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Flexural-torsional buckling is an important limit state that must be considered in structural steel 

design.  Flexural-torsional buckling occurs when a structural member experiences significant 

out-of-plane bending and twisting.  This type of failure occurs suddenly in members with a much 

greater in-plane bending stiffness than torsional or lateral bending stiffness.  

 Flexural-torsional buckling loads may be predicted using energy methods.  This thesis 

considers the total potential energy equation for the flexural-torsional buckling of a beam-

column element.  The energy equation is formulated by summing the strain energy and the 

potential energy of the external loads.  Setting the second variation of the total potential energy 

equation equal to zero provides the equilibrium position where the member transitions from a 

stable state to an unstable state.    

 The finite element method is applied in conjunction with the energy method to analyze 

the flexural-torsional buckling problem.  To apply the finite element method, the displacement 

functions are assumed to be cubic polynomials, and the shape functions are used to derive the 

element stiffness and element geometric stiffness matrices.  The element stiffness and geometric 

stiffness matrices are assembled to obtain the global stiffness matrices of the structure.  The final 

finite element equation obtained is in the form of an eigenvalue problem.  The flexural-torsional 

buckling loads of the structure are determined by solving for the eigenvalue of the equation.   



 iv

 The finite element method is compatible with software development so that computer 

technology may be utilized to aid in the analysis process.  One of the most preferred types of 

software development is the object-oriented approach.  Object-oriented technology is a technique 

of organizing the software around real world objects.  An existing finite element software 

package which calculates the elastic flexural-torsional buckling loads of a plane frame was 

obtained from previous research.  This program is refactored into an object-oriented design to 

improve the structure of the software and increase its flexibility.   

 Several examples are presented to compare the results of the software package to existing 

solutions.  These examples show that the program provides acceptable results when analyzing a 

beam-column or plane frame structure subjected to concentrated moments and concentrated, 

axial, and distributed loads. 
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1.0 INTRODUCTION 

 
 
 
In steel structures, all members in a frame are essentially beam-columns.  A beam-column is a 

member subjected to bending and axial compression.  Beam-columns are typically loaded in the 

plane of the weak axis so that bending occurs about the strong axis, such as in the case of the 

commonly used wide flange section.  Primary bending moments and in-plane deflections will be 

produced by the end moments and transverse loadings of the beam-column, while the axial force 

will produce secondary moments and additional in-plane deflections.   

When the values of the loadings on the beam-column reach a limiting state, the member 

will experience out-of-plane bending and twisting.  This type of failure occurs suddenly in 

members with a much greater in-plane bending stiffness than torsional or lateral bending 

stiffness (Trahair, 1993).  The limit state of the applied loads of an elastic slender beam of 

perfect geometry is called the elastic lateral-torsional buckling load.  In a beam-column or plane 

frame structure, the buckling load may be referred to as the elastic flexural-torsional buckling 

load. 

 The flexural-torsional buckling load of a member is influenced by several factors 

including:  (1) the cross-section of the member, (2) the unbraced length of the member, (3) the 

support conditions, (4) the type and position of the applied loads, and (5) the location of the 

applied loads with respect to the centroidal axis of the cross section (Chen and Lui, 1987).  The 

goal of a stability analysis is to consider these factors to determine the flexural-torsional buckling 

loads of a structure.  If the flexural-torsional buckling loads of a structure are known, it may be 
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necessary to design the member against flexural-torsional buckling by changing the member size 

or adding bracing.   

The energy method can be used to analyze and calculate the flexural-torsional buckling 

loads of a beam-column element.  However, this method will involve excessive computations 

when done analytically, which will limit the designer to only simple structures.  Computer 

technology may be needed in order analyze more complicated flexural-torsional buckling 

problems.     

 The finite element method can be applied in conjunction with the energy method to 

analyze flexural-torsional buckling problems and provide acceptable results.  The finite element 

method is a numerical method that is a useful tool for solving difficult engineering problems.  

The finite element method is powerful for handling complicated loadings, boundary conditions, 

and geometry.  It is also compatible with software development so that computer technology 

may be utilized to aid in the analysis process.   

 One of the most preferred types of software development is the object-oriented approach.  

Object-oriented technology is a technique of organizing software around real world objects.  

Object-oriented software development focuses on breaking the software into modular units so 

that each modular unit models a real world object.   

 The main objective of the thesis is to analyze the flexural-torsional buckling of beam-

columns and plane frames using the finite element method and object-oriented technology. 
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2.0 OBJECTIVES 

 
 
 
The goal is to analyze and calculate the flexural-torsional buckling loads of beam-columns and 

plane frames using the finite element method and object-oriented technology.  In order to 

accomplish this, the goal may be broken into several smaller objectives: 

1. Derive the most general energy equation of the flexural-torsional buckling of a beam-

column by neglecting in-plane deformations. 

2. Consider the non-dimensional energy equation for flexural-torsional buckling. 

3. Derive the more complete energy equation for flexural-torsional buckling by considering 

in-plane deformation effects. 

4. Derive the finite element equations based on the energy equation for flexural-torsional 

buckling. 

5. Consider the major object-oriented concepts and how they may apply to a flexural-

torsional buckling analysis. 

6. Develop object-oriented models to communicate the design of the program. 

7. Refactor an existing flexural-torsional buckling analysis software package to include 

object-oriented features and reflect the object-oriented models. 

8. Create an object-oriented user interface for the software package to make the software 

more user friendly. 

9. Run examples using the software package. 
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3.0 LITERATURE REVIEW 

 
 

3.1 FLEXURAL-TORSIONAL BUCKLING 

 
The first published discussions of flexural-torsional buckling were made by Prandtl (1899) and 

Michell (1899), which considered the buckling of beams with narrow rectangular cross-sections.  

Their work was further studied by Bleich (1952) and also by Timoshenko and Gere (1961).  This 

research was then published into textbooks, and it was extended to include wide flange sections.  

They provided the classical energy equation for calculating the elastic flexural-torsional buckling 

load of a thin-walled beam.   

Galambos (1963) was an early researcher to consider inelastic flexural-torsional buckling 

of wide flange sections.  Other research was presented by Lee (1960), White (1956), Wittrick 

(1952), and Hornes (1950).  All of this research was done using the classical approach.  This 

approach provides exact solutions, yet it is somewhat limited because all calculations were done 

analytically.   

In the 1960’s, the amount of published research dramatically increased due to digital 

computers.  Researchers used numerical approaches which work well with computers.  Some of 

the numerical approaches studied include the Rayleigh-Ritz method by Wang (1994) and the 

finite difference method by Bleich (1952), Chajes (1993), and Assadi and Roeder (1985).   

Trahair (1968) used the finite integral method, which was also used by Anderson and Trahair 

(1972) and Kitipornchai and Trahair (1975).  Vacharajittiphan and Trahair (1973, 1975) 
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considered the flexural-torsional buckling of portal frames and plane frames using the finite 

integral method.     

The finite element method was introduced into the flexural-torsional buckling problem by 

Barsoum and Gallagher (1970), in which they derived the stiffness equations for flexural-

torsional instability of one-dimensional members with constant cross sections.  Finite element 

solutions of the elastic lateral buckling of beams were also presented by Powell and Klingner 

(1970) and Hancock and Trahair (1978).  Later research includes Sallstrom (1996) and Bradford 

and Ronagh (1997).  Papangelis et al. (1998) used the finite element method and computer 

technology to calculate the flexural-torsional buckling loads of beams, beam-columns, and plane 

frames. Bazeos and Xykis (2002) presented research using the finite element method to analyze 

three-dimensional trusses and frames.    

More recent research on the theory of flexural-torsional buckling has been presented by 

Tong and Zhang (2003a) and (2003b) with their investigations of a new theory to clarify the 

inconsistencies of existing theories of the flexural-torsional buckling of thin-walled members.   

The classical energy equation for calculating the elastic flexural-torsional buckling load 

of a thin-walled beam is usually assumed to be independent of the prebuckling deflections.  The 

early investigations of the effects of prebuckling were based on the solution of the governing 

differential equation (Michell, 1899).  Varcharajittiphan et al. (1974) used the finite integral 

method, and Roberts along with Azizian (1983) used the finite element procedure to consider the 

effects of in-plane deformations on the flexural-torsional buckling problem.  Pi and Trahair 

(1992) pointed out that the finite element solution presented by Roberts and Azizian was not 

accurate, and they present their own finite element solution to the flexural-torsional buckling 
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problem.  A comprehensive book on the flexural-torsional buckling was published by Trahair 

(1993).    

 
 
 

3.2 OBJECT-ORIENTED DEVELOPMENT 

 
Object-oriented languages began to emerge in the 1980s.  Smalltalk was one of the first object-

oriented languages to become widely used.  As the object-oriented languages gained popularity, 

the earliest books on object oriented development were published by Goldberg and Robson 

(1983) and Cox (1986).  These books were then followed by books from Shlaer and Mellor 

(1988), Booch (1991), and Rumbaugh et al. (1991).   

Each of the early books published on object-oriented development used its own form of a 

modeling language in the stages of design.  Grady Booch (1991) from Rational Software, James 

Rumbaugh (1991) from General Electric, and Ivar Jacobson (1992) from Ericson all joined 

together in the late 1990s to create a unified modeling language, hence the name Unified 

Modeling Language (UML), along with the Rational Unified Process for software development.  

The UML was adopted in 1997, and an entire series of books were published on it along with the 

Rational Unified Process including Rumbaugh et al. (1999), Fowler et al. (2000), Fowler (1999), 

and Jacobson et al. (1999).      

In the early 1990s, structural engineers began to use object-oriented development for 

engineering software.  Fenves (1990) discusses many advantages to object-oriented engineering 

software.  Forde et al. (1990) was the first to present an application of object-oriented 

development to the finite element method along with discussing the problems with the 

conventional finite element software.  Zimmermann et al. (1992), Miller (1991), Pidaparti and 
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Hudli (1993), and Lu et al. (1995) also present object-oriented finite element applications for 

structural engineering.  Some of the more recent object-oriented applications to structural 

engineering include Liu et al. (2003) with the first presentation of both structural analysis and 

design using object-oriented technology and Archer et al. (1999) with a new finite element 

program architecture.   
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4.0 FLEXURAL-TORSIONAL BUCKLING THEORY 

 
 
 
Elastic flexural-torsional buckling occurs when a slender thin-walled member fails by deflecting 

laterally and twisting out of the plane of loading.  When the loads on a structure are large, the in-

plane configuration of the structure will become unstable, and the structure will try to reach a 

stable out-of-plane configuration.  This type of failure occurs suddenly in members with a much 

greater in-plane bending stiffness than torsional or lateral bending stiffness.  Flexural-torsional 

buckling may significantly decrease the load capacity of a member; therefore, it is important to 

obtain the flexural-torsional buckling loads of a member to provide an upper limit on the 

member’s strength.  This chapter will focus on deriving the energy equation for flexural-torsional 

buckling.   

The member under consideration is oriented in the oxyz coordinate system as shown in 

Figure 4.1.  The z-axis is oriented along the length of the element at the centroid of the cross-

section.  The x-axis and y-axis are oriented considering the right-hand rule.  The x-axis is the 

major principle axis, and the y-axis is the minor principle axis.  The displacements in the x, y, 

and z directions are denoted as u, v, and w, respectively.  The member is considered to be of 

length L, and the left end of the beam is node 1 while the right end is node 2.  

The basic assumptions that are made to create the mathematical model are: 

1. The entire structure remains elastic.  In order for the members to remain elastic prior to 

buckling, the members must be long and slender.   

2. The members have doubly symmetric cross sections. 
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3. The cross sections of the members do not distort in their own plane after buckling. 

4. The members are perfectly straight.  In reality, members will have slight imperfections 

that will cause some lateral and torsional displacements prior to buckling; however, these 

small displacements are neglected to simplify the problem. 

5. Local buckling does not occur.  Local buckling occurs in a concentrated area of the 

member, and the effects may reduce the resistance of a member (Trahair, 1993).  In short 

or stocky beams, local buckling seems to have more influence than flexural-torsional 

buckling.  By considering a long slender beam, local buckling may be neglected. 

 

1 2
  o z

x

y

L

 

Figure 4.1 Coordinate System 
 

 
 

A member loaded in the yz plane will have an in-plane displacement, v, and in-plane 

rotation v′ .  If the member is loaded along the z axis it will also have an axial displacement, w.  

Flexural-torsional buckling will cause an out-of-plane displacement of the member, u, an out-of-

plane lateral rotation, u′ , an out-of-plane twisting rotation, φ, and an out-of-plane torsional 

curvature, φ′ .  The prime indicates the first derivative with respect to z.  Figure 4.2 shows the 

cross section of a doubly symmetric beam and the displacements u, v, and φ.  Figure 4.3 (a) 

shows the out-of-plane lateral displacement and rotation.  Figure 4.3 (b) shows the in-plane 

displacements, in-plane rotations, and out-of-plane twisting rotation. 
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Figure 4.2 Cross Section View Displacements 
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Figure 4.3 Displacements  

 
  (a) Top View Displacements 

     (b) Front View Displacements 
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In this Chapter, it is assumed that the axial displacement, w, the in-plane bending 

displacement, v, and in-plane bending rotation, v′ , are small and are therefore neglected.  Only 

the out-of-plane displacements, u, and rotations, u′ , φ, and φ′ , will be considered to derive the 

energy equation.  In Chapter 5, the effect of in-plane displacements and rotations on the energy 

equation will be considered and additional terms for the energy equation will be derived. 

Figure 4.4 shows the loads and member end actions of a beam-column element.  The 

element has three applied loads: (1) a distributed load, q, (2) a concentrated load, P, and (3) an 

axial load F.  The distributed load is applied at a height ‘a’, and the concentrated load is applied 

at a height of ‘e’ at a distance ‘zp’ along the length of the beam.  The member experiences four 

end actions: (1) the shears at each end V1 and V2, and (2) the moments at each end M1 and M2. 

 

zP     P
q

   e a

M1 M2

V1 V2

F
F

z

y  

Figure 4.4 External Loads and Member End Actions of the Beam-Column Element 
 
 
 

The energy equation is derived by considering the total potential energy of the structure.  

The total potential energy of a structure, ∏ , is the sum of the strain energy, U, and the potential 

energy of the external loads, Ω , given by 

Ω+=∏ U           (4-1) 
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The strain energy is the potential energy of the internal forces, and the potential energy of 

the loads is the negative of the work done by the external forces.  The theorem of stationary total 

potential energy states that an equilibrium position is one of stationary total potential energy 

(Trahair, 1993), which is expressed as 

0=∏δ          (4-2) 

The theorem of minimum total potential energy states that the stationary value of Π (for 

which δΠ=0) of an equilibrium position is a minimum when the position is stable (Trahair, 

1993).  Therefore, the equilibrium position is stable when 

0
2
1 2 >∏δ           (4-3) 

and the equilibrium position is unstable when 

0
2
1 2 <∏δ          (4-4) 

The second variation of the total potential energy equal to zero indicates the transition from a 

stable state to an unstable state, which is the critical condition for buckling (Pi et al., 1992).  This 

is expressed as 

0
2
1 2 =∏δ          (4-5) 

Substituting in for the strain energy and the potential energy of the loads from Equation 4-1gives 

0)(
2
1 22 =Ω+δδ U         (4-6) 
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4.1 STRAIN ENERGY 

 
The strain energy part of the total potential energy equation can be expressed by considering an 

arbitrary point Po in the cross section of the member.  The strain energy, U, may be expressed as 

∫ ∫ +=
L

pppp
A

dzdAU )(
2
1 τγσε        (4-7) 

where 

 εp = longitudinal strain of point Po 

σp = longitudinal stress of point Po  

γp = shear strain of point Po 

τp = shear stress of point Po 

The second variation of Equation 4-7 is 

 dzdAU pppppp
L A

pp )(
2
1

2
1 222 τγδσεδτδγδσδεδδ +++= ∫ ∫   (4-8) 

Equation 4-8 needs to be defined in terms of the centroidal deformations in order to derive the 

energy equation for flexural-torsional buckling. 

 
4.1.1   Displacements 
 
 
The total displacements of an arbitrary point Po on the beam’s cross section are up, vp, and wp.  

The displacements of point Po need to be defined in terms of the centroidal deformations u, v, 

and w.  The deformation of an element is shown in Figure 4.5.  The coordinates oxyz represent a 

fixed global coordinate system where point o is located at the beginning of the undeformed 

element.  The ox and oy axes coincide with the principle axes of the undeformed element.  The 
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oz axis is oriented along the length of the element and passes through the element’s centroid.  

The point Po is defined as an arbitrary point in an undeformed plane frame element.  The 

coordinate zyxo ˆˆˆˆ  represents a moving, right-handed, local coordinate system which is fixed at a 

point ô  on the centroidal axis of the beam and moves with the beam as it deforms.  The axis zoˆˆ  

corresponds to the tangent at ô  to the deformed centroidal axis.  The xoˆˆ  and yoˆˆ  axes are the 

principle axes of the deformed element.  The coordinates of point Po are ( )0,ˆ,ˆ yx  with respect to 

the local coordinate system.   

 

o ô ˆ z
 Po

ˆ  ŷ v
    w

   u
   ô ˆ

 P
x  n

ˆ Pt

    ŷ

y

θ

( )0,ˆ,ˆ yx

X

Z

Z

X

 
Figure 4.5 Deformed Element 

 
 
 

When the element buckles, point Po moves to the point P.  This deformation occurs in 

two stages: (1) the point Po translates to point Pt, and (2) the point Pt rotates through the angle θ 

to point P.  The point Po translates to point Pt by the displacements u, v, and w.  This translation 

takes the local coordinate system zyxo ˆˆˆˆ  to a new location as shown in Figure 4.5.  The point Pt 
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then rotates through an angle θ to the point P about the line on where on is a line passing through 

the points o and ô .   The rotation takes the local coordinate system zyxo ˆˆˆˆ  to its final location.  

The direction cosines of the axes xoˆˆ , yoˆˆ , and zoˆˆ  relative to the fixed global coordinate oxyz can 

be determined by considering a rigid body rotation.   

The equation expressing the relationship between the displacements of an arbitrary point 

Po on the cross-section and the displacements at the centroid of the cross-section is 

[ ]
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      (4-9) 

where 

 up = out-of-plane lateral displacement of point Po  

 vp = in-plane bending displacement of point Po  

 wp = longitudinal displacement of point Po  

 u = out-of-plane lateral displacement at the centroid 

v = in-plane bending displacement at the centroid 

 w = longitudinal displacement at the centroid 

 x̂  = x-coordinate of the point Po 

 ŷ  = y-coordinate of the point Po 

 kz = torsional curvature of the deformed element 

 ω = warping function (Vlasov, 1961) 

 [ ]RT  = rotation transformation matrix 

The warping displacement zkω−  is defined as the deformation in the z-direction.  The first term 

on the right side of Equation 4-9 represents the translation of point Po to Pt.  The second and 
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third terms on the right side of Equation 4-9 represent the rotation of point Pt to point P due to 

the rotation θ.  TR  is the rotation transformation matrix giving the direction cosines of the rotated 

axes xoˆˆ , yoˆˆ , and zoˆˆ  relative to the fixed axes ox, oy, and oz by considering a rigid body rotation 

of the axes through an angle θ about the axis on.  The transformation matrix TR can be expressed 

for small angles of rotation as 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−++−

+−−−+

++−−−

=

22
1

22

222
1

2

2222
1

22

22

22

yxzy
x

zx
y

zy
x

zxyx
z

zx
y

yx
z

zy

RT

θθθθ
θ

θθ
θ

θθ
θ

θθθθ
θ

θθ
θ

θθ
θ

θθ

    (4-10) 

where θx, θy, and θz are the components of the rotation θ in the x, y, and z axes, respectively.  The 

derivation of the rotation transformation matrix is given in Appendix A. 

The angles θx, θy, and θz may be defined by considering an element ∆z along the z-axis.  

The undeformed element ∆z in the oz-direction is attached to the zyxo ˆˆˆˆ  moving right-handed 

coordinate system.  After deformation, the zoˆˆ -axis coincides with the tangent at ô  to the 

deformed centroidal axis of the beam.  The xoˆˆ  and yoˆˆ  axes are the principal axes of the 

deformed element.  The undeformed element length is ∆z, and the deformed element length is 

( )ε+∆ 1z , where ε is the strain.  The deformed element ( )ε+∆ 1z  has components ∆u, ∆v, and 

(∆z +∆w) on the ox, oy, and oz axes, respectively, as shown in Figure 4.6.   

If zN
r

is a unit vector in the zoˆˆ  direction and lz, mz, and nz are the directional cosines of 

the zoˆˆ  axis with respect to the oxyz coordinate system, then the deformed element may be 

expressed as 

( ) kwjviuNz z

rrrr
∆+∆+∆=+∆ ε1       (4-11) 
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Figure 4.6 Undeformed Element ∆z  and Deformed Element ∆z (1+ε) 
 
 
 
The projections of vector ( ) zNz

r
ε+∆ 1  on the x and y axes are 

( ) ( ) zz lziNzu εε +∆=⋅+∆=∆ 11
rr

     (4-12) 

( ) ( ) zz mzjNzv εε +∆=⋅+∆=∆ 11
rr

     (4-13) 

If Equations 4-12 and 4-13 are divided by ∆z, and the limit is taken as ∆z approaches zero, the 

equations become 
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z
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From Appendix A 
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Therefore, the out-of-plane rotations 
dz
du  and 

dz
dv  can be defined as 

 ( )εθθθ +⎟
⎠
⎞

⎜
⎝
⎛ += 1

2
zx

ydz
du        (4-16) 

( )εθθ
θ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−= 1

2
zy

xdz
dv        (4-17) 

By disregarding higher order terms, Equations 4-16 and 4-17 simplify to 

2
zx

ydz
du θθθ +≈         (4-18) 

2
zy

xdz
dv θθ

θ +−≈         (4-19) 

Solving equations 4-18 and 4-19 for θx and θy gives 

 
dz
du

dz
dv

zx θθ
2
1

+−=         (4-20) 

 
dz
dv

dz
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zy θθ
2
1

+=         (4-21) 

The projections of unit lengths along the xoˆˆ  axis onto the oy axis and yoˆˆ  axis onto the ox axis 

are mx and  ly, respectively.  ly and mx  are used to define the mean twist rotation,φ , of the xoˆˆ  and 

yoˆˆ  axes about the oz axis as shown in Figure 4.7.  From Appendix A, 

2
yx

zyl
θθ

θ +−=  and  
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Figure 4.7 Twist Rotation 
 
 

 
Thus, the twist rotation is equal to θz. 

 φθ =z           (4-22) 

Substituting equations 4-20 to 4-22 into 4-10 gives 
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where 
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The torsional curvature of the deformed cross-section axes can be obtained from (Love, 

1944) 

y
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Substituting Equations 4-24 to 4-32 into Equation 4-33 gives 
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Since the second and third terms in Equation 4-34 are small compared to the first term, Equation 

4-34 may be approximated by 

 
dz
dkz
φ

=          (4-35) 

Substituting Equations 4-24 to 4-32 into Equation 4-9, the displacement of an arbitrary 

point Po in the cross-section may be expressed in terms of the centroidal deformations as  
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           (4-36) 

The first bracket on the right side of Equation 4-36 contains the linear terms of the 

displacements, and the second bracket on the right side of Equation 4-36 contains the nonlinear 

terms of the displacements.  The derivatives of up, vp, and wp with respect to z are 

⎟
⎠
⎞

⎜
⎝
⎛+−= φφ ,,ˆ

dz
dv

dz
duO

dz
dy

dz
du

dz
du

x
p       (4-37) 

⎟
⎠
⎞

⎜
⎝
⎛++= φφ ,,ˆ

dz
dv

dz
duO

dz
dx

dz
dv

dz
dv

y
p       (4-38) 

dz
dv

dz
dx

dz
d

dz
vdy

dz
udx

dz
dw

dz
dwp φφω ˆˆˆ

2

2

2

2

2

2

−−−−=  

 ⎟
⎠
⎞

⎜
⎝
⎛+++− φφφφ ,,ˆˆˆ

2

2

2

2

dz
dv

dz
duO

dz
udy

dz
du

dz
dy

dz
vdx z    (4-39) 



 22

The terms Ox and Oy indicate functions of second order and higher in magnitude, and the term Oz 

indicates functions of third order and higher in magnitude.  The higher order terms Ox, Oy, and 

Oz are disregarded.   

 
4.1.2 Strains   
 
 
The strains of point Po must now be defined in terms of the centroidal deformations.  The 

longitudinal finite normal strain may be expressed as (Boresi, 1993) 
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Equation 4-40 may be simplified if it is assumed that 
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Substituting in the derivatives of the displacements of point Po from Equations 4-37 to 4-39 of 

Section 4.1.1 into Equation 4-41 gives 
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The first variation of the longitudinal strain of Equation 4-42 is 
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The second variation of the longitudinal strain of Equation 4-42 is 
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The second variations of the displacements in the above equation are assumed to vanish. 

 It is assumed that during buckling the beam buckles in an inextensional mode. This 

means that the centroidal strain and the curvature in the principal yz plane remain zero (Trahair, 

1993).  In the case of inextensional buckling, the prebuckling displacements are defined as v and 

w.  At buckling, the displacements are defined as δu and δφ.  Therefore, the displacements u, φ, 

δv, and δw are equal to zero for this problem (Pi et al., 1992).  Equations 4-42 to 4-44 may be 

simplified by eliminating the terms with the displacements u, φ, δv, and δw and their derivatives.  

Thus, Equations 4-42 to 4-44 become 
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The shear strains due to bending and warping of the thin-walled section may be 

disregarded (Pi et al., 1992).  The shear strain at point Po of the cross-section due to uniform 

torsion can be defined as (Trahair, 1993) 
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dz
dtpp
φγ 2−=          (4-48) 

The term tp is the perpendicular distance of P from the mid-thickness line of the cross-section.  

The first variation of the shear strain is 

 
dz

dtpp
φδγδ 2−=         (4-49) 

The second variation of the shear strain is 

 02 =pγδ          (4-50) 

 
4.1.3   Stresses and Stress Resultants   
 
 
The stresses at a point Po on the cross section are directly proportional to the strains by Hooke’s 

Law as 
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The stress resultants are 

 ∫=
A

px dAyM σ         (4-52) 

∫=
A

p dAF σ          (4-53) 

 
4.1.4   Section Properties   
 
 
For a member of length L with a doubly symmetric cross-section, the x̂  and ŷ  principle 

centroidal axes are defined by  

0ˆˆ ∫∫ ==
AA

dAydAx         (4-54) 
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∫ =
A

dAyx 0ˆˆ          (4-55) 

The section properties are defined as 

 ∫=
A

dAA          (4-56) 

∫=
A

x dAyI 2ˆ          (4-57) 

∫=
A

y dAxI 2ˆ          (4-58) 

∫=
A

dAI 2ωω          (4-59) 

∫=
A

P dAtJ 24          (4-60) 

The shear center of a double symmetric cross-section coincides with the centroid, which satisfies 

the conditions (Pi et al., 1992): 

 0ˆ∫ =
A

dAxω          (4-61) 

 ∫ =
A

dAy 0ˆω          (4-62) 

 ∫ =
A

dA 0ω          (4-63) 

 
4.1.5   Strain Energy Equation   
 
 
The second variation of the strain energy equation is developed by substituting 

,,,,, 2
ppppp γδγεδεδε and pγδ 2  along with the stresses and stress resultants from Section 4.1.3 

and the section properties from Section 4.1.4 into Equation 4-8.  The second variation of the 

strain energy for the flexural-torsional buckling problem is 
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where the stress resultants are linearized to 
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dz
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dz
dwEAF =          (4-66) 

 
 
 

4.2 POTENTIAL ENERGY OF THE LOADS 

 
The potential energy of the loads part of the total potential energy equation is expressed by the 

following equation where the loads are multiplied by the corresponding displacements. 

∑∫ +−−−=Ω )()( FwM
dz

dvPvdzqv F
M

P
L

q      (4-67) 

where 

 vq = vertical displacement through which the load q acts 

 q = the distributed load in the y direction 

 vP = vertical displacement through which the load P acts 

 P = the concentrated load in the y direction 

vM = vertical displacement through which the moment M acts 

dz
dvM = rotation due to the moment M 
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 M = the applied moment about the x axis 

 wF = longitudinal displacement through which the load F acts 

 F = the concentrated load in the z direction 

The second variation of the potential energy of the loads is 
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1 2

2
222 FwM

dz
vdPvdzqv F

M
P

L
q δδδδδ    (4-68) 

 
4.2.1   Displacements  
 
 
The longitudinal displacement is assumed to be small and is considered negligible, therefore, 

0=Fw .  The displacement due to the concentrated load P at a height of e from the neutral axis 

may be found by Equation 4-36 (x = 0, y = e, ω = 0) as   

 eemvv yP −+=         (4-69) 
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as given in Section 4.1.1.  Therefore, 
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Simplifying Equation 4-71, the displacement due to the concentrated load is 
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Similarly, the displacement due to the distributed load is 
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Also, the rotation about an axis parallel to the ox axis at a point with a concentrated moment Mx 

is 

dz
dv

dz
dvM =          (4-74) 

In this section, the effects of prebuckling deformations are neglected; therefore, the 

deformation v and its derivative are disregarded.  The displacements corresponding to the 

external loads become 

2

2
1 φavq −=          (4-75) 

2

2
1 φevP −=          (4-76) 

0=
dz

dvM          (4-77) 

The second variations of Equations 4-75 to 4-77 are 

 22 )(
2
1 φδδ avq −=         (4-78) 

 22 )(
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1 φδδ evP −=         (4-79) 

 0
2

=
dz

vd Mδ          (4-80) 

 
4.2.2   Potential Energy of Loads Equation   
 
 
Substituting in the displacements of Equations 4-78 to 4-80 into Equation 4-68 gives the second 

variation of the potential energy of the loads as 
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4.3 ENERGY EQUATION 

 
The second variation of the total potential energy equation for the flexural-torsional buckling of a 

beam-column is the sum of the second variation of the strain energy from Section 4.1.5 and the 

second variation of the potential energy of the loads from Section 4.2.2.  Therefore, the second 

variation of the total potential energy equation is given by 
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where 
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 zP = the distance along the beam to the point of the applied concentrated load 
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4.4 NON-DIMENSIONAL ENERGY EQUATION 

 
The energy equation derived and given in Section 4.3 has limitations in predicting the flexural-

torsional buckling parameter because it depends on the beam properties such as the elastic 

modulus, torsional modulus, length, etc.  A non-dimensional analysis will provide the general 

results for the buckling parameter.  The beam parameter that represents the beam’s stiffness is 
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The loading parameters which are considered to vary with the beam parameter are 
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The other parameters are 
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L
uu yδδ =         (4-91) 

 
h
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h
ee 2
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where 

 h = the total depth of the member 

The non-dimensional parameters are applied to the parameters of the total potential energy 

equation shown in Section 4.3.  The total potential energy equation is changed to the non-

dimensional form by the multiplication factor 
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Therefore, the second variation of the total potential energy may be written as 
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5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE 
DEFORMATIONS 

 
In Chapter 4, the effects of in-plane deformations were disregarded.  In this Chapter, the effects 

of in-plane deformations on the flexural-torsional buckling of a beam-column element are 

considered.  Assuming that the members of the structure are perfectly straight and the 

displacements are small helps to simplify the problem by neglecting the small in-plane 

displacements.  The assumption that buckling is independent of the prebuckling deflections is 

valid only when there are small ratios of the minor axis flexural stiffness and torsional stiffness 

to the major axis flexural stiffness (Pi and Trahair, 1992a).  In the case where the ratios are not 

small, neglecting the prebuckling effects may lead to inaccurate results. 

     
 
 

5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS 

 
5.1.1   Displacements Considering In-Plane Deformations 
 

In Section 4.1.1, the torsional curvature described by Equation 4-34 was simplified to Equation 

4-35 to derive the displacements.  To consider the effects of prebuckling displacements, the 

torsional curvature must not be simplified, and Equation 4-34 must be substituted into Equation 

4-9 when deriving the longitudinal displacement, wP.  This provides a longitudinal displacement 

given by Equation 5-1. 

 



 33

⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −−+⎥⎦

⎤
⎢⎣
⎡ −−−= 22

4
1ˆ

4
1ˆˆˆ φφφφφω

dz
dv

dz
duy

dz
du

dz
dvx

dz
d

dz
dvy

dz
duxwwp  

⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

dz
du

dz
vd

dz
dv

dz
ud

dz
d

dz
du

dz
vd

dz
dv

dz
ud

2

2

2

2

2

2

2

2

2
1

2
1

2
1 φω  

⎥
⎥
⎦

⎤

⎟
⎟

⎠

⎞
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

22

dz
dv

dz
du        (5-1) 

The first derivative of the longitudinal displacement becomes 
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where Oz indicates functions of fourth order and higher in magnitude which are disregarded. 

 
5.1.2 Strains Considering In-Plane Deformations 
 
 
The longitudinal strain used in Section 4.1.2 given by Equation 4-41 is 
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Substituting in Equation 4-37 for 
dz

dup , Equation 4-38 for 
dz
dvp , and Equation 5-2 for 

dz
dwp  in the 

longitudinal strain of Equation 4-41 gives 
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The first variation of the longitudinal strain is given by Equation 5-4. 
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The second variation of the longitudinal strain is given by Equation 5-5. 
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In the case of inextensional buckling as discussed in Section 4.1.2, the prebuckling 

displacements are defined as v and w.  At buckling, the displacements are defined as δu and δφ.  

Therefore, the displacements u, φ, δv, and δw are equal to zero for this problem (Pi et al., 1992).  

