

ELASTIC FLEXURAL-TORSIONAL BUCKLING ANALYSIS USING FINITE ELEMENT
METHOD AND OBJECT-ORIENTED TECHNOLOGY WITH C/C++

by

Erin Renee Roberts

B.S., University of Pittsburgh at Johnstown, 2002

Submitted to the Graduate Faculty of the

School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2004

 ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Erin Renee Roberts

It was defended on

April 12, 2004

and approved by

Christopher J. Earls, Associate Professor and Chairman,
Department of Civil and Environmental Engineering

Julie M. Vandenbossche, Assistant Professor,
Department of Civil and Environmental Engineering

Morteza A. M. Torkamani, Associate Professor,
Department of Civil and Environmental Engineering,

Thesis Director

 iii

ELASTIC FLEXURAL-TORSIONAL BUCKLING ANALYSIS USING FINITE ELEMENT
METHOD AND OBJECT-ORIENTED TECHNOLOGY WITH C/C++

Erin Renee Roberts, M.S.

University of Pittsburgh, 2004

Flexural-torsional buckling is an important limit state that must be considered in structural steel

design. Flexural-torsional buckling occurs when a structural member experiences significant

out-of-plane bending and twisting. This type of failure occurs suddenly in members with a much

greater in-plane bending stiffness than torsional or lateral bending stiffness.

 Flexural-torsional buckling loads may be predicted using energy methods. This thesis

considers the total potential energy equation for the flexural-torsional buckling of a beam-

column element. The energy equation is formulated by summing the strain energy and the

potential energy of the external loads. Setting the second variation of the total potential energy

equation equal to zero provides the equilibrium position where the member transitions from a

stable state to an unstable state.

 The finite element method is applied in conjunction with the energy method to analyze

the flexural-torsional buckling problem. To apply the finite element method, the displacement

functions are assumed to be cubic polynomials, and the shape functions are used to derive the

element stiffness and element geometric stiffness matrices. The element stiffness and geometric

stiffness matrices are assembled to obtain the global stiffness matrices of the structure. The final

finite element equation obtained is in the form of an eigenvalue problem. The flexural-torsional

buckling loads of the structure are determined by solving for the eigenvalue of the equation.

 iv

 The finite element method is compatible with software development so that computer

technology may be utilized to aid in the analysis process. One of the most preferred types of

software development is the object-oriented approach. Object-oriented technology is a technique

of organizing the software around real world objects. An existing finite element software

package which calculates the elastic flexural-torsional buckling loads of a plane frame was

obtained from previous research. This program is refactored into an object-oriented design to

improve the structure of the software and increase its flexibility.

 Several examples are presented to compare the results of the software package to existing

solutions. These examples show that the program provides acceptable results when analyzing a

beam-column or plane frame structure subjected to concentrated moments and concentrated,

axial, and distributed loads.

 v

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

2.0 OBJECTIVES ... 3

3.0 LITERATURE REVIEW ... 4

3.1 FLEXURAL-TORSIONAL BUCKLING.. 4

3.2 OBJECT-ORIENTED DEVELOPMENT.. 6

4.0 FLEXURAL-TORSIONAL BUCKLING THEORY... 8

4.1 STRAIN ENERGY... 13

4.1.1 Displacements ... 13

4.1.2 Strains ... 22

4.1.3 Stresses and Stress Resultants... 24

4.1.4 Section Properties ... 24

4.1.5 Strain Energy Equation ... 25

4.2 POTENTIAL ENERGY OF THE LOADS .. 26

4.2.1 Displacements ... 27

4.2.2 Potential Energy of Loads Equation ... 28

4.3 ENERGY EQUATION... 29

4.4 NON-DIMENSIONAL ENERGY EQUATION.. 30

5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
DEFORMATIONS ... 32

 vi

5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS....................... 32

5.1.1 Displacements Considering In-Plane Deformations... 32

5.1.2 Strains Considering In-Plane Deformations ... 33

5.1.3 Strain Energy Equation Considering In-Plane Deformations............................... 36

5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE
DEFORMATIONS ... 37

5.2.1 Displacements Considering In-Plane Deformations... 37

5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations 37

5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS................. 38

6.0 FINITE ELEMENT METHOD .. 41

6.1 ELASTIC STIFFNESS MATRIX .. 49

6.2 GEOMETRIC STIFFNESS MATRIX ... 51

7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS 53

7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS 54

7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE
DEFORMATIONS ... 55

8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION......... 58

9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN.. 64

9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT ... 64

9.1.1 Basic Concepts.. 65

9.1.2 The C++ Object-Oriented Language .. 69

9.2 PROGRAM SET-UP .. 70

9.3 PROGRAM BACKGROUND.. 72

9.4 DESIGN PROCESS.. 74

 vii

9.4.1 Inception ... 76

9.4.2 Elaboration.. 76

9.4.3 Construction.. 81

9.4.3.1 Modeling... 83

9.4.3.1.1 Structural View ... 85

9.4.3.1.2 Dynamic Behavior View... 100

9.4.3.2 Coding... 110

9.4.4 Transition .. 119

9.5 WINDOWS INTERFACE.. 120

9.5.1 Windows Programming .. 120

9.5.2 Creating the Interface.. 122

10.0 APPLICATIONS .. 134

10.1 BUCKLING LOAD ANALYSIS... 134

10.1.1 Buckling Analysis Example 1... 134

10.1.2 Buckling Analysis Example 2... 137

10.1.3 Buckling Analysis Example 3... 139

10.1.4 Buckling Analysis Example 4... 142

10.1.5 Buckling Analysis Example 5... 145

10.1.6 Buckling Analysis Example 6... 147

10.1.7 Buckling Analysis Example 7... 149

10.1.8 Buckling Analysis Example 8... 151

10.1.9 Buckling Analysis Example 9... 153

10.1.10 Buckling Analysis Example 10... 156

 viii

10.1.11 Buckling Analysis Example 11... 158

10.2 PREBUCKLING ANALYSIS.. 160

10.2.1 Prebuckling Analysis Example 1 .. 160

10.2.2 Prebuckling Analysis Example 2 .. 161

10.2.3 Prebuckling Analysis Example 3 .. 162

10.2.4 Prebuckling Analysis Example 4 .. 163

10.2.5 Prebuckling Analysis Example 5 .. 164

10.2.6 Prebuckling Analysis Example 6 .. 165

10.3 NON-DIMENSIONAL ANALYSIS.. 166

10.3.1 Non-Dimensional Analysis Example 1... 166

10.3.2 Non-Dimensional Analysis Example 2... 168

10.3.3 Non-Dimensional Analysis Example 3... 170

10.3.4 Non-Dimensional Analysis Example 4... 172

10.3.5 Non-Dimensional Analysis Example 5... 174

10.3.6 Non-Dimensional Analysis Example 6... 175

10.3.7 Non-Dimensional Analysis Example 7... 176

11.0 SUMMARY.. 179

APPENDIX A... 182

DERIVATION OF THE ROTATION TRANSFORMATION MATRIX............................. 182

A.1 VECTOR oR... 183

A.2 VECTOR RL .. 184

A.3 VECTOR LQ .. 185

A.4 FINITE DISPLACEMENTS TRANSFORMATION .. 186

 ix

A.5 ROTATION TRANSFORMATION MATRIX ... 188

APPENDIX B ... 194

B.1 ELEMENT ELASTIC STIFFNESS MATRIX... 194

B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX.. 195

B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX ... 198

B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX................. 199

B.5 ELEMENT PREBUCKLING STIFFNESS MATRIX ... 202

B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX........................... 203

APPENDIX C ... 207

C.1 INPUT FILES ... 207

C.1.1 Input File for the Frame Program... 207

C.1.2 Input File for the LBuck Program .. 208

C.2 INPUT FILE SYMBOLS.. 211

APPENDIX D... 214

LBUCK PROGRAM CODE .. 214

D.1 ELEMENTGEOM.CPP.. 214

D.2 ELEMENTSTIFF.CPP ... 226

D.3 GEOMTR.CPP.. 230

D.4 LBUCK.CPP... 231

D.5 PROP.CPP .. 236

D.6 SPPRT.CPP... 239

D.7 STANDM.CPP.. 241

D.8 STIFFN.CPP ... 247

 x

D.9 ELEMENTGEOM.H .. 248

D.10 ELEMENTSTIFF.H.. 249

D.11 GEOMTR.H.. 249

D.12 PROP.H... 250

D.13 SPPRT.H... 250

D.14 STANDM.H.. 251

D.15 STIFFN.H ... 252

APPENDIX E ... 253

FRAME PROGRAM CODE.. 253

E.1 ACTIONS.CPP.. 253

E.2 DISPLACEMENTS.CPP .. 254

E.3 FRAME.CPP ... 258

E.4 LOADS.CPP.. 260

E.5 STIFFNESS.CPP... 264

E.6 STRUCTURE.CPP.. 267

E.7 ACTIONS.H.. 269

E.8 DISPLACEMENTS.H .. 270

E.9 LOADS.H.. 270

E.10 STIFFNESS.H... 271

E.11 STRUCTURE.H.. 272

BIBLIOGRAPHY... 274

 xi

LIST OF TABLES

Table 10-1 Beam Properties for W12x120 ... 136

Table 10-2 Frame Properties... 144

Table 10-3 Two Bay Frame Properties... 148

Table A- 1 Direction Cosines ... 191

 xii

LIST OF FIGURES

Figure 4.1 Coordinate System... 9

Figure 4.2 Cross Section View Displacements... 10

Figure 4.3 Displacements.. 10

Figure 4.4 External Loads and Member End Actions of the Beam-Column Element 11

Figure 4.5 Deformed Element... 14

Figure 4.6 Undeformed Element ∆z and Deformed Element ∆z (1+ε) 17

Figure 4.7 Twist Rotation ... 19

Figure 6.1 Element Degrees of Freedom .. 44

Figure 9.1 Basic Object-Oriented Concepts Illustration... 67

Figure 9.2 Program Operation .. 71

Figure 9.3 Rational Unified Process ... 75

Figure 9.4 Frame and LBuck Program’s Use Case Diagram.. 78

Figure 9.5 Reverse Engineering Process .. 80

Figure 9.6 Refactoring Process ... 80

Figure 9.7 Possible Frame Program Classes... 82

Figure 9.8 Possible LBuck Program Classes .. 83

Figure 9.9 Modeling Procedure .. 85

Figure 9.10 Example Class Diagram .. 87

Figure 9.11 Frame Program Classes ... 87

 xiii

Figure 9.12 LBuck Program Classes .. 88

Figure 9.13 Original Frame Program Procedural Flowchart .. 91

Figure 9.14 Frame Program Class Diagram ... 93

Figure 9.15 Original LBuck Class Diagram ... 96

Figure 9.16 LBuck Program Class Diagram... 99

Figure 9.17 Frame Program Sequence Diagram... 102

Figure 9.18 Original LBuck Program Sequence Diagram.. 105

Figure 9.19 Refactored LBuck Program Sequence Diagram.. 106

Figure 9.20 Activity Diagram... 109

Figure 9.21 Project Program Class Hierarchy .. 121

Figure 9.22 Interface Use Case Diagram.. 124

Figure 9.23 File Menu... 126

Figure 9.24 Data Menu ... 126

Figure 9.25 Analysis Menu... 127

Figure 9.26 New Project Dialog ... 127

Figure 9.27 Buckling Analysis Dialog.. 129

Figure 9.28 Non-Dimensional Analysis Dialog.. 130

Figure 9.29 Joint Data Dialog... 131

Figure 9.30 Member Load Dialog .. 131

Figure 10.1 Simple Beam with Equal End Moments ... 135

Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments 136

Figure 10.3 Cantilever Beam with Concentrated Load .. 138

Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load 138

 xiv

Figure 10.5 Continuous Beam .. 140

Figure 10.6 Buckling Load: Continuous Beam .. 140

Figure 10.7 Load Height Analysis: Continuous Beam ... 142

Figure 10.8 Portal Frame with Concentrated Load... 143

Figure 10.9 Buckling Load: Portal Frame with Concentrated Load... 144

Figure 10.10 Portal Frame with Three Concentrated Loads... 146

Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads............................. 146

Figure 10.12 Two Bay Frame with Vertical Loads .. 148

Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads .. 149

Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads 150

Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads 151

Figure 10.16 Two Story Plane Frame with Horizontal Loads .. 152

Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads..... 153

Figure 10.18 Two Story Plane Frame with Vertical Loads .. 155

Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads 155

Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads 157

Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and Vertical
Loads... 157

Figure 10.22 Two Unequal Bay Frame... 159

Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads 159

Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End Moments
... 161

Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load .. 162

Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated Load
... 163

 xv

Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical Loads 164

Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and
Horizontal Loads... 165

Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected to

Horizontal Loads... 166

Figure 10.30 Simple Beam with Concentrated Load.. 167

Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load 168

Figure 10.32 Simple Beam with Equal End Moments ... 169

Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments 169

Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End Restraints
... 170

Figure 10.35 Cantilever Beam with a Concentrated Load.. 171

Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load 172

Figure 10.37 Simple Beam with Equal and Opposite End Moments ... 173

Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments............. 173

Figure 10.39 Cantilever Beam with End Moment .. 174

Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment................................... 175

Figure 10.41 Simple beam with Distributed Load.. 176

Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load 176

Figure 10.43 Cantilever Beam with Distributed Load.. 177

Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load... 178

Figure A. 1 Rigid Body Movement from Point P to Q... 182

Figure A. 2 Rigid Body Rotation from Point P to Q .. 191

 xvi

NOMENCLATURE

Symbol Description

A area of member

a distributed load height

a non-dimensional distributed load height

C slope at node 1 of the member

[]C Cholesky matrix

{ }D global nodal displacement vector for the structure

{ }eD global nodal displacement vector for an element

{ }ed local nodal displacement vector for an element

 E modulus of elasticity

e concentrated load height

e non-dimensional concentrated load height

F axial load

{ }F vector of trial loads

{ }crF vector of buckling loads

F non-dimensional axial load

 G shear modulus

 []G structure global geometric stiffness matrix

 xvii

 []eG element global geometric stiffness matrix

[]PeG element global prebuckling geometric stiffness matrix

[]PG structure global prebuckling geometric stiffness matrix

 [ge] element local geometric stiffness matrix for initial load set

 [ge]P element local geometric stiffness matrix for prebuckling

h depth of the member

 []I identity matrix

 Ix moment of inertia about the x axis

 Iy moment of inertia about the y axis

Iω warping moment of inertia

J torsional constant

K beam parameter

 []K structure global stiffness matrix

 []eK element global stiffness matrix

 []PeK element global prebuckling stiffness matrix

 []PK structure global prebuckling stiffness matrix

 [ke] element local stiffness matrix

 [ke]P element local stiffness matrix for prebuckling

kz torsional curvature of the deformed element

L member length

crM classical lateral buckling uniform bending moment

 Mx bending moment

 xviii

M1 moment at node 1

M2 moment at node 2

1M non-dimensional moment at node 1

[]N shape function matrix

P concentrated load

P non-dimensional concentrated load

q distributed load

q non-dimensional distributed load

 []eT transformation matrix

 []RT rotation transformation matrix

 tp perpendicular distance to P from the mid-thickness surface

U strain energy

Ue strain energy for each finite element

u out-of-plane lateral displacement

up out-of-plane lateral displacement of point Po

31,uu out-of-plane lateral displacements at nodes 1 and 2

42 ,uu out-of-plane rotation at nodes 1 and 2

u′ out-of-plane rotation

u non-dimensional out-of-plane lateral displacement

V1 shear at node 1

V2 shear at node 2

1V non-dimensional shear at node 1

 xix

v in-plane bending displacement

vM displacement through which the applied moment acts

vP displacement through which the concentrated load acts

 vp in-plane bending displacement of point Po

vq displacement through which the distributed load acts

31,vv in-plane displacements at nodes 1 and 2

42 ,vv in-plane rotation at nodes 1 and 2

v′ in-plane rotation

w axial displacement

wF longitudinal displacement through which the axial load acts

 wp longitudinal displacement of point Po

zP concentrated load location from left support

z non-dimensional member distance

pz non-dimensional distance to concentrated load

α angle of rotation for a plane frame element

εp longitudinal strain of point Po

{ } { }vu εε , generalized strain vectors

φ out-of-plane twisting rotation

31,φφ out-of-plane twisting rotation at nodes 1 and 2

42 ,φφ out-of-plane torsional curvature at nodes 1 and 2

φ′ out-of-plane torsional curvature

γp shear strain of point Po

 xx

 λ buckling parameter

Π total potential energy

Π non-dimensional total potential energy

σp longitudinal stress of point Po

τp shear stress of point Po

 ω warping function

Ω potential energy of the loads

eΩ potential energy of the loads for each finite element

 θ rotation of the member cross section

 1

1.0 INTRODUCTION

In steel structures, all members in a frame are essentially beam-columns. A beam-column is a

member subjected to bending and axial compression. Beam-columns are typically loaded in the

plane of the weak axis so that bending occurs about the strong axis, such as in the case of the

commonly used wide flange section. Primary bending moments and in-plane deflections will be

produced by the end moments and transverse loadings of the beam-column, while the axial force

will produce secondary moments and additional in-plane deflections.

When the values of the loadings on the beam-column reach a limiting state, the member

will experience out-of-plane bending and twisting. This type of failure occurs suddenly in

members with a much greater in-plane bending stiffness than torsional or lateral bending

stiffness (Trahair, 1993). The limit state of the applied loads of an elastic slender beam of

perfect geometry is called the elastic lateral-torsional buckling load. In a beam-column or plane

frame structure, the buckling load may be referred to as the elastic flexural-torsional buckling

load.

 The flexural-torsional buckling load of a member is influenced by several factors

including: (1) the cross-section of the member, (2) the unbraced length of the member, (3) the

support conditions, (4) the type and position of the applied loads, and (5) the location of the

applied loads with respect to the centroidal axis of the cross section (Chen and Lui, 1987). The

goal of a stability analysis is to consider these factors to determine the flexural-torsional buckling

loads of a structure. If the flexural-torsional buckling loads of a structure are known, it may be

 2

necessary to design the member against flexural-torsional buckling by changing the member size

or adding bracing.

The energy method can be used to analyze and calculate the flexural-torsional buckling

loads of a beam-column element. However, this method will involve excessive computations

when done analytically, which will limit the designer to only simple structures. Computer

technology may be needed in order analyze more complicated flexural-torsional buckling

problems.

 The finite element method can be applied in conjunction with the energy method to

analyze flexural-torsional buckling problems and provide acceptable results. The finite element

method is a numerical method that is a useful tool for solving difficult engineering problems.

The finite element method is powerful for handling complicated loadings, boundary conditions,

and geometry. It is also compatible with software development so that computer technology

may be utilized to aid in the analysis process.

 One of the most preferred types of software development is the object-oriented approach.

Object-oriented technology is a technique of organizing software around real world objects.

Object-oriented software development focuses on breaking the software into modular units so

that each modular unit models a real world object.

 The main objective of the thesis is to analyze the flexural-torsional buckling of beam-

columns and plane frames using the finite element method and object-oriented technology.

 3

2.0 OBJECTIVES

The goal is to analyze and calculate the flexural-torsional buckling loads of beam-columns and

plane frames using the finite element method and object-oriented technology. In order to

accomplish this, the goal may be broken into several smaller objectives:

1. Derive the most general energy equation of the flexural-torsional buckling of a beam-

column by neglecting in-plane deformations.

2. Consider the non-dimensional energy equation for flexural-torsional buckling.

3. Derive the more complete energy equation for flexural-torsional buckling by considering

in-plane deformation effects.

4. Derive the finite element equations based on the energy equation for flexural-torsional

buckling.

5. Consider the major object-oriented concepts and how they may apply to a flexural-

torsional buckling analysis.

6. Develop object-oriented models to communicate the design of the program.

7. Refactor an existing flexural-torsional buckling analysis software package to include

object-oriented features and reflect the object-oriented models.

8. Create an object-oriented user interface for the software package to make the software

more user friendly.

9. Run examples using the software package.

 4

3.0 LITERATURE REVIEW

3.1 FLEXURAL-TORSIONAL BUCKLING

The first published discussions of flexural-torsional buckling were made by Prandtl (1899) and

Michell (1899), which considered the buckling of beams with narrow rectangular cross-sections.

Their work was further studied by Bleich (1952) and also by Timoshenko and Gere (1961). This

research was then published into textbooks, and it was extended to include wide flange sections.

They provided the classical energy equation for calculating the elastic flexural-torsional buckling

load of a thin-walled beam.

Galambos (1963) was an early researcher to consider inelastic flexural-torsional buckling

of wide flange sections. Other research was presented by Lee (1960), White (1956), Wittrick

(1952), and Hornes (1950). All of this research was done using the classical approach. This

approach provides exact solutions, yet it is somewhat limited because all calculations were done

analytically.

In the 1960’s, the amount of published research dramatically increased due to digital

computers. Researchers used numerical approaches which work well with computers. Some of

the numerical approaches studied include the Rayleigh-Ritz method by Wang (1994) and the

finite difference method by Bleich (1952), Chajes (1993), and Assadi and Roeder (1985).

Trahair (1968) used the finite integral method, which was also used by Anderson and Trahair

(1972) and Kitipornchai and Trahair (1975). Vacharajittiphan and Trahair (1973, 1975)

 5

considered the flexural-torsional buckling of portal frames and plane frames using the finite

integral method.

The finite element method was introduced into the flexural-torsional buckling problem by

Barsoum and Gallagher (1970), in which they derived the stiffness equations for flexural-

torsional instability of one-dimensional members with constant cross sections. Finite element

solutions of the elastic lateral buckling of beams were also presented by Powell and Klingner

(1970) and Hancock and Trahair (1978). Later research includes Sallstrom (1996) and Bradford

and Ronagh (1997). Papangelis et al. (1998) used the finite element method and computer

technology to calculate the flexural-torsional buckling loads of beams, beam-columns, and plane

frames. Bazeos and Xykis (2002) presented research using the finite element method to analyze

three-dimensional trusses and frames.

More recent research on the theory of flexural-torsional buckling has been presented by

Tong and Zhang (2003a) and (2003b) with their investigations of a new theory to clarify the

inconsistencies of existing theories of the flexural-torsional buckling of thin-walled members.

The classical energy equation for calculating the elastic flexural-torsional buckling load

of a thin-walled beam is usually assumed to be independent of the prebuckling deflections. The

early investigations of the effects of prebuckling were based on the solution of the governing

differential equation (Michell, 1899). Varcharajittiphan et al. (1974) used the finite integral

method, and Roberts along with Azizian (1983) used the finite element procedure to consider the

effects of in-plane deformations on the flexural-torsional buckling problem. Pi and Trahair

(1992) pointed out that the finite element solution presented by Roberts and Azizian was not

accurate, and they present their own finite element solution to the flexural-torsional buckling

 6

problem. A comprehensive book on the flexural-torsional buckling was published by Trahair

(1993).

3.2 OBJECT-ORIENTED DEVELOPMENT

Object-oriented languages began to emerge in the 1980s. Smalltalk was one of the first object-

oriented languages to become widely used. As the object-oriented languages gained popularity,

the earliest books on object oriented development were published by Goldberg and Robson

(1983) and Cox (1986). These books were then followed by books from Shlaer and Mellor

(1988), Booch (1991), and Rumbaugh et al. (1991).

Each of the early books published on object-oriented development used its own form of a

modeling language in the stages of design. Grady Booch (1991) from Rational Software, James

Rumbaugh (1991) from General Electric, and Ivar Jacobson (1992) from Ericson all joined

together in the late 1990s to create a unified modeling language, hence the name Unified

Modeling Language (UML), along with the Rational Unified Process for software development.

The UML was adopted in 1997, and an entire series of books were published on it along with the

Rational Unified Process including Rumbaugh et al. (1999), Fowler et al. (2000), Fowler (1999),

and Jacobson et al. (1999).

In the early 1990s, structural engineers began to use object-oriented development for

engineering software. Fenves (1990) discusses many advantages to object-oriented engineering

software. Forde et al. (1990) was the first to present an application of object-oriented

development to the finite element method along with discussing the problems with the

conventional finite element software. Zimmermann et al. (1992), Miller (1991), Pidaparti and

 7

Hudli (1993), and Lu et al. (1995) also present object-oriented finite element applications for

structural engineering. Some of the more recent object-oriented applications to structural

engineering include Liu et al. (2003) with the first presentation of both structural analysis and

design using object-oriented technology and Archer et al. (1999) with a new finite element

program architecture.

 8

4.0 FLEXURAL-TORSIONAL BUCKLING THEORY

Elastic flexural-torsional buckling occurs when a slender thin-walled member fails by deflecting

laterally and twisting out of the plane of loading. When the loads on a structure are large, the in-

plane configuration of the structure will become unstable, and the structure will try to reach a

stable out-of-plane configuration. This type of failure occurs suddenly in members with a much

greater in-plane bending stiffness than torsional or lateral bending stiffness. Flexural-torsional

buckling may significantly decrease the load capacity of a member; therefore, it is important to

obtain the flexural-torsional buckling loads of a member to provide an upper limit on the

member’s strength. This chapter will focus on deriving the energy equation for flexural-torsional

buckling.

The member under consideration is oriented in the oxyz coordinate system as shown in

Figure 4.1. The z-axis is oriented along the length of the element at the centroid of the cross-

section. The x-axis and y-axis are oriented considering the right-hand rule. The x-axis is the

major principle axis, and the y-axis is the minor principle axis. The displacements in the x, y,

and z directions are denoted as u, v, and w, respectively. The member is considered to be of

length L, and the left end of the beam is node 1 while the right end is node 2.

The basic assumptions that are made to create the mathematical model are:

1. The entire structure remains elastic. In order for the members to remain elastic prior to

buckling, the members must be long and slender.

2. The members have doubly symmetric cross sections.

 9

3. The cross sections of the members do not distort in their own plane after buckling.

4. The members are perfectly straight. In reality, members will have slight imperfections

that will cause some lateral and torsional displacements prior to buckling; however, these

small displacements are neglected to simplify the problem.

5. Local buckling does not occur. Local buckling occurs in a concentrated area of the

member, and the effects may reduce the resistance of a member (Trahair, 1993). In short

or stocky beams, local buckling seems to have more influence than flexural-torsional

buckling. By considering a long slender beam, local buckling may be neglected.

1 2
 o z

x

y

L

Figure 4.1 Coordinate System

A member loaded in the yz plane will have an in-plane displacement, v, and in-plane

rotation v′ . If the member is loaded along the z axis it will also have an axial displacement, w.

Flexural-torsional buckling will cause an out-of-plane displacement of the member, u, an out-of-

plane lateral rotation, u′ , an out-of-plane twisting rotation, φ, and an out-of-plane torsional

curvature, φ′ . The prime indicates the first derivative with respect to z. Figure 4.2 shows the

cross section of a doubly symmetric beam and the displacements u, v, and φ. Figure 4.3 (a)

shows the out-of-plane lateral displacement and rotation. Figure 4.3 (b) shows the in-plane

displacements, in-plane rotations, and out-of-plane twisting rotation.

 10

u

 v

φ

Figure 4.2 Cross Section View Displacements

 u1 u2

u1' u2'

 v1 v2

v1' v2'

z

x

y

z
φ1 φ2

(a)

(b)

Figure 4.3 Displacements

 (a) Top View Displacements

 (b) Front View Displacements

 11

In this Chapter, it is assumed that the axial displacement, w, the in-plane bending

displacement, v, and in-plane bending rotation, v′ , are small and are therefore neglected. Only

the out-of-plane displacements, u, and rotations, u′ , φ, and φ′ , will be considered to derive the

energy equation. In Chapter 5, the effect of in-plane displacements and rotations on the energy

equation will be considered and additional terms for the energy equation will be derived.

Figure 4.4 shows the loads and member end actions of a beam-column element. The

element has three applied loads: (1) a distributed load, q, (2) a concentrated load, P, and (3) an

axial load F. The distributed load is applied at a height ‘a’, and the concentrated load is applied

at a height of ‘e’ at a distance ‘zp’ along the length of the beam. The member experiences four

end actions: (1) the shears at each end V1 and V2, and (2) the moments at each end M1 and M2.

zP P
q

 e a

M1 M2

V1 V2

F
F

z

y

Figure 4.4 External Loads and Member End Actions of the Beam-Column Element

The energy equation is derived by considering the total potential energy of the structure.

The total potential energy of a structure, ∏ , is the sum of the strain energy, U, and the potential

energy of the external loads, Ω , given by

Ω+=∏ U (4-1)

 12

The strain energy is the potential energy of the internal forces, and the potential energy of

the loads is the negative of the work done by the external forces. The theorem of stationary total

potential energy states that an equilibrium position is one of stationary total potential energy

(Trahair, 1993), which is expressed as

0=∏δ (4-2)

The theorem of minimum total potential energy states that the stationary value of Π (for

which δΠ=0) of an equilibrium position is a minimum when the position is stable (Trahair,

1993). Therefore, the equilibrium position is stable when

0
2
1 2 >∏δ (4-3)

and the equilibrium position is unstable when

0
2
1 2 <∏δ (4-4)

The second variation of the total potential energy equal to zero indicates the transition from a

stable state to an unstable state, which is the critical condition for buckling (Pi et al., 1992). This

is expressed as

0
2
1 2 =∏δ (4-5)

Substituting in for the strain energy and the potential energy of the loads from Equation 4-1gives

0)(
2
1 22 =Ω+δδ U (4-6)

 13

4.1 STRAIN ENERGY

The strain energy part of the total potential energy equation can be expressed by considering an

arbitrary point Po in the cross section of the member. The strain energy, U, may be expressed as

∫ ∫ +=
L

pppp
A

dzdAU)(
2
1 τγσε (4-7)

where

 εp = longitudinal strain of point Po

σp = longitudinal stress of point Po

γp = shear strain of point Po

τp = shear stress of point Po

The second variation of Equation 4-7 is

 dzdAU pppppp
L A

pp)(
2
1

2
1 222 τγδσεδτδγδσδεδδ +++= ∫ ∫ (4-8)

Equation 4-8 needs to be defined in terms of the centroidal deformations in order to derive the

energy equation for flexural-torsional buckling.

4.1.1 Displacements

The total displacements of an arbitrary point Po on the beam’s cross section are up, vp, and wp.

The displacements of point Po need to be defined in terms of the centroidal deformations u, v,

and w. The deformation of an element is shown in Figure 4.5. The coordinates oxyz represent a

fixed global coordinate system where point o is located at the beginning of the undeformed

element. The ox and oy axes coincide with the principle axes of the undeformed element. The

 14

oz axis is oriented along the length of the element and passes through the element’s centroid.

The point Po is defined as an arbitrary point in an undeformed plane frame element. The

coordinate zyxo ˆˆˆˆ represents a moving, right-handed, local coordinate system which is fixed at a

point ô on the centroidal axis of the beam and moves with the beam as it deforms. The axis zoˆˆ

corresponds to the tangent at ô to the deformed centroidal axis. The xoˆˆ and yoˆˆ axes are the

principle axes of the deformed element. The coordinates of point Po are ()0,ˆ,ˆ yx with respect to

the local coordinate system.

o ô ˆ z
 Po

ˆ ŷ v
 w

 u
 ô ˆ

 P
x n

ˆ Pt

 ŷ

y

θ

()0,ˆ,ˆ yx

X

Z

Z

X

Figure 4.5 Deformed Element

When the element buckles, point Po moves to the point P. This deformation occurs in

two stages: (1) the point Po translates to point Pt, and (2) the point Pt rotates through the angle θ

to point P. The point Po translates to point Pt by the displacements u, v, and w. This translation

takes the local coordinate system zyxo ˆˆˆˆ to a new location as shown in Figure 4.5. The point Pt

 15

then rotates through an angle θ to the point P about the line on where on is a line passing through

the points o and ô . The rotation takes the local coordinate system zyxo ˆˆˆˆ to its final location.

The direction cosines of the axes xoˆˆ , yoˆˆ , and zoˆˆ relative to the fixed global coordinate oxyz can

be determined by considering a rigid body rotation.

The equation expressing the relationship between the displacements of an arbitrary point

Po on the cross-section and the displacements at the centroid of the cross-section is

[]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
+

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

0
ˆ
ˆ

ˆ
ˆ

y
x

k
y
x

T
w
v
u

w

v

u

z

R

p

p

p

ω
 (4-9)

where

 up = out-of-plane lateral displacement of point Po

 vp = in-plane bending displacement of point Po

 wp = longitudinal displacement of point Po

 u = out-of-plane lateral displacement at the centroid

v = in-plane bending displacement at the centroid

 w = longitudinal displacement at the centroid

 x̂ = x-coordinate of the point Po

 ŷ = y-coordinate of the point Po

 kz = torsional curvature of the deformed element

 ω = warping function (Vlasov, 1961)

 []RT = rotation transformation matrix

The warping displacement zkω− is defined as the deformation in the z-direction. The first term

on the right side of Equation 4-9 represents the translation of point Po to Pt. The second and

 16

third terms on the right side of Equation 4-9 represent the rotation of point Pt to point P due to

the rotation θ. TR is the rotation transformation matrix giving the direction cosines of the rotated

axes xoˆˆ , yoˆˆ , and zoˆˆ relative to the fixed axes ox, oy, and oz by considering a rigid body rotation

of the axes through an angle θ about the axis on. The transformation matrix TR can be expressed

for small angles of rotation as

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−++−

+−−−+

++−−−

=

22
1

22

222
1

2

2222
1

22

22

22

yxzy
x

zx
y

zy
x

zxyx
z

zx
y

yx
z

zy

RT

θθθθ
θ

θθ
θ

θθ
θ

θθθθ
θ

θθ
θ

θθ
θ

θθ

 (4-10)

where θx, θy, and θz are the components of the rotation θ in the x, y, and z axes, respectively. The

derivation of the rotation transformation matrix is given in Appendix A.

The angles θx, θy, and θz may be defined by considering an element ∆z along the z-axis.

The undeformed element ∆z in the oz-direction is attached to the zyxo ˆˆˆˆ moving right-handed

coordinate system. After deformation, the zoˆˆ -axis coincides with the tangent at ô to the

deformed centroidal axis of the beam. The xoˆˆ and yoˆˆ axes are the principal axes of the

deformed element. The undeformed element length is ∆z, and the deformed element length is

()ε+∆ 1z , where ε is the strain. The deformed element ()ε+∆ 1z has components ∆u, ∆v, and

(∆z +∆w) on the ox, oy, and oz axes, respectively, as shown in Figure 4.6.

If zN
r

is a unit vector in the zoˆˆ direction and lz, mz, and nz are the directional cosines of

the zoˆˆ axis with respect to the oxyz coordinate system, then the deformed element may be

expressed as

() kwjviuNz z

rrrr
∆+∆+∆=+∆ ε1 (4-11)

 17

o ∆z z

ô
∆z(1+ε)

→
x

ˆ

y

∆v

∆u

Z

Nz

Figure 4.6 Undeformed Element ∆z and Deformed Element ∆z (1+ε)

The projections of vector () zNz

r
ε+∆ 1 on the x and y axes are

() () zz lziNzu εε +∆=⋅+∆=∆ 11
rr

 (4-12)

() () zz mzjNzv εε +∆=⋅+∆=∆ 11
rr

 (4-13)

If Equations 4-12 and 4-13 are divided by ∆z, and the limit is taken as ∆z approaches zero, the

equations become

() () z
z

zz
l

z
lz

z
u

dz
du ε

ε
+=

∆

+∆
=

∆
∆

=
→∆→∆

1
1

limlim
00

 (4-14)

() () z
z

zz
m

z
mz

z
v

dz
dv ε

ε
+=

∆

+∆
=

∆
∆

=
→∆→∆

1
1

limlim
00

 (4-15)

From Appendix A

2

zx
yzl

θθθ += and
2

zy
xzm

θθ
θ +−=

 18

Therefore, the out-of-plane rotations
dz
du and

dz
dv can be defined as

 ()εθθθ +⎟
⎠
⎞

⎜
⎝
⎛ += 1

2
zx

ydz
du (4-16)

()εθθ
θ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= 1

2
zy

xdz
dv (4-17)

By disregarding higher order terms, Equations 4-16 and 4-17 simplify to

2
zx

ydz
du θθθ +≈ (4-18)

2
zy

xdz
dv θθ

θ +−≈ (4-19)

Solving equations 4-18 and 4-19 for θx and θy gives

dz
du

dz
dv

zx θθ
2
1

+−= (4-20)

dz
dv

dz
du

zy θθ
2
1

+= (4-21)

The projections of unit lengths along the xoˆˆ axis onto the oy axis and yoˆˆ axis onto the ox axis

are mx and ly, respectively. ly and mx are used to define the mean twist rotation,φ , of the xoˆˆ and

yoˆˆ axes about the oz axis as shown in Figure 4.7. From Appendix A,

2
yx

zyl
θθ

θ +−= and
2

yx
zxm

θθ
θ +=

Therefore,

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

222
1 yx

z
yx

z

θθ
θ

θθ
θφ

 19

 o x

ô
mx

1 unit ˆ
1 unit

 ŷ

ly

 y

x

Figure 4.7 Twist Rotation

Thus, the twist rotation is equal to θz.

 φθ =z (4-22)

Substituting equations 4-20 to 4-22 into 4-10 gives

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zyx

zyx

zyx

R

nnn
mmm
lll

T (4-23)

where

 φφ
dz
dv

dz
du

dz
dulx 2

1
2
1

2
11 2

2

−−⎟
⎠
⎞

⎜
⎝
⎛−= (4-24)

 φφφ
22

4
1

4
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+−−=

dz
dv

dz
du

dz
dv

dz
duly (4-25)

dz
dulz = (4-26)

 20

φφφ
22

4
1

4
1

2
1

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−−=

dz
du

dz
dv

dz
dv

dz
dumx (4-27)

φφ
dz
dv

dz
du

dz
dvmy 2

1
2
1

2
11 2

2

+−⎟
⎠
⎞

⎜
⎝
⎛−= (4-28)

dz
dvmz = (4-29)

2

4
1 φφ

dz
du

dz
dv

dz
dunx +−−= (4-30)

2

4
1 φφ

dz
dv

dz
du

dz
dvny ++−= (4-31)

22

2
1

2
11 ⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−=

dz
dv

dz
dunz (4-32)

The torsional curvature of the deformed cross-section axes can be obtained from (Love,

1944)

y
x

y
x

y
x

z n
dz
dnm

dz
dml

dz
dlk ++= (4-33)

Substituting Equations 4-24 to 4-32 into Equation 4-33 gives

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

dz
du

dz
vd

dz
dv

dz
ud

dz
dkz 2

2

2

2

2
1φ (4-34)

Since the second and third terms in Equation 4-34 are small compared to the first term, Equation

4-34 may be approximated by

dz
dkz
φ

= (4-35)

Substituting Equations 4-24 to 4-32 into Equation 4-9, the displacement of an arbitrary

point Po in the cross-section may be expressed in terms of the centroidal deformations as

 21

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

+

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

dz
d

dz
dvy

dz
duxw

xv

yu

w

v

u

p

p

p

φω

φ

φ

ˆˆ

ˆ

ˆ

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−

+

2

2

2

2
22

2
2

2

2

2

2

2

2

2

2

2
2

2

2

2
1

4
1ˆ

4
1ˆ

ˆ
2
1

2
1

2
1ˆ

2
1

2
1

2
1ˆ

2
1ˆ

2
1

dz
vd

dz
ud

dz
d

dz
dv

dz
duy

dz
du

dz
dvx

dz
d

dz
dv

dz
dv

dz
du

dz
vdy

dz
ud

dz
vd

dz
dv

dz
dux

dz
d

dz
du

dz
vd

dz
ud

dz
dv

dz
duy

dz
dv

dz
du

dz
udx

φωφφφφ

φωφφφφ

φωφφφφ

 (4-36)

The first bracket on the right side of Equation 4-36 contains the linear terms of the

displacements, and the second bracket on the right side of Equation 4-36 contains the nonlinear

terms of the displacements. The derivatives of up, vp, and wp with respect to z are

⎟
⎠
⎞

⎜
⎝
⎛+−= φφ ,,ˆ

dz
dv

dz
duO

dz
dy

dz
du

dz
du

x
p (4-37)

⎟
⎠
⎞

⎜
⎝
⎛++= φφ ,,ˆ

dz
dv

dz
duO

dz
dx

dz
dv

dz
dv

y
p (4-38)

dz
dv

dz
dx

dz
d

dz
vdy

dz
udx

dz
dw

dz
dwp φφω ˆˆˆ

2

2

2

2

2

2

−−−−=

 ⎟
⎠
⎞

⎜
⎝
⎛+++− φφφφ ,,ˆˆˆ

2

2

2

2

dz
dv

dz
duO

dz
udy

dz
du

dz
dy

dz
vdx z (4-39)

 22

The terms Ox and Oy indicate functions of second order and higher in magnitude, and the term Oz

indicates functions of third order and higher in magnitude. The higher order terms Ox, Oy, and

Oz are disregarded.

4.1.2 Strains

The strains of point Po must now be defined in terms of the centroidal deformations. The

longitudinal finite normal strain may be expressed as (Boresi, 1993)

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

222

2
1

dz
dw

dz
dv

dz
du

dz
dw pppp

pε (4-40)

Equation 4-40 may be simplified if it is assumed that
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dz

dwp is small compared to
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dz

dup and

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
dz
dvp ; therefore,

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≈

22

2
1

dz
dv

dz
du

dz
dw ppp

pε (4-41)

Substituting in the derivatives of the displacements of point Po from Equations 4-37 to 4-39 of

Section 4.1.1 into Equation 4-41 gives

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+−−−=

22

2

2

2

2

2

2

2
1ˆˆ

dz
dv

dz
du

dz
d

dz
vdy

dz
udx

dz
dw

p
φωε

()
2

22
2

2

2

2

ˆˆ
2
1ˆˆ ⎟

⎠
⎞

⎜
⎝
⎛+++−

dz
dyx

dz
udy

dz
vdx φφφ (4-42)

The first variation of the longitudinal strain of Equation 4-42 is

 23

 φδδδφδωδδδεδ 2

2

2

2

2

2

2

2

ˆˆˆ
dz

vdx
dz
dv

dz
vd

dz
du

dz
ud

dz
d

dz
vdy

dz
udx

dz
wd

p −++−−−=

()
dz
d

dz
dyx

dz
udy

dz
udy

dz
vdx φφδφδφδφδ 22

2

2

2

2

2

2

ˆˆˆˆˆ ++++− (4-43)

The second variation of the longitudinal strain of Equation 4-42 is

()
2

22
2

2

2

222
2 ˆˆˆ2ˆ2 ⎟

⎠
⎞

⎜
⎝
⎛+++−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

dz
dyx

dz
udy

dz
vdx

dz
vd

dz
ud

p
φδφδδφδδδδεδ (4-44)

The second variations of the displacements in the above equation are assumed to vanish.

