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Non-valence correlation-bound and correlation-assisted anion states of molecules and

molecular clusters have been characterized using various electronic structure methods. In

these species long-range dispersion type correlation interactions are responsible for binding

of the excess electron in a spatially diffuse orbital. Therefore, the Hartree-Fock method and

methods that depend on the Hartree-Fock wave function being a suitable reference fail to bind

such anions or greatly underestimate the electron binding energy. The main approach used

in the present studies is the equation of motion coupled-cluster method. Additional methods

may also accurately describe these non-valence anions provided adequate orbital relaxation in

response to long-range dispersion-like correlation effects is included. Non-valence correlation-

bound anion states of a model (H2O)4 cluster, the bent CO2, and tetracyanoethylene are

characterized.

In addition to bound non-valence anions, some species may possess temporary anion

states that lie energetically above the ground state of the neutral molecule and, thus, are

subject to electron autodetachment. These temporary anion shape resonances are trapped

by a potential barrier and are characterized by a complex energy. The temporary anion shape

resonances of the model (H2O)4 cluster and rhombic (NaCl)2 are described. In case of (H2O)4

cluster, the shape resonance corresponds to an asymmetric combination of the dipole-bound

anion states of the subunit dimers. The resonance energy is determined as a function of the

distance between the dimers of the (H2O)4 cluster. The temporary anion shape resonance

of (NaCl)2 corresponds to an antibonding combination of the hybridized orbitals associated

with the two Na atoms. The resonance energy is determined as a function of distortion along

the totally symmetric normal coordinate.
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Finally, the molecular virial theorem is studied for a H atom interacting with a uniform

electric field or with a point charge. Analytical expressions of the contributions to changes

in average kinetic and potential energies due to these interactions are obtained by use of

Dalgarno-Lewis perturbation theory.
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1.0 Introduction

1.1 Non-Valence Anions

Theoretical and computational studies have become an essential part of research that

explains and validates data obtained experimentally. Quantum chemistry provides us with

opportunities to study various chemical and biological processes. Many such processes occur

via charge transfer resulting in creation of anions when an atom, molecule, or molecular

cluster binds an excess electron.

Anions can be viewed as valence-bound or non-valence-bound depending on the nature

of the interaction between the excess electron and the molecule. The excess electron in a

valence-bound anion is bound by relatively short-range interactions in a valence orbital. In a

non-valence-bound anion, however, there are long-range electrostatic and/or correlation in-

teractions and the electron occupies an orbital that is not valence-like in nature. An example

of electrostatically-bound anions are dipole-bound anions. Such anions form when molecules

with a dipole moment greater than 1.625 D within the Born-Oppenheimer approximation

bind excess electrons in the dipole field.1–5 Provided a sufficiently flexible basis set is used,

the dipole-bound anions can be observed at the Hartree-Fock method.

In the absence of a dipole moment, a molecule may bind an excess electron via correlation

interactions.6,7 In my research I focus on non-valence anions for which inclusion of electron

correlation is essential for binding of the excess electron or dominates the electron binding

energy. Non-valence correlation-bound (NVCB) anions are unbound at the Hartree-Fock

level and in such calculations the electron falls onto a discretized continuum orbital. Cor-

relation is often incorporated through post-Hartree-Fock methods such as coupled-cluster

theory. However, since coupled-cluster calculations starting from the Hartree-Fock wave

function also fail to bind the excess electron of the NVCB anion. Methods such as equation

of motion coupled-cluster method are needed to observe NVCB anions.6,8

The following sections focus on briefly discussing ab initio methods mentioned above

that are used within this work to study non-valence anions.
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1.2 Schrödinger Equation

We begin the discussion of various electronic structure methods from the non-relativistic

time-independent Schrödinger equation

H |Ψ〉 = E |Ψ〉 (1.1)

where H is the Hamiltonian operator of N electrons and M nuclei, Ψ is a wave function, and

E is an energy eigenvalue. Because nuclei are significantly heavier than electrons, electrons

can be considered to be moving in the field of nuclei with fixed positions. This approximation

is known as the Born-Oppenheimer approximation.9 The electronic Hamiltonian within the

Born-Oppenheimer approximation in atomic units is

H = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

M∑
A=1

ZA∣∣∣~ri − ~RA

∣∣∣ +
N∑
i=1

N∑
j>i

1

|~ri − ~rj|
(1.2)

where ~ri and ~RA are positions of electron i and nucleus A, respectively, and ZA is the atomic

number of nucleus A. The first term on the right-hand side of eq 1.2 is the kinetic energy

operator for the electrons, the second and third terms are electron-nucleus attraction and

electron-electron repulsion potential terms, respectively. The wave function, Ψ, can be taken

as a product of single-electron spin orbitals.

|Ψ〉 = ψi(~r1, ω1)ψj(~r2, ω2) · · ·ψk(~rN , ωN) (1.3)

where ω is a spin coordinate of an electron. Since the electrons are indistinguishable from

each other, the wave function must be antisymmetrized. An antisymmetric wave function

changes sign upon interchange of any two electrons. This can be achieved by using a Slater

determinant for the wave function

|Ψ0〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψi(~r1, ω1) ψj(~r1, ω1) · · · ψk(~r1, ω1)

ψi(~r2, ω2) ψj(~r2, ω2) · · · ψk(~r2, ω2)
...

...
. . .

...

ψi(~rN , ωN) ψj(~rN , ωN) · · · ψk(~rN , ωN)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.4)
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where (N !)−1/2 is a normalization factor. A more brief notation can be chosen for the wave

function

|Ψ0〉 = |ψiψj · · ·ψk〉 = |ij · · · k〉 (1.5)

According to variational principle, increasing the flexibility of a trial wave function lowers

its energy

E =

∫
Ψ∗0HΨ0d~rdω = 〈Ψ0|H|Ψ0〉 (1.6)

Starting from Slater determinant of orbitals, the energy is minimized by optimizing the

orbitals.

1.3 Hartree-Fock Theory

The electronic Hamiltonian in eq 1.2 has one-electron and two-electron terms. The one-

electron terms can be combined into a core-Hamiltonian operator

h(i) = −1

2
∇2
i −

M∑
A=1

ZA∣∣∣~ri − ~RA

∣∣∣ (1.7)

The Hartree-Fock (HF) method approximates the wave function as a single Slater de-

terminant, which simplifies the calculation of the energy contribution from the two-electron

operator.
N∑
i=1

N∑
j>i

〈Ψ0|
1

|~ri − ~rj|
|Ψ0〉 =

N∑
i=1

N∑
j>i

(〈ij|ij〉 − 〈ij|ji〉) (1.8)

where the integrals on the right-hand side are Coulomb integrals, Jij, and exchange integrals,

Kij, respectively

Jij = 〈ij|ij〉 =

∫
ψ∗i (~r1, ω1)ψ∗j (~r2, ω2)

1

|~r1 − ~r2|
ψi(~r1, ω1)ψj(~r2, ω2)d~r1d~r2dω1dω2 (1.9a)

Kij = 〈ij|ij〉 =

∫
ψ∗i (~r1, ω1)ψ∗j (~r2, ω2)

1

|~r1 − ~r2|
ψj(~r1, ω1)ψi(~r2, ω2)d~r1d~r2dω1dω2 (1.9b)
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It is useful to derive the operator forms of the two-electron integrals to observe their

effects on a particular single-electron spin orbital. The Coulomb and exchange operators

acting on electron 1 are

Jj(1) =

∫
ψ∗j (~r2, ω2)

1

|~r1 − ~r2|
ψj(~r2, ω2)d~r2dω2 (1.10a)

Kj(1) =

∫
ψ∗j (~r2, ω2)

1

|~r1 − ~r2|
ψi(~r2, ω2)d~r2dω2 (1.10b)

These operators can be combined into a Hartree-Fock potential

vHF (1) =
∑
j

(Jj(1)−Kj(1)) (1.11)

Combining the core-Hamiltonian with the Hartree-Fock potential we derive the Fock operator

f(1) = h(1) + vHF (1) (1.12)

Then the Hartree-Fock equation for a spin orbital ψi is

f |ψi〉 = Ei |ψi〉 (1.13)

Since the Hartree-Fock potential in f depends on the form of ψi, eq 1.13 is nonlinear and is

solved iteratively.

1.4 Coupled-Cluster Theory

In the Hartree-Fock method electrons “feel” the electron-electron repulsive potential as

an averaged field. This means that the Hartree-Fock method does not account for electron

correlation effects. In fact, the correlation energy is defined as the difference between the

exact nonrelativistic energy and the Hartree-Fock energy. Post-Hartree-Fock methods such

as coupled-cluster theory are used to approximate correlation energy. Before describing the

coupled-cluster approximation,10 it is useful to illustrate the second quantization formalism.
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The creation operator, a†i , adds an electron to a spin orbital ψi and the annihilation

operator, ai removes an electron from a spin orbital ψi

a†i |ψj〉 = |ψiψj〉 (1.14a)

ai |ψiψj〉 = |ψj〉 (1.14b)

If an electron already exists in ψi, then a†i |ψiψj〉 = 0. Similarly, if an electron is not in ψi,

then ai |ψj〉 = 0. The creation and annihilation operators are related by an anticommutation

relation

aia
†
j + a†jai = δij (1.15)

where δij is the Kronecker delta.

The wave function for the coupled-cluster method10 is

|ΨCC〉 = eT |Ψ0〉 (1.16)

where T is a cluster operator and |Ψ0〉 is a single determinant reference wave function such

as the ground state Hartree-Fock wave function. The operator T has single, double, etc.

excitations depending on the coupled cluster method

T = T1 + T2 + · · · =
∑
ir

tria
†
rai +

1

4

∑
ijrs

trsij a
†
ra
†
sajai + . . . (1.17)

where t are coefficients, i and j represent occupied orbitals, and r and s are excited states.

eT can be expanded in a Taylor series

eT =
∞∑
n=0

T n

n!
= 1 + T +

T 2

2!
+ . . . (1.18)

In the coupled-cluster singles and doubles (CCSD) method,11 the cluster operator is

truncated at the second excitation, T2. The CCSD energy is found by solving a system of

equations resulting when equation

HeT1+T2 |Ψ0〉 = EeT1+T2 |Ψ0〉 (1.19)

is multiplied by 〈Ψ0|, 〈Ψr
i |, and

〈
Ψrs
ij

∣∣ which appear when 〈Ψ0| is multiplied by 1, T1, and

T2, respectively.

Coupled-cluster methods are size consistent, which means that the energy of a non-

interacting system is equal to the sum of the energies of the constituents of the system at

infinitely large separation.
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1.5 Equation of Motion Theory

The equation of motion (EOM) method12 has an excitation operator acting on the cou-

pled cluster wave function

|Ψ〉 = R |ΨCC〉 = ReT |Ψ0〉 (1.20)

where the R operator can correspond to an excitation operator REE, electron attachment

REA, or ionization potential RIP . The REA and RIP operators add and remove an electron,

respectively.

REE = c0 +
∑
ir

cria
†
rai +

1

4

∑
ijrs

crsij a
†
ra
†
sajai + . . . (1.21a)

REA =
∑
r

cra†r +
1

2

∑
irs

crsi a
†
ra
†
sai + . . . (1.21b)

RIP =
∑
i

ciai +
1

2

∑
ijr

crija
†
rajai + . . . (1.21c)

The EOM-CC energy is

E = 〈Ψ0|Le−THeTR|Ψ0〉 (1.22)

where L is the de-excitation operator.

1.6 Temporary Anion Shape Resonances

The EOM-CC methods can accurately describe non-valence correlation-bound anions.

The species possessing NVCB states may additionally possess temporary anion states. Tem-

porary anions are higher in energy than the corresponding neutral ground states. Temporary

anion shape resonances of atoms and molecules are trapped by an angular momentum bar-

rier.13 Shape resonances are short-lived with the electron detaching by tunneling through

the potential barrier.

The resonance energy is described by real and imaginary parts

Eres = Er −
iΓ

2
(1.23)
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where Er is the resonance position and Γ is the resonance width which is inversely propor-

tional to the lifetime of the resonance.14

In the following sections we describe a model potential possessing a resonance and use

the model to illustrate how to obtain resonance energy and position.

1.7 Model Potential

Figure 1.1: Diagrams for the model potential possessing resonance (left), the modified poten-

tial for the discrete state (DS) (middle), and the potential to generate discretized continuum

(DC) levels

The model potential consists of an infinite potential wall at x = 0 and a potential barrier

V0 from x = a to b as illustrated in the leftmost diagram of Figure 1.1. In order to study the

resonance, we partition the problem into a discrete state (DS) and discretized continuum

levels (DC) illustrated in Figure 1.1 middle and rightmost diagrams, respectively.

The model potential is described by the Hamiltonian in 1D given in atomic units as

H = −1

2

d2

dx2
+ V (x) (1.24)

where V (x) is the potential described above.
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1.8 Discrete State and Discretized Continuum Wave Functions

The discrete state has an infinite potential at x = 0, then a well of V = 0 until x = a,

and a fixed potential V = V0 as x → ∞. The wave function is 0 when x = 0 and when

x→∞. The wave function has two regions

ψ1 = A sin (k1x), for 0 < x < a (1.25a)

ψ2 = Be−k2(x−a), for x > a (1.25b)

k1 and k2 are defined as

k1 =
√

2EDS (1.26a)

k2 =
√

2(V0 − EDS) (1.26b)

where EDS is the energy of the discrete state. The DS wave function and its derivative have

to be continuous at x = a

A sin (k1a) = B (1.27a)

k1A cos (k1a) = −k2B (1.27b)

Thus, k1 and k2 are related by

k1 + k2 tan (k1a) = 0 (1.28a)√
2EDS +

√
2(V0 − EDS) tan

√
2EDSa = 0 (1.28b)

where in eq 1.28b we used the expressions from eq 1.26 to estimate the energy of the discrete

state for given values of V0 and a

In order to find the coefficients A and B, the discrete wave function is normalized.∫ a

0

ψ∗1ψ1dx = A2

(
a

2
− sin (2k1a)

4k1

)
(1.29a)∫ ∞

a

ψ∗2ψ2dx =
B2

2k2

=
A2(sin (k1a))2

2k2

(1.29b)

A =

(
a

2
− sin (2k1a)

4k1

+
(sin (k1a))2

2k2

)−1/2

(1.29c)

where eq 1.27a relation between A and B was used.
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The discretized continuum potential is simply a particle in a 1D box of size L. The

normalized wave function of the nth state is

ψ3 =

√
2

L
sin
(nπx
L

)
(1.30)

1.9 2x2 Model Problem

We can apply the Hamiltonian from eq 1.24 on a 2x2 problem mixing the discrete state

with one continuum state (n = 1).∣∣∣∣∣∣H11 − E H12 − S
H21 − S H22 − E

∣∣∣∣∣∣ = 0 (1.31)

where H11 = 〈ψ1 + ψ2|H|ψ1 + ψ2〉 is the energy of the discrete state, H22 = 〈ψ3|H|ψ3〉 is the

energy of the discretized continuum state, H12 = 〈ψ1 + ψ2|H|ψ3〉 and H21 = 〈ψ3|H|ψ1 + ψ2〉
are mixing of the two states, and S = 〈ψ1|ψ3〉+ 〈ψ2|ψ3〉 is the overlap of the two states.

The energies of the discrete state and the discretized continuum state are

H11 =
A2k2

1

2

(
a

2
− sin (2k1a)

4k1

)
− B2k2

4
− B2V0(e−2k2(b−a) − 1)

2k2

(1.32a)

H22 =
π2

2L2
+
V0

L

[
(b− a)− L

2π

(
sin

(
2πb

L

)
− sin

(
2πa

L

))]
(1.32b)

Prior to discussing the mixing of the states, it is convenient to obtain the overlap integral

S partitioning it into overlap S13 from 0 to a and S23 from a to L. In addition a potential

energy contribution P23 is calculated from a to b

S13 =
A
√

2/L

−k2
1 + π2/L2

(
−π
L

sin (k1a) cos
(πa
L

)
+ k1 cos (k1a) sin

(πa
L

))
(1.33a)

S23 =
B
√

2/L

k2
2 + π2/L2

(π
L

cos
(πa
L

)
+ k2 sin

(πa
L

)
+
π

L
e−k2(L−a)

)
(1.33b)

P23 =
B
√

2/L

k2
2 + π2/L2

[
π

L
cos
(πa
L

)
+ k2 sin

(πa
L

)
− e−k2(b−a)

(
π

L
cos

(
πb

L

)
+ k2 sin

(
πb

L

))]
(1.33c)
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The mixed states in terms of the S12, S23, and P23 integrals are

H12 =
π2

2L2
S13 +

π2

2L2
S23 + V0P23 (1.34a)

H21 =
k2

1

2
S13 −

k2
2

2
S23 + V0P23 (1.34b)

In order to simplify solving for eigenvalues of the H matrix, the basis set can be or-

thonormalized. For the model problem described here we choose the following parameters:

a = 10 au, b = 12 au, and V0 = 0.3 au. Using these parameters and the expression from

eq 1.28b, we calculate the energy of the discrete state to be EDS = 0.03850797 au. For values

of L > 20 au, H12 and H21 are essentially equal.

1.10 Stabilization Method and Analytic Continuation

The stabilization method can be applied to calculate the resonance energies.15 The stabi-

lization graph is a plot of eigenvalues of the Hamiltonian as a function of a scaling parameter.

In our model potential problem, we plot the eigenvalues as a function of 1/L2 to observe the

avoided crossing.

0.8 0.9 1.0 1.1 1.2 1.3

1/L2 (10−3)

0.025

0.030

0.035

0.040

0.045

0.050

0.055

E
ne

rg
y

Figure 1.2: Stabilization graph of the model potential
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Analytic continuation method can be used to obtain the resonance position and width

from the data points close to the avoided crossing in the stabilization plot.16 The energies

from the plot can be fit to a quadratic equation

PE2 +QE +R = 0 (1.35)

where P , Q, and R are polynomials of the scaling parameter β = 1/L2

P (β) = 1 + p1β + p2β
2 + · · · (1.36a)

Q(β) = q0 + q1β + q2β
2 + · · · (1.36b)

R(β) = r0 + r1β + r2β
2 + · · · (1.36c)

We choose eight points in the vicinity of the avoided crossing indicated in Figure 1.2 to

determine the resonance energy. The polynomials P (β), Q(β), and R(β) are of the 1st, 2nd,

and 3rd orders in β, respectively. We solve a system of eight equations for eight parameters

of the polynomials. Once the exact form of eq 1.35 is determined, we solve for the energy

E =
−Q(β)±

√
Q2(β)− 4P (β)R(β)

2P (β)
(1.37)

and search for a complex stationary point β∗ for which

dE

dβ
= 0 (1.38)

With the model potential parameters and eight data points, we get β = 0.001136 ±
0.001755i. Plugging this value of β into eq 1.35 yields Eres = 0.037932±0.000319i au. Thus,

the resonance position is Er = 0.037932 and the resonance width is Γ = 0.000638.

