The Allenic Carbocyclization Reaction of Allene-ynes: Progress towards the Syntheses of Fumagillol and Ovalicin

by

Jolie Elaine DeForrest

B.S. Chemistry, Pennsylvania State University, 2003

Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy

UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES DEPARTMENT OF CHEMISTRY

This dissertation was presented

by

Jolie Elaine DeForrest

It was defended on
April 14, 2009
and approved by
Professor Dennis P. Curran, Department of Chemistry
Professor Paul E. Floreancig, Department of Chemistry
Professor Billy W. Day, Department of Pharmaceutical Sciences
Thesis Director:

Professor Kay M. Brummond, Department of Chemistry

Copyright © by Jolie Elaine DeForrest 2009

The Allenic Carbocyclization Reaction of Allene-ynes: Progress towards the Syntheses of Fumagillol and Ovalicin

Jolie E. DeForrest, Ph.D.
University of Pittsburgh, 2009

The $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction is a powerful strategy for the assembly of densely functionalized cyclic cross-conjugated trienes. This methodology exhibits excellent functional group compatibility, and allows for the construction of five-, six-, and sevenmembered rings in high yields from allene-yne precursors. In this thesis, progress towards the total synthesis of $(-)$-fumagillol and (-)-ovalicin is reported. The entire carbocyclic skeleton of both structurally related natural products has been synthesized in a single synthetic transformation via an allenic carbocyclization reaction. It is anticipated that the allylic hydroxyl group of the functionalized cross-conjugated can be used for the chemo- and stereoselective installation of epoxides and hydroxyl groups incorporated in both sesquiterpenes.

The constitutional group selectivity of the β-hydride elimination step in the allenic carbocyclization reaction has been investigated. We found that TMS-alkynyl allenes with an appending isobutylene group can be reacted under $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction conditions to afford regioisomerically pure cross-conjugated trienes in good yields. The examples within, indicate that a coordinating alkene can be incorporated into the allene-yne substrate to control the β-hydride elimination step of the cyclization reaction to yield trienes with a 1,1-disubstituted alkene side chain.

TABLE OF CONTENTS

LIST OF SCHEMES XIII
ACKNOWLEDGEMENTS XVII
LIST OF ABBREVIATIONS XVIII
1.0 THE ALLENIC CARBOCYCLIZATION REACTION OF ALLENE-YNES:
PROGRESS TOWARDS THE SYNTHESES OF FUMAGILLOL AND OVALICIN 1
1.1 INTRODUCTION: THE ALDER-ENE REACTION 1
1.2 THE TRANSITION METAL-CATALYZED ENYNE
CARBOCYCLIZATION REACTION 2
1.3 THE RHODIUM-CATALYZED ALLENIC CARBOCYCLIZATION
REACTION: THE CONSTRUCTION OF CYCLIC CROSS-CONJUGATED
TRIENES 5
1.4 CROSS-CONJUGATED TRIENES IN LIBRARY DEVELOPMENT AND
NATURAL PRODUCT SYNTHESIS 8
1.5 BIOLOGICAL ACTIVTY OF FUMAGILLOL, OVALICIN, AND
RELATED SESQUITERPENES 12
1.6 SYNTHETIC STRATEGIES TO FUMAGILLOL AND OVALICIN 15
1.6.1 Previous Syntheses of Fumagillol 15
1.6.2 Previous Syntheses of Ovalicin 19
1.6.3 Brummond and Coworkers' Previous Approach to Ovalicin 21
1.6.4 Retrosynthetic Analysis: Brummond / DeForrest Approach to
Fumagillol / Ovalicin via an Allenic Carbocyclization Reaction 23
1.7 RESULTS AND DISCUSSION: SYNTHESIS AND
FUNCTIONALIZATION OF A CROSS-CONJUGATED TRIENE PRECURSOR FOR THE SYNTHESES OF FUMAGILLOL AND OVALICIN 24
1.7.1 Synthesis of Cross-conjugated Triene 109 24
1.7.2 Alcohol-Directed Epoxidation of Triene 109: Formation of a Pivotal
Intermediate for the Syntheses of Ovalicin and Fumagillol 30
1.7.2.1 Diverging Palladium-Catalyzed Transformations of Epoxide 11531
1.7.2.2 Palladium-Catalyzed Hydrogenolysis of Epoxide 115: Synthesis ofDiol 117a/b32
1.7.2.3 Palladium-Catalyzed CO_{2}-Insertion of Epoxide 115: Formation ofCarbonate 11836
1.8 INVESTIGATING THE REACTIVITY OF THE CROSS-CONJUGATED
TRIENE MOIETY AND DERIVATIVES TOWARDS CROSS-METATHESIS:
APPENDING THE ISOBUTYLENE SIDE CHAIN OF OVALICIN AND
FUMAGILLOL TO THE TRIENE 39
1.9 REVISED RETROSYNTHETIC ANALYSIS: INSTALLATION OF THE SIDE CHAIN OF OVALICIN THOUGH AN OLEFINATION REACTION 43
1.9.1 Synthesis of Epoxy Ketone 131: Construction of the Oxygenated Carbocyclic Framework of Ovalicin 43
1.9.2 Olefination of Methyl Ketone 131: Installation of the Masked Skipped
Diene Side of Ovalicin 46
1.9.3 Investigation of the Julia and Wittig Olefination Reactions for theInstallation of the Side Chain in Ovalicin50
1.10 THIRD GENERATION APPROACH TO OVALICIN: INSTALLATION
OF THE SIDE CHAIN OF OVALICIN VIA A [3,3]-SIGMATROPIC
REARRANGEMENT 52
1.10.1 Synthesis of and Claisen Rearrangement of Allylic Acetate 144 52
1.10.2 Projected End-game of Ovalicin from Diene 151 56
1.10.3 Summary and Conclusions for the Synthesis and Functionalization of
Cross-conjugated Triene 10957
1.11 THE CARBOCYCLIZATION REACTION OF ALLENE-YNES:
INVESTIGATING THE CONSTITUTIONAL SITE SELECTIVITY OF
DIFFERENTIALLY FUNCTIONALIZED 1,1-DISUBSTITUTED ALLENES AND
ITS APPLICATION TO OVALICIN AND FUMAGILLOL 58
1.11.1 Trost's Constitutional Site Selectivity Study of 1,6-Enynes Appended to an Isobutylene Group 58
1.11.2 Previous Studies Regarding the Constitutional Site Selectivity in the Allenic Carbocyclization Reaction 59
1.11.3 Retrosynthetic Analysis of Ovalicin and Fumagillol from α-Hydroxy Allene-yne 162 60
1.11.4 Synthesis of Allene-ynes Tethered to an Isobutylene Group 61
1.11.4.1 Substrate Design of $\boldsymbol{\alpha}$-Hydroxy Allene-ynes 61
1.11.4.2 Synthesis of Malonate and Heteroatom Tethered Allene-ynes. 67
1.11.5 The Constitutional Site Selectivity of Allene-ynes Tethered to an Isobutylene Group 72
1.11.5.1 Investigating the Role of the Allene-yne Functional Groups on the Selectivity of the Allenic Carbocyclization Reaction 72
1.11.5.2 Explanation for the Constitutional Site Selectivity of the Allenic
Carbocyclization Reaction of Allene-ynes containing an Isobutylene group82
1.11.5.3 Examining the Effect of Coordinating Solvents on the
Regioselectivity of the Rh(I)-Catalyzed Allenic Carbocyclization Reaction 82
1.11.5.4 Exploring Rhodium and Ruthenium Catalysts for theCarbocyclization of Allene-yne 16286
1.11.5.5 Assignment of the Stereochemistry of Cross-Conjugated Trienes E-161 and Z-161 through nOe Analysis 88
1.11.5.6 The Iridium-Catalyzed Allenic Carbocyclization of Allene-ynes Containing Tethered Alkenes 90
1.11.5.7 The Thermally Induced Ene Cyclization of Allene-yne 162 92
1.11.5.8 Summary and Conclusions for the Allenic Carbocyclization Reaction of Allene-ynes with an Appending Isobutylene Group 95
1.12 INVESTIGATING THE REACTIVITY OF CROSS-CONJUGATED TRIENE E-161 TOWARDS SELECTIVE OXIDATION REACTIONS 97
1.12.1 Application of Alcohol-Directed Oxidation Reactions to Cross-
Conjugated Triene E-161 97
1.12.1.1 Application of Alcohol-Directed Epoxidation Reaction Conditions
to Cross-Conjugated Triene \boldsymbol{E}-161 97
1.12.1.2 Application of Alcohol-Directed Dihydroxylation Reaction Conditions to E-161 100
1.12.1.3 Allylic 1,3-Transposition: Exploration of Myers’ Protocol for the
Reductive Rearrangement of \boldsymbol{E}-161 101
1.12.1.4 Summary and Conclusions for the Functionalization of $E-161 . .103$
1.13 EXPERIMENTAL SECTION 103
1.13.1 General Methods 103
1.13.2 Experimental Procedures 105
APPENDIX A. 180
BIBLIOGRAPHY 260

LIST OF TABLES

Table 1: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene (R)-109 $\left(\mathrm{CDCl}_{3}, \mathrm{rt}, 500 \mathrm{MHz}\right)$ 29
Table 2: ${ }^{1} \mathrm{H}$ NMR Assignment of Diol 117a (500 MHz, CDCl_{3}) 33
Table 3: ${ }^{1} \mathrm{HNMR}$ Assignment of Diol 117b ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 34
Table 4: ${ }^{1} \mathrm{HNMR}$ Assignment of Carbonate $118\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 38
Table 5: Formation of Ketal 135 and Epoxide 131 from Ketone 134 45
Table 6: Formation of Functionalized Alkene 136 47
Table 7: Carbocyclization Reaction of Allene-yne 157^{77} 59
Table 8: Synthesis of Malonate tethered Allene-ynes 176 through 179. 69
Table 9: Formation of N-Tosylallene-ynes 181-183 70
Table 10: Formation of Ether-tethered Allene-ynes 185-187. 71
Table 11: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene 188 (alkene region, $\mathrm{CDCl}_{3}, \mathrm{rt}, 500 \mathrm{MHz}$). 73
Table 12: Allenic Carbocyclization Reaction of Allene-ynes 169 through 171 74
Table 13: Allenic Carbocyclization Reaction of Allene-ynes 172 and 173 74
Table 14: The Carbocyclization Reaction of Malonate-Tethered Allene-ynes Containing an
Appending Isobutylene Group 76
Table 15: Formation of Cyclopentenones 207-210 77

Table 16: The Carbocyclization of Heteroatom-Tethered Allene-ynes with an Appending Isobutylene Group... 79

Table 17: Solvent Study for the Allenic Carbocyclization Reaction of Allene-yne 162.............. 83
Table 18: Allenic Carbocyclization Reaction of Allene-yne 162 in Alkene Solvents Systems ... 85
Table 19: Examining the Rh(I)-Catalyzed Carbocyclization of Allene-yne 162 in Styrene 86
Table 20: Investigation of Catalysts for the Formation of Cross-Conjugated Triene 161............ 87
Table 21: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene E - 161 (alkene region, CDCl_{3}, rt, 300 MHz)..... 89
Table 22: $\operatorname{Ir}(\mathrm{I})$ - and $\mathrm{Rh}(\mathrm{I})$-Catalyzed Carbocyclization Reaction of Allene-ynes Containing
Tethered Alkenes .. 91
Table 23: Reaction of E-161 with Vanadium-catalyzed Epoxidation Reaction Conditions 99
Table 24: Formation of Epoxide 259 from Cross-Conjugated Triene E-161............................... 99

LIST OF FIGURES

Figure 1: Fumagillin and Related Spiroepoxides. 13
Figure 2: ${ }^{19}$ F NMR of Racemic Allene-yne 114 and Enantioenriched Allene-yne (R)-114 27
Figure 3: Minimum Energy Conformation of Epoxide 115 36
Figure 4: Minimum Energy Conformation of trans-Carbonate 118. 39
Figure 5: Minimum Energy Conformation of Triene 109 41
Figure 6: ${ }^{1} \mathrm{H}$ NMR of Skipped Diene $136\left(\mathrm{CDCl}_{3}, \mathrm{rt}, 500 \mathrm{MHz}\right)$ 48
Figure 7: Assignment of $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and H_{c} in the ${ }^{1} \mathrm{H}$ NMR Spectrum of 151 and $152(300 \mathrm{MHz}$,
$\mathrm{C}_{6} \mathrm{D}_{6}$) 56
Figure 8: Desired Allene-yne Substrates 61
Figure 9: ${ }^{19}$ F NMR of Racemic Allene-yne 168 and Enantioenriched Allene-yne (R)-168 64
Figure 10: Malonate and Heteroatom Tethered Allene-yne Derivatives 67
Figure 11: Assignment of $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$, and H_{c} in the ${ }^{1} \mathrm{H}$ NMR Spectrum of $207\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) . .78$
Figure 12: Assignment of $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$, and H_{c} in the ${ }^{1} \mathrm{H}$ NMR Spectrum of $231\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) . .80$
Figure 13: nOe Analysis of E-161 and Z-161 after HPLC separation. 90
Figure 14: Assignment of $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$, and H_{c} in the ${ }^{1} \mathrm{H}$ NMR Spectrum of $247\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$.. 94

LIST OF SCHEMES

Scheme 1: Intermolecular Alder-ene Reaction 1
Scheme 2: Cycloisomerization of Enyne 1 2
Scheme 3: Proposed Mechanisms for the Carbocyclization of 1,6-Enynes ${ }^{14,15}$ 3
Scheme 4: Palladium-Catalyzed Enyne Carbocyclization of Enyne 14, A Synthesis of (+)-
Cassiol ${ }^{16}$ 4
Scheme 5: Palladium-Catalyzed Carbocyclization Reaction of Enyne 16, A Synthesis of
Picrotoxinin ${ }^{4}$ 4
Scheme 6: Rhodium-Catalyzed Carbocyclization of Enyne 18, A Synthesis of (+)-Pilocarpine. 5
Scheme 7: The Allenic Carbocyclization of Allene-yne 20^{19} 6
Scheme 8: Proposed Mechanism for the Rh(I)-Catalyzed Allenic Carbocyclization Reaction ${ }^{19}$... 7
Scheme 9: Cross-Conjugated Trienes Constructed via an Allenic Carbocyclization Reaction 8
Scheme 10: Cycloaddition Reactions of Amino-Acid Derived Cross-Conjugated Triene 37^{29}...... 9
Scheme 11: A Tandem Cyclopropanation/Cope Rearrangement of Trieneone 44^{31} 10
Scheme 12: Synthesis of (+)-Cortistatin A from Cross-Conjugated Triene 54^{33} 11
Scheme 13: One Model for MetAP-Inhibition ${ }^{57}$. 15
Scheme 14: Previous Syntheses of Fumagillol 16
Scheme 15: Sorensen's Route to Fumagillol 17
Scheme 16: Taber's Synthetic Strategy to (-)-Fumagillol 17
Scheme 17: Mootoo's Oxocarbenium Ion Cyclization of 76, A Formal Synthesis of Fumagillin 18
Scheme 18: Hayashi's Route to (-)-Fumagillol 18
Scheme 19: Previous Syntheses of Ovalicin. 20
Scheme 20: Hayashi's Route to Ovalicin 21
Scheme 21: Rh(I)-catalyzed Carbocyclization of Allene-yne 99^{77}. 22
Scheme 22: Synthesis and Oxidation of Triene 104^{77} 22
Scheme 23: Retrosynthetic Analysis of Fumagillol and Ovalicin from Allenyne 110. 24
Scheme 24: Synthesis of Racemic and Enantioselective Allene-yne 110 and (R)-110. 25
Scheme 25: Formation of Mosher Esters 114 and (R)-114. 26
Scheme 26: Formation of Racemic and Chiral Cross-conjugated Trienes 109 and (R)-109 28
Scheme 27: Formation of Epoxide 115 from Triene 109 30
Scheme 28: Projected Diverging Transformations of Epoxide 115 to the Oxygenated Rings of 60
and 61 31
Scheme 29: Formation of Diols 117a/b from Epoxide 115 32
Scheme 30: Proposed Mechanism for the Conversion of Epoxide 115 into Diol 117a/b 35
Scheme 31: Formation of Carbonate 118 from Epoxide 115 37
Scheme 32: Catalysts Commonly used for Olefin Metathesis 40
Scheme 33: Conversion of Cross-Conjugated Triene 127 to Allyl Silane 128 via Cross-
metathesis ${ }^{97}$ 40
Scheme 34: Attempted Cross-Metathesis Between Triene 109 and Alkene 129 42
Scheme 35: Attempted Metathesis Reaction Between Carbonate Derivatives and Alkene 130 .. 42
Scheme 36: Revised Retrosynthetic Analysis of Ovalicin from Ketone 131 43
Scheme 37: Formation of Ketone 134 from Carbonate 118 44
Scheme 38: Mootoo's Formal Synthesis of Fumagillol from Ketone 84 and BT-Sulfone 85 48
Scheme 39: Explanation for the Predominate Formation of Z-136 from Ketone 131 and Sulfone
$85^{107,108}$ 50
Scheme 40: Reaction of Ketone 131 with Phenyl Sulfone 141 51
Scheme 41: Reaction of Ketone 131 with 4-Methyl-3-pentyltriphenylphosphonium Bromide. 51
Scheme 42: Retrosynthetic Analysis of Ovalicin from Allylic Acetate 144 52
Scheme 43: Formation of Allylic Acetate 144 from Ketone 131 53
Scheme 44: Formation of Silyl Ester 147 from Allylic Acetate 144 54
Scheme 45: Explanation for the Selective Formation of E-147 54
Scheme 46: Formation of Skipped Dienes 151/ 152 from Silyl Ester 147. 55
Scheme 47: Projected Synthesis of Ovalicin from Diene 151 56
Scheme 48: Palladium-Catalyzed Carbocyclization Reaction of 1,6-Enyne $154{ }^{124}$ 58
Scheme 49: Retrosynthetic Analysis of Ovalicin and Fumagillol from Allene-yne 162 60
Scheme 50: Synthesis of Allene-yne 162 62
Scheme 51: Synthesis of (R)-162. 63
Scheme 52: Formation of Mosher Esters 168 and (R)-168 63
Scheme 53: Formation of (R)-164 via Carreira’s Asymmetric Alkynylation Protocol 65
Scheme 54: Formation of Silyl ether 169, Acetate 170, and Pivaloate ester 171 66
Scheme 55: Formation of Allene-ynes 172 and 173 66
Scheme 56: Formation of Allene-yne 175. 68
Scheme 57: Formation of TMS-Substituted Alkynes 180 and 184 71
Scheme 58: Selective Formation of Cross-conjugated Triene 188 from Allene-yne 162 72
Scheme 59: Formation of Cyclopentenone 231 from Allene-yne 186 80
Scheme 60: Formation of Isomeric Cyclopentenones 231 and 235 from Allene-yne 186 81
Scheme 61: Explanation for the Selectivity of the Alder-ene Reaction of Allene-ynes Tethered to
an Alkene 82
Scheme 62: Formation of 2,5-Dihydropyran 239 from Allene-yne 162 84
Scheme 63: Reaction of 162 with $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and AgBF_{4} 92
Scheme 64: Carbocyclization of Enyne $240^{120,121}$. 93
Scheme 65: Microwave Irradiation of Allene-ynes ${ }^{145}$ 93
Scheme 66: Selective Formation of Cyclopentene 247 from Allene-yne 162. 94
Scheme 67: Thermal Cyclization of Allene-ene 249^{147} 95
Scheme 68: Anticipated Transformations of Bis-Allylic Epoxide 251 97
Scheme 69: Alcohol-directed Epoxidation of Cross-conjugated Triene 188 98
Scheme 70: Predicted Formation of Triol 261 via Dihydroxylation of Tetraene E-161 100
Scheme 71: Reaction of E-161 with Stoichiometric OsO_{4} and TMEDA 101
Scheme 72: Projected Synthesis of diol 252 from E-161 102
Scheme 73: Selective Vinyl Silane Reduction: Synthesis of 264. 102

ACKNOWLEDGEMENTS

There are many people whom I would like to thank for their immense support and encouragement throughout my graduate career, such as my husband, Matthew Lechner, for the years of unconditional love and never-ending computer support. Additional thanks to my family, Jack, Anne, Cory, and Lindsey, for always believing in my potential.

I would like to thank my advisor, Dr. Kay Brummond, for providing me with a strong, scientific foundation and challenging me to become a better scientist. Thanks also to my committee members, Dr. Floreancig, Dr. Curran, and Dr. Day, and my proposal advisor, Dr. Wipf, for helping me develop my critical thinking abilities. I would like to thank my co-workers in the Brummond group for their camaraderie and helpful input.

LIST OF ABBREVIATIONS

Ac	acetyl
aq	aqueous
BINAP	2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl
Brsm	based on recovered starting material
COD	1,5-cyloocatadiene
CO	carbon monoxide
dba	dibenzylidene acetone
DCC	dicyclohexylcarbodiimide
DCE	1, 2-dichloroethane
DCM	dichloromethane
DEAD	diethyl azodicarboxylate
DIAD	diisopropylazodicarboxylate
DMAP	4-dimethylaminopyridine
DMF	dimethylformamide
DOS	diversity-oriented synthesis
dr	diastereomeric ratio
EDCI	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide•HCl
ee	enantiomeric excess
EI	electro impact (ionization)
ESI	electrospray ionization
EtOAc	ethyl acetate
GC	gas chromatography
h	hour(s)
HMPA	hexamethylphosphoric triamide
HPLC	high pressure liquid chromatography
IR	infrared
KHMDS	potassium hexamethyldisilazide
LAH	lithium aluminum hydride
LDA	lithium diisopropylamine
LHMDS	lithium hexamethyldisilazide
m-CPBA	m-chloroperoxybenzoic acid
MetAP	methionine aminopeptidase
min	minute(s)
NaHMDS	sodium hexamethyldisilazide
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect

NMO	N-methylmorpholine- N-oxide
Ph	phenyl
R_{f}	retention factor
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TES	triethylsilyl
TESCl	chlorotriethylsilane
TFE	trifluoroethanol
THF	tetrahydrofuran
THP	tetrahydropyran
TLC	thin-layer chromatography
TMEDA	N, N, N, N^{\prime} '-tetramethylethylenediamine
TMS	trimethylsilyl
Tosyl	4-toluenesulfonyl (also Ts)
UPCMLD	University of Pittsburgh Center for
	Development weight

1.0 THE ALLENIC CARBOCYCLIZATION REACTION OF ALLENE-YNES: PROGRESS TOWARDS THE SYNTHESES OF FUMAGILLOL AND OVALICIN

1.1 INTRODUCTION: THE ALDER-ENE REACTION

The Alder-ene ${ }^{1,2}$ reaction is a powerful and atom-economical process ${ }^{3}$ that is used for carboncarbon bond formation. This reaction occurs between two carbon-carbon π bonds with one carbon-carbon double bond bearing an allylic hydrogen. During the course of the reaction, the allylic hydrogen is transferred to the alkene. As shown in Scheme 1, one σ bond migrates and one σ bond is formed at the expense of one π bond. The thermal Alder-ene reaction requires elevated temperatures (typically $250-600^{\circ} \mathrm{C}$) and can be accomplished either intra- or intermolecularly.

Scheme 1: Intermolecular Alder-ene Reaction

1.2 THE TRANSITION METAL-CATALYZED ENYNE CARBOCYCLIZATION REACTION

The use of transition metals in carbocyclization processes, like the Alder-ene reaction, allows for mild reaction conditions, increased efficiency of synthetic transformations, and often higher functional group tolerance than their respective thermal processes. Transition metals are also advantageous as they can be designed to meet the requirements of specific carbocyclization precursors. ${ }^{4}$

One example of a transition metal-catalyzed carbocyclization reaction is the cycloisomerization of 1,6-enynes. As seen in Scheme 2, enyne 1 can be reacted with a variety of palladium, ${ }^{4,5}$ ruthenium, ${ }^{6-8}$ titanium, ${ }^{9}$ iron, ${ }^{10}$ and rhodium ${ }^{11}$ transition-metal complexes to yield cyclic 1,3- and 1,4-dienes.

Scheme 2: Cycloisomerization of Enyne 1
Three different mechanistic pathways have been proposed for this reaction. The first process (path a, Scheme 3) involves oxidative coupling of the alkene and alkyne moieties of enyne 4 to form metallocycle 5, which upon β-hydride elimination and then reductive elimination produces 1,3 - and 1,4 -dienes 6 and 7. Ruthenium, ${ }^{7}$ titanium, ${ }^{9}$ and rhodium ${ }^{11}$ catalysts are a few of the transitional-metal complexes that can react with enynes via this mechanism. A different pathway (path b), where $\mathrm{X}=\mathrm{H}$, halogen, or OAc is favored for palladium catalyst systems and has been extenstively studied by Trost and coworkers. ${ }^{12}$ In this
case, the catalyst undergoes addition to the alkyne of enyne $\mathbf{4}$ to form alkenylmetal species $\mathbf{8}$. The alkene in intermediate $\mathbf{8}$ can then insert into the carbon-metal bond of the alkenylmetal moiety to produce $\mathbf{9}$, which after β-hydride elimination gives cyclized compounds $\mathbf{1 0}$ and $\mathbf{1 1}$. The less commonly observed mechanistic pathway c can occur when palladium ${ }^{13}$ and rhodium ${ }^{14}$ catalysts are reacted enynes possessing an allylic activated group. This reaction results in the formation of metal π-allyl complex 12, which cyclizes to 1,4 -diene $\mathbf{1 3} .^{14,15}$

$$
\mathrm{M}=\text { transition metal; } \mathrm{R}^{1}=\mathrm{H} \text { or leaving group; } \mathrm{X}=\mathrm{H} \text { or nucleophile }
$$

Scheme 3: Proposed Mechanisms for the Carbocyclization of 1,6-Enynes ${ }^{14,15}$
The transition metal-catalyzed carbocyclization reaction of 1,6-enynes has been successfully applied to natural product synthesis. For example, Trost and coworkers used a palladium-catalyzed carbocyclization reaction as a key transformation for the construction of the cyclohexyl framework of (+)-cassiol (Scheme 4). ${ }^{16}$ Alkynone 14, when reacted with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and formic acid in 1,2-dichloroethane (DCE) at room temperature, produced cyclohexenone 15 in 83% yield as a 3 : 1 mixture of diastereomers at C1. The "ligandless"
palladium catalyst allows for bidentate coordination of the enyne $\mathbf{1 4}$, which is required for the cycloisomerization process. This synthesis also illustrates the benefit of a transition metalcatalyzed process over a thermal one; for example, heating 14 to $500^{\circ} \mathrm{C}$ only produces a trace amount of product.

Scheme 4: Palladium-Catalyzed Enyne Carbocyclization of Enyne 14, A Synthesis of (+)-Cassiol ${ }^{16}$
Additionally, Trost and Krische employed a palladium-catalyzed enyne carbocyclization reaction in the synthesis of picrotoxinin and the structurally related compounds picrotin, corianin, and methyl picrotoxate (Scheme 5). ${ }^{4}$ Trost obtained bicyclic carbocycle 17 in 70% yield from enyne 16 using palladium(II)acetate, 2-(diphenylphosphino)benzoic acid (dpba) and 1,3-bis(dibenzophospholyl)propane (dbpp) in refluxing DCE. An extensive survey of reaction conditions showed that combining dbpp, a ligand capable of internal proton delivery, with the small Lewis acidic ligand dpba would produce an optimal ligand system for this particular carbocyclization reaction. Trost's design and development of the unique palladium catalyst employed for the cycloisomerization of enyne $\mathbf{1 6}$ exemplifies the advantage of using tunable transition metals catalysts for carbobocyclization processes.

Scheme 5: Palladium-Catalyzed Carbocyclization Reaction of Enyne 16, A Synthesis of Picrotoxinin ${ }^{4}$

Zhang and coworkers have effectively applied a rhodium-catalyzed carbocyclization reaction to a formal synthesis of (+)-pilocarpine (Scheme 6). ${ }^{17}$ Reacting enyne 18 with $\left[\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{Cl}_{2}\right.$, (R) - BINAP , and AgSbF_{6} resulted in the formation of α-alkylidene- γ butyrolactone (R)-19 in 99% yield and $99 \% e e$, a structure that allowed Zhang to intersect Büchi's synthesis of (+)-pilocarpine. Butyrolactone (R)-19 was assembled in 91% overall yield and 99% ee in two steps from commercially available 2-butynoic acid and (Z)-2-buten-1,4-diol, demonstrating the utility of the transition-metal catalyzed carbocyclization reaction in natural product synthesis.

Alternatively, Büchi constructed (R) - $\mathbf{1 9}$ with the desired stereochemistry at C 1 through a five step synthesis featuring an asymmetric reduction reaction and subsequent Claisen rearrangement of the resulting chiral allylic alcohol. ${ }^{18}$ This approach, however, produced α -alkylidene- γ-butyrolactone (R)-19 in only 20\% overall yield and 92\% ee.

Scheme 6: Rhodium-Catalyzed Carbocyclization of Enyne 18, A Synthesis of (+)-Pilocarpine

1.3 THE RHODIUM-CATALYZED ALLENIC CARBOCYCLIZATION REACTION: THE CONSTRUCTION OF CYCLIC CROSS-CONJUGATED TRIENES

The Brummond group has been interested in the design and development of the $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction, which effectively uses an allene in place of the alkene
component to access cyclic cross-conjugated trienes. ${ }^{19}$ An example of the allenic carbocyclization is depicted in Scheme 7. Allene-yne 20 is reacted with $2 \mathrm{~mol} \%$ of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}{ }^{20}$ to afford carbocyclic triene 21 in 72% yield; producing the E isomer of the alkenyl silane exclusively as evidenced by the 4.5% nOe between H^{1} and H^{2}. The appending alkene, however, is produced as a mixture of $E: Z$ isomers in a 5:1 ratio.

Scheme 7: The Allenic Carbocyclization of Allene-yne 20^{19}
Brummond and coworkers ${ }^{19}$ have proposed that the mechanism for the $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction involves oxidative coupling of the rhodium catalyst to the alkyne and external double bond of the allene in allene-yne 22 to produce metallocycle 24 (Scheme 8). Metallocycle 24 then undergoes β-deuteride elimination giving intermediate 25 followed by reductive elimination of the metallo-deuteride to produce cross-conjugated triene 26. A deuterium-labeling study showed that the reaction occurs with complete and stereoselective transfer of a deuterium to the exocyclic alkene, supporting the postulated mechanism.

Scheme 8: Proposed Mechanism for the Rh(I)-Catalyzed Allenic Carbocyclization Reaction ${ }^{19}$
The $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction developed in the Brummond group has proven to be a powerful strategy for the assembly of structurally interesting cross-conjugated trienes. As seen in Scheme 9, this methodology is well-suited for the formation of five-, six-, and seven-membered rings in yields of 65-95\%. ${ }^{21-24}$ This rhodium(I)-catalyzed transformation also exhibits excellent functional group compatibility. For example, free hydroxyl groups are tolerated during the course of the reaction as evidenced by the formation of trienes $\mathbf{3 0}$ and 31 in good yield. ${ }^{21}$ Other functional groups such as benzamide, ${ }^{22}$ oxazolidinone, ${ }^{23}$ and amide ${ }^{24}$ groups are also tolerated as illustrated by formation of trienes $\mathbf{2 7 - 2 9}$, and $\mathbf{3 5 - 3 6}$ in excellent yields. Additionally, piperdine and pyran derived cross-conjugated trienes such as 32 and 33 can be accessed from allene-yne precursors in high yields of 85% and 74% respectively. ${ }^{19}$

27, 90\%

32, $85 \%, E: Z=5: 1$

28, 72\%

33, $74 \%, E: Z=6: 1$
34, 95\%

30, 80\%

35, 88\%

31, 76\%

36, 65\%

Scheme 9: Cross-Conjugated Trienes Constructed via an Allenic Carbocyclization Reaction

1.4 CROSS-CONJUGATED TRIENES IN LIBRARY DEVELOPMENT AND NATURAL PRODUCT SYNTHESIS

Cross-conjugated trienes are an exciting class of compounds because of their potential for rapid increases in molecular complexity. For example, cross-conjugated trienes have been extensively employed as Diels-Alder substrates to access fused polycyclic ring systems. ${ }^{21,} 25-28$ In 2006, Brummond and coworkers designed imino-oxazolidinone fused trienes of type 37 for the construction of novel heterocyclic scaffolds. ${ }^{29}$ As seen in Scheme 10, cross-conjugated triene 37 undergoes a stereoselective intermolecular Diels-Alder reaction with N-phenylmaleimide (38) to give monocycloadduct 39 in 73% yield as a single diastereomer. This cycloaddition reaction occurs from the less sterically hindered face of triene 37, opposite of the angular methyl group, and with endo selectivity. The triene was designed so that the presence of the electron
withdrawing carbonyl functionality prevents a second Diels-Alder reaction with N phenylmaleimide from occurring, thus maximizing the diversity potential of this scaffold.

Diene 39 was subsequently transformed into polycyclic compound 41 in 71% yield as an 8 : 1 mixture of diastereomers when reacted with diethyl fumarate (40) at $90^{\circ} \mathrm{C}$. Alternatively, the enone moiety of 39 can undergo a hetero-Diels-Alder reaction with ethyl vinyl ether (42) in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ to afford pyran 43 in 95% yield as a single diastereomer. This methodology cleverly demonstrates the utility of the cross-conjugated triene moiety for the formation of unique heterocyclic structures via diastereo- and chemoselective cycloaddition reactions, and was used in the synthesis of a library of compounds by the UPCMLD. ${ }^{30}$

Scheme 10: Cycloaddition Reactions of Amino-Acid Derived Cross-Conjugated Triene 37^{29}
More recently, Brummond and coworkers have shown that hydroazulenones such as 46 can be synthesized from five-membered cross-conjugated trienones (Scheme 11). ${ }^{31}$ Using reaction conditions developed by Davies, ${ }^{32}$ triene 44 was reacted with E-diethyl-4-diazo-2pentenedioate (47) and rhodium(II) acetate to yield hydroazulenone 46 as a single diastereomer in 47% yield. This formal [$3+4]$ cycloaddition proceeds through the selective cyclopropanation
of the vinyl group in 44 by the rhodium-stabilized vinylcarbenoid to produce cisdivinylcyclopropane 45. This strained intermediate then undergoes a Cope rearrangement to afford the seven-membered ring of bicyclo[5.3.0]decadienone 46. The small amount of transdivinylcyclopropane formed during the reaction is recovered (not shown).

The skeletal diversity of these small molecules was further expanded by reacting cisdiene 46 with 4-methyl-1,2,4-triazoline-3,5-dione (48) to produce the Diels-Alder adduct 49 in high yield. This methodology has allowed the synthesis of 44 hydroazulenoisoindoles resembling 49, two of these compounds were found to inhibit nuclear accumulation of GFP-GR at low micromolar concentrations as tested by Day and Johnston. ${ }^{31}$ The selective chemical transformations of the double bonds in trieneones similar to $\mathbf{4 4}$ has provided access to naturalproduct like hydroazulenoisoindoles and illustrates the synthetic potential of the crossconjugated triene scaffold.

Scheme 11: A Tandem Cyclopropanation/Cope Rearrangement of Trieneone 44^{31}
Shair and coworkers have synthesized the potent angiogenesis inhibitor (+)-cortistatin A (58) from a cyclic cross-conjugated triene precursor (Scheme 12). ${ }^{33}$ This enantioselective synthesis of 58 began by converting enantiomerically pure Hajos-Parrish ketone ${ }^{34}$ into tricyclic
intermediate 50 via a twelve-step reaction sequence (not shown). With diene 50 in hand, a regioand diastereoselective cyclopropantion reaction with dibromocarbene was performed to access cyclopropane 51. A subsequent silicate-directed ring expansion reaction with tris(dimethylamino)sulfonium difluorotrimethylsilicate was then used to access vinyl bromide 52 (66\% yield for two steps).

$50, \mathrm{R}=\mathrm{MeO} \sim \underbrace{n}$

51

52

1) $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, \mathrm{~K} 2 \mathrm{Fe}(\mathrm{CN})_{6}$ (DHQD) ${ }_{2} \mathrm{PHAL}, \mathrm{K}_{2} \mathrm{CO}_{3}$
$\xrightarrow[\text { 2) } \mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N},]{\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, t \mathrm{BHOH}}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 51 \%$ for two steps
2) $\mathrm{HF} / \mathrm{pyr}$. THF
3) $\mathrm{DMP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

54

57

(+)-Cortistatin A (58)

Scheme 12: Synthesis of (+)-Cortistatin A from Cross-Conjugated Triene 54^{33}

The key intermediate 54 was obtained in 84% yield through a palladium-catalyzed coupling reaction between vinyl bromide 52 and the vinyl boronic ester 53. Chemoselective dihydroxylation of the disubstituted alkene in cross-conjugated triene 54 was used to construct the allylic diol moiety of cortistatin A, via Sharpless' asymmetric dihydroxylation protocol. The resulting diol was then subjected to a three-step reaction sequence involving aceylation of the diol and deprotection/oxidation of the primary alcohol to give aldehyde 55.

Reacting 55 with dimethyl amine and zinc dibromide $\left(\mathrm{ZnBr}_{2}\right)$ resulted in a tandem azaPrins cyclization and transannular etherification reaction (Scheme 12). The MEM protecting group was removed in situ to yield the polycyclic compound 57 in 65% yield over three steps. The C-3 stereocenter was produced in $>95 \%$ diastereoselectivity during the aza-Prins cyclization and is attributed to the coplanar geometry of H_{a} and the internal N -methyl group of iminum ion 56. This preferred geometry minimizes $A(1,3)$ strain and prevents nucleophilic addition from the Re face. Shair and coworkers were able to transform amine 57 into (+)-cortistatin A in six steps.

The synthetic utility of the cross-conjugated triene moiety is clearly demonstrated by Shair's elegant synthesis of (+)-cortistatin A. For example, selective functionalization of the unsaturated system in cross-conjugated triene 54 provided access to the diol moiety of $\mathbf{5 8}$, and set the stage for the key tandem aza-Prins/transannular cyclization reaction.

1.5 BIOLOGICAL ACTIVTY OF FUMAGILLOL, OVALICIN, AND RELATED SESQUITERPENES

As evidenced by the examples in the previous section, the functionally compact nature of the cross-conjugated triene makes it an attractive building block for the construction of biologically
active compounds and natural products. We envision that fumagillol (60), ovalicin (61), and structurally related cyclic sesquiterpenes can be synthesized from a cross-conjugated triene precursor (Figure 1).

fumagillin (59)

fumagillol (60)

ovalicin (61)

FR65814 (62)

(63)

Figure 1: Fumagillin and Related Spiroepoxides
In 1949, fumagillin (59) was isolated from the microbial organism Aspergillus fumigatus (Figure 1). ${ }^{35,36}$ Through chemical degradation and X-ray crystallographic analysis, the structure and stereochemical configuration of fumagillin and fumagillol were established. ${ }^{37-39}$ Originally, fumagillin was classified solely as an anti-microbial agent since it possessed antibiotic activity against Staphylococcus aureus. ${ }^{35}$ In 1990, Folkman and coworkers discovered that fumagillin also showed in vivo inhibition of angiogenesis, the generation of new blood vessels. ${ }^{40}$ Angiogenesis is believed to be important for tumor growth, and synthetic inhibitors of angiogenesis such as TNP-470 ${ }^{41,42}$ (63) and CDK-731 ${ }^{43}$ (64) have been developed as potential anti-cancer drugs. Currently, fumagillin and TNP-470 are some of the only drug treatments for
micosporidiosis, a disease caused by microscopic parasitic infection that is often seen in HIVpositive patients. ${ }^{44-46}$

In 1968, Sigg and Weber isolated ovalicin (61, Figure 1) from culture filtrates of the fungus Pseudeurotium ovalis Stolk. ${ }^{47}$ This sesquiterpene alkaloid was found to be more potent than fumagillin (59), exhibiting the same activity as TNP-470 (63). However, unlike fumagillin and TNP-470, ovalicin has been found to be stable at room temperature for at least two years. ${ }^{48}$

Fumagillin, ovalicin, and other structurally related spiroepoxides selectively target methinone aminopeptidase 2 (MetAP-2) but are not inhibitors of the closely related enzyme methinone aminopeptidase 1 (MetAP-1). ${ }^{49,50}$ These metalloproteases have been shown to cotranslationally remove the N-terminal methionine residue in specific protein targets; ${ }^{49,}{ }^{51}$ however, the complex relationship between inhibition of MetAP-2 and the medical utility of fumagillin remains unclear. ${ }^{52-54}$

The mechanism of inhibition by this class of sesquiterpenes has been shown to be related to its spiroepoxide functionality; ${ }^{49,55}$ removal of this functionality results in a 1000 -fold decrease in MetAP-2 inhibition ${ }^{50}$ (Scheme 13). Removal of the side chain epoxide, however, has been shown to have little effect on activity. ${ }^{50}$ One proposed mechanism of action suggests that His231 in the MetAP-2 binding site acts as a nucleophile to open the protonated spiroepoxide (66), which produces a covalent bond between the histidine residue and the methylene of the spiroepoxide (67). ${ }^{56}$ It has been found that fumagillin-binding affinity increases at low $\mathrm{pH},{ }^{57}$ further supporting the presence of the protonated spiroepoxide in the mechanism of action.

Scheme 13: One Model for MetAP-Inhibition ${ }^{57}$

1.6 SYNTHETIC STRATEGIES TO FUMAGILLOL AND OVALICIN

1.6.1 Previous Syntheses of Fumagillol

Fumagillol's selective inhibition of angiogenesis in tumor cells has made it an attractive target for total synthesis. There are two main synthetic strategies employed for the construction of fumagillol. One strategy involves the formation of the cyclohexyl framework with the side chain already intact (colored in blue, Scheme 14). Corey and Snider took advantage of this approach with their elegant synthesis of (\pm)-fumagillol by employing a regioselective Diels-Alder cycloaddition between α-bromoacrolein and the functionalized triene 68. ${ }^{58}$ This transformation allowed for the construction of the complete carbocyclic framework of fumagillol in a single step (Scheme 14).

Kim and coworkers ${ }^{59}$ also assembled the carbocyclic skeleton of (-)-fumagillol in a single synthetic transformation. As seen in Scheme 14, intermediate 69 is synthesized via a glycolate Claisen rearrangement and then subjected to an intramolecular ester enolate alkylation reaction. It is worth noting that the alkylation reaction afforded the desired
cyclohexancarboxylate in an 11:1 diastereoselectivity, which was attributed to the "H-eclipsed" transition state geometry of 69 .

More recently in 2001 and 2004, Eustache ${ }^{60}$ and Langlois ${ }^{61}$ both employed a ring closing metathesis reaction to construct the principal framework of (-)-fumagillol. Interestingly, Grubbs' first generation catalyst was found to be effective for this key cyclization reaction for both syntheses.

Scheme 14: Previous Syntheses of Fumagillol
Another synthetic strategy involves the formation of a functionalized cyclohexane followed by addition of the side chain in a separate step (shown in orange). This approach was first employed by Sorensen and coworkers, who synthesized (\pm)-fumagillol by performing a 1,4-
addition of organocuprate reagent 71 onto the electron-deficient olefin in (\pm)-enal 70 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}$ (Scheme 14). ${ }^{62}$ This addition occurred with high regio- and diastereoselectivity, giving a $3: 1$ mixture of the desired : undesired aldehyde 78 (Scheme 15). Four years later, in 2003, Sorensen published the enantioselective synthesis of fumagillol by using (-)-enal 79. ${ }^{63}$ Sorensen's enantioselective synthesis has subsequently been intersected by Simpkins, ${ }^{64}$ Langlois, ${ }^{61}$ Mootoo, ${ }^{65}$ and Hayashi. ${ }^{66}$

Scheme 15: Sorensen's Route to Fumagillol
Taber's synthesis of (-)-fumagillol used a unique C-H insertion process to construct cyclopentene $\mathbf{7 2}$ with retention of configuration from alkene $\mathbf{8 0}$ (Scheme 16). ${ }^{67}$ Cyclopentene 72 was then converted to cyclohexenone $\mathbf{8 1}$ through a ring expansion process using ozonolysis followed by an aldol condensation. Vinyl stannane 82 was reacted with n-BuLi and copper(I)cyanide to produce a cuprate that was added to enone 81 via 1,4-addition. This coppermediated reaction produced the anti addition product in a $96: 4$ diastereomeric ratio.

