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Evolutionary-based methods for predicting genotype-phenotype associations in
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Raghavendran Partha, PhD

University of Pittsburgh, 2019

Phenotypic and genotypic variation between species are the result of millions of exper-

iments performed by nature. Understanding why and how phenotypic complexity arises is

a central goal of evolutionary biology. Technological advancements enabling whole genome

sequencing have laid the foundation for developing comparative genomics-based tools for

inferring genetic elements underlying phenotypic adaptations. The work covered as part of

this thesis will develop these tools drawing from principles of convergent evolution, aimed

at generating specific functional hypotheses that can help focus experimental efforts. These

tools will be relevant for characterizing context-specific functions of cis-regulatory elements

as well as protein-coding genes, where a large number lack functional annotation beyond do-

main homology. Expanding from one-dimensional approaches studying proteins in isolation,

we propose to build an integrated co-evolutionary framework that will serve as a powerful

tool for protein interaction prediction. In this dissertation, we discuss these ideas through

the following three projects.

In chapter 1, we perform a genome-wide scan for genes showing convergent rate changes

in four subterranean mammals, and study the underlying changes in selective pressure caus-

ing these convergent shifts in rate. Using a new variant of our rates-based method, we

demonstrate that eye-specific regulatory regions show strong rate accelerations in the sub-

terranean mammals. This study demonstrates the potential of convergent evolution-based

tools in the functional annotation of eye-specific genetic elements.

In chapter 2, we build a robust method to infer shifts in rate associated with a wide range

of evolutionary scenarios. We investigate the statistical underpinnings of our rates-based

framework and identify the best performing variant of our method across real and simulated

phylogenetic datasets. We distribute these tools to the research community, enabling large

scale generation of specific functional hypotheses for regulatory regions.
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In chapter 3, we propose to construct a powerful framework for protein interaction pre-

diction using integration of proteome-wide co-evolutionary signatures. We systematically

benchmark the predictions of our coevolutionary framework using known functional inter-

actions among proteins across various scales. We make the predictions of the framework

publicly available, useful for functional annotation of less well-characterized genes.
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1.0 Introduction

The natural world is characterized by diversity across many scales. Diversity in the organ-

isms that inhabit this world ranging from prokaryotic microorganisms to modern mammals.

Focusing on the mammalian species, we observe some common characteristics including pos-

session of a neocortex, some hair, three middle ear bones among other traits. However,

mammals are characterized by diversity at many levels. Some mammals are egg-laying

while a majority of them give birth to live young. In terms of size, there is roughly a mil-

lion fold difference in the weight of small versus large mammals. Curiously, many of these

large mammals also tend to be longer lived. Mammals have also evolved unique traits or

phenotypes that allow them to adapt to their respective environments and overcome the

associated challenges. Understanding the genetic basis of this phenotypic diversity is a prob-

lem of outstanding interest in biology. The overarching goal of mapping the phenotypes

or traits to the genotypes or the genetic makeup of a species has been an important topic

of research. In the recent past, improvements in sequencing technologies have resulted in

whole genome sequencing efforts for many mammals. Beginning with the original human

genome project, we now have the genome sequences of several mammals and vertebrates

among other species (Lindblad-Toh et al., 2011). Newer efforts to sequence the genomes

of additional species are also being pursued including initiatives such as the 200 mammal

sequencing project (http://grantome.com/grant/NIH/R01-HG008742-01A1). One of the

goals of these projects is to sequence and align the genome sequences of these species to

the human sequence so as to enable comparative genomic analyses. Concurrent to the se-

quencing of these genomes, bioinformatics tools have been developed to align these large

genomic assemblies. Such genome-scale alignments allow us to compare these genomes at

varying scales. We can compare how the structures of genomes evolve between closely related

species, or more locally, how sequences of various genes have changed across these species.

These local alignments in turn allow us to reconstruct the evolutionary relationships between

these species in the form of phylogenetic trees.

Through the comparisons of genomes, we can readily observe one property – sequences

1
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of the genome that are similar or conserved versus dissimilar. Sequence conservation is a

useful property to study because it serves as a proxy for function. This is because if the

sequence is conserved it implies that there is a force of selection against mutations in this

region. In comparison, regions that are not under such constraints are usually neutrally

evolving, meaning mutations in such regions do not have a negative consequence to the

organism. In many cases, we see that exons of protein-coding genes show high levels of

sequence conservation as it is codes for the structure of the protein and subsequently its

function. Contrasting to this, we typically observe a much smaller fraction of intergenic

regions showing high sequence conservation. Several studies have looked at the conservation

across the sequenced mammals to identify these functional regions. The findings show that

a remarkable 80% of the exons in protein-coding genes in humans have detectable levels of

conservation with the Opossum, a distantly related marsupial mammal (Hardison, 2010).

Perhaps as one would have expected, mammals that are more closely related have higher

levels of conservation. Even though the fraction of the total genome that is conserved

declines rapidly with distance, we find that there are many local regions that are conserved

to a very high extent. And surprisingly, many non-coding regions are conserved across

mammals. These include important regulatory regions such as enhancers, promoters but

a vast majority of these conserved regions have functional annotations that are yet to be

discovered (Siepel et al., 2005).

Conservation is indeed a useful proxy for function, but it falls short there - it does

not necessarily reveal what that function is. In order to identify the biological function or

the associated phenotype of such conserved elements alternative strategies are necessary.

Genome-wide experimental initiatives such as the ENCODE and the RoadMap epigenomics

projects have been undertaken with the aim of elucidating components regulating cellular

functions and mechanisms (Bernstein et al., 2010; Andersson et al., 2014). These efforts have

identified a wealth of biochemically active elements across cell types as well as developmental

time points in the human and mouse genomes. As a result of this welcome explosion of newly

acquired data, the research community faces a more challenging problem - developing tools

that can successfully unlock the association between variation at the phenotypic level to that

at the level of the genotype. In other words, approaches that provide effective solutions to

2



the problem of assigning specific biological functions to these regulatory elements have not

kept pace with the rate at which these elements are identified. To develop effective solutions

for a problem of this scale, there is a need for inter-disciplinary efforts that combine insights

from complementary fields of research.

In this thesis, we seek to tackle this problem from the perspectives of convergent evolution

and coevolution. Nature has provided countless examples of multiple unrelated lineages

showing phenotypic adaptation to similar environmental challenges. Examples of convergent

evolution include the evolution of winged flight, evolution of structures that enabled three

different clades of mammals adapt to the marine environment, dietary adaptations and so

on. Another form of convergent evolution is in the convergent loss of phenotypes or traits,

such as the loss of vision in subterranean mammals. The availability of diverse patterns

of phenotypic evolution in nature opens up the opportunity to develop evolutionary-based

approaches aimed at inferring the changes at the genetic level underlying said instances

of phenotypic convergence. Alternatively, genetic elements showing convergent changes in

species characterized by phenotypic convergence are thus strong candidates for a functional

role in the phenotype. Evolutionary methods inferring phenotypic associations for genetic

elements based on patterns of convergence can be particularly powerful in the context of

inferring candidate genetic elements amidst the background of the entire genome (Hiller

et al., 2012). This power is borne out of the presence of multiple independent instances

of the phenotypic change which enables the identification of relevant regions of interest.

Another force of evolution that can be leveraged to reveal functional associations in the

cell is coevolution. As components of cellular systems, proteins do not act in isolation,

and coordinate with other proteins resulting in functional pathways (Clark et al., 2012b).

Therefore, there is a shared pressure to maintain the functionality of a pathway on the

participating proteins. Effective methods to identify coevolving pairs of genes therefore

possess the power to predict uncharacterized components of genetic networks underlying

phenotypic adaptations and biological functions.
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2.0 Evolution of vision-related genetic elements across subterranean mammals

2.1 Introduction

The subterranean habitat has been colonized by numerous animal species for its shelter

and unique sources of food (Andersen, 2004; Nevo, 1979). Obligate fossorial species in

particular have adopted the underground as a dedicated home, yet the intense demands on

life underground often require unique specializations. For one, the air in tunnels is often

low in oxygen (hypoxic) and high in carbon dioxide (hypercapnic) (Nevo, 1979). This dark

environment also requires enhanced senses to compensate for loss of vision. These and

other subterranean specializations have been reported in many independent evolutionary

lineages of insects, amphibians, reptiles, and mammals (Leys et al., 2003; Lacey et al., 2011;

Albert et al., 2007; Wilkinson, 2012). Within mammals alone, there are several unrelated

subterranean species, including the true moles (family Talpidae), the African golden moles

(Chrysochloridae), and the marsupial moles (Notoryctidae). There are also at least three

unrelated lineages of subterranean rodents: the naked mole-rat (Heterocephalus glaber),

blind mole-rats (Spalacidae), and the pocket gophers (Geomyidae).

Vision in many subterranean mammals is limited, and the degree of limitation in each

species is related to its extent of underground habitation (Němec et al., 2008; Quilliam, 1966;

Sanyal et al., 1990). For example, star-nosed moles (Condylura cristata) that share their

time above ground and underground possess diminutive eyes with thick eyelids (Catania,

1999), while the naked mole-rat (Heterocephalus glaber), which spends almost all its time

underground, shows tiny eyes that are rarely opened (Hetling et al., 2005). Even more ex-

treme are the completely subcutaneous eyes of the cape golden mole (Chrysochloris asiatica)

and the blind mole-rat (genus Nannospalax), which is thought to reflect their strictly sub-

terranean lifestyle (Sweet, 1909; Sanyal et al., 1990). While some degree of visual regression

is shared between subterranean mammals, not all visual structures and genetic pathways

have regressed to the same degree. For instance, the eyes of true moles and mole-rats show

anatomical regression but retain ocular architecture, suggesting that basic eye developmental
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programs must be largely intact (Carmona et al., 2008, 2010; Quilliam, 1966). Embryonic eye

development happens normally in these mammals with disruption occurring later on. Fur-

thermore, analyses on their eye phenotypes display common characteristics. They always

exhibit a small eye, with some lacking vitreous. They more often have defects in their lens,

where vacuoles manifest in the fiber layer and thin epithelia unusually surrounds the entire

structure. The cornea, the transparent layer forming the front of the eye, in these species

is thin and shows reduction in corneal stroma. A surprising finding is the anomalous over-

growth of the iris and the proximal ciliary body. Retinas are also greatly remodeled in that

they are dominated by rod cells and contain more short-wavelength cones (S-cones) than

medium/long wavelength M/L-cones. However, the retina and optic nerve show a severe

lack of retinal ganglion cells, therefore suggesting poor vision or lack of it. Thus, the sub-

terranean mammals already exhibit a contrasting reduction of some eye structures alongside

the overgrowth of others. The convergent loss of vision and visual structures in subterranean

mammals allows us to ask which genetic regions genic or non-genic contributed to regression

in these species and which were conserved.

The genetic causes of these malformations have been probed through studies of blind

cavefish and evolutionary analysis of retinal genes in subterranean mammals (Jeffery, 2009;

Emerling and Springer, 2014). Pioneering work by Hendriks et al. (2006) found the evolu-

tionary rate of the lens and retina protein αA-crystallin to be markedly accelerated in the

Middle Eastern blind mole-rat (Spalax ehrenbergi), as would be expected under relaxed con-

straint (Hendriks et al., 2006). Furthermore, Emerling and Springer revealed that regressive

genetic changes in retinal proteins are unevenly distributed across different visual pathways

and eye tissues (Emerling and Springer, 2014). For one, cones, which are responsible for vi-

sion in bright light, preferentially contain genetic lesions such as stop codons, as opposed to

rod genes. Previous studies have placed more emphasis on retinal components of vision and

connections to the visual cortex because it is these components that sense light and transmit

images to the brain for vision (Cooper et al., 1993; Emerling and Springer, 2014). However,

less emphasis has been placed on the genes contributing to other eye tissues, such as the

cornea. To gain a more comprehensive understanding of regressive evolution, we should

endeavor to determine how degeneration has proceeded differently across eye tissues and
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developmental stages, and more generally how we can identify new and perhaps unsuspected

genetic elements that have responded to the subterranean environment.

The genomes of four subterranean mammals have been sequenced and studied for changes

in response to their unique environment. The naked mole-rat genome revealed genetic

changes in key genes involved in thermogenesis and circadian rhythm, as well as gene loss and

deactivating mutations in core visual perception genes (Kim et al., 2011). The blind mole-rat

genome (Nannospalax gailili) also yielded diverse insights into its subterranean adaptations,

such as an impactful change to the P53 protein allowing cells to escape hypoxia-induced apop-

tosis, as well as up-regulation of specific pathways in response to hypoxia and hypercapnia

(Fang et al., 2014). Additionally, the blind mole-rat genome yielded evidence of convergent

evolution in circadian rhythm and hemoglobin genes, since some of their amino acid changes

were mirrored in the naked mole-rat. Similar parallel evolution was seen in the deactiva-

tion of visual perception genes in the blind mole-rat and naked mole-rat. These instances

of convergent change highlight a potential strategy to discover additional genetic regions

that repeatedly respond to the subterranean environment. When evolutionary changes are

observed in multiple, independent subterranean lineages, their convergence provides some

evidence that the changes are in response to the environment, rather than unrelated species-

specific conditions or even neutral processes (Losos, 2011; Stern, 2013; Rosenblum et al.,

2014).

There is much interest in using convergent evolution to reveal genetic changes related to

environmental shifts without a priori expectations of which regions might respond. One strat-

egy has been to search for convergent amino acid substitutions at specific protein sites (Foote

et al., 2015; Liu et al., 2010; Dobler et al., 2012). A complementary strategy is to search for

convergent changes in selective pressure on larger functional regions, such as genes or regu-

latory sequences, because evolution at different nucleotides within a gene could nevertheless

lead to convergent phenotypic effects. In practice, convergent changes in selective pressure

are inferred by studying evolutionary rates, because selective constraint slows evolution,

while lack of constraint and adaptation speed it. Computational methods employing this

strategy search for functional elements whose evolutionary rates changed on those branches

exhibiting the convergent environmental change (Marcovitz et al., 2016; Hiller et al., 2012;
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Chikina et al., 2016; Lartillot and Poujol, 2011). One demonstration of this approach by our

group identified genes that convergently responded when mammalian lineages shifted from a

terrestrial to a marine environment (Chikina et al., 2016). Another recent study by Prudent

et al. (2016) demonstrated that regions showing convergent rate acceleration in the subter-

ranean environment were enriched in visual perception genes and also contained circadian

rhythm genes (Prudent et al., 2016). Together, these studies show the promise of convergent

rates to reveal genes underlying major changes in morphology and physiology related to

drastic environmental shifts. To determine the demands placed upon subterranean species

by their extreme environment, we searched for genes exhibiting convergent rate changes in

four subterranean mammals. We report a large set of genes showing marked relaxation

of constraint in subterranean species and which were highly enriched for visual functions.

This set also contained many genes of undetermined function, which could be unrecognized

causative genes in eye-related diseases. Finally, we pinpointed the eye-specific transcriptional

enhancers in the Pax6 gene region using a new variant of our method, demonstrating the

potential to detect new eye-specific enhancers at key developmental genes.

2.2 Materials and Methods

2.2.1 Adding Nannospalax galili orthologs to alignment

Given the absence of Nannospalax galili (blind mole-rat or BMR) in the 100-species

alignments made available by the UCSC genome browser, we employed a custom approach

to add the correct BMR orthologous sequence based on its closest relative on the mammalian

species phylogeny, mouse. Using the publicly available BMR gene models in NCBI, we

first perform pairwise reciprocal nucleotide blast of all BMR gene cDNA sequences and the

corresponding cDNA sequences of all genes in the mouse mm9 genome. For every mm9 gene

sequence, we subsequently identify the correct BMR ortholog using the InParanoid program

as follows - the program clusters pairs of sequences from the two queried genomes into groups

of orthologs, and the BMR sequence forming the main ortholog pair (pairs with mutually
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best hit) in every group was identified as the correct ortholog (Remm et al., 2001). We then

perform a profile alignment using the openly available muscle program to add the identified

BMR ortholog to the genes multi-species alignment (Edgar, 2004). For the study of non-genic

regions in the Pax6 window, we utilized a simpler approach to identify the BMR orthologous

region. For each non-genic region of interest, we performed blastn with the mm9 orthologous

sequence as the query against the BMR assembled genome with the default Expect (E) value

of 10 (NCBI Resource Coordinators 2016). The resulting best scoring blastn hit in the BMR

genome, if any, was added to the non-genic regions multi-species alignment (obtained from

the UCSC genome browser) using the profile alignment utility of the muscle program (Edgar,

2004; Haeussler et al., 2019).

2.2.2 Calculating gene correlations with subterranean environment

Using the 100-species amino acid alignments from the multiz alignment available at the

UCSC genome browser (Blanchette et al., 2004; Harris, 2007; Haeussler et al., 2019), those

alignments with a minimum of 10 species were selected for study. We pruned each align-

ment to include only the species of interest represented in the proteome-wide average tree

(Figure 2.3.1B) after adding the BMR ortholog of the corresponding gene sequence to this

alignment as described in the previous section. For each resulting amino acid alignment

we estimated branch lengths using the aaml program from the phylogenetic analysis using

maximum likelihood (PAML) package (Yang, 2007). Branch lengths were estimated under

an empirical model of amino acid substitution rates with rate variability between sites mod-

eled as a gamma distribution approximated with four discrete classes (for computational

efficiency) and an additional class for invariable sites (aaml model Empirical+F) (Whelan

and Goldman, 2001; Yang, 1996). Branch lengths were estimated on a published mam-

malian species tree topology (Murphy et al., 2004), modified to include the Nannospalax

galili (blind mole-rat) whose position in the tree inferred based on existing literature on

its ancestry (Fang et al., 2014). For the analyses involving conserved non-genic regions

near Pax6, we first identified the regions of interest based on the human phastCons track

generated from the 100-way vertebrate multiz alignment, eliminating any region of overlap
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with the human mRNAs track. For each such non-coding element we obtained the 100-way

multiz alignment, further selecting only for the species that are present in our species set

of interest after adding the BMR ortholog of the corresponding non-genic sequence to this

alignment as described in the previous section. We estimate the branch lengths using the

baseml program of the PAML package under the general reversible process (REV) model

for nucleotide substitution rates, with rate variability between sites modeled as a gamma

distribution approximated with four discrete classes and an additional class for invariable

sites (Rodriguez et al., 1990; Blanchette et al., 2004).