The model potential described in the last sections is a useful tool in understanding

resonances. Stabilization graph allows one to qualitatively estimate the position of the

resonance. Analytically continuing energies from the stabilization graph into a complex plane

allows one to determine resonance position and width. These techniques can be applied to

study resonances of atoms, molecules, and molecular clusters.17,18
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Temporary anion shape resonances are relatively short-lived, i.e. they have large reso-

nance widths. For broad resonances where Er and Γ are in the same order of magnitude,

analytic continuation involves higher powers of E.17,18 Generally, more data points are chosen

from the stabilization graph and they are fit using the least squares method. In later chap-

ters we use stabilization method in combination with analytic continuation to characterize

temporary anion shape resonances of (H2O)4 and (NaCl)2.
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2.0 Theoretical Approaches for Treating Non-Valence Correlation-Bound

Anions

The text and figures in this chapter have been reprinted from Voora, V. K.; Kairalapova,

A.; Sommerfeld, T.; Jordan, K. D. Theoretical approaches for treating non-valence correla-

tion-bound anions. J. Chem. Phys. 2017, 147, 214114, DOI: 10.1063/1.4991497, with the

permission of AIP Publishing. The author’s contribution to the work included perform-

ing HF, MP2, CCSD, CCSD(T), EOM-CC, BCCD calculations, generating all figures, and

revising the manuscript.

2.1 Summary

In this work, we use a model (H2O)4 cluster, the bent CO2 molecule, and tetracya-

noethylene as systems to explore the applicability of various electronic structure methods

for characterizing non-valence correlation-bound anion states. The methods examined in-

clude the algebraic diagrammatic construction, various equation-of-motion coupled cluster

methods, orbital-optimized MP2, and Brueckner coupled cluster doubles with perturbative

triples. We demonstrate that the key to treating this challenging class of anions is the use

of methods that include adequate orbital relaxation in response to long-range dispersion-like

correlation effects.

2.2 Introduction

Bound anionic states of molecules can be classified as valence-bound or non-valence-

bound depending on the nature of the interaction between the excess electron and the

molecule. In valence-bound anion states, the excess electron is bound to the molecule by

short-range interactions and occupies an orbital localized in the valence region. By contrast,
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in non-valence-bound anion states, the binding of the excess electron is dominated by long-

range electrostatics or dispersion-type correlation effects or a combination of these two effects,

and the excess electron occupies an orbital that has relatively little weight in the valence

region.1,6,7,19–28 Dipole-bound anions are a well-known class of non-valence anions for which

electrostatic interactions dominate the electron binding. Within the Born-Oppenheimer ap-

proximation, a molecule has to have a dipole moment in excess of 1.625 D to possess a

dipole-bound anion, whereas the inclusion of non-Born-Oppenheimer corrections causes the

critical moment to depend on the moment of inertia and to assume a value closer to 2.5

D.1,19,26 Examples of systems for which long-range correlation effects dominate the binding

of the excess electron are sufficiently large Xen clusters,20 the s-type anion states of C60,6 and

large acenes.25 In addition to these limiting cases, there are systems, e.g., succinonitrile24

and certain structures of (NaCl)n clusters,7 for which both electrostatics and long-range

correlation effects play an important role in the binding of the excess electron. We refer

to non-valence anions for which inclusion of long-range correlation effects is essential for

electron binding as non-valence correlation-bound (NVCB) anions.

For non-valence anions for which the binding of the excess electron is dominated by long-

range electrostatic interactions, both the Hartree-Fock (HF) and Koopmans’ theorem (KT)29

approximations give a bound anion, provided that sufficiently flexible basis sets are employed.

For these species, quantum chemistry methods such as coupled-cluster singles and doubles

plus perturbative triples [CCSD(T)]30 and, in some cases, even second-order Møller-Plesset

perturbation theory (MP2)31 can accurately predict the electron binding energies (EBEs)

and other properties of the anions. By contrast, NVCB anions, by definition, are unbound

at the HF level of theory. In fact, when flexible basis sets are employed for such systems, the

HF wave function for the excess electron system actually describes the neutral system plus

an electron in a discretized continuum orbital. As a result, electronic structure methods such

as MP2 and CCSD(T) that start from the HF approximation are expected to fail to bind

the excess electron when flexible basis sets are employed. Thus, it is of considerable interest

to establish which electronic structure methods are suitable for describing NVCB anions. In

this work, we consider a (H2O)4 cluster with zero net dipole moment and tetracyanoethylene

(TCNE) as model systems for accessing the performance of various theoretical methods
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for describing NVCB anions. We also consider the case of CO−2 for which the inclusion of

correlation effects is essential for the binding of the excess electron as the bending potential

of the anion approaches that of the neutral. Although, the wave function of the ground

electronic state of CO−2 acquires considerable non-valence character at these geometries, the

nature of the correlation contribution appears to be different from that of typical NVCB

anions.

2.3 Theoretical Approaches

The theoretical methods considered include HF, MP2, second-order algebraic diagram-

matic construction (ADC(2)),32 CCSD, CCSD(T), various equation-of-motion (EOM) cou-

pled cluster methods,33–37 orbital-optimized MP2 (OO-MP2),38,39 Brueckner coupled-cluster

doubles with perturbative triples (BCCD(T)),40 and the G0W0 Green’s function method.41

In the EOM, ADC(2), and G0W0 methods, the electron binding energy (EBE) is calculated

directly. For the remaining methods, the energies of the neutral and anionic systems are

calculated separately, with spin-unrestricted methods being employed for the anions, and

the EBEs are obtained from the difference of the energies of the neutral and anionic species.

These are referred to as delta (∆) methods.

The ADC(2) and G0W0 methods are Green’s function methods, with the former employ-

ing a second-order approximation to the self-energy. Unlike the CCSD(T) and MP2 methods,

the BCCD(T) and OO-MP2 methods employ orbitals that are optimized in the presence of

correlation effects. The BCCD(T) method optimizes the orbitals so as to eliminate single ex-

citations to all orders in the inter-electron interaction, while the OO-MP2 method optimizes

the orbitals in the presence of the second-order correlation effects. The EOM approxima-

tions considered are EOM-CCSD(2) (here referred to as EOM-MP2),33,34 EOM-CCSD,35

EOM-CCSDT,36 and EOM-CCSD(T)(a)*.37 In the EOM-MP2, EOM-CCSD, and EOM-

CCSDT methods, the energy of the neutral system is calculated using the MP2, CCSD,

and CCSDT42 methods, respectively, and the resulting excitation amplitudes (doubles for

EOM-MP2, singles and doubles for EOM-CCSD, and doubles, singles, and triples for EOM-
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CCSDT) are used to perform a similarity transform of the Hamiltonian which is then used

to carry out a CI calculation on the anion. In the EOM-MP2 and EOM-CCSD methods,

the CI calculations include all symmetry-allowed one-particle (1p) and two-particle-one-hole

(2p1h) configurations, and in the EOM-CCSDT method, the 3p2h configurations are in-

cluded as well. The EOM-CCSD(T)(a)* method includes the effects of triple excitations in

a non-iterative manner and, thus, is computationally considerably less demanding than full

EOM-CCSDT calculations.

Both the EOM and ADC(2) methods are free of the “collapse” to the continuum problem

for which the HF method and the MP2 and coupled cluster methods employing HF orbitals

are susceptible. The OO-MP2 and BCCD(T) methods can also avoid the collapse onto the

continuum in calculations on the anion, provided suitable initial guess orbitals are employed.

For the BCCD(T) calculations, orbitals from a HF calculation on the cation were used for

the starting guess for the anion. Thus, when employing a large basis set with very diffuse

functions, the singly occupied orbital of the initial guess wave function for the anion actually

corresponds to a Rydberg orbital, which is more localized in the molecular region than is

a discretized continuum orbital. For the OO-MP2 calculations, orbitals from a B3LYP43–45

density functional theory calculation were used as the initial guess orbitals.

The EOM, MP2, BCCD(T), and CCSD(T) calculations were carried out using the

CFOUR code,46 the ADC(2) and OO-MP2 calculations were carried out using the Psi4

code,47 and the G0W0 calculations were performed using Turbomole.48 The ADC(2) algo-

rithm, as implemented in Psi4, actually calculates excitation energies rather than EBEs.

However, this was “tricked” into calculating EBEs by choosing as the ground state a “dian-

ion” with two electrons occupying a very diffuse “continuum” orbital. The electron binding

energy of the NVCB anion state is then recovered as an excitation energy (which is of negative

sign) in the ADC(2) calculations. The EOM-CCSDT and EOM-CCSD(T)(a)* calculations

were also carried out using the electronic excitation implementations of the algorithms to-

gether with the “continuum” orbital trick. The basis sets employed in the various calculations

are described in Secs. 2.4-2.5.

16



2.4 (H2O)4 Cluster Model: Electrostatically Bound to Correlation-Bound

Anion

The (H2O)4 model cluster employed in this work was taken from Ref. 49 and is depicted

in Figure 2.1. By design, it has a zero net dipole moment, with the water molecules arranged

so that each monomer points an OH group toward the cluster interior, which results in a

favorable electrostatic interaction for the excess electron near the cluster center. The cluster

is treated as two rigid dimers with OO separations of 3.461 Å, the distance (R) between

which is varied. This arrangement is not intended to correspond to an experimentally ob-

servable structure for (H2O)4, but rather is designed as a model for which one can vary the

relative importance of correlation and non-correlation contributions to the EBE. In partic-

ular, starting at large R and progressing to shorter R, we expect correlation effects to grow

in importance relative to the sum of the other contributions to the EBE. Calculations using

the various theoretical methods considered are carried out for R values ranging from 2.5 to

9.5 Å.

Figure 2.1: Geometry of the (H2O)4 cluster model studied in this work. R ranges from 2.5

to 9.5 Å.
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The majority of the calculations on the (H2O)4 cluster were carried out using an aug-

cc-pVDZ+7s7p Gaussian-type orbital basis formed by supplementing the standard aug-cc-

pVDZ basis set50,51 with a set of seven diffuse s and seven diffuse p primitive Gaussian

functions located at the center of mass of the cluster. The exponents of the supplemental

Gaussians were chosen to be in geometric ratios with values ranging from 0.025 to 0.000025

and 0.022 to 0.000022 for s and p, respectively. To help elucidate the role of these diffuse

functions in describing the NVCB anion, calculations were also carried out with the aug-cc-

pVTZ basis set,50,51 which lacks supplemental diffuse functions. Also, in order to establish

the sensitivity of the EBE to the basis set employed, EOM-CCSD(T)(a)* calculations were

also carried out for the (H2O)4 model with R = 4.2 Å and using an aug-cc-pVTZ+6s6p6d

basis set, with the supplemental functions again being centered at the center-of-mass of the

cluster.

We first consider the results obtained with the aug-cc-pVDZ+7s7p basis set. Fig-

ure 2.2(a) reports the EBEs from the KT, ∆HF, ∆MP2, ∆CCSD, and ∆CCSD(T) cal-

culations, and Figure 2.2(b) reports the EBEs from the ADC(2), ∆OO-MP2, ∆BCCD(T),

and various EOM methods using this basis set. At the largest separation considered, R = 9.5

Å, the anion is calculated to be bound by ∼35 and 40 meV in the KT and ∆HF approxi-

mations, respectively. Here, and elsewhere in this paper, we use the convention that bound

anions correspond to positive EBE values. As R decreases, the KT and ∆HF EBEs de-

crease, going to zero at R ∼ 4.2 Å. For R . 4.2 Å, the LUMO from the HF calculation

on the neutral molecule has collapsed onto an approximate continuum orbital and the HF

wave function of the excess electron system has collapsed onto an approximate continuum

state. In contrast to the KT and HF results, the EBEs obtained from the various methods

that recover correlation effects (with the exception of MP2 which will be discussed below)

increase as R decreases from 9.5 to 4.2 Å. However, while the ADC(2), OO-MP2, EOM, and

BCCD(T) methods continue to bind the excess electron for R values . 4.2 Å, the EBEs

calculated using the CCSD and CCSD(T) methods collapse to zero once the HF method

ceases to bind the electron.

The MP2/aug-cc-pVDZ+7s7p calculations considerably underbind the excess electron

for the (H2O)4 model at all R values considered. Also, the MP2 method, unlike the CCSD
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Figure 2.2: EBE of (H2O)4 calculated using various theoretical methods in conjunction with

the aug-cc-pVDZ+7s7p basis set. (a) Results obtained using the KT, ∆HF, ∆MP2, ∆CCSD,

∆CCSD(T) methods, and (b) results obtained using the ADC(2), ∆OO-MP2, ∆BCCD(T),

and various EOM methods.

and CCSD(T) methods, weakly binds the excess electron for R values between about 3.6

and 4.2 Å. The binding by the MP2 calculations of the excess electron over this distance

range is fortuitous and is a consequence of the fact that although the singly occupied orbital

of the HF wave function has collapsed onto a discretized continuum solution, it does have

some weight in the molecular region. As a result, the MP2 method gives a slightly larger

correlation correction for the excess electron system than for the neutral cluster, leading

to very weak binding of the excess electron. Coupled cluster doubles calculations (without

singles corrections) also weakly bind the excess electron for R values slightly less than 4.2

Å, leading us to conclude that for these geometries, the single excitations in the CCSD and

CCSD(T) calculations stabilize the neutral molecule more than the excess electron system.

For large R values, the OO-MP2, BCCD(T), CCSD(T), and various EOM methods give

similar EBE values, while the ADC(2) and CCSD methods give weaker binding due to their

less complete treatment of relaxation in response to cor- relation effects. In progressing from

large R to R = 4.2 Å, there is a growing discrepancy between both the EOM-MP2 and

EOM-CCSD values of the EBEs and the EOM-CCSDT and EOM-CCSD(T)(a)* values of

the EBEs, with the latter two methods giving larger values of the EBE (by about 10% at
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R = 4.5 Å). As R approaches 4.2 Å, the EBEs calculated using the OO-MP2, BCCD(T),

and CCSD(T) methods all remain close to the EOM-CCSDT results, which we take as

the benchmark values. By contrast, as noted above, the CCSD and CCSD(T) calculations

collapse onto the neutral plus an approximate continuum orbital for R values less than 4.2

Å.

For R . 4.2 Å, the ADC(2) method continues to give weaker binding than do the OO-

MP2, EOM, and BCCD(T) methods. In addition, at these short R values, the EOM-MP2

and EOM-CCSD methods bind the excess electron more strongly than does the ADC(2)

method but less strongly than do the EOM-CCSDT, EOM-CCSD(T)(a)*, BCCD(T), and

OO- MP2 methods, all of which give EBEs in close agreement with one another. At R = 3.5

Å, the EBEs from the EOM-MP2 and EOM-CCSD methods are about 15% smaller than the

EOM-CCSD(T)(a)* and EOM-CCSDT values. These results lead us to conclude that for the

(H2O)4 model at geometries at which the HF method fails to bind the excess electron, the

OO-MP2 and BCCD(T) methods are more successful at describing relaxation in response to

correlation effects than are the EOM-MP2 and EOM-CCSD methods.

It is instructive to compare, at different R values, the LUMO from the HF calculations

on the neutral cluster and the singly occupied natural orbital (SONO) from the EOM-CCSD

calculations on the anion, both calculated using the aug-cc-pVDZ+7s7p basis set. Figure 2.3

plots these two orbitals along the axis perpendicular to the cluster center for R = 2.5, 3.5, 4.5,

and 8.5 Å. For each of these R values, the charge distribution associated with the SONO from

the EOM-CCSD calculations is largely localized in a region within 10 Å of the center of the

cluster, with the extent of localization increasing slightly as R decreases. For R = 8.5 Å, the

LUMO from the HF calculations is qualitatively similar to the SONO from the EOM-CCSD

calculations, but as R decreases, the LUMO from the HF calculations becomes progressively

more diffuse than the EOM-CCSD SONO. For R = 4.5 Å, the LUMO, while still bound, is

far more radially extended than the EOM-CCSD SONO, and for R = 2.5 and 3.5 Å, the

LUMO has little weight in the vicinity of the cluster, consistent with its collapse onto an

approximate continuum function. In fact, at R = 3.5 Å, it is the sixth lowest unoccupied

orbital from the HF calculations of the neutral cluster that most closely resembles the SONO

from the EOM-CCSD calculations.
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Figure 2.3: Orbital plots of the LUMO from HF calculations of the neutral (H2O)4 cluster

and the SONO from the EOM-CCSD calculations of the anion as a function of the distance

from the center of the cluster along the direction perpendicular to the plane of the cluster.

The aug-cc-pVDZ+7s7p basis set was used for these calculations.

The results presented above were obtained using the aug-cc-pVDZ+7s7p basis set. We

now examine the sensitivity of the EBE of the (H2O)4 model to further expansion of the

basis set. This analysis is done at R = 4.2 Å using the EOM-CCSD(T)(a)* method. The

resulting EBE obtained using the aug-cc-pVTZ+6s6p6d basis set is 208 meV, which is about

20% greater than that obtained using the aug-cc-pVDZ+7s7p basis set. We also carried out

EOM-CCSD(T)(a)* calculations using the aug-cc-pVDZ+6s6p6d and aug-cc-pVTZ+7s7p

basis sets, and, based on the results of these calculations, we conclude that roughly half of

the 20% increase in EBE noted above comes from the improvement of the description of

the charge distribution of the excess electron upon inclusion of the diffuse d functions and

about half is due to the improved description of the response of the valence electrons of the

water molecules in going from the aug-cc-pVDZ+7s7p to the aug-cc-pVTZ+6s6p6d basis

set. This is consistent with the dominant correlation effects being long-range dispersion-like

interactions between the excess electron and the valence electrons of the water molecules. The

value of the EBE obtained from the EOM-CCSD(T)(a)*/aug-cc-pVTZ+6s6p6d calculations

is expected to be close to the exact value, i.e., that which would be obtained from a full
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CI calculation in the complete-basis-set limit. In particular, we note that in an earlier

publication, where we considered the (H2O)4 model at a single geometry (R = 5.3 Å), we

found that the EBE increased by only 5 meV in going from the aug-cc-pVTZ+6s6p6d to the

aug-cc-pVQZ+6s6p6d.52

We now turn our attention to the calculations using the aug-cc-pVTZ basis set, with

the main results being reported in Figure 2.4. For this basis set, the anion is calculated

to be unbound by 200 to 550 meV in the KT and Hartree-Fock approximations over the

entire range of R values considered. The failure of the KT and ∆HF calculations using the

aug-cc-pVTZ basis set to bind the excess electron to the (H2O)4 cluster at large R values is

a consequence of the artificial confinement (due to the lack of very diffuse functions in the

basis set) of the orbital occupied by the excess electron, which, in turn, causes the kinetic

energy contribution to be too high. For R values ranging from 2.5 to about 5.5 Å, all of

the methods that include correlation corrections bind the excess electron when employing

the aug-cc-pVTZ basis set. However, this binding is fortuitous as it is a consequence of

the unrealistically large correlation contributions to the EBE that result from the artificial

confinement of the singly occupied orbital in the vicinity of the water monomers. Thus, it

is not surprising that the R dependence of the binding energy is not properly reproduced in

the calculations with the aug-cc-pVTZ basis set. In fact, none of the methods considered

give a bound anion for R > 5.5 Å, in contrast to the calculations carried out with the

aug-cc-pVDZ+7s7p basis set.