Scheme 16: Taber's Synthetic Strategy to (-)-Fumagillol
In 2005, Mootoo and coworkers used a highly stereoselective oxocarbenium ion-alkene cyclization as the key transformation for their formal synthesis of fumagillin. ${ }^{65}$ As seen in

Scheme 17, alkene $\mathbf{7 6}$ was transformed into cyclohexane $\mathbf{8 3}$ upon reaction with methyl triflate (MeOTf) and 4-methyl-2,6-di-tert-butylpyridine (DTBMP). Ozonolysis of $\mathbf{8 3}$ produced methyl ketone 84, which was then reacted with benzothiazole sulfone $\mathbf{8 5}$ and LiHMDS to give the corresponding trisubstituted alkene as a 1:6 mixture of E / Z isomers. The desired E-isomer was obtained via Vedejs' two-step isomerization procedure ${ }^{68}$ and was subsequently converted into intermediate 86, constituting a formal synthesis.

Scheme 17: Mootoo's Oxocarbenium Ion Cyclization of 76, A Formal Synthesis of Fumagillin
Most recently, Hayashi and coworkers have completed enantioselective total syntheses of (-)-fumagillol and other members of the fumagillin family from the common intermediate $\mathbf{8 8}$ (Scheme 18). ${ }^{66}$ Their route begins by transforming ketal 87 into bis(trimethylsilyl ether) cyclohexane 88 via a four-step reaction sequence featuring a proline-mediated asymmetric α aminoxylation and cyanation of the resulting hydroxy ketone with TMSCN and $\mathrm{Et}_{3} \mathrm{~N}$. Aldehyde 88 ws converted into enone 77, which was subjected to a diastereoselective Michael addition with a vinyl zincate reagent prepared from (E)-2-bromo-6-methylhepta-2,5-diene, t-BuLi, and $\mathrm{Me}_{2} \mathrm{Zn}$. The conjugate addition product was converted into (-)-fumagillol in six steps.

Scheme 18: Hayashi's Route to (-)-Fumagillol

1.6.2 Previous Syntheses of Ovalicin

Like fumagillol, ovalicin's potent biological activity has made it a popular target for natural product synthesis (Scheme 19). E. J. Corey and coworkers published both racemic and enantioselective synthetic routes to ovalicin in 1985^{69} and 1994^{48} respectively. Corey's racemic synthesis involved the stereoselective addition of vinyllithium reagent $\mathbf{9 0}$ to epoxy enone $\mathbf{8 9}$ to produce the desired tertiary alcohol in 83% yield. The enantioselective synthesis involved an OsO_{4}-biscinchona alkaloid catalyzed dihydroxylation to produce enantiopure epoxy enone $\mathbf{8 9}$, which was then converted to ovalicin using the previously developed protocol.

In 1994, Bath and coworkers synthesized (-)-ovalicin in three steps from functionalized epoxy ketone 91 (Scheme 19). Intermediate 91, in turn, was obtained from commercially available L-quebrachitol, which already contains the C-2 methoxy group present in ovalicin. The side chain of ovalicin was then installed by reacting vinyllithium $\mathbf{9 0}$ with the ketone moiety of 91. ${ }^{70}$

To date, Bath's synthesis of ovalicin has been intersected at epoxy ketone $\mathbf{9 1}$ by Barco, ${ }^{71}$ Takahashi, ${ }^{72}$ Mulzer, ${ }^{73}$ Yadav, ${ }^{74}$ and Hua. ${ }^{75}$ Ketone 91, however, has been accessed from a variety of naturally occurring chiral materials such as (-)-quinic acid (92), D-mannose (93), and D-ribose (96) by Barco, Takahashi, and Yadav, respectively.

91
Bath 1994

92

Takahashi 2005

89
Corey 1985

Hua 2008

96

Mulzer 2007

Scheme 19: Previous Syntheses of Ovalicin
Similar to his fumagillol synthesis, Hayashi has also synthesized ovalicin from bis(trimethylsilyl ether) cyclohexane 88. ${ }^{66}$ As seen in Scheme 20, $\mathbf{8 8}$ is transformed into epoxy alcohol 98 via reduction of the aldehyde, mesylation of the resulting alcohol, and elimination to give the desired epoxide moiety at C6. Oxidation of $\mathbf{9 8}$ with Dess-Martin periodinane gives the analogous ketone, which is then treated with acid and TBSCl to yield cyclohexenone $\mathbf{9 4}$. Reacting enone $\mathbf{9 4}$ with vinyllithium reagent 90 allows for installation of the side chain in 91\% yield. The addition product was transformed into ovalicin in five steps.

Scheme 20: Hayashi's Route to Ovalicin
Mulzer and coworkers ${ }^{73}$ employed an enantioselective Diels-Alder reaction between Trost diene $95{ }^{76}$ and α-bromoacrolein in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{3}$ for their synthesis of (-)ovalicin (Scheme 19). This cycloaddition reaction occurred with endo selectivity and produced the Diels-Alder adduct in 75% yield as an $8: 1$ mixture of diastereomers.

Most recently in 2008, Hua and coworkers utilized an intramolecular Heck reaction of alkenyl iodide $\mathbf{9 7}$ for the construction of the cylohexyl framework of ovalicin (Scheme 19). ${ }^{75}$ The 4-methylenecyclohexene product was then converted into epoxy ketone 91, which can be transformed into ovalicin via known protocol.

1.6.3 Brummond and Coworkers' Previous Approach to Ovalicin

Brummond and coworkers' novel approach towards ovalicin employed an allenic carbocyclization reaction for the construction of the carbocyclic skeleton with the side chain already intact. This strategy is advantageous as selective oxidation reactions of the crossconjugated triene system will produce the oxygenated framework of ovalicin.

Work done in our group by Jamie McCabe showed that cross-conjugated trienes $\mathbf{1 0 0}$ and 101 could be obtained in a 90:10 isomeric ratio from allene-yne 99 in 95\% yield (Scheme 21). The appending trisubstituted double bond of triene $\mathbf{1 0 0}$ was formed as a $2: 1$ mixture of $E: Z$ isomers. ${ }^{77}$

99

100, $E: Z, 2: 1$

101

With cross-conjugated trienes $E-\mathbf{1 0 0} / Z-100 / 101$ in hand, the silyl protecting groups were removed with TBAF to give diols E/Z-102 and 103, which were separable via column chromatography (Scheme 22). The primary alcohol of $E-102$ was then selectively protected with TBSCl and $\mathrm{Et}_{3} \mathrm{~N}$ to give silyl ether 104 in 75% yield. Subsequent alcohol-directed dihydroxylation of triene $\mathbf{1 0 4}$ with TMEDA and OsO_{4} (1 equiv) resulted in the formation of osmate esters $\mathbf{1 0 5}$ and $\mathbf{1 0 6}$ in 90% yield as a 6:1 isomeric mixture. A small discrepancy found in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0 5}$, however, prevents conclusive evidence as to whether the desired osmate ester was obtained. ${ }^{77}$

Scheme 22: Synthesis and Oxidation of Triene 104^{77}
The high yield and functional group compatibility of the $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction is illustrated by the cyclization of allene-yne 99. Moreover, the
densely functionalized carbocyclic skeleton of $E-104$ demonstrates the utility of the crossconjugated scaffold in natural product synthesis.

1.6.4 Retrosynthetic Analysis: Brummond / DeForrest Approach to Fumagillol / Ovalicin via an Allenic Carbocyclization Reaction

Retrosynthetically, we envision that fumagillol can be obtained from diol 107a and ovalicin from triol 107b (Scheme 23). We plan to construct the skipped diene side chain of intermediates 107a and 107b from the primary allylic alcohol of 108a and 108b via an oxidation and homologation reaction sequence. ${ }^{67}$ In turn, 108a and 108b will be prepared via diverging transformations involving selective oxidations of cross-conjugated triene 109. More specifically, we plan to use the hydroxyl group of triene $\mathbf{1 0 9}$ as a chemoselective control element for the sequential introduction of epoxides and hydroxyl groups embedded in these natural products. A crossmetathesis reaction will be used to convert the 1,1-disubstituted alkene of triene $\mathbf{1 0 9}$ into the trisubstituted alkene of $\mathbf{1 0 8 a} / \mathbf{b}$. Cross-conjugated triene $\mathbf{1 0 9}$ can be accessed from allene-yne 110 via the $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction previously developed in our laboratory. ${ }^{19}$ Considering the isomeric mixtures of trienes previously reported by McCabe, ${ }^{77}$ allene-yne $\mathbf{1 1 0}$ was chosen for our syntheses as the two sites available for β-hydride elimination are identical and will only produce cross-conjugated triene 109.

Scheme 23: Retrosynthetic Analysis of Fumagillol and Ovalicin from Allenyne 110

1.7 RESULTS AND DISCUSSION: SYNTHESIS AND FUNCTIONALIZATION OF A CROSS-CONJUGATED TRIENE PRECURSOR FOR THE SYNTHESES OF FUMAGILLOL AND OVALICIN

1.7.1 Synthesis of Cross-conjugated Triene 109

Allene-yne 110 can be prepared in two steps from known propargyl tetrahydropyranyl ether $\mathbf{1 1 1}^{78}$ and aldehyde $\mathbf{1 1 2}^{79}$ (Scheme 24). Employing Brandsma’s ${ }^{80}$ procedure for the construction of propargyl alcohols, the alkyne terminus of $\mathbf{1 1 1}$ was first deprotonated with n-BuLi at $-50^{\circ} \mathrm{C}$, and then reacted with aldehyde 112 (Conditions A). Warming the reaction to $-20{ }^{\circ} \mathrm{C}$ gave propargyl alcohol 113 in $\mathbf{7 8 \%}$ yield. The formation of propargyl alcohol 113 is supported by the IR spectrum, which has the characteristic alcohol and alkyne absorbances at $3396 \mathrm{~cm}^{-1}$ and 2167 cm^{-1}, respectively. ${ }^{81}$

With propargyl alcohol 113 in hand, we investigated the aluminum-mediated reduction protocol developed by Landor and coworkers for the formation of allene-yne $\mathbf{1 1 0}$ (Scheme 24). ${ }^{82}$ Reacting propargyl alcohol $\mathbf{1 1 3}$ with LAH in refluxing diethyl ether produced allene-yne $\mathbf{1 1 0}$ in 81% yield. Interestingly, decreasing the reaction temperature (-20 to $0^{\circ} \mathrm{C}$) gave a separable mixture of the corresponding allylic tetrahydropyranyl ether (22\%) and the desired allene-yne 110 (21\%).

Conditions A: 113, 78\%

Conditions B: (R)-113, 73\%
(R)-110, 45\%
Conditions A: n-BuLi, ether, -50 to $-20^{\circ} \mathrm{C}, 78 \%$
Conditions B: (+)-N-methyl ephedrine, $\mathrm{Zn}(\mathrm{OTf})_{2}$,
$\mathrm{Et}_{3} \mathrm{~N}$, toluene, 73%

Scheme 24: Synthesis of Racemic and Enantioselective Allene-yne 110 and (\boldsymbol{R})-110
The formation of allene-yne $\mathbf{1 1 0}$ is evidenced by a resonance at $5.12-5.06 \mathrm{ppm}(\mathrm{m})$ in the
${ }^{1} \mathrm{H}$ NMR, corresponding to the allene proton, and a resonance at 199.8 ppm in the ${ }^{13} \mathrm{C}$ NMR, corresponding to the $s p$ hybridized carbon of the allene. ${ }^{81}$

Allene-yne (R)-110 has also been prepared in high enantioselectivity from terminal alkyne 111 and aldehyde 112 utilizing enantioselective alkynylation protocol developed by Carreira and coworkers (Scheme 24). ${ }^{83}$ The formation of propargyl alcohol (R)-113 was accomplished in 73\% yield by adding aldehyde 112 (1 equiv) to an excess of alkyne 111 (3.1 equiv), triethylamine (3.1 eq), (+)- N-methylephedrine (3.1 equiv), and zinc triflate (3 equiv) over

4 h via syringe pump addition (Conditions B). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of propargyl alcohol $(R) \mathbf{- 1 1 3}$ are in agreement with the spectral data obtained for $\mathbf{1 1 3}$.

Reacting propargyl alcohol (R) - $\mathbf{1 1 3}$ with LAH in refluxing ether gave chiral non-racemic allene-yne (R)-110 in 45\% yield (Scheme 24). The low yield obtained for (R)-110 is likely due to the small scale on which the reduction reaction was performed. For example, reacting 1.1 mmol of propargyl alcohol (R)-113 with LAH gave allene-yne (R)-110 in 45\% yield, whereas subjecting 9.0 mmol of propargyl alcohol $\mathbf{1 1 3}$ to the same reaction conditions gave allene-yne $\mathbf{1 1 0}$ in an increased 81% yield. The spectral data obtained for (R) - $\mathbf{1 1 0}$ matches that obtained for 110.

Mosher esters 114 and (R)-114 were synthesized from the analogous allenic alcohol precursors to determine the enantiomeric excess of (R)-110. As seen in Scheme 25, subjecting allene-ynes 110 and (R)-110 to esterification reaction conditions with (R)-(+)-alpha-methoxy-alpha-(trifluromethyl)-phenylacetic acid, N, N^{\prime}-dicyclohexylcarbodiimide (DCC), and 4dimethylaminopyridine (DMAP) resulted in the desired esters 114 and (R)-114 in crude yields of 82% and 85%, respectively.

114, 82 \% crude yield
(R)-114, 84 \% crude yield

Scheme 25: Formation of Mosher Esters 114 and (R)-114
The ${ }^{19} \mathrm{~F}$ NMR of racemic allene-yne $\mathbf{1 1 4}$ shows two resonances with equal integrations at -72.1 ppm and -72.2 ppm , indicating that $\mathbf{1 1 4}$ is a 1:1 mixture of two diastereomers (Figure 2). The ${ }^{19} \mathrm{~F}$ NMR of $(R) \mathbf{- 1 1 4}$ shows the same two resonances at -72.1 ppm and -72.2 ppm , however,
with integrations of 1 F and 28F, respectively. The integrations in the ${ }^{19} \mathrm{~F}$ NMR of $(R) \mathbf{- 1 1 4}$ show that allene-yne (R)-110 was produced in 93% ee. The absolute configuration of (R) - $\mathbf{1 1 0}$ was assigned by analogy to Carreira's substrates, which showed that employing (+)- N methylephedrine as the chiral additive for the alkynylation reaction produces the R-enantiomer of the propargyl alcohol product. ${ }^{84}$

Figure 2: ${ }^{19}$ F NMR of Racemic Allene-yne 114 and Enantioenriched Allene-yne (\boldsymbol{R})-114

With allene-ynes $\mathbf{1 1 0}$ and $(R)-\mathbf{1 1 0}$ in hand, the rhodium-catalyzed allenic carbocyclization reaction was employed for the construction of cross-conjugated trienes 109 and (R)-109. Reacting allene-yne $\mathbf{1 1 0}$ with $5 \mathrm{~mol} \%$ of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ in 1,4 -dioxane at $65{ }^{\circ} \mathrm{C}$ resulted in cross-conjugated triene 109 in 76% yield (Scheme 26). Similarly, subjecting chiral allene-
yne (R)-110 to the cyclization reaction conditions resulted in cross-conjugated triene (R)-109 in 75\% yield. The high yield obtained for cross-conjugated trienes $\mathbf{1 0 9}$ and (R)-109 demonstrates the synthetic utility of the $\mathrm{Rh}(\mathrm{I})$-catalyzed carbocyclization for natural product synthesis, as (R) 109 possesses the cyclohexenol scaffold found in ovalicin and fumagillol.

Scheme 26: Formation of Racemic and Chiral Cross-conjugated Trienes 109 and (R)-109
The formation of cross-conjugated trienes 109 and (R) - $\mathbf{1 0 9}$ is clearly evidenced by the ${ }^{1} \mathrm{H}$ NMR data (Table 1). For example, the ${ }^{1} \mathrm{H}$ NMR of $(R) \mathbf{- 1 0 9}$ shows resonances at 5.70 ppm and 5.53 ppm that correspond to $\mathrm{H}_{\mathrm{a}}(\mathrm{d}, J=3.5 \mathrm{~Hz})$ and the vinyl silane proton H_{b} (singlet), respectively. The other resonances in the alkene region at $5.00 \mathrm{ppm}(\mathrm{dq}, J=3.0,1.5 \mathrm{~Hz}$) and 4.88-4.85 ppm (multiplet) correspond to the appending 1,1-disubstituted alkene protons H_{c}. The resonance at 4.35 ppm corresponds to $\mathrm{H}_{\mathrm{d}}\left(\mathrm{ddd}, J=7.0,5.0,3.5 \mathrm{~Hz}\right.$). The allylic protons H_{e} and H_{f} correspond to the resonances at 2.58 ppm and 2.37 ppm , while the neighboring methylene protons H_{g} and H_{h} correlate to the resonances at 2.04 ppm and 1.71 ppm , respectively.

Table 1: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene (R)-109 (CDCl_{3}, rt, 500 MHz$)$

Cross-conjugated triene 109 can be synthesized in three steps from alkyne 111 and aldehyde 112 in 47\% overall yield and can be conducted on multigram scale. This synthetic strategy also offers the possibility for the asymmetric syntheses of (-)-ovalicin and (-)fumagillol, becuase Carreira's enantioselective alkynylation protocol can be utilized for the assembly of propargyl alcohol (R)-113.

1.7.2 Alcohol-Directed Epoxidation of Triene 109: Formation of a Pivotal Intermediate for the Syntheses of Ovalicin and Fumagillol

With the racemic and enantioselective syntheses of cross-conjugated triene $\mathbf{1 0 9}$ in hand, we explored an alcohol-directed epoxidation protocol to selectively functionalize the endocyclic alkene of triene 109. To our delight, we found that reacting triene $\mathbf{1 0 9}$ with $1.5 \mathrm{~mol} \%$ of vanadyl acetyl acetonate ${ }^{85}$ and tert-butyl hydroperoxide in benzene at $40^{\circ} \mathrm{C}$ produced bis-allylic epoxide 115 in 77% yield as a single diastereomer (Scheme 27). The formation of 115 is supported by the ${ }^{1} \mathrm{H}$ NMR, which shows a resonance at $3.22 \mathrm{ppm}(\mathrm{d}, J=2.0 \mathrm{~Hz})$ corresponding to H_{a}, and the absence of the resonance at $5.70 \mathrm{ppm}(\mathrm{d}, J=3.5 \mathrm{~Hz}$) corresponding to the endocyclic alkene proton of 109.

Scheme 27: Formation of Epoxide 115 from Triene 109
Interestingly, applying the $\mathrm{VO}(\mathrm{acac})_{2} / \mathrm{TBHP}$ epoxidation protocol to triene $\mathbf{1 0 9}$ at -15 to $25^{\circ} \mathrm{C}$ only resulted in the corresponding enone in 8% yield. The low yield obtained could be due to the volatility of $\mathbf{1 1 6}$. The formation of $\mathbf{1 1 6}$ is evidenced by the ${ }^{1} \mathrm{H}$ NMR, which no longer shows the resonance at 4.35 ppm corresponding to H_{b}. Vanadium-catalyzed enone formation has also been observed by Teranishi and coworkers during their vanadium-catalyzed epoxidation studies of cyclic allylic alcohols. ${ }^{86}$

The vanadium-catalyzed epoxidation conditions used for the construction of epoxide $\mathbf{1 1 5}$ from triene 109 were found to be superior to the other methods explored. ${ }^{85}$ For example,
treatment of triene $\mathbf{1 0 9}$ with $\mathrm{Ti}(\mathrm{OiPr})_{4}, \mathrm{DIPT}$, and tert-butyl hydrogen peroxide in the presence of $4 \AA$ molecular sieves ${ }^{87}$ only resulted in the recovery of starting material. Additionally, subjecting 109 to buffered peracid epoxidation reaction conditions with m-CPBA and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ gave a mixture of compounds that were inseparable via column chromatography.

1.7.2.1 Diverging Palladium-Catalyzed Transformations of Epoxide 115

Next, diverging palladium-catalyzed transformations of epoxide 115 were investigated to access the oxygenated cyclohexyl core of ovalicin and fumagillol (Scheme 28). It is envisioned that allylic epoxide 115 can be transformed into diol 117 via a palladium-catalyzed hydrogenolysis reaction and into carbonate $\mathbf{1 1 8}$ through a palladium-catalyzed CO_{2} insertion reaction. These diverging transformations will allow for the assembly of both structurally related natural products from a single intermediate.

Scheme 28: Projected Diverging Transformations of Epoxide 115 to the Oxygenated Rings of 60 and 61

1.7.2.2 Palladium-Catalyzed Hydrogenolysis of Epoxide 115: Synthesis of Diol 117a/b

Construction of the cis-diol moiety of fumagillol began with palladium-catalyzed hydrogenolysis protocol developed by Tsuji and coworkers. ${ }^{88}$ Reacting epoxide 115 with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, tri-n-butylphosphine, formic acid, and triethylamine in 1,4 -dioxane at $40^{\circ} \mathrm{C}$ gave a separable (1:1) mixture of diols 117a and 117b in a 62\% combined yield (Scheme 29). The diastereomeric ratio was established by integrating the resonances corresponding to the vinyl silane proton of $\mathbf{1 1 7 a} \mathbf{b}$ at 5.33 ppm and 5.18 ppm in the crude ${ }^{1} \mathrm{H}$ NMR.

Scheme 29: Formation of Diols 117a/b from Epoxide 115
Molecular modeling* predicts that the desired diol 117a exists in a conformation where one of the hydroxyl groups and the appending alkene are in an equatorial orientation, and the other hydroxyl group is in an axial position (Table 2, the silyl methyl groups have been removed for clarity). Calculations predict an axial-axial coupling between H_{b} and H_{C} (typically between 8-10 Hz) and an axial-equatorial coupling (usually $2-3 \mathrm{~Hz}$) between H_{b} and H_{a}. The predicted J values are indeed observed; the axial-axial coupling between H_{b} and H_{c} is observed to be 9.7 Hz , and the axial-equatorial coupling between H_{b} and H_{a} is 2.9 Hz .

[^0]Table 2: ${ }^{1} \mathrm{H}$ NMR Assignment of Diol 117a (500 MHz, CDCl_{3})

Diastereomer 117b also adopts a chair-like conformation (Table 3, the silyl methyl groups have been removed for clarity). A resonance in the ${ }^{1} \mathrm{H}$ NMR corresponding to H_{b} appears as a dddd, resulting from axial-axial coupling with $\mathrm{H}_{\mathrm{I}}(11.5 \mathrm{~Hz})$, equatorial-equatorial coupling with H_{a} and $H_{g}\left(2.5\right.$ and 4.5 Hz), and coupling with the hydroxyl proton $H_{e}(9.0 \mathrm{~Hz})$. A resonance at 4.13 ppm corresponding to H_{a} is a doublet due to coupling with H_{h}. Additionally, the resonance corresponding to H_{c} at 2.79 ppm is a broad singlet. These observed coupling constants give some evidence that 117b was obtained.

Table 3: ${ }^{1}$ HNMR Assignment of Diol 117b ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

The mechanism for the palladium-catalyzed hydrogenolysis reaction begins with stereoselective opening of the epoxide ring to produce π-allylpalladium species $\mathbf{1 1 9}$ (Scheme 30). Formic acid insertion produces π-allylpalladium formate $\mathbf{1 2 0}$, which decarboxylates to the palladium hydride complex 121. Reductive elimination yields diol 117 with the hydride delivered to the more substituted side of the π-allyl complex. ${ }^{88}$ The mixture of diastereomeric diols 117a and 117b produced from bis-allylic epoxide 115 is likely due to inversion of the palladium catalyst during the reaction. ${ }^{89}$

Scheme 30: Proposed Mechanism for the Conversion of Epoxide 115 into Diol 117a/b

A molecular modeling study ${ }^{*}$ suggests that the 1,1-disubstituted alkene present in bisallylic epoxide $\mathbf{1 1 5}$ prefers to reside perpendicular to the alkylidenecyclohexane ring, which minimizes unfavorable van der Waals and allylic $A(1,3)$ steric interactions (Figure 3, the silyl methyl groups have been removed for clarity). The energy minimization calculation infers optimal orbital overlap between the epoxide and the vinyl silane, suggesting that the π allylpalladium species forms at the vinyl silane moiety rather than the 1,1-disubstituted alkene.

[^1]

Figure 3: Minimum Energy Conformation of Epoxide 115

1.7.2.3 Palladium-Catalyzed CO_{2}-Insertion of Epoxide 115: Formation of Carbonate 118

With a synthetic strategy to access the oxygenated framework of fumagillol from epoxide 115, oxidation protocol to access the masked triol moiety of ovalicin was explored. Subjecting epoxide 115 to Trost's palladium-catalyzed CO_{2} insertion reaction conditions gave carbonate 118 in 87% yield as a single diastereomer (Scheme 31). ${ }^{90}$ The proposed mechanism for the formation of carbonate $\mathbf{1 1 8}$ involves an $\mathrm{S}_{\mathrm{N}} 2$ type metal-mediated epoxide opening to produce π allylpalladium complex 119. The newly generated alkoxide then undergoes nucleophilic addition to carbon dioxide, producing intermediate 122, which then cyclizes to yield desired carbonate $\mathbf{1 1 8}$ as a single diastereomer.

Scheme 31: Formation of Carbonate 118 from Epoxide 115
The IR spectrum of carbonate 118 has an absorbance at $1814 \mathrm{~cm}^{-1}$, which is characteristic for the carbonyl stretch of cyclic carbonates. Furthermore, the ${ }^{13} \mathrm{C}$ NMR spectrum has the resonance at 153.1 ppm that is typically observed for the carbonate carbonyl carbon. ${ }^{81}$

The formation of $\mathbf{1 1 8}$ as the cis carbonate is evidenced by the ${ }^{1} \mathrm{H}$ NMR coupling constants (shown in Table 4). Molecular modeling* has shown that carbonate 118 adopts a conformation where the hydroxyl group resides in the equatorial position. In this conformation, the resonance corresponding to H_{b} is an apparent triplet of triplet resulting from coupling with the hydroxyl proton $\mathrm{H}_{\mathrm{f}}(10.9 \mathrm{~Hz})$, axial-axial coupling with $\mathrm{H}_{\mathrm{g}}(10.9 \mathrm{~Hz})$, and axial-equatorial coupling with both $\mathrm{H}_{\mathrm{a}}(4.2 \mathrm{~Hz})$ and $\mathrm{H}_{\mathrm{d}}(4.2 \mathrm{~Hz})$.

[^2]Table 4: ${ }^{1} \mathrm{HNMR}$ Assignment of Carbonate $118\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	Chemical Shift (ppm)	Spin multiplicity	\boldsymbol{J} values $(\mathbf{H z})$
H_{a}	4.84	d	3.5
H_{b}	4.04	tt	$10.9,4.2$
H_{c}	2.62	dt	$14.7,4.1$
H_{d}	2.08	dq	$12.6,3$
H_{e}	$2.04-1.99$	m	-----
H_{f}	1.96	d	9.9
H_{g}	1.68	qd	$11.5,4.2$

The trans carbonate, like the cis carbonate, also adopts a conformation where the hydroxyl group is in the equatorial position (as shown by molecular modeling* in Figure 5). In this configuration, the calculated dihedral angle between H_{a} and H_{e} is 36°, which would result in a coupling constant in the range of $5-6 \mathrm{~Hz}$ rather than the observed 10.9 Hz coupling constant (Table 4).

[^3]

Figure 4: Minimum Energy Conformation of trans-Carbonate 118

1.8 INVESTIGATING THE REACTIVITY OF THE CROSS-CONJUGATED TRIENE MOIETY AND DERIVATIVES TOWARDS CROSS-METATHESIS: APPENDING THE ISOBUTYLENE SIDE CHAIN OF OVALICIN AND FUMAGILLOL TO THE TRIENE

With the development of well-defined catalysts such as Schrock's molybdenum alkylidene 123, Grubbs’ ruthenium carbene complexes 124 and 125, and the Hoveyda-Grubbs catalyst 126, olefin metathesis has become one of the most powerful and popular transition-metal catalyzed methods for carbon-carbon bond formation (Scheme 32). ${ }^{91-94}$ Ring-closing metathesis (RCM), for example, is routinely used to construct small, medium, and large ring systems from acyclic dienes. The intermolecular variant cross-metathesis (CM), has been shown to have more limitations, exhibiting poor stereo- and product selectivity. ${ }^{91-95}$ However, despite these limitations, cross-metathesis is extensively employed by the organic community to construct
functionalized olefins from simple alkene precursors. ${ }^{91-95}$ It is our goal to use cross-metathesis to convert the 1,1-disubstituted alkene in triene 109 into a trisubstituted alkene that can be converted into the side chain of fumagillol and ovalicin (Scheme 28).

123

124

125

126

Scheme 32: Catalysts Commonly used for Olefin Metathesis
While conjugated systems have been shown to be poor cross-metathesis substrates due to the electron deficient nature of the conjugated system and poor regioselectivity of the catalyst, ${ }^{95,}$ ${ }^{96}$ previous work done in our group done by Branko Mitasev ${ }^{97}$ showed that reacting crossconjugated triene 127 with $10 \mathrm{~mol} \%$ of Grubbs $2^{\text {nd }}$ generation ruthenium carbene 125 produced functionalized triene 128 in 72% yield. The thermodynamically favored E isomer was produced exclusively (Scheme 33). Considering this result, we pursued cross-metathesis for the functionalization of the 1,1-disubstituted alkene in triene 109.

Scheme 33: Conversion of Cross-Conjugated Triene 127 to Allyl Silane 128 via Cross-metathesis ${ }^{97}$
Generally, 1,1-disubstituted olefins are considered to be troublesome cross-metathesis substrates. However, active catalysts such as $\mathbf{1 2 4},{ }^{91-94} \mathbf{1 2 5},{ }^{98}$, 99 and $\mathbf{1 2 6}^{100,} 101$ have been
successfully used to construct tri- and tetrasubstituted alkenes. Molecular modeling* of triene 109 has shown that allylic $A(1,3)$ strain forces the appending 1,1-disubstituted alkene away from the cyclohexene ring, making it more accessible for coordination and subsequent reaction with the CM catalyst (Figure 5, the silyl methyl groups have been removed for clarity).

Figure 5: Minimum Energy Conformation of Triene 109
As seen in Scheme 34, reacting triene 109 with an excess of terminal alkene 129 and 10 $\mathrm{mol} \%$ of Grubbs $2^{\text {nd }}$ generation catalyst 125 in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 24 h only resulted in the dimerization of 129. Similarly, reacting acetate 109a with 129 under CM conditions resulted in the recovery of 109a and the dimerization of $\mathbf{1 2 9}$. The recovery of trienes 109 and $\mathbf{1 0 9 a}$ suggested that the electronically deficient nature of the cross-conjugated triene system, and sterically congested environment of the 1,1-disubstituted alkene prevented the desired crossmetathesis reaction from occurring.

[^4]

Scheme 34: Attempted Cross-Metathesis Between Triene 109 and Alkene 129
The reactivity of carbonate $\mathbf{1 1 8}$ towards cross-metathesis was next investigated (Scheme 35). Based on a report ${ }^{102}$ that the dimer is a better cross-metathesis substrate than the respective monomer, we employed homodimer 130 as the cross-metathesis partner in the CM reactions. When carbonate 118 was reacted with excess dimer 130 and $5 \mathrm{~mol} \%$ of ruthenium carbene $\mathbf{1 2 5}$ in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, no reaction was observed and 118 was recovered in 38% yield. Reacting the analogous acetate with excess 130 and $10 \mathrm{~mol} \%$ of 125 in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene, and toluene led to the recovery of 118a in $51 \%, 45 \%$, and 39% yields, respectively. Employing the more active Hoveyda-Grubbs catalyst for the metathesis reaction between 118a and 130 in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and benzene again resulted in a 49% and 12% recovery of starting material, respectively.

Scheme 35: Attempted Metathesis Reaction Between Carbonate Derivatives and Alkene 130

1.9 REVISED RETROSYNTHETIC ANALYSIS: INSTALLATION OF THE SIDE CHAIN OF OVALICIN THOUGH AN OLEFINATION REACTION

The recalcitrance of the 1,1-disubstituted alkene of 109, 109a, 118, and 118a to participate in cross-metathesis reactions forced a re-evaluation of the synthetic plan to include methyl ketone 131 in the retrosynthetic analysis of ovalicin (Scheme 36). For example, the skipped diene side chain of advanced intermediate 107b will be constructed from the ketone moiety of $\mathbf{1 3 1}$ through an olefination reaction. In turn, the ketone group in 131 will be constructed from the 1,1disubstituted alkene of cross-conjugated triene 109 via a dihydroxylation and oxidative cleavage reaction sequence. Triene $\mathbf{1 0 9}$ can be easily assembled from allene-yne $\mathbf{1 1 0}$ via an allenic carbocyclization reaction.

Scheme 36: Revised Retrosynthetic Analysis of Ovalicin from Ketone 131

1.9.1 Synthesis of Epoxy Ketone 131: Construction of the Oxygenated Carbocyclic

Framework of Ovalicin

As seen in Scheme 37, carbonate 118 was first converted into silyl ether 132 in 70% yield with TESCl and imidazole. The TES protecting group was chosen as it will allow us to intersect Bath's synthesis ${ }^{70}$ of ovalicin. The formation of silyl ether $\mathbf{1 3 2}$ is evidenced by the molecular ion peak $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 419$ in the high resolution mass spectrum.

Reacting diene 132 with OsO_{4} and NMO resulted in the selective dihydroxylation of the appending alkene to give diol 133 in 70% yield (Scheme 37). The ${ }^{1} \mathrm{H}$ NMR shows an AB quartet corresponding to H_{a} at resonances 3.75 ppm and $3.41 \mathrm{ppm}(J=11.9 \mathrm{~Hz})$ for the major diastereomer and at resonances 3.97 ppm and $3.46 \mathrm{ppm}(J=11.4 \mathrm{~Hz})$ for the minor diastereomer. Based upon integration of the resonances at 3.75 ppm and 3.97 ppm , diol 133 was produced as a 9:1 diastereomeric mixture.

Oxidative cleavage of the diol moiety in $\mathbf{1 3 3}$ with NaIO_{4} in a $1: 1$ mixture of THF: $\mathrm{H}_{2} \mathrm{O}$ produced the corresponding methyl ketone 134 in 69% yield (Scheme 37). The IR spectrum of 134 has the absorbance at $1720 \mathrm{~cm}^{-1}$ that is typically observed for the carbonyl stretch of ketones. ${ }^{81}$

Scheme 37: Formation of Ketone 134 from Carbonate 118
Epoxidation protocols for the installation of the spiroepoxide in ovalicin was investigated. Reacting methyl ketone 134 with m-CPBA in the presence of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ resulted in the exclusive formation of Baeyer-Villiger product 135 in 62% yield as a single diastereomer (entry 1, Table 5). Similarly, the reaction of 134 with magnesium bis(monoperoxyphthalate) hexahydrate (MMPP) gave ketal 135 in 69\% yield (entry 2). Performing the reaction with

DMDO gave no reaction and 134 was recovered in 35% yield (entry 3). Reacting 134 with only m-CPBA produced the desired spiroepoxide 131 in 54\% yield as a single diastereomer (entry 4). Warming the reaction temperature from $25{ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ increased the yield of spiroepoxide $\mathbf{1 3 1}$ to 73% (entry 5). The epoxidation reaction likely occurred from less sterically hindered top face of vinyl silane 145, opposite of silyl ether and carbonate groups, to yield 131 with the stereochemistry shown.

Table 5: Formation of Ketal 135 and Epoxide 131 from Ketone 134

The formation of ketal 135 is supported by the absorbance at $1749 \mathrm{~cm}^{-1}$ in the IR spectrum and the ester carbonyl resonance at 169.3 ppm in the ${ }^{13} \mathrm{C}$ NMR. ${ }^{81}$ Alternatively, the ketone moiety of spiroepoxide 131 is evidenced by the absorbance at $1723 \mathrm{~cm}^{-1}$ in the IR and by a resonance at 204.5 ppm in the ${ }^{13} \mathrm{C}$ NMR. The epoxide group of $\mathbf{1 3 1}$ is confirmed by the resonance at $2.76 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR corresponding to $\mathrm{H}_{\mathrm{a}}{ }^{81}$

The selective formation of ketal 135 from ketone 134 is attributed to the nucleophilic peracid anion of m - $\mathrm{CPBA} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ and MMPP, which preferentially reacts with the electrophilic ketone moiety of 134. Reacting 134 with only m-CPBA, however, promotes
nucleophilic addition of the vinyl silane to the electrophilic epoxidizing agent to afford spiroepoxide 131.

1.9.2 Olefination of Methyl Ketone 131: Installation of the Masked Skipped Diene Side of

 OvalicinWith functionalized epoxy methyl ketone 131 in hand, a modified Julia olefination ${ }^{103}$ reaction with benzothiazolyl (BT) sulfone 85^{65} was examined for the installation of the skipped diene side chain (Table 6). Sulfone 85 has been successfully employed by Mootoo for the installation of the side chain in fumagillol. ${ }^{65}$

Reacting ketone 131 and BT-sulfone $\mathbf{8 5}$ with LiHMDS in THF gave trisubstituted alkene 136 in 43% yield as a 2:98 mixture of $E: Z$ isomers (entry 1, Table 6). Employing KHMDS as the base produced only the Z-isomer of 136 in 27\% yield and was contaminated with impurities that were inseparable by column chromatography (entry 2).

Changing the solvent from THF to DME still mostly produced the Z-isomer of 136 in 44% yield (entry 3, Table 6). ${ }^{104}$ Employing KHMDS as the base resulted in Z-136 in 17% yield; using NaHMDS gave $E / Z-136$ in 48% yield $(E: Z=4: 96)$ (entries 4 and 5).

Because 1-phenyl-1H-tetrazol-5-yl (PT) sulfones typically yield functionalized alkenes in higher E:Z ratios than their BT-sulfone counterparts, BT-sulfone $\mathbf{8 5}$ was replaced with the analogous PT-sulfone 137. ${ }^{104}$ However, reacting PT-sulfone 137 and ketone $\mathbf{1 3 1}$ with LiHMDS in THF produced 136 in an E:Z ratio of 32:68 in only 5\% yield (enrty 6, Table 6).

Table 6: Formation of Functionalized Alkene 136

136

Entry	Solvent	Base	Sulfone	$\boldsymbol{E}:$ Z ratio $^{\text {a }}$	Yield
1	THF	LiHMDS	$\mathbf{8 5}$	$2: 98$	43%
$2^{\text {b }}$	THF	KHMDS	$\mathbf{8 5}$	$0: 100$	$27 \%, 41 \%$ brsm
3	DME	LiHMDS	$\mathbf{8 5}$	$5: 95$	44%
$4^{\text {b }}$	DME	KHMDS	$\mathbf{8 5}$	$0: 100$	$17 \%, 24 \%$ brsm
5	DME	NaHMDS	$\mathbf{8 5}$	$4: 96$	48%
6	THF	LiHMDS	$\mathbf{1 3 7}$	$32: 68$	5%

 byproducts

The formation of functionalized alkene $Z \mathbf{- 1 3 6}$ is supported by the ${ }^{1} \mathrm{H}$ NMR (Figure 6). For example, the resonance at $5.44 \mathrm{ppm}(\mathrm{tq}, J=7.5,1.5 \mathrm{~Hz})$ corresponds to the alkenyl proton H_{a}, and the resonance at $5.05 \mathrm{ppm}(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz})$ corresponds to alkenyl proton H_{b}. The proton $\mathrm{H}_{\mathrm{c}}(\mathrm{d}, J=3.5 \mathrm{~Hz})$ correlates to the resonance at 4.72 ppm .

The Z-geometry of the trisubstituted alkene in Z-136 was determined by nOe analysis. Irradiation of the resonance corresponding to appending vinyl methyl group at 1.76 ppm resulted in a 9% enhancement of the resonance corresponding to H_{a}.

Figure 6: ${ }^{1} \mathrm{H}$ NMR of Skipped Diene $136\left(\mathrm{CDCl}_{3}, \mathrm{rt}, 500 \mathrm{MHz}\right)$
Benzothiazolyl sulfones have been used to construct trisubstituted alkenes in high E:Z selectivites. ${ }^{105,106}$ However, Mootoo and coworkers ${ }^{65}$ also largely obtained the Z-alkene from the olefination reaction between BT-sulfone $\mathbf{8 5}$ and the structurally similar methyl ketone $\mathbf{8 4}$ (Scheme 38).

Scheme 38: Mootoo's Formal Synthesis of Fumagillol from Ketone 84 and BT-Sulfone 85

A reaction mechanism proposed by Julia and coworkers accounts for the predominate formation of Z-136 from ketone $\mathbf{1 3 1}$ and BT-sulfone $\mathbf{8 5}$ (Scheme 39). ${ }^{107,108}$ First, the metallated
sulfone 85 undergoes a reversible nucleophilc addition to ketone 131 giving syn- and anti- β alkoxysulfone diastereomers syn-138 and anti-138. In the preferred chair conformation shown, the cation $\left(\mathrm{Li}^{+}, \mathrm{K}^{+}\right.$, or $\left.\mathrm{Na}^{+}\right)$is chelated by the neighboring heterocyclic nitrogen atom and by one of the sulfone oxygen atoms. Subsequent nucleophilic addition of the alkoxide moiety onto the imine-like functionality of the benzothiazole leads to spirocyclic amides syn-139 and anti-139, which suffer from steric strain. However, intermediate anti-139 suffers from a more severe eclipsed interaction than syn-139 due to the gauche arrangement of the large cyclohexyl moiety $\left(\mathrm{R}^{1}\right)$ and neighboring alkyl chain. This unfavorable interaction increases the energy barrier of the succeeding Smiles rearrangement and suppresses the formation of $\boldsymbol{E}-\mathbf{1 3 6}$. Spirocycle syn139, on the other hand, is able to undergo a facile Smiles rearrangement/elimination reaction that results in the preferential formation of $\mathbf{Z - 1 3 6}$.

Scheme 39: Explanation for the Predominate Formation of Z-136 from Ketone 131 and Sulfone 85 ${ }^{107,108}$

1.9.3 Investigation of the Julia and Wittig Olefination Reactions for the Installation of the

 Side Chain in OvalicinThe Julia olefination reaction was explored for the construction of the side chain in ovalicin because of the high E-selectivity observed for the reductive elimination of the β hydroxy sulfone products (Scheme 40). ${ }^{109}$ However, reacting methyl ketone 131 with the
lithium anion of 1-(4-methylpent-3-enylsulfonyl)benzene 141 in THF resulted in a trace amount of the desired β-hydroxy sulfone 142, and the recovery of $131(29 \%)$.

Scheme 40: Reaction of Ketone 131 with Phenyl Sulfone 141
The Wittig olefination was also investigated for the installation of the side chain, because typically the reaction of sterically hindered ketones with 4-methyl-3pentyltriphenylphosphonium bromide (143) produces alkene products with E-geometry. ${ }^{110-112}$ However, reacting ketone 131 with the lithium anion of $\mathbf{1 4 3}$ at 0 to $25^{\circ} \mathrm{C}$ resulted in a complex mixture of compounds that did not contain E-136 by ${ }^{1} \mathrm{H}$ NMR (Scheme 41). ${ }^{111}$ Similarly, performing the reaction at $60^{\circ} \mathrm{C}$ in DMSO resulted in a mixture of compounds that did not contain the desired alkene. ${ }^{112}$ The complex mixture obtained from the reaction of ketone 131 with ylide 143 could be due to the presence of the electrophilic epoxy silane and carbonate moieties that are adjacent to the appending methyl ketone.

131

143

Scheme 41: Reaction of Ketone 131 with 4-Methyl-3-pentyltriphenylphosphonium Bromide

1.10 THIRD GENERATION APPROACH TO OVALICIN: INSTALLATION OF THE SIDE CHAIN OF OVALICIN VIA A [3,3]-SIGMATROPIC REARRANGEMENT

It is envisioned that the construction of the appending E-alkene of skipped diene $\mathbf{1 0 7 b}$ can be accomplished through via a Claisen rearrangement reaction of allylic acetate 144 (Scheme 42). Allylic acetate 144 will be formed from ketone 131 through a Grignard addition and esterification reaction.

Scheme 42: Retrosynthetic Analysis of Ovalicin from Allylic Acetate 144

1.10.1 Synthesis of and Claisen Rearrangement of Allylic Acetate 144

Nucleophilic addition of ethynylmagnesium bromide to the ketone moiety of 131 in the presence of cerium (III) chloride gave propargyl alcohol 145 in 75% yield as a single diastereomer (Scheme 43). ${ }^{113}$ It is presumed that the nucleophilic addition occurred from the less sterically hindered Re face of ketone $\mathbf{1 3 1}$ to avoid unfavorable steric interactions with the neighboring epoxy silane. The formation of propargyl alcohol 145 is confirmed by the IR spectrum, which shows absorbances at $3402 \mathrm{~cm}^{-1}$ and $2114 \mathrm{~cm}^{-1}$, supporting the presence of the alcohol and alkyne functionalities, respectively. Interestingly, performing the analogous reaction with vinylmagnesium bromide and cerium (III) chloride resulted in decomposition of 131.

