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Efforts towards the synthesis of natural product tetrafibricin and its stereoisomers are 

described. Retrosynthesis of the framework of tetrafibricin gives 6 fragments, C1-C8, C9-C13, 

C14-C20, C21-C30, C31-C34 and C35-C40. Chapter 2 describes the fluorous mixture synthesis 

of four stereoisomers of the C21–C40 fragment with the aid of fluorous tagging to encode 

configurations at C37 and C33. After demixing and detagging, the isomers were found to have 

substantially identical 1H NMR spectra. However, there were some small but reliable differences 

in their 13C NMR spectra. 

 Chapter 3 describes efforts towards total synthesis of tetrafibricin. After making the 6 

fragments, different sequences of fragment coupling by a series of Julia-Kocienski reactions 

were attempted. First the alkylation of dithiane C9-C13 with iodide C14-C20 provided C9-C20 

carbon skeleton. Then the first Julia-Kocienski olefination with sulfone C21-C30 and aldehyde 

C9-C20 gave olefin C9-C30, which was then advanced to aldehyde to attempt another Julia-

Kocienski olefination. Fragment C31-C40 was also achieved by Julia-Kocienski olefination of 

sulfone C35-C40 with aldehyde C31-C34. Then the two big parts, aldehyde C9-C30 and sulfone 

C31-C40, were coupled together to afford fragment C9-C40 by Julia-Kocienski olefination. 

Finally, Horner-Wadsworth-Emmons olefination of phosphonate C1-C8 with aldehyde C9-C40 

provided C1-C40 to achieve the whole carbon framework of tetrafibricin. 

Fluorous mixture synthesis of four stereoisomers of the C21-C40 fragment of 

tetrafibricin and efforts towards total synthesis of tetrafibricin 

Kai Zhang, Ph.D. 

University of Pittsburgh, 2011
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Chapter 1. Introduction to tetrafibricin and fluorous mixture synthesis 

 

1.1 Tetrafibricin 

 

Platelet aggregation plays a key role during normal haemostasis and thrombosis.1 When 

stimulated by an agonist such as ADP, collagen or thrombin, the fibrinogen receptors (GPIIb/IIIa) 

on the platelet surface acquire the high–affinity fibrinogen binding function. Platelets then 

adhere to the disrupted subenddothethial surface at the sites of vascular lesion. The adherent 

platelets subsequently release biologically active constituents and aggregate. Interaction of 

fibrinogen with the GPIIb/IIIa receptor site is essential for normal platelet function. Thus, 

fibrinogen receptor antagonism is a good mechanism for a platelet aggregation inhibitor.  

In recent years, many types of fibrinogen receptor antagonists have been reported.2 Most are 

peptide mimetics of RGDS (Arg-Gly-Asp-Ser), which is the minimal sequence in fibrinogen that 

is considered necessary to recognize fibrinogen receptors during aggregation. The disadvantages 

of the peptide mimetic are the reduced affinity to the receptor and much shorter half-life in vivo. 

Therefore, the search for non-peptide platelet aggregation inhibitors of microbial origin is 

important. 

Tetrafibricin is a novel nonpeptidic fibrinogen receptor inhibitor isolated from the culture 

broth of Streptomyces neyagawaensis NR0577.3 Tetrafibricin competitively inhibited (Ki = 9.9 

nM) the binding of biotinylated fibrinogen to purified active glycoprotein GPIIb/IIIa 

immobilized on plastic plates. Tetrafibricin strongly inhibited the binding of fibrinogen to its 

receptors with an IC50 of 46 nM. It also inhibited ADP-, collagen-, and thrombin-induced 
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aggregation of human platelets with IC50’s of 5.6, 11.0 and 7.6 μM, respectively. The ability of 

tetrafibricin to block fibrinogen from binding to its glycoprotein receptor makes it a candidate for 

the potential therapeutic intervention of arterial thrombotic diseases such as coronary occlusion.4 

The Kamiyama group elucidated the structure of tetrafibricin by carrying out various NMR, 

MS and other experiments.5 The molecular formula was determined as C41H67NO13 from 

HRFAB-MS (Calcd: 782.4691, Found: m/z 782.4676 (M + H)+). Positive color reactions to 

ninhydrin and 2,4-dinitrophenylhydrazine suggested the presence of primary amino and carbonyl 

groups, respectively. The IR spectrum of tetrafibricin suggested the presence of carboxyl and/or 

carbonyl groups (3000-2500, 1710 cm −1) along with hydroxyl and/or amino groups (3400, 1100-

1000 cm−1). UV data indicated the presence of a conjugated tetraenoic acid chromophore. Due to 

the instability of tetrafibricin in DMSO-d6, a D2O solution of tetrafibricin purged with argon was 

used for the NMR experiments.  A combination of the 1H NMR, 13C NMR, 1H-1H COSY, HSQC 

and HMBC experiments were used to deduce partial structures. Additional NMR experiments on 

a solution of N-acetyldihydrotetrafibricin methyl ester in DMSO-d6 were carried out to establish 

the complete connectivity of the partial structures. The 2D-dimension structure of tetrafibricin as 

proposed by the Kamiyama group is shown in Figure 1.1.  
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Figure 1.1 Kamiyama’s 2D Structure of tetrafibricin 
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Kishi and co-workers developed the concept and logic for a universal NMR database approach 

to assign the relative and absolute configuration of an unknown compound without degradation 

or derivatization.6 They have demonstrated the feasibility, reliability, and applicability of this 

approach in the stereochemical assignment of the desertomycin/oasomycin class of natural 

products, as well as the mycolactones.7 In 2003, the Kishi group reported the elucidation of the 

complete stereochemistry of tetrafibricin by using the NMR databases in achiral and chiral 

solvents without degradation of the carbon framework (Figure 1.2).8 

 

Figure 1.2 Kishi’s 3D structure of tetrafibricin 
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The interesting biological properties and unique structure containing primary amine, 

conjugated tetraenoic acid, and 1,3- and 1,5-diols render tetrafibricin an excellent target for a 

synthetic study. The development of an efficient, convergent synthesis of tetrafibricin will allow 

the synthesis of its multiple stereoisomers and facilitate structure-activity relationship studies 

designed to probe its biological properties. 

To our knowledge, there is no total synthesis of tetrafibricin. Only three papers have been 

published towards the total synthesis of tetrafibricin. Cossy’s group synthesized the C1-C13, 

C15-C25, C27-C40 fragments of tetrafibricin by a sequence of chemoselective cross-metathesis 

reactions and enantioselective allyltitanations of aldehydes.9 Roush’s group reported the 

synthesis of the C1-C19 fragment of tetrafibricin via a highly diastereoselective double 

allylboration developed in their laboratory.10 Very recently, Friestad’s group synthesized the 

C27-C40 fragment of tetrafibricin by asymmetric catalysis to install the oxygen-bearing 

stereogenic centers to afford 1,5-polyols.11 

 

1.2 Previous work on tetrafibricin in Curran group 

 

The former Curran group member Dr. Venugopal Gudipati made significant progress towards 

traditional synthesis of tetrafibricin.12 The retrosynthetic analysis of tetrafibricin is outlined in 

Scheme 1.1. It was envisioned that a series of Julia-Kocienski olefination reactions would couple 

fragments 2, 3, 4, 5 together to form bonds C20-C21, C30-31 and C34-C35. Bond C13-C14 can 

be formed by alkylation of anion of dithiane with iodide between fragments C14-C20 and C9-
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C13. The C8-C9 bond can be connected through Horner-Wadsworth-Emmons (HWE) 

olefination between fragments 6 and 7.  

 

Scheme 1.1 Retrosynthesis of tetrafibricin 
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Dr. Gudipati successfully synthesized all six fragments 2-7. The synthesis of the bottom 

fragment C21-C40 13 of tetrafibricin from 2, 3 and 4 is shown in Scheme 1.2. With fragments 2 

and 3 in hand, Julia-Kocienski olefination was accomplished to give alkene 8 in a 9:1 E/Z 

isomeric mixture in 95% yield.13 Pure (E)-isomer was obtained by preparative chiral HPLC. The 
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smooth conversion of sulfide to sulfone 9 was accomplished with Mo-catalyst 

(Mo7O24(NH4)6•H2O, H2O2) in 92% yield.14 Another Julia-Kocienski olefination reaction 

between the sulfone 9 and aldehyde 4 provided the PMB-ether as a sole C(30,31) (E)-olefinic 

isomer 10 in 94% yield. Removal of PMB protecting group (DDQ, pH 7 buffer, CH2Cl2) gave 

the primary alcohol 11 in 88% yield.15 Incorporation of the thiotetrazole via the Mitsunobu 

reaction,16 employing commercially available 1-phenyl-1H-tetrazole-5-thiol, followed by 

oxidation (Mo7O24(NH4)6•H2O, H2O2) of the derived sulfide furnished sulfone 13 (C21-C40) 

with 65% yield in two steps. 
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Scheme 1.2 Synthesis of the C21-C40 fragment 
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The synthesis of the top fragment C1-C20 19 from 5, 6 and 7 is shown in Scheme 1.3. 

Deprotonation of dithiane 6 with t-BuLi followed by addition of iodide 5 to the reaction mixture 

provided the target alkene 14 in 54% yield. Hydroboration/oxidation of alkene provided the 

primary alcohol 15 in 68% yield. Oxidation of the primary alcohol with SO3•pyr provided 

aldehyde 16 in 88% yield. The olefination step was then carried out by deprotonation of 

phosphonate 7 with LiHMDS followed by adding aldehyde 16 to afford the conjugated methyl 

ester 17 in 57% yield. The primary TBS-ether was cleaved with HF•pyr to provide the primary 

alcohol 18 in modest yield (45%). Oxidation of alcohol to aldehyde 19 (C1-C20) was then 

carried out with SO3•pyr (85% yield).  

 

Scheme 1.3 Synthesis of the C1-C20 fragment 
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The final coupling between 13 (C1-C20) and 19 (C21-C40) was attempted by deprotonating 

the sulfone with KHMDS at −78 oC, followed by addition of aldehyde. Unfortunately, coupled 

product 20 was not observed (Scheme 1.4). 

 

Scheme 1.4 Final coupling of fragments C1-C20 and C21-C40 
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1.3 Fluorous mixture synthesis (FMS) 

 

Fluorous mixture synthesis (FMS), reported by the Curran group in 2001, was the first 

example of solution-phase mixture synthesis with separation tags.17 In FMS, a series of organic 

substrates is tagged with a series of fluorous tags of increasing fluorine content. Fluorous tags are 

usually perfluoroalkyl modified versions of traditional protecting groups. A typical FMS consists 

of the following steps (Scheme 1.5): 1) Premix: a set of substrates individually are attached to a 

corresponding set of homologous fluorous tags with increasing fluorine content; 2) Mixture 
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synthesis: the fluorous-tagged substrates are mixed in one pot and the mixture is conducted 

through a multi-step synthesis in one-pot or in split-parallel fashion; 3) Demix: the mixture of 

fluorous tagged products are demixed based on the fluorine content by preparative fluorous 

HPLC; 4) Detag: the fluorous groups are removed to form the final products. 

 

Scheme 1.5 Schematic diagram of FMS 
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 S = substrate, F = fluorous tag, M = mixture, P = product 

 

During the past few years, many natural products and their analogs have been made by FMS 

(Scheme 1.6). If there is only one stereocenter in the target molecule, then the two enantiomeric 

precursors are tagged with two fluorous different tags to make the quasienantiomers. Then the 

quasienantiomers are mixed to make a quasiracemate that is conducted through the synthesis. 

After the steps of demixing and detagging, the two target enantiomers are obtained as pure 

compounds. The syntheses of mappicine and pyridovericin highlight this application.18 

When there is more than one stereocenter in the molecule, different tagging strategies are used 

for FMS. Initially, one tag was used for each isomer. For example, four different fluorous tags 

were used in the FMS of four isomers of (–)-dictyostatin.19 However, more stereoisomers can be 

synthesized through FMS by designing a strategy of tagging and mixing. Later on, multiple tags 
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were applied for each isomer. For instance, double tags were used for each isomer in the FMS of 

lagunapyrone B.20 Only three different fluorous tags were used in the synthesis of four isomers.  

From FMS studies, we can learn how similar or different the stereoisomers are by comparing 

the various physical and spectral data. This evidence can help assign the structures of those 

natural products and find out the best bioactivities among them. 

 

Scheme 1.6 Representative natural products and their stereoisomers synthesized by FMS 
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Chapter 2. Fluorous mixture synthesis of four stereoisomers of the C21-C40 fragment of 

tetrafibricin 

 

We were interested in making stereoisomers of tetrafibricin to learn whether the diastereomers 

had identical spectra or not. Towards the end, we first plan to synthesize four stereoisomers of a 

large bottom fragment C21-C40 of tetrafibricin by using the technique of fluorous mixture 

synthesis. 

 

2.1 Plan of FMS of four stereoisomers of the C21-C40 fragment of tetrafibricin 

 

In order to synthesize four isomers of the bottom fragment C21-C40 of tetrafibricin, we plan 

to make the quasiracemic mixtures fragments M-2 and M-3 with configurations encoded by 

fluorous tags in the protecting groups (PG) and keep fragment 4 as the single stereoisomer. We 

choose the stereocenters in fragments M-2 and M-3 because stereocenters are not close to other 

stereocenters and the reaction selectivity is easy to control. Scheme 2.1 shows our FMS plan. 

First, we plan to make (R)-21a by attaching a fluorous tag containing 9 fluorines (TIPSF9 = 

Si(i-Pr)2C2H4C4F9) to the (R)-alcohol and make (S)-21b by attaching a fluorous tag containing 7 

fluorines (TIPSF7 = Si(i-Pr)2C2H4C3F7) to the (S)-alcohol. After mixing and several steps of 

mixture synthesis, we can obtain fragment M-2 as a quasienantiomer mixture (“quasi” means the 

compounds have different fluorous tags and are not true isomers). By using the same method, we 

can achieve fragment M-3 as another quasienantiomer mixture. Then coupling fragments M-2 

and M-3 together will provide us a combination of four quasiisomers with different fluorine 
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numbers. After steps of mixture synthesis and demixing, we can obtain four single quasiisomers 

23. Finally, after detagging, four single diastereomers of the C21-C40 fragment of tetrafibricin 

will be achieved in the end. 
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Scheme 2.1 Plan of FMS of four stereoisomers of the C21-C40 fragment of tetrafibricin 
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2.2 Fragment syntheses 

 

2.2.1 Synthesis of the C21-C30 fragment 4 

 

The synthesis of C21-C30 fragment 4 was accomplished by following the procedures from Dr. 

Gudipati’s thesis.12 The key step of retrosynthesis of fragment 4 is the coupling reaction between 

dithiane (S,S)-25 and epoxide (R)-26 (Scheme 2.2).  

 

Scheme 2.2 Retrosynthesis of fragment 4 

 

O
O O O O

OPMB

4

TBSO
O O

S

S

(S,S)-25

OPMB
O+

(R)-26

TBS TBS TBS TBS TBSTBS

 

 

The synthesis of dithiane (S,S)-25 started with commercially available alcohol (S)-27 (Scheme 

2.3). Oxidation by using the Parikh-Doering protocol gave the corresponding aldehyde (S)-28 in 

86% yield.21 Wittig olefination with CH3PPh3Br and t-BuLi in THF gave alkene (S)-29 in 83% 

yield.22 Alkene (S)-29 was oxidized to a 1:1 mixture of epoxide (S,S)-30 and (S,R)-30 by using 

m-CPBA in 98% yield. Then the epoxide mixture was subjected to kinetic resolution conditions 

with (S,S)-Jacobsen catalyst to afford diastereomerically pure epoxide (S,S)-30 in 45% yield.23 
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Scheme 2.3 Synthesis of epoxide (S,S)-30 
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The three-step conversion of epoxide (S,S)-30 to tris-silyl ether (S,S)-25 is shown in Scheme 

2.4. Lithiation of 1,3-dithiane with t-BuLi followed by addition of epoxide (S,S)-30 gave alcohol 

(S,S)-31 in 83% yield. The alcohol (S,S)-31 was subjected to catalytic HCl conditions (generated 

from AcCl in methanol) to provide triol (S,S)-32, which was then reacted with TBSOTf and 2,6-

lutidine to form (S,S)-25 in 88% yield. 
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Scheme 2.4 Synthesis of dithiane (S,S)-25 
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Epoxide (R)-26 was synthesized in three steps (Scheme 2.5). Deprotonation of commercially 

available alcohol (R)-27 with NaH followed by addition of PMBCl gave the PMB-ether (R)-33 in 

84% yield.24 Removal of 1,2-diol protecting group under catalytic HCl conditions (generated 

from AcCl in methanol) gave the diol (R)-34 in 87% yield. The 1,2-diol (R)-34 was converted to 

epoxide (R)-26 in 94% yield by subjecting it to Mitsunobu reaction conditions with DIAD and 

PPh3 in refluxing toluene.16 
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Scheme 2.5 Synthesis of epoxide (R)-26 
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The coupling of dithiane (S,S)-25 and epoxide (R)-26 and onward reactions to give fragment 4 

are shown in Scheme 2.6. Dithiane (S,S)-25 was lithiated with t-BuLi followed by addition of 

epoxide (R)-26 to effect the alkylation to afford the compound 35 in 90% yield.25 Hydrolysis of 

the dithiane 35 with mercuric perchlorate in presence of 2,6-lutidine in aqueous THF provided 

the desired β-hydroxyl ketone 36 in 84% yield.26 Hydroxyl-directed reduction with 

Me4NHB(OAc)3 gave the 1,3-anti diol 37, which was then silylated with TBSOTf to give the 

compound 38 in 73% yield.27 Monodesilylation with HF•pyr in pyridine gave the primary 

alcohol 39 in 49% yield. Oxidation of alcohol 39 with Dess-Martin reagent furnished aldehyde 4 

in 93% yield.28 The above conversion of alcohol to aldehyde was done immediately before the 

next step. Finally, fragment 4 (180 mg) was synthesized in 16 steps with an overall yield of 5.8%.  
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Scheme 2.6 Synthesis of the C21-C30 fragment 4 
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2.2.2 Synthesis of the C35-C40 fragment M-2 

 

The synthesis of fragment M-2 commenced from commercially available pent-4-en-1-ol 40 as 

shown in Scheme 2.7. Alcohol 40 was protected by reacting it with TBSCl and imidazole in 

dichloromethane to afford TBS ether 41. Epoxidation of the alkene 41 with m-CPBA in 

dichloromethane at 0 oC for 1 h gave the epoxide (rac)-42. 
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Scheme 2.7 Synthesis of epoxide (rac)-42 

 

HO TBSO TBSO
O

40 41, 100% (rac)-42, 88%

TBSCl, Imidazole m-CPBA, CH2Cl2

 

 

In order to make the quasiracemic fragment M-2, we divided the (rac)-42 into two portions 

(Scheme 2.8). The first portion was subjected to kinetic resolution with (R,R)-Jacobsen catalyst 

to afford epoxide (R)-42 in 45% yield.23 Then the epoxide (R)-42 was treated with lithio-1,3-

dithane to give the secondary alcohol (R)-43 in 70% yield. The second portion of (rac)-42 was 

subjected to kinetic resolution with (S,S)-Jacobsen catalyst to afford (S)-42 in 47% yield 

followed by the reaction with lithio-1,3-dithane to give the alcohol (S)-43 in 60% yield.23 
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Scheme 2.8 Synthesis of alcohols (R)-43 and (S)-43 
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The two enantiomeric alcohols (R)-43 and (S)-43 were tagged with different commercially 

available fluorous tags 44a and 44b (Scheme 2.9). Fluorous silane 44a was treated with 

trifluoromethansulfonic acid at 0 oC to generate F9TIPSOTf (FTIPS = Si(i-Pr)2(CH2)2Rf, where 

Rf is perfluoroalkyl) in situ.29 This was then reacted with alcohol (R)-43 to afford F9TIPS ether 

(R)-21a in 88% yield. Similarly, alcohol (S)-43 was protected with F7TIPSOTf derived from 

fluorous silane 44b to afford (S)-21b in 90% yield. 

 

Scheme 2.9 Synthesis of ethers (R)-21a and (S)-21b 
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(S)-21b, Rf = C3F7, 90% (not shown)

S
S

Si(i-Pr)2C2H4Rf
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The two fluorous-tagged quasienantiomers (R)-21a and (S)-21b were mixed with 1:1 molar 

ratio to generate the fluorous mixture M-21. Then the efforts were focused on hydrolysis of the 

dithiane to an aldehyde. The reaction failed by using CH3I, K2CO3 in ACN-H2O (6:1) at 45 oC, 

which only gave the recovered starting material after 5 h.30 When the reaction mixture was 

heated up to 65 oC for 6 h, we obtained a complex TLC and no desired product was observed by 

mass spectra analysis.  

Then we carried out this reaction by using Hg(ClO4)2, 2,6-lutidine in THF-H2O under several 

different conditions (Table 2.1). A first reaction at 0 oC for 1 h gave only starting material (Entry 

1). A similar reaction conducted at room temperature for 36 h gave 14% product and 70% 

recovered starting material (Entry 2). By further increasing the reaction temperature to 45 oC, 

finally we obtained the desired aldehyde M-45 in 90% yield (Entry 3). 
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Table 2.1 Synthesis of aldehyde M-45 

 

TBSO
OTIPSF7,9

O
TBSO

OTIPSF7,9
conditions

M-21 M-45

S
S

 

 

Entry Conditions Results 

1 Hg(ClO4)2•3H2O, 2,6-lutidine, THF/H2O 1 h 0 oC s.m. 

2 Hg(ClO4)2•3H2O, 2,6-lutidine, THF/H2O 36 h r.t. 14% product 

+ 70% s.m. 

3 Hg(ClO4)2•3H2O, 2,6-lutidine, THF/H2O 3 h 45 oC 90% 

 

M-45 is the first quasiracemate product, so this is an appropriate point to briefly summarize 

the analysis of quasienantiomers mixture by TLC, 1H-NMR, 13C-NMR and 19F-NMR. The above 

quasienantiomers have the same Rf value on TLC plate and can be purified by column 

chromatography without separation. In 1H-NMR spectra, the proton resonances from the 

quasienantiomers have the identical chemical shifts. For 13C-NMR spectra, all the carbon peaks 

have the same chemical shifts except those on the perfluoroalkyl chains, which are split by 

fluorines and very small in the standard spectra. For 19F-NMR spectra, by comparison of spectra 

between the quasienantiomers mixture and the single enantiomers, we can find all the peaks of 

both quasienantiomers in the spectra of the mixture. 

The conversion from the aldehyde M-45 to the sulfone M-2 was achieved in 3 steps (Scheme 

2.10). Reduction of aldehyde M-45 with DIBAL-H gave the corresponding alcohol M-46 in 73% 
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yield. This was then converted to alkylthiophenyltetrazole M-47 in 92% yield by a Mitsunobu 

reaction.16 Oxidation of sulfide M-47 to the corresponding sulfone M-2 was effected with m-

CPBA (2.2 equiv, 80% yield). Overall, fragment M-2 (750 mg) was synthesized in 9 steps with 

overall yield 12.6%. 

 

Scheme 2.10 Synthesis of the C35-C40 fragment M-2 
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2.2.3 Synthesis of the C31-C34 fragment M-3 

 

The synthesis of quasiracemic fragment M-3 began with two commercially available 

enantiomeric alcohols (S)-27 and (R)-27 (Scheme 2.11). Mitsunobu reactions as above converted 

the alcohols to the corresponding sulfides (S)-48 and (R)-48 in 79% and 86% yields.16 Removal 

of acetonide protecting group under catalytic acidic conditions gave the two enantiomeric diols 

(S)-49 and (R)-49 each in 93% yield.  
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Scheme 2.11 Synthesis of diols (S)-49 and (R)-49 
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The primary alcohols of 49 were reacted with TBSCl to give ethers (S)-50 and (R)-50 in 83% 

and 81% over 2 steps, respectively (Scheme 2.12). The two enantiomeric alcohols (S)-50 and 

(R)-50 were tagged with different fluorous tagging reagents 44c and 44a. The perfluorocarbon 

units in the two fluorous tags are C6F13 for (S)-50 and C4F9 for (R)-50. 

 

Scheme 2.12 Synthesis of ethers (S)-22c and (R)-22b 
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The two fluorous-tagged quasienantiomers (S)-22c and (R)-22a were mixed in a 1:1 molar 

ratio to generate the fluorous mixture M-22. The various conditions that were tried for the 

selective deprotection of primary TBS protecting group are summarized in Table 2.2. Using 

HF•pyr in pyridine removed both the TBS group and TIPS fluorous group to give the 

corresponding diol M-52 (Entry 1 and 2). The target transformation was achieved by using 0.1 

equiv of acetyl chloride in methanol at −20 oC in 3 h to give the primary alcohol M-51 in 60% 

yield (Entry 4). Oxidation of alcohol M-51 to aldehyde M-3 with Dess-Martin reagent gave 

fragment M-3 in 81% yield. Overall, fragment M-3 (420 mg) was synthesized in 6 steps with 

overall yield 34.7%. 
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Table 2.2 Synthesis of the C31-C34 fragment M-3 

 

HO
OTIPSF9,13

S N
N

NN

Ph

TBSO
OTIPSF9,13

S N
N

NN

Ph

Contidions

M-22 M-51

HO
OH

S N
N

NN

Ph

+

M-52  

 

Entry Reagents Conditions Results 

1 HF•pyr 0 oC 1 h and then r.t. 5 h M-52 only 

2 HF•pyr −20 oC 2 h and then r.t. 4 h  M-52 only 

3 CH3COCl −10 oC, 2 h  M-52 only 

4 CH3COCl −20 oC, 3 h  60% M-36 and 25% M-52 

 

O
OTIPSF9,13

S N
N

NN

Ph

HO
OTIPSF9,13

S N
N

NN

Ph
M-51 M-3

(R)-3a, TIPSF9

(S)-3c, TIPSF13

81%

Dess-Martin periodinane
CH2Cl2

 

 

2.3 Coupling of fragments M-2 and M-3 by Julia-Kocienski reaction 

 

Different conditions were explored to accomplish the Julia-Kocienski reaction between 

fragment M-2 and M-3 (Table 2.3).13 First, the sulfone M-2 was reacted with KHMDS solution 

in toluene as the base in THF at –78 oC for 30 min followed by the addition of aldehyde M-3. 
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This reaction gave the olefin M-53 as a mixture of (E)- and (Z)-isomers with 7:3 ratio in 85% 

combined yield (Entry 1). The E/Z ratio was determined by analytical chiral HPLC analysis with 

(S,S) Whelk-O column using 95:5 hexanes/isopropanol. The E/Z isomers are not separable on 

regular flash chromatography but can be separated by preparative HPLC on (S,S) Whelk-O 

column without demixing any of the quasiisomers. The identity of (E)-isomer was evident from 

15.0 Hz coupling constant (JH-H) of alkene protons. Then, by using DME as the reaction solvent 

we obtained the alkene M-53 with E/Z ratio over 9:1 in 80% combined yield (Entry 2).31  

 

Table 2.3 Coupling of fragments M-2 and M-3 

 

TBSO
S
O2

N
N

NN

Ph

OTIPSF7,9

O
S N

N
NN

Ph

OTIPSF9,13

TBSO
OTIPSF7,9 OTIPSF9,13

S N
N

NN

Ph

+

M-2 M-3 M-53
(R)-2a, TIPSF9

(S)-2b, TIPSF7
(R)-3a, TIPSF9

(S)-3c, TIPSF13
Fluorine content

T1 T2 Total F#
(33R,37S)-53a,b, 9 7 16
(33R,37R)-53a,a, 9 9 18
(33S,37S)-53b,c, 7 13 20
(33S,37R)-53a,c, 9 13 22  

 

Entry Base Solvent Combined yield M-53 E/Z ratio 

1 KHMDS in toluene THF 85% 7:3 

2 KHMDS in DME DME 80% > 9:1 

 

2.4 Synthesis of the C21-C40 fragment 

 

The synthesis of the bottom fragment M-23 C21-C40 is shown in Scheme 2.13. Oxidation of 

sulfide M-53 to sulfone M-54 with Mo-catalyst (Mo7O24(NH4)6•H2O, H2O2) occurred in 88% 
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yield.14 Another Julia-Kocienski olefination reaction between sulfone M-54 and aldehyde 4 again 

using KHMDS in DME provided M-23 with E/Z ratio over 9:1 in 77% combined yield. As 

before, the (E,E) stereoisomer M-23 was separated by preparative chiral HPLC ((S,S) Whelk-O 

column. 

 

Scheme 2.13 Synthesis of the C21-C40 fragment 
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2.5 Demixing and detagging of fluorous mixture M-23 

 

We were interested to learn whether we can separate the fluorous mixture to obtain the four 

individual pure compounds and how similar or different the stereoisomers are. So we decided to 

demix the fluorous mixture M-23 at this stage and subsequently to remove the protection groups 

in order to compare the spectra of the stereoisomers.  
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Demixing of M-23 by preparative fluorous HPLC occurred smoothly to provide 

quasidiastereomers (33R,37S)-23a,b, (33R,37R)-23a,a, (33S,37S)-23b,c, (33S,37R)-23a,c. A 

typical chromatography of a preparative injection (20 mg) is shown in Figure 2.1. Even though 

they differ by only two fluorines, the quasiisomers exhibited good separation and were present in 

roughly equal amounts. 
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Figure 2.1 Preparative HPLC trace of quasidiastereomers 23(a) 

 

 

(a) FluoroFlash Column, 100% MeOH, 10 mL/min, 20 mg M-23 in 1 mL MeOH/injection 
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4th peak, 35.83 min, 22F, (33S,37R)-23a,c
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With the four quasidiastereomers in hand, efforts were focused on the global deprotection. 

First, we tried the most common conditions to remove the silyl groups M-23 by using TBAF. 

However, we observed a multi-spot TLC and no desired product was detected by mass spectral 

analysis.  

Because the samples of M-23 are very valuable, we decided to try model reactions to find the 

best deprotection conditions. Left fragment M-53 was deprotected under the conditions shown in 

Table 2.4. First, we tried the acidic conditions by using HCl in MeOH and obtained 70% yield 

desired product triol M-55. The conversion was also achieved by using TMSCl in MeOH in 78% 

yield and TASF in DMF in 75%.20 However, when M-53 was treated with HF•pyr, the product 

exhibited a complex TLC and no desired product was detected by mass spectral analysis. 

 

Table 2.4 Model deprotection reactions of M-53 

 

TBSO
OTIPSF7,9 OTIPSF9,13

S N
N

NN
Ph

HO
OH OH

S N
N

NN
Ph

M-53

Conditions

M-55  

Entry Conditions Isolated yield of M-55 

1 HCl 70% 

2 TMSCl 78% 

3 HF•pyr Complex TLC 

4 TASF 75% 
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With these results in hand, we applied the successful model conditions to M-23 (Scheme 2.14). 

However, using HCl in MeOH resulted in a complex TLC. When M-23 was treated with TMSCl 

in MeOH, no desired product was detected by mass spectral analysis. Then we carried out the 

reaction with TASF in DMF. Unfortunately, there was no desired product by 1H-NMR analysis 

either.  

 

Scheme 2.14 Deprotection of compound M-23 
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Since several conditions worked on M-53 but not M-23, this suggests that the right part of 

compound M-23 is a problem. So we next tried the deprotection of the right part of M-23 as a 

complementary model reaction (Scheme 2.15). Together, the two models should predict the 

behavior of M-23. Compound 38 was treated with TASF in DMF overnight. Before quenching 

the reaction by adding water, we observed a new spot which overlapped with TASF on TLC. 

However, after concentrating the organic extracts, the new spot was gone from the TLC analysis 

and no desired product was detected by mass spectra and 1H-NMR spectroscopy. Perhaps we had 

obtained the penta-ol 56, but because of the high polarity of 56 it extracted to the water? To test 

this idea, we repeated the reaction, but instead of adding water, we removed DMF by using 
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speed-vacuum overnight. After purification of the concentrate by flash column chromatography, 

we obtained penta-ol 56 in 80% yield. 

 

Scheme 2.15 Model deprotection reaction of 38 
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Finally, we applied the successful model conditions with non-aqueous workup to compounds 

23 (Scheme 2.16) and obtained the four diastereomers 24 in about 75% yield, respectively.20 
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Scheme 2.16 Deprotection of compound 23 
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The 700 MHz 1H NMR spectra of the four stereoisomers of 24 were substantially identical 

(See experimental information).32 However, the 175 MHz 13C-NMR spectra are very similar but 

not identical. The 13C-NMR data of the four stereoisomers are summarized in Table 2.5. By 

comparison of the chemical shift of alkene carbon 35, we can tell the 33,37-anti isomers (R,R 

and S,S) from the syn isomers (R,S and S,R). The chemical shift was below 128.90 ppm for the 

anti isomers and above 128.90 ppm for the syn isomers. Chemical shift differences for C35 of 

the syn/anti isomers range from 0.12–0.23 ppm. Furthermore, by comparing the chemical shifts 

of C35 (again) and C31, we can differentiate the pairs of C33/C37 syn and anti isomers from 

each other (R,R from S,S and R,S from S,R).  The chemical shift differences are less, 0.04–0.07 

ppm, but the confidence level is increased since there are two values to compare. 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

 

Table 2.5 13C-NMR data of four stereoisomers 24 

  
(33R,37S)-

24 

(33R,37R)-

24 

(33S,37S)-

24 

(33S,37R)-

24 

δ(RR 

– RS)

δ(SS 

– RS)

δ(SR 

– RS)

δ(SS 

– RR) 

δ(SR 

– RR)

δ(SR 

– SS)

 160.82 160.81 160.82 160.81 -0.01 0 -0.01 0.01 0 -0.01 

C30 137.25 137.23 137.20 137.22 -0.02 -0.05 -0.03 -0.03 -0.01 0.02 

C34 136.18 136.19 136.19 136.16 0.01 0.01 -0.02 0 -0.03 -0.03 

 131.70 131.69 131.70 131.69 -0.01 0 -0.01 0.01 0 -0.01 

 130.54 130.54 130.54 130.54 0 0 0 0 0 0 

C35 128.96 128.80 128.84 129.03 -0.16 -0.12 0.07 0.04 0.23 0.19 

C31 127.61 127.64 127.69 127.66 0.03 0.08 0.05 0.05 0.02 -0.03 

 114.72 114.71 114.73 114.72 -0.01 0.01 0 0.02 0.01 -0.01 

 73.73 73.73 73.73 73.73 0 0 0 0 0 0 

C33 73.34 73.32 73.36 73.37 -0.02 0.02 0.03 0.04 0.05 0.01 

C37 72.16 72.10 72.12 72.15 -0.06 -0.04 -0.01 0.02 0.05 0.03 

C29 70.32 70.33 70.34 70.33 0.01 0.02 0.01 0.01 0 -0.01 

C21 68.27 68.27 68.28 68.27 0 0.01 0 0.01 0 -0.01 

C23 66.90 66.89 66.93 66.90 -0.01 0.03 0 0.04 0.01 -0.03 

C27 66.25 66.24 66.26 66.24 -0.01 0.01 -0.01 0.02 0 -0.02 

C25 66.20 66.20 66.22 66.19 0 0.02 -0.01 0.02 -0.01 -0.03 

C40 63.03 63.03 63.03 63.03 0 0 0 0 0 0 

 55.66 55.65 55.67 55.66 -0.01 0.01 0 0.02 0.01 -0.01 

C26 46.64 46.64 46.62 46.64 0 -0.02 0 -0.02 0 0.02 

C24 46.35 46.35 46.35 46.36 0 0 0.01 0 0.01 0.01 

C28 46.22 46.21 46.16 46.18 -0.01 -0.06 -0.04 -0.05 -0.03 0.02 

C32 41.44 41.43 41.45 41.44 -0.01 0.01 0 0.02 0.01 -0.01 

C36 41.41 41.36 41.36 41.41 -0.05 -0.05 0 0 0.05 0.05 

C22 38.86 38.86 38.86 38.86 0 0 0 0 0 0 

C38 34.17 34.13 34.12 34.18 -0.04 -0.05 0.01 -0.01 0.05 0.06 

C39 29.86 29.89 29.90 29.86 0.03 0.04 0 0.01 -0.03 -0.04 
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2.6 Conclusions 

 

We successfully synthesized four stereoisomers of bottom fragment C21-C40 of tetrafibricin 

through FMS and demixed them by fluorous HPLC and analyzed each isomer by 1H-NMR and 

13C-NMR. Although the stereoclusters are separated from each other by only three carbon atoms, 

the 1H NMR spectra of the isomers are substantially identical. The 13C NMR spectra are very 

similar, but not completely identical. We have learned from comparison of the spectra which 

resonances are diagnostic for differentiating the isomers. 
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Chapter 3. Efforts towards total synthesis of tetrafibricin 

 

3.1 Fragment syntheses of tetrafibricin 

 

To continue our efforts towards total synthesis of tetrafibricin, large amounts of fragments of 

tetrafibricin were synthesized following the procedure in Dr. Gudipati’s thesis.12 

 

3.1.1 Synthesis of the C35-C40 fragment 2 

 

Alcohol 40 was protected by reacting it with TBSCl in presence of imidazole in 

dichloromethane to afford TBS ether 41 in quantitative yield (Scheme 3.1). Epoxidation of the 

alkene 41 with m-CPBA in dichloromethane at 0 oC for 1 h gave the epoxide (rac)-42 in 88% 

yield. The racemic epoxide 42 was subjected to kinetic resolution with (R,R)-Jacobsen catalyst to 

afford the single isomer epoxide (R)-42 in 45% yield.23 

 

Scheme 3.1 Synthesis of epoxide (R)-42 
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The conversion of (R)-25 to the C35-C40 fragment 2 is shown in Scheme 3.2. Epoxide (R)-42 

was reacted with lithiated 1,3-dithiane followed by trapping the resulting secondary alkoxide 

with TBS-triflate to afford alkyl dithiane 57 in 76% yield. Reaction of dithiane 57 with CH3I and 

K2CO3 in ACN-H2O (6:1) at 45 oC for 5 h provided the aldehyde 58 in 80% yield.33 Reduction of 

aldehyde 58 with DIBAL-H gave the corresponding alcohol 59 in 98% yield. The alcohol 59 was 

then converted to alkylthiophenyltetrazole in 99% yield by reacting it with 1-phenyl-1H-

tetrazole-5-thiol in presence of DIAD. Oxidation of sulfide 60 to the corresponding sulfone 61 

was carried out with m-CPBA in 88% yield. The primary TBS group in compound 61 was then 

selectively removed with HF•pyr in THF to give alcohol 62 in 76% yield. The primary alcohol 

106 was reacted with di-tert-butyl-iminodicarboxylate in presence of DIAD to provide sulfone 2 

in 74% yield.34 Fragment 2 was synthesized from 40 in 10 steps with an overall yield 11.6%. 
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Scheme 3.2 Synthesis of the C35-C40 fragment 2 
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3.1.2 Synthesis of the C31-C34 fragment 3 

 

Synthesis of the C31-C34 fragment 3 commenced with commercially available alcohol (S)-27 

as shown in Scheme 3.3. Incorporation of the thiotetrazole via the Mitsunobu protocol,16 

employing commercially available 1-phenyl-1H-tetrazole-5-thiol, furnished the corresponding 

sulfide (S)-48 in 79% yield. Removal of acetonide protecting group by using HCl in methanol 

(0.1 equiv AcCl in MeOH) gave diol (S)-49 in 93% yield. Bis-silylation of diol with TBS-triflate 
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gave sulfide 63 in 99% yield. Selective deprotection of the primary TBS group was 

accomplished with HF•pyr in 64% yield. Alcohol 64 was oxidized with Dess-Martin reagent to 

furnish aldehyde 3 in 86% yield.28 In summary, fragment 3 was synthesized in 5 steps with 

overall 34.0% yield. 

 

Scheme 3.3 Synthesis of the C31-C34 fragment 3 
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3.1.3 Synthesis of the C21-C30 fragment 4 

 

The synthesis of aldehyde 4 is described in Chapter 2. 
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3.1.4 Synthesis of the C14-C20 fragment 5 

 

Synthesis of the C14-C20 fragment 5 from commercially available alcohol (S)-27 is 

summarized in Schemes 3.5 to 3.7. Oxidation of alcohol (S)-27 to aldehyde (S)-28 was 

accomplished with SO3•pyr in 93% yield (Scheme 3.4). Reaction of aldehyde (S)-28 with 

propane-1,3-dithiol and BF3•OEt2 resulted in both conversion of aldehyde to a dithiane and 

cleavage of 1,2-diol protecting group to afford dithiane diol 65 in 78% yield.35 Silylation of the 

diol 65 (TBSOTf and 2,6-lutidine) proceeded smoothly to give bis-silyl ether 66 in 95% yield.  

 

Scheme 3.4 Synthesis of dithiane 66 
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The right part of fragment 5, PMB-epoxide (R)-68, was prepared by deprotonating the (S)-

glycidol 67 with NaH followed by the addition of PMBCl and Bu4NI (Scheme 3.5).24 

 

Scheme 3.5 Synthesis of (R)-68 
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The coupling of 66 and (R)-68 and subsequent steps to make 5 are shown in Scheme 3.6. 

Dithiane 66 was treated with t-BuLi at –78 oC followed by addition of PMB-epoxide 68 and 

workup to afford compound 69 in 77% yield (Scheme 3.7). Hydrolysis of dithiane 69 with 

mercury perchlorate [Hg(ClO4)2•3H2O] and 2,6-lutidine in aqueous THF gave the β-hydroxy 

ketone 70 in 85% yield.26 The β-hydroxy ketone 70 was subjected to diethylmethoxyborane 

mediated reduction with NaBH4 to afford the syn-diol 71 in 88% yield. The secondary hydroxyl 

groups in diol 71 were protected as TBS ethers by reaction with TBS-triflate and 2,6-lutidine to 

form compound 72 in 94% yield. The PMB-ether 72 was reacted with DDQ in CH2Cl2/pH 7 

buffer (19:1) to afford the alcohol 73 in 96% yield (Scheme 3.7).15 The alcohol 73 was then 

directly converted to iodide 5 in 89% yield by using iodine, triphenylphosphine and imidazole in 

dichloromethane.36 Overall, fragment 5 was synthesized in 9 steps with an overall yield 31.9%. 
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Scheme 3.6 Synthesis of the C14-C20 fragment 5 
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3.1.5 Synthesis of the C9-C13 fragment 6 

 

Synthesis of the C9-C13 fragment 6 is illustrated in Scheme 3.7. Asymmetric aldol reaction of 

freshly distilled acrolein with oxazolidinone 74 gave the aldol product 75 in 78% yield as a 

single isomer.37 The secondary alcohol of 75 was protected as TBS-ether 76 with TBSOTf and 

2,6-lutidine in 82% yield. Reduction of compound 76 with LiBH4 gave the corresponding 

alcohol 77 in 74% yield. The primary alcohol 77 was reacted with Dess-Martin reagent in 

dichloromethane to afford aldehyde 78 in 88% yield.28 Addition of propane-1,3-dithiol and 
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MgBr2•OEt2 to aldehyde 78 in THF furnished dithiane 6 in 89% yield.38 Fragment 6 was 

synthesized in 5 steps with overall yield 37.1%. 

 

Scheme 3.7 Synthesis of the C9-C13 fragment 6 
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3.1.6 Synthesis of the C1-C8 fragment 7 

 

Synthesis of the C1-C8 fragment 7 commenced from trans-trans-muconic acid 79 and is 

summarized in Scheme 3.8. The muconic acid was treated with acetyl chloride in methanol of 

reflux for 2 h to give (2E,4E)-dimethylhexa-2,4-dienedioate 80 in quantitative yield. The ester 80 

was dissolved in chloroform and reduced with DIBAL-H to furnish diol 81 in 90% yield. 

Reaction of diol 81 with TBSCl and imidazole in DMF gave the desired mono-TBS ether 82 in 
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45% isolated yield. Addition of MnO2 to a solution of alcohol 82 in dichloromethane converted 

the alcohol to aldehyde 83 in quantitative yield.39 Aldehyde 83 was treated with sodium salt of 

triethylphosphonoacetate to deliver the ester 84 in 79% yield. Catalytic acidic conditions (AcCl 

in methanol) were employed to cleave the TBS ether, affording alcohol 85 in quantitative yield 

as white solid. This was then treated with SOBr2 in presence of 2,6-lutidine to afford the 

corresponding bromide 86 as white solid in 73% yield. The bromide 86 was reacted with an 

excess triethylphosphite in refluxing toluene to give the target phosphonate 7 as waxy solid in 

94% yield.40 In summary, fragment 7 was synthesized in 8 steps with overall 22.0% yield. 

Scheme 3.8 Synthesis of the C1-C8 fragment 7 
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3.2 New coupling route: fragment C1-C8 + C9-C20 + C21-C40 

 

3.2.1 Retrosynthesis of tetrafibricin 

 

Dr. Gudipati learned that it was difficult to form the C20-C21 bond by the Julia-Kocienski 

coupling between fragments C1-C20 and C21-C40. Accordingly, we adopted a new coupling 

plan shown in Scheme 3.9. Aldehyde 87 (C9-C20) will first be coupled with sulfone 13 (C21-

C40) together by Julia-Kocienski reaction to make C20-C21 bond.13 Then fragment 89 (C9-C40) 

and fragment 7 (C1-C8) will be coupled by Horner-Wadsworth-Emmons (HWE) reaction to 

obtain the whole tetrafibricin framework.41 
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Scheme 3.9 New coupling route: fragments C1-C8 + C9-C20 + C21-C40 
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3.2.2 Synthesis of the C21-C40 fragment 

 

To begin the assembly of the fragments, Julia-Kocienski olefination was conducted with 

sulfone 2 and aldehyde 3 (Scheme 3.10). The anion of the sulfone was generated with KHMDS 

at –60 oC in distilled DME, followed by the addition of aldehyde 3.13 The E C(34-35) alkene 8 

was obtained together with a minor Z isomer (85% yield, over 19/1 E/Z mixture). The Mo-

catalyst [Mo7O24(NH4)6•H2O, H2O2] provided a smooth conversion of sulfide 8 to sulfone 9 in 

92% yield.14 Deprotonation of sulfone 9 with KHMDS at −60 oC in DME, followed by addition 

of aldehyde 4 and warming to ambient temperature overnight provided the PMB-ether 10 as a 

sole C(30-31) (E)-isomer in 80% yield. Removal of the PMB protecting group (DDQ, pH 7 

buffer, CH2Cl2) from 10 provided the primary alcohol 11 in 89% yield.15 Incorporation of the 

thiotetrazole via the Mitsunobu protocol,16 employing commercially available 1-phenyl-1H-

tetrazole-5-thiol (PTSH), followed by oxidation (Mo7O24(NH4)6•H2O, H2O2) of the derived 

sulfide, furnished sulfone 13 (C21-C40 fragment, 65% yield, two steps). 
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Scheme 3.10 Synthesis of the C21-C40 fragment 
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3.2.3 Synthesis of the C9-C20 fragment 87 

 

The assembly of C9-C20 carbon framework of tetrafibricin is shown in Scheme 3.11, and starts 

with alkylation of dithiane 6 with iodide 5 to make the C13-C14 bond. Deprotonation of dithiane 6 

with t-BuLi followed by addition of iodide 5 provided alkene 14 in 54% yield. 

Hydroboration/oxidation of alkene 14 by using 9-BBN and H2O2 provided the primary alcohol 15 

in 68% yield.42 Benzoylation of alcohol 15 with BzCl, DMAP and NEt3 in dichloromethane 

provided benzoate 90 in 83% yield. The primary TBS group was then selectively removed by 

using HF•pyr reagents to afford the alcohol 91 followed by the Swern oxidation to give aldehyde 

87 in 60% yield. 
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Scheme 3.11 Synthesis of the C9-C20 fragment 
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3.2.4 Attempts to couple fragments C9-C20 and C21-C40 

 

With two major fragments (C9-C20 and C21-C40) of tetrafibricin in hand, Julia-Kocienski 

olefination of sulfone 13 with aldehyde 87 was attempted (Scheme 3.12).13 KHMDS was added 

to a solution of sulfone 13 in freshly distilled DME at −60 oC and the mixture was stirred for 30 

min to generate the corresponding sulfone anion. Then a solution of aldehyde 87 in DME was 

added and the reaction mixture was stirred overnight. Unfortunately, product 88 was not formed, 
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and neither the sulfone nor the aldehyde was recovered. Several reactions were attempted on 

scales from 10 mg to 30 mg with similar results. Once again, forming the C20-C21 bond proved 

to be a roadblock. 

 

Scheme 3.12 Coupling of fragments C9-C20 and C21-C40 
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3.3 Final coupling route: fragments C1-C8 + C9-C30 + C31-C40 

 

3.3.1 Retrosynthesis of tetrafibricin 

 

Since the previous two approaches to fragment coupling both failed on the connection 

between C20 and C21, we proposed that fragment 87 (C9-C20) would be coupled with fragment 

92 (C21-C30) first by Julia-Kocienski reaction to obtain the connection at C20-C21 (Scheme 

3.13). Then the fragment 93 (C9-C30) and fragment 9 (C31-C40) will be coupled together to 

obtain fragment 88 (C9-C40) by another Julia-Kocienski olefination. 
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Scheme 3.13 Coupling of fragments C9-C20 and C21-C30 and C31-C40 
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3.3.2 Synthesis of the C21-C30 fragment 92 

 

The synthesis of sulfone 92 (C21-C30) is shown in Scheme 3.14. The PMB protecting group 

of 35 was first removed by using DDQ with pH 7 buffer in 96% yield,15 then the alcohol 94 was 

converted to alkylthiophenyltetrazole 95 in 98% yield by a Mitsunobu reaction.16 Oxidation of 

sulfide 95 to the corresponding sulfone 92 was achieved with m-CPBA in 92% yield. 

 

Scheme 3.14 Synthesis of the C21-C30 fragment 
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3.3.3 Coupling of fragments C9-20 and C21-C30 

 

To effect the Julia-Kocienski olefination to make the C20-C21 bond, KHMDS was added to a 

solution of sulfone 92 in DME at −60 oC and the mixture was stirred for 30 min to generate the 

corresponding sulfone anion (Scheme 3.15). Then a solution of aldehyde 87 in DME was added 

and the reaction mixture was stirred overnight. The single E isomer of olefin 96 was isolated in 

50% yield. This is the first successful fragment coupling to make the C20-C21 bond. 

 

Scheme 3.15 Coupling of fragments C9-C20 and C21-C30 
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Then the primary TBS group of compound 96 was carefully removed by using HF•pyr in THF 

to obtain alcohol 97 (Scheme 3.16). However, the yield of the selective deprotection was only 

10%, presumably because there are 8 other secondary TBS groups. To avoid this big loss of 
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material, we decided to replace the primary TBS group on C30 with a group that was easier 

remove. 

 

Scheme 3.16 Deprotection of primary TBS group on C30 
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The first target was dithiane 99, an analog of 25, in which the primary TBS group is replaced 

by trityl (triphenylmethane) group (Scheme 3.17). The triol 32 was treated with TrCl and DMAP 

in pyridine to afford 98 in 61% yield. Then the two secondary alcohols of 98 were protected by 

TBSOTf with 2,6-lutidine in dichloromethane in 74% yield. However, the coupling reaction 

between dithiane 99 and epoxide 26 failed to give product 100. 
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Scheme 3.17 Synthesis of the C21-C30 fragment with trityl group 
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The TES (triethylsilyl) protecting group was selected next because it is similar to the TBS 

group but is more easily removed (Scheme 3.18). TES protection of the primary alcohol 39 gave 

the ether 101 in 88% yield. Then deprotection of the PMB group from 101 with DDQ in pH 7 

buffer afforded the primary alcohol 102 in 93% yield.15 Incorporation of the thiotetrazole via the 

Mitsunobu reaction,16 employing commercially available 1-phenyl-1H-tetrazole-5-thiol, 

followed by oxidation of the derived sulfide furnished sulfone 104 in 83% yield for two steps. 
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Scheme 3.18 Synthesis of the C21-C30 fragment with TES group 
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The coupling of sulfone 104 (C21-C30) and aldehyde 87 (C9-C20) is shown in Scheme 3.19. 

As usual, the sulfone 104 was deprotonated by KHMDS followed by the addition of aldehyde 87 

in DME. Once again, the C20-C21 bond formation succeeded. We obtained the single E isomer 

of 105 in 52% yield. The coupling product was characterized by 1H-NMR and 13C-NMR 

spectroscopy. However, we could not obtain its mass spectrum by either ESI (Electrospray 

ionization) or MALDI (Matrix-assisted laser desorption/ionization) in our department and 

department of pharmaceutical sciences. 
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Scheme 3.19 Coupling of fragments C9-C20 and C21-C30 
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3.3.4 Synthesis of the C9-C30 fragment 

 

The primary TES protecting group of compound 105 was removed with HF•pyr to provide 

alcohol 97 in 73% yield (Scheme 3.20). Thus, it indeed proved possible to remove the TES 

group in good yield in the presence of eight TBS groups. Dess-Martin oxidation of alcohol 97 

provided the aldehyde 93 in 60% yield, ready for the further coupling reaction.28 
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Scheme 3.20 Synthesis of the C9-C30 fragment 
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3.3.5 Coupling of fragments C9-C30 and C31-C40 

 

With the two major fragments aldehyde 93 (C9-C30) and sulfone 9 (C31-C40) of tetrafibricin 

in hand, Julia-Kocienski olefination reaction was attempted (Scheme 3.21).13 KHMDS was 

added to a solution of sulfone 9 in distilled DME at −60 oC and the mixture was stirred for 30 
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min to generate the corresponding sulfone anion. Then a solution of aldehyde 93 in DME was 

added and the reaction mixture was stirred overnight. The target coupling product 88 (C9-C40) 

was isolated in 45% yield. Compound 88 has the complete carbon skeleton and correct oxidation 

state of tetrafibricin fragment C9-C40. Next the benzoyl group of compound 88 was deprotected 

by hydrolysis with KOH in methanol followed by the oxidation to afford the aldehyde 89.  
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Scheme 3.21 Coupling of fragments C9-C30 and C31-C40 
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3.3.6 Coupling of fragments C1-C8 and C9-C40 

 

The final Horner-Wadsworth-Emmons coupling, between the large fragment aldehyde 59 (C9-

C40) and phosphonate fragment 7 (C1-C8) is shown in Scheme 3.22.41 LiHMDS was added to a 

solution of fragment 7 in THF at −78 oC and the mixture was stirred for 30 min to generate the 

corresponding anion, followed by the addition of aldehyde 59. The reaction mixture was stirred 

for 30 min at −78 oC and 0 oC for 30 min. After workup and purification by HPLC, we obtained 

the coupling product 20 in 62% yield. This is the first synthesis of a fully protected tetrafibricin. 

The coupling product was purified by HPLC and characterized by 1H-NMR spectroscopy only 

due to the small amount we obtained. And because of the limited amount and high molecular 

weight of the compound, we could not go further to finish the global deprotection. 
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Scheme 3.22 Final coupling of fragments C1-C8 and C9-C40 
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3.4 Conclusions 

 

A convergent synthesis of the proposed structure of tetrafibricin 1 has been explored. After 

making six fragments of tetrafibricin 1, we succeeded their assembly with a series of Julia-

Kocienski olefination reactions. This began with alkylation of dithiane 6 with iodide 5 provided 

C9-C20 carbon skeleton 90 which was then advanced to aldehyde 87. The first Julia-Kocienski 

olefination with sulfone 104 (C21-C30) and aldehyde 87 (C9-C20) gave olefin 105 (C9-C30), 
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which was then advanced to aldehyde 93 to attempt another Julia-Kocienski olefination. 

Fragment 9 (C31-C40) was also achieved by Julia-Kocienski olefination of sulfone 2 with 

aldehyde 3. Then two big parts aldehyde 93 (C9-C30) and sulfone 9 (C31-C40) were coupled 

together to afford fragment 88 (C9-C40) by Julia-Kocienski olefination. Finally Horner-

Wadsworth-Emmons olefination of phosphonate 7 (C1-C8) with aldehyde 89 (C9-C40) provided 

20 (C1-C40) to achieve the whole carbon framework of tetrafibricin. The order of the fragment 

coupling is crucial in the synthesis of tetrafibricin in order to build the certain bonds. And also 

other protecting groups for the alcohols on tetrafibricin may be considered in the future synthesis 

to facilitate the reactions and better characterize the compounds. 
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Experimental Procedures and Compound Characterization 

 

General:  All reactions were performed under an atmosphere of argon unless otherwise noted. 

Reaction solvents were freshly dried either by distillation or by passing through an activated 

alumina column. THF and toluene were freshly distilled from Na/benzophenone. Methylene 

chloride and Et2O were dried by activated alumina. All other reagents were purchased 

commercially and used without further purification unless stated otherwise. Mixtures were 

magnetically stirred and progress was monitored by TLC with 0.25 mm E. Merck precoated 

silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040-

0.063 mm) supplied by Sorbent Technologies. 

Products were analyzed by 1H NMR, 13C NMR, COSY, 19F NMR, FT-IR spectroscopy, high 

and low resolution mass spectrometry, and HPLC. NMR spectra were taken on a Bruker 

AvanceTM 300 or a Bruker AvanceTM 500 or a Bruker AvanceTM 600 NMR or a Bruker 

AvanceTM 700 spectrometer. Spectra were recorded at room temperature in the indicated 

deuteriated solvents and chemical shifts are reported in parts per million (ppm) downfield 

relative to TMS using the residual solvent proton resonance of CDCl3 (7.26 ppm), MeOD (4.87 

ppm) or central CDCl3 carbon peak (77.0 ppm), central carbon peak MeOD (47.0 ppm) as the 

internal standard. In reporting spectral data, the following abbreviations were used: s = singlet, d 

= doublet, t = triplet, q = quartet, m = multiplet, dd = doublet doublet, dt = doublet triplet, td = 

triplet double, ddt = doublet double triplet, dtd = doublet triplet doublet. Infrared spectra were 

taken on a Mattson Genesis Series FTIR using thin film on NaCl plate. Peaks are reported in 

wavenumbers (cm-1). High resolution mass spectra were obtained on a V/G 70/70 double 
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focusing machine and are reported in units of m/z. HPLC analysis was performed on a Waters 

600 E system with a UV detector. 

 

O
O

O  

(S)-2-(2,2-Dimethyl-1,3-dioxolan-4-yl)acetaldehyde ((S)-28): To a solution of alcohol (S)-27 

(5.00 g, 34.1 mmol) in dichloromethane (200 mL) at 0 oC was added diisopropylethylamine 

(26.3 mL, 153.9 mmol). After 5 min, DMSO (24.3 mL, 341 mmol) was added and the mixture 

was stirred for another 10 min. Then SO3•pyr (13.6 g, 85.5 mmol) was added and the resulting 

mixture was stirred for 45 min. Saturated aqueous NaHCO3 was added and the mixture was 

allowed to warm to room temperature. The layers were separated and the aqueous layer was 

extracted with dichloromethane. The combined organic layers were washed with brine, dried 

over MgSO4 and concentrated. The residue was purified by flash column chromatography (35% 

ethyl acetate in hexanes) to yield the aldehyde (S)-28 (4.30 g, 29.4 mmol, 86%) as oil: [α]D +8.1 

(c 3.8 CHCl3); 1H NMR (300 MHz, CDCl3) δ 9.8 (t, J = 1.4 Hz, 1 H), 4.54 (p, J = 6.3 Hz, 1 H), 

4.19 (dd, J = 8.5, 6.0 Hz, 1 H), 3.60 (dd, J = 8.5, 6.9 Hz, 1 H), 2.85 (ddd, J = 17.3, 6.6, 1.9 Hz, 1 

H), 2.65 (ddd, J = 17.3, 6.0, 1.1 Hz, 1 H), 1.42 (s, 3 H), 1.37 (s, 3 H); 13C NMR (76 MHz, CDCl3) 

δ 199.9, 109.3, 70.7, 69.2, 47.9, 26.9, 25.5; IR (neat) cm-1 2987, 2936, 2735, 1725, 1372, 1217; 

HRMS for C6H9O3 (M − CH3)+: Calcd 129.0552; found129.0550. 
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O
O

 

(S)-4-Allyl-2,2-dimethyl-1,3-dioxolane ((S)-29) : To a solution of CH3PPh3Br (15.8 g, 44.2 

mmol) in THF (500 mL) at 0 oC was added n-BuLi (1.6 M in hexane, 27.6 mL, 44.2 mmol). The 

reaction mixture was stirred at that temperature for 20 min and then cooled to –78 oC. A solution 

of the above aldehyde (4.9 g, 34 mmol) in THF (5 mL) was added slowly to the reaction mixture. 

The mixture was stirred for 30 min at –78 oC and then warmed to room temperature and stirred 

overnight. The reaction mixture was poured into saturated aqueous NH4Cl. The layers were 

separated and the aqueous layer was extracted with Et2O. The combined organic layers were 

dried over MgSO4 and concentrated. Purification of the crude product by flash column 

chromatography (SiO2, 20% ethyl acetate in hexanes) afforded the alkene (S)-29 (4.0 g, 83%) as 

a volatile oil: 1H NMR (300 MHz, CDCl3) δ 5.81 (ddt, J = 17.0, 10.4, 7.1 Hz, 1 H), 4.13-4.21 (m, 

1 H), 5.07-5.17 (m, 2 H), 4.03 (dd, J = 8.2, 6.0 Hz, 1 H), 3.59 (dd, J = 8.2, 7.1 Hz, 1 H), 2.37-

2.48 (m, 1 H), 2.25-2.34 (m, 1 H), 1.43 (s, 3 H),1.37 (s, 3 H); 13C NMR (75 MHz, CDCl3) δ 

133.7, 117.7, 109.0, 75.2, 69.0, 38.1, 26.9, 25.7. 

 

O
O

O
 

(S)-2,2-dimethyl-4-((S)-oxiran-2-ylmethyl)-1,3-dioxolane ((S,S)-30): The above alkene was 

dissolved in dichloromethane and m-CPBA was added at room temperature. The mixture was 

stirred for overnight. Then the reaction was quenched by adding saturated NaHCO3 solution. The 

layers were separated and the aqueous layer was extracted with dichloromethane and the 
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combined organic extracts were dried over MgSO4 and concentrated. Purification by flash 

column chromatography (SiO2, 25% ethyl acetate in hexanes) gave the epoxide as a mixture of 

two diastereomers. The (S,S)-Jacobsen catalyst (165 mg, 0.27 mmol) was dissolved in the above 

epoxide (4.2 g, 26.5 mmol), AcOH (65 mg) and THF (0.26 mL). The solution was cooled to 0 oC, 

treated with water (0.27 mL, 15.0 mmol), and stirred for 16 h at room temperature followed by 

concentration. Bulb-to-bulb (kugelrohr) distillation of crude product under reduced pressure 

(0.08 mm Hg, 90-105 oC) gave diastereomerically pure epoxide (S,S)-30 (1.89 g, 11.9 mmol, 

45%) as colorless oil 1H NMR (500 MHz, CDCl3) δ 4.22 -4.27 (m, 1 H), 4.05 (dd, J = 7.8, 5.6 

Hz, 1 H), 3.53 (t, J = 7.3 Hz, 1 H), 2.97-3.00 (m, 1 H), 2.75 (t, J = 4.6 Hz, 1 H), 2.45 (dd, J = 4.6, 

2.3 Hz, 1 H), 1.91 (ddd, J = 14.2, 7.8, 4.1 Hz, 1 H), 1.49 (ddd, J = 13.8, 7.3, 5.5 Hz, 1 H), 1.36 (s, 

3 H), 1.31 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ 108.9, 73.6, 69.3, 49.3, 47.1, 37.1, 26.9, 25.6; 

IR (neat) cm-1 2987, 2942, 2872, 1454, 1371, 1060; HRMS for C7H11O3 (M − CH3)+: Calcd 

143.0708; found 143.0706. 

 

O
O OH

S

S

 

(S)-1-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-3-(1,3-dithian-2-yl)propan-2-ol (31) : t-BuLi (1.7 

M in pentane, 5.3 mL, 9.0 mmol) was added to a solution of 1,3-dithiane (1.10 g, 9.04 mmol) in 

THF/HMPA (5 mL/0.3 mL) at −78 oC. After 30 min, epoxide (S,S)-30 (1.3 g, 8.2 mmol) in THF 

(3 mL) and HMPA (1 mL) was added to the above reaction mixture. After 1 h, the reaction 

mixture was allowed to warm to 0 oC, treated with saturated aqueous NH4Cl solution. The layers 

were separated and the aqueous layer was extracted with ethyl acetate. The combined organic 

layers were dried over MgSO4 and concentrated. The residue was purified by flash column 
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chromatography (SiO2, 25% ethyl acetate in hexanes) to yield the product 31 (1.9 g, 83%) as an 

oil: [α]D +6.75 (c 0.80 CHCl3); 1H NMR (500 MHz, CDCl3) δ 4.31-4.36 (m, 1 H), 4.27 (dd, J = 

8.9, 5.3 Hz, 1 H), 4.14-4.20 (m, 1 H), 4.09 (dd, J = 8.2, 6.0 Hz, 1 H), 3.59 (t, J = 7.8 Hz, 1 H), 

2.82-2.95 (m, 4 H), 2.67 (d, J = 5.0 Hz, 1 H), 2.10-2.16 (m, 1 H), 1.84-1.99 (m, 3 H), 1.69-1.79 

(m, 2 H), 1.42 (s, 3 H), 1.36 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ 108.9, 73.4, 69.4, 66.1, 44.2, 

42.8, 39.8, 30.3, 30.1, 26.9, 25.9, 25.6; IR (neat) cm-1 3435, 2983, 2935, 2899, 1456, 1423, 1370; 

EIMS (M+) 278; HRMS for C12H22O3S2 (M+): Calcd 278.1010; found 278.1006. 

 

TBSO
O O

S

S
TBSTBS

 

2-((2S,4S)-2,4,5-tris(tert-butyldimethylsilyloxy)pentyl)-1,3-dithiane ((S,S)-25): To a solution 

of the above compound (1.9 g. 6.8 mmol) in methanol (16 mL) was added acetyl chloride (200 

μL). After 1 h, the mixture was concentrated to dryness. Then the residue (triol) in 

dichloromethane (30 mL) were added 2,6-lutidine (2.4 g, 22.4 mmol) and TBSOTf (5.90 g, 22.4 

mmol) at 0 oC. After 1 h, the reaction was quenched with water. The layers were separated and 

the aqueous layer was extracted with dichloromethane. The combined organic extracts were 

dried over MgSO4 and concentrated. The crude product was purified by flash column 

chromatography (5% ethyl acetate in hexanes) to provide compound 25 (3.25 g, 88%) as an oil: 

1H NMR (300 MHz, CDCl3) δ 4.02-4.14 (m, 2 H), 3.69-3.79 (m, 1 H), 3.54 (dd, J = 10.2, 5.2 Hz, 

1 H), 3.42 (dd, J = 10.2, 5.8 Hz, 1 H), 2.75-2.94 (m, 4 H), 2.06-2.19 (m, 1 H), 1.76-1.96 (m, 4 H), 

1.47-1.56 (m, 1 H), 0.90 (s, 18 H), 0.89 (s, 9 H), 0.12 (s, 3 H),0.10 (s, 6 H), 0.08 (s, 3 H), 0.06 (s, 

6 H); 13C NMR (75 MHz, CDCl3) δ 71.2, 67.8, 67.0, 44.2, 44.0, 43.4, 30.8, 30.4, 26.1, 18.5, 18.2, 

−3.8, −3.9, −4.1, −4.3, −5.2; IR (neat) cm-1 2954, 2929, 2897, 2857, 1472, 1463, 1255. 
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O
O

OPMB  

(R)-4-(2-(4-Methoxybenzyloxy)ethyl)-2,2-dimethyl-1,3-dioxolane ((R)-33) : (R)-2-(2,2-

dimethyl-1,3-dioxolan-4-yl)ethanol (1.30 g, 8.07 mmol) was added slowly over 10 min to a 

suspension of NaH (60%, 271 mg, 11.3 mmol) in DMF (15 mL) at 0 oC. The mixture was stirred 

for 30 min followed by the addition of p-methoxybenzylchloride (1.33 g, 8.48 mmol). The above 

reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction 

was quenched by adding methanol (1 mL) and then the mixture was poured into water (100 mL). 

The layers were separated and the aqueous layer was extracted with ether and the combined 

organic extracts were dried over MgSO4 and concentrated. Purification by flash column 

chromatography (SiO2, 25% ethyl acetate in hexanes) gave the product (R)-33 (1.53 g, 84%)as 

colorless oil: [α]D +0.87 (c 1.2 CHCl3); 1H NMR (500 MHz, CHCl3) δ 7.25 (d, J = 8.2 Hz, 2 H), 

6.88 (d, J = 8.2 Hz, 2 H), 4.44 (s, 2 H), 4.17-4.25 (m, 1 H), 4.06 (dd, J = 8.2, 6.0 Hz, 1 H), 3.81 

(s, 3 H), 3.50-3.60 (m, 3 H), 1.89-1.97 (m,1 H), 1.79-1.89 (m, 1 H), 1.41 (s, 3 H), 1.36 (s, 3 H); 

13C NMR (126 MHz, CDCl3) δ 159.3, 130.5, 129.3, 113.9, 108.6, 74.0, 72.8, 69.7, 66.8, 55.3, 

33.9, 27.0, 25.9; IR (neat) cm-1 2985, 2936, 2865, 1613, 1514, 1248; HRMS for C15H22O4 (M+): 

Calcd 266.1518; found 266.1514. 

 

HO
OH

OPMB  

(R)-4-(4-Methoxybenzyloxy)butane-1,2-diol ((R)-34): To a solution of the above compound 

(1.70 g, 6.04 mmol) in methanol (25 mL) was added acetyl chloride (~100 mg). The reaction 

mixture was stirred at room temperature for 2 h, followed by concentration of the reaction 
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mixture. The crude product was purified by flash column chromatography (SiO2, 80% ethyl 

acetate in hexanes) to yield the diol (R)-34 (1.40 g, 87%)as clear colorless oil: [α]D
 −2.6 (c 1.4 

CHCl3); 1H NMR (300 MHz, CHCl3) δ 7.24 (d, J = 8.2 Hz, 2 H), 6.88 (d, J = 8.2 Hz, 2 H), 4.46 

(s, 2 H), 3.81 (s, 3 H), 3.86-3.94 (m, 1 H), 3.58-3.70 (m, 3 H), 3.45-3.54 (m, 1 H), 1.60-1.90 (m, 

2 H);13C NMR (126 MHz, CDCl3) δ 158.9, 129.6, 129.0, 113.5, 72.5, 67.1, 54.9, 32.8; IR (neat) 

cm-1 3384, 2934, 1613, 1514, 1249; HRMS for C12H18O4 (M+): Calcd 226.1205; found 226.1199. 

OPMB
O

 

(R)-2-(2-(4-Methoxybenzyloxy)ethyl)oxirane ((R)-26): To a solution of the above diol (800 mg, 

3.98 mmol) in toluene (15 mL) were added PPh3 (1.30 g, 4.97 mmol) and DIAD (1.00 g, 4.97 

mmol). The mixture was refluxed overnight and concentrated. The crude product was purified by 

flash column chromatography (SiO2, 25% ethyl acetate in hexanes) to yield epoxide (R)-26 (779 

mg, 94%) as oil: [α]D +12.0 (c 1.0 CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.27 (d, J = 8.7 Hz, 2 

H), 6.89 (d, J = 8.7 Hz, 2 H), 4.47 (s, 2 H), 3.81 (s, 3 H), 3.55-3.64 (m, 2 H), 3.03-3.10 (m, 1 H), 

2.79 (t, J = 4.6 Hz, 1 H), 2.53 (dd, J = 5.0, 2.7 Hz, 1 H), 1.85-1.95 (m, 1 H),,1.72-1.82 (m, 1 H); 

13C NMR (126 MHz, CDCl3) δ 159.3, 130.4, 129.3, 113.9, 72.8, 66.8, 55.3, 50.1, 47.2, 33.0; IR 

(neat) cm-1 2997, 2924, 2860, 1613, 1513; HRMS for C12H16O3 (M+): Calcd 208.1099; found 

208.1094. 

 

TBSO
O O OH

OPMB
SS

TBS TBS

 

(R)-1-(2-((2S,4S)-2,4,5-tris(tert-Butyldimethylsilyloxy)pentyl)-1,3-dithian-2-yl)-4-(4-

methoxybenzyloxy)butan-2-ol (35): t-BuLi (1.7 M in pentane, 1 mL, 1.7 mmol) was added to a 

solution of dithiane (S,S)-25 (0.9 g, 1.55 mmol) in THF (2.4 mL)-HMPA (0.6 mL) at –78 oC. 
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After stirring at –78 oC for 10 min, epoxide (R)-26 (0.36 g, 1.7 mmol) in THF (1 mL) was added. 

The reaction mixture was stirred at −78 oC for 15 min, then warmed to 0 oC and stirred for 1 h. 

The reaction was quenched with saturated aqueous NH4Cl solution. The layers were separated 

and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried 

over MgSO4 and concentrated. The residue was purified by flash column chromatography (SiO2, 

20% ethyl acetate in hexanes) to provide compound 35 (1.1 g, 90%) as an oil: [α]D −5.0 (c 0.9 

CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 8.5 Hz, 2 H), 6.89 (d, J = 8.8 Hz, 2 H), 4.47 

(s, 2 H), 4.18-4.33 (m, 2 H), 3.81 (s, 3 H), 3.46-3.74 (m, 5 H), 2.84-3.04 (m, 2 H), 2.68-2.83 (m, 

2 H), 1.66-2.47 (m, 11 H), 0.94 (s, 9 H), 0.93 (s, 9 H), 0.91 (s, 9 H), 0.09-0.16 (m, 18 H); 13C 

NMR (76 MHz, CDCl3) δ 159.1, 130.4, 129.2, 113.7, 72.7, 71.3, 67.9, 67.5, 67.4, 66.9, 60.3, 

55.1, 51.4, 48.3, 46.5, 45.0, 37.6, 26.3, 26.0, 24.6, 18.4, 18.2, 18.0, 14.2, −3.1, −3.6, −3.8, −4.4, 

−5.3; IR (neat) cm-1 2953, 2928, 2855, 1614, 1514, 1463, 1250; HRMS for C39H76O6S2Si3Na: 

Calcd 811.4289; found 811.4284. 

 

TBSO
O O OH

OPMB

TBS TBS
O

 

(3R,7S,9S)-1-(4-Methoxybenzyloxy)-7,9,10-tris(tert-butyldimethylsilyloxy)-3-hydroxy- 

decan-5-one (36): A solution of 35 (610 mg, 0.77 mmol) in THF/H2O (4:1, 10 mL) was cooled 

to 0 oC, followed by addition of 2,6-lutidine (662 mg, 6.18 mmol) and Hg(ClO4)2•H2O (1.05 g, 

2.32 mmol) in portions. The reaction mixture was stirred at 0 oC for 45 min and then filtered 

through a pad of celite and followed by a rinse with ethyl acetate. The filtrate was diluted with 

ethyl acetate and saturated aqueous NH4Cl. The layers were separated and the aqueous layer was 

extracted with ethyl acetate. The combined organic layers were dried over MgSO4 and 
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concentrated. Purification by flash column chromatography (20% ethyl acetate in hexanes) 

provided the ketone 36 (454 mg, 84%) as oil: [α]D −6.53 (c 1.73 CHCl3); 1H NMR (300 MHz, 

CDCl3) δ 7.25 (d, J = 8.6 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 4.44 (s, 2 H), 4.15-4.35 (m, 2 H), 

3.80 (s, 3 H), 3.64-3.76 (m, 1 H), 3.50-3.63 (m, 3 H), 3.36-3.43 (m, 2 H), 2.54-2.70 (m, 4 H), 

1.70-1.83 (m, 3 H), 1.48-1.60 (m, 1 H), 0.93 (s, 9 H), 0.92 (s, 9 H), 0.89 (s, 9 H), 0.13 (s, 6 H), 

0.12 (s, 3 H), 0.09 (s, 6 H), 0.08 (s, 3 H); 13C NMR (75 MHz, CHCl3) δ 209.9, 159.3, 130.4, 

129.3, 113.9, 72.9, 71.2, 67.8, 67.6, 67.0, 66.3, 55.3, 52.1, 50.9, 43.4, 36.2, 26.0, 26.0, 25.9, 18.4, 

18.2, 18.0, −3.9, −4.2, −4.3, −4.5, −5.3; IR (neat) cm-1 3509, 2954, 2929, 2857, 1709, 1614, 1514, 

1472, 1251; HRMS for C36H70O7Si3Na (M + Na)+: Calcd 721.4327; found 721.4329. 

 

TBSO
O O O

OPMB

TBS TBS
O

TBSTBS

 

1-(((3R,5S,7R,9S)-3,5,7,9,10-pentakis(tert-Butyldimethylsilyloxy)decyloxy)methyl)-4-

methoxybenzene (38): To a solution of the above ketone (445 mg, 0.64 mmol) in acetonitrile (2 

mL) at −25 oC was added (CH3)4NBH(OAc)3 (253 mg, 0.96 mmol) as a solution in acetic acid 

(0.4 mL). The reaction mixture was stirred at that temperature for 48 h, quenched with 3 mL 

aqueous 1.0 M sodium potassium tartrate, diluted with ethyl acetate and neutralized with sodium 

bicarbonate. The layers were separated and the aqueous layer was extracted with ethyl acetate. 

The combined organic layers were dried over MgSO4 and concentrated. To the crude compound 

(412 mg) in dichloromethane at 0 oC were added 2,6-lutidine (189 mg, 1.77 mmol) and TBSOTf 

(327 mg, 1.24 mmol). The resulting mixture was stirred at that temperature for 1 h and then 

quenched with water. The layers were separated and the aqueous layer was extracted with 

dichloromethane. The combined organic layers were dried over MgSO4 and concentrated. The 
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crude product was purified by flash column chromatography (SiO2, 10% ethyl acetate in hexanes) 

to yield compound 38 (434 mg, 73%) as oil: 1H NMR (600 MHz, CDCl3) δ 7.26 (d, J = 9.6 Hz, 2 

H), 6.87 (d, J = 8.8 Hz, 2 H), 4.42 (s, 2 H), 3.87-3.92 (m, 2 H), 3.83-3.87 (m, 1 H), 3.81 (s, 3 H), 

3.76-3.80 (m, 1 H), 3.49-3.54 (m, 3 H), 3.41 (dd, J = 10.2, 5.5 Hz, 1 H), 1.79-1.84 (m, 1 H), 

1.67-1.75 (m, 2 H), 1.59-1.67 (m, 3 H), 1.52-1.58 (m, 1 H), 1.45-1.50 (m, 1 H), 0.90 (s, 9 H), 

0.888 (s, 9 H), 0.883 (s, 9 H), 0.88 (s, 9 H), 0.877 (s, 9 H), 0.084 (s, 3 H), 0.082 (s, 3 H), 0.08 (s, 

3 H), 0.076 (s, 6 H), 0.07 (s, 3 H), 0.063 (s, 3 H), 0.06 (s, 3 H), 0.055 (s, 3 H), 0.04 (s, 3 H); 13C 

NMR (151 MHz, CDCl3) δ 159.1, 130.9, 129.2, 113.8, 72.6, 70.8, 67.6, 67.5, 67.4, 67.2, 66.8, 

55.3, 46.8, 46.0, 42.6, 37.7, 26.1, 26.1, 26.1, 26.1, 18.5, 18.3, 18.2, 18.1, −3.4, −3.5, −3.7, −3.8, 

−4.2, −4.4, −5.2; HRMS for C48H100O7Si5Na (M + Na)+: Calcd 951.6213; found 951.6311. 

 

HO
O O O

OPMB

TBS TBS
O

TBSTBS

 

(2S,4R,6S,8R)-10-(4-Methoxybenzyloxy)-2,4,6,8-tetrakis(tert-butyldimethylsilyloxy) decan-

1-ol (39): To a solution of 38 (70 mg, 0.075 mmol) in THF (0.5 mL) was added HF•pyr in 

pyridine (1 mL). The reaction mixture was stirred at room temperature for 6 h followed by 

quenching the reaction with saturated aqueous sodium bicarbonate solution (5 mL). The layers 

were separated and the aqueous layer was extracted with ethyl acetate. The combined organic 

extracts were dried over MgSO4 and concentrated. Purification by flash column chromatography 

(SiO2, 10% ethyl acetate in hexanes) provided the primary alcohol 39 (30 mg, 49%) as colorless 

oil along with recovered starting material (29 mg, 0.031 mmol): [α]D +16.5 (c 0.2 CHCl3); 1H 

NMR (600 MHz, CDCl3) δ 7.76 (d, J = 8.5 Hz, 2 H), 6.88 (d, J = 8.5 Hz, 2 H), 4.41 (ddd, J = 

19.8, 11.5, 5.0 Hz, 1 H) 3.85-3.89 (m, 1 H), 3.80-3.85 (m, 6 H), 3.61 (ddd, J = 11.0, 5.5, 3.6 Hz, 
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1 H), 3.50 (t, J = 7.1 Hz, 2 H), 3.44 (ddd, J = 11.8, 7.1, 5.2 Hz, 1 H), 1.91 (t, J = 6.0 Hz, 1 H), 

1.80-1.85 (m, 1 H), 1.55-1.73 (m, 7 H), 0.91 (s, 9 H), 0.883 (s, 9 H), 0.88 (s, 18 H), 0.104 (s, 3 

H), 0.10 (s, 3 H), 0.08 (s, 6 H), 0.072 (s, 6 H), 0.07 (s, 3 H), 0.05 (s, 3 H); 13C NMR (151 MHz, 

CDCl3) δ 159.1, 130.8, 129.2, 113.7, 72.6, 70.4, 67.4, 67.2, 67.1, 66.7, 66.6, 55.3, 46.5, 46.3, 

42.4, 37.5, 26.0, 18.2, 18.1, −3.5, −3.6, −3.6, −3.7, −4.2, −4.3, −4.3; IR (neat) cm-1 3420, 2950, 

2925, 2929, 2852, 1614, 1511, 1462, 1251, 1102; HRMS for C42H86O7Si4Na (M + Na)+: Calcd 

837.5348; found 837.5363. 

 

O
O O O

OPMB

TBS TBS
O

TBSTBS

 

(2S,4R,6S,8R)-10-(4-Methoxybenzyloxy)-2,4,6,8-tetrakis(tert-butyldimethylsilyloxy) decanal 

(4): To a solution of the above primary alcohol (28 mg, 0.034 mmol) in DCM (2 mL) were 

added solid NaHCO3 (15 mg) and Dess-Martin reagent (17 mg, 0.041 mmol). The reaction 

mixture was stirred at room temperature for 1 h. Then the reaction was quenched with saturated 

NaHCO3 solution. The layers were separated and the aqueous layer was extracted with 

dichloromethane. The combined organic layers were dried over MgSO4 and concentrated. The 

crude product was purified by flash column chromatography (10% ethyl acetate in hexanes) to 

yield aldehyde 4 (26 mg, 93%) as an oil used immediately for the next reaction: 1H NMR (600 

MHz, CD2Cl2) δ 8.58 (d, J = 1.7 Hz, 1 H), 7.24 (d, J = 8.5 Hz, 2 H), 6.85 (d, J = 8.8 Hz, 2 H), 

4.38 (s, 2 H), 4.15-4.18 (m, 1 H), 3.95-4.00 (m, 1 H), 3.91-3.95 (m, 1 H), 3.82-3.86 (m, 1 H), 

3.79 (s, 3 H), 3.47-3.52 (m, 2 H), 1.66-1.81 (m, 6 H), 1.53-1.60 (m, 2 H), 0.97 (s, 9 H), 0.93 (s, 9 

H), 0.89 (s, 9 H), 0.88 (s, 9 H), 0.10 (s, 3 H), 0.09 (s, 6 H), 0.08 (s, 9 H), 0.06 (s, 3 H), 0.05 (s, 3 

H); 13C NMR (151 MHz, CD2Cl2) δ 203.8, 159.7, 131.6, 129.7, 114.1, 76.1, 73.1, 68.0, 67.6, 
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67.6, 67.2, 55.8, 47.1, 46.3, 41.2, 38.4, 26.4, 26.3, 18.7, 18.5, −3.0, −3.1, −3.4, −3.5, −3.8, −3.9, 

−4.3; IR (neat) cm-1; 2954, 2929, 2894, 2857, 1736, 1653, 1635, 1558, 1251; HRMS for 

C42H84O7Si4Na (M + Na)+: Calcd 835.5192; found 835.5197. 

 

TBSO  

tert-Butyldimethyl(pent-4-enyloxy)silane (41): To a solution of pent-4-en-1-ol (6.00 g, 69.8 

mmol) in dichloromethane (400 ml) at 0 oC were added tert-butyldimethylsilyl chloride (11.6 g, 

76.7 mmol) and imidazole (5.70 g, 83.7 mmol). The reaction mixture was stirred at 0 oC for 20 

min, then warmed to room temperature and stirred for 1.5 h. Then the reaction was quenched 

with water. The layers were separated and the aqueous layer was extracted with dichloromethane. 

The combined organic extracts were dried over MgSO4 and concentrated to give the alkene 41 

(14.0 g) as an oil. The crude product was taken to the next step without further purification: 1H 

NMR (300 MHz, CDCl3) δ 5.83 (ddt, J = 17.0, 10.4, 6.6 Hz, 1 H), 4.93-5.07 (m, 2 H), 2.07-2.16 

(m, 2 H), 1.56-1.68 (m, 2 H), 0.09 (s, 9 H), 0.06 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 138.6, 

114.6, 62.6, 32.1, 30.1, 26.0, 18.4, −5.2. 

 

TBSO
O

 

(rac)-tert-Butyldimethyl(3-(oxiran-2-yl)propoxy)silane (42): m-Chloroperbenzoic acid (75% 

w/w in H2O, 16.0 g) was added to a solution of the above alkene (14.0 g, 69.8 mmol) in 

dichloromethane at 0 oC. The reaction mixture was stirred at 0 oC for 20 min, then warmed to 

room temperature and stirred for 1 h followed by adding saturated aqueous NaHCO3 solution. 

The layers were separated and aqueous layer was further extracted with dichloromethane. The 

combined organic layers were dried over MgSO4 and concentrated. Bulb-to-bulb (kugelrohr) 
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distillation of the crude product under reduced pressure (0.1 mbar, 90-105 oC) gave the epoxide 

42 (13.0 g, 88%) as an oil: 1H NMR (300 MHz, CDCl3) δ 3.59-3.72 (m, 2 H), 2.91-2.99 (m, 1 H), 

2.74-2.79 (m, 1 H), 2.49 (dd, J = 4.9, 2.7 Hz, 1 H), 1.53-1.76 (m, 4 H), 0.90 (s, 9 H), 0.06 (s, 6 

H); 13C NMR (75 MHz, CDCl3) δ 62.6, 52.1, 47.0, 29.1, 29.0, 25.9, 18.3, −5.3; IR (neat) cm-1 

2954, 2857, 1472, 1256; EIMS (Μ − tBu)+ :159; HRMS for C7H15O2Si (M − tBu)+
 : Calcd 

159.0841; found 159.0828. 

 

TBSO
O

 

(R)-tert-Butyldimethyl(3-(oxiran-2-yl)propoxy)silane ((R)-42): The (R,R)-Jacobsen catalyst 

(92 mg, 0.15 mmol) was dissolved in the above epoxide (3.22 g, 14.9 mmol), AcOH (35 μL) and 

THF (0.17 mL). The solution was cooled to 0 oC, treated with water (0.15 mL, 8.2 mmol), and 

stirred for 16 h at room temperature followed by concentration. Bulb-to-bulb (kugelrohr) 

distillation of crude product under reduced pressure (0.08 mm Hg, 90-105 oC) gave 

diastereomerically pure epoxide (R)-42 (1.42 g, 6.8 mmol, 45%) as colorless oil: 1H NMR (300 

MHz, CDCl3) δ 3.62-3.69 (m, 2 H), 2.92-2.98 (m, 1 H), 2.75 (t, J = 4.5 Hz, 1 H), 2.47 (dd, J = 

4.8, 2.7 Hz, 1 H), 1.57-1.69 (m, 4 H), 0.90 (s, 9 H), 0.06 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 

62.6, 52.2, 47.1, 29.1, 29.0, 25.9, 18.3, −5.3; IR (neat) cm-1 2954, 2857, 1472, 1256. 

 

TBSO
O

 

(S)-tert-Butyldimethyl(3-(oxiran-2-yl)propoxy)silane ((S)-42): Following the same procedure 

as above, epoxide (S)-42 (1.75 g, 8.1 mmol, 47%) was obtained as colorless oil: 1H NMR (300 

MHz, CDCl3) δ 3.62-3.69 (m, 2 H), 2.92-2.98 (m, 1 H), 2.75 (t, J = 4.5 Hz, 1 H), 2.47 (dd, J = 
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4.8, 2.7 Hz, 1 H), 1.57-1.70 (m, 4 H), 0.90 (s, 9 H), 0.06 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 

62.6, 52.2, 47.1, 29.1, 29.0, 25.9, 18.3, −5.3; IR (neat) cm-1 2954, 2857, 1472, 1256. 

 

TBSO
OH

S

S

 

(R)-5-(tert-Butyldimethylsilyloxy)-1-(1,3-dithian-2-yl)pentan-2-ol ((R)-43): t-BuLi (1.7 M in 

pentane, 5.8 mL, 9.9 mmol) was added to a solution of 1,3-dithiane (1.19 g, 9.9 mmol) in 

THF/HMPA (6.8 mL/3.4 mL) at −78 oC and the mixture was stirred for 30 min. Epoxide (R)-42 

(1.44 g, 6.7 mmol) in THF (3.4 mL) and HMPA (1.7 mL) was added to the reaction mixture. The 

mixture was stirred for 1 h at −78 oC and then allowed to warm to 0 oC and stirred for 2 h. The 

reaction was quenched by adding saturated aqueous NH4Cl solution. The layers were separated 

and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried 

over MgSO4 and concentrated. The crude product was purified by flash column chromatography 

(SiO2, 25% ethyl acetate in hexanes) to yield (R)-43 (1.59 g, 70%) as an oil: [α]D −6.7 (c 1.1 

CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.28 (dd, J = 9, 5.4 Hz, 1 H), 3.88-3.98 (m, 1 H), 3.66 (t, 

J = 5.4 Hz, 2 H), 2.78-2.98 (m, 4 H), 2.07-2.18 (m, 1 H), 1.76-1.96 (m, 3 H), 1.42-1.71 (m, 4 H), 

0.90 (s, 9 H), 0.07 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 67.9, 63.2, 44.1, 42.8, 34.6, 30.2, 

30.0, 28.8, 25.9, 25.8, 18.2, −5.5; HRMS for C15H32O2S2Si (M+): Calcd 336.161303; found 

336.162389. 
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TBSO
OH

S

S

 

(S)-5-(tert-Butyldimethylsilyloxy)-1-(1,3-dithian-2-yl)pentan-2-ol ((S)-43): Following the 

same procedure as above, (S)-43 (1.54 g, 60%) was obtained as an oil: [α]D +7.4 (c 1.1 CHCl3); 

1H NMR (300 MHz, CDCl3) δ 4.25 (dd, J = 9, 5.4 Hz, 1 H), 3.87-3.96 (m, 1 H), 3.64 (t, J = 5.4 

Hz, 2 H), 2.77-2.99 (m, 4 H), 2.03-2.15 (m, 1 H), 1.74-1.93 (m, 3 H), 1.40-1.70 (m, 4 H), 0.90 (s, 

9 H), 0.07 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 68.0, 63.3, 44.3, 42.8, 34.7, 30.2, 30.0, 28.9, 

26.0, 25.9, 18.3, −5.4; HRMS for C15H32O2S2Si (M+): Calcd 336.161303; found 336.162292. 

 

TBSO
OTIPSF9

S
S

 

TIPSF9 = Si(i-Pr)2C2H4C4F9 

(R)-8-((1,3-dithian-2-yl)methyl)-13,13,14,14,15,15,16,16,16-nonafluoro-10,10-diisopropyl- 

2,2,3,3-tetramethyl-4,9-dioxa-3,10-disilahexadecane ((R)-21a): Diisopropyl(3,3,4,4,5,5, 6,6,6-

nonafluorohexyl)silane 44a (1.83 g, 3.9 mmol) was added to a 10 mL flask followed by adding 

CF3SO3H (0.351 mL, 3.9 mmol) dropwise under Ar at 0 oC. The reaction mixture was stirred for 

15 min at 0 oC, then warmed to room temperature and stirred for 15 h. Then the homogeneous 

solution was cooled to 0 oC. A solution of 2,6-lutidine (0.61 mL), alcohol (R)-43 (437 mg, 1.3 

mmol) in CH2Cl2 (5 mL) was added slowly and the reaction mixture was stirred for 4 h. The 

reaction was quenched by adding saturated NH4Cl (10 mL) solution at 0 oC. The layers were 

separated and the aqueous layer was extracted with ethyl ether. The combined organic layers 

were dried over MgSO4 and concentrated. Purification of the crude product by flash column 

chromatography (5% ethyl acetate in hexanes) provided (R)-21a (748 mg, 88%) as oil: [α]D 
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−12.0 (c 1.0 CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.10 (t, J = 7.2 Hz, 2 H), 3.53-3.66 (m, 2 H), 

2.74-2.93 (m, 4 H), 2.04-2.24 (m, 3 H), 1.80-1.94 (m, 3 H), 1.47-1.65 (m, 4 H), 1.06 (m, 14 H), 

0.88 (s, 11 H), 0.04 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 69.3, 63.0, 44.0, 42.3, 33.7, 30.6, 

30.2, 28.0, 26.0, 25.9, 18.3, 17.7, 17.7, 17.7, 17.6, 13.0, 0.8, −5.4; 19F NMR (CDCl3) −126.0 (2 

F), −124.2 (2 F), −116.6 (2 F), −81.0 (3 F); HRMS for C27H49F9O2Si2S2K (M + K)+: Calcd 

735.2206; found 735.2278. 

 

TBSO
OTIPSF7

S
S

 

TIPSF7 = Si(i-Pr)2C2H4C3F7 

(S)-8-((1,3-dithian-2-yl)methyl)-13,13,14,14,15,15,15-heptafluoro-10,10-diisopropyl-2,2,3,3-

tetramethyl-4,9-dioxa-3,10-disilapentadecane ((S)-21b): Diisopropyl(3,3,4,4,5,5,5-heptafluoro 

pentyl)silane 44b (1.71 g, 5.5 mmol) was added to a 10 mL flask followed by adding CF3SO3H 

(0.379 mL, 4.2 mmol) dropwise under Ar at 0 oC. The reaction mixture was stirred for 15 min at 

0 oC, then warmed to room temperature and stirred for 15 h. Then the homogeneous solution was 

cooled to 0 oC. A solution of 2,6-lutidine (0.66 mL), alcohol (S)-43 (470 mg, 1.4 mmol) in 

CH2Cl2 (5 mL) was added slowly and the reaction mixture was stirred for 4 h. The reaction was 

quenched by adding saturated NH4Cl (10 mL) solution at 0 oC. The layers were separated and the 

aqueous layer was extracted with ethyl ether. The combined organic layers were dried over 

MgSO4 and concentrated. Purification of the crude product by flash column chromatography 

(5% ethyl acetate in hexanes) provided (S)-21b (878 mg, 90%) as oil: [α]D +11.3 (c 1.0 CHCl3); 

1H NMR (300 MHz, CDCl3) δ 4.10 (t, J = 7.2 Hz, 2 H) ), 3.52-3.66 (m, 2 H), 2.73-2.93 (m, 4 H ), 

2.05-2.24 (m, 3 H), 1.78-1.94 (m, 3 H), 1.47-1.66 (m, 4 H), 1.05 (m, 14 H), 0.88 (s, 11 H), 0.04 
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(s, 6 H); 13C NMR (75 MHz, CDCl3) δ 69.2, 62.9, 44.0, 42.3, 33.6, 30.6, 30.2, 27.9, 26.0, 25.9, 

18.3, 17.8, 17.7, 17.7, 17.6, 12.9, 0.7, −5.4; 19F NMR (CDCl3) −126.0 (2 F), −124.2 (2 F), 

−116.6 (2 F), −81.0 (3 F); HRMS for C26H49F7O2Si2S2K (M + K)+: Calcd 685.2238; found 

685.2222. 

 

TBSO
OTIPSF7,9

O  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9 

(Qrac)-6-(tert-Butyldimethylsilyloxy)-3-(perfluoroalkyldiisopropylsilyloxy)hexanal 

(M-45a,b): A solution of alcohol M-21a,b (1.34 g, 2.0 mmol) in THF/H2O (4:1, 28 mL) was 

cooled to 0 oC followed by addition of 2,6-lutidine (1.9 mL, 16 mmol) at once and 

Hg(ClO4)2•H2O (2.86 g) in portions. The reaction mixture was stirred at 0 oC for 3 h then filtered 

through a pad of celite and followed by a rinse with ethyl acetate. The filtrate was diluted with 

ethyl acetate and saturated aqueous NH4Cl. The layers were separated and the aqueous layer was 

extracted with ethyl acetate. The combined organic layers were dried over MgSO4 and 

concentrated. The crude product was purified by flash column chromatography (SiO2, 5% ethyl 

acetate in hexanes) to yield aldehyde M-45a,b (831 mg, 72%) as light yellow oil: 1H NMR (300 

MHz, CDCl3) δ 9.83 (s, 1 H), 4.33-4.37 (m, 1 H), 4.33-4.37 (m, 1 H), 2.57 (m, 2 H), 2.01-2.17 

(m, 2 H), 1.47-1.72 (m, 4 H), 1.04 (s, 14 H), 0.88 (s, 11 H), 0.04 (s, 6 H); 13C NMR (126 MHz, 

CDCl3) δ 201.4, 68.5, 62.8, 50.5, 34.3, 28.3, 25.9, 25.3, 18.3, 17.6, 17.6, 17.5, 12.8, 12.7, 0.6, 

−5.4; 19F NMR (CDCl3) −127.6 (2 F), −126.0 (2 F), −124.3 (2 F), −117.4 (2 F), −116.7 (2 F), 

−81.0 (3 F), −80.6 (3 F). 
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TBSO
OTIPSF7,9

OH  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9 

(Qrac)-6-(tert-Butyldimethylsilyloxy)-3-(diisopropylperfluoroalkylsilyloxy)hexan-1-ol (M-

46a,b): DIBAL-H (1.0 M in hexane, 2.2 mL, 2.2 mmol) was added to a solution of aldehyde M-

45a,b (811 mg, 1.39 mmol) in THF (20 mL) at −78 oC and the mixture was stirred for 1 h. The 

reaction mixture was warmed to 0 oC. Then the reaction was quenched with ethanol (1 mL) and 

saturated sodium-potassium tartrate solution (15 mL) followed by stirring it for 1 h. The layers 

were separated and the aqueous layer was extracted with ethyl acetate. The combined organic 

layers were dried over MgSO4 and concentrated. Purification of the crude product by flash 

column chromatography (25% ethyl acetate in hexanes) provided the alcohol M-46a,b (594 mg, 

73%) as a clear oil: 1H NMR (500 MHz, CDCl3) δ 4.00-4.07 (m, 1 H), 3.78-3.85 (m, 1 H), 3.69-

3.76 (m, 1 H), 3.55-3.65 (m, 2 H), 2.01-2.19 (m, 3 H), 1.79-1.88 (m, 1 H), 1.66-1.74 (m, 1 H), 

1.57-1.65 (m, 2 H), 1.46-1.55 (m, 2 H), 1.05 (s, 14 H), 0.88 (s, 11 H), 0.04 (s, 6 H); 13C NMR 

(126 MHz, CDCl3) δ 71.8, 63.0, 59.8, 37.8, 33.0, 28.5, 25.9, 25.2, 18.3, 17.6, 17.6, 17.6, 12.8, 

0.6, −5.4; 19F NMR (CDCl3) −127.6 (2 F), −126.0 (2 F), −124.2 (2 F), −117.4 (2 F), −116.7 (2 F), 

−81.0 (3 F), −80.6 (3 F). 
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TBSO
OTIPSF7,9

S N
N

NN

Ph  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9 

(Qrac)-5-(6-(tert-Butyldimethylsilyloxy)-3-(perfluoroalkyldiisopropylsilyloxy)hexylthio)-1-

phenyl-1H-tetrazole (M-47a,b): Diisopropylazodicarboxylate (0.35 mL) was added to a 

solution of the above alcohol (574 mg, 0.98 mmol), 1-phenyl-1H-tetrazole-5-thiol (486 mg, 1.73 

mmol) and triphenylphosphine (460 mg, 1.74 mmol) in THF (15 mL) at 0 oC. The reaction 

mixture was stirred at room temperature for 2.5 h. Then the reaction was quenched by adding 

saturated NaCl (20 mL) solution. The organic layer was separated and the aqueous layer was 

extracted with ethyl acetate. The combined organic layers were dried over MgSO4 and 

concentrated. Purification of the crude product by flash column chromatography (5% ethyl 

acetate in hexanes) provided the sulfide M-47a,b (670 mg, 92%) as oil: 1H NMR (500 MHz, 

CDCl3) δ 7.52-7.57 (m, 5 H), 3.97 (tt, J = 6, 5 Hz, 1 H), 3.56-3.64 (m, 2 H), 3.38-3.50 (m, 2 H), 

1.96-2.16 (m, 4 H), 1.45-1.67 (m, 4 H), 1.03 (s, 14 H), 0.088 (s, 11 H), 0.031 (s, 6 H); 13C NMR 

(126 MHz, CDCl3) δ 154.2, 133.7, 130.0, 129.8, 123.8, 71.4, 62.9, 35.6, 33.3, 29.1, 28.2, 25.9, 

25.3, 18.3, 17.7, 17.7, 17.7, 12.6, 0.6, −5.3; 19F NMR (CDCl3) −127.5 (2 F), −126.0 (2 F), 

−124.2 (2 F), −117.3 (2 F), −116.7 (2 F), −81.0 (3 F), −80.7 (3 F); HRMS for C30H50N4O2F7SSi2 

(M+): Calcd 719.3081; found 719.3055; HRMS for C31H50N4O2F9SSi2 (M+): Calcd 769.3096; 

found 769.3049. 
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TBSO
OTIPSF7,9

S
O2

N
N

NN

Ph  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9 

(Qrac)-5-(6-(tert-Butyldimethylsilyloxy)-3-

(perfluoroalkyldiisopropylsilyloxy)hexylsulfonyl)-1-phenyl-1H-tetrazole (M-2a,b): m-

Chloroperbenzoic acid (590 mg, 3.41 mmol) was added to a solution of the above sulfide (636 

mg, 0.85 mmol) in dichloromethane (10 mL) at 0 oC. The mixture was stirred for 2 h followed by 

warming to room temperature and stirring overnight. The reaction was quenched by adding 

saturated NaHCO3 solution (10 mL). The organic layer was separated and the aqueous layer was 

extracted with dichloromethane and concentrated. Purification of the crude product by flash 

column chromatography (SiO2, 10% ethyl acetate in hexanes) to provide sulfone M-2a,b (562 

mg, 85%) as oil: 1H NMR (500 MHz, CDCl3) δ 7.57-7.70 (m, 5 H), 4.03-4.09 (m, 1 H), 3.75-

3.89 (m, 2 H), 3.56-3.67 (m, 2 H), 2.03-2.24 (m, 4 H), 1.47-1.70 (m, 4 H), 1.05 (s, 14 H), 0.88 (s, 

11 H), 0.039 (s, 6 H); 13C NMR (126 MHz, CHCl3) δ 153.4, 133.0, 131.4, 129.7, 125.0, 70.4, 

62.6, 52.0, 33.0, 28.3, 25.8, 25.3, 18.2, 17.6, 17.5, 17.5, 12.7, 0.6, −5.5; 19F NMR (CDCl3) 

−127.5 (2 F), −126.0 (2 F), −124.2 (2 F), −117.3 (2 F), −116.7 (2 F), −81.0(3 F), −80.7 (3 F); IR 

(neat) cm-1 2953, 2867, 1499, 1472, 1463, 1347, 1231, 1098, 838, 776; HRMS for 

C30H50N4O4F7SSi2 (M + H)+: Calcd 751.2980; found 751.3050; HRMS for C31H50N4O4F9SSi2 

(M + H)+: Calcd 801.2948; found 801.3012. 

 

 

 

 



 88 

O
O

S N
N

NN

Ph  

(S)-5-(2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethylthio)-1-phenyl-1H-tetrazole ((S)-48): 

Diisopropylazodicarboxylate (2.8 g, 14 mmol) was added to a solution of alcohol (S)-27 (1.2 g, 

8.2 mmol), 1-phenyl-1H-tetrazole-5-thiol (2.60 g, 14.8 mmol) and triphenylphosphine (3.00 g, 

11.5 mmol) in THF (20 mL) at 0 oC. The reaction mixture was stirred at room temperature for 3 

h. Then the reaction was quenched with water. The layers were separated and the aqueous layer 

was extracted with ethyl acetate. The combined organic layers were dried over MgSO4 and 

concentrated. The crude product was purified by flash column chromatography (25% ethyl 

acetate in hexanes) to provide the (S)-sulfide (S)-48 (1.97 g, 6.45 mmol, 79%) as colorless 

crystal: [α]D −1.0 (c 1.0 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.53 (br s, 6 H), 4.18-4.27 (m, 1 

H), 4.06 (dd, J = 8.1, 6.1 Hz, 1 H), 3.59 (dd, J = 8.1, 6.6 Hz, 1 H), 3.36-3.55 (m, 2 H), 1.99-2.20 

(m, 2 H), 1.39 (s, 3 H), 1.31 (s, 3 H); 13C NMR (75 MHz, CDCl3) δ 154.1, 133.6, 130.1, 129.8, 

123.7, 109.2, 74.2, 68.9, 33.4, 29.6, 26.9, 25.5; IR (neat) cm-1 3070, 2985, 2933, 2868, 1570, 

1500, 1066; EIMS (M − CH3)+ 291; HRMS for C13H15N4O2S (M − CH3) : Calcd 291.0916; 

found 291.0919. 

 

O
O

S N
N

NN

Ph  

(R)-5-(2-(2,2-Dimethyl-1,3-dioxolan-4-yl)ethylthio)-1-phenyl-1H-tetrazole ((R)-48): 

Following the same procedure as above, the (R)-sulfide (R)-48 (2.15 g, 7.03 mmol, 86%) was 

obtained as colorless crystal: 1H NMR (300 MHz, CDCl3) δ 7.53 (br s, 6 H), 4.18-4.27 (m, 1 H), 
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4.06 (dd, J = 8.1, 6.1 Hz, 1 H), 3.59 (dd, J = 8.1, 6.6 Hz, 1 H), 3.36-3.55 (m, 2 H), 1.99-2.20 (m, 

2 H), 1.39 (s, 3 H), 1.31 (s, 3 H). 

 

HO
OH

S N
N

NN

Ph  

(S)-4-(1-Phenyl-1H-tetrazol-5-ylthio)butane-1,2-diol ((S)-49): To a solution of the above (S)-

sulfide (810 mg, 2.64 mmol) in methanol (10 mL) was treated with a drop of acetyl chloride (21 

mg). Then the reaction mixture was stirred for 30 min. Concentration of the reaction mixture 

followed by purification of the crude product with flash column chromatography (SiO2, 80% 

ethyl acetate in hexanes) provided the (S)-diol (S)-49 (650 mg, 2.45 mmol, 93%) as viscous oil: 

[α]D −7.5 (c 1.82 CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.58 (br s, 5 H), 3.85-4.13 (m, 2 H), 

3.68-3.81 (m, 1 H), 3.56-3.68 (m, 2 H), 3.42-3.55 (m, 1 H), 2.55 (br s, 1 H), 1.90-2.09 (m, 2 H); 

13C NMR (126 MHz, CDCl3) δ 155.1, 133.5, 130.4, 129.9, 124.0, 69.5, 66.4, 29.8; IR (neat) cm-1 

3384, 2936, 1644, 1596, 1499, 1462, 1388, 1318, 1280; EIMS (M + H)+ 267; HRMS for 

C10H11N4O1S(M − CH3O): Calcd 235.065358; found 235.065690. 

 

HO
OH

S N
N

NN

Ph  

(R)-4-(1-Phenyl-1H-tetrazol-5-ylthio)butane-1,2-diol ((R)-49): Following the same procedure 

as above, the (R)-diol (R)-49 (650 mg, 2.45 mmol, 93%) was obtained as viscous oil: 1H NMR 

(500 MHz, CDCl3) δ 7.58 (br s, 5 H), 3.85-4.13 (m, 2 H), 3.68-3.81 (m, 1 H), 3.56-3.68 (m, 2 H), 

3.42-3.55 (m, 1 H), 2.55 (br s, 1 H), 1.90-2.09 (m, 2 H). 
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TBSO
OH

S N
N

NN

Ph  

(S)-1-(tert-butyldimethylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butan-2-ol ((S)-50): To a 

solution of the above (S)-diol (5.40 g, 20.3 mmol) in dichloromethane (200 ml) at 0 oC was 

added imidazole (1.52 g, 22.3 mmol). Tert-butyldimethylsilyl chloride (3.67 g, 24.4 mmol) was 

added in one portion. The resulting suspension was stirred at room temperature for 14 h. The 

reaction was quenched with water. The layers were separated and the aqueous phase was 

extracted with dichloromethane. The combined organic extracts were dried over MgSO4 and 

concentrated. The residue was purified by flash column chromatography (25% ethyl acetate in 

hexanes) to provide compound (S)-50 (6.96 g, 91%) as a colorless oil: [α]D −3.0 (c 1.0 CHCl3) 

1H NMR (300 MHz, CDCl3) δ 7.56 (s, 2 H), 3.77-3.87 (m, 1 H), 3.63-3.67 (dd, J = 10.2, 6.3 Hz, 

1 H), 3.46-3.58 (m, 3 H), 2.81-2.82 (d, J = 4.5 Hz, 1 H), 1.83-2.12 (m, 2 H), 0.90 (s, 9 H), 0.07 (s, 

6 H); 13C NMR (126 MHz, CHCl3) δ 154.5, 133.7, 130.1, 129.8, 123.8, 70.0, 66.8, 32.7, 31.0, 

29.8, 25.9, 18.3, −5.4; HRMS for C13H19N4O2SSi (M − C4H9)+
 : Calcd 323.099801; found 

323.098886. 

 

TBSO
OH

S N
N

NN

Ph  

(R)-1-(tert-butyldimethylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butan-2-ol ((R)-50): 

Following the same procedure as above, compound (R)-50 (5.98 g, 90%) was obtained as a 

colorless oil: [α]D +3.1 (c 1.0 CHCl3) 1H NMR (300 MHz, CDCl3) δ 7.53 (s, 2 H), 3.73-3.83 (m, 

1 H), 3.59-3.64 (dd, J = 9.9, 6.0 Hz, 1 H), 3.43-3.55 (m, 3 H), 2.80-2.81 (d, J = 4.2 Hz, 1 H), 
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1.78-2.08 (m, 2 H), 0.87 (s, 9 H), 0.05 (s, 6 H); HRMS for C13H19N4O2SSi (M − C4H9)+
 : Calcd 

323.099801; found 323.099465. 

 

TBSO
OTIPSF13

S N
N

NN

Ph  

TIPSF13 = Si(i-Pr)2C2H4C6F13 

(S)-5-(4-(tert-Butyldimethylsilyloxy)-3-(diisopropyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-

octyl)silyloxy)butylthio)-1-phenyl-1H-tetrazole ((S)-22c): Diisopropyl(3,3,4,4,5,5,6,6,7,7,8,8-

tridecafluoro-octyl)silane 44c (540 mg, 1.17 mmol) was added to a 5 mL flask followed by 

adding CF3SO3H (0.081 mL, 0.90 mmol) dropwise under Ar at 0 oC. The reaction mixture was 

stirred for 15 min at 0 oC, then warmed to room temperature and stirred for 15 h. Then the 

homogeneous solution was cooled to 0 oC. A solution of 2,6-lutidine (0.144 mL), compound (S)-

50 (114 mg, 0.30mmol) in CH2Cl2 (5 mL) was added slowly and the reaction mixture was stirred 

for 4 h. The reaction was quenched by adding saturated NH4Cl (10 mL) solution at 0 oC. The 

organic layer was separated and the aqueous layer was extracted with ethyl ether. The combined 

organic layers were dried over MgSO4 and concentrated. Purification of the crude product by 

flash column chromatography (5% ethyl acetate in hexanes) provided (S)-22c (230 mg, 90%) as 

oil: [α]D −8.7 (c 1.1 CHCl3); 1H NMR (300 MHz, CDCl3) δ 0.042 (s, 6 H), 0.84 (s, 9 H), 1.04 (s, 

16 H) 1.96-2.18 (m, 4 H), 3.41-3.72 (m, 4 H), 3.94-3.98 (m, 1 H), 7.56 (s, 5 H); 13C NMR (75 

MHz, CDCl3) δ 154.2, 133.8, 130.0, 129.7, 123.8, 72.3, 66.7, 33.7, 29.0, 25.5, 18.3, 17.6, 17.6, 

17.2, 12.8, 12.2, 0.7, −5.3; 19F NMR (CDCl3) −126.2 (2 F), −123.3 (2 F), −122.9 (2 F), −122.0 (2 

F), −116.6 (2 F), −80.9 (3 F); HRMS for C31H46F13N4O2Si2S (M + H)+: Calcd 841.2672; found 

841.2695. 
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TBSO
OTIPSF9

S N
N

NN

Ph  

TIPSF9 = Si(i-Pr)2C2H4C4F9 

(R)-5-(4-(tert-Butyldimethylsilyloxy)-3-(diisopropyl(3,3,4,4,5,5,6,6,6-nonafluoro-

hexyl)silyloxy)butylthio)-1-phenyl-1H-tetrazole ((R)-22a): Diisopropyl(3,3,4,4,5,5,6,6,6-

nonafluorohexyl)silane 44a (416 mg, 0.90 mmol) was added to a 5 mL flask followed by adding 

CF3SO3H (0.062 mL, 0.69 mmol) dropwise under Ar at 0 oC. The reaction mixture was stirred 

for 15 min at 0 oC, then warmed to room temperature and stirred for 15 h. Then the 

homogeneous solution was cooled to 0 oC. A solution of 2,6-lutidine (0.108 mL), compound (R)-

50 (86 mg, 0.23mmol) in CH2Cl2 (5 mL) was added slowly and the reaction mixture was stirred 

for 4 h. The reaction was quenched by adding saturated NH4Cl (10 mL) solution at 0 oC. The 

organic layer was separated and the aqueous layer was extracted with ethyl ether. The combined 

organic layers were dried over MgSO4 and concentrated. Purification of the crude product by 

flash column chromatography (5% ethyl acetate in hexanes) provided (R)-22a (153 mg, 90%) as 

oil: [α]D +6.6 (c 1.1 CHCl3); 1H NMR (300 MHz, CDCl3) δ 0.042 (s, 6 H), 0.84 (s, 9 H), 1.03 (s, 

16 H) 2.03-2.17 (m, 4 H), 3.41-3.73 (m, 4 H), 3.90-3.98 (m, 1 H), 7.53-7.60 (s, 5 H); 13C NMR 

(75 MHz, CDCl3) δ 154.2, 133.7, 130.0, 129.7, 123.7, 72.2, 66.7, 33.7, 29.0, 25.8, 18.3, 17.6, 

17.6, 17.5, 12.8, 12.2, 0.7, −5.3; 19F NMR (CDCl3) −126.6 (2 F), −124.8 (2 F), −117.2 (2 F), 

−81.6 (3 F); HRMS for C29H46F9N4O2Si2S (M + H)+: Calcd 741.2736; found 741.2677. 
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HO
OTIPSF9,13

S N
N

NN

Ph  

TIPSF9 = Si(i-Pr)2C2H4C4F9, TIPSF13 = Si(i-Pr)2C2H4C6F13 

(Qrac)-2-(diisopropylperfluoroalkylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butan-1-ol 

(M-51): A solution of sulfide M-22a,c (948 mg, 1.2 mmol) in methanol (28 mL) was treated 

with acetyl chloride (0.28 mL) at − 20 oC. The reaction mixture was stirred at − 20 oC for 3 h. 

Then the reaction was quenched by adding saturated NaHCO3 (20 mL) solution. The layers were 

separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers 

were dried over MgSO4 and concentrated. Purification of the crude product by flash column 

chromatography (50% ethyl acetate in hexanes) provided the primary alcohol M-51 (488 mg, 

60%) as oil: 1H NMR (500 MHz, CDCl3) δ 7.53-7.57 (m, 5 H), 4.03 (q, J = 5.0 Hz, 1 H), 3.44-

3.70 (m, 3 H), 3.34-3.38 (m, 1 H), 2.63 (br, 1H), 2.04-2.16 (m, 4 H), 1.037 (s, 14 H), 0.849-0.894 

(m, 2 H); 13C NMR (126 MHz, CDCl3) δ 154.2, 133.5, 130.1, 129.8, 123.7, 71.7, 65.3, 33.4, 28.4, 

17.5, 17.5, 17.5, 12.6, 12.2, 0.5; 19F NMR (CDCl3) −126.6 (4 F), −124.8 (2 F), −123.8 (2 F), 

−123.4 (2 F), −122.5 (2 F), −117.2 (2 F), −117.0 (2 F), −81.6 (3 F), −81.3 (3 F); IR (neat) cm-1 

3427, 2943, 2868, 2361, 2342, 1598, 1501, 1388, 1239; HRMS for C23H32N4O2F9SSi (M + H)+: 

Calcd 627.1872; found 627.1858; HRMS for C25H32N4O2F13SSi (M + H)+: Calcd 727.1808; 

found 727.1820. 
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O
OTIPSF9,13

S N
N

NN

Ph  

TIPSF9 = Si(i-Pr)2C2H4C4F9, TIPSF13 = Si(i-Pr)2C2H4C6F13 

(Qrac)-2-(diisopropylperfluoroalkylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butanal 

(M-3a,c): To a solution of the above alcohol (20 mg, 0.026 mmol) in dichloromethane (0.5 mL) 

was added sodium bicarbonate (solid, 13 mg) followed by Dess-Martin reagent (13 mg, 0.03 

mmol). The reaction mixture was stirred for 1.5 h. Then the reaction was quenched by adding 

saturated aqueous NaHCO3 solution (2 mL), extracted with dichloromethane, dried over MgSO4 

and concentrated. The crude product was purified by flash column chromatography (SiO2, 15% 

ethyl acetate in hexanes) to provide aldehyde M-3a,c (16 mg, 0.021 mmol, 81%) as oil: 1H NMR 

(500 MHz, CDCl3) δ 9.66 (s, 1 H), 7.53-7.59 (m, 5 H), 4.32 (dd, J = 6.0, 5.7 Hz, 1 H), 3.61 (t, J 

= 6.5 Hz, 1 H), 3.20 (t, J = 6.5 Hz, 1 H), 2.30-2.37 (m, 2 H), 2.06-2.23 (m, 2 H), 1.00-1.02 (m, 

14 H), 0.85-0.94 (m, 2 H); 13C NMR (126 MHz, CDCl3) δ 0.6, 1.0, 12.6, 12.6, 17.4, 17.5, 28.2, 

32.2, 77.2, 123.8, 129.8, 130.2, 133.6, 153.5, 201.6; 19F NMR (CDCl3) −126.6 (4 F), −124.8 (2 

F), −123.8 (2 F), −123.4 (2 F), −122.5 (2 F), −117.3 (2 F), −117.0 (2 F), −81.6 (3 F), −81.3 (3 F). 

 

TBSO
OTIPSF7,9 OTIPSF9,13

S N
N

NN

Ph  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9, TIPSF13 = Si(i-Pr)2C2H4C6F13 

(Qrac)-5-((E)-10-(tert-butyldimethylsilyloxy)-3-(perfluoroalkyldiisopropylsilyloxy)-7-

(perfluoroalkyldiisopropylsilyloxy)dec-4-enylthio)-1-phenyl-1H-tetrazole (M-53a,b/a,c): 

KHMDS (0.5 M in DME, 0.45 ml, 0.225 mmol) was added to a solution of sulfone M-2a,b (0.13 

g, 0.19 mmol) in DME (5 mL) at −78 oC. After 30 min, aldehyde M-3a,c (92.3 mg, 0.244 mmol) 
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in DME (2 mL) was added. The mixture was stirred at −78 oC for 1.5 h, then overnight stirring at 

room temperature. The reaction was quenched with water. The layers were separated and the 

aqueous layer was extracted with ethyl acetate. The combined organic extracts were dried over 

MgSO4 and concentrated. Purification of the crude product by flash column chromatography 

provided E/Z mixture alkene M-53a,b/a,c (E/Z > 9:1) of product (95 mg, 80%) as oil. The (E)-

isomer was then separated by preparative chiral HPLC ((S,S) Whelk-O column, 25 cm × 2.1 

mm, hexanes: isopropanol = 95:5) to give the pure compound M-53a,b/a,c as colorless oil: 1H 

NMR (500 MHz, CDCl3) δ 7.55 (s, 5 H), 5.63 (dt, J = 16.0, 8.5 Hz, 1 H), 5.44 (dd, J = 15.5, 7.0 

Hz, 1 H), 4.32 (q, J = 6.0 Hz, 1 H), 3.81-3.83 (m, 1 H), 3.52-3.62 (m, 2 H), 3.34-3.47 (m, 2 H), 

2.17-2.29 (m, 2 H), 1.98-2.16 (m, 6 H), 1.45-1.55 (m, 4 H), 1.02 (s, 28 H), 0.87 (s, 13 H), 0.02 (s, 

6 H); 13C NMR (126 MHz, CDCl3) δ 154.5, 134.5, 134.4, 133.7, 130.1, 129.8, 128.0, 123.8, 86.0, 

72.8, 72.7, 72.1, 63.1, 39.4, 37.5, 34.7, 34.4, 32.8, 32.7, 31.6, 29.1, 29.0, 28.3, 28.2, 25.9, 25.3, 

22.7, 20.7, 18.3, 17.5, 17.5, 14.1, 12.8, 12.7, 12.7; 19F NMR (CDCl3) −128.2 (2 F), −126.6 (6 F), 

−124.8 (4 F), −123.8 (2 F), −123.4 (2 F), −122.5 (2 F), −118.0 (2 F), −117.2 (6 F), −81.6(3 F), 

−81.4 (3 F), −81.2 (3 F);IR (neat) cm-1 2955, 2928, 2856, 1740, 1698, 1501, 1367, 1124; HRMS 

(M + Na)+ for C46H72N4O3F16Si3SNa: Calcd 1171.4275; found 1171.4237. HRMS (M + Na)+ for 

C47H72N4O3F18Si3SNa: Calcd 1221.4243; found 1221.4243. HRMS (M + Na)+ for 

C48H72N4O3F20Si3SNa: Calcd 1271.4211; found 1271.4146. HRMS (M + Na)+ for 

C49H73N4O3F22Si3SNa: Calcd 1321.4179; found 1321.4214. 
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TBSO
OTIPSF7,9 OTIPSF9,13

S
O2

N
N

NN

Ph  

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9, TIPSF13 = Si(i-Pr)2C2H4C6F13 

(Qrac)-5-((E)-10-(tert-butyldimethylsilyloxy)-3-(perfluoroalkyldiisopropylsilyloxy)-7-

(perfluoroalkyldiisopropylsilyloxy)dec-4-enylsulfonyl)-1-phenyl-1H-tetrazole (M-54a,b/a,c): 

To a solution of sulfide M-53a,b/a,c (62 mg, 0.078 mmol) in ethanol (1.5 mL) was added 

oxidant (0.3 mL, prepared from 0.6 g of Mo7O24(NH4)6·4H2O in 2.5 mL of 30% w/v aq H2O2). 

The reaction mixture was stirred at room temperature for 18 h. Then the reaction was quenched 

with water. The layers were separated and the aqueous layer was extracted with ethyl acetate. 

The combined organic extracts were dried over MgSO4 and concentrated. Purification of the 

crude product by flash column chromatography provided (SiO2, 10% ethyl acetate in hexanes) to 

yield sulfone M-54a,b/a,c (60 mg, 88%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.59-7.70 (m, 5 

H), 5.66-5.77 (m, 1 H), 5.46 (dd, J = 15.5, 6.6 Hz, 1 H), 4.43 (m, 1 H), 3.75-3.92 (m, 3 H), 3.50-

3.65 (s, 2 H), 1.98-2.30 (m, 8 H), 1.45-1.55 (m, 4 H), 1.02 (s, 28 H), 0.87 (s, 13 H), 0.02 (s, 6 H); 

13C NMR (126 MHz, CDCl3) δ 153.4, 133.4, 133.3, 133.0, 131.4, 129.7, 125.0, 72.0, 71.9, 71.8, 

71.5, 71.4, 71.3, 63.0, 52.0, 39.3, 32.8, 32.7, 30.7, 30.5, 30.3, 29.7, 28.3, 26.1, 25.9, 25.8, 25.6, 

18.3, 17.6, 17.4, 12.7, 0.5, −5.2; 19F NMR (CDCl3) −128.1 (2 F), −126.6 (6 F), −124.8 (4 

F), −123.8 (2 F), −123.4 (2 F), −122.5 (2 F), −118.0 (2 F), −117.2 (6 F), −81.6(3 F), −81.4 (3 

F), −81.2 (3 F); IR (neat) cm-1 2954, 2930, 2857, 1743, 1696, 1367, 1343, 1124; HRMS (M + 

Na)+ for C46H72N4O5F16Si3SNa: Calcd 1203.4147; found 1203.4174. HRMS (M + Na)+ for 

C47H72N4O5F18Si3SNa: Calcd 1253.4103; found 1253.4142. HRMS (M + Na)+ for 

C48H72N4O5F20Si3SNa: Calcd 1303.4099; found 1303.4110. HRMS (M + Na)+ for 

C49H73N4O5F22Si3SNa: Calcd 1353.4044; found 1353.4078. 
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M-23a,b/a,c: 

TBSO

OTIPSF7,9 OTIPSF9,13 O O O O

OPMB

TBS TBS TBS TBS

 

TIPSF7 = Si(i-Pr)2C2H4C3F7, TIPSF9 = Si(i-Pr)2C2H4C4F9, TIPSF13 = Si(i-Pr)2C2H4C6F13 

KHMDS (0.5 M in DME, 55 μL, 0.225 mmol) was added to a solution of sulfone M-54a,b/a,c 

(20 mg, 0.023 mmol) in 1 mL DME at −78 oC. The reaction mixture was stirred for 30 min 

followed by addition of aldehyde 4 (24 mg, 0.029 mmol) in DME (1 mL). The reaction mixture 

was stirred at −78 oC for 1.5 h followed by overnight stirring at room temperature. The reaction 

mixture was quenched with water. The layers were separated and the aqueous layer was 

extracted with ethyl acetate. The combined organic extracts were dried over MgSO4 and 

concentrated. The residue was purified by flash column chromatography (10% ethyl acetate in 

hexanes) to yield compound M-23a,b/a,c (25 mg, 77%) as a colorless oil. The (E, E)-isomer was 

then separated by preparative chiral HPLC ((S,S) Whelk-O column, 25 cm × 2.1 mm, hexanes: 

isopropanol = 95:5). Compound M-23a,b/a,c was then demixed by preparative fluorous HPLC 

(FluoroFlash HPLC Column, 250 mm ×  20 mm, 100% MeOH) to afford four single 

quasidiastereomers (33R, 37S)-23a,b, (33R, 37R)-23a,a, (33S, 37S)-23b,c, (33S, 37R)-23a,c. 

 

TBSO

OTIPSF7 OTIPSF9 O O O O

OPMB

TBS TBS TBS TBS

R S S R S R  

(33R, 37S)-23a,b: [α]D −1.8 (c 0.5 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.8 Hz, 2 

H), 6.86 (d, J = 7.8 Hz, 2 H), 5.39-5.60 (m, 4 H), 4.41 (s, 2 H), 4.13-4.23 (m, 2 H), 3.78-3.92 (m, 
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7 H), 3.54-3.59 (m, 2 H), 3.45-3.51 (m, 2 H), 2.16-2.27 (m, 4 H), 2.03-2.15 (m, 4 H), 1.37-1.82 

(m, 12 H), 1.00-1.06 (m, 28 H), 0.85-0.89 (s, 45 H), −0.02-0.01 (m, 30 H); 13C NMR (150 MHz, 

CDCl3) δ 159.0, 136.8, 135.2, 130.8, 129.1, 126.6, 125.8, 113.7, 73.9, 72.6, 72.2, 70.9, 67.4, 67.0, 

66.9, 66.7, 63.1, 46.7, 46.5, 45.6, 41.7, 39.6, 37.8, 26.0, 26.0, 25.9, 25.9, 18.2, 18.1, 18.0, 17.6, 

17.6, 17.5, 12.8, 12.8, 12.7, 12.7, −3.5, −3.5, −3.6, −3.9, −4.2, −4.3, −4.7, −5.4; 19F NMR (CDCl3) 

−128.2 (2 F), −126.7 (2 F), −124.8 (2 F), −118.0 (2 F), −117.3 (2 F), −81.6 (3 F), −81.2 (3 F). 

TBSO

OTIPSF9 OTIPSF9 O O O O

OPMB

TBS TBS TBS TBS

R R  

(33R, 37R)-23a,a: [α]D −4.4 (c 1.1 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.8 Hz, 2 

H), 6.86 (d, J = 7.8 Hz, 2 H), 5.39-5.60 (m, 4 H), 4.41 (s, 2 H), 4.13-4.23 (m, 2 H), 3.78-3.92 (m, 

7 H), 3.54-3.59 (m, 2 H), 3.45-3.51 (m, 2 H), 2.16-2.27 (m, 4 H), 2.03-2.15 (m, 4 H), 1.37-1.82 

(m, 12 H), 1.00-1.06 (m, 28 H), 0.85-0.89 (s, 45 H), −0.02-0.01 (m, 30 H); 13C NMR (150 MHz, 

CDCl3) δ 159.0, 136.6, 135.4, 130.9, 129.1, 126.5, 125.7, 113.7, 73.7, 72.6, 72.3, 70.8, 67.3, 67.0, 

67.0, 66.7, 63.2, 46.7, 46.6, 45.7, 42.0, 39.6, 37.8, 26.0, 26.0, 25.9, 25.6, 18.3, 18.1, 18.0, 17.6, 

17.6, 17.5, 13.0, 12.8, 12.7, −3.5, −3.9, −4.2, −4.3, −4.7, −5.4; 19F NMR (CDCl3) −126.7 (4 

F), −124.8 (4 F), −117.3 (4 F), −81.6 (6 F). 

TBSO

OTIPSF7 OTIPSF13 O O O O

OPMB

TBS TBS TBS TBS

S S  

(33S, 37S)-23b,c: [α]D −7.7 (c 0.7 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.8 Hz, 2 

H), 6.86 (d, J = 7.8 Hz, 2 H), 5.39-5.60 (m, 4 H), 4.41 (s, 2 H), 4.13-4.23 (m, 2 H), 3.78-3.92 (m, 

7 H), 3.54-3.59 (m, 2 H), 3.45-3.51 (m, 2 H), 2.16-2.27 (m, 4 H), 2.03-2.15 (m, 4 H), 1.37-1.82 

(m, 12 H), 1.00-1.06 (m, 28 H), 0.85-0.89 (s, 45 H), −0.02-0.01 (m, 30 H); 13C NMR (150 MHz, 
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CDCl3) δ 159.0, 136.8, 135.2, 130.8, 129.1, 126.6, 125.8, 113.7, 73.9, 72.6, 72.2, 70.9, 67.4, 67.0, 

66.9, 66.7, 63.1, 46.7, 46.5, 45.6, 41.7, 39.6, 37.8, 26.0, 26.0, 25.9, 25.9, 18.2, 18.1, 18.0, 17.6, 

17.6, 17.5, 12.8, 12.8, 12.7, 12.7, −3.5, −3.5, −3.6, −3.9, −4.2, −4.3, −4.7, −5.4; 19F NMR (CDCl3) 

−128.1 (2 F), −126.7 (2 F), −123.8 (2 F), −123.4 (2 F), −122.5 (2 F), −117.9 (2 F), −117.1 (2 F), 

−81.3 (3 F), −81.2 (3 F). 

TBSO

OTIPSF9 OTIPSF13 O O O O

OPMB

TBS TBS TBS TBS

S R  

(33S, 37R)-23a,c: [α]D −1.6 (c 0.8 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.8 Hz, 2 

H), 6.86 (d, J = 7.8 Hz, 2 H), 5.39-5.60 (m, 4 H), 4.41 (s, 2 H), 4.13-4.23 (m, 2 H), 3.78-3.92 (m, 

7 H), 3.54-3.59 (m, 2 H), 3.45-3.51 (m, 2 H), 2.16-2.27 (m, 4 H), 2.03-2.15 (m, 4 H), 1.37-1.82 

(m, 12 H), 1.00-1.06 (m, 28 H), 0.85-0.89 (s, 45 H), −0.02-0.01 (m, 30 H); 13C NMR (150 MHz, 

CDCl3) δ 159.0, 136.8, 135.4, 130.8, 129.1, 126.6, 125.7, 113.7, 74.0, 72.6, 72.3, 70.9, 67.3, 67.0, 

66.9, 66.7, 63.2, 46.7, 46.6, 45.6, 41.6, 39.5, 37.8, 26.0, 26.0, 25.9, 25.9, 18.2, 18.1, 18.0, 17.6, 

17.6, 17.5, 12.8, 12.8, 12.7, 12.7, −3.5, −3.5, −3.6, −3.9, −4.2, −4.3, −4.7, −5.4; 19F NMR (CDCl3) 

−126.6 (4 F), −124.8 (2 F), −123.8 (2 F), −123.4 (2 F), −122.5 (2 F), −117.3 (2 F), −117.0 (2 F), 

−81.6 (3 F), −81.3 (3 F). 

 

OPMB

OH OH OH OH OH OH
HO

S R  

(4S,6E,8R,10E,12S,14R,16S,18R)-20-(4-methoxybenzyloxy)icosa-6,10-diene-

1,4,8,12,14,16,18-heptaol ((33R, 37S)-24) : 

TASF (15 mg) in DMF (0.2 mL) was added to a solution of (33R, 37S)-23a,b (5.0 mg) in DMF 

(1 mL) at 0 °C. The solution was stirred for overnight after warming to room temperature. DMF 
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was removed by speed-vacuum. The crude product was purified by flash column 

chromatography (20% MeOH in CH2Cl2) to afford compound (33R, 37S)-24 (1.1 mg, 75%) as 

oil: [α]D +1.0 (c 1.1 CHCl3); 1H NMR (700 MHz, MeOD) δ 7.26 (d, J = 8.4 Hz, 2 H), 6.89 (d, J 

= 8.4 Hz, 2 H), 5.63-5.71 (m, 2 H), 5.51-5.59 (m, 2 H), 4.43 (s, 2 H), 4.33 ( m, 1 H), 4.01-4.11 

(m, 3 H), 3.96-4.01 (m, 1 H), 3.78 (s, 3 H), 3.53-3.66 (m, 5 H), 2.15-2.31 (m, 4 H), 1.64-1.79 (m, 

4 H), 1.47-1.63 (m, 6 H), 1.38-1.45 (m, 2 H); 13C NMR (175 MHz, MeOD) δ 160.82, 137.25, 

136.18, 131.70, 130.54, 128.96, 127.61, 114.72, 73.73, 73.34, 72.16, 70.32, 68.27, 66.90, 66.25, 

66,20, 63.03, 55.66, 46.64, 46.35, 46.22, 41.44, 41.41, 38.86, 34.17, 29.86; EIMS (M + Na)+ 549. 

 

OPMB

OH OH OH OH OH OH
HO

R R  

(4R,6E,8R,10E,12S,14R,16S,18R)-20-(4-methoxybenzyloxy)icosa-6,10-diene-

1,4,8,12,14,16,18-heptaol ((33R, 37R)-24): 

Following the same procedure as above, compound (33R, 37R)-24 was obtained as oil: [α]D +3.2 

(c 1.0 CHCl3); 1H NMR (700 MHz, MeOD) δ 7.26 (d, J = 8.4 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 2 H), 

5.63-5.71 (m, 2 H), 5.51-5.59 (m, 2 H), 4.43 (s, 2 H), 4.33 ( m, 1 H), 4.01-4.11 (m, 3 H), 3.96-

4.01 (m, 1 H), 3.78 (s, 3 H), 3.53-3.66 (m, 5 H), 2.15-2.31 (m, 4 H), 1.64-1.79 (m, 4 H), 1.47-

1.63 (m, 6 H), 1.38-1.45 (m, 2 H); 13C NMR (175 MHz, MeOD) δ 160.81, 137.23, 136.19, 

131.69, 130.54, 128.80, 127.64, 114.71, 73.73, 73.32, 72.10, 70.33, 68.27, 66.89, 66.24, 66,20, 

63.03, 55.65, 46.64, 46.35, 46.21, 41.43, 41.36, 38.86, 34.13, 29.89; EIMS (M + Na)+ 549. 
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OPMB

OH OH OH OH OH OH
HO

S S  

(4S,6E,8S,10E,12S,14R,16S,18R)-20-(4-methoxybenzyloxy)icosa-6,10-diene-

1,4,8,12,14,16,18-heptaol ((33S, 37S)-24): 

Following the same procedure as above, compound (33S, 37S)-24 was obtained as oil: [α]D +4.4 

(c 1.0 CHCl3); 1H NMR (700 MHz, MeOD) δ 7.26 (d, J = 8.4 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 2 H), 

5.63-5.71 (m, 2 H), 5.51-5.59 (m, 2 H), 4.43 (s, 2 H), 4.33 ( m, 1 H), 4.01-4.11 (m, 3 H), 3.96-

4.01 (m, 1 H), 3.78 (s, 3 H), 3.53-3.66 (m, 5 H), 2.15-2.31 (m, 4 H), 1.64-1.79 (m, 4 H), 1.47-

1.63 (m, 6 H), 1.38-1.45 (m, 2 H); 13C NMR (175 MHz, MeOD) δ 160.82, 137.20, 136.19, 

131.70, 130.54, 128.84, 127.69, 114.73, 73.73, 73.36, 72.12, 70.34, 68.28, 66.93, 66.26, 66,22, 

63.03, 55.67, 46.62, 46.35, 46.16, 41.45, 41.36, 38.86, 34.12, 29.90; EIMS (M + Na)+ 549. 

 

OPMB

OH OH OH OH OH OH
HO

S R  

(4R,6E,8S,10E,12S,14R,16S,18R)-20-(4-methoxybenzyloxy)icosa-6,10-diene-

1,4,8,12,14,16,18-heptaol ((33S, 37R)-24): 

Following the same procedure as above, compound (33S, 37R)-24 was obtained as oil: [α]D +0.8 

(c 0.8 CHCl3); 1H NMR (700 MHz, MeOD) δ 7.26 (d, J = 8.4 Hz, 2 H), 6.89 (d, J = 8.4 Hz, 2 H), 

5.63-5.71 (m, 2 H), 5.51-5.59 (m, 2 H), 4.43 (s, 2 H), 4.33 ( m, 1 H), 4.01-4.11 (m, 3 H), 3.96-

4.01 (m, 1 H), 3.78 (s, 3 H), 3.53-3.66 (m, 5 H), 2.15-2.31 (m, 4 H), 1.64-1.79 (m, 4 H), 1.47-

1.63 (m, 6 H), 1.38-1.45 (m, 2 H); 13C NMR (175 MHz, MeOD) δ 160.81, 137.22, 136.16, 

131.69, 130.54, 129.03, 127.66, 114.72, 73.73, 73.37, 72.15, 70.33, 68.27, 66.90, 66.24, 66,19, 

63.03, 55.66, 46.64, 46.36, 46.18, 41.44, 41.41, 38.86, 34.18, 29.86; EIMS (M + Na)+ 549. 
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TBSO
OTBS

S
S

 

(R)-2-(2,5-bis(tert-Butyldimethylsilyloxy)pentyl)-1,3-dithiane (57): t-BuLi (1.7 M in pentane, 

10.0 mL, 17.0 mmol) was added to a solution of 1,3-dithiane (1.80 g, 15.0 mmol) in THF (60 

mL) at −78 oC. After 30 min at −78 oC, epoxide (R)-42 (3.24 g, 15.0 mmol) in THF (3 mL) was 

added followed by the addition of dry HMPA (1 mL). After 2 h −10 oC, the reaction mixture was 

cooled to −78 oC followed by slow addition of TBSOTf (4.36 g, 3.8 mL, 16.5 mmol). After 1 h, 

the mixture was warmed to room temperature and quenched with water (100 mL). The organic 

layer was separated and the aqueous layer was extracted with ethyl acetate. The combined 

organic layers were dried over MgSO4 and concentrated. The crude product was purified by flash 

column chromatography (SiO2, 10% ethyl acetate in hexanes) to provide the dithiane 57 (5.6 g, 

83%) as an oil: 1H NMR (300 MHz, CDCl3) δ 4.10 (dd, J = 8.7, 5.8 Hz, 1 H), 3.92-4.01 (m, 1 

H), 3.55-3.60 (m, 2 H), 2.70-2.95 (m, 4 H), 2.05-2.15 (m, 1 H), 1.73-1.92 (m, 3 H), 1.50-1.53 (m, 

4 H), 0.90 (s, 18 H), 0.10 (s, 3 H), 0.07 (s, 3 H), 0.04 (s, 6 H),; 13C NMR (75 MHz, CDCl3) δ 

68.4, 63.2, 44.2, 42.5, 33.7, 30.7, 30.2, 28.0, 26.0, 18.4, 18.1, −4.3, −4.5, −5.2; EIMS (M − tBu)+ 

393; HRMS for C17H37O2S2Si2 (Μ − tBu)+ : Calcd 393.1774; found 393.1780. 
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TBSO
OTBS

O  

(R)-3,6-bis(tert-Butyldimethylsilyloxy)hexanal (58): Methyl iodide (0.2 mL) and K2CO3 (258 

mg, 1.87 mmol) were added to a solution of dithiane 57 (800 mg, 1.77 mmol) in aqueous 

acetonitrile (MeCN/H2O, 6:1/2.1 mL). The reaction mixture was stirred for 5 h at 45 oC and then 

diluted with ether and water. The organic layer was separated and the aqueous layer was 

extracted with ether. The combined organic layers were dried over MgSO4 and concentrated. The 

crude product was purified by flash column chromatography (SiO2, 20% ethyl acetate in 

hexanes) to give the aldehyde 58 (514 mg, 80%) as an oil: [α]D −3.74 (c 1.15 CHCl3); 1H NMR 

(300 MHz, CDCl3) δ 9.79-9.81 (m, 1 H), 4.19-4.26 (m, 1 H), 3.57-3.63 (m, 2 H), 2.49-2.54 (m, 2 

H), 1.47-1.65 (m, 4 H), 0.88 (s, 9 H), 0.86 (s, 9 H), 0.07 (s, 3 H), 0.05 (s, 3 H), 0.03 (s, 6 H); 13C 

NMR (75 MHz, CDCl3) δ 202.2, 68.1, 62.9, 50.7, 34.2, 28.4, 25.9, 25.7, 18.3, 18.0, −4.4, −4.7, 

−5.3; IR (neat) cm-1 2954, 2929, 2851, 2721, 1723, 1470, 1249; EIMS (M − tBu)+ 303; HRMS 

for C14H31O3Si2 (M − tBu)+: Calcd 303.1812; found 303.1805. 

 

TBSO
OTBS

OH  

(R)-3,6-bis(tert-Butyldimethylsilyloxy)hexan-1-ol (59): DIBAL-H (1.0 M in hexane, 2.38 mL, 

2.38 mmol) was added to a solution of aldehyde 58 (0.66 g, 1.83 mmol) in THF (20 mL) at −78 

oC and the mixture was stirred for 1 h. The reaction mixture was warmed to 0 oC, followed by 

the addition of ethanol (1 mL) and saturated sodium-potassium tartrate solution (15 mL). After 

stirring for 1 h, the organic layer was separated and the aqueous layer was extracted with ethyl 

acetate. The combined organic layers were dried over MgSO4 and concentrated. Purification of 

the crude product by flash column chromatography (25% ethyl acetate in hexanes) provided the 
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alcohol 59 (650 mg, 98%) as  an oil: [α]D −21.0 (c 0.2 CHCl3); 1H NMR (500 MHz, CDCl3) δ 

3.91-3.95 (m, 1 H), 3.78-3.83 (m, 1 H), 3.67-3.72 (m, 1 H), 3.57-3.63 (m, 2 H), 2.60 (br s, 1 H), 

1.76-1.83 (m, 1 H), 1.62-1.69 (m, 1 H), 1.54-1.60 (m, 2 H), 1.47-1.53 (m, 2 H), 0.88 (s, 18 H), 

0.08 (s, 3 H), 0.07 (s, 3 H), 0.03 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 71.7, 63.2, 60.2, 37.9, 

33.3, 28.7, 26.0, 25.9, 18.4, 18.0, −4.3, −4.7, −5.2; IR (neat) cm-1 3366, 2953, 2930, 2857, 1471, 

1254, 1096, 835, 775. 

 

OTBS

S N
N

NN
Ph

TBSO  

(R)-5-(3,6-bis(tert-Butyldimethylsilyloxy)hexylthio)-1-phenyl-1H-tetrazole (60):  

Diisopropylazodicarboxylate (589 mg, 2.90 mmol) was added to a solution of alcohol 59 (0.65 g, 

1.8 mmol), 1-phenyl-1H-tetrazole-5-thiol (486 mg, 2.73 mmol) and triphenylphosphine (621 mg, 

2.36 mmol) in THF (20 mL) at 0 oC. The reaction mixture was stirred at room temperature for 

2.5 h and quenched with saturated NaCl (20 mL) solution. The organic layer was separated and 

the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over 

MgSO4 and concentrated. Purification of the crude product by flash column chromatography 

(10% ethyl acetate in hexanes) provided sulfide 60 (940 mg, 99%) as an oil: [α]D −17.8 (c 0.28 

CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.51-7.59 (m, 5 H), 3.82-3.88 (m, 1 H), 3.55-3.64 (m, 2 

H), 3.36-3.50 (m, 2 H), 1.89-2.05 (m, 2 H), 1.48-1.60 (m, 4 H), 0.88 (s, 18 H), 0.053 (s, 3 H), 

0.047 (s, 3 H), 0.03 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 154.4, 133.8, 130.1, 129.8, 123.8, 

74.3, 63.1, 36.0, 33.3, 29.6, 28.4, 26.0, 25.9, 18.3, 18.1, −4.3, −4.5, −5.2; HRMS for 

C25H46N4O2SSi2Na (M + Na)+: Calcd 545.2778; found 545.2780. 
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OTBS

S
O2

N
N

NN
Ph

TBSO

 

(R)-5-(3,6-bis(tert-Butyldimethylsilyloxy)hexylsulfonyl)-1-phenyl-1H-tetrazole  (61):  

m-Chloroperperbenzoic acid (684 mg, 3.95 mmol) was added to a solution of sulfide 60 (0.94 g, 

1.8 mmol) in dichloromethane (20 mL) at 0 oC. The mixture was stirred for 2 h at 0 oC followed 

by overnight stirring at room temperature. The mixture was quenched with saturated NaHCO3 

solution (25 mL) followed by separation of the layers. The aqueous layer was extracted with 

dichloromethane and combined organic layers were dried over MgSO4 and concentrated. 

Purification of the crude product by flash column chromatography (SiO2, 10% ethyl acetate in 

hexanes) gave the sulfone 61 (863 mg, 88%) as an oil: [α]D −4.1 (c 1.0 CHCl3); 1H NMR (500 

MHz, CDCl3) δ 7.69-7.71 (m, 2 H), 7.59-7.63 (m, 3 H), 3.90-3.96 (m, 1 H), 3.85 (ddd, J = 14.7, 

11.5, 5.5 Hz, 1 H), 3.77 (ddd, J = 14.7, 11.0, 4.6 Hz, 1 H), 3.58-3.66 (m, 2 H), 2.11-2.20 (m, 1 

H), 2.01-2.10 (m, 1 H), 1.48-1.67 (m, 4 H), 0.902 (s, 9 H), 0.90 (s, 9 H), 0.09 (s, 3 H), 0.08 (s, 3 

H), 0.05 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 153.5, 133.1, 131.4, 129.7, 125.1, 69.9, 62.9, 

52.6, 33.2, 28.8, 28.4, 26.0, 25.9, 18.3, 18.1, −4.4, −4.6, −5.2; IR (neat) cm-1 2953, 2930, 2857, 

1499, 1463, 1343, 1254, 1096, 836, 776; HRMS for C25H46N4O4SSi2Na (M + Na)+: Calcd 

577.2676; found 577.2680. 

 

OTBS

S
O2

N
N

NN
Ph

HO

 

(R)-4-(tert-Butyldimethylsilyloxy)-6-(1-phenyl-1H-tetrazol-5-ylsulfonyl)hexan-1-ol (62): 
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A solution of HF•pyr (10 mL, prepared by slow addition of 6 mL HF•pyr to a solution 24 mL 

pyridine in 50 mL THF at 0 oC) was added to a solution of sulfone 61 (0.10 g, 0.18 mmol) in 

THF at 0 oC. The reaction mixture was stirred for 6 h at room temperature. The reaction was 

slowly quenched with saturated aqueous NaHCO3 solution, followed by extraction of aqueous 

layer with ethyl acetate. The combined organic layers were washed with CuSO4 solution, dried 

over MgSO4 and concentrated. The crude product was purified by flash column chromatography 

to yield the alcohol 62 (81 mg, 76%) as an oil: [α]D −1.1 (c 0.72 CHCl3); 1H NMR (300 MHz, 

CDCl3) δ 7.26-7.73 (m, 5 H), 3.95 (m, 2 H), 3.74-3.87 (m, 2 H), 3.67 (br s, 1 H), 2.06-2.21 (m, 2 

H), 1.57-1.65 (m, 6 H), 0.88-0.99 (m, 9 H),0.09 (d, 6 H); 13C NMR (75 MHz, CHCl3) δ 153.6, 

133.2, 131.5, 129.8, 125.2, 69.8, 62.8, 52.3, 33.1, 28.8, 28.4, 25.9, 18.1, −4.4, −4.5; IR (neat) cm-

1 3377, 2953, 2930, 2885, 2858, 1596, 1498, 1463, 1343; EIMS (M + H)+ 441; HRMS for 

C15H23N4O4SiS (M − tBu)+: Calcd 383.1209; found 383.1203. 

 

(Boc)2N
OTBS

S
O2

N
N

NN
Ph

 

(R)-4-(tert-butyldimethylsilyloxy)-6-(1-phenyl-1H-tetrazol-5-ylsulfonyl) N,N-diBoc-hexan-1- 

amine (2): To a solution of alcohol 62 (120 mg, 0.27 mmol) in THF (1 mL) were added 

triphenylphosphine (107 mg, 0.41 mmol), di-tert-butyl-iminodicarboxylate (94 mg, 0.43 mmol)  

and diisopropylazodicarboxylate (99 mg, 0.49 mmol). After 16 h, the reaction mixture was 

concentrated and the crude product was purified by flash column chromatography to yield 

fragment 2 (128 mg, 74%) as an oil: [α]D
 −3,3 (c 1.21 CHCl3) 1H NMR (500 MHz, CDCl3) δ 

7.69-7.72 (m, 2 H), 7.60-7.64 (m, 3 H), 3.74-3.86 (m, 2 H), 3.89-3.93 (m, 1 H), 3.57 (t, J = 7.0 

Hz, 2 H), 2.11-2.18 (m, 1 H), 2.01-2.08 (m, 1 H), 1.41-1.69 (m, 22 H), 0.90 (s, 9 H), 0.084 (s, 3 
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H), 0.075 (s, 3 H); 13C NMR (151 MHz, CDCl3) δ 153.5, 152.8, 133.1, 131.5, 129.8, 125.1, 82.3, 

69.7, 52.6, 46.2, 34.0, 28.9, 28.2, 25.9, 24.9, 18.1, −4.3, −4.5; IR (neat) cm-1 2955, 2930, 2857, 

1734, 1695, 1344; HRMS for C29H49N5O7SiSNa: Calcd 662.3020; found 662.3020. 

 

OTBS
TBSO

S N
N

NN
Ph

 

(S)-5-(3,4-bis(tert-Butyldimethylsilyloxy)butylthio)-1-phenyl-1H-tetrazole (63): To a solution 

of diol (S)-49 (830 mg, 3.14 mmol) in dichloromethane (30 mL) at −78 oC were added 2,6-

lutidine (1.98 g, 18.5 mmol) and TBSOTf (1.70 g, 6.45 mmol). The reaction mixture was stirred 

at −78 oC for 1 h followed by warming it to 0 oC. The reaction mixture was poured into water 

followed by separation of the organic layer. The aqueous layer was extracted with 

dichloromethane and the combined organic extracts were dried over MgSO4 and concentrated. 

The crude product was purified by flash column chromatography (SiO2, 5% ethyl acetate in 

hexanes) to yield the TBS ether 63 (1.54 g, 3.11 mmol, 99%) as an oil: [α]D −22.6 (c 0.72 

CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.53-7.60 (m, 6 H), 3.80-3.85 (m, 1 H), 3.50-3.60 (m, 2 

H), 3.41-3.47 (m, 2 H), 2.09-2.16 (m, 1 H), 1.90-1.98 (m, 1 H), 0.89 (s, 9 H), 0.87 (s, 9 H), 0.07 

(s, 6 H), 0.05 (s, 3 H), 0.04 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ 154.5, 133.8, 130.1, 129.8, 

123.9, 71.7, 66.9, 33.6, 29.5, 26.0, 25.9, 18.3, 18.1, −4.2, −4.7, −5.3; IR (neat) cm-1 2929, 2857, 

1598, 1501, 1472, 1388, 1253, 837; HRMS for C23H42N4O2Si2S (M + Na)+: Calcd 517.2465; 

found 517.2424. 

 

 

 



 108 

 

OTBS
HO

S N
N
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(S)-2-(tert-Butyldimethylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butan-1-ol (64):  

To a solution of TBS ether 63 (810 mg, 1.63 mmol) in THF (10 mL) at 0 oC was added HF•pyr 

(20 mL, prepared by slow addition of 6 mL HF•pyr to a solution of 24 mL pyridine in 50 mL 

THF at 0 oC). The mixture was stirred for 1 h at 0 oC and 5 h at room temperature. The reaction 

mixture was treated with saturated aqueous NaHCO3 solution (40 mL) and the aqueous layer was 

extracted with ethyl acetate. The combined organic layers were washed with sat. aq. CuSO4, 

dried over MgSO4 and concentrated. The crude product was purified by flash column 

chromatography (SiO2, 25% ethyl acetate in hexanes) to yield the alcohol 64 (396 mg, 1.04 

mmol, 64%) as an oil: [α]D −6.76 (c 4.36 CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.53-7.58 (m, 5 

H), 3.92 (dt, J = 10.5, 5.0 Hz, 1 H), 3.62 (dt, J = 10.1, 5.0 Hz, 1 H), 3.55 (ddd, J = 11.5, 7.3, 4.6 

Hz, 1 H), 3.44-3.51 (m, 1 H), 3.33-3.41 (m, 1 H), 2.38 (dd, J = 6.9, 5.0 Hz, 1 H), 2.06-2.11 (m, 2 

H), 0.89 (s, 9 H), 0.08 (s, 6 H); 13C NMR (126 MHz, CDCl3) δ 154.3, 133.6, 130.2, 129.8, 123.8, 

71.2, 65.8, 33.3, 29.1, 25.8, 18.1, −4.5, −4.6; IR (neat) cm-1 3441, 3064, 2929, 2884, 2857, 1597, 

1500, 1388, 1251; HRMS for C13H19N4O2SiS (M − tBu)+: Calcd 323.0998; found 323.0995. 

 

OTBS
O

S N
N

NN
Ph

 

(S)-2-(tert-Butyldimethylsilyloxy)-4-(1-phenyl-1H-tetrazol-5-ylthio)butanal (3): To a solution 

of alcohol 64 (0.11 g, 0.28 mmol) in dichloromethane (5 mL) was added sodium bicarbonate 

(solid, 73 mg) and Dess-martin reagent (184 mg, 0.430 mmol). The reaction mixture was stirred 
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for 1.5 h and then quenched with sat. aq. NaHCO3 solution (2 mL). The layers were separated 

and the aqueous layer was extracted with dichloromethane. Combined organic layers were dried 

over MgSO4 and concentrated. The crude product was purified by flash column chromatography 

(SiO2, 15% ethyl acetate in hexanes) to provide the aldehyde 3 (91 mg, 0.24 mmol, 86%) as an 

oil: [α]D −13.1 (c 2.57 CHCl3); 1H NMR (500 MHz, CDCl3) δ 9.64 (s, 1 H), 7.52-7.59 (m, 5 H), 

4.17 (dd, J = 7.3, 4.6 Hz, 1 H), 3.47 (t, J = 6.9 Hz, 2 H), 2.24-2.31 (m, 1 H), 2.19 (sex, J = 6.9 

Hz, 1 H), 0.92 (s, 9 H), 0.10 (s, 3 H), 0.08 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ 202.9, 153.8, 

133.6, 130.2, 129.9, 123.9, 76.1, 32.0, 28.7, 25.8, 18.2, −4.5, −4.9; IR (neat) cm-1 3071, 2953, 

2855, 2709, 1735, 1593, 1500, 1390; HRMS for C17H27N4O2SSi (M + H)+: Calcd 379.1624; 

found 379.1648. 

 

HO
OH

S

S

 

(S)-3-(1,3-Dithian-2-yl)propane-1,2-diol (65): To a solution of aldehyde (S)-28 (1.80 g, 12.5 

mmol) in CH2Cl2 (130 mL) were added 1,3-propanedithiol (2.60 mL, 37.5 mmol, 3 equiv) and 

BF3•Et2O (4.7 mL)  at 0 oC for 1 h. The reaction mixture was diluted with ether, washed with 3% 

aqueous NaOH. The aqueous layer was extracted with ethyl acetate, and the combined organic 

layers were washed with saturated aqueous NH4Cl solution, dried over MgSO4 and concentrated. 

The crude product was purified by flash column chromatography (100% ethyl acetate) to yield 

the diol 65 (1.9 g, 9.8 mmol, 78%): [α]D −9.5 (c 0.4 CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.26 

(dd, J = 8.8, 5.5 Hz, 1 H), 3.99-4.10 (m, 1 H), 3.67 (dd, J = 11.0, 2.2 Hz, 1 H), 3.48 (dd, J = 11.0, 

7.1 Hz, 1 H), 2.81-2.98 (m, 5 H), 2.49 (br s, 1 H), 2.08-2.18 (m, 1 H), 1.79-1.99 (m, 3 H); 13C 

NMR (75 MHz, CHCl3) δ 69.1, 66.5, 43.8, 38.5, 30.3, 30.0, 25.8; IR (neat) cm-1 3386, 2931, 
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2899, 1422, 1276; EIMS (M+) 194, (M − H2O)+ 176; HRMS for C7H14O2S2: Calcd 194.0435; 

found 194.0442. 

 

TBSO
OTBS

S S

 

(S)-2-(2,3-bis(tert-Butyldimethylsilyloxy)propyl)-1,3-dithiane (66): To a solution of  diol 65 

(1.4 g, 7.2 mmol) in dichloromethane (30 mL) were added 2,6-lutidine (0.88 mL, 15 mmol) and 

TBSOTf (1.7 mL, 15 mmol) at −78 oC. Then the mixture was warmed to 0 oC and stirred for 

additional 1 h. It was poured into water (30 mL) and the layers were separated. The aqueous 

layer was extracted with dichloromethane. The combined organic extracts were dried over 

MgSO4 and concentrated. Purification of the crude product by flash column chromatography 

(5% ethyl acetate in hexanes) gave the TBS ether 66 (2.9 g, 6.9 mmol, 95%): [α]D −28.3 (c 11.9 

CHCl3); 1H NMR (300 MHz, CDCl3) δ 4.16 (dd, J = 10.1, 4.7 Hz, 1 H), 3.92-4.00 (m, 1 H), 3.58 

(dd, J = 10.1, 5.0 Hz, 1 H), 3.40 (dd, J = 10.1, 6.6 Hz, 1 H), 2.78-2.91 (m, 4 H), 1.99-2.16 (m, 2 

H), 1.84-1.97 (m, 1 H), 1.77 (ddd, J = 13.7, 8.8, 4.7 Hz, 1 H), 0.90 (s, 18 H), 0.13 (s, 3 H), 0.09 

(s, 3 H), 0.06 (s, 6 H); 13C NMR (75 MHz, CHCl3) δ 69.5, 67.5, 43.8, 40.4, 30.5, 29.9, 26.1, 

26.0, 25.9, 18.3, 18.1, −4.2, −4.7, −5.3; IR (neat) cm-1 2929, 2897, 2857, 1472, 1256; EIMS (M+) 

422, (M − CH3)+ 407, (M − tBu)+ 365;  HRMS for C19H42O2Si2S2: Calcd 422.2165; found 

422.2150. 
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SS
TBSO OPMB

O OH
TBS

 

(R)-1-(2-((S)-2,3-bis(tert-Butyldimethylsilyloxy)propyl)-1,3-dithian-2-yl)-3-(4-methoxybenzy 

loxy)propan-2-ol (69): t-BuLi (1.7 M in pentane, 1 mL, 1.7 mmol) was added to a solution of 

dithiane 66 (682 mg, 1.61 mmol) in THF (2.4 mL) and HMPA (0.7 mL) at –78 oC. After 10 min, 

epoxide 68 (196 mg, 1.77 mmol) in THF (1 mL) was added. After 15 min, it was warmed to 0 oC 

and stirred for 1 h. The reaction mixture was poured into saturated aqueous NH4Cl solution (20 

mL) and the aqueous layer was extracted with ethyl acetate. The combined organic layers were 

dried over MgSO4, concentrated and the crude product was purified by flash column 

chromatography (SiO2, 20% ethyl acetate in hexanes) to provide the product 69 (765 mg, 77%) 

as an oil: [α]D −1.0 (c 0.24 CHCl3); 1H NMR (600 MHz, CDCl3) δ  7.27 (d, J = 8.8 Hz, 2 H), 

6.88 (d, J = 8.8 Hz, 2 H), 4.50 (s, 2 H), 4.27-4.33 (m, 1 H), 4.06-4.10 (m, 1 H), 3.81 (s, 3 H), 

3.60 (dd, J = 9.6, 4.7 Hz, 1 H), 3.39-3.45 (m, 3 H), 3.11 (d, J = 3.0 Hz, 1 H), 2.84-2.93 (m, 3 H), 

2.73-2.77 (m, 1 H), 2.60 (dd, J = 15.4, 3.0 Hz, 1 H), 2.26 (dd, J = 15.4, 8.2 Hz, 1 H), 2.03-2.06 

(m, 1 H), 1.90-1.99 (m, 3 H), 0.92 (s, 9 H), 0.88 (s, 9 H), 0.13 (s, 3 H), 0.10 (s, 3 H), 0.08 

(doubled, 6 H); 13C NMR (75 MHz, CDCl3) δ 159.2, 129.3, 113.7, 74.2, 72.9, 71.0, 67.6, 67.5, 

55.2, 51.7, 43.8, 43.7, 26.5, 26.0, 26.0, 24.8, 18.3, 18.0, −3.9, −5.3; IR (neat) cm-1 3467, 2953, 

2927, 2855, 1613, 1513, 1249, 1100, 835; EIMS (M − tBu)+ 559;  HRMS for C26H47O5Si2S2 (M 

− tBu)+
 : Calcd 559.2404; found 559.2411. 
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TBSO OPMB
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(2R,6S)-1-(4-Methoxybenzyloxy)-6,7-bis(tert-butyldimethylsilyloxy)-2-hydroxyheptan-4-one 

(70): A solution of compound 69 (2.00 g, 3.24 mmol) in THF/H2O (4:1, 45 mL) was cooled to 0 

oC followed by addition of 2.6-lutidine (2.9 mL) at once and Hg(ClO4)2•3H2O (3.5 g) in portions. 

The reaction mixture was stirred at 0 oC for 1.5 h then filtered through a pad of celite and 

followed by a rinse with ethyl acetate. The filtrate was diluted with ethyl acetate and saturated 

aqueous NH4Cl. The layers were separated and the aqueous layer was extracted with ethyl 

acetate. The combined organic layers were dried over MgSO4, concentrated and the crude 

product was purified by flash column chromatography (SiO2, 25% ethyl acetate in hexanes) to 

yield the ketone 70 (1.44 g, 85%) as an oil: [α]D −7.36 (c 0.53 CHCl3); 1H NMR (300 MHz, 

CDCl3) δ 7.26 (d, J = 8.5 Hz, 2 H), 6.89 (d, J = 8.5, 2 H), 4.49 (s, 2 H), 4.22-4.29 (s, 1 H), 4.14-

4.20 (s, 1 H), 3.81 (s, 3 H), 3.57 (dd, J = 9.9, 4.9 Hz, 1 H), 3.36-3.48 (m, 3 H), 3.02 (d, 1 H), 

2.65-2.74 (m, 3 H), 2.55 (dd, J = 15.6, 7.4 Hz, 1 H), 0.88 (s, 9 H), 0.85 (s, 9 H), 0.07 (s, 3 H), 

0.05 (s, 3 H), 0.04 (s, 6 H); 13C NMR (151 MHz, CDCl3) δ 209.8, 159.4, 130.1, 129.5, 113.9. 

73.1, 73.0, 69.7, 67.0, 66.8, 55.4, 48.5, 47.5, 26.0, 25.9, 18.4, 18.1, −4.4, −4.8, −5.3, −5.3; IR 

(neat) cm-1 3456, 2954, 2929, 2856, 1720, 1609, 1507, 1462, 1246, 1099, 837; HRMS for 

C27H50O6NaSi2 (M + Na)+: Calcd 549.3044; found 549.3051. 
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(2R,4S,6S)-1-(4-Methoxybenzyloxy)-6,7-bis(tert-butyldimethylsilyloxy)heptane-2,4-diol 

(71): To a solution of ketone 70 (2.1 g, 4.0 mmol) in THF (32 mL) and methanol (8 mL) at –78 

oC was added diethylmethoxyborane (1.0 M in THF, 4.4 mL, 4.4 mmol) and the reaction mixture 

was stirred at that temperature for 30 min. Sodium borohydride (181 mg, 4.8 mmol) was added 

in portions to the above reaction mixture and was stirred for 3 h at –78 oC. The reaction mixture 

was quenched with H2O (25 mL) and diluted with Et2O (100 mL). The layers were separated and 

the aqueous layer was extracted with Et2O. The combined organic layers were washed with 

brine, dried over MgSO4, concentrated and purified by flash column chromatography (25% ethyl 

acetate in hexanes) to yield the syn diol 71 (1.85 g, 88%) as a colorless oil: [α]D −8.29 (c 1.52 

CHCl3); 1H NMR (600 MHz, CHCl3) δ 7.27 (d, J = 8.2 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 2 H), 4.50 

(s, 2 H), 4.02-4.12 (m, 2 H), 3.94 (br s, 1 H), 3.87-3.93 (m, 1 H), 3.81 (s, 3 H), 3.65 (br s, 1 H), 

3.6 (dd, J = 10.2, 4.4 Hz, 1 H), 3.48 (dd, J = 10.2, 6.6 Hz, 1 H), 3.39-3.45 (m, 2 H), 1.56-1.17 

(m, 4 H), 0.90 (s, 9 H), 0.89 (s, 9 H), 0.10 (s, 6 H), 0.07 (s, 3 H), 0.07 (s, 3 H); 13C NMR (151 

MHz, CDCl3) δ 159.3, 130.4, 129.4, 113.9, 74.2, 73.1, 72.3, 70.9, 69.9, 67.7, 55.3, 42.5, 40.3, 

26.1, 26.0, 25.9, 18.4, 18.1, −4.1, −4.7, −5.3; IR (neat) cm-1 3436, 2953, 2929, 2857, 1613, 1514, 

1250, 1094; 835; 777; HRMS for C27H52O6NaSi2(M + Na)+
 : Calcd 551.3200; found 551.3206. 
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1-(((2R,4S,6S)-2,4,6,7-tetrakis(tert-Butyldimethylsilyloxy)heptyloxy)methyl)-4-methoxybenz 

ene (72): To a solution of diol 71 (1.8 g, 3.4 mmol) in dichloromethane (30 mL) at 0 oC were 

added 2,6-lutidine (1.13 g, 10.5 mmol) and TBSOTf (2.00 g, 7.83 mmol). The reaction mixture 

was stirred at that temperature for 1 h. Then the mixture was poured into water (30 mL) and 

layers were separated. The aqueous layer was extracted with dichloromethane and the combined 

organic extracts were dried over MgSO4, and concentrated. Purification of the crude product by 

flash column chromatography (10% ethyl acetate in hexanes) gave the TBS ether 72 (2.4 g, 94%) 

as an oil: [α]D 0.41 (c 0.72 CHCl3); 1H NMR (601 MHz, CHCl3) δ 7.25 (d, J = 8.5 Hz, 2 H), 6.87 

(d, J = 8.2 Hz, 2 H), 4.47 (d, J = 11.8 Hz, 1 H), 4.42 (d, J = 11.5 Hz, 1 H), 3.93-3.99 (m, 1 H), 

3.78-3.85 (m, 5 H), 3.51 (dd, J = 10.2, 4.7 Hz, 1 H), 3.45 (dd, J = 10.2, 6.3 Hz, 1 H), 3.40 (dd, J 

= 9.9, 3.6 Hz, 1 H), 3.30 (dd, J = 9.9, 6.3 Hz, 1 H), 1.67-1.75 (m, 2 H), 1.55-1.62 (m, 2 H), 0.90 

(s, 27 H), 0.88 (s, 9 H), 0.06 (s, 3 H), 0.05 (s, 3 H), 0.04 (s, 3 H), 0.03 (s, 3 H); 13C NMR (151 

MHz, CHCl3) δ 159.1, 130.8, 129.2, 113.7, 74.6, 72.9, 70.7, 69.2, 67.8, 66.8, 55.3, 42.9, 42.7, 

26.1, 26.0, 26.0, 18.5, 18.2, 18.2, 18.0, −4.0, −4.1, −4.3, −4.4, −4.6, −4.6, −5.2, −5.3; IR (neat) 

cm-1 2955, 2929, 2895, 2857, 1614, 1514, 1472, 1251; HRMS for C39H80O6NaSi4(M + Na)+: 

Calcd 779.4930; found 551.4893.  
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TBSO OH
O O O
TBSTBS TBS

 

(2R,4S,6S)-2,4,6,7-tetrakis(tert-Butyldimethylsilyloxy)heptan-1-ol (73): A solution of PMB 

ether 72 (1.10 g, 1.45 mmol) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (428  mg, 1.88 

mmol) in CH2Cl2/pH 7 buffer (19 mL/1 mL) was stirred at room temperature for 1 h followed by 

dilution with CH2Cl2 (20 mL) and saturated sodium bicarbonate solution (30 mL). The layers 

were separated and the aqueous layer was further extracted with CH2Cl2 (4 x 10 mL). The 

combined organic layers were dried over MgSO4, concentrated and the crude product was 

purified by flash column chromatography to yield the alcohol 73 (890 mg, 96%) as an oil: [α]D 

_1.9 (c 0.63 CHCl3); 1H NMR (300 MHz, CDCl3) δ 3.90-3.98 (m, 2 H), 3.61-3.78 (m, 1 H), 3.53-

3.58 (m, 1 H), 3.38-3.52 (m, 3 H), 2.71 (dd, J = 7.8, 5.5 Hz, 1 H), 1.59-1.82 (m, 4 H), 0.89-0.90 

(m, 36 H), 0.05-0.10 (m, 24 H); 13C NMR (75 MHz, CHCl3) δ 70.8, 69.9, 67.8, 67.2, 66.5, 42.3, 

41.8, 31.7, 26.0, 26.0, 25.9, 22.7, 18.4, 18.1, 18.1, 18.0, 14.2, −3.9, −4.3, −4.4, −4.5, −4.6, −4.6, 

−4.6, −4.7, −5.3; HRMS for C31H72O5Si4Na: Calcd 659.4355; found 659.4352. 

 

TBSO I
O O O

TBSTBSTBS

 

(2S,4R,6R)-1,2,4,6-tetrakis(tert-Butyldimethylsilyloxy)-7-iodoheptane (5): To a solution of 

alcohol 72 (380 mg, 0.53 mmol) in acetone (10 mL) was added sodium iodide (398 mg, 2.65 

mmol). The reaction mixture was refluxed for 36 h and then the acetone was removed under 

reduced pressure. The resulting solid was suspended in 50% ethyl acetate in hexanes and washed 

with saturated aqueous sodium bicarbonate, brine and water. Drying the organic layer with 
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MgSO4 and concentration provided the iodide 5 (380 mg, 96%) as an oil: [α]D −3.2 (c 0.53 

CHCl3) 1H NMR (500 MHz, CHCl3) δ 3.83 (tt, J = 7.3, 5.0 Hz, 1 H), 3.74 - 3.79 (m, 1 H), 3.67 

(tt, J = 7.3, 4.7 Hz, 1 H), 3.46-3.52 (m, 2 H), 3.35 (dd, J = 10.1, 4.1 Hz, 1 H), 3.21 (dd, J = 10.0, 

5.0 Hz, 1 H), 1.80 (ddd, J = 13.9, 7.3, 5.0 Hz, 1 H), 1.73 (ddd, J = 13.9, 7.6, 5.0 Hz, 1 H), 1.68 

(ddd, J = 3.9, 7.3, 5.4, 1 H), 1.63 (ddd, J = 13.9, 7.3, 5.4 Hz, 1 H), 0.92 (s, 9 H), 0.91 (s, 9 H), 

0.90 (s, 9 H), 0.899 (s, 9 H), 0.13 (s, 3 H), 0.10 (s, 3 H), 0.09 (s, 3 H), 0.087 (s, 3 H), 0.08 (s, 3 

H), 0.079 (s, 3 H), 0.06 (s, 3 H), 0.058 (s, 3 H); 13C NMR (126 MHz,CDCl3) δ 70.7, 68.3, 67.6, 

66.8, 45.3, 42.8, 26.1, 26.0, 18.5, 18.2, 18.1, 18.1, 15.3, −3.9, −4.1, −4.2, −4.3, −4.4, −5.2, −5.2; 

IR (neat) cm-1 2929, 2857, 1472, 1408, 1389; HRMS for C27H62O4Si4I (M − tBu)+
 : Calcd 

689.2770; found 689.2789. 

 

N

OH

O

O

Bn

O

 

(R)-4-Benzyl-3-((2R,3S)-3-hydroxy-2-methylpent-4-enoyl)oxazolidin-2-one (75): Di-n-butyl 

boryltrifluoromethanesulfonate (1.0 M in CH2Cl2, 29.8 mL, 29.8 mmol) was added slowly to a 

solution of (R)-4-benzyl-3-propionyloxazolidin-2-one 74 (5.8 g, 24.9 mmol) in dichloromethane 

(50 mL) at 0 oC and stirred for 5 min followed by drop wise addition of triethylamine (4.5 mL, 

32.3 mmol). After 10 min, the mixture cooled to −78 oC and freshly distilled acrolein (1.5 g, 27.4 

mmol) was added. After 1 h, the solution was warmed to 0 oC and stirred at that temperature for 

1 h. The reaction was slowly quenched by addition of 100 mL of 3:1 pH 7 aqueous buffer: 

methanol at 0 oC followed by the addition of 80 mL of 2:1 methanol: 30% aqueous H2O2 and 

stirring for an additional 1 h. The volatiles were removed and the residue was extracted with 

ether (3 x 100 mL). The combined organic extracts were washed with sat. aq. NaHCO3 solution, 
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sat. aq. NaCl solution, dried over MgSO4 and concentrated. The crude product was purified by 

flash column chromatography (SiO2, 30% ethyl acetate in hexanes) to provide the product 75 

(5.6 g, 78%) as white solid. [α]D −51 (c 0.94 CHCl3); 1H NMR (601 MHz, CDCl3) δ 1.26 (d, J = 

6.9 Hz, 3H), 2.82 (dd, J = 13.4, 9.6 Hz, 1H), 3.17 (br s, 1H), 3.25 (dd, J = 13.4, 3.3 Hz, 1H), 3.90 

(qd, J = 7.1, 3.8 Hz, 1H), 4.19 (dd, J = 9.1, 2.7 Hz, 1H), 4.21-4.25 (m, 1H), 4.49-4.52 (m, 1H), 

4.72 (ddt, J = 12.4, 7.7, 3.0 Hz, 1H), 5.23 (dt, J = 10.7, 1.7 Hz, 1H), 5.36 (dt, J = 17.3, 1.7 Hz, 

1H), 5.88 (ddd, J = 17.3, 10.7, 5.5 Hz, 1H), 7.22 (d, J = 6.9 Hz, 2H), 7.27-7.31 (m, 1H), 7.32-

7.36 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 11.1, 37.7, 42.5, 55.1, 66.2, 72.7, 116.2, 127.3, 

128.9, 129.4, 135.0, 137.3, 153.2, 176.4; IR (neat) cm-1; 3496, 2981, 1779, 1697, 1388; HRMS 

for C12H22O2Si (M + Na)+: Calcd 312.1212; found 312.1217. 

 

N

OTBS

O

O

Bn

O

 

(R)-4-Benzyl-3-((2R,3S)-3-(tert-butyldimethylsilyloxy)-2-methylpent-4-enoyl)oxazolidin-2-

one (76): To a solution of alcohol 75 (4.2 g, 14.5 mmol) in dichloromethane (150 mL) were 

added 2,6-lutidine (1.90 g, 17.4 mmol) and TBSOTf (4.2 g, 16 mmol) at −78 oC. After 15 min, it 

was warmed to 0 oC and allowed to stir for 2 h. The reaction was quenched with water, organic 

layer was separated and the aqueous layer was extracted with dichloromethane. The combined 

organic extracts were dried over MgSO4, concentrated and the crude product was purified by 

flash column chromatography (15% ethyl acetate in hexanes) to provide the TBS ether 76 (4.8 g, 

82%) as an oil: [α]D −50.8 (c 0.94 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.32-7.36 (m, 2 H), 

7.28-7.30 (m, 1 H), 7.22-7.23 (m, 2 H), 5.86 (ddd, J = 17.0, 10.4, 6.6 Hz, 1 H), 5.18-5.23 (m, 1 

H), 5.09-5.13 (m, 1 H), 4.59-4.63 (m, 1 H), 4.32-4.36 (m, 1 H), 4.12-4.18 (m, 2 H), 3.99 (dq, J = 
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6.9, 6.9 Hz, 1 H), 3.29 (dd, J = 13.1, 3.0 Hz, 1 H), 2.78 (dd, J = 13.5, 9.9 Hz, 1 H), 1.22 (d, J = 

6.9 Hz, 3 H), 0.89 (s, 9 H), 0.03 (s, 3 H), 0.02 (s, 3 H); 13C NMR (75 MHz, CDCl3) δ 174.6, 

153.3, 139.3, 135.5, 129.6, 129.0, 127.4, 115.8, 75.3, 66.0, 55.7, 44.1, 37.9, 25.9, 18.2, 12.5, 

−4.3, −5.0; IR (neat) cm-1 2956, 2929, 2857, 1782, 1701, 1381; EIMS (M − CH3)+ 388, (M 

− tBu)+ 346; HRMS for C18H24NO4Si: Calcd 346.1475; found 346.1473. 

 

TBSO

OH  

(2S,3S)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-en-1-ol (77): To a solution of 76 (3.12 

g, 7.73 mmol) in THF (40 mL) and ethanol (2.3 mL, 39 mmol) at 0 oC  was added LiBH4 (2.0 M 

in THF, 19.3 mL). After 1 h, it was warmed to room temperature and stirred for an additional 1 

h. Then it was cooled to 0 oC, quenched with sat. aq. sodium-potassium tartrate solution (10 mL) 

followed by dilution with ethyl acetate (50 mL), sat. aq. sodium-potassium tartrate solution (50 

mL). The reaction mixture was stirred for 30 min at room temperature. The layers were separated 

and the aqueous layer was extracted with ethyl acetate. The combined organic extracts were 

dried over MgSO4, concentrated and the crude product was purified by flash column 

chromatography (SiO2, 15% ethyl acetate in hexanes) to provide the alcohol 77 (1.31 g, 74%) as 

an oil: 1H NMR (300 MHz, CDCl3) δ 5.89 (ddd, J = 17.0, 10.5, 6.2 Hz, 1 H), 5.17-5.27 (m, 2 H), 

4.23-4.26 (m, 1 H), 3.63-3.70 (m, 1 H), 3.49-3.52 (m, 1 H), 2.82 (br s, 1 H), 1.84-2.05 (m, 1 H), 

0.92 (s, 9 H), 0.81 (d, J = 7.1 Hz, 3 H), 0.09 (s, 3 H), 0.06 (s, 3 H). 
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O

OTBS

 

(2R,3S)-3-(tert-Butyldimethylsilyloxy)-2-methylpent-4-enal (78): To a solution of alcohol 77 

(1.20 g, 5.25 mmol) in dichloromethane (20 mL) were added NaHCO3 (solid, 0.60 g, 6.8 mmol) 

and Dess-martin reagent (2.90 g, 6.83 mmol). The reaction mixture was stirred for 1.5 h at room 

temperature followed by pouring it into sat. aq. NaHCO3 solution (20 mL). The organic layer 

was separated and the aqueous layer was extracted with dichloromethane. The combined organic 

layers were dried over MgSO4, concentrated and purified by flash column chromatography 

(SiO2, 15% ethyl acetate in hexanes) to yield the aldehyde 78 (1.04 g, 88%) as an oil: [α]D −51.6 

(c 0.5 CHCl3);1H NMR (300 MHz, CDCl3) δ 9.77 (d, J = 1.4 Hz, 1 H), 5.74-5.89 (m, 1 H), 5.22-

5.30 (m, 1 H), 5.14 - 5.20 (m, 1 H), 4.50-4.57 (m, 1 H), 2.39-2.53 (m, 1 H), 1.07 (d, J = 6.9 Hz, 3 

H), 0.89 (s, 9 H), 0.06 (s, 3 H), 0.04 (s, 3 H); 13C NMR (75 MHz, CDCl3) δ 204.6, 138.5, 116.1, 

73.6, 52.8, 52.6, 25.8, 8.4, −4.2, −5.0; IR (neat) cm-1 2957, 2928, 2856, 1726, 1257; EIMS (M 

− CH3)+ 213;  HRMS for C8H15O2Si (M − CH3)+: Calcd 171.0841; found 171.0842. 

 

TBSO

S S

 

((3S,4R)-4-(1,3-Dithian-2-yl)pent-1-en-3-yloxy)(tert-butyl)dimethylsilane (6): To a solution 

of aldehyde 78 (1.0 g, 4.4 mmol) in ether (15 mL) at 0 oC were added MgBr2•OEt2 (2.3 g, 8.8 

mmol) and propane-1,3-dithiol (0.72 g, 6.6 mmol). The reaction mixture was stirred at 0 oC for 

30 min, room temperature for 30 min followed by quenching the reaction with 1 N NaOH 

solution (5 mL). The organic layer was separated and the aqueous layer was extracted with ether 
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(3 x 10 mL). The combined organic extracts were washed with 1 N NaOH (5 mL), sat. aq. NaCl, 

water, dried over MgSO4, and concentrated. The crude product was purified by flash column 

chromatography (SiO2, 10% ethyl acetate in hexanes) to yield the dithiane 6 (1.25 g, 89%) as an 

oil: [α]D −10 (c 0.29 CHCl3); 1H NMR (300 MHz,CDCl3) δ 5.80 (ddd, J = 17.3, 10.4, 6.6 Hz, 1 

H), 5.22 (d, J = 17.0 Hz, 1 H), 5.13 (d, J = 10.4 Hz, 1 H), 4.32-4.45 (m, 1 H), 4.08 (d, J = 6.6 Hz, 

1 H), 2.78-2.92 (m, 4 H), 2.01-2.15 (m, 1 H), 1.77-1.92 (m, 2 H), 1.09 (d, J = 6.9 Hz, 3 H), 0.89 

(s, 9 H), 0.08 (s, 3 H), 0.02 (s, 3 H); 13C NMR (76 MHz, CDCl3) δ 140.5, 115.7, 74.5, 51.6, 44.5, 

30.9, 30.4, 26.3, 26.0, 18.3, 11.8, −4.0, −4.7; IR (neat) cm-1 2928, 2896, 2856, 1472, 1252, 1078, 

836, 776; EIMS 318, (M − tBu)+ 261;  HRMS for C15H30OSiS2 : Calcd 318.1507; found 

318.1497. 

 

O

OMe
O

OMe  

(2E,4E)-Dimethyl hexa-2,4-dienedioate (80): Acetyl chloride (23 mL) was added slowly to a 

solution of trans,trans-muconic acid 79 (8.1 g, 57 mmol) in methanol (150 mL) at 0 oC and 

stirred at that temperature for 5 min followed by refluxing the reaction mixture for 2 h. Then the 

reaction mixture was allowed to cool to room temperature and the solvent was removed under 

reduced pressure to give the ester 80 (9.5 g, 98%) as while solid which was used in the next step 

without further purification: 1H NMR (300 MHz, CDCl3) δ 7.26-7.38 (m, 2 H), 6.14-6.26 (m, 2 

H), 3.78 (s, 6 H); 13C NMR (75 MHz, CHCl3) δ 166.4, 141.0, 128.1, 52.0; HRMS for C8H10O4: 

Calcd 170.0579; found 170.0580. 
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OH
HO

 

(2E,4E)-Hexa-2,4-diene-1,6-diol (81): To a solution of ester 80 (3.23 g, 19.0 mmol) in 

chloroform (190 mL) at 0 oC was added DIBAL-H (1.0 M in hexane, 95 mL) and the reaction 

mixture was stirred at that temperature for 1 h. Then the reaction mixture was slowly treated with 

methanol (19 mL) and stirred for additional 15 min at 0 oC. Sat. aq. sodium-potassium tartrate 

(150 mL) was added to the reaction mixture and stirred at room temperature for 1 h. The organic 

layer was separated and the aqueous layer was extracted with ethyl acetate (3 x 100 mL). The 

combined organic layers were dried over MgSO4 and concentrated to yield the diol 81 (2.05 g, 

18.0 mmol, 95%) as white waxy solid: 1H NMR (300 MHz, CD3OD) δ 6.32-6.45 (m, 2 H), 5.84-

6.00 (m, 2 H), 5.00 (br s, 2 H), 4.20 (d, J = 5.2 Hz, 4 H); 13C NMR (75 MHz, CD3OD) δ 133.5, 

131.4, 63.2; EIMS (M)+ 114, (M − H2O)+ 96; HRMS for C6H10O2: Calcd 114.0681; found 

114.0678. 

 

HO
OTBS

 

(2E,4E)-6-(tert-Butyldimethylsilyloxy)hexa-2,4-dien-1-ol (82): To a solution of diol 81 (2.00 

g, 17.5 mmol) in DMF (150 mL) at room temperature were added imidazole (1.25 g, 18.4 mmol) 

and tert-butyldimethylsilyl chloride (2.77 g, 18.4 mmol, 1.05 equiv). The reaction mixture was 

stirred for 12 h followed by quenching it with water (150 mL) and dilution with ethyl acetate 

(150 mL). The organic layer was separated and the aqueous layer was extracted with ethyl 

acetate (2 x 100 mL). The combined organic layers were dried over MgSO4, concentrated and 

the crude product was purified by flash column chromatography (25% ethyl acetate in hexanes) 

to yield the product 82 (1.8 g, 45%) as an oil: 1H NMR (300 MHz, CDCl3) δ 6.20-6.32 (m, 2 H), 

5.73-5.88 (m, 2 H), 4.16-4.26 (m, 4 H), 0.92 (s, 9 H), 0.08 (s, 6 H); 13C NMR (76 MHz, CDCl3) 
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δ 132.8, 131.7, 130.6, 129.1, 63.4, 63.0, 25.9, 18.4, −5.2; IR (neat) cm−1 3357, 2929, 2955, 2885, 

2857, 1684, 1472, 1463, 1377. 

 

O
OTBS

 

(2E,4E)-6-(tert-Butyldimethylsilyloxy)hexa-2,4-dienal (83): To a solution of alcohol 82 (848 

mg, 3.71 mmol) in dichloromethane (50 mL) at room temperature was added MnO2 (3.2 g, 37.1 

mmol, activated, obtained from Fulka). The reaction mixture was stirred at room temperature for 

45 min, filtered and the filtrate was concentrated to yield the aldehyde 83 (839 mg,100%) as an 

oil: 1H NMR (300 MHz, CD2Cl2) δ 9.54 (d, J = 8.0 Hz, 1 H), 7.15 (dd, J = 15.1, 11.0 Hz, 1 H), 

6.50-6.64 (m, 1 H), 6.34 (dt, J = 15.1, 4.1 Hz, 1 H), 6.11 (dd, J = 15.4, 8.0 Hz, 1 H), 4.33 (dd, J = 

3.8, 1.9 Hz, 2 H), 0.93 (s, 9 H), 0.09 (s, 6 H); 13C NMR (75 MHz, CD2Cl2) δ 194.0, 152.1, 145.0, 

131.7, 127.2, 63.4, 26.3, 18.8, −5.0; IR (neat) cm-1 2955, 2930, 2857, 2729, 1684, 1646, 1254;  

HRMS for C16H19NO4Na: Calcd 226.1389; found 226.1384. 

 

OTBSMeOOC
 

(2E,4E,6E)-Methyl 8-(tert-butyldimethylsilyloxy)octa-2,4,6-trienoate (84): To a suspension 

of NaH (98 mg, 4.1 mmol) in THF (15 mL) at 0 oC was added methyldiethylphosphonoacetate 

(857 mg, 4.10 mmol). The reaction mixture was stirred at room temperature for 20 min followed 

by cooling to −78 oC. The above reaction mixture was added via cannula to a solution of 

aldehyde 83 (839 mg, 3.71 mmol) in THF (15 mL) at −78 oC. The above reaction mixture was 

stirred at room temperature for 2 h followed by quenching the reaction with saturated aqueous 

NaHCO3 solution. The aqueous layer was extracted with ethyl acetate. The combined organic 

layers were washed with saturated aqueous NaCl solution, dried over MgSO4 and concentrated. 
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The crude product was purified by flash column chromatography (SiO2, 5% ethyl acetate in 

hexanes) to yield the ester 84 (828 mg, 2.93 mmol, 79%): 1H NMR (300 MHz, CDCl3) δ 7.32 

(dd, J = 15.6, 11.5 Hz, 1 H), 6.58 (dd, J = 14.8, 10.7, 1 H), 6.28-6.41 (m, 2 H), 5.99 (dt, J = 15.1, 

4.7 Hz, 1 H), 5.88 (d, J = 15.1 Hz, 1 H), 4.28 (d, J = 4.7 Hz, 2 H), 3.75 (s, 3 H), 0.92 (s, 9 H), 

0.08 (s, 6 H); 13C NMR (76 MHz, CDCl3) δ 167.4, 144.7, 140.3, 137.8, 129.2, 128.5, 120.2, 

63.1, 51.4, 25.9, 18.4, −5.3; IR (neat) cm-1 2947, 2929, 2886, 2857, 1715, 1621; EIMS (M+) 282, 

(M − tBu)+ 225; HRMS for C15H26O3Si1: Calcd 282.1651; found 282.1641. 

 

OHMeOOC
 

(2E,4E,6E)-Methyl 8-hydroxyocta-2,4,6-trienoate (85): To a solution of ester 84 (0.82 g, 2.9 

mmol) in 2: 1 mixture of dichloromethane: methanol (40 mL) was added acetyl chloride (25 mg) 

at room temperature. After 30 min, the mixture was concentrated to yield the alcohol 85 (488 

mg, 2.90 mmol, 100%) as pale yellow solid: 1H NMR (601 MHz, CDCl3) δ 7.32 (dd, J = 15.4, 

11.3 Hz, 1 H), 6.58 (dd, J = 14.8, 11.0 Hz, 1 H), 6.30-6.40 (m, 2 H), 6.05 (dt, J = 15.1, 5.5 Hz, 1 

H), 5.90 (d, J = 15.1 Hz, 1 H), 4.27 (d, J = 5.2 Hz, 1 H), 3.76 (s, 3 H), 1.51 (br s, 1 H); 13C NMR 

(76 MHz, CDCl3) δ 167.6, 144.6, 140.1, 137.3, 129.7, 129.6, 120.5, 62.7, 51.6. 

 

BrMeOOC
 

(2E,4E,6E)-Methyl 8-bromoocta-2,4,6-trienoate (86): To a solution of alcohol 85 (470 mg, 

2.79 ml) in THF (10 mL) at −20 oC were added 2,6-lutidine (658 mg, 6.15 mmol) and thionyl 

bromide (0.4 ml, 5.0 mmol). The reaction mixture was stirred at −20 oC for 40 min followed by 2 

h at room temperature. Then the mixture was poured into saturated aqueous NaHCO3 solution 

(20 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate. The 
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combined organic extracts were dried over MgSO4 and concentrated. Purification of the crude 

product by flash column chromatography (10% ethyl acetate in hexanes) gave the bromide 86 

(473 mg, 73%) as white solid: 1H NMR (500 MHz, CHCl3) δ 7.30 (dd, J = 15.6, 11.4 Hz, 1 H), 

6.53 (dd, J = 15.1, 11.0 Hz, 1 H), 6.32-6.41 (m, 2 H), 6.03-6.12 (m, 1 H), 5.92 (d, J = 15.1 Hz, 1 

H), 4.05 (d, J = 7.8 Hz, 2 H), 3.75 (s, 3 H); 13C NMR (126 MHz, CDCl3) δ 167.3, 143.9, 138.7, 

133.8, 132.9, 131.7, 121.9, 51.7, 32.3; IR (neat) cm-1 3027, 2989, 2946, 1619, 1430, 1353, 1234, 

1195; HRMS for C9H11O2Br: Calcd 229.9942; found 229.9935. 

 

P
OO

H3CO
OC2H5

OC2H5  

(2E,4E,6E)-Methyl 8-(diethoxyphosphoryl)octa-2,4,6-trienoate (7): To a solution of bromide 

87 (469 mg, 2.03 mmol) in 10 mL toluene was added triethylphosphite. The reaction mixture 

was refluxed over night followed by concentration. Purification of the crude product by flash 

column chromatography (25 to 100% ethyl acetate in hexanes, gradient flash column) gave the 

fragment 7 (550 mg, 94%) as waxy solid: 1H NMR (600 MHz, CHCl3) δ 7.29 (dd, J = 15.4, 11.3 

Hz, 1 H), 6.54 (dd, J = 15.1, 10.7 Hz, 1 H), 6.24-6.30 (m, 2 H), 5.83-5.90 (m, 2 H), 4.08-4.14 (m, 

4 H), 3.75 (s, 3 H), 2.70 (d, J = 23.0, 7.1 Hz, 2 H), 1.32 (t, J = 7.1 Hz, 6 H); 13C NMR (151 

MHz, CDCl3) δ 167.5, 144.4, 139.8 (JC-P = 6 Hz), 134.2 (JC-P = 16 Hz), 129.6 (JC-P = 5 Hz), 

127.4 (JC-P = 13 Hz), 120.9, 62.2 (JC-P = 7 Hz), 51.6, 30.2 (JC-P = 139 Hz), 16.1 (JC-P = 6 Hz); 

EIMS (M+) 288; HRMS for C13H21O5P: Calcd 288.1127; found 288.1133. 
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(Boc)2N
OTBS

S N
N

NNOTBS

 

(4R,8S,E)-4,8-bis(tert-Butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylthio)-N,N-

bis(Boc) dec-6-en-1-amine (8): KHMDS (0.5 M, 0.45 ml, 0.225 mmol) was added to a solution 

of sulfone 2 (130 mg, 0.187 mmol) in DME (5 mL) at −60 oC. After 30 min, a solution of 

aldehyde 3 (92.3 mg, 0.244 mmol) in DME (2 mL) was added. The reaction mixture was stirred 

at −60 oC for 1.5 h followed by overnight stirring at room temperature. The reaction mixture was 

quenched with water and the aqueous layer was extracted with ethyl acetate. The combined 

organic extracts were dried over MgSO4, concentrated and the crude product was purified by 

flash column chromatography to yield an E/Z mixture (over 19/1) of product (85 mg, 85%) as an 

oil. Further purification by preparative HPLC with Whelk-O column (95/5 hexane/i-propanol) 

provided pure E-isomer 8: [α]D +4.3 (c 0.21 CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.54-7.60 

(m, 5 H), 5.60 (dt, J = 15.4, 7.1 Hz, 1 H), 5.44 (dd, J = 15.4, 6.6 Hz, 1 H), 4.23 (q, J = 6.0 Hz, 1 

H), 3.66-3.70 (m, 1 H), 3.50-3.57 (m, 2 H), 3.39-3.47 (m, 2 H), 2.18 (t, J = 6.4 Hz, 2 H), 1.98-

2.01 (m, 2 H), 1.62-1.70 (m, 2 H), 1.50 (s, 18 H), 1.37-1.44 (m, 2 H), 0.88 (s, 9 H), 0.87 (s, 9 H), 

0.05 (s, 3 H), 0.03 (s, 6 H), 0.02 (s, 3 H); 13C NMR (151 MHz, CDCl3) δ 154.5, 152.7, 134.8, 

133.8, 130.1, 129.8, 127.5, 123.9, 82.0, 72.1, 71.8, 46.6, 40.0, 37.5, 33.8, 29.5, 28.2, 25.9, 25.2, 

18.2, 18.1, −4.0, −4.3, −4.5, −4.7; IR (neat) cm-1 2955, 2928, 2856, 1740, 1698, 1501, 1367, 

1124; HRMS (M + Na)+ for C39H69N5O6Si2SNa: Calcd 814.4405; found 814.4401. 
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(Boc)2N
OTBS OTBS

S
O2

N
N

NN

 

(4R,8S,E)-4,8-bis(tert-butyldimethylsilyloxy)-10-(1-phenyl-1H-tetrazol-5-ylsulfonyl)-N,N-

bis(Boc)-dec-6-en-1-amine (9): To a solution of sulfide 8 (62 mg, 0.078 mmol) in ethanol (1.5 

mL) was added oxidant (0.3 mL, prepared from 0.6 g of Mo7O24(NH4)6•4H2O in 2.5 mL of 30% 

w/v aq H2O2). After 18 h, it was quenched with water (5 mL), and the aqueous layer was 

extracted with ethyl acetate. The combined organic layers were dried over MgSO4, concentrated 

and the crude product was purified by flash column chromatography (SiO2, 10% ethyl acetate in 

hexanes) to yield the sulfone 9 (60 mg, 92%) as an oil: [α]D +4.47 (c 0.67 CHCl3); 1H NMR (600 

MHz, CDCl3) δ 7.68 (d, J = 7.4 Hz, 2 H), 7.57-7.63 (m, 3 H), 4.33 (q, J = 14.8, 7.1 Hz, 1 H), 

3.78 (t, J = 8.0 Hz, 2 H), 2.06-3.73 (m, 1 H), 1.60-1.17 (m, 1 H), 1.49 (s, 18 H), 1.37-1.41 (m, 2 

H), 1.24-1.26 (m, 2 H), 0.89 (s, 9 H), 0.87 (s, 9 H), 0.07 (s, 3 H), 0.04 (s, 9 H); 13C NMR (151 

MHz,CDCl3) δ 153.5, 152.6, 133.6, 133.1, 131.4, 129.7, 128.4, 125.1, 82.0, 71.6, 70.8, 52.4, 

46.5, 39.9, 33.8, 30.3, 28.1, 25.9, 25.9, 25.2, 18.2, 18.1, −4.2, −4.4, −4.5, −4.8; IR (neat) cm-1 

2954, 2930, 2857, 1743, 1696, 1367, 1343, 1124; HRMS (M + Na)+ for C39H69N5O8Si2SNa: 

Calcd 846.4303; found 846.4291. 

 

(Boc)2N
OTBS OTBS O O O O

TBS TBS TBS TBS

21

40 OPMB  

(4R,6E,8S,10E,12S,14R,16S,18R)-20-(4-methoxybenzyloxy)-4,8,12,14,16,18-hexakis(tert-

butyldimethylsilyloxy)-N,N-bis(Boc)-icosa-6,10-dien-1-amine (10): KHMDS (0.5 M in 

toluene, 55 μL, 0.225 mmol) was added to a solution of sulfone 9 (20 mg, 0.023 mmol, 1 equiv) 
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in DME (1 mL) at −60 oC. After 30 min, a solution of aldehyde 4 (24 mg, 0.029 mmol) in DME 

(1 mL) was added. The reaction mixture was stirred at −60 oC for 1.5 h followed by overnight 

stirring at room temperature. The reaction mixture was quenched with water and the aqueous 

layer was extracted with ethyl acetate. The combined organic layers were dried over MgSO4, 

concentrated and the crude product was purified by flash column chromatography (10% ethyl 

acetate in hexanes) to yield the product 10 (26 mg, 80%) as a colorless oil: [α]D −1.5 (c 0.6 

CHCl3); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 8.7 Hz, 2 H), 5.87 (d, J = 8.5 Hz, 2 H), 5.52-

5.58 (m, 2 H), 5.46 (dd, J = 15.4, 6.3 Hz, 1 H), 5.41 (dd, J = 15.4, 7.7 Hz, 1 H), 4.42 (s, 2 H), 

4.18 (td, J = 7.7, 3.8 Hz, 1 H), 4.07 (q, J = 6.0 Hz, 1 H), 3.87-3.94 (m, 2 H), 3.83-3.86 (m, 1 H), 

3.81 (s, 3 H), 3.66-3.70 (m, 1 H), 3.48-3.59 (m, 4 H), 2.15-2.24 (m, 4 H), 1.59-1.84 (m, 9 H), 

1.36-1.45 (m, 3 H), 0.896 (s, 9 H), 0.89 (s, 9 H), 0.885 (s, 18 H), 0.879 (s, 9 H), 0.876 (s, 9 H), 

0.00-0.12 (m, 35 H); 13C NMR (151 MHz, CDCl3) δ 159.1, 152.7, 131.0, 129.0, 114.0, 82.0, 

73.5, 72.6, 72.0, 71.1,67.5, 67.2, 67.1, 66.8, 55.3, 46.8, 46.7, 46.7, 45.7, 41.6, 40.2, 37.9, 33.8, 

29.8, 28.2, 26.2, 26.0, 26.0, 25.3, 18.3, 18.3, 18.2, −3.3, −3.4, −3.4, −3.5, −3.8, −3.8, −4.1, −4.2, 

−4.3, −4.5, −4.6; IR (neat) cm-1 2955, 2929, 2857, 1748, 1698, 1614, 1514, 1472, 1463, 1252; 

HRMS (M + Na)+ for C74H148NO12Si6Na: Calcd 1433.9515, found 1433.9498. 

 

(Boc)2N
OTBS OTBS O O O O

TBS TBS TBS TBS

21

40 OH  

(3R,5S,7R,9S,10E,13S,14E,17R)-20-amino-3,5,7,9,13,17-hexakis(tert-butyldimethylsilyloxy)-

N,N-bis(Boc)-icosa-10,14-dien-1-ol (11): DDQ (12 mg, 0.052 mmol) was added to a solution of 

the PMB-ether 10 (52 mg, 0.037 mmol) in DCM (1 mL) and pH 7 buffer (0.1 mL) at room 

temperature. The reaction mixture was stirred at room temperature for 2 h followed by diluting it 
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with DCM (5 mL) and saturated aqueous NaHCO3 (3 mL). Organic layer was separated and 

aqueous layer was extracted with DCM (3 mL). The combined organic layers were dried over 

MgSO4 and concentrated. The crude product was purified by flash column chromatography to 

yield the alcohol 11 (42 mg, 89%) as an oil. 1H NMR (600 MHz, CHCl3) δ 5.51-5.58 (m, 2 H), 

5.39-5.48 (m, 2 H), 4.14 (dd, J = 12.6, 6.9 Hz, 1 H), 4.07 (dd, J = 11.8, 8.5 Hz, 1 H), 3.95-4.01 

(m, 1 H), 3.77-3.91 (m, 3 H), 3.65-3.74 (m, 2 H), 3.50-3.59 (m, 2 H), 2.33 (t, J = 5.2 Hz, 1 H), 

2.16-2.25 (m, 4 H), 1.55-1.91 (m, 6 H), 1.51 (s, 18 H), 1.23-1.47 (m, 6 H), 0.88-0.90 (m, 54 H), 

0.01-0.10 (m, 36 H); 13C NMR (151 MHz, CHCl3) δ 152.7, 136.0, 135.5, 126.8, 126.5, 82.0, 

73.5, 72.0, 71.1, 69.5, 67.4, 67.1, 60.3, 47.2, 46.7, 46.4, 45.3, 41.6, 40.2, 38.5, 33.8, 31.7, 28.2, 

26.1, 26.0, 25.4, 25.3, 22.7, 18.3, 18.3, 18.1, 18.1, 14.2, −3.4, −3.6, −4.2, −4.3, −4.4, −4.5, −4.6. 

 

(Boc)2N
OTBS OTBS O O O O

S N
N

NN
Ph

OO

TBS TBS TBS TBS

21

40
 

(4R,6E,8S,10E,12S,14R,16R,18S)-4,8,12,14,16,18-hexakis(tert-butyldimethylsilyloxy)-20-(1-

phenyl-1H-tetrazol-5-ylsulfonyl)-N,N-bis(Boc)-icosa-6,10-dien-1-amine (13): To a solution of 

alcohol 11 (40 mg, 0.031 mmol) in THF (1 mL) were added thiophenyltetrazole (7.2 mg, 0.040 

mmol), triphenylphosphine (12 mg, 0.46 mmol) and DIAD (9.4 mg, .046 mmol) at room 

temperature. After 16 h, it was diluted with ethyl acetate (5 mL) and water (3 mL). Organic layer 

was separated and the aqueous layer was extracted with ethyl acetate. The combined organic 

extracts were dried over MgSO4 and concentrated to yield the crude product (49 mg). To the 

crude compound in EtOH (1.5 mL) was added a solution of the oxidant (made from 0.6 g of 

Mo7O24(NH4)6•4H2O in 2.5 mL of 30% w/v aqueous H2O2). The reaction mixture was stirred at 

room temperature for 18 h, quenched with water (4 mL) and extracted with ethyl acetate. The 
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combined organic layers were dried over MgSO4 and concentrated. The crude product was 

purified by flash column chromatography (SiO2, 10% ethyl acetate in hexanes) to yield the 

sulfone 13 (30 mg, 65%) as an oil. [α]D −24.1 (c 0.12 CHCl3);.1H NMR (600 MHz, CHCl3) δ 

7.70-7.72 (m, 2 H), 7.59-7.65 (m, 3 H), 5.53-5.58 (m, 2 H), 5.46 (dd, J = 15.4, 6.3 Hz, 1 H), 5.39 

(dd, J = 15.4, 7.7 Hz, 1 H), 4.21 (td, J = 8.2, 3.4 Hz, 1 H), 4.05-4.10 (m, 2 H), 3.86-3.91 (m, 1 

H), 3.74-2.85 (m, 3 H), 3.66-3.70 (m, 1 H), 3.50-3.59 (m, 2 H), 2.14-2.25 (m, 3 H), 2.02-2.09 (m, 

1 H), 1.61-1.76 (m, 6 H), 1.51 (s, 18 H), 1.36-1.47 (m ,6 H), 0.88-0.91 (m, 54 H), 0.00-0.11 (m, 

36 H); 13C NMR (151 MHz, CHCl3) δ  153.5, 152.7, 136.2, 135.6, 133.2, 131.5, 129.8, 126.9, 

126.4, 125.1, 82.0, 73.5, 72.0, 71.0, 67.5, 67.2, 66.8, 52.2, 46.9, 46.7, 46.5, 44.7, 41.6, 40.2, 33.8, 

31.7, 30.0, 28.2, 26.1, 26.0, 26.0, 25.3, 22.7, 18.3, 18.3, 18.1, 18.1, 14.2, −3.2, −3.3, −3.8, −3.8, 

−4.2, −4.3, −4.5, −4.5, −4.6; IR (neat) cm-1 2928, 2856, 1501, 1472, 1361, 1251, 1122.  

 

O O O SS

CH3

OTBS
TBSO

TBS TBS TBS

 

2-((2R,4S,6S)-2,4,6,7-tetrakis(tert-Butyldimethylsilyloxy)heptyl)-2-((2R,3S)-3-(tert-butyldime 

thylsilyloxy)pent-4-en-2-yl)-1,3-dithiane (14): To a solution of dithiane 6 (122 mg, 0.383 

mmol) in THF (0.5mL) and HMPA (0.05 mL) at –78 oC  was added t-BuLi (1.7 M in pentane, 

0.25 mL, 0.42 mmol). After 30 min, a solution of iodide 5 (286 mg, 0.383 mmol) in THF (0.1 

mL) was added. The reaction mixture was stirred at –78 oC for 2 h. The reaction mixture was 

warmed to 0 oC and quenched with saturated aqueous NH4Cl. The aqueous layer was extracted 

with ethyl acetate followed by drying of the combined organic extracts over MgSO4. 

Concentration and purification of the crude compound by flash column chromatography (SiO2, 
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5% ethyl acetate in hexanes) provided the product 14 (194 mg, 54%) as an oil: 1H NMR (600 

MHz, CHCl3) δ 5.95 (ddd, J = 17.6, 10.2, 7.7 Hz, 1 H), 5.13 (d, J = 17.0 Hz, 1 H), 5.02 (d, J = 

10.7 Hz, 1 H), 4.95 (d, J = 7.7 Hz, 1 H), 4.22 (qn, J = 5.2 Hz, 1 H), 3.76-3.80 (m, 1 H), 3.62 (dd, 

J = 9.9, 3.5 Hz, 1 H), 3.44 (dd, J = 10.2, 7.1 Hz, 1 H), 2.80-2.88 (m, 2 H), 2.51-2.59 (m, 2 H), 

2.28 (q, J = 6.9 Hz, 1 H), 1.90-1.97 (m, 3 H), 1.69-1.84 (m, 4 H), 1.65 (ddd, J = 13.4, 7.4, 5.2 

Hz, 1 H), 1.10 (d, J = 6.9Hz, 1 H), 0.91 (s, 18 H), 0.90 (s, 27 H), 0.22 (s, 3 H), 0.15 (s, 3 H), 0.12 

(s, 3 H), 0.10 (s, 6 H), 0.08 (s, 3 H), 0.07 (s, 3 H), 0.05 (s, 6 H), 0.02 (s, 3 H); 13C NMR (151 

MHz, CDCl3) δ 143.4, 113.6, 73.5, 71.2, 67.8, 67.5, 67.0, 58.2, 49.4, 44.3, 44.0, 42.8, 31.7, 26.3, 

26.3, 26.1, 26.1, 25.9, 24.5, 22.7, 18.5, 18.3, 18.3, 18.1, 14.2, 8.9, −2.9, −3.0, −3.8, −4.0, −4.1, 

−4.2, −4.4, −5.2, −5.3.  

 

O O O SS

CH3

OTBS
TBSO

TBS TBS TBS

OH

 

(3S,4R)-4-(2-((2R,4S,6S)-2,4,6,7-tetrakis(tert-Butyldimethylsilyloxy)heptyl)-1,3-dithian-2-

yl)-3-(tert-butyldimethylsilyloxy)pentan-1-ol (15): To a solution of alkene 14 in THF (2 mL) 

was added 9-BBN (0.5 M in THF, 1.32 mL, 0.66 mmol). The reaction mixture was stirred at 

room temperature for 10 h. Then the reaction mixture was cooled to 0 oC, followed by the 

addition of H2O2 and aqueous 3 N NaOH (1.3 mL). The reaction mixture was stirred at room 

temperature for 6 h. Then the mixture was diluted with ethyl acetate (10 mL) and water (5 mL). 

Organic layer was separated and the aqueous layer was extracted with ethyl acetate. The 

combined organic layers were dried over MgSO4 and concentrated. The crude product was 

purified by flash column chromatography (SiO2, 10% ethyl acetate in hexanes) to yield the 
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alcohol 15 (128 mg, 64%) as an oil: 1H NMR (600 MHz, CDCl3) δ 4.48 (dd, J = 9.3, 3.3 Hz, 1 

H), 4.18-4.21 (m, 1 H), 3.86-3.91 (m, 1 H), 3.69-3.82 (m, 3 H), 3.62 (dd, J = 10.0, 3.5 Hz, 1 H), 

3.43 (dd, J = 10.2, 7.1 Hz, 1 H), 2.89 (ddd, J = 14.3, 11.8, 2.8 Hz, 1 H), 2.79 (ddd, J = 13.7, 11.3, 

2.5 Hz, 1 H), 2.56-2.66 (m, 2 H), 2.42 (q, J = 7.0 Hz, 1 H), 1.39-2.03 (m, 11 H), 1.06 (d, J = 6.9 

Hz, 3 H), 0.904 (s, 9 H), 0.90 (s, 9 H), 0.894 (s, 18 H), 0.89 (s, 9 H), 0.19 (s, 3 H), 0.14 (s, 6 H), 

0.12 (s, 3 H), 0.11 (s, 3 H), 0.10 (s, 3 H), 0.08 (s, 3 H), 0.06 (s, 3 H), 0.05 (s, 6 H); 13C NMR 

(151 MHz, CDCl3) δ 72.3, 71.2, 69.2, 67.8, 67.4, 67.1, 60.0, 58.1, 49.4, 44.5, 42.6, 42.0, 41.5, 

40.7, 34.8, 34.8, 33.4, 31.7, 27.5, 26.2, 26.1, 26.0, 25.4, 25.3, 24.5, 22.7, 18.5, 18.3, 18.3, 18.1, 

14.2, 10.1, −2.9, −3.0, −3.9, −4.0, −4.2, −4.4, −5.2, −5.3; HRMS for C46H102O6S2Si5Na (M + 

Na): Calcd 977.5862; found 977.5826. 

 

O O O SS

CH3

OTBS
TBSO

TBS TBS TBS

OBz

 

(3S,4R)-4-(2-((2R,4S,6S)-2,4,6,7-tetrakis(tert-Butyldimethylsilyloxy)heptyl)-1,3-dithian-2-

yl)-3-(tert-butyldimethylsilyloxy)pentyl benzoate (90): To a solution of alcohol 15 (50 mg, 

0.052 mmol) in dichloromethane (5 mL) were added triethyl amine (0.1 mL), DMAP (20 mg) 

and benzyl chloride (200 mg). The reaction mixture was stirred at room temperature for 2 h and 

quenched with saturated aqueous sodium bicarbonate solution (5 mL). Organic layer was 

separated and the aqueous layer was extracted with dichloromethane. The combined organic 

layers were dried over MgSO4 and concentrated. Purification of the crude product by flash 

column chromatography (SiO2, 15% ethyl acetate in hexanes) gave the benzoate 90 (46 mg, 

83%) as an oil: [α]D 16.3 (c 0.7 CHCl3); 1H NMR (600 MHz, CDCl3) δ 8.04-8.09 (m, 2 H), 7.55-
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7.60 (m, 1 H), 7.42-7.48 (m, 2 H), 4.66 (d, J = 9.1, 3.3 Hz, 1 H), 4.38-4.46 (m, 1 H), 4.31-4.38 

(m, 1 H), 4.18-4.25 (m, 1 H), 3.87-3.94 (m, 1 H), 3.76-3.84 (m, 1 H), 3.63 (dd, J = 10.2, 3.3 Hz, 

1 H), 3.44 (dd, J = 10.2, 7.1 Hz, 1 H), 2.72-2.87 (m, 2 H), 2.42-2.55 (m, 3 H), 1.60-2.13 (m, 8 

H), 1.24-1.35 (m, 2 H), 1.10 (d, J = 6.9 Hz, 3 H), 0.915 (s, 9 H), 0.909 (s, 9 H), 0.905 (s, 9 H), 

0.90 (s, 9 H), 0.89 (s, 9 H), 0.19 (s, 3 H), 0.16 (S, 3 H), 0.14 (s, 3 H), 0.13 (s, 3 H), 0.11 (s, 3 H), 

0.10 (s, 3 H), 0.08 9s, 3 H), 0.07 (s, 3 H), 0.05 (s, 6 H); 13C NMR (151 MHz, CDCl3) δ 166.7, 

133.0, 130.3, 129.6, 128.4, 71.2, 68.9, 67.8, 67.5, 67.0, 62.1, 57.8, 49.6, 44.6, 42.6, 41.2, 37.2, 

31.7, 26.3, 26.1, 25.9, 24.4, 22.7, 18.5, 18.4, 18.3, 18.1, 18.1, 14.2, 9.8, −3.0, −3.1, −3.8, −3.9, 

−3.9, −4.0, −4.2, −4.4, −5.2, −5.3; IR (neat) cm-1 2950, 2929, 2850, 1723, 1472, 1275, 1252, 

1109, 835.  

 

O O O SS

CH3

OTBS
HO

TBS TBS TBS

OBz

 

(3S,4R)-4-(2-((2R,4S,6S)-2,4,6-tris(tert-Butyldimethylsilyloxy)-7-hydroxyheptyl)-1,3-dithian-

2-yl)-3-(tert-butyldimethylsilyloxy)pentyl benzoate (91): To a solution of benzoate 90 (45 mg, 

0.042 mmol) in THF (0.5 mL) was added HF•pyr (1 mL) and the reaction mixture was stirred at 

room temperature for 5 h. The reaction mixture was diluted with THF (5 mL) and quenched with 

saturated aqueous sodium bicarbonate (15 mL).  Organic layer was separated and the aqueous 

layer was extracted with ethyl acetate. The combined organic layers were dried over MgSO4 and 

concentrated. Purification of the crude product by flash column chromatography (SiO2, 15% 

ethyl acetate in hexanes) gave the alcohol 91 (16 mg, 39%) as an oil: [α]D 14.3 (c 0.3 CHCl3); 1H 

NMR (300 MHz, CDCl3) δ 8.04-8.07 (m, 2 H), 7.54-7.60 (m, 1 H), 7.42-7.47 (m, 2 H), 4.56-4.61 
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(m, 1 H), 4.29-4.44 (m, 2 H), 4.05-4.18 (m, 2 H), 3.80-3.99 (m, 1 H), 3.55-3.66 (m, 1 H), 3.35-

3.51 (m, 1 H), 2.60-2.90 (m, 3 H), 2.44-2.53 (m, 2 H), 1.66-2.20 (m, 11 H), 1.09 (d, J = 6.9 Hz, 3 

H), 0.88-0.91 (m, 36 H), 0.06-0.20 (m, 24 H); 13C NMR (126 MHz, CDCl3) δ 166.7, 133.1, 

130.3, 129.6, 128.4, 70.3, 68.8, 67.6, 67.0, 66.6, 62.0, 57.6, 49.2, 45.2, 41.4, 41.1, 37.1, 26.4, 

26.2, 26.1, 26.0, 18.4, 18.2, 18.1, 18.1, 10.0, −2.9, −3.0, −3.9, −4.1, −4.3, −4.5, −4.6; IR (neat) 

cm-1 2954, 2929, 2852, 1724, 1475, 1270, 1249, 1107, 833, 768, 702, 662; HRMS for 

C47H92O7NaSi4S2(M + Na)+
 : Calcd 967.5259; found 967.5232. 

 

O O O SS OTBS
O

TBS TBS TBS

OBz
9

20  

(3S,4R)-3-(tert-butyldimethylsilyloxy)-4-(2-((2R,4S,6S)-2,4,6-tris(tert-

butyldimethylsilyloxy)-7-oxoheptyl)-1,3-dithian-2-yl)pentyl benzoate (87): To a solution of 

(COCl)2 (17 μL, 0.20 mmol) in CH2Cl2 was added slowly a solution of DMSO (21 μL, 0.30 

mmol) in CH2Cl2 at –78 oC. Then the reaction mixture was stirred under –78 oC for 20 min 

followed by slow addition of alcohol 91 (95mg, 0.10 mmol) in CH2Cl2. The reaction mixture was 

stirred for another 30 min. NEt3 (70 μL, 0.50 mmol) was added and the mixture was stirred for 

15 min and warmed to 0 oC and stirred for another 20 min. Saturated aqueous NaHCO3 was 

added and the mixture was allowed to warm to room temperature. The layers were separated and 

the aqueous layer was extracted with dichloromethane. The combined organic layers were 

washed with brine, dried over MgSO4 and concentrated. The residue was purified by flash 

column chromatography (10% ethyl acetate in hexanes) to yield the aldehyde 87 (74 mg, 0.078 

mmol, 78%) as oil: 1H NMR (300 MHz, CDCl3) δ 9.60 (d, J = 1.8 Hz, 1 H), 8.04-8.06 (m, 2 H), 
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7.54-7.56 (m, 1 H), 7.41-7.46 (m, 2 H), 4.57-4.59 (m, 1 H), 4.35-4.40 (m, 2 H), 4.18-4.25 (m, 1 

H), 4.10-4.17 (m, 1 H), 3.97-4.07 (m, 1 H), 2.68-2.92 (m, 2 H), 2.39-2.56 (m, 3 H), 1.69-2.20 (m, 

10 H), 1.09 (d, J = 6.9 Hz, 3 H), 0.85-0.93 (m, 36 H), 0.04-0.19 (m, 24 H); 13C NMR (75 MHz, 

CDCl3) δ 203.2, 166.6, 133.0, 130.1, 129.5, 128.4, 74.9, 68.6, 66.9, 65.8, 61.9, 57.6, 49.5, 44.9, 

41.1, 41.0, 37.0, 26.2, 26.1, 26.1, 25.9, 25.9, 25.5, 24.3, 18.4, 18.3, 18.0, 18.0, 9.6, −3.1, −4.0, 

−4.1, −4.2, −4.3, −4.6, −4.7; IR (neat) cm-1 2954, 2930, 2895, 2857, 1723, 1470, 1273, 1255, 

1110, 1047, 1005, 836, 808, 775, 711; HRMS for C47H90O7NaSi4S2(M + Na)+
 : Calcd 965.5103; 

found 965.5110. 
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(3S,4R)-3-(tert-butyldimethylsilyloxy)-4-(2-((2R,4S,6S,10R,12S,14R,16S,E)-

2,4,6,10,12,14,16,17-octakis(tert-butyldimethylsilyloxy)heptadec-7-enyl)-1,3-dithian-2-

yl)pentyl benzoate (96): KHMDS (0.5 M in DME, 70 μL, 0.035 mmol) was added to a solution 

of sulfone 92 (32 mg, 0.032 mmol) in DME at −60 oC. After 30 min, a solution of aldehyde 87 

(36 mg, 0.038 mmol) in DME was added. The reaction mixture was stirred at −60 oC for 1.5 h 

followed by overnight stirring at room temperature. The reaction mixture was quenched with 

water and the aqueous layer was extracted with ethyl acetate. The combined organic layers were 

dried over MgSO4, concentrated and the crude product was purified by flash column 

chromatography (5% ethyl acetate in hexanes) to yield the alkene 95 (28 mg, 50%) as a colorless 

oil: 1H NMR (700 MHz, CDCl3) δ 8.04-8.06 (m, 2 H), 7.54-7.56 (m, 1 H), 7.41-7.46 (m, 2 H), 
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5.40-5.50 (m, 2 H), 4.61-4.63 (m, 1 H), 4.39-4.42 (m, 1 H), 4.32-4.34 (m, 1 H), 4.24-4.26 (m, 1 

H), 4.14-4.15 (m, 1 H), 3.74-3.89 (m, 5 H), 3.48-3.50 (m, 1 H), 3.34-3.36 (m, 1 H), 2.71-2.85 (m, 

2 H), 2.40-2.55 (m, 3 H), 2.24-2.29 (m, 1 H), 2.04-2.11 (m, 2 H), 1.92-2.02 (m, 2 H), 1.42-1.92 

(m, 13 H), 1.09 (d, J = 7.0 Hz, 3 H), 0.83-0.97 (m, 81 H), 0.05-0.09 (m, 54 H); 13C NMR (175 

MHz, CDCl3) δ 166.6, 135.7, 133.0, 130.2, 129.6, 128.4, 126.7, 71.2, 71.0, 70.6, 69.2, 68.7, 67.8, 

67.4, 67.1, 66.8, 62.0, 57.6, 49.9, 46.9, 46.4, 44.8, 44.4, 42.0, 41.4, 41.1, 37.0, 26.2, 26.1, 26.0, 

26.0, 26.0, 18.4, 18.3, 18.2, 18.1, 18.0, 9.8, −3.1, −3.1,  −3.4, −3.5, −3.7, −3.8, −3.9, −3.9, −4.0, 

−4.1, −4.2, −4.4, −4.5, −4.6, −5.3, −5.3. 
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(5R,7S,9R,11S)-7,9,11-tris(tert-butyldimethylsilyloxy)-14,14-diethyl-5-(2-(4-

methoxybenzyloxy)ethyl)-2,2,3,3-tetramethyl-4,13-dioxa-3,14-disilahexadecane (101): To a 

solution of 39 (160 mg, 0.196 mmol) in dichloromethane at −78 oC were added 2,6-lutidine (25 

mg, 0.235 mmol) and TESOTf (62 mg, 0.235 mmol). The reaction mixture was stirred at −78 oC 

for 3 h followed by warming it to 0 oC. The reaction mixture was poured into water followed by 

separation of the organic layer. The aqueous layer was extracted with dichloromethane and the 

combined organic extracts were dried over MgSO4 and concentrated. The crude product was 

purified by flash column chromatography (SiO2, 5% ethyl acetate in hexanes) to yield the ether 

39 (160 g, 88%) as an oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.27 (m, 2 H), 6.85-6.88 (m, 2 H), 

4.41 (s, 2 H), 3.75-3.93 (m, 7 H), 3.45-3.52 (m, 3 H), 3.35-3.41 (m, 1 H), 1.40-1.85 (m, 8 H), 

0.87-0.98 (m, 45 H), 0.55-0.63 (m, 6 H), 0.02-0.07 (m, 24 H); 13C NMR (126 MHz, CDCl3) δ 
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159.0, 130.8, 129.1, 113.7, 72.5, 70.7, 67.3, 67.3,  67.2, 67.0, 66.7, 55.2, 46.8, 45.8, 42.4, 37.6, 

26.1, 26.0, 18.4, 18.2, 18.1, 18.0, 7.1, 6.8, 5.7, 4.4, −3.5, −3.6, −3.7, −3.8, −3.9. 
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(3R,5S,7R,9S)-3,5,7,9-tetrakis(tert-butyldimethylsilyloxy)-10-(triethylsilyloxy)decan-1-ol 

(102): DDQ (50 mg, 0.223 mmol) was added to a solution of the PMB-ether 101 (160 mg, 0.172 

mmol) in DCM and pH 7 buffer (10:1) at room temperature. The reaction mixture was stirred at 

room temperature for 2 h followed by diluting it with DCM and saturated aqueous NaHCO3. 

Organic layer was separated and aqueous layer was extracted with DCM. The combined organic 

layers were dried over MgSO4 and concentrated. The crude product was purified by flash column 

chromatography to yield the alcohol 102 (130 mg, 93%) as an oil: 3.92-4.41 (m, 1 H), 3.67-3.91 

(m, 5 H), 3.47-3.52 (m, 1 H), 3.40-3.46 (m, 1 H), 1.40-1.92 (m, 8 H), 0.87-0.98 (m, 45 H), 0.55-

0.63 (m, 6 H), 0.02-0.07 (m, 24 H); 13C NMR (126 MHz, CDCl3) δ 70.9, 69.6, 67.4, 67.2, 66.9, 

60.2, 46.3, 45.3, 42.7, 38.1, 26.0, 26.0, 25.9, 25.9, 18.2, 18.0, 17.9, 7.1, 6.8, 5.6, 4.4, −3.5, −3.7, 

−3.8, −4.0, −4.3, −4.6, −5.3. 
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1-phenyl-5-((3S,5R,7R,9S)-3,5,7,9-tetrakis(tert-butyldimethylsilyloxy)-10-

(triethylsilyloxy)decylsulfonyl)-1H-tetrazole (104): To a solution of alcohol 102 (130 mg, 

0.160 mmol) in THF were added thiophenyltetrazole (34 mg, 0.209 mmol), triphenylphosphine 
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(55 mg, 0.209 mmol) and DIAD (42 mg, .209 mmol) at room temperature. After 16 h, it was 

diluted with ethyl acetate and water. Organic layer was separated and the aqueous layer was 

extracted with ethyl acetate. The combined organic extracts were dried over MgSO4 and 

concentrated to yield the crude product. To the crude compound in dichloromethane was added 

m-CPBA (106 mg, 0.430 mmol) and NaHCO3. The reaction mixture was stirred at room 

temperature for overnight, quenched with saturated NaHCO3 and extracted with dichloromethane. 

The combined organic layers were dried over MgSO4 and concentrated. The crude product was 

purified by flash column chromatography (SiO2, 10% ethyl acetate in hexanes) to yield the 

sulfone 104 (131 mg, 83%) as an oil: 1H NMR (700 MHz, CDCl3) δ 7.70-7.71 (m, 2 H), 7.59-

7.62 (m, 3 H), 4.04-4.08 (m, 1 H), 3.74-3.92 (m, 5 H), 3.49-3.52 (m, 1 H), 3.34-3.37 (m, 1 H), 

2.16-2.23 (m, 1 H), 2.01-2.08 (m, 1 H), 1.63-1.74 (m, 4 H), 1.40-1.51 (m, 2 H), 0.58-0.62 (m, 6 

H), 0.83-0.97 (m, 45 H), 0.05-0.09 (m, 24 H); 13C NMR (175 MHz, CDCl3) δ 153.4, 133.1, 

131.4, 129.7, 125.0, 70.5, 67.3, 67.2, 67.1, 67.0, 52.1, 46.9, 44.7, 42.3, 30.0, 26.0, 26.0, 25.9, 

25.9, 25.9, 18.2, 18.0, 18.0, 7.1, 6.8, 4.3, −3.4, −3.4, −3.7, −3.8, −3.9, −4.3, −4.4, −4.6. 
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(3S,4R)-3-(tert-butyldimethylsilyloxy)-4-(2-((2R,4S,6S,10R,12S,14R,16S,E)-

2,4,6,10,12,14,16-heptakis(tert-butyldimethylsilyloxy)-17-(triethylsilyloxy)heptadec-7-enyl)-

1,3-dithian-2-yl)pentyl benzoate (105): KHMDS (0.5 M in DME, 140 μL, 0.070 mmol) was 

added to a solution of sulfone 104 (63 mg, 0.063 mmol) in DME at −60 oC. After 30 min, a 
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solution of aldehyde 87 (73 mg, 0.077 mmol) in DME was added. The reaction mixture was 

stirred at −60 oC for 1.5 h followed by overnight stirring at room temperature. The reaction 

mixture was quenched with water and the aqueous layer was extracted with ethyl acetate. The 

combined organic layers were dried over MgSO4, concentrated and the crude product was 

purified by flash column chromatography (5% ethyl acetate in hexanes) to yield the alkene 105 

(56 mg, 52%) as a colorless oil: 1H NMR (700 MHz, CDCl3) δ 8.04-8.06 (m, 2 H), 7.54-7.56 (m, 

1 H), 7.41-7.46 (m, 2 H), 5.40-5.50 (m, 2 H), 4.61-4.63 (m, 1 H), 4.39-4.42 (m, 1 H), 4.32-4.34 

(m, 1 H), 4.24-4.26 (m, 1 H), 4.14-4.15 (m, 1 H), 3.74-3.89 (m, 5 H), 3.48-3.50 (m, 1 H), 3.34-

3.36 (m, 1 H), 2.71-2.85 (m, 2 H), 2.40-2.55 (m, 3 H), 2.24-2.29 (m, 1 H), 2.04-2.11 (m, 2 H), 

1.92-2.02 (m, 2 H), 1.42-1.92 (m, 13 H), 1.09 (d, J = 7.0 Hz, 3 H), 0.83-0.97 (m, 81 H), 0.58-

0.62 (m, 6 H), 0.05-0.09 (m, 48 H); 13C NMR (175 MHz, CDCl3) δ 166.6, 135.7, 133.0, 130.2, 

129.6, 128.4, 126.7, 71.2, 70.6, 69.2, 68.7, 67.4, 67.2, 67.1, 67.1, 66.8, 62.0, 57.6, 49.9, 46.9, 

46.4, 44.8, 44.3, 42.0, 41.4, 41.1, 37.0, 26.3, 26.2, 26.2, 26.0, 26.0, 26.0, 25.7, 24.6, 24.3, 18.3, 

18.2, 18.0, 18.0, 9.8, 7.1, 6.8, 4.4, −3.1, −3.1, −3.2, −3.4, −3.5, −3.7, −3.8, −3.8, −3.9, −4.1, −4.2, 

−4.4, −4.5, −4.6, −4.7, −5.3. 

 

HO
O O OO O O

OTBS

S
STBS TBS TBS TBS TBS TBS

9

20

21

30

TBSO

OBz

 

(3S,4R)-3-(tert-butyldimethylsilyloxy)-4-(2-((2R,4S,6S,10R,12S,14R,16S,E)-

2,4,6,10,12,14,16-heptakis(tert-butyldimethylsilyloxy)-17-hydroxyheptadec-7-enyl)-1,3-

dithian-2-yl)pentyl benzoate (97): To a solution of compound 96 (17 mg, 0.010 mmol) in THF 
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(0.5 mL) was added HF•pyr (1 mL) and the reaction mixture was stirred at room temperature for 

3 h. The reaction mixture was diluted with THF and quenched with saturated aqueous sodium 

bicarbonate. Organic layer was separated and the aqueous layer was extracted with ethyl acetate. 

The combined organic layers were dried over MgSO4 and concentrated. Purification of the crude 

product by flash column chromatography (SiO2, 15% ethyl acetate in hexanes) gave the alcohol 

(1.6 mg, 10%) as an oil: 1H NMR (500 MHz, CDCl3) δ 8.04-8.06 (m, 2 H), 7.54-7.56 (m, 1 H), 

7.42-7.45 (m, 2 H), 5.40-5.50 (m, 2 H), 4.61-4.64 (m, 1 H), 4.39-4.42 (m, 1 H), 4.32-4.34 (m, 1 

H), 4.24-4.26 (m, 1 H), 4.12-4.18 (m, 1 H), 3.73-3.89 (m, 5 H), 3.57-3.63 (m, 1 H), 3.42-3.47 (m, 

1 H), 2.71-2.85 (m, 2 H), 2.40-2.55 (m, 3 H), 2.21-2.27 (m, 1 H), 2.04-2.15 (m, 2 H), 1.92-2.02 

(m, 2 H), 1.42-1.92 (m, 14 H), 1.09 (d, J = 7.0 Hz, 3 H), 0.83-0.97 (m, 72 H), 0.05-0.09 (m, 48 

H); 13C NMR (75 MHz, CDCl3) δ 166.6, 135.8, 133.0, 130.2, 129.6, 128.4, 126.4, 71.1, 70.3, 

69.2, 68.7, 67.2, 67.1, 66.8, 62.0, 57.7, 49.9, 46.7, 46.4, 44.8, 44.8, 42.0, 41.3, 41.0, 37.0, 26.2, 

26.0, 26.0, 25.9, 25.7,24.3, 18.3, 18.1, 18.0, 9.8, −3.1, −3.1, −3.5, −3.5, −3.8, −3.8, −3.9, −4.0, 

−4.1, −4.1, −4.3, −4.4, −4.5. 
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(3S,4R)-3-(tert-butyldimethylsilyloxy)-4-(2-((2R,4S,6S,10R,12S,14R,16S,E)-

2,4,6,10,12,14,16-heptakis(tert-butyldimethylsilyloxy)-17-oxoheptadec-7-enyl)-1,3-dithian-2-

yl)pentyl benzoate (93): To a solution of alcohol 97 (5 mg, 0.003 mmol) in DCM were added 

solid NaHCO3 (1 mg) and Dess-Martin reagent (3 mg, 0.006 mmol). The reaction mixture was 
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stirred at room temperature for 3 h. Then the reaction was quenched with saturated NaHCO3 

solution. The layers were separated and the aqueous layer was extracted with dichloromethane. 

The combined organic layers were washed with brine, dried over MgSO4 and concentrated. The 

residue was purified by flash column chromatography (10% ethyl acetate in hexanes) to yield the 

aldehyde 93 (3 mg, 0.0018 mmol, 60%) as oil: 1H NMR (600 MHz, CDCl3) δ 9.57 (d, J = 1.2 Hz, 

1 H), 8.04-8.06 (m, 2 H), 7.54-7.56 (m, 1 H), 7.42-7.45 (m, 2 H), 5.45-5.47 (m, 2 H), 4.59-4.63 

(m, 1 H), 4.37-4.42 (m, 1 H), 4.29-4.35 (m, 1 H), 4.24-4.28 (m, 1 H), 4.12-4.18 (m, 2 H), 3.90-

3.96 (m, 1 H), 3.80-3.87 (m, 2 H), 3.71-3.77 (m, 1 H), 2.71-2.85 (m, 2 H), 2.40-2.55 (m, 3 H), 

2.24-2.29 (m, 1 H), 2.03-2.10 (m, 2 H), 1.92-2.02 (m, 2 H), 1.42-1.92 (m, 13 H), 1.09 (d, J = 7.0 

Hz, 3 H), 0.83-0.97 (m, 72 H), 0.05-0.09 (m, 48 H). 
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(3S,4R)-4-(2-((2R,4S,6S,7E,10R,12S,14R,16S,17E,20S,21E,24R)-27-(bis(tert-

butoxycarbonyl)amino)-2,4,6,10,12,14,16,20,24-nonakis(tert-

butyldimethylsilyloxy)heptacosa-7,17,21-trienyl)-1,3-dithian-2-yl)-3-(tert-

butyldimethylsilyloxy)pentyl benzoate (88): KHMDS (0.5 M in DME, 14 μL, 0.007 mmol) 

was added to a solution of sulfone 93 (8 mg, 0.005 mmol) in DME at −60 oC. After 30 min, a 

solution of aldehyde 9 (6 mg, 0.007 mmol) in DME was added. The reaction mixture was stirred 

at −60 oC for 1.5 h followed by overnight stirring at room temperature. The reaction mixture was 

quenched with water and the aqueous layer was extracted with ethyl acetate. The combined 
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organic layers were dried over MgSO4, concentrated and the crude product was purified by flash 

column chromatography (5% ethyl acetate in hexanes) to yield the product 88 (5 mg, 45%) as a 

colorless oil: 1H NMR (600 MHz, CDCl3) δ 8.04-8.06 (m, 2 H), 7.54-7.56 (m, 1 H), 7.41-7.46 

(m, 2 H), 5.50-5.58 (m, 2 H), 5.38-5.48 (m, 4 H), 4.59-4.63 (m, 1 H), 4.39-4.42 (m, 1 H), 4.30-

4.36 (m, 1 H), 4.24-4.26 (m, 1 H), 4.17-4.21 (m, 1 H), 4.12-4.17 (m, 1 H), 4.05-4.09 (m, 1 H), 

3.80-3.90 (m, 3 H), 3.71-3.77 (m, 1 H), 3.65-3.70 (m, 1 H), 3.48-3.58 (m, 2 H), 2.71-2.85 (m, 2 

H), 2.40-2.55 (m, 2 H), 2.24-2.29 (m, 1 H), 2.12-2.23 (m, 5 H), 1.92-2.02 (m, 6 H), 1.60-1.80 (m, 

11 H), 1.50 (s, 18 H),1.35-1.45 (m, 4 H), 1.09 (d, J = 7.0 Hz, 3 H), 0.83-0.97 (m, 90 H), 0.05-

0.09 (m, 60 H). 
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di-tert-butyl (4R,6E,8S,10E,12S,14R,16S,18R,20E,22S,24S,26R)-4,8,12,14,16,18,22,24,26- 

nonakis(tert-butyldimethylsilyloxy)-27-(2-((2R,3S)-3-(tert-butyldimethylsilyloxy)-5-

hydroxypentan-2-yl)-1,3-dithian-2-yl)heptacosa-6,10,20-trienyliminodicarbonate (106): 

KOH(aq) was added to a solution of benzoate 88 (1.5 mg, 0.00068 mmol) in MeOH at room 

temperature. The reaction mixture was heated to 50 oC and stirred for 24h. The reaction mixture 

was quenched with water and the aqueous layer was extracted with ethyl acetate. The combined 

organic layers were dried over MgSO4, concentrated and the crude product was purified by flash 

column chromatography (5% ethyl acetate in hexanes) to yield the product 88 (1 mg, 0.00048 

mmol, 70%) as a colorless oil: 1H NMR (600 MHz, CDCl3) δ 5.50-5.58 (m, 2 H), 5.38-5.48 (m, 4 



 142 

H), 4.42-4.47 (m, 1 H), 4.22-4.27 (m, 1 H), 4.16-4.22 (m, 1 H), 4.11-4.16 (m, 1 H), 4.04-4.10 (m, 

1 H), 3.80-3.92 (m, 3 H), 3.62-3.79 (m, 4 H), 3.48-3.58 (m, 1 H), 3.07-3.13 (m, 1 H), 2.86-2.94 

(m, 1 H), 2.73-2.81 (m, 1 H), 2.55-2.69 (m, 2 H), 2.37-2.44 (m, 1 H), 1.92-2.32 (m, 10 H), 1.60-

1.92 (m, 13 H), 1.50 (s, 14 H), 1.43-1.45 (m, 8 H), 1.09 (d, J = 7.0 Hz, 3 H), 0.86-0.93 (m, 90 H), 

0.02-0.18 (m, 60 H). 
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di-tert-butyl (4R,6E,8S,10E,12S,14R,16S,18R,20E,22S,24S,26R)-4,8,12,14,16,18,22,24,26- 

nonakis(tert-butyldimethylsilyloxy)-27-(2-((2R,3S)-3-(tert-butyldimethylsilyloxy)-5-

oxopentan-2-yl)-1,3-dithian-2-yl)heptacosa-6,10,20-trienyliminodicarbonate (89): 

To a solution of alcohol 88 (2.5 mg, 0.0012 mmol) in DCM were added solid NaHCO3 and Dess-

Martin reagent (1 mg, 0.0023 mmol). The reaction mixture was stirred at room temperature for 2 

h. Then the reaction was quenched with saturated NaHCO3 solution. The layers were separated 

and the aqueous layer was extracted with dichloromethane. The combined organic layers were 

washed with brine, dried over MgSO4 and concentrated. The residue was purified by flash 

column chromatography (10% ethyl acetate in hexanes) to yield the aldehyde 89 (0.0015 mg, 

60%) as oil 1H NMR (600 MHz, CDCl3) δ 9.80-9.82 (1 H), 5.50-5.58 (m, 2 H), 5.35-5.48 (m, 4 

H), 4.93-4.98 (m, 1 H), 4.12-4.25 (m, 3 H), 4.05-4.10 (m, 1 H), 3.80-3.90 (m, 3 H), 3.71-3.77 (m, 

1 H), 3.63-3.70 (m, 1 H), 3.48-3.58 (m, 2 H), 2.50-2.88 (m, 4 H), 2.37-2.43 (m, 1 H), 2.22-2.32 
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(m, 3 H), 1.90-2.12 (m, 10 H), 1.60-1.90 (m, 13 H), 1.50 (s, 18 H), 1.09 (d, J = 7.0 Hz, 3 H), 

0.82-0.92 (m, 90 H), 0.00-0.20 (m, 60 H). 
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(2E,4E,6E,8E,11S,12R)-methyl 12-(2-((2R,4S,6S,7E,10R,12S,14R,16S,17E,20S,21E,24R)-27-

(bis(tert-butoxycarbonyl)amino)-2,4,6,10,12,14,16,20,24-nonakis(tert-

butyldimethylsilyloxy)heptacosa-7,17,21-trienyl)-1,3-dithian-2-yl)-11-(tert-

butyldimethylsilyloxy)trideca-2,4,6,8-tetraenoate (20): To a solution of fragment 7 (1 mg, 

0.003 mmol) in THF at -78 oC was added a solution of LiHMDS (0.003 mmol) in THF and 

stirred for 15 min. A solution of aldehyde 89 (1.5 mg, 0.0007 mmol) in THF was added to the 

above reaction mixture and stirred for 30 min at -78 oC for 30 min and 0 oC for 30 min. The 

reaction mixture was quenched with saturated aqueous NH4Cl and extracted with ethyl acetate. 

The combined organic extracts were dried over MgSO4 and concentrated. The residue was 

purified by flash column chromatography to yield the product 20 (1.0 mg, 0.00045 mmol, 62%): 

1H NMR (500 MHz, CDCl3) δ 7.30-7.35 (m, 1 H), 6.54-6.63 (m, 1 H), 6.30-6.40 (m, 1 H), 6.15-

6.30 (m, 2 H), 5.79-5.81 (m, 2 H), 5.50-5.58 (m, 2 H), 5.38-5.48 (m, 5 H), 4.55-4.60 (m, 1 H), 

4.20-4.30 (m, 3 H), 4.10-4.15 (m, 1 H), 3.80-3.90 (m, 3 H), 3.75 (s, 3 H), 3.71-3.75 (m, 1 H), 

3.65-3.70 (m, 1 H), 3.48-3.58 (m, 2 H), 2.71-2.85 (m, 2 H), 2.40-2.55 (m, 2 H), 2.24-2.29 (m, 1 

H), 2.12-2.23 (m, 5 H), 1.92-2.02 (m, 6 H), 1.60-1.80 (m, 11 H), 1.50 (s, 18 H),1.35-1.45 (m, 4 

H), 1.09 (d, J = 7.0 Hz, 3 H), 0.83-0.97 (m, 90 H), 0.05-0.09 (m, 60 H).  



 144 

BIBLIOGRAPHY 

1. a) Ginsberg, M. H., Forsyth, J., Lightsey, A., Chediak, J. and Plow, E. F. J. Clin. Invest. 1983, 

71, 619-624. b) Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F. and Ruoslahti, E. 

Science 1986, 231, 1559-1562. 

2. a) Barker, P. L.; Bullens, S.; Bunting, S.; Burdick, D. J.; Chan, K. S.; Deiser, T.; Eigenbrot, C.; 

Gadek, T. R.; Gantzos, R.; Lipari, M. T.; Muir, C. D.; Napier, M. A.; Pitti, R. T.; Padua, A.; 

Quan, C.; Stanley, K.; Struble, M.; Tom, J. Y. K.; Burnier, J. P. J. Med. Chem. 1992, 35, 2040-

2048. b) Samanen, J.; Ali, F.; Romoff, T.; Calvo, R.; Sorenson, E.; Vasko, J.; Storer, B.; Berry, 

D.; Bennet, D.; Strohsacker, M.; Powers, D.; Stadel, J.; Nichols, A. J. Med. Chem. 1991, 34, 

3114-3125. c) Nicholson, N. S.; Panzer-Knodle, S. G.; Salyer, A. K.; Taite, B. B.; King, L. W.; 

Miyano, M.; Gorczynski, R. J.; Williams, M. H.; Zupec, M. E.; Tjoeng, F. S.; Adams, S. P.; 

Feigen, L. P. Thromb. Res. 1991, 62, 567-578. 

3. Kamiyama, T.; Umino, T.; Fujisaki, N.; Fujimori, K.; Satoh, T.; Yamashita, Y.; Ohshima, S.; 

Watanabe, J.; Yokose, K. J. Antibiot. 1993, 46, 1039. 

4. a) Satoh, T.; Yamashita, Y.; Kamiyama, T.; Watanabe, J.; Steiner, B.; Hadvary, B.; Arisawa, 

M. Thromb. Res. 1993, 72, 389-400. b) Satoh, T.; Yamashita, Y.; Kamiyama, T.; Arisawa, M. 

Thromb. Res. 1993, 72, 401-412. 

5. Kamiyama, T.; Itezono, Y.; Umino, T.; Satoh, T.; Nakayama, N.; Yokose, K. J. Antibiot. 1993, 

46, 1047.  



 145 

6. a) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2177-2180. b) Lee, J.; 

Kobayashi, Y.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1, 2181-2184. c) Kobayashi, Y.; Hayashi, 

N.; Tan, C.-H.; Kishi, Y. Org. Lett. 2001, 3, 2245-2248. d) Hayashi, N.; Kobayashi, Y.; Kishi, Y. 

Org. Lett. 2001, 3, 2249-2252. e) Kobayashi, Y.; Hayashi, N.; Kishi, Y. Org. Lett. 2001, 3, 2253-

2255. 

7. a) Benowitz, A. B.; Fidanze, S.; Small, P. L. C.; Kishi, Y. J. Am. Chem. Soc. 2001, 123, 5128-

5129. b) Fidanze, S.; Song, F.; Szlosek-Pinaud, M.; Small, P. L. C.; Kishi, Y. J. Am. Chem. Soc. 

2001, 123, 10117-10118. 

8. Kobayashi, Y.; Czechitzky, W.; Kishi, Y. Org. Lett. 2003, 5, 93-96. 

9. BouzBouz, S.; Cossy, J. Org. Lett. 2004, 6, 3469-3472. 

10. Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 533-536. 

11. Friestad, G. K. and Sreenilayam, G. Org. Lett. 2010, 12, 5016–5019. 

12. Gudipati, V. PhD Thesis; University of Pittsburgh: USA, 2008; 

http://etd.library.pitt.edu/ETD/available/etd-04212008-115104/. 

13. a) Baudin, J. B.; Hareau, G.; Julia, S. A.; Ruel, O. Tetrahedron Lett. 1991, 32, 1175-1178. b) 

Baudin, J. B.; Hareau, G.; Julia, S. A.; Lorne, R.; Ruel, O. Bull. Soc. Chim. Fr. 1993, 130, 856. c) 

Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998, 26-28. 

14. Pospíšil, J.; Markó, I. E. J. Am. Chem. Soc. 2007, 129, 3516-3517. 

15. Mitsunobu, O. Synthesis 1981, 1-28. 

16. Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885. 

17. Luo, Z.; Zhang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291, 1766-1769. 

18. Zhang, Q.; Rivkin, A.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 5774-5781 



 146 

19. Fukui, Y.; Brückner, A. M.; Shin, Y.; Balachandran, R.; Day, B. W.; Curran, D. P. Org. Lett. 

2006, 8, 301-304.  

20. Yang, F.; Newsome, J. J.; Curran, D. P. J. Am. Chem. Soc. 2006, 128, 14200-14205. 

21. a) Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505-5507. b) Dineen, T, A.; 

Roush, W. R. Org. Lett. 2004, 6, 2043-2046. 

22. Wittig, G.; Schöllkopf, U. Chemische Berichte 1954, 87, 1318-1330. 

23. Schaus, S. E.; Brandes, B. D.; Larrow, J. F.; Tokunaga, M.; Hansen, K. B.; Gould, A. E.; 

Furrow, M. E.; Jacobson, E. N. J. Am. Chem. Soc. 2002, 124, 1307-1315. 

24. Kobayasi, Y.; Fukuda, A.; Kimachi, T.; Ju-ichi, M. Takemoto, Y. Tetrahedron 2005, 61, 

2607-2622. 

25. Gaunt, M. J.; Hook, D. F.; Tanner, H. R.; Ley, S. V. Org. Lett. 2003, 5, 4815-4818. 

26. Smith, A. B., III.; Pitram. S. M.; Fuertes, M. J. Org. Lett. 2003, 5, 2751-2754. 

27. Janssen, D.; Albert D.; Jansen, R.; Müller, R.; Kalesse, M. Angew. Chem. Int. Ed. 2007, 46, 

4898-4901. 

28. Dess, D. B.; Martin, J. C. J. Org. Chem. 1998, 48, 4155. 

29. Zhang, W,; Luo, Z.; Chen, C. H-T.; Curran, D. P. J. Am. Chem. Soc. 2002, 124, 10443-10450. 

30. Kim, H.Y.; Kuhn, R. J.; Patkar, C.; Warrier, R.; Cushman M. Bioorg. Med. Chem. 2007, 15, 

2667-2679. 

31. Paul R. Blakemore, J. Chem. Soc., Perkin Trans. 1, 2002, 2563-2585. 

32. Zhang, K.; Gudipati, V., Curran, D.P. Synlett 2010, 4, 667-671. 

33. Nicolaou, K. C.; Fylaktakidou, K. C.; Monenschein, H.; Li, Y.; Weyershausen, B.; Mitchell, 

H. J.; Wei, H.; Guntupalli, P.; Hepworth, D.; Sugita, K. J. Am. Chem. Soc. 2003, 125, 15439. 

34. Davidson, M. H.; McDonald, F. E. Org. Lett. 2004, 6, 1601. 



 147 

35. Hori, N.; Matsukura, H.; Matsuo, G.; Nakata, T. Tetrahedron 2002, 58, 1853. 

36. Fuwa, H.; Okamura, Y.; Natsugari, H. Tetrahedron 2004, 60, 5341. 

37. Funel, J-A.; Pronet, J. J. Org. Chem. 2004, 69, 4555. 

38. Martinelli, J. R.; Streiter, E. R.; Burke, S. D. Org. Lett. 2002, 4, 467. 

39. Yoshimura, T.; Yakushiji, F.; Kondo, S.; Wu, X.; Shindo, M.; Shishido, K. Org. Lett. 2006, 8, 

475. 

40. a) Mori, Y.; Asai, M.; Kawade, J.; Furukawa, H. Tetrahedron 1995, 51, 5315. b) Denmark, 

S.; Shinji, F. J. Am. Chem. Soc. 2005, 127, 8971. 

41. a) Wadsworth, W. Org. React. 1977, 25, 73. b) Horner, L.; Hoffmann, H. M. R.; Wippel, H. 

G. Chemische Berichte 1958, 91, 61-63. c) Horner, L.; Hoffmann, H. M. R.; Wippel, H. G.; 

Klahre, G. Chemische Berichte 1959, 92, 2499-2505. d) Wadsworth, W. S., Jr.; Emmons, W. D. 

J. Am. Chem. Soc. 1961, 83, 1733. e) Wadsworth, W. S., Jr.; Emmons, W. D. Organic Syntheses 

1973, 5, 547. 

42. Brown, H. C.; Knights, E. F.; Scouten, C. G. J. Am. Chem. Soc. 1974, 96, 7765. 



 148 

APPENDIX 

NMR spectra of compounds 87, 104, 105, 97, 93, 88, 106 and 20 are listed below. 
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