The most important take-away message from the calculations on the NVCB anion of

the (H2O)4 cluster model is that in order to properly describe this system, it is essential to

employ a theoretical method that adequately accounts for the coupling of orbital relaxation

and dispersion-like correlation effects and to use a basis set that includes s and p basis

functions considerably more diffuse than those in the standard aug-cc-pVXZ basis sets. The

fact that the EBEs from the OO-MP2 calculations are nearly identical to those from the

EOM-CCSDT calculations indicates that for this cluster, even a second-order treatment

of the dispersion-like correlation effects suffices for describing the NVCB anion, provided

that orbitals optimized in the presence of these correlation effects are employed. In the

case of the ADC(2) method, this relaxation is accomplished through the off-diagonal terms
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Figure 2.4: EBE of (H2O)4 calculated using various theoretical methods in conjunction

with the aug-cc-pVTZ basis set. The ∆MP2 and ∆CCSD curves, not depicted, essentially

overlap with the ∆BCCD curve. Also, the ∆CCSD(T) and EOM-CCSD(T)(a)* curves,

not depicted, essentially overlap with the ∆BCCD(T) curve, and the EOM-MP2 curve, not

depicted, essentially overlaps with that from the EOM-CCSD calculations.

in the self-energy. When the off-diagonal coupling is neglected, the EBE from the ADC(2)

calculations using the aug-cc-pVDZ+7s7p basis set goes to zero with decreasing R even more

rapidly than the MP2 value of the EBE, and the diagonal ADC(2) method fails to bind the

excess electron for R values less than 4.2 Å. The non-self-consistent G0W0 method, which also

neglects off-diagonal self-energy terms, is found to give results similar to those obtained using

the diagonal ADC(2) method. The EBEs obtained with the ADC(2), diagonal-ADC(2), and

G0W0 methods are compared with the corresponding EOM-CCSDT results in Figure 2.5.

The success of the BCCD(T) method, in contrast to the CCSD(T) method for R values

for which the HF method does not bind the excess electron, is particularly noteworthy.

Because a Slater determinant of Brueckner orbitals is that with the maximum overlap with

the true wave function, the Brueckner procedure results in a singly occupied orbital for the

anion with a charge distribution close to that of the SONO from the EOM calculations.

Figure 2.6 compares the EBEs obtained using the difference of the energy of the anion and

the neutral cluster both calculated using Slater determinants of Brueckner orbitals (and here

referred to as ∆SD-BO) with the corresponding ∆HF results. For large R, the ∆SD-BO
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Figure 2.5: EBE of the NVCB anion of (H2O)4 for different R values calculated using the

ADC(2), diagonal-ADC(2), and G0W0 methods.

calculations bind the excess electron albeit less strongly than the ∆HF method, but for R

values . 6 Å, they give a negative EBE. At R = 2.5 Å, the shortest distance considered, the

anion is predicted to be unbound by 220 meV in the ∆SD-BO method. These results are

consistent with the singly occupied orbital from the BCCD calculations on the anion being

slightly more localized than the HF LUMO at large R and with the former becoming more

localized and the latter more delocalized as R decreases. We also see from Figure 2.6 that

the difference between the ∆BCCD(T) and ∆SD-BO values of the binding energy grows in

magnitude from 69 meV at R = 9.5 Å to 350 meV at R = 2.5 Å,consistent with the growing

importance of the correlation contribution to the EBE as R decreases.

We also applied the self-consistent polarization model of Ref. 49 to calculate the electron

binding energy of the (H2O)4 cluster at R = 4.2 Å. With the model potential approach, the

net EBE can be decomposed into kinetic energy, electrostatics, repulsion, and polarization

contributions, where the kinetic energy contribution results from localization of the excess

electron, the electrostatics contribution results from the interaction of the electron with the

three point charges employed on each water monomer, the repulsion contribution results

from the pseudopotential used to prevent overattraction to the positively charged H atoms

and to effectively account for charge penetration and exchange effects, and the polarization

contribution describes the correlation effects between the excess electron and the valence
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Figure 2.6: EBE of the NVCB anion of (H2O)4 calculated with the ∆HF, ∆SD-BO, and

∆BCCD methods. All results are obtained using the aug-cc-pVDZ+7s7p basis set.

electrons. The results of the energy decomposition are summarized in Table 2.1. At R = 4.2

Å, the model potential gives an electrostatic contribution to the binding energy of 709

meV. However, the sum of the kinetic energy and repulsive contributions is even greater in

magnitude, with the sum of these three contributions being −104 meV, roughly comparable

to the ∆SD-BO value of the EBE at R = 4.2 Å. The polarization contribution to the EBE

is 312 meV, giving a net binding of 208 meV, which is in close agreement with the EOM-

CCSDT and ∆BCCD(T) results.

Table 2.1: Contributions to the EBE of the NVCB anion of the (H2O)4 model at R = 4.2 Å.

Contribution Energy (meV)

Electrostatic 709
Kinetic energy −655
Repulsion −157
Polarization 302

Total EBE 208

It is important to note that both the BCCD(T) and polarization potential approaches

use orbitals that have been optimized in the presence of correlation effects. It is more

traditional to define correlation corrections with reference to the HF energy, in which orbitals

are calculated using orbitals determined in the absence of correlation effects. However, for
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NVCB anions, the HF wave function collapses onto a discretized continuum solution, and we

believe it is more instructive to perform the energy decomposition using orbitals optimized

in the presence of correlation effects.

2.5 CO2: Valence-Bound to Correlation-Bound Anion

As our second test case, we consider the bending potential of the ground state anion of

CO2. It is known from electron scattering measurements that vertical electron capture into

the valence π* orbital of CO2 results in a temporary anion located energetically about 3.7

eV above the neutral molecule.53 It is also known that CO−2 has a valence-like 2A1 anion

state with a minimum energy structure with an OCO angle of about 138° at which it lies

energetically about 1.5 eV below the neutral molecule at the same geometry and about 0.5

eV above the neutral molecule at its minimum energy linear structure.54–57 The temporary

anion of CO−2 formed by vertical electron capture splits into 2B1 and 2A1 components as

the molecule is bent, and, in the standard textbook explanation, the 2A1 component of

the π* temporary anion state correlates with the bound valence-type 2A1 anion state with

OCO angle ∼ 138°.54–57 In this picture, the bending potential of the lowest energy anion

state of CO−2 would be expected to be similar to that of the isoelectronic 2A1 state of NO2.

However, theoretical studies of Vanrose and co-workers,58 Sommerfeld,54 and Sommerfeld et

al.57 have shown that this textbook picture of CO2 is not correct. In particular, as shown by

Sommerfeld, EOM-CCSD calculations employing a large basis set with several sets of diffuse

functions predict that as the OCO angle increases from ∼138°, the potential energy curve of

the anion first rises slightly in energy, having a maximum near 150°, and then descends in

energy, approaching the potential energy curve of the neutral molecule, ceasing to be bound

near an OCO angle of 154°. Moreover, as the potential energy curve of the anion approaches

that of the neutral, the wave function of the anion becomes much more diffuse than that

associated with a typical valence state.

In Sommerfeld’s study of CO−2 , the CCSD(T), EOM-CCSD, ADC(2), and ADC(3)59

methods were considered. In the present investigation, we extend this work to examine
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also the performance of the OO-MP2, EOM-CCSD(T)(a)*, EOM-CCSDT, and BCCD(T)

methods for this challenging system. We employ an ANOTZ+3s3p basis set formed by

augmenting the ANOTZ basis set60 on each atom with three diffuse s and three diffuse p

functions, the exponents of which were taken from Ref. 54. The CO distance is allowed to

vary with the OCO angle, as was done in Ref. 54. In particular, CO−2 in its bent structure and

CO2 in its linear structure were optimized using the CCSD method, and a linear interpolation

of these two geometries was used to determine the CO distances at other values of the OCO

angle.

Figure 2.7: Bending potentials of CO2 and CO−2 for values of the OCO angle between 147°

and 154°. Over this range of angles, two different HF solutions are obtained for CO−2 : one

valence-like and the other corresponding to the neutral molecule plus the excess electron in

a discretized continuum orbital. The HF, CCSD, and CCSD(T) potentials for the valence-

like anion are reported in (a), and the corresponding results for the discretized continuum

solution are reported in (b). In both cases, the bending potential energy curves of the

neutral molecule are also reported. The zero of energy is taken to be that of the linear

neutral molecule.

In our calculations on CO−2 , we discovered that for OCO angles between 147° and 154°, it

was possible to obtain two different HF solutions: one corresponds to the valence state and

the other to the neutral molecule plus an electron in a discretized continuum orbital. One

HF solution was obtained by using orbitals from calculations at smaller angles as the initial

guess for calculations at larger angles, and the other by using orbitals from calculations at
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larger OCO angles as the initial guess for the calculations at smaller angles. Figure 2.7(a)

depicts for the 147°–154° range of angles the anion potentials obtained using the valence-like

HF orbitals, while Figure 2.7(b) shows the corresponding potentials obtained using orbitals

from the HF solution that collapsed onto the discretized continuum. The potential for the

neutral molecule calculated using the various theoretical methods is also reported. From

Figure 2.7(a) it is seen that the HF solution that corresponds to the valence state rises in

energy with increasing bending angle up to 154° (beyond that it collapses onto the neutral

plus discretized continuum orbital). By contrast, the HF potential corresponding to the

discretized continuum solution is essentially parallel to the potential for the neutral, lying

about 0.04 eV above it. (The reason it lies slightly above the neutral in energy rather than

on top of it is a consequence of the basis set employing only three sets of supplemental diffuse

functions on each atom.)

Figure 2.8: Plots of the singly occupied orbital from HF calculations and of the singly occu-

pied natural orbital from EOM-MP2 calculations on CO−2 . (a) and (d) depict the discretized

continuum orbital at 147° and 154°, respectively; (b) and (e) depict the valence-type HF

orbital at those angles; and (c) and (f) report the SONOs from the EOM calculations at the

two angles.

The singly occupied orbital for the two HF solutions of the anion at OCO angles of 147°

and 154° is shown in Figure 2.8 as is the SONO from the EOM-MP2 calculations. The
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valence-type HOMO of the anion becomes more extended as the OCO angle increases from

147° to 154°, but the increase is relatively modest. Interestingly, the SONO from the EOM

calculations is somewhat more extended than the HOMO from the HF calculations on the

valence-type state, and it grows in extent with the increase in the OCO angle from 147° to

154° more than the HF HOMO. Over the 147°–154° range, the bending potentials of CO−2

obtained from the two sets of CCSD calculations are fundamentally different. In particular,

over this range of angles, the CCSD calculations starting from the valence-like HF orbitals

do not collapse onto the “continuum” solution even when the continuum solution lies lower

in energy and the CCSD calculations starting from the “collapsed” HF wave function do

not give the valence-like solution even when the valence-like solution lies lower in energy. In

other words, there is a range of angles for which the single excitations in the CCSD wave

function are not sufficient for overcoming the limitations of the HF starting point.
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Figure 2.9: Potential energy curves of CO2 and CO−2 . The potential energy curve for the

neutral molecule was calculated using the CCSD(T) method, and those for anion were gen-

erated by adding, at each geometry considered, the negative of the EBE calculated at that

level of theory to the CCSD(T) energy of the neutral molecule. The zero of energy was taken

to correspond to the neutral molecule with 180° OCO angle. The CO bond lengths were

generated as described in the text. All calculations were performed using the ANOTZ+3s3p

basis set. For the MP2 and CCSD(T) calculations on the anion, the valence-type HF solution

was used as the reference for angles up to 154°.

29



Figure 2.9 reports the calculated bending potentials of CO2 and CO−2 for the entire range

of angles considered. The bending potential for the neutral CO2 molecule was generated at

the CCSD(T) level of theory, and for the anion, results are reported for the MP2, CCSD(T),

EOM-CCSD, ADC(2), OO-MP2, and BCCD(T) methods, with the anion potentials being

generated by subtracting the EBE calculated with each method from the CCSD(T) value of

the energy of the neutral at the same geometry. (Results obtained using higher-order EOM

methods will be presented below.) In the case of the MP2 and CCSD(T) calculations, the

results shown are based on orbitals from the valence-like HF solution. The EOM-CCSD and

BCCD(T) methods give similar bending potentials for the anion. In both cases, the anion

bending potential is very flat over the 135°–148° range, with a small barrier near 150°, and

then descends slightly in energy, intercepting the neutral potential near an OCO angle of

156°. The bending potentials of CO−2 from the CCSD and CCSD(T) calculations based on

the HF valence-type wave function for the anion agree closely with those from the EOM-

CCSD and BCCD(T) calculations up to an angle of about 151° but then rise in energy rather

than descending as found in the EOM-CCSD and BCCD(T) calculations as the OCO angle is

further increased, collapsing onto the neutral plus continuum for angles greater than ∼154°.

The MP2 potential, on the other hand, lies about 0.3 eV above the EOM-CCSD potential

for the whole range of angles for which the former is bound.

We note that for OCO angles greater than about 154°, the CCSD(T) potential reported

by Sommerfeld54 descends in energy rather than rising as found in the present study. This

difference in behavior is due to the different basis sets used in the two studies: whereas

Sommerfeld started with a valence-type basis set of Dunning61 contracted to 5s3p1d, the

more flexible augmented ANOTZ basis set contracted to 5s4p3d2f was used in this work.

The OO-MP2 potential starts out about 0.3 eV too high in energy at an OCO angle of

135° and “rapidly” descends in energy crossing the neutral potential at essentially the same

angle as that found with the EOM-CCSD and BCCD(T) methods. The ADC(2) bending

potential lies too low in energy at all angles and crosses the neutral potential near an OCO

angle of 159°. Although the MP2, OO-MP2, and ADC(2) methods all fail to adequately

describe correlation effects important for the binding of the excess electron to CO2 at angles

for which the anion is bound, the latter two methods do predict a rapid energy descent as
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the anion potential approaches that of the neutral. This is a consequence of their including

orbital relaxation in response to correlation effects. The theoretical characterization of CO−2

is complicated by the fact that the anion has significant multiconfigurational character at

small OCO angles where the anion is valence-like and by the rapid growth of non-valence

character as the anion potential approaches that of the neutral. The former is primarily

responsible for the inadequacy of the MP2, OO-MP2, and ADC(2) methods for describing

the bending potential of the anion at small OCO angles.
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Figure 2.10: Electron binding energy of CO−2 calculated using various EOM methods as a

function of a predominantly bending coordinate. The calculations were carried out using the

ANOTZ+3s3p basis set.

Figure 2.10 reports as a function of the bending angle the EBE of CO2 calculated using

the EOM-MP2, EOM-CCSD(T)(a)*, and EOM-CCSDT methods as well the EOM-CCSD

method, already considered above. It is seen from this figure that for OCO angles between

135° and 154°, the EOM-MP2, EOM-CCSD and EOM-CCSDT methods give essentially

the same EBE values, while the EOM-CCSD(T)(a)* method slightly overbinds the excess

electron for small values of the OCO angle.

The results presented above indicate that there is a fundamental difference in the nature

of the (H2O)4 and CO2 anions near the crossing points of the anion and neutral potential

energy surfaces. In the case of the (H2O)4 cluster, the singly occupied orbital of the HF wave

function of the anion rapidly expands in radial extent as the crossing point is approached

from the large R side. By contrast, for CO2, two different HF solutions can be found for
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OCO angles ranging from 147° to 154°. One of these is valence-like and the other corresponds

to the neutral molecule plus an excess electron in an approximate continuum orbital. The

HF bending potential of the valence-like anion state crosses the potential of the neutral near

an OCO angle of 149° and continues to rise up to an angle of about 154°, after which it

collapses to the lower-energy “continuum solution.” Most importantly, the wave function

of the valence-like HF solution for CO−2 undergoes only a moderate growth in its extent as

the crossing point is approached (from the bound state side). Moreover, while the SONO

from the EOM calculations on (H2O)−4 does not change significantly in its extent as R passes

through the HF crossing point, the SONO from the EOM calculations on CO−2 (shown in

Figure 2.8) evolves from being relatively compact (valence-like) at an OCO angle of 135°, to

being much more extended for values of the OCO angle greater than 149°. For the (H2O)4

model system, the anion evolves from being largely electrostatically bound at large separation

between the two (H2O)2 dimers to being correlation bound at short separation between the

dimers, with correlation effects causing the anion wave function to contract at R values

where the anion is only weakly bound in the HF approximation. By contrast, the CO−2 ion

evolves from being valence-like for values of the OCO near 135°, but with correlation effects

being responsible for the more diffuse character of the anion function near the crossing point

of the anion and neutral bending potentials.

The change in the charge distribution of the CO−2 with bending angle appears to result

from an avoided crossing between the valence-like state and a non-valence anion state. Three

candidates for the non-valence state (or states) can be envisioned: (1) a NVCB anion, which,

over a range of OCO angles near 149° and in the absence of mixing with the valence state,

would lie slightly below the neutral in energy; (2) a virtual state,58,62 and (3) the manifold

of continuum levels. We note that an avoided crossing between valence states and a NVCB

anion state has been demonstrated in a theoretical study of C6F6
– .8 NVCB anion states and

virtual states are closely related in that a virtual state turns into a NVCB anion state if the

potential experienced by the electron is made slightly more attractive. With respect to the

possibility of a NVCB anion of CO2, we note that for an OCO angle of 149°, the calculated

(HF level) dipole moment and average dipole polarizability of the neutral molecule are 1.05
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D and 14.3 a.u.,20 respectively. Based on our experience with a wide range of NVCB anions,

we would not expect a molecule with a polarizability this small, even with a dipole moment of

1.05 D, to support a NVCB anion in which long-range dispersion interactions are primarily

responsible for the binding of the excess electron. Rather, we favor the third possibility,

namely, that near OCO angles of 149°, the bound anion state from strong mixing of the

valence state and the continuum. We suggest, therefore, that it may be useful to broaden

the definition of NVCB anions to include such species.

Although our focus in this section has been on the performance of various theoretical

methods for describing the anion of CO2 near the crossing point of the anion and neutral

bending potentials, it is interesting to reflect on the implications of the current results for

the interpretation of experiment. In this context, we note that CO−2 has been observed

mass spectroscopically upon collision of high energy alkali atoms with CO2.63 This study

gave, for CO2, an adiabatic electron affinity of −0.60± 0.2 eV, which is consistent with the

results of the present EOM and coupled cluster calculations. However, there is the issue

that the calculated bending potential has only a very small (∼0.036 eV or 290 cm−1) barrier

before it bends downward near an OCO angle of ∼150°, and with such a small barrier,

the bent valence-type anion would be expected to autoionize in a short time compared to

the experiment if the zero-point level were above or near the top of the barrier. We have

calculated, using the Gaussian 09 program,64 anharmonic vibrational frequencies of bent

CO−2 using the second-order vibrational perturbation theory (VPT2)65 approach with the

MP2 electronic structure method in conjunction with the ANOTZ+3s3p basis set. These

calculations give an anharmonic frequency of 600 cm−1 for the bending vibration, which

places the zero-point vibrational level slightly above the barrier. However, we note that the

bending potential of CO−2 is very flat, and it is likely that the VPT2 calculations considerably

overestimate the value of the frequency of the bending mode, and it seems highly likely that

the zero-point level is below the barrier.
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2.6 Non-Valence Correlation-Bound Anion of TCNE

In the two examples considered above, there are no valence anion states energetically

below the NVCB anion state. However, as we demonstrated for C60, molecules with bound,

valence anion states can also possess NVCB anion states.6 Accurately describing the NVCB

anion states of such systems can be especially challenging since high-order correlation effects

can be important. To illustrate this, we consider TCNE which has a valence anion state

bound by 3.2 eV66 as well as several low-lying valence-like temporary anion states.67 Calcu-

lations to search for a possible 2Ag NVCB anion of TCNE were performed using the aug-cc-

pVDZ and aug-cc-pVTZ basis sets augmented with 3s, 3s3p, and 3s3p3d sets of supplemental

diffuse functions centered at the midpoint of the central CC bond. The calculations indicate

that TCNE does have a NVCB anion, with the EBEs obtained using the various theoreti-

cal methods summarized in Table 2.2. The SONO from the EOM-MP2/aug-cc-pvDZ+7s7p

calculations on the 2Ag NVCB anion state of TCNE is depicted in Figure 2.11.

