)	49(6)
H(11B)	5090(30)	5360(30)	906(10)	42(6)
H(12B)	5360(30)	3270(30)	-179(11)	50(6)
H(12C)	6190(40)	1910(40)	124(13)	71(8)
H(12A)	$7050(30)$	3460(30)	250(10)	42(6)
H(13B)	9890(30)	2750(20)	1321(11)	40(5)
H(13C)	11380(40)	2700(30)	1837(12)	53(7)
H(13A)	10830(40)	1320(30)	1499(12)	58(7)
H(14C)	4720(40)	120(30)	882(12)	50(7)
H(14A)	4270(30)	190(30)	1608(12)	54(7)
H(14B)	5840(30)	-910(30)	1376(12)	49(6)

Table 26. Crystal data and structure refinement for 78

Identification code	dfu917s	
Empirical formula	C 23 H 45 N O 3 Si 2	
Formula weight	439.78	
Temperature	$203(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{P} 2(1)$	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=8.5435(18) \AA$	$\beta=105.368(5)^{\circ}$.
	$\mathrm{b}=11.216(3) \AA$	$\gamma=90^{\circ}$.

Volume
$1417.3(5) \AA^{3}$

Z	2
Density (calculated)	$1.031 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.145 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	484
Crystal size	$0.27 \times 0.23 \times 0.18 \mathrm{~mm}^{3}$
Theta range for data collection	2.28 to 25.00°.
Index ranges	$-10<=\mathrm{h}<=10,-13<=\mathrm{k}<=13,-18<=1<=18$
Reflections collected	11307
Independent reflections	$4973[\mathrm{R}(\mathrm{int})=0.0749]$
Completeness to theta $=25.00^{\circ}$	100.0%
Absorption correction	None
Max. and min. transmission	0.9743 and 0.9618
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$4973 / 1 / 263$
Goodness-of-fit on F^{2}	0.895
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0660, \mathrm{wR} 2=0.1399$
R indices (all data)	$\mathrm{R} 1=0.1159, \mathrm{wR} 2=0.1637$
Absolute structure parameter	$0.0(2)$
Largest diff. peak and hole	0.207 and $-0.232 \mathrm{e} . \AA^{-3}$

Table 27. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 78.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

			y	z
			$\mathrm{U}(\mathrm{eq})$	
$\mathrm{xi}(1)$	$13969(2)$	$9803(1)$	$8491(1)$	$56(1)$
$\mathrm{Si}(2)$	$8185(2)$	$9671(1)$	$5562(1)$	$51(1)$
$\mathrm{O}(1)$	$9698(5)$	$11989(3)$	$9791(2)$	$59(1)$
$\mathrm{O}(2)$	$12225(3)$	$9495(3)$	$8699(2)$	$44(1)$
$\mathrm{O}(3)$	$8140(4)$	$10350(2)$	$6511(2)$	$43(1)$
N	$8882(5)$	$10655(3)$	$10680(2)$	$41(1)$
$\mathrm{C}(1)$	$8806(6)$	$9550(4)$	$11076(3)$	$49(1)$
$\mathrm{C}(2)$	$7835(6)$	$9662(5)$	$11636(3)$	$57(1)$
$\mathrm{C}(3)$	$7307(7)$	$10868(4)$	$11602(3)$	$57(1)$
$\mathrm{C}(4)$	$7970(6)$	$11450(5)$	$11025(3)$	$49(1)$
$\mathrm{C}(5)$	$9766(6)$	$10976(4)$	$10071(3)$	$43(1)$
$\mathrm{C}(6)$	$10836(5)$	$10033(4)$	$9817(3)$	$45(1)$
$\mathrm{C}(7)$	$12482(6)$	$10064(6)$	$10535(3)$	$64(2)$
$\mathrm{C}(8)$	$11001(5)$	$10271(4)$	$8864(3)$	$40(1)$
$\mathrm{C}(9)$	$14517(11)$	$11389(7)$	$8738(7)$	$134(3)$
$\mathrm{C}(10)$	$15499(7)$	$8848(7)$	$9203(4)$	$85(2)$
$\mathrm{C}(11)$	$13870(7)$	$9461(10)$	$7314(4)$	$123(4)$
$\mathrm{C}(12)$	$9413(6)$	$10078(4)$	$8128(3)$	$38(1)$
$\mathrm{C}(13)$	$9005(6)$	$8764(4)$	$7966(3)$	$49(1)$
$\mathrm{C}(14)$	$9446(6)$	$10724(4)$	$7247(3)$	$40(1)$
$\mathrm{C}(15)$	$9385(7)$	$12087(4)$	$7326(3)$	$51(1)$
$\mathrm{C}(16)$	$9879(8)$	$12691(5)$	$6556(3)$	$73(2)$
$\mathrm{C}(17)$	$7739(8)$	$12535(5)$	$7383(4)$	$79(2)$
$\mathrm{C}(18)$	$8151(9)$	$8023(6)$	$5697(4)$	$90(2)$
$\mathrm{C}(19)$	$10051(7)$	$10043(7)$	$5222(4)$	$82(2)$
$\mathrm{C}(20)$	$6321(6)$	$10174(5)$	$4686(3)$	$58(1)$
$\mathrm{C}(21)$	$4801(7)$	$9995(7)$	$5016(4)$	$88(2)$
$\mathrm{C}(22)$	$6119(7)$	$9454(7)$	$3811(4)$	$92(2)$

