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Testing the Sticky Rouse Model for Polyelectrolyte Complex Coacervates

Frances J. Morin, M.S.

University of Pittsburgh, 2019

Polyelectrolyte complexes are entropically driven associations of charged macromolecules

in aqueous salt solution.1 These polyelectrolyte complexes can undergo liquid-liquid phase

separation into a polymer poor supernatant and a polymer rich coacervate, which possess

practical viscoelastic properties that make them valuable for product design.2,3 With a unique

salt-addition methodology, we are able to independently investigate the impact of salt con-

centration and polymer volume fraction on the viscoelastic properties of these materials.

This allows us to independently determine the dependence of relaxation times on both vari-

ables with no approximations expanding our understanding of these dynamic materials. We

find the relaxation times scales as the polymer concentration to the power of 5.82±0.54 and

salt concentration to the power of 1.79 ± 0.24. These values suggest that the current litera-

ture underestimates the impact of the polymer volume fraction on the viscoelastic response

of polyelectrolyte complex coacervates. Furthermore, the charge density of these materials

was probed with a carefully synthesized weak polyelectrolyte system in order to investigate

the cooperativity of charge sites. Preliminary results suggest that this area of study will

provide a deeper understanding of the driving forces behind these dynamics.
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1.0 Introduction

Polyelectrolyte complexes are aqueous solutions of charged polymers that undergo liquid-

liquid phase separation to form a polymer-poor supernatant and polymer-rich coacervate

phase.3 This entropically driven phase separation occurs due to the association of oppo-

sitely charged sites on the polymer chains and release of salt counter-ions. The polymer-rich

coacervate phase has unique viscoelastic properties, making it a valuable area of research

since the discovery of these materials in the early 19th century. A substantial amount of

research has been done to understand how the chemistry of the charged species, effects of

pH, salt or other solution changes impact the viscoelasticity of the bulk phase but important

questions remain, particularly about the interplay of these factors.4–9 These coacervates pos-

sess tunable viscoelastic properties, making them viable biomemetic tools,10–13 underwater

adhesives,14–17 or medical imagining and drug delivery materials.18–21

1.1 Phase Behavior of Polyelectrolyte Complexes

In salt solutions, polyelectrolyte complexes can phase separate into a supernatant phase

and a coacervate phase. As shown in Fig. 1, the phase window is a boundary under which

the sample separates into two phases, a supernatant and a coacervate, and above which

remains one phase. Tie-lines passing through each initial composition intersect with the

phase boundary at the generated supernatant and coacervate composition. Understanding

phase behavior is necessary for understanding physical properties of complex coacervates

such as viscoelasticity due to the dependence of these properties on both polymer and salt

volume fraction. Studies of the phase window associated with polyelectrolyte complexes

show that the phase behavior depends on the polyelectrolyte pair, salt concentration and

type and charge density.6,22 The Voorn-Overbeek theory is the seminal theoretical work on

polyelectolyte complex phase behavior and has successfully predicted experimental phase

behavior.23 However, more recent work suggest this theory may omit key variables, detailed
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below.

1.1.1 The Voorn-Overbeek Theory and Experimental Support

Overbeek and Voorn developed a mathematical approach to model complex coacervate

phase behavior. This model is based on the Flory-Huggins theory for polymer solutions but

replaces the enthalpic term with a Debye-Huckel approximation for the ion energies.23–26

This theoretical model has been successfully used for years to predict polyelectrolyte phase

behavior and there is a large amount of experimental research supporting the model. For

example, Spruijt et al. performed fluorescent measurements on fluorescently labeled poly-

electrolyte complexes to determine the composition of the coacervate phase and critical salt

concentration. They found solid quantitative agreement between experimental results and

the Voorn-Overbeek model.27 Priftis et al. tested the viscoleasticity and phase behavior of

a ternary polyelectrolyte complex system. The addition of a third component had dramatic

effects on the behavior including much higher tolerance for salt addition and pH changes.

These changes in phase behavior were well-predicted with an adaption of the classic Voorn-

Overbeek model.28 The Larson group tested the limit of the Voorn-Overbeek theory by

comparing the classic model to experimental data at a wider range of pH, salt, and chain

length values. They found good experimental agreement with the Voorn-Overbeek theory,

but noted that the theory had difficulty providing valid experimental predictions at high and

low pH due to asymmetric association behavior between the polyanions and polycations.29

Despite these successes, Voorn-Overbeek omits several physically-important contribu-

tions due to the approximations made in the Debye-Huckel electrostatic term. The Debye-

Huckel approximation assumes that the ions in solution are significantly diluted which is not

accurate for the high salt concentrations in most coacervates. It also ignores connectivity in

polymer chains, treating salt and polyions as identical.30 Despite these limitations, there is

substantial experimental agreement that allows the Voorn-Overbeek model to be used fre-

quently, under current conditions. However, the difficulty fitting the more complex systems

drove the development of the modern theory of complex coacervation described in the next

section.31
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Figure 1: A schematic of a polyelectrolyte complex phase diagram. The axes are volume

fraction of polymer, (φpol) and volume fraction of salt, (φsalt). Samples prepared below the

boundary separate into two phases, a polymer-poor phase, α, and polymer-rich phase, β.