Raw branch lengths were transformed into relative rates using a projection operator

method (Sato et al., 2005). These branch-specific relative rates were then used to perform a

Mann-Whitney U test and correlation analysis over the binary variable of subterranean or

aboveground (i.e., not subterranean) branches (Figure 2.3.1A). Subterranean branches are

those leading to the star-nosed mole (Condylura cristata), cape golden mole (Chrysochloris

asiatica), naked mole-rat (Heterocephalus glaber) and blind mole-rat (Nannospalax galili).

2.2.3 Functional enrichment analysis

We performed functional enrichment analysis using the GOrilla tool by searching for

enriched GO terms in the 500 most convergent genes compared to the full background set

of 18,980 (Eden et al., 2009). In addition to this, functional information for subterranean-

associated genes were mined from the Uniprot and RefSeq databases, and from literature

cited directly (Consortium, 2007; Pruitt et al., 2007). Enrichment analysis was performed

using the hypergeometric test with the background set of genes restricted to genes that

were tested for mole convergence and had at least one annotation in the corresponding

annotation file. Correction for multiple testing was performed using false discovery rate

q-values (Storey, 2002). We used two sources of annotations, the ”canonical pathways”

from MSigDB (Liberzon et al., 2011) and mammalian phenotypes from MGI (Smith and

Eppig, 2009). The mammalian phenotype annotations were compiled by associating gene

symbols listed in the genotype name to the reported phenotypes and all their ancestors in

the mammalian phenotype ontology here.
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2.2.4 Tissue-specific gene analysis

In order to determine how specific eye tissues have evolved across subterranean species

we first identified tissue-specific gene sets using microarray expression data from 91 mouse

tissues (Su et al., 2004). We isolated tissue-specific genes for cornea, iris, lens and retina

(including retinal pigmented epithelium). These sets were defined as those with significant

differential expression only in the tissue of interest compared to all other tissues at an alpha

of 0.05 (T-test).

2.2.5 Phylogenetic models of selective pressure

The top 200 subterranean-accelerated genes were subjected to phylogenetic models of

codon evolution to test for significant evidence of relaxation of constraint or positive selection

over the subterranean mammal branches. Using PAML, we ran codeml using 5 different

models: the branch-site neutral model (BS Neutral), the branch-site selection model (BS

Alt Mod), sites neutral model (M1), positive selection model (M8) and its null model (M8A)

(Yang, 2007). To assess significance of relaxation of constraint on subterranean mammal

branches we performed likelihood ratio tests (LRT) between BS Neutral and its nested

null model M1. LRTs between BS Alt Mod and its null BS Neutral were used to infer

positive selection on subterranean mammal branches. Probabilities were assigned for each

of these 2 LRTs using the chi-square distribution with 1 degree of freedom. Mammal-wide

positive selection was inferred using the M8 vs M8A models and their respective LRT, using

1 degree of freedom chi square distribution to assess LRT significance. For calculating the

correlation between mole-acceleration and degree of tissue-specificity of genes, we estimate

mole-acceleration of each gene as follows: using a branch-site selection model (BS Alt Mod)

we estimate two different values of ω(dN/dS) one for the four subterranean branches and

one for the rest of the branches on the tree. Mole-acceleration was calculated as the difference

in the two ω values that were estimated.
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2.3 Results

2.3.1 Many genes have altered evolutionary rates in subterranean mammals

We first sought to identify the genes that responded to conditions in the subterranean

environment. Accordingly, we used relative evolutionary rate (RER) methods to identify

protein-coding genes that evolved at a more rapid rate specifically on subterranean branches

of the mammalian phylogenetic tree. Subterranean branches consisted of those leading to

the star-nosed mole (Condylura cristata), the cape golden mole (Chrysochloris asiatica), the

naked mole-rat (Heterocephalus glaber) and the blind mole-rat (Nannospalax galili). Each

of these species represents a lineage that independently colonized the subterranean habitat,

as each is more closely related to aboveground mammals than they are to each other (Figure

2.3.1A). Hence, similar phenotypic changes within these species are regarded as convergent

traits. To demonstrate our RER methods, we first present the case of the eye-specific gene

LIM2, which encodes Lens intrinsic membrane protein 2. First, the amount of amino acid di-

vergence in LIM2 on each mammalian branch was quantified using sequences from 39 species

and standard evolutionary models (Figure 2.3.1B) (see Materials and methods). The result-

ing LIM2 tree is markedly different from the genome-wide average tree in Figure 2.3.1aim1A,

and reveals distinctly high amounts of divergence in LIM2 for the four subterranean species.

This rapid divergence probably resulted from loss of selective constraint in the dark sub-

terranean environment. To quantify this rate acceleration in the LIM2 tree, we normalized

all branch lengths for the expected amount of change as defined by the genome-wide av-

erage divergence for each branch. This average, after scaling (see Materials and methods),

should reflect both the underlying speciation times in the mammalian phylogeny as well as

changes in demographic factors affecting substitution rates. The resulting RER values for

each branch are plotted in Figure 2.3.1C. An RER of zero indicates that LIM2 evolved at

exactly the expected rate on that branch, while positive and negative values reflect faster

and slower rates, respectively. By examining RERs it becomes clear that LIM2 changed

at abnormally rapid rates in the four subterranean mammals; the rates for all four subter-

ranean species are more rapid than all aboveground species, and this difference is supported
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statistically (p=0.00084, MannWhitney U test). Thus, extending the RER calculations to

all other genes, we can distinguish the functions that responded during adaptation to the

subterranean environment. Importantly, the convergence of these species allows us to confi-

dently infer genes that responded specifically to subterranean life, because faster rates in all

four species are not likely to be due to random fluctuations, as reflected by the low P-value

for LIM2.

We performed the same RER analysis on 18,980 protein-coding genes to determine which

shifted to faster or slower evolutionary rates specifically in subterranean species. We will

hereafter refer to such genes as mole-accelerated and mole-decelerated, respectively (see

Materials and methods). At a false discovery rate (FDR) of 15%, we identified 55 mole-

accelerated genes. We expect mole-accelerated genes to result from either selection for amino

acid changes (i.e., positive Darwinian selection) or, alternatively, from a reduction in puri-

fying selection, as suggested for the LIM2 protein. At the other extreme, we identified

1306 mole-decelerated genes at the same FDR. We expect genes to show rate deceleration if

there is stronger purifying selection on that genes function in the subterranean environment,

perhaps as the result of increased importance for fitness.

2.3.2 Vision-related functions are enriched among mole-accelerated genes

Genes with the strongest evidence of mole-acceleration were consistently associated with

function in two organs, eye and skin. To illustrate, 17 of the top 30 mole-accelerated genes

are expressed solely in eye tissues or are associated with eye-related disorders, whereas three

accelerated genes are associated with skin, hair, and nails (Table 1). Among the genes show-

ing very strong signals of mole-acceleration, we find proteins tha are specifically expressed

in tissues of the eye such as the retina-specific proteins ROM1 and GNAT1 (Figure 2.3.2).

The complete list of the 55 mole-accelerated genes similarly contains a large proportion that

are related to vision and external tissues (Table S1 in Supplementary file 1), and they were

highly enriched for functional annotations including eye morphology, photoreceptors, visual

signal transduction, and eye-related mutant phenotypes (Table S2 in Supplementary file 1).

The strength of this enrichment is clearly illustrated by examining all genes annotated to
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Figure 2.3.1: Lens intrinsic membrane protein 2 (LIM2) evolutionary rates across species.

(A) Mammalian transitions to a subterranean environment occurred in four lineages shown in

red. (B) LIM2 protein-coding sequence shows accelerated rates of evolution on subterranean

branches. (C) Relative evolutionary rates of LIM2 showed the strongest acceleration on the

subterranean branches amongst all of the genes studied. Illustrations by Michelle Leveille

(Artifact Graphics)

the Gene Ontology (GO) term visual perception, because a large fraction of genes that have

this annotation are ranked very highly in the list of mole-accelerated genes (Figure 2.3.3A

subterranean). Furthermore, if we were to employ mole-acceleration as a sole predictor of

visual function, a search would correctly identify many known visual perception genes with
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high accuracy, even when searching the entire genome (Figure 2.3.3B). This strong enrich-

ment allows us to pose specific hypotheses in subsequent sections about which tissues and

genetic pathways were altered during the regressive evolution of the eye.

We performed a control analysis to demonstrate that these functional enrichments are

unique to subterranean species. We chose four aboveground species (Control species) for

which there is no reason to expect phenotypic convergence and whose branch lengths are

similar to the moles pika, guinea pig, squirrel and cow. Whereas mole-accelerated genes

were enriched in 15 GO categories at a FDR of 15%,control-accelerated genes had no en-

riched categories at the same FDR (Table S2 in Supplementary file 1). Furthermore, these

control species showed no enrichment of visual perception genes specifically (Figure 2.3.3).

There were also 1306 mole-decelerated genes that evolved at significantly slower rates in

subterranean species than in other mammals (Table S3 in Supplementary file 1). Although

mole-decelerated genes are individually significant, only one GO category showed significant

functional enrichment GO Biological Process: Nucleic acid binding transcription factor ac-

tivity at an FDR of 15% (Table S4 in Supplementary file 1). A similar control analysis

showed 626 genes as being significantly decelerated at an FDR of 15%, and these control-

decelerated genes were enriched in 24 GO categories. Therefore, despite there being vastly

more mole-decelerated genes than mole-accelerated genes, mole-decelerated genes as a group

do not show strong functional enrichment. This result stands in stark contrast to the strong

enrichment seen in the mole-accelerated genes.

2.3.3 Most mole-accelerated genes are under relaxed constraint

Accelerated rates could have resulted from adaptive evolution or, alternatively, from

relaxation of constraint. We distinguished between these scenarios using codon-based evo-

lutionary models to detect signatures of adaptive evolution. We tested whether the nonsyn-

onymous to synonymous rate ratio (dN/dS) was significantly greater than 1 the expectation

for positive selection for any portion of the gene specifically on the subterranean species

branches, and also more generally across the entire mammalian phylogeny (Yang, 2007).

Of the top 55 mole-accelerated genes, only one gene rejected a neutral model not allowing
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Gene P-value Tissues Description

LIM2* 0.00084 Lens Lens intrinsic membrane protein 2

CRYBB3* 0.00087 Lens Lens-specific crystallin, beta B3

R0M1* 0.00096 Retina Retinal outer segment membrane protein 1

CRYBA1* 0.00098 Lens Lens-specific crystallin, beta Al

CRYGC* 0.00119 Lens Lens-specific crystallin, gamma C

CRYBB2* 0.00128 Lens Lens-specific crystallin, beta B2

GPR89B 0.0013 Ubiquitous G-protein-coupled receptor 89B, pH mediator in Golgi

GNAT1* 0.00133 Retina Rod cell-specific G-protein, subunit alpha

GPRS9A 0.00134 Ubiquitous G-protein-coupled receptor 89A, pH mediator in Golgi

NRL* 0.00138 Retina Neural retina leucine zipper responsible for expression of rhodopsin

CRYGS* 0.00146 Lens Lens-specific crystallin, gamma S

GRM6* 0.0015 Retina Metabotropic glutamate receptor 6, required for normal vision

GBX2 0.00165 Embryo Gastrulation brain homeobox 2, developmental transcription factor

LGSN* 0.00171 Lens Lengsin, lens protein with glutamine synthetase domain

CRYBB1* 0.00183 Lens Lens-specific crystallin, beta Bl

KLHDC3 0.00186 Ubiquitous Kelch-domain-containing 3, high expression in brain

KRT81# 0.00186 Hair and nails Keratin 81, primarily in hair cortex

WDFY1 0.00192 Ubiquitous WD repeat and FYVE-domain-containing 1, endosomal protein

KRT9# 0.00195 Skin Keratin 9, specific to palms of hands and soles of feet

POMP# 0.00199 Ubiquitous Proteasome maturation protein, associated with rare skin disorder

RRH* 0.00201 Retina Retinal pigment epithelium-derived rhodopsin homolog

DPCD* 0.00201 Ciliated cells Deleted in primary ciliary dyskinesia; maintenance of ciliated cells

RAD54L 0.00217 Ubiquitous RAD54-like: DNA double-strand break repair

TATDN1 0.00235 Ubiquitous TatD DNase-domain-containing 1

ITLN2 0.00244 Small intestine Intelectin 2, may play a role in defense against pathogens

STX3* 0.00245 Ubiquitous Syntaxin 3, associated with congenital cataracts and intellectual disability

SKJV2L* 0.00254 Ubiquitous DEAD box protein, yeast SKI2 homolog, implicated in macular degeneration

DPY19L1 0.00254 Ubiquitous dpy-19-like 1 (Caenorhabditis elegans), probable C-mannosyltransferase

TFPT 0.00266 Ubiquitous TCF3 (E2A) fusion partner (in childhood leukemia)

RSI* 0.00275 Retina Retinoschisin 1, extracellular protein involved in organization of retina

*related to vision. #related to skin and hair.

Table 1: Top 30 subterranean-accelerated genes.
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Figure 2.3.2: Relative evolutionary rates of two retinal proteins across species. Relative

evolutionary rates of two retinal proteins, (A) Retinal outer segment membrane protein 1

(ROM1) and (B) Rod cell-specific G protein, subunit alpha (GNAT1), show strong acceler-

ation in the subterranean mammals (marked in red).

dN/dS ratios exceeding 1 in favor of a model allowing positive selection (dN/dS > 1) on

subterranean branches (Table S5 in Supplementary file 1). This gene is involved in con-

nective tissue and hair structure (KRTAP17-1). The other accelerated genes did not show

evidence of adaptive evolution and thus are probably under relaxed constraint. Almost

all accelerated genes rejected a model requiring them to have identical constraints in all

mammals (model M1) in favor of a model that allowed subterranean-specific relaxation of

constraint (model BS1) (Table S5 in Supplementary file 1). Some of these genes seem to

have lost all functional constraint because they show genetic lesions such as stop codons and

frameshifts in some subterranean species (Table S6 in Supplementary file 1). This evidence

of relaxed constraint is consistent with the expectation that some vision-related genes have

been undergoing regressive evolution.
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Figure 2.3.3: Enrichment of visual perception genes. (A) Histogram of the rankings of 189 

visual perception genes based on their mole-acceleration. (B) Mole-acceleration can equiva-

lently serve as a predictor for function in visual perception. The plot shows the Precision-

Recall values at varying p-value thresholds reflecting the fraction of visual perception genes 

significant at a particular threshold (Precision) and the fraction of visual perception genes 

retrieved at the same threshold (Recall)

2.3.4 Skin-related genes were accelerated possibly in response to the demands

of tunneling

The fossorial lifestyle of subterranean species has selected for traits related to digging 

and locomotion underground (Nevo, 1979). Perhaps because of this selective pressure, many 

of the top moleaccelerated genes encode proteins that are structural components of skin, 

hair and epithelial connective tissues. The reasons for their acceleration are the result of 

relaxation of constraint on their coding sequence. Genes encoding keratin proteins 9, 12, 

and 81 (KRT9, KRT12, KRT81) were studied using codon models and the results indicated 

that they experienced relaxed constraint in subterranean species but not positive selection 

for amino acid diversification (Table S5 in Supplementary file 1). They contain early stop 

codons in multiple subterranean species, which is consistent with complete loss of constraint 

(Table S6 in Supplementary file 1).
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The convergent acceleration and pseudogenization of KRT9 is particularly interesting in 

relation to burrowing (Figure 2.3.4). In mice, KRT9 expression is confined to footpads, and 

Krt9-/- null mutants develop footpad calluses due to hyperproliferation of skin (Fu et al., 

2014). In humans, Keratin 9 is expressed solely on the palms of hands and soles of feet, and 

mutations lead to a skin disorder characterized by hyperkeratosis (thickening) of the surfaces 

of palms and soles epidermolytic palmoplantar keratoderma (Hennies et al., 1995). By 

extension, the loss of KRT9 in subterranean species may also have led to hyperproliferation of 

footpads, which could carry benefits for tunneling. For example, the star-nosed mole digs with 

its forepaws, and naked mole-rats collect and remove dirt with their feet (Hamilton, 1931; 

Jarvis et al., 2014). Such abrasive tasks could place high demands on the footpad surfaces. In 

addition, mole-acceleration of the POMP gene could similarly have resulted from demands on 

footpads. A human mutation in POMP is associated with KLICK syndrome, a skin disorder 

characterized again by hyperproliferation and thickening of palms and footpads (Dahlqvist et 

al., 2010).