131

146

145

144

Scheme 43: Formation of Allylic Acetate 144 from Ketone 131
Acetylation of the newly generated tertiary alcohol in 145 with acetic anhydride and DMAP in $\mathrm{Et}_{3} \mathrm{~N}$ produced propargyl acetate 146 in 88% yield (Scheme 43). ${ }^{114}$ The IR spectrum of propargyl acetate 146 has the characteristic absorbances at $1814 \mathrm{~cm}^{-1}$ and $1761 \mathrm{~cm}^{-1}$ for the carbonyl stretch of the carbonate and ester, respectively. ${ }^{81}$

Hydrogenation of propargyl acetate 146 with Lindlar's catalyst in ethanol produced allylic acetate 144 in 75% yield (Scheme 43). The formation of 144 is evidenced by the ${ }^{1} \mathrm{H}$ NMR, which shows resonances at $5.95 \mathrm{ppm}(\mathrm{dd}, J=17.6,11.1 \mathrm{~Hz}), 5.32 \mathrm{ppm}(\mathrm{d}, J=11.1 \mathrm{~Hz})$, and $5.21 \mathrm{ppm}(\mathrm{d}, J=17.6 \mathrm{~Hz})$ corresponding to the vinyl group.

With allylic acetate 144 in hand, an Ireland-Claisen rearrangement reaction was employed for the construction of the side chain of ovalicin. ${ }^{115}$ Reacting 144 with LDA and TBSCl in the presence of HMPA resulted in the formation silyl ester 147 as a single isomer in 96\% crude yield (Scheme 44). A resonance at 5.76-5.68 ppm (m) in the ${ }^{1} \mathrm{H}$ NMR corresponds to the trisubstituted alkene proton, and resonances at $0.95 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}), 0.32 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$ and 0.31 ppm ($\mathrm{s}, 3 \mathrm{H}$) correspond to the tert-butyl and dimethyl groups of the TBS ester. Furthermore, the
${ }^{13} \mathrm{C}$ NMR has resonances at 172.7 ppm , 131.1 ppm , and 125.8 ppm that support the presence of the ester and alkene functionalities.

Scheme 44: Formation of Silyl Ester 147 from Allylic Acetate 144

It is presumed that E isomer of 147 was selectively produced from allylic acetate 144 , as it is well established that the Claisen rearrangement of acyclic substrates proceeds through chairlike transition-states $\mathbf{1 4 8}$ or $\mathbf{1 4 9}$ (Scheme 45). ${ }^{116}$ The transition state leading to the Z-isomer (149), however, suffers from a severe 1,3-diaxial strain induced by the large cyclohexyl ring and the silyl ketene acetal. On the other hand, transition state 148 is able to undergo a facile rearrangement reaction that results in the selective formation of $\mathrm{E}-147$.

Scheme 45: Explanation for the Selective Formation of E-147

In continuing with the synthesis of ovalicin, the crude silyl ester 147 was reacted with methyllithium at low temperature to give tertiary alcohol 150 in 67% yield (Scheme 46). Interestingly, adding MeMgBr to silyl ester 147 resulted in no reaction and a $\mathbf{7 3 \%}$ yield of 147 was recovered. The IR spectrum of $\mathbf{1 5 0}$ shows the typical alcohol absorbance at $3397 \mathrm{~cm}^{-1}$.

$151: 152$ = $2: 1$

151

152

Scheme 46: Formation of Skipped Dienes 151/ 152 from Silyl Ester 147
The newly generated tertiary alcohol is then converted into the corresponding mesylate with triethylamine and methanesulfonyl chloride (MsCl) at $-15{ }^{\circ} \mathrm{C}$ (Scheme 46). ${ }^{117}$ Addition of $\mathrm{Bu}_{4} \mathrm{NBr}$ resulted in the formation of elimination products 151 and 152 in a 46% combined yield. ${ }^{118,} 119$ The formation of dienes 151 and 152 is evidenced by the alkene region in the ${ }^{1} \mathrm{H}$ NMR. A resonance at $5.07 \mathrm{ppm}(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz})$ corresponds to the alkenyl proton H_{b} of $\mathbf{1 5 1}$, and resonances at 4.74-4.71 ppm and 4.67-4.64 ppm correspond to the 1,1-disubstituted alkene protons H_{c} of 152 (Figure 7). Based upon the integrations of the resonances at 5.07 ppm and 4.74-4.71 ppm, $\mathbf{1 5 1}$ and $\mathbf{1 5 2}$ were produced in a 2:1 isomeric ratio. The isomeric ratio obtained for 151 and 152 is similar to the $3: 1$ isomeric ratio obtained by Corey and Snider for the dehydration of a late-stage intermediate employed in their synthesis of fumagillol. ${ }^{58}$

Figure 7: Assignment of H_{a}, H_{b}, and H_{c} in the ${ }^{1} H$ NMR Spectrum of 151 and $152\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathbf{D}_{6}\right)$

1.10.2 Projected End-game of Ovalicin from Diene 151

It is anticipated that functionalized diene $\mathbf{1 5 1}$ can be converted into ovalicin through the five-step reaction sequence shown in Scheme 47. First, deprotection of the carbonate group and selective methylation of the secondary hydroxyl group with $t \mathrm{BuONa}$, MeI, and 15 -crown- 5^{62} in THF should produce alcohol 153. The side chain epoxide of $\mathbf{6 1}$ will be installed though a vanadiumcatalyzed alcohol-directed epoxidation reaction. Next, global deprotection of the silyl protecting groups and oxidation of the secondary alcohol to the corresponding ketone will afford ovalicin. However, the synthesis of ovalicin from diene 151 was not pursued due to the lengthy nine stepreaction sequence required for the installation of the E-alkene side chain.

151

Scheme 47: Projected Synthesis of Ovalicin from Diene 151

1.10.3 Summary and Conclusions for the Synthesis and Functionalization of Crossconjugated Triene 109

In summary, we have developed a facile route to cross-conjugated triene $\mathbf{1 0 9}$ in three steps from known alkyne 111 and aldehyde 112 that features a high yielding $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction. An enantioselective synthetic strategy to (R)-109 from $\mathbf{1 1 1}$ and $\mathbf{1 1 2}$ has also been developed utilizing an enantioselective alkynylation reaction, which could prove useful for the asymmetric syntheses of (-)-fumagillol and (-)-ovalicin.

We have demonstrated that the double bonds of cross-conjugated triene $\mathbf{1 0 9}$ can be selectively functionalized via epoxidation and dihydroxylation protocol. More specifically, a bis-allylic epoxide (115) was synthesized from a cross-conjugated triene precursor (109) in high yield using an alcohol-directed epoxidation reaction. This pivotal intermediate was then used to construct the oxygenated framework of fumagillol and ovalicin through diverging palladiumcatalyzed transformations.

A modified Julia olefination reaction has been employed to transform ketone 131 into the Z-isomer of the masked skipped diene side chain in ovalicin. It is envisioned that application of Vedejs ${ }^{, 68}$ two-step isomerization procedure to $Z-136$ will yield $E-136$, which could serve as a useful intermediate in the synthesis of ovalicin. Alternately, an Ireland-Claisen rearrangement can be used to install the skipped diene side chain of ovalicin with the required E-geometry.

1.11 THE CARBOCYCLIZATION REACTION OF ALLENE-YNES:

INVESTIGATING THE CONSTITUTIONAL SITE SELECTIVITY OF

DIFFERENTIALLY FUNCTIONALIZED 1,1-DISUBSTITUTED ALLENES AND ITS APPLICATION TO OVALICIN AND FUMAGILLOL

1.11.1 Trost's Constitutional Site Selectivity Study of 1,6-Enynes Appended to an Isobutylene Group

Trost has shown that the palladium-catalyzed carbocyclization reaction of 1,6-enynes possessing an isobutylene group selectively yields cyclic 1,4-dienes with an appending 1,1-disubstituted alkene side chain. ${ }^{12,120-125}$ For example, reacting alkynone 154 with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, tri-otolylphosphine, and acetic acid in toluene at $80^{\circ} \mathrm{C}$ produces only carbocycle 156 in 63% yield (Scheme 48). ${ }^{124}$ The selective formation of 155 is attributed to coordination of the remote alkene in enyne $\mathbf{1 5 4}$ to the palladium catalyst. This pseudo-cycle prevents syn periplanar alignment of the $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{H}_{\mathrm{a}}$ system during the β-hydride elimination step of the carbocyclization, resulting in the exclusive formation of 156. Similar observations have been reported by Trost and coworkers during their ruthenium-catalyzed carbocyclization studies of 1,6-enynes tethered to an isobutylene moiety. ${ }^{7,8}$

Scheme 48: Palladium-Catalyzed Carbocyclization Reaction of 1,6-Enyne $154{ }^{124}$

1.11.2 Previous Studies Regarding the Constitutional Site Selectivity in the Allenic Carbocyclization Reaction

With an eye towards the synthesis of ovalicin, the constitutional site selectivity of the β-hydride elimination step in the allenic carbocyclization reaction was investigated, i.e. the formation of isomeric products differing in line formulae. ${ }^{126}$ More specifically, the selective participation of the methylene position over the methyl position in the elimination process was examined. Previous studies conducted by Jamie McCabe showed that appending a coordinating functionality such as a hydroxyl propyl group to the distal double bond of the allene resulted in a mixture of trienes 159 and $E / Z-160$ in a 40:60 isomeric ratio (Table 7, entry 1). ${ }^{77}$ Reacting the analogous primary silyl ether $\left(\mathrm{R}^{1}=\mathrm{TBS}\right)$ with a catalytic amount of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ produced cross-conjugated trienes 159 and $E / Z-160$ in a 15:85 isomeric ratio. The increased formation of triene 159 when $\mathrm{R}^{1}=\mathrm{H}$ can be explained by coordination of the free hydroxyl group to the rhodium center of metallocycle 158, producing a rhodacycle that geometrically prohibits β hydride elimination of the β-methylene hydrogen atoms H_{a}.

Table 7: Carbocyclization Reaction of Allene-yne 157^{77}

[^5]
1.11.3 Retrosynthetic Analysis of Ovalicin and Fumagillol from α-Hydroxy Allene-yne 162

The constitutional site selectivity of the allenic carbocyclization reaction was further investigated by tethering an isobutylene group to the allene moiety to determine its effect on the β-hydride elimination step. In addition, the hydroxyl containing tether was deemed to be an important control element in the pre-cyclization and post-cyclization reactions, thus it too was incorporated. Allene-yne 162 was chosen for our studies as it will allow entry into the carbocyclic framework of fumagillol (60) and ovalicin (61) in a single synthetic transformation (Scheme 49).

It is envisioned that reacting a catalytic amount of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ with allene-yne 162 will produce cross-conjugated triene 161, which possesses the entire carbocyclic skeleton of structurally related natural products fumagillol (60) and ovalicin (61). Moreover, it is anticipated that the allylic hydroxyl group of triene $\mathbf{1 6 1}$ can be used for the chemo- and stereoselective installation of epoxides and hydroxyl groups incorporated in both sesquiterpenes (Scheme 49).

Scheme 49: Retrosynthetic Analysis of Ovalicin and Fumagillol from Allene-yne 162

1.11.4 Synthesis of Allene-ynes Tethered to an Isobutylene Group

1.11.4.1 Substrate Design of $\boldsymbol{\alpha}$-Hydroxy Allene-ynes

$$
\mathrm{R}^{1}=\mathrm{H}, \mathrm{TBS}, \mathrm{Ac}, \mathrm{Piv}
$$

$$
\mathrm{R}^{2}=\mathrm{H}, \mathrm{TMS}, \mathrm{Ph}
$$

Figure 8: Desired Allene-yne Substrates
Design of 1,1-disubstituted allene-ynes required a tunable scaffold that would allow for substrate-controlled selectivity of the carbocyclization reaction (Figure 8). We plan to alter the allene-yne hydroxyl (R^{1}) and alkyne groups (R^{2}) to determine the effect of the substitution at these sites on the regioselectivity of the carbocyclization reaction.

Allene-yne 162 can be prepared in two steps from known propargyl tetrahydropyranyl ether $\mathbf{1 6 3}^{127}$ and aldehyde $\mathbf{1 1 2}^{79}$ (Scheme 50). Following Brandsma's procedure for the addition of alkynes to aldehydes, n - BuLi was reacted with an excess of alkyne 163 at $-50{ }^{\circ} \mathrm{C} .{ }^{80}$ Addition of aldehyde 112 to the resulting lithium anion and warming the reaction to $-20{ }^{\circ} \mathrm{C}$ gave propargyl alcohol 164 in 76% yield as an inseparable mixture of diastereomers by column chromatography. Integration of the two resonances at 1.49 ppm and 1.42 ppm in the ${ }^{1} \mathrm{H}$ NMR, which correspond to the diastereomeric methyl groups, indicate that $\mathbf{1 6 4}$ was produced as a 1.4:1 diastereomeric mixture.

Subjecting propargyl alcohol 164 to LiAlH_{4} in refluxing $\mathrm{Et}_{2} \mathrm{O}$ gave allene-yne 162 in 74% yield (Scheme 50). ${ }^{82}$ The formation of allene-yne 162 is supported by a resonance at 5.20 $5.13 \mathrm{ppm}(\mathrm{m})$ in the ${ }^{1} \mathrm{H}$ NMR corresponding to the allene proton.

Scheme 50: Synthesis of Allene-yne 162
Allene-yne $\mathbf{1 6 2}$ has been prepared in high diastereoselectivity in three steps from terminal alkyne 163 and Weinreb amide 165 (Scheme 51). Alkynone 166 is formed in 68% yield by reacting the acetylide anion of 163 with amide $165 .{ }^{128}$ The formation of alkynone $\mathbf{1 6 6}$ is evidenced by IR spectrum with the absorbance at $1681 \mathrm{~cm}^{-1}$.

Selective reduction of the ketone moiety of 163 with Noyori's chiral ruthenium catalyst 167 gave (R)-164 in 94% yield. ${ }^{129,130}$ The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of (R) - $\mathbf{1 6 4}$ are in agreement with the spectral data obtained for the 164.

Reduction of propargyl alcohol (R)-164 with LAH afforded allene-yne (R)-162 in 56\% yield (Scheme 51). The low yield obtained for $(R) \mathbf{- 1 6 2}$ is attributed to performing the reduction reaction on small scale. For example, reacting 1.13 mmol of propargyl alcohol (R)-164 with LAH gave allene-yne (R)-162 in 56% yield, whereas subjecting 7.58 mmol of propargyl alcohol 164 to the same reaction conditions gave allene-yne 162 in an increased 74% yield. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the enantioenriched allene-yne (R) - $\mathbf{1 6 2}$ match the spectral data obtained for the racemic allene-yne 162. The formation of the allene-yne (R) - $\mathbf{1 6 2}$ is exciting as it could serve as a useful intermediate for the asymmetric syntheses of (-)-fumagillol and (-)-ovalicin.

Scheme 51: Synthesis of (R)-162
Racemic and enantioenriched allene-ynes 162 and (R) - 162 were converted into the analogous Mosher esters $\mathbf{1 6 8}$ and (R)-168 to determine the diastereomeric ratio of (R)-162 (Scheme 52). Racemic Mosher ester 168 was produced by reacting allene-yne 162 with (R)-(+)-alpha-methoxy-alpha-(trifluromethyl)-phenylacetic acid, N, N '-dicyclohexylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) (Conditions A). Similarly, Mosher ester (R)-168 was formed by reacting allene-yne (R)-162 with $(R)-(+)$-alpha- methoxy-alpha-(trifluromethyl)-

162, Conditions A: DCC
(R)-162, Conditions B: EDC

$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, DMAP }]{\text { Conditions } \mathrm{A} \text { or } \mathrm{B}}$

Scheme 52: Formation of Mosher Esters 168 and (R)-168
phenylacetic acid, 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDC), and 4dimethylaminopyridine (DMAP) (Conditions B). Employing EDC for the coupling reaction of $(R)-162$ avoids the urea byproduct produced by DCC, which is not water soluble and is difficult to remove without employing column chromatography. The ${ }^{19}$ F NMR of racemic allene-yne $\mathbf{1 6 8}$
shows three resonances at $-72.0 \mathrm{ppm},-72.1 \mathrm{ppm}$, and -72.2 ppm with integrations of $2 \mathrm{~F}, 1 \mathrm{~F}$, and 1F, respectively (Figure 9). This spectral data indicates that four diastereomers of $\mathbf{1 6 8}$ are present in equal quantities. The ${ }^{19} \mathrm{~F}$ NMR of $(R) \mathbf{- 1 6 8}$ still shows three resonances at $\mathbf{- 7 2 . 0} \mathrm{ppm}$, -72.1 ppm , and -72.2 ppm , however, with integrations of $0.16 \mathrm{~F}, 1 \mathrm{~F}$, and 1 F , respectively. Based upon the integrations in the ${ }^{19} \mathrm{~F}$ NMR of (R)-168, allene-yne (R) - $\mathbf{1 6 2}$ was produced in a 93:7 diastereomeric ratio (Scheme 51).

Figure 9: ${ }^{19}$ F NMR of Racemic Allene-yne 168 and Enantioenriched Allene-yne (R)-168
Interestingly, Carreira's asymmetric alkynylation protocol produced (R)-164 in only $\mathbf{3 8 \%}$
yield, even when excess (+)- N-methylephedrine (3.1 equiv), alkyne 163 (3.1 equiv), and zinc triflate (3 equiv) were used (Scheme 53). ${ }^{83}$ The low yield obtained from this reaction could be due to a self-condensation reaction of aldehyde 112, which is supported by the presence of a
slightly more polar product by TLC. Aldol condensations are facile processes for aldehydes that do not possess any α - or β-substituents. ${ }^{84,130,131}$ The absolute stereochemistry of (R)-161 was assigned by analogy to Carreira's substrates prepared using (+)-N-methylephedrine. ${ }^{83}$

Scheme 53: Formation of (R)-164 via Carreira's Asymmetric Alkynylation Protocol
With the synthesis of allene-yne 162 in hand, allene-yne derivatives containing different R^{1} substituents were constructed to examine the role of the hydroxyl group on the β-hydride elimination step of the carbocyclization reaction (Scheme 54). More specifically, silyl ether 169, acetate 170, and pivaloate ester 171 were synthesized to determine the effect of an electron donating, withdrawing, and sterically demanding functionality on the selectivity of the reaction.

Silyl ether 169 was obtained in 70\% yield by reacting 162 with TBSCl and imidazole (Scheme 54). The formation of tert-butyldimethyl silyl ether 169 is evidenced by the molecular ion $\left(\mathrm{M}^{+} \cdot \mathrm{m} / \mathrm{z} 404\right)$ peak in the high resolution mass spectrum.

Reaction of $\mathbf{1 6 2}$ with acetic anhydride, DMAP, and pyridine gave the analogous acetate $\mathbf{1 7 0}$ in 70% yield. Similarly, pivaloate ester 171 was produced in 85% yield when alcohol 162 was reacted with pivaloyl chloride, DMAP, and triethylamine (Scheme 54). The IR spectrum of acetate $\mathbf{1 7 0}$ and pivaloate ester $\mathbf{1 7 1}$ have the corresponding absorbances at $1743 \mathrm{~cm}^{-1}$ and 1731 cm^{-1}, indicative of the carbonyl stretch. ${ }^{81}$
TBSCl
$\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70 \%]{\text { imidazole }}$

Scheme 54: Formation of Silyl ether 169, Acetate 170, and Pivaloate ester 171
The substitution on the alkyne terminus (R^{2}) was adjusted by synthesizing terminal alkyne $\mathbf{1 7 2}$ and phenyl alkyne $\mathbf{1 7 3}$ from TMS-alkyne $\mathbf{1 6 2}$ (Scheme 55). The TMS group of $\mathbf{1 6 2}$ was removed with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to give terminal alkyne 172 in 80% yield. The formation of alkyne $\mathbf{1 7 2}$ is evidenced by a resonance at $1.97 \mathrm{ppm}(\mathrm{t}, J=2.7 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR that corresponds to the terminal alkyne proton.

Scheme 55: Formation of Allene-ynes 172 and 173

A Sonogashira coupling reaction was then performed with $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, CuI , diisopropylamine (DIPA), and iodobenzene to afford the analogous phenyl-alkyne 173 in 86%
yield (Scheme 55). The molecular ion peak at $\mathrm{M}^{+\cdot} \mathrm{m} / \mathrm{z} 294$ in the high resolution mass spectrum supports that $\mathbf{1 7 3}$ was obtained.

1.11.4.2 Synthesis of Malonate and Heteroatom Tethered Allene-ynes

$$
\begin{aligned}
& \mathrm{X}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right), \mathrm{NTs}, \mathrm{O} \\
& \mathrm{R}^{2}=\mathrm{H}, \mathrm{TMS}, \mathrm{Ph}, \mathrm{Me}
\end{aligned}
$$

Figure 10: Malonate and Heteroatom Tethered Allene-yne Derivatives
The selectivity study of the allenic carbocyclization reaction of allenes attached to an isobutylene group was expanded to include allene-ynes with different tether substituents X (Figure 10). Our goal is to use malonate, sulfonamide, and ether tethered allene-ynes to determine if modification of the allene-yne backbone will affect the β-hydride elimination step in the carbocyclization reaction

Allene-yne 175, the synthetic precursor to malonate and heteroatom tethered allene-ynes, was constructed from propargyl tetrahydropyranyl ether $\mathbf{1 6 3}^{127}$ and paraformaldehyde (Scheme 56). The alkyne terminus of $\mathbf{1 6 3}$ was first deprotonated with n-butyllithium at $0^{\circ} \mathrm{C}$ and then reacted with paraformaldehyde. Warming the reaction to room temperature produced the desired propargyl alcohol 174 in 79% yield. Alcohol 174 was afforded as a 1.2:1 mixture of diastereomers based upon integration of the two resonances at 1.49 ppm and 1.41 ppm in the ${ }^{1} \mathrm{H}$ NMR that correspond to the diastereomeric tertiary methyl groups.

Reacting propargyl alcohol $\mathbf{1 7 4}$ with LAH in refluxing ether resulted in allene-yne $\mathbf{1 7 5}$ in 53% yield (Scheme 56). ${ }^{82}$ A resonance at $5.29-5.21 \mathrm{ppm}(\mathrm{m})$ in the ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7 5}$ corresponds to H_{a}, and a resonance at 200.0 ppm in the ${ }^{13} \mathrm{C}$ NMR corresponds to C 3 .

Scheme 56: Formation of Allene-yne 175

With allene-yne 175 in hand, malonate tethered allene-ynes $\mathbf{1 7 6 - 1 7 9}$ were synthesized to examine the effect of the tether on the selectivity of the carbocyclization reaction (Table 8). Malonate tethered allene-yne derivatives $\mathbf{1 7 6 - 1 7 9}$ were constructed through an alkylation reaction between α-allenyl mesylate 175 a and a variety of malonate carbanions. ${ }^{132}$

For example, the formation of malonate-tethered allene-yne $\mathbf{1 7 6}$ was accomplished by converting alcohol 175 into mesylate 175a with triethylamine, DMAP, and methanesulfonyl chloride (MsCl) at $0{ }^{\circ} \mathrm{C}$ (Table 8). In a separate reaction flask, diethyl 2-(3-(trimethylsilyl)prop-2-ynyl)malonate was deprotonated with sodium hydride and the crude mesylate was then added to the resulting carbanion at $0{ }^{\circ} \mathrm{C}$. Warming the reaction to room temperature followed by the addition of sodium iodide resulted in the formation of allene-yne 176 in 62% yield (entry 1, Table 8). The alkylation reactions illustrated in entries 2 through 4 of Table 8 were performed similarly and gave allene-ynes $\mathbf{1 7 7 - 1 7 9}$ in yields of 73-76\%. The formation of malonate-tethered allene-yne 176 is evidenced by the molecular ion ($\mathrm{M}^{+-} \mathrm{m} / \mathrm{z} 418$) peak in the high resolution mass spectrum and by absorbances in the IR at $2180 \mathrm{~cm}^{-1}$ and $1737 \mathrm{~cm}^{-1}$. The spectral data obtained for allene-ynes $\mathbf{1 7 7}$ though $\mathbf{1 7 9}$ are similar to that obtained for $\mathbf{1 7 6}$.

Table 8: Synthesis of Malonate tethered Allene-ynes 176 through 179

175

175a

$\xrightarrow{\mathrm{NaH}, \mathrm{NaI}, \mathrm{THF}}$ $0^{\circ} \mathrm{C}$ to r.t., 62%

176

Entry	\mathbf{R}^{2}	Allene-yne	Yield (\%)
1	TMS	$\mathbf{1 7 6}$	62
2	Ph	$\mathbf{1 7 7}$	73
3	Me	$\mathbf{1 7 8}$	76
4	H	$\mathbf{1 7 9}$	76

Next, a nitrogen heteroatom was incorporated into the allene-yne tether by synthesizing N-tosylallene-ynes 181-183 to investigate if a coordinating functionality in the allene-yne backbone will affect the selectivity of the carbocyclization reaction (Table 9). For example, N -tosylallene-yne 181 was prepared using a Mitsunobu reaction by adding diisopropyl azodicarboxylate (DIAD) to a mixture of 3-phenyl- N-tosylprop-2-yn-1-amine, triphenylphosphine, and allenic alcohol 175 in THF at $0{ }^{\circ} \mathrm{C}$. Warming the reaction to room temperature produced the desired allene-yne 181 in 78\% yield.

The construction of N-tosylallene-yne 181 from allenyl alcohol 175 is supported by resonances at $5.04-4.96 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$ and $2.34 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR that correspond to the allene proton and the tosylate methyl group, respectively. Allene-ynes 182 and 183 were prepared according to the procedure described for $\mathbf{1 8 0}$ and have comparable spectral data.

Table 9: Formation of N-Tosylallene-ynes 181-183

175

Entry	\mathbf{R}^{2}	N-Tosylallene-yne	Yield (\%)
1	Ph	$\mathbf{1 8 1}$	78
2	Me	$\mathbf{1 8 2}$	80
3	H	$\mathbf{1 8 3}$	87

Ether-tethered allene-ynes $\mathbf{1 8 5} \mathbf{- 1 8 7}$ were synthesized to investigate the effect of an oxygen heteroatom in the allene-yne tether on the constitutional site selectivity of the allenic Alder-ene reaction (Table 10). The construction of allene-yne 185 was accomplished by first deprotonating alcohol 175 with sodium hydride. Subsequent O-alkylation of the resulting oxyanion with 1-(3-bromoprop-1-ynyl)benzene gave ether-tethered allene-yne 185 in 81% yield. Structurally similar allene-ynes 186 and 187 were prepared in yields of 76% and 80% according to the described procedure.

The ${ }^{13} \mathrm{C}$ NMR of allene-yne 185, with resonances at $203.1 \mathrm{ppm}, 86.01 \mathrm{ppm}$, and 85.2 ppm, supports the presence of the allene and alkyne functionalities. ${ }^{81}$ The spectral data obtained for 186 and 187 is similar to that obtained for 185.

Table 10: Formation of Ether-tethered Allene-ynes 185-187

175

Entry	\mathbf{R}^{2}	Allene-yne	Yield (\%)
1	Ph	$\mathbf{1 8 5}$	81
2	Me	$\mathbf{1 8 6}$	76
3	H	$\mathbf{1 8 7}$	80

Additionally, sulfonamide- and ether-tethered allene-yne derivatives possessing a TMSsubstituted alkyne were obtained from terminal alkyne precursors to examine the effect of a TMS-alkyne on the selectivity of the cycloisomerization reaction. Reacting terminal alkynes $\mathbf{1 8 3}$ and 187 with n - BuLi and TMSCl at low temperature produced the corresponding allene-ynes 180 and 184 in yields of 71% and 49% (Scheme 57). The formation of TMS-alkynes 180 and 184 is evidenced by the ${ }^{1} \mathrm{H}$ NMR, which has resonances corresponding to the TMS group at $-0.02 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H})$ and $0.18 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H})$, respectively.

183

187

180

184

Scheme 57: Formation of TMS-Substituted Alkynes 180 and 184

1.11.5 The Constitutional Site Selectivity of Allene-ynes Tethered to an Isobutylene Group

1.11.5.1 Investigating the Role of the Allene-yne Functional Groups on the Selectivity of the Allenic Carbocyclization Reaction

Reacting allene-yne 162 with $10 \mathrm{~mol} \%$ of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ in toluene at room temperature produced only cross-conjugated triene 188 in 84% yield (Scheme 58). The selective formation of cross-conjugated triene 188 in yields of $83 \%, 77 \%$, and 75% is also observed when t-butyl methyl ether, fluorobenzene, and α, α, α-trifluoromethyltoluene are employed as solvents, respectively. To the best of our knowledge, ${ }^{133}$ this is the only example of a trisubstituted alleneyne being transformed into a regioisomerically pure cross-conjugated triene.

Scheme 58: Selective Formation of Cross-conjugated Triene 188 from Allene-yne 162
The selective formation of cross-conjugated triene $\mathbf{1 8 8}$ is illustrated by the alkene region in the ${ }^{1} \mathrm{H}$ NMR (Table 11). Resonances at $5.66 \mathrm{ppm}(\mathrm{d}, J=3.5 \mathrm{~Hz}$), 5.50 ppm (s), and 5.10 ppm (tt, $J=7.0,1.5 \mathrm{~Hz}$) correspond to $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}$, and H_{c}, respectively. The appending 1,1-disubstituted alkene protons H_{d} correspond to the resonances at $5.01-4.98 \mathrm{ppm}$ and $4.88 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz})$.

Table 11: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene 188 (alkene region, $\mathrm{CDCl}_{3}, ~ \mathrm{rt}, 500 \mathrm{MHz}$)
jed-8-241 triene 500 MHz

	Chemical Shift	Spin multiplicity	\boldsymbol{J} Values (Hz)
H_{a}	5.66 ppm	d	3.5
H_{b}	5.50 ppm	s	----
H_{c}	5.10 ppm	tt	$7.0,1.5$
H_{d}	$5.01-4.98 \mathrm{ppm}$	m	----
H_{d}	4.88 ppm	d	2.0

Intrigued by the selective formation of triene 188, we next sought to investigate the role of the hydroxyl group on the allenic carbocyclization reaction. The corresponding silyl ether 169, acetate 170, and pivaloate ester 171 were examined to determine the effect of an electron donating, withdrawing, and sterically demanding functionality on the selectivity of the reaction. As seen in Table 12, allene-ynes 169,170 , and 171 were selectively transformed into crossconjugated trienes 189,191 , and 193 in yields of 92%, 84%, and 75%, respectively. These results indicate that the substitution on the α-allenic hydroxyl group has no effect on the
constitutional site selectivity of the carbocyclization reaction. However, the presence of the bulky pivaloate ester did produce cross-conjugated triene 193 in a lower 75\% yield.

Table 12: Allenic Carbocyclization Reaction of Allene-ynes 169 through 171

Entry	Allene-yne	Trienes A : B	Time

The effect of the substitution on the alkyne terminus was next investigated. Interestingly, replacing the alkynyl TMS group with a phenyl substituent resulted in trienes 195 and E/Z-196 as an 85:15 isomeric mixture in 88\% yield (entry 1, Table 13). Cross-conjugated trienes 195 and $E / Z-196$ were characterized as a mixture, because the isomeric ratio could be determined by ${ }^{1} \mathrm{H}$ NMR. For example, resonances at 5.09-5.06 ppm (m) and $4.98 \mathrm{ppm}(\mathrm{d}, J=2.1 \mathrm{~Hz})$ correspond to the appending 1,1-disubstituted alkene protons of $\mathbf{1 9 5}$, and resonances at $5.39 \mathrm{ppm}(\mathrm{t}, J=6.9$ Hz) and $5.18 \mathrm{ppm}(\mathrm{tt}, J=6.9,1.2 \mathrm{~Hz}$) correspond to the alkenyl protons in the diene side of E / Z 196. The isomeric ratio of 195 and $E / Z-196$ was determined by integration of the resonances at $4.98 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.1)$ and $5.39 \mathrm{ppm}(\mathrm{t}, J=6.9 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR.

Table 13: Allenic Carbocyclization Reaction of Allene-ynes 172 and 173

| Entry | Allene-yne | Trienes A : B | E:Z | Time | Yield $^{\text {a }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Subjecting allene-yne 173, which possesses a terminal alkyne, to the $\mathrm{Rh}(\mathrm{I})$-catalyzed Alder-ene reaction conditions gave cross-conjugated trienes 197 and $E / Z-198$ in a 56:44 isomeric ratio, but in a lower 32% combined yield (entry 2, Table 13). The low yield and extended reaction time for the formation of trienes $197 / E / Z-198$ is attributed to the reactive acetylenic proton that can react with the rhodium catalyst. ${ }^{124}$ The isomeric ratio of cross-conjugated trienes 197/E/Z-198 was determined by integration of the three peaks in the GC chromatogram at retention times 5.6 min , 5.8 min , and 6.1 min . Based upon integration of the two smaller peaks at 5.6 min and 6.1 min , cross-conjugated triene 197 was produced as a $1: 1$ mixture of $E: Z$ isomers. The isomeric ratios were assigned based on the retention times of the constitutional site and $E: Z$ isomer of trienes 188 and $E / Z-161$, which were determined via nOe analysis and will be discussed later in section 1.11.5.5.

The isomeric mixture of trienes produced from allene-ynes 172 and 173 suggests that substitution at the alkynyl position does influence the β-hydride elimination step of the $\mathrm{Rh}(\mathrm{I})$ catalyzed carbocyclization reaction. Moreover, the substitution on the alkyne terminus could serve as a control element for the selective formation of isomerically pure cross-conjugated trienes from 1,1-disubstituted allene-yne precursors.

The effect of the tether substituents was studied next to further probe the selectivity of the carbocyclization reaction, and malonate tethered allene-yne derivatives were examined (Table 14). Allene-yne 176, which has an alkynyl TMS group, was selectively cyclized to crossconjugated triene 199 in 74% yield in 20 min (entry 1).

Replacement of the TMS-alkyne with a phenyl-substituted alkyne produced a 72% yield of trienes 201 and E/Z-202 in an 88:12 isomeric ratio (entry 2, Table 14). The isomeric ratio of cross-conjugated trienes 201 and E/Z-202 was determined by integration of the three peaks in the

GC chromatogram at retention times 14.7 min (E/Z-202), 16.5 min (201), and $17.6 \mathrm{~min}(E / Z-$ 202).

Subjecting methyl derived allene-yne $\mathbf{1 7 8}$ to the carbocyclization reaction conditions gave a 72\% yield of 203 and E/Z-204 (entry 3, Table 14). Based upon integration of the three peaks in the GC chromatogram at retention times $8.6 \min (E / Z-204), 8.9 \mathrm{~min}(203)$, and 9.2 min (E/Z-204), cross-conjugated trienes 203 and $E / Z-204$ were produced in an $86: 14$ isomeric ratio.

Table 14: The Carbocyclization Reaction of Malonate-Tethered Allene-ynes Containing an Appending Isobutylene Group

| Entry | Allene-yne | Trienes A : $\mathbf{B}^{\mathbf{a}}$ | E:Z $\mathbf{Z}^{\mathbf{a}}$ | Time | Yield |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

When the cyclization reaction was performed with allene-yne 179, cross-conjugated trienes 205 and E/Z-206 were produced in a low 29% yield as a 56:44 isomeric mixture (entry 4, Table 14). The low yield and long reaction time observed for this reaction is attributed to the reactive terminal alkyne in allene-yne 179. ${ }^{124}$ The formation of cross-conjugated trienes 205 and $E / Z-206$ is supported by the three peaks in the GC chromatogram at retention times 8.2 min (E / Z 206), $8.4 \min (205)$, and $8.8 \min (E / Z-206)$.

The $\mathrm{Rh}(\mathrm{I})$-catalyzed carbocyclization reaction conducted with malonate tethered alleneynes 176 through 179 produced a small amount of the corresponding α-alkylidene cyclopentenone products in addition to cross-conjugated trienes 199-206 (Table 15). Cyclocarbonylation products 207-210 were isolated in yields ranging from 8% to 14% and could
account for the lower yields obtained for cross-conjugated trienes 199-206 (compare Tables 12 and 13 with Table 14).

Table 15: Formation of Cyclopentenones 207-210

Entry	Allene-yne	Cyclopentenone	Yield (\%)
1	$\mathbf{1 7 6}, \mathrm{R}^{2}=\mathrm{TMS}$	$\mathbf{2 0 7}$	14
2	$\mathbf{1 7 7}, \mathrm{R}^{2}=\mathrm{Ph}$	$\mathbf{2 0 8}$	10
3	$\mathbf{1 7 8}, \mathrm{R}^{2}=\mathrm{Me}$	$\mathbf{2 0 9}$	8
4	$\mathbf{1 7 9}, \mathrm{R}^{2}=\mathrm{H}$	$\mathbf{2 1 0}$	8

The formation of cyclopentenones 207-210 is evidenced by resonances in the ${ }^{1} \mathrm{H}$ NMR. For example, the ${ }^{1} \mathrm{H}$ NMR of 207 shows resonances at $3.58-3.46 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H})$ and 2.84-2.75 ppm (m, 1H), corresponding to the methylene protons H_{a}; an AB quartet $(J=18.3 \mathrm{~Hz})$ at resonances 3.32 ppm and 3.22 ppm , corresponding to H_{b}; and resonances at 2.96 ppm (triplet, J $=8.1 \mathrm{~Hz}$) and 2.92* ppm (triplet, $J=8.1 \mathrm{~Hz}$), corresponding to the diastereomeric ring fusion hydrogen H_{c}. Integration of the resonances at 1.67 ppm and 1.60 ppm that correlate to the isomeric α-alkylidene methyl group indicate that 207 was produced as a 1:1 mixture of diastereomers.

Figure 11: Assignment of $H_{a} H_{b}$, and H_{c} in the ${ }^{1} H$ NMR Spectrum of $207\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
Next, the effect of heteroatoms on the regioselectively of the β-hydride elimination step was explored. N-Tosylallene-yne 180 and ether-tethered allene-yne 184, which possess a TMS substituted alkyne, were exclusively converted into trienes 211 and 223 in yields of 63\% and 61%, respectively (entries 1 and 5, Table 16).

As seen in entries 2 and 6 of Table 16, exchanging the TMS-alkyne with a phenyl alkyne produced an isomeric mixture of trienes. Sulfonamide 181 is cyclized to trienes 214/E/Z-215 in an 85:15 isomeric ratio in 56% yield, and allenyl ether $\mathbf{1 8 5}$ is converted to trienes 226/E/Z-227 in an isomeric ratio of 74:26 in 60\% yield.

Similarly, mixtures of cross-conjugated trienes are again observed when the allene-yne substrates have a methyl-substituted alkyne (compare entries 2 and 6 with entries 3 and 7). As seen in entries 3 and 7, allene-ynes 182 and 186 are transformed to the corresponding crossconjugated trienes 217/E/Z-218 and 229/E/Z-230 in isomeric ratios of 79:21 and 75:25, respectively.

Additionally, reacting terminal alkynes 183 and 187 with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ produced crossconjugated trienes 220/E/Z-221 and 232/E/Z-233 in increased isomeric ratios of 43:57 and 45:55, respectively (entries 4 and 8 , Table 16). Cross-conjugated trienes 220/E/Z-221 and 232/E/Z-233,
however, were isolated with impurities that were inseparable via column chromatography in low yields of 36% and 21%, respectively.

Table 16: The Carbocyclization of Heteroatom-Tethered Allene-ynes with an Appending Isobutylene Group

Entry	Allene-yne	$\underset{\text { Yield }^{\mathrm{d}}}{\text { Trienes A }}$	$E: Z^{\text {a }}$	Cyclopentenone, Yield	Time
1	180, $\mathrm{R}^{2}=$ TMS	211:212, 100 : 0, 63\%	----	213, 20\%	15 min
2	181, $\mathrm{R}^{2}=\mathrm{Ph}$	214 : 215, 85 : 15, 56\%	1:1	216, 24\%	8.5 h
3	182, $\mathrm{R}^{2}=\mathrm{Me}$	217 : 218, 79 : 21, 64\%	1:1	219, 25\%	20 min
$4^{\text {c }}$	183, $\mathrm{R}^{2}=\mathrm{H}$	220: 221, 43 : 57, 36\%	2:1	222, 25\%	24 h
5	184, $\mathrm{R}^{2}=$ TMS	223 : 224100 : 0, 61\%	-----	225, 39\%	40 min
$6^{\text {b }}$	185, $\mathrm{R}^{2}=\mathrm{Ph}$	226-227 74 : 26, 60\%	1:1	228, 30\%	35 min
$7^{\text {b }}$	186, $\mathrm{R}^{2}=\mathrm{Me}$	229 : 23075 : 25, 41\%	1:1	231, 36\%	20 min
$8^{\text {c }}$	187, $\mathrm{R}^{2}=\mathrm{H}$	232 : 23345 : 55, 21\%	3:1	234, 28\%	24 h

Unfortunately, the heteroatom-tethered allene-ynes examined produced increased amounts of α-alkylidene cyclopentenones. N-Tosylallenynes $180-183$ led to the corresponding cyclocarbonylation products in yields of 20-25\%, and ether-tethered allene-ynes 184-187 gave cyclopentenones in yields of 28-39\% (Table 16).

The formation of α-alkylidene cyclopentenones 213-234 is evidenced by the ${ }^{1} \mathrm{H}$ NMR. The ${ }^{1} \mathrm{H}$ NMR of 231, for example, shows an AB quartet ($J=14.8 \mathrm{~Hz}$) at resonances 4.58 ppm and 4.46 ppm corresponding to H_{b} and resonances at 4.38 ppm (triplet, $J=7.5 \mathrm{~Hz}$) and 4.33* ppm (triplet, $J=7.5 \mathrm{~Hz}$) that correspond to the diastereomeric ring fusion hydrogen $\mathrm{H}_{\mathrm{c} .}$ A resonance at 3.68-3.62 ppm corresponds to one H_{a} proton (m), while the overlapping resonances
at $3.16 \mathrm{ppm}\left(\mathrm{dd}, J=11.0,7.5 \mathrm{~Hz}\right.$) and $3.15^{*} \mathrm{ppm}(\mathrm{dd}, J=11.0,8.0 \mathrm{~Hz}$) correspond to the other diastereomeric H_{a} proton (Figure 12).

Furthermore, the ${ }^{13} \mathrm{C}$ NMR of 231 has resonances for the carbonyl carbon and $s p^{3}$ ring fusion carbon of α-alkylidene cyclopentenones at 197.4/196.9* ppm and 47.7/47.5* ppm, respectively. ${ }^{134,135}$ Integration of the two peaks in the GC chromatogram at retention times 7.5 min and 7.7 min indicate that $\mathbf{2 3 1}$ was produced as a $1: 1$ mixture of diastereomers.

231

Figure 12: Assignment of $H_{a} H_{b}$, and H_{c} in the ${ }^{1} H$ NMR Spectrum of $231\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
To confirm the structure of 231, allene-yne 186 was reacted with $10 \mathrm{~mol} \%$ of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ at $90{ }^{\circ} \mathrm{C}$ under a carbon monoxide atmosphere, which formed α-alkylidene cyclopentenone 231 in 65\% yield. A small amount of the corresponding cross-conjugated trienes 229 and $E / Z-230$ were obtained in 31% yield as an $88: 12$ isomeric mixture. The isomeric ratio of 229 : E/Z-230 was determined by integration of the three peaks in the GC chromatogram at retention times $5.3 \mathrm{~min}(E / Z-230), 5.6 \mathrm{~min}(229)$, and $5.9 \mathrm{~min}(E / Z-230)$. It should be noted that these reaction conditions are typically used to form 4-alkylidene cyclopentenones. ${ }^{136,137}$

Scheme 59: Formation of Cyclopentenone 231 from Allene-yne 186

Interestingly, subjecting allene-yne $\mathbf{1 8 6}$ to a catalyst system prepared in situ from 10 $\mathrm{mol} \%\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, 30 \mathrm{~mol} \% \mathrm{PPh}_{3}$, and $22 \mathrm{~mol} \% \mathrm{AgBF}_{4}$ under 1 atm of CO produced a chromatographically separable mixture of α-alkylidene cyclopentenone 231 (21\%) and 4alkylidene cyclopentenone 235 (21\%) in a 42% combined yield (Scheme 60). ${ }^{135}$ The formation of 4-alkylidene cyclopentenone $\mathbf{2 3 5}$ is evidenced by resonances in the ${ }^{1} \mathrm{H}$ NMR at $5.87 \mathrm{ppm}(\mathrm{t}, \mathrm{J}$ $=3.3 \mathrm{~Hz}$), corresponding to $\mathrm{H}_{\mathrm{a}} ; 4.67 \mathrm{ppm}$, corresponding to $\mathrm{H}_{\mathrm{b}}(\mathrm{s}, 2 \mathrm{H})$; and at $4.35 \mathrm{ppm}(\mathrm{d}, J=$ 3.3 Hz), corresponding to H_{c}. Further evidence that 235 was obtained is provided by the ${ }^{13} \mathrm{C}$ NMR, which shows the characteristic resonance at 209.7 ppm that is typically observed for the carbonyl carbon of 4-alkylidene cyclopentenones. ${ }^{135,136}$

Scheme 60: Formation of Isomeric Cyclopentenones 231 and 235 from Allene-yne 186
The selective coordination and subsequent reaction of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ with the proximal double bond of the allene might be explained by the coordination of the heteroatom in the alleneyne tether to the rhodium metal. This hypothesis is further supported by the increased yields of 20-39\% obtained for cyclopentenones produced from nitrogen- and oxygen-tethered allene-ynes.

