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Abstract 
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University of Pittsburgh, 2019 

 
 
 
 

ABSTRACT 

Acinetobacter baumannii is a menacing nosocomial pathogen that readily develops resistance to 

antibiotics. Colistin, a polymyxin, is currently the last-line choice for treating infections caused by 

multidrug-resistant A. baumannii. This cationic peptide is attracted to the negatively charged 

lipopolysaccharide (LPS) on Gram-negative bacterial membranes and acts by destabilizing and 

permeabilizing it. Unfortunately, there is a disturbing trend of strains developing resistance to 

colistin in recent years. A. baumannii is known to modify its LPS in order to interrupt the initial 

charge interaction with colistin. The most common mechanism implicated in this resistance 

strategy is the upregulation of the pmrAB genes encoding a two-component regulatory system, 

which in turn upregulates pmrC that encodes phosphoethanolamine transferase. PmrAB have also 

been shown to be global regulators of cellular growth processes and virulence. Gain-of-function 

mutations in pmrAB are the most commonly reported colistin resistance mechanism. However, it 

is not known if and how A. baumannii strains deficient in any of the pmrCAB genes develop 

colistin resistance. We therefore aim to determine secondary mechanisms of colistin resistance in 

pmrCAB-deficient strains. 



 v 

Using A. baumannii strain AB5075 and inactivation mutants of pmrC, -A, and -B, we 

generated genetically stable colistin-resistant mutants on agar containing increasing colistin 

concentrations. We conducted whole genome sequencing to identify genetic changes responsible 

for colistin resistance. We also characterized their phenotypes, including resistance profiles to 

Gram-positive antimicrobials, LPS structure, in vitro growth fitness, and in vivo virulence using a 

Galleria mellonella model.  

Colistin-resistant mutants possessed mutations in lpx and mla genes, which are involved in 

lipid biosynthesis and membrane composition, respectively. Most mutants were susceptible to 

Gram-positive antimicrobial agents, likely resulting from severely compromised outer 

membranes. Furthermore, colistin-resistant mutants displayed reduced fitness in vitro and 

decreased virulence in vivo. 

A. baumannii is adept at evading colistin by modifying its membrane structure, even 

outside of the control of pmrCAB. However, mutations that disrupt membrane integrity are costly 

and unlikely to persist in clinical settings. Therefore, colistin-resistant mutants with such mutations 

seemingly carry low public health significance. Even if these mutants do emerge in the clinic, 

various Gram-positive agents can be included as treatment options. 
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1.0 INTRODUCTION 

1.1 THE RISE AND FALL OF ANTIBIOTICS 

1.1.1  Discovery of Antibiotics 

The discovery of penicillin by Alexander Fleming, F.R.C.S, in the early 20th century was 

a happy accident that would forever alter the way physicians treated infectious diseases. He made 

this discovery by observing mold that grew on plates left on the bench for too long and produced 

a compound that inhibited growth of Staphylococcus aureus, and it was later given the name 

penicillin [1]. The next few decades saw the heyday of antibiotics; during these years, scientists 

isolated dozens of compounds produced naturally by environmental bacteria, especially those 

found in soil [2]. After this key discovery, antibiotics were heralded as a panacea for treating 

bacterial infections. While these drugs initially saved countless lives, their long-term success was 

limited. Unfortunately, with the debut of each successive class of antibiotics, resistant bacteria 

emerged within a few years of first clinical use, rendering the drugs useless [3]. 

1.1.2   Antibiotic resistance 

Evolution and natural selection are the driving forces behind antibiotic resistance. Random 

genetic mutations naturally occur as bacteria replicate, and natural selective pressure from 

antibiotics favors mutations that confer resistance. Moreover, horizontal transfer of mobile 

elements that carry resistance genes also permit the spread of antibiotic resistance among bacteria. 
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As a result, resistant bacteria that survive in the presence of antibiotics grow into the dominant 

population [4]. As resistance becomes more common, infections that were once easily treated are 

reemerging, causing a significant public health crisis. In the United States alone, it is estimated 

that over 2 million people developed antibiotic-resistant bacterial infections in 2013, as 

documented in the CDC’s most recent Antibiotic Resistance Threats in the United States. Overuse 

in clinical and agricultural settings are contributing to this alarming trend [4]. Moreover, 

multidrug-resistant (MDR) strains, defined as those resistant to at least three antibiotic classes, are 

responsible for a significant spike in the number of healthcare-associated infections.  

These staggering statistics place a tremendous burden on the health care system and 

endanger patients’ lives [5]. As antibiotic resistance spreads, critically ill patients with severe 

bacterial infections have few or no treatment options. There has not been a new class of antibiotics 

discovered in nearly 20 years [6]. Lawmakers are only now beginning to write legislation limiting 

their agricultural use, and hospitals are developing stewardship protocols that aim to mitigate 

careless overprescribing by healthcare providers. Nevertheless, experts warn that we may be 

headed toward a post-antibiotic era in which MDR “superbugs” cause infections that are not easily 

controlled [7]. Therefore, there is an urgent need to understand the mechanisms responsible for 

resistance in order to devise new treatment methods. 

