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CD4+T-cells have a central role in induction and homeostasis of the immune response, and are 

also the major target cells for HIV.  HIV has devised mechanism(s) to subvert the immune 

system and further its cause of survival and dissemination. vpr is one of the accessory genes, 

which is essential for the virus survival in vivo and has the unique distinction of a non-structural 

protein incorporated in virus particles in adequate amount, suggesting a role for this protein in 

the early phase of infection. Being a soluble protein with an ability to transduce across cell 

membranes, Vpr can potentially affect bystander cells. We hypothesize that HIV-1 Vpr alters the 

functions of both infected and bystander T lymphocytes, utilizing direct and indirect 

mechanisms, and these Vpr-mediated effects contribute in part to the immune dysregulation, and 

aid in viral dissemination. The Specific Aims of this proposal are to: (1) Assess the immune 

modulatory effects of Vpr in infected and bystander T-lymphocytes; (2) Understand the role of 

Vpr on T lymphocytes, natural killer (NK) cells and dendritic cells (DC) interactions; and (3) 

Analyze the structure-function relationship of Vpr in immunopathogenesis. We utilized HIV-1wt 

and HIV-1ΔVpr viruses and compared the difference in the effects of these viruses under 

controlled invitro conditions. The differences observed in the effect of these two viruses can be 

attributed to Vpr provided that the infections in both the experimental sets are similar. In some 

studies, to clearly identify infected cells, we employed EGFP reporter viruses. The effects in 

infected cells and bystander cells were evaluated. Results indicate that HIV-1 Vpr has a role in 
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dysregulation of immune cells during HIV infection. Vpr differentially regulates the surface 

expression of T cell costimulatory molecules, CD28 and CTLA-4, and inhibits IFN-γ production 

in infected T cells. Vpr also inhibits NK cell function by augmenting TGF-β production and 

inducing altered expression of NK receptor ligands. Furthermore, oligomerization of Vpr has a 

role in virion incorporation and in pathogenesis. The findings presented in this study are 

significant for public health because mechanistic understanding of the pathogenesis will aid in 

development of novel anti-viral therapeutics.  
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1.0  INTRODUCTION 

1.1 HIV / AIDS PANDEMIC  

Three decades have passed, since acquired immunodeficiency syndrome (AIDS) was first 

recognized and human immunodeficiency virus -1 (HIV-1) has been identified as the causative 

agent for this syndrome. The epidemic of HIV/AIDS has spread across the world and is not 

limited by boundaries of nationality, race, sex or age. It has affected millions of men, women and 

children across both developing and developed countries. There has been a hundred-fold increase 

in its prevalence since AIDS was first recognized. The number of AIDS cases gives a foretaste, 

rather than a true reflection of the health crisis facing the world, for AIDS is the last stage of the 

infection with HIV that may take many years to cause the syndrome. The HIV/AIDS pandemic 

continues to expand, with the latest global estimates for people living with HIV/AIDS for the 

year 2007 standing between 30-36 million, with 3 million people newly affected, the deaths due 

to HIV infection during this period stand at 2 million. Forty nine percent are men, forty five 

percent are woman and approximately six percent are children under the age of 15 years [1, 2]. 

The major route of transmission is heterosexual intercourse, although other routes include 

intravenous drug abuse, men who have sex with men, mother to child transmission, and 

transmission through transfusion of blood and blood products. Analysis of epidemiological data 

across the past decades provides some encouraging trends, reflecting the natural evolution of the 



epidemic as well as the effectiveness of preventive and treatment programs. The incidence of 

HIV infection peaked globally in the late 1990’s, and ever since there has been a steady decline 

in the number of new cases per year. Also the prevalence of global HIV infection has stabilized 

since the start of 21st century, and a reduction in the number of deaths due to AIDS have also 

been recorded globally.   

1.2 HIV-1 BIOLOGY 

1.2.1  HIV Virus Structure - Viral Proteins and Genome 

Human immunodeficiency virus (HIV) is a single strand positive sense RNA virus and belongs 

to genus Lentivirus. Being a retrovirus, HIV has the enzyme reverse transcriptase which helps in 

conversion of positive sense viral RNA to double stranded proviral DNA. HIV is about 9.7 kilo-

basepairs long and encodes for nine viral proteins. They include structural, enzymatic and non-

structural proteins. The structural proteins Gag and Env form the bulk of the virus particle. The 

enzymatic polyprotein Pol is cleaved to reverse transcriptase (RT), integrase (IN) and protease 

(PR). The nonstructural proteins include regulatory and accessory proteins. The regulatory 

proteins are Tat and Rev which help to regulate the expression of viral genes. Unlike other 

members of the retroviridae family, HIV is unique in having the accessory genes, which are vital 

for in vivo survival of the virus. The accessory proteins include Vpr, Nef, Vpu and Vif. Multiple 

functions have been attributed to the accessory proteins and they have a positive role in virus life 

cycle and negatively regulate the host defense mechanisms to favor virus survival in vivo [3].  
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The viral genes are driven by long terminal repeats (LTR) which flank both ends of the 

genome. They also have an important role in the process of reverse transcription and in 

integration of proviral genome [4].  Gag, Group specific antigen, forms the main structural 

component of the virion particle. Gag is synthesized as a polypeptide, from an unspliced RNA 

transcript. Proteolytic cleavage of this polyprotein precursor identified by its molecular weight as 

p55 precursor, gives raise to the smaller gag proteins – p24, p19, p17, p6 that form the capsid 

(CA), nucleocapsid (NA), and matrix (MA). The nucleocapsid forms the innermost layer of the 

virus, forming the protective core around the viral genomic RNA [5, 6]. The capsid protein (p24) 

forms the subsequent layer and is the most abundant viral protein synthesized. Capsid has an 

important role in modulating the host cell permissiveness to HIV-1 infection through its 

interaction with host cellular protein - Cyclophilin-A [7]. The matrix protein, p17, is located just 

below the viral envelope, which contributes to the structure of the virus. It is an important role 

during virus assembly. Gag p6 has a role in the release of budding virus particles and interacts 

with the accessory protein, Vpr, and aids in the incorporation of Vpr in virus particles [8]. 

Pol, polymerase, is also synthesized as a p160 polyprotein, which is cleaved to form three 

important enzymes: reverse transcriptase (RT), integrase (IN) and protease (PR). Reverse 

transcriptase is unique to members of the family retroviridae and hepadnaviridae. It helps in 

conversion of single strand RNA to double strand proviral DNA, which then gets integrated into 

the host genome by the enzyme Integrase. Viral protease plays a vital role in virus maturation 

through processing of Gag and Gag-Pol polyproteins. The viral envelope glycoprotein, Env, is 

also synthesized as a gp160 precursor protein, which is cleaved to form gp120 (SU) and gp41 

(TM). They form noncovalent trimers which are important for virus binding, fusion and entry in 

target cells.  
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The regulatory genes, as the name suggests, are involved in regulation of viral gene 

expression. This is achieved at the transcriptional level by Tat and at the nuclear export of 

unspliced viral RNA by Rev. Tat enhances the transcription of viral genes from the LTR, in the 

presence of Tat the RNA polymerase acquires better processivity and has the ability to transcribe 

the entire HIV genome [9].   

 

Figure 1. HIV-1 virus genomic organization 

 

Multiple functions have been attributed to accessory proteins, and they are essential for 

virus survival in vivo [9, 10]. Vpu is known to interact with CD4 at the rough endoplasmic 

reticulum and degrade it via the ubiquitin-proteosomal pathway. Thus Vpu aids in transport and 

processing of the envelope glycoprotein gp160, which can potentially be trapped by CD4 in the 

endoplasmic reticulum, and help in release of virus particles from the producer cells. Vif has a 

role to increase the infectivity of virus when produced in certain cells. This is due to the ability 

of Vif to counter the effects of a host restriction factors, APOBEC3G and APOBEC3F, 

expressed in certain cell types. The accessory protein, Nef, was initially identified as the negative 

regulatory factor, but over the decades it has been identified to have a diverse role in HIV 

pathogenesis. Studies have shown that Nef can downregulate critical signaling and regulatory 

molecules of the immune system. This includes CD4; MHC Class 1 A,B,C; CD28; and β-chain 

of CD8αβ receptor. Nef also interferes with MHC class II restricted processing of HIV-1 antigen 

molecules. Additionally, Nef has been recently shown to modulate dendritic cells to kill 

bystander CD8+T cell by functional up regulation of FasL and TNF-a. Also, Nef induced 
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inhibition of ASK-1 in HIV-1 infected macrophages suggest that this protein can effectively 

exploit DC and APC as a transit point on its way to hijack host immune defense [11, 12]. The 

viral protein R (Vpr), is the focus of this dissertation and has been discussed in detail in 

subsequent sections. Briefly, Vpr is a pleotrophic protein essential for viral survival in vivo and 

is incorporated in to Virion particle in significant level [3]. Being a soluble protein and having 

the ability to transduce across cell membrane, this protein affects both the infected cells and the 

bystander cells.   

1.2.2 HIV-1 Replication Cycle 

CD4 is the main receptor of HIV, and the major coreceptors are CCR5 or CXCR4. HIV infects 

cells, which bear both CD4 and co-receptor. Many other molecules have been identified as 

receptors and co-receptors [13-17]. Binding of viral envelope to the receptor promotes a 

conformational change in the envelope that leads to fusion of the virus to the target cell 

membrane. Following the entry, the viral core is delivered in to the cytoplasm of the cell, and 

during the process of uncoating there is conversion of viral RNA to proviral DNA by the viral 

enzyme Reverse transcriptase. Finally the proviral DNA that is part of the pre integration 

complex (PIC) translocates across the nuclear membrane and can be integrated into the host 

chromosome. Transcription of the viral genome is driven by the LTR, which is the viral 

promoter. With the synthesis of viral proteins and export of full-length viral RNA to the 

cytoplasm, the virions assemble and bud from the plasma membrane.  

 5 



1.2.3 HIV pathogenesis  

HIV was identified as the causative organism for AIDS. Acute HIV infection is symptomatic in a 

fraction of the individuals infected with the virus and is characterized by a brief flu-like 

symptoms including low grade fever, sore throat, muscle  ache,  swollen  lymph  nodes  and  

rash. These symptoms can present with in to 4 weeks of infection. Following the acute phase, the 

infection largely remains asymptomatic with low level of virus replication and initiation of a 

cycle of subtle immunological events, which finally leads to immune deficiency. This chronic 

asymptomatic phase is highly variable for each individual and can range from 2 years to more 

than 14 years. The end of this asymptomatic phase is heralded by the onset of AIDS, 

characterized by low CD4+ T cell counts, high viral loads, increased viral replication fitness, 

increased genetic variance and a variety of immunological disorders, compromising both the 

cellular and humoral limbs of immune response, leading to increased susceptibility to 

opportunistic infections and malignancies [1].   

 

Figure 2. Chronology of untreated HIV infection. 
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Upon transmission to a new host, HIV targets cells bearing CD4 surface molecules, which is the 

main receptor for the virus entry. The major target cells include the CD4+ T cells, macrophages, 

and dendritic cells. These cells present in the submucosal regions of genital and gastro-intestinal 

tract are the initial targets following transmission involving mucosal surfaces. There is a massive 

depletion of these mucosal resident target cells (T cells) within the initial first few weeks of acute 

infection [18, 19].  Following the mucosal depletion is the state of chronic activation, resulting in 

increased turnover of activated and memory T cells associated with increased production of 

proinflammatory cytokines. During this period the CD8+ T cell antiviral response is also high 

and the ability to control the viremia during the acute phase is usually a good predictor of the rate 

of progression of infection to AIDS. This is denoted as “viral set point”. The lower the viral set 

point, the slower the rate of progression of infection to AIDS. The virus hijacks the cells of the 

immune system to facilitate its dissemination from the local tissue. Although a immune response 

is induced soon after infection, it is inadequate to effectively eliminate the infection. 

Seroconversion normally occurs 1 to 3 weeks following infection. During the chronic 

asymptomatic phase, there is persistent low level virus replication  in  the  lymph  nodes  and 

peripheral blood, associated with increased viral genetic diversity and increased viral replicative 

fitness.  The symptomatic phase is characterized by augmented viral load, loss of CD4+ T cells 

(to less than 200 cells/ul) and escapes from CD8+ T cell  response.  These events coincide with 

the increased susceptibility to opportunistic infections and higher incidence of AIDS related 

malignancies. 
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1.3 VIRAL PROTEIN R (VPR)  

1.3.1 Structure of VPR 

The HIV-1 vpr gene encodes a protein of 96 amino acids with a predicted molecular weight of 

14 kDa, which is conserved in HIV and SIV. Nuclear magnetic resonance (NMR) studies predict 

that Vpr consists of a three helices connected by turns (Fig. 3). The N-terminal (aa 1–16)  

 

Figure 3. Structure of HIV-1 Vpr. 

 

and C-terminal (aa 78-96) domains are flexible and do not have a definite structure in solution 

but are critical for Vpr function. The N-terminal domain of Vpr has a role in nuclear localization 

of Vpr, virion incorporation and interaction with host (RIP1; UNG; Karyopherins; transcription 

factors Sp1, TFIIB) and viral p6 Gag proteins. The carboxy-terminal region of Vpr plays an 

important role in cell cycle arrest and also contributes to stability of the protein. Helical domain I 

(aa 17-33), helical domain II (aa 38–50), and helical domain III (aa 55–77) have essential roles in 

packing of Vpr into virion particles, stability, nuclear localization and oligomerization [20]. 
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Being a small protein with multiple roles in viral pathogenesis, and essential for in vivo survival 

of the virus, drastic mutations in any region or domain can potentially alter the structure of the 

protein. Hence there is a strong selection pressure for conservation of Vpr in the perspective of 

structure-function. In vitro and in vivo studies have shown that Vpr exists as oligomers. It can 

form homodimers, trimers and multimers, such an structural organization provides stability and 

has a critical role in interaction with other host cellular and viral proteins [21-23]. 

1.3.2 Role of VPR in Viral Pathogenesis 

HIV-1 Vpr is incorporated into virus particles through its interaction with the p6 subunit of Gag, 

making Vpr, as one of the first viral proteins the infected cells get exposed to. Also this 

interaction with p6 Gag leads to incorporation of the Vpr in both infectious and non-infectious 

virus particles [24]. Vpr is necessary for efficient infection of non-dividing cells such as 

macrophages and it enhances viral replication in T cell lines and activated peripheral blood 

lymphocytes [25]. The presence of extracellular Vpr in plasma and cerebrospinal fluid have been 

reported and this can result through the following mechanisms: a) synthesis and release of Vpr 

from infected cells; b) breakdown /lysis of infected cells; and c) breakdown of infectious and 

non-infectious virus particles, releasing Vpr [26]. Vpr can transduce across cell membranes and 

can exert its effects on bystander cells which can include even the cells which are not permissible 

for viral infection [27]. Patients infected with virus encoding defects in the C-terminus of Vpr 

have slower progression to AIDS [28]. Vpr is a pleiotropic protein. Either as virion associated 

molecule or extracellular potein, it inhibits cellular proliferation and differentiation. This effect is 

mediated by modulation of specific host cellular gene transcripts in several cell types [29]. Vpr 

blocks cell cycling in the G2/M phase of cell cycle, an effect that has been correlated with a 
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change in the phosphorylation of CDC2 kinases [30]. Vpr can also regulate cellular transcription 

by suppressing NF-κB activity through effects on IκB synthesis [31]. One particularly intriguing 

function of Vpr is its ability to mimic the immune suppressor – glucocorticoid, through its 

interaction with the glucocorticoid receptor (GR) and its response element, GRE [32]. In an in 

vivo model, it has been shown that the presence of Vpr inhibits the induction of the immune 

response to the co-delivered antigen [33]. Recently Vpr was shown to dysregulate major immune 

pathways including antigen presentation function, cytokine network and T cell activation by 

modulating the dendritic cells. These studies suggest that Vpr has a central role in HIV-1 

pathogenesis, understanding the details will help in development of novel therapeutics.  

1.4 HIV AND IMMUNE SYSTEM 

1.4.1 T Lymphocyte costimulatory molecules: Yin–Yang of T cell response 

Costimulatory molecules provide the second signal required for optimal activation and 

differentiation of T lymphocytes upon antigen recognition. CD28 and CTLA-4 are the main co-

stimulatory molecules which interact with CD80 and CD86 on the Antigen Presenting Cells 

(APC) and control the T cell differentiation, proliferation and secretion of chemokines and 

cytokines [34]. CD28 molecules are constitutively expressed on T lymphocytes, which are up 

regulated on activation following specific antigen recognition by the T Cell Receptor (TCR). 

CD28 acts as the positive regulator of T Cell signaling cascade. CTLA-4 is homologous to CD28 

and is a counter regulatory molecule, where it is involved along with CD28 in controlling the 

down stream effects of TCR signaling [35]. CTLA-4 molecules are present in lysosomal vesicles 
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and are recruited to lipid rafts of the signalosome during immune synapse formation. Signaling 

through CTLA-4 is related with secretion of immunoregulatory cytokine TGF-β. Also signaling 

through CTLA-4 is documented to inhibit the CD28 mediated anti HIV-1 effects and facilitate 

the replication of the virus and also reduce the resistance of neighboring target cells [36]. 

Dysregulation of CD28 and CTLA-4 on both CD4+ and CD8+ lymphocytes has been well 

documented in HIV-1 infected patients and is related to progression of the disease [37-39]. 

Recently it was evaluated that the interaction of costimulatory molecules on DC and T cell 

triggers signaling in a bidirectional way, both in DC and T cell. In this manner, the T cells can 

control the signaling in the interacting DC.  Interaction of CD28 with the costimulatory 

molecules, CD80 and CD86 on DC induces the immuno-stimulatory signals in DC whereas, the 

inhibitory counterpart of CD28 on T cells, CTLA-4 induces tolerogenic signals in DC mediated 

by IFN-g driven expression of immunosuppressive tryptophan catabolism [40, 41]. Together 

these studies suggest a role for infected DC-T cell interaction in pathogenesis. 

1.4.2 HIV and Natural Killer cells  

Compromised NK cell function includes one of the factors for loss of immune competence seen 

during HIV infection. Studies from our lab and others have demonstrated that the NK cell 

competence is impaired both invitro and in vivo [42-45]. HIV utilizes several strategies to 

counter the host NK responses, these include direct effect of viral proteins on NK cells and/or 

infected cells (example: inhibitory effect of Tat on NK cell functions and differential 

downregulation of MHC class I molecules on the surface of the infected cells by Nef); and 

indirect effect through dysregulation of cytokine network leading to compromised NK function. 

Both the cytolytic and immunomodulatory functions of NK cells are adversely affected during 
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the course of HIV infection. There are changes in the NK cell subsets distribution, there is a 

progressive loss of CD56+ NK cells and accumulation of highly dysfunctional CD56-CD16+ NK 

cell subset [46].  

The presence of defective NK in HIV-1 individuals indicates that HIV-1 infection 

compromises innate immune response also but the mechanisms involved in this NK cell function 

dysregulation are not clearly known. Results from our laboratory and others have clearly shown 

that HIV-1 Vpr has a role in dysregulation of NK cell function in invitro experiments [3, 44-46]. 

The interaction between NK receptors and their corresponding ligands is critical in 

determining the ability of NK to discriminate between the normal host cells and virus infected 

target cells. Both activating and inhibitory set of receptors are present on NK cells. The major 

activating receptors are mainly the Natural Cytotoxicity Receptors (NCR) NKp30, NKp44 and 

NKp46 and the C-type lectin, NKG2D. In addition to these activating receptors, another set of 

NK-cell activating receptors have been identified as coreceptors since they are able to amplify 

NK cell cytotoxicity when triggered along with the major activating receptor, these include 

CD244/2B4 receptor and the NK-T-B cell antigen (NTB-A). The inhibitory receptors present on 

NK (iNKR) have been grouped into three major families, this includes Killer immunoglobulin 

like receptors (KIR); an heterodimer consisting of CD94 associated with NKG2A/B; and an 

Immunoglobulin like transcript-2 [45]. These inhibitory receptors interact specifically with 

different alleles of major histocompatibility complex class I (MHC-I). Though there are 

difference in the specificity of iNKR, the cytoplasmic regions of all iNKR contain 

immunoreceptor tyrosine based inhibitory motif (ITIM) which function to recruit and lead to 

activation of the inhibitory phosphatases, such as Src-homology domain containing tyrosine 

phosphatases, SHP-1 and SHP-2. Signaling through the inhibitory receptor can overcome and 
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modulate the signal through the activating receptor thus, the final outcome depends on the 

strength of signal input from various activating and inhibitory receptors. Also alterations in 

ligands for NK cell receptors on target cells have been reported to regulate the corresponding NK 

cell receptor and their function. Further the strength and density of interaction is critical in 

determining the calcium mobilization and association with adaptor molecules involved in 

signaling. Pathogens including HIV are known to modulate both the receptors on NK and the 

ligands present on the target cells. HIV-1 infection is characterized by a dramatic increase in 

inhibitory receptors and loss of activating receptors especially NKp30 on NK cells, resulting in 

loss of NK cell activity. More recently genetic link has been established with certain NKR (e.g. 