Equations 5-3 to 5-5 may be simplified by eliminating the terms with the displacements u, φ, δv, 

and δw and their derivatives.  Thus, Equations 5-3 to 5-5 become 
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The shear strain considering in-plane effects will change from Equation 4-48 to 
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where tp is the perpendicular distance from the mid-thickness line of the cross-section.  The first 

and second variations of the shear strain are 
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02 =pγδ          (5-11) 

 
5.1.3 Strain Energy Equation Considering In-Plane Deformations 
 

Substituting Equations 5-6 to 5-11 along with the stresses and stress resultants of Section 4.1.3 

and the section properties of Section 4.1.4 into Equation 4-8, the second variation of the strain 

energy equation becomes 
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where the stress resultants are linearized to 
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5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE 
DEFORMATIONS  

 
5.2.1 Displacements Considering In-Plane Deformations 
 

The second variations of the displacements through which the external loads act must be derived 

considering the in-plane deformations.  Taking the second variation of Equations 4-72 and 4-73 

gives 
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5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations 
 

Substituting Equations 5-13 and 5-14 into the second variation of the potential energy of the 

external loads from Equation 4-68 gives the final for of the second variation of the potential 

energy of the external loads as 
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5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS 

 
The second variation of the total potential energy equation including the prebuckling effects is 

the sum of the second variation of the strain energy of Section 5.1.3 and the second variation of 

the potential energy of the loads of Section 5.2.2.  Therefore, the second variation of the total 

potential energy equation is 
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The second order in-plane displacements will lead to a quadratic eigenvalue equation 

which is very difficult to calculate.  Therefore, the second order in-plane displacements are 

neglected in order to linearize Equation 5-16.  The general energy equation considering 

prebuckling effects is 

∫ ⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∏

L
yy dz

dEI
dz

vd
dz

udEI
dz

udEI
2

2

2

2

2

2

22

2

2
2 )()(2)(

2
1

2
1 φδφδδδδ ω  

( ) ( ) 2

3

3

3

3

2

2 )()(
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

dz
dGJ

dz
ud

dz
vd

dz
ud

dz
dv

dz
dEI φδδδφδ

ω  



 39

( ) ( )
φδδδδφδ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ 2

2

2

2

2

2 )(2)(
dz

udM
dz

ud
dz

vd
dz

ud
dz
dv

dz
dGJ x  

0)(
2
1)(

2
1)( 22

2

=++
⎥
⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛+ ∑∫ φδφδδ Pedzqadz

dz
udF

L

  (5-17) 

Comparing Eqs. 4-82 and 5-17, there are three extra terms that contribute to the energy equation 

including the in-plane deformations.  These terms are 
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The in-plane curvature can be expressed as 
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Integrating Equation 5-19 gives 
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The solution of the integral in Equation 5-20 will contain a constant of integration.  The constant 

of integration can be solved for by considering the boundary condition at z = 0; therefore, the 

constant of integration is C = 
dz

dv )0( .   

The derivative of Equation 5-19 is 
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Substituting Equations 5-19 to 5-21 into the prebuckling terms of Equation 5-18 gives 



 40

( )
∫ ∫⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−

L
dz

ud
dz

ddz
EI
MEI

dz
udM

I
I

x

x
x

x

y
3

3

2

2

2

2 )()(2
2
1 δφδφδδ

ω  

( ) ( )
2

2

2

2 )()(
dz

ud
dz

ddz
EI
MGJ

dz
ud

dz
dV

I
I

x

x
y

x

δφδδφδω

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−++ ∫  

( ) dz
dz

ud
dz

d
EI
MGJ

x

x
⎥
⎦

⎤
+

δφδ )(       (5-22) 



 41

 
 
 
 

6.0 FINITE ELEMENT METHOD 

 
 
 
This chapter focuses on deriving the finite elements equations used to solve for the flexural-

torsional buckling load of a structure.  The finite element method is a powerful numerical 

method, and it is useful for solving problems in many fields including engineering.  Since the 

analytical solutions of many engineering problems are difficult to obtain, the finite element 

method provides a much easier method of solution with acceptable results.  In the case of linear 

systems, the finite element method requires the solution of a system of simultaneous equations 

rather than complicated differential equations. 

The general steps for formulating the finite element solution begin with discretizing the 

structure into smaller elements.  Discretization is the process of modeling a body by dividing it 

into an equivalent body made up of smaller elements.  For one-dimensional elements, each 

element will be connected to other elements at nodes where they share common points.  After the 

body is divided into its elements, the element type to be used for each element must be selected.  

The element type is going to depend on the physical makeup of the structure, and it should be 

selected to closely model the actual behavior of the body. 

Next, a displacement function is selected for each element.  The most common 

displacement function is a polynomial function expressed in terms of the nodal unknowns.  The 

total number of polynomial functions needed to describe the displacement of an element depends 

on the number of dimensions of the element.  A one-dimensional element will have one 

displacement function, while two- and three-dimensional elements will have two and three 
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displacement functions, respectively.  The strain-displacement relationship and stress-strain 

relationship are then defined for each element.  These relationships are necessary to derive the 

equations describing each finite element’s behavior.   

The element stiffness matrix may be derived using one of several methods including 

energy methods as used in this Chapter.  The principle of minimum total potential energy is the 

energy method used in Chapters 4 and 5 to derive the energy equation for flexural-torsional 

buckling of a beam-column element.   The principle of minimum total potential energy is one 

method that may be used to derive the stiffness matrix of an element.  Unlike other energy 

methods such as the principle of virtual work, the principle of minimum total potential energy is 

applicable only for elastic materials.  In the case of flexural-torsional buckling, an element 

stiffness matrix and an element geometric stiffness matrix will be derived from the energy 

equation.   

After the element stiffness matrices are derived, the element matrices are converted from 

the local to global coordinate system for the entire structure.  The global stiffness matrices for 

each element are assembled to obtain the global stiffness matrix of the structure.  The global 

stiffness matrix will be singular when there are no boundary conditions applied to the structure.  

In order to remove the singularity, the boundary conditions are applied to the matrix so that the 

structure does not move as a rigid body.  This process involves partitioning the global matrix into 

the free and restrained degrees of freedom.  The section of the global stiffness matrix 

corresponding to the free degrees of freedom of the structure is used for solving the problem.  

For the flexural-torsional buckling problem, the partitioned global stiffness and geometric 

stiffness matrices are used to solve for the buckling loads.   
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For this project, the structures under analysis are all plane frames.  The goal is to apply 

the finite element method to a plane frame in order to calculate the flexural-torsional buckling 

load of the structure.  The frame element has six nodal degrees of freedom; therefore, there are a 

total of twelve degrees of freedom for each element.  Figure 6.1 shows the element degrees of 

freedom.   

Figure 6.1 (a) shows the top view of the element with the general displacement u(z) at a 

distance z along the element, which is the lateral bending displacement in the x direction.  It also 

shows the four out-of-plane nodal displacements u1, u2, u3, and u4.  u1 and u3 are the out-of-plane 

lateral nodal displacements at nodes 1 and 2, respectively, and u2 and u4 are the out-of-plane 

nodal rotations at nodes 1 and 2, respectively.   

Figure 6.1 (b) shows the front view of the element with the general displacement v(z) at a 

distance z along the element, which is the in-plane bending displacement in the y direction.  It 

also shows the four in-plane nodal displacements v1, v2, v3, and v4.  v1 and v3 are the in-plane 

nodal displacements at nodes 1 and 2, respectively, and v2 and v4 are the in-plane nodal rotations 

at nodes 1 and 2, respectively.   

Figure 6.1 (c) shows the front view of the element with the general displacement φ(z) at a 

distance z along the element, which is the torsional rotation of the element.  It also shows the 

four nodal displacements ,,, 321 φφφ  and 4φ .  1φ  and 3φ  are the torsional rotations at nodes 1 and 

2, respectively, and 2φ  and 4φ  are the torsional curvatures at nodes 1 and 2, respectively.   

The coordinate system is chosen so that the x-axis is the major principle axis and y-axis is 

the minor principle axis of the cross-section prior to buckling.  The z axis is the centroidal axis of 

the element. 
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Figure 6.1 Element Degrees of Freedom 
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The displacement function for each generalized displacement, ),(),( zvzu and )(zφ , is 

assumed to be cubic.  The displacement function for )(zu  expressed in terms of its shape 

functions is 

[ ]{ }uNzu =)(          (6-1) 
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and 

{ } { }Tuuuuu 4321=        (6-3) 

The matrix [N] is the shape function matrix for the element.  Each term of the shape 

function matrix expresses the shape of the assumed displacement function over the domain of the 

element when the element degree of freedom corresponding to the shape function has unit value 

and all other degrees of freedom are zero. 

The first variation of Equation 6-3 is 

[ ]{ }uNzu δδ =)(         (6-4) 

Applying the same derivation to the deformations v and φ gives 

 [ ]{ }vNzv δδ =)(         (6-5) 

and 

[ ]{ }φδφδ Nz =)(         (6-6) 

The element stiffness matrix is derived using the energy methods discussed in Chapters 4 

and 5.  The total potential energy equation for the complete structure is in the form of     



 46

0)(
2
1

2
1 222 =Ω+=Π δδδ U        (6-7) 

To apply the finite element method to the structure, the complete structure is separated into a 

finite number of elements and the energy equation is written in the form of 

0)(
2
1 22 =Ω+∑ eeU λδδ        (6-8) 

where eU2
2
1δ  is the second variation of the strain energy stored in each element and eΩ2

2
1 λδ  is 

the second variation of the work done on each element.  The term eΩ2
2
1δ  represents the second 

variation of the work that is done on an initial load set, and λ is the buckling load factor by which 

the initial load set must be multiplied to obtain the buckling load set (Trahair, 1993).  For each 

individual element, the strain energy stored and the work done may be expressed in terms of the 

element values of the buckling nodal deformations and the element stiffness matrices for the 

finite element approximation as 
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or 
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where 
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= the local nodal displacement vector of an element 

 λ = the buckling parameter 

 [ke] = the element local stiffness matrix 

 [ge] = the element local geometric stiffness matrix associated with the initial load set 

The element local stiffness matrix and geometric stiffness matrix are both 8 by 8 because there 

are eight local displacements for each element that correspond to the displacements at buckling.  

The arrangement of the matrix elements for the stiffness matrix is shown by Equation 6-11. The 

arrangement of the matrix elements for the geometric stiffness matrix is shown by Equation 6-

12.    Both matrices are symmetric about the main diagonal.       
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In order to develop the stiffness matrices for the finite element approximation, the second 

variation of the total potential energy equation for the flexural-torsional buckling of a beam-

column is used.  The energy equation given in Section 4.3 is 
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Equation 6-13 is written with the loads in terms of the bucking load set.  If this equation is 

rewritten with the loads in terms of the initial load set, the energy equation becomes 
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The first three terms of the equation will contribute to the element stiffness matrix, [ke], 

and the last four terms of the equation will contribute to the geometric stiffness matrix, [ge].   

 
 
 

6.1 ELASTIC STIFFNESS MATRIX 

 
The contribution to the element stiffness matrix is 
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Equation 6-15 can be expressed as 
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Equations 6-4 and 6-6 may be substituted into the generalized strain vector to give 
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      (6-19) 

Substituting the strain of Equation 6-19 into Equation 6-16 gives 
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Therefore, the stiffness matrix is 

 [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]

dz
zzN
zN

zzN
D

zzN
zN

zzN
k

L

T

e ∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

,0
,0
0,

,0
,0
0,

   (6-21) 

The stiffness matrix [ ]ek  is derived from Equation 6-21, which provides an 8 by 8 

stiffness matrix.  The deformations in the deformation vector of Equation 6-20 provide the 

arrangement of the stiffness matrix as 
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     (6-22)   

 

However, the stiffness matrix arrangement of Equation 6-22 is not consistent with the 

arrangement of the 8 by 8 stiffness matrix of Equation 6-11.  Therefore, the terms in the matrix 

derived by Equation 6-21 must be moved to the appropriate positions to fill the stiffness matrix 

shown in Equation 6-11.   The terms of the stiffness matrix are calculated and positioned in the 

proper locations in Appendix B. 
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6.2 GEOMETRIC STIFFNESS MATRIX 

 
The contribution to the element geometric stiffness matrix is 
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           (6-22) 

This can be expressed as 
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Mx is defined in Equation 4-82.  Equations 6-4 and 6-6 may be substituted into the generalized 

strain vector of Equation 6-24 to give 
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       (6-26) 

Substituting Equation 6-26 into Equation 6-23 gives 
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Therefore, the geometric stiffness matrix is 
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           (6-28) 

The stiffness matrix [ ]eg  is derived from the Equation 6-28, which provides an 8 by 8 

stiffness matrix.  Once again, the deformations in the deformation vector used to derive the 

matrix are not ordered exactly how they are needed for the 8 by 8 geometric stiffness matrix of 

Equation 6-12.  Therefore, the terms in the matrix derived by Equation 6-28 must be moved to 

the appropriate positions to fill the stiffness matrix shown in Equation 6-12.   The terms of the 

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B. 
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7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS   

 
 
 
Simplifying Equation 5-22 for the additional terms in the second variation of the total potential 

energy equation that account for prebuckling effects as derived in Chapter 5 gives 
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This may be written in terms of the initial load set as 
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The first integral of the equation contributes to the elastic stiffness matrix and the second integral 

of the equation contributes to the geometric stiffness matrix so that Equation 6-10 becomes 
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 The stiffness matrix [ke] and the geometric stiffness matrix [ge] are the same stiffness 

matrices derived in Sections 6.1 and 6.2, respectively.  The stiffness matrix [ ]Pek  and the 

geometric stiffness matrix [ ]Peg  are the stiffness matrices including the prebuckling effects and 

are added to the buckling stiffness matrices as shown in Equation 7-3.   

 
 
 

7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS 

  
The contribution to the element prebuckling stiffness matrix [ ]Pek  is 
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This may be expressed as 
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substituting in Equations 6-4 and 6-6 into the strain Equation 7-6 gives 
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Substituting Equation 7-8 into Equation 7-5 gives 
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Therefore, the prebuckling stiffness matrix is 
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The stiffness matrix [ ]Pek  is derived from Equation 7-10, which provides an 8 by 8 

stiffness matrix.  Once again, the deformations in the deformation vector used to derive the 

matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-

11.  Therefore, the terms in the matrix derived from Equation 7-10 must be moved to the 

appropriate positions to fill the stiffness matrix shown in Equation 6-11.   The terms of the 

stiffness matrix are calculated and positioned in the proper locations in Appendix B. 

 
 
 

7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE 
DEFORMATIONS 

 
The contribution to the prebuckling stiffness matrix [ ]Peg  is given by the additional terms in 

Equation 7-11.   
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Equation 7-11 may be expressed as 
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           (7-14) 

Mx is defined in Equation 4-82.  Substituting in Equations 6-4 and 6-6 into the strain Equation 7-

13 gives 
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Substituting Equation 7-15 into Equation 7-12 gives 
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Therefore, the geometric prebuckling matrix is 
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The geometric stiffness matrix [ ]Peg  is derived from Equation 7-17, which provides an 8 

by 8 stiffness matrix.  Once again, the deformations in the deformation vector used to derive the 

matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-

12.  Therefore, the terms in the matrix derived from Equation 7-17 must be moved to the 

appropriate positions to fill the stiffness matrix shown in Equation 6-12.   The terms of the 

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B. 
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8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION   

 
 
 
The local element nodal buckling deformations, { }ed , need to be transformed to the global 

element nodal buckling deformations, {De}.  The transformation matrix is 
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where 

 α = the angle of rotation for a plane frame element 

These transformations take the form of  
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Substituting Equation 8-2 into Equation 6-10 and simplifying gives 
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or 
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2
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where the element local stiffness matrices may be transformed to the element global matrices by 
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ee TkTK =  = the element global stiffness matrix   (8-5) 

 [ ] [ ] [ ] [ ]ee
T

ee TgTG =  = the element global geometric stiffness matrix associated with  

the initial load set     (8-6) 

For prebuckling, the equation in global coordinates becomes 
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where the element local prebuckling stiffness matrices may be transformed to the element global 

prebuckling stiffness matrices by 

 [ ] [ ] [ ] [ ]ePe
T

ePe TkTK =  = the element global prebuckling stiffness matrix (8-8) 

[ ] [ ] [ ] [ ]ePe
T

ePe TgTG =  = the element global prebuckling geometric stiffness matrix  

   associated with the initial load set   (8-9) 

The element matrices represent the buckling behavior of an individual element.  All of 

the individual element matrices must be summed to get the structure global stiffness matrix. 

 [ ] [ ]∑= eKK  = the structure global stiffness matrix 

 [ ] [ ]∑= eGG  = the structure global geometric stiffness matrix 

 [ ] [ ]
PeP KK ∑=  = the structure global prebuckling stiffness matrix 
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 [ ] [ ]
PeP GG ∑=  = the structure global prebuckling geometric stiffness matrix 

The buckling equation becomes 
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D  = the global nodal displacement vector of the structure 

Since the variation of the displacement does not equal zero, Equation 8-10 becomes 

[ ] [ ]( ){ } 0=+ DGK δλ         (8-11) 

The boundary conditions may be applied to the global stiffness matrices in Equation 8-

11, and the equation may be used to determine the flexural-torsional buckling loads of the 

structure.  Equation 8-11 is in the form of a generalized linear eigenvalue problem.  A symmetric 

positive definite matrix of order n has n eigenvalues λn and n non-zero eigenvectors {δD}n.  The 

lowest eigenvalue defines the load set at which the structure first buckles, and the corresponding 

eigenvector defines the buckling mode of the structure.  

The solution of the eigenvalues and eigenvectors of a generalized eigenvalue problem 

requires that the equation be converted to a standard eigenvalue problem (Griffiths and Smith, 

1991).  In other words, a generalized eigenvalue problem of the form 

0=+ BxAx λ          (8-12) 

should be converted to the standard form of 
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 0=+ xAx λ          (8-13) 

To convert the generalized eigenvalue problem to the standard form, the following steps must be 

taken: 

The general equation is written as 

[ ] [ ]( ){ } 0=+ DGK δλ         (8-14) 

Rearranging Equation 8-14 gives 

[ ]{ } [ ]{ }DGDK δλδ −=        (8-15) 

or 

 [ ] [ ]{ } { }DDKG δλδ −=−1        (8-16) 

or 

[ ] [ ]{ } { }DDGK δ
λ

δ 11 −=−        (8-17) 

Equation 8-17 may be written as 

[ ] [ ] [ ] { } 011 =⎟
⎠
⎞

⎜
⎝
⎛ +− DIGK δ

λ
       (8-18) 

where [ ]I  is the identity matrix. 

The only problem with Equation 8-18 is that although [ ]K  and [ ]G  are symmetric, the 

product [ ] [ ]GK 1−  is generally not symmetric.  To preserve symmetry, the Cholesky’s method 

may be used (Griffiths and Smith, 1991).  The Cholesky method decomposes a square, 

symmetric matrix to the product of an upper triangular matrix and the transpose of the upper 

triangular matrix.  Applying the Cholesky decomposition to the matrix [ ]K  gives 

 [ ] [ ] [ ]TCCK =          (8-19) 
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Substituting equation 8-19 into 8-14 and converting it into the standard form gives (Griffiths and 

Smith, 1991) 

 [ ] [ ] [ ]( ) [ ] { } 0111 =⎟
⎠
⎞

⎜
⎝
⎛ +

−− DICGC T δ
λ

      (8-20) 

Equation 8-20 is in the form of a standard eigenvalue problem.  It can be expressed more closely 

to Equation 8-13 if it is rewritten as 

 [ ] [ ]( ) { } 0=+ DIS δγ        (8-21) 

where 

 [ ] [ ] [ ] [ ]( ) 11 −−= TCGCS  

and 

 
λ

γ 1
=  

A standard eigenvalue problem can be solved in several ways.   

Since the matrices in a flexural-torsional buckling problem often become very large, the 

matrices may be converted to a simpler form using Householder’s method before solving for the 

eigenvalues (Griffiths and Smith, 1991).  Householder’s method converts a symmetric matrix 

into a tridiagonal matrix.  A tridiagonal matrix has non-zero elements only on the diagonal plus 

or minus one column (Press, 1992).  The eigenvalues of a tridiagonal matrix may be solved for 

using QL iteration (Press, 1992).   

The buckling loads are the trial applied loads multiplied by the smallest eigenvalue, λ, 

which may be described by the relationship 

 { } { }FF cr λ=          (8-22) 

where { }crF  is the vector of the buckling loads and{ }F  is the vector of the trial loads. 
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When considering in-plane deformations, the second variation of the total potential 

energy equation becomes 

{ } [ ] [ ]( ) [ ] [ ]( )( ){ } 0
2
1

=+++ DGGKKD PP
T δλδ     (8-23) 

in terms of the global matrices.  The same eigenvalue solution process discussed for the buckling 

analysis is used for the prebuckling analysis; however, the buckling loads considering the effect 

of in-plane displacements will provide accurate results only when the rotation, 
dz

dvC )0(
= , is the 

rotation at buckling.  Since this rotation must be known prior to calculating the buckling loads, 

an iterative approach must be taken to solve this problem.   

The buckling loads are calculated using an initial value of the rotation 
dz

dvC )0(
=  based 

on the trial loads on the structure.  This initial value of C is calculated from a linear in-plane 

anlysis of the structure.  If the eigenvalue, λ, is equal to 1.0, the buckling loads are equal to the 

trial loads.  If the eigenvalue is not equal to 1.0, the trial loads are multiplied by the eigenvalue to 

give new trial loads.  This is expressed by  

 { } { }nn FF λ=+1         (8-24) 

for each trial, n.  The new trial loads are used to recalculate the rotation 
dz

dvC )0(
= .  The new 

rotation may be used to calculate a new eigenvalue.  This procedure is repeated until the 

eigenvalue is equal to 1.0; thus, the trial loads for the case of λ = 1 will be equal to the buckling 

loads considering the effects of prebuckling.   
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9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN 

 
 

 

9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT 

  
Object-oriented software development is “a new way of thinking about problems using models 

organized around real world concepts” (Rumbaugh et al., 1991).  Unlike traditional procedural 

programming languages, object-oriented programming languages focus on breaking the software 

into modular units so that each unit will model a real world object.  This programming approach 

was developed to provide a more organized methodology to software development in 

comparison to the older disorganized approaches.  As stated by Mezini (1998), “the object-

oriented programming paradigm has emerged from the desire to find adequate techniques for 

mastering the complexity of software development.”   

 Object-oriented technology was selected for the program design and implementation over 

other software development technologies because of the many advantages it offers in software 

organization, and it will support a finite element application.  “Traditional methods used for the 

formulation, assembly, and application of finite element analyses are easily transported to object-

oriented environments” (Forde et al., 1990). 

 Section 9.1.1 presents the basic concepts of object-oriented software development.  

Section 9.1.2 discusses the object-oriented language used for the development of the flexural-

torsional buckling program.   
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9.1.1 Basic Concepts 
 
 
The fundamental concept in object-oriented languages is a single entity called an object.  An 

object in an object-oriented program is meant to model an object in the real world through its 

characteristics and behaviors in the same way that a real world object possesses characteristics 

and behaviors.  By combining the characteristics, or attributes, of an object with its behaviors, or 

functions, an object in an object-oriented program can effectively model an object in the real 

world.  This concept of combining attributes and member functions into one entity is known as 

encapsulation.   

The objects in an object-oriented program communicate with each other through their 

member functions.  The communication between objects in an object-oriented program is similar 

to the way real world objects communicate with each other.  An object may call on another 

object’s member functions in order to perform an operation or to retrieve some data.  However, 

objects have the ability to limit the access of their data and member functions from other objects 

so that the information cannot be accessed directly.  This concept is known as information hiding 

and is a key point in encapsulation.  

Restricting data access from other objects helps to prevent unwanted modifications of 

data by other objects.  Every object provides an interface to other objects through its accessible 

functions, and objects may only use the interface of another object in order to communicate with 

it.  The internal structure of the object is hidden so that any changes that occur to the internal 

structure will only affect the object’s implementation.  As a result, an object’s internal structure 

may be varied as long as the alterations do not affect the object’s external behavior. 

Some of the other key concepts in object-oriented programming include classes, 

inheritance, and polymorphism.  A class is the outline, or template, of an object.  It describes all 



 66

of the attributes and operations that an object of its type will contain.  Classes in relation to 

objects are blueprints that specify the structure and behavior of an object of its type.  A class is 

only an abstraction, while an object represents an actual real world item.  Once a class is defined, 

many objects of that class may be created with each object being unique yet possessing all of the 

same features as the other objects.  For example, a class may contain a specific characteristic 

which is of the same type for all of the objects, but each object will set a different value for that 

characteristic.  Each object is created at run-time according to the class specification and is said 

to be an instance of a class.     

Inheritance is a concept of object-oriented programming that allows a class to be 

expanded by creating a new class based on the original class or classes.  The new class is called 

the derived class and the original class is called the base class.  Once a class is defined, another 

class may be derived from it without modifying the original class.  The derived class inherits all 

of the features of the base class and adds its own new features as well.  Only the features new to 

the inherited class must be added to the class definition.  Inheritance is a “kind-of” relationship 

between objects.  In other words, if Class B is derived from Class A, then B is a kind of A.  

Inheritance has improved software development by allowing for separations of specific 

variations of a class.  Inheritance saves a lot of time in programming by allowing for reusability 

of existing code without having to modify and debug the existing code.  

Polymorphism is the ability for the same operation to behave differently on different 

classes (Rumbaugh et al., 1991).  A function or operator may have the same name in two classes; 

however, it can act differently depending on which class it is operating on.  Each class can 

choose its own method of operation.   
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The object-oriented concepts discussed are illustrated in Figure 9.1.  The class definition 

serves as the outline for an object created of that type.  There are two class outlines shown, one 

in each rectangle called Class A and Class B.   The classes have both their attributes and 

operations encapsulated into a single entity.  The diagram shows a base class with three features 

and a derived class with all three of the base classes’ features along with two new features.  Only 

the two new features of the derived class, as shown in the bold print, need to be added to the 

class definition because the derived class will automatically inherit all of the features of the base 

class.  Class B is a specific type of Class A, as shown with the kind-of relationship.   

 
 
 

        Base Class

kind-of

     Derived Class

Operation x
Operation y

Class B

Attributes a
Attribute b
Attribute c

Class A

Attribute a
Attribute b

Operation x

 

Figure 9.1 Basic Object-Oriented Concepts Illustration 
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When an instance of either class is created, other objects may only access the object 

properties that are declared public within the code.  Private and protected data and member 

functions have restricted access by other objects.  Therefore, the public features of a class make 

up the interface of an object of that class, and the private and protected features of an object are 

used to aid in the object’s implementation.   Both classes have the Operation x as a member 

function.  Although these functions have the same name, the derived class has the ability to 

overwrite the base class implementation of the operation and use its own implementation.  

Therefore, the same function may act differently on each of the classes, which demonstrates the 

object-oriented concept of polymorphism.   

Objects, classes, inheritance, and polymorphism are only a few of the many object-

oriented concepts.  These are just the beginning to all of the advantages that object-oriented 

programming has to offer.  More specific concepts will be discussed throughout the program 

development in the following sections. 

One of the main themes that has brought object-oriented concepts to the point that they 

are at today is abstraction.  Abstraction allows a programmer to focus on the overall entity under 

consideration without getting caught up in the details.  This means focusing on defining an object 

rather than on the implementation of an object.  When a user of an object needs information from 

the object, the user needs to know what the object is and does rather than to be concerned with 

how the object is implemented to get the information.  The goal of abstraction is “to isolate those 

aspects that are important for some purpose and suppress those aspects that are unimportant” 

(Rumbaugh et al., 1991).  The move from the first generation of programming languages to 

object-oriented programming has been pushed by a support of abstraction. 
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9.1.2 The C++ Object-Oriented Language   
 
 
There are many languages that support object-oriented design including Smalltalk, Eiffel, and 

C++.  There is no particular object-oriented language that is superior to the others; rather, it is 

best to select a programming language based on its ability to provide sufficient support of the 

desired programming style (Stroustrup, 1991).  The object-oriented language used to develop the 

Lateral-Torsional Buckling Program is C++/C.   

C++ is an extension of the C language.  The C language is an older language that 

supports traditional procedural program design.  C++ was selected over the other object-oriented 

languages because it has become one of the most popular languages that supports object-oriented 

design, and it provides all of the necessary support for object orientation required for this type of 

project.   

C++ was developed by Bjarne Stroustrup (1991) at AT&T Bell Laboratories in order to 

accomplish three main goals: (1) to improve some of the weaknesses of C (2) to add the object-

oriented capabilities to C (3) to allow the C language to support data abstraction (Stroustrup, 

1991).  Adding these features to the C language provided a new programming language 

supporting object-oriented design “without loss of generality or efficiency compared with C 

while remaining almost completely a superset of C” (Stroustrup, 1991). 

Most of the statements used in C are also valid in C++ (Lafore, 2002); however, it is 

important to understand that object-oriented programming is an approach to the overall 

organization of a program and does not focus on the details of the code.  While the code of a 

procedural program may look exactly the same as the code in an object-oriented program, it is 

the organization of the program that sets them apart and makes the object-oriented approach 

preferable for modeling real world situations.   



 70

  
 
 

9.2 PROGRAM SET-UP 

     
Before the software design process is discussed, it is important to understand the overall set-up 

of the program, which will be discussed in this section.  The Lateral-Torsional Buckling Program 

is divided into three distinct programs: (1) Frame.exe, (2) LBuck.exe, and (3) Project.exe.  Each 

of these programs was designed, developed, and tested individually, although they all operate 

together to create the entire Lateral-Torsional Buckling Program.   

The Frame and LBuck programs do all of the structural analysis calculations.  The Frame 

program calculates the in-plane actions of the structure, and the LBuck program calculates the 

flexural-torsional buckling load of the structure.  Both the Frame program and the LBuck 

program execute in batch mode.  Batch mode is a type of program that scans all of its input from 

a data file and writes all of its output to another data file.  These two programs are console 

applications and execute using a simple text file for input and output. 

 The Project program is the user interface used to create the input file and gather the 

output from the Frame and LBuck programs.  This type of program executes in interactive mode 

because the user responds to prompts by entering in data.  The Project program was created as a 

Windows application in order to make the operation of the Frame and LBuck programs user 

friendly.  The Project program is where all user interaction takes place; therefore, the user only 

needs to execute Project.exe in order to run the entire Lateral-Torsional Buckling Program.  The 

advantage of creating the user interface as a Windows application rather than a console 

application is that the program’s interface is more sophisticated and has many of the advanced 
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features common to Windows applications.  However, a Windows application is much more 

complicated than a typical DOS application.   

In a Windows application, all interactions between a program and the user are handled by 

Windows.  Windows communicates with the program through the Windows application 

programming interface (API) which consists of hundreds of functions.  The development of the 

Windows application is discussed in more detail in Section 9.5.   

 

 

User Events

Windows

Windows API

Project.exe

           input file   buckling output

LBuck.exe

           input file frame output

Frame.exe
 

Figure 9.2 Program Operation 
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The operation of the entire program is illustrated in Figure 9.2.  When the user executes 

Project.exe, he is prompted to enter in all of the problem data.  The Project program then uses all 

of the user’s input to create a text input file and executes the LBuck program.  The LBuck 

program then executes the Frame program.  The Frame program opens and executes off of the 

input file and creates an output file with the in-plane actions of the structure.  The LBuck 

program opens the output file from the Frame program and uses this file with the in-plane actions 

to calculate the flexural-torsional buckling loads of the structure.  The results are written to the 

final output file, which are then displayed in the Project program.   

 
 
 

9.3 PROGRAM BACKGROUND 

 
To begin developing the three executable programs required for this project, a software package 

designed by Phusit Dontree was obtained.  This program was developed by Dontree in 1994.  

The package included LBuck.exe, Frame.exe, and a simple console mode user interface that was 

out-dated and not user friendly.  Also provided with the program were a few simple examples 

that where used to check that the program provides the necessary results.   

The LBuck program developed by Dontree was written in C++; however, many of the 

features of object-oriented programming were not used.  Although the concept of classes was 

used in the program, the overall structure of the program was not very object-oriented.  The goal 

is to take the original LBuck program and rework it to enhance the object-oriented features, 

which in object-oriented terminology is known as refactoring a program.  The Frame program 

was written as a procedural program in C.  The internal structure of this program also needs to be 
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completely refactored into an object-oriented structure.  The user interface can be discarded and 

redone as a Windows interface with updated features.   

The term refactoring is used to describe a technique of changing the internal structure of 

a program in order to make it easier to understand and cheaper to modify without changing its 

observable behavior (Fowler, 1999).  The decision to refactor the existing program rather than 

start from scratch was made because the existing program has many features that work well.  The 

program’s output provides exactly what is needed, so the functionality of the program does not 

need to change; only the internal structure of the program needs to change.  The member 

functions within the program were all previously tested and provide the necessary results.  

Therefore, the largest concern is only with the overall structure of the program.  By refactoring 

the program, the design of the software can be improved and made much easier to understand. 

As previously discussed, object-oriented languages are better at modeling real world 

concepts than procedural languages; therefore, it is desired that the program’s structure be 

focused on objects.  Initially, some may argue that the executable program already provides the 

user with satisfactory results, and therefore it would be inexpedient to restructure it.  However, 

there are more advantages to object-oriented programs than just the immediate advantages while 

designing the program.   

By improving the design of existing software, it becomes easier to understand and modify 

in future.  From a maintenance point of view, a program with a poor design will eventually 

become useless if the program is expected to be expanded.  One of the benefits to an object-

oriented program is that it allows for behavioral variations through incremental programming 

(Mezini, 1998).  Incremental programming allows a program to be modified by specifying the 
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new components without changing the old ones.  By refactoring the program now, it will be 

easier for someone in the future to expand or modify it. 

In particular to engineering applications, “finite element analysis programs must adapt to 

accommodate current forms of numerical, functional, and physical technologies.  Finite element 

analysis programs should be constantly changing to satisfy current and future demands of the 

engineering profession” (Forde et al., 1990). 

The four main things that make a program hard to work with as stated by Kent Beck (as 

quoted in Fowler, 1999), who was one of the first people to recognize the importance of 

refactoring, are: 1) programs that are hard to read are hard to modify, 2) programs that have 

duplicate logic are hard to modify, 3) programs that require additional behavior that requires you 

to change running code are hard to modify, and 4) programs with complex conditional logic are 

hard to modify.  These are the four main issues that will be considered while refactoring the 

program.   

 
 

9.4 DESIGN PROCESS 

 
Object-oriented software development must follow a specific design process.  This process must 

outline all of the steps to be taken during the design of the program to move from the abstract 

concepts to the detailed program code.  The Rational Unified Process is a popular design process 

that was developed by Grady Booch, James Rumbaugh, and Ivar Jacobson (Jacobson et al., 

1999).  Although this process was not specifically developed for object-oriented programming, it 

provides a modern approach to software development which can be tailored to model real world 

situations.  This section will discuss the design process used to create the Lateral-Torsional 

Buckling Program.   
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The Rational Unified Process consists of four main phases: inception, elaboration, 

construction, and transition.  Figure 9.3 shows the outline of the design process. The inception 

phase is where the scope of the project is determined.  It establishes the core architecture and 

identifies and reduces critical risks while assuring feasibility (Jacobson, 2000).  The elaboration 

phase is the stage where all of the details are collected to create a plan for the construction.  The 

construction phase is where the system is built, which will involve many iterations.  The 

transition phase is the stage where any work left until the end must be completed such as specific 

forms of testing.  The product is then ready to move to the hands of the users.  Although the 

process stages may sound vague, the details of each phase are going to depend on the type of 

project.  The design process of this section is going to focus on the LBuck and Frame programs. 

