Revising Concept of Resonant Cycle Length and Investigation of Resonant Signal Timing Plans

by

Yifei Yang

Bachelor of Engineering, Southeast University (China), 2017

Submitted to the Graduate Faculty of the Swanson School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering

University of Pittsburgh

2020

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This thesis was presented

by

Yifei Yang

It was defended on

July 2, 2020

and approved by

Amir H. Alavi, Ph.D., Assistant Professor, Department of Civil and Environmental Engineering

Mark J. Magalotti, Ph.D., Lecture, Department of Civil and Environmental Engineering

Keith A. Johnson, B.S., Lecture, Department of Civil and Environmental Engineering

Thesis Advisor: Aleksandar Stevanovic, Ph.D., Associate Professor, Department of Civil and Environmental Engineering Copyright © by Yifei Yang

2020

Revising Concept of Resonant Cycle Length and Investigation of Resonant Signal Timing Plans

Yifei Yang, MS

University of Pittsburgh, 2020

The most difficult part of designing optimal traffic signal timings is selection of an appropriate cycle length. In recent years, a new concept called "resonant cycle" has been introduced by several researchers referring to a particular cycle length that provides good performance on two-way arterial streets for a wide range of traffic flows. However, an attempt to define a resonant cycle length is a difficult task on its own as it has ambiguous connotation and inconsistent meaning to various scholars. Two major schools of thought are: resonant cycles serve either to provide good progression only for coordinated movements or they provide good conditions for all movements (equally prioritizing traffic on main street and side street). This research addresses inconsistencies in definitions and ambiguity of the meaning of resonant cycle length by introducing a new concept called Resonant Signal Timing Plan (RSTP) that, besides cycle length, considers that the entire set of signal timings (splits, offsets, etc.) needs to be "resonant", or work well with a range of traffic volumes. To investigate the existence of such an RSTP, a methodology was developed to test a number of signal timing optimization scenarios. Each of the tested signal timing plans was evaluated on overall network level (all movements) and main-corridor level (coordinated movements only). The results of evaluations on network level reveal no existence of the RSTP; each candidate RSTP could provide decent performance only for a few hours of similar traffic demands. Similarly, the corridor-level evaluation did not find any RSTP either as conditions differ significantly for traffic in inbound and outbound directions.

Table of Contents

Acknowledgementsxiii
1.0 Introduction1
1.1 Background1
1.2 Problem Description
1.3 Research Motivation and Objectives 4
1.3.1 Motivation4
1.3.2 Objectives5
1.4 Organization of Thesis6
2.0 Literature Review
2.1 Resonant Cycle Studies on Hypothetical Networks
2.1.1 Ideal Network Study for the Resonant Cycle8
2.1.2 Theoretical Equations for the Resonant Cycle10
2.1.3 Comment on Theoretical Equations of the Ideal Model10
2.2 Resonant Cycle Studies on Realistic Networks11
2.2.1 Network Scale Traffic Simulation Studies12
2.2.2 Evaluations of the Resonant Cycle's Sensitivity14
2.3 Comparison Table for Previous Studies15
3.0 Research Methodology 18
3.1 Study Network and Traffic Data 20
3.1.1 Study Area Geometry Data20
3.1.2 Study Area Traffic Data21

3.2 Software Programs Characteristics	25
3.2.1 PTV Vistro	26
3.2.2 PTV Vissim	27
3.3 Experimental Design	27
3.4 Key Performance Measures	29
3.4.1 Network Level Performance Measures	29
3.4.2 Progression Level Performance Measures	30
4.0 Building of Models	31
4.1 PTV Vissim Model	31
4.2 PTV Vistro Model	35
5.0 Optimization and Evaluation of Signal Timing Plans	42
5.1 Optimization of Signal Timing Plans	43
5.1.1 Local Optimization of Cycle Length	43
5.1.2 Local Optimization of Cycle Length and Splits	44
5.1.3 Network Optimization of Cycle Length and Splits	45
5.1.4 Network Optimization of Cycle Length, Splits, and Offsets	47
5.1.5 Network Optimization of All Signal Timing and Phasing Parameters	48
5.2 Evaluation of Signal Timing Plans	50
6.0 Results and Analysis	54
6.1 Network Level Evaluation	55
6.1.1 Evaluation of the Average Delay	55
6.1.2 Evaluation of the Average Stops	58
6.1.3 Evaluation of the PI Value	62

6.1.4 Evaluation of the Average Travel Time	65
6.1.5 Summary Analysis	68
6.2 Progression Level Evaluation	
6.2.1 Evaluation of the Average Delay	72
6.2.2 Evaluation of the Average Stops	77
6.2.3 Evaluation of the PI Value	81
6.2.4 Evaluation of the Average Travel Time	85
6.2.5 Summary Analysis	90
7.0 Concluding Remarks	
7.1 Conclusions	
7.2 Future Studies	
Appendix A Through Movement Volume of Main Street	
Appendix B Ranks Under Diverse Performance Measures	
Bibliography	

List of Tables

Table 2-1 The Comparison Table for Previous Resonant Cycle Studies 16
Table 3-1 Comparison Table for Field Signal Plan and 5 Optimization Methodologies 29
Table 6-1 Best Scenarios of Network Average Delay 58
Table 6-2 Optimal Scenarios Under Different Thresholds - Average Delay
Table 6-3 Best Scenarios for Network Average Stops 61
Table 6-4 Optimal Scenarios Under Different Thresholds - Average Stops 61
Table 6-5 Best Scenarios of Network PI Value 64
Table 6-6 Optimal Scenarios for Under Different Thresholds – PI Value 64
Table 6-7 Best Scenarios of Network Average Travel Time 67
Table 6-8 Optimal Scenarios Under Different Thresholds - Average Travel Time
Table 6-9 Resonant Signal Timing Plans Under Different Thresholds - Network 71
Table 6-10 Best Scenarios of EB Progression - Average Delay 75
Table 6-11 Best Scenarios of WB Progression - Average Delay 76
Table 6-12 Optimal Scenarios for Different Thresholds - EB Average Delay 76
Table 6-13 Optimal Scenarios for Different Thresholds - WB Average Delay 76
Table 6-14 Best Scenarios of EB Progression - Average Stops 79
Table 6-15 Best Scenarios of WB Progression - Average Stops
Table 6-16 Optimal Scenarios Under Different Thresholds - EB Average Stops
Table 6-17 Optimal Scenarios Under Different Thresholds - WB Average Stops
Table 6-18 Best Scenarios of EB Progression - PI Value 84
Table 6-19 Best Scenarios of WB Progression - PI Value 84

Table 6-20 Optimal Scenarios Under Different Thresholds - EB PI Value 85
Table 6-21 Optimal Scenarios Under Different Thresholds - WB PI Value 85
Table 6-22 Best Scenarios of EB Progression - Average Travel Time 88
Table 6-23 Best Scenarios of WB Progression - Average Travel Time
Table 6-24 Optimal Scenarios Under Different Thresholds - EB Average Travel Time 89
Table 6-25 Optimal Scenarios Under Different Thresholds - WB Average Travel Time 89
Table 6-26 Resonant Signal Timing Plans for Different Thresholds – Progression
Appendix Table 1 Rank of Scenarios - Network Average Delay
Appendix Table 2 Rank of Scenarios - Network Average Stops
Appendix Table 3 Rank of Scenarios - Network PI Value104
Appendix Table 4 Rank of Scenarios - Network Average Travel Time 105
Appendix Table 5 Rank of Scenarios - Progression Average Delay (EB) 106
Appendix Table 6 Rank of Scenarios - Progression Average Delay (WB) 107
Appendix Table 7 Rank of Scenarios - Progression Average Stops (EB)
Appendix Table 8 Rank of Scenarios - Progression Average Stops (WB) 109
Appendix Table 9 Rank of Scenarios - Progression PI Value (EB) 110
Appendix Table 10 Rank of Scenarios - Progression PI Value (WB) 111
Appendix Table 11 Rank of Scenarios - Progression Average Travel Time (EB)112
Appendix Table 12 Rank of Scenarios - Progression Average Travel Time (WB) 113

List of Figures

Figure 3.1 Research Methodology 19
Figure 3.2 The Study Area of Broward Blvd 21
Figure 3.3 Simplified Diagram of the Study Area21
Figure 3.4 Pattern 1 Traffic Volume of the Progression During Morning Peak Period 23
Figure 3.5 Pattern 2 Traffic Volume of the Progression During Off-peak Period 23
Figure 3.6 Pattern 3 Traffic Volume of the Progression During Evening Peak Period 24
Figure 3.7 Main-street Through Movement Weighted v/c Ratio Change by Time of Day 25
Figure 4.1 Vehicle Travel Time Measurement Setting Window
Figure 4.2 Detector Record Configuration Window
Figure 4.3 Result Attributes Editing Window
Figure 4.4 Direct Output Editing Window
Figure 4.5 PTV Vistro Start Window
Figure 4.6 Intersection Setup Window
Figure 4.7 Lane Configuration Window
Figure 4.8 Traffic Control Window 39
Figure 4.9 Intersection Settings Section
Figure 4.10 Phasing & Timing Section 40
Figure 4.11 Network Optimization Window 41
Figure 5.1 Local Optimization Window 44
Figure 5.2 Split Optimization Window 45
Figure 5.3 Network Optimization Setting Window 46

Figure 5.4 Optimization Progress Window
Figure 5.5 Allow Lead/Lag Optimization Option in Phasing & Timing Window 48
Figure 5.6 Optimized Cycle Lengths of Each Scenario 49
Figure 5.7 Simulation Parameters Window 51
Figure 5.8 Signal Controllers Modification Window 52
Figure 5.9 Signal Groups Editing Window 52
Figure 6.1 Average Delay for Network 56
Figure 6.2 Scenarios with the Lowest Average Delay for Each Hour
Figure 6.3 Average Stops for Network 60
Figure 6.4 Scenarios with Lowest Average Stops for a Each Hour
Figure 6.5 PI Values for Network
Figure 6.6 Scenarios with the Minimal PI Value for Each Hour
Figure 6.7 Average Travel Time for Network
Figure 6.8 Scenarios with the Shortest Average Travel Time for Each Hour
Figure 6.9 Average Delay for EB Progression74
Figure 6.10 Average Delay for WB Progression74
Figure 6.11 Average Stops for EB Progression
Figure 6.12 Average Stops for WB Progression78
Figure 6.13 PI Value for EB Progression
Figure 6.14 PI Value for WB Progression
Figure 6.15 Average Travel Time for EB Progression
Figure 6.16 Average Travel Time for WB Progression
Appendix Figure 1 9:00 AM - 10:00 AM Through Movement Volume of EB & WB

Acknowledgements

First and foremost, I would like to express deep and sincere gratitude to my research advisor, Dr. Aleksandar Stevanovic for giving me the chance to accomplish master degree with a thesis and always showing patience and kindness throughout my research work even if my speaking and writing skills sometimes were as bad as an elementary school student. He consistently allowed this paper to be my own work but steered me in the right direction whenever he thought I needed it.

Besides, I want to show appreciation to the committee members, Dr. Amir H. Alavi, Dr. Mark J. Magalotti, and Mr. Keith A. Johnson for taking the time in reading my work and I am gratefully indebted to them for their very valuable comments on this thesis. I express my thanks especially to Mrs. Cheryl Morand for her tireless helping to me alongside the whole graduate period.

The acknowledgement is also prepared for my lab mates. Nemanja and Suhaib, my brothers from another two mothers, for helping me without any complaints during the last whole year, encouraging me a lot once I felt down or depressed, pushing me to finish my work in good quality, and always giving me the right instructions whenever I met problems. Their rigorous attitudes towards researches deeply impacted me and will always guide me as the light of my future academic life.

Moreover, I am extremely grateful to my parents for their unconditionally love, prayers, caring and sacrifices for educating and preparing me for my future and to my girlfriend for the companion on the other side of the phone every day and night. They providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you!

I would also like to say thanks to my roommate, Yukun Zhang. Two years living with you must be the greatest memories for my graduate life. Your passion to study, to the car, to the piano, and to the basketball demonstrated me how to be a charming man. I wish your Ph.D. life here goes well and hope we can meet each other frequently in the future. The same appreciation to all my friends, Yunxing Lu, Kaibo Yang, Liyu Wang, Yuheng Wen, Liqun Wu...the supporting from you fellas become my motivation to keep striving.

Last but not least, I am extending my gratitude to the Department of Civil and Environment Engineering, to the Swanson Engineering School, and to the University of Pittsburgh. Two years maybe not a long period in one's life, but the experience of studying here has taught me what is life and specified me what kind of life deserves to pursue. Sincerely thanks to everyone I meet here for fate.

Hail to Pitt!

Yifei Yang 2020.6.24

1.0 Introduction

1.1 Background

Signal coordination is one of the most important and complex procedures of arterial and corridor management. With increasing numbers of cars on the road, it has played a crucial role in reducing congestion, both by handling problems between consecutive traffic signals to minimize delay and stops in order to shorten travel time and by providing adequate green time to guarantee that traffic flows in each direction will travel with least number of stops. The most critical procedure for designing coordinated traffic signal timing plans is the selection of an appropriate cycle length. Cycle length refers to the time it takes to complete one full cycle of indications. The optimal cycle length of a corridor or an arterial system along with appropriate offsets between each intersection will keep the progression quality at a high level. Webster's formula [1], which takes the lost time and volume-to-saturation ratios of the critical intersection into consideration, offers a strategy to select the optimal cycle length for fixed-time signals. However, traffic flows keep fluctuating in most situations and one or two specific signal timing plans cannot satisfy the demand of the changing volume. Nowadays, actuated-time signals are gradually replacing fixed-time signals because they are more efficient and flexible with the fluctuation of traffic. When it comes to arterials that experience highly variable or unpredictable traffic demand, adaptive signal control can provide multiple signal timing solutions and handle congestion problems [2]. Among all signal control types, the cycle length which decides the time interval of each signal period is undoubtedly one of the most important parameters. Although the Highway Capacity Manual (HCM) [3] does not provide a specific methodology for selecting the optimal cycle length for a network of signalized intersections, there are five models that are commonly used as cycle length selection strategies: TRANSYT model, Synchro model, 90% rule, Largest rule and Comparing model according to Lu et al [4]. Each model has its special characteristics and none of them is much better than the others, which makes the cycle length decision hard.

In recent years, a new concept named "resonant cycle" has been proposed as a strategy for network cycle length selection. Shelby et al. [5] defined the resonant cycle as a particular cycle length which can keep providing good progression for a two-way arterial over a range of traffic volumes. This principle has been regarded as a potential strategy to solve the cycle length selection problem. Previous work focused on various conditions where resonant cycles might exist and demonstrated the benefits of using resonant cycles to replace other kinds of cycle length selection methods. However, based on the relevant literature review there is still a number of questions that remained unaddressed in the concept of the resonant cycle. First, the definition of resonant cycle is not consistently understood among researchers [5 - 8]. Second, the term "good progression" associated with the main purpose of the resonant cycle is not defined clearly. In other words, different studies rely on performance estimation based on different sets of performance measures (not necessarily related to progression measurement) [5, 6, 9, 10]. Third, signal timing plans developed to support good progression are essentially developed with other objectives (reduce overall network performance (by making the same priority for all movements on a network) and similar [5 - 7, 9, 10]. This study aims to define the concept of resonant cycle, through the extensive signal timings optimization and evaluation on the conditions of real world-like arterial network simulated in microsimulation.

1.2 Problem Description

It is necessary to review the different definitions of the resonant cycle before describing the problems. According to Shelby et al. [5], "Resonant cycles are cycle lengths that result in good arterial progression over a range of traffic flows. The notion of resonant cycle times contrasts with the prevalent adaptive control practice of setting the arterial cycle length in proportion to flow levels at the most congested intersection on the arterial". He also pointed out that resonant cycles naturally arise on arterials which have given value of parameters like intersection spacing, vehicle speeds, volume levels, saturation flow rates, platoon dispersion, and phase sequencing as a specific cycle length to provide good two-way progression. Guevara [6, 10] gave a similar definition which said, "we define resonant cycles as cycle lengths for two-way arterials that are robust over a range of traffic volume." However, Li et al. [7] and Henry [8] described the resonant cycle as a cycle length equals to integer multiples of twice the travel time between neighboring intersections. So far, there is no widely accepted definition for the resonant cycle.

The concept of resonant cycle is usually followed by the provision of good progression. In order to estimate the quality of progression, Shelby [5], Day [9] and Guevara [6, 10] evaluated the network performance through Performance Index (PI), which is a combination of total delay and stops for all movements (coordinated – progressed, or non-coordinated – those from side streets). In most cases, the PI is calculated by the equation:

$$PI = Delay + n * Stops$$
(1.1)

Where n is an integer number representing the penalty of stops. Such PI, which considering side street situation lacks to provide a clear picture of the performance of coordinated movements. Several stops on the main street may slightly affect the total PI value but will significantly deteriorate the progression, in other words, the fluency of the major road is more likely to represent

intersection efficiency. Thus, there is no evidence to illustrate that a low PI is equal to a good progression, and based on this fact, it is necessary to explore if the "resonant cycle" really exists on networks.

In addition, only finding out the value of cycle length is meaningless for a real network as there are many parameters highly relevant to coordinated signal control, e.g. split, which represents the distribution of the cycle length into each phase; offsets, which means the time interval of signal heads between neighboring intersections; and phase sequence, which is the sequence of each phase within a cycle. Thus, a cycle length which could provide good performance for a two-way arterial might be a misleading definition.

In the process of resonant cycle development some authors [5, 6, 10], relied on signal timing optimization software (Synchro) that besides developing cycle length also provides optimal values for other important signal timing parameters, such as splits, offsets, phase sequencing. Once such plans were developed and evaluated, it was found that resonant cycle might exist in some specific traffic and network geometry conditions. However, this concept of resonant cycle besides particular cycle length is related to other optimized parameters. Thus, it should be rather defined as resonant signal timing plan then resonant cycle length itself.

1.3 Research Motivation and Objectives

1.3.1 Motivation

Signal timing coordination is undoubtedly one of the most important procedures for traffic engineers to dig deeper. Among all parameters, the selection of cycle length is the most significant section to build an appropriate signal timing plan. The proposal of the concept "resonant cycle", as a cycle length which can be estimated through simulation results, has magnificent potential to achieve a higher performance than other kinds of cycle length.

However, to the author's knowledge, the definition of resonant cycle is still ambiguous even has some misleading information. Moreover, many researchers failed to evaluate the performance of the progression in a reasonable way and neglected the impact of the optimization for not only cycle length but also other parameters like offsets and split. Therefore, the primary goal of this study is to revise the concept of resonant cycle through the evaluation of an existing network for 7 hours between morning and evening peak hours, where there is the highest chance to observe a resonant cycle as flow fluctuations are not significant and the volume of each bound is quite balanced.

1.3.2 Objectives

This research including two main objectives: 1) proving that previous resonant cycle studies were insufficient and incomplete, especially in performance measure procedure; 2) exploring the definition of resonant cycle, mainly focus on whether the resonant cycle should be just a cycle length or not. By using PTV Vistro 2020 (SP 0-0) [13] to optimize the field signal timing plan in different scenarios and simulating those optimized signal timing plans in PTV Vissim 2020 (SP 02) [14], simulation results of network level performance (average delay, average stops, PI value, and average travel time) and progression level performance (average delay, average delay, average stops, PI value, and average travel time) were evaluated separately and then compared to draw conclusions.

1.4 Organization of Thesis

The thesis is organized as follows: review of relevant literature is provided in Chapter II, followed by methodology used to achieve research objectives (Chapter III). Chapter IV provides description of model development process in deterministic traffic simulation software (PTV Vistro). Process of signal timing plans development is documented in chapter V followed by evaluation in Chapter VI. Finally, research findings are provided in Chapter VII with recommendations for future work.

2.0 Literature Review

For traffic engineers, the performance evaluation of the traffic signal systems is always a problem that cannot be perfectly solved. When considering signal timing control among a series of signalized intersections for operating the coordination, performance measures that account for the interaction of adjacent intersections become important. The most used measurement of the network performance in previous resonant cycle studies is performance index (PI), which represents a combination of delay and stops (calculated separately). However, PI is usually used for network evaluation but not the best one for progression study and there are many other measures of effectiveness for signalized intersection performance, such as bandwidth, arrivals on the green, travel time, etc. Among all these measurements, bandwidth, the time interval between the first vehicle that can pass through the entire system without stopping and the last vehicle that can pass through without stopping, is a good indicator for determining progression performance [11]. Because it provides easy comprehensive visualized images for both professional engineers and the public. However, due to the complexity of network and field conditions, it is not always a simple task to provide good bandwidth and thus good progression. On another hand, lately, authors rely on some emerging measures (e.g. Arrivals on Green) that capture performance on the individual intersection and use them to portray progression efficiency [12]. This measurement does not observe performance for a whole coordinated system. It relates some principles of progression (platoon arrivals on intersection) but still does not measure performance for all coordinated movements. In addition to these, vehicle delays, number of stops, and travel times are commonly used performance measures for signal performance assessment.

According to all the previous work related to the resonant cycle, the definition can be generalized as a cycle length which can provide a good progression on two-way arterials within some ranges of traffic volumes. However, when it comes to calculating resonant cycles for a given network, two distinct methods, one is based on the optimization results of computer software and the other depends on several specific equations, generate some conflicts in their results which make the concept of resonant cycle more confused. This literature review will focus on the previous resonant cycle studies including hypothetical models and field studies, as well as bandwidth progression studies. The main purpose is to illustrate the conflicts in previous work.

2.1 Resonant Cycle Studies on Hypothetical Networks

It can be concluded from previous works that the resonant cycle is a cycle length that accommodates good two-way progressions during a range of traffic volumes. The resonant cycles naturally exist on arterials and are influenced by many factors like intersection spacing, vehicle speeds, volume levels, saturation flow rates, phase sequencing, etc. This section will discuss the causes of the resonant cycle and its benefits on signal timing planning.

2.1.1 Ideal Network Study for the Resonant Cycle

In the year 2005, Shelby et al. [5] investigated how the resonant cycle worked performs. They explored the reason why resonant cycles exist and determined the benefits of the resonant cycle through an experimental design for the traffic flow pattern using the software TRANSYT-7F. The experiment of their study was based on a complete hypothetical network with four equally spaced intersections and balanced traffic flow in both directions of the main street. To find out if there was a particular cycle length that can provide a good progression on this network, they used the TRANSYT-7F for selecting the optimized cycle length (together with splits and offsets).

Shelby et al. [5] tested each cycle length on all the traffic volume levels and use the TRANSYT-7F to evaluate the performance and pick the optimal cycle length for each volume level when neglecting the phase sequence and phasing type. The evaluation results showed that based on the PI, two apparent groups of resonant cycles emerged in the volume ranges from 250 to 400 vehicle per hour per lane (vphpl) and 450 to 650 vehicle per hour per lane (vphpl). One thing that should be noted is that the resonant cycle is not a fixed cycle length which provides the same PI value for every volume in that two ranges. The optimal cycle length is still increasing slightly with the increment of the traffic volume within boundaries. The first resonant cycle located in the range of 32s to 40s and the second one was between 76s and 96s. There was a significant leap of the optimal cycle length (from 42s to 76s) when the traffic volume just increasing slightly (from 420 vphpl to 421 vphpl), however, the difference in PI of these two optimal cycle lengths was almost negligible at the switch point. In other words, if the smaller cycle length (42s in the study) is still used when the traffic volume converts at the turning point (420 vphpl in the study), it can keep providing a good progression based on PI, but not as good as the new optimal cycle length which should be the larger one (76s in the study).

The promising results of the hypothetical study encouraged researchers to simulate resonant cycles on realistic networks and then implement them into field studies to see if this kind of cycle length can still play a role when roadway situation becomes more complicated.

2.1.2 Theoretical Equations for the Resonant Cycle

Henry [8] explained that the resonant cycle as "a function of the speed of the traffic on the links between intersections and the link distance between intersections". To his point, the specific formulas are listed below:

$$Cycle = 2 * Distance / Speed$$
(2.1)

$$Cycle = 4 * Distance / Speed$$
(2.2)

$$Cycle = 6 * Distance / Speed$$
(2.3)

Where:

Cycle - the cycle length in seconds.

Distance - the link length in feet.

Speed - the average link speed in feet per second. (Measured in field)

These equations hold only if the traffic demand is balanced in both directions on the arterials and the distance between the intersections is approximately equal. In general, the resonant cycle length should be equal to integer multiples of twice the travel time on the segments between neighboring intersections. However, he did not explain why this kind of cycle length can provide good progression for two-way arterials and did not write about the performance measure.

2.1.3 Comment on Theoretical Equations of the Ideal Model

It can be inferred that there is a significant difference between Shelby's study and Henry's theory. That is whether the resonant cycle has something to do with the traffic volume or not. If it has, then the potential equations of the resonant cycle should relate to the main-street volume. If it

hasn't, then which variables should be used to reveal the resonant cycle can constantly provide a good performance?

To verify Henry's equations of the resonant cycle, Shelby's hypothetical network with equal spacing and balance traffic flow in both directions of the arterial is an ideal model. As the intersection spacing is 600 ft and the travel speed is 35 mph, the travel time between each intersection can be calculated as 11.69s which is around 12s. Then by putting this travel time into Henry's equations, the potential resonant cycles are 24s, 48s, 72s, 96s. However, back to Shelby's conclusion which the optimal cycle length was selected by PI favor solution's software, the two ranges of the potential resonant cycle in his hypothetical network were 32s to 40s and 76s to 96s. Apparently, none of the resonant cycle calculated by Henry's equations is within the range of Shelby's results of the potential resonant cycle in his model.

2.2 Resonant Cycle Studies on Realistic Networks

Shelby et al. [5] studied the resonant cycle under ideal hypothetical network conditions. However, the realistic corridor is much more complicated than the hypothetical model because the block length is not only possible to be equally spaced but the realistic roads also contain many affected factors such as left-turn type, phase sequence, type of traffic control, etc. Another insufficient aspect of Shelby's study is that different performance measurements have not been implemented to make sure the resonant cycle can satisfy the different demands of every situation. Because of the weaknesses that still exist in the hypothetical model, two separate categories of previous studies will be presented in the following section, (i) simulation of various situations at networks that can influence the existence of the resonant cycle, and (ii) different performance measurements used for the field evaluation of the resonant cycle sensitivity.

2.2.1 Network Scale Traffic Simulation Studies

Ladrón de Guevara et al. [6, 10] conducted further research about the specific situations where resonant cycles may exist under various intersection spacing, speeds, and traffic signal operation treatments, focusing on a case study of two existing corridors in Tucson, one has 12 signalized intersections (SR 77) and the other has 4 signalized intersections (22nd Street), both of these two networks were unequal spacing and set as balanced traffic flow in two directions of the main street. Then he collected the traffic data of the morning peak hour period which represented the highest volumes during every time of a day on these two corridors. The software he used for simulation and evaluation on SR 77 was Synchro and on 22nd Street were Synchro and SimTraffic.

In the experiment of SR 77, he split the network into four smaller corridors which contain up to four signalized intersections with similar traffic volumes and more consistent block length. According to his results, a single resonant cycle was found on the whole corridor while two separated resonant cycles were found on the smaller partition corridors which showed different trends from the first one. He proposed that illustrated the non-uniform distribution of traffic volumes and spacing of intersections may have a significant effect on the estimation of cycle lengths using the network approach.

In order to figure out factors that relate to the existing of the resonant cycle, he designed 27 cases on 22nd Street which contained pre-timed or actuated timing type, leading or lagging left-turn type, 4-phase or 8-phase phasing type, unequal or equal spacing type, unbalance or balance

main street volume split type, low or high cross street volume type. The results illustrated that the majority of the design cases there would be a resonant cycle for low traffic conditions (from 300 vphpl to 500 vphpl) except cases where cross streets volumes were high and balance splits on the main street. Only 8 cases had resonant cycles for moderate traffic conditions (from 500 vphpl to 650 vphpl). Then he did another comparison for the variables that were directly controlled by the choice of signal timing: type of timing (pre-timed or actuated), type of phasing (4-phase or 8-phase) and left turn type (leading or lagging). The conclusion was the left-turn type and timing type have a significant effect on the form of the resonant cycle, a pre-timed plan was more likely to have resonant cycles compared with an actuated plan while lagging left turn type was more likely to generate resonant cycle compared to leading type.

To study the impact of phase sequence on resonant cycle, Day and Emtenan [9] developed flow-based models on signalized arterials and draw the conclusion from ideal networks with both equally and randomly generated block lengths that resonance may have some utility in developing optimal signal timing plans, particularly when phase sequences cannot be changed. Then they simulated a realistic network located at State Road (SR) 37, in Noblesville, Indiana by using that flow-based model. The conclusion is definitely contrasted to Ladrón de Guevara's results as Day and Emtenan found that resonant cycles can appear under certain conditions but may not exist for every situation especially when the intersections are not equally spaced. In cases that resonant cycle exists, phase sequence plays a considerable role in the performance of different resonant cycle lengths because compared with fixed sequence, the flexible selection of phase sequences can help establish better coordination under a wider variety of conditions. In cases where the phase sequences cannot be changed, it may be possible to seek a phase sequence that works well for a range of cycle lengths.

2.2.2 Evaluations of the Resonant Cycle's Sensitivity

Another interesting study that related to the resonant cycle was conducted by Li et al. [7] Different from the other resonant cycle studies, they tested the alleged "resonant cycles" on the field with five intersections and then evaluate the performance of each cycle length. Firstly, they created the model of the testing field in Synchro and to run this model with representative volumes on each movement. After that, cycle length optimization was carried out to obtain the PI of each cycle length. According to the figure of the relationship between cycle length and PI, the feasible cycle length range which provides low PI for the resonant cycle evaluation is between 104s to 124s. Offsets were optimized and implemented for each cycle length adjustment to reduce the effect of offsets in the cycle length comparisons.

One thing should be noted is the performance measures they used is not PI but four more intuitional features: (i) Purdue Coordination Diagram (PCD), (ii) Percent of vehicles arriving on green (POG), (iii) Travel time, and (iv) Number of force-off phase terminations for side-street through movements. (i), (ii), and (iii) were used to evaluate mainline progression and (iv) was used to evaluate how well side-street demand was served at all five intersections.

The results of their study illustrated that there was no resonant cycle within that range of cycle length. The performance got worse with the increasing of the cycle length. However, to the author's knowledge, the methodology in Li's study is highly different from the one that Shelby [5] and Guevara [6, 10] used. First of all, Li et al. [7] obtained the figure of PI and cycle length relationship through just one volume scenario, however the value of PI is determined by the amount of traffic volume and the value of optimal cycle length may change a lot with the swap of the volume. Additionally, the volume for each bound was unbalanced in this study, as Li et al. [7] mentioned in the article, "the northbound volumes were about 34% higher than southbound

volumes due to regional travel patterns", but all the previous works of the resonant cycle were based on the balance traffic flow for both directions of the main street. The most significant Thus, it's not surprising that Li et al. did not find the resonant cycle in their study.