Table 2.2: Contributions to ∆ 〈T 〉 and ∆ 〈V 〉 for a H atom perturbed by a point charge or

a uniform efield evaluated in the complete basis set limit.

AVDZ+3s AVDZ+3s3p AVDZ+3s3p3d AVTZ+3s3p

EOM-MP2 82 87 94 130
EOM-CCSD 67 71 79 104
EOM-CCSD(T)(a)* 56 63 69 100
BCCD −8 −4
BCCD(T) 59 63
OO-MP2 176 b

ADC(2) 293 b

a The calculations were carried out at the MP2/cc-pVTZ optimized geometry of
the neutral molecule.

b These results were obtained using the aug-cc-pVDZ basis set supplemented with
a 7s7p set of diffuse functions. EOM calculations with the aug-cc-pVDZ+3s3p
aug-cc-pVDZ+7s7p basis sets give nearly the same EBE values.

For each basis set considered, the EOM-CCSD(T)(a)* and EOM-CCSD values of the

EBE are in close agreement, and in the assessment of the performance of the various ap-

proaches, the results of the EOM-CCSD(T)(a)* calculations will be used as the benchmark
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Figure 2.11: The SONO of the non-valence correlation-bound anion of TCNE from EOM-

MP2 calculations using the aug-cc-pVDZ+7s7p basis set. The isosurfaces enclose 70% of the

excess electron charge. Two different orientations are shown.

reference. The EOM-CCSD(T)(a)* EBEs obtained with the aug-cc-pvDZ+3s3p and aug-

cc-pvTZ+3s3p basis sets are 63 and 101 meV, respectively. The BCCD(T) calculations

give EBE values for the NVCB anion of TCNE very close to the corresponding EOM-

CCSD(T)(a)* results when the same basis set is employed for the two methods. By contrast,

the EOM-MP2 OO-MP2 and ADC(2) methods all give EBE values much larger than the

EOM-CCSD(T)(a)* values, with the EOM-MP2 method overestimating the EBE by 20%-

30% and the OO-MP2 and ADC(2) methods by factors of 2.7 and 4.7, respectively. These

results indicate that the inclusion of high-order correlation effects is essential for obtaining

an accurate estimate of the EBE of the NVCB anion of TCNE. We have calculated the

dipole polarizability of TCNE using the Perdew-Burke-Ernzerhof (PBE) density functional

method68 in conjunction with the aug-cc-pVTZ basis set. The resulting average polariz-

abilities in the uncoupled and coupled Kohn-Sham approximations are 229 and 99 a.u.,20

respectively. The large reduction of the polarizability due to the coupling of excitations is

consistent with screening effects playing an important role in the interaction of the excess

electron with TCNE, which, in turn, could explain the large overestimation of the EBE as

calculated with the OO-MP2 and ADC(2) methods.
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One surprising result of our calculations on the NVCB anion of TCNE is that the mid-

bond supplemental diffuse p functions play a negligible role in the electron binding. This

indicates that the excitations of the excess electron contributing to the dispersion interaction

between it and the valence electrons of the molecule are dominated by excitations into virtual

orbitals with a large component of the diffuse aug-functions in the basis sets.

As TCNE supports both a valence-bound (2B3g) anion and a NVCB (2Ag) anion, it

provides an opportunity for a direct comparison of the properties of these two types of anion

states. We note that EOM-CCSD/aug-cc-pVDZ+3s3p3d calculations predict the valence-

type anion to be bound by 2.91 eV, as compared to the 79 meV EBE for the NVCB anion.

For both states, the natural orbital occupied by the excess electron has an occupation number

close to 0.985. (All other natural orbitals have occupation numbers greater than 1.9 or less

than 0.1). Figure 2.12 reports the densities of these natural orbitals as a function of rnearest

which is defined as

rnearest(~r)
def
= min

α
(|~r − ~Rα|) (2.1)

where ~r is the position of the excess electron and ~Rα is the position of nucleus α. The

corresponding expectation value 〈rnearest〉 provides a measure of the extent of the orbital.27
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Figure 2.12: Distribution of the excess electron of the non-valence 2B3g (orange) anion state

and of the NVCB 2Ag (green) anion state of TCNE. The two electron density distributions

are plotted as functions of rnearest.

The densities of the EOM-CCSD natural orbitals associated with the excess electron

of the ground state valence-bound anion and of the NVCB anion of TCNE are shown in

36



Figure 2.12, and, as expected, the difference is striking. In the valence-bound state, the

excess electron is localized close to the molecular framework, with the maximum of the

density distribution function occurring at 0.70 Å and 〈rnearest〉 being only slightly larger at

0.83 Å. By contrast, the excess electron of the NVCB state extends much further out and

shows a broad distribution with a long-range tail. The maximum of its distribution occurs at

2.4 Å, while unction occurring at 0.70 Å and is 4.4 Å, emphasizing the smeared-out character

of a NVCB electron.

2.7 Conclusions

In contrast to valence and dipole-bound anions, non-valence correlation bound anions

have been much less studied. Theoretical studies from our group and others have predicted

the existence of NVCB anions for several clusters and molecules.6–8,24,25,49,69 The picture

that has emerged from the theoretical studies is that any system for which the electrostat-

ics are not sufficiently attractive to give electron binding but which has a sufficiently high

polarizability will possess one or more NVCB anion states. Although there is a paucity of

experimental data on NVCB anions of gas-phase molecules and clusters, we note that NVCB

anions are the finite system analogs of image potential states of metallic and graphitic sur-

faces, which have been characterized experimentally and theoretically.70–72 In both the finite

and extended systems, the binding of the excess electron results from long-range dispersion

interactions between the excess electron and the other electrons of the system.

Theoretical characterization of NVCB anions requires the use of methods that allow

for orbital relaxation effects in response to the dispersion-like correlation effects. We have

demonstrated that equation-of-motion coupled cluster and algebraic diagrammatic Green’s

function direct methods and also the orbital-optimized MP2 and Brueckner coupled cluster

delta methods are all able to treat such anion states. However, depending on the nature

of the neutral molecule or cluster, lower-order methods such as OO-MP2, ADC(2), and

even EOM-MP2 may have significant errors in the EBEs. The need to include higher-

order correlation effects is especially important when considering NVCB anions of systems
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with small HOMO/LUMO gaps and/or for which screening effects are important. This

is evident from the results presented here for the NVCB anion of TCNE and from the

previously reported results for the NVCB anion of C60. While methods such as BCCD(T) and

EOM-CCSD, particularly when used with the large, flexible basis sets required for adequate

characterization of NVCB anions, are computationally prohibitive for large molecules and

clusters, it is possible to design one-electron models that can accurately describe these species

at low computational cost.49,69,73
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3.0 Prediction of a Non-Valence Temporary Anion Shape Resonance for a

Model (H2O)4 System

The text and figures in this chapter have been reprinted with permission from Kairalapo-

va, A.; Jordan, K. D.; Maienshein, D. N.; Fair, M. C.; Falcetta, M. F. Prediction of a Non-

valence Temporary Anion Shape Resonance for a Model (H2O)4 System. J. Phys. Chem. A

2019, 123, 2719–2726, DOI: 10.1021/acs.jpca.8b11881. Copyright 2020 American Chemical

Society. The author’s contribution to the work included performing DC and EOM-CCSD

calculations, generating figures, and editing/revising the manuscript.

3.1 Summary

Ab initio calculations are used to demonstrate the existence of a nonvalence temporary

anion shape resonance for a model (H2O)4 cluster system with no net dipole moment. The

cluster is composed of two water dimers, the distance between which is varied. Each dimer

possesses a weakly bound nonvalence anion state. For large separations of the dimer subunits,

there are two bound nonvalence anion states (of Ag and B2u symmetry) corresponding to

the symmetric and asymmetric combinations of the nonvalence anion states of the two dimer

subunits. As the separation between the dimer subunits is decreased, the B2u anion increases

in energy and becomes a temporary anion shape resonance. The real part of the resonance

energy is determined as a function of the distance between the dimers and is found to increase

monotonically from just above threshold to 28 meV for the range of geometries considered.

Over this same range of geometries, the resonance half-width varies from 0 to 21 meV. The

B2u anion, both when bound and when temporary, has a very diffuse charge distribution.

The effective radial potential for the interaction of the excess electron with the cluster has

a barrier at large distance arising from the electron-quadrupole interaction in combination

with the repulsive angular momentum (l = 1) contribution. This barrier impacts both the

resonance energy and its lifetime.
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3.2 Introduction

Anion states formed by electron capture into normally unfilled valence orbitals are of

importance in a wide range of chemical and biological processes. Less well-known in the

chemistry community at large are anions that result from electron capture into diffuse non-

valence orbitals, with a combination of long-range electrostatic and correlation effects being

responsible for the electron binding. The most widely studied class of nonvalence anions are

dipole-bound anions in which the electrostatic attraction to the molecular dipole potential

alone can bind the excess electron, although correlation effects can cause a significant increase

in the electron binding energy (EBE).1,19,74 (Here we adopt the sign convention of a positive

EBE when the anion is bound, i.e., energetically below the electronic ground state of the

neutral.) Recently, several examples of another class of nonvalence anions, which we refer to

as nonvalence correlation-bound (NVCB) anions, have also been demonstrated.6,8,24,25,69,75–77

For these, long-range correlation effects are essential for the binding of the excess electron.

Although the excess electron in dipole-bound and NVCB anions occupies a very diffuse or-

bital, such anion states can be important in chemical processes, e.g., acting as doorway states

for formation of valence anions.8,76,78 Specifically, geometrical distortion can lead to mixing

(via the electronic Hamiltonian) of nonvalence and valence anion states, which may be of

different symmetry in the undistorted molecule.79 Additionally, molecular anions in which

the electrostatic attraction of the excess electron to the quadrupole moment plays a role in

the binding of the excess electron have been investigated,7,24,80,81 as have model systems in

which the electron-quadrupole interaction makes a significant contribution to the EBE.75,82,83

We note that there are several studies that interpret experiments in terms of “quadrupole-

bound” anions.81,84–86 However, for many of these systems (e.g., trans-succinonitrile80), the

anion is not bound in the Koopmans’ theorem (KT) approximation,29 which means that

the quadrupole moment alone is not large enough to bind the excess electron. Rather, it

is the combination of electron correlation effects and the electrostatic potential associated

with the quadrupole moment that gives rise to the electron binding. We believe that such

anions are better classified as NVCB. In the case of CS2, which has been proposed to have

a quadrupole-bound anion,84 it appears that the state involved is actually valence-like.87
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In addition to bound anions, atoms and molecules can possess anion states that lie ener-

getically above the ground state of the neutral species. These anions are termed temporary

as they are subject to decay by electron autodetachment, and they appear as resonances

in electron scattering cross sections.13,88 Temporary anions (TAs) are involved in a range of

processes including chemical bond breaking and vibrational and electronic excitation. Gen-

erally, low-energy TAs are associated with electron capture into unfilled valence orbitals,

with the trapping mechanism being due to an angular momentum barrier in the effective

radial potential.13,88 TAs are also referred to as shape resonances because the trapping is

due to the shape of the electron-atom or electron-molecule potential. Another type of TA

involves trapping of an excess electron in the potential of an electronically excited state,13

but these will not be considered further here.

In the present study, we examine the possibility of the existence of nonvalence correlation-

assisted TA shape resonances for a cluster with no dipole moment but with a sizable

quadrupole moment. We use the label “correlation-assisted” to indicate that electron corre-

lation effects play a major role in establishing the energy and lifetime of the anion. In our

search for a nonvalence TA, we consider a model (H2O)4 system that, for a range of geome-

tries, possesses a NVCB anion with a p-like, i.e., l = 1, leading partial wave but that can be

distorted to geometries for which this anion is “pushed” into the continuum of the neutral

species plus a free electron. We note that nonvalence TA resonances have been reported for

molecules with sizable dipole moments.89–91

3.3 (H2O)4 Model System and Computational Details

The (H2O)4 cluster model, which was employed in our earlier study of NVCB anions,75

is shown in Figure 3.1. By design, the monomers in this model are arranged so that there is

no net dipole and the leading permanent moment is a quadrupole. The absence of a dipole

is essential for the existence of a low-energy resonance with a leading l = 1 partial wave.

Although this arrangement of monomers would not be observed experimentally, our earlier

work demonstrated that this is a useful model for exploring the interplay of electrostatics and
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electron correlation in nonvalence anion states. In the present study, we fix the distance R

and vary the distance R′ defined in Figure 3.1. Thus, we are varying the separation between

two water dimers (albeit with geometrical structures far from equilibrium). The individual

dimers have a dipole moment of 2.1 D (MP231 level with the aug-cc-pVTZ50,51 Gaussian-type

orbital basis set). As a result, in isolation and assuming the validity of the Born-Oppenheimer

approximation, each dimer subunit has a dipole-bound anion. In the KT approximation, the

EBE is approximated by the negative of the energy of the appropriate virtual orbital from a

Hartree-Fock (HF) calculation on the neutral species (although care has to be exercised when

applying the KT approximation to unbound virtual orbitals). In the KT approximation, the

dimer is calculated to have a miniscule EBE of 0.9 meV. There is only a small increase of

the EBE to 1.0 meV when allowing for relaxation effects by calculating the difference in

the HF energies of the anion and neutral (the so-called ∆SCF approximation). Thus, at

large R′ values, the (H2O)4 cluster model has two, nearly degenerate, bound anion states,

one of Ag and the other of B2u symmetry, resulting from the symmetric and asymmetric

linear combinations of the bound states of the two dimer subunits in the tetramer. At the

KT level, these become unbound for R′ values less than about 40 Å (Ag) and 70 Å (B2u).

Similar crossing points are found in the ∆SCF approximation. However, we know from our

earlier study of this model system that inclusion of electron correlation effects leads to a

large increase in the EBE of the Ag anion state, in fact, resulting in a stable anion even

at geometries at which the HF method fails to bind the excess electron. We anticipate,

therefore, that inclusion of correlation effects will prove important in determining whether

the B2u anion is bound or metastable at different R′ values.

In order to include electron correlation effects in the calculation of the energies of the

Ag and B2u nonvalence anion states of the (H2O)4 model as a function of R′, we use the

electron attachment equation-of-motion coupled-cluster singles and doubles (EOM-CCSD)

method34 as implemented in the CFOUR program46 together with flexible Gaussian-type

orbital (GTO) basis sets and the frozen core approximation. The EOM-CCSD method

has been found to provide accurate characterization of both valence and nonvalence bound

anion states as well as of valence-type TA states provided that sufficiently flexible basis sets

are employed.17,75,92 In the present study, we use the aug-cc-pVTZ basis set for the atoms
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R'

R = 4.0 Å

Figure 3.1: (H2O)4 cluster model. R is fixed to 4.0 Å, while R′ is varied. The black dots

indicate the locations of the supplemental sets of diffuse basis functions, which are located

at ±(R′/2 + 2.27) in Å.

augmented with nonatom-centered sets of diffuse s (or s and p) Gaussian-type functions

located on the positive dipole side of each dimer, as shown in Figure 3.1. Well-converged

EBEs for the bound anions were obtained from calculations employing supplemental sets

consisting of seven s or seven s plus seven p functions, with the largest exponent being 0.025

and with successive exponents reduced by a factor of 10. The location of the supplemental

basis functions relative to the O atoms was determined by maximizing the EOM-CCSD

value of the EBE of the Ag anion at R′ = 13.5 Å. This optimization located the centers

for the supplemental basis sets 2.27 Å farther from the origin along the R′ coordinate than

the oxygen atoms. In calculations at other R′ values, the locations of the centers of the

supplemental diffuse functions, relative to the dimers, were held fixed at this value. EOM-

CCSD calculations also showed that omission of the p functions from the supplemental sets

made little impact on the EBEs, and as a result, supplemental sets with only s functions

were used for the majority of the calculations. For the TA, it was necessary to add two

additional s functions with exponents of 0.250 and 0.079 to the supplemental sets, as will

be described below. For consistency, these extra functions are retained in the calculations of

the bound anion states when using supplemental sets with only s functions, although they

do not make an important contribution to the EBEs. We note that in designing the basis

sets for characterizing the anion states of the (H2O)4 model we first considered using only a
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single set of supplemental diffuse functions located at the center of mass but found that to

achieve well-converged results with such basis sets it was necessary to employ a basis as large

as aug-cc-pV5Z50,51 on the atoms and to include functions through f in the supplemental set.

By using the two-center expansion for the supplemental functions described above, we were

able to achieve well-converged EBEs with far fewer basis functions.

3.4 Results

For the (H2O)2 dimer with the geometry of our model, the EOM-CCSD calculations

carried out using the aug-cc-pVTZ basis set plus a single 7s7p set of supplemental functions

gave a binding energy of 38 meV for the Ag anion, in contrast to the 0.9 meV value obtained

at the KT level of theory. The KT calculations failed to bind the excess electron with the

supplemental set containing only s functions, but the EBE obtained using the EOM method

was changed little upon omission of the diffuse p functions. Although the large percentage

increase in the EBE of the dimer in going from the KT or ∆SCF levels of theory to the EOM-

CCSD method would seem to indicate that electron correlation effects are far more important

than electrostatic interactions for the binding of the excess electron, it is instructive to

consider the results of one-electron model Hamiltonian93 calculations on the dimer as this

approach allows us to evaluate the various contributions to the EBE. These calculations

give attractive electrostatic and polarization contributions to the EBE of 267 and 134 meV,

respectively, while the repulsive kinetic energy and pseudopotential contributions are −305

and −66 meV, respectively. In interpreting these results, it is important to recognize that

the polarization potential in the one-electron model Hamiltonian recovers correlation effects

between the excess electron and the electrons of the cluster that are present in a many-

electron treatment. Thus, analysis of the various contributions to the EBE in the model

Hamiltonian calculation is based on an orbital whose binding energy and charge distribution

were determined in the presence of correlation effects. This analysis reveals that when

correlation effects are included the electrostatic contribution to the EBE is found to be

substantial.
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Figure 3.2: Electron binding energies of the Ag (blue dots) and B2u (red squares) anion

states of the (H2O)4 cluster model as a function of the distance R′ separating the two

dimers. The EBEs are obtained from EOM-CCSD calculations using the aug-cc-pVTZ basis

set augmented with two sets of 9s GTO basis functions located at ±(R′/2 + 2.27) in Å. The

horizontal dashed line indicates the EBE of the dimer subunit.