 

 

Inception

Elaboration

Construction

Transition

 

Figure 9.3 Rational Unified Process 
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9.4.1 Inception 
 
 
For the inception phase of the project, the scope may be summarized as: refactor an existing 

program that calculates the flexural-torsional buckling loads of a structure and make it object-

oriented along with creating a new user interface that is user friendly.   

 
9.4.2 Elaboration 
 
 
The next phase in the design process is elaboration.  This phase begins with a technique called 

use case modeling.  One of the most important parts to software development is communicating 

the design with others.  This will ensure that the client and other developers involved with the 

design will thoroughly understand the needs of the users.  Use case modeling provides a means 

of communicating with the user, or customer, in a way that is comprehensible.  Use case 

modeling intends to communicate to the user how the system and its environment are related, i.e. 

it describes the system as it appears from the outside in a “black box” type of model.  Use cases 

have two important roles: (1) they capture a system’s functional requirements and (2) they 

structure each object model into a manageable view (Jacobson, 2000). 

The first step in developing the use cases is to determine the actors.  An actor is 

something or someone that will use the system.  In most cases, actors are people using the 

system; however, actors do not need to be human.  Actors may be other systems that require 

information from the current system.  For this program, the actor is considered to be the Project 

program, which is the user interface.  The user interface is the system that calls on the LBuck and 

Frame programs to execute, and it requires the flexural-torsional buckling loads of the structure 

from the programs.      
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The next step is to consider all of the scenarios of the program.  A scenario is a sequence 

of steps describing an interaction between an actor and a system (Fowler, 2000).  A group of 

related scenarios is a use case.  Scenarios are instances of a use case.  A use case may be defined 

as “a coherent unit of externally visible functionality provided by a system unit and expressed by 

sequences of messages exchanged by the system unit and one or more actors of the system unit” 

(Rumbaugh et al., 1999).  The collection of use cases for a system represents the complete 

functionality of the system. 

All scenarios of how the program may be executed must be considered in order to 

construct the use cases.  For the flexural-torsional buckling program there are essentially three 

scenarios: (1) a buckling analysis is conducted on the structure, (2) a prebuckling analysis is 

conducted on the structure, and (3) a non-dimensional analysis is conducted on the structure.  

The user interaction for these three scenarios makes up the use case model.   

The user interaction with the Frame and LBuck programs is essentially inputting a text 

file of data and outputting a text file of results.  Therefore, there is only one use case for this 

program.  It shows the interaction of the user asking the program to use the given input to 

calculate the flexural-torsional buckling loads of the structure.  The use case model for this 

program is shown in Figure 9.4.  For this particular program, the use case model is very simple.  

Programs that are more sophisticated and require more user interaction will have many, even 

hundreds, of use case models.   
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Figure 9.4 Frame and LBuck Program’s Use Case Diagram 

 

 

It is important to provide detailed descriptions of each use case along with the diagram.  

The description of the use case for the program is: The user enters into the program the structure 

properties, dimensions, loads, and restraints.  The program uses the data to calculate the flexural-

torsional buckling load of the structure.  The three scenarios for this use case, as previously 

mentioned, are: (1) the user requests a buckling analysis on the data and the program returns the 

buckling loads of the structure, (2) the user requests a prebuckling analysis on the data and the 

program returns the buckling loads of the structure considering prebuckling effects, and (3) the 

user requests a non-dimensional buckling analysis on the data and the program returns the non-

dimensional buckling loads of the structure.   

The use case model developed defines the system requirements; however, it does not deal 

with any of the internal structure of the system.  Therefore, any type of design method, such as 

procedural or object-oriented, may be used from this point in the design process to develop the 

system as long as it can perform all of the use cases.  Since object-oriented programming is the 

preferred method for high quality systems, the use case models will be used to build the object 

models in the next section.   
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In this stage, it is also necessary for all of the details needed for the construction of the 

programs to be collected.  The operations of the LBuck and Frame programs must first be 

understood before any steps may be taken to refactor them.   

This stage begins the reverse engineering procedure in order to take the concrete program 

code and move it to a higher level abstract model.  Reverse engineering as defined by Demeyer 

et al. (2003) is “the process of analyzing a subject system to identify the system’s components 

and their interrelationships and create representations of the system in another form or at a higher 

level of abstraction.”  This process is carried out to try to understand how the original program 

works and what changes may be made to improve the design.   

As shown in Figure 9.5, the process begins with concrete coding and moves to the design 

and models and then to the original system requirements, in which each move is to a higher level 

of abstraction.  This process is the exact opposite of the design process where the goal is to move 

from the basic requirements to the code.  Similarly to the Rational Unified Process, the reverse 

engineering process allows for iterations while it is carried out; thus, it is incorporated into the 

design process.   

Although the reverse engineering procedure begins here, a majority of the reverse 

engineering process will be incorporated into the construction stage of the program development.  

In this program, none of the basic requirements of the system are changing.  The scope and use 

cases defined in the inception and elaboration stages remain the same for the original and 

modified programs, which are both at the highest level of abstraction.  Therefore, it is the lower 

levels of abstraction that will need to be refactored.  It is important to begin to understand the 

program at this stage in order to carry out the refactoring process in the construction stage.   
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Figure 9.5 Reverse Engineering Process 
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Figure 9.6 Refactoring Process 
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Figure 9.6 shows the refactoring process that will take place during the construction 

phase.  The goal is to move the original code to a more abstract level of modeling.  These models 

along with the system requirements will be used to generate new models based on object-

oriented concepts.  The new models are used to modify the existing code to reflect the changes. 

The reverse engineering process reveals the first major obstacle for understanding the 

program: insufficient documentation.  Little documentation was provided by Phusit for the 

development of the original programs, and some of the documentation that was provided was 

inconsistent with reality.  Therefore, running the software and reading the source code were the 

primary means of obtaining information about the Frame and LBuck programs and their 

operation. 

For the programs to run, the user must enter the geometry, member properties, loading 

conditions and boundary conditions for the structure.  It is necessary to determine how the 

programs operate on this data in order to refine the models of the software.  Once the program 

operations are understood, a plan for the changes may be developed.    

One of the main goals of this project is to provide sufficient documentation to eliminate 

the need for drastic and time consuming reverse engineering by anyone that may expand on or 

work with this program in the future.  

 
9.4.3 Construction 
 
   
The construction phase is the main focus of the project and requires the most amount of time.  

This is where the program gets analyzed, designed, and tested.  While any of the design stages in 

the entire design process may involve iterations, it is most important that an iterative and 

incremental approach be taken during the construction phase.       
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The first step in the construction phase is to take the use cases and develop the classes.  

When considering classes for the program, it is best to select nouns representing real world 

entities from the use case descriptions.  Some of the key words involved in a flexural-torsional 

buckling analysis are: loads, restraints, members, displacements, stiffness matrix, geometric 

stiffness matrix, and reactions.  These are all possibilities for classes.  Since there are two 

programs under consideration, each program’s classes will be examined individually based on 

how the program operates.   

For the frame program, the possible classes are shown in Figure 9.7, and for the LBuck 

program, the possible classes are shown in Figure 9.8.  These are only possible classes for the 

programs, and the class relationships and interactions must be considered before the classes may 

be finalized. 
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Figure 9.7 Possible Frame Program Classes 
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Figure 9.8 Possible LBuck Program Classes 
 

 

 

The next step is to establish the relationships between the classes and to determine if the 

proposed classes will work for the program.  Therefore, it is necessary to determine a way of 

illustrating the class relationships.  It is important to remember that the construction phase allows 

for many iterations, therefore, the classes and their relationships may change several times before 

the program is complete.   

9.4.3.1 Modeling   
 
As mentioned before, communication is essential for a successful program.  At this stage of the 

development, it is necessary to communicate the design at a high level that is comprehensible to 

other developers.  The only way for this to be accomplished is to communicate the system 

models with the use of an effective modeling language.   

The modeling language is essentially the key to communication.  It allows for a universal 

language that is specific to software development yet not as detailed as the actual code. This type 
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of modeling language must allow for more complex and thorough modeling than the use case 

modeling because it must communicate the internal structure of the system.  The Unified 

Modeling Language (UML) is a modeling language developed by Rumbaugh, Jacobson, and 

Booch (1999) which supports object-oriented design and may be used along with the Rational 

Unified Process, although it is not necessary to use them together.  This modeling language is 

useful throughout all of the stages of the design process for a full range of systems, yet remains 

as simple as possible.   

 Before moving into any code refactoring, models of the system must be created to plan 

out the structure of the program.  The UML provides several general categories in which the 

program models may fall into.  The model categories considered for this project are structural 

classification views and dynamic behavior views.  The use case modeling discussed in section 

9.4.2 is also a part of the UML.  There are many sources of information that must be considered 

when building the models.  This is shown in Figure 9.9.  Information must be gathered from the 

problem statement, system requirements, basic knowledge, real-world experiences and the 

original program models.  With all of this knowledge combined, new models may be built and 

used for the development of the software. 
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Figure 9.9 Modeling Procedure 
 
 
 

9.4.3.1.1 Structural View   

The structural classification view shows the relationships between the elements within the 

program.  One of the main types of structural views is the static view which shows the 

relationships among the classes.  This view is illustrated with a class diagram.  Since the class is 

one of the major characteristics of object-oriented programming, the class diagram is an essential 

part of the UML. 

When developing and understanding models, they may be viewed from either a 

conceptual or an implementation perspective.  Conceptual modeling is the process where a 

domain is modeled by ordering the abstractions based on the relationships between them.  The 

term domain is used to represent any aspect of the world that the program is supporting.  This 

type of model is drawn without regard to the software that may implement it.  On the contrary, 

implementation modeling is the process where the implementation is laid out.  There is no 
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distinct line between the two perspectives, but it is important to understand the different 

perspectives in modeling.    

Object-oriented programming supports four important modeling instruments for creating 

class diagrams:  classification / instantiation, aggregation / decomposition, association / 

individualization, and generalization / specialization (Mezini 1998), where each pair of 

instruments are opposites of each other.  The first step to creating a class diagram is to show the 

classes, which is essentially the classification / instantiation modeling mechanism.  This 

mechanism is supported by the object-oriented concept that objects are instances of classes.  

Classification is the process where instances are created from classes, and instantiation is the 

process where instances of classes are extended to form the class. 

The class diagram combines the attributes and operations of a class into a single element 

shown as a rectangle on the diagram.  The rectangle is divided into three parts with horizontal 

lines.  The name of the class is at the top, the attributes are in the middle, and the operations are 

shown at the bottom.  Figure 9.10 shows an example of a class diagram for a class representing 

the stiffness matrix of a structure. 

The data, or attribute, for the class is the global stiffness matrix, and the member 

function, or operation, is to fill the stiffness matrix.  The visibility of the attributes and operations 

are indicated by the + and – signs.  The + sign indicates public data.  An instance of this class 

will allow for all public data to be accessed by other objects.  The – sign indicates private data.  

Private data is hidden, thus, an instance of this class will not make its private data accessible to 

other objects.  A # sign indicate protected data.  The entire sets of classes for the Frame and 

LBuck program are shown in Figure 9.11 and Figure 9.12, respectively. 
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Figure 9.10 Example Class Diagram 
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Figure 9.11 Frame Program Classes 
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Figure 9.12 LBuck Program Classes 
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The second step to creating a class diagram is to show the relationships between the 

classes.  These relationships may be described using the other three modeling mechanisms 

mentioned: aggregation / decomposition, association / individualization, generalization / 

specialization. 

Aggregation / decomposition describes the relationships between abstractions as “parts” 

and “wholes”.  Aggregation is the “part-of” relationship, where a whole abstraction is made up 

of many other abstractions, or parts.  Decomposition is the opposite where the parts are extracted 

from a whole.   

Association / individualization shows the relationships between abstractions by linking 

together items that share some sort of semantic connection in an association, or conversely by 

separating items through individualization.  The abstractions are typically not related by their 

intentional descriptions, which are the class descriptions that will not change over time; however, 

the abstractions are somehow related by their extensional properties, which are the objects that 

will change over time.    

Finally, generalization / specialization expresses the relationships between a generalized 

abstraction and a specialized abstraction.  An abstraction has a generalization relationship with 

another abstraction if it contains all of the properties as the other abstraction, with the other 

abstraction being more specialized.  This modeling mechanism is supported by the object-

oriented concept of inheritance.    

Since the entire internal structure of the Frame program is being modified from a 

procedural program to an object-oriented program, the classes and the relationships between the 

classes need to be determined from only the system requirements.  However, the LBuck program 

does contain some object-oriented concepts.  These concepts need to be analyzed, and the 
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relationships need to be modified in order to improve the object-oriented structure of the 

program.  The first stage of creating the class diagrams will focus on Frame program.  The 

Frame program’s operation is shown in Figure 9.13 with a flowchart, which is a common 

modeling method for procedural programs. 

Figure 9.13 shows the structure of a typical procedural program.  The procedural 

programming languages support the division of a computation into subroutines.  This allows the 

implementation of each subroutine to remain separate from the routine calling it.  Therefore, 

understanding the implementation of a subroutine is enough for using its functionality.  Although 

the implementation may be hidden within a subroutine, the data it uses remains accessible to the 

entire program; therefore, an error in one part of the program may have effects on the rest of the 

system.  In the original Frame program, all of the data is declared global throughout the entire 

program; thus, all operations within the program have access to the data.   

The classes that are being considered for the restructured Frame program were shown in 

Figure 9.11.  The operations within the Frame program need to be assigned to the appropriate 

class that relates to the implementation of the operation.  The data must also be assigned to the 

appropriate classes so that it will become encapsulated with the operations in order to restrict its 

access.  Once these major changes are made, the relationships among the classes may be 

considered. 
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Figure 9.13 Original Frame Program Procedural Flowchart 
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The complete class diagram for the Frame program is shown in Figure 9.14.  The Frame 

class diagram shows the five final classes for that will be used in the program.  A properties class 

was developed to contain all of the properties for each element.  These properties include the 

material properties, member joint coordinates, and the restraint information.  It is important to 

notice that the properties class is noted to be abstract.  This is a way to indicate that no objects of 

the type Properties should be created in the program.  The Properties class serves only as the 

foundation to the Stiffness class; therefore, objects should never be instantiated from it.  By 

declaring the class as abstract, it prevents anyone from creating an instance of that class by 

mistake.   

The keyword query indicates an operation that may return a value but does not alter the 

system (Rumbaugh et al., 1999).  This keyword is used in the Properties, Displacements, and 

Actions classes to indicate that all of the Print operations will not make any changes to the 

objects.  This keyword is often used in these types of situations where an object is called upon to 

print something or to send some data to a calling object, but it does not want to use the operation 

to implement any other type of behavior.   

The Stiffness class is derived from the Properties class, as shown with the open arrow 

indicating inheritance.  The arrow points from the derived class to the base class.  The Stiffness 

class will contain all of the features of the Properties class and add the new features of creating a 

global stiffness matrix. 
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Figure 9.14 Frame Program Class Diagram 
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The other three classes, Loads, Displacements, and Actions, are related to the Stiffness 

class as shown with the other arrows.  The dashed arrow from Actions to Stiffness shows a 

dependency between the two classes that is unidirectional.  A dependency indicates a semantic 

relationship between the two classes, which does not require a set of instances for its meaning 

(Rumbaugh et al., 1999).  Association and generalization are specific types of dependencies; 

however, they have more defined semantics associated with them.  The Actions class calls an 

operation of the Stiffness class as indicated by the keyword call, which creates the dependency 

between the two classes.  The Actions class must call on the Stiffness class because it needs the 

matrix terms for an element stiffness matrix.  The Stiffness class does not contain each element 

matrix individually; rather, it assembles the global stiffness matrix directly. Yet, the Stiffness 

class contains a function that will provide the Actions class with the terms necessary to compute 

the member actions based on the element stiffness matrix.   

The solid arrows between the classes indicate associations.  Therefore, there are semantic 

relationships of the extensional properties between instances of these classes.  The displacements 

class must be associated with the Loads and Stiffness class in order to calculate the 

displacements.  Likewise, the Actions class must be associated with the Loads and 

Displacements classes in order to calculate the member actions.  The keyword friend indicates 

that there is permission to access any of the contents of the class.  The reason for granting this 

type of permission will be discussed later in this section. 

Now, the LBuck program’s class diagram will be considered.  The first step is to create 

the class diagram for the program prior to any refactoring and to point out the problems with the 

diagram that need to be addressed.  Then, the diagram may be modified to reflect the changes 

necessary to make the program more object-oriented.  
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As mentioned, inheritance supports the modeling of concepts of generalization and 

specialization.  The derived class inherits all of the properties of the base class and adds new 

features of its own.  Therefore, the derived class is an extension of the base class.  This concept 

may be supported by inheritance; however, there is no guarantee in the object-oriented language 

that inheritance will be used consistently with the generalization / specialization concept.  A 

programmer has the freedom to use inheritance to aid in the implementation of the program 

without remaining faithful to the conceptual idea of generalization.  This is one of the 

disadvantages to object-oriented programming.   

An example of this conceptual and implemental discrepancy is in the original LBuck 

program.  The Properties class is the base class for the Element Stiffness Matrix class and the 

Element Geometric Stiffness Matrix class, which are both base classes for the Stiffness Matrix 

class and the Geometric Stiffness Matrix class.  These are then base classes for the Standard 

Matrix class.  This creates a class hierarchy as shown in Figure 9.15, which is part of the class 

diagram for the original LBuck program.  The attributes and operations have been left out for 

simplification.   

Conceptually, the Element Stiffness Matrix and Geometric Stiffness Matrix are both 

specializations of the Properties class because they should both contain all of the features of the 

Properties class and add new features of their own.  A function declared in the properties class 

should implement the same for both of the specialized classes.  Therefore, these relationships 

agree with the concept of generalization.   

The Stiffness Matrix and the Geometric Stiffness Matrix classes are derived from the 

Element Stiffness Matrix and Element Geometric Stiffness Matrix classes, respectively, implying 

that the derived classes are extensions of the base classes.  Conceptually, the Stiffness Matrix 
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and Geometric Stiffness Matrix are not true extensions of the Element Stiffness Matrix and 

Element Geometric Stiffness Matrix classes because they do not use any of the base class’s 

operations, such as the function to fill the element matrix.  The Stiffness Matrix and Geometric 

Stiffness Matrix use only the operations that are unique to the class.  Instead of a global stiffness 

matrix being a specialization of an element stiffness matrix, it is conceptually preferable to 

consider a global stiffness matrix being made up of element stiffness matrices.  This creates a 

“part-of” relationship rather than a “kind-of” relationship. 
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Figure 9.15 Original LBuck Class Diagram 
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The Standard Matrix is derived from the Stiffness Matrix and the Geometric Stiffness 

Matrix classes.  Once again, this does not conceptually support generalization.  A standard 

matrix is not a kind of stiffness matrix or geometric stiffness matrix; rather, they are related by 

an association.  It could be considered that a standard matrix contains a stiffness matrix and a 

geometric matrix, which would create a “part-of” relationship.  However, it would not be easily 

understood how to decompose these two parts from the whole.  Therefore, it is preferable to 

relate them with an association which provides a semantic connection between their extensional 

properties.  

In the original program, using the inherited relationship between all of the classes aided 

the implementation by making it easer for each class to access any part of another class.  

However, this is violates the basic concept of object-oriented programming of restricting access.  

It is widely argued that inheritance used merely for implementation purposes will cause 

problems with the program and reflect poor understanding of the purpose of inheritance (Mezini 

1998).  This clearly illustrates the difference between creating a model from a conceptual 

viewpoint and from an implementation viewpoint.  

There are other problems with the multiple inheritance shown in Figure 9.15.  Inheritance 

is being used in a diamond shape hierarchy, so that the Standard Matrix class is derived from two 

classes that share a common base class.  This type of hierarchy creates a problem in dealing with 

the attributes in the common ancestor class.  The problem is whether the attributes should be 

inherited once through one of the paths to the Standard Matrix class or twice through both paths 

to the Standard Matrix class.  This creates difficulty in organizing the behavior of the program.  

In this situation, some of the attributes may need to be inherited once and others twice while 

some of the attributes may not need to be inherited at all since the inheritance does not 
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conceptually support generalization.  At this stage of the design, this conflict may not be entirely 

solved through the conceptual models and may end up being left for the implementation 

development stage.     

The other problem with the diagram is that there are homonymous attributes, which are 

difficult to deal with when incrementally varying a model.  A homonymous attribute is a conflict 

arising when two attributes inherited from two different parents have the same name (Mezini, 

1998).  For example, the Element Stiffness Matrix class and the Geometric Stiffness Matrix class 

both have functions to fill the element matrix.  In the code, these functions are given the same 

name.  These operations should be kept separate form each other because they are from two 

different sub-divisions of a single object.  It is easier to eliminate these problems with 

homonymous attributes and duplicated attributes rather than to use an approach to dealing with 

them.   Therefore, the conceptual model will be modified to remove the multiple inheritance 

hierarchy shown in Figure 9.15.  

The final class diagram for the LBuck program after being modified to enhance the 

object-oriented features is shown in Figure 9.16.  The LBuck class diagram shows the seven 

classes used in the program.  Once again there is an abstract Properties class containing the 

material properties, loads, and joint properties of each element.  The Element Stiffness Matrix 

and Element Geometric Stiffness Matrix classes are derived from the Properties base class as 

indicated by the inheritance open arrowheads.   
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Figure 9.16 LBuck Program Class Diagram 
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The other class associations are shown with the solid arrows.  The solid arrows show the 

navigability between the classes, and in all of these cases it is unidirectional.  One of the new 

features shown on the diagram is the black diamond which is used to indicate composition.  

Composition is another one of the basic concepts of object-oriented programming.  Composition 

is a specific form of aggregation.  This shows the conceptual relationship of an element stiffness 

matrix being a part of a global stiffness matrix.  Composition is a stronger form of aggregation 

where the part may belong to only one whole and the life of the part is the life of the whole.   The 

Stiffness Matrix and the Geometric Stiffness Matrix classes are the “whole” and the Element 

Stiffness Matrix and Element Geometric Stiffness Matrix classes are the “parts”. 

The Standard Matrix class must be associated with the Stiffness Matrix and the 

Geometric Stiffness Matrix classes in order to calculate the standard matrix.  The Restraints are 

applied to both the stiffness matrix and the geometric stiffness matrix; therefore, associations 

between these classes are indicated.   

At the ends of the arrows are numbers indicating the multiplicity of the instances of the 

classes with (*) denoting infinity.  For example, a Stiffness matrix object may be associated with 

anywhere from one to an infinite number of element stiffness matrices at a conceptual level; 

however, each element stiffness matrix may be associated with only one stiffness matrix.  The 

ordered keyword is a constraint implying there is an ordering of the objects that it is associated 

with and that a particular object can appear on the total list of objects only once.  The other 

features on the diagram are similar to those discussed on the Frame class diagram. 

9.4.3.1.2 Dynamic Behavior View   

The static view provided the model of the classes and their definitions; however, it is equally 

important to understand which objects are instantiated at run time and how the objects interact 
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with each other during the program execution.  The dynamic behavior view provides a visual 

model of the system over a period of time.  Dynamic behavior may occur as an object interacts 

with the world or as objects interact with each other to implement a behavior.  Since the Frame 

and LBuck programs do not interact with the user, dynamic behavior views will only be used to 

illustrate how objects interact with each other to implement a behavior.   

A sequence diagram is a specific type of dynamic behavior view that displays the 

interaction as a two-dimensional chart.  The sequence diagram for the Frame program is shown 

in Figure 9.17.  Since the original Frame program was not object-oriented, the sequence diagram 

was created from the system requirements.   

An object is shown on the sequence diagram as a box with the class name underlined 

indicating that it is an instance of a class not a class.  The time line of the model is the vertical 

axis.  Time begins at the top of the page and proceeds down the page.  The line below an object 

represents the lifeline of the object and is shown as a dashed line.  When an object is deleted, the 

lifeline of the object ends with an X.  Objects may be destroyed by other objects, or they may 

self destruct.              

When a message is sent between objects, it is shown as a call with an arrow pointing 

from the calling object to the object it is calling.  The message arrows are arranged in time 

sequence from the top to the bottom of the diagram.  The message includes the name of the 

function sending the message to the object or the type of message being sent.  Anytime an object 

is sent a message, the object becomes active.  The activation of an object is shown with an 

activation box on top of the object’s lifeline.  Activation includes the amount of time to execute a 

procedure including any time it must wait for nested procedures to execute.   
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Figure 9.17 Frame Program Sequence Diagram 
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A recursive call occurs when control reenters an operation on an object, but the second 

call is a separate activation from the first (Rumbaugh et al., 1999).  This may be shown by 

stacking activation boxes.  A return message is indicated with a dashed arrow back to the calling 

object.  An object may make a self-call, as indicated by the message arrow returning back to the 

same lifeline.  A half arrowhead indicates and asynchronous message.  This type of message 

allows for the caller to continue with its own processing, such as in the case of an object creating 

a new object.   

The Frame sequence diagram shows the four objects created when the program executes: 

a Stiffness object, a Load object, a Displacement object, and an Action object.  These objects 

communicate between each other by sending the messages shown in the diagram.  All of the 

same behaviors are being implemented on this program design model as compared to the original 

Frame dynamic behavior view, which was the Frame flowchart shown in Figure 9.13.  Instead of 

the behaviors being implemented in a procedural approach, now the behaviors are being 

implemented through the objects, which are communicating information with each other.      

First, the input data for the properties and loads are read from the readProperites process 

and the readLoad process, respectively.  The buildStiffness process builds the global stiffness 

matrix of the structure based on the properties data.  The buildLoadVector process builds the 

joint load vector based on the load data.  The solveDisplacements process solves the equations 

for the displacements.  The solveActions process computes the end-actions and reactions.  The 

most important information needed from this program are the end actions, which must be used in 

the LBuck program to calculate the buckling loads.    

 In order to create the LBuck program’s sequence diagram, the original sequence diagram 

must first be created.  After investigating the LBuck program’s behavior, the sequence diagram 
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in Figure 9.18 was developed.  There are only three objects created for the entire program: a 

Main Process object, a Standard Matrix object, and a Supports object.  The main process object 

is only used for implementation purposes and does not represent any real world object.  A Main 

Process object is instantiated entirely as a means to start the buckling analysis.   

 As discussed in the Section 9.4.3.1.1 on static views, the Standard Matrix class was 

derived from a hierarchy of classes as shown in Figure 9.15.  The Standard Matrix object will 

inherit all of the features of the classes above it in the class hierarchy.  This is the reason that the 

Standard Matrix object has so many self calls on the sequence diagram.  Instead of calling on and 

communicating with other objects, the Standard Matrix object is doing all of the work itself.  It 

has become somewhat of a “super” object, which is required to do almost all of the program’s 

implementation, much of which is not related to the conceptual definition of the Standard Matrix 

object.  This diagram shows very little communication between the objects and is a poor example 

of an object-oriented design.  To improve the design, the sequence diagram needs to be 

remodeled to encompass more object-oriented concepts. 

The final LBuck sequence diagram is shown in Figure 9.19.  This diagram shows far 

more objects communicating with each other to implement the behavior of the program.  The 

Main Process object is eliminated because it is unnecessary for the program.  The Standard 

Matrix object is broken up into more objects, which creates a much better conceptual model 

because the Standard Matrix object now has to implement only the behaviors directly related to 

the conceptual definition.  It is important to notice that all of the same behaviors are being 

implemented in the new model, only now the behaviors are redistributed among the objects to 

enhance the object-oriented features of the program design.  
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Figure 9.18 Original LBuck Program Sequence Diagram 
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Figure 9.19 Refactored LBuck Program Sequence Diagram 
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The assembleStiffness process creates a new element stiffness matrix object for each 

element in the discretized structure.  Each element object reads the properties for the element and 

fills the matrix in the fillElementMatrix process.  Each matrix is sent back to the Stiffness Matrix 

object and assembled into the appropriate position in the global stiffness matrix.   

The exact same process occurs for the Geometric Matrix object.  The assembleGeometric 

process creates a new Element Geometric Matrix object for each element in the discretized 

structure.  Each element object reads the properties for the element and fills the element 

geometric stiffness matrix in the fillElementMatrix process.  Each element matrix is sent back to 

the Geometric Matrix object and assembled into the appropriate position in the global stiffness 

matrix.  

The support object reads in the supports in the getSupports process.  It applies the 

boundary conditions to the structure in the applySupports process.  The Standard Matrix object 

changes the generalized eigenvalue problem to the standard eigenvalue problem.  Consequently, 

the global stiffness matrix and global geometric stiffness matrix are combined to the standard 

matrix.  The standard matrix is then solved for the eigenvalues. 

 The final step is the print process.  This process is different depending on the type of 

analysis.  For the buckling analysis, the buckling parameter, or eigenvalue, is printed as the result 

of the anlaysis.  The buckling load is the multiplication of the eigenvalue and the trial loads.  For 

the prebuckling anlaysis, the eigenvalue is checked within the print process before the results are 

printed.  If the eigenvalue is not equal to one, the eigenvalue is returned to the beginning of the 

program as a multiplication factor.  The trial loads are multiplied by the multiplication factor and 

the entire process starts again.  The program continues until the eigenvalue is close to one, and 

the trial loads for that iteration are the buckling loads.  
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It is often difficult to understand the flow of behaviors within a program, and dynamic 

behavior views help to model the flow control so that the sequence of behaviors become 

apparent.  The sequence diagrams for both the Frame and LBuck programs help to increase the 

clarity of how the objects collaborate within the program during its implementation. 

An activity diagram is another type of dynamic behavior view.  “An activity graph shows 

the computational activities involved in performing a calculation” (Rumbaugh et al., 1999).  It 

describes a sequence of activities and helps when trying to understand the flow of work in a 

calculation.  Activity diagrams are much like flowcharts except that they allow for parallel 

behavior.  Since they are so much like flowcharts, many people believe that activity diagrams are 

not object-oriented; however, they are included as part of the UML and are useful in describing 

complicated behavior.   

An activity diagram is shown in Figure 9.20 to describe the standard matrix procedure.  

The standard matrix function is called as shown in the sequence diagram of Figure 9.19; 

however, the order of the calculations for the standard matrix function is not shown on the 

diagram.  These details are left out of the diagram to maintain clarity, yet they are important in 

understanding the operations of the program.  The activity diagram in Figure 9.20 is used to 

illustrate these details.  

The diagram shows two swim lanes: restraints and standard matrix.  Swim lanes are used 

to try to link the actions to the objects in order to enhance the object-oriented features of the 

diagram.  The name of the class associated with the action is shown at the top of the diagram, 

and the descriptions of the action are shown in the ovals below.  The order of the functions are 

related by the arrows.   
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9.4.3.2    Coding   
 
Once the models are complete, the design can move back from the high level abstract models to 

the concrete code.  As the structure of the code is changed to reflect the changes made to the 

abstract models, more weaknesses of the program are exposed.   

One weakness of the original code is that many of the functions are long and contain too 

many operations within one member function.  Therefore, it is useful to extract some of the code 

from the long methods and break it into smaller parts.  “The object programs that live best and 

longest are those with short methods” (Fowler, 1999).  This helps to increase the clarity of the 

code.  The chances that other methods may use a method increases when it is more finely 

grained.   

 Another problem with the code is that there are several sections of duplicated code.  A 

reason for eliminating duplicated code is that duplicated code increases the difficultly to make 

changes to a program since every piece of a particular section of code must to be changed.  

Duplicated code also scatters the logic instead of keeping it clear and understandable.  Along 

with eliminating duplicate code is the need to eliminate unnecessary variables.  The original 

program uses too many variables which makes it difficult to understand what each variable 

means.  Global variables were used in too many cases to take the private member data of an 

object and give it global access.  This violates the object-oriented concept of restricting data 

access, and may have serious damaging effects on the program. 

 The programs also did not use any constructors to create the objects.  Constructors are 

operations that construct different kinds of a data type.  Although an object-oriented program 

may be written without constructors, they are a valuable feature of object-oriented languages.  

Since the original Frame program uses all global data, all of the data is automatically initialized 
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to zero when it is created.  Many of the functions operated on the data without explicitly 

initializing it.  Local variables, however, are not initialized on creation and will contain a random 

value.  Therefore, constructors need to be used to explicitly initialize all of the data when 

creating an object. 

 Arrays are used as attributes in the classes for both programs.  Since most of the classes 

use matrices as data members, two-dimensional arrays are used to store the matrices.  Passing an 

array as an argument to a function is different than passing other types of variables.  The name of 

an array is its address, and arrays must be passed by their name, or address.  A function always 

works with the original array, not a duplicate.  This system is used because arrays can become 

very large if they are storing a lot of data, and duplicating an entire array in every function call is 

both time-consuming and wasteful of memory (Lafore, 2002).   

This creates a complication with writing the code.  One of the main goals of object-

oriented programming is to keep data private so that other objects cannot manipulate it.  If an 

object needs data from another object, it sends a message and the object called upon returns a 

copy of the data, while keeping the original data safe.  However, if an object needs to send a 

message to another object asking for a matrix to be returned, the original matrix must be returned 

since the C++ programming language does not allow copies of array to be sent.  Therefore, there 

must be a way for an object to access the array of another object.  There are two ways to 

accomplish this: (1) make the array public data, or (2) make the two objects friends of each 

other. 

If the arrays are declared as public data, then they are open to all objects.  This may 

become a problem if an unauthorized object somehow accesses the array by mistake.  In many 

cases, it is necessary to limit the access of an array to only those objects that may need it, and 
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keep it hidden from those that do not need it.  Two objects are made friends by declaring their 

classes as friends.  A friend class of another class may access the private data of that class.  For 

example, if in class A the entire class B is declared a friend, then all of the member functions of 

B may access the private data of A.  This is the preferable way of allowing an object to access an 

array of another object.      

