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Human immunodeficiency virus (HIV), which progresses into the disease commonly 

referred to as Acquired Immunodeficiency syndrome (AIDS), has become one of the world’s 

most destructive epidemics since its discovery in the early 80’s.  To date, the virus has killed 

more than 25 million people, with an average of 5 million newly infected cases last year alone.  

The HIV-1 genome is comprised of structural and enzymatic polyproteins as well as 

regulatory/accessory, which are essential for viral replication.  Viral protein R (Vpr), which is 

identified as one of the regulatory/accessory genes, is responsible for carrying out several of the 

virus’ life functions, including virus replication, cell cycle regulation, apoptosis, and immune 

dysregulation.  Through research of the virus, the disease has been divided into two very 

distinctive categories: Rapid Progressors (RPs) and Long Term Non-Progressors (LTNPs).  The 

differences between these categories are due to the varying quasispecies, which infect the 

population, and ultimately disease progression.  Several well-known mutations that occur within 

vpr have been associated with disease progression, linking them to one of the category types.  

Using a population from the Multicenter AIDS Cohort Study (MACS), patient vpr genotypes 

were analyzed and compared with current findings in research.  Several of the patients’ deduced 

amino acid sequences revealed different gene variants, truncations, as well as a number of point 

mutations.  Functional analysis revealed a decrease in cell apoptosis, which could have been 
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caused by the observed point mutations.  Further analysis is needed in order to determine if any 

other functions of the virus are disrupted due to the observed mutations.  Because the virus has 

the ability to make changes within, as of right now the only hope in counteracting the effects of 

HIV is through the use of antiviral medication, such as HAART.  But studies have shown that 

not everyone has the same positive effect when these drugs are administered.  By understanding 

the virus and its pathogenesis, researchers will be able to develop new targets for therapeutic 

interventions. The public health significance of this project is to provide the valuable research 

that will lead towards such viable HIV-1 therapeutic interventions. 
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1.0  HIV-1/AIDS 

Human Immunodeficiency virus type 1 (HIV-1) is the etiologic agent of Acquired 

Immunodeficiency syndrome (AIDS).  As of Dec. 2005, the total number of people living with 

the human immunodeficiency virus (HIV) reached its highest level: an estimated 45 million 

[36.7–45.3 million] people are now living with HIV. AIDS has killed more than 25 million 

people since it was first recognized in 1981, making it one of the most destructive epidemics in 

recorded history. Despite the recent introduction of highly active antiretroviral treatment 

(HAART), the AIDS epidemic claimed 3.1 million [2.8–3.6 million] lives in 2005; more than 

half a million (570 000) were children (1). 

HIV belongs to the Retroviridae family under the genus classification of lentivirus (2).  

Lentiviruses are known for causing immune deficiencies as well as disorders of the 

hematopoietic and central nervous systems, arthritis, and, autoimmunity (2).  To better help with 

the classification of cases, HIV-1 has been divided into three groups based on geographical 

location.  The first group identified was group M, which stands for main.  As its name implies, 

this group encompasses the majority of the world’s HIV/AIDS pandemic (3).  It is estimated that 

that around 42 million people are infected by group M virus (3).  The next is group O, which 

stands for outliers, and can mainly be found in Cameroon.  Only tens of thousands of people are 

estimated to have been infected by this particular virus (3).  Lastly is group N, the newest group 

to be identified.  Group N has been identified as a mixture of either M and N, or O and N, but is 

not comprised of an entirely unique genome.  Research has shown HIV is most probably of a 

zoonotic origin, while the emergence of this virus is suggested to have resulted from three 
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independent cross-species transmission events, which gave rise to the aforementioned three 

groups (3).  Research has suggested that the source of HIV-1 is the central African chimpanzee.  

This is supported by the fact that the groups are more closely related to SIVcpz strains that 

infected central African chimpanzees, Pan troglodytes troglodytes (SIVcpzPTT) than the Pan 

troglodytes schweinfurthii strain which infects the east African chimpanzees (3). 

Since HIV-1 is a viral agent, it must find a host with the proper mechanics in which to 

live and reproduce. Viral transmission from one host to another can occur in one of three ways: 

1) contact with blood, 2) contact with semen and vaginal secretions, or, 3) perinatal transmission, 

which is known as the period concentrated around the time of a child’s birth. Human CD4+ T-

cells and macrophages are the primary targets of the HIV-1 virus.  Once inside these cells, the 

virus begins replicating by using the host’s cellular mechanisms.  Once the viral RNA is released 

into the cell it is reverse transcribed into cDNA and ready for integration into the host’s DNA.  

This integrated form of the viral DNA is known as the provirus and once established, this DNA 

is permanently incorporated into the genome of the infected cell.  There is no known mechanism 

by which it can be efficiently eliminated (2).  From there, the proviral DNA is transcribed and 

RNA transcripts are transported out of the nucleus.  Subsequently viral proteins are synthesized 

in the cytoplasm and assembled into newly formed viral particles.  During its life cycle, the viral 

genome plays an important role in virus replication.  The genome of HIV-1 consists of both 

structural and enzymatic polyproteins (Gag, Pol, and, Env) and the two groups of 

regulatory/accessory proteins (Figure 1).  Tat and Rev comprise the first group and are described 

as the regulatory proteins.  The second group is referred to as the accessory proteins and is 

comprised of Nef, Vif, Vpu, and, Vpr (virology).  The regulatory proteins are essential for viral 

replication, whereas the accessory proteins aid in enhanced viral production.  

 



 
Figure 1: Schematic representation of HIV-1 Virus Genome 
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2.0  THE VIRAL PROTEIN R (VPR) GENE 

2.1.1 Structure of Vpr 

HIV-1 vpr is a well-conserved viral gene with an average length of 96 amino acids with a 

predicted molecular weight of 15kDa (4-7).  The gene is located in the central region of the HIV-

1 genome between vif and vpu overlapping vif at its 5’ end and tat at its 3’ end (8,7).   HIV-1 vpr 

is expressed as a late protein during virus replication.  A proposed tertiary structure of Vpr is 

based on a nuclear magnetic resonance (NMR) analysis which consists of three α-helical 

domains: an α-helix-turn-α-helix domain in the amino-terminal half from amino acids17 to 46 

and a long leucine rich α-helix from 53 to 78 in the carboxy-terminal half (4,6).  The three 

helices, which are connected by loops, are folded about a hydrophobic core surrounded by a 

flexible negatively charged N-terminal domain and a positively charged arginine-rich C-terminal 

region (7, 9).  The arginine-rich carboxy-terminus of vpr has similarities when compared to 

arginine-rich protein transduction domains, which may explain the transducing capabilities of 

Vpr including its ability to cross the cell membrane lipid bilayer (7, 10-13).  One side of the helix 

offers a stretch of hydrophobic residues that can form a leucine-zipper-like motif (14).  This 

motif may in fact account for the formation of Vpr dimers and/or for the interaction of Vpr with 

different cellular proteins (4, 15-20).  Both helical domains contribute to the incorporation of Vpr 

into virions, specifically through the interaction between Vpr and the p6 form of the viral 

protein, Gag (4).  Gag, the structural protein, forms the core, capsid and matrix of the virus 

particle. 
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2.1.2 Functional Analysis of HIV-1 Vpr 

Detailed analyses of vpr have concluded that the gene encodes for a protein that is involved in 

many functions during the life span of the virus.  Vpr is responsible for carrying out several 

functions including transactivation of the autologous HIV-1 promoter LTR as well as 

heterologous host cellular promoters, formation of ion selective channels in the lipid bilayers, 

and regulation of cellular apoptosis (4).  Vpr also aids the virus in fulfilling three major 

functions: (1) regulation of the nuclear transportation of the HIV-1 pre-integration complex 

(PIC), (2) virion incorporation of newly formed particles, and (3) induction of cell cycle arrest of 

the infected proliferating cells. 

