ELASTIC FLEXURAL-TORSIONAL BUCKLING ANALYSIS USING FINITE ELEMENT

METHOD AND OBJECT-ORIENTED TECHNOLOGY WITH C/C++

by

Erin Renee Roberts

B.S., University of Pittsburgh at Johnstown, 2002

Submitted to the Graduate Faculty of the

School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2004

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Erin Renee Roberts

It was defended on

April 12, 2004

and approved by

Christopher J. Earls, Associate Professor and Chairman,
Department of Civil and Environmental Engineering

Julie M. Vandenbossche, Assistant Professor,
Department of Civil and Environmental Engineering

Morteza A. M. Torkamani, Associate Professor,
Department of Civil and Environmental Engineering,
Thesis Director

il

ELASTIC FLEXURAL-TORSIONAL BUCKLING ANALYSIS USING FINITE ELEMENT
METHOD AND OBJECT-ORIENTED TECHNOLOGY WITH C/C++
Erin Renee Roberts, M.S.

University of Pittsburgh, 2004

Flexural-torsional buckling is an important limit state that must be considered in structural steel
design. Flexural-torsional buckling occurs when a structural member experiences significant
out-of-plane bending and twisting. This type of failure occurs suddenly in members with a much
greater in-plane bending stiffness than torsional or lateral bending stiffness.

Flexural-torsional buckling loads may be predicted using energy methods. This thesis
considers the total potential energy equation for the flexural-torsional buckling of a beam-
column element. The energy equation is formulated by summing the strain energy and the
potential energy of the external loads. Setting the second variation of the total potential energy
equation equal to zero provides the equilibrium position where the member transitions from a
stable state to an unstable state.

The finite element method is applied in conjunction with the energy method to analyze
the flexural-torsional buckling problem. To apply the finite element method, the displacement
functions are assumed to be cubic polynomials, and the shape functions are used to derive the
element stiffness and element geometric stiffness matrices. The element stiffness and geometric
stiffness matrices are assembled to obtain the global stiffness matrices of the structure. The final
finite element equation obtained is in the form of an eigenvalue problem. The flexural-torsional

buckling loads of the structure are determined by solving for the eigenvalue of the equation.

il

The finite element method is compatible with software development so that computer
technology may be utilized to aid in the analysis process. One of the most preferred types of
software development is the object-oriented approach. Object-oriented technology is a technique
of organizing the software around real world objects. An existing finite element software
package which calculates the elastic flexural-torsional buckling loads of a plane frame was
obtained from previous research. This program is refactored into an object-oriented design to
improve the structure of the software and increase its flexibility.

Several examples are presented to compare the results of the software package to existing
solutions. These examples show that the program provides acceptable results when analyzing a
beam-column or plane frame structure subjected to concentrated moments and concentrated,

axial, and distributed loads.

v

TABLE OF CONTENTS

1.0 INTRODUCTIONooiiiiiiiieieeieettete ettt ettt ettt eeeete s st e steesae s st eseenaesseenseensesseesesneans 1
2.0 OBJECTIVES ..ottt ettt sttt et e et e bt entesse e teenteeneenseensesneenseennans 3
3.0 LITERATURE REVIEWoiiiiiiiieiet ettt ettt 4
3.1 FLEXURAL-TORSIONAL BUCKLINGccccttitiiieriieieeieseeie et 4
3.2 OBJECT-ORIENTED DEVELOPMENTccoiiiiiiiieieieeeee et 6
4.0 FLEXURAL-TORSIONAL BUCKLING THEORYccoiiiiiieiieiesiieeeieeeie e 8
4.1 STRAIN ENERGY ..ottt ettt sttt 13
4.1.1 DISPIACEIMENLSeeeeiiieiiie ettt ettt e e e et e e rae e e aaeeeaeeesnnaeeennneas 13
4.1.2 STEAINS ..ttt ettt et ettt e bt e et e e bt e et e e bee et e e nabe et e e nbeeenreens 22
4.1.3 Stresses and Stress Resultants............oocevieiiiiinieniiieneeceeeeee e 24
4.1.4 SECHION PrOPETTIES ...eevviiiiieeiiieiieeieeieeete ettt ettt e te e e et e s aeebeesaseesbeessneensaens 24
4.1.5 Strain Energy EQUationcccoooiiiiiiiiiiieceeeeee e 25

4.2 POTENTIAL ENERGY OF THE LOADSoooiiiiieeeeeeeeeeee et 26
4.2.1 DISPLACCIMENLSeeeeiiiiiieiieeie ettt ettt et e s e ebeesabeebeessseenseesaseenseaenne 27
4.2.2 Potential Energy of Loads EQUAtionccoecieriieiiieiieniecieeeeeeee e 28

43 ENERGY EQUATION......ioitiiiiieieeeeee ettt sttt et s 29
44 NON-DIMENSIONAL ENERGY EQUATION.....cccceiiiiiiieieeiereeeeee e 30

5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
DEFORMATIONS ...ttt ettt ettt ettt ettt e ae e st et e e enees 32

5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONScccccovenee. 32

5.1.1 Displacements Considering In-Plane Deformations.........c..cccceevveveevienicneenennen, 32
5.1.2 Strains Considering In-Plane Deformationsccceveeveiienieninicnicneecnene 33
5.1.3 Strain Energy Equation Considering In-Plane Deformations...........cccccecevvennne. 36

5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE

DEFORMATIONS ...ttt ettt ettt e st e ae st e e st et e entesseenseeneanneenees 37
5.2.1 Displacements Considering In-Plane Deformations............ccccceevevievcveenciieennnenn. 37
5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations 37

5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS................. 38

6.0 FINITE ELEMENT METHODccooiiiiiiieeeeee ettt 41
6.1 ELASTIC STIFFNESS MATRIX ...ttt 49
6.2 GEOMETRIC STIFFNESS MATRIXooiiiiiieiieieeeeeeeee et 51

7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS 53

7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS 54

7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE

DEFORMATIONS ...ttt ettt ettt et et sbe et e nbe e 55
8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION......... 58
9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN.....c.ccccceevvimiininieneeienne. 64

9.1 OBIJECT-ORIENTED SOFTWARE DEVELOPMENTcccceciniiniiiiniinicicneene 64

9.1.1 Basic CONCEPLS....cueiuiiriiiiieieeiterte ettt ettt et sttt 65
9.1.2 The C++ Object-Oriented Languageccccecevverieniinienienienienieeieeicneeieeens 69

9.2 PROGRAM SET-UP ..ottt 70

9.3 PROGRAM BACKGROUND.......coctiiitiiiniiiieiienteeetese ettt 72

9.4 DESIGN PROCESS......ot ittt ettt ettt 74

vi

94.1 TCEPLION vttt ettt ettt ettt et e sae e e e et e s b e e eaeeenbeeees 76
9.4.2 EIabOTationcc.eouiiiiiiiiiiesicrieecee ettt 76
9.4.3 CONSLIUCTION ...ttt sttt st s 81
0.4.3. 1 MOAEINGeieiiiiiieeiieeie ettt ettt ettt ettt et eteesbeeenbeeseaeenseesneeenne 83
9.43.1.1 Structural VIEWcceociiiiiiiiiiniiiieieetee ettt s &5
9.4.3.1.2 Dynamic Behavior VIEW..........cccoeeuiriiiiiiiiiiiiniieiiecie e 100
0.4.3.2 COAING..nuiiiiiiiiiieieieeeee ettt 110
9.44 TTANSILION ...ttt 119
9.5 WINDOWS INTERFACEcccciiiiiiiiiinineteteeeee ettt 120
9.5.1 Windows Programmingc.cceccveeviierieeiieenieeiienieereeseeeieeseeeveeseaesseesaeeens 120
9.5.2 Creating the INterface..........cooviiiiiiiiieiecee e 122
10.0 APPLICATIONS ..ottt sttt 134
10.1 BUCKLING LOAD ANALYSIS ..ottt 134
10.1.1 Buckling Analysis EXample ©........cccccoooiiiiiiiiiiiiieeeeeee e 134
10.1.2 Buckling Analysis EXample 2.........ccccooiiiiiiiiiiiiiee e 137
10.1.3 Buckling Analysis Example 3........ccccooiiiiiiiiiiieee e 139
10.1.4 Buckling Analysis Example 4.........ccccooiiiiiiiiinieee e 142
10.1.5 Buckling Analysis EXample 5........cocoeiiiiiiiiiinieeee e 145
10.1.6 Buckling Analysis EXample 6.........ccccoooiiiiiiiiiiiiiieeeee e 147
10.1.7 Buckling Analysis EXample 7.........ccccoeiiiiiiiiiiiiieeeece e 149
10.1.8 Buckling Analysis Example 8.........ccccooiiiiiiiiiiiieee e 151
10.1.9 Buckling Analysis EXample 9.........ccccooiiiiiiiiiiiiieeee e 153
10.1.10 Buckling Analysis Example 10.........ccoociiiiiiiiiniiiieieeeeee e 156

vil

10.1.11 Buckling Analysis Example 11........cccoooiiriieniiiiieiieciieeecee e 158

10.2 PREBUCKLING ANALYSIS ..ottt 160
10.2.1 Prebuckling Analysis Example ©........ccccoooieiiiiiiiiiieiiieiecieeee e 160
10.2.2 Prebuckling Analysis EXample 2..........ccooviieiiiiiiiiieiiieieceeee e 161
10.2.3 Prebuckling Analysis Example 3cccoooiiiiiiiiiiiiiiiieecceee e 162
10.2.4 Prebuckling Analysis Example 4..........ccoooieiiiiiiiiiiiiieiecieeee e 163
10.2.5 Prebuckling Analysis Example 5.........ccccooviieiiiiiiiinieiiieieceee e 164
10.2.6 Prebuckling Analysis EXample 6..........c.coccueeviieiiiiiiiiiiieieeieeee e 165

10.3 NON-DIMENSIONAL ANALYSIS ...ttt 166
10.3.1 Non-Dimensional Analysis Example ©..........cccooceiiiiiiiiiiiiniiiienieeeeeeee 166
10.3.2 Non-Dimensional Analysis Example 2..........ccccocevoiiiiiiiiiiniiiiecieeeeeeeee 168
10.3.3 Non-Dimensional Analysis Example 3..........ccccocoviiiiiiiiiiniiiieeeeeeeeee 170
10.3.4 Non-Dimensional Analysis Example 4..........ccccoceeiiieiiiiiiiniieieieeeeeee e 172
10.3.5 Non-Dimensional Analysis Example 5..........cccoooiiiiiiiiiiiiniiieeeeeeeee 174
10.3.6 Non-Dimensional Analysis Example 6............ccccoeiieiiiiiiiiiiiiiieniceeeeee 175
10.3.7 Non-Dimensional Analysis Example 7..........cccoooiiiiiiiiiiiiniiiiieeeeeeeeee 176

L1.0 SUMMARY .ottt ettt sttt e sttt e e e saesseebeessessaenseessesseensesssenseensennnans 179
W o o D\ B] 0, L NSRS 182

DERIVATION OF THE ROTATION TRANSFORMATION MATRIX.......cccovvieviiirenns 182

AT VECTOR OR ..ottt ettt st sae s e s essaenaesseenseennens 183

A2 VECTOR RL ..ottt ettt sttt st sse e e s e e seenaessaenseensens 184

A3 VECTOR LQ ..ttt sttt e st e b e esaessaenseensasseensaenaesseenseansans 185

A.4 FINITE DISPLACEMENTS TRANSFORMATIONcccoiiiiiieeeieee e 186

viii

A.5 ROTATION TRANSFORMATION MATRIXcooteiiieieienienieecseeieeceee e 188
APPENDIX B ...ttt sttt ettt ettt b ettt a ettt e be et b ere s 194
B.1 ELEMENT ELASTIC STIFFNESS MATRIX.......ccvtiiiiiieeeee e 194
B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX.......ccooiiiiiiiieieeeeeeeee e, 195
B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIXccccoooiiiiiiiiieeeeieee e 198
B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX................. 199
B.5 ELEMENT PREBUCKLING STIFFNESS MATRIXccooiiiiiiiieeieeeeeeee e 202
B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX.......c.cccceevvieeen. 203
APPENDIX € .ottt ettt ettt ettt et be bt st ene st e st et e benteebe et 207
C.1 INPUT FILES ...ttt st sttt nae e 207
C.1.1 Input File for the Frame Program............cccccooviieiieiiiiiiinieeiieeeeee e 207
C.1.2 Input File for the LBuck Program..........cccccoeoiieiiiiiiiiieiiecieeieeeeee e 208

C.2 INPUT FILE SYMBOLS. ..ottt 211

W o o4 2\ B] 0, G B SRR 214
LBUCK PROGRAM CODEoooiiiieiieiieieeiestee ettt sae e seennenneens 214
D.1 ELEMENTGEOML.CPP ...ttt st e e aee e e e naaa e e s enaaaaeenes 214
D.2 ELEMENTSTIFFE.CPP ...ttt ettt e e s e e e saaaa e e enaaaaeenes 226
D.3 GEOMTRLICPP......ooiieeeee ettt ettt st ss e e s e ssaenaesseenseennens 230
D4 LBUCKLUCPP ...ttt ettt e et e e et e e e e atae e e e e nnaaeeeennsaaeeeensaaaeeanes 231
D.5 PROPLCPP ...ttt e et e e e et e e e sssba e e e e nsbaeeeennssaaeeennsaaeeennns 236
DO SPPRT.CPP ...ttt e e e et e e e stta e e e e saeeeeenssaeaeesnssaaeeennes 239
D.7 STANDMULCPP......ooooeeeeee ettt e e e et e e e st e e e e s saaee e ensaaeeeeessaaaeennns 241
D.8 STIFFNLCPP ..ottt ettt e e et e e e ettt e e e e esaaeeeensssaeeeensaeeeeanes 247

X

D.9 ELEMENTGEOM.Hcc.cooiiiiiiiiiiiiiiicc et 248

D.10 ELEMENTSTIFF H...oooiiiiiiiiiiiiiicectceeeee et 249
D.1T GEOMTRUH ...ooiiiiiiiiiii et s 249
D12 PROP.H. ..ottt s 250
D13 SPPRT H ..o s 250
D.14 STANDMUH ...cooiiiiiiiii e s 251
D15 STIFFNH (oo s 252
APPENDIX E ..o s 253
FRAME PROGRAM CODEcccooiiiiiiiiiiiiiiicit ettt 253
E.1 ACTIONS.CPP.....ooiiiiiiie e 253
E.2 DISPLACEMENTS.CPPociiiiiiiiiiiiccceeeee e 254
E.3 FRAME.ICPP ..ot 258
Eid LOADSICPP...ooiiii et 260
E.5 STIFFNESS.CPP....oooioiiee ettt s 264
E.6 STRUCTURE.CPP. ...ttt ettt s 267
E.7 ACTIONS. H .. .oiiiiee ettt ettt ettt e st e 269
E.8 DISPLACEMENTS.H ...ooiiiiiiiieeee ettt 270
E.O LOADS H....oiiieee ettt ettt ettt enees 270
E. 1O STIFFNESS H ..ottt sttt e 271
E. 11 STRUCTURE H...c.oiiiiiiiiiiieietee ettt et 272
BIBLIOGRAPHY ...ttt et st e 274

LIST OF TABLES

Table 10-1 Beam Properties for W12X120ccoiiiiiiiiiiiieieeieeie et 136
Table 10-2 Frame ProPerti€s........cccecuieriieiiieiieiieeiie ettt ettt sttt eete et e steeaeeseteeseesnseeneas 144
Table 10-3 Two Bay Frame Properti€s.........ccueeiieiiiiiieiiieeieeiie ettt 148
Table A- 1 DIreCtion COSINEScc.eeruiriiriierierieritenteete sttt ettt et siteste et eatesbeesbesaesaeenbeennens 191

X1

LIST OF FIGURES

Figure 4.1 Coordinate SYStEIM.......c..eiviuiiiriiiieiiieeeiieesiee et e et eestee e s te e e steeessaeeesaseeesaeessaeeenseeesnnes 9
Figure 4.2 Cross Section View Displacements..........cc.eeeciieeiiiieiiiieeniieeeieeeciee e e e 10
FigUre 4.3 DiSPlaCeIMENLS.cccviiiiiieeeiieeeiieecieeeetee ettt eeteeesteeesteeessbeeessseeessseeessseeessseeesseesseeenns 10
Figure 4.4 External Loads and Member End Actions of the Beam-Column Element 11
Figure 4.5 Deformed EISMENt...........ocouiiiiiiiiiiiicciie ettt e e 14
Figure 4.6 Undeformed Element Az and Deformed Element Az (14€)ccccvvveeiieeiieencieeniiene 17
Figure 4.7 Twist ROtATIONceeiiiiiiiieciie ettt ettt e e e e tae e eta e e saaeessseeessneeenns 19
Figure 6.1 Element Degrees of Freedomoocviiiiiiiiiiiiciiicieee et 44
Figure 9.1 Basic Object-Oriented Concepts ITUStration............cecveeeeiieeriieeniee e 67
Figure 9.2 Program OPErationcccuieeeiieeiiieeiieeerieeeseeeeiieeeiteesireesteeessseeessseeesnseesnsseesnsseenns 71
Figure 9.3 Rational Unified PrOCESSccceeruiiieriiiiiiieiieceeceeee e 75
Figure 9.4 Frame and LBuck Program’s Use Case Diagram.............cccceevveeiienieesieeneeenieenveennnn. 78
Figure 9.5 Reverse ENgineering PrOCESSccveviieiiieniiiiieeie ettt eve e sene e 80
Figure 9.6 Refactoring PrOCESSccuiiiiiiiiiiieci ettt 80
Figure 9.7 Possible Frame Program ClasSes..........cocuerierieriieierienieniesceieeee et 82
Figure 9.8 Possible LBuck Program Classesc.cceveeruieiiirieniieienierieeieeie e 83
Figure 9.9 Modeling Procedurecooieiiiieiiiienieeeeeeee e 85
Figure 9.10 Example Class DIagramcoceoieriirienieniieiieieieeie et 87
Figure 9.11 Frame Program ClaSSeSsceerueruieriiriieiieniieiieiesieeie sttt 87

Xil

Figure 9.12 LBuUck Program ClasSescccerierierieriinieeiieiierieeie sttt 88

Figure 9.13 Original Frame Program Procedural Flowchartc.cooceviiniininiiniiniicieee 91
Figure 9.14 Frame Program Class Diagramccceovriiieniieiiienieeieeeie et 93
Figure 9.15 Original LBuck Class Diagramccccoecvieiiieniieniieniieieeeie e 96
Figure 9.16 LBuck Program Class Diagram.............cccecuieiiieniieeiiieniie et 99
Figure 9.17 Frame Program Sequence Diagram...........cccoccueeviieniieniienieeniienie e 102
Figure 9.18 Original LBuck Program Sequence Diagram............cccccoevuvenieiiieniencieenie e 105
Figure 9.19 Refactored LBuck Program Sequence Diagram.............cccceeeuverieeniienieenienieeieene, 106
Figure 9.20 ACtivity DIagrami........c.cccieiiieiiiiiiieiiie ettt ettt et etee e ssae b e saae e 109
Figure 9.21 Project Program Class Hierarchyccccooviiiiiiiniieiiiiniieieceeee e 121
Figure 9.22 Interface Use Case DIagram.........c.cecieriieriieriieniienieeiie ettt sve e eve e eve e 124
Figure 9.23 FIle IMENU.....cuiiiiieiiieiiieiieeie ettt ettt ettt ettt et e et e et e enbeessaeenseesbeennns 126
Figure 9.24 Data MENUcceeeiieiiieiieeie ettt ettt et ettt e sate et essbeeseeenseenbeesnbeenseeenseenseennns 126
Figure 9.25 ANalySis MENU.........coiiiiiiiiiiieiieie ettt ettt ettt ettt et e aee e 127
Figure 9.26 New Project DIalogcccueeiiiiiiiiieiieie et 127
Figure 9.27 Buckling Analysis DIalog..........coouiiiiiiiiiiiiiiicieetee e 129
Figure 9.28 Non-Dimensional Analysis Dialog...........ccceiiiiiiiiiiiiiiiniiiieeieeeee e 130
Figure 9.29 Joint Data DIalog........c.coiiiiiiiiiiiiiiierieceeeeee et 131
Figure 9.30 Member Load DIalogcc.eeiiiiiiiiiieiieieee et 131
Figure 10.1 Simple Beam with Equal End Momentsccccoceviiiiniiiniinininicneeicnicees 135
Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments...................... 136
Figure 10.3 Cantilever Beam with Concentrated Loadc.ccooeeiiiiiiniiniiiiniiniiiceees 138
Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Loadcc.cccceeviiniinennnens 138

xiii

Figure 10.5 Continuous BEAMcouiiiiiiiiiieieiieieeieeeee ettt 140

Figure 10.6 Buckling Load: Continuous Beamccccevieriiiiniiniiienienieeieeeceie e 140
Figure 10.7 Load Height Analysis: Continuous Beamcccccoecieviiiiiiniienieiiieieeieee 142
Figure 10.8 Portal Frame with Concentrated Load...........ccceoceriiiniininiiniiniiieneceeeeee 143
Figure 10.9 Buckling Load: Portal Frame with Concentrated Load...........c.ccocevieviniiniincnnens 144
Figure 10.10 Portal Frame with Three Concentrated Loads............ccceevuerieninnienieniniienieienns 146
Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads...........cccccocvevuennene 146
Figure 10.12 Two Bay Frame with Vertical Loadsccccooceiviiiiniiiiniiniiicneeceee 148
Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loadscccceoevieniininicncnnens 149
Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loadscccccecevienennens 150
Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads........ 151
Figure 10.16 Two Story Plane Frame with Horizontal Loads............cccccecveviiviinieniincniincenns 152
Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads..... 153
Figure 10.18 Two Story Plane Frame with Vertical Loadsc.cccceeviniininiinininiiniccns 155
Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads......... 155
Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loadsccccccccveenennens 157
Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and Vertical

LLOAS .ttt ettt e 157
Figure 10.22 Two Unequal Bay Frame...........cccoeoieiiiieiiiiiieiie ittt 159
Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads..................... 159

Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End Moments
... 161

Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load.. 162

Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated Load
... 163

X1V

Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical Loads 164

Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and

HOTIZONtal LOAAS.....c.eiiiiieieeee et 165
Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected to

HOTIZONAl LOAAS.....couiiiiieiieiiee ettt 166
Figure 10.30 Simple Beam with Concentrated Load............cccceveriiiiiiiniiniinieenceiceeeeens 167
Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load..................... 168
Figure 10.32 Simple Beam with Equal End Momentscccceveeviirieniinennienieiccieneeieene 169
Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments..........c..ccccceeene. 169
Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End Restraints

... 170
Figure 10.35 Cantilever Beam with a Concentrated Load............cccoeooviieiiiieniiiiciieeee e 171
Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load.......................... 172
Figure 10.37 Simple Beam with Equal and Opposite End Momentsc.cccceeevveeeieeecieennneen. 173
Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments............. 173
Figure 10.39 Cantilever Beam with End Moment............ccccocciiiiiiiiiiiiinieeeieceeeeesceieea 174
Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment.............ccccceceveenennen. 175
Figure 10.41 Simple beam with Distributed Load..........ccccceeviriiniiiiiiiniiieeecceeee 176
Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load 176
Figure 10.43 Cantilever Beam with Distributed Load............ccocoviiiiiiiniiniiieneceeeeeee 177

Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load... 178
Figure A. 1 Rigid Body Movement from Point P t0 Q........cccovoiiiiiiiiiiiniiiieeeee e 182

Figure A. 2 Rigid Body Rotation from Point P t0 Qcccoeiiiiiiiiiiiieceececeeeeee 191

XV

NOMENCLATURE

Description

area of member

distributed load height
non-dimensional distributed load height
slope at node 1 of the member

Cholesky matrix

global nodal displacement vector for the structure
global nodal displacement vector for an element
local nodal displacement vector for an element

modulus of elasticity

concentrated load height
non-dimensional concentrated load height
axial load

vector of trial loads

vector of buckling loads

non-dimensional axial load

shear modulus

structure global geometric stiffness matrix

XVi

=

element global geometric stiffness matrix

element global prebuckling geometric stiffness matrix

structure global prebuckling geometric stiffness matrix

element local geometric stiffness matrix for initial load set

element local geometric stiffness matrix for prebuckling

depth of the member

identity matrix

moment of inertia about the x axis
moment of inertia about the y axis
warping moment of inertia
torsional constant

beam parameter

structure global stiffness matrix
element global stiffness matrix
element global prebuckling stiffness matrix

structure global prebuckling stiffness matrix

element local stiffness matrix

element local stiffness matrix for prebuckling
torsional curvature of the deformed element
member length

classical lateral buckling uniform bending moment

bending moment

XVii

U, U,

U,,u,

<

Vi

<

moment at node 1

moment at node 2

non-dimensional moment at node 1

shape function matrix
concentrated load
non-dimensional concentrated load
distributed load

non-dimensional distributed load

transformation matrix

rotation transformation matrix

perpendicular distance to P from the mid-thickness surface
strain energy

strain energy for each finite element

out-of-plane lateral displacement

out-of-plane lateral displacement of point P,

out-of-plane lateral displacements at nodes 1 and 2

out-of-plane rotation at nodes 1 and 2

out-of-plane rotation
non-dimensional out-of-plane lateral displacement
shear at node 1

shear at node 2

non-dimensional shear at node 1

XViil

Vm

vp

Vi, V3

Vy,Vy

in-plane bending displacement

displacement through which the applied moment acts
displacement through which the concentrated load acts
in-plane bending displacement of point P,
displacement through which the distributed load acts

in-plane displacements at nodes 1 and 2

in-plane rotation at nodes 1 and 2

in-plane rotation

axial displacement

longitudinal displacement through which the axial load acts
longitudinal displacement of point P,
concentrated load location from left support
non-dimensional member distance
non-dimensional distance to concentrated load
angle of rotation for a plane frame element
longitudinal strain of point P,

generalized strain vectors

out-of-plane twisting rotation

out-of-plane twisting rotation at nodes 1 and 2

out-of-plane torsional curvature at nodes 1 and 2
out-of-plane torsional curvature

shear strain of point P,

XiX

buckling parameter

total potential energy
non-dimensional total potential energy
longitudinal stress of point P,

shear stress of point P,

warping function

potential energy of the loads

potential energy of the loads for each finite element

rotation of the member cross section

XX

1.0 INTRODUCTION

In steel structures, all members in a frame are essentially beam-columns. A beam-column is a
member subjected to bending and axial compression. Beam-columns are typically loaded in the
plane of the weak axis so that bending occurs about the strong axis, such as in the case of the
commonly used wide flange section. Primary bending moments and in-plane deflections will be
produced by the end moments and transverse loadings of the beam-column, while the axial force
will produce secondary moments and additional in-plane deflections.

When the values of the loadings on the beam-column reach a limiting state, the member
will experience out-of-plane bending and twisting. This type of failure occurs suddenly in
members with a much greater in-plane bending stiffness than torsional or lateral bending
stiffness (Trahair, 1993). The limit state of the applied loads of an elastic slender beam of
perfect geometry is called the elastic lateral-torsional buckling load. In a beam-column or plane
frame structure, the buckling load may be referred to as the elastic flexural-torsional buckling
load.

The flexural-torsional buckling load of a member is influenced by several factors
including: (1) the cross-section of the member, (2) the unbraced length of the member, (3) the
support conditions, (4) the type and position of the applied loads, and (5) the location of the
applied loads with respect to the centroidal axis of the cross section (Chen and Lui, 1987). The
goal of a stability analysis is to consider these factors to determine the flexural-torsional buckling

loads of a structure. If the flexural-torsional buckling loads of a structure are known, it may be

necessary to design the member against flexural-torsional buckling by changing the member size
or adding bracing.

The energy method can be used to analyze and calculate the flexural-torsional buckling
loads of a beam-column element. However, this method will involve excessive computations
when done analytically, which will limit the designer to only simple structures. Computer
technology may be needed in order analyze more complicated flexural-torsional buckling
problems.

The finite element method can be applied in conjunction with the energy method to
analyze flexural-torsional buckling problems and provide acceptable results. The finite element
method is a numerical method that is a useful tool for solving difficult engineering problems.
The finite element method is powerful for handling complicated loadings, boundary conditions,
and geometry. It is also compatible with software development so that computer technology
may be utilized to aid in the analysis process.

One of the most preferred types of software development is the object-oriented approach.
Object-oriented technology is a technique of organizing software around real world objects.
Object-oriented software development focuses on breaking the software into modular units so
that each modular unit models a real world object.

The main objective of the thesis is to analyze the flexural-torsional buckling of beam-

columns and plane frames using the finite element method and object-oriented technology.

2.0 OBJECTIVES

The goal is to analyze and calculate the flexural-torsional buckling loads of beam-columns and

plane frames using the finite element method and object-oriented technology. In order to

accomplish this, the goal may be broken into several smaller objectives:

1.

Derive the most general energy equation of the flexural-torsional buckling of a beam-
column by neglecting in-plane deformations.

Consider the non-dimensional energy equation for flexural-torsional buckling.

Derive the more complete energy equation for flexural-torsional buckling by considering
in-plane deformation effects.

Derive the finite element equations based on the energy equation for flexural-torsional
buckling.

Consider the major object-oriented concepts and how they may apply to a flexural-
torsional buckling analysis.

Develop object-oriented models to communicate the design of the program.

Refactor an existing flexural-torsional buckling analysis software package to include
object-oriented features and reflect the object-oriented models.

Create an object-oriented user interface for the software package to make the software
more user friendly.

Run examples using the software package.

3.0 LITERATURE REVIEW

3.1 FLEXURAL-TORSIONAL BUCKLING

The first published discussions of flexural-torsional buckling were made by Prandtl (1899) and
Michell (1899), which considered the buckling of beams with narrow rectangular cross-sections.
Their work was further studied by Bleich (1952) and also by Timoshenko and Gere (1961). This
research was then published into textbooks, and it was extended to include wide flange sections.
They provided the classical energy equation for calculating the elastic flexural-torsional buckling
load of a thin-walled beam.

Galambos (1963) was an early researcher to consider inelastic flexural-torsional buckling
of wide flange sections. Other research was presented by Lee (1960), White (1956), Wittrick
(1952), and Hornes (1950). All of this research was done using the classical approach. This
approach provides exact solutions, yet it is somewhat limited because all calculations were done
analytically.

In the 1960’s, the amount of published research dramatically increased due to digital
computers. Researchers used numerical approaches which work well with computers. Some of
the numerical approaches studied include the Rayleigh-Ritz method by Wang (1994) and the
finite difference method by Bleich (1952), Chajes (1993), and Assadi and Roeder (1985).
Trahair (1968) used the finite integral method, which was also used by Anderson and Trahair

(1972) and Kitipornchai and Trahair (1975). Vacharajittiphan and Trahair (1973, 1975)

considered the flexural-torsional buckling of portal frames and plane frames using the finite
integral method.

The finite element method was introduced into the flexural-torsional buckling problem by
Barsoum and Gallagher (1970), in which they derived the stiffness equations for flexural-
torsional instability of one-dimensional members with constant cross sections. Finite element
solutions of the elastic lateral buckling of beams were also presented by Powell and Klingner
(1970) and Hancock and Trahair (1978). Later research includes Sallstrom (1996) and Bradford
and Ronagh (1997). Papangelis et al. (1998) used the finite element method and computer
technology to calculate the flexural-torsional buckling loads of beams, beam-columns, and plane
frames. Bazeos and Xykis (2002) presented research using the finite element method to analyze
three-dimensional trusses and frames.

More recent research on the theory of flexural-torsional buckling has been presented by
Tong and Zhang (2003a) and (2003b) with their investigations of a new theory to clarify the
inconsistencies of existing theories of the flexural-torsional buckling of thin-walled members.

The classical energy equation for calculating the elastic flexural-torsional buckling load
of a thin-walled beam is usually assumed to be independent of the prebuckling deflections. The
early investigations of the effects of prebuckling were based on the solution of the governing
differential equation (Michell, 1899). Varcharajittiphan et al. (1974) used the finite integral
method, and Roberts along with Azizian (1983) used the finite element procedure to consider the
effects of in-plane deformations on the flexural-torsional buckling problem. Pi and Trahair
(1992) pointed out that the finite element solution presented by Roberts and Azizian was not

accurate, and they present their own finite element solution to the flexural-torsional buckling

problem. A comprehensive book on the flexural-torsional buckling was published by Trahair

(1993).

3.2 OBJECT-ORIENTED DEVELOPMENT

Object-oriented languages began to emerge in the 1980s. Smalltalk was one of the first object-
oriented languages to become widely used. As the object-oriented languages gained popularity,
the earliest books on object oriented development were published by Goldberg and Robson
(1983) and Cox (1986). These books were then followed by books from Shlaer and Mellor
(1988), Booch (1991), and Rumbaugh et al. (1991).

Each of the early books published on object-oriented development used its own form of a
modeling language in the stages of design. Grady Booch (1991) from Rational Software, James
Rumbaugh (1991) from General Electric, and Ivar Jacobson (1992) from Ericson all joined
together in the late 1990s to create a unified modeling language, hence the name Unified
Modeling Language (UML), along with the Rational Unified Process for software development.
The UML was adopted in 1997, and an entire series of books were published on it along with the
Rational Unified Process including Rumbaugh et al. (1999), Fowler et al. (2000), Fowler (1999),
and Jacobson et al. (1999).

In the early 1990s, structural engineers began to use object-oriented development for
engineering software. Fenves (1990) discusses many advantages to object-oriented engineering
software. Forde et al. (1990) was the first to present an application of object-oriented
development to the finite element method along with discussing the problems with the

conventional finite element software. Zimmermann et al. (1992), Miller (1991), Pidaparti and

Hudli (1993), and Lu et al. (1995) also present object-oriented finite element applications for
structural engineering. Some of the more recent object-oriented applications to structural
engineering include Liu et al. (2003) with the first presentation of both structural analysis and
design using object-oriented technology and Archer et al. (1999) with a new finite element

program architecture.

4.0 FLEXURAL-TORSIONAL BUCKLING THEORY

Elastic flexural-torsional buckling occurs when a slender thin-walled member fails by deflecting
laterally and twisting out of the plane of loading. When the loads on a structure are large, the in-
plane configuration of the structure will become unstable, and the structure will try to reach a
stable out-of-plane configuration. This type of failure occurs suddenly in members with a much
greater in-plane bending stiffness than torsional or lateral bending stiffness. Flexural-torsional
buckling may significantly decrease the load capacity of a member; therefore, it is important to
obtain the flexural-torsional buckling loads of a member to provide an upper limit on the
member’s strength. This chapter will focus on deriving the energy equation for flexural-torsional
buckling.
The member under consideration is oriented in the oxyz coordinate system as shown in
Figure 4.1. The z-axis is oriented along the length of the element at the centroid of the cross-
section. The x-axis and y-axis are oriented considering the right-hand rule. The x-axis is the
major principle axis, and the y-axis is the minor principle axis. The displacements in the x, y,
and z directions are denoted as u, v, and w, respectively. The member is considered to be of
length L, and the left end of the beam is node 1 while the right end is node 2.
The basic assumptions that are made to create the mathematical model are:
1. The entire structure remains elastic. In order for the members to remain elastic prior to
buckling, the members must be long and slender.

2. The members have doubly symmetric cross sections.

3. The cross sections of the members do not distort in their own plane after buckling.

4. The members are perfectly straight. In reality, members will have slight imperfections
that will cause some lateral and torsional displacements prior to buckling; however, these
small displacements are neglected to simplify the problem.

5. Local buckling does not occur. Local buckling occurs in a concentrated area of the
member, and the effects may reduce the resistance of a member (Trahair, 1993). In short
or stocky beams, local buckling seems to have more influence than flexural-torsional

buckling. By considering a long slender beam, local buckling may be neglected.

Figure 4.1 Coordinate System

A member loaded in the yz plane will have an in-plane displacement, v, and in-plane
rotation v'. If the member is loaded along the z axis it will also have an axial displacement, w.
Flexural-torsional buckling will cause an out-of-plane displacement of the member, u, an out-of-
plane lateral rotation, u', an out-of-plane twisting rotation, ¢, and an out-of-plane torsional
curvature, ¢'. The prime indicates the first derivative with respect to z. Figure 4.2 shows the
cross section of a doubly symmetric beam and the displacements u, v, and ¢. Figure 4.3 (a)
shows the out-of-plane lateral displacement and rotation. Figure 4.3 (b) shows the in-plane

displacements, in-plane rotations, and out-of-plane twisting rotation.

Figure 4.2 Cross Section View Displacements

(a)

lV1 \Z
vq' v V2

G S
> 7 b

y (b)

Figure 4.3 Displacements

(a) Top View Displacements

(b) Front View Displacements

10

In this Chapter, it is assumed that the axial displacement, w, the in-plane bending
displacement, v, and in-plane bending rotation, V', are small and are therefore neglected. Only

the out-of-plane displacements, u, and rotations, u', ¢, and ¢', will be considered to derive the

energy equation. In Chapter 5, the effect of in-plane displacements and rotations on the energy
equation will be considered and additional terms for the energy equation will be derived.

Figure 4.4 shows the loads and member end actions of a beam-column element. The
element has three applied loads: (1) a distributed load, ¢, (2) a concentrated load, P, and (3) an
axial load F. The distributed load is applied at a height ‘a’, and the concentrated load is applied
at a height of ‘e’ at a distance ‘z,” along the length of the beam. The member experiences four

end actions: (1) the shears at each end V; and V>, and (2) the moments at each end M; and M..

F
R = D T
A M2

Figure 4.4 External Loads and Member End Actions of the Beam-Column Element

The energy equation is derived by considering the total potential energy of the structure.
The total potential energy of a structure, [], is the sum of the strain energy, U, and the potential
energy of the external loads, Q, given by

[I=U+Q 4-1)

11

The strain energy is the potential energy of the internal forces, and the potential energy of
the loads is the negative of the work done by the external forces. The theorem of stationary total
potential energy states that an equilibrium position is one of stationary total potential energy
(Trahair, 1993), which is expressed as

sI1=0 (4-2)

The theorem of minimum total potential energy states that the stationary value of I1 (for
which 8I1=0) of an equilibrium position is a minimum when the position is stable (Trahair,
1993). Therefore, the equilibrium position is stable when

1o

55 [1>0 (4-3)

and the equilibrium position is unstable when
1

552 [1<0 (4-4)

The second variation of the total potential energy equal to zero indicates the transition from a
stable state to an unstable state, which is the critical condition for buckling (Pi et al., 1992). This

is expressed as
1
—o°[1=0 (4-5)
2
Substituting in for the strain energy and the potential energy of the loads from Equation 4-1gives

%(52U +0°Q)=0 (4-6)

12

4.1 STRAIN ENERGY

The strain energy part of the total potential energy equation can be expressed by considering an

arbitrary point P, in the cross section of the member. The strain energy, U, may be expressed as

U= %j j (€,0,+7,7,)dAdz (4-7)
LA

where
&, = longitudinal strain of point P,
o, = longitudinal stress of point P,
7, = shear strain of point P,
1, = shear stress of point P,

The second variation of Equation 4-7 is

%52U - % [[6e,60,+67,67, +5%,0,+5%,7,) dAd dz (4-8)
LA

Equation 4-8 needs to be defined in terms of the centroidal deformations in order to derive the

energy equation for flexural-torsional buckling.
4.1.1 Displacements

The total displacements of an arbitrary point P, on the beam’s cross section are u,, v,, and w,,.
The displacements of point P, need to be defined in terms of the centroidal deformations u, v,
and w. The deformation of an element is shown in Figure 4.5. The coordinates oxyz represent a
fixed global coordinate system where point o is located at the beginning of the undeformed

element. The ox and oy axes coincide with the principle axes of the undeformed element. The

13

oz axis is oriented along the length of the element and passes through the element’s centroid.
The point P, is defined as an arbitrary point in an undeformed plane frame element. The

coordinate oxyz represents a moving, right-handed, local coordinate system which is fixed at a
point 0 on the centroidal axis of the beam and moves with the beam as it deforms. The axis 0z
corresponds to the tangent at 0 to the deformed centroidal axis. The ox and o0y axes are the
principle axes of the deformed element. The coordinates of point P, are ()%,)7,0) with respect to

the local coordinate system.

\ 4l

Figure 4.5 Deformed Element

When the element buckles, point P, moves to the point P. This deformation occurs in
two stages: (1) the point P, translates to point P, and (2) the point P; rotates through the angle 0
to point P. The point P, translates to point P, by the displacements u, v, and w. This translation

takes the local coordinate system oxpz to a new location as shown in Figure 4.5. The point P;

14

then rotates through an angle 8 to the point P about the line on where on is a line passing through

the points 0 and 6. The rotation takes the local coordinate system oxpz to its final location.

The direction cosines of the axes 0x, 0y, and o6z relative to the fixed global coordinate oxyz can

be determined by considering a rigid body rotation.

The equation expressing the relationship between the displacements of an arbitrary point

P, on the cross-section and the displacements at the centroid of the cross-section is

u, u X X
v, p=1ve+[] 5 (=1 (4-9)
w w —a)kz 0

where

u, = out-of-plane lateral displacement of point P,
v, = in-plane bending displacement of point P,
w, = longitudinal displacement of point P,

u = out-of-plane lateral displacement at the centroid
v = in-plane bending displacement at the centroid
w = longitudinal displacement at the centroid

X = x-coordinate of the point P,

y = y-coordinate of the point P,

k, = torsional curvature of the deformed element
w = warping function (Vlasov, 1961)

[T,] = rotation transformation matrix

The warping displacement —w k_ 1s defined as the deformation in the z-direction. The first term

on the right side of Equation 4-9 represents the translation of point P, to P,. The second and

15

third terms on the right side of Equation 4-9 represent the rotation of point P; to point P due to
the rotation 6. Ty is the rotation transformation matrix giving the direction cosines of the rotated
axes ox, oy, and oz relative to the fixed axes ox, oy, and oz by considering a rigid body rotation
of the axes through an angle 0 about the axis on. The transformation matrix 7% can be expressed

for small angles of rotation as

__yz_ 622 _ + exey 0 9)(92
29 02 :) 22 ’ 020
x 0 9 z
T,=| 6.+ 2y 1- 2x — 22 -0+ y2 (4-10)
0.0 2 >
_9 exez Hx y-z 1_0_\”_ y
’ 2 2 2 2

where 6., 0,, and 6. are the components of the rotation 6 in the x, y, and z axes, respectively. The
derivation of the rotation transformation matrix is given in Appendix A.
The angles 6,, 0,, and 0. may be defined by considering an element Az along the z-axis.

The undeformed element Az in the oz-direction is attached to the oxyz moving right-handed

coordinate system. After deformation, the oz -axis coincides with the tangent at 0 to the

deformed centroidal axis of the beam. The ox and o0y axes are the principal axes of the
deformed element. The undeformed element length is Az, and the deformed element length is
Az (1+¢), where ¢ is the strain. The deformed element Az (1+ &) has components Au, Av, and
(Az +Aw) on the ox, oy, and oz axes, respectively, as shown in Figure 4.6.