The code must be written to implement all of the models developed and handle all of the 

coding issues discussed.  The first place to start the coding is in the header files.  The header files 

define the class interfaces.  After the header files are defined, the details of their implementation 

may be written.  The coding for Frame program may begin development by defining the classes 

as: 

class Properties 
{ 
protected:     
 float x[MAX], y[MAX], AX[MAX], YI[MAX], ZI[MAX],  
  WI[MAX], E[MAX], G[MAX],J[MAX];    
 double angle[MAX];   
 int res1[MAX],res2[MAX],res3[MAX],res4[MAX]; 
 
public: 
 Properties(); 
 void print_restraints(); 
 void print_properties(int j); 
}; 
 

The properties class has matrices to store the properties and restraint information.  The 

data may be printed using the print_restraints() and print_properties() functions.  The 

Properties() function is the constructor used to initialize the data.  The constructor always has the 

same name as the class and does not have a return type.   
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class Stiffness: public Properties 
{ 
private: 
 float sff[3*MAX][3*MAX]; 
public: 
 Stiffness(); 
 void stread(); 
 void stifbld(); 
 void compm(int, int[6], float[4]); 
 void memstif(int, float[6][6], float[4]); 
}; 
 

The stiffness class is inherited from the properties class.  There is a member function, 

stread(), to read in the information necessary to build the stiffness matrix.  The stifbld() function 

builds the partitioned half bandwidth global stiffness matrix.  It calls on the function compm() 

which provides the terms of the stiffness matrix in local coordinates and the memstif() function 

which computes the upper triangular portion of a single member stiffness matrix in global 

coordinates using the local element stiffness matrix terms.  The global stiffness matrix is stored 

in the sff[ ][ ] matrix.   

 
class Loads 
{ 
private: 
 float Load[6][MAX]; 
 
public: 
 Loads(); 
 void ldread(); 
 void load(); 
 void print_loads(int j); 
}; 
 

The lread() function reads in the loads on the members and joints.  For loaded members, 

it converts the concentrated or distributed loads into equivalent joint loads.  The load() function 

combines the joint loads and equivalent joint loads from the member loads into one combined 

load vector.  The print_loads() function prints the structure loads.   
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class Displacements 
{ 
private: 
 float D[MAX]; 
public: 
 Displacements(); 
 void banfac(Stiffness, Loads); 
 void bansol(float[3*MAX][3*MAX], float[3*MAX]); 
 void prdisp(); 
 void print_displacements(int); 
}; 
 

The banfac() and bansol() functions solve the equations for the displacements using the 

load vector and global stiffness matrix.  The resulting displacement vector will contain only the 

free degree of freedom displacements, which may not be in order of the joints.  The prdisp() 

function sorts the displacements into the original joint numbering system order and sets any 

restrained joint displacements to zero.  The print_displacements() function prints the 

displacements.     

 
class Actions 
{ 
private: 
 float action[4][MAX]; 
public: 
 Actions(); 
 void memact(Stiffness, Loads, Displacements); 
 void print_actions(int) const; 
}; 
 

The memact() function  computes the member end-actions for each element using the 

local stiffness matrix terms, load vector, and displacement vector.  These actions are stored in the 

action[ ][ ] matrix and printed using the print_actions() function. 
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The coding for LBuck program may begin development by defining the classes as: 

class Properties 
{ 
protected: 
 int j1,j2; 
 float E,G,J,Iy,Ix,Iw,K,l,al; 
 float q,a,P,e,zp,F,M1,V1,c;  
public: 
 void Read_Properties(int); 
 void Fill_Properties(int); 
 void Rotation(float[10][10]); 
}; 
 

The Properties class stores the properties of the structure.  The Read_Properties() 

function reads in the properties data from the text file.  The Fill_Properties() function stores the 

properties in matrix form.  The Rotation() function provides ability to transform a stiffness 

matrix in local coordinates into global coordinates. 

 
class Element_Stiffness : public Properties 
{ 
private:  
 float Ke[10][10]; 
public: 
 void Fill_Element_Stiffness1(); 
 void Fill_Element_Stiffness2(float, int);   
 void Fill_Element_Prebuckling(void); 
}; 
 

The Element_Stiffness class is derived from the Properties class.  There are three separate 

functions that fill the element stiffness matrix depending on the type of analysis being conducted.  

The Fill_Element_Stiffness1() function fills the buckling stiffness matrix.  The 

Fill_Element_Stiffness2() function fills the non-dimensional buckling stiffness matrix.  The 

Fill_Element_Prebuckling() function fills the prebuckling terms of the stiffness matrix.  The 

stiffness matrix is stored in the Ke two-dimensional array. 
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class Element_Geometric : public Properties 
{ 
private:   
 float Gm[10][10]; 
public: 
 friend class Geometric; 
 void Fill_Element_Geometric1(float);  
 void Fill_Element_Geometric2(float, int); 
 void Fill_Element_Prebuckling(float); 
}; 
 

The Element_Geometric class is also derived from the Properties class.  There are three 

separate functions that fill the element geometric stiffness matrix depending on the type of 

analysis being conducted.  The Fill_Element_Geometric1() function fills the buckling geometric 

stiffness matrix.  The Fill_Element_Geometric2() function fills the non-dimensional buckling 

geometric stiffness matrix.  The Fill_Element_Prebuckling() function fills the prebuckling terms 

of the geometric stiffness matrix.  The geometric stiffness matrix is stored in the Gm two-

dimensional array.   

 
class Stiffness 
{ 
private:  
 Element_Stiffness stiff;  
 int element_num; 
    float A[MSize][MSize];    
public:  
 Stiffness(int); 
 void Assembling_Stiffness_Matrix(float); 
}; 
 

The Stiffness class contains an Element_Stiffness matrix object.  Each of the element 

stiffness matrices are used to create the global stiffness matrix, A.  There is only one stiffness 

matrix object rather than an array of stiffness matrix objects so that each element stiffness matrix 

is created, entered into the global matrix using the Assembling_Stiffness_Matrix() function, and 

deleted so that the next element stiffness matrix may be created.  All of the element stiffness 
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matrices are not saved in an array in order to save memory space.  The element stiffness matrices 

are no longer needed once they are entered into the global matrix so that there is no reason to 

save them individually.    

 
class Geometric 
{ 
private:  
 Element_Geometric geom;  
 int element_num;  
 float B[MSize][MSize];  
public: 
 Geometric(int); 
 void Assembling_Geometric_Matrix(float); 
}; 
 

The Geometric class contains an Element_Geometric matrix object.  Once again, each of 

the element stiffness matrices are used to create the global stiffness matrix, A, and there is only 

one stiffness matrix object rather than an array of stiffness matrix objects.  The 

Assembling_Stiffness_Matrix() function is used to place the element geometric stiffness matrices 

into the global stiffness matrix.   

 
class Standard_Matrix 
{ 
private:  
 int size;      
 float d[MSize],e[MSize]; 
 float C[MSize][MSize]; 
 float buckling_load; 
public: 
 Standard_Matrix(); 
 void standard_matrix(float[MSize][MSize],float[MSize][MSize],int); 
 float pythag(float,float); 
 void choldc(float[MSize][MSize]); 
 void tred2(float[MSize][MSize]); 
 void tqli(float[MSize][MSize]); 
}; 
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The Standard_Matrix class creates the standard eigen-value problem from the stiffness 

matrix and geometric stiffness matrix.  The choldc() function is the Cholesky method which 

changes the stiffness matrix to the upper triangular matrix (Press, 1992).  The product of the 

inverse of the upper triangular matrix, the geometric matrix, and the inverse of the transpose of 

the upper triangular matrix gives the standard matrix, as discussed in Chapter 8.  Householder’s 

iteration changes the standard matrix into the tridiagonal matrix which is given by the tred2() 

function (Press, 1992).  The tqli() function gives the eigen-vlaue of the tridiagonal matrix 

through QL iteration (Press, 1992).  The Standard_Matrix() function is the function used to 

stores the standard matrix, C, and calls on the three functions choldc(), tred2(), and tqli().  The 

pythag() function is the Pythagorean function. 

class Supports 
{ 
private: 
 int restrain[MSize];  
public: 
 Supports(int); 
 void Get_boundary_conditions(); 
 int Boundary_Condition(float[MSize][MSize],float[MSize][MSize]); 
}; 
 

The  Supports class is used to store the restraint information in the restrain array.  The 

Get_boundary_conditions() function is used to input the boundary conditions.  The 

Boundary_Condition() function is used to apply the restraints to the global stiffness matrix and 

the global geometric stiffness matrix.   

The source files must now be written to add the implementation to the classes.  Since the 

original program provided all of the necessary functionality, the original member functions 

should remain the same.  However, these functions have to be carefully checked to make sure 
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that any reorganization of the program’s structure does not change the member function’s 

implementation.   

The compiler used to compile and execute all of the source code for this project is 

Microsoft’s Visual C++ Version 6.0 complier.  Once all of the code is complete to implement the 

program, the process may move into the final stage of development.   

 
9.4.4 Transition 
 
 
The transition phase is the last stage in the design process.  There is no functionality added to the 

program at this stage.  The changes to the program should be focused on testing and fixing bugs.  

The goal of the transition phase is to ensure that the product is ready to be released.  In this stage 

the testing was done using examples that were tested on the original programs to obtain the 

desired results.  Since the functionality of the program is not intended to change, the examples 

should provide the same results for both the original program and the refactored program.  

 As discussed the Section 9.2, the Frame and LBuck programs execute off of a text input 

file.  The programs scan the input from the file and use it to perform the analysis on the structure.  

The text input files for the programs are automatically formatted correctly when running the 

entire program through the Project interface, and the text files are viewable prior to the analysis 

execution in the Project program.   However, the LBuck and Frame programs may execute by 

themselves if an input text file is located in the same directory as the executable programs.  This 

method was used to perform all of the testing on the refactored LBuck and Frame programs.  

Once the programs were executed, the text file output was compared to the output obtained from 

the original program.   
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The format of the text input files used for the LBuck and Frame programs are found in 

Appendix C.  When running a buckling or prebuckling analysis, the only file for executing the 

Frame program needs to be used as the input file. The Frame program will automatically create 

either the buckling or prebuckling input file used for the LBuck program.  The buckling and 

prebuckling input file for the LBuck program are shown only for reference and do not need to be 

used to run the program.  When running a non-dimensional analysis the input file for the LBuck 

program for a non-dimensional analysis should be used.  The output from the programs will be in 

a file called lbuck.ini. 

Once the transition phase is complete, the program is ready to be distributed to the users.  

The complete program code for the Frame program is in Appendix E, and the complet program 

code for the LBuck programs is in Appendix D.   

 
 
 

9.5 WINDOWS INTERFACE 

 
9.5.1 Windows Programming 
 

 
The user interface for the program was created as a Widows application.  It was already 

mentioned that Windows communicates with the program through the Windows application 

programming interface (API).  The Windows API functions were created to be used with all 

programming languages including the traditional procedural languages, so they are not object-

oriented (Horton, 2003).  However, Microsoft Visual C++ provides a set of classes called the 

Microsoft Foundation Classes (MFC) that represents an object-oriented approach to Windows 

programming with Visual C++ that encapsulates the Windows API (Horton, 2003).   
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 The MFC provides all of the main classes needed for a Windows program.  To create the 

program, objects of the MFC classes or objects of classes derived from the MFC classes must be 

used.  The fundamental classes used in the program are shown in Figure 9.21.   

The five classes along the bottom of the figure which are all derived from the CObject 

class are the basic classes that are used to create the application.  All of these classes are 

provided by Visual C++ in a basic outline of a Windows program.  This outline is the framework 

for the application and requires customization of the data and member functions to make the 

program work.  

 

CObject

CSeries

CCmdTarget

CWinThread CDocument

CWinnApp CWnd

CFrameWnd CDialog CView

CProjectApp CProjectWnd CProjectDialog CProjectView CProjectDoc
 

Figure 9.21 Project Program Class Hierarchy 
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The application class, CProjectApp, includes everything necessary to start, initialize, run, 

and close the application (Horton, 2003).  The frame window class, CProjectWnd, provides the 

window for the interface.  The dialog class, CProjectDialog, is used to create dialog boxes in the 

application.  The view class, CProjectView, is the class that contains everything that is displayed 

in the client area of a frame window.  Finally, the document class, CProjectDoc, is used to store 

all of the data in the application with which the user interacts.  These classes shown in the class 

hierarchy are only a very small part of all of the classes within the MFC; however, it is not 

necessary to understand all of the details of each MFC class in order to create the application.   

The CSeries class, which is also derived from CObject as shown at the top of the figure, 

is the class containing all of the data entered into the program by the user.  This class was created 

specifically for this program, unlike the other classes which are provided by Visual C++.  This 

class stores all of the data and is used to write the data to a text file in order to run the LBuck 

program.   

The CObject class is at the top of the MFC class hierarchy, and almost every class in an 

MFC program is derived from it.  The CObject class provides many levels of support to its 

derived classes, such as it allows for support for dynamic object creation, support for runtime 

class identification, and support for serialization.  All of the derived classes inherit these 

important properties from the CObject class. 

 
9.5.2 Creating the Interface 
 
 
The first step to creating the program is to decide how the program will operate.  Once it is 

decided how the user will interact with the program, the application can be created to provide the 

necessary functionality.  Use Cases will be used to describe the external functionality of the 
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system.  The actor for the use case is the structural engineer using the program.  The scenarios 

for the interaction with the user include: 

(1) The user needs to input the structure’s data into the interface.  Each series of data is 

input into a separate data series.   

(2) The user needs to be able to edit each data series. 

(3) The user needs to be able to view the input data file that is used to run the LBuck and 

Frame programs. 

(4) The user needs to be able to run the analysis. 

(5) The user needs to view the results of the analysis. 

The use case diagram is shown in Figure 9.22.  The features of this use case diagram are 

similar to those discussed in Section 9.4.2.   

Several of the use cases have chunks of behavior that are similar across more than one 

use case.  Both the Create a Data Series and Edit a Data Series need to have the functionality of 

entering data into the interface; therefore, there is similar behavior between the two use cases, 

which may be extracted into its own use case called Data Entry.  This is shown on the diagram 

with the include relationship.  The View Input use case and the View Results use case both have 

the functionality of viewing a file.  A View File use case was created and included in both of 

these use cases. 
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Figure 9.22 Interface Use Case Diagram 

 
 

 

First, a general overview of the program will be discussed, and then the details of the 

design will be discussed.  The program is designed as a single document interface, which means 

that only one document may be open and viewed at a time.  When the program is executed, the 

user must create a new document or open an existing document.  Then, the user may input the 

data for the structure under analysis by creating or editing the data series.  A data series is the 

entire set of data for one analysis.  Therefore, the user has the option of running several analyses 

by entering in several series of data.  For example, the user can analyze a particular structure 
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several times with a different number of elements for each analysis and then compare the results.  

All of the user input is handled through dialog boxes.  When all of the input is gathered from the 

dialog boxes, the user may view the input file and then execute the flexural-torsional buckling 

program.  Once the LBuck and Frame programs have exectued, the user may view the results of 

the analysis.   

The framework of the program is created using the MFC AppWizard provided by Visual 

C++ for a single document interface.  This provides everything necessary to run the program.  

The program needs to be customized to handle all of the actions discussed.  First, new menu 

items and functions handling the menu items are added.  The user needs to be able to use the 

menu to create a new project, open an existing project, save a project, etc., as shown on the pull 

down menu in Figure 9.23.  These menu items are all common to Windows applications and are 

provided by the AppWizard.  Only the functions handling these items need to be customized.  

For example, when the File – New menu item is selected, the New Project dialog box needs to be 

activated by the functions handling the menu item.   

The menu also needs to include new menu items that are unique to this program, such as 

entering in a new data series, editing a data series, viewing the input file, running the analysis, 

and viewing the results.  These menu items are shown in the pull down menus of Figures 9.24 

and 9.25.  All of these items are added to the basic Windows menu.  The functionality handling 

these menu items must be added and customized.   

Next, several new classes are derived from the CDialog class to gather the user input.  

When a new project is created, the New Project dialog box is displayed.  This dialog box gathers 

the name of the project and the type of analysis being conducted and is shown in Figure 9.26.     
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Figure 9.23 File Menu 

 
 

 

 

Figure 9.24 Data Menu 
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Figure 9.25 Analysis Menu 
 
 
 
 
 
 

 

Figure 9.26 New Project Dialog 
 
 



 128

The next dialog box that gathers the user’s input is the new series dialog box.  This dialog 

box is different depending on the type of analysis.  The dialog box for a buckling or prebucking 

analysis is shown in Figure 9.27, and the dialog box for the non-dimensional analysis is shown in 

Figure 9.28.  The dialog boxes display all of the series data in Microsoft Hierarchical Flex Grid 

controls. This data is gathered from smaller dialog boxes.  Therefore, many member functions 

are added to the dialog box classes to handle the user input and to handle the data between the 

dialog boxes.         

Figures 9.29 and 9.30 are two examples of the dialog boxes that are used to gather the 

user input and then transfer it to the Microsoft Hierarchical Flex Grid controls.  These two dialog 

boxes are used to gather the joint data and the member load data.  Other dialog boxes similar to 

these are used to gather the member data and joint load data. 
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Figure 9.27 Buckling Analysis Dialog 
 

 

 

 



 130

 

Figure 9.28 Non-Dimensional Analysis Dialog 
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Figure 9.29 Joint Data Dialog 
 
 

 

Figure 9.30 Member Load Dialog 
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In the program, a CSeries object is created each time the user finishes entering in a series 

of data.  These objects are created dynamically and stored in an array.  When a project is closed, 

the data must be stored in the CSeries object and reloaded when the project is opened again.   To 

store the CSeries object, it must be written to a file; however, writing an object to a file is not as 

simple as writing a variable of a basic data type to a file.  Writing an object to a file involves a 

process know as serialization.  Serialization is necessary to store an object so that it may be 

loaded later.  When an object is serialized, information about the object and data about the object 

are written to the storage.  Deserialization is the reverse process where the object is loaded and 

created from the archive file.   

Deriving the CSeries class from the CObject class allows the CSeries object to use the 

serialization functions provided with the CObject class.  The virtual serialize member function is 

overridden to provide the functionality needed to serialize and deserialize the CSeries object’s 

data.  The data is serialized to a CArchive object.  This class is a generic storage object, and in 

this program it is attached to a memory location.   

The insertion and extraction operators are overloaded to allow all of the object data to 

easily be written to the archive file.  Therefore, the CSeries object can be serialized and 

deserialized using a similar syntax as writing a basic data type to a file.  Operator overloading is 

another important concept of object-oriented programming. 

Operator overloading is a specific kind of polymorphism (Lafore, 2002).  Operator 

overloading is the ability for an existing operator, such as + or -, to operate on a user defined 

type.  Therefore, objects can use the operators in a similar way that the basic data types use the 

operators.  For basic data types, variables may be added together with simple arithmetic 

expressions such as: 
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X = Y + 3 

where X and Y are of a basic data type such as integer.  However, using existing operators on 

user defined types does not work as easily because the compiler does not understand how to 

operate on the objects.  If the operator is overloaded by defining in the class how it should 

operate on the object’s data, then two objects may be added together with the operator such as 

 ObjectC = ObjectA + ObjectB 

where ObjectA, ObjectB, and ObjectC are all of the same user defined type.  Overloading 

operators makes the code much easier to read and more intuitive.   

As mentioned, the program uses the CSeries object to write all of its data to an input file 

for the LBuck and Frame programs.  Functions are added to the program so that the user may 

view the input file that will be used to run the LBuck and Frame programs.  The user cannot 

modify the input file as it appears in the view screen; however, the user does have the option to 

go back and edit the input before running the program.   

When the user selects the menu item to start the analysis, the Project program calls the 

LBuck program, which calls the Frame program.  When the programs are finished running, the 

user may view the results of the analysis.   

The Project program creates a user friendly Windows based interface for the lateral 

torsional buckling analysis programs.  This program has all of the functionality necessary to 

create and store data files for the buckling programs, along with the ability to execute the 

buckling analysis programs and view the results.  The creation of this interface utilized the 

Windows API functions in an object-oriented approach. 
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10.0 APPLICATIONS 

 
 
 
This chapter presents 25 examples using the Lateral-Torsional Buckling Program.  Section 10.1 

considers a variety of examples conducting buckling loads analyses.  Section 10.2 shows 

examples considering the effects of in-plane deformations on the buckling loads of several 

structures that were also considered without prebuckling effects in Section 10.1.  Section 10.3 

presents a variety of examples using the non-dimensional analysis.   

 
 
 

10.1 BUCKLING LOAD ANALYSIS 

 
10.1.1 Buckling Analysis Example 1 
 
 
A simply supported beam subjected to equal end moments is shown in Figure 10.1.  The beam is 

a W12x120 section, and the properties for the beam are listed in Table 10-1.  The simply 

supported beams considered in this study are single span beams which are simply supported both 

in-plane and out-of-plane.  An in-plane simply supported beam is fixed against in-plane 

transverse deflections, but it is unrestrained against in-plane rotations.  An out-of-plane simply 

supported beam is fixed against out-of-plane deflections and twist rotations, but is unrestrained 

against minor axis rotations and against warping displacements.     

The closed form solution of the critical moment for a beam of length L with simply 

supported ends is given by (Bleich, 1952, p. 160)   
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The results of a buckling analysis of the structure conducted with the program along with 

the closed form solution of the critical moment are graphed in Figure 10.2.  In this example, the 

finite element solution converges to the closed form solution as the number of elements used 

increases.  The finite element representation with a single element gives an error of 12.7%.  The 

finite element representation with two or more elements gives an error of less than 0.46%.  

Therefore, the finite element method gives the most accurate results when 2 or more elements are 

used to model the structure.   

In general, two or more elements should always be used to model each span of a structure 

because the stiffness matrices used to calculate the flexural-torsional buckling load factor using 

the finite element method are derived from a cubic displacement function.  A cubic displacement 

function can only have one inflection point, and often the most critical member of a structure 

will buckle as if elastically restrained at both ends, so that it has two inflection points (Trahair, 

1993).  Studies conducted by Hancock and Trahair (1978) using a finite element analysis show 

that using at least two elements will usually have errors less than 1%, which is shown in this 

example.   
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Figure 10.1 Simple Beam with Equal End Moments 
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Table 10-1 Beam Properties for W12x120 

E 30000 ksi 

G 12000 ksi 

Iy 345 in4 

Ix 1070 in4 

J 12.9 in4 

Iω 12400 in6 
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Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments 
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10.1.2 Buckling Analysis Example 2 
 

A W12x120 cantilever beam with a concentrated load at the far end is shown in Figure 10.3.  

The same structure properties are used for this example as in Example 10.1.1, as shown in Table 

10-1.  The concentrated load, P, is applied at a height ‘e’, which is equal to zero inches for this 

example.  A load height of zero implies that the load acts directly through the shear center of the 

section.   

A cantilever beam is considered to be fixed at the built-in support so that the in-plane 

deflection and rotation is zero, and a cantilever beam is free at the other end so that it can deflect 

and rotate in-plane.  A cantilever beam is also restrained against out-of-plane deformations at the 

support and unrestrained against out-of-plane deformations at the free end.   

The solution obtained by the finite element buckling analysis from the program is 

compared to the solution obtained by Trahair (1993, p. 175) from a finite element analysis with a 

large enough number of elements to obtain a high level of accuracy.  The results of a buckling 

analysis conducted using the program along with the solution by Trahair are graphed in Figure 

10.4.  Since Trahair does not specify the exact number of elements used in his analysis, his result 

is graphed as a single solution that is not associated with any particular number of elements.  In 

this example, the finite element solution obtained from the program converges to Trahair’s 

solution when four elements are used to model the beam, which suggests that Trahair used at 

least four elements in his solution.   
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Figure 10.3 Cantilever Beam with Concentrated Load 
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Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load 
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10.1.3 Buckling Analysis Example 3 
 
 
A W12x120 continuous beam subjected to a concentrated load and a distributed load is shown in 

Figure 10.5.  The properties of this structure are the same as those used in Examples 10.1.1 and 

10.1.2, as shown in Table 10.1.  The magnitude of the distributed load per unit length is equal to 

1% of the concentrated load.  The beam is fully restrained from in-plane displacements, in-plane 

rotation, out-of-plane displacements, twisting rotation, minor axis rotation, and warping 

displacements at the far left support.  The two roller supports are restrained against only in-plane 

transverse displacement, out-of-plane displacements, and twist rotations. 

For the first part of the example, the load heights ‘a’ and ‘e’ are both considered to be 

equal to zero inches, which indicates shear center loading.  The results of a buckling load 

analysis conducted with the program are graphed in Figure 10.6.  The number of elements 

graphed represents the total number of elements used for the structure.  This example does not 

have a reference solution; however, the convergence of the results can be seen by a small 

variation of the buckling load as the number of elements increases.   

The difference in buckling load between the 2 element and 4 element structure is 47%.  

Since the beam is composed of two spans, using only two elements for the total structure 

provides only one element per span.  As mentioned in example 10.1.1, the most accurate results 

are obtained when at least 2 or more elements per span are used when a cubic displacement 

function is assumed.  The difference in buckling load between the 4 element and 6 element 

solutions is 0.9%.  The difference in buckling load between the 6 element and 8 element 

solutions is 0.18%.  Therefore, the smallest variation in buckling loads occurs when at least 4 

elements are used for the structure, which is equivalent to two elements per span. 
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Figure 10.5 Continuous Beam 
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Figure 10.6 Buckling Load: Continuous Beam 
 
 



 141

For the second part of this example, the load height of each load was varied.  Out-of-

shear-center loads may significantly affect the magnitude of the flexural-torsional buckling 

loads.  Transverse loads that are not applied at the shear center axis will produce a twisting 

moment.  This twisting moment will effect the torsional rotation of the structure.   

The direction of the twisting moment due to the out-of-shear-center loads is controlled by 

the value of the load height.  If the load height is negative (i.e. below the shear center), the 

twisting moment produced will oppose the twist rotations, φ , to stabilize the structure and 

increase the flexural-torsional buckling loads.  If the load height is positive (i.e. above the shear 

center), the twisting moment produced will amplify the twist rotations, φ , of the beam and cause 

the flexural-torsional buckling loads to be reduced.   

To conduct a load height analysis on the continuous beam, a finite element analysis was 

conducted considering 6 elements to model the structure.  First, the distributed load was 

considered to be fixed at a height of a = 0 inches (i.e. shear center loading), and the load height 

of the concentrated load, e, was varied from -10 to 10 inches in 2 inch increments.  Next, the 

concentrated load was considered to be fixed at a height e = 0 inches, and the load height of the 

distributed load, a, was varied from -10 to 10 inches in 2 inch increments.   

The results of both load height analyses are graphed in Figure 10.7.  The results in Figure 

10.7 show that varying the distributed load has a large influence on the flexural-torsional 

buckling loads of the continuous beam.  The flexural-torsional buckling loads are increased by 

65% when the load height is decreased from 0 inches to -10 inches, and the flexural-torsional 

buckling loads are decreased by 41% when the load height is increased from 0 inches to 10 

inches.  Varying the concentrated load height has a very small influence on the flexural-torsional 

buckling loads.   
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Load Height Analysis: Continuous Beam

130

180

230

280

330

380

430

480

530

-10 -5 0 5 10

Load Height (in.)

Bu
ck

lin
g 

P
ar

am
et

er
Concentrated Load

Distributed Load

 

Figure 10.7 Load Height Analysis: Continuous Beam 
 

 

10.1.4 Buckling Analysis Example 4 
 

A portal frame with a concentrated load applied to the frame is shown in Figure 10.8.  The 

concentrated load is applied at the center of the top member.  The frame is completely fixed to 

the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement, 

out-of-plane rotation, or warping displacement, and the members are rigidly connected together.   

The frame data used is taken from Vacharajittiphan and Trahair (1973) so that the results 

obtained from their study can be compared to the results of the finite element program.  The 

theoretical analysis presented by Vacharajittiphan and Trahair (1973) was developed using the 

finite integral method, which is another type of numerical technique that can be used to solve 

complex differential equations.  Vacharajittiphan and Trahair conducted tests on two small scale 
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portal frames to verify their theoretical analysis.  The frames were made of high strength 

aluminum I-section extrusions with the properties listed in Table 10-2.  The experimental checks 

conducted on the frames were in close agreement with their theoretical predictions; therefore, the 

theoretical predictions are compared to the results of the finite element program to check if the 

program provides acceptable results.  

The results of the finite element method considering 3 to 8 elements are graphed in 

Figure 10.9.  The number of elements graphed represents the total number of elements used to 

model the structure.  The results of the finite integral method are not associated with any specific 

number of elements.  The finite element method converges to the finite integral method results as 

shown in Figure 10.9.  Considering only three elements to model the structure for the finite 

element method provides inaccurate results in comparison to the finite integral method, and 

using at least four elements provides acceptable results with little variation in buckling load with 

an increase of the number of elements.    
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Figure 10.8 Portal Frame with Concentrated Load 
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Table 10-2 Frame Properties 

E Iy 1.85 kip- in2 

E Ix 27.2 kip- in2 

GJ 0.219 kip-in2 

E Iω 0.15 kip-in4 

a 0.312 in 
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Figure 10.9 Buckling Load: Portal Frame with Concentrated Load 
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10.1.5 Buckling Analysis Example 5 
 

A portal frame with three concentrated loads is shown in Figure 10.10.  The concentrated loads 

are applied at the connections of the beam and columns and at the center of the top member.  The 

frame is completely fixed to the base so that there is no in-plane displacement, in-plane rotation, 

out-of-plane displacement, out-of-plane rotation, or warping displacement, and the members are 

rigidly connected together. 

The frame data used in taken from Vacharajittiphan and Trahair (1973) so that the results 

obtained from their study can be compared to the results of the finite element program.  The 

frame is composed of I-section members and the properties used are the same as those used in 

Example 10.1.4, as listed in Table 10-2.   

The results of the finite element method considering 3 to 8 elements are graphed in 

Figure 10.11.  Once again, the number of elements graphed represents the total number of 

elements used to model the structure, and the results of the finite integral method are not 

associated with any specific number of elements.  The finite element method converges to the 

finite integral method results as shown in Figure 10.11.  Considering only three elements to 

model the structure for the finite element method provides inaccurate results.  Using at least four 

elements provides more acceptable results with little variation in buckling load with an increase 

of the number of elements.   

Comparing the results of Example 10.1.4 to this Example shows that adding two loads of 

equal magnitude to the center load placed above the beam to column connections does not 

significantly affect the flexural-torsional buckling load of the structure.   
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Figure 10.10 Portal Frame with Three Concentrated Loads 
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Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads 

 

 



 147

10.1.6 Buckling Analysis Example 6 
 

A two bay frame with two vertical loads is shown in Figure 10.12.  The vertical loads are acting 

at the center of the top members of the frame.  The frame is completely fixed to the base so that 

there is no in-plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane 

rotation, or warping displacement, and the members are rigidly connected together. The frame is 

allowed to sway in its plane.  At each beam-column joint there is a lateral restraint to prevent 

displacement in the direction normal to the plane of the frame.  The beam-column restraint does 

not restrain rotation about any axis.  The two bay frame is composed of I-section members with 

the cross-sectional properties listed in Table 10-3.   

The frame data used is taken from Vacharajittiphan and Trahair (1975) so that the results 

obtained from their study can be compared to the results of the finite element program.  The 

theoretical analysis presented by Vacharajittiphan and Trahair (1975) was developed using the 

finite integral method.  The accuracy of their method of analysis was studied by analyzing 

previously solved problems.   

The results of the finite element buckling analysis are graphed in Figure 10.13.  The 

solution obtained by the finite element method is compared to solution by the finite integral 

method, which is not associated with any specific number of elements.  The number of elements 

graphed is the number of elements used to model the entire structure.  The finite element method 

gives inaccurate results when only five elements are used, which is only one element per 

member.  The finite element solution converges to the finite integral solution as the number of 

elements used increases to 10, which gives acceptable results.     
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Figure 10.12 Two Bay Frame with Vertical Loads 
 

 

 

 

Table 10-3 Two Bay Frame Properties 

E Iy 372 kip- in2 

E Ix 8228.9 kip- in2 

GJ 7.98 kip-in2 

E Iω 764 kip-in4 
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Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads 
 

 

10.1.7 Buckling Analysis Example 7 
 

A two bay frame with two vertical loads and a horizontal load is shown in Figure 10.14.  The 

vertical loads are acting at the center of the top members of the frame.  The frame is completely 

fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-plane 

displacement, out-of-plane rotation, or warping displacement, and the members are rigidly 

connected together. The frame is allowed to sway in its plane.  At each beam-column joint there 

is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.  

The beam-column restraint does not restrain rotation about any axis.  The two bay frame is 

composed of I-section members with the cross-sectional properties listed in Table 10-3.   

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair 

(1975) so that the results obtained from their study can be compared to the results of the finite 
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element program.  Vacharajittiphan and Trahair’s study was conducted using the finite integral 

method.   

The results of the finite element buckling analysis using the program are graphed in 

Figure 10.15 along with the results of the finite integral method.  The finite integral method 

solution is not associated with a particular number of elements.  Using only 5 elements to model 

the structure gives unacceptable results.  The accuracy of the results increases as the number of 

elements increases, and the solution of the finite element method converges toward the finite 

integral method solution.     

Comparing Example 10.1.6 to this Example shows that adding a horizontal load of equal 

magnitude to the two vertical loads on the frame decreases the flexural-torsional buckling loads 

of the structure.   
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Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads 
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Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads 
 

 
 
10.1.8 Buckling Analysis Example 8 
 

A two story plane frame with two horizontal loads is shown in Figure 10.16.  The frame is 

completely fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-

plane displacement, out-of-plane rotation, or warping displacement, and the members are rigidly 

connected together. The frame is allowed to sway in its plane.  At each beam-column joint there 

is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.  

The beam-column restraint does not restrain rotation about any axis.  The two story frame is 

composed of I-section members with the cross-sectional properties listed in Table 10-3.   

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair 

(1975) so that the results obtained from their study can be compared to the results of the finite 
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element program.  Vacharajittiphan and Trahair’s study was conducted using the finite integral 

method.   

The results of the finite element buckling analysis are graphed in Figure 10.17.  The 

solution obtained by the finite element method is graphed along with the solution by 

Vacharajittiphan and Trahair (1975) from the finite integral method.  The finite integral solution 

is not associated with any specific number of elements.  Using only 6 elements for the finite 

element method gives inaccurate results with 124% difference between the finite element and 

finite integral solutions.  However, when the number of elements used is increased to 12 

elements, the difference between the finite element and finite integral solutions drops to 1.38%.  

Therefore, as the number of elements increases, the results become more acceptable.   
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Figure 10.16 Two Story Plane Frame with Horizontal Loads 
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Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads 
 

 

10.1.9 Buckling Analysis Example 9 
 

A two story plane frame with two vertical loads is shown in Figure 10.18.  The vertical loads are 

acting at the center of the beams.  The frame is completely fixed to the base so that there is no in-

plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane rotation, or 

warping displacement, and the members are rigidly connected together. The frame is allowed to 

sway in its plane.  At each beam-column joint there is a lateral restraint to prevent displacement 

in the direction normal to the plane of the frame.  The beam-column restraint does not restrain 

rotation about any axis.  The two story frame is composed of I-section members with the cross-

sectional properties listed in Table 10-3.   
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As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair 

(1975) so that the results obtained from their study can be compared to the results of the finite 

element program.  Vacharajittiphan and Trahair’s study was conducted using the finite integral 

method.  