Tie-lines are represented by dashed lines between α and β. Above the boundary, the

sample remains in a single phase.
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1.1.2 Theoretical and Experimental Results of Modern Coacervate Phase Be-

havior

In order to develop a more sophisticated model for polyelectrolyte complex phase behav-

ior, Li and coworkers used thermogravimetric analysis and molecular dynamic simulations

to quantify phase behavior in polyelectrolyte complex systems and gain insight to molec-

ular contributions. Interestingly, they found the tie-lines sloped downward contradicting

the Voorn-Overbeek model. They concluded this was a result of excluded volume effects

expelling salt counter ions from the coacervate phase, a contribution not included in the

Voorn-Overbeek theory.22

Radhakrisna et al. used Motel Carlo simulations with varied charge spacing and hard-

core excluded volume effects. Using recent Liquid State theory predictions and their Monte

Carlo simulations, Radhakrisna et al. concluded that the success of the Voorn-Overbeek

theory resides in the fortuitous cancellation of excluded volume and chain connectivity ef-

fects.30,32 The Perry group tested these conclusions by synthesizing and studying sequence

controlled polypeptides to determine the impact of precise placement of charged monomers

on polyelectrolyte complex phase behavior. They found the behavior was dominated by the

entropic release of the condensed counterion cloud and agreed well with the Monte Carlo sim-

ulations of phase behavior, which includes excluded volume and, more importantly, charge

spacing specificity. Including these effects significantly improve the accuracy of modern

theories of phase behavior.2,33

1.2 Viscoelasticity of Complex Coacervates

Complex coacervates have dynamic viscoelastic behavior that make them valuable tools

in aqueous solutions. The viscoelastic behavior has been attributed to both the semi-dilute

nature of the polymer solutions and the electrostatic interaction between the oppositely

charged polymer chains.34,35 Understanding the viscoelasticity can dramatically improve

product design. Currently, the leading theory used to explain the viscoelastic behavior of
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complex coacervates is the Sticky Rouse model, but it fails to account for both the volume

fraction of polymer and the salt concentration without approximations.

1.2.1 Support of the Sticky Rouse Model

In 1998, Rubinstein and Semenov developed the Sticky Rouse model that explains

viscoelastic behavior of associating polymer chains from the previously described Rouse

model.35–39 In its simplest form this model predicts that the terminal relaxation time of a

material goes as:34,40

τr = τ0N
2

where τr is the terminal relaxation time of the sample, τ0 is the relaxation of a single sticky

site and N is the number of sticky sites. For complex coacervates, the Sticky Rouse model

predicts that a single sticky point is the electrostatic association between charged sites on

polymer chains.27 More generally, the terminal relaxation time also depends on the volume

fraction of polymer:

τr = τ0φ
βN2

In the volume fraction dependent terminal relaxation time, the volume fraction of polymer is

denoted by φ and scales by some value of β, a term is often neglected in analysis of coacervate

systems although the validity of this approximation has recently been called into question.

A number of experimental groups have attempted to test this model. Spruijt et al. dis-

covered a time-salt superposition principle for coacervate relaxation behavior similar to the

classic time-temperature superposition principle for polymer systems. The time-salt superpo-

sition principle assumes that all viscoelastic relaxation modes have the same salt dependence

and that it is possible to collapse all salt concentration dependent moduli onto a single master

curve if shifted by appropriate salt dependent shift factors.41 Furthermore, Schlenoff et al.

prepared polyelectrolyte complexes via salt doping, dissolution, and reprecipitation in order

to determine the composition of the solid-like and liquid-like complex coacervates at equilib-

rium. They found the flow behavior correctly correlated to the salt concentration regardless

of preparation method.1 Using mixtures of stoichiometric and non-stoichiometric amounts

of oppositely charged polymer chains, Spruijt and coworkers also performed a series of rheo-
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logical measurements to probe molecular dynamics. They found the dynamics seemed to be 

well-predicted by the Sticky Rouse model. The mixtures of different chain lengths for 

polyanions and polycations were found to impact the dynamics differently: when changing the 

polycation chain length they observed larger relaxation behavior changes than when changing 

the polyanion. This suggests further research on chain length variations is needed.3 

Furthermore, these studies all ignored contributions from changes in the polymer volume 

fraction, which will prove important for the more sophisticated systems as discussed in the 

next section.