Figure 3.2 reports for R′ values ranging from 9.5 to 70.0 Å the EOM-CCSD EBEs of

the Ag and B2u anion states of the (H2O)4 model. As expected, for large values of R′, the

two anion states are essentially degenerate, with EBEs being close to that of an individual

dimer. The EBE of the Ag anion state decreases slightly as R′ is reduced from 40.0 to about

18.5 Å due to a weakening of the electrostatic potential as R′ is reduced and then increases

as R′ is further decreased to 9.5 Å due to a growing correlation contribution. In contrast,

the EBE of the B2u anion is found to decrease monotonically as R′ decreases, with the anion

ceasing to be bound for R′ . 9.5 Å. However, we expect that the B2u anion will continue to

exist as a TA for R′ values less than ∼ 9.5 Å. On the basis of the analytic structure of the S

matrix,94 one also expects a virtual state at negative energy when the anion is weakly bound.

(However, the virtual state cannot be identified from the stabilization/analytic continuation

method that we employ.) At the R′ value at which the anion just ceases to bind, the poles

in the S matrix associated with the bound and virtual states coincide at zero energy. As

R′ is further decreased, the poles move into the complex energy plane corresponding to the

resonance on the physical and unphysical energy sheets.
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In order to characterize the charge distributions of the two anion states at a geometry

(R′ = 13.5 Å) at which both anions are bound, we have calculated the natural orbitals (NOs)

associated with “singly occupied” orbitals of the Ag and B2u anion states as described by

the EOM-CCSD method. These NOs are shown in Figure 3.3, from which it is seen that

both anion states are highly extended spatially and are decidedly nonvalence-like.

Ag

B2u

Figure 3.3: NOs associated with the excess electron of the Ag (upper) and B2u (lower)

anions states of the (H2O)4 cluster model at R′ = 13.5 Å and characterized by EOM-CCSD

calculations using the aug-cc-pVTZ basis set augmented with two sets of 9s functions as

described in the text. The contours shown enclose 90% charge of the charge density.

In searching for a B2u TA state for the (H2O)4 model with R′ ≤ 9.0 Å, we make use of

the stabilization method.15,18,95,96 The basic idea of the stabilization method is that a shape

resonance can be viewed as a discrete state coupled to the continuum associated with the

neutral molecule plus a free electron. In a diabatic picture, in which the coupling between the

discrete state and continuum is suppressed, large basis set calculations on the excess electron

system give eigenvalues corresponding to the discrete state as well as a series of discretized

continuum (DC) levels. If one then scales a parameter that controls the radial extent of the
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basis set, the energy of the discrete state stays nearly constant, while the energies of the

DC levels drop rapidly in energy with increasing extent of the basis set. In an adiabatic

picture, the discrete state and the DC states mix, leading to a series of avoided crossings as

the scaling parameter is varied.

In the Siegert picture, a resonance is characterized by the complex energy, Er − iΓ/2,

where Er is the real part of the resonance energy and Γ, the width, is the reciprocal of the14

lifetime in atomic units. By use of analytic continuation methods, one can use data from

the avoided crossing regions of the stabilization graph (i.e., the plot of the energies vs the

scale parameter) to obtain the real energies and the widths of the resonances.18,95,96 In our

application of the stabilization method to the (H2O)4 model, we use the EOM-CCSD method

together with the aug-cc-pVTZ atomic basis set augmented with two sets of diffuse s functions

located as described in section 3.3. A scale parameter, β, is included in the exponents of

the supplemental diffuse basis functions, and to generate the stabilization graphs, β values

ranging from 0.2 to 1.7 are used. The two tightest functions in the supplemental 7s set with

exponents of 0.025 and 0.0079 make a sizable contribution to the anion wave functions. As

a result, the use of scale factors as small as 0.2 necessitated the addition of s GTOs with

exponents of 0.0790 and 0.250 to the 7s set described above.

The stabilization graphs for B2u symmetry excess electron states of the (H2O)4 model at

R′ = 7.96, 6.46, and 4.46 Å are depicted in Figure 3.4. The figure also includes the energies

of the DC levels calculated using Gaussian 1697 by setting the nuclear charges equal to zero

and solving for the eigenvalues of the single-electron system using the same basis set as used

for the EOM-CCSD calculations. Over the energy range considered in stabilization graph for

R′ = 7.96 Å, the EOM calculations give four eigenvalues while there are only three DC levels.

The appearance of an additional eigenvalue in the EOM calculations compared to the number

of DC levels indicates the presence of a metastable anion state. It is also seen from this figure

that the energy of the lowest eigenvalue from the EOM calculations corresponds closely to

that of the lowest DC level. For small values of β, the second DC level also corresponds

closely with the second eigenvalue from the EOM calculations. However, for β values larger

than about 0.6, the energy of the second eigenvalue from the EOM calculations starts to level

off to a value of ∼6 meV, while the energy of the DC level continues to increase linearly. This
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indicates that for this R′ value the resonance occurs near 6 meV. A similar analysis of the

stabilization graph for R′ = 6.46 Å shows that the resonance in that case occurs between 10

and 15 meV. The stabilization graph for R′ = 4.46 Å shows a much broader crossing, with

the lowest two eigenvalues from the EOM calculation closely paralleling the DC solutions

and the third eigenvalue from the EOM calculation falling slightly below the DC solution

for larger-scale factors. The fourth eigenvalue from the EOM calculations corresponds to

the DC solution only for the smallest scale factors, with a decrease in the slope beginning

at around β = 0.5. However, the energy does not plateau, as was the case for R′ = 6.46 and

7.96 Å. Thus, for small values of R′, it becomes increasingly difficult to ascertain the real

part of the resonance energy by simple inspection of the stabilization graph.

Figure 3.4: Stabilization graph for (H2O)4 with R′ = 4.46 (top), 6.46 (middle), and 7.96

Å (bottom). The energies of the excess electron states from EOM-CCSD calculations are

shown as blue dots, and the energies of the DC levels are shown as black squares.
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In order to extract accurate values for the resonance position (i.e., Er) and width, we

used an analytic continuation method, originally introduced by one of the authors,16 which,

in the limit of a well-isolated avoided crossing between two eigenvalues, fits the energy to

PE2 +QE +R = 0 (3.1)

where P , Q, and R are polynomials in the scale parameter β, i.e.

P (β) = 1 + p1β + p2β
2 + . . . (3.2a)

Q(β) = q0 + q1β + q2β
2 + . . . (3.2b)

R(β) = r0 + r1β + r2β
2 + . . . (3.2c)

For systems with narrow resonances, i.e., with Γ/2� Er, stabilization graphs generally

display well-defined avoided crossings between the diabatic discrete state and the DC solu-

tions as the scale parameter is varied. However, when Γ/2 is not much less than Er, the

avoided crossings become less pronounced. This is the case for the stabilization graphs for

the B2u anion of the (H2O)4 cluster model, particularly at small R′ values, necessitating a

generalization of eq 3.1 to include terms of higher order in E. In this work, terms through E5

were used in the analytic continuation for R′ values less than 7 Å, while terms through E3

or E4 were used for larger R′ values. The complex energy associated with the resonance is

located by solving for the stationary point at which dE/dβ = 0. The resulting complex value

of β is substituted into eq 3.1 or its extension including higher powers of E to determine the

real and imaginary parts of the resonance energy. The imaginary part corresponds to −Γ/2.

In our application of this approach to extract resonance parameters of the B2u anion, we

employed fits where the polynomials were of order n minus the power of E in the prefactor.

To obtain well-converged results, we found it necessary to use n = 4 or 5 and to use data

from all of the interacting roots over the β range considered. Typically, more data points

were used than parameters in combination with least-squares fitting. In addition, for each

value of R′, several independent analytic continuation calculations using different sets of data

points were performed, each giving slightly different complex resonance energies, allowing

us to assign error bars to the resulting values of Er and Γ. In general, the uncertainties in

the resonance parameters increase with growing width. For R′ = 7.96 Å, the stabilization
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calculations using energies from the EOM-CCSD calculations give resonance parameters of

Er = 5.36 (±0.06) meV and Γ = 2.2 (±0.1) meV, while at R′ = 6.46 Å, the resonance pa-

rameters are Er = 11.0 (±0.3) meV and Γ = 8.0 (±0.7) meV (the standard deviations from

the analytic continuation procedure are given in parentheses as a measure of the uncertainty

arising from that procedure but do not reflect errors arising from use of a finite basis set or

incomplete recovery of electron correlation).

Valence-type TAs can usually be located by application of the stabilization method at the

KT level, i.e., using virtual orbitals from Hartree-Fock calculations on the neutral molecule.

This approach, sometimes referred to as the stabilized Koopmans’ theory (SKT) approxi-

mation,98 gives resonance positions and widths appreciably larger than the corresponding

quantities obtained from methods such as EOM-CCSD that treat electron correlation effects

in a balanced manner. Due to the importance of electron correlation effects for the EBE of

the B2u anion at R′ values for which it is bound, we expected that it would not be possible to

locate the corresponding TA in SKT calculations. In fact, at least for R′ values for which the

EOM-CCSD calculations give a value of Γ considerably smaller than Er, we find that SKT

calculations indicate the presence of a very broad resonance much higher in energy than that

found in the EOM-CCSD calculations. For R′ = 7.96 Å, the SKT calculations give Er ≈ 230

meV and Γ ≈ 220 meV, as compared to the corresponding EOM-CCSD values of 5.4 and 2.2

meV. The identification of the resonance at the SKT level has implications for the trapping

mechanism, which will be discussed below.

Figure 3.5 presents the real and imaginary parts of the resonance energy for values of

R′ ranging from 3.46 to 8.96 Å. In addition, the energy of the B2u state is shown for larger

R′ values for which the state is bound and has a real-valued energy. The resonance is seen

as a continuation of the bound state to positive attachment energies. For most R′ values

considered, the analytic continuation calculations using different sets of data points gave

very similar values of the resonance parameters. However, for some of the R′ values at which

Γ is comparable to Er, the analytic continuation calculations using different data points

gave significantly different values for the stationary point and, hence, for the resonance

parameters. While the averaged values of Er and Γ from these calculations are in line with

those from neighboring R′ values, the large spread in the resonance parameters from the
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different fits of the data leads to large standard deviations. For the smallest values of R′

considered, the imaginary part is more than half of the real part of the resonance energy,

which means that the resonance would extend to threshold.

Figure 3.5: Resonance energy, Er, (blue dots) and half-width, Γ/2, (red triangles) from

stabilization calculations using EOM-CCSD energies of the B2u anion of the (H2O)4 model

as a function of R′. The figure also includes the negative of the EBE for R′ values for which

the anion is bound.

In order to understand the formation of the B2u state in terms of the various contributions

to the electron-molecule interaction potential, it is useful to convert the three-dimensional

potential for the interaction of a negative point charge with the cluster to an effective radial

potential, depending only on the distance, r, between the electron and the center of mass of

the cluster. Neglecting the electrostatic contribution and assuming a spherically symmetric

polarization potential, the effective long-range electron-molecule interaction potential is of

the form

Veff(r) = − α

2r4
+
l(l + 1)

2r2
(3.3)

where α is the polarizability and l is the angular momentum quantum number. The r value

of the maximum, rmax, of the confining potential occurs at

rmax =

√
2α

l(l + 1)
(3.4)
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The existence of a nonvalence resonance in a particular angular momentum channel requires

that the confining barrier be peaked at a radial distance that is large compared to the

molecule or cluster of interest. In the case of the (H2O)4 cluster model with R′ = 7.96 Å

and l = 1, rmax occurs near 3.5 Å, which is far too small to be consistent with a nonvalence

shape resonance.

We now consider the impact of including the nonspherical electrostatic contribution to

the interaction potential using the protocol of Boardman et al.99 in which the interaction

potential is decomposed into contributions from different spherical harmonics. Assuming

that the resonance is purely p-wave in nature, only V0 and V2 components can contribute

to the effective radial potential. The interaction potential was derived by calculating at the

MP2 level the interaction energies of a negative point charge at various in-plane locations

relative to the cluster using the same basis set as that used for the stabilization calculations.

The electrostatic contribution to the effective potential was calculated separately, and the

polarization potential was obtained by subtracting the electrostatic potential from the net

potential at each location considered for the point charge. Figure 3.6 plots the resulting

approximate effective radial potential (retaining only the V0 and V2 terms in the expansion)

for p-wave electron scattering from the (H2O)4 cluster model with R′ = 7.96 Å. From this

figure, it is seen that with the inclusion of the electrostatic contribution Veff crosses zero

near R′ = 15 Å and the maximum in the barrier (≈ 4.8 meV) in the effective potential

occurs near 24 Å. We note also that if the effect of the V4 term in the expansion on V0

and V2 terms is included, the barrier in the effective radial potential is further increased to

7 meV. These results are consistent with the prediction of the EOM-CCSD calculations of

a B2u resonance near 5 meV having a highly diffuse charge distribution. We have solved

the Schrödinger equation associated with Veff shown in Figure 6 and find that it predicts the

anion to be weakly bound rather than metastable, but this is not surprising as Veff, generated

as described above, ignores exchange between the excess electron and the electrons of the

water molecules as well as orthogonalization effects (but neither of these effects is important

for the long-range behavior of the potential). From Figure 3.6, it is also seen that both

electrostatics and polarization effects are important for generating the attractive well, but

that polarization is inconsequential in the region of the barrier. The position of the TA as
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located in the SKT calculations is about 225 meV above the barrier in Veff. A resonance

with the Er and Γ/2 values predicted by the SKT calculations would be difficult to detect

experimentally as the phase shift change would be gradual and would be far less than π as one

sweeps through the resonance. Electron correlation effects lower the resonance position by

about 225 meV, which places it just below the barrier in the effective potential as estimated

above, leading to a significant decrease in the width.

Figure 3.6: Effective radial potential, Veff (solid red line), vs r, the distance from the center

of the cluster, for p-wave scattering from the (H2O)4 cluster model with R′ = 7.96 Å. The

electrostatic contribution (ES) is shown as the dashed black line, the polarization contribu-

tion (Pol) is shown as the blue dot-dashed line, and the angular momentum contribution

(AM) is shown as the green dotted line.

Having examined the effective radial potential for the electron-cluster interaction, it is

instructive to consider the charge distribution of the TA. Figure 3.7 displays the singly

occupied NO from EOM-CCSD calculations on the B2u anion state of the (H2O)4 cluster

model at three different R′ values. For R′ = 9.46 Å, at which the anion is bound, and for

R′ = 8.96 Å, at which it is metastable, the NO displayed is for the first root of the EOM

calculations, while at R′ = 7.96 Å, at which it is also metastable, the NO plotted is that

associated with the second root of the EOM calculations. For the two R′ values at which the

anion is metastable, the results shown were obtained at β = 1.7, at which the appropriate

root is in the “plateau” region of the stabilization graph (see Figure 3.4 for R′ = 7.96 Å). In
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a diabatic picture, one can construct a discrete state that is uncoupled from the continuum.

The finite lifetime then results from the coupling of this discrete state to the continuum. To

a good approximation, the plateau regions of a stabilization graph correspond to the discrete

state. Hence, what is actually depicted for R′ = 7.96 and 8.96 Å in Figure 3.7 is the NO

associated with the approximate discrete state (in a diabatic picture) rather than the NO

actually associated with the TA. The latter is necessarily complex. Recently, methods for

obtaining and plotting complex orbitals for resonance states have been developed, though

these require the use of a complex Hamiltonian.100–102 As seen from Figure 3.7, the anion

charge distribution is highly extended both when it is weakly bound and when it is temporary.

For R′ = 7.96 Å, the NO associated with the discrete state has a nodal surface about 70 Å

from the center of the cluster, which enforces orthogonality to the lower-lying DC level. A

plot along the R′ axis of the charge density associated with the singly occupied NO of the

discrete state for R′ = 7.96 Å is peaked near r = 8 Å, consistent with the effective potential

shown in Figure 3.6.

Although the (H2O)4 model considered here has a geometry that is unrealizable experi-

mentally, molecules such as (NaCl)2, C6F6, tetracyanoethylene, and C60 have been predicted

to have NVCB anions belonging to the totally symmetric representation at their equilib-

rium geometries.6–8,75 Thus, these species are candidates for systems with nonvalence shape

resonances. Exploratory calculations on (NaCl)2 indeed indicate that this system has a non-

valence TA state of B2u symmetry. For highly polarizable molecules such as C60, there is

also the possibility of d-like nonvalence TA states. Nonvalence shape resonances could be

detected in an electron scattering experiment. However, this would be challenging given how

close such resonances are expected to be to threshold, both because of the finite resolution

of electron scattering experiments and because of the impact of the virtual state. A more

viable route to their detection would be as resonances in the cross section for photodetach-

ment from the bound ground state anion. At the shortest R′ value considered for the (H2O)4

model, the Ag anion is bound by about 130 meV, and at this R′ value, the resonance in the

photodetachment cross section would appear near 160 meV or about 1300 cm−1, which would

be accessible with a tunable IR laser. For molecules or clusters with a bound valence-type

ground state anion, the photodetachment resonances due to nonvalence TAs are likely to fall
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in the visible or UV. We note also that there is the possibility that a nonvalence TA could

be converted into a long-lived nuclear Feshbach resonance79 in which the excess energy is

distributed into vibrational degrees of freedom.

Fossez et al. have considered bound and resonance states of an electron interacting with

a linear three-point-charge quadrupole.103 However, the resonances demonstrated for this

point-charge model appear to be fundamentally different from those of the (H2O)4 cluster

model considered here. In particular, the resonances demonstrated in ref 103 have lifetimes

orders of magnitude longer than that of the p-wave resonance of the (H2O)4 cluster model.

In addition, electron correlation effects play an important role in establishing the energy

and lifetime of the p-wave resonance considered here but are not included in the model

Hamiltonian used in ref 103.

3.5 Conclusions

In recent years, several studies have appeared demonstrating the existence of nonva-

lence correlation bound anions of molecules and clusters with no net dipole moment.6–8,75

Nonvalence anion states, whether bound or temporary in nature, have very diffuse charge

distributions. For the (H2O)4 cluster model considered here, both the electrostatic poten-

tial (dominated by the quadrupole term) and electron correlation effects are important in

establishing the energy position and width of the TA.

We anticipate that nonvalence TAs will exist slightly above threshold for many molecules

and clusters that possess NVCB anions. The lowest-energy NVCB anion of a molecule or

cluster necessarily belongs to the totally symmetric representation, but the excited nonva-

lence anion states will necessarily have sizable p or d character, being manifested as TA

shape resonances if the electron-molecule potential is not attractive enough to cause these to

be bound. Nonvalence TA shape resonances should be detectable as resonances in the pho-

todetachment cross sections from a stable ground state anion, either valence or nonvalence

in nature.
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R' = 8.96 Å

R' = 9.46 Å

R' = 7.96 Å

Figure 3.7: NOs associated with the excess electron of the B2u anion states of the (H2O)4

cluster model at R′ = 9.46, 8.96, and 7.96 Å. The anion is weakly bound at R′ = 9.46 Å

and is metastable at the two shorter R′ values. The NOs are from EOM-CCSD calculations

using the aug-cc-pVTZ basis set augmented with two sets of 9s functions, as described in

the text. The contours shown enclose 90% of the charge density of the NOs. The black dots

indicate the positions of the water molecules.
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4.0 Prediction of a Non-Valence Temporary Anion State of (NaCl)2

The text and figures in this chapter have been reprinted with permission from Kairalapo-

va, A.; Jordan, K. D.; Falcetta, M. F.; Steiner, D. K.; Sutter, B. L.; Gowen, J. S. Prediction

of a Non-Valence Temporary Anion State of (NaCl)2. J. Phys. Chem. B 2019, 123,

9198–9205, DOI: 10.1021/acs.jpcb.9b07782. Copyright 2020 American Chemical Society.