 It is assumed that during buckling the beam buckles in an inextensional mode. This

means that the centroidal strain and the curvature in the principal yz plane remain zero (Trahair,

1993). In the case of inextensional buckling, the prebuckling displacements are defined as v and

w. At buckling, the displacements are defined as δu and δφ. Therefore, the displacements u, φ,

δv, and δw are equal to zero for this problem (Pi et al., 1992). Equations 4-42 to 4-44 may be

simplified by eliminating the terms with the displacements u, φ, δv, and δw and their derivatives.

Thus, Equations 4-42 to 4-44 become

2

2

2

2
1ˆ ⎟

⎠
⎞

⎜
⎝
⎛+−=

dz
dv

dz
vdy

dz
dw

pε (4-45)

φδφδωδεδ 2

2

2

2

2

2

ˆˆ
dz

vdx
dz

d
dz

udxp −−−= (4-46)

()
2

22
2

22
2 ˆˆˆ2 ⎟

⎠
⎞

⎜
⎝
⎛+++⎟

⎠
⎞

⎜
⎝
⎛=

dz
dyx

dz
udy

dz
ud

p
φδφδδδεδ (4-47)

The shear strains due to bending and warping of the thin-walled section may be

disregarded (Pi et al., 1992). The shear strain at point Po of the cross-section due to uniform

torsion can be defined as (Trahair, 1993)

 24

dz
dtpp
φγ 2−= (4-48)

The term tp is the perpendicular distance of P from the mid-thickness line of the cross-section.

The first variation of the shear strain is

dz

dtpp
φδγδ 2−= (4-49)

The second variation of the shear strain is

 02 =pγδ (4-50)

4.1.3 Stresses and Stress Resultants

The stresses at a point Po on the cross section are directly proportional to the strains by Hooke’s

Law as

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

p

p

p

p

G
E

γ

ε

τ

σ

0
0

 (4-51)

The stress resultants are

 ∫=
A

px dAyM σ (4-52)

∫=
A

p dAF σ (4-53)

4.1.4 Section Properties

For a member of length L with a doubly symmetric cross-section, the x̂ and ŷ principle

centroidal axes are defined by

0ˆˆ ∫∫ ==
AA

dAydAx (4-54)

 25

∫ =
A

dAyx 0ˆˆ (4-55)

The section properties are defined as

 ∫=
A

dAA (4-56)

∫=
A

x dAyI 2ˆ (4-57)

∫=
A

y dAxI 2ˆ (4-58)

∫=
A

dAI 2ωω (4-59)

∫=
A

P dAtJ 24 (4-60)

The shear center of a double symmetric cross-section coincides with the centroid, which satisfies

the conditions (Pi et al., 1992):

 0ˆ∫ =
A

dAxω (4-61)

 ∫ =
A

dAy 0ˆω (4-62)

 ∫ =
A

dA 0ω (4-63)

4.1.5 Strain Energy Equation

The second variation of the strain energy equation is developed by substituting

,,,,, 2
ppppp γδγεδεδε and pγδ 2 along with the stresses and stress resultants from Section 4.1.3

and the section properties from Section 4.1.4 into Equation 4-8. The second variation of the

strain energy for the flexural-torsional buckling problem is

 26

 ∫ ⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

L
y dz

dGJ
dz

dEI
dz

udEIU
22

2

22

2

2
2)()()(

2
1

2
1 φδφδδδ ω

 dz
dz

udF
dz

udM x
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

2

2)()(2 δφδδ (4-64)

where the stress resultants are linearized to

2

2

dz
vdEIM xx −= (4-65)

dz
dwEAF = (4-66)

4.2 POTENTIAL ENERGY OF THE LOADS

The potential energy of the loads part of the total potential energy equation is expressed by the

following equation where the loads are multiplied by the corresponding displacements.

∑∫ +−−−=Ω)()(FwM
dz

dvPvdzqv F
M

P
L

q (4-67)

where

 vq = vertical displacement through which the load q acts

 q = the distributed load in the y direction

 vP = vertical displacement through which the load P acts

 P = the concentrated load in the y direction

vM = vertical displacement through which the moment M acts

dz
dvM = rotation due to the moment M

 27

 M = the applied moment about the x axis

 wF = longitudinal displacement through which the load F acts

 F = the concentrated load in the z direction

The second variation of the potential energy of the loads is

∑∫ +−−−=Ω)()(
2
1 2

2
222 FwM

dz
vdPvdzqv F

M
P

L
q δδδδδ (4-68)

4.2.1 Displacements

The longitudinal displacement is assumed to be small and is considered negligible, therefore,

0=Fw . The displacement due to the concentrated load P at a height of e from the neutral axis

may be found by Equation 4-36 (x = 0, y = e, ω = 0) as

 eemvv yP −+= (4-69)

where

φφ
dz
dv

dz
du

dz
dvmy 2

1
2
1

2
11 2

2

+−⎟
⎠
⎞

⎜
⎝
⎛−= (4-70)

as given in Section 4.1.1. Therefore,

 ee
dz
dv

dz
du

dz
dvvvP −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛−+= φφ

2
1

2
1

2
11 2

2

 (4-71)

Simplifying Equation 4-71, the displacement due to the concentrated load is

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛−= φφ

dz
dv

dz
du

dz
dvevvP

2
2

2
1 (4-72)

Similarly, the displacement due to the distributed load is

 28

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+⎟

⎠
⎞

⎜
⎝
⎛−= φφ

dz
dv

dz
du

dz
dvavvq

2
2

2
1 (4-73)

Also, the rotation about an axis parallel to the ox axis at a point with a concentrated moment Mx

is

dz
dv

dz
dvM = (4-74)

In this section, the effects of prebuckling deformations are neglected; therefore, the

deformation v and its derivative are disregarded. The displacements corresponding to the

external loads become

2

2
1 φavq −= (4-75)

2

2
1 φevP −= (4-76)

0=
dz

dvM (4-77)

The second variations of Equations 4-75 to 4-77 are

 22)(
2
1 φδδ avq −= (4-78)

 22)(
2
1 φδδ evP −= (4-79)

 0
2

=
dz

vd Mδ (4-80)

4.2.2 Potential Energy of Loads Equation

Substituting in the displacements of Equations 4-78 to 4-80 into Equation 4-68 gives the second

variation of the potential energy of the loads as

 29

 ∑∫ +=Ω 222)(
2
1)(

2
1

2
1 φδφδδ Pedzqa

L

 (4-81)

4.3 ENERGY EQUATION

The second variation of the total potential energy equation for the flexural-torsional buckling of a

beam-column is the sum of the second variation of the strain energy from Section 4.1.5 and the

second variation of the potential energy of the loads from Section 4.2.2. Therefore, the second

variation of the total potential energy equation is given by

φδδφδφδδδ ω ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∏ ∫ 2

222

2

22

2

2
2)(2)()()(

2
1

2
1

dz
udM

dz
dGJ

dz
dEI

dz
udEI x

L
y

 0)(
2
1)(

2
1)(22

2

=++
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+ ∑∫ φδφδδ Pedzqadz

dz
udF

L

 (4-82)

where

2

2

11
zqzVMM x −+= for Pzz <<0

 ()Px zzPzqzVMM −−−+=
2

2

11 for Lzz P <<

 zP = the distance along the beam to the point of the applied concentrated load

 30

4.4 NON-DIMENSIONAL ENERGY EQUATION

The energy equation derived and given in Section 4.3 has limitations in predicting the flexural-

torsional buckling parameter because it depends on the beam properties such as the elastic

modulus, torsional modulus, length, etc. A non-dimensional analysis will provide the general

results for the buckling parameter. The beam parameter that represents the beam’s stiffness is

2

22

2

2

4GJL

hEI

GJL
EI

K yππ ω ≈= (4-83)

The loading parameters which are considered to vary with the beam parameter are

GJEI

PLP
y

2

= (4-84)

GJEI

qLq
y

3

= (4-85)

yEI

FLF
2

= (4-86)

The other parameters are

GJEI
LMM

y

1
1 = (4-87)

GJEI
LVV
y

2
1

1 = (4-88)

L
zz = (4-89)

 31

L
zz P

P = (4-90)

GJ
EI

L
uu yδδ = (4-91)

h
aa 2

= (4-92)

h
ee 2

= (4-93)

where

 h = the total depth of the member

The non-dimensional parameters are applied to the parameters of the total potential energy

equation shown in Section 4.3. The total potential energy equation is changed to the non-

dimensional form by the multiplication factor

GJ

LΠ
=Π

2 (4-94)

Therefore, the second variation of the total potential energy may be written as

 ∫ ∫+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Π

1

0

1

0
2

22

2

2

2

222

2

2
2 2

2
1 zd

zd
udMzd

zd
dK

zd
d

zd
ud

x φδδφδ
π

φδδδ

 () () ∫∫ ∑ =⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

1

0

21

0

22 0zd
zd
udFePzdaqK

ii
δφδφδ

π
 (4-95)

where

2

2

11
zqzVMM x −+= , Pzz <<0

 ()Px zzPzqzVMM −−−+=
2

2

11 , 1<< zzP

 32

5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
DEFORMATIONS

In Chapter 4, the effects of in-plane deformations were disregarded. In this Chapter, the effects

of in-plane deformations on the flexural-torsional buckling of a beam-column element are

considered. Assuming that the members of the structure are perfectly straight and the

displacements are small helps to simplify the problem by neglecting the small in-plane

displacements. The assumption that buckling is independent of the prebuckling deflections is

valid only when there are small ratios of the minor axis flexural stiffness and torsional stiffness

to the major axis flexural stiffness (Pi and Trahair, 1992a). In the case where the ratios are not

small, neglecting the prebuckling effects may lead to inaccurate results.

5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS

5.1.1 Displacements Considering In-Plane Deformations

In Section 4.1.1, the torsional curvature described by Equation 4-34 was simplified to Equation

4-35 to derive the displacements. To consider the effects of prebuckling displacements, the

torsional curvature must not be simplified, and Equation 4-34 must be substituted into Equation

4-9 when deriving the longitudinal displacement, wP. This provides a longitudinal displacement

given by Equation 5-1.

 33

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −−+⎥⎦

⎤
⎢⎣
⎡ −−−= 22

4
1ˆ

4
1ˆˆˆ φφφφφω

dz
dv

dz
duy

dz
du

dz
dvx

dz
d

dz
dvy

dz
duxwwp

⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

dz
du

dz
vd

dz
dv

dz
ud

dz
d

dz
du

dz
vd

dz
dv

dz
ud

2

2

2

2

2

2

2

2

2
1

2
1

2
1 φω

⎥
⎥
⎦

⎤

⎟
⎟

⎠

⎞
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

22

dz
dv

dz
du (5-1)

The first derivative of the longitudinal displacement becomes

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−=

dz
du

dz
vd

dz
dv

dz
ud

dz
d

dz
vdy

dz
udx

dz
dw

dz
dwp

3

3

3

3

2

2

2

2

2

2

2
ˆˆ ωφω

⎥
⎦

⎤
⎢
⎣

⎡
−−+− 2

2
2

2

2

4
1

2
1ˆ

dz
ud

dz
du

dz
d

dz
vd

dz
dv

dz
dx φφφφφ

⎟
⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
++++ φφφφφφ ,,

4
1

2
1ˆ

2

2
2

2

2

dz
dv

dz
duO

dz
vd

dz
dv

dz
d

dz
ud

dz
du

dz
dy z (5-2)

where Oz indicates functions of fourth order and higher in magnitude which are disregarded.

5.1.2 Strains Considering In-Plane Deformations

The longitudinal strain used in Section 4.1.2 given by Equation 4-41 is

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+≈

22

2
1

dz
dv

dz
du

dz
dw ppp

pε

Substituting in Equation 4-37 for
dz

dup , Equation 4-38 for
dz
dvp , and Equation 5-2 for

dz
dwp in the

longitudinal strain of Equation 4-41 gives

 34

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
−−−−−=

22

3

3

3

3

2

2

2

2

2

2

2
1

2
ˆˆ

dz
dv

dz
du

dz
du

dz
vd

dz
dv

dz
ud

dz
d

dz
vdy

dz
udx

dz
dw

P
ωφωε

⎥
⎦

⎤
⎢
⎣

⎡
+++⎥

⎦

⎤
⎢
⎣

⎡
−−− 2

2
2

2

2

2

2
2

2

2

4
1

2
1ˆ

4
1

2
1ˆ

dz
vd

dz
dv

dz
d

dz
udy

dz
ud

dz
du

dz
d

dz
vdx φφφφφφφφ

 ()
2

22 ˆˆ
2
1

⎟
⎠
⎞

⎜
⎝
⎛++

dz
dyx φ (5-3)

The first variation of the longitudinal strain is given by Equation 5-4.

 ⎢
⎣

⎡
+−⎥⎦

⎤
⎢⎣
⎡ ++−−−= 2

2

2

2

2

2

2

2

2

2

ˆˆˆ
dz

vd
dz

vdx
dz

vd
dz
dv

dz
ud

dz
du

dz
d

dz
vdy

dz
udx

dz
wd

P
δφφδδδφδωδδδεδ

⎥
⎦

⎤
−−−−− 2

2
2

2

2

4
1

2
1

2
1

2
1

2
1

dz
ud

dz
ud

dz
ud

dz
d

dz
du

dz
d

dz
du

dz
d δφφδφδφφφδφφφδ

⎢
⎣

⎡
+++++

dz
vd

dz
d

dz
dv

dz
d

dz
dv

dz
d

dz
ud

dz
udy δφφφδφφφδφδφδ

2
1

2
1

2
1ˆ

2

2

2

2

()
dz

d
dz
dyx

dz
vd

dz
vd φδφδφφδφ 22

2

2
2

2

2

ˆˆ
4
1

2
1

++⎥
⎦

⎤
++

⎥
⎦

⎤
⎢
⎣

⎡
−−+−

dz
du

dz
vd

dz
ud

dz
vd

dz
vd

dz
ud

dz
vd

dz
ud

3

3

3

3

3

3

3

3

2
δδδδω (5-4)

The second variation of the longitudinal strain is given by Equation 5-5.

 35

dz

ud
dz

d
dz

ud
dz
d

dz
du

dz
d

dz
vdx

dz
vd

dz
ud

p
δφδφδφφδφδφδδφδδδεδ −−−⎢

⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= 2

222
2 2ˆ

() ⎢
⎣

⎡
+++⎥

⎦

⎤
−−

dz
vd

dz
d

dz
dv

dz
d

dz
udy

dz
ud

dz
ud δφφδφδφδδφδδφδφφδ 2

2

2

2

2

2
2 2ˆ

2
1

() ()
2

22
2

2

2

2
2 ˆˆ

2
1

⎟
⎠
⎞

⎜
⎝
⎛++⎥

⎦

⎤
+++

dz
dyx

dz
vd

dz
vd

dz
vd

dz
d φδδφδφφδδφδφ

⎥
⎦

⎤
⎢
⎣

⎡
−−

dz
ud

dz
vd

dz
vd

dz
ud δδδδω 3

3

3

3

 (5-5)

In the case of inextensional buckling as discussed in Section 4.1.2, the prebuckling

displacements are defined as v and w. At buckling, the displacements are defined as δu and δφ.

Therefore, the displacements u, φ, δv, and δw are equal to zero for this problem (Pi et al., 1992).

Equations 5-3 to 5-5 may be simplified by eliminating the terms with the displacements u, φ, δv,

and δw and their derivatives. Thus, Equations 5-3 to 5-5 become

2

2

2

2
1ˆ ⎟

⎠
⎞

⎜
⎝
⎛+−=

dz
dv

dz
vdy

dz
dw

Pε (5-6)

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−=

dz
ud

dz
vd

dz
dv

dz
ud

dz
d

dz
vd

dz
udxP

δδφδωφδδεδ 3

3

3

3

2

2

2

2

2

2

2
1ˆ (5-7)

 () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++⎟

⎠
⎞

⎜
⎝
⎛=

dz
dv

dz
d

dz
vd

dz
udy

dz
ud

P
φδφδφδδφδδεδ 2

2
2

2

22
2

2
12ˆ

 ()
2

22 ˆˆ ⎟
⎠
⎞

⎜
⎝
⎛++

dz
dyx φδ (5-8)

The shear strain considering in-plane effects will change from Equation 4-48 to

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

dz
du

dz
vd

dz
dv

dz
ud

dz
dtPp 2

2

2

2

2
12 φγ (5-9)

 36

where tp is the perpendicular distance from the mid-thickness line of the cross-section. The first

and second variations of the shear strain are

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−=

dz
ud

dz
vd

dz
dv

dz
ud

dz
dtPp

δδφδγδ 2

2

2

2

2
12 (5-10)

02 =pγδ (5-11)

5.1.3 Strain Energy Equation Considering In-Plane Deformations

Substituting Equations 5-6 to 5-11 along with the stresses and stress resultants of Section 4.1.3

and the section properties of Section 4.1.4 into Equation 4-8, the second variation of the strain

energy equation becomes

() ()
∫ ⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

L
y dz

ud
dz

vd
dz

ud
dz
dv

dz
dEI

dz
vd

dz
udEIU

2

3

3

3

3

2

22

2

2

2

2
2

2
1)()(

2
1

2
1 δδφδφδδδ ω

 () ()
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++ φδδδδφδ

2

22

2

2

2

2)(2
2
1)(

dz
udM

dz
ud

dz
vd

dz
ud

dz
dv

dz
dGJ x

() dz
dz

udF
dz

vd

⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
+

2
2

2

2)(
2
1 δφδ (5-12)

where the stress resultants are linearized to

2

2

dz
vdEIM xx −=

dz
dwEAF =

 37

5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE
DEFORMATIONS

5.2.1 Displacements Considering In-Plane Deformations

The second variations of the displacements through which the external loads act must be derived

considering the in-plane deformations. Taking the second variation of Equations 4-72 and 4-73

gives

 () ⎟
⎠
⎞

⎜
⎝
⎛ −−= φδδφδδ

dz
dv

dz
udavq

22 (5-13)

() ⎟
⎠
⎞

⎜
⎝
⎛ −−= φδδφδδ

dz
dv

dz
udevP

22 (5-14)

5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations

Substituting Equations 5-13 and 5-14 into the second variation of the potential energy of the

external loads from Equation 4-68 gives the final for of the second variation of the potential

energy of the external loads as

∫ ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=Ω

L dz
ud

dz
dvPedz

dz
ud

dz
dvqa φδδφδφδδφδδ 222)(

2
1)(

2
1

2
1 (5-15)

 38

5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS

The second variation of the total potential energy equation including the prebuckling effects is

the sum of the second variation of the strain energy of Section 5.1.3 and the second variation of

the potential energy of the loads of Section 5.2.2. Therefore, the second variation of the total

potential energy equation is

() ()
∫ ⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Π

L
y dz

ud
dz

vd
dz

ud
dz
dv

dz
dEI

dz
vd

dz
udEI

2

3

3

3

3

2

22

2

2

2

2
2

2
1)()(

2
1

2
1 δδφδφδδδ ω

 () ()
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++ φδδδδφδ

2

22

2

2

2

2)(2
2
1)(

dz
udM

dz
ud

dz
vd

dz
ud

dz
dv

dz
dGJ x

() ∫ ⎟
⎠
⎞

⎜
⎝
⎛ −+

⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
+

L

dz
dz

ud
dz
dvqadz

dz
udF

dz
vd φδδφδδφδ 2

2
2

2

2

)(
2
1)(

2
1

0)(
2
1 2 =⎟

⎠
⎞

⎜
⎝
⎛ −+ ∑ φδδφδ

dz
ud

dz
dvPe (5-16)

The second order in-plane displacements will lead to a quadratic eigenvalue equation

which is very difficult to calculate. Therefore, the second order in-plane displacements are

neglected in order to linearize Equation 5-16. The general energy equation considering

prebuckling effects is

∫ ⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∏

L
yy dz

dEI
dz

vd
dz

udEI
dz

udEI
2

2

2

2

2

2

22

2

2
2)()(2)(

2
1

2
1 φδφδδδδ ω

() () 2

3

3

3

3

2

2)()(
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

dz
dGJ

dz
ud

dz
vd

dz
ud

dz
dv

dz
dEI φδδδφδ

ω

 39

() ()
φδδδδφδ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ 2

2

2

2

2

2)(2)(
dz

udM
dz

ud
dz

vd
dz

ud
dz
dv

dz
dGJ x

0)(
2
1)(

2
1)(22

2

=++
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+ ∑∫ φδφδδ Pedzqadz

dz
udF

L

 (5-17)

Comparing Eqs. 4-82 and 5-17, there are three extra terms that contribute to the energy equation

including the in-plane deformations. These terms are

 () ()
∫ ⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

L
dz

ud
dz

vd
dz

ud
dz
dv

dz
dEI

dz
vd

dz
udEI y

δδφδφδδ
ω 3

3

3

3

2

2

2

2

2

2)()(2
2
1

() () dz
dz

ud
dz

vd
dz

ud
dz
dv

dz
dGJ ⎥

⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

δδφδ
2

2

2

2)((5-18)

The in-plane curvature can be expressed as

x

x

EI
M

dz
vd

−=2

2

 (5-19)

Integrating Equation 5-19 gives

∫−= dz
EI
M

dz
dv

x

x (5-20)

The solution of the integral in Equation 5-20 will contain a constant of integration. The constant

of integration can be solved for by considering the boundary condition at z = 0; therefore, the

constant of integration is C =
dz

dv)0(.

The derivative of Equation 5-19 is

x

yx

x EI
V

dz
dM

EIdz
vd

−=−=
1

3

3

 (5-21)

Substituting Equations 5-19 to 5-21 into the prebuckling terms of Equation 5-18 gives

 40

()
∫ ∫⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

L
dz

ud
dz

ddz
EI
MEI

dz
udM

I
I

x

x
x

x

y
3

3

2

2

2

2)()(2
2
1 δφδφδδ

ω

() ()
2

2

2

2)()(
dz

ud
dz

ddz
EI
MGJ

dz
ud

dz
dV

I
I

x

x
y

x

δφδδφδω

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++ ∫

() dz
dz

ud
dz

d
EI
MGJ

x

x
⎥
⎦

⎤
+

δφδ)((5-22)

 41

6.0 FINITE ELEMENT METHOD

This chapter focuses on deriving the finite elements equations used to solve for the flexural-

torsional buckling load of a structure. The finite element method is a powerful numerical

method, and it is useful for solving problems in many fields including engineering. Since the

analytical solutions of many engineering problems are difficult to obtain, the finite element

method provides a much easier method of solution with acceptable results. In the case of linear

systems, the finite element method requires the solution of a system of simultaneous equations

rather than complicated differential equations.

The general steps for formulating the finite element solution begin with discretizing the

structure into smaller elements. Discretization is the process of modeling a body by dividing it

into an equivalent body made up of smaller elements. For one-dimensional elements, each

element will be connected to other elements at nodes where they share common points. After the

body is divided into its elements, the element type to be used for each element must be selected.

The element type is going to depend on the physical makeup of the structure, and it should be

selected to closely model the actual behavior of the body.

Next, a displacement function is selected for each element. The most common

displacement function is a polynomial function expressed in terms of the nodal unknowns. The

total number of polynomial functions needed to describe the displacement of an element depends

on the number of dimensions of the element. A one-dimensional element will have one

displacement function, while two- and three-dimensional elements will have two and three

 42

displacement functions, respectively. The strain-displacement relationship and stress-strain

relationship are then defined for each element. These relationships are necessary to derive the

equations describing each finite element’s behavior.

The element stiffness matrix may be derived using one of several methods including

energy methods as used in this Chapter. The principle of minimum total potential energy is the

energy method used in Chapters 4 and 5 to derive the energy equation for flexural-torsional

buckling of a beam-column element. The principle of minimum total potential energy is one

method that may be used to derive the stiffness matrix of an element. Unlike other energy

methods such as the principle of virtual work, the principle of minimum total potential energy is

applicable only for elastic materials. In the case of flexural-torsional buckling, an element

stiffness matrix and an element geometric stiffness matrix will be derived from the energy

equation.

After the element stiffness matrices are derived, the element matrices are converted from

the local to global coordinate system for the entire structure. The global stiffness matrices for

each element are assembled to obtain the global stiffness matrix of the structure. The global

stiffness matrix will be singular when there are no boundary conditions applied to the structure.

In order to remove the singularity, the boundary conditions are applied to the matrix so that the

structure does not move as a rigid body. This process involves partitioning the global matrix into

the free and restrained degrees of freedom. The section of the global stiffness matrix

corresponding to the free degrees of freedom of the structure is used for solving the problem.

For the flexural-torsional buckling problem, the partitioned global stiffness and geometric

stiffness matrices are used to solve for the buckling loads.

 43

For this project, the structures under analysis are all plane frames. The goal is to apply

the finite element method to a plane frame in order to calculate the flexural-torsional buckling

load of the structure. The frame element has six nodal degrees of freedom; therefore, there are a

total of twelve degrees of freedom for each element. Figure 6.1 shows the element degrees of

freedom.

Figure 6.1 (a) shows the top view of the element with the general displacement u(z) at a

distance z along the element, which is the lateral bending displacement in the x direction. It also

shows the four out-of-plane nodal displacements u1, u2, u3, and u4. u1 and u3 are the out-of-plane

lateral nodal displacements at nodes 1 and 2, respectively, and u2 and u4 are the out-of-plane

nodal rotations at nodes 1 and 2, respectively.

Figure 6.1 (b) shows the front view of the element with the general displacement v(z) at a

distance z along the element, which is the in-plane bending displacement in the y direction. It

also shows the four in-plane nodal displacements v1, v2, v3, and v4. v1 and v3 are the in-plane

nodal displacements at nodes 1 and 2, respectively, and v2 and v4 are the in-plane nodal rotations

at nodes 1 and 2, respectively.

Figure 6.1 (c) shows the front view of the element with the general displacement φ(z) at a

distance z along the element, which is the torsional rotation of the element. It also shows the

four nodal displacements ,,, 321 φφφ and 4φ . 1φ and 3φ are the torsional rotations at nodes 1 and

2, respectively, and 2φ and 4φ are the torsional curvatures at nodes 1 and 2, respectively.

The coordinate system is chosen so that the x-axis is the major principle axis and y-axis is

the minor principle axis of the cross-section prior to buckling. The z axis is the centroidal axis of

the element.

 44

 u1 u3

u2 u4

 u(z)

(a.)

 v1 v3

v2 v4

 v(z)

(b.)

φ1 φ3

φ2 φ(z) φ4

(c.)

z

x

z

y

y

z

Figure 6.1 Element Degrees of Freedom

 45

The displacement function for each generalized displacement,),(),(zvzu and)(zφ , is

assumed to be cubic. The displacement function for)(zu expressed in terms of its shape

functions is

[]{ }uNzu =)((6-1)

where

[] () () () ()⎥⎦
⎤

⎢⎣
⎡ −+−+−+−= 223

3
23

3
3223

3
323

3

132121321 LzLz
L

Lzz
L

zLLzLz
L

LLzz
L

N

 (6-2)

and

{ } { }Tuuuuu 4321= (6-3)

The matrix [N] is the shape function matrix for the element. Each term of the shape

function matrix expresses the shape of the assumed displacement function over the domain of the

element when the element degree of freedom corresponding to the shape function has unit value

and all other degrees of freedom are zero.

The first variation of Equation 6-3 is

[]{ }uNzu δδ =)((6-4)

Applying the same derivation to the deformations v and φ gives

 []{ }vNzv δδ =)((6-5)

and

[]{ }φδφδ Nz =)((6-6)

The element stiffness matrix is derived using the energy methods discussed in Chapters 4

and 5. The total potential energy equation for the complete structure is in the form of

 46

0)(
2
1

2
1 222 =Ω+=Π δδδ U (6-7)

To apply the finite element method to the structure, the complete structure is separated into a

finite number of elements and the energy equation is written in the form of

0)(
2
1 22 =Ω+∑ eeU λδδ (6-8)

where eU2
2
1δ is the second variation of the strain energy stored in each element and eΩ2

2
1 λδ is

the second variation of the work done on each element. The term eΩ2
2
1δ represents the second

variation of the work that is done on an initial load set, and λ is the buckling load factor by which

the initial load set must be multiplied to obtain the buckling load set (Trahair, 1993). For each

individual element, the strain energy stored and the work done may be expressed in terms of the

element values of the buckling nodal deformations and the element stiffness matrices for the

finite element approximation as

 { } []{ } { } []{ }ee
T

eee
T

e dgddkd δδλδδ
2
1

2
1

+ (6-9)

or

 { } [] [](){ }eee
T

e dgkd δλδ +
2
1 (6-10)

where

 47

 { }

e

e

u
u

u
u

d

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

4

3

4

3

2

1

2

1

φ
φ

φ
φ

= the local nodal displacement vector of an element

 λ = the buckling parameter

 [ke] = the element local stiffness matrix

 [ge] = the element local geometric stiffness matrix associated with the initial load set

The element local stiffness matrix and geometric stiffness matrix are both 8 by 8 because there

are eight local displacements for each element that correspond to the displacements at buckling.

The arrangement of the matrix elements for the stiffness matrix is shown by Equation 6-11. The

arrangement of the matrix elements for the geometric stiffness matrix is shown by Equation 6-

12. Both matrices are symmetric about the main diagonal.

43432121

88

7877

686766

58575655

4847464544

383736353433

28272625242322

1817161514131211

4

3

4

3

2

1

2

1

φφφφ
φ
φ

φ
φ

uuuu
k
kk
kkk
kkkk
kkkkk
kkkkkk
kkkkkkk
kkkkkkkk

u
u

u
u

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 (6-11)

 48

43432121

88

7877

686766

58575655

4847464544

383736353433

28272625242322

1817161514131211

4

3

4

3

2

1

2

1

φφφφ
φ
φ

φ
φ

uuuu
g
gg
ggg
gggg
ggggg
gggggg
ggggggg
gggggggg

u
u

u
u

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 (6-12)

In order to develop the stiffness matrices for the finite element approximation, the second

variation of the total potential energy equation for the flexural-torsional buckling of a beam-

column is used. The energy equation given in Section 4.3 is

φδδφδφδδδ ω ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∏ ∫ 2

222

2

22

2

2
2)(2)()()(

2
1

2
1

dz
udM

dz
dGJ

dz
dEI

dz
udEI x

L
y

 0)(
2
1)(

2
1)(22

2

=++
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+ ∑∫ φδφδδ Pedzqadz

dz
udF

L

 (6-13)

Equation 6-13 is written with the loads in terms of the bucking load set. If this equation is

rewritten with the loads in terms of the initial load set, the energy equation becomes

φδδλφδφδδδ ω ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∏ ∫ 2

222

2

22

2

2
2)(2)()()(

2
1

2
1

dz
udM

dz
dGJ

dz
dEI

dz
udEI x

L
y

0)(
2
1)(

2
1)(22

2

=++
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+ ∑∫ φδλφδλδλ Pedzqadz

dz
udF

L

 (6-14)

 49

The first three terms of the equation will contribute to the element stiffness matrix, [ke],

and the last four terms of the equation will contribute to the geometric stiffness matrix, [ge].

6.1 ELASTIC STIFFNESS MATRIX

The contribution to the element stiffness matrix is

 dz
dz

dEI
dz

dGJ
dz

udEI
L

y∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2

2

222

2

2)()()(
2
1 φδφδδ

ω (6-15)

Equation 6-15 can be expressed as

 { } []{ }dzD
T

L

εδεδ∫2
1 (6-16)

where

{ }
T

dz
d

dz
d

dz
ud

⎭
⎬
⎫

⎩
⎨
⎧

−= 2

2

2

2)()()(φδφδδεδ = generalized strain vector (6-17)

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

w

y

EI
GJ

EI
D

00
00
00

= generalized elasticity matrix (6-18)

Equations 6-4 and 6-6 may be substituted into the generalized strain vector to give

 { }
[] []
[] []
[] []

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

φδ
δ

εδ
u

zzN
zN

zzN

,0
,0
0,

 (6-19)

Substituting the strain of Equation 6-19 into Equation 6-16 gives

{ }
{ }

[] []
[] []
[] []

[]
[] []
[] []
[] []

{ }
{ } dz

u

zzN
zN

zzN
D

zzN
zN

zzN
u

T
T

L ⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎭
⎬
⎫

⎩
⎨
⎧

∫ φδ
δ

φδ
δ

,0
,0
0,

,0
,0
0,

2
1 (6-20)

 50

Therefore, the stiffness matrix is

 []
[] []
[] []
[] []

[]
[] []
[] []
[] []

dz
zzN
zN

zzN
D

zzN
zN

zzN
k

L

T

e ∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

,0
,0
0,

,0
,0
0,

 (6-21)

The stiffness matrix []ek is derived from Equation 6-21, which provides an 8 by 8

stiffness matrix. The deformations in the deformation vector of Equation 6-20 provide the

arrangement of the stiffness matrix as

43214321

88

7877

686766

58575655

4847464544

383736353433

28272625242322

1817161514131211

4

3

2

1

4

3

2

1

φφφφ
φ
φ
φ
φ

uuuu
k
kk
kkk
kkkk
kkkkk
kkkkkk
kkkkkkk
kkkkkkkk

u
u
u
u

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

 (6-22)

However, the stiffness matrix arrangement of Equation 6-22 is not consistent with the

arrangement of the 8 by 8 stiffness matrix of Equation 6-11. Therefore, the terms in the matrix

derived by Equation 6-21 must be moved to the appropriate positions to fill the stiffness matrix

shown in Equation 6-11. The terms of the stiffness matrix are calculated and positioned in the

proper locations in Appendix B.

 51

6.2 GEOMETRIC STIFFNESS MATRIX

The contribution to the element geometric stiffness matrix is

 ∑∫∫ ++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ 22
2

2

2

)(
2
1)(

2
1)()(2

2
1 φδλφδλδφδδλ Pedzqadz

dz
udF

dz
udM

LL
x

 (6-22)

This can be expressed as

 { } []{ } ∑∫ + 2)(
2
1

2
1 φδλεδεδλ PedzD

T

L

 (6-23)

where

 { }
T

dz
ud

dz
ud

⎭
⎬
⎫

⎩
⎨
⎧

= φδδδεδ 2

2)()(= generalized strain vector (6-24)

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

qaM
M

F
D

x

x

0
00

00
 = generalized initial stress matrix (6-25)

Mx is defined in Equation 4-82. Equations 6-4 and 6-6 may be substituted into the generalized

strain vector of Equation 6-24 to give

 { }
[] []
[] []
[] []

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

φδ
δ

εδ
u

N
zzN
zN

0
0,
0,

 (6-26)

Substituting Equation 6-26 into Equation 6-23 gives

 52

{ }
{ }

[] []
[] []
[] []

[]
[] []
[] []
[] []

{ }
{ } dz

u

N
zzN
zN

D
N

zzN
zN

u
T

T

L ⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧
∫ φδ

δ
φδ

δ
λ

0
0,
0,

0
0,
0,

2
1

{ }
{ } [] [][] [] [][] { }

{ }
Pzz

T
T u

NPeN
u

=
⎭
⎬
⎫

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

+
φδ

δ
φδ

δ
λ 00

2
1 (6-27)

Therefore, the geometric stiffness matrix is

 []
[] []
[] []
[] []

[]
[] []
[] []
[] []

[] [][] [] [][]
Pzz

T

L

T

e NPeNdz
N

zzN
zN

D
N

zzN
zN

g
=

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ∫ 00

2
1

0
0,
0,

0
0,
0,

 (6-28)

The stiffness matrix []eg is derived from the Equation 6-28, which provides an 8 by 8

stiffness matrix. Once again, the deformations in the deformation vector used to derive the

matrix are not ordered exactly how they are needed for the 8 by 8 geometric stiffness matrix of

Equation 6-12. Therefore, the terms in the matrix derived by Equation 6-28 must be moved to

the appropriate positions to fill the stiffness matrix shown in Equation 6-12. The terms of the

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B.

 53

7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS

Simplifying Equation 5-22 for the additional terms in the second variation of the total potential

energy equation that account for prebuckling effects as derived in Chapter 5 gives

() ()
∫ ⎢
⎣

⎡
+−−

L
dz

ud
dz

dCEI
dz

ud
dz

dzM
I
I

dz
udM

I
I

x
x

x
x

y
3

3

2

2

3

3

2

2

2

2)()()(2
2
1 δφδδφδφδδ

ω
ω

() () ()
2

2

2

2

2

2)()()(
dz

ud
dz

dGJC
dz

ud
dz

dzM
EI
GJ

dz
ud

dz
dV

I
I

x
x

y
x

δφδδφδδφδω +−+

() dz
dz

ud
dz

dM
EI
GJ

x
x

⎥
⎦

⎤
+

δφδ)((7-1)

This may be written in terms of the initial load set as

 () ()
∫∫ ⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
+

L
x

x

y

dz
udM

I
I

dz
dz

ud
dz

dGJC
dz

ud
dz

dCEI
L

φδδλδφδδφδ
ω 2

2

2

2

3

3

2

2)(2
2
1)()(

2
1

() () ()
2

2

2

2

3

3

2

2)()()(
dz

ud
dz

dzM
EI
GJ

dz
ud

dz
dV

I
I

dz
ud

dz
dzM

I
I

x
x

y
x

x
x

δφδδφδδφδ ωω −+−

() dz
dz

ud
dz

dM
EI
GJ

x
x

⎥
⎦

⎤
+

δφδ)((7-2)

The first integral of the equation contributes to the elastic stiffness matrix and the second integral

of the equation contributes to the geometric stiffness matrix so that Equation 6-10 becomes

 { } [] [] [] []()(){ }ePeePee
T

e dggkkd δλδ +++
2
1 (7-3)

 54

 The stiffness matrix [ke] and the geometric stiffness matrix [ge] are the same stiffness

matrices derived in Sections 6.1 and 6.2, respectively. The stiffness matrix []Pek and the

geometric stiffness matrix []Peg are the stiffness matrices including the prebuckling effects and

are added to the buckling stiffness matrices as shown in Equation 7-3.

7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS

The contribution to the element prebuckling stiffness matrix []Pek is

 () () dz
dz

ud
dz

dGJC
dz

ud
dz

dCEI
L

∫ ⎥
⎦

⎤
⎢
⎣

⎡
+ 2

2

3

3

2

2)()(
2
1 δφδδφδ

ω (7-4)

This may be expressed as

 { } []{ }dzDC
L

T∫ εδεδ
2
1 (7-5)

where

 { } () () T

dz
d

dz
d

dz
ud

dz
ud

⎭
⎬
⎫

⎩
⎨
⎧

= 2

2

3

3

2

2)()(φδφδδδεδ (7-6)

and

 []
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000
000

000
000

2
1

ω

ω

EI
GJ

EI
GJ

D (7-7)

substituting in Equations 6-4 and 6-6 into the strain Equation 7-6 gives

 55

 { }

[]
[]

[]
[]

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
φδ

δ
εδ

u

zzN
zN

zzzN
zzN

,0
,0
0,
0,

 (7-8)

Substituting Equation 7-8 into Equation 7-5 gives

{ }
{ }

[]
[]

[]
[]

[]

[]
[]

[]
[]

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∫ φδ
δ

φδ
δ u

dz

zzN
zN

zzzN
zzN

D

zzN
zN

zzzN
zzN

C
u

L

T

T

,0
,0
0,
0,

,0
,0
0,
0,

2
1 (7-9)

Therefore, the prebuckling stiffness matrix is

 []

[]
[]

[]
[]

[]

[]
[]

[]
[]

dz

zzN
zN

zzzN
zzN

D

zzN
zN

zzzN
zzN

Ck
L

T

Pe ∫
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

,0
,0
0,
0,

,0
,0
0,
0,

 (7-10)

The stiffness matrix []Pek is derived from Equation 7-10, which provides an 8 by 8

stiffness matrix. Once again, the deformations in the deformation vector used to derive the

matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-

11. Therefore, the terms in the matrix derived from Equation 7-10 must be moved to the

appropriate positions to fill the stiffness matrix shown in Equation 6-11. The terms of the

stiffness matrix are calculated and positioned in the proper locations in Appendix B.

7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE
DEFORMATIONS

The contribution to the prebuckling stiffness matrix []Peg is given by the additional terms in

Equation 7-11.

 56

() ()
dz

ud
dz

dV
I
I

dz
ud

dz
dzM

I
I

dz
udM

I
I

y
x

x
xL

x
x

y δφδδφδφδδλ ωω
2

2

3

3

2

2

2

2)()()(2
2
1

+−⎢
⎣

⎡
−∫

 () () dz
dz

ud
dz

dM
EI
GJ

dz
ud

dz
dzM

EI
GJ

x
x

x
x

⎥
⎦

⎤
+−

δφδδφδ)()(
2

2

 (7-11)

Equation 7-11 may be expressed as

 { } []{ }dzD
L

T εδεδλ∫2
1 (7-12)

where

 { } () () T

dz
d

dz
d

dz
ud

dz
ud

dz
ud

⎭
⎬
⎫

⎩
⎨
⎧

= 2

2

3

3

2

2)()()(φδφδφδδδδεδ (7-13)

and

[]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−−

=

000
2

0
2

0000
22

00000

2
00000

0
2

000

22
0000

x

x

x

y

x

x

x

x

x

xy

x

x

x

x

x

xy

x

y

x

x

I
zMI

I
VI

EI
zGJM

EI
GJM

I
MI

I
zMI

EI
zGJM

I
MI

I
VI

EI
GJM

D

ωω

ω

ω

 (7-14)

Mx is defined in Equation 4-82. Substituting in Equations 6-4 and 6-6 into the strain Equation 7-

13 gives

 57

 { }

[]
[]
[]

[]
[]
[]

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
φδ

δ
εδ

u

zzN
zN

N
zzzN
zzN
zN

,0
,0

0
0,
0,
0,

 (7-15)

Substituting Equation 7-15 into Equation 7-12 gives

{ }
{ }

[]
[]
[]

[]
[]
[]

[]

[]
[]
[]

[]
[]
[]

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∫ φδ
δ

λ
φδ

δ u
dz

zzN
zN

N
zzzN
zzN
zN

D

zzN
zN

N
zzzN
zzN
zN

u

L

T

T

,0
,0

0
0,
0,
0,

,0
,0

0
0,
0,
0,

2
1 (7-16)

Therefore, the geometric prebuckling matrix is

 []

[]
[]
[]

[]
[]
[]

[]

[]
[]
[]

[]
[]
[]

dz

zzN
zN

N
zzzN
zzN
zN

D

zzN
zN

N
zzzN
zzN
zN

g
L

T

Pe

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= ∫

,0
,0

0
0,
0,
0,

,0
,0

0
0,
0,
0,

 (7-17)

The geometric stiffness matrix []Peg is derived from Equation 7-17, which provides an 8

by 8 stiffness matrix. Once again, the deformations in the deformation vector used to derive the

matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-

12. Therefore, the terms in the matrix derived from Equation 7-17 must be moved to the

appropriate positions to fill the stiffness matrix shown in Equation 6-12. The terms of the

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B.