If]VZ is a unit vector in the oz direction and /., m., and n. are the directional cosines of

the o0z axis with respect to the oxyz coordinate system, then the deformed element may be

expressed as

Az (I+&) N.=Aui+Avj+Awk (4-11)

16

(e}

A z(1+€)

Av N

N

vy

Figure 4.6 Undeformed Element Az and Deformed Element Az (1+¢)

The projections of vector Az (1+&) N, on the x and y axes are

Au=Az(1+&) N.-i =Az (1+¢) L (4-12)

Av=Az (1+&) N.-j=Az (1+¢&) m, (4-13)
If Equations 4-12 and 4-13 are divided by Az, and the limit is taken as Az approaches zero, the

equations become

Az (1+¢)l
A _ i B 1im#=(1+g) L (4-14)
dz Az—0 Az Az—0 Az

Az (1+¢)m
ﬂ=lm£=hm () Z=(1+g)mz (4-15)
dz Az>0 Az Az—>0 Az

From Appendix A
lz = ey +% and mz — _ex + Yy z
2

17

Therefore, the out-of-plane rotations du and v can be defined as

dz dz
du 0.6
— 9+ X"z 1_|_ 4'16
dz (y 2 j(g) ()
dv 0.0
—=-0 +——| 1+ 4-17
- (. ZJ() (4-17)

By disregarding higher order terms, Equations 4-16 and 4-17 simplify to

%z9y+% (4-18)
0.0
?z—9x+% (4-19)
Z

Solving equations 4-18 and 4-19 for 6, and 6, gives

_dv ledu

0 =—+—-0 — (4-20)
dz 2 " dz

0 =@+lgzﬂ (4-21)

Y odz 2 T dz

The projections of unit lengths along the ox axis onto the oy axis and 0y axis onto the ox axis
are myand [, respectively. /, and m, are used to define the mean twist rotation, ¢, of the ox and

0y axes about the oz axis as shown in Figure 4.7. From Appendix A,

6.6, 6.6,
[, =-0.+— and m, =0 +——
! 2 2

Therefore,

18

1 unit

1 unit X

Figure 4.7 Twist Rotation

Thus, the twist rotation is equal to 6.,
0. =¢

Substituting equations 4-20 to 4-22 into 4-10 gives

/ L, L
Ip=\m, m, m,
n, n, n,
where
1(du 1 du dv
[=1-—|—| ——¢* ————
* Z(dzj 4 2dzdz¢
ldudv 1 dv
b Yt z(dZW‘z(zj“’
e
dz

19

v

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)

m =2 (4-29)
n, = _%+%¢+i%¢z (4-31)
R

The torsional curvature of the deformed cross-section axes can be obtained from (Love,

1944)

k. = dzx ly + dzx m, + dzx n, (4-33)

Substituting Equations 4-24 to 4-32 into Equation 4-33 gives

2 2
k.= ﬁ.,.l d_z‘@_d_‘;ﬂ (4-34)
dz 2\dz" dz dz° dz

Since the second and third terms in Equation 4-34 are small compared to the first term, Equation

4-34 may be approximated by

_4d9 i
ko= (4-35)

Substituting Equations 4-24 to 4-32 into Equation 4-9, the displacement of an arbitrary

point P, in the cross-section may be expressed in terms of the centroidal deformations as

20

v, |= V+Xp
~du . dv d¢
W—X——)J——
w, L dz dz dz |

+__

2 Edz 2 dz*

i 1 .(d*u 2, du dv 1
JR— __I_ PR — —_—
2){0122 i ¢J 2 [

JalE

ldv¢j 1 d¢(du i]

lAduﬂ 1 d* 1 d’u
2 dz*

1 du du
[dz¢‘zd—¢] (ﬂ

du dv

1 d*u ld2v¢ _du d¢
2 dz* 2 dz* dz dz
du dv dv d¢

¢ dz dz ¢] dz dz

2 dz\ dz* dZ?

(4-36)

The first bracket on the right side of Equation 4-36 contains the linear terms of the

displacements, and the second bracket on the right side of Equation 4-36 contains the nonlinear

terms of the displacements. The derivatives of u,, v,, and w, with respect to z are

-7

% du d¢ (du dv j
dz dz dz

d
d] dv+fcﬁ+0 @,ﬂ,qﬁ
dz dz dz \dz dz
dw, dw ,du . dv d’¢
ST TV T
dz dz dz dz dz
_dv dgdu . du

X+ P+ PP
dz* ydz dz Y dz*

Ldgdv

dz dz

+O(ﬂ dv
dz dz

21

(4-37)

(4-38)

¢j (4-39)

The terms O, and O, indicate functions of second order and higher in magnitude, and the term O.
indicates functions of third order and higher in magnitude. The higher order terms Oy, O,, and

0. are disregarded.
4.1.2 Strains

The strains of point P, must now be defined in terms of the centroidal deformations. The

longitudinal finite normal strain may be expressed as (Boresi, 1993)
d du,)\" (dv,Y (aw,Y
LT i O i I i’ (4-40)
Poodz 2|\ dz dz dz
: D cre, dw, Y . du Y
Equation 4-40 may be simplified if it is assumed that 21 is small compared to d—” and

dz z
dv Y
—2 | ; therefore,
dz

2 2
o~ dw, +l du, N dv, (4-41)
r dz 2|\ dz dz

Substituting in the derivatives of the displacements of point P, from Equations 4-37 to 4-39 of

Section 4.1.1 into Equation 4-41 gives

dw . du .d>v d*¢ 1((du) (avY
E,=———X———V—-—0—+—||—| +|
dz dz dz dz= 2\\dz dz

v du 1, Edczﬁjz
—Xx—0@+ +—\x" + — 4-42
xd22 bty dz* ¢ 2(x Y) dz ()

The first variation of the longitudinal strain of Equation 4-42 is

22

déw .d*6u .d*Sv d’6¢ doéudu dévdv d*Sv
og, = X5 =y —0——+ —t————X—¢
dz dz dz dz dz dz dz dz dz

d*v d*Su d’u
—X—0¢+ +
dz* p+y dz* ¢ ya’z2

)@“]—"j (4-43)

o0+ +9°
¢ (Y dz dz

The second variation of the longitudinal strain of Equation 4-42 is

o (douY (dsvY . d’6v d’s ds¢
5gp_[dzj+(dzj 2455704 +25 (22 +)(dzj (4-44)

The second variations of the displacements in the above equation are assumed to vanish.

It is assumed that during buckling the beam buckles in an inextensional mode. This
means that the centroidal strain and the curvature in the principal yz plane remain zero (Trahair,
1993). In the case of inextensional buckling, the prebuckling displacements are defined as v and
w. At buckling, the displacements are defined as ou and dp. Therefore, the displacements u, ¢,
ov, and ow are equal to zero for this problem (Pi et al., 1992). Equations 4-42 to 4-44 may be
simplified by eliminating the terms with the displacements u, ¢, ov, and ow and their derivatives.

Thus, Equations 4-42 to 4-44 become

(4-45)

2
o€, =—X -® -X—0 4-46
i dz* dz* dz* ¢ ()

5%, = (@] Lo s+)(d&’j] (4-47)

dz dz

The shear strains due to bending and warping of the thin-walled section may be
disregarded (Pi et al., 1992). The shear strain at point P, of the cross-section due to uniform

torsion can be defined as (Trahair, 1993)

23

d
Vp = _2tp d_f (4-48)

The term ¢, is the perpendicular distance of P from the mid-thickness line of the cross-section.

The first variation of the shear strain is

57, = —%% (4-49)

The second variation of the shear strain is

5%y, =0 (4-50)

4.1.3 Stresses and Stress Resultants

The stresses at a point P, on the cross section are directly proportional to the strains by Hooke’s

Law as

{j} i E C(?)Hj} (4-51)

The stress resultants are

M, = j o,y dA (4-52)
A

F=|o,d4 (4-53)
A

4.1.4 Section Properties

For a member of length L with a doubly symmetric cross-section, the ¥ and J principle
centroidal axes are defined by

jfc dA =j9 dAd=0 (4-54)
A

A

24

jff dA=0 (4-55)
A

The section properties are defined as

A= j dA (4-56)
A

I = j 7% dA (4-57)
A

I, = j 2 dA (4-58)
A

I, = j @ dA (4-59)
A

J= j 41, dA (4-60)

A
The shear center of a double symmetric cross-section coincides with the centroid, which satisfies

the conditions (Pi et al., 1992):

jfca) dAd=0 (4-61)
A
j JwdAd=0 (4-62)
A
jm dA=0 (4-63)
A

4.1.5 Strain Energy Equation

The second variation of the strain energy equation is developed by substituting

2 2 . .
gp,é'ep,& 8p,7p,57/p,and o 7, along with the stresses and stress resultants from Section 4.1.3

and the section properties from Section 4.1.4 into Equation 4-8. The second variation of the

strain energy for the flexural-torsional buckling problem is

25

1

dz*

P 2
—52U=lj B | P9 gy
2 29 "\ dz

dz

d*(5¢)

2
yA

jz o

+2MX(M};¢+F(MJ }dz

where the stress resultants are linearized to

2
M. =g Y
’ dz
Fepg®
dz

4.2 POTENTIAL ENERGY OF THE LOADS

d(69)

dz

T

(4-64)

(4-65)

(4-66)

The potential energy of the loads part of the total potential energy equation is expressed by the

following equation where the loads are multiplied by the corresponding displacements.

dv
Q=- ! v,q)dz = (v, —d—:M +w,F)

where

v, = vertical displacement through which the load ¢ acts

q = the distributed load in the y direction

vp = vertical displacement through which the load P acts

P = the concentrated load in the y direction

vy = vertical displacement through which the moment M acts

dv)
—M = rotation due to the moment M

dz

26

(4-67)

M = the applied moment about the x axis
wr = longitudinal displacement through which the load F acts
F = the concentrated load in the z direction

The second variation of the potential energy of the loads is

ds’v,,

%529 =— j (6%v,9) dz =) (8*v,P— M +6°w,F)
L

4.2.1 Displacements

(4-68)

The longitudinal displacement is assumed to be small and is considered negligible, therefore,

w, =0. The displacement due to the concentrated load P at a height of e from the neutral axis

may be found by Equation 4-36 (x=0,y=-e, ® =0) as
vp=vtme—e

where

— g

1dvj2 1 1 du dv
2 2 dz dz

as given in Section 4.1.1. Therefore,

1(av) 1 1 du dv
=v4|l——| — | ——p+——— -
=y [Z(dzj 2¢ 246 ¢

Simplifying Equation 4-71, the displacement due to the concentrated load is

1 v , dudv
=y —-—— B + _
K 2e {[dzj ¢ dz dz ¢]

Similarly, the displacement due to the distributed load is

27

(4-69)

(4-70)

(4-71)

(4-72)

1 av\’ , dudv
—ve—a|| Y] gL 4-73
K 2‘{(012] / a’za’z4 (4-73)

Also, the rotation about an axis parallel to the ox axis at a point with a concentrated moment M,
is
dv,, dv

== 4-74
dz dz ()

In this section, the effects of prebuckling deformations are neglected; therefore, the
deformation v and its derivative are disregarded. The displacements corresponding to the

external loads become

1

y=tag (4-75)
Lpe:

Vv, =——ed (4-76)
2

dv,,

—=0 4-77

a (4-77)

The second variations of Equations 4-75 to 4-77 are

5%, = —%a(5¢)2 (4-78)
5%, = —%e(5¢)2 (4-79)
dé’v,, 3

e (4-80)

4.2.2 Potential Energy of Loads Equation

Substituting in the displacements of Equations 4-78 to 4-80 into Equation 4-68 gives the second

variation of the potential energy of the loads as

28

—50 = % [qa(opy dz+ %ZPe(§¢)2 (4-81)

4.3 ENERGY EQUATION

The second variation of the total potential energy equation for the flexural-torsional buckling of a
beam-column is the sum of the second variation of the strain energy from Section 4.1.5 and the
second variation of the potential energy of the loads from Section 4.2.2. Therefore, the second

variation of the total potential energy equation is given by

LA o (£09) 5[48] {00 o £
2 24 d dz

Iz dz dz

(dfu)j }d +— j qa(6¢)*dz +— ZPe(5¢) = (4-82)
zZ

where

2

M. =M, +Vlz—q% for 0<z<z,

2

M, :M1+Vlz—q%—P(z—zP) for z, <z<L

zp = the distance along the beam to the point of the applied concentrated load

29

4.4 NON-DIMENSIONAL ENERGY EQUATION

The energy equation derived and given in Section 4.3 has limitations in predicting the flexural-
torsional buckling parameter because it depends on the beam properties such as the elastic
modulus, torsional modulus, length, etc. A non-dimensional analysis will provide the general

results for the buckling parameter. The beam parameter that represents the beam’s stiffness is

2 2 2
22El, |7PElh
K=V "\ s (59

The loading parameters which are considered to vary with the beam parameter are

= P
P=—1— (4-84)
,/EIyGJ
_ ql’
. (4-85)
1 ,/EIyGJ
— FI’
F = (4-86)
EI,
The other parameters are
— ML
M, =——=_ (4-87)
,/EI})GJ
— V.I?
V = 1 (4-88
" JELGJ)
z
z== 4-89
7 (4-89)

30

5= (4-90)

ow = |EL (4-91)
L\NGJ

a :27“ (4-92)

¢= % (4-93)

where

h = the total depth of the member
The non-dimensional parameters are applied to the parameters of the total potential energy
equation shown in Section 4.3. The total potential energy equation is changed to the non-
dimensional form by the multiplication factor

=21 (4-94)
GJ

Therefore, the second variation of the total potential energy may be written as

1 2 2 2 20 120\
T +(d5¢j AR I2Md5u5¢d2
2 VU az iz) 7\ dz z’
K| dsu\
+— 5 dz+) P 5 + F dz=0 4-95
imorasmor)orl(Gle-e e
where
—2
M. =M +vz-1 0<z<z,
} 2
— — —_ gz =
M. = 1Jerz—z—P(z—zP), zZp<z<l

31

5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
DEFORMATIONS

In Chapter 4, the effects of in-plane deformations were disregarded. In this Chapter, the effects
of in-plane deformations on the flexural-torsional buckling of a beam-column element are
considered. ~Assuming that the members of the structure are perfectly straight and the
displacements are small helps to simplify the problem by neglecting the small in-plane
displacements. The assumption that buckling is independent of the prebuckling deflections is
valid only when there are small ratios of the minor axis flexural stiffness and torsional stiffness
to the major axis flexural stiffness (Pi and Trahair, 1992a). In the case where the ratios are not

small, neglecting the prebuckling effects may lead to inaccurate results.

5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS

5.1.1 Displacements Considering In-Plane Deformations

In Section 4.1.1, the torsional curvature described by Equation 4-34 was simplified to Equation
4-35 to derive the displacements. To consider the effects of prebuckling displacements, the
torsional curvature must not be simplified, and Equation 4-34 must be substituted into Equation
4-9 when deriving the longitudinal displacement, wp. This provides a longitudinal displacement

given by Equation 5-1.

32

du .dv dg]| | 1 du du , ldv ,
= W—X—=y——-0— |+ - +——
W {W g 4 :| i (dz¢ 4dz¢j [dz¢ 4dz¢j

YAy dvan) 1fdg 1fdudv dvae
2\ dz* dz dZ* dz 2 dz 2 dz* dz dz* dz

(&)@

The first derivative of the longitudinal displacement becomes

- - dz* dz dz3 Z

de_d_w_)edzu L d*v wd¢ [d3udv dv du
dz dz dz’ yd22)

Doypll gttt gl

d¢dv dv 1 ,d¢du 1 ,du
dZ dz dz* 2" dz dz 4 df

d¢ du d’u d¢ dv ,d*vy (du dv]
+ —t¢— —¢"— |+ 0,| —,— 5-2
{d dz ¢d2 2¢d dz 4¢ dz’ dz dz ¢ (>-2)

where O; indicates functions of fourth order and higher in magnitude which are disregarded.
5.1.2 Strains Considering In-Plane Deformations
The longitudinal strain used in Section 4.1.2 given by Equation 4-41 is
L, +l[(dup]2 +[dvp JJ
Podz 2\ dz dz

du,
Substituting in Equation 4-37 for ——

dz

longitudinal strain of Equation 4-41 gives

33

dw du . dv ¢ o|dudv dvdul| 1|(du) (av)
Ep=——X—5 V5 —O— +=l|—| +| —
dz dz dz dz 2 dz* dz dz* dz 21\ dz dz
,d*y
dz*

1 oY doY
+5(x +9 {d—fj (5-3)

The first variation of the longitudinal strain is given by Equation 5-4.

d¢ du 12d2u}+{d2u 1 dpdv 1

—_—— —_— +_
{ ¢ 2¢dzdz 4" dz* yd22¢ 2 dz dz

dsw . d*6u . d6v d5¢ {@ dsu @d&v}_{d_zv

o€y = - - +
r dz * dz* Y dz* dz* dz dz dz dz

1 1
SN ik Sty Sl i Ay Yt Sl Ay ¥ 3 —— 4
2 ¢dz dz 2¢ dz dz 2¢dz dz 2¢ ¢dzz 4¢ dz*

dpdu 1 ,dS¢ du dpdsu 1 . du 1 dzcsu}

dsgdv 1 dgdsv

| d*u d’6u , 1 _, d¢dv
+ 0P+ +—0p——
y[dz2 ¢ dz* ¢ 2 dz dz 2¢ dz dz 2 dz dz

+%¢5¢z ¢ d§v} (22+J72)ﬁd5¢

dz dz

3 3 3 3
_Q{ddudv d’udsv d’vdsu d’Svdu (5.4)

+ — — PR
21 dz° dz d° dz d7° dz dz’ dz

The second variation of the longitudinal strain is given by Equation 5-5.

34

52 :[dauTJr(davj s 25¢d Sv 5¢d5¢@_5 @dau_¢da¢d§u
b dz Iz dz dz dz dz dz dz

) aV2 d*Su d§¢@ ﬁdé‘v
(§¢) } {25¢ oo dz dz +of dz dz

dspdsv 1,. vd>v d*6v] [o\ [(dosY
e dz¢ dzv 2(5¢) 900 dzzv]i_(x iR)(d_fj

3 3
Y [d Su dsv d*5v déu} 5-5)

iz dz d7 do

In the case of inextensional buckling as discussed in Section 4.1.2, the prebuckling
displacements are defined as v and w. At buckling, the displacements are defined as du and J¢.
Therefore, the displacements u, ¢, dv, and ow are equal to zero for this problem (Pi et al., 1992).
Equations 5-3 to 5-5 may be simplified by eliminating the terms with the displacements u, ¢, dv,

and ow and their derivatives. Thus, Equations 5-3 to 5-5 become

LA S A i 5-6
"dz 4 dz> 2\ dz (5-6)
Se. — & d25u+d_2v5¢ w d25¢+l d35uﬂ_d3vd5u (5-7)
g dz> dz’ dz> 2\ dZ’ dz dZ dz
dou 5 2v dog dv
Se, =) —
(d) ((¢) ¢d2dz]
2
+(#+5?) [d5¢) (5-8)
dz
The shear strain considering in-plane effects will change from Equation 4-48 to
d¢ d’u dv d *v du
= -2t — 5-9
Ty (dz 2 (dz> dz d2* dz j} (5-9)

35

where ¢, is the perpendicular distance from the mid-thickness line of the cross-section. The first

and second variations of the shear strain are

2
P (dégﬁ Z[d Su dv dvd&uD 5-10)

dz dz* dz dz* dz

5’y =0 (5-11)

P
5.1.3 Strain Energy Equation Considering In-Plane Deformations

Substituting Equations 5-6 to 5-11 along with the stresses and stress resultants of Section 4.1.3
and the section properties of Section 4.1.4 into Equation 4-8, the second variation of the strain

energy equation becomes

[Py [[0, 5] 100,100t
24 d 2

dz* Iz dz dz° dz> dz

G J(d(&/ﬁ) 2[@ d(5u) d’ d(§u)D2 . Mx(dGu) g

dz dz dz? dz* dz dz*
1d d(w)\ _
t o (5¢)J [- j]dz (5-12)

where the stress resultants are linearized to

2
M. ——g1 4 ?
dz
Fopa®
dz

36

5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE
DEFORMATIONS

5.2.1 Displacements Considering In-Plane Deformations

The second variations of the displacements through which the external loads act must be derived

considering the in-plane deformations. Taking the second variation of Equations 4-72 and 4-73

gives
5%, =—a ((5¢)2 - dj " ?MJ (5-13)
5, =—e ((5¢)2 - djz’" %Mj (5-14)

5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations

Substituting Equations 5-13 and 5-14 into the second variation of the potential energy of the
external loads from Equation 4-68 gives the final for of the second variation of the potential

energy of the external loads as

Lol 2 _dvdou oL » _dvdou]
559—2£qa ((5¢) s 5¢j d +22Pe ((5@ s 5¢j (5-15)

37

53 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS

The second variation of the total potential energy equation including the prebuckling effects is
the sum of the second variation of the strain energy of Section 5.1.3 and the second variation of
the potential energy of the loads of Section 5.2.2. Therefore, the second variation of the total

potential energy equation is

| | d2(Su) dv .Y
— 0l =—| | EI +—0
2 2!{ y(dz> dZ’ /

(d 9) , L (dv d*(5u) ' ar(éu)D2

Iz Iz dz* dz dZ’° dz> dz

GJ(d(&/ﬁ) +1[@d2(5;u)_ dzf d(§u)D2 +Mx(ERCOYY
dz 2Vdz dz dz= dz dz*

dz

—75(5¢)2J+ F[Mj] dz + % [ga ((5¢) - ﬂ@cwj

dv dou] (5-16)

+%Zpe ((5¢) ———5¢

The second order in-plane displacements will lead to a quadratic eigenvalue equation
which is very difficult to calculate. Therefore, the second order in-plane displacements are
neglected in order to linearize Equation 5-16. The general energy equation considering

prebuckling effects is

Lo 1 d*(5u) Y d*(Su) d*v 2(54))
X H—ZHEJ},[. j+2EI 0+ EI[=]

dz dz*

L d (5¢)(dv d*(5u) d’v ar(au)j+ GJ(d(aqﬁ)j
dz* dz dz° dz> dz dz

38

d(5¢)(dvd (Su) d*v d(&u)j”M [d2(§u)]§¢

dz \dz dz* dz* dz dz*
+F(d;5u)j }d F— Iqa (5¢) dz +— ZPe(§¢) =0 (5-17)
zZ

Comparing Eqs. 4-82 and 5-17, there are three extra terms that contribute to the energy equation

including the in-plane deformations. These terms are

lj {M] d*(6u) d*v LApy d2(5¢)(@d3(5u)_d3v d(5u)J

dz* dz* dz dz’ dz* dz

2
7 469) dv d*(Su) drd(5u) 5 (5-18)
dz \dz dz* dz® dz

The in-plane curvature can be expressed as

2
%:—Zx (5-19)

X

Integrating Equation 5-19 gives

x 5-20
B (5-20)

The solution of the integral in Equation 5-20 will contain a constant of integration. The constant

of integration can be solved for by considering the boundary condition at z = 0; therefore, the

dv(0)

constant of integration is C = p
y4

The derivative of Equation 5-19 is

’ am vV,
d’v __ 1 c__ (5-21)
dz* ElI, dz El,

Substituting Equations 5-19 to 5-21 into the prebuckling terms of Equation 5-18 gives

39

1 1 d’*(Su)
—||-2=M op+EI

z dz* dz*

I— M, |d*(59) d*(ou)
EI

x x

Loy 69 dG0) J([, dz] a(69) d*(ow)
1 dz dz EI. dz dz

X

El. dz dz

X

oy M, do9) d(&’)} dz (5-22)

40

6.0 FINITE ELEMENT METHOD

This chapter focuses on deriving the finite elements equations used to solve for the flexural-
torsional buckling load of a structure. The finite element method is a powerful numerical
method, and it is useful for solving problems in many fields including engineering. Since the
analytical solutions of many engineering problems are difficult to obtain, the finite element
method provides a much easier method of solution with acceptable results. In the case of linear
systems, the finite element method requires the solution of a system of simultaneous equations
rather than complicated differential equations.

The general steps for formulating the finite element solution begin with discretizing the
structure into smaller elements. Discretization is the process of modeling a body by dividing it
into an equivalent body made up of smaller elements. For one-dimensional elements, each
element will be connected to other elements at nodes where they share common points. After the
body is divided into its elements, the element type to be used for each element must be selected.
The element type is going to depend on the physical makeup of the structure, and it should be
selected to closely model the actual behavior of the body.

Next, a displacement function is selected for each element. The most common
displacement function is a polynomial function expressed in terms of the nodal unknowns. The
total number of polynomial functions needed to describe the displacement of an element depends
on the number of dimensions of the element. A one-dimensional element will have one

displacement function, while two- and three-dimensional elements will have two and three

41

displacement functions, respectively. The strain-displacement relationship and stress-strain
relationship are then defined for each element. These relationships are necessary to derive the
equations describing each finite element’s behavior.

The element stiffness matrix may be derived using one of several methods including
energy methods as used in this Chapter. The principle of minimum total potential energy is the
energy method used in Chapters 4 and 5 to derive the energy equation for flexural-torsional
buckling of a beam-column element. The principle of minimum total potential energy is one
method that may be used to derive the stiffness matrix of an element. Unlike other energy
methods such as the principle of virtual work, the principle of minimum total potential energy is
applicable only for elastic materials. In the case of flexural-torsional buckling, an element
stiffness matrix and an element geometric stiffness matrix will be derived from the energy
equation.

After the element stiffness matrices are derived, the element matrices are converted from
the local to global coordinate system for the entire structure. The global stiffness matrices for
each element are assembled to obtain the global stiffness matrix of the structure. The global
stiffness matrix will be singular when there are no boundary conditions applied to the structure.
In order to remove the singularity, the boundary conditions are applied to the matrix so that the
structure does not move as a rigid body. This process involves partitioning the global matrix into
the free and restrained degrees of freedom. The section of the global stiffness matrix
corresponding to the free degrees of freedom of the structure is used for solving the problem.
For the flexural-torsional buckling problem, the partitioned global stiffness and geometric

stiffness matrices are used to solve for the buckling loads.

42

For this project, the structures under analysis are all plane frames. The goal is to apply
the finite element method to a plane frame in order to calculate the flexural-torsional buckling
load of the structure. The frame element has six nodal degrees of freedom; therefore, there are a
total of twelve degrees of freedom for each element. Figure 6.1 shows the element degrees of
freedom.

Figure 6.1 (a) shows the top view of the element with the general displacement u(z) at a
distance z along the element, which is the lateral bending displacement in the x direction. It also
shows the four out-of-plane nodal displacements u;, u,, u3, and uy. u; and u; are the out-of-plane
lateral nodal displacements at nodes 1 and 2, respectively, and u, and u, are the out-of-plane
nodal rotations at nodes 1 and 2, respectively.

Figure 6.1 (b) shows the front view of the element with the general displacement v(z) at a
distance z along the element, which is the in-plane bending displacement in the y direction. It
also shows the four in-plane nodal displacements v;, v,, v3, and v4. v; and v; are the in-plane
nodal displacements at nodes 1 and 2, respectively, and v, and v, are the in-plane nodal rotations
at nodes 1 and 2, respectively.

Figure 6.1 (c) shows the front view of the element with the general displacement ¢(z) at a
distance z along the element, which is the torsional rotation of the element. It also shows the

four nodal displacements ¢, ¢,, ¢,, and ¢,. ¢ and ¢, are the torsional rotations at nodes 1 and

2, respectively, and ¢, and ¢, are the torsional curvatures at nodes 1 and 2, respectively.

The coordinate system is chosen so that the x-axis is the major principle axis and y-axis is
the minor principle axis of the cross-section prior to buckling. The z axis is the centroidal axis of

the element.

43

lU1 (VE
Uz \ 4 Uy

l V1 V3
Va v \Z!

y
(b.)
(O] , P P3
; f
¢ @(2) @4
v
y

(c)

Figure 6.1 Element Degrees of Freedom

44

The displacement function for each generalized displacement, u(z), v(z),and¢(z), is
assumed to be cubic. The displacement function for u(z) expressed in terms of its shape

functions is

u(z) = [N}u} (6-1)
where
[v]= {%(223 ~322L+ 1) %(ﬂ —2221 +20) %(— 223 +32°L) %(ﬂ _2r)}
(6-2)
and
Wi={u, u, uy ou,f (6-3)

The matrix [N] is the shape function matrix for the element. Each term of the shape
function matrix expresses the shape of the assumed displacement function over the domain of the
element when the element degree of freedom corresponding to the shape function has unit value
and all other degrees of freedom are zero.

The first variation of Equation 6-3 is

su(z) = [N){u} (6-4)
Applying the same derivation to the deformations v and ¢ gives

sv(z) = [N]sv} (6-5)
and

5(2) = [N}op} (6-6)

The element stiffness matrix is derived using the energy methods discussed in Chapters 4

and 5. The total potential energy equation for the complete structure is in the form of

45

%5211 = %(52U +5°Q)=0 (6-7)

To apply the finite element method to the structure, the complete structure is separated into a

finite number of elements and the energy equation is written in the form of

1

52(52% +26°Q,) =0 (6-8)

1 : i . : 1 .
where 55 *U, is the second variation of the strain energy stored in each element and 5/15 Q, is

- 1
the second variation of the work done on each element. The term 55 ’Q), represents the second

variation of the work that is done on an initial load set, and 4 is the buckling load factor by which
the initial load set must be multiplied to obtain the buckling load set (Trahair, 1993). For each
individual element, the strain energy stored and the work done may be expressed in terms of the
element values of the buckling nodal deformations and the element stiffness matrices for the

finite element approximation as

Slod YTk Jod)+ Aloa Y e Jod) (69)
Sloa ¥ (k) 2le Diod.) (6-10)
where

46

ld }= = the local nodal displacement vector of an element

),

A = the buckling parameter

[k.] = the element local stiffness matrix

[g.] = the element local geometric stiffness matrix associated with the initial load set
The element local stiffness matrix and geometric stiffness matrix are both 8 by 8 because there
are eight local displacements for each element that correspond to the displacements at buckling.
The arrangement of the matrix elements for the stiffness matrix is shown by Equation 6-11. The
arrangement of the matrix elements for the geometric stiffness matrix is shown by Equation 6-

12. Both matrices are symmetric about the main diagonal.

wlky o ko ko ko ks ke ko kg

u, ky kyy kyy ki ky ky o kg

¢ kyy ks ks ki Ky kg

9 ky ki ki kg kg

Us kss ks ksy ks (6-11)
u, ks ke ke

¢, kg kg

Al ks |

woou, @ b ouy ou PP,

47

U _gll o 8 8u 8is e & ng_

u, E»n 83 8u 8 8 Ly 8

¢ 8y 8 8 8 831 83

9 s 845 8a6 841 8us

Us Ess 856 8s1 Ess (6-12)
u, 86 861 8o

¢, &1 81

b, B 83 |

U u, ¢ ¢ u; u, @ 9

In order to develop the stiffness matrices for the finite element approximation, the second
variation of the total potential energy equation for the flexural-torsional buckling of a beam-

column is used. The energy equation given in Section 4.3 is

%52H=%I[Ely(dz(é;u)} +E1w[d2(5¢)j +GJ(d(5¢)j +2Mx[d2(5u)]5¢

dz dz* dz dz*

+F(d(jzu)j } dz+%£qa(§¢)2 dz+%ZPe(§¢)2 =0 (6-13)

Equation 6-13 is written with the loads in terms of the bucking load set. If this equation is

rewritten with the loads in terms of the initial load set, the energy equation becomes

Lem=1] {Ezy(dz({u)] +E,ﬁ(@} +Gj(d(5¢)j +2ﬂMx(d2(52”)J5¢
2 2L dz dz dz dz

d(Su)Y 1 1 2
+/1F[(d_2“)j] dz+5/1£qa(5¢) dz+= 23 Pe(89)" = 0 (6-14)

48

The first three terms of the equation will contribute to the element stiffness matrix, [£.],

and the last four terms of the equation will contribute to the geometric stiffness matrix, [ge].

6.1 ELASTIC STIFFNESS MATRIX

The contribution to the element stiffhess matrix is

! ;{EL(@] oo 200 s [4159)] 19
291 T\ dz dz dz

Equation 6-15 can be expressed as
% [1se)' [Dloe)d= (6-16)

where

2 2 T
{55} = d (é;u)) _d (i¢) = generalized strain vector (6-17)
dz dz dz
EI, 0 0
[D] =| 0 GJ 0 |=generalized elasticity matrix (6-18)
0 0 EI,

Equations 6-4 and 6-6 may be substituted into the generalized strain vector to give

[N , zz] [0]
{ou}
oej=| [o] [N.Z] (6-19)
o] —[N,z] {{5475}}

Substituting the strain of Equation 6-19 into Equation 6-16 gives

] {{5”}}612 (6-20)

[N , zz] [O] ! [N , zz] [0]

Therefore, the stiffness matrix is

[N, zz] [O] ! [N, ZZ] [O]
k1= [o] [vz] [[p]] [o] [v.:] | (6-21)
Lol -y o] ~[v.z]

The stiffness matrix [ke] is derived from Equation 6-21, which provides an 8 by 8

stiffness matrix. The deformations in the deformation vector of Equation 6-20 provide the

arrangement of the stiffness matrix as

1
I

u | ky ko ks kg ks ke Ky kg

u, ky ky kyy ki ky ky o kg

Us kyy ks ks ki Ky kg

u, ky ki ki kg o kg

) kss kg ks ks (6-22)
9 ks ke ke

¢, ks kg

¢4 L k88 .

=

o u, u; u, h b @

However, the stiffness matrix arrangement of Equation 6-22 is not consistent with the
arrangement of the 8 by 8 stiffness matrix of Equation 6-11. Therefore, the terms in the matrix
derived by Equation 6-21 must be moved to the appropriate positions to fill the stiffness matrix
shown in Equation 6-11. The terms of the stiffness matrix are calculated and positioned in the

proper locations in Appendix B.

50

6.2 GEOMETRIC STIFFNESS MATRIX

The contribution to the element geometric stiffness matrix is

%z! {ZMX[d ;;“)Jaqﬁ + F(@j } dz + %,1 { qa(54)’dz + %zz Pe(5¢)

y4

(6-22)
This can be expressed as
%;t [{se) [DYoedz + %zz Pe(54)? (6-23)
L
where
2 T
{5 g} = d@u) d (é;u) 0¢ = generalized strain vector (6-24)
dz dz
F 0 0
[D] =0 0 M,_| =generalized initial stress matrix (6-25)
0 M, gqa

M, is defined in Equation 4-82. Equations 6-4 and 6-6 may be substituted into the generalized

strain vector of Equation 6-24 to give

[v.z] 0]
{ou}
{oef=|[N.zz] [0] (6-26)

Substituting Equation 6-26 into Equation 6-23 gives

51

J vzl o7 [IN.z] o]
14{{5 } v.2] [o]| [0]|[v.2] o] {{5 }}dz
o] [N] [o] [N]

2o o) Y el o)

6-27
(54} (€27

Therefore, the geometric stiffness matrix is

vzl PI7 - [Ivie]]
[2.]=[|[V.zz] [o]| [P]|[N.22] [o] |dz+_[[0] IN]T Pel[0] [N]]
‘L[] [N o] [~]

(6-28)

The stiffness matrix [e] is derived from the Equation 6-28, which provides an 8 by 8
stiffness matrix. Once again, the deformations in the deformation vector used to derive the
matrix are not ordered exactly how they are needed for the 8 by 8 geometric stiffness matrix of
Equation 6-12. Therefore, the terms in the matrix derived by Equation 6-28 must be moved to
the appropriate positions to fill the stiffness matrix shown in Equation 6-12. The terms of the

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B.

52

7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS

Simplifying Equation 5-22 for the additional terms in the second variation of the total potential

energy equation that account for prebuckling effects as derived in Chapter 5 gives

y LED LGy (5P d(0u)

dz* dz’ 7T dZ? dz’

59~

1 I d (5u)

7C

2 2
L,y d*(5¢) d(ou) GJ M 2 d(5¢) d (5u)+ crcd@p)d (5u)
I Y dz? dz EI dz dz’ dz dz’

X

GJ ,, d(59) d(&u)} . 1)

El. " dz dz

X

This may be written in terms of the initial load set as

2l e, c O ou) |)0 d09) d(5) (2)} dz+lﬂj‘{ SSVICACLIRY
2 2 I d

3
L

’ dz* dz dz dz

2 3 2 2
1, Mvzd (5¢) d (§u)+ 1, v d*(5¢) d(6u) GJ M d(5¢) d*(5u)
I, " d? d I, d? dz EI. ° dz d7

X X

LI M. d(59) d(§u)} . 7-2)
El dz dz

X

The first integral of the equation contributes to the elastic stiffness matrix and the second integral

of the equation contributes to the geometric stiffness matrix so that Equation 6-10 becomes

Sloa y (el + 2)+ [z od (-3)

53

The stiffness matrix [k.] and the geometric stiffness matrix [g.] are the same stiffness

matrices derived in Sections 6.1 and 6.2, respectively. The stiffness matrix [ke]P and the

geometric stiffness matrix [ge] are the stiffness matrices including the prebuckling effects and

P

are added to the buckling stiffness matrices as shown in Equation 7-3.

7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS

The contribution to the element prebuckling stiffness matrix [k,], is

2 3 2
! | Er,c 0D d ((zu)+GJCMd (f”) d (7-4)
2 s dz dz dz dz
This may be expressed as
%CI{55}T[D]{5g}dz (7-5)
where
2 3 2 T
(5e)= {d (52u) d (53u) d(5¢) d (5;5)} (7-6)
dz dz dz dz
and
0 0 GJ O
[D]—l 0 0 0 EI, (7-7)
216G/ 0 0 0

0 EI, 0 0

substituting in Equations 6-4 and 6-6 into the strain Equation 7-6 gives

54

[N , ZZ] 0

[V, zzz] 0 {6u}
oet= " o o -

0 [N, zz

Substituting Equation 7-8 into Equation 7-5 gives

[N,ZZ] o 7T [N,ZZ] 0
1 {5u}}T [N, zzz] 0 [N, zzz] 0 {{é‘u}}
— C D dz 7-9
2{{5¢} j o | P10 | “llow) "
0 [N,ZZ] 0 [N,ZZ
Therefore, the prebuckling stiffness matrix is
[N, zz] o 7 [NV, zz] 0
3 [N R zzz] 0 [N , zzz] 0
[ke]P_ ! 0 [N,Z] [] 0 [N,Z] dz (7-10)
0 [N,zz] 0 [N,zz]

The stiffness matrix [ke] is derived from Equation 7-10, which provides an 8 by 8

P
stiffness matrix. Once again, the deformations in the deformation vector used to derive the
matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-
11. Therefore, the terms in the matrix derived from Equation 7-10 must be moved to the
appropriate positions to fill the stiffness matrix shown in Equation 6-11. The terms of the

stiffness matrix are calculated and positioned in the proper locations in Appendix B.

7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE
DEFORMATIONS

The contribution to the prebuckling stiffness matrix [ge] is given by the additional terms in

P

Equation 7-11.

55

l/lj{—zl_ny d’*(Su) 5¢_§_MMXZ d*(6¢) d*(6u) 1, , d*(59) d(5u)

2 9 I dz* . dz* dz’ I, 7 dZ? dz
2
_GJ M 2 d(5¢) d (é;u)+ GJ M d(5¢) d(Su) 5 (-11)
El dz dz El dz dz

Equation 7-11 may be expressed as

%/1 [{se) [D)oe}dz (7-12)
L
where
d(Su) d*(Su) d*(Su) dSp) d*GSh)
{oe}= . — O¢ . (7-13)
dz dz dz dz dz
and
_ iy
0 0 0 GIM, o
2EI, 21,
IM
0 0 o oo (GMz,
I, 2EI,
0 0 0 0 —[wzj‘llxz
[D]= Iy .
0 S 0 0 0 0
I)C
GIM, GJIM,:z 0 0 0 0
2EI, 2EI
LV
o LMz 0 0
|21, 21, |
(7-14)

M, is defined in Equation 4-82. Substituting in Equations 6-4 and 6-6 into the strain Equation 7-

13 gives

56

[[N,z] 0
[N,ZZ] 0
[N, zzz] 0 {Su}
{5‘9}: 0 [N] {{5¢}} (7-15)
0 [NV, z]
0 [N,ZZ]_

Substituting Equation 7-15 into Equation 7-12 gives

"[vz] o T [[vz] o
[N,ZZ] 0 [N,ZZ] 0
1 {5u} ’ [N,ZZZ] 0 [N,ZZZ] 0 {§u}
i MR L e 4
0 [N,z] 0 [N,z]
. 0 [N,ZZ]_ . 0 [N,ZZ]_
Therefore, the geometric prebuckling matrix is
[[N, 2] o 1 T [V, 7] 0
[N ,ZZ] 0 [N,zz] 0
le.]. =] [N’OZZZ] [2] [D] [N’OZZZ] [](\),] dz (7-17)
0 [N,Z] 0 [N,z]
0 [N,zz]_ 0 [N,zz]_

The geometric stiffness matrix [g, |, is derived from Equation 7-17, which provides an 8

by 8 stiffness matrix. Once again, the deformations in the deformation vector used to derive the
matrix are not ordered exactly how they are needed for the 8 by 8 stiffness matrix of Equation 6-
12. Therefore, the terms in the matrix derived from Equation 7-17 must be moved to the
appropriate positions to fill the stiffness matrix shown in Equation 6-12. The terms of the

geometric stiffness matrix are calculated and positioned in the proper locations in Appendix B.

57

8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION

The local element nodal buckling deformations, {de}, need to be transformed to the global

element nodal buckling deformations, {D.}. The transformation matrix is

1 0 0 0 0 O 0 0
0 cosa —sinaa 0 0 O 0 0
0 sing cosa 0O O O 0 0
0 O 0 1 0 O 0 0
[7.]= (8-1)
0 O 0 0 1 0 0 0
0 O 0 0 0 cosa —-sina 0
0 O 0 0 0 sing cosa O
0o 0 0 0 0 O 0 1]
where
o = the angle of rotation for a plane frame element
These transformations take the form of
ld.}=[r.p.} (8-2)
where
U,
U,
CI)l
D, .
{De} =y = the global nodal displacement vector of an element
3
U,
CD}
o,

58

Substituting Equation 8-2 into Equation 6-10 and simplifying gives
SeD Y (el+ 2le Do) (53)

or
Slen (kJ+ Ao e} (54)

where the element local stiffness matrices may be transformed to the element global matrices by
[K,]=[T.]'[£.][T,] = the element global stiffness matrix (8-5)

[G.]=[.][.]]T.] = the element global geometric stiffness matrix associated with

the initial load set (8-6)
For prebuckling, the equation in global coordinates becomes

lon ¥ ([x]+ [k 1)+ 261+ [6.,)on.) (8-7)

where the element local prebuckling stiffness matrices may be transformed to the element global

prebuckling stiffness matrices by
K] > = [7.][«,] A [T] = the element global prebuckling stiffness matrix ~ (8-8)
[G.] = 7] [e.] A [7.] = the element global prebuckling geometric stiffness matrix

associated with the initial load set (8-9)
The element matrices represent the buckling behavior of an individual element. All of

the individual element matrices must be summed to get the structure global stiffness matrix.

[K]= Z [K.] = the structure global stiffness matrix
[G]= Z[Ge] = the structure global geometric stiffness matrix

K], = Z K,]P = the structure global prebuckling stiffness matrix

59

[G], = Z G,]P = the structure global prebuckling geometric stiffness matrix

The buckling equation becomes

~lon} (K]+ 2[6)en} =0 (8-10)
where
Ul
UZ
CI)l
{D} = 22 = the global nodal displacement vector of the structure
3
U,
CD}
o

IS

Since the variation of the displacement does not equal zero, Equation 8-10 becomes

(k]+A[G]){sD}=0 (8-11)

The boundary conditions may be applied to the global stiffness matrices in Equation 8-
11, and the equation may be used to determine the flexural-torsional buckling loads of the
structure. Equation 8-11 is in the form of a generalized linear eigenvalue problem. A symmetric
positive definite matrix of order »n has n eigenvalues 4, and n non-zero eigenvectors {0D},. The
lowest eigenvalue defines the load set at which the structure first buckles, and the corresponding
eigenvector defines the buckling mode of the structure.

The solution of the eigenvalues and eigenvectors of a generalized eigenvalue problem
requires that the equation be converted to a standard eigenvalue problem (Griffiths and Smith,
1991). In other words, a generalized eigenvalue problem of the form

Ax+ ABx =0 (8-12)

should be converted to the standard form of

60

Ax+Ax =0 (8-13)
To convert the generalized eigenvalue problem to the standard form, the following steps must be
taken:

The general equation is written as

(x]+AlGD)eD}=0 (8-14)

Rearranging Equation 8-14 gives

[kJoD}=-Alclis D) (8-15)
(6T (kYD) = -{éD) (5-16)
[kT'[leD}=~—{oD) (5-17)

Equation 8-17 may be written as
(kT ol 1Jon) =0 19

where [] is the identity matrix.
The only problem with Equation 8-18 is that although [K] and [G] are symmetric, the
product [K ‘1] [G] is generally not symmetric. To preserve symmetry, the Cholesky’s method

may be used (Griffiths and Smith, 1991). The Cholesky method decomposes a square,
symmetric matrix to the product of an upper triangular matrix and the transpose of the upper

triangular matrix. Applying the Cholesky decomposition to the matrix [K] gives

[x]=[c][cT (8-19)

61

Substituting equation 8-19 into 8-14 and converting it into the standard form gives (Griffiths and

Smith, 1991)
([C]l 6] ([cT)"+ %[1]}{55 [(8-20)

Equation 8-20 is in the form of a standard eigenvalue problem. It can be expressed more closely
to Equation 8-13 if it is rewritten as
([s]+7[1]) 6 D}=0 (8-21)

where

and

A standard eigenvalue problem can be solved in several ways.

Since the matrices in a flexural-torsional buckling problem often become very large, the
matrices may be converted to a simpler form using Householder’s method before solving for the
eigenvalues (Griffiths and Smith, 1991). Householder’s method converts a symmetric matrix
into a tridiagonal matrix. A tridiagonal matrix has non-zero elements only on the diagonal plus
or minus one column (Press, 1992). The eigenvalues of a tridiagonal matrix may be solved for
using QL iteration (Press, 1992).