There were also skin- and hair-related genes that were identified outside the mole-

accelerated genes discovered at a FDR of 15%, showing increased positive selection in sub-

terranean species, rather than loss of function. One such gene, COL4A4, a gene encoding a 

subunit of Type IV collagen was strongly accelerated, did not contain genetic lesions, and 

showed evidence of positive selection in subterranean species (Table S1, S5, S6 in Supple-

mentary file 1). Type IV collagen is the major structural component of the basal lamina in 

many tissues including skin epithelium, and is composed of 6 subunits, three of which were 

notably mole-accelerated (COL4A4, COL4A5, COL4A3). On average the 6 subunits were 

more accelerated than 71% of all other genes, which is a significant difference (P = 0.0342, 

Mann-Whitney U test). While Type IV Collagen seems to have responded to the subter-

ranean environment, other major components of the basal lamina, the laminin proteins (e.g., 

LAMA1), were not notably accelerated.
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Figure 2.3.4: Relative rates of footpad-specific keratin 9 (KRT9). KRT9 shows strong ac-

celeration on the subterranean branches. The image shown is the footpad of the star-nosed

mole, showing characteristic hyperkeratosis. Keratin 9 mutations also lead to hyperkeratosis

in mouse models and humans. Illustrations by Michelle Leveille (Artifact Graphics).

2.3.5 Regressive evolution is limited to lens, retina, and eye-specific develop-

mental genes

In order to compare how specific eye tissues have evolved in subterranean species we first

compiled tissue-specific gene sets using expression data from 91 mouse tissues (Su et al.,

2004). We identified tissue-specific genes for cornea, iris, lens and retina by selecting those
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genes with significant differential expression in the tissue of interest but not in other tissues.

Using literature we also compiled a set of 71 important eye developmental genes (Table S7

in Supplementary file 1). We first asked if there is a relationship between the degree of

tissue-specificity and the degree of mole-acceleration measured as the difference in dN/dS

between subterranean and aboveground species (Figure 2.3.5A). We found a clear positive

correlation between eye tissue-specificity and mole-acceleration, which is consistent with a

greater relaxation of constraint on genes with few or no roles outside the eye. Next, we

asked which genes with eyetissue specific expression showed acceleration and found that

genes specifically expressed in cornea a protective tissue of the outer eye and the iris

were not accelerated in subterranean species when compared to a set of randomly chosen

genes (background) (Figure 2.3.5B, C). In contrast, many lens- and retina-specific genes are

accelerated. On average, lens genes are more accelerated than 84% of background genes, and

retina genes are more accelerated than 82% (P = 9.07e-06 and P = 6.10e-10 for lens and

retina respectively, Mann-Whitney U test). The contrast between the front and the interior

of the eye suggests that the sensory functions of the inner eye, such as phototransduction and

the visual cycle, are under relaxed constraint, while the protective function of the cornea is

not. Indeed, two of these subterranean species have eyes that are open to the environment,

such that the cornea may continue to serve as a barrier to pathogens and debris. Eye

developmental genes as a whole were not accelerated compared to background, which may

reflect the fact that most of them, such as Sonic Hedgehog (Shh), are important in the

development of non-eye tissues. However, five eye-specific developmental genes were notably

present at the top of the accelerated list (VAX2, NRL, FOXE3, CRX, ALDH3A1), while no

eye-specific genes were found lower in the list (Table S7 in Supplementary file 1). This is

consistent with the positive relationship between eye-specificity and relaxation of constraint

(Figure 2.3.5A).

20



0 5 10 15

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

M
ol

e 
ac

ce
le

ra
tio

n 
(d

el
ta

 d
N

/d
S)

Tissue specificity
-log10(P-value)

L
ri

c

Mole rate

background accelerated

−0
.2

0.
0

0.
2

0.
4

Cornea Iris Lens Retina Dev Bgd
Tissue

M
ol

e 
ac

ce
le

ra
tio

n 
(d

el
ta

 d
N

/d
S

)

A B C

Tissue specific genes

R-squared: 0.157
p-value: 2.57e-09 

c: Cornea, i: Iris, L: Lens, r: Retina, Dev: Development, Bgd: Background

Figure 2.3.5: Tissue-specific retinal and lens genes are highly accelerated in subterranean

species. (A) Ocular genes that are more tissue-specific exhibit stronger acceleration in sub-

terranean mole species. (B) Panels of tissue-specific genes were tested for their relative

accelerations in the subterranean mammals. Retina- and lens-specific genes show many

cases of acceleration in the subterranean environment. (C) Representation of average mole-

acceleration for genes specifically expressed in four different tissues of the eye.

2.3.6 Eye-specific enhancers of PAX6 show convergent acceleration in subter-

ranean mammals

Although we observe specific instances wherein eye developmental genes show accelerated

rates in subterranean mammals, there is no significant global trend. This is understandable

given that a majority of these transcription factors have important roles in the development

of non-eye related tissues. For example, PAX6 is important in the development of pan-

creas and brain, in addition to the eye (Kammandel et al., 1999; Xu et al., 1999; Kleinjan

et al., 2006). Hence the protein-coding sequences of these transcription factors experience

selective pressure against deleterious mutations. However, regulatory regions controlling the

expression of these developmental genes in the eye might be under relaxed constraint in

the subterranean mammals given the relaxation on maintaining the functionality of visual

pathways. We hypothesize that these eye-specific cis-regulatory elements (CREs) would thus

show accelerated rates of evolution in the subterranean mammals.

We tested this hypothesis by applying our evolutionary-based method toward identifying
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eye-specific regulatory elements controlling the expression of the developmental transcription

factor PAX6. We chose the PAX6 system as extensive effort has gone into characterizing

the spatiotemporal regulation of its expression (Kammandel et al., 1999; Xu et al., 1999;

Dimanlig et al., 2001; Kleinjan, 2001; Kleinjan et al., 2006; Griffin et al., 2002), and there

exists comprehensive annotation of cis-regulatory elements (cre) controlling the expression

of PAX6 in various tissues including the eye. Based on existing literature on transcriptional

regulation of PAX6 expression, we identified a 500kb window containing Pax6 and its neigh-

boring gene Elp4 as our genomic window of interest (Kleinjan et al., 2006). Experiments

involving transgenic mice revealed various tissue-specific enhancers in a 200-kb region within

this genomic window to be important for PAX6 expression. We subsequently identified 150

highly conserved non-coding elements in this genomic window and estimated their evolu-

tionary rates on each mammalian branch. We subsequently calculated the relative rates of

the branches using the same projection operator method as was employed for the protein-

coding gene trees. We then employed the Mann-Whitney U hypothesis-testing framework to

identify non-coding elements evolving at an accelerated rate specifically on the subterranean

branches (Methods).

The results of our analyses show that the 3 regions showing the strongest signals of

convergent acceleration in the subterranean mammals highly overlap the regions previously

annotated to be enhancers important for regulation in eye-specific tissues (Figure 2.3.6A,

B) i. cre149 is a 558 basepair (bp) region containing the 530-bp region annotated as the

alpha, intron 4 retinal enhancer (Kammandel et al., 1999). ii. cre21 is a 552-bp region

located within the fragment containing HS2 and HS3 of the Distal Regulatory Region, a

retina-specific enhancer of PAX6 (Kleinjan, 2001). iii. cre86 is a 429-bp region containing

the 341-bp long ectodermal enhancer, which has been shown to be important in driving the

expression of PAX6 in developing lens (Dimanlig et al., 2001). Regions overlapping an en-

hancer element shown to be regulating PAX6 expression in lens, hindbrain and diencephalon

(the EI enhancer element) do not show significant rate acceleration in the moles (Kleinjan,

2001). This is in concordance with our expectation that only eye-specific elements show

convergent acceleration, and hence the regions overlapping the EI enhancer do not show ac-

celeration given their importance for PAX6 expression in non-eye tissues. Similarly, a 120-bp
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region overlapping the pancreas enhancer also does not show significant rate acceleration in

the moles, as expected (Xu et al., 1999; Kleinjan et al., 2006). In addition to the eye-specific

enhancer elements, we observe other regions showing comparable rate acceleration in the

moles that are not yet characterized (Table S8 in Supplementary file 1). These regions are

thus candidate cis-regulatory elements for PAX6 expression in the eye. This preliminary

study of the PAX6 transcriptional regulatory module serves to confirm our hypothesis that

eye-specific regulatory elements are under relaxed constraint and thus show accelerated rates

of evolution in the subterranean mammals.
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Pax6 expression in the eye. (B) The mole-acceleration scores for the three eye-specific en-

hancers of Pax6 are the highest among 150 regions analyzed. (C) The relative rates in each

species for the most accelerated region cre149.
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2.3.7 Mole-accelerated non-coding elements are strongly enriched near tran-

scription factors driving eye development

Expanding from our analysis of PAX6, we perform a large-scale scan for convergently

accelerated non-coding elements near transcription factors in the mammalian genome. We

compiled two sets of transcription factors one comprising 20 genes known to be important

in eye development (Eye set), such as PAX6, PAX2, OTX2 etc., and another set consisting

of an equal number of tissue-specific transcription factors expressed in other tissues and

with no evidence of expression in eye (Other set) such as HOXA9, PAX8, SOX13 (Table

S9 in Supplementary file 1). We identified 200 conserved non-coding elements near each

gene in both sets totaling to 8,000 elements split equally between the two gene sets (Figure

2.3.7A). We subsequently applied our method and calculated the mole-acceleration of each

element. This large-scale scan revealed a total of 17 elements as convergently accelerated at

a FDR of 10% (Figure in 2.3.7A). Fourteen of the seventeen elements are found nearby genes

belonging to the Eye set, reflecting a significant enrichment of mole accelerated elements near

transcription factors driving eye development (Hypergeometric test, p-value = 0.001). We

subsequently checked the genomic locations of these mole-accelerated elements to ensure that

they are not clustered at the same locus for instance. These seventeen elements are found

nearby 14 unique genes, with 11 unique genes belonging to the Eye set, and 3 genes belonging

to the Other set, further showcasing the strong enrichment of unique eye developmental

transcription factors found near mole-accelerated elements (Hypergeometric test p-value =

0.0016).

2.3.8 FANTOM5 eye enhancers show strong convergent acceleration in subter-

ranean mammals

The FANTOM5 consortium has identified putative enhancer sites in the human and

mouse genome based on bidirectional enhancer transcription across tissues as well at mul-

tiple developmental time points (Andersson et al., 2014). These putative enhancer sites

include genomic regions transcribed in the eyeball of mouse embryo at four developmental

time points. Based on this resource, we compiled two sets of FANTOM5 enhancer sites a
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set consisting of 900 genomic regions with non-zero expression in the eyeball across four

developmental time points (Eye enhancers), and another set consisting of 6,000 regions with

zero expression across the same samples (Other enhancers). We subsequently calculated the

convergent rate acceleration of these genomic elements in the four subterranean mammals

and compared the acceleration observed of the Eye enhancers to that of the Other enhancers.

Our analysis revealed a strong enrichment of FANTOM5 Eye enhancers showing convergent

rate acceleration in the four subterranean species, in comparison to the four control species

(Figure 2.3.7B). We observe 62 FANTOM5 enhancers in total showing significant mole ac-

celeration at a FDR of 15% (Table S10 in Supplementary file 1). Fifteen of these correspond

to FANTOM5 Eye enhancers set, reflecting a significant enrichment of detecting FANTOM5

eye enhancers using mole-acceleration (Hypergeometric test p-value = 0.006).
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Figure 2.3.7: Evidence of mole-acceleration in candidate eye-specific enhancers. (A) Enrich-

ment of mole-accelerated elements near eye developmental transcription factor genes. The

bar plot shows the 17 mole-accelerated conserved non-coding elements identified. (B) FAN-

TOM5 Eye enhancers show strong mole-acceleration. The plot shows the relative proportion

of FANTOM5 eye enhancers identified among all enhancers significant at the corresponding

p-value threshold.
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2.3.9 Some aboveground species exhibit gene acceleration indicative of their

altered visual capacities

To systematically understand differences in visual capabilities of mammals, we studied

the overall relative rates of evolution of visual genes across all mammals. Our gene set of

interest (189 in total) comprised of all genes with Visual perception GO term annotation,

excluding developmental transcription factors. For each species, we then calculated the mean

relative rate across all the genes (Figure 2.3.8). We observed the four subterranean mammals

to be among the accelerated species (with mean > 0), as was our expectation. However,

we additionally observed aboveground species with overall rate accelerations comparable

to the moles, such as the armadillo, thirteen-lined ground squirrel, big brown bat, Davids

myotis bat and shrew. Notably all of these aforementioned mammals show varying types of

visual regression the armadillo has poor vision characterized by a lack of cone cells in their

retina (McDonough and Loughry, 2013), and shrews also have poor vision and diminutive

eyes, which in some species are hidden in fur (Nowak, 1999). The nocturnal big brown bat

and Davids myotis bat possess reduced eyes and rely on echolocation for navigation (Koay

et al., 1998). The thirteen-lined ground squirrel, for which we observe a rod cell-specific

acceleration, displays a rare visual trait the central region of its retina is dominated by

cone photoreceptors in contrast to most mammals (Brooks et al., 2016). These scenarios

could have important implications because the ground squirrel is used as a model for vision

research (Li et al., 2010; Chen and Li, 2012).

2.4 Discussion

The independent transitions of four mammals to a subterranean environment is accom-

panied by convergent phenotypic changes as a result of adaptation to new environmental

stresses in the underground ecotope. Here, we report a genome-wide effort encompass-

ing both coding and regulatory regions to identify the changes in genotype accompanying

phenotypic adaptation by studying changes in their evolutionary rates. Our study reveals
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Figure 2.3.8: Some aboveground species show accelerated rates of evolutionary change in

visual perception genes. On the basis of the relative evolutionary rates across all species for

189 genes with the GO term annotation visual perception, we calculated the species-wise

mean relative rate across of the genes.

that genes showing convergent acceleration in subterranean species are highly enriched for

function in visual pathways. The decreased selective pressure on visual pathways in the

dim-light subterranean environment leads to a relaxation of constraint on genetic elements

involved in various eye-related phenotypes including eye morphology, photoreception, visual

transduction etc. In addition to genes in visual pathways, we observe many genes involved

in skin-related phenotypes to have an accelerated rate of evolution in the subterranean

mammals. While we see acceleration in visual genes primarily as a result of relaxation of

constraint, we see that some skin-related genes also show acceleration due to positive selec-

tion, perhaps as a result of selection of traits contributing to a fossorial lifestyle. Aside from
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these two phenotypes, we do not observe a comparably strong enrichment for genes involved

in the other environmental challenges associated with a subterranean lifestyle, such as hy-

poxia, hypercapnia and high infectivity. It is possible that the subterranean mammals may

show species-specific adaptations to these stresses, whereas our analysis from a convergent

evolutionary perspective reflects changes common to all the species.

Closer examination of the accelerated genes enriched for vision-related pathways reveals

that accelerated genes tend to be lens- or retina-specific. On the other hand, genes encoding

specifically for the outer ocular structure, the cornea, do not show significant acceleration,

indicating preservation of developmental programs important for ocular architecture. In

two of the four moles with non-subcutaneous eyes, the cornea can come into direct contact

with external environment, perhaps necessitating the proper development of the structure

in the highly infective subterranean niche. Lens- and retina-specific genes involved with the

processes of photoreception and phototransduction would be under greater relaxed constraint

given the dim-light environment, accruing damaging mutations at a much higher rate. Our

analyses also reveal genes associated with congenital eye diseases to be accelerated in the four

subterranean mammals. For the lens, which is largely made up of crystallins, we find many

crystallin genes (CRYBB3, CRYBA1, CRYBB1, CRYGC, CRYGS, etc.) in our accelerated

set of genes contributing to various forms of cataracts (Graw, 2009). Similarly, we find

multiple genes involved in ciliopathies to be accelerated including deleted in primary ciliary

dyskinesia (DPCD), IQCB1 a component of primary cilia, and ciliary neurotrophic factor

(CNTF). Further inspection of the accelerated list of genes could potentially reveal new

candidate genes important for congenital eye diseases.

Genes involved in the embryonic development of eye do not show significant global ac-

celeration, potentially due to their pleiotropic nature; these developmental transcription fac-

tors tend to have important regulatory roles in non-eye related pathways that are not under

relaxed constraint. However, we hypothesize that eye-specific regulatory elements of these

developmental genes are under relaxed constraint in the moles. We developed a novel variant

of our evolutionary rates based approach to study the convergent acceleration at the non-

coding level, and successfully proved our hypothesis. Although the strong rate acceleration

in the three eye-specific enhancers of PAX6 suggests relaxation of constraint in the subter-
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ranean mammals, in the absence of functional tests we cannot be sure that the eye-specific

activity is truly lost. Furthermore, we found an enrichment of such convergently accelerated

non-coding regions preferentially near eye developmental transcription factors, identifying

potential enhancer elements driving the expression of these genes specifically in the eye. As

a large-scale validation approach we show that rate acceleration in subterranean mammals

strongly overlaps regions identified as eye enhancers by the FANTOM5 consortium. These

proof-of-principle analyses serves to illustrate the power of convergent evolution-based tools

for the identification of eye-specific regulatory elements. Despite the apparent rapid rate

of enhancer evolution across mammals, our methods and those of colleagues showcase the

utility of applying evolution-based approaches to conserved non-coding regions in identifying

regulatory elements underlying important developmental functions (Villar et al., 2015; Mar-

covitz et al., 2016). These methods present a unique opportunity to perform genome-wide

scans for eye- and other tissue-specific regulatory elements, and potentially serve as comple-

mentary approaches to genome-wide assays in the identification of active enhancer elements

in the genome. As more genomes are sequenced, we expect these methods to become more

powerful in revealing gene regulatory changes underlying convergent phenotypes.