The Schlenoff group performed experiments on a nano-scanning electron microscope to 

evaluate the impact of rinsing or submerging polyelectrolyte complexes in water or organic 

solvents. They found distinctive pores in coacervates after they were submerged in water for 

just 24 hours.42 Furthermore, they used small-angle neutron scattering to understand the 

impact of salt on the radius of gyration of poly(styrene sulfonate) independently in solution 

and in a polyelectrolyte complex in both the coacervate and supernatant phase. For the 

poly(styrene sulfonate) alone in solution, the radius of gyration decreased and the polymer 

coil shrank with increasing salt concentration. On the other hand, in the complex, the radius 

of gyration remained constant until the complex transitioned from a solid to a liquid coacer-

vate, at which point they observed a decrease in coil size. They also observed an increase in 

porosity, similar to the results seen in their previous research on submerged polyelectolyte 

complexes.43 Similarly, using a rheometer in a parallel plate configuration submerged in salt 

water or pure de-ionized water, the Colby group attempted to understand the viscoelastic 

response of swelling polyelectrolyte complexes. With these submerged systems, they found 

good agreement for low molecular weight polymer systems with the Sticky Rouse model, 

where terminal relaxation scales as a single relaxation multiplied by the number of sticky 

points squared.44 They did not account for the pores discovered by the Schlenoff group, 

suggesting further research should be done to resolve these contradictory results. Although 

the Sticky Rouse model has had significant success describing the viscoelastic relaxation be-

havior of complex coacervates, difficulty disentangling the effects of polymer volume fraction 

and salt dependence has driven research to understand the limitations of this model.
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1.2.2 Failings of the Sticky Rouse Model

In order to test the validity of the time-salt superposition for complex coacervates, Ali et

al. performed small-amplitude oscillatory shear rheology measurements on coacervates at a

wide range of temperatures and salt concentrations. They found that time-salt superposition

is valid at high salt concentrations but begins to break-down as the coacervates approach

the gel point and rubbery regime due to physical crosslinking dominating the relaxation

dynamics. They were also unable to fit data without assuming that the polymer volume

fraction contributions scales exponentially with β equal to 7/3.45 The Perry group used rhe-

ological characterization of polyelectrolyte complexes to probe the solid-to-liquid transition

with increasing salt concentration. Their results show it is impossible to perform a time-salt

superposition across both solid and liquid coacervates and suggested solid-like behavior was

a result of ionic cross-linking.46 Furthermore, when using small angle X-ray scattering and

rheological measurements, the Tirrell group compared arrangements of polymer chains on

a molecular scale with bulk relaxation dynamics in both semidilute polymer solutions and

polyelectolyte complex coacervates. They found similar scattering and rheological behavior

but were not able to fit the shift factors and salt concentration curves without including the

approximations for the polymer volume fraction.47

The assumptions made about the terminal relaxation time dependence on the polymer

volume fraction and the difficulty in disentangling the volume fraction of polymer from the

salt dependence has driven the research presented here. Using a specific sample preparation

method in which we add salt to a pre-formed coacervate, we are able to disentangle these

variables and probe the salt dependence, the polymer volume fraction, and the impact of

cooperativity of charged sites.
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2.0 Salt-Addition Experiment

In order to independently test the salt and polymer volume fraction dependence of com-

plex coacervates, a series of complex coacervates were prepared and separated from their

supernatant. A controlled amount of solid potassium bromide was added to these samples in

varying amounts in order to change the salt concentration while holding the polymer volume

fraction constant. These samples were then measured with thermogravimetric analysis to

quantify their final compositions and small-amplitude oscillatory shear rheology measure-

ments to analyze their characteristic relaxation times.

2.1 Introduction

As described in chapter 1, current literature suggests that complex coacervate viscoelastic

behavior is dependent on both the salt concentration and the volume fraction of polymer. Up

until now, no materials have been developed to experimentally separate the two variables.

The difficulty lies in the current sample preparation methods, which change both the salt

and polymer volume fraction in the coacervate, simultaneously. There has been substantial

research into the impact of varying the salt concentration while making approximations

about the polymer volume fraction.

In order to investigate this problem, a unique sample preparation method was developed,

whereby a polyelectrolyte sample is prepared in bulk and the supernatant is removed. The

coacervate phase is then separated into separate vials and solid potassium bromide is added

to change the salt concentration while holding the volume fraction of polymer consistent. We

verified the success of this method via thermogravimetric analysis and tested the viscoelastic

properties of the resulting coacervates with small-amplitude oscillatory shear rheology.
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2.2 Experimental Design

2.2.1 Materials

Poly(sodium 4-styrenesulfonate) (Mw = 200,000 g/mol) and poly(diallyldimethyl ammo-

nium chloride) (Mw = 200,000-350,000) were purchased from Sigma Aldrich, purified via

dialysis in Milli-Q water, and lyophilized prior to use. Removal of small-molecule impurities

was verified with 1H NMR in D2O. The potassium bromide (KBr) was also purchased from

Sigma Aldrich and used as received.

2.2.2 Preparation of Polyelectrolyte Complexes

Polyelectrolyte complexes were made from stock solutions of poly(styrene sulfonate)

(PSS) and poly(diallyldimethyl ammonium chloride) (PDADMAC). After purification of

polymers, stock solutions of PSS and PDADMAC were made at concentrations of 0.5 M

charged monomer units. A KBr stock solution was made with a target concentration of 4 M.

Samples were prepared by sequential addition of the required amounts of PSS stock solu-

tion, water, KBr stock solution, and PDADMAC stock solution to reach a target volume of

50 mL at the target salt concentration and 0.125 M concentration of each charged monomer.