Nondividing cells, such as resting T-cells and terminally differentiated macrophages, are 

important targets for viral replication during the initial stages of infection, since primary 

infection of these cell populations contributes to the establishment of viral reservoirs.  Such 

reservoirs are crucial for subsequent virus spread to the lymphoid organs and the T-helper 

lymphocytes (21).  After virus entry into the cell, the viral capsid is rapidly uncoated and the 

reverse transcription of the genomic HIV-1 RNA leading to the full-length double strand DNA is 

completed.  This viral DNA associates with viral and host cell proteins into the aforementioned 

PIC.  Lentiviruses are unique in the fact that they have evolved a strategy to import their own 

genome through the envelope of the interphasic nucleus via an active mechanism within four to 

six hours post infection (22).  Data has supported the notion that Vpr enhances the transportation 

of viral DNA into the nucleus of nondividing cells by promoting direct or indirect interactions 

with the cellular proteins, especially the nuclear importins, regulating the nucleo-cytoplasmic 

shuttling (23-30).  The exact composition of the PIC has yet to be determined, but what is known 

is that it is comprised of the viral DNA associated with integrase, cellular factors that participate 

in both intra-cytoplasmic routing and nuclear translocation of viral DNA, and, Vpr (31-33).  The 
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PIC progresses through the cytoplasm via the cytoplasmic dynein motor and travels along the 

microtubule network in order to migrate towards the nucleus.  The role of Vpr in association 

with the PIC is still unclear.  It is not yet known whether Vpr plays an active role during the 

movement of the PIC along the microtubules or whether it is only associated with the complex 

and then actively participates in the subsequent steps of anchoring the PIC to the nuclear 

envelope and the nuclear translocation of the viral DNA (7). 

Cells expressing Vpr have been known to accumulate in the G2/M phase of the cell cycle.  

It has been shown that Vpr targets a general host cellular mechanism that controls progression of 

cells from G2 to mitosis.  Briefly, in normal cells p34cdc2 is phosphorylated, which is one of the 

first steps in the transition phase from G2 to mitosis (4, 34).  However in Vpr-infected cells, 

p34cdc2 is for the most part inactive, leaving the cells suspended in a phase ideal for viral 

replication. The determinants of the G2 arrest activity are mainly located in the C-terminal 

unstructured basic region of HIV-1 Vpr and phosphorylation of Vpr protein is required for Vpr-

mediated cell cycle arrest (35, 36).   Several forms of Vpr, i.e. intracellular, intravirion, and free 

Vpr, present within the host are capable of inducing cell cycle arrest function upon exposure (5, 

37).  There are also several lines of evidence in support of the involvement of these various 

forms of Vpr in pathogenic events as well as in the regulation of HIV-1 replication (5). 

2.1.3 In vivo analysis of Vpr: Long-Term Nonprogressors (LTNPs) or Slow Progressors 

and Rapid Progressors (RPs) 

Earlier efforts in studying the role of vpr in HIV-1 disease progression were for the most part 

based on nucleotide sequence analysis (6).  This method proved very useful in detecting gene 

deletions, insertions, and, mutations. Even though the vpr sequence is one of the most conserved 

regions of the HIV-1 genome, variations are inevitably found in the quasispecies that affect 
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patients, ultimately affecting the rate of disease progression.  Thus the two category terms Long-

Term Nonprogressors (LTNPs) and Rapid Progressors (RPs) were devised in order to describe 

the progression of viral pathogenesis within the HIV-1 patient  (38, 39).  LTNPs are defined as 

asymptomatic with CD4 T-cell counts > 500 X 106 cells/1, low levels of spontaneous apoptosis, 

and low or undetectable viral loads for at least ten years.  They also maintain a strong immunity, 

both humoral and cellular, against HIV-1 without the assistance of any antiretrovirals such as 

HAART (8, 40, 41).  The RPs on the are symptomatic and progress to AIDS within the usual 

time span of ten years, without the help of antiretroviral therapy.  Recently, a non-functional 

mutation (R77Q) identified in vpr has been implicated in readily establishing long-term chronic 

infection of T-cells, whereas wild type vpr is known to increase the rate of viral replication and 

cytopathic effects of the virus in cell culture (42).  Specific mutations within the vpr gene include 

several known changes that seem to be associated with this slow progression to disease. 

Mutations within vpr include the polymorphism at the 3rd amino acid residue.  Normally 

at this position the presence of glutamine (Q) has been observed, however in LTNPs, it has been 

replaced by arginine, R.  This change has been shown to significantly impair the ability of Vpr to 

confer its normal cytopathicity.  But this polymorphism has no effect on the efficiency of the 

virus to replicate (6, 43).  Similarly the C-terminal domain mutant R80A is another mutation 

studied in this regard.  This particular mutation abolishes the G2/M cell cycle arrest which, as 

discussed earlier, the virus depends on to suspend cells in this specific transition phase, leading 

to an increase in viral replication (44). The next mutation in Vpr that has been studied is the 

R77Q mutation where an arginine (R) residue is replaced by a glutamine (Q) residue.  This point 

mutation does impair the capability of Vpr in inducing cellular apoptosis in the absence of cell 

cycle arrest, which could overall dramatically affect disease progression (8, 38, 45).  However, a 

recent study disputes this observation indicating that this change may not in fact be only 

associated with just the LTNPs, since it is also present in the RPs (45).  This suggests that R77Q 
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is just another point mutation and it may not be related to disease progression as thought earlier.  

Another mutation identified at the onset of HIV-1 research involved the deletion of vpr from the 

virus. The HIV-1 viral strain HxB2 carries this distinctive mutation that leads to the premature 

termination of the open reading frame (ORF), impairing the ability of Vpr to induce cell cycle 

arrest and apoptosis (6, 46).  More recently reviewed is the insertion of arginine (R) at position 

90 in the gene, which alters the highly conserved C-terminal motif.  The C-terminal motif, 

defined as RQRRAR, has previously been indicated as playing a role in nuclear localization as a 

nuclear localization signal (NLS) (15).  This motif is believed to play a role in subtype B Vpr 

nuclear targeting (15).  To date, subtype O is the only other subtype with the R insertion leaving 

the sequence with a consensus length of 100 amino acid residues in comparison to the usual 96 

amino acid residues.  Therefore, gene defects that diminish any of the Vpr-specific activities 

would have a negative impact on viral survival and thus could potentially slow down disease 

progression (16). 

Human leukocyte antigens (HLA) exist in large numbers within the human population.  

Their alternatives, HLA alleles, are known for their association with disease, some of which have 

the ability to increase the risk and progression of certain human diseases such as HIV-1 (41).  