KIRDS3 and its ligand Bw4) repertoire and HIV-1 disease progression. Results also indicate that 

the ligands for NK receptor are differentially modulated in infected cultures. Modulation of 

expression of MHC class I molecules during HIV-1 infection is well studied. HIV-1 viral protein 

Nef is known to specifically down regulate MHC class I A and B, while it has no effect on MHC 

class I C and E. Further there is loss of activating ligands on the infected cells. These help the 

virus infected cells to be protected from NK cell lysis. Recently it was reported that HIV-1 Nef 

has a role in down regulation of NK cell activating ligand MIC A/B on infected cells, this may 

further aid the infected cells to be protected from NK cells.  

1.4.3 T cell–Dendritic cell Cross talk during HIV infection 

Dendritic cells (DC) are one of the major professional antigen presenting cells (APC). Interaction 

of T cell and DC are essential for eliciting an effective immune response. The antigen presented 

along with the MHC molecule on the DC, is recognized by specific T cell Receptor (TCR). 

CD28 and CD40L on the T cell interact with CD80/CD86 and CD40 respectively, present on 
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immature DC, and increase the surface expression of CD80, CD86 and CD83, there is also an 

increase in the surface expression of CD40 on DC. All these process result in maturation of DC, 

which has a better ability to present antigens. 

DC are one the initial targets of HIV-1 virus. Both X4 and R5 virus can replicate in DC 

[47]. Reports suggest that infection and replication of HIV-1 virus in the infected cells are 

facilitated by cell-to-cell contact between DC and T lymphocytes, but the underlying 

mechanisms are not clear. Further, the replication of HIV-1 in T cell-DC conjugates is more 

robust than in either cells alone [48]. The transfer of virus from DC to T cell has been well 

studied, this can be the consequence of trans infection in DC, where the DC concentrate the virus 

and deliver it to the interacting T cell at the virological synapse, where receptors for HIV-1 on 

the T cells are recruited [49]. Cis infection of DC results in prolonged transmission of the virus 

to T lymphocytes [50]. Also DC can pack virus in exosomes and deliver it to the T cells to infect 

them in an envelope dependent way [51].  

Interaction of DC and lymphocytes can occur at different sites, it can be the site of 

primary entry of the virus or a lymphoid aggregation in the submucosal layer or the secondary 

lymphnode. Analysis of biopsies from asymptomatic HIV-1 seropositive patients showed high 

p24 positive cells which expressed markers of both DC and lymphocytes[52]. Further, robust 

replication of HIV occurs in Peyer’s patches, through all stages of the disease and has been 

implicated in the loss of CD4+ T Lymphocytes [18]. 

In addition to the ability of virus to exploit the DC functions to facilitate its spread, it also 

impairs the ability of DC to induce an effective immune response. HIV viral proteins are known 

to have varied effect on the DC. The outcome depends on the protein and the DC cell type and 

the invitro conditions, the DC are maintained in. HIV accessory proteins Vpr and Nef impair the 
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ability of DC to upregulate co-stimulatory molecules following second signal and disrupt the 

normal cytokine secretion profile, skewing towards an immunosuppressive profile. Increased 

TNF-α and other related death molecules on the DC contributes to apoptosis of bystander CD8+ 

T cells. Understanding the DC-T cell interaction and elucidating the viral mechanisms / factors 

which subvert the physiologically critical interaction, essential for induction of an effective 

immune response, to a virological synapse, which is important for efficient virus dissemination, 

will help us develop novel therapeutics and newer anti-viral strategies.    
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

2.1 RATIONALE 

HIV-1 infection leads to chronic disease, with the Acquired Immunodeficiency Syndrome 

developing decades after infection. Even though, loss of CD4+ T cells is the hallmark of onset of 

AIDS, the process is a gradual one involving a cycle of immunological events preceding the loss 

of T cells, where the target cells are dysregulated. CD4+ T cells are the main target cells for 

HIV, and they have a central role in homeostasis of immune response. HIV has devised methods 

to achieve its objective of survival, by utilizing the CD4+ T cells to suppress the immune 

response and favor the dissemination of virus.   

HIV-1 Vpr is one of the accessory genes which is essential for the virus survival in vivo 

and is incorporated in virus particles in adequate amount, suggesting a role for this protein in the 

early phase of infection. Vpr also has a central role in modulating basic cellular functions 

including cellular differentiation, cell cycle and apoptosis. Being a soluble protein with an ability 

to transduce across cell membrane, Vpr can potentially affect bystander cells. Studies have 

underlined the role of Vpr to modulate immune response, including critical cell surface 

molecules, basic signaling pathways and cytokine networks.          
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2.2 HYPOTHESIS 

I hypothezise that, HIV-1 Vpr alters the functions of both infected and bystander T lymphocytes, 

utilizing direct and indirect mechanisms, and these Vpr-mediated effects contribute inpart for the 

immune dysregulation and aid in viral dissemination. 

 

The Specific aims of this proposal are: 

1. Assess the immune modulatory effects of HIV-1 Vpr in infected and 

bystander T-lymphocytes in vitro. 

2. Understand the role of HIV-1 Vpr in T lymphocytes, natural killer 

(NK) cells and dendritic cells (DC) interactions. 

3. Structure-function analysis of HIV-1 Vpr in immunopathogenesis, 

virus replication and disease progression: Focus on Vpr 

oligomerization and functions. 
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3.0  IMMUNE MODULATORY EFFECTS OF HIV-1 VPR IN INFECTED AND 

BYSTANDER T-LYMPHOCYTES IN VITRO: DIRECT EFFECT ON T CELL 

ACTIVATION, SURVIVAL AND IMMUNE FUNCTION. 

This chapter includes results that were published in  “Venkatachari, N.J., B. Majumder, and V. 

Ayyavoo, Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T 

cell costimulatory molecules: direct effect of Vpr on T cell activation and immune function. 

Virology, 2007. 358(2): p. 347-56.” 
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3.1 INTRODUCTION 

Costimulatory molecules expressed in T cells provide the second signal required for optimum 

activation and differentiation of T lymphocytes upon antigen recognition [53, 54]. They have a 

role in regulation of immune response and survival of the cells. Most of these processes are 

controlled by positive and negative signals transduced across cell membrane following the 

interaction of cell surface molecules with their ligands. CD28 and CTLA-4 are the main 

costimulatory molecules in T cells that interact with CD80 and CD86 on the antigen presenting 

cells (APC) and initiate proliferation, differentiation and effector functions [34, 55, 56]. 

Expression of CD28 molecules increases following specific antigen recognition through TCR 

and acts as the positive regulator of the T cell signaling cascade. In contrast, CTLA-4, a CD28 

homolog, negatively regulates the effects of TCR signaling [57, 58]. The effectiveness of the 

immune response, including the secretion of cytokines, is controlled by the interaction of CD28 

and CTLA-4 with their ligands on the APC.  

 Therefore, differential expression of these important molecules can skew the outcome of 

the immune response. Dysregulation of CD28 and CTLA-4 in T lymphocytes has been well 

documented in HIV-1 infected patients and is correlated with disease progression [36-39]. 

Additionally, signaling through CTLA-4 is documented to counteract CD28 mediated anti-HIV-

1 effects and facilitate the replication of the virus and enhance the susceptibility of neighboring 

cells [36].  
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 HIV-1 exploit various mechanisms to modulate the function of important cellular 

molecules in T lymphocytes at multiple levels. HIV-1 Nef protein is involved in accelerating the 

endocytosis of CD4, CD28 and MHC class I molecules [59-61], whereas the vpu gene product 

has been reported to affect the biosynthesis of MHC class I molecules and cause ubiquitination-

dependent degradation of CD4 molecules in infected T-Lymphocytes [62, 63].  The ability of 

Env, Nef and Vpu to disrupt the expression of CD4 molecules in infected T lymphocytes 

collectively suggests that HIV-1 viral proteins disrupt the normal host cellular immune pathways 

in T lymphocytes thus exploiting the cellular machinery for viral replication and survival [64-

67]. 

HIV-1 vpr gene encodes a 96 amino acid protein that is incorporated into the virus 

particle through its interaction with p6 subunit of Gag, thus making Vpr as one of the first viral 

proteins that the infected cells are exposed to, prior to de novo synthesis [20, 68, 69]. Patients 

infected with HIV-1 encoding defects in Vpr have slower progression to AIDS [70-72]. Vpr was 

shown to dysregulate major immune pathways including antigen presentation, cytokine network 

and T cell activation, by impairing dendritic cell function as antigen presenting cells (APC) [73, 

74].  However, the direct effect of Vpr in infected T cells and its immune functions are not 

clearly understood. Using enhanced green florescence protein (EGFP) coding reporter viruses, 

with and without vpr, here we evaluated the effect of HIV-1 Vpr on T cell costimulatory 

molecules, CD28 and CTLA-4, as well as the functional consequences of Vpr expression in T 

cell activation and survival in both infected and bystander cells. Results indicate that HIV-1 Vpr 

differentially regulated the expression of cell surface molecules and impaired IFN-γ production 

that is involved in T cell activation functions. Additionally, HIV-1 Vpr inhibited the nuclear 

translocation of NF-κB in infected T cells. Together, these results suggest that Vpr can 
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selectively alter various immune regulatory molecules at multiple levels in infected T 

lymphocytes to escape host immune response. 

3.2 MATERIALS AND METHODS 

3.2.1 Isolation and culture of Lymphocytes 

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood obtained from 

healthy donors using Ficoll-Hypaque gradient centrifugation. CD14 depleted lymphocytes were 

purified by negative selection using anti-CD14 monoclonal antibody-coated magnetic 

microbeads (Miltenyi Biotech, Auburn, CA) as described previously [74]. Briefly, PBMC were 

resuspended in MACS buffer (2 mM EDTA, 0.05% bovine serum albumin in phosphate-buffered 

saline [PBS]) and incubated with anti-CD14 MACS beads at 4 °C for 15 min. Cells were washed 

with MACS buffer and resuspended in MACS buffer before passing through a magnetic column. 

The flow through was collected, and the purity of the lymphocytes was tested by flow cytometry 

using CD14-phycoerythrin (PE) (clone – M5E2, BD-Pharmingen, San Diego, CA) and CD3-

ECD (Beckman Coulter, Miami, FL). More than 95% of isolated cells were CD14− (data not 

shown). PBL (1 × 107/ml) were stimulated with anti-CD3 (OKT3) antibody (10 μg/ml)-coated 

flasks along with soluble anti-CD28 antibody (BD Pharmingen clone 28.2) (1 μg/ml) for 3 days 

as described [75] and cultured in RPMI 1640 supplemented with 10% fetal bovine serum (FBS) 

and 1× penicillin/streptomycin and rIL-2 (5 U/ml). 
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3.2.2 Construction of HIV-1wt and HIV-1Δvpr EGFP reporter proviral plasmids 

To evaluate the effects of Vpr in productively infected cells, we constructed EGFP reporter 

viruses, expressing full-length Vpr protein (HIV-1 vpr(+)/EGFP) and the other which does not 

express Vpr (HIV-1 vpr(−)/EGFP). An Internal Ribosomal Entry Site (IRES) site derived from 

ECMV virus was inserted to maintain the expression of Nef (Figure 5A). The vpr gene open 

reading frame in HIV-1 vpr(−)/EGFP virus has mutation at nucleotide 56, resulting in no 

detectable Vpr expression as shown by Western blot. The integrity of the viral DNA sequence 

was confirmed by sequencing, and the expression of viral proteins Gag, Vpr and Nef were 

confirmed by Western blot and/or by functional assays. 

3.2.3 Virus preparation and infection of T cells 

HEK293 T cells (2 × 106 per plate) were transfected with 10 μg of HIV-1 vpr(+)/EGFP or HIV-1 

vpr(−)/EGFP proviral construct by calcium phosphate precipitation method [74]. Forty-eight 

hours posttransfection, the supernatants were collected, filtered through a 0.4-μm filter to remove 

cellular debris, and centrifuged at 22,000 rpm for 1 h. The virus pellets were resuspended in PBS 

and stored in aliquots at − 80 °C for subsequent assays. Virus titers were measured by p24 

enzyme-linked immunosorbent assay (ELISA), and multiplicity of infection (MOI) was 

calculated by TZM blue assay using the HIV-1 reporter cell line cMAGI (AIDS Research and 

Reference Reagent Program [RRRP], National Institutes of Health [NIH]). PBL were infected 

with the HIV-1 vpr(+)/EGFP or HIV-1 vpr(−)/EGFP reporter virus at a MOI of 0.01. Six hours 

post infection, the viruses were removed by washing, and cells were maintained in R10 media 

containing rIL-2 (5 U/ml). 
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3.2.4 Flow Cytometry 

To confirm the purity of lymphocytes, we tested the phenotype of the cells by flow cytometry. 

Cells were stained with CD14-PE and CD3-ECD or with a corresponding fluorochrome-

conjugated IgG isotype control. Expression of costimulatory and other surface markers were 

evaluated by flow cytometry. Surface staining was performed for CD28, CD25, HLA-DR and 

MHC class I, whereas for CTLA-4, both surface and intracellular staining was performed. 

Briefly, at indicated time points cells were washed twice with cold PBS (pH 7.2) containing 10% 

FBS and incubated with respective fluorochrome conjugated antibody or isotype control for 1 h 

at 4 °C. The cells were washed three times with fluorescence-activated cell sorter (FACS) buffer. 

For the detection of intracellular proteins, fixation and permeabilization were carried out using 

the CytoFix-CytoPerm kit (BD-Bioscience, Mountainview, CA). The cells were fixed in the BD 

CytoFix-Cytoperm solution for 20 min, followed by two washes with Perm-Wash buffer (BD-

Bioscience). Intracellular staining was performed at room temperature for 1 h using the 

recommended dilution of antibody, per 106 cells, followed by two washes in Perm-Wash buffer 

and analyzed by flow cytometry. Gating was done as described below. Firstly, live lymphocytes 

were gated based on Side scatter and Forward scatter. Based on this, CD3+ cells were gated to 

eliminate the CD3− population (NK cells), and then infected and uninfected (bystander) cells 

were identified based on the expression of EGFP within the CD3+ population. Intracellular 

cytokine staining was carried out following the standard staining protocol. Cells (1 × 106) at the 

mentioned time point were stimulated with PMA (100 ng/ml) and ionomycin (1 μg/ml) in the 

presence of GolgiStop (2 μl/ml) for a duration of 8 h, followed by incubation at 4 °C for 6 h. 

Intracellular staining was done with anti-IFN-γ or IgG1 isotype control using the same protocol 

as described above. Samples were analyzed using Epics-XL (Beckman Coulter, Miami, FL) with 
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minimum of 20,000 gated events acquired for each sample, and the mean fluorescence intensity 

(MFI) was calculated using Cell Quest and Flow Jo software. 

3.2.5 Western blotting 

Lymphocytes were cultured and infected as described above for 3 days. A total of 5 × 106 

uninfected and infected lymphocytes were washed twice with PBS and lysed in RIPA buffer 

containing 50 mM Tris (pH 7.5), 150 mM NaCl, 1% Triton X-100, 1 mM sodium orthovanadate, 

10 mM sodium fluoride, 1.0 mM phenylmethylsulfonyl fluoride, 0.05% deoxycholate, 10% 

sodium dodecyl sulfate, aprotinin (0.07 trypsin inhibitor unit/ml), and the protease inhibitors 

leupeptin, chymostatin, and pepstatin (1 μg/ml; Sigma). Cell lysates were clarified by 

centrifugation, and total cell lysates (50 μg) were separated on a 10.5 to 12% sodium dodecyl 

sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis gel, transferred, and immunoblotted 

with anti-HIV-1 p24, anti-HIV-1 Nef (AIDS RRRP, NIH), and anti-HIV-1 Vpr (a kind gift from 

John Kappes, University of Alabama) antibodies. Tubulin was used as loading control. The blots 

were developed using an ECL kit (Amersham Biosciences, Piscataway, NJ). 

3.2.6 Immunofluorescence 

Forty-eight hours post infection, lymphocytes were washed with PBS, and attached onto slides 

using cytospin. Cells were fixed using in 3.7% formaldehyde at room temperature for 10 min, 

washed and permeabilized with 0.5% Triton X-100 for an additional 10 min. After washing 3 

times with PBS, cells were blocked with 5% BSA at room temperature for 1 h followed by 

incubation with primary antibody (NF-κB (p65) (1:200 dilution, Santa Cruz)) for 1 h at room 
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temperature. Cells were washed 3 times with 1× PBS, and incubated with goat anti-rabbit IgG 

Rhodamine (RRX) (1:400; Jackson ImmunoResearch, West Grove, PA) for 1 h at room 

temperature. Following three washes with 1× PBS, cells were mounted with VECTASHIELD 

mounting media containing DAPI (Vector Laboratories, Burlingame, CA). Immunofluorescence 

was detected using a fluorescence microscope with Nikon SPOT camera (Fryer, Huntley, IL) and 

images were processed using MetaMorph software (Universal Imaging Corporation, 

Downington, PA). 

3.2.7 IFN-γ ELISA 

Following infection of PBL with HIV-1 vpr(+)/EGFP or HIV-1 vpr(−)/EGFP, supernatants were 

collected and analyzed for the presence of IFN-γ. INF-γ was measured by using Opti-EIA 

enzyme-linked immunosorbent assay (ELISA) kit (BD Biosciences, San Diego, CA) according 

to the manufacturer's protocol. 

3.2.8 Statistical analysis 

The results were expressed as mean ± standard error of the mean. The data were analyzed using 

the Student's t test for paired samples. 
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3.3 RESULTS 

3.3.1 Construction and characterization of HIV-1 vpr(+) and HIV-1 vpr(-) EGFP 

reporter viruses 

To clearly distinguish the role of HIV-1 Vpr on infected and uninfected T cell immune functions, 

and to further understand the contribution of Vpr in immunopathogenesis, EGFP reporter viruses 

were constructed. This was achieved by the insertion of EGFP reporter and IRES fragment in 

frame with the nef open reading frame, which maintained the Nef expression (Fig.4A). To 

determine the expression of viral proteins, PBL were infected as described in Materials and 

methods. Three days post infection cells were lysed, and lysates were analyzed for expression of 

Gag (p24), Nef and Vpr by immunoblot (Fig.4B). Immunoblot analysis indicates the expression 

of viral proteins confirming the integrity of these constructs. Additionally, function of Nef was 

evaluated by assessing the ability of Nef to downregulate MHC I molecules in the infected T 

cells. Viruses generated from 293T cells were used to infect Jurkat JJK cells and the expression 

of MHC I and CD3 was tested by flow cytometry (Fig.4C). As a control, pNL43ΔNef/EGFP 

(kind gift from Dr. David N. Levy, University of Alabama) was used. Results indicate that both 

the HIV-1 vpr(+)/EGFP and HIV-1 vpr(-)/EGFP constructs downregulated the expression of 

MHC I in the infected cells (> 40%), compared to the HIV-1ΔNef/EGFP virus (< 2%), 

indicating that both the expression and function of Nef were maintained in these constructs. 

EGFP expression was also evaluated by immunofluorescence microscopy, and the ability of this 

reporter virus to distinctly identify the infect cells was confirmed by flow cytometry. 
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Next, to confirm that the insertion of the IRES-EGFP fragment into the NL43 viral 

genome did not impair its replication competence, anti-CD3/anti-CD28-stimulated normal 

human PBL were infected, and virus replication was monitored. Both viruses infected PBL 

efficiently and supported virus replication, as measured by p24 production (Fig.4D). However, in 

the presence of Vpr, there was a slight increase in the p24 levels in the HIV-1 vpr(+)/EGFP 

virus, compared to the Vpr-negative counterpart, as observed before [76, 77]. Together these 

results indicate that insertion of EGFP-IRES fragment did not alter either the expression or the 

function of Nef, further confirming the specific effects of Vpr in the presence of other viral 

proteins. 
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Figure 4. Construction and characterization of EGFP-containing HIV-1 vpr(+) and HIV-1 vpr(−) virus. 