2.3 Comparison Table for Previous Studies

For the purpose of making it more clearly for readers to know the differences among previous studies of the resonant cycle, here is a comparison table contains all critical information.

Based on these resonant cycle studies, it can be inferred that a widely accepted agreement about how will the resonant cycle exist has not been conducted yet. Meanwhile, the result of field study illustrated no resonant cycle exists when taking some other features as performance measures rather than the delay and stops. In a word, a more rigorous study should be implemented to investigate whether the resonant cycle is merely an ideal concept or do exist in the real network.

Researchers	Shelby et al.	Ladrón de	Henry R.	Li et al.	Day and
1		Guevara et al.	David		Emtenan
Study Types	Hypothetical	Realistic	Theoretical	Realistic	Hypothetical
	simulation	simulation		simulation &	simulation &
				Field study	Field study
Shape of the	Linear	1. Irregular	NA	Linear	Linear
Corridor		Linear			
		2. Linear			
Number of	4	12 & 4	NA	5	9 / 8
Intersections					
Block Length	600	1. Varies	Approximatel	Varies (2295-	Equal /
(ft)		(2500-5300)	y equal	3030)	Random
		2. Varies	(2265-3030)		
		(1000-2500)			
Posted Speed	35	50	NA	55	Not
Limit (mph)					mentioned
Volume	250 – 750 (in	1. From 50%	NA	The whole	Fixed volume
Range	50	to 120% of		day field data	for major
(vphpl)	increments)	the AM peak		that collected	street as 1000
		hour volume		by Bluetooth	vphpl during
		data (in 5%		sensors.	hypothetical
		or 10%			simulation
		increments)			study / Field
		2. 250 - 700			data for field
		(in 30			study.
		increments)			
Traffic Flow	Balanced	Balanced	Balanced	Unbalanced	Balanced &
Туре					Unbalanced
Cycle Length	30 – 200 (in	1.40-200	NA	104 – 124 (in	70 – 150 (in
Range (s)	2s	(in 1s		1s	1s
	increments)	increments)		increments)	increments)
		2.30-100			
		(in 2s			
		increments)	NT A		
Offsets	Optimized	Optimized	NA	Optimized	Optimized
Splits	Optimized	1. Optimized	NA	Optimized	Keep
		2. Balance /			constant
		Unbalance			

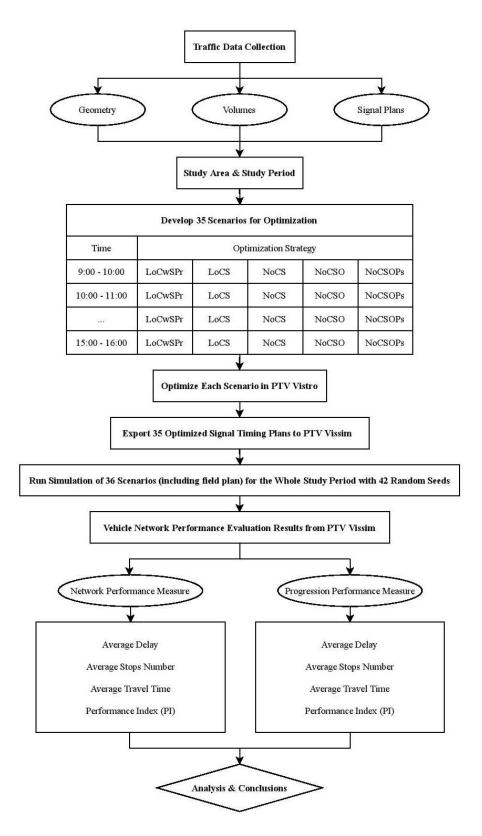

 Table 2-1 The Comparison Table for Previous Resonant Cycle Studies

		Table 2-1 (Continued)		
Phase	NA	Lead / Lag	NA	NA	Optimized /
Sequence					Default
Signal Type	Pre-timed	Pre-timed /	NA	Actuated	NA
	(Fixed)	Actuated			
Software	TRANSYT-	Synchro &	NA	Synchro	TRANSYT-
	7F	SimTraffic			7F
Performance	PI (delay plus	PI (delay plus	NA	(i) Purdue	PI (delay plus
Measure	stops (equal	stops (equal		Coordination	stops (equal
	to 8 times of	to 10 times of		Diagram	to w times of
	delay) of	delay) of the		(PCD), (ii)	delay, where
	main streets,	entire		Percent of	the value of
	delay of side	network)		vehicles	w not
	streets, 8s			arriving on	mentioned)
	penalty for			green (POG),	of the entire
	decelerating			(iii) Travel	network)
	and			time, and (iv)	
	accelerating			Number of	
	as lost time.)			force-off	
				phase for	
				side-street	
				through	
				movements.	
Results	The resonant	Resonant	The resonant	A particular	Resonant
	cycle has the	cycles might	cycle length	cycle length	cycles might
	potential to	emerge under	should be	with	only exist
	reduce PI	all the	equal to	substantially	when the
	instead of a	variations	integer	different	block length
	heuristic	except when	multiples of	performance	is equal and
	cycle times	the minor	twice the	did not	the phase
	for a	street has a	travel time on	emerge.	sequence is
	hypothetical	high volume.	the segments		set in a
	network.		between		particular
			neighboring		way.
			intersections		

3.0 Research Methodology

To achieve the main objectives of this study, the development of research methodology is based on experimental scenarios. The investigation of each scenario depends on the evaluation of the optimized signal timing plan's quality. The optional combination of main traffic parameters such as cycle length, splits, offsets, and phase sequence may highly affect the optimization of signal timing plans, and influence entire traffic performance as a result. The study methodology consists of five distinctive signal timing optimization scenarios in PTV Vistro [13]. To investigate the existence of resonant cycle length hourly volume data for 7 hours (between AM and PM Peak) are considered. Thirty-six plans (including seven base cases) were then simulated using microscopic traffic simulation model PTV Vissim [14] to make the comparison of performance.

The evaluation of the performance was separated into two groups, network-level (all movements on network) and coordinated movements only (progressed or through movements on arterial). Similar measurements were used to see whether the resonant cycle would be found on the network performance scale or on the progression scale. The author decided to evaluate performance of coordinated movements based on traditional and well understood performance measures (delay, travel time, number of stops). However, it needs to be stated that for same purpose other performance measures can be used, such as, bandwidth, percent of vehicles arriving on green, platoon ratio [18-20]. The flow chart (as shown in Figure 3.1) illustrates the frame of this study and the detailed methodology will be discussed as follows. This study intends on providing some solutions for main problems of the resonant cycle that were described in the introduction part.

Figure 3.1 Research Methodology

3.1 Study Network and Traffic Data

The network geometry model was based on an existing corridor in Fort Lauderdale, FL: SR 838, also known as Broward Boulevard, which is an east-west six-lane artery serving central Broward County, Florida. The whole artery is 10.2 miles in length with 52 signalized intersections from SR 869 (west) to SR A1A (east).

3.1.1 Study Area Geometry Data

To conduct this study in comparison with previous work, a segment of Broward Boulevard was selected with an approximately 8,000 ft and five consecutive signalized intersections, from SR 7 to the west to NW 31st Avenue to the east as shown in Figure 3.2. Among these five intersections, only NW 34th Avenue is a 3-leg intersection which has no input from northbound. Spacing between each adjacent intersection is varying from 830 ft to 1770 ft. These intersections operate fully actuated under coordination with leading left turns and the posted speed limit along the study corridor is 40 miles per hour (mph). The expected travel time under desired speed (40 mph) has been calculated for each block as shown in Figure 3.3.

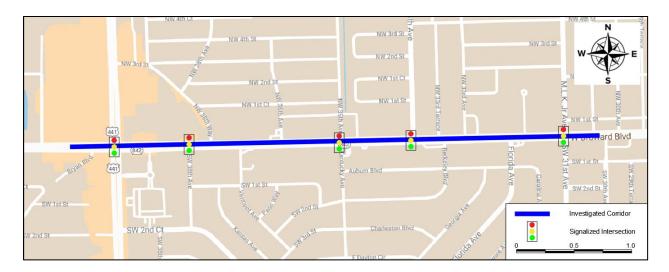


Figure 3.2 The Study Area of Broward Blvd.

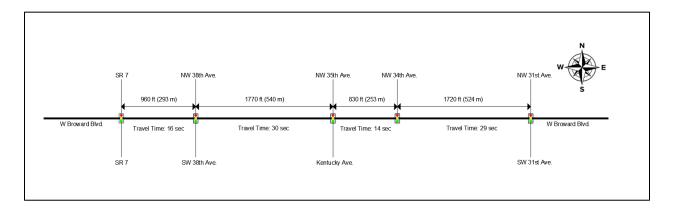


Figure 3.3 Simplified Diagram of the Study Area

3.1.2 Study Area Traffic Data

In this study, volume data from 6:00 AM to 8:00 PM were downloaded from the Regional Integrated Transportation Information System (RITIS), and a balance sheet was developed and used to automatically code the volumes and routing decisions. For each intersection, configurations and signal timing plan sheets provided by the Florida Department of Transportation (FDOT) and speeds were collected from field runs. According to previous studies, resonant cycles mainly exist on arteries where traffic volume within a low to moderate level and nearly balanced in both directions. To find out the appropriate traffic volume range and save time from unnecessary experiments, three pieces of volume figure related to three different signal timing plans (also known as patterns) have been shown as Figure 3.4, Figure 3.5, and Figure 3.6. Each pattern works for a period of time of day and swiftly changes to the other one. The specific arrangements are listed below:

a) Pattern 1: From 6:00 AM to 9:00 AM, 3 hours. (Morning peak hour period)

b) Pattern 2: From 9:00 AM to 4:00 PM, 7 hours. (Off-peak period)

c) Pattern 3: From 4:00 PM to 8:00 PM, 4 hours. (Evening peak hour period)

One thing that should be noted is the volume data used in these figures. As the Broward Blvd. is an east-west artery, the sum of eastbound and westbound through movement volumes is used to represent the progression volume of each intersection. The direction distribution factor (D factor) and volume-to-capacity (v/c) ratio of westbound are also shown in the figure.

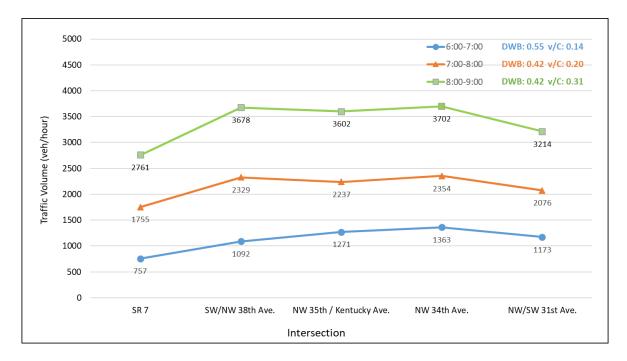


Figure 3.4 Pattern 1 Traffic Volume of the Progression During Morning Peak Period

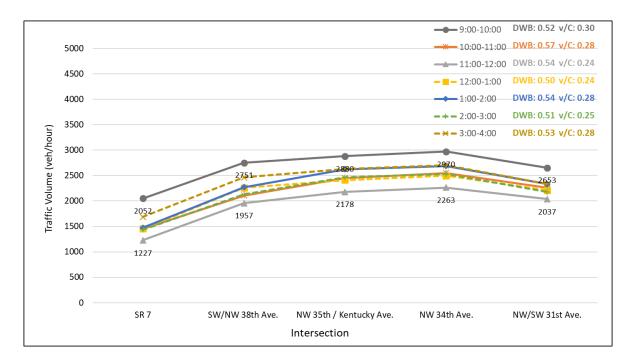


Figure 3.5 Pattern 2 Traffic Volume of the Progression During Off-peak Period

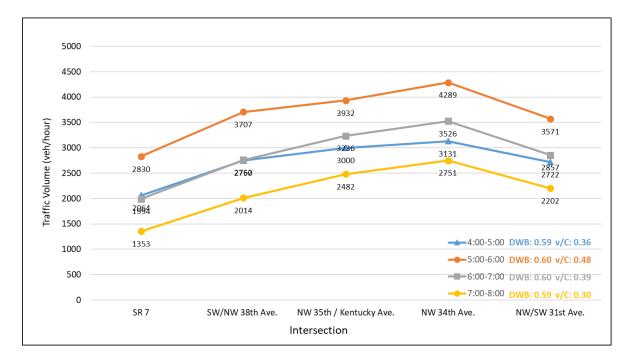


Figure 3.6 Pattern 3 Traffic Volume of the Progression During Evening Peak Period

Through these volume figures, volume data from 9:00 AM to 4:00 PM were selected for the experiment. The main reason for such selection lies in the definition of resonant cycle, or if particular cycle length will be resonant it can be expected to occur for the lowest volume fluctuations through study period (or from 9:00 AM to 4:00 PM). Detailed main directions' traffic volume of each intersection per hour were showed in Appendix A.

In addition to volume fluctuations, v/c ratio was computed for each hour and it is shown in Figure 3.7. Rather than using the v/c ratio of each intersection's eastbound and westbound through movement traffic volume, weighted average v/c ratio was calculated by using the following equation:

Weighted Avg. v/c Ratio

$$= \frac{\sum (\text{ Each Node EB or WB Volume * Each Node Total EB or WB Volume v/c Ratio})}{\sum (\text{ Each Node EB or WB Volume})}$$
(3.1)

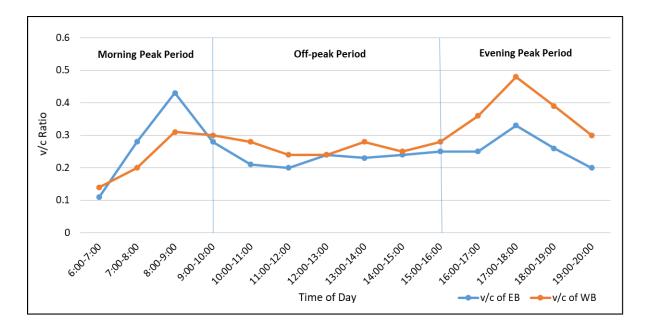


Figure 3.7 Main-street Through Movement Weighted v/c Ratio Change by Time of Day

Results shows in Figure 3.7 illustrated that during the study period from 9:00 AM to 4:00 PM, weighted v/c ratios of eastbound and westbound through movement are more balanced and stable than morning and evening peak hour periods. Compared with the study networks of previous resonant cycle researches, a potential resonant cycle might have a large probability to be found during experiments as this network highly meets the requirements.

3.2 Software Programs Characteristics

Two software programs were used for the entire research, PTV Vistro 2020 (SP 0-0) [13] and PTV Vissim 2020 (SP 02) [14]. As a signal timing optimization program, PTV Vistro was used to seek the optimal signal timing plan for each scenario. The utilization of the traffic simulation program - PTV Vissim, was intended to evaluate the performance of all optimal signal timing plans produced by PTV Vistro.

3.2.1 PTV Vistro

The PTV Vistro [13] is a complete traffic analysis software which allows users to evaluate development impacts, optimize and re-time traffic signals, evaluate intersection levels of service, and generate report-ready tables and figures. In this study, PTV Vistro [13] was mainly used for the optimization of signal timing plans in each scenario.

Based on different optimization modes that PTV Vistro [13] provided, there were two basic options for network signal timing optimization: (i) local optimization, recommended for finding the optimal cycle length and split by minimizing critical movement delay for each intersection according to its traffic volume data; (ii) network optimization, instead of optimizing signal timing plan for individual intersection, this type of optimization evaluate the whole coordination group, which means not only cycle length and splits but also offsets and phase sequence can be optimized based on either the genetic algorithm or the hill-climbing algorithm. Performance Index (PI) was chosen as the objective function, which equaled to delay multiple n times stops (n is an integer) of the whole network.

In order to develop a series of potential resonant cycle values in the study network, PTV Vistro [13] version 2020 (SP 0-0) was selected. Developed signal timing plans, which replaced the previous methodology by increasing cycle length one second by one second for testing, were tested in PTV Vissim [14]. Besides, different optimization strategies will illustrate if the resonant cycle is just a cycle length or a coordinated resonant system.

26

3.2.2 PTV Vissim

The PTV Vissim [14] is a microscopic multi-modal traffic flow simulation software package developed by Planung Transport Verkehr AG in Karlsruhe, Germany. It has the ability to simulate each entity (car, pedestrian, etc.) and measure the performance individually. In this study, PTV Vissim [14] was mainly used utilized as the Ring Barrier Controller emulator to simulate the actuated signal control under each scenario and measure the performance of the whole network and the main-street through movement.

The simulation of traffic flow is based on various constraints such as vehicle composition, signal control, lane distribution, etc. and the simulation results can get directly from the results list or KNR, MER, RSR, and LDP file. To evaluate the qualities of each signal timing plans, several performance measure indices were chosen in this study. In the comparison of the network performance and the main-street through movement performance, there might be a conclusion of whether the resonant cycle serves for the whole network or the arterial main direction.

3.3 Experimental Design

As mentioned in the problem description, previous studies have not defined the resonant cycle clearly. Shelby [5] and Guevara [6, 10] observed the "resonant cycle" under Performance Index (PI) favor solution software which obtains optimal signal timing plan in terms of cycle lengths, splits, and offsets at the same time. However, they also claimed that the resonant cycle is a cycle length, rather than a coordinated resonant system, which will keep providing good performance for the network.

In order to discover whether the resonant cycle is just a cycle length or a coordinated system, 5 different optimizing scenarios, based on the optimization options offered by PTV Vistro [13], were designed for each hour's volume data and compared together with the Base Case. The comparison of each optimization strategy with the Base Case is shown in Table 3.1 and specific descriptions of each optimization scenario are listed below:

• LoCwSPr: Using locally optimization for each intersection, then select the longest cycle length for the network and increase the rest intersections' split proportionally.

• LoCS: Using locally optimization for each intersection, then select the longest cycle length for the network and optimize the split for the rest intersections.

• NoCS: Using network optimization for the corridor, then only optimize cycle length and split (cause the cycle length optimization is always tied with split during network optimization procedure).

• NoCSO: Using network optimization for the corridor, then optimize the coordinated system (including cycle length, split, and offsets).

• NoCSOPs: Using network optimization for the corridor, then optimize the coordinated system (including cycle length, split, and offsets) and phase sequence.

After getting 5 optimization scenarios for each hour's volume data (There would be 36 different optimization scenarios in total including filed signal timing plan), the optimized and Base Case signal timing plan of each intersection could be imported into the PTV Vissim [14] models. Simulations were performed using 42 seeds for each scenario and the same random seeds were used for all experiments. Then the evaluation of the results was implemented.

28

Scenario	Optimization Mode	Cycle Length	Split	Offsets	Phase Sequence
Field	NA	NA	NA	NA	NA
LoCwSPr	Locally	Y	Ν	N	Ν
LoCS	Locally	Y	Y	N	Ν
NoCS	Network	Y	Y	N	Ν
NoCSO	Network	Y	Y	Y	N
NoCSOPs	Network	Y	Y	Y	Y

Table 3-1 Comparison Table for Field Signal Plan and 5 Optimization Methodologies

3.4 Key Performance Measures

The performance evaluation of the resonant cycle is another important topic of this study. For the purpose of making a comparison of network performance measure which used by previous studies to define the resonant cycle and progression performance measure which might be more appropriate for identifying whether the resonant cycle exists or not, the same methodologies of performance measures were chosen as a result. Vehicle Network Performance Evaluation Results from PTV Vissim [14] was directly used to extract the following performance measures as provided by.

3.4.1 Network Level Performance Measures

a) Average Delay: Average delay per vehicle.

Avg. Delay = $\frac{\text{Total delay}}{\text{Number of veh in the network + Number of veh that have arrived}}$ (3.2)

b) Average Stops Number: Average number of stops per vehicle.

Avg. Stops =
$$\frac{\text{Total Stops}}{\text{Number of veh in the network + Number of veh that have arrived}}$$
 (3.3)

c) Performance Index: Performance Index value of the whole network. (Using the same penalty for stops as Shelby et al. [5] used in their study)

Performance Index = Total Delay +
$$8 *$$
 Total Stops (3.4)

d) Average Travel Time: Average travel time per vehicle.

Avg. Travel Tm = $\frac{\text{Total Travel Time}}{\text{Number of veh in the network + Number of veh that have arrived}} (3.5)$

3.4.2 Progression Level Performance Measures

a) Average Delay: Average delay of Eastbound/Westbound through movement vehicles.

Avg. Delay of One Direction =
$$\frac{\sum (Each Node Total EB or WB Throughput Delay)}{Average EB or WB Throughput}$$
(3.6)

b) Average Stops: Average stops of Eastbound/Westbound through movement vehicles.

Avg. Stops of One Direction =
$$\frac{\sum (\text{ Each Node Total EB or WB Throughput Stops)}}{\text{Average EB or WB Throughput}}$$
(3.7)

c) Performance Index of One Direction: Performance Index value of Eastbound/ Westbound through movement vehicles.

Performance Index = Total Delay + 8 * Total Stops (Only for EB or WB Throughput) (3.8)

d) Average Travel Time: Average travel time of Eastbound/Westbound through movement vehicles (Only collected for vehicles passing through all five intersections).

4.0 Building of Models

According to the research methodology, there are several models should be established which respectively based on PTV Vistro and PTV Vissim. An existing PTV Vissim model of the whole W Broward Blvd. corridor was utilized as the base model of this study, which was built, calibrated, validated, and used in previous studies [15]. The network was built in PTV Vistro first and all inputs such as the number of lanes, traffic volume, cycle length, etc. were manually checked. Then part of the previous PTV Vissim model was used as the network in this study, slight modification and calibration implemented afterward.

4.1 PTV Vissim Model

The PTV Vissim model was built based on the previous Vissim model and modified in comparison with the most recent satellite image from Google Maps. Microwave vehicle detection system (MVDS) volumes were downloaded from the Regional Integrated Transportation Information System (RITIS). Florida Department of Transportation (FDOT) provided signal timing sheets of the field which were used to model Ring Barrier Controllers (RBC) in PTV Vissim for the base case.

As mentioned previously, travel time is an important performance index for both network and progression evaluation. The total travel time and total vehicle number of the whole network can be directly exported from the PTV Vissim file, however, the average travel time of the main street through movement vehicles can only be obtained from "Travel Time Measurement" which is one the result lists. The implementation of "Vehicle Travel Time Measurement" was only for evaluating main street through movement, which means eastbound measurement area is from the intersection SR 7 to the intersection SW/NW 31st Ave and westbound measurement area is from the intersection SW/NW 31st Ave to the intersection SR 7. The setting window of "Vehicle Travel Time Measurement" was shown in Figure 4.1.

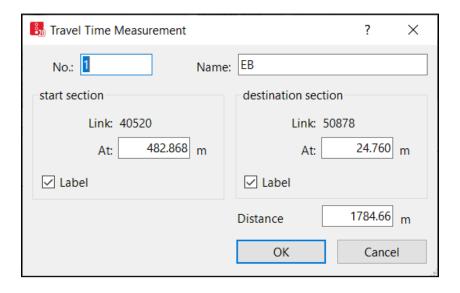


Figure 4.1 Vehicle Travel Time Measurement Setting Window

After finishing the insertion of all detectors in the PTV Vissim [14] model, relating them with the specific signal controllers was the next thing that should be done. To collect arriving information, the useful configurations: cycle second, simulation second, signal display of the main street through movements (SG 2 and SG 6), and all detectors of eastbound and westbound, that need to be recorded by detectors were selected for each intersection, as shown in Figure 4.3.

The evaluation configuration includes two sections which needed to be settled, result attributes and direct output. For the result attributes section, to run the simulation efficiently and get the required data, the default running time was set up from 0 to 36000, which represented from 6:00 AM to 4:00 PM. The data collection interval was increased from 900 (15 minutes) to 3600 (1 hour) to directly get the simulation results of each hour, as shown in Figure 4.4. For the direct output section, only data collection, nodes, signal control detector record, and vehicle travel times were selected as the configurations that needed to be output directly, as shown in Figure 4.5.

5 Signal Controller								?	×
No.:	2177 Name: 9	SR 7 & Broward	I Blvd						_
Type: Ring Barrier Control	ler ~	Active							
Cycle Time									
O Fixed:	0 Offset:	0 s							
variable									
Controller configuration	Signal Times Table (Config SC Det	tector Record Config.						
	Signal Times table (comg.							
Type (Category):									
Active Phase		→	Count: 12 ConfigName	VarNo	Title	Label			
Active Phase Active Preempt			1 UML_SEK		0	Cycle second			
Active Preempt		×	2 SIM_SEK		0	Simul.second			
Added Initial			3 SG_BILD		2	Sig.Display SG 2			
Added Initial		1	4 SG_BILD		6	Sig.Display SG 6			
Coordination Split		Ŧ	5 DET_ZUST	1	11	State DET 111			
Coordination Split		•	6 DET_ZUST	1	12	State DET 112			
CP Detector			7 DET_ZUST	1	13	State DET 113			
CP Detector CP Lateness			8 DET_ZUST	1	14	State DET 114			
CP Lateness CP Lateness			9 DET ZUST	1	15	State DET 115			
Cycle second			10 DET_ZUST	1	16	State DET 116			
Cycle Time			11 DET_ZUST	1	18	State DET 118			
Cycle Time			12 DET_ZUST	1;	20	State DET 120			
Empty column									
Gap in Effect Gap in Effect 🗸 🗸									
Gap III Ellect									
SC detector record - sl	how short names in	header							
Signal group label: D	etector label:								
Number	Port number								
•) Name								
Creanic (J manne								
							QK	Can	

Figure 4.2 Detector Record Configuration Window

Result Management Result Attrib	utes Direct O	utput									
Additionally collect data for these classes:											
Vehicle Classes Pedestrian Classes											
3:D H ^ 10: Car 30: Wheelchair User 30: Wheelchair User 30: Wheelchair User 50: Pedestrian 60: Bike											
	Collect data	From-time	To-time	Interval							
Area measurements	\checkmark	0	36000	3600							
Areas & ramps	~	0	36000	3600							
Data collections	\checkmark	0	36000	3600							
Delays	\checkmark	0	36000	3600							
Links	\checkmark	0	36000	3600	More						
Meso edges	\checkmark	0	36000	3600							
Nodes	\checkmark	0	36000	3600	More						
OD pairs	\checkmark	0	36000	3600							
Pedestrian Grid Cells	\checkmark	0	36000	3600	More						
Pedestrian network performance	\checkmark	0	36000	3600							
Pedestrian travel times	\checkmark	0	36000	3600							
Queue counters	\checkmark	0	36000	3600	More						
Vehicle network performance	\checkmark	0	36000	3600							
Vehicle travel times	\checkmark	0	36000	3600	More						

Figure 4.3 Result Attributes Editing Window

Evaluation Configuration					? X
Evaluation output directory: C:\U	sers\yiy65\Desl	ktop\Woodstock I	Research\Viss	im Model\	Netwo
Result Management Result Attribu	tes Direct Ou	tout			
Result Management Result Attribu					
	Write to file	Write database	From-time	To-time	
Area measurements (raw data)			0	99999	
Convergence					
Data collection (raw data)	\checkmark		0	99999	
Discharge record			0	99999	
Green time distribution			0	99999	
Lane changes			0	99999	More
Managed lanes					
Nodes (raw data)			0	99999	More
Pedestrian record			0	99999	More
Pedestrian travel times (OD data)			0	99999	More
Pedestrian travel times (raw data)			0	99999	
Public transport waiting times					
Signal changes					
Signal control detector record	\checkmark				
SSAM					
Vehicle input data					
Vehicle record			0	99999	More
Vehicle travel times (raw data)	\checkmark		0	99999	
<					>
			_		
			1	<u>О</u> К	<u>C</u> ancel

Figure 4.4 Direct Output Editing Window

4.2 PTV Vistro Model

The PTV Vistro [13] is a traffic analysis software which is used to evaluate development impacts and intersection levels of service, optimize and re-time traffic signals, and generate report-ready tables and figures. PTV Vistro [13] SP 0-0 is a map-based software which allows users to build the network refer to the field situation, as shown in Figure 4.6.

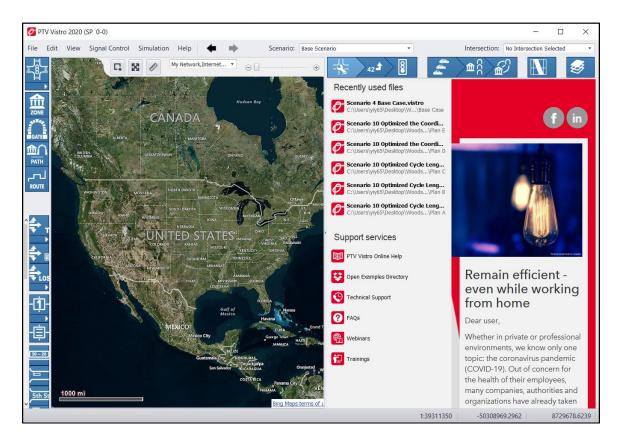


Figure 4.5 PTV Vistro Start Window

As the map in PTV Vistro [13] is updated with the latest Google map version, it would be easier to build the experimental network based on the aerial image of Broward Boulevard. Once zooming the background map into the appropriate size, five consecutive signalized intersections were created from SR 7 to SW/NW 31st Ave. To make sure the PTV Vistro [13] model is the same as the filed situation, each intersection needs to be modified based on the study network and traffic data.

By clicking the node point on any intersection, the "Intersection Setup" window will open up for the selected one (Figure 4.7). The first step was to name the chosen intersection and determine the control type from "Unknown", "Signalized", "Roundabout", "All-way stop", and "Two-way stop". The analysis method used in this study was HCM 6th edition, which was the final version released in October 2016 and incorporated the latest research on highway capacity, quality of service, and travel time reliability. Lane configuration of each movement could be easily edited by clicking the corresponding icon, as shown in Figure 4.8. As the default value of lane width and lanes in entry pocket were entirely fit the study area, the final step was inputting the base volume for each turning movement and set the desired speed. Volume data were directly output from PTV Vissim [14] file while the desired speed data were obtained from the speed limit signs on street images of Google maps.