Overall, our results suggest that genes and non-coding regions involved in vision path-

ways are accumulating deleterious mutations by neutral processes, given the relaxation of

constraint on these pathways in the subterranean environment. However, this does not pre-

clude the possibility that the initial inactivating mutations in these pathways were adaptive

in nature. The initial shutdown of eye development may have been caused by positively

selected changes, followed by continued regression of structural and physiological eye genes

through neutral processes. Indeed, there is evidence of such a progression of events during

eye regression in blind cavefish (Jeffery, 2005). Adaptive forces for reduced eyes may have

been driven by the energetic costs of maintaining functioning eyes and the risk of pathogen

entry through the eye (Moran et al., 2015). We note that our rate-based analysis detects

signatures of sequence divergence based on what is observed at the end of these processes and

does not shed light on the nature of the initial inactivating changes. Additionally, our meth-

ods detect convergent changes in the rates of evolution of genes and hence are not designed

to detect species-specific changes that might contribute to the subterranean adaptation.
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Our results showcasing convergent acceleration in rates of visual genes strongly supports

previous reports of visual regression in the subterranean habitat. Emerling and Springer

studied the regression of retinal genes in three of these four subterranean species and showed

that a decrease in the amount of light entering the retina is associated with higher incidence

of inactivating mutations in retinal genes (Emerling and Springer, 2014). They found a

significantly higher number of retinal pseudogenes in the moles compared to closely related

subaerial species, an observation concordant with our results based on rate acceleration.

Genome sequencing efforts of naked mole-rat and blind mole-rat also showed a strong en-

richment of pseudogenes in visual pathways associated with degradation of vision in these

species (Cooper et al., 1993; Kim et al., 2011). A genome-wide study by Prudent et al.

(2016) detected significant genomic differences in genes involved in vision-related pathways

such as eye development and perception of light in two of these four subterranean mam-

mals, namely cape golden mole and blind mole-rat. Using our rates-based framework we

perform a more rigorous investigation of convergently evolving genes in a larger set of four

subterranean species, as well as elucidating the tissue-specificity and underlying reasons for

their convergent rate changes. More importantly, in a first-of-its-kind demonstration at the

non-coding level, we applied our methods to successfully detect eye-specific enhancers.

Visual regression is not limited to these four mole species, and mammals display specific

types of regression and other general differences in visual capabilities. Our analysis of vi-

sual gene rates across other species revealed interesting patterns and trends, wherein some

aboveground species with poor or remodeled visual systems showed mean rate acceleration

comparable to subterranean mammals (Figure 2.3.8). This provides an opportunity to fur-

ther probe specific differences in the development and function of visual systems in terms of

the specific pathways that are relaxed or under constraint across species. Additionally, inte-

grating these other species into our rate-based framework can help in fine-tuning the predic-

tive power of the evolutionary-based approaches. Deliberate selection of foreground branches

based on specific combinations among these vision-impaired mammals might greatly improve

the power of the methods in detecting convergent changes, especially at the non-coding level.

In this regard, the availability of rich and diverse phenotypic annotations across mammals

further lays the ground for the development of evolutionary-based approaches in functional
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and phenotypic annotation of non-coding regions (O’Leary and Kaufman, 2011; O’Leary

et al., 2013; Marcovitz et al., 2016).
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3.0 An improved method for robust estimation of relative evolutionary rates

3.1 Introduction

Understanding the relationship between phenotype and genotype is a fundamental ques-

tion in biological research. A mechanistic characterization of this relationship hinges on

our ability to define how specific genetic elements contribute to biological processes at the

molecular, cellular, and organismal level. High-throughput sequencing has enabled new ex-

perimental approaches that have uncovered a wealth of genetic elements with putative reg-

ulatory roles across tissues (Dunham et al., 2012; Andersson et al., 2014; Romanoski et al.,

2015). However, identifying the precise biological functions of these elements remains a chal-

lenge. Even beyond non-coding elements, the precise biological roles of many protein-coding

genes are still poorly understood, and many genes with statistical disease associations still

lack a mechanistic explanation (Pennacchio et al., 2013; Radivojac et al., 2013; Sánchez and

Huarte, 2015; Shlyueva et al., 2014). While experimental validation for functional annotation

remains challenging, there is considerable interest in developing new tools that can use ex-

isting data resources to further elucidate the function of genetic elements. These approaches

have the potential to improve the diagnosis of disease susceptibility and the development of

therapeutic interventions (Manolio et al., 2009; Esteller, 2011).

Computational approaches learning from patterns of convergent phenotypic evolution

across species provide a complementary approach to predict genotype-phenotype associa-

tions. The natural world is replete with examples of phenotypic convergence ranging from

the independent evolution of flight in birds and mammals to diving in species that transi-

tioned from a terrestrial to marine habitat to loss of complex phenotypes such as eyesight

in animals colonizing the subterranean niche. Genome-scale studies aimed at identifying

the genetic basis of phenotypic convergence take advantage of the growing availability of

whole genome sequences for species across several orders, alongside the development of com-

parative methods to predict orthologous sequences (Eisen, 1998; Pellegrini et al., 1999; Li

et al., 2014). A common approach in such studies is to identify convergence at the molecular
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level, including substitutions at specific nucleotide or amino acid sites (Zhang and Kumar,

1997; Parker et al., 2013; Stern, 2013; Foote et al., 2015; Thomas and Hahn, 2015; Zou and

Zhang, 2015). An alternative strategy to investigate the genetic basis of convergence is to

search for convergent changes at the level of larger functional regions rather than specific

nucleotide or amino acid sites. Sets of genes associated with a phenotype can respond to

convergent changes in the selective pressure on the phenotype through non-identical changes

in the same gene, and as such, sites-based methods can fail to detect them. These limitations

have encouraged researchers to search for convergent shifts in evolutionary rates of individ-

ual protein-coding genes and more recently conserved non-coding elements (Lartillot and

Poujol, 2011; Hiller et al., 2012; Chikina et al., 2016; Marcovitz et al., 2016; Prudent et al.,

2016). An increased selective constraint can manifest as a slower evolutionary rate, whereas

faster evolutionary rates can result from a release of constraint or from adaptation. Thus

phenotypic associations for genetic elements can be predicted from correlated changes in

their evolutionary rates on phylogenetic branches corresponding to the phenotypic change.

Example approaches based on evolutionary rates include the Forward/Reverse Genomics

methods that have identified protein-coding and non-coding genetic elements showing con-

vergent regression in subterranean mammals and loss of limb-regulatory elements in snake

lineages (Hiller et al., 2012; Marcovitz et al., 2016; Prudent et al., 2016; Roscito et al., 2018).

We previously developed an evolutionary-rates-based method to identify genetic elements

showing convergent shifts in evolutionary rates associated with two distinct phenotypic tran-

sitions (Chikina et al., 2016; Partha et al., 2017). Our original method calculates gene-specific

evolutionary rates using a linear model, and gene-trait associations are inferred using corre-

lations of these rates with the phenotype of interest. A genome-wide scan using this method

to find protein-coding genes associated with the transition to the marine environment identi-

fied hundreds of genes that showed accelerated evolutionary rates on three marine mammal

lineages (Chikina et al., 2016). These accelerated genes were significantly enriched for func-

tional roles in pathways important for the marine adaptation including muscle physiology,

sensory systems and lipid metabolism. More recently, using our methods we detected an

excess of vision-specific genes as well as enhancers that showed convergent rate acceleration

on the branches corresponding to four subterranean mammals (Partha et al., 2017). Genes
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showing convergent rate shifts associated with these two phenotypic transitions typically fol-

low one of the following modes of change in the selective pressure 1. relaxation of constraint,

2. positive selection. Marine-accelerated and subterranean-accelerated genes identified in

earlier scans were further probed using phylogenetic models of selective pressure to iden-

tify the underlying evolutionary process. In both cases, we found an excess of genes under

relaxed constraint, as well as a smaller number of genes under positive selection. Overall,

genome-scale efforts both from our group and others to find genetic elements responding to

convergent changes in the selective pressures in their environment are gaining momentum in

accurately describing precise genotype-phenotype associations.

Our original evolutionary-rates method has an important statistical limitation, namely

strong mean-variance trends in the computed evolutionary rates. The distributions of branch

lengths of gene trees in phylogenetic datasets are influenced by the choice of species, di-

vergence from the most recent common ancestor, and species-specific properties, such as

generation time, in addition to gene-specific constraints on the sequence evolution. These

factors cause large differences in the average lengths as well as the variance of the branch

lengths across the branches studied. In this paper, we illustrate how this limitation can

adversely impact the confidence with which we infer phenotypic associations for genetic

elements, in particular making them sensitive to certain factors in phylogenomic analyses in-

cluding choice of taxonomic groups and average rates of sequence divergence on phylogenetic

branches showing the convergent phenotype. We demonstrate how introducing long branches

in phylogenetic trees via the inclusion of distantly related species impacts the reliable estima-

tion of evolutionary rates using gene trees across mammals, as well using a first-of-its-kind

model for simulating gene trees. We present key improvements to our methods that address

these limitations and overcome them. The next section New Approaches presents a detailed

walk-through of our current approach to calculate relative evolutionary rates, the illustration

of mean-variance trends (heteroscedasticity) in these rates, and our methodological updates

that correct for the problem of heteroscedasticity in the rates. We subsequently demonstrate

the improved reliability in relative rate calculations using our updated method, and, more

importantly, in the robust detection of convergent rate shifts across a range of evolutionary

scenarios in real and simulated phylogenetic datasets.
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3.2 Materials and Methods

3.2.1 Protein-coding gene trees across 63 mammalian species

We downloaded the 100-species multiz amino acid alignments available at the UCSC

genome browser(Haeussler et al., 2019), and retained only alignments with a minimum of 10

species. We then pruned each alignment down to the species represented in Figure 3.2.1 of

the proteome-wide average tree. We added the blind mole rat ortholog of each gene based

on the methods described in Partha et al. (2017). We estimated the branch lengths for each

amino acid alignment using the aaml program from the package PAML (Yang, 2007). We

estimated these branch lengths on a tree topology modified from the timetree published in

Meredith et al. (2011). We attempted to resolve conflicts between the topology inferred

in Meredith et al. (2011). compared to that in Bininda-Emonds et al. (2007). based on

a consensus of various studies employing a finer scale phylogenetic inference of the species

involved. The differences between our final topology, which we call Meredith+ topology and

the Meredith et al. (2011) topology include setting the star-nosed mole as an outgroup to

the hedgehog and shrew; cow as an outgroup to the Tibetan antelope, sheep and goat; and

the ursid clade as an outgroup to mustelid and pinniped clades. For more details about

the literature surveyed to resolve these differences, please refer to Meyer et al. (2018). The

topology of our final Meredith+ tree compared to the UCSC topology tree is reported in

Figure 3.2.1. In order to perform analyses benchmarking the method robustness to tree

topology, we additionally generated the protein-coding gene trees based on the UCSC tree

topology.
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Figure 3.2.1: Cladograms describing relationships between 63 mammalian species used for

constructing genome-wide maximum likelihood protein-coding gene trees. Final version of

the tree we modified from the topology reported in Meredith et al. (left), and tree reported

in UCSC genome browser (right). Key differences between the placement of species are

highlighted using black lines. Species corresponding to subterranean and marine mammals

are highlighted in red and blue respectively.

3.2.2 Genes showing eye-specific expression

Refer Methods 2.2.4

3.2.3 Calculating concordance in relative rates ranks across datasets with and

without non-placental mammals

To estimate the robustness of relative rates calculations to inclusion of non-placental

mammals, we calculate the concordance in relative rates ranks across two phylogenetic
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datasets with and without the non-placental mammals respectively. For each of the 55

eye-specific genes, we rank the extant branches in trees based on the ordering of relative

rates independently in the two datasets. We then fit a linear model between the ranks across

these two datasets, while forcing a slope coefficient of 1. We subsequently estimate the con-

cordance in the ranks as the mean squared error of the residuals of this linear model. Lower

MSE values reflect better concordance in the ranks, and thus superior robustness. We sub-

sequently compare these MSE values for each eye-specific gene obtained using the original

and updated methods to calculate relative rates. A positive MSE(original)-MSE(updated)

value implies the updated method shows improved concordance in the ranks of relative rates,

across datasets with and without the non-placental mammals respectively.

3.2.4 Simulating phylogenetic trees

Phylogenetic branch lengths have units of number of substitutions per site and thus

can be thought of as normalized count data. However, we find that a Poisson distribution is

unsuitable in this case as the real branch length data shows considerable overdispersion, that

is the variance is higher than the mean (Figure 3.2.2). We thus model the branch lengths

of the simulated trees using a negative binomial distribution, following ideas from studies

simulating expression counts for RNAseq analysis (Robinson et al., 2009; Di et al., 2011;

Law et al., 2014; Ritchie et al., 2015). We simulated datasets of phylogenetic trees using

the UCSC tree topology and branch lengths from the average proteome-wide tree across

19,149 mammalian protein-coding gene trees across 62 mammals. Figure 3.2.3 describes the

tree topology used for the simulations. We simulate the branch lengths (or rates) for every

branch (j) on each tree (i) according to the following formula

bij = Poisson(Gamma(αiλj, αiλj − sqrt(αiλj)))

where Gamma is parametrized by mean and variance. Here, αi is a gene-specific scaling

term, λj is the average rate of the corresponding branch so that αi ∗ λj is the expected rate

on the ijth branch, and the simulated rate is drawn from a Gamma distribution with that

mean. The composite Poisson-Gamma distribution is equivalent to the negative binomial
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distribution and thus in our simulation the mean variance relationship has a quadratic com-

ponent, matching what we observe in real data (Figure 3.2.2). We simulate two classes of

trees in every dataset based on different input parameters. We simulate control trees, trees

where the λj are simply the average rate on the branch j. These control trees do not show

any explicit convergent rate shift on any of the branches. We additionally simulate posi-

tive trees showing convergent rate acceleration on foreground (fgd) branches by sampling at

λpositivefgd = m ∗ λcontrolfgd , only on these branches (m = 1.5, 1.75, or 2). Thus, the foreground

branches in positive trees are effectively sampled at an accelerated rate compared to the

foreground branches in control trees.
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Figure 3.2.2: Mean-Variance trends in branch lengths of 19,149 protein-coding gene trees

across 63 mammalian species. Panel A represents the full data, and B shows a zoomed in

version containing 80% of the data. The blue dashed line corresponds to the linear model

fit between the variance and mean, and the red dashed line represents the fit from a linear

model including a quadratic term of the mean in addition to the linear term.

3.2.5 Estimating foreground rate multiplier (m) for genes showing convergent

rate acceleration in subterranean mammals

We compared our choices for the foreground rate multiplier (m = 1.5, 1.75, or 2) in

simulations to that observed in real data using branch lengths of ten genes showing strong
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Figure 3.2.3: Topology describing the relationship between branches of simulated trees. The

topology is constructed based on the relationships of 62 mammalian species as reported in

the UCSC genome browser.

convergent rate acceleration in the four subterranean mammals (moles). Of the 55 genes

identified in Partha et al. (2017). as showing strongest convergent rate acceleration in the

moles, we chose the top eight genes showing relaxation of constraint, and two genes under-

going positive selection on the four mole branches (Table S5 in Supplementary file 2). For

each of these ten genes, we estimated the mole foreground rate multiplier as follows: we first

fit a linear model between the gene branch lengths and the average branch lengths. Based

on the predicted values for the mole branches from this linear model, we calculate the fore-

ground rate multiplier for each mole branch by dividing the real mole branch length by their

predicted value. The mole foreground rate multiplier estimate for each gene is subsequently
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calculated as the mean of the four individual foreground rate multipliers. Table 2, shows the

mole foreground rate multiplier estimates for these ten genes.

Gene Mole foreground multiplier estimate Evolutionary mode

LIM2 8.63 Relaxed

CRYBB3 5.36 Relaxed

CRYBB2 4.87 Relaxed

CRYGC 4.62 Relaxed

CRYBA1 3.89 Relaxed

GPR89B 3.30 Relaxed

KRTAP17-1 3.22 Positive selection

GNAT1 2.66 Relaxed

ROM1 2.58 Relaxed

COL4A4 1.70 Positive selection

Table 2: Mole foreground multiplier estimates for genes showing strong convergent rate

acceleration on mole branches.

3.2.6 Calculating gene-trait correlations

The gene-trait correlations are computed under a Mann-Whitney U testing framework

over the binary variable of foreground vs background branches. In the subterranean example,

the four subterranean branches (Figure 3.3.1) are designated as foreground. We calculate a

foreground acceleration score reflecting the strength of convergent rate acceleration on the

foreground branches. The value is calculated as the negative logarithm of the p-value of the

Mann-Whitney test multiplied by the direction of the correlation as given by the sign of the

rho statistic. A positive rho statistic indicates rate acceleration in the foreground species,

and the negative logarithm of p-value reflects the strength of the convergent rate shift. In

simulated trees study, we generated trees for three sets of foreground branches with different

branch length distributions - short, intermediate, and long as illustrated in Figure 3.3.8 and
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Figure 3.3.9.

Foreground acceleration score = Sign(Rho) ∗ [−log10P ]

where rho and P are the correlation coefficient and statistical significance of the Mann-

Whitney test for association between relative rates and binary trait.