(A) Schematic representation of viral constructs. EGFP reporter virus HIV-1 vpr(+)/EGFP and HIV-1 vpr(-
)/EGFP, showing the site of insertion of the IRES sequence in the HIV-1 viral genome to maintain the expression of 
both EGFP and Nef. (B) Expression of viral proteins by immunoblot: Cell lysates obtained from infected PBL on 
day 6 post infection with the EGFP reporter virus HIV-1 vpr(+)/EGFP or HIV-1 vpr(-)/EGFP were characterized 
for the presence of Gag, Vpr and Nef by immunoblot analysis using specific antibodies. Tubulin was used as loading 
control. (C) Functional analysis of nef in the reporter virus: Jurkat JJK cells were infected with the reporter virus 
HIV-1 Nef(-)/EGFP, HIV-1 vpr(+)/EGFP and HIV-1 vpr(-)/EGFP. Five day post infection the expression of MHC 
class I and CD3 were evaluated on the surface of infected cells by flow cytometry. (D) Replication kinetics of the 
vpr(+) and vpr(-) reporter virus in PBL: Cells were infected with the EGFP reporter virus HIV-1 vpr(+)/EGFP or 
HIV-1 vpr(-)/EGFP as described in Material and Methods. At the indicated time points the supernatant was 
collected and p24 was estimated by ELISA. 
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3.3.2 HIV-1 Vpr differentially regulates the expression of costimulatory molecules CD28 

and CTLA-4 in T cells 

To determine the effect of HIV-1 Vpr costimulatory molecules CD28 and CTLA-4 in vitro and 

its functional impact on host immune responses, monocyte-depleted PBL (> 95% as measured by 

flow cytometry) were activated with anti-CD3 and anti-CD28 antibody and infected with 0.01 

MOI of HIV-1 vpr(+)/EGFP or HIV-1 vpr(-)/EGFP virus. Four days post infection, expressions 

of CD28, CTLA-4, CD25, and HLA-DR were evaluated by flow cytometry. To distinguish the 

Vpr-mediated effects in infected and bystander cells, cells were first gated based on forward and  

side scatter, followed by gating on CD3-positive cells. Within the CD3-positive cells, infected 

and bystander cells were separated based on EGFP positivity. Results indicate that there is no 

significant difference in the number of cells (shown in percent positive) infected with either 

HIV-1 vpr(+) or HIV-1 vpr(-) virus (Fig.5A). Using this gating, expression of CD28 was 

assessed in both EGFP-positive and EGFP-negative cells. In HIV-1 vpr(+)-infected cells 

(considering the EGFP-positive as 100%), the number of cells expressing CD28 was 

significantly reduced (67.2%) compared to the HIV-1 vpr(-)-virus-infected cells (94.2%), 

whereas no significant change was observed in the bystander/uninfected cells (92.1 versus 94.5; 

Fig.5B). Additionally the level of expression of CD28, as measured by mean fluorescence 

intensity (MFI), was also lower in the HIV-1 vpr(+)-virus-infected cells (143) compared to the 

HIV-1 vpr(-)-virus-infected cells (239). These studies were performed in PBL isolated from 

multiple donors (N = 7) and similar reduction was observed (Fig.5C) indicating that HIV-1 Vpr 

significantly (p = 0.0014) downregulated one of the important costimulatory molecules, CD28 in 

infected cells. 
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The significant reduction in CD28 expression in infected T cells, caused by HIV-1 Vpr 

prompted us to measure the effect of Vpr on the expression of its counter regulator molecule 

CTLA-4. Unlike the constitutively expressed CD28, CTLA-4 is expressed only upon activation 

and mainly resides in intracytoplasmic vesicles, and then recruited to the immunological synapse 

to regulate signal transduction at the proximal level [78]. To evaluate the effect of Vpr on the 

expression of CTLA-4, both cell surface and intracellular CTLA-4 were stained and assessed in 

PBL from the same donor by flow cytometry using similar gating as shown in Fig.5A. Fig.5D 

indicates that presence of Vpr increased expression of CTLA-4 in the infected cells. Cells 

expressing CTLA-4 are 30.6% in HIV-1 vpr(+)/EGFP-virus-infected culture, whereas, only 18% 

of HIV-1 vpr(-)/EGFP-virus-infected cells expressed the inhibitory costimulatory molecule, 

CTLA-4. Similar results were observed in multiple donors (N = 7), as shown in Fig.5E (p = 

0.026), further indicating that the observed increase in CTLA-4 expression is Vpr specific and 

not donor-dependent. 
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Figure 5. Differential regulation of T cell costimulatory molecules by HIV-1 Vpr. 

(A) PBL were infected with HIV-1 vpr(+)/EGFP or HIV-1 vpr(-)/EGFP as described. Four days post infection the 
percentage of infected cells was analyzed by flow cytometry. Viable lymphocytes were gated based on side and 
forward scatter dot plot. The CD3 expressing cells were then gated, and the Infected (EGFP+) and Bystander 
(EGFP-) cells were identified based on EGFP expression. (B) Expression of CD28 was analyzed by flow cytometry 
using directly conjugated specific antibodies and isotype controls. The cells were gated as described in Panel A, and 
the expression of CD28 was analyzed on the infected (EGFP+) and bystander (EGFP-) cells. Each population 
(EGFP+ or EGFP-) was considered as 100% during analysis.  (C) Downregulation of CD28 by Vpr in multiple 
donors (N=7). p value was derived using paired t test analysis comparing HIV-1 vpr(+) and HIV-1 vpr(-) groups. 
(D) Expression of CTLA-4 was determined by flow cytometry. Cells were stained for surface and intracellular 
expression of CTLA-4 as described in Materials and Methods. (E) HIV-1 Vpr differentially regulates the expression 
of CTLA-4 in multiple donors (N=7). p value was evaluated by paired t test analysis. 
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Next, to rule out the possibility that HIV-1 Vpr did not alter the expression of T cell 

receptors globally, surface expression of CD25 and HLA-DR molecules was measured within 

the infected and uninfected population using the same donor cells (Fig.6A). There is no 

significant change in the surface expression of CD25 and HLA-DR molecules in the presence or 

absence of Vpr, in both the infected as well as the bystander cells. Similar results were observed 

in multiple donors (Fig.6B). These results indicate that the dysregulation of CD28 and CTLA-4 

shown above is specifically regulated by the vpr gene product. A decrease in CD28, the positive 

regulator of the signal transduction, combined with an increase in negative regulator, CTLA-4 

can have an additive effect to impair proximal signal transduction following the recognition of 

specific antigen by the T cell receptor [79, 80]. 

 

Figure 6. Effect of HIV-1 Vpr on CD25 and HLA-DR in infected and bystander cells. 

PBL were infected with EGFP reporter viruses as described in Material and Methods. Four days post infection, the 
cell surface expression of CD25, and HLA-DR was analyzed by flow cytometry. Viable lymphocytes were gated as 
shown in Fig.6A. Expression of CD25 and HLA-DR was analyzed in infected (EGFP+) and bystander (EGFP-) 
cells. (A) Representative contour plot for one of the multiple donors. (B) Dot plot represents data from four donors.  
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3.3.3 HIV-1 Vpr inhibits interferon gamma (IFN-γ) secretion in infected T cells 

Interferon gamma is one of the key Th1 cytokines secreted by T lymphocytes upon activation 

and is required for antiviral immunity. It has been well documented that there is a decline in the 

IFN-γ secreting cell population during HIV-1 infection, and this correlates with the 

compromised T-cell-mediated response patients [81-83].  Hence we evaluated the amount of 

IFN-γ secreted by PBL infected with HIV-1 vpr(+)/EGFP or HIV-1 vpr(-)/EGFP virus by 

ELISA on days 3 and 6 post infection to further delineate the potential implications of Vpr. 

Results indicate that in the presence of Vpr there is a significant decrease (> 50%) in IFN-γ 

production compared to Vpr-negative virus-infected culture on day 6 post infection (Fig.7A). 

These results were consistent in multiple donors (N=4), as depicted in Fig.7B. To further 

quantitate the level of IFN-γ production within the infected cells, intracellular staining for IFN-

γ was performed. Number of infected cells that are positive for intracellular IFN-γ was 

threefold lower in HIV-1 vpr(+)/EGFP-virus-infected culture compared to that in HIV-1 vpr(-

)/EGFP-virus-infected culture. In case of HIV-1 vpr(+)/EGFP-infected cells, only 3.55% of cells 

were positive for IFN-γ, whereas 11.8% of HIV-1 vpr(-)/EGFP-infected cells produced IFN-γ 

(Fig.7C). These data suggest that HIV-1 Vpr can mediate its inhibitory effects in the presence of 

other viral proteins. 
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Figure 7. HIV-1 Vpr inhibits IFN-γ production in HIV-1-infected lymphocytes. 

(A) PBL were infected with the EGFP reporter virus HIV-1 vpr(+)/EGFP or HIV-1 vpr(-)/EGFP as described in 
Material and Methods. The supernatant collected 3 and 6 day post infection was assessed for IFN-g production by 
ELISA. The error bars denote the standard error of the mean, obtained from samples in triplicates. (B) Production 
of IFN-g in multiple donors (N=4) was evaluated statistically evaluated by paired t test. (C) Detection of IFN-g by 
intracellular staining using PE conjugated IgG1 isotype or anti-human IFN-g antibody following fixation and 
permeabilization, using flow cytometry. Viable lymphocytes were gated and IFN-g production with in the infected 
(EGFP+) and bystander (EGFP-) lymphocytes was evaluated. The histograms represents one of the multiple donors 
(N=4) evaluated. 
 

3.3.4 HIV-1 Vpr inhibits the nuclear translocation of the p65 member of the NF-κB 

family in infected cells 

Results presented above indicate that HIV-1 Vpr inhibited the production of IFN-γ in HIV-1-

infected cells, suggesting that HIV-1 Vpr not only selectively modulates the cell surface 
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expression of the major costimulatory molecules CD28 and CTLA-4, but also interferes with 

downstream events of T cell activation. NF-κB is one of the important cellular factors that 

regulate the production of IFN-γ upon activation. Therefore, we further evaluated the effect of 

HIV-1 Vpr on NF-κB translocation in infected lymphocytes by immunofluorescence to 

elucidate the involvement of Vpr in the context of infection. Results indicate that in more than 

70% of HIV-1 vpr(+)/EGFP-virus-infected lymphocytes NF-κB is localized in the cytoplasm, 

whereas in HIV-1 vpr(-)/EGFP-virus-infected cells, NF-κB is located predominantly in the 

nucleus (Fig.8A). A similar pattern was seen in multiple donors (N = 4) as shown in Fig.8B. 

Though previous studies have suggested that endogenous expression of Vpr in the absence of 

other viral proteins inhibits the transcriptional regulation of NF-κB in cell lines [31], this is the 

first report indicating a similar phenomenon in HIV-1 infected primary lymphocytes. Together 

these results indicate that one of the mechanism(s) exerted by Vpr is to block NF-κB mediated 

transcriptional regulation as part of the immune evasive strategies as noted in other viruses [84, 

85].  
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Figure 8. Subcellular localization of NF-κB in HIV-1 vpr(+) or HIV-1 vpr(−)-virus-infected 

lymphocytes by indirect immunofluorescence. 

(A) Infected PBL were fixed and cytospun on to slides, and stained for p65 subunit of NF-kB protein, as described in 
Materials and Methods. Infected Lymphocytes were detected by direct fluorescence of EGFP (Green), and the p65 
subunit of NF-kB was detected using a polyclonal antibody (Red). Nuclei were identified by DAPI staining (Blue). 
Arrows in panel (overlay) indicate the presence of NF-kB within the infected cell. As indicated, the upper panels 
show the lymphocytes infected with HIV-1 vpr(+)/EGFP virus, and the lower panels show the cells infected with 
HIV-1 vpr(-)/EGFP virus. (B) Infected cells were identified by presence of EGFP florescence and bystander cells by 
the absence of EGFP florescence. Subcellular distribution of NF-kB was counted within the EGFP positive and 
EGFP negative cells in ten random fields (30 cells) for all multiple donors (N=4). The absolute cell numbers that 
are positive for NF-kB nuclear localization is presented. p value was derived using paired t test analysis by 
comparing HIV-1 vpr(+) and HIV-1 vpr(-) groups. 
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3.4 DISCUSSION 

Effective innate and adaptive immune responses are essential for control and elimination of viral 

infections.  Many viruses, including HIV-1, have evolved ways to utilize viral antigens as a 

means of evading the host immune response [66, 86, 87]. There are increasing evidences for the 

role of HIV-1 accessory protein Vpr to modulate immune functions. Recently, we and others 

have shown that Vpr impaired the maturation of dendritic cells and subsequently dysregulated 

the activation and function of T cells [73, 74]. Despite the role of Vpr in inducing T cell 

apoptosis [88-90],  it is unknown whether Vpr exerts immune dysfunction directly in infected T 

cells. Here, we have evaluated the direct effect of Vpr on T cell function independent of any 

interaction with APCs, using PBL and EGFP reporter containing X4 tropic (pNL43) HIV-1 

vpr(+) and HIV-1 vpr(-) viruses.  

The costimulatory molecules CD28 and CTLA-4 are the major players regulating the 

proximal TCR signaling events. Dysregulation of CD28 and CTLA-4 on both CD4+ and CD8+ 

lymphocytes has been well documented in HIV-1 infected patients and is related to progression 

of the disease [36, 37, 39, 67], and HIV-1 accessory proteins selectively regulate this process 

[67]. Our results indicate that Vpr differentially modulated CD28 and CTLA-4 molecules in 

infected T cells, in the presence of Nef and other viral proteins, indicating that HIV-1 proteins 

might function in an additive manner. The selective nature of Vpr-mediated downregulation is 

further supported by the observation that under similar conditions (same time points) Vpr did not 

affect the surface expression of CD25 or HLA-DR. This suggests that the differences seen in the 

expression level of CD28 and CTLA-4, in the presence of HIV-1 Vpr, are very specific and not 

due to global changes in the expression of cellular molecules or differences in the activation 
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status of the infected lymphocytes. We next delineated the defect in downstream effector 

function (measured by IFN-γ production) in infected cells as an outcome of Vpr-mediated 

differential regulation of CD28 and CTLA-4. HIV proteins Env, Tat and Nef have been shown to 

directly activate some of the down stream factors, but most of these studies have been conducted 

using recombinant viral proteins, and the effects in the context of infection is limited [67]. Next 

we assessed the effect of Vpr on downstream effector molecule, IFN-γ in these cultures. HIV-1 

Vpr not only reduced IFN-γ production in infected culture, it also further blocked the stimulation 

by potent stimulators, such as PMA and ionomycin that bypass the proximal signaling events and 

directly activate the downstream signaling factors [91, 92]. This clearly suggests that HIV-1 Vpr 

not only interferes with the proximal signaling in T cells, but also has additional inhibitory 

effects on the down stream effector molecules.  

NF-kB is one of the major down stream factors involved in the regulation of secretion of 

IFNγ upon TCR signaling [93]. HIV-1 Vpr has been reported to both activate and inhibit NF-kB 

mediated down stream effects, depending on the cellular context, Vpr forms, and activation 

status of the cells [31, 94]. In our current study, we have shown that Vpr inhibited the nuclear 

translocation of the p65 subunit of NF-kB. Activated NF-kB is required for antiviral effects. 

Collectively, the results presented in this study delineate the role of HIV-1 Vpr in the regulation 

of T lymphocyte function in the context of infection mainly by altering the level of proximal 

TCR signaling, as evident by downregulation of CD28 and simultaneous upregulation of 

CTLA4, and by blocking distal events (IFN-γ production) at the transcriptional level 

independently.  These events initiated early during infection could not be reversed by 

restimulation as observed in PMA/ionomycin activation, suggesting that Vpr-mediated immune 

defects are not completely reversible. The observed Vpr-mediated inhibition of NF-kB 
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translocation coupled with functional impairment of T cell IFN-g production could preferentially 

induce an immunosuppressive phenotype of infected T lymphocytes. Collectively, the results 

presented here delineate a role for HIV-1 Vpr in modulating the function of T lymphocytes 

during early stages of infection. Thus, HIV-1 Vpr might potentially utilize multiple 

mechanism(s) to evade the immune system, and the viral proteins could act in a coordinated 

manner to impair immune activation. Identifying the mechanism(s) involved in Vpr-mediated 

immune regulation will improve our understanding of viral function, and assist in the 

development of immunotherapeutics and antiviral strategies for HIV-1 infected individuals.  
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4.0  INTERACTION OF VPR DYSREGULATED T LYMPHOCYTES WITH 

NATURAL KILLER CELLS AND DENDRITIC CELLS: INDIRECT EFFECT OF VPR 

THROUGH INFECTED TARGETS ON IMMUNOSUPPRESSION AND VIRUS 

REPLICATION 

4.1 INTRODUCTION  

In the previous section, I have evaluated and discussed the direct effect of Vpr on infected and 

exposed/bystander CD4+ T cells.  This section (aim#2), I propose to assess the effect of 

infected/exposed CD4+ T cells on other immune cells specially NK cells and DC. The rationale 

for this study is based on the established interaction of immune cells (T cell, DC and NK cells) 

either as part of the general surveillance mechanism or during the process of induction of 

effective response to invading pathogen, including HIV.  These intercellular interactions are 

mediated by soluble and membrane bound factors as well as specific ligand-receptor molecules 

and is responsible for initiating innate and adaptive immunity.  Although pathogens (viruses, 

bacteria) might target specific cell types, the host immune system has the capacity to effectively 

mount innate and adaptive response through these interactions and signaling mechanisms.  HIV-

1 is known to infect macrophages, DC and CD4+ T cells, however CD4+ T cells are the major 

targets for infection.  Therefore, it is important to understand how infected T cells interact with 

NK cells or DC and how this cross talk alters the uninfected interacting partners and 
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subsequently the immune response and viral pathogenesis.  The first part of this aim focuses on 

the consequence of T cell-NK interaction and the second part focuses on T cell-DC interaction as 

shown in Figure 9. 

 

Figure 9. Schematic representation of  T cell-NK cell and Tcell-Dendritic cell interaction. 

4.2 PART I: T CELL-NK CELL INTERACTION AND ITS CONSEQUENCE IN 

VIRAL PATHOGENESIS 

Natural killer (NK) cells are major effectors of the innate immune system. Although defective 

NK cell functions have been well documented in HIV-1 infected individuals [95-97], there is 

little information on the mechanisms underlying these defects. Understanding the basis of NK 

cell defects in HIV-1 infection could be important to development of effective immunotherapies 
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and vaccines for HIV-1. Interestingly, it is not likely that these defects result from direct 

infection of NK cells, as NK cells are not considered to be major targets of HIV-1 infection and 

do not support virus replication, suggesting that NK cell dysfunction could be mediated through 

their interaction with infected and exposed target cells and/or by direct exposure to viral proteins 

present in the infected milieu. NK cells interact with immune cells (T cells, 

monocytes/macrophages and DC) through their cognate receptors / ligands and cytokine 

networks as a normal immunological process.  

Dysregulation of NK cell function has a direct correlation with viral load [96, 98-102].  

Early studies by our group and others demonstrated that despite the presence of normal NK cell 

numbers , the activities of NK cells are significantly compromised in HIV-1 infected individuals 

[103, 104]. There is also a distinct change in NK cell subset distribution during acute HIV-1 

infection that preceded the progressive depletion of functionally active NK cells. HIV-1 infection 

is characterized by a dramatic increase in inhibitory receptors and loss of activating receptors, 

particularly NKp30 on NK cells, resulting in loss of NK cell activity. 

 NK cells interact with infected targets cells and with additional immune cell types during 

immune activation via ligand-receptor interactions. Pathogens, including HIV-1, are known to 

modulate the ligands present on the infect cells, thus avoiding reorganization by the innate 

immune system, as well as to suppress the adaptive immune response. Recent studies by several 

investigators have shown that HIV-1 infection alters expression of ligands in the infected culture, 

thus causing a defect in NK cell function through ligand-receptor interaction and signaling [105]. 

Furthermore, alteration in ligands for NK receptors (ULBP1, 2, 3, MIC A/B for NKG2D) also 

accounts for a defect in NK signaling cascades and cytolysis [106].  
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Although NK cells are regulated via direct and indirect mechanism(s), the role of virion 

associated proteins and the pathways involved in HIV-1-NK dysregulation have yet to be 

determined.  To delineate the role of HIV-1 Vpr on NK cell function, through infected and 

exposed target cells, we assessed the ability of NK cells to kill target cells and to produce IFN-γ 

or express degranulation marker, CD107a, on challenge with K562 target cells. Additionally, we 

identified the T cell derived factors involved in this process.  Results implicate the role of TGF-

β and NK cell ligands in HIV-1 Vpr mediated NK cell dysregulation indirectly through the 

infected / exposed T cells. This affect is predominant during early phases of infection or 

exposure. Thus, a more indepth understanding of Vpr and its role in HIV-1-immunopathogenesis 

should lead to significant narrowing in our gaps in knowledge regarding HIV-1 pathogenesis and 

immunosuppression. 

4.3 MATERIALS AND METHODS 

4.3.1 Cell Culture 

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood obtained from 

normal donors using Ficoll-Hypaque gradient centrifugation. PBMC were cultured in RPMI 

containing 1mg/ml PHA-P and 200U IL-2 .In certain experiments, CD4+ lymphocytes were 

isolated by negative selection from PBMC, more than 95% of isolated cells were CD4+ as tested 

by flow cytometry. For NK studies, pure NK was isolated by positive selection using anti-CD56 

antibody-coated magnetic microbeads (Miltenyi Biotech, Auburn, CA) as described previously 

[74]. In some experiments, NK cells were isolated by negative selection.   
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4.3.2 Plasmids, virus preparation and infection 

HIV-1wt and HIV-1ΔVpr plasmids were obtained from NIH, HIV AIDS Research Reagent 

Program and Dr. David N.Levy, University of Alabama. HEK293T cells (2×106 per plate) were 

transfected with 10μg of HIV-1 constructs by calcium phosphate precipitation method [74]. 

Forty-eight hours post transfection supernatants were collected, filtered through a 0.45-μm filter 

to remove cellular debris, and centrifuged at 22,000 rpm for 1 h. Virus pellets were resuspended 

in PBS and stored in aliquots at -80°C for subsequent assays. Virus titers were measured by p24 

enzyme-linked immunosorbent assay (ELISA), and multiplicity of infection (MOI) was assessed 

by standard TZM-bl assay. On the day of isolation the cells were exposed to either HIV-1wt or 

HIV-1∆Vpr virus, the viral dose equivalent to 100ng of p24 per 10 million cells was used.  