After each addition, the sample was vortexed for 1 minute at 2000 rpm. The samples were

then centrifuged for 5 minutes at 4000 rpm, left to equilibrate for 24 hours, and centrifuged

again for 20 minutes. The samples were left to equilibrate for a minimum of 5 days. After

equilibration, the supernatant was removed and the coacervate phase was divided into 5 or

6 individual vials, each containing approximately 0.5-0.9 g of coacervate. Each sample was

weighed and the amount of KBr necessary to reach the final target salt concentration was

added. The coacervate/salt mixture was stirred manually for 1 minute and left to equilibrate

for a minimum of 1 week before measurement.

9



2.2.3 Thermogravimetric Analysis

Thermogravimetric analysis (TGA) measurements were carried out on a Q5000 IR Ther-

mogravimetric Analyzer (TA Instruments) using a measurement protocol adapted from Li

et al.22 Each sample was loaded onto a platinum pan and heated to 100◦C at a rate of

20◦C/min. The sample was then held at an isotherm at 110 ◦C for 60 minutes to remove

all excess water in the sample. The temperature was then ramped up to 610◦C at a rate of

10◦C/min. At 610◦C, the sample was held at a second isotherm for 90 minutes to remove

as much residual organic material as possible. Finally, the temperature was ramped up to

680◦C at 10◦C/min to complete the measurement.

2.2.4 Rheological Measurements

Small-amplitude oscillatory shear measurements were performed on an Anton Paar MCR

301 stress-controlled rheometer, using a sand-blasted 25 mm parallel plate geometry. All

measurements were performed at a gap height of 250 µm. The temperature was held at

20◦C using peltier plates, and an evaporation blocker was used to minimize evaporation over

the course of the measurement. Previous studies using a similar setup suggested that poly-

electrolyte complexes begin to exhibit effects of evaporation after approximately 5 hours.3

To avoid this problem, our measurement protocol was designed to complete the full series of

measurements in 3 hours.

Three experiments were carried out on each sample. First an amplitude sweep was

performed from 0.1% to 100% at a frequency of 10 rad/s to determine the linear regime.

This was followed by a flow curve from 0.01 s-1 to 100 s-1 and finally a frequency sweep from

600 rad/s to 0.1 rad/s with an accompanying strain sweep from 1% to 100% in order to

improve instrument response at low frequencies. This strain sweep method has been shown

to improve instrument sensitivity near the low torque instrument limit.48
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Figure 2: TGA trace of the 1.4 M KBr coacervate sample.

2.3 Results

2.3.1 TGA Results

TGA data was used to determine the composition of the initial coacervates and salt-

added coacervates. Using the mass percentages taken from the TGA spectra, as seen in Fig.

2, we used bulk densities reported for the PSS/PDADMAC polymer system (1.13 g/mL),

KBr (2.75 g/mL) and water (1.00 g/mL) to convert from mass to volume. The bulk density

approximation has been used in previous work. Although there may be some non-ideal

mixing in the samples, the bulk densities were assumed to be representative of the materials.

The polymer, salt, and water volume fraction were calculated by dividing the calculated

volumes of each component by the total calculated volume.

Using the TGA data, we constructed a phase diagram for this polymer system. As shown

in Fig. 3, the coacervate has a significantly higher volume fraction of polymer than does

the supernatant and there is a higher volume fraction of salt in the supernatant than the

coacervate consistent with previous literature results. The composition of samples prepared

by salt addition to each of these starting coacervates are shown in the same color. The

TGA data shows that the polymer volume fraction is constant within the uncertainty of the

11



Figure 3: Phase diagram for the salt-addition experiment, using circles to represent the

coacervate phase samples and crosses for the supernatant. Tie-lines are marked with

dashed lines between the supernatant and the coacervate with no additional salt.
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measurements within a single starting salt concentration series. This behavior allows us to

independently compare the effect of both salt and polymer volume fraction on the rheological

flow behavior to garner insight into the driving force behind polyelectrolyte complex flow

behavior.

The highest polymer volume fraction occurs at the lowest initial salt concentration,

matching previous literature studies of these materials. Interestingly, as the critical salt

concentration is approached, at salt concentration of 1.5 M and 1.6 M, the polymer volume

fraction is identical within the uncertainty of the measurement. This is possibly the result

of approaching the critical salt concentration. These results allow us to analyze the salt and

polymer concentration dependence on the rheological data, as describe below.

2.3.2 Rheological Data

Rheological measurements were used to determine how increasing the salt concentration

in the coacervate phase impacts the viscoelastic behavior of coacervates when the polymer

concentration is unchanged. As seen in Fig. 4, the lowest salt concentrations approach the gel

point as seen by the deviation from the terminal regime flow behavior. For samples prepared

at higher salt concentration, the moduli scaled as G′ ω2 and G” ω at low frequency indicating

that they are in the terminal flow regime. These results match our predictions for complex

coacervate rheology. With the addition of increasing amounts of salt, the moduli shift to

lower magnitude and higher frequency, suggesting faster terminal relaxation times. Decreases

in the terminal relaxation time have been suggested to be a result of either decreases in the

polymer volume fraction or increases in the salt concentration. In the data shown in Fig.