Mutations are known to cluster in certain HLA regions, suggesting an HLA-driven evolution of 

the gene vpr.  Studies have documented that HLA-B27 and HLA-B57 as well as others are 

strongly associated with slower rates of disease progression, making them a protective agent in 

LTNPs.  Certain subtypes of the HLA alleles such as HLA-B35 and HLA-A29 are, however, 

known for being associated with faster rates of disease progression (47, 48).  These findings lead 

to the conclusion that Vpr protein evolution may in fact be host- driven (15). 

Within the last few years, research has been carried out to study the effects that antiretrovirals 

have on the HIV-1 viral strains within patients.  The results reported several HAART-induced 

mutations.  The mutation with the highest frequency was seen repeatedly in LTNPs on HARRT 
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and involves a serine (S) to asparagines (N) change at position 28 on the vpr.  To validate this 

particular polymorphism, gene analyses were performed and no other defects were found in any 

of the other HIV-1 genes, thus implying that this mutational change was in fact unique to the vpr 

gene (15). 
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3.0  PUBLIC HEALTH SIGNIFICANCE 

Human immunodeficiency virus (HIV) is still among the top killers of the world population.  

Throughout the world the virus is broken up into types, i.e. type 1 or type two, as well as 

different clades or subtypes, i.e. clade B in North America, clade C in India (49).  Based on the 

viral pathogenesis seen in vivo, the resulting disease has been divided into to very distinctive 

categories: Rapid Progressors (RPs) and Long Term Non-Progressors (LTNPs) (38, 50).  The 

difference between the two groups of patients is the time in which HIV develops into full-blown 

AIDS.  CD4+ T-cells and macrophages constitute the main cell targets of the virus.  Once inside 

these cells, the virus begins replicating by using the host’s cellular mechanisms. It is through 

these replicative stages that the virus makes changes in its own genome, resulting in the 

manufacturing of new/recombinant virus strains that are not only different from the original 

infecting virus, but also between each other.  Throughout its evolution HIV has developed ways 

to “outsmart” its hosts through techniques such as mutation and its ability to hide for months or 

even years at a time.  Understanding the pathogenesis and the strategies that are employed by the 

virus using its gene products such as Vpr is greatly needed to develop immune therapeutics and 

antivirals. Furthermore, lessons learned from in vivo analysis of the vpr gene and its role in 

disease status will lead to the identification of domains that play a role in host cellular 

alterations, thus new targets for therapeutic interventions.   

Most patients infected with HIV-1 develop AIDS unless they receive antivirals such as 

HAART.  The only hope in counteracting the effects of HIV is through the use of antiviral 

medications.  But studies have shown that not everyone has the same positive effect when these 
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drugs are administered.  With the new reports of “Super AIDS” in the media, the world is ready 

for a new approach to battling with this ultimately deadly disease (51).  With the development of 

a working vaccine, scientists hope to be able to lessen the effects that this virulent virus has had 

on the human population as a whole. 

The public health significance of this project is to provide valuable research that will lead 

towards such a viable HIV-1 vaccine for the general population.  By studying the individual 

genes of the virus, researchers will be able to better understand the mechanisms by which such a 

complex virus operates.  In the history of sexually transmitted diseases, no one has been able to 

develop a means of eradication, ever.  This work, which entails detailed research into the many 

different aspects of the HIV-1 viral gene vpr, encompasses the very beginning stages of vaccine 

development and of hope for such a cure. 
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4.0  THESIS AIMS 

The HIV-1 genome in infected individuals demonstrates a marked heterogeneity.  Even within a 

single infected individual, the virus exists as quasispecies.  The HIV-1 genome codes for the 

three structural/enzymatic genes Gag, Pol, and, Env, the two regulatory genes Tat and Rev, and, 

the four accessory genes vif, nef, vpu, and, vpr.  In addition to their roles in viral replication and 

pathogenesis, expression of these accessory genes has been implicated in modulation of host 

cellular events.  The vpr gene specifically is known to modulate a number of host cellular events, 

however, it is unknown how the Vpr-mediated cellular events affect viral pathogenesis and 

disease progression. 

HIV-1 patients harbor distinct genotypes and phenotypes of the accessory gene products 

at various stages of infection, suggesting a correlation between genotypes and disease 

progression.  Using a longitudinal cohort of HIV-1 patient samples, I propose to functionally 

characterize the Vpr genotypes associated with disease progression.  By characterizing Vpr 

within the individual, naturally occurring mutations and deletions within Vpr can be reviewed to 

determine if the protein is in fact lethal or defective and further correlate this with disease 

progression and clinical outcome.  This knowledge will also help in future studies involving 

HIV-1 vaccine development. 

4.1.1 Specific Aim #1 

Isolation of vpr from samples of HIV-1 infected individuals within the cohort study. 
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A) DNA Extraction 

B) Vpr Amplification 

4.1.2 Specific Aim #2 

Genotyping analysis of Vpr from patient samples. 

A) Vpr Cloning and Screening 

B) Patient Sequence Analysis 

C) Phylogenic Tree Composition 

D) Reporter Assay and Protein Quantification 



5.0  MATERIALS AND METHODS 

The patient population used in this study is part of the Multicenter AIDS study  (MACS) group. 

Using appropriate protocols and IRB approval, samples were received from Baltimore and 

Northwestern as part of the MACS. Frozen peripheral blood mononuclear cells (PBMCs) were 

shipped to us in dry ice and the samples were stored at –20˚C before further use. 

 

 
Table 1: Demographic information and disease status of the MACS patient population used in this study. 
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5.1 DNA EXTRACTION 

Genomic DNA was extracted from peripheral blood mononuclear cells (PBMCs) from each of 

the eleven patients, courtesy of the Multicenter AIDS Cohort Study (MACS) (Table 1).  The 

PBMCs were obtained from the Northwestern University, IL and John Hopkins University, 

Baltimore MACS facilities.  The DNA extraction was carried out using the GFX Genomic Blood 

DNA Purification Kit (Amersham Pharmacia Biotech Inc, Piscataway, NJ) for each of the 

MACS patients.  Briefly, PBMC pellets were allowed to thaw at room temperature after being 

removed from -80°C. Extraction Solution (500 µl) was added to the cells and immediately 

vortexed before allowing the mixture to incubate for five minutes at room temperature.  The cells 

and extraction solution were placed inside a GFX column, and was centrifuged for one minute at 

8,000 rpm.  The flow-through was discarded, 400μl additional Extraction Solution was added to 

the column, and spun for another minute at 8,000 rpm.  After discarding the flow-through, 500μl 

of the Wash Solution was added to the column.  The column was spun for three minutes at 8,000 

rpm and the flow-through was discarded.  The tube was spun a final time to ensure that all of the 

lysate was removed and only the genomic DNA remained bound to the column.  Next the GFX 

column was placed into a new microcentrifuge tube and 200μl of autoclave water (pre-heated to 

70°C) was added into the column.  The column was incubated for one minute at room 

temperature before being spun at 8,000 rpm for one minute.  In order to make sure the new tubes 

now contained the recovered purified genomic DNA to be used throughout the experiments, 10μl 

from each sample was run on a 1% agarose gel (0.60g Agarose Low EEO heated with 1X TBE 

solution). 
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5.2 VPR AMPLIFICATION 

The genomic DNA extracted from the PBMCs contains copies of the full length HIV-1 viral 

genome.  In order to clone vpr, polymerase chain reaction (PCR) was required for its 

amplification.  The vpr primers used for PCR corresponded specifically to nucleotides of the 

pNL43 HIV-1 proviral genomic sequence and contained both an  external vpr primer, including 

approximately an additional one hundred base pairs upstream and downstream of the actual gene, 

and an internal vpr primers, containing approximately ten additional base pairs upstream and 

downstream of the gene (Table 2).  The later is thought to be more conventional for future 

functional studies. 