 

4.3.3 NK cell mediated target cell lysis assay. 

 PBMC (1x107 cells in a final volume of 1ml) were infected with HIV-1wt and HIV-1ΔVpr 

virus, or exposed to Vpr , other HIV-1 viral proteins or control protein, as described above, were 

used to assess NK-mediated cytolytic function using K562 cells as targets (kindly provided by 

Dr. Pawel Kalinski, University of Pittsburgh). Briefly, infected/exposed PBMC (12, 24, 48, 72, 

96 hrs and 6 days post infection) were cocultured with K562 at an effector : target ratio of 1:1 

and 10:1 in triplicate.  In certain experiments, Cytotoxicity was assessed using a non-radioactive 

colorimetric assay measuring lactate dehydrogenase (LDH) released from lysed target cells 

following the manufacturer’s instructions (Cytotox96 non-radioactive cytotoxicity assay, 

Promega, WI). Following four hrs coculture at 37oC in a 96-well flat bottom microtiter plate, 
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50µl aliquots of cell-free supernatants were transferred in a new assay plate and incubated at 

room temperature with 50µl reconstituted LDH substrate mix in the dark for 30 minutes. Target 

cells and effector cells incubated separately for the same period were used as target and effector 

spontaneous controls, respectively. Target cells treated with 0.8% Triton-X lysis solution for 45 

minutes prior to harvesting the supernatants were served as the target maximum. Finally, the 

assay was terminated by adding 50µl stop solution and the release of LDH was measured at 

490nm using an ELISA plate reader. Percent cytotoxicity was calculated using the following 

formula: 

% Cytotoxicity= Experimental-Effector Spontaneous-Target Spontaneous   X 100 

                                 Target Maximum-Target Spontaneous 

 

In some experiments, flow cytometry based NK cell lysis assay was used.  

 

4.3.4 NK cell degranulation assay. 

 To quantitate the cell surface expression of CD107a, infected or Vpr exposed PBMC and PBL 

(total 1X106/mL) were washed twice in PBS, and activated with K562 target cells (PBMC: 

K562=1:1) in a total volume of 1ml prewarmed culture media following centrifugation for 5 

minutes at 1200 rpm to facilitate the contact of cells. PBMC stimulated for one hour with K562 

were further incubated with 6µl monensin (BD Bioscience, Mountainview, CA) at a final 

concentration of 6µg/ml for additional three hrs prior to the surface staining for CD107a. NK 

cells were stained with anti CD3-ECD, anti CD56-PC5 (Beckman Coulter, Miami, Fl) and anti 

CD107a-FITC (BD Bioscience) antibodies for one hour in FACS buffer (2% FBS in PBS) 
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containing 5mM EDTA on ice and analyzed for surface expression of CD107a by flow 

cytometry as described [107].  

 

4.3.5 Detection of intracellular IFN-γ.  

Uninfected and infected PBMC and PBL (1x106 cells/mL) were further stimulated with K562 at 

an effector: target ratio of 10:1 for 6 hrs in the presence of 6µl of monensin (BD Bioscience). 

Production of IFN-γ  was detected in fixed and permeabilized cells (cytoFix-cytoPerm kit, BD-

Biosciences, CA) by intracellular staining using PE-conjugated primary antibodies or isotype 

matched control (Caltag, Burlingame, CA) following surface staining with CD56-PC5 and CD3-

ECD antibodies to distinguish CD3-/CD56+ NK cells within the total PBMC. Briefly, cells were 

washed three times with FACS buffer and surface markers were stained with anti CD56-PC5 and 

anti CD3-ECD for one hour. Intracellular IFN-γ staining was performed at room temperature for 

60 minutes using 5µl PE-conjugated anti-IFN-γ antibodies (Coulter, FL), followed by two washes 

in Perm-Wash buffer. The cells were gated in ECD-, PC5+ channels to quantitate the expression 

of intracellular cytokine in specific NK cell subpopulations (CD3-/CD56+ cells) and analyzed by 

flow cytometry as described [102, 108]. 
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4.3.6 TGF-β ELISA  

Culture supernatants were collected at different time points post infection or post treatment were 

measured by ELISA for TGF-β using BD Opti-EIA kits as per the manufacturer’s instructions 

(BD Biosciences).  

 

4.3.7 Flow cytometry  

To confirm the purity of cells, we examined the phenotype of the cells by flow cytometry 

following staining with specific antibody. Surface expression of NK ligands, MHC class I 

molecules were evaluated by flow cytometry. Intracellular staining was done to evaluate the 

production of IFN-γ. Intracellular cytokine staining was carried out following the standard 

staining protocol. Cells (1 × 106) at the mentioned time point were stimulated with PMA 

(100 ng/ml) and ionomycin (1 μg/ml) in the presence of GolgiStop (2 μl/ml) for a duration of 

8 h, followed by incubation at 4 °C for 6 h. Intracellular staining was done with IFN-γ or IgG1 

isotype control using the same protocol as described above. Samples were analyzed using Epics-

XL (Beckman Coulter, Miami, FL) or FACS Canto, with minimum of 20,000 gated events 

acquired for each sample, and the mean fluorescence intensity (MFI) was calculated using Flow 

Jo software. 
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4.3.8 Statistical analysis 

Results were analyzed using the student t test. A p value less than 0.05 was considered as 

statistically significant. 

4.4 RESULTS 

4.4.1 Effect of HIV-1 vpr on NK cell function during HIV-1 infection. 

HIV-1 Vpr is known to dysregulate the cells of the immune system, but the ability of vpr to 

affect NK cell function is not clearly defined. Hence we evaluated the effects of HIV-1 vpr on 

NK cells in PBMC cultures infected with either HIV-1 wild type (HIV-1 wt) virus or HIV-1 vpr 

defective (HIV-1∆vpr) virus or PBMC exposed to recombinant Vpr or control protein. The 

effectiveness of NK cells present in the infected or protein exposed cultures to lyse target cells 

and the ability of NK cells to express degranulation marker, CD107a, or their ability to secrete 

IFN-γ in response to challenge with target cells was evaluated. Infected and protein treated 

PBMC were cocultured with K562 targets at ratios of 1:1 and 10:1; target cell killing was 

measured by flow cytometry based NK cell lysis assay as previously described. NK cells in 

PBMC infected with HIV-1 wt virus induced about 3% target cell lysis at a 1:1 ratio, whereas 

NK cells in PBMC infected with HIV-1∆vpr virus mediated 6% target lysis at the same ratio 

(Fig.10). A similar difference in specific lysis of targets was displayed by NK cells from  
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(A) 

 

(B) 

(C) 

Figure 10. HIV-1 Vpr inhibits NK cell function in infected and Vpr protein treated PBMC cultures. 

PBMC was infected with either HIV-1 wt or HIV-1∆vpr virus or exposed to Vpr or control protein, four 
days post infection/ exposure, the NK cells were evaluated for (A) specific target cell lysis, (E:T=1:1 and E:T=1:10) 
(B) CD107a expression (C) IFN-γ production in response to K562 cell line (NK:K562 1:5).  

 

HIV-1 wt virus-infected PBMC or HIV-1 Δ vpr virus-infected PBMC at 10:1 effector/target 

ratios. Vpr protein was also able to inhibit the NK cell lysis at both the ratios.  

Evaluation of NK cells from these cultures to express degranulation marker, CD107a, or 

secrete IFN-  production further confirmed the effect of Vpr to inhibit NK cell function. As 

shown in Fig.10B and Fig.10C, there was a substantial reduction in CD107a expression (1.5-10 
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fold) and intracellular IFN-  production (4-20-fold) in CD3– CD56+ gated NK cells. A dose 

dependent inhibition of NK cell functions was seen with the treatment of recombinant Vpr 

protein (data not shown). Similar results were observed in multiple donors (N=4). Together, 

these results suggest that HIV-1 Vpr inhibits NK cell function both in HIV-1 infected and Vpr 

protein treated cultures.  

4.4.2 Effect of vpr dysregulated CD4+ T cells on NK cell function during HIV-1 infection 

Above results indicate that HIV-1 Vpr adversely affects NK cell function in PBMC cultures in 

vitro , we wanted to evaluate the role  of CD4+ T cells derived factors in Vpr mediated NK cell 

dysfunction. Pure CD4+ T cells were infected with wild type or Vpr defective HIV-1 virus or 

exposed to recombinant Vpr or control protein. Three days post infection/treatment , the CD4+ T 

cells were cocultured with autologous NK cells at a ratio of (T cell : NK cell = 5:1) for twenty 

four hours. As a control, HIV-1 virus or the proteins were added to pure NK cell cultures. 

Following 24 hours of coculture,  NK cells where challenged with K562 target cells and the 

surface expression of CD107a and IFN-γ production in CD56+CD3- NK cells was evaluated by 

flow cytometry. Results indicate that there was a significant reduction in CD107a expression (2-3 

fold) and intracellular IFN-γ  production (1.5-20 fold) in CD3– CD56+ gated NK cells. At the 

same time point, no significant effect of Vpr was observe in CD107a expression and IFN-γ 

production in pure NK cultures containing HIV-1 virus or Vpr protein, suggesting that the effects 

seen in the CD4+ T cell: NK cocultures is mainly due to effect of CD4+T cells altered by Vpr.  
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Figure 11. HIV-1 Vpr inhibits NK cell function in infected and Vpr protein treated CD4+ T cell-NK 

cell cocultures. 

CD4+T cells isolated from PBMC by negative selection, was exposed to either vpr or control protein for 60 
hours. At this time point, pure autologous NK were cocultured with the CD4+ T cells for 24 hours. After 24 hours of 
coculture, the NK cells were evaluated for (A) CD107a expression and (B) IFN-γ production in response to K562 
cell line (NK:K562 1:5).  

4.4.3 Role of soluble factors in Vpr mediated inhibition of NK cell activity 

The ability of HIV-1 Vpr to inhibit NK cell function in NK –CD4+ T cell cocultures but not in 

pure NK cell cultures indicate a role for CD4+ T cell derived soluble and membrane bound 

factors. TGF-β is one the T cell derived cytokines that is known to affect NK cell 

survival/proliferation and functions. Results from previous chapter, indicate that Vpr increases 

the surface expression of CTLA-4 on infected cells. CTLA-4 is strongly associated with 

increased production of TGF-β. Hence we evaluated the TGF- β level in supernatants collected 

from PBMC infected with HIV-1 wt or HIV-1Δvpr virus at 96 hours post infection. Results from 

figure 12, indicates that Vpr significantly increased the production of TGF-β in multiple donors. 
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Next, to confirm the role of TGF- β in the Vpr-induced NK dysfunction, we set up experiment to 

neutralizing the overproduction of TGF-β with anti-TGF-β antibody. PBMC infected as 

described above were treated with anti-TGF-β (1 µg/ml; R&D Systems) or Isotype control at 12 

h post infection and maintained for an additional 3 days. As a positive control, cells were also 

treated with recombinant TGF-β (5 ng/ml; R&D Systems). NK cell-mediated cytotoxicity was 

measured in all the groups. Results indicate that treatment of HIV-1 wt virus-infected PBMC 

with anti-TGF-β increased NK cell-mediated lysis to 60%, compared to 35% lysis observed in 

Isotype treated control. Conversely, single exposure to recombinant TGF-β also inhibited NK 

cell-mediated killing of target cells in uninfected and HIV-1Δvpr virus-infected PBMC under 

similar conditions. However, in the case of HIV-1wt virus-infected culture, no additional 

inhibition was observed. Similar results were observed in Vpr protein-treated PBMC (data not 

shown). Together, these results suggest that in addition to TGF-β, there may be other factors that 

might also play a role in NK cell dysfunction. 

 

Figure 12. Role of TGF-β in Vpr mediated NK cell dysfunction. 

PBMC infected with HIV-1wt or HIV-1∆vpr virus were cultured as described in Materials and Methods. 
Supernatants were collected and assessed for (A) TGF-β production by ELISA. Dot blots represent results from 
multiple donors (n = 6). (B) PBMC were pretreated with anti-TGF-β 2 h prior to infection or treated with TGF-β 
12 h post infection. NK cell function was assessed by measuring the percent specific lysis in different groups at an 
effector/target cell ratio of 10:1. Data are the representative of one of three independent experiments.  
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4.4.4 Role of membrane associated factors from infected/exposed target cells in Vpr 

mediated NK cell dysfunction. 

Inability to reverse NK cell function by anti-TGF-β antibodies suggest that additional factors 

from T cells may also involve in NK cell dysfunction. Therefore we next evaluated the role of 

membrane bound factors that are known to play a role in T cell-NK cross talk. Previous studies 

have established that NK cells interact with T cells through the ligands present in T cells.  To 

assess the effect of Vpr on expression of the NK cell ligands in infected/exposed T cells, PBMC 

infected/exposed to HIV-1wt, HIV-1∆Vpr, Vpr protein, other HIV-1 proteins or control protein 

as described in methods, was evaluated for surface expression of NK ligands, MIC A/B, hULBP-

1 and hULBP-2 by flow cytometry.  

Results from multiple donors show a significant increase in the expression of MIC A/B, 

hULBP-1 and hULBP-2 on the virus exposed lymphocytes during HIV-1 infection with the wild 

type virus, and there was a lesser degree of increase on day 2 post infection in case of the virus 

which lacks HIV-1 Vpr. There was no difference in the expression of MHC class 1 in the virus 

exposed cells. Results were more significant when the lymphocytes were exposed to pseudo 

virus particles containing Gag, vsv-G envelope and HIV-1 vpr. The role of HIV-1 Vpr in the 

induction of MIC A /B is more significant in the early stages of infection, and the early response 

can be attributed to the release of Vpr incorporated in the virus particle.  
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Figure 13. Effect of HIV-1 Vpr on surface expression of NK cell ligands in T cells. 

(A)PBMC obtained from healthy donors where cultured in RPMI containing 1mg/ml PHA-P and 200U IL-2 , on the 
day of isolation the cells were exposed to either HIV-1 wt - wild type HIV-1 virus; HIV-1DVpr - HIV-1 virus in 
which Vpr is deleted; gag+Vpr+vsv – pseudovirus particle having HIV-1 gag, HIV-1 vpr and vsv-G envelope; 
gag+vsv – pseudovirus particle having HIV-1 gag and vsv-G envelope, viral dose equivalent to 200ng of p24 per ten 
million cells was used. Following two days (upper panel) or four days (lower panel) of exposure the cells were 
stained with CD3 and MIC A/B specific monoclonal antibodies and analyzed by flow cytometry. Dot blots represent 
results from multiple donors (n = 5) for (B) MIC A/B (C) hULBP-2  
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To specifically delineate the role of Vpr, we used recombinant Vpr protein and evaluated 

the role of Vpr protein to modulate the surface expression of NK activating receptor ligands. 

CD4+ T cells were isolated by negative selection from PBMC obtained from voluntary donors 

and exposed to vpr, HIV-1 viral proteins or control protein (100nM or 10nM). Additionally AT-2 

treated virus was used to confirm the effects were due to virus exposure. At regular time points 

the surface expression of NK ligands MICA/B, huLBP-1, huLBP-2 was evaluated by flow 

cytometry. Figure 14, shows the surface expression of the NK activating receptor ligands and 

MHC class I (A,B,C), at 60 hours following exposure to the vpr or control protein from one of 

the representative donor. There is an upregulation in the surface expression of NK ligands 

MICA/B, hULBP-2, hULBP-3 in the vpr protein exposed culture, where as the control protein 

did not have any effect. Further the vpr protein specifically induced the surface expression of the 

NK activating ligands MICA/B, hULBP-2, hULBP-3, without any effect on the NK inhibitory 

ligands MHC class I A,B,C. Similar results were seen in multiple donors (N=3). 
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(B) 

Figure 14. Upregulation of NK activating receptor ligands by HIV-1 Vpr protein. 

CD4+ T cells were isolated by negative selection from PBMC from voluntary donor, and exposed to 5nM 
of Vpr or control protein. Sixty  hours following exposure to the vpr or control protein, the cells were stained for 
surface expression of NK ligands, MIC A/B, hULBP-2 or hULBP-3 and MHC class I (A,B,C) and analyzed by flow 
cytometry. 

4.4.5 Upregulation of NK receptor ligands on T cells is associated with downregulation of 

NK activating receptor, NKG2D. 

Results from previous experiments show that Vpr has a role in upregulation activating receptor 

ligands, without affecting the expression level of NK inhibitory receptor ligands, MHC class I 

A,B,C molecules. Results from tumor biology indicate that cancer cells employ upregulation of 

NK activating receptor ligands as a mechanism to evade NK cell lysis. Chronic interaction of NK 

activating receptor with their cognate ligands induces tolerance to effective signal transduction 

and impairs normal calcium signaling and dysregulates NK lysis and IFN-g production, there is a 

strong association of this phenomenon with NK activating receptor down regulation. The ligands 
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evaluated in this study, MIC A/B, hULBP-1 and hULBP-2, bind to the activating receptor, 

NKG2D present on the CD56+CD3-NK cells. Hence we evaluated the expression level of 

NKG2D on the NK cells present in the infected / exposed cultures in the context of role for HIV-

1 Vpr. Results show that up to 90% of normal cells express NKG2D on their surface, during 

HIV-1 infection there is a decrease in the surface expression of NKG2D and the percentage of 

NK cells expressing NKG2D. HIV-1 Vpr seems to have a role and the Vpr protein is able to 

reduce the surface expression to 58%. Similar results were observed in multiple donors (N=3).        

 

Figure 15. Effect of  HIV-1 Vpr on NK activating receptor, NKG2D. 

CD4+T cells isolated from PBMC by negative selection, was infected with HIV-1wt or HIV-1 ∆vpr virus; or exposed 
to either vpr or control protein for 60 hours. At this time point, pure autologous NK were cocultured with the CD4+ 
T cells for 24 hours. After 24 hours of coculture, the NK cells were evaluated for NKG2D expression by flow 
cytometry.  

4.5 DISCUSSION 

NK cells mainly belong to innate immune system but have a central role in the induction of both 

innate and adaptive immune responses. HIV-1 infection is associated with loss of NK cell 

function both in vivo and in vitro. There is a direct correlation between viral load during HIV-1 

infection and loss of NK cytotoxicity function, suggesting a role for viral antigens in the NK cell 

dysfunction. Here, we present results indicating that HIV-1 Vpr modulates NK cell functions and 

mechanistically understand the basis of Vpr mediated impairment of NK cell function. Results 
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from pure CD4+ T cells cocultured with autologous NK cells indicate a role for T cell factors in 

Vpr mediated NK cell dysfunction. We observed an increase in production of TGF-β and also a 

increase in surface expression of NK cell activating receptor ligands on T cells.  This was 

associated with down regulation of activating receptor, NKG2D on NK cells present in the 

cultures.  Similar phenomenon has been observed in Tumor cells and there is a direct correlation 

between the progression of the tumor, the level of NK activating receptor ligand expression and 

loss of NK cell function. HIV-1 virus seems to have duplicated a similar mechanism to evade the 

innate immune response mediated by NK cells. 

HIV-1 Vpr is incorporated into Virus particles in significant amount and is delivered to 

the immune cells, early during infection. Our results support that HIV-1 virus associated Vpr 

exposure is sufficient to upregulate the NK activating receptor ligands and dysregulate NK cell 

function. The above results indicates that HIV-1 Vpr contributes to the loss of innate immune 

response seen early during HIV-1 infection. Understanding the molecular mechanisms involved 

in this process will aid in development of novel therapeutics, which can enhance the innate and 

adaptive immune response during HIV-1 infection. 
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4.6 PART II - T CELL –DC CROSS TALK AND ITS CONSEQUENCE IN VIRAL 

PATHOGENESIS 

4.7 INTRODUCTION 

Dendritic cells (DC) are one of the major professional antigen presenting cells (APC). DC have 

the ability to present both extracellular and intracellular antigen, to T cell through MHC 

molecules. Immature DC are specialized in antigen uptake and processing, the signals provided 

by the interacting antigen specific T cell and / or the signals emerging from the innate immune 

system, transform the immature DC to mature DC. Mature DC are highly specialized in antigen 

presentation and express co-stimulatory molecules, CD80, CD83, CD86, CD40 and others, 

which provide optimal signals required for T cell proliferation and activation. Mature DC also 

produce an array of cytokines, which provide the optimal environment, required for T cell 

differentiation and survival.  T cells also express their own set of costimulatory molecules, 

CD28, CTLA-4, CD40L, and others, which interact with their counterparts on DC, and trigger 

bi-directional signaling in both T cell and interacting DC. These signals are critical in 

determining the outcome of immune response to the presenting antigen. Interaction of CD28 

with the costimulatory molecules CD80 and CD86 on DC induces the immuno-stimulatory 

signals in DC where as CTLA-4 induces tolerogenic signals in DC mediated by IFN-g driven 

expression of immunosuppressive tryptophan catabolism[40, 41]. HIV-1 accessory proteins, 

including Vpr are known to directly dysregulate DC maturation and alter the cytokine profile [3]. 