The buckling loads are the trial applied loads multiplied by the smallest eigenvalue, 4,
which may be described by the relationship

{Fl, = 2{F} (8-22)

where {F}_ is the vector of the buckling loads and {F | is the vector of the trial loads.

62

When considering in-plane deformations, the second variation of the total potential

energy equation becomes
%{5D}T(([K J+[&],)+ a(G]+ [G],)feDj=0 (8-23)

in terms of the global matrices. The same eigenvalue solution process discussed for the buckling
analysis is used for the prebuckling analysis; however, the buckling loads considering the effect

dv(0)

y4

of in-plane displacements will provide accurate results only when the rotation, C = , 1s the

rotation at buckling. Since this rotation must be known prior to calculating the buckling loads,
an iterative approach must be taken to solve this problem.

: . . : dv(0
The buckling loads are calculated using an initial value of the rotation C = % based
yA

on the trial loads on the structure. This initial value of C is calculated from a linear in-plane
anlysis of the structure. If the eigenvalue, 4, is equal to 1.0, the buckling loads are equal to the
trial loads. If the eigenvalue is not equal to 1.0, the trial loads are multiplied by the eigenvalue to
give new trial loads. This is expressed by

{F},. = AlF}, (8-24)

dv(0)

dz

for each trial, n. The new trial loads are used to recalculate the rotation C = . The new

rotation may be used to calculate a new eigenvalue. This procedure is repeated until the
eigenvalue is equal to 1.0; thus, the trial loads for the case of A = 1 will be equal to the buckling

loads considering the effects of prebuckling.

63

9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN

9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT

Object-oriented software development is “a new way of thinking about problems using models
organized around real world concepts” (Rumbaugh et al., 1991). Unlike traditional procedural
programming languages, object-oriented programming languages focus on breaking the software
into modular units so that each unit will model a real world object. This programming approach
was developed to provide a more organized methodology to software development in
comparison to the older disorganized approaches. As stated by Mezini (1998), “the object-
oriented programming paradigm has emerged from the desire to find adequate techniques for
mastering the complexity of software development.”

Object-oriented technology was selected for the program design and implementation over
other software development technologies because of the many advantages it offers in software
organization, and it will support a finite element application. “Traditional methods used for the
formulation, assembly, and application of finite element analyses are easily transported to object-
oriented environments” (Forde et al., 1990).

Section 9.1.1 presents the basic concepts of object-oriented software development.
Section 9.1.2 discusses the object-oriented language used for the development of the flexural-

torsional buckling program.

64

9.1.1 Basic Concepts

The fundamental concept in object-oriented languages is a single entity called an object. An
object in an object-oriented program is meant to model an object in the real world through its
characteristics and behaviors in the same way that a real world object possesses characteristics
and behaviors. By combining the characteristics, or attributes, of an object with its behaviors, or
functions, an object in an object-oriented program can effectively model an object in the real
world. This concept of combining attributes and member functions into one entity is known as
encapsulation.

The objects in an object-oriented program communicate with each other through their
member functions. The communication between objects in an object-oriented program is similar
to the way real world objects communicate with each other. An object may call on another
object’s member functions in order to perform an operation or to retrieve some data. However,
objects have the ability to limit the access of their data and member functions from other objects
so that the information cannot be accessed directly. This concept is known as information hiding
and is a key point in encapsulation.

Restricting data access from other objects helps to prevent unwanted modifications of
data by other objects. Every object provides an interface to other objects through its accessible
functions, and objects may only use the interface of another object in order to communicate with
it. The internal structure of the object is hidden so that any changes that occur to the internal
structure will only affect the object’s implementation. As a result, an object’s internal structure
may be varied as long as the alterations do not affect the object’s external behavior.

Some of the other key concepts in object-oriented programming include classes,

inheritance, and polymorphism. A class is the outline, or template, of an object. It describes all

65

of the attributes and operations that an object of its type will contain. Classes in relation to
objects are blueprints that specify the structure and behavior of an object of its type. A class is
only an abstraction, while an object represents an actual real world item. Once a class is defined,
many objects of that class may be created with each object being unique yet possessing all of the
same features as the other objects. For example, a class may contain a specific characteristic
which is of the same type for all of the objects, but each object will set a different value for that
characteristic. Each object is created at run-time according to the class specification and is said
to be an instance of a class.

Inheritance is a concept of object-oriented programming that allows a class to be
expanded by creating a new class based on the original class or classes. The new class is called
the derived class and the original class is called the base class. Once a class is defined, another
class may be derived from it without modifying the original class. The derived class inherits all
of the features of the base class and adds its own new features as well. Only the features new to
the inherited class must be added to the class definition. Inheritance is a “kind-of” relationship
between objects. In other words, if Class B is derived from Class A, then B is a kind of A.
Inheritance has improved software development by allowing for separations of specific
variations of a class. Inheritance saves a lot of time in programming by allowing for reusability
of existing code without having to modify and debug the existing code.

Polymorphism is the ability for the same operation to behave differently on different
classes (Rumbaugh et al., 1991). A function or operator may have the same name in two classes;
however, it can act differently depending on which class it is operating on. Each class can

choose its own method of operation.

66

The object-oriented concepts discussed are illustrated in Figure 9.1. The class definition
serves as the outline for an object created of that type. There are two class outlines shown, one
in each rectangle called Class A and Class B. The classes have both their attributes and
operations encapsulated into a single entity. The diagram shows a base class with three features
and a derived class with all three of the base classes’ features along with two new features. Only
the two new features of the derived class, as shown in the bold print, need to be added to the
class definition because the derived class will automatically inherit all of the features of the base

class. Class B is a specific type of Class A, as shown with the kind-of relationship.

Class A

Attribute a Base Class
Attribute b

Operation x

kind-of

Class B

Attributes a

Attribute b Derived Class
Attribute ¢

Operation x

Operation y

Figure 9.1 Basic Object-Oriented Concepts Illustration

67

When an instance of either class is created, other objects may only access the object
properties that are declared public within the code. Private and protected data and member
functions have restricted access by other objects. Therefore, the public features of a class make
up the interface of an object of that class, and the private and protected features of an object are
used to aid in the object’s implementation. Both classes have the Operation x as a member
function. Although these functions have the same name, the derived class has the ability to
overwrite the base class implementation of the operation and use its own implementation.
Therefore, the same function may act differently on each of the classes, which demonstrates the
object-oriented concept of polymorphism.

Objects, classes, inheritance, and polymorphism are only a few of the many object-
oriented concepts. These are just the beginning to all of the advantages that object-oriented
programming has to offer. More specific concepts will be discussed throughout the program
development in the following sections.

One of the main themes that has brought object-oriented concepts to the point that they
are at today is abstraction. Abstraction allows a programmer to focus on the overall entity under
consideration without getting caught up in the details. This means focusing on defining an object
rather than on the implementation of an object. When a user of an object needs information from
the object, the user needs to know what the object is and does rather than to be concerned with
how the object is implemented to get the information. The goal of abstraction is “to isolate those
aspects that are important for some purpose and suppress those aspects that are unimportant”
(Rumbaugh et al., 1991). The move from the first generation of programming languages to

object-oriented programming has been pushed by a support of abstraction.

68

9.1.2 The C++ Object-Oriented Language

There are many languages that support object-oriented design including Smalltalk, Eiffel, and
C++. There is no particular object-oriented language that is superior to the others; rather, it is
best to select a programming language based on its ability to provide sufficient support of the
desired programming style (Stroustrup, 1991). The object-oriented language used to develop the
Lateral-Torsional Buckling Program is C++/C.

C++ is an extension of the C language. The C language is an older language that
supports traditional procedural program design. C++ was selected over the other object-oriented
languages because it has become one of the most popular languages that supports object-oriented
design, and it provides all of the necessary support for object orientation required for this type of
project.

C++ was developed by Bjarne Stroustrup (1991) at AT&T Bell Laboratories in order to
accomplish three main goals: (1) to improve some of the weaknesses of C (2) to add the object-
oriented capabilities to C (3) to allow the C language to support data abstraction (Stroustrup,
1991). Adding these features to the C language provided a new programming language

<

supporting object-oriented design “without loss of generality or efficiency compared with C
while remaining almost completely a superset of C” (Stroustrup, 1991).

Most of the statements used in C are also valid in C++ (Lafore, 2002); however, it is
important to understand that object-oriented programming is an approach to the overall
organization of a program and does not focus on the details of the code. While the code of a
procedural program may look exactly the same as the code in an object-oriented program, it is

the organization of the program that sets them apart and makes the object-oriented approach

preferable for modeling real world situations.

69

9.2 PROGRAM SET-UP

Before the software design process is discussed, it is important to understand the overall set-up
of the program, which will be discussed in this section. The Lateral-Torsional Buckling Program
is divided into three distinct programs: (1) Frame.exe, (2) LBuck.exe, and (3) Project.exe. Each
of these programs was designed, developed, and tested individually, although they all operate
together to create the entire Lateral-Torsional Buckling Program.

The Frame and LBuck programs do all of the structural analysis calculations. The Frame
program calculates the in-plane actions of the structure, and the LBuck program calculates the
flexural-torsional buckling load of the structure. Both the Frame program and the LBuck
program execute in batch mode. Batch mode is a type of program that scans all of its input from
a data file and writes all of its output to another data file. These two programs are console
applications and execute using a simple text file for input and output.

The Project program is the user interface used to create the input file and gather the
output from the Frame and LBuck programs. This type of program executes in interactive mode
because the user responds to prompts by entering in data. The Project program was created as a
Windows application in order to make the operation of the Frame and LBuck programs user
friendly. The Project program is where all user interaction takes place; therefore, the user only
needs to execute Project.exe in order to run the entire Lateral-Torsional Buckling Program. The
advantage of creating the user interface as a Windows application rather than a console

application is that the program’s interface is more sophisticated and has many of the advanced

70

features common to Windows applications. However, a Windows application is much more
complicated than a typical DOS application.

In a Windows application, all interactions between a program and the user are handled by
Windows. Windows communicates with the program through the Windows application
programming interface (API) which consists of hundreds of functions. The development of the

Windows application is discussed in more detail in Section 9.5.

User Events

\ 4

Windows

Windows API

N
A4

Project.exe

7/}
input file v buckling output

LBuck.exe

input file \ frame output

Frame.exe

Figure 9.2 Program Operation

71

The operation of the entire program is illustrated in Figure 9.2. When the user executes
Project.exe, he is prompted to enter in all of the problem data. The Project program then uses all
of the user’s input to create a text input file and executes the LBuck program. The LBuck
program then executes the Frame program. The Frame program opens and executes off of the
input file and creates an output file with the in-plane actions of the structure. The LBuck
program opens the output file from the Frame program and uses this file with the in-plane actions
to calculate the flexural-torsional buckling loads of the structure. The results are written to the

final output file, which are then displayed in the Project program.

9.3 PROGRAM BACKGROUND

To begin developing the three executable programs required for this project, a software package
designed by Phusit Dontree was obtained. This program was developed by Dontree in 1994.
The package included LBuck.exe, Frame.exe, and a simple console mode user interface that was
out-dated and not user friendly. Also provided with the program were a few simple examples
that where used to check that the program provides the necessary results.

The LBuck program developed by Dontree was written in C++; however, many of the
features of object-oriented programming were not used. Although the concept of classes was
used in the program, the overall structure of the program was not very object-oriented. The goal
is to take the original LBuck program and rework it to enhance the object-oriented features,
which in object-oriented terminology is known as refactoring a program. The Frame program

was written as a procedural program in C. The internal structure of this program also needs to be

72

completely refactored into an object-oriented structure. The user interface can be discarded and
redone as a Windows interface with updated features.

The term refactoring is used to describe a technique of changing the internal structure of
a program in order to make it easier to understand and cheaper to modify without changing its
observable behavior (Fowler, 1999). The decision to refactor the existing program rather than
start from scratch was made because the existing program has many features that work well. The
program’s output provides exactly what is needed, so the functionality of the program does not
need to change; only the internal structure of the program needs to change. The member
functions within the program were all previously tested and provide the necessary results.
Therefore, the largest concern is only with the overall structure of the program. By refactoring
the program, the design of the software can be improved and made much easier to understand.

As previously discussed, object-oriented languages are better at modeling real world
concepts than procedural languages; therefore, it is desired that the program’s structure be
focused on objects. Initially, some may argue that the executable program already provides the
user with satisfactory results, and therefore it would be inexpedient to restructure it. However,
there are more advantages to object-oriented programs than just the immediate advantages while
designing the program.

By improving the design of existing software, it becomes easier to understand and modify
in future. From a maintenance point of view, a program with a poor design will eventually
become useless if the program is expected to be expanded. One of the benefits to an object-
oriented program is that it allows for behavioral variations through incremental programming

(Mezini, 1998). Incremental programming allows a program to be modified by specifying the

73

new components without changing the old ones. By refactoring the program now, it will be
easier for someone in the future to expand or modify it.

In particular to engineering applications, “finite element analysis programs must adapt to
accommodate current forms of numerical, functional, and physical technologies. Finite element
analysis programs should be constantly changing to satisfy current and future demands of the
engineering profession” (Forde et al., 1990).

The four main things that make a program hard to work with as stated by Kent Beck (as
quoted in Fowler, 1999), who was one of the first people to recognize the importance of
refactoring, are: 1) programs that are hard to read are hard to modify, 2) programs that have
duplicate logic are hard to modify, 3) programs that require additional behavior that requires you
to change running code are hard to modify, and 4) programs with complex conditional logic are
hard to modify. These are the four main issues that will be considered while refactoring the

program.

9.4 DESIGN PROCESS

Object-oriented software development must follow a specific design process. This process must
outline all of the steps to be taken during the design of the program to move from the abstract
concepts to the detailed program code. The Rational Unified Process is a popular design process
that was developed by Grady Booch, James Rumbaugh, and Ivar Jacobson (Jacobson et al.,
1999). Although this process was not specifically developed for object-oriented programming, it
provides a modern approach to software development which can be tailored to model real world
situations. This section will discuss the design process used to create the Lateral-Torsional

Buckling Program.

74

The Rational Unified Process consists of four main phases: inception, elaboration,
construction, and transition. Figure 9.3 shows the outline of the design process. The inception
phase is where the scope of the project is determined. It establishes the core architecture and
identifies and reduces critical risks while assuring feasibility (Jacobson, 2000). The elaboration
phase is the stage where all of the details are collected to create a plan for the construction. The
construction phase is where the system is built, which will involve many iterations. The
transition phase is the stage where any work left until the end must be completed such as specific
forms of testing. The product is then ready to move to the hands of the users. Although the
process stages may sound vague, the details of each phase are going to depend on the type of

project. The design process of this section is going to focus on the LBuck and Frame programs.

Inception

V

Elaboration

Construction |€

L

\4

Transition

Figure 9.3 Rational Unified Process

75

9.4.1 Inception

For the inception phase of the project, the scope may be summarized as: refactor an existing
program that calculates the flexural-torsional buckling loads of a structure and make it object-

oriented along with creating a new user interface that is user friendly.

9.4.2 Elaboration

The next phase in the design process is elaboration. This phase begins with a technique called
use case modeling. One of the most important parts to software development is communicating
the design with others. This will ensure that the client and other developers involved with the
design will thoroughly understand the needs of the users. Use case modeling provides a means
of communicating with the user, or customer, in a way that is comprehensible. Use case
modeling intends to communicate to the user how the system and its environment are related, i.e.
it describes the system as it appears from the outside in a “black box” type of model. Use cases
have two important roles: (1) they capture a system’s functional requirements and (2) they
structure each object model into a manageable view (Jacobson, 2000).

The first step in developing the use cases is to determine the actors. An actor is
something or someone that will use the system. In most cases, actors are people using the
system; however, actors do not need to be human. Actors may be other systems that require
information from the current system. For this program, the actor is considered to be the Project
program, which is the user interface. The user interface is the system that calls on the LBuck and
Frame programs to execute, and it requires the flexural-torsional buckling loads of the structure

from the programs.

76

The next step is to consider all of the scenarios of the program. A scenario is a sequence
of steps describing an interaction between an actor and a system (Fowler, 2000). A group of
related scenarios is a use case. Scenarios are instances of a use case. A use case may be defined
as “a coherent unit of externally visible functionality provided by a system unit and expressed by
sequences of messages exchanged by the system unit and one or more actors of the system unit”
(Rumbaugh et al., 1999). The collection of use cases for a system represents the complete
functionality of the system.

All scenarios of how the program may be executed must be considered in order to
construct the use cases. For the flexural-torsional buckling program there are essentially three
scenarios: (1) a buckling analysis is conducted on the structure, (2) a prebuckling analysis is
conducted on the structure, and (3) a non-dimensional analysis is conducted on the structure.
The user interaction for these three scenarios makes up the use case model.

The user interaction with the Frame and LBuck programs is essentially inputting a text
file of data and outputting a text file of results. Therefore, there is only one use case for this
program. It shows the interaction of the user asking the program to use the given input to
calculate the flexural-torsional buckling loads of the structure. The use case model for this
program is shown in Figure 9.4. For this particular program, the use case model is very simple.
Programs that are more sophisticated and require more user interaction will have many, even

hundreds, of use case models.

71

System

s D

Flexural-Torsional
Buckling Loads

-

User
Interface

Figure 9.4 Frame and LBuck Program’s Use Case Diagram

It is important to provide detailed descriptions of each use case along with the diagram.
The description of the use case for the program is: The user enters into the program the structure
properties, dimensions, loads, and restraints. The program uses the data to calculate the flexural-
torsional buckling load of the structure. The three scenarios for this use case, as previously
mentioned, are: (1) the user requests a buckling analysis on the data and the program returns the
buckling loads of the structure, (2) the user requests a prebuckling analysis on the data and the
program returns the buckling loads of the structure considering prebuckling effects, and (3) the
user requests a non-dimensional buckling analysis on the data and the program returns the non-
dimensional buckling loads of the structure.

The use case model developed defines the system requirements; however, it does not deal
with any of the internal structure of the system. Therefore, any type of design method, such as
procedural or object-oriented, may be used from this point in the design process to develop the
system as long as it can perform all of the use cases. Since object-oriented programming is the
preferred method for high quality systems, the use case models will be used to build the object

models in the next section.

78

In this stage, it is also necessary for all of the details needed for the construction of the
programs to be collected. The operations of the LBuck and Frame programs must first be
understood before any steps may be taken to refactor them.

This stage begins the reverse engineering procedure in order to take the concrete program
code and move it to a higher level abstract model. Reverse engineering as defined by Demeyer
et al. (2003) is “the process of analyzing a subject system to identify the system’s components
and their interrelationships and create representations of the system in another form or at a higher

2

level of abstraction.” This process is carried out to try to understand how the original program
works and what changes may be made to improve the design.

As shown in Figure 9.5, the process begins with concrete coding and moves to the design
and models and then to the original system requirements, in which each move is to a higher level
of abstraction. This process is the exact opposite of the design process where the goal is to move
from the basic requirements to the code. Similarly to the Rational Unified Process, the reverse
engineering process allows for iterations while it is carried out; thus, it is incorporated into the
design process.

Although the reverse engineering procedure begins here, a majority of the reverse
engineering process will be incorporated into the construction stage of the program development.
In this program, none of the basic requirements of the system are changing. The scope and use
cases defined in the inception and elaboration stages remain the same for the original and
modified programs, which are both at the highest level of abstraction. Therefore, it is the lower

levels of abstraction that will need to be refactored. It is important to begin to understand the

program at this stage in order to carry out the refactoring process in the construction stage.

79

System
Requirements

Designs and
Models

Code

Figure 9.5 Reverse Engineering Process

System
Requirements

Original
Designs and
Models

New Designs
and Models

Original
Code

Figure 9.6 Refactoring Process

80

Figure 9.6 shows the refactoring process that will take place during the construction
phase. The goal is to move the original code to a more abstract level of modeling. These models
along with the system requirements will be used to generate new models based on object-
oriented concepts. The new models are used to modify the existing code to reflect the changes.

The reverse engineering process reveals the first major obstacle for understanding the
program: insufficient documentation. Little documentation was provided by Phusit for the
development of the original programs, and some of the documentation that was provided was
inconsistent with reality. Therefore, running the software and reading the source code were the
primary means of obtaining information about the Frame and LBuck programs and their
operation.

For the programs to run, the user must enter the geometry, member properties, loading
conditions and boundary conditions for the structure. It is necessary to determine how the
programs operate on this data in order to refine the models of the software. Once the program
operations are understood, a plan for the changes may be developed.

One of the main goals of this project is to provide sufficient documentation to eliminate
the need for drastic and time consuming reverse engineering by anyone that may expand on or

work with this program in the future.

9.4.3 Construction

The construction phase is the main focus of the project and requires the most amount of time.
This is where the program gets analyzed, designed, and tested. While any of the design stages in
the entire design process may involve iterations, it is most important that an iterative and

incremental approach be taken during the construction phase.

81

The first step in the construction phase is to take the use cases and develop the classes.
When considering classes for the program, it is best to select nouns representing real world
entities from the use case descriptions. Some of the key words involved in a flexural-torsional
buckling analysis are: loads, restraints, members, displacements, stiffness matrix, geometric
stiffness matrix, and reactions. These are all possibilities for classes. Since there are two
programs under consideration, each program’s classes will be examined individually based on
how the program operates.

For the frame program, the possible classes are shown in Figure 9.7, and for the LBuck
program, the possible classes are shown in Figure 9.8. These are only possible classes for the
programs, and the class relationships and interactions must be considered before the classes may

be finalized.

Stiffness Loads
Matrix

Member
Displacements Actions

Figure 9.7 Possible Frame Program Classes

82

Stiffness Restraints
Matrix
Geometric
Stiffness
Standard Matrix
Matrix Loads

Figure 9.8 Possible LBuck Program Classes

The next step is to establish the relationships between the classes and to determine if the
proposed classes will work for the program. Therefore, it is necessary to determine a way of
illustrating the class relationships. It is important to remember that the construction phase allows
for many iterations, therefore, the classes and their relationships may change several times before

the program is complete.

9.4.3.1 Modeling

As mentioned before, communication is essential for a successful program. At this stage of the
development, it is necessary to communicate the design at a high level that is comprehensible to
other developers. The only way for this to be accomplished is to communicate the system
models with the use of an effective modeling language.

The modeling language is essentially the key to communication. It allows for a universal

language that is specific to software development yet not as detailed as the actual code. This type

&3

of modeling language must allow for more complex and thorough modeling than the use case
modeling because it must communicate the internal structure of the system. The Unified
Modeling Language (UML) is a modeling language developed by Rumbaugh, Jacobson, and
Booch (1999) which supports object-oriented design and may be used along with the Rational
Unified Process, although it is not necessary to use them together. This modeling language is
useful throughout all of the stages of the design process for a full range of systems, yet remains
as simple as possible.

Before moving into any code refactoring, models of the system must be created to plan
out the structure of the program. The UML provides several general categories in which the
program models may fall into. The model categories considered for this project are structural
classification views and dynamic behavior views. The use case modeling discussed in section
9.4.2 is also a part of the UML. There are many sources of information that must be considered
when building the models. This is shown in Figure 9.9. Information must be gathered from the
problem statement, system requirements, basic knowledge, real-world experiences and the
original program models. With all of this knowledge combined, new models may be built and

used for the development of the software.

84

Problem Statement

System Requirements Real-world Experiences

Basic Knowledge Original Program Models

Structural View Model

Dynamic View Model

Figure 9.9 Modeling Procedure

9.4.3.1.1 Structural View

The structural classification view shows the relationships between the elements within the
program. One of the main types of structural views is the static view which shows the
relationships among the classes. This view is illustrated with a class diagram. Since the class is
one of the major characteristics of object-oriented programming, the class diagram is an essential
part of the UML.

When developing and understanding models, they may be viewed from either a
conceptual or an implementation perspective. Conceptual modeling is the process where a
domain is modeled by ordering the abstractions based on the relationships between them. The
term domain is used to represent any aspect of the world that the program is supporting. This
type of model is drawn without regard to the software that may implement it. On the contrary,

implementation modeling is the process where the implementation is laid out. There is no

85

distinct line between the two perspectives, but it is important to understand the different
perspectives in modeling.

Object-oriented programming supports four important modeling instruments for creating
class diagrams: classification / instantiation, aggregation / decomposition, association /
individualization, and generalization / specialization (Mezini 1998), where each pair of
instruments are opposites of each other. The first step to creating a class diagram is to show the
classes, which is essentially the classification / instantiation modeling mechanism. This
mechanism is supported by the object-oriented concept that objects are instances of classes.
Classification is the process where instances are created from classes, and instantiation is the
process where instances of classes are extended to form the class.

The class diagram combines the attributes and operations of a class into a single element
shown as a rectangle on the diagram. The rectangle is divided into three parts with horizontal
lines. The name of the class is at the top, the attributes are in the middle, and the operations are
shown at the bottom. Figure 9.10 shows an example of a class diagram for a class representing
the stiffness matrix of a structure.

The data, or attribute, for the class is the global stiffness matrix, and the member
function, or operation, is to fill the stiffness matrix. The visibility of the attributes and operations
are indicated by the + and — signs. The + sign indicates public data. An instance of this class
will allow for all public data to be accessed by other objects. The — sign indicates private data.
Private data is hidden, thus, an instance of this class will not make its private data accessible to
other objects. A # sign indicate protected data. The entire sets of classes for the Frame and

LBuck program are shown in Figure 9.11 and Figure 9.12, respectively.

86

Stiffness - --- Class Name

- Global Stiffness Matrix -{---- Attributes

+ Fill Stiffness Matrix -7~ ~-- Operations

Stiffness

- Global Stiffness Matrix

+ Fill Stiffness Matrix

Figure 9.10 Example Class Diagram

Properties

- Element Properties

+ Read Element Properties
+ Print Element Properties
+ Print Restraints

Loads

Displacements

- Loads

- Displacements

+ Read Loads
+ Fill Load Vector

+ Solve for Displacements

Actions

- Member Actions

+ Solve for
Member Actions
+ Print Member Actions

Figure 9.11 Frame Program Classes

87

Properties

- Element Properties

+ Read Element

Properties

+ Element Rotation

Element Stiffness Matrix

- Element Stiffness Matrix

+ Fill Stiffness Matrix
+ Fill Prebuckling
Stiffness Matrix
+ Fill Non-dimensional
Stiffness Matrix

Stiffness matrix

+ Global Stiffness Matrix

+ Assemble Global
Stiffness Matrix

Standard Matrix

- Standard Matrix

+ Cholesky Decomposition
+ Householder's Iteration
+ QL Iteration
+ Get Eigenvalues

Element Geometric
Stiffness Matrix

- Element Geometric Matrix

+ Fill Geometric Matrix
+ Fill Prebuckling
Geometric Matrix

+ Fill Nondimensional
Geometric Matrix

Geometric Stiffness
Matrix

+ Global Geometric
Stiffness Matrix

+ Assemble Global
Geometric Stiffness Matrix

Restraints

- Restraints

+ Read Restraints
+ Apply Restraints

Figure 9.12 LBuck Program Classes

88

The second step to creating a class diagram is to show the relationships between the
classes. These relationships may be described using the other three modeling mechanisms
mentioned: aggregation / decomposition, association / individualization, generalization /
specialization.

Aggregation / decomposition describes the relationships between abstractions as “parts”
and “wholes”. Aggregation is the “part-of” relationship, where a whole abstraction is made up
of many other abstractions, or parts. Decomposition is the opposite where the parts are extracted
from a whole.

Association / individualization shows the relationships between abstractions by linking
together items that share some sort of semantic connection in an association, or conversely by
separating items through individualization. The abstractions are typically not related by their
intentional descriptions, which are the class descriptions that will not change over time; however,
the abstractions are somehow related by their extensional properties, which are the objects that
will change over time.

Finally, generalization / specialization expresses the relationships between a generalized
abstraction and a specialized abstraction. An abstraction has a generalization relationship with
another abstraction if it contains all of the properties as the other abstraction, with the other
abstraction being more specialized. This modeling mechanism is supported by the object-
oriented concept of inheritance.

Since the entire internal structure of the Frame program is being modified from a
procedural program to an object-oriented program, the classes and the relationships between the
classes need to be determined from only the system requirements. However, the LBuck program

does contain some object-oriented concepts. These concepts need to be analyzed, and the

89

relationships need to be modified in order to improve the object-oriented structure of the
program. The first stage of creating the class diagrams will focus on Frame program. The
Frame program’s operation is shown in Figure 9.13 with a flowchart, which is a common
modeling method for procedural programs.

Figure 9.13 shows the structure of a typical procedural program. The procedural
programming languages support the division of a computation into subroutines. This allows the
implementation of each subroutine to remain separate from the routine calling it. Therefore,
understanding the implementation of a subroutine is enough for using its functionality. Although
the implementation may be hidden within a subroutine, the data it uses remains accessible to the
entire program; therefore, an error in one part of the program may have effects on the rest of the
system. In the original Frame program, all of the data is declared global throughout the entire
program; thus, all operations within the program have access to the data.

The classes that are being considered for the restructured Frame program were shown in
Figure 9.11. The operations within the Frame program need to be assigned to the appropriate
class that relates to the implementation of the operation. The data must also be assigned to the
appropriate classes so that it will become encapsulated with the operations in order to restrict its
access. Once these major changes are made, the relationships among the classes may be

considered.

90

Read
Properties

Build
Stiffness
Matrix

Build Load
Vector

A\ 4

Solve for
Displacements

4

Print
Displacements

Print Member
Actions

Figure 9.13 Original Frame Program Procedural Flowchart

91

The complete class diagram for the Frame program is shown in Figure 9.14. The Frame
class diagram shows the five final classes for that will be used in the program. A properties class
was developed to contain all of the properties for each element. These properties include the
material properties, member joint coordinates, and the restraint information. It is important to
notice that the properties class is noted to be abstract. This is a way to indicate that no objects of
the type Properties should be created in the program. The Properties class serves only as the
foundation to the Stiffness class; therefore, objects should never be instantiated from it. By
declaring the class as abstract, it prevents anyone from creating an instance of that class by
mistake.

The keyword query indicates an operation that may return a value but does not alter the
system (Rumbaugh et al., 1999). This keyword is used in the Properties, Displacements, and
Actions classes to indicate that all of the Print operations will not make any changes to the
objects. This keyword is often used in these types of situations where an object is called upon to
print something or to send some data to a calling object, but it does not want to use the operation
to implement any other type of behavior.

The Stiffness class is derived from the Properties class, as shown with the open arrow
indicating inheritance. The arrow points from the derived class to the base class. The Stiffness
class will contain all of the features of the Properties class and add the new features of creating a

global stiffness matrix.

92

Properties {abstract}

- Element Properties

+ Read Element Properties
+ Print Properties {query}
+ Print Restraints {query}

JA

\4
Stiffness Loads Displacements
- Global Stiffness Matrix - Loads - Displacements
I . + Read Loads + Solve for Displacements
+ Fill Stiffness Matrix + Fill Load Vector +Print Displacements {query}
A N N
|
: <<friend>>
<<call>> <<friend>>
1 Actions
|
: - Member Actions
e oo o o o -

+ Solve for
Member Actions
+ Print Member Actions {query}

Figure 9.14 Frame Program Class Diagram

93

The other three classes, Loads, Displacements, and Actions, are related to the Stiffness
class as shown with the other arrows. The dashed arrow from Actions to Stiffness shows a
dependency between the two classes that is unidirectional. A dependency indicates a semantic
relationship between the two classes, which does not require a set of instances for its meaning
(Rumbaugh et al., 1999). Association and generalization are specific types of dependencies;
however, they have more defined semantics associated with them. The Actions class calls an
operation of the Stiffness class as indicated by the keyword call, which creates the dependency
between the two classes. The Actions class must call on the Stiffness class because it needs the
matrix terms for an element stiffness matrix. The Stiffness class does not contain each element
matrix individually; rather, it assembles the global stiffness matrix directly. Yet, the Stiffness
class contains a function that will provide the Actions class with the terms necessary to compute
the member actions based on the element stiffness matrix.

The solid arrows between the classes indicate associations. Therefore, there are semantic
relationships of the extensional properties between instances of these classes. The displacements
class must be associated with the Loads and Stiffness class in order to calculate the
displacements. Likewise, the Actions class must be associated with the Loads and
Displacements classes in order to calculate the member actions. The keyword friend indicates
that there is permission to access any of the contents of the class. The reason for granting this
type of permission will be discussed later in this section.

Now, the LBuck program’s class diagram will be considered. The first step is to create
the class diagram for the program prior to any refactoring and to point out the problems with the
diagram that need to be addressed. Then, the diagram may be modified to reflect the changes

necessary to make the program more object-oriented.

94

As mentioned, inheritance supports the modeling of concepts of generalization and
specialization. The derived class inherits all of the properties of the base class and adds new
features of its own. Therefore, the derived class is an extension of the base class. This concept
may be supported by inheritance; however, there is no guarantee in the object-oriented language
that inheritance will be used consistently with the generalization / specialization concept. A
programmer has the freedom to use inheritance to aid in the implementation of the program
without remaining faithful to the conceptual idea of generalization. This is one of the
disadvantages to object-oriented programming.

An example of this conceptual and implemental discrepancy is in the original LBuck
program. The Properties class is the base class for the Element Stiffness Matrix class and the
Element Geometric Stiffness Matrix class, which are both base classes for the Stiffness Matrix
class and the Geometric Stiffness Matrix class. These are then base classes for the Standard
Matrix class. This creates a class hierarchy as shown in Figure 9.15, which is part of the class
diagram for the original LBuck program. The attributes and operations have been left out for
simplification.

Conceptually, the Element Stiffness Matrix and Geometric Stiffness Matrix are both
specializations of the Properties class because they should both contain all of the features of the
Properties class and add new features of their own. A function declared in the properties class
should implement the same for both of the specialized classes. Therefore, these relationships
agree with the concept of generalization.

The Stiffness Matrix and the Geometric Stiffness Matrix classes are derived from the
Element Stiffness Matrix and Element Geometric Stiffness Matrix classes, respectively, implying

that the derived classes are extensions of the base classes. Conceptually, the Stiffness Matrix

95

and Geometric Stiffness Matrix are not true extensions of the Element Stiffness Matrix and
Element Geometric Stiffness Matrix classes because they do not use any of the base class’s
operations, such as the function to fill the element matrix. The Stiffness Matrix and Geometric
Stiffness Matrix use only the operations that are unique to the class. Instead of a global stiffness
matrix being a specialization of an element stiffness matrix, it is conceptually preferable to
consider a global stiffness matrix being made up of element stiffness matrices. This creates a

“part-of” relationship rather than a “kind-of” relationship.

Properties
Element Stiffness Element Geometric
Matrix Stiffness Matrix
/\ /\

Geometric Stiffness

1L

Standard Matrix

Stiffness matrix

Figure 9.15 Original LBuck Class Diagram

96

The Standard Matrix is derived from the Stiffness Matrix and the Geometric Stiffness
Matrix classes. Once again, this does not conceptually support generalization. A standard
matrix is not a kind of stiffness matrix or geometric stiffness matrix; rather, they are related by
an association. It could be considered that a standard matrix contains a stiffness matrix and a
geometric matrix, which would create a “part-of” relationship. However, it would not be easily
understood how to decompose these two parts from the whole. Therefore, it is preferable to
relate them with an association which provides a semantic connection between their extensional
properties.

In the original program, using the inherited relationship between all of the classes aided
the implementation by making it easer for each class to access any part of another class.
However, this is violates the basic concept of object-oriented programming of restricting access.
It is widely argued that inheritance used merely for implementation purposes will cause
problems with the program and reflect poor understanding of the purpose of inheritance (Mezini
1998). This clearly illustrates the difference between creating a model from a conceptual
viewpoint and from an implementation viewpoint.

There are other problems with the multiple inheritance shown in Figure 9.15. Inheritance
is being used in a diamond shape hierarchy, so that the Standard Matrix class is derived from two
classes that share a common base class. This type of hierarchy creates a problem in dealing with
the attributes in the common ancestor class. The problem is whether the attributes should be
inherited once through one of the paths to the Standard Matrix class or twice through both paths
to the Standard Matrix class. This creates difficulty in organizing the behavior of the program.
In this situation, some of the attributes may need to be inherited once and others twice while

some of the attributes may not need to be inherited at all since the inheritance does not

97

conceptually support generalization. At this stage of the design, this conflict may not be entirely
solved through the conceptual models and may end up being left for the implementation
development stage.

The other problem with the diagram is that there are homonymous attributes, which are
difficult to deal with when incrementally varying a model. A homonymous attribute is a conflict
arising when two attributes inherited from two different parents have the same name (Mezini,
1998). For example, the Element Stiffness Matrix class and the Geometric Stiffness Matrix class
both have functions to fill the element matrix. In the code, these functions are given the same
name. These operations should be kept separate form each other because they are from two
different sub-divisions of a single object. It is easier to eliminate these problems with
homonymous attributes and duplicated attributes rather than to use an approach to dealing with
them. Therefore, the conceptual model will be modified to remove the multiple inheritance
hierarchy shown in Figure 9.15.

The final class diagram for the LBuck program after being modified to enhance the
object-oriented features is shown in Figure 9.16. The LBuck class diagram shows the seven
classes used in the program. Once again there is an abstract Properties class containing the
material properties, loads, and joint properties of each element. The Element Stiffness Matrix
and Element Geometric Stiffness Matrix classes are derived from the Properties base class as

indicated by the inheritance open arrowheads.

98

Properties

{abstract}

- Element Properties

+ Read Element
Properties {query}
+ Element Rotation

[

Element Stiffness Matrix

- Element Stiffness Matrix

+ Fill Stiffness Matrix
+ Fill Prebuckling
Stiffness Matrix
+ Fill Non-dimensional
Stiffness Matrix

1...%
{ordered}

i

Element Geometric
Stiffness Matrix

- Element Geometric Matrix

+ Fill Geometric Matrix
+ Fill Prebuckling
Geometric Matrix

+ Fill Nondimensional
Geometric Matrix

1...%
{ordered}

1 v 1

Stiffness matrix

+ Global Stiffness Matrix

+ Assemble Global
Stiffness Matrix

1

1

Geometric Stiffness
Matrix

+ Global Geometric
Stiffness Matrix

+ Assemble Global
Geometric Stiffness Matrix

N

1

Standard Matrix

1 1

- Standard Matrix

Restraints

+ Cholesky Decomposition
+ Householder's Iteration
+ QL lteration
+ Get Eigenvalues

- Restraints

+ Read Restraints {query}
+ Apply Restraints

Figure 9.16 LBuck Program Class Diagram

99

The other class associations are shown with the solid arrows. The solid arrows show the
navigability between the classes, and in all of these cases it is unidirectional. One of the new
features shown on the diagram is the black diamond which is used to indicate composition.
Composition is another one of the basic concepts of object-oriented programming. Composition
is a specific form of aggregation. This shows the conceptual relationship of an element stiffness
matrix being a part of a global stiffness matrix. Composition is a stronger form of aggregation
where the part may belong to only one whole and the life of the part is the life of the whole. The
Stiffness Matrix and the Geometric Stiffness Matrix classes are the “whole” and the Element
Stiffness Matrix and Element Geometric Stiffness Matrix classes are the “parts”.

The Standard Matrix class must be associated with the Stiffness Matrix and the
Geometric Stiffness Matrix classes in order to calculate the standard matrix. The Restraints are
applied to both the stiffness matrix and the geometric stiffness matrix; therefore, associations
between these classes are indicated.

At the ends of the arrows are numbers indicating the multiplicity of the instances of the
classes with (*) denoting infinity. For example, a Stiffness matrix object may be associated with
anywhere from one to an infinite number of element stiffness matrices at a conceptual level;
however, each element stiffness matrix may be associated with only one stiffness matrix. The
ordered keyword is a constraint implying there is an ordering of the objects that it is associated
with and that a particular object can appear on the total list of objects only once. The other

features on the diagram are similar to those discussed on the Frame class diagram.

9.4.3.1.2 Dynamic Behavior View
The static view provided the model of the classes and their definitions; however, it is equally

important to understand which objects are instantiated at run time and how the objects interact

100

with each other during the program execution. The dynamic behavior view provides a visual
model of the system over a period of time. Dynamic behavior may occur as an object interacts
with the world or as objects interact with each other to implement a behavior. Since the Frame
and LBuck programs do not interact with the user, dynamic behavior views will only be used to
illustrate how objects interact with each other to implement a behavior.

A sequence diagram is a specific type of dynamic behavior view that displays the
interaction as a two-dimensional chart. The sequence diagram for the Frame program is shown
in Figure 9.17. Since the original Frame program was not object-oriented, the sequence diagram
was created from the system requirements.

An object is shown on the sequence diagram as a box with the class name underlined
indicating that it is an instance of a class not a class. The time line of the model is the vertical
axis. Time begins at the top of the page and proceeds down the page. The line below an object
represents the lifeline of the object and is shown as a dashed line. When an object is deleted, the
lifeline of the object ends with an X. Objects may be destroyed by other objects, or they may
self destruct.

When a message is sent between objects, it is shown as a call with an arrow pointing
from the calling object to the object it is calling. The message arrows are arranged in time
sequence from the top to the bottom of the diagram. The message includes the name of the
function sending the message to the object or the type of message being sent. Anytime an object
is sent a message, the object becomes active. The activation of an object is shown with an
activation box on top of the object’s lifeline. Activation includes the amount of time to execute a

procedure including any time it must wait for nested procedures to execute.

101

a Stiffness a Load a Displacement an Action

readProperties()

|

buildStiffness()

' buildLoadVector()

T

readLoads()

solveDisplacements()

P getLoads E
——————— >
1
P :qetStiffness
________ I N
| T
: 1 | IsolveActions()
|
! I I |
1 I I
y StiffnessMatrix() 1
|
_________ : e e
. getLoads !
). S N N oo _.- >
1
>:< getDisplacements
———————— >
>:< rintActions()

Figure 9.17 Frame Program Sequence Diagram

102

A recursive call occurs when control reenters an operation on an object, but the second
call is a separate activation from the first (Rumbaugh et al., 1999). This may be shown by
stacking activation boxes. A return message is indicated with a dashed arrow back to the calling
object. An object may make a self-call, as indicated by the message arrow returning back to the
same lifeline. A half arrowhead indicates and asynchronous message. This type of message
allows for the caller to continue with its own processing, such as in the case of an object creating
a new object.

The Frame sequence diagram shows the four objects created when the program executes:
a Stiffness object, a Load object, a Displacement object, and an Action object. These objects
communicate between each other by sending the messages shown in the diagram. All of the
same behaviors are being implemented on this program design model as compared to the original
Frame dynamic behavior view, which was the Frame flowchart shown in Figure 9.13. Instead of
the behaviors being implemented in a procedural approach, now the behaviors are being
implemented through the objects, which are communicating information with each other.

First, the input data for the properties and loads are read from the readProperites process
and the readLoad process, respectively. The buildStiffness process builds the global stiffness
matrix of the structure based on the properties data. The buildLoadVector process builds the
joint load vector based on the load data. The solveDisplacements process solves the equations
for the displacements. The solveActions process computes the end-actions and reactions. The
most important information needed from this program are the end actions, which must be used in
the LBuck program to calculate the buckling loads.

In order to create the LBuck program’s sequence diagram, the original sequence diagram

must first be created. After investigating the LBuck program’s behavior, the sequence diagram

103

in Figure 9.18 was developed. There are only three objects created for the entire program: a
Main Process object, a Standard Matrix object, and a Supports object. The main process object
is only used for implementation purposes and does not represent any real world object. A Main
Process object is instantiated entirely as a means to start the buckling analysis.

As discussed in the Section 9.4.3.1.1 on static views, the Standard Matrix class was
derived from a hierarchy of classes as shown in Figure 9.15. The Standard Matrix object will
inherit all of the features of the classes above it in the class hierarchy. This is the reason that the
Standard Matrix object has so many self calls on the sequence diagram. Instead of calling on and
communicating with other objects, the Standard Matrix object is doing all of the work itself. It
has become somewhat of a “super” object, which is required to do almost all of the program’s
implementation, much of which is not related to the conceptual definition of the Standard Matrix
object. This diagram shows very little communication between the objects and is a poor example
of an object-oriented design. To improve the design, the sequence diagram needs to be
remodeled to encompass more object-oriented concepts.

The final LBuck sequence diagram is shown in Figure 9.19. This diagram shows far
more objects communicating with each other to implement the behavior of the program. The
Main Process object is eliminated because it is unnecessary for the program. The Standard
Matrix object is broken up into more objects, which creates a much better conceptual model
because the Standard Matrix object now has to implement only the behaviors directly related to
the conceptual definition. It is important to notice that all of the same behaviors are being
implemented in the new model, only now the behaviors are redistributed among the objects to

enhance the object-oriented features of the program design.