 

 
Table 2: List of the primers used for amplification of vpr during pcr. 

Forward 5’ GAC GGA CAT AAC AAG GTA GGA 3’ Vpr 

(external) 
Reverse 5’ GTC GCT GTC TCC GCT TC 3’ 

   

Forward 5’ AGG ACA GAT GGA ACA AGC CCC AGA AGA CCA AG 3’Vpr 

(internal) Reverse 5’ CTA GGA TCT ACT GGC TCC ATT TCT TGC TCT 3’ 

 
 

 

 

The PCR protocol used is as follows, starting with the PCR reaction samples and ending with the 

thermocycler conditions:  35μl of autoclaved water, 5μl of 10X buffer, 2μl of dNTPs, 5μl of 

genomic DNA, 1μl of the forward primer (10pmol/μl), 1μl of the reverse primer (10pmol/μl), 

and, 1μl Taq Polymerase were added sequentially to a PCR grade microcentrifuge tube for a 

final solution volume of 50μl for each patient.  The tubes were then run under the PCR 
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conditions of 95°C for two minutes, 30 cycles of denaturing at 95°C for one minute, annealing at 

54°C for one minute, extension at 72°C for two minutes, and a final elongation time of 72°C for 

fifteen minutes.  10μl of the finished amplified product was run on a 1% agarose gel for the 

identification of the vpr fragment.  The protocol for internal Vpr (Vpri) has only one difference; 

the PCR reaction sample requires the use of 10μl of genomic DNA.  The PCR conditions are as 

follows: 95°C for two minutes, 45 cycles of denaturing at 95°C for one minute, annealing at 

60°C for one minute, extension at 72°C for two minutes, and, a final elongation time of 72°C for 

fifteen minutes.  To verify this smaller fragment, 10μl of the finished amplified product was run 

on a 2% agarose gel (1.20g Agarose Low EEO heated with 1X TBE solution). 

5.3 VPR CLONING AND SCREENING 

5.3.1 Vpr Cloning 

After the PCR products were verified to be that of vpr based on the amplified fragment size by 

electrophoresis, the next step was to incorporate the gene into an expression vector to conduct 

further gene function analyses.  Vpr was cloned in to pcDNA3.1/V5-His TOPO-TA vector using 

the Cloning/Expression Kit (InVitrogen, Carlsbad, CA) according to the manufacturers’ 

instruction.  Each sample was ligated with the vector and transformed into E. coli bacteria in 

order to produce clones for study purposes.  The cloning procedures are as follows: 8μl of the 

PCR product, 1μl of the provided Salt Solution, and, 1μl of the TOPO vector were combined in a 

microcentrifuge tube, mixed gently, and allowed to incubate at room temperature for thirty 

minutes.  5μl of the incubated TOPO Cloning Reaction was added to a tube of competent E. coli 

cells that were provided with the cloning kit.  The tube was mixed gently and allowed to incubate 
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on ice for another thirty minutes.  Next the tube was heat-shocked in 42°C water for 45 seconds, 

then returned back to the ice for two minutes.  450μl of media was combined with the contents of 

the tube into a new inoculation tube and shook at 197 rpm for 2 hrs.  Different quantities (100 

and 200 µl) of the transformed samples were spread over an ampicillin-containing Luria Bertani 

(LB) agar plate in order to allow for optimal colony growth.  Plasmid DNA was isolated by lysis 

boiling prep.  Briefly, individual colonies were collected and grown overnight in 4mL LB with 

ampicillin (100mg/mL). Cells were spun down (10,000 rpm for five minutes) and cell pellets 

were lysed using a combination of 450μl of STET buffer and 25μl of lysozyme.  Cell lysate was 

vortexed and placed in a boiling bath for approximately one minute before being spun down at 

13,000 rpm for ten minutes.  After the newly formed debris pellet was removed from the 

supernatant, 25μl of sodium acetate and 250μl of 2-propanol were added and the solution 

incubated at room temperature for 30 minutes.  Following incubation the solution was spun 

down at 13,000 rpm for ten minutes, washed with 70% cold ethanol, and, spun down using the 

aforementioned parameters.  The supernatant was decanted and the DNA pellet was allowed to 

dry completely at 37°C before dissolving in 50μl of TE buffer. 

5.3.2 Vpr Screening 

The screening of individual colonies involved the restriction digestion of the purified plasmid 

DNA.  The enzymes used in the restriction digest were EcoRI, HindIII, and, XhoI (New England 

Biolabs, Beverly, MA).  The first digestion used HindIII and XhoI to release the vpr DNA 

fragment from the plasmid TOPO vector and HindIII and EcoRI were used in the second 

digestion as a means to verify the orientation of the cloned vpr gene.  All positive colonies were 

used to prepare clean DNA for sequencing using the QIAprep Miniprep kit (QIAGEN, Valencia, 

CA) and quantitated by spectrophotometer. Sequencing of the positive colonies was performed at 
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the University of Pittsburgh Genomics and Proteomics Core Laboratory.  All sequences were 

verified using forward and reverse primers to confirm any changes. 

5.3.3 Nucleotide Sequence Analysis 

Based on the nucleotide sequences obtained from the core facility, the sequences were subjected 

to a number of analyses.  First, sequences were loaded into the Edit Sequence program for the 

purpose of determining the chromatography of the individual sequences.  Within this particular 

program adjustments could be made to any nucleotide residues not properly read by the 

Genomics and Proteomics Core Laboratory.  This procedure usually involved changing N’s to 

one of the corresponding four-nucleotide base pairs: adenine (A), thymine (T), guanine (G), or 

cytosine (C), as well as deleting any bases that did not contain an actual peak on the 

chromatogram.  From here the sequences were read into the DNA Strider program for vpr 

verification.  If DNA Strider could not verify the presence of vpr, the sequence was blasted using 

the public National Center for Biotechnology Information (NCBI) database 

(http://www.ncbi.nlm.nih.gov/) to search for any sequence homology with the pNL43HIV-1 

proviral sequence (Los Almos National Library) vpr gene.  After gene verification the newly 

derived vpr sequences were loaded into the ReadSeq program 

(http://bimas.dcrt.nih.gov/molbio/readseq) and converted into the FASTA format for easy 

reading by other sequence analysis programs.  Finally the sequences, along with the HIV-1 

pNL43-Vpr sequence, were downloaded into the Clustal W online program 

(http://www.ebi.ac.uk/clustalw/), which allowed for sequence alignment and phylogenic tree 

analysis. 

http://www.ebi.ac.uk/clustalw/
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5.4 CELL CULTURE 

5.4.1 Primary Cell Line 

HeLa cells used for transfection were obtained from the NIH AIDS Research and Reference 

Program (ARRRP).  HeLa cells were cultured in Dulbecco’s modified Eagle medium (DMEM), 

supplemented with 10% heat inactivated fetal bovine serum (FBS) (Cambrex, Walkersville, MD) 

and 1% penicillin-streptomycin (GIBCO, Grand-Island, NY).  The cells were then maintained in 

a 37°C humidified chamber at 5% CO2. 