42 1	8		¢ ¢	\geq	<u>م</u>	\geq	€Ĵ		N			Ś
Intersection Setup									Ent	er text to	search	ے م
		♠			₽			•			+	
Number							1					
Intersection				SR7								
Notes												
Control Type						Signa	alized					
Analysis Method						HCM 6t	h Edition					
Name												
Show Name		۲⁄			5⁄			5⁄			5⁄	
Approach	٨	lorthboui	nd	S	outhbou	nd	E	astbour	nd	ν	Vestbou	nd
Lane Configuration	٦	זוור	Г	1	ווורו	F	٦	ווור	F	٦	hii	F
Turning Movement	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right
Base Volume Input [veh/h]	357	993	134	328	947	158	297	989	197	210	1063	181
Total Analysis Volume [veh/h]	357	993	134	328	94 7	158	297	989	197	210	1063	181
Lane Width [ft]	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
No. of Lanes in Entry Pocket	1	//0///	1	1	//0///	0	1	0//	1	1	0//	1
Entry Pocket Length [ft]	100.00		100.00	100.00			100.00		100.00	100.00		100.00
No. of Lanes in Exit Pocket	0	0	0	0	0//	0	0	0	0	0	0//	1
Exit Pocket Length [ft]				0.00			0.00			0.00		49.21
Median												
Median Length [ft]												//////
Median Width [ft]		10.00			10,00			10.00			10.00	
Offset [ft]		0.00			0.00			0.00			0.00	
Speed [mph]		40.00			40.00			40.00			40.00	
Grade [%]		0.00			0.00			0.00			0.00	
W_cd, Curb-to-Curb Width of the Cross		0.00			0.00			0.00			0.00	
W_bl, Width of the Bicycle Lane [ft]		0.00			0.00			0.00			0.00	
W_os, Width of Paved Outside Shoulder		0.00			0.00			0.00			0.00	
Curb Present												
W_pk, Width of Striped Parking Lane [ft]	1			0.00		0.00				0.00		
Proportion of on-street parking occupied				0.00		0.00			0.00			
W_a, Walkway Width of Sidewalk A [ft]	0.00			0.00			0.00			0.00		
W_b, Walkway Width of Sidewalk B [ft]	0.00			0.00			0.00			0.00		
R, Radius Corner Curb [ft]		0.00		0.00		0.00			0.00			
Crosswalk		۲⁄			5⁄			۲ <u>/</u>			۲ <u>/</u>	
Crosswalk Width [ft]		8.00			8.00			8.00			8.00	

Figure 4.6 Intersection Setup Window

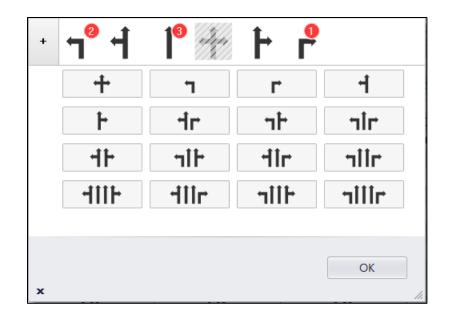


Figure 4.7 Lane Configuration Window

The field signal timing plan was manually imported through the "Traffic Control" window, as shown in Figure 4.9. In the intersection setting part (Figure 4.10), major direction and minor direction were determined through the priority scheme. As the volume data were input hourly, the analysis period should be kept in the same interval. Cycle length, coordination type, actuated type, offsets, offsets reference, and permissive mode were all entered following the original field PTV Vissim [14] model. According to HCM 2010 [1], the lost time of each phase was assumed as 3 seconds and pedestrian walking speed was normally set in 3.5 ft/s. The next step was editing control types, splits, etc. in the phasing and timing part. Users are allowed to choose the control type of each phase by clicking the icon, e.g. protected, permissive, overlap, etc. and all parameters in this part with a unit in second could be set into a certain number. Noticing that east-west bound was the main direction of the study area, thus, southbound and northbound did not possess coordination, maximum recall, and detectors. The rest sections were kept as default. Figure 4.11 shows the phasing and timing section after it was completed.

Image: Control Image	=	42	3		Å	\rangle	<u>ش</u>	\rangle	£)		N]		Ż
SR7 Notes Signalized Analysis Method Northound Signalized Northound Southound Eastbound Westbound Show Name C C Southbound Eastbound Westbound Turning Movement Left Thru Right Left Thru Right Ist S Signalized Intersection Setting Phase EastColspan="6">Setting Phase Capacity Analysis Lane Group Calculatio	Traf	fic Control				Automat	ic Optin	nization		ð (B Ente	er text to	search	۵ ک
SR7 Notes Signalized Analysis Method Northound Signalized Northound Southound Eastbound Westbound Show Name C C Southbound Eastbound Westbound Turning Movement Left Thru Right Left Thru Right Ist S Signalized Intersection Setting Phase EastColspan="6">Setting Phase Capacity Analysis Lane Group Calculatio							₽			•			+	
Notes Signalized Control Type Signalized Analysis Method Control Type Name Control Type Show Name Control Type Name Control Type Show Name Control Type Analysis Method Southbound Control Type Show Name Control Type Configuration Control Type Turning Movement Left Thru Right Ceft Thru Right Left Thru Right Ceft Thru Ceft Thru Right	Numb	per							1					
Signalized Signalized Analysis Method Name Cd Cd <t< th=""><th>Inters</th><th>ection</th><th></th><th colspan="10">SR7</th><th></th></t<>	Inters	ection		SR7										
Analysis Method HCM 6th Edition Name Cd Cd <thcd< th=""> Cd Cd</thcd<>	Notes	3												
Name Cí C	Contr	ol Type		Signalized										
Show Name Cd Cd Cd Cd Cd Approach Northbound Southbound Eastbound Eastbound Westbound Lane Configuration Thru Right Left Thru Right Left </th <th></th> <th></th> <th></th> <th colspan="9">HCM 6th Edition</th> <th></th>				HCM 6th Edition										
Northbound Southbound Eastbound Westbound Lane Configuration Image: Configuration <th></th>														
Torming Movement Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Left Thru Right Base Volume Input [veh/h] 357 993 134 328 947 158 297 989 197 210 1063 181 Total Analysis Volume [veh/h] 357 993 134 328 947 158 297 989 197 210 1063 181 Intersection Settings Exclusive Pedestrian Phase Exclusive Pedestrian Phase Exclusive Page Results														
Turning Movement Left Thru Right Left Thru	Appro	bach	N	orthbou	nd	S	outhbou	nd	E	astbour	nd	V	Vestbour	nd
Base Volume Input [veh/h] 357 993 134 328 947 158 297 989 197 210 1063 181 Total Analysis Volume [veh/h] 357 993 134 328 947 158 297 989 197 210 1063 181 Intersection Settings Phasing & Timing	Lane	Configuration	1	٦]]]	Г	٦	ווורי	F	٦	٦]]]	Г	٦	٦]]]	Γ
Total Analysis Volume [veh/h] 357 993 134 328 947 158 297 989 197 210 1063 181 Intersection Settings Phasing & Timing		-			-			-			-			Right
Intersection Settings Phasing & Timing Exclusive Pedestrian Phase Lane Group Calculations Saturation Flow Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes														
Phasing & Timing Exclusive Pedestrian Phase Lane Group Calculations Saturation Flow Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes	Total	Analysis Volume [veh/h]	357	993	134	328	947	158	297	989	197	210	1063	181
Exclusive Pedestrian Phase Lane Group Calculations Saturation Flow Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes Sequence G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s	⊳	Intersection Settings												
 Lane Group Calculations Saturation Flow Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes 	⊳	Phasing & Timing												
Saturation Flow Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes	⊳	Exclusive Pedestrian Phase												
Capacity Analysis Lane Group Results Movement, Approach, & Intersection Results Other Modes Sequence G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s	⊳	Lane Group Calculations												
Lane Group Results Movement, Approach, & Intersection Results Other Modes Sequence G: 1 26s SG: 2 51s SG: 3 26s	⊳	Saturation Flow												
 Movement, Approach. & Intersection Results Other Modes Sequence 3G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s 	⊳	Capacity Analysis												
Other Modes Sequence GG: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s	⊳	Lane Group Results												
Sequence SG: 1 26s SG: 2 51s	⊳	Movement, Approach, & Intersect	tion Resu	lts										
G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s	⊳	Other Modes												
G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s														
G: 1 26s SG: 2 51s SG: 3 26s SG: 4 50s														
	⊳	Sequence												
SG: 102 38s SG: 104 35s	SG: 1	26s SG: 2-51s					SG: 3 26	s	SG	i: 4 50s				
10		<mark>SG</mark> : 102_38s	SG: 104 35s											
G: 5 30s SG: 6 51s SG: 7 29s SG: 8 50s	SG: 5	30s SG: 6_51s					SG: 7 29	s		SG: 8_5	0s			
SG: 106 41s		SG: 106 41s								SG: <mark>108</mark>	38s			

Figure 4.8 Traffic Control Window

∇	Intersection Settings										
Priorit	ty Scheme	Minor	Minor	Major	Major						
Analy	ze Intersection?		£	4							
Analy	sis Period		1 h	our							
Locat	ed in CBD		5/								
Contr	oller ID		1								
Signa	I Coordination Group		1 - Coordination Group								
Cycle	Length [s]		16	50							
Coord	dination Type		Time of Day Pat	tern Coordinated							
Actua	tion Type		Fully a	ctuated							
Offse	t [s]		88	3.0							
Offse	t Reference		Lead Green - Begir	nning of First Green							
Perm	issive Mode		SingleBand								
Lost t	ime [s]		12.00								
Pede	strian Walking Speed [ft/s]		3.	50							

Figure 4.9 Intersection Settings Section

Control Type	Protect	Permis	Permis	Protect	Permis	Permis	Protect	Permis	Permis	Protect	Permis	Permis
Allow Lead/Lag Optimization												
Signal Group	7	4	///0///	3	8	V//0///	1	6	//////	5	2	1/10//
Auxiliary Signal Groups								(/////	V/////////////////////////////////////		_	
Lead / Lag	Lead			Lead			Lead			Lead		
Minimum Green [s]	5	6	0	5	6	0	5	10	0	5	10	//0//
Maximum Green [s]	25	50		25	50	0//	25	55	0//	25	55	//0//
Amber [s]	4.0	4.0	0.0	4.0	4.0	0.0	4.0	4.0	0.0	4.0	4.0	0.0
All red [s]	3.0	2.0	0.0	3.0	2.0	0.0	3.0	2.0	0.0	3.0	2.0	/0.0/
Split [s]	29	50	0	26	50	0	26	51	0	30	51	0//
Vehicle Extension [s]	1.5	2.0	0.0	1.5	2.0	0.0	1.5	3.0	0.0	1.5	3.0	0.0
Walk [s]	//0//	5	0	//0///	5	0	0	7	0	0	4	//0//
Pedestrian Clearance [s]	//0//	30		///0///	33	0//	0//	34	0//	0//	34	
Delayed Vehicle Green [s]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rest In Walk	[]/////								//////			V/////
I1, Start-Up Lost Time [s]	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0
I2, Clearance Lost Time [s]	5.0	4.0		5.0	4.0		5.0	4.0	0.0	5.0	4.0	
Coordinated			/////			V////		۲ź			۲ <u>۵</u>	1////
Minimum Recall						V/////						
Maximum Recall			V////					5⁄	/////		۲ <u>۵</u>	1////
Pedestrian Recall												
Dual Entry			V////			1////						V////
Detector						//////	52	۲ <u>۲</u>		E/	۲ <u>/</u>	1/////
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Detector Length [ft]	0.0		0.0	0.0		0.0	20.0	20.0	0.0	20.0	20.0	
I, Upstream Filtering Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Figure 4.10 Phasing & Timing Section

The last step of building the PTV Vistro [13] model was establishing coordination for each intersection in "Network Optimization", as shown in Figure 4.12. According to the previous

definition of the resonant cycle, an arterial that provided good performance for both directions of the main street was the ideal target. Thus, two network optimization plans that went through the whole network for eastbound and westbound were added here. The weight of each direction was set as the same value, while max signal time was using the default. The signal time-space diagram mode has two options, flowing off and arterial bands, which satisfy users' different needs. Besides, by clicking the "Show Reverse Direction" button, the time-space diagram of both directions would directly emerge.

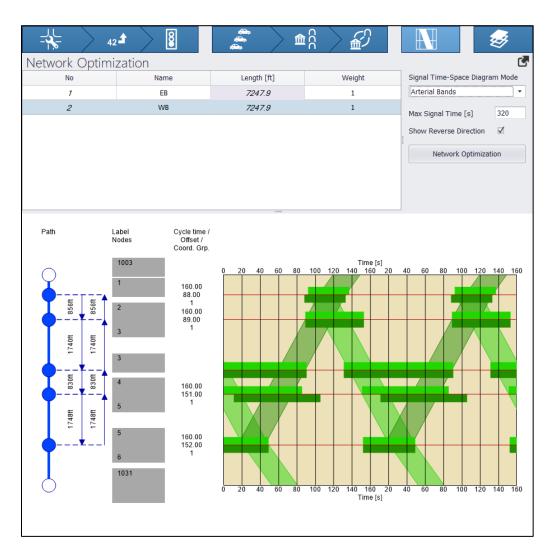


Figure 4.11 Network Optimization Window

5.0 Optimization and Evaluation of Signal Timing Plans

The word optimization means selecting the best or most effective alternative for a given situation under some constrains. Signal timing optimization is one of the crucial and easiest strategies to get a good performance under the certain traffic flow for urban arterial streets. To achieve the goal of generating the best signal timing plan for several signalized intersection, parameters like cycle length, split, offsets, phase sequence, etc. are usually selected by the performance measure algorithm in computer software.

Different from previous resonant cycle studies, in this study, the field scenario and signal timing plan were imported into the PTV Vistro [13] model for signal timing optimization instead of testing a range of cycle length by one-second increment per time. To figure out whether the resonant cycle will work in the study network, several optimization plans contain different parameters were designed and implemented for each scenario.

Simulation is defined as an approximate imitation of the operation of a process or system and this imitation is widely used in the transportation area. As optimization results derived from the PTV Vistro [13] model were insufficient to draw any convincing conclusion, the solution is importing optimized signal timing plans into the PTV Vissim [14] model and simulating to get more comprehensive results for evaluations.

All optimization options were studied in the order as shown in Table 3.1. This chapter talks about how the optimization process performed for each plan and how each optimized signal timing plan simulated for different scenarios.

42

5.1 Optimization of Signal Timing Plans

The optimization in PTV Vistro [13] has two categories: local optimization, which intends to find the optimal cycle length and splits for a single intersection based on traffic volume, and network optimization, which focuses on finding the best cycle length, split, offsets and phase sequence for the selected network based on geometry and other traffic data. Users are allowed to choose the type based on their needs, pick the objective function as they want to use, and select traffic parameters that should be optimized. To study the "resonant cycle", five optimization plans which include both optimization types and selectively combine the cycle length, split, offsets, and phase sequence together were designed and implemented as described in the research methodology part.

5.1.1 Local Optimization of Cycle Length

This optimization plan aims to find the optimal cycle length for each intersection by using local optimization function in PTV Vistro [13]. As the study network has 5 intersections, there would be at most 5 different cycle length values for each scenario. The largest cycle length of those five was chosen as the cycle length of the whole network and the splits of rest intersections were manually increased proportionally. This is a common strategy for network cycle length selection, the cycle length of the network should satisfy the demanding of the critical intersection then it can meet the needs of the other intersections.

The objective function was chosen as "Minimize Critical Movement Delay" to get better performance. Cycle optimization type was optimizing between boundaries, while the lower bound was 30 seconds and the upper bound was 200 seconds which is the normal range for an intersection. Step size was set as 1. (Figure 5.1)

Local Optimization				×
Local Optimizat	ion			
Objective Function	O V / C Balancing		Minimize Critical Movement Delay	
Optimization Type	Split Optimization	I	Split and Cycle Time Optimization	
	Cycle Optimization Settings Between Boundaries Try Set	Lower Bound Upper Bound Step Size	30 200 1	
		Optimize All Int	ersections Save Settings Ca	ancel

Figure 5.1 Local Optimization Window

One thing that should be pointed out is the optimization process. PTV Vistro [13] does not have the function that can optimize cycle length and splits separately, so the local optimization here not only optimized cycle length for each intersection but also redistributed the split for each intersection. After the longest cycle length of this network has been calculated, the optimal cycle lengths and split of each phase for every other intersection have been recorded in a spreadsheet, by increasing the cycle length of each intersection to the largest one and using simple arithmetic, the proportional split can be manually modified in Vistro model.

5.1.2 Local Optimization of Cycle Length and Splits

This optimization plan is similar to the previous one, difference happens after the largest cycle length has been selected from local optimization results of those five intersections. Once the largest cycle length has been implemented into each intersection, instead of increasing splits of

each phase proportionally, another function called "Optimize Split" has been used to optimize phase split of each intersection, as shown in Figure 5.2. The same objective function which intends to minimize critical movement delay has been selected.

Optimize Split		
Objective Function	O V / C Balancing	Minimize Critical Movement Delay
		ОК

Figure 5.2 Split Optimization Window

In this way, the split of each intersection is the optimal one based on the cycle length which used for the whole network. Noticing that the signal timing plan of the intersection that provides the largest cycle length in local optimization of the cycle length and split is the same as local optimization of the cycle length and increasing split proportionally.

5.1.3 Network Optimization of Cycle Length and Splits

Previous optimization plans are all based on local optimization, which only takes the single intersection into consideration and seeks the cycle length which could satisfy the largest demand of those five intersections. Instead of focusing on one particular intersection, network optimization emphasizes the coordination of each intersection.

As PTV Vistro [13] doesn't allow users to optimize cycle length only, this optimization plan intends to optimize cycle length and split for the whole network by using network optimization mode. The network optimization setting window as shown in Figure 5.3 illustrates all parameters that can be optimized in PTV Vistro [13].

Network Optimization				×
Network Optimizatio	on			
Define the Objective Function:	PI = 1 x Delay [veh * h] -8	x Number of Stops		Â
What Method Should be Used?				
 Genetic Hill Climbing 	Number of Starting Solutions	20		
Which Coordination Groups Sho	ould be Optimized?			
All Coordination Groups 1: Coordination Group				
Optimize Split and/or Cycle ⁻	Гіme			
 Only Split Split and Cycle Time 	Allowed Reduction from Optimum Split Lower Bound Upper Bound Step Size	0.00% \$ 60 200 1		
Use Offset Optimization				
Allow Lead / Lag Optimization	on			
		Run Optimization	Save Settings	Cancel

Figure 5.3 Network Optimization Setting Window

Performance Index (PI) was used as the objective function and defined as delay plus 8 times stops, which was the same as Shelby did in his resonant cycle study. Hill climbing was chosen as the optimization algorithm in this study, and the number of starting solutions was set as 20. Reduction from optimum split was not needed for this study and the upper bound of the cycle length was kept the same with local optimization as 200 seconds while the lower bound was increased to 60 seconds as a reasonable minimum cycle length of a network as suggested by various literature review [1, 8]. The optimization step size was set as 1 second per time.

5.1.4 Network Optimization of Cycle Length, Splits, and Offsets

Combining cycle length, split, and offsets together are the generalized coordinated system, which usually considered as the main part of network signal timing control. In this optimization, offsets which precise into 1 second was optimized together with cycle length and split. The optimization progress was shown in Figure 5.4.

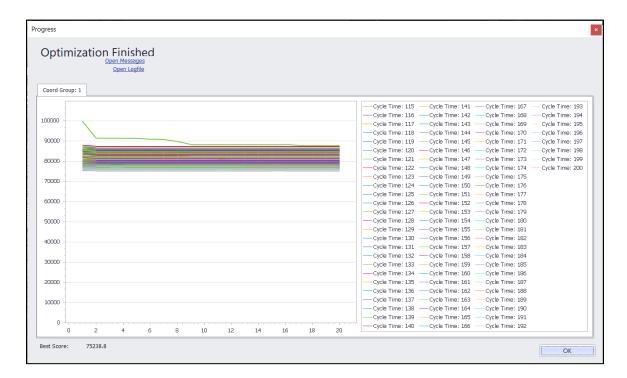


Figure 5.4 Optimization Progress Window

Noticing the starting cycle length was 115 seconds which could be caused by the inner algorithm of PTV Vistro. Another phenomenon was only the first line had a big difference with other lines, this might be also caused by Vistro itself.

5.1.5 Network Optimization of All Signal Timing and Phasing Parameters

The last optimization plan includes every optional parameter provided by PTV Vistro [13]. After selecting allow lead/lag optimization in phase & timing window as shown in Figure 5.5, phase sequence was also added into the network optimization plan incorporate with cycle length, split, and offsets. The optimization process was the same as the previous one.

▼ Phasing & Timing												
Control Type	Permis	Permis	Permis	Permis	Permis	Permis	Protect	Permis	Permis	Protect	Permis	Permis
Allow Lead/Lag Optimization		5/			5/			5/			5⁄	
Signal Group	/////	4	//0///	///	3	////	1	6	//Ø//	5	2	///0///
Auxiliary Signal Groups												
Lead / Lag							Lead			Lead		
Minimum Green [s]	//0///	6	0	//0//	6	0	4	15	0	4	15	0
Maximum Green [s]	//0///	25		0//	25		12	60		12	60	
Amber [s]	0.0	4.0	0.0	0.0	4.0	0.0	4.0	4.0	0.0	4.0	4.0	0.0
All red [s]	0.0	2.0		0.0	2.0		2.0	2.0		2.0	2.0	
Split [s]	//0//	31	0	0	14	0	16	109	0//	33	126	//0//
Vehicle Extension [s]	0.0	2.0		0.0	2.0		1.5	3.0		1.5	3.0	
Walk [s]	//0//	5	0	0//0	0	0	0//	7	0//0	0	7	//0//
Pedestrian Clearance [s]	//0//	20		//0//	0		//0//	18		0//	0	
Delayed Vehicle Green [s]	0,0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rest In Walk	//////			(/////			//////					
I1, Start-Up Lost Time [s]	0.0	2.0	0.0	0.0	2.0	0.0	2.0	2.0	0.0	2.0	2.0	0.0
l2, Clearance Lost Time [s]	0.0	4.0		0.0	4.0		4.0	4.0		4.0	4.0	
Coordinated			/////			//////		۲ <u>۲</u>	/////		۲ <u>۲</u>	V/////
Minimum Recall				/////								
Maximum Recall			/////			V/////		۲ <u>۲</u>	/////		۲ <u>/</u>	1////
Pedestrian Recall				1/////		1/////			1/////			V/////
Dual Entry	(/////		V/////	(/////		1////			1/////			1/////
Detector	/////	۲ <u>/</u>	1/////		5⁄	1/////	5⁄	۲ <u>۲</u>	/////	T/	۲⁄	V/////
Detector Location [ft]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Figure 5.5 Allow Lead/Lag Optimization Option in Phasing & Timing Window

To examine if a cycle length which has the same function as the previous definition of "resonant cycle", a chart of all the optimal cycle lengths derived from the optimization plans for each scenario has been made, as shown in Figure 5.6. Different scenarios represent different traffic volumes within the capacity of the network.

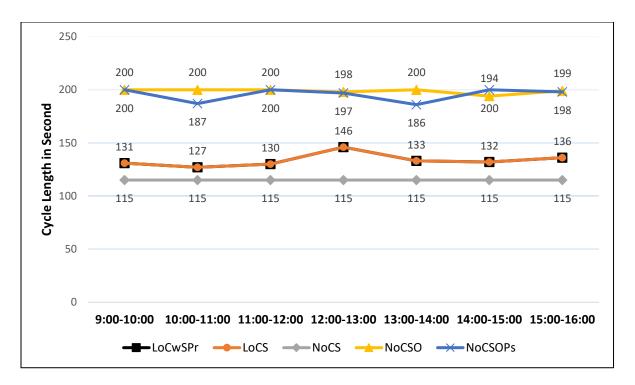


Figure 5.6 Optimized Cycle Lengths of Each Scenario

Noticing that the line of local optimization of the cycle length with increasing split proportionally is coinciding with the line of local optimization of the cycle length and split. This is because of both optimization plans using the largest cycle length of the local optimization results of each intersection for the same scenario as the network cycle length. The result of network optimization of cycle length and split is a horizontal line which means no matter how the traffic volume change, the optimal cycle length of the whole network is always the same value. To explain this phenomenon, the only possible reason is the inner algorithm of PTV Vistro [13] is limited, which cannot provide the right calculation.

A further test was established by running simulations of all the optimal signal timing plans generated from each optimization plan in the PTV Vissim [14] model. Through the comparison of key performance measures, a potential resonant cycle may get discovered.

5.2 Evaluation of Signal Timing Plans

As mentioned before, PTV Vissim [14] has the ability to simulate each entity (car, pedestrian, etc.) and measure the performance individually. Due to the lack of function in PTV Vistro [13] to provide enough performance measurements on spatial and temporal level for this study, all optimized signal timing plans derived from PTV Vistro [13] were imported into the same model which has already been built in PTV Vissim [14] and simulated to get precise and adequate performance indices.

The first step of the simulation after opening up the PTV Vissim [14] file was to set the simulation parameters, as shown in Figure 5.7. The simulation period was set for 10 hours, from 6:00 am to 4:00 pm, which equals to 36,000 seconds. The number of random seeds was given as 42, and the simulation resolution was determined as 10-time steps per simulation second. The only one-time simulation should be run for each scenario.

Simulation parameters	?	×						
General Meso								
Comment:								
Period: 36000 s Simulation seconds								
Start time: 00:00:00								
Start date: 5/30/2020 ~								
Simulation resolution: 10 Time step(s) / simulation second								
Random Seed: 42								
Number of runs: 1								
Random seed increment: 1								
Dynamic assignment volume increment: 0.00 %								
Simulation speed: Factor: 10.0								
Maximum								
Retrospective synchronization								
Break at: 0 s Simulation seconds								
Number of cores: use all cores		\sim						
<u>O</u> K	<u>C</u> ar	ncel						

Figure 5.7 Simulation Parameters Window

To import signal timing plans that generated by PTV Vistro [13] in the PTV Vissim [14] model, each scenario should be exported from PTV Vistro [13] first as 5 RBC files which were corresponding to 5 intersections. Then, by clicking the "Signal Control" button and selecting "Signal Controllers", the signal controller modification window would be opened (See Figure 5.8). All controllers type was set as Ring Barrier Controller (RBC) to match with the RBC files which should be imported. After adding all RBC files into certain signal controllers, the last step was

opening signal groups editing window and checking the cycle length, split, offsets, phase sequence, etc. were exactly the same as the settings in PTV Vistro [13] file (See Figure 5.9).

Signal Controllers / Signal Groups										
Select layout 🌽 🕂 🖉 🗙 💱 💈 💈 🛣 Signal groups - 🛍 🛢 💾 😫 🙈										
Count: 5	N	lo	Name	Туре	CycTm	Cyc	TmlsVar	SupplyFile1	SupplyFile2	ProgNo
1	i	2013	Broward Blvd & SW-NW 31st Ave	Ring Barrier Controller	C		\$£\$///	RBC_5_A.rbc		1////
2	2	2015	Broward Blvd & NW 34th Ave	Ring Barrier Controller	C		S E ///	RBC_4_A.rbc		1///1
3	2	2016	Broward Blvd & NW 35th Ave_Kentucky A	Ring Barrier Controller	C		5 <u>0</u> 2///	RBC_3_A.rbc		1///1
4	2	2176	Broward Blvd & SW 38th Ave	Ring Barrier Controller	C		\$ £ \$///	RBC_2_A.rbc		1///1
5	2	2177	SR 7 & Broward Blvd	Ring Barrier Controller	C		SB	RBC_1_A.rbc	Þ	1

Figure 5.8 Signal Controllers Modification Window

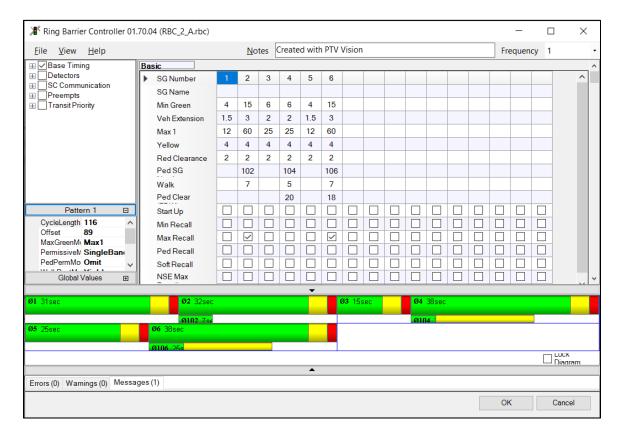


Figure 5.9 Signal Groups Editing Window

The useful results performance evaluation including 3 categories: 1) Vehicle Travel Time Results, which was collected for average travel time of eastbound and westbound vehicles passing through the whole network; 2) Vehicle Network Performance Evaluation Results, which included delay, stops, total travel time, etc. and used for network performance measure; 3) Node Results, which included delay, stops, queue length, etc. and used for progression performance measure. In addition, the LDP files that directly output from the PTV Vissim [14] model were converted from texts to tables for percent of vehicles arriving on green analysis.

6.0 Results and Analysis

After the optimization of 7 hours field scenarios in PTV Vistro [13], 35 new signal timing plans which represented different optimization plans for different time of the day were developed. By manually implementing all the signal timing plans in the PTV Vissim [14] model and running the simulation, 36 different versions of the Vissim model were generated for the performance measure comparison. As the simulation period was a time consuming, each version was run once for 10 hours (from 6:00 am to 4:00 pm). The results of each simulation from 9:00 am to 4:00 pm were used to compare performance measures.

According to the previous description, the evaluation of performance was based on several indices which could be directly extracted from PTV Vissim Evaluation Results Lists [14] : Average Delay, Average Stops could be accessed from Vehicle Network Performance Evaluation Results and Node Results; PI was calculated by the equation contains total delay and stops, which could also be directly obtained from Vehicle Network Performance Evaluation Results and Node Results; Average Travel Time was collected in Vehicle Travel Time Results for eastbound and westbound. Scenarios were compared together for each performance index and the one with the best performance for each hour would be highlighted. The comparison was divided into two groups, as mentioned in the methodology part, as follows:

1. Network level evaluation, including average delay, average stops, PI value, and average travel time of the vehicles in the whole network.

2. Progression level evaluation, including average delay, average stops, PI value, and average travel time of the main-street through movement vehicles.

54

6.1 Network Level Evaluation

According to Shelby [5] and Guevara [6, 10], the "resonant cycle" would provide good performance for the whole network, not only the progression. To test if there would be any "resonant cycle" like Shelby and Guevara found in their experiments, exist in this study network, the first type of evaluation was based on the network level.

6.1.1 Evaluation of the Average Delay

The average delay is an index that illustrates the additional travel time for vehicles on the network caused by traffic signal systems. Thus, decrease in average delay caused by developed signal timing plan indicates performance improvement. Figure 6.1 shows the average delay of all the 36 scenarios under the network level evaluation. Highlighted lines and marks represent scenarios which have a minimum average delay for a certain hour. To make readers get a clear view through these bundled lines, those optimal scenarios were respectively picked and drew in Figure 6.2.