Additionally, HIV-1 enhances viral transmission by converting the immunological synapse to a 

virological synapse between the interacting antigen presenting cell (APC) and T cell. Studies 

also report that Vpr is required for efficient nuclear translocation of Pre-Integration Complex 

(PIC) in non-dividing cells. Results from chapter 1, indicate that HIV-1 Vpr differentially 
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modulates the expression of costimulatory molecules, CD28 and CTLA-4 on infected T cells and 

alters the cytokine profile, hence we evaluated the role of HIV-1Vpr on the outcome of T cell – 

DC interaction. To address this, we cocultured HIV-1 WT and HIV Δ Vpr infected T cells with 

naïve DC, either directly or separated by a transwell, and evaluated the outcome of the 

interaction.  The separation of Tcell and DC by transwell of 0.6μm will help us to determine the 

role of secretary factors on the outcome of interaction, independent of membrane bound factors.  

Results presented here indicate that even though HIV-1 Vpr did not have a significant 

effect to alter expression of costimulatory molecules, CD80, CD83 or CD86 on cocultured naïve 

DC, but we observed that cell-associated virus was taken by DC and infected DC as early as 12 

hours and was maintained for more than six days.  Infection of DC via infected T cell is 

dependent on T cell-DC contact and is independent of viral envelope and DC-SIGN or other 

known HIV-1 receptors. Furthermore, the percentage of DC infection is directly correlated with 

the ability of DC to acquire cell-associated antigen, suggesting DC could acquire virus from the 

infected T cells through an antigen uptake process.  Collectively, these studies for the first time 

indicate that HIV-1 taken up by the DC through the antigen uptake mechanisms establishes cis 

infection in DC. 
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4.8 MATERIALS AND METHODS 

4.8.1 Cell Culture 

Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood obtained from 

normal donors using Ficoll-Hypaque gradient centrifugation. CD14+ monocytes were purified 

by positive selection using anti-CD14 monoclonal antibody-coated magnetic microbeads 

(Miltenyi Biotech, Auburn, CA) as described previously [74]. The purity of CD14+ cells was 

tested by flow cytometry following staining with CD14 antibody, and the results indicate >98% 

of isolated cells were CD14 positive (data not shown). To obtain monocyte-derived DC 

(MDDC), CD14+ cells (0.5x106 cells/ml) were cultured in 60-mm culture plates in a total 

volume of 10 ml of medium containing 25ng/ml IL-4 (R&D Systems, Minneapolis, MN) and 

50ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF) (R&D Systems). Half the 

volume of medium was replaced every other day throughout the entire culture period. MDDC (7 

day old) were stimulated with LPS (Sigma-Aldrich) 1µg/ml, and maturation of MDDC was 

confirmed by phenotypic and functional analysis. The flow through during the CD14+ selection 

of PBMC (same donor) was collected, and the purity of the lymphocytes (PBL) was tested by 

flow cytometry using CD14 and CD3 antibody. More than 95% of isolated cells were CD14− 

(data not shown). PBL (1x107/ml) were stimulated with anti-CD3 (OKT3) antibody (10μg/ml)-

coated flasks along with soluble anti-CD28 antibody (BD Pharmingen clone 28.2) (1μg/ml) for 

3 days as described [75] and cultured in media containing rIL-2 (5 U/ml). CD4+ lymphocytes 

were isolated by negative selection from PBMC, more than 95% of isolated cells were CD4+ as 

tested by flow cytometry. Stimulation and infection of CD4+ T cells was performed in a similar 

way as PBL. Jurkat T cell line JJK, HeLa-T4 and HEK 293T cells were maintained in 
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appropriate growth media. For NK studies , pure NK was isolated by positive selection using 

anti-CD56 antibody-coated magnetic microbeads (Miltenyi Biotech, Auburn, CA) as described 

previously [74]. In some experiments, NK cells were isolated by negative selection.   

4.8.2 Plasmids, virus preparation and infection 

The construction and characterization of HIV-1 wt-EGFP proviral plasmid has been previously 

described [109]. Briefly, Enhanced Green Fluorescence Protein (EGFP) gene was inserted in the 

nef open reading frame of pNL4.3 proviral plasmid and the expression of nef was driven by 

ECMV Internal Ribosomal Entry Site (IRES). For studies involving envelope deficient HIV-

1�E-EGFP virus, NdeI site in the envelope of HIV-1wt-EGFP proviral plasmid was mutated by 

filling and re-ligating the blunt ends. This introduced multiple stop codons in the reading frame 

of env after the end of vpu reading frame, and deleted the expression of env. HEK293T cells 

(2×106 per plate) were transfected with 10μg of HIV-1wt-EGFP construct by calcium phosphate 

precipitation method [74]. Forty-eight hours post transfection supernatants were collected, 

filtered through a 0.45-μm filter to remove cellular debris, and centrifuged at 22,000 rpm for 1 h. 

Virus pellets were resuspended in PBS and stored in aliquots at -80°C for subsequent assays. 

Virus titers were measured by p24 enzyme-linked immunosorbent assay (ELISA), and 

multiplicity of infection (MOI) was calculated by infecting Jurkat cells for 24 hours and assessed 

by flow cytometry or by standard TZM-bl assay.  PBL and Jurkat were infected with the HIV-

1wt-EGFP reporter virus at a MOI of 0.5. Twelve hours post infection, virus was removed by 

washing, and cells were maintained in appropriate media. For infection of HEK293T and HeLa-

T4 cells, the HIV-1wt-EGFP reporter virus was pseudotyped with VSV-G envelope and the cells 

were infected at a MOI of 1.0. Six hours post infection, the virus was removed by washing and 
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the cells were maintained in growth media. VSV-G pseudotyped HIV-1ΔE-EGFP virus was 

produced by co-transfecting HEK293T cells with VSV-G and HIV-1ΔE-EGFP constructs by 

calcium phosphate precipitation method [74]. Forty-eight hours post transfection supernatants 

were collected, processed and the virus was quantitated as described above.  PBL and Jurkat 

were infected with the HIV-1wt-EGFP reporter virus at a MOI of 0.5. Twelve hours post 

infection, virus was removed by washing, and cells were maintained in appropriate media. 

Transfection of HIV-1ΔE-EGFP construct in the absence of VSV-G produced non-infectious 

virus like particles. Similarly the virus particles released from the T cells in the supernatant were 

not infectious as evaluated by standard TZM-bl assay.   

4.8.3 Transfection of Jurkat 

Jurkat T cell line JJK (CD4+/CD28+), were nucleofected with pEGFP, plasmid expressing 

EGFP using Amaxa nucleofector system, Amaxa Biosystems, Gaithersburg, MD following 

manufacturer’s instructions. Briefly, the cells were washed and resuspended in RPMI medium 

without any supplements at a concentration of 5x106, and 5µg of plasmid was used to transfect 

the cells using appropriate settings. Following nucleofection, cells were maintained in RPMI 

supplemented with 10% FBS and 1% L-glutamate with no antibiotics. 

4.8.4 Flow cytometry 

In coculture experiments, doublet differentiation was applied to gate on single cells. Surface 

staining was performed for DC-SIGN, in some of the experiments surface staining of CD3,  or 

CD28 was also included. Briefly, at indicated time points cells were washed twice with cold PBS 
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(pH 7.2) containing 5% FBS and incubated with respective fluorochrome conjugated antibody or 

isotype control for 1 h at 4 °C. To minimize cell aggregates, 5mM EDTA was included in the 

FACS buffer. Samples were fixed with 2% formaldehyde for 1 hr and analyzed using Epics-XL 

(Beckman Coulter, Miami, FL) with minimum of 20,000 gated events acquired for each sample. 

Flow Jo software was used to analyze the results. 

4.8.5 Fluorescence labeling 

Cells were labeled with membrane labeling dye PKH26 (Sigma-Aldrich), according to the 

manufacturer’s instructions. Briefly, the cells were washed twice in PBS and resuspended in 

Diluent C at a concentration of 2x106 cells/ml. Cells were added to an equal volume of PKH26 

(4µM) in Diluent C, and incubated for 5 min at room temperature. An equal volume of FCS was 

added following which the cells were resuspended in complete medium and washed four times. 

The stained cells were incubated in appropriate medium for 4 hours before using them in 

coculture experiments. 

4.8.6 Inhibition and blocking assays 

Two hours prior to coculture with infected cells, immature or mature MDDC were pretreated 

with the inhibitor/blocker. Anti-DC-SIGN, and anti-DC-SIGN-R antibody were obtained from 

R&D Systems; Integrase inhibitor (118-D-24), T-20 Fusion inhibitor, TAK 779, AMD3100 were 

obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, 

NIAID, NIH; and all other inhibitors were obtained from Sigma-Aldrich. 
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4.8.7 Immunofluorescence 

At indicated time points, cells were adhered to glass slides, and fixed using 3.7% formaldehyde 

at room temperature for 10 min, and washed with PBS. Following three washes, slides were 

blocked with PBS containing 5% FBS. Surface staining was performed with primary antibody 

(DC-SIGN or CD28) (1:100 dilution, R&D Systems, or BD Biosciences) for 1 hr at 4 °C. Cells 

were washed 3 times with wash buffer, and incubated with rabbit anti-mouse IgG Rhodamine 

(RRX) (1:400; Jackson ImmunoResearch, West Grove, PA) or donkey anti mouse Cy3 (1:1000; 

Jackson ImmunoResearch, West Grove, PA) or donkey anti-rabbit Alexa 488 (1:1000; Molecular 

Probes) for 1 h at room temperature followed by nuclear staining with Hoesct or DAPI. Confocal 

microscopy was performed using Olympus 1000 scanning confocal microscope from Olympus 

America at the Center for Biological Imaging, University of Pittsburgh. Final composites were 

constructed in Adobe Photoshop CS (Adobe, San Jose, CA). 

4.8.8 Assay for Integrated HIV-1 DNA 

To evaluate the integrated DNA in infected DC, infected DC (based on EGFP+/DC-SIGN+ 

double positive) were sorted using the MoFlo sorter at UPCI Biocontainment Flow facility with 

the purity of 100%. Sorted DC were evaluated for integrated HIV-1 DNA by real time Alu-LTR 

PCR method as described in Butler et al [110]. Briefly Cellular DNA was extracted from sorted 

cells using Qiagen QIAamp DNA Blood Mini Kit, and 500ng of DNA was used for PCR 

reaction, along with 50nM forward primer, 300nM reverse primer and 100nM of probe. The 

sequence of primers and probes are described in Butler et al [110]. 
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4.8.9 Statistical analysis 

The results were expressed as mean ± standard deviation. The data were analyzed using the 

Student's t test for paired samples. Statistical evaluation of relation between antigen uptake and 

DC infection was performed using linear regression analysis and R2 value was calculated. 

4.9 RESULTS 

4.9.1 Effect of Vpr dysregulated T Lymphocytes on Dendritic cell 

DC were generated as described in methods and were cocultured with HIV-1wt or HIV-1∆Vpr 

infected lymphocytes at a ratio of 2:9:1 (DC: uninfected PBL: infected PBL) either directly or 

separated by a transwell with pore size of 0.4μm. In some experiments, infected T cells obtained 

from HIV-1wt EGFP or HIV-1∆Vpr EGFP infected cultures were sorted by FACS and 

cocultured with DC at a ratio of 1:10 (DC: infected cell). Twenty-four hours post coculture, cells 

were stained for DC-SIGN, CD80, CD83, CD86 and HLA-DR; and the expression of the 

costimulatory molecules on DC were determined by flow cytometry. Results indicate that both in 

direct coculture and culture separated by transmembrane/transwell, HIV-1 infected T cells were 

able to upregulate the surface expression of CD80, CD83 and CD86 in cocultured DC and HIV-1 

vpr did not have any significant effect in multiple donors (N=4). But we found that EGFP+ DC 

were present in the coculture, suggesting that the virus from cocultured infected T cells, were 

infecting the DC in cis. 
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Figure 16. Effect of HIV-1 Vpr dysregulated T Lymphocytes on Dendritic cells. 

DC generated as described in methods were cocultured with HIV-1wt or HIV-1∆Vpr infected T cells at a 
ratio of 2:9:1 (DC: uninfected PBL: infected PBL) either directly or separated by a transmembrane. Twenty-four 
hours post coculture, cells were stained for CD80, CD83, CD86 and HLA-DR; and the expression of the 
costimulatory molecules on DC were determined by flow cytometry. 

4.9.2 Productive infection of immature DC by cell associated virus 

Results presented above suggest that HIV-1 virus can transfer from cocultured T cell to DC and 

infect DC in cis. To evaluate further this phenomemon, cells were stained with DC-SIGN and 

analyzed by flow cytometry. DC-SIGN were gated based on side scatter and forward scatter 

followed by doublet discrimination gating (Fig.17A). Single cells that are double positive for 

DC-SIGN+ and EGFP+ were considered as productively infected DC (Fig.17A). Results from 

coculture experiment indicate that 7.6% of DC were infected at 12 hours post coculture with 

infected lymphocytes, whereas cell free virus did not infect DC (0%) at this time point 

(Fig.17A).  
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Figure 17. Reporter virus positive DC are the result of cis infection of DC. 

(A) DC were cocultured with HIV-1wt-EGFP reporter virus-infected PBL cells in the presence or absence 
of cycloheximide (10μg/ml); or infected with cell-free virus. Post coculture (12 hrs), cells were stained for 
DC-SIGN. DC were gated based on side scatter and forward scatter followed by doublet discrimination (as 
shown in gating) and assessed for EGFP by flow cytometry. DC-SIGN and EGFP positive cells (%) are 
shown in the upper right quadrant. (B) Comparison of EGFP fluorescence (MFI) in infected lymphocytes 
and infected DC. Overlay of histogram of EGFP fluorescence in infected lymphocytes (green) and infected 
DC (red). (C) Detection of DC expressing EGFP by immunofluorescence microscopy. Red indicates DC-
SIGN positive cells; green represents EGFP positive cells; Blue represents nuclear staining by DAPI. DC*, 
represents DC-SIGN and EGFP positive DC. (D) Detection of integrated HIV-1 proviral DNA in EGFP+ 
DC. DC were stained for DC-SIGN, and DC-SIGN+/EGFP+ DC were sorted by FACS. Integrated 
proviral DNA was assessed by real time Alu-LTR Taqman assay as described in Methods. To rule out 
contaminating lymphocytes in DC-SIGN+/EGFP+ sorted DC, mRNA from the sorted cells were evaluated 
for presence of CD28 mRNA by real-time PCR. RPLPO was used as control. Uninfected DC, Infected PBL 
controls were included. (E) DC were cocultured with HIV-1wt-EGFP reporter virus-infected PBL cells or 
with HIV-1wt-EGFP reporter virus-infected purified CD4+ T cells, or uninfected control cells. Twelve 
hours post coculture, cells were stained for DC-SIGN and assessed for EGFP positivity by flow cytometry. 
Cells (%) that are positive for DC-SIGN and EGFP are shown in the upper right quadrant. (F) DC were 
cocultured with either HIV-1wt-EGFP reporter virus-infected Jurkat T cells or with Jurkat cells expressing 
EGFP protein. Post coculture, the cells were stained for DC-SIGN and analyzed by flow cytometry or by 
(G) Immunofluorescence microscopy. DC-SIGN+/EGFP+ cells were gated based on the amount of EGFP 
in DC-SIGN+ cells to differentiate antigen uptake and productivly infected DC. Results from multiple 
donors are shown in Fig.17C, where 200 DC were counted in case of each culture. Figure represents one 
of 5–7 independent experiments with similar results. 
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Addition of cycloheximide (CHX) (10μg/ml) during coculture completely blocked infection of 

DC further confirming that EGFP expression in infected DC was due to de novo synthesis, and 

not due to cell conjugates or cell fusion. Comparison of Mean Fluorescence Intensity (MFI) of 

EGFP in infected DC and infected lymphocytes present in the same coculture (Fig.17B), 

indicates that transcription of HIV-1 LTR driven EGFP in infected DC is significantly less 

compared to infected lymphocytes. DC infection was further confirmed by fluorescence 

microscopy where, DC-SIGN positive cells were EGFP also positive (Fig.17C) as identified by 

the uniform subcellular distribution of EGFP that is indicative of de novo synthesized EGFP. To 

further validate infection in DC, integrated proviral DNA was measured in EGFP+ DC. To 

assess integrated proviral DNA, DC-SIGN+/EGFP+ DC were sorted and assessed for integrated 

proviral DNA by real time Alu-LTR Taqman assay, and for CD28 mRNA by real-time PCR. 

Uninfected DC and infected lymphocytes were used as negative and positive controls, 

respectively. Results indicate that integrated DNA was detected by Alu-LTR Taqman assay in 

DC-SIGN+/EGFP+ DC (Fig.17D). Additionally these cells were also negative for CD28 mRNA 

(Fig.17D), further confirming that integrated proviral DNA detection in sorted DC was not due 

to contamination of infected T cells in the culture. Together these results indicate that EGFP 

expression in DC is due to integrated proviral DNA that is indicative of cis infection. Similarly 

purified CD4+ T lymphocytes infected with the HIV-1wt-EGFP reporter virus also infected DC 

in cell-associated manner (Fig.17E).  

DC are known to take up antigens/apoptotic cells by endocytosis, micropinocytosis and 

other mechanisms [111, 112]. Therefore, we next delineated the uptake of cellular materials, 

including EGFP protein from the infected T cell versus de novo synthesis of EGFP in DC. DC 

were cocultured with either HIV-1wt-EGFP reporter virus-infected Jurkat T cells or with Jurkat 
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cells expressing EGFP protein by transient transfection and assessed by flow cytometry. Results 

presented in Fig. 17F indicate that 3.41% DC are positive for EGFP following 12 hours of 

cocultured with HIV-1 infected cells. We also confirmed EGFP synthesis versus EGFP uptake in 

DC by fluorescence microscopy (Fig. 17G) and observed a uniform cytoplasmic and nuclear 

distribution of EGFP in infected DC (right panel), whereas, punctuate pattern was noted in DC 

following EGFP uptake (left panel). Similar results were observed in multiple donors (Fig.17H). 

The difference seen in the amount of EGFP in DC taking up the antigen and infected DC was not 

due to differences in the amount of EGFP in the cocultured Jurkat- EGFP cells or infected Jurkat 

cells. Together these results indicate that, EGFP+ DC seen in coculture experiment are due not to 

EGFP (antigen) uptake but rather it is due to de novo synthesis of EGFP in infected DC. 

4.9.3 Productive infection of immature and mature DC is cell contact dependent 

 

Figure 18. Infection of immature and mature DC by infected lymphocytes is cell-to-cell contact dependent. 

(A) Immature and mature MDDC were cocultured with HIV-1wt-EGFP virus infected PBL at a ratio of 2 : 9 : 1 
(DC:uninfected PBL:infected PBL) either directly or separated by a transwell. Post coculture (12hours) cells were 
stained for DC-SIGN, and analyzed by flow cytometry. Gating was extended to include lymphocytes and doublet 
differentiation was applied. (B) Cell contact dependent productive infection of immature and mature DC by 
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lymphocyte associated HIV-1 virus in multiple donors (n=8). (C) Time kinetics of productive infection in DC 
mediated by T cell associated virus. The figure is representative of data acquired from multiple donors (n=5). Error 
bars indicate S.D. of the results obtained from triplicate wells from a single donor. 

 
 

Next, to assess whether both immature and mature DC could be infected with cell-associated 

virus, immature and mature DC were cocultured with infected lymphocytes as described in 

Fig.17. Additionally, to differentiate the role of cell free and cell-associated virus in DC 

infection, infected T cells were separated from DC via a transwell with a pore size of 0.4μm 

which will allow free virus released from infected lymphocytes in the upper chamber to pass to 

DC in the lower chamber, but prevent contact between infected T cells and DC. Results indicate 

that no EGFP+ DC (0%) when they were separated by transwell, whereas, 5.2% EGFP+DC-

SIGN+ DC was observed in mixed culture (Fig. 18A). Similar results were observed in multiple 

donors (Fig. 18B), suggesting that cell-to-cell contact is necessary for DC infection within 12 

hours. Additionally, DC from the same donors infected with cell-free virus did not show 

productively infected DC at the same time point (data not shown). Time course analysis indicates 

that DC-SIGN+/EGFP+ cells remained positive for EGFP up to 6 days post coculture (Fig.18C).  

Additionally, cell-free virus released from the infected T cells reaching the lower chamber 

established infection (<0.2%) only in immature DC 3 days post exposure (6-8 infected cells per 

20 high power fields were detected by microscopy). Similar low level cell-free virus mediated 

DC infection was reported previously [113, 114]. These results clearly indicate that the 

accelerated infection of both mature and immature DC mediated by infected T cell is contact 

dependent and is not the consequence of cell free virus infection. Since the pore size of transwell 

is 0.4�m, it further rules out the involvement of exosomes derived from infected T cells in 

infecting DC. It is important to note that, though we observed infected DC in multiple donors, 

there was a wide range in percentage of infected DC (2-8%), suggesting that the variation is due 
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to difference in the susceptibility and/or permissibility of DC from different donors to support 

HIV-1 infection. 

4.9.4 Infection of DC mediated by cell-associated virus does not involve DC-SIGN, 

Mannose Receptor, CD4 or HIV-1 envelope. 