| $C(23)$ | $6430(8)$ | 4456(4) 91(2) |
| :--- | :--- | :--- | :--- |

Table 28. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 78

$\mathrm{Si}(1)-\mathrm{O}(2)$	$1.641(3)$
$\mathrm{Si}(1)-\mathrm{C}(10)$	$1.814(6)$
$\mathrm{Si}(1)-\mathrm{C}(11)$	$1.824(6)$
$\mathrm{Si}(1)-\mathrm{C}(9)$	$1.854(8)$
$\mathrm{Si}(2)-\mathrm{O}(3)$	$1.653(3)$
$\mathrm{Si}(2)-\mathrm{C}(19)$	$1.852(5)$
$\mathrm{Si}(2)-\mathrm{C}(18)$	$1.861(7)$
$\mathrm{Si}(2)-\mathrm{C}(20)$	$1.878(6)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.210(5)$
$\mathrm{O}(2)-\mathrm{C}(8)$	$1.434(5)$
$\mathrm{O}(3)-\mathrm{C}(14)$	$1.424(5)$
$\mathrm{N}-\mathrm{C}(4)$	$1.379(6)$
$\mathrm{N}-\mathrm{C}(1)$	$1.389(6)$
$\mathrm{N}-\mathrm{C}(5)$	$1.396(5)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.349(6)$
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9400
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.422(7)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	0.9400
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.339(6)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	0.9400
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9400
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.516(6)$
$\mathrm{C}(6)-\mathrm{C}(8)$	$1.529(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.540(6)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	0.9900
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	0.9700
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	0.9700
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	0.9700
$\mathrm{C}(8)-\mathrm{C}(12)$	$1.532(6)$
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9900
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	0.9700
$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	0.9700

$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	0.9700
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	0.9700
$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	0.9700
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9700
$\mathrm{C}(12)-\mathrm{C}(13)$	1.519(6)
$\mathrm{C}(12)-\mathrm{C}(14)$	1.540(6)
$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	0.9900
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	0.9700
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	0.9700
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9700
$\mathrm{C}(14)-\mathrm{C}(15)$	1.535(6)
$\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$	0.9900
$\mathrm{C}(15)-\mathrm{C}(16)$	1.516(7)
$\mathrm{C}(15)-\mathrm{C}(17)$	1.518(8)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9900
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$	0.9700
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$	0.9700
$\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$	0.9700
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$	0.9700
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$	0.9700
$\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$	0.9700
$\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$	0.9700
C(19)-H(19A)	0.9700
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$	0.9700
$\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$	0.9700
$\mathrm{C}(20)-\mathrm{C}(23)$	1.523(8)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.526(7)
$\mathrm{C}(20)-\mathrm{C}(22)$	1.536(7)
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$	0.9700
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$	0.9700
$\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$	0.9700
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$	0.9700

$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$	0.9700
$\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$	0.9700
$\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$	0.9700
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(10)$	107.8(2)
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(11)$	110.0(3)
$\mathrm{C}(10)-\mathrm{Si}(1)-\mathrm{C}(11)$	108.0(3)
$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{C}(9)$	110.8(3)
$\mathrm{C}(10)-\mathrm{Si}(1)-\mathrm{C}(9)$	109.9(5)
$\mathrm{C}(11)-\mathrm{Si}(1)-\mathrm{C}(9)$	110.3(5)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(19)$	111.6(2)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(18)$	110.8(2)
$\mathrm{C}(19)-\mathrm{Si}(2)-\mathrm{C}(18)$	107.2(3)
$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{C}(20)$	106.2(2)
$\mathrm{C}(19)-\mathrm{Si}(2)-\mathrm{C}(20)$	111.1(3)
$\mathrm{C}(18)-\mathrm{Si}(2)-\mathrm{C}(20)$	110.0(3)
$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{Si}(1)$	130.5(3)
$\mathrm{C}(14)-\mathrm{O}(3)-\mathrm{Si}(2)$	129.6(3)
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(1)$	108.2(4)
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$	123.5(4)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	128.2(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}$	107.7(4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	126.2
$\mathrm{N}-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	126.2
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.9(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	126.1
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	126.1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	107.6(4)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	126.2
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	126.2
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}$	108.6(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	125.7
$\mathrm{N}-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	125.7
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}$	119.8(4)