Noticing that from 9:00 to 10:00, the optimized signal timing plan "LoCwSPr 14 – 15" ("14 – 15" means the scenario 14:00 – 15:00, using the same abbreviation in the following text) provided the lowest average delay. From 10:00 to 14:00, the optimized signal timing plan "LoCwSPr 13 - 14" provided the minimal average delay. And from 14:00 to 16:00, the optimized signal timing plan "LoCS 14 – 15" was the best plan for that period. According to the results, a particular signal timing plan which could provide the lowest average delay for all 7 hours under the network level evaluation was not discovered. Besides, three optimal signal timing plans which

performed well for a certain or several hours were all based on the local optimization scenarios and did not optimize either offsets or phase sequence.

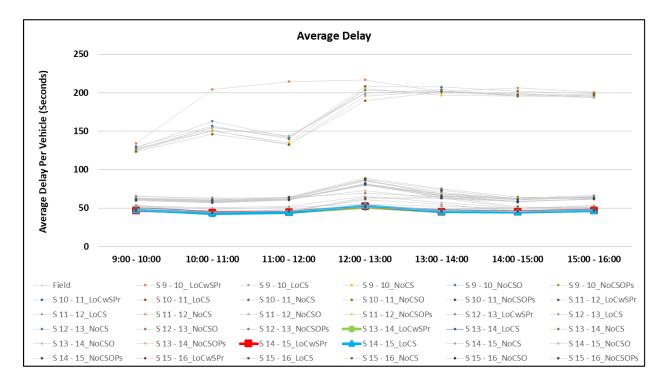


Figure 6.1 Average Delay for Network

Figure 6.2 Scenarios with the Lowest Average Delay for Each Hour

For a further investigation of which scenario performed better than the others, a rank of all 36 scenarios has been developed based on each hour's average delay value, which can be seen in Appendix B. Table 6-1 shows each hour's average delay value of 20 best scenarios where all the highlighted cells represent a minimal average delay of each hour. It is noticeable that, although no single signal timing plan provides the lowest average delay for all 7 hours, several signal timing plans generate delays which are quite close to the minimal values for each hour. This means that there might be several potential resonant signal timing plans if we introduce a certain threshold for an acceptable average delay. To explore this concept further, various thresholds were used at leveles of 3%, 5%, 10%, 15%, and 20% of the minimal average delay value for each hour. Scenarios which could provide average delay value within a certain threshold for all 7 hours were listed in Table 6-2.

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 13 - 14_LoCwSPr	48.06	42.66	43.86	50.73	45.22	44.58	46.86
2	S 14 - 15_LoCS	47.32	42.84	43.90	53.18	45.26	44.47	46.51
3	S 14 - 15_LoCwSPr	47.01	44.23	44.79	52.57	45.36	45.18	47.19
4	S 15 - 16_LoCwSPr	47.14	44.28	45.96	51.29	45.79	45.29	46.88
5	S 13 - 14_LoCS	50.32	45.79	45.33	52.74	47.80	46.73	48.74
6	S 15 - 16_LoCS	48.91	45.71	47.04	53.27	47.24	46.11	48.37
7	S 12 - 13_LoCwSPr	50.31	46.04	47.90	51.74	48.00	47.91	49.54
8	S 9 - 10_LoCS	48.57	45.05	45.84	60.89	54.91	45.78	50.16
9	S 10 - 11_LoCwSPr	52.32	43.37	45.22	62.00	63.11	49.85	49.54
10	S 11 - 12_LoCwSPr	53.74	43.63	45.61	53.81	48.42	49.76	51.09
11	S 11 - 12_LoCS	53.60	44.29	45.38	53.60	48.59	49.37	51.19
12	S 10 - 11_LoCS	50.50	44.15	45.99	63.46	64.74	51.94	50.08
13	S 12 - 13_LoCS	53.22	48.17	51.24	54.88	52.55	50.30	52.97
14	Field	52.93	50.55	52.15	65.35	57.34	49.61	53.38
15	S 13 - 14_NoCSOPs	60.12	57.75	61.72	72.49	62.01	58.63	61.26
16	S 12 - 13_NoCSO	61.57	58.07	60.68	79.84	64.37	58.69	61.88
17	S 14 - 15_NoCSOPs	59.76	57.08	60.81	80.91	66.01	57.76	62.33
18	S 15 - 16_NoCSO	60.91	59.76	61.26	81.93	63.07	58.95	62.17
19	S 9 - 10_NoCSOPs	62.53	56.91	60.24	81.78	66.49	58.76	61.89
20	S 14 - 15_NoCSO	61.49	57.48	61.48	79.51	68.74	62.90	62.42

Table 6-1 Best Scenarios of Network Average Delay

Table 6-2 Optimal Scenarios Under Different Thresholds - Average Delay

Treshold	Scenario								
3%	S 13 - 14_LoCwSPr								
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr					
10%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
10%	S 15 - 16_LoCS	S 12 - 13_LoCwSPr							
15%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
15%	S 15 - 16_LoCS	S 12 - 13_LoCwSPr	S 11 - 12_LoCwSPr	S 11 - 12_LoCS					
20%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
20%	S 15 - 16_LoCS	S 12 - 13_LoCwSPr	S 11 - 12_LoCwSPr	S 11 - 12_LoCS	S 12 - 13_LoCS				

6.1.2 Evaluation of the Average Stops

Similar to the average delay, the average stop is an index that represents the number of stops for each vehicle passing through the network. Less number of stops means better signal performance. Figure 6.3 shows the average stops (stop/vehicle) of all the 36 scenarios under the network level's evaluation. Highlighted lines and marks represent scenarios which have minimal

average stops for a certain hour. To make results more readable, highlighted scenarios from Figure 6.3 were represented in Figure 6.4.

All scenarios that provided minimal average stops value were different from those that yielded the lowest average delays. For instance, from 9:00 to 10:00 and 14:00 to 15:00, the optimized signal timing plan "NoCSOPs 14 - 15" provided the minimal average stops value. From 10:00 to 12:00, 13:00 to 14:00, and 15:00 to 16:00, the optimized signal timing plan "NoCSOPs 9 - 10" was the best plan with lowest average stops. Similarly, for the period from 12:00 to 13:00, the optimized signal timing plan "NoCSOPs 12 - 13" provided the best performance among all 36 timing plans. Similar to average network delays, due to mixed performance of developed plans, there was no absolutely best plan (one that would provide best performance throughout the study period). However, three best plans for the average stops all required network optimization of all signal timing and phasing parameters, although they were from different hours (e.g. 9:00-10:00, 12:00-13:00).

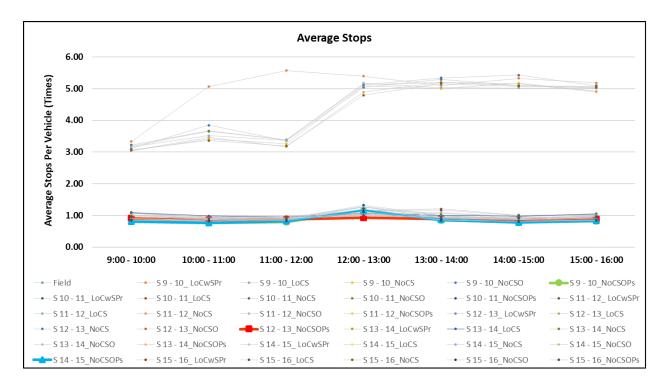


Figure 6.3 Average Stops for Network

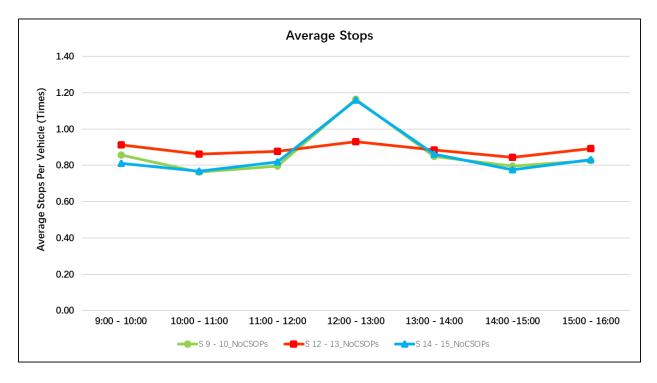


Figure 6.4 Scenarios with Lowest Average Stops for a Each Hour

Like for the average delays, a further investigation of the potential resonant signal timing plan was implemented here. A rank of all the 36 signal timing plans, based on the average stops, was shown in Appendix B. Table 6-3 shows each hour's average stops for 20 best scenarios where all of the highlighted cells represent minimal average stops for each hour. A series of thresholds were also set at 3%, 5%, 10%, 15%, and 20% of each hour's lowest average stops. All scenarios whose average stops fall within a certain threshold, for all 7 hours, were listed in Table 6-4.

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 14 - 15_NoCSOPs	0.81	0.77	0.82	1.16	0.86	0.78	0.83
2	S 9 - 10_NoCSOPs	0.86	0.76	0.80	1.16	0.85	0.80	0.83
3	S 15 - 16_NoCSO	0.85	0.82	0.83	1.13	0.85	0.81	0.85
4	S 11 - 12_NoCSOPs	0.89	0.84	0.83	1.15	0.87	0.83	0.86
5	S 15 - 16_NoCSOPs	0.86	0.82	0.85	1.20	0.87	0.82	0.84
6	S 13 - 14_NoCSOPs	0.87	0.85	0.88	1.02	0.90	0.85	0.87
7	S 12 - 13_NoCSOPs	0.91	0.86	0.88	0.93	0.89	0.84	0.89
8	S 12 - 13_NoCSO	0.91	0.82	0.83	1.18	0.89	0.83	0.88
9	S 11 - 12_NoCSO	0.90	0.84	0.84	1.15	0.91	0.85	0.89
10	S 14 - 15_NoCSO	0.90	0.83	0.84	1.08	0.91	0.88	0.91
11	S 9 - 10_NoCSO	0.90	0.82	0.84	1.27	0.92	0.84	0.90
12	S 13 - 14_NoCSO	0.91	0.86	0.88	1.26	0.94	0.87	0.90
13	S 12 - 13_ LoCwSPr	0.95	0.88	0.91	0.99	0.93	0.90	0.95
14	S 13 - 14_LoCwSPr	1.02	0.87	0.90	1.00	0.93	0.91	0.96
15	S 14 - 15_LoCS	1.01	0.89	0.90	1.02	0.92	0.90	0.96
16	S 15 - 16_ LoCwSPr	0.95	0.88	0.91	1.00	0.95	0.91	0.95
17	Field	0.93	0.90	0.91	1.05	0.95	0.89	0.92
18	S 10 - 11_NoCSOPs	0.91	0.87	0.90	1.32	1.01	0.88	0.91
19	S 15 - 16_LoCS	0.99	0.91	0.95	1.02	0.95	0.93	0.98
20	S 10 - 11_NoCSO	0.94	0.88	0.91	1.28	0.99	0.92	0.94

Table 6-3 Best Scenarios for Network Average Stops

Table 6-4 Optimal Scenarios Under Different Thresholds - Average Stops

Treshold		Scenario						
3%			NA					
5%			NA					
10%			NA					
15%	S 13 - 14_NoCSOPs	S 12 - 13_NoCSOPs						
20%	S 13 - 14_NoCSOPs	S 12 - 13_NoCSOPs	S 14 - 15_NoCSO	S 12 - 13_ LoCwSPr	S 15 - 16_ LoCwSPr			
20%	Field							

6.1.3 Evaluation of the PI Value

As described previously, PI is an index which combines total delay and total stops together to indicate how good the performance is. Since the PI value consists of delays and number of stops, a lower value of PI indicates performance improvement. Figure 6.5 shows the PI value of all the 36 scenarios under the network level evaluation. Highlighted lines and marks represent scenarios which have minimal PI value for a certain hour. Figure 6.6 only contains highlighted lines, in order to give readers a clear view of those scenarios with the best performance.

For the results shown from 9:00 to 10:00, the optimized signal timing plan "LoCwSPr 15 – 16" had the lowest PI value. From 10:00 to 14:00, the best optimized signal timing plan was "LoCwSPr 13 - 14". Also, for the remaining 2 hours, Scenario "LoCS 14 - 15" became one with minimal PI value. Similarly as previous evaluations, no single signal timing plan reached the lowest PI value for all 7 hours, when PI is considered for network evaluation. Three best signal timing plans for individual hours were close to the ones selected in average delay evaluation and did not relate to network scale optimization which considered offsets and phase parameters.

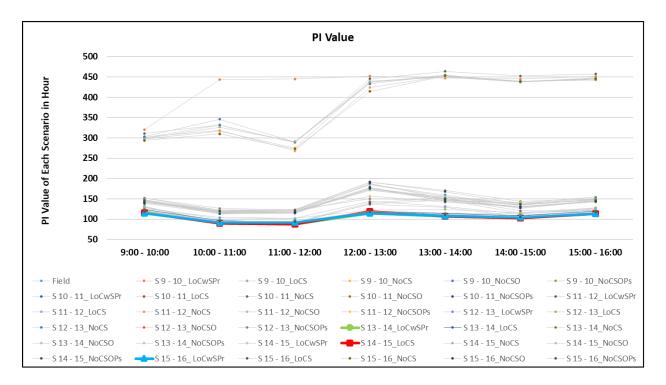


Figure 6.5 PI Values for Network

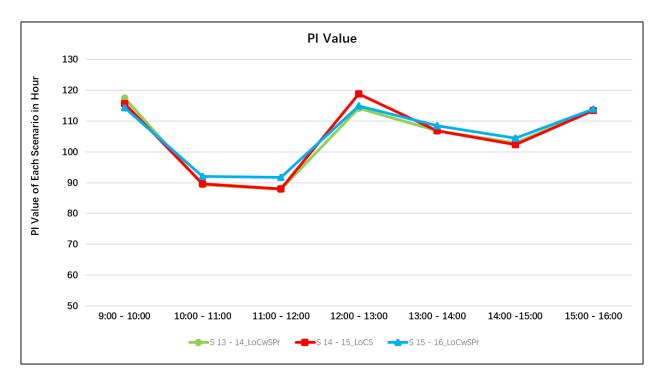
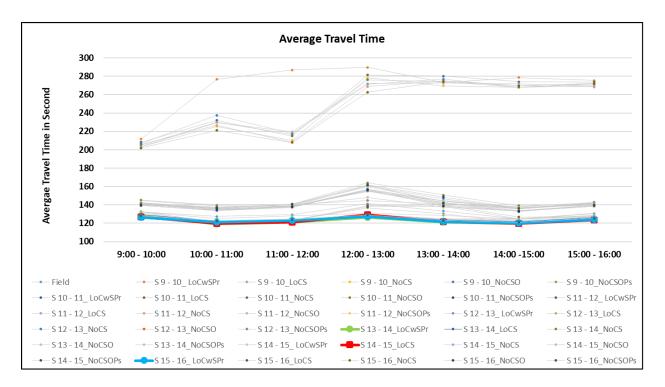


Figure 6.6 Scenarios with the Minimal PI Value for Each Hour

Although none of those 36 signal timing plans performed consistently well for all 7 hours, all scenarios were ranked to provide a clear view of which signal timing plans worked better than others (See Appendix B). Table 6-5 lists each hour's PI value of the 20 best scenarios where the highlighted cells show the lowest PI value of each hour. Similar to previous evaluations, 5 different thresholds were set at 3%, 5%, 10%, 15%, and 20% of the lowest PI value; to investigate existence of potential resonant signal timing plans. Table 6-6 indicates scenarios which consistenly provide a low PI for 7 hours within a certain threshold.

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 13 - 14_LoCwSPr	117.46	89.34	87.90	114.16	106.82	102.90	113.50
2	S 14 - 15_LoCS	115.61	89.69	88.04	118.82	106.86	102.41	113.49
3	S 14 - 15_ LoCwSPr	115.02	92.52	90.07	117.82	107.71	104.45	115.38
4	S 15 - 16_ LoCwSPr	114.33	92.05	91.75	114.90	108.51	104.42	113.91
5	S 15 - 16_LoCS	118.58	95.01	94.20	119.07	111.47	106.43	117.50
6	S 12 - 13_ LoCwSPr	121.85	95.16	95.15	115.58	112.06	109.98	118.91
7	S 13 - 14_LoCS	123.48	96.67	91.25	119.21	113.54	108.48	119.01
8	S 11 - 12_ LoCwSPr	131.37	91.34	91.31	120.85	114.13	114.46	123.82
9	S 9 - 10_LoCS	118.97	94.46	92.08	136.14	129.21	106.58	122.15
10	S 11 - 12_LoCS	131.55	93.00	91.11	120.07	114.57	113.70	124.30
11	S 10 - 11_ LoCwSPr	128.90	91.54	90.78	137.88	147.50	115.35	120.09
12	S 10 - 11_LoCS	124.16	93.45	92.24	140.90	151.69	120.32	121.24
13	S 12 - 13_LoCS	129.33	99.98	101.80	122.76	123.79	116.01	128.12
14	Field	125.78	103.84	102.07	143.54	131.54	112.90	126.40
15	S 14 - 15_NoCSOPs	138.40	113.79	115.62	175.52	149.30	127.35	143.71
16	S 13 - 14_NoCSOPs	140.28	116.92	118.25	156.72	141.46	130.38	142.86
17	S 9 - 10_NoCSOPs	144.43	113.26	114.39	176.58	149.94	129.36	142.60
18	S 12 - 13_NoCSO	144.91	115.99	115.63	173.42	146.28	130.73	145.16
19	S 15 - 16_NoCSO	141.52	119.84	117.76	178.41	143.52	130.40	144.05
20	S 14 - 15_NoCSO	143.99	115.41	117.18	171.22	154.63	141.04	145.23

Table 6-5 Best Scenarios of Network PI Value


Table 6-6 Optimal Scenarios for Under Different Thresholds - PI Value

	PI								
Treshold		Scenario							
3%	S 13 - 14_LoCwSPr								
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr					
10%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS				
10%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS							
15%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS				
15%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	S 11 - 12_ LoCwSPr						
20%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS				
20%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	S 11 - 12_LoCwSPr	S 11 - 12_LoCS	S 12 - 13_LoCS				

6.1.4 Evaluation of the Average Travel Time

Average travel time is an intuitive index that directly shows the performance of the study area, the less a vehicle spends on passing through a network, the better performance this network has. To calculate the average travel time of the whole network, total travel time including all streets and all directions was used, which could be accessed from Vehicle Network Performance Evaluation Results in PTV Vissim. By dividing that value with the total amount of vehicles within the network and arrived at destinations, the average travel time of the network could be inferred. (Figure 6.7 and 6.8)

It can be seen that from 9:00 to 10:00, the optimized signal timing plan "LoCwSPr 15 – 16" had the shortest average travel time. From 10:00 to 11:00 and 12:00 to 14:00, the best-optimized signal timing plan was one developed as "LoCwSPr 13 – 14". From 11:00 to 12:00 and 14:00 to 16:00, scenario "LoCS 14 - 15" was the best one which reached the lowest average travel time. It is noticeable that these three optimal signal timing plans were the same as the best ones found for the network level's PI value. Only slight difference occurred for the period 11:00 to 12:00, as the average travel time of scenario "LoCwSPr 13 - 14" was negligibly lower (0.13s) than the average travel time of scenario "LoCwSPr 13 - 14". Although there was still no clear resonance that was found among the signal timing plans, there are several potential resonant signal timing plans which provide the lowest PI value and may also lead to the shortest average travel time.

Figure 6.7 Average Travel Time for Network

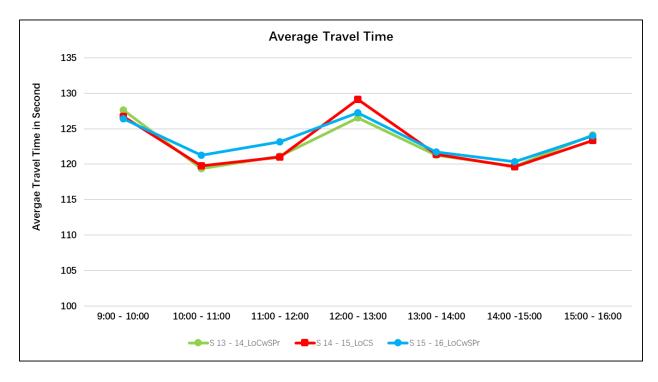


Figure 6.8 Scenarios with the Shortest Average Travel Time for Each Hour

Similar to previous evaluations, a ranking of all 36 scenarios was created to find out the which signal timing plan was relatively better than others; even when no single plan could provide robust performance over all 7 hours (See Appendix B). Table 6-7 contains each hour's average travel time of the best 20 scenarios, where the highlighted cells represent the lowest average travel times of each hour. Different levels of thresholds from 3% to 20% were set for further investigation of possible resonant signal timing plans. All scenairos which could provide the average travel time under a particular threshold were listed in Table 6-8.

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 13 - 14_LoCwSPr	127.61	119.38	121.13	126.51	121.24	119.73	124.15
2	S 14 - 15_LoCS	126.76	119.76	121.00	129.14	121.42	119.63	123.36
3	S 14 - 15_ LoCwSPr	126.52	121.17	122.02	128.60	121.64	120.19	124.21
4	S 15 - 16_ LoCwSPr	126.38	121.29	123.14	127.27	121.71	120.32	124.01
5	S 13 - 14_LoCS	129.63	122.50	122.42	128.52	123.75	121.78	125.94
6	S 15 - 16_LoCS	128.22	122.72	124.13	129.13	123.23	121.03	125.51
7	S 12 - 13_ LoCwSPr	129.49	123.02	124.86	127.84	124.24	122.56	127.04
8	S 9 - 10_LoCS	127.93	122.05	123.08	136.64	130.56	120.64	127.18
9	S 10 - 11_ LoCwSPr	131.40	119.86	122.64	137.84	138.37	124.91	126.94
10	S 11 - 12_ LoCwSPr	132.73	120.60	122.80	129.69	124.63	124.66	128.37
11	S 11 - 12_LoCS	132.52	121.25	122.66	129.58	124.73	124.33	128.38
12	S 10 - 11_LoCS	129.67	120.74	123.34	139.12	139.81	126.81	127.55
13	S 12 - 13_LoCS	132.49	125.17	128.16	130.86	128.51	124.87	130.38
14	Field	132.46	127.35	129.24	141.11	133.29	124.46	130.70
15	S 13 - 14_NoCSOPs	139.29	133.89	138.85	147.95	137.47	133.35	138.29
16	S 12 - 13_NoCSO	140.18	134.85	137.79	155.06	139.83	133.12	138.41
17	S 14 - 15_NoCSOPs	139.24	133.73	138.01	155.77	141.98	132.52	139.62
18	S 15 - 16_NoCSO	139.98	135.97	137.63	156.75	138.47	133.67	139.29
19	S 9 - 10_NoCSOPs	142.15	133.86	137.17	157.04	142.50	133.73	139.27
20	S 14 - 15_NoCSO	140.59	133.99	138.38	154.78	144.50	137.27	139.54

 Table 6-7 Best Scenarios of Network Average Travel Time

Treshold			Scenario		
3%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS
5%	S 15 - 16_LoCS				
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS
5/8	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 11 - 12_LoCS		
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS
10%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 11 - 12_ LoCwSPr	S 11 - 12_LoCS
	S 12 - 13_LoCS				
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS
15%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 10 - 11_ LoCwSPr	S 11 - 12_ LoCwSPr
	S 11 - 12_LoCS	S 12 - 13_LoCS	Field		
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS
20%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 10 - 11_ LoCwSPr	S 11 - 12_ LoCwSPr
	S 11 - 12_LoCS	S 10 - 11_LoCS	S 12 - 13_LoCS	Field	S 13 - 14_NoCSOPs

Table 6-8 Optimal Scenarios Under Different Thresholds - Average Travel Time

6.1.5 Summary Analysis

In summary, based on the results of four performance measures of the network level evaluation (average delay, average stops, PI value, and average travel time), it can be concluded that no single signal timing plan performs the best for the entire experimental period in the study network. However, two optimized signal timing plans, for "13:00 - 14:00" and "14:00 - 15:00", have appeared frequently as the signal timing plans which could provide the best performance for a certain hour in terms of: average delays, PI values, and average travel times. It is noticeable that the cycle lengths of these two signal timing plans are very similar, 132 and 133 seconds. Considering that cycle lengths are often defined in 5-second increments [5, 6, 10], one could claim that these two actually represent the same cycle length that could be defined as a resonant cycle length of the study network. However, a sole value of cycle length means is not sufficient to properly represent coordinated traffic signal operations because the split, offsets, phase sequence,

etc. are all important elements which should be also taken into consideration when setting optimal signal timings.

Several optimized signal timing plans have the potential to be identified as resonant signal timing plans if a certain performance threshold is accepted. Table 6-9 shows scenarios which consistently provide good performance for all 7 hours, for all network-level performance measures. For example, within a 3% threshold, scenario "LoCwSPr 13 – 14" can be identified as a resonant signal timing plan as it emerged as one of the best timing plans for 3 of 4 performance measures (except for average stops). For a 5% threshold, number of potential resonant signal timing plans increased to four and still not including average stops. Similarly, seven optimized signal timing plans have been identified as resonant signal timing plans under the 10% threshold; again, if the average stops are neglected. When the threshold was set as 15% of minimal value, one additional resonant signal timing plan is identified. The situation became a bit different when the threshold was increased to 20%. In that case, scenarios "LoCwSPr 12 – 13" and "LoCwSPr 15 – 16" were two signal timing plans which could be identified as resonant for all four performance measures. However, if the average stops are still excluded from consideration, there would be 10 possible resonant signal timing plans for the study network.

Generally speaking, although there was no single optimal signal timing plan that could provide the best performance for the entire 7-hour period (under network level evaluation), several signal timing plans have potential to be identified as resonant plans, when one accepts the threshold-based performance for various performance measure. In spite of the inconsistencies related to the average number of stops, signal timing plan "LoCwSPr 13 - 14" which developed for the interval between 13:00 - 14:00 could be identified as the resonant signal timing plan, as it performed better than other signal timing plans within different thresholds of 3%, 5%, 10%, 15%, and 20%. In addition, no matter how high or low the threshold is set, most of the potential resonant signal timing plans were based on local optimizations, which means that the offsets and phase sequence remained the same as those in the field. Therefore, these findings raise the question if network level evaluation, in Vistro, is suitable method for studying existence of resonant signal timing plans. As a consequence, we may need to review again results of the previous studies, which used the PI value combining the network's delay and stops, to investigate if the analyses were done appropriately.

	Average Delay								
Treshold			Scenario						
3%	S 13 - 14_LoCwSPr								
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr					
10%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
10%	S 15 - 16_LoCS	S 12 - 13_LoCwSPr							
15%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
12%	S 15 - 16_LoCS	S 12 - 13_LoCwSPr	S 11 - 12_LoCwSPr	S 11 - 12_LoCS					
20%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_LoCwSPr	S 15 - 16_LoCwSPr	S 13 - 14_LoCS				
	S 15 - 16_LoCS	S 12 - 13_LoCwSPr	S 11 - 12_LoCwSPr	S 11 - 12_LoCS	S 12 - 13_LoCS				

	Average Stops							
Treshold			Scenario					
3%			NA					
5%			NA					
10%			NA					
15%	S 13 - 14_NoCSOPs	S 12 - 13_NoCSOPs						
20%	S 13 - 14_NoCSOPs	S 13 - 14_NoCSOPs S 12 - 13_NoCSOPs S 14 - 15_NoCSO S 12 - 13_LoCwSPr S 15 - 16_LoCwSPr						
20%	Field							

			PI							
Treshold		Scenario								
3%	S 13 - 14_LoCwSPr									
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr						
10%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS					
10%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS								
15%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS					
15%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	S 11 - 12_ LoCwSPr							
20%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 15 - 16_LoCS					
20%	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	S 11 - 12_ LoCwSPr	S 11 - 12_LoCS	S 12 - 13_LoCS					

	Average Travel Time								
Treshold			Scenario						
3%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS				
3%	S 15 - 16_LoCS								
5%	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS				
378	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 11 - 12_LoCS						
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS				
10%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 11 - 12_ LoCwSPr	S 11 - 12_LoCS				
	S 12 - 13_LoCS								
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS				
15%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 10 - 11_ LoCwSPr	S 11 - 12_ LoCwSPr				
	S 11 - 12_LoCS	S 12 - 13_LoCS	Field						
	S 13 - 14_LoCwSPr	S 14 - 15_LoCS	S 14 - 15_ LoCwSPr	S 15 - 16_ LoCwSPr	S 13 - 14_LoCS				
20%	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 9 - 10_LoCS	S 10 - 11_ LoCwSPr	S 11 - 12_ LoCwSPr				
	S 11 - 12_LoCS	S 10 - 11_LoCS	S 12 - 13_LoCS	Field	S 13 - 14_NoCSOPs				

6.2 Progression Level Evaluation

To find out the right performance evaluation scale, the progression level evaluation was designed in comparison with the network level evaluation as the definition of resonant cycles mentioned that a resonant cycle should provide good performance for the two-way progression. The performance measures used in this evaluation were similar to network level evaluation but only the main-street through movements were taken into account. As the study network was a two-way arterial road, progression level evaluation was respectively analyzed the performance of average delay, average stops, PI value, and average travel time for eastbound and westbound.

6.2.1 Evaluation of the Average Delay

Figure 6.9 shows the average delay (sec/veh) of eastbound progression and Figure 6.10 shows the average delay (sec/veh) of westbound progression. Same as network level evaluations, all highlighted lines and markers represent scenarios which have a minimum average delay for a certain hour. Contrary to network level evaluation, performance between each scenario provides more distinctive results (as seen in Figure 6.9).

For eastbound progression, the optimized signal timing plan "NoCSOPs 13 - 14" was the best one for the period from 9:00 to 10:00. From 10:00 to 11:00, "NoCSOPs 14 - 15" became the best signal timing plan. Then from 11:00 to 12:00, the signal timing plan which provided the lowest average delay for eastbound progression was "NoCSOPs 9 - 10". Finally, the optimized signal timing plan "NoCSOPs 12 - 13" dominantly acted as the best plan for the rest of hours (from 12:00 to 16:00).

The results are different when it comes to the westbound direction. From 9:00 to 10:00, 11:00 to 12:00, and 13:00 to 14:00, the optimized signal timing plan "NoCSOPs 9 – 10" consistently provided the lowest average delay for those 3 hours. Then from 10:00 to 11:00 and 14:00 to 15:00, the best signal timing plan was one for "NoCSOPs 14 - 15". For the period 12:00 to 13:00, scenario "NoCSO 11 - 12" was the best one and for the period from 13:00 to 14:00, scenario developed for the same hours "NoCSO 13 - 14" was better than all other signal timing plans.

It can be concluded that none of these 36 signal timing plans consistently perform best for all 7 hours, when average delay for progressed movements for either eastbound or westbound direction. All of the best signal timing plans for eastbound were based on optimization of all signal timings and phasing and scenario "NoCSOPs 12 - 13" which developed for period between 12:00 – 13:00, can be identified as a resonant signal timing plan with the lowest average delay for 4 hours. For westbound, the optimal signal timing plan for period between 9:00 and 10:00 is identified as a resonant signal timing plan, as it performed best for a 3-hour period.