DC-SIGN and related C-type lectin receptors are suggested to play a role in cis and trans 

infection of DC, as blocking these receptors inhibits infection [114-116]. Therefore, we 

evaluated the ability of anti-DC-SIGN, anti-DC-SIGN-R antibodies, Mannan, anti-CD4 

antibody, T-20 Fusion inhibitor, HIV-1 co-receptor antagonists TAK 779 and AMD 3100 to 

block DC infection mediated by cell-associated virus. AZT and Intergase inhibitor (118-D-24) 

were used as control to inhibit virus replication. Additionally cycloheximide (10μg/ml) was used 

as a control for de novo synthesis of EGFP in infected DC. As shown in Fig.19A, HIV-1 receptor 

and the co-receptor blockers failed to prevent infection of DC mediated by infected T cells, 

whereas AZT and Integrase inhibitors blocked infection by 67% and 83% respectively, 

compared to untreated control. Similar results were observed in multiple donors (n=5).  

Together, these results suggest that DC-SIGN, DC-SIGN-NR, Mannan receptors, CD4 or the 

HIV-1 co-receptors are not involved in T cell mediated infection of DC. 
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Figure 19. HIV-1 reporter virus infection of DC mediated by T cell associated virus is independent of 

viral envelope. 

(A) DC were cocultured with HIV-1wt-EGFP reporter virus-infected PBL cells in the presence of mentioned 
inhibitors. Post coculture (12 hours), cells were stained for DC-SIGN. Single DC were gated and assessed for 
EGFP by flow cytometry. For comparison across donors, the percentage of DC infection in absence of inhibitor was 
considered as 100%. Error bars indicate S.D of results obtained from results from multiple donors.(n=3)  (B) CD4+ 
T cells were infected with HIV-1wt-EGFP reporter virus or with HIV-1∆E-EGFP reporter virus complemented with 
vsv-G Env expression plasmid. Three days post infection cells were washed thoroughly and cocultured with 
immature MDDC in the presence or absence of cycloheximide (10mg/ml). Post coculture (12hours), cells were 
stained for DC-SIGN and analyzed by flow cytometry, and (C) Immunofluorescence microscopy. Data are 
representative of five independent experiments. (D) Detection of integrated HIV-1 proviral DNA in EGFP+ DC by 
Real Time Alu-LTR Taqman assay, following twelve hours of coculture with CD4+ T cells infected with HIV-1∆E-
EGFP reporter virus complemented with vsv-G envelope. DC were stained for DC-SIGN, and DC-SIGN+/EGFP+ 
DC were sorted by FACS sorter. Integrated proviral DNA was assessed by real time Alu-LTR Taqman assay as 
described in Methods. To rule out contaminating lymphocytes in DC-SIGN+/EGFP+ sorted DC, mRNA from the 
sorted cells were evaluated for presence of CD28 mRNA by real-time PCR. RPLPO was used as control. 

 

 To assess whether presence of HIV-1 envelope is required for virus transmission from 

infected T cell to DC, we used HIV-1∆Env-EGFP virus infected T cells (pseudotyped with VSV-

G envelope expression plasmid to infect T cells). Three days post infection, cells were washed 

thoroughly and cocultured with DC as described above and assessed for DC-SIGN+/EGFP+ 

cells (Fig.19B). Results indicate that DC were infected with HIV-1∆Env-EGFP virus as 
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determined by flow cytometry in multiple donors (n=4). Flow cytometry results were validated 

by fluorescence microscopy (Fig.19C) and by real time Alu-LTR Taqman assay (Fig.19D). 

Experiments to determine the presence of contaminating lymphocytes by evaluating the presence 

of CD28 mRNA in the sorted, infected DC indicate no detectable CD28 mRNA, further ruled out 

lymphocytes contamination. Collectively, these results support that cell-associated infection of 

DC is independent of both DC cell surface receptors and viral envelope. 

4.9.5 Infection of DC is directly correlated with the ability of DC to acquire cell-

associated antigen from the interacting cell. 

Results presented above indicate that transfer of virus from DC to T cell is independent of viral 

envelope as well as cell surface receptors in DC, suggesting that receptor independent 

mechanisms may be involved in virus transfer. DC are known to acquire surface molecules and 

cell-associated antigens from interacting cells [117, 118]. To understand whether antigen uptake 

mechanism is involved in virus transfer from infected T cell to DC, we examined the 

interrelationship between antigen uptake and DC infection. Immature and mature DC were 

cocultured with uninfected PKH26-labeled or infected PBL, Jurkat cells, HeLa-T4 or HEK 293T 

at a ratio of 1:1. DC were assessed for PKH26 uptake, and infection (EGFP+) by flow cytometry. 

As shown in Figure 20A, 93.8% of immature DC acquired PKH26 labeled material from PBL, 

96.2% from Jurkat, 34.7% from Hela-T4 and 32.6% from HEK 293T cells. Whereas, mature DC 

cocultured with PKH26 stained cells efficiently acquired PKH26 labeled material from PBL 

(70.8%) and Jurkat cells (87.3%) but failed to acquire PKH26 labeled material efficiently from 

HeLa-T4 cells (6.3%) or HEK293T cells (15.4%). Results indicate that immature DC acquired 

membrane from tested cell types to different proportions. Although the percentage of immature 
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and mature DC positive for PKH26 is similar in case of PBL and Jurkat, it is important to note 

that the amount of PKH26 acquired by mature DC was lower than immature DC as seen by the 

MFI (Fig. 20B). These results indicate that both immature and mature DC uptake antigen from T 

cell lineage more efficiently and equally, whereas they exhibit differential ability to uptake 

antigen from epithelial cells.  

 

Figure 20. Infected T cell mediated DC infection is directly correlated with the ability of DC to acquire 

antigen from T cell. 

(A) Immature and mature MDDC were cocultured with PKH26-labeled PBL, Jurkat cells, HeLa-T4 or HEK 293T at 
a ratio of 1:1. Post coculture (12 hours) cells were stained for DC-SIGN and the amount of PKH26 uptake by DC-
SIGN positive cells were assessed by flow cytometry. DC were gated based on side scatter and forward scatter 
followed by doublet discrimination. Values in upper right quadrant indicate the percentage of DC-SIGN and PKH26 
positive cells. (B) Histogram overlay represent PKH26 fluorescence in immature (Red) and mature (Blue) DC, post 
cocultured (12 hours) with PKH-26 labeled PBL, Jurkat cells, HeLa-T4 or HEK 293T cells. The figure is 
representative of data obtained from experiments in four separate donors. (C) Immature and mature DC cocultured 
(for 12 hours) with PBL or Jurkat T cells were stained for DC-SIGN and CD28 and evaluated by flow cytometry. 
(D) Comparison of MFI of CD28 molecule on the surface of Jurkat, immature DC or mature DC cocultured with 
Jurkat T cells. (E) Immature DC were cocultured with Jurkat T cells for twelve hours, cells were stained for DC-
SIGN and CD28 and evaluated by Immunofluorescence microscopy, green represents DC-SIGN, CD28 is depicted 
in red and DAPI staining of nucleus is shown in blue. DC alone control was included. (F) Scatter plot denotes the 
correlation of PKH26 uptake and DC infection post coculture with different cell types. Each color in the plot 
denotes individual donor (n=4). Linear regression was calculated for each donor, along with the R2 value. 
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In addition to cytoplasmic and membrane bound antigen uptake, APC are known to 

acquire membrane from the interacting cell surface on to their own surface in the right 

orientation, a phenomenon described as trogocytosis [119-121]. To understand whether DC 

infection is mediated through this mechanism, we evaluated the ability of DC to acquire T cell 

surface molecules, CD3 and CD28, by flow cytometry. We performed surface staining of these 

molecules using CD3 or CD28 specific antibodies, which will specifically detect these 

molecules, if they orient on the outer side of the membrane via trogocytosis.  Results indicate 

that both immature and mature DC acquired CD28 from the interacting PBL or Jurkat. This 

observation was further confirmed by confocal microscopy by staining DC with anti-CD28 

antibody. Results indicate that the presence of CD28 on DC cell surface, where speckles of 

CD28 was identified (Fig. 20E). Together these results indicate that DC acquire membrane from 

their interacting T cells via antigen uptake and trogocytosis. 

When we compared the infection of DC within these cultures, we also observed that there 

is a direct correlation between membrane uptake and infection. In multiple donors (n=4), at 12 

hours following coculture at a ratio of 1:1 (DC: PBL) (10% of PBL are infected) it was observed 

that both immature and mature DC were infected at the highest in case of PBL (2.7+1.1) and 

Jurkat (2.6+1.8) coculture, whereas, it was almost half when immature DC were cocultured with 

HEK293T (1.3+0.54) and HeLa-T4 (1.1+0.35) cells.  Interestingly, mature DC did not show any 

infection when cocultured with HEK293T (0.16+0.07) or HeLa-T4 (0.08+0.04) cells and is 

directly correlated with the low/no antigen uptake. Statistical evaluation between PKH26 uptake 

by immature and mature DC from different cell type (PBL, Jurkat, Hela-T4, HEK 293T) and 

associated DC infection in multiple donors (n=4), indicates a direct correlation between antigen 

uptake and infection of DC, R2 value ranges from 0.98 to 0.73 (Fig. 20F). Together these results 
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support that there is a strong correlation between antigen uptake and infection of DC via T cell-

associated virus. 

4.9.6 Blocking the ability of DC to acquire cell-associated antigen prevents DC infection.  

As the ability of DC to acquire cell associated antigen and infection of DC is directly correlated, 

we further investigated whether blocking the membrane uptake will result in loss of DC 

infection. DC were cocultured with infected PBL in the presence and absence of cytochalasin D, 

Colchicine, AZT and evaluated for membrane uptake as well as DC infection (Fig.21A). Results 

indicate that cytochalasin D blocked both membrane uptake and infection (>80%) significantly, 

whereas colchicine did not show any effect of the membrane uptake or infection compared to the 

no treatment group. In case of AZT, it did not affect membrane uptake, whereas, it inhibited 

infection in DC by 75-80% at 100µM compared to untreated group.  

Furthermore, results using various concentrations of cyctochalasin D indicate that 

cytochalasin D inhibited membrane uptake as well as DC infection in a dose dependent manner 

(Fig.21B). At a concentration of 0.1μg/ml, the antigen uptake was reduced by 67.6+4.7% and the 

infection was inhibited by 71.1+5.1%, where as, at 1μg/ml, the antigen uptake was reduced by 

81.3+5.7% and the infection was inhibited by 87.3+3.8%. Cytochalasin D at concentrations of 5 

and 10μg/ml inhibited the antigen uptake to more than 90% and at these concentrations there was 

complete inhibition of infection in DC (Fig.21B). Inhibition of infection was independent of 

cytotoxicity induced by cyctochalasin D as confirmed by annexin V staining in DC (data not 

shown). Together these results indicate that DC might acquire virus from infected T cells 

through the antigen/cell membrane uptake mechanisms. 
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Figure 21. Blocking the ability of DC to acquire cell associated antigens prevents DC infection by T 

cell associated virus. 

(A) DC were cocultured with infected T cells in the presence of various inhibitors (Cytochalasin D 1µg/ml; 
Colchicine 100 µg/ml; AZT 100µM),post coculture (12 hours) were stained for DC-SIGN and the amount of antigen 
uptake by DC and percentage of productive infection of DC were evaluated by flow cytometry. The figure is 
representative of data obtained from one of the five independent donors. Error bars indicate S.D. of the results 
obtained from triplicate wells from a single donor. (B) Ability of Cytochalasin D to inhibit antigen uptake and 
productive infection of DC in dose dependent manner. The figure is representative of data obtained from one of four 
independent experiments. 
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4.10 DISCUSSION 

Both cell-free and cell-associated virus facilitates transmission, spread and dissemination of 

HIV-1. However, cell-associated virus infection has added advantages and is more effective than 

cell-free virus infection. Viral dissemination through cell-to cell contact is mediated through 

virological synapses, and this event is predominant at the secondary lymphoid organs [122, 123]. 

Several host cellular proteins, such as ICAM, LFA, ZAP-70 are known to regulate this event 

[124-128]. One of the ways these cellular proteins regulate virus transmission is through 

enhancing cell-to cell contact, ability these proteins to incorporate in the virus particles, 

suggesting that viruses utilize several modes for efficient transmission. Published studies also 

indicate that antiviral drugs, AZT or neutralizing antibodies do not block the cell-associated HIV 

transfer and infection [129, 130].  Together these findings suggest that virus transmission also 

occurs through other mechanism(s) that are not well established.  

In this study, we have shown for the first time that DC acquire virus from infected T cells 

utilizing the antigen uptake mechanisms that results in DC infection. Previous studies have 

focused on DC handing off virus to the interacting naïve T cells as part of the “trojan horse” 

model that results in productive infection [114, 131].  However, it is not well understood whether 

a reverse phenomenon is possible. This is important as DC interact with infected T cells to 

sample foreign antigens for priming naïve T cells. Our results indicate that DC acquire virus 

from the infected cells during the antigen uptake process that results in DC infection. Although 

immature DC efficiently uptake antigen (>90% of total DC cocultured) from T cells, infection of 

DC is 5-8% of the total DC cocultured, suggesting that a small amount of virus is able to escape 

the antigen processing pathway and establish infection. A recent study by Turville et al [132], 

further support our finding that DC can take up virus from another infected DC. 
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Figure 22. Proposed model depicting the various mechanisms(s) involved in virus transfer from infected T 

cell to DC. 

 

This phenomenon might have a significant impact in vivo, as DC and T cells interact at 

multiple sites including the site of entry (mucosal tissue) and lymphoid structures within the 

infected host. Upon infection by pathogens, various immune cells (infected and bystander) come 

in contact at the lymphoid tissues for antigen uptake, presentation, priming and induction of 

immune responses. Many of these processes occur through the formation of immunological 

synapses [133-135]. Pathogens, including HIV-1 are known to dysregulate immunological 

synapse and enhances virological synapse by differentially regulating viral and host cellular 

factors [122, 136, 137].  Utilizing this immunological process, DC capture free virus and 

efficiently trans infect T cells in vivo and in vitro. In vivo studies (animal model) indicate the 

presence of productively infected T cells 3 days post-intravaginal inoculation [138, 139]. Here 
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we address the consequence of the interaction between an infected T cell and uninfected DC and 

its potential role in viral dissemination.  

Results presented here indicate that DC acquire virus from infected T cells independent 

of cellular and viral receptors that are involved in typical cell-free infections but dependent of 

cell-to-cell contact, suggesting that cell-to-cell communication and/or cellular networks are 

involved in virus transfer. Although results presented above indicate that DC might acquire virus 

from infected cells, via their antigen uptake mechanisms, it is not clear what kind of material 

transfer occurs between T cell and DC. Based on the cell surface ligands, their receptors 

involved in DC-T cell interaction, it is possible to predict that the presence of these costimulatory 

molecules might increase the affinity of cell-to cell contact though their ligands present in DC. 

Based on the available information, we proposed several scenarios that could be the source for 

DC infection as shown in Fig. 22. These include: (a) uptake of budding virus particle from the 

infected T cell via cell membrane uptake; (b) uptake of various forms of infectious unintegrated 

viral DNA from infected T cell cytoplasm via cytoplasmic antigen uptake; (c) membrane transfer 

of assembling and budding virus from the infected T cell and reorient on DC membrane; and (d) 

uptake of cellular and nuclear content including viral antigens and viral nucleic acids from the 

apoptotic infected T cells. Alternatively, virus could also transfer from cell to cell via a cellular 

network including nanotubules, and other related extensions, as DC acquire dyes, bacteria and 

other pathogens from cells through nanotubules [111, 140]. Transfer of viral nuclear material, 

either unintegrated viral DNA as LTR circles or linear proviral DNA may have an effect in viral 

pathogenesis. It should be noted that these unintegrated forms have varied half life, the linear 

unintegrated proviral does not survive for long, but conflicting reports suggest that the LTR ring 

forms may persist in the cells and may have a role in virus persistence, even in patients on 
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HAART for a long duration. Alternatively DC can acquire immature virus particle, which may 

not be infectious. In vivo, DC scavenges the tissues for foreign antigens as part of normal 

immune surveillance.  If HIV-1 utilizes these normal DC cell functions for virus transmission, 

this will have significant impact on pathogenesis and disease progression. Clearance of virus 

from the infected host will be much more difficult. Understanding the mechanism(s) involved in 

contact dependent virus transfer will further enhance our knowledge towards developing 

additional antiviral strategies to prevent HIV-1 transmission. 
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5.0   STRUCTURE-FUNCTION ANALYSIS OF HIV-1 VPR IN 

IMMUNOPATHOGENESIS, VIRUS REPLICATION AND DISEASE PROGRESSION: 

FOCUS ON VPR OLIGOMERIZATION AND FUNCTIONS. 

5.1 INTRODUCTION 

HIV-1 Vpr, a non-structural protein, is incorporated in the virus particles and possesses several 

characteristic features that are known to play important roles in HIV-1 replication and disease 

progression. Vpr has a positive role in efficient transport of PIC into the nucleus of non-dividing 

cells and enhance virus replication in primary T cells [141-144]. Vpr also has a well-defined role 

in apoptosis, cell cycle arrest and dysregulation of immune functions [20, 31, 145]. Many of the 

Vpr functions are carried out by virion-associated Vpr similar to de novo synthesized Vpr, 

suggesting that incorporation of Vpr into virus particles is an important event in HIV-1 biology. 

Biochemical analysis and NMR studies suggests that Vpr has three α-helix connected by loops, 

and interacts with each other to form oligomers [146-149]. Single residue based site directed Vpr 

mutagenesis suggests that amino acids in the N terminal region are essential for stability, amino 

acids in Helix II are essential for virion incorporation and region in the Helix III and C terminal 

region determine the nuclear transport of Vpr [150-153]. However, structure-function studies 

using biologically relevant Vpr alleles derived from HIV-1 patients are not available.  
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To gain a better understanding of Vpr’s role in pathogenesis in vivo, we compared 

primary aminoacid sequences of Vpr alleles inform a well defined Long Term Non-progressors 

(LTNP) and Rapid Progressors (RP) population. This was compiled by combining information 

available from Los Alamos Database and GenBank. Results from these studies indicate that 

though Vpr alleles have variable nucleotide and aminoacid sequences, the alleles tend to 

maintain lesser degree of variability with respect to polarity and charge. There is comparatively 

more variability in the hydrophobicity index, in the LTNP group than RP, suggesting a role for 

the structure of Vpr in pathogenesis.  

HIV-1 Vpr is known to oligomerize both in vitro and in vivo [148, 154]. This has been 

demonstrated using Vpr expressed in cells, in the context of transfection of plasmid DNAs and 

through virus infection. Similar observations have also been reported with the purified Vpr 

protein from the prokaryotic expression system. Vpr has been shown to exist as dimers.  trimers, 

tetramers and multimers [148]. In general, protein oligomerization is thought to be an 

advantageous feature for reasons of increased stability, interaction/binding with other proteins, 

allosteric control and the establishment of higher-order complexity [155]. Vpr is known to 

interact with viral and cellular proteins and this interaction is essential for several Vpr mediated 

functions. For instance, Vpr interacts with Gag-p6 and packages in the virus particles and virion-

incorporated Vpr is known to positively regulate infection of non-dividing cells and enhance 

virus production in T cells [156-158]. Despite this, it is not clear whether oligomerization of Vpr 

is required for virion incorporation and/or for its interaction with cellular proteins. 

To gain a better understanding of Vpr oligomerization and its role in Vpr-induced viral 

and cellular functions, we have utilized a chimeric protein strategy in which HIV-1 Vpr is fused 

to either N- or C-terminus fragment of Venus protein. Upon expression and formation of dimers 
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in live cells the venus will emit fluorescence that can be detected by microscopy and/or flow 

cytometry. Such an approach has allowed us to evaluate the domains/residues essential for Vpr 

oligomerization and its relevance to Vpr functions using Bimolecular Fluorescence 

complementation (BiFC) analysis. Results from these studies indicate that Vpr molecules with 

distinct mutations in helical domains I, II and III dysregulate Vpr oligomerization, virion 

incorporation and Vpr-mediated cellular events.   