104

a Main

Process
T
main_process()
V4
~
new a Standard
- Matrix
standard_matrix()
B pd
~
assemble_Stiffness_Matrix()
fill_Element_Stiffness_Matrix()
assemble_Stiffness_Matrix()
fill_Element_Geometric_Matrix()
new
—>] a Supports
boundary_condition()
< _____ [k
€ - — — —:]-

Figure 9.18 Original LBuck Program Sequence Diagram

105

a Suiness a Geometric
Mgtrix Matrix
assembleStiffness() .:
| |
& |
Rew [an Element I
7| Stiffness "
readPropertieq()
|
|

1
fil ElementMatix()

|
getMatrixg |
7z
€ - — - | I
1
T X
: assembleGeometric()
1 m V=
! New [an Element.
! 71 Geometric
: readProperties()
|
1
: fil ElementMatrix()
|
1 etMatri
| 94 a Support
! <--- :
1 I 1
: | etSupports()
1 |
| |
: : applySupports()
¢ getStiffnessMatrix '
____________ AT T T a Standard
! getGeometricMatrix Matrix
S N > T
1 1
! StdMtx()
| 1 v
! ! X
getStiffnessMatrix !
|
———————————— mmmm——— - ——>
>!< getGeometricMatrix
_________________ > print()

T ~

X

Figure 9.19 Refactored LBuck Program Sequence Diagram

106

The assembleStiffness process creates a new element stiffness matrix object for each
element in the discretized structure. Each element object reads the properties for the element and
fills the matrix in the fillElementMatrix process. Each matrix is sent back to the Stiffness Matrix
object and assembled into the appropriate position in the global stiffness matrix.

The exact same process occurs for the Geometric Matrix object. The assembleGeometric
process creates a new Element Geometric Matrix object for each element in the discretized
structure. Each element object reads the properties for the element and fills the element
geometric stiffness matrix in the fillElementMatrix process. Each element matrix is sent back to
the Geometric Matrix object and assembled into the appropriate position in the global stiffness
matrix.

The support object reads in the supports in the getSupports process. It applies the
boundary conditions to the structure in the applySupports process. The Standard Matrix object
changes the generalized eigenvalue problem to the standard eigenvalue problem. Consequently,
the global stiffness matrix and global geometric stiffness matrix are combined to the standard
matrix. The standard matrix is then solved for the eigenvalues.

The final step is the print process. This process is different depending on the type of
analysis. For the buckling analysis, the buckling parameter, or eigenvalue, is printed as the result
of the anlaysis. The buckling load is the multiplication of the eigenvalue and the trial loads. For
the prebuckling anlaysis, the eigenvalue is checked within the print process before the results are
printed. If the eigenvalue is not equal to one, the eigenvalue is returned to the beginning of the
program as a multiplication factor. The trial loads are multiplied by the multiplication factor and
the entire process starts again. The program continues until the eigenvalue is close to one, and

the trial loads for that iteration are the buckling loads.

107

It is often difficult to understand the flow of behaviors within a program, and dynamic
behavior views help to model the flow control so that the sequence of behaviors become
apparent. The sequence diagrams for both the Frame and LBuck programs help to increase the
clarity of how the objects collaborate within the program during its implementation.

An activity diagram is another type of dynamic behavior view. “An activity graph shows
the computational activities involved in performing a calculation” (Rumbaugh et al., 1999). It
describes a sequence of activities and helps when trying to understand the flow of work in a
calculation. Activity diagrams are much like flowcharts except that they allow for parallel
behavior. Since they are so much like flowcharts, many people believe that activity diagrams are
not object-oriented; however, they are included as part of the UML and are useful in describing
complicated behavior.

An activity diagram is shown in Figure 9.20 to describe the standard matrix procedure.
The standard matrix function is called as shown in the sequence diagram of Figure 9.19;
however, the order of the calculations for the standard matrix function is not shown on the
diagram. These details are left out of the diagram to maintain clarity, yet they are important in
understanding the operations of the program. The activity diagram in Figure 9.20 is used to
illustrate these details.

The diagram shows two swim lanes: restraints and standard matrix. Swim lanes are used
to try to link the actions to the objects in order to enhance the object-oriented features of the
diagram. The name of the class associated with the action is shown at the top of the diagram,
and the descriptions of the action are shown in the ovals below. The order of the functions are

related by the arrows.

108

Restraints

Standard Matrix

?

Receive
Stiffness
Matrices
Kand G

Appy Boundary
Conditions

Apply
Cholesky
Method

Apply
Householder's
Iteration

Apply QL
Iteration

Check
Eigen-values

O

Figure 9.20 Activity Diagram

9.4.3.2 Coding

Once the models are complete, the design can move back from the high level abstract models to
the concrete code. As the structure of the code is changed to reflect the changes made to the
abstract models, more weaknesses of the program are exposed.

One weakness of the original code is that many of the functions are long and contain too
many operations within one member function. Therefore, it is useful to extract some of the code
from the long methods and break it into smaller parts. “The object programs that live best and
longest are those with short methods” (Fowler, 1999). This helps to increase the clarity of the
code. The chances that other methods may use a method increases when it is more finely
grained.

Another problem with the code is that there are several sections of duplicated code. A
reason for eliminating duplicated code is that duplicated code increases the difficultly to make
changes to a program since every piece of a particular section of code must to be changed.
Duplicated code also scatters the logic instead of keeping it clear and understandable. Along
with eliminating duplicate code is the need to eliminate unnecessary variables. The original
program uses too many variables which makes it difficult to understand what each variable
means. Global variables were used in too many cases to take the private member data of an
object and give it global access. This violates the object-oriented concept of restricting data
access, and may have serious damaging effects on the program.

The programs also did not use any constructors to create the objects. Constructors are
operations that construct different kinds of a data type. Although an object-oriented program
may be written without constructors, they are a valuable feature of object-oriented languages.

Since the original Frame program uses all global data, all of the data is automatically initialized

110

to zero when it is created. Many of the functions operated on the data without explicitly
initializing it. Local variables, however, are not initialized on creation and will contain a random
value. Therefore, constructors need to be used to explicitly initialize all of the data when
creating an object.

Arrays are used as attributes in the classes for both programs. Since most of the classes
use matrices as data members, two-dimensional arrays are used to store the matrices. Passing an
array as an argument to a function is different than passing other types of variables. The name of
an array is its address, and arrays must be passed by their name, or address. A function always
works with the original array, not a duplicate. This system is used because arrays can become
very large if they are storing a lot of data, and duplicating an entire array in every function call is
both time-consuming and wasteful of memory (Lafore, 2002).

This creates a complication with writing the code. One of the main goals of object-
oriented programming is to keep data private so that other objects cannot manipulate it. If an
object needs data from another object, it sends a message and the object called upon returns a
copy of the data, while keeping the original data safe. However, if an object needs to send a
message to another object asking for a matrix to be returned, the original matrix must be returned
since the C++ programming language does not allow copies of array to be sent. Therefore, there
must be a way for an object to access the array of another object. There are two ways to
accomplish this: (1) make the array public data, or (2) make the two objects friends of each
other.

If the arrays are declared as public data, then they are open to all objects. This may
become a problem if an unauthorized object somehow accesses the array by mistake. In many

cases, it is necessary to limit the access of an array to only those objects that may need it, and

111

keep it hidden from those that do not need it. Two objects are made friends by declaring their
classes as friends. A friend class of another class may access the private data of that class. For
example, if in class A the entire class B is declared a friend, then all of the member functions of
B may access the private data of A. This is the preferable way of allowing an object to access an
array of another object.

The code must be written to implement all of the models developed and handle all of the
coding issues discussed. The first place to start the coding is in the header files. The header files
define the class interfaces. After the header files are defined, the details of their implementation
may be written. The coding for Frame program may begin development by defining the classes
as:

class Properties

{
protected:
float x[MAX], yIMAX], AX[MAX], YI[MAX], ZI[MAX],
WIIMAX], EIMAX], GIMAX],J[MAX];
double angle[MAX];
int res [MAX],res2[MAX],res3[MAX],res4[MAX];
public:
Properties();
void print_restraints();
void print_properties(int j);
}3

The properties class has matrices to store the properties and restraint information. The
data may be printed using the print restraints() and print properties() functions. The
Properties() function is the constructor used to initialize the data. The constructor always has the

same name as the class and does not have a return type.

112

class Stiffness: public Properties

{ .
private:
float sff[3*MAX][3*MAX];
public:
Stiffness();
void stread();
void stitbld();
void compm(int, int[6], float[4]);
void memstif(int, float[6][6], float[4]);
¥

The stiffness class is inherited from the properties class. There is a member function,
stread(), to read in the information necessary to build the stiffness matrix. The stifbld() function
builds the partitioned half bandwidth global stiffness matrix. It calls on the function compm()
which provides the terms of the stiffness matrix in local coordinates and the memstif() function
which computes the upper triangular portion of a single member stiffness matrix in global
coordinates using the local element stiffness matrix terms. The global stiffness matrix is stored

in the sff]][] matrix.

class Loads

{

private:
float Load[6][MAX];

public:

Loads();

void Idread();

void load();

void print_loads(int j);

The Iread() function reads in the loads on the members and joints. For loaded members,
it converts the concentrated or distributed loads into equivalent joint loads. The load() function

combines the joint loads and equivalent joint loads from the member loads into one combined

load vector. The print loads() function prints the structure loads.

113

class Displacements

{
private:
float DIMAX];
public:
Displacements();
void banfac(Stiffness, Loads);
void bansol(float[3*MAX][3*MAX], float[3*MAX]);
void prdisp();
void print_displacements(int);
¥

The banfac() and bansol() functions solve the equations for the displacements using the
load vector and global stiffness matrix. The resulting displacement vector will contain only the
free degree of freedom displacements, which may not be in order of the joints. The prdisp()
function sorts the displacements into the original joint numbering system order and sets any
restrained joint displacements to zero. The print displacements() function prints the

displacements.

class Actions

{

private:
float action[4][MAX];
public:
Actions();
void memact(Stiffness, Loads, Displacements);
void print_actions(int) const;

The memact() function computes the member end-actions for each element using the
local stiffness matrix terms, load vector, and displacement vector. These actions are stored in the

action[[] matrix and printed using the print_actions() function.

114

The coding for LBuck program may begin development by defining the classes as:

class Properties

{
protected:
intjl,j2;
float E,G,J,1y,Ix,Iw,K l,al;
float q,a,P,e,zp,F,M1,V1,c;
public:
void Read Properties(int);
void Fill Properties(int);
void Rotation(float[10][10]);
¥

The Properties class stores the properties of the structure. The Read Properties()
function reads in the properties data from the text file. The Fill Properties() function stores the
properties in matrix form. The Rotation() function provides ability to transform a stiffness

matrix in local coordinates into global coordinates.

class Element_Stiffness : public Properties

{

private:

float Ke[10][10];
public:

void Fill Element Stiffness1();

void Fill_Element_Stiffness2(float, int);

void Fill Element Prebuckling(void);

The Element_Stiffness class is derived from the Properties class. There are three separate
functions that fill the element stiffness matrix depending on the type of analysis being conducted.
The Fill Element Stiffnessl() function fills the buckling stiffness matrix. The
Fill Element Stiffness2() function fills the non-dimensional buckling stiffness matrix. The

Fill Element Prebuckling() function fills the prebuckling terms of the stiffness matrix. The

stiffness matrix is stored in the Ke two-dimensional array.

115

class Element Geometric : public Properties

{

private:

float Gm[10][10];
public:

friend class Geometric;

void Fill Element Geometricl(float);

void Fill Element Geometric2(float, int);

void Fill Element Prebuckling(float);

The Element Geometric class is also derived from the Properties class. There are three
separate functions that fill the element geometric stiffness matrix depending on the type of
analysis being conducted. The Fill Element Geometricl() function fills the buckling geometric
stiffness matrix. The Fill Element Geometric2() function fills the non-dimensional buckling
geometric stiffness matrix. The Fill Element Prebuckling() function fills the prebuckling terms

of the geometric stiffness matrix. The geometric stiffness matrix is stored in the Gm two-

dimensional array.

class Stiffhess

{

private:

Element Stiffness stiff;

int element_num;

float A[MSize][MSize];
public:

Stiffness(int);

void Assembling_Stiffness Matrix(float);

The Stiffness class contains an Element Stiffness matrix object. Each of the element
stiffness matrices are used to create the global stiffness matrix, A. There is only one stiffness
matrix object rather than an array of stiffness matrix objects so that each element stiffness matrix

is created, entered into the global matrix using the Assembling Stiffness Matrix() function, and

deleted so that the next element stiffness matrix may be created. All of the element stiffness

116

matrices are not saved in an array in order to save memory space. The element stiffness matrices
are no longer needed once they are entered into the global matrix so that there is no reason to

save them individually.

class Geometric
{ .
private:
Element Geometric geom;
int element_num;
float B[MSize][MSize];
public:
Geometric(int);
void Assembling Geometric Matrix(float);

The Geometric class contains an Element Geometric matrix object. Once again, each of
the element stiffness matrices are used to create the global stiffness matrix, A, and there is only
one stiffness matrix object rather than an array of stiffness matrix objects. The
Assembling_Stiffness Matrix() function is used to place the element geometric stiffness matrices

into the global stiffness matrix.

class Standard Matrix
{ .
private:
int size;
float d[MSize],e[MSize];
float C[MSize][MSize];
float buckling_load,
public:
Standard Matrix();
void standard matrix(float[MSize][MSize],float[MSize][MSize],int);
float pythag(float,float);
void choldc(float| MSize][MSize]);
void tred2(float[MSize][MSize]);
void tqli(float{MSize][MSize]);

117

The Standard Matrix class creates the standard eigen-value problem from the stiffness
matrix and geometric stiffness matrix. The choldc() function is the Cholesky method which
changes the stiffness matrix to the upper triangular matrix (Press, 1992). The product of the
inverse of the upper triangular matrix, the geometric matrix, and the inverse of the transpose of
the upper triangular matrix gives the standard matrix, as discussed in Chapter 8. Householder’s
iteration changes the standard matrix into the tridiagonal matrix which is given by the tred2()
function (Press, 1992). The tqli() function gives the eigen-vlaue of the tridiagonal matrix
through QL iteration (Press, 1992). The Standard Matrix() function is the function used to
stores the standard matrix, C, and calls on the three functions choldc(), tred2(), and tqli(). The
pythag() function is the Pythagorean function.

class Supports

{
private:
int restrain[MSize];
public:
Supports(int);
void Get boundary conditions();
int Boundary Condition(float{ MSize][MSize],float| MSize][MSize]);
}5
The Supports class is used to store the restraint information in the restrain array. The
Get_boundary conditions() function is used to input the boundary conditions. The

Boundary Condition() function is used to apply the restraints to the global stiffness matrix and
the global geometric stiffness matrix.

The source files must now be written to add the implementation to the classes. Since the
original program provided all of the necessary functionality, the original member functions

should remain the same. However, these functions have to be carefully checked to make sure

118

that any reorganization of the program’s structure does not change the member function’s
implementation.

The compiler used to compile and execute all of the source code for this project is
Microsoft’s Visual C++ Version 6.0 complier. Once all of the code is complete to implement the

program, the process may move into the final stage of development.

9.4.4 Transition

The transition phase is the last stage in the design process. There is no functionality added to the
program at this stage. The changes to the program should be focused on testing and fixing bugs.
The goal of the transition phase is to ensure that the product is ready to be released. In this stage
the testing was done using examples that were tested on the original programs to obtain the
desired results. Since the functionality of the program is not intended to change, the examples
should provide the same results for both the original program and the refactored program.

As discussed the Section 9.2, the Frame and LBuck programs execute off of a text input
file. The programs scan the input from the file and use it to perform the analysis on the structure.
The text input files for the programs are automatically formatted correctly when running the
entire program through the Project interface, and the text files are viewable prior to the analysis
execution in the Project program. However, the LBuck and Frame programs may execute by
themselves if an input text file is located in the same directory as the executable programs. This
method was used to perform all of the testing on the refactored LBuck and Frame programs.
Once the programs were executed, the text file output was compared to the output obtained from

the original program.

119

The format of the text input files used for the LBuck and Frame programs are found in
Appendix C. When running a buckling or prebuckling analysis, the only file for executing the
Frame program needs to be used as the input file. The Frame program will automatically create
either the buckling or prebuckling input file used for the LBuck program. The buckling and
prebuckling input file for the LBuck program are shown only for reference and do not need to be
used to run the program. When running a non-dimensional analysis the input file for the LBuck
program for a non-dimensional analysis should be used. The output from the programs will be in
a file called Ibuck.ini.

Once the transition phase is complete, the program is ready to be distributed to the users.
The complete program code for the Frame program is in Appendix E, and the complet program

code for the LBuck programs is in Appendix D.

9.5 WINDOWS INTERFACE

9.5.1 Windows Programming

The user interface for the program was created as a Widows application. It was already
mentioned that Windows communicates with the program through the Windows application
programming interface (API). The Windows API functions were created to be used with all
programming languages including the traditional procedural languages, so they are not object-
oriented (Horton, 2003). However, Microsoft Visual C++ provides a set of classes called the
Microsoft Foundation Classes (MFC) that represents an object-oriented approach to Windows

programming with Visual C++ that encapsulates the Windows API (Horton, 2003).

120

The MFC provides all of the main classes needed for a Windows program. To create the
program, objects of the MFC classes or objects of classes derived from the MFC classes must be
used. The fundamental classes used in the program are shown in Figure 9.21.

The five classes along the bottom of the figure which are all derived from the CObject
class are the basic classes that are used to create the application. All of these classes are
provided by Visual C++ in a basic outline of a Windows program. This outline is the framework
for the application and requires customization of the data and member functions to make the

program work.

CObject <I_

CSeries

{> CCmdTarget {(}

CWinThread CDocument
[F /N
CWinnApp —> CWnd <—
CFrameWnd CDialog CView
CProjectApp CProjectWnd CProjectDialog CProjectView CProjectDoc

Figure 9.21 Project Program Class Hierarchy

121

The application class, CProjectApp, includes everything necessary to start, initialize, run,
and close the application (Horton, 2003). The frame window class, CProjectWnd, provides the
window for the interface. The dialog class, CProjectDialog, is used to create dialog boxes in the
application. The view class, CProjectView, is the class that contains everything that is displayed
in the client area of a frame window. Finally, the document class, CProjectDoc, is used to store
all of the data in the application with which the user interacts. These classes shown in the class
hierarchy are only a very small part of all of the classes within the MFC; however, it is not
necessary to understand all of the details of each MFC class in order to create the application.

The CSeries class, which is also derived from CObject as shown at the top of the figure,
is the class containing all of the data entered into the program by the user. This class was created
specifically for this program, unlike the other classes which are provided by Visual C++. This
class stores all of the data and is used to write the data to a text file in order to run the LBuck
program.

The CObject class is at the top of the MFC class hierarchy, and almost every class in an
MFC program is derived from it. The CObject class provides many levels of support to its
derived classes, such as it allows for support for dynamic object creation, support for runtime
class identification, and support for serialization. All of the derived classes inherit these

important properties from the CObject class.

9.5.2 Creating the Interface

The first step to creating the program is to decide how the program will operate. Once it is
decided how the user will interact with the program, the application can be created to provide the

necessary functionality. Use Cases will be used to describe the external functionality of the

122

system. The actor for the use case is the structural engineer using the program. The scenarios
for the interaction with the user include:

(1) The user needs to input the structure’s data into the interface. Each series of data is

input into a separate data series.

(2) The user needs to be able to edit each data series.

(3) The user needs to be able to view the input data file that is used to run the LBuck and

Frame programs.

(4) The user needs to be able to run the analysis.

(5) The user needs to view the results of the analysis.

The use case diagram is shown in Figure 9.22. The features of this use case diagram are
similar to those discussed in Section 9.4.2.

Several of the use cases have chunks of behavior that are similar across more than one
use case. Both the Create a Data Series and Edit a Data Series need to have the functionality of
entering data into the interface; therefore, there is similar behavior between the two use cases,
which may be extracted into its own use case called Data Entry. This is shown on the diagram
with the include relationship. The View Input use case and the View Results use case both have
the functionality of viewing a file. A View File use case was created and included in both of

these use cases.

123

Structural
Engineer

First, a general overview of the program will be discussed, and then the details of the

SYSTEM

©~ -~ __ <<include>>
Create a Data Series ~ 3 ©
-
-

:: _ - z&iﬁclude>> Data Entry

/Edit a Data Series

N

v
O
/

/

. ~ .
View Input = < <<include>>
~
~

~
~

~
D 2D
Run Analysis _ -~ View File

- .
P <<include>>
” -
-
-

\
\
\

;

View Results

Figure 9.22 Interface Use Case Diagram

design will be discussed. The program is designed as a single document interface, which means
that only one document may be open and viewed at a time. When the program is executed, the
user must create a new document or open an existing document. Then, the user may input the
data for the structure under analysis by creating or editing the data series. A data series is the
entire set of data for one analysis. Therefore, the user has the option of running several analyses

by entering in several series of data. For example, the user can analyze a particular structure

124

several times with a different number of elements for each analysis and then compare the results.
All of the user input is handled through dialog boxes. When all of the input is gathered from the
dialog boxes, the user may view the input file and then execute the flexural-torsional buckling
program. Once the LBuck and Frame programs have exectued, the user may view the results of
the analysis.

The framework of the program is created using the MFC AppWizard provided by Visual
C++ for a single document interface. This provides everything necessary to run the program.
The program needs to be customized to handle all of the actions discussed. First, new menu
items and functions handling the menu items are added. The user needs to be able to use the
menu to create a new project, open an existing project, save a project, etc., as shown on the pull
down menu in Figure 9.23. These menu items are all common to Windows applications and are
provided by the AppWizard. Only the functions handling these items need to be customized.
For example, when the File — New menu item is selected, the New Project dialog box needs to be
activated by the functions handling the menu item.

The menu also needs to include new menu items that are unique to this program, such as
entering in a new data series, editing a data series, viewing the input file, running the analysis,
and viewing the results. These menu items are shown in the pull down menus of Figures 9.24
and 9.25. All of these items are added to the basic Windows menu. The functionality handling
these menu items must be added and customized.

Next, several new classes are derived from the CDialog class to gather the user input.
When a new project is created, the New Project dialog box is displayed. This dialog box gathers

the name of the project and the type of analysis being conducted and is shown in Figure 9.26.

125

+= Untitled - Project
[N Edit Wiew Data Analysis Help

Mew
Cpen...
Jave
Save fs,.,

Print...
Print Preview
Print Setup. ..

Exit

++ Untitled -

Chrl-+M =
O
Chrl45
Chrl+P
Figure 9.23 File Menu

Project

File Edit View NEEEN Analysis Help

O ==

MNew Series IJ

Edit Series
YWiew Input File

Figure 9.24 Data Menu

126

#=Untitled - Project

File Edit V“iew Daka BEGEREE
1 = H Skart fnalysis

Analysis Resulks

Figure 9.25 Analysis Menu

X

Hew Project

Project Mame: ||

Type of Analysiz: ® el

" Prebuckling

" Non-dimenzional

0k, Cancel |

Figure 9.26 New Project Dialog

127

The next dialog box that gathers the user’s input is the new series dialog box. This dialog
box is different depending on the type of analysis. The dialog box for a buckling or prebucking
analysis is shown in Figure 9.27, and the dialog box for the non-dimensional analysis is shown in
Figure 9.28. The dialog boxes display all of the series data in Microsoft Hierarchical Flex Grid
controls. This data is gathered from smaller dialog boxes. Therefore, many member functions
are added to the dialog box classes to handle the user input and to handle the data between the
dialog boxes.

Figures 9.29 and 9.30 are two examples of the dialog boxes that are used to gather the
user input and then transfer it to the Microsoft Hierarchical Flex Grid controls. These two dialog
boxes are used to gather the joint data and the member load data. Other dialog boxes similar to

these are used to gather the member data and joint load data.

128

Buckling Analysis

Series Name: |

Joint Data: Humber of In-Plane Restraints: |0

Mumber of In-Plane Festrained Joints: |0

Add Joint Joirt

secood, | Y-coord,

Tz

Ty

R

Tw

Ry

Rz

Warping LS

Edit Jaint

[Delete Joint

i

tember Data:

Add bember

i

tember

Start Mode |End Node

Area

Edit Member

Delete Member

|

Load Data:

Add Joint Load ‘

Joint Load

Fy

bl

Height

Add Member Load |

Ecit Joint Load ‘

fember

Type

M agnitude

Height

Location

Edit Member Load |

Delete Joint Load |

Delete Member Load ‘

Cancel

(<]

Figure 9.27 Buckling Analysis Dialog

129

Non-Dimensional Analysis

Series Mame: |
Joint [ata:
Joint Tw Ry Rz Rw ~
©
Add Jaint E dit Joint Delete Joint
Member D ata:
Start Mode |EndMode |g a P 8 “p F b1 W1 Angle ~
s
&dd Member E dit tember Delete Member
’Tl Cancel

S

Figure 9.28 Non-Dimensional Analysis Dialog

130

Joint Data

F

akK
Joink Mumnber:
% Cancel

#-coordinate:

-zoordinate:
In-Plane Restraints

| Translation z | Tranzlation y | Rotation x
Out-of-plane Festraints

[Translations [Rotationy | Rotaionz | Warping

Figure 9.29 Joint Data Dialog

Member Load Data

kMember Humber: |

Load
"~ Concentrated Load

" Distributed Load

k agnitude:

Ii
Load Height: |

£

Location along member [concentrated loads only): |

OE.

Cancel |

Figure 9.30 Member Load Dialog

131

In the program, a CSeries object is created each time the user finishes entering in a series
of data. These objects are created dynamically and stored in an array. When a project is closed,
the data must be stored in the CSeries object and reloaded when the project is opened again. To
store the CSeries object, it must be written to a file; however, writing an object to a file is not as
simple as writing a variable of a basic data type to a file. Writing an object to a file involves a
process know as serialization. Serialization is necessary to store an object so that it may be
loaded later. When an object is serialized, information about the object and data about the object
are written to the storage. Deserialization is the reverse process where the object is loaded and
created from the archive file.

Deriving the CSeries class from the CObject class allows the CSeries object to use the
serialization functions provided with the CObject class. The virtual serialize member function is
overridden to provide the functionality needed to serialize and deserialize the CSeries object’s
data. The data is serialized to a CArchive object. This class is a generic storage object, and in
this program it is attached to a memory location.

The insertion and extraction operators are overloaded to allow all of the object data to
easily be written to the archive file. Therefore, the CSeries object can be serialized and
deserialized using a similar syntax as writing a basic data type to a file. Operator overloading is
another important concept of object-oriented programming.

Operator overloading is a specific kind of polymorphism (Lafore, 2002). Operator
overloading is the ability for an existing operator, such as + or -, to operate on a user defined
type. Therefore, objects can use the operators in a similar way that the basic data types use the
operators. For basic data types, variables may be added together with simple arithmetic

expressions such as:

132

X=Y+3
where X and Y are of a basic data type such as integer. However, using existing operators on
user defined types does not work as easily because the compiler does not understand how to
operate on the objects. If the operator is overloaded by defining in the class how it should
operate on the object’s data, then two objects may be added together with the operator such as

ObjectC = ObjectA + ObjectB
where ObjectA, ObjectB, and ObjectC are all of the same user defined type. Overloading
operators makes the code much easier to read and more intuitive.

As mentioned, the program uses the CSeries object to write all of its data to an input file
for the LBuck and Frame programs. Functions are added to the program so that the user may
view the input file that will be used to run the LBuck and Frame programs. The user cannot
modify the input file as it appears in the view screen; however, the user does have the option to
go back and edit the input before running the program.

When the user selects the menu item to start the analysis, the Project program calls the
LBuck program, which calls the Frame program. When the programs are finished running, the
user may view the results of the analysis.

The Project program creates a user friendly Windows based interface for the lateral
torsional buckling analysis programs. This program has all of the functionality necessary to
create and store data files for the buckling programs, along with the ability to execute the
buckling analysis programs and view the results. The creation of this interface utilized the

Windows API functions in an object-oriented approach.

133

10.0 APPLICATIONS

This chapter presents 25 examples using the Lateral-Torsional Buckling Program. Section 10.1
considers a variety of examples conducting buckling loads analyses. Section 10.2 shows
examples considering the effects of in-plane deformations on the buckling loads of several
structures that were also considered without prebuckling effects in Section 10.1. Section 10.3

presents a variety of examples using the non-dimensional analysis.

10.1 BUCKLING LOAD ANALYSIS

10.1.1 Buckling Analysis Example 1

A simply supported beam subjected to equal end moments is shown in Figure 10.1. The beam is
a W12x120 section, and the properties for the beam are listed in Table 10-1. The simply
supported beams considered in this study are single span beams which are simply supported both
in-plane and out-of-plane. An in-plane simply supported beam is fixed against in-plane
transverse deflections, but it is unrestrained against in-plane rotations. An out-of-plane simply
supported beam is fixed against out-of-plane deflections and twist rotations, but is unrestrained
against minor axis rotations and against warping displacements.

The closed form solution of the critical moment for a beam of length L with simply

supported ends is given by (Bleich, 1952, p. 160)

134

T EI
M =—1/E[,GJ1/1+7Z'2 o 10-1

The results of a buckling analysis of the structure conducted with the program along with
the closed form solution of the critical moment are graphed in Figure 10.2. In this example, the
finite element solution converges to the closed form solution as the number of elements used
increases. The finite element representation with a single element gives an error of 12.7%. The
finite element representation with two or more elements gives an error of less than 0.46%.
Therefore, the finite element method gives the most accurate results when 2 or more elements are
used to model the structure.

In general, two or more elements should always be used to model each span of a structure
because the stiffness matrices used to calculate the flexural-torsional buckling load factor using
the finite element method are derived from a cubic displacement function. A cubic displacement
function can only have one inflection point, and often the most critical member of a structure
will buckle as if elastically restrained at both ends, so that it has two inflection points (Trahair,
1993). Studies conducted by Hancock and Trahair (1978) using a finite element analysis show
that using at least two elements will usually have errors less than 1%, which is shown in this

example.

C D

300"

Figure 10.1 Simple Beam with Equal End Moments

135

Table 10-1 Beam Properties for W12x120

E 30000 ksi
G 12000 ksi
I, 345 in*
I, 1070 in*
J 12.9 in*
Io 12400 in°

Buckling Load: Simple Supported Beam with
Equal End Moments

17000 -
— 16500 \ —&—— Finite Hement | ——
= \ Solution
o 16000
~ \ ------- Closed Form
~ 15500 Solution
=

15000 \E &

14500 T T T T 1

0 1 2 3 4 5
Number of Elements

Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments

136

10.1.2 Buckling Analysis Example 2

A WI12x120 cantilever beam with a concentrated load at the far end is shown in Figure 10.3.
The same structure properties are used for this example as in Example 10.1.1, as shown in Table
10-1. The concentrated load, P, is applied at a height ‘e’, which is equal to zero inches for this
example. A load height of zero implies that the load acts directly through the shear center of the
section.

A cantilever beam is considered to be fixed at the built-in support so that the in-plane
deflection and rotation is zero, and a cantilever beam is free at the other end so that it can deflect
and rotate in-plane. A cantilever beam is also restrained against out-of-plane deformations at the
support and unrestrained against out-of-plane deformations at the free end.

The solution obtained by the finite element buckling analysis from the program is
compared to the solution obtained by Trahair (1993, p. 175) from a finite element analysis with a
large enough number of elements to obtain a high level of accuracy. The results of a buckling
analysis conducted using the program along with the solution by Trahair are graphed in Figure
10.4. Since Trahair does not specify the exact number of elements used in his analysis, his result
is graphed as a single solution that is not associated with any particular number of elements. In
this example, the finite element solution obtained from the program converges to Trahair’s
solution when four elements are used to model the beam, which suggests that Trahair used at

least four elements in his solution.

137

A
\ 4

300"

Figure 10.3 Cantilever Beam with Concentrated Load

Buckling Load: Cantilever Beam with Concentrated

Load
115
110 h\ —e— Finite Element
105 \ Method
100 \\ Trahair (1993)
95

90 \
85 \

80 . J

75

70

0 1 2 3 4
Number of Elements

Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load

138

10.1.3 Buckling Analysis Example 3

A W12x120 continuous beam subjected to a concentrated load and a distributed load is shown in
Figure 10.5. The properties of this structure are the same as those used in Examples 10.1.1 and
10.1.2, as shown in Table 10.1. The magnitude of the distributed load per unit length is equal to
1% of the concentrated load. The beam is fully restrained from in-plane displacements, in-plane
rotation, out-of-plane displacements, twisting rotation, minor axis rotation, and warping
displacements at the far left support. The two roller supports are restrained against only in-plane
transverse displacement, out-of-plane displacements, and twist rotations.

For the first part of the example, the load heights ‘a’ and ‘e’ are both considered to be
equal to zero inches, which indicates shear center loading. The results of a buckling load
analysis conducted with the program are graphed in Figure 10.6. The number of elements
graphed represents the total number of elements used for the structure. This example does not
have a reference solution; however, the convergence of the results can be seen by a small
variation of the buckling load as the number of elements increases.

The difference in buckling load between the 2 element and 4 element structure is 47%.
Since the beam is composed of two spans, using only two elements for the total structure
provides only one element per span. As mentioned in example 10.1.1, the most accurate results
are obtained when at least 2 or more elements per span are used when a cubic displacement
function is assumed. The difference in buckling load between the 4 element and 6 element
solutions is 0.9%. The difference in buckling load between the 6 element and 8 element
solutions is 0.18%. Therefore, the smallest variation in buckling loads occurs when at least 4

elements are used for the structure, which is equivalent to two elements per span.

139

P
l I

A 4
B ————— .
/
| /7% / o
150" | 150" | 300"
Figure 10.5 Continuous Beam
Buckling Load: Continuous Beam
450
2 400 AN
g \ —e— Finite Element
S 350 Solution o
IS
o \
© 300 -
= — o *
S
S 250
a]
200

2 4 6 8
Number of Elements

10

Figure 10.6 Buckling Load: Continuous Beam

140

For the second part of this example, the load height of each load was varied. Out-of-
shear-center loads may significantly affect the magnitude of the flexural-torsional buckling
loads. Transverse loads that are not applied at the shear center axis will produce a twisting
moment. This twisting moment will effect the torsional rotation of the structure.

The direction of the twisting moment due to the out-of-shear-center loads is controlled by
the value of the load height. If the load height is negative (i.e. below the shear center), the

twisting moment produced will oppose the twist rotations, ¢, to stabilize the structure and

increase the flexural-torsional buckling loads. If the load height is positive (i.e. above the shear

center), the twisting moment produced will amplify the twist rotations, ¢, of the beam and cause

the flexural-torsional buckling loads to be reduced.

To conduct a load height analysis on the continuous beam, a finite element analysis was
conducted considering 6 elements to model the structure. First, the distributed load was
considered to be fixed at a height of @ = 0 inches (i.e. shear center loading), and the load height
of the concentrated load, e, was varied from -10 to 10 inches in 2 inch increments. Next, the
concentrated load was considered to be fixed at a height e = 0 inches, and the load height of the
distributed load, a, was varied from -10 to 10 inches in 2 inch increments.

The results of both load height analyses are graphed in Figure 10.7. The results in Figure
10.7 show that varying the distributed load has a large influence on the flexural-torsional
buckling loads of the continuous beam. The flexural-torsional buckling loads are increased by
65% when the load height is decreased from 0 inches to -10 inches, and the flexural-torsional
buckling loads are decreased by 41% when the load height is increased from 0 inches to 10
inches. Varying the concentrated load height has a very small influence on the flexural-torsional

buckling loads.

141

Load Height Analysis: Continuous Beam
530
il 480 —— Concentrated Load |_|
% ' - 430 - - -m- - - Distributed Load
% “ 380 |
@
o -~ 330
e o o —28F- —— O o —— o
§ Tl
0 230 - a
> IS
o 180 &
‘ 130 ‘ T
-10 -5 0 5 10
Load Height (in.)

Figure 10.7 Load Height Analysis: Continuous Beam

10.1.4 Buckling Analysis Example 4

A portal frame with a concentrated load applied to the frame is shown in Figure 10.8. The
concentrated load is applied at the center of the top member. The frame is completely fixed to
the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement,
out-of-plane rotation, or warping displacement, and the members are rigidly connected together.
The frame data used is taken from Vacharajittiphan and Trahair (1973) so that the results
obtained from their study can be compared to the results of the finite element program. The
theoretical analysis presented by Vacharajittiphan and Trahair (1973) was developed using the
finite integral method, which is another type of numerical technique that can be used to solve

complex differential equations. Vacharajittiphan and Trahair conducted tests on two small scale

142

portal frames to verify their theoretical analysis. The frames were made of high strength
aluminum I[-section extrusions with the properties listed in Table 10-2. The experimental checks
conducted on the frames were in close agreement with their theoretical predictions; therefore, the
theoretical predictions are compared to the results of the finite element program to check if the
program provides acceptable results.

The results of the finite element method considering 3 to 8 elements are graphed in
Figure 10.9. The number of elements graphed represents the total number of elements used to
model the structure. The results of the finite integral method are not associated with any specific
number of elements. The finite element method converges to the finite integral method results as
shown in Figure 10.9. Considering only three elements to model the structure for the finite
element method provides inaccurate results in comparison to the finite integral method, and
using at least four elements provides acceptable results with little variation in buckling load with

an increase of the number of elements.

14.56"

S
B 150 | 15"

l V|‘ >

Figure 10.8 Portal Frame with Concentrated Load

143

Table 10-2 Frame Properties

El, 1.85 kip- in®

E I, 27.2 kip- in’

GJ 0.219 kip-in®

El, 0.15 kip-in*
a 0.312 in

Buckling Load: Portal Frame with Concentrated

80 Load
70 \ —e— Finite Element
60 Method |
50 \ —-— Finite Integral | |
o 40 \ Method

30 \
20 - - —*
10

0 ‘ ‘ ‘

2 4 6 8

Number of Elements

Figure 10.9 Buckling Load: Portal Frame with Concentrated Load

144

10.1.5 Buckling Analysis Example 5

A portal frame with three concentrated loads is shown in Figure 10.10. The concentrated loads
are applied at the connections of the beam and columns and at the center of the top member. The
frame is completely fixed to the base so that there is no in-plane displacement, in-plane rotation,
out-of-plane displacement, out-of-plane rotation, or warping displacement, and the members are
rigidly connected together.

The frame data used in taken from Vacharajittiphan and Trahair (1973) so that the results
obtained from their study can be compared to the results of the finite element program. The
frame is composed of I-section members and the properties used are the same as those used in
Example 10.1.4, as listed in Table 10-2.

The results of the finite element method considering 3 to 8 elements are graphed in
Figure 10.11. Once again, the number of elements graphed represents the total number of
elements used to model the structure, and the results of the finite integral method are not
associated with any specific number of elements. The finite element method converges to the
finite integral method results as shown in Figure 10.11. Considering only three elements to
model the structure for the finite element method provides inaccurate results. Using at least four
elements provides more acceptable results with little variation in buckling load with an increase
of the number of elements.

Comparing the results of Example 10.1.4 to this Example shows that adding two loads of
equal magnitude to the center load placed above the beam to column connections does not

significantly affect the flexural-torsional buckling load of the structure.

145

14.56"

S
b 15 | 15"

l V|‘

\ 4

Figure 10.10 Portal Frame with Three Concentrated Loads

Buckling Load: Portal Frame with Three
Concentrated Loads

70
60 \ —e— Finite Element |_|
\ Method

50 \ —— Finite Integral ||
_ 40 Method N
o

30 \

20 - pa— —e

10 |

O I I I
2 4 6 8 10

Number of Elements

Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads

146

10.1.6 Buckling Analysis Example 6

A two bay frame with two vertical loads is shown in Figure 10.12. The vertical loads are acting
at the center of the top members of the frame. The frame is completely fixed to the base so that
there is no in-plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane
rotation, or warping displacement, and the members are rigidly connected together. The frame is
allowed to sway in its plane. At each beam-column joint there is a lateral restraint to prevent
displacement in the direction normal to the plane of the frame. The beam-column restraint does
not restrain rotation about any axis. The two bay frame is composed of I-section members with
the cross-sectional properties listed in Table 10-3.

The frame data used is taken from Vacharajittiphan and Trahair (1975) so that the results
obtained from their study can be compared to the results of the finite element program. The
theoretical analysis presented by Vacharajittiphan and Trahair (1975) was developed using the
finite integral method. The accuracy of their method of analysis was studied by analyzing
previously solved problems.

The results of the finite element buckling analysis are graphed in Figure 10.13. The
solution obtained by the finite element method is compared to solution by the finite integral
method, which is not associated with any specific number of elements. The number of elements
graphed is the number of elements used to model the entire structure. The finite element method
gives inaccurate results when only five elements are used, which is only one element per
member. The finite element solution converges to the finite integral solution as the number of

elements used increases to 10, which gives acceptable results.

147

67.5"

S o

120"

120"

Figure 10.12 Two Bay Frame with Vertical Loads

Table 10-3 Two Bay Frame Properties

El, 372 kip- in®
El, 8228.9 kip- in’
GJ 7.98 kip-in®
El, 764 kip-in*

148

Buckling Load: Two Bay Frame with Vertical Loads
600
500 \ —— Finite Hement Method
Finite Integral Method
400 -
o 300 -
200 \.\’
100
0 T T T T T T
4 5 6 7 8 9 10 11
Number of Elements

Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads

10.1.7 Buckling Analysis Example 7

A two bay frame with two vertical loads and a horizontal load is shown in Figure 10.14. The
vertical loads are acting at the center of the top members of the frame. The frame is completely
fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-plane
displacement, out-of-plane rotation, or warping displacement, and the members are rigidly
connected together. The frame is allowed to sway in its plane. At each beam-column joint there
is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.
The beam-column restraint does not restrain rotation about any axis. The two bay frame is
composed of I-section members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

149

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral
method.

The results of the finite element buckling analysis using the program are graphed in
Figure 10.15 along with the results of the finite integral method. The finite integral method
solution is not associated with a particular number of elements. Using only 5 elements to model
the structure gives unacceptable results. The accuracy of the results increases as the number of
elements increases, and the solution of the finite element method converges toward the finite
integral method solution.

Comparing Example 10.1.6 to this Example shows that adding a horizontal load of equal
magnitude to the two vertical loads on the frame decreases the flexural-torsional buckling loads

of the structure.

67.5"

S S

120" 120"

A
A 4
A
A 4

Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads

150

Buckling Load: Two Bay Frame with Equal
Horizontal and Vertical Loads
400
5 350 b\ —&— Finite Eement
o 300
% 250 \ Finite Integral
S Method
Q. 200 -
(@)
£ 150
S 100 ¢
o
m 50
0 T T T T
4 5 6 7 8 9 10 11
Number of Elements

Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads

10.1.8 Buckling Analysis Example 8

A two story plane frame with two horizontal loads is shown in Figure 10.16. The frame is
completely fixed to the base so that there is no in-plane displacement, in-plane rotation, out-of-
plane displacement, out-of-plane rotation, or warping displacement, and the members are rigidly
connected together. The frame is allowed to sway in its plane. At each beam-column joint there
is a lateral restraint to prevent displacement in the direction normal to the plane of the frame.
The beam-column restraint does not restrain rotation about any axis. The two story frame is
composed of I[-section members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair

(1975) so that the results obtained from their study can be compared to the results of the finite

151

element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral
method.

The results of the finite element buckling analysis are graphed in Figure 10.17. The
solution obtained by the finite element method is graphed along with the solution by
Vacharajittiphan and Trahair (1975) from the finite integral method. The finite integral solution
is not associated with any specific number of elements. Using only 6 elements for the finite
element method gives inaccurate results with 124% difference between the finite element and
finite integral solutions. However, when the number of elements used is increased to 12
elements, the difference between the finite element and finite integral solutions drops to 1.38%.

Therefore, as the number of elements increases, the results become more acceptable.

P | -
> A
67.5"
P v
> A
67.5"
/__ \ 4
A 120" a

Figure 10.16 Two Story Plane Frame with Horizontal Loads

152

Buckling Load: Two Story Plane Frame Subjected
350 to Two Horizontal Loads

300 \ —e— Finite element| |

\ Method
------- Finite Integral

Pcr (Ibs.)
N N
8 B

N

(&)

o
!

100 T T T T

Number of Elements

Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads

10.1.9 Buckling Analysis Example 9

A two story plane frame with two vertical loads is shown in Figure 10.18. The vertical loads are
acting at the center of the beams. The frame is completely fixed to the base so that there is no in-
plane displacement, in-plane rotation, out-of-plane displacement, out-of-plane rotation, or
warping displacement, and the members are rigidly connected together. The frame is allowed to
sway in its plane. At each beam-column joint there is a lateral restraint to prevent displacement
in the direction normal to the plane of the frame. The beam-column restraint does not restrain
rotation about any axis. The two story frame is composed of I-section members with the cross-

sectional properties listed in Table 10-3.