3.2.7 Gene Ontology term enrichment analysis

Refer Methods 2.2.3

3.3 Results

3.3.1 Need for new approaches to estimate relative evolutionary rates

3.3.1.1 Original relative-evolutionary-rates method for predicting phenotypic

associations of genetic elements Our method infers genetic elements associated with

a convergent phenotype of interest based on correlations between that phenotype and the

rates of evolution of genetic elements. As input, the phenotype is encoded as a binary trait

on a phylogenetic tree, and the evolution of each genetic element is similarly described by

phylogenetic trees with the same fixed topology. Figure 3.3.1 provides an illustration of

our method capturing the convergent acceleration of the Lens Intrinsic membrane 2 protein

Lim2 on four subterranean mammal branches. We use maximum likelihood approaches to

estimate the amount of sequence divergence of each genetic element on branches of the

phylogenetic tree (Yang, 2007). Using each tree’s branch lengths, we calculate the average

tree across the individual trees reflecting the expected amount of divergence on each branch.

Relative evolutionary rates (RERs) on individual trees are then calculated as the residuals of

a linear regression analysis where the dependent variable corresponds to the branch lengths of

individual trees, and the independent variable corresponds to branch lengths of the average

tree. Thus the relative rates reflect the gene-specific rate of divergence in each branch,

factoring out the expected divergence on the branch due to genome-wide effects (such as

mutation rate, time since speciation, etc.). The relative rates method works downstream
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of estimating the trees, and hence considers protein-coding gene trees, non-coding genetic

element trees, and simulated gene trees equivalently. For the sake of simplicity, we refer to

the relative rates on the branches of each tree as the gene-specific relative rate; the term

gene could in principle be referring to a protein-coding gene, non-coding genetic element, or

a simulated tree depending on the dataset being studied.
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Figure 3.3.1: Predicting gene-trait associations using relative rates method. A. Lens Intrinsic

Membrane 2 (Lim2) protein-coding gene tree. Our phylogenetic dataset is comprised of

trees constructed from alignments of protein-coding genes in the mammalian genome across

59 species of placental mammals. B. Relative rates on branches of phylogenetic trees are

calculated using linear regression. C. Gene-trait associations are identified using correlations

of relative rates of the gene with binary trait of interest.

3.3.1.2 Estimating mean-variance trends in relative rates Our original method

calculates the gene-specific rates by correcting for the genome-wide effects on branch lengths

using linear regression. Consequently, the variance of the relative rates on individual branches

strongly depends on the average length of the branch, illustrated here using an example

protein-coding gene tree for MFNG, Manic Fringe Homolog Drosophila (Figure 3.3.2A). We

see that longer branches have relative rates showing a higher variance, as can be inferred
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from the increasing spread of the relative rates. This pattern becomes clearer when we

plot the genome-wide variance in relative rates for branches of different average lengths

(Figure 3.3.2B). In statistical terms, the relative rates are heteroscedastic, meaning they

show unequal variance across the range of values of the dependent variable, here the average

branch length. The presence of a non-constant mean-variance trend in the residuals stands

in violation of one of the assumptions underlying linear regression, namely homoscedasticity,

or constant variance of residuals with respect to the dependent variable. More importantly,

we suspect that this heteroscedasticity of the relative rates adversely affects the confidence

with which we can infer rate shifts on specific branches. For example, the presence of a

mean-variance trend can increase the likelihood of observing higher relative rates on longer

branches by chance, rather than due to gene-specific changes reflecting changes in selective

pressure. A potential negative consequence could be a higher proportion of false positives

while inferring convergent rate changes on such branches.

3.3.1.3 Updated method to calculate relative rates In this study, we present an

approach relying on a combination of data transformation and weighted linear regression

to calculate relative evolutionary rates that addresses the statistical limitations resulting

from relative rates calculated using naive linear regression. The proposed method updates

are based on the ideas presented in Law et al. (2014), who developed new linear modeling

strategies to handle issues related to mean-variance relationship of log-counts in RNA-seq

reads (Law et al., 2014; Ritchie et al., 2015). We represent the branch lengths on individual

gene trees as a matrix Y, where rows correspond to individual genes (g), and columns to the

branches (b) on these trees. We first transform the branch length data using a square-root

transformation (3.1).

Y
′

gb =
√
Ygb (3.1)

Following the transformation, we perform a weighted regression analysis to calculate the

relative evolutionary rates as follows: we calculate the average tree and perform a first-pass

of linear regression using the transformed branch length matrix (3.2, 3.3, and 3.4).

xb = Ȳ
′
b (3.2)
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Figure 3.3.2: Heteroscedasticity in the relative rates computed using current method. A.

Relative rates on branches of Manic Fringe (MFNG) gene tree, calculated using original

method. Heteroscedasticity in the relative rates can be visualized as the increase in the

variance of the relative rates with increasing average branch length B. Genome-wide mean-

variance trends in relative rates. Higher variance in relative rates are observed with increasing

branch lengths.

where xb is the branch length for branch b in the average tree.

β̂ = (XTX)−1XTY
′

(3.3)

R = Y
′ −Xβ̂ (3.4)

where β̂ are the coefficients of linear regression, and R is the residuals matrix. We then

estimate the mean-variance trends in the residuals of the linear regression analysis by em-

pirically fitting a locally weighted scatterplot smoothing (LOWESS) function capturing the

relationship between the log of variance of the residuals and the branch lengths (3.5).

log(R2) = f(Y
′
) (3.5)
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Subsequent to estimating this function, we assign each gene x branch observation a weight

W based on the predicted value for the branch, obtained from the first pass linear regression

(3.6)

W = e−f(Xβ̂) (3.6)

For branches that are shorter on average, the variance in the residuals is smaller, thus

resulting in a higher weight, and vice versa. Using the computed weights, we perform

a weighted regression analysis between the individual branch length (dependent variable)

and the average tree (independent variable). The weighted regression analysis attempts to

remove the heteroscedasticity in the residuals by computing the residuals after minimizing

the weighted sum of squared errors, as opposed to the raw sum of squared errors (3.7, 3.8).

β̂WLS = (XTWX)−1XTWY
′

(3.7)

R = Y
′ −Xβ̂WLS (3.8)

r
′

gb =
rgb
√
wgb

σb
(3.9)

where σb is the standard deviation of the weighted residuals in branch b. Subsequent to

the weighted regression analysis, the weighted residuals (r
′

gb), are estimated by rescaling

the regression residuals (rgb) with the weights, and the weighted residuals are additionally

standardized to have unit variance within every branch across all genes (3.9). The weighted

residuals (r
′

gb) correspond to the weighted relative rate on branch b for gene g. The differences

to the relative rate calculations introduced by the updated method result in changes to the

scales of the relative rates computed. However, we note that this scale is arbitrary and the

downstream gene-trait correlations for binary traits estimated using a Mann-Whitney test

(see Methods) depend only on the ranks of the relative rates of each branch within any single

gene tree. Figure 3.3.3 shows the workflow for computing relative evolutionary rates using

the original and updated method.
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Figure 3.3.3: Workflow for calculating relative evolutionary rates using the updated method.

Black areas of the workflow represent steps implemented as part of current relative rates

method, and blue areas correspond to methodological updates.

3.3.2 Improvements to relative evolutionary rates methods mitigate genome-

wide mean-variance relationship

Our updated method to calculate relative rates using data transformation followed by 

weighted regression produces nearly homoscedastic relative rates that do not show a signif-

icant global mean-variance relationship. Figure 3.3.4A shows the relative rates computed for 

the MFNG protein-coding gene tree using the updated method. In comparison to the original 

method based on naive linear regression (Figure 3.3.2A), we observe that the up-dated 

method produces relative rates showing no apparent increase in the variance of relative rates 

on longer branches of the tree. Plotting the genome-wide mean-variance trends of the relative 

rates across all branches of all gene trees, we observe that the relative rates cal-culated from 

transformed-weighted residuals show nearly constant variance across branches of varying 

lengths (Figure 3.3.4B). We additionally checked the mean-variance relationships from 

intermediate steps in our method that can estimate relative rates, corresponding to two 

method variants which do not implement data transformation (linear-weighted regime) or a 

weighted regression (square-root unweighted regime) (Figure 3.3.5). However, we find that 

the intermediate regimes, utilizing only one of the method updates (branch length transfor-

mation or weighted regression alone) are less effective at eliminating mean-variance trends. A 

combination of transformation and weighted regression steps works best at producing 

homoscedastic relative rates.
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Figure 3.3.4: Updated method to calculate relative rates shows no apparent trends of het-

eroscedasticity. A. Manic Fringe (MFNG) gene relative rates calculated using the updated

method. B. Genome-wide mean-variance trends for relative rates computed using the up-

dated method show constant variance with increasing branch lengths.

3.3.3 Better robustness to inclusion of distantly related species

In earlier applications of our relative rates method to detect genetic elements conver-

gently responding in subterranean mammals and marine mammals respectively, we sampled

alignments of placental mammal species to construct phylogenetic trees for each genetic el-

ement (Chikina et al., 2016; Partha et al., 2017). These alignments were derived from the

placental mammal subset of the 100-way vertebrate alignments made publicly available by

the UCSC genome browser (Haeussler et al., 2019). In addition to these placental mammals,

the 100-way alignments include four other species of mammals, three marsupials Opos-

sum (monDom5), Wallaby (macEug2), Tasmanian Devil (sarHar1), and one monotreme

Platypus (ornAna1). Despite deep conservation of many genetic elements in these non-

placental mammals, human-and-mouse centered phylogenomic studies tend to exclude these
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Figure 3.3.5: Comparison of mean-variance trends in relative rates computed using original,

updated and intermediate methods. A corresponds to original method, D the updated

method. Panels B and C reflect methods that are intermediate to the updated method, with

no transformation (B), and no weighted regression (C).

species due to the introduction of long branches in the phylogenetic trees (Parker et al.,

2013; Marcovitz et al., 2016; Prudent et al., 2016). For instance, in previous applications of

our relative rates method we deliberately excluded these non-placental mammals since they

produce wide variations in relative rates due to the introduction of long branches, which
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would adversely affect the confidence with which we make inferences of convergent rate ac-

celeration in species exhibiting a convergent phenotype (Chikina et al., 2016; Partha et al.,

2017). However, scanning for rate-trait associations across tree datasets with higher num-

bers of species would allow for more statistical power, and hence a relative rates method

that can reliably include such distantly related species offers a clear advantage. To this

end, we tested the robustness of our updated method to the inclusion of distantly related

species at inferring convergent rate shifts. We chose two phylogenetic datasets - 1. Genome-

wide protein-coding gene alignments across 59 placental mammal species, and 2. across

63 mammals including four non-placental mammals in addition to the placentals. An ex-

ample demonstration of how our current method to calculate relative rates is sensitive to

the inclusion of non-placental mammals is illustrated in Figure 3.3.6A. Using the Peropsin

(RRH) gene for illustrative purposes, we show that the ranks of relative rates computed

using the current method considerably vary upon the inclusion of non-placental mammals.

These changes in ranks are observed across many branches on the gene tree including one

of the four subterranean branches (Cape golden mole). In comparison, the updated method

displays a stronger concordance in the ranks of the computed relative rates (Figure 3.3.6A).

Consequently, the subterranean acceleration scores for RRH computed using the updated

method are more stable with the inclusion of non-placental mammals (Table 3).

Dataset\Method Original Updated

With non-placentals 2.70 2.1

Placentals only 1.38 2.0

Table 3: Subterranean acceleration scores for Peropsin (RRH) computed using two meth-

ods, and across two datasets. In comparison to the original method, the updated method

shows stronger consistency in the scores across the two tree datasets with and without the

non-placental mammals. The subterranean acceleration scores reflect the significance of

convergent rate acceleration on the four subterranean branches.
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Figure 3.3.6: Comparison of robustness of methods to inclusion of non-placental mammals. 

A. The relative rate ranks of terminal lineage branches within the RRH tree are plotted 

with respect to the inclusion of non-placental mammals. Red points denote subterranean 

branches. B. Updated method shows improved concordance in ranks of relative rates across 

trees with and without non-placental mammals. C. Updated method shows improved ro-

bustness to inclusion of non-placental mammals at detecting subterranean acceleration of eye-

specific genes.

 We also performed a larger-scale benchmarking of the robustness of our methods to the 

inclusion of non-placental mammals across 55 genes showing eye-specific expression. These 

genes were identified based on mouse microarray expression data across 91 tissues (see 

Methods). We first compared the estimated concordance in ranks of relative rates computed 

using the original and updated method in trees including and excluding the non-placental 

mammals. For each gene, we calculated concordance in ranks using the mean squared error of 

residuals of a linear model (see Methods), where lower MSE values reflect better robustness. 

We observed that for 48 (out of 55) eye-specific genes, the updated method shows improved 

concordance in the ranks of relative rates across the two sets of gene trees (Figure 3.3.6B). 

Using a pairwise Wilcoxon test, we compared the MSE values obtained using the original 
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versus updated method, revealing a statistically significant (P = 6e-10) decrease in MSE

values obtained using the updated method.

For each of these eye-specific genes, we also calculated subterranean acceleration scores

(see Methods) reflecting the convergent rate acceleration on the four subterranean branches

independently in gene trees including and excluding the non-placental mammals. Based

on the relative rates calculated using each method, we compared the concordance of the

subterranean acceleration scores across the two tree datasets. Ideally, we expect the scores

produced by the methods to be highly consistent across the two datasets since the four

non-placental mammals are not subterranean, with only minor differences arising due to the

inclusion of four additional background species. The results of the analysis revealed that the

updated method produces superior concordance in the scores across the two tree datasets,

reflecting its improved ability to handle the long branches introduced by the non-placental

mammals (Figure 3.3.6C).

3.3.4 Improved power to detect convergent rate shifts in simulated trees

In order to compare the power of our methods to detect convergent rate shifts in branches

across a range of evolutionary scenarios, we developed a model to simulate individual gene

trees. Such a model allows us to rigorously examine method performance in relation to var-

ious parameters in phylogenetic datasets including number of foreground branches, length

distribution of foreground branches etc., where foreground branches describe branches show-

ing a convergent phenotype, while background branches do not. The limited availability of

ground truth examples of convergently evolving genetic elements calls for the development

of biologically realistic simulations of sequence evolution. Using our model to simulate trees

(see Methods), we compared the power to detect rate shifts in relation to two factors: 1.

Average lengths of foreground branches, in particular extreme foreground branches that are

very short or very long on average. 2. Number of foreground branches. We investigated

the performance of the updated method in detecting rate shifts in such extreme branches,

assessing the power advantage resulting from calculating relative rates that do not suffer

from a biased mean-variance relationship. Our model to simulate phylogenetic trees allows
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for explicit control over choosing foreground branches showing convergent rate acceleration.

We simulate control trees, where all branches are modeled to evolve at their respective av-

erage rates, and positive trees, where the chosen foreground branches are modeled to evolve

at an accelerated rate. Initially, we chose a foreground rate multiplier value of 2, which

corresponds to foreground branches in positive trees being sampled at twice their average

rates (see Methods). We first compared the heteroscedasticity in the relative rates on the

branches of the control trees calculated using the original and updated methods. Similar

to the trends observed in mammalian gene trees (Figure 3.3.5), we observed that the up-

dated method outperformed the original method at producing homoscedastic relative rates

(Figure 3.3.7). We then calculated a foreground acceleration score for individual simulated

trees, both control and positive. A more positive value of this score, calculated as a signed

negative logarithm of the p-value, reflects stronger convergent rate acceleration on the fore-

ground branches (see Methods). Subsequent to estimating these scores, we evaluated the

performance of the two methods, based on the power to distinguish the positive trees from

control trees. In two independent simulation settings with foreground branches of long and

short average lengths, we observed that the updated method offers more power to detect

positive trees (Figure 3.3.8, see Figure 3.3.9 for precision-recall curves).

We repeated the analyses with more conservative choices for modeling foreground ac-

celeration using foreground rate multiplier values of 1.5 and 1.75 to ensure the improved

power was robust to the choice of foreground rate multiplier (m). Consistent with the orig-

inal analysis, the updated method was more powerful at precise detection of positive trees

for all values of m (Figure 3.3.10). We also observed that with increasing values of m, it

becomes easier to detect positive trees (Figure 3.3.8B, Figure 3.3.10) which is expected since

the foreground branches will be longer for larger values of m. Our choices of foreground

rate multiplier values in simulations (m = 1.5, 1.75 and 2) represent challenging scenarios

for our method in comparison to foreground rate multiplier estimates observed in real data.

For instance, our simulation choices are lower than the foreground rate multiplier estimates

for genes showing strong relaxation of constraint in subterranean mammals, and more com-

parable to the estimates for genes under positive selection (see Methods, Table 2). This

proves the utility of our method at detecting genes showing rate acceleration due to positive
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Figure 3.3.7: Mean-variance trends in relative rates on branches of simulated phylogenetic

trees computed using the two methods. The original method (A) produces heteroscedastic

relative rates that show a strong mean-variance trend, whereas relative rates calculated using

the updated method (B) show constant variance across branches of different lengths.

selection, in addition to relaxation of constraint.

We also performed a control analysis using foreground acceleration scores computed using

four length-matched control foreground branches that were not the true foreground, proving

that the positive trees were not detected due to random chance (Figure 3.3.11). Finally, in

addition to the positive trees with foreground branches that were long or short, we com-

pared the power to detect rate acceleration on foreground branches of intermediate length.

Consistent with the findings in short/long foregrounds, we find a modest yet significant im-

provement offered by the updated method (Figure 3.3.12). Overall, we find that our updated

method to compute relative rates offers a significantly improved power to detect convergent

rate shifts in simulated trees.

We then compared the power to detect rate shifts across varying numbers of foreground

branches by simulating positive trees with seven foreground branches of long average lengths
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Figure 3.3.8: Comparison of method performance across simulated phylogenetic trees. A.

Branch length distributions for simulating phylogenetic trees with foreground branches high-

lighted in red. B. Power to detect rate shift in foreground branches of simulated trees.