 58

8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION

The local element nodal buckling deformations, { }ed , need to be transformed to the global

element nodal buckling deformations, {De}. The transformation matrix is

 []

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

10000000
0cossin00000
0sincos00000
00010000
00001000
00000cossin0
00000sincos0
00000001

αα
αα

αα
αα

eT (8-1)

where

 α = the angle of rotation for a plane frame element

These transformations take the form of

 { } []{ }eee DTd = (8-2)

where

{ }

e

e

U
U

U
U

D

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

Φ
Φ

Φ
Φ

=

4

3

4

3

2

1

2

1

 = the global nodal displacement vector of an element

 59

Substituting Equation 8-2 into Equation 6-10 and simplifying gives

 { } [] [] []()[]{ }eeee
T

e
T

e DTgkTD δλδ +
2
1 (8-3)

or

 { } [] [](){ }eee
T

e DGKD δλδ +
2
1 (8-4)

where the element local stiffness matrices may be transformed to the element global matrices by

 [] [] [] []ee
T

ee TkTK = = the element global stiffness matrix (8-5)

 [] [] [] []ee
T

ee TgTG = = the element global geometric stiffness matrix associated with

the initial load set (8-6)

For prebuckling, the equation in global coordinates becomes

 { } [] []() [] []()(){ }ePeePee
T

e DGGKKD δλδ +++
2
1 (8-7)

where the element local prebuckling stiffness matrices may be transformed to the element global

prebuckling stiffness matrices by

 [] [] [] []ePe
T

ePe TkTK = = the element global prebuckling stiffness matrix (8-8)

[] [] [] []ePe
T

ePe TgTG = = the element global prebuckling geometric stiffness matrix

 associated with the initial load set (8-9)

The element matrices represent the buckling behavior of an individual element. All of

the individual element matrices must be summed to get the structure global stiffness matrix.

 [] []∑= eKK = the structure global stiffness matrix

 [] []∑= eGG = the structure global geometric stiffness matrix

 [] []
PeP KK ∑= = the structure global prebuckling stiffness matrix

 60

 [] []
PeP GG ∑= = the structure global prebuckling geometric stiffness matrix

The buckling equation becomes

 { } [] [](){ } 0
2
1

=+ DGKD T δλδ (8-10)

where

 { }

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

Φ
Φ

Φ
Φ

=

4

3

4

3

2

1

2

1

U
U

U
U

D = the global nodal displacement vector of the structure

Since the variation of the displacement does not equal zero, Equation 8-10 becomes

[] [](){ } 0=+ DGK δλ (8-11)

The boundary conditions may be applied to the global stiffness matrices in Equation 8-

11, and the equation may be used to determine the flexural-torsional buckling loads of the

structure. Equation 8-11 is in the form of a generalized linear eigenvalue problem. A symmetric

positive definite matrix of order n has n eigenvalues λn and n non-zero eigenvectors {δD}n. The

lowest eigenvalue defines the load set at which the structure first buckles, and the corresponding

eigenvector defines the buckling mode of the structure.

The solution of the eigenvalues and eigenvectors of a generalized eigenvalue problem

requires that the equation be converted to a standard eigenvalue problem (Griffiths and Smith,

1991). In other words, a generalized eigenvalue problem of the form

0=+ BxAx λ (8-12)

should be converted to the standard form of

 61

 0=+ xAx λ (8-13)

To convert the generalized eigenvalue problem to the standard form, the following steps must be

taken:

The general equation is written as

[] [](){ } 0=+ DGK δλ (8-14)

Rearranging Equation 8-14 gives

[]{ } []{ }DGDK δλδ −= (8-15)

or

 [] []{ } { }DDKG δλδ −=−1 (8-16)

or

[] []{ } { }DDGK δ
λ

δ 11 −=− (8-17)

Equation 8-17 may be written as

[] [] [] { } 011 =⎟
⎠
⎞

⎜
⎝
⎛ +− DIGK δ

λ
 (8-18)

where []I is the identity matrix.

The only problem with Equation 8-18 is that although []K and []G are symmetric, the

product [] []GK 1− is generally not symmetric. To preserve symmetry, the Cholesky’s method

may be used (Griffiths and Smith, 1991). The Cholesky method decomposes a square,

symmetric matrix to the product of an upper triangular matrix and the transpose of the upper

triangular matrix. Applying the Cholesky decomposition to the matrix []K gives

 [] [] []TCCK = (8-19)

 62

Substituting equation 8-19 into 8-14 and converting it into the standard form gives (Griffiths and

Smith, 1991)

 [] [] []() [] { } 0111 =⎟
⎠
⎞

⎜
⎝
⎛ +

−− DICGC T δ
λ

 (8-20)

Equation 8-20 is in the form of a standard eigenvalue problem. It can be expressed more closely

to Equation 8-13 if it is rewritten as

 [] []() { } 0=+ DIS δγ (8-21)

where

 [] [] [] []() 11 −−= TCGCS

and

λ

γ 1
=

A standard eigenvalue problem can be solved in several ways.

Since the matrices in a flexural-torsional buckling problem often become very large, the

matrices may be converted to a simpler form using Householder’s method before solving for the

eigenvalues (Griffiths and Smith, 1991). Householder’s method converts a symmetric matrix

into a tridiagonal matrix. A tridiagonal matrix has non-zero elements only on the diagonal plus

or minus one column (Press, 1992). The eigenvalues of a tridiagonal matrix may be solved for

using QL iteration (Press, 1992).

The buckling loads are the trial applied loads multiplied by the smallest eigenvalue, λ,

which may be described by the relationship

 { } { }FF cr λ= (8-22)

where { }crF is the vector of the buckling loads and{ }F is the vector of the trial loads.

 63

When considering in-plane deformations, the second variation of the total potential

energy equation becomes

{ } [] []() [] []()(){ } 0
2
1

=+++ DGGKKD PP
T δλδ (8-23)

in terms of the global matrices. The same eigenvalue solution process discussed for the buckling

analysis is used for the prebuckling analysis; however, the buckling loads considering the effect

of in-plane displacements will provide accurate results only when the rotation,
dz

dvC)0(
= , is the

rotation at buckling. Since this rotation must be known prior to calculating the buckling loads,

an iterative approach must be taken to solve this problem.

The buckling loads are calculated using an initial value of the rotation
dz

dvC)0(
= based

on the trial loads on the structure. This initial value of C is calculated from a linear in-plane

anlysis of the structure. If the eigenvalue, λ, is equal to 1.0, the buckling loads are equal to the

trial loads. If the eigenvalue is not equal to 1.0, the trial loads are multiplied by the eigenvalue to

give new trial loads. This is expressed by

 { } { }nn FF λ=+1 (8-24)

for each trial, n. The new trial loads are used to recalculate the rotation
dz

dvC)0(
= . The new

rotation may be used to calculate a new eigenvalue. This procedure is repeated until the

eigenvalue is equal to 1.0; thus, the trial loads for the case of λ = 1 will be equal to the buckling

loads considering the effects of prebuckling.

 64

9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN

9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT

Object-oriented software development is “a new way of thinking about problems using models

organized around real world concepts” (Rumbaugh et al., 1991). Unlike traditional procedural

programming languages, object-oriented programming languages focus on breaking the software

into modular units so that each unit will model a real world object. This programming approach

was developed to provide a more organized methodology to software development in

comparison to the older disorganized approaches. As stated by Mezini (1998), “the object-

oriented programming paradigm has emerged from the desire to find adequate techniques for

mastering the complexity of software development.”

 Object-oriented technology was selected for the program design and implementation over

other software development technologies because of the many advantages it offers in software

organization, and it will support a finite element application. “Traditional methods used for the

formulation, assembly, and application of finite element analyses are easily transported to object-

oriented environments” (Forde et al., 1990).

 Section 9.1.1 presents the basic concepts of object-oriented software development.

Section 9.1.2 discusses the object-oriented language used for the development of the flexural-

torsional buckling program.

 65

9.1.1 Basic Concepts

The fundamental concept in object-oriented languages is a single entity called an object. An

object in an object-oriented program is meant to model an object in the real world through its

characteristics and behaviors in the same way that a real world object possesses characteristics

and behaviors. By combining the characteristics, or attributes, of an object with its behaviors, or

functions, an object in an object-oriented program can effectively model an object in the real

world. This concept of combining attributes and member functions into one entity is known as

encapsulation.

The objects in an object-oriented program communicate with each other through their

member functions. The communication between objects in an object-oriented program is similar

to the way real world objects communicate with each other. An object may call on another

object’s member functions in order to perform an operation or to retrieve some data. However,

objects have the ability to limit the access of their data and member functions from other objects

so that the information cannot be accessed directly. This concept is known as information hiding

and is a key point in encapsulation.

Restricting data access from other objects helps to prevent unwanted modifications of

data by other objects. Every object provides an interface to other objects through its accessible

functions, and objects may only use the interface of another object in order to communicate with

it. The internal structure of the object is hidden so that any changes that occur to the internal

structure will only affect the object’s implementation. As a result, an object’s internal structure

may be varied as long as the alterations do not affect the object’s external behavior.

Some of the other key concepts in object-oriented programming include classes,

inheritance, and polymorphism. A class is the outline, or template, of an object. It describes all

 66

of the attributes and operations that an object of its type will contain. Classes in relation to

objects are blueprints that specify the structure and behavior of an object of its type. A class is

only an abstraction, while an object represents an actual real world item. Once a class is defined,

many objects of that class may be created with each object being unique yet possessing all of the

same features as the other objects. For example, a class may contain a specific characteristic

which is of the same type for all of the objects, but each object will set a different value for that

characteristic. Each object is created at run-time according to the class specification and is said

to be an instance of a class.

Inheritance is a concept of object-oriented programming that allows a class to be

expanded by creating a new class based on the original class or classes. The new class is called

the derived class and the original class is called the base class. Once a class is defined, another

class may be derived from it without modifying the original class. The derived class inherits all

of the features of the base class and adds its own new features as well. Only the features new to

the inherited class must be added to the class definition. Inheritance is a “kind-of” relationship

between objects. In other words, if Class B is derived from Class A, then B is a kind of A.

Inheritance has improved software development by allowing for separations of specific

variations of a class. Inheritance saves a lot of time in programming by allowing for reusability

of existing code without having to modify and debug the existing code.

Polymorphism is the ability for the same operation to behave differently on different

classes (Rumbaugh et al., 1991). A function or operator may have the same name in two classes;

however, it can act differently depending on which class it is operating on. Each class can

choose its own method of operation.

 67

The object-oriented concepts discussed are illustrated in Figure 9.1. The class definition

serves as the outline for an object created of that type. There are two class outlines shown, one

in each rectangle called Class A and Class B. The classes have both their attributes and

operations encapsulated into a single entity. The diagram shows a base class with three features

and a derived class with all three of the base classes’ features along with two new features. Only

the two new features of the derived class, as shown in the bold print, need to be added to the

class definition because the derived class will automatically inherit all of the features of the base

class. Class B is a specific type of Class A, as shown with the kind-of relationship.

 Base Class

kind-of

 Derived Class

Operation x
Operation y

Class B

Attributes a
Attribute b
Attribute c

Class A

Attribute a
Attribute b

Operation x

Figure 9.1 Basic Object-Oriented Concepts Illustration

 68

When an instance of either class is created, other objects may only access the object

properties that are declared public within the code. Private and protected data and member

functions have restricted access by other objects. Therefore, the public features of a class make

up the interface of an object of that class, and the private and protected features of an object are

used to aid in the object’s implementation. Both classes have the Operation x as a member

function. Although these functions have the same name, the derived class has the ability to

overwrite the base class implementation of the operation and use its own implementation.

Therefore, the same function may act differently on each of the classes, which demonstrates the

object-oriented concept of polymorphism.

Objects, classes, inheritance, and polymorphism are only a few of the many object-

oriented concepts. These are just the beginning to all of the advantages that object-oriented

programming has to offer. More specific concepts will be discussed throughout the program

development in the following sections.

One of the main themes that has brought object-oriented concepts to the point that they

are at today is abstraction. Abstraction allows a programmer to focus on the overall entity under

consideration without getting caught up in the details. This means focusing on defining an object

rather than on the implementation of an object. When a user of an object needs information from

the object, the user needs to know what the object is and does rather than to be concerned with

how the object is implemented to get the information. The goal of abstraction is “to isolate those

aspects that are important for some purpose and suppress those aspects that are unimportant”

(Rumbaugh et al., 1991). The move from the first generation of programming languages to

object-oriented programming has been pushed by a support of abstraction.

 69

9.1.2 The C++ Object-Oriented Language

There are many languages that support object-oriented design including Smalltalk, Eiffel, and

C++. There is no particular object-oriented language that is superior to the others; rather, it is

best to select a programming language based on its ability to provide sufficient support of the

desired programming style (Stroustrup, 1991). The object-oriented language used to develop the

Lateral-Torsional Buckling Program is C++/C.

C++ is an extension of the C language. The C language is an older language that

supports traditional procedural program design. C++ was selected over the other object-oriented

languages because it has become one of the most popular languages that supports object-oriented

design, and it provides all of the necessary support for object orientation required for this type of

project.

C++ was developed by Bjarne Stroustrup (1991) at AT&T Bell Laboratories in order to

accomplish three main goals: (1) to improve some of the weaknesses of C (2) to add the object-

oriented capabilities to C (3) to allow the C language to support data abstraction (Stroustrup,

1991). Adding these features to the C language provided a new programming language

supporting object-oriented design “without loss of generality or efficiency compared with C

while remaining almost completely a superset of C” (Stroustrup, 1991).

Most of the statements used in C are also valid in C++ (Lafore, 2002); however, it is

important to understand that object-oriented programming is an approach to the overall

organization of a program and does not focus on the details of the code. While the code of a

procedural program may look exactly the same as the code in an object-oriented program, it is

the organization of the program that sets them apart and makes the object-oriented approach

preferable for modeling real world situations.

 70

9.2 PROGRAM SET-UP

Before the software design process is discussed, it is important to understand the overall set-up

of the program, which will be discussed in this section. The Lateral-Torsional Buckling Program

is divided into three distinct programs: (1) Frame.exe, (2) LBuck.exe, and (3) Project.exe. Each

of these programs was designed, developed, and tested individually, although they all operate

together to create the entire Lateral-Torsional Buckling Program.

The Frame and LBuck programs do all of the structural analysis calculations. The Frame

program calculates the in-plane actions of the structure, and the LBuck program calculates the

flexural-torsional buckling load of the structure. Both the Frame program and the LBuck

program execute in batch mode. Batch mode is a type of program that scans all of its input from

a data file and writes all of its output to another data file. These two programs are console

applications and execute using a simple text file for input and output.

 The Project program is the user interface used to create the input file and gather the

output from the Frame and LBuck programs. This type of program executes in interactive mode

because the user responds to prompts by entering in data. The Project program was created as a

Windows application in order to make the operation of the Frame and LBuck programs user

friendly. The Project program is where all user interaction takes place; therefore, the user only

needs to execute Project.exe in order to run the entire Lateral-Torsional Buckling Program. The

advantage of creating the user interface as a Windows application rather than a console

application is that the program’s interface is more sophisticated and has many of the advanced

 71

features common to Windows applications. However, a Windows application is much more

complicated than a typical DOS application.

In a Windows application, all interactions between a program and the user are handled by

Windows. Windows communicates with the program through the Windows application

programming interface (API) which consists of hundreds of functions. The development of the

Windows application is discussed in more detail in Section 9.5.

User Events

Windows

Windows API

Project.exe

 input file buckling output

LBuck.exe

 input file frame output

Frame.exe

Figure 9.2 Program Operation

 72

The operation of the entire program is illustrated in Figure 9.2. When the user executes

Project.exe, he is prompted to enter in all of the problem data. The Project program then uses all

of the user’s input to create a text input file and executes the LBuck program. The LBuck

program then executes the Frame program. The Frame program opens and executes off of the

input file and creates an output file with the in-plane actions of the structure. The LBuck

program opens the output file from the Frame program and uses this file with the in-plane actions

to calculate the flexural-torsional buckling loads of the structure. The results are written to the

final output file, which are then displayed in the Project program.

9.3 PROGRAM BACKGROUND

To begin developing the three executable programs required for this project, a software package

designed by Phusit Dontree was obtained. This program was developed by Dontree in 1994.

The package included LBuck.exe, Frame.exe, and a simple console mode user interface that was

out-dated and not user friendly. Also provided with the program were a few simple examples

that where used to check that the program provides the necessary results.

The LBuck program developed by Dontree was written in C++; however, many of the

features of object-oriented programming were not used. Although the concept of classes was

used in the program, the overall structure of the program was not very object-oriented. The goal

is to take the original LBuck program and rework it to enhance the object-oriented features,

which in object-oriented terminology is known as refactoring a program. The Frame program

was written as a procedural program in C. The internal structure of this program also needs to be

 73

completely refactored into an object-oriented structure. The user interface can be discarded and

redone as a Windows interface with updated features.

The term refactoring is used to describe a technique of changing the internal structure of

a program in order to make it easier to understand and cheaper to modify without changing its

observable behavior (Fowler, 1999). The decision to refactor the existing program rather than

start from scratch was made because the existing program has many features that work well. The

program’s output provides exactly what is needed, so the functionality of the program does not

need to change; only the internal structure of the program needs to change. The member

functions within the program were all previously tested and provide the necessary results.

Therefore, the largest concern is only with the overall structure of the program. By refactoring

the program, the design of the software can be improved and made much easier to understand.

As previously discussed, object-oriented languages are better at modeling real world

concepts than procedural languages; therefore, it is desired that the program’s structure be

focused on objects. Initially, some may argue that the executable program already provides the

user with satisfactory results, and therefore it would be inexpedient to restructure it. However,

there are more advantages to object-oriented programs than just the immediate advantages while

designing the program.

By improving the design of existing software, it becomes easier to understand and modify

in future. From a maintenance point of view, a program with a poor design will eventually

become useless if the program is expected to be expanded. One of the benefits to an object-

oriented program is that it allows for behavioral variations through incremental programming

(Mezini, 1998). Incremental programming allows a program to be modified by specifying the

 74

new components without changing the old ones. By refactoring the program now, it will be

easier for someone in the future to expand or modify it.

In particular to engineering applications, “finite element analysis programs must adapt to

accommodate current forms of numerical, functional, and physical technologies. Finite element

analysis programs should be constantly changing to satisfy current and future demands of the

engineering profession” (Forde et al., 1990).

The four main things that make a program hard to work with as stated by Kent Beck (as

quoted in Fowler, 1999), who was one of the first people to recognize the importance of

refactoring, are: 1) programs that are hard to read are hard to modify, 2) programs that have

duplicate logic are hard to modify, 3) programs that require additional behavior that requires you

to change running code are hard to modify, and 4) programs with complex conditional logic are

hard to modify. These are the four main issues that will be considered while refactoring the

program.

9.4 DESIGN PROCESS

Object-oriented software development must follow a specific design process. This process must

outline all of the steps to be taken during the design of the program to move from the abstract

concepts to the detailed program code. The Rational Unified Process is a popular design process

that was developed by Grady Booch, James Rumbaugh, and Ivar Jacobson (Jacobson et al.,

1999). Although this process was not specifically developed for object-oriented programming, it

provides a modern approach to software development which can be tailored to model real world

situations. This section will discuss the design process used to create the Lateral-Torsional

Buckling Program.

 75

The Rational Unified Process consists of four main phases: inception, elaboration,

construction, and transition. Figure 9.3 shows the outline of the design process. The inception

phase is where the scope of the project is determined. It establishes the core architecture and

identifies and reduces critical risks while assuring feasibility (Jacobson, 2000). The elaboration

phase is the stage where all of the details are collected to create a plan for the construction. The

construction phase is where the system is built, which will involve many iterations. The

transition phase is the stage where any work left until the end must be completed such as specific

forms of testing. The product is then ready to move to the hands of the users. Although the

process stages may sound vague, the details of each phase are going to depend on the type of

project. The design process of this section is going to focus on the LBuck and Frame programs.

Inception

Elaboration

Construction

Transition

Figure 9.3 Rational Unified Process

 76

9.4.1 Inception

For the inception phase of the project, the scope may be summarized as: refactor an existing

program that calculates the flexural-torsional buckling loads of a structure and make it object-

oriented along with creating a new user interface that is user friendly.

9.4.2 Elaboration

The next phase in the design process is elaboration. This phase begins with a technique called

use case modeling. One of the most important parts to software development is communicating

the design with others. This will ensure that the client and other developers involved with the

design will thoroughly understand the needs of the users. Use case modeling provides a means

of communicating with the user, or customer, in a way that is comprehensible. Use case

modeling intends to communicate to the user how the system and its environment are related, i.e.

it describes the system as it appears from the outside in a “black box” type of model. Use cases

have two important roles: (1) they capture a system’s functional requirements and (2) they

structure each object model into a manageable view (Jacobson, 2000).

The first step in developing the use cases is to determine the actors. An actor is

something or someone that will use the system. In most cases, actors are people using the

system; however, actors do not need to be human. Actors may be other systems that require

information from the current system. For this program, the actor is considered to be the Project

program, which is the user interface. The user interface is the system that calls on the LBuck and

Frame programs to execute, and it requires the flexural-torsional buckling loads of the structure

from the programs.

 77

The next step is to consider all of the scenarios of the program. A scenario is a sequence

of steps describing an interaction between an actor and a system (Fowler, 2000). A group of

related scenarios is a use case. Scenarios are instances of a use case. A use case may be defined

as “a coherent unit of externally visible functionality provided by a system unit and expressed by

sequences of messages exchanged by the system unit and one or more actors of the system unit”

(Rumbaugh et al., 1999). The collection of use cases for a system represents the complete

functionality of the system.

All scenarios of how the program may be executed must be considered in order to

construct the use cases. For the flexural-torsional buckling program there are essentially three

scenarios: (1) a buckling analysis is conducted on the structure, (2) a prebuckling analysis is

conducted on the structure, and (3) a non-dimensional analysis is conducted on the structure.

The user interaction for these three scenarios makes up the use case model.

The user interaction with the Frame and LBuck programs is essentially inputting a text

file of data and outputting a text file of results. Therefore, there is only one use case for this

program. It shows the interaction of the user asking the program to use the given input to

calculate the flexural-torsional buckling loads of the structure. The use case model for this

program is shown in Figure 9.4. For this particular program, the use case model is very simple.

Programs that are more sophisticated and require more user interaction will have many, even

hundreds, of use case models.

 78

Flexural-Torsional
Buckling Loads

System

User
Interface

Figure 9.4 Frame and LBuck Program’s Use Case Diagram

It is important to provide detailed descriptions of each use case along with the diagram.

The description of the use case for the program is: The user enters into the program the structure

properties, dimensions, loads, and restraints. The program uses the data to calculate the flexural-

torsional buckling load of the structure. The three scenarios for this use case, as previously

mentioned, are: (1) the user requests a buckling analysis on the data and the program returns the

buckling loads of the structure, (2) the user requests a prebuckling analysis on the data and the

program returns the buckling loads of the structure considering prebuckling effects, and (3) the

user requests a non-dimensional buckling analysis on the data and the program returns the non-

dimensional buckling loads of the structure.

The use case model developed defines the system requirements; however, it does not deal

with any of the internal structure of the system. Therefore, any type of design method, such as

procedural or object-oriented, may be used from this point in the design process to develop the

system as long as it can perform all of the use cases. Since object-oriented programming is the

preferred method for high quality systems, the use case models will be used to build the object

models in the next section.

 79

In this stage, it is also necessary for all of the details needed for the construction of the

programs to be collected. The operations of the LBuck and Frame programs must first be

understood before any steps may be taken to refactor them.

This stage begins the reverse engineering procedure in order to take the concrete program

code and move it to a higher level abstract model. Reverse engineering as defined by Demeyer

et al. (2003) is “the process of analyzing a subject system to identify the system’s components

and their interrelationships and create representations of the system in another form or at a higher

level of abstraction.” This process is carried out to try to understand how the original program

works and what changes may be made to improve the design.

As shown in Figure 9.5, the process begins with concrete coding and moves to the design

and models and then to the original system requirements, in which each move is to a higher level

of abstraction. This process is the exact opposite of the design process where the goal is to move

from the basic requirements to the code. Similarly to the Rational Unified Process, the reverse

engineering process allows for iterations while it is carried out; thus, it is incorporated into the

design process.

Although the reverse engineering procedure begins here, a majority of the reverse

engineering process will be incorporated into the construction stage of the program development.

In this program, none of the basic requirements of the system are changing. The scope and use

cases defined in the inception and elaboration stages remain the same for the original and

modified programs, which are both at the highest level of abstraction. Therefore, it is the lower

levels of abstraction that will need to be refactored. It is important to begin to understand the

program at this stage in order to carry out the refactoring process in the construction stage.

 80

Code

Designs and
Models

System
Requirements

Figure 9.5 Reverse Engineering Process

Original
Code

Original
Designs and

Models

System
Requirements

New Designs
and Models

New
Code

Figure 9.6 Refactoring Process

 81

Figure 9.6 shows the refactoring process that will take place during the construction

phase. The goal is to move the original code to a more abstract level of modeling. These models

along with the system requirements will be used to generate new models based on object-

oriented concepts. The new models are used to modify the existing code to reflect the changes.

The reverse engineering process reveals the first major obstacle for understanding the

program: insufficient documentation. Little documentation was provided by Phusit for the

development of the original programs, and some of the documentation that was provided was

inconsistent with reality. Therefore, running the software and reading the source code were the

primary means of obtaining information about the Frame and LBuck programs and their

operation.

For the programs to run, the user must enter the geometry, member properties, loading

conditions and boundary conditions for the structure. It is necessary to determine how the

programs operate on this data in order to refine the models of the software. Once the program

operations are understood, a plan for the changes may be developed.

One of the main goals of this project is to provide sufficient documentation to eliminate

the need for drastic and time consuming reverse engineering by anyone that may expand on or

work with this program in the future.

9.4.3 Construction

The construction phase is the main focus of the project and requires the most amount of time.

This is where the program gets analyzed, designed, and tested. While any of the design stages in

the entire design process may involve iterations, it is most important that an iterative and

incremental approach be taken during the construction phase.

 82

The first step in the construction phase is to take the use cases and develop the classes.

When considering classes for the program, it is best to select nouns representing real world

entities from the use case descriptions. Some of the key words involved in a flexural-torsional

buckling analysis are: loads, restraints, members, displacements, stiffness matrix, geometric

stiffness matrix, and reactions. These are all possibilities for classes. Since there are two

programs under consideration, each program’s classes will be examined individually based on

how the program operates.

For the frame program, the possible classes are shown in Figure 9.7, and for the LBuck

program, the possible classes are shown in Figure 9.8. These are only possible classes for the

programs, and the class relationships and interactions must be considered before the classes may

be finalized.

Stiffness
Matrix

Loads

Displacements
Member
Actions

Figure 9.7 Possible Frame Program Classes

 83

Stiffness
Matrix

Restraints

Standard
Matrix

Geometric
Stiffness

Matrix
Loads

Figure 9.8 Possible LBuck Program Classes

The next step is to establish the relationships between the classes and to determine if the

proposed classes will work for the program. Therefore, it is necessary to determine a way of

illustrating the class relationships. It is important to remember that the construction phase allows

for many iterations, therefore, the classes and their relationships may change several times before

the program is complete.

9.4.3.1 Modeling

As mentioned before, communication is essential for a successful program. At this stage of the

development, it is necessary to communicate the design at a high level that is comprehensible to

other developers. The only way for this to be accomplished is to communicate the system

models with the use of an effective modeling language.

The modeling language is essentially the key to communication. It allows for a universal

language that is specific to software development yet not as detailed as the actual code. This type

 84

of modeling language must allow for more complex and thorough modeling than the use case

modeling because it must communicate the internal structure of the system. The Unified

Modeling Language (UML) is a modeling language developed by Rumbaugh, Jacobson, and

Booch (1999) which supports object-oriented design and may be used along with the Rational

Unified Process, although it is not necessary to use them together. This modeling language is

useful throughout all of the stages of the design process for a full range of systems, yet remains

as simple as possible.

 Before moving into any code refactoring, models of the system must be created to plan

out the structure of the program. The UML provides several general categories in which the

program models may fall into. The model categories considered for this project are structural

classification views and dynamic behavior views. The use case modeling discussed in section

9.4.2 is also a part of the UML. There are many sources of information that must be considered

when building the models. This is shown in Figure 9.9. Information must be gathered from the

problem statement, system requirements, basic knowledge, real-world experiences and the

original program models. With all of this knowledge combined, new models may be built and

used for the development of the software.

 85

Build
Model

Problem Statement

System Requirements

Basic Knowledge

Real-world Experiences

Original Program Models

Structural View Model

Dynamic View Model

Figure 9.9 Modeling Procedure

9.4.3.1.1 Structural View

The structural classification view shows the relationships between the elements within the

program. One of the main types of structural views is the static view which shows the

relationships among the classes. This view is illustrated with a class diagram. Since the class is

one of the major characteristics of object-oriented programming, the class diagram is an essential

part of the UML.

When developing and understanding models, they may be viewed from either a

conceptual or an implementation perspective. Conceptual modeling is the process where a

domain is modeled by ordering the abstractions based on the relationships between them. The

term domain is used to represent any aspect of the world that the program is supporting. This

type of model is drawn without regard to the software that may implement it. On the contrary,

implementation modeling is the process where the implementation is laid out. There is no

 86

distinct line between the two perspectives, but it is important to understand the different

perspectives in modeling.

Object-oriented programming supports four important modeling instruments for creating

class diagrams: classification / instantiation, aggregation / decomposition, association /

individualization, and generalization / specialization (Mezini 1998), where each pair of

instruments are opposites of each other. The first step to creating a class diagram is to show the

classes, which is essentially the classification / instantiation modeling mechanism. This

mechanism is supported by the object-oriented concept that objects are instances of classes.

Classification is the process where instances are created from classes, and instantiation is the

process where instances of classes are extended to form the class.

The class diagram combines the attributes and operations of a class into a single element

shown as a rectangle on the diagram. The rectangle is divided into three parts with horizontal

lines. The name of the class is at the top, the attributes are in the middle, and the operations are

shown at the bottom. Figure 9.10 shows an example of a class diagram for a class representing

the stiffness matrix of a structure.

The data, or attribute, for the class is the global stiffness matrix, and the member

function, or operation, is to fill the stiffness matrix. The visibility of the attributes and operations

are indicated by the + and – signs. The + sign indicates public data. An instance of this class

will allow for all public data to be accessed by other objects. The – sign indicates private data.

Private data is hidden, thus, an instance of this class will not make its private data accessible to

other objects. A # sign indicate protected data. The entire sets of classes for the Frame and

LBuck program are shown in Figure 9.11 and Figure 9.12, respectively.

 87

 Class Name

 Attributes

 Operations

Stiffness

- Global Stiffness Matrix

+ Fill Stiffness Matrix

Figure 9.10 Example Class Diagram

+ Print Element Properties
+ Print Restraints

- Global Stiffness Matrix - Loads - Displacements

Properties

- Element Properties

+ Read Element Properties

Stiffness

+ Solve for Displacements

Actions

Loads Displacements

- Member Actions

+ Solve for
Member Actions

+ Print Member Actions

+ Read Loads
+ Fill Load Vector+ Fill Stiffness Matrix

Figure 9.11 Frame Program Classes

 88

+ Get Eigenvalues

- Standard Matrix - Restraints

+ Cholesky Decomposition + Read Restraints
+ Apply Restraints+ Householder's Iteration

+ QL Iteration

+ Assemble Global
Stiffness Matrix

+ Assemble Global
Geometric Stiffness Matrix

Standard Matrix Restraints

Stiffness matrix Geometric Stiffness
Matrix

+ Global Stiffness Matrix + Global Geometric
Stiffness Matrix

Stiffness Matrix
- Element Stiffness Matrix

- Element Geometric Matrix

+ Fill Stiffness Matrix
+ Fill Prebuckling
Stiffness Matrix

+ Fill Non-dimensional
Stiffness Matrix

+ Fill Geometric Matrix
+ Fill Prebuckling
Geometric Matrix

+ Fill Nondimensional
Geometric Matrix

Properties

- Element Properties

+ Read Element
Properties

+ Element Rotation

Element Stiffness Matrix Element Geometric

Figure 9.12 LBuck Program Classes

 89

The second step to creating a class diagram is to show the relationships between the

classes. These relationships may be described using the other three modeling mechanisms

mentioned: aggregation / decomposition, association / individualization, generalization /

specialization.

Aggregation / decomposition describes the relationships between abstractions as “parts”

and “wholes”. Aggregation is the “part-of” relationship, where a whole abstraction is made up

of many other abstractions, or parts. Decomposition is the opposite where the parts are extracted

from a whole.

Association / individualization shows the relationships between abstractions by linking

together items that share some sort of semantic connection in an association, or conversely by

separating items through individualization. The abstractions are typically not related by their

intentional descriptions, which are the class descriptions that will not change over time; however,

the abstractions are somehow related by their extensional properties, which are the objects that

will change over time.

Finally, generalization / specialization expresses the relationships between a generalized

abstraction and a specialized abstraction. An abstraction has a generalization relationship with

another abstraction if it contains all of the properties as the other abstraction, with the other

abstraction being more specialized. This modeling mechanism is supported by the object-

oriented concept of inheritance.

Since the entire internal structure of the Frame program is being modified from a

procedural program to an object-oriented program, the classes and the relationships between the

classes need to be determined from only the system requirements. However, the LBuck program

does contain some object-oriented concepts. These concepts need to be analyzed, and the

 90

relationships need to be modified in order to improve the object-oriented structure of the

program. The first stage of creating the class diagrams will focus on Frame program. The

Frame program’s operation is shown in Figure 9.13 with a flowchart, which is a common

modeling method for procedural programs.

Figure 9.13 shows the structure of a typical procedural program. The procedural

programming languages support the division of a computation into subroutines. This allows the

implementation of each subroutine to remain separate from the routine calling it. Therefore,

understanding the implementation of a subroutine is enough for using its functionality. Although

the implementation may be hidden within a subroutine, the data it uses remains accessible to the

entire program; therefore, an error in one part of the program may have effects on the rest of the

system. In the original Frame program, all of the data is declared global throughout the entire

program; thus, all operations within the program have access to the data.

The classes that are being considered for the restructured Frame program were shown in

Figure 9.11. The operations within the Frame program need to be assigned to the appropriate

class that relates to the implementation of the operation. The data must also be assigned to the

appropriate classes so that it will become encapsulated with the operations in order to restrict its

access. Once these major changes are made, the relationships among the classes may be

considered.

 91

Read
Properties

Build
Stiffness

Matrix

Read
Loads

Build Load
Vector

Solve for
Displacements

Print
Displacements

Print Member
Actions

Figure 9.13 Original Frame Program Procedural Flowchart

 92

The complete class diagram for the Frame program is shown in Figure 9.14. The Frame

class diagram shows the five final classes for that will be used in the program. A properties class

was developed to contain all of the properties for each element. These properties include the

material properties, member joint coordinates, and the restraint information. It is important to

notice that the properties class is noted to be abstract. This is a way to indicate that no objects of

the type Properties should be created in the program. The Properties class serves only as the

foundation to the Stiffness class; therefore, objects should never be instantiated from it. By

declaring the class as abstract, it prevents anyone from creating an instance of that class by

mistake.

The keyword query indicates an operation that may return a value but does not alter the

system (Rumbaugh et al., 1999). This keyword is used in the Properties, Displacements, and

Actions classes to indicate that all of the Print operations will not make any changes to the

objects. This keyword is often used in these types of situations where an object is called upon to

print something or to send some data to a calling object, but it does not want to use the operation

to implement any other type of behavior.

The Stiffness class is derived from the Properties class, as shown with the open arrow

indicating inheritance. The arrow points from the derived class to the base class. The Stiffness

class will contain all of the features of the Properties class and add the new features of creating a

global stiffness matrix.

 93

{abstract}

+ Print Properties {query}
+ Print Restraints {query}

<<friend>>
<<friend>>

- Global Stiffness Matrix

+ Fill Stiffness Matrix

+ Solve for
Member Actions

+ Print Member Actions {query}

- Displacements

- Member Actions

+ Read Loads
+ Fill Load Vector

Actions

- Loads

 <<call>>

Properties

Stiffness Loads Displacements

- Element Properties

+ Read Element Properties

+ Solve for Displacements
+Print Displacements {query}

Figure 9.14 Frame Program Class Diagram

 94

The other three classes, Loads, Displacements, and Actions, are related to the Stiffness

class as shown with the other arrows. The dashed arrow from Actions to Stiffness shows a

dependency between the two classes that is unidirectional. A dependency indicates a semantic

relationship between the two classes, which does not require a set of instances for its meaning

(Rumbaugh et al., 1999). Association and generalization are specific types of dependencies;

however, they have more defined semantics associated with them. The Actions class calls an

operation of the Stiffness class as indicated by the keyword call, which creates the dependency

between the two classes. The Actions class must call on the Stiffness class because it needs the

matrix terms for an element stiffness matrix. The Stiffness class does not contain each element

matrix individually; rather, it assembles the global stiffness matrix directly. Yet, the Stiffness

class contains a function that will provide the Actions class with the terms necessary to compute

the member actions based on the element stiffness matrix.

The solid arrows between the classes indicate associations. Therefore, there are semantic

relationships of the extensional properties between instances of these classes. The displacements

class must be associated with the Loads and Stiffness class in order to calculate the

displacements. Likewise, the Actions class must be associated with the Loads and

Displacements classes in order to calculate the member actions. The keyword friend indicates

that there is permission to access any of the contents of the class. The reason for granting this

type of permission will be discussed later in this section.

Now, the LBuck program’s class diagram will be considered. The first step is to create

the class diagram for the program prior to any refactoring and to point out the problems with the

diagram that need to be addressed. Then, the diagram may be modified to reflect the changes

necessary to make the program more object-oriented.

 95

As mentioned, inheritance supports the modeling of concepts of generalization and

specialization. The derived class inherits all of the properties of the base class and adds new

features of its own. Therefore, the derived class is an extension of the base class. This concept

may be supported by inheritance; however, there is no guarantee in the object-oriented language

that inheritance will be used consistently with the generalization / specialization concept. A

programmer has the freedom to use inheritance to aid in the implementation of the program

without remaining faithful to the conceptual idea of generalization. This is one of the

disadvantages to object-oriented programming.

An example of this conceptual and implemental discrepancy is in the original LBuck

program. The Properties class is the base class for the Element Stiffness Matrix class and the

Element Geometric Stiffness Matrix class, which are both base classes for the Stiffness Matrix

class and the Geometric Stiffness Matrix class. These are then base classes for the Standard

Matrix class. This creates a class hierarchy as shown in Figure 9.15, which is part of the class

diagram for the original LBuck program. The attributes and operations have been left out for

simplification.

Conceptually, the Element Stiffness Matrix and Geometric Stiffness Matrix are both

specializations of the Properties class because they should both contain all of the features of the

Properties class and add new features of their own. A function declared in the properties class

should implement the same for both of the specialized classes. Therefore, these relationships

agree with the concept of generalization.

The Stiffness Matrix and the Geometric Stiffness Matrix classes are derived from the

Element Stiffness Matrix and Element Geometric Stiffness Matrix classes, respectively, implying

that the derived classes are extensions of the base classes. Conceptually, the Stiffness Matrix

 96

and Geometric Stiffness Matrix are not true extensions of the Element Stiffness Matrix and

Element Geometric Stiffness Matrix classes because they do not use any of the base class’s

operations, such as the function to fill the element matrix. The Stiffness Matrix and Geometric

Stiffness Matrix use only the operations that are unique to the class. Instead of a global stiffness

matrix being a specialization of an element stiffness matrix, it is conceptually preferable to

consider a global stiffness matrix being made up of element stiffness matrices. This creates a

“part-of” relationship rather than a “kind-of” relationship.

Properties

Element Geometric
Stiffness Matrix

Element Stiffness
Matrix

Standard Matrix

Stiffness matrix Geometric Stiffness
Matrix

Figure 9.15 Original LBuck Class Diagram

 97

The Standard Matrix is derived from the Stiffness Matrix and the Geometric Stiffness

Matrix classes. Once again, this does not conceptually support generalization. A standard

matrix is not a kind of stiffness matrix or geometric stiffness matrix; rather, they are related by

an association. It could be considered that a standard matrix contains a stiffness matrix and a

geometric matrix, which would create a “part-of” relationship. However, it would not be easily

understood how to decompose these two parts from the whole. Therefore, it is preferable to

relate them with an association which provides a semantic connection between their extensional

properties.

In the original program, using the inherited relationship between all of the classes aided

the implementation by making it easer for each class to access any part of another class.

However, this is violates the basic concept of object-oriented programming of restricting access.

It is widely argued that inheritance used merely for implementation purposes will cause

problems with the program and reflect poor understanding of the purpose of inheritance (Mezini

1998). This clearly illustrates the difference between creating a model from a conceptual

viewpoint and from an implementation viewpoint.

There are other problems with the multiple inheritance shown in Figure 9.15. Inheritance

is being used in a diamond shape hierarchy, so that the Standard Matrix class is derived from two

classes that share a common base class. This type of hierarchy creates a problem in dealing with

the attributes in the common ancestor class. The problem is whether the attributes should be

inherited once through one of the paths to the Standard Matrix class or twice through both paths

to the Standard Matrix class. This creates difficulty in organizing the behavior of the program.

In this situation, some of the attributes may need to be inherited once and others twice while

some of the attributes may not need to be inherited at all since the inheritance does not

 98

conceptually support generalization. At this stage of the design, this conflict may not be entirely

solved through the conceptual models and may end up being left for the implementation

development stage.

The other problem with the diagram is that there are homonymous attributes, which are

difficult to deal with when incrementally varying a model. A homonymous attribute is a conflict

arising when two attributes inherited from two different parents have the same name (Mezini,

1998). For example, the Element Stiffness Matrix class and the Geometric Stiffness Matrix class

both have functions to fill the element matrix. In the code, these functions are given the same

name. These operations should be kept separate form each other because they are from two

different sub-divisions of a single object. It is easier to eliminate these problems with

homonymous attributes and duplicated attributes rather than to use an approach to dealing with

them. Therefore, the conceptual model will be modified to remove the multiple inheritance

hierarchy shown in Figure 9.15.

The final class diagram for the LBuck program after being modified to enhance the

object-oriented features is shown in Figure 9.16. The LBuck class diagram shows the seven

classes used in the program. Once again there is an abstract Properties class containing the

material properties, loads, and joint properties of each element. The Element Stiffness Matrix

and Element Geometric Stiffness Matrix classes are derived from the Properties base class as

indicated by the inheritance open arrowheads.