1.11.5.2 Explanation for the Constitutional Site Selectivity of the Allenic Carbocyclization Reaction of Allene-ynes containing an Isobutylene group

The selective transformation of allene-ynes of type 236 to cross-conjugated trienes $\mathbf{2 3 8}$ can be explained by coordination of the appending double bond to the rhodium metal center giving intermediate 237 (Scheme 61). In this conformation, syn periplanar alignment of the Rh-C-C- H_{a} system during the β-hydride elimination step is geometrically unattainable, leading to β-hydride elimination of H_{b} and the formation of cross-conjugated triene 238.

Scheme 61: Explanation for the Selectivity of the Alder-ene Reaction of Allene-ynes Tethered to an Alkene

1.11.5.3 Examining the Effect of Coordinating Solvents on the Regioselectivity of the Rh(I)-Catalyzed Allenic Carbocyclization Reaction

In continuing with the investigation of the constitutional site selectivity of the allenic Alder-ene reaction, a variety of solvents were examined for the carbocyclization reaction. Allene-yne $\mathbf{1 6 2}$ was chosen for our solvent studies as it can produce the cyclic framework of fumagillol (60) and ovalicin (61).

To test our hypothesis that the appended alkene of the allene-yne substrate is coordinating to the rhodium catalyst, toluene was replaced with a more coordinating solvent. As seen in Table 17, performing the carbocyclization reaction in solvents such as acetone (entry 4)
and 1,4-dioxane (entry 5) lead to slightly increased ratios of $E / Z-161: 188$ (21:79 and 22:78), while THF (entry 6) gave trienes E/Z-161 : $\mathbf{1 8 8}$ in a $34: 66$ isomeric ratio. Interestingly, using acetonitrile as the solvent resulted in a dramatic increase in the formation of $E / Z-161$, and trienes E/Z-161 and 188 were produced in a 99:1 isomeric ratio in 29% yield (entry 7). The appending trisubstituted alkene of $E / Z-161$ was produced in a $E: Z$ ratio of 1:5. The preferential formation of Z-161 in entries 2 though 7 is unique, because typically the metal-catalyzed carbocyclization reaction predominately produces the thermodynamically favored E-isomer., ${ }^{6,138}$ The isomeric ratio of E/Z-161 and 188 was determined by integration of the three peaks in the GC chromatogram at retention times of $6.9 \mathrm{~min}, 7.1 \mathrm{~min}$, and 7.4 min , which correspond to $\mathrm{Z} \mathbf{- 1 6 1}$, 188, and $E-161$, respectively.

Table 17: Solvent Study for the Allenic Carbocyclization Reaction of Allene-yne 162

Entry	Solvent	E/Z-161:188 ${ }^{\text {a }}$	E: $\mathbf{Z}^{\text {a }}$	Yield (\%) ${ }^{\text {b }}$
1	toluene	0:100	------	84
2	1,2-DCE	7:93	1:4	80
3	DME	18:82	1:4	50
4	acetone	21:79	1:9	25
5	1,4-dioxane	22:78	1:4	77
6	THF	34 : 66	1:6	46
7	$\mathrm{CH}_{3} \mathrm{CN}$	99:1	1:5	29
8	TFE	------	------	complex mixture

${ }^{\text {a }}$ Product ratios determined by GC analysis. ${ }^{\text {b }}$ Combined yield of E/Z-161 and 188
Interestingly, reacting allene-yne 162 with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ in solvents such as DMSO, DMF, and MeOH gave 2,5-dihydropyran 239 in yields of 51%, 59%, and 78%, respectively (Scheme 62). The ${ }^{1} \mathrm{H}$ NMR shows that the major diastereomer of $\mathbf{2 3 9}$ has resonances at 5.74 ppm (dd, $J=6.3,0.9 \mathrm{~Hz}$) and $5.68 \mathrm{ppm}(\mathrm{dd}, J=6.0,2.1 \mathrm{~Hz}$) that correspond to the cis-alkene
protons H_{a}. Similarly, the resonance at 5.72 ppm (s) corresponds to the cis-alkene protons of the minor diastereomer. ${ }^{139,140}$ Based upon the integration of the resonances at 1.29 ppm and 1.27 ppm in the ${ }^{1} \mathrm{H}$ NMR corresponding to the diastereomeric methyl groups, 239 was produced as a 1.2:1 diastereomeric mixture.

Scheme 62: Formation of 2,5-Dihydropyran 239 from Allene-yne 162
Encouraged by the results depicted in Table 17, coordinating alkenes were incorporated into our solvent system. As seen in Table 18, performing the carbocyclization reaction in acyclic and cyclic alkenes produced an increased amount of E/Z-161 (entries 2-9 and 11-14). Most notably, reacting allene-yne 162 with a catalytic amount of $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ in styrene produced cross-conjugated trienes E/Z-161 and 188 in 78% yield as a $61: 39$ isomeric mixture (entry 13). Triene E/Z-161 was produced in a high E:Z ratio of 8:1 during this reaction. Alternatively, adding 1,5-cyclooctadiene to the reaction prohibited the cycloisomerization reaction from occurring and is attributed to the increased binding ability of 1,5-cyclooctadiene (COD) to the rhodium catalyst (entries 15-17). ${ }^{89}$

Table 18: Allenic Carbocyclization Reaction of Allene-yne 162 in Alkene Solvents Systems

${ }^{\text {a }}$ Product ratios determined by GC analysis. ${ }^{\text {b }}$ Combined yield of $E / Z-161$ and $\mathbf{1 8 8}$. ${ }^{\text {C }}$ Triene product contaminated with impurities.

The high yield and isomeric ratio of $E / Z-161$: $\mathbf{1 8 8}$ produced when styrene is used as the solvent for the cycloisomerization reaction warranted further investigation. To determine if the styrene is affecting the β-hydride elimination step of the carbocyclization reaction, the reaction was carried out in a mixture of toluene and styrene. As shown in Table 20, employing this mixed solvent system decreased the formation of E/Z-161 (entries 3-4).

The role of temperature on the regioselectivity of the allenic Alder-ene reaction in styrene was also investigated. Performing the carbocyclization reaction in styrene at $50^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ gave $E / Z-161$ and 188 in decreased isomeric ratios of $39: 61$ and 17:83, respectively (compare entry 2 with entries 5 and 6). Performing the cycloisomerization reaction at -20 to $0{ }^{\circ} \mathrm{C}$ required
the addition of AgSbF_{6}, and $\mathbf{1 8 8}$ was still produced as the major isomer. The results summarized in Table 19 indicate that the styrene solvent is affecting the selectivity of the $\mathrm{Rh}(\mathrm{I})$-catalyzed carbocyclization reaction, and that elevated reaction temperatures favor the formation of Z-161 and 188.

Table 19: Examining the $\mathbf{R h}(\mathbf{I})$-Catalyzed Carbocyclization of Allene-yne 162 in Styrene

	 EIZ-161			
Entry Solvent/Conditions	Temp (${ }^{\circ} \mathrm{C}$)	E/Z-161:188 ${ }^{\text {a }}$	$E: Z^{a}$	Yield(\%) ${ }^{\text {b }}$
1 toluene	25	0:100	------	84
2 styrene	25	$61: 39$	8:1	78
3 toluene/styrene (1:1)	25	54 : 46	$7: 1$	76
4 toluene/ styrene (500: 1)	25	12:88	3:1	81
5 styrene	50	39 : 61	3:1	73
$6{ }^{\text {c }}$ (styrene	90	17 : 83	1:16	36
7 styrene/AgSbF6	-20 to 0	39 : 61	1:3	18

1.11.5.4 Exploring Rhodium and Ruthenium Catalysts for the Carbocyclization of Allene-yne 162

Next, it was postulated that formation of pseudo-cycle 237 and β-hydride elimination of H_{b} could be suppressed by the catalyst (Scheme 61). Thus, we examined rhodium catalysts yielding a coordinatively saturated Rh (III)-metallocycle intermediate upon oxidative coupling of the alleneyne substrate.

Reacting $10 \mathrm{~mol} \%$ of trans- $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}{ }^{141}$ with 162 at 25 to $50^{\circ} \mathrm{C}$ in THF^{142} gave trienes E/Z-161 and 188 in a $43: 57$ isomeric ratio in 8% yield (entry 3, Table 20). Allene-yne 162 was recovered in 75% yield from this reaction. Increasing the reaction temperature to 80
${ }^{\circ} \mathrm{C}^{143}$ resulted in cross-conjugated trienes E/Z-161 and 188 in a isomeric ratio of 27:73 in 38% yield (compare entries 3 and 4). As seen in entry 5, employing a more sterically encumbered catalyst like $(\mathrm{PPh})_{3} \mathrm{RhCl}$ (Wilkinson's catalyst) ${ }^{144}$ for the cyclization resulted in a 51:49 isomeric ratio of $E / Z-161$: 188 in 44% yield. The appending trisubstituted alkene of $E / Z-161$ was produced in a high 6:1 E:Z ratio. The increased formation of E/Z-161 when trans$\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ and $\mathrm{Rh}(\mathrm{PPh})_{3} \mathrm{Cl}$ are employed for the carbocyclization reaction suggests that the phosphine ligands on the rhodium catalyst are capable of suppressing coordination of the appending alkene to the rhodium metallocycle. However, the low yields obtained are not synthetically useful.

Table 20: Investigation of Catalysts for the Formation of Cross-Conjugated Triene 161

Entry	Conditions	Solvent	T(${ }^{\circ} \mathrm{C}$)	E/Z-161:188 ${ }^{\text {a }}$	$E: Z^{\text {a }}$	Yield (\%) ${ }^{\text {c }}$
1	$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$,	toluene	25	0:100	-----	84
2	$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$	DCE	25	7:93	1:4	80
$3^{\text {b }}$	$\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$	THF	25-50	43:57	2:1	8 (33 brsm)
4	$\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$	DCE	80	27:73	3:1	38
5	$(\mathrm{PPh})_{3} \mathrm{RhCl}$	toluene	110	51 : 49	6:1	44
$6^{\text {b }}$	$\left[\mathrm{Rh}(\mathrm{COD})_{2} \mathrm{Cl}_{2}, \mathrm{AgBF}_{4}, \mathrm{PPh}_{3}\right.$	DCE	25	14:86	1:0	36
7	$\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, \mathrm{AgBF}_{4}, \mathrm{PPh}_{3}$	DCE	25	-----	-----	complex mixture
8	[$\left.\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, \mathrm{AgBF}_{4}$, BINAP	THF	25-60	22:78	1:1	8 (10 brsm)
9	$\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$	DMF	25	-----	-----	unknown cmpd
$10^{\text {d }}$	$\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$	acetone	25	0:100	-----	trace

${ }^{\text {a }}$ Product ratios determined by GC analysis. ${ }^{\text {b }}$ Product ratios determined by integration of peaks in the ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {c }}$ Combined yield of E/Z-161 and $188{ }^{\text {d }}$ Product contained impurities

The Brummond group has shown that employing cationic rhodium catalysts for the allenic carbocyclization reaction produces the alkene side chain of the triene products with enhanced $E: Z$ selectivities. ${ }^{19}$ Considering these results, we reacted 162 with $10 \mathrm{~mol} \%$
$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}, 22 \mathrm{~mol} \% \mathrm{AgBF}_{4}$, and $30 \mathrm{~mol} \% \mathrm{PPh}_{3}$, which lead to cross-conjugated trienes $E / Z-161$ and 188 in a 14:86 isomeric ratio in 36% yield (entry 6). Reacting 162 with 10 mol\% $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}, 20 \mathrm{~mol} \% \mathrm{AgBF}_{4}$ and $20 \mathrm{~mol} \%$ rac-BINAP in THF lead to trienes E/Z-161 and 188 in 8% yield as a $22: 78$ isomeric mixture (entry 8). Thin-layer chromatography (TLC) showed that using cationic rhodium catalysts for the carbocyclization reaction produced many byproducts in addition to the desired cross-conjugated trienes.

We next examined a ruthenium-derived catalyst for the cyclization of allene-yne 162. Based on a report by Trost and Toste that showed $\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ in DMF could transform geranyl derived enynes into their carbocyclic counterparts with high E selectivity, we reacted 162 with $10 \mathrm{~mol} \%$ of $\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6} .{ }^{8}$ Interestingly, these reaction conditions resulted in the formation of an unknown compound (6 mg on 28 mg scale) with olefinic resonances at 5.66 ppm (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.61 \mathrm{ppm}(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.60 \mathrm{ppm}(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.50 \mathrm{ppm}$ (s, 1H), $5.15-5.01 \mathrm{ppm}(\mathrm{m}, 3 \mathrm{H}), 4.99 \mathrm{ppm}(\mathrm{dt} J=2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, and $4.88 \mathrm{ppm}(\mathrm{d}, J=2.1 \mathrm{~Hz}$, 1H) in the ${ }^{1} \mathrm{H}$ NMR (entry 9, Table 20). Performing the Ru-catalyzed carbocyclization reaction in acetone lead to a trace amount of cross-conjugated triene 188, which was contaminated with impurities that were inseparable via column chromatography.

1.11.5.5 Assignment of the Stereochemistry of Cross-Conjugated Trienes E-161 and Z-161 through nOe Analysis

Cross-conjugated triene E-161 was separated from the constitutional and Z-isomers 188 and Z-161 using normal phase HPLC. The alkene region in the ${ }^{1} \mathrm{H}$ NMR of $E-161$ is shown in Table 21. The resonances corresponding to $\mathrm{H}_{\mathrm{a}}(\mathrm{d}, J=3.6 \mathrm{~Hz})$ and $\mathrm{H}_{\mathrm{b}}(\mathrm{s})$ are at 5.64 ppm and
5.43 ppm , respectively. Additionally, resonances at $5.29 \mathrm{ppm}(\mathrm{tq}, J=7.0,1.5 \mathrm{~Hz}$) and 5.15 ppm ($\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}$) correlate to alkenyl protons H_{c} and H_{d} in the skipped diene side chain.

Table 21: ${ }^{1} \mathrm{H}$ NMR of Cross-conjugated Triene $\boldsymbol{E}-161$ (alkene region, $\mathrm{CDCl}_{3}, \mathrm{rt}, \mathbf{3 0 0} \mathbf{M H z}$)

The E - and Z-isomers of cross-conjugated triene 161 were assigned based upon nOe data (Figure 13). For example, irradiating the resonance corresponding to H_{e} of $E-161$ resulted in 3.0% and 1.9% enhancements for the resonances corresponding to the proximal alkenyl methyl groups. Additional 3.2% and 1.9% enhancements were observed for the resonances corresponding to the adjacent alkenyl protons H_{c} and H_{d}. Irradiating the alkenyl proton H_{c} resulted in 6.0% and 3.0% enhancements for the resonances corresponding to H_{a} and H_{e},
respectively. No enhancement, however, was observed for the resonance corresponding to the appending vinyl methyl group. The 3.0% nOe between H_{e} and the proximal vinyl methyl group supports the E-geometry of $E-161$.

Alternatively, irradiating H_{c} of $\mathbf{Z - 1 6 1}$ resulted in 2.8% and 2.1% enhancements of the resonances corresponding to the neighboring methyl and methylene groups. The 2.8% enhancement of the resonance corresponding to the appending vinyl methyl group supports that the trisubstituted alkene of Z-161 has the assigned Z-geometry.

E-161

Z-161

Figure 13: nOe Analysis of \boldsymbol{E}-161 and Z-161 after HPLC separation

1.11.5.6 The Iridium-Catalyzed Allenic Carbocyclization of Allene-ynes Containing Tethered Alkenes

Brummond and coworkers have shown that employing $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and AgBF_{4} for the allenic carbocyclization reaction yields cross-conjugated trienes in high $E: Z$ selectivities. ${ }^{19}$ Considering this, allene-yne 176 was reacted with $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} / \mathrm{AgBF}_{4}$ to produce cross-conjugated trienes 199 and $E / Z-200$ in 66% yield as a 27:73 isomeric mixture. A high $E: Z$ ratio of $21: 1$ was obtained for triene E/Z-200 (entry 2, Table 22). Desilylation of 199 and E/Z-200 was also observed during this reaction (23\%). The ability of the $[\operatorname{Ir}(C O D) C l]_{2}$ and AgBF_{4} to convert
allene-yne 176 into E / Z-200 in a high $E: Z$ ratio contrasts sharply to $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$, which only produces cross-conjugated triene 199 (compare entries 1 and 2).

Similarly, subjecting sulfonamide $\mathbf{1 8 0}$ to the iridium-catalyzed carbocyclization conditions gave 211 and E/Z-212 in 78\% yield in a 32:68 isomeric ratio. Cross-conjugated triene $E / Z-212$ was obtained with an $E: Z$ selectivity of $6: 1$ (entry 4). The increased 78% yield of 211/E/Z-212 obtained from the iridium-catalyzed Alder-ene reaction is likely due to the formation of Pauson-Khand cyclopentenone products when $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ is employed for the cycloisomerization (compare entries 3 and 4).

Table 22: $\operatorname{Ir}(\mathbf{I})$ - and $\mathbf{R h}(\mathbf{I})$-Catalyzed Carbocyclization Reaction of Allene-ynes Containing Tethered Alkenes

Entry	Allene-yne	Ratio of A: ${ }^{\text {b }}$	Conditions ${ }^{\text {a }}$	E:Z ${ }^{\text {b }}$	Yield(\%) ${ }^{\text {e }}$
1	176, $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}$	199:200, 100:0	A	------	74
2	176, $\mathrm{X}=\mathrm{CO}_{2} \mathrm{Et}$	199:200, 27:73	B	21:1	66
3	180, $\mathrm{X}=\mathrm{NTs}$	211:212, 100: 0	A	------	63
$4^{\text {c }}$	180, $\mathrm{X}=\mathrm{NTs}$	211:212, 32:68	B	6: 1	78
5	184, $\mathrm{X}=\mathrm{O}$	223:224, 100:0	A	------	61
$6^{\text {d }}$	184, $\mathrm{X}=\mathrm{O}$	223:224, 32:68	B	10:1	28

Ether-tethered allene-yne $\mathbf{1 8 4}$ proved to be sensitive to the cationic iridium reaction conditions. For example, addition of $\mathbf{1 8 4}$ to a solution of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ followed by immediate addition of a solution of AgBF_{4} gave a complex mixture of compounds. Alternatively, addition of $\mathbf{1 8 4}$ to a pre-mixed solution of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and AgBF_{4} gave trienes 223 and $E / \mathrm{Z}-\mathbf{2 2 4}$ in a 32:68 isomeric ratio, albeit in 28% yield. Triene $E / Z-224$ was produced in a $E: Z$ ratio of 10:1 (entry 6).

Unfortunately, as seen in Scheme 63, addition of 162 to pre-mixed solution of $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and AgBF_{4} resulted in a complex mixture of more non-polar products. The absence of the resonance at 4.19 ppm corresponding to H_{a} in the ${ }^{1} \mathrm{H}$ NMR indicates that the secondary alcohol was either eliminated or oxidized during the reaction. However, the complex nature of the mixture obtained prevents conclusive identification of its many products.

Scheme 63: Reaction of 162 with $[\operatorname{Ir}(C O D) C I]_{2}$ and AgBF_{4}
The results summarized in Table 22 demonstrate that the allenic carbocyclization of allene-ynes containing an isobutylene group can be performed with $[\operatorname{Ir}(C O D) C l]_{2}$ and AgBF_{4} to access trienes with an appending trisubstituted alkene side chain in high E:Z selectivies. However, the low yield obtained for ether-tethered trienes 223/E/Z-224 and the complex mixture obtained from allene-yne 162 (Scheme 63) indicate that the iridium catalyst system derived from $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2} / \mathrm{AgBF}_{4}$ is not as functional group tolerant as $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$.

1.11.5.7 The Thermally Induced Ene Cyclization of Allene-yne 162

In 1985 Trost and Lautens found that heating enyne 240 to $625^{\circ} \mathrm{C}$ produced only skipped diene 241 in 83% yield. ${ }^{120}$ The selective formation 241 results from exclusive abstraction of a methylene hydrogen during the thermally-induced cyclization (Scheme 64). Alternatively, the palladium-catalyzed carbocyclization ${ }^{121}$ reaction of 240 with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ and HOAc gave only 242, resulting from selective β-hydride elimination of a methyl group hydrogen.

Scheme 64: Carbocyclization of Enyne 240 ${ }^{120,121}$
More recently in 2005, the Brummond group has shown that microwave irradiation (MWI) can be employed for the construction of bicycle[4.2.0]octa-1,6-dienes and crossconjugated trienes from allene-yne precursors. ${ }^{145}$ As seen in Eq. 1 of Scheme 65, microwave irradiation of allene-yne 243, which possesses a terminal allene, yields cyclobutene $\mathbf{2 4 4}$ in 81% yield. Alternatively, subjecting disubstituted allene-yne $\mathbf{2 4 5}$ to MWI results in the selective formation of cross-conjugated triene 246 in 54\% yield (Scheme 65, Eq. 2).

243

Eq. 2

Scheme 65: Microwave Irradiation of Allene-ynes ${ }^{145}$
In view of these results, we investigated microwave irradiation reaction conditions for the carbocyclization of allene-yne 162. Heating 162 to $225{ }^{\circ} \mathrm{C}$ for 20 min produced cyclopentene 247 in 54% yield as a $\sim 1: 1$ separable mixture of diastereomers (Scheme 66). Interestingly, the formation of cyclobutene 248 and cross-conjugated triene 161 was not observed during this reaction. The selective formation of $\mathbf{2 4 7}$ indicates that the ene reaction between the allene and
alkene functionalities of 162 is faster than both the [2 + 2] cycloaddition and the allenic carbocyclization between the allene and alkyne moieties.

Scheme 66: Selective Formation of Cyclopentene 247 from Allene-yne 162
The ${ }^{1} \mathrm{H}$ NMR of the more polar diastereomer of 247 has a resonance at $4.78-4.71 \mathrm{ppm}$ corresponding to the 1,1-disubstituted alkene protons H_{a} (Figure 14). The resonances at 3.913.83 ppm and $3.35-3.28 \mathrm{ppm}$ correspond to H_{b} and the bis-allylic proton H_{c}, respectively. Additionally, the IR spectrum has absorbances at $3345 \mathrm{~cm}^{-1}$ and $2174 \mathrm{~cm}^{-1}$ that support the presence of the alcohol and alkyne functionalities. ${ }^{81}$

Figure 14: Assignment of $H_{a} H_{b}$, and H_{c} in the ${ }^{1} H$ NMR Spectrum of $247\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
The formation of 247 is exciting as it possesses the 1-methyl-3-(prop-1-ene2yl)cyclopentene scaffold found in a variety of biologically interesting compounds like Cyclomusk ${ }^{\circledR},{ }^{146}$ a cyclopentenyl ethyl ester that has a strawberry-like musky odor (Scheme 67). Interestingly, cyclopentenyl aldehyde 250, a precursor to Cylcomusk ${ }^{\circledR}$, has been previously synthesized via a thermally-induced ene reaction of allene-ene 249 in 38% yield by Érman and coworkers. ${ }^{147}$

Scheme 67: Thermal Cyclization of Allene-ene $24 \mathbf{4}^{147}$

1.11.5.8 Summary and Conclusions for the Allenic Carbocyclization Reaction of Allene-ynes with an Appending Isobutylene Group

We have achieved the first instance of a $\mathrm{Rh}(\mathrm{I})$-catalyzed allenic carbocyclization reaction wherein an isobutylene group is appended to the allene-yne substrate to selectively produce cross-conjugated trienes containing a 1,1-disubstituted alkene side chain. The scope and limitation studies conducted indicate that a coordinating isobutylene functionalitity can be used to control the β-hydride elimination step of the cyclization reaction. Incorporation of malonate, sulfonamide, and ether substituents into the allene-yne backbone minimally affects the reaction and regioisomerically pure cross-conjugated trienes are obtained in good yields. Substitution at the alkynyl position is also tolerated. However, the isomeric cross-conjugated trienes produced from allene-yne substrates containing a phenyl, methyl, or terminal alkyne indicates that the alkynyl-substituent can influence the selectivity of the carbocyclization reaction. The bis-diene moiety of the cross-conjugated trienes produced from TMS-alkynyl allenes could function as a powerful building block for the rapid construction of polycyclic compounds via transmissive Diels-Alder reactions.

Complementary regioselectivity of the appending alkenyl side chain is obtained by performing the $\mathrm{Rh}(\mathrm{I})$-catalyzed carbocyclization reaction in a coordinating solvent. For
example, employing styrene as the reaction solvent produces a cross-conjugated triene that possesses the entire carbocyclic framework of fumagillol and ovalicin in high $E: Z$ selectivity. This high yielding transformation demonstrates the utility of the $\mathrm{Rh}(\mathrm{I})$-catalyzed carbocyclization reaction for natural product synthesis. Furthermore, it is envisioned that applying these carbocyclization reaction conditions to allene-yne (R) - $\mathbf{1 6 2}$ will allow for the asymmetric syntheses of (-)-fumagillol and (-)-ovalicin from a chiral cross-conjugated triene precursor.

Our investigations showed that reacting malonate- and heteroatom-tethered allene-ynes containing an isobutylene group with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ produced α-alkylidene cyclopentenones in yields of $8-14 \%$ and $20-39 \%$, respectively. The formation of these cyclocarbonylation byproducts is unique, because typically $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right.$ reacts with the distal double bond of the allene to give 4-alkylidene cyclopentenones. ${ }^{148}$

We demonstrated that $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$ and AgBF_{4} can be employed to transform alleneynes containing an isobutylene group into cross-conjugated triene products in high yields and $E: Z$ selectivities. This cationic catalyst system is advantageous as it circumvents the formation cyclopentenone by-products observed with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$.

Additionally, we have reported the construction of a cyclopentene carbocycle via a microwave irradiation-induced ene reaction of an allene-yne substrate possessing a remote alkene. This thermally induced cyclization suggests the ene reaction between the allene and alkene functionalities of allene-yne $\mathbf{1 6 2}$ is faster than the alternative [2 +2] cycloaddition or carbocyclization reaction pathways between the allene and alkyne moieties.

1.12 INVESTIGATING THE REACTIVITY OF CROSS-CONJUGATED TRIENE E 161 TOWARDS SELECTIVE OXIDATION REACTIONS

1.12.1 Application of Alcohol-Directed Oxidation Reactions to Cross-Conjugated Triene E-

 161It is envisioned that the endocyclic alkene of $E-\mathbf{1 6 1}$ can be selectively oxidized through an alcohol-directed epoxidation reaction to yield 251. The bis-allylic epoxide will be converted into diol 252 through a palladium-catalyzed hydrogenolysis reaction and into carbonate 253 via a palladium-catalyzed CO_{2} insertion reaction (Scheme 68). Diol 252 and carbonate 253 then will be used to access the structurally related natural products fumagillol and ovalicin, respectively.

Scheme 68: Anticipated Transformations of Bis-Allylic Epoxide 251

1.12.1.1 Application of Alcohol-Directed Epoxidation Reaction Conditions to Cross-

 Conjugated Triene E-161Reacting cross-conjugated triene $\mathbf{1 8 8}$ with $\mathrm{Al}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ and $t \mathrm{BuOOH}$ in the presence of $4 \AA \dot{\AA}$ MS produced bis-allylic epoxide 254 in 56\% yield as a single diastereomer and enone 255 in 14\%
yield (Scheme 69). ${ }^{149-151}$ The formation of 254 is supported by the ${ }^{1} \mathrm{H}$ NMR, which has a resonance at $3.19 \mathrm{ppm}(\mathrm{d}, J=1.5 \mathrm{~Hz})$ corresponding to H_{a}.

Scheme 69: Alcohol-directed Epoxidation of Cross-conjugated Triene 188
Unfortunately, reacting the isomeric cross-conjugated triene $E-161$ with $\mathrm{Al}^{(}\left(\mathrm{O}^{t} \mathrm{Bu}\right)_{3}$ and ${ }^{t} \mathrm{BuOOH}$ only resulted in enone 256 in 13% yield and the recovery of starting material (entry 1 , Table 23). A small amount of an unknown more polar compound was also isolated from this reaction. However, based upon the single resonance in the alkene region at $5.23 \mathrm{ppm}(\mathrm{tt}, J=7.0$, 1.5 Hz) in the ${ }^{1} \mathrm{H}$ NMR, over-oxidation of the cross-conjugated triene system occurred. Subjecting E-161 to $\mathrm{Ti}(\mathrm{OiPr})_{4}$, DIPT, and ${ }^{t} \mathrm{BuOOH}$ also resulted in a small amount of the overoxidized compound and unreacted starting material (entry 2). ${ }^{87}$

Reacting $E-161$ with $\mathrm{VO}(\mathrm{acac})_{2} / \mathrm{tBuOOH}$ at reaction temperatures ranging from $70-25^{\circ} \mathrm{C}$ resulted in the isolation of enone 256 and aldehyde 257 (entries 3-5, Table 23). ${ }^{85}$ Switching from $\mathrm{VO}(\mathrm{acac})_{2}$ to $\mathrm{VO}(\mathrm{OEt})_{3}$ again produced enone 256 and ketone 257 (entries 6-7). ${ }^{152,153}$ The formation of aldehyde 257 is likely due to a vanadium-catalyzed epoxide opening by tBuOOH . This process has been shown to be a favorable reaction pathway for 1,1-disubstituted alkenes and conjugated dienes. ${ }^{154,155}$ A resonance at $9.23 \mathrm{ppm}(\mathrm{d}, J=2 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR corresponds to the aldehyde proton and supports that 257 was obtained.

Table 23: Reaction of \boldsymbol{E}-161 with Vanadium-catalyzed Epoxidation Reaction Conditions
Entry

Peracid epoxidation conditions were next investigated and E - 161 was reacted with m CPBA and NaHCO_{3}. This reaction resulted in a 32\% yield of epoxide 259 (entry 1, Table 24). A resonance at $2.81 \mathrm{ppm}(\mathrm{t}, J=6.5 \mathrm{~Hz})$ in the ${ }^{1} \mathrm{H}$ NMR corresponds to H_{a} and supports the regioselectivity of the epoxidation. Based upon integration of the resonances at 66.4 ppm and 63.3 ppm in the ${ }^{13} \mathrm{C}$ NMR, $\mathbf{2 5 9}$ was produced as a 1.2:1 mixture of diastereomers. Reacting E 161 with m-CPBA in an emulsion ${ }^{156}$ or with magnesium bis(monoperoxyphthalate) hexahydrate (MMPP) ${ }^{157,158}$ also resulted in epoxidation of the remote alkene in the side chain.

Table 24: Formation of Epoxide 259 from Cross-Conjugated Triene E-161

Entry	Reagents	Temp (${ }^{\circ} \mathbf{C}$)	Yield of 259 (\%)	Yield of 259 (\%)
1	$m C P B A, \mathrm{NaHCO}_{3}$	0	----	$32(36 \mathrm{brsm})$
2	$m C P B A$, in emulsion	25	$10(12 \mathrm{brsm})$	$9(11 \mathrm{brsm})$
3	MMPP, NaHCO_{3}	0 to 40	----	29
4	TFAA, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{HPO}_{4}$	0	complex mixture	complex mixture

The results summarized in Tables 23 and 24 indicate that the desired alcohol-directed epoxidation of $E-161$ is a challenging process. The inability of the oxidizing reagents screened to convert E-161 into bis-allylic epoxide 251 caused the examination of alcohol-directed dihydroxylation protocol.

1.12.1.2 Application of Alcohol-Directed Dihydroxylation Reaction Conditions to E-

 161An alcohol-directed dihydroxylation reaction was examined to selectively oxidize the endocyclic alkene of $E-161$. As seen in Scheme 70, reacting $E-161$ with OsO_{4} (1 equiv) and TMEDA is predicted to produce syn-triol 260, which could be employed for the synthesis of ovalicin.

Scheme 70: Predicted Formation of Triol 261 via Dihydroxylation of Tetraene E-161
Subjecting E-161 to the stereo- and chemoselective dihydroxylation protocol developed by Donohoe and coworkers produced osmate ester 261 in 36% yield and a complex mixture of compounds (Scheme 71). ${ }^{159,160}$ The presence of the osmate ester in 261 is supported by resonances at $2.85 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}), 2.83 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}), 2.82 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$, and $2.81 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR that correspond to the TMEDA methyl groups. The regioselectivity of the osmate ester is confirmed by the absence of the resonance corresponding to H_{a} at $5.15 \mathrm{ppm}(\mathrm{tt}, J=7.0,1.5$ Hz).

Scheme 71: Reaction of \boldsymbol{E}-161 with Stoichiometric OsO_{4} and TMEDA
The sterically congested environment of the endocyclic alkene in $E-161$ could explain the preferential oxidation of the accessible side chain alkene. Additionally, the electron rich nature of the unconjugated alkene in $E-\mathbf{1 6 1}$ accounts for the increased reactivity of the remote alkene towards the electrophilic oxidizing reagents examined.

1.12.1.3 Allylic 1,3-Transposition: Exploration of Myers' Protocol for the Reductive Rearrangement of \boldsymbol{E}-161

Myers and coworkers have developed a regio- and stereoselective method for the reductive 1,3transposition of allylic alcohols. ${ }^{161}$ It is anticipated that subjecting $E-161$ to these rearrangement conditions will produce the allylic diazene intermediate 262, which upon sigmatropic elimination will yield tetraene 263. Subsequent dihydroxylation of the strained endocyclic alkene in 263 using Sharpless’ asymmetric dihydroxylation protocol will result in diol 252. syn-Diol 252 will be used in the synthesis of fumagillol (Scheme 72).

Scheme 72: Projected Synthesis of diol 252 from E-161
Interestingly, reacting E-161 with o-nitrobenzenesulfonylhydrazide (NBSH), diethyl azodicarboxylate (DEAD), and triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ in N-methyl morpholine produced 264 in 50% yield (Scheme 73). The formation of 264 is evidenced by a resonance at $2.64-2.50 \mathrm{ppm}$ (m) in the ${ }^{1} \mathrm{H}$ NMR that corresponds to the allylic proton H_{a}. Additional resonances at 0.79 ppm (dd, $J=15,1.2 \mathrm{~Hz}), 0.73^{*} \operatorname{ppm}(\mathrm{dd}, J=15.3,2.1 \mathrm{~Hz}), 0.61^{*} \mathrm{ppm}(\mathrm{dd}, J=15.3,11.7 \mathrm{~Hz})$, and $0.50 \mathrm{ppm}(\mathrm{dd}, J=15.0,11.7 \mathrm{~Hz}$) correspond to the diastereomeric methylene protons at C1. Based upon integration of the resonances at 0.61 ppm and $0.50 \mathrm{ppm}, 264$ was produced as a 1.3:1 mixture of diastereomers, which are inseparable via column chromatography.

Scheme 73: Selective Vinyl Silane Reduction: Synthesis of 264
The selective formation of 264 from E-161 using Myers’ reductive rearrangement protocol is intriguing as it provides an avenue for the selective functionalization of vinyl silanes. O’Doherty and coworkers ${ }^{162}$ have also observed that the application of Myers ${ }^{161}$ protocol to unsaturated systems can result in alkene reduction.

1.12.1.4 Summary and Conclusions for the Functionalization of E-161

In summary we have shown that the unconjugated alkene in the side chain of $E-161$ can be selectivity oxidized under buffered peracid epoxidation conditions and Donohoe's dihydroxylation protocol. The epoxide moiety of $\mathbf{2 5 9}$ and the osmate ester in $\mathbf{2 6 1}$ could serve as an alkene protecting group that will allow for the selective oxidation of the cross-conjugated system in E-161 and the syntheses of fumagillol and ovalicin.

Alternatively, subjecting E-161 to Myers’ reductive rearrangement reaction conditions with o-nitrobenzenesulfonylhydrazide (NBSH) resulted in the selective reduction of the vinyl silane moiety. In the future, the observed reduction reaction will be prevented by performing the Mitsunobu reaction with the more stable acetone hydrazone of NBSH. This transformation should allow for the formation of tetraene 263, a potentially useful intermediate in the synthesis of fumagillol.

1.13 EXPERIMENTAL SECTION

1.13.1 General Methods

Unless otherwise noted, all reactions were performed under an atmosphere of N_{2} or Ar in flame dried glassware using standard syringe, cannula, and septum techniques. All commercially available compounds were purchased from Aldrich Chemical Co., GFS Chemicals, Strem Chemicals, and Acros Organics and were used as received unless otherwise stated. Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were further dried and deoxygenated using the

Sol-Tek ST-002 solvent purification system via activated alumina and Q5 columns under a nitrogen atmosphere. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was further purified using the Sol-Tek ST-002 solvent purification system with an activated alumina column. Toluene, 1,2-dichloroethane (DCE), triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, diisopropylamine (DIPA), and $N, N, N^{\prime}, N^{\prime}-$ tetramethylethylenediamine (TMEDA) were freshly distilled from CaH_{2} prior to use. Pyridine, N, N-dimethylformamide (DMF), and hexamethylphosphoric amide (HMPA) were freshly distilled from CaH_{2} and were stored over activated 4 Á molecular sieves.

The progress of reactions was monitored by silica gel thin-layer chromatography (TLC) plates ($60 \mathrm{~F}_{254}$ plates of $250 \mu \mathrm{~m}$ thickness), and visualized using UV and charred using potassium permanganate, p-anisaldehyde, 2,4-dinitrophenylhydrazine, or cerium molybdate stain. Flash chromatography used for the purification of compounds was carried out using silica gel (32-63 $\mu \mathrm{m}$ particle size, 60 Á pore size) or a Biotage Horizon Flash Collector (40-63 $\mu \mathrm{m}$ particle size, 60 Á pore size). HPLC purification was performed on a Varian-Prostar 210 instrument using a Varian Microsorb Dynamax 100-5 Si column (5μ packing, $250 \mathrm{~mm} \times 10$ mm).

All ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ nuclear magnetic resonance spectra were taken on a Bruker 300,500 , or 600 MHz instrument, with chemical shifts (δ) reported relative to the respective solvent peak $\mathrm{CDCl}_{3}(7.27 \mathrm{ppm})$. All NMR spectra were acquired at room temperature unless otherwise stated. The abbreviations used to describe spin multiplicity for all ${ }^{1} \mathrm{H}$ NMR spectra are as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{b}=$ broad, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, dt = doublet of triplet, ddd $=$ doublet of doublet of doublet, etc, etc. All infrared spectra were obtained from a Nicolet Avatar E.S.P 360 FT-IR. EI mass spectrometry was performed on a Fisons VG Autospec high resolution mass spectrometer. ESI low resolution mass spectrometry
was performed on a Hewlett Packard Series 1100 MSD LCMS and high resolution was performed on a Waters Q-Tof API-US mass spectrometer. Gas chromatography was carried out using Shimadzu GC-17A gas chromatograph equipped with an FID detector using a Shimadzu RTX-5 capillary column (Crossbond®-5\% diphenyl-95\% dimethylpolysiloxane, 0.25 mmID , $0.25 \mu \mathrm{~m} \mathrm{df}$, flow rate $=1.94 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$). The GC ratios reported for the various isomeric crossconjugated trienes were obtained using the following method: Injection temperature $=250{ }^{\circ} \mathrm{C}$, column temperature $=80^{\circ} \mathrm{C}$ to $220^{\circ} \mathrm{C}$, ramp rate $=20^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$.

1.13.2 Experimental Procedures

8-Methyl-1-(trimethylsilyl)-8-(tetrahydro-2H-pyran-2-yloxy)nona-1,6-diyn-5-ol (113).

A two-necked, $25-\mathrm{mL}$ round-bottomed flask is equipped with a stir bar, rubber septum, a lowtemperature thermometer, and a nitrogen inlet. The flask is charged with alkyne $\mathbf{1 1 1}^{78}$ (0.92 g , $5.5 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$. The mixture is cooled between -50 and $-60{ }^{\circ} \mathrm{C}$ with a dry ice acetone bath and n-butyllithium (3.1 mL of a 1.6 M hexane soln, 5.0 mmol) is added dropwise via syringe. The reaction is stirred between -50 and $-60{ }^{\circ} \mathrm{C}$ for 10 min before aldehyde $\mathbf{1 1 2}^{79}$ ($0.92 \mathrm{mg}, 6.0 \mathrm{mmol}$) is added to the reaction via cannula. The reaction is warmed to $-20{ }^{\circ} \mathrm{C}$ over 1 h before ice cold sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ is added. The aq layer was separated and extracted with EtOAc. The combined organic layers are dried over MgSO_{4}, filtered using gravity filtration, and concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel eluting with $5-20 \%$ EtOAc/hexanes to afford 1.25 g of the title compound as viscous yellow oil
in 78% yield. $\mathrm{R}_{f} 0.2$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.07-5.00(\mathrm{~m}, 1 \mathrm{H})$, $4.54(\mathrm{q}, ~ J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{bs}, 1 \mathrm{H})$, $1.91(\mathrm{q}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H})$, 1.48 (s, 3H), $0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 106.1,95.9,87.8,85.4,84.1,70.8$, 63.2, 61.4, 36.4, 32.0, 30.4, 29.9, 25.4, 20.3, 15.9, 0.1 (3C); IR (thin film): 3396, 2938, 2167, $1244 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 237 (5), 221 (16), 131 (55), 85 (97), 73 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Si}: m / z\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right)$ 237.1311; found: 237.1315.

8-Methyl-1-(trimethylsilyl)nona-6,7-dien-1-yn-5-ol (110). A 50-mL, single-necked roundbottomed flask equipped with a reflux condenser, nitrogen inlet, and stir bar is charged with LAH ($0.38 \mathrm{~g}, 9.9 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$. The mixture is heated and stirred at reflux (oil bath temperature $40-45^{\circ} \mathrm{C}$) for 15 min before a solution of propargylic alcohol 113 ($2.9 \mathrm{~g}, 9.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ (3.6 mL) is added dropwise over $5-10 \mathrm{~min}$ to the refluxing reaction via cannula. Immediately after the addition is complete, the reaction mixture is cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}$. To the flask is slowly added $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL}), 10 \% \mathrm{NaOH}(0.8 \mathrm{~mL})$, followed by sat'd aq KF solution (1.5 mL). After stirring for 5 min at rt , the resulting solids are filtered off via gravity filtration. The solids are washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford allenyl alcohol 110 (1.61 g in 81% yield) as a light yellow oil. R_{f} 0.4 (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.12-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.39-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{bs}, 1 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}$,

3H), 0.15 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 199.8,106.9,99.1,93.1,84.9,69.1,36.0,20.6$ (2C), 16.1, 0.1 (3C); IR (thin film): 3356, 2958, 2175, 1968, $1249 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 222 (3, M^{+}), 207 (4), 179 (23), 70 (51), 61 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$222.1440; found: 222.1435 .

(R)-8-Methyl-1-(trimethylsilyl)-8-(tetrahydro-2H-pyran-2-yloxy)nona-1,6-diyn-5-ol (R-113) A $100-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, nitrogen inlet, rubber septum, $\mathrm{Zn}(\mathrm{OTf})_{2}(2.83 \mathrm{~g}, 7.79 \mathrm{mmol})$ and (+)-N-methylephedrine $(1.44 \mathrm{~g}, 8.05 \mathrm{mmol})$ is purged with nitrogen for 15 min . To the flask is then added anhydrous toluene (22 mL), and $\mathrm{Et}_{3} \mathrm{~N}(1.12$ $\mathrm{mL}, 8.05 \mathrm{mmol}$) via syringe. The resulting mixture is vigorously stirred at rt for 2 h before alkyne 111 ($1.35 \mathrm{~g}, 8.05 \mathrm{mmol}$) is added to the reaction flask by syringe. After 15 min , a solution of aldehyde $\mathbf{1 1 2}(400 \mathrm{mg}, 2.60 \mathrm{mmol})$ in toluene $(6.5 \mathrm{~mL})$ is added to the flask over 4 h via syringe pump addition. When the addition of aldehyde $\mathbf{1 1 2}$ is complete, the reaction is observed to be complete by TLC and sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ is added. The reaction mixture is transferred to a separatory funnel and the layers are separated. The aq layer is extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers are washed with brine, dried over MgSO_{4}, and filtered using gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation and the resulting residue is purified on silica gel eluting with $5-20 \% \mathrm{EtOAc} /$ hexanes to afford 611 mg of the title compound as viscous yellow oil in 73% yield. $\mathrm{R}_{f} 0.2$ ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 5.05-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.90(\mathrm{~m}, 1 \mathrm{H})$, 3.55-3.46 (m, 1H), 2.84-2.65 (m, 1H), 2.51-2.30 (m, 2H), $1.89(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.75(\mathrm{~m}$,
$1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 106.1,95.9,87.6,85.3,84.2,70.8,63.1,61.2,36.4,31.9,30.4,29.9,25.3$, 20.3, 15.9, 0.0 (3C).