4, we are able to completely attribute this change to the addition of salt, since there is no

significant change in the polymer volume fraction in this series of samples. Furthermore,

when exploring the impact of polymer volume fraction, while attempting to hold the salt

concentration constant, seen in Fig. 5, there are still substantial changes in flow behavior

as the polymer volume fraction varies. The decreasing polymer volume fraction, like the

increasing salt concentration, causes a shift to higher frequencies and lower moduli. For

deeper quantitative understanding between salt concentration and polymer volume fraction,
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Figure 4: Raw rheology data for the series of samples with starting salt concentration of

1.4 M. As the salt concentration is increased the moduli shift to higher frequency.
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Figure 5: Raw rheology data for the series of samples with target salt concentration of

1.8 M. As the volume fraction of polymer increases the moduli shift to higher frequency.
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these results will be explored in the next section by using a time-salt superposition to compare

the horizontal shift factors to volume fraction of salt and polymer.

Using a time-salt superposition, we created a master curve for both the series with

the same starting salt concentration and with the same target salt concentration. The

horizontal shift factors give clear insight into how both the polymer volume fraction and the

salt concentration impact the flow behavior of these viscoelastic materials. The Rubenstein

group has posited that the terminal relaxation time for complex coacervates is given by the

volume fraction dependent τr. Using this equation and our results, we are able to extract

values of β by comparing our volume fraction of salt and polymer with our horizontal shift

factors. The literature values of β generally are assumed to be between 1 and 2 depending on

the approximations used. Rubenstein and Semenov suggested that the β value could go up

to 6 in semi-dilute polymer solutions with associating sticky points.34 As shown in Fig. 6,

the value of β for different starting salt concentrations in this work varies from approximately

3 to 9, with higher β values for the samples with higher polymer volume fraction. When

comparing all the absolute horizontal shift factors with the salt concentration, we found the

overall β value to be −5.82±0.54. The linear fit for this β value is a reasonable fit within the

error of the measurement. These β values are significantly higher than the theoretical values

or approximations used in previous work, suggesting our current understanding of complex

coacervates is incomplete.

To analyze the salt dependence, we assume that the relaxation of a single electrostatic

association goes as τ0 ∼ cαs , reflecting changes in the activation barrier for electrostatic

association with salt concentration. When comparing samples with similar target salt con-

centration, we were able to calculate the value of α, representing the scaling associated

with the salt concentration. Using a similar model to the time-salt superposition, we cal-

culated shift factors of samples with decreasing polymer volume fraction. In doing so, we

assume that the volume fraction of polymer impacts each mode of relaxation equally. Al-

though there are no direct studies of shifting polymer volume fraction while maintaining salt

concentration and temperature, this model suggests that the time-polymer volume fraction

superposition is successful for this system. We found values of 1.79 ± 0.24 for α as seen in

Fig. 8. More research is needed to fully understand the activation energy dependence on
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Figure 6: On a logarithmic scale, the absolute horizontal shift factors and volume fraction

of salt at the different starting salt concentrations collapse onto a single line. The slope of

this line giving the value of the scaling exponent β.
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Figure 7: A linear fit, with 95% confidence, was used to determine the value of β from the

horizontal shift factors and volume fraction of salt, as seen in Fig. 6.
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Figure 8: Absolute horizontal shift factors and the polymer volume fraction to determine

the value of α and the 95% confidence of the fit.
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salt concentration.

2.4 Discussion

The shift to higher frequencies and lower moduli shown in Fig. 4 for the series of sam-

ples with the same starting salt concentration can be attributed to the increasing amount

of added salt. The current polyelectrolyte complex theory suggests that with increases in

salt concentration, the salt ions are able to disrupt the sticky sites or ionic linkages acting as

reversible cross-links between polymer chains, speeding up the terminal relaxation time.27

Although this may not be a complete picture of the complexities of the dynamics of these

materials, there is significant dependence of the viscoelastic properties on the salt concentra-

tion. Conversely, the rheological shifts seen in Fig. 5 for a series of samples with the same

target salt concentration can be attributed to the changes in polymer volume fraction. This

suggests that the decrease in polymer volume fraction also causes faster terminal relaxation

of the chains. This change has been attributed to the diffusion of polymers in a semi-dilute

solution. This behavior is theorized to be result of polymer diffusion: a lower volume frac-

tion allows for faster polymer chain relaxation irrespective of salt concentration.26 Despite

the difficulty disentangling these variables, our results suggest that the dependence on salt

concentration and polymer volume fraction can be independently tested. Although this may

not be a complete picture of the complexities of the dynamics of these materials, these results

have shown that the flow behavior is not exclusively dominated by the salt dependence or

the volume fraction of polymer.