The author’s contribution to the work included performing DC, CCSD, CCSD(T), EOM-

CCSD, and EOM-CCSD(T)(a)* calculations, generating all figures, and editing/revising the

manuscript.

4.1 Summary

The equation-of-motion coupled cluster method is used to characterize the low-lying an-

ion states of (NaCl)2 in its rhombic structure. This species is known to possess a non-valence

bound anion of Ag symmetry. Our calculations also demonstrate that it has a non-valence

temporary anion of B2u symmetry, about 14 meV above threshold. The potential energy

curves of the two anion states and of the ground state of the neutral molecule are reported

as a function of distortion along the symmetric stretch normal coordinate. Implications for

experimental detection of the temporary anion state are discussed. The sensitivity of the

results to the inclusion of high-order correlation effects and of core correlation is examined.

4.2 Introduction

Anionic states of molecules and clusters play important roles in many chemical pro-

cesses. Anions can be characterized as valence or non-valence, depending on the nature

of the electron-molecule interaction potential, with short-range interactions proving most

important for valence anions and long-range electrostatics and/or correlation effects being
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responsible for the existence of non-valence anions. Anions can also be classified as bound

or unbound, depending on their energy relative to that of the ground state neutral system,

with bound anions being energetically more stable than the electronic ground state of the

neutral system and unbound anions being less stable, and hence subject to electron autode-

tachment. The relative energy of the anion and neutral may also change upon distortion of

the molecular geometry, and care must be taken to clearly indicate the geometry under con-

sideration. In some non-valence bound anions, the electrostatic attraction alone is sufficient

to bind the electron, which means that the electron is bound in the Koopmans’ theorem

(KT) approximation29 when employing sufficiently flexible basis sets. (Here we are assum-

ing that electron correlation effects do not lead to a significant change in the electrostatic

potential.) The best known non-valence bound anions are dipole-bound anions.1,19,74 There

are also reports of non-valence quadrupole-bound anions,24,81 although we note that some

anions that have been reported as quadrupole-bound actually fail to bind the excess elec-

tron in the KT and Hartree–Fock (HF) approximations, indicating that correlation effects

are necessary for binding. We classify anions in which correlation and relaxation effects in

response to correlation play a determinative role in the binding of the excess electron as

non-valence correlation-bound (NVCB),6,8,20,75 even though electrostatics may also play an

important role in the binding.

While bound anions are most familiar to chemists, unbound anions, also referred to as

temporary anions (TAs), play a vital role in a range of processes including vibrational and

electronic excitation and chemical bond cleavage.13,88,104 In addition to the valence vs non-

valence classification, TAs can be further classified in terms of the mechanism giving rise to

the trapping of the excess electron. In this study, we are interested in non-valence TAs for

which the trapping is primarily due to an angular momentum barrier. Such anions are also

referred to as shape resonances.13

Recently, we introduced a model (H2O)4 cluster for analyzing the relative importance

of electrostatics and correlation effects in the binding of an excess electron in a non-valence

anion.75 The water molecules in the cluster were arranged so as to give D2h symmetry, and,

thus, to have no net dipole. By decreasing the separation between the two dimer subunits,

the Ag ground state anion changes from bound to unbound at the KT level, although when
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electron correlation effects are included by means of the electron attachment equation-of-

motion coupled cluster singles plus doubles (EA-EOM-CCSD) method,34 the anion is found

to be bound for the entire range of geometries considered. In a subsequent paper, we showed

that for a range of geometries the (H2O)4 model also possesses a non-valence temporary

anion state.105 Though there are reports of non-valence TAs of molecules with sizable dipole

moments,89,90 nonpolar systems are of interest because the long-range electrostatic attraction

falls off more rapidly than r−2 (where r is the electron-molecule distance) and, hence, when

combined with a nonzero angular momentum contribution, gives rise to a barrier for trapping

an excess electron.

While the arrangement of water monomers in the (H2O)4 model considered in refs 75

and 105 is unrealizable experimentally, the model provides valuable insights into the char-

acteristics required of an experimentally realizable, non-polar molecule or cluster likely to

possess a low-energy non-valence temporary anion. Specifically, the system should possess

a NVCB anion state belonging to the totally symmetric representation of the relevant point

group. The natural orbital or Dyson orbital106 associated with the excess electron in such

anion states is largely s-like outside the molecular region. This suggests the possibility of

excited p-like non-valence anion states, which, depending on the strength of the attraction,

would be weakly bound or unbound. The p-like character is important, as this is associated

with an angular momentum barrier that can contribute to the trapping of the excess elec-

tron. This consideration suggests that the rhombic (NaCl)2 cluster is an ideal candidate for

a non-valence temporary anion, as it has been predicted to have a bound non-valence anion

state of Ag symmetry.7,107 In the study of Anusiewicz et al.,107 (NaCl)2 was reported have

a vertical electron binding energy (EBE) of 23 and 144 meV at the KT and coupled cluster

singles and doubles with perturbative triples [CCSD(T)]108 levels of theory, respectively. (In

the sign convention used in the present study, a positive EBE refers to a bound anion.)

Similar results were reported by Sommerfeld et al.7 who reported KT and EA-EOM-CCSD

values of the EBE.

The lowest unoccupied molecular orbital (LUMO) from a HF calculation on the neutral

(NaCl)2 cluster at its equilibrium geometry is shown in Figure 4.1 from which it is seen that

the LUMO is well described as the bonding combination of sp hybridized orbitals associated
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with each Na atom, with the charge being localized outside the ring to minimize repulsion

with the Cl– ions. (The basis set and cluster geometry used for these calculations are

described in section 4.3.) Since the Ag anion is only weakly bound, one might anticipate

that the B2u anion state resulting from the antibonding combination of the hybridized orbitals

associated with the two Na atoms would lie energetically above the neutral cluster. In this

study, we use EOM methods to characterize the B2u anion state of rhombic (NaCl)2 to

determine if it is indeed temporary in nature at the equilibrium geometry of the neutral

cluster. We note that the existence of excited state non-valence anions, whether bound or

unbound, is relevant for understanding the capture of low-energy electrons, and possibly also

the formation of vibrational Feshbach resonances.79

Figure 4.1: Lowest unoccupied molecular orbital from a Hartree-Fock calculation on neutral

(NaCl)2 using the aug-cc-pVTZ basis set on the atoms and two sets of 9s functions as

described in the text and centered at the location of the two black spheres, on the same axis

as the sodium atoms. The contour shown encloses 90% of the charge density.

4.3 Computational Details

The geometry of the rhombic form of (NaCl)2 was optimized using the MP2 method31

in conjunction with the aug-cc-pVTZ basis set50,51 and using the frozen core (FC) approx-
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imation. This geometry was used in a calculation of the harmonic frequencies at the same

level of theory. Distortion along the totally symmetric breathing mode (q) was considered

in order to follow the B2u anion as it evolves from a bound state to a TA, with a value of

q = 0 corresponding to the optimized geometry of the neutral cluster. The FC approxima-

tion was used in previous studies,7,107 and the geometries considered in the current work are

largely based on the geometry and definition of q given above. However, in the course of this

work, it became apparent that correlating the 2s and 2p electrons in the sodium atoms had

a significant effect on the optimized geometry of the neutral cluster and on the energies of

the anion states relative to the neutral. As a result, we also optimized the geometry of the

neutral cluster using the MP2 method, allowing correlation of the sodium 2s and 2p electrons

using the aug-cc-pCVTZ basis109 on the Na atoms. (Hereafter, calculations including elec-

tron correlation and correlating the Na L-shell electrons are referred to as correlated core.)

The geometry of the neutral cluster optimized in the correlated core approximation is close

to that obtained by displacing the FC structure to q = −0.05233. The normal mode rela-

tive displacements calculated in the FC and correlated core approximations are essentially

identical.

The main computational approach used in this study to characterize the anion states

of (NaCl)2 is the EA-EOM-CCSD method, which has been found to accurately character-

ize both bound and unbound anion states provided sufficiently flexible basis sets are em-

plpyed.6,8,75,92,110,111 In this approach, a CCSD calculation is carried out on the electronic

ground state of the neutral molecule, and the resulting T1 and T2 amplitudes are used to

carry out a similarity transform of the Hamiltonian which is then used to perform a one-

particle (1p) plus two particle-one-hole (2p1h) configuration interaction (CI) calculation on

the excess electron state. Calculations are also carried out using the EOM-CCSD(T)(a)*

method37 which accounts in an approximate manner for the contributions of triple excitations

to the ground state of the neutral and of 3p2h excitations in the CI calculation of the anion.

The EOM-CCSD(T)(a)* algorithm used is implemented for excitation energies but can be

“tricked” into calculating electron affinities by starting from a closed shell configuration with

two excess electrons in a “continuum” orbital.
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The orbital depicted in Figure 4.1 was obtained from a HF calculation on the neutral

molecule at q = 0 using the aug-cc-pVTZ basis set supplemented with two sets of diffuse s

Gaussians located on the Na-Na axis but with their centers (shown as black spheres in Fig-

ure 4.1) displaced further than the Na atoms from the center of the ring. These supplemental

sets contained nine even-tempered primitive Gaussians with the largest exponent being 0.25

and each successive exponent being smaller by a factor of
√

10. We note that the LUMO of

(NaCl)2 obtained from calculations employing supplemental diffuse s and p functions on the

Na atoms has nearly the same EBE and charge distribution as that obtained with the basis

set with the off-atom s functions. The use of off-atom basis functions proves beneficial in

the procedure used to characterize the B2u anion state at geometries at which it is unbound.

The distance of the centers of the supplementary basis functions from the Na atoms was

optimized to maximize the binding of the B2u anion state for an expanded ring geometry

with q = 0.08 for which the anion state is weakly bound in EA-EOM-CCSD calculations in

the correlated core approximation. This resulted in a displacement of 5 Å of the centers of

the diffuse sets from the Na atoms. We also checked that it remains close to optimal for

q = −0.07 where the B2u anion is temporary with the highest energy found in this study.

This basis set gives a KT value of the vertical EBE (for forming the Ag anion) of 20 meV,

3 meV smaller than that reported by Anusiewicz et al.107 Moreover, the EA-EOM-CCSD

value of the EBE from our calculations (139 meV) employing this basis set and the FC

approximation agrees closely with the EA-EOM-CCSD result of Sommerfeld et al.7

As noted above, we have also calculated the EBEs as a function of q, the extent of the

displacement along the normal coordinate corresponding to the totally symmetric breathing

mode of the neutral molecule. As q is varied, the location of the supplemental diffuse s

functions relative to the sodium atoms was held fixed, displaced 5 Å from the Na atoms.

The electronic structure calculations were carried out using CFOUR.46

In the Siegert picture,14 temporary anions are characterized by a complex energy

Eres = Er −
iΓ

2
(4.1)

where Er is the resonance position and Γ its width which is proportional to the reciprocal

of the lifetime (atomic units have been assumed). Both Er and Γ are geometry dependent.
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For geometries at which the B2u anion is unbound, the results from the EA-EOM-CCSD

calculations were combined with the stabilization method15 and analytic continuation18 to

determine the complex energies associated with the temporary anion states. Briefly, the

exponents of the supplemental diffuse basis functions were multiplied by a scale factor, β,

and the energies of the first seven eigenvalues corresponding to the electron attached states

(relative to that of the neutral) are calculated for a series of β values ranging from 0.2 to

1.7.

A plot of the energies of the excess electron states (relative to the energy of the neutral

molecule) vs β reveals avoided crossings that can be interpreted as resulting from the mixing

of a diabatic discrete state corresponding to the anion (with detachment suppressed) with

diabatic discretized representations of the continuum of the free electron plus the neutral

molecule. Hereafter, the latter are referred to as DC levels. As is well documented in the

literature, the resonance position and width can be extracted using data from the avoided

crossing regions.15,18,95,96,112 In the present study, we accomplish this by means of analytic

continuation and locating the complex stationary point, β∗, for which dE/dβ = 0. In the

case of a clear-cut avoided crossing between two levels, the analytic continuation can be

carried out by fitting the data in the vicinity of an avoided crossing to the expression

P (β)E2 +Q(β)E +R(β) = 0 (4.2)

where

P (β) = 1 + p1β + p2β
2 + . . . (4.3a)

Q(β) = q0 + q1β + q2β
2 + . . . (4.3b)

and

R(β) = r0 + r1β + r2β
2 + . . . (4.3c)

The stationary point β∗ is substituted back into the expression for the energy to obtain

estimates of Er and Γ. The use of a quadratic rather than a linear expression in E is to

accommodate the branch-point structure associated with avoided crossings.18,95,112
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For narrow resonances, for which Γ/2� Er, stabilization graphs generally display well-

defined avoided crossings between the diabatic discrete state and the discretized continuum

(DC) solutions as the scale parameter is varied. However, for resonances for which the value

of Γ/2 approaches Er in magnitude, the avoided crossings become less pronounced. For the

geometries of (NaCl)2 considered here, semiquantitative results for the B2u anion can be

obtained using the quadratic expression given by eq 4.2, with the P , Q, and R polynomials

being, respectively, of order 3, 4, and 5, in β, and employing data from the two roots involved

in an avoided crossing. However, to obtain better converged complex resonance energies, we

employed a generalization of eq 4.2 to include terms of higher order in E. In our application

of this approach to extract resonance parameters of the B2u anion of (NaCl)2, we included

terms through E3 for q = 0.07 and E4 for smaller values of q and used data from three

and four roots, respectively. We employ polynomials in eq 4.2 and its extensions of powers

n−m, where m is the power of E in the expression for the energy and n is an integer ranging

from 6 to 13. Typically, more data points were used than parameters in combination with

least-squares fitting. In addition, for each geometry considered, several independent analytic

continuation calculations using different sets of data points and different order polynomials

in eq 4.3 were performed, each giving slightly different complex resonance energies, with the

average of these results being reported for Er and Γ.

4.4 Results and Discussion

4.4.1 Stabilization Calculations

The stabilization graph obtained from the EA-EOM-CCSD calculations on (NaCl)2 using

the correlated core approximation and at q = 0 is shown in Figure 4.2a. The figure also

includes the energies of the DC levels obtained by solving for the eigenvalues of the one-

electron system using the same basis set as that used for the EA-EOM-CCSD calculations

but with the nuclear charges set equal to zero. The DC levels were calculated using Gaussian

16.97 From inspection of the graph, it is seen that, for the energy range depicted, the EOM
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calculations give one more energy level than there are DC levels. This is indicative of the

presence of a TA resonance. It is also seen that the diabatic (i.e., unmixed) discrete state

corresponding to the resonance falls near 9 meV. In order to obtain a more accurate value of

Er and to determine the width, we use the analytic continuation procedure described above,

together with data from the second to fifth roots of the EA-EOM-CCSD calculations for

scale factors ranging from 0.2 to 1.0. The resulting average Er and Γ values are 8.95 and

7.28 meV, respectively.

Figure 4.2: (a) Stabilization graph for (NaCl)2 obtained from EA-EOM-CCSD calculations

at q = 0 and using the correlated core approximation. The energies of the excess electron

states from EOM-CCSD calculations and of the DC levels are shown as blue dotted lines

and black dashed lines, respectively. (b) The energies of the excess electron states from

EOM-CCSD calculations are shown as blue dotted lines. The energies of the DC levels are

shown as black dashed lines and the unmixed discrete level by the horizontal red line, while

estimates of the energies of the second and third DC levels orthogonalized to the discrete

level are indicated by the sloped red line.

Figure 4.2b reproduces the portion of the stabilization graph involving the avoided cross-

ings. In this figure, we also indicate the energy of the diabatic discrete state by a horizontal

line. In addition, we have added lines to indicate the approximate energies of the DC levels

when orthogonalized to the discrete level to give so-called orthogonalized DC (ODC) levels.
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This helps make it more transparent that there are two avoided crossings occurring near

β values of 0.3 and 0.9. Interestingly, the crossings of the discrete state and the relevant

DC levels occur near larger β values (0.40 and 1.33, respectively). The shifts of the avoided

crossings to lower β values than those that correspond to the crossings between the discrete

level and the DC levels are a consequence of orthogonalization. If we treat the region near

an avoided crossing as a two-level system, then the eigenvalue problem becomesH11 − E V − SE
V − SE H22 − E

c1

c2

 =

0

0

 (4.4)

where H11 is the energy in the discrete state, H22 is the energy of the appropriate DC level,

V is the coupling between the discrete state and the DC level, and S is the overlap of the

associated wave functions. At β = 1.3, where the discrete level and the second DC level

cross, one can use the energies of the diabatic and adiabatic levels to determine that S = 0.52

and V = 1.86 meV (at that β value).

Figure 4.3 plots, as a function of q, the energy of the B2u anion state obtained from EA-

EOM-CCSD calculations carried out with both the FC and correlated core approximations.

(A value of q = 0.1 corresponds to an increase of the Na-Na distance by 0.118 Å and an

increase of the Cl-Cl distance by 0.078 Å.) For q values at which the anion is unbound,

the results were obtained using the stabilization procedure described above, and we plot

both Er and Γ/2. In both sets of calculations, the real part of the energy of the TA is

seen to be a smooth continuation of the energy of the bound state, as q is decreased. The

inclusion of correlation effects involving the Na core electrons increases the attraction of

the electron for the cluster: the stabilization is ∼9 meV at q = 0.15, at which the anion

is bound, and ∼3.5 meV at q = 0, at which the B2u anion is unbound. (The smaller

stabilization at q = 0 is consistent with the more extended charge distribution of the anion

when it is temporary than when it is bound.) As a result, bothEr and Γ are predicted to

be smaller in the calculations correlating the core electrons of the Na atoms than in those

carried out using the FC approximation at a given value of q. The resonance energy was

also calculated at the geometry of the neutral cluster optimized at the MP2 level in the

correlated core approximation, with the resulting values of Er and Γ/2 being 14.40 and 8.94
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meV, respectively. It should be noted that the geometry optimized at this level of theory

is very close to that obtained in the FC approximation with q displaced to −0.05233, at

which stabilization calculations making use of the correlated core approximation give values

of Er and Γ/2 (13.67 and 8.05 meV, respectively) that are within 1 meV of the resonance

parameters obtained using the geometry optimized in the correlated core approximation.

Figure 4.3: Resonance energy, Er and Γ/2, from EA-EOM-CCSD stabilization calculations

on the B2u anion of (NaCl)2 as a function of q, the distortion along the symmetric breathing

normal coordinate. Results obtained in the frozen core (shown in blue) and correlated core

(shown in red) approximations are reported. The figure also includes the negative of the

EBE for q values for which the anion is bound.