The results of the finite element buckling analysis are graphed in Figure 10.19.  The 

solution obtained by the finite element method is graphed along with the solution by 

Vacharajittiphan and Trahair (1975) from the finite integral method.  As shown in Figure 10.19, 

the finite element solution converges toward the finite integral solution.  However, there remains 

a 1.5% difference between the two solutions even as the finite element solution converges.  This 

difference is due to the load P being applied at the top flanges of the beam in the finite integral 

study.  Since the exact dimensions of the member cross-sections are not given in   

Vacharajittiphan and Trahair (19975), the finite element method was conducted assuming the 

load P acted through the shear center of the member.  As discussed in the second part of 

Example 10.1.3, if the load height is positive, (i.e. above the shear center), the twisting moment 

produces will amplify the twist rotations of the beam and cause the flexural-torsional buckling 

loads to be reduced.   
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Figure 10.18 Two Story Plane Frame with Vertical Loads 
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Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads 
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10.1.10 Buckling Analysis Example 10 
 

A two story plane frame with two vertical loads and two horizontal loads is shown in Figure 

10.20.  The vertical loads are acting at the center of the beams.  The frame is completely fixed to 

the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement, 

out-of-plane rotation, or warping displacement, and the members are rigidly connected together. 

The frame is allowed to sway in its plane.  At each beam-column joint there is a lateral restraint 

to prevent displacement in the direction normal to the plane of the frame.  The beam-column 

restraint does not restrain rotation about any axis.  The two story frame is composed of I-section 

members with the cross-sectional properties listed in Table 10-3.   

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair 

(1975) so that the results obtained from their study can be compared to the results of the finite 

element program.  Vacharajittiphan and Trahair’s study was conducted using the finite integral 

method.   

The results of the finite element buckling analysis are graphed in Figure 10.21.  The 

solution obtained by the finite element method is graphed along with the solution by 

Vacharajittiphan and Trahair (1975) from the finite integral method.  The finite integral solution 

is not associated with any particular number of elements.  The finite element solutions converges 

toward the finite integral solutions, and the best results are obtained when at least 12 elements 

are used to model the structure.   

 Comparing Examples 10.1.8 and 10.1.9 to this Example shows that the flexural-torsional 

buckling load is the least when both horizontal and vertical loads are present on the frame.  The 

flexural-torsional buckling loads are the largest when only the horizontal loads are applied to the 

frame.   



 157

P
P

67.5"
P

P

67.5"

120"

 

Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads 
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Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and 
Vertical Loads 
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10.1.11 Buckling Analysis Example 11 
 
 
A two bay frame with two vertical loads is shown in Figure 10.22.  The vertical loads are acting 

at the center of the top members of the frame.  The load on the left bay is twice the load on the 

right bay.  The frame is completely fixed to the base so that there is no in-plane displacement, in-

plane rotation, out-of-plane displacement, out-of-plane rotation, or warping displacement, and 

the members are rigidly connected together. The frame is allowed to sway in its plane.  At each 

beam-column joint there is a lateral restraint to prevent displacement in the direction normal to 

the plane of the frame.  The beam-column restraint does not restrain rotation about any axis.  The 

two bay frame is composed of I-section members with the cross-sectional properties listed in 

Table 10-3.   

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair 

(1975) so that the results obtained from their study can be compared to the results of the finite 

element program.  Vacharajittiphan and Trahair’s study was conducted using the finite integral 

method.   

The results of the finite element buckling analysis are graphed in Figure 10.23.  The 

solution obtained by the finite element method graphed along with the solution by 

Vacharajittiphan (1975) from the finite integral method.  The finite element solution provides the 

best results when at least 6 elements are used.  However, there remains a difference between the 

finite element method and the finite integral method even as the finite element method 

converges.  The accuracy of the finite element method can be improved by increasing the 

number of elements used to model the structure.  Also, the models of the finite element method 

and the finite integral method are slightly different because the finite integral method allowed for 

warping at the beam member ends, whereas, the finite element method restrained warping.   
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Figure 10.22 Two Unequal Bay Frame 
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Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads 
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10.2 PREBUCKLING ANALYSIS 

 
 

The effects of prebuckling deformations are usually excluded in flexural-torsional buckling 

analysis.  However, in the case where the ratios of minor axis flexural stiffness and torsional 

stiffness to the major axis flexural stiffness are not small, the prebuckling deformations may 

significantly affect the buckling loads (Trahair, 1993).  The examples considered in this Section 

are all examples considered in Section 10.1 for buckling analysis.   

 
10.2.1 Prebuckling Analysis Example 1 
 
 
This example refers to Example 10.1.1.  The example is of a simply supported beam with equal 

end moments as shown in Figure 10.1.  The properties of the beam are given in Table 10-1.  The 

results of a buckling analysis considering the effects of in-plane deformations are graphed in 

Figure 10.24.  The prebuckling analysis is graphed with the results obtained from a buckling 

analysis in Example 10.1.1 and with the exact solution for the linearized critical moment 

considering prebuckling deformations.  The linearized critical moment is obtained from the 

Equation 10-2 (Pi and Trahair, 1992b) 
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where crM  is the classical lateral buckling uniform bending moment not considering in-plane 

deformations. 
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As shown in Figure 10.24, the in-plane deformations significantly increased the buckling 

loads of the structure.  The prebuckling deformations create a concave curvature for the beam 

which increases its buckling resistance, similar to the convex curvature of an arch decreasing its 

buckling resistance (Trahair, 1993).  The in-plane deformations increase the flexural-torsional 

buckling loads of the beam by 48%.   
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Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End 
Moments 

 

 
 
10.2.2 Prebuckling Analysis Example 2 
 

This example refers to Example 10.1.2.  The example is of a cantilever beam with a concentrated 

load applied to the free end of the beam.  The beam is shown in Figure 10.3, and the properties 

are in Table 10-1.  The results of a buckling analysis considering the effects of in-plane 
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deformations are graphed in Figure 10.25.  The prebuckling analysis is graphed along with the 

results obtained from a buckling analysis.  As shown in Figure 10.25, the in-plane deformations 

significantly increased the buckling loads of the structure by 47%.  As discussed in Example 

10.2.1, the curvature of the beam increases its buckling resistance.   
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Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load 

 
 

10.2.3 Prebuckling Analysis Example 3 
 

This example refers to Example 10.1.4.  The example is of a portal from with a concentrated load 

applied to the center of the top member as shown in Figure 10.8.  The properties of the portal 

frame are given in Table 10-2.  The results of a buckling analysis considering the effects of in-

plane deformations are graphed in Figure 10.26.  The prebuckling analysis is compared to the 

results obtained from a buckling analysis.  The in-plane deformations of the frame do not have a 
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significant affect on the flexural-torsional buckling loads of the structure.   The flexural-torsional 

buckling loads of the frame increased by 1% by considering in-plane deformations.   
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Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated 
Load 

 

 

10.2.4 Prebuckling Analysis Example 4 
 

This example refers to Example 10.1.6.  This example is of a two bay frame with two equal 

vertical loads applied at the center of the top members.  The frame is shown in Figure 10.12, and 

the properties of the frame are given in Table 10-3.  The results of a buckling analysis 

considering the effects of in-plane deformations are graphed in Figure 10.27.  The prebuckling 

analysis is compared to the results obtained from a buckling analysis.  The in-plane deformations 
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do not have a significant affect on the frame’s buckling loads.  The flexural-torsional buckling 

loads are increased by 4.7% by considering in-plane deformations.   
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Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical 
Loads 

 

 

10.2.5 Prebuckling Analysis Example 5 
 

This example refers to Example 10.1.7.  The example is of a two bay frame with two vertical and 

a horizontal load acting on the frame as shown in Figure 10.14.  The properties of the frame are 

shown in Table 10-3.  The results of a buckling analysis considering the effects of in-plane 

deformations are graphed in Figure 10.28.  The prebuckling analysis is compared to the results 

obtained from a buckling analysis. The in-plane deformations do not have a significant affect on 
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the buckling loads of the frame.  The flexural-torsional buckling loads are increased by 4.7% by 

considering in-plane deformations.   
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Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and 
Horizontal Loads 

 

 

10.2.6 Prebuckling Analysis Example 6 
 

This example refers to Example 10.1.8.  The example is of a two story plane frame with two 

horizontal loads as shown in Figure 10.16.  The properties of the frame are given in Table 10-3.  

The results of a buckling analysis considering the effects of in-plane deformations are graphed in 

Figure 10.29.  The prebuckling analysis is compared to the results obtained from a buckling 

analysis. The in-plane deformations do not have a significant affect on the buckling loads of the 
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frame.  The flexural-torsional buckling loads are increased by 4.5% by considering in-plane 

deformations. 
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Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected 
to Horizontal Loads 

 

 

 

10.3 NON-DIMENSIONAL ANALYSIS 

 
10.3.1 Non-Dimensional Analysis Example 1 
 

A simply supported beam with a concentrated load at the center is shown in Figure 10.30.  The 

load is applied at a height of e = 0.  The beam is fixed against in-plane transverse deflections, 

out-of-plane deflections, and out-of-plane twist rotations.   
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The results of a non-dimensional analysis on the structure are graphed in Figure 10.31 for 

1, 2, and 3 elements.  The finite element solution is compared to the solution by Trahair (1993, p. 

132) to show that the finite element program provides similar results.  Trahair also performed a 

finite element analysis and used a large enough number of elements to obtain a high level of 

accuracy.  The solution converges to Trahair’s solution, and there is little variation in buckling 

load with an increase in the number of elements when two or more elements are used.  As 

discussed in Example 10.1.1, two or more elements should always be used to model each 

member when a cubic displacement function is assumed.   
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Figure 10.30 Simple Beam with Concentrated Load 
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Non-Dimensional Analysis: Simple Beam with 
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Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load 

 
 
 
 
10.3.2 Non-Dimensional Analysis Example 2 
 

A simply supported beam with equal end moments is shown in Figure 10.32.  The simply 

supported beam is fixed against in-plane transverse deflections, out-of-plane deflections, and 

out-of-plane twist rotations.   

In the first part of the example, the results of a non-dimensional analysis on the structure 

are graphed in Figure 10.33 for 1, 2, 3, and 4 elements for the case of simple end supports.  The 

finite element solution is compared to the solution by Trahair (1993, p. 128) using the finite 

element method to show that the finite element program provides similar results.  Trahair used a 

large enough number of elements to obtain a high level of accuracy.  The solution converges to 
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Trahair’s solution, and there is little variation in buckling load with an increase in the number of 

elements when two or more elements are used.   
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Figure 10.32 Simple Beam with Equal End Moments 
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Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments 

 

 



 170

In the second part of the example, the case of a simply support beam with rigid end 

restraints ( 0'' == φu ) is considered.  The results of a non-dimensional analysis on the structure 

are graphed in Figure 10.34 for 3, 4, and 12 elements.   The finite element solution is compared 

to the solution by Trahair (1993, p.157) using the finite element method to show that the finite 

element program provides similar results. 
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Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End 
Restraints 

 

 

10.3.3 Non-Dimensional Analysis Example 3 
 

A cantilever beam with a concentrated load at the end is shown in Figure 10.35.  The cantilever 

beam is considered to be fixed at the built-in support so that the in-plane deflection and rotation 
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is zero, and the cantilever beam is free at the other end so that it can deflect and rotate in-plane.  

The cantilever beam is also restrained against out-of-plane deformations at the support and 

unrestrained against out-of-plane deformations at the free end.   

The load is applied at a height of a = 0.  The results of a non-dimensional analysis on the 

structure are graphed in Figure 10.36 for 1, 2, and 3 elements.  The finite element solution is 

compared to the solution by Trahair (1993, p. 175) using the finite element method to show that 

the finite element program provides acceptable results.  The finite element solution using the 

program converges to Trahair’s solutions with little variation in buckling load with an increase in 

the number of elements used when there are at least 2 elements used to model the structure.   
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Figure 10.35 Cantilever Beam with a Concentrated Load 
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Non-Dimensional Analysis: Cantilever with 
Concentrated Load
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Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load 

 
 
 
 
10.3.4 Non-Dimensional Analysis Example 4 
 

A simply supported beam with equal and opposite end moments is shown in Figure 10.37.  The 

simply supported beam is fixed against in-plane transverse deflections, out-of-plane deflections, 

and out-of-plane twist rotations.   

The results of a non-dimensional analysis on the structure are graphed in Figure 10.38 for 

1, 2, 3, and 4 elements.  The finite element solution is compared to the solution by Trahair (1993, 

p. 131) using the finite element method to show that the finite element program provides 

acceptable results.  The finite element method using the program agrees with Trahair’s solution 

using the finite element method when at least 4 elements are used to model the structure.   
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Figure 10.37 Simple Beam with Equal and Opposite End Moments 
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Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments 
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10.3.5 Non-Dimensional Analysis Example 5 
 

A cantilever beam with an end moment applied is shown in Figure 10.39.  The cantilever beam is 

considered to be fixed at the built-in support so that the in-plane deflection and rotation is zero, 

and the cantilever beam is free at the other end so that it can deflect and rotate in-plane.  The 

cantilever beam is also restrained against out-of-plane deformations at the support and 

unrestrained against out-of-plane deformations at the free end.   

The results of a non-dimensional analysis on the structure are graphed in Figure 10.40 for 

3 and 4 elements.  The finite element solution is compared to the solution by Trahair (1993, p. 

179) using the finite element method to show that the finite element program provides acceptable 

results. 
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Figure 10.39 Cantilever Beam with End Moment 

 



 175
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Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment 

 

 

10.3.6 Non-Dimensional Analysis Example 6 
 

A simply supported beam with a distributed load applied at a height of a = 0 is shown in Figure 

10.41.  The simply supported beam is fixed against in-plane transverse deflections, out-of-plane 

deflections, and out-of-plane twist rotations.   

The results of a non-dimensional analysis on the structure are graphed in Figure 10.42 for 

4 elements.  The finite element solution is compared to the solution by Trahair (1993, p. 135) 

using the finite element method to show that the finite element program provides acceptable 

results.  If more than 4 elements are used to model the structure, the accuracy of the finite 

element solution using the program will be improved and will continue converge to Trahair’s 

solution. 
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Figure 10.41 Simple beam with Distributed Load 
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Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load 

 

 

10.3.7 Non-Dimensional Analysis Example 7 
 

A cantilever beam with a distributed load acting at a height ‘a’ is shown in Figure 10.43.  The 

effect of load height was considered in this example.  The non-dimensional load height is 
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represented by ‘2a/h’, where the load height ‘a’ equal to ‘-h/2’ indicates a top-flange loading.  

On the contrary, ‘a’ equal to ‘h/2’ indicates a bottom-flange loading.  The cases of top flange 

loading, bottom flange loading, and shear center loading are all considered and graphed in Figure 

10.44. 

 As discussed in Example 10.1.3, a load height below the shear center of the member will 

produce a twisting moment to oppose the twist rotations and stabilize the structre so that the 

flexural-torsional buckling loads are increased.  A load height above the shear center of the 

member will produce a twisting moment to amplify the twist rotations and cause the flexural-

torsional buckling loads to be reduced.   

The solution can be compared to a solution obtained by Trahair (1993, p.176) using the 

finite element method.  Although the solution obtained by Trahair is not graphed in order to 

make the graph as clear as possible, the finite element solution in Figure 10.44 agrees with the 

solution obtained by Trahair, and the accuracy of the solution may be increased by increasing the 

number of elements used to model the structure.   
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Figure 10.43 Cantilever Beam with Distributed Load 
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Non-Dimensional Analysis: Load Height Analysis of 
Cantilever with Distributed Load
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Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load 
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11.0 SUMMARY 

 
 
 
As the demand on existing engineering software applications increases, these applications must 

be modified to incorporate new technology, new types of structural models, and new analysis 

and design procedures.  Object-oriented software development is a useful tool in engineering 

applications to increase the flexibility of the software applications.  An object-oriented design of 

an existing flexural-torsional buckling analysis program was presented in this study.   

The study began with the derivation of the energy equations to calculate the elastic 

flexural-torsional buckling loads of a beam-column element.  The total potential energy equation 

was derived for the flexural-torsional buckling of a beam-column by summing the strain energy 

and the potential energy of the external loads.  The derivation was based on the second variation 

of the total potential energy equal to zero, which indicated the transition from a stable to an 

unstable configuration.   

The energy equations were then used in conjunction with the finite element method to 

derive the element stiffness and geometric stiffness matrices of the beam-column element.  Cubic 

polynomials were assumed for the displacement functions.  The shape functions were used along 

with the energy equation to derive the element stiffness and element geometric stiffness matrices.  

The transformation matrix was applied to both the element stiffness and element geometric 

stiffness matrices to convert them from a local coordinate system to the global coordinate 

system.  The individual global element stiffness matrices were summed to provide the global 

stiffness and global geometric stiffness matrices of a structure.   
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The final equation for calculating the flexural-torsional buckling loads of a beam-column 

element was in the form of a generalized eigen-value equation.  This equation needed to be 

converted to a standard eigen-value equation using the Cholesky method.  Householder’s method 

was used to change the standard matrix into a tridiagonal matrix.  The eigen-value of the 

tridiagonal matrix was calculated using QL iteration.  The buckling parameter is the inverse of 

the smallest eigen-value.   

The finite element method is compatible with software development so that computer 

technology was utilized to aid in the analysis process.  An easily modifiable object-oriented 

application must allow for reuse of code and prevent small changes in one area of the program 

from having a ripple effect throughout the entire program.  An existing software package that 

used the finite element equations of a beam-column element to calculate the flexural-torsional 

buckling loads of a plane frame structure needed to be modified into an object-oriented program 

to increase its flexibility and to allow for future modifications.  The original program was not 

object-oriented and not user friendly.  Object-oriented technology was applied to the existing 

flexural-torsional buckling program by refactoring the existing program.   

First, the basic system requirements were determined.  Next, models were built from the 

existing software to communicate the old design.  New models were created considering object-

oriented concepts to communicate the new software structure.  The models considered included 

the use case diagram, the class diagram, the sequence diagram, and the activity diagram.  Then, 

the program code was changed from an older procedural structure to an object-oriented structure 

reflecting the object-oriented models.  Finally, a new object-oriented Windows application user 

interface was created using the Microsoft Foundation Classes to make the program more user 

friendly. 
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 Several examples were presented to compare the results of the software package to 

existing solutions.  The finite element method always predicts a buckling factor that is greater 

than the actual value.  As the number of elements used to model the structure is increased, the 

accuracy of the finite element solution can be improved.  These examples show that the program 

provides acceptable results when analyzing a plane frame structure subjected to concentrated 

moments and concentrated, axial, and distributed loads.   
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APPENDIX A 
 
 
 
 

DERIVATION OF THE ROTATION TRANSFORMATION MATRIX 
 
 
 The derivations in this Appendix are taken from Torkamani (1998).  Figure A.1 shows a 

point P with coordinates ( )zyx ˆ,ˆ,ˆ  with respect to the fixed, global, right-handed coordinate 

system oxyz. When point P moves to point Q, the movement may be described in two stages: (1) 

point P translates to point R where the distance is described by the translation vector d
r

, and (2) 

point R rotates to point Q through the angle θ about the axis of rotation AB which is parallel to 

the translation vector d
r

.  The final position is point Q with coordinates of (x, y, z) with respect to 

the oxyz coordinate system.    

o  z

A(a,b,c)   d

→

x R(ξ,η,ς)

y B

P 

L
K

Q(x,y,z)

θ

Nz

( ˆ ,ŷ,ˆ )x z

 
 

Figure A. 1 Rigid Body Movement from Point P to Q 
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The coordinates of point Q, (x, y, z), need to be calculated from the coordinates of point 

P, ( )zyx ˆ,ˆ,ˆ , the translation vector d
r

, the directional cosines of the axis of rotation AB, and the 

rotational angle θ.  The axis of rotation, AB, passes through the point A, which has coordinates 

(a, b, c) and has direction-angles of α, β, and γ with respect to the oxyz coordinate system.  Points 

Q and R are located in a plane perpendicular to the line AB.  A unit vector N
r

on the axis of 

rotation AB has the same directional cosines as the rotation angle θ
r

and is given by  

kjiN
rrr

γβα coscoscos ++=       (A-1) 

The vector oQ  may be broken into its vector components expressed by 

LQRLoRoQ ++=         (A-2) 

Therefore, the vector oQ  may be found by determining each of its components, oR , RL , and 

LQ  in terms of the coordinates of point P, the components of a translation vector d
r

, direction 

cosines of the axis of rotation AB, and rotational angle θ. 

 

 
A.1  VECTOR OR 

 
 

The point P translates to the point R with coordinates (ξ, η, ζ) with respect to the oxyz coordinate 

system.  The coordinates of point R may be expressed in terms of the coordinates of point P and 

the translation vector d
r

 as 

αξ cosˆ dx
r

+=         (A-3) 

βη cosˆ dy
r

+=         (A-4) 

γζ cosˆ dz
r

+=         (A-5) 
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A.2  VECTOR RL 
 
 

The point K shown in Figure A.1 is the projection of points R and Q on the axis AB.  The vectors 

KR and KQ are equal in magnitude and are radii of the rotation about AB, where the rotation 

angle, θ, is the angle QKR ˆ .  The point L shown in Figure A.1 is the projection of the point Q on 

the line KR.  The vector KR may be defined as 

 AKARKR −=         (A-6) 

or 

 ( ) ( ) ( )[ ] AKkcjbiaKR −−+−+−=
rrr

ζηξ     (A-7) 

Vector AK is the projection of AR on line AB.  Therefore, NARAK
r

⋅=  and  

 ( ) NNARAK ⋅=         (A-8) 

By considering the components of vectors AR and N
r

, Equation A-8 may be expressed as 

 ( ) ( ) ( )[ ] ( )kjicbaAK
rrr

γβαγζβηαξ coscoscoscoscoscos ++−+−+−=   

(A-9) 

Substituting Equation A-9 into A-7 gives 

 ( ) ( ) ( ) ( )( )[ ] icbaaKR
r

γζβηαξαξ coscoscoscos −+−+−−−=  

  ( ) ( ) ( ) ( )( )[ ] jcbab
r

γζβηαξβη coscoscoscos −+−+−−−+  

  ( ) ( ) ( ) ( )( )[ ] kcbac
r

γζβηαξγζ coscoscoscos −+−+−−−+  (A-10) 

The vector RL  may be written as 
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 LKRKRL −=         (A-11) 

 θcosKRKRRL +−=         (A-12) 

 ( )KRRL θcos1−−=         (A-13) 

Substituting Equation A-10 into Equation A-13 gives 

 ( ) ( ) ( ) ( ) ( )( )[ ] icbaaRL
r

γζβηαξαξθ coscoscoscoscos1 −+−+−−−−−=   

  ( ) ( ) ( ) ( ) ( )( )[ ] jcbab
r

γζβηαξβηθ coscoscoscoscos1 −+−+−−−−−  

  ( ) ( ) ( ) ( ) ( )( )[ ] kcbac
r

γζβηαξγζθ coscoscoscoscos1 −+−+−−−−−  

           (A-14) 
 
 
 
 

A.3  VECTOR LQ 
 

 
By definition of vector cross-product 

 ( ) ( )[ ] ( ) ( )[ ] jcaibcARN
rr

αζγξγηβζ coscoscoscos −−−+−−−=×  

  ( ) ( )[ ] kab
r

βξαη coscos −−−+      (A-15) 

and 

 RAKARARN ˆsin=×        (A-16) 

From triangle ARK, 

 KRRAKAR =ˆsin         (A-17) 

Therefore, 

 KRARN =×         (A-18) 
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A unit vector, LQN , in the direction LQ is defined as 

 
ARN

ARNN LQ

×

×
= r

r

        (A-19) 

Substituting Equation A-18 into A-19 gives 

 
KR

ARNN LQ
×

=
r

        (A-20) 

Substituting Equation A-15 into Equation A-20 gives 

 ( ) ( )[ ] ( ) ( )[ ]{ jcaibc
KR

N LQ
rr

αζγξγηβζ coscoscoscos1
−−−+−−−=  

  ( ) ( )[ ] }kab
r

βξαη coscos −−−+      (A-21) 

Since 

 θθ sinsin KRKQLQ ==        (A-22) 

the vector LQ  may be expresses as 

 LQNKRLQ θsin=         (A-23) 

From Equations A-21 and A-23, the vector LQ  may be written as 

 ( ) ( )[ ] ( ) ( )[ ]{ jcaibcLQ
rr

αζγξγηβζθ coscoscoscossin −−−+−−−=  

  ( ) ( )[ ] }kab
r

βξαη coscos −−−+      (A-24) 

 
 
 

A.4  FINITE DISPLACEMENTS TRANSFORMATION 
 

 
To define the finite displacements transformation matrix, consider the x, y, and z components of 

Eq. A-2 in the form of 
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 xx LQRLx ++= ξ         (A-25a) 

 yy LQRLy ++=η         (A-25b) 

 zz LQRLz ++= ζ         (A-25c) 

Substituting in for vectors RL  from Equation A-14 and LQ  from Equation A-24 into A-25a to 

A-25c gives 

 ( ) ( ) ( ) ( ) ( )[ ]γαζβαηαξξθξ coscoscoscoscoscos1 2 cbaax −−−−−−−−−=  

  ( ) ( )[ ]γηβζθ coscossin bc −−−+      (A-26a) 

 ( ) ( ) ( ) ( ) ( )[ ]γβζβηβαξηθη coscoscoscoscoscos1 2 cbaby −−−−−−−−−=  

  ( ) ( )[ ]αζγξθ coscossin ca −−−+      (A-26b) 

 ( ) ( ) ( ) ( ) ( )[ ]γζγβηγαξζθζ 2coscoscoscoscoscos1 cbacz −−−−−−−−−=  

  ( ) ( )[ ]βξαηθ coscossin ab −−−+      (A-26c) 

Substituting for ξ, η, and ζ from Equations A-3 to A-5 into A-26a to A26c gives  

( ) ( ) ( ) ( )[ ]γαβααθα coscosˆcoscosˆsinˆcos1cosˆ 2 czbyaxdxx −−−−−−−+=  

  ( ) ( )[ ]γβθ cosˆcosˆsin bycz −−−+      (A-27a) 

 ( ) ( ) ( ) ( )[ ]γβββαθβ coscosˆsinˆcoscosˆcos1cosˆ 2 czbyaxdyy −−−+−−−−+=  

  ( ) ( )[ ]αγθ cosˆcosˆsin czax −−−+      (A-27b) 

 ( ) ( ) ( ) ( )[ ]γγβγαθγ 2sinˆcoscosˆcoscosˆcos1cosˆ czbyaxdzz −+−−−−−−+=  

  ( ) ( )[ ]βαθ cosˆcosˆsin axby −−−+      (A-27c) 

Equations A-27a through A-27c may be expressed in matrix form as the most general form of the 

finite displacement transformation given by 
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 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

cz
by
ax

T
d
d
d

c
b
a

z
y
x

R

ˆ
ˆ
ˆ

cos
cos
cos

γ
β
α

      (A-28) 

where 

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++
+−+

=
γθαθγββθγα

αθγββθγθβα
βθγαγθβααθ

2

2

2

coscoscossincoscoscossincoscos
cossincoscoscoscoscossincoscos
cossincoscoscossincoscoscoscos

CCC
CCC
CCC

TR  

           (A-29) 

and 

 θcos1−=C          (A-30) 

 
 
 

A.5  ROTATION TRANSFORMATION MATRIX 
 
 
For the special case of pure rotation transformation, 0=d

r
; therefore, Equations A-3 to A-5 

simplify to 

x̂=ξ           (A-31a) 

ŷ=η           (A-31b) 

ẑ=ζ           (A-31c) 

Using Equations A-31a through A-31c in A-26a through A-26c gives 

 ( ) ( ) ( ) ( )[ ]γαβααθ coscosˆcoscosˆsinˆcos1ˆ 2 czbyaxxx −−−−−−−=  

  ( ) ( )[ ]γβθ cosˆcosˆsin bycz −−−+      (A-32a) 

 ( ) ( ) ( ) ( )[ ]γββαβθ coscosˆcoscosˆsinˆcos1ˆ 2 czaxbyyy −−−−−−−=  

  ( ) ( )[ ]αγθ cosˆcosˆsin czax −−−+      (A-32b) 
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 ( ) ( ) ( ) ( )[ ]γβγαγθ coscosˆcoscosˆsinˆcos1ˆ 2 byaxczzz −−−−−−−=  

  ( ) ( )[ ]βαθ cosˆcosˆsin axby −−−+      (A-32c) 

If the rotation axis AB passes through the origin, then 0=== cba  and Equations A-32a 

through A-32c may be simplified to 

 ( )[ ] [ ]γβθγαβααθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 yzzyxxx −+−−−−=   

           (A-33a) 

( )[ ] [ ]αγθγββαβθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 zxzxyyy −+−−−−=  

           (A-33b) 

 ( )[ ] [ ]βαθγβγαγθ cosˆcosˆsincoscosˆcoscosˆsinˆcos1ˆ 2 xyyxzzz −+−−−−=  

           (A-33c) 

Equations A-33a to A-33c may be simplified using trigonometric identities and expressed as 

 [ ] [ ]γβθθγαβααθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 yzzyxxx −+−−−=  

           (A-34a) 

 [ ] [ ]αγθθγββαβθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 zxzxyyy −+−−−=  

           (A-34b)
 

 [ ] [ ]βαθθγβγαγθ cosˆcosˆ
2

cos
2

sin2coscosˆcoscosˆsinˆ
2

sin2ˆ 22 xyyxzzz −+−−−=  

           (A-34c) 

Equations A-34a to A-34c may be expressed in the following form 
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 yxx ˆcos
2

cos
2

sin2coscos
2

sin2ˆsin
2

sin21 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −= γθθβαθαθ   

  ẑcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ ++ βθθγαθ     (A-35a) 

yxy ˆsin
2

sin21ˆcos
2

cos
2

sin2coscos
2

sin2 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ += βθγθθβαθ  

  ẑcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ −+ αθθγβθ     (A-35b) 

 xz ˆcos
2

cos
2

sin2coscos
2

sin2 2 ⎟
⎠
⎞

⎜
⎝
⎛ −= βθθγαθ  

  zy ˆsin
2

sin21ˆcos
2

cos
2

sin2coscos
2

sin2 222 ⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ ++ γθαθθγβθ   

           (A-35c) 

For this special case of no translation and the axis of rotation AB passing through the 

origin o, then point A is at o.  The coordinate system zyxo ˆˆˆ  is considered to be a moving 

coordinate system that rotates with the point P about the line ob as shown in Figure A.2.  The 

coordinate zyxo ˆˆˆ  represents a moving, local, right-handed coordinate system, and the initial 

position of the coordinate is shown in Figure A.2.  The zyxo ˆˆˆ  coordinate rotates about the line ob 

through the rotation angle θ and goes to the final position zyxo ˆˆˆ  so that the coordinates of point Q 

with respect to the coordinate system zyxo ˆˆˆ  after rotation are ( )zyx ˆ,ˆ,ˆ  and with respect to the oxyz 

coordinate system are ( )zyx ,, .  Then, Equations A-35a to A-35c represent a rotation 

transformation coordinate system with the direction cosines for the zyxo ˆˆˆ  system with respect to 

the oxyz system shown in Table A-1.   
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o A(0,0,0) ˆ  z

Q   
ˆ ŷ  y'

  

x

b

y

P

θ
x

z

 

Figure A. 2 Rigid Body Rotation from Point P to Q 
 

 

Table A- 1 Direction Cosines 

 x y z 
x̂  lx mx nx 
ŷ  ly my ny 
ẑ  lz mz nz 

 

 

where 

 αθ 22 sin
2

sin21−=xl         (A-36) 

 γθθβαθ cos
2

cos
2

sin2coscos
2

sin2 2 −=yl      (A-37) 

 βθθγαθ cos
2

cos
2

sin2coscos
2

sin2 2 +=zl      (A-38) 

γθθβαθ cos
2

cos
2

sin2coscos
2

sin2 2 +=xm      (A-39) 
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βθ 22 sin
2

sin21−=ym        (A-40) 

 αθθγβθ cos
2

cos
2

sin2coscos
2

sin2 2 −=zm      (A-41) 

 βθθγαθ cos
2

cos
2

sin2coscos
2

sin2 2 −=xn      (A-42) 

 αθθγβθ cos
2

cos
2

sin2coscos
2

sin2 2 +=yn      (A-43) 

 γθ 22 sin
2

sin21−=zn         (A-44) 

Expressing Equations A-35a to A-35c in matrix form gives 

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z
y
x

T
z
y
x

R

ˆ
ˆ
ˆ

        (A-45) 

where 

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zyx

zyx

zyx

R

nnn
mmm
lll

T         (A-46) 

The directional cosines of the unit vector N
r

 expressed in terms of the component of the rotation 

vector θ
r

 gives 

 kji zyx

rrr
θθθθ ++=         (A-47) 

and 

 
θ
θ

α x=cos          (A-48) 

 
θ
θ

β y=cos          (A-49) 
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θ
θ

γ z=cos          (A-50) 

Assuming small rotations such that 0sin =θ and
2

1cos
2θθ −=  gives 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣
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⎥
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⎥
⎥
⎥
⎥

⎦
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⎢
⎢
⎢
⎢
⎢
⎢
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⎡

−−++−
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++−−−

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

z

y

x

z

y

x

yxzy
x

zx
y

zy
x

zxyx
z

zx
y

yx
z

zy

ˆ

ˆ

ˆ

22
1

22

222
1

2

2222
1

22

22

22

θθθθ
θθθθ

θθ
θθθθθ

θ

θθθ
θθ

θθθ

    (A-51) 
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APPENDIX B   
 
 
 
 

B.1  ELEMENT ELASTIC STIFFNESS MATRIX 
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L
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k y=  
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6
L
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k y−
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L
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L
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L
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L
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5
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−
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−
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B.2  ELEMENT GEOMETRIC STIFFNESS MATRIX 
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B.3  ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX 
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B.4  ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX 
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B.5  ELEMENT PREBUCKLING STIFFNESS MATRIX 
 
 

L
CGJ

L
CEI

k p 2
6

311
−

−
= ω  

 

L
CGJ

L
CEI

k p 2
6

318
+= ω  

 

L
CGJk p 223

=  

 

4
3

224

CGJ
L
CEI

k p −
−

= ω  

 

L
CGJk p 227

−
=  

 

4
3

228

CGJ
L

CEI
k p += ω  

 

L
CGJk p 236

−
=  

 

L
CGJ

L
CEI

k p 2
6

345
+= ω  

 

4
3

246

CGJ
L
CEI

k p −
−

= ω  

 

L
CGJ

L
CEI

k p 2
6

358
−

−
= ω  

 

L
CGJk p 267

=  

 

4
3

268

CGJ
L

CEIk p += ω  

 



 

203 

 
 
 
 

B.6  ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX 
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APPENDIX C 
 
 
 
 

C.1  INPUT FILES 
 
 
C.1.1  Input File for the Frame Program 
 
 
The input file for the Frame program is the user input file.  The format for the input file for the 

Frame program for either a buckling or prebuckling analysis is: 

 

‘B’ or ‘P’  
Structure Name 
1  #S 
Series Name 
Frame Analysis:     (m, nj, nr, nrj) 
#E  #N  #NR  #NRJ 
Joint Coordinates:     (j, x(j), y(j)) 
J#  X  Y       *Coordinates of first joint 
……….       *Coordinates of next joint 
Member Data:     (i, jj(i), jk(i), Ax(i), Iy, Ix, Iw, E, G, J) 
M#  J1  J2  A  Iy  Ix  Iw  E  G  J    *Properties of first element 
…………………………………    *Properties of next element 
Joint Restraints:  
J#  R1  R2  R3  R4  R5  R6  R7    *Restraints of first joint 
………………………………..      *Restraints of next joint 
Loading Number:     (nlj, nlm) 
NLJ  NLM 
Joint Loads: 
J#  F  P  Mx  e       *First joint load 
………………………     *Next joint load 
Member Loads: 
M#  Type  Magnitude  Height  xp    *First member load 
…………………………………..    *Next member load 
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C.1.2  Input File for the LBuck Program 
 
 
The input file used to calculate the buckling loads in the LBuck program is the output of the 

Frame program.  The format for the input file into the LBuck program for a buckling analysis is:  

 

‘B’  ‘1’  #S 

Structure Name 

#1 

 

#E 

E  G  J  Iy  Ix  Iw  L  Ang  J1  J2    *properties of the first element 

q  a  P  e  xp  F  M1  V1  c       *loads for the first element 

……………………………     *properties for the next element 

………………………………….    *loads for the next element 

R4  R5  R6  R7      *restraints for the first element 

.........................      *restraints for the next element 

 

#E 

E  G  J  Iy  Ix  Iw  L  Ang  J1  J2 

q  a  P  e  xp  F  M1  V1  c  

……………….. 