This research provides context for a new method of studying complex coacervates. The

polymer volume fraction scaling exponent β is significantly higher than previous approxima-

tions have assumed. This suggests that the polymer volume fraction plays a substantially

larger role in the relaxation dynamics of these complex coacervates. Furthermore, the ability

to disentangle the polymer and salt volume fraction increase our understanding of the driving

forces behind the viscoelasic behavior of coacervates. Moving forward, this research provides

a unique approach to developing tunable properties of the polyelectrolyte complexes. With
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the ability to independently vary the polymer or salt volume fraction, the versatility of these

materials will increase. This will provide further insight into the our understanding of these

materials as well as our methodology for product design.
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3.0 Charge Density Experiment

A series of copolymers were synthesized with decreasing charge density and measured

with small-amplitude oscillatory shear rheology measurements. These measurements pro-

vided insight into the impact of molecular charge spacing on the bulk rheological flow be-

havior of complex coacervates. The dispersity and number of charged sites on these polymer

chains were carefully controlled in order to probe cooperativity between charged sites. The

preliminary data indicate that the interaction between multiple charged sites may be more

complex than the Sticky Rouse model currently predicts. However, experimental inconsis-

tencies prevented a full data set from being collected and more work will be needed before

conclusions can be determined.

3.1 Introduction

The Sticky Rouse model makes a critical assumption that the terminal relaxation time

depends on the relaxation of a single sticky point and number of sticky sites squared, as seen

in simple terminal relaxation equation. In this model, the τ0 term scales exponentially as the

activation energy of dissociation of a single electrostatic interaction, which depends on the

salt concentration. This model fails to take into account separation between sticky points or

cooperativity of charged sites and assumes that the activation energy of a single sticky point

is consistent regardless of the surrounding environment. The Perry and Sing groups have

done a substantial amount of theoretical work on this topic and some experimental phase

behavior research.6,31,33 Despite this research, the ability to probe the activation energy of

these sticky sites has yet to be developed in complex coacervates.

Here, we address this problem by investigating the viscoelasticity of coacervates formed

from poly(acrylic acid) and poly(dimethyl amino ethyl methacrylate-co-diethylene glycol

methyl ether methacrylate). The polymers were designed such that they have similar num-

ber of charged sites, targeting 200 charged monomer unit per chain. For the copolymers,
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the number of dimethyl amino ethyl methacrylate monomers was held consistent while the

molecular weight was increased, thus decreasing the charge density. This molecular change

should give substantial insight into the cooperativity of charge sites and resulting impact of

separating charged monomers on the bulk material behavior.

3.2 Experimental Design

3.2.1 Polymer synthesis

The poly(acrylic acid) was synthesized by atom transfer radical polymerization and the

poly(dimethyl amino ethyl methacrylate-co-diethylene glycol methyl ether methacrylate) was

synthesized by reversible addition-fragmentation chain-transfer polymerization, as described

below.

3.2.1.1 Materials All materials were purchased from Sigma Aldrich. For the poly(acryl-

ic acid) synthesis, ethyl-2-bromopropionate (EBrP), N,N,N’,N’,N”-pentamethyldiethylene-

triamine (PMDETA),trifluoroacetic acid, and the solvents, anisole, dichloromethane, N,N-

dimethylformamide and ethanol, were used as received. Tert-butyl acrylate was filtered

through activated neutral alumina immediately before use. For the synthesis of poly(dimethyl

amino ethyl methacrylate-co-diethylene glycol methyl ether methacrylate), dimethyl amino

ethyl methacrylate (DMAEMA) and diethylene glycol methyl ether methacrylate (DEGMA),

were filtered through activated neutral alumina immediately before use. Azobisisobutyroni-

trile (AIBN) recrystallized from methanol. N-ethyl piperidine hypophosphite, 4-cyano-4-

[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid, toluene and methanol were used as

received.

3.2.1.2 Synthesis of Poly(acrylic acid) Poly(acrylic acid) (PAA) was synthesized

by atom transfer radical polymerization of poly(tert-butyl acrylate) (PtBuA), followed by

cleavage of the tert-butyl side-chain to produce PAA.49 In a typical polymerization target-

23



Figure 9: Reaction scheme: synthesis of poly(acrylic acid).

ing PtBuA with a molecular weight of 27 kg/mol, a Schlenk flask containing 0.297 g cop-

per(I)bromide was sealed and placed in liquid nitrogen. While the flask was submerged in

liquid nitrogen, a mixture of 106.5 g tert-butyl acrylate, 0.270 mL EBrP, 0.428 mL PMDETA,

and 24 mL anisole was injected into the flask. Three freeze-pump-thaw cycles were performed

to degas the mixture. The flask was then filled with argon and sealed and the reaction was

performed at 90 ◦C for approximately 6 hours.