While the use of the correlated core approximation impacts both Er and Γ, when Γ/2 is

plotted vs Er for the q values for which the anion is predicted to be temporary, the results

from the stabilization calculations with and without correlation of the Na core electrons are

found to essentially fall on the same curve, as seen in Figure 4.4. This is consistent with the

fact, discussed in detail later, that correlating the Na core electrons impacts the electron-

cluster interaction potential only at short range and has a negligible impact on the barrier

region which controls the width (for a given value of Er).

Also shown in Figure 4.4 are least-squares fits of Γ/2 as a function of Er for the core-

correlated calculations using threshold laws113 assuming either p-wave (dashed black line)
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or f-wave (solid green line) character of the resonance. (Symmetry constrains the resonance

to contain only odd l angular momentum terms.) The equations used in the fits are

Γ

2
(l = 1) =

AE
3/2
r

1 +BEr

(4.5a)

Γ

2
(l = 3) =

AE
7/2
r

225 + 45(BEr) + 6(BEr)2 + (BEr)3
(4.5b)

The fit based on eq 4.5a (with A = 0.172 and B = 0.037) is superior to that obtained

assuming purely f-wave character (with A = 15.97 and B = 2.14). We note that, while the

fit was based only on the data from the core-correlated calculations with q ranging from 0.07

to 0 (Er ranging from approximately 1 to 9 meV), the best-fit curve was extended over the

entire range of q values considered. The departure of the fit from the data from the smaller

q values suggests that for these points the threshold formula is beginning to fail. At q = 0

in the correlated core approximation, the width Γ is already about 80 % as large as Er, and

the resonance cannot be considered narrow.

Figure 4.4: Γ/2 vs Er from EA-EOM-CCSD/stabilization calculations on the B2u anion of

(NaCl)2 with the results from the frozen core and correlated core approximations shown as

blue triangles and red triangles, respectively. Also shown are fits based on eq 4.5, with the

fit using the expression for a p-wave resonance shown as the black dotted line and that for

an f-wave resonance shown as the solid green line.
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4.4.2 Polarization and Effective Potentials for e− + (NaCl)2

In light of the finding that inclusion of correlation effects involving the core electrons of

the Na atoms impacts the energies of the anion states, we find it instructive to examine the

polarization potential of (NaCl)2 calculated in the FC and correlated core approximations.

Figure 4.5 plots, along the NaNa axis, the polarization potential of (NaCl)2 calculated at the

MP2 level in both the FC and correlated core approximations. As seen from this figure, the

polarization potential is much more attractive in the correlated core approximation. These

results were obtained by subtracting the MP2-level electrostatic potential from the change

in the MP2 energy caused by a negative point charge at various locations along the NaNa

axis. It should be noted that similar results are obtained in the HF approximation, which

means that the increased attraction of the polarization potential close to the Na atoms is

predominantly due to the inclusion of basis functions appropriate for describing polarization

of the core electrons rather than to correlation of the core. However, it is important to note

that, in the calculation of the EBEs of the anions, this is manifested in terms of correlation

effects involving the diffuse excess electron and the tightly bound electrons of the Na cores.114

Although both the Ag and B2u anions have very extended charge distributions, the small

amount of charge density of the excess electron near the Na cores results in a non-negligible

stabilization of the anion when correlation effects between the excess electron and the core

electrons are included.

As noted in the 4.2 Introduction, shape resonances can be viewed as resulting from the

trapping of an excess electron in the effective potential describing the electron-molecule in-

teraction. In light of this, it is instructive to consider the effective potential for a purely

p-wave resonance of (NaCl)2. Figure 4.6 plots the polarization, electrostatic, and angular

momentum contributions to the effective potential obtained in the correlated core approxi-

mation at q = 0. The polarization and electrostatic contributions to the effective potential

were obtained by applying the procedure of Boardman et al.99 to the results of MP2 cal-

culations of the electrostatic potential and of the energy of the cluster interacting with a

negative point charge at various locations. The most striking aspect of the net effective

potential is the large distance of the barrier from the center of the molecule: The maximum
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Figure 4.5: Polarization potential for the correlated core (solid red line) and frozen core

(dashed blue line) approximations as a function of distance along the Na-Na axis (r, in

angstroms).

of the barrier occurs near an electron-molecule distance of 14 Å at which the energy is 13.2

meV, about 4 meV above the value of Er calculated for the B2u resonance at q = 0. Polar-

ization effects are negligible in the barrier region, and the barrier results from the interplay

of the attractive electrostatic interaction and the repulsive angular momentum term. The

distance of the barrier from the molecule is much greater than that found for valence shape

resonances for which the barrier results from the interplay of the polarization and angular

momentum contributions. We note that the effective potential shown in Figure 4.6 does

not account for exchange between the excess electron and the electrons of the cluster or for

orthogonality of the orbital occupied by the excess electron to the orbitals of the cluster of

the same symmetry. Both of these effects are short-ranged and are not expected to impact

the barrier region of the potential.
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Figure 4.6: Effective radial potential, Veff (solid black line), vs r, the distance from the

center of the cluster, for p-wave scattering from the (NaCl)2 cluster model with q = 0. The

electrostatic contribution (ES) is shown as the dashed blue line, the polarization contribution

(Pol) is shown as the red dash-dotted line, and the angular momentum contribution (AM)

is shown as the green dotted line.

4.4.3 Potential Energy Curves

Figure 4.7 reports as a function of q the potential energy curves for the ground state of

the neutral cluster as well as for the Ag and B2u anion states. The total energy of the neutral

molecule is from CCSD calculations, and the energies of the anion states are obtained by

subtracting the EBEs from the EA-EOM-CCSD calculations from the energies of the neutral.

These curves were generated allowing for core correlation. For q values at which the B2u

state lies higher in energy than the neutral cluster, the EBEs are associated with the negative

of the real parts of the resonance energy from the stabilization calculations. The energies

of both anion states display a q dependence similar to that of the neutral, consistent with

the extra electron occupying a highly extended non-valence orbital. Whereas the Ag state

is bound by approximately 150 meV over the entire range of q values considered, the energy

of the B2u state is very close to that of the neutral, being bound only for q & 0.08.
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Figure 4.7: Relative energies of the Ag (dashed blue) and B2u (dash-dotted red) anion states

and of the ground state of the neutral (NaCl)2 cluster (solid green) as a function of q, the

fractional distortion along the symmetric breathing normal coordinate. The energy of the

neutral ground state at its most stable geometry (q = −0.06) is taken as the zero of the

energy scale. The energy of the neutral is from CCSD calculations and the energies of the

anion states are from the EOM-CCSD calculations, all obtained using the correlated core

approximation.

Based on the potential energy curves depicted in Figure 4.7, the B2u anion of rhombic

(NaCl)2 should be detectable by IR absorption from the bound Ag anion state. However, it

should be noted that Anusiewicz et al. found in their computational study that the ground

state anion distorts from the rhombic to a C2v structure. The energy lowering associated

with this distortion was so small that these authors concluded that the structure averaged

over the vibrational zero-point motion would still be D2h. This distortion is presumably

driven by the enhanced electron binding due to the accompanying dipole moment (∼1.5 D

in the calculations of Anusiewicz et al.). At the distorted structures, the excited state anion

would acquire s-wave character which would act so as to shorten the anion lifetime and which

could make its detection in IR absorption from the ground state anion more challenging.
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Table 4.1 reports the EBE obtained using various theoretical methods of the Ag anion

at q = 0. For the Ag state, the FC and correlated-core EBEs obtained using the EA-

EOM-CCSD method are 139 and 164 meV, respectively. Thus, core correlation is more

important for the Ag anion than for the B2u temporary anion, consistent with the more

diffuse charge distribution of the latter. Table 4.1 also includes EBEs calculated using the

EOM-CCSD(T)(a)* method as well as with the ∆CCSD and ∆CCSD(T) methods. (The ∆

methods involve calculating separately the energies of the ground neutral and the anion and

are feasible only for anion states that demonstrate binding in the HF approximation.) The

EOM-CCSD(T)(a)* and ∆CCSD(T) methods give EBEs that agree to within 1 meV of each

other, with the EOM-CCSD(T)(a)* results being 148 and 176 meV in the FC and correlated

core approximations, respectively. This shows that correlation of the Na core electrons is ∼4

meV more important in the EOM-CCSD(T)(a)* than in the EA-EOM-CCSD calculations

and also that inclusion of higher order correlation effects absent in the EA-EOM-CCSD

method lead to a 12 meV increase in the EBE of the Ag anion.

Table 4.1: Electron binding energy (meV) of the Ag anion state of (NaCl)2 calculated at

various levels of theory in the frozen core and correlated core approximations.

core EOM-CCSD EOM-CCSD(T)(a)* ∆CCSD ∆CCSD(T)

frozen 139 148 128 147
correlated 164 176 152 175

At q = 0, the EA-EOM-CCSD calculations predict the B2u anion state to be unbound

with respect to the neutral by 12.4 and 9.0 meV in the FC and correlated-core approx-

imations, respectively. As we saw above, higher order correlation effects (not included in

EOM-CCSD) stabilize the Ag anion state by about 12 meV, making it important to estimate

their effect on the B2u anion at q values that the EOM-CCSD calculations predict it to be a

resonance. To this end, we also carried out EOM-CCSD(T)(a)* calculations to the B2u anion

at q values at which the anion is bound. We did such calculations at q = 0.20 and 0.15 and

find that the use of EOM-CCSD(T)(a)* rather than EA-EOM-CCSD increases the EBEs

at these q values by only 3.0 and 2.5 meV, respectively. Higher order correlation effects are

expected to be even less important at q values at which the anion is metastable. Indeed, sta-
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bilization calculations carried out using the EOM-CCSD(T)(a)* method at the geometry of

the neutral cluster optimized at the MP2 level in the correlated core approximation showed

that the resonance energy and width are impacted by less than 1 meV by the inclusion of

higher order correlation effects.

4.5 Conclusion

In this study, we present the results of calculations that indicate that (NaCl)2, at its

equilibrium geometry, possesses both a bound non-valence anion of Ag symmetry and a non-

valence temporary anion of B2u symmetry. Inclusion of correlation of the Na core electrons

is found to significantly impact the geometry of (NaCl)2 and the energies of the Ag and B2u

anion states, although this is less important for the B2u anion at geometries at which the

anion is a resonance than those at which it is bound. Electron correlation effects recovered

by the EOM-CCSD(T)(a)* method but lacking in EOM-CCSD are found to lead to an ∼12

meV increase of the EBE of the Ag anion (at q = 0) but have a smaller impact on the EBE

of the B2u anion. The B2u temporary anion state of (NaCl)2 in its rhombic structure should

manifest itself both in low-energy electron scattering from the neutral cluster and in the IR

photodetachment of the excess electron from the bound Ag anion. In the latter case, the

resonant and direct detachment channels are expected to interfere, thereby modifying the

Fano line shape.115
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5.0 Analysis of the Contributions to the Kinetic and Potential Energies of an

H Atom in the Presence of a Point Charge: The Molecular Virial Theorem

Revisited

The text and figures in this chapter have been reprinted with permission from Kairalapo-

va, A.; Jordan, K. D. Analysis of the Contributions to the Kinetic and Potential Energies

of an H Atom in the Presence of a Point Charge: The Molecular Virial Theorem Revisited.

J. Phys. Chem. A 2020, 124, 4534–4538, DOI: 10.1021/acs.jpca.0c02758. Copyright 2020

American Chemical Society. The author’s contribution to the work included performing

calculations, deriving equations, generating all figures, and editing/revising the manuscript.

5.1 Summary

The molecular virial theorem states that for a diatomic molecule or for an atom in the

presence of a point charge, the changes in the average kinetic energy and average potential

energy are equal to 〈T 〉 = −U − RdU/dR and 〈V 〉 = 2U + RdU/dR, respectively, where

U is the interaction energy and R is the internuclear separation or the atom-point charge

separation. In this paper we directly evaluate the 〈T 〉 and 〈V 〉 expectation values of an H

atom in the presence of a distant point charge, obtaining exact analytical expressions by use

of Dalgarno–Lewis perturbation theory.

5.2 Introduction

For atoms as well as molecular systems at their equilibrium structures the virial theorem

states that

〈T 〉 = −1

2
〈V 〉 (5.1)
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where T and V denote the kinetic and potential energy operators, respectively. The virial

theorem is necessarily obeyed for the exact wave function, whereas approximate wave func-

tions can give average kinetic and potential energies that significantly deviate from obeying

the virial theorem. The virial theorem was generalized to diatomic molecules at arbitrary

internuclear separation by Slater116 and subsequently by Hurley117 to polyatomic molecules

at arbitrary geometries to give the so-called molecular virial theorem. These generalizations

assumed the validity of the Born–Oppenheimer9 approximation. For diatomic molecules at

an arbitrary bond length Slater obtained

〈T 〉 = −E −RdE
dR

(5.2a)

〈V 〉 = 2E +R
dE

dR
(5.2b)

where E is the total energy and R is the internuclear separation. The changes in the average

kinetic and potential energies due to the interaction are

∆ 〈T 〉 = 〈T 〉 − 〈T 〉∞ = −U −RdU
dR

(5.3a)

∆ 〈V 〉 = 〈V 〉 − 〈V 〉∞ = 2U +R
dU

dR
(5.3b)

where 〈T 〉∞ and 〈V 〉∞ refer to the averages at infinite internuclear separation and U is the

interaction energy. Thus for a neutral diatomic molecule at R values for which C6 dispersion

dominates

∆ 〈T 〉 = 5U (5.4a)

∆ 〈V 〉 = −4U (5.4b)

Interestingly, while a second-order perturbation theory treatment describes the long-

range dispersion interaction purely in terms of the dipole–dipole coupling, the virial theorem

indicates that the potential energy contribution is repulsive and that the net attraction is

actually a consequence of the kinetic energy.

In general, one determines the average kinetic energy and potential energy contributions

by fitting the interaction energies from electronic structure calculations as a function of R
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and using eq 5.3 rather than by directly calculating expectation values of the T and V

operators.

In order to obtain a better understanding of the origin of the attractive kinetic energy

and repulsive potential energy contributions predicted by the virial theorem, it is useful to

consider the simpler problems of an H atom in the field of a point charge, at a distance R

from the atom, as well as in a uniform electric field, since exact, complete basis set results

can be obtained for these cases. In the limit that only dipole polarization is important, the

molecular virial theorem (eq 5.3) gives

∆ 〈T 〉 = 3U (5.5a)

∆ 〈V 〉 = −2U (5.5b)

For a positive point charge, |e|, this corresponds to the H+
2 molecular ion with the neglect

of charge delocalization, the long-range behavior of which has been the subject of numerous

studies.118–121 However, here our focus is on analyzing the field-induced shifts in the average

kinetic and potential energies in terms of contributions to the wave function in the complete

basis set limit and which are obtained by use of Dalgarno–Lewis perturbation theory.118

Of course, the H atom in the presence of a uniform efield, has no bound states,122 but for

the calculations presented here autoionization is not an issue: for the complete basis set

analytical results it is suppressed by the use of low-order perturbation theory, and for the

finite basis set variational calculations it is suppressed by the limited spatial extent of the

basis functions.

At large separation, R, of the point charge from the atom, the sign of the point charge

is immaterial and

U = − α

2R4
(5.6)

where α is the dipole polarizability. In the complete basis set limit α = 4.5 au and U =

−2.25R−4 au.118 For the case of an atom in a uniform electric field, ε, the analog of the

molecular virial theorem is
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∆ 〈T 〉 = −U + 2ε
dU

dε
(5.7a)

∆ 〈V 〉 = 2U − 2ε
dU

dε
(5.7b)

where U = −0.5αε2.

5.3 Theory

Although our primary interest is in delineating the various contributions to ∆ 〈T 〉 and

∆ 〈V 〉 as evaluated directly from the wave function, we find it instructive to first consider

results obtained from finite basis set variational calculations. For these calculations we

employ for the H atom a basis set comprised of the s and p portions of the aug-cc-pV6Z

Gaussian-type orbital basis set.50,51 This basis set (hereafter referred to as A) gives an energy

of the ground state of the isolated H atom only 7 × 10−7 au above the exact value and a

value of the dipole polarizability of 4.4928 au, in close agreement with the exact result of 4.5

au. We place the perturbing point charge, here taken to be q = −|e|, 10 Bohr from the H

atom which results in an electric field of 0.01 au. The efield calculations were carried out on

the H atom using this field strength. The finite-basis set calculations were carried out using

the Gaussian 16 program.97

Table 5.1 reports the total energy, the 〈V 〉 and 〈T 〉 values, and the virial ratio of the

isolated atom as well as of the atom in the presence of the point charge or the uniform

electric field as obtained from the finite basis set calculations. For comparison the Table

also reports exact results obtained in the complete basis set limit, calculated allowing only

dipole polarization. (The procedure used to obtain the exact results is described below.) To

facilitate analysis of the results, the Table also reports the changes in 〈T 〉 and 〈V 〉 caused

by the perturbations.

From Table 5.1, it is seen that with basis set A the variational calculations on H atom in

the presence of the point charge or the external uniform efield give 〈V 〉 / 〈T 〉 ratios and ∆ 〈T 〉
and ∆ 〈V 〉 values very close to the exact results. The small discrepancies of the finite basis
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set variational results from the exact results (described below) are due to the incompleteness

of the basis set (in the s and p space) as well as to the recovery in the former of contributions

other than dipole polarization. Specifically, at the values of R and field strength employed in

the calculations, there is a small contribution from the γ hyperpolarizability, and in the point

charge calculations there is also a more significant contribution from the B dipole–dipole–

quadrupole hyperpolarizality. These higher-order contributions would cease to be important

were R increased to, e.g., 20 Bohr and the external field decreased to 0.0025 au.

Table 5.1: Energies (au), virial ratios, 〈V 〉, and 〈T 〉 values (in au) of an H atom, both

isolated and in the presence of a −|e| point charge at R = 10 Bohr or a uniform electric field

of strength 0.01 au.

system basis Etot − 〈V 〉〈T 〉 〈V 〉 〈T 〉 ∆ 〈V 〉 ∆ 〈T 〉
isolateda CBSb −0.5000000 2.000000 −1.0000000 0.5000000
efield,

pt. chg.
CBSb −0.5002250 2.001802 −0.9995500 0.4993250 0.0004500 −0.0006750

isolateda A, B −0.4999993 2.000004 −0.9999966 0.4999973
efield A −0.5002242 2.001811 −0.9995441 0.4993200 0.0004525 −0.0006774
efield B −0.5002238 2.000653 −1.0001211 0.4998973 −0.0001244 −0.0001001
pt. chg. A −0.5002218 2.001779 −0.9995554 0.4993337 0.0004412 −0.0006637
pt. chg. B −0.5002214 2.000640 −1.0001229 0.4999015 −0.0001263 −0.0000958

a Isolated H atom.
b Exact results in the complete s and p basis set (CBS) limit, allowing only for dipole polarization.