…………………………………. 

R4  R5  R6  R7 

......................... 

…this pattern is repeated for each series… 
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The format for the input file into the LBuck program for a prebuckling analysis is: 

 

‘P’  ‘1’  #S 

Structure Name 

#1 

 

#E 

E  G  J  Iy  Ix  Iw  L  Ang  J1  J2    *properties of the first element 

q  a  P  e  xp  F  M1  V1  c       *loads for the first element 

……………………………     *properties for the next element 

………………………………….    *loads for the next element 

R4  R5  R6  R7      *restraints for the first element 

.........................      *restraints for the next element 

 

#E 

E  G  J  Iy  Ix  Iw  L  Ang  J1  J2 

q  a  P  e  xp  F  M1  V1  c  

……………….. 

…………………………………. 

R4  R5  R6  R7 

......................... 

…this pattern is repeated for each series… 

 

 

 

 

 

 

 

 



 

210 

The input for the non-dimensional analysis comes straight from the user input file.  The non-

dimensional analysis does not use the Frame program to calculate in in-plane actions of the 

structure.  The format for the input file into the LBuck program for a non-dimensional analysis 

is: 

 
‘N’  #S  Kmin  Kmax  Kstep 

Structure Name 

 

Series #1 Name 

#E  #N 

q  a  P  e  xp  F  M1  V1  Ang  J1  J2    *loads for the first element 

...........................................................    *loads for the next element 

R4  R5  R6  R7      *restraints for the first element 

………………      *restraints for the next element 

q  a  P  e  xp  F  M1  V1  Ang  J1  J2 

........................................................... 

R4  R5  R6  R7 

……………… 

…this pattern is repeated for each step in beam parameter… 

 

Series #2 Name 

#E  #N 

q  a  P  e  xp  F  M1  V1  Ang  J1  J2 

........................................................... 

R4  R5  R6  R7 

……………… 

…this pattern is repeated for each step in beam parameter… 

 

…this pattern is repeated for each series… 
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C.2  INPUT FILE SYMBOLS 
 
 
Symbol  Description 

‘B’   indicates a buckling analysis 

‘P’    indicates a prebuckling analysis 

‘N’   indicates a non-dimensional analysis 

#S   number of series 

Kmin   minimum beam parameter 

Kmax   maximum beam parameter 

Kstep   step of the beam parameter for each analysis 

Structure Name name of the structure 

Series Name  name of the series 

#E   number of elements 

#N   number of nodes 

#NR   number of in-plane restraints 

#NRJ    number of in-plane restrained joints 

J#   joint number 

X   x coordinate of joint 

Y   y coordinate of joint 

M#   element number 

A   element area 
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Symbol  Description 

E   modulus of elasticity 

G   shear modulus 

J   uniform torsion (or Saint Venant) constant 

Iy   moment of inertia about the y axis 

Ix   moment of inertia about the x axis 

Iw   warping moment 

L   length of the element 

Ang   angle from the global coordinates to the element 

J1   first node of the element 

J2   second node of the element 

q   distributed load 

a   height of the distributed load 

P   concentrated load 

e   height of the concentrated load     

xp   distance along the element to the concentrated load from the first node 

F   axial load 

Mx   moment applied to a specified joint 

M1   end moment at first node of the element 

V1   shear at the first node of the element 

c   slope, 
dz

dv )0(  

Type   ‘P’ for concentrated load and ‘q’ for distributed load 

Magnitude  magnitude of concentrated load, P, or distributed load, q 



 

213 

Symbol  Description 

Height   height of load, ‘a’ or ‘e’  

R1   restraint against translation in the z direction 

R2   restraint against translation in the y direction 

R3   restraint against rotation in the x direction 

R4   restraint against translation in the x direction 

R5   restraint against rotation in the y direction 

R6   restraint against rotation in the z direction 

R7   restraint against warping 

NLJ   number of joint loads 

NLM   number of member loads 
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APPENDIX D 
 
 
 

LBUCK PROGRAM CODE 
 

 
This Appendix presents the code written for the LBuck Program for the executable file  
 
lbuck.exe.   
 
 
 
 

D.1  ELEMENTGEOM.CPP 
 
 
//Header files 
#include "prop.h"   
#include "elementgeom.h" 
    
//Global Variable Definition 
static float Pi= 3.14159265F; 
 
//Global Variable declarations 
extern float data[17][MSize]; 
extern int data2[2][MSize]; 
extern char anl; 
 
void Element_Geometric::Fill_Properties(int j) 
{ 
 Properties::Fill_Properties(j); 
} 
 
// Overloaded function defined the properties of 
// the element geometric matrix 
 
void Element_Geometric::Fill_Element_Geometric1(float h) 
{ 
 for(int i=0;i<=8;i++) 
  for(int j=0;j<=8;j++) 
   Gm[i][j]=0;   
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 Gm[1][1]=(6*F)/(5*l);  
 
 Gm[1][2]=F/10;  
 
 Gm[1][3]=(-6*M1)/(5*l) + P/10 - (l*q)/70 -V1/10 - (6*P*zp)/(5*l) + (3*P*zp*zp)/(l*l) - 
      (2*P*zp*zp*zp)/(l*l*l) - (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) + 

  (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) - 
  (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));  

     
 Gm[1][4]=-M1/10 - ((l*l)*q)/140- (P*zp)/10 + (P*zp*zp*zp)/(l*l) -  

  (2*P*zp*zp*zp*zp)/(l*l*l) + (3*P*zp*zp*zp*zp*zp)/(2*(l*l*l*l)) -  
      (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  
     
 Gm[1][5]=(-6*F)/(5*l);  
     
 Gm[1][6]=F/10;  
     
 Gm[1][7]=(6*M1)/(5*l) - (11*P)/10 - (17*l*q)/35 +(11*V1)/10  + (6*P*zp)/(5*l) +  

(3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) -(12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) + 
    (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));      
 
 Gm[1][8]=-M1/10 + (l*P)/10 + (3*(l*l)*q)/70 - (l*V1)/10  

- (P*zp)/10 - (P*zp*zp*zp*zp)/(2*(l*l*l)) +(9*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) 
- (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  

    
 Gm[2][2]=(2*F*l)/15;  
   
 Gm[2][3]=(-11*M1)/10 + (l*P)/5 + (11*(l*l)*q)/420 - (l*V1)/5  - (11*P*zp)/10 +  

   (2*P*zp*zp)/l - (P*zp*zp*zp)/(l*l) - (P*zp*zp*zp*zp)/(l*l*l) +  
   (13*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) -  
   (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  

 
 Gm[2][4]=-(2*l*M1)/15 + ((l*l)*P)/30 + ((l*l*l)*q)/210 - 
      ((l*l)*V1)/30 + (2*l*P*zp)/15 + (2*P*zp*zp*zp)/(3*l) -  

  (7*P*zp*zp*zp*zp)/(6*(l*l)) + (4*P*zp*zp*zp*zp*zp)/(5*(l*l*l)) - 
  (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));  
     

 Gm[2][5]=F/10;  
     
 Gm[2][6]=-(F*l)/30;  
     
 Gm[2][7]=M1/10 - (l*P)/5 - (23*(l*l)*q)/210 + (l*V1)/5 +(P*zp)/10 +  

(P*zp*zp*zp*zp)/(l*l*l) – (13*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) +  
      *P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  
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 Gm[2][8]=(l*M1)/30 + ((l*l*l)*q)/210 + (l*P*zp)/30 - 
    (P*zp*zp*zp*zp)/(3*(l*l)) + (P*zp*zp*zp*zp*zp)/(2*(l*l*l)) - 
    (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l)); 
     

 Gm[3][3]=P*e + (13*a*l*q)/35 - (6*P*e*zp*zp)/(l*l) +  
     4*P*e*zp*zp*zp)/(l*l*l) + (9*P*e*zp*zp*zp*zp)/(l*l*l*l) -  
   (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) +  

(4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);  
     
 Gm[3][4]=(11*a*(l*l)*q)/210 + P*e*zp - (2*P*e*zp*zp)/l - 

    (2*P*e*zp*zp*zp)/(l*l) + (8*P*e*zp*zp*zp*zp)/(l*l*l) -  
    (7*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) + 
    (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);  
     

 Gm[3][5]=(6*M1)/(5*l)  + (l*q)/70 + V1/10- P/10+ 
    (6*P*zp)/(5*l) - (3*P*zp*zp)/(l*l) + (2*P*zp*zp*zp)/(l*l*l) + 
    (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) - 
    (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) + 
    (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));  

     
 Gm[3][6]=-M1/10 - (l*P)/10 - (17*(l*l)*q)/420 + (l*V1)/10  
     -(P*zp)/10 + (P*zp*zp)/l - (P*zp*zp*zp)/(l*l) -  

    (P*zp*zp*zp*zp)/(2*(l*l*l)) + (11*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) -  
    (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  

     
 Gm[3][7]=(9*a*l*q)/70 + (3*P*e*zp*zp)/(l*l) - (2*P*e*zp*zp*zp)/(l*l*l) -  
      (9*P*e*zp*zp*zp*zp)/(l*l*l*l) + (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) -  
    (4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);  
     
 Gm[3][8]=(-13*a*(l*l)*q)/420 - (P*e*zp*zp)/l + (P*e*zp*zp*zp)/(l*l) + 

    (3*P*e*zp*zp*zp*zp)/(l*l*l) - (5*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) +  
    (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);  

     
 Gm[4][4]=(a*(l*l*l)*q)/105 + P*e*zp*zp - (4*P*e*zp*zp*zp)/l +  

    (6*P*e*zp*zp*zp*zp)/(l*l) - (4*P*e*zp*zp*zp*zp*zp)/(l*l*l) +  
    (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l);  

     
 Gm[4][5]=M1/10 + ((l*l)*q)/140 + (P*zp)/10 - (P*zp*zp*zp)/(l*l) +  

    (2*P*zp*zp*zp*zp)/(l*l*l) - (3*P*zp*zp*zp*zp*zp)/(2*(l*l*l*l)) +  
    (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  
     

 Gm[4][6]=(l*M1)/30 - ((l*l)*P)/30 - ((l*l*l)*q)/84 + ((l*l)*V1)/30  
  +(l*P*zp)/30 + (P*zp*zp*zp)/(3*l) - (5*P*zp*zp*zp*zp)/(6*(l*l)) +  

    (7*P*zp*zp*zp*zp*zp)/(10*(l*l*l)) - (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));  
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 Gm[4][7]=(13*a*(l*l)*q)/420 + (3*P*e*zp*zp*zp)/(l*l) - 
    (8*P*e*zp*zp*zp*zp)/(l*l*l) + (7*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) - 
    (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);  

     
 Gm[4][8]=-(a*(l*l*l)*q)/140 - (P*e*zp*zp*zp)/l + (3*P*e*zp*zp*zp*zp)/(l*l) -  

    (3*P*e*zp*zp*zp*zp*zp)/(l*l*l) + (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l);  
     
 Gm[5][5]=(6*F)/(5*l);  
     
 Gm[5][6]=F/10;  
     
 Gm[5][7]=(-6*M1)/(5*l) + (11*P)/10 + (17*l*q)/35 - 

    (11*V1)/10 - (6*P*zp)/(5*l) - (3*P*zp*zp*zp*zp)/(2*(l*l*l*l)) + 
    (12*P*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l)) - 
    (4*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l*l));  

       
 Gm[5][8]=M1/10 - (l*P)/10 - (3*(l*l)*q)/70 + (l*V1)/10 
  +(P*zp)/10 + (P*zp*zp*zp*zp)/(2*(l*l*l)) -(9*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l))  

+ (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  
    
 Gm[6][6]= (2*F*l)/15;  
 
 Gm[6][7]=(11*M1)/10 - (9*l*P)/10 - (79*(l*l)*q)/210 + (9*l*V1)/10  

    + (11*P*zp)/10 + (P*zp*zp*zp*zp)/(2*(l*l*l))  
    - (11*P*zp*zp*zp*zp*zp)/(10*(l*l*l*l)) +  
     (2*P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l*l));  

     
 Gm[6][8]=(-2*l*M1)/15 + ((l*l)*P)/10 + (4*(l*l*l)*q)/105 - ((l*l)*V1)/10  

    - (2*l*P*zp)/15 - (P*zp*zp*zp*zp)/(6*(l*l)) + 
    (2*P*zp*zp*zp*zp*zp)/(5*(l*l*l)) - (P*zp*zp*zp*zp*zp*zp)/(5*(l*l*l*l));  

    
 Gm[7][7]=(13*a*l*q)/35 + (9*P*e*zp*zp*zp*zp)/(l*l*l*l) -  

    (12*P*e*zp*zp*zp*zp*zp)/(l*l*l*l*l) +  
    (4*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l*l);  

     
 Gm[7][8]=(-11*a*(l*l)*q)/210 - (3*P*e*zp*zp*zp*zp)/(l*l*l) + 

    (5*P*e*zp*zp*zp*zp*zp)/(l*l*l*l) - 
    (2*P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l*l);  
     

 Gm[8][8]=(a*(l*l*l)*q)/105 + (P*e*zp*zp*zp*zp)/(l*l) -  
    (2*P*e*zp*zp*zp*zp*zp)/(l*l*l) + (P*e*zp*zp*zp*zp*zp*zp)/(l*l*l*l); 

 
 if(anl=='P') 
  Element_Geometric::Fill_Element_Prebuckling(h); 
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for(i=1;i<=8;i++) 
  for(int j=i;j<=8;j++) 
   Gm[j][i]=Gm[i][j]; 
 
 Properties::Rotation(Gm); 
}                                                
// Prebuckling element of the geometric stiffness matrix 
void Element_Geometric::Fill_Element_Prebuckling(float h) 
{                                                            
 
 Gm[1][3]+=(-6*Iw*M1)/(Ix*(l*l*l)) + (6*Iy*M1)/(5*Ix*l) + (9*G*J*M1)/(10*E*Ix*l) + 
       (3*Iw*q)/(Ix*l) + (Iy*l*q)/(70*Ix) - (3*G*J*l*q)/(14*E*Ix) + 

     (Iy*V1)/(10*Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V1)/(Ix*(l*l));  
       
 Gm[1][4]+=  (Iy*M1)/(10*Ix) + (G*J*M1)/(5*E*Ix) + (Iw*q)/(2*Ix) +  

   (Iy*(l*l)*q)/(140*Ix) - (2*G*J*(l*l)*q)/(35*E*Ix) - (Iw*V1)/(2*Ix*l) +  
   (3*G*J*l*V1)/(20*E*Ix);  

      
 Gm[1][7]+=(6*Iw*M1)/(Ix*(l*l*l)) - (6*Iy*M1)/(5*Ix*l) - (9*G*J*M1)/(10*E*Ix*l) - 

     (3*Iw*q)/(Ix*l) + (17*Iy*l*q)/(35*Ix) + (3*G*J*l*q)/(14*E*Ix) - 
     (11*Iy*V1)/(10*Ix) - (3*G*J*V1)/(5*E*Ix) + (6*Iw*V1)/(Ix*(l*l));  

      
 Gm[1][8]+= (Iy*M1)/(10*Ix) -  
       (3*G*J*M1)/(10*E*Ix) - (6*Iw*M1)/(Ix*(l*l)) + (5*Iw*q)/(2*Ix) -  

     (3*Iy*(l*l)*q)/(70*Ix) + (G*J*(l*l)*q)/(7*E*Ix) - (11*Iw*V1)/(2*Ix*l) +  
     (Iy*l*V1)/(10*Ix) - (3*G*J*l*V1)/(10*E*Ix);  

      
 Gm[2][3]+= (11*Iy*M1)/(10*Ix) - (G*J*M1)/(20*E*Ix) -  

     (3*Iw*M1)/(Ix*(l*l)) + (3*Iw*q)/(2*Ix) - (11*Iy*(l*l)*q)/(420*Ix) -  
         (9*G*J*(l*l)*q)/(280*E*Ix) - (7*Iw*V1)/(2*Ix*l) + (Iy*l*V1)/(5*Ix) +  

     (G*J*l*V1)/(20*E*Ix);  
      
 Gm[2][4]+=(2*Iy*l*M1)/(15*Ix) + (G*J*l*M1)/(10*E*Ix) + (Iw*l*q)/(3*Ix) - 

     (Iy*(l*l*l)*q)/(210*Ix) - (G*J*(l*l*l)*q)/(84*E*Ix) - (3*Iw*V1)/(4*Ix) + 
     (Iy*(l*l)*V1)/(30*Ix) + (G*J*(l*l)*V1)/(30*E*Ix);  

      
 Gm[2][7]+=- (Iy*M1)/(10*Ix) + (G*J*M1)/(20*E*Ix) +  

     (3*Iw*M1)/(Ix*(l*l)) - (3*Iw*q)/(2*Ix) + (23*Iy*(l*l)*q)/(210*Ix) +  
     (9*G*J*(l*l)*q)/(280*E*Ix) + (7*Iw*V1)/(2*Ix*l) - (Iy*l*V1)/(5*Ix) -  
     (G*J*l*V1)/(20*E*Ix);  
      

 Gm[2][8]+=(-3*Iw*M1)/(Ix*l) -(Iy*l*M1)/(30*Ix) - (3*G*J*l*M1)/(20*E*Ix) +  
(7*Iw*l*q)/(6*Ix) -(Iy*(l*l*l)*q)/(210*Ix) + (13*G*J*(l*l*l)*q)/(280*E*Ix) –  
(11*Iw*V1)/(4*Ix) -(13*G*J*(l*l)*V1)/(120*E*Ix);  
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 Gm[3][5]+=(6*Iw*M1)/(Ix*(l*l*l)) - (6*Iy*M1)/(5*Ix*l) - (9*G*J*M1)/(10*E*Ix*l) - 
          (3*Iw*q)/(Ix*l) - (Iy*l*q)/(70*Ix) + (3*G*J*l*q)/(14*E*Ix) - 

     (Iy*V1)/(10*Ix) - (3*G*J*V1)/(5*E*Ix) + (6*Iw*V1)/(Ix*(l*l));  
      
 Gm[3][6]+=(Iy*M1)/(10*Ix) + (9*G*J*M1)/(20*E*Ix) -  
       (3*Iw*M1)/(Ix*(l*l)) + (Iw*q)/Ix + (17*Iy*(l*l)*q)/(420*Ix) -  

   (3*G*J*(l*l)*q)/(28*E*Ix) - (5*Iw*V1)/(2*Ix*l) - (Iy*l*V1)/(10*Ix) +  
       (3*G*J*l*V1)/(10*E*Ix);  
      
 Gm[4][5]+=- (Iy*M1)/(10*Ix) -  (G*J*M1)/(5*E*Ix) - (Iw*q)/(2*Ix) –  

   (Iy*(l*l)*q)/(140*Ix) + (2*G*J*(l*l)*q)/(35*E*Ix) + (Iw*V1)/(2*Ix*l) -   
   (3*G*J*l*V1)/(20*E*Ix);  

      
 Gm[4][6]+=(-Iy*l*M1)/(30*Ix) +(G*J*l*M1)/(10*E*Ix) + (Iw*l*q)/(6*Ix) +  

(Iy*(l*l*l)*q)/(84*Ix) -(G*J*(l*l*l)*q)/(35*E*Ix) - (Iw*V1)/(4*Ix) –  
(Iy*(l*l)*V1)/(30*Ix) +(3*G*J*(l*l)*V1)/(40*E*Ix);  

      
 Gm[5][7]+=(-6*Iw*M1)/(Ix*(l*l*l)) + (6*Iy*M1)/(5*Ix*l) + (9*G*J*M1)/(10*E*Ix*l) + 

     (3*Iw*q)/(Ix*l) - (17*Iy*l*q)/(35*Ix) - (3*G*J*l*q)/(14*E*Ix) + 
     (11*Iy*V1)/(10*Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V1)/(Ix*(l*l));  
      

 Gm[5][8]+=- (Iy*M1)/(10*Ix) +  
     (3*G*J*M1)/(10*E*Ix) + (6*Iw*M1)/(Ix*(l*l)) - (5*Iw*q)/(2*Ix) +  
     (3*Iy*(l*l)*q)/(70*Ix) - (G*J*(l*l)*q)/(7*E*Ix) + (11*Iw*V1)/(2*Ix*l) -  
     (Iy*l*V1)/(10*Ix) + (3*G*J*l*V1)/(10*E*Ix);  

      
 Gm[6][7]+=- (11*Iy*M1)/(10*Ix) - (9*G*J*M1)/(20*E*Ix) +  

     (3*Iw*M1)/(Ix*(l*l)) - (Iw*q)/Ix + (79*Iy*(l*l)*q)/(210*Ix) +  
     (3*G*J*(l*l)*q)/(28*E*Ix) + (5*Iw*V1)/(2*Ix*l) - (9*Iy*l*V1)/(10*Ix) -  
     (3*G*J*l*V1)/(10*E*Ix);  
      

 Gm[6][8]+=(-3*Iw*M1)/(Ix*l) + (2*Iy*l*M1)/(15*Ix) - (3*G*J*l*M1)/(20*E*Ix) + 
     (5*Iw*l*q)/(6*Ix) - (4*Iy*(l*l*l)*q)/(105*Ix) + (G*J*(l*l*l)*q)/(14*E*Ix) - 
     (9*Iw*V1)/(4*Ix) + (Iy*(l*l)*V1)/(10*Ix) - (3*G*J*(l*l)*V1)/(20*E*Ix);  
      

 Gm[1][3]+= -(Iy*P)/(10*Ix) - (3*G*J*P)/(5*E*Ix) +  
    (6*Iw*P)/(Ix*l*l) - (6*Iw*P*zp)/(Ix*l*l*l) +  
    (6*Iy*P*zp)/(5*Ix*l) + (9*G*J*P*zp)/(10*E*Ix*l) +  
    (9*Iw*P*zp*zp)/(Ix*l*l*l*l) - (3*Iy*P*zp*zp)/(Ix*l*l) -  
    (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) + (2*Iy*P*zp*zp*zp)/(Ix*l*l*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) +  
    (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -  
    (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  

      (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) +  
      (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) +  

   (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l); 
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 Gm[1][4]+=(Iw*P)/(2*Ix*l) - (3*G*J*l*P)/(20*E*Ix) +  

    (Iy*P*zp)/(10*Ix) + (G*J*P*zp)/(5*E*Ix) +  
    (6*Iw*P*zp*zp)/(Ix*l*l*l) - (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -  
    (Iy*P*zp*zp*zp)/(Ix*l*l) + (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) +  
    (2*Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) +  
    (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) -  
    (3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l) +  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[1][7]+=(11*Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -  

    (6*Iw*P)/(Ix*l*l) + (6*Iw*P*zp)/(Ix*l*l*l) -  
    (6*Iy*P*zp)/(5*Ix*l) - (9*G*J*P*zp)/(10*E*Ix*l) -  

      (9*Iw*P*zp*zp)/(Ix*l*l*l*l) + (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) -  
      (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) -  

    (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +  
    (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  
    (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) -  
    (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l); 

 
 Gm[1][8]+=(11*Iw*P)/(2*Ix*l) - (Iy*l*P)/(10*Ix) +  

    (3*G*J*l*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) -  
    (3*G*J*P*zp)/(10*E*Ix) - (6*Iw*P*zp)/(Ix*l*l) +  
    (3*Iw*P*zp*zp)/(Ix*l*l*l) - (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) -  

      (9*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l) +  

      (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  
      (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 
   
 Gm[2][3]+=(7*Iw*P)/(2*Ix*l) - (Iy*l*P)/(5*Ix) -  

    (G*J*l*P)/(20*E*Ix) + (11*Iy*P*zp)/(10*Ix) -  
       (G*J*P*zp)/(20*E*Ix) - (6*Iw*P*zp)/(Ix*l*l) +  
       (9*Iw*P*zp*zp)/(Ix*l*l*l) - (2*Iy*P*zp*zp)/(Ix*l) -  
        (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) + (Iy*P*zp*zp*zp)/(Ix*l*l) +  
        (G*J*P*zp*zp*zp)/(2*E*Ix*l*l) +  
       (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) -  
       (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) -  
       (13*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -  
         (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) +  
        (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  

    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 
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 Gm[2][4]+=(3*Iw*P)/(4*Ix) - (Iy*l*l*P)/(30*Ix) -  
      (G*J*l*l*P)/(30*E*Ix) - (2*Iw*P*zp)/(Ix*l) +  

    (2*Iy*l*P*zp)/(15*Ix) + (G*J*l*P*zp)/(10*E*Ix) -  
    (G*J*P*zp*zp)/(4*E*Ix) +  
    (11*Iw*P*zp*zp)/(2*Ix*l*l) -  
    (8*Iw*P*zp*zp*zp)/(Ix*l*l*l) - (2*Iy*P*zp*zp*zp)/(3*Ix*l) +  
    (G*J*P*zp*zp*zp)/(3*E*Ix*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) +  
    (7*Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) -  
    (4*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l) +  
    (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l); 

 
 Gm[1][7]+=(-7*Iw*P)/(2*Ix*l) + (Iy*l*P)/(5*Ix) +  

    (G*J*l*P)/(20*E*Ix) - (Iy*P*zp)/(10*Ix) +  
    (G*J*P*zp)/(20*E*Ix) + (6*Iw*P*zp)/(Ix*l*l) -  
    (9*Iw*P*zp*zp)/(Ix*l*l*l) + (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -  
    (G*J*P*zp*zp*zp)/(2*E*Ix*l*l) -  
    (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) - (Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) +  
    (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) +  
    (13*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +  
    (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) -  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[2][8]+=(11*Iw*P)/(4*Ix) + (13*G*J*l*l*P)/(120*E*Ix) -  

    (4*Iw*P*zp)/(Ix*l) - (Iy*l*P*zp)/(30*Ix) -  
    (3*G*J*l*P*zp)/(20*E*Ix) +  
    (7*Iw*P*zp*zp)/(2*Ix*l*l) - (6*Iw*P*zp*zp*zp)/(Ix*l*l*l) +  
    (G*J*P*zp*zp*zp)/(6*E*Ix*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(3*Ix*l*l) -  
    (G*J*P*zp*zp*zp*zp)/(8*E*Ix*l*l) -  
    (Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l) +  
    (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l); 

    
 Gm[3][5]+=(Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -  

    (6*Iw*P)/(Ix*l*l) + (6*Iw*P*zp)/(Ix*l*l*l) -  
    (6*Iy*P*zp)/(5*Ix*l) - (9*G*J*P*zp)/(10*E*Ix*l) -  
    (9*Iw*P*zp*zp)/(Ix*l*l*l*l) + (3*Iy*P*zp*zp)/(Ix*l*l) +  
    (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) - (2*Iy*P*zp*zp*zp)/(Ix*l*l*l) -  
    (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) -  
    (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +  
    (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  
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    (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) -  
    (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l); 

   
 Gm[3][6]+=(5*Iw*P)/(2*Ix*l) + (Iy*l*P)/(10*Ix) -  

    (3*G*J*l*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) +  
    (9*G*J*P*zp)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*l*l) +  
    (3*Iw*P*zp*zp)/(Ix*l*l*l) - (Iy*P*zp*zp)/(Ix*l) -  
    (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) + (Iy*P*zp*zp*zp)/(Ix*l*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) +  
    (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) -  
    (11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) -  
    (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) +  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[4][5]+=-(Iw*P)/(2*Ix*l) + (3*G*J*l*P)/(20*E*Ix) -  

    (Iy*P*zp)/(10*Ix) - (G*J*P*zp)/(5*E*Ix) -  
    (6*Iw*P*zp*zp)/(Ix*l*l*l) + (14*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) +  
    (Iy*P*zp*zp*zp)/(Ix*l*l) - (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) -  
    (2*Iy*P*zp*zp*zp*zp)/(Ix*l*l*l) -  
    (G*J*P*zp*zp*zp*zp)/(4*E*Ix*l*l*l) +  
    (3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l) -  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[4][6]+=(Iw*P)/(4*Ix) + (Iy*l*l*P)/(30*Ix) -  

    (3*G*J*l*l*P)/(40*E*Ix) - (Iy*l*P*zp)/(30*Ix) +  
    (G*J*l*P*zp)/(10*E*Ix) + (2*Iw*P*zp*zp)/(Ix*l*l) -  
    (6*Iw*P*zp*zp*zp)/(Ix*l*l*l) - (Iy*P*zp*zp*zp)/(3*Ix*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) +  
    (5*Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) +  
    (G*J*P*zp*zp*zp*zp)/(8*E*Ix*l*l) -  
    (7*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l) +  
    (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l); 

  
 Gm[5][7]+=(-11*Iy*P)/(10*Ix) - (3*G*J*P)/(5*E*Ix) +  

    (6*Iw*P)/(Ix*l*l) - (6*Iw*P*zp)/(Ix*l*l*l) +  
    (6*Iy*P*zp)/(5*Ix*l) + (9*G*J*P*zp)/(10*E*Ix*l) +  
    (9*Iw*P*zp*zp)/(Ix*l*l*l*l) - (24*Iw*P*zp*zp*zp)/(Ix*l*l*l*l*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(Ix*l*l*l*l*l*l) +  
    (3*Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l) -  
    (12*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  
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    (9*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l) +  
    (4*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(5*E*Ix*l*l*l*l*l*l); 

 
 Gm[5][8]+=(-11*Iw*P)/(2*Ix*l) + (Iy*l*P)/(10*Ix) -  

    (3*G*J*l*P)/(10*E*Ix) - (Iy*P*zp)/(10*Ix) +  
    (3*G*J*P*zp)/(10*E*Ix) + (6*Iw*P*zp)/(Ix*l*l) -  
    (3*Iw*P*zp*zp)/(Ix*l*l*l) + (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -  
    (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) - (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) +  
    (9*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l) -  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[6][7]+=(-5*Iw*P)/(2*Ix*l) + (9*Iy*l*P)/(10*Ix) +  

    (3*G*J*l*P)/(10*E*Ix) - (11*Iy*P*zp)/(10*Ix) -  
    (9*G*J*P*zp)/(20*E*Ix) + (3*Iw*P*zp)/(Ix*l*l) -  
    (3*Iw*P*zp*zp)/(Ix*l*l*l) + (10*Iw*P*zp*zp*zp)/(Ix*l*l*l*l) -  
    (15*Iw*P*zp*zp*zp*zp)/(2*Ix*l*l*l*l*l) -  
    (Iy*P*zp*zp*zp*zp)/(2*Ix*l*l*l) +  
    (11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*l*l*l*l) +  
    (9*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l) -  
    (2*Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*l*l*l*l*l); 

 
 Gm[6][8]+=(9*Iw*P)/(4*Ix) - (Iy*l*l*P)/(10*Ix) +  

    (3*G*J*l*l*P)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*l) +  
    (2*Iy*l*P*zp)/(15*Ix) - (3*G*J*l*P*zp)/(20*E*Ix) +  
    (Iw*P*zp*zp)/(Ix*l*l) - (4*Iw*P*zp*zp*zp)/(Ix*l*l*l) +  
    (15*Iw*P*zp*zp*zp*zp)/(4*Ix*l*l*l*l) + (Iy*P*zp*zp*zp*zp)/(6*Ix*l*l) -  
    (2*Iy*P*zp*zp*zp*zp*zp)/(5*Ix*l*l*l) -  
    (3*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l) +  
    (Iy*P*zp*zp*zp*zp*zp*zp)/(5*Ix*l*l*l*l) +  
    (3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix*l*l*l*l); 

} 
// Overloaded function defined the properties of 
// the Nondimensional Geometric stiffness matrix 
void Element_Geometric::Fill_Element_Geometric2(float K, int element_num) 
{ 
 K=K*((float)element_num); 
  
 for(int i=0;i<=8;i++) 
  for(int j=0;j<=8;j++) 
   Gm[i][j]=0.0F; 
  
 Gm[1][1]=(6*F)/5;  
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 Gm[1][2]=F/10;  
 
 Gm[1][3]=(6*M1)/5 - P/10 + q/70 + V1/10 + (6*P*zp)/5 - 3*P*zp*zp + 2*P*zp*zp*zp +  

   (3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*zp*zp*zp*zp)/5;  
 

Gm[1][4]= M1/10 + q/140 + (P*zp)/10 - P*zp*zp*zp + 2*P*zp*zp*zp*zp -            
    (3*P*zp*zp*zp*zp*zp)/2 + (2*P*zp*zp*zp*zp*zp*zp)/5;  

 
 Gm[1][5]=(-6*F)/5;  
 
 Gm[1][6]=F/10;  
 
 Gm[1][7]=(-6*M1)/5 + (11*P)/10 + (17*q)/35 - (11*V1)/10 - (6*P*zp)/5 -  
         (3*P*zp*zp*zp*zp)/2 + (12*P*zp*zp*zp*zp*zp)/5 - (4*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[1][8]= M1/10 - P/10 - (3*q)/70 + V1/10 + (P*zp)/10 + (P*zp*zp*zp*zp)/2 -  
        (9*P*zp*zp*zp*zp*zp)/10 + (2*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[2][2]=(2*F)/15; 
 