153

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair
(1975) so that the results obtained from their study can be compared to the results of the finite
element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral
method.

The results of the finite element buckling analysis are graphed in Figure 10.19. The
solution obtained by the finite element method is graphed along with the solution by
Vacharajittiphan and Trahair (1975) from the finite integral method. As shown in Figure 10.19,
the finite element solution converges toward the finite integral solution. However, there remains
a 1.5% difference between the two solutions even as the finite element solution converges. This
difference is due to the load P being applied at the top flanges of the beam in the finite integral
study. Since the exact dimensions of the member cross-sections are not given in
Vacharajittiphan and Trahair (19975), the finite element method was conducted assuming the
load P acted through the shear center of the member. As discussed in the second part of
Example 10.1.3, if the load height is positive, (i.e. above the shear center), the twisting moment
produces will amplify the twist rotations of the beam and cause the flexural-torsional buckling

loads to be reduced.

154

67.5"

67.5"

A
\ 4

120"

Figure 10.18 Two Story Plane Frame with Vertical Loads

Buckling Load: Two Story Plane Frame Subjected to
Two Vertical Loads
180
170 —e— Finite Element| |
Method
160 .. N
------- Finite Integral
— 150 Method N
(7]
= 140 \
[&]
o 130
120 \: .
110
100 T T T T
6 8 10 12 14 16
Number of Elements

Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads

155

10.1.10 Buckling Analysis Example 10

A two story plane frame with two vertical loads and two horizontal loads is shown in Figure
10.20. The vertical loads are acting at the center of the beams. The frame is completely fixed to
the base so that there is no in-plane displacement, in-plane rotation, out-of-plane displacement,
out-of-plane rotation, or warping displacement, and the members are rigidly connected together.
The frame is allowed to sway in its plane. At each beam-column joint there is a lateral restraint
to prevent displacement in the direction normal to the plane of the frame. The beam-column
restraint does not restrain rotation about any axis. The two story frame is composed of I-section
members with the cross-sectional properties listed in Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair
(1975) so that the results obtained from their study can be compared to the results of the finite
element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral
method.

The results of the finite element buckling analysis are graphed in Figure 10.21. The
solution obtained by the finite element method is graphed along with the solution by
Vacharajittiphan and Trahair (1975) from the finite integral method. The finite integral solution
is not associated with any particular number of elements. The finite element solutions converges
toward the finite integral solutions, and the best results are obtained when at least 12 elements
are used to model the structure.

Comparing Examples 10.1.8 and 10.1.9 to this Example shows that the flexural-torsional
buckling load is the least when both horizontal and vertical loads are present on the frame. The
flexural-torsional buckling loads are the largest when only the horizontal loads are applied to the

frame.

156

A 4

67.5"

67.5"

A
\ 4

120"

Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads

Buckling Load: Two Story Plane Frame Subjected to
Equal Horizontal and Vertical Loads

300

—e— Finite Element

250
’\ Method

------- Finite Integral
Method

Pcr (Ibs.)
— — N
(o] ()] o
o o o
p

(&)
o

Number of Elements

Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and
Vertical Loads

157

10.1.11 Buckling Analysis Example 11

A two bay frame with two vertical loads is shown in Figure 10.22. The vertical loads are acting
at the center of the top members of the frame. The load on the left bay is twice the load on the
right bay. The frame is completely fixed to the base so that there is no in-plane displacement, in-
plane rotation, out-of-plane displacement, out-of-plane rotation, or warping displacement, and
the members are rigidly connected together. The frame is allowed to sway in its plane. At each
beam-column joint there is a lateral restraint to prevent displacement in the direction normal to
the plane of the frame. The beam-column restraint does not restrain rotation about any axis. The
two bay frame is composed of I-section members with the cross-sectional properties listed in
Table 10-3.

As in Example 10.1.6, the frame data used is taken from Vacharajittiphan and Trahair
(1975) so that the results obtained from their study can be compared to the results of the finite
element program. Vacharajittiphan and Trahair’s study was conducted using the finite integral
method.

The results of the finite element buckling analysis are graphed in Figure 10.23. The
solution obtained by the finite element method graphed along with the solution by
Vacharajittiphan (1975) from the finite integral method. The finite element solution provides the
best results when at least 6 elements are used. However, there remains a difference between the
finite element method and the finite integral method even as the finite element method
converges. The accuracy of the finite element method can be improved by increasing the
number of elements used to model the structure. Also, the models of the finite element method
and the finite integral method are slightly different because the finite integral method allowed for

warping at the beam member ends, whereas, the finite element method restrained warping.

158

I f

72"

72" 144"

S /77 o
|

Figure 10.22 Two Unequal Bay Frame

Buckling Load: Two Unequal Bay Frame with
Concentrated Loads

0 ’\ —e— Finite Element
% 7 \ Method
E 6 Finite Integral
S . \ Method
2, \
<, \\
~
S 2
@ S 3

0

4 5 6 7 8 9
Number of Elements

Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads

159

10.2 PREBUCKLING ANALYSIS

The effects of prebuckling deformations are usually excluded in flexural-torsional buckling
analysis. However, in the case where the ratios of minor axis flexural stiffness and torsional
stiffness to the major axis flexural stiffness are not small, the prebuckling deformations may
significantly affect the buckling loads (Trahair, 1993). The examples considered in this Section

are all examples considered in Section 10.1 for buckling analysis.
10.2.1 Prebuckling Analysis Example 1

This example refers to Example 10.1.1. The example is of a simply supported beam with equal
end moments as shown in Figure 10.1. The properties of the beam are given in Table 10-1. The
results of a buckling analysis considering the effects of in-plane deformations are graphed in
Figure 10.24. The prebuckling analysis is graphed with the results obtained from a buckling
analysis in Example 10.1.1 and with the exact solution for the linearized critical moment
considering prebuckling deformations. The linearized critical moment is obtained from the
Equation 10-2 (Pi and Trahair, 1992b)
M 1

M, [1, 2EL)\ GJ
1= -1+ B e | &L
I GJ)2EI

where M is the classical lateral buckling uniform bending moment not considering in-plane

(10-2)

deformations.

160

As shown in Figure 10.24, the in-plane deformations significantly increased the buckling
loads of the structure. The prebuckling deformations create a concave curvature for the beam
which increases its buckling resistance, similar to the convex curvature of an arch decreasing its
buckling resistance (Trahair, 1993). The in-plane deformations increase the flexural-torsional

buckling loads of the beam by 48%.

Effect of In-Plane Deformations Analysis: Simple
Beam with Equal End Moments

35000 —e— Buckling Analysis]

—#— In-Plane Deformations Included

30000 Exact Solution |

= 25000 | -\
— - L)
15000 — . _ .

10000 ‘ ‘ ‘ ‘

in)

Mcr (kip
N
o
o
o
o

Number of Elements

Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End
Moments

10.2.2 Prebuckling Analysis Example 2

This example refers to Example 10.1.2. The example is of a cantilever beam with a concentrated
load applied to the free end of the beam. The beam is shown in Figure 10.3, and the properties

are in Table 10-1. The results of a buckling analysis considering the effects of in-plane

161

deformations are graphed in Figure 10.25. The prebuckling analysis is graphed along with the
results obtained from a buckling analysis. As shown in Figure 10.25, the in-plane deformations
significantly increased the buckling loads of the structure by 47%. As discussed in Example

10.2.1, the curvature of the beam increases its buckling resistance.

Effect of In-Plane Deformations Analysis: Cantilever

with Concentrated Load
180

160 N

- - - - - - Buckling Analysis

—8— In-Plane

140 \ Deformations
n120

—0
L
100
80 * R R *
60 ‘ ‘ ‘ ‘
0 1 2 3 4 °

Number of Elements

Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load

10.2.3 Prebuckling Analysis Example 3

This example refers to Example 10.1.4. The example is of a portal from with a concentrated load
applied to the center of the top member as shown in Figure 10.8. The properties of the portal
frame are given in Table 10-2. The results of a buckling analysis considering the effects of in-
plane deformations are graphed in Figure 10.26. The prebuckling analysis is compared to the

results obtained from a buckling analysis. The in-plane deformations of the frame do not have a

162

significant affect on the flexural-torsional buckling loads of the structure. The flexural-torsional

buckling loads of the frame increased by 1% by considering in-plane deformations.

Effect of In-Plane Deformations Analysis: Portal
Frame with Concentrated Load

80

70 5\\ —&— Buckling Analysis

60

50 \\ —m— In-Plane Deformations
A 40 \\ Included

30 \

20 \ —— —3
10
0 ‘ ‘ ‘
2 4 6 8 10

Number of Elements

Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated
Load

10.2.4 Prebuckling Analysis Example 4

This example refers to Example 10.1.6. This example is of a two bay frame with two equal
vertical loads applied at the center of the top members. The frame is shown in Figure 10.12, and
the properties of the frame are given in Table 10-3. The results of a buckling analysis
considering the effects of in-plane deformations are graphed in Figure 10.27. The prebuckling

analysis is compared to the results obtained from a buckling analysis. The in-plane deformations

163

do not have a significant affect on the frame’s buckling loads. The flexural-torsional buckling

loads are increased by 4.7% by considering in-plane deformations.

Effect of In-Plane Deformation Analysis: Two Bay
600 Frame with Vertical Loads
- - - &- - - Buckling Analysis
500 '\\
400 : \\\ —8&— In-Plane
Deformations
o 300) Included
200 -
100
0 T T T T T T
4 5 6 7 8 9 10 11
Number of Elements

Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical
Loads

10.2.5 Prebuckling Analysis Example 5

This example refers to Example 10.1.7. The example is of a two bay frame with two vertical and
a horizontal load acting on the frame as shown in Figure 10.14. The properties of the frame are
shown in Table 10-3. The results of a buckling analysis considering the effects of in-plane
deformations are graphed in Figure 10.28. The prebuckling analysis is compared to the results

obtained from a buckling analysis. The in-plane deformations do not have a significant affect on

164

the buckling loads of the frame. The flexural-torsional buckling loads are increased by 4.7% by

considering in-plane deformations.

Effect of In-Plane Deformations Analysis: Two Bay
Frame with Vertical and Horizontal Loads
450
400 '\ - - - &- - - Buckling Analysis
350 S
300
N —#— In-Plane
o 250 \ Deformaions
200 N Included
150 \;
1004 T T8
50
0 T T T T T T
4 5 6 7 8 9 10 11
Number of Elements

Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and
Horizontal Loads

10.2.6 Prebuckling Analysis Example 6

This example refers to Example 10.1.8. The example is of a two story plane frame with two
horizontal loads as shown in Figure 10.16. The properties of the frame are given in Table 10-3.
The results of a buckling analysis considering the effects of in-plane deformations are graphed in
Figure 10.29. The prebuckling analysis is compared to the results obtained from a buckling

analysis. The in-plane deformations do not have a significant affect on the buckling loads of the

165

frame. The flexural-torsional buckling loads are increased by 4.5% by considering in-plane

deformations.

Effect of In-Plane Deformation Analysis: Two Story
Plane Frame Subjected to Horizontal Loads

350

K - - - ¢- - - Buckling
300 s

\ Analysis
250 "\\ —&— In-Plane

2 Deformations
o 200 - Included
150
100 T T T T
5 7 9 11 13 15

Number of Elements

Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected
to Horizontal Loads

10.3 NON-DIMENSIONAL ANALYSIS
10.3.1 Non-Dimensional Analysis Example 1

A simply supported beam with a concentrated load at the center is shown in Figure 10.30. The

load is applied at a height of e = 0. The beam is fixed against in-plane transverse deflections,

out-of-plane deflections, and out-of-plane twist rotations.

166

The results of a non-dimensional analysis on the structure are graphed in Figure 10.31 for
1, 2, and 3 elements. The finite element solution is compared to the solution by Trahair (1993, p.
132) to show that the finite element program provides similar results. Trahair also performed a
finite element analysis and used a large enough number of elements to obtain a high level of
accuracy. The solution converges to Trahair’s solution, and there is little variation in buckling
load with an increase in the number of elements when two or more elements are used. As
discussed in Example 10.1.1, two or more elements should always be used to model each

member when a cubic displacement function is assumed.

1 I

> L|A »
< V|‘ »

L/2 L/2

Figure 10.30 Simple Beam with Concentrated Load

167

Non-Dimensional Analysis: Simple Beam with
Concentrated Load

@
o

—— 1 Element

---m--- 2 Hement
3 Element
Trahair

~
o
L

(o2}
o
L

a
o
L

P, L2/(ELGI)

0 0‘.5 1 115 é 2i5 3
K=(rE |, (GILZ))V2

Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load

10.3.2 Non-Dimensional Analysis Example 2

A simply supported beam with equal end moments is shown in Figure 10.32. The simply
supported beam is fixed against in-plane transverse deflections, out-of-plane deflections, and
out-of-plane twist rotations.

In the first part of the example, the results of a non-dimensional analysis on the structure
are graphed in Figure 10.33 for 1, 2, 3, and 4 elements for the case of simple end supports. The
finite element solution is compared to the solution by Trahair (1993, p. 128) using the finite
element method to show that the finite element program provides similar results. Trahair used a

large enough number of elements to obtain a high level of accuracy. The solution converges to

168

Trahair’s solution, and there is little variation in buckling load with an increase in the number of

elements when two or more elements are used.

C D

Figure 10.32 Simple Beam with Equal End Moments

Non-Dimensional Analysis: Simple Beam With End

Moments
14
—o— 1 Element

12 —m— 2 Element
gﬁ 10 3 Element
T 4 Element /'///
= 8
J
=

—x— Trahair /éx/
6

2.5 3

1 1.5 2
K=(rEl/(GIL?))Y?

Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments

169

In the second part of the example, the case of a simply support beam with rigid end
restraints (u'= ¢'=0) is considered. The results of a non-dimensional analysis on the structure
are graphed in Figure 10.34 for 3, 4, and 12 elements. The finite element solution is compared

to the solution by Trahair (1993, p.157) using the finite element method to show that the finite

element program provides similar results.

Non-Dimensional Analysis: Simple Beam with End
Moments and End Restraints
45
40 —e— 3 Element
35 —m— 4 Element g
>
S 30 12 Element e
() . /
% 25 Trahair /"
3 20 1 /
10 v
0 T T T T T
0 0.5 1 1.5 2 2.5 3
K=(nEl, /(GIL?))v2

Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End
Restraints

10.3.3 Non-Dimensional Analysis Example 3

A cantilever beam with a concentrated load at the end is shown in Figure 10.35. The cantilever

beam is considered to be fixed at the built-in support so that the in-plane deflection and rotation

170

is zero, and the cantilever beam is free at the other end so that it can deflect and rotate in-plane.
The cantilever beam is also restrained against out-of-plane deformations at the support and
unrestrained against out-of-plane deformations at the free end.

The load is applied at a height of @ = 0. The results of a non-dimensional analysis on the
structure are graphed in Figure 10.36 for 1, 2, and 3 elements. The finite element solution is
compared to the solution by Trahair (1993, p. 175) using the finite element method to show that
the finite element program provides acceptable results. The finite element solution using the
program converges to Trahair’s solutions with little variation in buckling load with an increase in

the number of elements used when there are at least 2 elements used to model the structure.

s

A
A 4

Figure 10.35 Cantilever Beam with a Concentrated Load

171

Non-Dimensional Analysis: Cantilever with
Concentrated Load

-
(o]
!

S

=

Q

T —e— 1 Element

~ 8

Nﬁ 6 —m— 2 Element
4 3 Element
2 Trahair
0 T T T T T 1

0 0.5 1 1.5 2 25 3

K=(nElw/(GJIL?)Y?

Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load

10.3.4 Non-Dimensional Analysis Example 4

A simply supported beam with equal and opposite end moments is shown in Figure 10.37. The
simply supported beam is fixed against in-plane transverse deflections, out-of-plane deflections,
and out-of-plane twist rotations.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.38 for
1,2, 3, and 4 elements. The finite element solution is compared to the solution by Trahair (1993,
p. 131) using the finite element method to show that the finite element program provides
acceptable results. The finite element method using the program agrees with Trahair’s solution

using the finite element method when at least 4 elements are used to model the structure.

172

Figure 10.37 Simple Beam with Equal and Opposite End Moments

Non-Dimensional Analysis: Simple Beam with
Opposite End Moments

25
—e— 1 Element /*
—&— 2 BElement
N 20 1 1
S 3 Element |
8 15 | 4 Element
> .
w —¥— Trahair
= 10 -
S
=
5 1
O T T T T
0 0.5 1 1.5 2 2.5

K=(rEl,/(GIL?))"?

Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments

173

10.3.5 Non-Dimensional Analysis Example 5

A cantilever beam with an end moment applied is shown in Figure 10.39. The cantilever beam is
considered to be fixed at the built-in support so that the in-plane deflection and rotation is zero,
and the cantilever beam is free at the other end so that it can deflect and rotate in-plane. The
cantilever beam is also restrained against out-of-plane deformations at the support and
unrestrained against out-of-plane deformations at the free end.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.40 for
3 and 4 elements. The finite element solution is compared to the solution by Trahair (1993, p.
179) using the finite element method to show that the finite element program provides acceptable

results.

e —— __.3

A
A 4

Figure 10.39 Cantilever Beam with End Moment

174

Non-Dimensional Analysis: Cantilever with End
Moment
4.5
4 —e— 3 Element ,
s« 35 —a—4 Element "
) Trahair
o 3
_IB : "
= 2 &
—
1.5
1 1 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5
K=(rEl, /(GIL2))¥2

Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment

10.3.6 Non-Dimensional Analysis Example 6

A simply supported beam with a distributed load applied at a height of @ = 0 is shown in Figure
10.41. The simply supported beam is fixed against in-plane transverse deflections, out-of-plane
deflections, and out-of-plane twist rotations.

The results of a non-dimensional analysis on the structure are graphed in Figure 10.42 for
4 elements. The finite element solution is compared to the solution by Trahair (1993, p. 135)
using the finite element method to show that the finite element program provides acceptable
results. If more than 4 elements are used to model the structure, the accuracy of the finite
element solution using the program will be improved and will continue converge to Trahair’s

solution.

175

N

o

Figure 10.41 Simple beam with Distributed Load

Non-dimensional Analysis: Simple Beam with
Distributed Load

100

—o— 4 Blement

| | —m— Trahair

qL3/(ElyGIHM?
3

0 0.5 1 1.5 2 2.5 3 3.5

K=(nEl,/(GIL?))"?

Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load

10.3.7 Non-Dimensional Analysis Example 7

A cantilever beam with a distributed load acting at a height ‘a’ is shown in Figure 10.43. The

effect of load height was considered in this example. The non-dimensional load height is

176

represented by ‘2a/h’, where the load height ‘@’ equal to ‘-A/2’ indicates a top-flange loading.
On the contrary, ‘a’ equal to ‘4/2’ indicates a bottom-flange loading. The cases of top flange
loading, bottom flange loading, and shear center loading are all considered and graphed in Figure
10.44.

As discussed in Example 10.1.3, a load height below the shear center of the member will
produce a twisting moment to oppose the twist rotations and stabilize the structre so that the
flexural-torsional buckling loads are increased. A load height above the shear center of the
member will produce a twisting moment to amplify the twist rotations and cause the flexural-
torsional buckling loads to be reduced.

The solution can be compared to a solution obtained by Trahair (1993, p.176) using the
finite element method. Although the solution obtained by Trahair is not graphed in order to
make the graph as clear as possible, the finite element solution in Figure 10.44 agrees with the
solution obtained by Trahair, and the accuracy of the solution may be increased by increasing the

number of elements used to model the structure.

—
—
—
—
—

Lo
]
—
—
]
—
| |lg

A
A 4

Figure 10.43 Cantilever Beam with Distributed Load

177

Non-Dimensional Analysis: Load Height Analysis of
Cantilever with Distributed Load

120 |
100 —&— Shear Center Load
—=&— Top Load
80 P
Bottom Load
60

qL%/(ElyGI)M?

0 ‘

0 0.5

1
K=(rEl /(GIL?) >

Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load

178

11.0 SUMMARY

As the demand on existing engineering software applications increases, these applications must
be modified to incorporate new technology, new types of structural models, and new analysis
and design procedures. Object-oriented software development is a useful tool in engineering
applications to increase the flexibility of the software applications. An object-oriented design of
an existing flexural-torsional buckling analysis program was presented in this study.

The study began with the derivation of the energy equations to calculate the elastic
flexural-torsional buckling loads of a beam-column element. The total potential energy equation
was derived for the flexural-torsional buckling of a beam-column by summing the strain energy
and the potential energy of the external loads. The derivation was based on the second variation
of the total potential energy equal to zero, which indicated the transition from a stable to an
unstable configuration.

The energy equations were then used in conjunction with the finite element method to
derive the element stiffness and geometric stiffness matrices of the beam-column element. Cubic
polynomials were assumed for the displacement functions. The shape functions were used along
with the energy equation to derive the element stiffness and element geometric stiffness matrices.
The transformation matrix was applied to both the element stiffness and element geometric
stiffness matrices to convert them from a local coordinate system to the global coordinate
system. The individual global element stiffness matrices were summed to provide the global

stiffness and global geometric stiffness matrices of a structure.

179

The final equation for calculating the flexural-torsional buckling loads of a beam-column
element was in the form of a generalized eigen-value equation. This equation needed to be
converted to a standard eigen-value equation using the Cholesky method. Householder’s method
was used to change the standard matrix into a tridiagonal matrix. The eigen-value of the
tridiagonal matrix was calculated using QL iteration. The buckling parameter is the inverse of
the smallest eigen-value.

The finite element method is compatible with software development so that computer
technology was utilized to aid in the analysis process. An easily modifiable object-oriented
application must allow for reuse of code and prevent small changes in one area of the program
from having a ripple effect throughout the entire program. An existing software package that
used the finite element equations of a beam-column element to calculate the flexural-torsional
buckling loads of a plane frame structure needed to be modified into an object-oriented program
to increase its flexibility and to allow for future modifications. The original program was not
object-oriented and not user friendly. Object-oriented technology was applied to the existing
flexural-torsional buckling program by refactoring the existing program.

First, the basic system requirements were determined. Next, models were built from the
existing software to communicate the old design. New models were created considering object-
oriented concepts to communicate the new software structure. The models considered included
the use case diagram, the class diagram, the sequence diagram, and the activity diagram. Then,
the program code was changed from an older procedural structure to an object-oriented structure
reflecting the object-oriented models. Finally, a new object-oriented Windows application user
interface was created using the Microsoft Foundation Classes to make the program more user

friendly.

180

Several examples were presented to compare the results of the software package to
existing solutions. The finite element method always predicts a buckling factor that is greater
than the actual value. As the number of elements used to model the structure is increased, the
accuracy of the finite element solution can be improved. These examples show that the program
provides acceptable results when analyzing a plane frame structure subjected to concentrated

moments and concentrated, axial, and distributed loads.

181

APPENDIX A

DERIVATION OF THE ROTATION TRANSFORMATION MATRIX

The derivations in this Appendix are taken from Torkamani (1998). Figure A.1 shows a
point P with coordinates (fc,)?,2) with respect to the fixed, global, right-handed coordinate
system oxyz. When point P moves to point Q, the movement may be described in two stages: (1)
point P translates to point R where the distance is described by the translation vector d, and (2)
point R rotates to point Q through the angle 6 about the axis of rotation AB which is parallel to

the translation vectord . The final position is point Q with coordinates of (x, y, z) with respect to

the oxyz coordinate system.

v

vy

Figure A. 1 Rigid Body Movement from Point P to Q

182

The coordinates of point Q, (x, y, z), need to be calculated from the coordinates of point
P, (fc,)7,2), the translation vector d , the directional cosines of the axis of rotation 4B, and the

rotational angle 6. The axis of rotation, AB, passes through the point 4, which has coordinates
(a, b, ¢) and has direction-angles of a, £, and y with respect to the oxyz coordinate system. Points
Q and R are located in a plane perpendicular to the line 4B. A unit vector N on the axis of
rotation 4B has the same directional cosines as the rotation angle @ and is given by

—_—

N:cosaf+cos,8]+cosyl€ (A-1)

The vector @ may be broken into its vector components expressed by

00 = oR+RL+LO (A-2)
Therefore, the vector 06 may be found by determining each of its components,o_lé , ﬁ, and

LQ in terms of the coordinates of point P, the components of a translation vector d , direction

cosines of the axis of rotation 4B, and rotational angle 6.

A.1 VECTOR OR

The point P translates to the point R with coordinates (&, n,) with respect to the oxyz coordinate

system. The coordinates of point R may be expressed in terms of the coordinates of point P and

the translation vector d as

& =f+dcosa (A-3)
n=y+ #cosﬂ (A-4)
§:2+cfcos7/ (A-5)

183

A.2 VECTOR RL

The point K shown in Figure A.1 is the projection of points R and Q on the axis AB. The vectors

KR and KQ are equal in magnitude and are radii of the rotation about AB, where the rotation

angle, 0, is the angle RI%Q. The point L shown in Figure A.1 is the projection of the point Q on

the line KR. The vector KR may be defined as

KR = AR — AK (A-6)
or
KR=[¢~a)T+(n-b) j+(¢ ~c) k|- 4K (A7)

Vector AK is the projection of AR on line AB. Therefore, AK = AR-N and

\——>

4K = (47 N] N (A-8)

—_

By considering the components of vectors AR and N , Equation A-8 may be expressed as
AK =[(& —a)cosa + (= b)cos B+ (¢ = ¢)cos y] (cosa i +cosf j+cosy E)
(A-9)
Substituting Equation A-9 into A-7 gives
KR = (£~ a)-cosa((£ - a)cosa+ (7~ b)eos +(¢ ~c)eosy) |7
+[(7-b)-cos p((& - a)cosar+ (n ~ b)eos p+(¢ —c)eos) | 7

+[(g”—c)—cosy((f—a)cosa+(77—b)cosﬂ+(§—c)cosy)] k (A-10)

The vector RL may be written as

184

—_—

RL = RK — LK

_—

RL:—ﬁ+ﬁcose

_—

RL =—(1—cos 0)@

(A-11)
(A-12)

(A-13)

Substituting Equation A-10 into Equation A-13 gives

—_—

RL = —(1-cos6) [(& —a)-cosa((&—a)c

~(1-cos6) | (-b)-cos p((¢ -

—(1-cos®) [(& —c)—cosy((& —a)cosa + (17— b)cos B +(¢ —c)cos y)] k

osa +(17—b)cos B+ (L —c)cosy)] i

a)cosa + (77 - b)cosﬂ + ({ - c)cos 7/)]]

—

(A-14)

A.3 VECTOR LQ

By definition of vector cross-product

Nx AR = (¢ —c)eos f—(=b)cosy] 7 +[(£ —a)eos y = (¢ —c)eosa] j

+[(7-b)cosa — (& —a)eos 5] k
and
‘Nxﬂé — ARsin KAR
From triangle ARK,

ARsin KAR = KR

Therefore,

‘NXAR

185

(A-15)

(A-16)

(A-17)

(A-18)

A unit vector, NLQ , in the direction LQ is defined as

—~ NxA4R

Nip =1—— (A-19)
‘N x AR‘
Substituting Equation A-18 into A-19 gives
— Nx4R
N = A-20
0= (A-20)
Substituting Equation A-15 into Equation A-20 gives
7 1 < -
Nig = E{[(é” - C)Cosﬂ - (77 - b)cos y/] i+ [(5 - a)cosy - ({ - c)cos a] Jj
+[(n—b)cosa — (& —a)cos] lg} (A-21)
Since
LO =KQsin@ = KRsind (A-22)
the vector fQ may be expresses as
LO = KRsinON 1o (A-23)

From Equations A-21 and A-23, the vector L—Q may be written as

FQ =siné { [(¢ = c)cos = (7 —b)cosy] i +[(& —a)cosy — (£ —c)cosar]

+[(7—b)cosa— (& - a)cos] ¥ | (A-24)

A.4 FINITE DISPLACEMENTS TRANSFORMATION

To define the finite displacements transformation matrix, consider the x, y, and z components of

Eq. A-2 in the form of

186

x=E+RL, +L0, (A-252)
y=n+RL,+LQ, (A-25b)
z=C+RL + L0, (A-25¢)
Substituting in for vectors RL from Equation A-14 and LQ from Equation A-24 into A-25a to
A-25¢ gives
x= &~ (1-c056) (¢ - a)~ (¢ - a)cos’ @ — (7~ b)eosacos f - (¢ — c)eosacosy]
+sin6 [(¢ — c)cos B — (17— b)cosy] (A-26a)
v = 1-(1—c0s6) [(7- b)~ (¢ ~ a)cosacos f - (7~ b)eos’ - (¢ —c)eos feosy]
+sin@ [(£ —a)cosy — (¢ —¢)cosa] (A-26b)
s = ¢ ~(1-c0s6) [[£)~ (¢~ a)eosacosy (- b)eos feosy — (¢ —c)eos’ 7]
+sin6 [(7—b)cosa — (& — a)cos f] (A-26¢)
Substituting for &, #, and ¢ from Equations A-3 to A-5 into A-26a to A26c gives
x=%+dcosa—(1-cosd) |(£-a)sin’ @ —(§—b)cosacos B - (2 —c)cosa cosy |
+sin@ [(2 - c)cos B~ (- b)cos | (A-27a)
y=7+dcosB—(1-cosb) [— (% —a)cosacos f+(p—b)sin® (2 —c)cos/i’cosy]
+sin@ [(x —a)cosy — (¢ - ¢)cos] (A-27b)
z=2+dcosy—(1-cos) |- (£ — a)cosarcosy — (§ - b)cos Beosy + (£ —c)sin’ y |
+sin@ [(7—b)cosa — (% - a)cos] (A-27¢)

Equations A-27a through A-27c may be expressed in matrix form as the most general form of the

finite displacement transformation given by

187

X a| |dcosa X—-a
y|=|b|+|dcosp|+[T,]| 7-b (A-28)
z c dcosy zZ—c
where
cos@ + Ccos’ a Ccosacosff—sinfcosy Ccosacosy +sindcosf
[TR]= Ccosacos ff+sinfcosy cos@+ Ccos’ Ccos fcosy —sinfcosa
Ccosacosy —sinfcosf Ccosfcosy+sinfcosa cos@ + Ccos’ y
(A-29)
and
C=1-coséd (A-30)

A.5 ROTATION TRANSFORMATION MATRIX

For the special case of pure rotation transformation,d = 0 ; therefore, Equations A-3 to A-5

simplify to
F=i (A-31a)
n=y (A-31b)
£=2 (A-31c)
Using Equations A-31a through A-31c in A-26a through A-26¢ gives
x=%—(1-cos)|(Z—a)sin’ @ — (§ - b)cosacos B — (£ - ¢)cosa cos |
+sin@[(2 —c)cos f— (7 —b)cosy] (A-32a)
y=5-(1-cos0)(5—b)sin® B - (% - a)cosacos B — (£ —c)cos Beosy |
+sinQ[(% — a)cosy — (£ — ¢)cos] (A-32b)

188

z=2—(1-cos 6)[(2 —c¢)sin’ y — (% — a)cosacosy — (7 —b)cos Bcos 7/]
+sin@[(y —b)cosa — (% — a)cos] (A-32¢)
If the rotation axis AB passes through the origin, then ¢ =b=c=0 and Equations A-32a
through A-32¢ may be simplified to
X=Xx-— (1 - cosﬁ)[fcsin2 o —ycosacosf— 2cosacos7]+ sinﬁ[écosﬂ - j/cos;/]
(A-33a)
y=y-— (1 —Cos 0)[)7 sin® B — Xcosa cos B — 2 cos B cos ;/]+ sin 0[)2005;/ —ZCos a]
(A-33b)
z=2— (1 — cosﬁ)[fsin2 ¥y —XCOSQCOSy — j;cosﬂcosy]+ sin HUcosa - fccosﬂ]
(A-33c¢)
Equations A-33a to A-33¢c may be simplified using trigonometric identities and expressed as
x=X%—2sin’ g[)ﬁsin2 o —ycosacosf— 2cosacos7]+ 2sin§cos§[§cosﬂ — ycos 7/]
(A-34a)
. : Or. .
y = $—2sin’ g[ysm2 f —xcosacosf— zcosﬂcosy]+ 2sm§c055[xcosy — zcosa]
(A-34b)

.0 O, -
z= 2—2s1n2§ zs1n2y—xcosacosy—ycosﬂcosy]+ 2s1n500s5[ycosa—xcosﬂ]

(A-34c)

Equations A-34a to A-34c may be expressed in the following form

189

X = 1—2sin2gsin2a %+ 2Sin2€COSO{COSﬂ—2Sin€COSgCOS]/ P
2 2 2 2
+ (2 sin’ gcosa cosy + 2sin§cos§cos ,6’]2 (A-35a)
y= 2sin2gcosacosﬂ+2singcosgcos7/ %+ 1—2sin2gsin2,b’ P
2 2 2 2
+ (2 sin’ gcosﬂcos y=2 singcosgcos ajﬁ (A-35b)
z= (2sin2§cosacosy — 2sin§cos§cosﬂjfc

+ (ZSin2 gcosﬂcosy + 2sin§cosgcosajj/ + (1 —2sin’ gsin2 }/)2

(A-35¢)
For this special case of no translation and the axis of rotation 4B passing through the

origin o, then point A is at o. The coordinate system oxJZ is considered to be a moving

coordinate system that rotates with the point P about the line ob as shown in Figure A.2. The

coordinate oxyz represents a moving, local, right-handed coordinate system, and the initial
position of the coordinate is shown in Figure A.2. The oxyZ coordinate rotates about the line 0b
through the rotation angle & and goes to the final position oxpz so that the coordinates of point Q
with respect to the coordinate system oxyz after rotation are ()2, ,£) and with respect to the oxyz
coordinate system are (x, y,z). Then, Equations A-35a to A-35c¢ represent a rotation
transformation coordinate system with the direction cosines for the oxyZ system with respect to

the oxyz system shown in Table A-1.

190

v

vy

Figure A. 2 Rigid Body Rotation from Point P to Q

Table A- 1 Direction Cosines

X y z
x lx my Ny
y ly my ny
z L m; n;
where
.2 0 .2
[, =1-2sin Esm a (A-36)
., 0 .0 0
[, = 2sin® —cosa cos B — 2sin—cos—cos ¥ (A-37)
2 2 2
[. = 2sin’ gcosacosy + ZSingcosgcosﬂ (A-38)

m, = 2sin’ gcosacosﬂ + Zsingcosgcosy (A-39)

191

m,=1- 2sin2§sin2 p (A-40)

m, = 2sin2gcosﬂcos7—2singcosgcosa (A-41)
2 2 2
n, = 2sin’ gcosa cosy — 2Sin€COSgCOSﬂ (A-42)
2 2 2
n,= 2sin2§cosﬂcosy+ 2sin§cos§cosa (A-43)
. 2 0 . 2
n,=1-2sin Esm % (A-44)

Expressing Equations A-35a to A-35¢ in matrix form gives

= 0=
Il

o

= O

(A-45)

N
N>

where

[T]=|m, m, m (A-46)

The directional cosines of the unit vector N expressed in terms of the component of the rotation

vector 8 gives

0=0i+0j+0k (A-47)
and
0
cosa =— A-48
P ()
0
cos 3 = gy (A-49)

192

cosy =—= A-50
r= ()
2

Assuming small rotations such that sin@ =0andcosd =1— - gives

x — _j 6_22 _ 0 ery 6 exez _)2'_
2 2 Co2
6.0
yl=] 6. xz}’ 1 %—% 0. +2=| (A-51)
6.6. 6.0, 6> 6

193

11

12 =

15—

k33 -

k34 -

k37 -

12E1,
L3

_6FI,

-12£1,

_12EI,

N 6GJ
L3

SL

GJ 6EI,
=—+
10 I

_ —12E1, 6GJ

r 5

APPENDIX B

B.1 ELEMENT ELASTIC STIFFNESS MATRIX

194

P GJ | 6El,
* 100 I
4EI, 2GJL
kyy = —*+——
L 15
~-GJ 6EI,
ST
2EI, GJL
k48 = T
L 30
12E1
kss = I >
—6EI
k56 = I -
4E]
k66 = 17 -
12EI, 6GJ
by = —=+
L 5L
. _—GJ 6El,
10 I’
4EI, 2GJL
kg = —2 + =~
L 15

B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX

6F

81 :5_L
_F
4P 10

2 3 4 5 6
g = —6M, _ﬂ_ﬁ_ﬁ_ﬁ_ 6Pzp N 3Pzp _ 2Pzp _3Pzp N 12Pzp ~ 4Pzp

5L 70 10 10 5L I’ r 2! 50 51°

3 4 5 6
_-M, ~ qu _ Pz, . Pz, ~ 2Pzp 3Pz ~ 2Pzp

- , 3Pz,
S47750 w0 10 2 L 2l ¢
—6F
T
_ £
816 10
4 5 6
g ~OM, 17gL 1V, 11P 6Pz, 3Pz 12Pz 4Pz

5L 35 10 10 5L 2r 50 50°

-M, 3ql* Vv, PL Pz, Pz, 9Pz, 2Pz,
s = T Tt 5t 4 &ps
10 70 10 10 10 2L 10L' 5L

_2FL
82 15
—11M, 11gL? viL PL 11Pz, 2PZ; PZ; PZ; 13PZ; ZPZZ
823 = + - T +]/ 5 T V. 5
10 420 5 5 10 L L L 10L 5L
-2M L g} VI* P[> 2Pz, L 2Pz, 7Pz, 4Pz, Pz,
25 = L + -——try
15 210 30 30 15 3L 6L 5L 5L
-F
8 =

10

195

8 = 5

M, 23qI* V.L PL Pz, Pz, 13Pz 2Pz
g, =L AL A L kel
10 210 5 5 10 L 10L SL

4 5 6
ML N ql’ . Pz,L Pz, Pz, Pz

= +
57730 T210 30 3 20 S
2 3 4 5 6
g, = Pe+ 13gal _ 6Pizp N 4Pizp N 9Pizp B 12Pezp N 4Pezp
35 L L L r L
g = lgal’ | Pos 2Pez, 2Pez, .\ 8Pez, TPez, .\ 2Pez!
*210 roL r L r I
M 6Pz, 3Pz, 2Pz, 3Pz, 12Pz0 4Pz
R T e
5L 70 10 10 5L L L 2L 5L 5L
_-M, ligl’ WL PL Pz, Pz; Pz, Pz, 11Pz; 2Pz
836 = + + 2 5 4 75
10 420 10 10 10 L I* 20 10L' 5L
_ 9qalL N ?)Pezf7 _ 2Pez; _ 9Pez;§ N 12Pezf7 N 4Pez;
770 TP L L r I
_ —13qal’ _ Pez) . Pez) . 3Pez, ~ 5Pez) . 2Pez!
&5 =400 L I L L r
gal’ 4Pez> 6Pez! 4Pez) Pez’
g““:105+PeZ’2’_ L e T
3 4 5 6
g =M gl FPe, Pz, 2Pz, 3Pz, 2P,
10 140 10 L L 2L 5L
ML qU v’ P Pz,L Pz, 5Pz, TPz, Pz
u = + + + St — ;
30 8 30 30 30 3L 6 100’ 5L
g - 13gal’ | Pez, 8Pez, . TPez, 2Pez,
o400 0 P r r L

196

—qal’ Pez, 3Pez, 3Pez, Pez!
&4~ 7140 L I r I
_6F
8ss 5L
_-F
856 10
—-6M 6Pz 3Pz' 12Pz° 4P:°
g = 6 1_'_1761L_11V1+11P_ z, Zp+ z, 4Pz,

5L 35 10 10 5L 2! 50 51°

M, 3ql* V.L PL Pz, Pz, 9Pz, 2Pz,

= e +
2770 70 10 10 10 20 10 @ 5o

_2FL
86 15
11M, 79¢I*> 9V, 9PL 11Pz, Pz, 11Pz, 2Pz,
8o = - e
10 210 10 10 10 20 10L' 5L
g = oM\L 4qL VL' PL 2PzL Pz, .\ 2Pz, Pz
o8 15 105 10 10 15 6> 50 5o
13gal. 9Pez* 12Pez’ 4Pez®
87 = L + 2 b 5 =+ 6 .
35 L L L
~1lqa 15 3PeZ; SPeZ; 2Pez;
= — + J—
&7 210 L r 5
4 5 6
g = qaL3 Pez, ~ 2Pezp . Pez,

= +
105 I? r L

197

B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX

1 6K
ky =—+
100 2

2 4K?
ky=—+
s 22

-1 6K°

70 2

-1 2K°

48 :% e

ke =12

198

B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX

6F

8n _?
_F
4P 10

M, P g V 6Pz, __ _, 3Pz} 12Pz, 4Pz
g13=b——+i+£+ 5’7—3PE;+2PZ;+ 2”— 5‘”+ 5*”

D=5 D=6
— 3Pzp 2Pz »

=14+ —3 £ +
10 140 10 b p 2 5
- 6F

glsz?
_F

816 10

6

_—6M, 11P 17g 11, 6Pz, 3Pz, N 12PZ; 4Pz,

77750 T3s 10 s 2 5 5
M P 33 V Pz Pz 9pz 2pz°
o M _P 3 W P Pz, 9Pz 2P
10 10 70 10 10 2 10 5
_oF
g 15
M. P 11 V 11Pz — . _ . _ . 13pPz 2pPz¢
g =M P _Ug Vi 15 opr e pr o e 2
10 5 420 5 10 » » 0 5
_ — _ — =— =3 =4 D=5 D=6
g24:%_£_i+£+2pzp_2PZP+7PZP_4PZP+PZP
15 30 210 30 15 3 6 5 5

199

10
_-F
82 30
_-M, P 233 ¥ Pz, 5o, 13Pz; 2Pz,
2770 5210 5 10 ” 5
— — D D=4 p=5 p=6
gzg__Ml_ _PZP+PZP_PZP+PZP
30 210 30 3 2 5
PeK 13gak 6PeKz, 4PeKz, 9PeKz, 12PeKz, 4Pekz,
83 = + - + + - +
V4 357 V4 V4 V4 V4 Vs
|1gaKk PeKz, 2PeKz. 2PeKz, 8PeKz., 7PeKz, 2PeKz,
8 = + - - + - +
2107 V4 Vs V4 V4 Vs T
-6M, P g V, 6Pz, ., ___. 3Pz 12Pz, 4Pz
gu= L L 3pr opp T e T e T
5 10 70 10 5 2 5 5
M, P 17g V., Pz, —, —_, Pz} 11Pz, 2Pz
g36:—1+—+—q——1+—”—P2ﬁ+PZ’f+ L Ly—2
10 10 420 10 10 10 5
9gaK 3PeKz, 2PeKz, 9PeKz, 12PeKz, 4Pekz,
¥ 707 V4 Vs V4 V4 Vs
~13gak PeKz, PeKz, 3PeKz, S5PeKz, 2PeKz,
83 = B + + - +
4207 V4 V4 V4 V4 V4
gak PeKz, 4PeKz) 6PeKz, 4PeKz, Pekz,
8u = + - + - +
1057 V4 T Vs V4 T
-M, ¢ Pz, -, -, 3Pz, 2Pz
= - - +Pz° -2P7) +—2 — L
85770 140 10 ?) 5
7 B = i ps D3 D4 D=5 pzo
g46:—M1 P4 _V, Pz, Pz, 5Pz, TPz Pz

30 30 8 30 30 3 6 10 5

200

_13qaK 3PeKz, 8PeKz, TPeKz, 2Pekz,

= +
Eu 420 T T T T
—gak PeKz, 3PeKz, 3Pekz, Pekz,
84 = - + - +
140z T T T T
6F
855 = ?
856 = W
_6M, 11P 17 11/, 6Pz, 3Pz, 12Pz, 4Pz,
8s1 = + + + +
5 10 35 10 5 2 5 5
M. P 33 V Pz Pz' 9pz> 2pPz°
g58:ﬂ+£+3_q_ﬁ+ P _ p+ P _ p
10 10 70 10 10 2 10 5
_oF
86 15
o - ~11M, +£+79(7_9_171_11}_?2p Pz, +11}_)2; 2Pz,
o7 10 10 210 10 10 2 10 5
. :21\71 _E_ﬂ+z+2pzp +P2§_2P2; +P2§
15 10 105 10 15 6 5 5
13gak 9PeKz, 12PeKz, 4PekKz,
81 = + - +
357 T T T
~1lgak 3PeKz, 5PeKz, 2PeKz,
8 = - + -
2107 T T T
cak PeKz'® 2PeKz’ PeKz®
8gs = gak + L LS d
1057 T T T