Aliquots of the reaction mixture were withdrawn at regular intervals, and the monomer

conversion was monitored by 1H nuclear magnetic resonance (NMR) in deuterated chloro-

form. When the conversion reached 50%, the reaction was quenched by removing the reaction

flask from the heat and placing it in an ice bath. The mixture was then precipitated into 3 L

of a 75% ethanol/25% water mixture. The precipitated PtBuA was redissolved in tetrahy-

drofuran (THF) and filtered through activated neutral alumina to remove the remaining

copper. The mixture was then precipitated a second time and the recovered PtBuA was

dried overnight under vacuum. The molecular weight and dispersity were determined by

size exclusion chromatography (SEC) on an EcoSEC Elite GPC System (Tosoh Bioscience)
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equipped with a multi-angle light scattering detector (Wyatt Heros II). The SEC measure-

ments were performed at 40 ◦C in THF with a dn/dc value of 0.512.

The tert-butyl side chains were then cleaved to form PAA. Approximately 50% of the 

dried PtBuA (25 g, 1 eq. tBu) was dissolved in 125 mL dichloromethane. Trifluoroacetic acid 

(50 mL, 3.25 eq.) was then added to the mixture and the flask was sealed.50 The mixture 

was stirred at room temperature for two days. Over the course of the reaction, the resulting 

PAA precipitated to form a white solid. The supernatant was then removed under reduced 

pressure and the solid was redissolved in a N,N-dimethylformamide and ethanol mixture. This 

mixture was sequentially dialyzed against pure ethanol, followed by a 50% ethanol/50%water 

mixture, and finally pure water. The water was finally removed by lyophilization. The purity 

and remaining tert-butyl content of the dried polymer were determined by 1H NMR formation 

of PAA was confirmed by the loss of the large singlet at approximately 1.5 ppm corresponding 

to the t-butyl group, as shown in Fig. 18.

For simplicity in tables and figures poly(acrylic acid) will be represented by A.

3.2.1.3 Synthesis of Poly(dimethyl amino ethyl methacrylate-co-diethylene gly-

col methyl ether methacrylate) Poly(dimethyl amino ethyl methacrylate-co-diethylene

glycol methyl ether methacrylate) (poly(DMAEMA-co-DEGMA)) was synthesized by re-

versible addition-fragmentation chain transfer (RAFT) polymerization. Each polymer had

a targeted 200 DMAEMA monomer units per chain with increasing amounts of DEGMA

comonomer.51 This increase in DEGMA content decreases the charge density and increases

the polymer molecular weight. The targeted ratios for DMAEMA to DEGMA monomers

Table 1: Poly(acrylic acid) used in preliminary experiments

Polymer Mn (NMR, kg/mol) Mn (SEC, kg/mol) -D Monomer Ratio (%)

A 15 15 1.09 N/A
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Figure 10: Reaction scheme: synthesis of poly(DMAEMA-co-DEGMA).

were 5:1, 3:1, and 2:1. In each synthesis the concentrations of DMAEMA, the chain transfer

agent, and AIBN were held constant while the concentrations of DEGMA and toluene were

changed to target the desired monomer ratios. In a typical polymerization (here the 5:1

copolymer), 29.2 g of DMAEMA monomer, 7.0 g of DEGMA, 272 mg of the chain transfer

agent, 11.2 mg AIBN and 50 g of toluene were combined in a Schlenk flask. The flask was

sealed and three freeze-pump-thaw cycles were performed to degas the mixture. The flask

was then filled with argon and the mixture was polymerized for approximately 18 hours at

70 ◦C. Aliquots of the reaction mixture were withdrawn at regular intervals during the last

6 hours of the reaction to monitor monomer conversion by 1H NMR in deuterated chloro-

form. When the reaction reach 73% conversion, the reaction was quenched by removing the

flask from the heat and placing it in an ice bath. The mixture was precipitated into 3 L

of cold hexanes, redissolved in toluene and precipitated a second time. The mixture was

then dissolved in benzene and freeze-dried overnight under vacuum. SEC was used to de-

termine the molecular weight and dispersity of the polymer sample. The measurement was

performed in tetrahydrofuran with 1% triethylamine at 40 ◦C with a dn/dc value of 0.084

for poly(DMAEMA).

The trithiocarbonate end-group of the polymers was removed by a UV-light initiated

reaction.52 Each gram of polymer was dissolved in 6.5 g of toluene and 2.4 g of methanol

with an excess of N-ethylpiperidine hypophosphite (48.8 mg, 3 eq.). The reaction flask was

sealed and flushed with argon and the mixture was placed over a UV-light source (approx.

26



Figure 11: Reaction scheme: removal of trithiocarbonate end-group.

36 W at 365 nm) for 48 hours at room temperature with stirring. Success of the end-group

removal was analyzed with UV-Vis Spectroscopy and the molecular weight and dispersity

were measured again to verify no chain-chain termination occurred during end-group removal.

For simplicity in tables and figures, polymers will be described such that D represents

DMAEMA monomers while G represents DEGMA monomers, for example DG (5:1) is

poly(DMAEMA-co-DEGMA) at a 5:1 DMAEMA monomer to DEGMA monomer ratio.