 Gm[2][3]= (11*M1)/10 - P/5 - (11*q)/420 + V1/5 + (11*P*zp)/10 -  

   2*P*zp*zp + P*zp*zp*zp + P*zp*zp*zp*zp - (13*P*zp*zp*zp*zp*zp)/10 +     
   (2*P*zp*zp*zp*zp*zp*zp)/5;  

 
 Gm[2][4]=(2*M1)/15 - P/30 - q/210 + V1/30 + (2*P*zp)/15 - (2*P*zp*zp*zp)/3 +  
         (7*P*zp*zp*zp*zp)/6 - (4*P*zp*zp*zp*zp*zp)/5 + (P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[2][5]=-F/10;  
 
 Gm[2][6]=-F/30;  
 
 Gm[2][7]= -M1/10 + P/5 + (23*q)/210 - V1/5 - (P*zp)/10 - P*zp*zp*zp*zp +  
      (13*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;  
 

Gm[2][8]= -M1/30 - q/210 - (P*zp)/30 + (P*zp*zp*zp*zp)/3 - (P*zp*zp*zp*zp*zp)/2 +     
   (P*zp*zp*zp*zp*zp*zp)/5; 

 
Gm[3][3]=(e*K*P)/Pi + (13*a*K*q)/(35*Pi) - (6*e*K*P*zp*zp)/Pi +     

      (4*e*K*P*zp*zp*zp)/Pi + (9*e*K*P*zp*zp*zp*zp)/Pi – 
    (12*e*K*P*zp*zp*zp*zp*zp)/Pi + (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  

 
 Gm[3][4]=(11*a*K*q)/(210*Pi) + (e*K*P*zp)/Pi - (2*e*K*P*zp*zp)/Pi -  
      (2*e*K*P*zp*zp*zp)/Pi + (8*e*K*P*zp*zp*zp*zp)/Pi –  

  (7*e*K*P*zp*zp*zp*zp*zp)/Pi + (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
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 Gm[3][5]=(-6*M1)/5 + P/10 - q/70 - V1/10 - (6*P*zp)/5 +  
         3*P*zp*zp - 2*P*zp*zp*zp - (3*P*zp*zp*zp*zp)/2 + (12*P*zp*zp*zp*zp*zp)/5 –  

    (4*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[3][6]=M1/10 + P/10 + (17*q)/420 - V1/10 + (P*zp)/10 - P*zp*zp + P*zp*zp*zp +  

     (P*zp*zp*zp*zp)/2 - (11*P*zp*zp*zp*zp*zp)/10 + (2*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[3][7]=(9*a*K*q)/(70*Pi) + (3*e*K*P*zp*zp)/Pi - (2*e*K*P*zp*zp*zp)/Pi -  

   (9*e*K*P*zp*zp*zp*zp)/Pi + (12*e*K*P*zp*zp*zp*zp*zp)/Pi -     
   (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  

 
 Gm[3][8]=(-13*a*K*q)/(420*Pi) - (e*K*P*zp*zp)/Pi + (e*K*P*zp*zp*zp)/Pi +  
      (3*e*K*P*zp*zp*zp*zp)/Pi - (5*e*K*P*zp*zp*zp*zp*zp)/Pi +  

    (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 
 Gm[4][4]=(a*K*q)/(105*Pi) + (e*K*P*zp*zp)/Pi -  
         (4*e*K*P*zp*zp*zp)/Pi + (6*e*K*P*zp*zp*zp*zp)/Pi –  
       (4*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 

Gm[4][5]=-M1/10 - q/140 - (P*zp)/10 + P*zp*zp*zp - 2*P*zp*zp*zp*zp +  
    (3*P*zp*zp*zp*zp*zp)/2 - (2*P*zp*zp*zp*zp*zp*zp)/5; 

 
 Gm[4][6]= -M1/30 + P/30 + q/84 - V1/30 - (P*zp)/30 - (P*zp*zp*zp)/3 +  
         (5*P*zp*zp*zp*zp)/6 - (7*P*zp*zp*zp*zp*zp)/10 + (P*zp*zp*zp*zp*zp*zp)/5;  
 

Gm[4][7]=(13*a*K*q)/(420*Pi) + (3*e*K*P*zp*zp*zp)/Pi –  
    (8*e*K*P*zp*zp*zp*zp)/Pi +  

          (7*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 
 Gm[4][8]=-(a*K*q)/(140*Pi) - (e*K*P*zp*zp*zp)/Pi + (3*e*K*P*zp*zp*zp*zp)/Pi -  
        (3*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 
 Gm[5][5]=(6*F)/5;  
 
 Gm[5][6]=-F/10;  
 
 Gm[5][7]= (6*M1)/5 - (11*P)/10 - (17*q)/35 + (11*V1)/10 + (6*P*zp)/5 +  
          (3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[5][8]=-M1/10 + P/10 + (3*q)/70 - V1/10 - (P*zp)/10 - (P*zp*zp*zp*zp)/2 +  
          (9*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;  
 
 Gm[6][6]=(2*F)/15;  
 
 Gm[6][7]=(-11*M1)/10 + (9*P)/10 + (79*q)/210 - (9*V1)/10 - (11*P*zp)/10 -  
      (P*zp*zp*zp*zp)/2 + (11*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;  
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 Gm[6][8]=(2*M1)/15 - P/10 - (4*q)/105 + V1/10 + (2*P*zp)/15 + (P*zp*zp*zp*zp)/6 -  
         (2*P*zp*zp*zp*zp*zp)/5 + (P*zp*zp*zp*zp*zp*zp)/5;  
 

Gm[7][7]=(13*a*K*q)/(35*Pi) + (9*e*K*P*zp*zp*zp*zp)/Pi -    
    (12*e*K*P*zp*zp*zp*zp*zp)/Pi +  

          (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 
 Gm[7][8]=(-11*a*K*q)/(210*Pi) - (3*e*K*P*zp*zp*zp*zp)/Pi +  
        (5*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;  
 

Gm[8][8]=(a*K*q)/(105*Pi) + (e*K*P*zp*zp*zp*zp)/Pi –  
    (2*e*K*P*zp*zp*zp*zp*zp)/Pi +  (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;       

 
 for(i=1;i<=8;i++) 
  for(int j=i;j<=8;j++)    Gm[j][i]=Gm[i][j]; 
 Properties::Rotation(Gm); 
} 
 
 
 
 

D.2  ELEMENTSTIFF.CPP 
 
 
//Header Files 
#include <iostream>    
#include "prop.h" 
#include "elementstiff.h" 
 
//Global Variable definition 
static double Pi=3.14159265; 
 
//Global variable declaration 
extern char anl; 
 
void Element_Stiffness::Fill_Properties(int j) 
{ 
 Properties::Fill_Properties(j); 
} 
 
// Fill each element stiffness matrix, Ke 
void Element_Stiffness::Fill_Element_Stiffness1()  
{ 
 for(int i=1;i<=8;i++) 
  for(int j=1;j<=8;j++) 
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   Ke[i][j]=0.0F; 
 
 Ke[1][1]=(12*E*Iy)/(l*l*l);  
 
 Ke[1][2]=(6*E*Iy)/(l*l);  
 
 Ke[1][5]=(-12*E*Iy)/(l*l*l);  
 
 Ke[1][6]=(6*E*Iy)/(l*l);  
   
 Ke[2][2]=(4*E*Iy)/l;  
   
 Ke[2][5]=(-6*E*Iy)/(l*l);  
   
 Ke[2][6]=(2*E*Iy)/l;  
    
 Ke[3][3]=(12*E*Iw)/(l*l*l) + (6*G*J)/(5*l);  
    
 Ke[3][4]=(G*J)/10 + (6*E*Iw)/(l*l);  
    
 Ke[3][7]=(-12*E*Iw)/(l*l*l) - (6*G*J)/(5*l);  
    
 Ke[3][8]=(G*J)/10 + (6*E*Iw)/(l*l) ;  
   
 Ke[4][4]=(4*E*Iw)/l + (2*G*J*l)/15;  
    
 Ke[4][7]=-(G*J)/10 - (6*E*Iw)/(l*l);  
    
 Ke[4][8]=(2*E*Iw)/l - (G*J*l)/30 ;  
   
 Ke[5][5]=(12*E*Iy)/(l*l*l);  
   
 Ke[5][6]=(-6*E*Iy)/(l*l);  
   
 Ke[6][6]=(4*E*Iy)/l;  
    
 Ke[7][7]=(12*E*Iw)/(l*l*l) + (6*G*J)/(5*l);  
    
 Ke[7][8]=(-G*J)/10 + (-6*E*Iw)/(l*l) ;  
 
 Ke[8][8]=(4*E*Iw)/l + (2*G*J*l)/15;   
  
 if(anl=='P')    
  Element_Stiffness::Fill_Element_Prebuckling(); 
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for(i=1;i<=8;i++) 
  for(int j=i;j<=8;j++) 
   Ke[j][i]=Ke[i][j]; 
  
 Properties::Rotation(Ke); 
} 
 
// Prebuckling element of the stiffness matrix 
void Element_Stiffness::Fill_Element_Prebuckling(void) 
{         
 if(anl=='B') Ix=999999.0; 
      
 Ke[1][4]+=(-6*c*E*Iw)/(l*l*l) - (c*G*J)/(2*l);  
      
 Ke[1][8]+=(6*c*E*Iw)/(l*l*l) + (c*G*J)/(2*l);  
      
 Ke[2][3]+=(c*G*J)/(2*l) ;  
      
 Ke[2][4]+=-(c*G*J)/4 - (3*c*E*Iw)/(l*l) ;  
      
 Ke[2][7]+=-(c*G*J)/(2*l) ;  
      

Ke[2][8]+=(c*G*J)/4 + (3*c*E*Iw)/(l*l) ;  
      
 Ke[3][6]+=(-c*G*J)/(2*l);  
      
 Ke[4][5]+=(6*c*E*Iw)/(l*l*l) + (c*G*J)/(2*l);  
      
 Ke[4][6]+=-(c*G*J)/4 - (3*c*E*Iw)/(l*l) ;  
      
 Ke[5][8]+=-(6*c*E*Iw)/(l*l*l) - (c*G*J)/(2*l);  
      
 Ke[6][7]+=(c*G*J)/(2*l) ;  
      
 Ke[6][8]+=(c*G*J)/4 + (3*c*E*Iw)/(l*l);  
      
}  
 
//Nondimensional stiffness matrix 
void Element_Stiffness::Fill_Element_Stiffness2(float K, int element_num) 
{ 
 K=K*((float)element_num);     
  
 for(int i=1;i<=8;i++) 
  for(int j=1;j<=8;j++) 
   Ke[i][j]=0.0F; 
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 Ke[1][1]=12.; 
 
 Ke[1][2]=6.; 
  
 Ke[1][5]=-12.; 
  
 Ke[1][6]=6.; 
  
 Ke[2][2]=4.; 
  
 Ke[2][5]=-6.; 
  
 Ke[2][6]= 2.; 
  
 Ke[3][3]=6.0F/5.0F+ (12*K*K)/(Pi*Pi); 
  
 Ke[3][4]=1.0F/10.0F + (6*K*K)/(Pi*Pi); 
  
 Ke[3][7]=-6.0F/5.0F - (12*K*K)/(Pi*Pi); 
  
 Ke[3][8]=1.0F/10.0F + (6*K*K)/(Pi*Pi); 
  
 Ke[4][4]=2.0F/15.0F + (4*K*K)/(Pi*Pi); 
  
 Ke[4][7]=-1.0F/10.0F - (6*K*K)/(Pi*Pi); 
  
 Ke[4][8]=-1.0F/30.0F + (2*K*K)/(Pi*Pi); 
  
 Ke[5][5]=12.; 
  
 Ke[5][6]=-6.; 
  
 Ke[6][6]=4.; 
  
 Ke[7][7]=6.0F/5.0F + (12*K*K)/(Pi*Pi); 
  
 Ke[7][8]=-1.0F/10.0F - (6*K*K)/(Pi*Pi); 
  
 Ke[8][8]=2.0F/15.0F + (4*K*K)/(Pi*Pi);   
     
 for(i=1;i<=8;i++) 
  for(int j=i;j<=8;j++) 
   Ke[j][i]=Ke[i][j]; 
 Properties::Rotation(Ke); 
} 
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D.3  GEOMTR.CPP 
 
 
//Header files 
#include "prop.h" 
#include "elementgeom.h" 
#include "geomtr.h"   
    
//Global Variable declarations 
extern char anl; 
 
//Constructor 
Geometric::Geometric(int e) 
{ 
 for(int i=0;i<MSize;i++)    //Clear Geometric Matrix 
  for(int j=0;j<MSize;j++) 
   B[i][j]=0; 
 element_num=e; 
} 
 
// Assemble element geometric matrices to 
// a structural geometric matrix 
void Geometric::Assembling_Geometric_Matrix(float K) 
{       
 for(int i=1;i<=element_num;i++) //For each element 
 { 
 
  geom.Fill_Properties(i); 
        //Fill element matrix and rotate 
  if(anl=='N')  
   geom.Fill_Element_Geometric2(K, element_num); 
  else    
   geom.Fill_Element_Geometric1(K); 
   
  for(int j=1;j<=4;j++) //Fill Global Matrix 
  { 
   for(int k=1;k<=4;k++) 
   { 
    int j1 = geom.get_joint1(); 
    int j2 = geom.get_joint2(); 
    B[4*(j1-1)+j][4*(j1-1)+k]+=geom.Gm[j][k]; 
    B[4*(j2-1)+j][4*(j2-1)+k]+=geom.Gm[j+4][k+4]; 
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    B[4*(j2-1)+j][4*(j1-1)+k]+=geom.Gm[j+4][k]; 
    B[4*(j1-1)+j][4*(j2-1)+k]+=geom.Gm[j][k+4]; 
     
   } 
  } 
 } 
} 
 
 
 
 

D.4  LBUCK.CPP 
 
 
//Lateral-Torsional Buckling Program  
//Header files 
#include <iostream>    
#include <process.h> 
#include "prop.h"  
#include "elementstiff.h"        
#include "stiffn.h" 
#include "spprt.h" 
#include "elementgeom.h" 
#include "geomtr.h" 
#include "standm.h" 
 
using namespace std; 
 
//Global Variable Definitions 
char anl; //analysis type 
 
//File pointers 
FILE *fin;        
FILE *init;                     
FILE *ffrm;   
 
//Function declarations 
void prebuckling(char[10]); 
void buckling(char[10]); 
void nondimension(char[10]); 
   
int main(void) 
{ 
 char input_file[10]; 
  
 if((init=fopen("lbuck.ini","r"))==NULL) 
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  printf("Internal Error"); 
 fscanf(init,"%s",input_file);    
 fclose(init); 
 init=fopen("lbuck.ini","w"); 
 if((fin=fopen(input_file,"r"))==NULL) 
 { 
  printf("File not found"); 
  exit(0); 
 } 
 ffrm=fopen("frame.ini","w"); 
 fscanf(fin,"%c\n",&anl);         
  
 //Main Process 
 if(anl=='B')  
  buckling(input_file);     //Buckling Analysis        
 if(anl=='P')  
  prebuckling(input_file);  //Prebuckling Analysis 
 if(anl=='N')  
  nondimension(input_file);  //Non-dimensional Analysis 
  
 fclose(init); 
 return (0); 
}    
 
//---------------------------------------------------------------- 
 
void buckling(char input_file[10]) 
{ 
 char ch, name[80], series_name[80]; 
 int number_series, number_analysis; 
 
 fclose(fin); 
 fprintf(ffrm, "%s 1.0",input_file); 
 fclose(ffrm); 
    
 system("frame");   //Run FRAME Program 
 
 fin=fopen("frame.out","r"); 
        //Write results to output file: 
 fprintf(init,"\t--------------------------\n");   
 fprintf(init,"\tBuckling Analysis\n"); 
 fprintf(init,"\t--------------------------\n\n"); 
        //Get number of analyses 
 fscanf(fin,"%c %d %d\n",&ch,&number_series,&number_analysis); 
    fgets(name,80,fin);   //Get Structure Name 
 fprintf(init,"\n\tStructure Name : %s\n",name); 
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   fgets(series_name,80,fin); //Get series name: 
 fprintf(init,"\n\tSeries Name : %s\n ",series_name); 
     
 fprintf(init,"\n\tNumber of Element     Buckling parameter\n ");    
 //For each analysis 
 for(int i=1;i<=number_analysis;i++) 
 { 
  int joint_num, element_num; //number of joints and elements 
  fscanf(fin,"%d %d",&element_num,&joint_num);  
  fprintf(init,"\n\t       %d             ",element_num);  
  int size=joint_num*4; 
    
  Stiffness global_stiff(element_num);//Create global stiffness matrix 
  Geometric global_geom(element_num);//Create global geometric matrix 
  Standard_Matrix sd;  //Create standard matrix 
  Supports sp(size);  //Create support object 
 
  //Call the stiffness matrix and the  
  //geometric stiffness matrix  
  global_stiff.Assembling_Stiffness_Matrix(0.);    
  global_geom.Assembling_Geometric_Matrix(0.); 
   
  //Apply Boundary Conditions 
  sp.Get_boundary_conditions(); 
  int s=sp.Boundary_Condition(global_stiff.A, global_geom.B); 
   
  //Find Standard Matrix 
  sd.standard_matrix(global_stiff.A, global_geom.B,s); 
   
  //Print Buckling Load 
  float buck_load=sd.getBucklingLoad(); 
  fprintf(init,"     %7.3f ",buck_load); 
 }                        
 fprintf(init,"\n\n");   
 fscanf(fin,"\n%c",&ch);    
    fclose(fin); 
} 
 
//  Effect of prebuckling deformations analysis 
void prebuckling(char input_file[10]) 
{                         
 int k=0; 
 long int inp_addr=0; 
 float mult_fac=1; 
 char name[80], series_name[80]; 
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 int number_series, number_analysis; 
           //Write to output file: 
 fprintf(init,"\t------------------------------\n"); 
 fprintf(init,"\tPrebuckling Analysis\n"); 
 fprintf(init,"\t------------------------------\n\n"); 
 fgets(name,80,fin);   //Get structure name 
        //Get number of analyses 
 fscanf(fin,"%d %d\n",&number_series,&number_analysis); 
 fprintf(init,"\n\tStructure Name : %s\n",name); 
  
 fgets(series_name,80,fin); //Get series name          
 fprintf(init,"\n\tSeries Name : %s\n ",series_name);     
 fprintf(init,"\n\tNumber of Element     Buckling parameter"); 
 fprintf(init,"     Multiplication Factor\n");  
  
 for(int i=1;i<=number_analysis;i++) 
 { 
  while(1) 
  {    
   ffrm=fopen("frame.ini", "w"); 
   fclose(fin); 
   fprintf(ffrm, "%s %f %ld", 
    input_file,mult_fac,inp_addr); 
   fclose(ffrm); 
 
           system("frame"); //Run FRAME Program 
 
   fin=fopen("frame.out","r"); 
   int joint_num, element_num; //number of joints and elements 
   fscanf(fin,"%d %d",&element_num,&joint_num);  
   fprintf(init,"\n\t     %d              ",element_num);  
   int size=joint_num*4; 
 
   Stiffness global_stiff(element_num);//Create global stiffness matrix 
   Geometric global_geom(element_num);//Create global geometric matrix 
   Standard_Matrix sd;  //Create standard matrix 
   Supports sp(size);  //Create support object 
 
   //Call the stiffness matrix and the  
   //geometric stiffness matrix  
   global_stiff.Assembling_Stiffness_Matrix(0.);    
   global_geom.Assembling_Geometric_Matrix(0.); 
    
   //Apply Boundary Conditions 
   sp.Get_boundary_conditions(); 
   int s=sp.Boundary_Condition(global_stiff.A, global_geom.B); 
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   //Find Standard Matrix 
   sd.standard_matrix(global_stiff.A, global_geom.B, s); 
    
   //Print Buckling Load 
   float buck_load=sd.getBucklingLoad(); 
   fprintf(init,"       %7.3f                %7.3f", 
    buck_load,mult_fac); 
   if(buck_load>1.05||buck_load<.95) 
   { 
    mult_fac=buck_load*mult_fac; 
   } 
   else 
   {  
    fscanf(fin,"%ld",&inp_addr); 
    mult_fac=1.0;                
    break; 
   }  
  } 
 } 
    fclose(fin); 
} 
 
// Nondimensional analysis 
void nondimension(char input_file[10]) 
{    
 float k,kmin,kmax,kstep; 
 char name[80], series_name[80]; 
 int number_series; 
        //Write to output file 
 fprintf(init,"\t-----------------------------\n"); 
 fprintf(init,"\tNondimensional Analysis\n"); 
 fprintf(init,"\t-----------------------------\n\n"); 
        //Get number of series and k 
 fscanf(fin,"%d %f %f %f\n",&number_series,&kmin,&kmax,&kstep); 
   fgets(name,80,fin);   //Get structure name 
 fprintf(init,"\n\tStructure Name : %s\n",name);               
 for(int i=1;i<=number_series;i++) //For each series 
 { 
         fgets(series_name,80,fin);  //Get series name 
  fprintf(init,"\n\tSeries Name : %s\n ",series_name);     
  int joint_num, element_num; //number of joints and elements 
  fscanf(fin,"%d %d",&element_num,&joint_num);  
  fprintf(init,"\n\tBeam parameter     Buckling parameter\n ",anl);   
                                                      
  for(k=kmin;k<=kmax;k=k+kstep) 
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  {   
   fprintf(init,"\n     %5.2f           ",k); 
   int size=joint_num*4; 
    
   Stiffness global_stiff(element_num);//Create global stiffness matrix 
   Geometric global_geom(element_num);//Create global geometric matrix 
   Standard_Matrix sd;  //Create standard matrix 
   Supports sp(size);  //Create support object 
 
   //Call the stiffness matrix and the  
   //geometric stiffness matrix  
   global_stiff.Assembling_Stiffness_Matrix(k);    
   global_geom.Assembling_Geometric_Matrix(k); 
    
   //Apply Boundary Conditions 
   sp.Get_boundary_conditions(); 
   int s=sp.Boundary_Condition(global_stiff.A, global_geom.B); 
    
   //Find Standard Matrix 
   sd.standard_matrix(global_stiff.A, global_geom.B,s); 
    
   //Print Buckling Load 
   float buck_load=sd.getBucklingLoad(); 
   fprintf(init,"     %7.3f ",buck_load); 
  }                        
   
  fprintf(init,"\n\n"); 
 } 
        
 fclose(fin);           
} 
 
 
 
 

D.5  PROP.CPP 
 
 
//Header files 
#include <iostream>    
#include <math.h> 
#include "prop.h" 
 
//Global Variable Definition    
float data[17][MSize]; 
int data2[2][MSize]; 
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//Global Variable Declaration 
extern char anl; 
 
//File pointer declaration 
extern FILE *fin; 
 
 
// Read: read the material properties from the input file 
void Properties::Read_Properties(int j) 
{   
 if(anl=='B'||anl=='P') 
 { 
   fscanf(fin,"%f %f %f %f %f %f %f %f %d %d", 
    &data[0][j],&data[1][j],&data[2][j], 
    &data[3][j],&data[4][j],&data[5][j], 
    &data[6][j],&data[7][j],&data2[0][j], 
    &data2[1][j]); 
   fscanf(fin,"%f %f %f %f %f %f %f %f %f", 
    &data[8][j],&data[9][j],&data[10][j], 
    &data[11][j],&data[12][j],&data[13][j], 
    &data[14][j],&data[15][j],&data[16][j]);  
 } 
 
 if(anl=='N') 
 { 
   fscanf(fin,"%f %f %f %f %f %f %f %f %f %d %d", 
    &data[8][j],&data[9][j],&data[10][j], 
    &data[11][j],&data[12][j],&data[13][j], 
    &data[14][j],&data[15][j],&data[7][j], 
    &data2[0][j],&data2[1][j]);  
 } 
 
 if(anl=='B') Ix=999999.0; 
}    
 
//Fill Element Properties 
void Properties::Fill_Properties(int j) 
{ 
 E=data[0][j]; G=data[1][j]; J=data[2][j]; 
 Iy=data[3][j]; Ix=data[4][j]; Iw=data[5][j]; 
 l=data[6][j]; al=data[7][j]; j1=data2[0][j]; 
 j2=data2[1][j]; q=data[8][j]; a=data[9][j]; 
 P=data[10][j]; e=data[11][j]; zp=data[12][j]; 
 F=data[13][j]; M1=data[14][j]; V1=data[15][j];    
 c=data[16][j];  
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} 
 
int Properties::get_joint1(void) 
{ 
 return j1; 
} 
 
int Properties::get_joint2(void) 
{ 
 return j2; 
} 
 
// Rotation: give the definition of the rotation matrix 
void Properties::Rotation(float A[10][10]) 
{ 
 int m=0; 
 float R[10][10];   
 
 for(int i=1;i<=8;i++) //Set all elements to zero 
    for(int j=1;j<=8;j++)  
   R[i][j]=0.0F;        
 
 for(i=1;i<=8;i++) 
 {      
    for(int j=1;j<=8;j++) 
  { 
        m++;   
   if(m==1)  
    R[i][j]=A[i][j]; 
   if(m==2)  
    R[i][j]=A[i][j]*(float)cos(al)-A[i][j+1]*(float)sin(al); 
   if(m==3)  
    R[i][j]=A[i][j]*(float)cos(al)+A[i][j-1]*(float)sin(al); 
        if(m==4) 
   {  
         R[i][j]=A[i][j]; 
         m=0;  
        } 
    } 
 }        
  
 for(i=1;i<=8;i++) //Set all elements to zero 
    for(int j=1;j<=8;j++)  
   A[i][j]=0; 
 
 for(i=1;i<=8;i++) 



 

239 

 { 
    for(int j=1;j<=8;j++) 
  { 
        m++; 
   if(m==1)  
    A[j][i]=R[j][i]; 
   if(m==2)  
    A[j][i]=R[j][i]*(float)cos(al)-R[j+1][i]*(float)sin(al); 
   if(m==3)  
    A[j][i]=R[j][i]*(float)cos(al)+R[j-1][i]*(float)sin(al); 
        if(m==4) 
   {  
         A[j][i]=R[j][i]; 
         m=0;  
        } 
    } 
 }                        
} 
 
 
 
 

D.6  SPPRT.CPP 
 
 
//Header Files 
#include <iostream>    
#include "spprt.h" 
 
//Global Variable Declarations 
extern char anl; 
 
//File pointer declaration 
extern FILE* fin; 
 
Supports::Supports(int s) 
{ 
 size=s; 
 rest=0; 
 for(int i=0; i<MSize; i++) 
  restrain[i]=0; 
} 
 
// Read the Boudary condition and  
void Supports::Get_boundary_conditions() 
{ 
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 for(int i=1;i<=size;i++) //Get bc's from input file 
 { 
  fscanf(fin,"%d",&restrain[i]); 
     if(restrain[i]==1)  
   rest++;    //Count number of restraints 
 } 
} 
 
// Apply bc's to the stiffness matrix and geometric matrix 
int Supports::Boundary_Condition(float X[MSize][MSize],float Y[MSize][MSize]) 
{ 
 int r=0; 
 for(int i=1;i<=size;i++) 
  if(restrain[i]==1) 
  { 
   for(int j=1;j<=size;j++) 
    for(int k=i-r;k<=size-r;k++) 
     X[k][j]=X[k+1][j]; 
   r++; 
  } 
 r=0; 
 for(i=1;i<=size;i++) 
  if(restrain[i]==1) 
  { 
   for(int j=1;j<=size-rest;j++) 
    for(int k=i-r;k<=size-r;k++) 
     X[j][k]=X[j][k+1]; 
   r++; 
  } 
 r=0; 
 for(i=1;i<=size;i++) 
  if(restrain[i]==1) 
  { 
   for(int j=1;j<=size;j++) 
    for(int k=i-r;k<=size-r;k++) 
     Y[k][j]=Y[k+1][j]; 
   r++; 
  } 
 r=0; 
 for(i=1;i<=size;i++) 
  if(restrain[i]==1) 
  { 
   for(int j=1;j<=size-rest;j++) 
    for(int k=i-r;k<=size-r;k++) 
     Y[j][k]=Y 
     [j][k+1]; 
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   r++; 
  } 
 free_size=size-rest; 
  
 return free_size; 
} 
 
 
 
 

D.7  STANDM.CPP 
 
 
//Header Files 
#include <iostream>    
#include <math.h> 
#include "prop.h" 
#include "elementstiff.h"         
#include "stiffn.h" 
#include "elementgeom.h" 
#include "geomtr.h" 
#include "standm.h" 
 
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) 
 
//Global Variable Declarations 
extern char anl; 
 
//Constructor 
Standard_Matrix::Standard_Matrix() 
{  
 for(int i=1;i<MSize;i++) 
  for(int j=1;j<MSize;j++)  
   C[i][j]=0.0; 
} 
 
// Standard_Matrix: Decompose the stiffness matrices to  
// a standard matrix, and then solve the eigenvalues 
void Standard_Matrix::standard_matrix(float A[MSize][MSize],float B[MSize][MSize], int s) 
{   
 size=s; 
 
 choldc(A); //Cholevski Decomposition 
  
 for(int i=1;i<=size;i++) 
  for(int j=1;j<=size;j++) 



 

242 

  { 
   for(int k=1;k<=size;k++) 
    C[i][j]=C[i][j]+A[i][k]*B[k][j]; 
  } 
 for(i=1;i<=size;i++) 
  for(int j=1;j<=size;j++) 
   if(i>j) 
   { 
    A[j][i]=A[i][j]; 
    A[i][j]=0.0; 
   } 
 for(i=1;i<=size;i++) 
  for(int j=1;j<=size;j++) 
  { 
   B[i][j]=0; 
   for(int k=1;k<=size;k++) 
    B[i][j]=B[i][j]+C[i][k]*A[k][j]; 
  } 
  
 tred2(B);    
 tqli(B);  
} 
 
//  Cholevski Decomposition routine changes the eigenvalue problem 
// from General form to Standard form. 
 
 
void Standard_Matrix::choldc(float A[MSize][MSize]) 
{    
 double sum=0.0,p[MSize]; 
 for (int i=1;i<=size;i++)  
 { 
  p[i]=0.0; 
  for (int j=i;j<=size;j++)  
  { 
   sum=(double)A[i][j]; 
   for (int k=i-1;k>=1;k--) 
   { 
       sum -= (double)A[i][k]*A[j][k]; 
   } 
   if (i == j)  
   { 
    if (sum <= 0.0) 
    { 
      
     printf("choldc failed"); 



 

243 

     exit(0); 
    } 
     
    p[i]=sqrt(sum); 
   }  
   else A[j][i]=(float)sum/p[i]; 
  } 
 } 
 
 for (i=1;i<=size;i++)  
 { 
  for (int j=1;j<=size;j++)  
  { 
   A[i][j]=((i > j) ? A[i][j] : (i == j ? p[i] : 0.0F)); 
   if (i > j) A[i][j]=A[i][j]; 
   else A[i][j]=(i == j ? p[i] : 0.0F); 
  } 
 } 
 
 for(i=1;i<=size;i++) 
 { 
  A[i][i]=1/p[i]; 
  for(int j=i+1;j<=size;j++) 
  { 
   sum=0.0; 
   for(int k=i;k<j;k++)  
    sum-=A[j][k]*A[k][i]; 
   A[j][i]=sum/p[j]; 
  } 
 } 
} 
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */ 
 
// Apply Householder's method to change the standard matrix to 
// Tridiagonal matrix, and Calculate eigenvalue by QR iteration 
 
 
void Standard_Matrix::tred2(float B[MSize][MSize]) 
{ 
 int l,k,j,n=size; 
 float scale,hh,h,g,f; 
 for (int i=n;i>=2;i--)  
 { 
  l=i-1; 
  h=scale=0.0; 
  if (l > 1)  
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  { 
   for (k=1;k<=l;k++) 
    scale += (float)fabs(B[i][k]); 
   if (scale == 0.0) 
    e[i]=B[i][l]; 
   else { 
    for (k=1;k<=l;k++)  
    { 
     B[i][k] /= scale; 
     h += B[i][k]*B[i][k]; 
    } 
    f=B[i][l]; 
    g=(f >= 0.0 ? (float)-sqrt(h) : (float)sqrt(h)); 
    e[i]=scale*g; 
    h -= f*g; 
    B[i][l]=f-g; 
    f=0.0; 
    for (j=1;j<=l;j++)  
    { 
     B[j][i]=B[i][j]/h; 
     g=0.0; 
     for (k=1;k<=j;k++) 
      g += B[j][k]*B[i][k]; 
     for (k=j+1;k<=l;k++) 
      g += B[k][j]*B[i][k]; 
     e[j]=g/h; 
     f += e[j]*B[i][j]; 
    } 
    hh=f/(h+h); 
    for (j=1;j<=l;j++)  
    { 
     f=B[i][j]; 
     e[j]=g=e[j]-hh*f; 
     for (k=1;k<=j;k++) 
      B[j][k] -= (f*e[k]+g*B[i][k]); 
    } 
   } 
  }  
  else 
   e[i]=B[i][l]; 
   
  d[i]=h; 
 } 
 d[1]=0.0; 
 e[1]=0.0; 
 /* Contents of this loop can be omitted if eigenvectors not 
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   wanted except for statement d[i]=B[i][i]; */ 
 for (i=1;i<=n;i++)  
 { 
  l=i-1; 
  if (d[i])  
  { 
   for (j=1;j<=l;j++)  
   { 
    g=0.0; 
    for (k=1;k<=l;k++) 
     g += B[i][k]*B[k][j]; 
    for (k=1;k<=l;k++) 
     B[k][j] -= g*B[k][i]; 
   } 
  } 
  d[i]=B[i][i]; 
 } 
} 
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */ 
 
 
//  tqli: Solve eigenvalues from the tridiagonal matrix 
void Standard_Matrix::tqli(float B[MSize][MSize]) 
{ 
 int m,iter,n=size; 
  
 float s,r,p,g,f,dd,c,b,bkp; 
 double chkmin=99999999.9; 
 
 for (int i=2;i<=n;i++)  
  e[i-1]=e[i]; 
 e[n]=0.0; 
 
 for (int l=1;l<=n;l++)  
 { 
  iter=0; 
  do  
  { 
   for (m=l;m<=n-1;m++)  
   { 
    dd=(float)fabs(d[m])+(float)fabs(d[m+1]); 
    if ((float)(fabs(e[m])+dd) == dd) break; 
   } 
   if (m != l)  
   { 
    if (iter++ == 30) 



 