(Figure 3.3.13). We subsequently generated positive trees with subsets of n branches (n

ranging from 4 to 7) among these seven foreground branches (Figure 3.3.13). Within each

of these datasets, we calculated foreground acceleration scores for control and positive trees

using each method independently. We observed that the updated method to calculate relative
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Figure 3.3.9: Precision-recall curves for detecting positive trees in simulations. Up-

dated method outperforms the original method across varying configurations of foreground

branches, including long (A) and short (B) foreground branches respectively. Shaded areas

reflect 95% confidence intervals.

rates is consistently more powerful than the original method at precise detection of positive

trees (Figure 3.3.14A). We repeated the analysis choosing seven foreground branches that

were short on average rather than long (Figure 3.3.13) and observed consistent gains in power

using updated method to calculate relative rates (Figure 3.3.14B). Applying our method to

simulations with varying configurations of foreground branches also revealed that the power

to detect foreground acceleration is higher for longer foreground branches. In other words, it

is easier to detect rate acceleration on longer foreground branches compared to shorter ones

(Figure 3.3.14A vs B). In terms of sequence divergence, longer branches represent instances

of higher sequence divergence or more changes, which are easier to detect as the method

ranks the rates on branches relative to one another. The increased power to detect rate

acceleration therefore becomes especially useful in convergent phenotypes involving short

foreground branches, where the improvements are nearly two-fold (Figure 3.3.14B).
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3.3.5 Relative rates-based inference is robust to minor uncertainties in species

tree topology

Our method relies on estimating sequence divergence on branches of phylogenetic trees

with a fixed topology. Efforts to better resolve the phylogeny of extant mammals have

resulted in continuous updates to the consensus species tree topology (Murphy et al., 2001,
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length A. Foreground branches (in red), used for simulating convergent acceleration on in-

termediately long branches. B. Comparison of power between the two methods to detect

convergent rate acceleration on intermediately long foreground branches.

2007). Topology trees commonly used in phylogenomic analyses of extant mammals include

the UCSC genome browsers 100-way tree, as well as the timetrees reported in the Meredith

et al and Bininda-Emonds et al (Bininda-Emonds et al., 2007; Meredith et al., 2011; Casper

et al., 2018). Differences between these species tree topologies often involve entire clades,

and the decision to choose a particular topology tree can potentially strongly influence the

outcomes of phylogenetic analyses. Here, we benchmarked the robustness of our relative rates

method to the choice of topology tree. We constructed protein-coding gene trees based on two

different species tree topologies, namely the UCSC 100-way tree and our modified Meredith

et al. (Meredith+) topology tree (see Methods). The Robinson-Foulds metric (calculated

using the function RF.dist in the R package phangorn) between these two phylogenies is 22,

reflecting differences in 22 partitions of species (Robinson and Foulds, 1981; Schliep, 2011).

We observed that both the updated and original methods to calculate relative rates show

robust signatures of subterranean rate acceleration for eye-specific genes with respect to the
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Figure 3.3.13: Simulations of phylogenetic trees with varying numbers of foreground

branches. Red branches correspond to the seven foreground branches chosen for simulating

trees showing convergent rate acceleration on long (A) and short (B) foreground branches.

The foreground branch sets of simulated trees used for comparing the power to detect fore-

ground acceleration across different numbers of long and short branches are given in (C).

species tree topology used (Figure 3.3.15).

3.3.6 Comparison of power to detect enriched pathways associated with two

independent convergent phenotypes

Beyond examining individual genes, we further assessed our new methods ability to detect

pathway enrichments for genes under relaxation of constraint in subterranean mammals and
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Figure 3.3.14: Improved power to detect foreground rate shifts using the updated method

across different numbers of foreground branches. These simulations were performed across

two scenarios with different foreground branch sets consisting of short (A) and long branches

(B) respectively.
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Figure 3.3.16: Comparison of fold enrichments of top enriched terms associated with two

convergent phenotypes. A. Branch length distributions representing average rates in protein-

coding gene trees across mammals. Foreground branches corresponding to subterranean, and

marine mammals, are highlighted in red and blue respectively. B. The barplot compares the

fold enrichment for the visual perception GO term across top subterranean accelerated genes.

C. The same analysis was repeated with the top enriched term in marine-accelerated genes,

namely Detection of chemical stimulus in sensory perception.

marine mammals (see Figure 3.2.1 for respective foreground branches, and Figure 3.3.16

for average rates). Compared to our original method, the updated method detected more

enriched Gene Ontology (GO) terms with accelerated evolutionary rates in subterranean

mammals (Table 4). Additionally, the fold enrichment for detected terms was significantly

stronger with the updated method (Figure 3.3.16, Table S1-S6 in Supplementary file 2).

On the other hand, the marine system showed mixed results. Both the updated and the

original methods showed approximately equal power to detect enriched GO terms if we only
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consider the number of terms detected (Table 5, Table S7-S12 in Supplementary file 2).

However, when comparing the fold enrichment for detected terms, the original method was

significantly better than the updated method (Figure 3.3.16). These contrasting results from

the subterranean dataset versus the marine dataset indicate the importance of tailoring the

corrections we have developed to the dataset of interest, as well as the importance of taking

advantage of simulation-based power and robustness assessments to develop methods that

are broadly applicable to many convergent phenotypes.

topN: subterranean-accelerated GO terms (FDR <0.05)

number of top accelerated genes Original method Updated Method

20 2 9

100 11 28

200 16 32

Table 4: Comparison of numbers of vision-related Gene Ontology terms enriched in top

mole-accelerated genes discovered by the original and updated methods.

topN: Marine-accelerated GO terms (FDR <0.05)

number of top accelerated genes Original method Updated Method

50 16 10

100 27 31

200 59 59

Table 5: Comparison of numbers of Gene Ontology terms enriched in top genes showing

marine-acceleration discovered by the original and updated methods.
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3.4 Discussion

Our original evolutionary-rates-based method to detect genomic elements underlying

convergent phenotypes has already proved to be a valuable technique to detect genes and

enhancers associated with transitions to marine and subterranean habitats (Chikina et al.,

2016; Partha et al., 2017). However, the original method suffered from reduced power to

detect such genomic elements due to a heteroscedastic relationship between the mean and

variance of branch lengths for a given branch across all gene trees, i.e. branches that are

longer on average have higher variance than branches that are shorter on average.

Here, we developed a method using a square-root transformation and a weighted regres-

sion based on the observed mean-variance relationship to correct for the heteroscedasticity.

While our objective was to develop a method that robustly handles mean-variance trends

in phylogenetic trees, we do not systematically investigate factors underlying this property.

Previous genome-scale analyses in modern birds have showed evidence for base composi-

tion heterogeneity affecting variance of branch lengths in exon trees (Jarvis et al., 2014).

However, in our phylogenetic dataset of mammalian protein-coding genes we found no evi-

dence for base composition heterogeneity influencing sequence divergence at the gene level

- we failed to detect any significant global trends between GC-content of our sequences and

their raw branch lengths, relative rates computed using our original method, or from our

new method (Figure 3.4.1). Further comparative genomics analysis is required to better

understand factors influencing branch length distribution patterns in phylogenetic trees. We

tested our new method on real and simulated phylogenies and observed improved robustness

to wider ranges of branch lengths and increased ability to detect convergent evolutionary

rate shifts. Our new method offers increased robustness to the inclusion of distantly-related

species with long branch lengths in our phylogeny, namely non-placental mammals. When

we compared results from an analysis using only placental mammals and an analysis that

included non-placental mammals using both our original and our updated methods, we found

that our new method, unlike our original method, is unimpaired by the inclusion of non-

placental mammals. By improving our methods robustness to inclusion of long branches, we

increased the methods applicability to a broader range of species and hence a broader range
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Figure 3.4.1: Scatter plot of trends between GC content of sequences and measures of se-

quence divergence in phylogenetic trees. GC content of extant orthologs from alignments

of 19,149 protein-coding genes, are plotted them against the branch lengths (A), relative

rates of the corresponding branches computed using original (B), and updated methods (C)

respectively.

of convergent phenotypes. Additionally, our new methods increased power could enable us to

discover more convergently evolving genomic elements. One particular incentivizing example

for these improvements is the recent efforts to sequence the northern marsupial mole, a com-

pletely blind mammal (Archer et al., 2011). When considering using subterranean species

to find genes and enhancers associated with vision, the ability to include the non-placental

marsupial mole along with the other non-placental mammals in our dataset will allow for

more power in a scan for vision-specific genetic elements showing convergent regression in

the five blind mammals.

In addition to testing our method on real data, we also developed a simulation-based

strategy to represent a true positive case of convergent evolution. Our simulations follow a

similar approach to simulating RNA-seq counts where simulated rates are essentially cap-

turing the number of substitutions that occur along a branch (Di et al., 2011). We showed

that our new method demonstrates improved detection of rate shifts both when foreground
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species occupy long, high-variance branches and when foreground species occupy short, low-

variance branches. This allows the method to detect convergent rate shifts given a variety

of potential configurations of convergently-evolving species. The types of simulations we

developed are essential because relatively few concrete instances of sequence-level evolution-

ary convergence exist, so biologically accurate simulations of such evolution are essential to

rigorously test methods that detect shifts in evolutionary rates. One simplification of our

simulation method is that all species are present in all simulated trees, which is not the

case in real genomic data because of genomic element gain and loss across species. However,

maintaining constant species composition in our simulated trees should have little impact

on our ability to compare our methods because we expect both to be equally impacted by

species presence and absence. A second simplification is that we assume all convergently-

evolving species have the same phylogenetic relatedness, i.e. each foreground branch is an

independent instance of convergent evolutionary rates. We would like to be able to answer

questions about our methods power given more complex phylogenetic configurations. De-

veloping methods to answer those types of questions will require a much higher degree of

complexity in our simulations, but it will also allow us to determine which species to add to

our genomic datasets to increase our power to find convergently evolving genomic features.

Our improved method has proved valuable for detecting genomic elements associated

with two binary traits - subterranean-dwelling or not, and marine-dwelling or not - and

we will extend our method for use in convergent continuous traits and non-binary discrete

traits. We will also assemble complementary analyses to assess the robustness and power of

each method. By extending the scope of our method to non-binary traits, we will expand

the potential search-space of our method to a plethora of new convergent phenotypes. Our

overarching goal is to develop an entire suite of methods that can utilize any conceivable

phenotypes as inputs to accurately and robustly identify convergently evolving genomic

elements.
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4.0 An integrated map of protein co-evolution across five eukaryotic lineages

4.1 Introduction

Functional interactions between proteins underlie most biological processes at the cellu-

lar level. These interactions can occur at various scales ranging from physical interactions

between pairs of proteins or binary PPIs, to co-complex interactions among participating

subunits of macromolecular complexes (Jones and Thornton, 1996; Fields and Song, 1989;

De Las Rivas and Fontanillo, 2010). Beyond these direct and in-direct physical interac-

tions, functional links exist between proteins that are components of the same biological

pathways, as a shared regulation of their function is necessary for successfully mediating

cellular processes. A major focus of the post-genomic era has been the development of large-

scale experimental and computational approaches to map the interactome - to characterize

genome-scale PPI networks across multiple species (Havugimana et al., 2012; Wan et al.,

2015; Marcotte et al., 1999a,b; Huynen et al., 2003).

The growing availability of genome sequences across closely related species allow for

comparative genomic studies of proteins. This permits for co-evolutionary analysis at the

molecular level studying the interdependence of evolutionary changes of protein sequences.

The premise of co-evolutionary analysis to infer functional interactions between proteins

relies on the idea that proteins under shared evolutionary pressures evolve in a codependent

manner (Clark et al., 2011; Fraser et al., 2004). An extreme instance of this principle is the

basis for methods predicting PPIs by matching phylogenetic profiles — interacting proteins

tend to show similar patterns of presence/absence across a set of species (Pellegrini et al.,

1999).

Over the past years, substantial progress has been made at developing computational

tools to predict PPIs via molecular co-evolution (De Juan et al., 2013; Ramani and Marcotte,

2003). Such methods utilize protein sequences across divergent species, studying relation-

ships between evolutionary rates (Clark et al., 2011; Ochoa and Pazos, 2014). Candidate

PPIs are predicted using pairs of protein sequences showing correlated rates of evolution on
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branches of phylogenetic trees (Pazos and Valencia, 2002; Clark et al., 2011). Early applica-

tions using methods such as MirrorTree and ContextMirror, illustrated the utility to detect

PPIs in E.coli using 14 prokaryotic genomes (Pazos and Valencia, 2002; Pazos et al., 2008).

More recent methods including MatrixMatchMaker (MMM) and Evolutionary Rate Covari-

ation (ERC), have demonstrated the power of coevolutionary approaches to reveal functional

links across diverse model organisms such as yeast, drosophila, as well as in humans (Tillier

and Charlebois, 2009; Bezginov et al., 2013; Clark et al., 2012b, 2013, 2012a; Priedigkeit

et al., 2015).

Evolutionary Rate Covariation measures the statistical covariation of gene-specific rates

of sequence evolution in pairs of genes across a set of species (Clark and Aquadro, 2010;

Clark et al., 2012a). Participating genes of a pathway experience shared evolutionary con-

straint to maintain its functionality, thus responding to any changes in selective pressure

through parallel changes in their evolutionary rates (Clark et al., 2012b). Strong signatures

of ERC have been reported in biological pathways across diverse model organisms, including

proteins involved in meiotic crossing over in yeast, fertilization proteins in abalones, proteins

belonging to reproductive pathways in Drosophila (Clark et al., 2009, 2013; Findlay et al.,

2014). Application of ERC to mammalian genome sequences revealed strong signatures of

coevolution among genes associated with genetic diseases in humans, furthermore, providing

a complementary approach to predict candidate genes linked to disease (Priedigkeit et al.,

2015).

A major challenge in coevolutionary analysis of protein sequences is correcting for the

contribution of non-specific factors influencing evolutionary rates of proteins (Clark et al.,

2011; Ochoa and Pazos, 2014). Such factors including local mutation rates, time since

divergence etc., can impact estimation of gene-specifc evolutionary rates on branches of

phylogenetic trees, and therefore at accurate inference of coevolutionary signatures between

pairs of proteins (Sato et al., 2005). Methods such as MirrorTree and MMM employ post-

processing methods that correct for the background signal using the average coevolutionary

signal across all pairs of protein trees (Pazos and Valencia, 2002; Pazos et al., 2008; Tillier

and Charlebois, 2009; Clark et al., 2011). Earlier applications of ERC addressed this issue by

calculating gene-specific rates of evolution termed relative evolutionary rates (Clark et al.,
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2012a). The expected divergence for every branch of a phylogenetic tree is estimated using a

genome-wide average. Individual gene-specific rates of evolution are subsequently estimated

by correcting this expected divergence using linear regression (Wolfe and Clark, 2015; Chikina

et al., 2016).

In this study, we report two key contributions building upon previous applications of

Evolutionary Rate Covariation to reveal functional links between proteins. First, we em-

ploy an improved and more robust method, RERconverge, to estimate gene-specific rates of

evolution which are subsequently used to measure ERC between pairs of proteins Kowal-

czyk et al. (2019). RERconverge utilizes a combination of data transformation and weighted

regression analysis to estimate robust gene-specific evolutionary rates Partha et al. (2019).

Correcting the non-specific background variation in evolutionary rates of genes using this

improved method, in turn offers an opportunity to robustly calculate rate covariation across

larger collections of distantly related species. The second, and perhaps the more important

contribution of this study, is the curation of an integrated map of protein co-evolution across

five eukaryotic lineages namely mammals, vertebrates, flies, worms, and yeasts, using ERC.

We perform preliminary investigations of using this integrated coevolutionary approach to

detect functionally interacting proteins at various scales including pairwise protein associa-

tions, co-complex interactions in complexes displaying a range of evolutionary conservation,

and finally in revealing interactions among genes contributing to genetic diseases in humans.

By way of direct comparisons between the Integrated and Mammal-specific ERC analysis,

we demonstrate the improved predictive power offered by the integrated approach to reveal

functional links between proteins.

4.2 Materials and Methods

4.2.1 Calculating genome-wide phylogenetic gene trees

4.2.1.1 Mammals and Vertebrates Amino acid alignments for 100 vertebrate species

were downloaded from the multiz alignment available at the UCSC genome browser (Haeus-
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sler et al., 2019). For mammalian gene trees, we removed species from each alignment that

are not represented in the mammalian species tree topology (Figure 4.2.1), after adding the

Blind Mole-Rat ortholog of the corresponding gene sequence to this alignment as described

in detail in (Partha et al., 2017). For the vertebrate gene trees, we pruned each alignment to

retain only the species represented in the vertebrate species tree topology. In each of these

alignments, we removed low quality orthologs which contained fewer than 50 non-gap amino

acid sites or less than 70% non-gap sites. Finally, we filtered out gene alignments which in-

cluded fewer than 15 species. For each resulting amino acid alignment, we estimated branch

lengths using the aaml program from the phylogenetic analysis using the maximum likelihood

(PAML) package (Yang, 2007). Branch lengths were estimated under an empirical model

of amino acid substitution rates with rate variability between sites modeled as a gamma

distribution approximated with four discrete classes (for computational efficiency) and an

additional class for invariable sites (aaml model Empirical + F) (Whelan and Goldman,

2001; Yang, 1996). Branch lengths were estimated on the mammalian species tree topology

described in detail in Partha et al. (2019) (Meyer et al., 2018; Partha et al., 2019; Meredith

et al., 2011). For vertebrate gene trees, the species topology was inferred from the topology

described in the UCSC genome browser (Haeussler et al., 2019).