$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	122.6(4)
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(6)$	117.6(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(8)$	109.8(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	107.4(4)
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{C}(7)$	112.5(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.0
$\mathrm{C}(8)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.0
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	109.0
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109.5
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	109.5
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(6)$	108.6(3)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{C}(12)$	109.3(3)
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(12)$	113.1(4)
$\mathrm{O}(2)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.6
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.6
$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	108.6
$\mathrm{Si}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{H}(9 \mathrm{~B})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{C})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C}$	109.5
$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C}$	109.5
$\mathrm{Si}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~A})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{~B})$	109.5
$\mathrm{Si}(1)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	109.5

```
H(11A)-C(11)-H(11C) 109.5
H(11B)-C(11)-H(11C) 109.5
C(13)-C(12)-C(8) 112.2(4)
C(13)-C(12)-C(14) 111.7(4)
C(8)-C(12)-C(14) 111.2(3)
C(13)-C(12)-H(12A) 107.2
C(8)-C(12)-H(12A) 107.2
C(14)-C(12)-H(12A) 107.2
C(12)-C(13)-H(13A) 109.5
C(12)-C(13)-H(13B) 109.5
H(13A)-C(13)-H(13B)}109.
C(12)-C(13)-H(13C) 109.5
H(13A)-C(13)-H(13C)}109.
H(13B)-C(13)-H(13C) 109.5
O(3)-C(14)-C(15) 108.6(4)
O(3)-C(14)-C(12) 111.4(3)
C(15)-C(14)-C(12) 113.0(4)
O(3)-C(14)-H(14A) 107.9
C(15)-C(14)-H(14A) 107.9
C(12)-C(14)-H(14A) 107.9
C(16)-C(15)-C(17) 110.5(5)
C(16)-C(15)-C(14) 111.2(4)
C(17)-C(15)-C(14) 112.7(4)
C(16)-C(15)-H(15A) 107.4
C(17)-C(15)-H(15A) 107.4
C(14)-C(15)-H(15A) 107.4
C(15)-C(16)-H(16A) 109.5
C(15)-C(16)-H(16B) 109.5
H(16A)-C(16)-H(16B) 109.5
C(15)-C(16)-H(16C) 109.5
H(16A)-C(16)-H(16C) 109.5
H(16B)-C(16)-H(16C) 109.5
C(15)-C(17)-H(17A) 109.5
C(15)-C(17)-H(17B) 109.5
H(17A)-C(17)-H(17B)109.5
C(15)-C(17)-H(17C) 109.5
```

```
H(17A)-C(17)-H(17C)109.5
H(17B)-C(17)-H(17C) 109.5
Si(2)-C(18)-H(18A) 109.5
Si(2)-C(18)-H(18B) 109.5
H(18A)-C(18)-H(18B) 109.5
Si(2)-C(18)-H(18C) 109.5
H(18A)-C(18)-H(18C) }109.
H(18B)-C(18)-H(18C) 109.5
Si(2)-C(19)-H(19A) 109.5
Si(2)-C(19)-H(19B) 109.5
H(19A)-C(19)-H(19B)109.5
Si(2)-C(19)-H(19C) 109.5
H(19A)-C(19)-H(19C)109.5
H(19B)-C(19)-H(19C)}109.
C(23)-C(20)-C(21) 108.3(5)
C(23)-C(20)-C(22) 107.8(5)
C(21)-C(20)-C(22) 108.2(5)
C(23)-C(20)-Si(2) 111.4(4)
C(21)-C(20)-Si(2) 111.0(4)
C(22)-C(20)-Si(2) 110.2(4)
C(20)-C(21)-H(21A) 109.5
C(20)-C(21)-H(21B) 109.5
H(21A)-C(21)-H(21B)109.5
C(20)-C(21)-H(21C) 109.5
H(21A)-C(21)-H(21C)109.5
H(21B)-C(21)-H(21C) 109.5
C(20)-C(22)-H(22A) 109.5
C(20)-C(22)-H(22B) 109.5
H(22A)-C(22)-H(22B)109.5
C(20)-C(22)-H(22C) 109.5
H(22A)-C(22)-H(22C) 109.5
H(22B)-C(22)-H(22C) 109.5
C(20)-C(23)-H(23A) 109.5
C(20)-C(23)-H(23B) 109.5
H(23A)-C(23)-H(23B)}109.
C(20)-C(23)-H(23C) 109.5
```

$\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C}) 109.5$
H(23B)-C(23)-H(23C) 109.5

Symmetry transformations used to generate equivalent atoms:

Table 29. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 78
The anisotropic displacement factor exponent takes the form: $-2{ }^{2}\left[h^{2} a^{*} U^{11}+\ldots+2\right.$ hka* $b^{*} U^{12}$]