(\boldsymbol{R})-8-Methyl-1-(trimethylsilyl)nona-6,7-dien-1-yn-5-ol (\boldsymbol{R}-110). A 5-mL, single-necked round-bottomed flask equipped with a reflux condenser, nitrogen inlet, and stir bar is charged with $\mathrm{LAH}(48 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(2.3 \mathrm{~mL})$. The mixture is heated and stirred at reflux (oil bath temperature $40-45^{\circ} \mathrm{C}$) for 15 min before a solution of propargylic alcohol (R) - $\mathbf{1 1 3}$ (370 mg , $1.14 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ is added dropwise over 2-5 min to the refluxing reaction via cannula. Immediately after the addition is complete, the reaction mixture is cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}$. To the flask is slowly added $\mathrm{H}_{2} \mathrm{O}(48 \mu \mathrm{~L}), 10 \% \mathrm{NaOH}(96 \mu \mathrm{~L})$, followed by sat'd aq KF solution (192 $\mu \mathrm{L}$). After stirring for 5 min at rt , the resulting solids are filtered off via gravity filtration. The solids are washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford allenyl alcohol (R)-110 (114 mg in $\mathbf{4 5 \%}$ yield) as a light yellow oil. $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); $[\alpha]_{\mathrm{D}}{ }^{23}=-29.6\left(\mathrm{c}=1.14\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

110

114

8-Methyl-1-(trimethylsilyl)nona-6,7-dien-1-yn-5-yl 3,3,3-trifluro-2-methoxy-2-phenylpropanoate (114). A 5-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with (R)-(+)-alpha-methoxy-alpha-(trifluromethyl)-phenylacetic acid (41 mg, 0.18 mmol), N, N-dicyclohexylcarbodiimide (36 $\mathrm{mg}, 0.18 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. To the flask is then sequentially added allene-yne $110(13 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ via cannula, and DMAP ($4 \mathrm{mg}, 0.03 \mathrm{mmol}$) in one portion. The reaction is stirred at rt until consumption of $\mathbf{1 1 0}$ is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and sat’d aq NaHCO_{3}. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation to give 21 mg of ester 114 in 82% crude yield. $\mathrm{R}_{f} 0.7$ (20\% EtOAc/hexanes); ${ }^{19} \mathrm{~F}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ -72.1 (s, 1F), -72.2 (s, 1F). Enantiomeric excess: 0\%.

(2S)-(R)-8-Methyl-1-(trimethylsilyl)nona-6,7-dien-1-yn-5-yl 3,3,3-trifluro-2-methoxy-2phenylpropanoate ($\boldsymbol{R} \mathbf{- 1 1 4}$). A 5-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with $(R)-(+)$-alpha-methoxy-alpha-
(trifluromethyl)-phenylacetic acid (66 mg, 0.28 mmol), N, N-dicyclohexylcarbodiimide (58 $\mathrm{mg}, 0.28 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$. To the flask is then sequentially added allene-yne (R) - $\mathbf{1 1 0}(21 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ via cannula, and DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}$) in one portion. The reaction is stirred at rt until consumption of $(R) \mathbf{- 1 1 0}$ is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and sat'd aq NaHCO_{3}. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation to give 35 mg of ester (R)-114 in 85% crude yield. $\mathrm{R}_{f} 0.7$ ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{19} \mathrm{~F}$ NMR (300 MHz , CDCl_{3}): $\delta-72.1(\mathrm{~s}, 1 \mathrm{~F}),-72.2(\mathrm{~s}, 28 \mathrm{~F})$. Enantiomeric excess: 93%.

(4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-((trimethylsilyl)methylene)cyclohexen-2-ol (109)

A flame-dried 500-mL, single-necked round-bottomed flask equipped with a stir bar, rubber septum, and argon balloon is charged with allene-yne 110 ($2.19 \mathrm{~g}, 9.85 \mathrm{mmol}$) and 1,4dioxane (197 mL). Argon is bubbled through the solution using a balloon filled with argon attached to a syringe, then $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(191 \mathrm{mg}, 0.495 \mathrm{mmol})$ is added in one portion. The mixture is heated and stirred at $65^{\circ} \mathrm{C}$ for 20 min before consumption of $\mathbf{1 1 0}$ is observed by TLC. The solution is cooled to rt and is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-20 \%$ $\mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford 1.67 g of cross-conjugated triene 109 in 76% yield. $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.60$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.43 (s, 1H), 4.94-
$4.88(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.21(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=14.6,7.9,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (dddd, $J=14.8,9.9,3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (ddt, $J=12.5,7.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.9,146.0$, 145.0, 128.2, 126.9, 114.7, 107.2, 66.1, 31.4, 28.0, 23.1, 0.0 (3C); IR (thin film): 3319, 2953, 1578, $1248 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 222 (6, $\mathrm{M}^{+`), ~} 205$ (11), 132 (71), 117 (56), 73 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+`)}\right.$ 222.1440; found: 222.1439.

($R, 4 E$)-3-(6-Methylhepta-1,5-dien-2-yl)-4-((trimethylsilyl)methylene)cyclohexen-2-ol

(\boldsymbol{R}-109). A flame-dried $50-\mathrm{mL}$, single-necked round-bottomed flask equipped with a stir bar, rubber septum, and argon balloon is charged with allene-yne (R)-110 (393 mg, 1.77 mmol) and 1,4-dioxane (35 mL). Argon is bubbled through the solution using a balloon filled with argon attached to a syringe, then $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(34 \mathrm{mg}, 0.09 \mathrm{mmol})$ is added in one portion. The mixture is heated and stirred at $65^{\circ} \mathrm{C}$ for 20 min before consumption of $(R) \mathbf{- 1 1 0}$ is observed by TLC. The solution is cooled to rt and is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with 5-20\% $\mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford 296 mg of cross-conjugated triene (R) - $\mathbf{1 0 9}$ in 75% yield. $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); $[\alpha]_{D}{ }^{24}=61.2\left(\mathrm{c}=0.83\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.70(\mathrm{~d}, \mathrm{~J}$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{dq}, J=3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=7.0$, $5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (ddd, $J=14.5,8.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=14.5,10.0,3.5,1.0 \mathrm{~Hz}$, 1H), 2.04 (ddt, $J=12.5,8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (dd, $J=1.5,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.71$ (ddd, $J=12.5$, 10.5, 7.0, 4.0, 1H), 1.51 (bs, 1H), 0.14 (s, 9H).

5-((Trimethylsilyl)methylene)-6-(prop-1-en-2-yl)-7-oxabicyclo[4.1.0]heptan-2-ol (115).

A $10-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with $\mathrm{VO}(\mathrm{acac})_{2}(3 \mathrm{mg}, 12 \mu \mathrm{~mol})$ and benzene $(2.4 \mathrm{~mL})$. A solution of allylic alcohol $109(178 \mathrm{mg}, 0.800 \mathrm{mmol})$ in benzene $(0.4 \mathrm{~mL})$ is added to the flask via cannula. The green solution is heated to $40^{\circ} \mathrm{C}$ in an oil bath for 5 min before t-butyl hydrogen peroxide (0.24 mL of a $5.0-6.0 \mathrm{M}$ decane solution, $\sim 0.96 \mathrm{mmol}$) is added dropwise with a gas tight syringe. Upon addition of the peroxide, the reaction mixture flashes deep red and becomes orange. After 1.5 h of stirring at $40^{\circ} \mathrm{C}$ (oil bath temperature), the reaction does not proceed any further as observed by TLC, and is cooled to rt. The reaction mixture is directly applied to silica gel treated with $\mathrm{Et}_{3} \mathrm{~N}$ eluting with $5-30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford allylic epoxide 115 (147 mg, $77 \%, 86 \%$ brsm) as a light yellow oil. $\mathrm{R}_{f} 0.5$ (35\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 5.84(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}$, 1H), 3.22 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (ddd, $J=15.0,5.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (ddd, $J=15.0,12.5$, $3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.78$ (m, 2H), 1.76-1.71 (m, 3H), 1.53 (tdd, $J=12.5,9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 0.12 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 148.1,142.1,132.4,113.0,67.8,67.6,64.3,28.8$, 28.4, 20.2, -0.2 (3C); IR (thin film): 3319, 2953, 1578, 1249, 1072; EI-MS m/z (\%) 194 (17), 179 (27), 165 (20), 84 (66), 73 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right) ; 238.1389$ found: 238.1395

(E,1S,2R,3S)-4-(Trimethylsilyl)methylene)-3-(prop-1en-2-yl)cyclohexane-1,2-diol (117a), (E,1S,2R,3R)-4-(Trimethylsilyl)methylene)-3-(prop-1en-2-yl)cyclohexane-1,2-diol (117b). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and argon balloon is charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(16 \mathrm{mg}, 0.02 \mathrm{mmol})$ and 1,4 -dioxane (0.3 mL). To the flask is added $n-\mathrm{Bu}_{3} \mathrm{P}(8 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$ with a gas tight syringe. A premixed solution of formic $\operatorname{acid}(118 \mu \mathrm{~L}, 3.08 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(171 \mu \mathrm{~L}, 1.23 \mathrm{mmol})$ in 1,4-dioxane $(0.3 \mathrm{~mL})$ is then added to the reaction flask via cannula. After stirring at rt for 5 min , a solution of allylic epoxide $\mathbf{1 1 5}$ ($147 \mathrm{mg}, 0.62 \mathrm{mmol}$) in 1,4-dioxane (1.8 mL) is added via cannula to the dark red catalyst mixture. The reaction is heated and stirred at $40^{\circ} \mathrm{C}$ in an oil bath for 40 min when the reaction is observed to be complete by TLC analysis. The reaction is quenched with $\mathrm{H}_{2} \mathrm{O}$ which causes the reaction to turn from red to brown. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified via silica gel chromatography using a Biotage Horizon Flash Collector (Biotage Si $25+$ M, $25 \times 150 \mathrm{~mm}, \mathrm{Et}_{2} \mathrm{O} /$ pentanes $=2-50 \%$, flow rate $=10 \mathrm{~mL} / \mathrm{Min}$) to yield 92 mg of diastereomeric diols $\mathbf{1 1 7 a}$ and $\mathbf{1 1 7 b}$ in 62% yield as a 1:1 isomeric mixture. R_{f} 0.2, 0.3 (35\% EtOAc/hexanes); desired diol 117a ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.19$ (s, 1H), $5.17(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{bs}, 1 \mathrm{H}), 2.38(\mathrm{td}, J=13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dt}, J=13.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ (bs, 1H), 1.99 (dq, $J=13.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR (75 MHz, CDCl_{3}): $\delta 155.0,143.1,123.4,114.7,73.3,68.1,56.5,30.4,28.1,21.9,0.2$ (3C); IR (thin film): 3400, 2953, 1610, 1248, $1077 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 240 (2, $\mathrm{M}^{+\cdot}$), 222 (8), 117 (32), 106 (39), 73 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$240.1546; found: 240.1530. undesired diol 117b ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.09-$ $5.06(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (dddd, $J=11.5,9.0,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H})$, 2.60-2.54 (m, 1H), $2.11(\mathrm{~d}, J=9.5,1 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H})$, 1.50-1.43 (m, 1H), 0.13 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 152.9,143.0,126.6,114.1$, 73.5, 71.9, 56.3, 32.4, 31.9, 23.8, 0.2 (3C); IR (thin film): 3400, 2953, 1618, 1248, $1077 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) $240\left(18, \mathrm{M}^{+}\right.$), 222 (54), 166 (81), 106 (100); EI-HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$: $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$240.1546; found: 240.1538 .

115

118

Hexahydro-1-hydroxy-4-((trimethylsilyl)methylene)-3-(prop-1-en-2-yl)benzo[1,3]dioxol-2-

 one (118). A $5-\mathrm{mL}$, single-necked, pear-shaped flask equipped with a stir bar, rubber septum, and argon balloon is charged with palladium acetate ($1 \mathrm{mg}, 4 \mu \mathrm{~mol}$) and THF (0.2 mL). Triisopropyl phosphite ($7 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) is rapidly added to the stirring orange solution with a gas tight syringe. The reaction mixture immediately turns colorless upon addition of triisopropyl phosphite and is stirred at rt for 5 min. A solution of n-butyllithium ($6.0 \mu \mathrm{~L}$ of a 1.6 M hexane soln, $8.8 \mu \mathrm{~mol})$ is then added to the colorless solution via syringe. After stirring for 30 min at rt , the catalyst solution is added via cannula into a 15 mL thick-walled tube containing a stirring solution of allylic epoxide 115 ($35 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (0.2 mL) under an argon atmosphere. Dry ice ($72 \mathrm{mg}, 1.6 \mathrm{mmol}$)* is added in one portion and the tube is quickly capped. The reactionis stirred for 5 h in the pressurized sealed tube at rt , after which time the reaction mixture is directly subjected to silica gel chromatography eluting with 5-30\% EtOAc/hexanes to afford 36 mg cyclic carbonate 118 as a single diastereomer in 87% yield. $\mathrm{R}_{f} 0.2$ (30% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{tt}, J=10.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dt}, J=14.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dq}, J=12.6$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{qd}, J=11.5,4.2 \mathrm{~Hz}$, 1H), 0.15 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1,149.0,140.3,130.2,115.8,88.8,82.4$, 68.0, 29.6, 27.2, 18.3, -0.2 (3C); IR (thin film): 3434, 2955, 1814, $1249 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 267 (26), 224 (72), 179 (83), 69 (100); EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Si}: m / z\left(\mathrm{M}^{+}\right)$282.1287; found: 282.1295.

- The quantity of dry ice used was based upon the calculated amount leading to a pressure of 2.72 atm in a 15 mL tube

118

132

Hexahydro-1-(triethylsilyloxy)-4-((trimethylsilyl)methylene)-2-oxo-3-(prop-1-en-yl)benzo-
[1,3]dioxol-7-one (132). A $10-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with allylic carbonate 118 (118 mg, 0.418 mmol), DMF (3 mL), and imidazole ($43 \mathrm{mg}, 0.63 \mathrm{mmol}$). The reaction mixture is then cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and $\operatorname{TESCl}(84 \mu \mathrm{~L}, 0.50 \mathrm{mmol})$ is added dropwise via syringe. The reaction is slowly warmed to rt and is stirred until consumption of starting material is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$,
brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O}$ /pentane to give the desired silyl ether $132(116 \mathrm{mg})$ in 70% yield as a colorless oil. $\mathrm{R}_{f} 0.7$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.94$ (s, 1H), 5.13 (s, 1H), 5.06 (s, 1H), 4.61 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=15.0,5.1$ Hz, 1H), 2.14-1.98 (m, 1H), 1.91-1.77 (m, 2H), 1.79 (s, 3H), 0.97 (t, $J=8.1 \mathrm{~Hz}, 9 H), 0.63$ (q, $J=$ 8.1 Hz, 6H), 0.13 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.7,148.9,141.1,129.6,115.1$, 88.2, 82.2, 67.6, 28.8, 26.4, 18.3, 6.7 (3C), 4.7 (3C), -0.3 (3C); IR (thin film): 2955, 1812, 1249, $1098 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 419 (100, [M+Na] ${ }^{+}$), 375 (9), 335 (21), 131 (32); ESI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{NaSi}_{2}$: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 419.2050$; found: 419.2035.

132

133

Hexahydro-7-(triethylsilyloxy)-3-(1,2-dihydroxypropan-2-yl)-4-((trimethylsilyl)methylene)-
benzo[1,3]dioxol-2-one (133). A $25-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with silyl ether 132 ($479 \mathrm{mg}, 1.21 \mathrm{mmol}$), acetone (6 mL), and $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$. Osmium tetroxide (0.76 mL of a $2.5 \mathrm{wt} \%$ tert-butanol soln, 0.06 mmol) and NMO ($142 \mathrm{mg}, 1.21 \mathrm{mmol}$) are sequentially added. The resulting brown reaction mixture is stirred at rt until consumption of starting material is observed via TLC. The reaction mixture is then diluted with ether and solid $\mathrm{NaHCO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ are added. After 10 min of stirring, the solids are filtered off using gravity filtration, and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified on silica gel eluting with $5-50 \% \mathrm{EtOAc} /$ hexanes to afford 362 mg of the title compound as a brown oil in
70% yield as a 9:1 mixture of diastereomers (determined by integration of the resonances at 3.97 ppm and 3.75 ppm in the ${ }^{1} \mathrm{H}$ NMR). $\mathrm{R}_{f} 0.3$ (35% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 5.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82 *(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.1^{*}(\mathrm{dt}, J=6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97^{*}$ (A of an ABq, $J=11.4,1 \mathrm{H}$), $3.75(\mathrm{~A}$ of an $\mathrm{ABq}, J=11.9,1 \mathrm{H}), 3.46^{*}(\mathrm{~B}$ of an $\mathrm{ABq}, J=11.4,1 \mathrm{H}), 3.41$ (B of an ABq, $J=11.9,1 \mathrm{H}$), 2.95 (bs, 1H), 2.69 (dt, $J=15.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (dtd, $J=15.3$, 7.2, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.10(\mathrm{bs}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.61(\mathrm{q}$, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,150.2,128.3,88.5,80.3$, 75.4, 66.8, 66.3, 27.2, 26.9, 20.0, 6.7 (3C), 4.6 (3C), -0.4 (3C); IR (thin film): 3419, 2953, 1774, $1247 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 453 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 430 (8); ESI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{NaSi}_{2}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 453.2105$; found: 453.2090.

133

134

3-Acetylhexahydro-7-(triethylsilyloxy)-4-((trimethylsilyl)methylene)benzo[1,3]dioxol-2-one

(134). A $10-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with diol $133(281 \mathrm{mg}, 0.652 \mathrm{mmol})$, THF (1.8 mL) and $\mathrm{H}_{2} \mathrm{O}(1.8$ $\mathrm{mL})$. To the light brown solution is added $\mathrm{NaIO}_{4}(140 \mathrm{mg}, 0.657 \mathrm{mmol})$ in one portion and the reaction is stirred until consumption of diol 133 is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ until no product remains in the aq layer as observed by TLC. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue
is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O}$ /pentane to give 180 mg of methyl ketone 134 as a light yellow oil in 69% yield. $\mathrm{R}_{f} 0.8$ (35% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dt}, J=6.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dt, $J=15.6,5.8,1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{dtd}, J=15.4,7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 2 \mathrm{H}), 0.93$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.0$, 152.6, 145.6, 128.6, 89.9, 80.0, 66.6, 27.0, 23.9, 23.6, 6.6 (3C), 4.6 (3C), -0.5 (3C); IR (thin film): 2955, 1819, 1720, $1248 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 398 (14, $\mathrm{M}^{+`), ~} 355$ (16), 325 (100), 267 (5), 73 (16); EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}_{2}$: $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$) 398.1945; found: 398.1942.

(E)-Hexahydro-4-(triethylsilyloxy)-7-((trimethylsilyl)methylene)-2-oxobenzo[1,3]dioxol-7-yl acetate (135). A $5-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with vinyl silane 134 ($17 \mathrm{mg}, 0.04 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.2 mL), and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(11 \mathrm{mg}, 0.08 \mathrm{mmol})$. The flask is cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath and a solution of m-CPBA $(77 \%, 15 \mathrm{mg}, 0.06 \mathrm{mmol})$ in 0.2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added via cannula. The reaction is slowly warmed to rt and is complete after 3 h as observed by TLC. The reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with sat'd aq $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, brine, and are dried over MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford 11 mg of ketal 135 and as a light yellow oil in 62% yield. $\mathrm{R}_{f} 0.7$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 6.01$ (s,
$1 \mathrm{H}), 4.81(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=16.3,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.15$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 169.3,145.5,130.2,103.7,81.1,65.9,25.7,23.6,21.6$, 6.6 (3C), 4.6 (3C), -0.7 (3C); IR (thin film): 2955, 1828, 1749, $1016 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 414 (43, M^{+}), 341 (19), 299 (100), 283 (9), 131 (34); EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 414.1894; found: 414.1885.

3-Acetyl-hexahydro-7-(triethylsilyloxy)-4-((trimethylsilyl)oxirane)-benzo[1,3]dioxol-2-one
(136). A 15-mL, single-necked, round-bottomed flask equipped with a stir bar, reflux condenser, and nitrogen line is charged with vinyl silane $\mathbf{1 3 4}(228 \mathrm{mg}, 0.573 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(5.7 \mathrm{~mL})$, and m-CPBA $(77 \%, 167 \mathrm{mg}, 0.743 \mathrm{mmol})$. The reaction is then heated and stirred at $40^{\circ} \mathrm{C}$ in an oil bath until consumption of starting material is observed by TLC. The reaction mixture is cooled to rt and is transferred into a separatory funnel containing sat'd aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with sat'd aq $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, brine, and are dried over MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified on silica gel eluting with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes to afford 172 mg of epoxide 131 in 73% yield. $\mathrm{R}_{f} 0.6$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.79$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{q}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.74-$ $1.61(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.68(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.5,152.8,87.5,80.0,66.3,62.2,55.9,27.8,26.3,23.1,6.8$ (3C), 4.7 (3C), -
1.9 (3C); IR (thin film): 2957, 1821, 1723, $1107 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 414 (10, M^{+}), 371 (39), 341 (34), 115 (49), 73 (100); EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$414.1894; found: 414.1886.

Hexahydro-7-triethylsiloxy-((Z)-6-methylhepta-2,5-dien-2-yl)-4-((trimethylsilyl)oxirane)benzo[α][1,3]dioxol-2-one (Z-136), Hexahydro-((E)-6-hydroxy-6-methylhept-2-en-2-yl)-7-triethylsiloxy-4-((trimethylsilyl)oxirane)benzo[α] [1,3]dioxol-2-one (E-136). A $10-\mathrm{mL}$, singlenecked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with methyl ketone $\mathbf{1 3 1}(44 \mathrm{mg}, 0.11 \mathrm{mmol})$, sulfone $\mathbf{8 5}^{65}$ ($150 \mathrm{mg}, 0.533 \mathrm{mmol}$), and 5 mL of THF. The flask is cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice-acetone bath and LiHMDS ($0.53 \mathrm{~mL}, 1.0$ M soln in THF, 0.53 mmol) is added dropwise via syringe. Upon addition of LiHMDS, the reaction turns from light yellow to bright orange. After 10 min , consumption of ketone $\mathbf{1 3 1}$ is observed by TLC and cold sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ is added. The reaction mixture is transferred into a separatory funnel and the aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified on silica gel eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford 22 mg of diene $Z / E-136$ in 43% yield as a 2:98 mixture of $E: Z$ isomers (based upon integration of the resonances at 5.59 ppm and 5.44 ppm$)$. $\mathrm{R}_{f} 0.7$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) *$ designates E-isomer where resolved: $\delta 5.59 *(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{tq}, J=7.5,1.5$ Hz, 1H), 5.05 (tt, $J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54^{*}(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$
(dt, $J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07^{*}(\mathrm{dt}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.51$ (ddd, $J=16.0$, 9.0, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39* (dt, $J=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 1.97-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$, $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{ddd}, J=15.0,6.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.65(\mathrm{q}$, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.1,132.9,132.6,128.2,122.0$, 89.6, 81.8, 65.7, 59.5, 53.2, 28.4, 25.7, 25.1, 23.0, 22.6, 17.9, 6.7 (3C), 4.6 (3C), -1.8 (3C); IR (thin film): 2921, 1816, 1463, $1250 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 480 (7, M^{+}), 407 (18), 279 (37), 157 (49), 149 (100); EI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{5} \mathrm{Si}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$) 480.2727; found: 480.2743.

Hexahydro-3a-(2-hydroxybut-3-yn-2-yl)-7-triethylsiloxy-4-((trimethylsilyl)oxirane)-
benzo[1,3]dioxol-2-one (145). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar and vacuum adaptor is charged with $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(135 \mathrm{mg}, 0.362 \mathrm{mmol})$. The white solid is stirred under vacuum (4 mm Hg) and is immersed into a sand bath, which is then heated to 140 ${ }^{\circ} \mathrm{C}$ for 12 h . The flask is removed from the sand bath and allowed to cool to rt. The vacuum adaptor is replaced with a rubber septum and nitrogen line, and the flask is evacuated and charged with N_{2} (1X). To the flask is then added 2.4 mL of THF via syringe and the resulting white suspension is vigorously stirred for 1 h before being cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Ethynylmagnesium bromide (0.70 mL of a 0.5 M THF soln, 0.35 mmol) is added to the white suspension dropwise via syringe. The resulting brown solution is stirred at $0^{\circ} \mathrm{C}$ for 1.5 h before a solution of methyl ketone $131(25 \mathrm{mg}, 0.06 \mathrm{mmol})$ in 0.4 mL of THF is added to the reaction flask via cannula. Immediately upon completion of addition of 131, the reaction is complete as observed via TLC and $\mathrm{H}_{2} \mathrm{O}$ is added dropwise. The reaction mixture is transferred into a
separatory funnel, and the aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ until no product remains as observed by TLC. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified on silica gel eluting with 5-20\% $\mathrm{Et}_{2} \mathrm{O}$ /pentane to give 20 mg of propargyl alcohol 145 as a single diastereomer in 75% yield. R_{f} 0.3 (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.06(\mathrm{bs}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$, 1H), 4.27 (dt, $J=6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 1 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.78(\mathrm{~m}$, $3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.8,9 \mathrm{H}), 0.67(\mathrm{q}, J=7.8,6 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 153.3,84.3,84.2,80.3,75.1,72.8,66.4,65.7,58.8,26.4,25.3,24.6,6.8$ (3C), 4.6 (3C), -1.9 (3C); IR (thin film): 3402, 3308, 2956, 2114, 1815, $1251 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 463 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 437 (19), 405 (6), 358 (5); ESI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{NaSi}_{2}: m / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$ 463.1948; found: 463.1959.

2-Hexahydro-4-triethylsiloxy-7-((trimethylsilyl)oxirane)-2-oxobenzo[1,3]dioxol-7a-yl-but-3-

 yn-2-yl acetate (146). A 1-mL conical vial equipped with a stir bar, rubber septum, and nitrogen line is charged with propargyl alcohol $145(25 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.57 \mathrm{mmol})$, DMAP ($7 \mathrm{mg}, 57 \mu \mathrm{~mol}$), and $\mathrm{Ac}_{2} \mathrm{O}(27 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$. The reaction is stirred at rt until consumption of $\mathbf{1 4 5}$ is observed by TLC. The reaction mixture is diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ and is transferred into a separatory funnel. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotaryevaporation. The residue is purified on silica gel eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O}$ /pentane to give 24 mg of propargyl acetate 146 in 88% yield. $\mathrm{R}_{f} 0.8\left(5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.06(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dt}, J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.72,(\mathrm{~s}, 1 \mathrm{H})$, 2.16-1.80 (m, 3H), 2.10 (s, 3H), 1.99 (s, 3H), 1.67 (dt, $J=12.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}$, 9H), $0.67(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.1,153.0,83.9$, 81.9, 79.9, 79.3, 73.6, 67.0, 63.2, 56.1, 27.0, 25.8, 22.4, 21.7, 6.8 (3C), 4.7 (3C), -1.7 (3C); IR (thin film): 3253, 2957, 2878, 1814, 1761, $1223 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 505 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 443$ (21), 365 (13); ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{7} \mathrm{NaSi}_{2}: ~ m / z[\mathrm{M}+\mathrm{Na}]^{+}$505.2054; found: 505.2032.

146

144

2-(Hexahydro-4-triethylsiloxy-7-((trimethylsilyl)oxirane)-2-oxobenzo[1,3]dioxol-7a-yl)-but-3-en-2-yl acetate (144). A 10-mL, single-necked, round-bottomed flask equipped with a stir bar and rubber septum is charged with propargyl acetate 146 ($61 \mathrm{mg}, 0.13 \mathrm{mmol}$), EtOH (6.3 mL), and Lindlar's catalyst (39 mg). The flask is evacuated and charged with H_{2} (3X) and is vigorously stirred until consumption of $\mathbf{1 4 6}$ is observed by TLC. The reaction mixture is filtered through a sintered glass funnel of medium porosity packed with celite. The filtrate is concentrated under reduced pressure by rotary evaporation and the residue is purified by silica gel chromatography eluting with 5-20\% EtOAc/hexanes to afford 46 mg of $\mathbf{1 4 4}$ in 75% yield as a light yellow oil. $\mathrm{R}_{f} 0.9\left(5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.96(\mathrm{dd}, \mathrm{J}=$ 17.6, 11.1, Hz, 1H), 5.33 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, 1H), 4.23 (dt, $J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.65(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H})$, 1.90-1.73 (m, 2H), $0.98(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.66(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.9,153.5,136.2,117.7,85.8,85.7,80.4,66.6,62.6,56.6,26.7,25.7,22.2$, 19.7, 6.8 (3C), 4.7 (3C), -1.8 (3C); IR (thin film): 2956, 2878, 1812, 1752, $1235 \mathrm{~cm}^{-1}$; ESI-MS $\mathrm{m} / \mathrm{z}(\%) 507\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 487(64), 425$ (86); ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{NaSi}_{2}: \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{Na}]^{+}$507.2210; found: 507.2231.

tert-Butyldimethylsilyl-5-((E)hexahydro-4-triethylsiloxy-7-((trimethylsilyl)oxirane)-2-oxobenzo[1,3]dioxol-7a-yl)hex-4-enoate (147). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with THF (0.18 mL) and is cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry ice-acetone bath. A solution of freshly prepared LDA ($64 \mu \mathrm{~L}$ of a 1.0 M THF soln, 0.06 mmol) and HMPA ($18 \mu \mathrm{~L}$) are then added to the flask via gas tight syringe. The pale yellow solution is stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min before a solution of allylic acetate $144(15.5 \mathrm{mg}, 0.032 \mathrm{mmol})$ in 0.1 mL of THF is added via cannula. The reaction is stirred for 2 min before a solution of TBSCl ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) in 0.6 mL of THF is added to the stirring reaction via cannula. At this time, consumption of 144 is observed by TLC and the reaction is slowly warmed to rt over 2 h . After an additional 30 min , the reaction mixture is diluted with $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ and is transferred into a separatory funnel. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation to give 18.5 mg of 147 in 96% crude yield. $\mathrm{R}_{f} 0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.76-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, 1 H), $3.94-3.87(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (ddd, $J=14.1,12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.48-2.28(\mathrm{~m}, 2 \mathrm{H})$,
2.19-2.00 (m, 5H), $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.72-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.32(\mathrm{~s}$, 3H), 0.31 (s, 3H), $0.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 172.7,153.6,131.1,125.8,88.5$, $78.5,65.8,59.6,51.7,35.1,26.2,25.8$ (3C), 23.1, 23.0, 17.7, 14.9, 7.0 (3C), 5.0 (3C), -1.9 (3C), 4.7 (2C); IR (thin film): 2955, 2933, 1813, 1717, $1252 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 621 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 604$ (28), 587 (8); ESI-HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{NaSi}_{3}: m / z[\mathrm{M}+\mathrm{Na}]^{+}$621.3075; found: 621.3055.

Hexahydro-((E)-6-hydroxy-6-methylhept-2-en-2-yl)-7-triethylsiloxy-4-((trimethylsilyl)oxirane)benzo[$\alpha][1,3]$ dioxol-2-one (150). A $5-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with crude silyl ester 147 ($9.0 \mathrm{mg}, 15 \mu \mathrm{~mol}$) and THF (0.1 mL). The flask is cooled to $-78^{\circ} \mathrm{C}$ with a dry ice-acetone bath and methyllithium ($21 \mu \mathrm{~L}$ of a 1.6 M diethyl ether solution, $33 \mu \mathrm{~mol}$) is added dropwise with a gas tight syringe. After 30 min , another 2.2 equivalents of methyllithium ($21 \mu \mathrm{~L}$ of a 1.6 M diethyl ether soln, $33 \mu \mathrm{~mol}$) is added to the reaction flask via syringe and the reaction is stirred until consumption of $\mathbf{1 4 7}$ is observed by TLC. The reaction mixture is transferred into a separatory funnel $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ and the aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified on silica gel eluting with 5-20\% EtOAc/hexanes to give 5 mg of alcohol 150 in 67% yield. $\mathrm{R}_{f} 0.1$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $5.84(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.68$ (ddd, $J=14.1$,
$12.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.07-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=$ $7.8,9 H), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.72-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 153.8,129.5,129.4,88.7,78.4,69.8,65.8,59.6,51.7,42.8,29.4,29.2,26.3,23.1,22.9,15.0$, 7.0 (3C), 5.0 (3C), -1.9 (3C); IR (thin film): 3397, 2924, 1808, $1250 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 521 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 479 (76), 437 (70), 347 (27); ESI-HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{NaSi}_{2}: \mathrm{m} / \mathrm{z}$ $[\mathrm{M}+\mathrm{Na}]^{+}$521.2731; found: 521.2715.

Hexahydro-7-triethylsiloxy-((E)-6-methylhepta-2,5-dien-2-yl)-4-((trimethylsilyl)oxirane)benzo[α][1,3]dioxol-2-one (151), Hexahydro-7-triethylsiloxy-((E)-6-methylhepta-2,6-dien-2-yl)-4-((trimethylsilyl)oxirane)benzo[α][1,3]dioxol-2-one (152). A 5-mL, single-necked, roundbottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with tertiary alcohol $150(9 \mathrm{mg}, 18 \mu \mathrm{~mol})$ and THF $(0.6 \mathrm{~mL})$. The flask is cooled to $-78^{\circ} \mathrm{C}$ with a dry iceacetone bath and $\mathrm{Et}_{3} \mathrm{~N}(6 \mu \mathrm{~L}, 45 \mu \mathrm{~mol})$ and $\mathrm{MsCl}(2 \mu \mathrm{~L}, 27 \mu \mathrm{~mol})$ are added sequentially to the reaction flask with a gas tight syringe. The reaction is stirred for 1 h before a solution of n $\mathrm{Bu}_{4} \mathrm{NBr}(6 \mathrm{mg}, 18 \mu \mathrm{~mol})$ in 0.6 mL of THF is added via cannula. The reaction is slowly warmed to rt and is stirred for 2 h before $\mathrm{H}_{2} \mathrm{O}$ is added. The aq layer is separated from the organic layer and is extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified on silica gel eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford 4 mg of dienes 151 and 152 in 46% combined yield. Based upon integrations of the resonances at 5.07 ppm and $4.74-4.71 \mathrm{ppm}, \mathbf{1 5 1}$ and $\mathbf{1 5 2}$ were
produced in a 2:1 isomeric ratio, respectively. $\mathrm{R}_{f} 0.9$ (35\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ *designates 152 where resolved: $\delta 5.59(\mathrm{td}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{td}, J=7.2$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.1^{*}(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.64^{*}(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53^{*}(\mathrm{~d}, \mathrm{~J}=3.3$ Hz, 1H), 4.31 (dt, $J=6.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.46 *(\mathrm{~m}, 4 \mathrm{H}), 2.27^{*}(\mathrm{~s}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 1 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.71^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.71-0.60(\mathrm{~m}, 6 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$; IR (thin film): 2922, 1813, 1458, $1251 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 407 (83), 131 (26), 103 (100); EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{Si}$: m/z (M-TMS) 407.2254; found: 407.2243.

8, 12-Dimethyl-1-(trimethylsilyl)-8-(tetrahydro-2H-pyran-2-yloxy)trideca-11-en-1,6-diyn-5ol (164). A two-necked, 25-mL round-bottomed flask is equipped with a stir bar, rubber septum, low-temperature thermometer, and a nitrogen inlet. The flask is charged with alkyne $\mathbf{1 6 3}^{127}$ (2.4 $\mathrm{g}, 10 \mathrm{mmol})$ and $\mathrm{Et}_{2} \mathrm{O}(7.2 \mathrm{~mL})$. The mixture is cooled between -50 and $-60{ }^{\circ} \mathrm{C}$ with a dry iceacetone bath and n-butyllithium (5.7 mL of a 1.6 M hexane soln, 9.1 mmol) is added dropwise via syringe. The reaction is stirred between -50 and $-60{ }^{\circ} \mathrm{C}$ for 10 min before aldehyde $\mathbf{1 1 2}^{79}$ $(1.7 \mathrm{~g}, 11 \mathrm{mmol})$ is added to the reaction via cannula. The reaction is warmed to $-20^{\circ} \mathrm{C}$ over 1 h. At this time, TLC analysis shows that the desired propargyl alcohol has been formed and ice cold sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ is added. The aq layer is separated and extracted with EtOAc (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified on silica gel eluting with $5-30 \% \mathrm{EtOAc} /$ hexanes to afford 2.7 g of the title
compound as viscous yellow oil in 76% yield in a 1.4:1 diastereomeric ratio (as determined by integration of the resonances at 1.49 ppm and 1.42 ppm in the ${ }^{1} \mathrm{H} \mathrm{NMR}$). $\mathrm{R}_{f} 0.3$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 5.18-5.00 (m, 2H), 4.57-4.45 (m, 1H), 4.01-3.88 (m, 1H), 3.56-3.45 (m, 1H), 3.06-2.83 (m, 1H), 2.51-2.29 (m, 2H), 2.21-2.06 (m, 2H), 1.93-1.63 (m, 6H), 1.67 (s, 3H), 1.61 (s, 3H), 1.58-1.50 (m, 4H), $1.49(\mathrm{~s}, 3 \mathrm{H}), 1.42 *(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomers where resolved: δ 131.6, 123.9, 106.2, 106.0*, 95.8, 95.1*, 95.0*, 86.8*, 86.2, 85.9, 85.2, 74.0, 73.5*, 73.4*, 63.0*, 62.9*, 62.8, 61.2*, 61.1, 43.0, 42.3*, 36.4, 32.1, 31.7*, 28.3, 27.3*, 25.6, 25.4, 25.3*, 23.4*, 23.2, 20.1, 20.0*, 17.6, 15.9, 15.8*, 0.0 (3C); IR (thin film): 3411, 2957, 2175, $1687 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 288 (22), 273 (57), 245 (43), 85 (100), 73 (39); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{OSi}: m / z\left(\mathrm{M}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2}\right)$ 288.1909; found: 288.1920.

164

162

8, 12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-ol (162). A $50-\mathrm{mL}$, two-necked round-bottomed flask equipped with a cold finger, nitrogen inlet, and stir bar is charged with LAH ($0.32 \mathrm{~g}, 8.3 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(15.4 \mathrm{~mL})$. The mixture is heated and stirred at reflux (oil bath temperature $40-45^{\circ} \mathrm{C}$) for 10 min before a solution of propargylic alcohol $\mathbf{1 6 4}(2.9 \mathrm{~g}, 7.6$ mmol) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ is added dropwise over 5-10 min to the refluxing reaction via cannula. Immediately after the addition of $\mathbf{1 6 4}$ is complete, the reaction mixture is cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}$. To the flask is slowly added $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$, then $10 \% \mathrm{NaOH}(0.6 \mathrm{~mL})$, followed by sat'd aq KF solution (1.2 mL). After stirring for 5 min at rt , the resulting solids are filtered off via gravity filtration. The solids are washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate is concentrated under
reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford 1.6 g of allenyl alcohol 162 in 74% yield as a light yellow oil. Allene-yne 162 was produced as a 1:1 mixture of diastereomers based upon integration of the resonances at 107.0 ppm and 106.9 ppm in the ${ }^{13} \mathrm{C}$ NMR. $\mathrm{R}_{f} 0.4(20 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.20-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{tq}, J=6.9,1.5 \mathrm{~Hz}$, 1H), $4.19(\mathrm{q}, ~ J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 2 \mathrm{H})$, $1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}$, 3H), $0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 199.2,132.1,124.0^{*}, 123.9,107.0,106.9^{*}, 103.4,94.7,84.8,68.9,68.8^{*}, 36.2,36.0^{*}, 34.0$, 26.0, 25.7, 19.2*, 19.1, 17.7, 16.1, 16.0*, 0.1 (3C); IR (thin film): 3350, 2961, 2175, 1965, 1249 cm^{-1}; EI-MS m/z (\%) 290 (73, M^{+}), 275 (83), 273 (89), 217 (83), 137 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 290.2066; found: 290.2060 .

N-Methoxy- N-methyl-5-(trimethylsilyl)pent-4-ynamide (165). A $5-\mathrm{mL}$, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet and stir bar is charged with 5-(trimethylsilyl)pent-4-ynoic acid ${ }^{163}$ ($75 \mathrm{mg}, 0.44 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The solution is cooled to $-15{ }^{\circ} \mathrm{C}$ with a dry ice-acetone bath before N-methylpiperdine ($160 \mu \mathrm{~L}$, $1.3 \mathrm{mmol})$ and isobutyl chloroformate ($86 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$) are sequentially added via syringe. After 1 h , consumption of acid $\mathbf{1 6 5 a}$ is observed by TLC $\left(\mathrm{R}_{f}\right.$ of acid $\mathbf{1 6 5 a}=0.1$ in 20% EtOAc/hexanes). The reaction is warmed to $0{ }^{\circ} \mathrm{C}$ in an ice bath before $\mathrm{MeNHOMe} \cdot \mathrm{HCl}(215$ $\mathrm{mg}, 2.20 \mathrm{mmol})$ and $i \operatorname{PrMgCl}(2.2 \mathrm{~mL}$ of a 2.0 M THF soln, 4.4 mmol$)$ are added. After 30
min, the reaction does not progress any longer as observed by TLC and additional MeNHOMe $\cdot \mathrm{HCl}(86 \mathrm{mg}, 0.88 \mathrm{mmol})$ and $i \mathrm{PrMgCl}(0.9 \mathrm{~mL}$ of a 2.0 M THF soln, 1.8 mmol$)$ are added. The reaction is warmed to rt and is stirred until consumption of the mixed anhydride intermediate is observed via TLC (R_{f} of mixed anhydride $=0.7$ in 20% EtOAc/hexanes). The reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The aq layer is separated and extracted with EtOAc (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-30 \% \mathrm{EtOAc} /$ hexanes to afford Weinreb amide 165 (81 mg in 87% yield). $\mathrm{R}_{f} 0.2$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71$ (s, 3H), 3.19 (s, 3H), 2.74-2.61 (m, 2H), 2.61-2.50 (m, 2H), 0.15 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5,106.0,84.9,61.3,36.1,31.3,15.3,0.1$ (3C); IR (thin film): 2960, 2176, 1669, $844 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 213 (68, M^{+}), 182 (41), 168 (100), 153 (42); EI-HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Si}: m / z\left(\mathrm{M}^{+}\right)$213.1185; found: 213.1184.

8,12-Dimethyl-1-(trimethylsilyl)-8-(tetrahydro-2H-pyran-2-yloxy)trideca-11-en-1,6-

 diyn-5-one (166). A 5-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet and stir bar is charged with alkyne $163(104 \mathrm{mg}, 0.440 \mathrm{mmol})$ and THF (1.2 mL). The solution is cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry ice -acetone bath and n butyllithium (0.27 mL of a 1.6 M hexane soln, 0.44 mmol) is added dropwise via syringe. The reaction is kept at $-78{ }^{\circ} \mathrm{C}$ for 10 min before being placed in a $-20^{\circ} \mathrm{C}$ bath for 30 min .The flask is then cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of amide $165(17 \mathrm{mg}, 0.08 \mathrm{mmol})$ in 0.2 mL of THF is added via cannula. The reaction is allowed to slowly warm to $0^{\circ} \mathrm{C}$ over 2 h and is kept at $0{ }^{\circ} \mathrm{C}$ for 30 min before being warmed to rt . The reaction was monitored by TLC, and after an additional 30 min of stirring at rt, consumption of amide $\mathbf{1 6 5}$ is observed. The reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc. The aq layer is separated and extracted with EtOAc (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford alkynone 166 (21 mg in 68\% yield, d.r. $=1: 1$ based upon integration of the resonances at 185.1 ppm and 184.9 ppm in the ${ }^{13} \mathrm{C}$ NMR) as a light yellow oil. $\mathrm{R}_{f} 0.6$ ($20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 5.15-5.09 (m, 1H), 5.05-5.02 (m, 1H), 5.02-4.99* (m, 1H), 4.01-3.91 (m, 1H), 3.56-3.50 (m, 1H), 2.83-2.79 (m, 2H), 2.57 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, 3H), 1.59-1.53 (m, 4H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 0.14(9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 185.1*, 184.9, 132.2, 123.4*, 123.3, 104.7, 104.5*, 96.3, 95.6*, 95.0*, 94.1, 85.6, 85.5*, 83.8, 83.0*, 73.8, 73.0*, 63.2, 63.1*, 44.4, 44.3*, 42.5, 41.8*, 31.9*, 31.6, 27.6*, 26.4, 25.7*, 25.3*, 23.1, 23.0*, 20.1, 20.0*, 17.6, 14.5, 0.0 (3C); IR (thin film): 2942, 2210, 2178, 1682, $844 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 411 (100, [M+Na] ${ }^{+}$), 365 (21), 217 (21); ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{NaSi}: m / z[\mathrm{M}+\mathrm{Na}]^{+}$411.2331; found: 411.2351.