 99

{abstract}

 1…* 1…*
{ordered} {ordered}

1 1 1

1

1 1

1 1 1 1

Element Stiffness Matrix Element Geometric
Stiffness Matrix

Stiffness matrix Geometric Stiffness
Matrix

+ Get Eigenvalues

- Restraints

+ Global Geometric
Stiffness Matrix

+ Assemble Global
Geometric Stiffness Matrix

- Standard Matrix

+ Cholesky Decomposition

Standard Matrix Restraints

+ Global Stiffness Matrix

+ Assemble Global
Stiffness Matrix

+ Read Element
Properties {query}
+ Element Rotation

+ Fill Geometric Matrix
+ Fill Prebuckling
Geometric Matrix

+ Fill Nondimensional
Geometric Matrix

+ Read Restraints {query}
+ Apply Restraints

Properties

+ Householder's Iteration
+ QL Iteration

- Element Properties

- Element Stiffness Matrix

+ Fill Stiffness Matrix
+ Fill Prebuckling
Stiffness Matrix

+ Fill Non-dimensional
Stiffness Matrix

- Element Geometric Matrix

Figure 9.16 LBuck Program Class Diagram

 100

The other class associations are shown with the solid arrows. The solid arrows show the

navigability between the classes, and in all of these cases it is unidirectional. One of the new

features shown on the diagram is the black diamond which is used to indicate composition.

Composition is another one of the basic concepts of object-oriented programming. Composition

is a specific form of aggregation. This shows the conceptual relationship of an element stiffness

matrix being a part of a global stiffness matrix. Composition is a stronger form of aggregation

where the part may belong to only one whole and the life of the part is the life of the whole. The

Stiffness Matrix and the Geometric Stiffness Matrix classes are the “whole” and the Element

Stiffness Matrix and Element Geometric Stiffness Matrix classes are the “parts”.

The Standard Matrix class must be associated with the Stiffness Matrix and the

Geometric Stiffness Matrix classes in order to calculate the standard matrix. The Restraints are

applied to both the stiffness matrix and the geometric stiffness matrix; therefore, associations

between these classes are indicated.

At the ends of the arrows are numbers indicating the multiplicity of the instances of the

classes with (*) denoting infinity. For example, a Stiffness matrix object may be associated with

anywhere from one to an infinite number of element stiffness matrices at a conceptual level;

however, each element stiffness matrix may be associated with only one stiffness matrix. The

ordered keyword is a constraint implying there is an ordering of the objects that it is associated

with and that a particular object can appear on the total list of objects only once. The other

features on the diagram are similar to those discussed on the Frame class diagram.

9.4.3.1.2 Dynamic Behavior View

The static view provided the model of the classes and their definitions; however, it is equally

important to understand which objects are instantiated at run time and how the objects interact

 101

with each other during the program execution. The dynamic behavior view provides a visual

model of the system over a period of time. Dynamic behavior may occur as an object interacts

with the world or as objects interact with each other to implement a behavior. Since the Frame

and LBuck programs do not interact with the user, dynamic behavior views will only be used to

illustrate how objects interact with each other to implement a behavior.

A sequence diagram is a specific type of dynamic behavior view that displays the

interaction as a two-dimensional chart. The sequence diagram for the Frame program is shown

in Figure 9.17. Since the original Frame program was not object-oriented, the sequence diagram

was created from the system requirements.

An object is shown on the sequence diagram as a box with the class name underlined

indicating that it is an instance of a class not a class. The time line of the model is the vertical

axis. Time begins at the top of the page and proceeds down the page. The line below an object

represents the lifeline of the object and is shown as a dashed line. When an object is deleted, the

lifeline of the object ends with an X. Objects may be destroyed by other objects, or they may

self destruct.

When a message is sent between objects, it is shown as a call with an arrow pointing

from the calling object to the object it is calling. The message arrows are arranged in time

sequence from the top to the bottom of the diagram. The message includes the name of the

function sending the message to the object or the type of message being sent. Anytime an object

is sent a message, the object becomes active. The activation of an object is shown with an

activation box on top of the object’s lifeline. Activation includes the amount of time to execute a

procedure including any time it must wait for nested procedures to execute.

 102

readProperties()

readLoads()

buildStiffness()

buildLoadVector()

solveDisplacements()

getLoads

 getStiffness

solveActions()

StiffnessMatrix()

getLoads

 getDisplacements

printActions()

a Stiffness a Load a Displacement an Action

Figure 9.17 Frame Program Sequence Diagram

 103

A recursive call occurs when control reenters an operation on an object, but the second

call is a separate activation from the first (Rumbaugh et al., 1999). This may be shown by

stacking activation boxes. A return message is indicated with a dashed arrow back to the calling

object. An object may make a self-call, as indicated by the message arrow returning back to the

same lifeline. A half arrowhead indicates and asynchronous message. This type of message

allows for the caller to continue with its own processing, such as in the case of an object creating

a new object.

The Frame sequence diagram shows the four objects created when the program executes:

a Stiffness object, a Load object, a Displacement object, and an Action object. These objects

communicate between each other by sending the messages shown in the diagram. All of the

same behaviors are being implemented on this program design model as compared to the original

Frame dynamic behavior view, which was the Frame flowchart shown in Figure 9.13. Instead of

the behaviors being implemented in a procedural approach, now the behaviors are being

implemented through the objects, which are communicating information with each other.

First, the input data for the properties and loads are read from the readProperites process

and the readLoad process, respectively. The buildStiffness process builds the global stiffness

matrix of the structure based on the properties data. The buildLoadVector process builds the

joint load vector based on the load data. The solveDisplacements process solves the equations

for the displacements. The solveActions process computes the end-actions and reactions. The

most important information needed from this program are the end actions, which must be used in

the LBuck program to calculate the buckling loads.

 In order to create the LBuck program’s sequence diagram, the original sequence diagram

must first be created. After investigating the LBuck program’s behavior, the sequence diagram

 104

in Figure 9.18 was developed. There are only three objects created for the entire program: a

Main Process object, a Standard Matrix object, and a Supports object. The main process object

is only used for implementation purposes and does not represent any real world object. A Main

Process object is instantiated entirely as a means to start the buckling analysis.

 As discussed in the Section 9.4.3.1.1 on static views, the Standard Matrix class was

derived from a hierarchy of classes as shown in Figure 9.15. The Standard Matrix object will

inherit all of the features of the classes above it in the class hierarchy. This is the reason that the

Standard Matrix object has so many self calls on the sequence diagram. Instead of calling on and

communicating with other objects, the Standard Matrix object is doing all of the work itself. It

has become somewhat of a “super” object, which is required to do almost all of the program’s

implementation, much of which is not related to the conceptual definition of the Standard Matrix

object. This diagram shows very little communication between the objects and is a poor example

of an object-oriented design. To improve the design, the sequence diagram needs to be

remodeled to encompass more object-oriented concepts.

The final LBuck sequence diagram is shown in Figure 9.19. This diagram shows far

more objects communicating with each other to implement the behavior of the program. The

Main Process object is eliminated because it is unnecessary for the program. The Standard

Matrix object is broken up into more objects, which creates a much better conceptual model

because the Standard Matrix object now has to implement only the behaviors directly related to

the conceptual definition. It is important to notice that all of the same behaviors are being

implemented in the new model, only now the behaviors are redistributed among the objects to

enhance the object-oriented features of the program design.

 105

main_process()

 new

standard_matrix()

assemble_Stiffness_Matrix()

 fill_Element_Stiffness_Matrix()

assemble_Stiffness_Matrix()

 fill_Element_Geometric_Matrix()

 new

boundary_condition()

a Standard
Matrix

a Supports

a Main
Process

Figure 9.18 Original LBuck Program Sequence Diagram

 106

assembleStiffness()

 new

readProperties()

fillElementMatrix()

 getMatrix

assembleGeometric()

 new

readProperties()

fillElementMatrix()

getMatrix

getSupports()

applySupports()

getStiffnessMatrix

getGeometricMatrix

StdMtx()

getStiffnessMatrix

getGeometricMatrix

print()

a Stiffness
Matrix

a Geometric
Matrix

a Support

a Standard
Matrix

an Element
Stiffness

an Element
Geometric

Figure 9.19 Refactored LBuck Program Sequence Diagram

 107

The assembleStiffness process creates a new element stiffness matrix object for each

element in the discretized structure. Each element object reads the properties for the element and

fills the matrix in the fillElementMatrix process. Each matrix is sent back to the Stiffness Matrix

object and assembled into the appropriate position in the global stiffness matrix.

The exact same process occurs for the Geometric Matrix object. The assembleGeometric

process creates a new Element Geometric Matrix object for each element in the discretized

structure. Each element object reads the properties for the element and fills the element

geometric stiffness matrix in the fillElementMatrix process. Each element matrix is sent back to

the Geometric Matrix object and assembled into the appropriate position in the global stiffness

matrix.

The support object reads in the supports in the getSupports process. It applies the

boundary conditions to the structure in the applySupports process. The Standard Matrix object

changes the generalized eigenvalue problem to the standard eigenvalue problem. Consequently,

the global stiffness matrix and global geometric stiffness matrix are combined to the standard

matrix. The standard matrix is then solved for the eigenvalues.

 The final step is the print process. This process is different depending on the type of

analysis. For the buckling analysis, the buckling parameter, or eigenvalue, is printed as the result

of the anlaysis. The buckling load is the multiplication of the eigenvalue and the trial loads. For

the prebuckling anlaysis, the eigenvalue is checked within the print process before the results are

printed. If the eigenvalue is not equal to one, the eigenvalue is returned to the beginning of the

program as a multiplication factor. The trial loads are multiplied by the multiplication factor and

the entire process starts again. The program continues until the eigenvalue is close to one, and

the trial loads for that iteration are the buckling loads.

 108

It is often difficult to understand the flow of behaviors within a program, and dynamic

behavior views help to model the flow control so that the sequence of behaviors become

apparent. The sequence diagrams for both the Frame and LBuck programs help to increase the

clarity of how the objects collaborate within the program during its implementation.

An activity diagram is another type of dynamic behavior view. “An activity graph shows

the computational activities involved in performing a calculation” (Rumbaugh et al., 1999). It

describes a sequence of activities and helps when trying to understand the flow of work in a

calculation. Activity diagrams are much like flowcharts except that they allow for parallel

behavior. Since they are so much like flowcharts, many people believe that activity diagrams are

not object-oriented; however, they are included as part of the UML and are useful in describing

complicated behavior.

An activity diagram is shown in Figure 9.20 to describe the standard matrix procedure.

The standard matrix function is called as shown in the sequence diagram of Figure 9.19;

however, the order of the calculations for the standard matrix function is not shown on the

diagram. These details are left out of the diagram to maintain clarity, yet they are important in

understanding the operations of the program. The activity diagram in Figure 9.20 is used to

illustrate these details.

The diagram shows two swim lanes: restraints and standard matrix. Swim lanes are used

to try to link the actions to the objects in order to enhance the object-oriented features of the

diagram. The name of the class associated with the action is shown at the top of the diagram,

and the descriptions of the action are shown in the ovals below. The order of the functions are

related by the arrows.

 109

Standard MatrixRestraints

Check
Eigen-values

Receive
Stiffness
Matrices
K and G

Appy Boundary
Conditions

Apply
Householder's

Iteration

Apply QL
Iteration

Apply
Cholesky
Method

Figure 9.20 Activity Diagram

 110

9.4.3.2 Coding

Once the models are complete, the design can move back from the high level abstract models to

the concrete code. As the structure of the code is changed to reflect the changes made to the

abstract models, more weaknesses of the program are exposed.

One weakness of the original code is that many of the functions are long and contain too

many operations within one member function. Therefore, it is useful to extract some of the code

from the long methods and break it into smaller parts. “The object programs that live best and

longest are those with short methods” (Fowler, 1999). This helps to increase the clarity of the

code. The chances that other methods may use a method increases when it is more finely

grained.

 Another problem with the code is that there are several sections of duplicated code. A

reason for eliminating duplicated code is that duplicated code increases the difficultly to make

changes to a program since every piece of a particular section of code must to be changed.

Duplicated code also scatters the logic instead of keeping it clear and understandable. Along

with eliminating duplicate code is the need to eliminate unnecessary variables. The original

program uses too many variables which makes it difficult to understand what each variable

means. Global variables were used in too many cases to take the private member data of an

object and give it global access. This violates the object-oriented concept of restricting data

access, and may have serious damaging effects on the program.

 The programs also did not use any constructors to create the objects. Constructors are

operations that construct different kinds of a data type. Although an object-oriented program

may be written without constructors, they are a valuable feature of object-oriented languages.

Since the original Frame program uses all global data, all of the data is automatically initialized

 111

to zero when it is created. Many of the functions operated on the data without explicitly

initializing it. Local variables, however, are not initialized on creation and will contain a random

value. Therefore, constructors need to be used to explicitly initialize all of the data when

creating an object.

 Arrays are used as attributes in the classes for both programs. Since most of the classes

use matrices as data members, two-dimensional arrays are used to store the matrices. Passing an

array as an argument to a function is different than passing other types of variables. The name of

an array is its address, and arrays must be passed by their name, or address. A function always

works with the original array, not a duplicate. This system is used because arrays can become

very large if they are storing a lot of data, and duplicating an entire array in every function call is

both time-consuming and wasteful of memory (Lafore, 2002).

This creates a complication with writing the code. One of the main goals of object-

oriented programming is to keep data private so that other objects cannot manipulate it. If an

object needs data from another object, it sends a message and the object called upon returns a

copy of the data, while keeping the original data safe. However, if an object needs to send a

message to another object asking for a matrix to be returned, the original matrix must be returned

since the C++ programming language does not allow copies of array to be sent. Therefore, there

must be a way for an object to access the array of another object. There are two ways to

accomplish this: (1) make the array public data, or (2) make the two objects friends of each

other.

If the arrays are declared as public data, then they are open to all objects. This may

become a problem if an unauthorized object somehow accesses the array by mistake. In many

cases, it is necessary to limit the access of an array to only those objects that may need it, and

 112

keep it hidden from those that do not need it. Two objects are made friends by declaring their

classes as friends. A friend class of another class may access the private data of that class. For

example, if in class A the entire class B is declared a friend, then all of the member functions of

B may access the private data of A. This is the preferable way of allowing an object to access an

array of another object.

The code must be written to implement all of the models developed and handle all of the

coding issues discussed. The first place to start the coding is in the header files. The header files

define the class interfaces. After the header files are defined, the details of their implementation

may be written. The coding for Frame program may begin development by defining the classes

as:

class Properties
{
protected:
 float x[MAX], y[MAX], AX[MAX], YI[MAX], ZI[MAX],
 WI[MAX], E[MAX], G[MAX],J[MAX];
 double angle[MAX];
 int res1[MAX],res2[MAX],res3[MAX],res4[MAX];

public:
 Properties();
 void print_restraints();
 void print_properties(int j);
};

The properties class has matrices to store the properties and restraint information. The

data may be printed using the print_restraints() and print_properties() functions. The

Properties() function is the constructor used to initialize the data. The constructor always has the

same name as the class and does not have a return type.

 113

class Stiffness: public Properties
{
private:
 float sff[3*MAX][3*MAX];
public:
 Stiffness();
 void stread();
 void stifbld();
 void compm(int, int[6], float[4]);
 void memstif(int, float[6][6], float[4]);
};

The stiffness class is inherited from the properties class. There is a member function,

stread(), to read in the information necessary to build the stiffness matrix. The stifbld() function

builds the partitioned half bandwidth global stiffness matrix. It calls on the function compm()

which provides the terms of the stiffness matrix in local coordinates and the memstif() function

which computes the upper triangular portion of a single member stiffness matrix in global

coordinates using the local element stiffness matrix terms. The global stiffness matrix is stored

in the sff[][] matrix.

class Loads
{
private:
 float Load[6][MAX];

public:
 Loads();
 void ldread();
 void load();
 void print_loads(int j);
};

The lread() function reads in the loads on the members and joints. For loaded members,

it converts the concentrated or distributed loads into equivalent joint loads. The load() function

combines the joint loads and equivalent joint loads from the member loads into one combined

load vector. The print_loads() function prints the structure loads.

 114

class Displacements
{
private:
 float D[MAX];
public:
 Displacements();
 void banfac(Stiffness, Loads);
 void bansol(float[3*MAX][3*MAX], float[3*MAX]);
 void prdisp();
 void print_displacements(int);
};

The banfac() and bansol() functions solve the equations for the displacements using the

load vector and global stiffness matrix. The resulting displacement vector will contain only the

free degree of freedom displacements, which may not be in order of the joints. The prdisp()

function sorts the displacements into the original joint numbering system order and sets any

restrained joint displacements to zero. The print_displacements() function prints the

displacements.

class Actions
{
private:
 float action[4][MAX];
public:
 Actions();
 void memact(Stiffness, Loads, Displacements);
 void print_actions(int) const;
};

The memact() function computes the member end-actions for each element using the

local stiffness matrix terms, load vector, and displacement vector. These actions are stored in the

action[][] matrix and printed using the print_actions() function.

 115

The coding for LBuck program may begin development by defining the classes as:

class Properties
{
protected:
 int j1,j2;
 float E,G,J,Iy,Ix,Iw,K,l,al;
 float q,a,P,e,zp,F,M1,V1,c;
public:
 void Read_Properties(int);
 void Fill_Properties(int);
 void Rotation(float[10][10]);
};

The Properties class stores the properties of the structure. The Read_Properties()

function reads in the properties data from the text file. The Fill_Properties() function stores the

properties in matrix form. The Rotation() function provides ability to transform a stiffness

matrix in local coordinates into global coordinates.

class Element_Stiffness : public Properties
{
private:
 float Ke[10][10];
public:
 void Fill_Element_Stiffness1();
 void Fill_Element_Stiffness2(float, int);
 void Fill_Element_Prebuckling(void);
};

The Element_Stiffness class is derived from the Properties class. There are three separate

functions that fill the element stiffness matrix depending on the type of analysis being conducted.

The Fill_Element_Stiffness1() function fills the buckling stiffness matrix. The

Fill_Element_Stiffness2() function fills the non-dimensional buckling stiffness matrix. The

Fill_Element_Prebuckling() function fills the prebuckling terms of the stiffness matrix. The

stiffness matrix is stored in the Ke two-dimensional array.

 116

class Element_Geometric : public Properties
{
private:
 float Gm[10][10];
public:
 friend class Geometric;
 void Fill_Element_Geometric1(float);
 void Fill_Element_Geometric2(float, int);
 void Fill_Element_Prebuckling(float);
};

The Element_Geometric class is also derived from the Properties class. There are three

separate functions that fill the element geometric stiffness matrix depending on the type of

analysis being conducted. The Fill_Element_Geometric1() function fills the buckling geometric

stiffness matrix. The Fill_Element_Geometric2() function fills the non-dimensional buckling

geometric stiffness matrix. The Fill_Element_Prebuckling() function fills the prebuckling terms

of the geometric stiffness matrix. The geometric stiffness matrix is stored in the Gm two-

dimensional array.

class Stiffness
{
private:
 Element_Stiffness stiff;
 int element_num;
 float A[MSize][MSize];
public:
 Stiffness(int);
 void Assembling_Stiffness_Matrix(float);
};

The Stiffness class contains an Element_Stiffness matrix object. Each of the element

stiffness matrices are used to create the global stiffness matrix, A. There is only one stiffness

matrix object rather than an array of stiffness matrix objects so that each element stiffness matrix

is created, entered into the global matrix using the Assembling_Stiffness_Matrix() function, and

deleted so that the next element stiffness matrix may be created. All of the element stiffness

 117

matrices are not saved in an array in order to save memory space. The element stiffness matrices

are no longer needed once they are entered into the global matrix so that there is no reason to

save them individually.

class Geometric
{
private:
 Element_Geometric geom;
 int element_num;
 float B[MSize][MSize];
public:
 Geometric(int);
 void Assembling_Geometric_Matrix(float);
};

The Geometric class contains an Element_Geometric matrix object. Once again, each of

the element stiffness matrices are used to create the global stiffness matrix, A, and there is only

one stiffness matrix object rather than an array of stiffness matrix objects. The

Assembling_Stiffness_Matrix() function is used to place the element geometric stiffness matrices

into the global stiffness matrix.

class Standard_Matrix
{
private:
 int size;
 float d[MSize],e[MSize];
 float C[MSize][MSize];
 float buckling_load;
public:
 Standard_Matrix();
 void standard_matrix(float[MSize][MSize],float[MSize][MSize],int);
 float pythag(float,float);
 void choldc(float[MSize][MSize]);
 void tred2(float[MSize][MSize]);
 void tqli(float[MSize][MSize]);
};

 118

The Standard_Matrix class creates the standard eigen-value problem from the stiffness

matrix and geometric stiffness matrix. The choldc() function is the Cholesky method which

changes the stiffness matrix to the upper triangular matrix (Press, 1992). The product of the

inverse of the upper triangular matrix, the geometric matrix, and the inverse of the transpose of

the upper triangular matrix gives the standard matrix, as discussed in Chapter 8. Householder’s

iteration changes the standard matrix into the tridiagonal matrix which is given by the tred2()

function (Press, 1992). The tqli() function gives the eigen-vlaue of the tridiagonal matrix

through QL iteration (Press, 1992). The Standard_Matrix() function is the function used to

stores the standard matrix, C, and calls on the three functions choldc(), tred2(), and tqli(). The

pythag() function is the Pythagorean function.

class Supports
{
private:
 int restrain[MSize];
public:
 Supports(int);
 void Get_boundary_conditions();
 int Boundary_Condition(float[MSize][MSize],float[MSize][MSize]);
};

The Supports class is used to store the restraint information in the restrain array. The

Get_boundary_conditions() function is used to input the boundary conditions. The

Boundary_Condition() function is used to apply the restraints to the global stiffness matrix and

the global geometric stiffness matrix.

The source files must now be written to add the implementation to the classes. Since the

original program provided all of the necessary functionality, the original member functions

should remain the same. However, these functions have to be carefully checked to make sure

 119

that any reorganization of the program’s structure does not change the member function’s

implementation.

The compiler used to compile and execute all of the source code for this project is

Microsoft’s Visual C++ Version 6.0 complier. Once all of the code is complete to implement the

program, the process may move into the final stage of development.

9.4.4 Transition

The transition phase is the last stage in the design process. There is no functionality added to the

program at this stage. The changes to the program should be focused on testing and fixing bugs.

The goal of the transition phase is to ensure that the product is ready to be released. In this stage

the testing was done using examples that were tested on the original programs to obtain the

desired results. Since the functionality of the program is not intended to change, the examples

should provide the same results for both the original program and the refactored program.

 As discussed the Section 9.2, the Frame and LBuck programs execute off of a text input

file. The programs scan the input from the file and use it to perform the analysis on the structure.

The text input files for the programs are automatically formatted correctly when running the

entire program through the Project interface, and the text files are viewable prior to the analysis

execution in the Project program. However, the LBuck and Frame programs may execute by

themselves if an input text file is located in the same directory as the executable programs. This

method was used to perform all of the testing on the refactored LBuck and Frame programs.

Once the programs were executed, the text file output was compared to the output obtained from

the original program.

 120

The format of the text input files used for the LBuck and Frame programs are found in

Appendix C. When running a buckling or prebuckling analysis, the only file for executing the

Frame program needs to be used as the input file. The Frame program will automatically create

either the buckling or prebuckling input file used for the LBuck program. The buckling and

prebuckling input file for the LBuck program are shown only for reference and do not need to be

used to run the program. When running a non-dimensional analysis the input file for the LBuck

program for a non-dimensional analysis should be used. The output from the programs will be in

a file called lbuck.ini.

Once the transition phase is complete, the program is ready to be distributed to the users.

The complete program code for the Frame program is in Appendix E, and the complet program

code for the LBuck programs is in Appendix D.

9.5 WINDOWS INTERFACE

9.5.1 Windows Programming

The user interface for the program was created as a Widows application. It was already

mentioned that Windows communicates with the program through the Windows application

programming interface (API). The Windows API functions were created to be used with all

programming languages including the traditional procedural languages, so they are not object-

oriented (Horton, 2003). However, Microsoft Visual C++ provides a set of classes called the

Microsoft Foundation Classes (MFC) that represents an object-oriented approach to Windows

programming with Visual C++ that encapsulates the Windows API (Horton, 2003).

 121

 The MFC provides all of the main classes needed for a Windows program. To create the

program, objects of the MFC classes or objects of classes derived from the MFC classes must be

used. The fundamental classes used in the program are shown in Figure 9.21.

The five classes along the bottom of the figure which are all derived from the CObject

class are the basic classes that are used to create the application. All of these classes are

provided by Visual C++ in a basic outline of a Windows program. This outline is the framework

for the application and requires customization of the data and member functions to make the

program work.

CObject

CSeries

CCmdTarget

CWinThread CDocument

CWinnApp CWnd

CFrameWnd CDialog CView

CProjectApp CProjectWnd CProjectDialog CProjectView CProjectDoc

Figure 9.21 Project Program Class Hierarchy

 122

The application class, CProjectApp, includes everything necessary to start, initialize, run,

and close the application (Horton, 2003). The frame window class, CProjectWnd, provides the

window for the interface. The dialog class, CProjectDialog, is used to create dialog boxes in the

application. The view class, CProjectView, is the class that contains everything that is displayed

in the client area of a frame window. Finally, the document class, CProjectDoc, is used to store

all of the data in the application with which the user interacts. These classes shown in the class

hierarchy are only a very small part of all of the classes within the MFC; however, it is not

necessary to understand all of the details of each MFC class in order to create the application.

The CSeries class, which is also derived from CObject as shown at the top of the figure,

is the class containing all of the data entered into the program by the user. This class was created

specifically for this program, unlike the other classes which are provided by Visual C++. This

class stores all of the data and is used to write the data to a text file in order to run the LBuck

program.

The CObject class is at the top of the MFC class hierarchy, and almost every class in an

MFC program is derived from it. The CObject class provides many levels of support to its

derived classes, such as it allows for support for dynamic object creation, support for runtime

class identification, and support for serialization. All of the derived classes inherit these

important properties from the CObject class.

9.5.2 Creating the Interface

The first step to creating the program is to decide how the program will operate. Once it is

decided how the user will interact with the program, the application can be created to provide the

necessary functionality. Use Cases will be used to describe the external functionality of the

 123

system. The actor for the use case is the structural engineer using the program. The scenarios

for the interaction with the user include:

(1) The user needs to input the structure’s data into the interface. Each series of data is

input into a separate data series.

(2) The user needs to be able to edit each data series.

(3) The user needs to be able to view the input data file that is used to run the LBuck and

Frame programs.

(4) The user needs to be able to run the analysis.

(5) The user needs to view the results of the analysis.

The use case diagram is shown in Figure 9.22. The features of this use case diagram are

similar to those discussed in Section 9.4.2.

Several of the use cases have chunks of behavior that are similar across more than one

use case. Both the Create a Data Series and Edit a Data Series need to have the functionality of

entering data into the interface; therefore, there is similar behavior between the two use cases,

which may be extracted into its own use case called Data Entry. This is shown on the diagram

with the include relationship. The View Input use case and the View Results use case both have

the functionality of viewing a file. A View File use case was created and included in both of

these use cases.

 124

<<include>>

<<include>>

 <<include>>
Structural
Engineer

<<include>>
Run Analysis

View Results

Data Entry

View File

SYSTEM

Create a Data Series

Edit a Data Series

View Input

Figure 9.22 Interface Use Case Diagram

First, a general overview of the program will be discussed, and then the details of the

design will be discussed. The program is designed as a single document interface, which means

that only one document may be open and viewed at a time. When the program is executed, the

user must create a new document or open an existing document. Then, the user may input the

data for the structure under analysis by creating or editing the data series. A data series is the

entire set of data for one analysis. Therefore, the user has the option of running several analyses

by entering in several series of data. For example, the user can analyze a particular structure

 125

several times with a different number of elements for each analysis and then compare the results.

All of the user input is handled through dialog boxes. When all of the input is gathered from the

dialog boxes, the user may view the input file and then execute the flexural-torsional buckling

program. Once the LBuck and Frame programs have exectued, the user may view the results of

the analysis.

The framework of the program is created using the MFC AppWizard provided by Visual

C++ for a single document interface. This provides everything necessary to run the program.

The program needs to be customized to handle all of the actions discussed. First, new menu

items and functions handling the menu items are added. The user needs to be able to use the

menu to create a new project, open an existing project, save a project, etc., as shown on the pull

down menu in Figure 9.23. These menu items are all common to Windows applications and are

provided by the AppWizard. Only the functions handling these items need to be customized.

For example, when the File – New menu item is selected, the New Project dialog box needs to be

activated by the functions handling the menu item.

The menu also needs to include new menu items that are unique to this program, such as

entering in a new data series, editing a data series, viewing the input file, running the analysis,

and viewing the results. These menu items are shown in the pull down menus of Figures 9.24

and 9.25. All of these items are added to the basic Windows menu. The functionality handling

these menu items must be added and customized.

Next, several new classes are derived from the CDialog class to gather the user input.

When a new project is created, the New Project dialog box is displayed. This dialog box gathers

the name of the project and the type of analysis being conducted and is shown in Figure 9.26.

 126

Figure 9.23 File Menu

Figure 9.24 Data Menu

 127

Figure 9.25 Analysis Menu

Figure 9.26 New Project Dialog

 128

The next dialog box that gathers the user’s input is the new series dialog box. This dialog

box is different depending on the type of analysis. The dialog box for a buckling or prebucking

analysis is shown in Figure 9.27, and the dialog box for the non-dimensional analysis is shown in

Figure 9.28. The dialog boxes display all of the series data in Microsoft Hierarchical Flex Grid

controls. This data is gathered from smaller dialog boxes. Therefore, many member functions

are added to the dialog box classes to handle the user input and to handle the data between the

dialog boxes.

Figures 9.29 and 9.30 are two examples of the dialog boxes that are used to gather the

user input and then transfer it to the Microsoft Hierarchical Flex Grid controls. These two dialog

boxes are used to gather the joint data and the member load data. Other dialog boxes similar to

these are used to gather the member data and joint load data.

 129

Figure 9.27 Buckling Analysis Dialog

 130

Figure 9.28 Non-Dimensional Analysis Dialog

 131

Figure 9.29 Joint Data Dialog

Figure 9.30 Member Load Dialog

 132

In the program, a CSeries object is created each time the user finishes entering in a series

of data. These objects are created dynamically and stored in an array. When a project is closed,

the data must be stored in the CSeries object and reloaded when the project is opened again. To

store the CSeries object, it must be written to a file; however, writing an object to a file is not as

simple as writing a variable of a basic data type to a file. Writing an object to a file involves a

process know as serialization. Serialization is necessary to store an object so that it may be

loaded later. When an object is serialized, information about the object and data about the object

are written to the storage. Deserialization is the reverse process where the object is loaded and

created from the archive file.

Deriving the CSeries class from the CObject class allows the CSeries object to use the

serialization functions provided with the CObject class. The virtual serialize member function is

overridden to provide the functionality needed to serialize and deserialize the CSeries object’s

data. The data is serialized to a CArchive object. This class is a generic storage object, and in

this program it is attached to a memory location.

The insertion and extraction operators are overloaded to allow all of the object data to

easily be written to the archive file. Therefore, the CSeries object can be serialized and

deserialized using a similar syntax as writing a basic data type to a file. Operator overloading is

another important concept of object-oriented programming.

Operator overloading is a specific kind of polymorphism (Lafore, 2002). Operator

overloading is the ability for an existing operator, such as + or -, to operate on a user defined

type. Therefore, objects can use the operators in a similar way that the basic data types use the

operators. For basic data types, variables may be added together with simple arithmetic

expressions such as:

 133

X = Y + 3

where X and Y are of a basic data type such as integer. However, using existing operators on

user defined types does not work as easily because the compiler does not understand how to

operate on the objects. If the operator is overloaded by defining in the class how it should

operate on the object’s data, then two objects may be added together with the operator such as

 ObjectC = ObjectA + ObjectB

where ObjectA, ObjectB, and ObjectC are all of the same user defined type. Overloading

operators makes the code much easier to read and more intuitive.

As mentioned, the program uses the CSeries object to write all of its data to an input file

for the LBuck and Frame programs. Functions are added to the program so that the user may

view the input file that will be used to run the LBuck and Frame programs. The user cannot

modify the input file as it appears in the view screen; however, the user does have the option to

go back and edit the input before running the program.

When the user selects the menu item to start the analysis, the Project program calls the

LBuck program, which calls the Frame program. When the programs are finished running, the

user may view the results of the analysis.

The Project program creates a user friendly Windows based interface for the lateral

torsional buckling analysis programs. This program has all of the functionality necessary to

create and store data files for the buckling programs, along with the ability to execute the

buckling analysis programs and view the results. The creation of this interface utilized the

Windows API functions in an object-oriented approach.

 134

10.0 APPLICATIONS

This chapter presents 25 examples using the Lateral-Torsional Buckling Program. Section 10.1

considers a variety of examples conducting buckling loads analyses. Section 10.2 shows

examples considering the effects of in-plane deformations on the buckling loads of several

structures that were also considered without prebuckling effects in Section 10.1. Section 10.3

presents a variety of examples using the non-dimensional analysis.

10.1 BUCKLING LOAD ANALYSIS

10.1.1 Buckling Analysis Example 1

A simply supported beam subjected to equal end moments is shown in Figure 10.1. The beam is

a W12x120 section, and the properties for the beam are listed in Table 10-1. The simply

supported beams considered in this study are single span beams which are simply supported both

in-plane and out-of-plane. An in-plane simply supported beam is fixed against in-plane

transverse deflections, but it is unrestrained against in-plane rotations. An out-of-plane simply

supported beam is fixed against out-of-plane deflections and twist rotations, but is unrestrained

against minor axis rotations and against warping displacements.

The closed form solution of the critical moment for a beam of length L with simply

supported ends is given by (Bleich, 1952, p. 160)

 135

GJL

EIGJEI
L

M ycr 2
21 ωππ

+= (10-1)

The results of a buckling analysis of the structure conducted with the program along with

the closed form solution of the critical moment are graphed in Figure 10.2. In this example, the

finite element solution converges to the closed form solution as the number of elements used

increases. The finite element representation with a single element gives an error of 12.7%. The

finite element representation with two or more elements gives an error of less than 0.46%.

Therefore, the finite element method gives the most accurate results when 2 or more elements are

used to model the structure.

In general, two or more elements should always be used to model each span of a structure

because the stiffness matrices used to calculate the flexural-torsional buckling load factor using

the finite element method are derived from a cubic displacement function. A cubic displacement

function can only have one inflection point, and often the most critical member of a structure

will buckle as if elastically restrained at both ends, so that it has two inflection points (Trahair,

1993). Studies conducted by Hancock and Trahair (1978) using a finite element analysis show

that using at least two elements will usually have errors less than 1%, which is shown in this

example.

M M

300"

Figure 10.1 Simple Beam with Equal End Moments

 136

Table 10-1 Beam Properties for W12x120

E 30000 ksi

G 12000 ksi

Iy 345 in4

Ix 1070 in4

J 12.9 in4

Iω 12400 in6

Buckling Load: Simple Supported Beam with
Equal End Moments

14500

15000

15500

16000

16500

17000

0 1 2 3 4 5
Number of Elements

M
cr

 (k
ip

·in
) Finite Element

Solution

Closed Form
Solution

Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments

 137

10.1.2 Buckling Analysis Example 2

A W12x120 cantilever beam with a concentrated load at the far end is shown in Figure 10.3.

The same structure properties are used for this example as in Example 10.1.1, as shown in Table

10-1. The concentrated load, P, is applied at a height ‘e’, which is equal to zero inches for this

example. A load height of zero implies that the load acts directly through the shear center of the

section.

A cantilever beam is considered to be fixed at the built-in support so that the in-plane

deflection and rotation is zero, and a cantilever beam is free at the other end so that it can deflect

and rotate in-plane. A cantilever beam is also restrained against out-of-plane deformations at the

support and unrestrained against out-of-plane deformations at the free end.

The solution obtained by the finite element buckling analysis from the program is

compared to the solution obtained by Trahair (1993, p. 175) from a finite element analysis with a

large enough number of elements to obtain a high level of accuracy. The results of a buckling

analysis conducted using the program along with the solution by Trahair are graphed in Figure

10.4. Since Trahair does not specify the exact number of elements used in his analysis, his result

is graphed as a single solution that is not associated with any particular number of elements. In

this example, the finite element solution obtained from the program converges to Trahair’s

solution when four elements are used to model the beam, which suggests that Trahair used at

least four elements in his solution.

 138

P

e

300"

Figure 10.3 Cantilever Beam with Concentrated Load

Buckling Load: Cantilever Beam with Concentrated
Load

70

75

80

85

90

95

100

105

110

115

0 1 2 3 4 5
Number of Elements

P

Finite Element
Method
Trahair (1993)

Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load

 139

10.1.3 Buckling Analysis Example 3

A W12x120 continuous beam subjected to a concentrated load and a distributed load is shown in

Figure 10.5. The properties of this structure are the same as those used in Examples 10.1.1 and

10.1.2, as shown in Table 10.1. The magnitude of the distributed load per unit length is equal to

1% of the concentrated load. The beam is fully restrained from in-plane displacements, in-plane

rotation, out-of-plane displacements, twisting rotation, minor axis rotation, and warping

displacements at the far left support. The two roller supports are restrained against only in-plane

transverse displacement, out-of-plane displacements, and twist rotations.

For the first part of the example, the load heights ‘a’ and ‘e’ are both considered to be

equal to zero inches, which indicates shear center loading. The results of a buckling load

analysis conducted with the program are graphed in Figure 10.6. The number of elements

graphed represents the total number of elements used for the structure. This example does not

have a reference solution; however, the convergence of the results can be seen by a small

variation of the buckling load as the number of elements increases.

The difference in buckling load between the 2 element and 4 element structure is 47%.

Since the beam is composed of two spans, using only two elements for the total structure

provides only one element per span. As mentioned in example 10.1.1, the most accurate results

are obtained when at least 2 or more elements per span are used when a cubic displacement

function is assumed. The difference in buckling load between the 4 element and 6 element

solutions is 0.9%. The difference in buckling load between the 6 element and 8 element

solutions is 0.18%. Therefore, the smallest variation in buckling loads occurs when at least 4

elements are used for the structure, which is equivalent to two elements per span.

 140

P
 q

 e a

150" 150" 300"

Figure 10.5 Continuous Beam

Buckling Load: Continuous Beam

200

250

300

350

400

450

0 2 4 6 8 10
Number of Elements

Bu
ck

lin
g

Pa
ra

m
et

er

Finite Element
Solution

Figure 10.6 Buckling Load: Continuous Beam

 141

For the second part of this example, the load height of each load was varied. Out-of-

shear-center loads may significantly affect the magnitude of the flexural-torsional buckling

loads. Transverse loads that are not applied at the shear center axis will produce a twisting

moment. This twisting moment will effect the torsional rotation of the structure.

The direction of the twisting moment due to the out-of-shear-center loads is controlled by

the value of the load height. If the load height is negative (i.e. below the shear center), the

twisting moment produced will oppose the twist rotations, φ , to stabilize the structure and

increase the flexural-torsional buckling loads. If the load height is positive (i.e. above the shear

center), the twisting moment produced will amplify the twist rotations, φ , of the beam and cause

the flexural-torsional buckling loads to be reduced.

To conduct a load height analysis on the continuous beam, a finite element analysis was

conducted considering 6 elements to model the structure. First, the distributed load was

considered to be fixed at a height of a = 0 inches (i.e. shear center loading), and the load height

of the concentrated load, e, was varied from -10 to 10 inches in 2 inch increments. Next, the

concentrated load was considered to be fixed at a height e = 0 inches, and the load height of the

distributed load, a, was varied from -10 to 10 inches in 2 inch increments.

The results of both load height analyses are graphed in Figure 10.7. The results in Figure

10.7 show that varying the distributed load has a large influence on the flexural-torsional

buckling loads of the continuous beam. The flexural-torsional buckling loads are increased by

65% when the load height is decreased from 0 inches to -10 inches, and the flexural-torsional

buckling loads are decreased by 41% when the load height is increased from 0 inches to 10

inches. Varying the concentrated load height has a very small influence on the flexural-torsional

buckling loads.

 142

Load Height Analysis: Continuous Beam

130

180

230

280

330

380

430

480

530

-10 -5 0 5 10

Load Height (in.)

Bu
ck

lin
g

P
ar

am
et

er
Concentrated Load

Distributed Load

Figure 10.7 Load Height Analysis: Continuous Beam

10.1.4 Buckling Analysis Example 4

A portal frame with a concentrated load applied to the frame is shown in Figure 10.8. The

concentrated load is applied at the center of the top member. The frame is completely fixed to

the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement,

out-of-plane rotation, or warping displacement, and the members are rigidly connected together.

The frame data used is taken from Vacharajittiphan and Trahair (1973) so that the results

obtained from their study can be compared to the results of the finite element program. The

theoretical analysis presented by Vacharajittiphan and Trahair (1973) was developed using the

finite integral method, which is another type of numerical technique that can be used to solve

complex differential equations. Vacharajittiphan and Trahair conducted tests on two small scale

 143

portal frames to verify their theoretical analysis. The frames were made of high strength

aluminum I-section extrusions with the properties listed in Table 10-2. The experimental checks

conducted on the frames were in close agreement with their theoretical predictions; therefore, the

theoretical predictions are compared to the results of the finite element program to check if the

program provides acceptable results.

The results of the finite element method considering 3 to 8 elements are graphed in

Figure 10.9. The number of elements graphed represents the total number of elements used to

model the structure. The results of the finite integral method are not associated with any specific

number of elements. The finite element method converges to the finite integral method results as

shown in Figure 10.9. Considering only three elements to model the structure for the finite

element method provides inaccurate results in comparison to the finite integral method, and

using at least four elements provides acceptable results with little variation in buckling load with

an increase of the number of elements.

P1

15" 15"

14.56"

Figure 10.8 Portal Frame with Concentrated Load

 144

Table 10-2 Frame Properties

E Iy 1.85 kip- in2

E Ix 27.2 kip- in2

GJ 0.219 kip-in2

E Iω 0.15 kip-in4

a 0.312 in

Buckling Load: Portal Frame with Concentrated
Load

0
10
20
30
40
50
60
70
80

2 4 6 8 10
Number of Elements

P
1

Finite Element
Method
Finite Integral
Method

Figure 10.9 Buckling Load: Portal Frame with Concentrated Load

 145

10.1.5 Buckling Analysis Example 5

A portal frame with three concentrated loads is shown in Figure 10.10. The concentrated loads

are applied at the connections of the beam and columns and at the center of the top member. The

frame is completely fixed to the base so that there is no in-plane displacement, in-plane rotation,

out-of-plane displacement, out-of-plane rotation, or warping displacement, and the members are

rigidly connected together.

The frame data used in taken from Vacharajittiphan and Trahair (1973) so that the results

obtained from their study can be compared to the results of the finite element program. The

frame is composed of I-section members and the properties used are the same as those used in

Example 10.1.4, as listed in Table 10-2.