201

B.S ELEMENT PREBUCKLING STIFFNESS MATRIX

—-6CEI, CGJ
k, = -
1)5 2L
6CEI, CGJ
k= 4
pis I 2L
P CGJ
P23 2L
-3CEI, CGJ
k, = -
24 LZ 4
k- -CGJ
27 2L
3CEI, CGJ
k= +—
P28 L2 4
. -CGJ
36 2L
6CEI, CGJ
k,, =—F2+—
45 L3 2L
-3CEI, CGJ
k= -
P46 L2 4
—-6CEI, CGJ
k, = -
58 L 2L
. CGJ
67 2L
_ 3CEI, . CGJ

P68 LZ 4

202

B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX

-6M,1, OMI, 9MGJ 3ql, qLl, 3qGJL VI, 6 3V,GJ
8ps = 3 + + + - + +
1L SIL 10EIL IL 701, 14EI, 101, 5EI,
6vl, —PI, 3PGJ 6PI, 6Pljz, 6Plz 9PGJz, 9PIz 3PIz
- 2+ - + = — + + + -
1 101, Sk, 1L IL s1.L 10elL LI .r
3 3 4 4 5 5 6 6
_24Plz, 2Pz, 15PLz, 3PlLz, 12PLz) 9PGJz, 4Plz) 3PGJz
21,1 510 10ELL 511 SEIL

+ +
1.r 1.r 1.1

M, MGT 4l | ql’l, 2qGJL W1, L IGIL 3PGIL
Eria 10/, 5EI. 21, 1401, 35EI, 21 L 20EI, 20EI,
2 3 3 4 4
Pl PLz, PGJE, 6Plz 14PlLz, Plz 5Pz, 2Pl
21 L 101, S5EI, 1.r 1L 1. 210 1.r

PGJz, 3Pl z, 3PGJz, 2Plz, 3PGJz,
+ - - + +
41 I} 21L' SEIL' 51 10EIL

_6M\1, 6MI, 9MGJ 3ql, 17qLI, 3¢GJL _1WI, 3V,GJ
ST P TsiL 10EIL 1L 351 14EI. 101 SEL

6v,l, 11PI, 3pGJ 6PI, 6Pl,z, 6Plz, 9PGJz, 9Pl
“+ + - 2+ - - -
1 101, Sel, 1L Il s51.L 10ELL IL'
24Pl 2 15Plz, 3Pl z, 12Plz 9PGJz, 4Pl _z, 3PGJz,
1.0 1L 21 L' 51 10ELL 5II° SEIL

+

M, 3MGJ 6M]1, 5ql, 3qCI, qGJL VIL 3VGJL
Sms =01, 10El, 1 21, 701, | 7EL 101, 10EL
1w, PLL 3PGJL 11PI, 6PLz, Plz, 3PGJz, 3PI,z,
21 L 101, 10EI, 2L 1> 101, 10EI, 1.r
10PI 2}

4 4 5 5 6 6

7, 15P[wzp N Plyzp _ 9PIyzp _ 3PGJZP N 2PIyzp N 3PGJZP
4 5 3 4 4 5 5

I L 21 L 21 L 10/ L 10EI L 51 L 10EI L

203

UMI, MGJ 3MI, 3ql, gL', 94GJI* VI,.L VGJL
g,.. = - - &+ - - + +
73101, 20EI, II* 21, 4201, 280EI, 5I, 20EI,

X X X

7vi, PIL PGJL 7PI, 6Pl,z, 11Plz, PGJz, 9Pl 2PIz

- - + —+ + 3
21L 5I, 20EI, 2IL 1L 10/, 20EI, I.L IL
3 3 3 4 4 4 5 5
14PI z, N Pl z, N PGJz, N 15P1,z, N Pl z, _ PGz, _ 13PI z, B 9PGJz,
1.r 1> 211> 200 1L 4ELL 10/ L' 20EIL
2Pl z5 3PGJz)
+
51.0 10EI.D

¢ - ML MGIL gL gL'l, qGJL .\ VAL JNGIE 31,
72151, 10EI, 31, 2101, 84EI, 301, 30EI, 4I,
il L pGJr ,3PL, 2PLz, 2PLlz, PGJlz, 11Pl,z, PGz,
301, 30EI, 4l 1L 151, 10EI, 21> 4EI,
_8PLz, 2Pz . PGJz, . 15P1,z, . TPl,z, Plz . 3PGJz,
1.r 3L 3EIL ALY 6l S5IL' 20EIL

-M\I, MGJ 3MI, 3qI, 23qL’1, 94GJI* ViI.L VGJL
+ + - + + - -
10/, 20EI, 1> 21, 2101, 280EI, 51 20EI,
i, PI.L PGJL 7PI, 6Pl;z, Plz, PGJz, 9P,z 14PIz
+ <+ + - <+ - + - +
21L 5I, 20EI, 2L II* 10I, 20EI, IL 1L
3 4 4 4 5 5 6 6
_PGJz, 5Pz, Plz . PGJz, . 13P1,z) . 9PGJz, 2Plz, 3PGlz
2EI 210 1L 4EIL 10/ L' 20EIL* 51 10ELD

g!’27 -

-3Ml, MIL gLl 13¢GJL 13V,GJE 11, 13PGJL
1L 30/, 2101, 280EI, 120EI, 4, 120EI,
11PI, 4Pz, PI Lz, 3PGJLz, 7Pl 6Pl,z PGJz

+ < — - - + - +

41, I.L 301, 20EI 2117 1> 6EIL
4 4 4 5 5 6 6
ISPLz, PlLz, PG, Plz, 3PGJz, Plz 3PG,
41 L' 311 8EIL’ 2IL 20EILL 511 20ELL

g!’28 -

204

_6M1, M\, 9M\GJ 3ql, 4qLI, 3qGJL Vi, 3VGJ 6V,
8rss 1.’ SIL 10ELL IL 701, 14EI, 101, S5EI, 1L

X X X

PI, 3PGJ 6PI, 6Pl,z, 6Plz, 9PGJz, 9PIl,z 3Plz. 24Pl z
+ + - < - - -

Yy

2 + 3 4 2 + 5

10/, SEI, I.L 1L 5IL 10EIL IL 1L 1L
3 4 4 5 5 6 6
B 2Pl z, _ 15P1 z, _ 3Pl z, N 12PI z, N IPGJz, _ 4Pl z, _ 3PGJz,
.U 1L 21,1 51 10EIL’ 511 SEIL

M, 9MGJ 3MJ1, ql, 1791, 3qGJI* VI,L 3V,GJL
g, = + — SS+—+ - - +

P01, 20ElI, IL* I 4201, 28EI_ 10I, SEI

svi, PIL 3PGJL 5PI, 3Pl,z, Plz, 9PGJz, 3Plz PIz
- 2+ - + 2+ + + + -

2L 101, 10EI, 2IL IL* 10/, 10EI, 1.r I.L

0PL,z, Plz, 5Pz, Plz, 1Pl z, 9PGJz, 2Plz, 3PGJz

o“p o“p

+ - + +
1.r L 210 200 100L* 20ELL* 51 10ELL

X

M1, MGJ qI, 4L, L 24GIC _WGIL VI, 3PGIL
10/, 5EI. 21, 1401, 35EI, 20EI, 2IL 20EI,
2 3 3 4 4
PI, B Plyzp ~ PGJZP B P]wzp N 14P1pr N Plyzp B 15P1pr B 2P1yzp
s1.C 101, SEI. 1D 1.r' 1. 210 1.r
4 5 5 6 6
PGJZP 3Plyzp 3PGJZP 2PIyzp _ 3PGJZP

4EI L 21" SEIL' 51 10EIL

gp45 -

-MIL MGJL qI L qL'l, qGJI WVI,I' 3VGJ* VI,
+ + + - - + —
30/ 10EI, 61, 84 35EI_ 301, 40EI, 4l

PIL> 3pGJI*> PI, PI Lz, PGJLz, 2Pl G6Plz PIz
+ - +—=— + + - -
30/, 40EI, 41, 301, 10EI, 1. 1. 3L

4 4 4 5 5 6 6
15PI z N SP[yZp PGJZP _ 7PIyzp _ 3PGJZP PIyzp 3PGJZP

gp46 -

o“p

+ + +
41 611’ SEIL* 10IL° 10EI.L’ 511" 20EIL

205

_-6M1, OMI, OMGJ 3ql, 179LI, 3qGJL W1, 3V.GJ 6V,
Ers 1.r S5I.L 10EIL IL 351, 14EI, 10/, SEI, LI

1WPI, 3PGJ 6PI, 6Pl,z, 6Plz, 9PGJz, 9Pl 24Pl 15PIz,
- - + 2 — + + + - +
10/, Sl 1L 1L 51.L 10EIL 1L 1.0 1.1°
4 5 5 6 6
3PIyzp _ 12PIyzp _ 9PGJZP 4Plyzp 3PGJZP

+ +
21 51 10EI.L’ 511 SELL

-M\I, 3M,GJ 3M]I, 5qI, 3qL’l, qGJI* VI,.L 3V,GJL
+ + - + - - +
10/, 10EI, 11> 20, 701, 7EI, 101, 10EI,

X

1w, PIL 3PGJL 11PI, 6Pl,z, PIz,6 3PGJz, 3P,z 10PIz
+ 2+ - - <+ - + -
2L 101, 10EI, 2IL I.L* 101, 10EI, .U 1L
4 4 5 5 6 6
_ISPlLz, Plz, 9PLz, 3PGJ, 2Plz) 3PGJ

+ f—
21 210 101.L' 10ELL' SIL 10ELL

gPSS -

1M1, 9M,GJ 3MJI, qI, 7991, 3¢GJI*> OVI,L 3V.GJL
- + - + + - -
101, 20E1, I’ I, 2100, 28EI, 10/, 10EI,
svi, 9PIL 3pPGJL 3Pl,z, 3Plz 10PIz 15Plz, PIz,
+ 2+ + - - + - -
21,L 101, 10EI, LI .U 1L 21 210
5 5 6 6
11PI 2} . 9PGJz, 2Plz, 3PGz,
10/, L' 20EIL* 51 10EIL

g!’67 -

—3M,I, 2M\I,L 3MGJL 5qI L 4qLC1, qGJI' 3V,GJL* VI,
= + - + - + - -

HCIY 151, 20EI, 6I, 1051, 14EI, 20El, 4l
Vi 3pGgjrr 9pl, PII* 3Plz, 2PI Lz, 3PGJLz, PI,z,

+ + + < — - + - +
10/, 20EI, 41, 10/, IL 151, 20E1, 1L

3 4 4 5 5 6 6
_4PLz, 15PLz, Plz, 2Plz, 3PGJz, Plzy 3PG,
3 4 2 3 3 4 4

1L 411* 6l I 5IL 20EIL SIL' 20EIL

206

APPENDIX C

C.1 INPUT FILES

C.1.1 Input File for the Frame Program

The input file for the Frame program is the user input file. The format for the input file for the

Frame program for either a buckling or prebuckling analysis is:

‘B’ or ‘P’

Structure Name

1 #S

Series Name

Frame Analysis: (m, nj, nr, nrj)

#E #N #NR #NRJ

Joint Coordinates: (j, X(j), y(j))

XY *Coordinates of first joint
.......... *Coordinates of next joint
Member Data: (i, jj(i), jk(i), Ax(i), ly, Ix, Iw, E, G, J)

M#EJL 2 Aly Ix Iw E G J *Properties of first element
....................................... *Properties of next element
Joint Restraints:

J# R1 R2 R3 R4 R5 R6 R7 *Restraints of first joint
...................................... *Restraints of next joint
Loading Number: (nlj, nlm)

NLJ NLM

Joint Loads:

J# F P Mx e *First joint load
........................... *Next joint load
Member Loads:

M# Type Magnitude Height xp *First member load

... *Next member load

207

C.1.2 Input File for the LBuck Program

The input file used to calculate the buckling loads in the LBuck program is the output of the

Frame program. The format for the input file into the LBuck program for a buckling analysis is:

‘B> ‘I’ #S

Structure Name

#1

#E

EGIJIy Ix Iw L Ang J1 J2 *properties of the first element
qaPexpF Ml VI ¢ *loads for the first element
................................. *properties for the next element
.. *loads for the next element

R4 R5 R6 R7 *restraints for the first element
......................... *restraints for the next element
#E

EGIJIy Ix Iw L Ang J1 J2
qaPexpF MI VI ¢

...this pattern is repeated for each series...

208

The format for the input file into the LBuck program for a prebuckling analysis is:

‘PP ‘1’ #S
Structure Name

#1

#E
EGJIly Ix Iw L Ang J1 J2
qaPexpF Ml VI c

#E
EGJIly Ix Iw L Ang J1 J2
qaPexpF Ml VI ¢

...this pattern is repeated for each series...

209

*properties of the first element
*loads for the first element
*properties for the next element
*loads for the next element
*restraints for the first element

*restraints for the next element

The input for the non-dimensional analysis comes straight from the user input file. The non-
dimensional analysis does not use the Frame program to calculate in in-plane actions of the
structure. The format for the input file into the LBuck program for a non-dimensional analysis

1S:

‘N> #S Kmin Kmax Kstep

Structure Name

Series #1 Name

#E #N

qaPexpF Ml VI Ang J1 J2 *loads for the first element
... *loads for the next element
R4 R5 R6 R7 *restraints for the first element

.................. *restraints for the next element

...this pattern is repeated for each step in beam parameter...
Series #2 Name

#E #N
qaPexpF Ml VI Ang J1 J2

...this pattern is repeated for each step in beam parameter...

...this pattern is repeated for each series...

210

N’
#S

Kmin

Kmax

Kstep

Structure Name
Series Name
#E

#N

#NR

#NRJ

J#

M#

C.2 INPUT FILE SYMBOLS

Description

indicates a buckling analysis
indicates a prebuckling analysis
indicates a non-dimensional analysis
number of series

minimum beam parameter
maximum beam parameter

step of the beam parameter for each analysis
name of the structure

name of the series

number of elements

number of nodes

number of in-plane restraints
number of in-plane restrained joints
joint number

x coordinate of joint

y coordinate of joint

element number

element area

211

Symbol Description

E modulus of elasticity
G shear modulus
J uniform torsion (or Saint Venant) constant
Iy moment of inertia about the y axis
Ix moment of inertia about the x axis
Iw warping moment
L length of the element
Ang angle from the global coordinates to the element
1 first node of the element
J2 second node of the element
q distributed load
a height of the distributed load
P concentrated load
e height of the concentrated load
Xp distance along the element to the concentrated load from the first node
F axial load
Mx moment applied to a specified joint
M1 end moment at first node of the element
Vi shear at the first node of the element
c slope, v (O)
Z
Type ‘P’ for concentrated load and ‘q’ for distributed load
Magnitude magnitude of concentrated load, P, or distributed load, q

212

Symbol Description

Height height of load, ‘a’ or ‘¢’

R1 restraint against translation in the z direction
R2 restraint against translation in the y direction
R3 restraint against rotation in the x direction
R4 restraint against translation in the x direction
R5 restraint against rotation in the y direction
R6 restraint against rotation in the z direction
R7 restraint against warping

NLJ number of joint loads

NLM number of member loads

213

APPENDIX D

LBUCK PROGRAM CODE

This Appendix presents the code written for the LBuck Program for the executable file

Ibuck.exe.

D.1 ELEMENTGEOM.CPP

//Header files
#include "prop.h"
#include "elementgeom.h"

//Global Variable Definition
static float Pi= 3.14159265F;

//Global Variable declarations
extern float data[17][MSize];
extern int data2[2][MSize];
extern char anl;

void Element Geometric::Fill Properties(int j)

{
Properties::Fill_Properties(j);
b
/l Overloaded function defined the properties of
/! the element geometric matrix

void Element Geometric::Fill Element Geometricl(float h)
{
for(int i=0;i<=8;i++)
for(int j=0;j<=8;j++)
Gm[1][j]=0;

214

Gm[1][1]=(6*F)/(5*1);
Gm[1][2]=F/10;

Gm[1][3]=(-6*M1)/(5*1) + P/10 - (1*q)/70 -V1/10 - (6*P*zp)/(5*]) + (3*P*zp*zp)/(1*]) -
(2*P*zp*zp*zp)/(1¥1¥1) - (3*P*zp*zp*zp*zp)/(2*(I¥1*1*1)) +
(12%P*zp*zp*zp*zp*zp)/(5*(I*I*1*1*1)) -

(4%P*zp*zp* zp*zp*zp*zp)/(S* (IFI¥I¥1*1%1));

Gm[1][4]=-M1/10 - ((I*1)*q)/140- (P*zp)/10 + (P*zp*zp*zp)/(1*]) -
(2*P*zp*zp*zp*zp)/(I*1*]) + (3*P*zp*zp*zp*zp*zp)/(2* (1*1*1%1)) -
(2*P*zp*zp*zp*zp*zp*zp)/(S* (IX1*1*1*1));

Gm[1][5]=(-6*F)/(5*1);
Gm[1][6]=F/10;

Gm[1][7]=(6*M1)/(5*]) - (11*P)/10 - (17%1%q)/35 +(11*V1)/10 + (6*P*zp)/(5*1) +
(3*P*zp*zp*zp*zp)/(2*(I¥1¥1*1)) -(12*¥P*zp*zp*zp* zp*zp)/(5*(I*I*1*1*1)) +
(4% P*zp*zp*zp*zp*zp*zp)/(S* (IFI*I*1*1*1));

Gm[1][8]=-M1/10 + (I*P)/10 + (3*(1*1)*q)/70 - (I*V1)/10
- (P*zp)/10 - (P*zp*zp*zp*zp)/(2* (1*1¥1)) +(9*P*zp*zp*zp*zp*2p)/(10*(I*1*1*1))
_ (2*¥P*zp*zp*zp*zp*zp*Zp)/(S* (II*1*1¥]));

Gm[2][2]=(2*F*1)/15;

Gm[2][3]=(-11*M1)/10 + (I*P)/5 + (11*(1*1)*q)/420 - (1*V1)/5 - (11*P*zp)/10 +
(2*¥P*zp*zp)/l - (P*zp*zp*zp)/(1*]) - (P*zp*zp*zp*Zp)/(1*1*]) +
(13*P*zp*zp*zp*zp*zp)/(10*(1*1*1*1)) -
(2*P*zp*zp*zp*zp*zp*zp)/(S*(I*1*1*1*1));

Gm[2][4]=-2*1*M1)/15 + ((I*D)*P)/30 + ((1*1*1)*q)/210 -
((I*D*V1)/30 + (2*1*P*zp)/15 + (2*P*zp*zp*zp)/(3*]) -
(7*P*zp*zp*zp*zp)/(6*(1*1)) + (4*P*zp*zp*zp*zp*zp)/(5* (1*1*1)) -
(P*zp*zp*zp*zp*zp*zp)/(5*(1*1*1*]));

Gm|[2][5]=F/10;

Gm|[2][6]=-(F*1)/30;

Gm[2][7]=M1/10 - (I*P)/5 - (23*(1*1)*q)/210 + (I*V1)/5 +(P*zp)/10 +

(P*zp*zp*zp*zp)/(1*1*1) — (13*P*zp*zp*zp*zp*zp)/(10*(I*1*1*1)) +
*Przp*zp*zp*zp*zp*zp)/(SF(I*1*1*1*]));

215

Gm[2][8]=(1*M1)/30 + ((I*1*1)*q)/210 + (1*P*zp)/30 -
(P*zp*zp*zp*zp)/(3*(I*1)) + (P*zp*zp*zp*zp*2zp)/(2*(1*1*1)) -
(P*zp*zp*zp*zp*zp*zp)/(5*(1*1*1*]));

Gm[3][3]=P*e + (13*a*1*q)/35 - (6*P*e*zp*zp)/(1*]) +
4*pre*zp*zp*zp)/(1*1*]) + (9*P*e*zp*zp*zp*zp)/(1*1*1*]) -
(12*P*e*zp*zp*zp*zp*zp)/(I*1*1*1*]) +
(4*P*e*zp*zp*zp*zp*zp*zp)/(I*I*1*1*1*]);

Gm[3][4]=(11*a*(1*1)*q)/210 + P*e*zp - (2*P*e*zp*zp)/l -
(2*P*e*zp*zp*zp)/(1*]) + (8*¥P*e*zp*zp*zp*zp)/(1¥1*1) -
(7*P*e*zp*zp*zp*zp*zp)/(1*1*1*]) +
(2*¥P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*1*]);

Gm[3][5]=(6*M1)/(5*¥1) + (1*q)/70 + V1/10- P/10+
(6¥P*zp)/(5*1) - (3*P*zp*zp)/(1*]) + (2*P*zp*zp*zp)/(I*1*]) +
(3*P*zp*zp*zp*zp)/(2*(1*1*1*1)) -
(12%P*zp*zp*zp*zp*zp)/(5* (I*I¥1*1*])) +
(4%P*zp*zp* zp*zp*zp*zp)/(S* (IFI*I1¥1*1%1));

Gm[3][6]=-M1/10 - (I*P)/10 - (17*(1*1)*q)/420 + (1*V1)/10
{(P*zp)/10 + (P*zp*zp)/l - (P*zp*zp*zp)/(1*1) -
(P*zp*zp*zp*zp)/(2*(1¥1¥1)) + (11¥P*zp*zp*zp*zp*zp)/(10*(1*1*1*1)) -
(2%P*zp*zp*zp*zp*zp*zp)/(5*(IFI*1*1*]));

Gm[3][7]=(9*a*1*q)/70 + (3*P*e*zp*zp)/(1*]) - (2*P*e*zp*zp*zp)/(1*1*]) -
(9*P*e*zp*zp*zp*zp)/(1*¥1*1*]) + (12*P*e*zp*zp*zp*zp*zp)/(1*1*1*1*]) -
(4*¥P*e*zp*zp*zp*zp*zp*zp)/(1**1*1*1*1);

Gm[3][8]=(-13*a*(1*1)*q)/420 - (P*e*zp*zp)/l + (P*e*zp*zp*zp)/(1*]) +
(3*P*e*zp*zp*zp*zp)/(1*1*]) - (5*P*e*zp*zp*zp*zp*zp)/(1**1*]) +
(2*¥P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*1*1);

Gm[4][4]=(a*(1*1*1)*q)/105 + P*e*zp*zp - (4*P*e*zp*zp*zp)/l +
(6*¥P*e*zp*zp*zp*zp)/(1*]) - (4*P*e*zp*zp*zp*zp*zp)/(1*1*]) +
(P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*]);

Gm[4][5]=M1/10 + ((1*1)*q)/140 + (P*zp)/10 - (P*zp*zp*zp)/(1*]) +
(2*P*zp*zp*zp*zp)/(1*1*]) - (3*P*zp*zp*zp*zp*zp)/(2*(1*I*1*1)) +
(2*¥P*zp*zp*zp*zp*zp*zp)/(S*(1*1*1*1*1));

Gm[4][6]=(1*M1)/30 - ((I*1)*P)/30 - (1*1*1)*q)/84 + (1*1)*V1)/30

+(1*P*zp)/30 + (P*zp*zp*zp)/(3*]) - (5*P*zp*zp*zp*zp)/(6*(1*])) +
(7*P*zp*zp*zp*zp*zp)/(10*(1*1*1)) - (P*zp*zp*zp*zp*zp*zp)/(5*(1*1*1*]));

216

Gm[4][7]=(13*a*(1*1)*q)/420 + (3*P*e*zp*zp*zp)/(1*]) -
(8*P*e*zp*zp*zp*zp)/(1*1*]) + (7*P*e*zp*zp*zp*zp*zp)/(1*1*1*]) -
(2*¥P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*1*]);

Gm[4][8]=-(a*(I*1*1)*q)/140 - (P*e*zp*zp*zp)/l + (3*P*e*zp*zp*zp*zp)/(1*]) -
(3*P*e*zp*zp*zp*zp*zp)/(1*1¥]) + (P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*1);

Gm[5][S]=(6*F)/(5*1);
Gm[5][6]=F/10;

Gm[S][7]=(-6*M1)/(5*1) + (11¥P)/10 + (17*1*q)/35 -
(11¥V1)/10 - (6*P*zp)/(5*]) - (3*P*zp*zp*zp*zp)/(2* (1*I*1*])) +
(12%P*zp*zp*zp*zp*zp)/(5*(I*I*1*1*1)) -
(4%P*zp*zp* zp*zp*zp*zp)/(S* (IFI*I¥1*1%1));

Gm[S][8]=M1/10 - (I*P)/10 - (3*(1*1)*q)/70 + (1*V1)/10
+(P*zp)/10 + (P*zp*zp*zp*zp)/(2* (1*1%])) -(9*P*zp*zp*zp*zp*2p)/(10%(I*1*1*1))
+ (2¥P*zp*zp*zp*zp*zp*zp)/(S*(I*1*1*1%]));

Gm[6][6]= (2*F*1)/15;

Gm[6][7]=(11*M1)/10 - (9*1*P)/10 - (79*(1*1)*q)/210 + (9*1*V1)/10
+ (11%P*2p)/10 + (P*zp*zp*zp*zp)/(2*(1*1*1))
_ (11*P*zp*zp*zp*zp*zp)/(10*(1*1*1*1)) +
(2*¥P*zp*zp*zp*zp*zp*zp)/(5* (IX1*1*1*1));

Gm[6][8]=(-2*1*M1)/15 + ((I*D)*P)/10 + (4*(1*1*1)*q)/105 - (I*)*V1)/10
- (2*1*P*zp)/15 - (P*zp*zp*zp*zp)/(6*(1*])) +
(2*¥P*zp*zp*zp*zp*zp)/(5*(1*1*])) - (P*zp*zp*zp*Zp*Zp*ZD)/(5* (1*¥1*1*1));

Gm[7][7]=(13*a*1*q)/35 + (9*P*e*zp*zp*zp*zp)/(1*1*1*]) -
(12*P*e*zp*zp*zp*zp*zp)/(I*I**1*]) +
(4*¥P*e*zp*zp*zp*zp*zp*zp)/(1*¥ *1*1*1*]);

Gm[7][8]=(-11*a*(1*1)*q)/210 - (3*P*e*zp*zp*zp*zp)/(1*1*1) +
(5*P*e*zp*zp*zp*zp*zp)/(1*1*1*]) -
(2*¥P*e*zp*zp*zp*zp*zp*zp)/(1*1*1*1*1);

Gm[8][8]=(a*(I*1*1)*q)/105 + (P*e*zp*zp*zp*zp)/(1*]) -
(2*¥P*e*zp*zp*zp*zp*zp)/(1*1*]) + (P*e*zp*zp*zp*zp*zp*zp)/(1**1*]);

if(anlI=="P")
Element Geometric::Fill Element Prebuckling(h);

217

for(i=1;1<=8;i++)
for(int j=1;)<=8;j++)
Gm([j][i]=Gm[i][j];

Properties::Rotation(Gm);

}
/! Prebuckling element of the geometric stiffness matrix
void Element Geometric::Fill Element Prebuckling(float h)
{

Gm[1][3]+=(-6*Tw*M 1)/(Ix*(I*1*1)) + (6*Ty*M1)/(5*Ix*1) + (9*G*J*M1)/(10*E*Ix*1) +
(3*Tw*q)/(Ix*1) + (Iy*1*q)/(70*Ix) - (3*G*J*1*q)/(14*E*Ix) +
(Iy*V1)/(10*Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V 1)/(Ix*(1*]));

Gm[1][4]+= (Iy*M1)/(10*Ix) + (G*J*M1)/(5*E*Ix) + (Iw*q)/(2*Ix) +
(Ty*(1¥1)*q)/(140*Ix) - (2*G*J*(1*1)*q)/(35*E*Ix) - (Iw*V1)/(2*Ix*]) +
(3*G*J*1*V1)/(20*E*Ix);

Gm[1[7]+=(6*Tw*M 1)/(Ix*(1*1*1)) - (6*Ty*M1)/(5*Ix*1) - (9*G*J*M1)/(10*E*Ix*1) -
(3*Tw*q)/(Ix*1) + (17*Iy*1*q)/(35*Ix) + (3*G*J*1*q)/(14*E*Ix) -
(11¥Iy*V1)/(10*Ix) - (3*G*J*V1)/(S*E*Ix) + (6*ITw*V1)/(Ix*(1*1));

Gm[1][8]+= (Iy*M1)/(10*Ix) -
(3*G*J*M1)/(10*E*Ix) - (6*Tw*M1)/(Ix*(1*1)) + (5*Iw*q)/(2*Ix) -
(3*Ty*(1*1)*q)/(70*Ix) + (G*J*(1*1)*q)/(T*E*Ix) - (1 1*Tw*V 1)/(2*Ix*1) +
(Iy*1*V1)/(10*Ix) - (3*G*J*1*V1)/(10*E*Ix);

Gm[2][3]+= (1 1*Iy*M1)/(10*Ix) - (G*J*M1)/(20*E*Ix) -
GHIw*M)/(Ix*(1*1)) + 3*Iw*q)/(2*Ix) - (1 1*Ty*(1*1)*q)/(420*Ix) -
(9*G*J*(1*1)*q)/(280*E*Ix) - (7*Iw*V 1)/(2*Ix*1) + (Iy*1*V 1)/(5*Ix) +
(G*J*1*V1)/(20*B*Ix);

Gm[2][4]+=2*Iy*I*M1)/(15*Ix) + (G*J*I*M1)/(10*E*Ix) + (Iw*1*q)/(3*Ix) -
(Iy*(I¥1¥1)*q)/(2 10¥Ix) - (G*T*(1*1*1)*q)/(84*E*Ix) - (3*Iw*V 1)/(4*Ix) +
(Iy*(I*1)*V1)/(30*Ix) + (G*J*(I*1)*V1)/(30*E*Ix);

Gm[2][7]+=- (Ily*M1)/(10*Ix) + (G*J*M1)/(20*E*Ix) +
(G*FTw*M1)/(Ix*(1*1)) - (3*Tw*q)/(2*Ix) + (23*Ty*(1*1)*q)/(210*Ix) +
(9*G*J*(1¥1)*q)/(280*E*Ix) + (7*Iw*V 1)/(2*Ix*]) - (Iy*1*V1)/(5*Ix) -
(G*T*1*V1)/(20*E*Ix);

Gm[2][8]+=(-3*Tw*M1)/(Ix*1) ~(Iy*1*M1)/(30*Ix) - (3*G*J*1*M1)/(20*E*Ix) +

(T¥Iw*1*q)/(6*1x) ~(Iy*(I*1*¥1)*q)/(210*Ix) + (13*G*T*(I*1*1)*q)/(280*E*Ix) —
(1T¥Tw*V 1)/(4*Ix) ~(13*G*J*(1*1)*V 1)/(120*E*Ix);

218

Gm[3][S]+=(6*Tw*M 1)/(Ix*(I*1*1)) - (6*Iy*M1)/(5*Ix*1) - (9*G*J*M1)/(10*E*Ix*1) -
(3*Tw*q)/(Ix*1) - (Iy*1*q)/(70*Ix) + (3*G*J*1*q)/(14*E*Ix) -
(Iy*V1)/(10%Ix) - (3*G*J*V1)/(S*E*Ix) + (6*Iw*V 1)/(Ix*(1*1));

Gm[3][6]+=(Iy*M1)/(10*Ix) + (9*G*J*M1)/(20*E*Ix) -
(G*FTw*M1)/(Ix*(1*1)) + (Iw*q)/Ix + (17*Iy*(1*1)*q)/(420*Ix) -
(3*G*I*(1*1)*q)/(28*E*Ix) - (S*Iw*V1)/(2*Ix*1) - (Iy*1*V1)/(10*Ix) +
(3*G*J*1*V1)/(10*E*Ix);

Gm[4][5]+=- (Iy*M1)/(10*Ix) - (G*J*M1)/(5*E*Ix) - (Iw*q)/(2*Ix) —
(Iy*(1¥1)*q)/(140*Ix) + (2*G*J*(1*1)*q)/(35*E*Ix) + (Iw*V 1)/(2*Ix*1) -
(3*G*J*1*V1)/(20*E*Ix);

Gm[4][6]+=(-Iy*I*M1)/(30*Ix) +(G*J*I*M1)/(10*E*Ix) + (Iw*1*q)/(6*Ix) +
(Ty*(I*1¥1)*q)/(84*Ix) ~(G*J*(1*1*1)*q)/(35*E*Ix) - (Iw*V1)/(4*Ix) —
(Iy*(I*1)*V 1)/(30*Ix) +(3*G*J*(1*1)*V 1)/(40*E*Ix);

Gm[5][7]1+=(-6*Tw*M1)/(Ix*(I*1*1)) + (6*Ty*M1)/(5*Ix*1) + (9*G*J*M1)/(10*E*Ix*1) +
(3*Tw*q)/(Ix*1) - (17*Iy*1*q)/(35*Ix) - (3*G*J*1*q)/(14*E*Ix) +
(11*Iy*V1)/(10¥Ix) + (3*G*J*V1)/(5*E*Ix) - (6*Iw*V 1)/(Ix*(1*]));

Gm[5][8]+=- (Iy*M1)/(10*Ix) +
(3*G*J*M1)/(10*E*Ix) + (6*Iw*M)/(Ix*(1*1)) - (5*Iw*q)/(2*Ix) +
(3*Ty*(1*1)*q)/(70*1x) - (G*T*(1*1)*q)/(T*E*Ix) + (1 1*Iw*V 1)/(2*Ix*1) -
(Iy*1*V1)/(10¥Ix) + (3*G*I*1*V1)/(10*E*Ix);

Gm[6][7]+=- (11*Iy*M1)/(10*Ix) - (9*G*J*M1)/(20*E*Ix) +
GHIw*M1)/(Ix*(1*1)) - (Iw*q)/Ix + (79*Iy*(1*1)*q)/(210*Ix) +
(3*G*T*(1*1)*q)/(28*E*Ix) + (S*Iw*V 1)/(2*Ix*1) - (9*Iy*1*V1)/(10*Ix) -
(3*G*J*1*V1)/(10*E*Ix);

Gm[6][8]+=(-3*Tw*M 1)/(Ix*1) + 2*Iy*I*M1)/(15*Ix) - (3*G*J*I*M1)/(20*E*Ix) +
(5*¥Tw*1*q)/(6*Ix) - (4*Ty*(1*1¥1)*q)/(105*Ix) + (G*J*(I*1*1)*q)/(14*E*Ix) -
(9*Tw*V 1)/(4*Ix) + (Iy*(I*)*V1)/(10*Ix) - (3*G*J*(1*1)*V1)/(20*E*Ix);

Gm[1][3]+=-(Iy*P)/(10*Ix) - (3*G*J*P)/(S*E*Ix) +
(6*Iw*P)/(Ix*1*1) - (6*Iw*P*zp)/(Ix*1*1*]) +
(6*Iy*P*zp)/(5*Ix*1) + (9*G*J*P*zp)/(10*E*Ix*1) +
(9*FIw*P*zp*zp)/(Ix*1*1*1*]) - (3*1y*P*zp*zp)/(Ix*1*]) -
(24*Iw*P*zp*zp*zp)/(IxX*1*¥I*1*1*1) + (2*Iy*P*zp*zp*zp)/(Ix*1*1*]) +
(15*Iw*P*zp*zp*zp*zp)/(Ix*1*[*1*[*1*]) +
(3*Iy*P*zp*zp*zp*zp)/(2*Ix*1*1*1*]) -
(12*Iy*P*zp*zp*zp*zp*zp)/(S*Ix**1*1*1*]) -
(9*G*J*P*zp*zp*zp*zp*zp)/(10*EX IX*I*1*1*1*1) +
(4*1y*P*zp*zp*zp*zp*zp*zp)/(SFIx*[*1*[*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(S*E*IX*I*[*1*[*1*]);

219

Gm[1][4]+=(Iw*P)/(2*Ix*]) - (3*G*J*1*P)/(20*E*Ix) +
(Iy*P*zp)/(10*Ix) + (G*J*P*zp)/(5*E*Ix) +
(6*Iw*P*zp*zp)/(Ix*1*1*1) - (14*Iw*P*zp*zp*zp)/(IX*1*1*1*]) -
(Iy*P*zp*zp*zp)/(Ix*1*1) + (15*Iw*P*zp*zp*zp*zp)/(2* IX*1*1*1*1*]) +
(2*Iy*P*zp*zp*zp*zp)/(Ix*1*1*]) +
(G*J*P*zp*zp*zp*zp)/(4*E*Ix*1*1*]) -
(3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*1*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(SFE*Ix**1*1*]) +
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(S*Ix*[*1*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*IxX*I*1*1*1*]);

Gm[1][7+=11*Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -
(6*Iw*P)/(Ix*1*1) + (6*Iw*P*zp)/(Ix*1*1*]) -
(6*Iy*P*zp)/(5*Ix*1) - (9*G*J*P*zp)/(10*E*Ix*]) -
(O*Iw*P*zp*zp)/(Ix*1*¥1*1*1) + (24*Iw*P*zp*zp*zp)/(Ix*[*1*1*1*]) -
(15*Iw*P*zp*zp*zp*zp)/(Ix*1*[*1*[*1*]) -
(3*Iy*P*zp*zp*zp*zp)/(2*Ix*I*1*1*]) +
(12*Iy*P*zp*zp*zp*zp*zp)/(S*Ix*1*I*1*1*]) +
(9*G*J*P*zp*zp*zp*zp*zp)/(10*E* IX*I*1*[*1*]) -
(4*Ty*P*zp*zp*zp*zp*zp*zp)/(SFIX*I*I*[*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(S*E* IX*I*I*[*1*1*]);

Gm[1][8]+=(11*Iw*P)/(2*Ix*]) - (Iy*1*P)/(10*Ix) +
(3*G*J*1*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) -
(3*G*J*P*zp)/(10*E*Ix) - (6*Iw*P*zp)/(Ix*1*]) +
(B*Iw*P*zp*zp)/(Ix*1*1*]) - (10*Iw*P*zp*zp*zp)/(Ix*[*1*1*]) +
(15*Iw*P*zp*zp*zp*zp)/(2*IX*1*[*1*1*]) + (Iy*P*zp*zp*zp*zp)/(2*Ix*1*1*]) -
(9*ly*P*zp*zp*zp*zp*zp)/(10*Ix*1*[*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*1*1*1*]) +
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(S*Ix*[*1**1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*EXIx*[*1*1*1*]);

Gm[2][3]+=(7*Iw*P)/(2*Ix*1) - (Iy*I*P)/(5*Ix) -
(G*J*1*P)/(20*E*Ix) + (11*Iy*P*zp)/(10*Ix) -
(G*J*P*zp)/(20*E*Ix) - (6*¥Iw*P*zp)/(Ix*1*1) +
(9*Iw*P*zp*zp)/(Ix*1*1*]) - 2*1y*P*zp*zp)/(Ix*]) -
(14*Iw*P*zp*zp*zp)/(Ix*1*1*1*1) + (Iy*P*zp*zp*zp)/(Ix*1*1) +
(G*J*P*zp*zp*zp)/(2*E*Ix*1*1) +
(15*Iw*P*zp*zp*zp*zp)/(2*Ix*I¥I*1*1*]) + (Iy*P*zp*zp*zp*zp)/(IX*1*1*1) -
(G*J*P*zp*zp*zp*zp)/(4*E*Ix*1*1*]) -
(13*Iy*P*zp*zp*zp*zp*zp)/(10¥Ix*1*1*1*]) -
(9*G*J*P*zp*zp*zp*zp*zp)/LO*E*Ix*1**1*]) +
(2*Ty*P*zp*zp*zp*zp*zp*zp)/(SFIX*¥I*1*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E*Ix*[*1*1*1*]);

220

Gm[2][4]+=3*Iw*P)/(4*Ix) - (Iy*I*I*P)/(30*Ix) -
(G*J*1*1*P)/(30*E*Ix) - (2*Iw*P*zp)/(Ix*]) +
(2*¥Ty*1*P*zp)/(15*Ix) + (G*J*1*P*zp)/(10*E*Ix) -

y p p

(G*J*P*zp*zp)/(4*E*Ix) +
(11*Iw*P*zp*zp)/(2*Ix*1*]) -
(8*Iw*P*zp*zp*zp)/(Ix*1*1*1) - (2*Iy*P*zp*zp*zp)/(3*Ix*1) +
(G*J*P*zp*zp*zp)/(3*E*Ix*]) +
(15*Iw*P*zp*zp*zp*zp)/(4*IX*1*[*1*]) +
(7*1y*P*zp*zp*zp*zp)/(6*Ix*1*]) -
(4*1y*P*zp*zp*zp*zp*zp)/(S*Ix*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(10*E*IX*1*1*]) +
(Iy*P*zp*zp*zp*zp*zp*zp)/(S*IX*I*1*1*1) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix *[*1*1*1]);

Gm[1][7]+=(-7*Iw*P)/(2*Ix*1) + (Iy*1*P)/(5*Ix) +
(G*J*1*P)/(20*E*Ix) - (Iy*P*zp)/(10*Ix) +
(G*J*P*7p)/(20*E*Ix) + (6*Iw*P*zp)/(Ix*1*1) -
(9*Tw*P*zp*zp)/(Ix*1*1*1) + (14*Tw*P*zp*zp*zp)/(Ix* **]*]) -
(G*J*P*zp*zp*zp)/(2*E*Ix*1*]) -

(15*Tw*P*zp*zp*zp*zp)/(2* Ix* [¥I*1*1*]) - (Iy*P*zp*zp*zp*zp)/(Ix*1*1*]) +

(G*T*P*zp*zp*zp*zp)/(A*EXIX*|¥1*]) +
(13*Iy*P*zp*zp*zp*zp*zp)/(10¥IX*[¥]*1*]) +
(9*G*J*P*zp*zp*zp* zp*zp)/(20*E*Ix* *1*1*]) -
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(S*IX* I*I*1*]*]) -
(3*G*J*P*zp*zp*zp* zp* zp*zp)/(10*E ¥ Ix * [* ¥ *1%1);

Gm[2][8]+=(11*Iw*P)/(4*Ix) + (13*G*J*1*I*P)/(120*E*Ix) -
(4*Tw*P*zp)/(Ix*1) - (Iy*1*¥*P*zp)/(30*Ix) -
(3*G*J*1*P*zp)/(20¥*E*Ix) +
(7T*Tw*P*zp*zp)/(2*Ix*1*]) - (6*Iw*P*zp*zp*zp)/(Ix*1*1*1) +
(G*J*P*zp*zp*zp)/(6*E*Ix*1) +

(15*Iw*P*zp*zp*zp*zp)/(4*Ix*1**1*]) + (Iy*P*zp*zp*zp*zp)/(3*Ix*1*]) -

(G*J*P*zp*zp*zp*zp)/(8*E*Ix*1*]) -
(Iy*P*zp*zp*zp*zp*zp)/(2*Ix*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(20*E*Ix*1*1*]) +
(Iy*P*zp*zp*zp*zp*zp*zp)/(S*IxX*I*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*E*Ix *[*1*]*]);

Gm[3][5]+=Iy*P)/(10*Ix) + (3*G*J*P)/(5*E*Ix) -
(6*Iw*P)/(Ix*1*1) + (6*Iw*P*zp)/(Ix*I*1*]) -
(6*Iy*P*zp)/(5*Ix*]) - (9*G*J*P*zp)/(10*E*Ix*]) -
(O*¥Iw*P*zp*zp)/(IX*1*1*1*]) + (3*Iy*P*zp*zp)/(Ix*1*1) +
(24*Iw*P*zp*zp*zp)/(Ix*I*1*1*1*]) - 2*1y*P*zp*zp*zp)/(Ix*1*1*]) -
(15*Iw*P*zp*zp*zp*zp)/(IxX*1*[*1*1*1*]) -
(3*Iy*P*zp*zp*zp*zp)/(2*Ix*1*I*1*]) +
(12*Iy*P*zp*zp*zp*zp*zp)/(S*Ix*1*¥I*1*1*1) +

221

(9*G*J*¥P*zp*zp*zp*zp*zp)/(1 0¥ E*Ix ¥ [*[*]*]#]) -
(4% Ty*P*zp*zp*zp*zp*zp*zp)/(S*IX* I¥I**]*]*]) -
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(S¥E*IX* ¥ ¥ ¥ *]*]);

Gm[3][6]H+=(5*Iw*P)/(2*Ix*]) + (Iy*1*P)/(10*Ix) -
(3*G*J*1*P)/(10*E*Ix) + (Iy*P*zp)/(10*Ix) +
(9*G*J*P*zp)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*1*1) +
(B*Iw*P*zp*zp)/(Ix*1*1*1) - (Iy*P*zp*zp)/(Ix*]) -
(10*Iw*P*zp*zp*zp)/(Ix*[*1*1*]) + (Iy*P*zp*zp*zp)/(Ix*1*1) +
(15*Iw*P*zp*zp*zp*zp)/(2* IX*1**1*1*1) +
(Iy*P*zp*zp*zp*zp)/(2*Ix*1*1*]) -
(11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix*1*1*1*1) -
(9*G*J*P*zp*zp*zp*zp*zp)/(20*E*IX*1*1*1*1) +
(2*Ty*P*zp*zp*zp*zp*zp*zp)/(SFIX*¥I*1*I*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*E* IX*1*1*1*1*1);