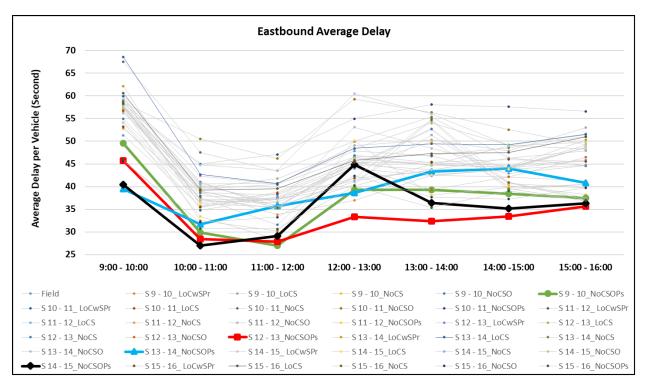


Figure 6.9 Average Delay for EB Progression

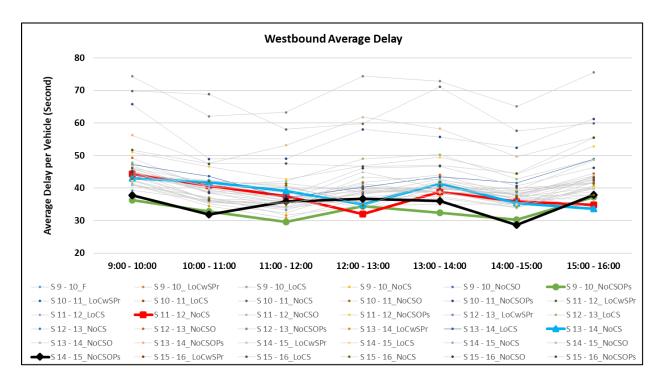


Figure 6.10 Average Delay for WB Progression

A further investigation was done to find out which signal timing plan has better performance than the other plans, and all 36 scenarios were ranked for both eastbound and westbound progressions, based on each hour's average delay (See Appendix B). Table 6-10 and Table 6-11 respectively represent the best 20 signal timing plans which provided low average delay for all 7 hours in two directions. A series of thresholds were set at 3%, 5%, 10%, 15%, and 20%, of each hour's lowest average stops, to explore if there would be a resonant signal timing plan whose performance falls within an acceptable threshold. Scenarios which result in average stops that fall within each threshold, for all 7 hours, were listed in Table 6-10 (Eastbound) and Table 6-11 (Westbound).

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 12 - 13_NoCSOPs	45.68	28.45	27.85	33.36	32.34	33.41	35.59
2	S 15 - 16_NoCSOPs	45.99	30.72	30.63	40.11	35.38	39.08	36.89
3	S 9 - 10_NoCSOPs	49.52	29.82	26.95	39.27	39.29	38.43	37.46
4	S 14 - 15_NoCSOPs	40.46	27.02	29.12	44.87	36.39	35.10	36.26
5	S 15 - 16_NoCSO	45.60	32.15	33.26	42.39	37.66	37.25	39.76
6	S 13 - 14_NoCSOPs	39.44	31.67	35.76	38.66	43.35	43.98	40.83
7	S 9 - 10_ LoCwSPr	52.82	38.63	33.85	36.96	42.46	42.15	41.27
8	S 11 - 12_NoCSOPs	54.05	33.42	28.39	50.19	38.12	39.78	40.44
9	S 12 - 13_NoCSO	57.21	32.48	30.25	44.36	39.37	42.14	46.45
10	S 12 - 13_ LoCwSPr	51.34	35.54	37.74	43.96	42.38	43.84	44.73
11	S 11 - 12_NoCS	57.46	36.91	36.42	44.41	52.60	40.63	39.68
12	S 9 - 10_NoCS	57.37	38.94	35.86	44.55	49.95	40.24	38.25
13	S 14 - 15_LoCS	57.43	36.28	35.44	45.61	42.58	43.80	48.63
14	S 13 - 14_NoCS	59.20	41.06	35.10	40.38	54.57	39.61	36.85
15	S 10 - 11_LoCS	56.65	37.95	37.25	40.13	44.86	44.20	48.59
16	S 15 - 16_NoCS	58.76	39.06	35.35	41.85	54.85	40.91	37.10
17	S 14 - 15_ LoCwSPr	54.22	36.52	37.14	44.81	43.71	44.12	49.17
18	S 9 - 10_NoCSO	54.94	37.51	31.55	46.91	45.31	44.64	45.85
19	S 11 - 12_LoCS	57.54	37.08	37.26	41.31	43.68	46.25	47.90
20	S 14 - 15_NoCS	59.22	40.74	35.67	41.11	51.38	40.93	37.46

Table 6-10 Best Scenarios of EB Progression - Average Delay

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 9 - 10_NoCSOPs	36.35	32.79	29.58	34.49	32.44	30.26	37.25
2	S 14 - 15_NoCSOPs	37.74	31.90	35.88	36.68	36.03	28.61	37.86
3	S 9 - 10_ LoCwSPr	40.96	37.14	31.62	34.65	35.00	35.19	38.13
4	S 13 - 14_LoCwSPr	41.02	34.45	30.82	37.08	37.48	34.16	40.62
5	S 11 - 12_NoCSO	41.37	35.92	33.88	36.61	36.92	33.95	39.98
6	S 13 - 14_NoCSO	40.90	35.52	35.35	35.92	38.65	35.30	39.76
7	S 14 - 15_LoCS	42.35	35.18	32.34	39.55	38.82	34.88	40.13
8	S 12 - 13_ LoCwSPr	39.29	36.28	33.26	38.93	39.11	37.19	40.14
9	S 9 - 10_NoCSO	42.26	35.76	34.15	38.64	39.05	34.40	43.71
10	S 10 - 11_NoCSO	42.39	36.79	34.24	37.21	39.15	35.04	41.78
11	S 11 - 12_NoCS	44.37	40.75	37.50	32.07	38.90	35.84	34.82
12	S 13 - 14_NoCS	43.08	41.76	39.17	34.99	41.46	35.34	33.67
13	S 12 - 13_NoCS	44.85	40.60	38.71	33.79	40.44	37.86	34.04
14	S 15 - 16_ LoCwSPr	44.17	36.30	35.02	39.82	39.90	37.25	43.33
15	S 15 - 16_LoCS	45.30	36.15	35.56	38.16	40.77	36.66	42.49
16	S 11 - 12_ LoCwSPr	43.55	36.64	36.12	40.60	38.16	38.98	42.67
17	S 9 - 10_NoCS	43.84	42.40	40.43	35.57	42.27	36.50	36.83
18	S 15 - 16_NoCS	42.87	42.10	40.85	34.71	41.79	37.70	37.90
19	S 14 - 15_NoCS	44.82	40.73	40.22	35.71	41.66	36.57	38.87
20	Field	46.14	38.39	35.51	41.40	38.64	38.49	41.42

Table 6-11 Best Scenarios of WB Progression - Average Delay

Table 6-12 Optimal Scenarios for Different Thresholds - EB Average Delay

Treshold	Scenario
3%	NA
5%	NA
10%	NA
15%	NA
20%	S 12 - 13_NoCSOPs

Table 6-13 Optimal Scenarios for Different Thresholds - WB Average Delay

Treshold	Scenario				
3%	NA				
5%	NA				
10%	NA				
15%	S 9 - 10_NoCSOPs	S 11 - 12_NoCSO			

6.2.2 Evaluation of the Average Stops

Figure 6.11 and 6.12 respectively show all scenarios simulation results of average stops (veh/stop) for eastbound and westbound direction for under the progression level evaluation.

It is noticeable for the eastbound direction, that the signal timing plan "NoCSOPs 14 - 15" was the best one for period between 9:00 and 10:00. From 10:00 to 11:00 and 15:00 to 16:00, the plan "NoCSOPs 15 - 16" which developed for 15:00 - 16:00 yielded minimum average stops. From 11:00 to 12:00, the best signal timing plan was "NoCSOPs 11 - 12", which is expected. Finally, for the remaining 3 hours from 12:00 to 15:00, the optimal plan, whose average stops were lowest among all 36 plans, was the one "NoCSOPs 12 - 13".

The results became more distinctive for westbound direction, as only two plans stood out. From 9:00 to 10:00 and 14:00 to 16:00, the best signal timing plan was one "NoCSOPs 14 - 15" which developed for 14:00 - 15:00, whereas from 10:00 to 14:00, the plan developed "NoCSOPs 9 - 10" performed better than other signal timing plans.

In general, there was still no single timing plan that could provide the minimal average stops for all 7 hours, for both directions. One thing that should be noted is that all of the best signal timing plans for eastbound and westbound directions were obtained when all of the signal timing and phasing parameters were optimized. Similar to the results from average delay analysis, a plan developed for period between 12:00 - 13:00 ("NoCSOPs 12 - 13") has potential to be identified as a resonant signal timing plan for eastbound progression as it consistently provides the lowest average delay for 3 hours. Similarly, a plan developed for "9:00 – 10:00" scenario ("NoCSOPs 9 – 10"), is the one identified as resonant plan for the westbound progression, where it was dominant for 4 hours.

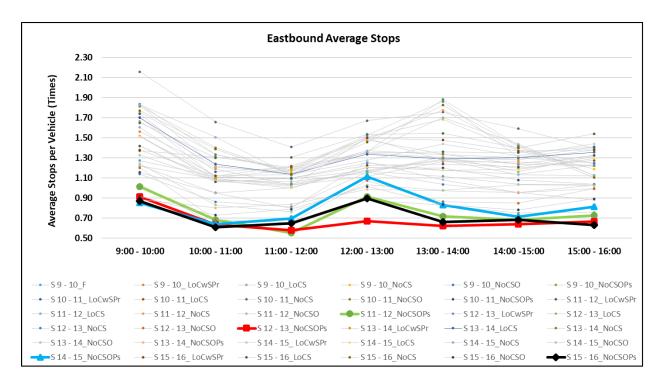


Figure 6.11 Average Stops for EB Progression

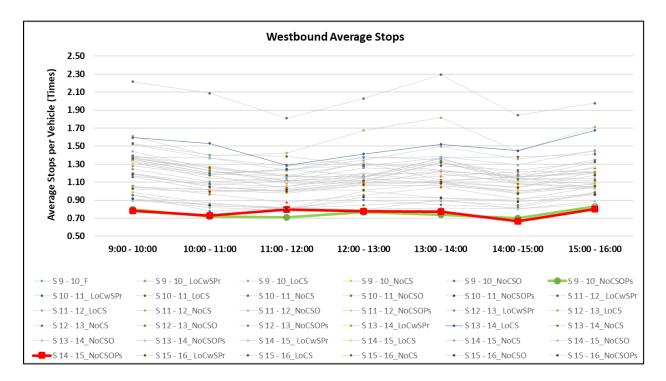


Figure 6.12 Average Stops for WB Progression

To investigate which signal timing plan could provide the best performance among all 36 scenarios for eastbound and westbound directions, such plans were ranked based on the average stops and shown in Appendix B. Table 6-14 and Table 6-15 separately listed each hour's average stops of the best 20 scenarios for two directions, where the highlighted cells represent the lowest average stops for each hour. Similarly to the previous evaluation, 5 different thresholds (3%, 5%, 10%, 15%, and 20%) were applied to the lowest average stops to investigate existence of potential resonant signal timing plan. Table 6-16 and Table 6-17 contain the signal timing plans whose average stops could fit into those thresholds for all of the 7 hours, in eastbound and westbound directions, respectively.

Davels	Connerio	0.00 10.00	10.00 11.00	11.00 12.00	12.00 12.00	12.00 14.00	14.00 15.00	15.00 16.00
Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 12 - 13_NoCSOPs	0.92	0.63	0.58	0.67	0.62	0.64	0.67
2	S 15 - 16_NoCSOPs	0.87	0.61	0.65	0.90	0.66	0.68	0.63
3	S 11 - 12_NoCSOPs	1.02	0.68	0.55	0.91	0.72	0.69	0.73
4	S 9 - 10_NoCSOPs	1.04	0.63	0.63	0.88	0.83	0.75	0.76
5	S 14 - 15_NoCSOPs	0.85	0.64	0.70	1.11	0.83	0.71	0.82
6	S 15 - 16_NoCSO	0.92	0.73	0.79	1.01	0.83	0.78	0.89
7	S 13 - 14_NoCSOPs	0.89	0.80	0.84	0.99	0.97	0.96	0.88
8	S 12 - 13_NoCSO	1.20	0.69	0.66	1.07	0.87	0.85	1.00
9	S 14 - 15_NoCSO	1.24	0.83	0.76	1.03	0.98	1.03	1.02
10	S 9 - 10_NoCSO	1.14	0.86	0.81	1.16	1.04	0.95	0.99
11	S 11 - 12_NoCSO	1.22	0.95	0.80	1.26	1.08	0.96	1.03
12	S 10 - 11_NoCSOPs	1.16	0.95	1.00	1.20	1.20	1.08	1.04
13	Field	1.22	1.09	1.04	1.17	1.12	1.04	1.04
14	S 14 - 15_LoCS	1.51	1.08	1.00	1.21	1.18	1.18	1.30
15	S 13 - 14_NoCSO	1.33	1.07	1.02	1.50	1.28	1.13	1.12
16	S 12 - 13_ LoCwSPr	1.27	1.11	1.10	1.25	1.18	1.14	1.23
17	S 10 - 11_LoCS	1.52	1.09	1.03	1.17	1.28	1.20	1.28
18	S 12 - 13_LoCS	1.42	1.08	1.06	1.15	1.31	1.16	1.32
19	S 15 - 16_LoCS	1.42	1.06	1.10	1.23	1.24	1.21	1.33
20	S 9 - 10_ LoCwSPr	1.56	1.19	1.03	1.12	1.26	1.26	1.22

 Table 6-14 Best Scenarios of EB Progression - Average Stops

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 9 - 10_NoCSOPs	0.80	0.72	0.71	0.77	0.74	0.70	0.83
2	S 14 - 15_NoCSOPs	0.78	0.73	0.80	0.78	0.77	0.67	0.80
3	S 11 - 12_NoCSO	0.91	0.82	0.79	0.80	0.81	0.80	0.86
4	S 13 - 14_NoCSO	0.89	0.86	0.82	0.79	0.91	0.80	0.89
5	S 9 - 10_NoCSO	0.96	0.78	0.81	0.90	0.85	0.82	0.98
6	S 10 - 11_NoCSO	0.96	0.84	0.81	0.85	0.89	0.84	0.99
7	S 15 - 16_NoCSO	0.92	0.85	0.81	0.94	0.93	0.88	0.96
8	S 14 - 15_NoCSO	0.99	0.87	0.81	1.00	0.92	0.90	1.05
9	S 12 - 13_NoCSO	1.06	0.97	0.88	0.96	1.04	0.92	0.97
10	S 15 - 16_NoCSOPs	1.03	0.99	1.02	1.01	1.08	0.97	1.06
11	S 11 - 12_NoCSOPs	1.05	1.01	0.98	1.07	1.06	1.00	1.08
12	S 10 - 11_NoCSOPs	1.16	1.01	1.01	1.10	1.10	0.98	1.08
13	S 13 - 14_NoCSOPs	1.04	1.02	1.06	1.14	1.08	1.01	1.04
14	S 15 - 16_ LoCwSPr	1.19	1.05	0.99	1.07	1.10	1.04	1.18
15	S 13 - 14_LoCwSPr	1.20	1.05	1.00	1.09	1.11	1.05	1.21
16	S 11 - 12_NoCS	1.37	1.23	1.09	1.09	1.22	1.08	1.04
17	S 11 - 12_ LoCwSPr	1.20	1.08	1.05	1.20	1.11	1.16	1.21
18	S 9 - 10_ LoCwSPr	1.28	1.18	1.03	1.12	1.17	1.21	1.21
19	S 12 - 13_ LoCwSPr	1.17	1.07	1.12	1.26	1.23	1.16	1.21
20	S 14 - 15_LoCS	1.33	1.14	1.11	1.20	1.19	1.11	1.27

Table 6-15 Best Scenarios of WB Progression - Average Stops

 Table 6-16 Optimal Scenarios Under Different Thresholds - EB Average Stops

Treshold	Scenario		
3%	NA		
5%	NA		
10%	S 12 - 13_NoCSOPs		
15%	S 12 - 13_NoCSOPs		
20%	S 12 - 13_NoCSOPs		

Table 6-17 Optimal Scenarios Under Different Thresholds - WB Average Stops

Treshold	Scenario				
3%	NA				
5%	NA				
10%	S 9 - 10_NoCSOPs				
15%	S 9 - 10_NoCSOPs	S 14 - 15_NoCSOPs			
20%	S 9 - 10_NoCSOPs S 14 - 15_NoCSOF				

6.2.3 Evaluation of the PI Value

The PI value was used as a combination of total delay and stops for the main street through movement vehicles. Figure 6.13 and 6.14 separately showed simulation results of PI value for eastbound progression and westbound progression.

Apparently, for eastbound progression, between 9:00 and 10:00 the signal timing plan "NoCSOPs 13 – 14" performed as the best one. From 10:00 to 11:00, "NoCSOPs 14 – 15" was the signal timing plan which provided the lowest PI value. For the hour from 11:00 to 12:00, the optimal signal timing plan became "Scenario 9:00 – 10:00, network optimization of the cycle length, split, offsets, and phase sequence". Finally, the scenario "NoCSOPs 12 – 13" kept being the best one for the remaining four hours from 12:00 to 16:00.

For westbound direction, the signal timing plan "NoCSOPs 9 - 10" dominated the hours 9:00 to 10:00, 11:00 to 12:00, and 13:00 to 14:00. During periods between 10:00 and 11:00 as well as 14:00 to 15:00, "NoCSOPs 14 - 15" performed better than any other signal timing plan. The plan developed for "11:00 – 12:00" which used network optimization of the cycle length and split owned the lowest PI value during 11:00 to 12:00. For the last hour from 15:00 to 16:00, the optimal scenario became to "NoCS 13 – 14".

Compared with the results of average delay evaluation, it can be concluded that these two kinds of evaluations have the same pattern in results. Although there was no signal timing plan constantly offering the lowest PI value for the whole 7 hours in either eastbound or westbound, . All of the best signal timing plans for eastbound were based on optimization of all signal timings and phasing and one developed for period between "12:00 – 13:00", can be identified as a resonant signal timing plan with the lowest average delay for 4 hours. For westbound, the optimal signal

timing plan for period between 9:00 and 10:00 which also optimized all signal timings and phasing parameters is identified as a resonant signal timing plan, as it performed best for a 3-hour period.

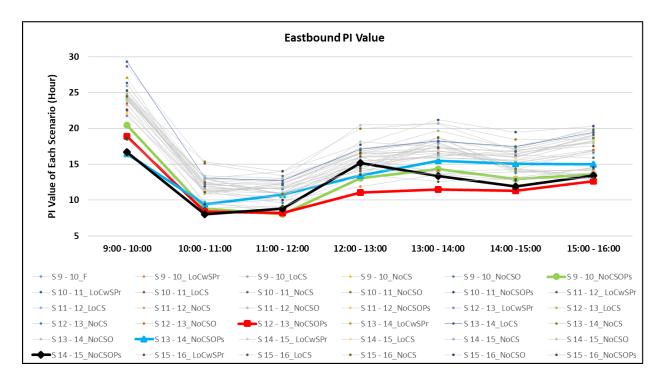


Figure 6.13 PI Value for EB Progression

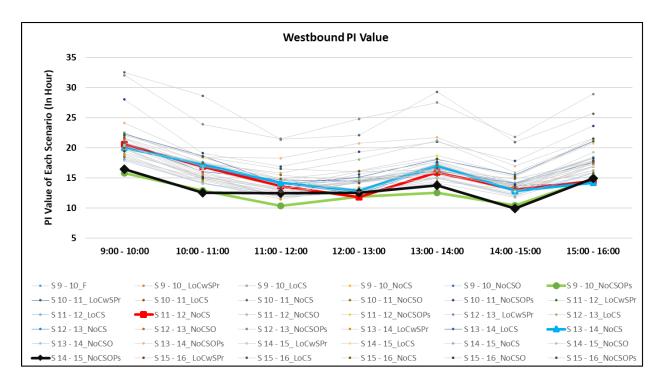


Figure 6.14 PI Value for WB Progression

In spite of the fact that the results of PI value evaluation for both directions have the same pattern as the results of average delay evaluation, ranking all signal timing plans individually for eastbound and westbound is still needed to find out which signal timing plan could provide the best performance among all 36 scenarios (See Appendix B). Table 6-18 represented the best 20 scenarios for eastbound progression which owned low PI value during all 7 hours while Table 6-19 was presented for the westbound. All highlighted cells illustrated the lowest PI value for each hour. Different thresholds were also set for each bound at 3%, 5%, 10%, 15%, and 20% of each hour's lowest PI value to explore the potential resonant signal timing plan. Scenarios which owned the PI value that fall within each threshold for all the study period were listed in Table 6-20 (Eastbound) and Table 6-21 (Westbound).

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 12 - 13 NoCSOPs	18.87	8.37	8.21	11.04	11.46	11.30	12.64
2	S 15 - 16 NoCSOPs	18.46	8.93	9.09	13.56	12.59	12.96	13.05
3	S 9 - 10 NoCSOPs	20.44	8.81	8.01	13.07	14.31	12.94	13.62
4	S 14 - 15 NoCSOPs	16.71	8.05	8.82	15.17	13.38	11.89	13.40
5	S 15 - 16_NoCSO	18.61	9.44	10.05	14.43	13.58	12.76	14.58
6	S 9 - 10_ LoCwSPr	21.78	11.46	9.91	11.90	13.59	13.96	14.26
7	S 13 - 14_NoCSOPs	16.48	9.41	10.78	13.41	15.49	15.06	15.03
8	S 11 - 12_NoCSOPs	22.18	9.78	8.26	15.97	13.84	13.16	14.49
9	S 12 - 13_NoCSO	23.48	9.47	8.99	15.16	14.14	14.27	17.02
10	S 9 - 10_NoCSO	22.65	11.20	9.58	15.93	16.57	15.26	16.78
11	S 12 - 13_ LoCwSPr	21.76	11.16	11.78	15.53	15.86	15.49	17.03
12	S 9 - 10_NoCS	23.94	12.40	10.95	14.70	17.45	14.10	13.67
13	S 11 - 12_NoCS	24.22	11.88	10.89	14.73	17.99	14.24	14.15
14	S 13 - 14_NoCS	24.62	12.99	10.72	13.43	18.74	14.07	13.16
15	S 14 - 15_NoCS	24.78	13.03	10.80	13.70	17.79	14.36	13.31
16	S 14 - 15_NoCSO	24.00	10.90	10.46	15.46	16.08	16.96	18.07
17	S 12 - 13_NoCS	24.34	12.22	11.53	14.97	18.01	13.80	14.38
18	S 15 - 16_NoCS	24.49	12.51	10.89	14.22	18.71	14.37	13.05
19	S 10 - 11_LoCS	24.42	11.55	11.64	14.00	16.50	16.10	18.31
20	S 11 - 12_NoCSO	23.24	12.03	10.86	18.15	17.43	15.13	16.88

Table 6-18 Best Scenarios of EB Progression - PI Value

Table 6-19 Best Scenarios of WB Progression - PI Value

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 9 - 10_NoCSOPs	15.81	12.91	10.35	11.91	12.51	10.46	14.83
2	S 14 - 15_NoCSOPs	16.47	12.57	12.45	12.51	13.80	9.92	14.96
3	S 11 - 12_NoCSO	18.11	14.12	11.87	12.56	14.16	11.76	15.87
4	S 13 - 14_NoCSO	17.88	14.09	12.38	12.34	14.98	12.17	15.87
5	S 10 - 11_NoCSO	18.58	14.50	12.02	12.82	15.10	12.20	16.85
6	S 9 - 10_NoCSO	18.48	14.07	11.94	13.39	14.96	11.91	17.51
7	S 13 - 14_LoCwSPr	18.88	14.27	11.47	13.34	15.12	12.41	17.00
8	S 9 - 10_ LoCwSPr	18.99	15.54	11.75	12.72	14.48	13.05	16.25
9	S 14 - 15_LoCS	19.76	14.78	12.16	14.26	15.88	12.76	16.94
10	S 12 - 13_ LoCwSPr	18.15	14.98	12.44	14.29	16.02	13.49	16.89
11	S 11 - 12_NoCS	20.55	16.89	13.66	11.82	15.96	13.01	14.53
12	S 15 - 16_ LoCwSPr	19.95	14.87	12.68	14.14	15.82	13.37	17.75
13	S 13 - 14_NoCS	20.03	17.28	14.20	12.84	17.14	12.81	14.20
14	S 12 - 13_NoCS	20.78	16.86	14.08	12.39	16.79	13.71	14.26
15	S 11 - 12_ LoCwSPr	19.73	15.17	13.10	14.61	15.41	14.00	17.76
16	S 14 - 15_NoCSO	20.59	15.04	12.07	14.87	16.36	13.61	19.25
17	S 15 - 16_NoCS	19.93	17.45	14.87	12.65	17.13	13.68	15.82
18	S 9 - 10_NoCS	20.37	17.58	14.71	13.03	17.48	13.21	15.35
19	Field	20.91	15.72	13.18	15.13	15.60	13.89	17.27
20	S 12 - 13_NoCSO	21.39	15.98	12.82	14.44	17.08	13.09	17.60

Treshold	Scenario				
3%	NA				
5%	NA				
10%	NA				
15%	S 12 - 13_NoCSOPs				
20%	S 12 - 13_NoCSOPs				

Table 6-20 Optimal Scenarios Under Different Thresholds - EB PI Value

Table 6-21 Optimal Scenarios Under Different Thresholds - WB PI Value

Treshold	Scenario					
3%	N	NA				
5%	NA					
10%	S 9 - 10_	NoCSOPs				
15%	S 9 - 10_	NoCSOPs				
20%	S 9 - 10_NoCSOPs	S 11 - 12_NoCSO				

6.2.4 Evaluation of the Average Travel Time

As mentioned before, the average travel time for the progression level evaluation was directly accessed from the PTV Vissim simulation results list. It measured the average time a vehicle spends on traveling from the first intersection to the last one. Figure 6.15 shows the results of eastbound progression average travel time evaluation while Figure 6.16 is for westbound progression.

It is noticeable for the eastbound direction, the optimal signal timing plan during 9:00 to 11:00 was "NoCSOPs 13 – 14". From 11:00 to 12:00, the best one still developed for "13:00– 14:00", but the optimization methodology changed to network optimization of the cycle length and split. The signal timing plan "NoCS 15 - 16" yielded the shortest average travel time for the

period 12:00 to 13:00 and 15:00 to 16:00. And for the remaining two hours from 13:00 to 15:00, scenario "NoCSOPs 14 - 15" performed better than any other.

The situation was much more complex for westbound progression. It is observed that for each hour, there was a particular optimal signal timing plan and none of them was the same. From 9:00 to 10:00, the best one was "LoCwSPr 12 – 13". Between 10:00 and 11:00, "LoCS 14 – 15" became the optimal one. Then for the hour 11:00 to 12:00, "LoCwSPr 13 – 14" performed better than the others. "NoCS 11– 12" yielded the lowest average travel time for from 12:00 to 13:00. During the period from 13:00 to 14:00, the best signal timing plan was still developed for "11:00 – 12:00", but the optimization methodology was local optimization for cycle length and split. Throughout the hour between 14:00 and 15:00, scenario developed for "9:00 – 10:00" which used local optimization for cycle length with increasing split proportionally provided the lowest average travel time. And for the last hour from 15:00 to 16:00, the signal timing plan "NoCS 13 – 14" was the best one among all 36 signal timing plans.

In common with previous evaluations, there was no single scenario for both eastbound and westbound to provide the shortest average travel time throughout all 7 hours. All the best signal timing plans for eastbound progression were based on network optimization 2 hours was the longest period a single signal timing plan could perform as the best. For westbound progression, there was no apparent regulation of the optimal signal timing plans as they discretely distributed in different scenarios and optimization types.

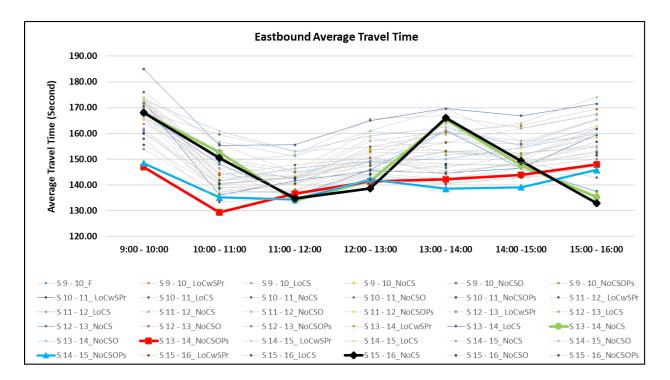


Figure 6.15 Average Travel Time for EB Progression

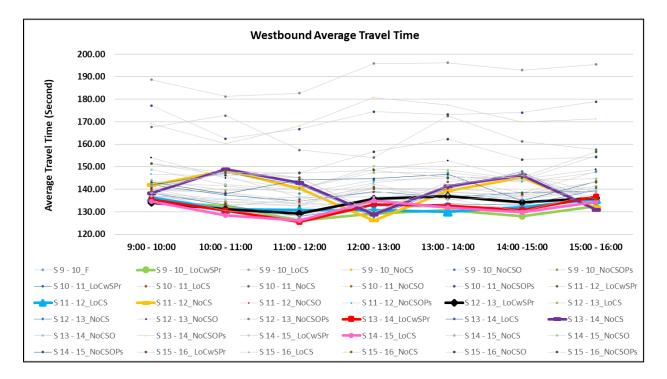


Figure 6.16 Average Travel Time for WB Progression

Although none of those 36 signal timing plans performed consistently well for all 7 hours, all scenarios were ranked to provide a clear view of which signal timing plans worked better than others by providing a shorter average travel time (See Appendix B). Table 6-22 and Table 6-23 independently shows the 20 optimal scenarios for eastbound and westbound based on the average travel time evaluation. All the highlighted cells represented the minimal average travel time for each hour. Similar to previous evaluation, 5 different level of thresholds from 3% to 20% of each hour's lowest average travel time were designed for the exploration of potential resonant signal timing plans. Scenarios which consistenly provide average travel time within a certain threshold were listed in Table 6-24 for eastbound and Table 6-25 for westbound.