The results of the finite element method considering 3 to 8 elements are graphed in

Figure 10.11. Once again, the number of elements graphed represents the total number of

elements used to model the structure, and the results of the finite integral method are not

associated with any specific number of elements. The finite element method converges to the

finite integral method results as shown in Figure 10.11. Considering only three elements to

model the structure for the finite element method provides inaccurate results. Using at least four

elements provides more acceptable results with little variation in buckling load with an increase

of the number of elements.

Comparing the results of Example 10.1.4 to this Example shows that adding two loads of

equal magnitude to the center load placed above the beam to column connections does not

significantly affect the flexural-torsional buckling load of the structure.

 146

P1 P1 P1

15" 15"

14.56"

Figure 10.10 Portal Frame with Three Concentrated Loads

Buckling Load: Portal Frame with Three
Concentrated Loads

0
10

20
30

40
50

60
70

2 4 6 8 10
Number of Elements

P 1

Finite Element
Method
Finite Integral
Method

Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads

 147

10.1.6 Buckling Analysis Example 6

A two bay frame with two vertical loads is shown in Figure 10.12. The vertical loads are acting

at the center of the top members of the frame. The frame is completely fixed to the base so that

there is no in-plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane

rotation, or warping displacement, and the members are rigidly connected together. The frame is

allowed to sway in its plane. At each beam-column joint there is a lateral restraint to prevent

displacement in the direction normal to the plane of the frame. The beam-column restraint does

not restrain rotation about any axis. The two bay frame is composed of I-section members with

the cross-sectional properties listed in Table 10-3.

The frame data used is taken from Vacharajittiphan and Trahair (1975) so that the results

obtained from their study can be compared to the results of the finite element program. The

theoretical analysis presented by Vacharajittiphan and Trahair (1975) was developed using the

finite integral method. The accuracy of their method of analysis was studied by analyzing

previously solved problems.

The results of the finite element buckling analysis are graphed in Figure 10.13. The

solution obtained by the finite element method is compared to solution by the finite integral

method, which is not associated with any specific number of elements. The number of elements

graphed is the number of elements used to model the entire structure. The finite element method

gives inaccurate results when only five elements are used, which is only one element per

member. The finite element solution converges to the finite integral solution as the number of

elements used increases to 10, which gives acceptable results.

 148

P P

67.5"

120" 120"

Figure 10.12 Two Bay Frame with Vertical Loads

Table 10-3 Two Bay Frame Properties

E Iy 372 kip- in2

E Ix 8228.9 kip- in2

GJ 7.98 kip-in2

E Iω 764 kip-in4

 149

Buckling Load: Two Bay Frame with Vertical Loads

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11
Number of Elements

P
Finite Element Method

Finite Integral Method

Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads

10.1.7 Buckling Analysis Example 7

A two bay frame with two vertical loads and a horizontal load is shown in Figure 10.14. The

vertical loads are acting at the center of the top members of the frame. The frame is completely

fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-plane

displacement, out-of-plane rotation, or warping displacement, and the members are rigidly

connected together. The frame is allowed to sway in its plane. At each beam-column joint there

is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.

The beam-column restraint does not restrain rotation about any axis. The two bay frame is

composed of I-section members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

 150

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral

method.

The results of the finite element buckling analysis using the program are graphed in

Figure 10.15 along with the results of the finite integral method. The finite integral method

solution is not associated with a particular number of elements. Using only 5 elements to model

the structure gives unacceptable results. The accuracy of the results increases as the number of

elements increases, and the solution of the finite element method converges toward the finite

integral method solution.

Comparing Example 10.1.6 to this Example shows that adding a horizontal load of equal

magnitude to the two vertical loads on the frame decreases the flexural-torsional buckling loads

of the structure.

P P
P

67.5"

120" 120"

Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads

 151

Buckling Load: Two Bay Frame with Equal
Horizontal and Vertical Loads

0

50

100

150

200

250

300

350

400

4 5 6 7 8 9 10 11

Number of Elements

Bu
ck

lin
g

P
ar

am
et

er Finite Element
Method

Finite Integral
Method

Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads

10.1.8 Buckling Analysis Example 8

A two story plane frame with two horizontal loads is shown in Figure 10.16. The frame is

completely fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-

plane displacement, out-of-plane rotation, or warping displacement, and the members are rigidly

connected together. The frame is allowed to sway in its plane. At each beam-column joint there

is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.

The beam-column restraint does not restrain rotation about any axis. The two story frame is

composed of I-section members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

 152

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral

method.

The results of the finite element buckling analysis are graphed in Figure 10.17. The

solution obtained by the finite element method is graphed along with the solution by

Vacharajittiphan and Trahair (1975) from the finite integral method. The finite integral solution

is not associated with any specific number of elements. Using only 6 elements for the finite

element method gives inaccurate results with 124% difference between the finite element and

finite integral solutions. However, when the number of elements used is increased to 12

elements, the difference between the finite element and finite integral solutions drops to 1.38%.

Therefore, as the number of elements increases, the results become more acceptable.

P

67.5"

P

67.5"

120"

Figure 10.16 Two Story Plane Frame with Horizontal Loads

 153

Buckling Load: Two Story Plane Frame Subjected
to Two Horizontal Loads

100

150

200

250

300

350

5 7 9 11 13 15
Number of Elements

P
cr

 (l
bs

.)
Finite element
Method
Finite Integral

Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads

10.1.9 Buckling Analysis Example 9

A two story plane frame with two vertical loads is shown in Figure 10.18. The vertical loads are

acting at the center of the beams. The frame is completely fixed to the base so that there is no in-

plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane rotation, or

warping displacement, and the members are rigidly connected together. The frame is allowed to

sway in its plane. At each beam-column joint there is a lateral restraint to prevent displacement

in the direction normal to the plane of the frame. The beam-column restraint does not restrain

rotation about any axis. The two story frame is composed of I-section members with the cross-

sectional properties listed in Table 10-3.

 154

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral

method.

The results of the finite element buckling analysis are graphed in Figure 10.19. The

solution obtained by the finite element method is graphed along with the solution by

Vacharajittiphan and Trahair (1975) from the finite integral method. As shown in Figure 10.19,

the finite element solution converges toward the finite integral solution. However, there remains

a 1.5% difference between the two solutions even as the finite element solution converges. This

difference is due to the load P being applied at the top flanges of the beam in the finite integral

study. Since the exact dimensions of the member cross-sections are not given in

Vacharajittiphan and Trahair (19975), the finite element method was conducted assuming the

load P acted through the shear center of the member. As discussed in the second part of

Example 10.1.3, if the load height is positive, (i.e. above the shear center), the twisting moment

produces will amplify the twist rotations of the beam and cause the flexural-torsional buckling

loads to be reduced.

 155

P

67.5"
P

67.5"

120"

Figure 10.18 Two Story Plane Frame with Vertical Loads

Buckling Load: Two Story Plane Frame Subjected to
Two Vertical Loads

100

110

120

130

140

150

160

170

180

6 8 10 12 14 16

Number of Elements

Pc
r (

lb
s.

)

Finite Element
Method
Finite Integral
Method

Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads

 156

10.1.10 Buckling Analysis Example 10

A two story plane frame with two vertical loads and two horizontal loads is shown in Figure

10.20. The vertical loads are acting at the center of the beams. The frame is completely fixed to

the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement,

out-of-plane rotation, or warping displacement, and the members are rigidly connected together.

The frame is allowed to sway in its plane. At each beam-column joint there is a lateral restraint

to prevent displacement in the direction normal to the plane of the frame. The beam-column

restraint does not restrain rotation about any axis. The two story frame is composed of I-section

members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral

method.

The results of the finite element buckling analysis are graphed in Figure 10.21. The

solution obtained by the finite element method is graphed along with the solution by

Vacharajittiphan and Trahair (1975) from the finite integral method. The finite integral solution

is not associated with any particular number of elements. The finite element solutions converges

toward the finite integral solutions, and the best results are obtained when at least 12 elements

are used to model the structure.

 Comparing Examples 10.1.8 and 10.1.9 to this Example shows that the flexural-torsional

buckling load is the least when both horizontal and vertical loads are present on the frame. The

flexural-torsional buckling loads are the largest when only the horizontal loads are applied to the

frame.

 157

P
P

67.5"
P

P

67.5"

120"

Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads

Buckling Load: Two Story Plane Frame Subjected to
Equal Horizontal and Vertical Loads

50

100

150

200

250

300

5 7 9 11 13 15

Number of Elements

P
cr

 (l
bs

.)

Finite Element
Method
Finite Integral
Method

Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and
Vertical Loads

 158

10.1.11 Buckling Analysis Example 11

A two bay frame with two vertical loads is shown in Figure 10.22. The vertical loads are acting

at the center of the top members of the frame. The load on the left bay is twice the load on the

right bay. The frame is completely fixed to the base so that there is no in-plane displacement, in-

plane rotation, out-of-plane displacement, out-of-plane rotation, or warping displacement, and

the members are rigidly connected together. The frame is allowed to sway in its plane. At each

beam-column joint there is a lateral restraint to prevent displacement in the direction normal to

the plane of the frame. The beam-column restraint does not restrain rotation about any axis. The

two bay frame is composed of I-section members with the cross-sectional properties listed in

Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral

method.

The results of the finite element buckling analysis are graphed in Figure 10.23. The

solution obtained by the finite element method graphed along with the solution by

Vacharajittiphan (1975) from the finite integral method. The finite element solution provides the

best results when at least 6 elements are used. However, there remains a difference between the

finite element method and the finite integral method even as the finite element method

converges. The accuracy of the finite element method can be improved by increasing the

number of elements used to model the structure. Also, the models of the finite element method

and the finite integral method are slightly different because the finite integral method allowed for

warping at the beam member ends, whereas, the finite element method restrained warping.

 159

 2P P

72"

72" 144"

Figure 10.22 Two Unequal Bay Frame

Buckling Load: Two Unequal Bay Frame with
Concentrated Loads

0

1

2

3

4

5

6

7

8

9

4 5 6 7 8 9

Number of Elements

Bu
ck

lin
g

P
ar

am
et

er

Finite Element
Method

Finite Integral
Method

Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads

 160

10.2 PREBUCKLING ANALYSIS

The effects of prebuckling deformations are usually excluded in flexural-torsional buckling

analysis. However, in the case where the ratios of minor axis flexural stiffness and torsional

stiffness to the major axis flexural stiffness are not small, the prebuckling deformations may

significantly affect the buckling loads (Trahair, 1993). The examples considered in this Section

are all examples considered in Section 10.1 for buckling analysis.

10.2.1 Prebuckling Analysis Example 1

This example refers to Example 10.1.1. The example is of a simply supported beam with equal

end moments as shown in Figure 10.1. The properties of the beam are given in Table 10-1. The

results of a buckling analysis considering the effects of in-plane deformations are graphed in

Figure 10.24. The prebuckling analysis is graphed with the results obtained from a buckling

analysis in Example 10.1.1 and with the exact solution for the linearized critical moment

considering prebuckling deformations. The linearized critical moment is obtained from the

Equation 10-2 (Pi and Trahair, 1992b)

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⎥

⎦

⎤
⎢
⎣

⎡
−

=

xx

ycr

EI
GJ

GJL
EI

I
IM

M

2
111

1

2

2
ωπ

 (10-2)

where crM is the classical lateral buckling uniform bending moment not considering in-plane

deformations.

 161

As shown in Figure 10.24, the in-plane deformations significantly increased the buckling

loads of the structure. The prebuckling deformations create a concave curvature for the beam

which increases its buckling resistance, similar to the convex curvature of an arch decreasing its

buckling resistance (Trahair, 1993). The in-plane deformations increase the flexural-torsional

buckling loads of the beam by 48%.

Effect of In-Plane Deformations Analysis: Simple
Beam with Equal End Moments

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5
Number of Elements

M
cr

 (k
ip

·in
)

Buckling Analysis
In-Plane Deformations Included
Exact Solution

Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End
Moments

10.2.2 Prebuckling Analysis Example 2

This example refers to Example 10.1.2. The example is of a cantilever beam with a concentrated

load applied to the free end of the beam. The beam is shown in Figure 10.3, and the properties

are in Table 10-1. The results of a buckling analysis considering the effects of in-plane

 162

deformations are graphed in Figure 10.25. The prebuckling analysis is graphed along with the

results obtained from a buckling analysis. As shown in Figure 10.25, the in-plane deformations

significantly increased the buckling loads of the structure by 47%. As discussed in Example

10.2.1, the curvature of the beam increases its buckling resistance.

Effect of In-Plane Deformations Analysis: Cantilever
with Concentrated Load

60

80

100

120

140

160

180

0 1 2 3 4 5
Number of Elements

P

Buckling Analysis

In-Plane
Deformations

Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load

10.2.3 Prebuckling Analysis Example 3

This example refers to Example 10.1.4. The example is of a portal from with a concentrated load

applied to the center of the top member as shown in Figure 10.8. The properties of the portal

frame are given in Table 10-2. The results of a buckling analysis considering the effects of in-

plane deformations are graphed in Figure 10.26. The prebuckling analysis is compared to the

results obtained from a buckling analysis. The in-plane deformations of the frame do not have a

 163

significant affect on the flexural-torsional buckling loads of the structure. The flexural-torsional

buckling loads of the frame increased by 1% by considering in-plane deformations.

Effect of In-Plane Deformations Analysis: Portal
Frame with Concentrated Load

0
10
20
30
40
50
60
70
80

2 4 6 8 10

Number of Elements

P

Buckling Analysis

In-Plane Deformations
Included

Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated
Load

10.2.4 Prebuckling Analysis Example 4

This example refers to Example 10.1.6. This example is of a two bay frame with two equal

vertical loads applied at the center of the top members. The frame is shown in Figure 10.12, and

the properties of the frame are given in Table 10-3. The results of a buckling analysis

considering the effects of in-plane deformations are graphed in Figure 10.27. The prebuckling

analysis is compared to the results obtained from a buckling analysis. The in-plane deformations

 164

do not have a significant affect on the frame’s buckling loads. The flexural-torsional buckling

loads are increased by 4.7% by considering in-plane deformations.

Effect of In-Plane Deformation Analysis: Two Bay
Frame with Vertical Loads

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11
Number of Elements

P

Buckling Analysis

In-Plane
Deformations
Included

Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical
Loads

10.2.5 Prebuckling Analysis Example 5

This example refers to Example 10.1.7. The example is of a two bay frame with two vertical and

a horizontal load acting on the frame as shown in Figure 10.14. The properties of the frame are

shown in Table 10-3. The results of a buckling analysis considering the effects of in-plane

deformations are graphed in Figure 10.28. The prebuckling analysis is compared to the results

obtained from a buckling analysis. The in-plane deformations do not have a significant affect on

 165

the buckling loads of the frame. The flexural-torsional buckling loads are increased by 4.7% by

considering in-plane deformations.

Effect of In-Plane Deformations Analysis: Two Bay
Frame with Vertical and Horizontal Loads

0
50

100
150
200
250
300
350
400
450

4 5 6 7 8 9 10 11
Number of Elements

P

Buckling Analysis

In-Plane
Deformaions
Included

Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and
Horizontal Loads

10.2.6 Prebuckling Analysis Example 6

This example refers to Example 10.1.8. The example is of a two story plane frame with two

horizontal loads as shown in Figure 10.16. The properties of the frame are given in Table 10-3.

The results of a buckling analysis considering the effects of in-plane deformations are graphed in

Figure 10.29. The prebuckling analysis is compared to the results obtained from a buckling

analysis. The in-plane deformations do not have a significant affect on the buckling loads of the

 166

frame. The flexural-torsional buckling loads are increased by 4.5% by considering in-plane

deformations.

Effect of In-Plane Deformation Analysis: Two Story
Plane Frame Subjected to Horizontal Loads

100

150

200

250

300

350

5 7 9 11 13 15
Number of Elements

P
(lb

s.
)

Buckling
Analysis

In-Plane
Deformations
Included

Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected
to Horizontal Loads

10.3 NON-DIMENSIONAL ANALYSIS

10.3.1 Non-Dimensional Analysis Example 1

A simply supported beam with a concentrated load at the center is shown in Figure 10.30. The

load is applied at a height of e = 0. The beam is fixed against in-plane transverse deflections,

out-of-plane deflections, and out-of-plane twist rotations.

 167

The results of a non-dimensional analysis on the structure are graphed in Figure 10.31 for

1, 2, and 3 elements. The finite element solution is compared to the solution by Trahair (1993, p.

132) to show that the finite element program provides similar results. Trahair also performed a

finite element analysis and used a large enough number of elements to obtain a high level of

accuracy. The solution converges to Trahair’s solution, and there is little variation in buckling

load with an increase in the number of elements when two or more elements are used. As

discussed in Example 10.1.1, two or more elements should always be used to model each

member when a cubic displacement function is assumed.

P

e

L/2 L/2

Figure 10.30 Simple Beam with Concentrated Load

 168

Non-Dimensional Analysis: Simple Beam with
Concentrated Load

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5 3

K=(πE Iω /(GJL2))1/2

P cr
L2 /(

EI
yG

J)
1/

2

1 Element
2 Element
3 Element
Trahair

Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load

10.3.2 Non-Dimensional Analysis Example 2

A simply supported beam with equal end moments is shown in Figure 10.32. The simply

supported beam is fixed against in-plane transverse deflections, out-of-plane deflections, and

out-of-plane twist rotations.

In the first part of the example, the results of a non-dimensional analysis on the structure

are graphed in Figure 10.33 for 1, 2, 3, and 4 elements for the case of simple end supports. The

finite element solution is compared to the solution by Trahair (1993, p. 128) using the finite

element method to show that the finite element program provides similar results. Trahair used a

large enough number of elements to obtain a high level of accuracy. The solution converges to

 169

Trahair’s solution, and there is little variation in buckling load with an increase in the number of

elements when two or more elements are used.

M M

L

Figure 10.32 Simple Beam with Equal End Moments

Non-Dimensional Analysis: Simple Beam With End
Moments

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3
K=(πEIω/(GJL2))1/2

M
cr

L/
(E

I yG
J)

1/
2

1 Element
2 Element
3 Element
4 Element
Trahair

Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments

 170

In the second part of the example, the case of a simply support beam with rigid end

restraints (0'' == φu) is considered. The results of a non-dimensional analysis on the structure

are graphed in Figure 10.34 for 3, 4, and 12 elements. The finite element solution is compared

to the solution by Trahair (1993, p.157) using the finite element method to show that the finite

element program provides similar results.

Non-Dimensional Analysis: Simple Beam with End
Moments and End Restraints

0

5

10

15

20
25

30

35

40

45

0 0.5 1 1.5 2 2.5 3
K=(πEIω /(GJL2))1/2

M
cr

L/
(E

I yG
J)

1/
2

3 Element
4 Element
12 Element
Trahair

Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End
Restraints

10.3.3 Non-Dimensional Analysis Example 3

A cantilever beam with a concentrated load at the end is shown in Figure 10.35. The cantilever

beam is considered to be fixed at the built-in support so that the in-plane deflection and rotation

 171

is zero, and the cantilever beam is free at the other end so that it can deflect and rotate in-plane.

The cantilever beam is also restrained against out-of-plane deformations at the support and

unrestrained against out-of-plane deformations at the free end.

The load is applied at a height of a = 0. The results of a non-dimensional analysis on the

structure are graphed in Figure 10.36 for 1, 2, and 3 elements. The finite element solution is

compared to the solution by Trahair (1993, p. 175) using the finite element method to show that

the finite element program provides acceptable results. The finite element solution using the

program converges to Trahair’s solutions with little variation in buckling load with an increase in

the number of elements used when there are at least 2 elements used to model the structure.

P

 a

L

Figure 10.35 Cantilever Beam with a Concentrated Load

 172

Non-Dimensional Analysis: Cantilever with
Concentrated Load

0
2
4
6
8

10
12
14
16
18
20

0 0.5 1 1.5 2 2.5 3
K=(πEIω/(GJL2))1/2

PL
2 /(E

I yG
J)

1/
2

1 Element
2 Element
3 Element
Trahair

Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load

10.3.4 Non-Dimensional Analysis Example 4

A simply supported beam with equal and opposite end moments is shown in Figure 10.37. The

simply supported beam is fixed against in-plane transverse deflections, out-of-plane deflections,

and out-of-plane twist rotations.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.38 for

1, 2, 3, and 4 elements. The finite element solution is compared to the solution by Trahair (1993,

p. 131) using the finite element method to show that the finite element program provides

acceptable results. The finite element method using the program agrees with Trahair’s solution

using the finite element method when at least 4 elements are used to model the structure.

 173

M M

L

Figure 10.37 Simple Beam with Equal and Opposite End Moments

Non-Dimensional Analysis: Simple Beam with
Opposite End Moments

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5

K=(πEIω/(GJL2))1/2

M
cr

L/
(E

I yG
J)

1/
2

1 Element

2 Element

3 Element

4 Element

Trahair

Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments

 174

10.3.5 Non-Dimensional Analysis Example 5

A cantilever beam with an end moment applied is shown in Figure 10.39. The cantilever beam is

considered to be fixed at the built-in support so that the in-plane deflection and rotation is zero,

and the cantilever beam is free at the other end so that it can deflect and rotate in-plane. The

cantilever beam is also restrained against out-of-plane deformations at the support and

unrestrained against out-of-plane deformations at the free end.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.40 for

3 and 4 elements. The finite element solution is compared to the solution by Trahair (1993, p.

179) using the finite element method to show that the finite element program provides acceptable

results.

M

L

Figure 10.39 Cantilever Beam with End Moment

 175

Non-Dimensional Analysis: Cantilever with End
Moment

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3 3.5
K=(πEIω /(GJL2))1/2

M
cr

L/
(E

I yG
J)

1/
2

3 Element
4 Element
Trahair

Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment

10.3.6 Non-Dimensional Analysis Example 6

A simply supported beam with a distributed load applied at a height of a = 0 is shown in Figure

10.41. The simply supported beam is fixed against in-plane transverse deflections, out-of-plane

deflections, and out-of-plane twist rotations.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.42 for

4 elements. The finite element solution is compared to the solution by Trahair (1993, p. 135)

using the finite element method to show that the finite element program provides acceptable

results. If more than 4 elements are used to model the structure, the accuracy of the finite

element solution using the program will be improved and will continue converge to Trahair’s

solution.

 176

 q

a

L

Figure 10.41 Simple beam with Distributed Load

Non-dimensional Analysis: Simple Beam with
Distributed Load

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5

K=(πEIω/(GJL2))1/2

qL
3 /(E

I yG
J)

1/
2 4 Element

Trahair

Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load

10.3.7 Non-Dimensional Analysis Example 7

A cantilever beam with a distributed load acting at a height ‘a’ is shown in Figure 10.43. The

effect of load height was considered in this example. The non-dimensional load height is

 177

represented by ‘2a/h’, where the load height ‘a’ equal to ‘-h/2’ indicates a top-flange loading.

On the contrary, ‘a’ equal to ‘h/2’ indicates a bottom-flange loading. The cases of top flange

loading, bottom flange loading, and shear center loading are all considered and graphed in Figure

10.44.

 As discussed in Example 10.1.3, a load height below the shear center of the member will

produce a twisting moment to oppose the twist rotations and stabilize the structre so that the

flexural-torsional buckling loads are increased. A load height above the shear center of the

member will produce a twisting moment to amplify the twist rotations and cause the flexural-

torsional buckling loads to be reduced.

The solution can be compared to a solution obtained by Trahair (1993, p.176) using the

finite element method. Although the solution obtained by Trahair is not graphed in order to

make the graph as clear as possible, the finite element solution in Figure 10.44 agrees with the

solution obtained by Trahair, and the accuracy of the solution may be increased by increasing the

number of elements used to model the structure.

 q

a

L

Figure 10.43 Cantilever Beam with Distributed Load

 178

Non-Dimensional Analysis: Load Height Analysis of
Cantilever with Distributed Load

0

20

40

60

80

100

120

0 0.5 1 1.5 2
K=(πEIω/(GJL2))1/2

qL
3 /(E

I yG
J)

1/
2

Shear Center Load

Top Load

Bottom Load

Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load

 179

11.0 SUMMARY

As the demand on existing engineering software applications increases, these applications must

be modified to incorporate new technology, new types of structural models, and new analysis

and design procedures. Object-oriented software development is a useful tool in engineering

applications to increase the flexibility of the software applications. An object-oriented design of

an existing flexural-torsional buckling analysis program was presented in this study.

The study began with the derivation of the energy equations to calculate the elastic

flexural-torsional buckling loads of a beam-column element. The total potential energy equation

was derived for the flexural-torsional buckling of a beam-column by summing the strain energy

and the potential energy of the external loads. The derivation was based on the second variation

of the total potential energy equal to zero, which indicated the transition from a stable to an

unstable configuration.

The energy equations were then used in conjunction with the finite element method to

derive the element stiffness and geometric stiffness matrices of the beam-column element. Cubic

polynomials were assumed for the displacement functions. The shape functions were used along

with the energy equation to derive the element stiffness and element geometric stiffness matrices.

The transformation matrix was applied to both the element stiffness and element geometric

stiffness matrices to convert them from a local coordinate system to the global coordinate

system. The individual global element stiffness matrices were summed to provide the global

stiffness and global geometric stiffness matrices of a structure.

 180

The final equation for calculating the flexural-torsional buckling loads of a beam-column

element was in the form of a generalized eigen-value equation. This equation needed to be

converted to a standard eigen-value equation using the Cholesky method. Householder’s method

was used to change the standard matrix into a tridiagonal matrix. The eigen-value of the

tridiagonal matrix was calculated using QL iteration. The buckling parameter is the inverse of

the smallest eigen-value.

The finite element method is compatible with software development so that computer

technology was utilized to aid in the analysis process. An easily modifiable object-oriented

application must allow for reuse of code and prevent small changes in one area of the program

from having a ripple effect throughout the entire program. An existing software package that

used the finite element equations of a beam-column element to calculate the flexural-torsional

buckling loads of a plane frame structure needed to be modified into an object-oriented program

to increase its flexibility and to allow for future modifications. The original program was not

object-oriented and not user friendly. Object-oriented technology was applied to the existing

flexural-torsional buckling program by refactoring the existing program.

First, the basic system requirements were determined. Next, models were built from the

existing software to communicate the old design. New models were created considering object-

oriented concepts to communicate the new software structure. The models considered included

the use case diagram, the class diagram, the sequence diagram, and the activity diagram. Then,

the program code was changed from an older procedural structure to an object-oriented structure

reflecting the object-oriented models. Finally, a new object-oriented Windows application user

interface was created using the Microsoft Foundation Classes to make the program more user

friendly.

 181

 Several examples were presented to compare the results of the software package to

existing solutions. The finite element method always predicts a buckling factor that is greater

than the actual value. As the number of elements used to model the structure is increased, the

accuracy of the finite element solution can be improved. These examples show that the program

provides acceptable results when analyzing a plane frame structure subjected to concentrated

moments and concentrated, axial, and distributed loads.

 182

APPENDIX A

DERIVATION OF THE ROTATION TRANSFORMATION MATRIX

 The derivations in this Appendix are taken from Torkamani (1998). Figure A.1 shows a

point P with coordinates ()zyx ˆ,ˆ,ˆ with respect to the fixed, global, right-handed coordinate

system oxyz. When point P moves to point Q, the movement may be described in two stages: (1)

point P translates to point R where the distance is described by the translation vector d
r

, and (2)

point R rotates to point Q through the angle θ about the axis of rotation AB which is parallel to

the translation vector d
r

. The final position is point Q with coordinates of (x, y, z) with respect to

the oxyz coordinate system.

o z

A(a,b,c) d

→

x R(ξ,η,ς)

y B

P

L
K

Q(x,y,z)

θ

Nz

(ˆ ,ŷ,ˆ)x z

Figure A. 1 Rigid Body Movement from Point P to Q

 183

The coordinates of point Q, (x, y, z), need to be calculated from the coordinates of point

P, ()zyx ˆ,ˆ,ˆ , the translation vector d
r

, the directional cosines of the axis of rotation AB, and the

rotational angle θ. The axis of rotation, AB, passes through the point A, which has coordinates

(a, b, c) and has direction-angles of α, β, and γ with respect to the oxyz coordinate system. Points

Q and R are located in a plane perpendicular to the line AB. A unit vector N
r

on the axis of

rotation AB has the same directional cosines as the rotation angle θ
r

and is given by

kjiN
rrr

γβα coscoscos ++= (A-1)

The vector oQ may be broken into its vector components expressed by

LQRLoRoQ ++= (A-2)

Therefore, the vector oQ may be found by determining each of its components, oR , RL , and

LQ in terms of the coordinates of point P, the components of a translation vector d
r

, direction

cosines of the axis of rotation AB, and rotational angle θ.

A.1 VECTOR OR

The point P translates to the point R with coordinates (ξ, η, ζ) with respect to the oxyz coordinate

system. The coordinates of point R may be expressed in terms of the coordinates of point P and

the translation vector d
r

 as

αξ cosˆ dx
r

+= (A-3)

βη cosˆ dy
r

+= (A-4)

γζ cosˆ dz
r

+= (A-5)

 184

A.2 VECTOR RL

The point K shown in Figure A.1 is the projection of points R and Q on the axis AB. The vectors

KR and KQ are equal in magnitude and are radii of the rotation about AB, where the rotation

angle, θ, is the angle QKR ˆ . The point L shown in Figure A.1 is the projection of the point Q on

the line KR. The vector KR may be defined as

 AKARKR −= (A-6)

or

 () () ()[] AKkcjbiaKR −−+−+−=
rrr

ζηξ (A-7)

Vector AK is the projection of AR on line AB. Therefore, NARAK
r

⋅= and

 () NNARAK ⋅= (A-8)

By considering the components of vectors AR and N
r

, Equation A-8 may be expressed as

 () () ()[] ()kjicbaAK
rrr

γβαγζβηαξ coscoscoscoscoscos ++−+−+−=

(A-9)

Substituting Equation A-9 into A-7 gives

 () () () ()()[] icbaaKR
r

γζβηαξαξ coscoscoscos −+−+−−−=

 () () () ()()[] jcbab
r

γζβηαξβη coscoscoscos −+−+−−−+

 () () () ()()[] kcbac
r

γζβηαξγζ coscoscoscos −+−+−−−+ (A-10)

The vector RL may be written as

 185

 LKRKRL −= (A-11)

 θcosKRKRRL +−= (A-12)

 ()KRRL θcos1−−= (A-13)

Substituting Equation A-10 into Equation A-13 gives

 () () () () ()()[] icbaaRL
r

γζβηαξαξθ coscoscoscoscos1 −+−+−−−−−=

 () () () () ()()[] jcbab
r

γζβηαξβηθ coscoscoscoscos1 −+−+−−−−−

 () () () () ()()[] kcbac
r

γζβηαξγζθ coscoscoscoscos1 −+−+−−−−−

 (A-14)

A.3 VECTOR LQ

By definition of vector cross-product

 () ()[] () ()[] jcaibcARN
rr

αζγξγηβζ coscoscoscos −−−+−−−=×

 () ()[] kab
r

βξαη coscos −−−+ (A-15)

and

 RAKARARN ˆsin=× (A-16)

From triangle ARK,

 KRRAKAR =ˆsin (A-17)

Therefore,

 KRARN =× (A-18)

 186

A unit vector, LQN , in the direction LQ is defined as

ARN

ARNN LQ

×

×
= r

r

 (A-19)

Substituting Equation A-18 into A-19 gives

KR

ARNN LQ
×

=
r

 (A-20)

Substituting Equation A-15 into Equation A-20 gives

 () ()[] () ()[]{ jcaibc
KR

N LQ
rr

αζγξγηβζ coscoscoscos1
−−−+−−−=

 () ()[] }kab
r

βξαη coscos −−−+ (A-21)

Since

 θθ sinsin KRKQLQ == (A-22)

the vector LQ may be expresses as

 LQNKRLQ θsin= (A-23)

From Equations A-21 and A-23, the vector LQ may be written as

 () ()[] () ()[]{ jcaibcLQ
rr

αζγξγηβζθ coscoscoscossin −−−+−−−=

 () ()[] }kab
r

βξαη coscos −−−+ (A-24)

A.4 FINITE DISPLACEMENTS TRANSFORMATION

To define the finite displacements transformation matrix, consider the x, y, and z components of

Eq. A-2 in the form of

 187

 xx LQRLx ++= ξ (A-25a)

 yy LQRLy ++=η (A-25b)

 zz LQRLz ++= ζ (A-25c)

Substituting in for vectors RL from Equation A-14 and LQ from Equation A-24 into A-25a to

A-25c gives

 () () () () ()[]γαζβαηαξξθξ coscoscoscoscoscos1 2 cbaax −−−−−−−−−=

 () ()[]γηβζθ coscossin bc −−−+ (A-26a)

 () () () () ()[]γβζβηβαξηθη coscoscoscoscoscos1 2 cbaby −−−−−−−−−=

 () ()[]αζγξθ coscossin ca −−−+ (A-26b)

 () () () () ()[]γζγβηγαξζθζ 2coscoscoscoscoscos1 cbacz −−−−−−−−−=

 () ()[]βξαηθ coscossin ab −−−+ (A-26c)

Substituting for ξ, η, and ζ from Equations A-3 to A-5 into A-26a to A26c gives

() () () ()[]γαβααθα coscosˆcoscosˆsinˆcos1cosˆ 2 czbyaxdxx −−−−−−−+=

 () ()[]γβθ cosˆcosˆsin bycz −−−+ (A-27a)

 () () () ()[]γβββαθβ coscosˆsinˆcoscosˆcos1cosˆ 2 czbyaxdyy −−−+−−−−+=

 () ()[]αγθ cosˆcosˆsin czax −−−+ (A-27b)

 () () () ()[]γγβγαθγ 2sinˆcoscosˆcoscosˆcos1cosˆ czbyaxdzz −+−−−−−−+=

 () ()[]βαθ cosˆcosˆsin axby −−−+ (A-27c)

Equations A-27a through A-27c may be expressed in matrix form as the most general form of the

finite displacement transformation given by

 188

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

cz
by
ax

T
d
d
d

c
b
a

z
y
x

R

ˆ
ˆ
ˆ

cos
cos
cos

γ
β
α

 (A-28)

where

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++
+−+

=
γθαθγββθγα

αθγββθγθβα
βθγαγθβααθ

2

2

2

coscoscossincoscoscossincoscos
cossincoscoscoscoscossincoscos
cossincoscoscossincoscoscoscos

CCC
CCC
CCC

TR

 (A-29)

and

 θcos1−=C (A-30)

A.5 ROTATION TRANSFORMATION MATRIX

For the special case of pure rotation transformation, 0=d

r
; therefore, Equations A-3 to A-5

simplify to

x̂=ξ (A-31a)

ŷ=η (A-31b)

ẑ=ζ (A-31c)

Using Equations A-31a through A-31c in A-26a through A-26c gives

 () () () ()[]γαβααθ coscosˆcoscosˆsinˆcos1ˆ 2 czbyaxxx −−−−−−−=

 () ()[]γβθ cosˆcosˆsin bycz −−−+ (A-32a)

 () () () ()[]γββαβθ coscosˆcoscosˆsinˆcos1ˆ 2 czaxbyyy −−−−−−−=

 () ()[]αγθ cosˆcosˆsin czax −−−+ (A-32b)

 189

 () () () ()[]γβγαγθ coscosˆcoscosˆsinˆcos1ˆ 2 byaxczzz −−−−−−−=

 () ()[]βαθ cosˆcosˆsin axby −−−+ (A-32c)

If the rotation axis AB passes through the origin, then 0=== cba and Equations A-32a

through A-32c may be simplified to

 ()[] []γβθγαβααθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 yzzyxxx −+−−−−=

 (A-33a)

()[] []αγθγββαβθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 zxzxyyy −+−−−−=

 (A-33b)

 ()[] []βαθγβγαγθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 xyyxzzz −+−−−−=

 (A-33c)

Equations A-33a to A-33c may be simplified using trigonometric identities and expressed as

 [] []γβθθγαβααθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 yzzyxxx −+−−−=

 (A-34a)

 [] []αγθθγββαβθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 zxzxyyy −+−−−=

 (A-34b)

 [] []βαθθγβγαγθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 xyyxzzz −+−−−=

 (A-34c)

Equations A-34a to A-34c may be expressed in the following form

 190

 yxx ˆcos
2

cos
2

sin2coscos
2

sin2ˆsin
2

sin21 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −= γθθβαθαθ

 ẑcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ ++ βθθγαθ (A-35a)

yxy ˆsin
2

sin21ˆcos
2

cos
2

sin2coscos
2

sin2 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ += βθγθθβαθ

 ẑcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ −+ αθθγβθ (A-35b)

 xz ˆcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ −= βθθγαθ

 zy ˆsin
2

sin21ˆcos
2

cos
2

sin2coscos
2

sin2 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ ++ γθαθθγβθ

 (A-35c)

For this special case of no translation and the axis of rotation AB passing through the

origin o, then point A is at o. The coordinate system zyxo ˆˆˆ is considered to be a moving

coordinate system that rotates with the point P about the line ob as shown in Figure A.2. The

coordinate zyxo ˆˆˆ represents a moving, local, right-handed coordinate system, and the initial

position of the coordinate is shown in Figure A.2. The zyxo ˆˆˆ coordinate rotates about the line ob

through the rotation angle θ and goes to the final position zyxo ˆˆˆ so that the coordinates of point Q

with respect to the coordinate system zyxo ˆˆˆ after rotation are ()zyx ˆ,ˆ,ˆ and with respect to the oxyz

coordinate system are ()zyx ,, . Then, Equations A-35a to A-35c represent a rotation

transformation coordinate system with the direction cosines for the zyxo ˆˆˆ system with respect to

the oxyz system shown in Table A-1.