Gm[4][5]+=-(Iw*P)/(2*Ix*]) + (3*G*J*1*P)/(20*E*Ix) -
(Iy*P*zp)/(10*Ix) - (G*J*P*zp)/(5*E*Ix) -
(6*Iw*P*zp*zp)/(Ix*1*1*1) + (14*¥Iw*P*zp*zp*zp)/(Ix*1*1*1*1) +
(Iy*P*zp*zp*zp)/(Ix*1*1) - (15*Iw*P*zp*zp*zp*zp)/(2*¥ IX*I*1*]*1*]) -
(2*Iy*P*zp*zp*zp*zp)/(Ix*1*1*]) -
(G*J*P*zp*zp*zp*zp)/(4*E*XIx*1*1*]) +
(3*Iy*P*zp*zp*zp*zp*zp)/(2*Ix*I*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp)/(S*E*Ix**1*1*]) -
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(SFIx*[*1**1*]) -
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*EXIx* ¥ [*1*1*]);

Gm[4][6]+=(Iw*P)/(4*Ix) + (Iy*I*1*P)/(30*Ix) -
(B3*G*J*1*1*P)/(40*E*Ix) - (Iy*I*P*zp)/(30*Ix) +
(G*J*1*P*zp)/(10*E*Ix) + (2*Iw*P*zp*zp)/(Ix*1*1) -
(6*Iw*P*zp*zp*zp)/(Ix*1*1*1) - (Iy*P*zp*zp*zp)/(3*Ix*]) +
(15*Iw*P*zp*zp*zp*zp)/(4*IX*1**1*]) +
(5*Iy*P*zp*zp*zp*zp)/(6*Ix*1*]) +
(G*J*P*zp*zp*zp*zp)/(8*E*Ix*1*]) -
(7*1y*P*zp*zp*zp*zp*zp)/(10*Ix*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(10*E*Ix*1*1*]) +
(Iy*P*zp*zp*zp*zp*zp*zp)/(S*Ix*1*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*EXIx*[*1*1*1);

Gm[5][7+=(-11*1y*P)/(10*Ix) - (3*G*J*P)/(S*E*Ix) +
(6*Iw*P)/(Ix*1*1) - (6*Iw*P*zp)/(Ix*1*1*]) +
(6*Ty*P*zp)/(5*Ix*1) + (9*G*J*P*zp)/(10*E*Ix*1) +
(9*FIw*P*zp*zp)/(Ix*1*1*1*]) - (24*Tw*P*zp*zp*zp)/(IX*1*[*1*1*1) +
(15*Iw*P*zp*zp*zp*zp)/(IX*I*[*1*1*1*]) +
(3*Iy*P*zp*zp*zp*zp)/(2*Ix*1*1*1*]) -
(12*Iy*P*zp*zp*zp*zp*zp)/(S*Ix*1*1*1*1*1) -

222

(9*G*J*P*zp*zp*zp*zp*7p)/(1 0¥ EXIx**1*¥1*]*]) +
(4%Ty*P*zp*zp*zp*zp*zp*zp)/(S*IX* I¥I**[*]*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(S¥E*IX ¥ ¥ ¥ *[*]*]);

Gm[5][8]+=(-1 1 *Iw*P)/(2*Ix*1) + (Iy*1*P)/(10*Ix) -
(3*G*J*1*P)/(10*E*Ix) - (Iy*P*zp)/(10*Ix) +
(3*G*J*P*2zp)/(10*E*Ix) + (6*Iw*P*zp)/(Ix*1*1) -
(3 Iw*P*zp*zp)/(Ix*1*1*]) + (10*Iw*P*zp*zp*zp)/(Ix*I*1*1%]) -
(15*Iw*P*zp*zp*zp*zp)/(2*IX*1*[*1*1*]) - (Iy*P*zp*zp*zp*zp)/(2*Ix*1*1*]) +
(9*Ty*P*zp*zp*zp*zp*zp)/(10¥ IX*[*]*1*]) +
(3*G*J*P*zp*zp*zp*zp*7zp)/(10*E*Ix*[*[*]*]) -
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(S*IX* I*I*1*]*]) -
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(1 0¥ EXIx* [*¥[*]*]*]);

Gm[6][7H=(-5*Iw*P)/(2*Ix*]) + (9*Iy*I*P)/(10*Ix) +
(3*G*J*1*P)/(10*E*Ix) - (11*Iy*P*zp)/(10*Ix) -
(9*G*J*P*zp)/(20*E*Ix) + (3*Iw*P*zp)/(Ix*1*]) -
(3*Iw*P*zp*zp)/(Ix*1*1*1) + (10*Iw*P*zp*zp*zp)/(Ix*1*1*1*]) -
(15*Iw*P*zp*zp*zp*zp)/(2*IX*1**1*1*]) -
(Iy*P*zp*zp*zp*zp)/2*Ix*1*1*]) +
(11*Iy*P*zp*zp*zp*zp*zp)/(10*Ix *I*1*1*]) +
(9*G*J*P*zp*zp*zp*zp*zp)/(20*E* IX*1*1*1*]) -
(2*Iy*P*zp*zp*zp*zp*zp*zp)/(SFIx*[*1**1*]) -
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(10*EXIx* ¥ [*1*1*]);

Gm[6][8]+=(9*Iw*P)/(4*Ix) - (Iy*1*I*P)/(10*Ix) +

(B*G*J*1*1*P)/(20*E*Ix) - (3*Iw*P*zp)/(Ix*]) +
p

2*¥Ty*1*P*zp)/(15*Ix) - 3*G*J*I*P*zp)/(20*E*Ix) +
(Iw*P*zp*zp)/(Ix*1*1) - (4*Iw*P*zp*zp*zp)/(Ix*1*1*]) +
(15*Iw*P*zp*zp*zp*zp)/(4*Ix*1**1*]) + (Iy*P*zp*zp*zp*zp)/(6*Ix*1*]) -
(2*Iy*P*zp*zp*zp*zp*zp)/(S*Ix*1*1*]) -
(3*G*J*P*zp*zp*zp*zp*zp)/(Q0*E*Ix*1*1*]) +
(Iy*P*zp*zp*zp*zp*zp*zp)/(S*Ix*1*1*1*]) +
(3*G*J*P*zp*zp*zp*zp*zp*zp)/(20*EXIx*[*1*1*]);

¥
/! Overloaded function defined the properties of
// the Nondimensional Geometric stiffness matrix

void Element Geometric::Fill_Element Geometric2(float K, int element num)

{
K=K*((float)element num);
for(int i=0;i<=8;i++)
for(int j=0;j<=8;j++)
Gm([i][j]=0.0F;

Gm[1][1]=(6*F)/5;

223

Gm[1][2]=F/10;

Gm[1][3]=(6*M1)/5 - P/10 + q/70 + V1/10 + (6*P*zp)/5 - 3*P*zp*zp + 2*P*zp*zp*zp +
(3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*2p*2p*2D* ZD)/5;

Gm[1][4]=M1/10 + q/140 + (P*zp)/10 - P*zp*zp*zp + 2*P*zp*zp*zp*zp -
(3*P*zp*zp*zp*zp*zp)/2 + 2*P*zp*zp*zp*zp*Zp*2D)/5;

Gm[1][5]=(-6*F)/5;
Gm[1][6]=F/10;

Gm[1][7]=(-6*M1)/5 + (11*P)/10 + (17*q)/35 - (11*V1)/10 - (6*P*zp)/5 -
(3*P*zp*zp*zp*zp)/2 + (12*P*zp*zp*zp*zp*zp)/5 - (4*P*zp*zp*zp*ZzDp*Zp*2p)/5;

Gm[1][8]=M1/10 - P/10 - (3*q)/70 + V1/10 + (P*zp)/10 + (P*zp*zp*zp*zp)/2 -
(9*P*zp*zp*zp*zp*zp)/10 + (2*P*zp*zp*zp*zp*2p*ZD)/5;

Gm[2][2]=(2*F)/15;

Gm[2][3]= (11*M1)/10 - P/5 - (11*q)/420 + V1/5 + (11*P*zp)/10 -
2*¥P*zp*zp + P*zp*zp*zp + P*zp*zp*zp*Zp - (13*P*2p*2p*Zp*Zp*ZP)/10 +
(2*P*zp*zp*zp*zp*zp*zp)/5;

Gm[2][4]=(2*M1)/15 - P/30 - g/210 + V1/30 + (2*P*zp)/15 - (2*P*zp*zp*zp)/3 +
(7*P*zp*zp*zp*zp)/6 - (4*P*zp*zp*zp*zp*2p)/5 + (P*2p*2Dp*Z2D*ZD*ZD*2D)/5;

Gm[2][5]=-F/10;
Gm[2][6]=-F/30;

Gm[2][7]=-M1/10 + P/5 + (23*q)/210 - V1/5 - (P*zp)/10 - P*zp*zp*zp*zp +
(13*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*zp*zp*zp)/5;

Gm[2][8]=-M1/30 - q/210 - (P*zp)/30 + (P*zp*zp*zp*zp)/3 - (P*zp*zp*zp*zp*zp)/2 +
(P*zp*zp*zp*zp*zp*zp)/5;

Gm[3][3]=(e*K*P)/Pi + (13*a*K*q)/(35*P1) - (6*e*K*P*zp*zp)/Pi +
(4*e*K*P*zp*zp*zp)/Pi + (9*e*K*P*zp*zp*zp*zp)/Pi —
(12*e*K*P*zp*zp*zp*zp*zp)/Pi + (4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[3][4]=(11*a*K*q)/(210*Pi) + (e*K*P*zp)/Pi - (2*e*K*P*zp*zp)/Pi -

(2*e*K*P*zp*zp*zp)/Pi + (8 *e*K*P*zp*zp*zp*zp)/Pi —
(7*e*K*P*zp*zp*zp*zp*zp)/Pi + (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

224

Gm[3][5]=(-6*M1)/5 + P/10 - g/70 - V1/10 - (6*P*zp)/5 +
3*¥P*zp*zp - 2*P*zp*zp*zp - (3*P*zp*zp*zp*ZD)/2 + (12*P*Zp* 2D *2p*ZD*2D)/5 —
(4*P*zp*zp*zp*zp*zp*zp)/5;

Gm[3][6]=M1/10 + P/10 + (17*q)/420 - V1/10 + (P*zp)/10 - P*zp*zp + P*zp*zp*zp +
(P*zp*zp*zp*zp)/2 - (11*P*zp*zp*zp*zp*zp)/10 + (2*¥P*zp*zp*ZD*2p*Zp*ZD)/5;

Gm[3][7]=(9*a*K*q)/(70*Pi) + (3*e*K*P*zp*zp)/Pi - (2*e*K*P*zp*zp*zp)/Pi -

(9*e*K*P*zp*zp*zp*zp)/Pi + (12*e*K*P*zp*zp*zp*zp*zp)/Pi -
(4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[3][8]=(-13*a*K*q)/(420*Pi) - (e¥*K*P*zp*zp)/Pi + (e*K*P*zp*zp*zp)/Pi +
(3*e*K*P*zp*zp*zp*zp)/Pi - (5*e*K*P*zp*zp*zp*zp*zp)/Pi +
(2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[4][4]=(a*K*q)/(105*Pi) + (e*K*P*zp*zp)/Pi -

(4*e*K*P*zp*zp*zp)/Pi + (6*e*K*P*zp*zp*zp*zp)/Pi —
(4*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*Zp)/Pi;

Gm[4][5]=-M1/10 - q/140 - (P*zp)/10 + P*zp*zp*zp - 2*P*zp*zp*zp*zp +
(3*P*zp*zp*zp*zp*zp)/2 - (2*P*zp*zp*zp*zp*zp*7p)/S;

Gm[4][6]=-M1/30 + P/30 + q/84 - V1/30 - (P*zp)/30 - (P*zp*zp*zp)/3 +
(5*P*zp*zp*zp*zp)/6 - (T*P*zp*zp*zp*zp*Zp)/10 + (P*2p*ZD*2p*2p* ZD*2D)/5;
Gm[4][7]=(13*a*K*q)/(420*Pi) + (3*e*K*P*zp*zp*zp)/Pi —
(8*e*K*P*zp*zp*zp*zp)/Pi +
(7*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[4][8]=-(a*K*q)/(140*P1i) - (e*K*P*zp*zp*zp)/Pi + (3*e*K*P*zp*zp*zp*zp)/Pi -
(3*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

Gm[5][5]=(6*F)/5;
Gm[5][6]=-F/10;

Gm[5][7]= (6*M1)/5 - (11*P)/10 - (17*q)/35 + (11*V1)/10 + (6*P*zp)/5 +
(3*P*zp*zp*zp*zp)/2 - (12*P*zp*zp*zp*zp*zp)/5 + (4*P*zp*zp*2p*2D* ZD*ZD)/5;

Gm[5][8]=-M1/10 + P/10 + (3*q)/70 - V1/10 - (P*zp)/10 - (P*zp*zp*zp*zp)/2 +
(9*P*zp*zp*zp*zp*zp)/10 - 2*P*zp*zp*zp*zp*zp*2p)/5;

Gm[6][6]=(2*F)/15;
Gm[6][7]=(-11*M1)/10 + (9*P)/10 + (79*q)/210 - (9*V1)/10 - (11*P*zp)/10 -
(P*zp*zp*zp*zp)/2 + (11*P*zp*zp*zp*zp*zp)/10 - (2*P*zp*zp*zp*Zp*2p*2p)/5;

225

Gm[6][8]=(2*M1)/15 - P/10 - (4*q)/105 + V1/10 + (2*P*zp)/15 + (P*zp*zp*zp*zp)/6 -
(2*¥P*zp*zp*zp*zp*zp)/5 + (P*zp*zp*zp*zp*Zp*2p)/5;

Gm[7][7]=(13*a*K*q)/(35*Pi) + (9*e*K*P*zp*zp*zp*zp)/Pi -
(12*e*K*P*zp*zp*zp*zp*zp)/Pi +
(4*e*K*P*zp*zp*zp*zp*zp*zp)/Pi,

Gm[7][8]=(-11*a*K*q)/(210*P1i) - (3*e*K*P*zp*zp*zp*zp)/Pi +
(5*e*K*P*zp*zp*zp*zp*zp)/Pi - (2*e*K*P*zp*zp*zp*zp*zp*zp)/P1i;

Gm[8][8]=(a*K*q)/(105*P1) + (e*K*P*zp*zp*zp*zp)/Pi —
(2*e*K*P*zp*zp*zp*zp*zp)/Pi + (e*K*P*zp*zp*zp*zp*zp*zp)/Pi;

for(i=1;1<=8;i++)
for(int j=i;j<=8;j++) Gml[j][i]=Gm[i][j];
Properties::Rotation(Gm);

D.2 ELEMENTSTIFF.CPP

//Header Files

#include <iostream>
#include "prop.h"
#include "elementstiff.h"

//Global Variable definition
static double Pi=3.14159265;

//Global variable declaration
extern char anl;

void Element_Stiffness::Fill Properties(int j)

{
b

Properties::Fill_Properties(j);

// Fill each element stiffness matrix, Ke
void Element_Stiffness::Fill Element Stiffness1()

{
for(int i=1;1<=8;i++)
for(int j=1;j<=8;j++)

226

Ke[i][j]=0.0F;
Ke[1][11=(12*E*Ty)/(1*1*1);
Ke[1][2]=(6*E*1y)/(1*]);
Ke[11[51=(-12*E*Ty)/(1*1*]);
Ke[1][6]=(6*E*1y)/(1*]);
Ke[2][2]=(4*E*Iy)/1;
Ke[2][5]=(-6*E*Iy)/(1*]);
Ke[2][6]=(2*E*Iy)/1;
Ke[31[31=(12*E*Iw)/(1*1%1) + (6*G*T)/(5*1);
Ke[3][41=(G*I)/10 + (6*E*Tw)/(1*1);
Ke[31[7]=(-12*E*Iw)/(I*1¥1) - (6*G*J)/(5*1);
Ke[31[81=(G*I)/10 + (6*E*Tw)/(1*1) ;
Ke[4][4]=(4*E*Tw)/l + (2*G*J*1)/15;
Ke[4][7]=-(G*T)/10 - (6*E*Tw)/(1*]);
Ke[4][8]=(2*E*Iw)/l - (G*I*1)/30 ;
Ke[S1[5]1=(12*E*Ty)/(1*1*1);
Ke[51[6]=(-6*E*Iy)/(1*]);
Ke[6][6]=(4*E*Iy)/1;
Ke[71[71=(12*E*Iw)/(1*1%1) + (6*G*T)/(5*1);
Ke[7][81=(-G*T)/10 + (-6*E*Iw)/(I1*1) ;
Ke[8][8]=(4*E*Iw)/l + (2*G*J*1)/15;

if(anlI=="P")
Element_Stiffness::Fill Element Prebuckling();

227

for(i=1;1<=8;i++)
for(int j=1;)<=8;j++)

Ke[jlli]=Ke[i][jl;

Properties::Rotation(Ke);

}

/l Prebuckling element of the stiffness matrix
void Element_Stiffness::Fill Element Prebuckling(void)

{ if(anl=='B') 1x=999999.0;
Ke[1][4]+=(-6*c*E*Iw)/(I*1*1) - (c*G*T)/(2*1);
Ke[11[81+=(6*c*E*Tw)/(I*1*1) + (c*G*)/(2*1);
Ke[2][3]+=(c*G*I)/(2*1) ;
Ke[2][4]+=-(c*G*])/4 - (3*c*E*Iw)/(1*]) ;
Ke[2][7]+=-(c*G*I)/(2*]) ;
Ke[2][8]+=(c*G*])/4 + (3*c*E*Tw)/(1*]) ;
Ke[3][6]+=(-c*G*I)/(2*]);
Ke[4][5T+=(6*c*E*Tw)/(I*1*1) + (c*G*I)/(2*1);
Ke[4][6]+=-(c*G*I)/4 - (3*c*E*Tw)/(1*]) ;
Ke[S][8]+=-(6*c*E*Iw)/(I*1¥]) - (c*G*J)/(2*1);
Ke[6][7]+=(c*G*])/(2*1) ;
Ke[6][8]+=(c*G*])/4 + (3*c*E*Tw)/(1*);

}

//Nondimensional stiffness matrix
void Element_Stiffness::Fill Element Stiffness2(float K, int element num)

{

K=K*((float)element num);
for(int 1=1;1<=8;i++)

for(int j=1;j<=8;j++)
Ke[i][j]=0.0F;

228

Ke[1][1]=12.;
Ke[l][2]=6.;
Ke[1][5]=-12.;
Ke[1][6]=6.;
Ke[2][2]=4.;
Ke[2][5]=-6.;
Ke[2][6]=2.;
Ke[3][3]=6.0F/5.0F+ (12*K*K)/(Pi*Pi);
Ke[3][4]=1.0F/10.0F + (6*K*K)/(Pi*Pi);
Ke[3][7]=-6.0F/5.0F - (12*K*K)/(Pi*Pi);
Ke[3][8]=1.0F/10.0F + (6*K*K)/(Pi*Pi);
Ke[4][41=2.0F/15.0F + (4*K*K)/(Pi*Pi);
Ke[4][7]=-1.0F/10.0F - (6*K*K)/(Pi*Pi);
Ke[4][8]=-1.0F/30.0F + (2*K*K)/(Pi*Pi);
Ke[5][5]=12.;
Ke[5][6]=-6.;
Ke[6][6]=4.;
Ke[7][7]=6.0F/5.0F + (12*K*K)/(Pi*Pi);
Ke[7][8]=-1.0F/10.0F - (6*K*K)/(Pi*Pi);
Ke[8][8]=2.0F/15.0F + (4*K*K)/(Pi*Pi);
for(i=1;i<=8;i++)

for(int j=i;j<=8:j++)

Ke[j][i]=Ke[i][j];
Properties::Rotation(Ke);

229

D.3 GEOMTR.CPP

//Header files

#include "prop.h"
#include "elementgeom.h"
#include "geomtr.h"

//Global Variable declarations
extern char anl;

//Constructor
Geometric::Geometric(int e)
{
for(int i=0;i<MSize;i++)
for(int j=0;j<MSize;j++)
Bi][j]~0;

element num=e;

}
/! Assemble element geometric matrices to
/l a structural geometric matrix

void Geometric::AssemblingGeometric_Matrix(float K)

{

for(int i=1;i<=element_num;i++) //For each element

{
geom.Fill Properties(i);

if(anl=="N")

//Clear Geometric Matrix

//Fill element matrix and rotate

geom.Fill Element Geometric2(K, element num);

else

geom.Fill Element Geometricl(K);

for(int j=1;j<=4;j++) //Fill Global Matrix

{

for(int k=1;k<=4;k++)

{

int j1 = geom.get jointl();
int j2 = geom.get joint2();

B[4*(1-1)H][4*(1-1)+tk]+=geom.Gm[j][k];
B[4*(2-1)tj][4*(2-1)tk]+=geom.Gm[j+4][k+4];

B[4*(j2-11H][4*(j1-1)+k]+=geom.Gm[j+4][k];
B[4*(j1-1)+][4*(2-1)+k]+=geom.Gm][j][k+4];

D.4 LBUCK.CPP

//Lateral-Torsional Buckling Program
//Header files

#include <iostream>
#include <process.h>
#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"
#include "spprt.h"
#include "elementgeom.h"
#include "geomtr.h"
#include "standm.h"

using namespace std;

//Global Variable Definitions
char anl; //analysis type

//File pointers
FILE *fin;
FILE *init;
FILE *ffrm;

//Function declarations

void prebuckling(char[10]);
void buckling(char[10]);

void nondimension(char[10]);

int main(void)
{
char input_file[10];

if((init=fopen("lbuck.ini","r"))==NULL)

231

printf("Internal Error");
fscanf(init,"%s",input_file);
fclose(init);
init=fopen("lbuck.ini","w");
if((fin=fopen(input_file,"r"))==NULL)
{

printf("File not found");

exit(0);
}
ffrm=fopen("frame.ini","w");
fscanf(fin,"%c\n",&anl);

//Main Process
if(anl=='B")
buckling(input_file); //Buckling Analysis
if(anl=="P")
prebuckling(input_file); //Prebuckling Analysis
if(anl=='N")
nondimension(input_file); //Non-dimensional Analysis

fclose(init);
return (0);

b
/I

void buckling(char input file[10])
{

char ch, name[80], series_name[80];
int number_series, number_analysis;

fclose(fin);

fprintf(ffrm, "%s 1.0",input_file);

fclose(ffrm);

system("frame"); //Run FRAME Program

fin=fopen("frame.out","r");
//Write results to output file:

fprintf(init,"\t \n");
fprintf(init,"\tBuckling Analysis\n");
fprintf(init,"\t \n\n");

//Get number of analyses
fscanf(fin,"%c %d %d\n",&ch,&number_series,&number analysis);
fgets(name,80,fin); //Get Structure Name
fprintf(init,"\n\tStructure Name : %s\n",name);

232

fgets(series_name,80,fin); //Get series name:
fprintf(init,"\n\tSeries Name : %s\n ",series_name);

fprintf(init,"\n\tNumber of Element = Buckling parameter\n ");

//For each analysis

for(int i=1;i<=number_analysis;i++)

{
int joint num, element num; //number of joints and elements
fscanf(fin,"%d %d",&element num,&joint num);
fprintf(init,"\n\t %d "element num);
int size=joint_num*4;

Stiffness global_stiff(element num);//Create global stiffness matrix
Geometric global geom(element num);//Create global geometric matrix
Standard Matrix sd; //Create standard matrix

Supports sp(size); //Create support object

//Call the stiffness matrix and the

//geometric stiffness matrix

global stiff.Assembling Stiffness Matrix(0.);
global geom.Assembling GeometricMatrix(0.);

//Apply Boundary Conditions
sp.Get_boundary conditions();
int s=sp.Boundary Condition(global stiff.A, global geom.B);

//Find Standard Matrix
sd.standard matrix(global stiff.A, global geom.B,s);

//Print Buckling Load
float buck load=sd.getBucklingl.oad();
fprintf(init," %7.3f ",buck load);
}
fprintf(init,"\n\n");
fscanf(fin,"\n%c",&ch);
fclose(fin);

}

/! Effect of prebuckling deformations analysis
void prebuckling(char input file[10])
{

int k=0;

long int inp_addr=0;

float mult fac=1;

char name[80], series name[80];

233

int number_series, number_analysis;

fprintf(init,"\t

//Write to output file:

\n");

fprintf(init,"\tPrebuckling Analysis\n");

fprintf(init,"\t

\n\n");

fgets(name,80,fin); //Get structure name

//Get number of analyses

fscanf(fin,"%d %d\n",&number _series,&number analysis);
fprintf(init,"\n\tStructure Name : %s\n",name);

fgets(series_name,80,fin); //Get series name
fprintf(init,"\n\tSeries Name : %s\n ",series_name);
fprintf(init,"\n\tNumber of Element = Buckling parameter");

fprintf(init,"

Multiplication Factor\n");

for(int i=1;i<=number_analysis;i++)

{

while(1)

{

non n

ffrm=fopen("frame.ini", "w");

fclose(fin);

fprintf(ffrm, "%s %f %ld",
input_file,mult fac,inp _addr);

fclose(ffrm);

system("frame"); //Run FRAME Program

fin=fopen("frame.out","r");

int joint num, element num; //number of joints and elements
fscanf(fin,"%d %d",&element_num,&joint_num);
fprintf(init,"\n\t %d "element num);

int size=joint_num®*4;

Stiffness global stiff(element num);//Create global stiffness matrix
Geometric global geom(element num);//Create global geometric matrix
Standard Matrix sd; //Create standard matrix

Supports sp(size); //Create support object

//Call the stiffness matrix and the

//geometric stiffness matrix

global stiff.Assembling Stiffness Matrix(0.);
global geom.Assembling Geometric Matrix(0.);

//Apply Boundary Conditions

sp.Get _boundary conditions();
int s=sp.Boundary Condition(global stiff.A, global geom.B);

234

//Find Standard Matrix
sd.standard matrix(global stiff.A, global geom.B, s);

//Print Buckling Load
float buck load=sd.getBucklinglLoad();
fprintf(init," %7.3f %7.3f",

buck load,mult fac);
if(buck load>1.05||buck load<.95)

{
mult fac=buck load*mult fac;
h
else
{
fscanf(fin,"%Id",&inp_addr);
mult fac=1.0;
break;
h
}
}
fclose(fin);
}
/l Nondimensional analysis
void nondimension(char input file[10])
{
float k,kmin,kmax,kstep;

char name[80], series name[80];
int number_series;
//Write to output file

fprintf(init,"\t \n");
fprintf(init,"\tNondimensional Analysis\n");
fprintf(init,"\t \n\n");

//Get number of series and k
fscanf(fin,"%d %f %f %f\n",&number_series,&kmin,&kmax,&kstep);
fgets(name,80,fin); //Get structure name
fprintf(init,"\n\tStructure Name : %s\n",name);
for(int i=1;i<=number_series;i++) //For each series
{
fgets(series_name,80,fin); //Get series name

fprintf(init,"\n\tSeries Name : %s\n ",series_name);

int joint_num, element num; //number of joints and elements
fscanf(fin,"%d %d",&element _num,&joint_num);
fprintf(init,"\n\tBeam parameter = Buckling parameter\n ",anl);

for(k=kmin;k<=kmax;k=k+kstep)

235

fprintf(init,"\n ~ %5.2f " k);
int size=joint_num®*4;

Stiffness global stiff(element num);//Create global stiffness matrix
Geometric global geom(element num);//Create global geometric matrix
Standard Matrix sd; //Create standard matrix

Supports sp(size); //Create support object

//Call the stiffness matrix and the

//geometric stiffness matrix
global_stiff.Assembling Stiffness Matrix(k);
global geom.Assembling Geometric Matrix(k);

//Apply Boundary Conditions
sp.Get boundary conditions();
int s=sp.Boundary Condition(global stiff.A, global geom.B);

//Find Standard Matrix
sd.standard matrix(global stiff.A, global geom.B,s);

//Print Buckling Load
float buck load=sd.getBucklingl.oad();
fprintf(init," %7.3f ",buck load);

b
fprintf(init,"\n\n");
§
fclose(fin);
}
D.5 PROP.CPP
//Header files

#include <iostream>
#include <math.h>
#include "prop.h"

//Global Variable Definition

float data[17][MSize];
int data2[2][MSize];

236

//Global Variable Declaration
extern char anl;

//File pointer declaration
extern FILE *fin;

/! Read: read the material properties from the input file
void Properties::Read Properties(int j)
{
if(anl=='B'||an]=="P")
{
fscanf(fin,"%f %f %f %f %t %f %f %of %d %d",
&data[0][j],&data[1][j],&data[2][j],
&data[3][j],&data[4][j],&data[5][j],
&data[6][j],&data[7][j],&data2[0][j],
&data2[1][j]);
fscanf(fin,"%f %f %f %f %t %f %f %f %f",
&data[8][j],&data[9][j],&data[10][j],
&data[11][j],&data[12][j],&data[13][]],
&data[14][j],&data[15][j],&data[16][j]);
}
if(anl=='N")
{
fscanf(fin,"%f %f %f %f %t %f %f %f %f %d %d",
&data[8][j],&data[9][j],&data[10][j],
&data[11][j],&data[12][j],&data[13][]],
&data[14][j],&data[15][j],&data[7][j],
&data2[0][j],&data2[1][j]);
}

if(anl=='B") 1x=999999.0;
}

//Fill Element Properties

void Properties::Fill Properties(int j)

{
E=data[0][j]; G=data[1][j]; J=data[2][j];
Iy=data[3][j]; Ix=data[4][j]; Iw=data[5][j];
I=data[6][j]; al=data[7][j]; jl=data2[0][j];
j2=data2[1][j];q=data[8][j]; a=data[9][j];
P=data[10][j]; e=data[11][j]; zp=data[12][j];
F=data[13][j]; M1=data[14][j]; Vli=data[15][j];
c=data[16][j];

237

}

int Properties::get_jointl(void)

{
b

return j1;

int Properties::get joint2(void)

{
}

1

return j2;

Rotation: give the definition of the rotation matrix

void Properties::Rotation(float A[10][10])

{

int m=0;
float R[10][10];

for(int i=1;i<=8;i++) //Set all elements to zero
for(int j=1;j<=8;j++)
R[1][j]=0.0F;

for(i=1;1<=8;i++)

{
for(int j=1;j<=8;j++)
{
m++;
if(m==1)
R[A][I=ALIGT
if(m==2)
R[1][j1=A[1][j1*(float)cos(al)-A[i][j+1]*(float)sin(al);
if(m==3)
R[1][j1=A[1][j1*(float)cos(al)+A[1][j-1]*(float)sin(al);
if(m==4)
{
R[A]GI=ALIGE
m=0;
}
b
}

for(i=1;1<=8;i++) //Set all elements to zero
for(int j=1;j<=8;j++)
A[i][j1=0;

for(i=1;1<=8;1++)

238

for(int j=1;j<=8;j++)

{
m++;
if(m==1)
A[I[=ROIMT;
if(m==2)
A[J1[1]=R[][1]*(float)cos(al)-R[j+1][1]*(float)sin(al);
if(m==3)
A[J1[1]=R[][1]*(float)cos(al)+R[j-1][1]*(float)sin(al);
if(m==4)
{
AR
m=0;
}
}
}
}
D.6 SPPRT.CPP
//Header Files

#include <iostream>
#include "spprt.h"

//Global Variable Declarations
extern char anl;

//File pointer declaration
extern FILE* fin;

Supports::Supports(int s)

{ .
size=s;
rest=0;
for(int i=0; i<MSize; i++)
restrain[i]=0;
}

/l Read the Boudary condition and
void Supports::Get_boundary conditions()

{

239

for(int i=1;i<=size;i++) //Get bc's from input file

{
fscanf(fin,"%d",&restrain[i]);
if(restrain[i]==1)
rest++; //Count number of restraints
}
b

/I Apply bc's to the stiffness matrix and geometric matrix
int Supports::Boundary Condition(float X[MSize][MSize],float Y[MSize][MSize])
{
int r=0;
for(int i=1;i<=size;i++)
if(restrain[i]==1)

{
for(int j=1;j<=size;j++)
for(int k=i-r;k<=size-r;k++)
X[k]GI=X[k+1]051;
r++;
}

r=0;
for(i=1;i<=size;i++)
if(restrain[i]==1)

{ for(int j=1;j<=size-rest;j++)
for(int k=i-r;k<=size-r;k++)
X[Ik=X[j]k+1];
r++;
}

r=0;
for(i=1;i<=size;i++)
if(restrain[i]==1)

{
for(int j=1;j<=size;j++)
for(int k=i-r;k<=size-r;k++)
YIk]I=Y k+1][];
r++;
}

r=0;
for(i=1;1<=size;i++)
if(restrain[i]==1)
{
for(int j=1;j<=size-rest;j++)
for(int k=i-r;k<=size-r;k++)
Y[IkI=Y
[illkc+1];

240

r++;

b

}

free size=size-rest;

return free_size;

D.7 STANDM.CPP

//Header Files

#include <iostream>
#include <math.h>
#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"
#include "elementgeom.h"
#include "geomtr.h"
#include "standm.h"

#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))

//Global Variable Declarations
extern char anl;

//Constructor
Standard Matrix::Standard Matrix()
{
for(int i=1;i<MSize;i++)
for(int j=1;j<MSize;j++)
C[i][;]=0.0;
}

// Standard Matrix: Decompose the stiffness matrices to
// a standard matrix, and then solve the eigenvalues
void Standard Matrix::standard matrix(float A[MSize][MSize],float B[MSize][MSize], int s)

{
size=s;
choldc(A); //Cholevski Decomposition
for(int i=1;i<=size;i++)

for(int j=1;j<=size;j++)

241

for(int k=1;k<=size;k++)
} CLIGI=COIGTHALIKI*BIK][j];
for(i=1;i<=size;i++)
for(int j=1;j<=size;j++)
if(i>j)
{
AGII=ALG]
A[i][j]=0.0;
}
for(i=1;i<=size;i++)
for(int j=1;j<=size;j++)

{
B[i][j]=0;
for(int k=1;k<=size;k++)
B[i][j =BG I+CLIK]*ALK]GT;
h
tred2(B);
tqli(B);
}
/! Cholevski Decomposition routine changes the eigenvalue problem
/! from General form to Standard form.

void Standard Matrix::choldc(float A[MSize][MSize])
{
double sum=0.0,p[MSize];
for (int i=1;i<=size;i++)
{
p[i]=0.0;
for (int j=i;j<=size;j++)
{
sum=(double)A[i][j];
for (int k=i-1;k>=1;k--)
{
sum -= (double)A[i][k]*A[j][k];
}
if (i==}))
{
if (sum <= 0.0)
{

printf(""choldc failed");

242

exit(0);

}
p[i]=sqrt(sum);
}
else A[j][1]=(float)sum/p[i];
}
}
for (i=1;i<=size;i++)
{
for (int j=1;j<=size;j++)
{
ALNGI=G >) ? ALL[] : G==] ? p[i] : 0.0F));
if (>) Ali][1=ALLG];
else A[i][j]I=(i == ? p[i] : 0.0F);
}
}
for(i=1;i<=size;i++)
{
Ali][i]=1/p[i];
for(int j=i+1;j<=size;j++)
{
sum=0.0;
for(int k=i;k<j;k++)
sum-=A[j][k]*A[Kk][i];
} A[j][i]=sum/p[j];
}

H
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */

/! Apply Householder's method to change the standard matrix to
/l Tridiagonal matrix, and Calculate eigenvalue by QR iteration

void Standard Matrix::tred2(float B[MSize][MSize])
{
int Lk,j,n=size;
float scale,hh,h,g.f;
for (int 1=n;1>=2;1--)
{
1=i-1;
h=scale=0.0;
if(1>1)

243

for (k=1;k<=L;k++)

scale += (float)fabs(B[1][k]);

if (scale == 0.0)

else {

e[i]=B[i][l];

for (k=1;k<=L;k++)

{

BJi][k] /= scale;

h += B[i][k]*BI[i][k];
}
f=B[i][l];

g=(f>= 0.0 ? (float)-sqrt(h) : (float)sqrt(h));
e[i]=scale*g;
h = f*g;
Bli][1]=f-g;
£=0.0;
for (j=1;j<=L;j++)
{
B[j][i]=BIi][j]/h;
g=0.0;
for (k=1;k<=j;k++)
g = B[j1[k]*B[i][k];
for (k=j+1;k<=1;k++)
g +=BIK][j]*BI[i][k];
e[jl=g/h;
\ f+=e[j]*BlIl];

hh=f/(h+h);
for =1;j<=l;j++)

{
=B[i][j1;
e[jl=g=e[j]-hh*f;
for (k=1;k<=j;k++)
\ Bj](k] -= (f*e[k]+g*B[i][k]);

e[i]=BI[i][l];

/* Contents of this loop can be omitted if eigenvectors not

244

wanted except for statement d[i]=B[i][i]; */
for (i=1;i<=n;i++)

{
1=1-1;
if (d[i])
{
for (j=1;j<=1;j++)
{
g=0.0;
for (k=1;k<=L;k++)
g +=BI[i][k]*B[k][j];
for (k=1;k<=L;k++)
B[k][j] -= g*BIK][i];
h
}
d[i]=B[i][i];
}
}
/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */
/l tqli: Solve eigenvalues from the tridiagonal matrix
void Standard Matrix::tqli(float B[MSize][MSize])
{

int m,iter,n=size;

float s,r,p,g,f,dd,c,b,bkp;
double chkmin=99999999.9;

for (int i=2;i<=n;i++)
efi-1]=efil;

e[n]=0.0;
for (int I=1;1<=n;1++)
{
iter=0;
do
{
for (m=l;m<=n-1;m++)
{
dd=(float)fabs(d[m])+(float)fabs(d[m+1]);
if ((float)(fabs(e[m])+dd) == dd) break;
j
if (m!=1)
{

if (iter-++ = 30)

245

printf("Too many iterations in tqli");
exit(0);
}
g=(d[I+1]-d[1])/(2*e[1]);
r=pythag(g,1.0);
g=d[m]-d[1]+e[1]/(g+(float)SIGN(r,g));
s=c=1.0;
p=0.0;
for (int i=m-1;1>=l;i--)
{
f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));
if (r==20.0)
{
d[i+1] -=p;
e[m]=0.0;
break;
}
s=1/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g)*s+2*c*b;
d[it+1]=g+(p=s*r);
g=c*r-b;
for (int k=1;k<=n;k++)
{
=B[k][i1+1];
B[k][i+1]=s*B[k][i]tc*T;
Blk][i]J=c*B[k][i]-s*f;

}
}
if (r == 0.0 && i >=1) continue;
dl] -=p;
e[l]=g;
e[m]=0.0;
}
}+ while (m !=1);
}
for (1I=1;1<=n;i++)
{

if(d[i]!=0)

{
bkp=1/d[i];

246

if(bkp>0.0000001)
if(chkmin>bkp)
chkmin=bkp;

}

buckling load=chkmin;
}

/* (C) Copr. 1986-92 Numerical Recipes Software 5.){2p491&0X43"52'(. */

// Pythagorus function
float Standard Matrix::pythag(float a,float b)

{

float c;

c=(float)sqrt(a*a+b*b);

return c;
b
float Standard Matrix::getBucklingLoad()
{

return buckling load;
}

D.8 STIFFN.CPP

//Header Files

#include "prop.h"
#include "elementstiff.h"
#include "stiffn.h"

//Global variable declaration
extern char anl;

//Constructor
Stiffness::Stiffness(int e)
{
for(int i=1;i<MSize;i++) //Clear Stiffness Matrix
for(int j=1;j<MSize;j++)
Ali][j]=0.0;

247

element num=e;

}

/! Assemble element stiffness matrices, Ke, to

/! a structural stiffness matrix, A

void Stiffness::Assembling Stiffness Matrix(float K)
{

for(int i=1;i<=element_num;i++) //For each element

{

stift. Read Properties(i);
stiff.Fill_Properties(i);
//Fill element matrix
if(anl=='N")
stifft. Fill Element Stiffness2(K, element num);
else
stiff.Fill Element Stiffness1();

for(int j=1;j<=4;j++) //Fill Global Matrix
{
for(int k=1;k<=4;k-++)
{
int j1 = stiff.get _joint1();
int j2 = stiff.get joint2();
A[4*(G1-D)H][4*G1-1)tk]+=stiff.Ke[j][Kk];
A[4*(2-1)H][4*(G2-1)+k]+=stiff. Ke[j+4][k+4];
A[4*(G2-D)H][4*(1-1)+k]+=stiff. Ke[j+4][k];
A[4*(1-1)+][4*(2-1)+k]+=stiff. Ke[j][k+4];

D.9 ELEMENTGEOM.H

#if !defined(element geometric h)
#define element geometric_h
#define MSize 62

class Element Geometric:public Properties

{

private:

248

float Gm[10][10];

public:
friend class Geometric;
void Fill Element Geometricl(float);
void Fill Element Geometric2(float, int);
void Fill Element Prebuckling(float);
void Fill Properties(int);

#endif

D.10 ELEMENTSTIFF.H

#if !defined(element_stiffness h)
#define element_stiffness h
#define MSize 62

class Element_Stiffness:public Properties

{

private:
float Ke[10][10];

public:
friend class Stiffness;
void Fill_Element_ Stiffness1();
void Fill Element Stiffness2(float, int);
void Fill_Element Prebuckling(void);
void Fill Properties(int);

#endif

D.11 GEOMTR.H

#if !defined(geometric_h)
#define geometric_h
#define MSize 62

class Geometric

249

{

private:
Element Geometric geom; //element geometric matrix
int element_num; //mumber of elements
public:
float B[MSize][MSize];
Geometric(int);
void Assembling Geometric Matrix(float);
¥
#endif

D.12 PROP.H

#if !defined(properties h)
#define properties h
#define MSize 62

class Properties
{
protected:
intjl,j2;
float E,G,J,1y,Ix,Iw,K l,al;
float gq,a,P,e,zp,F,.M1,V1,c;
public:
void Read Properties(int);
virtual void Fill_Properties(int)=0;

int get_jointl(void);

int get_joint2(void);

void Rotation(float[10][10]);
I8
#endif

D.13 SPPRT.H

#if !defined(support _h)
#define support_h
#define MSize 62

250

class Supports

{
private:
int restrain[MSize];
int rest;
int size; //Total d.o.f.
int free_size; //Free d.o.f.
public:
Supports(int);
void Get_boundary conditions();
int Boundary Condition(float[MSize][MSize],float[MSize][MSize));
}5
#endif

D.14 STANDM.H

#if !defined(standard matrix_h)
#define standard matrix_h
#define MSize 62

class Standard Matrix

{ .
private:
int size; //free d.o.f. size
float d[MSize],e[MSize];
float C[MSize][MSize];
float buckling_load;
public:
Standard Matrix();
void standard matrix(float{ MSize][MSize],float{MSize][MSize],int);
float pythag(float,float);
void choldc(float[MSize][MSize]);
void tred2(float[MSize][MSize]);
void tqli(float[MSize][MSize]);
float getBucklingLoad();
¥
#endif

251

D.15S STIFFN.H

#if !defined(stiffness h)
#define stiffness h
#define MSize 62

class Stiffhess

{
private:
Element Stiffness stiff; //Element Stiffness matrix
int element_num; //mumber of elements
public:
float A[MSize][MSize];
Stiffness(int);
void Assembling_Stiffness Matrix(float);
¥
#endif

252

APPENDIX E

FRAME PROGRAM CODE

This Appendix presents the code written for the Frame Program for the executable file

frame.exe.