(5R)-8,12-Dimethyl-1-(trimethylsilyl)-8-(tetrahydro-2H-pyran-2-yloxy)trideca-11-en-1,6-
diyn-5-ol ($\boldsymbol{R}-164$). A single-necked, $10-\mathrm{mL}$ round-bottomed flask equipped with a stir bar, rubber septum, and argon balloon is charged with alkynone 166 ($472 \mathrm{mg}, 1.21 \mathrm{mmol}$) and $i \mathrm{PrOH}$ (3.6 mL). Argon is bubbled through the solution using a balloon filled with argon attached to a syringe before Noyori's catalyst $\mathbf{1 6 7}{ }^{129,130}$ ($109 \mathrm{mg}, 0.18 \mathrm{mmol}, 0.15$ equiv.) is added in one portion. Upon addition of 167, the reaction turns dark orange/red from colorless. After 5 min of stirring at rt , consumption of alkynone $\mathbf{1 6 6}$ is observed by TLC. The reaction mixture is concentrated under reduced pressure. The residue is purified on silica gel eluting with 5-30\% EtOAc/hexanes to afford 444 mg of the propargyl alcohol $(R)-\mathbf{1 6 4}$ as viscous yellow oil in 94% yield, d.r. $=1.6: 1$ (as determined by integration of the resonances at 1.51 ppm and 1.45 ppm in the ${ }^{1} \mathrm{H}$ NMR). $\mathrm{R}_{f} 0.3$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 5.14(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}$, $1 \mathrm{H}), 4.02-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{qd}, \mathrm{J}=$ $6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H})$, 1.45* (s, 3H), $0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 131.6,123.9,106.2,106.0^{*}, 95.7,95.1^{*}, 95.0^{*}, 86.9^{*}, 86.2,85.9,85.3^{*}, 85.2^{*}, 85.1$, 74.0, 73.5*, 73.4*, 63.0*, 62.9*, 62.8, 61.2, 61.1*, 43.0, 42.3*, 42.2*, 36.4, 32.1, 31.7*, 28.3, 27.3*, 25.6, 25.4, 25.3*, 23.4*, 23.2, 20.1, 20.0*, 17.6, 15.9, 15.8*, 0.0 (3C).

(5R)-8,12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-ol (R-162). A 10-mL, twonecked round-bottomed flask equipped with a cold finger, nitrogen inlet, and stir bar is charged with LAH (47 mg, 1.2 mmol) and $\mathrm{Et}_{2} \mathrm{O}(2.3 \mathrm{~mL})$. The mixture is heated and stirred at reflux (oil bath temperature $40-45^{\circ} \mathrm{C}$) for 5 min before a solution of propargylic alcohol $(R)-164$ (440 mg , 1.13 mmol) in $\mathrm{Et}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ is added dropwise over 3-5 min to the refluxing solution via cannula. Immediately after the addition is complete, the reaction mixture is cooled to rt and is diluted with $\mathrm{Et}_{2} \mathrm{O}$. To the flask is slowly added $\mathrm{H}_{2} \mathrm{O}(47 \mu \mathrm{~L})$, then $10 \% \mathrm{NaOH}(94 \mu \mathrm{~L})$, followed by sat'd aq KF solution ($188 \mu \mathrm{~L}$). After stirring for 5 min at rt , the resulting solids are filtered off via gravity filtration. The solids are washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford allenyl alcohol (R) - $\mathbf{1 6 2}$ as a light yellow oil (183 mg in 56% yield, d.r. $=1.3: 1$ based upon integration of the resonances at 107.0 ppm and 106.9 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.20-5.14$ (m, $1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.04-$ 1.96 (m, 2H), 1.91-1.81 (m, 1H), 1.80-1.71 (m, 1H), 1.72 (d, $J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.69$ (s, 3H), 1.61 (s, 3H), $0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 199.2, 132.2, 124.0, 107.0, 106.9*, 103.5, 94.7, 84.9, 68.9*, 68.8, 36.2*, 36.1, 34.0, 26.0, 25.7, 19.2*, 19.1, 17.8, 16.1*, 16.0, 0.1 (3C).

(2R)-8,12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-yl 3,3,3-trifluoro-

2-methoxy-2-phenylpropanoate (168). A 5-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with $(R)-(+)$-alpha-methoxy-alpha-(trifluromethyl)-phenylacetic acid (36 mg, 0.15 mmol$), \quad N, N N^{\prime}-$ dicyclohexylcarbodiimide ($32 \mathrm{mg}, 0.15 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. To the flask is then sequentially added allene-yne $162(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ via cannula, and DMAP ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) in one portion. The reaction is stirred at rt until consumption of 162 is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and sat'd aq NaHCO_{3}. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation to give ester 168 in quantitative crude yield. $\mathrm{R}_{f} 0.6$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{19} \mathrm{~F}$ NMR (300 MHz, CDCl_{3}): δ-72.0 (s, 2F), -72.1 (s, 1F), -72.2 (s, 1F). Diastereomeric excess: 0%.

(2R,5R)-8,12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-yl 3,3,3-trifluoro-2-methoxy-2-phenylpropanoate (\boldsymbol{R}-168). A $5-\mathrm{mL}$, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with (R)-(+)-alpha-methoxy-alpha-(trifluromethyl)-phenylacetic acid (39 mg, 0.17 mmol), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride ($32 \mathrm{mg}, 0.17 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.3 \mathrm{~mL})$. To the flask is then sequentially added allene-yne $(R) \mathbf{- 1 6 2}(16 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ via cannula, and DMAP ($3 \mathrm{mg}, 0.03 \mathrm{mmol}$) in one portion. The reaction is stirred at rt until consumption of $(R) \mathbf{- 1 6 2}$ is observed by TLC. The reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and sat'd aq NaHCO_{3}. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X})$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation to give ester (R) - $\mathbf{1 6 8}$ in quantitative crude yield. $\mathrm{R}_{f} 0.6(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{19} \mathrm{~F}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-72.0(\mathrm{~s}, 0.16 \mathrm{~F}),-72.1$ (s, 1F), -72.2 (s, 1F). Diastereomeric ratio: 97:3.

5-(tert-Butyldimethylsilyloxy)-8,12-dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn

(169). A $5-\mathrm{mL}$, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with allene-yne $162(69 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$. To the flask is sequentially added imidazole ($29 \mathrm{mg}, 0.42 \mathrm{mmol}$) and $\mathrm{TBSCl}(54 \mathrm{mg}, 0.36 \mathrm{mmol})$. When consumption of starting material is observed by TLC, the reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford silyl ether 169 as a light yellow oil (67 mg in 70% yield, d.r. $=1: 1$ based upon integration of the resonances at 107.4 ppm and 107.3 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\mathrm{R}_{f} 0.8$ (5\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 5.17-5.09 (m, 1H), 5.03-4.96 (m, 1H), 4.26-4.15 (m, 1H), 2.30 (t, J = 7.5 Hz, 2H), 2.15-2.04 (m, 2H), 2.01-1.91 (m, 2H), 1.83-1.67 (m, 2H), $1.70(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.15^{*}(\mathrm{~s}, 9 \mathrm{H})$, $0.14(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 200.1, 199.9*, 131.8, 131.7*, 124.0, 107.4*, 107.3, 100.9*, 100.6, 94.6, 84.5, 84.4*, 71.3, $70.5^{*}, 37.4,34.2,34.1^{*}, 26.4^{*}, 26.3,25.9$ (3C), 25.8* (3C), 25.7, 19.1, 18.7*, 18.2, 18.1*, $17.8,17.7^{*}, 16.3,16.1^{*}, 0.1$ (3C), $-4.2,-4.3^{*},-4.9$; IR (thin film): 2929, 2175, 1079, $840 \mathrm{~cm}^{-1}$;

EI-MS m/z (\%) 404 (27, M^{+}), 347 (53), 73 (100). EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{OSi}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 404.2931; found: 404.2927.

162

170

8,12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-yl acetate (170). A 5-mL, singlenecked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with allene-yne $162(102 \mathrm{mg}, 0.351 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.2 \mathrm{~mL})$. To the flask is sequentially added DMAP ($4 \mathrm{mg}, 0.04 \mathrm{mmol}$), pyridine ($57 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$), and acetic anhydride ($40 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$). When consumption of starting material is observed by TLC, the reaction mixture is transferred into a separatory funnel containing $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford allenyl acetate $\mathbf{1 7 0}$ as a light yellow oil (85 mg in 73% yield, d.r. $=1.2: 1$ based upon integration of the resonances at 102.6 ppm and 102.5 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\quad \mathrm{R}_{f} 0.5$ (10% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 5.30-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=6.9,2.7 \mathrm{~Hz}$, 1H), 2.29 (dd, $J=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.03$ (m, 2H), 2.05 (s, 3H), 2.04* (s, 3H), 2.01-1.93 (m, 2H), 1.92-1.83 (m, 2H), 1.71 (d, $J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 201.7, 201.3*, 170.2, 170.1*, 131.9, 131.8*, 124.0*, 123.9, 106.1, 102.6*, 102.5, 90.3*, 90.2, 85.0*, 84.9, 71.8, 71.6*, 33.9, 33.1, 33.0*, 26.2, 26.1*, 25.7, 21.2, 21.1*, 18.9*, 18.8, 17.7, 16.2, 16.1*,
0.1 (3C); IR (thin film): 2961, 2176, 1968, 1743, $1243 \mathrm{~cm}^{-1} ;$ EI-MS m/z (\%) 272 (49), 221 (47), 73 (100). EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Si}: m / z$ (M-OAc) 272.1960; found: 272.1954.

8,12-Dimethyl-1-(trimethylsilyl)trideca-6,7,11-trien-1-yn-5-yl pivalate (171). A 5-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with allene-yne $162(54 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. To the flask is sequentially added DMAP ($1 \mathrm{mg}, 9 \mu \mathrm{~mol}$), $\mathrm{Et}_{3} \mathrm{~N}(65 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$, and pivaloyl chloride ($39 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$). When consumption of starting material is observed by TLC, the reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X})$. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford 171 as a light yellow oil (59 mg in 85% yield, d.r. $=1.1: 1$ based upon integration of the resonances at 102.6 ppm and 102.5 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\mathrm{R}_{f} 0.6$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.22$ (q, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.84(\mathrm{~m}, 4 \mathrm{H})$, 1.71-1.66 (m, 6H), $1.61(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 201.4, 201.0*, 177.4, 177.3*, 131.8, 131.7*, 124.0*, 123.9, 106.2, 102.6*, 102.5, 90.7*, 90.4, 84.9, 70.9, 70.7*, 38.8, 33.9, 33.3*, 33.2, 27.1 (3C), 26.5, 26.1, 26.0*, 25.7*, 19.0*, 18.9, 17.7, 16.1, 16.0*, 0.1 (3C); IR (thin
film): 2963, 2177, 1968, 1731, $1153 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 397 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 365$ (47), 305 (9); ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{NaSi}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$397.2539; found: 397.2553.

8,12-Dimethyltrideca-6,7,11-trien-1-yn-5-ol (172). A 10-mL, single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with allene-yne 162 ($171 \mathrm{mg}, 0.589 \mathrm{mmol}$) and $\mathrm{MeOH}(4.9 \mathrm{~mL})$. To the flask is added $\mathrm{K}_{2} \mathrm{CO}_{3}(122 \mathrm{mg}, 0.883 \mathrm{mmol})$ in one portion. When consumption of starting material is observed by TLC, the reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford terminal alkyne 172 as a light yellow oil (103 mg in 80% yield, d.r. $=1.2: 1$ based upon integration of the resonances at 68.7 ppm and 68.6 ppm in the ${ }^{13} \mathrm{C}$ NMR $) . \mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.21-5.15(\mathrm{~m}, 1 \mathrm{H})$, 5.14-5.07 (m, 1H), 4.25-4.18 (m, 1H), 2.34 (td, J = 7.2, 2.7 Hz, 2H), 2.16-2.06 (m, 2H), 2.05$1.98(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) *$ designates minor diastereomer where resolved: δ 199.3, 132.3, 132.2*, 124.0, 123.9*, 103.6, 94.7, 84.1, 84.1*, 68.7*, 68.6, 68.5, 36.1*, 35.9, 34.0, 26.0, 25.7, 19.2, 19.1*, 17.8, 14.7*, 14.6; IR (thin film): 3400, 3306, 2919, 2118, $1964 \mathrm{~cm}^{-1}$; EIMS m/z (\%) 203 (36), 160 (100), 135 (49), 83 (53); EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: m / z\left(\mathrm{M}^{+\cdot}\right)$ 218.1671; found: 218.1675.

8,12-Dimethyl-1-phenyltrideca-6,7,11-trien-1-yn-5-ol (173). A 5-mL, single-necked roundbottomed flask equipped with a rubber septum, argon balloon, and stir bar is charged with CuI $(\sim 1 \mathrm{mg}, 2 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(\sim 1 \mathrm{mg}, 1 \mu \mathrm{~mol})$. The flask is evacuated and purged with argon before 0.3 mL of THF is added. To the flask is then sequentially added a solution of allene-yne 172 ($25 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (0.3 mL), PhI ($38 \mu \mathrm{~L}, 0.34 \mathrm{mmol}$), and diisopropylamine ($0.16 \mathrm{~mL}, 1.2 \mathrm{mmol}$). When consumption of starting material is observed by TLC, the reaction is concentrated under reduced pressure. The residue is purified by silica gel chromatography eluting with $5-30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford 173 as a light yellow oil (29 mg in 86% yield, d.r. $=1.2: 1$ based upon integration of the resonances at 68.9 ppm and 68.8 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\mathrm{R}_{f} 0.6$ (15\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44-7.20(\mathrm{~m}, 5 \mathrm{H})$, 5.28-5.18 (m, 1H), $5.13(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-$ 2.08 (m, 2H), 2.07-1.98 (m, 2H), 1.91-1.78 (m, 2H), 1.75 (d, J = 2.7 Hz, 3H), 1.71 (s, 3H), 1.63 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ 199.3, 132.2, 131.5 (2C), 128.1 (2C), 127.5, 124.0, 123.9, 103.6, 94.8, 89.7, 89.6*, 80.9, 68.9*, 68.8, 36.4*, 36.3, 34.1, 26.1, 25.6, 19.2, 19.1*,17.8, 15.7; IR (thin film): 3355, 2922, 2235, 1964, $1442 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 294 (30, $\mathrm{M}^{+\cdot}$), 223 (72), 179 (100); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}$: $m / z\left(\mathrm{M}^{+}\right)$294.1984; found: 294.1978 .

4,8-Dimethyl-4-(tetrahydro-2H-pyran-2-yloxy)non-7-en-2-yn-ol (174). A single-necked, 15mL round-bottomed flask is equipped with a stir bar, rubber septum, and nitrogen inlet is charged with alkyne $\mathbf{1 6 3}{ }^{127}$ ($540 \mathrm{mg}, 2.28 \mathrm{mmol}$) and THF (4.8 mL). The mixture is cooled to 0 ${ }^{\circ} \mathrm{C}$ in an ice bath and n-butyllithium (2.3 mL of a 1.6 M hexane soln, 3.6 mmol) is added dropwise via syringe. Upon addition of n-BuLi, the reaction turns from colorless to yellow/brown. After 1 h at $0^{\circ} \mathrm{C}$, paraformaldehyde ($218 \mathrm{mg}, 7.28 \mathrm{mmol}$) is added in one portion and the reaction is slowly warmed to rt. When consumption of $\mathbf{1 6 3}$ is observed by TLC, the reaction mixture is transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified on silica gel eluting with 5-30\% $\mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford 468 mg of the title compound as pale yellow oil in 77% yield, d.r. $=$ 1.2:1 (based upon integration of the resonances at 1.49 ppm and 1.41 ppm in the ${ }^{1} \mathrm{H}$ NMR). R_{f} 0.2 (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 5.20-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}=6.0,2 \mathrm{H}), 4.03-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.30-$ $2.92(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.50(\mathrm{~m}$, 4H), 1.49 (s, 3H), 1.41* (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomers where resolved: $\delta 131.6,123.9,95.6,94.9^{*}, ~ 86.9, ~ 86.3^{*}, ~ 84.1^{*}, ~ 83.4, ~ 74.0^{*}, 73.6,62.8,62.7^{*}$, 50.7, 43.0, 42.2*, 32.0*, 31.6, 28.3*, 27.3, 25.6, 25.4, 25.3*, 23.3, 23.1*, 19.9, 19.8*, 17.5; IR
(thin film): 3423, 2935, 1441, $1024 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 251 (28), 235 (50), 165 (23), 85 (100); EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 251.1647; found: 251.1643.

4,8-Dimethylnona-2,3,7-trien-1-ol (175). A 10-mL, two-necked round-bottomed flask equipped with a cold finger, nitrogen inlet, and stir bar is charged with LAH ($70 \mathrm{mg}, 1.8 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}$ (3.4 mL). The mixture is heated and stirred at reflux (oil bath temperature $40-45^{\circ} \mathrm{C}$) for 5 min before a solution of propargylic alcohol $174(443 \mathrm{mg}, 1.68 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ is added dropwise over 3-5 min to the refluxing reaction via cannula. Immediately after the addition of 174 is complete, the reaction mixture is cooled to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}$. To the flask is slowly added $\mathrm{H}_{2} \mathrm{O}(70 \mu \mathrm{~L})$, then $10 \% \mathrm{NaOH}(140 \mu \mathrm{~L})$, followed by sat'd aq KF solution $(240 \mu \mathrm{~L})$. After stirring for 5 min at rt , the resulting solids are filtered off via gravity filtration. The solids are washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with 5-15\% $\mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford allenyl alcohol 175 (149 mg in 53% yield) as a light yellow oil. $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.30-5.20(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{tq}, J=6.9,1.2$ Hz, 1H), 4.04 (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.05$ (m, 2H), 2.03-1.94 (m, 2H), 1.78 (bs, 1H), 1.71 (d, J $=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.0$, 132.0, 124.0, 102.7, 91.4, 60.8, 33.9, 26.0, 25.6, 19.1, 17.7; IR (thin film): 3332, 2922, 1965, $1443 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 148 (34), 83 (78), 69 (84), 55 (100); EI-HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16}: \mathrm{m} / \mathrm{z}$ (M-H2O) 148.1252; found: 148.1255.

General Procedure A: Preparation of malonate-tethered allene-ynes 176-179

Diethyl 2-(4,8-dimethylnona-2,3,7-trienyl)-2-(3-(trimethylsilyl)prop-2-ynyl)malonate (176). A 5-mL, single-necked round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen inlet is charged with allene-yne 175 ($40 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL), and DMAP (6 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction flask is cooled to $0^{\circ} \mathrm{C}$ in an ice bath before $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.72$ mmol) and methanesulfonyl chloride ($44 \mu \mathrm{~L}, 0.57 \mathrm{mmol}$) are sequentially added via syringe. The reaction turns from colorless to yellow upon addition of MsCl . After 1 h the reaction is complete as observed by TLC and is transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aq layer is separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{X})$. The combined organic layers containing crushed ice are washed with 1 M aq HCl , sat'd aq NaHCO_{3}, brine, and are dried over MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. Mesylate $\mathbf{1 7 5 a}$ is produced as an orange oil and is used in the next step without further purification. A 5-mL, single-necked round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen inlet is charged with NaH (7 mg of 60% dispersion in mineral oil, 0.17 mmol) and 0.4 mL of THF. The suspension is cooled to $0^{\circ} \mathrm{C}$ in an ice bath and a solution of diethyl 2-(3-(trimethylsilyl)prop-2-ynyl)malonate ($28 \mathrm{mg}, 0.11 \mathrm{mmol}$) in 0.4 mL of THF is added via cannula. The reaction is warmed to rt and is stirred for 1 h before a solution of the freshly prepared crude mesylate 175a in THF (1 mL) is added via cannula. To the reaction is then added NaI ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$) in one portion. When consumption of the propargyl
malonate is observed by TLC, the reaction mixture is transferred into a separatory funnel containing $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $2-5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentanes to afford malonate 176 (27 mg in 62% yield) as a light yellow oil. $\mathrm{R}_{f} 0.8$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.12(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.72$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.62(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.6,169.8$, 169.7, 131.7, 124.1, 101.5, 99.3, 87.8, 83.8, 61.5 (2C), 57.2, 34.0, 32.7, 26.2, 25.7, 23.8, 19.1, 17.7, 14.1 (2C), -0.1 (3C); IR (thin film): 2963, 2180, 1737, $844 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 418 (21, $\mathrm{M}^{+\cdot}$), 345 (24), 271 (78), 187 (100); EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right) 418.2539$; found: 418.2556.

Diethyl 2-(4,8-dimethylnona-2,3,7-trienyl)-2-(3-phenylprop-2-ynyl)malonate (177). Prepared according to General Procedure A using: allene-yne 175 ($33 \mathrm{mg}, 0.20 \mathrm{mmol}$), DMAP (5 mg , 0.04 mmol), $\mathrm{Et}_{3} \mathrm{~N}(83 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) and methanesulfonyl chloride ($37 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. The subsequent alkylation reaction used $\mathrm{NaH}(6.0 \mathrm{mg}$ of 60% dispersion in mineral oil, 0.14 mmol), diethyl-2-(3-phenylprop-2-ynyl)malonate ($24 \mathrm{mg}, 0.09 \mathrm{mmol}$), and NaI ($15 \mathrm{mg}, 0.10 \mathrm{mmol}$) in 0.6 mL of THF. Yield 177 ($27 \mathrm{mg}, 73 \%$). $\mathrm{R}_{f} 0.6$ ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 2.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.93-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.05(\mathrm{~m}$, 2H), 1.97-1.90 (m, 2H), 1.68 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) 1.27(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.6,169.9$ (2C), 131.7, 131.6 (2C), 128.1 (2C), 127.8, 124.1, 123.4, 99.5, 84.6, 83.8, 83.3, 61.5 (2C), 57.4, 34.0, 32.8, 26.2, 25.7, 23.4, 19.1, 17.7, 14.1 (2C); IR (thin film): 2923, 1735, 1443, $1202 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 422 (51, $\mathrm{M}^{+\cdot}$), 353 (17), 308 (100); EI-HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right) 422.2457$; found: 422.2460.

Diethyl 2-(but-2-ynyl)-2-(4,8-dimethylnona-2,3,7-trienyl)malonate (178). Prepared according to General Procedure A using: allene-yne 175 ($36 \mathrm{mg}, 0.22 \mathrm{mmol}$), DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(92 \mu \mathrm{~L}, 0.66 \mathrm{mmol})$ and methanesulfonyl chloride $(41 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{~mL})$. The subsequent alkylation reaction used NaH (6 mg of 60% dispersion in mineral oil, 0.15 mmol), diethyl 2-(but-2-ynyl)malonate ($20 \mathrm{mg}, 0.09 \mathrm{mmol}$), and $\mathrm{NaI}(17 \mathrm{mg}, 0.11 \mathrm{mmol})$ in 0.7 mL of THF. Yield 178 (26 mg, 76\%). $\mathrm{R}_{f} 0.7$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.11(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{q}, J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.69$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.5,170.1$ (2C), 131.6, 124.1, 99.3, 83.9, 78.5, 73.5, 61.4 (2C), 57.3, 34.0, 32.6, 26.2, 25.7, 22.8, 19.0, 17.7, 14.0 (2C), 3.5; IR (thin film): 2979, 1736, 1443, $1203 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) $360\left(36, \mathrm{M}^{+\cdot}\right.$), 345 (15), 268 (100); EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 360.2301; found: 360.2311 .

Diethyl 2-(4,8-dimethylnona-2,3,7-trienyl)-2-prop-2-ynyl)malonate (179). Prepared according to General Procedure A using: allene-yne 175 ($58 \mathrm{mg}, 0.35 \mathrm{mmol}$), DMAP ($9 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ and methanesulfonyl chloride ($65 \mu \mathrm{~L}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.4 mL). The subsequent alkylation reaction used NaH (10 mg of 60% dispersion in mineral oil, 0.24 mmol), diethyl 2-(prop-2-ynyl)malonate ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$), and NaI ($27 \mathrm{mg}, 0.18 \mathrm{mmol}$) in 1.1 mL of THF. Yield 179 ($40 \mathrm{mg}, 76 \%$). $\mathrm{R}_{f} 0.6$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.11(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.14(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}): $\delta 203.6,169.7$ (2C), 131.7, 124.1, 99.5, 83.6, 79.0, 71.1, 61.6 (2C), 57.0, 34.0, 32.6, 26.2, 25.7, 22.4, 19.0, 17.7, 14.0 (2C); IR (thin film): 3289, 2979, 1966, 1736, $1204 \mathrm{~cm}^{-1}$; EIMS m/z (\%) 346 (31, $\mathrm{M}^{+\cdot}$), 331 (15), 303 (48), 84 (100); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}: m / z$ $\left(\mathrm{M}^{+\cdot}\right)$ 346.2144; found: 346.2141.

General Procedure B: Formation of N-tosylallene-ynes via a Mitsunobu reaction

4,8-Dimethyl- N -(3-phenylprop-2-ynyl)- N -tosylnona-2,3,7-trien-1-amine (181). A 5-mL, single-necked round-bottomed flask equipped with a nitrogen inlet and stir bar is charged with 3-
phenyl- N-tosylprop-2-yn-1-amine ($65 \mathrm{mg}, 0.23 \mathrm{mmol}$), allene-yne 175 ($49 \mathrm{mg}, 0.29 \mathrm{mmol}$), triphenylphosphine ($78 \mathrm{mg}, 0.29 \mathrm{mmol}$), and THF (1.5 mL). The flask is cooled to $0^{\circ} \mathrm{C}$ in an ice bath and diisopropyl azodicarboxylate (DIAD, $58 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$) is added via syringe. The reaction is slowly warmed to rt and stirred until consumption of starting material is observed by TLC. The reaction is then concentrated under reduced pressure, diluted with cold $\mathrm{Et}_{2} \mathrm{O}$, and filtered though a pad of celite. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford $\mathbf{1 8 1}$ (77 mg in 78\% yield) as a light yellow oil. $\mathrm{R}_{f} 0.5$ (20% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 7.78$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.20 (m, 5H), 7.05 (dd, $J=8.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.08(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=6.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.34$ (s, 3H), 2.13-2.03 (m, 2H), 1.98-1.90 (m, 2H), 1.68 (d, J = $2.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.65$ (s, 3H), 1.57 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 203.5, 143.4, 136.1, 131.9, 131.5 (2C), 129.5 (2C), 128.3, 128.1 (2C), 127.8 (2C), 123.8, 122.4, 101.4, 85.5, 81.8, 77.2, 47.0, 36.5, 33.8, 26.1, 25.6, 21.4, 19.0, 17.7; IR (thin film): 2919, 1965, 1598, $1349 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 456 (7), 312 (20), 122 (100).

N-(But-2-ynyl)-4,8-dimethyl- N-tosylnona-2,3,7-trien-1-amine (182). Prepared according to General Procedure B using: N-tosylbut-2-yn-1-amine ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$), allene-yne 175 (33 $\mathrm{mg}, 0.20 \mathrm{mmol}$), triphenylphosphine ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$), and DIAD ($39 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) in THF (1 mL). Yield 182 ($45 \mathrm{mg}, 80 \%$). $\mathrm{R}_{f} 0.6$ (20% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.13-1.04(\mathrm{~m}, 1 \mathrm{H}), 4.97-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{q}$,
$J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 203.3, 143.1, 136.4, 131.8, 129.2 (2C), 127.8 (2C), 123.9, 101.2, 85.5, 81.2, 71.7, 46.7, 36.1, 33.9, 26.1, 25.6, 21.5, 18.9, 17.7, 3.2; IR (thin film): 2919, 1965, 1598, $1349 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 373 (100), 372 (52); EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right) 371.1919$; found: 371.1922.

4,8-Dimethyl- N-(prop-2-ynyl)- N-tosylnona-2,3,7-trien-1-amine (183). Prepared according to General Procedure B using: N-tosylprop-2-yn-1-amine (33 mg, 0.16 mmol), allene-yne 175 (34 $\mathrm{mg}, 0.20 \mathrm{mmol}$), triphenylphosphine ($54 \mathrm{mg}, 0.21 \mathrm{mmol}$), and DIAD ($41 \mu \mathrm{~L}, 0.21 \mathrm{mmol}$) in THF (1 mL). Yield 183 ($49 \mathrm{mg}, 87 \%$). $\mathrm{R}_{f} 0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{tt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-4.88(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.5,143.4,136.2,131.9,129.4$ (2C), 127.7 (2C), 123.8, 101.4, 85.2, 73.4, 46.7, 35.6, 33.8, 26.1, 25.7, 21.5, 18.9, 17.7; IR (thin film): 3282, 2920, 1964, $1349 \mathrm{~cm}^{-1}$; EI-MS $m / z(\%) 357\left(20, \mathrm{M}^{+}\right)$, 342 (22), 202 (32), 162 (100); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}$ $\left(\mathrm{M}^{+\cdot}\right)$ 357.1763; found: 357.1768 .

General Procedure C: O-alkylation of allenic alcohol 175 with propargyl bromides

1-(3-(4,8-Dimethylnona-2,3,7-trienyloxy)prop-1-ynyl)benzene (185). A 5-mL, single-necked round-bottomed flask equipped with a nitrogen inlet and stir bar is charged with NaH (16 mg of 60% dispersion in mineral oil, 0.40 mmol) and 1 mL of THF. The suspension is cooled to $0^{\circ} \mathrm{C}$ in an ice bath and a solution of allene-yne 175 ($22 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (1 mL) is added via cannula. The reaction is warmed to rt and is stirred for 1 h before a solution of 1-(3-bromoprop-1-ynyl)benzene ($28 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (0.2 mL) is added via cannula. To the reaction is then added HMPA ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) via syringe and the reaction is stirred until consumption of 175 is observed by TLC. The reaction mixture is then transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $2-5 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford $\mathbf{1 8 5}$ (30 mg in 81% yield) as a light yellow oil. $\mathrm{R}_{f} 0.7$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H}), 5.24-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.18-2.07 (m, 2H), 2.04-1.95 (m, 2H), 1.73 (d, $J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 203.1, 131.8, 131.7 (2C), 128.3, 128.2 (2C), 124.0, 122.7, 100.4, 87.1, 86.1, 85.2, 68.7, 57.2, 33.9, 26.2, 25.7, 19.0, 17.7; IR (thin film): 2922, 1965, 1442, $1081 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 265 (28), 135 (15), 115 (100); EI-HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}$: $\mathrm{m} / \mathrm{z}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 265.1592; found: 265.1596.

1-(But-2-ynyloxy)-4,8-dimethylnona-2,3,7-triene (186). Prepared according to General Procedure C using: allene-yne 175 ($23 \mathrm{mg}, 0.14 \mathrm{mmol}$), NaH (11 mg of 60% dispersion in mineral oil, 0.28 mmol), 1-bromobut-2-yne ($13 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) and HMPA ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) in 2.1 mL of THF. Yield 186 (23 mg, 76\%). $\mathrm{R}_{f} 0.8$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.20-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.05(\mathrm{~m}$, 2H), 2.03-1.93 (m, 2H), 1.86 (t, $J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.71$ (d, $J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.70$ (s, 3H), 1.61 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 202.9, 131.7, 124.0, 100.2, 87.2, 82.2, 75.2, 68.5, 57.0 , 33.9, 26.1, 25.7, 18.9, 17.7, 3.6; IR (thin film): 2923, 1965, 1445, $1079 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 218 (10, M^{+}), 203 (21), 173 (75), 53 (100); EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$218.1671; found: 218.1670 .

175
 Procedure C using: allene-yne 175 ($62 \mathrm{mg}, 0.37 \mathrm{mmol}$), NaH (45 mg of 60% dispersion in mineral oil, 1.1 mmol), propargyl bromide ($80 \% \mathrm{wt}$. in toluene, $0.12 \mathrm{~mL}, 1.1 \mathrm{mmol}$), and HMPA $(13 \mu \mathrm{~L}, 75 \mu \mathrm{~mol})$ in 5.8 mL of THF. Yield 187 ($61 \mathrm{mg}, 80 \%$). $\mathrm{R}_{f} 0.8$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}): $\delta 5.18-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, 2H), $2.42(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.69 (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}$), $1.61(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.1,131.7$, 123.9,
100.4, 86.9, 79.8, 74.1, 68.6, 56.3, 33.9, 26.1, 25.7, 18.9, 17.7; IR (thin film): 3304, 2923, 2116,
 for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$204.1514; found: 204.1510.

General Procedure D: Formation of TMS-alkyne heteroatom-tethered allene-ynes

4,8-Dimethyl- N -(3-(trimethylsilyl)prop-2-ynyl)- N -tosylnona-2,3,7-trien-1-amine (180). A 5mL , single-necked round-bottomed flask equipped with a rubber septum, nitrogen inlet, and stir bar is charged with N-tosylallene-yne $183(27 \mathrm{mg}, 0.08 \mathrm{mmol})$ and THF (0.6 mL). The reaction flask is cooled to $-78{ }^{\circ} \mathrm{C}$ with a dry ice -acetone bath and n-butyllithium ($61 \mu \mathrm{~L}$ of a 1.6 M hexane soln, 0.1 mmol) is added dropwise via syringe. After 30 min , chlorotrimethylsilane (TMSCl, $19 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) is added via syringe. The reaction is allowed to slowly warm to rt at which time consumption of starting material is observed by TLC analysis. The reaction mixture is transferred into a separatory funnel containing sat'd aq $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, are dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-10 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford $\mathbf{1 8 0}$ (23 mg in 71% yield) as a light yellow oil. $\mathrm{R}_{f} 0.8$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 5.09(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~A}$ of an $\mathrm{ABq}, J=19.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15 (B of an ABq, $J=19.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.97-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.5,143.3,136.1,131.9,129.5$ (2C), 127.7 (2C), 123.9, 101.2, 97.8, 90.7, 85.3, 46.6, 36.5, 33.8, 26.0, 25.7, 21.5, 19.0, 17.8, -0.5 (3C); IR (thin film): 2961, 2178, 1965, $845 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 429 (54, M ${ }^{+}$), 294 (100), 274 (99), 91 (99); EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{SiS}: m / z\left(\mathrm{M}^{+}\right)$429.2158; found: 429.2141.

(3-(4,8-Dimethylnona-2,3,7-trienyloxy)prop-1-ynyl)trimethylsilane (184). Prepared according to General Procedure D using: allene-yne 187 ($32 \mathrm{mg}, 0.16 \mathrm{mmol}$), n-butyllithium (0.13 mL of a 1.6 M hexane soln, 0.20 mmol$)$, $\mathrm{TMSCl}(40 \mu \mathrm{~L}, 0.31 \mathrm{mmol})$ in THF (1.3 mL). Yield 184 (21 $\mathrm{mg}, 49 \%) . \mathrm{R}_{f} 0.9$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.19-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.17$ (s, 2H), 4.05 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.70 ($\mathrm{s}, 3 \mathrm{H}$), 1.61 ($\mathrm{s}, 3 \mathrm{H}$), 0.18 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.1,131.8,124.0$, 101.6, 100.3, 91.1, 87.0, 68.7, 57.2, 33.9, 26.1, 25.7, 19.0, 17.7, -0.2 (3C); IR (thin film): 2924, 2174, 1965, $844 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 276 (10, M^{+}), 261 (46), 203 (89), 111 (100); EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{OSi}$: $\mathrm{m} / \mathrm{z}\left(\mathrm{M}-\mathrm{CH}_{3}\right)$ 261.1675; found: 261.1670.

General Procedure E: Rh(I)-catalyzed allenic carbocyclization reaction.

(4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-((trimethylsilyl)methylene)cyclohexen-2-ol (188). A flame-dried $13 \times 100 \mathrm{~mm}$ test tube equipped with a stir bar, rubber septum, and argon balloon is
charged with allene-yne $162(16 \mathrm{mg}, 0.06 \mathrm{mmol})$ and toluene (1 mL). Argon is bubbled through the solution using a balloon filled with argon attached to a syringe before $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 6$ $\mu \mathrm{mol})$ is added in one portion. Upon completion of the reaction based upon TLC analysis, the solution is directly subjected to silica gel chromatography eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give 13.5 mg of cross-conjugated triene 188 in 84% yield. $\mathrm{R}_{f} 0.3$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 5.66$ (d, $\left.J=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.10$ (tt, $\left.J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 5.01-4.98 (m, 1H), $4.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{tdd}, J=7.0,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (ddd, $J=$ $14.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dddd, $J=14.5,10.0,3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.14 (m, 2H), 2.08-2.00 (m, 3H), 1.70 (tdd, $J=13.0,13.0,7.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (s, 3H), 1.59 (s, 3H), 1.46 (d, $J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 0.13 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.3,149.2,145.2,131.6,128.9,127.3$, 124.0, 113.8, 66.3, 36.2, 32.9, 28.0, 26.8, 25.7, 17.7, 0.0 (3C); IR (thin film): 3338, 2954, 1576, $1248 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 290 (34, M^{+}), 272 (11), 131 (91), 73 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$290.2066; found: 290.2058.

((4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-(trimethylsilyl)methylene))cyclohex-2-enyl oxy-tert-butyldimethylsilane (189). Prepared according to General Procedure E using: 169 (26 mg, $0.06 \mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 6 \mu \mathrm{~mol})$. Yield 189 (24 mg, 92\%). $\mathrm{R}_{f} 0.9$ (5\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.55$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.42 (s, 1H), 5.11 (tt, $J=6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (ddd, $J=7.8,4.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60$ (ddd, $J=14.6,6.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (dddd, $J=14.6,11.1,3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.12 (m, 2H), 2.09-2.00 (m, 2H), 2.00-1.89 (m, 1H), 1.74-1.64 (m, 1H), 1.69 (s, 3H), 1.59 (s, 3H),
0.91 (s, 9H), 0.12 (s, 9H), $0.09(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7,149.6,143.8$, 131.6, 130.9, 126.0, 124.2, 113.5, 67.4, 36.2, 33.4, 28.6, 26.8, 25.9 (3C), 25.7, 18.2, 17.7, 0.1 (3C), -4.5 (2C); IR (thin film): 2954, 1577, 1250, $1091 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 404 (48, M ${ }^{+}$), 331 (7), 131 (18), 73 (100); EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{OSi}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$404.2931; found: 404.2936.

((4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-(trimethylsilyl)methylene))cyclohex-2-enyl acetate (191). Prepared according to General Procedure E using: 170 (19 mg, 0.06 mmol), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ ($2 \mathrm{mg}, 6 \mu \mathrm{~mol}$). Yield 191 (16 mg, 84\%). $\mathrm{R}_{f} 0.5$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.60(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.39(\mathrm{td}, J=5.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{tt}, J=6.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dt}, J=2.1,1.2, \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=13.7,8.7,3.6$ Hz, 1H), 2.41 (dddd, $J=13.7,8.4,3.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-2.13 (m, 2H), 2.07 (s, 3H), 2.08-1.96 (m, 3H), 1.81 (dddd, $J=15.3,9.0,6.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (d, $J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.59$ (s, 3H), 0.13 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 170.8,149.0,148.7,146.9,131.7,128.2,124.3,124.0$, 114.1, 68.7, 36.1, 29.2, 27.9, 26.8, 25.7, 21.4, 17.7, 0.0 (3C); IR (thin film): 2955, 1738, 1579, 1237, $863 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 332 (22, M^{+}), 273 (9), 203 (22), 73 (100); EI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$332.2172; found: 332.2171.

((4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-(trimethylsilyl)methylene))cyclohex-2-enyl pivalate (193). Prepared according to General Procedure E using: 171 (20 mg, 0.05 mmol$),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ ($2 \mathrm{mg}, 5 \mu \mathrm{~mol}$). Yield 193 (15 mg, 75\%). $\mathrm{R}_{f} 0.8$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.59(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{app} \mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{tt}, J=6.9$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dt}, J=2.4,1.2, \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=13.7,8.7,3.6$ Hz, 1H), 2.42 (dddd, $J=13.7,9.6,3.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-2.13 (m, 2H), 2.10-1.95 (m, 3H), 1.80 (dddd, $J=14.4,9.0,5.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): δ 178.1, 149.2, 148.9, 146.7, 131.7, 128.0, 124.5, 124.0, 114.0, 68.2 , 38.8, 36.2, 29.2, 27.9, 27.1 (3C), 26.8, 25.7, 17.7, 0.0 (3C); IR (thin film): 2958, 1727, 1579, 1153, $863 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 381 (6), 397 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$); ESI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{NaSi}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 397.2539$; found: 397.2541.

(4E)-4-Benzylidene-3-(6-methylhepta-1,5-dien-2-yl)cyclohex-2-enol (195), (4E)-4-benzylid-ene-3-(6-methylhepta-2,5-dien-2-yl)cyclohex-2-enol (E/Z-196). Prepared according to General Procedure E using: 172 ($16 \mathrm{mg}, 0.05 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 5 \mu \mathrm{~mol})$. Combined yield 195 and E/Z-196 (14 mg, 88\%). The isomeric ratio of 195:E/Z-196 was determined by integration of the resonances at 4.98 ppm and 5.39 ppm in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f} 0.4$ (15% EtOAc/toluene); ${ }^{1} \mathrm{H}$

NMR (300 MHz, CDCl_{3}) *designates isomers E/Z-196 where resolved: δ 7.41-7.18 (m, 5 H), $6.49(\mathrm{~s}, 1 \mathrm{H}), 6.43^{*}(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.65^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.39^{*}(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 1H), $5.18 *(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=2.1$ Hz, 1H), 4.40 (ddd, $J=10.8,6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (ddd, $J=14.6,6.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ (dddd, $J=14.6,9.6,3.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{dtd}, J=12.6,8.4,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.1,144.4,137.7,135.1,131.7,129.3,129.1$ (2C), 128.1 (2C), 127.8, 126.6, 124.0, 114.2, 66.2, 36.4, 32.4, 26.8, 25.7, 24.0, 17.7; IR (thin film): 3332, 2923, 1606, $1071 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 294 (19, M^{+}), 225 (39), 91 (100), 77 (30); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}: m / z$ $\left(\mathrm{M}^{+}\right)$294.1984; found: 294.1983.

4-Methylene-3-(6-methylhepta-1,5-dien-2-yl)cyclohex-2-enol (197), 4-Methylene-3-(6-meth-

 ylhepta-2,5-dien-2-yl)cyclohex-2-enol (E/Z-198). Prepared according to General Procedure E using: 173 ($19 \mathrm{mg}, 0.09 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(3 \mathrm{mg}, 9 \mu \mathrm{~mol})$. Combined yield of 197 and $E / Z-$ 198 (6 mg, 32\%). The isomeric ratio of 197:E/Z-198 was determined by integration of the three peaks in the GC chromatogram at retention times $5.6 \mathrm{~min}, 5.8 \mathrm{~min}$, and $6.1 \mathrm{~min}(E / Z-\mathbf{1 9 8} \mathbf{: ~} \mathbf{1 9 7}$: E/Z-198). $\mathrm{R}_{f} 0.3$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ *designates isomers E/Z198 where resolved: $\delta 5.65$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63^{*}(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.58^{*}$ (s, 1H), $5.36-$ 5.26* (m, 1H), 5.18-5.03 (m, 1H), 5.03-4.98 (m, 1H), $4.96(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42-4.30 (m, 1H), 2.77* (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.60-2.44 (m, 1H), 2.42-2.26 (m, 1H), 2.25-2.18 (m, 2H), 2.10-1.94 (m, 3H), 1.80* (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.78^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.71^{*}(\mathrm{~s}$,3H), 1.68 (s, 3H), 1.65* (s, 3H), $1.60(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers E/Z-198 where resolved: $\delta 148.6,143.1,141.5,128.9,128.1^{*}, 127.9^{*}, 126.4,124.0,123.0^{*}$, 122.5*, 113.7, 112.5, 112.3*, 66.6*, 66.5, 36.2, 32.9*, 32.8, 28.9, 28.4*, 27.2*, 26.8, 25.7, 24.5*, 17.7, 16.9*; IR (thin film): 3332, 2923, 1598, $1052 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 218 (18, $\mathrm{M}^{+\cdot}$), 200 (19), 149 (57), 131 (100); EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$218.1671; found: 218.1665.