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 14 - 15_NoCSOPs	148.42	135.11	134.42	142.15	138.57	139.14	145.81
2	S 13 - 14_NoCSOPs	146.87	129.44	136.56	141.44	142.28	143.98	147.92
3	S 15 - 16_ LoCwSPr	157.92	133.37	134.97	142.00	140.40	142.89	147.45
4	Field	160.53	138.47	136.61	144.11	140.59	142.84	145.11
5	S 12 - 13_NoCSOPs	153.92	136.52	137.64	144.55	142.32	146.50	150.05
6	S 15 - 16_NoCSOPs	155.57	138.70	140.58	145.93	144.43	148.64	152.48
7	S 15 - 16_NoCSO	159.90	140.59	142.64	144.10	147.63	148.15	151.45
8	S 12 - 13_ LoCwSPr	161.75	137.20	137.78	149.34	145.27	147.80	153.13
9	S 9 - 10_NoCS	165.86	151.92	134.76	143.85	160.94	147.18	136.09
10	S 11 - 12_NoCS	166.66	146.26	134.35	146.12	163.84	147.56	137.21
11	S 12 - 13_NoCS	167.73	148.00	135.85	145.78	161.30	146.36	137.59
12	S 14 - 15_ LoCwSPr	165.70	137.29	140.84	151.15	143.75	148.74	155.07
13	S 10 - 11_ LoCwSPr	172.17	136.05	141.69	145.54	144.72	146.52	159.59
14	S 13 - 14_NoCS	167.84	152.62	133.90	141.61	165.44	147.62	135.32
15	S 10 - 11_NoCSOPs	161.49	140.50	142.83	148.81	148.16	147.62	156.75
16	S 14 - 15_NoCS	168.60	153.25	134.33	141.09	161.44	148.85	133.72
17	S 15 - 16_NoCS	168.05	150.45	134.74	138.67	166.03	149.26	132.97
18	S 9 - 10_NoCSOPs	167.53	139.11	138.26	145.87	151.74	152.19	155.26
19	S 11 - 12_NoCSOPs	165.40	144.52	140.16	152.46	152.63	151.37	158.51
20	S 11 - 12_ LoCwSPr	169.41	140.11	143.09	149.13	146.61	151.51	159.26

Table 6-22 Best Scenarios of EB Progression - Average Travel Time

Rank	Scenario	9:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 -15:00	15:00 - 16:00
1	S 9 - 10_ LoCwSPr	134.57	132.42	126.16	129.29	130.68	128.03	132.51
2	S 14 - 15_LoCS	134.71	128.41	126.16	134.99	131.98	129.75	134.34
3	S 11 - 12_LoCS	136.28	131.11	130.70	130.69	130.01	132.15	135.66
4	S 13 - 14_LoCwSPr	135.30	130.61	125.58	133.31	132.72	130.82	136.77
5	S 9 - 10_LoCS	136.35	131.16	127.19	131.05	133.57	129.39	135.93
6	S 10 - 11_LoCS	137.26	134.47	133.86	132.65	131.68	130.35	133.74
7	Field	136.83	131.60	131.36	135.74	132.18	132.16	136.06
8	S 15 - 16_LoCS	138.64	130.38	128.14	134.15	135.95	130.26	138.19
9	S 12 - 13_ LoCwSPr	134.11	131.10	129.16	135.88	136.87	134.24	136.08
10	S 13 - 14_LoCS	138.45	133.05	127.97	132.57	133.56	132.90	139.47
11	S 10 - 11_NoCSO	136.63	134.36	132.75	134.69	136.87	133.24	136.81
12	S 13 - 14_NoCSO	137.03	135.21	136.47	136.57	137.77	135.63	139.19
13	S 14 - 15_ LoCwSPr	138.46	135.75	133.38	142.21	135.29	136.73	139.57
14	S 11 - 12_ LoCwSPr	139.63	132.35	135.53	140.94	136.07	137.37	140.57
15	S 13 - 14_NoCS	138.29	148.89	142.95	128.73	141.43	146.25	131.02
16	S 11 - 12_NoCSO	140.07	138.86	134.75	138.63	138.72	136.69	139.38
17	S 11 - 12_NoCS	141.73	148.37	140.34	126.16	139.26	145.28	131.65
18	S 10 - 11_LoCwSPr	142.12	137.51	134.64	138.91	136.38	138.50	139.17
19	S 15 - 16_ LoCwSPr	140.56	133.41	132.72	140.29	140.54	137.93	143.20
20	S 9 - 10_NoCSOPs	139.77	138.30	133.45	140.64	138.87	137.40	141.37

Table 6-23 Best Scenarios of WB Progression - Average Travel Time

 Table 6-24 Optimal Scenarios Under Different Thresholds - EB Average Travel Time

Threshold	Scenario				
3%	NA				
5%	NA				
10%	S 14 - 15_NoCSOPs	Field			
15%	S 14 - 15_NoCSOPs	S 13 - 14_NoCSOPs	S 15 - 16_ LoCwSPr	Field	S 12 - 13_NoCSOPs
13%	S 15 - 16_NoCSOPs	S 15 - 16_NoCSO			
	S 14 - 15_NoCSOPs	S 13 - 14_NoCSOPs	S 15 - 16_ LoCwSPr	Field	S 12 - 13_NoCSOPs
20%	S 15 - 16_NoCSOPs	S 15 - 16_NoCSO	S 12 - 13_ LoCwSPr	S 9 - 10_NoCS	S 11 - 12_NoCS
	S 12 - 13_NoCS	S 14 - 15_ LoCwSPr			

Table 6-25 Optimal Scenarios Under Different Thresholds - WB Average Travel Time
--

Threshold	Scenario					
3%						
5%	S 9 - 10_ LoCwSPr	S 11 - 12_LoCS	S 9 - 10_LoCS			
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS	
10%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	
	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 11 - 12_NoCSO			
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS	
15%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	
13%	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 14 - 15_ LoCwSPr	S 11 - 12_ LoCwSPr	S 11 - 12_NoCSO	
	S 10 - 11_LoCwSPr	S 15 - 16_ LoCwSPr	S 9 - 10_NoCSOPs			
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS	
20%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS	
20%	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 14 - 15_ LoCwSPr	S 11 - 12_ LoCwSPr	S 13 - 14_NoCS	
	S 11 - 12_NoCSO	S 11 - 12_NoCS	S 10 - 11_LoCwSPr	S 15 - 16_ LoCwSPr	S 9 - 10_NoCSOPs	

6.2.5 Summary Analysis

In summary, although there was no a single signal timing plan (which could be identified as a resonant plan because it performed as the best one for all of the 7 hours) the optimal signal timing plans developed for progressed movements (under all performance measures, except average stops) were significantly distinctive from those that were optimal on the network level. While the potential resonant signal timing plans for network level were all based on local optimizations (does not include optimization of offsets and phase sequence), for the analysis for progression movements show that all of the plans identified as resonant benefit from network optimization.

According to the results of the evaluations of average delays, stops, and PI values, the signal timing plan developed for period between 12:00 - 13:00 (when all signal timing and phasing parameters are optimized) provided consistently best performance for 3 or 4 hours under those performance measures. However, that signal timing plan was not identified as resonant for average travel times as the results show that no signal timing plan performed as the best for more than 2 hours. For westbound progression, the best signal timing plan was one developed for period between 9:00 - 10:00, when again all of the signal timing and phasing parameters were optimized. This plan was the best in terms of average delays, average stops, and PI values and it provided consistent performance for more than 3 hours. Similar to eastbound progression, this resonant signal timing plan (for other performance measures) failed to prove its resonance in terms of the average travel times.

Potential resonant signal timing plans were found under all of the proposed thresholds. Table 6-26 shows scenarios which provided resonantly good performance for all of the 7 hours and for each of the progression level performance measures. It can be concluded that within a 3% or a 5% threshold, there is no emerging resonant signal timing plan, either for eastbound or westbound direction. When the threshold increases to 10%, two different signal timing plans (one for eastbound, the other for westbound) provide best performance in terms of average stops during all study periods but failed to emerge as resonant in terms of other performance measures. Signal timing plan developed for period between 12:00 - 13:00 ("NoCSOPs 12 - 13"), was found to be resonant for eastbound progression when the thresholds are 15% and 20%. For westbound progression, signal timing plan developed for period between 9:00 - 10:00, when all signal timing and phasing parameters were optimized, is found to be resonant under thresholds of 15% and 20%. Finally signal timing plan developed for period between 11:00 - 12:00 ("NoCSO 11 - 12"), has resonance for a 20% threshold. Although there are many signal timing plans who appeared to be resonant in terms of the average travel times, those were not found to be even near resonant for other types of performance measure, which means that average travel time does not work consistently with other investigated measures.

Table 6-26 Resonant Signal Timing Plans for Different Thresholds – Progression

EB Average Delay				
Treshold	Scenario			
3%	NA			
5%	NA			
10%	NA			
15%	NA			
20%	S 12 - 13_NoCSOPs			

EB Average Stops				
Treshold	Scenario			
3%	NA			
5%	NA			
10%	S 12 - 13_NoCSOPs			
15%	S 12 - 13_NoCSOPs			
20%	S 12 - 13_NoCSOPs			

EB PI				
Treshold	Scenario			
3%	NA			
5%	NA			
10%	NA			
15%	S 12 - 13_NoCSOPs			
20%	S 12 - 13_NoCSOPs			

WB Average Delay						
Treshold	Scer	Scenario				
3%	NA					
5% NA						
10%	NA S 9 - 10_NoCSOPs					
15%						
20%	S 9 - 10 NoCSOPs S 11 - 12 NoCSO					

	WB Average Stops					
Treshold Scenario						
3%	NA					
5%	NA S 9 - 10_NoCSOPs					
10%						
15%	\$ 9 - 10_NoCSOPs \$ 14 - 15_NoCSOPs					
20%	S 9 - 10_NoCSOPs	S 14 - 15_NoCSOPs				

WB PI						
Treshold	nario					
3%	NA					
5%	NA					
10%	S 9 - 10_NoCSOPs					
15%	S 9 - 10_NoCSOPs					
20%	S 9 - 10_NoCSOPs S 11 - 12_NoCSO					

EB Average Travel Time							
Threshold	Scenario						
3%		NA					
5%		NA					
10%	S 14 - 15_NoCSOPs	Field					
15%	S 14 - 15_NoCSOPs	S 13 - 14_NoCSOPs	S 15 - 16_ LoCwSPr	Field	S 12 - 13_NoCSOPs		
13%	S 15 - 16_NoCSOPs	S 15 - 16_NoCSO					
	S 14 - 15_NoCSOPs	S 13 - 14_NoCSOPs	S 15 - 16_ LoCwSPr	Field	S 12 - 13_NoCSOPs		
20%	S 15 - 16_NoCSOPs	S 15 - 16_NoCSO	S 12 - 13_ LoCwSPr	S 9 - 10_NoCS	S 11 - 12_NoCS		
	S 12 - 13_NoCS	S 14 - 15_ LoCwSPr					

WB Average Travel Time								
Threshold		Scenario						
3%		NA						
5%	S 9 - 10_ LoCwSPr	S 11 - 12_LoCS	S 9 - 10_LoCS					
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS			
10%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS			
	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 11 - 12_NoCSO					
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS			
15%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS			
15%	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 14 - 15_ LoCwSPr	S 11 - 12_ LoCwSPr	S 11 - 12_NoCSO			
	S 10 - 11_LoCwSPr	S 15 - 16_ LoCwSPr	S 9 - 10_NoCSOPs					
	S 9 - 10_ LoCwSPr	S 14 - 15_LoCS	S 11 - 12_LoCS	S 13 - 14_LoCwSPr	S 9 - 10_LoCS			
20%	S 10 - 11_LoCS	Field	S 15 - 16_LoCS	S 12 - 13_ LoCwSPr	S 13 - 14_LoCS			
20%	S 10 - 11_NoCSO	S 13 - 14_NoCSO	S 14 - 15_ LoCwSPr	S 11 - 12_ LoCwSPr	S 13 - 14_NoCS			
	S 11 - 12_NoCSO	S 11 - 12_NoCS	S 10 - 11_LoCwSPr	S 15 - 16_ LoCwSPr	S 9 - 10_NoCSOPs			

To conclude, several potential resonant signal timing plans have been found if some reasonable thresholds are applied to qualify their performance in terms of various performance measures. In spite of the fact that there was no single optimal signal timing plan that could best serve traffic demand for the entire 7-hour period (either for eastbound or westbound progression), performance of the plans in threshold analysis is encouraging. For analysis of progressed movements, the minimal threshold to define a resonant signal timing plan (for both directions) was 15%, which was much higher than the one observed when performance was evaluated on network level. This could be results of the fact that it is difficult to provide good progression, with the same signal timing plan, for both directions. Thus, a truly resonant signal timing plan (with a small threshold) for good bi-directional performance may not exist. In addition, unlike the results obtained on network level, all resonant signal timing plans for progressed movements benefited from network optimization, which took offsets and phase sequence in consideration. Thus, the progression-level evaluation which calculated each performance measure based only on the main-street through movements may be more reasonable approach to assess bi-directional nature of resonant signal timing plans, than the network-level evaluation.

7.0 Concluding Remarks

7.1 Conclusions

As mentioned before, the main objective of this research contains two aspects: 1) the verifications of previous resonant cycle studies were not rigorous especially in the way that performance measures were not selected accordingly to proclaimed goals; 2) the exploration of whether the concept of the resonant cycle should be related just to cycle length or an entire signal timing plan. The experiments have been done by building the model of the study area in different software programs. PTV Vistro was used for the optimization of the field signal timing plan while PTV Vissim was in charge of the simulation procedure to evaluate all signal timing plans. The following conclusions were drawn based on the results of this study:

- Based on the definition of progression, Guevara's [6, 10] resonant cycle study which took the PI value of the whole network as the performance measure, was not rigorous while in Shelby's [5] study, side-street delay was also taken into consideration when calculating the PI.
- The so-called "resonant cycle" should be replaced by the new concept called "resonant signal timing plan", because merely determining the value of cycle length is insufficient for the coordination of signal controllers. Parameters such as split, offsets and phase sequence must be considered at the same time.
- The optimization algorithms of PTV Vistro has some limitations, as the cycle length results of the optimizations were always the same (115 seconds) and only changed to around 200 seconds (the upper bound of the optimization) when all of the signal timing and phasing parameters were optimized.

- The results of the network-level evaluation were entirely different from the progression-level evaluation as the charts of the like performance measures never showed similar patterns. Most of the optimal signal timing plans under the network-level evaluation did not benefit from network optimization (except for the evaluation of average stops). For the progression-level evaluation, the majority of optimal signal timing plans were based on "network optimization of the cycle length, split, offsets, and phase sequence".
- None of 36 investigated signal timing plans could provide the best performance for the entire 7-hour period. However, several signal timing plans have been identified as resonant ones when their performance fits within 3% thresholds of each performance measure. Among all of the potentially resonant signal timing plans, one developed for period between "13:00 14:00", seems to be the best one.
- Similar to network-level evaluation, no signal timing plan could perform as the best/resonant for the entire 7-hour period under the progression-level evaluation, neither in eastbound nor in westbound direction. However, two optimized signal timing plans, separately performed better than others for either inbound or outbound directions. Within the thresholds of 15% and 20%, a signal timing plan developed for period between 12:00 13:00, was found to be a resonant signal timing plan for eastbound progression. Similarly, a plan developed for period between 9:00 10:00, was found to be resonant one for westbound direction.
- Network-level evaluation does not seem to be suitable for determination of resonant signal timing plans. The reason is that the delay and stops happening on the side-streets are not as important as what happens on the main street. Also, when such plans are developed in PTV Vistro, it does not seem that network-level optimization has an impact on network-level evaluation. In comparison, progression-level evaluation, which only takes the performance of

main-street through movements into account, is more appropriate for the investigation of resonant signal timing plans.

• Simulating different scenarios before determining the signal timing plan of a network during off-peak period can be used as a strategy for selecting resonant signal timing plans. One thing that should be noted is that the resonance may show distinctive patterns for different directions. This, the question is - how to balance the needs of both directions of the main street?

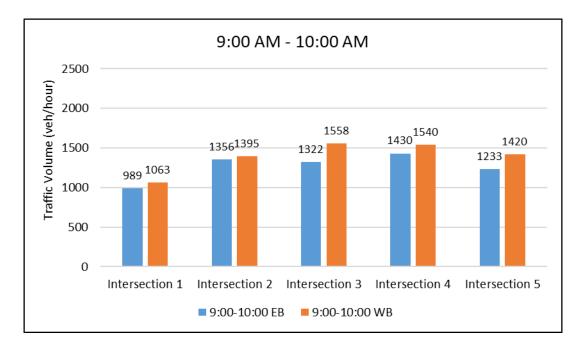
7.2 Future Studies

This research was conducted based on the field data of a realistic network. Many other important performance measures have not been tested for the resonant cycle study. Future work will mainly focus on the following aspects:

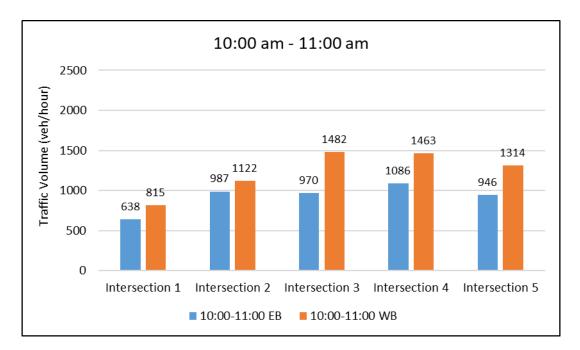
1) As recommended by Shelby et al. [5], future work can focus on building a hypothetical network with changeable parameters such as block length, travel speed, signal controller type, etc. to test whether the resonant signal timing plans exist in general conditions. If they do, the question is how such changeable parameters affect the resonant signal timing plans.

2) According to Li et al. [7], the percent of vehicles arriving on green (POG) is a good measurement for progression which better visualizes signal performance than delays and stops. Due to the lack of related software licenses, experiments related to POG have not been conducted in this study but need to be done as a future research extension.

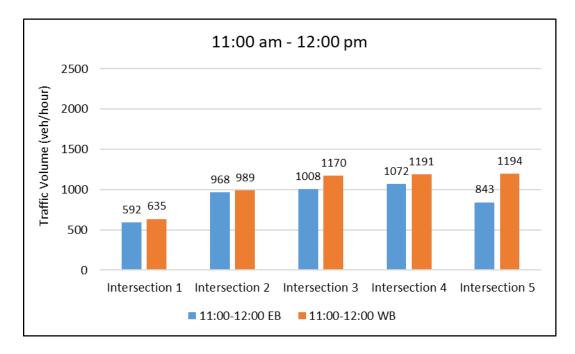
3) In this study, the partition of different scenarios was based on the time of day (TOD) split of periods, which is not the ideal approach to describe how traffic volumes may increase. This may be one of the reasons for not finding a single resonant signal timing plan. The improvement

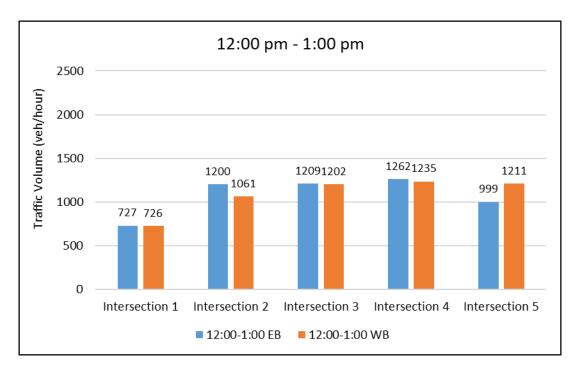

may focus on designing a gradient test set for the main-street through movements by using different percentages of the peak hour volume.

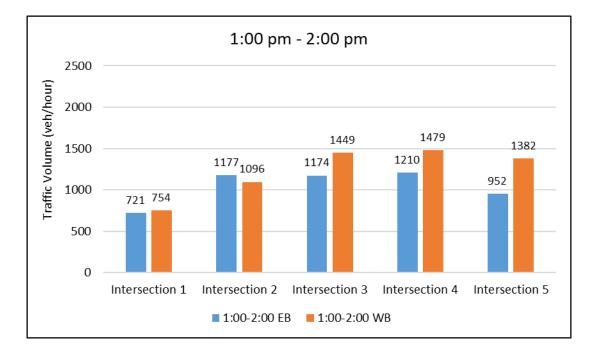
4) This research provided a potential strategy to develop guidelines for cycle lengths selection during off-peak period. As the basic methodology is to simulate various traffic conditions, more field studies should be implemented to test and verify results obtained in this study.

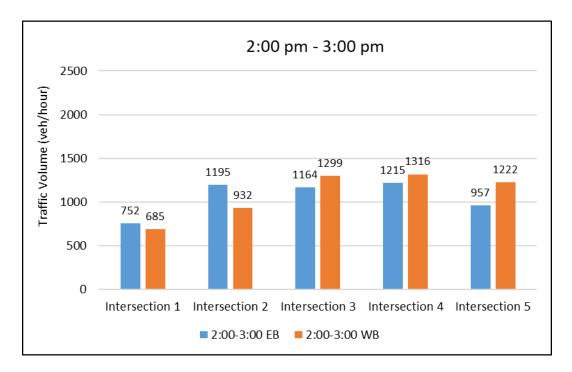

5) The PTV Vistro was used as the only signal timing optimization tool for this study regardless of some limitations in algorithms. Thereby, future work should try other optimization tools like Synchro or SimTraffic or maybe some software related to bandwidth optimization to get several optimized signal timing plans and evaluate them in PTV Vissim, as a comparison of the optimization results from PTV Vistro.

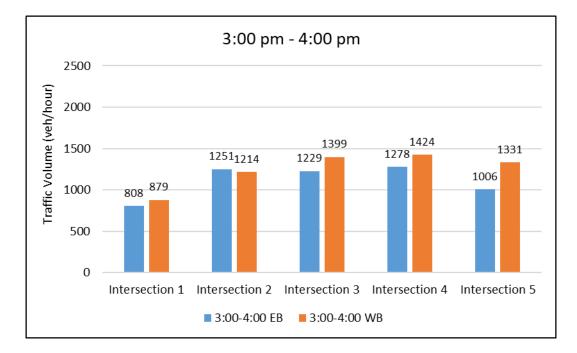
6) Due to time constraint, simulation runs were performed for limited number of random seeds. In order to obtain results that take into account randomness of vehicle arrivals, several simulations run for different random seeds should be performed. Also, calibration and validation for models should be implemented for prevent some factors from adding systematic errors in analysis.


Appendix A Through Movement Volume of Main Street


Appendix Figure 1 9:00 AM - 10:00 AM Through Movement Volume of EB & WB


Appendix Figure 2 10:00 AM - 11:00 AM Through Movement Volume of EB & WB


Appendix Figure 3 11:00 AM - 12:00 PM Through Movement Volume of EB & WB


Appendix Figure 4 12:00 PM - 1:00 PM Through Movement Volume of EB & WB

Appendix Figure 5 1:00 PM - 2:00 PM Through Movement Volume of EB & WB

Appendix Figure 6 2:00 PM - 3:00 PM Through Movement Volume of EB & WB

Appendix Figure 7 3:00 PM - 4:00 PM Through Movement Volume of EB & WB

Appendix B Ranks Under Diverse Performance Measures

. .	9:00 -	10:00	10:00 -	11:00	11:00 -	12:00	12:00 -	13:00	13:00 -	- 14:00	14:00	-15:00	15:00 -	16:00		
Scenario	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Total	Rank
S 13 - 14_LoCwSPr	48.06	4	42.66	1	43.86	1	50.73	1	45.22	1	44.58	2	46.86	2	12	1
S 14 - 15_LoCS	47.32	3	42.84	2	43.90	2	53.18	6	45.26	2	44.47	1	46.51	1	17	2
S 14 - 15_LoCwSPr	47.01	1	44.23	6	44.79	3	52.57	4	45.36	3	45.18	3	47.19	4	24	3
S 15 - 16_LoCwSPr	47.14	2	44.28	7	45.96	9	51.29	2	45.79	4	45.29	4	46.88	3	31	4
S 13 - 14_LoCS	50.32	8	45.79	11	45.33	5	52.74	5	47.80	6	46.73	7	48.74	6	48	5
S 15 - 16_LoCS	48.91	6	45.71	10	47.04	11	53.27	7	47.24	5	46.11	6	48.37	5	50	6
S 12 - 13_LoCwSPr	50.31	7	46.04	12	47.90	12	51.74	3	48.00	7	47.91	8	49.54	8	57	7
S 9 - 10_LoCS	48.57	5	45.05	9	45.84	8	60.89	11	54.91	11	45.78	5	50.16	10	59	8
S 10 - 11_LoCwSPr	52.32	10	43.37	3	45.22	4	62.00	12	63.11	15	49.85	12	49.54	7	63	9
S 11 - 12_LoCwSPr	53.74	14	43.63	4	45.61	7	53.81	9	48.42	8	49.76	11	51.09	11	64	10
S 11 - 12_LoCS	53.60	13	44.29	8	45.38	6	53.60	8	48.59	9	49.37	9	51.19	12	65	11
S 10 - 11_LoCS	50.50	9	44.15	5	45.99	10	63.46	13	64.74	17	51.94	14	50.08	9	77	12
S 12 - 13_LoCS	53.22	12	48.17	13	51.24	13	54.88	10	52.55	10	50.30	13	52.97	13	84	13
Field	52.93	11	50.55	14	52.15	14	65.35	14	57.34	12	49.61	10	53.38	14	89	14
S 13 - 14_NoCSOPs	60.12	16	57.75	18	61.72	22	72.49	16	62.01	13	58.63	16	61.26	15	116	15
S 12 - 13_NoCSO	61.57	19	58.07	19	60.68	16	79.84	18	64.37	16	58.69	17	61.88	16	121	16
S 14 - 15_NoCSOPs	59.76	15	57.08	16	60.81	17	80.91	19	66.01	20	57.76	15	62.33	19	121	17
S 15 - 16_NoCSO	60.91	17	59.76	23	61.26	18	81.93	23	63.07	14	58.95	19	62.17	18	132	18
S 9 - 10_NoCSOPs	62.53	23	56.91	15	60.24	15	81.78	22	66.49	22	58.76	18	61.89	17	132	19
S 14 - 15_NoCSO	61.49	18	57.48	17	61.48	19	79.51	17	68.74	25	62.90	26	62.42	20	142	20
S 11 - 12_NoCSO	62.30	22	58.96	21	61.54	20	81.53	21	68.35	23	61.03	23	63.93	23	153	21
S 13 - 14_NoCSO	61.90	21	59.32	22	62.82	24	84.95	24	68.51	24	60.97	21	63.82	22	158	22
S 11 - 12_NoCSOPs	65.19	27	61.74	27	61.64	21	81.12	20	65.19	19	60.62	20	64.37	25	159	23
S 15 - 16_NoCSOPs	61.86	20	60.33	25	63.45	25	86.67	26	66.33	21	61.71	24	63.30	21	162	24
S 9 - 10_NoCSO	62.54	24	58.28	20	61.97	23	85.79	25	70.54	26	61.00	22	64.66	26	166	25
S 12 - 13_NoCSOPs	65.50	28	63.32	28	63.58	26	69.56	15	64.78	18	63.29	27	66.19	28	170	26
S 10 - 11_NoCSO	62.97	25	59.97	24	64.21	28	88.86	28	75.08	28	64.37	28	64.13	24	185	27
S 10 - 11_NoCSOPs	62.99	26	61.02	26	63.64	27	87.64	27	73.03	27	61.92	25	65.20	27	185	28
S 15 - 16_NoCS	123.48	29	146.13	29	132.65	29	189.64	29	201.41	32	197.25	32	197.13	34	214	29
S 9 - 10_NoCS	125.34	31	150.11	30	135.08	31	205.50	34	196.64	29	195.65	30	194.98	31	216	30
S 11 - 12_NoCS	127.59	33	151.02	31	132.86	30	195.80	30	202.00	34	197.48	33	193.56	29	220	31
S 14 - 15_NoCS	124.77	30	154.79	32	144.08	35	199.45	32	199.83	30	199.05	34	194.66	30	223	32
S 13 - 14_NoCS	126.54	32	155.09	33	141.78	33	203.10	33	201.41	33	195.65	29	196.89	33	226	33
S 12 - 13_NoCS	128.33	34	162.96	35	142.33	34	198.86	31	203.89	35	195.76	31	196.56	32	232	34
S 10 - 11_NoCS	129.98	35	156.82	34	140.03	32	208.41	35	207.32	36	201.95	35	199.07	35	242	35
S 9 - 10_ LoCwSPr	134.33	36	204.25	36	214.64	36	216.67	36	201.07	31	206.24	36	200.54	36	247	36