E.1 ACTIONS.CPP

#include <stdio.h>
#include "Structure.h"
#include "Stiffness.h"
#include "Loads.h"
#include "Displacements.h"
#include "Actions.h"

//File definitions
extern FILE *fprnt;

//Global variable definitions
extern int jj[MAX], jk[MAX];
extern float cx[MAX], cy[MAX];
extern int jrl[3*MAX];

//Constructor
Actions::Actions()
{
for(int i=0; 1<4; i++)
{
for(int j=0; j<MAX; j++)
action[i][j]=0.0;

253

void Actions::memact(Stiffness st, Loads 1d, Displacements dp)

{

}

float amd[3*MAX],am[3*MAX],scm[4];
int element_num = st.getElement();
for(int i=0; i<element num; i++) //For each element

st.compm(i,t,scm); //Call Compm to get stiff. and disp. indices
for(int k=0; k<6; k++) //Adjust dof index values

t[k] = t[k] - 1;
amd[0] = sem[0]*((dp.dj[t[0]]-dp.dj[t[3]]D)*cx[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cy[i]);
amd[1] = sem[3]*((-dp.dj[t[0]]+dp.dj[t[3]])*cy[i]+(dp.dj[t[1]]-dp.dj[t[4]])*cx[i]);
amd[1] =amd[1] + scm[2]*(dp.dj[t[2]]+dp.dj[t[5]]);
amd[2] = sem[2]*((-dp.dj[t[0][+dp.dj[t[3]])*cy[i] + (dp.dj[t[1]]-
dp.dj[t[4]])*cx[i]);
amd|[2] = amd[2] + scm[1]*(dp.dj[t[2]] + 0.5F*dp.dj[t[5]]);
amd[3] = -amd[0];
amd[4] = -amd[1];
amd[5] = sem[2]*((-dp.dj[t[0][+dp.dj[t[3]]D)*cy[i] + (dp.dj[t[1]]-
dp.dj[t[4]])*cx[i]);
amd[5] = amd[5] + scm[1]*(0.5F*dp.dj[t[2]] + dp.dj[t[5]]);

for(int j=0; j<6; j++) //Compute total member end actions
am([j] = Id.aml[j][i] + amd][j];
//Adds member loads and displacement effects

action[1][i]J=am[0];
action[2][i]=am[1];
action[3][i]=am[2];

void Actions::print_actions(int j) const

{

fprintf(fprnt,"%f %t %t ",action[1][j],-action[3][j],action[2][j]);

//Prints load data: F,M1,V1

E.2 DISPLACEMENTS.CPP

#include <stdio.h>
#include <conio.h>

254

#include <process.h>
#include "Structure.h"
#include "Stiffness.h"
#include "loads.h"

#include "Displacements.h"

//File definitions
extern FILE *fprnt;

//Global Variable definitions

extern int jrl[3*MAX];
//Constructor
Displacements::Displacements(int j)
{
nj=j;
for(int i=0; 1<90; i++)
dffi]=0.0;
for(i=0; 1<90; i++)
dj[i]=0.0;
for(i=0; 1<30; i++)
DI[i]=0.0;
}

void Displacements::banfac(Stiffness st, Loads 1d)
{

intil,jl1,j2;

n = st.getN();

nb = st.getBandwidth();

float temp, sum;

if(st.sff[0][0]<=0.0)

{
problem:
fprintf(fprnt,"ERROR:Negative diagonal in stiffness matrix.");
exit(0);

}

for(int j=1; j<n; j++)

{
il=j-L
j2=j-nb+1;
if(j2<0)

j2=0;

if(j1!=0)
{

for(int i=1; i< 1+1; i++)

{

255

il=1-1;
if(i1>=52)
{
sum = st.sff]1][j-1];
for(int k=j2; k<il+1; k++)
sum = sum - st.sff[k][i-k]*st.sff[k][j-k];
st.sff[i][j-1] = sum;

}
}
sum = st.sff]j][0];
for(int k=j2; k<j1+1; k++)

{
temp = st.sff[k][j-k]/st.sff[k][0];
sum = sum - temp*st.sff[k][j-k];
st.sff[k][j-k] = temp;

J

1f(sum<=0.0)
goto problem;
st.sff]j][0] = sum;

}
bansol(st.sff,1d.ac);

}

void Displacements::bansol(float sff[3*MAX][3*MAX], float ac[3*MAX])
{

int j,k1,k2;
float sum;
for(int i=0; i<n; i++)
{
j=1i-nb+1;
if(i<=nb)
i=0;
sum = ac[i];
kl=1i-1;
if(j<=k1)
{
for(int k=j; k<k1+1; k++)
sum = sum - sff[k][i-k]*dffk];
}
dffi] = sum;
}

for(i=0; i<n; i++)
dffi] = dffi}/sft[i][0];
for(int 11=0; i11<n; i1++)

{

256

mti=n-il -1;
j=1+nb;
if(j>n)
j=n;
sum = dffi];
k2=1+1;
if(k2<=j)
{
for(int k=k2; k<j+1; k++)
sum = sum - sff]i][k-1]*df[k];
j
dffi] = sum;

}

void Displacements::prdisp()

{

int nd=3%*nj;

int je;
int j =n;
for(int k=0; k<nd; k++) //Sort displacements into original
{ //joint numbering system order
je=nd-k-1;
if(jrl[je]!=1)
{
i=i-L
\ djje] = dffjl;

else //If DOF restrained,
djje] = 0.0; //set displacement to zero

}

for(j=0; j<nj; j++) //Print displacements

{
int k =3*G+1);
D[jl=dj[k-1];
}
}

void Displacements::print_displacements(int j)

{
fprintf(fprnt,"%f\n",D[j]);
//Prints ¢

257

E.3 FRAME.CPP

#include <stdio.h>
#include <process.h>
#include "Structure.h"
#include "Stiffness.h"
#include "loads.h"

#include "Displacements.h"
#include "Actions.h"
#define MAX 30

//File definitions
FILE *freadfile;
FILE *fprnt;
FILE *fmlt;

//Global variable definitions
int jjiIMAX],jk[MAX];

//Main Funtion
void main()
{
long int inp_addr;
char inputfile[81], title[80], subtitle[80];
char anl;
int series_num,struc_num,;

if((fmlt = fopen("frame.ini","r"))==NULL)
{
printf("No such file, can't open.");
exit(0);
}
float mlt_fac;
fscanf(fmlt,"%s %f %ld",&inputfile,&mlt fac,&inp addr);

//Read File and Mutiplication factor

if((freadfile = fopen(inputfile,"r"))==NULL)

{ //Read in data file
printf("No such input file, can't open.");
exit(0);

}

fprnt = fopen("frame.out","w");

258

//Open output data file for writing
fscanf(freadfile,"%c ",&anl);

//Read type of analysis (B or P)
fgets(title, 80, freadfile);

//Read problem title
fscanf(freadfile,"%d %d\n",&series num,&struc_num);
if(anl=="P")

{

series num=1;
struc_num=1;
}
if(anl=='B")
fprintf(fprnt,"%c %d %d\n%s",
anl,series num,struc_num,title);
//Write title to output file
for(int i=1;i<=series_num;i++)
{
fgets(subtitle, 80, freadfile);
//Read problem series title
if(anl=='B")
fprintf(fprnt, "%s",subtitle);
if(anl=="P'&&inp addr!=0)
fseek(freadfile,inp_addr,SEEK SET);
for(int 1=1;l<=struc_num;l++)
{
//Create objects
Stiffness stiff;
stiff.stread(); //Read properties data
int element_num = stiff.getElement();
int joint_num = stiff.getJoint();

Loads load(joint num,element num);
load.ldread(mlt_fac); //Read load data

stiff.stifbld(); //Build stiffness matrix
load.load(); //Build load vector

Displacements disp(joint_num);
disp.banfac(stiff, load); //Solve for displacments

disp.prdisp();

Actions member_actions;
member_actions.memact(stiff, load, disp);

//Solve for member end-actions
for(int j=0;j<element num;j++)

{

259

stiff.print_properties(j);
//Prints member data:E,G,J,Iy,Ix,Iw,l al,jj,jk
load.print loads(j);
//Prints load data: q,a,P,e,zp
member_actions.print_actions(j);
//Prints F, V1, M1
disp.print_displacements((jj[j]-1));
//Prints ¢
}
stiff.print_restraints();
}//end for structure
} //end for series
fprintf(fprnt," %I1d",ftell(freadfile));
fclose(freadfile); //Close read file
fclose(fprnt);

E.4 LOADS.CPP

#include <stdio.h>
#include "loads.h"

//File definitions
extern FILE *freadfile;
extern FILE *fprnt;

//Global variables

extern float EL[MAX];

extern int jj[MAX], jk[MAX];
extern int id[3*MAX];

extern float cx[MAX], cy[MAX];

//Constructor
Loads::Loads(int j, int ¢)
{ . .
nj=j;
element num=e;
nlj=0; nlm=0;
for(int i=0; i<3*MAX; i++)
{
aj[1]=0.0;

260

ac[i1]=0.0;
¥
for(i=0; i<MAX; i++)
Iml[1]=0;
for(i=0; 1<6; it++)
{
for(int j=0; j<MAX; j++)
{
aml[i][j]=0.0;
Load[1][j]=0.0;

}

void Loads::Idread(float mlt fac)
{
char 1d,hd[80];
int a,i,j,k;
float e;
fgets(hd, 80, freadfile); /Heading
fscanf(freadfile, "%d %d\n", &nlj, &nlm);

if (nlj > 0)

{
fgets(hd, 80, freadfile); /Heading
for(j=0; j<nlj; j++) //For each joint load
{
fscanf(freadfile, "%d", &k); // Read in joint number and loads
a=3%*k;
fscanf(freadfile, "%f %f %f %f\n",
&aj [3-3], &a_] [3-2], &aJ [a_l]a&e);
aj[a-3]=mlt_fac*aj[a-3];
aj[a-2]=-mlt fac*aj[a-2];
ajla-1]=mlt_fac*aj[a-1];
for(i=0;i<element_num;i++)
{
if(jj[i]==k)
{
Load[3][i]=0.0;
Load[4][i]=-aj[a-2]*e;
Load[5][i]=0.0;
i=element_num;

}

261

} //end joint loads

if (nlm > 0)

{

fgets(hd, 80, freadfile); /Heading
for(j=0; j<nlm; j++) //For each member load

{

}

fscanf(freadfile, "%d ",&1); //Read member number and load
k=i-1;

Iml[k] = 1; // Iml set to 1 for loaded members
fscanf(freadfile, "%c", &l1d);

if(1d=="P")

{

fscanf(freadfile, "%f %f %f\n",
&Load[3][k],&Load[4][k],&Load[5][k]);
Load[3][k]=Load[3][k]*mlt fac;

aml[0][k]=0.0;
aml[1][k]=Load[3][k]*(EL[k]-Load[5][k])*(EL[k]-
Load[5][k])*(3*Load[5][k]+(EL[k]-
Load[5][k]))/(EL[k]*EL[k]*EL[k]);
aml[2][k]=Load[3][k]*Load[5][k]*(EL[k]-Load[5][k])*(EL[k]-
Load[5][k])/(EL[k]*EL[k]);
aml[3][k]=0.0;
aml[4][k]=Load[3][k]*Load[5][k]*Load[5][k]*(Load[5][k]+3*(EL
[k]-Load[5][k]))/(EL[k]*EL[k]*EL[Kk]);
aml[5][k]=-Load[3][k]*Load[5][k]*Load[5][k]*(EL[k]-
Load[5][k])/(EL[k]*EL[k]);

j

if(ld=='q")

{
fscanf{(freadfile, "%f %f\n",&Load[1][k],&Load[2][k]);
Load[1][k]=Load[1][k]*mlt fac;
aml[0][k]=0.0;
aml[1][k]=Load[1][k]*EL[k]/2;
aml[2][k]=Load[1][k]*EL[k]*EL[k]/12;
aml[3][k]=0.0;
aml[4][k]=Load[1][k]*EL[k]/2;
aml[5][k]=-Load[1][k]*EL[k]*EL[k]/12;

}

if(1d!="P'&&l1d!='q'&&l1d!="b") printf("MEMBER LOAD TYPE
INCORRECT %c?\n",1d);

} //lend member loads

262

void Loads::load()

{
int nd = 3*nj;
int 1,j,j1,j2,j3,k1,k2,k3,jr;
float ae[3*MAX];
for(j=0; j<3*nj; j++) //Clear equivalent load vector
ae[j] = 0.0;
1f(nlm>0) //1f there are member loads,
{ //compute equivalent joint loads
for(i=0; i<element num; i++)
{
if(Iml[i]>0) //Test for member load on member i
{
j1=3%*j[1] - 3; // Joint indices
j2=3%jli] - 2;
J3=3%l1] - L;
k1 =3*jk[i] - 3;
k2 = 3*jk[i] - 2;
k3 =3*k[i] - 1;
/I Compute equivalent loads in global coordinates
ae[jl] = ae[j1] - cx[i]*aml[0][i] + cy[i]*aml[1][i];
ae[j2] = ae[j2] - cy[i]*aml[0][1] - cx[i]*aml[1][1];
ae[j3] = ae[j3] - aml[2][i];
ae[k1] = ae[k1] - cx[i]*aml[3][1] + cy[i]*aml[4][i];
ae[k2] = ae[k2] - cy[i]*aml[3][i] - cx[i]*aml[4][i];
ae[k3] = ae[k3] - aml[5][i];
}
j
}
for(j=0; j<nd; j++) //Combined joint load vector
{ //id index references Ac in
jr=1d[j]-1; // Afc|Arc order
ac[jr] = aj[j] + ae[j]; //Adds joint loads gives combined load vector
h
}
void Loads::print_loads(int j)
{
fprintf(fprnt,"%f %f %t %f %f ",
Load[1][j],Load[2][j],Load[3][j],Load[4][j],Load[5][j]);
//Prints load data: q,a,P,e,zp
h

263

#include "Structure.h"
#include "Stiffness.h"

//Global Variable definitions

int id[3*MAX];

extern int jjiMAX], jk[MAX];
extern float EL[MAX];

extern float cx[MAX], cy[MAX];
extern int jrl[3*MAX];

//Constructor
Stiffness::Stiffness()
{
Properties::Properties();
for(int i=0; 1<90; 1++)

{
for(int j=0; j<90; j++)
sft[i][j] = 0.0;
h
h
void Stiftness::stread()
{
Properties::stread();
}
void Stiffness::stifbld()
{

float sm[6][6],scm[4];

E.S STIFFNESS.CPP

int 11,i2,ic,ir,item,n1=0,im[6];
for(int j=0; j<nd; j++) // Sorts joint indices to partitioned order

{
nl =nl + jrl[j];
if(jrl[j]1 > 0)
id[j]=n+nl;
else
id[j]=j-nl+
b

I;

264

for(int i=0; i<m; i++) // Add stiffness of member i to global stiffness matrix

{
compm(i,im,scm); // Stiffnesses & disp indices
memstif(i,sm,scm); //Element stiffness matrix
for(int j=0; j<6; j++)//Assemble Global Stiffness Matrix
{
il=im[j];
if(jrl[il-1] < 1)
{
for(int k=j; k<6; k++)
{
12 = im[k];
if(jrl[i2-1] <1)
{
ir=1d[il-1];
ic = 1d[i2-1];
if(ir<=ic)
ic=1ic -ir +1;
else
{ . .
item = 1r;
ir =1ic;
ic = item;
ic=1ic -ir +1;
h
sfffir-1][ic-1] = sff]ir-1][ic-1] + sm[j][k];
h
}
H
}
H
}
void Stiffness::compm(int i,int tm[6],float scm[4])
{
secm[0] = E[1]*AX[i]/EL[i]; / EA/L
scm[1]=4.0F*E[i]*ZI[i]/EL[i]; //4EI/L
sem[2] = 1.5F*sem[1]/EL[i]; /l 6EI/L"2
scm[3] = 2.0F*scm[2]/EL[i]; /I 12EI/L"3
tm[0] = 3*j[i] - 2;
tm[1]=3%*j[i] - 1;
tm[2] = 3*jj[i];
tm[3] = 3*jk[i] - 2;
tm[4] = 3*jk[i] - 1;
tm[5] = 3*jk[i];
}

265

void Stiffness::memstif(int 1,float sms[6][6],float scm[4])

{

/*
David Oyler CE233 4/24/89 Version 2.1
Program computes upper triangular portion of a
single member stiffness matrix in global coordinates
*/

for(int j=0; j<6; j++) //Clear member stiffness matrix values
{
for(int k=0; k<6; k++)
sms[j][k]=0.0;
}

//Compute individual stiffnesses, in global coordinates
//Add 1 to each index below to obtain actual matrix index values

sms[0][0] = sem[0]*cx[i]*cx[i] + scm[3]*cy[i]*cy][i];
sms[0][1] = (scm[0] - scm[3])*cx[i]*cy]i];
sms[0][2] = -scm[2]*cy[i];

sms[0][3] = -sms[0][0];

sms[0][4] = -sms[0][1];

sms[0][5] = sms[0][2];

sms[1][1] = scm[0]*cy[i]*cy[i] + scm[3]*cx[i]*cx[i];
sms[1][2] = scm[2]*cx[i];

sms[1][3] = -sms[0][1];

sms[1][4] =-sms[1][1];

sms[1][5] = sms[1][2];

sms[2][2] = scm[1];

sms[2][3] = -sms[0][2];

sms[2][4] = -sms[1][2];

sms[2][5] = scm[1]/2;

sms[3][3] = sms[0][0];

sms[3][4] = sms[0][1];

sms[3][5] = sms[2][3];

sms[4][4] = sms[1][1];

sms[4][5] = sms[2][4];

sms[5][5] = scm[l1];

266

E.6 STRUCTURE.CPP

#include <stdio.h>
#include <math.h>
#include "Structure.h"

//File definitions
extern FILE *freadfile;
extern FILE *fprnt;

//Global Variable definitions

extern int jj[MAX], jk[MAX]; //Member start/end joints
float EL[MAX]; //Element Length
float cx[MAX], cy[MAX]; //x andy dir cosine
int jrl[3*MAX]; //joint restraints
//Constructor
Properties::Properties()
{

m=0; nj=0; nr=0; nrj=0; nd=0;

nb=0; n=0;

for(int i=0; 1<30; i++)

{

x[1]=0.0; y[i]=0.0;
AX[1]=0.0; YI[i]=0.0;
ZI1[1]=0.0; WI[i]=0.0;
E[i]=0.0; G[i]=0.0;
J[1]=0.0;
angle[i1]=0.0;

}

void Properties::stread()

{
int nbi;
float xcl, ycl;
char hd[80]=""; // Headings

267

fgets(hd, 80, freadfile);
fscanf(freadfile, "%d %d %d %d\n",&m,&nj,&nr,&nrj);

nd = 3*nj; // Total possible degrees of freedom
n =nd - nr; /I Structure degrees of freedom
fprintf(fprnt, "%d %d\n",m,nj); //Print to output #members, #joints
fgets(hd, 80, freadfile); // Read header from input file
for(int k=0; k<nj; k++)
{ // Read joint coordinates
int j;

fscanf{(freadfile, "%d",&j); // Read joint number
fscanf(freadfile, "%f %f\n", &x[j-1], &y[j-1]);

}

fgets(hd, 80, freadfile);

for(int j=0; j<m; j++)

{ // Read Member Data
nt i;
fscanf(freadfile, "%d",&1); // Read member number
int k=i-1;
fscanf(freadfile, "%d %d %f %f %f %t %t %f %f\n",

&jjlk], &jk[k], &AX[k],&YI[k], &ZI[k],&WI[k],

&E[k],&G[k],&J[k]);
nbi = 3*(abs(Gk[k] - jj[k]) + 1);
if(nbi>nb) // Half bandwidth
nb=nbi;
xcl = x[jk[k]-1] - x[3i[k]-1]; // Compute x comp. of member length
yel = y[jk[k]-17 - y[5i(k]-11; // Compute y comp. of member length
EL[k] = sqrt(xcl*xcl + ycl*ycl); // Compute member length
cx[k] = xcl/EL[k]; // Compute x dir cosine
cy[k] = ycl/EL[Kk]; // Compute y dir cosine

if(cx[k]!=0)
angle[k]=acos(cx[k]);
else
angle[k]=asin(cy[k]);
}
fgets(hd, 80, freadfile);
for(j=0; j<nd; j++) // Clear Joint Restraint List

jrfj]=0;

for(j=0; j<nrj; j++)

{ // Read joint restraint data
int k;
fscanf(freadfile, "%d",&k); /I Read in number of restrained joint
fscanf{(freadfile, "%d %d %d",

268

&jrl[3*k-3], &jrl[3*k-2], &jrl[3*k-1]);
fscanf(freadfile, "%d %d %d %d\n",
&resl[k], &res2[k], &res3[k],&res4[k]);

}
}
void Properties::print_restraints()
{
for(int k=1;k<=nj;k++) //Prints restraints
{
fprintf(fprnt,"%d %d %d %d\n",
resl[k], res2[k],res3[k],res4[k]);
}
}
void Properties::print_properties(int j)
{
fprintf(fprnt,"%10.4f %10.4f %10.4f %10.4f %10.4f %10.41",
E[LGOLIGLYIGLZIGLWIGD;
fprintf(fprnt," %10.4f %10.41f %d %d\n",
EL[j].angle[jl.jj[i1.7k[D;
}

E.7 ACTIONS.H

#if !defined(_actions _h)
#define actions h
#define MAX 30

class Actions
{ .
private:
float action[4][MAX];
public:
Actions();
void memact(Stiffness, Loads, Displacements);
void print_actions(int) const;
35
#endif

269

E.8 DISPLACEMENTS.H

#if !defined(displacements h)
#define displacements h
#define MAX 30

class Displacements
{ .
private:
float df[3*MAX];
float D[MAX];
float dj[3*MAX];
int nj;
int nb; //Bandwidth
int n;
public:
friend class Actions;
Displacements(int);
void banfac(Stiffness, Loads);
void bansol(float[3*MAX][3*MAX], float[3*MAX]);
void prdisp();
void print_displacements(int);
¥
#endif

E.9 LOADS.H

#if !defined(loads h)
#define loads h
#define MAX 30

class Loads

{ .

private:
int nlj, nlm; //# loaded joints, # loaded members
float aj[3*MAX];
int Iml[MAX]; //keeps track of loaded members

270

float aml[6][MAX]; //member load matrix
float ac[3*MAX];

float Load[6][MAX];

int nj; //mumber of joints
int element_num,; //mumber of elements

public:
friend class Displacements;
friend class Actions;
Loads(int, int);
void ldread(float);
void load();
void print_loads(int j);

¥

#endif

E.10 STIFFNESS.H

#if !defined(_stiffness h)
#define _stiffness h
#define MAX 30

class Stiffness: public Properties

{ .
private:
float sff[3*MAX][3*MAX];
public:
friend class Displacements;
Stiftness();
void stread();
void stifbld();
void compm(int, int[6], float[4]);
void memstif(int, float[6][6], float[4]);
¥
#endif

271

E.11 STRUCTURE.H

#if !defined(_structure h)
#define structure h
#define MAX 30

class Properties

{
protected:
int m, nj; //# members, # joints
int nr, nrj; //# in-plane restraints,# in-plane restrained joints
int nd; //Total d.o.f.
int nb; //bandwidth
int n;
float x[MAX], y[MAX]; //Joint coordinates
float AX[MAX], YI[MAX], //Area, ly
ZI[MAX], WI[MAX], //Ix, Iw
E[MAX], GIMAX], //E, G
JIMAX]; /1]
double angle[MAX]; //langle
int res1 [MAX],res2[MAX],res3[MAX],res4[MAX];
public:

Properties();

virtual void stread()=0;
void print_restraints();
void print_properties(int j);

int getElement()
{

return m;
}
int getJoint()
{

return nj;
}
int getBandwidth()
{

return nb;
}

272

int getN()
{

¥
3
#endif

return n;

273

10.

11.

12.

13.

BIBLIOGRAPHY

Anderson, J. M. and Trahair, N. S. (1972). Stability of Monosymmetric Beams and
Cantilevers. Journal of the Structural Division, ASCE, 98(1), 269-285.

Archer, G. C., Fenves, G., and Thewalt, C. (1999). A New Object-Oriented Finite
Element Analysis Program Architecture. Computers and Structures, 70, 63-75.

Assadi, M. and Roeder, C. W. (1985). Stability of Continuously Restrained Cantilevers.
Journal of Engineering Mechanics, 111(12), 1440-1456.

Barsoum, R. S. and Gallagher, R. H. (1970). Finite Element Analysis of Torsional and
Torsional-flexural Stability Problems. International Journal for Numerical Method in
Engineering, 2(3), 335-352.

Bazeos, N. and Xykis, C. (2002). Elastic Buckling Analysis of 3-D Trusses and Frames
with Thin-Walled Members. Computational Mechanics, 29(6), 459-470.

Borsei, A. P., Schmidt, R. J., and Sidebottom, O. M. (1993). Advanced Mechanics of
Materials (5" ed.). New York: John Wiley & Sons.

Bleich, F. (1952). Buckling Strength of Metal Structures. New York: McGraw-Hill.

Booch, G. (1991). Object-Oriented Analysis and Design with Applications (1% ed.).
Redwood, California: Benjamin, Benjamin, and Cummings.

Bradford, M. A. and Ronagh, H. R. (1997). Generalized Elastic Buckling of Restrained I-
Beams by FEM. Journal of Structural Engineering, ASCE, 123(12), 1631-1637.

Chajes, A. (1993). Principles of Structural Stability Theory. Englewood Cliffs, New
Jersey: Prentice-Hall.

Chen, W. F. and Lui, E. M. (1987). Structural Stability Theory and Implementation.
Upper Saddle River, New Jersey: Prentice-Hall.

Cox, B. J. (1986). Object-Oriented Programming: An Evolutionary Approach. Reading,
Massachusetts: Addison-Wesley.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2003). Object-Oriented Reengineering
Patterns. New York: Morgan Kaufmann Publishers.

274

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fenves, G. L. (1990). Object-Oriented Programming for Engineering Software
Development. Engineering With Computers, 6, 1-15.

Forde, B. W. R., Foschi, R. O., and Stiemer, S. F. (1990). Object-Oriented Finite Element
Analysis. Computers and Structures, 34, 355-374.

Fowler, M. (1999). Refactoring, Improving the Design of Existing Code. Reading,
Massachusetts: Addison-Wesley.

Fowler, M. and Scott, K. (2000). UML Distilled Second Edition: A Brief Guide to the
Standard Object Modeling Language. Boston, Massachusetts: Addison-Wesley.

Galambos, T. V. (1963). Inelastic Lateral Buckling of Beams. Journal of the Structural
Division, ASCE, 89(ST5), 217-242.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its
Implementation. Reading, Massachusetts: Addison-Wesley.

Griffiths, D. V. and Smith, I. M. (1991). Numerical Methods for Engineers. London,
England: Blackwell Scientific Publications.

Hancock, G. J., and Trahair, N. S. (1978). Finite Element Analysis of Lateral Buckling of
Continuously Restrained Beam-Columns. Civil Engineering Transations, Institution of
Engineering, Australia, CE20(2), 120-127.

Horne, M. R. (1950). Critical Loading Condition of Engineering Structures. Cambridge,
England: PhD Dissertation, Cambridge University.

Horton, 1. (2003). Beginning Visual C++ 6. Indianapolis, Indiana: Wiley Publishing.

Jacobson, 1. (2000). The Road to the Unified Software Development Process. NewY ork:
Cambridge University Press.

Jacobson, 1., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development
Process. Reading, Massachusetts: Addison-Wesley.

Kitipornchai, S. and Trahair, N. S. (1975). Elastic Behavior of Tapered Monosymmetric
I-Beams Under Moment Gradient. Journal of the Structural Division, ASCE, 101(8),
1661-1678.

Lafore, R. (2002). Object-Oriented Programming in C++. Indianapolis, Indiana: Sams
Publishing.

Lee, G. C. (1960). Literature Survey on Lateral Instability and Lateral Bracing
Requirements. Tech. Report 62, Welding Research Council Bulletin, August.

275

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Liu, W., Tong, M., Wu, X., and Lee, G. (2003). Object-Oriented Modeling of Structural
Analysis and Design with Application to Damping Device Configuration. Journal of
Computing in Civil Engineering, ASCE, 17(2), 113-122.

Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity (4" ed.). New
York: Dover Publication.

Lu, J., White, D. W., Chen, W. F., and Dunsmore, H. E. (1995). A Matrix Class Library
in C++ for Structural Engineering Computing. Computers and Structures, 55, 95-111.

Mezini, M. (1998). Variational Object-Oriented Programming Beyond Classes and
Inheritance. Boston, Massachusetts: Kluwer Academic Publishers.

Michell, A. G. M. (1899). Elastic Stability of Long Beams under Transverse Forces.
Philosophical Magazine, 48, 298-309.

Miller, G. R. (1991). An Object-Oriented Approach to Structural Analysis and Design.
Computers and Structures, 40, 75-82.

Papangelis, J. P., Trahair, N. S., and Hancock, G. L. (1998). Elastic Flexural-Torsional
Buckling of Structures by Computer. Computers and Structures, 68(1-3), 125-137.

Pi, Y. L., Trahair, N. S., and Rajasekaran, S. (1992). Energy Equation for Beam Lateral
Buckling. Journal of Structural Engineering, ASCE, 118(6), 1462-1479.

Pi, Y. L., and Trahair, N. S. (1992a). Prebuckling Deflections and Lateral Buckling. I:
Theory. Journal of Structural Engineering, ASCE, 118(11), 2949-2966.

Pi, Y. L., and Trahair, N. S. (1992b). Prebuckling Deflections and Lateral Buckling. II:
Applications. Journal of Structural Engineering, ASCE, 118(11), 2967-2986.

Pidaparti, R. and Hudli, A. V. (1993). Dynamic Analysis of Structures Using Object-
Oriented Techniques. Computers and Structures, 49, 149-156.

Powell, G. and Klingner, R. (1970). Elastic Lateral Buckling of Steel Beams. Journal of
the Structural Division, ASCE, 96(9), 1919-1932.

Prandtl, L. (1899). Kipperscheinungen. Munich, Germany: PhD Dissertation.

Press, W. H. (1992). Numerical Recipes in C: The Art of Scientific Computing.
Cambridge: Cambridge University Press.

Roberts, T. M. and Azizian, Z. G. (1983). Influence of Pre-buckling Displacements on

the Elastic Critical Loads of Thin-walled Bars of Open Cross Section. International
Journal of Mechanics Science, 25(2), 93-104.

276

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Rumbaugh, J., Jacobson, 1., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Reading, Massachusetts: Addison-Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-
Oriented Modeling and Design. New Jersey: Prentice-Hall.

Sallstrom, J. H. (1996). Accurate Calculation of Elastic Buckling Loads for Space Frames
Built up of Uniform Beams of Open Thin-Walled Cross-Section. International Journal of
Numerical Methods in Engineering, 39, 2319-2333.

Shlaer, S. and Mellor, S. J. (1988). Object-Oriented Systems Analysis: Modeling the
World in Data. Englewood Cliffs, New Jersey: Yourdon Press.

Stroustrup, B. (1991). The C++ Programming Language (2™ ed.). Reading,
Massachusetts: Addison-Wesley.

Timoshenko, S. P. and Gere, J. M. (1961). Theory of Elastic Stability (2" ed.). New
York: McGraw-Hill.

Tong, G. and Zhang, L. (2003a). A General Theory for the Flexural-Torsional Buckling
of Thin-Walled Members I: Energy Method. Advances in Structural Engineering, 6(4),
293-298.

Tong, G. and Zhang, L. (2003b). A General Theory for the Flexural-Torsional Buckling
of Thin-Walled Members I: Fictitious Load Method. Advances in Structural Engineering,
6(4), 299-308.

Torkamani, M. A. M. (1998). Transformation Matrices for Finite and Small Rotations.
Journal of Engineering Mechanics, ASCE, 124(3), 359-362.

Trahair, N. S. (1993). Flexural-Torsional Buckling of Structures. Boca Raton, Florida:
CRC Press.

Trahair, N. S. (1968). Elastic Stability of Propped Cantilevers. Civil Engineering
Transations, Institution of Engineering, Australia, CE10(1), 94-100.

Vacharajittiphan, P. and Trahair, N. S. (1973). Elastic Lateral Buckling of Portal Frames.
Journal of the Structural Division, ASCE, 99(ST5), 821-835.

Vacharajittiphan, P. and Trahair, N. S. (1975). Analysis of Lateral Buckling in Plane
Frames. Journal of the Structural Division, ASCE, 101(ST7), 1497-1516.

Vacharajittiphan, P., Woolcock, S. T., and Trahair, N. S. (1974). Effect of In-Plane

Deformation on Lateral Buckling. Journal of the Structural Mechanics, ASCE, 3(1), 29-
60.

277

58.

59.

60.

61.

62.

Vlasov, V. Z. (1961). Thin-walled Elastic Beams (2™ ed.). Jerusalem, Israel: Israel
Program for Scientific Translation.

Wang, C. M., Wang, L., and Ang, K. K. (1994). Beam-Buckling Analysis via Automated
Rayleigh-Ritz Method. Journal of Structural Engineering, ASCE, 120(1), 200-211.

White, M. W. (1956). The Lateral Torsional Buckling of Yielded Structural Steel
Members. Bethlehem, Pennsylvania: PhD Dissertation, Lehigh University.

Wittrick, W. H. (1952). Lateral Instability of Rectangular Beams of Strain Hardening
Material under Uniform Bending. Journal of Aeronautical Science, 19(12).

Zimmermann, T., Dubois-Pelerin, Y., and Bomme, P. (1992). Object-Oriented Finite

Element Programming: I. Governing Principles. Computer Methods in Applied
Mechanics and Engineering, 98, 291-303.

278

	TABLE OF CONTENTS
	LIST OF TABLES
	Table 10-1 Beam Properties for W12x120
	Table 10-2 Frame Properties
	Table 10-3 Two Bay Frame Properties
	Table A- 1 Direction Cosines

	LIST OF FIGURES
	Figure 4.1 Coordinate System
	Figure 4.2 Cross Section View Displacements
	Figure 4.3 Displacements
	Figure 4.4 External Loads and Member End Actions of the Beam-Column Element
	Figure 4.5 Deformed Element
	Figure 4.6 Undeformed Element ∆z and Deformed Element ∆z (1+ε)
	Figure 4.7 Twist Rotation
	Figure 6.1 Element Degrees of Freedom
	Figure 9.1 Basic Object-Oriented Concepts Illustration
	Figure 9.2 Program Operation
	Figure 9.3 Rational Unified Process
	Figure 9.4 Frame and LBuck Program’s Use Case Diagram
	Figure 9.5 Reverse Engineering Process
	Figure 9.6 Refactoring Process
	Figure 9.7 Possible Frame Program Classes
	Figure 9.8 Possible LBuck Program Classes
	Figure 9.9 Modeling Procedure
	Figure 9.10 Example Class Diagram
	Figure 9.11 Frame Program Classes
	Figure 9.12 LBuck Program Classes
	Figure 9.13 Original Frame Program Procedural Flowchart
	Figure 9.14 Frame Program Class Diagram
	Figure 9.15 Original LBuck Class Diagram
	Figure 9.16 LBuck Program Class Diagram
	Figure 9.17 Frame Program Sequence Diagram
	Figure 9.18 Original LBuck Program Sequence Diagram
	Figure 9.19 Refactored LBuck Program Sequence Diagram
	Figure 9.20 Activity Diagram
	Figure 9.21 Project Program Class Hierarchy
	Figure 9.22 Interface Use Case Diagram
	Figure 9.23 File Menu
	Figure 9.24 Data Menu
	Figure 9.25 Analysis Menu
	Figure 9.26 New Project Dialog
	Figure 9.27 Buckling Analysis Dialog
	Figure 9.28 Non-Dimensional Analysis Dialog
	Figure 9.29 Joint Data Dialog
	Figure 9.30 Member Load Dialog
	Figure 10.1 Simple Beam with Equal End Moments
	Figure 10.2 Buckling Load: Simple Supported Beam with Equal End Moments
	Figure 10.3 Cantilever Beam with Concentrated Load
	Figure 10.4 Buckling Load: Cantilever Beam with Concentrated Load
	Figure 10.5 Continuous Beam
	Figure 10.6 Buckling Load: Continuous Beam
	Figure 10.7 Load Height Analysis: Continuous Beam
	Figure 10.8 Portal Frame with Concentrated Load
	Figure 10.9 Buckling Load: Portal Frame with Concentrated Load
	Figure 10.10 Portal Frame with Three Concentrated Loads
	Figure 10.11 Buckling Load: Portal Frame with Three Concentrated Loads
	Figure 10.12 Two Bay Frame with Vertical Loads
	Figure 10.13 Buckling Load: Two Bay Frame with Vertical Loads
	Figure 10.14 Two Bay Frame with Equal Horizontal and Vertical Loads
	Figure 10.15 Buckling Load: Two Bay Frame with Equal Horizontal and Vertical Loads
	Figure 10.16 Two Story Plane Frame with Horizontal Loads
	Figure 10.17 Buckling Load: Two Story Plane Frame Subjected to Two Horizontal Loads
	Figure 10.18 Two Story Plane Frame with Vertical Loads
	Figure 10.19 Buckling Load: Two Story Plane Frame Subjected to Two Vertical Loads
	Figure 10.20 Two Story Plane Frame with Horizontal and Vertical Loads
	Figure 10.21 Buckling Load: Two Story Plane Frame Subjected to Equal Horizontal and
	Figure 10.22 Two Unequal Bay Frame
	Figure 10.23 Buckling Load: Two Unequal Bay frame with Concentrated Loads
	Figure 10.24 Effect of In-Plane Deformations Analysis: Simple Beam with Equal End
	Figure 10.25 Effect of In-Plane Deformations Analysis: Cantilever with Concentrated Load
	Figure 10.26 Effect of In-Plane Deformations Analysis: Portal Frame with Concentrated
	Figure 10.27 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical
	Figure 10.28 Effect of In-Plane Deformations Analysis: Two Bay Frame with Vertical and
	Figure 10.29 Effect of In-Plane Deformations Analysis: Two Story Plane Frame Subjected
	Figure 10.30 Simple Beam with Concentrated Load
	Figure 10.31 Non-Dimensional Analysis: Simple Beam with Concentrated Load
	Figure 10.32 Simple Beam with Equal End Moments
	Figure 10.33 Non-Dimensional Analysis: Simple Beam with End Moments
	Figure 10.34 Non-Dimensional Analysis: Simple Beam with End Moments and End
	Figure 10.35 Cantilever Beam with a Concentrated Load
	Figure 10.36 Non-Dimensional Analysis: Cantilever with Concentrated Load
	Figure 10.37 Simple Beam with Equal and Opposite End Moments
	Figure 10.38 Non-Dimensional Analysis: Simple Beam with Opposite End Moments
	Figure 10.39 Cantilever Beam with End Moment
	Figure 10.40 Non-Dimensional Analysis: Cantilever with End Moment
	Figure 10.41 Simple beam with Distributed Load
	Figure 10.42 Non-Dimensional Analysis: Simple Beam with Distributed Load
	Figure 10.43 Cantilever Beam with Distributed Load
	Figure 10.44 Non-Dimensional Analysis: Load Height of Cantilever with Distributed Load
	Figure A. 1 Rigid Body Movement from Point P to Q
	Figure A. 2 Rigid Body Rotation from Point P to Q

	NOMENCLATURE
	1.0 INTRODUCTION
	2.0 OBJECTIVES
	3.0 LITERATURE REVIEW
	3.1 FLEXURAL-TORSIONAL BUCKLING
	3.2 OBJECT-ORIENTED DEVELOPMENT

	4.0 FLEXURAL-TORSIONAL BUCKLING THEORY
	4.1 STRAIN ENERGY
	4.1.1 Displacements
	4.1.2 Strains
	4.1.3 Stresses and Stress Resultants
	4.1.4 Section Properties
	4.1.5 Strain Energy Equation

	4.2 POTENTIAL ENERGY OF THE LOADS
	4.2.1 Displacements
	4.2.2 Potential Energy of Loads Equation

	4.3 ENERGY EQUATION
	4.4 NON-DIMENSIONAL ENERGY EQUATION

	5.0 FLEXURAL-TORSIONAL BUCKLING THEORY CONSIDERING IN-PLANE
	5.1 STRAIN ENERGY CONSIDERING IN-PLANE DEFORMATIONS
	5.1.1 Displacements Considering In-Plane Deformations
	5.1.2 Strains Considering In-Plane Deformations
	5.1.3 Strain Energy Equation Considering In-Plane Deformations

	5.2 POTENTIAL ENERGY OF THE LOADS CONSIDERING IN-PLANE
	5.2.1 Displacements Considering In-Plane Deformations
	5.2.2 Potential Energy of the Loads Equation Considering In-Plane Deformations

	5.3 ENERGY EQUATION CONSIDERING IN-PLANE DEFORMATIONS

	6.0 FINITE ELEMENT METHOD
	6.1 ELASTIC STIFFNESS MATRIX
	6.2 GEOMETRIC STIFFNESS MATRIX

	7.0 FINITE ELEMENT METHOD CONSIDERING IN-PLANE DEFORMATIONS
	7.1 ELASTIC STIFFNESS MATRIX CONSIDERING IN-PLANE DEFORMATIONS
	7.2 GEOMETRIC STIFFNESS MATRIX CONSIDERING IN-PLANE

	8.0 FLEXURAL-TORSIONAL BUCKLING EIGENVALUE PROBLEM SOLUTION
	9.0 FLEXURAL-TORSIONAL BUCKLING PROGRAM DESIGN
	9.1 OBJECT-ORIENTED SOFTWARE DEVELOPMENT
	9.1.1 Basic Concepts
	9.1.2 The C++ Object-Oriented Language

	9.2 PROGRAM SET-UP
	9.3 PROGRAM BACKGROUND
	9.4 DESIGN PROCESS
	9.4.1 Inception
	9.4.2 Elaboration
	9.4.3 Construction
	9.4.3.1 Modeling
	9.4.3.1.1 Structural View
	9.4.3.1.2 Dynamic Behavior View

	9.4.3.2 Coding

	9.4.4 Transition

	9.5 WINDOWS INTERFACE
	9.5.1 Windows Programming
	9.5.2 Creating the Interface

	10.0 APPLICATIONS
	10.1 BUCKLING LOAD ANALYSIS
	10.1.1 Buckling Analysis Example 1
	10.1.2 Buckling Analysis Example 2
	10.1.3 Buckling Analysis Example 3
	10.1.4 Buckling Analysis Example 4
	10.1.5 Buckling Analysis Example 5
	10.1.6 Buckling Analysis Example 6
	10.1.7 Buckling Analysis Example 7
	10.1.8 Buckling Analysis Example 8
	10.1.9 Buckling Analysis Example 9
	10.1.10 Buckling Analysis Example 10
	10.1.11 Buckling Analysis Example 11

	10.2 PREBUCKLING ANALYSIS
	10.2.1 Prebuckling Analysis Example 1
	10.2.2 Prebuckling Analysis Example 2
	10.2.3 Prebuckling Analysis Example 3
	10.2.4 Prebuckling Analysis Example 4
	10.2.5 Prebuckling Analysis Example 5
	10.2.6 Prebuckling Analysis Example 6

	10.3 NON-DIMENSIONAL ANALYSIS
	10.3.1 Non-Dimensional Analysis Example 1
	10.3.2 Non-Dimensional Analysis Example 2
	10.3.3 Non-Dimensional Analysis Example 3
	10.3.4 Non-Dimensional Analysis Example 4
	10.3.5 Non-Dimensional Analysis Example 5
	10.3.6 Non-Dimensional Analysis Example 6
	10.3.7 Non-Dimensional Analysis Example 7

	11.0 SUMMARY
	APPENDIX A
	DERIVATION OF THE ROTATION TRANSFORMATION MATRIX
	A.1 VECTOR OR
	A.2 VECTOR RL
	A.3 VECTOR LQ
	A.4 FINITE DISPLACEMENTS TRANSFORMATION
	A.5 ROTATION TRANSFORMATION MATRIX

	APPENDIX B
	B.1 ELEMENT ELASTIC STIFFNESS MATRIX
	B.2 ELEMENT GEOMETRIC STIFFNESS MATRIX
	B.3 ELEMENT NON-DIMENSIONAL STIFFNESS MATRIX
	B.4 ELEMENT NON-DIMENSIONAL GEOMETRIC STIFFNESS MATRIX
	B.5 ELEMENT PREBUCKLING STIFFNESS MATRIX
	B.6 ELEMENT PREBUCKLING GEOMETRIC STIFFNESS MATRIX

	APPENDIX C
	C.1 INPUT FILES
	C.1.1 Input File for the Frame Program
	C.1.2 Input File for the LBuck Program

	C.2 INPUT FILE SYMBOLS

	APPENDIX D
	LBUCK PROGRAM CODE
	D.1 ELEMENTGEOM.CPP
	D.2 ELEMENTSTIFF.CPP
	D.3 GEOMTR.CPP
	D.4 LBUCK.CPP
	D.5 PROP.CPP
	D.6 SPPRT.CPP
	D.7 STANDM.CPP
	D.8 STIFFN.CPP
	D.9 ELEMENTGEOM.H
	D.10 ELEMENTSTIFF.H
	D.11 GEOMTR.H
	D.12 PROP.H
	D.13 SPPRT.H
	D.14 STANDM.H
	D.15 STIFFN.H

	APPENDIX E
	FRAME PROGRAM CODE
	E.1 ACTIONS.CPP
	E.2 DISPLACEMENTS.CPP
	E.3 FRAME.CPP
	E.4 LOADS.CPP
	E.5 STIFFNESS.CPP
	E.6 STRUCTURE.CPP
	E.7 ACTIONS.H
	E.8 DISPLACEMENTS.H
	E.9 LOADS.H
	E.10 STIFFNESS.H
	E.11 STRUCTURE.H

	BIBLIOGRAPHY