 191

o A(0,0,0) ˆ z

Q
ˆ ŷ y'

x

b

y

P

θ
x

z

Figure A. 2 Rigid Body Rotation from Point P to Q

Table A- 1 Direction Cosines

 x y z
x̂ lx mx nx
ŷ ly my ny
ẑ lz mz nz

where

 αθ 22 sin
2

sin21−=xl (A-36)

 γθθβαθ cos
2

cos
2

sin2coscos
2

sin2 2 −=yl (A-37)

 βθθγαθ cos
2

cos
2

sin2coscos
2

sin2 2 +=zl (A-38)

γθθβαθ cos
2

cos
2

sin2coscos
2

sin2 2 +=xm (A-39)

 192

βθ 22 sin
2

sin21−=ym (A-40)

 αθθγβθ cos
2

cos
2

sin2coscos
2

sin2 2 −=zm (A-41)

 βθθγαθ cos
2

cos
2

sin2coscos
2

sin2 2 −=xn (A-42)

 αθθγβθ cos
2

cos
2

sin2coscos
2

sin2 2 +=yn (A-43)

 γθ 22 sin
2

sin21−=zn (A-44)

Expressing Equations A-35a to A-35c in matrix form gives

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z
y
x

T
z
y
x

R

ˆ
ˆ
ˆ

 (A-45)

where

 []
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zyx

zyx

zyx

R

nnn
mmm
lll

T (A-46)

The directional cosines of the unit vector N
r

 expressed in terms of the component of the rotation

vector θ
r

 gives

 kji zyx

rrr
θθθθ ++= (A-47)

and

θ
θ

α x=cos (A-48)

θ
θ

β y=cos (A-49)

 193

θ
θ

γ z=cos (A-50)

Assuming small rotations such that 0sin =θ and
2

1cos
2θθ −= gives

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−++−

+−−−+

++−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z

y

x

z

y

x

yxzy
x

zx
y

zy
x

zxyx
z

zx
y

yx
z

zy

ˆ

ˆ

ˆ

22
1

22

222
1

2

2222
1

22

22

22

θθθθ
θθθθ

θθ
θθθθθ

θ

θθθ
θθ

θθθ

 (A-51)

 194

APPENDIX B

B.1 ELEMENT ELASTIC STIFFNESS MATRIX

311

12
L
EI

k y=

212

6
L
EI

k y=

315

12
L

EI
k y−

=

216

6
L
EI

k y=

L
EI

k y4
22 =

225

6
L
EI

k y−
=

L
EI

k y2
26 =

L
GJ

L
EIk

5
612

333 += ω

234
6

10 L
EIGJk ω+=

5
612

337
GJ

L
EIk −

−
= ω

238
6

10 L
EIGJk ω+=

15
24

44
GJL

L
EIk += ω

247
6

10 L
EIGJk ω−

−
=

30
2

48
GJL

L
EIk −= ω

355

12
L
EI

k y=

256

6
L
EI

k y−
=

L
EI

k y4
66 =

L
GJ

L
EIk

5
612

377 += ω

278
6

10 L
EIGJk ω−

−
=

15
24

88
GJL

L
EIk += ω

 195

B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX

L
Fg

5
6

11 =

1012
Fg =

6

6

5

5

4

4

3

3

2

2
11

13 5
4

5
12

2
323

5
6

1010705
6

L
Pz

L
Pz

L
Pz

L
Pz

L
Pz

L
PzPVqL

L
Mg pppppp −+−−+−+−−

−
=

5

6

4

5

3

4

2

32
1

14 5
2

2
32

1014010 L
Pz

L
Pz

L
Pz

L
PzPzqLMg ppppp −+−+−−

−
=

L
Fg

5
6

15
−

=

1016
Fg =

6

6

5

5

4

4
11

17 5
4

5
12

2
3

5
6

10
11

10
11

35
17

5
6

L
Pz

L
Pz

L
Pz

L
PzPVqL

L
Mg pppp +−+−−+−=

5

6

4

5

3

4
1

2
1

18 5
2

10
9

210101070
3

10 L
Pz

L
Pz

L
PzPzPLVqLMg pppp −+−−+−−

−
=

15
2

22
FLg =

5

6

4

5

3

4

2

32
1

2
1

23 5
2

10
132

10
11

55420
11

10
11

L
Pz

L
Pz

L
Pz

L
Pz

L
PzPzPLLVqLMg pppppp −+−−+−+−+

−
=

4

6

3

5

2

4322
1

3
1

24 55
4

6
7

3
2

15
2

303021015
2

L
Pz

L
Pz

L
Pz

L
PzLPzPLLVqLLMg ppppp −+−+−+−+

−
=

1025
Fg −

=

 196

3026
FLg −

=

5

6

4

5

3

4
1

2
1

27 5
2

10
13

1055210
23

10 L
Pz

L
Pz

L
PzPzPLLVqLMg pppp +−++−+−=

4

6

3

5

2

43
1

28 5233021030 L
Pz

L
Pz

L
PzLPzqLLMg pppp −+−++=

6

6

5

5

4

4

3

3

2

2

33

412946
35

13
L

Pez
L
Pez

L
Pez

L
Pez

L
PezqaLPeg ppppp +−++−+=

5

6

4

5

3

4

2

322

34

27822
210

11
L

Pez
L

Pez
L

Pez
L

Pez
L

Pez
PezqaLg ppppp

p +−+−−+=

6

6

5

5

4

4

3

3

2

2
11

35 5
4

5
12

2
323

5
6

1010705
6

L
Pz

L
Pz

L
Pz

L
Pz

L
Pz

L
PzPVqL

L
Mg pppppp +−++−+−++=

5

6

4

5

3

4

2

32
1

2
1

36 5
2

10
11

2101010420
17

10 L
Pz

L
Pz

L
Pz

L
Pz

L
PzPzPLLVqLMg pppppp −+−−+−−+−

−
=

6

6

5

5

4

4

3

3

2

2

37

412923
70

9
L

Pez
L
Pez

L
Pez

L
Pez

L
PezqaLg ppppp ++−−+=

5

6

4

5

3

4

2

322

38

253
420

13
L

Pez
L

Pez
L

Pez
L

Pez
L

PezqaLg ppppp +−++−
−

=

4

6

3

5

2

43
2

3

44

464
105 L

Pez
L

Pez
L

Pez
L

Pez
PezqaLg pppp

p +−+−+=

5

6

4

5

3

4

2

32
1

45 5
2

2
32

1014010 L
Pz

L
Pz

L
Pz

L
PzPzqLMg ppppp ++−−++=

4

6

3

5

2

4322
1

3
1

46 510
7

6
5

33030308430 L
Pz

L
Pz

L
Pz

L
PzLPzPLLVqLLMg ppppp −+−++−+−=

5

6

4

5

3

4

2

32

47

278
420

13
L

Pez
L

Pez
L

Pez
L

PezqaLg pppp −+−+=

 197

4

6

3

5

2

433

48

33
140 L

Pez
L

Pez
L

Pez
L

PezqaLg pppp +−+−
−

=

L
Fg

5
6

55 =

1056
Fg −

=

6

6

5

5

4

4
11

57 5
4

5
12

2
3

5
6

10
11

10
11

35
17

5
6

L
Pz

L
Pz

L
Pz

L
PzPVqL

L
Mg pppp −+−−+−+

−
=

5

6

4

5

3

4
1

2
1

58 5
2

10
9

210101070
3

10 L
Pz

L
Pz

L
PzPzPLLVqLMg pppp +−++−+−=

15
2

66
FLg =

5

6

4

5

3

4
1

2
1

67 5
2

10
11

210
11

10
9

10
9

210
79

10
11

L
Pz

L
Pz

L
PzPzPLLVqLMg pppp +−++−+−=

4

6

3

5

2

422
1

3
1

68 55
2

615
2

1010105
4

15
2

L
Pz

L
Pz

L
PzLPzPLLVqLLMg pppp −+−−+−+

−
=

6

6

5

5

4

4

77

4129
35

13
L

Pez
L
Pez

L
PezqaLg ppp +−+=

5

6

4

5

3

42

78

253
210

11
L

Pez
L

Pez
L

PezqaLg ppp −+−
−

=

4

6

3

5

2

43

88

2
105 L

Pez
L

Pez
L

PezqaLg ppp +−+=

 198

B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX

1211 =k

612 =k

1215 −=k

616 =k

422 =k

625 −=k

226 =k

2

2

33
12

5
6

π
Kk +=

2

2

34
6

10
1

π
Kk +=

2

2

37
12

5
6

π
Kk −

−
=

2

2

38
6

10
1

π
Kk +=

2

2

44
4

15
2

π
Kk +=

2

2

47
6

10
1

π
Kk −

−
=

2

2

48
2

30
1

π
Kk +

−
=

1255 =k

656 −=k

466 =k

2

2

77
12

5
6

π
Kk +=

2

2

78
6

10
1

π
Kk −

−
=

2

2

88
4

15
2

π
Kk +=

199

B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX

5
6

11
Fg =

1012
Fg =

5
4

5
12

2
3

23
5

6
1070105

6 654
3211

13
ppp

pp
p zPzPzP

zPzP
zPVqPMg +−++−+++−=

5
2

2
3

2
1014010

65
431

14
pp

pp
p zPzP

zPzP
zPqMg +−+−++=

5
6

15
Fg −

=

1016
Fg =

5
4

5
12

2
3

5
6

10
11

35
17

10
11

5
6 654

11
17

pppp zPzPzPzPVqPMg −+−−−++
−

=

5
2

10
9

2101070
3

1010

654
11

18
pppp zPzPzPzPVqPMg +−+++−−=

15
2

22
Fg =

5
2

10
13

2
10

11
5420

11
510

11 65
43211

23
pp

ppp
p zPzP

zPzPzP
zPVqPMg +−++−++−−=

55
4

6
7

3
2

15
2

302103015
2 6543

11
24

ppppp zPzPzPzPzPVqPMg +−+−++−−=

200

1025
Fg −

=

3026
Fg −

=

5
2

10
13

105210
23

510

65
411

27
pp

p
p zPzP

zP
zPVqPMg −+−−−++

−
=

5233021030

654
1

28
pppp zPzPzPzPqMg +−+−−

−
=

πππππππ

65432

33

412946
35

13 ppppp zKePzKePzKePzKePzKePKaqKePg +−++−+=

πππππππ

65432

34

27822
210

11 pppppp zKePzKePzKePzKePzKePzKePKaqg +−+−−+=

5
4

5
12

2
3

23
5

6
1070105

6 654
3211

35
ppp

pp
p zPzPzP

zPzP
zPVqPMg −+−−+−−−+

−
=

5
2

10
11

21010420
17

1010

654
3211

36
ppp

pp
p zPzPzP

zPzP
zPVqPMg +−++−+−++=

ππππππ

65432

37

412923
70

9 ppppp zKePzKePzKePzKePzKePKaqg −+−−+=

ππππππ

65432

38

253
420
13 ppppp zKePzKePzKePzKePzKePKaqg +−++−

−
=

ππππππ

65432

44

464
105

ppppp zKePzKePzKePzKePzKePKaqg +−+−+=

5
2

2
3

2
1014010

65
431

45
pp

pp
p zPzP

zPzP
zPqMg −+−+−−

−
=

510
7

6
5

33030843030

6543
11

46
ppppp zPzPzPzPzPVqPMg +−+−−−++

−
=

201

πππππ

6543

47

2783
420

13 pppp zKePzKePzKePzKePKaqg −+−+=

πππππ

6543

48

33
140

pppp zKePzKePzKePzKePKaqg +−+−
−

=

5
6

55
Fg =

1056
Fg −

=

5
4

5
12

2
3

5
6

10
11

35
17

10
11

5
6 654

11
57

pppp zPzPzPzPVqPMg +−+++−−=

5
2

10
9

2101070
3

1010

654
11

58
pppp zPzPzPzPVqPMg −+−+−++

−
=

15
2

66
Fg =

5
2

10
11

210
11

10
9

210
79

10
9

10
11 654

11
67

pppp zPzPzPzPVqPMg −+−−−++
−

=

55
2

615
2

10105
4

1015
2 654

11
68

pppp zPzPzPzPVqPMg +−+++−−=

ππππ

654

77

4129
35

13 ppp zKePzKePzKePKaqg +−+=

ππππ

654

78

253
210
11 ppp zKePzKePzKePKaqg −+−

−
=

ππππ

654

88

2
105

ppp zKePzKePzKePKaqg +−+=

202

B.5 ELEMENT PREBUCKLING STIFFNESS MATRIX

L
CGJ

L
CEI

k p 2
6

311
−

−
= ω

L
CGJ

L
CEI

k p 2
6

318
+= ω

L
CGJk p 223

=

4
3

224

CGJ
L
CEI

k p −
−

= ω

L
CGJk p 227

−
=

4
3

228

CGJ
L

CEI
k p += ω

L
CGJk p 236

−
=

L
CGJ

L
CEI

k p 2
6

345
+= ω

4
3

246

CGJ
L
CEI

k p −
−

= ω

L
CGJ

L
CEI

k p 2
6

358
−

−
= ω

L
CGJk p 267

=

4
3

268

CGJ
L

CEIk p += ω

203

B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX

6

6

6

6

5

5

5

5

4

4

6

4

3

3

5

3

2

2

4

2

322
1

1111
3
1

13

5
3

5
4

10
9

5
12

2
315224

39
10
9

5
666

5
3

10
6

5
3

1014
3

70
3

10
9

5
66

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
PI

EI
PGJ

I
PI

LI
IV

EI
GJV

I
IV

EI
qGJL

I
qLI

LI
qI

LEI
GJM

LI
IM

LI
IMg

x

p

x

py

x

p

x

py

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxx

y

x
p

++−−+++−

−+++−+−
−

+−

++−++++
−

=

ωω

ωωωω

ωω

5

6

5

6

4

5

4

5

3

4

3

4

5

4

2

3

4

3

3

2

11
22

11
14

10
3

5
2

5
3

2
3

4

2
2

15146
5102

20
3

20
3

235
2

1402510

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
PI

EI
PGJL

EI
GJLV

LI
IV

EI
qGJL

I
IqL

I
qI

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

p

x

py

x

xxxxx

y

xxx

y
p

++−−+

++−−++++

−+−−+++=

ωωωω

ωω

6

6

6

6

5

5

5

5

4

4

6

4

5

3

4

2

322
1

1111
3

1
17

5
3

5
4

10
9

5
12

2
31524

9
10
9

5
666

5
3

10
116

5
3

10
11

14
3

35
173

10
9

5
66

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
PI

EI
PGJ

I
PI

LI
IV

EI
GJV

I
IV

EI
qGJL

I
qLI

LI
qI

LEI
GJM

LI
IM

LI
IMg

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxx

y

x
p

−−++−−+

−−−+−+++

−−++−−−=

ωω

ωωωω

ωω

5

6

5

6

4

5

4

5

3

4

5

4

4

3

3

2

2
1

11
2

2
111

18

10
3

5
2

10
3

10
9

22
1510

3
10

3
10

6
2

11
10
3

102
11

10
3

10770
3

2
56

10
3

10

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
zPI

LI
PI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxxx

y
p

++−−++−

+−+−++−−

−++−+−−=

ωω

ωωωω

ωω

204

5

6

5

6

4

5

4

5

3

4

3

4

5

4

2

3

2

3

4

3

2

3

2

2
1

11
22

2
111

23

10
3

5
2

20
9

10
13

42
15

2
14

29
2010

116
2
7

2052
7

205280
9

420
11

2
33

2010
11

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
zPI

LI
PI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

py

x

p

x

py

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxxx

y
p

++

−−−++++−

−+−+−+−−−

++−−+−−=

ωω

ωωωω

ωω

4

6

4

6

2

4

4

433

3

3

2

2

222

1
2

1
2

1
33

11
24

20
3

56
7

4
15

33
28

42
11

1015
22

4
3

3030

4
3

30308421031015
2

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

EI
PGJz

LI
zPI

EI
PGJLz

I
LzPI

LI
zPI

I
PI

EI
PGJL

I
LPI

I
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
LqI

EI
GJLM

I
LIM

g

x

p

x

py

x

py

x

p

x

p

x

py

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

xxx

y

xx

y

xxx

y
p

+−+++−−

−+++−+−
−

+

−++−−++=

ωω

ωωω

ωω

5

6

5

6

4

5

4

5

3

4

3

4

5

4

2

3

4

3

3

2

2
1

11
22

2
111

27

10
3

5
2

20
9

10
13

42
15

2

149
2010

6
2
7

2052
7

205280
9

210
23

2
33

2010

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
zPI

LI
PI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxxx

y
p

−−+++−−−

+−+−+−+++

−−++−++
−

=

ω

ωωωωω

ωω

4

6

4

6

3

5

3

5

2

4

2

4

4

4

3

3

3

2

2

2
1

2
1

33
11

28

20
3

520
3

2834
15

6
6

2
7

20
3

30
4

4
11

120
13

4
11

120
13

280
13

21030
3

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

EI
PGJLz

I
LzPI

LI
zPI

I
PI

EI
PGJL

I
IV

EI
GJLV

EI
qGJL

I
IqL

I
LIM

LI
IMg

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

p

x

p

x

p

x

py

x

p

x

xxxxx

y

x

y

x
p

++−−−++

+−+−−−+

−−−+−−
−

=

ω

ωωωω

ωω

205

6

6

6

6

5

5

5

5

4

4

6

4

3

3

5

3

2

2

4

2

32

2
11111

3
1

35

5
3

5
4

10
9

5
12

2
3152

2439
10
9

5
666

5
3

10

6
5

3
1014

3
70

3
10
9

5
66

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
PI

EI
PGJ

I
PI

LI
IV

EI
GJV

I
IV

EI
qGJL

I
qLI

LI
qI

LEI
GJM

LI
IM

LI
IMg

x

p

x

py

x

p

x

py

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

py

x

p

xxx

y

xxx

y

xx

y

xxx

y

x
p

−−++−−−

++−−−+−++

+−−+−−−−=

ω

ωωωω

ωωω

5

6

5

6

4

5

4

5

3

4

5

4

2

3

4

3

2

3

2

2
1

11
22

2
111

36

10
3

5
2

20
9

10
11

22
1510

3
10

9
10

3
2
5

10
3

102
5

5
3

1028
3

420
173

20
9

10

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
zPI

LI
PI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxxx

y
p

++−−+++−

−+++++−+−

+−−++−+=

ωω

ωωωω

ωω

5

6

5

6

4

5

4

5

3

4

3

4

5

4

2

3

4

3

3

2

3

11
22

11
45

10
3

5
2

5
3

2
3

4

2
2

1514
5105

20
3

220
3

35
2

1402510

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
PI

EI
PGJL

LI
IV

EI
GJLV

EI
qGJL

I
IqL

I
qI

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

p

x

py

x

xxxxx

y

xxx

y
p

−−++−

−−++−−−−

++−+−−−
−

=

ωωωω

ωω

4

6

4

6

3

5

3

5

2

4

2

4

4

4

3

3

3

2

222

1
2

1
2

1
33

11
46

20
3

510
3

10
7

86
5

4
15

3
62

1030440
3

30

440
3

30358461030

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJLz

I
LzPI

I
PI

EI
PGJL

I
LPI

I
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
LqI

EI
GJLM

I
LIM

g

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

py

x

p

x

p

x

p

x

py

xxx

y

xxx

y

xx

y

xxx

y
p

++−−+++

−−++−+−+

−+−−+++
−

=

ω

ωωω

ωω

206

6

6

6

6

5

5

5

5

4

4

6

4

5

3

4

2

32

2
11111

3
1

57

5
3

5
4

10
9

5
12

2
3

15249
10
9

5
666

5
3

10
11

6
5

3
10

11
14
3

35
173

10
9

5
66

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
PI

EI
PGJ

I
PI

LI
IV

EI
GJV

I
IV

EI
qGJL

I
qLI

LI
qI

LEI
GJM

LI
IM

LI
IMg

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

xxx

y

xx

y

xxx

y

x
p

++−−+

+−+++−+−−

−++−−+++
−

=

ωωωωω

ωωω

5

6

5

6

4

5

4

5

3

4

5

4

4

3

3

2

2
1

11
22

2
111

58

10
3

5
2

10
3

10
9

22
15

103
10

3
10

6
2

11
10
3

102
11

10
3

10770
3

2
53

10
3

10

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJz

I
zPI

LI
zPI

LI
PI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

x

py

x

p

xxx

y

x

xx

y

xx

y

xxxx

y
p

−−++−−

+−+−+−−++

+−−+−++
−

=

ω

ωωωωω

ωω

5

6

5

6

4

5

4

5

3

4

5

4

4

3

3

2

2
1

11
22

2
111

67

10
3

5
2

20
9

10
11

22
151033

10
3

10
9

2
5

10
3

10
9

28
3

210
793

20
9

10
11

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJL

I
LPI

LI
IV

EI
GJLV

I
LIV

EI
qGJL

I
IqL

I
qI

LI
IM

EI
GJM

I
IM

g

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

xx

y

x

xx

y

xx

y

xxxx

y
p

−−++

−−+−−+++

−−++−+−
−

=

ωωωωω

ωω

4

6

4

6

3

5

3

5

2

4

4

4

3

3

2

2222
1

1
2

1
33

111
68

20
3

520
3

5
2

64
154

20
3

15
23

104
9

20
3

10

4
9

20
3

14105
4

6
5

20
3

15
23

LEI
PGJz

LI
zPI

LEI
PGJz

LI
zPI

LI
zPI

LI
zPI

LI
zPI

LI
zPI

EI
PGJLz

I
LzPI

LI
zPI

I
LPI

I
PI

EI
PGJL

I
LIV

I
IV

EI
GJLV

EI
qGJL

I
IqL

I
LqI

EI
GJLM

I
LIM

LI
IMg

x

p

x

py

x

p

x

py

x

py

x

p

x

p

x

p

x

p

x

py

x

p

x

y

xxx

y

xxxx

y

xxx

y

x
p

++−−++−

+−+−−+++

−−+−+−+
−

=

ωω

ωωω

ωωω

207

APPENDIX C

C.1 INPUT FILES

C.1.1 Input File for the Frame Program

The input file for the Frame program is the user input file. The format for the input file for the

Frame program for either a buckling or prebuckling analysis is:

‘B’ or ‘P’
Structure Name
1 #S
Series Name
Frame Analysis: (m, nj, nr, nrj)
#E #N #NR #NRJ
Joint Coordinates: (j, x(j), y(j))
J# X Y *Coordinates of first joint
………. *Coordinates of next joint
Member Data: (i, jj(i), jk(i), Ax(i), Iy, Ix, Iw, E, G, J)
M# J1 J2 A Iy Ix Iw E G J *Properties of first element
………………………………… *Properties of next element
Joint Restraints:
J# R1 R2 R3 R4 R5 R6 R7 *Restraints of first joint
……………………………….. *Restraints of next joint
Loading Number: (nlj, nlm)
NLJ NLM
Joint Loads:
J# F P Mx e *First joint load
……………………… *Next joint load
Member Loads:
M# Type Magnitude Height xp *First member load
………………………………….. *Next member load

208

C.1.2 Input File for the LBuck Program

The input file used to calculate the buckling loads in the LBuck program is the output of the

Frame program. The format for the input file into the LBuck program for a buckling analysis is:

‘B’ ‘1’ #S

Structure Name

#1

#E

E G J Iy Ix Iw L Ang J1 J2 *properties of the first element

q a P e xp F M1 V1 c *loads for the first element

…………………………… *properties for the next element

…………………………………. *loads for the next element

R4 R5 R6 R7 *restraints for the first element

......................... *restraints for the next element

#E

E G J Iy Ix Iw L Ang J1 J2

q a P e xp F M1 V1 c

………………..

………………………………….

R4 R5 R6 R7

.........................

…this pattern is repeated for each series…

209

The format for the input file into the LBuck program for a prebuckling analysis is:

‘P’ ‘1’ #S

Structure Name

#1

#E

E G J Iy Ix Iw L Ang J1 J2 *properties of the first element

q a P e xp F M1 V1 c *loads for the first element

…………………………… *properties for the next element

…………………………………. *loads for the next element

R4 R5 R6 R7 *restraints for the first element

......................... *restraints for the next element

#E

E G J Iy Ix Iw L Ang J1 J2

q a P e xp F M1 V1 c

………………..

………………………………….

R4 R5 R6 R7

.........................

…this pattern is repeated for each series…

210

The input for the non-dimensional analysis comes straight from the user input file. The non-

dimensional analysis does not use the Frame program to calculate in in-plane actions of the

structure. The format for the input file into the LBuck program for a non-dimensional analysis

is:

‘N’ #S Kmin Kmax Kstep

Structure Name

Series #1 Name

#E #N

q a P e xp F M1 V1 Ang J1 J2 *loads for the first element

... *loads for the next element

R4 R5 R6 R7 *restraints for the first element

……………… *restraints for the next element

q a P e xp F M1 V1 Ang J1 J2

...

R4 R5 R6 R7

………………

…this pattern is repeated for each step in beam parameter…

Series #2 Name

#E #N

q a P e xp F M1 V1 Ang J1 J2

...

R4 R5 R6 R7

………………

…this pattern is repeated for each step in beam parameter…

…this pattern is repeated for each series…

211

C.2 INPUT FILE SYMBOLS

Symbol Description

‘B’ indicates a buckling analysis

‘P’ indicates a prebuckling analysis

‘N’ indicates a non-dimensional analysis

#S number of series

Kmin minimum beam parameter

Kmax maximum beam parameter

Kstep step of the beam parameter for each analysis

Structure Name name of the structure

Series Name name of the series

#E number of elements

#N number of nodes

#NR number of in-plane restraints

#NRJ number of in-plane restrained joints

J# joint number

X x coordinate of joint

Y y coordinate of joint

M# element number

A element area

212

Symbol Description

E modulus of elasticity

G shear modulus

J uniform torsion (or Saint Venant) constant

Iy moment of inertia about the y axis

Ix moment of inertia about the x axis

Iw warping moment

L length of the element

Ang angle from the global coordinates to the element

J1 first node of the element

J2 second node of the element

q distributed load

a height of the distributed load

P concentrated load

e height of the concentrated load

xp distance along the element to the concentrated load from the first node

F axial load

Mx moment applied to a specified joint

M1 end moment at first node of the element

V1 shear at the first node of the element

c slope,
dz

dv)0(

Type ‘P’ for concentrated load and ‘q’ for distributed load

Magnitude magnitude of concentrated load, P, or distributed load, q

213

Symbol Description

Height height of load, ‘a’ or ‘e’

R1 restraint against translation in the z direction

R2 restraint against translation in the y direction

R3 restraint against rotation in the x direction

R4 restraint against translation in the x direction

R5 restraint against rotation in the y direction

R6 restraint against rotation in the z direction

R7 restraint against warping

NLJ number of joint loads

NLM number of member loads

214

APPENDIX D

LBUCK PROGRAM CODE

This Appendix presents the code written for the LBuck Program for the executable file

lbuck.exe.

D.1 ELEMENTGEOM.CPP

//Header files
#include "prop.h"
#include "elementgeom.h"

//Global Variable Definition
static float Pi= 3.14159265F;

//Global Variable declarations
extern float data[17][MSize];
extern int data2[2][MSize];
extern char anl;

void Element_Geometric::Fill_Properties(int j)
{
 Properties::Fill_Properties(j);
}

// Overloaded function defined the properties of
// the element geometric matrix

void Element_Geometric::Fill_Element_Geometric1(float h)
{
 for(int i=0;i<=8;i++)
 for(int j=0;j<=8;j++)
 Gm[i][j]=0;

215

 Gm[1][1]=(6*F)/(5*l);

 Gm[1][2]=F/10;

 Gm[1][3]=(-6*M1)/(5*l) + P/10 - (l*q)/70 -V1/10 - (6*P*zp)/(5*l) + (3*P*zp*zp)/(l*l) -
 (2*P*zp*zp*zp)/(l*l*l) - (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) +

 (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) -
 (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));

 Gm[1][4]=-M1/10 - ((l*l)*q)/140- (P*zp)/10 + (P*zp*zp*zp)/(l*l) -

 (2*P*zp*zp*zp*zp)/(l*l*l) + (3*P*zp*zp*zp*zp*zp)/(2*(l*l*l*l)) -
 (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[1][5]=(-6*F)/(5*l);

 Gm[1][6]=F/10;

 Gm[1][7]=(6*M1)/(5*l) - (11*P)/10 - (17*l*q)/35 +(11*V1)/10 + (6*P*zp)/(5*l) +

(3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) -(12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) +
 (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));

 Gm[1][8]=-M1/10 + (l*P)/10 + (3*(l*l)*q)/70 - (l*V1)/10

- (P*zp)/10 - (P*zp*zp*zp*zp)/(2*(l*l*l)) +(9*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l))
- (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[2][2]=(2*F*l)/15;

 Gm[2][3]=(-11*M1)/10 + (l*P)/5 + (11*(l*l)*q)/420 - (l*V1)/5 - (11*P*zp)/10 +

 (2*P*zp*zp)/l - (P*zp*zp*zp)/(l*l) - (P*zp*zp*zp*zp)/(l*l*l) +
 (13*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) -
 (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[2][4]=-(2*l*M1)/15 + ((l*l)*P)/30 + ((l*l*l)*q)/210 -
 ((l*l)*V1)/30 + (2*l*P*zp)/15 + (2*P*zp*zp*zp)/(3*l) -

 (7*P*zp*zp*zp*zp)/(6*(l*l)) + (4*P*zp*zp*zp*zp*zp)/(5*(l*l*l)) -
 (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));

 Gm[2][5]=F/10;

 Gm[2][6]=-(F*l)/30;

 Gm[2][7]=M1/10 - (l*P)/5 - (23*(l*l)*q)/210 + (l*V1)/5 +(P*zp)/10 +

(P*zp*zp*zp*zp)/(l*l*l) – (13*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) +
 *P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

216

 Gm[2][8]=(l*M1)/30 + ((l*l*l)*q)/210 + (l*P*zp)/30 -
 (P*zp*zp*zp*zp)/(3*(l*l)) + (P*zp*zp*zp*zp*zp)/(2*(l*l*l)) -
 (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));

 Gm[3][3]=P*e + (13*a*l*q)/35 - (6*P*e*zp*zp)/(l*l) +
 4*P*e*zp*zp*zp)/(l*l*l) + (9*P*e*zp*zp*zp*zp)/(l*l*l*l) -
 (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) +

(4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);

 Gm[3][4]=(11*a*(l*l)*q)/210 + P*e*zp - (2*P*e*zp*zp)/l -

 (2*P*e*zp*zp*zp)/(l*l) + (8*P*e*zp*zp*zp*zp)/(l*l*l) -
 (7*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) +
 (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);

 Gm[3][5]=(6*M1)/(5*l) + (l*q)/70 + V1/10- P/10+
 (6*P*zp)/(5*l) - (3*P*zp*zp)/(l*l) + (2*P*zp*zp*zp)/(l*l*l) +
 (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) -
 (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) +
 (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));

 Gm[3][6]=-M1/10 - (l*P)/10 - (17*(l*l)*q)/420 + (l*V1)/10
 -(P*zp)/10 + (P*zp*zp)/l - (P*zp*zp*zp)/(l*l) -

 (P*zp*zp*zp*zp)/(2*(l*l*l)) + (11*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) -
 (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[3][7]=(9*a*l*q)/70 + (3*P*e*zp*zp)/(l*l) - (2*P*e*zp*zp*zp)/(l*l*l) -
 (9*P*e*zp*zp*zp*zp)/(l*l*l*l) + (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) -
 (4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);

 Gm[3][8]=(-13*a*(l*l)*q)/420 - (P*e*zp*zp)/l + (P*e*zp*zp*zp)/(l*l) +

 (3*P*e*zp*zp*zp*zp)/(l*l*l) - (5*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) +
 (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);

 Gm[4][4]=(a*(l*l*l)*q)/105 + P*e*zp*zp - (4*P*e*zp*zp*zp)/l +

 (6*P*e*zp*zp*zp*zp)/(l*l) - (4*P*e*zp*zp*zp*zp*zp)/(l*l*l) +
 (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l);

 Gm[4][5]=M1/10 + ((l*l)*q)/140 + (P*zp)/10 - (P*zp*zp*zp)/(l*l) +

 (2*P*zp*zp*zp*zp)/(l*l*l) - (3*P*zp*zp*zp*zp*zp)/(2*(l*l*l*l)) +
 (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[4][6]=(l*M1)/30 - ((l*l)*P)/30 - ((l*l*l)*q)/84 + ((l*l)*V1)/30
 +(l*P*zp)/30 + (P*zp*zp*zp)/(3*l) - (5*P*zp*zp*zp*zp)/(6*(l*l)) +

 (7*P*zp*zp*zp*zp*zp)/(10*(l*l*l)) - (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));

217

 Gm[4][7]=(13*a*(l*l)*q)/420 + (3*P*e*zp*zp*zp)/(l*l) -
 (8*P*e*zp*zp*zp*zp)/(l*l*l) + (7*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) -
 (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);

 Gm[4][8]=-(a*(l*l*l)*q)/140 - (P*e*zp*zp*zp)/l + (3*P*e*zp*zp*zp*zp)/(l*l) -

 (3*P*e*zp*zp*zp*zp*zp)/(l*l*l) + (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l);

 Gm[5][5]=(6*F)/(5*l);

 Gm[5][6]=F/10;

 Gm[5][7]=(-6*M1)/(5*l) + (11*P)/10 + (17*l*q)/35 -

 (11*V1)/10 - (6*P*zp)/(5*l) - (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) +
 (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) -
 (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));

 Gm[5][8]=M1/10 - (l*P)/10 - (3*(l*l)*q)/70 + (l*V1)/10
 +(P*zp)/10 + (P*zp*zp*zp*zp)/(2*(l*l*l)) -(9*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l))

+ (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[6][6]= (2*F*l)/15;

 Gm[6][7]=(11*M1)/10 - (9*l*P)/10 - (79*(l*l)*q)/210 + (9*l*V1)/10

 + (11*P*zp)/10 + (P*zp*zp*zp*zp)/(2*(l*l*l))
 - (11*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) +
 (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));

 Gm[6][8]=(-2*l*M1)/15 + ((l*l)*P)/10 + (4*(l*l*l)*q)/105 - ((l*l)*V1)/10

 - (2*l*P*zp)/15 - (P*zp*zp*zp*zp)/(6*(l*l)) +
 (2*P*zp*zp*zp*zp*zp)/(5*(l*l*l)) - (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));

 Gm[7][7]=(13*a*l*q)/35 + (9*P*e*zp*zp*zp*zp)/(l*l*l*l) -

 (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) +
 (4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);

 Gm[7][8]=(-11*a*(l*l)*q)/210 - (3*P*e*zp*zp*zp*zp)/(l*l*l) +

 (5*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) -
 (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);

 Gm[8][8]=(a*(l*l*l)*q)/105 + (P*e*zp*zp*zp*zp)/(l*l) -
 (2*P*e*zp*zp*zp*zp*zp)/(l*l*l) + (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l);

 if(anl=='P')
 Element_Geometric::Fill_Element_Prebuckling(h);

218

for(i=1;i<=8;i++)
 for(int j=i;j<=8;j++)
 Gm[j][i]=Gm[i][j];

 Properties::Rotation(Gm);
}
// Prebuckling element of the geometric stiffness matrix
void Element_Geometric::Fill_Element_Prebuckling(float h)
{

 Gm[1][3]+=(-6*Iw*M1)/(Ix*(l*l*l)) + (6*Iy*M1)/(5*Ix*l) + (9*G*J*M1)/(10*E*Ix*l) +
 (3*Iw*q)/(Ix*l) + (Iy*l*q)/(70*Ix) - (3*G*J*l*q)/(14*E*Ix) +

 (Iy*V1)/(10*Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V1)/(Ix*(l*l));

 Gm[1][4]+= (Iy*M1)/(10*Ix) + (G*J*M1)/(5*E*Ix) + (Iw*q)/(2*Ix) +

 (Iy*(l*l)*q)/(140*Ix) - (2*G*J*(l*l)*q)/(35*E*Ix) - (Iw*V1)/(2*Ix*l) +
 (3*G*J*l*V1)/(20*E*Ix);

 Gm[1][7]+=(6*Iw*M1)/(Ix*(l*l*l)) - (6*Iy*M1)/(5*Ix*l) - (9*G*J*M1)/(10*E*Ix*l) -

 (3*Iw*q)/(Ix*l) + (17*Iy*l*q)/(35*Ix) + (3*G*J*l*q)/(14*E*Ix) -
 (11*Iy*V1)/(10*Ix) - (3*G*J*V1)/(5*E*Ix) + (6*Iw*V1)/(Ix*(l*l));

 Gm[1][8]+= (Iy*M1)/(10*Ix) -
 (3*G*J*M1)/(10*E*Ix) - (6*Iw*M1)/(Ix*(l*l)) + (5*Iw*q)/(2*Ix) -

 (3*Iy*(l*l)*q)/(70*Ix) + (G*J*(l*l)*q)/(7*E*Ix) - (11*Iw*V1)/(2*Ix*l) +
 (Iy*l*V1)/(10*Ix) - (3*G*J*l*V1)/(10*E*Ix);

 Gm[2][3]+= (11*Iy*M1)/(10*Ix) - (G*J*M1)/(20*E*Ix) -

 (3*Iw*M1)/(Ix*(l*l)) + (3*Iw*q)/(2*Ix) - (11*Iy*(l*l)*q)/(420*Ix) -
 (9*G*J*(l*l)*q)/(280*E*Ix) - (7*Iw*V1)/(2*Ix*l) + (Iy*l*V1)/(5*Ix) +

 (G*J*l*V1)/(20*E*Ix);

 Gm[2][4]+=(2*Iy*l*M1)/(15*Ix) + (G*J*l*M1)/(10*E*Ix) + (Iw*l*q)/(3*Ix) -

 (Iy*(l*l*l)*q)/(210*Ix) - (G*J*(l*l*l)*q)/(84*E*Ix) - (3*Iw*V1)/(4*Ix) +
 (Iy*(l*l)*V1)/(30*Ix) + (G*J*(l*l)*V1)/(30*E*Ix);

 Gm[2][7]+=- (Iy*M1)/(10*Ix) + (G*J*M1)/(20*E*Ix) +

 (3*Iw*M1)/(Ix*(l*l)) - (3*Iw*q)/(2*Ix) + (23*Iy*(l*l)*q)/(210*Ix) +
 (9*G*J*(l*l)*q)/(280*E*Ix) + (7*Iw*V1)/(2*Ix*l) - (Iy*l*V1)/(5*Ix) -
 (G*J*l*V1)/(20*E*Ix);

 Gm[2][8]+=(-3*Iw*M1)/(Ix*l) -(Iy*l*M1)/(30*Ix) - (3*G*J*l*M1)/(20*E*Ix) +
(7*Iw*l*q)/(6*Ix) -(Iy*(l*l*l)*q)/(210*Ix) + (13*G*J*(l*l*l)*q)/(280*E*Ix) –
(11*Iw*V1)/(4*Ix) -(13*G*J*(l*l)*V1)/(120*E*Ix);

219

 Gm[3][5]+=(6*Iw*M1)/(Ix*(l*l*l)) - (6*Iy*M1)/(5*Ix*l) - (9*G*J*M1)/(10*E*Ix*l) -
 (3*Iw*q)/(Ix*l) - (Iy*l*q)/(70*Ix) + (3*G*J*l*q)/(14*E*Ix) -

 (Iy*V1)/(10*Ix) - (3*G*J*V1)/(5*E*Ix) + (6*Iw*V1)/(Ix*(l*l));

 Gm[3][6]+=(Iy*M1)/(10*Ix) + (9*G*J*M1)/(20*E*Ix) -
 (3*Iw*M1)/(Ix*(l*l)) + (Iw*q)/Ix + (17*Iy*(l*l)*q)/(420*Ix) -

 (3*G*J*(l*l)*q)/(28*E*Ix) - (5*Iw*V1)/(2*Ix*l) - (Iy*l*V1)/(10*Ix) +
 (3*G*J*l*V1)/(10*E*Ix);

 Gm[4][5]+=- (Iy*M1)/(10*Ix) - (G*J*M1)/(5*E*Ix) - (Iw*q)/(2*Ix) –

 (Iy*(l*l)*q)/(140*Ix) + (2*G*J*(l*l)*q)/(35*E*Ix) + (Iw*V1)/(2*Ix*l) -
 (3*G*J*l*V1)/(20*E*Ix);

 Gm[4][6]+=(-Iy*l*M1)/(30*Ix) +(G*J*l*M1)/(10*E*Ix) + (Iw*l*q)/(6*Ix) +

(Iy*(l*l*l)*q)/(84*Ix) -(G*J*(l*l*l)*q)/(35*E*Ix) - (Iw*V1)/(4*Ix) –
(Iy*(l*l)*V1)/(30*Ix) +(3*G*J*(l*l)*V1)/(40*E*Ix);

 Gm[5][7]+=(-6*Iw*M1)/(Ix*(l*l*l)) + (6*Iy*M1)/(5*Ix*l) + (9*G*J*M1)/(10*E*Ix*l) +

 (3*Iw*q)/(Ix*l) - (17*Iy*l*q)/(35*Ix) - (3*G*J*l*q)/(14*E*Ix) +
 (11*Iy*V1)/(10*Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V1)/(Ix*(l*l));

 Gm[5][8]+=- (Iy*M1)/(10*Ix) +
 (3*G*J*M1)/(10*E*Ix) + (6*Iw*M1)/(Ix*(l*l)) - (5*Iw*q)/(2*Ix) +
 (3*Iy*(l*l)*q)/(70*Ix) - (G*J*(l*l)*q)/(7*E*Ix) + (11*Iw*V1)/(2*Ix*l) -
 (Iy*l*V1)/(10*Ix) + (3*G*J*l*V1)/(10*E*Ix);

 Gm[6][7]+=- (11*Iy*M1)/(10*Ix) - (9*G*J*M1)/(20*E*Ix) +

 (3*Iw*M1)/(Ix*(l*l)) - (Iw*q)/Ix + (79*Iy*(l*l)*q)/(210*Ix) +
 (3*G*J*(l*l)*q)/(28*E*Ix) + (5*Iw*V1)/(2*Ix*l) - (9*Iy*l*V1)/(10*Ix) -
 (3*G*J*l*V1)/(10*E*Ix);

 Gm[6][8]+=(-3*Iw*M1)/(Ix*l) + (2*Iy*l*M1)/(15*Ix) - (3*G*J*l*M1)/(20*E*Ix) +
 (5*Iw*l*q)/(6*Ix) - (4*Iy*(l*l*l)*q)/(105*Ix) + (G*J*(l*l*l)*q)/(14*E*Ix) -
 (9*Iw*V1)/(4*Ix) + (Iy*(l*l)*V1)/(10*Ix) - (3*G*J*(l*l)*V1)/(20*E*Ix);

 Gm[1][3]+= -(Iy*P)/(10*Ix) - (3*G*J*P)/(5*E*Ix) +
 (6*Iw*P)/(Ix*l*l) - (6*Iw*P*zp)/(Ix*l*l*l) +
 (6*Iy*P*zp)/(5*Ix*l) + (9*G*J*P*zp)/(10*E*Ix*l) +
 (9*Iw*P*zp*zp)/(Ix*l*l*l*l) - (3*Iy*P*zp*zp)/(Ix*l*l) -
 (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) + (2*Iy*P*zp*zp*zp)/(Ix*l*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) +
 (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -
 (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -

 (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) +
 (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) +

 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l);

220

 Gm[1][4]+=(Iw*P)/(2*Ix*l) - (3*G*J*l*P)/(20*E*Ix) +

 (Iy*P*zp)/(10*Ix) + (G*J*P*zp)/(5*E*Ix) +
 (6*Iw*P*zp*zp)/(Ix*l*l*l) - (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -
 (Iy*P*zp*zp*zp)/(Ix*l*l) + (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) +
 (2*Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) +
 (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) -
 (3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l) +
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[1][7]+=(11*Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -

 (6*Iw*P)/(Ix*l*l) + (6*Iw*P*zp)/(Ix*l*l*l) -
 (6*Iy*P*zp)/(5*Ix*l) - (9*G*J*P*zp)/(10*E*Ix*l) -

 (9*Iw*P*zp*zp)/(Ix*l*l*l*l) + (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) -
 (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) -

 (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +
 (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +
 (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) -
 (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l);

 Gm[1][8]+=(11*Iw*P)/(2*Ix*l) - (Iy*l*P)/(10*Ix) +

 (3*G*J*l*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) -
 (3*G*J*P*zp)/(10*E*Ix) - (6*Iw*P*zp)/(Ix*l*l) +
 (3*Iw*P*zp*zp)/(Ix*l*l*l) - (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) -

 (9*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l) +

 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[2][3]+=(7*Iw*P)/(2*Ix*l) - (Iy*l*P)/(5*Ix) -

 (G*J*l*P)/(20*E*Ix) + (11*Iy*P*zp)/(10*Ix) -
 (G*J*P*zp)/(20*E*Ix) - (6*Iw*P*zp)/(Ix*l*l) +
 (9*Iw*P*zp*zp)/(Ix*l*l*l) - (2*Iy*P*zp*zp)/(Ix*l) -
 (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) + (Iy*P*zp*zp*zp)/(Ix*l*l) +
 (G*J*P*zp*zp*zp)/(2*E*Ix*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) -
 (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) -
 (13*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -
 (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) +
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +

 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

221

 Gm[2][4]+=(3*Iw*P)/(4*Ix) - (Iy*l*l*P)/(30*Ix) -
 (G*J*l*l*P)/(30*E*Ix) - (2*Iw*P*zp)/(Ix*l) +

 (2*Iy*l*P*zp)/(15*Ix) + (G*J*l*P*zp)/(10*E*Ix) -
 (G*J*P*zp*zp)/(4*E*Ix) +
 (11*Iw*P*zp*zp)/(2*Ix*l*l) -
 (8*Iw*P*zp*zp*zp)/(Ix*l*l*l) - (2*Iy*P*zp*zp*zp)/(3*Ix*l) +
 (G*J*P*zp*zp*zp)/(3*E*Ix*l) +
 (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) +
 (7*Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) -
 (4*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l) +
 (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l);

 Gm[1][7]+=(-7*Iw*P)/(2*Ix*l) + (Iy*l*P)/(5*Ix) +

 (G*J*l*P)/(20*E*Ix) - (Iy*P*zp)/(10*Ix) +
 (G*J*P*zp)/(20*E*Ix) + (6*Iw*P*zp)/(Ix*l*l) -
 (9*Iw*P*zp*zp)/(Ix*l*l*l) + (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -
 (G*J*P*zp*zp*zp)/(2*E*Ix*l*l) -
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) - (Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) +
 (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) +
 (13*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +
 (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) -
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[2][8]+=(11*Iw*P)/(4*Ix) + (13*G*J*l*l*P)/(120*E*Ix) -

 (4*Iw*P*zp)/(Ix*l) - (Iy*l*P*zp)/(30*Ix) -
 (3*G*J*l*P*zp)/(20*E*Ix) +
 (7*Iw*P*zp*zp)/(2*Ix*l*l) - (6*Iw*P*zp*zp*zp)/(Ix*l*l*l) +
 (G*J*P*zp*zp*zp)/(6*E*Ix*l) +
 (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(3*Ix*l*l) -
 (G*J*P*zp*zp*zp*zp)/(8*E*Ix*l*l) -
 (Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l) +
 (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l);

 Gm[3][5]+=(Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -

 (6*Iw*P)/(Ix*l*l) + (6*Iw*P*zp)/(Ix*l*l*l) -
 (6*Iy*P*zp)/(5*Ix*l) - (9*G*J*P*zp)/(10*E*Ix*l) -
 (9*Iw*P*zp*zp)/(Ix*l*l*l*l) + (3*Iy*P*zp*zp)/(Ix*l*l) +
 (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) - (2*Iy*P*zp*zp*zp)/(Ix*l*l*l) -
 (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) -
 (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +
 (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +

222

 (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) -
 (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l);

 Gm[3][6]+=(5*Iw*P)/(2*Ix*l) + (Iy*l*P)/(10*Ix) -

 (3*G*J*l*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) +
 (9*G*J*P*zp)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*l*l) +
 (3*Iw*P*zp*zp)/(Ix*l*l*l) - (Iy*P*zp*zp)/(Ix*l) -
 (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) + (Iy*P*zp*zp*zp)/(Ix*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) +
 (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) -
 (11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -
 (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) +
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[4][5]+=-(Iw*P)/(2*Ix*l) + (3*G*J*l*P)/(20*E*Ix) -