5.2 MATERIALS AND METHODS 

5.2.1 Cell culture and Plasmids 

HeLa, and HEK293T cells were grown in DMEM supplemented with 10% FCS, 1% glutamine 

and 1% penicillin-streptomycin. Proviral construct pNL4-3wt, pNL4-3∆R, pNL4-3∆R-EGFP 

were used in the studies. pNL43∆R-EGFP was constructed as mentioned previously [109]. 

pNL43wt was obtained from NIH ARRRP, contributed by Dr. Landau and pNL43∆R was a kind 

gift from David N. Levy, University of Alabama. Vpr expression plasmids were generated using 

the methods as described [150]. All the mutant constructs were sequenced to verify the integrity 

of the mutations. For BiFC assays, sequences encoding the amino (residues 1 to 173, VN) or 

carboxyl (residues 155 to 238, VC) fragments of Venus fluorescence protein (template 

generously provided by Dr. Ronald Montelaro, University of Pittsburgh) were fused to the N 

terminus of HIV-1 Vpr via a six-alanine linker. All plasmids were isolated using QIAGEN 

Maxiprep kit (QIAGEN, Valencia, CA), 
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5.2.2 Western blotting 

 HEK293T cells were cotransfected with Vpr expression plasmid using Lipofectamine. Forty-

eight hours post-transfection, cells were washed twice with PBS and lysed in RIPA buffer 

containing 50mM Tris (pH 7.5), 150mM NaCl, 1% Triton X-100, 1mM sodium orthovanadate, 

10mM sodium fluoride, 1.0mM phenylmethylsulfonyl fluoride, 0.05% deoxycholate, 10% 

sodium dodecyl sulfate, aprotinin (0.07 trypsin inhibitor unit/ml), and the protease inhibitors 

leupeptin, chymostatin, and pepstatin (1μg/ml; Sigma). Cell lysates were clarified by 

centrifugation, and total cell lysates (50μg) were separated on a 12% sodium dodecyl sulfate-

polyacrylamide gel (SDS-PAGE) electrophoresis gel, transferred, and immunoblotted with anti-

HIV-1 p24 for Gag and anti-Vpr antibody or anti-HA for Vpr. The blots were developed using 

an ECL kit (Amersham Biosciences, Piscataway, NJ). 

5.2.3 Immunofluorescence 

Thirty-six hours post-transfection, cells were washed with PBS and fixed in 3.7% formaldehyde 

at room temperature for 10 minutes. Following three washes with PBS the cells were 

permeabilized with 0.5% Triton X-100 for an additional 10 minutes. After washing 3 times with 

PBS, the cells were blocked with 1% BSA at room temperature for 1 hour followed by 

incubation with primary antibody (HA or Vpr; 1:200 dilution, BD Biosciences) for 1 hour at 

room temperature and incubated with rabbit anti-mouse or anti-rabbit IgG Rhodamine (RRX) 

(1:400; Jackson ImmunoResearch, West Grove, PA) for 1 hour at room temperature. Cells were 

mounted with VECTASHIELD mounting media containing DAPI (Vector Laboratories, 

Burlingame, CA). Immunofluorescence analysis was performed using a fluorescence microscope 
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with Nikon SPOT camera (Fryer, Huntley, IL) and images were processed using MetaMorph 

software (Universal Imaging Corporation, Downington, PA). 

5.2.4 Luciferase assay 

HeLa cells were transfected with HIV-1 LTR Luciferase or NF-kB-Luciferase reporter plasmid 

(1µg) in the presence and absence of Vprwt or Vpr mutants (0.5µg) and pCMV b-Gal using 

Lipofectamine (InVitrogen, CA). Forty-eight hours post transfection, cells were lysed in 500µl of 

1X reporter lysis buffer and luciferase activity was measured following the manufacturer's 

protocol (Promega, WI). Transfection efficiency was normalized by transfecting with CMV β-

gal plasmid and analyzing the β-gal activity (Promega, WI). In some experiments pEGFP 

plasmid was used as a control to normalize for transfection efficiency To measure NF-kB 

activity cells were stimulated with human recombinant TNF-a (1 ng/ml) for 3 hours before lysis 

to activate the reporter.  

5.2.5 Annexin V staining 

HeLa cells were transfected with 2.5µg of Vpr mutant molecules or vector DNA using 

lipofectamine as per the manufacturer’s instructions. Forty-eight hours post transfection, cells 

were washed twice with cold FACS buffer. To detect apoptosis, cells were resuspended in 

100μL sterile binding buffer containing 10mM HEPES/NaOH (pH 7.4), 140 mM NaCl, and 

2.5mM CaCl2, incubated with Annexin V-FITC (BD Bio-Science) for 15 minutes at RT in the 

dark and diluted four times with binding buffer before analyzing by flow cytometry as described 

[159]. The percentage of Annexin-V positive populations was evaluated by FlowJo software.  
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5.3 RESULTS 

5.3.1 Construction and characterization of Vpr plasmids for oligomerization studies using 

BiFC analysis  

The ability of Vpr to oligomerize was proven by biochemical methods using bacterially 

produced or chemically synthesized Vpr protein and/or peptides [156]. A recent study has shown 

that Vpr forms dimers and oligomers in relevant eukaryotic cells by using fluorescence 

spectroscopy and imaging analysis [154]. These observations have prompted us to evaluate the 

requirement of specific domains/residues in Vpr oligomerization. It is important to note that, 

though investigators reported oligomerization in live cells, the assays used for this purpose are of 

qualitative in nature. On the other hand, dimerization between two molecules is amenable for 

precise analysis and is considered by several investigators as an integral part of oligomerization. 

Considering this, we have selected Bimolecular Fluorescence Complementation system based on 

Venus as a reporter protein. The chimeric proteins containing Vpr and N- or C- terminus 

fragments of the reporter due to the interaction Vpr are likely to result in the reconstitution of a 

functional Venus with fluorescence. Briefly, Vpr from NL4-3 (will be referred as Vprwt) was 

cloned downstream of N terminus (1-173 aa) or C terminus (155-238) of Venus fluorescent 

protein as described[160] and verified by sequence analysis. The schematic representation of the 

constructs is presented in Fig. 23A.  The recombinant plasmid constructs were assessed for 

expression of the correctly sized protein products by transient transfection in HEK293T cells. 

The analysis of the lysate from transfected cells was carried out by immunoblot assay. The 

results shown in Fig.23B indicate that a chimeric (Venus-Vpr) protein was expressed in cells 

transfected with the plasmids. The chimeric protein of expected size was detected by antibodies 

 89 



against Vpr and HA tag. The steady state expression levels of chimeric proteins were similar to 

that of wild type Vpr.   Next, we also analyzed the subcellular localization pattern of the 

chimeric proteins in comparison to the untagged wild type Vpr to confirm that fusion of N- and 

C-terminal fragment of Venus reporter did not alter Vpr localization (Fig. 23C). Results indicate 

that VN-Vpr and VC-Vpr exhibit nuclear localization pattern, similar to wild type Vpr protein. 

Finally, the functional ability of these chimeric constructs to induce apoptosis (a hallmark 

function of vpr) was assessed by flow cytometry (Fig. 23D). Both chimeric constructs and 

untagged Vpr construct induced comparable level of apoptosis (51 to 56% in transiently 

transfected HeLa cells compared to untransfected or vector transfected control (15%). Together 

these results indicate that fusion of these chimeric molecules (VC and VN) did not alter the 

expression, localization and/or functions of Vpr.  

HIV-1 Vpr interacts with Gag specifically and incorporates into virus particles[156, 161]. 

Therefore, these plasmids were cotransfected with pNL43∆vpr-EGFP proviral plasmid and 

assessed for their ability to incorporate in virus particles. The results indicate that fusion of 

Venus-C or Venus-N fragments with Vprwt did not alter the ability of Vpr to package in virus 

particles (Fig. 23E). The reactivities of chimeric Vpr to antibodies against Vpr and its 

incorporation into virus particles suggest that these constructs serve as a useful tool to study Vpr 

dimerization/oligomerization in live cells.  
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Figure 23. Construction and characterization of Vpr plasmids for oligomerization studies in live cells using 

BiFC. 

(A) Schematic representation of Vprwt fused with Venus-N terminal or Venus-C-terminal fragments.  (B) Expression 
of Venus-C Vprwt and Venus-N Vprwt was assessed in HEK293T cells by transient transfection. HEK293T cells were 
transfected with Venus-N – Vprwt or Venus C – Vprwt expression plasmids or Vector control plasmid, and assessed 
by Western blot. (C) Subcellular localization pattern of Vprwt or Venus-Vprwt fusion proteins was assessed in Hela 
cells by transient transfection. HeLa cells were transfected with Vprwt or Venus C – Vprwt or Venus N – Vprwt 
expression plasmids or Vector control plasmid, and assessed by Immunofluorescence for subcellular localization 
pattern. (D) Evaluation of Venus- Vprwt fusion proteins to induce apoptosis in HEK293T cells. HEK293T cells were 
transfected with Vprwt or Venus-N-Vprwt or Venus C-Vprwt expression plasmids or Vector control plasmid, forty-
eight hours post transfection the cells were assessed for apoptosis by flow cytometry following Annexin V staining. 
Cells (%) positive for Annexin-V is marked. (E) Virion incorporation of Venus-C-Vprwt and Venus-N- Vprwt was 
assessed in HEK293T cells by transient transfection. HEK293T cells were cotransfected with pNL43∆vpr-EGFP 
proviral plasmid and Venus- Vprwt chimera or Vprwt expression plasmid, and assessed by Western blot for Vpr 
expression in cell lysate and virus particle. Gag was assessed as a loading control. Figure represents one of five 
independent experiments (n=5) with similar results. 

 91 



To monitor dimerization/oligomerization in live cells, HEK293T were cotransfected with equal 

amount of Venus-C Vpr and Venus–N Vpr plasmids or each plasmid with background control 

vector. Vpr oligomerization was monitored forty-eight hrs post transfection by flow cytometry 

(Fig. 24A) and by fluorescence microscope (Fig. 24B). Results indicate that cells transfected 

with both VC-Vpr and VN-Vpr exhibit positive signal (26% of BiFC positive cells) that is 

detected by flow cytometry and by fluorescence microscopy, whereas VC-Vpr or VN-Vpr with a 

vector control plasmid did not show any signal. Similar results were observed in Jurkat cells 

transfected with the BiFC plasmids (data not shown). To ascertain the specificity of Vpr-Vpr 

interactions, we have also carried out a competition experiment in which untagged Vpr is 

expressed along with chimeric VC-Vpr and VN-Vpr. As expected, the inclusion of untagged Vpr 

has resulted in a diminished BiFC signal (data not shown). Together these results indicate that 

oligomerization of Vpr is specific and this technique would allow us to study the interaction in a 

live cell more efficiently, especially in HIV-1 target cells.  

 

Figure 24. Visualization of Vpr dimerization in live cells. 

(A) Quantitative analysis by flow cytometry of Venus fragment complementation in HeLa cells transfected 
with VC-Vpr and VN-Vpr or with control plasmid. Thirty-six hours posttransfection, cells were harvested and 
analyzed by flow cytometry to determine the percentage of cells positive for BiFC fluorescence. Results represent 
the means of five independent experiments. (B) Subcellular localization of the BiFC complex. HeLa cells grown on 
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glass coverslips were cotransfected with cotransfected with VN-Vprwt and VC-Vprwt or VN- Vprwt or VC- Vprwt with 
control plasmid pairs using Lipofectamine. At 36 hours post-transfection, cells were fixed, stained with DAPI and 
imaged at 60X magnification. Figure represents one of five independent experiments (n=5) with similar results. 

5.3.2 Comparison of Vpr alleles obtained from Rapid Progressors and Long Term Non 

Progressors. 

Sequences of Vpr alleles (N=1223) from Los Alamos National Laboratory Database were 

considered for the study, these included Vpr sequences, which started with Methionine and had 

around 96 amino acids; truncated Vpr sequences were eliminated from the analysis. Further 

information regarding the association of the Vpr allele with the progression of the disease was 

obtained from GenBank Database. Compiling both these database together, we were able to 

identify sequences of Vpr alleles derived from rapid progressor (N=102) and long term non 

progressors (N=193). Status regarding the progression of disease was not known for the 

remaining sequences. HIV-1 Vpr has three helices, Helix I (17-33), Helix II (38-50), Helix III 

(54-77), which are reported to play a critical role in maintaining the structure-function of Vpr. 

Comparison of data across these two groups indicate that most of the residues in the helices are 

significantly conserved. Variations are observed in certain residues in both RP and LTNP 

population. In most cases of variations, there is preservation of polarity and charge of aminoacid 

(example – 28,32,41, 48, 60, 68). We also found a some residues were significantly different in 

LTNP and RP (19,48,77), suggesting the importance of structure-function of Vpr, hence long 

term nonprogression status, examples include mutation in Vpr at 48 position - E48A, this 

mutation results in loss of vpr incorporation in to virion particle; Mutation at 77 – R77Q results 

in loss of Vpr property to induce apoptosis. These results suggest that, the fitness pressure on the 
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virus tends to conserve the Vpr at the structural perspective, and any adverse mutation in 

structure-function of Vpr favorably affect the progression of the disease.   

 

Figure 25. Comparison of aminoacid residues in helical domains of Vpr alleles derived from RP and LTNP. 

Sequences of Vpr alleles across three helices of HIV-1 Vpr derived from rapid progressor (N=102) and long term 
non progressors (N=193) was compared based on polarity.  

5.3.3 Identification of Vpr residues involved in Vpr oligomerization by BiFC  

Representative Vpr mutants shown in Fig. 26A were selected for further biological evaluation. 

Vpr mutant molecules were cloned in venus-C and venus-N construct and verified for expression 

in HEK293T cells by transfection followed by immunoblot (Fig. 26B). Results indicate that all 

Vpr mutant chimeric molecules express the appropriate size protein. However, the expression 
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level of Vpr mutant molecules differ slightly compared to wild type. For instance, mutants 

A30L, ∆44, E48A and H71R showed 40% reduction and L68E exhibited 60% reduction 

compared to wild type Vpr, whereas MA remained the same as wild type. Control vector did not 

show any signal suggesting that Venus-chimeric Vpr mutant molecules are not defective in 

expression and/or stability.  

 

(A) 

(B) 
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(C) 

(Continued below) 
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(D) 

Figure 26. Identification of residues required for Vpr dimerization. 

(A) Schematic figure depicting Vpr mutants selected for further analysis. Substitution residue(s) are marked at 
appropriate place and a ∆ represent deletion of a residue. MA, represent Vpr clone with multiple aminoacid (MA) 
changes in helix I and III. NL43 sequence was used as wild type clone. (B) Expression of Vpr mutants was assessed 
in HEK293T cells by transient transfection. HEK293T cells were transfected with Vpr mutant expression plasmids 
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or vector control plasmid and assessed for expression by western blot using HA to detect fusion protein. Tubulin 
was used as a loading control. (C) Visualization of dimerization and subcellular distribution of Vpr mutant 
molecules was assessed by BiFC. HeLa cells were transfected with VC and VN combinations of Vpr mutants as 
described. Thirty-six hours posttransfection cells were stained for Vpr (shown in Red) and DAPI (blue) and imaged 
at 60X magnification.  (D) Quantitation of dimerization of Vpr mutant molecules in HeLa cells. Cells were 
transfected with combination of VC and VN plasmids as described. Thirty-six hours post-transfection cells were 
assessed for BiFC by flow cytometry. Percentage of cells positive for BiFC and MFI are marked. Figure represents 
one of five independent experiments (n=5) with similar results. 

 

Next, we assessed the ability of Vpr mutants to form dimers/oligomers by BiFC analysis. 

The expression of Vpr molecules was also assessed from the same batch of cells by indirect 

immunofluorescence using HA antibody (to detect HA tagged Vpr) and compared with BiFC by 

microscopy (Fig. 26C).  Results indicate that Vprwt, E48A and MA exhibited detectable BiFC 

signal, whereas mutants A30L, ∆44, L68E and H71R did not show BiFC positive cells, 

suggesting that these mutants are defective in dimerization.  Importantly, staining for Vpr (panel 

Vpr in Fig. 26C) further confirmed the expression of Vpr protein suggesting that lack of 

dimerization is not due to lack of Vpr expression. Next, we assessed whether subcellular 

distribution of Vpr mutant molecules has any role in dimer/oligomers formation. BiFC positive 

Vpr molecules, Vprwt, and E48A show uniform nuclear distribution.. However, BiFC negative 

mutants, A30L, L68E and H71R also showed nuclear distribution similar to Vprwt. Role of 

specific residues of Vpr in dimerization/oligomerization was further confirmed by measuring the 

percentage and mean fluorescence intensity (MFI) of BiFC signal using flow cytometry (Fig. 

26D). Results indicate that BiFC signal is detected in HIV-1 Vprwt, mutants E48A and MA, 

whereas A30L, ∆44, L68E and H71R did not show any significant signal. The low level of BiFC 

signal (<4%) observed in A30L, ∆44, L68E and H71R could be due to background or auto 

fluorescence. The percentage of positive cells and MFI is comparable in Vprwt and MA is 35.7% 

(MFI 227) and 40.7% (MFI-262), respectively, whereas 21.5% (MFI-119) of cells were BIFC 

positive in E48A. 
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5.3.4 Relevance of oligomerization in Vpr-Gag interaction and virion incorporation of 

Vpr. 

Vpr interacts with HIV-1 Gag specifically through the p6 domain and packages into the virus 

particles in significant quantities [156, 162, 163]. Therefore, we assessed whether Vpr-Gag 

interaction is detectable in BiFC based live cell assay using Venus-Gag and Venus-Vpr plasmids. 

Combination of Venus-C and Venus-N plasmids expressing either Gag or Vpr was cotransfected 

and evaluated for BiFC signal by fluorescence microscopy. Subcellular distribution of Gag-Gag 

interaction and Gag-Vpr interaction resulted in cytoplasmic membrane localization, whereas 

Vpr-Vpr interaction resulted in nuclear localization (Fig.27A). Together, the fluorescence 

microscopic analyses reveal that Vpr interacts with Gag very specifically at the cytoplasmic 

membrane and this interaction results in differential localization of Vpr corresponding to virion 

incorporation and virus assembly. 
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(B) 

Figure 27. Role of HIV-1 Vpr oligomerization in incorporation of Vpr into virus particles : 

Interaction of HIV-1 Gag and Vpr. 

(A) Visualization of Vprwt and Gag interaction in HeLa cells by BiFC. HeLa cells were transfected with 
VN-Vprwt and VC-Gag expression plasmids. Thirty-six hours post transfection, cells were fixed, stained with DAPI 
and analyzed for presence and pattern of BiFC signal at 60X magnification. (B) Incorporation of Vpr mutant 
molecules in virus particle. Vpr plasmids were cotransfected with pNL43∆Vpr proviral plasmid in HEK293T cells. 
Forty-eight hours post-transfection, supernatant and cell pellet were lysed, subjected to SDS-PAGE electrophoresis 
and evaluated for presence viral proteins Gag and Vpr by western blot. Tubulin was assessed in cell lysate as a 
loading control.  

 

Next, we assessed the ability of Vpr mutants to incorporate into virus particles. 

HEK293T cells were cotransfected with pNL43∆vpr proviral plasmid and Vpr expression 

plasmids or vector control. The amount of Vpr in cells and virus particles was quantitated by 

loading equal amount of total protein of the cell lysate or normalized using Gag-p24 antigen, 

respectively (Fig. 27B). Results indicate that expression of Vprwt, A30L, ∆44, E48A, H71R and 

MA is comparable in cell lysate (except L68E) suggesting that the expression and stability of 

these mutants are not altered entirely.  Analysis of Vpr in virus particles revealed that Vprwt and 

MA incorporated into the virus particle, whereas Vpr mutants A30L, ∆44, E48A, L68E and 
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H71R did not incorporate into virus particles suggesting a role for these residues in Vpr-Gag 

interaction and virion incorporation. Together theses studies indicate that 

dimerization/oligomerization defective mutants are defective in virion incorporation suggesting 

that oligomerization is an essential feature for virion associated Vpr functions.  

Though both Vprwt and MA incorporate in virus particles, it is important to note that 

incorporation of MA is significantly less compared to Vprwt although both express equally high 

level of protein. Further we noticed a consistent reduction in the amount of Gag released in the 

supernatant in presence of VprMA clone, even when the Gag in the cell lysate was comparable 

with other mutants. Cell lysate from the same culture revealed accumulation of Vpr in the cells, 

suggesting that Vpr mutant MA might interfere with either Vpr-Gag interaction or virus release.  

To test these possibilities, we cotransfected VN-Gag and VC-VprMA or VC-Gag and VN-VprMA 

and assessed the distribution of BiFC and compared with the Vprwt counter part (Fig. 28A). 

Results indicate that distribution of Gag-Vprwt interaction resulted in cytoplasmic membrane 

distribution (top panels), whereas, Gag-VprMA showed a condensed nuclear accumulation (Fig. 

28A; bottom panels).  To precisely quantitate this and to further delineate the role of this mutant 

in virus release and production, we transfected HEK293T cells with pNL43∆vpr-EGFP and 

pVprwt or pNL43∆Vpr-EGFP and pVprMA and measured the amount of p24 released in the 

culture supernatant and the amount present in the cell lysate by ELISA (Fig. 28B). Considering 

the total amount of p24 present in both supernatant and cell lysate as 100%, we assessed the 

fraction of p24 present in supernatant and cell lysate for each experiment.  Results in Figure 28B, 

shows the average of p24 value seen in multiple experiments (N=6). Results indicate that 

compared to Vprwt, VprMA showed 70-30% reduction in p24 release in the supernatant, whereas 

amount of p24 present in cell lysates showed a 3-4 fold increase. Together these studies suggest 
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that hyper oligomeric property of VprMA might sequester Gag within the cell and prevent the 

release of virus particles. 

 

(A) 

(B) 

 

Figure 28. Hyperoligomeric Vpr mutant induces sequestration of Gag. 