Appendix Table 1 Rank of Scenarios - Network Average Delay

Connecto	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00	- 16:00	Tabal	Davida
Scenario	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Total	Rank
S 14 - 15_NoCSOPs	0.81	1	0.77	2	0.82	2	1.16	20	0.86	3	0.78	1	0.83	2	31	1
S 9 - 10_NoCSOPs	0.86	3	0.76	1	0.80	1	1.16	22	0.85	1	0.80	2	0.83	1	31	2
S 15 - 16_NoCSO	0.85	2	0.82	4	0.83	5	1.13	15	0.85	2	0.81	3	0.85	4	35	3
S 11 - 12_NoCSOPs	0.89	6	0.84	9	0.83	4	1.15	17	0.87	4	0.83	5	0.86	5	50	4
S 15 - 16_NoCSOPs	0.86	4	0.82	5	0.85	9	1.20	24	0.87	5	0.82	4	0.84	3	54	5
S 13 - 14_NoCSOPs	0.87	5	0.85	10	0.88	12	1.02	5	0.90	8	0.85	9	0.87	6	55	6
S 12 - 13_NoCSOPs	0.91	13	0.86	12	0.88	10	0.93	1	0.89	6	0.84	8	0.89	9	59	7
S 12 - 13_NoCSO	0.91	10	0.82	6	0.83	3	1.18	23	0.89	7	0.83	6	0.88	7	62	8
S 11 - 12_NoCSO	0.90	8	0.84	8	0.84	7	1.15	19	0.91	9	0.85	10	0.89	8	69	9
S 14 - 15_NoCSO	0.90	9	0.83	7	0.84	6	1.08	14	0.91	10	0.88	12	0.91	12	70	10
S 9 - 10_NoCSO	0.90	7	0.82	3	0.84	8	1.27	26	0.92	11	0.84	7	0.90	10	72	11
S 13 - 14_NoCSO	0.91	11	0.86	11	0.88	11	1.26	25	0.94	15	0.87	11	0.90	11	95	12
S 12 - 13_ LoCwSPr	0.95	17	0.88	17	0.91	17	0.99	2	0.93	13	0.90	16	0.95	16	98	13
S 13 - 14_LoCwSPr	1.02	21	0.87	14	0.90	14	1.00	3	0.93	14	0.91	18	0.96	18	102	14
S 14 - 15_LoCS	1.01	20	0.89	18	0.90	13	1.02	6	0.92	12	0.90	15	0.96	19	103	15
S 15 - 16_ LoCwSPr	0.95	16	0.88	15	0.91	19	1.00	4	0.95	16	0.91	17	0.95	17	104	16
Field	0.93	14	0.90	19	0.91	16	1.05	11	0.95	18	0.89	14	0.92	14	106	17
S 10 - 11_NoCSOPs	0.91	12	0.87	13	0.90	15	1.32	28	1.01	23	0.88	13	0.91	13	117	18
S 15 - 16_LoCS	0.99	18	0.91	20	0.95	22	1.02	7	0.95	17	0.93	21	0.98	20	125	19
S 10 - 11_NoCSO	0.94	15	0.88	16	0.91	18	1.28	27	0.99	20	0.92	19	0.94	15	130	20
S 14 - 15_ LoCwSPr	1.00	19	0.92	22	0.94	20	1.04	9	0.98	19	0.93	20	0.99	21	130	21
S 11 - 12_ LoCwSPr	1.08	24	0.91	21	0.94	21	1.05	10	0.99	21	0.99	26	1.02	23	146	22
S 11 - 12_LoCS	1.09	27	0.95	24	0.95	24	1.04	8	1.00	22	0.98	25	1.04	27	157	23
S 12 - 13_LoCS	1.07	23	0.96	25	0.97	28	1.06	12	1.06	25	0.97	23	1.06	28	164	24
S 13 - 14_LoCS	1.09	26	0.99	28	0.95	23	1.06	13	1.01	24	0.98	24	1.04	26	164	25
S 9 - 10_LoCS	1.07	22	0.96	26	0.96	25	1.16	21	1.08	26	0.96	22	1.03	25	167	26
S 10 - 11_ LoCwSPr	1.10	28	0.93	23	0.96	26	1.15	16	1.17	27	0.99	27	1.01	22	169	27
S 10 - 11_LoCS	1.08	25	0.96	27	0.96	27	1.15	18	1.21	28	1.01	28	1.03	24	177	28
S 15 - 16_NoCS	3.06	31	3.37	29	3.19	30	4.79	29	5.16	32	5.07	30	5.04	33	214	29
S 9 - 10_NoCS	3.04	29	3.41	30	3.26	31	5.08	32	5.00	29	5.17	34	4.92	30	215	30
S 11 - 12_NoCS	3.04	30	3.46	31	3.16	29	4.89	30	5.20	34	5.15	33	4.90	29	216	31
S 14 - 15_NoCS	3.16	33	3.52	32	3.37	33	5.18	35	5.03	30	5.02	29	5.01	31	223	32
S 12 - 13_NoCS	3.10	32	3.85	35	3.36	32	5.04	31	5.29	35	5.09	31	5.07	34	230	33
S 13 - 14_NoCS	3.17	34	3.65	33	3.39	35	5.12	33	5.19	33	5.10	32	5.02	32	232	34
S 10 - 11_NoCS	3.22	35	3.67	34	3.38	34	5.13	34	5.34	36	5.42	36	5.09	35	244	35
S 9 - 10_ LoCwSPr	3.33	36	5.06	36	5.57	36	5.39	36	5.10	31	5.33	35	5.18	36	246	36

Appendix Table 2 Rank of Scenarios - Network Average Stops

Appendix	Table 3	Rank	of Scenarios -	Network	PI Value
----------	---------	------	----------------	---------	----------

	9:00 -	10:00	10:00 -	· 11:00	11:00 -	12:00	12:00	- 13:00	13:00 -	- 14:00	14:00	-15:00	15:00	- 16:00		
Scenario	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	Total	Rank
S 13 - 14_LoCwSPr	117.46	4	89.34	1	87.90	1	114.16	1	106.82	1	102.90	2	113.50	2	12	1
S 14 - 15_LoCS	115.61	3	89.69	2	88.04	2	118.82	5	106.86	2	102.41	1	113.49	1	16	2
S 14 - 15_ LoCwSPr	115.02	2	92.52	6	90.07	3	117.82	4	107.71	3	104.45	4	115.38	4	26	3
S 15 - 16_ LoCwSPr	114.33	1	92.05	5	91.75	8	114.90	2	108.51	4	104.42	3	113.91	3	26	4
S 15 - 16_LoCS	118.58	5	95.01	10	94.20	11	119.07	6	111.47	5	106.43	5	117.50	5	47	5
S 12 - 13_ LoCwSPr	121.85	7	95.16	11	95.15	12	115.58	3	112.06	6	109.98	8	118.91	6	53	6
S 13 - 14_LoCS	123.48	8	96.67	12	91.25	6	119.21	7	113.54	7	108.48	7	119.01	7	54	7
S 11 - 12_ LoCwSPr	131.37	13	91.34	3	91.31	7	120.85	9	114.13	8	114.46	11	123.82	11	62	8
S 9 - 10_LoCS	118.97	6	94.46	9	92.08	9	136.14	11	129.21	11	106.58	6	122.15	10	62	9
S 11 - 12_LoCS	131.55	14	93.00	7	91.11	5	120.07	8	114.57	9	113.70	10	124.30	12	65	10
S 10 - 11_ LoCwSPr	128.90	11	91.54	4	90.78	4	137.88	12	147.50	17	115.35	12	120.09	8	68	11
S 10 - 11_LoCS	124.16	9	93.45	8	92.24	10	140.90	13	151.69	22	120.32	14	121.24	9	85	12
S 12 - 13_LoCS	129.33	12	99.98	13	101.80	13	122.76	10	123.79	10	116.01	13	128.12	14	85	13
Field	125.78	10	103.84	14	102.07	14	143.54	14	131.54	12	112.90	9	126.40	13	86	14
S 14 - 15_NoCSOPs	138.40	15	113.79	16	115.62	16	175.52	20	149.30	19	127.35	15	143.71	17	118	15
S 13 - 14_NoCSOPs	140.28	16	116.92	20	118.25	23	156.72	16	141.46	13	130.38	17	142.86	16	121	16
S 9 - 10_NoCSOPs	144.43	20	113.26	15	114.39	15	176.58	22	149.94	20	129.36	16	142.60	15	123	17
S 12 - 13_NoCSO	144.91	22	115.99	18	115.63	17	173.42	18	146.28	16	130.73	19	145.16	19	129	18
S 15 - 16_NoCSO	141.52	17	119.84	23	117.76	21	178.41	23	143.52	14	130.40	18	144.05	18	134	19
S 14 - 15_NoCSO	143.99	18	115.41	17	117.18	18	171.22	17	154.63	24	141.04	27	145.23	20	141	20
S 11 - 12_NoCSO	145.05	23	118.05	21	117.29	19	176.09	21	154.10	23	134.93	22	147.92	22	151	21
S 11 - 12_NoCSOPs	151.60	27	122.99	27	117.52	20	175.38	19	147.85	18	133.87	20	148.47	24	155	22
S 15 - 16_NoCSOPs	144.26	19	120.17	24	121.02	25	188.05	26	150.82	21	136.54	24	146.71	21	160	23
S 13 - 14_NoCSO	144.57	21	119.33	22	120.05	24	184.89	24	155.99	25	135.22	23	148.22	23	162	24
S 9 - 10_NoCSO	145.67	24	116.48	19	118.20	22	185.94	25	159.27	26	134.81	21	149.62	26	163	25
S 12 - 13_NoCSOPs	151.84	28	126.53	28	122.38	27	150.28	15	145.77	15	139.87	26	154.24	28	167	26
S 10 - 11_NoCSOPs	147.49	26	122.28	26	122.32	26	191.58	28	167.65	27	137.80	25	151.67	27	185	27
S 10 - 11_NoCSO	147.18	25	120.72	25	123.18	28	191.54	27	170.43	28	143.54	28	149.40	25	186	28
S 15 - 16_NoCS	293.76	29	310.03	29	272.88	30	414.55	29	452.83	33	439.35	33	446.02	32	215	29
S 9 - 10_NoCS	297.77	30	316.29	30	275.08	31	439.88	34	449.26	30	438.14	31	444.28	30	216	30
S 11 - 12_NoCS	301.63	33	318.45	31	268.16	29	423.99	30	452.58	32	439.50	34	442.51	29	218	31
S 13 - 14_NoCS	300.42	32	331.88	34	288.87	33	436.60	32	454.63	35	437.69	29	445.15	31	226	32
S 14 - 15_NoCS	298.11	31	326.44	32	291.14	35	438.04	33	450.61	31	439.17	32	447.33	34	228	33
S 12 - 13_NoCS	303.39	34	345.72	35	289.78	34	433.45	31	454.34	34	437.97	30	446.70	33	231	34
S 10 - 11_NoCS	311.16	35	331.63	33	288.77	32	445.58	35	464.06	36	452.66	36	457.20	36	243	35
S 9 - 10_ LoCwSPr	320.46	36	443.23	36	445.22	36	451.83	36	447.37	29	444.83	35	451.31	35	243	36

Scenario	9:00 - 1	0:00	10:00 - 1	1:00	11:00 - 1	2:00	12:00 - 1	3:00	13:00 - 1	4:00	14:00 -1	5:00	15:00 - 1	6:00	Total	Rank
Scenario	Travel Time	Rank	Total	капк												
S 13 - 14_LoCwSPr	127.61	4	119.38	1	121.13	2	126.51	1	121.24	1	119.73	2	124.15	3	14	1
S 14 - 15_LoCS	126.76	3	119.76	2	121.00	1	129.14	7	121.42	2	119.63	1	123.36	1	17	2
S 14 - 15_ LoCwSPr	126.52	2	121.17	6	122.02	3	128.60	5	121.64	3	120.19	3	124.21	4	26	3
S 15 - 16_ LoCwSPr	126.38	1	121.29	8	123.14	9	127.27	2	121.71	4	120.32	4	124.01	2	30	4
S 13 - 14_LoCS	129.63	8	122.50	10	122.42	4	128.52	4	123.75	6	121.78	7	125.94	6	45	5
S 15 - 16_LoCS	128.22	6	122.72	11	124.13	11	129.13	6	123.23	5	121.03	6	125.51	5	50	6
S 12 - 13_ LoCwSPr	129.49	7	123.02	12	124.86	12	127.84	3	124.24	7	122.56	8	127.04	8	57	7
S 9 - 10_LoCS	127.93	5	122.05	9	123.08	8	136.64	11	130.56	11	120.64	5	127.18	9	58	8
S 10 - 11_ LoCwSPr	131.40	10	119.86	3	122.64	5	137.84	12	138.37	14	124.91	13	126.94	7	64	9
S 11 - 12_ LoCwSPr	132.73	14	120.60	4	122.80	7	129.69	9	124.63	8	124.66	11	128.37	11	64	10
S 11 - 12_LoCS	132.52	13	121.25	7	122.66	6	129.58	8	124.73	9	124.33	9	128.38	12	64	11
S 10 - 11_LoCS	129.67	9	120.74	5	123.34	10	139.12	13	139.81	16	126.81	14	127.55	10	77	12
S 12 - 13_LoCS	132.49	12	125.17	13	128.16	13	130.86	10	128.51	10	124.87	12	130.38	13	83	13
Field	132.46	11	127.35	14	129.24	14	141.11	14	133.29	12	124.46	10	130.70	14	89	14
S 13 - 14_NoCSOPs	139.29	16	133.89	17	138.85	22	147.95	16	137.47	13	133.35	17	138.29	15	116	15
S 12 - 13_NoCSO	140.18	18	134.85	19	137.79	17	155.06	18	139.83	17	133.12	16	138.41	16	121	16
S 14 - 15_NoCSOPs	139.24	15	133.73	15	138.01	18	155.77	19	141.98	21	132.52	15	139.62	20	123	17
S 15 - 16_NoCSO	139.98	17	135.97	23	137.63	16	156.75	21	138.47	15	133.67	18	139.29	18	128	18
S 9 - 10_NoCSOPs	142.15	25	133.86	16	137.17	15	157.04	23	142.50	22	133.73	19	139.27	17	137	19
S 14 - 15_NoCSO	140.59	20	133.99	18	138.38	19	154.78	17	144.50	25	137.27	26	139.54	19	144	20
S 11 - 12_NoCSO	141.64	22	135.72	21	138.67	21	156.97	22	144.14	23	135.88	22	141.31	23	154	21
S 11 - 12_NoCSOPs	144.52	27	138.69	27	138.48	20	156.13	20	140.98	19	135.48	20	141.63	25	158	22
S 13 - 14_NoCSO	141.26	21	135.97	22	139.92	24	159.80	24	144.34	24	135.72	21	141.08	22	158	23
S 15 - 16_NoCSOPs	140.56	19	137.17	25	140.41	27	161.50	26	141.78	20	136.09	24	140.21	21	162	24
S 9 - 10_NoCSO	141.79	23	135.12	20	138.87	23	160.98	25	146.54	26	135.88	23	142.00	26	166	25
S 12 - 13_NoCSOPs	145.16	28	139.70	28	140.41	26	144.73	15	140.90	18	137.85	27	142.76	28	170	26
S 10 - 11_NoCSOPs	142.09	24	137.63	26	140.39	25	161.81	27	148.59	27	136.59	25	142.11	27	181	27
S 10 - 11_NoCSO	142.27	26	136.62	24	141.05	28	163.84	28	150.76	28	139.15	28	141.36	24	186	28
S 15 - 16_NoCS	202.02	29	221.22	29	207.85	29	262.66	29	274.37	33	269.68	32	272.06	33	214	29
S 9 - 10_NoCS	203.69	31	225.34	30	210.31	31	278.39	34	269.50	29	267.98	29	269.89	31	215	30
S 11 - 12_NoCS	206.02	33	226.54	31	208.22	30	268.83	30	275.04	34	269.89	33	268.33	29	220	31
S 14 - 15_NoCS	203.27	30	229.73	32	219.41	35	272.19	32	272.73	30	271.61	34	269.24	30	223	32
S 13 - 14_NoCS	204.76	32	229.90	33	216.78	33	276.29	33	274.15	32	268.09	30	272.17	34	227	33
S 12 - 13_NoCS	206.68	34	237.60	35	217.50	34	271.49	31	276.85	35	268.20	31	271.65	32	232	34
S 10 - 11_NoCS	208.33	35	231.97	34	215.09	32	281.45	35	280.16	36	274.14	35	273.87	35	242	35
S 9 - 10_ LoCwSPr	211.75	36	276.60	36	286.81	36	289.77	36	273.33	31	278.55	36	275.43	36	247	36

Appendix Table 5 Rank of Scenarios - Progression Average Delay (EB)

Connecto	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00 -	16:00	Tatal	David
Scenario	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Total	Rank
S 12 - 13_NoCSOPs	45.68	4	28.45	2	27.85	2	33.36	1	32.34	1	33.41	1	35.59	1	12	1
S 15 - 16_NoCSOPs	45.99	5	30.72	4	30.63	6	40.11	5	35.38	2	39.08	5	36.89	4	31	2
S 9 - 10_NoCSOPs	49.52	6	29.82	3	26.95	1	39.27	4	39.29	6	38.43	4	37.46	7	31	3
S 14 - 15_NoCSOPs	40.46	2	27.02	1	29.12	4	44.87	19	36.39	3	35.10	2	36.26	2	33	4
S 15 - 16_NoCSO	45.60	3	32.15	6	33.26	8	42.39	12	37.66	4	37.25	3	39.76	10	46	5
S 13 - 14_NoCSOPs	39.44	1	31.67	5	35.76	15	38.66	3	43.35	11	43.98	18	40.83	13	66	6
S 9 - 10_ LoCwSPr	52.82	8	38.63	20	33.85	9	36.96	2	42.46	9	42.15	14	41.27	14	76	7
S 11 - 12_NoCSOPs	54.05	10	33.42	8	28.39	3	50.19	32	38.12	5	39.78	8	40.44	11	77	8
S 12 - 13_NoCSO	57.21	15	32.48	7	30.25	5	44.36	14	39.37	7	42.14	13	46.45	21	82	9
S 12 - 13_ LoCwSPr	51.34	7	35.54	11	37.74	23	43.96	13	42.38	8	43.84	17	44.73	17	96	10
S 11 - 12_NoCS	57.46	18	36.91	15	36.42	17	44.41	15	52.60	28	40.63	10	39.68	9	112	11
S 9 - 10_NoCS	57.37	16	38.94	22	35.86	16	44.55	16	49.95	25	40.24	9	38.25	8	112	12
S 14 - 15_LoCS	57.43	17	36.28	13	35.44	13	45.61	21	42.58	10	43.80	16	48.63	25	115	13
S 13 - 14_NoCS	59.20	29	41.06	30	35.10	10	40.38	7	54.57	31	39.61	7	36.85	3	117	14
S 10 - 11_LoCS	56.65	14	37.95	19	37.25	20	40.13	6	44.86	17	44.20	22	48.59	24	122	15
S 15 - 16_NoCS	58.76	28	39.06	23	35.35	12	41.85	11	54.85	32	40.91	11	37.10	5	122	16
S 14 - 15_ LoCwSPr	54.22	11	36.52	14	37.14	19	44.81	18	43.71	14	44.12	20	49.17	27	123	17
S 9 - 10_NoCSO	54.94	12	37.51	18	31.55	7	46.91	26	45.31	18	44.64	24	45.85	20	125	18
S 11 - 12_LoCS	57.54	19	37.08	16	37.26	21	41.31	9	43.68	13	46.25	26	47.90	22	126	19
S 14 - 15_NoCS	59.22	30	40.74	29	35.67	14	41.11	8	51.38	27	40.93	12	37.46	6	126	20
S 15 - 16_ LoCwSPr	53.19	9	35.42	10	38.50	25	45.33	20	45.40	19	45.98	25	45.50	18	126	21
S 10 - 11_ LoCwSPr	59.93	31	34.78	9	37.53	22	41.84	10	43.49	12	44.04	19	48.68	26	129	22
S 12 - 13_NoCS	57.78	23	38.65	21	38.19	24	44.74	17	52.79	29	39.35	6	40.44	12	132	23
S 14 - 15_NoCSO	57.68	21	37.20	17	35.22	11	46.40	24	44.78	16	48.91	31	49.84	29	149	24
S 11 - 12_NoCSO	56.23	13	40.27	27	36.59	18	53.12	33	48.41	23	44.13	21	45.64	19	154	25
Field	57.77	22	40.54	28	40.76	31	47.87	27	46.69	20	42.92	15	44.63	16	159	26
S 13 - 14_LoCwSPr	62.17	34	35.77	12	38.75	26	46.18	23	44.67	15	44.35	23	50.33	30	163	27
S 15 - 16_LoCS	60.59	33	39.28	24	39.57	27	45.82	22	47.30	22	47.51	28	51.00	31	187	28
S 11 - 12_ LoCwSPr	58.64	27	39.41	25	40.48	28	46.58	25	46.92	21	48.59	30	51.03	32	188	29
S 12 - 13_LoCS	57.86	24	39.76	26	41.74	32	48.32	28	54.00	30	49.16	33	51.44	33	206	30
S 10 - 11_NoCS	67.55	35	47.54	35	43.47	33	49.99	31	55.37	33	46.34	27	44.62	15	209	31
S 13 - 14_NoCSO	57.66	20	44.78	33	43.53	34	60.49	36	56.01	34	49.10	32	48.30	23	212	32
S 9 - 10_LoCS	59.97	32	42.34	31	40.59	29	49.06	30	50.29	26	47.92	29	53.01	35	212	33
S 13 - 14_LoCS	68.56	36	42.66	32	40.71	30	48.42	29	49.46	24	49.22	34	51.56	34	219	34
S 10 - 11_NoCSO	58.47	26	50.52	36	46.19	35	59.28	35	56.36	35	52.57	35	49.28	28	230	35
S 10 - 11_NoCSOPs	58.25	25	44.98	34	47.09	36	54.96	34	58.08	36	57.64	36	56.59	36	237	36

Appendix Table 6 Rank of Scenarios	s - Progression A	Average Delay (WB)

Connerto	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00 -	- 16:00	Tatal	Develo
Scenario	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Delay	Rank	Total	Rank
S 9 - 10_NoCSOPs	36.35	1	32.79	2	29.58	1	34.49	3	32.44	1	30.26	2	37.25	5	15	1
S 14 - 15_NoCSOPs	37.74	2	31.90	1	35.88	15	36.68	11	36.03	3	28.61	1	37.86	6	39	2
S 9 - 10_ LoCwSPr	40.96	5	37.14	13	31.62	3	34.65	4	35.00	2	35.19	8	38.13	8	43	3
S 13 - 14_LoCwSPr	41.02	6	34.45	3	30.82	2	37.08	12	37.48	5	34.16	4	40.62	14	46	4
S 11 - 12_NoCSO	41.37	7	35.92	7	33.88	6	36.61	10	36.92	4	33.95	3	39.98	11	48	5
S 13 - 14_NoCSO	40.90	4	35.52	5	35.35	11	35.92	9	38.65	8	35.30	9	39.76	10	56	6
S 14 - 15_LoCS	42.35	9	35.18	4	32.34	4	39.55	20	38.82	9	34.88	6	40.13	12	64	7
S 12 - 13_ LoCwSPr	39.29	3	36.28	9	33.26	5	38.93	18	39.11	12	37.19	15	40.14	13	75	8
S 9 - 10_NoCSO	42.26	8	35.76	6	34.15	8	38.64	16	39.05	11	34.40	5	43.71	24	78	9
S 10 - 11_NoCSO	42.39	10	36.79	12	34.24	9	37.21	13	39.15	13	35.04	7	41.78	18	82	10
S 11 - 12_NoCS	44.37	18	40.75	25	37.50	21	32.07	1	38.90	10	35.84	11	34.82	3	89	11
S 13 - 14_NoCS	43.08	12	41.76	27	39.17	24	34.99	6	41.46	21	35.34	10	33.67	1	101	12
S 12 - 13_NoCS	44.85	20	40.60	22	38.71	23	33.79	2	40.44	19	37.86	20	34.04	2	108	13
S 15 - 16_ LoCwSPr	44.17	16	36.30	10	35.02	10	39.82	21	39.90	16	37.25	16	43.33	23	112	14
S 15 - 16_LoCS	45.30	23	36.15	8	35.56	14	38.16	15	40.77	20	36.66	14	42.49	20	114	15
S 11 - 12_ LoCwSPr	43.55	14	36.64	11	36.12	16	40.60	24	38.16	6	38.98	24	42.67	21	116	16
S 9 - 10_NoCS	43.84	15	42.40	29	40.43	27	35.57	7	42.27	24	36.50	12	36.83	4	118	17
S 15 - 16_NoCS	42.87	11	42.10	28	40.85	28	34.71	5	41.79	23	37.70	18	37.90	7	120	18
S 14 - 15_NoCS	44.82	19	40.73	24	40.22	26	35.71	8	41.66	22	36.57	13	38.87	9	121	19
Field	46.14	25	38.39	14	35.51	13	41.40	25	38.64	7	38.49	23	41.42	15	122	20
S 11 - 12_LoCS	43.35	13	39.83	19	37.01	20	39.18	19	39.89	15	38.16	22	42.47	19	127	21
S 9 - 10_LoCS	45.84	24	39.52	18	35.44	12	38.14	14	42.84	26	37.54	17	43.20	22	133	22
S 10 - 11_ LoCwSPr	45.23	22	38.87	17	39.65	25	39.94	22	39.97	17	39.18	25	41.69	17	145	23
S 14 - 15_ LoCwSPr	44.24	17	39.97	20	36.12	17	44.92	28	39.97	18	38.10	21	43.75	25	146	24
S 10 - 11_LoCS	46.17	26	41.68	26	41.44	29	38.76	17	39.42	14	40.02	27	41.47	16	155	25
S 14 - 15_NoCSO	46.87	27	38.60	15	34.13	7	43.33	27	42.57	25	39.39	26	48.58	28	155	26
S 12 - 13_NoCSO	49.31	30	39.99	21	36.36	18	41.79	26	44.02	28	37.75	19	44.51	26	168	27
S 15 - 16_NoCSO	44.85	21	38.60	16	37.57	22	46.13	29	46.76	29	40.60	28	46.24	27	172	28
S 13 - 14_LoCS	47.23	28	43.65	30	36.99	19	40.28	23	43.46	27	41.56	29	48.90	30	186	29
S 12 - 13_LoCS	47.82	29	40.64	23	42.12	30	48.99	32	50.27	32	42.80	30	48.81	29	205	30
S 11 - 12_NoCSOPs	51.00	31	46.63	31	42.71	31	46.82	31	49.47	31	44.31	31	52.81	31	217	31
S 15 - 16_NoCSOPs	51.71	32	47.50	32	47.57	32	46.67	30	46.96	30	44.52	32	55.44	32	220	32
S 13 - 14_NoCSOPs	56.27	33	47.59	33	53.18	34	61.83	35	58.29	34	49.66	33	55.58	33	235	33
S 10 - 11_NoCSOPs	65.76	34	48.97	34	48.98	33	58.03	33	55.72	33	52.43	34	61.25	35	236	34
S 10 - 11_NoCS	69.82	35	68.86	36	58.02	35	59.82	34	71.13	35	57.58	35	59.96	34	244	35
S 12 - 13_NoCSOPs	74.36	36	62.04	35	63.28	36	74.40	36	72.89	36	65.07	36	75.52	36	251	36

Connerto	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00	- 16:00	Tetel	Devel
Scenario	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Total	Rank
S 12 - 13_NoCSOPs	0.92	4	0.63	3	0.58	2	0.67	1	0.62	1	0.64	1	0.67	2	14	1
S 15 - 16_NoCSOPs	0.87	2	0.61	1	0.65	4	0.90	3	0.66	2	0.68	2	0.63	1	15	2
S 11 - 12_NoCSOPs	1.02	6	0.68	5	0.55	1	0.91	4	0.72	3	0.69	3	0.73	3	25	3
S 9 - 10_NoCSOPs	1.04	7	0.63	2	0.63	3	0.88	2	0.83	4	0.75	5	0.76	4	27	4
S 14 - 15_NoCSOPs	0.85	1	0.64	4	0.70	6	1.11	9	0.83	5	0.71	4	0.82	5	34	5
S 15 - 16_NoCSO	0.92	5	0.73	7	0.79	8	1.01	6	0.83	6	0.78	6	0.89	7	45	6
S 13 - 14_NoCSOPs	0.89	3	0.80	8	0.84	11	0.99	5	0.97	8	0.96	10	0.88	6	51	7
S 12 - 13_NoCSO	1.20	10	0.69	6	0.66	5	1.07	8	0.87	7	0.85	7	1.00	9	52	8
S 14 - 15_NoCSO	1.24	13	0.83	9	0.76	7	1.03	7	0.98	9	1.03	11	1.02	10	66	9
S 9 - 10_NoCSO	1.14	8	0.86	10	0.81	10	1.16	12	1.04	10	0.95	8	0.99	8	66	10
S 11 - 12_NoCSO	1.22	12	0.95	11	0.80	9	1.26	20	1.08	11	0.96	9	1.03	11	83	11
S 10 - 11_NoCSOPs	1.16	9	0.95	12	1.00	13	1.20	16	1.20	15	1.08	13	1.04	12	90	12
Field	1.22	11	1.09	18	1.04	17	1.17	14	1.12	12	1.04	12	1.04	13	97	13
S 14 - 15_LoCS	1.51	21	1.08	15	1.00	12	1.21	17	1.18	14	1.18	17	1.30	25	121	14
S 13 - 14_NoCSO	1.33	15	1.07	14	1.02	14	1.50	31	1.28	19	1.13	14	1.12	15	122	15
S 12 - 13_ LoCwSPr	1.27	14	1.11	21	1.10	21	1.25	19	1.18	13	1.14	15	1.23	21	124	16
S 10 - 11_LoCS	1.52	22	1.09	17	1.03	16	1.17	13	1.28	18	1.20	18	1.28	24	128	17
S 12 - 13_LoCS	1.42	19	1.08	16	1.06	18	1.15	11	1.31	23	1.16	16	1.32	26	129	18
S 15 - 16_LoCS	1.42	18	1.06	13	1.10	20	1.23	18	1.24	16	1.21	19	1.33	28	132	19
S 9 - 10_ LoCwSPr	1.56	23	1.19	25	1.03	15	1.12	10	1.26	17	1.26	22	1.22	20	132	20
S 11 - 12_LoCS	1.60	24	1.11	20	1.09	19	1.18	15	1.28	20	1.24	21	1.32	27	146	21
S 10 - 11_NoCSO	1.37	16	1.31	30	1.20	33	1.48	29	1.34	25	1.24	20	1.22	19	172	22
S 13 - 14_LoCwSPr	1.71	28	1.10	19	1.18	30	1.35	23	1.30	22	1.28	23	1.38	30	175	23
S 14 - 15_ LoCwSPr	1.51	20	1.12	23	1.14	24	1.28	21	1.44	27	1.32	27	1.44	35	177	24
S 13 - 14_LoCS	1.70	27	1.24	28	1.14	26	1.34	22	1.29	21	1.30	26	1.36	29	179	25
S 9 - 10_LoCS	1.67	26	1.21	26	1.16	28	1.37	27	1.34	24	1.30	25	1.41	33	189	26
S 15 - 16_ LoCwSPr	1.38	17	1.12	22	1.22	34	1.50	32	1.48	28	1.37	29	1.38	31	193	27
S 10 - 11_ LoCwSPr	1.74	29	1.16	24	1.20	32	1.35	24	1.36	26	1.35	28	1.41	34	197	28
S 15 - 16_NoCS	1.77	31	1.39	33	1.14	25	1.46	28	1.82	34	1.41	33	1.10	14	198	29
S 11 - 12_NoCS	1.83	33	1.22	27	1.13	23	1.48	30	1.78	33	1.38	31	1.24	22	199	30
S 14 - 15_NoCS	1.83	34	1.51	35	1.13	22	1.36	26	1.70	31	1.44	35	1.12	16	199	31
S 9 - 10_NoCS	1.75	30	1.33	32	1.17	29	1.51	33	1.68	30	1.37	30	1.19	18	202	32
S 13 - 14_NoCS	1.82	32	1.40	34	1.15	27	1.36	25	1.88	36	1.42	34	1.13	17	205	33
S 12 - 13_NoCS	1.84	35	1.33	31	1.18	31	1.53	34	1.86	35	1.30	24	1.25	23	213	34
S 11 - 12_ LoCwSPr	1.65	25	1.30	29	1.31	35	1.53	35	1.55	29	1.40	32	1.54	36	221	35
S 10 - 11_NoCS	2.16	36	1.66	36	1.41	36	1.67	36	1.76	32	1.59	36	1.39	32	244	36

Appendix Table 7 Rank of Scenarios - Progression Average Stops (EB)