(5E)-Diethyl 4-(6-methylhepta-1,5-dien-2-yl)-5-((trimethylsilyl)methylene))cyclohex-3-ene-1,1-dicarboxylate (199). Prepared according to General Procedure E using: 176 (13.5 mg, 0.03 mmol), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(1 \mathrm{mg}, 3 \mu \mathrm{~mol})$. Yield 199 (10 mg, 74\%). $\mathrm{R}_{f} 0.5$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.61(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{tt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.96 (dt, $J=2.4,0.9, \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.12(\mathrm{~m}, 4 \mathrm{H}), 2.97(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.70(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 170.9(2 \mathrm{C})$, 149.6, 145.5, 142.9, 131.5, 128.0, 124.1 (2C), 113.7, 61.4 (2C), 54.3, 36.5, 35.8, 31.4, 25.7, 17.7, 14.0 (2C), 0.0 (3C); IR (thin film): 2959, 1736, 1246, $860 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 418 (18, M^{+}), 345 (26), 73 (100); EI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$418.2539; found: 418.2534.

(5E)-Diethyl 5-benzylidene-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-3-ene-1,1-dicarboxylate (201), (5E)-diethyl 5-benzylidene-4-(6-methylhepta-2,5-dien-2-yl)cyclohex-3-ene-1,1dicarboxylate (E/Z-202). Prepared according to General Procedure E using: 177 (18 mg, 0.04 $\mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 4 \mu \mathrm{~mol})$. Combined yield of 201 and $E / Z-202(13 \mathrm{mg}, 72 \%)$. The isomeric ratio of 201:E/Z-202 was determined by integration of the three peaks in the GC chromatogram at retention times $14.7 \mathrm{~min}, 16.6 \mathrm{~min}$, and $17.6 \mathrm{~min}(E / Z-202: 201: E / Z-202) . \mathrm{R}_{f}$ 0.4 (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers E/Z-202 where resolved: $\delta 7.38-7.18$ (m, 5H), $6.51(\mathrm{~s}, 1 \mathrm{H}), 6.49 *(\mathrm{~s}, 1 \mathrm{H}), 6.44^{*}(\mathrm{~s}, 1 \mathrm{H}), 5.67$ (t, J = $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.60* (t, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.29^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.16^{*}(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{tt}, J=6.9,1.2$ Hz, 1H), 5.03 (dt, $J=2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.16$ (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14^{*}$ (d, $\left.J=1.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.76$ (d, $\left.J=4.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.73^{*}(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.57* (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{appq} \mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82^{*}(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, 3H), 1.79* (s, 3H), 1.71* (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.68$ (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.67 *(\mathrm{~s}, 3 \mathrm{H}), 1.60$ (s, 3H), 1.13 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 170.9$ (2C), 149.3, 142.0, 137.5, 132.0, 131.6, 129.0 (2C), 128.6, 128.1 (2C), 126.5, 124.1, 124.0, 114.2, 61.4 (2C), 54.2, 36.4, 31.6, 31.5, 26.8, 25.7, 17.7, 13.9 (2C); IR (thin film): 2921, 1734, 1246, $1060 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 422 (23, M^{+}), 353 (100), 349 (21), 69 (70); EI-HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 422.2457; found: 422.2451.

(5E)-Diethyl 5-ethylidene-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-3-ene-1,1-dicarboxylate (203), (5E)-diethyl 5-ethylidene-4-(6-methylhepta-2,5-dien-2-yl)cyclohex-3-ene-1,1-dicarboxylate (E/Z-204). Prepared according to General Procedure E using: 178 ($25 \mathrm{mg}, 0.07 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(3 \mathrm{mg}, 7 \mu \mathrm{~mol})$. Combined yield of 203 and $E / Z-204(18 \mathrm{mg}, 72 \%)$. The isomeric ratio of 203:E/Z-204 was determined by integration of the three peaks in the GC chromatogram at retention times $8.6 \mathrm{~min}, 8.9 \mathrm{~min}$, and $9.2 \mathrm{~min}(E / Z-204: 203: E / Z-204) . \mathrm{R}_{f} 0.4$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers $E / Z-204$ where resolved: δ 5.54 (q, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37^{*}(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.18^{*}(\mathrm{~m}, 1 \mathrm{H})$, 5.12* (tt, $J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{tt}, J=6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dt}, J=2.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.12(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{~s}, 2 \mathrm{H}), 2.84^{*}(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.67* (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48^{*}(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.92$ (m, 2H), 1.73 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.67 (s, 3H), 1.64* (s, 3H), 1.62* (s, 3H), 1.58 (s, 3H), 1.24 (t, J = 7.2 Hz, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2$ (2C), 149.5, 141.9, 131.5, 131.0, 124.2, 123.4, 121.0, 113.4, 61.3 (2C), 54.1, 36.3, 31.3, 30.7, 26.8, 25.7, 17.7, 14.0 (2C), 13.3; IR (thin film): 2978, 1735, 1444, $1245 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 360 (18, M^{+}), 291 (78), 287 (32), 217 (100), 145 (47); EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right) 360.2301$; found: 360.2307 .

Diethyl 5-methylene-4-(6-methylhepta-1,5-dien-2-yl)cyclohex-3-ene-1,1-dicarboxylate (205), diethyl 5-methylene-4-(6-methylhepta-2,5-dien-2-yl)cyclohex-3-ene-1,1-dicarboxylate (E/Z206). Prepared according to General Procedure E using: 179 ($31 \mathrm{mg}, 0.09 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ ($4 \mathrm{mg}, 9 \mu \mathrm{~mol}$). Combined yield of 205 and $E / Z-206$ ($9 \mathrm{mg}, 29 \%$). The isomeric ratio of 205: E/Z-206 was determined by integration of the three peaks in the GC chromatogram at retention times $8.2 \mathrm{~min}, 8.4 \mathrm{~min}$, and $8.8 \mathrm{~min}\left(E / Z-206\right.$: 205 : E/Z-206). $\mathrm{R}_{f} 0.5$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) *designates isomers $E / Z-206$ where resolved: $\delta 5.59(\mathrm{t}, J=3.3 \mathrm{~Hz}$, 1H), $5.56 *(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.52^{*}(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.33^{*}(\mathrm{~m}, 1 \mathrm{H}), 5.12 *(\mathrm{tt}, J=6.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (tt, $J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (s, 1H), 4.98-4.95 (m, 2H), 4.95-4.93* (m, 2H), 4.93-4.90* (m, 2H), $4.84(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{~s}, 2 \mathrm{H}), 2.87^{*}(\mathrm{~s}, 2 \mathrm{H}), 2.72$ (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69^{*}(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.80^{*}(\mathrm{~s}$, 3H), 1.75* (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.73^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.70^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.68$ (s, 3H), 1.64* (s, 3H), 1.59 (s, 3H) $1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers E/Z-206 where resolved: $\delta 170.9^{*}(2 \mathrm{C}), 170.8(2 \mathrm{C}), 148.7,143.3^{*}, 140.6,138.4^{*}, 135.0^{*}, 131.5,127.8,126.9^{*}$, 124.1, 123.9*, 123.0, 122.7*, 113.7, 113.6, 113.5*, 61.4 (2C), 61.3* (2C), 54.2, 37.3*, 37.2, 36.3, 31.6, 27.2*, 26.8, 25.7, 17.7, 16.8*, 14.0 (2C); IR (thin film): 2978, 1735, 1444, 1244 cm^{-1}; EI-MS m/z (\%) 346 (39, M^{+}), 277 (42), 273 (100), 203 (81); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$346.2144; found: 346.2142.

(3Z)-1,2,3,6-Tetrahydro-4-(6-methylhepta-1,5-dien-2-yl)-3-((trimethylsilyl)methylene)-1-tosylpyridine (211). Prepared according to General Procedure E using: 180 ($19 \mathrm{mg}, 0.04 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 4 \mu \mathrm{~mol})$. Yield of $211(12 \mathrm{mg}, 63 \%) . \mathrm{R}_{f} 0.5$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$): $\delta 7.68(\mathrm{~d}, ~ J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{t}, \mathrm{J}=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 1.55$ (s, 3H), $0.20(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}): $\delta 147.9,143.5,143.1,142.0,133.8,131.7$, 129.6 (2C), 128.6, 127.7 (2C), 123.8, 121.4, 114.6, 48.1, 45.2, 35.9, 26.6, 25.6, 21.5, 17.7, 0.0 (3C); IR (thin film): 2921, 1595, 1165, $866 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 453 (3), 452 (100, [M+Na] $]^{+}$; ESI-HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{NaSiS}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 452.2055$; found: 452.2068.

(3Z)-3-Benzylidene-1,2,3,6-tetrahydro-4-(6-methylhepta-1,5-dien-2-yl)-1-tosylpyridine (214), (3Z)-3-benzylidene-1,2,3,6-tetrahydro-4-(6-methylhepta-2,5-dien-2-yl)-1-
tosylpyridine (E/Z-215). Prepared according to General Procedure E using: 181 (16 mg, 0.04 $\mathrm{mmol}),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(2 \mathrm{mg}, 4 \mu \mathrm{~mol})\right.$. Combined yield of 214 and $E / \mathrm{Z}-215(9 \mathrm{mg}, 56 \%)$. The isomeric ratio of 214:E/Z-215 was determined by integration of the resonances at 6.40 ppm and 6.32 ppm in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{\mathrm{f}} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
designates isomers E/Z-215 where resolved: $\delta 7.58^{}(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), 7.43-7.36 (m, 2H), 7.32-7.21 (m, 3H), 7.18 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.32 *(\mathrm{~s}, 1 \mathrm{H})$, $5.51(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.48^{*}(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32^{*}(\mathrm{tq}, J=7.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10^{*}(\mathrm{tt}, J=$ 7.2, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=2.1,0.9, \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (d, $J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94^{*}(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73^{*}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.42 (s, 3H), 2.40* (s, 3H), 2.36* (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.93$ (m, 2H), 1.72* (d, $J=0.9, \mathrm{~Hz}, 3 \mathrm{H}), 1.69^{*}(\mathrm{~d}, J=1.2, \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=0.9, \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.8,143.4,141.1,136.2,134.5,131.8,129.4$ (2C), 129.3, 128.9 (2C), 128.7, 128.5 (2C), 127.4 (2C), 127.3, 123.7, 121.4, 114.8, 45.3, 44.6, 36.0, 26.7, 25.7, 21.5, 17.7; IR (thin film): 2920, 1633, 1349, $1163 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 433 (30, $\mathrm{M}^{+\cdot}$), 278 (68), 91 (97), 69 (100); EI-HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$433.2076; found: 433.2069.

182

217

EIZ-218
(3Z)-3-Ethylidene-1,2,3,6-tetrahydro-4-(6-methylhepta-1,5-dien-2-yl)-1-tosylpyridine (217), (3Z)-3-ethylidene-1,2,3,6-tetrahydro-4-(6-methylhepta-2,5-dien-2-yl)-1-tosylpyridine (E/Z-218). Prepared according to General Procedure E using: 182 ($22 \mathrm{mg}, 0.06 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 6 \mu \mathrm{~mol})$. Combined yield of 217 and $\mathrm{E} / \mathrm{Z}-218$ (14 mg, 64\%). The isomeric ratio of 217:E/Z-218 was determined by integration of the resonances at $5.32 \mathrm{ppm}, 5.29 \mathrm{ppm}$, and 5.28 ppm in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f} 0.7$ (15% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers E/Z-218 where resolved: 7.68 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67 *(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.47$ (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39^{*}(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{t}, J=3.5 \mathrm{~Hz}$, 1H), 5.29* (t, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28^{*}(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22^{*}(\mathrm{tq}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09^{*}(\mathrm{tt}$,
$J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07^{*}(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dt}, J=$ $2.5,1.0, \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.80^{*}(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68^{*}(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.43^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.42$ (s, 3H), 2.41* (s, 3H), 2.32* (t, J = 7.5 Hz, 2H), 2.04-1.98 (m, 2H), 1.96-1.89 (m, 2H), 1.74 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.70^{*}$ (d, $J=1.0 \mathrm{~Hz}$, 3H), 1.68* (s, 3H), 1.67* (s, 3H), 1.65 (d, $J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.63^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.61^{*}(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 3H), 1.60* (s, 3H), $1.55(\mathrm{~s} \mathrm{3H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0,143.4,140.8,134.2,131.7$, 129.4 (2C), 128.8, 127.7 (2C), 123.8, 123.6, 118.7, 114.1, 45.1, 43.7, 36.0, 26.6, 25.7, 21.5, 17.7, 13.3; IR (thin film): 2919, 1597, 1348, $1161 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 394 (100, [M+Na] ${ }^{+}$), 386 (57); ESI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{NaS}: ~ m / z[\mathrm{M}+\mathrm{Na}]^{+}$394.1817; found: 394.1844.

1,2,3,6-Tetrahydro-3-methlyene-4-(6-methylhepta-1,5-dien-2-yl)-1-tosylpyridine (220),

1,2,3,6-Tetrahydro-3-methlyene-4-(6-methylhepta-2,5-dien-2-yl)-1-tosylpyridine (E/Z-221).

Prepared according to General Procedure E using: 183 (22 mg, 0.06 mmol$),\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}$, $6 \mu \mathrm{~mol}$). Combined yield of 220 and E/Z-221 (8 mg in 36% yield, product contains inseparable impurities). The isomeric ratio of 220:E/Z-221 was determined by integration of the resonances at $2.70 \mathrm{ppm}, 2.35 \mathrm{ppm}$, and 2.11-2.03 in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f} 0.5$ (5% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) *designates isomers $E / Z-221$ where resolved: $\delta 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.68* (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.67* (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29^{*}(\mathrm{~d}, J=8.1$ Hz, 2H), 7.28* (d, J = 7.8 Hz, 2H), 5.49-5.46* (m, 1H), 5.46-5.41 (m, 1H), 5.12-5.02 (m, 1H), 5.03-4.98 (m, 2H), 4.95 (dt, $J=2.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.90^{*}(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.87-3.84 (m, 2H), 3.83* (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 (d, $J=3.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.70* (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$),
2.45* (s, 3H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.35^{*}(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.70^{*}(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.65^{*}(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, minor inseparable impurities (by column chromatography): 5.31-5.28 (m, 0.4 H$), 4.72(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1.1 \mathrm{H}), 4.16$ (dq, $J=14.1,1.8 \mathrm{~Hz}, 1.4 \mathrm{H}$), $3.92(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1.3 \mathrm{H}), 3.66$ (app t, $J=9.6 \mathrm{~Hz}, 1.6 \mathrm{H}$), 3.15 (app $\mathrm{t}, J=9.6 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 2.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) *$ designates isomers $E / Z-$ 221 where resolved: $\delta 146.6,143.6,143.5^{*}, 143.4^{*}, 139.8,136.1,133.9^{*}, 133.2,133.0^{*}, 132.5^{*}$, 132.0*, 131.8, 129.6 (2C), 129.5* (2C), 129.5* (2C), 127.9* (2C), 127.8* (2C), 127.7 (2C), 123.7, 122.3*, 121.6*, 120.8*, 114.4, 113.4*, 113.2, 49.5, 49.4*, 45.5, 45.4*, 35.9, 35.7*, 30.5, 27.2*, 26.0*, 25.6, 21.5, 21.4*, 17.7; IR (thin film): 2959, 1597, 1348, $1163 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 357 (62, $\mathrm{M}^{+\cdot}$), 288 (34), 202 (61), 91 (100); EI-HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 357.1763; found: 357.1777.

Trimethyl((1Z)-(4-(6-methylhepta-1,5-dien-2-yl)-2H-pyran-3(6H)-ylidene)methyl)silane

(223). Prepared according to General Procedure E using: 184 (14 mg, 0.05 mmol), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}$ ($2 \mathrm{mg}, 5 \mu \mathrm{~mol}$). Yield of 223 ($8.5 \mathrm{mg}, 61 \%$). $\mathrm{R}_{f} 0.5$ ($5 \% \mathrm{EtOAc} /$ toluene); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.68(\mathrm{td}, J=3.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{tt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03 (dt, $J=2.4,1.5, \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ (dd, $J=$ 3.0, $0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23-2.14 (m, 2H), 2.11-2.00 (m, 2H), 1.69 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.60 (s, 3H), 0.14 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0,145.8,140.7,131.7,125.4,125.0,124.0$, 114.3, 68.5, 65.8, 36.1, 26.8, 25.7, 17.7, 0.2 (3C); IR (thin film): 2926, 1583, 1249, $864 \mathrm{~cm}^{-1}$; EI-

MS m/z (\%) 276 (22, M^{+}), 261 (14), 207 (78), 75 (100); EI-HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OSi}: m / z$ $\left(\mathrm{M}^{+\cdot}\right)$ 276.1909; found: 276.1901 .

(3Z)-3-Benzylidene-3,6-dihydro-4-(6-methylhepta-1,5-dien-2-yl)-2H-pyran (226),
(3Z)-3-Benzylidene-3,6-dihydro-4-(6-methylhepta-2,5-dien-2-yl)-2H-pyran (E/Z-227). Prepared according to General Procedure E using: 185 ($15 \mathrm{mg}, 0.05 \mathrm{~mol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 5$ $\mu \mathrm{mol})$. Combined yield of 226 and $E / Z-227$ ($9 \mathrm{mg}, 60 \%$). The isomeric ratio of 226:E/Z-227 was determined by integration of the three peaks in the GC chromatogram at retention times 8.5 min , 8.9 min , and 9.3 min (E/Z-227:226:E/Z-227). $\mathrm{R}_{f} 0.5$ (5\% EtOAc/toluene); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ *designates isomers $E / \mathrm{Z}-227$ where resolved: $\delta 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}$, 1H), 7.14 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.45^{*}(\mathrm{~s}, 1 \mathrm{H}), 6.43^{*}(\mathrm{~s}, 1 \mathrm{H}), 5.73(\mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.68* (t, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.44^{*}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{tt}, J=6.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.09(\mathrm{~m}$, 1H), 5.02 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58^{*}(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.33$ (d, $J=3.0$ Hz, 2H), 4.30* (d, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.83^{*}(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.68^{*}$ (t, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.34-2.25$ (m, 2H), 2.18-2.07 (m, 2H), 1.89* (s, 3H), 1.86* (s, 3H), 1.73* (s, 3H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$ 1.60* (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.0,139.6,136.7,132.4,131.8,129.1$ (2C), 128.2 (2C), 126.9, 126.2, 124.9, 123.9, 114.6, 65.8, 65.2, 36.2, 26.8, 25.7, 17.8; IR (thin film): 2923, 1444, $1121 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 280 (25, M ${ }^{+}$), 211 (18), 91 (100), 69 (59); EI-HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 280.1827; found: 280.1835 .

(3Z)-3-Ethylidene-3,6-dihydro-4-(6-methylhepta-1,5-dien-2-yl)-2H-pyran (229), (3Z)-3-Ethylidene-3,6-dihydro-4-(6-methylhepta-2,5-dien-2-yl)-2H-pyran (E/Z-230). Prepared according to General Procedure E using: 186 (22 mg, 0.10 mmol), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(4 \mathrm{mg}, 10$ $\mu \mathrm{mol})$. Combined yield of 229 and $E / Z-230$ ($9 \mathrm{mg}, 41 \%$). The isomeric ratio of 229:E/Z-230 was determined by integration of the three peaks in the GC chromatogram at retention times 5.3 min , 5.6 min , and $5.9 \mathrm{~min}(E / Z-230: 229: E / Z-230) . \mathrm{R}_{f} 0.7$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ *designates isomers $E / Z-230$ where resolved: $\delta 5.53(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46^{*}(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43^{*}(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42^{*}(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.34-5.29* (m, 1H), 5.14* (tt, $J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05^{*}(\mathrm{tt}, J=$ 7.0, 1.5 Hz, 1H), $5.00(\mathrm{dt}, J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.35^{*}(\mathrm{~s}$, 2H), 4.25 (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23^{*}(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77^{*}(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.58^{*}(\mathrm{t}, J=$ 7.0 Hz, 2H), 2.21-2.17 (m, 2H), 2.09-2.03 (m, 2H), 1.79* (q, J = $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.75^{*}(\mathrm{~m}$, $3 \mathrm{H}), 1.71^{*}(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.61^{*}(\mathrm{~s}, 3 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.58^{*}(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 148.2,139.4,131.6,131.2,124.0$, 122.2, 120.8, 113.8, 65.8, 64.4, 36.2, 26.8, 25.7, 17.7, 12.8; IR (thin film): 2918, 1448, 1129 cm^{-1}; EI-MS m/z (\%) 218 (20, $\mathrm{M}^{+\cdot}$), 189 (24), 69 (100); EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 218.1671; found: 218.1670.

232

EIZ-233

3,6-Dihydro-3-methylene-4-(6-methylhepta-1,5-dien-2-yl)-2H-pyran (232), 3,6-dihydro-3-methylene-4-(6-methylhepta-2,5-dien-2-yl)-2H-pyran (E/Z-233). Prepared according to General Procedure E using: 187 ($34 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(6 \mathrm{mg}, 16 \mu \mathrm{~mol})$. Combined yield of 232 and E/Z-233 (7 mg in 21\% yield, product contains inseparable impurities). The isomeric ratio of 232 : E/Z-233 was determined by integration of the resonances at 5.68-5.64 ppm, 5.64-5.62 ppm, and 5.61-5.58 ppm in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f} 0.5$ ($5 \% \mathrm{EtOAc} /$ toluene); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates isomers $\mathrm{E} / \mathrm{Z}-233$ where resolved: $\delta 5.68-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.64-$ 5.62* (m, 1H), 5.61-5.58* (m, 1H), 5.37* (tq, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35^{*}(\mathrm{tq}, J=7.5,1.5 \mathrm{~Hz}$, 1H), 5.14* (tt, $J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (tt, $J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05^{*}(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.03 (dt, $J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.89^{*}(\mathrm{~m}$, 2H), 4.30 (d, $J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28^{*}(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.23^{*}(\mathrm{~s}, 2 \mathrm{H}), 2.78 *(\mathrm{t}, J=$ 7.0 Hz, 2H), 2.59* (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.21$ (m, 2H), 2.10-2.04 (m, 2H), 1.83* (s, 3H), $1.72^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.66^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59^{*}(\mathrm{~s}, 3 \mathrm{H})$, minor inseparable impurities (by column chromatography): 4.54 (A of an $\mathrm{ABq}, \mathrm{q}, J=13.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.48 (B of an $\mathrm{ABq}, \mathrm{q}, J=13.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{dd}, J=9.0,7.5$ $\mathrm{Hz}, 2 \mathrm{H}), \quad 2.50-2.44(\mathrm{~m}, 4.5 \mathrm{H}), 2.31(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 4.4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ *designates isomers E/Z-233 where resolved: δ 150.5, 147.3, 140.9*, 138.6, 138.5*, 138.4*, 133.2, 132.0*, 131.7*, 128.4*, 125.1*, 125.0, 124.1*, 123.9, 122.5*, 114.1, 110.3, 110.1*, 69.9*, 69.8, 66.2, 66.1*, 36.0, 27.3*, 26.8, 25.7, 25.6*, 24.2, 17.8*, 17.7; IR (thin film): 2917, 1453,
$1129 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 204 (65, M^{+}), 189 (23), 135 (48), 107 (100); EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$204.1514; found: 204.1511.

3a,4-Dihydro-6-methyl-4-(6-methylhepta-5-en-2-ylidene)-1H-cyclopenta[c]furan-5-(3H)-

 one (231). A flame-dried $13 \times 100 \mathrm{~mm}$ test tube equipped with a stir bar and rubber septum is charged with allene-yne $\mathbf{1 8 6}(26 \mathrm{mg}, 0.12 \mathrm{mmol})$ and toluene $(1.2 \mathrm{~mL})$. The test tube is then evacuated under vacuum by insertion of an 18 gauge needle into the septum and charged three times with $\mathrm{CO}(\mathrm{g})$ from a balloon. To the allene-yne solution is then added $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(5 \mathrm{mg}$, $12 \mu \mathrm{~mol}$) in one portion and the test tube is evacuated and refilled with CO again (3X). The test tube is placed in a preheated $90^{\circ} \mathrm{C}$ oil bath and is stirred under a balloon of CO. After 30 min , consumption of $\mathbf{1 8 6}$ is observed by TLC. The reaction is cooled to rt and is directly subjected to silica gel chromatography eluting with $5-30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give 19 mg of α-alkylidene cyclopentenone 231 in 65% yield, d.r. $=1: 1$ based upon integration of the resonances at 5.17 ppm and 5.06 ppm in the ${ }^{1} \mathrm{H}$ NMR. $\mathrm{R}_{f} 0.2$ ($5 \% \mathrm{EtOAc} /$ toluene); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates where minor diastereomer is resolved: $\delta 5.17$ (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 * ($\mathrm{t}, \mathrm{J}=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~A}$ of an $\mathrm{ABq}, J=14.7,1 \mathrm{H}), 4.45(\mathrm{~B}$ of an $\mathrm{ABq}, J=14.7,1 \mathrm{H}), 4.38(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H), 4.33* (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=11.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14^{*}(\mathrm{dd}, J=$ $10.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.30^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}$, 3H), $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.61 *(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates where minor diastereomer is resolved: δ 197.4, 196.6*, 166.7, 166.3*, 151.3*, 150.8, 135.7, 132.8, 132.1*, 130.6*, 130.3, 123.7*, 122.9, 70.6, 70.4*, 64.2*, 64.1, 47.7*, 47.5, 39.1, 32.7, 25.7, 22.9,17.7*, 17.3, 9.5; IR (thin film): 2918, 1683, 1632, $1444 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 246 ($27, \mathrm{M}^{+\cdot}$), 173 (20), 148 (68), 69 (100); EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$246.1620; found: 246.1611.

3a,4-Dihydro-6-methyl-4-(6-methylhepta-5-en-2-ylidene)-1H-cyclopenta[c]furan-5-(3H)one (231), 5,7-diemthyl-5-(4-methylpent-3-enyl)cyclopenta[c]pyran-6(1H,3H,5H)-one (235). A flame-dried $13 \times 100 \mathrm{~mm}$ test tube equipped with a stir bar and rubber septum is charged with $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(4 \mathrm{mg}, 11 \mu \mathrm{~mol})$ and $\mathrm{DCE}(0.3 \mathrm{~mL})$. To the solution is then added $\mathrm{PPh}_{3}(9 \mathrm{mg}, 34$ $\mu \mathrm{mol})$ in DCE $(0.3 \mathrm{~mL})$ dropwise via syringe. The test tube is then evacuated under vacuum by insertion of an 18 gauge needle into the septum and charged three times with $\mathrm{CO}(\mathrm{g})$ from a balloon. After 5 min of stirring, a solution of AgBF_{4} (0.5 mL of a 0.05 M soln in $\mathrm{DCE}, 25 \mu \mathrm{~mol}$) is added dropwise via syringe. The reaction is stirred for an additional 5 min at rt before a solution of allene-yne $\mathbf{1 8 6}(25 \mathrm{mg}, 0.11 \mathrm{mmol})$ in DCE (0.3 mL) is added via syringe. The test tube is placed in a preheated $50^{\circ} \mathrm{C}$ oil bath and is stirred under a balloon of CO. After 1 h of stirring, consumption of $\mathbf{1 8 6}$ is observed by TLC. The reaction is cooled to rt and is directly subjected to silica gel chromatography eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give 6 mg of α alkylidene cyclopentenone 231 in 21% yield, and 6 mg of 4 -alkylidene cyclopentenone 235 in 21% yield. Spectral data for α-alkylidene cyclopentenone 231 matched that from above. 4alkylidene cyclopentenone 235: $\mathrm{R}_{f} 0.3$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4alkylidene cyclopentenone 235 (contaminated with trace amount of 231): $\delta 5.87(\mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02-4.94(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.86-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H})$, 1.75 ($\mathrm{s}, 3 \mathrm{H}$), $1.63(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.7,156.7$, 142.7,
131.7, 130.9, 124.1, 118.6, 64.9, 63.6, 47.7, 37.3, 25.6, 23.4, 22.8, 17.6, 7.8; IR (thin film): 2920, 1701, 1631, $1126 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 246 (50, M ${ }^{+}$), 164 (51), 117 (100), 69 (70); EI-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$246.1620; found: 246.1612.

(4E)-3-(6-Methylhepta-2,5-dien-2-yl)-4-((trimethylsilyl)methylene)cyclohexen-2-ol (E/Z-161), (4E)-3-(6-Methylhepta-1,5-dien-2-yl)-4-((trimethylsilyl)methylene)cyclohexen-2ol (188). A flame-dried $13 \times 100 \mathrm{~mm}$ test tube equipped with a stir bar, rubber septum, and argon balloon is charged with allene-yne 162 ($18 \mathrm{mg}, 0.06 \mathrm{mmol}$) and styrene (1.2 mL). Argon is bubbled through the solution using a balloon filled with argon attached to a syringe before $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(2 \mathrm{mg}, 6 \mu \mathrm{~mol})$ is added in one portion. Upon completion of the reaction as observed by TLC analysis, the solution is directly subjected to silica gel chromatography eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give 14 mg of cross-conjugated trienes $E / Z-\mathbf{1 6 1}$ and $\mathbf{1 8 8}$ in $\mathbf{7 8 \%}$ yield. The isomeric ratio of $E / Z-161$ and 188 was determined by integration of the three peaks in the GC chromatogram at retention times at $6.9 \mathrm{~min}, 7.1 \mathrm{~min}$, and 7.4 min , which correspond to Z-161, 188, and $E-161$, respectively. The E isomer of 161 was separated from the $Z(Z-161)$ and constitutional site isomers (188) using HPLC (Varian Microsorb Dynamax 100-5 Si column, 23 ${ }^{\circ} \mathrm{C}$, isopropanol $/$ hexanes $=1 \%$, flow rate $=3 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$). Isomers $Z-161$ and 188 were inseparable and co-eluted using this method. $\mathrm{R}_{f} 0.3$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) E-161: \delta 5.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{tq}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{tt}, J$ $=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J=14.7,8.1,3.6 \mathrm{~Hz}, 1 \mathrm{H})$,
2.34 (dddd, $J=14.7,10.8,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (ddt, $J=12.6,8.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (d, $J=0.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.72-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 149.5,147.8,135.0,131.9,128.2,127.9,127.1,122.6,66.4,33.0,28.0,27.2$, 25.6, 17.7, 17.0, 0.1 (3C); IR (thin film): 3306, 2920, 1577, $1247 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 290 (39, $\mathrm{M}^{+\cdot}$), 221 (16), 131 (100), 73 (93); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right)$ 290.2066; found: 290.2064. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates where minor isomer $\mathbf{Z}-\mathbf{1 6 1}$ is resolved from 188: $\delta 5.66$ (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60^{*}(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.31^{*}(\mathrm{tq}, J=7.0,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.10(\mathrm{tt}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.05^{*}(\mathrm{tt}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40-2.31 (m, 1H), 2.58 (ddd, $J=14.5,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52^{*}(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2 H), 2.37 (dddd, $J=14.5,10.0,4.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.78 *(\mathrm{~s}$, 3H), 1.71 (ddd, $J=13.5,7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.7^{*}(\mathrm{~s}, 3 \mathrm{H})$, 0.13 (s, 9H).

(4-(2,5-Dihydro-5-methyl-5-(4-methylpent-3-enyl)furan-2-yl)but-1-ynyl)trimethylsilane

(239). A flame-dried $13 \times 100 \mathrm{~mm}$ test tube equipped with a stir bar, rubber septum, and argon balloon is charged with allene-yne 162 ($9 \mathrm{mg}, 0.03 \mathrm{mmol}$) and $\mathrm{MeOH}(0.6 \mathrm{~mL})$. Argon is bubbled through the solution using a balloon filled with argon attached to a syringe before $\left[\mathrm{Rh}(\mathrm{CO})_{2} \mathrm{Cl}\right]_{2}(1 \mathrm{mg}, 3 \mu \mathrm{~mol})$ is added in one portion. Upon completion of the reaction as observed by TLC analysis, the solution is directly subjected to silica gel chromatography eluting with $5 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to give 7 mg of furan 239 in 78% yield as a $1.2: 1$ mixture of diastereomers. $\mathrm{R}_{f} 0.8$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor
diastereomer where resolved: $\delta 5.74$ (dd, $J=6.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72 *(\mathrm{~s}, 2 \mathrm{H}), 5.68$ (dd, $J=6.0$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.87(\mathrm{~m}, 2 \mathrm{H})$, $1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.68^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, 1.27* (s, 3H), $0.15(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: $\delta 134.6^{*}, 134.1,131.4,131.2^{*}, 128.5,128.3^{*}, 124.6,124.5^{*}, 107.3,107.2^{*}, 90.0$, 89.8*, 84.7, 84.6, 83.6*, 41.3*, 41.2, 35.8, 35.5*, 28.1, 26.2*, 25.7, 23.5*, 23.0, 17.6, 16.3*, 16.0, 0.1 (3C); IR (thin film): 2924, 2175, 1456, 842 cm $^{-1}$; EI-MS m/z (\%) 290 (53, $\mathrm{M}^{+\cdot}$), 221 (32), 207 (88), 73 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}: ~ m / z\left(\mathrm{M}^{+}\right)$290.2066; found: 290.2059.

1-(2-Methyl-5-(prop-1-en-2-yl)cyclopent-1-enyl)-6-(trimethylsilyl)hex-5-yn-2-ol (247).

A Biotage microwave 2-5 mL vial is equipped with a stir bar and a solution of allene-yne 162 ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$) in 2.8 mL of DMF. The vial is heated under microwave irradiation in a Biotage Initiator microwave reactor at $225{ }^{\circ} \mathrm{C}$ for 20 min (Absorption level: very high; prestirring: 0; initial power: 0; dynamic deflector optimization: on; stir rate: 600; approximate ramp time 3 min). Consumption of starting material was observed via TLC analysis after the described time. The mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, and filtered via gravity filtration. The filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $2.5-10 \% \mathrm{Et}_{2} \mathrm{O}$ /pentanes to afford 21.5 mg of 247 in 54% yield as approximately a $1: 1$ mixture of separable diastereomers. $\mathrm{R}_{f} 0.6(20 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 4.76-$
$4.69(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{ddd}, J=14.5,8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.38 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dd}, J=9.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=13.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.98$ (m, 1H), $1.97(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(3 \mathrm{H}), 1.58(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.15$ (s, 9H), minor inseparable impurities (by column chromatography): 4.24-4.18 (m, 0.1H), 3.90$3.80(\mathrm{~m}, 0.3 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 0.1 \mathrm{H}), 3.33-3.28(\mathrm{bs}, 0.1 \mathrm{H}), 2.72-2.54(\mathrm{~m}, 1.2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.1,138.0,132.6,111.0,107.1,84.7,68.2,55.7,37.7,35.9,34.7,27.7,18.5$, 16.5, 14.3, 0.1 (3C). $\mathrm{R}_{f} 0.5$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.78-4.71$ (m, $2 H$), 3.91-3.83 (m, 1H), 3.35-3.28 (m, 1H), 2.37 (dd, $J=7.0,3.5,1 \mathrm{H}), 2.36$ (dd, $J=6.5,2.0$, 1H), 2.34-2.30 (m, 2H), 2.27 (dd, $J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (dd, $J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (dtd, $J=13.0,9.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 148.3,136.7,132.7,111.0,107.2$, 85.1, 69.9, 56.9, 37.5, 35.3, 35.1, 27.9, 18.6, 16.6, 14.4, 0.1 (3C); IR (thin film): 3382, 2954, 2174, $843 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 290 (82, M^{+}), 247 (64), 217 (17), 84 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$290.2066; found: 290.2062 .

(E)-6-(6-Methylhepta-1,5-dien-2-yl)-5-((trimethylsilyl)methylene)-7-oxa-bicyclo[4.1.0]hept-an-2-ol (254). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with allylic alcohol 188 ($29 \mathrm{mg}, 0.10 \mathrm{mmol}$), toluene (1 mL), and $4 \AA$ powdered molecular sieves (60 mg). To the flask is added aluminum (III) tertbutoxide ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$) in one portion and the reaction is cooled to $-20^{\circ} \mathrm{C}$. t-Butyl hydrogen peroxide ($48 \mu \mathrm{~L}$ of a 5.5 M decane soln, 0.26 mmol) is then added dropwise with a gas
tight syringe. The reaction is stirred at $-20^{\circ} \mathrm{C}$ for 4 h before being warmed to $0^{\circ} \mathrm{C}$. The reaction is stirred for an additional 3 h at $0^{\circ} \mathrm{C}$ when TLC analysis shows trace amount of crossconjugated triene 188. The reaction is quenched with sat'd aq Rochelle's salt (1.3 mL), is warmed to rt, and is vigorously stirred for 1 h . The reaction mixture is then transferred to a separatory funnel and the aq layer is separated and extracted with EtOAc. The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified on silica gel eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O}$ /pentane to afford 17 mg of epoxide 254 in 56\% yield, 67\% brsm. $\mathrm{R}_{f} 0.2$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 5.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{tt}, J=6.0,1.5 \mathrm{~Hz}), 5.02(\mathrm{~s}$, 1H), 4.06 (dt, $J=6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53$ (ddd, $J=15.0,5.0,3.0 \mathrm{~Hz}$, 1H), 2.14-2.04 (m, 4H), 2.02 (dddd, $J=15.0,13.0,3.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dq}, J=12.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{tdd}, J=13.0,9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.12(9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.3,146.2,132.8,132.1,123.7,112.0,68.0,67.1,64.6,34.0,29.0,28.4,26.3$, 25.7, 17.7, -0.2 (3C); IR (thin film): 3384, 2925, 1609, $1248 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 306 (60, $\mathrm{M}^{+\cdot}$), 237 (46), 179 (55), 129 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+\cdot}\right) 306.2015$; found: 306.2009.

E-161

(5E,7E)-2-Hydroxy-7,11-dimethyl-5-((trimethylsilyl)methylene)-6-oxododeca-7,10-dienal (257). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with $\mathrm{VO}(\mathrm{acac})_{2}(1 \mathrm{mg}, 1 \mu \mathrm{~mol})$ and benzene $(0.2 \mathrm{~mL})$. A solution of
allylic alcohol $E-161(26 \mathrm{mg}, 0.09 \mathrm{mmol})$ in benzene $(0.2 \mathrm{~mL})$ is added to the flask via cannula. The green solution is heated to $40^{\circ} \mathrm{C}$ in an oil bath for 5 min before t-butyl hydrogen peroxide ($21 \mu \mathrm{~L}$ of a $5.0-6.0 \mathrm{M}$ decane soln, $\sim 0.11 \mathrm{mmol}$) is added dropwise with a gas tight syringe. Upon addition of the peroxide, the reaction mixture flashes deep red and becomes orange. After 1 h of stirring at $40^{\circ} \mathrm{C}$ (oil bath temperature), the reaction does not proceed any longer as observed by TLC, and is cooled to rt. The reaction mixture is directly applied to silica gel eluting with $5-30 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford allylic ketone 257 ($8 \mathrm{mg}, 28 \%, 34 \% \mathrm{brsm}$) as a light yellow oil. $\mathrm{R}_{f} 0.4$ (20\% EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.23$ (d, $J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{tq}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{tt}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (tdd, $J=9.0,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{ddt}, J=$ 17.5, 9.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (dddd, $J=17.5,11.0,8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dddd, $J=12.0,9.0,6.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): δ 202.4, 202.3, 154.1, 149.3, 131.8, 131.3, 130.3, 122.1, 72.2, 31.8, 30.0, 27.6, 25.7, 17.8, 13.2, -0.5 (3C); IR (thin film): 3444, 2956, 1705, 1611.

(4E)-3-((E)-4-(3,3-Dimethyloxiran-2-yl)but-2-en-2-yl)-((trimethylsilyl)methylene)cyclohex-
2-enol (259). A 5-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with allylic alcohol $E-161(15 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6$ mL) and $\mathrm{NaHCO}_{3}(11 \mathrm{mg}, 0.13 \mathrm{mmol})$. The mixture is cooled to $0^{\circ} \mathrm{C}$ in an ice bath and m CPBA $(77 \%, 15 \mathrm{mg}, 0.07 \mathrm{mmol})$ is added in one portion. The reaction is slowly warmed to rt . After 2.5 h the reaction does not proceed further by TLC and additional amounts of NaHCO_{3} (4
$\mathrm{mg}, 0.1 \mathrm{mmol}$) and m -CPBA ($77 \%, 6 \mathrm{mg}, 0.03 \mathrm{mmol}$) are sequentially added. The reaction mixture is transferred to a separatory funnel containing sat'd aq $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers are washed with sat'd aq $\mathrm{NaHCO}_{3}(3 \mathrm{X}), \mathrm{H}_{2} \mathrm{O}$ (3X), and brine (3X), and are dried on MgSO_{4}. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The resulting residue is purified on silica gel eluting with $5-50 \% \mathrm{Et}_{2} \mathrm{O} /$ pentane to afford 5 mg of epoxide 259 in 32% yield, 36% brsm as a 1.2:1 mixture of diastereomers (based upon integration of the resonances at 66.4 ppm and 63.3 ppm in the ${ }^{13} \mathrm{C}$ NMR). $\mathrm{R}_{f} 0.2(20 \%$ EtOAc/hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.66(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.37$ (tq, $J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 1 \mathrm{H}), 2.80(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{ddd}, J=14.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.48 (dt, $J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (ddd, $J=13.5,11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dt}, J=14.5,7.5 \mathrm{~Hz}$, 1H), 2.03 (ddt, $J=16.5,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (s, 3H), 1.70 (dddd, $J=16.5,12.5,6.5,3.5 \mathrm{~Hz}$, 1H), 1.34 ($\mathrm{s}, 3 \mathrm{H}$), 1.32 ($\mathrm{s}, 3 \mathrm{H}$), 0.13 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): *designates minor diastereomer where resolved: $\delta 149.3,147.6,138.0^{*}, 137.9,128.3^{*}, 128.2,127.3^{*}, 127.2,123.6$, $66.4,66.3^{*}, 63.5,58.3,33.0^{*}, 32.9,28.3,28.0^{*}, 27.9,24.9,18.7,17.4,0.1$ (3C); IR (thin film): 3423, 2923, 1579, $1248 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 306 (17, M^{+}), 263 (36), 233 (29), 73 (100); EIHRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$306.2015; found: 306.2029.

(4E)-((Trimethylsilyl)methylene)-2-cyclohexenol-3-((E)-5,6- $N^{\prime}, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-tetramethyl-

 ethylene-diamine)osmate ester (261). A 15-mL, single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with allylic alcohol E-161 (22 mg, 0.08 mmol), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.6 \mathrm{~mL})$ and freshly distilled TMEDA ($12 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$). The mixture is cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice-acetone bath and $\mathrm{OsO}_{4}\left(203 \mu \mathrm{~L}\right.$ of a $0.39 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln, 0.08 mmol) is added dropwise. Upon addition of OsO_{4}, the reaction turns orange and then brown in color. After 1 h at $-78^{\circ} \mathrm{C}$, the reaction is warmed to rt and is stirred overnight. After 24 h , the reaction is concentrated under reduced pressure. The residue is purified by silica gel chromatography eluting with 20-100\% acetone/EtOAc to yield 18 mg of osmate ester 261 in 36% yield, 47% brsm. $\mathrm{R}_{f} 0.2$ (50% acetone/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.65(\mathrm{~d}, \mathrm{~J}=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.51(\mathrm{~m}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.06 (s, 4H), 2.85 (s, 3H), 2.83 (s, 3H), 2.82 (s, 3H), 2.81 (s, 3H), 2.62-2.50 (m, 3H), 2.35 (dddt, $J=14.5,9.5,3.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{ddt}, J=13.0,8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{bs}, 1 \mathrm{H}), 1.76$ (s, 3H), 1.69 (dddd, $J=13.0,9.5,6.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.5(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.5,148.2,135.5,127.9,127.3,127.0,96.2,87.0,66.4,64.3$, 63.9, 51.6, 51.3, 51.2, 51.1, 32.9, 31.7, 28.0, 26.6, 21.4, 17.5, 0.1 (3C); IR (thin film): 3384, 2926, 1577, $1459 \mathrm{~cm}^{-1}$; ESI-MS m/z (\%) 685 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 663 (30), 569 (76), 427 (3); ESIHRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{NaOsSi}: \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$685.2689; found: 685.2665.
(E)-3-(6-Methylhepta-2,5-dien-2-yl)-4-((trimethylsilyl)methyl)cyclcohex-2-enol (264). A 5mL , single-necked, round-bottomed flask equipped with a stir bar, rubber septum, and nitrogen line is charged with triphenylphosphine ($41 \mathrm{mg}, 0.15 \mathrm{mmol}$) and N-methyl morpholine (0.1 mL). The flask is cooled to $-30{ }^{\circ} \mathrm{C}$ for before diethyl azodicarboxylate ($24 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) is added via gas tight syringe. After 5 min of stirring a solution of allylic alcohol E-161 ($15 \mathrm{mg}, 0.05$ mmol) in N-methyl morpholine (0.1 mL) is added via cannula. The reaction is stirred for 10 min before o-nitrobenzenesulfonylhydrazide (NBSH) is added. After 2 h at $-30^{\circ} \mathrm{C}$, TLC analysis shows no change. The reaction is warmed to rt and is stirred overnight. The reaction is then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and is transferred to a separatory funnel containing sat'd aq NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}$. The aq layer is separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3X). The combined organic layers are washed with $\mathrm{H}_{2} \mathrm{O}(3 X)$ and brine (3X), and are dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solids are filtered off via gravity filtration and the filtrate is concentrated under reduced pressure by rotary evaporation. The residue is purified by silica gel chromatography eluting with $5-20 \% \mathrm{Et}_{2} \mathrm{O}$ /pentane to yield 7.5 mg of 264 in 50% yield. Based upon the integration of the resonances at 0.61 ppm and 0.50 ppm in the ${ }^{1} \mathrm{H}$ NMR, 264 was produced as a 1.3:1.0 mixture of diastereomers. $\mathrm{R}_{f} 0.3(20 \%$ EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) *designates minor diastereomer where resolved: δ $5.65(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.58^{*}(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{tq}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{tt}, J=$ 7.2, 1.2 Hz, 1H), 4.28* (s, 1H), 4.21 (s, 1H), 2.08 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.64-2.50 (m, 1H), 1.97$1.81(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{dd}, \mathrm{J}=15.0,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 0.73^{*}(\mathrm{dd}, J=15.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.61^{*}(\mathrm{dd}, J=15.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.50(\mathrm{dd}, J=15.0$,
$11.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) * designates minor diastereomer where resolved: δ 149.9, 149.1*, 134.1, 133.6*, 132.0, 126.6, 126.3*, 124.1, 122.7*, 122.6, 67.9*, 65.4, 30.2, 29.8*, 28.0*, 27.9, 27.5, 27.0*, 25.6, 25.1, 21.5*, 20.6, 17.7, 14.9, 14.8*, -0.6 (3C), -0.7* (3C); IR (thin film): 3320, 2949, 1448, $1247 \mathrm{~cm}^{-1}$; EI-MS m/z (\%) 292 (49, M^{+}), 223 (37), 109 (67), 73 (100); EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{OSi}: \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$292.2222; found: 292.2219.