5.4.2 Transfection 

HeLa cells were transfected with 0.5μg of Vpr expression plasmid  and the HIV-1 LTR with a 

luciferase reporter gene using Lipofectamine 2000 reagent (InVitrogen, CA).  When applicable 

mutated Vpr clones were utilized for the transfections, specifically clones from different MACS 

patients as shown in Table 3.  Both the lipofectamine and the HIV-1 LTR with luciferase were 

diluted into OPTI-MEM (GIBCO) prior to being added to the HeLa cells.  After an incubation 

time of 3 hours at 37°C, 5% CO2, the cells were washed and DMEM was added for an additional 

incubation time of 48 hours at 37°C, 5% CO2.  1X Repoter Lysis Buffer was used to lyse the 

cells following transfection. Cell lysates were spun at 12,000 rpm at 4˚C to remove cell debris 

and cell lysates were used to measure the luciferase activity.  Protein concentration in cell lysates 

were measured and normalized with the luciferase activity. 

 

 

 

 

 



 

 

 
Table 3: HeLa Cell Transfection Data.  Clones used from MACS and PittMen Study for transfection 

analyses. 
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6.0  RESULTS 

6.1 SPECIFIC AIM #1: ISOLATION OF VPR FROM SAMPLES OF HIV-1 

INFECTED INDIVIDUALS WITHIN THE COHORT STUDY 

6.1.1 Genomic DNA preparation 

The HIV-1 positive patients within the MACS group were infected with the viral strain from 

clade B, which is found primarily within North America.  Genomic DNA was obtained from the 

PBMC cell pellets using the GFX Genomic Blood DNA Purification kit (Amersham Pharmacia 

Biotech Inc, Piscataway, NJ).  The resulting solutions from each patient were run on an agarose 

gel to ensure that DNA had been extracted from the PBMCs (Figure 2).  A total of eleven patient 

PBMCs were successfully extracted from the cell pellets.  To ensure that patient samples were 

not contaminated or mislabeled, no more than four samples were used at a given time.  The 

working patient samples of genomic DNA were kept in 4°C for future use with PCR. 

 

 



 

Figure 2: Electrophoretic analysis of genomic DNA.  After the extraction from the MACS patient 

PBMC cell pellets, samples were run on a 1% agarose gel to confirm the extraction of genomic DNA.  Lane 

assignments: 1) PT176 2) PT330 3) PT109 4) PT007. 

 

6.1.2 PCR Amplification 

The patient samples contain few copies of the integrated proviral DNA therefore a nested PCR 

amplification step was necessary to amplify the viral gene products.  This includes both single 

round as well as multiple rounds of PCR amplification steps. For the first round of PCR, external 

primers were used (primers designed 110 base pairs before the start codon of Vpr as well as 128 

base pairs beyond the stop codon of Vpr) to amplify a 446 bp fragment. First, patient samples 

were processed through a round of PCR to amplify the vpr gene and run on an agarose gel 

(Figure 3A).  The presence of a band approximately 446 base pairs verified that vpr had been 

amplified from the patient genomic DNA.  After verification, the second round of PCR was 

performed using internal primers amplified the vpr gene, ORF of 299 bp.  This second round of 

amplification used genomic DNA from the first round PCR instead of the working patient 

samples of genomic DNA as a template. This particular PCR produced a band that was 

approximately 299 base pairs in length (Fig. 3B). 
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Figure 3: PCR of Vpre and Vpri.  Following the PCR amplification of vpr, the PCR products were run on a 

1% agarose gel to confirm the size of the fragments.  (A) The first round of PCR indicating the external vpr 

fragments approximately 446 bp.  Lane assignments: 1) PT 330 2) PT007 3) PT3028 4) PT9831 5) PT3827 6) 

PT7329 7) PT1629 8) PT5731 9) Marker.  (B) The second round of PCR indicating the internal vpr fragments 

approximately 299 bp. Lane assignments: 1) PT 330 2) PT007 3) PT3028 4) PT9831 5) Marker 6) PT3827 7) 

PT7329 8) PT1629 9) PT5731. 

 

6.2 SPECIFIC AIM #2: GENOTYPING ANALYSIS OF VPR FROM PATIENT 

SAMPLES 

6.2.1 Cloning and screening of the vpr gene 

In order to further our knowledge on the aspects of the individual gene functions, the 

amplified vpr gene fragments needed to be incorporated into a eukaryotic expression vector.  The 

vpr gene fragments were ligated into a pcDNA3.1/V5-His/TOPO TA cloning expression vector 

(InVitrogen, CA) with the His tag attached to its C-terminus.  This particular vector construct 

also includes a T nucleotide overhang, which is specific to the A nucleotide overhang provided 

by Taq-amplified PCR products for cloning purposes.  The ligation reaction was transformed 

into the competent E. coli cells and plated on an ampicillin containing LB plate and incubated at 

37˚C overnight. Colonies were selected and grown in LB media for further screening. Patient 
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samples were screened using two sets of double digestion incorporating twelve colonies.  The 

first digestion consisted of a HindIII and XhoI reaction, which released the vpr gene fragment 

from the vector.  Out of the first screening of twelve colonies I averaged between six to eight 

positive clones, the second screening of colonies averaged seven positive clones.  The sole 

purpose of the second digestion, which involved a HindIII and EcoRI reaction, was to confirm 

the orientation of the vpr fragment inside the vector. The clones, which released the right sized 

fragment on the agarose gel, were used to prepare clean DNA for the sequencing analysis (Figure 

4). 

 

 

Figure 4: Electrophoretic analysis of vpr cloning by restriction digest.  Patient clones were screened in order 

to verify the presence of the ligated vpr fragment into the pcDNA3.1 vector through plasmid digestion using 

HindIII and XhoI. 

 

 

6.2.2 Patient sequence analysis 

All of the positive clones from the eleven MACS patients were sent off to the University 

of Pittsburgh Genomics and Proteomics Core Laboratory for sequencing. Results from the 
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sequence analysis were verified and subjected to several analysis programs.  Verification of the 

sequences was obtained by using the program methods of Edit View, DNA Strider, and, NCBI as 

described earlier.  Briefly, the sequences were loaded into the Edit Sequence program for the 

purpose of determining the chromatography of the individual sequences.  Within the program 

nucleotide residues could be adjusted for peak positions not previously read by the Core Lab.  

The sequences were then read into the DNA Strider program for vpr verification.  If however the 

program could not identify vpr, a gene blast was performed using the NCBI database.  The 

database compared the MACS patient sequences to that of the pNL43 HIV-1 proviral sequence 

vpr gene.  After vpr confirmation, the sequences were read into the ReadSeq program and 

converted into the FASTA format before being downloaded into the Clustal W online program.  

The Clustal W program produced sequence alignments and the formation of phylogenic trees, 

which allowed for further analysis of the patient sequences. 