A clue as to the terms in the wave function responsible for the changes in 〈V 〉 and 〈T 〉
due to the point charge or external efield is provided by the following ”experiment”. We

uncontracted the s functions in basis set A, and used the resulting set of primitive functions

in a variational calculation of the energy of the isolated H atom. The s primitives were then

contracted to a single function with the contraction coefficients being taken to correspond

to those of the 1s orbital from the variational calculation. We now make a new basis set,

designated B, by combining the single contracted s function with the six s functions of basis

set A. Calculations with basis set B give the same energy and dipole polarizability of the

isolated H atom as basis set A. However, they give much smaller in magnitude ∆ 〈T 〉 and

∆ 〈V 〉 values and an appreciably different virial ratio than obtained using basis set A. Thus

a basis set with multiple s functions rather than the single contracted s function is important
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in establishing the virial theorem result. Indeed, it has been noted in prior studies that the

lowering of the kinetic energy of H+
2 at large R is associated with a delocalization of the

electron density.121

We now progress to a detailed analysis of the various contributions to the kinetic energy

and potential energy resulting from the perturbation (point charge or uniform efield). The

ground state wave function of the H atom in the presence of the point charge or efield may

be expressed in terms of the orbitals of the unperturbed H atom as

ψ = |1s〉+
∑
n=2

c(p)
n |np〉+

∑
n6=1

c(s)
n |ns〉 (5.8)

where only s and p basis functions are included as we are focusing on dipole polarization.

The coefficients in eq 5.8 are given by

c(p)
n =

〈np|V ′|1s〉
ε1s − εnp

(5.9)

and

c(s)
n =

∑
m=2

〈ns|V ′|mp〉〈mp|V ′|1s〉
(ε1s − εns)(ε1s − εmp)

(5.10)

In eqs 5.9 and 5.10 and ensuing equations, V ′ denotes the external perturbation, and

the orbitals and orbital energies are the exact results for the non-relativistic Schrödinger

equation (the Hamiltonian of which is denoted by H(0)) for the H atom. In addition, the

sums also include the continuum contributions.

If we retain energy contributions through second-order in the perturbation, the energy

lowering relative to that of an isolated H atom (i.e., 〈1s|H(0)|1s〉) is∑
n=2

[
c(p)2

n (〈np|H(0)|np〉 − 〈1s|H(0)|1s〉) + 2c(p)
n 〈np|V ′|1s〉

]
(5.11)

which, upon the substitution,

〈np|H(0)|np〉 − 〈1s|H(0)|1s〉 = εnp − ε1s (5.12)

reduces to ∑
n=2

〈1s|V ′|np〉〈np|V ′|1s〉
ε1s − εnp

(5.13)
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which is the standard second-order perturbation result. Dalgarno and Lewis118 showed that

for a perturbation of the form D r cos θ, where D = q/R2 and ε for the point charge and

uniform fields, respectively, one can find a function f = D(r2/2 + r) cos θ such that

〈np|V ′|1s〉 = 〈np|[H(0), f ]|1s〉 = (εnp − ε1s)〈np|f |1s〉 (5.14)

allowing eq 5.13 to be rewritten as

−
∑
n=2

〈1s|V ′|np〉〈np|f |1s〉 = −〈1s|V ′f |1s〉 (5.15)

Elimination of the the
∑ |np〉〈np| summation in the left-hand side of eq 5.15 was accom-

plished by use of the identity operator, which for the H atom is

1 = |1s〉〈1s|+
∑
n6=1

|ns〉〈ns|+
∑
n=2

|np〉〈np|+ . . . (5.16)

Specifically
∑ |np〉〈np| was replaced by 1, as the other terms in the expansion do not result

in non-zero integrals. The resulting integral on the right-hand side of eq 5.15 may be readily

evaluated, giving −2.25R−4 for the point charge perturbation and −2.25ε2 au for the uniform

efield perturbation.118

We now consider the contributions of the various terms in the wave function to the

averages of the kinetic energy operator and the−1/r portion of the potential energy operator,

retaining terms that are second-order in the interaction. The relevant averages are given by

∆
〈
Â
〉

= −
∑
n=2

(c(p)
n )2〈1s|Â|1s〉+

∑
n,m=2

c(p)
n c(p)

m 〈np|Â|mp〉+ 2
∑
n6=1

c(s)
n 〈ns|Â|1s〉 (5.17)

where Â denotes either the kinetic energy operator or −1/r. The first term on the right-hand

side of eq 5.17 is a result of normalization, which may be evaluated as follows

−
∑
n=2

〈1s|f |np〉〈np|f |1s〉〈1s|Â|1s〉 = −〈1s|f 2|1s〉〈1s|Â|1s〉 (5.18)

In accomplishing this simplification we made use of the fact that the (c
(p)
n )2 factor in eq 5.17

can be rewritten as 〈1s|f |np〉〈np|f |1s〉 by two applications of the Dalgarno–Lewis procedure

again with f = D(r2/2 + r) cos θ, and the replacement of
∑ |np〉〈np| with 1 as discussed
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above. The two integrals in the right-most term of eq 5.18, 〈1s|f 2|1s〉 and 〈1s|Â|1s〉, are

readily evaluated with the results being presented in Table 5.2 below.

The second term on the right-hand side of eq 5.17 may be evaluated as

∑
n,m=2

〈1s|V ′|np〉〈np|Â|mp〉〈mp|V ′|1s〉
(ε1s − εnp)(ε1s − εmp)

=
∑
n,m=2

〈1s|f |np〉〈np|Â|mp〉〈mp|f |1s〉 = 〈1s|fÂf |1s〉

(5.19)

In deriving this result, the Dalgarno–Lewis substitution was made twice and the identity

operator was used twice to eliminate the summations. The values of this contribution for

the two choices of Â are summarized in Table 5.2.

Table 5.2: Contributions to ∆ 〈T 〉 and ∆ 〈V 〉 for an H atom perturbed by a point charge or

a uniform efield evaluated in the complete basis set limit.

Contribution ∆ 〈T 〉 a ∆ 〈V 〉 a

−∑(c
(p)
n )2〈1s|Â|1s〉 −43/16 86/16

2
∑

c
(p)
n 〈1s|V ′|np〉 −72/16∑∑
c

(p)
n c

(p)
m 〈np|Â|mp〉 27/16 −34/16

2
∑

c
(s)
n 〈1s|Â|ns〉 −92/16 92/16

Total −27/4 18/4

a The quantities reported are the coefficients
of R−4 or ε2.

The third contribution from eq 5.17 may be re-expressed as

2
∑
n6=1,
m=2

〈1s|V ′|mp〉〈mp|V ′|ns〉〈ns|Â|1s〉
(ε1s − εmp)(ε1s − εns)

= −2
∑
n6=1

〈1s|fV ′|ns〉〈ns|Â|1s〉
ε1s − εns

= 2
∑
n6=1

〈1s|fV ′|ns〉〈ns|g|1s〉 (5.20)

The first simplification made use of the Dalgarno–Lewis method and insertion of the

identity operator to eliminate the sum over the p functions. The first simplification made

use of the Dalgarno–Lewis method and insertion of the identity operator to eliminate the

sum over the p functions. However, to deal with the sum over the ns (n 6= 1) functions

required deriving functions g for which 〈ns|[H(0), g]|1s〉 = 〈ns|Â|1s〉 for Â corresponding to

the kinetic energy operator and −1/r. The g functions and their derivations are presented
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in section 5.6 Supporting Information. Using the identity operator, the last term of eq 5.20

can be simplified as follows

2
∑
n6=1

〈1s|fV ′|ns〉〈ns|g|1s〉 = 2〈1s|fV ′g|1s〉 − 2〈1s|fV ′|1s〉〈1s|g|1s〉 (5.21)

The integrals on the right-hand side of eq 5.21 are readily evaluated, and their contributions

are included in Table 5.2.

As seen from eq 5.21 (and eq 5.40 of the section 5.6 Supporting Information), the con-

tributions of the excited s levels to the average kinetic energy and average of −1/r are

proportional to D2. However, if one considers the contribution of these terms to the total

energy, they give a contribution proportional to D4. In other words, the contribution is a

consequence of the γ hyperpolarizability.

Table 5.2 reports the coefficients of the various contributions to ∆ 〈T 〉 and ∆ 〈V 〉. To

obtain the energy contributions these need to be multiplied by R−4 and ε2, in the case

of the point charge and efield, respectively. Table 5.2 also includes the potential energy

contribution from the second term of eq 5.11, which arises solely from the perturbation and

does not involve matrix elements of the kinetic energy operator or −1/r.

Table 5.3: Contributions to ∆ 〈T 〉 and ∆ 〈V 〉 for an H atom perturbed by a point charge or

a uniform efield evaluated in the complete basis set limit with the diagonal and off-diagonal

〈np|Â|mp〉 contributions split apart.

Contribution ∆ 〈T 〉 ∆ 〈V 〉∑
(c

(p)
n )2(〈np|Â|np〉 − 〈1s|Â|1s〉) U −2U

2
∑

c
(p)
n 〈1s|V ′|np〉 2U∑∑
c

(p)
n c

(p)
m 〈np|Â|mp〉 (off-diag) −5/9U 5/9U

2
∑

c
(s)
n 〈1s|Â|ns〉 23/9U −23/9U

Total 3U −2U

The sum of the various contributions to ∆ 〈T 〉 and ∆ 〈V 〉 agree exactly with the shifts

predicted by the virial theorem (eq 5.6). We find it instructive to separate the diagonal

and off-diagonal contributions from the terms with the 〈np|Â|mp〉 factor and to combine
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the diagonal 〈np|Â|np〉 contribution with that involving the 〈1s|Â|1s〉 factor. The regrouped

terms are reported in Table 5.3.

As required, for the terms involving diagonal matrix elements of Â, the ∆ 〈V 〉 contri-

bution is minus twice the ∆ 〈T 〉 contribution, while for terms involving the off-diagonal

〈np|Â|mp〉 elements, the ∆ 〈V 〉 contribution is minus the ∆ 〈T 〉 contribution. If the terms

involving the non-diagonal 〈1s|Â|ns〉 and 〈np|Â|mp〉 matrix elements are grouped together,

their net contributions to ∆ 〈T 〉 and ∆ 〈V 〉 are 2U and −2U , respectively.

The use of Dalgarno–Lewis perturbation theory together with the identity operator also

allows us to express the wave function in eq 5.8 in a simple analytical form:

ψ =

{
1−D

(
r2

2
+ r

)
cos θ +D2

[(
r4

16
+

3r3

8
+

9r2

8

)(
cos2 θ +

1

3

)
− 81

16

]}
|1s〉 (5.22)

where the second term accounts for the contribution from the p orbitals (i.e., the hybridiza-

tion) and the third term results from the |ns〉, n 6= 1, orbitals, which enter via mixing with

the p orbitals. (The derivation of this contribution is given in the section 5.6 Supporting

Information.) The term accounting for the admixture of the |ns〉 levels is largely responsible

for the lowering of the kinetic energy due to the external field, and is associated with an

increase in the radial extent of the charge distribution of the H atom.

Figure 5.1 reports the change in charge density caused by the field-induced admixture of

the |ns〉, n 6= 1, states into the wave function. As seen from the figure for a field of ε = 0.01

au, the admixture with the ns orbitals results in a radial shift of ∼0.0005 |e| from short r to

2 ∼ 6.5 Bohrs from the nucleus.

5.4 Conclusions

The molecular virial theorem predicts that the interaction of an atom with a distant

point charge lowers the kinetic energy by 3|U | and raises the potential energy by 2|U |, where

U = −0.5αR−4. For the case of an H atom interacting with a point charge at large R,

exact expressions can be obtained for the various contributions to the kinetic and potential

energy changes by use of a procedure introduced by Dalgarno and Lewis. Although the exact
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Figure 5.1: Change in r2ψ2 in going from the unperturbed 1s orbital to allowing for the

field-induced admixture of excited ns orbitals, for an external uniform field of 0.01 au.

polarizability and energy at large R can be obtained using second order perturbation theory

with a basis set with a single s function (provided it is the 1s eigenfunction of the isolated

atom) and a complete set of p eigenfunctions, in order to accurately describe the kinetic and

potential energy changes due to the interaction requires using a flexible set of s functions

due to the importance of matrix elements of the form 〈1s|Â|ns〉, as well as allowing mixing

of the different p functions through the kinetic energy or −1/r operators.

Although we have focused here on the contributions to the kinetic and potential energies

of an H atom in an electric field, we note that the same strategy can be applied to evaluate

the changes in the average kinetic and potential energies of two H atoms at large internuclear

separation where dispersion interactions dominate.
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5.6 Supporting Information

5.6.1 Function g

In eq 5.17 of the text there are factors of the form 〈ns|Â|1s〉 /(ε1s − εns). In order to

eliminate the energy denominator, we need to identify a function g for which

(εns − ε1s)〈ns|g|1s〉 = 〈ns|Â|1s〉 (5.23)

For an operator Â for which 〈1s|Â|1s〉 = 0, g can be found by solving

[H(0), g] |1s〉 = Â |1s〉 (5.24)

as was done in the original application of the Dalgarno-Lewis procedure118 to the D r cos θ

operator. However, if the operator of interest has non-zero diagonal matrix elements, as do

the kinetic energy and −1/r operators of the H atom, then we need to use the more general

equation123

[H(0), g] |1s〉 = (Â− 〈1s|Â|1s〉) |1s〉 (5.25)

We consider first the situation that Â = −1/r, for which 〈1s|Â|1s〉 = −1. For the H

atom, in the case that l = 0, the radial Hamiltonian is

H(0) = −1

2

d2

dr2
− 1

r

d

dr
− 1

r
(5.26)

Using this in eq 5.25 gives the differential equation

rg′′ + 2g′(1− r) + 2r − 2 = 0 (5.27)
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which has the solution

g = r + c1

(
−e

2r

r
+ 2Ei[2r]

)
+ c2 (5.28)

The differential equation was solved using Mathematica.124 We require

〈2s|g|1s〉 = −〈2s|−1
r
|1s〉

ε1s − ε2s

(5.29)

which is satisfied with the choice c1 = c2 = 0. Thus, for the −1/r operator the appropriate

function g is r. Since 〈ns|H(0)|1s〉 = 0 when n 6= 1, it follows that

〈ns|−1

2

d2

dr2
− 1

r

d

dr
|1s〉 = −〈ns|−1

r
|1s〉 (5.30)

Thus, −r is the appropriate choice for g when Â is the kinetic energy operator. That g = −r
in this case can also be demonstrated using eq 5.25 with Â chosen to be the kinetic energy

operator.

5.6.2 Function h

The functional form of the wave function of the H atom in the presence of a field or a point

charge with the terms through second order is given in eq 5.8 of the text. As follows from

the main text, the
∑
c

(p)
n |np〉 contribution is given by −D(r2/2 + r) cos θ |1s〉. It remains to

find the analytical functional form of c
(s)
n coefficient given by eq 5.10. c

(s)
n can be simplified

by applying the Dalgarno-Lewis procedure (eq 5.14) to eliminate the ε1s − εnp denominator

to give

c(s)
n = −

∑
m=2

〈ns|V ′|mp〉〈mp|f |1s〉
ε1s − εns

(5.31)

By application of the identity operator, this can be further simplified to

c(s)
n = −〈ns|fV ′|1s〉

ε1s − εns

(5.32)

We find a function h to eliminate the energy denominator, accounting for non-zero diagonal

matrix elements of the fV ′ operator

[H(0), h] |1s〉 = (fV ′ − 〈1s|fV ′|1s〉) |1s〉 (5.33)
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Both f and V ′ contain factors of cos θ which leads to us try h = D2b(cos2 θ + c), where

b is a function of r and c is a constant. Evaluating the commutator, and then cancelling

the D2 factor and the |1s〉 function that appear on both sides of eq 5.33 gives the following

differential equation

(cos2 θ + c)

(
−b
′′

2
+ b′ − b′

r

)
+

b

r2
(3 cos2 θ − 1) =

(
r3

2
+ r2

)
cos2 θ − 9

4
(5.34)

Integrating out the θ dependence gives the differential equation(
2

3
+ 2c

)(
−b
′′

2
+ b′ − b′

r

)
=

2

3

(
r3

2
+ r2

)
− 9

2
(5.35)

which is solved with Mathematica124 to give

b =
r4 + 6r3 + 18r2

8(1 + 3c)
+ c1

(
−e

2r

r
+ 2Ei[2r]

)
+ c2 (5.36)

To satisfy

〈2s|h|1s〉 = −〈2s|fV ′|1s〉
ε1s − ε2s

(5.37)

it is necessary to choose c = 1/3 and c1 = c2 = 0. It follows that

h = D2

(
r4

16
+

3r3

8
+

9r2

8

)(
cos2 θ +

1

3

)
(5.38)

Thus, c
(s)
n is given by

c(s)
n = 〈ns|h|1s〉 (5.39)

Using the identity operator, the contribution to the wave function from the sum over the

|ns〉 states becomes∑
n6=1

c(s)
n |ns〉 =

∑
n6=1

|ns〉〈ns|h|1s〉 = h |1s〉 − 〈1s|h|1s〉|1s〉

= D2

[(
r4

16
+

3r3

8
+

9r2

8

)(
cos2 θ +

1

3

)
− 81

16

]
|1s〉 (5.40)

where substitution of 〈1s|h|1s〉 = 81D2/16 was made.

89



6.0 Summary

In this work it was illustrated that accounting for electron correlation effects is essential

for describing weakly bound non-valence anion states of molecules and molecular clusters, as

well as non-valence temporary anion shape resonances. These studies indicate that a highly

polarizable system for which electrostatic interactions alone are not sufficiently attractive to

bind an excess electron will possess non-valence correlation-bound anion states. The excess

electron in such species is bound in a spatially diffuse orbital by long-range dispersion-

like correlation interactions. The equation of motion coupled-cluster method was the main

theoretical approach used in the present work. Other approaches that can characterize

non-valence correlation-bound anions are second-order algebraic diagrammatic construction,

orbital-optimized second-order Møller-Plesset perturbation theory, and Brueckner coupled-

cluster methods. These methods allow for orbital relaxation in response to the dispersion

type correlation between the excess electron and valence electrons of the molecule or cluster

at hand. The accuracy of these methods depends on the nature of the molecule or cluster.

In calculations involving non-valence anions, a combination of electrostatic and correla-

tion interactions is responsible for the binding of the excess electron. Molecules or clusters

can also possess non-valence temporary anion shape resonances that are higher in energy

than the neutral ground state. These shape resonances exist as a result of the excess electron

being trapped by an angular momentum barrier. The resonances can be characterized by

a complex energy which is determined as a function of the geometry. The model (H2O)4

cluster contains two dimers and the distance between them is varied. The asymmetric com-

bination of the dipole-bound anion states of the dimers creates the temporary anion shape

resonance. The resonance energy increases with decreasing distance between the dimers.

The rhombic structure of (NaCl)2 is distorted along the symmetric breathing mode. The

antibonding combination of the orbitals of the sodium atoms result in the shape resonance.

The resonance energy increases when the distortion reduces the distance between the sodium

atoms.
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EOM-CCSD calculations are computationally demanding, and, therefore, not applicable

to large molecules or clusters. For treating larger systems, one will have to utilize one-

electron model potentials with explicit treatment of polarization. Though not described

here in detail, such potentials treat the neutral molecule classically and only describe its

interaction with the excess electron quantum mechanically. However, to be successful, these

models need to be parameterized based on high-level ab initio calculations, such as those

presented in this thesis.

The last part of the thesis involves studies of the molecular virial theorem using an H atom

interacting with a uniform electric field or with a point charge. Dalgarno-Lewis perturbation

theory is used to find exact analytical expressions to the changes of the kinetic and potential

energies. This approach can also be extended to treat, for example, two interacting H atoms

at large separation to analyze dispersion interactions.
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