 

(A) Interaction and subcellular distribution of Gag-Vprwt and Gag-VprMA was assessed by BiFC. HeLa 
cells were transfected with combinations of Gag and Vprwt or Gag and VprMA as described. Thirty-six hours post-
transfection cells were fixed, stained with DAPI (blue) and imaged at 60X magnification. (B) Effect of hyper 
oligomeric Vpr mutant MA on virus/Gag release by ELISA. HEK293T cells were cotransfected with NL43∆Vpr-
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EGFP and Vprwt or NL43∆Vpr and VprMA and the amount of Gag (p24) in the supernatant and cell lysate was 
measured by ELISA (48 hrs post transfection). Considering Vprwt complemented culture as 100%, fold difference 
inVpr MA was calculated. These data represent an average of at least five independent experiments. Statistical 
significance was calculated using student t test. 
 

5.3.5 Role of oligomerization in Vpr-mediated cellular functions.  

Vpr is known to induce cell cycle arrest and apoptosis in both infected and exposed target cells 

as well as modulate several viral and host transcription factors [3, 74, 164, 165]. To understand 

whether defective or altered oligomerization affect the well-established Vpr-mediated functions, 

we evaluated the role of the Vpr mutants on apoptosis (Fig. 29A). Our analyses indicate that 

Vprwt at a concentration of 2.5µg induced apoptosis in 71% of the cells, whereas the vector 

transfected cells show 8% (10-fold low). Among the mutants, MA showed similar level (61%) to 

wild type Vpr and ∆44, E48A, L68E and H71Y induced 40%. Importantly A30L is less apoptotic 

(19%) compared to all the tested mutants.  These studies suggest that Vpr oligomerization might 

enhance apoptosis, however it is not absolutely essential for Vpr-induced apoptosis.  

HIV-1 Vpr has been established as a transcriptional regulator as well as a coactivator 

molecule [32, 150].  Vpr activates both viral and cellular promoters and regulate gene expression 

with in the context of infection as well as expression. Next, we assessed the significance of 

oligomerization defective mutants on Vpr induced HIV-1 LTR mediated transactivation (Fig. 

29B).  Results indicate that oligomerization positive wild type and E48A showed 4-fold increase 

in LTR mediated activity, whereas MA did not show LTR transactivation (<1 fold). 

Oligomerization defective mutants did not show any significant difference compared to wild 

type, MA or E48A.  
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Similarly, we also evaluated the ability of Vpr oligomerization on cellular promoters 

using NF-κB-luciferase reporter as described in methods. Vpr is known to suppress the NF-κB 

mediated transactivation [31, 109]. Ability of Vpr mutants to inhibit NF-κB mutants were 

assessed in HeLa cells and the results indicate that Vpr mutants (positive and negative for 

dimerization/oligomerization) did not show any significant difference (Fig. 29C). Vpr wild type, 

∆44, E48A and H71Y showed 60% reduction compared to vector cotransfected culture, L68E 

did not show any inhibition. However, we observed that the hyperoligomeric mutant MA and 

oligomerization defective A30L inhibited 30-40% Vpr-mediated HIV-1 LTR transactivation and 

reversed Vpr-induced NF-κB suppression. Collectively, these results suggest that 

oligomerization might have an impact on cellular functions and transcriptional regulation, 

however it is not absolutely necessary for its function. 
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Figure 29. Role of Vpr Oligomerization in Vpr mediated cellular functions.  

(A) Evaluation of Vpr mutant molecules to induce apoptosis in HeLa cells. Cells were transfected with Vprwt, Vpr 
mutants plasmids or vector control plasmid, forty-eight hours post transfection the cells were assessed for apoptosis 
by flow cytometry following Annexin V staining. (B &C) Evaluation of oligomerization defective Vpr mutants in 
viral and host cellular gene transcription. Hela cells were transfected with Vpr mutant expression plasmids and (B) 
HIV-1 LTR-luciferase reporter plasmid or (C) NF-kB-luciferase reporter plasmid, forty eight hours post-
transfection, the assay was performed as described in Materials and Methods.  
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5.4 DISCUSSION 

HIV-1 and 2 are members of lentivirus family of retroviruses and are grouped as complex 

retroviruses. The unique feature of this group in comparison to simple retroviruses is that the 

viral genome codes for several proteins in addition to the core structural proteins. In this regard, 

HIV-1 is known to code for six auxiliary proteins (Vif, Vpr, Tat, Rev, Vpu and Nef) besides the 

structural proteins. Previous studies have demonstrated that auxiliary proteins play an essential 

role in HIV-1 replication and pathogenesis. Our laboratory has been interested for several years 

in evaluating the contribution of auxiliary proteins including Vpr. In this study, we have 

analyzed the requirement of dimerization/oligomerization property of Vpr and its relevance to 

the functions of Vpr. Specifically Vpr shares this feature with other auxiliary proteins such as 

Vif, Rev, Vpu, and Nef.    

HIV-1 Vpr is a small oligomeric protein that plays an important role in HIV pathogenesis 

[20, 70, 145, 151, 166]. The underlying reasons for selection of Vpr as a target for the present 

studies are the following: (i) Vpr is a virion associated protein; (ii) Vpr plays a critical role for 

the replication of virus in macrophages and positively regulates viral replication in T cells; (iii) 

Vpr is a transcriptional activator of HIV-1 and heterologous cellular genes; (iv) Vpr inhibits 

proliferation of cells at G2/M phase; (v) Vpr induces apoptosis in diverse cell types including T 

cells and neurons; (vi) Vpr exhibits immune suppressive effects. Further, studies from non 

human primates and analysis of viral genes in long term non progressors suggest a good 

association between defective Vpr and delayed progression of the disease [70, 167, 168]. More 

importantly several Vpr-mediated functions are induced by both cell-associated and virion-

associated Vpr [3, 20, 169]. Together these studies point out the biological significance of virion 

associated factors and its role in early infection. Therefore, understanding the role of 
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oligomerization in Vpr functions and disease progression will provide a novel target for the 

development of therapeutics in the future. 

The dimerization/oligomerization feature of Vpr was evaluated by using a 

complementation system based on Venus reporter. A strategy involving the generation of 

chimeric Venus-Vpr protein has allowed us to monitor dimerization/oligomerization in live cells. 

This system has the sensitivity to detect Vpr-Vpr and Vpr-Gag interactions. While 

dimerization/oligomerization of Vpr has been documented previously, the domains/residues in 

Vpr required for this feature are not clear. To address this, we have utilized the conservative 

nature of specific residues in Vpr by analysis of the patient derived Vpr sequences representing 

all clades (n=1223). Several mutant Vpr molecules were generated containing alterations in the 

selected residues. The results regarding the expression and steady state level of Vpr indicated 

that mutants lacking the ability to oligomerize exhibit a pattern similar to that of wild type Vpr. 

This observation suggests that monomeric Vpr molecules are stable in cells.  

HIV-1 Vpr is one of the non-structural proteins that is packaged in significant quantities 

in virus particle.  Virion-associated Vpr is present in the infected cells prior to de novo synthesis 

and is known to cause the host cellular dysfunctions during early infection [20, 145, 166]. 

Studies have indicated that the p6 domain of Gag is critical for the incorporation of Vpr into 

virus particles[8, 68, 156].  Published studies using Vpr molecules with mutations in alpha 

helices indicate that helices I, II and III may be involved in Vpr oligomerization function, 

however, whether Vpr oligomerization is a prerequisite for virion incorporation is unknown. As 

expected, chimeric Venus containing wild type Vpr and chimeric Venus containing Gag resulted 

in the reconstitution of Venus with fluorescence suggesting an interaction between these two 

proteins.  On the other hand, chimeric Venus containing mutant Vpr failed interact with Gag. 
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Vpr mutants which showed dimerization/ oligomerization negative phenotype also failed to 

incorporate into virus particles. Several studies have reported that virus particle contains around 

250 molecules of Vpr in comparison to approximately 2500 molecules of Gag protein. This 

suggests that low amount of Vpr to Gag may be due to the interaction restricted to the specific 

configuration of Gag. Oligomerization defective mutants, A30L, ∆44, L68E and H71R lack the 

ability to interact with Gag and incorporate into the virus particles. This defect has significant 

relevance with their ability to activate HIV-1 LTR promoter, suggesting that Vpr oligomerization 

might be directly linked to pathogenesis and disease progression.  

HIV-1 Vpr is known to modulate several host cellular functions such as cell cycle arrest, 

apoptosis and transcriptional regulation of cellular genes in the presence and absence of other 

HIV-1 proteins [74, 109, 164]. Many of these functions are induced through their interaction 

with cellular partners and are mediated through different domains/residues of Vpr [170]. 

However our in depth analyses on Vpr-dimerization and cellular functions (apoptosis and 

transcriptional activation of cellular promoters) suggest oligomerization positive Vpr (Wild type 

and MA) showed an enhanced apoptosis indicating a correlation between oligomerization and 

Vpr mediated cellular functions.  

An understanding of HIV-1 Vpr functions and its properties, in our view, is likely to shed 

light on the mechanisms involved in Vpr incorporation into the virus particle and how 

oligomerization feature influences virus replication and other Vpr mediated functions. These 

studies may further provide a target for the development of potential therapeutic agents including 

small molecules against Vpr-Vpr interaction, Vpr-Gag interaction, virion incorporation and virus 

replication in primary macrophages and T cells. 
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6.0  OVERALL DISCUSSION AND FUTURE DIRECTION 

6.1 SUMMARY OF FINDINGS 

CD4+T cells have a central role in induction and homeostasis of the immune response, and are 

also the major target cells for HIV.  HIV has devised mechanisms to subvert the immune system 

to further its cause of survival and dissemination, by utilizing the CD4+ T cells.  HIV-1 Vpr is 

one of the accessory genes which is essential for the virus survival in vivo and has is 

incorporated in virus particles in adequate amount, suggesting a role for this protein in the early 

phase of infection. Being a soluble protein with an ability to transduce across cell membrane, 

Vpr can potentially affect uninfected/non target bystander cells. We hypothesize that HIV-1 Vpr 

alters the functions of both infected and bystander T lymphocytes, utilizing direct and indirect 

mechanisms, and these Vpr-mediated effects contribute inpart for the immune dysregulation and 

aid in viral dissemination. The specific aims of this proposal are: (i) Assess the immune 

modulatory effects of HIV-1 Vpr in infected and bystander T-lymphocytes in vitro; (ii) 

Understand the role of HIV-1 Vpr in T lymphocytes, Natural Killer (NK) cells and Dendritic 

cells (DC) interactions; (iii) Analyze the Structure-Function role of HIV-1 Vpr in 

immunopathogenesis, virus replication and disease progression, we mainly studied the role of 

Vpr oligomerization in its functions. To address these aims, we utilize HIV-1wt and HIV-1ΔVpr 

viruses and compare the difference in the effects of these viruses under physiologically relevant 
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in vitro conditions. The differences observed in the effect of these two viruses can be attributed 

to Vpr provided that the infections in both the experimental groups are similar. In some studies, 

to distinguish the productively infected cells, we employed EGFP reporter viruses. The reporter 

virus helped us to understand the effects of Vpr in infected and bystander cells by using flow 

cytometry, immunofluorescence microscopy and also aided in sorting of productively infected 

cells by FACS sorting for further DNA and RNA analysis. Results indicate that HIV-1 Vpr can 

differentially regulate the surface expression of T cell costimulatory molecules, CD28 and 

CTLA-4 in the infected cells. There is downregulation of stimulatory costimulatory molecule, 

CD28 and upregulation of inhibitory molecule, CTLA-4 on infected cells. Also Vpr inhibits IFN-

γ production in infected T cells, this can be explained by the ability of Vpr to disrupt cell 

signaling in T cells at multiple levels. Vpr modulate the expression of cell surface molecules, 

which are critical for transduction of signal following interaction with their counterparts. , 

Downstream in the signaling pathway, Vpr inhibits nuclear translocation of p56 portion of NF-

κB. By augmenting the production of TGF-β and inducing chronic expression of NK activating 

receptor ligands, MIC A/B, hULBP-1 and hULBP-2 on the bystander virus/ Vpr protein exposed 

cells, without significantly altering the MHC class I A,B,C molecules, Vpr inhibits NK cell 

function. Results suggest that HIV-1 exposure of CD4+ T cells is sufficient for these cells to 

inhibit NK cell function. The loss of NK cells to lyse specific target cells was associated with 

reduced surface expression of degranulation marker, CD107a and reduced IFN-γ production. 

Preliminary results suggest the role of heat shock elements in this Vpr mediated upregulation of 

NK cell ligands.  Previous studies from our laboratory and others have shown that Vpr directly 

impairs DC cell maturation and alters the cytokine secretion profile. Known that bi-directional 

signaling during T cell-DC interaction is critical for induction of immune response, and since 
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Vpr was able to differentially modulate surface expression of CD28 and CTLA-4, we evaluated 

the role of Vpr to indirectly modulate DC function through T cells. HIV is reported to convert 

immunological synapse to virological synapse, thus increasing the efficiency of virus 

dissemination. The ability of virus to exploit these mechanisms has been described as the virus 

employing the DC as “Trojan Horse” to protect itself from the host defense mechanisms during 

transit. Even though we were not able to detect a role for HIV-1 Vpr in immunological 

interaction of T cell-DC, we found that the interaction was exploited by the virus to disseminate.  

Previous report suggest that HIV virus infects DC in trans and stays protected with in the 

intracytoplasmic compartment of DC till it comes in contact with a T cell. Interaction of DC with 

the T cell, activates the antigen specific T cells and also infects the T cell. We report that HIV-1 

virus can transfer from infected T cell to DC during T cell-DC interaction and this process is 

independent of viral envelope or known receptors for HIV, including DC-SIGN, CD4, CXCR4 

and CCR5. Results from cycloheximide studies clearly suggest that EGFP+ DC is not due to 

antigen uptake or due to cells sitting together or cell fusion, but due to denovo synthesis of EGFP 

in DC. Further the cis infection in DC was confirmed by detecting integrated proviral DNA in 

sorted EGFP+ DC. Based on the direct correlation between the DC infection and ability to 

acquire cell associated antigen, we propose a model where HIV is transferred to DC independent 

of virus envelope, when DC interacts with an infected cell, and acquires cell associated antigens 

as part of their role in surveillance mechanism. More studies have to be undertaken to identify 

the molecules involved in these antigen uptake processes. Finally to understand the role of Vpr 

structure and function we compared Vpr alleles obtained from well-defined Long term non-

progressors (LTNP) and rapid progressors (RP). Even though there were variation in the Vpr 

sequence at nucleotide level, there was a greater degree of conservation at the structural level 
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where amino acids were conserved based on their hydrophobicity index and tend to remain close 

to related aminoacids. Vpr alleles from LTNP were less conserved structurally than the alleles 

from RP, suggesting a role for Vpr in long term non progression. Vpr is known to form 

oligomers in vitro and in vivo. Results from Live cell based Bimolecular Fluorescence 

Complementation (BiFC) assay helped us to identify the critical residues involved in Vpr 

oligomerization. Results suggest that Vpr oligomerization is essential for Vpr incorporation into 

virus particles. Oligomerization is also critical in other vpr function, including apoptosis and 

regulation of transcription from host and viral promoters, but a direct correlation cannot be seen. 

Further we identified a Vpr allele, which has multiple mutations, was forming higher orders of 

oligomers and was detrimental to the cell. The aggregates formed due to the 

hyperoligomerization property of the Vpr allele was able to sequester the interacting HIV-1 Gag 

proteins and interfere with the release of Gag. Understand these critical roles of Vpr in viral 

pathogenesis, empower us to devise novel strategies to combat HIV infection. 

6.2 PUBLIC HEALTH SIGNIFICANCE  

HIV/AIDS pandemic is one of the major public health challenges of the present generation. With 

an estimated 30-36 million people infected with HIV/AIDS around the world, and no preventive 

vaccine available, there is urgency for novel therapies targeting HIV-1 infection. Greater fraction 

of this disease spans the developing world, this mandates need for therapeutics, which are both 

inexpensive as well as easily accessible. Though primary prevention by health education and 

awareness is possible, it is difficult to achieve and cannot be the only focus to curtail  infection. 

While current anti-retroviral therapy has delay the progression of disease, effective suppression 
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or eradication of infection is not possible. Also, presently available anti retroviral therapies are 

associated with adverse effect and the patient compliance of treatment is low. This obliges a 

better understanding of viral pathogenesis to develop novel therapeutics, which can aid in 

primary prevention and spread of infection across the globe. HIV-1 Vpr is one of the accessory 

genes which is essential for viral survival in vivo.  Vpr is known to have diverse effect during 

HIV pathogenesis, including apoptosis, suppression of immune system and aiding the virus at 

multiple steps of infection. Understanding the mechanistic of the Vpr pathogenesis will help us 

develop new class of anti-virals targeting this critical protein at different stages of viral life cycle. 

Such a therapy can supplement the available HAART regimen to make it more effective and 

more patient compliance. 

6.3  FUTURE DIRECTIONS 

Results from studies evaluating direct effect of Vpr on T cells during HIV-1 infection, suggest a 

role for HIV-1 Vpr in differential regulation of major T cell costimulatory molecules in infected 

T cells, it will be interesting to further understand the mechanism involved in this process. 

Results from limited number of donors suggest that Vpr regulates these critical signal 

transduction molecules at the transcriptional level. Identifying the mechanism(s) involved in 

Vpr-mediated immune regulation will improve our understanding of viral function, and assist in 

the development of immunotherapeutics and antiviral strategies for HIV-1-infected individuals. 

Further, evaluating whether Vpr is able to regulate these genes reciprocally and/or independently 

will help us to understand the regulatory mechanism(s) involved in the expression of these 

counter regulatory molecules. Developing agents which can specifically modulate expression of 
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certain immunological molecules will be valuable tools in dissecting the pathogenesis of 

immunological disorders and can be useful as therapeutics in repressing hyper reactive immune 

conditions and in transplantation biology. 

Even though we were unable to identify a role for Vpr mediated differential regulation of 

costimulatory molecules in T cell – DC interaction, studies evaluating the effect on tryptophan 

metabolism and effects on cytokine secretion profile in DC may be useful.   

We have shown that Vpr has a role in inhibition of IFN-γ and upregulation of TGF-β in 

infected T cell cultures, effect on other critical cytokines and chemokines will enable us to 

understand the role of Vpr in HIV-1 immunopathogenesis in a better way. 

NK cell study results suggest a role for HIV-1 Vpr in inhibition of NK cell function,  but 

interestingly even Virus Like Particles lacking Vpr, do have a role in upregulation of NK cell 

activating receptor ligands and can inhibit NK cell function, in long time cultures, suggesting a 

role for viral proteins, Gag and Envelope. Alternatively there can be other cellular factors 

involved in NK cell dysregulation. It is very tempting to predict and evaluate the role of heat 

shock proteins in triggering of NK cell receptor ligands. Heat shock proteins are reported to 

induce NK cell activating receptor in exposed cells, and analysis of MIC A/B promoter confirms 

the presence of heat shock elements in the promoter of the genes. Also reports suggest that Heat 

shock proteins can interact with Gag and incorporate into virus particles. Understanding the 

factors involved in HIV-1 mediated inhibition of NK cell functions and identifying the cellular 

players involved will help us develop novel immunotherapeutics favoring cells of the innate 

immune response, 

Studies involving infected T cell – DC shows that virus is transferred from T cells to DC. 

Though we have proposed a model where the virus is transferred from interacting T cell to DC, 
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more detailed studies are necessary to clearly delineate the pathways involved in the 

dissemination of virus from T cell to DC. Another interesting observation in these experiments 

was that, a good number of DC uptake antigen from the interacting cell, relatively fewer 

numbers of DC are productivey infected, suggesting the presence of restriction factors in DC. 

Identifying the restriction factors will be critical for these expeiments. Our model also predicts a 

role for single and double circle LTR in transmission of vius from T cell to DC and additional 

experiments are required to ascertain the role of LTR circles and associated resistance to current 

anti-retroviral therapeutics. 

This dissertation mainly focuses on role of Vpr and Vpr dysregulated T cell on other 

immune cells following their interaction with T cell. But more studies have to be conducted to 

understand the role of HIV-1 Vpr in the NK cell-DC cross talk and viceversa. Such a study will 

help us to identify the cellular factors involved during the cross talk essential to link the innate 

and adaptive immune responses to the invading organism.  

Finally studies aimed at understanding the role of structure-function of Vpr suggest that 

oligomeriation of Vpr is essential for multiple activities of HIV-1 Vpr. Targeting the 

oligomerization property of HIV-1 Vpr seems promising in development of therapeutics 

disrupting Vpr function. The BiFC assay used in these experiments can be easily adapted to 

screen huge compound libraries in a high throughput format. Similar assays can be developed for 

other viral proteins, which are known to interact with other partners or with themselves to form 

oligomers. Results from Vpr allele MA provide insight in to the effects of viral proteins which 

form higher order of oligomers. Vpr-MA allele can sequester the interacting gag protein in the 

aggregates. As an extension of this phenomenon observed in Vpr mutant MA, therapeutics can 

be developed which either crosslinking or cause misfolding of viral proteins and induce them to 
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form aggregates. Thus these compounds not only affect the normal function of the target viral 

protein but also interfere with the normal functioning of other proteins which are known to 

interact with the target proteins., Such an approach will be detrimental to the virus infected cells. 

Specificity for the compounds to affect the target viral protein with minimal and/or no toxic 

effect on cells can be evaluated by Live Cell Based High Throughput Assay.  
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