Since all of the MACS patients are from North America (possible clade B), Vpr from the 

pNL43 HIV-1 proviral sequence was utilized for the consensus. Within each patient, the 

individual sequences were analyzed for the different variations observed in order to determine 

the interpatient variation, while keeping in mind that all of the analyses were based on the 

deduced amino acid sequences and that any of the change variations observed within a 

nucleotide could be silent and/or nonsense which would result in no significant changes within 

the amino acid or the protein composition.   

Comparisons of the deduced amino acid sequences (A) and their respective phylogenetic tree 

analysis (B) for all eleven MACS patients are shown in figures 5–15.  In general the sequences 

within theses patients are conserved. These results are very similar to the published reports 

indicating that accessory genes are more conserved than the structural proteins Env and Gag 

(52).  Sequence analysis of patient #1 (PT1) indicates that this patient exhibits two major variants 

within the vpr alleles (Figure 5A). Interestingly most of the mutations occur within a particular 



 27 

residue.  For examples the observed mutations in PT1 are at amino acid positions 11, 28, 41, 77, 

and, 83. At position 11, glutamine (Q) is mutated to either serine (S) or alanine (A), whereas N41 

is mutated to serine (S), where S has a role in protein phosphorylation.  The most interesting 

genotype of PT1 is the presence of R77Q. Previous studies have demonstrated that R77Q is 

involved in LTNPs phenotype (8).  Given the fact that many of these patients are LTNP, this 

observation directly correlates with the functional phenotype of Vpr in disease progression. 



 

 

 

 
Figure 5: MACS patient #1 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of the 

patient variants. 
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Using the deduced amino acid sequences, a phylogenetic tree was generated that grouped these 

sequences into variants (Figure 5B).  The phylogram also shows that vpr clones 2, 3, 4 and, 5 

share  similar homology within them, while the other alleles are grouped into two other branches. 

Similar analyses were performed for all of the MACS patients.  Patient #2 (PT2) , showed higher 

mutation rates as well as multiple quasispecies (Fig. 6A &B).  The mutations observed are at 

amino acid residues 19, 28, 37,41, 45, 64, 83, 85, and, 86.  As seen in PT1 S28 and N41 have 

been mutated, but in PT2 the amino acids are mutated to asparagine (N) and glycine (G), 

respectively.  The mutations observed are highly conserved in the fact that when a mutation does 

occur, it is the same for all of the alleles.  This is evident in the constructed phylogram, which 

shows three very distinct branched groups.  Only three of the vpr alleles from patient #3 (PT3) 

(Figure 7A) were observed to have mutations.  For allele #1 the mutation occurs at the end of the 

sequence starting with the amino acid, which corresponds to position 88.  For allele #7 the 

mutation occurs at amino acid position 80, but instead of the R80A mutation, this one converts to 

lysine (K).  The most unique allele from PT3 is #3, which has mutations located at aspartic acid 

(D) 7 glutamic acid (E) and tyrosine (Y) 15 histidine (H).  But what makes this allele unique is 

that fact that an isoleucine (I) is inserted into the sequence between amino acid positions 26 and 

27.  As for the phylogram, Figure 7B shows that all of PT3’s alleles are located on different 

branches. Figure 8A depicts the observed mutations for patient #4 (PT4), which can be seen at 

amino acid positions 37, 40, 41, 83, 84, and, 85.  The corresponding mutations for those 

mutations are isoleucine (I) to threonine (T) and glutamic acid (E), histidine (H) to glutamine 

(Q), asparagine (N) to serine (S) and glycine (G), valine (V) to isoleucine (I), threonine (T) to 

isoleucine (I), and, arginnie (R) to proline (P).  The generated phylogenetic tree for PT4 (Figure 

8B) is grouped into four distinct branches.  Patient #5 (PT5) is the only patient in which all of  

 



 

 
 

 

 

Figure 6: MACS patient #2 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of the 

patient variants. 
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Figure 7: MACS patient #3 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of the 

patient variants. 
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Figure 8: MACS patient #4 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of the 

patient variants. 
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the deduced vpr alleles match up precisely with the pNL43 consensus sequence.  This is evident 

in both figures 9A and B due to the lack of observed mutations and multiple grouped branching.  

Two of the amino acid sequences from patient #6 (PT6) are exactly identical to the pNL43 

consensus sequence, while the other two contain mutations, but in different spots, all of which 

can be seen in (Figures 10A and B).  The mutation observed in allele #4 constitutes a change 

starting at amino acid position 66.  Allele #3 has a mutation at amino acid positions 45, 77, 83, 

84, 86, and 87.  However the mutation that stands out the most is the R77Q amino acid change, 

which  has been linked to the LTNPs phenotype. The mutations observed in patient #7 (PT7), 

figure 11A, are seen at amino acid positions 15, 20, 28, 33,37,41, 77, 83, and, 87.  S41N and 

R77Q are the main mutations that seem to be showing up more frequently throughout the 

previous patient sequences.  Figure 11B shows that PT7’s sequences are grouped into two main 

branches, with two subdivisions, which strongly suggest the similarities between alleles 4-6.  The 

amino acid sequences deduced from patient #8 (PT8) are comprised of two alleles that have the 

R80A mutation, which are shown in figure 12 A.  Also shown within the same two alleles are the 

mutations that have previously been identified as V83I, T84I, and R85Q.  The last allele has 

been mutated at the end of the sequence, starting with amino acid position 82.  Figure 12 B 

shows the groupings of the branches for the individual alleles.  For example alleles 4 and 5 are 

identical to the pNL43 consensus, and thus are grouped together on the same branch, as are 

alleles 1 and two, which possess the same multiple mutations.  Patient #9 (PT9) possess the 

V83I, T84I, and R85Q mutation set and the 20, 28, 33,37,41 mutation set (Figure 13A).  PT9 

also has includes four alleles with the R77Q mutation as well as six different alleles, which 

contain the R80A mutation.  Allele #10 (R77Q) also contains and ending mutation that begins at 

amino acid position 91.  Within the phylogenetic tree (figure 13B) only five of the R80A alleles  



 

 

 

 

Figure 9: MACS patient #5 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of the 

patient variants. 
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Figure 10: MACS patient #6 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 
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Figure 11: MACS patient #7 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 
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Figure 12: MACS patient #8 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 
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are grouped together off of the main branch of the tree, suggesting a strong variation between the 

sixth allele.  The mutations observed within patient #10 (PT10) are mainly comprised of V83I, 

The mutations observed within patient #10 (PT10) are mainly comprised of V83I, T84I, and 

R85Q mutation set as well as the 20, 28, 33,37,41 mutation set.  The allele with the latter 

mutation set also exhibits the R77Q mutation (Figure 14A).  The phylogram in figure14B shows 

that for the most part the sequences are conserved, due to the lack of multiple grouped branches.  

The deduced amino acid sequences from patient #11 (PT11) are highly conserved and are 

identical to the pNL43 consensus sequence, except for the amino acids starting at position 70 

(Figure 15A).  Alleles #9-11contain the mutation isoleucine (I) to leucine (L)  and a truncation of 

the sequence, while alleles #7 and #8 have a mutated sequence end beginning at amino acid 

position 82.  Alleles #5 and #6 contain the R80A mutation as well as the V83I, T84I, and R85Q 

mutation set.  Figure 15B shows a nice representation of PT11’s sequences with grouping and 

branching corresponding to the various observed mutations. 