Table 2: Poly(DMAEMA-co-DEGMA) used in preliminary experiments

Polymer Mn (NMR, kg/mol) Mn (SEC, kg/mol) -D Monomer Ratio (%)

D 30 36 1.04 N/A

DG (5:1) 38 44 1.07 82.7

DG (3:1) 46 49 1.09 74.1

DG (2:1) 50 55 1.12 66.0
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3.2.2 Preparation of Polyelectrolyte Complexes

Polyelectrolyte complexes were made from 0.5 M concentration of charged monomer stock

solutions of PAA and poly(DMAEMA-co-DEGMA), and a 3 M stock solution of potassium

chloride (KCl). The stock solutions were pH-adjusted to 6.5 ± 0.2 by adding concentrated

hydrochloric acid (HCl) (Sigma Aldrich) or 50% wt. sodium hydroxide (NaOH) in MilliQ

water. The samples were prepared by adding PAA, then water, KBr and poly(DMAEMA-

co-DEGMA) to target a polymer concentration of 0.2 M. After each addition, the samples

were vortexed for 1 minute at 2000 rpm. The samples were left to sit for 2 days and then

centrifuged for 30 minutes and left to equilibrate for a minimum of 2 additional days.

3.2.3 Rheological Measurements

Small-amplitude oscillatory shear measurements were performed on an Anton Paar MCR-

302 stress-controlled rheometer, using a 40mm cone and plate geometry with a cone angle

of 0.3◦. The measurements were performed at 25◦C with an evaporation blocker to prevent

significant evaporation effects on the samples. All experiments were performed in under

3 hours to avoid any substantial evaporation of the aqueous solvent. Two experiments were

performed on each sample, an amplitude sweep from 0.1% to 100% at a frequency of 10 rad/s

and a frequency sweep from 600 rad/s and 0.01 rad/s at a strain of 1%.

3.3 Results and Conclusions

Rheological measurements were used to determine the viscoelastic flow behavior of the

polyelectrolyte complexes with decreasing polycation charge density. The Sticky Rouse

model suggests that regardless of spacing between charge sites, the terminal relaxation de-

pends only on the number of sites and the relaxation of a single sticky site. This should result

in identical viscoelastic responses despite the decreasing charge density. This result was not

supported by the preliminary rheological results gathered from this weak polyelectrolyte sys-

tem. With decreasing charge density, the moduli shifted down and to higher frequencies, as
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Figure 12: Raw rheological results of (a) D and A and (b) DG(5:1) and A.

seen in Fig. 12. Using a time-salt superposition, we were able to shift the moduli into a

master curve and extract preliminary horizontal shift factors. The decrease in charge den-

sity causes the horizontal shift factors to decrease suggesting that the Sticky Rouse model

is more complex than previously thought. The decrease in charge density suggest that the

cooperativity between charges impacts the activation energy and relaxation of a single sticky

site and thus changes the terminal relaxation. As shown in Fig. 14, as the charge density

decreases, the horizontal shift factors decrease at different rates, suggesting a dependence on

the cooperativity of electrostatic interactions. Although these preliminary results suggest

that there is some charge density dependence, interpretation of this data is complicated by

changes in volume fraction of polymer with decreasing charge density. The total coacervate

volume increased when the fraction of DEGMA monomers increased. The total volume of

coacervate, as estimated from pictures seen in Fig. 15, was used to calculated the polymer

volume fraction with the assumption that 100% of the polymers chains are contained within
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Figure 13: Using horizontal and vertical shift factors, the individual rheological traces were

overlayed to form a master curve for the D and A polymer.

Figure 14: Plotting the salt concentration versus the horizontal shift factors for the

different charge density systems.
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the coacervate phase. This is a reasonable assumption, as shown in the previous chapter,

because the amount of polymer present in the supernatant phase is small. This shift in the

volume fraction of polymer makes it difficult to attribute the changes in relaxation time to

only the cooperativity of charged sites. This suggests that, in order to further disentangle

individual activation energy from the volume fraction of polymer, a series of salt-addition

experiments on the decreasing charge density polymer series should be performed.

Unfortunately, when attempting to repeat these measurements, there was difficulty with

sample reproducibility. Due to the difficult nature of weak polyelectrolyte systems, despite

measures set in place to limit variability, samples prepared in identical manners would exhibit

vastly different phase behavior and viscoelastic properties. Fig. 16 presents a series of

samples produced from the same polymer with identical solution and preparation method.

A series of experiments to carefully control and test the effects of equilibration time, pH,

temperature and stoichiometry of polyelectrolyte complexes were performed. Despite this

research and control measures, there was still significant variability between different samples.

Significantly more research needs to be done to improve the weak polyelectolyte sample

preparation methods in order to improve reproducibility.

31



Figure 15: Changes in charge density at different salt concentration show an overall

coacervate volume change suggesting a polymer volume fraction change.
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Figure 16: A series of polymers prepared with as little variability as possible. There is a

dramatic change in viscoelastic behavior, suggesting reproducibility problems in weak

polyelectrolyte systems.
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Appendix

Supporting Information for: Charge Density Experiment
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Figure 17: NMR data for the 5:1 poly(DMAEMA-co-DEGMA) after end group removal.
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Figure 18: NMR data showing the removal of the tert-butyl group.
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