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{Si}(1) 51(1)$	$65(1)$	$62(1)$	$4(1)$	$29(1)$	$0(1)$
$\mathrm{Si}(2) 59(1)$	$51(1)$	$45(1)$	$-11(1)$	$18(1)$	$-2(1)$
$\mathrm{O}(1) 104(3)$	$32(2)$	$55(2)$	$1(2)$	$49(2)$	$0(2)$
$\mathrm{O}(2) 44(2)$	$43(2)$	$53(2)$	$-1(2)$	$24(1)$	$0(2)$
$\mathrm{O}(3) 50(2)$	$43(2)$	$39(2)$	$-1(1)$	$16(2)$	$4(1)$
$\mathrm{N} 55(3)$	$35(2)$	$38(2)$	$-2(2)$	$22(2)$	$3(2)$
$\mathrm{C}(1) 74(3)$	$32(3)$	$50(3)$	$4(2)$	$31(2)$	$-3(3)$
$\mathrm{C}(2) 80(3)$	$50(3)$	$51(3)$	$12(3)$	$36(3)$	$1(3)$
$\mathrm{C}(3) 77(4)$	$50(3)$	$58(3)$	$0(3)$	$41(3)$	$9(3)$
$\mathrm{C}(4) 62(3)$	$41(3)$	$51(3)$	$-4(3)$	$26(3)$	$2(2)$
$\mathrm{C}(5) 66(3)$	$35(3)$	$31(2)$	$0(2)$	$20(2)$	$-2(2)$
$\mathrm{C}(6) 61(3)$	$37(3)$	$44(3)$	$1(2)$	$27(2)$	$-2(2)$
$\mathrm{C}(7) 67(4)$	$88(4)$	$42(3)$	$5(3)$	$22(3)$	$4(3)$
$\mathrm{C}(8) 47(3)$	$34(2)$	$46(3)$	$-2(2)$	$23(2)$	$0(2)$
$\mathrm{C}(9) 110(6)$	$88(5)$	$237(11)$	$8(6)$	$107(7)$	$-29(5)$
$\mathrm{C}(10) 54(4)$	$123(6)$	$80(4)$	$16(4)$	$19(3)$	$12(4)$
$\mathrm{C}(11) 70(4)$	$251(11)$	$56(4)$	$-1(6)$	$31(3)$	$43(6)$
$\mathrm{C}(12) 48(3)$	$34(3)$	$38(2)$	$2(2)$	$21(2)$	$5(2)$
$\mathrm{C}(13) 55(3)$	$41(3)$	$53(3)$	$3(3)$	$21(3)$	$-8(2)$
$\mathrm{C}(14) 49(3)$	$38(3)$	$39(3)$	$1(2)$	$21(2)$	$-4(2)$
$\mathrm{C}(15) 86(4)$	$36(3)$	$33(3)$	$2(2)$	$20(3)$	$-5(3)$
$\mathrm{C}(16) 118(5)$	$45(3)$	$51(3)$	$6(3)$	$15(3)$	$-23(3)$
$\mathrm{C}(17) 120(5)$	$46(3)$	$76(4)$	$8(3)$	$36(4)$	$25(3)$
$\mathrm{C}(18) 126(6)$	$61(4)$	$81(4)$	$-26(4)$	$21(4)$	$12(4)$
$\mathrm{C}(19) 68(4)$	$129(6)$	$57(3)$	$-29(4)$	$29(3)$	$-8(4)$
$\mathrm{C}(20) 62(3)$	$68(4)$	$48(3)$	$-4(3)$	$24(3)$	$-4(3)$
$\mathrm{C}(21) 65(4)$	$120(6)$	$81(4)$	$9(4)$	$23(3)$	$-4(4)$

$\mathrm{C}(22) 83(4)$	$127(6)$	$58(4)$	$-30(4)$	$6(3)$	$6(4)$
$\mathrm{C}(23) 101(5)$	$87(5)$	$73(4)$	$18(4)$	$6(4)$	$-2(4)$

Table 30. Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 103\right.$) for

78

	X	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1 \mathrm{~A})$	9335	8851	10972	59
H(2A)	7558	9051	11987	68
H(3A)	6618	11196	11925	69
H(4A)	7836	12265	10881	59
H(6A)	10332	9241	9829	54
H(7A)	12318	9906	11126	96
H(7B)	12972	10845	10536	96
H(7C)	13194	9462	10395	96
H(8A)	11355	11106	8832	48
H(9A)	14568	11559	9365	200
H(9B)	13704	11894	8348	200
H(9C)	15567	11545	8630	200
H(10A)	15199	8020	9075	128
H(10B)	15578	9017	9833	128
H(10C)	16540	8998	9081	128
H(11A)	13581	8630	7194	184
H(11B)	14920	9611	7204	184
H(11C)	13057	9962	6920	184
H(12A)	8534	10444	8347	46
H(13A)	8997	8386	8533	73
H(13B)	9814	8385	7719	73
H(13C)	7944	8684	7542	73
H(14A)	10473	10512	7102	48
H(15A)	10188	12317	7894	61
H(16A)	9833	13549	6623	109
H(16B)	9143	12454	5985	109
H(16C)	10977	12456	6566	109
H(17A)	7765	13397	7434	118

$\mathrm{H}(17 \mathrm{~B})$	7482	12192	7908	118
$\mathrm{H}(17 \mathrm{C})$	6917	12303	6841	118
$\mathrm{H}(18 \mathrm{~A})$	9119	7771	6149	136
$\mathrm{H}(18 B)$	8117	7643	5125	136
$\mathrm{H}(18 \mathrm{C})$	7197	7796	5889	136
$\mathrm{H}(19 \mathrm{~A})$	10994	9774	5685	123
$\mathrm{H}(19 B)$	10113	10899	5148	123
$\mathrm{H}(19 \mathrm{C})$	10025	9650	4655	123
$\mathrm{H}(21 \mathrm{~A})$	3856	10260	4553	132
$\mathrm{H}(21 B)$	4897	10455	5563	132
$\mathrm{H}(21 \mathrm{C})$	4685	9157	5141	132
$\mathrm{H}(22 \mathrm{~A})$	5151	9719	3365	138
$\mathrm{H}(22 B)$	6020	8614	3936	138
$\mathrm{H}(22 \mathrm{C})$	7060	9576	3581	138
$\mathrm{H}(23 \mathrm{~A})$	5451	11721	4004	136
$\mathrm{H}(23 B)$	7364	11612	4919	136
$\mathrm{H}(23 C)$	6544			

Table 31. Crystal data and structure refinement for 188

Identification code	$\mathrm{df1022s}$	
Empirical formula	C 7 H 12 O 3	
Formula weight	144.17	
Temperature	$223(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Orthorhombic	
Space group	P 212121	$\alpha=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=7.024(7) \AA$	$\beta=90^{\circ}$.