 

 

 

 

 

Figure 13: MACS patient #9 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 
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Figure 14: MACS patient #10 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 

 

 

 40 



 
 

 

 

 

 

Figure 15: MACS patient #11 analysis.  (A) Deduced amino acid variant sequences.  (B) Phylogenetic tree of 

the patient variants. 
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6.2.3 Phylogenic Tree Composition 

Additionally, using the sequences of all the patients used in this study, a Neighbor-Joining tree 

was generated in order to identify the variation within these patients (Figure 16).  Results 

indicate that certain patient variants are closely related, while the rest of the patients have 

variants within themselves, which are not similar to each other, which can been seen based on 

the groupings of the various branches produced.  Patients #1,4, and, 9 are grouped in a very 

similar way that is reflected by their individual trees (Figures 5B, 8B, and, 13B).  Patients #5 and 

6 are closely related to their earlier trees with the exception of one outlier (Figures 9B and 10B).  

Patient #7 is grouped in a way that makes the branching almost opposite that of its individual 

tree (Figure 11B).  Patients #2, 3, 8, 10, and 11 show no similarities to their individual trees 

(Figures 6B, 7B, 12B, 14B, and, 15B).  Overall, the Neighbor-Joining tree supports reported 

studies that indicate vpr as having a well-conserved genome (52). 



 

Figure 16: Phylogentic tree comparison.  Comparison of all of the deduced amino acid sequences from the 

MACS patients with the consensus. 
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6.2.4 Reporter Assay and Protein Quantification: Correlation of biological function with 

the sequence variation of vpr alleles from patients 

HIV-1 Vpr is known to transactivate the HIV-1 LTR and increase virus transcription and 

replication.  To correlate whether these sequence variations have any biological functions, HeLa 

cells were transfected with the HIV-1 LTR luciferase and HIV-1 vpr from patients.  

Transactivation was measured using the RLU of vector transfected cells as 0 or the basal level 

activity.  Vpr specific transactivation of the HIV-1 LTR was calculated and the increase in log 

activity is presented in Figure 17.  Results indicate that vpr alleles, which exhibited the largest 

increase of transfection were comprised of deduced amino acid sequences similar to that of the 

vpr wild type virus.  Patients #5, 8, 10, and, 11 had sequences that were homologous to the 

consensus sequence, which in turn yielded transfections between 1.5 and 3.0 fold above the basal 

level.  PTs#7 and 11 were observed as having the same fold of approximately 3.0.  PTs #3 and 

14 were observed as being the only two alleles that had a transfection fold of greater than 10, 

which is interesting due to the fact that PT7 was homologous to pNL43, whereas PT11 exhibited 

both the R77Q and the Q3R mutations.  Overall, these findings show that the clones derived 

from each of the MACS patients are in fact potentially infectious and have the capability of 

expression in vivo. 

 



 
Figure 17: Log graph.  Transfection data of the MACS patient and PittMen Study vpr alleles. 
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7.0  DISCUSSION 

The HIV-1 vpr gene encodes a protein of 96 amino acids with a predicted molecular weight of 

15 kDa, and is relatively conserved in HIV and SIV (4, 5, 6, 7, 16, 53, 54). The vpr gene is 

dispensable for viral replication in T-cell lines and activated peripheral blood mononuclear cells 

(PBMC) in vitro (44).  Analyses of HIV-1 accessory genes (including vpr) in long-term 

nonprogressors (LTNP) and asymptomatic patients suggest that defects in accessory genes are 

related to LTNP.  The presence of defective or mutated vpr quasispecies has been associated 

with long-term nonprogressive mothers (4, 55).  Also, other studies have suggested that 

maintenance and selection for an intact vpr gene occurs in vivo (55, 56).  To test the role of Vpr 

in vivo, several studies were performed using a simian immunodeficiency virus (SIV) model.  

Members of HIV-2 and SIV, in addition to vpr, also contain vpx, a duplication of vpr (57).  In 

vitro studies have demonstrated that mutations in vpx can result in loss of infectivity of macaque 

macrophages (58).  Macaques infected with SIVmac239 containing a mutation in the Vpr 

initiation codon methionine (M) progressed to AIDS at a slower rate than those infected with 

wild type virus.  Though vpr is selected against in tissue culture, selection for Vpr function in 

vivo occurs in both humans and chimpanzees infected with HIV-1, suggesting that vpr employs a 

novel mechanism for maximizing virus production and pathogenesis in vivo (58).  More recently, 

several studies have linked the attenuated nature of Vpr in vivo and loss of T cell cytopathicity in 

HIV-1 infected patients (38, 43).  Transgenic mice expressing Vpr in the absence of other viral 

proteins further confirmed these findings, directly linking the cytopathic nature of Vpr and loss 
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of T cell loss in vivo (59, 60).  These observations suggest an important role for Vpr in vivo viral 

pathogenesis and disease progression. 

HIV-1 Vpr is present in detectable levels in the virus particle, making it one of the first 

HIV proteins seen by the host cell (38).  There are many diverse sources of Vpr available within 

the infected population.  Upon infection of cells by HIV-1, Vpr is synthesized as a late protein 

along with the structural proteins.  The protein is also associated with virus particles, which 

enables the virus particles to bring Vpr into the cells upon infection.  In addition to these 

infectious particles, there is also an abundance of non-infectious particles (on the order of 

1:50,000-1:100,000 infectious versus non-infectious), which also contain Vpr.  Hence, non-

infectious virions could also transfer Vpr protein into cells through endocytosis (61, 62).  It has 

been suggested that the free Vpr may be the result of Vpr released from infected cells as well as 

from lysis of virus particles.  The intrinsic ability of Vpr to traverse through the cell membrane, 

as demonstrated recently by several groups (10, 11, 63), provides another avenue by which Vpr 

released from the infected cells could influence the uninfected, but exposed bystander 

population.  It is widely accepted that Vpr has a role in cell cycle arrest and apoptosis 

(independent of cell cycle arrest) of primary cells and several cell lines (44, 64), however the role 

of cellular proteins involved in this are not known.  Vpr is known to activate several caspases 3, 

8, and, 9 as well as the mitochondrial membrane potential, indicating that several apoptotic 

pathways could be triggered by Vpr either simultaneously and/or sequentially (44, 65).  The 

important observation from these studies is that Vpr either directly and/or indirectly induces 

apoptosis in cells that are exposed to this protein, resulting in the possible induction of bystander 

cell death in vivo.  The results observed in this study also support this hypothesis. 