4.2.1.2 Flies and Worms The work described in this section was performed by Dr Jae

Young Choi, New York University. For the fly dataset, protein coding sequences for species

in the phylogeny represented in Figure 4.2.2B were downloaded from the Flybase website or

the NCBI genome annotation website. For the worm dataset, protein coding sequences for

species in the phylogeny represented in Figure 4.2.2C were downloaded from the Wormbase

website. Presence of internal stop codons were ascertained and the sequence was removed if

found. Genes represented by multiple transcripts were matched with the longest transcript.

Within each of these two taxonomic groups, orthologous groups of genes were inferred

using the Orthofinder algorithm (Emms and Kelly, 2015). In every orthogroup (sets of genes

that are orthologs and/or recent paralogs), paralogous genes were filtered out. Orthogroups

represented by a minimum of 10 species were analyzed further. The PRANK aligner was

used to align gene members in each orthogroup (Löytynoja and Goldman, 2008).
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Figure 4.2.1: Species phylogeny across 63 mammals.

Branch lengths on a single fixed species topology (represented in Figure 4.2.2B and

C, were estimated through the PAML aaml program (Yang, 2007) using the Whelan and

Goldman (WAG) amino acid replacement matrix (Whelan and Goldman, 2001). The final

species topology was inferred using a supertree approach combining individual orthogroup
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topologies that were estimated using RAxML (Stamatakis, 2014). Trees were combined using

the matrix representation method implemented in phytools (Revell, 2012).

4.2.1.3 Yeasts Proteome-wide orthologous groups were constructed across 18 species of

yeast represented in Figure 4.2.2D. Amino acid sequences across these species were down-

loaded from the Fungal Genome Research database (http://fungalgenomes.org/) and the Na-

tional Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). Orthologous

groups for each protein in S.cerevisiae were inferred for all other 17 species using InParanoid

(Remm et al., 2001). Only orthologous sequences passing a similarity score cut-off of 50

bits calculated by reciprocal best BLAST were retained. In groups of orthologs contain-

ing in-paralogs (orthologs arising due to duplication since speciation), only orthologs with

a 100% confidence were considered. Finally, the program MUSCLE was used to align the

4459 orthologous groups of proteins (Edgar, 2004). Branch lengths on a single fixed species

topology (represented in Figure 4.2.2D, were estimated through the PAML aaml program

(Yang, 2007) using the Whelan and Goldman (WAG) amino acid replacement matrix (Whe-

lan and Goldman, 2001). This species tree topology was inferred using the topology reported

in Fitzpatrick et al. (2006).

4.2.2 Genome-wide ERC calculations

For each pair of gene trees, we calculate the Evolutionary Rate Covariation (ERC) using

correlations of gene-specific relative evolutionary rates (RERs). Gene-specific relative evolu-

tionary rates (RER), reflect sequence divergence on a particular branch after removing effects

of non-specific factors affecting divergence including time since speciation and mutation rate.

Furthermore, we use a combination of statistical approaches including data transformation

and weighted linear regression, to robustly estimate relative evolutionary rates. This proce-

dure, described in detail in Partha et al. (2019) and Kowalczyk et al. (2019), improves RER

robustness to several factors introducing outliers in the dataset, such as the presence of dis-

tantly related species in the phylogeny. Using this updated method to estimate gene-specific

rates, we observed improved handling mean-variance trends in all five tree datasets (Figures
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Figure 4.2.2: Species phylogeny across A. Vertebrates B. Flies C. Worms and D. Yeasts
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C. Vertebrate original relative rates
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Figure 4.2.3: Mean-variance trends in relative evolutionary rates estimated using original 

and updated methods offered by RERconverge across Mammal (A, B) and Vertebrate (C, 

D) trees. Updated method to estimate relative rates shows near constant variance across all 

branch lengths compared to the original method.

.

4.2.3 and 4.2.4). We finally calculate the ERC as the Winsorized Pearson correlation coefficient 

between the rates of two genes, for gene pairs with at least 10 branches in common. The 

winsorization caps the maximum and minimum RER for every gene at their third most 
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Figure 4.2.4: Mean-variance trends in relative evolutionary rates estimated using original

and updated methods offered by RERconverge across Fly (A, B), Worm (C, D), and Yeast

(E, F) trees. Updated method to estimate relative rates shows near constant variance across

all branch lengths compared to the original method.

.
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extreme values. This process precludes spuriously high correlations arising from extreme

RERs in outlier branches. Finally, we apply the Fisher z-transformation to each ERC value

to account for the differences in variance arising from varying number of common branches

used in the ERC calculation (see Results 4.3.1)

4.2.3 Calculating Integrated ERC based on orthology mapping across reference

species in each dataset

We calculated genome-wide integrated ERC values based on the five individual ERC

datasets from mammals, vertebrates, flies, worms and yeasts. For each human ortholog of

the mammalian gene trees, we identified the ortholog corresponding to the reference species

in the other four tree datasets. In the case of vertebrates, this process is trivial due to the

inclusion of the human orthologs in each gene tree. For the fly, worm, and yeast trees, the

reference species were D.melanogaster, C.elegans, and S.cerevisiae respectively. The ortholog

assignments for each human (hg19) gene in the respective reference species were identified

using the InParanoid ortholog database (Sonnhammer and Östlund, 2015). These orthologs

are converted from their UniProt IDs to gene symbols using the appropriate mapping files in

the UniProt database for the four reference species (Bateman, 2019). Across these individual

maps between human and the respective reference species, only 1:1 ortholog maps were

retained. In total, we identified 4764, 1892, and 1878 genes with human orthologs in the

flies, worms, and yeasts, respectively. Using these inferred ortholog assignments to map gene

identifiers across the tree datasets, we subsequently calculate the integrated ERC for every

pair of genes, as the sum of the ERC values across the five datasets.

4.2.4 Filtering protein pairs showing strong sequence similarity and duplicated

genes

Ortholog assignments across species typically involve as a first step, computing pairwise

similarity scores between gene sequences. Approaches including InParanoid, subsequently

identify reciprocal best hits between the genomes of two species to construct the orthologous

groups (Sonnhammer and Östlund, 2015). The presence of duplicated genes showing strong
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sequence similarity in the genome can result in nearly identical sequence alignments, and

consequently highly correlated branch lengths in gene trees. Such instances of gene pairs will

therefore show spuriously high ERC values. We identified and removed such protein pairs

that show strong sequence similarities using gene-by-gene BLAST (Altschul et al., 1990).

Using nucleotide sequences of every pair of genes (x, y), we calculated the BLAST Bit scores

(using local BLAST) reflecting the extent of sequence similarity with a minimum word size

match of 7 and a percent identity of 50%. We then calculated a Relative Blast Bit Score as

follows:

RelativeBlastBitScore(x, y) = max(
BitScore(x, y)

BitScore(x, x)
,
BitScore(x, y)

BitScore(y, y)
) (4.1)

where BitScore(x,x) and BitScore(y,y) reflect the Bit scores from the alignments involving

gene x with itself, and gene y with itself, respectively. We only retained protein pairs showing

a Relative Blast Bit Score lesser than 10%, removing 15,500 gene pairs in total. Our choice

of this threshold was informed by the distribution of the Integrated ERC values with respect

to the Relative Blast Bit Score (shown in Figure 4.2.5). Additionally, we removed any gene

pairs involving genes belonging to two large gene families that have evolved due to repeated

gene duplications followed by divergence, namely the Zinc finger genes (genes associated with

the GO term ”Zinc Finger protein”) and the Olfactory receptor genes (genes associated with

the GO term ”Olfactory receptor”) (Emerson and Thomas, 2009; Nei and Rooney, 2005).

4.2.5 Curation of publicly available pairwise protein associations and multipro-

tein complexes

To investigate coevolutionary signatures across predicted pairwise associations among

proteins in humans, we downloaded PPI predictions from the STRING database (https:

//bit.ly/2JE37L5). Interactions among proteins are characterized using multiple attributes

including mode of interaction, confidence scores etc (Szklarczyk et al., 2017). Ensembl

gene identifiers were mapped to gene symbols using the UCSC genome browser (Haeus-

sler et al., 2019). Interactions in STRING that are directional, for instance activation

and inhibition, were summarized using the maximum score reported across either direc-

tion. CORUM multiprotein complexes investigated in this study were downloaded from
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Figure 4.2.5: Distribution of Integrated ERC values with respect to Relative Blast Bit scores.

Protein pairs showing strong sequence similarity (RelativeBlastBitScore >= 0.1) have an

elevated Integrated ERC distribution compared to 1 million Control pairs. Control pairs

have no significant local BLAST hits at an E-value threshold of 10

http://mips.helmholtz-muenchen.de/corum/#download (Giurgiu et al., 2019). Dupli-

cate complexes (based on the name attribute) were summarized to the complex with higher

numbers of participating genes. Ancient metazoan macromolecular complexes used for the

study were downloaded from Supplementary Table 4 in Wan et al. (2015). In both CORUM

and the Wan et al. (2015) datasets, only complexes with at least 3 subunits mapped to our

list of genes were retained for further analyses. Dataset corresponding to OMIM disease

gene groups were downloaded from Supplementary Table 2 in Priedigkeit et al. (2015).

4.2.6 Simulating control protein pairs and complexes with matched represen-

tation across datasets

For a given list of binary PPIs, we compare the distribution of ERCs (Integrated and/or

mammal) with a null distribution generated using control protein pairs randomly sampled
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under certain constraints. We account for differences in representations of pairs of genes across 

tree datasets, by generating a control pair for each true pair that has an equal num-ber of tree 

datasets consisting both genes belonging to the pair. This accounts for any bias in the 

distribution of ERC values introduced by the differential conservation of genes across the five 

eukaryotic lineages in the study. To sample control complexes, we similarly applied a 

constrained random sampling procedure ensuring that the datasets containing the partici-

pating genes are matched. For instance, controls for complexes containing genes present only 

in mammal and vertebrate trees, will contain complex members randomly sampled from the 

subset of genes present only in mammal and vertebrate trees.

4.3 Results

4.3.1 Fisher z-transformation accounts for differences in ERC distributions aris-

ing due to varying numbers of common branches

The genome-wide ERC values in each of the five tree datasets consistently reflect varia-

tions in the distribution arising from differences in the number of common branches used to

calculate ERC. An example illustration of this problem is shown in the case of ERC values

from the mammal dataset (Figure 4.3.1). We see that the ERC values calculated based

on fewer common branches show higher variance. In order to correct for this variation, we

performed a variance-stabilizing transformation using the Fisher z-transformation. Figure

4.3.1 shows that Fisher z-transformed ERC values have stable variance with respect to the

number of common branches. The application of the Fisher z-transformation to the other

four ERC datasets yield similar results (Figure 4.3.2). Henceforth, every reference to the

term ERC is considered to mean the Fisher z-transformed ERC.
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Figure 4.3.1: Fisher z-transformation of ERC values produces stable variance wih respect

to the number of common branches. Panels A and B correpsond to distribution of mam-

mal ERC values prior to and after Fisher z-transformation respectively. ERC values are

binned according to the number of common branches used to calculate ERC. Bins have

equal numbers of protein pairs.

4.3.2 Integrated ERC offers improved power to predict pairwise associations

among human proteins

We investigated the power of coevolution to predict protein-protein interactions using

our genome-wide Integrated ERCs which combine the signatures of coevolution across the

five phylogenetic tree datasets used in the study. Using the STRING database, we down-

loaded human pairwise protein associations with strong confidence scores computed based

on the extent of evidence supporting the interaction (Methods 4.2.5). STRING PPIs are

predicted based on multiple sources including experimental evidence, pathway knowledge

from manually curated databases, co-expression analysis, text-mining approaches to uncover

semantic links etc (Szklarczyk et al., 2017). We calculated the distribution of Integrated

ERC values the among these STRING PPIs, contrasting the resulting distributions for high

confidence STRING PPIs with randomly sampled representation-matched control pairs. We
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Figure 4.3.2: Fisher z-transformation of ERC values in vertebrate, fly, worm and yeast

datasets. ERC values are binned according to the number of common branches. Bins have

equal numbers of protein pairs.
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observed an elevation of Integrated ERC in STRING protein pairs with the strongest confi-

dence scores (Figure 4.3.3). Additionally, we see that as the confidence score for a given PPI

increases, there is a concordant increase in the Integrated ERCs. We further investigated
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Figure 4.3.3: Integrated ERC values are elevated for STRING binary PPIs with the strongest

confidence scores. PPIs are binned into categories of Top 100,000-50,000, Top 50,000-20,000,

Top 20,000-10,000, and Top 10,000 pairs based on confidence scores. Control interactions

containing 5x pairs of proteins were randomly sampled ensuring matched representation

across ERC datasets (Methods 4.2.6). All classes of STRING PPIs shown here are signifi-

cantly different from Control pairs (Wilcoxon rank sum test, P < 2.2e− 16)

the differential enrichments of the Integrated ERCs depending on the mode of interaction

of the STRING PPIs. The interactions are classified into one or more of the following six

categories activation, binding, expression, inhibition, post-translational modification, and

reaction. Among these seven categories, we see proteins pairs characterized as interacting

through the following modes – activation, binding, and reaction, typically show stronger

elevation in the Integrated ERC values, as reflected by the power to distinguish these PPIs
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from control PPIs using ERC (Figure 4.3.4).

A. Integrated ERC B. Mammal ERC
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Figure 4.3.4: Distribution of Area under ROC curves comparing the performance of Inte-

grated (Panel A) and Mammal ERC (Panel B) at detecting high-confidence (up to Top 10%)

STRING PPIs across seven modes of interaction.

4.3.3 Integrated ERC allows for increased power to detect co-complex interac-

tions

4.3.3.1 CORUM human protein complexes Cellular functions are mediated through

interactions among proteins that are a part of protein complexes. The Comprehensive Re-

source of Mammalian Protein Complexes (CORUM) database provides the largest manually

curated set of experimentally characterized protein complexes in mammals (Giurgiu et al.,

2019). We benchmarked the power of our coevolutionary method to predict co-complex

interactions using the CORUM human protein complexes. We identified a set of 1581

protein complexes with at least 3 genes. For each of these complexes, we calculate the

mean Integrated ERC among all pairs of participating genes. We then simulated 100,000

representation-matched random complexes with matched numbers of genes using which we

82



compute the null distribution for the mean Integrated ERCs (see Methods 4.2.6). We cal-

culated an empirical p-value for each complex, which represents the probability of observing

an equivalent or more extreme mean Integrated ERC in the simulated complexes. We identi-

fied 326 CORUM human complexes that were significant at a FDR of 5%, showing elevated

signatures of Integrated ERC among complex subunits. We compared the predictive power

of Integrated ERC to detect CORUM co-complex interactions with that of the ERC calcu-

lated using just mammalian trees. We observe a larger excess of lower empirical p-values

calculated based on mean Integrated ERCs in comparison to mean Mammal ERCs (Figure

4.3.5), as well as significantly more CORUM complexes identified at a FDR of 5% (Inte-

grated ERC: 326 complexes, Mammal ERC: 172 complexes). Integrated ERC serves as a

more useful predictor for detecting CORUM complexes among simulated random complexes,

offering consistently higher precision over Mammal ERC (see Figure 4.3.5). Table 6 provides

a list of the top 20 CORUM complexes showing the strongest signatures of coevolution.

4.3.3.2 Ancient metazoan macromolecular complexes Expanding from the analy-

sis on human protein complexes, we sought to understand the utility of our coevolutionary

method in predicting co-complex interactions in complexes that show deeper evolutionary

conservation. To this end, we identified a set of 487 ancient metazoan macromolecular com-

plexes curated by Wan et al. (2015). These soluble multiprotein complexes were identified

using a combination of biochemical fractionation and quantitative mass spectrometry among

diverse metazoan model systems. These complexes display a range of evolutionary conser-

vation, ranging from ancient eukaryal modules, to metazoan-specific modules (Wan et al.,

2015). We investigate the extent of coevolution among protein pairs within these ancient

complexes, undertaking an approach similar in principle to the CORUM complexes. We

compared the mean Integrated ERC among complex members for each complex, to its em-

pirical null obtained from 100,000 representation-matched simulated random complexes (see

Methods 4.2.6). Using the empirical p-values which reflect how extreme the mean Integrated

ERCs are (Figure 4.3.6), we identified 110 complexes significant at a FDR of 5%. Repeating

the analysis using Mammal ERCs instead of Integrated ERCs, we discovered 36 complexes

significant at a FDR of 5%. Similar to our analysis using the CORUM complexes, we observe
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ID Name nGenes

Mean

Integrated

ERC

Mean

Mammal

ERC

P value

Integrated

P value

Mammal

Q value

Integrated

Q value

Mammal

23
Nup 107-160

subcomplex
9 5.209 1.829 1e-06 1e-06 1.86e-05 5.74e-05

25
Anaphase-promoting

complex
8 5.099 1.009 1e-06 0.0016 1.86e-05 0.0207

40 CCT complex 8 3.681 1.174 1e-06 0.00051 1.86e-05 0.00922

41
NDC80 kinetochore

complex
4 5.229 4.68 1e-06 1e-06 1.86e-05 5.74e-05

48

Condensin

I-PARP-1-XRCC1

complex

7 3.5 0.982 1e-06 0.00278 1.86e-05 0.0302

49 Condensin II 5 6.421 2.156 1e-06 2e-05 1.86e-05 0.000795

50 COG complex 8 2.999 1.202 1e-06 0.0003 1.86e-05 0.00604

55

Respiratory chain

complex I,

mitochondrial

36 1.857 1.176 1e-06 1e-06 1.86e-05 5.74e-05

61 PA28-20S proteasome 16 1.662 0.387 1e-06 0.0271 1.86e-05 0.132

81 Mediator complex 32 1.055 0.429 1e-06 0.00034 1.86e-05 0.00676

115

28S ribosomal

subunit,

mitochondrial

30 1.31 0.762 1e-06 1e-06 1.86e-05 5.74e-05

116
55S ribosome,

mitochondrial
77 1.225 0.59 1e-06 1e-06 1.86e-05 5.74e-05

117 DNA-PK-Ku complex 3 9.558 3.96 1e-06 6.01e-05 1.86e-05 0.00183

118

39S ribosomal

subunit,

mitochondrial

47 1.195 0.56 1e-06 1e-06 1.86e-05 5.74e-05

123 Spliceosome 136 1.276 0.556 1e-06 1e-06 1.86e-05 5.74e-05

132
ORC complex (origin

recognition complex)
6 3.502 1.71 1e-06 0.00013 1.86e-05 0.00331

140 BASC complex 12 2.303 0.687 1e-06 0.00128 1.86e-05 0.0174

154 TFIID complex 10 2.277 1.259 1e-06 3e-05 1.86e-05 0.00108

155
TFIID complex,

B-cell specific
11 2.18 1.144 1e-06 2e-05 1.86e-05 0.000795

Table 6: Top 20 CORUM complexes showing elevated Integrated ERC
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Figure 4.3.5: Strength of coevolution across CORUM human complex subunits. A. Dis-

tribution of empirical p-values for CORUM complexes reflecting probability of observing

equivalent or higher mean ERC values in 100,000 simulated complexes. There is a larger

excess of lower empirical p-values observed using mean Integrated ERCs. B. Fold change

in Precision vs Recall curves describing power of Integrated and Mammal ERC values to

predict CORUM complexes. Fold change in Precision is calculated as the Precision relative

to Precision at 100% Recall. Integrated ERC offers higher power to distinguish CORUM

complexes from simulated complexes.

that Integrated ERC is more precise at detecting co-complex interactions in these ancient

metazoan complexes (see Figure 4.3.6).