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=28.45^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$\mathrm{c}=13.034(12) \AA \quad \gamma=90^{\circ}$.
$745.2(12) \AA^{3}$
4
$1.285 \mathrm{Mg} / \mathrm{m}^{3}$
$0.100 \mathrm{~mm}^{-1}$
312
$0.42 \times 0.22 \times 0.03 \mathrm{~mm}^{3}$
2.95 to 28.45°.
$-9<=\mathrm{h}<=9,-10<=\mathrm{k}<=10,-17<=\mathrm{l}<=17$
7441
$1104[\mathrm{R}(\mathrm{int})=0.0581]$
99.1 \%

Semi-empirical from equivalents
0.9970 and 0.9594

Full-matrix least-squares on F^{2}
1104 / $0 / 139$
1.025
$\mathrm{R} 1=0.0479, \mathrm{wR} 2=0.1165$
$\mathrm{R} 1=0.0764, \mathrm{wR} 2=0.1336$
?
0.258 and -0.180 e. \AA^{-3}

Table 32. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 188
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{O}(1)$	$9702(4)$	$8388(2)$	$6014(1)$	$47(1)$
$\mathrm{C}(1)$	$9700(5)$	$7749(3)$	$5079(2)$	$43(1)$
$\mathrm{O}(2)$	$9730(4)$	$6267(3)$	$5018(2)$	$58(1)$
$\mathrm{C}(2)$	$9726(5)$	$8824(4)$	$4152(2)$	$46(1)$
$\mathrm{O}(3)$	$9956(5)$	$9637(3)$	$8024(2)$	$62(1)$
$\mathrm{C}(3)$	$9307(4)$	$10636(4)$	$4331(2)$	$43(1)$
$\mathrm{C}(4)$	$10286(5)$	$11142(4)$	$5312(2)$	$42(1)$
$\mathrm{C}(5)$	$9589(5)$	$10157(3)$	$6215(2)$	$42(1)$
$\mathrm{C}(6)$	$10745(5)$	$10458(4)$	$7163(2)$	$48(1)$
$\mathrm{C}(7)$	$9903(6)$	$11667(5)$	$3420(3)$	$56(1)$

Table 33. Bond lengths [\AA] and angles [${ }^{\circ}$] for 188

$\mathrm{O}(1)-\mathrm{C}(1)$	$1.325(4)$
$\mathrm{O}(1)-\mathrm{C}(5)$	$1.466(3)$
$\mathrm{C}(1)-\mathrm{O}(2)$	$1.210(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.492(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.522(5)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$0.98(3)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$0.94(4)$
$\mathrm{O}(3)-\mathrm{C}(6)$	$1.419(4)$
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	$0.86(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.509(4)$
$\mathrm{C}(3)-\mathrm{C}(7)$	$1.513(4)$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0.99(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.506(4)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	$0.97(3)$
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	$0.94(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.499(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$0.98(3)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$0.89(3)$
$\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$1.07(4)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	$1.03(4)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	$1.00(4)$
$\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	$1.02(4)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	$123.3(2)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$116.9(3)$
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$122.1(3)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.0(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116.2(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$106(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$113.3(19)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$102(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$110(2)$
$\mathrm{H}(2 \mathrm{~B})-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$108(3)$

$\mathrm{C}(6)-\mathrm{O}(3)-\mathrm{H}(3 \mathrm{O})$	110(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	112.8(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	107.8(3)
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{C}(2)$	111.4(3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	107.6(19)
$\mathrm{C}(7)-\mathrm{C}(3)-\mathrm{H}(3)$	112.2(19)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	105(2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	111.6(3)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	106.7(17)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	111.9(18)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	113(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107(2)
$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	107(3)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	106.2(2)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	111.5(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	112.4(3)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{H}(5)$	103.1(18)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	113.2(18)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	110.0(18)
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(5)$	111.3(3)
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	113(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	108(2)
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	110.4(17)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	106.3(18)
$\mathrm{H}(6 \mathrm{~A})-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	108(3)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~A})$	110.9(19)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	109(2)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{~B})$	117(3)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	112(2)
$\mathrm{H}(7 \mathrm{~A})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	104(3)
$\mathrm{H}(7 \mathrm{~B})-\mathrm{C}(7)-\mathrm{H}(7 \mathrm{C})$	103(3)

Symmetry transformations used to generate equivalent atoms:

Table 34. Aisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{1 8 8}$
The anisotropic dsplacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{O}(1) 63(1)$	$37(1)$	$40(1)$	$2(1)$	$-1(1)$	$-6(1)$
$\mathrm{C}(1) 43(2)$	$41(2)$	$45(2)$	$-1(1)$	$-2(2)$	$0(1)$
$\mathrm{O}(2) 83(2)$	$37(1)$	$54(1)$	$-1(1)$	$-2(1)$	$-2(1)$
$\mathrm{C}(2) 53(2)$	$47(2)$	$38(1)$	$-1(1)$	$-3(2)$	$1(2)$
$\mathrm{O}(3) 95(2)$	$52(1)$	$41(1)$	$-6(1)$	$8(1)$	$-21(2)$
$\mathrm{C}(3) 40(2)$	$41(2)$	$50(2)$	$7(1)$	$0(1)$	$2(1)$
$\mathrm{C}(4) 43(2)$	$35(1)$	$49(2)$	$1(1)$	$1(1)$	$-1(1)$
$\mathrm{C}(5) 40(2)$	$35(1)$	$51(2)$	$1(1)$	$3(2)$	$1(1)$
$\mathrm{C}(6) 63(2)$	$38(2)$	$43(2)$	$-2(1)$	$2(2)$	$-8(1)$
$\mathrm{C}(7) 61(2)$	$54(2)$	$53(2)$	$12(2)$	$-3(2)$	$-2(2)$

Table 35. Hydrogen coordinates ($\mathrm{x} 10^{4}$) and isotropic displacement parameters $\left(\AA^{2} \times 10{ }^{3}\right.$) for

188

	x	y	Z	U(eq)
H(2B)	8870(50)	8310(40)	3650(30)	49(9)
H(2A)	10980(50)	8690(50)	3910(30)	60(10)
H(3O)	9990(50)	10270(40)	8560(20)	49(9)
H(3)	7910(50)	10690(40)	4450(20)	58(9)
H(4A)	10060(50)	12290(40)	5480(20)	42(8)
H(4B)	11610(60)	11030(50)	5200(20)	56(9)
H(5)	8230(50)	10340(40)	6320(20)	45(8)
H(6A)	10830(40)	11530(40)	7260(20)	50(9)
H(6B)	12140(60)	10000(40)	7000(20)	62(10)
H(7A)	9320(50)	11210(50)	2750(30)	60(10)
H(7B)	9670(60)	12850(50)	3580(30)	83(12)
H(7C)	11340(60)	11630(40)	3300(30)	62(11)