246 

    { 
     printf("Too many iterations in tqli"); 
     exit(0); 
    } 
    g=(d[l+1]-d[l])/(2*e[l]); 
    r=pythag(g,1.0); 
    g=d[m]-d[l]+e[l]/(g+(float)SIGN(r,g)); 
    s=c=1.0; 
    p=0.0; 
    for (int i=m-1;i>=l;i--)  
    { 
     f=s*e[i]; 
     b=c*e[i]; 
     e[i+1]=(r=pythag(f,g)); 
     if (r == 0.0)  
     { 
      d[i+1] -= p; 
      e[m]=0.0; 
      break; 
     } 
     s=f/r; 
     c=g/r; 
     g=d[i+1]-p; 
     r=(d[i]-g)*s+2*c*b; 
     d[i+1]=g+(p=s*r); 
     g=c*r-b; 
     for (int k=1;k<=n;k++)  
     { 
      f=B[k][i+1]; 
      B[k][i+1]=s*B[k][i]+c*f; 
      B[k][i]=c*B[k][i]-s*f; 
     } 
    } 
    if (r == 0.0 && i >= l) continue; 
    d[l] -= p; 
    e[l]=g; 
    e[m]=0.0; 
   } 
  } while (m != l); 
 } 
 
 for (i=1;i<=n;i++)  
 { 
  if(d[i]!=0) 
  { 
   bkp=1/d[i]; 
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             if(bkp>0.0000001) 
              if(chkmin>bkp)  
     chkmin=bkp; 
     
  } 
 }        
 
 buckling_load=chkmin; 
} 
 
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */ 
 
// Pythagorus function 
float Standard_Matrix::pythag(float a,float b) 
{ 
 float c; 
 c=(float)sqrt(a*a+b*b); 
 return c; 
} 
 
float Standard_Matrix::getBucklingLoad() 
{ 
 return buckling_load; 
} 
 
 
 
 
 

D.8  STIFFN.CPP 
 
 
//Header Files 
#include "prop.h" 
#include "elementstiff.h" 
#include "stiffn.h" 
 
//Global variable declaration 
extern char anl; 
 
//Constructor 
Stiffness::Stiffness(int e) 
{ 
 for(int i=1;i<MSize;i++)   //Clear Stiffness Matrix 
  for(int j=1;j<MSize;j++) 
   A[i][j]=0.0; 
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 element_num=e; 
} 
 
// Assemble element stiffness matrices, Ke, to 
// a structural stiffness matrix, A 
void Stiffness::Assembling_Stiffness_Matrix(float K) 
{       
    for(int i=1;i<=element_num;i++) //For each element 
 { 
 
  stiff.Read_Properties(i);  
  stiff.Fill_Properties(i); 
         //Fill element matrix 
  if(anl=='N')     
   stiff.Fill_Element_Stiffness2(K, element_num); 
  else   
   stiff.Fill_Element_Stiffness1(); 
     
  for(int j=1;j<=4;j++)  //Fill Global Matrix 
  { 
   for(int k=1;k<=4;k++) 
   { 
    int j1 = stiff.get_joint1(); 
    int j2 = stiff.get_joint2(); 
    A[4*(j1-1)+j][4*(j1-1)+k]+=stiff.Ke[j][k]; 
    A[4*(j2-1)+j][4*(j2-1)+k]+=stiff.Ke[j+4][k+4]; 
    A[4*(j2-1)+j][4*(j1-1)+k]+=stiff.Ke[j+4][k]; 
    A[4*(j1-1)+j][4*(j2-1)+k]+=stiff.Ke[j][k+4]; 
   }    
  } 
 } 
} 
 
 
 
 

D.9  ELEMENTGEOM.H 
 
 
#if !defined( element_geometric_h ) 
#define element_geometric_h 
#define MSize 62 
 
class Element_Geometric:public Properties 
{ 
private:   
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 float Gm[10][10]; 
public: 
 friend class Geometric; 
 void Fill_Element_Geometric1(float);  
 void Fill_Element_Geometric2(float, int); 
 void Fill_Element_Prebuckling(float); 
 void Fill_Properties(int); 
}; 
 
#endif 
 
 
 
 

D.10  ELEMENTSTIFF.H 
 
 
#if !defined( element_stiffness_h ) 
#define element_stiffness_h                
#define MSize 62 
 
class Element_Stiffness:public Properties 
{ 
private:  
 float Ke[10][10]; 
public: 
 friend class Stiffness; 
 void Fill_Element_Stiffness1(); 
 void Fill_Element_Stiffness2(float, int);   
 void Fill_Element_Prebuckling(void); 
 void Fill_Properties(int); 
}; 
 
#endif 
 
 
 
 

D.11  GEOMTR.H 
 
 
#if !defined( geometric_h ) 
#define geometric_h 
#define MSize 62 
 
class Geometric 
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{ 
private:  
 Element_Geometric geom; //element geometric matrix 
 int element_num;  //number of elements 
public: 
 float B[MSize][MSize]; 
 Geometric(int); 
 void Assembling_Geometric_Matrix(float); 
}; 
 
#endif 
  
 
 
 

D.12  PROP.H 
 
 
#if !defined( properties_h ) 
#define properties_h       
#define MSize 62 
 
class Properties 
{ 
protected: 
 int j1,j2; 
 float E,G,J,Iy,Ix,Iw,K,l,al; 
 float q,a,P,e,zp,F,M1,V1,c;  
public: 
 void Read_Properties(int); 
 virtual void Fill_Properties(int)=0; 
 int get_joint1(void); 
 int get_joint2(void); 
 void Rotation(float[10][10]); 
}; 
#endif 
 
 
 
 

D.13  SPPRT.H 
 
 
#if !defined( support_h ) 
#define support_h 
#define MSize 62 
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class Supports 
{ 
private: 
 int restrain[MSize]; 
 int rest; 
 int size;   //Total d.o.f. 
 int free_size;  //Free d.o.f. 
public: 
 Supports(int); 
 void Get_boundary_conditions(); 
 int Boundary_Condition(float[MSize][MSize],float[MSize][MSize]); 
}; 
 
#endif 
 
 
 
 

D.14  STANDM.H 
 
 
#if !defined( standard_matrix_h ) 
#define standard_matrix_h 
#define MSize 62 
 
class Standard_Matrix 
{ 
private:  
 int size;     //free d.o.f. size 
 float d[MSize],e[MSize]; 
 float C[MSize][MSize]; 
 float buckling_load; 
public: 
 Standard_Matrix(); 
 void standard_matrix(float[MSize][MSize],float[MSize][MSize],int); 
 float pythag(float,float); 
 void choldc(float[MSize][MSize]); 
 void tred2(float[MSize][MSize]); 
 void tqli(float[MSize][MSize]); 
 float getBucklingLoad(); 
}; 
#endif 
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D.15  STIFFN.H 
 
 
#if !defined( stiffness_h ) 
#define stiffness_h                
#define MSize 62 
 
class Stiffness 
{ 
private:  
 Element_Stiffness stiff; //Element Stiffness matrix 
 int element_num;   //number of elements 
public:  
    float A[MSize][MSize]; 
 Stiffness(int); 
 void Assembling_Stiffness_Matrix(float); 
}; 
 
#endif 
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APPENDIX E 
 
 
 

FRAME PROGRAM CODE 
 
 
This Appendix presents the code written for the Frame Program for the executable file  
 
frame.exe.   
 
 
 
 

E.1  ACTIONS.CPP 
 
 
#include <stdio.h> 
#include "Structure.h" 
#include "Stiffness.h" 
#include "Loads.h" 
#include "Displacements.h" 
#include "Actions.h" 
 
//File definitions 
extern FILE *fprnt; 
 
//Global variable definitions 
extern int jj[MAX], jk[MAX]; 
extern float cx[MAX], cy[MAX]; 
extern int jrl[3*MAX]; 
 
//Constructor 
Actions::Actions() 
{ 
 for(int i=0; i<4; i++) 
 { 
  for(int j=0; j<MAX; j++) 
   action[i][j]=0.0; 
 } 
} 
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void Actions::memact(Stiffness st, Loads ld, Displacements dp) 
{ 
 int t[6]; 
 float amd[3*MAX],am[3*MAX],scm[4]; 
 int element_num = st.getElement(); 
 for(int i=0; i<element_num; i++)  //For each element            
 {                              
  st.compm(i,t,scm); //Call Compm to get stiff. and disp. indices 
  for(int k=0; k<6; k++) //Adjust dof index values  
   t[k] = t[k] - 1; 
  amd[0] = scm[0]*((dp.dj[t[0]]-dp.dj[t[3]])*cx[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cy[i]); 
  amd[1] = scm[3]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cx[i]); 
  amd[1] = amd[1] + scm[2]*(dp.dj[t[2]]+dp.dj[t[5]]); 
  amd[2] = scm[2]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i] + (dp.dj[t[1]]- 

dp.dj[t[4]])*cx[i]); 
  amd[2] = amd[2] + scm[1]*(dp.dj[t[2]] + 0.5F*dp.dj[t[5]]); 
  amd[3] = -amd[0]; 
  amd[4] = -amd[1]; 
  amd[5] = scm[2]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i] + (dp.dj[t[1]]- 

dp.dj[t[4]])*cx[i]); 
  amd[5] = amd[5] + scm[1]*(0.5F*dp.dj[t[2]] + dp.dj[t[5]]); 
  
  for(int j=0; j<6; j++) //Compute total member end actions  
   am[j] = ld.aml[j][i] + amd[j];  
    //Adds member loads and displacement effects 
 
  action[1][i]=am[0]; 
  action[2][i]=am[1]; 
  action[3][i]=am[2]; 
 } 
} 
 
void Actions::print_actions(int j) const 
{ 
 fprintf(fprnt,"%f %f %f ",action[1][j],-action[3][j],action[2][j]); 
  //Prints load data: F,M1,V1 
} 
 
 
 
 

E.2  DISPLACEMENTS.CPP 
 
 
#include <stdio.h> 
#include <conio.h> 
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#include <process.h> 
#include "Structure.h" 
#include "Stiffness.h" 
#include "loads.h" 
#include "Displacements.h" 
 
//File definitions 
extern FILE *fprnt; 
 
//Global Variable definitions  
extern int jrl[3*MAX]; 
 
//Constructor 
Displacements::Displacements(int j) 
{  
 nj=j; 
 for(int i=0; i<90; i++) 
  df[i]=0.0; 
 for(i=0; i<90; i++) 
  dj[i]=0.0; 
 for(i=0; i<30; i++) 
  D[i]=0.0; 
} 
 
void Displacements::banfac(Stiffness st, Loads ld) 
{ 
 int i1,j1,j2; 
 n = st.getN(); 
 nb = st.getBandwidth(); 
 float temp, sum; 
 if(st.sff[0][0]<=0.0) 
 { 
  problem: 
  fprintf(fprnt,"ERROR:Negative diagonal in stiffness matrix."); 
  exit(0);                  
 } 
 for(int j=1; j<n; j++) 
 { 
  j1 = j-1; 
  j2 = j - nb + 1; 
  if(j2<0) 
   j2 = 0; 
  if(j1!=0) 
  { 
   for(int i=1; i<j1+1; i++) 
   { 
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    i1 = i - 1; 
    if(i1>=j2) 
    { 
     sum = st.sff[i][j-i]; 
     for(int k=j2; k<i1+1; k++) 
      sum = sum - st.sff[k][i-k]*st.sff[k][j-k]; 
     st.sff[i][j-i] = sum; 
    } 
   }   
  }   
  sum = st.sff[j][0]; 
  for(int k=j2; k<j1+1; k++) 
  { 
   temp = st.sff[k][j-k]/st.sff[k][0]; 
   sum = sum - temp*st.sff[k][j-k]; 
   st.sff[k][j-k] = temp; 
  } 
  if(sum<=0.0)                             
   goto problem;                    
  st.sff[j][0] = sum; 
 }   
 bansol(st.sff,ld.ac);        
} 
 
void Displacements::bansol(float sff[3*MAX][3*MAX], float ac[3*MAX]) 
{ 
 int j,k1,k2; 
 float sum; 
 for(int i=0; i<n; i++) 
 { 
  j = i - nb + 1; 
  if(i<=nb) 
   j=0; 
  sum = ac[i];                       
  k1 = i - 1; 
  if(j<=k1) 
  { 
   for(int k=j; k<k1+1; k++) 
   sum = sum - sff[k][i-k]*df[k]; 
  } 
  df[i] = sum; 
 } 
 for(i=0; i<n; i++) 
  df[i] = df[i]/sff[i][0];                  
 for(int i1=0; i1<n; i1++) 
 { 
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  int i = n - i1 - 1; 
  j = i + nb; 
  if(j>n) 
   j = n; 
  sum = df[i]; 
  k2 = i + 1; 
  if(k2<=j) 
  { 
   for(int k=k2; k<j+1; k++) 
    sum = sum - sff[i][k-i]*df[k]; 
  } 
  df[i] = sum;                             
 } 
} 
 
void Displacements::prdisp() 
{ 
 int nd=3*nj; 
 
 int je; 
 int j = n; 
 for(int k=0; k<nd; k++) //Sort displacements into original 
 {                       //joint numbering system order  
  je = nd - k - 1; 
  if(jrl[je]!=1) 
  { 
   j = j - 1; 
   dj[je] = df[j]; 
  } 
  else               //If DOF restrained,  
   dj[je] = 0.0;  //set displacement to zero 
 } 
 for(j=0; j<nj; j++) //Print displacements 
 { 
  int k = 3*(j+1); 
     D[j]=dj[k-1]; 
 } 
} 
 
void Displacements::print_displacements(int j) 
{ 
 fprintf(fprnt,"%f\n",D[j]); 
 //Prints c 
}  
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E.3  FRAME.CPP 
 
 
#include <stdio.h> 
#include <process.h> 
#include "Structure.h" 
#include "Stiffness.h" 
#include "loads.h" 
#include "Displacements.h" 
#include "Actions.h" 
#define  MAX  30 
 
//File definitions 
FILE *freadfile; 
FILE *fprnt; 
FILE *fmlt; 
 
//Global variable definitions 
int jj[MAX],jk[MAX]; 
 
//Main Funtion 
void main() 
{ 
 long int inp_addr; 
 char inputfile[81], title[80], subtitle[80]; 
 char anl; 
 int series_num,struc_num; 
  
 if((fmlt = fopen("frame.ini","r"))==NULL) 
 {                  
  printf("No such file, can't open.");  
  exit(0); 
 } 
 float mlt_fac; 
 fscanf(fmlt,"%s %f %ld",&inputfile,&mlt_fac,&inp_addr);  
     //Read File and Mutiplication factor 
 if((freadfile = fopen(inputfile,"r"))==NULL) 
 {    //Read in data file  
  printf("No such input file, can't open.");  
  exit(0); 
 } 
 fprnt = fopen("frame.out","w");       
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     //Open output data file for writing 
 fscanf(freadfile,"%c ",&anl); 
     //Read type of analysis (B or P) 
 fgets(title, 80, freadfile);          
     //Read problem title 
 fscanf(freadfile,"%d %d\n",&series_num,&struc_num); 
 if(anl=='P') 
 { 
  series_num=1; 
  struc_num=1; 
 } 
 if(anl=='B') 
  fprintf(fprnt,"%c %d %d\n%s", 
   anl,series_num,struc_num,title);   
     //Write title to output file 
    for(int i=1;i<=series_num;i++) 
 { 
  fgets(subtitle, 80, freadfile);    
     //Read problem series title  
  if(anl=='B')   
   fprintf(fprnt, "%s",subtitle); 
  if(anl=='P'&&inp_addr!=0)  
   fseek(freadfile,inp_addr,SEEK_SET); 
  for(int l=1;l<=struc_num;l++) 
  { 
   //Create objects 
   Stiffness stiff; 
   stiff.stread();  //Read properties data 
   int element_num = stiff.getElement(); 
   int joint_num = stiff.getJoint(); 
 
   Loads load(joint_num,element_num); 
   load.ldread(mlt_fac);  //Read load data 
 
   stiff.stifbld(); //Build stiffness matrix 
   load.load();  //Build load vector 
    
   Displacements disp(joint_num); 
   disp.banfac(stiff, load); //Solve for displacments 
   disp.prdisp();  
    
   Actions member_actions; 
   member_actions.memact(stiff, load, disp); 
        //Solve for member end-actions 
   for(int j=0;j<element_num;j++) 
   {  
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    stiff.print_properties(j); 
     //Prints member data:E,G,J,Iy,Ix,Iw,l,al,jj,jk  
    load.print_loads(j); 
     //Prints load data: q,a,P,e,zp 
    member_actions.print_actions(j); 
     //Prints F, V1, M1 
    disp.print_displacements((jj[j]-1)); 
     //Prints c 
   } 
   stiff.print_restraints();  
  }//end for structure 
 } //end for series               
 fprintf(fprnt," %ld",ftell(freadfile)); 
 fclose(freadfile);       //Close read file 
 fclose(fprnt);    
 
} 
 
 
 
 

E.4  LOADS.CPP 
 
 
#include <stdio.h> 
#include "loads.h" 
 
//File definitions 
extern FILE *freadfile; 
extern FILE *fprnt; 
 
//Global variables 
extern float EL[MAX]; 
extern int jj[MAX], jk[MAX]; 
extern int id[3*MAX]; 
extern float cx[MAX], cy[MAX]; 
 
//Constructor 
Loads::Loads(int j, int e) 
{ 
 nj=j; 
 element_num=e; 
 nlj=0; nlm=0;  
 for(int i=0; i<3*MAX; i++) 
 { 
  aj[i]=0.0; 
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  ac[i]=0.0; 
 } 
 for(i=0; i<MAX; i++) 
  lml[i]=0; 
 for(i=0; i<6; i++) 
 { 
  for(int j=0; j<MAX; j++) 
  { 
   aml[i][j]=0.0; 
   Load[i][j]=0.0; 
  } 
 } 
  
} 
 
void Loads::ldread(float mlt_fac) 
{ 
 char ld,hd[80];                                 
 int a,i,j,k;                                                 
 float e; 
 fgets(hd, 80, freadfile); //Heading                                   
 fscanf(freadfile, "%d %d\n", &nlj, &nlm);      
 
 if (nlj > 0)   
 { 
  fgets(hd, 80, freadfile); //Heading       
      for(j=0; j<nlj; j++)  //For each joint load 
  { 
    fscanf(freadfile, "%d", &k);  // Read in joint number and loads  
    a=3*k;                        
    fscanf(freadfile, "%f %f %f %f\n", 
    &aj[a-3], &aj[a-2], &aj[a-1],&e); 
    aj[a-3]=mlt_fac*aj[a-3]; 
    aj[a-2]=-mlt_fac*aj[a-2]; 
    aj[a-1]=mlt_fac*aj[a-1]; 
    for(i=0;i<element_num;i++) 
   { 
     if(jj[i]==k) 
    { 
       Load[3][i]=0.0;     
       Load[4][i]=-aj[a-2]*e; 
       Load[5][i]=0.0;   
         i=element_num; 
     } 
    } 
   } 
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    }  //end joint loads 
      
 if (nlm > 0)  
   { 
  fgets(hd, 80, freadfile); //Heading 
     for(j=0; j<nlm; j++)  //For each member load        
  { 
   fscanf(freadfile, "%d ",&i); //Read member number and load 
    k=i-1; 
    lml[k] = 1;                  // lml set to 1 for loaded members  
    fscanf(freadfile, "%c", &ld); 
    if(ld=='P') 
   { 
    fscanf(freadfile, "%f %f %f\n", 
     &Load[3][k],&Load[4][k],&Load[5][k]); 
    Load[3][k]=Load[3][k]*mlt_fac; 
     
    aml[0][k]=0.0; 
    aml[1][k]=Load[3][k]*(EL[k]-Load[5][k])*(EL[k]- 

Load[5][k])*(3*Load[5][k]+(EL[k]- 
Load[5][k]))/(EL[k]*EL[k]*EL[k]); 

    aml[2][k]=Load[3][k]*Load[5][k]*(EL[k]-Load[5][k])*(EL[k]- 
Load[5][k])/(EL[k]*EL[k]); 

    aml[3][k]=0.0;   
aml[4][k]=Load[3][k]*Load[5][k]*Load[5][k]*(Load[5][k]+3*(EL 
[k]-Load[5][k]))/(EL[k]*EL[k]*EL[k]); 

    aml[5][k]=-Load[3][k]*Load[5][k]*Load[5][k]*(EL[k]- 
Load[5][k])/(EL[k]*EL[k]); 

    }   
    if(ld=='q') 
   {                  
     fscanf(freadfile, "%f %f\n",&Load[1][k],&Load[2][k]); 
     Load[1][k]=Load[1][k]*mlt_fac; 
    aml[0][k]=0.0; 
    aml[1][k]=Load[1][k]*EL[k]/2; 
    aml[2][k]=Load[1][k]*EL[k]*EL[k]/12; 
    aml[3][k]=0.0; 
    aml[4][k]=Load[1][k]*EL[k]/2; 
    aml[5][k]=-Load[1][k]*EL[k]*EL[k]/12; 
    } 
     
   if(ld!='P'&&ld!='q'&&ld!='b') printf("MEMBER LOAD TYPE  

INCORRECT %c?\n",ld); 
  }  
    } //end member loads                    
} 
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void Loads::load() 
{ 
 int nd = 3*nj; 
 
 int i,j,j1,j2,j3,k1,k2,k3,jr; 
 float ae[3*MAX]; 
 for(j=0; j<3*nj; j++) //Clear equivalent load vector 
  ae[j] = 0.0; 
 if(nlm>0) //If there are member loads,  
 {   //compute equivalent joint loads 
  for(i=0; i<element_num; i++)  
  {  
   if(lml[i]>0)   //Test for member load on member i 
   {  
    j1 = 3*jj[i] - 3;     // Joint indices 
    j2 = 3*jj[i] - 2; 
    j3 = 3*jj[i] - 1; 
    k1 = 3*jk[i] - 3; 
    k2 = 3*jk[i] - 2; 
    k3 = 3*jk[i] - 1; 
    // Compute equivalent loads in global coordinates 
    ae[j1] = ae[j1] - cx[i]*aml[0][i] + cy[i]*aml[1][i]; 
    ae[j2] = ae[j2] - cy[i]*aml[0][i] - cx[i]*aml[1][i]; 
    ae[j3] = ae[j3] - aml[2][i]; 
    ae[k1] = ae[k1] - cx[i]*aml[3][i] + cy[i]*aml[4][i]; 
    ae[k2] = ae[k2] - cy[i]*aml[3][i] - cx[i]*aml[4][i]; 
    ae[k3] = ae[k3] - aml[5][i]; 
   }   
  }   
 }   
    for(j=0; j<nd; j++) //Combined joint load vector 
 {     //id index references Ac in  
  jr = id[j]-1;   // Afc|Arc order               
  ac[jr] = aj[j] + ae[j]; //Adds joint loads gives combined load vector 
 } 
} 
 
void Loads::print_loads(int j) 
{ 
 fprintf(fprnt,"%f %f %f %f %f ", 
  Load[1][j],Load[2][j],Load[3][j],Load[4][j],Load[5][j]); 
   //Prints load data: q,a,P,e,zp  
} 
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E.5  STIFFNESS.CPP 
 
 
#include "Structure.h" 
#include "Stiffness.h" 
 
//Global Variable definitions 
int id[3*MAX]; 
extern int jj[MAX], jk[MAX];  
extern float EL[MAX];    
extern float cx[MAX], cy[MAX];  
extern int jrl[3*MAX];   
 
//Constructor 
Stiffness::Stiffness() 
{ 
 Properties::Properties(); 
 for(int i=0; i<90; i++) 
 { 
  for(int j=0; j<90; j++) 
   sff[i][j] = 0.0; 
 } 
} 
 
void Stiffness::stread() 
{ 
 Properties::stread(); 
} 
 
void Stiffness::stifbld() 
{ 
 float sm[6][6],scm[4]; 
 int i1,i2,ic,ir,item,n1=0,im[6]; 
 for(int j=0; j<nd; j++) // Sorts joint indices to partitioned order 
 {              
  n1 = n1 + jrl[j]; 
  if(jrl[j] > 0) 
   id[j] = n + n1; 
  else 
   id[j] = j - n1 + 1; 
 } 
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 for(int i=0; i<m; i++) // Add stiffness of member i to global stiffness matrix  
 { 
  compm(i,im,scm);     // Stiffnesses & disp indices 
  memstif(i,sm,scm);   //Element stiffness matrix 
  for(int j=0; j<6; j++)//Assemble Global Stiffness Matrix 
  { 
   i1=im[j]; 
   if(jrl[i1-1] < 1) 
   { 
    for(int k=j; k<6; k++) 
    { 
     i2 = im[k]; 
     if(jrl[i2-1] <1) 
     { 
      ir = id[i1-1]; 
      ic = id[i2-1]; 
      if(ir<=ic) 
       ic = ic -ir +1; 
      else 
      { 
       item = ir; 
       ir = ic; 
       ic = item;      
       ic = ic -ir +1; 
      } 
      sff[ir-1][ic-1] = sff[ir-1][ic-1] + sm[j][k]; 
     }  
    }   
   }   
  }   
 } 
} 
 
void Stiffness::compm(int i,int tm[6],float scm[4]) 
{ 
 scm[0] = E[i]*AX[i]/EL[i];            // EA/L 
 scm[1] = 4.0F*E[i]*ZI[i]/EL[i];     // 4EI/L  
 scm[2] = 1.5F*scm[1]/EL[i];        // 6EI/L^2     
 scm[3] = 2.0F*scm[2]/EL[i];         // 12EI/L^3    
 tm[0] = 3*jj[i] - 2; 
 tm[1] = 3*jj[i] - 1; 
 tm[2] = 3*jj[i]; 
 tm[3] = 3*jk[i] - 2; 
 tm[4] = 3*jk[i] - 1; 
 tm[5] = 3*jk[i]; 
} 
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void Stiffness::memstif(int i,float sms[6][6],float scm[4]) 
{ 
 /*  
  David Oyler CE233 4/24/89 Version 2.1 
  Program computes upper triangular portion of a  
  single member stiffness matrix in global coordinates 
 */ 
 
 for(int j=0; j<6; j++)  //Clear member stiffness matrix values  
 { 
     for(int k=0; k<6; k++)  
   sms[j][k]=0.0; 
 } 
 
 //Compute individual stiffnesses, in global coordinates  
 //Add 1 to each index below to obtain actual matrix index values  
 
 sms[0][0] = scm[0]*cx[i]*cx[i] + scm[3]*cy[i]*cy[i]; 
 sms[0][1] = (scm[0] - scm[3])*cx[i]*cy[i]; 
 sms[0][2] = -scm[2]*cy[i]; 
 sms[0][3] = -sms[0][0]; 
 sms[0][4] = -sms[0][1]; 
 sms[0][5] =  sms[0][2]; 
 sms[1][1] =  scm[0]*cy[i]*cy[i] + scm[3]*cx[i]*cx[i]; 
 sms[1][2] =  scm[2]*cx[i]; 
 sms[1][3] = -sms[0][1]; 
 sms[1][4] = -sms[1][1]; 
 sms[1][5] =  sms[1][2]; 
 sms[2][2] =  scm[1]; 
 sms[2][3] = -sms[0][2]; 
 sms[2][4] = -sms[1][2]; 
 sms[2][5] =  scm[1]/2; 
 sms[3][3] =  sms[0][0]; 
 sms[3][4] =  sms[0][1]; 
 sms[3][5] =  sms[2][3]; 
 sms[4][4] =  sms[1][1]; 
 sms[4][5] =  sms[2][4]; 
 sms[5][5] =  scm[1]; 
} 
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E.6  STRUCTURE.CPP 
 
 
#include <stdio.h> 
#include <math.h> 
#include "Structure.h" 
 
//File definitions 
extern FILE *freadfile; 
extern FILE *fprnt; 
 
//Global Variable definitions   
extern int jj[MAX], jk[MAX]; //Member start/end joints 
float EL[MAX];   //Element Length 
float cx[MAX], cy[MAX]; //x and y dir cosine 
int jrl[3*MAX];   //joint restraints 
 
//Constructor 
Properties::Properties() 
{ 
 m=0; nj=0; nr=0; nrj=0; nd=0; 
 nb=0; n=0; 
 for(int i=0; i<30; i++) 
 { 
  x[i]=0.0; y[i]=0.0; 
  AX[i]=0.0; YI[i]=0.0;  
  ZI[i]=0.0; WI[i]=0.0;  
  E[i]=0.0; G[i]=0.0;  
  J[i]=0.0; 
  angle[i]=0.0; 
  res1[i]=0; 
  res2[i]=0; 
  res3[i]=0; 
  res4[i]=0; 
 } 
} 
 
void Properties::stread() 
{ 
 int nbi; 
 float xcl, ycl; 
 char hd[80]="";   // Headings  
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 fgets(hd, 80, freadfile);   
 fscanf(freadfile,  "%d %d %d %d\n",&m,&nj,&nr,&nrj); 
  nd = 3*nj;     // Total possible degrees of freedom 
  n  = nd - nr;    // Structure degrees of freedom  
 fprintf(fprnt, "%d %d\n",m,nj); //Print to output #members, #joints 
 fgets(hd, 80, freadfile);  // Read header from input file 
 for(int k=0; k<nj; k++) 
 {        // Read joint coordinates 
  int j; 
  fscanf(freadfile, "%d",&j); // Read joint number 
  fscanf(freadfile, "%f %f\n", &x[j-1], &y[j-1]); 
 } 
 fgets(hd, 80, freadfile);       
 for(int j=0; j<m; j++) 
 {        // Read Member Data  
  int i; 
  fscanf(freadfile, "%d",&i); // Read member number  
  int k=i-1; 
  fscanf(freadfile, "%d %d %f %f %f %f %f %f %f\n", 
   &jj[k], &jk[k], &AX[k],&YI[k], &ZI[k],&WI[k],  
   &E[k],&G[k],&J[k]); 
  nbi = 3*(abs(jk[k] - jj[k]) + 1); 
  if(nbi>nb)                          // Half bandwidth  
   nb=nbi; 
  xcl = x[jk[k]-1] - x[jj[k]-1];  // Compute x comp. of member length  
  ycl = y[jk[k]-1] - y[jj[k]-1];  // Compute y comp. of member length  
  EL[k] = sqrt(xcl*xcl + ycl*ycl);    // Compute member length  
  cx[k] = xcl/EL[k];                  // Compute x dir cosine  
  cy[k] = ycl/EL[k];                  // Compute y dir cosine  
  
 
  if(cx[k]!=0) 
  angle[k]=acos(cx[k]); 
  else 
  angle[k]=asin(cy[k]); 
 } 
 fgets(hd, 80, freadfile);                    
 for(j=0; j<nd; j++)                     // Clear Joint Restraint List  
  jrl[j] = 0; 
 
 for(j=0; j<nrj; j++) 
 {        // Read joint restraint data  
  int k; 
  fscanf(freadfile, "%d",&k);   // Read in number of restrained joint  
  fscanf(freadfile, "%d %d %d",  
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   &jrl[3*k-3], &jrl[3*k-2], &jrl[3*k-1]); 
  fscanf(freadfile, "%d %d %d %d\n",  
   &res1[k], &res2[k], &res3[k],&res4[k]); 
 }      
} 
 
void Properties::print_restraints() 
{ 
 for(int k=1;k<=nj;k++) //Prints restraints 
 { 
  fprintf(fprnt,"%d %d %d %d\n", 
   res1[k], res2[k],res3[k],res4[k]); 
 } 
} 
 
void Properties::print_properties(int j) 
{ 
 fprintf(fprnt,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f", 
  E[j],G[j],J[j],YI[j],ZI[j],WI[j]); 
 
 fprintf(fprnt," %10.4f %10.4lf %d %d\n", 
  EL[j],angle[j],jj[j],jk[j]); 
} 
 
 
 
 

E.7  ACTIONS.H 
 
 
#if !defined( _actions_h ) 
#define _actions_h 
#define  MAX  30 
 
class Actions 
{ 
private: 
 float action[4][MAX]; 
public: 
 Actions(); 
 void memact(Stiffness, Loads, Displacements); 
 void print_actions(int) const; 
}; 
#endif 
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E.8  DISPLACEMENTS.H 
 
 
#if !defined( _displacements_h ) 
#define _displacements_h 
#define  MAX  30 
 
class Displacements 
{ 
private: 
 float df[3*MAX]; 
 float D[MAX]; 
 float dj[3*MAX]; 
 int nj; 
 int nb;  //Bandwidth 
 int n; 
public: 
 friend class Actions; 
 Displacements(int); 
 void banfac(Stiffness, Loads); 
 void bansol(float[3*MAX][3*MAX], float[3*MAX]); 
 void prdisp(); 
 void print_displacements(int); 
}; 
#endif 
 
 
 
 

E.9  LOADS.H 
 
 
#if !defined( _loads_h ) 
#define _loads_h 
#define  MAX  30 
 
class Loads 
{ 
private: 
 int nlj, nlm;   //# loaded joints, # loaded members 
 float aj[3*MAX]; 
 int lml[MAX];   //keeps track of loaded members 
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 float aml[6][MAX];  //member load matrix 
 float ac[3*MAX]; 
 float Load[6][MAX]; 
 int nj;     //number of joints 
 int element_num;  //number of elements 
 
public: 
 friend class Displacements; 
 friend class Actions; 
 Loads(int, int); 
 void ldread(float); 
 void load(); 
 void print_loads(int j); 
}; 
#endif 
 
 
 
 

E.10  STIFFNESS.H 
 
 
#if !defined( _stiffness_h ) 
#define _stiffness_h 
#define  MAX  30 
 
class Stiffness: public Properties 
{ 
private: 
 float sff[3*MAX][3*MAX]; 
public: 
 friend class Displacements; 
 Stiffness(); 
 void stread(); 
 void stifbld(); 
 void compm(int, int[6], float[4]); 
 void memstif(int, float[6][6], float[4]); 
}; 
#endif 
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E.11  STRUCTURE.H   
 
 
#if !defined( _structure_h ) 
#define _structure_h 
#define  MAX  30 
 
class Properties 
{ 
protected: 
 int m, nj;    //# members, # joints 
 int nr, nrj;   //# in-plane restraints,# in-plane restrained joints 
 int nd;     //Total d.o.f. 
 int nb;     //bandwidth 
 int n; 
 float x[MAX], y[MAX]; //Joint coordinates 
 float AX[MAX], YI[MAX], //Area, Iy 
    ZI[MAX], WI[MAX], //Ix, Iw 
    E[MAX], G[MAX], //E, G 
    J[MAX];   //J 
 double angle[MAX];  //angle  
    
 int res1[MAX],res2[MAX],res3[MAX],res4[MAX]; 
 
public: 
 Properties(); 
 virtual void stread()=0; 
 void print_restraints(); 
 void print_properties(int j); 
 int getElement() 
 { 
  return m; 
 } 
 int getJoint() 
 { 
  return nj; 
 } 
 int getBandwidth() 
 {  
  return nb; 
 } 
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 int getN() 
 { 
  return n; 
 } 
}; 
#endif
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