 (Iy*P*zp)/(10*Ix) - (G*J*P*zp)/(5*E*Ix) -
 (6*Iw*P*zp*zp)/(Ix*l*l*l) + (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) +
 (Iy*P*zp*zp*zp)/(Ix*l*l) - (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) -
 (2*Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) -
 (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) +
 (3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l) -
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[4][6]+=(Iw*P)/(4*Ix) + (Iy*l*l*P)/(30*Ix) -

 (3*G*J*l*l*P)/(40*E*Ix) - (Iy*l*P*zp)/(30*Ix) +
 (G*J*l*P*zp)/(10*E*Ix) + (2*Iw*P*zp*zp)/(Ix*l*l) -
 (6*Iw*P*zp*zp*zp)/(Ix*l*l*l) - (Iy*P*zp*zp*zp)/(3*Ix*l) +
 (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) +
 (5*Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) +
 (G*J*P*zp*zp*zp*zp)/(8*E*Ix*l*l) -
 (7*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l) +
 (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l);

 Gm[5][7]+=(-11*Iy*P)/(10*Ix) - (3*G*J*P)/(5*E*Ix) +

 (6*Iw*P)/(Ix*l*l) - (6*Iw*P*zp)/(Ix*l*l*l) +
 (6*Iy*P*zp)/(5*Ix*l) + (9*G*J*P*zp)/(10*E*Ix*l) +
 (9*Iw*P*zp*zp)/(Ix*l*l*l*l) - (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) +
 (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -
 (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -

223

 (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) +
 (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l);

 Gm[5][8]+=(-11*Iw*P)/(2*Ix*l) + (Iy*l*P)/(10*Ix) -

 (3*G*J*l*P)/(10*E*Ix) - (Iy*P*zp)/(10*Ix) +
 (3*G*J*P*zp)/(10*E*Ix) + (6*Iw*P*zp)/(Ix*l*l) -
 (3*Iw*P*zp*zp)/(Ix*l*l*l) + (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) - (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) +
 (9*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l) -
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[6][7]+=(-5*Iw*P)/(2*Ix*l) + (9*Iy*l*P)/(10*Ix) +

 (3*G*J*l*P)/(10*E*Ix) - (11*Iy*P*zp)/(10*Ix) -
 (9*G*J*P*zp)/(20*E*Ix) + (3*Iw*P*zp)/(Ix*l*l) -
 (3*Iw*P*zp*zp)/(Ix*l*l*l) + (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -
 (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) -
 (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) +
 (11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +
 (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) -
 (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l);

 Gm[6][8]+=(9*Iw*P)/(4*Ix) - (Iy*l*l*P)/(10*Ix) +

 (3*G*J*l*l*P)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*l) +
 (2*Iy*l*P*zp)/(15*Ix) - (3*G*J*l*P*zp)/(20*E*Ix) +
 (Iw*P*zp*zp)/(Ix*l*l) - (4*Iw*P*zp*zp*zp)/(Ix*l*l*l) +
 (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) -
 (2*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l) -
 (3*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l) +
 (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +
 (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l);

}
// Overloaded function defined the properties of
// the Nondimensional Geometric stiffness matrix
void Element_Geometric::Fill_Element_Geometric2(float K, int element_num)
{
 K=K*((float)element_num);

 for(int i=0;i<=8;i++)
 for(int j=0;j<=8;j++)
 Gm[i][j]=0.0F;

 Gm[1][1]=(6*F)/5;

224

 Gm[1][2]=F/10;

 Gm[1][3]=(6*M1)/5 - P/10 + q/70 + V1/10 + (6*P*zp)/5 - 3*P*zp*zp + 2*P*zp*zp*zp +

 (3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*zp*zp*zp*zp)/5;

Gm[1][4]= M1/10 + q/140 + (P*zp)/10 - P*zp*zp*zp + 2*P*zp*zp*zp*zp -
 (3*P*zp*zp*zp*zp*zp)/2 + (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[1][5]=(-6*F)/5;

 Gm[1][6]=F/10;

 Gm[1][7]=(-6*M1)/5 + (11*P)/10 + (17*q)/35 - (11*V1)/10 - (6*P*zp)/5 -
 (3*P*zp*zp*zp*zp)/2 + (12*P*zp*zp*zp*zp*zp)/5 - (4*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[1][8]= M1/10 - P/10 - (3*q)/70 + V1/10 + (P*zp)/10 + (P*zp*zp*zp*zp)/2 -
 (9*P*zp*zp*zp*zp*zp)/10 + (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[2][2]=(2*F)/15;

 Gm[2][3]= (11*M1)/10 - P/5 - (11*q)/420 + V1/5 + (11*P*zp)/10 -

 2*P*zp*zp + P*zp*zp*zp + P*zp*zp*zp*zp - (13*P*zp*zp*zp*zp*zp)/10 +
 (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[2][4]=(2*M1)/15 - P/30 - q/210 + V1/30 + (2*P*zp)/15 - (2*P*zp*zp*zp)/3 +
 (7*P*zp*zp*zp*zp)/6 - (4*P*zp*zp*zp*zp*zp)/5 + (P*zp*zp*zp*zp*zp*zp)/5;

 Gm[2][5]=-F/10;

 Gm[2][6]=-F/30;

 Gm[2][7]= -M1/10 + P/5 + (23*q)/210 - V1/5 - (P*zp)/10 - P*zp*zp*zp*zp +
 (13*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;

Gm[2][8]= -M1/30 - q/210 - (P*zp)/30 + (P*zp*zp*zp*zp)/3 - (P*zp*zp*zp*zp*zp)/2 +
 (P*zp*zp*zp*zp*zp*zp)/5;

Gm[3][3]=(e*K*P)/Pi + (13*a*K*q)/(35*Pi) - (6*e*K*P*zp*zp)/Pi +

 (4*e*K*P*zp*zp*zp)/Pi + (9*e*K*P*zp*zp*zp*zp)/Pi –
 (12*e*K*P*zp*zp*zp*zp*zp)/Pi + (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[3][4]=(11*a*K*q)/(210*Pi) + (e*K*P*zp)/Pi - (2*e*K*P*zp*zp)/Pi -
 (2*e*K*P*zp*zp*zp)/Pi + (8*e*K*P*zp*zp*zp*zp)/Pi –

 (7*e*K*P*zp*zp*zp*zp*zp)/Pi + (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

225

 Gm[3][5]=(-6*M1)/5 + P/10 - q/70 - V1/10 - (6*P*zp)/5 +
 3*P*zp*zp - 2*P*zp*zp*zp - (3*P*zp*zp*zp*zp)/2 + (12*P*zp*zp*zp*zp*zp)/5 –

 (4*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[3][6]=M1/10 + P/10 + (17*q)/420 - V1/10 + (P*zp)/10 - P*zp*zp + P*zp*zp*zp +

 (P*zp*zp*zp*zp)/2 - (11*P*zp*zp*zp*zp*zp)/10 + (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[3][7]=(9*a*K*q)/(70*Pi) + (3*e*K*P*zp*zp)/Pi - (2*e*K*P*zp*zp*zp)/Pi -

 (9*e*K*P*zp*zp*zp*zp)/Pi + (12*e*K*P*zp*zp*zp*zp*zp)/Pi -
 (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[3][8]=(-13*a*K*q)/(420*Pi) - (e*K*P*zp*zp)/Pi + (e*K*P*zp*zp*zp)/Pi +
 (3*e*K*P*zp*zp*zp*zp)/Pi - (5*e*K*P*zp*zp*zp*zp*zp)/Pi +

 (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[4][4]=(a*K*q)/(105*Pi) + (e*K*P*zp*zp)/Pi -
 (4*e*K*P*zp*zp*zp)/Pi + (6*e*K*P*zp*zp*zp*zp)/Pi –
 (4*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[4][5]=-M1/10 - q/140 - (P*zp)/10 + P*zp*zp*zp - 2*P*zp*zp*zp*zp +
 (3*P*zp*zp*zp*zp*zp)/2 - (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[4][6]= -M1/30 + P/30 + q/84 - V1/30 - (P*zp)/30 - (P*zp*zp*zp)/3 +
 (5*P*zp*zp*zp*zp)/6 - (7*P*zp*zp*zp*zp*zp)/10 + (P*zp*zp*zp*zp*zp*zp)/5;

Gm[4][7]=(13*a*K*q)/(420*Pi) + (3*e*K*P*zp*zp*zp)/Pi –
 (8*e*K*P*zp*zp*zp*zp)/Pi +

 (7*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[4][8]=-(a*K*q)/(140*Pi) - (e*K*P*zp*zp*zp)/Pi + (3*e*K*P*zp*zp*zp*zp)/Pi -
 (3*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[5][5]=(6*F)/5;

 Gm[5][6]=-F/10;

 Gm[5][7]= (6*M1)/5 - (11*P)/10 - (17*q)/35 + (11*V1)/10 + (6*P*zp)/5 +
 (3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[5][8]=-M1/10 + P/10 + (3*q)/70 - V1/10 - (P*zp)/10 - (P*zp*zp*zp*zp)/2 +
 (9*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;

 Gm[6][6]=(2*F)/15;

 Gm[6][7]=(-11*M1)/10 + (9*P)/10 + (79*q)/210 - (9*V1)/10 - (11*P*zp)/10 -
 (P*zp*zp*zp*zp)/2 + (11*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;

226

 Gm[6][8]=(2*M1)/15 - P/10 - (4*q)/105 + V1/10 + (2*P*zp)/15 + (P*zp*zp*zp*zp)/6 -
 (2*P*zp*zp*zp*zp*zp)/5 + (P*zp*zp*zp*zp*zp*zp)/5;

Gm[7][7]=(13*a*K*q)/(35*Pi) + (9*e*K*P*zp*zp*zp*zp)/Pi -
 (12*e*K*P*zp*zp*zp*zp*zp)/Pi +

 (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 Gm[7][8]=(-11*a*K*q)/(210*Pi) - (3*e*K*P*zp*zp*zp*zp)/Pi +
 (5*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[8][8]=(a*K*q)/(105*Pi) + (e*K*P*zp*zp*zp*zp)/Pi –
 (2*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

 for(i=1;i<=8;i++)
 for(int j=i;j<=8;j++) Gm[j][i]=Gm[i][j];
 Properties::Rotation(Gm);
}

D.2 ELEMENTSTIFF.CPP

//Header Files
#include <iostream>
#include "prop.h"
#include "elementstiff.h"

//Global Variable definition
static double Pi=3.14159265;

//Global variable declaration
extern char anl;

void Element_Stiffness::Fill_Properties(int j)
{
 Properties::Fill_Properties(j);
}

// Fill each element stiffness matrix, Ke
void Element_Stiffness::Fill_Element_Stiffness1()
{
 for(int i=1;i<=8;i++)
 for(int j=1;j<=8;j++)

227

 Ke[i][j]=0.0F;

 Ke[1][1]=(12*E*Iy)/(l*l*l);

 Ke[1][2]=(6*E*Iy)/(l*l);

 Ke[1][5]=(-12*E*Iy)/(l*l*l);

 Ke[1][6]=(6*E*Iy)/(l*l);

 Ke[2][2]=(4*E*Iy)/l;

 Ke[2][5]=(-6*E*Iy)/(l*l);

 Ke[2][6]=(2*E*Iy)/l;

 Ke[3][3]=(12*E*Iw)/(l*l*l) + (6*G*J)/(5*l);

 Ke[3][4]=(G*J)/10 + (6*E*Iw)/(l*l);

 Ke[3][7]=(-12*E*Iw)/(l*l*l) - (6*G*J)/(5*l);

 Ke[3][8]=(G*J)/10 + (6*E*Iw)/(l*l) ;

 Ke[4][4]=(4*E*Iw)/l + (2*G*J*l)/15;

 Ke[4][7]=-(G*J)/10 - (6*E*Iw)/(l*l);

 Ke[4][8]=(2*E*Iw)/l - (G*J*l)/30 ;

 Ke[5][5]=(12*E*Iy)/(l*l*l);

 Ke[5][6]=(-6*E*Iy)/(l*l);

 Ke[6][6]=(4*E*Iy)/l;

 Ke[7][7]=(12*E*Iw)/(l*l*l) + (6*G*J)/(5*l);

 Ke[7][8]=(-G*J)/10 + (-6*E*Iw)/(l*l) ;

 Ke[8][8]=(4*E*Iw)/l + (2*G*J*l)/15;

 if(anl=='P')
 Element_Stiffness::Fill_Element_Prebuckling();

228

for(i=1;i<=8;i++)
 for(int j=i;j<=8;j++)
 Ke[j][i]=Ke[i][j];

 Properties::Rotation(Ke);
}

// Prebuckling element of the stiffness matrix
void Element_Stiffness::Fill_Element_Prebuckling(void)
{
 if(anl=='B') Ix=999999.0;

 Ke[1][4]+=(-6*c*E*Iw)/(l*l*l) - (c*G*J)/(2*l);

 Ke[1][8]+=(6*c*E*Iw)/(l*l*l) + (c*G*J)/(2*l);

 Ke[2][3]+=(c*G*J)/(2*l) ;

 Ke[2][4]+=-(c*G*J)/4 - (3*c*E*Iw)/(l*l) ;

 Ke[2][7]+=-(c*G*J)/(2*l) ;

Ke[2][8]+=(c*G*J)/4 + (3*c*E*Iw)/(l*l) ;

 Ke[3][6]+=(-c*G*J)/(2*l);

 Ke[4][5]+=(6*c*E*Iw)/(l*l*l) + (c*G*J)/(2*l);

 Ke[4][6]+=-(c*G*J)/4 - (3*c*E*Iw)/(l*l) ;

 Ke[5][8]+=-(6*c*E*Iw)/(l*l*l) - (c*G*J)/(2*l);

 Ke[6][7]+=(c*G*J)/(2*l) ;

 Ke[6][8]+=(c*G*J)/4 + (3*c*E*Iw)/(l*l);

}

//Nondimensional stiffness matrix
void Element_Stiffness::Fill_Element_Stiffness2(float K, int element_num)
{
 K=K*((float)element_num);

 for(int i=1;i<=8;i++)
 for(int j=1;j<=8;j++)
 Ke[i][j]=0.0F;

229

 Ke[1][1]=12.;

 Ke[1][2]=6.;

 Ke[1][5]=-12.;

 Ke[1][6]=6.;

 Ke[2][2]=4.;

 Ke[2][5]=-6.;

 Ke[2][6]= 2.;

 Ke[3][3]=6.0F/5.0F+ (12*K*K)/(Pi*Pi);

 Ke[3][4]=1.0F/10.0F + (6*K*K)/(Pi*Pi);

 Ke[3][7]=-6.0F/5.0F - (12*K*K)/(Pi*Pi);

 Ke[3][8]=1.0F/10.0F + (6*K*K)/(Pi*Pi);

 Ke[4][4]=2.0F/15.0F + (4*K*K)/(Pi*Pi);

 Ke[4][7]=-1.0F/10.0F - (6*K*K)/(Pi*Pi);

 Ke[4][8]=-1.0F/30.0F + (2*K*K)/(Pi*Pi);

 Ke[5][5]=12.;

 Ke[5][6]=-6.;

 Ke[6][6]=4.;

 Ke[7][7]=6.0F/5.0F + (12*K*K)/(Pi*Pi);

 Ke[7][8]=-1.0F/10.0F - (6*K*K)/(Pi*Pi);

 Ke[8][8]=2.0F/15.0F + (4*K*K)/(Pi*Pi);

 for(i=1;i<=8;i++)
 for(int j=i;j<=8;j++)
 Ke[j][i]=Ke[i][j];
 Properties::Rotation(Ke);
}

230

D.3 GEOMTR.CPP

//Header files
#include "prop.h"
#include "elementgeom.h"
#include "geomtr.h"

//Global Variable declarations
extern char anl;

//Constructor
Geometric::Geometric(int e)
{
 for(int i=0;i<MSize;i++) //Clear Geometric Matrix
 for(int j=0;j<MSize;j++)
 B[i][j]=0;
 element_num=e;
}

// Assemble element geometric matrices to
// a structural geometric matrix
void Geometric::Assembling_Geometric_Matrix(float K)
{
 for(int i=1;i<=element_num;i++) //For each element
 {

 geom.Fill_Properties(i);
 //Fill element matrix and rotate
 if(anl=='N')
 geom.Fill_Element_Geometric2(K, element_num);
 else
 geom.Fill_Element_Geometric1(K);

 for(int j=1;j<=4;j++) //Fill Global Matrix
 {
 for(int k=1;k<=4;k++)
 {
 int j1 = geom.get_joint1();
 int j2 = geom.get_joint2();
 B[4*(j1-1)+j][4*(j1-1)+k]+=geom.Gm[j][k];
 B[4*(j2-1)+j][4*(j2-1)+k]+=geom.Gm[j+4][k+4];

231

 B[4*(j2-1)+j][4*(j1-1)+k]+=geom.Gm[j+4][k];
 B[4*(j1-1)+j][4*(j2-1)+k]+=geom.Gm[j][k+4];

 }
 }
 }
}

D.4 LBUCK.CPP

//Lateral-Torsional Buckling Program
//Header files
#include <iostream>
#include <process.h>
#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"
#include "spprt.h"
#include "elementgeom.h"
#include "geomtr.h"
#include "standm.h"

using namespace std;

//Global Variable Definitions
char anl; //analysis type

//File pointers
FILE *fin;
FILE *init;
FILE *ffrm;

//Function declarations
void prebuckling(char[10]);
void buckling(char[10]);
void nondimension(char[10]);

int main(void)
{
 char input_file[10];

 if((init=fopen("lbuck.ini","r"))==NULL)

232

 printf("Internal Error");
 fscanf(init,"%s",input_file);
 fclose(init);
 init=fopen("lbuck.ini","w");
 if((fin=fopen(input_file,"r"))==NULL)
 {
 printf("File not found");
 exit(0);
 }
 ffrm=fopen("frame.ini","w");
 fscanf(fin,"%c\n",&anl);

 //Main Process
 if(anl=='B')
 buckling(input_file); //Buckling Analysis
 if(anl=='P')
 prebuckling(input_file); //Prebuckling Analysis
 if(anl=='N')
 nondimension(input_file); //Non-dimensional Analysis

 fclose(init);
 return (0);
}

//--

void buckling(char input_file[10])
{
 char ch, name[80], series_name[80];
 int number_series, number_analysis;

 fclose(fin);
 fprintf(ffrm, "%s 1.0",input_file);
 fclose(ffrm);

 system("frame"); //Run FRAME Program

 fin=fopen("frame.out","r");
 //Write results to output file:
 fprintf(init,"\t--------------------------\n");
 fprintf(init,"\tBuckling Analysis\n");
 fprintf(init,"\t--------------------------\n\n");
 //Get number of analyses
 fscanf(fin,"%c %d %d\n",&ch,&number_series,&number_analysis);
 fgets(name,80,fin); //Get Structure Name
 fprintf(init,"\n\tStructure Name : %s\n",name);

233

 fgets(series_name,80,fin); //Get series name:
 fprintf(init,"\n\tSeries Name : %s\n ",series_name);

 fprintf(init,"\n\tNumber of Element Buckling parameter\n ");
 //For each analysis
 for(int i=1;i<=number_analysis;i++)
 {
 int joint_num, element_num; //number of joints and elements
 fscanf(fin,"%d %d",&element_num,&joint_num);
 fprintf(init,"\n\t %d ",element_num);
 int size=joint_num*4;

 Stiffness global_stiff(element_num);//Create global stiffness matrix
 Geometric global_geom(element_num);//Create global geometric matrix
 Standard_Matrix sd; //Create standard matrix
 Supports sp(size); //Create support object

 //Call the stiffness matrix and the
 //geometric stiffness matrix
 global_stiff.Assembling_Stiffness_Matrix(0.);
 global_geom.Assembling_Geometric_Matrix(0.);

 //Apply Boundary Conditions
 sp.Get_boundary_conditions();
 int s=sp.Boundary_Condition(global_stiff.A, global_geom.B);

 //Find Standard Matrix
 sd.standard_matrix(global_stiff.A, global_geom.B,s);

 //Print Buckling Load
 float buck_load=sd.getBucklingLoad();
 fprintf(init," %7.3f ",buck_load);
 }
 fprintf(init,"\n\n");
 fscanf(fin,"\n%c",&ch);
 fclose(fin);
}

// Effect of prebuckling deformations analysis
void prebuckling(char input_file[10])
{
 int k=0;
 long int inp_addr=0;
 float mult_fac=1;
 char name[80], series_name[80];

234

 int number_series, number_analysis;
 //Write to output file:
 fprintf(init,"\t------------------------------\n");
 fprintf(init,"\tPrebuckling Analysis\n");
 fprintf(init,"\t------------------------------\n\n");
 fgets(name,80,fin); //Get structure name
 //Get number of analyses
 fscanf(fin,"%d %d\n",&number_series,&number_analysis);
 fprintf(init,"\n\tStructure Name : %s\n",name);

 fgets(series_name,80,fin); //Get series name
 fprintf(init,"\n\tSeries Name : %s\n ",series_name);
 fprintf(init,"\n\tNumber of Element Buckling parameter");
 fprintf(init," Multiplication Factor\n");

 for(int i=1;i<=number_analysis;i++)
 {
 while(1)
 {
 ffrm=fopen("frame.ini", "w");
 fclose(fin);
 fprintf(ffrm, "%s %f %ld",
 input_file,mult_fac,inp_addr);
 fclose(ffrm);

 system("frame"); //Run FRAME Program

 fin=fopen("frame.out","r");
 int joint_num, element_num; //number of joints and elements
 fscanf(fin,"%d %d",&element_num,&joint_num);
 fprintf(init,"\n\t %d ",element_num);
 int size=joint_num*4;

 Stiffness global_stiff(element_num);//Create global stiffness matrix
 Geometric global_geom(element_num);//Create global geometric matrix
 Standard_Matrix sd; //Create standard matrix
 Supports sp(size); //Create support object

 //Call the stiffness matrix and the
 //geometric stiffness matrix
 global_stiff.Assembling_Stiffness_Matrix(0.);
 global_geom.Assembling_Geometric_Matrix(0.);

 //Apply Boundary Conditions
 sp.Get_boundary_conditions();
 int s=sp.Boundary_Condition(global_stiff.A, global_geom.B);

235

 //Find Standard Matrix
 sd.standard_matrix(global_stiff.A, global_geom.B, s);

 //Print Buckling Load
 float buck_load=sd.getBucklingLoad();
 fprintf(init," %7.3f %7.3f",
 buck_load,mult_fac);
 if(buck_load>1.05||buck_load<.95)
 {
 mult_fac=buck_load*mult_fac;
 }
 else
 {
 fscanf(fin,"%ld",&inp_addr);
 mult_fac=1.0;
 break;
 }
 }
 }
 fclose(fin);
}

// Nondimensional analysis
void nondimension(char input_file[10])
{
 float k,kmin,kmax,kstep;
 char name[80], series_name[80];
 int number_series;
 //Write to output file
 fprintf(init,"\t-----------------------------\n");
 fprintf(init,"\tNondimensional Analysis\n");
 fprintf(init,"\t-----------------------------\n\n");
 //Get number of series and k
 fscanf(fin,"%d %f %f %f\n",&number_series,&kmin,&kmax,&kstep);
 fgets(name,80,fin); //Get structure name
 fprintf(init,"\n\tStructure Name : %s\n",name);
 for(int i=1;i<=number_series;i++) //For each series
 {
 fgets(series_name,80,fin); //Get series name
 fprintf(init,"\n\tSeries Name : %s\n ",series_name);
 int joint_num, element_num; //number of joints and elements
 fscanf(fin,"%d %d",&element_num,&joint_num);
 fprintf(init,"\n\tBeam parameter Buckling parameter\n ",anl);

 for(k=kmin;k<=kmax;k=k+kstep)

236

 {
 fprintf(init,"\n %5.2f ",k);
 int size=joint_num*4;

 Stiffness global_stiff(element_num);//Create global stiffness matrix
 Geometric global_geom(element_num);//Create global geometric matrix
 Standard_Matrix sd; //Create standard matrix
 Supports sp(size); //Create support object

 //Call the stiffness matrix and the
 //geometric stiffness matrix
 global_stiff.Assembling_Stiffness_Matrix(k);
 global_geom.Assembling_Geometric_Matrix(k);

 //Apply Boundary Conditions
 sp.Get_boundary_conditions();
 int s=sp.Boundary_Condition(global_stiff.A, global_geom.B);

 //Find Standard Matrix
 sd.standard_matrix(global_stiff.A, global_geom.B,s);

 //Print Buckling Load
 float buck_load=sd.getBucklingLoad();
 fprintf(init," %7.3f ",buck_load);
 }

 fprintf(init,"\n\n");
 }

 fclose(fin);
}

D.5 PROP.CPP

//Header files
#include <iostream>
#include <math.h>
#include "prop.h"

//Global Variable Definition
float data[17][MSize];
int data2[2][MSize];

237

//Global Variable Declaration
extern char anl;

//File pointer declaration
extern FILE *fin;

// Read: read the material properties from the input file
void Properties::Read_Properties(int j)
{
 if(anl=='B'||anl=='P')
 {
 fscanf(fin,"%f %f %f %f %f %f %f %f %d %d",
 &data[0][j],&data[1][j],&data[2][j],
 &data[3][j],&data[4][j],&data[5][j],
 &data[6][j],&data[7][j],&data2[0][j],
 &data2[1][j]);
 fscanf(fin,"%f %f %f %f %f %f %f %f %f",
 &data[8][j],&data[9][j],&data[10][j],
 &data[11][j],&data[12][j],&data[13][j],
 &data[14][j],&data[15][j],&data[16][j]);
 }

 if(anl=='N')
 {
 fscanf(fin,"%f %f %f %f %f %f %f %f %f %d %d",
 &data[8][j],&data[9][j],&data[10][j],
 &data[11][j],&data[12][j],&data[13][j],
 &data[14][j],&data[15][j],&data[7][j],
 &data2[0][j],&data2[1][j]);
 }

 if(anl=='B') Ix=999999.0;
}

//Fill Element Properties
void Properties::Fill_Properties(int j)
{
 E=data[0][j]; G=data[1][j]; J=data[2][j];
 Iy=data[3][j]; Ix=data[4][j]; Iw=data[5][j];
 l=data[6][j]; al=data[7][j]; j1=data2[0][j];
 j2=data2[1][j]; q=data[8][j]; a=data[9][j];
 P=data[10][j]; e=data[11][j]; zp=data[12][j];
 F=data[13][j]; M1=data[14][j]; V1=data[15][j];
 c=data[16][j];

238

}

int Properties::get_joint1(void)
{
 return j1;
}

int Properties::get_joint2(void)
{
 return j2;
}

// Rotation: give the definition of the rotation matrix
void Properties::Rotation(float A[10][10])
{
 int m=0;
 float R[10][10];

 for(int i=1;i<=8;i++) //Set all elements to zero
 for(int j=1;j<=8;j++)
 R[i][j]=0.0F;

 for(i=1;i<=8;i++)
 {
 for(int j=1;j<=8;j++)
 {
 m++;
 if(m==1)
 R[i][j]=A[i][j];
 if(m==2)
 R[i][j]=A[i][j]*(float)cos(al)-A[i][j+1]*(float)sin(al);
 if(m==3)
 R[i][j]=A[i][j]*(float)cos(al)+A[i][j-1]*(float)sin(al);
 if(m==4)
 {
 R[i][j]=A[i][j];
 m=0;
 }
 }
 }

 for(i=1;i<=8;i++) //Set all elements to zero
 for(int j=1;j<=8;j++)
 A[i][j]=0;

 for(i=1;i<=8;i++)

239

 {
 for(int j=1;j<=8;j++)
 {
 m++;
 if(m==1)
 A[j][i]=R[j][i];
 if(m==2)
 A[j][i]=R[j][i]*(float)cos(al)-R[j+1][i]*(float)sin(al);
 if(m==3)
 A[j][i]=R[j][i]*(float)cos(al)+R[j-1][i]*(float)sin(al);
 if(m==4)
 {
 A[j][i]=R[j][i];
 m=0;
 }
 }
 }
}

D.6 SPPRT.CPP

//Header Files
#include <iostream>
#include "spprt.h"

//Global Variable Declarations
extern char anl;

//File pointer declaration
extern FILE* fin;

Supports::Supports(int s)
{
 size=s;
 rest=0;
 for(int i=0; i<MSize; i++)
 restrain[i]=0;
}

// Read the Boudary condition and
void Supports::Get_boundary_conditions()
{

240

 for(int i=1;i<=size;i++) //Get bc's from input file
 {
 fscanf(fin,"%d",&restrain[i]);
 if(restrain[i]==1)
 rest++; //Count number of restraints
 }
}

// Apply bc's to the stiffness matrix and geometric matrix
int Supports::Boundary_Condition(float X[MSize][MSize],float Y[MSize][MSize])
{
 int r=0;
 for(int i=1;i<=size;i++)
 if(restrain[i]==1)
 {
 for(int j=1;j<=size;j++)
 for(int k=i-r;k<=size-r;k++)
 X[k][j]=X[k+1][j];
 r++;
 }
 r=0;
 for(i=1;i<=size;i++)
 if(restrain[i]==1)
 {
 for(int j=1;j<=size-rest;j++)
 for(int k=i-r;k<=size-r;k++)
 X[j][k]=X[j][k+1];
 r++;
 }
 r=0;
 for(i=1;i<=size;i++)
 if(restrain[i]==1)
 {
 for(int j=1;j<=size;j++)
 for(int k=i-r;k<=size-r;k++)
 Y[k][j]=Y[k+1][j];
 r++;
 }
 r=0;
 for(i=1;i<=size;i++)
 if(restrain[i]==1)
 {
 for(int j=1;j<=size-rest;j++)
 for(int k=i-r;k<=size-r;k++)
 Y[j][k]=Y
 [j][k+1];

241

 r++;
 }
 free_size=size-rest;

 return free_size;
}

D.7 STANDM.CPP

//Header Files
#include <iostream>
#include <math.h>
#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"
#include "elementgeom.h"
#include "geomtr.h"
#include "standm.h"

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

//Global Variable Declarations
extern char anl;

//Constructor
Standard_Matrix::Standard_Matrix()
{
 for(int i=1;i<MSize;i++)
 for(int j=1;j<MSize;j++)
 C[i][j]=0.0;
}

// Standard_Matrix: Decompose the stiffness matrices to
// a standard matrix, and then solve the eigenvalues
void Standard_Matrix::standard_matrix(float A[MSize][MSize],float B[MSize][MSize], int s)
{
 size=s;

 choldc(A); //Cholevski Decomposition

 for(int i=1;i<=size;i++)
 for(int j=1;j<=size;j++)

242

 {
 for(int k=1;k<=size;k++)
 C[i][j]=C[i][j]+A[i][k]*B[k][j];
 }
 for(i=1;i<=size;i++)
 for(int j=1;j<=size;j++)
 if(i>j)
 {
 A[j][i]=A[i][j];
 A[i][j]=0.0;
 }
 for(i=1;i<=size;i++)
 for(int j=1;j<=size;j++)
 {
 B[i][j]=0;
 for(int k=1;k<=size;k++)
 B[i][j]=B[i][j]+C[i][k]*A[k][j];
 }

 tred2(B);
 tqli(B);
}

// Cholevski Decomposition routine changes the eigenvalue problem
// from General form to Standard form.

void Standard_Matrix::choldc(float A[MSize][MSize])
{
 double sum=0.0,p[MSize];
 for (int i=1;i<=size;i++)
 {
 p[i]=0.0;
 for (int j=i;j<=size;j++)
 {
 sum=(double)A[i][j];
 for (int k=i-1;k>=1;k--)
 {
 sum -= (double)A[i][k]*A[j][k];
 }
 if (i == j)
 {
 if (sum <= 0.0)
 {

 printf("choldc failed");

243

 exit(0);
 }

 p[i]=sqrt(sum);
 }
 else A[j][i]=(float)sum/p[i];
 }
 }

 for (i=1;i<=size;i++)
 {
 for (int j=1;j<=size;j++)
 {
 A[i][j]=((i > j) ? A[i][j] : (i == j ? p[i] : 0.0F));
 if (i > j) A[i][j]=A[i][j];
 else A[i][j]=(i == j ? p[i] : 0.0F);
 }
 }

 for(i=1;i<=size;i++)
 {
 A[i][i]=1/p[i];
 for(int j=i+1;j<=size;j++)
 {
 sum=0.0;
 for(int k=i;k<j;k++)
 sum-=A[j][k]*A[k][i];
 A[j][i]=sum/p[j];
 }
 }
}
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */

// Apply Householder's method to change the standard matrix to
// Tridiagonal matrix, and Calculate eigenvalue by QR iteration

void Standard_Matrix::tred2(float B[MSize][MSize])
{
 int l,k,j,n=size;
 float scale,hh,h,g,f;
 for (int i=n;i>=2;i--)
 {
 l=i-1;
 h=scale=0.0;
 if (l > 1)

244

 {
 for (k=1;k<=l;k++)
 scale += (float)fabs(B[i][k]);
 if (scale == 0.0)
 e[i]=B[i][l];
 else {
 for (k=1;k<=l;k++)
 {
 B[i][k] /= scale;
 h += B[i][k]*B[i][k];
 }
 f=B[i][l];
 g=(f >= 0.0 ? (float)-sqrt(h) : (float)sqrt(h));
 e[i]=scale*g;
 h -= f*g;
 B[i][l]=f-g;
 f=0.0;
 for (j=1;j<=l;j++)
 {
 B[j][i]=B[i][j]/h;
 g=0.0;
 for (k=1;k<=j;k++)
 g += B[j][k]*B[i][k];
 for (k=j+1;k<=l;k++)
 g += B[k][j]*B[i][k];
 e[j]=g/h;
 f += e[j]*B[i][j];
 }
 hh=f/(h+h);
 for (j=1;j<=l;j++)
 {
 f=B[i][j];
 e[j]=g=e[j]-hh*f;
 for (k=1;k<=j;k++)
 B[j][k] -= (f*e[k]+g*B[i][k]);
 }
 }
 }
 else
 e[i]=B[i][l];

 d[i]=h;
 }
 d[1]=0.0;
 e[1]=0.0;
 /* Contents of this loop can be omitted if eigenvectors not

245

 wanted except for statement d[i]=B[i][i]; */
 for (i=1;i<=n;i++)
 {
 l=i-1;
 if (d[i])
 {
 for (j=1;j<=l;j++)
 {
 g=0.0;
 for (k=1;k<=l;k++)
 g += B[i][k]*B[k][j];
 for (k=1;k<=l;k++)
 B[k][j] -= g*B[k][i];
 }
 }
 d[i]=B[i][i];
 }
}
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */

// tqli: Solve eigenvalues from the tridiagonal matrix
void Standard_Matrix::tqli(float B[MSize][MSize])
{
 int m,iter,n=size;

 float s,r,p,g,f,dd,c,b,bkp;
 double chkmin=99999999.9;

 for (int i=2;i<=n;i++)
 e[i-1]=e[i];
 e[n]=0.0;

 for (int l=1;l<=n;l++)
 {
 iter=0;
 do
 {
 for (m=l;m<=n-1;m++)
 {
 dd=(float)fabs(d[m])+(float)fabs(d[m+1]);
 if ((float)(fabs(e[m])+dd) == dd) break;
 }
 if (m != l)
 {
 if (iter++ == 30)

246

 {
 printf("Too many iterations in tqli");
 exit(0);
 }
 g=(d[l+1]-d[l])/(2*e[l]);
 r=pythag(g,1.0);
 g=d[m]-d[l]+e[l]/(g+(float)SIGN(r,g));
 s=c=1.0;
 p=0.0;
 for (int i=m-1;i>=l;i--)
 {
 f=s*e[i];
 b=c*e[i];
 e[i+1]=(r=pythag(f,g));
 if (r == 0.0)
 {
 d[i+1] -= p;
 e[m]=0.0;
 break;
 }
 s=f/r;
 c=g/r;
 g=d[i+1]-p;
 r=(d[i]-g)*s+2*c*b;
 d[i+1]=g+(p=s*r);
 g=c*r-b;
 for (int k=1;k<=n;k++)
 {
 f=B[k][i+1];
 B[k][i+1]=s*B[k][i]+c*f;
 B[k][i]=c*B[k][i]-s*f;
 }
 }
 if (r == 0.0 && i >= l) continue;
 d[l] -= p;
 e[l]=g;
 e[m]=0.0;
 }
 } while (m != l);
 }

 for (i=1;i<=n;i++)
 {
 if(d[i]!=0)
 {
 bkp=1/d[i];

247

 if(bkp>0.0000001)
 if(chkmin>bkp)
 chkmin=bkp;

 }
 }

 buckling_load=chkmin;
}

/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */

// Pythagorus function
float Standard_Matrix::pythag(float a,float b)
{
 float c;
 c=(float)sqrt(a*a+b*b);
 return c;
}

float Standard_Matrix::getBucklingLoad()
{
 return buckling_load;
}

D.8 STIFFN.CPP

//Header Files
#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"

//Global variable declaration
extern char anl;

//Constructor
Stiffness::Stiffness(int e)
{
 for(int i=1;i<MSize;i++) //Clear Stiffness Matrix
 for(int j=1;j<MSize;j++)
 A[i][j]=0.0;

248

 element_num=e;
}

// Assemble element stiffness matrices, Ke, to
// a structural stiffness matrix, A
void Stiffness::Assembling_Stiffness_Matrix(float K)
{
 for(int i=1;i<=element_num;i++) //For each element
 {

 stiff.Read_Properties(i);
 stiff.Fill_Properties(i);
 //Fill element matrix
 if(anl=='N')
 stiff.Fill_Element_Stiffness2(K, element_num);
 else
 stiff.Fill_Element_Stiffness1();

 for(int j=1;j<=4;j++) //Fill Global Matrix
 {
 for(int k=1;k<=4;k++)
 {
 int j1 = stiff.get_joint1();
 int j2 = stiff.get_joint2();
 A[4*(j1-1)+j][4*(j1-1)+k]+=stiff.Ke[j][k];
 A[4*(j2-1)+j][4*(j2-1)+k]+=stiff.Ke[j+4][k+4];
 A[4*(j2-1)+j][4*(j1-1)+k]+=stiff.Ke[j+4][k];
 A[4*(j1-1)+j][4*(j2-1)+k]+=stiff.Ke[j][k+4];
 }
 }
 }
}

D.9 ELEMENTGEOM.H

#if !defined(element_geometric_h)
#define element_geometric_h
#define MSize 62

class Element_Geometric:public Properties
{
private:

249

 float Gm[10][10];
public:
 friend class Geometric;
 void Fill_Element_Geometric1(float);
 void Fill_Element_Geometric2(float, int);
 void Fill_Element_Prebuckling(float);
 void Fill_Properties(int);
};

#endif

D.10 ELEMENTSTIFF.H

#if !defined(element_stiffness_h)
#define element_stiffness_h
#define MSize 62

class Element_Stiffness:public Properties
{
private:
 float Ke[10][10];
public:
 friend class Stiffness;
 void Fill_Element_Stiffness1();
 void Fill_Element_Stiffness2(float, int);
 void Fill_Element_Prebuckling(void);
 void Fill_Properties(int);
};

#endif

D.11 GEOMTR.H

#if !defined(geometric_h)
#define geometric_h
#define MSize 62

class Geometric

250

{
private:
 Element_Geometric geom; //element geometric matrix
 int element_num; //number of elements
public:
 float B[MSize][MSize];
 Geometric(int);
 void Assembling_Geometric_Matrix(float);
};

#endif

D.12 PROP.H

#if !defined(properties_h)
#define properties_h
#define MSize 62

class Properties
{
protected:
 int j1,j2;
 float E,G,J,Iy,Ix,Iw,K,l,al;
 float q,a,P,e,zp,F,M1,V1,c;
public:
 void Read_Properties(int);
 virtual void Fill_Properties(int)=0;
 int get_joint1(void);
 int get_joint2(void);
 void Rotation(float[10][10]);
};
#endif

D.13 SPPRT.H

#if !defined(support_h)
#define support_h
#define MSize 62

251

class Supports
{
private:
 int restrain[MSize];
 int rest;
 int size; //Total d.o.f.
 int free_size; //Free d.o.f.
public:
 Supports(int);
 void Get_boundary_conditions();
 int Boundary_Condition(float[MSize][MSize],float[MSize][MSize]);
};

#endif

D.14 STANDM.H

#if !defined(standard_matrix_h)
#define standard_matrix_h
#define MSize 62

class Standard_Matrix
{
private:
 int size; //free d.o.f. size
 float d[MSize],e[MSize];
 float C[MSize][MSize];
 float buckling_load;
public:
 Standard_Matrix();
 void standard_matrix(float[MSize][MSize],float[MSize][MSize],int);
 float pythag(float,float);
 void choldc(float[MSize][MSize]);
 void tred2(float[MSize][MSize]);
 void tqli(float[MSize][MSize]);
 float getBucklingLoad();
};
#endif

252

D.15 STIFFN.H

#if !defined(stiffness_h)
#define stiffness_h
#define MSize 62

class Stiffness
{
private:
 Element_Stiffness stiff; //Element Stiffness matrix
 int element_num; //number of elements
public:
 float A[MSize][MSize];
 Stiffness(int);
 void Assembling_Stiffness_Matrix(float);
};

#endif

253

APPENDIX E

FRAME PROGRAM CODE

This Appendix presents the code written for the Frame Program for the executable file

frame.exe.