BIBLIOGRAPHY

(1) Mahrwald, R.; Editor Modern Aldol Reactions, Vol. 1: Enolates, Organocatalysis, Biocatalysis and Natural Product Synthesis, 2004.
(2) Mukaiyama, T. Org. React. 1982, 28, 203-331.
(3) Schetter, B.; Mahrwald, R. Angew. Chem. Int. Ed. 2006, 45, 7506-7525.
(4) Nelson, S. G. Tetrahedron: Asymm. 1998, 9, 357-389.
(5) Mahrwald, R. Chem. Rev. 1999, 99, 1095-1120.
(6) Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920-1923.
(7) Gijsen, H. J. M.; Wong, C. H. J. Am. Chem. Soc. 1995, 117, 2947-2948.
(8) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752-1755.
(9) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Cordova, A. Angew. Chem. Int. Ed. 2005, 44, 1343-1345.
(10) Crimmins, M. T.; King, B. W.; Tabet, E. A.; Chaudhary, K. J. Org. Chem. 2001, 66, 894-902.
(11) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. 1990, 112, 8215-8216.
(12) Peng, Z. H.; Woerpel, K. A. J. Am. Chem. Soc. 2003, 125, 6018-6019.
(13) Shen, X. Q.; Wasmuth, A. S.; Zhao, J. P.; Zhu, C.; Nelson, S. G. J. Am. Chem. Soc. 2006, 128, 7438-7439.
(14) Zhu, C.; Shen, X. Q.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352-5353.
(15) Evans, D. A.; Dart, M. J.; Duffy, J. L.; Yang, M. G. J. Am. Chem. Soc. 1996, 118, 4322-4343.
(16) Evans, D. A.; Yang, M. G.; Dart, M. J.; Duffy, J. L. Tetrahedron Lett. 1996, 37, 1957-1960.
(17) Noyori, R.; Yokoyama, K.; Sakata, J.; Kuwajima, I.; Nakamura, E.; Shimizu, M. J. Am. Chem. Soc. 1977, 99, 1265-1267.
(18) Miura, K.; Nakagawa, T.; Hosomi, A. J. Am. Chem. Soc. 2002, 124, 536-537.
(19) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432-440.
(20) Song, J. J.; Tan, Z. L.; Reeves, J. T.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2007, 9, 1013-1016.
(21) Nakagawa, T.; Fujisawa, H.; Nagata, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2004, 77, 1555-1567.
(22) Fujisawa, H.; Nagata, Y.; Sato, Y.; Mukaiyama, T. Chem. Lett. 2005, 34, 842-843.
(23) Nakagawa, T.; Fujisawa, H.; Nagata, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2005, 78, 236-246.
(24) Myers, A. G.; Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672-9674.
(25) Creger, P. L. Tetrahedron Lett. 1972, 79-80.
(26) Loh, T. P.; Feng, L. C.; Wei, L. L. Tetrahedron 2000, 56, 7309-7312.
(27) Genisson, Y.; Gorrichon, L. Tetrahedron Lett. 2000, 41, 4881-4884.
(28) McGuire, J. M.; Bunch, R. L.; Anderson, R. C.; Boaz, H. E.; Flynn, E. H.; Powell, H. M.; Smith, J. W. Schweiz Med Wochenschr 1952, 82, 1064-1065.
(29) Corey, E. J. H., P. B.; Kim, S.; Yoo, S.; Nambiar, K. B.; Falck, J. R. J. Am. Chem. Soc. 1979, 101, 131-132.
(30) Muri, D.; Lohse-Fraefel, N.; Carreira, E. M. Angew. Chem. Int. Ed. 2005, 44, 4036-4038.
(31) Mulzer, J. K., H. M.; Buschmann, J.; Lehmann, C.;Luger, P. J J. Am. Chem. Soc. 1991, 113, 910-923.
(32) Corey, E. J. T., E. J.; Melvin, L. S.; Nicolaou, K. C.; Secrest, J. R.; Lett, R.; Sheldrake, P. W.; Falck, J. R.; Brunelle, D. J.;Haslanger, M. F.; Kim, S.; Yoo, S. J. Am. Chem. Soc. 1978, 100, 4618-4619.
(33) Kochetkov, N. K. S., A. F.; Ermolenko, M. S.; Yashunsky, D. V.; Borodkin, V. S. Tetrahedron Lett. 1987, 28, 3835-3849.
(34) Evans, D. A.; Yang, M. G.; Dart, M. J.; Duffy, J. L.; Kim, A. S. J. Am. Chem. Soc. 1995, 117, 9598-9599.
(35) Buncel, E.; Hoz, S. Tetrahedron Lett. 1983, 24, 4777-4780.
(36) Still, W. C. K., M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
(37) Evans, D. A.; Johnson, D. S. Org. Lett. 1999, 1, 595-598.
(38) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480-4491.
(39) Gennari, C.; Bernardi, A.; Cardani, S.; Scolastico, C. Tetrahedron Lett. 1985, 26, 797-800.
(40) Sheng, X. PhD. Dissertation. University of Pittsburgh, 2007.
(41) Chandra, B. PhD. Dissertation, University of Pittsburgh, 2010
(42) Chandra, B.; Fu, D. Z.; Nelson, S. G. Angew. Chem. Int. Ed. 2010, 49, 2591-2594.
(43) Kobayashi, J. J. Antibiot. 2008, 61, 271-284.
(44) Kobayashi, J.; Shigemori, H.; Ishibashi, M.; Yamasu, T.; Hirota, H.; Sasaki, T. J. Org. Chem. 1991, 56, 5221-5224.
(45) Kobayashi, J.; Shimbo, K.; Sato, M.; Shiro, M.; Tsuda, M. Org. Lett. 2000, 2, 2805-2807.
(46) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77-93.
(47) Li, H. M.; Wu, J. L.; Luo, J. L.; Dai, W. M. Chem. Eur. J. 2010, 16, 11530-11534.
(48) Hangyou, M.; Ishiyama, H.; Takahashi, Y.; Kobayashi, J. Org. Lett. 2009, 11, 5046-5049.
(49) Furstner, A.; Flugge, S.; Larionov, O.; Takahashi, Y.; Kubota, T.; Kobayashi, J. Chem. Eur. J. 2009, 15, 4011-4029.
(50) Ko, H. M.; Lee, C. W.; Kwon, H. K.; Chung, H. S.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem. Int. Ed. 2009, 48, 2364-2366.