Connecto	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00	- 16:00	Tetel	Devel
Scenario	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Stops	Rank	Total	Rank
S 9 - 10_NoCSOPs	0.80	2	0.72	1	0.71	1	0.77	1	0.74	1	0.70	2	0.83	2	10	1
S 14 - 15_NoCSOPs	0.78	1	0.73	2	0.80	3	0.78	2	0.77	2	0.67	1	0.80	1	12	2
S 11 - 12_NoCSO	0.91	4	0.82	4	0.79	2	0.80	4	0.81	3	0.80	4	0.86	3	24	3
S 13 - 14_NoCSO	0.89	3	0.86	7	0.82	8	0.79	3	0.91	6	0.80	3	0.89	4	34	4
S 9 - 10_NoCSO	0.96	7	0.78	3	0.81	5	0.90	6	0.85	4	0.82	5	0.98	7	37	5
S 10 - 11_NoCSO	0.96	6	0.84	5	0.81	7	0.85	5	0.89	5	0.84	6	0.99	8	42	6
S 15 - 16_NoCSO	0.92	5	0.85	6	0.81	4	0.94	7	0.93	8	0.88	7	0.96	5	42	7
S 14 - 15_NoCSO	0.99	8	0.87	8	0.81	6	1.00	9	0.92	7	0.90	8	1.05	13	59	8
S 12 - 13_NoCSO	1.06	12	0.97	9	0.88	9	0.96	8	1.04	9	0.92	9	0.97	6	62	9
S 15 - 16_NoCSOPs	1.03	9	0.99	10	1.02	14	1.01	10	1.08	11	0.97	10	1.06	14	78	10
S 11 - 12_NoCSOPs	1.05	11	1.01	11	0.98	10	1.07	11	1.06	10	1.00	12	1.08	15	80	11
S 10 - 11_NoCSOPs	1.16	13	1.01	12	1.01	13	1.10	15	1.10	13	0.98	11	1.08	16	93	12
S 13 - 14_NoCSOPs	1.04	10	1.02	13	1.06	17	1.14	19	1.08	12	1.01	13	1.04	11	95	13
S 15 - 16_ LoCwSPr	1.19	15	1.05	14	0.99	11	1.07	12	1.10	14	1.04	14	1.18	20	100	14
S 13 - 14_LoCwSPr	1.20	17	1.05	15	1.00	12	1.09	13	1.11	16	1.05	15	1.21	22	110	15
S 11 - 12_NoCS	1.37	26	1.23	27	1.09	18	1.09	14	1.22	20	1.08	16	1.04	10	131	16
S 11 - 12_ LoCwSPr	1.20	16	1.08	17	1.05	16	1.20	24	1.11	15	1.16	26	1.21	24	138	17
S 9 - 10_ LoCwSPr	1.28	19	1.18	20	1.03	15	1.12	18	1.17	18	1.21	29	1.21	25	144	18
S 12 - 13_ LoCwSPr	1.17	14	1.07	16	1.12	22	1.26	26	1.23	22	1.16	25	1.21	23	148	19
S 14 - 15_LoCS	1.33	21	1.14	19	1.11	19	1.20	25	1.19	19	1.11	19	1.27	27	149	20
S 12 - 13_NoCS	1.40	30	1.23	25	1.11	20	1.12	17	1.32	26	1.15	23	1.04	9	150	21
Field	1.25	18	1.10	18	1.15	23	1.31	30	1.12	17	1.16	24	1.20	21	151	22
S 13 - 14_NoCS	1.38	28	1.23	26	1.12	21	1.15	20	1.33	27	1.08	17	1.05	12	151	23
S 15 - 16_NoCS	1.37	25	1.26	29	1.18	27	1.11	16	1.32	25	1.13	20	1.12	18	160	24
S 14 - 15_ LoCwSPr	1.30	20	1.19	22	1.17	26	1.31	29	1.23	23	1.15	22	1.32	28	170	25
S 10 - 11_ LoCwSPr	1.34	22	1.18	21	1.24	31	1.17	23	1.22	21	1.17	27	1.25	26	171	26
S 9 - 10_NoCS	1.39	29	1.28	30	1.16	24	1.16	22	1.37	31	1.10	18	1.09	17	171	27
S 14 - 15_NoCS	1.44	31	1.25	28	1.17	25	1.16	21	1.36	29	1.14	21	1.14	19	174	28
S 15 - 16_LoCS	1.36	24	1.20	23	1.24	30	1.29	28	1.28	24	1.23	30	1.33	29	188	29
S 12 - 13_NoCSOPs	1.35	23	1.20	24	1.23	28	1.38	33	1.35	28	1.18	28	1.35	30	194	30
S 11 - 12_LoCS	1.38	27	1.37	32	1.28	32	1.37	32	1.38	32	1.29	31	1.45	33	219	31
S 9 - 10_LoCS	1.52	32	1.37	31	1.24	29	1.34	31	1.50	33	1.36	32	1.44	32	220	32
S 10 - 11_LoCS	1.53	33	1.40	34	1.39	34	1.28	27	1.37	30	1.38	33	1.41	31	222	33
S 13 - 14_LoCS	1.60	34	1.53	35	1.29	33	1.41	34	1.52	34	1.45	35	1.68	34	239	34
S 12 - 13_LoCS	1.61	35	1.40	33	1.42	35	1.67	35	1.82	35	1.44	34	1.71	35	242	35
S 10 - 11_NoCS	2.22	36	2.09	36	1.81	36	2.03	36	2.29	36	1.84	36	1.98	36	252	36

Appendix Table 8 Rank of Scenarios - Progression Average Stops (WB)

	9:00 -	10:00	10:00	- 11:00	11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00 -	· 16:00		
Scenario	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	Total	Rank
S 12 - 13_NoCSOPs	18.87	5	8.37	2	8.21	2	11.04	1	11.46	1	11.30	1	12.64	1	13	1
S 15 - 16_NoCSOPs	18.46	3	8.93	4	9.09	6	13.56	6	12.59	2	12.96	5	13.05	2	28	2
S 9 - 10_NoCSOPs	20.44	6	8.81	3	8.01	1	13.07	3	14.31	8	12.94	4	13.62	7	32	3
S 14 - 15_NoCSOPs	16.71	2	8.05	1	8.82	4	15.17	17	13.38	3	11.89	2	13.40	6	35	4
S 15 - 16_NoCSO	18.61	4	9.44	6	10.05	9	14.43	10	13.58	4	12.76	3	14.58	13	49	5
S 9 - 10_ LoCwSPr	21.78	8	11.46	17	9.91	8	11.90	2	13.59	5	13.96	8	14.26	10	58	6
S 13 - 14_NoCSOPs	16.48	1	9.41	5	10.78	12	13.41	4	15.49	9	15.06	16	15.03	14	61	7
S 11 - 12_NoCSOPs	22.18	9	9.78	8	8.26	3	15.97	22	13.84	6	13.16	6	14.49	12	66	8
S 12 - 13_NoCSO	23.48	13	9.47	7	8.99	5	15.16	16	14.14	7	14.27	12	17.02	19	79	9
S 9 - 10_NoCSO	22.65	11	11.20	14	9.58	7	15.93	21	16.57	16	15.26	18	16.78	17	104	10
S 12 - 13_ LoCwSPr	21.76	7	11.16	13	11.78	22	15.53	19	15.86	10	15.49	19	17.03	20	110	11
S 9 - 10_NoCS	23.94	15	12.40	26	10.95	17	14.70	12	17.45	23	14.10	10	13.67	8	111	12
S 11 - 12_NoCS	24.22	20	11.88	20	10.89	15	14.73	13	17.99	25	14.24	11	14.15	9	113	13
S 13 - 14_NoCS	24.62	26	12.99	30	10.72	11	13.43	5	18.74	32	14.07	9	13.16	4	117	14
S 14 - 15_NoCS	24.78	27	13.03	31	10.80	13	13.70	7	17.79	24	14.36	13	13.31	5	120	15
S 14 - 15_NoCSO	24.00	17	10.90	10	10.46	10	15.46	18	16.08	12	16.96	30	18.07	23	120	16
S 12 - 13_NoCS	24.34	21	12.22	24	11.53	19	14.97	15	18.01	26	13.80	7	14.38	11	123	17
S 15 - 16_NoCS	24.49	25	12.51	28	10.89	16	14.22	9	18.71	31	14.37	14	13.05	3	126	18
S 10 - 11_LoCS	24.42	23	11.55	19	11.64	20	14.00	8	16.50	15	16.10	23	18.31	25	133	19
S 11 - 12_NoCSO	23.24	12	12.03	22	10.86	14	18.15	34	17.43	22	15.13	17	16.88	18	139	20
S 14 - 15_ LoCwSPr	23.88	14	11.36	16	11.79	23	15.91	20	16.88	18	15.95	21	18.95	29	141	21
S 14 - 15_LoCS	24.81	28	11.23	15	11.01	18	16.05	23	15.92	11	15.56	20	18.32	26	141	22
S 15 - 16_ LoCwSPr	22.55	10	11.10	11	12.27	25	16.60	28	17.26	20	16.74	27	17.57	21	142	23
S 11 - 12_LoCS	24.82	29	11.50	18	11.72	21	14.57	11	16.42	14	16.48	26	18.26	24	143	24
S 10 - 11_ LoCwSPr	26.36	33	10.90	9	12.09	24	14.92	14	16.26	13	16.34	25	18.72	28	146	25
Field	24.06	18	12.25	25	12.41	28	16.48	27	16.90	19	14.94	15	16.57	16	148	26
S 13 - 14_LoCwSPr	27.07	34	11.12	12	12.31	27	16.41	25	16.82	17	15.97	22	19.13	31	168	27
S 15 - 16_LoCS	25.26	30	11.93	21	12.28	26	16.07	24	17.35	21	16.80	28	19.11	30	180	28
S 10 - 11_NoCS	28.64	35	15.12	35	13.37	34	16.47	26	18.68	30	16.28	24	15.88	15	199	29
S 12 - 13_LoCS	24.38	22	12.12	23	12.76	31	16.63	29	19.68	33	17.09	31	19.36	32	201	30
S 13 - 14_NoCSO	24.21	19	13.39	34	13.01	33	20.48	36	20.64	34	16.95	29	17.93	22	207	31
S 11 - 12_ LoCwSPr	25.33	31	12.46	27	12.99	32	16.86	30	18.10	27	17.51	34	19.77	34	215	32
S 9 - 10_LoCS	25.92	32	12.90	29	12.72	30	17.25	32	18.29	29	17.22	32	19.99	35	219	33
S 13 - 14_LoCS	29.29	36	13.08	33	12.70	29	17.09	31	18.27	28	17.44	33	19.47	33	223	34
S 10 - 11_NoCSOPs	23.98	16	13.03	32	14.01	35	17.73	33	21.19	36	19.49	36	20.33	36	224	35
S 10 - 11_NoCSO	24.44	24	15.34	36	14.02	36	19.95	35	20.71	35	18.46	35	18.45	27	228	36

Appendix Table 1	Rank of Scenarios -	Progression PI Value (WB)

	9:00 -	10:00	10:00 - 11:00		11:00	- 12:00	12:00	- 13:00	13:00	- 14:00	14:00	-15:00	15:00	- 16:00		
Scenario	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	PI	Rank	Total	Rank
S 9 - 10_NoCSOPs	15.81	1	12.91	2	10.35	1	11.91	2	12.51	1	10.46	2	14.83	4	13	1
S 14 - 15_NoCSOPs	16.47	2	12.57	1	12.45	11	12.51	5	13.80	2	9.92	1	14.96	5	27	2
S 11 - 12_NoCSO	18.11	4	14.12	5	11.87	4	12.56	6	14.16	3	11.76	3	15.87	8	33	3
S 13 - 14_NoCSO	17.88	3	14.09	4	12.38	9	12.34	3	14.98	6	12.17	5	15.87	9	39	4
S 10 - 11_NoCSO	18.58	7	14.50	7	12.02	6	12.82	9	15.10	7	12.20	6	16.85	12	54	5
S 9 - 10_NoCSO	18.48	6	14.07	3	11.94	5	13.39	14	14.96	5	11.91	4	17.51	17	54	6
S 13 - 14_LoCwSPr	18.88	8	14.27	6	11.47	2	13.34	13	15.12	8	12.41	7	17.00	15	59	7
S 9 - 10_ LoCwSPr	18.99	9	15.54	15	11.75	3	12.72	8	14.48	4	13.05	11	16.25	11	61	8
S 14 - 15_LoCS	19.76	12	14.78	8	12.16	8	14.26	17	15.88	12	12.76	8	16.94	14	79	9
S 12 - 13_ LoCwSPr	18.15	5	14.98	10	12.44	10	14.29	18	16.02	14	13.49	16	16.89	13	86	10
S 11 - 12_NoCS	20.55	19	16.89	22	13.66	20	11.82	1	15.96	13	13.01	10	14.53	3	88	11
S 15 - 16_ LoCwSPr	19.95	14	14.87	9	12.68	12	14.14	15	15.82	11	13.37	15	17.75	20	96	12
S 13 - 14_NoCS	20.03	15	17.28	25	14.20	24	12.84	10	17.14	24	12.81	9	14.20	1	108	13
S 12 - 13_NoCS	20.78	22	16.86	21	14.08	23	12.39	4	16.79	21	13.71	20	14.26	2	113	14
S 11 - 12_ LoCwSPr	19.73	11	15.17	13	13.10	15	14.61	24	15.41	9	14.00	24	17.76	21	117	15
S 14 - 15_NoCSO	20.59	20	15.04	11	12.07	7	14.87	25	16.36	16	13.61	17	19.25	28	124	16
S 15 - 16_NoCS	19.93	13	17.45	27	14.87	29	12.65	7	17.13	23	13.68	19	15.82	7	125	17
S 9 - 10_NoCS	20.37	18	17.58	28	14.71	27	13.03	11	17.48	26	13.21	13	15.35	6	129	18
Field	20.91	24	15.72	16	13.18	16	15.13	27	15.60	10	13.89	22	17.27	16	131	19
S 12 - 13_NoCSO	21.39	26	15.98	17	12.82	13	14.44	22	17.08	22	13.09	12	17.60	19	131	20
S 15 - 16_LoCS	20.89	23	15.24	14	13.41	18	14.20	16	16.56	19	13.62	18	17.93	23	131	21
S 14 - 15_NoCS	20.93	25	16.95	24	14.63	25	13.06	12	17.27	25	13.30	14	16.21	10	135	22
S 15 - 16_NoCSO	19.42	10	15.08	12	12.99	14	15.59	28	17.62	27	13.90	23	18.26	24	138	23
S 10 - 11_ LoCwSPr	20.76	21	16.03	18	14.65	26	14.43	21	16.24	15	14.12	25	17.54	18	144	24
S 14 - 15_ LoCwSPr	20.33	17	16.52	19	13.43	19	16.08	30	16.37	17	13.79	21	18.27	25	148	25
S 11 - 12_LoCS	20.20	16	16.95	23	13.96	22	14.60	23	16.66	20	14.18	26	18.29	26	156	26
S 9 - 10_LoCS	21.58	27	16.82	20	13.38	17	14.30	19	17.82	28	14.18	27	18.48	27	165	27
S 10 - 11_LoCS	21.67	28	17.65	29	15.48	30	14.35	20	16.45	18	14.85	28	17.82	22	175	28
S 13 - 14_LoCS	22.30	31	18.66	33	13.92	21	15.08	26	18.10	29	15.54	31	21.07	30	201	29
S 11 - 12_NoCSOPs	22.09	30	18.35	30	14.85	28	16.23	31	18.72	31	15.38	30	20.73	29	209	30
S 15 - 16_NoCSOPs	22.07	29	18.54	32	16.52	32	16.07	29	18.17	30	15.16	29	21.50	32	213	31
S 12 - 13_LoCS	22.51	32	17.33	26	15.82	31	18.08	32	21.21	33	15.91	32	21.10	31	217	32
S 13 - 14_NoCSOPs	24.10	33	18.45	31	18.28	34	20.75	34	21.72	34	16.99	33	21.55	33	232	33
S 10 - 11_NoCSOPs	28.02	34	19.11	34	16.89	33	19.32	33	21.02	32	17.81	34	23.64	34	234	34
S 10 - 11_NoCS	32.52	36	28.64	36	21.39	35	22.11	35	29.29	36	20.96	35	25.66	35	248	35
S 12 - 13_NoCSOPs	32.06	35	23.89	35	21.50	36	24.80	36	27.52	35	21.78	36	28.94	36	249	36

Appendix Table 11 Rank of Scenarios -	Progression Average Travel Time (EB)

Scenario	9:00 - 1	9:00 - 10:00 10:00 - 11:00		1:00	11:00 - 1	12:00 - 1	3:00	13:00 - 14:00		14:00 -1	5:00	15:00 - 1	6:00	Total	Rank	
Scenario	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	TOLAI	Ralik
S 14 - 15_NoCSOPs	148.42	2	135.11	3	134.42	4	142.15	6	138.57	1	139.14	1	145.81	9	26	1
S 13 - 14_NoCSOPs	146.87	1	129.44	1	136.56	9	141.44	3	142.28	4	143.98	4	147.92	11	33	2
S 15 - 16_ LoCwSPr	157.92	5	133.37	2	134.97	7	142.00	5	140.40	2	142.89	3	147.45	10	34	3
Field	160.53	7	138.47	8	136.61	10	144.11	9	140.59	3	142.84	2	145.11	8	47	4
S 12 - 13_NoCSOPs	153.92	3	136.52	5	137.64	11	144.55	10	142.32	5	146.50	6	150.05	12	52	5
S 15 - 16_NoCSOPs	155.57	4	138.70	9	140.58	15	145.93	14	144.43	7	148.64	14	152.48	14	77	6
S 15 - 16_NoCSO	159.90	6	140.59	13	142.64	20	144.10	8	147.63	11	148.15	13	151.45	13	84	7
S 12 - 13_ LoCwSPr	161.75	9	137.20	6	137.78	12	149.34	22	145.27	9	147.80	12	153.13	15	85	8
S 9 - 10_NoCS	165.86	13	151.92	29	134.76	6	143.85	7	160.94	26	147.18	8	136.09	4	93	9
S 11 - 12_NoCS	166.66	14	146.26	21	134.35	3	146.12	15	163.84	30	147.56	9	137.21	5	97	10
S 12 - 13_NoCS	167.73	16	148.00	23	135.85	8	145.78	12	161.30	27	146.36	5	137.59	6	97	11
S 14 - 15_ LoCwSPr	165.70	12	137.29	7	140.84	16	151.15	24	143.75	6	148.74	15	155.07	17	97	12
S 10 - 11_ LoCwSPr	172.17	28	136.05	4	141.69	17	145.54	11	144.72	8	146.52	7	159.59	23	98	13
S 13 - 14_NoCS	167.84	17	152.62	30	133.90	1	141.61	4	165.44	32	147.62	11	135.32	3	98	14
S 10 - 11_NoCSOPs	161.49	8	140.50	12	142.83	21	148.81	18	148.16	12	147.62	10	156.75	19	100	15
S 14 - 15_NoCS	168.60	20	153.25	31	134.33	2	141.09	2	161.44	28	148.85	16	133.72	2	101	16
S 15 - 16_NoCS	168.05	18	150.45	28	134.74	5	138.67	1	166.03	33	149.26	17	132.97	1	103	17
S 9 - 10_NoCSOPs	167.53	15	139.11	10	138.26	13	145.87	13	151.74	14	152.19	23	155.26	18	106	18
S 11 - 12_NoCSOPs	165.40	11	144.52	19	140.16	14	152.46	25	152.63	15	151.37	21	158.51	21	126	19
S 11 - 12_ LoCwSPr	169.41	22	140.11	11	143.09	23	149.13	19	146.61	10	151.51	22	159.26	22	129	20
S 9 - 10_ LoCwSPr	163.74	10	149.01	25	144.85	27	147.96	17	153.20	18	152.43	24	154.59	16	137	21
S 15 - 16_LoCS	170.50	23	141.92	16	142.86	22	147.39	16	152.99	17	149.77	19	161.59	25	138	22
S 11 - 12_LoCS	169.41	21	141.57	15	146.51	30	149.24	20	150.00	13	154.40	26	159.85	24	149	23
S 13 - 14_LoCwSPr	173.15	31	140.67	14	143.20	25	153.81	27	153.22	19	150.94	20	161.93	26	162	24
S 10 - 11_NoCS	176.00	35	155.86	33	145.08	28	149.31	21	164.81	31	149.31	18	142.83	7	173	25
S 14 - 15_LoCS	173.37	32	142.91	17	143.68	26	158.26	31	152.94	16	154.19	25	162.90	28	175	26
S 10 - 11_LoCS	171.64	25	143.83	18	147.83	31	150.42	23	156.43	20	155.97	29	165.42	30	176	27
S 9 - 10_LoCS	170.84	24	146.56	22	142.62	19	157.03	30	160.79	24	155.45	28	165.37	29	176	28
S 9 - 10_NoCSO	172.05	27	148.68	24	142.21	18	154.76	28	156.54	21	161.93	32	167.32	32	182	29
S 12 - 13_NoCSO	171.65	26	144.58	20	143.19	24	153.02	26	160.90	25	163.03	34	169.50	34	189	30
S 10 - 11_NoCSO	168.57	19	159.63	35	152.96	34	154.89	29	160.26	23	157.10	31	158.36	20	191	31
S 14 - 15_NoCSO	172.48	29	150.32	27	145.70	29	160.75	33	159.49	22	164.07	35	174.05	36	211	32
S 13 - 14_NoCSO	172.88	30	160.90	36	153.04	35	158.99	32	162.42	29	155.10	27	162.03	27	216	33
S 12 - 13_LoCS	173.67	33	149.08	26	151.62	33	165.61	36	166.99	34	162.07	33	167.54	33	228	34
S 11 - 12_NoCSO	173.90	34	156.82	34	151.12	32	161.05	34	169.64	35	156.89	30	165.45	31	230	35
S 13 - 14_LoCS	184.91	36	155.39	32	155.58	36	165.01	35	169.64	36	166.89	36	171.53	35	246	36

Appendix Table 12 Rank of Scenarios -	Progression Average Travel Time (WB)

Scenario	9:00 - 1	9:00 - 10:00 10:00 -		10:00 - 11:00 11:00 - 12:00			12:00 - 1	3:00	13:00 - 1	4:00	14:00 -1	5:00	15:00 - 1	6:00	Tatal	Deals
Scenario	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Travel Time	Rank	Total	Rank
S 9 - 10_ LoCwSPr	134.57	2	132.42	9	126.16	3	129.29	4	130.68	2	128.03	1	132.51	4	25	1
S 14 - 15_LoCS	134.71	3	128.41	1	126.16	2	134.99	15	131.98	4	129.75	3	134.34	6	34	2
S 11 - 12_LoCS	136.28	5	131.11	5	130.70	8	130.69	8	130.01	1	132.15	7	135.66	9	43	3
S 13 - 14_LoCwSPr	135.30	4	130.61	3	125.58	1	133.31	12	132.72	6	130.82	6	136.77	13	45	4
S 9 - 10_LoCS	136.35	6	131.16	6	127.19	4	131.05	9	133.57	8	129.39	2	135.93	10	45	5
S 10 - 11_LoCS	137.26	10	134.47	13	133.86	14	132.65	11	131.68	3	130.35	5	133.74	5	61	6
Field	136.83	8	131.60	7	131.36	9	135.74	16	132.18	5	132.16	8	136.06	11	64	7
S 15 - 16_LoCS	138.64	14	130.38	2	128.14	6	134.15	13	135.95	10	130.26	4	138.19	15	64	8
S 12 - 13_ LoCwSPr	134.11	1	131.10	4	129.16	7	135.88	17	136.87	13	134.24	11	136.08	12	65	9
S 13 - 14_LoCS	138.45	12	133.05	10	127.97	5	132.57	10	133.56	7	132.90	9	139.47	20	73	10
S 10 - 11_NoCSO	136.63	7	134.36	12	132.75	11	134.69	14	136.87	14	133.24	10	136.81	14	82	11
S 13 - 14_NoCSO	137.03	9	135.21	14	136.47	18	136.57	18	137.77	15	135.63	13	139.19	18	105	12
S 14 - 15_ LoCwSPr	138.46	13	135.75	15	133.38	12	142.21	24	135.29	9	136.73	15	139.57	21	109	13
S 11 - 12_LoCwSPr	139.63	16	132.35	8	135.53	17	140.94	23	136.07	11	137.37	16	140.57	22	113	14
S 13 - 14_NoCS	138.29	11	148.89	31	142.95	26	128.73	3	141.43	22	146.25	27	131.02	1	121	15
S 11 - 12_NoCSO	140.07	19	138.86	19	134.75	16	138.63	19	138.72	16	136.69	14	139.38	19	122	16
S 11 - 12_NoCS	141.73	22	148.37	30	140.34	24	126.16	1	139.26	18	145.28	25	131.65	3	123	17
S 10 - 11_LoCwSPr	142.12	24	137.51	16	134.64	15	138.91	20	136.38	12	138.50	20	139.17	17	124	18
S 15 - 16_ LoCwSPr	140.56	20	133.41	11	132.72	10	140.29	21	140.54	21	137.93	18	143.20	24	125	19
S 9 - 10_NoCSOPs	139.77	17	138.30	18	133.45	13	140.64	22	138.87	17	137.40	17	141.37	23	127	20
S 12 - 13_NoCS	141.84	23	147.22	27	142.09	25	127.74	2	140.40	20	147.87	31	131.15	2	130	21
S 9 - 10_NoCS	139.80	18	149.22	32	145.16	29	129.84	6	140.28	19	146.46	29	134.74	7	140	22
S 15 - 16_NoCS	139.27	15	148.11	29	145.23	30	129.79	5	143.29	24	146.94	30	135.51	8	141	23
S 14 - 15_NoCS	141.38	21	147.02	26	144.97	28	129.91	7	141.77	23	146.30	28	138.94	16	149	24
S 14 - 15_NoCSOPs	143.13	26	138.07	17	144.22	27	144.73	27	146.76	28	134.97	12	143.51	25	162	25
S 9 - 10_NoCSO	143.00	25	141.54	21	138.12	20	143.92	26	144.90	25	138.46	19	147.91	28	164	26
S 11 - 12_NoCSOPs	146.69	28	145.98	24	136.55	19	142.84	25	146.08	27	143.17	21	147.50	27	171	27
S 12 - 13_LoCS	144.05	27	139.62	20	140.32	23	147.41	28	147.57	29	143.79	22	144.70	26	175	28
S 14 - 15_NoCSO	148.82	29	142.11	22	139.93	21	150.23	31	148.60	30	144.29	23	154.78	31	187	29
S 12 - 13_NoCSO	154.13	32	144.90	23	140.12	22	148.77	30	152.67	31	144.64	24	148.73	29	191	30
S 15 - 16_NoCSOPs	151.44	31	147.37	28	147.32	32	148.53	29	145.35	26	145.31	26	156.63	32	204	31
S 15 - 16_NoCSO	151.44	30	146.20	25	147.25	31	156.68	33	162.30	32	153.26	32	154.32	30	213	32
S 10 - 11_NoCS	167.66	33	172.71	35	157.48	33	154.12	32	172.52	33	161.20	33	157.66	33	232	33
S 13 - 14_NoCSOPs	169.20	34	160.33	33	168.23	35	180.80	35	177.44	35	169.93	34	171.29	34	240	34
S 10 - 11_NoCSOPs	177.21	35	162.49	34	166.71	34	174.47	34	173.19	34	174.10	35	178.96	35	241	35
S 12 - 13_NoCSOPs	188.65	36	181.22	36	182.73	36	195.84	36	196.19	36	192.98	36	195.43	36	252	36

Bibliography

- [1] Webster, F. V., and B. M. Cobbe. Traffic Signals. Her Majesty's Stationery Office, 1966.
- [2] Stevanovic, Aleksandar. "Adaptive Traffic Control Systems: Domestic and Foreign State of Practice." 2010, doi:10.17226/14364.
- [3] HCM 2010: Highway Capacity Manual. Transportation Research Board, 2010.
- [4] Lu, Ting, et al. "Comparison of the Effectiveness of Common Cycle Computing Models." *Procedia - Social and Behavioral Sciences*, vol. 138, 2014, pp. 358–367., doi:10.1016/j.sbspro.2014.07.214.
- [5] Shelby, Steven G., et al. "Resonant Cycles in Traffic Signal Control." *Transportation Research Record: Journal of the Transportation Research Board*, vol. 1925, no. 1, 2005, pp. 215–226., doi:10.1177/0361198105192500122.
- [6] Guevara, Felipe Ladrón De, et al. "Resonant Cycles under Various Intersection Spacing, Speeds, and Traffic Signal Operational Treatments." *Transportation Research Record: Journal of the Transportation Research Board*, vol. 2488, no. 1, 2015, pp. 87–96., doi:10.3141/2488-09.
- [7] Li, Howell, et al. "Field Cycle Length Sweep to Evaluate Resonant Cycle Sensitivity." 2014, doi:10.5703/1288284315509.
- [8] Henry, R. David. *Signal Timing on a Shoestring*. U.S. Dept. of Transportation, Federal Highway Administration, 2005.
- [9] Day, Christopher M., and A. M. Tahsin Emtenan. "Impact of Phase Sequence on Cycle Length Resonance." *Transportation Research Record: Journal of the Transportation Research Board*, vol. 2673, no. 11, 2019, pp. 398–408., doi:10.1177/0361198119852069.
- [10] Guevara, Felipe Ladrón De. "Resonant Cycles and Traffic Signal Performance." 2013.
- [11] Roess, Roger P., et al. Traffic Engineering. Pearson, 2004.
- [12] Bullock, Darcy M, et al. Project 3-79a, NCHPR, 2010, Vehicle Detector Signal Processing for Travel Time Estimation.
- [13] PTV-Vision, PTV Vistro 2020 User Manual, 2019.
- [14] PTV-Vision, PTV Vissim 2020 User Manual, 2019.
- [15] So, Jaehyun., Ostojic Marija., Jolovic, Dusan., Stevanovic, Aleksandar. "Building, Calibrating, and Validating A Large-Scale High-Fidelity Microscopic Traffic Simulation

Model – A Manual Approach". 95th Transportation Research Board Annual Meeting Proceedings, 2015.

- [16] Koshi, Masaki. "Cycle Time Optimization in Traffic Signal Coordination." *Transportation Research Part A: General*, vol. 23, no. 1, 1989, pp. 29–34., doi:10.1016/0191-2607(89)90137-4.
- [17] Day, Christopher M., et al. "Cycle-Length Performance Measures." *Transportation Research Record: Journal of the Transportation Research Board*, vol. 2128, no. 1, 2009, pp. 48–57., doi:10.3141/2128-05.
- [18] Tian, Zong, and Thomas Urbanik. "System Partition Technique to Improve Signal Coordination and Traffic Progression." *Journal of Transportation Engineering*, vol. 133, no. 2, 2007, pp. 119–128., doi:10.1061/(asce)0733-947x(2007)133:2(119).
- [19] Day, Christopher M., et al. "Outcome-Oriented Performance Measures for Management of Signalized Arterial Capacity." *Transportation Research Record: Journal of the Transportation Research Board*, vol. 2192, no. 1, 2010, pp. 24–36., doi:10.3141/2192-03.
- [20] Day, Christopher, et al. "Integrating Traffic Signal Performance Measures into Agency Business Processes." 2015, doi:10.5703/1288284316063.