APPENDIX A

SPECTRAL DATA

들

唇

	¢
寝守	\tilde{N}^{\sim}

｜｜II｜｜｜

jed－2－94
after column
吉

Jeel－2－94
高

奥	E		¢ ¢ \％\％\％\％	\％	\％${ }_{\text {W }}^{\text {O }}$
	g＇			\dot{m}	ค ¢ ¢
			$1 \Downarrow 1$		

镸
d-2-162

jed-2-152

$\stackrel{\square}{\circ}$		
8		

jed-6-56

jed-6-62
mosher ester of chiral allene

ล

	亭	8	ブ¢\％	里年	¢
皆	¢	$\stackrel{9}{\sim}$		¢ ¢	～
		1	WV1	V	

ฐ

	鬲	※\％
スペイッチ	¢	¢ํㅜํ
W11		11

undesired diol

$T E>$ cabonate

Jed-5-74

ฐ

 Vif ii

Jed-5-63

E
$\stackrel{8}{0}$
$\stackrel{\sim}{\dddot{N}}$

$$
\begin{aligned}
& \text { Ject-5165 } \\
& \text { z-isomer }
\end{aligned}
$$

[^6]
jed-6-111
$\left.\right|^{\text {a }}$

Vill

[^7]
jed-6-48 after column
$\stackrel{\substack{9 \\ 6 \\ \stackrel{3}{2} \\ \mid}}{1}$

jed－6－75

	¢	耇器䍖 カセะํ	82
V｜V｜｜		VV	

jed-6-112 crude TBS ester
C6D6

jed-8-174 crude
mosher ester of chiral allene with side chain

jed-9-126
M

[^8]

ம் in in in in in in in in in

jed-7-187 pivolate allenyl ester

[^9]

jed-9-10
$\stackrel{m}{\stackrel{m}{\alpha}}$

jed-9-25 after columr

[^10]
jed-9-29 allene after column

$\mid \sqrt{\text { gisigisig }}$

Jed-9-113

[^11]jed-9-102 after column
సだ

jed-9-102 after column

[^12]

jed-9-71 after column

jed-9-57 after column

[^13]
jed-9-57 after column

188
300 mnz

$\begin{aligned} & \text { oñ } \\ & \text { gion } \\ & \text { giver } \end{aligned}$	
$V 1$	111

[^14]
jed-7-188 pivolate ester triene
V|

[^15]
jed-9-10 after column

©~~~~~

$\begin{array}{lllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 120 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \mathrm{PPR}\end{array}$

[^16]

jed-9-115 triene after column
\&

jed-9-108 triene after column

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 80 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

jed-9-123 triene after column

|V|/

$11 / V$

211

jed-9-75 triene after column

$210 \quad 200$
$180 \quad 170$

\qquad
jed-9-141 triene

jed-9-93 triene

[^17]

[^18]

\qquad
\qquad
\qquad
\qquad —_........

jed-9-134 after column [5-5] P-K product
$[\mathrm{Rh}(\mathrm{CO}) 2 \mathrm{Cl}] 2$, tol, 90 C

jed-9-204 brown spot 13 c nmr
more non-polar
dicstereomer

\qquad

jed-9-204 pink spot 13c nmr
more polar diastereomer

jed-9-27 side chain epoxide

210

jed-9-152 after column

BIBLIOGRAPHY

1. Alder, K.; Pascher, F.; Schmitz, A. "Substituting Additions. I. Addition of Maleic Anhydride and Azodicarboxylic Esters to Singly Unsaturated Hydrocarbons. Substitution Processes in the Allyl Position" Chem. Ber. 1943, 76B, 27.
2. Oppolzer, W. "Regio- and Stereo-Selective Syntheses of Cyclic Natural Products by Intramolecular Cycloaddition- and Ene-Reactions" Pure Appl. Chem. 1981, 53, 1181.
3. Trost, B. M. "The Atom Economy- A Search for Synthetic Efficiency" Science 1991, 254, 1471.
4. Trost, B.; Krische, M. J. "Palladium-Catalyzed Enyne Cycloisomerization Reaction in an Asymmetric Approach to the Picrotoxane Sesquiterpenes. 2. Second-Generation Total Syntheses of Corianin, Picrotoxinin, Picrotin, and Methyl Picrotoxate" J. Am. Chem. Soc. 1999, 121, 6131.
5. Trost, B. M.; Lautens, M. "Cyclization via Isomerization: A Palladium(2+)-Catalyzed Carbocyclization of 1,6-Enynes to 1,3- and 1,4-Dienes" J. Am. Chem. Soc. 1985, 107, 1781.
6. Trost, B. M.; Surivet, J.-P.; Toste, F. D. "Ruthenium-Catalyzed Enyne Cycloisomerizations. Effect of Allylic Silyl Ether on Regioselectivity" J. Am. Chem. Soc. 2004, 126, 15592.
7. Trost, B. M.; Toste, F. D. "Ruthenium-Catalyzed Cycloisomerizations of 1,6- and 1,7-Enynes" J. Am. Chem. Soc. 2000, 122, 714.
8. Trost, B. M.; Toste, F. D. "Mechanistic Dichotomy in $\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ Catalyzed Enyne Cycloisomerizations" J. Am. Chem. Soc. 2002, 124, 5025.
9. Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. "A Titanocene-Catalyzed Intramolecular Ene Reaction: Cycloisomerization of Enynes and Dienynes" J. Am. Chem. Soc. 1999, 121, 1976.
10. Takacs, J. M.; Myoung, Y.-C.; Anderson, L. G. "Catalytic Iron-Mediated Triene Carbocyclizations: Stereoselective Five-Membered Ring Forming Carbocyclizations" J. Org. Chem. 1994, 59, 6928.
11. Cao, P.; Wang, B.; Zhang, X. "Rh-Catalyzed Enyne Cycloisomerization" J. Am. Chem. Soc. 2000, 122, 6490.
12. Trost, B. M. "Palladium-Catalyzed Cycloisomerizations of Enynes and Related Reactions" Acc. Chem. Res. 1990, 23, 34.
13. Oppolzer, W.; Gaudin, J.-M. "Catalytic Intramolecular Palladium-Ene Reactions" Helv. Chim. Acta 1987, 70, 1477.
14. Tong, X.; Li, D.; Zhang, Z.; Zhang, X. "Rhodium-Catalyzed Cycloisomerization of 1,6Enynes with an Intramolecular Halogen Shift: Reaction Scope and Mechanism" J. Am. Chem. Soc. 2004, 126, 7601.
15. Aubert, C.; Buisine, O.; Malacria, M. "The Behavior of 1,n-Enynes in the Presence of Transition Metals" Chem. Rev. 2002, 102, 813.
16. Trost, B. M.; Li, Y. "A New Catalyst for a Pd Catalyzed Alder Ene Reaction. A Total Synthesis of (+)-Cassiol" J. Am. Chem. Soc. 1996, 118, 6625.
17. Lei, A.; He, M.; Zhang, X. "Highly Enantioselective Syntheses of Functionalized α -Methylene- γ-butyrolactones via Rh(I)-catalyzed Intramolecular Alder Ene Reaction: Application to Formal Synthesis of (+)-Pilocarpine" J. Am. Chem. Soc. 2002, 124, 8198.
18. Horne, D. A.; Fugmann, B.; Yakushijin, K.; Büchi, G. "A Synthesis of Pilocarpine" J. Org. Chem. 1993, 58, 62.
19. Brummond, K. M.; Chen, H.; Sill, P.; You, L. "A Rhodium(I)-Catalyzed Formal Allenic Alder Ene Reaction for the Rapid and Stereoselective Assembly of Cross-Conjugated Trienes" J. Am. Chem. Soc. 2002, 124, 15186.
20. McCleverty, J. A.; Wilkinson, G. "Dichlorotetracarbonyldirhodium (Rhodium Carbonyl Chloride)" Inorg. Synth. 1966, 8, 211.
21. Brummond, K. M.; You, L. "Consecutive Rh(I)-Catalyzed Alder-ene/Diels-Alder/DielsAlder Reaction Sequence Affording Rapid Entry to Polycyclic Compounds" Tetrahedron 2005, 61, 6180.
22. Brummond, K. M.; Chen, D.; Painter, T. O.; Mao, S.; Seifried, D. D. "A Rh(I)-Catalyzed Cycloisomerization Reaction Affording Cyclic Trienones" Synlett 2008, 759.
23. Brummond, K. M.; Yan, B. "Rhodium(I)-Catalyzed Cycloisomerization Reaction of YneAllenamides: An Approach to Cyclic Enamides" Synlett 2008, 2303.
24. Brummond, K. M.; Painter, T. O.; Probst, D. A.; "Mitasev, B. Rhodium(I)-Catalyzed Allenic Carbocyclization Reaction Affording δ - and $€$ - Lactams" Org. Lett. 2007, 9, 347.
25. Tsuge, O.; Wada, E.; Kanemasa, S. "Stereoselectivity of Diene-Transmissive Diels-Alder Reaction; Cycloaddtion Reaction of Cross-Conjugated Triene System to Olefinic Dienophiles" Chemistry Letters 1983, 1525.
26. Woo, S.; Squires, N.; Fallis, A. G. "Indium-Mediated γ-Pentadienylation of Aldehydes and Ketones: Cross-Conjugated Trienes for Diene-Transmissive Cycloadditions" Org. Lett. 1999, 1, 573.
27. Kwon, O.; Park, S. B.; Schreiber, S. L. "Skeletal Diversity via a Branched Pathway: Efficient Synthesis of 29400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions" J. Am. Chem. Soc. 2002, 124, 13402.
28. Shibata, T.; Takesue, Y.; Kadowaki, S.; Takagi, K. "Rhodium Complex-Catalyzed Intramolecular Ene-Type Reaction of Allenynes" Synlett 2003, 268.
29. Mitasev, B.; Yan, B.; Brummond, K. M. "Cycloaddition Reactions of Amino-Acid Derived Cross-Conjugated Trienes: Stereoselective Synthesis of Novel Heterocyclic Scaffolds" Heterocycles 2006, 70, 367.
30. Werner, S.; Turner, D. M.; Chambers, P. G.; Brummond, K. M. "Skeletal and Appendage Diversity as Design Elements in the Synthesis of a Discovery Library of Nonaromatic Polycyclic 5-Iminooxazolidin-2-ones, Hydantoins and Acylureas" Tetrahedron 2008, 64, 6997.
31. Brummond, K. M.; Mao, S.; Shinde, S. N.; Johnston, P. J.; Day, B. W. "Design and Synthesis of a Library of Tetracyclic Hydroazulenoisoindoles" J. Comb. Chem. 2009, 11, 0000.
32. Davies, H. M. L.; Smith, H. D.; Korkor, O. "Tandem Cyclopropanation/Cope Rearrangement Sequence. Stereospecific [3 + 4] Cycloaddition Reaction of VinylCarbenoids with Cyclopentadiene" Tetrahedron Lett. 1987, 28, 1853.
33. Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. "Enantioselective Synthesis of (+)Cortistatin A, a Potent and Selective Inhibitor of Endothelial Cell Proliferation" J. Am. Chem. Soc. 2008, 130, 16864.
34. Hajos, Z. G.; Parrish, D. R. "Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry" J. Org. Chem. 1974, 39, 1615.
35. Hanson, F. R.; Eble, T. E. "An Antiphage Agent Isolated from Aspergillus Sp." J. Bacteriol. 1949, 58, 527.
36. Eble, T. E.; Hanson, F. R. "Fumagillin, an Antibiotic from Aspergillus Fumigatus H-3" Antibiot. Chemother. 1951, 1, 54.
37. Tarbell, D. S.; Hoffman, P.; Al-Kazimi, H. R.; Page, G. A.; Ross, J. M.; Vogt, H. R.; Wargotz, B. "The Chemistry of Fumagillin. III" J. Am. Chem. Soc. 1955, 77, 5610.
38. Tarbell, D. S.; Carman, R. M.; Chapman, D. D.; Huffman, K. R.; McCorkindale, N. J. "The Structure of Fumagillin" J. Am. Chem. Soc. 1960, 82, 1005.
39. McCorkindale, N. J.; Sime, J. G. "The Configuration of Fumagillin" Proc. Chem. Soc., London 1961, 331.
40. Ingber, D.; Fujita, T.; Kishimoto, S.; Sudo, K.; Kanamaru, T.; Brem, H.; Folkman, J. "Synthetic Analogues of Fumagillin that Inhibit Angiogenesis and Suppress Tumor Growth" Nature 1990, 348, 555.
41. Yanase, T.; Tamura, M.; Fujita, K.; Kodama, S.; Tanaka, K. "Inhibitory Effect of Angiogenesis Inhibitor TNP-470 on Tumor Growth and Metastasis of Human Cell Lines in Vitro and in Vivo" Cancer Res. 1993, 53, 2566.
42. Bergers, G.; Javaherian, K.; Lo, K.-M.; Folkman, J.; Hanahan, D. "Effects of Angiogenesis Inhibitors on Multistage Carcinogenesis in Mice" Science 1999, 284, 808.
43. Han, C. K.; Ahn, S. K.; Choi, N. S.; Hong, R. K.; Moon, S. K.; Chun, H. S.; Lee, S. J.; Kim, J. W.; Hong, C. I.; Kim, D.; Yoon, J. H.; No, K. T. "Design and Synthesis of Highly Potent Fumagillin Analogues from Homology Modeling for a Human MetAP-2" Bioorg. Med. Chem. Lett. 2000, 10, 39.
44. Coyle, C.; Kent, M.; Tanowitz, H. B.; Wittner, M.; Weiss, L. M. "TNP-470 in an Effective Antimicrosporidial Agent" J. Infect. Dis. 1998, 177, 515.
45. Molina, J.-M.; Goguel, J.; Sarfati, C.; Michiels, J.-F.; Desportes-Livage, I.; Balkan, S.; Chastang, C.; Cotte, L.; Maslo, C.; Struxiano, A.; Derouin, F.; Decazes, J.-M. "Trial of Oral Fumagillin for the Treatment of Intestinal Microsporidiosis in Patients with HIV Infection" AIDS 2000, 14, 1341.
46. Molina, J.-M.; Tourneur, M.; Sarfati, C.; Chevret, S.; DeGouvello, A.; Gobert, J.-G.; Balkan, S.; Derouin, F. "Fumagillin Treatment of Intestinal Microsporidiosis" N. Engl. J. Med. 2002, 346, 1963.
47. Sigg, H. P.; Weber, H. P. "Isolierung und Strukturaufklärung von Ovalicin" Helv. Chim. Acta 1968, 51, 1395.
48. Corey, E. J.; Guzman-Perez, A.; Noe, M. C. "Short Enantioselective Synthesis of (-)Ovalicin, a Potent Inhibitor of Angiogenesis, Using Substrate-Enhanced Catalytic Asymmetric Dihydroxylation" J. Am. Chem. Soc. 1994, 116, 12109.
49. Sin, N.; Meng, L.; Wang, M. Q. W.; Wen, J. J.; Bornmann, W. G.; Crews, C. M. "The Anti-Angiogenic Agent Fumagillin Covalently Binds and Inhibits the Methionine Aminopeptidase, MetAP-2" Proc. Natl. Acad. Sci. USA 1997, 94, 6099.
50. Griffith, E. C.; Su, Z.; Niwayama, S.; Ramsay, C. A.; Chang, Y.-H.; Liu, J. O. "Molecular Recognition of Angiogenesis Inhibitors Fumagillin and Ovalicin by Methionine Aminopeptidase 2" Proc. Natl. Acad. Sci. USA 1998, 95, 15183.
51. Griffith, E. C.; Su, Z.; Turk, B. E.; Chen, S.; Chang, Y.-H.; Wu, Z.; Biemann, K.; Liu, J. O. "Methionione Aminopeptidase (type 2) is the Common Target for Angiogenesis Inhibitors AGM-1470 and Ovalicin" Chem. Biol. 1997, 4, 461.
52. Turk, B. E.; Su, Z.; Jin, J. O. "Synthetic Analogues of TNP-470 and Ovalicin Reveal a Common Molecular Basis for Inhibition of Angiogenesis and Immunosuppression" Bioorg. Med. Chem. 1998, 6, 1163.
53. Wernert, N.; Stanjek, A.; Kiriakidis, S.; Hügel, A.; Jha, H. C.; Mazitschek, R.; Giannis, A. "Inhibition of Angiogenesis In Vivo by ets-1 Antisense Oligonucleotides-Inhibition of Ets-1 Transcription Factor Expression by the Antibiotic Fumagillin" Angew. Chem. Ind. Ed. 1999, 38, 3228.
54. Catalano, A.; Romano, M.; Robuffo, I.; Strizzi, L.; Procopio, A. "Methionine Aminopeptidase-2 Regulates Human Mesothelioma Cell Survival" Am. J. Pathol. 2001, 159, 721.
55. Lowther, W. T.; McMillen, D. A.; Orville, A. M.; Matthews, B. W. "The AntiAngiogenic Agent Fumagillin Covalently Modifies a Conserved Active-Site Histidine in the Escherichia coli Methionine Aminopeptidase" Proc. Natl. Acad. Sci. USA 1998, 95, 12153.
56. Liu, S.; Widom, J.; Kemp, C. W.; Crews, C. M.; Clardy, J. "Structure of Human Methionine Aminopeptidase-2 Complexed with Fumagillin" Science 1998, 282, 1324.
57. Klein, C. D. P.; Schiffmann, R.; Folkers, G.; Piana, S.; Röthlisberger, U. "Protonation States of Methionine Aminopeptidase and Their Relevance for Inhibitor Binding and Catalytic Activity" J. Biol. Chem. 2003, 278, 47862.
58. Corey, E. J.; Snider, B. B. A "Total Synthesis of (\pm)-Fumagillin" J. Am. Chem. Soc. 1972, 94, 2549.
59. Kim, D.; Ahn, S. K.; Bae, H.; Choi, W. J.; Kim, H. S. "An Asymmetric Total Synthesis of (-)-Fumagillol" Tetrahedron Lett. 1997, 38, 4437.
60. Boiteau, J.-G.; VandeWeghe, P.; Eustache, J. "A New, Ring Closing Metathesis-Based Synthesis of (-)-Fumagillol" Org. Lett. 2001, 3, 2737.
61. Bedel, O.; Haudrechy, A.; Langlois, Y. "A Stereoselective Formal Synthesis of (-)Fumagillol" Eur. J. Org. Chem. 2004, 3813.
62. Vorsburg, D. A.; Weiler, S.; Sorensen, E. J. "A Concise Synthesis of Fumagillol" Angew. Chem. Ind. Ed. 1999, 38, 971.
63. Vosburg, D. A.; Weiler, S.; Sorensen, E. J. "Concise Stereocontrolled Routes to Fumagillol, Fumagillin, and TNP-470" Chirality 2003, 15, 156.
64. Hutchings, M.; Moffat, D.; Simpkins, N. S. "A Concise Synthesis of Fumagillol" Synlett 2001, 661.
65. Camara, F.; Angarita, J.; Mootoo, D. R. "Oxocarbenium Ion Cyclizations for C-Branched Cyclitols: Synthesis of a Relay Intermediate for Fumagillin Analogues" J. Org. Chem. 2005, 70, 6870.
66. Yamaguchi, J.; Toyoshima, M.; Shoji, M.; Kakeya, H.; Osada, H.; Hayashi, Y. "Concise Enantio- and Diastereoselective Total Syntheses of Fumagillol, RK-805, FR65814, Ovalicin, and 5-Demethylovalicin" Angew. Chem. Ind. Ed. 2006, 45, 789.
67. Taber, D. F.; Christos, T. E.; Rheingold, A. L.; Guzei, I. A. "Synthesis of (-)-Fumagillin" J. Am. Chem. Soc. 1999, 121, 5589.
68. Vedejs, E.; Snoble, K. A. J.; Fuchs, P. L. "Phosphorus Betaines Derived from Cycloheptene and Cyclooctene Oxides. Inversion of Cyclooctenes" J. Org. Chem. 1973, 38, 1178.
69. Corey, E. J.; Dittami, J. P. "Total Synthesis of (\pm)-Ovalicin" J. Am. Chem. Soc. 1985, 107, 256.
70. Bath, S.; Billington, D. C.; Gero, S. D.; Quiclet-Sire, B.; Samadi, M. "Total Synthesis of (-)Ovalicine from L-Quebrachitol" J. Chem. Soc., Chem. Comm. 1994, 1495.
71. Barco, A.; Benetti, S.; DeRisi, C.; Marchetti, P.; Pollini, G. P.; Zanirato, V. "Enantioselective Formal Synthesis of (-)-Ovalicin using Quinic Acid as a Chiral Template" Tetrahedron: Asymmetry 1998, 9, 2857.
72. Takahashi, S.; Hishinuma, N.; Koshino, H.; Nakata, T. "Synthesis of Ovalicin Starting from D-Mannose" J. Org. Chem. 2005, 70, 10162.
73. Tiefenbacher, K.; Arion, V. B.; Mulzer, J. "A Diels-Alder Approach to (-)-Ovalicin" Angew. Chem. Ind. Ed. 2007, 46, 2690.
74. Yadav, J. S.; Pamu, S.; Bhunia, D. C.; Pabbaraja, S. "Formal Total Synthesis of Ovalicin by Carbohydrate Approach" Synlett 2007, 992.
75. Hua, D. H.; Zhao, H.; Battina, S. K.; Lou, K.; Jimenez, A. L.; Desper, J.; Perchellet, E. M.; Perchellet, J.-P. H.; Chiang, P. K. "Total Syntheses of (\pm)-Ovalicin, C4(S*)-Isomer, and its C5-Analogs and Anti-Trypanosomal Activites" Bioorg. Med. Chem. 2008, 16, 5232.
76. Trost, B. M.; Chupak, L. S.; Lübbers, T. "Short Preparation of (S)-(E)-1-(OMethylmandeloxy)butadiene" J. Org. Chem. 1997, 62, 736.
77. Brummond, K. M.; McCabe, J. M. "The Allenic Alder-ene Reaction: Constitutional group Selectivity and its Application to the Synthesis of Ovalicin" Tetrahedron 2006, 62, 10541.
78. Robertson, D. N. "Adducts of tert-Alcohols Containing an Ethynyl Group with Dihydropyran. Potentially Useful Intermediates" J. Org. Chem. 1960, 25, 931.
79. Journet, M.; Malacria, M. "Radical Cyclization of (Bromomethyl)dimethylsilyl Propargyl Ethers. Regio-, Chemo-, and Stereoselectivity" J. Org. Chem. 1992, 57, 3085.
80. Brandsma, L. Preparative Acetylenic Chemistry. 1st ed.; Elsevier Science Publishing Company Inc.: New York, 1988; p 79-84.
81. Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds. 3 ed.; Springer-Verlag: Berlin, 2000.
82. Cowie, J. S.; Landor, P. D.; Landor, S. R. "Allenes. Part XXIV. Preparation of α-Allenic Alcohols from the Mono-O-tetrahydropyran-2-yl Derivatives of Butyne-1,4-diols" J. Chem. Soc., Perkin Trans. 1 1973, 720.
83. Boyall, D.; López, F.; Sasaki, H.; Frantz, D.; Carreira, E. M. "Enantioselective Addition of 2-Methyl-3-butyn-2-ol to Aldehydes: Preparation of 3-Hydroxy-1-butynes" Org. Lett. 2000, 2, 4233.
84. Frantz, D. E.; Fässler, R.; Carreira, E. M. "Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes" J. Am. Chem. Soc. 2000, 122, 1806.
85. Sharpless, K. B.; Michaelson, R. C. "High Stereo- and Regioselectivies in the Transition Metal Catalyzed Epoxidations of Olefinic Alcohols by tert-Butyl Hydroperoxide" J. Am. Chem. Soc. 1973, 95, 6136.
86. Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. "Vanadium-Catalyzed Epoxidation of Cyclic Allylic Alcohols. Stereoselectivity and Stereocontrol Mechanism" J. Am. Chem. Soc. 1979, 101, 159.
87. Hanson, R. M.; Sharpless, K. B. "Procedure for the Catalytic Asymmetric Epoxidation of Allylic Alcohols in the Presence of Molecular Sieves" J. Org. Chem. 1986, 51, 1922.
88. Oshima, M.; Yamazaki, H.; Shimizu, I.; Nisar, M.; Tsuji, J. "Palladium-Catalyzed Selective Hydrogenolysis of Alkenyloxiranes with Formic Acid. Stereoselectivity and Synthetic Utility" J. Am. Chem. Soc. 1989, 111, 6280.
89. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals. 3rd ed.; John Wiley \& Sons, Inc.: New York, 2001.
90. Trost, B. M.; Angle, S. R. "Palladium-Mediated Vicinal Cleavage of Allyl Epoxides with Retention of Stereochemistry: A Cis Hydroxylation Equivalent" J. Am. Chem. Soc. 1985, 107, 6123.
91. Grubbs, R. H.; Chang, S. "Recent Advances in Olefin Metathesis and Its Application in Organic Synthesis" Tetrahedron 1998, 54, 4413.
92. Fürstner, A. "Olefin Metathesis and Beyond" Angew. Chem. Ind. Ed. 2000, 39, 3012.
93. Connon, S. J.; Blechert, S. "Recent Developments in Olefin Cross-Metathesis" Angew. Chem. Ind. Ed. 2003, 42, 1900.
94. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. "Metathesis Reactions in Total Synthesis" Angew. Chem. Ind. Ed. 2005, 44, 4490.
95. Wallace, D. J. "Relay Ring-Closing Metathesis-A Strategy for Achieving Reactivity and Selectivity in Metathesis Chemistry" Angew. Chem. Ind. Ed. 2005, 44, 1912.
96. Funk, T. W.; Efskind, J.; Grubbs, R. H. "Chemoselective Construction of Substituted Conjugated Dienes Using an Olefin Cross-Metathesis Protocol" Org. Lett. 2005, 7, 187.
97. Mitasev, B. Unpublished results.
98. Catterjee, A. K.; Grubbs, R. H. "Synthesis of Trisubstituted Alkenes via Olefin CrossMetathesis" Org. Lett. 1999, 1, 1751.
99. Catterjee, A. K.; Sanders, D. P.; Grubbs, R. H. "Synthesis of Symmetrical Trisubstituted Olefins by Cross Metathesis" Org. Lett. 2002, 4, 1939.
100. Nickel, A.; Maruyama, T.; Tang, H.; Murphy, P. D.; Greene, B.; Yusuff, N.; Wood, J. L. "Total Synthesis of Ingenol" J. Am. Chem. Soc. 2004, 126, 16300.
101. Wojtkielewicz, A.; Morzycki, J. W. "Application of Ring-Closing Metathesis to the Synthesis of 19-Functionalized Derivatives of 1α-Hydroxyvitamin D_{3} " Org. Lett. 2006, 8, 839.
102. Kim, S.; Lee, T.; Lee, E.; Lee, J.; Fan, G.-j.; Lee, S. K.; Kim, D. "Asymmetric Total Syntheses of (-)-Antofine and (-)-Cryptopleurine Using (R)-(E)-4-(Tributylstannyl)but-3-en-2-ol" J. Org. Chem. 2004, 69, 3144.
103. Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. "A Direct Synthesis of Olefins by Reaction of Carbonyl Compounds with Lithio Derivatives of 2-[Alkyl- or (2'-Alkenyl)- or Benzyl-Sulfonyl]-Benzothiazoles" Tetrahedron Lett. 1991, 32, 1175.
104. Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. "A Stereoselective Synthesis of trans-1,2-Disubstituted Alkenes Based on the Condensation of Aldehydes with Metallated 1-Phenyl-1H-tetrazol-5-yl Sulfones" Synlett 1998, 26.
105. Blakemore, P. R.; Kocienski, P. J.; Marzcak, S.; Wicha, J. "The Modified Julia Olefination on Vitamin D2 Synthesis" Synthesis 1999, 1209.
106. Gotoh, M.; Miki, A.; Nagano, H.; Ribeiro, N.; Elhabiri, M.; Gumienna-Kontecka, E.; Albrecht-Gary, A.-M.; Schmutz, M.; Ourisson, G.; Nakatani, Y. "Membrane Properties of Branched Polyprenyl Phosphates, Postulated as Primitive Membrane Constituents" Chem. Biodivers. 2006, 3, 434.
107. Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. "Stéréochimie de la Formation des Oléfines à Partir de β-Hydroxy-sulfones Hétérocycliques Anti et Syn" Bull. Soc. Chim. Fr. 1993, 130, 336.
108. Blakemore, P. R. "The Modified Julia Olefination: Alkene Synthesis via the Condensation of Metallated Heteroarylalkylsulfones with Carbonyl Compounds" J. Chem. Soc., Perkin Trans. 1 2002, 2563.
109. Julia, M.; Paris, J.-M. "Syntheses A L'Aide De Sulfones V ${ }^{(+)}$-Methode De Synthese Generale De Doubles Liaisons" Tetrahedron Lett. 1973, 14, 4833.
110. Ansell, M. F.; Thomas, D. A. "The Preparation of the Geraniolenes" J. Chem. Soc. 1961, 539.
111. Büchi, G.; Powell, J. E. "The Claisen Rearrangment of 3,4-Dihydro-2H-pyranylethylenes. A New Method for the Synthesis of Cylcohexenes" J. Am. Chem. Soc. 1970, 92, 3126.
112. Tsubuki, M.; Iwabuchi, K.; Honda, T. "Studies on the Construction of Abutasterone-type and 24-epi-Abutasterone-type Side Chains Employing Asymmetric Dihydroxylation of (E)-20(22),24-Cholestadiene" Tetrahedron: Asymmetry 2005, 16, 3913.
113. Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. "Reactions of Carbonyl Compounds with Grignard Reagents in the Presence of Cerium Chloride" J. Am. Chem. Soc. 1989, 111, 4392.
114. Brummond, K. M.; Lu, J. "A Short Synthesis of the Potent Antitumor Agent (\pm)Hydroxymethylacylfulvene Using an Allenic Pauson-Khand Type Cycloaddition" J. Am. Chem. Soc. 1999, 121, 5087.
115. Ireland, R. E.; Mueller, R. H.; Willard, A. K. "The Ester Enolate Claisen Rearrangment. Stereochemical Control through Stereoselective Enolate Formation" J. Am. Chem. Soc. 1976, 98, 2868.
116. Ireland, R. E.; Wipf, P.; Xiang, J.-N. "Stereochemical Control in the Ester Enolate Claisen Rearrangement. 2. Chairlike vs Boatlike Transition-State Selection" J. Org. Chem. 1991, 56, 3572.
117. Crossland, R. K.; Servis, K. L. "A Facile Synthesis of Methanesulfonate Esters" J. Org. Chem. 1970, 35, 3195.
118. Biale, G.; Parker, A. J.; Smith, S. G.; Stevens, I. D. R.; Winstein, S. "The E2C Mechanism in Elimination Reactions. The Absence of an Extreme Form of Merged Mechanism for Elimination and Substitution. A Comparison of Saytzeff vs. Hofmann Tendencies and of anti vs. syn Eliminations" J. Am. Chem. Soc. 1970, 92, 115.
119. Biale, G.; Cook, D.; Lloyd, D. J.; Parker, A. J.; Stevens, I. D. R.; Takahashi, J.; Winstein, S. "The E2C Mechanism in Elimination Reactions II. Substituent Effects on Rates of Elimination from Acyclic Systems" J. Am. Chem. Soc. 1971, 93, 4735.
120. Trost, B. M.; Lautens, M. "An Unusual Dichotomy in the Regioselectivity of a Metal Catalyzed Verses Thermal Ene Reaction" Tetrahedron Lett. 1985, 26, 4887.
121. Trost, B. M.; Lee, D. C.; Rise, F. "A New Palladium Catalyst for Intramolecular Carbametalations of Enynes" Tetrahedron Lett. 1989, 30, 651.
122. Trost, B. M.; Edstrom, E. D.; Carter-Petillo, M. B. "A Cylcoisomerization Approach to Tetrahydrofurans" J. Org. Chem. 1989, 54, 4489.
123. Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnem, D. J.; Mueller, T. "Annulation via Alkylation-Alder Ene Cyclizations. Pd-Catalyzed Cycloisomerization of 1,6-Enynes" J. Am. Chem. Soc. 1991, 113, 636.
124. Trost, B. M.; Phan, L. T. "The Effect of Tether Substituents on the Selectivity of Pd Catalyzed Enyne Cyclizations. A Total Synthesis of Chokol C" Tetrahedron Lett. 1993, 34, 4735.
125. Trost, B. M.; Tanoury, G. J.; Lautens, M.; Chan, C.; MacPherson, D. T. "Pd-Catalyzed Cycloisomerization to 1,2-Dialkylidenecycloalkanes" J. Am. Chem. Soc. 1994, 116, 4255.
126. Helmchen, G. "Stereoselective Synthesis" In Methods of Organic Chemistry (HoubenWeyl); Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Georg Thieme Verlag Stuttgart: New York, 1995; Vol. E 21a, p 47-50.
127. Shigeru, T.; Hiroshi, O. (Otsuka Chem. Co. Ltd.) Production of Acetylene Alcohol Derivative. Patent application H02-009397, November, 1, 1990.
128. Nahm, S.; Weinreb, S. M. "N-Methoxy-N-Methylamides as Effective Acylating Agents" Tetrahedron Lett. 1981, 22, 3815.
129. Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. "Asymmetric Transfer Hydrogenation of α, β-Acetylenic Ketones" J. Am. Chem. Soc. 1997, 119, 8738.
130. Kirkham, J. E. D.; Courtney, T. D. L.; Lee, V.; Baldwin, J. E. "Asymmetric Synthesis of Cytotoxic Sponge Metabolites R-Strongylodiols A and B and an Analogue" Tetrahedron 2005, 61, 7219.
131. López, F.; Castedo, L.; Mascareñas, J. "Practical Asymmetric Approach to Medium-Sized Carbocycles Based on the Combination of Two Ru-Catalyzed Transformations and a Lewis Acid-Induced Cyclization" Org. Lett. 2005, 7, 287.
132. Makino, T.; Itoh, K. "Rhodium Complex-Catalyzed Cycloisomerization of Allenenes: Exo and Endo Cyclization Depending on Auxiliary Ligands" J. Org. Chem. 2004, 69, 395.
133. For a chemo- and regioselective ene-allene cyclization see: Trost, B. M.; Matsuda, K. "A Biomimetic Synthesis of (\pm)-Petiodial. A Novel Palladium-Catalyzed Enallene Cyclization" J. Am. Chem. Soc. 1988, 110, 5233.
134. Brummond, K. M.; Curran, D. P.; Mitasev, B.; Fischer, S. "Heterocyclic α-Alkylidene Cyclopentenones Obtained via a Pauson-Khand Reaction of Amino Acid Derived Allenynes. A Scope and Limitation Study Directed toward the Preparation of a Tricyclic Pyrrole Library" J. Org. Chem. 2005, 70, 1745.
135. Mitasev, B. Transition Metal-Catalyzed Reactions of Allenes in Diversity-Oriented Synthesis. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, 2007.
136. Brummond, K. M.; Chen, H.; Fisher, K. D.; Kerekes, A. D.; Rickards, B.; Sill, P. C.; Geib, S. J. "An Allenic Pauson-Khand-Type Reaction: A Reversal in π-Bond Selectivity and the Formation of Seven-Membered Rings" Org. Lett. 2002, 4, 1931.
137. Brummond, K. M.; Chen, D.; Davis, M. M. "A General Synthetic Route to Differentially Functionalized Angularly and Linearly Fused [6-7-5] Ring Systems: A Rh(I)-Catalyzed Cyclocarbonylation Reaction" J. Org. Chem. 2008, 73, 5064.
138. Brummond, K. M.; Loyer-Drew, J. A., C-C Bond Formation (Part 1) by Addition Reactions: Alder-ene Reaction. In Comprehensive Organometallic Chemistry III, ed.; Crabtree, R. H.; Mingos, M. P.; Ojima, I. lsevier: Oxford, 2007; Vol. 10, Chapter 10.06.06.
139. Olsson, L.-I.; Claesson, A. "Synthesis of 2,5-Dihydrofurans and 5,6-Dihydro-2H-pyrans by Silver(I)-Catalyzed Cyclization of Allenic Alcohols" Synthesis 1979, 9, 743.
140. Kilroy, T. G.; Hennessy, A. J.; Connolly, D. J.; Malone, Y. M.; Farrell, A.; Guiry, P. J. "From 2,3-Dihyrdofuran to 2,2-Dialkyl-2,3-Dihydrofurans: New Substrates for the Intermolecular Asymmetric Heck Reaction" J. Mol. Catal., A 2003, 196, 65.
141. Evans, D.; Osborn, J. A.; Wilkinson, G. "transChlorocarbonylbis(Triphenylphosphine)Rhodium and Related Complexes" Inorg. Synth. 1968, 2, 99.
142. Wender, P. A.; Deschamps, N. M.; Gamber, G. G. "The Dienyl Pauson-Khand Reaction" Angew. Chem. Ind. Ed. 2003, 42, 1853.
143. Wender, P. A.; Croatt, M. P.; Deschamps, N. M. "Metal-Catalyzed [2+2+1] Cycloadditions of 1,3-Dienes, Allenes, and CO" Angew. Chem. Ind. Ed. 2006, 45, 2459.
144. McCleverty, J. A.; Wilkinson, G. "Chlorocarbonylbis-(Triphenylphosphine)Rhodium and Chlorocarbonylbis(Triphenylarsine)-Rhodium" Inorg. Synth. 1966, 8, 214.
145. Brummond, K. M.; Chen, D. "Microwave-Assisted Intramolecular [2 + 2] Allenic Cycloaddition Reaction for the Rapid Assembly of Bicyclo[4.2.0]octa-1,6-dienes and Bicyclo[5.2.0]nona-1,7-dienes" Org. Lett. 2005, 7, 3473.
146. Hoffmann, W.; von Fraunberg, K. (BASF) Cyclopentene Deriviatives. Patent 2513996, March 29, 1975.
147. Érman, M. B.; Pribytkova, I. M.; Cherkaev, G. V.; Aul'chenko, I. S.; Voitkevich, S. A. "Derivatives of 1,2,6-Alkatrienes. Synthesis and Thermal Cyclization of Functionally 1Substituted 2,2,5,9-Tetramethyl-3,4,8-Decatrienes" Zh. Org. Khim. 1990, 26, 1869.
148. Bayden, A. S.; Brummond, K. M.; Jordan, K. D. "Computational Insight Concerning Catalytic Decision Points of the Transition Metal Catalyzed [2 + $2+1$] Cyclocarbonylation Reaction of Allenes" Oragnometallics 2006, 25, 5204.
149. Takai, K.; Oshima, K.; Nozaki, H. "Selective Oxidation with t-Butyl Hydroperoxide and Aluminum Reagents" Tetrahedron Lett. 1980, 21, 1657.
150. Overman, L. E.; Pennington, L. D. "Total Synthesis of the Supposed Structure of (-)Sclerophytin A and an Improved Route to (-)-7-Deacetoxyalcyonin Acetate" Org. Lett. 2000, 2, 2683.
151. Lee, T. W.; Corey, E. J. "Enantioselective Total Synthesis of Eunicenone A" J. Am. Chem. Soc. 2001, 123, 1872.
152. Nicolaou, K. C.; Harrison, S. T. "Total Synthesis of Abyssomicin C and atrop-Abyssomicin C" Angew. Chem. Ind. Ed. 2006, 45, 3256.
153. Nicolaou, K. C.; Harrison, S. T. "Total Synthesis of Abyssomicin C, Atrop-abyssomicin C, and Abyssomicin D: Implications for Natural Origins of Atrop-abyssomicin C" J. Am. Chem. Soc. 2007, 129, 429.
154. Lu, L. D.-L.; Johnson, R. A.; Finn, M. G.; Sharpless, K. B. "Two New Asymmetric Epoxidation Catalysts. Unusual Stoichiometry and Inverse Enantiofacial Selection" J. Org. Chem. 1984, 49, 728.
155. Evans, D. A.; Rajapakse, H. A.; Stenkamp, D. "Asymmetric Syntheses of Pectenotoxins-4 and -8, Part I: Synthesis of the C1-C19 Subunit" Angew. Chem. Ind. Ed. 2002, 41, 4569.
156. Nakamura, M.; Tsutsui, N.; Takeda, T. "Regioselective Epoxidation of Geraniol with mChloroperbenzoic Acid in Emulsion Systems" Tetrahedron Lett. 1984, 25, 3231.
157. Washington, I.; Houk, K. N. "Epoxidations by Peracid Anions in Water: Ambiphilic Oxenoid Reactivity and Stereoselectivity" Org. Lett. 2002, 4, 2661.
158. Veitch, G. E.; Pinto, A.; Boyer, A.; Beckmann, E.; Anderson, J. C.; Ley, S. V. "Synthesis of Natural Products from the Indian Neem Tree Azadirachta indica" Org. Lett. 2008, 10, 569.
159. Donohoe, T. J.; Moore, P. R.; Waring, M. J. "The Directed Dihydroxylation of Allylic Alcohols" Tetrahedron Lett. 1997, 38, 5027.
160. Donohoe, T. J.; Moore, P. R.; Beddoes, R. L. "Studies on the Role of the Conformation and of Hydrogen-bonding on the Dihydroxylation of Cyclic Allylic Alcohols: Application to the Synthesis of Conduritol D" J. Chem. Soc., Perkin Trans. 1 1997, 43.
161. Myers, A. G.; Zheng, B. "An Efficient Method for the Reductive Transposition of Allylic Alcohols" Tetrahedron Lett. 1996, 37, 4841.
162. Haukaas, M. H.; O'Doherty, G. A. "Enantioselective Synthesis of 2-Deoxy- and 2, 3Dideoxyhexoses" Org. Lett. 2002, 4, 1771.
163. Sugita, H.; Hatanaka, Y.; Hiyama, T. "Silylation of 1-Alkynes with Chlorosilanes Promoted by Zinc: Preparation of Alkynylsilanes in a Single Step" Tetrahedron Lett. 1995, 36, 2769.

[^0]: *modeling study conducted using Cache worksystem Pro Version 6.1.12.33, AM1 energy minimization

[^1]: *modeling study conducted using Cache worksystem Pro Version 6.1.12.33, AM1 energy minimization

[^2]: * modeling study conducted using Cache worksystem Pro Version 6.1.12.33, AM1 energy minimization

[^3]: * modeling study conducted using Cache worksystem Pro Version 6.1.12.33, AM1 energy minimization

[^4]: * modeling study conducted using Cache worksystem Pro Version 6.1.12.33, AM1 energy minimization

[^5]: ${ }^{\text {a }}$ Product ratios were determined by integration of olefin peaks in the ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Combined yield of $\mathbf{1 5 9}$ and $E / Z-160$

[^6]:

[^7]: | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
 | :--- |

[^8]: | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
 | :--- |

[^9]: $\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \mathrm{ppn}\end{array}$

[^10]:

[^11]:

[^12]: $\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right)-10 \quad \mathrm{ppm}$

[^13]:

[^14]: $\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 120 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \mathrm{pPR}\end{array}$

[^15]:

[^16]:

[^17]:

[^18]:

