
  

 

Electric Powered Wheelchair Control with a Variable Compliance Joystick:  

Improving Control of Mobility Devices for Individuals with Multiple Sclerosis 

University of Pittsburgh 

 

2007 

Submitted to the Graduate Faculty of 

the School of Health and Rehabilitation Sciences in partial fulfillment  

of the requirements for the degree of 

Master of Science 

by 

Karl Walter Brown 

Bachelor of Science Aerospace Engineering Sciences, University of Colorado at Boulder, 

2001 

 



 

SCHOOL OF S 

Rory Coope

Dan Ding,

Thesis Director: Dona
UNIVERSITY OF PITTSBURGH 

 HEALTH AND REHABILITATION SCIENCE
n 

 

r, Ph

 Ph. 

ld S
Copyright © by Karl Brow

2006 

This thesis was presented

 

by 

 

Karl Walter Brown 
ii 

It was defended on 

December 19, 2006  

and approved by 

. D., Rehabilitation Science and Technology 

D., Rehabilitation Science and Technology 

paeth, Ph. D., Rehabilitation Science and Technology 



 

Copyright © by Karl W. Brown 

2007 

 iii 



 

W

o

m

s

im

is

p

p

a

d

e

c

a

d

lo

 

 

Electric Powered Wheelchair Control with a Variable Compliance Joystick: Improving

Control of Mobility Devices for Individuals with Multiple Sclerosis 

Karl Brown, M.S. 

University of Pittsburgh, 2007
hile technological developments over the past several decades have greatly enhanced the lives 

f people with mobility impairments, between 10 and 40 percent of clients who desired powered 

obility found it very difficult to operate electric powered wheelchairs (EPWs) safely because of 

ensory impairments, poor motor function, or cognitive deficits [1]. The aim of this research is to 

prove control of personalized mobility for those with multiple sclerosis (MS) by examining 

ometric and movement joystick interfaces with customizable algorithms.  

A variable compliance joystick (VCJ) with tuning software was designed and built to 

rovide a single platform for isometric and movement, or compliant, interfaces with enhanced 

rogramming capabilities. 

The VCJ with three different algorithms (basic, personalized, personalized with fatigue 

daptation) was evaluated with four subjects with MS (mean age 58.7±5.0 yrs; years since 

iagnosis 28.2±16.1 yrs) in a virtual environment. A randomized, two-group, repeated-measures 

xperimental design was used, where two subjects used the VCJ in isometric mode and two in 

ompliant mode. 

While still too early to draw conclusions about the performance of the joystick interfaces 

nd algorithms, the VCJ was a functional platform for collecting information. Inspection of the 

ata shows that the learning curve may be long for this system. Also, while subjects may have 

w trial times, low times could be related to more deviation from the target path. 
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1.0  INTRODUCTION 

Technological developments over the past several decades have greatly enhanced the lives of 

people with mobility impairments. Manual wheelchairs are becoming lighter and easier to 

propel, and power wheelchairs give individuals with limited mobility and upper body strength 

the ability to interact better with their environment. However, clinicians have reported that 

between 10 and 40 percent of their clients who desired powered mobility found it very difficult 

to operate electric powered wheelchairs (EPWs) safely because of sensory impairments, poor 

motor function, or cognitive deficits [1]. Individuals with movement disorders are particularly 

difficult to fit to wheelchairs because the device most often used to command a wheelchair is a 

hand-operated joystick. While innovative ways for individuals with movement disorders to 

control wheelchairs have been explored [2]-[6], there is still a lack of research in this area for 

individuals with multiple sclerosis (MS) [7]. Particular concerns for individuals with MS include 

tremor in the upper extremities and fatigue. Beginning with an overview of MS, mobility, and 

wheelchair user interfaces, this thesis will explore several novel methods to improve control of 

mobility for individuals with MS. Additionally, it will present initial results of a study in which 

individuals with MS used movement and isometric joystick user interfaces with personally-fitted 

input control algorithms to control a virtual EPW. 

1.1 MULTIPLE SCLEROSIS AND THE NEED FOR PERSONAL MOBILITY 

Approximately 211,000 people are living in the United States with MS [8]. MS is a progressive 

disease that attacks the central nervous system. As such, the disease shows itself in a variety of 

formats, including sensory, motor, and cognitive difficulties. Though highly variable among 

individuals, the progressive nature of MS means that conditions will worsen. Little is known 
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about the exact cause of the disease, and a cure does not exist. Current research trends are aimed 

at understanding the disease and finding ways to alleviate symptoms, delay its progression, and 

restore lost function. This chapter will examine some of the medical aspects of MS focusing on 

fatigue and tremor because of their relevance to wheelchair control; and, second, it will examine 

the need for personal mobility, its influence, and how this study addresses the specific needs of 

individuals with MS. 

1.1.1 Medical Aspects of Multiple Sclerosis 

1.1.1.1 Epidemiology 

Multiple sclerosis is an acquired disease characterized by lesions in the central nervous system 

(CNS). Little is known about the exact cause of the disease, but its main feature is that the 

immune system attacks proteins on the myelin that surrounds neurons [7]. As a result, the ability 

for the axons to transmit electrical impulses deteriorates. Conduction becomes slow, blocked, or 

may be short circuited.  

The etiology of MS involves a combination of environmental contacts and genetic 

susceptibility. Individuals living farther from the equator, such as in North America, southern 

Australia, and northern Europe, are more likely to have MS, suggesting environmental factors. 

But, higher risk rates for family members (20 to 40 times the risk of the general population) and 

identical twins (31% risk) of individuals with MS suggest genetic influences [9]. There is 

approximately twice the number of women with MS as men [9].  

MS is generally progressive and can be classified into four types based on its progression. 

Eighty percent of individuals with MS have the relapsing-remitting type [9], where the person 

will undergo a relapse (also called an attack or exacerbation, with new neurological 

abnormalities) followed by periods of remissions or inactivity of the disease. The primary 

progressive type is defined by a slow progression of the disease without relapses. The secondary 

progressive type has a relapsing onset with progression between attacks. Lastly, the progressive 

relapsing type, occurring in less than one percent of those affected, begins with a progressive 

onset with a later relapse. Relapses are not to be confused with pseudoexacerbations, where 

symptoms may be worse but are not accompanied by new lesions in the CNS.  
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The prognosis for an individual diagnosed with MS can range from little impact to 

decreasing one’s life expectancy to just a few months [9], with a majority anticipating a normal 

life expectancy [7]. Women and individuals with sensory or visual onset generally have a better 

outcome, while men, a later onset, and early, motor disability are generally predictive of a more 

severe clinical course [9],[10]. Because the disease attacks the CNS, a wide range of symptoms 

may occur.  

Symptoms of MS vary between individuals, over days, and over hours [7]. Table 1 

highlights some of its symptoms. Furthermore, individuals with MS may experience cognitive 

changes or depression [9]. Ataxia of the upper extremities is common in the later stages of MS 

[7].  

1.1.1.2 Fatigue in Multiple Sclerosis 

Fatigue is a problem for 75% to 90% of individuals with MS, where 50% to 60% report fatigue 

as being the worst symptom of the disease [11]. Fatigue is defined as “a state of reduced capacity 

for work following a period of mental or physical activity” [12] and has three primary 

components: motor (physical involvement), cognitive (mental involvement), and lassitude 

(perception of fatigue) [12].  

Scales have been developed to measure fatigue; but each has unique properties and, as 

such, does not fully encompass fatigue in MS [13]. Performance-based measures do not correlate  

Table 1: Common symptoms associated with MS. 

Category Symptoms 

Sensory Numbness and tingling, pain, a tight or constricting sensation, or 
Lhermittes phenomenon 

Visual Optic neuritis, nystagmus, or oscillopsia 

Motor Hemiparesis, paraparesis, spacticity, hyperreflexia, Babinski’s sign, 
intention tremor, rubral tremor, or ataxia 

Autonomic Neurogenic bladder, neurogenic bowel, or sexual dysfunction 

Brainstem Dysarthria, dysphagia, vertigo, trigeminal neuralgia, or nystagmus 

 3 



to self-report measures [14], and the definition of fatigue varies in each of the surveys, if defined 

at all [12]. Some of the most common surveys include the Fatigue Severity Scale (FSS), the 

Fatigue Assessment Instrument (FAI), and the Fatigue Impact Scale (FIS). The FSS emphasizes 

the physical involvement aspect of fatigue [13] and distinguishes between fatigue experienced 

between patients with an illness and healthy controls [12]. The FAI looks at the severity of the 

fatigue, consequences of fatigue, and the subject’s responsiveness to rest [12]. And the FIS 

assesses fatigue’s impact on the subject’s life [12].  The FSS and FIS both have good test-retest 

reliability when there is little change in patients’ fatigue status [15]. Schwid et al. [12] and Krupp 

[14], however, view surveys as inadequate measures of fatigue because of surveys’ reliance on 

self-assessment and their retrospective nature, which confounds results because of recall bias. 

Schwid et al. [16] examined several performance-based measures of motor fatigue and found 

that their Fatigue Index (FI) based on the area between the maximal force level and the subject’s 

force over the last 25 seconds provided the best test-retest reliability and was more sensitive to 

motor fatigue. Here, subjects pulled against a strap attached to an adjustable frame using knee 

extensors, elbow extensors, or ankle dorsiflexors while maintaining predefined limb positions 

and joint angles. Hand grip strength was assessed with a digital grip dynamometer. The FI is 

calculated as in equation 1, 

1: %100
25

100
50

max

30

5 ×
⋅

−=
−

∫
F

Fdt
FI , 

where F is the subject’s maximal voluntary isometric contraction force (MVIC) during the test 

and  is the maximum force applied in the first five seconds of the test. In order of test-retest 

reliability, the FI was calculated using MVIC force for hand grip, knee extensors, elbow 

extensors, and ankle dorsiflexor with interclass correlation coefficients (ICC) of 0.96, 0.83, 0.73, 

and 0.71, respectively. In the same study, Schwid et al. attempted to measure a dynamic motor 

fatigue – the dominant hand grip strength during a series of brief maximal contractions for 30 

seconds – but found difficulties with this test as a measure of fatigue because some subjects 

found the frequency of contractions (1 Hz) to be too fast. 

50
max

−F

Fatigue has been shown to impact MS patients’ mental health negatively because of its 

disruption on their lives [17]. Krupp and Elkins [18] found that MS patients’ verbal memory, 

conceptual planning, and visual memory declined following tasks requiring continuous cognitive 
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effort. Between 48% and 60% of individuals with MS report fatigue as aggravating other MS 

symptoms [17],[19]. While fatigue is usually worsened with heat, the impact of fatigue seems to 

be independent of the patients’ age, duration of MS, and Expanded Disability Status Score 

(EDSS) [17]. An individual’s FI as calculated by Djaldetti et al. [20] – a slight variation of 

equation 1 – may or may not be worse during a relapse. They found if the pyramidal tract is 

involved, the FI will be worse; but no significant difference was found during a relapse if the 

pyramidal tract is not involved. Muscular weakness does not appear to be correlated to motor 

fatigue in patients with MS [16]. 

Current practices in treating fatigue involve both behavioral and pharmacological 

treatments. Behavioral treatments include education, support, exercise, rest periods, and 

avoidance of heat. And pharmacological treatments include regimens of amantadine, modafinil, 

or pemoline [14]. The coping mechanisms often used by individuals with MS to combat fatigue 

are pacing and reducing physical activity [19].  

1.1.1.3 Tremor in Multiple Sclerosis 

Tremor is defined as the involuntary oscillations of a body part and is another disabling symptom 

of MS. Approximately 75% of individuals with MS have some form of tremor [21]. About 10% 

of MS patients describe their tremor as “incapacitating” [22]. Tremor is located in the arms of 

approximately 56% of individuals with MS [22]. Specific types include 

• Rest Tremor – Tremor in a body part that is not voluntarily active and is supported 

against gravity 

• Postural Tremor – Tremor in a body part while maintaining a position against gravity 

• Kinetic Tremor – Tremor in a body part during any voluntary movement 

• Intention Tremor – Excluding postural tremor that may occur and the beginning or 

end of a movement, tremor in a body part during a target-directed movement [22] and 

worsens as the precision requirements increase [21]. 

Alusi, Worthington, and Glickman [22] studied these types of tremor in the arms of 100 patients 

with MS and found 16% with distal postural tremor and 18% with distal postural and kinetic 

tremor. Six percent had isolated intention tremor, and no subjects in their study showed signs of 

rest tremor. Eight percent had proximal postural and kinetic tremor. 
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Tremor frequencies associated with MS tend to be much lower than those associated with 

physiological tremor, which typically operates at 8 to 12 Hz [22]. Alusi, Worthington, and 

Glickman [22], Liu et al. [23], and Liu et al. [24] found postural, kinetic, and intention tremor 

frequencies for the upper arms to be between 3.5 and 5 Hz. Examining intention tremor more 

closely, Liu et al. [24] found peaks at 1 to 2 Hz when subjects could visually track targets that 

disappeared when the visual feedback was removed. A spike at 4 Hz was present with or without 

visual feedback for subjects with MS. The spike was much smaller for healthy control subjects.  

Treating disability associated with tremor has been difficult. Mechanical or robotic 

treatments are not widespread, and medicinal treatments usually have side effects that 

counterbalance the benefits of alleviating the tremor [21]. Because the arm has more degrees of 

freedom than necessary to perform various movements, patients with tremor often develop 

compensatory strategies that use the non-afflicted part of the limb [23]. Alternatively, they may 

use both arms to perform a task, brace an arm, restrain movement altogether, or ensure other 

parts of the body are stabilized [21],[25]. Surgical measures such as thalamotomy have been 

attempted with a low benefit to side-effect ratio, and deep brain stimulation is a new treatment 

not yet proven to be superior [21].  

1.1.2 Personal Mobility 

Personal mobility is a necessary component for not only assisting individuals with MS but also 

maintaining an acceptable quality of life (QOL). Pittock et al. [10] studied a cohort of 

individuals with MS and found a general trend toward needing assistance with mobility. One in 

three patients worsened to the point of needing a cane or wheelchair in the study’s 10-year 

period, and 51% of patients with an Expanded Disability Status Score (EDSS) of 6 or 7 in 1991 

required “a wheelchair or worse” after the 10-year study period. Noseworthy reported that half of 

MS patients will require assistance walking within 15 years of the disease’s onset [9]. Those 

more likely to deteriorate with regard to mobility include males, older individuals, and 

individuals with brainstem or cerebellar involvement [10]. As a person’s mobility decreases 

(e.g., inability to climb stairs or increased susceptibility to fatigue), so does his or her QOL [7]. 

Advancements in materials, electronics, controls, and clinical techniques applied to wheeled 
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mobility during the past several decades have given mobility back to many people with severe 

physical impairments [26]. 

Not only can personal mobility devices such as scooters and EPWs restore mobility, they 

have important secondary effects as well. They can reduce fatigue, allow people to interact with 

their environment and society [7], and allow people to carry out daily activities [27], all of which 

are closely related to QOL. A recent development, for example, is the pushrim-activated, power-

assisted wheelchair (PAPAW). Several studies have shown reduced energy demands, favorable 

ergonomic ratings during activities of daily living (ADL), and reduced joint range of motion with 

a PAPAW compared to individuals’ manual wheelchairs [28]-[30]. Also, EPW drivers reported 

improved quality of life, mobility, and pain/discomfort ratings after four months of using an 

EPW [31]. Just as decreased mobility can lower one’s QOL, restoring mobility or activity with 

assistive technologies has the ability to improve it [7],[32]. While EPWs have been shown to 

help individuals with severe physical impairments, few research studies exist related to the 

assistive technology needs of individuals with MS [7].  

1.2 THE WHEELCHAIR USER INTERFACE 

The user interface plays a pivotal role in the success or failure of an EPW as a mobility device 

[7],[27]. It is the means by which the user supplies commands to the wheelchair’s controller, 

which in turn sends commands to the motors. While the most common control interface for 

EPWs is the movement joystick (MJ) [26],[33], researchers have been reporting success with 

isometric joysticks [4],[5],[34],[35], exploring alternative interfaces [2],[3],[6],[36]-[41] and 

control enhancers [42]-[56], and finding success with personalized controls  [42],[49],[57],[58]. 

A MJ consists of a hand-sized stick, or shaft, that pivots at its base. The desired speed and 

turning rate correspond to the angle of deflection, and the desired heading corresponds to the 

direction of the deflection. An IJ, alternatively, consists of a rigid beam and force sensors. The 

desired speed corresponds to the magnitude of the applied force, and desired heading 

corresponds to the direction of the input. 
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1.2.1 Current Practices in Wheelchair User Interfaces 

User interfaces have three main aspects: the control interface, the selection set, and the selection 

method [33]. The control interface is the physical means by which commands are provided to the 

wheelchair controller. It defines the input domain, or the set of motions or forces a user must 

produce to generate a signal for the controller. Examples of control interfaces include a MJ, a 

sip-and-puff switch array, a head array, or a touch pad; and examples of input domains include 

arm and wrist movements while holding the stick of a MJ or head movements to activate 

switches in a head array. The selection set includes the items available for control at a given 

time. Members of the selection set may include speed and direction commands for the motors, 

commands for tilt and recline actuators on the EPW, and inputs to electronic aids to daily living 

(EADL). The selection method describes how commands are selected. With direct selection, any 

command is available to the user at any time; and with indirect selection, commands are selected 

through scanning or coded access. Direct selection requires fine, controlled movements; but it is 

cognitively less challenging and produces quicker results than indirect selection, thus making it 

the preferred method for control.  

The most common user interface for EPWs is the MJ [26],[33]. The MJ employs not only 

direct selection, but it allows graded input, where virtually an unlimited number of speed and 

direction commands are available to the user. There are two significant regions for the input 

domain of a MJ:  

• The dead zone: the region near the center where slight stick movements do not cause 

any output signals.  

• The proportional region: the region where displacing the stick farther from center 

causes a progressive increase in the output signal in the direction selected. 

The ratio of the output to input signals within the proportional region defines the joystick’s gain. 

The higher the gain, the more sensitive to movements the joystick will be. If the user has 

difficulty controlling the wheelchair with the standard MJ, control enhancers may be added. 

Control enhancers enable users to make the most out of the selection method(s) that are 

available. Control enhancers may be physical, such as a larger handle on a joystick to assist 

users’ grips, or be embedded in software, such as a low-pass filter to remove unintended signals 
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from being sent to the EPW controller. Commonly used control enhancers with MJs include 

templates, low pass filters, modified handles, and posturing techniques.  

A template is a restraining outer boundary that limits the maximum deflection of the stick 

and helps “steer” the users’ unintended movement while permitting a level of direct selection. 

“For some individuals, the use and type of joystick template means the difference between 

success [and] failure in the operation of a powered wheelchair” [33]. Examples of shapes the 

template may possess are depicted in Figure 1. 

A low pass filter is a conditioning circuit that removes high frequency signals such as 

vibration or noise (usually greater than 8 Hz) from being sent to the EPW controller. Two 

common low pass filters, a moving average [59] and a Butterworth filter [47], may be employed 

in software and hardware, respectively. Using time-averaged data, the frequency response of a 

low pass filter may be calculated with equation 2, 
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where N is the number of samples to average and ω is the input signal’s frequency [60]. A 

second-order Butterworth filter exhibits low ripple in the pass band frequencies [61] and is 

depicted in Figure 2. The ideal transfer function for the circuit is given by equation 3,  
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Figure 1: Common template boundary shapes include (a) circle, (b) diamond, (c) notch, and (d) cross [62],[33]. 

(a) Circle (b) Diamond (c) Notch (d) Cross 
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Figure 2: Schematic diagram of a second-order Butterworth filter [63]. 

where Ri and Ci are resistance and capacitance values, respectively, given in Figure 2; the 

numerator defines the filter’s gain in its bandpass frequencies; and the denominator characterizes 

the filter’s frequency response [63].  

The handle’s size and shape may be altered to enhance control. For example, a larger 

handle or a U-shaped handle that supports the sides of a user’s hand may be helpful.  

Stabilizing proximal body parts also assists with EPW control [33]. Gillen [25] described 

how providing full head and trunk support, adaptive seating, volar wrist support, and an adapted 

armrest to support the entire forearm to a 40-year-old male with MS enhanced his control of an 

EPW. Nonetheless, tremor, spasms, weakness, and inadequate range of motion (ROM) inhibit a 

person’s ability to control an EPW with a MJ [34]. User interfaces such as switch control, head 

control, or sip-and-puff control are available; but they are much less efficient and more 

cognitively challenging to use [33]. Likewise, low-pass filters cause a delay in the wheelchair, 

increase instability, are not adequate when the tremor frequency is near the intentional 

frequency, and reduce performance for individuals with low tremor powers  [41]-

[43],[47],[58],[64]. Therefore, researchers have been exploring a variety of alternative methods 

for improving access to powered mobility. 
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1.2.2 Research Trends in Wheelchair User Interfaces 

Methods to improve EPW control that researchers have been exploring are quite diverse. Almost 

serendipitously, as a result of these different studies researchers have been finding that the 

determining factor may not necessarily be on a universal control interface or universal control 

enhancer that significantly improves control but on the act of personalization. That is, providing 

a user interface that is tunable to the client’s personal characteristics may provide the best 

increase in control. The methods researchers have been exploring, described in more detail 

below, fall into the general categories of control interfaces and control enhancers. 

1.2.2.1 Alternative Control Interfaces 

Researchers have explored a variety of alternative interfaces for EPW control. Pellegrini et al. 

[36] gave 47 individuals with Duchenne muscular dystrophy (DMD) and restricted EPW driving 

abilities the opportunity to use alternative interfaces to the standard joystick. Interfaces included 

a mini-joystick, an isometric mini-joystick, a finger joystick, and a tactile pad. Of the 18 who 

chose to switch devices and used them, all regained their ability to drive unrestricted. Powell and 

Inigo [6] found positive qualitative results with a hybrid force- and movement-sensing joystick. 

Their joystick was designed for front wheel drive EPWs which are sensitive to changes in 

heading. The joystick used hydraulics and pressure sensors for left-right steering and position 

sensing for forward and reverse. Repperger and others who developed a force reflecting joystick 

for Air Force pilots found performance improvements in individuals with spasticity who used the 

joystick to complete tracking tasks [37],[38]. The joystick was able to distinguish between 

spasms and normal movement and activate a damping circuit when a spasm occurred. Rosen and 

students at MIT explored a series of joysticks with a mechanically damped handle [2],[39],[40]. 

The joysticks reduce intention tremor at the hand and have the benefit of removing the DC offset 

that occurs when users makes contact with the template or cross the dead zone [2],[40]. In a 

study with three subjects, they found a significant reduction in tremor while subjects used the 

medium damped setting compared to no damping [2]. Pledgie et al. [41] used the PHANToM, a 

small robotic arm used in haptic interfaces, to attenuate tremor through impedance control. 

Modeling the hand-forearm movement with a linear second-order time-invariant transfer 

function, they altered rate and acceleration feedback coefficients to reduce tremor by 10 dB and 
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20 dB at the subjects’ tremor frequencies. They found this technique not to be suitable for 

individuals whose tremor frequency is near the frequency of their normal voluntary movement 

and noted the constant coefficients to be restrictive in potentially changing environments. An 

alternative interface that has had a particular bit of success is the IJ. 

IJs may prove to be a viable control interface alternative to MJs because a number of 

studies have shown similar or improved performance in EPW driving with an IJ vs. a MJ. Unlike 

MJs, IJs remain in the same position when a user applies forces to them; thus, they require 

virtually no ROM to operate. They operate by transforming the user’s force input to a signal 

usable by a controller and are thus said to be “force sensing.” Transducers typically used with IJs 

include pressure sensors or strain gages. Cooper et al. [34] compared an IJ with a MJ by asking 

10 experienced EPW drivers to navigate a short course. They found that the subjects drove faster 

with the IJ while moving forward around curves and had a lower error when driving reverse. 

Controlling both speed and heading is a complex task that appears to be easier with an IJ, they 

claimed. Cooper et al. [4] found no difference between an IJ and MJ in root mean square (RMS) 

tracking error and completion time while novice and experienced EPW drivers drove an EPW 

over a 60-m course. They did find, however, that subjects had a lower RMS tracking error 

driving straight forward and driving in a circle with an IJ but a higher RMS tracking error during 

turning tasks with an IJ. Subjects reported that they experienced fatigue or soreness in the hand 

while driving the IJ. While driving in a virtual environment with isometric and movement 

joysticks, subjects showed no significant difference in driving time and root mean square error 

(RMSE) between joysticks [35]. Riley and Rosen [42] compared an IJ and MJ with and without 

filter algorithms using an on-screen target tracking task. They found that velocity control with an 

IJ was generally more successful than position control with an IJ. Guo, Grindle, and Cooper [5] 

constructed a force-sensing joystick that allowed users to control an EPW with their chin. They 

noted that its sensitivity and tremor rejection algorithms could be customized in software to fit 

individual users’ needs. 

Two studies have shown MJs to be superior to IJs and have thus revealed some 

interesting features of IJs. Rao, Seliktar, Rahman [65] compared the performance of individuals 

with and without cerebral palsy (CP) during computer tracking tasks with IJs and MJs. Here, the 

authors found longer movement paths for the IJ to be a result of the IJ being more sensitive to 

tremor. Alternatively, MJs may allow tremor to be dampened by inertial loads of the hand and 

 12 



arm and possibly by friction inside the MJ. They also cited lack of somatosensory feedback from 

joint receptors to be a probable cause for reduced performance while using an IJ. Stewart, Noble, 

and Seeger [66] compared the performance of children with CP and one adult in a computer 

tracking task using a modified MJ and an IJ. While a majority of the subjects performed better 

with the MJ, the authors noted that the subjects had difficulty holding the IJ because of the 

handle’s size; and they noted that the subject who had had no prior experience with either type of 

interface performed as well with the IJ as the MJ. Therefore, tremor filtering; ensuring a proper, 

ergonomic interface to the joystick; and training all are important features to consider when 

using an IJ as a control input device. 

1.2.2.2 Alternative Control Enhancers 

In addition to alternative interfaces, signal processing techniques, orthotics, and robotics may 

enhance wheelchair control. When Riley and Rosen compared IJs and MJs with and without 

tremor filtering, rather than recommending a superior input device, they stated that filtering and 

control algorithms are more important than the type of interface [42]. They also said that 

decreasing the gain improves the signal to noise ratio, while tremor power and tracking error 

increased with increasing gain. Gonzalez et al. [43] used a linear finite impulse response (FIR) 

filter with what they called pulled-optimization to filter tremor during a target tracking device. 

Their goal was to minimize the filtered mean-square error with delay correction, F-msed, a 

performance measure they developed that is not biased by tracking-delay problems, overshoots, 

undershoots, and shortcuts. Riviere et al. [44]-[46] investigated adaptive notch filters and 

developed a weighted Fourier linear combiner (WFLC) to model and filter tremor. Notch filters 

have the advantage of suppressing only the tremor frequency and reducing distortion of 

intentional signals [47]. Adaptive filters, those that self-adjust their parameters, have an added 

benefit because tremor is not always constant [7],[47]. Riviere’s WFLC adjusts its parameters 

based on the input signal’s noise frequency and amplitude and was found to be effective for 

handwriting and microsurgical tool applications. Nho [47] further developed Riviere’s WFLC by 

adding instantaneous bandwidth information to the filter inputs. He found the modified WFLC 

performed similarly and better than Riviere’s WFLC and a 3-Hz low-pass filter, respectively, in 

a virtual environment for wheelchair driving. Phillips, Repperger, and Chelette [48] developed 

an algorithm based on the acceleration-velocity relationship to detect spasms during a target 
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tracking task with a MJ. On a force-reflecting joystick, the algorithm allowed subjects with 

spasticity to perform at levels near subjects without spasticity [37].  

Researchers at MIT developed several prototype orthoses for tremor suppression [49]-

[51], all of which may enhance wheelchair control. The controlled-energy-dissipation orthosis 

(CEDO) and modulated-energy-dissipation manipulator (MED Arm) generate resistive viscous 

loads with computer-controlled magnetic particle brakes. The orthoses attach to patients’ 

forearms and are mounted on a standard wheelchair. While CEDO can operate in three degrees 

of freedom, MED Arm operates in six degrees, allowing the resistive forces at the tip to be 

directly opposite the tremor force. They found that the damping loads can attenuate tremor but 

that too much damping was not effective for some subjects. Subjects also reported fatigue, but 

the researchers suggested that it may have been a testing effect. The Viscous Beam, also 

developed at MIT, is a wearable orthosis that attaches to the forearm and cuff to attenuate tremor 

in wrist flexion and extension. The orthosis helped reduce tremor and improve control in five 

subjects performing a set of functional tasks.  

Techniques in robotics may enhance EPW control through the idea of shared control. 

Shared control devices augment a user’s ability to drive a wheelchair through a variety of 

internal and external sensors and an automatic control system. Internal sensors may monitor the 

state of the wheel speed and position, power stage current, bearing failure, motor temperature, 

and the primary processor. External sensors monitor potential hazards (e.g. stairs, curbs, steep 

hills) and include infrared detectors, ultrasound transducers, video, structured light, magnetic 

sensors, and telemetry systems. The automatic control system may compute a desired trajectory 

based on sensor readings and the user’s input with a variety of algorithms (e.g. probabilistic 

models (e.g. partially observable Markov decision process (POMDP)), human decision or human 

behavior models, control loops) [52]. For example, Brienza and Angelo [3] constructed a force 

feedback joystick and developed two modes for its operation. One mode alters the compliance of 

the joystick handle based on the wheelchair’s proximity to an obstacle, while the other mode 

causes the joystick to move, steering the EPW away from an obstacle. Examples of ongoing 

shared control projects include SIAMO [53],[54] and the Smart Wheelchair Component System 

(SWCS) [55],[56]. 
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1.2.2.3 Benefit of Personalized Controls 

Other research has shown a benefit in personalized controls. Trispel, Rau, and Brudermann 

found reduced error and effort for EPW control when the force characteristics on a MJ were 

tuned to the individual’s motor abilities [57]. A study related to computer access for individuals 

with MS and tremor [58] showed that those with more severe tremor (indicated by lower Nine 

Hole Peg test scores) benefited from personalized software for PC cursor control. The 

researchers also found that no single configuration for PC cursor control satisfied everybody, 

suggesting a need for personalized control. Similarly, Aisen et al.’s study [49] showed that no 

single configuration for damping arm tremor benefited every subject. And, while some subjects 

showed improvements with the IJ, Riley and Rosen [42] concluded that control algorithms and 

interfaces that are adaptable to the individual users are more important than the specific type of 

interface. 

1.3 OVERVIEW OF THESIS 

Assistive technology has the remarkable capability of restoring the quality of life for millions of 

individuals. Though the outcome is variable among individuals with MS, a trend exists toward 

needing progressive assistance with mobility. When this happens, problems with tremor and 

fatigue may inhibit the use of mobility devices. The aim of this thesis, therefore, is to develop a 

wheelchair user interface that mitigates these problems and allows users to control an EPW 

successfully and independently. 

The remainder of this thesis is divided into eight chapters. Chapter two describes the 

technical development of the novel EPW user interface, dubbed the variable compliance joystick 

(VCJ), from mechanical and electrical perspectives. Chapter three details the experiments used to 

validate the static and dynamic responses of the VCJ. Chapter four covers the software and 

procedures for tuning the VCJ to the subject. Chapter five describes the research methods for 

evaluating the VCJ while individuals with MS use it to drive a virtual wheelchair. Chapter six 

highlights the results from a study with 4 subjects with MS. Chapter seven provides the author’s 

insights into the overall performance of the VCJ. Chapter eight summarizes lessons learned in 

addition to suggesting future research with the VCJ. 
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2.0  THE VARIABLE COMPLIANCE JOYSTICK 

Given the impairments associated with MS, popularity of the conventional MJ, benefit of control 

enhancers, recent success with the IJ, and desire for personalized controls, we began thinking of 

a user interface that could incorporate the best of all worlds to meet the needs of individuals with 

MS. We developed the following design criteria for the user interface: 

1. The user interface should be capable of operating as a conventional MJ, where 

displacement of the joystick results in a proportional output signal. 

2. The amount of force required to deflect the joystick fully should be adjustable. 

3. The user interface should employ the following control enhancers 

a. Dead zone,  

b. Templates,  

c. Bias axis, 

d. Non-orthogonal axes, 

e. Optimized handle, and 

f. Tremor filter. 

4. The user interface should be capable of being configured as an IJ. 

5. The user interface should be readily tunable to the user’s preferences. 

6. To compensate for fatigue in MS, the sensitivity of the joystick should be dependent 

upon the user’s fatigue status with the option to use a gain schedule. 

A detailed list of technical requirements (e.g. force to deflection ratios, strength characteristics, 

and interface requirements) is provided in Appendix A. Because the force required to deflect the 

joystick is designed to be adjustable, the proposed user interface has been named the variable 

compliance joystick (VCJ). 

The VCJ was built using the IJ developed at the Human Engineering Research 

Laboratories (HERL) [4],[67] as a baseline (see Figure 3). The HERL IJ features a 3/8-inch 
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diameter tool steel post, full Wheatstone strain gage bridges for forward-reverse and left-right 

directions, instrument amplifiers, second-order Butterworth filters, a 24-bit A/D converter, a 

MC68HC11 microcontroller, 8 Kb of ROM and 32 Kb of RAM, a quad 12-bit D/A converter, 

and a DB-9 serial connector. Operator controls such as speed control, horn signal, power switch, 

and battery status bar graph are included at the rear of the joystick enclosure. It is capable of 

driving a Quickie P300 EPW as well as transmitting interlaced x- and y-axis data samples at 83 

Hz with 12 bits of resolution. The joystick was used in several real world and virtual driving 

studies comparing isometric controls with conventional MJs [4],[34],[35],[67]-[69]; it was used 

as a platform to test a novel adaptive filter algorithm [47]; and it is currently being used in two 

studies to determine the effects of personally-fitted algorithms for EPW driving for individuals 

with traumatic brain injury [70] and cerebral palsy [71]. While the core concepts of the HERL IJ 

remain the same, hardware and software components have been updated to expand its 

capabilities.  

The VCJ is mechanically more versatile, provides for variable compliance including a 

full isometric mode, can produce x- and y-axis data samples at up to 250 Hz with 12 bits of 

resolution, and can be expanded to drive any EPW with analog inputs between ±10 V. The 

remainder of this chapter will describe the technical development of the VCJ, first describing the 

system as a whole and then its three main components. 

 

Figure 3: HERL IJ developed by Spaeth [67]. 
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2.1 OVERVIEW 

Signals travel through the VCJ in three separate stages: the joystick post, the signal conditioning 

unit (SCU), and the signal processing unit (SPU). A diagram depicting the signal flow is 

provided in Figure 4. The joystick post is the control interface: it is the physical means by which 

commands are supplied to the wheelchair. The SCU converts the strain that results from the force 

to electrical signals, which are then amplified and filtered. The SPU converts the analog signals 

to digital values and applies various signal processing algorithms (e.g. dead zone, templates, bias 

axis, etc) to the signals. The readings are then available for the Virtual Driving Simulation 

(VDS) (section 5.4.2 describes the VDS in more detail) to use or for other routines to convert to 

analog signals for EPW driving. When driving an EPW, the output voltage of the VCJ is 

software-selectable within the ranges of ±10 V to mimic that of a conventional MJ (some 

joysticks output 6±1 V, and others output 2.5±1 V) thus mitigating the need to tap into the EPW 

controller. The interface between the SCU and SPU is designed to be modular, where the SPU 

can accept any two-dimensional, differential input that varies between ±500 mV. 

 

Figure 4: Signal flow of the VCJ. 
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2.2 JOYSTICK POST 

2.2.1 Initial Design Concepts 

Based on the requirements, we developed several design concepts and prototypes for the joystick 

post before choosing the final version. An initial concept was to dampen tremor mechanically 

with a spring-mass-damper [72]. However, the necessary spring constant would cause the 

joystick to behave very differently from a conventional MJ: while a conventional MJ requires 

about 4 N to produce full deflection [67], the force required to push the joystick to full deflection 

with mechanical tremor isolation would be more than 220 N. The first prototype, illustrated in 

Figure 5, featured an elastomer and open center gimbal on top of a load cell. As the amount of 

elastomer that was free to bend decreased, so did the amount of compliance, until the joystick 

behaved isometrically [73]. However, while testing the joystick, we found that the handle would 

not return to the center position after being deflected for extended periods of time. The second 

prototype, depicted in Figure 6, was designed to be more robust. To solve the recentering 

problem, closed-coil and open-coil springs replaced the elastomer. To improve the robustness of 

the joystick, aluminum and stainless steel parts replaced Si-40 resin, the plastic used for the rapid 

prototyping process. However, we found that this joystick was difficult to use as an input device 

because the wheelchair did not always drive in the intended direction. The causes for this are 

likely related to the buckling spring and the pivot mechanism. 

 
Figure 5: The first prototype variable compliance joystick [73]. 

Open center gimbal 

Load cell 
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Figure 6: Second prototype of the variable compliance joystick. (a) solid model (b) completed prototype. 

(a) (b) 

2.2.2 Proposed Solution for the Joystick Post 

The final design concept uses two different configurations for EPW driving and fatigue 

characterization, both of which use a load cell to convert force input into an electrical signal. In 

driving mode, depicted in Figure 7, the VCJ uses a similar pivot and spring mechanism to that of 

a conventional MJ. The amount of force required to deflect the joystick can be adjusted by 

selecting different springs or adjusting the pretension in the spring with a nut. Mechanical 

templates provide a physical boundary for joystick deflection, and a variety of handles provide 

ergonomic grips for the driver. While the joystick can behave like a MJ because of the similar 

compliance mechanism, it can also behave like an IJ if the spring is replaced with a solid piece of 

metal. In fatigue characterization mode, shown in Figure 8, an aluminum shaft may be inserted 

on top of the load cell instead of the pivoting mechanism. The aluminum shaft provides the 

added robustness for fatigue characterization, where we expect loads to reach 300 N [4]. Loads 

while driving with the joystick, conversely, are not expected to exceed 35 N. Because of their 

significance, components discussed in detail include the load cell, pivoting mechanism, 

templates, handles, and aluminum shaft. Technical drawings for all of the joystick post’s parts 

are included in Appendix B. 
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Figure 7: The VCJ (a) as a solid model to illustrate more inner components; (b) fully assembled; and (c) with the 

box cover, bellows, and handle removed to reveal its inner components. The MiniDIN-9 connector provides an 

interface directly to the strain gage bridge. 

 

Figure 8: The VCJ with the solid insert for fatigue characterization (a) fully assembled and (b) with the top cover 

removed. 

(b) (a) 

(a) (c) (b) 
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2.2.2.1 Load Cell 

The dimensions and material of the HERL IJ’s load cell were modified to improve its robustness. 

The original dimensions of the post were 0.375 in., 0.25 in., 3.4 in., and 2.56 in., for the 

diameter, width of strain gage mounting surface, total length, and distance between the strain 

gage mounting surface and top, respectively. While Widman showed that a 300-N force would 

not cause the strain gages to deform beyond their limits [74], a finite element analysis with 

SolidWorks’ ® COSMOSXpressTM revealed weaknesses on the strain gage mounting surface 

and at the transition between the square cross-section of the strain gage mounting surface to the 

circular cross-section of the shaft. SolidWorks calculated the safety factor (SF) to be 0.23, where 

an SF below 1.0 indicates that the part has begun to yield under the modeled loading conditions. 

Therefore, we increased the shaft diameter and width of strain gage mounting surface to 0.50 in. 

and 0.32 in., respectively, and selected Nitronic 50 as the material. The resulting SF is 1.11. The 

stress concentrations of the two designs are depicted in Figure 9. The yield strength in the 

original design is 2.068x108 N/m2 and is equivalent to the aqua color Figure 9a. Thus, shades 

above aqua (e.g. green, yellow, and red) indicate places where the part is likely to have begun to 

yield. The yield strength for the new design is 3.93x108 N/m2, which is above any color on the 

color gradient in Figure 9b. Looking at Widman’s criterion for the length to width cubed ratio, 

 4: 23
3w

10723.1 −×≤ in , 

to ensure the strain gages are not stressed beyond their limits, we have  

 5: 

L

232
33 32.0w

where L is derived from the length of the aluminum shaft for fatigue c

10723.10.13852125.4 −− ×<== ininL
, 

haracterization and the 

center o

flanged 

button screw is then used to cinch the joystick post into the base, as shown in Figure 10. 

f the strain gage mounting surface, which satisfies the condition. 

Furthermore, we modified the attachment of the load cell to the base of the joystick. 

Originally, a shaft collar connected the post to the base, but this design was a bit cumbersome to 

machine and did not provide a mate secure enough to withstand some of the torques applied to 

the joystick. Therefore, we tapered the bottom of the isometric post 15° and added a 10-32 tap, 

making sure the tap did not extend beyond the bottom plane of the mounting surface. A 
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Figure 9: Stress concentrations of (a) original and (b) modified shaft designs. 

 

Figure 10: Exploded, semi-transparent view of the taper lock connecting the load cell to the base. 

(a) original shaft 

(b) redesigned shaft 

Load cell 

Base 

Flanged button screw 

Taper 
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2.2.2.2 Pivot Mechanism 

The first version of the pivot for the final design concept used a gimbal with pins (Figure 11). 

However, a static loads analysis, shown in Appendix C, revealed that the pins would not be

strong enough for repeated use. Therefore, we used a steel spherical bearing in the gimbal’s

place (Figure 12). The joystick shaft is press fit into the bearing, and the bearing is tied down

with a stainless steel enclosure and machine screws. On top of the stainless steel enclosure is a

0.040-in. thick aluminum ring to prevent the boot from catching on the heads of the machine

screws. The boot is composed of oilite, and EP/Red bearing grease (Lawson) was rubbed into the

bearing to minimize friction and wear in the moving parts. The pivot mounts to the load cell with

a sliding press fit and is held in place with two brass, 6-32 set screws. Type 309 stainless steel

was selected for the joystick shaft for its good machinability and corrosion resistance. 

2.2.2.3 Mechanical Templates 

Four templates, shown in Figure 13, were constructed to enhance control while in movement 

mode. Even though the templates would not effect the joystick signal, mechanical templates 

provide feedback to the driver about the location the joystick. Notches at the edge of the 

templates allow for bias axis angles in 15° increments. This allows the “forward” direction for 

the user to be altered without needing to rotate the entire VCJ or the isometric post. Since the  

 

Figure 11: Gimbal pivoting mechanism design concept. 
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Figure 12: The spherical bearing and its tie-down pieces. 

Figure 13: Templates constructed include (a) circle, (b) diamond, (c) square, and (d) asteroid. 
 

(a) Circle (b) Diamond (c) Square (d) Asteroid 
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isometric post is not rotated, the appropriate bias angle is applied in software to correspond to the 

physical orientation of the template. 

2.2.2.4 Handles  

Because the physical interface plays an important role for IJs, a variety of handles, both in size 

and shape, are available for the user to grasp. The handle on the HERL IJ has a 0.375 in. radius, 

is 1.125 in. long, and screws onto the top of the joystick post. However, a handle with a small 

radius has potential to cause a pressure point in the user’s hand, while a larger radius distributes 

the force [75] and consequently improves comfort. Furthermore, different shapes, such as 

cylindrical and T-shaped, or field goal posts, are currently used with standard MJs as means to 

enhance control. Therefore, a selection of joystick handles, descriptions and photographs of 

which are provided in Table 2 and Figure 14, respectively, are available to use with the VCJ.  

2.2.2.5 Aluminum Shaft 

Since designing the pivot mechanism to handle 35 N proved to be a challenge and the pivot 

mechanism is not permanently bonded to the load cell, we opted for a more robust approach for 

the fatigue characterization process. During this phase, as much as 300 N may be applied to the 

joystick, and we added a 50-N margin of error. Therefore, we selected a solid, 5/8-in. aluminum 

shaft to be inserted on top of the load cell during fatigue characterization. The diameter was 

chosen to ensure a 1/8-inch wall thickness at the load cell interface (the reader is referred to 

Table 2: Properties of handles available to use with the VCJ. 

ID Number Shape Mass (g) Radius (in.) Height (in.) Material 

1 Dome top, Tapered 10 0.375 1.22 Phenol 

2 Oval  34 0.565 1.47 Phenol 

3 Dome top, Tapered 28 0.50 1.635 Phenol 

4 Flat top, Tapered 56 0.73 2.48 Rubber 

5 Dome top, Tapered 62 0.81 2.51 Rubber 
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Figure 14: Photographs of each of the handles. 

Appendix D for relevant calculations). Like the pivot, it mounts to the load cell with a sliding 

press fit and is secured with similar brass, 6-32 set screws. Once the hardware for the joystick 

post was complete, the electronics were examined to ensure optimum signal acquisition from the 

strain gage bridge and to prepare the signals for the SPU. 

2.3 SIGNAL CONDITIONING UNIT 

2.3.1 Circuit Design 

While the primary roles of the SCU are to convert the force input to an electrical signal, amplify 

the signal, and filter it, accessories such as a gain switch for the amplifiers and a voltage inverter 

were also required. A similar set of full Wheatstone bridge configurations as in the HERL IJ 

were used with the VCJ. Four metal foil strain gages convert force to a usable signal for the 

speed and direction axes. Five components in the VCJ prepare the signals for the SPU: a voltage 

inverter, instrument amplifiers (one for each axis), bias potentiometers (one for each axis), a 

switch, and Butterworth filters (one for each axis).  

2.3.1.1 Voltage Inverter 

While the A/D converter on the HERL IJ accepted only positive voltages, the NI data acquisition 

card (DAQCard) used in the SPU accepts ranges of ±10 V, ±5 V, ±0.5 V, and ±0.05 V depending 

on its software-selectable, internal gain. We considered using only the positive range of the NI-

DAQcard to keep the original electronics, but this would have reduced the signal’s resolution by 

(3) (4) (5) (2) (1) 
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one half. Therefore, supported by the +5 V supply from the NI-DAQCard, we added a MAX660 

chip to the circuit to provide a negative voltage supply. With a target range of ±0.5 V and an 

altered load cell, a new set of gains for the instrument amplifiers was derived analytically. 

2.3.1.2 Amplifiers 

g was assumed for the load cell [76], as given by equation 6 Simple beam bendin

6: 2Ebt
6PL

=ε ,  

where ε is the strain; P is the input force; L is the length of the joystick post; E is the post’s 

modulus of elasticity; and b and t are the post’s width and thickness, respectively. The strain is 

converted to a voltage signal Eo with the strain gage bridge as given by equation 7 

 7: bridgeio FEE εε += , 

where Ei is the bridge’s excitation voltage, F is the gage factor for the given strain gages, and 

εbridge is an adjustment to correct for human error during the strain gage mounting process. The 

instrument amplifiers multiply the signal by their gain factor GINA, which is determined by the 

gain resistor RG as shown in equation 8 

 8: 
GRINA
kG Ω

+= 1 50 . 

tion 3. Therefore, the output 

JPout of the joystick post’s electronics is summarized in equation 9 
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Since the joystick post is expected to act in two modes, one for driving and one for 

measuring the user’s MVIC, two different input forces were selected as cutoff forces for the 

joystick post. The cutoff force is defined as the force above which the output signal of the 

joystick post’s electronics does not increase. The cutoff forces to operate the joystick while 
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driving and measuring the MVIC were selected to be 25 N and 350 N, respectively. The driving 

cutoff force is consistent with the HERL IJ, which has a cutoff force of approximately 27 N [67]. 

While a lower number would improve the signal to noise ratio (average forces seen while using 

the HERL IJ are 5.5±2.4 N [69]), prior experience with the HERL IJ has shown some subjects to 

apply more than 27 N while operating the joystick. Keeping a high cutoff force minimizes the 

risk of clipping, which can disrupt digital tremor filters [2]. The 350-N cutoff force is derived 

from adding a 50-N margin of error to the maximum input force on a joystick measured by 

Cooper et al. [4]. Therefore, with the parameters listed in Table 3 and using equation 10, the gain 

g MVIC were designed to be 327.24 Ω and 5.423 kΩ, 

2.3.1.3 Bias Potentiometers 

To account for incon eters were added to 

the VREF inputs of the instrument amplifiers. By using a multimeter to measure the output of the  

ble 3: Param  used for determ ain resistor. 

resistors for driving and measurin

respectively.  

sistencies in mounting strain gages, two bias potentiom

Ta etric values ining the g

Parameter Driving MVIC 

JPout 0.500 V 0.500 V 

R3 22 kΩ 22 kΩ 

R4 22 k  22 k  Ω Ω

Ei 5 V 5 V 

F 2.105 2.105 

P 25 N = 5.620 lbs 350 N = 78.68 lbs 

L 4.2025 in 4.52125 in 

E 28000000 psi 28000000 psi 

b, t 0.32 in 0.32 in 

εbridge 0 V -2.0e-5 V 
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circuit and a small, flathead screwdriver, tuning the potentiometers allows the circuit output to be 

 

ERL IJ 

assume

lied to achieve zero output in both modes 

(e.g., tune the output to be -11.4 mV for the direction signal in high gain mode), we decided to 

pecifically, within 5.0 mV of 0 mV) while in high gain mode since 

off frequency for the Butterworth filter was adjusted to 30 Hz. The cutoff frequency 

is defined as the frequency at nal outpu w that of the maximum output 

within 5.0 mV of zero when there is no force input. 

2.3.1.4 Gain Switch 

The original concept for switching between gain resisters for driving and MVIC modes of the 

VCJ involved manually replacing axial resistors on the circuit board. But, this method was found 

to be time-consuming and cumbersome. A single pull double throw (SPDT) switch, therefore, 

was included in the circuit to simplify the substitution. The SPDT switch allows the gain 

resistors for both axes to be switched with one toggle. Since power is supplied through the NI-

DAQCard and not controlled via the joystick enclosure, the power switch from the H

d the role of toggling between gain resisters for the current design. The toggle was rotated 

90° both to prevent confusion with the switch’s purpose on the HERL IJ and to facilitate ease of 

use, where the up position indicates high gain and the down position indicates low gain.  

Interestingly, the output bias of the circuit depends upon which gain resistor is selected. If 

the circuit is tuned in high gain mode (such that zero force input results in less than 5.0 mV 

output), the output bias after switching to low gain mode becomes 22.8 mV and -62.5 mV for the 

direction and speed axes, respectively. Finding a way to isolate the components seems 

problematic because internal schematics of the instrument amplifier reveal the VREF input and RG 

inputs to be connected. Therefore, software will need to recalibrate itself after switching between 

driving and MVIC operating modes. And while it is possible to tune the bias to a midpoint where 

either equal force or equal signal will need to be app

tune the joystick to 0 mV (s

this mode will be used for the majority of the testing. 

2.3.1.5 Butterworth Filter 

The cutoff frequency for the second-order Butterworth filter in the HERL IJ was originally 100 

Hz. However, the fastest sampling rate that could be achieved in the VDS was 60 Hz. Since the 

sampling rate must be greater than or equal to 2 times any frequency produced in the system 

[60], the cut

 which the sig t is 3 dB belo
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in the bandpass frequency ra tor and c es in the Butterworth filter are 

as follows: 

R3 = R4 = 22 kΩ  

n 3 provides a cutoff frequency of about 33 Hz, as shown in 

the Bode diagram in Figure 15, where the maximum magnitude response is 6.02 dB at 1.12 Hz.  

ctly onto the load cell to gather signals from the strain 

gages. This board provides access to the load cell that is independent of the conditioning circuit. 

The second PBC, given in Figure 17 and Figure 18, mounts to the VCJ enclosure to condition 

the signal before it is sent to the SPU.  

nge. New resis apacitor valu

R1 = 174 kΩ 

R2 = 226 kΩ 

C1 = 82 nF 

C2 = 10 nF 

Substituting these values into equatio

2.3.2 Hardware Implementation 

2.3.2.1 Printed Circuit Boards (PCBs) 

Two printed circuit boards (PCBs) provide a platform for passing the signals from the load cell 

to the SPU and mounting the signals’ power, amplification, and filtering components. The first 

PCB, given in Figure 16, mounts dire

 

Figure 15: Bode plot for updated Butterworth lter shows a cutoff frequency of about 30 Hz.  fi
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Figure 16: Photograph of the PCB that collects the signals from the strain gages. 

 

Figure 17: Photograph of the VCJ's PCB (a) top view and (b) bottom view. 

(a) (b)
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Figure 18: Schematic diagram of the VCJ's conditioning circuit. 
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P3 in Figure 18 is the attachment point for the ribbon connecting the two PCBs together. 

P1 and P4 are the attachment points for the ribbon connecting to the SPDT switch. Pins 3 for P1 

and P4 connect to pins 2 and 5 on the switch, pins 1 connect to pins 3 and 4 on the switch, and 

pins 2 connects to pins 1 and 6. Ideally, the pins on the potentiometers would slide into their 

respective holes on the PCB. However, since pin numbers were not specified in the circuit 

schematic, Altium Protel ® automatically generated its own pin order when its auto-route tool 

created the circuit layout on the PCB. The resulting order was not consistent with the order on

the potentiometers. Therefore, an extra set of leads and ribbon were inserted to connect the PCB

with the potentiometer. 

2.3.2.2 Integrated Circuits (ICs) 

Three different integrated circuits (ICs) support the functions of the conditioning circuit. Two 

INA118U ICs amplify the signals from the strain gages for the direction and speed channels. An 

LM324 quad operational amplifier IC is used to support both Butterworth filters. While the 

LM324 eliminates the need for multiple taps to the power supply, its maximum current rating is 

50 mA. The current rating provided design parameters for the third IC, the MAX660CSA 

Complementary-symmetry/metal-oxide semiconductor (CMOS) monolithic voltage converter, 

which provides a -5 V supply to the circuit. To maintain an output current of approximately 50 

mA, the MAX660 data sheet recommended external capacitor values of 4.7 to 10 µF. Low 

capacitor values can increase the total output source resistance (TOSR), however, which has the 

negative affect of increasing the voltage drop from the ideal value. Increasing the pump 

frequency mitigates the problem and is achieved by tying the V+ pin to the FC pin. This 

configuration multiplies the pump frequency eight-fold from the typical operating rate of 10 kHz. 

Capacitor values of 4.7 µF were ultimately chosen because the lower value ensures less output 

current and the output resistance does not appear to increase significantly based on the TOSR vs. 

Capacitance curve (Figure 19).  
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Figure 19: Total output source resistance for current configuration. 

Approximate TOSR 
for selected capacitor 
& pump frequency 

2.4 SIGNAL PROCESSING UNIT 

After the analog signal leaves SCU, the SPU converts the signal to a digital value and applies the 

signal processing algorithms that personalize the joystick to the user. The key steps in the 

designing the SPU included selecting a platform, configuring the NI-DAQCard’s electrical and 

software settings, and defining the basic and personalizable algorithms. 

2.4.1 Selecting a Platform 

The driving component for the SPU is the processor. Specifications for the processor determine 

the number and type of inputs and outputs, their resolution, the programming capacity, and the 

processing speed. We considered three options for interpreting and processing signals from the 

joystick post: the existing HERL IJ microcontroller, a Tattletale, or a laptop and DAQCard (a 

digital signal processor (DSP) framework was also briefly considered but felt to require too long 

of a development time). A brief description and features of each of the options are presented in 

Table 4. 
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Table 4: Key features of the three candidate solutions for the SPU processor. 

 HERL IJ 
Microcontroller 

Tattletale (Model 
8v2) 

Laptop and DAQCard 

Description The current processor is 
robust and adequately 
carries out calculations 
required for the VGA 
algorithm. 

A Tattletale can be 
likened to a microcon-
troller with memory 
for programs and data 
storage included.  

A Sony VAIO computer, 
Intel® Pentium® M, 1.20 
GHz processor, operating 
on Microsoft Windows XP 
with an NI-DAQCard 
6024E. 

Clock Clock needs to be added. 
Can do so with the 
DS1744 

Clock included Clock included 

Programming 
Memory 

32 KB with above clock 248 KB +1 GB 

Flash 
Memory 

None 256 KB 0.99 GB 

Digital I/O None Up to 25 lines 8 lines 

A/D 
Conversion 

4 Channels, 24 Bit, 0-5 V 8 Channels, 12 Bit, 
100 kHz 

16 single-ended or 8 
differential inputs with 
S/W selectable gain, 12 
Bit, up to 200 kHz 

Output 3 to 9 V D/A Converter, 
12 Bit 

See Digital I/O Two ±10 V channels, 12 
Bit, plus Digital I/O 

Output 
Format 

Serial Port Serial and Parallel 
Ports 

PCMCIA Bus 
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The microcontroller on the HERL IJ and its supporting electronics would have required a 

substantial number of modifications to meet the study’s requirements. Proposed modifications to 

the electronics included replacing the EPROM with a real time clock/calendar (RTC) and 32k 

non-volatile SRAM IC (Dallas Semiconductor’s DS1744), adapting the D/A converter to provide 

for interfaces to joysticks with 2.5±1 V voltage swings, incorporating several layers of bank 

switching to increase the memory for data logging purposes, and purchasing a programmer for 

the clock. Furthermore, given that the microcontroller was already being operated near its 

maximum capacity, taxing it with more operations did not seem feasible.  

The Tattletale was a good candidate and had been used with an isometric, chin joystick 

designed and built at HERL [5]. It includes its own microcontroller and clock, has sufficient 

memory for software and data logging, and has a serial interface to communicate with the PC 

running the VDS. A D/A converter and digital potentiometer would need to have been added to 

accommodate interfaces with MJs, and it does not include a Butterworth filter. While the 

Tattletale would probably have been sufficient with a few additions, it does not compare with the 

capabilities provided by a laptop and DAQCard. 

The laptop and DAQCard configuration was the final choice because it allowed for 

reduced development time and reduced number of components while offering better performance 

than the alternatives. The Sony VAIO VGN-T370P laptop features a 1.2 GHz, Intel® Pentium® 

M processor and virtually unlimited memory for software and data logging. Its size is tiny 

compared to most laptops, weighing 3.0 lbs and measuring 1.2 in. by 8.0 in. by 10.5 in., giving it 

easy portability onto multiple EPWs. This solution would require an additional viewing screen 

for virtual driving, however, because the screen size of the laptop is very small, only 10.6 in. 

While the alternatives would need a serial port to communicate with the computer running the 

VDS, here the VDS and VCJ software may be executed on the same platform. While amplifiers 

and Butterworth filters would need to be added to collect signals from the strain gages, analog 

input and output and digital conversion is housed in one component, the NI-DAQCard 6024E. 

The NI-DAQCard 6024E supports up to 16 single-ended or 8 differential analog inputs with 

user-defined, bipolar input voltage ranges. Its maximum sampling rate is twice that of the 

Tattletale and provides similar resolution to the alternatives. The NI-DAQCard 6024E also 

provides two analog output signals spanning ±10 V with 12 bits of resolution. Thus, with the 
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data acquisition and processing platform selected, their specific configuration and the SPU 

software needed to be developed. 

2.4.2 Data Acquisition 

The NI-DAQCard 6024E offers excellent flexibility for acquiring information about the 

environment. It accepts analog input sources in multiple electrical configurations, the range of 

which is programmable. Sample rate, the rate at which a single channel is sampled, and scan rate, 

the rate at which all channels are sampled in one loop, are programmable, in addition to the order 

in which channels are scanned. And it allows the user to select the method for transferring data 

across the PCMCIA bus. The DAQCard provides a +5 V signal source for low power 

electronics. Guiding us through the DAQCard’s electrical and software configurations were the 

design goals of keeping noise low while optimizing performance. A high-level view of the 

source code implementation is also presented. 

2.4.2.1 Electrical Configuration 

Support documentation for the DAQCard suggested three different electrical configurations for 

its analog inputs1 as depicted in Figure 20: differential (DIFF), single-ended—ground referenced 

(RSE), or single-ended—nonreferenced (NRSE). Support documentation further recommended 

that the DIFF configuration be used if the input signal is less than 1 V to reduce noise pickup and 

increase common-mode noise rejection. In the case of DIFF configuration, the negative input 

should also be connected to ground through a resistor Rext that is about 100 times the equivalent

source impedance if the source impedance is greater than 100 Ω. This allows about the same

amount of noise to couple on both positive and negative connections thereby putting the signal

path nearly in balance. Thus, the Rext value becomes 35 kΩ since the resistance across the strain

gages is 350 Ω.  
In practice, however, tying the negative input to the signal source did not appear to work 

well. First the negative input was tied to the reference signal from the instrument amplifiers on 

                                                 
1 Technically, there are six configurations; but we did not consider ground-referenced signal sources 

because we could not assume that the joystick would be connected to the ground at all times. 
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Figure 20: Recommended configurations for source signal. 

the conditioning circuit and ground through Rext, but there was too much noise. Second, the 

negative input of the DAQCard was tied to the negative side of the strain gage bridge, but this 

also produced too much noise. Instead, connecting the negative input only to ground through a 

resistor Rext while still configuring the DAQCard to read in DIFF mode seemed to provide a 

steady signal. Variations in the readings were further improved with the number of samples and 

sample rate of the DAQCard. 

2.4.2.2 Software Configuration 

Though the NI-DAQCard can scan multiple channels at high rates and digitize them accurately, 

its performance is limited by the settling time of its internal programmable gain instrumentation 

amplifier (PGIA). The settling time is the time it takes the PGIA to amplify the signal to the 

desired accuracy before the DAQCard’s A/D converter samples it, where longer settling times 

may lead to more error in the reading. Factors that increase the settling time include a high 

source impedance, poor quality cabling connecting the source, suboptimal channel scanning 
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order, and a high scanning rate. Mitigating settling time error may be achieved through 

increasing the sample size. To optimize the settling time with channel scan order, channels 

should be scanned such that the difference between the signals is minimized. In the case of the 

VCJ, which has only two input channels whose signals may or may not be close, accuracy could 

be improved by sampling one channel 50 times and then sampling the other channel 50 times, for 

exampl

s nalysis, however, a brief moment needs to be taken to compare scan rate with 

sample rate and sample with reading. 

The scan rate is the rate all channels are scanned in one loop, while the sample rate is the 

 best performance both in reduced standard error and reading period. The 

e, instead of interleaving the two channels. But, this would cause the two readings to have 

different time values and therefore was not used. Increasing the scanning rate has the benefit of 

increasing the number of samples, but it also may decrease the performance. Therefore, several 

different configurations were examined to see which offered the best performance. Before 

describing thi  a

rate at which a single channel is sampled within a scan sequence. Ideally, the scan rate is equal to 

the sample rate divided by the number of channels; but the PGIA for the NI-DAQCard 6024E 

requires a minimum delay of about 5 µs between scans. Rather than requiring the user to 

calculate the best scan rate for a given sample rate, the DAQCard’s driver will automatically 

calculate the best scan rate for a given sample rate if 0 is entered in its place. A sample is a 

discrete measurement by the DAQCard, and a reading is the average of all the samples acquired 

during a data acquisition operation for a given channel. 

A variety of configurations for sample rate and sample size were examined to see which 

offered the

configurations consisted of a range of sample rates from 10 kS/s to 100 kS/s with sample sizes 

chosen such that the estimated reading period would be less than 2 ms. The estimated reading 

period, dt, is  

11: 
sample

channelssamples

R
nn

dt
×

= , 

where nsamples is the number of samples per channel, nchannels is the number of channels, and  

R

      

f the three trials’ standard deviations in the speed and direction channels were then 

sample is the sample rate. For example, if we would like to sample at 50 kS/s for 2 channels, the 

maximum number of samples we can acquire in 2 ms would be 50. To compare the various 

configurations, 1000 readings were acquired with no force input on the joystick three times. The 

average o
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compar

f 

comparing ranges. The average time to acquire a reading, or the actual reading period, was also 

examined.  

 Results fro

 kS/s offered slightly worse performance even with 

ed graphically. The standard deviation of the readings offers a measure of the variance, or 

noise, in a constant signal while not being heavily influenced by outliers, as would be the case i

m the analysis, depicted in Figure 21, confirm the DAQCard’s support 

documentation that low sample size and high sample rates increase variance. Trials with 10 

samples had very high standard deviations even though the sample rate was low. When the 

sample rate was consistent but the sample size varied, configurations with higher sample sizes 

had lower standard deviations but longer reading periods. While increasing the sample rate 

allowed for more samples, the standard deviation increased when the sample rate grew above 75 

kS/s. Therefore, since a sample rate below 75

the same sample size, we selected 75 kS/s as the sample rate. We selected 40 samples for the 

sample size because it offers comparable standard deviation with a better reading period than 50 

samples. 

It is not entirely clear why the direction channel consistently has larger standard 

deviations than the speed channel. It may have been a result of the scanning order; the direction 

 

Figure 21: Comparison of various data acquisition sample rate and size configurations. 
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channel is always scanned first. But, when the scanning order was reversed, the direction channel 

still had the larger variance. The actual reading period is also 50% larger than the design goal. 

This is likely a result of the reading being obtained during a synchronous operation. Each time a 

reading is requested, the DAQCard needs to configure itself for the new scan; and the data needs 

to be transferred across the PCMCIA bus. The estimated reading time also does not take into 

account the minimum delay between scans.  

 The input range of ±0.5 V for the DAQCard provides maximum flexibility for source 

 user include ±0.05 V, ±0.5 V, ±5.0 V, and ±10.0 V. While a 

range of ±0.05 V would have been ideal for a strain gage bridge configuration, we had also 

act as a signal source. The 

FlightLinks JC200 has an output signal

voltage swing is ±10% 

signal is co

±0.5 V. Once a reading has been SPU transforms the data to 

suit the need

2.4.2.3 Sou

The software to configure and collect readings from the VCJ’s conditioning circuit was written 

in C++  

programmi

regarding tions in Visual Studio with the NI-DAQmx when APIs 

were being

data acquis

Fou eadings from the 

VCJ’s conditioning circuit. The reader is referred to Appendix E for their source code 

implementation. configures the DAQCard’s input mode and sets the 

 offset may exist on each axis,

signals. Input ranges available to the

considered letting a conventional MJ (e.g. FlighLinks JC200) 

 range based on its supply voltage Vs. Specifically, its 

Vs [62]. Since the DAQCard supplies +5 V and if the JC200’s reference 

nnected to the DAQCard’s negative input, the voltage swing from the JC200 becomes 

 collected from the DAQCard, the 

s of the user. 

rce Code Implementation 

 in the Microsoft Visual Studio .NET environment. While NI’s most recent application 

ng interface (API) is the NI-DAQmx driver, support documentation was not clear 

the development of applica

 investigated. NI’s Traditional NI-DAQ (Legacy) API was chosen because it did offer 

ition examples for Visual Studio and supported the NI-DAQCard 6024E.  

r functions were written to configure the NI-DAQCard and collect r

 DAQ_initialize() 

timeout limit if there is an error. Because an  

DAQ_find_offset2() acquires several readings at once for both channels and takes an average. 

The resulting values are subtracted from susbsequent read operations. DAQ_get_data() sets up 

the read operation for each channel, collects interleaved x- and y-axis data from the conditioning 
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circuit, and takes averages for both channels. Lastly, DAQ_close_device() resets the DAQCard 

to its original configuration. 

2.4.3 Input Control Algorithms 

The SPU contains four algorithms for processing the user’s input:  

• The Standard Transfer Function (STF) is intended to behave similarly to the signal 

processing on a conventional MJ. But since the joystick is built upon a force 

transducer, the algorithm applies a dead zone and template. It also applies a gain to 

interface with the VDS’s expected input range. 

• The Variable Gain Algorithm (VGA) has been modified slightly since its 

development in [67], but the core concept of mimicking the response of a MJ with an 

IJ is the same. It differs from the STF only in parameters for the dead zone, gain, and 

templates. 

• The Multiple Sclerosis – Personally Fitted Algorithm (MS_PFA) incorporates a 

tremor filter, bias axes, a dead zone, independent gains for each axis, and adjustable 

template sizes and shapes. 

• The Multiple Sclerosis – Personally Fitted Algorithm with Fatigue Adaptation 

(MS_PFA_FA) includes the same features as the MS_PFA in addition to a gain 

schedule based upon the user’s activity and personal characteristics. 

2.4.3.1 The Standard Transfer Function (STF) 

The STF features a dead zone, template, and gain. The dead zone is required because the 

VCJ’s joystick post will output a signal even if the input force is within the range of a typical 

MJ’s dead zone. The free body diagram in Figure 22 shows that the stick will not pivot if the 

pretension in the spring is large enough. Furthermore, the free body diagram illustrates that there 

is no external horizontal force to act against the input force other than the reaction force at the 

base of the joystick. Therefore, the force will be transmitted through the strain gages. It follows, 

then, that since there is no external reaction force other than at the base, the signal will increase 

proportionally even if the input force is beyond the template force for a conventional MJ,  
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Figure 22: Free body diagram of the VCJ demonstrating that a dead zone force will be sensed, even though the stick 

will not move. Friction is ignored. 

Fi

Fs 

Rb 

Rx 

Ry 

RPx

RPy

Key 
Fi – force input 
ls – length of the stick 
Fs – force of spring along axis 
Rb – reaction at boot 
rb – radius of boot 
Rpx – reaction at pivot, x-direction 
RPy – reaction at pivot, y-direction 
Rx – reaction at base, x-direction 
Ry – reaction at base, y-direction 
RM – reaction moment at base 
llc – length of the load cell 
WVCJ – weight of VCJ 

rb 

Sum of the forces above the pivot 
ΣMp = -Fi × ls + Rb × rb  
ΣFy = -Fs + Rb = 0 => Fs = Rb (see note) 
ΣFx = Fi - RPx = 0 => Fi = RPx
Sum of the forces below the pivot 
ΣMO = -RPx × llc - Rb × rb 

ΣFy = -RPy + Ry - WVCJ = 0 
ΣFx = RPx - Rx = 0 
Substitutions 
ΣMp = -Fi × ls + Fs × rb  
ΣFx = Rx = Fi 
Conclusions 
If Fs > (Fi × ls) / rb, the resulting moment is 
counter-balanced by the opposite side of the 
boot, and the stick does not rotate. 
Since Rx = Fi, the strain gages will sense a force. 

ls 

llc

Note: The boot and stick are 
different masses. Therefore, 
Rb = RPy. 

WVCJ⊗ 
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necessitating a software template. The primary purpose of the gain is to translate the force input 

signal from the DAQCard to the appropriate range for the VDS.  

The dead zone and template parameters were chosen based on the best fit force vs. angle 

curves for the VCJ with two different handles. For handles 3 and 4, which were chosen to 

represent the two different classes of small and large handles, the y-intercepts were at 0.8821 N 

and 1.1539 N, respectively. The 18°-intercepts were at 4.176 N and 3.788 N, respectively. The 

average values for the two handles’ dead zones and templates were used to allow the software to 

be independent of the handle. Therefore, the dead zone force is 1.018 N and the template force is 

3.982 N. 

The flowchart for the STF is depicted in Figure 23. The inputs are converted to force 

first because the force to digital reading ratio in not consistent for the four directions for the VCJ, 

as described in section 3.1.1. For example, while mechanically about 3.98 N will deflect the 

joystick to 18°, the digital values for 3.98 N in the forward and reverse directions are 397 and 

326, respectively. Using dead zone and template parameters in units of force allows there to be 

one set of numbers for all directions. Next, if the input is within the dead zone, the input is set to 

zero, and the dead zone flag is set. If the input is outside of the dead zone, the dead zone force is 

subtracted from the input to ensure a smooth transition out of the dead zone. The dead zone force 

is also subtracted from the template force because of the preceding linear translation applied to 

the inputs. The algorithm then checks to see if the input is outside the template. If so, the inputs 

are set to the corresponding template value, and the template flag is set. Lastly, the gain is 

applied to the inputs to convert the force to the expected digital input from the VDS. The gain 

was computed such that an input force that corresponds to the template force would result in the 

maximum speed of the wheelchair, or  

12:  
zonedeadtemplate

dig

FF
V

Gain
−

−

−
= max , 

where Vmax-dig is the maximum wheelchair velocity in digital units, Ftemplate is the template force, 

and Fdead-zone is the dead zone force. Therefore, 

13:  0.691
018.1982.3

2048
=

−
=Gain . 
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Figure 23: Flowchart for the standard transfer function (STF) and variable gain algorithm (VGA). 
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2.4.3.2 The Variable Gain Algorithm (VGA) 

While the purpose of the VGA remains the same as originally conceived, it differs from the 

original implementation in its computation method, organization, and working units. With the 

faster speed permitted by the laptop’s processor, computations for trigonometric and exponential 

functions can be performed while the joystick is operating instead of referencing look-up tables. 

The organization has also been altered to improve readability. The VGA follows the same 

flowchart as shown in Figure 23. Lastly, since the force to digital signal ratio is not consistent in 

the four directions, comparisons for dead zone crossings and template violations are performed 

in units of force instead of the digital representation.  

To determine the force equivalencies for the dead zone and template, an equation was 

derived from the force to signal and signal to digital relationships for the HERL IJ. A linear 

regression of the force, Fi, to signal, S, data reveals the following relationship: S = 0.10613Fi + 

0.03194 or 

  14: 
10613.0

03194.0−
=

SFi . 

The signal to digital reading, dig, is derived from an input range of +3 V to +6 V mapping to a 

digital range of 0 to 4096 or  

  15: 63
2048 ⎠⎝

3
−⎟

⎞
⎜
⎛ +digS . 

Substituting equation 15 into 14 results in  

=

  16:  
10613.0i . 

Digital values for the VGA dead zone and template were 2150 and 2550, respectively. 

03196.03
2048

3
−⎟

⎠
⎞

⎜
⎝
⎛ −

=
dig

F

Therefore, 

using equation 16 their equivalent force values are 1.107 N and 6.628 N, respectively. 

be 

applied first because the dead zone or template would clip the data. While we had considered  

2.4.3.3 The MS Personally Fitted Algorithm (MS_PFA) 

The MS_PFA applies a number of transformations to the input signal including a tremor filter, 

bias axes, dead zone, independent gains for each axis, and adjustable template sizes and shapes. 

The flowchart for the MS_PFA is depicted in Figure 24. It is important that the tremor filter 
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Figure 24: Simplified flowchart for the MS_PFA algorithm. 

MS_PFA algorithm 
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using a simple low-pass filter to mitigate tremor, a WFLC filter had been shown to offer superior 

performance compared to a low-pass filter in driving a virtual wheelchair [47]. While the 

modified adaptive filter Nho developed performed similarly to the original WFLC, the adaptive 

filter as originally developed is used here because the extra complexity did not seem necessary. 

To prevent the WFLC from removing the intentional movements that typically occur at less than 

2 Hz, a second order infinite impulse response (IIR) high-pass filter executes before the WFLC. 

Rotating the input by the bias angle also needs to occur early in case the dead zone or template is 

not circular. 

 The algorithm determines dead zone crossings and template violations based on the shape 

of the dead zone and template, respectively. The algorithm for processing dead zone crossings 

and template violations originated as part of tuning software developed by Ding, Cooper, and 

Spaeth [77]. Dead zone shapes include circular, elliptical, and rectangular; and template shapes 

include circular, elliptical, diamond, and asteroid. In their implementation, however, circular 

shapes are a subset of elliptical shapes. 

Gains are applied depending along which axes the force is applied. The input does not 

need to be translated into units of force because the default gains are calculated based on the raw 

digital input during joystick tuning.  

2.4.3.4 The MS Personally Fitted Algorithm with Fatigue Adaptation (MS_PFA_FA) 

In addition to providing custom settings to the user, the purpose of the MS_PFA_FA is to 

provide a joystick interface that tunes itself to the user as he or she becomes fatigued. As fatigue 

sets in, it becomes increasingly more difficult to apply the force necessary for maintaining a 

desired velocity. The MS_PFA_FA will increase the gain gradually thus reducing the amount of 

force needed to produce the desired output. Likewise, the gain will decrease back to the original 

setting if the joystick is not in use. Specifically, the gain is governed by equation 17 

17: 
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⎨
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where K is the current gain, K1 and K2 are the last updated gains while in adaptation or recovery 

modes, Kmax is the maximum possible gain for the user, Kmin is the default gain for the user, α is 

the fatigue adaptation parameter that governs the rate at which the gain increases, β is the fatigue 

recovery parameter that governs the rate at which the default gain is regained, T is the amount of 
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time in ms elapsed since F crossed Fdead-zone, F is the user’s input force, and Fdead-zone is the force 

required to cross the dead zone boundary. To demonstrate how the gain varies with time, a 

simulation was executed in MATLAB (The Mathworks, Inc, Natick, MA) where the input force 

was switched in and out of the dead zone. The results are depicted in Figure 25, where Kmin and 

Kmax are 1.0 and 3.0, respectively, and α and β are 1.0e-5 and 1.5e-5, respectively.  

The flowcharts for the MS_PFA and MS_PFA_FA are similar with the exception that the 

Apply gain box in Figure 24 is replaced with the flowchart in Figure 26. Since the function 

governing the gain depends on whether or not the input force is within the dead zone, a mode 

variable is set first depending on the status of the dead zone flag. If the new mode does not equal 

the previous mode, the start time for the current mode is saved, the previous mode is updated to 

the new mode, and the last gains are saved in the K1 and K2 variables. Next, if the current force is 

within the dead zone – that is, the function is in gain recovery mode – the second part of equation 

17 is used. Otherwise, the first part of equation 17 is used. Lastly, the gains are applied if the 

input is outside of the dead zone. 

2.4.3.5 Implementing the Algorithms 

The reader is referred to Appendix F for the algorithms’ source code implementation. Because of 

the algorithms’ similarities, the STF and VGA algorithms were combined into one routine, 

ICD_VGA; and the MS_PFA and MS_PFA_FA algorithms were combined into another routine, 

 

Figure 25: Simulation demonstrating how the gain varies over time based on minimum and maximum gains and 

adaptation and recovery rates. 
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Figure 26: Flowchart for fatigue adaptation algorithm (not including tremor filter and personalization features). 
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ICD_MS_PFA. Logic at the beginning of ICD_VGA sets the dead zone, gain, and template 

parameters depending on which algorithm is specified with the do_vga input parameter. 

Likewise, logic before the point where gain is applied checks the do_fatigue input parameter 

before applying gain in ICD_MS_PFA. Helper functions were also written to load the custom 

settings from the setup files (Getsettings(), which are described in sections 4.3.1.5 and 

4.3.2.2), initialize parameters (MS_PFA_initialize(), ICD_calibration_constants(), and 

FA_load_defaults()), convert digital readings to force (ICD_dig2force()), protect against 

software crashes (FA_load_last_saved()), and interpolate missing data points (neville()). 
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3.0  VALIDATION OF THE VCJ 

A potential limitation to ensuring that the input control algorithms presented in this thesis can 

improve driving in any wheelchair configuration is the novelty of the VCJ. Conventional MJs 

use different sensing methods and thus different transducers to collect user input, and they 

generally use a pivot mechanism with pins rather than a swivel bearing. Therefore, to prevent the 

novelty of the VCJ from confounding the performance of the algorithms, the VCJ needed to 

behave similarly to a conventional MJ. An additional feature of the VCJ, nonetheless, is that its 

compliance level can span a wide range of settings. The influence of different springs and 

different pretensions on the springs is not totally understood, especially in a dynamic 

environment. Therefore, validation of the VCJ consisted of ensuring that it could mimic the static 

and dynamic responses of a conventional MJ and characterizing its behavior analytically and 

with a variety of spring sizes and pretensions. First the static responses of the VCJ in isometric 

and compliant modes will be discussed followed by its dynamic response in compliant mode. 

3.1 STATIC RESPONSE 

The purposes of validating and characterizing the static response of the VCJ are to ensure that 

the VCJ provides the expected digital values for given force inputs in both high and low gain 

modes, to ensure that the force to deflection response is consistent with a standard MJ, and to 

provide insight into the influence of different springs and their pretensions on the force to 

deflection response. Therefore several experiments in isometric and compliant modes were 

performed with the VCJ, where known forces were applied to the joystick. Characterizing the 

joystick in isometric mode provides insight into the exact response of the VCJ. Based on a 

simple beam bending model, known force inputs can be applied and compared with the 
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measured result. If there is deviation from the model, regression analysis may be used to 

determine the actual input to output relationship. Characterizing the joystick in compliant mode 

provides the opportunity to compare the force response of the VCJ with that of a standard MJ. 

The influence of different springs and their pretensions may also be ascertained. 

3.1.1 Isometric Mode 

3.1.1.1 Test Procedures and Setup 

The procedure for applying known loads to the joystick included the following steps: 

1. For the respective modes of VCJ operation, place the force meter and jig in the quill of a 

computer numerically controlled (CNC) mill and mount the VCJ to the milling table. In 

high gain mode use the Ameteck AccuForce II (Sellersville, PA) force gage, and in low 

gain mode use the GSE 355 (Allen Park, MI) force gage. The Amtech AccuForce II force 

gage has a precision of about 0.01 N up to 50.0 N, and the GSE 355 force gage has a 

precision of 0.5 lbs up to 200 lbs. 

2. Apply a set of increasing forces perpendicular to the tip of the joystick along the positive 

y-axis by moving the VCJ into the force gage probe with the mill table. In high gain 

mode, force increments should be about 1 N when the force is below 8 N and about 2 N 

when the force is above 8 N. Bifurcating the step size allows for more sensitivity in the 

driving range of operation. In low gain mode, force increments should be about 9 lbs 

until just before the force reaches the limit of the inputs, when force increments should be 

between 3 and 5 lbs. Here, bifurcation improves the estimation for where the DAQCard 

no longer measures increases in force.  

3. Record and average the digital reading from the DAQCard for 10 s. Record the input 

force from the respective force gage. 

4. Repeat the above steps for the negative y-, positive x-, and negative x-axes.  

Instead of using the conventional handle at the tip of each joystick post, the mill applied forces to 

a small, aluminum cuff that had a flat contact pad machined into it. The center of pressure was 

located at the center of the machined pad. The same jig described in section 3.1.2 was used in 

high gain mode. However, the lock at the pivot would not hold when forces exceeded about 35 
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lbs. Therefore, a new jig without a pivot was designed to provide an interface between the mill 

and the GSE 355 force gage. 

3.1.1.2 Analytical Model 

Equations 6 through 9 served as the basis for the analytical model of the VCJ in isometric mode. 

Furthermore, since the DAQCard is bipolar and operates with 12 bits of resolution, an input of 

0.5 V results in a digital reading of 2048. Or, 

18: outout JPJP
V

dig ×== 4096
5.0

2048
 

Solving for the digital reading in terms of the VCJ’s fundamental components, therefore, yields 
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6 PLFE ε

With the exception of the length because of the addition of the aluminum cuff, the same 

parameters as in Table 3 were used. The new lengths for the high gain and low gain modes were 

9 in., respectively. 

 

for each axis because of their different responses. Left and reverse inputs (when the force was 

along the negative axis) resulted in smaller signals than right and forward inputs (when the force 

was along the positive axis). Results are provided in Figure 30 through Figure 33. 

4.20 in. and 4.98

3.1.1.3 Results 

The results for the experiments in high gain and low gain modes are presented in Figure 27 and 

Figure 28, respectively. The experimental measurements are consistently smaller in magnitude 

than the analytical model causing the cutoff force to be much lower than expected. Therefore, the 

experiment for low gain mode was repeated but with a new gain resistor of 330 Ω, the results for 

which are presented in Figure 29. The approximate cutoff forces are presented in Table 5. 

Because the experimental data did not match the analytical model well, best fit curves 

were determined for each axis and gain resistor. It was necessary to determine the best fit curve
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Figure 27: Force response of VCJ in high gain mode with the designed gain resistor in the four directions. 

 

Figure 28: Force response of VCJ in low gain mode with the designed gain resistor in the four directions. Results 

from both circuit boards are presented. 
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Figure 29: Force response of VCJ in high gain mode with the new gain resistor in the four directions. 

Tab orces based on gain resister ion. Rg = 292 Ω ain 1, 330 Ω for High Gain 2, 

an Ω for Low Gain. 

h Gain 1 (N) h Gain 2 (N)   (N) [red; blue] 

le 5: Cutoff f and direct  for High G

d 5.42 k

 Hig Hig Low Gain

Forward  18 19.5 219; 210 

Reverse >36 36.5 199; 199 

Left 34 32 199; 197 

Right 14.5 18 219; 210 
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Figure 30: Forward direction best fit curve. Figure 31: Left direction best fit curve. y = 6.3121E-

13x4 + 2.3122E-09x3 - 2.5613E-07x2 + 9.3217E-03x - 

6.9416E-02; R2 = 0.99969. 

Figure 32: Reverse direction best fit curve. y = 

3.2298E-13x4 + 1.4706E-09x3 - 4.1389E-07x2 + 

1.1160E-02x - 5.1782E-02; R2 = 0.99966. 

Figure 33: Right direction best fit curve. 
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3.1.1.4 Discussion 

It is not entirely clear why the digital reading was lower than the expected results, nor why the 

negative side did not produce as much output as the positive side. It may be a result of the 

potentiometer in the input circuit. Nonetheless, if the cutoff values were not consistent with the 

design, their ranges may have been appropriate. For example, while the right turn cutoff force is 

32 N and the left cutoff force is 18 N, this equates to a total range of 50 N or ±25 N if the offset 

is zero

 based on the MVIC in 

medial

While the positive axes (i.e. forward and right directions) showed linear responses up 

h response was not as linear as expected for the negative axes (i.e. the 

reverse and left directions). A fourth-order polynomial was chosen to approximate the 

y good fit to the data (R2 = 0.9997).  

of the handle is the greatest. Different handles were included because as the handle tilts, the 

ed properly. The offset is the digital reading when no external force is applied to the 

joystick. During the experiments, the offset values were also recorded and showed biases in the 

positive direction, making is possible to exceed the designed cutoff force in the negative 

direction.  

While the output signal was much lower than expected for the circuit in low gain mode as 

well as the high gain mode, modifying the low gain resistor did not seem to be critical because 

forces will very likely not reach 300 N. The 300-N requirement is based on a maximum input 

force in the forward direction. However, to characterize fatigue, the FI is

 direction. That is, if the subject is right-handed, the subject will apply a maximum force 

in the left direction. If the subject is left-handed, the subject will apply a maximum force in the 

right direction. In Windam’s study of maximum input forces, the maximum force in the left 

direction (all subjects used their right hand) was 44.4 lbs [74] or 197 N.  

until t e cutoff force, the 

relationship because it provides a ver

3.1.2 Compliant Mode 

3.1.2.1 Test Procedures and Setup 

The method used for characterizing the compliant mode of the VCJ was similar to Spaeth’s 

method for a MJ, where the force gage and joystick shaft were repositioned to precise locations 

for each measurement [67]. Unlike Spaeth’s method, forces were applied to two different 

handles rather than an aluminum cuff. The elevation of the force was located where the diameter 
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weight of the handle will influence the amount of torque at the load cell. Likewise, the distance 

between the load cell and the plane in which the force is applied will influence the amount of 

y diagram and equations in 

d to produce consistent results. The method that produced 

the most repeatability involved maneuvering the jig and mill table to their correct positions while 

the handle was pulled away from the probe and then very slowly releasing the handle until the 

force gage supplied all the input force. 

torque at the load cell. Handles 3 and 4 described in Table 2 were used as representatives for the 

small and large classes of handles, respectively. Since the radius of the handle needed to be 

included when calculating the mill table’s translations, a new set of translations was derived. 

 The table displacements were derived by defining the jig’s pivot point as the origin O and 

tracking the position of the VCJ’s pivot P through an angle θ. The table displacement is the 

difference between the new position P2 and its position P1 when the stick is upright and the force 

probe is barely making contact with the joystick handle. The free bod

Figure 34 explicate the method in more detail. The tables for mill positions for handles 3 and 4 

are provided in Appendix G. The photograph in Figure 35 depicts the VCJ and jig in the mill 

with the AccuForce II force gage and the Pro 360 Digital Protractor. 

 The procedure for comparing the force response of the VCJ with the MJ involved 

selecting a spring and pretension and measuring the input force and output signals for varying 

degrees of deflection. Spring selection was performed by choosing one from an assortment of 

springs that produced a similar, subjective feel to a conventional joystick. To set the pretension, 

the VCJ and calibration jig were configured to deflect the joystick post 8.0° as shown in Figure 

35, where 8.0° represents an approximate midpoint for the full range of deflection. The position 

of the pretension nut was then adjusted until the force gage read the same force as that required 

to deflect the MJ 8°, or 2.2 ± 0.05 N [67]. With the pretension set, a second measurement was 

taken with the deflection set to 16° to verify that the spring’s stiffness was adequate. A force too 

low would suggest that the spring is not stiff enough, and a force too high would suggest that it is 

too stiff. Force measurements were then recorded from the VCJ for 10 s each and from the 

AccuForce force gage at 1°, 2° through 16° in 2° increments, 17°, and 18°. Measurements were 

taken in only the forward direction. Special care when making contact between the joystick 

handle and force gage probe was neede
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Figure 34: Analytical method for determining milling table displacement. 

 
Figure 35: Photograph of test setup in compliant mode. 
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3.1.2.2 Analytical Model 

An analytical model of the static response of the VCJ was derived to provide insight into the 

influence of different spring rates and pretensions without testing many different configurations. 

The free body diagrams in Figure 36 served as the basis for the model. Application of the laws 

of statics to both masses produced a system of equations that can be solved using linear algebra. 

A MATLAB script (Appendix H) was then written to determine what input force P would result 

in a deflection of the stick θ degrees for handles 3 and 4. Locations for the centers of masses 

were computed with SolidWorks models of the joystick and boot, and the distance Ljp between 

the pivot and the input force was measured with a digital caliper. While a perfect mate between 

the stick and the boot would result in a uniform distribution of force between the stick’s and 

boot’s surfaces, the boot’s inner diameter is slightly larger than the stick’s outer diameter 

resulting in some play between the two surfaces. Therefore, the center of pressure hb between the 

Figure 36: Free body diagram of (a) joystick shaft and (b) boot. 
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boot an

e from for the VCJ, with spring rates K of 3.00, 

8.40, 15.0, and 28.05 lbs/in. The first spring that was selected, K=15.0 lbs/in, was not stiff 

enough. Therefore, the 28.05 lbs/in spring was used. The number of turns of the pretension nut 

from the top of the threads of the joystick shaft for calibration were 8.5 and a little over 9.0 for 

handles 3 and 4, respectively.  

A comparison of the static responses for a MJ and the VCJ with handles 3 and 4 is 

provided in Figure 37. The digital force to deflection relationship is provided in Figure 38. 

Linear regressions were also performed with the digital force to deflection relationship and are 

provided in the same figure. Comparisons between the analytical model and experimental results 

for handles 3 and 4 are provided in Figure 39. 

d stick was assumed to be about 85% high along the boot’s axis rather than 50%. Friction 

between the surfaces was assumed to be negligible.  

3.1.2.3 Results 

Four different springs were available to choos

 

Figure 37: Force vs. deflection for MJ and VCJ wit handles 3 and 4. 
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Figure 38: Digital reading vs. deflection for VCJ with handles 3 and 4. 

Figure 39: Experimental vs. theoretical force to deflection for handles 3 and 4. 
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While the VCJ responded very similarly to the MJ with the large and small handles, 

slight differences exist in their dead zone and peak forces. Table 6 summarizes the dead zone and 

peak forces for the MJ and VCJ with handles 3 and 4. 

The digital readings are fairly linear, where the slope of the force response is greater for 

the VCJ with handle 4. This is consistent with the trend shown in Table 6, where not as much 

force is required to achieve maximum deflection and the dead zone forces are similar. 

 Lastly, there appears to be an offset between the experimental data and the analytical 

model. The analytical model suggests that about two to three times as much force is needed to 

deflect the joystick than what was experimentally determined. The slope is greater for handle 4, 

which would be expected as a result of the greater moment arm. Likewise, the dead zone force is 

greater for handle 4, which would be expected as a result of the greater pretension in the spring. 

3.1.2.4 Discussion 

The static response of the VCJ appears to match that of a conventional MJ very well. At the 

extremes, dead zone forces are not different by more than 0.5 N, and the peak force varies by 

less than 15%. The responses are very similar in the mid proportional range, which is where a 

majority of the driving forces are typically located during short driving tasks with a MJ [69].  

 While the digital data is noisy, distinctions can still be made within a few degrees for the 

VCJ with each handle. With a smaller lever arm, more force is required to deflect the joystick, 

thus increasing the digital range and improving sensitivity.  

 The analytical model and experimental data did not match very well. While the model 

curves have about the same slopes for both handles as the experimental data, the curves are 

offset by about 1.5 to 3.0 N. Originally, the curves matched very well until the author realized an 

error in the number of turns of the pretension nut to its axial displacement ratio just before  

Table 6: Approximate dead zone and peak forces for the MJ and VCJ. 

 MJ VCJ Handle 3 VCJ Handle 4 

Dead zone force (N) 0.9 1.1 1.25 

Peak force (N) 4.4 4.0 3.75 
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submitting this thesis. If one turn of the nut results in 0.025 in. of axial displacement for a ¼-20 

thread, the data matches very well. But, one turn actually results in 0.05 in. of axial 

displacement. The author double checked physical parameters and verified that the spring rate is 

what the manufacturer claimed but still cannot identify the source(s) of the discrepancy. This 

matter will be investigated further as deemed necessary.  

Nonetheless, if there is some validity to the model, the curves in Figure 40 through 

Figure 42 depict how the force response would vary for increasing lever arms, spring rates, and 

pretensions. The results are consistent with what one would intuitively expect:  

• longer shaft lengths decrease the amount of force needed to deflect the joystick 

because of the increased lever arm,  

• increasing spring rates will increase the amount of force needed to deflect the joystick 

because of the increased stiffness,  

• and greater preloading of the spring will increase the dead zone force because of the 

increased reaction for Rb. 

Thus, to improve the consistency of the force response with handle 4 to a conventional MJ, 

lowering the location of the handle on the shaft and decreasing the pretension of the spring 

would probably help. However, the handle cannot be lowered any farther in the present 

configuration without physically altering it because it contacts the pretension nut when it is 

screwed onto the shaft. 

The analytical results suggest a potentially exciting use for the VCJ operating as an IJ. As 

Rao, Seliktar, Rahman [65] mentioned that lack of somatosensory feedback may reduce 

performance with an IJ, a related complaint with the IJ is that the operator does not know when 

he or she is applying the force required to drive at maximum speed. Thus, drivers may have the 

tendancy to apply too much force [69]. To solve this problem, a configuration with the VCJ 

could be created where the dead zone force is greater than force typically required to reach the 

template. This could be achieved with a sufficient preload on the spring. The VCJ would operate

as an IJ in normal driving circumstances; but when the applied force is too great, the pivot will 

buckle, thus providing feedback to the user that too much force has been applied. 
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Figu CJ. re 40: Influence of joystick shaft length on static force response of V

 
Figure 41: Influence of spring rate on static force response of VC. 

 
Figure 42: Influence of spring preloading on static force response of VCJ. del0 is the spring’s initial displacement.  
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3.2 DYNAMIC RESPONSE 

The purposes of validating and characterizing the dynamic response of the VCJ are to ensure that 

ith a standard MJ and to provide insight into the influence of 

different handles, springs, and the springs’ pretensions on its movement. While static 

ng the model 

further to find a solution was deemed out of the scope of this thesis project. Instead, to provide 

insight into the influence of parameters such as handle size, spring rate, and spring pretension, 

similar impulse response experiments but with different configurations were performed with the 

VCJ, where its tip was released from an angle and its position over time recorded.  

3.2.1 Test Procedure and Setup 

The same test setup as described in Brown, Spaeth, and Cooper [78] was used to capture the 

motion of the VCJ. A small reflecting sphere was taped to the joystick tip, and a Vicon MX 

motion capture system (ViconPeak, Lake Forest, CA) recorded its position as the stick was 

released from the forward, right, and reverse directions. The diamond-shaped template (Figure 

13b) was used to provide consistent start points for the three directions. In addition to the 

configurations used for emulation of a MJ (see first paragraph of section 3.1.2.3), two other 

pretension settings with the spring were used with each handle as well as two different springs. 

Table 7 provides a summary of the configurations used. The student t-test was used determine 

whether results were significantly different, with the significance level set at 0.05. 

its dynamic behavior is consistent w

characterization will provide insight into how “stiff” the joystick is, or how difficult it is to 

deflect it to a certain angle, dynamic characterization will provide insight into how it “feels,” or 

how it responds to the motions of the hand. While there have not been previous studies 

comparing the “feel” of a joystick with driving performance, Dicianno et al. [69] have suggested 

that EPW drivers rely on positional feedback for EPW control while using a MJ. Brown, Spaeth, 

and Cooper [78] previously characterized the impulse response of a conventional MJ in terms of 

its rise time, peak overshoot, and settling time, to which the behavior of the VCJ will be 

compared. While an analytical model was attempted, the resulting equations of motion were non-

linear and subsequently oversimplified during the linearization process. Pursui
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Table 7: Spring settings used to test dynamic response of the VCJ. 

Spring ID Rate (lbs/in) Handle Number of lock nut turns 

1 28.05 
3 

4 

8, 8.5, 10.5 

8, 9.1, 10.5 

2 15.0 
3 

4 

7.5, 8.5, 10.5 

7.5, 9, 10.5 

3 3.00 
3 

4 

12, 15 

15, 17 

MATLAB was used to import the data; interpolate the data with a cubic spline; and find 

the rise time, peak overshoot, and settling time. The rise time was defined as the time it took the 

joystick tip to be within 10% of the resting position. The peak overshoot was defined as the 

maximum deflection relative to the initial deflection past the resting position after it was 

released. And the settling time was defined as the time it took the joystick tip to remain within 

5% of the resting position relative to the initial deflection. 

3.2.2 Results 

While computing the characteristic parameters for the VCJ, an error was found in the algorithm 

to compute settling time in [78]. Rather than being within 5% of the joystick’s final position, the 

settling time was computed to be within 5% of zero. This alters the results reported in [78] 

slightly since the position marker would rotate with respect to the joystick occasionally. 

Comparisons between the VCJ with handles 3 and 4 to the MJ are provided in Table 8. Results 

were analyzed based on the direction of impulse because of differences in characteristics for a 

conventional MJ for the various directions. Five of nine characteristics are not significantly 

different for handle 3, and three of nine are not significantly different for handle 4. 

Parametric analyses of the influence of handle size, spring rate, and spring pretension are 

provided in Figure 43 through Figure 51. Averages with standard deviation error bars for the 

dynamic characteristics are plotted against the pretension in terms of the number of turns of the  
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Table 8: Comparisons between rise time, peak overshoot, and settling time for the VCJ and handles 3 and 4 with a 

conventional MJ. 

  Forward Reverse Lateral 

MJ 
0.022 

(0.004) 
n=30 

 
0.027 

(0.004) 
n=31 

 
0.026 

(0.003) 
n=26 

 

VCJ 
Handle 3 

0.018 
(0.003) 

n=6 
p=0.02 

0.026 
(0.002) 
n=11 

p=0.29 
0.026 

(0.002) 
n=12 

p=1.0 Rise Time 
(sec) 

VCJ 
Handle 4 

0.027 
(0.003) 
n=12 

p=0.0001
0.033 

(0.003) 
n=11 

p<0.0001 
0.032 

(0.002) 
n=10 

p<0.0001 

MJ 
57.3 

(16.8) 
n=30 

 
46.5 
(5.1) 
n=31 

 
52.0 
(9.3) 
n=26 

 

VCJ 
Handle 3 

78.8 
(13.5) 
n=6 

p=0.009 
59.3 

(7.44) 
n=11 

p=0.0001 
55.4 

(2.59) 
n=12 

p=0.09 
Peak 

Overshoot 
(%) 

VCJ 
Handle 4 

64.4 
(6.75) 
n=12 

p=0.10 
57.1 

(3.82) 
n=11 

p<0.0001 
64.1 

(1.12) 
n=10 

p<0.0001 

MJ 
0.134 

(0.041) 
n=30 

 
0.146 

(0.044) 
n=31 

 
0.158 

(0.020) 
n=26 

 

VCJ 
Handle 3 

0.141 
(0.002) 

n=6 
p=0.36 

0.131 
(0.013) 
n=11 

p=0.10 
0.132 

(0.016) 
n=12 

p=0.0002 Settling 
Time (sec) 

VCJ 
Handle 4 

0.149 
(0.010) 
n=12 

p=0.07 
0.172 

(0.040) 
n=11 

p=.087 
0.205 

(0.002) 
n=10 

p<0.0001 
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Figure 43: Influence of handle size, spring rate, and spring pretension on rise time for the forward direction. 
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Figure 44: Influence of handle size, spring rate, and spring pretension on rise time for the right direction. 
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Figure 45: Influence of handle size, spring rate, and spring pretension on rise time for the reverse direction. 
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F . igure 46: Influence of handle size, spring rate, and spring pretension on overshoot for the forward direction
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Figure 47: Influence of handle size, spring rate, and spring pretension on overshoot for the right direction. 
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Figure 48: Influence of handle size, spring rate, and spring pretension on overshoot for the reverse direction. 
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Figure 49: Influence of handle size, spring rate, and spring pretension on settling time for the forward direction. 
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Figure 50: Influence of handle size, spring rate, and spring pretension on settling time for the right direction. 
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Figure 51: Influence of handle size, spring rate, and spring pretension on settling time for the reverse direction. 
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set scre

longer settling times, all of which are very likely related to its larger mass. The 

larger m

on. While effort was made to release the joysticks as 

instantaneously and consistently as possible, friction between the fingertip and joystick handle 

ans that the 

w from the top of the threads. Dashed lines indicate handle 4, while solid lines indicate 

handle 3. 

3.2.3 Discussion 

3.2.3.1 Comparison of VCJ with MJ Characteristics 

The VCJ marginally matches the dynamic response of a conventional MJ. The VCJ with handle 

3 satisfied more than 50% of the criteria, while the VCJ with handle 4 satisfied only 33%. The 

VCJ with handle 3 differed in peak overshoot the most, which could indicate input signals will

be amplified slightly more. The VCJ with handle 4 tended to have longer rise times, greater 

overshoot, and 

ass has more inertia, which would result in a general resistance to change, both from a 

resting position to moving and from moving to resting. Thus, the VCJ with handle 4 may have a 

tendency to feel “heavy.” These said, this experiment had a few limitations. 

While results were statistically significantly different, it is unclear to what extent the 

joystick will feel different. It seems unlikely that an operator would be able to distinguish 

between settling times that differ by 0.026 s, for example, as was the case for the lateral 

deflection. Further investigation is needed to quantify what amount of change in mass and 

dynamic properties would be perceptible and influential during pointing tasks with a MJ.   

Threats to the validity of the test include human error and appropriateness of the test 

setup. Human error may induce variance in the start time of a trial because the joysticks were 

released by hand from the deflected positi

could slow down the response of the motion. Likewise, the release method also me

release time and the Vicon’s start time were not synchronized, resulting in the need for graphical 

analysis to judge the start time. The start time was thus defined as the time before which the tip 

moved by more than 0.05 in., with exceptions made for particularly fast responses. Because the 

same release method and the method for judging the start times were consistent for all trials, for 

both MJ and VCJ characterization, results should not be biased for any particular testing 

configuration. 
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The test setup threatens test validity because the testing configuration consisted simply of 

the joystick handle and the small reflecting sphere responding to an impulse. In real driving, 

t the actual behavior of the joystick. But, 

PW d

3.2.3.2 Parametric Analysis of Handle Size, Spring Rate, and Spring Pretension 

erhaps the most effect on the VCJ’s rise time. In nearly every case, the rise 

time was longer with handle 4 than handle 3 when controlling for spring rate and pretension. The 

e. Overshoots based and handle size seem to 

however, the joystick is coupled with the driver’s hand.  The 5th percentile female has a 

hand/forearm mass of  470 g, while the 95th percentile male has a hand/forearm mass of 2,160 g 

[72]. The mass is an important aspect of dynamic response, and masses of 20 to 100 times that of 

the experimental conditions could significantly affec

E rivers use different grips while holding the joystick: some use just their first three fingers 

while others use their whole hand. The important aspect of this experiment was that conditions 

were consistent for both the MJ and VCJ. Perhaps in the future it may be wise to add mass to the 

joystick handle, but this adds many extra questions such as how much, where it should be 

located, and what shape it should possess. 

The handle size had p

spring rate did not appear to have as much of an influence on rise time as handle size, especially 

between springs 1 and 2; but spring 3 generally had longer rise times than the springs with higher 

rates. This may also be related to the initial loading condition of the springs in the fully deflected 

positions. Greater pretension indicates that the force to deflect the joystick to its full position is 

also greater. Even though the pretension on spring 3 was great, its low rate means that the force 

to deflect it fully is less than that of the other springs. Therefore, with less force pushing back, it 

will take longer to return to the center position. 

 Trends do not appear to exist consistently for the handle size, spring rate, and spring 

pretension as they relate to the peak overshoot. In some cases greater pretension indicates more 

overshoot; but in other cases, just the opposite is tru

overlap too much to note any significant differences. 

 Handle size and pretension appear to have the most influence on the VCJ’s setting time. 

Handle 4 has a longer settling time very likely a result of its larger mass. Since it possesses more 

inertia, it will take it longer to come to a resting position. Greater pretension seems to indicate a 

shorter settling time. While spring 3 differed from springs 1 and 2, this may again be related to 
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the initial loading of the spring, or the amount of force required to deflect the joystick fully. With 

less preloading, there is not as much energy for the joystick to return itself to the center position. 

3.2.4 Conclusions 

The mass of the handle influences the dynamic behavior of the joystick since it slows down both 

the rise time and settling time of an impulse response when controlling for spring rate and 

pretension. While the larger handle also has a larger radius which should be ergonomically more 

appealing [75], its extra inertia would require more power from the user to operate. This would 

have a negative affect for EPW drivers with muscular dystrophy, for example, whose muscle 

strength gradually decrease over time. Alternatively, a large enough mass may have potential to 

help mitigate the effects of tremor since the impulses are slowed down. Implementing such a 

handle, however, would probably require a larger spring rate to ensure that the joystick can 

return to its center position quickly after the driver lets go. If not corrected in software, the extra 

power requirements may be a precursor for fatigue. 

  The spring rate and pretension will also influence the “feel” of the joystick since a 

smaller rate will slow down the response and a greater pretension will increase it. The slower 

response with a smaller spring rate does not mean that more power is required to operate the 

joystick as described above for larger masses. Rather, with less preloading, its tendency to return 

to center will be decreased. A low spring rate may be very appropriate for a person with limited 

strength; and a MJ with a sufficiently low spring rate (<1 lb/in) would truly be isotonic, where 

the same amount of force is necessary for any deflection angle. The exact amount of force to 

operate the joystick would simply be adjusted with the pretension. One must take care, however, 

when selecting such a spring because it would not be good for a MJ based on force transducers, 

such as the VCJ. There needs to be enough gradation in force for the sensors to be able to 

interpret the driver’s commands sufficiently. 

 76 



4.0  TUNING THE VCJ 

4.1 INTRODUCTION 

The purpose of tuning the VCJ is to adjust its features to match the characteristics of its operator 

for improved EWP control. Tunable features can be categorized as hardware or software and are 

listed in Table 9. The procedure for tuning the VCJ involves systematically asking the user to 

apply forces to the joystick and getting subjective feedback about its feel. The steps, which are 

discussed in more detail in this chapter, are provided in Table 10. Dead zone shape and size, 

minimum gain, and bias axis angle are derived directly from forces the user applies the joystick. 

Maximum gain, template size, template shape (hardware and software), handle selection, and 

VCJ position are derived from feedback from the subject and an evaluation of driving skill in a 

virtual environment. Fatigue adaptation and recovery rates are derived from three measurements  

Table 9: Tunable features of the VCJ. 

Hardware Software 

Handle size and shape 

Template shape 

VCJ position 

Dead zone size and shape 

Minimum Gain (left, right, forward, reverse) 

Maximum Gain (left, right, forward, reverse) 

Template size and shape 

Bias axis 

Fatigue adaptation and recovery rate 

High-pass filter order and cut-off frequency 

WFLC initial configuration and adaptation rates 
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Table 10: Procedural steps for tuning the VCJ. 

Step ID Description 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Joystick positioning 

Handle selection  

Introduction to calibration software  

Dead zone determination  

FI 1  

Bias axes and default gain determination  

Strength analysis  

FI 2  

Max gain determination  

Data analysis with MATLAB (fine tune α and β and set filter parameters)  

FI 3  

Virtual driving on track 
 

of the user’s FI: baseline, after activity, and after a rest period. This chapter will describe how to 

configure the joystick’s mechanical properties and define its software parameters. 

4.2 ADJUSTING HARDWARE FEATURES 

Before tuning any of the software parameters, the clinician should position the joystick so that 

the user has easy access to its handle. Height adjustment may be performed by loosening the 

restraining bolts and sliding the joystick up or down along the slotted arm (see Figure 52). With 

the restraining bolts loose, lateral adjustment may be performed by moving the joystick forward 

or backward meanwhile rotating the VCJ’s mounting bracket to keep the joystick roughly level. 

Set screws in the mounting bracket prevent the joystick from rotating after the final position has 

been selected and restraining bolts tightened. The larger dial at the base of the slotted arm allows 

for 15° increments, and the dial on at the top of the slotted arm allows for 30° increments.  
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Figure 52: Photograph of VCJ in adjustable mounting bracket. 

Top cover 

Restraining bolt 

Slotted arm
Set screws (to 
prevent rotation) 

Mounting bracket 

Next, the subject should select a handle that feels comfortable. If the subject selects one 

of the two large handles while in compliant mode, the lock screw should be turned a little over 9 

rotations, or about 9.1, from the top of the threads. If the subject selects one of the three smaller 

handles, the lock screw should be turned 8.5 rotations from the top of the threads. This may be 

performed after removing the handle and then the black top cover from the top of the yellow box. 

The top cover is attached to the yellow box with two 10-32 flat head machine screws located on 

its top surface. When emulating an IJ, the spring should be replaced with the Aluminum insert 

and the lock nut tightened over it.  

If necessary, the mechanical template may be adjusted after removing the top cover. 

Either an alternate template may be inserted, or the existing template may be rotated such that 

the notch matches the key in the bearing mount. 
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4.3 TUNING SOFTWARE PARAMETERS 

Two applications support tuning software parameters for the VCJ: MS Study (MSS) Tuning and 

MSS Input Analysis. MSS Tuning is a Windows-based executable designed to collect input from 

the VCJ and to help personalize the features of the joystick. MSS Input Analysis runs in the 

MATLAB command window and allows the clinician to tune tremor filter parameters.  

4.3.1 MSS Tuning 

Developed in Borland C++ Builder version 5, MSS Tuning collects user data to compute the dead 

zone, fatigue adaptation parameters, bias axis, gains, and template shape. It is based on the 

tuning interface developed by Ding, Cooper, and Spaeth [77] and has been expanded to meet the 

needs of the study. 

4.3.1.1 Dead Zone 

The first screen with which the clinician is presented is the Personalized Deadzone window (see 

Figure 53). Here, the subject places his or her hand on the joystick in a resting position, and the 

clinician clicks the Record Data button. The software collects data from the joystick for 30 s to 

get a feel for isolated hand motions when the subject is not intending to drive the EPW. While in 

driving mode, signals within the dead zone will be set to zero to prevent the chair from moving. 

After clicking Show Data, the clinician has the option to choose the shape and size of the 

dead zone. When clicking on a shape – circular, square, or elliptical – the tuning software will 

automatically compute a size such that the selected shape encapsulates all data points. Moving 

the slider bars adjusts its size; and maximum values in the direction and speed axes are displayed 

in the text boxes for xvalue and yvalue, respectively. As a rule of thumb, typical MJs have a 

dead zone of about 1 N, which corresponds to roughly 100 points in the text boxes. 

The clinician should enter the subject ID number in the text box at the bottom right of the 

screen. Clicking on Click to next step takes the clinician to the first screen for determining 

fatigue adaptation parameters. 
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Figure 53: Personalized Dead Zone window. 

4.3.1.2 Fatigue Adaptation 

The Gain Adjustment window (see Figure 54) appears on three occasions to tune the fatigue 

adaptation par ters, which are based on the subject’s FI. The FI is based on the subject’s 

MVIC over 30 s and computed with equation 1. The first instance collects a baseline FI; the 

ame

second instance assumes that the subject has fatigued during the bias axis and gain determination 

steps; and the third instance, performed after MSS Input Analysis has been completed, assumes 

the subject has recovered to some extent. The relationship between the first and second FI 

controls the fatigue adaptation parameter α. Specifically,  

20: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−−

=
Min

Min

FIFI
FIFI

t 1

2ln1α ,  

where t is the time between readings in milliseconds and FIMin is an assumed minimum FI for all 

people. The relationship between the first and third FI determines the fatigue recovery parameter 

β. Specifically,  
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Figure 54: Gain Adjustment window. 

21: ⎟⎟
⎞

⎜
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⎜
⎝ − MinFIFIt 1

We had also considered simply asking the subject how tired he or she is on a scale of 1 to 5 

between readings. The numbers would then correspond to percent fatigued (i.e. 1 = rested = 

20%, 2 = moderately tired = 40%, 3 = tired = 60%, 4 = very tired = 80%, and 5 = extremely tired 

= 99%). But lassitude – a person’s perception of fatigue – does not correlate with his or her 

motor fatigue [12]. While the final method has a couple limitations noted below, its benefit is 

that it provides an objective way of estimating the α and β parameters based on the subject’s 

change in FI and the time between readings. Larger differences between FI1 and FI2, which 

would indicate a large increase in the person’s fatigue, result in less time to increase to the higher 

gain. But if the readings were taken far apart from each other, it may not mean that the subject 

fatigues quickly. Larger differences between FI1 and FI3, indicating that the person has not yet 

reached his or her original fatigue state, result in more time to regain the default gain. But if the 
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two readings were taken close to each other, it may not mean that the subject recovers slowly. 

Limitations are a result of the novelty of this method.  

The method for determining the α and β parameters has a couple limitations because the 

FI is still a relatively new scale. While the FI can detect differences between MS subjects and 

healthy controls [12] and between an exacerbation and remission [20], the literature does not 

compare the FI before and after physical activity. Likewise, average values for FI in MS subjects 

are provided [16], but the data does not specifically mention the existence of an absolute 

minimum. To mitigate these limitations, the clinician may adjust the α and β parameters in their 

nted in MSS Input Analysis (the meaning of 

joystick without it breaking and the software to measure a force that high. 

Before collecting data, the clinician should instruct the subject to press as hard as 

possible in the left or right direc ld it for a little 

ld ask the subject to try 

pressin

ess. The timer does not count 

respective text boxes after reviewing data prese

which is discussed in section 4.3.2.1). 

The clinician must adjust the VCJ in three ways before collecting data from the joystick 

for fatigue characterization. The first step is to remove the joystick post with the pivot 

mechanism and replace it with the isometric insert. The switch mounted on the rear of the VCJ 

enclosure should be switched to the low position. Only after the switch has been flipped low the 

Reset 0 button should be clicked. These allow the subject to press up to 350 N (~75 lbs) on the 

tion (whichever is medial for the subject) and ho

more than 30 s. It is also important that he or she reaches his or her maximum possible force 

within the first five seconds. Before the first test, the clinician shou

g on the joystick as hard as possible before collecting any data for the subject to become 

familiar with the response of the isometric post. The subject’s elbow should be resting 

comfortably on the armrest, and the subject should not change his or her grip during the reading 

period. The task will be taxing, and the subject may need encouragement to maintain his or her 

MVIC for the full length of time. While only the first 30 s are used to determine the FI, data is 

recorded for 33 s to mitigate any errors if the subject chooses to let go before the full 30 s has 

elapsed. Clicking Record Data begins the data collection proc

down on the screen, but the clinician will see that data collection has stopped when the 

Direction and Speed values stop updating. The next steps are to click on Show Data; 

Calculate FI; and, depending on which FI is computed, Click to next step or Finish. 
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If it appears that the subject did not follow instructions, it is possible to redo a 

measurement by clicking on the radio button for the erroneous measurement and clicking 

Record Data again. Potential errors include not reaching the maximum force within the first five 

seconds or letting go before 30 s had elapsed. The new readings will overwrite the previous 

measurement. 

4.3.1.3

d how it will be 

used to

 Bias Axes, Default Gain, and Template 

After exiting the Gain Adjustment window for the first time, the Bias Axes, Gain, and Template 

Settings window opens (see Figure 55). While the primary goals are to compute these three 

settings, this screen is also designed to induce some fatigue in the subject’s hand. The subject 

may rest at any time but should be notified of the fatiguing affect beforehand an

 tune parameters for fatigue compensation later in the visit. Also before collecting data, 

the clinician should replace the isometric insert with the pivoting VCJ post, switch the toggle on  

 

Figure 55: Bias Axes, Gain, and Template Settings window. 

 84 



the rear of the enclosure back to the high position, and click on the Reset 0 button after the 

switch has been flipped. These steps reset the VCJ to its driving mode. 

To compute the bias axes and gain, the subject should press on the joystick for 30 s in the 

four directions corresponding to the button names (Forward, Backward, Left, and Right). The 

subject should imagine he or she is driving down a long corridor or turning for an extended 

period of time and press with a force that seems reasonable to him or her for such a task. Once 

data collection has begun, a new window will appear to provide some feedback to the subject. So 

long as the subject presses with enough force to keep the bar moving, the VCJ will be able to 

interpret grades between unintended movements and full speed.  

 To collect data for evaluating endurance, subject should press comfortably on the joystick 

in any direction for 2 min. Clicking on the 2 Mins button begins the data collection process. 

Again, a window will appear indicating whether or not the subject is pressing with enough force. 

Once data collection is complete, the clinician should ensure that inclusion criteria are 

met (a feature left over from a prior study) and select a template. Though the inclusion criteria do 

not need to be followed rigidly in this study, they are good to follow to ensure that the VCJ can 

operate with sufficient efficiency. Perhaps the most significant criterion is the degree of bias 

axes. A value less than 0.7 allows the VCJ to distinguish between inputs applied along the 

mputes the 

default (rested) gain param

it the user to command the chair to drive 7 ft/s 

o be 3.5 

ft/s. The template shape should be adjusted if the subject is having difficulty maintaining a 

ystick. In order of most to least freedom, possible templates include circle, 

subject’s direction and speed axes.  

Unless the clinician knows that the subject has driving limitations, the shape and size 

should be set to circular and the maximum setting in each direction, respectively. Clicking on 

Display Data shows the data with the template superimposed and automatically co

eters. The gains are derived from average values of the second half of 

data collection and assumed to be 90% of the subject’s maximum driving force. 

Adjusting the template can be likened to setting a governor in a vehicle or imposing stops 

on a steering wheel. It will limit the speed at which the wheelchair can drive or turn. For 

example, a value of 2048 for the y-axis will perm

at top speed. Setting it to 1024, however, will cause the max speed the person can drive t

heading with the jo

ellipse, diamond, and asteroid. The templates may be rotated for graphical purposes, but the 
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Rotation slider bar is not used in VCJ software. Zero degrees bias is located along the +y-axis, 

increasing in the direction of the +x-axis.  

4.3.1.4 Secondary Gain 

After exiting the Gain Adjustment window for the second time, the clinician may select the 

maximum gain for the VCJ (i.e., the gain the joystick will have when the subject is assumed to 

be totally fatigued) in the Maximum Gain window (see Figure 56). But, since this step follows 

the fatigue characterization, the VCJ must again be reset to driving mode (replace post, flip 

switch to high position, click Reset 0 button). The first step is to give the subject a feel for the 

default gains. The subject may apply a force to the joystick in the forward, reverse, left, or right 

directions depending on which radio button is selected in Adjusted Gains. Data is displayed in 

45-s intervals, and the subject should attempt to keep the meter within the red target area of the 

progress bar. This is the force the subject will need to apply to the joystick to drive at maximum 

speed. Selecting alternative forces (e.g., 90% default, 80% default, etc) indicate that the subject 

needs to press with that much less force (e.g., 9/10 or 4/5 times the default force, respectively) to  

 

Figure 56: Maximum Gain Setting window. 
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reach the maximum possible speed with the VCJ. Again, the subject should attempt to keep the 

status bar within the red target area. If it appears too difficult to stay within bounds, it may be 

necessary to limit the maximum gain of the VCJ. While the default gains cannot be adjusted in 

the text window at this time, it may be an included feature in future versions. 

gains have been determined, the clinician should minimize the 

program and begin MSS Input Analysis. This will give the subject some time to rest his or her 

4.3.1.5

pplication and the VCJ software. 

Parame

Once the maximum 

hand before the third FI is calculated. Once the third FI has been determined, the clinician should 

note the fatigue adaptation parameters α and β for use with the other tuning routine. Clicking on 

Finish will write the personalized VCJ parameters to the file C:\Settings\setup.txt. 

 Setup File 

The setup file, setup.txt, is the interface between the tuning a

ters are contained in the first column, and descriptions are listed in the second column. 

Tabs separate the columns. If the VCJ is operating in compliant mode and the subject requires a 

diamond or square template, the bias angle should be adjusted to the nearest 15° increment (0, 

15, 30... 330, 345, 360). Likewise, the physical template should be rotated to match. An example 

setup file is included in Box 1.  

MSJS104 Subject identifier 
1 Dead zone shape: 0 = no dead zone; 1 = ellipse; 2 = rectangle 
98 Dead zone x-axis: a number from 0 to 500 (ignored if DZ shape = zero) 
98 Dead zone y-axis: a number from 0 to
1 Template shape: 0 = no template; 1 = e

 500 (ignored if DZ shape = zero) 
llipse; 2 = asteroid; 3=diamond 

2048 Template x-axis: 100 to 2048 (ignored if template shape = zero) 
2048 Template y-axis: 100 to 2048 (ignored if template shape = zero) 

 = none; 1 = active 
le: 0 to 360 degrees (ignored if bias axis status 

1 Bias axis status: 0
11.040939 Bias axis ang
= 0) 
1 Gain status: 0 = off; 1 = on 
4.702041 Gain -X: 1 to 20 (if no or overlimit, 1X will be used) 
4.738303 Gain +X: 1 to 20 (if no or overlimit, 1X will be used) 
4.388571 Gain -Y: 1 to 20 (if no or overlimit, 1X will be used) 
6.043279 Gain +Y: 1 to 20 (if no or overlimit, 1X will be used) 
5.877551 Max Gain -X: 1 to 20 (if no or overlimit, 1X will be used) 
5.922879 Max Gain +X: 1 to 20 (if no or overlimit, 1X will be used) 
5.485714 Max Gain -Y: 1 to 20 (if no or overlimit, 1X will be used) 
7.554098 Max Gain +Y: 1 to 20 (if no or overlimit, 1X will be used) 
1.250000 Gain Multiplier: 1, 10/9, 5/4, 10/7, 5/3, 2 
1.769070e-06 alpha: 0 to ~1 
1.369100e-05 beta: 0 to ~1 

Box 1: Example setup file. 
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4.3.1.6 Source Code Implementation 

The reader is referred to Appendix I for MSS Tuning’s source code implementation. 

Tuning

ow 

(Figure 53). Unit2 creates and controls the functions of the Bias Axes, Gain, and Template 

Settings window (Figure 55). Unit3 creates and controls the functions of the Gain Adjustment 

window (Figur he subject that 

4.3.2 MSS In

 is designed to interpret data from previous driving 

sessions

hich trials should be examined after a list of available trials is 

printed

_MS_Study.cpp is the main function that initializes the SPU (formerly called the Input 

Control Device (ICD)) and the program’s screens. The software retains the capability to read 

from the serial port and can be modified to collect data for shorter periods of time for debugging 

purposes. Unit1 creates and controls the functions of the Personalized Deadzone wind

e 54). Unit4 creates a small bar graph that provides feedback to t

enough force is being applied to the joystick during default gain determination and endurance 

analysis. Unit5 creates and controls the functions of the Maximum Gain Setting window (Figure 

56). ICD_functions.cpp interfaces to the NI-DAQCard to collect readings from the VCJ, where 

methods are similar – if not identical – to those described in section 2.4.2.3, with the exception 

that the development environment was Borland C++ Builder version 5 and functions are prefixed 

with ICD* instead of DAQ*. 

put Analysis 

The MATLAB routine MSS Input Analysis

 with the VDS software to determine optimum parameters for the tremor filter and to 

fine tune fatigue adaptation parameters. The program is executed by setting the current directory 

to the one that contains the analysis routines, typing  
 >>MSS_input_analysis(); 

at the command prompt, and following on-screen instructions.  

The first question asks w

 in the command window. The clinician should select files with the same ID number as 

the subject’s and should have “VGA” or “STF” in the file name depending on if the subject’s 

joystick is in the isometric or compliant mode, respectively. Files are presented alphabetically 

and have a numerical identifier listed next to them, where the clinician can select the files by 

entering their ID numbers in array format in MATLAB (e.g., 5, 1:24, [1:3, 5]) (a warning about 

not finding an exact match for ‘DB’ may come up after pressing Enter, but it can be ignored). 
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The following steps allow the clinician to gain a better understanding of the subject’s strength 

performance and potential tremor filter performance. 

4.3.2.1 Strength Performance 

inute strength test from the tuning software are 

 average forces be plotted. An example is 

presented in Figure 57. Here, the clinician should look for trends in the average force. While a 

decreasing average force could be evidence that the subject is learning how to use the joystick 

more efficiently, it may also be an indication of fatigue. Alternatively, the frequency spectrum 

may provide better insight into the subject’s fatigue because increasing tremor power is an 

indicator of fatigue [79],[80]. 

The second format presents the data transformed into the frequency spectrum and creates 

a movie and a 3D plot of the spectrum for each trial. The movie and 3D plot are created after the 

clinician types 1 for yes after the question, Should individual episodes be plotted. Since tremor 

with MS patients typically exists within 3.5 to 5 Hz, the clinician should observe the tremor  

Data from the baseline trials and the two-m

presented in four different formats for the clinician to gain a better understanding of the subject’s 

strength performance and fatiguing characteristics. The first format is a bar graph of the subject’s 

average force on the joystick during each virtual driving task. The bar graph is plotted after the 

clinician enters 1 (for yes) for the question, Should

 

Figure 57: Average force applied to joystick for baseline virtual driving tasks. 
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power in the 3.5 to 5 Hz range as the movie plays. The clinician should also be mindful of the 8 

to 12 Hz range because this is typically where a person may experience physiological tremor 

related to fatigue [79],[80]. The clinician may be able to observe a rate at which the tremor 

power increases. The 3D plot that replaces the movie, an example of which is presented in Figure 

58, may be rotated with the mouse to help the clinician identify powers and rates over the course 

of the baseline data collection procedure. To watch the movie again, after exiting the MSS Input 

Analysis routine, type 
>>load ‘psd_movie.mat’; 

  >>movie(F, n, fps); 

at the command prompt, where n and fps indicate the indicate number of loops and frame rate of 

the movie, respectively. 

The last format consists of plots of the applied force and the cumulated frequency 

spectrum from the subject’s hand during the two-minute strength test. The plots are generated 

after typing 1 after the question, Should strength data be analyzed. An example is depicted in 

Figure 59. Here, the clinician may look for changes in force magnitude and the power in the 

frequency range of 3.5 to 5 Hz. 

After tremor filter parameters have been selected and the third FI collected, impressions 

from the strength analysis may be used to update the adaptation and recovery parameters for 

fatigue adaptation. If it seems like the subject fatigues or recovers at different rates than those 

propose  MSS 

Tuning. The curve in Figure 60 compares values for α and β with the time it would take to go 

from the default gain to 90% of the maximum gain and vice versa. For example, if it appears that 

the subject takes about 19 min to fatigue fully, a good value for α would be 2.0e-6. Likewise, if 

it seems like it would take 30 min for the subject’s hand to recover fully, a good value for β 

would be 1.25e-6. 

4.3.2.2 Selecting Tremor Filter Parameters 

The VCJ uses two filters to mitigate the effects of tremor. The first filter is a high-pass filter and 

is intended to be a safety measure so that the second filter, the WFLC, does not remove 

intentional signals from the subject’s input. The input analysis software creates three different 

plots to help the clinician tune the filter parameters. 

d in MSS Tuning, new values may be entered in their respective text boxes in
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Figure 58: Multiple views of the power spectral density plots for the baseline virtual driving tasks. 

(a) front view (b) back view 

(d) back view, rotated -40° (c) back view, rotated -70° 
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Figure 59: Strength data from 2-minute strength task. 

 

Figure 60: Relationship between alpha and beta and time to be within 90% of target gain. 
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The first two plots illustrate the subject’s signal before and after the filters have been 

applied for the direction , depicting the direction 

channel’s signal, is provided in Figure 61. Blue lines indicate the subject’s original signal, and

red lines indicate what the signal would look like had the tremor filter been implemented. The 

clinician may click on each graph and drag the plots to see other segments of the driving data. 

The window represents 10 s worth of data. Frequency spectrum data is also presented. The third 

plot, an example of which is provided in Figure 62, illustrates what the WFLC observed as the 

tremor frequency over the course of the baseline driving procedures. 

When analyzing the first two figures, the clinician should look at the amplitude of the 

tremor and the overshoot when the subject’s force moves to a constant value. Ideally, the tremor 

amplitude in the red curve should be much smaller than in the blue curve. It should almost look 

like the red curve is a moving average of the blue curve, taking averages of points before and 

after the given point. Also, the overshoot when transitioning from a continuous force to a steady 

force should be minimized to the extent possible. 

At the command prompt, the input analysis software asks the clinician if the filter 

parameters should be updated. If yes, the program prompts for the parameters in sequential 

order, with the high pass and direction axis parameters first. Values from the most recent

iteration of the analysis are also provided for co ian miss-enters a value, 

parameters for each axis may be entered again.  

Perhaps the first parameter to look at is the initial estimated tremor frequency. This may 

be re-evaluated based on an approximate average value or late value in the WFLC Frequency vs. 

time plot, Figure 62, or based on peak tremor frequencies observed in the strength analysis plots.  

The remaining parameters are described in Table 11. While other parameters to the 

WFLC exist, changing them does not appear to improve the performance of the filter. The 

clinician may update parameters as many times as felt necessary in the time allotted.  

Upon completing filter parameter analysis, the clinician is prompted to close all figures if 

desired and whether the filter parameters should be written to the filter’s setup file. If the 

clinician approves of the parameters, they are written to the file c:\settings\wflc_setup.txt. 

Like the tuning setup file, this file is the link between the input analysis software and the VCJ’s 

software. An example of the filter setup file is provided in Box 2. 

 

 and speed axes. An example of the first plot

 

mparison. If the clinic
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Figure 61: WFLC result for selected direction channel. 

 

Figure 62: WFLC frequency vs. time. 
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Table 11: Definitions and acceptable ranges of the tremor filter's tunable parameters. 

 

Box 2: Example filter setup file wflc_setup.txt. Text descriptions are not included in the actual setup file. 

Parameter Description 

Order Order of the high pass filter. Two or three is good. 

Corner 
freq 

Cutoff frequency for the high pass filter, frequencies below which should not be 
seen by the WF the initial estimated tremor frequency increases above 
4.5 Hz, it may be wise to increase this value as well. It probably should be more 
than 2 Hz below the WFLC estimated frequency. If the subject does not appear to 
have tremor, set this number and the initial WFLC estimated frequency to a high 
value (>10 Hz but <30 Hz). 

LC filter. If 

mu Mu relates to the gain and bandwidth of the WFLC. If the subject has significant 
tremor, high values (>1.2e-2) may help, but overshoot may become a problem. 

mu0 Mu0 is a secondary parameter on the frequency adaptation weight. This number 
should be kept low (between 1.0e-7 and 1.5e-5). 

mub This should be kept 0. 

M This is the order of the combiner. Four seems to work, but it may help to change 
it if changing other parameters are not effective. It should be kept below 7. 

w0 This is the initial estimated tremor frequency. It should be located near the peak 
tremor frequency in frequency spectrum curves. 

2  direction high-pass filter order 
2.00000 direction high-pass cutoff frequency 
59.39380 direction sampling frequency 
1.000  direction high-pass filter gain 
0.009000000 direction mu 
0.000012000 direction mu0 
0.000000000 direction mub 
 4  direction M 
22.99646 direction w0 
0.000  direction w1 
0.000  direction wMp1 
 2  speed high-pass filter order 
2.00000 speed high-pass cutoff frequency 
59.39380 speed sampling frequency 
1.000  speed high-pass filter gain 
0.010000000 speed mu 
0.000012000 speed mu0 
0.000000000 speed mub 
 4  speed M 
25.13274 speed w0 
0.000  speed w1 
0.000  speed wMp1 
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4.3.2.3 Source Code Implementation 

The reader is referred to Appendix J for the source code implementation of MSS Input Analysis. 

The main function is MSS_input_analysis(), which gathers the data, computes the forces and 

power spectral densities of the input data, displays the data, plots the results of the adaptive filter 

analysis, and writes the settings file for the high-pass and WFLC filters. The accessory functions, 

MSS_get_trial_indexes(), driving_times, and MSS_get_new_filt_params() allow the 

clinician to select which trials to analyze, truncate the data sets to only times when the chair was 

moving, and prompt the clinician to input new filter parameters, respectively. MSS_wflc() and 

MSS_highpass_filter() apply the WFLC and high-pass filters, respectively, to the input data. 
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5.0  METHODS 

The research study “Application of Isometric Controls to Assist Individuals with Multiple 

A virtual environment provides a safe setting for training [82] 

and evaluation [35], and full control of the environment allows easy access to modifying joystick 

parameters. Because of similarities to performance in real world driving [35], driving 

performance in only the virtual env en  for this thesis. 

A. In a virtual driving environment while using the VCJ in compliant mode, within-subjects 

performance scores will be ranked based upon the control algorithm installed.  The order 

in which they will be ranked, from significantly best to poorest, is as follows: 

MS_PFA_FA > MS_PFA > STF. 

B. In a virtual driving environment while using the VCJ in isometric mode, within-subjects 

performance scores will be ranked based upon the control algorithm installed. The order 

in which they will be ranked, from significantly best to poorest, is as follows: 

MS_PFA_FA > MS_PFA > VGA. 

C. Final performance scores by subjects using the IJ will be significantly better than those 

assigned the MJ. 

Driving performance is a c  time to complete a track, 

Sclerosis in Driving Electric Powered Wheelchairs” [81] was developed to improve control of 

personalized mobility for those with MS by filtering tremor and compensating for fatigue. The 

study consists of two phases. Phase I takes place in a virtual environment, and Phase II takes 

place on an indoor driving course. 

ironm t will be considered

5.1 HYPOTHESES 

The goal of the study is to provide preliminary analysis of the following hypotheses: 

ulmination of three different measures: mean

mean number of boundary violations, and RMSE off the target path. Mean time is defined as the 

time the subject applies a threshold force to the joystick to initiate chair motion to the time the 
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chair reaches the end of the track. Boundary violations are defined as instances in which the 

virtual chair makes contact with the wall causing the VDS to beep and the chair to be moved 

back to a previous location. RMSE is defined as the deviation from the target paths illustrated in 

Figure 63. Specifically,  

  22: 
n

x
RMSE

n

i
i∑

=

where xi is the distance between the wheelchair’s path and target path, and n is the number of 

data samples. The error, xi, was measured every time the virtual wheelchair had traversed five 

pixels. Low mean times, low num l RMSEs are indicative of 

better performance. 

5.2 STUDY DESIGN 

Com arison of the joysticks (MJ vs. IJ) is a randomized, two-group, repeated-measures 

experimental study design. Subjects were randomly assigned to a group, where one group used 

Figur

= 1

2

, 

ber of boundary violations, and smal

p

the VCJ in isometric mode, and the other used the VCJ in its compliant mode, mimicking a MJ. 

To evaluate the personalization features, a repeated measures, within subjects scheme was used,  

(b) right tu c) for (a) docking a) left turn rn ( ward (

e 63: The four virtual driving tasks: (a) left turn, (b) right turn, (c) straight forward, and (d) docking. The 

correct path is superimposed with thick, black lines. 

 98 



where r

ting. 

5.3.1 

fter informed consent, the subjects completed 

a demographic questionnaire, included in Appendix K. Prior to their arrival, subjects were 

 to one of four intervention options as provided in Table 12.  

andomization and a washout period limited the order effect. Within each group, subjects 

first used the basic input control algorithm and then one of the personalized algorithms. The 

order in which the personalized algorithms were presented was randomized. After at least 2 days 

but no more than 10, subjects used the basic input control algorithm again and then the other of 

the personalized algorithms. Testing the basic input control algorithm twice served the purposes 

of checking the learning effect and controlling the amount of physical activity the subject 

underwent prior to using the joystick with personalized algorithms. Subjects were blinded to 

which personalization algorithm they were using during tes

5.3 EXPERIMENTAL PROTOCOL 

The research study was carried out in two testing sessions, where each session was broken into 

30-minute segments. Driving performance was evaluated in a virtual driving environment, 

described in more detail in section 5.4.2. Subjects were reimbursed $40.00 for each testing visit. 

Visit One 

The first visit consisted of intake, baseline measurements, joystick personalization, and 

measurements with the personalized algorithms. A

randomly assigned

Table 12: Intervention path options.  

Intervention Option Joystick Type First Algorithm Second Algorithm 

1  Isometric MS_PFA MS_PFA_FA 

2  Isometric MS_PFA_FA MS_PFA 

3  Compliant MS_PFA MS_PFA_FA 

4  Compliant MS_PFA_FA MS_PFA 
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To obtain a baseline ubjects drove in the virtual 

environment with either the STF or VGA depending on which joystick mode they were assigned.  

cks – left turn, right turn, forward maneuver, 

and docking maneuver – depicted in Figure 63. The correct paths are superimposed on the tracks 

eters and characterizing 

fatigue

een driving 

and fatigue characterization modes since the bias voltages of the two joysticks may not have 

been the same. Following the tuning procedure, the subjects were given the opportunity to drive 

on a rectangular track to confirm that the settings were appropriate and to change them if 

necessary. 

After the personalized settings were finalized, the subjects drove each of the four tracks 

again, six times each, as presented in a new balanced, randomized order. Depending on the 

intervention option to which they were assigned, subjects drove with either the MS_PFA or 

MS_PFA_FA algorithm installed on the joystick. 

5.3.2 Visit Two 

Visit two was conducted exactly as in visit one with the exceptions that the intake procedure was 

not performed and the alternate personalized algorithm was used for the second data collection 

battery. 

measure of performance, the s

The virtual environment consisted of four tra

with the black, dashed lines. The procedure for executing a task was explained, and the subjects 

drove each track three times for practice. The subjects were instructed that driving accuracy is 

more important than completion speed but that they should perform each maneuver as fast as 

practical without letting the onscreen chair stray over a boundary. The baseline data was then 

collected from driving the four tracks six times each, as presented in a balanced randomized 

scheme; every track appeared once before it was repeated. 

Tuning of the joystick and its parameters was executed as described in chapter 4.0, with 

the exception that two separate joysticks were used for tuning param

. During mock trials, we discovered that switching the joystick post repeatedly was 

cumbersome and time-consuming. Therefore, one joystick was set up for driving and another for 

characterizing fatigue. The clinician still needed to click on the Reset 0 button betw
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5.4 INSTRUMENTATION 

5.4.1 Testing Facility and Experimental Setup 

Testing took place in the HERL Virtual Reality (VR) lab. See Figure 64 for a photograph of the 

testing setup. The lab is equipped with a Matrix 3500 projector (Christie Digital Systems, 

Cypress, CA) and 6-ft by 8-ft projection screen. The subjects were positioned approximately 4.5 

ft from the screen. Sound was provided with two Gateway 2000 (Altec Lansing Technologies, 

Inc., Milford, PA) speakers. The joystick was mounted to a sturdy frame with an apparatus that 

could position the joystick near the wheelchair’s armrest in place of the subjects’ joysticks. If the 

armrest on the subjects’ wheelchairs needed to be raised or removed to position the VCJ, a 

substitute armrest was mounted on the rear of the mounting apparatus.  

The Sony VAIO VGN-T370 laptop computer recorded the virtual chair’s position and the 

forces applied to the joysticks. The time required to complete each maneuver and the number of 

boundary violations were also recorded. The same laptop was used to run the VDS. 

 

Figure 64: Photograph of the experimental setup. 
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5.4 ation (VDS) 

The  the simulator developed for people with low visual attention span 

[70  of a Quickie P300. Algorithm 

par e program is running, and it features five different tracks: left 

turn

riety of motions a person would perform during 

eve a otor movements including 

sup otor movement with some 

fine including supination 

and pro

While file naming conventions and techniques and data outputs were modified to suit the 

needs of the st  the loop rate 

of the VDS. The reason for controlling the loop rate was to ensure that the inputs to the digital 

filters, both the high-pass , v gh estr g the loop, 

controlling the time at which data is acquired, and handling events when data acquisition was 

delayed ultima u oop p  for the V  (1 The 

procedures introduce a few limitations such as glitches, reduced ance, and limited multi-

task ; but the  s  A det  analysis pr tive 

solutions, and the proposed solution is provided in Appendix L. 

5.5 TEST SUBJECTS 

The following inclusion criteria applied to those interested in participating in the study:  

.2 Virtual Driving Simul

 VDS is based on

],[81]. Its dynamics are based on the acceleration profiles

ameters may be updated while th

; right turn; straight forward; docking; and track, which is in the shape of a rectangle. The 

first four driving maneuvers incorporate a va

ryd y driving. The left turn and right turn tracks involve gross m

ination and pronation. The forward maneuver includes a gross m

 tuning. And the docking maneuver incorporates fine motor movements 

nation. While it may be possible for a subject to need to drive in reverse, the task is not 

called for specifically in this protocol. The fifth track involves gross motor movements and 

provides an environment for testing the personalized settings of the algorithms. Boundary 

detection may be turned off during this procedure. The tracks for the left and right turns are 120 

pixels wide, the forward track is 120 pixels wide at the beginning and 80 pixels wide at the end, 

and the docking track is 80 pixels wide throughout. The chair is 40 pixels by 40 pixels, and 14 

pixels represents about 1 ft. 

udy, the most significant modifications revolved around controlling

 and WFLC  would ha e equal wei ts in time. R ucturin

tely prod ced a consistent l eriod DS software 7.0 ± 2 ms). 

 perform

of the timing ing y do not eem catastrophic. ailed oblem, alterna
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1. 18 to 80 y

2. Diagnosis of MS. (Subject self-report) 

3. Drive an EPW. 

4. Able to reach and activate an armrest-mounted joystick. 

5. Willing to travel to HERL. 

6. Able to follow simp ructions to complete study tr

The following exclusion criteria also applied: 

1. Not able to tolerate sitting for 2 hours. 

2. Have any open pressure sores (self-report). 

3. Unable to understand the procedures and provide informed consent.  

Four subjects particip in as 58.7 ± 5.0 yrs, and their 

average years since diagnosis was 28.2 ± 16.1 yrs. Table 13 provides demographic information 

 for this study, or were not sure because the 

“names keeps changing.” Subjects then self-selected diagnoses after definitions were provided.  

Table 13: Demographic information for subjects who participated in this study. 

Subject 
ID Gender Ethnicity Veteran Years since 

Diagnosis MS Type EPW Drive 
Type 

ears of age.  

le verbal inst ials. 

ated the study. Their average age w

about the subjects who participated in this study, and Table 14 lists which intervention option 

from Table 12 each subject received as well as driving characteristics such as EPW driving 

ability and driving hand. There was some ambiguity regarding the type of MS the subjects had. 

Subjects either had not heard the terminology used

1 Female Caucasian No 24 Primary 
Progressive Front-wheel 

2 Female Caucasian No 47 Primary 
Progressive Front-wheel 

3 Male Caucasian Yes 8.5 Primary 
Progressive Mid-wheel 

4 Female Caucasian No 33 Primary 
Progressive Mid-wheel 

 103 



Table 14: Intervention option and driving characteristics of each subject. 

Subject ID Intervention Option Driving Skill Driving Hand 

1 2 4 Right 

2 3 4 Right 

3 1 4 Right 

4 4 4 Right 

5.6 STATISTICAL ANALYSIS 

Since four subjects had particip  in tistics were used to provide a 

preliminary glimpse of the data and identify possible trends. Means and standard deviations were 

ated  the study, descriptive sta

calculated for the completion times and RMSEs, and the number of boundary violations per track 

and algorithm type were summed for each subject. 
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6.0  RESULTS 

6.1 ALGORITHM SETTINGS 

Personalized settings for the custom al s rovi n T 15

MP ION E

Mean completion times for all subjects are provided in Figure 65 and broken out by track and 

 ty . Standard dev s ese as ba th res er s 

indicate improved performance. The VGA and STF algorithms are grouped together in the same 

algorithm since they provided the same basic programming for the isometric and movement 

s. Vi e and two r n se rated ch b  al m ovid ight

existence of a learning curve. 

To pr rther ins nto rning curve, pl im r al ls w  

Right Turn track are provided  or  wh hey  pr ed ur nd 

67. Joystick types, IJ and MJ, are provided in se

six times with a given joystick configuration. While data was collected with a 

resolution of milliseconds, units of time in the figures are in seconds. 

 

gorithm  are p ded i able . 

6.2 CO LET  TIM  

algorithm pe iation are pr nted error rs in e figu . Low score

joystick sits on emai pa  for ea asic gorith to pr e ins  to the 

ovide fu ight i  a lea  com etion t es fo l tria ith the

in the der in ich t were esent  in Fig e 66 a Figure 

parate figures. Driving bouts consisted of driving 

the track 
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Table 15: Program settings for each of the subjects. Units for dead zone size are in N; and units for the template size 

are in term s for the 

speed and direction axes, respectively. 

Subject ID  1 2 3 4 

s of the maximum speed of the virtual EPW, where 2048 corresponds to 6.8 ft/s and 0.385 rad/

Program 
1=MS_PFA 

2=MS_PFA_FA 
1 2 1 2 1 2 1 2 

Shape ellipse ellipse rectangle ellipse ellipse ellipse ellipse ellipse 

Size for 
Direction Axis 0.65 0.81 1.63 1.06 1.72 1.06 1.31 1.63 Dead Zone 

Size for Speed 
Axis 0.49 0.81 0.65 1.06 1.72 0.98 1.22 2.53 

Shape ellipse ellipse ellipse ellipse ellipse ellipse diamond diamond 

Size for 
Direction Axis 1377 2048 2048 2048 2048 2048 1500 2048 Template  

Size for d 
A 8 2048 Spee

xis 2048 2048 2048 2048 2048 2048 204

Bias Axis 
Angle (°) e none  none none 347 none none none non

Left 2.8 3 3.2 1.2 1.393 1.797 3.82 2.383 

Right 5.5 6 2.827 1.4 1.194 2.9 4.95 2.414 

Reverse 5.2 3.4 1.6 2.166 1.925 5.87 3.458 45 3.1 

Default 
Gain 

Forward 6.55 5.009 3.93 1.2 2.167 1.367 5.49 2.008 

Left N/A 3.56 N/A 3.8 N/A 3.795 N/A 5.306 

Right N/A 6.8 N/A 4.2 N/A 4.555 N/A 6.024 
Max Gain 

Reverse N/A 4.922 N/A 4.8 N/A 4.008 N/A 5.764 

Forward N/A 7.155 N/A 4.2 N/A 3 N/A 3.346 

Alpha  N/A 1.50E-
06 N/A 3.00E-

06 N/A 2.95E-
06 N/A 2.00E-

06 

Beta  N/A 2.00E-
06 N/A 2.25E-

06 N/A 2.18E-
06 N/A 3.13E-

06 
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Figure 65 er track. : Mean time to complete each track for each subject and algorithm type p

 

Figure 66: Trial times for each driving episode for the right turn track using the IJ. 
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Figure 67: Trial times for each driving episode for the right turn track using the MJ. 

6.3 RMSE 

RMSEs for all subjects are provided in  are broken out by track and algorithm type. 

Again, standard deviations are presented as error bars in the figures, and lower scores indicate 

e Right Turn track are provided in the order in which they 

were p

Figure 68

improved performance.  

RMSEs for all trials with th

resented in Figure 69 and Figure 70. Joystick types, IJ and MJ, are provided in separate 

figures. 
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Figure 68: Mean RMSE for each subject and algorithm type per track. 

 

Figure 69: RMSEs for each driving episode for the right turn track using the IJ. 
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Figure 70: RMSEs for each driving episode for the right turn track using the MJ. 

6.4 BOUNDARY VIOLATIONS 

Boundary violations for all subjects per track and algorithm type are provided in Figure 71. Low 

scores indicate better performance.  

The number of boundary violations for trials with the Right Turn track are provided in 

the order in which they were presented in Figure 72. 
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Figure 71: Total number of boundary violations for each subject and algorithm type per track. The violation for 

subject 2 for the left turn track is a false positive since this occurred at the very beginning of the trial, before the 

chair had starte ing n algorithm. 

 

 
 
 

* * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * *

d driv . Stars (*) indicate that no boundary violations were present for the give
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Figure 72: Number of boundary violations for each driving episode for the right turn track. 
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7.0  DISCUSSION 

With only four subjects, drawing conclusions about the performances of the joystick types and 

the algorithms is difficult. However, few subjects also provides the opportunity to look at the 

data in more detail, observe trends that may become significant with more subjects, and provide 

initial feedback about the performance of the instrumentation. 

for the template were also used. Settings were also not consistent between 

algorith

 the 

second visit was less than that of the first visit for 75% of all cases based on inspection of Figure 

7.1 ALGORITHM SETTINGS 

As expected, no single configuration for the custom programs applied to everyone. Default gains 

ranged from very low (1.2) to high (6.55). The gain in the right direction (wrist extensors) was 

higher than that in the left direction (wrist flexors) in 75% of all cases. Elliptical dead zone and 

template shapes were chosen most often, though a rectangular shape for the dead zone and 

diamond shape 

ms for individual subjects, suggesting that optimal settings for an individual could vary 

from day to day. Gains for the MS_PFA program, for example, ranged between -69 to 143% 

different from those for the MS_PFA_FA program (average ± standard deviation was -21 ± 

52%). 

7.2 PRELIMINARY ANALYSIS OF TEST MEASURES 

7.2.1 Trial Time 

Preliminary observations of the time to complete each trial indicate that the learning curve may 

be longer than anticipated. The mean time to complete a task with the basic algorithm on
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65. There also appears to be a gradual decrease in completion time over time in Figure 66 and 

Figure 67, especially for subjects 1, 3, and 4. Factors that could increase learning time include 

the novelty of the virtual environment, the dynamics of the virtual chair, and the novelty of the 

control interface. Since the VDS is a bird’s-eye-view of the wheelchair, the subjects needed to 

make a mental transformation of the chair, especially while driving it across the screen, which 

would require some familiarization time. It would thus be interesting to compare the time to 

travel up the screen with the time to travel across the screen for the left and right turn tracks. 

Also, two subjects’ EPWs were mid-wheel drive, and two subjects’ EPWs were front-wheel 

drive. The virtual wheelchair, however, is intended to simulate a rear-wheel drive EPW, where 

its turning rate decreases as its speed increases. A difference arises because mid-wheel drive 

chairs are more responsive than front- and rear-wheel drive chairs [33]. Indeed, subject 4, who 

uses a m  

e joysticks were very sensitive, where a small input would result 

in a large output velocity for the virtual chair. Thus, they needed to adjust the forces they 

airs for the virtual chair. Subject 3 commented 

that he typically relies on the template for turning tasks such as in the left and right turn tracks, 

and that he needed to find a new method with the isometric interface. 

during EPW driving. Since 

 nded, the ight turn would require using wrist flexor and would thus 

ubjects do not appear to improve with 

the personalized algorithms. Closer inspection of subjects 1 through 3’s data show that some 

id-wheel drive EPW, commented that the virtual wheelchair “overcompensates.” That

is, the chair would overshoot the target trajectory after coming out of a turn. Lastly, three of the 

four subjects commented that th

typically would have applied to their personal ch

Trial times for the left and right turn tracks are typically longer than those of the forward 

and docking tracks, which can be expected since those tracks are about twice as long. Trial times 

for the right turn appear longer than those for the left turn, especially during the first presentation 

of the basic algorithm for all subjects and all algorithm presentations for subject 2. In Jonker et 

al.’s study of muscle activity for individuals with MS during EPW driving [84], they found wrist 

flexors to experience more fatigue than other muscle groups activated 

all subjects were right ha  r

cause the activity to be more difficult. 

7.2.2 RMSE  

With the exception of subject 4’s left turn, RMSEs for the s
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may ha

While t

, the VDS 

software treats it as a right angle. Also, if the wheelchair sprite is rotated as in Figure 73, the 

sprite’s boundaries are not located at its wheels, but along the edges of its tile. Thus, a collision 

may occur even i oe

On several occasions, the VDS perpetuated boundary violations because of its collision 

ve improved scores with the MS_PFA, and others have better scores with the basic 

algorithms. Average RMSEs appear to be the lowest for the straight forward track, and subject 4 

has much higher RMSEs for the left and right turn tracks than the straight forward and docking 

tracks. These differences could be related to the track widths. An average RMSE of 11 pixels 

amounts to 9.2% of the track width for the left and right turn tracks, and an average RMSE of 6 

pixels amounts to 7.5% of the track width for the docking track. If the track was wider, the 

subject may have felt more free to vary from the target path. 

7.2.3 Boundary Violations 

he personalized algorithms had fewer total boundary violations than the basic algorithms, 

the most notable feature is that the docking track had much more boundary violations than the 

other three tracks. This very likely may be related to the width of the track, the deceptive nature 

of the boundaries, and the tendency for violations to string together at low velocities. A narrow 

track with turns increases the need for fine motor control, otherwise the chair would run into a 

boundary. A high number of boundary violations for the docking track is consistent with Jonkers 

et al. [84], who found that patients with MS perceived tasks that require fine motor control to be 

more difficult.  

The deceptive nature lies in the fact that the VDS software treats graphics such as the 

track surfaces or wheelchair sprite as square tiles instead of the contoured shapes they may 

appear to possess. For example, though the corner boxed in Figure 73 appears rounded

f it d s not appear like it will happen.  

handling routine. When a collision occurs, VDS software moves the sprite to a position the chair 

had held a fixed number of loop iterations prior to the collision. If the chair was driving fast prior 

to a collision, it would be repositioned far from the boundary. But, if the chair was moving 

sufficiently slow, the collision routine may not move the sprite far enough backwards, causing a 

single boundary violation to perpetuate. On two occasions, subjects were instructed how to  
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Figure 73: The VDS representation of virtual wheelchair and track boundaries is often wider than they appear. 

command the chair to escape a loop; and on three occasions, trials were repeated because the 

chair was “stuck in the weeds.” 

7.2.4 

  23: 

Across the Measures 

Since the trial time, RMSE, and number of boundary violations are all intended to be indicators 

of driving performance, one would expect some cross-talk between the measures. This is 

especially the case with subject 4, who had the fastest times but also had the most deviation from 

the target path. This is consistent with The Steering Law proposed by Accot and Zhai [85], 

where completion time TC is roughly inversely proportional with the track, or path, width W. In 

the case of straight paths, for example, the completion time would be 

W
lb , 

where a and b are constants and l is the length of 

aT +=

the path. Thus, for subject 4, who had high 

deviation, or a large W, she also had low times T. Performance measures for subject 2, however, 

seemingly contradict the Law. While subject 2 had the longest trial times, the subject also had 

high RMSEs compared to subjects 1 and 3. This, however, may be related to the progression of 

her MS because subject 2 had been diagnosed the longest. 
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While conclusions regarding the type of interface, MJ vs. IJ, cannot be drawn at this 

stage, subject 3 raised an interesting point regarding the isometric interface. Specifically, he 

nstalled on the joystick for the MS_PFA than 

MS_PF

ource for the improved control 

because the chair would not have been able to deviate from the straight path as easily. 

variables for testing the hypotheses were collected without any adverse events – we experienced 

a few hiccups along the way, and there may be areas for improvement to facilitate consistency 

and reliability during the remainder of data collection. The rest of this chapter will address 

mentioned that the joystick was difficult to use because the lower part of his right hand was 

numb (i.e. his medial hand and digits four and five). He further commented that the numbness 

was worse following the FI measurements and that it took some time for feeling to return. 

Numbness is a typical symptom of MS (see Table 1), which should be noted when considering 

isometric interfaces for individuals with MS, especially when researchers have previously 

commented that lack of proprioceptional feedback may diminish control with an IJ [65],[69]. 

Therefore, joystick interfaces that offer at least some level of compliance may be superior 

devices with MS. 

Subject 4 appeared to have significantly improved performance with the MS_PFA, 

especially for the left turn track, compared to the other algorithms. For the left turn, the subject 

had the lowest average trial time, lowest RMSE, and fewest number of boundary violations. 

While this may be a result of the learning effect – the MS_PFA was the last algorithm the subject 

used – more aggressive settings were i

A_FA. The template shape for the MS_PFA was a diamond. And, the maximum value 

for the template along the direction axis was also limited to 1500 with the MS_PFA, while it was 

not changed with the MS_PFA_FA. The diamond template should limit signals with both high 

speed and turning rates, and the decreased template size should reduce the virtual wheelchair’s 

turning rate by about 25%. Together, these changes could be the s

7.3 PERFORMANCE OF THE INSTRUMENTATION 

Four different and relatively novel technologies supported this research study: the Variable 

Compliance Joystick, the tuning applications MSS Tuning and MSS Input Analysis, and the 

Virtual Driving Simulation. While the instrumentation performed successfully – all the necessary 
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specific concerns regarding the performance of each technology raised during testing with the 

first four subjects. 

7.3.1 The VCJ 

Prior to testing one subject, both channels of the VCJ in compliant mode and one channel of the 

VCJ in fatigue characterization mode stopped responding. Instead of outputting approximately 0 

mV with no input, their output was a constant positive or negative 4.6 V. Tuning the 

potentiometers helped to some extent, but the input to output ratio was very low, and the 

resulting VREF voltage for the instrument amplifiers was approximately positive or negative 3.8 

V. Replacing the instrument amplifiers on the nels fixed the symptom and restored 

the original voltage range of 0 ± 500 mV. The root problem was very likely static discharges 

when the joysticks were connected to the mounting bracket. Connecting a wire between the 

armature of the mounting bracket with a ground pin on the NI-DAQCard seems to have fixed the 

problem.  

However, a few days later, the chair became difficult to drive in the left and reverse 

directions with the STF and VGA algorithms. It was not clear whether the problem was software 

or hardware because the joystick would still output voltages in the expected ranges, and no 

software changes had been made. In software, computing the force for left and reverse signals 

involved evaluating a fourth order polynomial, for which a special function was written 

(ICD_polyeval()). While the relationship between the digital reading and force input may have 

been close  may have 

ter the change. 

One tedious feature of the VCJ is that it needs to be reconfigured before every subject 

That is, it needs to be set up in the mill and the lock nut adjusted 

such that an 8° tilt corresponds with 2.20 ± 0.05 N. This may cause some concern for future 

 affected chan

r with a higher order polynomial, the mere fact of increased complexity

contributed to the problem. Therefore, the polynomial was replaced with a linear best fit 

regression for both directions, where force = 0.0113×(digital reading) and force = 

0.0129×(digital reading) for the left and reverse directions, respectively. The chair then 

began to drive within expectations af

who uses it to emulate a MJ. 

subject testing, especially since the electrical connection of the digital force meter is becoming 

less reliable. 
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7.3.2 Personalized Algorithms 

While the custom algorithms performed as they were intended for the purposes of this study, 

alternatives exist to how to adapt to fatigue and how to enhance control with the the VCJ in 

isometric mode. In this study, software adjusted the joystick’s gain to adapt to fatigue, where 

increasing the gain resulted in lower force requirements to command the chair. Consequently, the 

template parameter was used to control the speed and turning rate of the wheelchair. This 

method, however, is conceptually inconsistent with the definitions of user interfaces and target 

devices. Since the VCJ is a user interface and not a target device, the template parameter, for 

example, should describe the force the user needs to apply to reach maximum speed rather than 

the actual maximum speed of the wheelchair. With fatigue adaptation, software should then 

control the the template boundary directly to alter the force requirements to command the chair. 

A second parameter would be used to define the maximum speed or turning rate of the 

wheelchair, and the gain becomes a derived parameter that maps the user interface’s input 

domain to the target device’s selection set.  

Just as mechanical templates help clients steer the wheelchair to desired heading with a 

MJ, ve

ght if all signals within ±15º of 

each axis resulted in the direction of that axis (further investigation would reveal if the transition  

ctor fields may be used to help clients steer to a desired heading with an IJ. Though 

typically used to describe solution curves for differential equations [86], a vector field simply 

demonstrates how a set of inputs map to their respective outputs. Presently, the vector field 

associated with the IJ can be defined with the following function: 
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where F is the magnitude of the input force, θ is the input angle, Fdz is the dead zone force, and 

Ftemplate is the force required to reach the template. The vector field is graphically depicted in 

Figure 74a. Forces below the dead zone force result in null output vectors, and forces outside the 

template result in output vectors that have the same magnitude as those at the template. 

Additionally, it seems possible to define regions where the directions of the output vectors are 

the same. For example, it may be easier to steer the chair strai
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(a)  

(b)  

(c)  

Figure 74: Vector fields for (a) current setup, (b) steering control, and (c) switch control. 
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out of the “straight” region should be smooth). At the extreme, the joystick could be used as a 

switch device, where only forward, reverse, left, and right commands are permitted, though with 

varying magnitudes. Graphical depictions of such vector fields are provided in Figure 74b and 

Figure 74c, respectively. 

7.3.3 Tuning Applications 

The tuning routine was intended to last approximately 30 min. However, the average ± standard 

deviation time to complete VCJ tuning was 61.5 ± 8.9 min. The segments of the tuning routine 

that took significantly longer than expected were the fine tuning of the maximum gain 

parameters, optimizing the WFLC, and switching between joysticks for driving and fatigue 

characterization modes. Fine tuning the maximum gain took longer than expected because more

time was required for subjects to become familiar with the display screen, and we double-

checked the gain adjustment for all four directions. Usually, the l  directions were 

much more sensitive to increases in gain than the forward and reverse directions. When 

lyzed 

with M

ther required a repeated FI measurement to be taken. 

Even though it lasts a little over 30 s, measuring the FI three times seems to be a costly 

measure to determine fatigue adaptation and recovery rates. Subject 1 mentioned that her arm 

was sore two days after the first visit, and subject 3 mentioned that it took some time for his hand 

to recover from each test. With such a cost, its benefit comes into question. And with the first 

four subjects, only 25% of the rates that the tuning software calculated were used because the 

computed rates were either negative or seemed too slow. Also, the pattern that was expected – a 

 

eft and right

optimizing the tremor filters, it was originally configured that the WFLC would be applied to the 

complete set of 24 trials with the basic algorithm. However, the processing time for this step was 

substantial; and the program was modified to make it easier to change data sets. Since tremor is 

thought to be more significant in a fatigued state [79],[80], only the last 12 trials were ana

SS Input Analysis. Still, it takes about two to three minutes to process the filter each time 

parameters are altered. Even though we had used two separate joysticks to facilitate switching 

between driving and fatigue characterization modes, switching the joysticks still was a little 

cumbersome and was subject to human error, where we did not reconnect the serial connector to 

the VCJ after switching joysticks on a couple of occasions. One instance simply required 

restarting the VDS program but ano
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high FI followed by a low FI followed by a medium FI – does not appear evident based on 

graphical analysis of the first four subjects’ FIs, nor does the method seem very repeatable (see 

Figure 75 through Figure 78). Four subjects are still too few to make conclusions, and the trends 

associated with the three measurem ated further as more subjects 

are tested. Alternative methods for determining fatigue adaptation and recovery rates could 

include using only one FI measurement or taking the second of two measurements since subjects 

appeared to take the test differently after the first measurement. 

Subjects noted that the joysticks – both IJ and F 

algorithms were installed. These ent, or 

they co ir. The visual 

ents of the FI should be investig

7.3.4 The VDS 

MJ – were very sensitive when the VGA or ST

comments may be a reflection of the virtual environm

uld be a reflection of differences in their chairs with the virtual wheelcha

resolution of the wheelchair sprite was increased for this study from 10° to 3°, but the subjects 

still have only visual feedback to judge the inertial properties of the chair. Thus, the chair may 

 

Figure 75: FI measurements for subject 1's first and 

second visits. 

 

Figure 76: FI measurements for subject 2's first and 

second visits. 
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Figure 77: FI measurements for subject 3's first and 

second visits. 

Figure 78: FI measurements for subject 4's first and 

second visits. 

have more momentum by the time they notice that it has veered off path, thus making it difficult 

to drive back to the target path. Also, we observed while walking between hallways that the 

maximum speeds on the subjects’ chairs were much lower than that of the virtual wheelchair. 

Subjects may not have been familiar with the speed of the virtual chair, causing difficulty. 

Testing with the VDS software allows for some human error. On one occasion, the VDS 

mysteriously changed its algorithm for several trials. The subject gave permission to redo them. 

The program would also stop responding about once or twice during subjects’ visits. This could 

very likely be related to the timing intervention described in Appendix L, and may become an

issue if settings had been altered during the virtual driving phase of joystick tuning and not re-

entered when restarting the VDS program. 
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8.0  NS 

The VC control 

interfaces with customizable algorithms. The current prototype of the VCJ also offers great 

flexibility in use, such as 

 control enhancers, 

ge of compliant to isometric settings, and 

The extra c pansion to drive real EPWs and collect 

signals r or an encoder. The clinician has direct 

acc ming to tune its parameters for the user. While its dynamic 

respon y five of nine criteria for one handle and three of nine 

for anothe se 

are very likely a r erent masses of the handles. 

  W erformance of the isometric and 

compliant because of the sample size, preliminary 

inspection . Also, while 

subjects may y could be related to higher RMSEs and number of 

boundary colli

A f jects. Chiefly, the order 

of measuri  the 

effect 

characteriza ng 

the chance . Automatic updates to the settings file any time changes are made to 

the joystic uce the chance for human error in case the VDS software 

stops responding. Implementing alternative wheelchair dynamics to simulate drive types such as 

CONCLUSIO

J provides a functional platform for comparing isometric with compliant 

• permitting a wide variety of

• spanning the full ran

• measuring maximum voluntary isometric contractile forces of the arm. 

hannels on the DAQCard permit easy ex

 from other sources such as a speed potentiomete

ess to the joystick’s program

se matched a conventional MJ in onl

r, the VCJ’s static responses were very similar. Differences in the dynamic respon

esult of the diff

hile it is difficult to make conclusions about the p

interfaces with the various algorithms 

of the data shows that the learning curve may be long for this system

have low trial times, the

sions.  

ew changes to the system may improve testing with future sub

ng FI 2 and determining the maximum gain could be switched. This would have

of eliminating one swap of the VCJ in driving mode with the VCJ in fatigue 

tion mode, thus reducing the time to complete the personalization setup and reduci

of human error

k parameters may also red
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mid- or front-w y 

use a rear-wheel driv ld 

reduce the risk of the v d 

to the beginning of the rt the trial, for example, this would have the added effect of 

reminding the 

While c ding of 

fatigue in MS, its use very rates should be 

monitored bec one 

subject noted that it aff ess 

a couple days after tes ble condition and factors not related to 

muscle act fluence on a patient’s motor 

performance [7

If it seems that orithm with fatigue adaptation could improve driving 

skill, a next ste ss 

fatigued using the EPW . The VCJ may also be used to examine how 

much force EP n 

movement and isometric joysticks [68], or improved computer access.  

heel drive may reduce the familiarization time for subjects who do not typicall

e EPW. Lastly, modifications to the boundary violation routine cou

irtual chair becoming “stuck in the weeds.” If the chair were repositione

 track to resta

subject that accuracy is more important than speed. 

ollecting multiple measurements of subjects’ FIs could increase understan

as a tool for determining fatigue adaptation and reco

ause of its risk to benefit ratio. Though it is only a little more than 30 s, 

ects the feelings in his hands, and another subject mentioned arm soren

ting. MS is already a highly varia

ivity (e.g. the weather or time of day) may have an in

]. 

 the personalized alg

p could be to do a controlled trial to see if people using the MS_PFA_FA are le

 than the standard algorithm

W drivers prefer to use while with their EPWs, “transitional” interfaces betwee
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APPENDIX A 

 COMPLET CHNICAL REQUIREMENTS FOR THE VCJ  

1. Joystick Po

1.1. General Requir

1.1.1. een 

the operato

1.1.2. T

1.2. Functional Req

1.2. re (box) 

1.2

joyst

1.2.1.2.The

1.2

1.2.1.4.The te the following configurations: 

1.2.1.4.2

1.2.1.5.The -DIN interface. 

1.2 ds. 

 

and provide a platform for the 

E SET OF TE

st (JP) Requirements 

ements 

The JP couples with the operator’s body to provide a mechanical interface betw

r and the Input Control Device. 

he JP shall be ergonomically appealing. 

uirements 

1. Electronics Enclosu

.1.1.The box shall provide a robust platform for the joystick electronics and the 

ick post. 

 size of the housing shall be minimized. 

.1.3.The enclosure shall be watertight. 

 enclosure shall accommoda

1.2.1.4.1. Hand control, 

. To be considered for future generations. Foot control. 

 box shall accommodate for a mini

.1.6.The box shall have an access panel for maintenance of the circuit boar

1.2.2. Joystick post.  The joystick post shall support three modes of operation (compliant

mode, isometric mode, and tremor isolation mode) 

strain gauges. 

1.2.2.1.Compliant Mode 
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1.2.2.1.1. The post shall be variably compliant, where compliance ranges from 

0° to 18° from null position towards the forward direction as a result o

maximal for

f 

ce input. Maximal force input can range from 4.3 N [67] to 

1.2.2.1.3  to move with two degrees of 

een speed and direction. 

1.4. A variety of mechanical templates shall be available, including the 

ble.  

t 

point and tip) 

orce of 4.3 N applied in the forward direction shall result in a full 

m full deflection in the forward and reverse directions. 

ing joystick [78]. 

Reverse 

300 N [4]. 

1.2.2.1.2. The post shall allow for repeatability of its configuration. 

. The post shall have the capability

freedom to distinguish betw

1.2.2.

standard diamond shape as well as square, cross, circle, and oval. The 

template size shall be scalea

1.2.2.2.Emulation of a commercially available joystick. 

1.2.2.2.1. The post shall have a length of 3.0” ± 0.5” (distance between pivo

1.2.2.2.2. The post shall have a mechanical template with the diamond pattern 

(forward tip angle is 18°).  

1.2.2.2.3. A f

deflection of 18°. 

1.2.2.2.4. The post shall have the following dynamic characteristics when 

released fro

Table 16: Dynamic Characteristics of a conventional position sens

 Forward 

Rise Time (sec) 0.024 (0.002) 0.026 (0.003) 

Peak Overshoot (%) 45.284 (1.948) 41.781 (2.324) 

Settling Time (sec) 0.123 (0.038) 0.128 (0.038) 

1.2.2.3.Isometric Mode 

1.2.2.3.1. Forces applied to the joystick shall not result in perceivable movement 

of the post. 
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1.2.2.3.2. While in driving mode, the joystick post shall not yield under 35 N. 

e in fatigue characterization mode, the joystick post shall not 

1 s. Tremor Isolation Mode 

r.  Tremor frequencies are assumed to be a minimum of 4 

nt shall be between 50 lbs/in to 175 lbs/in 

and 

en returning to the null position after an applied 

e time required for the post to return to the null position shall be 

. 

e orthogonal to each other and shall each support a 

1.2

se are the dimensions of two 125BZ strain 

1.2 orce on the post is assumed to be 67.676 lbf [74]. 

1.2.

This depends on the solution for the joystick post. 

1.2.3.2  

end of mounting tube with a diameter of 1”. 

1.2.2.3.3. Whil

yield unter 350 N. 

.2.2.4.To be considered for future generation

1.2.2.4.1. The post shall include a mass-spring-damper system to reduce the 

effect of tremo

Hz [72].  Hand/forearm masses are assumed to be between 0.47 kg and 

2.16 kg [72]. 

1.2.2.4.2. The effective spring consta

[72]. 

1.2.2.4.3. The effective damping coefficient shall be between 12.4 lb-sec/in 

40.7 lb-sec/in [72]. 

1.2.2.4.4. The overshoot wh

force is withdrawn shall be minimized.   

1.2.2.4.5. Th

minimized

1.2.2.5.Strain Gauges 

1.2.2.5.1. The post shall provide a platform for the strain gauges.  The faces of 

the platform shall b

Micro-Measurements 125BZ strain gauge.   

1.2.2.5.2. The ratio of the beam length to the cube of its thickness shall be less 

than 1.723x103 in-2 [74]. 

.2.5.3. The dimensions of each face shall be at least 0.29 inches long by 

0.2765 inches wide, as the

gauges placed next to each other. 

.2.5.4. Maximum f

3. Mounting hardware. The joystick will be mounted to the armrest of a wheelchair. 

1.2.3.1.The size of the mounting hardware shall be minimized. 

.The mounting hardware shall include a clamping mechanism to attach to the
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1.2. es 

of fre stomize the position for the subject and then locked down 

ection shall be 3 in. 

1.3.

1.3.1

1.3.1.3 fit the subject. 

1.3.2. 

1.3.2.1.The JP shall output analog signals proportional to the amount of force applied 

to the JP that the ICD can process. 

1.4. Safety Require

1.4.1. The out

1.4.2. The mas

ele

1.5. Miscellaneous 

1.5.1. A design in SolidWorks shall be prov

1.5.2. The SolidWorks design shall be parts-based and assem

1.5.3. A parts list f

3.3.The mounting mechanism shall allow the joystick to move with two degre

edom to cu

while in use. 

1.2.3.3.1. The allowable range of motion in the lateral dir

1.2.3.3.2. The allowable range of motion in the longitudinal direction shall be 6 

in. 

 Interface Requirements 

. Input 

1.3.1.1.The user shall be able to apply forces to the joystick indicating desired speed 

and direction of the wheelchair. 

1.3.1.2.The user shall be able to adjust the level of compliance. 

.The user shall be able to adjust the position of the VCJ to 

Output 

ments 

side corners and edges shall be rounded. 

s-spring-damper system shall be completely enclosed within the 

ctronics enclosure. 

ided for review. 

bled. 

or the JP shall be provided. 
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2. Input C

2.1. General R

2.1.1. 

analog inpu

capable of detecting template violations when in movement 

ulation mode. 

2.1. e of communicating with the virtual driving software, the 

su de 

Dy

2.1.4. an 48 Kb of memory. What will 

ll be 8 Kb of ROM available and 32 Kb of RAM.  

2.1.5. n for interfacing 

wi

2.1.6. Not essentia rrent 

EPROM ch

2.2. Functio

2.2.1. Variable Gain Algorithm (VGA) 

2.2  in 

[67]. 

2.2.2. 

2.2 rces below which results in zero output. 

f “straight” and “left.” “Backwards” and “right” shall be 180º off 

and left, respectively.  

ll have a range of 10% to 150% 

l value. 

 of 

2.2.2.5.A template shall be applied, where a force beyond which is mapped to the 

nearest location on the template in the same direction as the intended force. 

ontrol Device (ICD) Requirements 

equirements 

The ICD processes the user input which gets sent to the wheelchair controller as 

ts in place of the native joystick. 

2.1.2. The ICD shall be 

sensing em

3. The VCJ shall be capabl

bject’s wheelchair, and a lab wheelchair. Subject’s wheelchair controllers inclu

namic, Invacare, and Penny & Giles. 

Not essential. The algorithms must utilize less th

really happen is that there wi

Not essential. The VCJ shall accommodate PS/2 mouse emulatio

th the virtual reality system. 

l. EEPROM “flash” memory shall be used instead of the cu

ips. 

nal Requirements 

.1.1.The ICD shall be capable of implementing the VGA algorithm as described

Multiple Sclerosis-Personally Fitted Algorithm (MS_PFA) 

.2.1.A dead zone shall be applied, where fo

2.2.2.2.The ICD shall offset the speed and direction axes to fit the subject’s 

definitions o

straight 

2.2.2.3.The limits for forward and reverse speed sha

of the initia

2.2.2.4.The limits for left and right turning rates shall have a range of 10% to 150%

the initial value. 
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2.2.2.5.1. Possible template shapes shall include square, circle, ellipse, and 

diamond. 

2.2.2.5.2. Template shapes are defined with super quadratics. 

2.2.2.5.3. The orientation of e rotated. 

2.2.2.5.4. The template is downloaded to the custom algorithm’s memory after 

joystick calibration.  

2.2.3. Multiple Sclerosis-Personally Fitted Algorithm with Fatigue Adaptation 

(MS_PFA_F

2.2.3.1.Functional requirements for the MS_PFA_FA shall include those listed for the 

MS_PFA in addition to those listed below. 

2.2.3.2.The ICD shall log cu  activity and gradually adjust its 

gain parameters to compensate for reduced hand strength. 

2.2.3.2.1. While force is being applied to the joystick, the gain shall be adjusted 

according to equation 1 

,  (1) 

e duration the joystick is inactive. 

2.2.3.2.3. After 8 hours of inactivity, the gain shall be reset to the nominal 

(baseline) value. 

2.2.4. Filter Algorithm. A filter algorithm shall be coupled with the MS-PFA algorithms 

to reduce the effects of tremor via any of the following options.  

2.2.4.1.The ICD shall reduce the effects of tremor via a second order digital 

Butterworth Filter. (As described in the grant, though the grant was more of a 

layout and need not be followed if there is a better filter) 

 the template can b

A) 

the ac mulated driving

AeKKKK α−−−= )( 2maxmax1

where K1 is the new gain, Kmax is the maximum gain set for the individual, 

Kmin is the baseline gain, α is a parameter based on the subject’s motor 

performance graph, and A is the accumulated force-time integral. 

2.2.3.2.2. While force on the joystick is under the dead zone, the gain shall be 

adjusted according to equation 2. 
TeKKKK β−−+= )( min1min2 ,   (2) 

where K2 is the new gain, β is a parameter based on the subject’s motor 

performance graph, and T is th

 131 



2.2.4.2.The ICD shall be capable of employing an adaptive filter, pole placement 

scheme, or moving average to enhance the signal quality to the wheelchair. 

2.2.4.2.1. Assuming the pole-placement scheme, poles shall be placed at -13.5 ± 

13.6i (assuming cutoff frequency of 4 Hz). 

2.3. Interface Requirements 

2.3.1. Inputs 

2.3.1.1.Operational Inputs 

2.3.1.1.1. The ICD shall accept 12-bit digital inputs for speed and direction. 

2.3.1.1.2. The ICD shall accept template boundary violations. 

2.3.1.1.3. The ICD shall accept clock inputs. 

2.3.1.2.Programming Inputs 

2.3.1.2.1. Axis orientations for speed and direction (radians). 

2.3.1.2.2. Nominal gains in speed and direction. 

2.3.1.2.3. Maximum allowable gains in speed and direction (for gain 

scheduling). 

2.3.1.2.4. Dead zone size and shape. Potential shapes include circular, square, 

oval, and rectangle. 

2.3.1.2.5. Template size and shape. Potential shapes include circular, square, 

oval, rectangle, starburst, and diamond. 

2.3.1.2.6. Motor performance parameters α and β for gain scheduling. 

2.3.1.2.7. Cut-off frequencies for filter. 

2.3.2. Outputs. Output signals go to virtual driving SW, the subject’s WC, and a lab WC. 

2.3.2.1.Direction 

2.3.2.2.Speed 

2.3.2.3.Error signal: Outside dead zone at start-up. 

2.4. Safety Requirements 

2.4.1. If the stick forces are outside the dead zone upon start-up of the controller, the 

wheelchair will not move and an error signal shall be provided. 
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APPENDIX B 

TECHNICAL DRAWINGS FOR THE VCJ  

B.1 OVERVIEW 

 

The diagram in Figure 79 depicts an exploded view of how the VCJ’s components are 

assembled. A handle 1 screws on top of the stick 3, which is press fit into the swivel bearing 

8. The swivel bearing is pinned into the bearing mount 9 with the bearing stopper 7. The boot 

5 slides along the sliding surface 6 whenever the joystick is deflected. The template 4 (four of 

which are available) prevents the stick from deflecting more than 18°. The bearing mount uses a 

sliding press fit with set screws to mate to the load cell V, which is cinched to the base with an 

acorn nut (Figure 10). Not depicted in Figur low box in which the VCJ is housed 

nor the isometric insert for fatigue characterizatio

e 79 are the yel

n.  

 133 



 

 

 

 

 
Figure 79: Exploded view of VCJ with pivoting mechanism. 
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B.2 VCJ COMPONENT DRAWINGS 

 

 

Figure 80: Base. 
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F l. igure 81: Load cel

 

Figure 82: Chip mount. 
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Figure 83: Bearing mount. 

 

Figure 84: Bearing stopper. 
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Figure 85: Boot sliding surface. 

 

Figure 86: Boot. 
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Fig aft. ure 87: Joystick stick/sh

 

Figure 88: MJ template – circle. 
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Figure 89: MJ template – diamond. 

 

Figure 90: MJ template – asteroid. 
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Figure 91: MJ template – square. 

 

Figure 92: Top cover. 
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Figure 93: Isometric insert. 
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APPENDIX C 

STATIC LOADS ANALYSIS OF PIN MECHANISM  

C.1 ANALYSIS 

 step process 

s were below the 

d stre gth for the pins on both axes. The same free body diagram as depicted in Figure 22 

ception that the spring Fs is replaced with a solid piece 

wed as a solid body. Applying the laws of 

MP = 0 ⇒ -Fi × ls + Rb × rb = 0 ⇒ Rb = Fi × ls / rb

: ΣF  = 0 ⇒ Rb + RPy = 0 ⇒ RPy = -Rb

x  Fi + RPx = 0 ⇒ RPx = -Fi 

Verifying whether the pins would be able to withstand repeated use involved a two

of determining the resulting input force and ensuring that the maximum stresse

yiel n

can be used with the analysis with the ex

of aluminum. Thus, the stick and boot can be vie

statics, we have the following relationships. 

  C : Σ1

 C2 y

 C3: ΣF  = 0 ⇒

The resulting input force RP is square root of the sum of the squares of its reaction forces. After 

substitution, 

 C4: ( )
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=

b

si
iP r

lF
FR . 

iagrams for the pins are depicted in Figure 94. Maximum stress occurs 

input force is normal to the pins’ axes. Thus, loading conditions needed to be 

Since the pins are press fit into the gimbal and gimbal 

 assumed. The moment at an end MP,i is given by equation 

 The free body d

when the 

considered individually for each a is. x

mount, fixed end conditions may be

C5 [76]. 
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Figure 94: Free body diagram for reaction force at pin and gimbal. 

  C5: 
8

22 ,

,

2
,,

,
iPP

iP

iPiP
P

iP

lR
l

ll
R

M ⇒
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= , 

where lPi is the length of pin exposed for bending, and i is the designator for the pin (1 or 2). The 

maximum stress σmax is thus given by equation C6. 

  C6: 
iP

iPiP

I
rM

,

,,
max =σ , 

where rP,i is the radius of the given pin, and IP,i is its area moment of inertia. 

C.2 RESULTS 

A MATLAB script was written to determine the resulting maximum stresses for each pin and is 

included in section C.4. To account for repeated use, a safety factor of 3 was applied to the 

design input force of 35 N. Physical parameters were based on a prototype of the VCJ that used 

lp2

lp1

RP 

gimbal 

 144 



the gimbal with pins. The maximum stresses are 75.8 ksi and 54.3 ksi for pins 1 and 2, 

respectively. 

C.3 DISCUSSION 

The yield stren  35.0 ksi and 

39.9 ksi, respectively. Since the maximum stress on pin 1 is greater than 39.9 ksi, there is 

potential for it to fail. While increasing the radii of the pins would decrease maximum stresses, 

the resulting through hole in the stick would be too large. 

The strength characteristics of the bearing stopper were analyzed with COSMOSXpress 

in SolidWorks. Using the same pivot reaction force as an input force on the bearing stopper, the 

gth of aluminum 6061 and stainless steel type 416 are approximately

resulting safety factor is 2.31. The analysis output is provided in Figure 95. 

 

Figure 95: COSMOSXpress deformation model of bearing stopper under modeled loading conditions. 
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                                                     C.4 D

%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Version: 1.0 

 
%   the purpose of this program is to calculate maximum stresses in the  
%   VCJ. 
% 
% >> NOMENCLATURE << 
% 
% >> HISTORY << 
% 
%   Version 1.0         Karl Brown          22 October 2005 
%   Original version. See notes from lab book 6/6/06. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%physical characteristics 
l = 3.75;   %length of stick, in 
l_b = 1.75; %length/height of boot, in 
w_b = 0.95/2;   %radius of boot, in 
l_p1 = 0.1876;  %length of pin that goes through the stick, in 
l_p2 = 0.62;    %length of pin that goes through the gimbol, in 
r_stick = 0.19/2;   %radius of the stick, in 
r_p1 = 0.0938/2;    %radius of pin that goes through the stick (pin 1), in 
r_p2 = 0.125/2; %radius of pin that goes through the gimbol (pin 2), in 
  
% for reference only 
% E_AL = 10000000;    %modulus of elasticity for aluminum, psi 
% E_SS = 28000000;    %modulus of elasticity for stainless steel, psi 
  
%yield strength of materials 
sig_max_AL = 35e3;  %yield strength of aluminum, psi 
sig_max_SS = 39.9e3;%yield strength of stainless steel type 416, psi 
  
%force input 
F_i = 7.86*3;   %lbs = default + safety factor of 3 
 
%derived characteristics 
I_stick = (pi*r_stick^4)/4; %area moment of inertia of stick, in^4 
I_p1 = (pi*r_p1^4)/4;   %area moment of inertia of pin 1, in^4 
I_p2 = (pi*r_p2^4)/4;   %area moment of inertia of pin 2, in^4 
  
%%%%%%% 
% determine max stress in stick 
sig_stick = F_i*(l-l_b)*r_stick/I_stick; 

                      MATLAB CO E 

%%%%%%%%%%%%%%%%%%%%%% %%
% 

% Last Modified: 6/19/06 
% By: kwb 
% 
% vcj_static_model.m 
% 

 % >> PURPOSE <<
%

 146 



  
%%%%%%% 
% determine global reaction forces 
R_2y = F_i*l/w_b; 
R_1y = -R_2y; 
R_1x = -F_i; 
Rp = sqrt(R_1y^2+R_1x^2); 
  
%%%%%%% 
% determine reaction forces and moments for pins 
%   only one side needs to be calculated because of symmetry 
%pin 1 
R_p1
M_p1 = Rp*l_p1/8; 
  
%pin 2 
R_p2 = Rp/2; 
M_p2 = Rp*l_p2/8; 
  
%%%%%%% 
% determine max stress in pins 

ri ', F_i); 
on Forces (lbs)\n'); 

ri
2f\n', Rp); 

_p2); 
=%3.2e\tSS=%3.3e) (psi)\n', sig_max_AL, ... 

g_stick); 

 = Rp/2; 

sig_pin1 = (M_p1*r_p1)/I_p1; 
2; sig_pin2 = (M_p2*r_p2)/I_p

  
%%%%% %%

% display results 
ntf('\nInput Force:\t%4.2f\nfp

fprintf('\nReacti
fprintf('R_1x:\t%3.2f\n', R_1x); 

ntf('R_1y:\t%3.2f\n', R_1y); fp
fprintf('Rp:\t%3.
fprintf('R_p1:\t%3.2f\n', R_p1); 
fprintf('R_p2:\t%3.2f\n', R_p2); 
fprintf('\nReaction Moments (in-lbs)\n'); 
rintf('M_p1:\t%3.2f\n', M_p1); fp

fprintf('M_p2:\t%3.2f\n', M
fprintf('\nMax Stresses (Al
    sig_max_SS); 
fprintf('stick:\t%3.2e\n', si
fprintf('pin 1:\t%3.2e\n', sig_pin1); 

ig_pin2); fprintf('pin 2:\t%3.2e\n', s
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APPENDIX D 

RIC INSERT’S WALL THICKNESS 

Figure 96 was used to determine how thick the wall needed to be on 

s assumed to be located at the 

ce hole on the isometric insert since a gap may exist here between the load 

 

 

FINDING THE ISOMET

D.1 ANALYSIS 

The free body diagram in 

the aluminum insert at the load cell interface. Maximum stress i

bottom of the interfa

cell and the isometric insert if the mate is not perfect and the isometric insert cocks a small angle.

 The maximum stress σmax as defined in equation D1, 

D1: 
I

Mr2
max =σ , 

where r2 is the outer radius and I is the area moment of inertia given by equation D2, 

 

Figure 96: Free body diagram of isometric insert. 

l Fi 

r1 r2 
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 D2: ( )44
4

1
4

2 rrrrI −=
πππ , 12444

−=

where r1 is the inner radius. Therefore, the maximum stress is 

( )4
1

4
2

2
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  D3: max =
π

σ
4

rr
lrFi

−
. 

061 is approximately 35 ksi. With an inner diameter of 0.5 in., 

and lever arm of 3.29 in. the outer radius r2 is 0.285 in. The 

inim r diameter are thus 0.085 in. and 0.57 in., respectively. 

The yield strength for aluminum 6

input force of 350 N (78.7 lbs), 

m um wall thickness and oute

 



APPENDIX E 

SOURCE CODE IMPLEMENTATION OF DATA ACQUISITION SOFTWARE 

Q TRADITIONAL NIDAQ.H 

** **************** 

t2() as another method for finding  
**  

 f s */ 
t d); 
t id); 

t at *); /* pass by address direction and speed */ 
t 

 a

E.1 JOYDA

/* ****************** * *********************************** ***
 modified: 9/12/06 
 by: kwb 
 
 JoyDAQ traditional NIDAQ.h 
 
 PURPOSE 

This sets up the functions for JoyDAQ traditional NIDAQ.cpp  
 
 HISTORY 

   kwb [7/13/06]: original version.
 kwb [9/12/06]: add DAQ_find_offse
** ************************************************************************/
 
*/ unction prototype
in DAQ_initialize(voi
in DAQ_find_offset(vo
int DAQ_find_offset2(void); 

oin DAQ_get_data(float *, fl
DAQ_close_device(void); in

 
/*** globals ***/ 

ddress values for input and output channels */ /*
#define ACH0  0 /* direction */ 
#define ACH1  1 /* speed */ 
#define DAC0OUT 0 /* direction */ 
#define DAC1OUT 1 /* speed */ 
#define DAQ_DEVICE 1 
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E.2 JOYDAQ TRADITIONAL NIDAQ.CPP 

*** ****************************************** 

 traditional NIDAQ.cpp 

l signal to software or analog outputs in 

e  in the  
-25++. 

line with code 

s and initialization to JoyAlgorithms.cpp,  
 rename functions to have DAQ as a prefix rather than ICD 
kwb [8/17/06]: major overhaul=> switch to NI-DAQmx. 

21/06]: unless Jesse O can provide a solution, this method doesn't  
e generated too  
wn pushes  

ow what i can tolerate. so, switch back to  
 

rameters to read faster and more points in  

ample size and rate 
*******************************************/ 

 In

ncl  

oyAlgorithms.h" 

value */ 

/* ******************************
 last modified: 11/05/06 
 by: kwb 
 
 JoyDAQ
 
 PURPOSE 
 This code interfaces to the NI-DAQcard 6024e. Its purposes are to  
 
 

 * initialize the NI-DAQcard, 
 * read analog inputs, and 

  * send outputs [digita
    place of a movement sensing joystick]. 
 Th flow of the program is modeled after the suggested flow charts
 DA  Traditional NI-DAQ (Legacy) User Manual: Version 7.x, pgs 3Q:
 
 NOMENCLATURE 
 variable definitions provided in 
 
 HISTORY 
 kwb [7/13/06]: original version. based on version 1.3 of ICD_functions.c 

 sent algorithm function 
 
 
 kwb [8/
  work. the problem appears to be that the events ar
  quickly for windows to handle. slowing the rate do
  performance way bel
  traditional NI-DAQ.
 kwb [9/12/06]: add DAQ_find_offset2() as improved method for finding the 
  offset, update SCAN pa
  DAQ_get_data() 
 kwb [11/05/06]: update DAQ s
* ***************************
 
**** *

/* clude files */ 
#include <stdio.h> 
#include <windows.h> 
#i ude <mmsystem.h>
#include <math.h> 
 
#include "nidaqex.h" 
#include "nidaq.h" 
#include "JoyDAQ Traditional NIDAQ.h" 
#include "J
 
#define PI
 

 3.141592653589 

/* Unit variables */ 
float X_Offset;   /* x-offset 
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float Y_Offset;   /* y-offset value */ 

  
PUR

 NI-DAQcard. it also gets the start time  

 

**** DECLARATIONS *****/ 

l Variables */ 

nputMode = 0;  /* 1 for RSE, 0 for DIFF */ 
 

ar, 1=unipolar */  
i16 iDriveAIS = 1;  /* ignored */ 
i32 lTimeout = 90; 

/* Debugging */ 

i16 iStatusReturn = 0; 

iStatus, MIO_Config = %d\n", iStatus); 

/* channel 0 */  
DAQ_DEVICE, ACH0, iInputMode, iInputRange,  
IS); 

Return = iStatus; 
s, "AI_Configure", iIgnoreWarning); 

igure channel %d = %d\n", ACH0,  

Polarity, iDriveAIS); 
tusReturn = iStatus; 
orHandler(iStatus, "AI_Configure", iIgnoreWarning); 
tf("iStatus, AI_Configure channel %d = %d\n", ACH1,  

/* timeout */ 
it (#Sec * 18ticks/Sec) so that if there 

SCAN_Op call. */ 

ing); 
fig = %d\n", iStatus); 

 
/*

POSE: * 
* this function initializes the
* for the MS_PFA_FA. 
*/
int DAQ_initialize(void) 
{ 
/*
 
 /* Loca
 
 /* Device Settings */ 
 i16 iI
 i16 iInputRange = 0;  /* ignored */ 
 i16 iPolarity = 0;  /* 0=bipol
 
 
 
 
 i16 iStatus = 0; 
 i16 iRetVal = 0; 
 i16 iIgnoreWarning = 0; 
 
 
 /***** CONFIGURE INPUT SETTINGS *****/ 
 /* this needs to be done only once */ 
 
 /* turn on dither */ 
 /* this doesn't seem to help - kwb - 10/12 */ 

_DEVICE, 1, 0);  //iStatus = MIO_Config(DAQ
 //iRetVal = NIDAQErrorHandler(iStatus, "MIO_Config", iIgnoreWarning); 
 //if (DEBUG_lo) printf("
 
 
 iStatus = AI_Configure(

A  iPolarity, iDrive
 if (iStatus) iStatus
 iRetVal = NIDAQErrorHandler(iStatu
 if (DEBUG_lo) printf("iStatus, AI_Conf
  iStatus); 
 /* channel 1 */  
 iStatus = AI_Configure(DAQ_DEVICE, ACH1, iInputMode, iInputRange,  
  i
 if (iStatus) iSta
 iRetVal = NIDAQErr
 if (DEBUG_lo) prin
  iStatus); 
 
 
 /* This sets a timeout lim
    is something wrong, the program won't hang on the 
 iStatus = Timeout_Config(DAQ_DEVICE, lTimeout); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "Timeout_Config", iIgnoreWarn
 if (DEBUG_lo) printf("iStatus, Timeout_Con
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 /* initialize offset (probably not needed, but just in case) */ 
 X_Offset = 0.0; 

Y_Offset = 0.0;  
 
 if (DEBUG_hi)  
  printf("\nThe time for opening the ICD is %d\n", timeGetTime()); 

 

lts in zero  

 

d */ 
 

read */ 
ings; /* number of readings in one go */ 
 

 this should get the maximum scanning rate */ 

static i16 AI_buffer[200] = {0}; 
er[100] = {0}; 

{0}; 
ub gs */ 

i16 iStatus = 0; 

/* high level function scans selected channel(s) */ 

/* read the channels specified by iChan */ 
 iChan, iGain, AI_buffer,  

 iScanRate); 

iStatus, "SCAN_op", iIgnoreWarning); 
Status, SCAN_op = %d\n", iStatus); 

****/ 
e do high level function scans */ 

/***** SIGNAL PROCESSING *****/ 

 
 return(iStatusReturn); 
} 
 
/*
* PURPOSE: 
* this function finds the offset so that zero input resu
* output 
*/
int DAQ_find_offset(void)  
{ 
 /***** DECLARATIONS *****/ 
 /* Local Variables */ 
 int i; 
 
 /* Device Settings */ 
 i16 numChan = 2;  /* number of channels to rea
 i16 iReadings = 100; /* number of readings per channel */
 static i16 iGain[2] = {10, 10}; /* input gain */ 
 static i16 iChan[2] = {ACH0, ACH1}; /* which channel(s) to 
 i16 iCount = numChan*iRead

f64 iSampleRate = 25000;  
 f64 iScanRate = 0.0; /*
 
 /* Device Readings */ 
 
 static i16 x_buff

at st ic i16 y_buffer[100] = 
 do le loc_x_reading, loc_y_reading; /* local copies of the readin
 

ugging */  /* Deb
 
 i16 iRetVal = 0; 
 i16 iIgnoreWarning = 0; 
 i16 iStatusReturn = 0; 
 

/***** START SCAN *****/  
 
 
 
 iStatus = SCAN_Op(DAQ_DEVICE, numChan,
  iCount, iSampleRate,

if (iStatus) iStatusReturn = iStatus;  
 iRetVal = NIDAQErrorHandler(
 if (DEBUG_lo) printf("i
 
 /***** CHECKING *
 /* not needed if w
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 /* this isn't in the manual, but this is needed so that there is only  

us; 

for (i=0; i<iReadings; i++) { 
 + i]; 
 + i]; 

ke means to mitigate the noise, hopefully */ 
ngs, WFM_DATA_I16, &loc_x_reading); 

); 

EBUG_lo) { 

 printf("\nx-reading in DAQ_get_data: %lf\n", loc_x_reading); 
 printf("y-reading in DAQ_get_data: %lf\n", loc_y_reading); 
} 

 
 /* Output Result */ 
 X_Offset = (float)loc_x_reading; 
 Y_Offset = (float)loc_y_reading; 
 
 return(iStatusReturn); 
} 
 
/* 
* PURPOSE: 
* this is an alternate method to get the offset reading 
*/ 
int DAQ_find_offset2(void) 
{ 
 int i, iStatus; 
 const int num_samps = 40; 
 float tmp_x_offset[50]; 
 float tmp_y_offset[50]; 
 double x_offset, y_offset; 
 
 double tmp_x = 0; 
 double tmp_y = 0; 
 
 X_Offset = 0.0; 
 Y_Offset = 0.0; 
 for (i=0; i<num_samps; i++) 
 { 
  iStatus = DAQ_get_data(&tmp_x_offset[i], &tmp_y_offset[i]); 
 } 
 
 for (i=0; i<num_samps; i++) 
 { 
  tmp_x += tmp_x_offset[i]; 
  tmp_y += tmp_y_offset[i]; 

   one output from the function */ 
 
 /* demuliplex the AI_buffer */ 
 iStatus = SCAN_Demux(AI_buffer, iCount, numChan, 0); 
 if (iStatus) iStatusReturn = iStat
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Demux", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, SCAN_Demux = %d\n", iStatus); 
 
 
  x_buffer[i] = AI_buffer[ACH0*iReadings
  y_buffer[i] = AI_buffer[ACH1*iReadings
 } 
 
 /* ta
 iRetVal = NIDAQMean(x_buffer, iReadi
 iRetVal = NIDAQMean(y_buffer, iReadings, WFM_DATA_I16, &loc_y_reading
 
 if (D
  /* display results */ 
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 } 
 x_offset = tmp_x/num_samps; 
 y_offset = tmp_y/num_samps; 
 
 X_Offset = (float)x_offset; 
 Y_Offset = (float)y_offset; 
 
 return (iStatus); 
} 
 
/* 
* PURPOSE: 
* 
* 
* OUTPUT: 
* x_reading  dithered direction 
* y_reading  dithered speed 
* 
*/ 
int DAQ_get_data(float *x_reading, float *y_reading)  
{ 
 /***** DECLARATIONS *****/ 

ttings */ 
/* number of channels to read */ 
/* number of readings per channel */ 

[2] = {10, 10}; /* input gain */ 

ate = 75000; 

c on

ls specified by iChan iCount number of times */ 
DAQ_DEVICE, numChan, iChan, iGain, AI_buffer,  

t, iSampleRate, iScanRate); 

this function will read the data from the NI-DAQcard  

 /* Local Variables */ 
 loop counter */  int i;   /* for

 
/* Device Se 

 i16 numChan = 2;  
i16 iReadings =40;  

 static i16 iGain
 static i16 iChan[2] = {ACH0, ACH1}; /* which channel(s) to read */ 

Count = numChan*iReadings; /* number of readings in one go */  i16 i
 f64 iSampleR
 f64 iScanRate = 0.0; /* this should get the maximum scanning rate */ 
 f64 dGainAdjust = 1.0; 
 f64 dOffset = 0.0; 
 
 /* Device Readings */ 
 f64 dVoltage1 = 0.0; 
 i16 dReading1 = 0; 
 static i16 AI_buffer[150] = {0}; 
 static f64 Volt_buffer[150] = {0.0}; 
 static i16 ICD_x_data[75] = {0}; 
 static i16 ICD_y_data[75] = {0}; 

double loc_x_reading, loc_y_reading;/* local copies of the readings */  
  

*/  /* Debugging 
 i16 iStatus = 0; 
 i16 iRetVal = 0; 
 i16 iIgnoreWarning = 0; 
 i16 iStatusReturn = 0; 
 
 /***** START SCAN *****/ 

fun ti  scans selected channel(s) */  /* high level 
 
 /* read the channe

 SCAN_Op( iStatus =
  iCoun
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 if (iStatus) iStatusReturn = iStatus; 
ErrorHandler(iStatus, "SCAN_op", iIgnoreWarning); 

o) printf("iStatus, SCAN_op = %d\n", iStatus); 

we do high level function scans */ 

 *****/ 
l, but this is needed so that there is only  

 
umChan, 0); 

tus; 
Demux", iIgnoreWarning); 

CAN_Demux = %d\n", iStatus); 

eadings; i++) { 
r[ACH0*iReadings + i]; 

] = AI_buffer[ACH1*iReadings + i]; 

 means to mitigate the no se, hopefully */ 
eadings, WFM_DATA_I16,  

  &loc_x_reading); 
 iRetVal = NIDAQMean(ICD_y_data, iReadings, WFM_DATA_I16,  
  &loc_y_reading); 
 
 /* adjust for offset
 loc_x_reading = loc_ ad
 loc_y_reading = loc_y_reading - Y_Offset; 
 

 in DAQ_get_data: %lf\n", loc_x_reading); 
y-reading in DAQ_get_data: %lf\n", loc_y_reading); 

sults */ 

Return); 

closes the NI-DAQcard */ 

RATIONS *****/ 

 iRetVal = NIDAQ
 if (DEBUG_l
 
 /***** CHECKING *****/ 
 /* not needed if 
 
 
 /***** SIGNAL PROCESSING
 /* this isn't in the manua

   one output from the function */ 
 
 /* demuliplex the AI_buffer */
 iStatus = SCAN_Demux(AI_buffer, iCount, n
 if (iStatus) iStatusReturn = iSta
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_
 if (DEBUG_lo) printf("iStatus, S
 
 for (i=0; i<iR
  ICD_x_data[i] = AI_buffe
  ICD_y_data[i
 } 
 
 /* take i
 iRetVal = NIDAQMean(ICD_x_data, iR

 */ 
x_re ing - X_Offset; 

 if (DEBUG_lo) { 
  /* display results */ 

"\nx-reading  printf(
 printf(" 

 } 
 
 /* return re
 *x_reading = (float)loc_x_reading; 

float)loc_y_reading;  *y_reading = (
return(iStatus 

} 
 
 
 
/* this function 
int DAQ_close_device(void)  
{ 
 /***** DECLA
 /* Local Variables */ 
 
 /* Debugging */ 
 i16 iStatus = 0; 
 i16 iStatusReturn = 0; 
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 /***** CLEAN UP *****/ 
 /* this goes at the very end, i think */ 
 
 /* turn off any DAQ operation */ 
 /* oddly, DAQ_clear is undefined. so comment it out for the moment  
 iStatus = DAQ_clear(DAQ_DEVICE); 
 iRetVal = NIDAQErrorHandler(iStatus, "DAQ_clear", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, DAQ_clear = %d\n", iStatus); 
 */ 
 
  /* disable timeouts */ 
  iStatus = Timeout_Config(DAQ_DEVICE, -1); 
 if (iStatus) iStatusReturn = iStatus; 
 if (DEBUG_lo) printf("iStatus, Timeout_Config = %d\n", iStatus); 
  
 /* Get and display current time */ 
 if DEBUG_hi) (
  printf("\nThe time of closing the ICD is %d\n", timeGetTime()); 
  
 return(iStatusReturn); 
} 
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APPENDIX F 

SOURCE CODE IMPLEMENTATION OF INPUT CONTROL ALGORITHMS 

ITHMS.H 

***************************************************** 
/06/06 

JoyAlgorithms.h 

TION 
als 

original version. based on version 1.0 of VCJ_ICD project 
ICD_VGA to implement MJ STF 
tsettings() to here 

() to interpolate missing points 
hm wrapper ICD_apply_algorithm(), added  

.h 
6]  support the VGA and STF algorithms 
06 axis gains different for each axis by... 

in, k1, and k2; 

*************/ 

rrent phase */ 
ry phase */ 
ry phase */ 

 current gain; i=dir,spd; j=neg/pos */ 
 last active and recovery phase gains, */ 

[2];  /*  respectively; i=dir,spd; j=neg/pos */ 

F.1 JOYALGOR

/********************
last modified: 11

***
 
 by: kwb 
 
 
 
 DESCRIP
 this is the header file for functions used to process user input sign

  
 HISTORY 

kwb [7/13/06]:  
 kwb [7/17/06]: updated 

6]: moved Ge kwb [7/21/0
 kwb [8/1/06]: added neville

ded algorit kwb [8/2/06]: ad
  ICD_algorithms from Save_Data
 kwb [9/26/0 : added functions to

kwb [10/10/ ]: make (+) and (-)  
  adding an extra dimension to Ga
 kwb [11/06/06]: added functions for loading FA params 

***************************************************************
 
/*** type definitions ***/ 

{ typedef struct 
 DWORD start_time;  /* start time of cu
 int previous_mode; /* 0=active phase, 1=recove

 /* 0=active phase, 1=recove int current_mode; 
 float Gain[2][2];  /*

][2];  /* float k1[2
2] float k2[

} fatigue_params; 
 
um ICD_algorithms { en

 VGA, 

 158 



 MS_PFA, 
 MS_PFA_FA, 

MJ_STF 
 

rototypes ***/ 
tialize(void); 

t FA_load_last_saved(void); 

uble ICD_dig2force(int, float); 

lle(float, int, DWORD [], float []); 

** globals ***/ 

efine DEBUG_hi 1 /* hi-level debugging */ 

efine Pi   3.141592653589

**************************************************************

fer  

.3 
 JoyAlgorithms.cpp, replaced  

th ICD_MS_PFA() 
Gain_* with Gain_min[] 

/06]: fix bug with VGA algorithm 

 
};
 
/*** p
int MS_PFA_ini
void Getsettings(void); 
int FA_load_defaults(void); 
in
int ICD_apply_algorithm(enum ICD_algorithms, float, float); 
int ICD_VGA(bool, float, float); 
do
double ICD_polyeval(double, double [], int); 
int ICD_calibration_constants(void); 
float nevi
int ICD_MS_PFA(char, float, float); 
 
/*
/* debugging characteristics */ 
#define DEBUG_ALL 0 
#d
#define DEBUG_lo 0 /* lo-level debugging */ 
/* math */ 

  #d

F.2 JOYALGORITHMS.CPP 

/**************
 modified: 11/05/06 

k by: wb 
 
 JoyAlgorithms.cpp 
 
 PURPOSE 
 This file contains the function that execute the algorithm trans
 functions 
 

INPUTS  
 ddirection direction component of joystick input [0-4096] 

t [0-4096]  dspeed  speed component of joystick inpu
 
 OUTPUTS 

g joystick input parameters  data   global array containin
  

 HISTORY 
FA_FA algorithms, based on version 1 kwb [07/12/06]: added VGA and MS_P

 of ICD_functions.c, renamed to 
  DataTransform() wi

/15/06]: replace  kwb [7
 kwb [7/16
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 kwb [7/17/06]: added standard transfer function for MJ to VGA algorithm 

b  for the real  
 algorithm functions 

case data acq is continuous) 
ect_ID, replace function call to  
find_offset2() 

place Pi with math.h's M_PI 
-) axis gains different for each axis by... 

 input based on their signs 
b s, subtract DZ value from TMPT value  

nitialization of Subject_ID 
saving and loading MS_PFA_FA  

to and from fa_params.txt file. 
rking though the joystick  
ns to be linear rather than  

. 
*************************************/ 

efine _USE_MATH_DEFINES 1 

irect.h> 
windows.h> 

 ActiveScreen definitions 

te  un gn mpele() 

ing_demo.cpp  
t DEBUG_FILTS = 0; 

hould be saved to data file 

os_t fa_start_pos;  //position in fp_fa for writing fa params 

ar Subject_ID[10];// = 'MSJS102'; 

 filter parameters */ 

ptical includes circle, 
= rectangular and square 

 kw [7/21/06]: implement adaptive tremor filter, set values for VGA and b  
  MJ_STF dead zone and gain 
 kwb [7/28/06]: added highpass params to cWFLC class 
 kw [8/2/06]: added ICD_apply_algorithm() as a wrapper
 
 kwb [8/22/06]: make it so adaptive filter is used only while the race  
  track screen is active (in 
 kwb [9/12/09]: fix bug with Subj
  DAQ_find_offset() with DAQ_
 kwb [9/26/06]: modify VGA and STF to take into account asymmetry in the  
  strain gage bridges' responses, re
 kwb [10/10/06]: make (+) and (
  adding an extra dimension to Gain_min, Gain_max, FA.Gain, FA.k1;  
  computing dir and spd
 kw [11/05/06]: update MJ_STF param
  in MJ_STF and VGA algorithms, update i
 kwb [11/06/06]: protect against crashes by 
  parameters 
 kwb [11/28/06]: the -x and -y axes weren't wo
  was providing signals. change the equatio
  exponential
***************************************
 
#d
#include <math.h> 
#include <stdio.h> 
#include <d
nclude <#i

#include <mmsystem.h> 
#include "JoyAlgorithms.h" 

WFLC.h" #include "c
#include "VirtualDriving_demo.h" //contains
 
/* globals */ 
ex rn si ed int M_dir; //used in save_data_sa
extern unsigned int M_spd; 
extern unsigned int ActiveScreen; //defined in VirtualDriv
in
int OUTPUT_FA_PARAMS = 1; //whether FA params s
FILE *fp_fa;    //file pointer for fa_params.txt 
fp
 
/* unit variables */ 
ch
float DIG_zero = 0.0; 
 
/*
bool DO_WFLC = true; 
bool DO_HPF = true; 
cWFLC wflc[2]; 
 
/* MS_PFA parameters */ 
int Dead_Zone_Shape_Status;  //if zero none, 1 =  elli
2 
int Dead_Zone_Rad_X;  //Dead radius, 0 to 2048 
int Dead_Zone_Rad_Y;  //Dead radius, 0 to 2048 
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int Template_Shape_Status;  //0 = none, 1 = ellipti
diamond  
t Template_Rad_X; 

cal, 2 = astroid, 3 = 

t Bias_Axis_Enabled_Status;  /* 0=not used, 1=used */ 

t Gain_Status; 

ir,spd; j=neg,pos */ 
2][2]; /* maximum gain; i=dir,spd; j=neg,pos axis */ 

covery rate while inactive */ 
ams FA;  

meters */ 
*/ 

ar */ 

arameters from the settings files 

 
char line_buffer[100]; 
FILE *file; 
int axis; /* dir=0; spd=1 */ 
int sign;  /* neg=0; pos=1 */ 

if((file = fopen("C:\\settings\\setup.txt","r")) != NULL) 

 fgets(line_buffer,90,file);  // read line 1 from the settings file; 

 ( ne_ ff
[i] = line_buffer[i]; 

 

ets(line_buffer,90,file);  // read line 3  from settings file; 

in
int Template_Rad_Y; 
 
in
int Bias_Axis_Angle;    /* degrees */ 
 
in
float Gain_multiplier; 
float Gain_min[2][2]; /* mininmum (baseline) gain; i=d
float Gain_max[
float Alpha;   /* rate of increase while active */ 
float Beta;   /* re
fatigue_par
 
/* VGA para
float DZ_boundary; /* VGA Dead Zone 
float Gain;   /* VGA Gain */ 
float TMPT_boundary; /* VGA Template Bound
 
/* output parameter */ 
extern float data[]; 
 
/* unit parameters */ 
 
 
/* 
* PURPOSE: 
* this function reads the settings p
*/ 
void Getsettings() 
{ 

/* local variables */  
 int i;
 
 
 
    
 
 /* first load MS_PFA parameters */ 
 
 { 
 
  for (i = 0; i < 7; i++) 
  { 
   if li bu er[i] != '\t') 
    Subject_ID

  else  
    break; 
  } 

   
  fgets(line_buffer,90,file);  // read line 2 from the settings file;
  Dead_Zone_Shape_Status = atoi(line_buffer); 
 
  fg
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  Dead_Zone_Rad_X = atoi(line_buffer); //Dead zone radius Direction, 0 

e 4  from settings file; 
zone radius Speed, 0 to 

ne 5  from settings file; 
); 

0,file);  // read line 6  from settings file; 
oi(line_buffer); 

e);  // read line 7  from settings file; 
ne_buffer); 

 
; 

e 9 from settings file; 

// read line 10 from settings file; 
r); 

 { 

  ne_buffer,90,file);  // read lines 11-14 
in[axis][sign] = atof(line_buffer);  

 for (axis=0; axis<=1; axis++) 
 { 
  for (sign=0; sign<=1; sign++) 
  { 

    fgets(line_buffer,90,file);  // read lines 11-14 

  } 

line_buffer,90,file);  // read line 19 from settings file; 
ultiplier = atof(line_buffer); 

gs file; 

90,file);  // read line 21 from settings file; 
uffer); 

to 2048 
 

d lin  fgets(line_buffer,90,file);  //rea
  Dead_Zone_Rad_Y = atoi(line_buffer); //Dead 
2048 
   
  fgets(line_buffer,90,file);  // read li
  Template_Shape_Status = atoi(line_buffer
 
  fgets(line_buffer,9
  Template_Rad_X = at
 
  fgets(line_buffer,90,fil
  Template_Rad_Y = atoi(li
 
  fgets(line_buffer,90,file);  // read line 8 from settings file
  Bias_Axis_Enabled_Status = atoi(line_buffer); 
 
  fgets(line_buffer,90,file);  // read lin
  Bias_Axis_Angle = atoi(line_buffer); 
 
  fgets(line_buffer,90,file);  
  Gain_Status = atoi(line_buffe
 
  // min/default gain 
  for (axis=0; axis<=1; axis++) 
 
   for (sign=0; sign<=1; sign++) 
   { 
              fgets(li

 Gain_m   
   } 
  } 
 
  // max gain 
 
 
 
 
            
    Gain_max[axis][sign] = atof(line_buffer);  
 
  } 
 
  fgets(

Gain_m  
 
  fgets(line_buffer,90,file);  // read line 20 from settin

 Alpha = atof(line_buffer);  
 
  fgets(line_buffer,

b  Beta = atof(line_
 
  fclose(file); 
 } 
 else 
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 { 
  Dead_Zone_Shape_Status = 1;//if zero none, 1 = elliptical includes 

       // circle, 2 = rectangular and square 
ad_X = 100;  //Dead radius, 0 to 2048 

 Dead_Zone_Rad_Y = 100;  //Dead radius, 0 to 2048 

 Template_Shape_Status = 1;  //0 = none, 1 = elliptical, 2=asteroid, 

 Template_Rad_Y = 2048; 

 Bias_Axis_Enabled_Status = 0; 
xis_Angle = 0; 

=0; sign<=1; sign++) 

   

/* now load WFLC parameters */ 
ettings\\wflc_setup.txt","r")) != NULL) 

/* read high pass filter params */ 
  fgets(line_buffer,90,file);   

_order = atoi(line_buffer); 

fgets(line_buffer,90,file);   
wflc[axis].iir_samp_rate = atof(line_buffer); 

90,file);   

 read WFLC params */ 
gets(line_buffer,90,file);   

  wflc[axis].mu = atof(line_buffer); 

90,file);   
  wflc[axis].mu0 = atof(line_buffer); 

  fgets(line_buffer,90,file);   
wflc[axis].mub = atof(line_buffer); 

 
  Dead_Zone_R
 
 
 
3 = diamond  
  Template_Rad_X = 2048; 
 
 
 
  Bias_A
 
  Gain_Status = 1; 
  for (axis=0; axis<=1; axis++) 
  { 
   for (sign
   { 
             Gain_min[axis][sign] = 1.0; 
    Gain_max[axis][sign] = 2.0; 
   } 
  } 
  Gain_multiplier = 0.333f; 
 
  Alpha = 0.01f; 
  Beta = 0.01f; 
 } 
 
 
 if((file = fopen("C:\\s
 { 
  /* direction paramters are first */ 
  for (axis=0; axis<=1; axis++) 
  { 
   
 
   wflc[axis].iir
 
   fgets(line_buffer,90,file);   

fer);    wflc[axis].iir_corner = atof(line_buf
 
   

   
 
   fgets(line_buffer,
   wflc[axis].iir_gain = atof(line_buffer); 
 
   /*

f   
 
 

  fgets(line_buffer, 
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   fgets(line_buffer,90,file);   

  wflc[axis].M = atoi(line_buffer); 

fgets(line_buffer,90,file);   
wflc[axis].w1 = atof(line_buffer); 

 

} 

xis<=1; axis++) 

iir_order = 2; 
r_corner = 2.0; 

 
iir_gain = 1.0; 

0.009; 

mub = 0; 
= 4; 

w1 = 0; 
wflc[axis].wMp1 = 0; 

 

 } 

} 

is he fatigue adaptation parameters 

the sim 
     // last exited. if 0, last exit was safe 

*line_buffer; 

a ize 
 is ams */ 

 
 
   fgets(line_buffer,90,file);   
   wflc[axis].w0 = atof(line_buffer); 
 
   
   
 
   fgets(line_buffer,90,file);   
   wflc[axis].wMp1 = atof(line_buffer); 

 } 
 
  fclose(file); 
 
 else 
 { 
  for (axis=0; a
  { 
   wflc[axis].
   wflc[axis].ii
   wflc[axis].iir_samp_rate = 1.0/0.0170;
   wflc[axis].
   wflc[axis].mu = 
   wflc[axis].mu0 = 1.2e-5; 
   wflc[axis].
   wflc[axis].M 
   wflc[axis].w0 = 3.75*2*M_PI; 
   wflc[axis].
   

 } 
  if (DEBUG_FILTS) { 
 
 
 
} 
 
 
/* 
* PURPOSE: 
* th  function initializes t
*/ 
int MS_PFA_initialize(void) 
{ 
 int iStatusReturn = 0; //what would make this 0? 

 indicator for how  DWORD TMPstart_time; //this also serves as an
 
 char 
 
 //allocate memory for line_buffer 
 line_buffer = (char *)malloc(90); 
 
 /* initi l fatigue compensation parameters */ 
 /* if it ex ts, check the first param; if not, load default par
 if ((fp_fa = fopen("C:\\Settings\\fa_params.txt", "r")) != NULL) 
 { 
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  /* read line 1 */ 

 TMPstart_time = atoi(line_buffer); 

} 

ring program exection */ 
:\\Settings\\fa_params.txt", "w");  

 start position */ 
s) != 0) 

"fgetpos error"); 

WFLC parameters */ 
nitialize())) 

tputDebugString("===> WFLC not initialized\n"); 

"===> WFLC not initialized\n"); 

sample() */ 
M_dir = wflc[0].M; 

ory */ 

 

this function loads the FA params based on the settings.txt file 
 

   

n"); 

meGetTime(); 
 1; 
; 
{ 
++) { 
] = Gain_min[i][j]; 

  fgets(line_buffer,90,fp_fa);   
 
  /* decide which params to use */ 
  if (TMPstart_time == 0) 
   iStatusReturn = FA_load_defaults(); 
  else 
  { 
   FA.start_time = TMPstart_time; 
   iStatusReturn = FA_load_last_saved(); 
  } 
  fclose(fp_fa); 
 
 else 
  FA_load_defaults(); 
 
 /* open fa_params.txt file for writing du
 fp_fa = fopen("C
 /* get
 if (fgetpos(fp_fa, &fa_start_po
  OutputDebugString(
 
 /* initialize 
 if (!(wflc[0].i
  Ou
 if (!(wflc[1].initialize())) 
  OutputDebugString(
 

se are used in save_data_ /* the
 
 M_spd = wflc[1].M; 
  
 /* free line_buffer mem
 free(line_buffer); 
 
 return(iStatusReturn); 
} 
 
 
/*
* PURPOSE: 
* 
*/
int FA_load_defaults(void) 
{ 
 int i, j; 
  
 if (DEBUG_lo) 
  OutputDebugString("\nloading default fa params...\
 
 FA.start_time = ti
 FA.previous_mode =
 FA.current_mode = 1
 for (i=0; i<2; i++) 
  for (j=0; j<2; j
   FA.Gain[i][j
   FA.k1[i][j] = Gain_min[i][j]; 
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  } 
 } 
 
 return(0); 
} 
 
/* 

 
t F _lo

char fa_str_buffer[50]; 

 OutputDebugString("\nloading last saved fa params...\n"); 

et read line 2 

tting the right data */ 

ious mode [should be 1 or 0]: %d\n",  
.previous_mode); 

 OutputDebugString(fa_str_buffer); 

  fgets(line_buffer,90,fp_fa);  // read lines 3-6 

fp_fa);  // read lines 7-10 

} 

 for (j=0; j<2; j++) { 
  fgets(line_buffer,90,fp_fa);  // read lines 11-14 
  FA.k2[i][j] = atof(line_buffer); 
 } 

return(iStatusReturn); 

U

* PURPOSE: 
* this function loads the FA params from the backup file 
*/
in A ad_last_saved() 
{ 
 int i, j; 
 char line_buffer[50]; 
 
 int iStatusReturn = 0; //what would make this non-zero? 
 
 if (DEBUG_lo) 
 
 
 fg s(line_buffer,90,fp_fa);  // 
 FA.previous_mode = atoi(line_buffer); 
 
 /* check to see that we're ge
 if (DEBUG_lo) { 
  sprintf(fa_str_buffer, "prev
   FA
 
 } 
 
 for (i=0; i<2; i++) { 

r (j=0; j<2; j++) {   fo
 
   FA.Gain[i][j] = atof(line_buffer); 
  } 
 } 
 
 for (i=0; i<2; i++) { 
  for (j=0; j<2; j++) { 
   fgets(line_buffer,90,

atof(line_buffer);    FA.k1[i][j] = 
  } 
 
 
 for (i=0; i<2; i++) { 
 
 
 
 
 } 
 
 
} 
 
 
/* 
* P RPOSE: 
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* this is a wrapper function to make things a little more pretty in the  

thm like the name says 
 direction reading 

   speed reading 

thm(enum ICD_algorithms current_ICD_algorithm, float x, 

, x, y); 

, x, y); 
 

 

n); 

  
POSE: 

nction applies the VGA or the MJ's STF algorithm to the signal. it  
n terms of force rather  

than the digital conversion of the signals off the strain gages. 
G_zero is the digital output representing neutral input 

out  
.25 m/s or  

  ~7 ft/sec). That is, 2.25 m/s = ICD_dig2vel(TMPT_boundary). 
in is set such that 6.63 N produces a template violation.  

T_boundary/(6.63 - 1.11 N) 

template settings should be loaded 
re-algorithm direction 

rithm speed 

ta[0] is dir; data[1] is spd; output via extern 

    2=template violation  

* main virtual driving loop 
* 
* INPUTS: 
* current_ICD_algori
* x    
* y  
* 
* OUTPUT: 
* iStatusReturn   for debugging 
*/ 
int ICD_apply_algori

float y) 
{ 
 int iStatusReturn; 
 
 switch (current_ICD_algorithm)  
 { 
  case VGA: 
   iStatusReturn = ICD_VGA(1
   break; 
  case MS_PFA: 
   iStatusReturn = ICD_MS_PFA(0
   break;
  case MS_PFA_FA: 
   iStatusReturn = ICD_MS_PFA(1, x, y); 
   break; 
  case MJ_STF: 

 y);    iStatusReturn = ICD_VGA(0, x,
   break;
 } 
 
 return(iStatusRetur
} 
 
/*
* PUR
* this fu
* differs from the original VGA in that units are i
* 
*  DI
*  DZ_boundary is 1.11 N 
*  TMPT_boundary is set such that the corresponding digital 

x speed of the wheelchair (~2*   produces the desired ma
* 
*  Ga
*   Gain = TMP
* 
* INPUT: 

do_vga  tells the function which set of dead zone, gain, and  * 
*    
* dir   p
* spd   pre-algo
* OUTPUT: 
* data   da

iStatusReturn success of function: 0=good, 1=deadzone violation,  * 
* 
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*/ 
int ICD_VGA(bool do_vga, float dir, float spd)  
{ 

ATIONS and INITIALIZATIONS *****/  /***** DECLAR
 /* Local Variables */ 
 double dir_f, spd_f; /* force input (N) */ 

float input_magnitude_sq; /* magnitude of user input squared */ 
;   /* angle of user input */ 

int DzoneFlag = 0; /* 1=inside deadzone, 0=outside deadzone */ 
i ing to input */ 

 1 uts =inside template */ 
float TMPT_x, TMPT_y; /* location on template corresponding to input */ 

* 0=good, 1=deadzone violation, 2=template 
       violation */ 

 

_boundary = 1.018; 
 Gain = 691.0; 

3.

E ALGORITHM *****/ 

dir = dir - DIG_zero; 
spd = spd - DIG_zero; 

ICD_dig2force(0, dir); 

nd magnitude of user input squared */ 

ermine the location of the dead zone boundary */ 

y  DZ

within the deadzone, set input to zero and return */ 
agnitude_sq <= (DZ_boundary*DZ_boundary))  

 spd = 0; 
 0; 

 
 float theta
 
 float DZ_x, DZ_y;  /* locat on on dead zone correspond
 int TempFlag = 0;  /* =o ide template, 0
 
 
 /* Debugging */ 
 int iStatusReturn = 0; /
 
 /* algorithm parameters [hard coded] */ 
 if (do_vga) 
 { 
  DZ_boundary = 1.1069; 
  Gain = 371.0; 
  TMPT_boundary = 6.6278;
 } 
 else //MJ STF 
 { 
  DZ
 
  TMPT_boundary = 982; 
 } 
 
 /***** APPLY TH

/* Offset the axes so that (0,0) marks the origin */  
 
 
 
 /* translate digital signal to force */ 
 dir_f = 
 spd_f = ICD_dig2force(1, spd); 
 
 /* fi
 input_magnitude_sq = dir_f*dir_f + spd_f*spd_f; 
 
 /* det
 theta = (float)atan2(spd_f, dir_f); 
 DZ_x = DZ_boundary*(float)cos(theta); 
 DZ_  = _boundary*(float)sin(theta); 
 
 /* If 
 if (input_m

{  
  dir = 0; 
 
  DZ_x =
  DZ_y = 0; 
  TMPT_x = 0; 

PT_y = 0;   TM
  DzoneFlag = 1; 

 168 



  iStatusReturn = 1; 

 /* Make transition smooth outside of deadzone, keeping direction */ 
- DZ_x; 

 spd_f = spd_f - DZ_y; 
 /* apply same translation to TMPT_boundary (it's a circular tmpt) */ 
 TMPT_boundary = TMPT_boundary - DZ_boundary; 

Determine if template has been exceeded */ 

input_magnitude_sq = dir_f*dir_f + spd_f*spd_f; 

ta); 

 if ((input_magnitude_sq) >= (TMPT_boundary*TMPT_boundary)) { 

spd_f = TMPT_y; 

tatusReturn = 2; 
 } 

rt back to digital units */ 
ir_f; 

 spd = Gain*spd_f; 

/* Reset the origin to the original position */ 
 

ro; 

data[4] = TMPT_x + DIG_zero; 
ro; 

ag

f("I ta[1]); 
); 

 

rms the digital signal to the representative force 

 is 

OUT
responding force (N) 

 } 
 

lag)  if (!DzoneF
 { 
 
  dir_f = dir_f 
 
 
 
 
  /* 
  /* recalculate magnitude of user input */ 
  
 
  /* determine the location of the template boundary */ 
  TMPT_x = TMPT_boundary*(float)cos(theta); 
  TMPT_y = TMPT_boundary*(float)sin(the
 
  /* if outside the template boundary, set input to the corresponding  
  location on the template */ 
 
   dir_f = TMPT_x; 
   
   TempFlag = 1; 
   iS
 
 

 conve  /* Apply gain and
  dir = Gain*d
 
 } 
 
 
 data[0] = dir + DIG_zero;
 data[1] = spd + DIG_ze
 data[2] = DZ_x + DIG_zero; 
 data[3] = DZ_y + DIG_zero; 
 
 data[5] = TMPT_y + DIG_ze

  data[6] = DzoneFlag;
 data[7] = TempFl ; 
 

EBUG_lo) print CD_VGA x: %lf\ty: %lf\n", data[0], da if (D
 return(iStatusReturn
} 
 
 
/*
* PURPOSE: 
* this function transfo
* 
* INPUTS: 
* axis  which axis being used [0=dir; 1=spd] 
* dig   digital signal to be converted 

PUT: * 
* force  cor
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*/ 

 
  if (dig >= 0) //right 

{ 
= { 

9.3217e-3, 6.9416e-2 

ICD_polyeval(dig, a, 4); 
0113*dig; 

eak; 

160e-3, -5.1782e-2 

//force = ICD_polyeval(dig, a, 4); 
force = 0.0129*dig; 

  } 

  

ion evaluates an nth order polynomial 

e efficients, must be of size n+1 

, double coef[], int n) 

double ICD_dig2force(int axis, float dig) 
{ 

double force;  
// double a[5]; 
 switch (axis) 
 { 
  case 0:  //dir
 
    force = 0.01064*dig; 
   else   //left 
   
    //double a[5] 
    // 6.3121e-13, 2.3122e-9, -2.5613e-7, 
    //}; 
    //force = 
    force = 0.
   } 
   br
  case 1:  //spd 
   if (dig >= 0) //forward  
    force = 0.009994*dig; 
   else   //reverse 
   { 
    //double a[5] = { 
    // 3.2298e-13, 1.4706e-9, -4.1389e-7, 1.1
    //}; 
    

    
 
   break; 
 } 
 return(force); 
} 
 
 
/*
* PURPOSE: 
* this funct
* 
* INPUTS: 
* x  number to be evaluated 
* coef  array holding th co

n  order of polynomial * 
* 
* OUTPUT: 
* y  result 
*/ 
double ICD_polyeval(double x
{ 
 int i; 
 double y = 0; 
 for (i=0; i<=n; i++) 
  y += coef[i]*pow(x,n-i); 
 return(y); 
} 
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/* 
* PUR OSE  

is unc on tialize 
onst nts

 

_Status = 0; /* 0=none, 1=eliptical, 2=rectangular */ 

/ 
 /* 3=astroid, 4=diamond */ 

ost gain values */ 

{ 
<2; j++) { 

[j] = 1.0f; /* mininmum (baseline) gain */ 
        Gain_max[i][j] = 2.0f; /* maximum gain */ 

ased on 

01/06 

, DWORD x[], float Q[]) 

 

P :
* th  f ti  stands in place of the calibration file to ini

c a  * 
*/
int ICD_calibration_constants(void)  
{ 
 int i, j; 
 
 Bias_Axis_Enabled_Status = 0; /* 0=not used, 1=used */ 
 Bias_Axis_Angle = 5;   /* degrees */ 
 
 Dead_Zone_Shape
 Dead_Zone_Rad_X = 300; 
 Dead_Zone_Rad_Y = 300; 
 
 Template_Shape_Status = 1;  /* 1=eliptical, 2=rectangular *
 Template_Rad_X = 2000;  
 Template_Rad_Y = 2000;   /* p
 
 for (i=0; i<2; i++) 
  for (j=0; j
   Gain_min[i]
  
  } 
 } 
 
 Alpha = 0.000001f; /* rate of increase while active */ 

y rate while inactive */  Beta = 0.000002f;  /* recover
 
 return(0); 
} 
 
/*  
* PURPOSE: 
* this function provides an interpolated joystick input b
surrounding 
* inputs using Neville's Iterated Interpolation method. 
* 
* NOTES: 
* this code is adapted from http://www.cs.uaf.edu/~bueler/nevM.htm 08/
* 
* INPUTS: 
* xx  time stamp of missing input 
* n  order of interpolation (n+1 = # of points) 
* x  time stamps of known inputs 

inputs * Q  value of known 
* OUTPUT: 
* Q[0] p(xx) 
*/ 
float neville(float xx, int n
{ 
 int i, j; 
 
 for (i=n; i>=1; i--) 
 { 
  for (j=1; j<=i; j++)
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  { 
   Q[j-1] = (xx-x[j-1])*Q[j] - (xx-x[j+n-i])*Q[j-1]; 
   Q[j-1] = Q[j-1]/(x[j+n-i]-x[j-1]); 

 driver for the MS_PFA and MS_PFA_FA  

igue boolean for if gain should be adjusted for fatigue (1=yes) 

lgorithm speed 

_fatigue, float dir, float spd)  

*****/ 

/ 

/* Algorithm Parameters */ 

 dir_hpf, spd_hpf; 

es */ 

oa events input dir from being overwritten during rotation 
4d\n", BiasAngle); */ 

r deadzone, angle to vertex */ 
_y;  /* local x- and y-boundary values */ 

 the gain */ 

/* for the template */ 

int TempFlag = 0;  /* 1=outside template, 0=inside template */ 

 values */ 

  } 
 } 
 
 return(Q[0]); 
} 
 
 
/*  
* PURPOSE: 
* this function is the
* 
* INPUT: 
* do_fat
* INPUT/OUTPUT: 
* x_reading post-algorithm direction 
* y_reading post-a
*/ 
int ICD_MS_PFA(char do
{ 
 /***** DECLARATIONS 
  
 /* Local Parameters *
 int i, j; 
 
 
 float angle, L1, L2; 
 float one, two; 
 
 /* for the filters */ 
 double
 
 /* for the bias ax
 double BiasAngle; 
 fl t dir_tmp;//pr
 /* if (DEBUG_lo) printf("BiasAngle = %.
 
 /* for the dead zone */ 

t  /* 1=inside deadzone, 0=outside deadzone */  in DzoneFlag = 0;
 float DZangle;  /* for rectangula
 float DZ_x, DZ
  
 /* for
 DWORD current_time; 

/* change in time since phase/mode switch */  DWORD delta_t;  
  
 
 int TP3XRad = 2000; 
 int TP3YRad = 2000; 
 
 int Td[4]; 
 float TMPT_x = 0; 
 float TMPT_y = 0;  /* local x- and y-boundary
 
 /* Debugging */ 
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 int iStatus = 0; 
 int iStatusReturn = 0; /* 0=good, 1=deadzone 
          violation */ 

violation, 2+=template 

ORITHM *****/ 
xes so that (0,0) marks the origin */ 

 DIG_zero; 

_HPF) 

; i++) 
_filter(dir_hpf, i); 

r =0;

 (float)wflc[0].wflc_filter(dir_hpf); 
spd - (float)wflc[1].wflc_filter(spd_hpf); 
EBUG_FILTS) { 

 m es r maintains internal  

if(Bias_Axis_Enabled_Status) { 
as  M_PI/180.0; 

 case 1:  /* elliptical deadzone */ 
y 0 */ 
one */ 

e_Rad_X*L2, Dead_Zone_Rad_Y); 

*sin(angle)); 

 
 /***** APPLY THE ALG
 /* offset the a
 dir = dir -
 spd = spd - DIG_zero; 
 
 /* Apply Adaptive Filter to each axis */ 
 if ((DO_WFLC) && (ActiveScreen == RACETRACKSCREEN)) 
 { 
  if (DEBUG_FILTS) { 
  } 
  /* Apply high-pass filter to each axis */ 
  dir_hpf = dir; 
  spd_hpf = spd; 
  if (DO
  { 
   for (i=0; i<wflc[0].filt.order
    dir_hpf = wflc[0].highpass
   fo (i  i<wflc[1].filt.order; i++) 
    spd_hpf = wflc[1].highpass_filter(spd_hpf, i); 
  } 
  dir = dir -
  spd = 
  if (D
  } 
 } 
 
 /* Bias Axis Adjustment */ 
 /* ov both the speed and direction axes togethe
    90 degree alignment */ 
 
  Bi Angle = Bias_Axis_Angle *
  dir_tmp = dir; 
  dir = (float)((cos(BiasAngle))*dir_tmp - (sin(BiasAngle))*spd); 

*spd);   spd = (float)((sin(BiasAngle))*dir_tmp + (cos(BiasAngle))
 }  
 
 /* Deadzone Determination */ 
 /* find input magnitude squared */ 
 L1 = dir*dir + spd*spd;  
 
    /* ellipse or rectangle */ 
 switch (Dead_Zone_Shape_Status) { 
  case 0: 
   DZ_x = 0; 
   DZ_y = 0; 

eak;    br
 
   if (dir != 0) {  /* avoid dividing b

sponding point on deadz    /* find corre
    L2 = spd/dir; 
    angle = (float)atan2(Dead_Zon

(float)(Dead_Zone_Rad_X*cos(angle));     one = 
    two = (float)(Dead_Zone_Rad_Y
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    L2 = (one*one) + (two*two); 

ought about quadrant needs to go here */ 

/* if within deadzone, set the flag; otherwise save  
    intersection points */ 

   if (L1 < L2) DzoneFlag = 1; 

(L2)*cos(angle)); 
at sqrt(L2)*sin(angle)); 

   } 

 /* dir == 0 */ 
n deadzone, set the flag; otherwise find  

          intersection points */ 

 case 2:  /* rectangular deadzone */ 
intersection 

Zone_Rad_Y)) 

) { /* avoid dividing by 0 */ 
dir); 
le)) ||  

)) { 
_x = (float)Dead_Zone_Rad_X; 
Z_y = (float)(tan(L2)*Dead_Zone_Rad_X); 

ngle)) { 

ead_Zone_Rad_Y; 

n(L2)); 
d_Zone_Rad_Y; 

e_Rad_X; 

 dir == 0 */ 

f at

 
    /* th
 
    
   
 
    else { 
     angle = (float)atan2(spd,dir); 
     DZ_x = (float)(sqrt
     DZ_y = (flo )(
 
   } 
   else {   
    /* if withi
 
    if (fabs(spd) < Dead_Zone_Rad_Y) DzoneFlag = 1; 
    else { 
     DZ_x = 0.0f; 
     DZ_y =(float)(spd>0? Dead_Zone_Rad_Y:-Dead_Zone_Rad_Y); 
    } 
   } 
   break; 
 
 
   /* if within deadzone, set the flag; otherwise find 
      points */ 
   if ((fabs(dir)<=Dead_Zone_Rad_X) & (fabs(spd)<=Dead_
    DzoneFlag = 1; 
   else {   
    DZangle = atan2((float)Dead_Zone_Rad_Y,  

d_X);      (float)Dead_Zone_Ra
    if ((spd != 0) & (dir != 0)
     L2 = (float)atan2(spd, 
     if (((L2>=0)&(L2<=DZang
      ((L2<=0)&(L2>=-DZangle)
      DZ

     D 
     } 
     else if ((L2>DZangle) & (L2<=M_PI-DZa
      DZ_x = (float)(Dead_Zone_Rad_Y/tan(L2)); 
      DZ_y = (float)D
     } 
     else if ((L2<-DZangle) & (L2>=DZangle-M_PI)){ 
      DZ_x = (float)(-Dead_Zone_Rad_Y/ta
      DZ_y = (float)-Dea
     } 
     else { 
      DZ_x = (float)-Dead_Zon

_y = (float)(-tan(L2)*Dead_Zone_Rad_X);       DZ
     } 
    } 
    else {     /* spd or
     if ((spd==0) & (dir>=0)) { 
      DZ_x = ( lo )Dead_Zone_Rad_X; 
      DZ_y = 0.0f; 
     } 
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     else if ((spd==0) & (dir<0)) { 
      DZ_x 
   
   
   
      DZ_x = 0.0f; 

Rad_Y; 

e, set inputs to 0 */ 

ion out of deadzone */ 

- DZ_x; 

if (!do_fatigue & !DzoneFlag) { /* MS_PFA and outside the deadzone */ 

se

  spd = Gain_min[1][0]*spd; 

etTime(); 

evious_mode, and  

A.current_mode; 

= (float)-Dead_Zone_Rad_X; 
   DZ_y = 0.0f; 
  } 
  else if ((dir==0) & (spd>=0)) { 

      DZ_y = (float)Dead_Zone_
     } 
     else { 
      DZ_x = 0.0f; 
      DZ_y = (float)-Dead_Zone_Rad_Y; 
     } 
    } 
   } 
   break; 
 } 
  
 /* if inside the deadzon
 if (DzoneFlag) {  
  dir = 0; 
  spd = 0; 
  DZ_x = 0; 
  DZ_y = 0; 
  TMPT_x = 0; 
  TMPT_y = 0; 
  iStatusReturn = 1; 
 } 
 

nsit /* Ensure smooth tra
 if (!DzoneFlag) { 
  dir = dir 
  spd = spd - DZ_y; 
 } 
 
 /* Apply Gain */ 
 
  if (dir < 0) 
   dir = Gain_min[0][0]*dir; 
  el  
   dir = Gain_min[0][1]*dir; 
  if (spd < 0) 
 
  else 
   spd = Gain_min[1][1]*spd; 
 } 
 else {    /* MS_PFA_FA */ 
  /* Get time */ 
  current_time = timeG
 
  /* save the current mode */ 
  FA.current_mode = DzoneFlag; 
 
  /* if mode has changed, reset start time, update pr
  save last gains */ 
  if (FA.current_mode != FA.previous_mode) { 

 current_time;    FA.start_time =
   FA.previous_mode = F
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   for (i=0; i<2; i++) { 
    for (j=0; j<2; j++) { 
                    FA.k1[i][

.k2[
j] = FA.Gain[i][j]; 
i][j] = FA.Gain[i][j]; 

t_time; 
the dead zone */ 

n[i][j] = Gain_min[i][j] + (FA.k1[i][j] –  
in_min[i][j])*expf((-Beta*(float)delta_t)); 

} 
} 

 } 

][j] = Gain_max[i][j] - (Gain_max[i][j] –  
[i][j])*expf((-Alpha*(float)delta_t)); 

s to file */ 
AMS) 

 { 
 first position */ 

    OutputDebugString("fsetpos error"); 
 
   /* write data points */ 
   fprintf(fp_fa, "%d\t[exit ok?] start_time\n", FA.start_time); 
   fprintf(fp_fa, "%d\tprevious_mode\n", FA.previous_mode); 
   fprintf(fp_fa, "%f in Gain[0][0]); 
   fprintf(fp_fa, "%f\tgain -x\n", FA.Gain[0][1]); 
   fprintf(fp_fa, "%f\tgain +y\n", FA.Gain[1][0]); 

a, "%f\tk1 -x\n", FA.k1[0][1]); 
intf(fp_fa, "%f\tk1 +y\n", FA.k1[1][0]); 
intf(fp_fa, "%f\tk1 -y\n", FA.k1[1][1]); 
intf(fp_fa, "%f\tk2 +x\n", FA.k2[0][0]); 

intf(fp_fa, "%f\tk2 -y\n", FA.k2[1][1]); 

lag) { 
< 0) 
 = FA.Gain[0][0]*dir; 

     FA
    } 
   } 
  } 
 
  /* Determine the new gain */ 
  delta_t = current_time - FA.star
  if (FA.current_mode) { /* if in 
   for (i=0; i<2; i++) { 
    for (j=0; j<2; j++) { 
     FA.Gai
      Ga
    
   
 
  else {     /* not in the dead zone */ 
   for (i=0; i<2; i++) { 
    for (j=0; j<2; j++) { 
     FA.Gain[i
      FA.k2
    } 
   } 
  } 
   
  /* Save parameter

R  if (OUTPUT_FA_PA
 
   /* set position to

  if (fsetpos(fp_fa, &fa_start_pos) != 0)  

\tga  +x\n", FA.

   fprintf(fp_fa, "%f\tgain -y\n", FA.Gain[1][1]); 
a, "%f\tk1 +x\n", FA.k1[0][0]);    fprintf(fp_f

intf(fp_f   fpr
  fpr 

   fpr
  fpr 

   fprintf(fp_fa, "%f\tk2 -x\n", FA.k2[0][1]); 
  fprintf(fp_fa, "%f\tk2 +y\n", FA.k2[1][0]);  

   fpr
  } 
 

 /* Apply the gain if outside the deadzone */  
  if (!DzoneF

  if (dir  
    dir

se    el
    dir = FA.Gain[0][1]*dir; 
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   if sp  0) ( d <

la  { ot in deadzone */ 
 /* recompute input magnitude */ 

 

 switch (Template_Shape_Status) { 

* elliptical template */ 
 0) {  /* avoid dividing by 0 */ 

onding point on tmpt in QI and QIV */ 

)atan2(Template_Rad_X*L2,Template_Rad_Y); 
    one = (float)(Template_Rad_X*cos(angle)); 

    L2 = (one*one) + (two*two); 

correct quandrant */ 
atan2(spd, dir)); 

(float)(sqrt(L2)*cos(angle)); 
= (float)(sqrt(L2)*sin(angle));  

 the tmpt, set input to template value */ 
{ 

     TempFlag = 1; 

  /* dir == 0 */ 
erm

 TMPT_x = 0.0f; 
)(spd>0? Template_Rad_Y:-Template_Rad_Y); 

 input to template value */ 
plate_Rad_Y) { 

Flag = 1; 

  spd = TMPT_y; 
iStatusReturn = 3; 

   } 
   break; 

   case 2:  /* astroid template */ 
    /* points to center x and y */ 
    if (dir != 0) {  /* avoid dividing by 0 */ 
     L2 = spd/dir; 
     angle = (float)atan2((powf((float)Template_Rad_X* 

    spd = FA.Gain[1][0]*spd; 
   else 
    spd = FA.Gain[1][1]*spd; 
  } 
 } 
 
 /* Apply Template */ 
 if (!DzoneF g) /* apply only if n
 
  L1 = dir*dir + spd*spd; 
 
 
   case 0: 
    break; 
 
   case 1:  /
    if(dir !=
     /* find corresp
     L2 = spd/dir; 
     angle = (float
 
     two = (float)(Template_Rad_Y*sin(angle)); 
 
 
     /* save location; 
     angle = (float)(
     TMPT_x = 

      TMPT_y
      
     /* if outside

L2)      if (L1 > 
 
      dir = TMPT_x; 
      spd = TMPT_y; 
      iStatusReturn = 2; 
     } 
 
    } 
    else {  
     /* det ine where signal would intersect template */ 
    
     TMPT_y =(float
     /* if outside the tmpt, set
     if (fabs(spd) > Tem
      Temp
      dir = 0; 
    
      
     } 
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      fabs(L2)/(float)(Template_Rad_Y), 0.3333)), 1.0f); 
       
one=(float)(Template_Rad_X*cos(angle)*cos(angle)*cos(angle)); 

 L2 = one*one + two*two; 
 angle = (float)atan2(spd, dir); 

TMPT_x = (float)(sqrt(L2)*cos(angle)); 
 TMPT_y = (float)(sqrt(L2)*sin(angle)); 

 e */ 
 
 

_x; 

; 

  } 

:  /* diamond template */ 
/* x- and y-radius */ 

2 = (float)TP3YRad/TP3XRad; 
[0] = spd - (L2*dir - TP3YRad); 
1] = (-L2*dir +TP3YRad) - spd; 
] = (L2*dir + TP3YRad) - spd; 
3] = spd - (-L2*dir -TP3YRad); 

f (dir != 0) { 
 = fabs(spd/dir);   

 if ((spd >= 0) && (dir >= 0)) { 
 = (TP3YRad/(L1+L2)); 
= (L1*TP3YRad/(L1+L2)); 

} 
else if ((dir <= 0) && (spd >= 0)) { 

     TMPT_x = (TP3YRad/(-L1-L2)); 
TMPT_y = (L1*TP3YRad/(L1+L2)); 

    else if ((dir<=0) && (spd<=0)) { 

       
two=(float)(Template_Rad_Y*sin(angle)*sin(angle)*sin(angle)); 
 

    
    
     
    
 

    /* if outside the tmpt, set input to template valu
    if (L1 > L2) { 
     TempFlag = 1; 
     dir = TMPT 

      spd = TMPT_y; 
      iStatusReturn = 2; 
     } 
    } 
    else {    /* dir == 0 */ 
     TMPT_x = 0.0f; 
     TMPT_y =(float)(spd>0? Template_Rad_Y:-Template_Rad_Y)
     if (fabs(spd) > Template_Rad_Y) { 
      TempFlag = 1; 
      dir = TMPT_x; 
      spd = TMPT_y; 
      iStatusReturn = 3; 
     } 
  
    break; 
    
   case 3
    
    TP3XRad = Template_Rad_X; 
    TP3YRad = Template_Rad_Y;  
 
    L
    Td
    Td[
    Td[2
    Td[
 
    i
    L1
    
      TMPT_x
      TMPT_y 
     
     
 
      
     } 
 
      TMPT_x = (-TP3YRad/(L1+L2)); 
      TMPT_y = (-TP3YRad*L1/(L1+L2)); 
     } 
     else { 
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      TMPT_x = (TP3YRad/(L1+L2)); 
= (-TP3YRad*L1/(L1+L2)); 

} 
 
else { 

  TMPT_x = 0.0f; 
 TMPT_y = (float)(spd>=0? TP3YRad:-TP3YRad); 
} 

 if (!(Td[0]>=0 && Td[1]>=0 && Td[2]>=0 && Td[3]>=0)) { 
  TempFlag = 1; 

 dir = TMPT_x; 
 spd = TMPT_y; 
 iStatusReturn = 2; 

   break; 
 } 

/* Remove axes offset and save data, if you want 2048,2048 to be zero, 
 * add DIG_zero to each value */ 
/* but the output should be centered at (0,0) */ 

 

DIG_zero; 
data[3] = DZ_y + DIG_zero; 

 
 DIG_zero; 

F.3 CWFLC.H 

****************************************************************** 

llowable order for the IIR high-pass filter is 5 

** **********************************************/ 

 fc;  /* corner frequency (Hz) */ 

      TMPT_y 
     

 }   
    
   
    
    
   
   
    
    
    
    } 
 
 
 } 
 
 
 
 
 data[0] = dir + DIG_zero;
 data[1] = spd + DIG_zero; 
 data[2] = DZ_x + 
 
 data[4] = TMPT_x + DIG_zero;
 data[5] = TMPT_y +
 data[6] = DzoneFlag; 
 data[7] = TempFlag; 
 
 return(iStatusReturn); 
} 

/*
 
*********

modified: 8/1/06 
 by: kwb 
 
 cWFLC.h 
 
 NOTE: the maximum a
 
 HISTORY 
 kwb [7/28/06]: added high-pass filter params to project 
** **************************
 
#include <stdio.h> 
 
struct iir_Nthord { 
 int order;  /* filter order */ 
 double

 179 



 double fs;  /* sampling rate (Hz) */ 
equency parameter */ 

double acoef;  /* a coefficient */ 
double bcoef;  /* b coefficient */ 

n-1 */ 

or LPF */ 
 

ass cWFLC 

 filter */ 
 double one, two, three; /* intermediate vars in filter */ 

 double wbias; 
cross; 

LE *fp_filts; 

public: 

 params */ 

 
amp_rate; 

/* adapt rates for amp, freq, and bias  
   weight*/ 

 unsigned int M;  /* filter order */ 
 /* tremor frequency */ 

/* initial guesses at tremor amplitudes */ 
 double w[60]; 

ol initialize(void); 
oat, int); 
 

id close(void); 
oid Destroy(); //needed? 

id); 

 

 double alpha;  /* analog fr
 
 
 double gain;  /* gain */ 
 double xn_1[5]; /* x
 double yn_1[5]; /* yn-1 */ 
 double y[5];  /* local filter output */ 
 int type;  /* HPF 
};
 
cl
{ 
 private: 
  int order_count; /* counting variable for high-pass
 
  double x[60];  
 
  double sumw0, sum
  double input; 
  bool wflc_initialized; 
 
  FI
 
 
 
  /* highpass filter
  iir_Nthord filt; 

 int iir_order;  
  double iir_corner;
  double iir_s

 double iir_gain;  
 
  double mu, mu0, mub; 

       
 
  double w0;  
  double w1, wMp1;  
 
  double offset; 

 output;  /* filter error and output, respectively */   double e,
   
  bo
  double highpass_filter(fl
  double wflc_filter(double);
  vo
  v
   
  cWFLC(vo
  ~cWFLC(void); 
};
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F.4 CWFLC.CPP 

*********************** 

by: kwb 

rovide the Weighted Fourier Linear 
 based on the 

n from that site: 

Cameron N. Riviere, Carnegie Mellon University                       
                                                 

requency algorithm for noise canceling in 1-D data. 
e, as well as ampl., is an adaptive weight. 

frequency weight.  A bias (highpass) weight is used.             
 Ampl. weights for harmonics will be initialized to 0.                
 To run this program, type at the DOS prompt:                         
 WFLC0 filename ext mu mu0 mub M w0 w1 wM+1 offset                    
 Note:  This code is written in Turbo C for the PC. 
/*** 
 A digital first-order IIR filter was harvested from  
 http://www.ddj.com/dept/cpp/184401931. The order was doubled for improved 
 cornering. 
 
 HISTORY 
****************************************************************************/ 
 
#include <math.h> 
#include <stdio.h> 
#include <string.h> 
#include <windows.h> 
#include <direct.h> 
// #include <mmsystem.h> 
 
#include "cWFLC.h" 
 
/* constants */ 
#define PI  3.141592653589 
#define HPF  1 
#define LPF  -1 
 
/* global/externs */ 
extern int DEBUG_FILTS; 
 
// e.g.... 
//extern float data[8];  // used to put limits on joystick input 
//extern int dynamics_method; 
//extern int acceleration_method; 

 

/*****************************************************
 modified: 8/1/06 
 
 
 cWFLC.cpp 
 

PURPOSE  
The purpose of this file is to p
Combiner to the ICD algorithm toolkit. The method is
algorithm given at http://www.cs.cmu.edu/~camr/wflc0.c. The following is 
the descriptio

/*** 
WFLC0.C         Weighted-frequency Fourier Linear Combiner 0.0        

 
 last mod.    11/5/98

This is WF1H, modified to include harmonics.                          
 Adaptive weighted-f
 Here, frequency of referenc

Mu is the standard adapt. rate param.  mu0 is a 2nd param. on the     
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/* initialize class variables */ 
cWFLC::cWFLC(void) 
{   
 offset = 0; 
 mu = 0; 
 mu0 = 0; 
 mub = 0; 
 M = 1; 
 w0 = 0; 
 w1 = 0; 
 wMp1 = 0; 
 sumw0 = 0; 
 wflc_initiali
} 
 
/* nothing happens here */ 
cWFLC::~cWFLC(void) 
{ 
} 
 
bool cWFLC::initialize(void) 
{ 
 unsigned int i; 
 
 /* set high-pass ara
 order_count = 0;
 filt.order = iir rder
 filt.fc = iir_co er;
 filt.fs = iir_sa _ra
 filt.gain = iir_ in;
 filt.type = HPF;
 filt.alpha = tan(PI*iir_corner/iir_samp_rate); 
 filt.acoef = (1 - filt.alpha)/(1 + filt.alpha); 
 filt.bcoef = (1 + (filt.type*filt.acoef))/2.0; 
 for (i=0; i<5; i++) 
 { 
  filt.xn_1[i]  0;
  filt.yn_1[i]  0;
  filt.y[i] =  
 } 
 
 /* set WFLC par */
 sumw0 = 0; 
 wbias = 0; 
 for (i=1; i<=2* ++
  w[i] = 0; 
 w[1] = w1; 
 w[M+1] = wMp1; 
 
 wflc_initialized = true; 
 
 if (DEBUG_FILTS) 
 { 
  fp_filts = fopen("c:\\SubjectFiles\\filter_debug.txt","w"); 
  fprintf(fp_filts, "order_count\tdatum\ty\n"); 
 } 

zed = false; 

 p
 

ms */ 

_o ; 
rn  
mp te; 
ga  
 

=  
=  
0;

ams  

M; i ) 
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 return(wflc_initialized); 
} 
 
 
/* IIR highpass filter */ 
double cWFLC::highpass_filter(float datum, int order_count) 
{ 
 one = filt.bcoef*datum; 
 two = filt.type*(-filt.bcoef)*filt.xn_1[order_count]; 
 three = filt.acoef*filt.yn_1[order_count]; 
 
 filt.yn_1[o
 filt.xn_1[o
 filt.y[order_count] = filt.yn_1[order_count]*filt.gain; 
 
 return(filt.y[order_count]); 
 

rithm */ 
double cWFLC::wflc_filter(double datum) 
{ 
 /* local variables */ 
 unsigned int i; 
 
 /* ensure variables have been initialized [this should happen once] */ 
 if (!wflc_initialized) 
  initialize(); 

et; 

/* locate next sine & cosine samples */ 
 sumw0 += w0; 

 x[M+i] = cos(i*sumw0); 

= w[i] * x[i]; 

 weight */ 
*e; 

rder_count] = one + two + three; 
rder_count] = datum; 

 if (DEBUG_FILTS) 
 { 
  fprintf(fp_filts, "%i\t%f\t%f\n", order_count, datum,  
   filt.y[order_count]); 
 } 
} 
 
 
/* main WFLC algo

 
 /* remove offset */ 
    input = atum - offs d
 
 
   
 for(i=1; i<=M; i++) 
 { 

 x[i] = sin(i*sumw0);  
 
 } 

  
 /* output = truncated Fourier series */ 
 output = 0; 

 for(i=1; i<=2*M; i++)     
  output +

  
 /* calculate error */ 

as;  e = input - output - wbi
 
 /* update bias
 wbias += 2*mub
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for(i=1; i<=2*M; i++)   
x[i]; 

//done so every loop through SaveDataSample() call 

if (DEBUG_FILTS)  

 /* update frequency weight, 'blind' to harmonics */ 
 sumcross = 0; 
 for(i=1; i<M; i++)  
  sumcross += i*(w[M+i]*x[i]-w[i]*x[M+i]); 
 w0 -= 2*mu0*e*sumcross; 
 
 /* update amplitude weights */ 
 
  w[i] += 2*mu*e*
 
 /* record data in data file */ 
 
 
 /*output*/   
 return (e+offset); 
} 
 
void cWFLC::close(void) 
{ 
 
  fclose(fp_filts); 
} 
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APPENDIX G 

ILL POSITIONS FOR SELECTED HANDLES 

compliant mode characterization 

andle 3 Handle 4 

M

Table 17: Mill table displacements for VCJ 

angle H
(deg) dx (in.) dz (in.) dx (in.) dz (in.) 

0 0 0 0.0000 0.0000 
1 0.1519 -0.0826 0.1569 -0.0866 
2 0.3053 -0.1626 0.3152 -0.1704 
3 0.46 -0.2399 0.4750 -0.2515 
4 0.6161 -0.3144 0.6361 -0.3298 
5 0.7734 -0.3863 0.7987 -0.4052 
6 0.9319 -0.4553 0.9625 -0.4778 
7 1.0917 -0.5216 1.1275 -0.5476 
8 1.2525 -0.5851 1.2937 -0.6144 
9 1.4145 -0.6458 1.4611 -0.6783 
10 1.5775 -0.7036 1.6296 -0.7393 
11 1.7414 -0.7586 1.7991 -0.7974 
12 1.9064 -0.8107 1.9696 -0.8524 
13 2.0721 -0.86 2.1410 -0.9045 
14 2.2388 -0.9063 2.3133 -0.9536 
15 4062 -0.9497 2.4865 2. -0.9997 
16 2.5743 -0.9902 2.6604 -1.0428 
17 2.7431 -1.0278 2.8351 -1.0828 
18 2.9126 -1.0623 3.0104 -1.1197 
19 3.0826 -1.094 3.1863 -1.1536 
20 3.2532 -1.1226 3.3628 -1.1844 
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APPENDIX H 

ATLAB MODEL OF STATIC RESPONSE OF VCJ 

is Appendix compute reaction forces for a MJ. 

ith handles 3 and 4 and the spring 

) computes 

 defined 

VCJV5_COMPLIANT_MODEL.M 

%% 

g P P_b R_x R_y R_b F_f] = ... 
CJv5_compli t_model(include_friction, plot_results)    

  >> PURPOSE << 

  This program solves for the input force P given an initial deflection 
  of the joystick post.  

%   >> INPUT << 
% 
%   plot_results    boolean for if force to deflection curve should be 
%                   plotted 
% 
%   >> OUTPUT << 

M

Both MATLAB routines presented in th

VCJv5_compliant_model() computes forces for the VCJ w

configured to emulate a conventional MJ. VCJv5_compliant_parametric_model(

forces for the VCJ but where the lever arm, spring rate, and spring pretension may be

based on user input. 

H.1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   modified: 12/07/06 
%   by: kwb 
% 
  
function [theta_de

an    V
  
% 
% 
% 
% 
% 
% 
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% 
%   P               input force (lbs) 
%   P_b             force between stick and boot (lbs) 

tion force at boot, y-direction (lbs) 
       fo e of friction (lbs) 

 theta_d        angles for which forces are computed (degress) 

 >> HISTORY << 
     karl brown          November 22 2006 
n. see notes from 11/22/06 in lab notebook. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

sed on 1/4-20 threads 

(nargin < 1)
ion = input('Should friction be included [1=yes;0=no]? '); 

ds to ID number) 

dle (bottom of handle threads to middle of  

; 
actor; 

 of stick  
 

%   R_x             reaction force at pivot, x-direction (lbs) 
%   R_y             reaction force at pivot, y-direction (lbs) 
%   R_b           reac

rc
  

%  F_f      
eg

  
%  
% 
%   >> NOMENCLATURE << 
% 

ion 3.1.2.2 %   see Figure in sect
% 
%  
%   Version 1.0    

 original versio%  
%   Version 2.0         kwb                 November 27 2006 
%   new model. see notes from 11/27 in lab notebook. 
%   Version 2.1         kwb                 December 06 2006 
%   remove coefficient of friction, update TURNS2INCHES 
% 

%%%%%%%%%%
  
pounds2newtons = 4.44822162; 

   %baTURNS2INCHES = 0.05;     
  
if  
  include_frict  
end 
  
%%% Define physical parameters (index correspon
% distance between bottom of handle and force application plane 

 l_handle = [0.85  0.91  1.14  1.54  1.70];
% correction cuz the handles screw on a little more than 1/2" deep 
L_jp_factor = 0.035; 

ength of stick w/o the han% l
% swivel bearing) 

p_alone = 2.266L_j
L_jp = l_handle + L_jp_alone - L_jp_f
  
L_mg = [0 0 2.43 2.99 0]; 
mg = [0 0 0.10 0.039+.1234 0]; 
% mg = [0 0 0.1 0.15 0]; 
  
C_hb = 0.85;    % percent-height above base where P_b is centered 

 = C_hb*0.67; h_b
r_b = 0.9/2;     

g = 0.1872; h_m
mg_b = 0.039; 

 = 0.215; d_p
% d_p = 0.00; 
  
% K = 28.05;        % spring rate (lbs/in) by manufacturer 

package K = 26.7;           % average rate of three springs from same 
urns of lock nut from topN_turns2spring = 6.2;   % number of t

                        % threads to top of spring [confirmed 12/7]
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N_turns = [8.5 8.5 8.5 9.1 9.1];    % number of turns of lock nut from top 

                                 % pretension 

ta = theta_deg*pi/180;

 Find forces for handles 3 d 4 

endent parameters 
     del  r_b*tan(j) + (d_p/cos(j)-d_p); 

*cos(j) - h_mg*sin(j); 

 matrix 
lude_friction) 
     R_x     R_y     R_b     F_f     Soln 

 [cos(j) - s(j) -1      0       0       0       -Fs(k)*sin(j) 
   -1      0       0       Fs(k)*cos(j)+mg(i) 
 0       0       0       mg(i)*L_mg(i)*sin(j) 
 0       0       -1      Fs(k)*sin(j) 

 0       0       1       0       Fs(k)*cos(j)+mg_b 
 0       0       0       0       -Fs(k)*r_b-mg_b*w_mg]; 

  P_b     R_x     R_y     R_b     Soln 
  0       0       -Fs(k)*sin(j) 

  0       Fs(k)*cos(j)+mg(i) 
  0       mg(i)*L_mg(i)*sin(j) 

      0       1       Fs(k)*cos(j)+mg_b 
      0       -Fs(k)*r_b-mg_b*w_mg]; 

_x(k,i) = TMP(3,n); 
P(4,n); 

 
                                    % of stick threads to appropriate  
   
del_0 = TURNS2INCHES*(N_turns - N_turns2spring); 
  
theta_deg = 0.1:0.1:18; 

 the
  
k = 1;  % counter 
  
%%% an
for i = [3 4] 
    for j = theta 

le-dep        % ang
 =   

        Fs(k) = K*(del + del_0(i)); 
+ h_b + d_p;         L_b = del 

        w_mg = r_b
         

e        % de nfi
        if (inc
%   P       P_b

coA =
    -sin(j) sin(j)  0    
    -L_jp(i)    L_b 0      

 0       cos(j)  0         
    0       -sin(j)

 0       -h_b      
        else 

           %   P  
        A = [cos(j) -cos(j) -1    
            -sin(j) sin(j)  0       -1    

      0                 -L_jp(i)    L_b 0 
0             0       -sin(j) 

            0       -h_b    0       0 
     end    

         
        % find solution 
        TMP = rref(A); 
         
        % check that solution exists; if not, exit 
        R_TMP = rank(TMP); 
        FULL_RANK = 5 + include_friction; 
        if (R_TMP < FULL_RANK) 
            beep(); 

  fprintf('rank of solution for A is not full\nexiting...\n');           
            return; 
        end 
         
        % save answers 
        [m n] = size(TMP); 
        P(k,i) = TMP(1,n); 

_b(k,i) = TMP(2,n);         P
     R   

        R_y(k,i) = TM
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        R_b(k,i) = T
e_
MP(5,n); 

     if (includ friction) 

;
 

force be plotted [0=no; 1=yes]? '); 

ection 
ns, theta_deg, 'k'); 

ntal force to deflection for handle 3 and plot 
 [8 12 16 18 17 14 10 6 4 2 1]; 

8 3.05 3.93 12.89 3.98 3.47 2.6 1.89 1.56 1.32 1.21]; 
ng,'ko') 

 % handle 4 rce to deflection 
ounds2newtons, theta_deg, 'k', 'LineWidth', 2.0); 

ng = [8 12 1 18 17 14 10 6 4 2 1]; 
.82 3.65 8.59 3.68 3.11 2.53 2.02 1.74 1.55 1.35]; 

 

 % set plot properties

al . theoretrical force to deflectio for', ... 

egend('handle 3 theoretical', 'handle 3 experim tal', ... 
   'handle 4 theoretical', 'handle 4 experimental', 'Location', ... 

        'Best'); 
end 
 
 
 
 
 
 

   
            F_f(k,i) = TMP(6,n); 
        else 
            F_f(k,i) = 0; 
        end 
         
        k = k + 1; 
    end 

     k = 1
end
  
if (nargin < 2) 
    plot_results = input('Should input 
end 
if (plot_results) 
    figure 
     
    % handle 3 force to defl
    plot (:,3)*pounds2newto(P
    hold on; 
    % d ine experimeef
    ang =
    force = [2.2
    plot(force,a
  
   fo
    plot(P(:,4)*p
    % define experimental force to deflection for handle 4 and plot 
    a 6 
    force = [2.26 2
    plot(force,ang,'k^')
  
    
    axis([0 7 0 20]) 

vs    title(['Experiment n 
        ' Handles 3 and 4']); 
    xlabel('force (N)'); ylabel('deflection (deg)'); 

en    l
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H.2 VCJV5_COMPLIANT_PARAMETRIC_MODEL.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   modified: 12/07/06 
%   by: kwb 
% 
  
function [theta_deg P P_b R_x R_y R_b F_f] = ... 
    VCJv5_compliant_parametric_model(L_jp, K, del_0, include_friction, ... 
    plot_results)    
  
% 
%   >> PURPOSE << 
% 
%   This program solves for the input force P given an initial deflection 
%   of the joystick post. It further allows for easy manipulation of the 
%   joystick length, spring rate, and spring pretension. It assumes that 
%   the center of mass of the joystick handle is 85% high along the lever 
%   arm. 
% 

 40]; 
3 .06 .09]; 

ystick shaft (in) 
 (lbs/in) 
 of spring (in) 
n for if the model should include friction 
 on sliding surface 

e (N) 

reaction force at pivot, y-direction (N) 

  n          November 30 2006 
  del() 

%   Test points consisted of the following 
      L_jp = [3.0 3.5 4.0]; % 

%       K = [20 30
%       del_0 = [0.0
% 
  >> INPUT << % 

% 
%   L_jp            length of jo

e%   K               spring rat
%   del_0           pretension
%   include_friction    boolea

   force%                    
%   plot_results    boolean for if force to deflection curve should be 
%                   plotted 
% 
%   >> OUTPUT << 
% 
%   P               input forc
%   P_b             force between stick and boot (N) 
  R_x             reaction force at pivot, x-direction (N) % 

%   R_y             
%   R_b             reaction force at boot, y-direction (N) 
%   F_f             force of friction (N) 

computed (degress) %   theta_deg       angles for which forces are 
% 
   NO NC TUR <<% >> ME LA E  

% 
 see Figure in section 3.1.2.2 %  

% 
  >> HISTORY << % 

% Version 1.0         karl brow
igi% or nal version. based on version 2.0 of VCJv5_compliant_mo

   December 06 2006 %   Version 1.1         kwb              
%   remove coefficient of friction. 
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%   Version 1.2         kwb                 December 06 2006 
 surface plane above pivot center 

ns = 4.44822162; 

0=no]? '); 

bove base where P_b is centered 

theta_deg = 0.1:0.1:18; 
theta = theta_deg*pi/180; 
  
k = 1;  % counter 
  
%%% Find forces  

an(j) + (d_p/cos(j)-d_p); 
el + del_0); 

 
   R_y     R_b     F_f     Soln 
   0       0       0       -Fs(k)*sin(j) 
   -1      0       0       Fs(k)*cos(j)+mg 

       1       0       Fs(k)*cos(j)+mg_b 
        -Fs(k)*r_b-mg_b*w_mg]; 

_x     R_y     R_b     Soln 
1      0       0       -Fs(k)*sin(j) 
       -1      0       Fs(k)*cos(j)+mg 
       0       0       mg*L_mg*sin(j) 
       0       1       Fs(k)*cos(j)+mg_b 
       0       0       -Fs(k)*r_b-mg_b*w_mg]; 

% ne odel to include height of sl  w m iding
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
pounds2newto
  
if (nargin < 4) 
    include_friction = input('Should friction be included [1=yes;
end 
  
%%% Define physical parameters 
L_mg = 0.75*L_jp; 
mg = 0.125; 
  
_hb C = 0.85;    % percent-height a

0.67; h_b = C_hb*
r_b = 0.9/2;     

872; h_mg = 0.1
mg_b = 0.039; 

 = 0.215; d_p
% d_p = 0.00; 
  

for j = theta 
  % angle-dependent parameters   

    del = r_b*t
    Fs(k) = K*(d
    L_b = del + h_b + d_p; 
    w_mg = r_b*cos(j) - h_mg*sin(j); 
  
    % define matrix 

ion)    if (include_frict
%   P       P_b     R_x  
A = [cos(j) -cos(j) -1   

        -sin(j) sin(j)  0
    -L_jp   L_b     0       0       0       0       mg*L_mg*sin(j) 

0       0       -1      Fs(k)*sin(j)     0       cos(j)  0       
  0       -sin(j) 0       0  
   0       -h_b    0       0       0       0
    else 
        %   P       P_b     R
        A = [cos(j) -cos(j) -
            -sin(j) sin(j)  0
            -L_jp   L_b     0
            0       -sin(j) 0
            0       -h_b    0
    end 
  
    % find solution 
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    TMP = rref(A); 
  
    % check that solution exist

 
s; if not, exit 

or A is not full\nexiting...\n'); 

 
s; 

wtons; 
ewtons; 

  se 

  d 

d 

d 

  axis([0 7 0 20]) 
'T eflection of joystick']); 
'f flection (deg)'); 

    R_TMP = rank(TMP);
    FULL_RANK = 5 + include_friction; 
    if (R_TMP < FULL_RANK) 

         beep();
        fprintf('rank of solution f
        return; 

     end
  
    % save answers 
    [m n] = size(TMP); 
    P(k) = TMP(1,n)*pounds2newtons;

wton    P_b(k) = TMP(2,n)*pounds2ne
2ne    R_x(k) = TMP(3,n)*pounds

    R_y(k) = TMP(4,n)*pounds2n
    R_b(k) = TMP(5,n)*pounds2newtons; 
    if (include_friction) 
        F_f(k) = TMP(6,n); 
  el
        F_f(k) = 0; 
  en
  
    k = k + 1; 
en
  
if (nargin < 5) 
    plot_results = input('Should input force be plotted [0=no; 1=yes]? '); 
en
if (plot_results) 
    figure 
    plot(P, theta_deg, 'k'); 
  
    % set plot properties 
  
    title([ heoretrical force to d
    xlabel( orce (N)'); ylabel('de
end 
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APPENDIX I 

_STUDY.CPP 

 

", Form1); 
", Form2); 
p", Form3); 
; 
iles\National Instruments\NI-DAQ\Lib\nidex32b.lib"); 
les\National Instruments\NI-DAQ\Lib\nidaq32b.lib"); 
les\Borland\CBuilder5\Lib\PSDK\winmm.lib"); 
cpp"); 
rm4); 
orm5); 
-------------------------------------------------------- 

 DAQcard; //serial or DAQcard. used in all units 
 i may want to consider making the 'Reset 0' buttons  

 if read_type == DAQcard.... 
//used for debugging: 0=short; 1=long trials 

= DAQcard) { 

SOURCE CODE IMPLEMENTATION FOR MSS TUNING 

I.1 TUNING_MS

//---------------------------------------------------------------------------
 
#include <vcl.h> 
#include <stdio.h> 
#include "ICD.h" 
 
#pragma hdrstop 
ERES("Tuning_MS_Study.res"); US

USEFORM("Unit1.cpp
ppUSEFORM("Unit2.c

EFORM("Unit3.cpUS
USE("ICD.h", File)
USELIB("C:\Program F
USELIB("C:\Program Fi

 FiUSELIB("C:\Program
USEUNIT("ICD_functions.

FoUSEFORM("Unit4.cpp", 
 FUSEFORM("Unit5.cpp",

-------------------//
 
//global variables 
js_types read_type =

f: //note to sel
  //enabled only  

int trial_length = 0; 
     // remember to update unit 5, too 

NSTANCE, LPSTR, int) WINAPI WinMain(HINSTANCE, HI
{ 

;  int iStatus
 
 if (read_type =
  /***** CONFIGURE INPUT SETTINGS for NI-DAQcard *****/ 
  iStatus = ICD_initialize(); 
  if (DEBUG_lo) printf("iStatus, ICD_initialize = %d\n", iStatus); 
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  /* find offset voltages */ 

 iStatus = ICD_find_offset(); 
) printf("iStatus, ICD_find_offset = %d\n", iStatus); 

try 

tion->CreateForm(__classid(TForm1), &Form1); 
reateForm(__classid(TForm2), &Form2); 

lication->CreateForm(__classid(TForm3), &Form3); 
 Application->CreateForm(__classid(TForm4), &Form4); 

eateForm(__classid(TForm5), &Form5); 
>Run(); 

tion) 

ption(&exception); 

return 0; 

------------------------------------------- 

------------------------------------------------ 

fine Unit1H 
-------------------- 

pp> 
cl

---------------------------------- 

 TLabel *Label6; 

 

  TEdit *Edit1; 

 
  if (DEBUG_lo
 } 
 
 
 { 
  Application->Initialize(); 
  Applica
  Application->C
  App
 
  Application->Cr
  Application-
 } 
 catch (Exception &excep
 { 
  Application->ShowExce
 } 
 
} 
//--------------------------------

I.2 UNIT1.H 

//-------------------------
 

--

#ifndef Unit1H 
#d
//
e
-------------------------------------------------------

#include <Classes.hpp> 
#i
#in
nclude <Controls.h

ude <StdCtrls.hpp> 
#include <Forms.hpp> 
#include <ComCtrls.hpp> 
#include <ExtCtrls.hpp> 
#include <Menus.hpp> 
//-----------------------------------------
class TForm1 : public TForm 
{ 
 __published: // IDE-managed Components 
  TPanel *Panel1; 
 
  TLabel *Label7; 
  TLabel *Label8;
  TLabel *Label9; 
  TLabel *Label1; 
  TLabel *Label2; 
  TLabel *Label3; 
  TButton *Button1; 
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  TEdit *Edit2; 
  TEdit *Edit3; 
  TEdit *Edit4; 

 TButton *Button2; 

kBar2; 
 

; 

3; 
tton1Click(TObject *Sender); 

Object *Sender); 
ject *Sender); 

bject *Sender); 
Object *Sender); 
bject *Sender); 
ject *Sender); 

stcall TrackBar2Change(TObject *Sender); 
 void __fastcall FormPaint(TObject *Sender); 

seDown(TObject *Sender, TMouseButton Button, 
X, int Y); 

ouseMove(TObject *Sender, TShiftState Shift, 
int X, int Y); 

 TShiftState Shift, int X, int Y); 
bject *Sender); 

Sender); 

------------------------------- 
AGE TForm1 *Form1; 
------------------------------------------------------------------- 

 
  TRadioButton *RadioButton1; 
  TRadioButton *RadioButton2; 
  TRadioButton *RadioButton3; 
  TTrackBar *TrackBar1; 
  TTrackBar *Trac
  TEdit *Edit5;
  TEdit *Edit6; 
  TLabel *Label11
  TLabel *Label12; 
  TTimer *Timer1; 
  TMainMenu *MainMenu1; 
  TButton *Button3; 
  TEdit *Edit10; 
  TLabel *Label1
  void __fastcall Bu
  void __fastcall Button2Click(T
  void __fastcall Timer1Timer(TOb
  void __fastcall RadioButton1Click(TO
  void __fastcall RadioButton2Click(T
  void __fastcall RadioButton3Click(TO
  void __fastcall TrackBar1Change(TOb
  void __fa
 
  void __fastcall FormMou
  TShiftState Shift, int 
  void __fastcall FormM
  
  void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button, 
 
//        void __fastcall TemplateBias1Click(TO
  void __fastcall Button3Click(TObject *Sender); 
  void __fastcall Edit10Change(TObject *
 
private:  // User declarations 
public:  // User declarations 
        __fastcall TForm1(TComponent* Owner); 
}; 
//--------------------------------------------
extern PACK
--------//

#endif 
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I.3 UNIT1.CPP 

/* ** ** ** ******************************************************* *** ** *** ***** 

bject and allows the 
 

-------------------------------- 

nclude <stdlib.h> 

 
 

15926 
------------------------------------------------------------------- 

ng: 0=short; 1=long trials 
te unit 5, too 
 defined in Tuning_MS_Study.cpp 

*
 
 Version: 1.0 
 Modified: 11/06/06 

:  By kwb 
 
 Unit1.cpp 
 
 >> PURPOSE << 

information for the su This code collects dead zone 
 clinician to set its shape and size. the clinician also enters the 
 subject ID at the bottom of the screen. 
 

>> NOMENCLATURE <<  
 do i want to include nomenclature??? 
 

>> HISTORY <<  
 Version 1.0  kwb  19 june 2006 

 last modified  original version. based on tuning software for TBI study,
5/8/06.  

 added capability to read from NI-DAQcard. 
 remove fastcalls for adjusting center_x and center_y since my driver s/w 
 does this automatically. 
****************************************************************************/ 
 
//-------------------------------------------
 
#include <vcl.h> 
#pragma hdrstop 
 
#include <dos.h> 

.h> #include <stdio
#i
#include <math.h> 
#include <mmsystem.h> 

ws.h> #include <windo
#include <string.h> 
 
#include "Unit1.h"

.h"#include "Unit2
#include "Unit3.h" 
#include "ICD.h" 
 

3.14#define PI 
--------//

#pragma package(smart_init) 
#pragma resource "*.dfm" 
orm1 *Form1; TF

 
//global variables 
extern int trial_length; //used for debuggi
      // remember to upda

l or DAQcard.extern js_types read_type;//seria
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int MaxDZForce, MaxDZDirection, shape; 
siString subject_id; 

ruct time bt, et; 

t , mousey=300; 

oint sr; 

ircle(void); 
d canvas_draw(void); 
id Draw_Rectangle(void); 

MM

----------------------------------------------- 
mponent* Owner) 

tton3->Enabled=false; 

this finds the deadzone boundary for the circle shape 
t boundary(void) 

int i, xplot, yplot, radius=0, temp; 
+=2) { 

8); 

} 

return (int) sqrt(radius)+1; 

Form1->Canvas->Brush->Color = clWhite; 

An
 
st
int ab1, ab2, direction, speed, count; 
int data[30000]; 
 
bool mdown; 
in xaxis=15, yaxis=10, mousex=300
float angle=0; 
int scale=4, cradius; 
TP
 
//function prototypes? 
int boundary(void); 
void Draw_C
voi
vo
void boundary_ellipse(void); 
void Draw_Ellipse(void); 
 
//possibly old serial varaiables 
HANDLE hComm=NULL; 
CO TIMEOUTS ctmoNew={0},ctmoOld; 
DWORD dwEvent,dwError; 
COMSTAT cs; 
 
//----------------------------

m1::TForm1(TCo__fastcall TFor
 : TForm(Owner) 
{ 
 timeBeginPeriod(1); 
 //printf("foo\n"); 
 //Form1->Bu
} 
 
// 
in
{ 
 
 for (i=0; i<count*2; i
   xplot=(250*(data[i]-2048)/2048); 
  yplot=(250*(data[i+1]-2048)/204
  temp=xplot*xplot+yplot*yplot; 
  if (temp>radius) radius=temp; 
 
 
 
} 
 
void Draw_Circle(void) 
{ 
 Form1->Refresh(); 
 
 
 Form1->Canvas->Pen->Color = clRed; 
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 Form1->Canvas->Ellipse(mousex-scale*cradius,mousey-scale*cradius, 
use

 t  
void __fastcall TForm1::Button1Click(TObject *Sender) 

// Local Variables 
 int iStatus; 
 
 // Device Readings 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
    // Initialization 
 Form1->Refresh(); 
 Form1->Timer1->Enabled=true; 
 Form1->Button1->Enabled=false; 
 Form1->RadioButton1->Checked=false; 
 Form1->RadioButton1->Enabled=true; 
 Form1->RadioButton2->Checked=false; 
 Form1->RadioButton2->Enabled=true; 
 count=0; 
 
 /* Serial Communication */ 
 if (read_type == serial) { 
  DCB dcbCommPort; 
     
hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,0,NUL
L); 
  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 //Get start time 
 gettime(&bt); 
 
 while(1) 
 { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  // based on type of data port, get data from joystick 
    switch (read_type) { 
   case DAQcard: 

mo x+scale*cradius, mousey+scale*cradius); 
 
} 
 
// his causes the program to collect deadzone data from the joystick

{ 
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     iStatus = ICD_get_data(&tmp_ICD_x_reading,&tmp_ICD_y_reading); 
    if (DEBUG_lo)  
     printf("iStatus, ICD_get_data = %d\n", iStatus); 
    direction = data[count*2] = tmp_ICD_x_reading + 2048; 
    speed = data[count*2+1] = tmp_ICD_y_reading + 2048; 
    ++count; 
    break; 
   case serial: 
    while(1) //keep trying to get data until you do 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     { 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=data[count*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=data[count*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
 
       ++count; 
       break; 
      } 
     } 
    break; 
   }   //end switch 
  } 
 
  gettime(&et); 
  if (trial_length == 1) 
  { 
   if (abs(et.ti_sec-bt.ti_sec)==30) break; 
  } 
  else 
  { 
   if (abs(et.ti_sec-bt.ti_sec)==10 ||  
    abs(et.ti_sec-bt.ti_sec)==50) break; 
  } 
 } 
 
 Form1->Timer1->Enabled=false; 
 Form1->Button1->Enabled=true; 
 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
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 } 
 
} 
 
// this draws the data points on the screen 
void  canvas_draw(void) 
{ 
 int xplot, yplot, i; 
 for (i=0; i<count*2; i+=2) { 
  xplot=300+(250*scale*(data[i]-2048)/2048); 
  yplot=300-(250*scale*(data[i+1]-2048)/2048); 
 
  Form1->Canvas->Brush->Color = clGray; 
  Form1->Canvas->Pen->Color = clGray; 
  Form1->Canvas->Ellipse(xplot-1,yplot-1,xplot+1, yplot+1); 
 } 
} 
 
// this finds the deadzone boundary for the square shape 
TPoint boundary_square(void) 
{ 
 int i, xplot, yplot, radiusx=0, radiusy=0; 
 TPoint sp; 
 for (i=0; i<count*2; i+=2) { 
  xplot=abs(250*(data[i]-2048)/2048); 
  if (xplot>radiusx){ 
   radiusx=xplot; 
   sp.x=xplot; 
  } 
  yplot=abs(250*(data[i+1]-2048)/2048); 
  if (yplot>radiusy) { 
   radiusy=yplot; 
   sp.y=yplot; 
  } 
 } 
 return sp; 
} 
 
void Draw_Rectangle(void) 
{ 
 Form1->Refresh(); 
 Form1->Canvas->Brush->Color = clWhite; 
 Form1->Canvas->Pen->Color = clRed; 
 Form1->Canvas->Rectangle(mousex-scale*(sr.x+1),mousey-scale*(sr.y+1), 
mousex+scale*(sr.x+1), mousey+scale*(sr.y+1)); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::Button2Click(TObject *Sender) 
{ 
 canvas_draw(); 
} 
//--------------------------------------------------------------------------- 
 
 
void __fastcall TForm1::Timer1Timer(TObject *Sender) 
{ 
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 char strBuffer[9]; 
 
 sprintf(strBuffer, "%2d:%02d:%02d.%02d", bt.ti_hour, bt.ti_min, 

bt.ti_sec, bt.ti_hund); 
 Form1->Edit3->Text=strBuffer; 
 sprintf(strBuffer, "%2d:%02d:%02d.%02d", et.ti_hour, et.ti_min, 

et.ti_sec, et.ti_hund); 
 Form1->Edit4->Text=strBuffer; 
 
 Form1->Edit1->Text=IntToStr(direction); 
 Form1->Edit2->Text=IntToStr(speed); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::RadioButton1Click(TObject *Sender) 
{ 
 mousex=300;mousey=300; 
 Form1->Refresh(); 
 cradius=boundary(); 
 Draw_Circle(); 
 canvas_draw(); 
 shape=1; 
 Form1->TrackBar1->Enabled=true; 
 Form1->TrackBar2->Enabled=false; 
 Form1->TrackBar1->Position=cradius; 
 Form1->TrackBar2->Position=cradius; 
 Form1->Edit5->Text="    "+IntToStr(TrackBar1->Position*2048/250); 
 // Edit5->Text="    "+IntToStr(TrackBar1->Position); 
 Form1->Edit6->Text="    "+IntToStr(TrackBar2->Position*2048/250); 
 Form1->Button3->Enabled=true; 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::RadioButton2Click(TObject *Sender) 
{ 
 mousex=300;mousey=300; 
 Form1->Refresh(); 
 sr=boundary_square(); 
 Draw_Rectangle(); 
 canvas_draw(); 
 shape=2; 
 Form1->TrackBar1->Enabled=true; 
 Form1->TrackBar2->Enabled=true; 
 
 Form1->TrackBar1->Position=sr.x; 
 Form1->TrackBar2->Position=sr.y; 
 Form1->Edit5->Text="    "+IntToStr(TrackBar1->Position*2048/250); 
 Form1->Edit6->Text="    "+IntToStr(TrackBar2->Position*2048/250); 
 Form1->Button3->Enabled=true; 
} 
//--------------------------------------------------------------------------- 
 
void boundary_ellipse(void) 
{ 
 int i, xplot, yplot, temp, tempxplot=0, tempyplot=0, a, b; 
 double anglepoint,rx,ry,rprime,r; 
 for (i=0; i<count*2; i+=2) { 
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  xplot=(250*(data[i]-2048)/2048); 
  yplot=(250*(data[i+1]-2048)/2048); 
 
  //erika's code 
  if (abs(xplot)>tempxplot) 
   tempxplot=abs(xplot); 
  if (abs(yplot)>tempyplot) 
   tempyplot=abs(yplot); 
 } 
 for (i=0; i<count*2; i+=2) { 
  xplot=(250*(data[i]-2048)/2048); 
  yplot=(250*(data[i+1]-2048)/2048); 
 
  if (xplot!=0) 
   anglepoint=atan2(yplot,xplot); 
  else 
   if (yplot>=0) 
    anglepoint=0; 
   else 
    anglepoint=3*PI/2; 
  rprime=xplot*xplot+yplot*yplot; 
        

r=(tempxplot*cos(anglepoint))*(tempxplot*cos(anglepoint))+(tempyplot
*sin(anglepoint))*(tempyplot*sin(anglepoint)); 

 
  if (rprime>r) 
  { 
   tempxplot=tempxplot+(sqrt(rprime)-sqrt(r))+1; 
   tempyplot=tempyplot+(sqrt(rprime)-sqrt(r))+1; 
  } 
 } 
 xaxis=tempxplot; 
 yaxis=tempyplot; 
} 
 
//--------------------------------------------------------------------------- 
void Draw_Ellipse(void) 
{ 
 int xc, yc, orignx, origny; 
 float theta, xn, yn; 
 
 Form1->Refresh(); 
 
 Form1->Canvas->Brush->Color = clWhite; 
 Form1->Canvas->Pen->Color = clRed; 
 
 for (theta=0;theta<=2*PI;theta+=0.01) { 
  xn=scale*xaxis*cos(theta); 
  yn=scale*yaxis*sin(theta); 
  xc=xn*cos(angle)-yn*sin(angle)+mousex; 
  yc=xn*sin(angle)+yn*cos(angle)+mousey; 
  if (theta==0.0) { 
   Form1->Canvas->MoveTo(xc,yc); 
   orignx=xc; 
   origny=yc; 
  } 
  else Form1->Canvas->LineTo(xc, yc); 

 202 



 } 
 
 Form1->Canvas->LineTo(orignx, origny); 
} 
 
void __fastcall TForm1::RadioButton3Click(TObject *Sender) 
{ 

->Color = clWhite; 
 Form1->Canvas->Pen->Color = clRed; 
 boundary_ellipse(); 
 Form1->Canvas->Ellipse(300-scale*xaxis,300-scale*yaxis, 300+scale*xaxis, 
300+scale*yaxis); 
 
 canvas_draw(); 
 shape=3; 
 Form1->TrackBar1->Enabled=true; 
 Form1->TrackBar2->Enabled=true; 
 
 Form1->TrackBar1->Position=xaxis; 
 Form1->TrackBar2->Position=yaxis; 
 
 Form1->Edit5->Text="    "+IntToStr(TrackBar1->Position*2048/250); 
 Form1->Edit6->Text="    "+IntToStr(TrackBar2->Position*2048/250); 
 Form1->Button3->Enabled=true; 
} 
 
void __fastcall TForm1::TrackBar1Change(TObject *Sender) 
{ 
 xaxis=TrackBar1->Position; 
 cradius=TrackBar1->Position; 
 sr.x=TrackBar1->Position; 
 Form1->Edit5->Text="    "+IntToStr(TrackBar1->Position*2048/250); 
 // Edit5->Text="    "+IntToStr(TrackBar1->Position); 
 switch(shape) { 
  case 1:  { 
   Draw_Circle(); 
   Form1->Edit6->Text="    "+IntToStr(TrackBar1-> 
Position*2048/250); 
   Form1->TrackBar2->Position=TrackBar1->Position; 
   break; 
  } 
  case 2:  { 
   Draw_Rectangle(); 
   break; 
  } 
  case 3:  { 
   Draw_Ellipse(); 
   break; 
  } 
 } 
 canvas_draw(); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::TrackBar2Change(TObject *Sender) 

 mousex=300;mousey=300; 
 Form1->Refresh(); 
 Form1->Canvas->Brush
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{ 
 yaxis=TrackBar2->Position; 
 sr.y=TrackBar2->Position; 
 Form1->Edit6->Text="      "+IntToStr(TrackBar2->Position*2048/250); 
 switch(shape) { 
 
  case 2:  { 
   Draw_Rectangle(); 
   break; 
  } 
  case 3:  { 
   Draw_Ellipse(); 
   break; 
  } 
 
 } 
 canvas_draw(); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::FormPaint(TObject *Sender) 
{ 
 Canvas->Brush->Color = clWhite; 
 Canvas->Pen->Color = clSilver; 
 Canvas->Pen->Width = 3; 
 Canvas->Rectangle(50, 50, 550, 550); 
 
 Canvas->Brush->Color = clBlack; 
 Canvas->Pen->Color = clBlack; 
 Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button, 
      TShiftState Shift, int X, int Y) 
{ 
 mdown=true; 
} 
//--------------------------------------------------------------------------- 
 
 
// This function may be obsolete for the MS Study... 
void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift, 
      int X, int Y) 
{ 
 if(mdown) { 
  Form1->Refresh(); 
 
  switch(shape) { 
   case 1:  { 
    Draw_Circle(); 
    break; 
   } 
   case 2:  { 
    Draw_Rectangle(); 
    break; 
   } 
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   case 3:  { 
    Draw_Ellipse(); 
    break; 
   } 
  } 
 
  canvas_draw(); 
  mousex=X; 
  mousey=Y; 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button, 
      TShiftState Shift, int X, int Y) 
{ 
 mdown=false; 
} 
//--------------------------------------------------------------------------- 
 
/* 
// This function may be obsolete for the MS Study... 
void __fastcall TForm1::TemplateBias1Click(TObject *Sender) 
{ 
        Form1->Visible=false; 
        Form2->Visible=true; 
//        Form3->Visible=false; 
} 
*/ 
 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm1::Button3Click(TObject *Sender) 
{ 
 MaxDZDirection=StrToInt(Edit5->Text); 
 MaxDZForce=StrToInt(Edit6->Text); 
 Form1->Visible=false; 
// Form2->Visible=true; 
 Form3->Visible=true; 
} 
//--------------------------------------------------------------------------- 
 
 
// this function handles the text box for the subject ID 
void __fastcall TForm1::Edit10Change(TObject *Sender) 
{ 
 subject_id = Form1->Edit10->Text; 
} 
//--------------------------------------------------------------------------- 
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I.4 UNIT2.H 

//--------------------------------------------------------------------------- 
#ifndef Unit2H 
#define Unit2H 
//--------------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include <ComCtrls.hpp> 
#include <ExtCtrls.hpp> 
#include "CGAUGES.h" 
//--------------------------------------------------------------------------- 
class TForm2 : public TForm 
{ 
 __published: // IDE-managed Components 
  TPanel *Panel2; 
  TLabel *Label6; 
  TLabel *Label7; 
  TEdit *Edit2; 
  TEdit *Edit3; 
  TPanel *Panel3; 
  TLabel *Label3; 
  TLabel *Label4; 
  TLabel *Label5; 
  TLabel *Label10; 
  TButton *Button4; 
  TComboBox *ComboBox1; 
  TEdit *Edit1; 
  TEdit *Edit6; 
  TTrackBar *TrackBar2; 
  TTrackBar *TrackBar1; 
  TTrackBar *TrackBar3; 
  TEdit *Edit7; 
  TButton *Button3; 
  TButton *Button5; 
  TButton *Button6; 
  TButton *Button7; 
  TTimer *Timer1; 
  TEdit *Edit8; 
  TLabel *Label1; 
  TEdit *Edit9; 
  TLabel *Label11; 
  TLabel *Label12; 
  TEdit *Edit11; 
  TEdit *Edit10; 
  TLabel *Label14; 
  TEdit *Edit12; 
  TEdit *Edit13; 
  TLabel *Label16; 
  TEdit *Edit14; 
  TEdit *Edit15; 
  TLabel *Label18; 
  TEdit *Edit16; 
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  TEdit *Edit17; 
  TEdit *Edit18; 
  TLabel *Label2; 
  TLabel *Label19; 
  TLabel *Label20; 
  TEdit *Edit19; 
  TEdit *Edit20; 
  TLabel *Label21; 
  TCheckBox *CheckBox1; 
  TCheckBox *CheckBox2; 
  TCheckBox *CheckBox3; 
  TCheckBox *CheckBox4; 
  TButton *Button1; 
  TEdit *Edit21; 
  TLabel *Label24; 
  TLabel *Label25; 
  TEdit *Edit22; 
  TEdit *Edit23; 
  TLabel *Label13; 
  TLabel *Label15; 
  TButton *Button8; 
  TLabel *Label26; 
  TLabel *Label8; 
  TLabel *Label9; 
  TLabel *Label17; 
  TTimer *Timer2; 
  TButton *Button2; 
  TButton *Button9; 
  TEdit *Edit4; 
  TEdit *Edit5; 
  TLabel *Label22; 
  TLabel *Label23; 
  void __fastcall Button3Click(TObject *Sender); 
  void __fastcall Button5Click(TObject *Sender); 
  void __fastcall Timer1Timer(TObject *Sender); 
  void __fastcall Button6Click(TObject *Sender); 
  void __fastcall Button7Click(TObject *Sender); 
  void __fastcall FormPaint(TObject *Sender); 
  void __fastcall FormActivate(TObject *Sender); 
  void __fastcall ComboBox1Change(TObject *Sender); 
  void __fastcall TrackBar1Change(TObject *Sender); 
  void __fastcall TrackBar3Change(TObject *Sender); 
  void __fastcall Button4Click(TObject *Sender); 
  void __fastcall Button1Click(TObject *Sender); 
  void __fastcall Button8Click(TObject *Sender); 
  void __fastcall Timer2Timer(TObject *Sender); 
  void __fastcall Button2Click(TObject *Sender); 
  void __fastcall Button9Click(TObject *Sender); 
 private: // User declarations 
 
 public:  // User declarations 
  __fastcall TForm2(TComponent* Owner); 
}; 
//--------------------------------------------------------------------------- 
extern PACKAGE TForm2 *Form2; 
//--------------------------------------------------------------------------- 
#endif 
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I.5 UNIT2.CPP 

/**************************************************************************** 
 
 Version: 1.0 
 Modified: 10/10/06 
 By: kwb 
 
 Unit2.cpp 
 
 >> PURPOSE << 

This code determines bias axes, default gain, template, and strength 
characaterization data for the subject. 

 
 >> NOMENCLATURE << 
 do i want to include nomenclature??? 
 
 >> HISTORY << 
 Version 1.0  kwb  22 june 2006 
 original version. based on tuning software for TBI study, last modified 
 5/8/06. 
 add capability to read from NI-DAQcard. 
 though the layout has been adjusted to fit in one screen, much of the 
 functionality remains the same. 
 add two minute strength data collection 
 gain is such that comfort force produces 90% max force needed [not 80%] 
 make (+) and (-) axis gains independent 
 
*****************************************************************************
**/ 
 
//--------------------------------------------------------------------------- 
 
#include <vcl.h> 
#pragma hdrstop 
 
#include <dos.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <windows.h> 
#include <mmsystem.h> 
 
#include "Unit1.h" 
#include "Unit2.h" 
#include "Unit3.h" 
#include "Unit4.h" 
#include "ICD.h" 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma link "CGAUGES" 
#pragma resource "*.dfm" 
 
#define PI 3.1415926 
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TForm2 *Form2; 
 
//global variables 
extern int trial_length; //0=short, 1=long; set in Tuning_MS_Study.cpp 
extern js_types read_type;//serial or DAQcard. defined in Tuning_MS_Study.cpp 
int trial_direction; //0=forward,1=backward,2=left,3=right 
//parameters to output to unit 3 for writing 
extern int MaxDZForce, MaxDZDirection, shape; 
extern AnsiString subject_id; 
int index;  //template shape 
float Biasangle; 
float XGain[2], YGain[2]; 
 
//unit variables 
bool strength_trial; 
DWORD trial_time[2] = {6*1000, 30*1000}; // sec -> msec 
DWORD Strial_time[2] = {10*1000, 120*1000}; // sec -> msec 
DWORD sample_period = 10; //msec 
int Fdata[50000], Bdata[50000], Ldata[50000], Rdata[50000], Sdata[100000]; 
DWORD Fdata_time[20000], Bdata_time[20000], Ldata_time[20000], 
 Rdata_time[20000], Sdata_time[50000]; 
int Fsamplenum, Bsamplenum, Lsamplenum, Rsamplenum, Ssamplenum; 
int Fmaxmeanforce=0,Bmaxmeanforce=0,Lmaxmeanforce=0,Rmaxmeanforce=0; 
int Fcomfortforce=0, Bcomfortforce=0, Lcomfortforce=0,Rcomfortforce=0; 
float LBiasangle; 
int maxforcewindow = 50; 
TPoint square[10]; 
TPoint interpoint; 
int xvalue=250, yvalue=250; 
//struct time bt, et; 
int direction, speed; 
float angle; 
DWORD start_time, end_time; 
float gauge_progress; 
 
typedef void (*Selected0Function)(); 
 
//function prototypes 
bool outcircle(int, int); 
void Select_template(void); 
void Draw_Diamond(TPoint *sp, TPoint *ep); 
void Draw_Astroid(int x, int y); 
void Circle(void); 
void Ellipse(void); 
void Astroid(void); 
void Diamond(void); 
void canvas_draw(void); 
 
//serial variables 
HANDLE hComm=NULL; 
COMMTIMEOUTS ctmoNew={0},ctmoOld; 
DWORD dwBytesRead; 
DWORD dwEvent,dwError; 
COMSTAT cs; 
 
//--------------------------------------------------------------------------- 
__fastcall TForm2::TForm2(TComponent* Owner) 
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 : TForm(Owner) 
{ 
//    Form2->Panel1->Enabled=false; 
 Form2->Button8->Enabled=false; 
 Form2->Button4->Enabled=false; 
} 
 
void Select_template(void) 
{ 
     //   Form2->Refresh(); 
} 
 
void Draw_Diamond(int x, int y) 
{ 
 TPoint dia[5]; 
 
 dia[0].x=300+xvalue; 
 dia[0].y=300; 
 
 dia[1].x=300; 
 dia[1].y=300-yvalue; 
 
 dia[2].x=300-xvalue; 
 dia[2].y=300; 
 
 dia[3].x=300; 
 dia[3].y=300+yvalue; 
 
 Form2->Canvas->Brush->Color = clWhite; 
 Form2->Canvas->Pen->Color = clSilver; 
 Form2->Canvas->Polygon(dia,3); 
} 
 
void Diamond(void) 
{ 
 Form2->Refresh(); 
 
 Draw_Diamond(250,250); 
 Form2->Canvas->Brush->Color = clBlack; 
 Form2->Canvas->Pen->Color = clBlack; 
 Form2->Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
 
 Form2->TrackBar1->Position=xvalue=250; 
 Form2->TrackBar2->Position=yvalue=250; 
} 
void Circle(void) 
{ 
 // Form2->Refresh(); 
 
 Form2->Canvas->Brush->Color = clWhite; 
 Form2->Canvas->Pen->Color = clSilver; 
 Form2->Canvas->Ellipse(50,50,550,550); 
 
 Form2->Canvas->Brush->Color = clBlack; 
 Form2->Canvas->Pen->Color = clBlack; 
 Form2->Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
 

 210 



 Form2->TrackBar1->Position=xvalue=250; 
 Form2->TrackBar2->Position=yvalue=250; 
 canvas_draw(); 
} 
 
void Ellipse(void) 
{ 
 Form2->Refresh(); 
 
 Form2->Canvas->Brush->Color = clWhite; 
 Form2->Canvas->Pen->Color = clSilver; 
 Form2->Canvas->Ellipse(50,175,550,425); 
 
 Form2->Canvas->Brush->Color = clBlack; 
 Form2->Canvas->Pen->Color = clBlack; 
 Form2->Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
 
 Form2->TrackBar1->Position=xvalue=250; 
 Form2->TrackBar2->Position=yvalue=250; 
} 
 
void Draw_Astroid(int x, int y) 
{ 
 float i, a, b; 
 
 Form2->Canvas->Brush->Color = clWhite; 
 Form2->Canvas->Pen->Color = clSilver; 
 Form2->Canvas->MoveTo(x+300, 300); 
 
 for (i=PI/180; i<2*PI; i+=PI/180) { 
  a=300+x*cos(i)*cos(i)*cos(i); 
  b=300-y*sin(i)*sin(i)*sin(i); 
  Form2->Canvas->LineTo(a,b); 
 } 
} 
 
void Astroid(void) 
{ 
 Form2->Refresh(); 
 
 Draw_Astroid(250, 250); 
 
 Form2->Canvas->Brush->Color = clBlack; 
 Form2->Canvas->Pen->Color = clBlack; 
 Form2->Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
 
 Form2->TrackBar1->Position=xvalue=250; 
 Form2->TrackBar2->Position=yvalue=250; 
} 
 
Selected0Function selectedresource[] = 
{ 
 Select_template, 
 Circle, 
 Astroid, 
 Diamond, 
 Ellipse 
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}; 
 
// forward button click 
void __fastcall TForm2::Button3Click(TObject *Sender) 
{ 
 int maxforce=0, aforce[20000]; 
 int maxforceindex=0, j=0, i,indexh, indexl; 
 int ab1, ab2; 
 DWORD current_time; 
 
   // Device Readings 
 int iStatus; 
 float tmp_ICD_x_reading = 0.0; 
    float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // initializations 
 gauge_progress = 0; 
 Timer1->Enabled=true; 
 Timer2->Enabled=true; 
 Button3->Enabled=False; 
 Fsamplenum=1; 
 trial_direction = 0; 
 Form4->Visible=true; 
 strength_trial = false; 
 
 if (read_type == serial) { 
  // Serial Port Communication 
  DCB dcbCommPort; 
 
 hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXISTING,0
,NULL); 
  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time and initial readings 
 start_time = timeGetTime(); 
 switch (read_type) { 
  case DAQcard: 
   iStatus = ICD_get_data(&tmp_ICD_x_reading, &tmp_ICD_y_reading); 
   if (DEBUG_lo) printf("iStatus, ICD_get_data = %d\n", iStatus); 
   direction = Fdata[0] = tmp_ICD_x_reading + 2048; 
   speed = Fdata[1] = tmp_ICD_y_reading + 2048; 
   Fdata_time[0] = timeGetTime() - start_time; 
   break; 
  case serial: 
   ClearCommError(hComm,&dwError,&cs); 
   while(1) 

 212 



   { 
    if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     if (dwEvent & EV_RXCHAR) 
     { 
      ClearCommError(hComm,&dwError,&cs); 
      ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
      ClearCommError(hComm,&dwError,&cs); 
 
      ab1=(unsigned int)(unsigned char)(InBuff[0]); 
      if ((ab1&240)!=16) break; 
      ab2=(unsigned int)(unsigned char)(InBuff[2]); 
      if ((ab2&240)!=32) break; 
 
      direction=Fdata[0]=(ab1&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[1]); 
      speed=Fdata[1]=(ab2&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[3]); 
      Fdata_time[0] = timeGetTime() - start_time; 
      break; 
     } 
   } 
   break; 
 } // end switch 
 
 while(1) 
 { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
    current_time = timeGetTime() - start_time; 

if ((current_time - Fdata_time[Fsamplenum-1]) >= 
sample_period) { 

     iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 

     if (DEBUG_lo)  
      printf("iStatus, ICD_get_data = %d\n", iStatus); 
     direction = Fdata[Fsamplenum*2]=tmp_ICD_x_reading+2048; 
     speed = Fdata[Fsamplenum*2+1] = tmp_ICD_y_reading+2048; 
     Fdata_time[Fsamplenum] = timeGetTime() - start_time; 
     ++Fsamplenum; 
    } 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
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       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=Fdata[Fsamplenum*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=Fdata[Fsamplenum*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
 
        Fdata_time[Fsamplenum]=timeGetTime()-start_time; 
 
       ++Fsamplenum; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  end_time = timeGetTime(); 
  if ((end_time - start_time) >= trial_time[trial_length]) break; 
 } 
 
 //close everything out 
 Timer1->Enabled=false; 
 Timer2->Enabled=false; 
 Form4->Close(); 
 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
 
 Button3->Enabled=True; 
 
 for (i=0; i<Fsamplenum*2; i+=2) { 

aforce[j]=(int) sqrt((Fdata[i]-2048)*(Fdata[i]-2048)+(Fdata[i+1]-
2048)*(Fdata[i+1]-2048)); 

  j++; 
 } 
 
 for (i=0; i<Fsamplenum; i++) 
  if (maxforce<aforce[i])  { 
   maxforce=aforce[i]; 
   maxforceindex=i; 
  } 
 
 
 //max force is defined as the average force of the max force +/-50 
 //samples 
 if (maxforceindex-maxforcewindow<0) indexl=0; 
 else indexl=maxforceindex-maxforcewindow; 
 if (maxforceindex+maxforcewindow>Fsamplenum)indexh=Fsamplenum-1; 
 else indexh=maxforceindex+maxforcewindow; 
 
 for (j=indexl;j<=indexh;j++) 
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  Fmaxmeanforce+=aforce[j]; 
 Fmaxmeanforce= Fmaxmeanforce /(indexh-indexl+1); 
 
 //comfort force is defined as the average force for the second half 
 //of the test period 
 for (i=Fsamplenum/2;i<Fsamplenum;i++) 
  Fcomfortforce+=aforce[i]; 
 Fcomfortforce = Fcomfortforce / (Fsamplenum/2); 
 
 Edit9->Text=IntToStr(Fmaxmeanforce); 
 Edit8->Text=IntToStr(Fcomfortforce); 
 
 int xplot, yplot, xsum=0, ysum=0, nsample=Fsamplenum; 
 
 for (i=0; i<Fsamplenum*2; i+=2) { 
  xplot=300+(250*(Fdata[i]-2048)/2048); 
  yplot=300-(250*(Fdata[i+1]-2048)/2048); 
  if (abs(xplot-300)<=20 & abs(yplot-300)<=20) 
   nsample-=1; 
  else { 
   xsum+=xplot; 
   ysum+=yplot; 
  } 
  Canvas->Brush->Color = clGray; 
  Canvas->Pen->Color = clGray; 
  Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 Biasangle=PI-(PI/2-atan2(ysum/nsample-300,xsum/nsample-300)); 
 Form2->Canvas->Brush->Color = clRed; 
 Form2->Canvas->Pen->Color = clRed; 
 Form2->Canvas->MoveTo(300, 300); 
 Form2->Canvas->LineTo((int)(xsum/nsample), (int) (ysum/nsample)); 
 
 if (Biasangle<0) Biasangle=2*PI+Biasangle; 
 Form2->Edit16->Text=FloatToStr(Biasangle*180/PI); 
 
} 
//--------------------------------------------------------------------------- 
 
// backward button click 
void __fastcall TForm2::Button5Click(TObject *Sender) 
{ 
 int maxforce=0, aforce[20000]; 
 int maxforceindex=0, j=0, i, indexh, indexl; 
 int ab1, ab2; 
 DWORD current_time; 
 
   // Device Readings 
 int iStatus; 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // initializations 
 gauge_progress = 100; 
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 Timer1->Enabled=true; 
 Timer2->Enabled=true; 
 Button5->Enabled=False; 
 Bsamplenum=1; 
 trial_direction = 1; 
 Form4->Visible=true; 
 strength_trial = false; 
 
 if (read_type == serial) { 
  // Serial Port Communication 
  DCB dcbCommPort; 
 

hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time 
 start_time = timeGetTime(); 
 switch (read_type) { 
  case DAQcard: 
   iStatus = ICD_get_data(&tmp_ICD_x_reading, &tmp_ICD_y_reading); 
   if (DEBUG_lo) printf("iStatus, ICD_get_data = %d\n", iStatus); 
   direction = Bdata[0] = tmp_ICD_x_reading + 2048; 
   speed = Bdata[1] = tmp_ICD_y_reading + 2048; 
   Bdata_time[0] = timeGetTime() - start_time; 
   break; 
  case serial: 
   ClearCommError(hComm,&dwError,&cs); 
   while(1) 
   { 
    if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     if (dwEvent & EV_RXCHAR) 
     { 
      ClearCommError(hComm,&dwError,&cs); 
      ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
      ClearCommError(hComm,&dwError,&cs); 
 
      ab1=(unsigned int)(unsigned char)(InBuff[0]); 
      if ((ab1&240)!=16) break; 
      ab2=(unsigned int)(unsigned char)(InBuff[2]); 
      if ((ab2&240)!=32) break; 
 
      direction=Bdata[0]=(ab1&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[1]); 
      speed=Bdata[1]=(ab2&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[3]); 
      Bdata_time[0] = timeGetTime() - start_time; 
      break; 
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     } 
   } 
   break; 
 } // end switch 
 
 while(1) 
 { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
    current_time = timeGetTime() - start_time; 
    if ((current_time - Bdata_time[Bsamplenum-1]) >= 
sample_period) { 
      iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
     if (DEBUG_lo)  
      printf("iStatus, ICD_get_data = %d\n", iStatus); 
     direction=Bdata[Bsamplenum*2]=tmp_ICD_x_reading + 2048; 
     speed = Bdata[Bsamplenum*2+1]=tmp_ICD_y_reading + 2048; 
     Bdata_time[Bsamplenum] = timeGetTime() - start_time; 
     ++Bsamplenum; 
    } 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=Bdata[Bsamplenum*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=Bdata[Bsamplenum*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
        Bdata_time[Bsamplenum]=timeGetTime()-start_time; 
 
       ++Bsamplenum; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  end_time = timeGetTime(); 
  if ((end_time - start_time) >= trial_time[trial_length]) break; 
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 } 
 
 Timer1->Enabled=false; 
 Timer2->Enabled=false; 
 Form4->Close(); 
 Button5->Enabled=True; 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
 
 for (i=0; i<Bsamplenum*2; i+=2) { 
  aforce[j]=(int) sqrt((Bdata[i]-2048)*(Bdata[i]-2048)+(Bdata[i+1]-
2048)*(Bdata[i+1]-2048)); 
  j++; 
 } 
 
 for (i=0; i<Bsamplenum; i++) 
  if (maxforce<aforce[i])  { 
   maxforce=aforce[i]; 
   maxforceindex=i; 
  } 
 
 if (maxforceindex-maxforcewindow<0) indexl=0; 
 else indexl=maxforceindex-maxforcewindow; 
 if (maxforceindex+maxforcewindow>Bsamplenum)indexh=Bsamplenum-1; 
 else indexh=maxforceindex+maxforcewindow; 
 
 for (j=indexl;j<=indexh;j++) 
  Bmaxmeanforce+=aforce[j]; 
 Bmaxmeanforce= Bmaxmeanforce /(indexh-indexl+1); 
 
 for (i=Bsamplenum/2;i<Bsamplenum;i++) 
  Bcomfortforce+=aforce[i]; 
 Bcomfortforce = Bcomfortforce / (Bsamplenum/2); 
 
 Edit11->Text=IntToStr(Bmaxmeanforce); 
 Edit10->Text=IntToStr(Bcomfortforce); 
 
 int xplot, yplot; 
 
 for (i=0; i<Bsamplenum*2; i+=2) { 
  xplot=300+(250*(Bdata[i]-2048)/2048); 
  yplot=300-(250*(Bdata[i+1]-2048)/2048); 
 
  Canvas->Brush->Color = clGray; 
  Canvas->Pen->Color = clGray; 
  Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
// left button click 
void __fastcall TForm2::Button6Click(TObject *Sender) 
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{ 
 int maxforce=0, aforce[20000]; 
 int maxforceindex=0, j=0, i, indexh, indexl; 
 int ab1, ab2; 
 DWORD current_time; 
 
   // Device Readings 
 int iStatus; 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // initializations 
 gauge_progress = 100; 
 Timer1->Enabled=true; 
 Timer2->Enabled=true; 
 Button6->Enabled=False; 
 Lsamplenum=1; 
 trial_direction = 2; 
 Form4->Visible=true; 
 strength_trial = false; 
 
 if (read_type == serial) { 
  // Serial Port Communication 
  DCB dcbCommPort; 
 

hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time 
 start_time = timeGetTime(); 
 switch (read_type) { 
  case DAQcard: 
   iStatus = ICD_get_data(&tmp_ICD_x_reading, &tmp_ICD_y_reading); 
   if (DEBUG_lo) printf("iStatus, ICD_get_data = %d\n", iStatus); 
   direction = Ldata[0] = tmp_ICD_x_reading + 2048; 
   speed = Ldata[1] = tmp_ICD_y_reading + 2048; 
   Ldata_time[0] = timeGetTime() - start_time; 
   break; 
  case serial: 
   ClearCommError(hComm,&dwError,&cs); 
   while(1) 
   { 
    if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     if (dwEvent & EV_RXCHAR) 
     { 
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      ClearCommError(hComm,&dwError,&cs); 
      ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
      ClearCommError(hComm,&dwError,&cs); 
 
      ab1=(unsigned int)(unsigned char)(InBuff[0]); 
      if ((ab1&240)!=16) break; 
      ab2=(unsigned int)(unsigned char)(InBuff[2]); 
      if ((ab2&240)!=32) break; 
 
      direction=Ldata[0]=(ab1&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[1]); 
      speed=Ldata[1]=(ab2&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[3]); 
      Ldata_time[0] = timeGetTime() - start_time; 
      break; 
     } 
   } 
   break; 
 } // end switch 
 
 while(1) 
 { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
    current_time = timeGetTime() - start_time; 
    if ((current_time - Ldata_time[Lsamplenum-1])  
     >= sample_period) { 
      iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
     if (DEBUG_lo)  
      printf("iStatus, ICD_get_data = %d\n", iStatus); 
     direction = Ldata[Lsamplenum*2]=tmp_ICD_x_reading+2048; 
     speed = Ldata[Lsamplenum*2+1] = tmp_ICD_y_reading+2048; 
     Ldata_time[Lsamplenum] = timeGetTime() - start_time; 
     ++Lsamplenum; 
    } 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
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       direction=Ldata[Lsamplenum*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=Ldata[Lsamplenum*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
        Ldata_time[Lsamplenum]=timeGetTime()-start_time; 
 
       ++Lsamplenum; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  end_time = timeGetTime(); 
  if ((end_time - start_time) >= trial_time[trial_length]) break; 
 } 
 
 Timer1->Enabled=false; 
 Timer2->Enabled=false; 
 Form4->Close(); 
 Button6->Enabled=True; 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
 
 for (i=0; i<Lsamplenum*2; i+=2) { 
  aforce[j]=(int) sqrt((Ldata[i]-2048)*(Ldata[i]-2048)+(Ldata[i+1]-
2048)*(Ldata[i+1]-2048)); 
  j++; 
 } 
 
 for (i=0; i<Lsamplenum; i++) 
  if (maxforce<aforce[i])  { 
   maxforce=aforce[i]; 
   maxforceindex=i; 
  } 
 
 if (maxforceindex-maxforcewindow<0) indexl=0; 
 else indexl=maxforceindex-maxforcewindow; 
 if (maxforceindex+maxforcewindow>Lsamplenum)indexh=Lsamplenum-1; 
 else indexh=maxforceindex+maxforcewindow; 
 
 for (j=indexl;j<=indexh;j++) 
  Lmaxmeanforce+=aforce[j]; 
 Lmaxmeanforce= Lmaxmeanforce /(indexh-indexl+1); 
 
 for (i=Lsamplenum/2;i<Lsamplenum;i++) 
  Lcomfortforce+=aforce[i]; 
 Lcomfortforce = Lcomfortforce / (Lsamplenum/2); 
 
 Edit13->Text=IntToStr(Lmaxmeanforce); 
 Edit12->Text=IntToStr(Lcomfortforce); 
 
 int xplot, yplot, xsum=0, ysum=0, nsample=Lsamplenum; 
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 for (i=0; i<Lsamplenum*2; i+=2) { 
  xplot=300+(250*(Ldata[i]-2048)/2048); 
  yplot=300-(250*(Ldata[i+1]-2048)/2048); 
  if (abs(xplot-300)<=20 & abs(yplot-300)<=20) 
   nsample-=1; 
  else { 
   xsum+=xplot; 
   ysum+=yplot; 
  } 
  Canvas->Brush->Color = clGray; 
  Canvas->Pen->Color = clGray; 
  Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 LBiasangle=PI-(PI/2-atan2(ysum/nsample-300,xsum/nsample-300)); 
 Form2->Canvas->Brush->Color = clRed; 
 Form2->Canvas->Pen->Color = clRed; 
 Form2->Canvas->MoveTo(300, 300); 
 Form2->Canvas->LineTo((int)(xsum/nsample), (int) (ysum/nsample)); 
 
 if (LBiasangle<0) LBiasangle=2*PI+LBiasangle; 
 Form2->Edit20->Text=FloatToStr(LBiasangle*180/PI); 
 
 Form2->Edit19->Text=FloatToStr(cos(fabs(LBiasangle-Biasangle))); 
} 
//--------------------------------------------------------------------------- 
 
//right button click 
void __fastcall TForm2::Button7Click(TObject *Sender) 
{ 
 int maxforce=0, aforce[20000]; 
 int maxforceindex=0, j=0, i, indexh, indexl; 
 int ab1, ab2; 
 DWORD current_time; 
 
   // Device Readings 
 int iStatus; 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // initializations 
 gauge_progress = 0; 
 Timer1->Enabled=true; 
 Timer2->Enabled=true; 
 Button7->Enabled=False; 
 Rsamplenum=1; 
 trial_direction = 3; 
 Form4->Visible=true; 
 strength_trial = false; 
 
 if (read_type == serial) { 
  // Serial Port Communication 
  DCB dcbCommPort; 
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hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time 
 start_time = timeGetTime(); 
 switch (read_type) { 
  case DAQcard: 
   iStatus = ICD_get_data(&tmp_ICD_x_reading, &tmp_ICD_y_reading); 
   if (DEBUG_lo) printf("iStatus, ICD_get_data = %d\n", iStatus); 
   direction = Rdata[0] = tmp_ICD_x_reading + 2048; 
   speed = Rdata[1] = tmp_ICD_y_reading + 2048; 
   Rdata_time[0] = timeGetTime() - start_time; 
   break; 
  case serial: 
   ClearCommError(hComm,&dwError,&cs); 
   while(1) 
   { 
    if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     if (dwEvent & EV_RXCHAR) 
     { 
      ClearCommError(hComm,&dwError,&cs); 
      ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
      ClearCommError(hComm,&dwError,&cs); 
 
      ab1=(unsigned int)(unsigned char)(InBuff[0]); 
      if ((ab1&240)!=16) break; 
      ab2=(unsigned int)(unsigned char)(InBuff[2]); 
      if ((ab2&240)!=32) break; 
 
      direction=Rdata[0]=(ab1&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[1]); 
      speed=Rdata[1]=(ab2&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[3]); 
      Rdata_time[0] = timeGetTime() - start_time; 
      break; 
     } 
   } 
   break; 
 } // end switch 
 
  while(1) 
  { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
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  switch (read_type) { 
   case DAQcard: 
    current_time = timeGetTime() - start_time; 
    if ((current_time - Rdata_time[Rsamplenum-1]) >=  
     sample_period) { 
     iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
     if (DEBUG_lo)  
      printf("iStatus, ICD_get_data = %d\n", iStatus); 
     direction = Rdata[Rsamplenum*2]=tmp_ICD_x_reading+2048; 
     speed = Rdata[Rsamplenum*2+1] = tmp_ICD_y_reading+2048; 
     Rdata_time[Rsamplenum] = timeGetTime() - start_time; 
     ++Rsamplenum; 
    } 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=Rdata[Rsamplenum*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=Rdata[Rsamplenum*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
        Rdata_time[Rsamplenum]=timeGetTime()-start_time; 
 
       ++Rsamplenum; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  end_time = timeGetTime(); 
  if ((end_time - start_time) >= trial_time[trial_length]) break; 
 } 
 
 Timer1->Enabled=false; 
 Timer2->Enabled=false; 
 Form4->Close(); 
 Button7->Enabled=True; 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
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 //find digital force input for all the data 
 for (i=0; i<Rsamplenum*2; i+=2) { 
  aforce[j]=(int) sqrt((Rdata[i]-2048)*(Rdata[i]-2048)+(Rdata[i+1]-
2048)*(Rdata[i+1]-2048)); 
  j++; 
 } 
 
 //find max digital force for the first half of the trial 
 for (i=0; i<Rsamplenum; i++) 
  if (maxforce<aforce[i])  { 
   maxforce=aforce[i]; 
   maxforceindex=i; 
  } 
 
 //find index values for max force +/- 100 samples, but ensure that it's 
 // within bounds for the first half of the trial 
 if (maxforceindex-maxforcewindow<0) indexl=0; 
 else indexl=maxforceindex-maxforcewindow; 
 if (maxforceindex+maxforcewindow>Rsamplenum)indexh=Rsamplenum-1; 
 else indexh=maxforceindex+maxforcewindow; 
 
 //the maximum force is the averaged value of the max force +/- ~100 
 // data points 
 for (j=indexl;j<=indexh;j++) 
  Rmaxmeanforce+=aforce[j]; 
 Rmaxmeanforce= Rmaxmeanforce /(indexh-indexl+1); 
 
 //the comfort force is the average force for the 2nd half of the trial 
 for (i=Rsamplenum/2;i<Rsamplenum;i++) 
  Rcomfortforce+=aforce[i]; 
 Rcomfortforce = Rcomfortforce / (Rsamplenum/2); 
 
 Edit15->Text=IntToStr(Rmaxmeanforce); 
 Edit14->Text=IntToStr(Rcomfortforce); 
 
 int xplot, yplot; 
 
 for (i=0; i<Rsamplenum*2; i+=2) { 
  xplot=300+(250*(Rdata[i]-2048)/2048); 
  yplot=300-(250*(Rdata[i+1]-2048)/2048); 
 
  Canvas->Brush->Color = clGray; 
  Canvas->Pen->Color = clGray; 
  Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
//two minute button click 
void __fastcall TForm2::Button2Click(TObject *Sender) 
{ 
 int j=0, i; 
 int ab1, ab2; 
 DWORD current_time; 
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 // Device Readings 
 int iStatus; 
 float tmp_ICD_x_reading = 0.0; 
    float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // initializations 
 gauge_progress = 0; 
 Timer1->Enabled=true; 
 Timer2->Enabled=true; 
 Button7->Enabled=False; 
 Ssamplenum = 1; 
 trial_direction = 0; 
 Form4->Visible=true; 
 strength_trial = true; 
 
 if (read_type == serial) { 
  // Serial Port Communication 
  DCB dcbCommPort; 

hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time 
 start_time = timeGetTime(); 
 switch (read_type) { 
  case DAQcard: 
   iStatus = ICD_get_data(&tmp_ICD_x_reading, &tmp_ICD_y_reading); 
   if (DEBUG_lo) printf("iStatus, ICD_get_data = %d\n", iStatus); 
   direction = Sdata[0] = tmp_ICD_x_reading + 2048; 
   speed = Sdata[1] = tmp_ICD_y_reading + 2048; 
   Sdata_time[0] = timeGetTime() - start_time; 
   break; 
  case serial: 
   ClearCommError(hComm,&dwError,&cs); 
   while(1) 
   { 
    if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     if (dwEvent & EV_RXCHAR) 
     { 
      ClearCommError(hComm,&dwError,&cs); 
      ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
      ClearCommError(hComm,&dwError,&cs); 
 
      ab1=(unsigned int)(unsigned char)(InBuff[0]); 
      if ((ab1&240)!=16) break; 
      ab2=(unsigned int)(unsigned char)(InBuff[2]); 
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      if ((ab2&240)!=32) break; 
 
      direction=Sdata[0]=(ab1&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[1]); 
      speed=Sdata[1]=(ab2&15)*256 + 
       (unsigned int)(unsigned char)(InBuff[3]); 
      Sdata_time[0] = timeGetTime() - start_time; 
      break; 
     } 
   } 
   break; 
 } // end switch 
 
  while(1) 
  { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
    current_time = timeGetTime() - start_time; 
    if ((current_time - Sdata_time[Ssamplenum-1]) >=  
     sample_period) 
    { 
      iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
     if (DEBUG_lo)  
      printf("iStatus, ICD_get_data = %d\n", iStatus); 
     direction = Sdata[Ssamplenum*2]=tmp_ICD_x_reading+2048; 
     speed = Sdata[Ssamplenum*2+1] = tmp_ICD_y_reading+2048; 
     Sdata_time[Ssamplenum] = timeGetTime() - start_time; 
     ++Ssamplenum; 
    } 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=Sdata[Ssamplenum*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=Sdata[Ssamplenum*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
        Sdata_time[Ssamplenum]=timeGetTime()-start_time; 
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       ++Ssamplenum; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  end_time = timeGetTime(); 
  if ((end_time - start_time) >= Strial_time[trial_length]) break; 
 } 
 
 Timer1->Enabled=false; 
 Timer2->Enabled=false; 
 Form4->Close(); 
 Button7->Enabled=True; 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
} 
//--------------------------------------------------------------------------- 
 
//this timer controls the text display of the joystick forces 
void __fastcall TForm2::Timer1Timer(TObject *Sender) 
{ 
 char strBuffer[9]; 
 float time_remaining; 
 
 if (strength_trial == true) 
 time_remaining = (Strial_time[trial_length]-(end_time-start_time))/1000.0; 
 else 
 time_remaining = (trial_time[trial_length]-(end_time-start_time))/1000.0; 
 
 sprintf(strBuffer, "  %d", (int)(time_remaining+.5)); 
 Edit21->Text=strBuffer; 
 
 //update speed and direction in text box 
 Edit2->Text=IntToStr(direction); 
 Edit3->Text=IntToStr(speed); 
} 
//--------------------------------------------------------------------------- 
 
// this timer controls the feedback gauges 
void __fastcall TForm2::Timer2Timer(TObject *Sender) 
{ 
 int dir, spd; 
 int force_limit = 2000; 
 int force_magnitude, DZ_magnitude; 
 int within_bounds; 
 float gauge_velocity = .3; 
// DWORD gauge_time, gauge_dt; 
 
 //determine if force is within bounds 
 dir = direction - 2048; 
 spd = speed - 2048; 
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 force_magnitude = sqrt(dir*dir + spd*spd); 
 DZ_magnitude = sqrt(MaxDZForce*MaxDZForce+MaxDZDirection*MaxDZDirection); 
 
 if ((force_magnitude > 0.9*force_limit) || 
  (force_magnitude < 1.5*DZ_magnitude)) 
 { 
  within_bounds = 0; 
 } 
 else within_bounds = 1; 
 
 //update height of gauge 
//     gauge_time = timeGetTime(); 
//     gauge_dt = abs(gauge_time - end_time); 
 if (within_bounds) 
 { 
  if ((trial_direction == 0) ||(trial_direction == 3)) 
   gauge_progress += gauge_velocity; 
  else 
   gauge_progress -= gauge_velocity; 
 
  if (gauge_progress > 100) 
   gauge_progress = 0; 
  if (gauge_progress < 0) 
   gauge_progress = 100; 
 } 
 
 if ((trial_direction == 0) ||(trial_direction == 1)) 
  Form4->CGauge2->Progress = (long)gauge_progress; 
 else 
  Form4->CGauge1->Progress = (long)gauge_progress; 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm2::FormPaint(TObject *Sender) 
{ 
 square[0].x=50; 
 square[0].y=50; 
 
 square[1].x=550; 
 square[1].y=50; 
 
 square[2].x=550; 
 square[2].y=550; 
 
 square[3].x=50; 
 square[3].y=550; 
 
 Canvas->Brush->Color = clWhite; 
 Canvas->Pen->Color = clSilver; 
 Canvas->Pen->Width = 3; 
 Canvas->Polygon(square,3); 
 
 Canvas->Brush->Color = clBlack; 
 Canvas->Pen->Color = clBlack; 
 Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
 
} 
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//--------------------------------------------------------------------------- 
 
 
 
void __fastcall TForm2::FormActivate(TObject *Sender) 
{ 
 Form2->Edit17->Text=IntToStr(MaxDZForce); 
 Form2->Edit18->Text=IntToStr(MaxDZDirection); 
 
} 
//--------------------------------------------------------------------------- 
 
void canvas_draw(void) 
{ 
 int xplot, yplot, i; 
 
 for (i=0; i<Rsamplenum*2; i+=2) { 
  xplot=300+(250*(Rdata[i]-2048)/2048); 
  yplot=300-(250*(Rdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 for (i=0; i<Lsamplenum*2; i+=2) { 
  xplot=300+(250*(Ldata[i]-2048)/2048); 
  yplot=300-(250*(Ldata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 for (i=0; i<Bsamplenum*2; i+=2) { 
  xplot=300+(250*(Bdata[i]-2048)/2048); 
  yplot=300-(250*(Bdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 for (i=0; i<Fsamplenum*2; i+=2) { 
  xplot=300+(250*(Fdata[i]-2048)/2048); 
  yplot=300-(250*(Fdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 switch(shape) { 
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  case 1:  { 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
   Form2->Canvas->Ellipse(300-MaxDZDirection*250/2048,300-
MaxDZForce*250/2048, 300+MaxDZDirection*250/2048, 300+MaxDZForce*250/2048); 
   break; 
  } 
  case 2:  { 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
   Form2->Canvas->Rectangle(300-(MaxDZDirection*250/2048+1),300-
(MaxDZForce*250/2048+1), 300+(MaxDZDirection*250/2048+1), 
300+(MaxDZForce*250/2048+1)); 
   break; 
  } 
  case 3:  { 
   int xc, yc, orignx, origny; 
   float theta, xn, yn; 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
 
   for (theta=0;theta<=2*PI;theta+=0.01) { 
    xn=MaxDZDirection*250/2048*cos(theta); 
    yn=MaxDZForce*250/2048*sin(theta); 
    xc=xn+300; 
    yc=yn+300; 
    if (theta==0.0) { 
     Form2->Canvas->MoveTo(xc,yc); 
     orignx=xc; 
     origny=yc; 
    } 
    else Form2->Canvas->LineTo(xc, yc); 
   } 
 
   Form2->Canvas->LineTo(orignx, origny); 
   break; 
  } 
 } 
} 
 
void __fastcall TForm2::ComboBox1Change(TObject *Sender) 
{ 
 index=ComboBox1->ItemIndex; 
 selectedresource[index](); 
 Form2->Button8->Enabled=true; 
} 
//--------------------------------------------------------------------------- 
 
void repaint() 
{ 
 
 Form2->Refresh(); 
 
 Form2->Canvas->Brush->Color = clWhite; 
 Form2->Canvas->Pen->Color = clSilver; 
 
 int xc, yc, orignx, origny; 
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 float theta, xn, yn; 
 
 switch(index) { 
  case 1:   { 
   for (theta=0;theta<=2*PI;theta+=0.01) { 
    xn=xvalue*cos(theta); 
    yn=yvalue*sin(theta); 
    xc=xn*cos(angle)-yn*sin(angle)+300; 
    yc=xn*sin(angle)+yn*cos(angle)+300; 
    if (theta==0.0) { 
     Form2->Canvas->MoveTo(xc,yc); 
     orignx=xc; 
     origny=yc; 
    } 
    else Form2->Canvas->LineTo(xc, yc); 
   } 
   Form2->Canvas->LineTo(orignx, origny); 
   break; 
  } 
      case 2:  { 
   Draw_Astroid(xvalue,yvalue); 
   break; 
  } 
  case 3:  { 
   Draw_Diamond(xvalue,yvalue); 
   break; 
  } 
        case 4: { 
   //Form1->Canvas->Ellipse(300-xvalue,300-
yvalue,300+xvalue,300+yvalue); 
   for (theta=0;theta<=2*PI;theta+=0.01) { 
    xn=xvalue*cos(theta); 
    yn=yvalue*sin(theta); 
    xc=xn*cos(angle)-yn*sin(angle)+300; 
    yc=xn*sin(angle)+yn*cos(angle)+300; 
    if (theta==0.0) { 
     Form2->Canvas->MoveTo(xc,yc); 
     orignx=xc; 
     origny=yc; 
    } 
    else Form2->Canvas->LineTo(xc, yc); 
   } 
   Form2->Canvas->LineTo(orignx, origny); 
   break; 
  } 
 } 
 
 Form2->Canvas->Brush->Color = clBlack; 
 Form2->Canvas->Pen->Color = clBlack; 
 Form2->Canvas->Ellipse(300-5,300-5,300+5, 300+5); 
} 
 
void __fastcall TForm2::TrackBar1Change(TObject *Sender) 
{ 
 Form2->Edit1->Text = "     " + IntToStr(TrackBar1->Position*2048/250); 
 xvalue = TrackBar1->Position; 
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 if (index==1) { 
    Form2->Edit6->Text = "     " + IntToStr(TrackBar1->Position*2048/250); 
  TrackBar2->Position=TrackBar1->Position; 
 } 
 else { 
    Form2->Edit6->Text = "     " + IntToStr(TrackBar2->Position*2048/250); 
 } 
 yvalue = TrackBar2->Position; 
 
 repaint(); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm2::TrackBar3Change(TObject *Sender) 
{ 
 angle=TrackBar3->Position*PI/180; 
 Form2->Edit7->Text = "     " + IntToStr(TrackBar3->Position); 
 repaint(); 
} 
//--------------------------------------------------------------------------- 
 
// when click to next step is pressed save bias axes force data and switch 
forms 
void __fastcall TForm2::Button4Click(TObject *Sender) 
{ 
 FILE *ffdata, *fbdata, *fldata, *frdata, *fsdata; 
 int i; 
 int j; 
 
 // write force data files from bias axes calculation 
 ffdata=fopen("c:\\Settings\\forward_data.txt","w"); 
 fbdata=fopen("c:\\Settings\\backward_data.txt","w"); 
 fldata=fopen("c:\\Settings\\left_data.txt","w"); 
 frdata=fopen("c:\\Settings\\right_data.txt","w"); 
 fsdata=fopen("c:\\Settings\\strength_data.txt","w"); 
 fprintf(ffdata, "time (msec)\tdir\tspd\n"); 
 fprintf(fbdata, "time (msec)\tdir\tspd\n"); 
 fprintf(fldata, "time (msec)\tdir\tspd\n"); 
 fprintf(frdata, "time (msec)\tdir\tspd\n"); 
 fprintf(fsdata, "time (msec)\tdir\tspd\n"); 
 for (i=0; i<Fsamplenum; i++) 
     fprintf(ffdata,"%d\t%d\t%d\n",Fdata_time[i],Fdata[2*i],Fdata[2*i+1]); 
 for (i=0; i<Bsamplenum; i++) 
     fprintf(fbdata,"%d\t%d\t%d\n",Bdata_time[i],Bdata[2*i],Bdata[2*i+1]); 
 for (i=0; i<Lsamplenum; i++) 
     fprintf(fldata,"%d\t%d\t%d\n",Ldata_time[i],Ldata[2*i],Ldata[2*i+1]); 
 for (i=0; i<Rsamplenum; i++) 
     fprintf(frdata,"%d\t%d\t%d\n",Rdata_time[i],Rdata[2*i],Rdata[2*i+1]); 
 for (i=0; i<Ssamplenum; i++) 
     fprintf(fsdata,"%d\t%d\t%d\n",Sdata_time[i],Sdata[2*i],Sdata[2*i+1]); 
 fclose(ffdata); 
 fclose(fbdata); 
 fclose(fldata); 
 fclose(frdata); 
 fclose(fsdata); 
 
 // switch forms 
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 Form2->Visible=false; 
 Form3->Visible=true; 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm2::Button1Click(TObject *Sender) 
{ 
 int maxForce=0, dzforce=0, meanComfort=0, Stickforce=4096; 
 //max force is the max of the four directions 
 if (maxForce<Fmaxmeanforce) maxForce=Fmaxmeanforce; 
 if (maxForce<Bmaxmeanforce) maxForce=Bmaxmeanforce; 
 if (maxForce<Lmaxmeanforce) maxForce=Lmaxmeanforce; 
 if (maxForce<Rmaxmeanforce) maxForce=Rmaxmeanforce; 
 
 //meanComfort is the mean of the comfort forces 
 meanComfort=(Fcomfortforce+Bcomfortforce+Lcomfortforce+Rcomfortforce)/4; 
 
 dzforce=(MaxDZForce>=MaxDZDirection ? MaxDZForce: MaxDZDirection); 
 
 if (dzforce<0.4*maxForce) CheckBox2->Checked=true; 
 else CheckBox2->Checked=false; 
 
 if (cos(fabs(LBiasangle-Biasangle))<=0.7) CheckBox3->Checked=true; 
 else CheckBox3->Checked=false; 
 
 if (meanComfort>1.5*dzforce)  CheckBox1->Checked=true; 
 else CheckBox1->Checked=false; 
 
 if (maxForce < 0.5*Stickforce)  CheckBox4->Checked=true; 
 else CheckBox4->Checked=false; 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm2::Button8Click(TObject *Sender) 
{ 
 int xplot, yplot, i; 
 int dir_comfortforce, spd_comfortforce; 
 int dir_rot, spd_rot; 
 
 for (i=0; i<Rsamplenum*2; i+=2) { 
  xplot=300+(250*(Rdata[i]-2048)/2048); 
  yplot=300-(250*(Rdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 for (i=0; i<Lsamplenum*2; i+=2) { 
  xplot=300+(250*(Ldata[i]-2048)/2048); 
  yplot=300-(250*(Ldata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
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 } 
 
 for (i=0; i<Bsamplenum*2; i+=2) { 
  xplot=300+(250*(Bdata[i]-2048)/2048); 
  yplot=300-(250*(Bdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 for (i=0; i<Fsamplenum*2; i+=2) { 
  xplot=300+(250*(Fdata[i]-2048)/2048); 
  yplot=300-(250*(Fdata[i+1]-2048)/2048); 
 
  Form2->Canvas->Brush->Color = clGray; 
  Form2->Canvas->Pen->Color = clGray; 
 
  Form2->Canvas->Ellipse(xplot-4,yplot-4,xplot+4, yplot+4); 
 } 
 
 switch(shape) { 
  case 1:  { 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
   Form2->Canvas->Ellipse(300-MaxDZDirection*250/2048,300-
MaxDZForce*250/2048, 300+MaxDZDirection*250/2048, 300+MaxDZForce*250/2048); 
   break; 
  } 
  case 2:  { 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
   Form2->Canvas->Rectangle(300-(MaxDZDirection*250/2048+1),300-
(MaxDZForce*250/2048+1), 300+(MaxDZDirection*250/2048+1), 
300+(MaxDZForce*250/2048+1)); 
   break; 
  } 
  case 3:  { 
   int xc, yc, orignx, origny; 
   float theta, xn, yn; 
 
   Form2->Canvas->Brush->Color = clWhite; 
   Form2->Canvas->Pen->Color = clRed; 
 
   for (theta=0;theta<=2*PI;theta+=0.01) { 
    xn=MaxDZDirection*250/2048*cos(theta); 
    yn=MaxDZForce*250/2048*sin(theta); 
    xc=xn+300; 
    yc=yn+300; 
    if (theta==0.0) { 
     Form2->Canvas->MoveTo(xc,yc); 
     orignx=xc; 
     origny=yc; 
    } 
    else Form2->Canvas->LineTo(xc, yc); 
   } 
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   Form2->Canvas->LineTo(orignx, origny); 
   break; 
  } 
 
 } 
 
 //find gain for each direction 
 XGain[0] = 0.90*(TrackBar1->Position*2048/250)/(float)Lcomfortforce; 
 XGain[1] = 0.90*(TrackBar1->Position*2048/250)/(float)Rcomfortforce; 
 YGain[0] = 0.90*(TrackBar2->Position*2048/250)/(float)Bcomfortforce; 
 YGain[1] = 0.90*(TrackBar2->Position*2048/250)/(float)Fcomfortforce; 
 Edit22->Text=FloatToStr(XGain[0]); 
 Edit4->Text=FloatToStr(XGain[1]); 
 Edit23->Text=FloatToStr(YGain[0]); 
 Edit5->Text=FloatToStr(YGain[1]); 
 
 Form2->Button4->Enabled=true; 
} 
 
void __fastcall TForm2::Button9Click(TObject *Sender) 
{ 
 int iStatus; 
 iStatus = ICD_find_offset(); 
} 
//--------------------------------------------------------------------------- 

I.6 UNIT3.H 

//--------------------------------------------------------------------------- 
 
#ifndef Unit3H 
#define Unit3H 
//--------------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include <ExtCtrls.hpp> 
#include <jpeg.hpp> 
//--------------------------------------------------------------------------- 
class TForm3 : public TForm 
{ 
__published: // IDE-managed Components 
 TPanel *Panel1; 
 TLabel *Label1; 
 TLabel *Label2; 
 TLabel *Label3; 
 TButton *Button1; 
 TTimer *Timer1; 
 TLabel *Label4; 
 TLabel *Label5; 
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 TEdit *Edit1; 
 TEdit *Edit2; 
 TLabel *Label6; 
 TEdit *Edit3; 
 TButton *Button2; 
 TButton *Button3; 
 TLabel *Label7; 
 TLabel *Label8; 
 TEdit *Edit4; 
 TLabel *Label11; 
 TEdit *Edit5; 
 TLabel *Label12; 
 TEdit *Edit6; 
 TLabel *Label13; 
 TEdit *Edit7; 
 TButton *Button4; 
 TButton *Button5; 
 TRadioButton *RadioButton1; 
 TRadioButton *RadioButton2; 
 TEdit *Edit8; 
 TRadioButton *RadioButton3; 
 TEdit *Edit9; 
 TEdit *Edit10; 
 TEdit *Edit11; 
 TButton *Button6; 
 void __fastcall Button1Click(TObject *Sender); 
 void __fastcall Timer1Timer(TObject *Sender); 
 
 void __fastcall FormPaint(TObject *Sender); 
 void __fastcall Button2Click(TObject *Sender); 
 void __fastcall Button3Click(TObject *Sender); 
 void __fastcall RadioButton1Click(TObject *Sender); 
 void __fastcall RadioButton2Click(TObject *Sender); 
 void __fastcall Button5Click(TObject *Sender); 
 void __fastcall Button4Click(TObject *Sender); 
 void __fastcall RadioButton3Click(TObject *Sender); 
 void __fastcall Button6Click(TObject *Sender); 
 void __fastcall Edit6Change(TObject *Sender); 
 void __fastcall Edit7Change(TObject *Sender); 
private: // User declarations 
 
public:  // User declarations 
 __fastcall TForm3(TComponent* Owner); 
}; 
//--------------------------------------------------------------------------- 
extern PACKAGE TForm3 *Form3; 
//--------------------------------------------------------------------------- 
#endif 
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I.7 UNIT3.CPP 

/**************************************************************************** 
 
 Version: 1.0 
 Modified: 11/28/06 
 By: kwb 
 
 Unit3.cpp 
 
 >> PURPOSE << 
 This code determines the fatigue adjustment parameters. The form is run  
 at the very beginning and then after the bias axes and gains are  
 determined to determine the subject's fatigue index (FI). Times and FIs  
 are then used to determine the alpha and beta parameters. 
 
 >> NOMENCLATURE << 
 do i want to include nomenclature??? 
 
 >> HISTORY << 
 Version 1.0  kwb  20 june 2006 
 original version 
 11-28-06:   remove direction of force applicaton from panel 
 
****************************************************************************/ 
//--------------------------------------------------------------------------- 
 
#include <vcl.h> 
#pragma hdrstop 
 
#include <dos.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include <windows.h> 
#include <mmsystem.h> 
 
#include "Unit1.h" 
#include "Unit2.h" 
#include "Unit3.h" 
#include "Unit5.h" 
#include "ICD.h" 
 
#pragma package(smart_init) 
#pragma resource "*.dfm" 
 
#define PI 3.1415926 
#define FI_MIN  30.0   //this is an arbitrary value and should be updated 
 
TForm3 *Form3; 
 
//global variables 
extern int trial_length; //1=long, 0=short; set in Tuning_MS_Study.cpp 
extern js_types read_type;//serial or DAQcard. defined in Tuning_MS_Study.cpp 
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//parameters to write to data files 
extern AnsiString subject_id; 
extern int MaxDZForce, MaxDZDirection, shape; 
extern int index;   // template shape 
extern float Biasangle; 
extern float XGain[2], YGain[2]; 
extern float XGain_max[2], YGain_max[2], gain_multiplier; 
 
//unit variables 
DWORD fi_start_time[3], fi_end_time; 
DWORD trial_time[2] = {8*1000, 32*1000}; // sec -> msec 
int ab1, ab2, direction, speed, count; 
int data[40000]; 
DWORD data_time[20000][3];  //time of data point collection 
float input_mag[20000][3];  //input magnitude 
float max_input; 
float alpha = 0; 
float beta = 0; 
 
static unsigned int fi_count = 0; //index counter for FI 
float FI[3]; 
 
//unit function prototypes 
void update_fi_radio(void); 
void find_alpha(void); 
void find_beta(void); 
 
//--------------------------------------------------------------------------- 
__fastcall TForm3::TForm3(TComponent* Owner) 
 : TForm(Owner) 
{ 
 //initialization of buttons 
 Form3->Button2->Enabled = false; 
 Form3->Button3->Enabled = false; 
 Form3->Button4->Enabled = false; 
 Form3->Button5->Enabled = true; 
 update_fi_radio(); 
 
 //disable time feedback if long version (assumes subject testing is in 
 // progress) 
 if (trial_length == 1) 
  Form3->Edit3->Enabled=false; 
 else 
  Form3->Edit3->Enabled=true; 
} 
//--------------------------------------------------------------------------- 
 
// this function collects force data after the Record Data button is clicked 
void __fastcall TForm3::Button1Click(TObject *Sender) 
{ 
 // Local Variables 
 int iStatus; 
 //serial varaiables 
 HANDLE hComm=NULL; 
 COMMTIMEOUTS ctmoNew={0},ctmoOld; 
 DWORD dwBytesRead; 
 DWORD dwEvent,dwError; 
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 COMSTAT cs; 
 unsigned char InBuff[10]; 
 
    // Device Readings 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 
 // Initialization 
 Form3->Refresh(); 
 Form3->Timer1->Enabled=true; 
 Form3->Button1->Enabled=false; 
 Form3->Button4->Enabled=false; 
 count=0; 
 
 if (read_type == serial) { 
  /* Serial Communication */ 
  DCB dcbCommPort; 

hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 // Get start time 
 fi_start_time[fi_count] = timeGetTime(); 
 
 while(1) 
 { 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
     iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
    if (DEBUG_lo)  
     printf("iStatus, ICD_get_data = %d\n", iStatus); 
    direction = data[count*2] = tmp_ICD_x_reading + 2048; 
    speed = data[count*2+1] = tmp_ICD_y_reading + 2048; 
    data_time[count][fi_count] =  
     timeGetTime()-fi_start_time[fi_count]; 
    ++count; 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
      if (dwEvent & EV_RXCHAR) 
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      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=data[count*2]=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=data[count*2+1]=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
 
       data_time[count][fi_count]=timeGetTime()-
fi_start_time[fi_count]; 
 
       ++count; 
       break; 
      } 
    } 
    break; 
  } // end switch 
 
  fi_end_time = timeGetTime(); 
  if ((fi_end_time - fi_start_time[fi_count]) >= 
trial_time[trial_length]) break; 
 } 
 
 Form3->Timer1->Enabled=False; 
 Form3->Button1->Enabled=True; 
 Form3->Button2->Enabled=True; 
 Form3->Button3->Enabled=True; 
 
 if (read_type == serial) { 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm3::Timer1Timer(TObject *Sender) 
{ 
 char strBuffer[9]; 
 float time_remaining; 
 
 if (trial_length == 0) 
 { 
     time_remaining = 
  (trial_time[trial_length]-(fi_end_time-fi_start_time[fi_count]))/ 
     1000.0; 
  sprintf(strBuffer, " %d", (int)(time_remaining+.5)); 
  Form3->Edit3->Text=strBuffer; 
//    Edit3->Text=IntToStr(time_remaining); 
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 } 
 else 
 { 
  sprintf(strBuffer, " %d", (int)(trial_time[trial_length]/1000.0+1)); 
  Edit3->Text=strBuffer; 
 } 
 Form3->Edit1->Text=IntToStr(direction); 
 Form3->Edit2->Text=IntToStr(speed); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm3::FormPaint(TObject *Sender) 
{ 
 Canvas->Brush->Color = clWhite; 
 Canvas->Pen->Color = clSilver; 
 Canvas->Pen->Width = 3; 
 Canvas->Rectangle(50, 50, 550, 550); 
} 
//--------------------------------------------------------------------------- 
 
// plot the force magnitude when the user clicks Show Data 
void __fastcall TForm3::Button2Click(TObject *Sender) 
{ 
 // local variables 
 int xplot, yplot, i, j=0; 
 int xdata[20000], ydata[20000]; 
 
 // initialize 
 max_input = 0; 
 
 // calculate magnitude of input and find max value 
 for (i=0; i<count*2; i+=2) { 
  xdata[j] = data[i] - 2048; 
  ydata[j] = data[i+1] - 2048; 
  input_mag[j][fi_count]= sqrt(xdata[j]*xdata[j] + ydata[j]*ydata[j]); 
  if (input_mag[j][fi_count] > max_input) 
   max_input = input_mag[j][fi_count]; 
  j+=1; 
 } 
 
 // dimensions are scaled to fit the 500x500 plot window 
 for (i=0; i<count; i++) { 
  xplot=50+500*(float)data_time[i][fi_count]/trial_time[trial_length]; 
  yplot = 550 - 500*(input_mag[i][fi_count]/max_input); 
 
  Form3->Canvas->Brush->Color = clGray; 
  Form3->Canvas->Pen->Color = clGray; 
  Form3->Canvas->Ellipse(xplot-1,yplot-1,xplot+1, yplot+1); 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
// calculate the fatigue index 
//  FI = 100 - trapz(f_max_05-f, 5, 30)/(f_max_05*25)*100% 
void __fastcall TForm3::Button3Click(TObject *Sender) 
{ 
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 // local variables 
 int i; 
 int index_05;   // index where we reach 5 seconds 
 int max_input_05 = 0; 
 int index_30;   // index where we reach 30 seconds 
 float delta[2], area=0.0; 
 char strBuffer[9]; 
 
 // find the index value for when 5 seconds occurs 
 for (i=250; i<count; i++) { 
  if (data_time[i][fi_count] <= 5000) 
   index_05 = i; 
  else 
   break; 
 } 
 // find the index value for when 30 seconds [or max time] occurs 
 for (i=index_05; i<count; i++) { 
  if (data_time[i][fi_count] <= 30000) index_30 = i; 
 } 
 
 // find max value for the first 5 seconds 
 for (i=0; i<=index_05; i++) { 
  if (input_mag[i][fi_count] > max_input_05) 
   max_input_05 = input_mag[i][fi_count]; 
 } 
 
 // find the area under the curve for the last part of the trial 
 for (i=index_05+1; i<index_30-1; i++) { 
  delta[0] = max_input_05 - input_mag[i][fi_count]; 
  delta[1] = max_input_05 - input_mag[i+1][fi_count]; 
  area += ((delta[0]+delta[1])/2.0) * 
   ((data_time[i+1][fi_count]-data_time[i][fi_count])/1000.0); 
 } 
 
 // calculate FI 
 FI[fi_count] = 1 - area/(max_input_05*(trial_time[trial_length]/1000-5)); 
 FI[fi_count] = 100*FI[fi_count]; 
 
 // update screen 
 sprintf(strBuffer, " %f", FI[fi_count]); 
 switch (fi_count) { 
  case 0: 
   Form3->Edit4->Text = strBuffer; 
   Form3->Edit9->Text = IntToStr(fi_start_time[fi_count]); 
   break; 
  case 1: 
   Form3->Edit5->Text = strBuffer; 
   Form3->Edit10->Text = IntToStr(fi_start_time[fi_count]); 
   break; 
  case 2: 
   Form3->Edit8->Text = strBuffer; 
   Form3->Edit11->Text = IntToStr(fi_start_time[fi_count]); 
   break; 
 } 
 
 ++fi_count; 
 update_fi_radio(); 

 243 



 
 Form3->Button2->Enabled=false; 
 Form3->Button3->Enabled=false; 
 switch (fi_count) { 
  case 1: 
   Form3->Button4->Enabled=true; 
   break; 
  case 2: 
   find_alpha(); 
   Form3->Button4->Enabled=true; 
   Form3->Button5->Enabled=true; 
   break; 
  case 3: 
   find_beta(); 
   Form3->Button5->Enabled=true; 
   break; 
 } 
} 
//--------------------------------------------------------------------------- 
 
// this function controls helps the user with which FI to calculate 
void update_fi_radio(void) 
{ 
 switch (fi_count) { 
  case 0: 
   Form3->RadioButton1->Checked=true; 
   Form3->RadioButton2->Checked=false; 
   Form3->RadioButton3->Checked=false; 
   break; 
  case 1: 
   Form3->RadioButton1->Checked=false; 
   Form3->RadioButton2->Checked=true; 
   Form3->RadioButton3->Checked=false; 
   break; 
  case 2: 
   Form3->RadioButton1->Checked=false; 
   Form3->RadioButton2->Checked=false; 
   Form3->RadioButton3->Checked=true; 
   break; 
  case 3: 
   Form3->RadioButton1->Checked=false; 
   Form3->RadioButton2->Checked=false; 
   Form3->RadioButton3->Checked=false; 
   Form3->Button1->Enabled = false; 
   Form3->Button2->Enabled = false; 
   Form3->Button3->Enabled = false; 
   break; 
 } 
} 
 
void __fastcall TForm3::RadioButton1Click(TObject *Sender) 
{ 
 fi_count = 0; 
 update_fi_radio(); 
 Form3->Button1->Enabled=true; 
} 
//--------------------------------------------------------------------------- 
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void __fastcall TForm3::RadioButton2Click(TObject *Sender) 
{ 
 fi_count = 1; 
 update_fi_radio(); 
 Form3->Button1->Enabled=true; 
 Form3->Button5->Enabled=false; 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm3::RadioButton3Click(TObject *Sender) 
{ 
 fi_count = 2; 
 update_fi_radio(); 
 Form3->Button1->Enabled=true; 
 Form3->Button5->Enabled=false; 
} 
//--------------------------------------------------------------------------- 
 
// click to next step goes to bias axes collection based on where we are 
void __fastcall TForm3::Button4Click(TObject *Sender) 
{ 
 switch (fi_count) { 
  case 1: 
   Form3->Visible=false; 
   Form2->Visible=true; 
   break; 
  case 2: 
   Form3->Visible=false; 
   //Form2->Visible=true; 
   Form5->Visible=true; 
   break; 
 } 
} 
//--------------------------------------------------------------------------- 
 
//this function finds alpha 
void find_alpha() 
{ 
 float p; 
 char strBuffer[9]; 
 p = (FI[1]-FI_MIN)/(FI[0]-FI_MIN); 
 //if user is within less than 1% of FI_MIN, set p to 1% 
 // we don't want the gain to increase too quickly 
 if (p < 0.01) p = 0.01; 
 alpha = -1.0/(fi_start_time[1]-fi_start_time[0])*log(p); 
 sprintf(strBuffer, "%.5e", alpha); 
 Form3->Edit6->Text=strBuffer; 
} 
 
//this function finds beta 
void find_beta() 
{ 
 float p; 
 char strBuffer[9]; 
 p = (FI[2]-FI_MIN)/(FI[0]-FI_MIN); 
 //if user is within more than 99% of FI[0], set p to 99% 
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 // we don't want the recovery rate to be too quick 
 if (p > 0.99) p = 0.99; 
 beta = -1.0/(fi_start_time[2]-fi_start_time[1])*log(1.0-p); 
 sprintf(strBuffer, "%.5e", beta); 
 Form3->Edit7->Text=strBuffer; 
} 
 
//upon finishing the last fatigue index test, write data to files and close 
// forms 
void __fastcall TForm3::Button5Click(TObject *Sender) 
{ 
 // local variables 
 char FileName[50]; 
 const char * dir = "c:\\Settings\\"; 
 FILE *fp, *ffdata, *fbdata, *fldata, *frdata, *fp_fi; 
 int biaaxis, i, j; 
 int gain_status = 1; //not sure what the condition should be 
 
 // write setup file for Virtual Driving 
 fp=fopen("c:\\Settings\\Setup.txt","w"); 
 if (shape==3) shape=1; 
 if (index==4) index=1; 
 fprintf(fp, "%s\tSubject identifier\n", subject_id); 
 fprintf(fp, "%d\tDead zone shape: 0 = no dead zone; 1 = ellipse; 2 = 

rectangle\n", shape); 
 fprintf(fp, "%d\tDead zone x-axis: a number from 0 to 500 (ignored if DZ 

shape = zero)\n", MaxDZDirection); 
 fprintf(fp, "%d\tDead zone y-axis: a number from 0 to 500 (ignored if DZ 

shape = zero)\n", MaxDZForce); 
 fprintf(fp, "%d\tTemplate shape: 0 = no template; 1 = ellipse; 2 = 

asteroid; 3 = diamond\n", index); 
 fprintf(fp, "%d\tTemplate x-axis: 100 to 2048 (ignored if template shape 

= zero)\n", Form2->TrackBar1->Position*2048/250); 
 fprintf(fp, "%d\tTemplate y-axis: 100 to 2048 (ignored if template shape 

= zero)\n", Form2->TrackBar2->Position*2048/250); 
 if ( (Biasangle*180/PI)<=10 || (Biasangle*180/PI)>=350) 
  biaaxis=0; 
 else 
  biaaxis=1; 
 fprintf(fp, "%d\tBias axis status: 0 = none; 1 = active\n", biaaxis); 
 fprintf(fp, "%f\tBias axis angle: 0 to 360 degrees (ignored if biax axis 

status = 0)\n", Biasangle*180/PI); 
 fprintf(fp, "%d\tGain status: 0 = off; 1 = on\n", gain_status); 
 fprintf(fp, "%f\tGain -X: 1 to 20 (if no or overlimit, 1X will be 

used)\n", XGain[0]); 
 fprintf(fp, "%f\tGain +X: 1 to 20 (if no or overlimit, 1X will be 

used)\n", XGain[1]); 
 fprintf(fp, "%f\tGain -Y: 1 to 20 (if no or overlimit, 1X will be 

used)\n", YGain[0]); 
 fprintf(fp, "%f\tGain +Y: 1 to 20 (if no or overlimit, 1X will be 

used)\n", YGain[1]); 
 fprintf(fp, "%f\tMax Gain -X: 1 to 20 (if no or overlimit, 1X will be 

used)\n", XGain_max[0]); 
 fprintf(fp, "%f\tMax Gain +X: 1 to 20 (if no or overlimit, 1X will be 

used)\n", XGain_max[1]); 
 fprintf(fp, "%f\tMax Gain -Y: 1 to 20 (if no or overlimit, 1X will be 

used)\n", YGain_max[0]); 
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 fprintf(fp, "%f\tMax Gain +Y: 1 to 20 (if no or overlimit, 1X will be 
used)\n", YGain_max[1]); 

 fprintf(fp, "%f\tGain Multiplier: 1, 10/9, 5/4, 10/7, 5/3, 2\n", 
gain_multiplier); 

 fprintf(fp, "%e\talpha: 0 to ~1\n", alpha); 
 fprintf(fp, "%e\tbeta: 0 to ~1\n", beta); 
 fclose(fp); 
 
 // write fatigue index data file 
// char strBuffer[9]; 
// sprintf(strBuffer, "fi_test_data_%2d.txt", fi_count); 
// fp = fopen(strBuffer, "w"); 
 strcpy(FileName, dir); 
 strcat(FileName, "fi_test_data"); 
// strcat(FileName, subject_id); 
 strcat(FileName, ".txt"); 
 fp_fi = fopen(FileName,"w"); 
 for (j=0; j<fi_count; j++) { 
  fprintf(fp_fi, "t_start%1.1i\t%d\t", j, fi_start_time[j]); 
 } 
 fprintf(fp_fi,"\n"); 
 for (j=0; j<fi_count; j++) { 
  fprintf(fp_fi, "FI_%1.1i\t%f\t", j, FI[j]); 
 } 
 fprintf(fp_fi,"\n"); 
 for (j=0; j<fi_count; j++) { 
  fprintf(fp_fi, "time %1.1i\tinput_mag %1.1i\t", j, j); 
 } 
 fprintf(fp_fi,"\n"); 
 for (i=0; i<count; i++) { 
  for (j=0; j<fi_count; j++) { 
   fprintf(fp_fi, "%d\t%f\t", data_time[i][j], input_mag[i][j]); 
  } 
  fprintf(fp_fi, "\n"); 
 } 
 fclose(fp_fi); 
 
 // close forms 
 Form1->Close(); 
 Form2->Close(); 
 Form3->Close(); 
 Form5->Close(); 
 
 // reset windows timer 
 timeEndPeriod(1); 
 
} 
//--------------------------------------------------------------------------- 
 
 
void __fastcall TForm3::Button6Click(TObject *Sender) 
{ 
 int iStatus; 
 iStatus = ICD_find_offset(); 
} 
//--------------------------------------------------------------------------- 
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void __fastcall TForm3::Edit6Change(TObject *Sender) 
{ 
 alpha = StrToFloat(Form3->Edit6->Text); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm3::Edit7Change(TObject *Sender) 
{ 
 beta = StrToFloat(Form3->Edit7->Text); 
} 
//--------------------------------------------------------------------------- 

I.8 UNIT4.H 

//--------------------------------------------------------------------------- 
 
#ifndef Unit4H 
#define Unit4H 
//--------------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include "CGAUGES.h" 
//--------------------------------------------------------------------------- 
class TForm4 : public TForm 
{ 

__published: // IDE-managed Components 
 TCGauge *CGauge1; 
 TCGauge *CGauge2; 
 void __fastcall Form4_SetGauges(TObject *Sender); 
private: // User declarations 
public: // User declarations 
 __fastcall TForm4(TComponent* Owner); 

}; 
//--------------------------------------------------------------------------- 
extern PACKAGE TForm4 *Form4; 
//--------------------------------------------------------------------------- 
#endif 
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I.9 UNIT4.CPP 

/**************************************************************************** 
 
 Version: 1.0 
 Modified: 6/27/06 
 By: kwb 
 
 Unit4.cpp 
 
 >> PURPOSE << 
 This code demonstrates that the user is applying a force to the joystick 
 but hides the magnitude and direction. 
 
 >> NOMENCLATURE << 
 do i want to include nomenclature??? 
 
 >> HISTORY << 
 Version 1.0  kwb  27 june 2006 
 original version. 
 
****************************************************************************/ 
//--------------------------------------------------------------------------- 
 
#include <vcl.h> 
#pragma hdrstop 
 
#include "Unit4.h" 
 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma link "CGAUGES" 
#pragma resource "*.dfm" 
 
TForm4 *Form4; 
 
extern int trial_direction; 
 
//--------------------------------------------------------------------------- 
__fastcall TForm4::TForm4(TComponent* Owner) 
 : TForm(Owner) 
{ 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm4::Form4_SetGauges(TObject *Sender) 
{ 
 switch (trial_direction) { 
  case 0:  //forwards 
   Form4->CGauge1->Visible=false; 
   Form4->CGauge2->Visible=true; 
   Form4->CGauge2->ForeColor=clGreen; 
   Form4->CGauge2->BackColor=clWhite; 
   break; 
  case 1:  //backwards 
   Form4->CGauge1->Visible=false; 
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   Form4->CGauge2->Visible=true; 
   Form4->CGauge2->ForeColor=clWhite; 
   Form4->CGauge2->BackColor=clGreen; 
   break; 
  case 2:  //left 
   Form4->CGauge1->Visible=true; 
   Form4->CGauge1->Enabled=true; 
   Form4->CGauge1->ForeColor=clWhite; 
   Form4->CGauge1->BackColor=clGreen; 
   Form4->CGauge1->Progress=0; 
   Form4->CGauge2->Visible=false; 
   break; 
  case 3:  //right 
   Form4->CGauge1->Visible=true; 
   Form4->CGauge1->Enabled=true; 
   Form4->CGauge1->ForeColor=clGreen; 
   Form4->CGauge1->BackColor=clWhite; 
   Form4->CGauge1->Progress=0; 
   Form4->CGauge2->Visible=false; 
   break; 
 } 
} 
//--------------------------------------------------------------------------- 

I.10 UNIT5.H 

//--------------------------------------------------------------------------- 
 
#ifndef Unit5H 
#define Unit5H 
//--------------------------------------------------------------------------- 
#include <Classes.hpp> 
#include <Controls.hpp> 
#include <StdCtrls.hpp> 
#include <Forms.hpp> 
#include "CGAUGES.h" 
#include <ExtCtrls.hpp> 
//--------------------------------------------------------------------------- 
class TForm5 : public TForm 
{ 
__published: // IDE-managed Components 
 TCGauge *CGauge1; 
 TPanel *Panel2; 
 TRadioButton *RadioButton3; 
 TRadioButton *RadioButton4; 
 TRadioButton *RadioButton5; 
 TRadioButton *RadioButton6; 
 TLabel *Label1; 
 TLabel *Label4; 
 TLabel *Label5; 
 TLabel *Label6; 
 TLabel *Label2; 
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 TEdit *Edit1; 
 TLabel *Label3; 
 TEdit *Edit2; 
 TButton *Button1; 
 TRadioButton *RadioButton7; 
 TPanel *Panel1; 
 TLabel *Label7; 
 TRadioButton *RadioButton1; 
 TRadioButton *RadioButton2; 
 TEdit *Edit3; 
 TEdit *Edit4; 
 TButton *Button2; 
 TEdit *Edit5; 
 TShape *Shape1; 
 TShape *Shape2; 
 TTimer *Timer2; 
 TButton *Button3; 
 TEdit *Edit6; 
 TEdit *Edit7; 
 TEdit *Edit8; 
 TEdit *Edit9; 
 TRadioButton *RadioButton8; 
 TRadioButton *RadioButton9; 
 TLabel *Label8; 
 TLabel *Label9; 
 TRadioButton *RadioButton10; 
 void __fastcall RadioButton1Click(TObject *Sender); 
 void __fastcall RadioButton2Click(TObject *Sender); 
 void __fastcall RadioButton3Click(TObject *Sender); 
 void __fastcall RadioButton4Click(TObject *Sender); 
 void __fastcall RadioButton5Click(TObject *Sender); 
 void __fastcall RadioButton6Click(TObject *Sender); 
 void __fastcall RadioButton7Click(TObject *Sender); 
 void __fastcall RadioButton9Click(TObject *Sender); 
 void __fastcall RadioButton8Click(TObject *Sender); 
 void __fastcall Button1Click(TObject *Sender); 
 void __fastcall Button2Click(TObject *Sender); 
 void __fastcall FormActivate(TObject *Sender); 
 void __fastcall Timer2Timer(TObject *Sender); 
 void __fastcall Button3Click(TObject *Sender); 
 void __fastcall RadioButton10Click(TObject *Sender); 
private: // User declarations 
 
public:  // User declarations 
 __fastcall TForm5(TComponent* Owner); 
}; 
//--------------------------------------------------------------------------- 
extern PACKAGE TForm5 *Form5; 
//--------------------------------------------------------------------------- 
#endif 
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I.11 UNIT5.CPP 

/**************************************************************************** 
 
 Version: 1.0 
 Modified: 11/28/06 
 By: kwb 
 
 Unit5.cpp 
 
 >> PURPOSE << 
 This code lets the subject determine what the gain should be if fatigued. 
 The subject is "taught" what the different settings feel like by pressing  
 on the joystick such that the force gauge turns green. This is the  
 equivalent amount of force required to cause the wheelchair to drive at 
 full speed. 
 
 >> NOMENCLATURE << 
 do i want to include nomenclature??? 
 
 >> HISTORY << 
 Version 1.0  kwb  29 june 2006 
 original version 
 11-28-06:   increase time segments from 30 seconds to 45 seconds 
 
****************************************************************************/ 
//--------------------------------------------------------------------------- 
 
#include <vcl.h> 
#pragma hdrstop 
 
#include <dos.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <windows.h> 
#include <mmsystem.h> 
 
//#include "Unit1.h" 
#include "Unit2.h" 
#include "Unit3.h" 
#include "Unit5.h" 
#include "ICD.h" 
 
//--------------------------------------------------------------------------- 
#pragma package(smart_init) 
#pragma link "CGAUGES" 
#pragma resource "*.dfm" 
 
TForm5 *Form5; 
 
//function prototypes 
void update_gain(void); 
 
//global/extern variables 
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extern js_types read_type;//serial or DAQcard. defined in Tuning_MS_Study.cpp 
extern float Biasangle; 
extern float XGain[2], YGain[2]; 
float XGain_max[2], YGain_max[2]; 
float gain_multiplier; 
 
//unit variables 
int trial_length = 0; //1=long, 0=short; Tuning_MS_Study.cpp 
enum possible_axes {left, back, right, forward} current_axis; 
int direction, speed; 
bool enable_data_collection = true; 
DWORD trial_time[2] = {10*1000, 45*1000}; // sec -> msec 
DWORD dt; 
 
//serial variables 
HANDLE hComm=NULL; 
COMMTIMEOUTS ctmoNew={0},ctmoOld; 
DWORD dwEvent,dwError; 
COMSTAT cs; 
DCB dcbCommPort; 
 
//--------------------------------------------------------------------------- 
__fastcall TForm5::TForm5(TComponent* Owner) 
    : TForm(Owner) 
{ 
} 
//--------------------------------------------------------------------------- 
 
//this should update the default gains whenever the form is made visible 
void __fastcall TForm5::FormActivate(TObject *Sender) 
{ 
 gain_multiplier = 1.0; 
 current_axis = forward; 
 direction = 2048; 
 speed = 2048; 
 
 char strBuffer[9]; 
 sprintf(strBuffer, "%.4f", XGain[0]); 
 Form5->Edit1->Text=strBuffer; 
 sprintf(strBuffer, "%.4f", YGain[0]); 
 Form5->Edit2->Text=strBuffer; 
 sprintf(strBuffer, "%.4f", XGain[1]); 
 Form5->Edit6->Text=strBuffer; 
 sprintf(strBuffer, "%.4f", YGain[1]); 
 Form5->Edit7->Text=strBuffer; 
 if (trial_length) 
  Form5->Edit5->Visible=false; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm5::Button2Click(TObject *Sender) 
{ 
 // Local Variables 
 int iStatus; 
 DWORD start_time, end_time; 
 char strBuffer[9]; 
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 int ab1, ab2; 
 
    // Device Readings 
 float tmp_ICD_x_reading = 0.0; 
 float tmp_ICD_y_reading = 0.0; 
 unsigned char InBuff[10]; 
 DWORD dwBytesRead; 
 
 // Set buttons and timer 
 Form5->Button1->Enabled=false; 
 Form5->CGauge1->Enabled=true; 
 Form5->Timer2->Enabled=true; 
 
 start_time = timeGetTime(); 
 // MessageBox(NULL, "Goodbye, cruel world!", "Note", MB_OK); 
 
 if (read_type == serial) { 
  /*  Serial Communication */ 

hComm=CreateFile("COM1",GENERIC_READ|GENERIC_WRITE,0,NULL,OPEN_EXIST
ING,0,NULL); 

  GetCommState(hComm,&dcbCommPort); 
  BuildCommDCB("38400,N,8,1", &dcbCommPort); 
  SetCommState(hComm,&dcbCommPort); 
  SetCommMask(hComm,EV_RXCHAR); 
  GetCommTimeouts(hComm,&ctmoNew); 
  ctmoNew.ReadIntervalTimeout=2.7; 
  ctmoNew.ReadTotalTimeoutConstant=0; 
  ctmoNew.ReadTotalTimeoutMultiplier=0; 
  SetCommTimeouts(hComm,&ctmoNew); 
 } 
 
 while(1) 
 { 
  /* Serial Comm */ 
  if (read_type == serial) 
   ClearCommError(hComm,&dwError,&cs); 
 
  Application->ProcessMessages(); 
 
  switch (read_type) { 
   case DAQcard: 
     iStatus = ICD_get_data(&tmp_ICD_x_reading, 
&tmp_ICD_y_reading); 
    if (DEBUG_lo)  
     printf("iStatus, ICD_get_data = %d\n", iStatus); 
    direction = tmp_ICD_x_reading + 2048; 
    speed = tmp_ICD_y_reading + 2048; 
    break; 
   case serial: 
    while(1) 
    { 
     if (WaitCommEvent(hComm,&dwEvent,NULL)) 
     { 
      if (dwEvent & EV_RXCHAR) 
      { 
       ClearCommError(hComm,&dwError,&cs); 
       ReadFile(hComm,InBuff,4,&dwBytesRead,NULL); 
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       ClearCommError(hComm,&dwError,&cs); 
 
       ab1=(unsigned int)(unsigned char)(InBuff[0]); 
       if ((ab1&240)!=16) break; 
 
       ab2=(unsigned int)(unsigned char)(InBuff[2]); 
       if ((ab2&240)!=32) break; 
 
       direction=(ab1&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[1]); 
       speed=(ab2&15)*256 + 
        (unsigned int)(unsigned char)(InBuff[3]); 
 
       break; 
      } 
      } 
    } 
    break; 
  } 
  end_time = timeGetTime(); 
  dt = end_time - start_time; 
  if (dt >= trial_time[trial_length]) break; 
 } 
 
 Form5->Timer2->Enabled=false; 
 Form5->Button1->Enabled=true; 
 
 if (read_type == serial) { 
  //clean up serial 
  SetCommMask(hComm,0); 
  PurgeComm(hComm,PURGE_RXABORT); 
  SetCommTimeouts(hComm,&ctmoOld); 
  CloseHandle(hComm); 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
 
//this chunk of code updates the gain based on which radio button is checked 
void __fastcall TForm5::RadioButton7Click(TObject *Sender) 
{ 
 Form5->RadioButton7->Checked=true; 
 gain_multiplier = 1; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton3Click(TObject *Sender) 
{ 
 Form5->RadioButton3->Checked=true; 
 gain_multiplier = 10.0/9.0; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton4Click(TObject *Sender) 
{ 
 Form5->RadioButton4->Checked=true; 
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 gain_multiplier = 10.0/8.0; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton5Click(TObject *Sender) 
{ 
 Form5->RadioButton5->Checked=true; 
 gain_multiplier = 10.0/7.0; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton6Click(TObject *Sender) 
{ 
 Form5->RadioButton6->Checked=true; 
 gain_multiplier = 10.0/6.0; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton10Click(TObject *Sender) 
{ 
 Form5->RadioButton10->Checked=true; 
 gain_multiplier = 10.0/5.0; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
 
//this chunk of code updates the direction 
void __fastcall TForm5::RadioButton1Click(TObject *Sender) 
{ 
 Form5->RadioButton1->Checked=true; 
 current_axis = left; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton2Click(TObject *Sender) 
{ 
 Form5->RadioButton2->Checked=true; 
 current_axis = back; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton9Click(TObject *Sender) 
{ 
 Form5->RadioButton9->Checked=true; 
 current_axis = forward; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
void __fastcall TForm5::RadioButton8Click(TObject *Sender) 
{ 
 Form5->RadioButton8->Checked=true; 
 current_axis = right; 
 update_gain(); 
} 
//--------------------------------------------------------------------------- 
 
//this function updates the gain based on which radio buttons are selected 
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void update_gain(void) 
{ 
 char strBuffer[9]; 
 int i; 
 
 // calculate new gains 
 for (i=0; i<=1; i++) { 
  XGain_max[i] = gain_multiplier*XGain[i]; 
  YGain_max[i] = gain_multiplier*YGain[i]; 
 } 
 
 // display the data 
 sprintf(strBuffer, "%.4f", XGain_max[0]); 
 Form5->Edit3->Text = strBuffer; 
 sprintf(strBuffer, "%.4f", YGain_max[0]); 
 Form5->Edit4->Text = strBuffer; 
 sprintf(strBuffer, "%.4f", XGain_max[1]); 
 Form5->Edit8->Text = strBuffer; 
 sprintf(strBuffer, "%.4f", YGain_max[1]); 
 Form5->Edit9->Text = strBuffer; 
} 
 
 
//This function takes joystick input, applies gain, determines which axis to 
// be displayed, and updates the gauge accordingly 
void __fastcall TForm5::Timer2Timer(TObject *Sender) 
{ 
 //local vars 
 float tmp_dir, dir, spd; 
 float prog; 
 
 //Offset axes and rotate 
 tmp_dir = direction - 2048; 
 spd = speed - 2048; 
 dir = cos(Biasangle)*tmp_dir - sin(Biasangle)*spd; 
 spd = sin(Biasangle)*tmp_dir + cos(Biasangle)*spd; 
// dir = tmp_dir; 
 
 //based on clinician settings, update gauge 
 switch (current_axis) { 
  case left: 
   prog = 75*(-XGain_max[0]*dir)/2048.0; 
   break; 
  case back: 
   prog = 75*(-YGain_max[0]*spd)/2048.0; 
   break; 
  case right: 
   prog = 75*(XGain_max[1]*dir)/2048.0; 
   break; 
  case forward: 
   prog = 75*(YGain_max[1]*spd)/2048.0; 
   break; 
 } 
 
 if ((prog < 65) || (prog > 85)) 
  Form5->CGauge1->ForeColor=clBlack; 
 else 
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  Form5->CGauge1->ForeColor=clGreen; 
 
 Form5->CGauge1->Progress = (long)prog; 
 
 if (!trial_length) 
 { 
  char strBuffer[25]; 
  sprintf(strBuffer, "d:%.3f s:%.3f p:%.2f", dir, spd, prog); 
  Form5->Edit5->Text = strBuffer; 
 } 
 
} 
//--------------------------------------------------------------------------- 
 
void __fastcall TForm5::Button1Click(TObject *Sender) 
{ 
 Form5->Visible=false; 
 Form3->Visible=true; 
} 
//--------------------------------------------------------------------------- 
 
 
void __fastcall TForm5::Button3Click(TObject *Sender) 
{ 
 int iStatus; 
 iStatus = ICD_find_offset(); 
} 
//--------------------------------------------------------------------------- 

I.12 ICD.H 

/**************************************************************************** 
 version: 1.0 
 modified: 7/2/06 
 by: kwb 
 
 >> description << 
 this is the header file for functions used to process user input signals 
 
 >> history << 
 Version 1.0  kwb  21 may 2006 
 Original version. based on version 1.0 of VCJ_ICD characterize. removed 
 fatigue parameters. added js_types enum 
 
****************************************************************************/ 
 
#ifndef ICD_H 
#define ICD_H 
 
/*** structures ***/ 
typedef struct { 
 float dir_volts; 
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 float spd_volts; 
 int dir_dig; 
 int spd_dig; 
 
} ICD_input; 
 
/*** enums ***/ 
enum js_types { 
 serial, 
 DAQcard 
}; 
 
/*** prototypes ***/ 
int ICD_initialize(void); /* i don't think i'll need inputs */ 
int ICD_find_offset(void); 
int ICD_get_data(float *, float *); /* pass by address direction and speed */ 
int ICD_VGA(float, float); 
int ICD_calibration_constants(void); 
int ICD_MS_PFA(char, float, float); 
int ICD_close_device(); 
 
/*** globals ***/ 
/* address values for input and output channels */ 
#define ACH0  0 /* direction */ 
#define ACH1  1 /* speed */ 
#define DAC0OUT  0 /* direction */ 
#define DAC1OUT  1 /* speed */ 
#define DAQ_DEVICE 1 
 
/* debugging characteristics */ 
#define DEBUG_ALL 0 
#define DEBUG_hi 1 /* hi-level debugging */ 
#define DEBUG_lo 0 /* lo-level debugging */ 
 
#endif 

I.13 ICD_FUNCTIONS.CPP 

/**************************************************************************** 
 
 Version: 1.0 
 Modified: 11/28/06 
 By: kwb 
 
 ICD_functions.cpp 
 
 >> PURPOSE << 
 This code acts as the input control device (ICD) for the variable 
 compliance joystick. Its purposes are to 
  * initialize the NI-DAQcard, 
  * read analog inputs, 
  * send outputs [digital signal to software or analog outputs in 
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    place of a movement sensing joystick]. 
 The flow of the program is modeled after the suggested flow charts in 
 DAQ: Traditional NI-DAQ (Legacy) User Manual: Version 7.x, pgs 3-25++. 
 
 >> NOMENCLATURE << 
 do i want to include nomenclature??? 
 
 >> HISTORY << 
 Version 1.0  kwb  19 june 2006 
 original version. based on version 1.0 of VCJ_ICD calibrate. make 
 compatible with borland c++. remove algorithm functions. 
 11-28-06:   update scan rate and sample size for optimal readings 
 
****************************************************************************/ 
 
/* Include files */ 
#include <stdio.h> 
#include <sys/timeb.h> 
#include <time.h> 
#include <math.h> 
 
#include "nidaqex.h" 
#include "nidaq.h" 
#include "ICD.h" 
 
/* Global/Extern variables */ 
float X_Offset;   /* x-offset value */ 
float Y_Offset;   /* y-offset value */ 
 
/***** FOR REFERENCE ONLY *****/ 
// these are the parameters the calibration s/w should output 
int Bias_Axis_Enabled_Status; /* 0=not used, 1=used */ 
int Bias_Axis_Angle;   /* degrees */ 
int Dead_Zone_Shape_Status; /* 1=eliptical, 2=rectangular */ 
int Dead_Zone_Rad_X; 
int Dead_Zone_Rad_Y; 
float Gain_X; 
float Gain_Y; 
int Template_Shape_Status; /* 1=eliptical, 2=rectangular */ 
int Template_Rad_X;  /* 3=astroid, 4=diamond */ 
int Template_Rad_Y;  /* post gain values */ 
float Gain_max[2];  /* maximum gain, [0]=dir, [1]=spd */ 
float Gain_min[2];  /* mininmum (baseline) gain, [0]=dir, [1]=spd */ 
float Alpha[2];   /* rate of increase while active,[0]=dir,[1]=spd*/ 
float Beta[2];   /* recovery rate while inactive,[0]=dir,[1]=spd */ 
 
/* 
* PURPOSE: 
* this function initializes the NI-DAQcard. 
*/ 
int ICD_initialize(void) 
{ 
    /***** DECLARATIONS *****/ 
 
 /* Local Variables */ 
 
 /* Device Settings */ 
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 i16 iInputMode = 0; /* 1 for RSE, 0 for DIFF */ 
 i16 iInputRange = 0; /* ignored */ 
 i16 iPolarity = 0; /* 0=bipolar, 1=unipolar */ 
 i16 iDriveAIS = 1; /* ignored */ 
 i32 lTimeout = 90; 
 
 /* Debugging */ 
 i16 iStatus = 0; 
    i16 iRetVal = 0; 
    i16 iIgnoreWarning = 0; 
 i16 iStatusReturn = 0; 
 
 /***** CONFIGURE INPUT SETTINGS *****/ 
 /* this needs to be done only once */ 
 
 /* channel 0 */ 
 iStatus = AI_Configure(DAQ_DEVICE, ACH0, iInputMode, iInputRange, 
  iPolarity, iDriveAIS); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "AI_Configure", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, AI_Configure channel %d = %d\n", ACH0, 
  iStatus); 
 /* channel 1 */ 
 iStatus = AI_Configure(DAQ_DEVICE, ACH1, iInputMode, iInputRange, 
  iPolarity, iDriveAIS); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "AI_Configure", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, AI_Configure channel %d = %d\n", ACH1, 
  iStatus); 
 
 /* timeout */ 
    /* This sets a timeout limit (#Sec * 18ticks/Sec) so that if there 
    is something wrong, the program won't hang on the SCAN_Op call. */ 
    iStatus = Timeout_Config(DAQ_DEVICE, lTimeout); 
 if (iStatus) iStatusReturn = iStatus; 
    iRetVal = NIDAQErrorHandler(iStatus, "Timeout_Config", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, Timeout_Config = %d\n", iStatus); 
 
 /* initialize offset (probably not needed, but just in case) */ 
 X_Offset = 0.0; 
 Y_Offset = 0.0; 
 
 if (DEBUG_hi) 
  printf("\nThe time for opening the ICD is %d\n", timeGetTime()); 
 
 return(iStatusReturn); 
} 
 
/* 
* PURPOSE: 
* this function finds the offset so that zero input results in zero output 
*/ 
int ICD_find_offset(void) { 
 
 /***** DECLARATIONS *****/ 
 /* Local Variables */ 
 int i; 
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 /* Device Settings */ 
 i16 numChan = 2;  /* number of channels to read */ 
 i16 iReadings = 100; /* number of readings per channel */ 
 static i16 iGain[2] = {10, 10};  /* input gain */ 
 static i16 iChan[2] = {ACH0, ACH1}; /* which channel(s) to read */ 
 i16 iCount = numChan*iReadings;  /* number of readings in one go */ 
 f64 iSampleRate = 25000;/* i think the max for the DAQcard is 200000 */ 
 f64 iScanRate = 0.0; /* this should get the maximum scanning rate */ 
 
 /* Device Readings */ 
 static i16 AI_buffer[200] = {0}; 
 static i16 x_buffer[100] = {0}; 
 static i16 y_buffer[100] = {0}; 
 double loc_x_reading, loc_y_reading;/* local copies of the readings */ 
 
 /* Debugging */ 
 i16 iStatus = 0; 
 i16 iRetVal = 0; 
 i16 iIgnoreWarning = 0; 
 i16 iStatusReturn = 0; 
 
 /***** START SCAN *****/ 
 /* high level function scans selected channel(s) */ 
 
 /* read the channels specified by iChan */ 
 iStatus = SCAN_Op(DAQ_DEVICE, numChan, iChan, iGain, AI_buffer,  
  iCount, iSampleRate, iScanRate); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_op", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, SCAN_op = %d\n", iStatus); 
 
 /***** CHECKING *****/ 
 /* not needed if we do high level function scans */ 
 
 /***** SIGNAL PROCESSING *****/ 
 /* this isn't in the manual, but this is needed so that there is only one 
    output from the function */ 
 
 /* demuliplex the AI_buffer */ 
 iStatus = SCAN_Demux(AI_buffer, iCount, numChan, 0); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Demux", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, SCAN_Demux = %d\n", iStatus); 
 
 for (i=0; i<iReadings; i++) { 
  x_buffer[i] = AI_buffer[ACH0*iReadings + i]; 
  y_buffer[i] = AI_buffer[ACH1*iReadings + i]; 
 } 
 
 /* take means to mitigate the noise, hopefully */ 
 iRetVal = NIDAQMean(x_buffer, iReadings, WFM_DATA_I16, &loc_x_reading); 
 iRetVal = NIDAQMean(y_buffer, iReadings, WFM_DATA_I16, &loc_y_reading); 
 
 if (DEBUG_lo) { 
  /* display results */ 
  printf("\nx-reading in ICD_get_data: %lf\n", loc_x_reading); 
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  printf("y-reading in ICD_get_data: %lf\n", loc_y_reading); 
 } 
 
 /* Output Result */ 
 X_Offset = (float)loc_x_reading; 
 Y_Offset = (float)loc_y_reading; 
 
 return(iStatusReturn); 
} 
 
 
/* 
* PURPOSE: 
* this function will read the data from the NI-DAQcard 
* 
* OUTPUT: 
* x_reading  dithered direction 
* y_reading  dithered speed 
* 
*/ 
int ICD_get_data(float *x_reading, float *y_reading) { 
 
 /***** DECLARATIONS *****/ 
 /* Local Variables */ 
 int i;     /* for loop counter */ 
 
 /* Device Settings */ 
 i16 numChan = 2;  /* number of channels to read */ 
 i16 iReadings = 40;  /* number of readings per channel */ 
 static i16 iGain[2] = {10, 10}; /* input gain */ 
 static i16 iChan[2] = {ACH0, ACH1}; /* which channel(s) to read */ 
 i16 iCount = numChan*iReadings; /* number of readings in one go */ 
 f64 iSampleRate = 75000; /* i think the max for the DAQcard is 200000 */ 
 f64 iScanRate = 0.0; /* this should get the maximum scanning rate */ 
 f64 dGainAdjust = 1.0; 
 f64 dOffset = 0.0; 
 
 /* Device Readings */ 
 static i16 AI_buffer[100] = {0}; 
 static i16 ICD_x_data[50] = {0}; 
 static i16 ICD_y_data[50] = {0}; 
 double loc_x_reading, loc_y_reading; /* local copies of the readings */ 
 
 /* Debugging */ 
 i16 iStatus = 0; 
    i16 iRetVal = 0; 
    i16 iIgnoreWarning = 0; 
 i16 iStatusReturn = 0; 
 
 /***** START SCAN *****/ 
 /* high level function scans selected channel(s) */ 
 
 /* read the channels specified by iChan iCount number of times */ 
 iStatus = SCAN_Op(DAQ_DEVICE, numChan, iChan, iGain, AI_buffer, 
  iCount, iSampleRate, iScanRate); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_op", iIgnoreWarning); 
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 if (DEBUG_lo) printf("iStatus, SCAN_op = %d\n", iStatus); 
 
 /***** CHECKING *****/ 
 /* not needed if we do high level function scans */ 
 
 
 /***** SIGNAL PROCESSING *****/ 
 /* this isn't in the manual, but this is needed so that there is only one 
    output from the function */ 
 
 /* demuliplex the AI_buffer */ 
 iStatus = SCAN_Demux(AI_buffer, iCount, numChan, 0); 
 if (iStatus) iStatusReturn = iStatus; 
 iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Demux", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, SCAN_Demux = %d\n", iStatus); 
 
 for (i=0; i<iReadings; i++) { 
  ICD_x_data[i] = AI_buffer[ACH0*iReadings + i]; 
  ICD_y_data[i] = AI_buffer[ACH1*iReadings + i]; 
 } 
 
 /* take means to mitigate the noise, hopefully */ 
 iRetVal = NIDAQMean(ICD_x_data, iReadings, WFM_DATA_I16, 
  &loc_x_reading); 
 iRetVal = NIDAQMean(ICD_y_data, iReadings, WFM_DATA_I16, 
  &loc_y_reading); 
 
 /* adjust for offset */ 
 loc_x_reading = loc_x_reading - X_Offset; 
 loc_y_reading = loc_y_reading - Y_Offset; 
 
 if (DEBUG_lo) { 
  /* display results */ 
  printf("\nx-reading in ICD_get_data: %lf\n", loc_x_reading); 
  printf("y-reading in ICD_get_data: %lf\n", loc_y_reading); 
 } 
 
 /* return results */ 
 *x_reading = (float)loc_x_reading; 
 *y_reading = (float)loc_y_reading; 
 return(iStatusReturn); 
} 
 
 
/* this function closes the NI-DAQcard */ 
int ICD_close_device(void) { 
 
    /***** DECLARATIONS *****/ 
 /* Local Variables */ 
 
 /* Debugging */ 
 i16 iStatus = 0; 
 i16 iStatusReturn = 0; 
 
 /***** CLEAN UP *****/ 
 /* this goes at the very end, i think */ 
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 /* turn off any DAQ operation */ 
 /* oddly, DAQ_clear is undefined. so comment it out for the moment 
 iStatus = DAQ_clear(DAQ_DEVICE); 
 iRetVal = NIDAQErrorHandler(iStatus, "DAQ_clear", iIgnoreWarning); 
 if (DEBUG_lo) printf("iStatus, DAQ_clear = %d\n", iStatus); 
 */ 
 
    /* disable timeouts */ 
    iStatus = Timeout_Config(DAQ_DEVICE, -1); 
 if (iStatus) iStatusReturn = iStatus; 
 if (DEBUG_lo) printf("iStatus, Timeout_Config = %d\n", iStatus); 
 
 /* Get and display current time */ 
 if (DEBUG_hi) 
  printf("\nThe time of closing the ICD is %d\n", timeGetTime()); 
 
 return(iStatusReturn); 
} 
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APPENDIX J 

SOURCE CODE IMPLEMENTATION FOR MSS INPUT ANALYSIS 

J.1 MSS_INPUT_ANALYSIS.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   modified: 11/14/06 
%   by: kwb 
% 
%   >> PURPOSE << 
% 
%   The goal of this software is to allow the rehab engineer quickly and 
%   efficiently analyze joystick data from the first thirty minutes of 
%   testing during the MS Study with the Variable Compliance Joystick. 
%   Power Spectral Density and average force information will be presented. 
%   Following analysis, the program should write parameters for the WFLC 
%   and high-pass filter to a data file. This file is read by the Virtual 
%   Driving Demo software. 
% 
%   >> NOMENCLATURE << 
% 
%   speed_thresh    input spd above which indicates trial start 
% 
%   >> HISTORY << 
%   Version 1.0a        karl brown          28 August 2006 
%   original version.  This version looks at trials on an individual basis. 
%   Consequently, filter perameters are reset at the beginning of each  
%   trial. 
%   Version 1.0b        kwb                 13 November 2006 
%   String trials together for filter analysis, update for new output file 
%   Version 1.1         kwb                 To be released... 
%   Begin filter analysis and write to setup file only after user says ok 
%   to filter analysis, remove contingency of user input variables on 
%   existing to determine if user should be prompted for input 
%************************************************************************/ 
  
% function iStatus = MSS_input_analysis(plot_force, plot_psd) 
  
%%% Remove old variables if needed 
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clear files tmp_data data psd all_data file_time avg_force; 
  
%%% Initialize variables 
% constants 
DRIVE_NAME_LENGTH = 21; 
HEADER_LINES = 26; 
MAKE_MOVIE = 1; 
MAKE_3D_PSD = 1; 
PLOT_HPF = 0; 
% local variables  
j = 1; 
data_folder = 'C:\SubjectFiles\'; 
movie_n = 3; 
movie_time = 5;    %seconds 
out_filename = 'C:\settings\wflc_setup.txt'; 
  
%%% Get data from files 
% get directory listing 
all_files = dir(data_folder); 
  
% get filenames for only the driving data (not WFLC data) 
for i = 3:length(all_files) 
    if (length(all_files(i).name) == DRIVE_NAME_LENGTH) 
        files(j) = all_files(i); 
        j = j + 1; 
    end 
end 
for i = 1:length(files) 
    files(i).full_name = strcat(data_folder, files(i).name); 
end 
  
% let user decide which trials to analyze 
[file_id n] = MSS_get_trial_indexes(files); 
files = files(file_id); 
  
% determine order in which trials occured 
for i = 1:n 
    file_time(i,:) = [datenum(files(i).date, 0) i]; 
end 
file_time = sortrows(file_time); 
order = file_time(:,2)'; 
  
% store data into structures 
j = 1; 
for i = order 
    fp1 = fopen(char(files(i).full_name)); 
    foo = textscan(fp1, '%s%s%s%s%s%s%s%s%s%s%s%s%s%s', HEADER_LINES); 
    tmp_data = textscan(fp1, '%d%d%d%f%f%f%f%d%d%d%d%f%f%f%f%d'); 
    data(j).t = tmp_data{1,2}; 
    data(j).dt = tmp_data{1,3}; 
    data(j).raw_dir = tmp_data{1,4}; 
    data(j).raw_spd = tmp_data{1,5}; 
    data(j).raw_mag = sqrt(data(j).raw_dir.^2 + data(j).raw_spd.^2); 
    fclose(fp1); 
    j = j + 1; 
end     %data is now in the order in which it occurred 
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        %files is in alphabetical order 
        %file_id contains index values of files to original listing 
  
%%% Average force for each episode 
% (still need dig2force transformation) 
j = 1; 
for i = 1:n 
    TMP_t = data(i).t; 
    TMP_mag = data(i).raw_mag;  
    avg_force(i) = trapz(double(TMP_t), TMP_mag) / ... 
        (data(i).t(end) - data(i).t(1)); 
end 
  
%%% PSD of each episode 
for i = 1:n 
    fs(i) = 1000/(mean(data(i).dt)); 
    psd(i).pow_dir = DB(periodogram(data(i).raw_dir - ... 
        mean(data(i).raw_dir))); 
    psd(i).pow_spd = DB(periodogram(data(i).raw_spd - ... 
        mean(data(i).raw_spd))); 
    psd(i).pow_mag = DB(periodogram(data(i).raw_mag - ... 
        mean(data(i).raw_mag))); 
    psd(i).freq = fs(i)/2*linspace(0, 1, length(psd(i).pow_dir)); 
end 
  
%%% Display results 
% Average force results for all episodes 
plot_force = input('Should average forces be plotted [1=yes;0=no]? '); 
if (plot_force) 
    figure; 
        bar(file_id(order), avg_force); 
        title('Average Force for Each Episode'); 
        xlabel('episode number'); ylabel('average force (dig)'); 
    set(gcf, 'Name', 'Avg force per ep'); 
end 
  
% PSD results per episode 
plot_psd = input('Should individual episodes be plotted [1=yes;0=no]? '); 
if (plot_psd) 
    if (MAKE_MOVIE) 
        figure; 
        for i = 1:n 
            plot(psd(i).freq,psd(i).pow_mag);  
                title(['PSD Movie']); 
                xlabel('freq (Hz)'); ylabel('power'); 
                axis([0 12 0 150]); 
                text(5, 140, [files(order(i)).name ' n=' num2str(i)]); 
                text(5, 132, [files(order(i)).date ' i=' ... 
                    num2str(file_id(order(i)))]); 
            F(i) = getframe; 
        end 
        plot(0, 0);     % done frame  
            title(['PSD Movie']); 
            xlabel('freq (Hz)'); ylabel('power'); 
            axis([0 12 0 150]); 
            text(5.5, 90, 'done'); 
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        F(i+1) = getframe; 
        foo = input(['\nPress Enter to play movie. Then press Alt-Tab ' ... 
            'to watch...']); 
        movie_fps = n/movie_time; 
        movie(F, movie_n, movie_fps); 
        save psd_movie.mat F; 
        fprintf(' movie data saved to psd_movie.mat.\n'); 
        fprintf([' after loaded, type ''movie(F, %i, %3.2f)'' at the ' ... 
            'command prompt\n\n'], movie_n, movie_fps); 
    else 
%         for i = 1:n 
%             figure; 
%             plot(psd(i).freq,psd(i).pow_mag);  
%                 title(['PSD for ' files(order(i)).name ' at ' ... 
%                  files(order(i)).date ' i=' num2str(file_id(order(i)))]); 
%                 xlabel('freq (Hz)'); ylabel('power'); 
%                 axis([0 12 0 150]); 
%         end 
    end 
    if (MAKE_3D_PSD) 
%         map = colormap(hot); 
        map = colormap(copper); 
        [cm cn] = size(map); 
%        close(gcf); 
        if (n > cm) 
            printf(['\n Cannot make 3d plot of frequency spectrum. ' ... 
                'Colormap not detailed enough.\n']); 
        else 
            figure; 
            hold on; 
            for i = 1:n 
                z = ones(1,length(psd(i).freq)); 
                map_index = (floor(i*cm/n)-1); 
                plot3(psd(i).freq,psd(i).pow_mag,i*z, ... 
                    'Color',map(map_index,:));  
            end 
            title(['PSD for all episodes; oldest at bottom']); 
                xlabel('freq (Hz)'); ylabel('power'); 
                axis([0 12 0 150]); 
            rotate3d on; 
            colormap(map); 
            colorbar; 
            set(gcf, 'Name', 'PSD all eps'); 
        end 
    end 
end 
  
%%% look at 2-minute strength data 
stg_analysis = input('Should strength data be analyzed [1=yes;0=no]? '); 
if (stg_analysis) 
     
    disp('Entering 2-minute data representation...'); 
    disp('  data is stored in sdata and spsd data structures'); 
     
    % get data 
    fp_sd = fopen('C:\Settings\strength_data.txt'); 
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    foo = textscan(fp_sd, '%s%s%s%s', 1); 
    tmp_data = textscan(fp_sd, '%f%f%f'); 
    sdata.t = tmp_data{1,1}; 
    sdata.dir = tmp_data{1,2}; 
    sdata.spd = tmp_data{1,3}; 
    fclose(fp_sd); 
     
    % a few transformations... 
    sdata.dir = sdata.dir - 2048; 
    sdata.spd = sdata.spd - 2048; 
    sdata.mag = sqrt(sdata.dir.^2 + sdata.spd.^2); 
    sdata.dt(1) = sdata.t(1); 
    for j = 2:length(sdata.t) 
        sdata.dt(j) = sdata.t(j) - sdata.t(j-1); 
    end 
     
    % PSD 
    sfs = 1000/mean(sdata.dt); 
    spsd.pow_mag = DB(periodogram(sdata.mag)); 
    spsd.freq = sfs/2*linspace(0,1,length(spsd.pow_mag)); 
     
    % plotting 
    figure; 
    subplot(2,1,1) 
        plot(sdata.t,sdata.dir,':', sdata.t,sdata.spd,'--', ... 
            sdata.t,sdata.mag); 
        title('Raw Two-Minute Force Data'); 
        xlabel('time (ms)'); ylabel('force (dig)'); 
        legend('dir', 'spd', 'mag', 'Location', 'EastOutside'); 
    subplot(2,1,2) 
        plot(spsd.freq,spsd.pow_mag); 
        title('PSD'); 
        xlabel('frequency (Hz)'); ylabel('power'); 
        axis([0 15 0 150]); 
    set(gcf, 'Name', '2-minute Data'); 
     
end 
  
%%% Sample modification via high pass filter and WFLC 
filt_analysis = input('Should the filter be analyzed [1=yes;0=no]? '); 
if (filt_analysis) 
  
    disp('Entering simulated high pass filter and WFLC...'); 
  
    % string data together 
    all_data.raw_dir=[]; all_data.raw_spd=[]; all_data.t=[0]; 
    for i = 1:n 
        all_data.raw_dir = [all_data.raw_dir; data(i).raw_dir]; 
        all_data.raw_spd = [all_data.raw_spd; data(i).raw_spd]; 
        all_data.t = [all_data.t; data(i).t+all_data.t(end)]; 
    end 
    all_data.t = all_data.t(2:end); 
  
    %%% Set default filter parameters 
    % high pass filter 
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    for i = 1:2 
        hpf(i).order = 2; 
        hpf(i).fc = 2;          %corner frquency 
        hpf(i).fs = mean(fs);   %sampling frequency; ASSUME not a lot of  
                                %variance among trials 
        hpf(i).gain = 1;        %gain 
        hpf(i).alpha = tan(pi*hpf(i).fc/hpf(i).fs); 
        hpf(i).acoef = (1-hpf(i).alpha)/(1+hpf(i).alpha); 
        hpf(i).type = 1;        %+1 for high-pass, -1 for low-pass 
        hpf(i).bcoef = (1+hpf(i).type*hpf(i).acoef)/2; 
  
        % WFLC 
        wflc(i).mu = 0.009; 
        wflc(i).mu0 = 1.2e-5; 
        wflc(i).mub = 0; 
        wflc(i).M = 4; 
        wflc(i).w0 = 3.75*2*pi; 
        wflc(i).w1 = 0; 
        wflc(i).wMp1 = 0; 
        wflc(i).offset = 0; 
    end 
  
    % determine PSD of input 
    all_data.pow_dir = DB(periodogram(all_data.raw_dir)); 
    all_data.pow_spd = DB(periodogram(all_data.raw_spd)); 
    all_data.freq = mean(fs)/2*linspace(0,1,length(all_data.pow_dir)); 
  
    new_params = 1; 
    while (new_params) 
  
        %apply high pass filter 
        all_data.dir_hpf = MSS_highpass_filter(all_data.raw_dir, hpf(1)); 
        all_data.spd_hpf = MSS_highpass_filter(all_data.raw_spd, hpf(2));        
  
        % determine PSD of hpf output 
        all_data.pow_dir_hpf = DB(periodogram(all_data.dir_hpf)); 
        all_data.pow_spd_hpf = DB(periodogram(all_data.spd_hpf)); 
  
        %apply WFLC 
        wflc_out_dir = MSS_wflc(all_data.dir_hpf, wflc(1), 0); 
        all_data.dir_wflc = all_data.raw_dir - wflc_out_dir.e'; 
        wflc_out_spd = MSS_wflc(all_data.spd_hpf, wflc(2), 0); 
        all_data.spd_wflc = all_data.raw_spd - wflc_out_spd.e'; 
  
        % determine PSD of final output (includes wflc and hpf) 
        all_data.pow_dir_wflc = DB(periodogram(all_data.dir_wflc)); 
        all_data.pow_spd_wflc = DB(periodogram(all_data.spd_wflc)); 
  
        % Display results 
        figure; 
        subplot(2,1,1), plot(all_data.t,all_data.raw_dir,'b', ... 
            all_data.t,all_data.dir_wflc,'r'); 
            title(['DIR: WFLC results for selected episodes']); 
            legend('input', 'output'); 
            xlabel('time (msec)'); ylabel('force'); 
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            axis([0 10000 -750 750]); 
            pan on; 
        subplot(2,1,2), plot(all_data.freq,all_data.pow_dir,'b', ... 
            all_data.freq,all_data.pow_dir_wflc,'r'); 
            title(['mu=' num2str(wflc(1).mu) ' mu0=' ... 
                num2str(wflc(1).mu0) ' M=' num2str(wflc(1).M) ' w0=' ... 
                num2str(wflc(1).w0) ' w1=' num2str(wflc(1).w1) ' wMp1=' ... 
                num2str(wflc(1).wMp1)]); 
            legend('input', 'output'); 
            xlabel('freq (Hz)'); ylabel('power'); 
            axis([0 12 0 150]); 
        set(gcf, 'Name', 'DIR time series'); 
  
        figure; 
        subplot(2,1,1), plot(all_data.t,all_data.raw_spd,'b', ... 
            all_data.t,all_data.spd_wflc,'r'); 
            title(['SPD: WFLC results for selected episodes']); 
            legend('input', 'wflc'); 
            xlabel('time (msec)'); ylabel('force'); 
            axis([0 10000 -250 1250]); 
            pan on; 
        subplot(2,1,2), plot(all_data.freq,all_data.pow_spd,'b', ... 
            all_data.freq,all_data.pow_spd_wflc,'r'); 
            title(['mu=' num2str(wflc(2).mu) ' mu0=' ... 
                num2str(wflc(2).mu0) ' M=' num2str(wflc(2).M) ' w0=' ... 
                num2str(wflc(2).w0) ' w1=' num2str(wflc(2).w1) ' wMp1=' ... 
                num2str(wflc(2).wMp1)]); 
            legend('input', 'wflc'); 
            xlabel('freq (Hz)'); ylabel('power'); 
            axis([0 12 0 150]); 
        set(gcf, 'Name', 'SPD time series'); 
  
        if (PLOT_HPF) 
            figure; 
            subplot(2,1,1), plot(all_data.freq,all_data.pow_dir, ... 
                    all_data.freq,all_data.pow_dir_hpf) 
                title(['DIR: HPF infuence, fc=' num2str(hpf(1).fc)]); 
                legend('input', 'output'); 
                xlabel('freq (Hz)'); ylabel('power'); 
                axis([0 12 0 150]); 
            subplot(2,1,2), plot(all_data.freq,all_data.pow_spd, ... 
                    all_data.freq,all_data.pow_spd_hpf) 
                title(['SPD: HPF infuence, fc=' num2str(hpf(2).fc)]); 
                legend('input', 'output'); 
                xlabel('freq (Hz)'); ylabel('power'); 
                axis([0 12 0 150]); 
        end 
  
        figure; 
       plot(all_data.t,wflc_out_dir.w0/2/pi,all_data.t,wflc_out_spd.w0/2/pi); 
            title('WFLC Frequency over Time'); 
            legend('dir', 'spd'); 
            xlabel('time (ms)'); ylabel('w0 (Hz)'); 
        set(gcf, 'Name', 'w0 vs time'); 
  
        % determine if user wants to adjust filter parameters 
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        new_params = input(['\nWould you like to adjust the parameters ' ... 
            '[1=yes;0=no]? ']); 
        if (new_params) 
            for i = 1:2 
                fprintf('\n'); 
                if (i == 1) 
                    disp('Direction parameters:'); 
                else 
                    disp('Speed parameters:'); 
                end 
                [hpf(i) wflc(i)] = MSS_get_new_filt_params(hpf(i),wflc(i)); 
            end 
        end 
        new_params = input('\nShould the results be plotted [1=yes;0=no]? '); 
    end 
end 
  
close_figure = input('\nClose all figures [0=no,1=yes]? '); 
if (close_figure) 
    close all 
    fprintf('figures closed.\n\n'); 
end 
  
if (filt_analysis) 
    save_data = input('Should data be saved to setup file [0=no,1=yes]? '); 
    if save_data 
        %%% Write output file 
        fp_out = fopen(out_filename, 'w'); 
        for i = 1:2 
            fprintf(fp_out, '%2.0i\n', hpf(i).order); 
            fprintf(fp_out, '%6.5f\n', hpf(i).fc); 
            fprintf(fp_out, '%6.5f\n', hpf(i).fs); 
            fprintf(fp_out, '%4.3f\n', hpf(i).gain); 
  
            fprintf(fp_out, '%10.9f\n', wflc(i).mu); 
            fprintf(fp_out, '%10.9f\n', wflc(i).mu0); 
            fprintf(fp_out, '%10.9f\n', wflc(i).mub); 
            fprintf(fp_out, '%2.0i\n', wflc(i).M); 
            fprintf(fp_out, '%6.5f\n', wflc(i).w0); 
            fprintf(fp_out, '%4.3f\n', wflc(i).w1); 
            fprintf(fp_out, '%4.3f\n', wflc(i).wMp1); 
        end 
        iStatus = fclose(fp_out); 
        if (iStatus == 0) 
            fprintf('data saved to %s\n\n', out_filename); 
        end 
    else 
        iStatus = 0; 
    end 
else 
    iStatus = 0; 
end 
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J.2 MSS_GET_TRIAL_INDEXES.M 

function [trial_id n] = MSS_get_trial_indexes(files) 
  
done = 0; 
n = length(files); 
  
fprintf('Which trial[s] should be analyzed [enter as array]?\n'); 
for i = 1:n 
    fprintf('%i = %s\n', i, files(i).name); 
end 
while (~done) 
    trial_id = input(': '); 
    if (find((trial_id > n) | (trial_id < 1))) 
        disp('out of bounds, try again'); 
    else 
        done = 1; 
    end 
end 
n = length(trial_id); 

J.3 DRIVING_TIMES.M 

% this code will truncate the data to times only when the subject was 
% driving. see MSS_input_analysis.m for details about tmp_data, foo, and  
% data. 
  
data(i).dir = tmp_data{1,6}; 
data(i).spd = tmp_data{1,7}; 
data(i).x = tmp_data{1,8}; 
data(i).y = tmp_data{1,9}; 
TMPspeed_thresh(i) = foo{1}(4);   
  
% find the threshold speed for each trial 
j = 1; 
for i = file_id 
    tmp_speed_thresh(j,:) = (TMPspeed_thresh{i}(:)); 
    j = j + 1; 
end 
speed_thresh = str2num(tmp_speed_thresh); 
  
% trim down data to only while subject was driving 
j = 1; 
for i = file_id 
%     TMPspd = data(i).spd; 
    % trial starts as soon as threshold is exceeded 
    start_index = find(data(i).spd > speed_thresh(j)); 
    j = j + 1; 
    % since chair does not move once it has finished, find the last 
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    % position, and then use the first index of all instances that the 
    % chair was in that position as the end time index 
    end_pos = [data(i).x(end) data(i).y(end)]; 
    end_index = find((data(i).x==end_pos(1)) & (data(i).y==end_pos(2))); 
    % truncate the data 
    data(i).t = data(i).t(start_index(1):end_index(1)); 
    data(i).dt = data(i).dt(start_index(1):end_index(1)); 
    data(i).raw_dir = data(i).raw_dir(start_index(1):end_index(1)); 
    data(i).raw_spd = data(i).raw_spd(start_index(1):end_index(1)); 
    data(i).raw_mag = sqrt(data(i).raw_dir.^2 + data(i).raw_spd.^2); 
end 

J.4 MSS_GET_NEW_FILT_PARAMS.M 

function [hpf wflc] = MSS_get_new_filt_params(hpf, wflc) 
  
ok = 0; 
while (~ok) 
    % HPF 
    disp('Please enter HPF params [current]:'); 
    fprintf(' order [%i]', hpf.order); 
    hpf.order = input(': '); 
    fprintf(' corner freq [%3.2f]', hpf.fc); 
    hpf.fc = input(': '); 
    hpf.alpha = tan(pi*hpf.fc/hpf.fs); 
    hpf.acoef = (1-hpf.alpha)/(1+hpf.alpha); 
    hpf.type = 1;       %+1 for high-pass, -1 for low-pass 
    hpf.bcoef = (1+hpf.type*hpf.acoef)/2; 
  
    % WFLC 
    disp('Please enter WFLC params [current]'); 
    fprintf(' mu [%3.2e]', wflc.mu); 
    wflc.mu = input(': '); 
    fprintf(' mu0 [%3.2e]', wflc.mu0); 
    wflc.mu0 = input(': '); 
    fprintf(' mub [%3.2e]', wflc.mub); 
    wflc.mub = input(': '); 
    fprintf(' M [%i]', wflc.M); 
    wflc.M = input(': '); 
    fprintf(' w0 [%3.3f*2*pi]', wflc.w0/2/pi); 
    wflc.w0 = input(': '); 
    wflc.w0 = wflc.w0*2*pi; 
%     wflc.w1 = 0; 
%     wflc.wMp1 = 0; 
%     wflc.offset = 0; 
  
    ok = input('Are these correct [1=yes;0=no]? '); 
end 
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J.5 MSS_WFLC.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   modified: 8/24/06 
%   by: kwb 
% 
%   >> PURPOSE << 
%   This function implements an Mth order WFLC filter. It is based 
%   on the algorithm given at http://www.cs.cmu.edu/~camr/wflc0.c. The 
%   following is the description from that site: 
% 
%%% 
% 
%   WFLC0.C         Weighted-frequency Fourier Linear Combiner 0.0       
%   Cameron N. Riviere, Carnegie Mellon University                       
%   last mod.    11/5/98                                                 
%   This is WF1H, modified to include harmonics.                         
%   Adaptive weighted-frequency algorithm for noise canceling in 1-D data. 
%   Here, frequency of reference, as well as ampl., is an adaptive weight. 
%   Mu is the standard adapt. rate param.  mu0 is a 2nd param. on the    
%       frequency weight.  A bias (highpass) weight is used.             
%   Ampl. weights for harmonics will be initialized to 0.                
%   To run this program, type at the DOS prompt:                         
%   WFLC0 filename ext mu mu0 mub M w0 w1 wM+1 offset                    
%   Note:  This code is written in Turbo C for the PC. 
% 
%%% 
% 
%   >> NOMENCLATURE << 
% 
%   >> DEFAULT VALUES << 
% 
%     wflc.mu = 0.009; 
%     wflc.mu0 = 1.2e-5; 
%     wflc.mub = 0; 
%     wflc.M = 4; 
%     wflc.w0 = 3.75*2*pi; 
%     wflc.w1 = 0; 
%     wflc.wMp1 = 0; 
%     wflc.offset = 0; 
% 
%   >> HISTORY << 
%   Version 1.0         karl brown          13 November 2006 
%   original version. based on test_wflc_tmp.m 
%************************************************************************/ 
  
function out = MSS_wflc(data, wflc, plot_results) 
  
% initializations  
w0_1 = wflc.w0; 
wbias=0; 
for i = 1+1:2*wflc.M+1 
    w(i) = 0;  
end 
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w(1+1) = wflc.w1; 
w(wflc.M+1+1) = wflc.wMp1; 
sumw0 = 0; 
  
for j = 1:length(data) 
  
    % remove offset  
    input = data(j) - wflc.offset;  
  
    % locate next sine & cosine samples */ 
    sumw0 = sumw0 + wflc.w0; 
    for i = 2:wflc.M+1 
        x(i) = sin(i*sumw0); 
        x(wflc.M+i) = cos(i*sumw0); 
    end 
     
    % output = truncated Fourier series */ 
    output = 0; 
    for i=1+1:2*wflc.M+1 
        output = output + w(i)*x(i); 
    end 
     
    % calculate error */ 
    e = input - output - wbias; 
  
    % update bias weight */ 
    wbias = wbias + 2*wflc.mub*e; 
     
    % update frequency weight, 'blind' to harmonics */ 
    sumcross = 0; 
    for i=1+1:wflc.M-1+1 
        sumcross = sumcross + i*(w(wflc.M+i)*x(i)-w(i)*x(wflc.M+i)); 
    end 
    wflc.w0 = wflc.w0 - 2*wflc.mu0*e*sumcross; 
     
    % update amplitude weights */ 
    for i = 1+1:2*wflc.M+1 
        w(i) = w(i) + 2*wflc.mu*e*x(i); 
    end 
         
    % output*/     
    out.e(j) = e + wflc.offset; 
    out.output(j) = output; 
    out.w0(j) = wflc.w0; 
    out.w1(j) = w(1+1); 
    out.wMp1(j) = w(wflc.M+1+1); 
    out.wbias(j) = wbias + wflc.offset; 
    k = 1; 
end 
  
% plot results 
if (plot_results) 
    t = data(:,1); 
    figure; plot(t,data(:,2), t,out.e, t,out.output+wflc.offset); 
    legend('data', 'e', ['output+' num2str(wflc.offset)]); 
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    title(['mu=' num2str(wflc.mu) ' mu0=' num2str(wflc.mu0) ' M=' ... 
        num2str(wflc.M) ' w0=' num2str(w0_1) ' w1=' num2str(wflc.w1) ... 
        ' wMp1=' num2str(wflc.wMp1)]); 
    xlabel('time (sec)'); ylabel('output'); 
    axis([20 30 -7 7]); 
    pan on; 
     
    % determine PSD of input 
    pow = DB(periodogram(data(:,2) - mean(data(:,2)))); 
    freq = 62.5/2*linspace(0,1,length(pow)); 
    figure;  
    subplot(2,1,1); plot(freq,pow); 
    title('PSD of input'); 
    axis([0 6 -100 100]); 
    xlabel('freq (Hz)'); ylabel('power'); 
  
    % determin PSD of output 
    pow = DB(periodogram(out.output)); 
    freq = 62.5/2*linspace(0,1,length(pow)); 
    subplot(2,1,2); plot(freq,pow); 
    title('PSD of output'); 
    axis([0 6 -100 100]); 
    xlabel('freq (Hz)'); ylabel('power'); 
end 

J.6 MSS_HIGHPASS_FILTER.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   modified: 8/24/06 
%   by: kwb 
% 
%   >> PURPOSE << 
% 
%   This function implements an Nth order IIR high pass filter. It is  
%   based on code from http://www.ddj.com/dept/cpp/184401931.  
% 
%   >> INPUTS << 
%   datum       vector of time series data 
%   filt        structure containing filter parameters 
% 
%   >> NOMENCLATURE << 
% 
%   >> HISTORY << 
%   Version 1.0         karl brown          13 November 2006 
%   original version.  
%************************************************************************/ 
  
function y = MSS_highpass_filter(data, filt) 
  
global filts; 
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filts = filt; 
  
%initialize filter 
filts.xn1(1:filts.order) = 0; filts.yn1(1:filts.order) = 0; 
  
data_hpf = data; 
for i = 1:length(data) 
    for j = 1:filts.order 
        data_hpf(i) = iir_highpass(data_hpf(i), j); 
    end 
end 
y = data_hpf; 
  
end 
  
%%%%%%%% 
% this is the actual filter 
function yy = iir_highpass(datum, order_count) 
  
global filts; 
  
filts.yn1(order_count) = filts.bcoef*datum + ... 
    filts.type*(-filts.bcoef)*filts.xn1(order_count) + ... 
    filts.acoef*filts.yn1(order_count); 
filts.xn1(order_count) = datum; 
filts.y(order_count) = filts.yn1(order_count)*filts.gain; 
yy = filts.y(order_count); 
  
end 
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APPENDIX K 

DEMOGRAPHIC QUESTIONNAIRE 
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Figure 97: Demographic questionnaire. 
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APPENDIX L 

SOLVING THE VDS LOOP RATE PROBLEM 

For digital filters to work properly, the input samples must have equal weights in time [60]. The 

easiest way to achieve this is to sample the signal at a constant rate. Since the HERL IJ processes 

its data onboard and does not incorporate a digital filter, the loop rate of the VDS did not need to 

be constant. However, the VCJ software is more integrated into the VDS by processing its input 

each time VDS software makes a request for a sample, and it includes high-pass and adaptive 

filters. Therefore, to ensure that the VCJ digital filters function properly, the loop rate of the 

VDS needed to be more consistent. Specifically, the period should not deviate by more than 2 ms 

off its average. After the source of the timing aberrances was located, restructuring the loop, 

controlling the time at which data is acquired, and handling events when data acquisition is 

delayed produced a consistent loop rate for the VDS software.  

L.1 IDENTIFICATION OF THE TIMING PROBLEM 

Two main events appeared to cause the inconsistent loop rate: lengthy DAQ reads and Windows 

messages. The loop period for a sample trial, shown in Figure 98, is mostly consistent except for 

every 5.007 s, when it doubles, and about every 20 s, when there is a delay. Other trials showed 

slightly more variability in loop rate over 30-s episodes. To isolate the potential sources for the 

delay, time stamps at selected points in the loop were written to a data file. These stamps were 

organized and plotted to determine which specific processes might take longer than normal. 

Table 18 shows descriptive statistics for the individual processes. The red circles in Figure 99 
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Figure 98: Period of loop without any intervention. 

Table 18: Descriptive statistics for time required to complete various processes in the VDS loop. Values are in ms. 

Description 
Line 
Number Average

Standard 
Deviation Min Max 

Beginning of loop 233 0.5138 0.9513 0 13 

Process keyboard inputs 431 0.3460 0.4951 0 5 

Acquire joystick data 446 5.5709 0.8056 4 18 

Apply joystick algorithm 467 0.6728 0.5100 0 5 

Update chair position 522 0.4043 0.4948 0 2 

Check crash, save data, and draw image 569 9.4059 0.9241 1 18 
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Figure 99: Time stamps at selected points in the loop (233=beginning, 431=process keyboard inputs, 446=acquire 

joystick data, 467=apply joystick algorithm, 522=update chair position, 569=check chair crash and update screen). 

highlight processes that took longer than normal. Based on this information, while the processes 

do not always appear consistent, background processes between the end and beginning of the 

loop are the most likely source for the delays every 5 s. The delay every 20 s is likely because of 

the reading from the DAQCard or aberrances in rendering the screen. 

L.2 ORIGINAL SOLUTIONS 

Since events happening outside the loop are not under control of the VDS software but the 

operating system (OS), the first attempt to solve the problem was simply to identify when a delay 

occurred and interpolate the missing point so that the filters could have equally-timed samples. 

Neville’s Iterated Interpolation method was chosen as the interpolating algorithm for its 

computational simplicity and apparent accuracy [87]. Unfortunately, while this estimation 

method caught most of the delays that occurred every 5 s, the 20 s delays were not handled 

consistently (Figure 100). Further analysis revealed these delays to be associated with longer 

readings from the DAQCard. Thus, alternate methods for acquiring data from the DAQCard, 

including continuous reads and registering events, were investigated. 

 284 



 

Figure 100: Loop period after first estimator was installed. 

At the time, the method for acquiring data from the DAQCard involved starting a scan, 

collecting 50 points at 65 kHz, and averaging the data. This process takes approximately 5.6 ms 

to complete. An alternative method for collecting samples is to make the DAQCard acquire data 

into a PC buffer continuously, while the VDS software is carrying out other processes. Ideally, 

all the VDS software would need to do to get a sample would be to read the latest points out of 

the buffer, which should take less than a millisecond and minimize any potential for delay in the 

data acquisition process. Unfortunately, this method proved to be too much for the OS to handle. 

The first problem was that the index to the PC buffer for the latest sample would not 

update until 1,024 samples had been acquired. Or, as later discovered, the default settings in NI’s 

PCMIA DAQCards cause the data to be transferred from its internal buffer to the PC buffer in 

blocks of 1,024 samples, even in continuous acquisition mode. These settings can be changed to 

cause data to be transferred every time the half buffer is full or at every sample. In the former 

case, the buffer size is still too large at 512 samples. To have the data be at most 2 ms old, 512 

samples would need to be acquired at about 250 kHz and transferred across the bus, which is 

beyond the 200-kHz limit of the DAQCard. In the latter case, transferring the data to the PC 

buffer at every sample caused the entire software to behave erratically. In essence, transferring 

data across the PCMCIA bus at every sample interrupts all other processes happening in the OS 

while the transfer is taking place. 
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The second alternative, registering events, theoretically should provide more control over 

how much and how often data is transferred across the PCMCIA bus. Registering an event 

causes a user-defined function to execute any time an event occurs, such as after n number of 

samples are acquired or t seconds have elapsed or Windows receives a message, independent of 

other processes happening in the OS. In our case, we would want somewhere between 10 and 50 

samples to be transferred across the bus after 2 ms at most to keep noise low and to ensure 

consistent timing. While the events functioned as expected during the VDS’s initialization 

procedures, Windows would stop handling the events or the VDS software would not release 

control to the callback function after about 0.5 s into the main driving loop. Therefore, after all 

methods had been exhausted to reduce loop rate dependency on DAQCard functions and none 

worked, using a synchronous scan as originally implemented appeared to be only option for 

acquiring data. 

L.3 PROPOSED SOLUTION 

Restructuring the loop, controlling the time at which data is acquired, and handling events when 

data acquisition is delayed ultimately produced a consistent loop rate for the VDS software. In 

process of implementing registered events, the source of the delay every 5.007 ms revealed itself. 

The Windows OS monitors and handles its processes through messages, something the VDS 

software handles with the PeekMessage() function at the very beginning of the loop. If 

Windows provides a message to the VDS software, VDS software dispatches it appropriately; 

otherwise it processes the virtual driving simulation. That is, the virtual driving simulation part 

of the VDS software will not execute until all Windows messages have been processed. And, 

every 5 s Windows would provide the MOUSE_MOVE message to the software thus causing the 

hiccup. Unfortunately, there did not appear to be a method for removing the mouse messages 

without uninstalling the mouse. Thus, the problem was solved by removing the else from the 

message handling portion of the VDS software, allowing the driving simulation to execute even 

if Windows provides a message. To prevent the loop from executing when the user desires to 

exit the program, closing routines were added to the Windows message processing function 
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WndProc() in the VDS software. This solution, however, does not address the instances when 

the read function takes longer than normal. 

Control of when reads begin and logic for handling extended reads compensate for long 

read times. Controlling when reads begin is easily solved by calling the read function only after 

the average loop period has elapsed since the last read began. If the read takes longer than 

normal, action is taken based on the amount of time that the read takes beyond the normal read 

time, or excess time. There are five regions beyond the expected read time in which the excess 

time can occur, illustrated in Figure 101. If the excess time is in region 1, or within 2 ms of the 

expected read time, the reading is used and the loop continues as normal. If the excess time is in 

region 2, between 2 ms and 6 ms after the expected read time, the missing sample is interpolated 

with Neville’s Iterative Interpolation method, the interpolated reading is fed through the filters, 

and the program goes to the beginning of the loop to acquire a new reading. If the excess time is 

in region 3, between 6 and 15 ms after the expected read time, the missing sample is interpolated 

and fed through the filters, the subsequent sample is interpolated, and the program waits until the 

subsequent sample would have occurred before continuing with the simulation. This is the only 

case in which an interpolated point is used to command the chair. If the excess time is in region 

4, between 15 and 19 ms following the expected read time (or ±2 ms of the following read time), 

the missing point is interpolated and fed through the filters, and the acquired point is used for the 

rest of the loop. Lastly, if the excess time is in region 5, the missing point is interpolated and fed 

through the filters and the excess time will be updated. The logic described above is repeated 

until the excess time lies in any of regions 1 through 4. 

 

Figure 101: Possible regions of loop execution in which excess time may lie. 

1 2 3 4 5 

Average Period 

Expected finish read time 
(aka missed read time)



L.4 RESULTS 

The resulting intervention appears to provide adequate control of the loop period because the 

new loop rate is within the specifications and the interpolative measures do not appear to be out  

of bounds. A 95-s trial with the intervention (Figure 102) resulted in an average period of 17.01 

ms (standard deviation of 0.235 ms) and min and max periods of 14 and 19 ms, respectively. The 

minimum occurred only once; otherwise the minimum period was 15 ms. The frequency of the 

interpolated points is provided in Table 19. Interpolated points accounted for only 1.03% of all 

samples. Interpolated points in context of the raw input for several cases when an error code was 

generated are provided in Figure 103 through Figure 105, demonstrating that the interpolative 

algorithm does not appear to generate unreasonable values. However, data in Figure 105 show 

that it is possible for a string of type 2 (corresponding to region 2 in Figure 101) errors to be 

generated, inhibiting the chair position from being updated for brief periods of time. 

L.5 DISCUSSION 

The proposed solution contains a few limitations such as glitches, decreased performance, 

limited multi-tasking, and occasional software crashes. The glitches are likely a result of the 

string of type 2 errors and cause the chair to appear to jump a short distance on the screen. The 

frequency of these glitches is about 1 in 5 or 6 trials. If, in the context of subject testing, a glitch 

influences the subject’s driving, the given trial can be re-run.  

While the average loop period before the proposed solution was implemented was about 

16.4 ms to 16.9 ms, the fastest average period achieved here is 17.0 ms. The source is likely a 

result of the timing variables being in integer (DWORD) format. Defining the average period to 

be 16 ms or 16.5 ms causes the program to crash. An alternative way to improve the loop rate 

would be to switch from using the timeGetTime() function to sampling the processor clock. 

This would improve the timing resolution to microseconds, but the processor clock is reported to 

skip a few seconds randomly. The cost of switching timing does not seem justified at this time 

for the potential improvement in performance. 
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Figure 102: Loop period with timing control and estimator. 

Table 19: Number of instances of each excess time scenario during a 95-s trial. 

Error Code Corresponding region, Definition Frequency 

0 1, raw input used 5711 

1 5 0 

2 2, go back and get a new reading 41 

3 3, previous sample interpolated 9 

4 3, following sample interpolated 9 

5 4 0 
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Figure 103: Raw input with interpolated points. The direction and speed axes are on the left, and the error code axis 

is on the right. 

 

Figure 104: Raw input with an interpolated point. The direction and speed axes are on the left, and the error code 

axis is on the right. 
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Figure 105: Raw input with string of interpolated points. The direction and speed axes are on the left, and the error 

code axis is on the right. 

Because the timing intervention is sensitive to delays in the loop, other tasks such as 

showing current parameters or adjusting joystick settings cannot be performed while the timing 

intervention is active. Displaying the information on the screen takes too much processing 

power. Therefore, if the clinician would like to update parameters, the timing intervention will 

not be implemented while information is displayed on the screen. Also, the VDS software will 

not process any keyboard inputs while the subject is driving on any of the tracks except the 

rectangular track. While displaying information on the screen is a nice feature, it is not part of 

the study protocol and therefore not needed. 

Occasionally, the software does stop responding, or crash. The exact cause of the crash 

has not been identified, but its effect is limited only to the current task. Data collected from other 

driving tasks is saved whenever the user presses the escape key to go back to the main menu of 

the VDS software at the completion of a track. Crashes seem to occur between 5% and 10% of 

the time the program is run. 
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L.6 CONCLUSIONS 

The goal of improving the consistency of the loop period has been achieved with error handling 

and interpolative procedures. Unfortunately, the VDS environment could not support the more 

elegant method of continuous or buffered sampling. The procedures introduce a few limitations 

such as glitches, reduced performance, and limited multi-tasking; but they do not seem 

catastrophic.  
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