4.3.4 Integrated ERC reflects strong associations among genes in disease gene

groups

One previous exploration by Priedigkeit et al. (2015) highlighted the presence of elevated

signatures of coevolution between genes associated with the same disease. Among genes
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Figure 4.3.6: Strength of coevolution across ancient-metazoan-macromolecular complex sub-

units. A. Distribution of empirical p-values for these complexes reflecting probability of

observing equivalent or higher mean ERC values in 100,000 simulated complexes. There is

a larger excess of lower empirical p-values observed using mean Integrated ERCs. B. Fold

change in Precision vs Recall curves describing power of Integrated and Mammal ERC values

to predict ancient-metazoan-macromolecular complexes. Fold change in Precision is calcu-

lated as the Precision relative to Precision at 100% Recall. Integrated ERC offers higher

power to distinguish ancient-metazoan-macromolecular complexes from simulated complexes.

involved in 310 distinct diseases curated by OMIM (Hamosh et al., 2000), the study reported

40 disease gene groups (significant at a FDR of 5%) showing elevated ERC signatures between

their participating genes. The dataset utilized in this study involved ERC calculations

among 17487 genes across 33 mammals (Wolfe and Clark, 2015). Using our newer method

to calculate ERCs and larger gene tree datasets, we directly benchmark the improvements

in predictive power to detect coevolutionary signatures in OMIM disease gene groups. Using

our larger set of gene trees, we identified a list of 320 disease gene groups with at least
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ID Disease group nGenes

Mean

Integrated

ERC

Mean

Mammal

ERC

P value

Integrated

P value

Mammal

Q value

Integrated

Q value

Mammal

19
Asphyxiating thoracic

dystrophy
4 6.118 2.387 1e-06 0.00032 1.77e-05 0.00328

28
Bardet-Biedl

syndrome
14 2.409 0.804 1e-06 0.00015 1.77e-05 0.00217

46 Cataract 26 1.554 1.343 1e-06 1e-06 1.77e-05 2.65e-05

62

Combined oxidative

phosphorylation

deficiency

13 2.229 0.784 1e-06 0.00029 1.77e-05 0.00318

63
Complement

deficiency
17 2.82 2.405 1e-06 1e-06 1.77e-05 2.65e-05

65
Congenital disorder

of glycosylation
30 1.152 0.189 1e-06 0.189 1.77e-05 0.354

72
Cranioectodermal

dysplasia
4 10.619 5.255 1e-06 1e-06 1.77e-05 2.65e-05

102 Fanconi anemia 16 1.427 1.138 1e-06 1e-06 1.77e-05 2.65e-05

150 Ichthyosis 16 1.489 1.373 1e-06 1e-06 1.77e-05 2.65e-05

164 Leigh syndrome 16 1.505 0.721 1e-06 0.0001 1.77e-05 0.00167

186 Meckel syndrome 10 1.747 0.661 1e-06 0.00693 1.77e-05 0.0501

192 Mental retardation 66 0.645 0.612 1e-06 1e-06 1.77e-05 2.65e-05

202
Mitochondrial

complex deficiency
26 1.188 0.531 1e-06 4e-05 1.77e-05 0.000707

226 Night blindness 12 1.881 1.714 1e-06 1e-06 1.77e-05 2.65e-05

244
Peroxisome biogenesis

disorder
13 2.116 0.132 1e-06 0.485 1.77e-05 0.614

284 Spherocytosis 5 7.612 7.064 1e-06 1e-06 1.77e-05 2.65e-05

303 Thrombophilia 14 1.966 1.073 1e-06 1e-05 1.77e-05 0.000212

314 Usher syndrome 10 2.343 1.72 1e-06 1e-06 1.77e-05 2.65e-05

56 Ciliary dyskinesia 12 1.257 0.848 1e-05 0.00014 0.000145 0.00212

84 Dysfibrinogenemia 3 6.531 5.494 1e-05 1e-06 0.000145 2.65e-05

Table 7: Top 20 OMIM Disease Gene Groups showing elevated Integrated ERC

3 genes. Following an approach similar to the analyses involving CORUM complexes and

the ancient metazoan macromolecular complexes, we calculate empirical p-values for elevated

mean Integrated ERCs based on 100,000 representation-matched random disease gene groups

(see Methods 4.2.6, Figure 4.3.7 for distribution of empirical p-values). We observed 65

diseases showing elevated mean Integrated ERCs at a FDR of 5%. Performing the analysis

using Mammal ERCs between gene pairs instead of Integrated ERCs yielded 43 diseases

significant at a FDR of 5%. Comparing the predictive power of Mammal and Integrated

ERCs, we observed a slightly higher precision upto 50% recall offered by the integrated

coevolutionary approach (Figure 4.3.7). Table 7 provides a list of the top 20 OMIM disease

gene groups showing the strongest signatures of coevolution.
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Figure 4.3.7: Strength of coevolution across contributing genes in OMIM disease gene groups

(DGGs). A. Distribution of empirical p-values for these DGGs reflecting probability of

observing equivalent or higher mean ERC values in 100,000 simulated gene groups. There

is a larger excess of lower empirical p-values observed using mean Integrated ERCs. B.

Fold change in Precision vs Recall curves describing power of Integrated and Mammal ERC

values to predict OMIM disease gene groups (DGGs). Fold change in Precision is calculated

as the Precision relative to Precision at 100% Recall. Integrated ERC offers higher power to

distinguish OMIM DGGs from simulated complexes

4.3.5 Coevolving protein pairs show strong similarity in their Gene Ontology

term associations

Pairs of proteins that are functionally related are likely to show strong similarity in their

related functional annotations such as Gene Ontology (GO) term associations (Ashburner

et al., 2000; Carbon et al., 2019). We compared the similarity in GO term associations for

gene pairs having elevated Integrated ERC values with that of control pairs using the R

package GOSemSim (Yu et al., 2010). For each category of GO term annotations, namely,
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biological pathway, cellular component, and molecular function, GOSemSim quantifies the

relatedness of GO terms accounting for their hierarchical structure. We removed any GO

term annotation predicted using phylogenetic or computational methods to reduce any inher-

ent bias across our methods and others. Across all three functional categories, we observed

significantly higher values of semantic similarity for GO terms associated with protein pairs

having higher values of Integrated ERCs (see Figure 4.3.8). Table 8 reports the Wilcoxon-

rank sum p-values of the hypothesis test contrasting distributions of semantic similarities for

top scoring versus control protein pairs.

Category Top 1000 Top 10,000 Top 100,000

Biological Pathway 5e-24 3e-69 7e-171

Cellular Component 1e-58 9e-119 4e-140

Molecular Function 6e-12 8e-16 2e-07

Table 8: Wilcoxon-rank-sum p-values contrasting distributions of semantic similarities for

top vs control pairs

4.4 Discussion

Methods to infer pairs of coevolving genes have proven valuable in revealing functional

relationships among proteins (De Juan et al., 2013). Evolutionary rate covariation which

computes the correlation of gene-specific rates of sequence evolution across branches of phylo-

genetic trees is elevated for gene pairs involved in a variety of biological processes, and across

taxonomic groups ranging from prokaryotes to mammals (Clark et al., 2012b, 2013). In this

study, we report an integrated map of protein coevolution across five taxonomic groups -

mammals, vertebrates, flies, worms, and yeasts. Genome-wide coevolutionary datasets in

each of these groups were created using a new and improved method to robustly estimate

gene-specific rates of evolution (RERconverge), allowing for a more comprehensive sampling
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Figure 4.3.8: Protein pairs showing strong signatures of coevolution show significant seman-

tic similarity in their Gene Ontology terms associations. Semantic similarity of GO terms

associated with each pair of proteins is compared for pairs with the strongest Integrated

ERC values genome-wide, and 500,000 randomly sampled representation-matched control

pairs. Panels A, B, and C correspond to Q-Q plots comparing the quantiles of Semantic

similarities between top pairs and control pairs, computed using GO categories Biological

Pathway, Cellular Component, and Molecular Function respectively. We observed stronger

enrichments for higher semantic similarities across all three categories for pairs with higher

Integrated ERCs (or fewer top pairs).

of evolutionarily distant species. The mammalian trees were constructed across a sample of

63 species including four distantly related non-placental mammals in addition to the placen-

tals. The evolutionary distance across species in vertebrate, worms, and yeast taxonomic

groups are orders of magnitude larger in comparison to the mammal trees. This broad sam-

pling of species within each lineage necessitates estimating evolutionary rates that are robust

to statistical properties such as heteroscedasticity, allowed by methodological updates dis-

cussed in RERconverge (Kowalczyk et al., 2019; Partha et al., 2019). Using publicly available
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predictions of orthologs between reference species, we created a genome-wide map of protein

coevolution combining the coevolutionary signatures across these five taxonomic groups.

Our integrated method to calculate ERC provides a significant improvement over the

mammal-specific method to predict functional links between proteins at various scales. Us-

ing pairwise associations among proteins in humans reported in the STRING database, we

observed elevated signatures of integrated ERCs specifically for high confidence predictions

(Szklarczyk et al., 2017). Further refining interactions based on the mode of action, we

observed a preferential enrichment of Integrated ERC for the following interaction modes

- activation in signaling pathways, physical binding, catalysis of subsequent reactions in

metabolic pathways.

Expanding from pairwise associations among proteins, we tested the power of Integrated

ERC to detect co-complex interactions relevant to human, as well as pan-metazoan multi-

protein complexes. Using gold-standard complexes curated by the CORUM consortium and

independent efforts to characterize evolutionarily conserved metazoan complexes, we demon-

strated that an integrated coevolutionary approach is consistently superior at distinguishing

multiprotein complexes (Giurgiu et al., 2019; Wan et al., 2015). These complexes have broad

functional roles in the cell, such as the conserved Nuclear Pore Complexes (Nup107-160) that

regulates cellular traffic between the cytoplasm and the nucleus (Walther et al., 2003), and

the BASC complex involved in the repair of aberrant DNA structures (Wang et al., 2000).

Genes contributing to genetic diseases in humans show strong signatures of Integrated ERC,

reflecting functional links between the genes part of aberrant disease pathways (Priedigkeit

et al., 2015; Hamosh et al., 2000). Using Integrated ERC, we observed a modest yet signif-

icant improvement in power to detect gene groups involved in diseases with strong genetic

basis such as thalassemia as well as in complex diseases such as Coronary artery disease and

Hepatitis. Predictions of the Integrated ERC approach can therefore further improve the

value demonstrated by earlier applications of ERC at prioritizing candidate disease genes.

These preliminary findings pave the way for further analyses probing the nature of in-

teractions uncovered by coevolutionary methods. One limitation of coevolutionary methods

is that some functionally related proteins show well-correlated rates of evolution whereas

others do not. To be able to calculate ERC between a pair of proteins, there needs to be
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sufficient changes at the sequence level such that there is quantifiable variation in their evo-

lutionary rates. Consequently interactions involving proteins whose sequences evolve under

strong purifying selection in the sampled species will not show elevated ERCs. In order to

fully characterize which groups of functionally related proteins show ERC, characterizing

coevolutionary signatures in the context of coexpression, co-localization, stable vs transient

physical association, tissue-specific vs ubiquitous interactions etc. is necessary. Such inves-

tigations can better inform factors controlling rate variation and covariation, and enrich our

current understanding of the model of cellular function from an evolutionary perspective

(Lovell and Robertson, 2010; Clark et al., 2012b).

Perhaps the most useful application of our integrated co-evolutionary framework is in

the prediction of phenotypic associations for novel or uncharacterized genes. Particularly,

conserved signatures of coevolution across evolutionary lineages provides a clear hypothesis

for functional roles in lineages lacking phenotypic annotations, based on the annotation

in well-characterized species. The predictive capacity of such guilt-by-association analyses

can additionally be validated against annotated interactions across lineages. The genome-

wide ERC datasets constructed in this study are available for the research community to

investigate coevolutionary signatures of candidate groups of genes. These tools will be useful

in generating functional hypotheses for the mechanism of action for genes that lack detailed

functional annotation.
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5.0 Conclusions

Evolutionary-based methods to predict phenotypic associations for genetic elements of-

fer a complementary strategy to characterize components of cellular systems. Advances in

sequencing technologies and comparative genomics methods have created an opportunity to

infer associations between patterns of sequence evolution of genetic elements and phenotypic

evolution. In chapter 1, we illustrate the power of using convergent changes in evolutionary

rates to predict vision-related genetic elements. In addition to predicting protein-coding

genes involved in visual pathways, we demonstrate the utility of our evolutionary-rates

method to predict candidate non-coding elements regulating the expression of genes in a

eye-specific manner. Our genome-wide predictions will be highly useful to the biomedical

research community investigating genetics of eye disease and development. The results of

this project have opened up multiple opportunities for collaborative research including -

creating diagnostic panels for genotyping patients suffering from congenital eye disorders,

developing effective vectors for precise targeting of gene therapies in the retina and other

tissues of the eye. One limitation of our evolutionary-rates approach is that it does not

detect sequences that are responsible for lineage-specific adaptations, as well as sequences

that have lost or gained function due to evolutionary turnover. However, the utility of our

approach in discovering eye-specific genetic elements showing changes preferentially in blind

mammals stems from the observation that visual pathways show deep conservation with far

more evolutionary distant species such as the zebrafish.

In chapter 2, we present an improved method to estimate gene-specific rates of evolu-

tion. We discuss a key statistical issue in our current approach, namely heteroscedasticity

and how it affects inferences of shifts in evolutionary rates in phylogenetic datasets. Us-

ing a combination of data transformation and weighted regression, we present an improved

method that better handles these statistical issues and enables robust inclusion of distantly

related species. These advances are important in the context of broadening the applicability

of the method to a wide range of evolutionary scenarios. However, there are additional chal-

lenges that present opportunities to further refine and improve the method. Some of these
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include, understanding the power of the method to detect shifts in evolutionary rates in phy-

logenetically related branches (sister species), expanding the method to include additional

covariates related to sequence properties such as GC content or species characteristics such

as body mass. With continual efforts to sequence genomes of more species, the power of

our evolutionary-based methods can only grow, therefore necessitating method refinements

enabling precise identification of convergently evolving genetic elements. Additionally, in

the context of subterranean convergence, the method has been powerful at protein-coding

gene sequences that predominantly show changes in rate due to relaxed constraint on their

sequence evolution rather than positive selection. Improving the power to detect genes un-

dergoing positive selection in species showing phenotypic convergence can therefore uncover

novel geneotype-phenotype associations.

In the final chapter of this thesis, we shift gears from binary analyses of gene-trait associ-

ations to gene-gene associations. We present an integrated map of protein coevolution across

five eukaryotic lineages - mammals, vertebrates, flies, worms, and yeasts. We demonstrate

the power of this integrated framework at detecting functional associations between proteins

in humans in the context of pairwise associations or PPIs, proteins interacting directly and

indirectly in multiprotein complexes, and among genes contributing to genetic diseases. We

plan to make this integrated map of protein coevolution publicly available for the research

community to investigate functional associations between groups of genes of interest. Such a

resource will be useful in generating hypotheses for mechanism of action for uncharacterized

genes. This integrated map can also serve as a starting point for systematic investigation

of factors controlling evolutionary rate variation and covariation. A better understanding

of why certain groups of functionally related genes coevolve while others do not can better

inform approaches seeking to utilize the coevolutionary framework for protein interaction

prediction.
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Carmona, F.D., Jiménez, R. and Martin, J.M. (2008). The molecular basis of defective lens
development in the Iberian mole. BMC Biology , 6, 44.
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