E.1 ACTIONS.CPP

#include <stdio.h>
#include "Structure.h"
#include "Stiffness.h"
#include "Loads.h"
#include "Displacements.h"
#include "Actions.h"

//File definitions
extern FILE *fprnt;

//Global variable definitions
extern int jj[MAX], jk[MAX];
extern float cx[MAX], cy[MAX];
extern int jrl[3*MAX];

//Constructor
Actions::Actions()
{
 for(int i=0; i<4; i++)
 {
 for(int j=0; j<MAX; j++)
 action[i][j]=0.0;
 }
}

254

void Actions::memact(Stiffness st, Loads ld, Displacements dp)
{
 int t[6];
 float amd[3*MAX],am[3*MAX],scm[4];
 int element_num = st.getElement();
 for(int i=0; i<element_num; i++) //For each element
 {
 st.compm(i,t,scm); //Call Compm to get stiff. and disp. indices
 for(int k=0; k<6; k++) //Adjust dof index values
 t[k] = t[k] - 1;
 amd[0] = scm[0]*((dp.dj[t[0]]-dp.dj[t[3]])*cx[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cy[i]);
 amd[1] = scm[3]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cx[i]);
 amd[1] = amd[1] + scm[2]*(dp.dj[t[2]]+dp.dj[t[5]]);
 amd[2] = scm[2]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i] + (dp.dj[t[1]]-

dp.dj[t[4]])*cx[i]);
 amd[2] = amd[2] + scm[1]*(dp.dj[t[2]] + 0.5F*dp.dj[t[5]]);
 amd[3] = -amd[0];
 amd[4] = -amd[1];
 amd[5] = scm[2]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i] + (dp.dj[t[1]]-

dp.dj[t[4]])*cx[i]);
 amd[5] = amd[5] + scm[1]*(0.5F*dp.dj[t[2]] + dp.dj[t[5]]);

 for(int j=0; j<6; j++) //Compute total member end actions
 am[j] = ld.aml[j][i] + amd[j];
 //Adds member loads and displacement effects

 action[1][i]=am[0];
 action[2][i]=am[1];
 action[3][i]=am[2];
 }
}

void Actions::print_actions(int j) const
{
 fprintf(fprnt,"%f %f %f ",action[1][j],-action[3][j],action[2][j]);
 //Prints load data: F,M1,V1
}

E.2 DISPLACEMENTS.CPP

#include <stdio.h>
#include <conio.h>

255

#include <process.h>
#include "Structure.h"
#include "Stiffness.h"
#include "loads.h"
#include "Displacements.h"

//File definitions
extern FILE *fprnt;

//Global Variable definitions
extern int jrl[3*MAX];

//Constructor
Displacements::Displacements(int j)
{
 nj=j;
 for(int i=0; i<90; i++)
 df[i]=0.0;
 for(i=0; i<90; i++)
 dj[i]=0.0;
 for(i=0; i<30; i++)
 D[i]=0.0;
}

void Displacements::banfac(Stiffness st, Loads ld)
{
 int i1,j1,j2;
 n = st.getN();
 nb = st.getBandwidth();
 float temp, sum;
 if(st.sff[0][0]<=0.0)
 {
 problem:
 fprintf(fprnt,"ERROR:Negative diagonal in stiffness matrix.");
 exit(0);
 }
 for(int j=1; j<n; j++)
 {
 j1 = j-1;
 j2 = j - nb + 1;
 if(j2<0)
 j2 = 0;
 if(j1!=0)
 {
 for(int i=1; i<j1+1; i++)
 {

256

 i1 = i - 1;
 if(i1>=j2)
 {
 sum = st.sff[i][j-i];
 for(int k=j2; k<i1+1; k++)
 sum = sum - st.sff[k][i-k]*st.sff[k][j-k];
 st.sff[i][j-i] = sum;
 }
 }
 }
 sum = st.sff[j][0];
 for(int k=j2; k<j1+1; k++)
 {
 temp = st.sff[k][j-k]/st.sff[k][0];
 sum = sum - temp*st.sff[k][j-k];
 st.sff[k][j-k] = temp;
 }
 if(sum<=0.0)
 goto problem;
 st.sff[j][0] = sum;
 }
 bansol(st.sff,ld.ac);
}

void Displacements::bansol(float sff[3*MAX][3*MAX], float ac[3*MAX])
{
 int j,k1,k2;
 float sum;
 for(int i=0; i<n; i++)
 {
 j = i - nb + 1;
 if(i<=nb)
 j=0;
 sum = ac[i];
 k1 = i - 1;
 if(j<=k1)
 {
 for(int k=j; k<k1+1; k++)
 sum = sum - sff[k][i-k]*df[k];
 }
 df[i] = sum;
 }
 for(i=0; i<n; i++)
 df[i] = df[i]/sff[i][0];
 for(int i1=0; i1<n; i1++)
 {

257

 int i = n - i1 - 1;
 j = i + nb;
 if(j>n)
 j = n;
 sum = df[i];
 k2 = i + 1;
 if(k2<=j)
 {
 for(int k=k2; k<j+1; k++)
 sum = sum - sff[i][k-i]*df[k];
 }
 df[i] = sum;
 }
}

void Displacements::prdisp()
{
 int nd=3*nj;

 int je;
 int j = n;
 for(int k=0; k<nd; k++) //Sort displacements into original
 { //joint numbering system order
 je = nd - k - 1;
 if(jrl[je]!=1)
 {
 j = j - 1;
 dj[je] = df[j];
 }
 else //If DOF restrained,
 dj[je] = 0.0; //set displacement to zero
 }
 for(j=0; j<nj; j++) //Print displacements
 {
 int k = 3*(j+1);
 D[j]=dj[k-1];
 }
}

void Displacements::print_displacements(int j)
{
 fprintf(fprnt,"%f\n",D[j]);
 //Prints c
}

258

E.3 FRAME.CPP

#include <stdio.h>
#include <process.h>
#include "Structure.h"
#include "Stiffness.h"
#include "loads.h"
#include "Displacements.h"
#include "Actions.h"
#define MAX 30

//File definitions
FILE *freadfile;
FILE *fprnt;
FILE *fmlt;

//Global variable definitions
int jj[MAX],jk[MAX];

//Main Funtion
void main()
{
 long int inp_addr;
 char inputfile[81], title[80], subtitle[80];
 char anl;
 int series_num,struc_num;

 if((fmlt = fopen("frame.ini","r"))==NULL)
 {
 printf("No such file, can't open.");
 exit(0);
 }
 float mlt_fac;
 fscanf(fmlt,"%s %f %ld",&inputfile,&mlt_fac,&inp_addr);
 //Read File and Mutiplication factor
 if((freadfile = fopen(inputfile,"r"))==NULL)
 { //Read in data file
 printf("No such input file, can't open.");
 exit(0);
 }
 fprnt = fopen("frame.out","w");

259

 //Open output data file for writing
 fscanf(freadfile,"%c ",&anl);
 //Read type of analysis (B or P)
 fgets(title, 80, freadfile);
 //Read problem title
 fscanf(freadfile,"%d %d\n",&series_num,&struc_num);
 if(anl=='P')
 {
 series_num=1;
 struc_num=1;
 }
 if(anl=='B')
 fprintf(fprnt,"%c %d %d\n%s",
 anl,series_num,struc_num,title);
 //Write title to output file
 for(int i=1;i<=series_num;i++)
 {
 fgets(subtitle, 80, freadfile);
 //Read problem series title
 if(anl=='B')
 fprintf(fprnt, "%s",subtitle);
 if(anl=='P'&&inp_addr!=0)
 fseek(freadfile,inp_addr,SEEK_SET);
 for(int l=1;l<=struc_num;l++)
 {
 //Create objects
 Stiffness stiff;
 stiff.stread(); //Read properties data
 int element_num = stiff.getElement();
 int joint_num = stiff.getJoint();

 Loads load(joint_num,element_num);
 load.ldread(mlt_fac); //Read load data

 stiff.stifbld(); //Build stiffness matrix
 load.load(); //Build load vector

 Displacements disp(joint_num);
 disp.banfac(stiff, load); //Solve for displacments
 disp.prdisp();

 Actions member_actions;
 member_actions.memact(stiff, load, disp);
 //Solve for member end-actions
 for(int j=0;j<element_num;j++)
 {

260

 stiff.print_properties(j);
 //Prints member data:E,G,J,Iy,Ix,Iw,l,al,jj,jk
 load.print_loads(j);
 //Prints load data: q,a,P,e,zp
 member_actions.print_actions(j);
 //Prints F, V1, M1
 disp.print_displacements((jj[j]-1));
 //Prints c
 }
 stiff.print_restraints();
 }//end for structure
 } //end for series
 fprintf(fprnt," %ld",ftell(freadfile));
 fclose(freadfile); //Close read file
 fclose(fprnt);

}

E.4 LOADS.CPP

#include <stdio.h>
#include "loads.h"

//File definitions
extern FILE *freadfile;
extern FILE *fprnt;

//Global variables
extern float EL[MAX];
extern int jj[MAX], jk[MAX];
extern int id[3*MAX];
extern float cx[MAX], cy[MAX];

//Constructor
Loads::Loads(int j, int e)
{
 nj=j;
 element_num=e;
 nlj=0; nlm=0;
 for(int i=0; i<3*MAX; i++)
 {
 aj[i]=0.0;

261

 ac[i]=0.0;
 }
 for(i=0; i<MAX; i++)
 lml[i]=0;
 for(i=0; i<6; i++)
 {
 for(int j=0; j<MAX; j++)
 {
 aml[i][j]=0.0;
 Load[i][j]=0.0;
 }
 }

}

void Loads::ldread(float mlt_fac)
{
 char ld,hd[80];
 int a,i,j,k;
 float e;
 fgets(hd, 80, freadfile); //Heading
 fscanf(freadfile, "%d %d\n", &nlj, &nlm);

 if (nlj > 0)
 {
 fgets(hd, 80, freadfile); //Heading
 for(j=0; j<nlj; j++) //For each joint load
 {
 fscanf(freadfile, "%d", &k); // Read in joint number and loads
 a=3*k;
 fscanf(freadfile, "%f %f %f %f\n",
 &aj[a-3], &aj[a-2], &aj[a-1],&e);
 aj[a-3]=mlt_fac*aj[a-3];
 aj[a-2]=-mlt_fac*aj[a-2];
 aj[a-1]=mlt_fac*aj[a-1];
 for(i=0;i<element_num;i++)
 {
 if(jj[i]==k)
 {
 Load[3][i]=0.0;
 Load[4][i]=-aj[a-2]*e;
 Load[5][i]=0.0;
 i=element_num;
 }
 }
 }

262

 } //end joint loads

 if (nlm > 0)
 {
 fgets(hd, 80, freadfile); //Heading
 for(j=0; j<nlm; j++) //For each member load
 {
 fscanf(freadfile, "%d ",&i); //Read member number and load
 k=i-1;
 lml[k] = 1; // lml set to 1 for loaded members
 fscanf(freadfile, "%c", &ld);
 if(ld=='P')
 {
 fscanf(freadfile, "%f %f %f\n",
 &Load[3][k],&Load[4][k],&Load[5][k]);
 Load[3][k]=Load[3][k]*mlt_fac;

 aml[0][k]=0.0;
 aml[1][k]=Load[3][k]*(EL[k]-Load[5][k])*(EL[k]-

Load[5][k])*(3*Load[5][k]+(EL[k]-
Load[5][k]))/(EL[k]*EL[k]*EL[k]);

 aml[2][k]=Load[3][k]*Load[5][k]*(EL[k]-Load[5][k])*(EL[k]-
Load[5][k])/(EL[k]*EL[k]);

 aml[3][k]=0.0;
aml[4][k]=Load[3][k]*Load[5][k]*Load[5][k]*(Load[5][k]+3*(EL
[k]-Load[5][k]))/(EL[k]*EL[k]*EL[k]);

 aml[5][k]=-Load[3][k]*Load[5][k]*Load[5][k]*(EL[k]-
Load[5][k])/(EL[k]*EL[k]);

 }
 if(ld=='q')
 {
 fscanf(freadfile, "%f %f\n",&Load[1][k],&Load[2][k]);
 Load[1][k]=Load[1][k]*mlt_fac;
 aml[0][k]=0.0;
 aml[1][k]=Load[1][k]*EL[k]/2;
 aml[2][k]=Load[1][k]*EL[k]*EL[k]/12;
 aml[3][k]=0.0;
 aml[4][k]=Load[1][k]*EL[k]/2;
 aml[5][k]=-Load[1][k]*EL[k]*EL[k]/12;
 }

 if(ld!='P'&&ld!='q'&&ld!='b') printf("MEMBER LOAD TYPE

INCORRECT %c?\n",ld);
 }
 } //end member loads
}

263

void Loads::load()
{
 int nd = 3*nj;

 int i,j,j1,j2,j3,k1,k2,k3,jr;
 float ae[3*MAX];
 for(j=0; j<3*nj; j++) //Clear equivalent load vector
 ae[j] = 0.0;
 if(nlm>0) //If there are member loads,
 { //compute equivalent joint loads
 for(i=0; i<element_num; i++)
 {
 if(lml[i]>0) //Test for member load on member i
 {
 j1 = 3*jj[i] - 3; // Joint indices
 j2 = 3*jj[i] - 2;
 j3 = 3*jj[i] - 1;
 k1 = 3*jk[i] - 3;
 k2 = 3*jk[i] - 2;
 k3 = 3*jk[i] - 1;
 // Compute equivalent loads in global coordinates
 ae[j1] = ae[j1] - cx[i]*aml[0][i] + cy[i]*aml[1][i];
 ae[j2] = ae[j2] - cy[i]*aml[0][i] - cx[i]*aml[1][i];
 ae[j3] = ae[j3] - aml[2][i];
 ae[k1] = ae[k1] - cx[i]*aml[3][i] + cy[i]*aml[4][i];
 ae[k2] = ae[k2] - cy[i]*aml[3][i] - cx[i]*aml[4][i];
 ae[k3] = ae[k3] - aml[5][i];
 }
 }
 }
 for(j=0; j<nd; j++) //Combined joint load vector
 { //id index references Ac in
 jr = id[j]-1; // Afc|Arc order
 ac[jr] = aj[j] + ae[j]; //Adds joint loads gives combined load vector
 }
}

void Loads::print_loads(int j)
{
 fprintf(fprnt,"%f %f %f %f %f ",
 Load[1][j],Load[2][j],Load[3][j],Load[4][j],Load[5][j]);
 //Prints load data: q,a,P,e,zp
}

264

E.5 STIFFNESS.CPP

#include "Structure.h"
#include "Stiffness.h"

//Global Variable definitions
int id[3*MAX];
extern int jj[MAX], jk[MAX];
extern float EL[MAX];
extern float cx[MAX], cy[MAX];
extern int jrl[3*MAX];

//Constructor
Stiffness::Stiffness()
{
 Properties::Properties();
 for(int i=0; i<90; i++)
 {
 for(int j=0; j<90; j++)
 sff[i][j] = 0.0;
 }
}

void Stiffness::stread()
{
 Properties::stread();
}

void Stiffness::stifbld()
{
 float sm[6][6],scm[4];
 int i1,i2,ic,ir,item,n1=0,im[6];
 for(int j=0; j<nd; j++) // Sorts joint indices to partitioned order
 {
 n1 = n1 + jrl[j];
 if(jrl[j] > 0)
 id[j] = n + n1;
 else
 id[j] = j - n1 + 1;
 }

265

 for(int i=0; i<m; i++) // Add stiffness of member i to global stiffness matrix
 {
 compm(i,im,scm); // Stiffnesses & disp indices
 memstif(i,sm,scm); //Element stiffness matrix
 for(int j=0; j<6; j++)//Assemble Global Stiffness Matrix
 {
 i1=im[j];
 if(jrl[i1-1] < 1)
 {
 for(int k=j; k<6; k++)
 {
 i2 = im[k];
 if(jrl[i2-1] <1)
 {
 ir = id[i1-1];
 ic = id[i2-1];
 if(ir<=ic)
 ic = ic -ir +1;
 else
 {
 item = ir;
 ir = ic;
 ic = item;
 ic = ic -ir +1;
 }
 sff[ir-1][ic-1] = sff[ir-1][ic-1] + sm[j][k];
 }
 }
 }
 }
 }
}

void Stiffness::compm(int i,int tm[6],float scm[4])
{
 scm[0] = E[i]*AX[i]/EL[i]; // EA/L
 scm[1] = 4.0F*E[i]*ZI[i]/EL[i]; // 4EI/L
 scm[2] = 1.5F*scm[1]/EL[i]; // 6EI/L^2
 scm[3] = 2.0F*scm[2]/EL[i]; // 12EI/L^3
 tm[0] = 3*jj[i] - 2;
 tm[1] = 3*jj[i] - 1;
 tm[2] = 3*jj[i];
 tm[3] = 3*jk[i] - 2;
 tm[4] = 3*jk[i] - 1;
 tm[5] = 3*jk[i];
}

266

void Stiffness::memstif(int i,float sms[6][6],float scm[4])
{
 /*
 David Oyler CE233 4/24/89 Version 2.1
 Program computes upper triangular portion of a
 single member stiffness matrix in global coordinates
 */

 for(int j=0; j<6; j++) //Clear member stiffness matrix values
 {
 for(int k=0; k<6; k++)
 sms[j][k]=0.0;
 }

 //Compute individual stiffnesses, in global coordinates
 //Add 1 to each index below to obtain actual matrix index values

 sms[0][0] = scm[0]*cx[i]*cx[i] + scm[3]*cy[i]*cy[i];
 sms[0][1] = (scm[0] - scm[3])*cx[i]*cy[i];
 sms[0][2] = -scm[2]*cy[i];
 sms[0][3] = -sms[0][0];
 sms[0][4] = -sms[0][1];
 sms[0][5] = sms[0][2];
 sms[1][1] = scm[0]*cy[i]*cy[i] + scm[3]*cx[i]*cx[i];
 sms[1][2] = scm[2]*cx[i];
 sms[1][3] = -sms[0][1];
 sms[1][4] = -sms[1][1];
 sms[1][5] = sms[1][2];
 sms[2][2] = scm[1];
 sms[2][3] = -sms[0][2];
 sms[2][4] = -sms[1][2];
 sms[2][5] = scm[1]/2;
 sms[3][3] = sms[0][0];
 sms[3][4] = sms[0][1];
 sms[3][5] = sms[2][3];
 sms[4][4] = sms[1][1];
 sms[4][5] = sms[2][4];
 sms[5][5] = scm[1];
}

267

E.6 STRUCTURE.CPP

#include <stdio.h>
#include <math.h>
#include "Structure.h"

//File definitions
extern FILE *freadfile;
extern FILE *fprnt;

//Global Variable definitions
extern int jj[MAX], jk[MAX]; //Member start/end joints
float EL[MAX]; //Element Length
float cx[MAX], cy[MAX]; //x and y dir cosine
int jrl[3*MAX]; //joint restraints

//Constructor
Properties::Properties()
{
 m=0; nj=0; nr=0; nrj=0; nd=0;
 nb=0; n=0;
 for(int i=0; i<30; i++)
 {
 x[i]=0.0; y[i]=0.0;
 AX[i]=0.0; YI[i]=0.0;
 ZI[i]=0.0; WI[i]=0.0;
 E[i]=0.0; G[i]=0.0;
 J[i]=0.0;
 angle[i]=0.0;
 res1[i]=0;
 res2[i]=0;
 res3[i]=0;
 res4[i]=0;
 }
}

void Properties::stread()
{
 int nbi;
 float xcl, ycl;
 char hd[80]=""; // Headings

268

 fgets(hd, 80, freadfile);
 fscanf(freadfile, "%d %d %d %d\n",&m,&nj,&nr,&nrj);
 nd = 3*nj; // Total possible degrees of freedom
 n = nd - nr; // Structure degrees of freedom
 fprintf(fprnt, "%d %d\n",m,nj); //Print to output #members, #joints
 fgets(hd, 80, freadfile); // Read header from input file
 for(int k=0; k<nj; k++)
 { // Read joint coordinates
 int j;
 fscanf(freadfile, "%d",&j); // Read joint number
 fscanf(freadfile, "%f %f\n", &x[j-1], &y[j-1]);
 }
 fgets(hd, 80, freadfile);
 for(int j=0; j<m; j++)
 { // Read Member Data
 int i;
 fscanf(freadfile, "%d",&i); // Read member number
 int k=i-1;
 fscanf(freadfile, "%d %d %f %f %f %f %f %f %f\n",
 &jj[k], &jk[k], &AX[k],&YI[k], &ZI[k],&WI[k],
 &E[k],&G[k],&J[k]);
 nbi = 3*(abs(jk[k] - jj[k]) + 1);
 if(nbi>nb) // Half bandwidth
 nb=nbi;
 xcl = x[jk[k]-1] - x[jj[k]-1]; // Compute x comp. of member length
 ycl = y[jk[k]-1] - y[jj[k]-1]; // Compute y comp. of member length
 EL[k] = sqrt(xcl*xcl + ycl*ycl); // Compute member length
 cx[k] = xcl/EL[k]; // Compute x dir cosine
 cy[k] = ycl/EL[k]; // Compute y dir cosine

 if(cx[k]!=0)
 angle[k]=acos(cx[k]);
 else
 angle[k]=asin(cy[k]);
 }
 fgets(hd, 80, freadfile);
 for(j=0; j<nd; j++) // Clear Joint Restraint List
 jrl[j] = 0;

 for(j=0; j<nrj; j++)
 { // Read joint restraint data
 int k;
 fscanf(freadfile, "%d",&k); // Read in number of restrained joint
 fscanf(freadfile, "%d %d %d",

269

 &jrl[3*k-3], &jrl[3*k-2], &jrl[3*k-1]);
 fscanf(freadfile, "%d %d %d %d\n",
 &res1[k], &res2[k], &res3[k],&res4[k]);
 }
}

void Properties::print_restraints()
{
 for(int k=1;k<=nj;k++) //Prints restraints
 {
 fprintf(fprnt,"%d %d %d %d\n",
 res1[k], res2[k],res3[k],res4[k]);
 }
}

void Properties::print_properties(int j)
{
 fprintf(fprnt,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f",
 E[j],G[j],J[j],YI[j],ZI[j],WI[j]);

 fprintf(fprnt," %10.4f %10.4lf %d %d\n",
 EL[j],angle[j],jj[j],jk[j]);
}

E.7 ACTIONS.H

#if !defined(_actions_h)
#define _actions_h
#define MAX 30

class Actions
{
private:
 float action[4][MAX];
public:
 Actions();
 void memact(Stiffness, Loads, Displacements);
 void print_actions(int) const;
};
#endif

270

E.8 DISPLACEMENTS.H

#if !defined(_displacements_h)
#define _displacements_h
#define MAX 30

class Displacements
{
private:
 float df[3*MAX];
 float D[MAX];
 float dj[3*MAX];
 int nj;
 int nb; //Bandwidth
 int n;
public:
 friend class Actions;
 Displacements(int);
 void banfac(Stiffness, Loads);
 void bansol(float[3*MAX][3*MAX], float[3*MAX]);
 void prdisp();
 void print_displacements(int);
};
#endif

E.9 LOADS.H

#if !defined(_loads_h)
#define _loads_h
#define MAX 30

class Loads
{
private:
 int nlj, nlm; //# loaded joints, # loaded members
 float aj[3*MAX];
 int lml[MAX]; //keeps track of loaded members

271

 float aml[6][MAX]; //member load matrix
 float ac[3*MAX];
 float Load[6][MAX];
 int nj; //number of joints
 int element_num; //number of elements

public:
 friend class Displacements;
 friend class Actions;
 Loads(int, int);
 void ldread(float);
 void load();
 void print_loads(int j);
};
#endif

E.10 STIFFNESS.H

#if !defined(_stiffness_h)
#define _stiffness_h
#define MAX 30

class Stiffness: public Properties
{
private:
 float sff[3*MAX][3*MAX];
public:
 friend class Displacements;
 Stiffness();
 void stread();
 void stifbld();
 void compm(int, int[6], float[4]);
 void memstif(int, float[6][6], float[4]);
};
#endif

272

E.11 STRUCTURE.H

#if !defined(_structure_h)
#define _structure_h
#define MAX 30

class Properties
{
protected:
 int m, nj; //# members, # joints
 int nr, nrj; //# in-plane restraints,# in-plane restrained joints
 int nd; //Total d.o.f.
 int nb; //bandwidth
 int n;
 float x[MAX], y[MAX]; //Joint coordinates
 float AX[MAX], YI[MAX], //Area, Iy
 ZI[MAX], WI[MAX], //Ix, Iw
 E[MAX], G[MAX], //E, G
 J[MAX]; //J
 double angle[MAX]; //angle

 int res1[MAX],res2[MAX],res3[MAX],res4[MAX];

public:
 Properties();
 virtual void stread()=0;
 void print_restraints();
 void print_properties(int j);
 int getElement()
 {
 return m;
 }
 int getJoint()
 {
 return nj;
 }
 int getBandwidth()
 {
 return nb;
 }

273

 int getN()
 {
 return n;
 }
};
#endif

274

BIBLIOGRAPHY

1. Anderson, J. M. and Trahair, N. S. (1972). Stability of Monosymmetric Beams and
Cantilevers. Journal of the Structural Division, ASCE, 98(1), 269-285.

2. Archer, G. C., Fenves, G., and Thewalt, C. (1999). A New Object-Oriented Finite

Element Analysis Program Architecture. Computers and Structures, 70, 63-75.

3. Assadi, M. and Roeder, C. W. (1985). Stability of Continuously Restrained Cantilevers.
Journal of Engineering Mechanics, 111(12), 1440-1456.

4. Barsoum, R. S. and Gallagher, R. H. (1970). Finite Element Analysis of Torsional and

Torsional-flexural Stability Problems. International Journal for Numerical Method in
Engineering, 2(3), 335-352.

5. Bazeos, N. and Xykis, C. (2002). Elastic Buckling Analysis of 3-D Trusses and Frames

with Thin-Walled Members. Computational Mechanics, 29(6), 459-470.

6. Borsei, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993). Advanced Mechanics of
Materials (5th ed.). New York: John Wiley & Sons.

7. Bleich, F. (1952). Buckling Strength of Metal Structures. New York: McGraw-Hill.

8. Booch, G. (1991). Object-Oriented Analysis and Design with Applications (1st ed.).

Redwood, California: Benjamin, Benjamin, and Cummings.

9. Bradford, M. A. and Ronagh, H. R. (1997). Generalized Elastic Buckling of Restrained I-
Beams by FEM. Journal of Structural Engineering, ASCE, 123(12), 1631-1637.

10. Chajes, A. (1993). Principles of Structural Stability Theory. Englewood Cliffs, New

Jersey: Prentice-Hall.

11. Chen, W. F. and Lui, E. M. (1987). Structural Stability Theory and Implementation.

Upper Saddle River, New Jersey: Prentice-Hall.

12. Cox, B. J. (1986). Object-Oriented Programming: An Evolutionary Approach. Reading,

Massachusetts: Addison-Wesley.

13. Demeyer, S., Ducasse, S., and Nierstrasz, O. (2003). Object-Oriented Reengineering

Patterns. New York: Morgan Kaufmann Publishers.

275

14. Fenves, G. L. (1990). Object-Oriented Programming for Engineering Software
Development. Engineering With Computers, 6, 1-15.

15. Forde, B. W. R., Foschi, R. O., and Stiemer, S. F. (1990). Object-Oriented Finite Element

Analysis. Computers and Structures, 34, 355-374.

16. Fowler, M. (1999). Refactoring, Improving the Design of Existing Code. Reading,

Massachusetts: Addison-Wesley.

17. Fowler, M. and Scott, K. (2000). UML Distilled Second Edition: A Brief Guide to the

Standard Object Modeling Language. Boston, Massachusetts: Addison-Wesley.

18. Galambos, T. V. (1963). Inelastic Lateral Buckling of Beams. Journal of the Structural

Division, ASCE, 89(ST5), 217-242.

19. Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its

Implementation. Reading, Massachusetts: Addison-Wesley.

20. Griffiths, D. V. and Smith, I. M. (1991). Numerical Methods for Engineers. London,

England: Blackwell Scientific Publications.

21. Hancock, G. J., and Trahair, N. S. (1978). Finite Element Analysis of Lateral Buckling of

Continuously Restrained Beam-Columns. Civil Engineering Transations, Institution of
Engineering, Australia, CE20(2), 120-127.

22. Horne, M. R. (1950). Critical Loading Condition of Engineering Structures. Cambridge,

England: PhD Dissertation, Cambridge University.

23. Horton, I. (2003). Beginning Visual C++ 6. Indianapolis, Indiana: Wiley Publishing.

24. Jacobson, I. (2000). The Road to the Unified Software Development Process. NewYork:

Cambridge University Press.

25. Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development

Process. Reading, Massachusetts: Addison-Wesley.

26. Kitipornchai, S. and Trahair, N. S. (1975). Elastic Behavior of Tapered Monosymmetric

I-Beams Under Moment Gradient. Journal of the Structural Division, ASCE, 101(8),
1661-1678.

27. Lafore, R. (2002). Object-Oriented Programming in C++. Indianapolis, Indiana: Sams

Publishing.

28. Lee, G. C. (1960). Literature Survey on Lateral Instability and Lateral Bracing

Requirements. Tech. Report 62, Welding Research Council Bulletin, August.

276

29. Liu, W., Tong, M., Wu, X., and Lee, G. (2003). Object-Oriented Modeling of Structural
Analysis and Design with Application to Damping Device Configuration. Journal of
Computing in Civil Engineering, ASCE, 17(2), 113-122.

30. Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity (4th ed.). New

York: Dover Publication.

31. Lu, J., White, D. W., Chen, W. F., and Dunsmore, H. E. (1995). A Matrix Class Library

in C++ for Structural Engineering Computing. Computers and Structures, 55, 95-111.

32. Mezini, M. (1998). Variational Object-Oriented Programming Beyond Classes and

Inheritance. Boston, Massachusetts: Kluwer Academic Publishers.

33. Michell, A. G. M. (1899). Elastic Stability of Long Beams under Transverse Forces.

Philosophical Magazine, 48, 298-309.

34. Miller, G. R. (1991). An Object-Oriented Approach to Structural Analysis and Design.

Computers and Structures, 40, 75-82.

35. Papangelis, J. P., Trahair, N. S., and Hancock, G. L. (1998). Elastic Flexural-Torsional

Buckling of Structures by Computer. Computers and Structures, 68(1-3), 125-137.

36. Pi, Y. L., Trahair, N. S., and Rajasekaran, S. (1992). Energy Equation for Beam Lateral

Buckling. Journal of Structural Engineering, ASCE, 118(6), 1462-1479.

37. Pi, Y. L., and Trahair, N. S. (1992a). Prebuckling Deflections and Lateral Buckling. I:

Theory. Journal of Structural Engineering, ASCE, 118(11), 2949-2966.

38. Pi, Y. L., and Trahair, N. S. (1992b). Prebuckling Deflections and Lateral Buckling. II:

Applications. Journal of Structural Engineering, ASCE, 118(11), 2967-2986.

39. Pidaparti, R. and Hudli, A. V. (1993). Dynamic Analysis of Structures Using Object-

Oriented Techniques. Computers and Structures, 49, 149-156.

40. Powell, G. and Klingner, R. (1970). Elastic Lateral Buckling of Steel Beams. Journal of

the Structural Division, ASCE, 96(9), 1919-1932.

41. Prandtl, L. (1899). Kipperscheinungen. Munich, Germany: PhD Dissertation.

42. Press, W. H. (1992). Numerical Recipes in C: The Art of Scientific Computing.

Cambridge: Cambridge University Press.

43. Roberts, T. M. and Azizian, Z. G. (1983). Influence of Pre-buckling Displacements on

the Elastic Critical Loads of Thin-walled Bars of Open Cross Section. International
Journal of Mechanics Science, 25(2), 93-104.

277

44. Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Reading, Massachusetts: Addison-Wesley.

45. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-

Oriented Modeling and Design. New Jersey: Prentice-Hall.

46. Sallstrom, J. H. (1996). Accurate Calculation of Elastic Buckling Loads for Space Frames

Built up of Uniform Beams of Open Thin-Walled Cross-Section. International Journal of
Numerical Methods in Engineering, 39, 2319-2333.

47. Shlaer, S. and Mellor, S. J. (1988). Object-Oriented Systems Analysis: Modeling the

World in Data. Englewood Cliffs, New Jersey: Yourdon Press.

48. Stroustrup, B. (1991). The C++ Programming Language (2nd ed.). Reading,

Massachusetts: Addison-Wesley.

49. Timoshenko, S. P. and Gere, J. M. (1961). Theory of Elastic Stability (2nd ed.). New

York: McGraw-Hill.

50. Tong, G. and Zhang, L. (2003a). A General Theory for the Flexural-Torsional Buckling

of Thin-Walled Members I: Energy Method. Advances in Structural Engineering, 6(4),
293-298.

51. Tong, G. and Zhang, L. (2003b). A General Theory for the Flexural-Torsional Buckling

of Thin-Walled Members I: Fictitious Load Method. Advances in Structural Engineering,
6(4), 299-308.

52. Torkamani, M. A. M. (1998). Transformation Matrices for Finite and Small Rotations.

Journal of Engineering Mechanics, ASCE, 124(3), 359-362.

53. Trahair, N. S. (1993). Flexural-Torsional Buckling of Structures. Boca Raton, Florida:

CRC Press.

54. Trahair, N. S. (1968). Elastic Stability of Propped Cantilevers. Civil Engineering

Transations, Institution of Engineering, Australia, CE10(1), 94-100.

55. Vacharajittiphan, P. and Trahair, N. S. (1973). Elastic Lateral Buckling of Portal Frames.

Journal of the Structural Division, ASCE, 99(ST5), 821-835.

56. Vacharajittiphan, P. and Trahair, N. S. (1975). Analysis of Lateral Buckling in Plane

Frames. Journal of the Structural Division, ASCE, 101(ST7), 1497-1516.

57. Vacharajittiphan, P., Woolcock, S. T., and Trahair, N. S. (1974). Effect of In-Plane

Deformation on Lateral Buckling. Journal of the Structural Mechanics, ASCE, 3(1), 29-
60.

278

58. Vlasov, V. Z. (1961). Thin-walled Elastic Beams (2nd ed.). Jerusalem, Israel: Israel
Program for Scientific Translation.

59. Wang, C. M., Wang, L., and Ang, K. K. (1994). Beam-Buckling Analysis via Automated

Rayleigh-Ritz Method. Journal of Structural Engineering, ASCE, 120(1), 200-211.

60. White, M. W. (1956). The Lateral Torsional Buckling of Yielded Structural Steel

Members. Bethlehem, Pennsylvania: PhD Dissertation, Lehigh University.

61. Wittrick, W. H. (1952). Lateral Instability of Rectangular Beams of Strain Hardening

Material under Uniform Bending. Journal of Aeronautical Science, 19(12).

62. Zimmermann, T., Dubois-Pelerin, Y., and Bomme, P. (1992). Object-Oriented Finite

Element Programming: I. Governing Principles. Computer Methods in Applied
Mechanics and Engineering, 98, 291-303.

	TABLE OF CONTENTS
	LIST OF TABLES
	Table 10-1 Beam Properties for W12x120
	Table 10-2 Frame Properties
	Table 10-3 Two Bay Frame Properties
	Table A- 1 Direction Cosines

	LIST OF FIGURES
	Figure 4.1 Coordinate System
	Figure 4.2 Cross Section View Displacements
	Figure 4.3 Displacements
	Figure 4.4 External Loads and Member End Actions of the Beam-Column Element
	Figure 4.5 Deformed Element
	Figure 4.6 Undeformed Element ∆z and Deformed Element ∆z (1+ε)
	Figure 4.7 Twist Rotation
	Figure 6.1 Element Degrees of Freedom
	Figure 9.1 Basic Object-Oriented Concepts Illustration
	Figure 9.2 Program Operation
	Figure 9.3 Rational Unified Process
	Figure 9.4 Frame and LBuck Program’s Use Case Diagram
	Figure 9.5 Reverse Engineering Process
	Figure 9.6 Refactoring Process
	Figure 9.7 Possible Frame Program Classes
	Figure 9.8 Possible LBuck Program Classes
	Figure 9.9 Modeling Procedure
	Figure 9.10 Example Class Diagram
	Figure 9.11 Frame Program Classes
	Figure 9.12 LBuck Program Classes
	Figure 9.13 Original Frame Program Procedural Flowchart
	Figure 9.14 Frame Program Class Diagram
	Figure 9.15 Original LBuck Class Diagram
	Figure 9.16 LBuck Program Class Diagram
	Figure 9.17 Frame Program Sequence Diagram
	Figure 9.18 Original LBuck Program Sequence Diagram
	Figure 9.19 Refactored LBuck Program Sequence Diagram
	Figure 9.20 Activity Diagram
	Figure 9.21 Project Program Class Hierarchy
	Figure 9.22 Interface Use Case Diagram
	Figure 9.23 File Menu
	Figure 9.24 Data Menu
	Figure 9.25 Analysis Menu
	Figure 9.26 New Project Dialog
	Figure 9.27 Buckling Analysis Dialog
	Figure 9.28 Non-Dimensional Analysis Dialog
	Figure 9.29 Joint Data Dialog
	Figure 9.30 Member Load Dialog
	Figure 10.1 Simple Beam with Equal End Moments
	Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments
	Figure 10.3 Cantilever Beam with Concentrated Load
	Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load
	Figure 10.5 Continuous Beam
	Figure 10.6 Buckling Load: Continuous Beam
	Figure 10.7 Load Height Analysis: Continuous Beam
	Figure 10.8 Portal Frame with Concentrated Load
	Figure 10.9 Buckling Load: Portal Frame with Concentrated Load
	Figure 10.10 Portal Frame with Three Concentrated Loads
	Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads
	Figure 10.12 Two Bay Frame with Vertical Loads
	Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads
	Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads
	Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads
	Figure 10.16 Two Story Plane Frame with Horizontal Loads
	Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads
	Figure 10.18 Two Story Plane Frame with Vertical Loads
	Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads
	Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads
	Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and
	Figure 10.22 Two Unequal Bay Frame
	Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads
	Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End
	Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load
	Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated
	Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical
	Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and
	Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected
	Figure 10.30 Simple Beam with Concentrated Load
	Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load
	Figure 10.32 Simple Beam with Equal End Moments
	Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments
	Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End
	Figure 10.35 Cantilever Beam with a Concentrated Load
	Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load
	Figure 10.37 Simple Beam with Equal and Opposite End Moments
	Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments
	Figure 10.39 Cantilever Beam with End Moment
	Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment
	Figure 10.41 Simple beam with Distributed Load
	Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load
	Figure 10.43 Cantilever Beam with Distributed Load
	Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load
	Figure A. 1 Rigid Body Movement from Point P to Q
	Figure A. 2 Rigid Body Rotation from Point P to Q

	NOMENCLATURE
	1.0 INTRODUCTION
	2.0 OBJECTIVES
	3.0 LITERATURE REVIEW
	3.1 FLEXURAL-TORSIONAL BUCKLING
	3.2 OBJECT-ORIENTED DEVELOPMENT

	4.0 FLEXURAL-TORSIONAL BUCKLING THEORY
	4.1 STRAIN ENERGY
	4.1.1 Displacements
	4.1.2 Strains
	4.1.3 Stresses and Stress Resultants
	4.1.4 Section Properties
	4.1.5 Strain Energy Equation

	4.2 POTENTIAL ENERGY OF THE LOADS
	4.2.1 Displacements
	4.2.2 Potential Energy of Loads Equation

	4.3 ENERGY EQUATION
	4.4 NON-DIMENSIONAL ENERGY EQUATION

	5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
	5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS
	5.1.1 Displacements Considering In-Plane Deformations
	5.1.2 Strains Considering In-Plane Deformations
	5.1.3 Strain Energy Equation Considering In-Plane Deformations

	5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE
	5.2.1 Displacements Considering In-Plane Deformations
	5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations

	5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS

	6.0 FINITE ELEMENT METHOD
	6.1 ELASTIC STIFFNESS MATRIX
	6.2 GEOMETRIC STIFFNESS MATRIX

	7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS
	7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS
	7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE

	8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION
	9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN
	9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT
	9.1.1 Basic Concepts
	9.1.2 The C++ Object-Oriented Language

	9.2 PROGRAM SET-UP
	9.3 PROGRAM BACKGROUND
	9.4 DESIGN PROCESS
	9.4.1 Inception
	9.4.2 Elaboration
	9.4.3 Construction
	9.4.3.1 Modeling
	9.4.3.1.1 Structural View
	9.4.3.1.2 Dynamic Behavior View

	9.4.3.2 Coding

	9.4.4 Transition

	9.5 WINDOWS INTERFACE
	9.5.1 Windows Programming
	9.5.2 Creating the Interface

	10.0 APPLICATIONS
	10.1 BUCKLING LOAD ANALYSIS
	10.1.1 Buckling Analysis Example 1
	10.1.2 Buckling Analysis Example 2
	10.1.3 Buckling Analysis Example 3
	10.1.4 Buckling Analysis Example 4
	10.1.5 Buckling Analysis Example 5
	10.1.6 Buckling Analysis Example 6
	10.1.7 Buckling Analysis Example 7
	10.1.8 Buckling Analysis Example 8
	10.1.9 Buckling Analysis Example 9
	10.1.10 Buckling Analysis Example 10
	10.1.11 Buckling Analysis Example 11

	10.2 PREBUCKLING ANALYSIS
	10.2.1 Prebuckling Analysis Example 1
	10.2.2 Prebuckling Analysis Example 2
	10.2.3 Prebuckling Analysis Example 3
	10.2.4 Prebuckling Analysis Example 4
	10.2.5 Prebuckling Analysis Example 5
	10.2.6 Prebuckling Analysis Example 6

	10.3 NON-DIMENSIONAL ANALYSIS
	10.3.1 Non-Dimensional Analysis Example 1
	10.3.2 Non-Dimensional Analysis Example 2
	10.3.3 Non-Dimensional Analysis Example 3
	10.3.4 Non-Dimensional Analysis Example 4
	10.3.5 Non-Dimensional Analysis Example 5
	10.3.6 Non-Dimensional Analysis Example 6
	10.3.7 Non-Dimensional Analysis Example 7

	11.0 SUMMARY
	APPENDIX A
	DERIVATION OF THE ROTATION TRANSFORMATION MATRIX
	A.1 VECTOR OR
	A.2 VECTOR RL
	A.3 VECTOR LQ
	A.4 FINITE DISPLACEMENTS TRANSFORMATION
	A.5 ROTATION TRANSFORMATION MATRIX

	APPENDIX B
	B.1 ELEMENT ELASTIC STIFFNESS MATRIX
	B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX
	B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX
	B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX
	B.5 ELEMENT PREBUCKLING STIFFNESS MATRIX
	B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX

	APPENDIX C
	C.1 INPUT FILES
	C.1.1 Input File for the Frame Program
	C.1.2 Input File for the LBuck Program

	C.2 INPUT FILE SYMBOLS

	APPENDIX D
	LBUCK PROGRAM CODE
	D.1 ELEMENTGEOM.CPP
	D.2 ELEMENTSTIFF.CPP
	D.3 GEOMTR.CPP
	D.4 LBUCK.CPP
	D.5 PROP.CPP
	D.6 SPPRT.CPP
	D.7 STANDM.CPP
	D.8 STIFFN.CPP
	D.9 ELEMENTGEOM.H
	D.10 ELEMENTSTIFF.H
	D.11 GEOMTR.H
	D.12 PROP.H
	D.13 SPPRT.H
	D.14 STANDM.H
	D.15 STIFFN.H

	APPENDIX E
	FRAME PROGRAM CODE
	E.1 ACTIONS.CPP
	E.2 DISPLACEMENTS.CPP
	E.3 FRAME.CPP
	E.4 LOADS.CPP
	E.5 STIFFNESS.CPP
	E.6 STRUCTURE.CPP
	E.7 ACTIONS.H
	E.8 DISPLACEMENTS.H
	E.9 LOADS.H
	E.10 STIFFNESS.H
	E.11 STRUCTURE.H

	BIBLIOGRAPHY