(51) Rodriguez-Escrich, C.; Urpi, F.; Vilarrasa, J. Org. Lett. 2008, 10, 5191-5194.
(52) Barbazanges, M.; Meyer, C.; Cossy, J. Org. Lett. 2008, 10, 4489-4492.
(53) Liang, L.; Wei, Z.; Carter, R. G. J. Am. Chem. Soc. 2008, 130, 11834-11834.
(54) Dai, W. M.; Chen, Y. L.; Jin, J.; Wu, J. L.; Lou, J. S.; He, Q. J. Synlett 2008, 1737-1741.
(55) Lu, L.; Zhang, W.; Carter, R. G. J. Am. Chem. Soc. 2008, 130, 7253-7254.
(56) Va, P.; Roush, W. R. Tetrahedron 2007, 63, 5768-5796.
(57) Jin, J.; Chen, Y. L.; Li, Y. N.; Wu, J. L.; Dai, W. M. Org. Lett. 2007, 9, 25852588.
(58) Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.; Woo, S. K.; Jung, S. K.; Lee, E. Angew. Chem. Int. Ed. 2006, 45, 8019-8021.
(59) Trost, B. M.; Harrington, P. E.; Chisholm, J. D.; Wrobleski, S. T. J. Am. Chem. Soc. 2005, 127, 13598-13610.
(60) Lepage, O.; Kattnig, E.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 15970-15971.
(61) Trost, B. M.; Harrington, P. E. J. Am. Chem. Soc. 2004, 126, 5028-5029.
(62) Ghosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004, 126, 3704-3705.
(63) Ghosh, A. K.; Liu, C. F. J. Am. Chem. Soc. 2003, 125, 2374-2375.
(64) Furstner, A.; Aissa, C.; Riveiros, R.; Ragot, J. Angew. Chem. Int. Ed. 2002, 41, 4763-4766.
(65) Chakraborty, T. K.; Das, S. Tetrahedron Lett. 2001, 42, 3387-3390.
(66) Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945-948.
(67) Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198-11199.
(68) Kobayashi, J.; Shimbo, K.; Sato, M.; Tsuda, M. J. Org. Chem. 2002, 67, 65856592.
(69) Karas, M.; Bachmann, D.; Hillenkamp, F. Anal. Chem. 1985, 57, 2935-2939.
(70) Saito, S. Y.; Feng, J.; Kira, A.; Kobayashi, J.; Ohizumi, Y. Biochem. Biophys. Res. Commun. 2004, 320, 961-965.
(71) Usui, T.; Kazami, S.; Dohmae, N.; Mashimo, Y.; Kondo, H.; Tsuda, M.; Terasaki, A. G.; Ohashi, K.; Kobayashi, J.; Osada, H. Chem. Biol. 2004, 11, 1269-1277.
(72) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 9109-9112.
(73) Liesener, F. P.; Jannsen, U.; Kalesse, M. Synthesis 2006, 2590-2602.
(74) Liesener, F. P.; Kalesse, M. Synlett 2005, 2236-2238.
(75) Formentin, P.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron: Asymm. 2006, 17, 2938-2942.
(76) Petri, A. F.; Schneekloth, J. S.; Mandal, A. K.; Crews, C. M. Org. Lett. 2007, 9, 3001-3004.
(77) Deng, L. S.; Huang, X. P.; Zhao, G. J. Org. Chem. 2006, 71, 4625-4635.
(78) Deng, L. S.; Ma, Z. X.; Zhao, G. Synlett 2008, 728-732.
(79) Furstner, A.; Bouchez, L. C.; Funel, J. A.; Liepins, V.; Poree, F. H.; Gilmour, R.; Beaufils, F.; Laurich, D.; Tamiya, M. Angew. Chem. Int. Ed. 2007, 46, 9265-9270.
(80) Nelson, S. G.; Peelen, T. J.; Wan, Z. H. J. Am. Chem. Soc. 1999, 121, 9742-9743.
(81) Nelson, S. G.; Zhu, C.; Shen, X. Q. J. Am. Chem. Soc. 2004, 126, 14-15.
(82) Vargo, T. R.; Hale, J. S.; Nelson, S. G. Angew. Chem. Int. Ed. 2010, 49, 86788681.
(83) Nelson, S. G.; Cheung, W. S.; Kassick, A. J.; Hilfiker, M. A. J. Am. Chem. Soc. 2002, 124, 13654-13655.
(84) Nelson, S. G.; Wan, Z. H.; Stan, M. A. J. Org. Chem. 2002, 67, 4680-4683.
(85) Nelson, S. G.; Spencer, K. L. Angew. Chem. Int. Ed. 2000, 39, 1323-1325.
(86) Miller, D. J.; Moody, C. J. Tetrahedron 1995, 51, 10811-10843.
(87) Ronan, B.; Bacque, E.; Barriere, J. C. Tetrahedron 2004, 60, 3819-3824.
(88) Nagai, K.; Sunazuka, T.; Omura, S. Tetrahedron Lett. 2004, 45, 2507-2509.
(89) Morilla, M. E.; Molina, M. J.; Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Perez, P. J. Organometallics 2003, 22, 2914-2918.
(90) Doyle, M. P.; Yan, M. Tetrahedron Lett. 2002, 43, 5929-5931.
(91) Moody, C. J.; Morfitt, C. N.; Slawin, A. M. Z. Tetrahedron: Asymm. 2001, 12, 1657-1661.
(92) Nelson, T. D.; Song, Z. J.; Thompson, A. S.; Zhao, M. Z.; DeMarco, A.; Reamer, R. A.; Huntington, M. F.; Grabowski, E. J. J.; Reider, P. J. Tetrahedron Lett. 2000, 41, 18771881.
(93) Maier, T. C.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 4594-4595.
(94) Chen, C.; Zhu, S. F.; Liu, B.; Wang, L. X.; Zhou, Q. L. J. Am. Chem. Soc. 2007, 129, 12616-12617.
(95) Zhu, S. T.; Chen, C.; Cai, Y.; Zhou, Q. L. Angew. Chem. Int. Ed. 2008, 47, 932934.
(96) Robles, O.; McDonald, F. E. Org. Lett. 2008, 10, 1811-1814.
(97) Barton, D. H. R.; Mccombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 15741585.
(98) Davis, F. A.; Kumar, A. J. Org. Chem. 1992, 57, 3337-3339.
(99) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291-293.
(100) Gopalarathnam, A.; Nelson, S. G. Org. Lett. 2006, 8, 7-10.
(101) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
(102) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74, 5828-5835.