The capability of HIV-1 Vpr to directly affect the host’s cellular functions depends very much on 

its ability to maintain the highly conserved regions conserved.  Vpr, for the most part, is able to 

preserve itself and still accomplish all of its functions.  However, during the replicative cycles 
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alterations are made and mutations as well as truncations are introduced into the vpr geneome.  It 

is these alterations or mistakes that ultimately lead towards the adjustment of otherwise normal 

functions.  The one mutation that was observed the most within this particular population of 

MACS was the R77Q mutation.  This mutation was precisely shown to impair the ability of Vpr 

to induce cellular apoptosis.  And recent studies have also shown this point mutation to occur 

specifically within the HIV-1 population identified as LTNPs (8, 38, 45).  The results presented 

in this report support this theory as well as another current finding that the correlation between 

R77Q and LTNPs is not that biologically relevant (15).  Of the eleven patient sequences 

analyzed, Figure 18 illustrates the five patients (PT1, PT6, PT7, PT9, and, PT10) that showed the 

mutation incorporated into the viral genome.  The reason that these results are able to support 

both of the Vpr studies is by the simple fact that all but one of the MACS patients has been 

identified as a LTNP.  And the one patient (PT11) that still remains undetermined does not 

exhibit the R77Q mutation in any of its deduced amino acid sequences.  The recently deduced 

amino acid sequences of the patients also reveled the R80A mutation in a total of three patients; 

PT8, PT9, and, PT11.  The virus depends on the suspension of cells in the transition phase for 

replication.  R80A abolishes the ability of this function for the virus, ultimately decreasing the 

amount of viral replication.  Which is very interesting when considering that the only patient not 

identified as a LTNP possesses this particular mutation.  Another interesting observation 

revolves around the fact that PT9’s deduced amino acid sequences posses both R77Q and R80A, 

but not within the same qusiaspecies. Half of the the variants maintained the R77Q change, while 

the other half has maintained the latter. 



1                          28          40                   60                 80          
PNL43-Con
PT 1 MEQAPEDQGPQREPYNEWTLELLEELKSEAVRHFPRIWLHNLGQHIYETYGDTWAGVEAIIRILQQLLFIHFRIGCRHSRIGVTRQRRARN
2 ----------S----------------T------------S-----------------------------------Q-----I--------
3 ----------S----------------T------------S-----------------------------------Q-----I--------
4 ----------S----------------T------------S-----------------------------------Q-----I--------
5 ----------S----------------T------------S-----------------------------------Q-----I--------
6 ----------S-------------------------V---S---------------------T-------------Q-----I--------
7 ----------A-----------------------------S--------------------------------------------------
8 ----------A-----------------------------S-----------------------------------Q-----I--------
9 ----------A-----------------------------S-R---------------------------------Q-----I--------
10 ----------A-----------------------------S-----------------------------------Q-----I--------
PT 6
1 -------------------------------------------------------------------------------------------
2 -------------------------------------------------------------------------------------------
3 --------------------------------------------Y-------------------------------Q-----II-RN----
4 -----------------------------------------------------------------HTAVYP-..................Q
PT 7
1 ---------------D--------------------V------------------------------------------------------
2 -------------------------------------------------------------------------------------------
3 --------------F----I-----------------------------------------------------------------------
4 --------------F----I-------N----R---E---G-----------------------------------Q-----I---T----
5 --------------F----I-------N----R---E---G-----------------------------------Q-----I---T----
6 --------------F----I-------N----R---K---G-----------------------------------Q-----I---T----
PT 9
1 -------------------------------------------------------------------------------A--IIQ------
2 -------------------------------------------------------------------------------A--IIQ------
3 -------------------------------------------------------------------------------A--IIQ------
4 -------------------------------------------------------------------------------A--IIQ------
5 -------------------------------------------------------------------------------A--IIQ------
6 ----------------------------------------------------------------------------Q-----I---T----
7 --------------F----I-------N----R---E---G-----------------------------------Q-----I---T----
8 --------------F----I-------N----R---E---G-----------------------------------Q-----I---T----
9 --------------F----I-------N----R---E---G----------------K------------------Q-----T---T----
10 --------------F----I-------N----R---E---G--------------------------------------A--IIQ-T---M

PT 10
1 ----------------------------------------------------------------------------------IIQ------ÉÉÉÉÉ*
2 ------------------A---------------------------------------------------------------IIQ------
3 ----------------------------------------------------------------------------------IIQ------
4 ----------------------------------------------------------------------------------IIQ------
5 ----------------------------------------------------------------------------------IIQ------
6 -------------------------------------------------------------------------------------------
7 --------------F----I-------N----R-------G-----------------------------------Q-----I-------- 

 

 

 

 

Figure 18: Patient #1, #6, #7, #9, and, #10 deduced amino acid variant sequences exhibiting the R77Q 

mutation. 
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Once the amino acid sequences were derived, the next step was to perform relevant 

functional studies.  The functional analysis would in turn be able to identify correlations, if any, 

between the observed mutations and Vpr functions.  The transfection data acquired from this 

study reveals two sets of outliers when compared to the rest of the patients at basal level.  The 

first set includes the deduced amino acid sequences of PT 7 and PT 11.  PT7 who has been 

identified as a LTNP, has a variant sequence which exhibits an introduced truncation of the 

virus, while PT11, who has not been identified as either LTNP or RP, has a sequence variant 

which has incorporated the R80A mutation.  The other set includes deduced amino acid 

sequences of PT3 and PT14.  The sequence variant of PT3, also identified as a LTNP, also has a 

truncation introduced into its viral genome, while PT14 has a sequence variant that has 

introduced to mutation into its genome-Q3R and R77Q.  So even though these sets produced 

higher folds of transfection, the sequences are very similar in the fact that one from each set is 

either truncated or has had the introduction of at least one known Vpr mutation.  Further analysis 

of the two sets of outliers should provide a more significant correlation between the deduced 

amino acid sequences and the virus’ functional capabilities. 

HIV-1 Vpr is a unique non-structural protein that is associated with the virus particle. A 

number of functions necessary for viral replication and possibly for pathogenesis have been 

assigned to Vpr. A greater understanding of the complex interactions between HIV-1 gene 

product vpr and its possible role in HIV-mediated pathogenesis is clearly important.  For 

instance, this study has shown that due to the lack of apoptotic function it is possible that Vpr 

mediated bystander cell death could in fact be prevented.  Thusly in the case of LTNPs, the 

immune function has the chance of being restored by the CD4+ T-cells.  Such observations 

resulting from this study may lead to the development of new therapeutic interventions for 

AIDS. 
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8.0  FUTURE DIRECTIONS 

The basis for the research presented here is based upon the deduced amino acid 

sequences from patients within the MACS population.  From these sequences several point 

mutations as well as truncations have been observed and functional analyses have been carried 

out in order to better understand the different variants.  This study has been carried out for the 

main purpose of understanding the (linkage/interaction) between vpr gene 

mutations/polymorphisms and viral pathogenesis as well as the progression towards disease.  

Future studies involving the MACS patient clones will entail: 

(1) Deducing more Vpr amino acid sequences from the MACS patients. 

 By adding more Vpr clones to the already existing clones per patient will give a 

better understanding of the quasispecies represented within each patient.  This information will 

give more insight as to which mutation seem to dominate based on the environment of the host, 

i.e. LTNPs or Rps. 

(2) Further characterization of the Vpr clones for their known biological functions. 

 Additional analysis will be performed on the Vpr clones in order to identify 

changes from the normal biological functions to that of changes due to vpr mutations.  The 

functional analyses to be carried out include virus replication, cell cycle regulation, and immune 

dysregulation. 

(3) Sequential time point deduced amino acid sequences. 
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 It will be of interest to look at patient samples throughout their life, starting from 

right around the time of infection to well after their CD4+ T-cell counts have dropped.  By 

analyzing the deduced amino acid patient sequences at these time points, the emergence, and 

possible disappearance, of gene mutations, deletions, and, truncations can be observed and better 

understood. 
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