1.2 ACINETOBACTER BAUMANNII 

One of the most threatening bacteria causing these MDR infections is Acinetobacter baumannii. 

This Gram-negative, non-motile, aerobic, coccobacillus is responsible primarily for opportunistic 

respiratory tract infections but has also been isolated from blood cultures, central lines, wounds, 
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and other sites [8-10]. A. baumannii is a naturally tenacious bacterium; it possesses many intrinsic 

resistance genes, including ones against penicillins, cephalosporins, and other β-lactams [11].  

Furthermore, the cell membrane of A. baumannii is a crucial defense against 

antimicrobials. Normally, the lipid A moiety in the outer membrane is hexa-acylated. However, 

several varieties of this structure also exist. In particular, the hepta-acylated form of lipid A has 

been shown to provide extra protection against certain antibiotics, including colistin [12]. In 

hospital settings, A. baumannii is extremely difficult to eradicate from the environment. Thanks to 

its membrane, it can survive for extended periods of time on dry surfaces and is not susceptible to 

hospital disinfectants, facilitating nosocomial transmission [13]. Additionally, it has a propensity 

for acquiring resistance mechanisms through horizontal gene transfer and for evolving resistance 

through nonsynonymous mutations. Altogether, these factors make it a problematic organism in 

hospital and healthcare settings [9, 10].  

 

 

 

 

 

 

 

Figure 1. Hexa-acylated lipid A (left) and hepta-acylated lipid A (right) 
 

The extra acyl group on the hepta-acylated lipid A is circled in red. 



 4 

1.2.1  Colistin therapy 

Nowadays, clinicians have fewer and fewer options for treating infections from MDR pathogens 

such as A. baumannii due to the emergence and spread of antibiotic resistance genes. For some 

time, physicians employed a highly potent β-lactam class called carbapenems against A. 

baumannii infections. While carbapenems initially seemed to be unaffected by resistance 

mechanisms that targeted other β-lactams, several globally distributed clones of A. baumannii 

developed carbapenem resistance in short order [14].  

As a result, physicians have resorted to employing antibiotics that had been shelved 

decades ago, including colistin. Colistin, also known as polymyxin E, is a large, cationic 

polypeptide produced by the soil bacterium Bacillus polymyxa. The polymyxins were discovered 

in the 1940s. These large, amphipathic molecules interact with the negatively-charged 

lipopolysaccharide (LPS) on the outer membrane of Gram-negative bacteria [15]. Colistin is a 

bactericidal agent that acts as a detergent, destabilizing the membrane and leading to catastrophic 

leakage and eventually death of the target cell [16]. It is administered to patients intravenously or 

by inhalation as a prodrug called colistimethate sodium. This prodrug in itself is inactive but is 

then hydrolyzed after administration to form the active colistin [17]. For nearly two decades, 

colistin was sidelined in clinical use due to high rates of nephrotoxicity and neurotoxicity [18]. In 

spite of these undesirable side effects, the use of colistin has increased in recent years for the 

treatment of severe MDR infections. Thus, it has become a drug of last resort when infections 

caused by highly resistant nosocomial pathogens, such as A. baumannii and Pseudomonas 

aeruginosa, do not respond to other therapies [18].  
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1.3 EMERGING COLISTIN RESISTANCE MECHANISMS IN A. BAUMANNII 

Unfortunately, even the effectiveness of colistin is in peril. In fact, in the 2006-2009 SENTRY 

report from the Antimicrobial Surveillance Program, fewer than 2% of A. baumannii isolates tested 

were colistin-resistant [19]. Within a few years, the percentage of resistant strains rose to over 5% 

and continues to climb [20]. With A. baumannii infections that are already resistant to other 

antibiotics, emerging colistin resistance leads to treatment failure [21]. The demise of treatment 

options for MDR A. baumannii has earned this pathogen a spot on the World Health Organization’s 

list of Priority Pathogens, those for which there is an urgent need to research and develop new 

treatments [22]. 

Several of the molecular bases of colistin resistance have been identified and studied in 

recent years. In addition to acquiring plasmid-mediated resistance genes, A. baumannii also readily 

develops colistin resistance via genetic mutations from selective pressure from in vitro and in vivo 

drug exposure [23, 24]. The genomes of certain A. baumannii strains are riddled with mobile 

genetic elements. Elements that contain genes in them other than transposase genes in them are 

called transposons, and ones that do not are called insertion sequences. The DNA sequences of 

insertion sequences can be spliced into existing genes in the bacterial chromosome to disrupt the 

functions of the genes which they interrupt [25]. Insertion sequences are often flanked by inverted 

repeats of DNA bases that facilitate random splicing into other genes. Oftentimes, A. baumannii 

insertion sequences, such as ISAba1 and ISAba11 interrupt genes that play crucial structural roles, 

and mutated forms of these genes result in structural variations [26]. On the other hand, non-

synonymous single nucleotide polymorphisms (SNPs) in these key genes can also alter their 

functions. 
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1.3.1  Colistin-resistance mediated by the pmrCAB gene cluster 

 The most prominent, well-defined mechanism of colistin resistance in A. baumannii involves 

modification of colistin’s target, the outer membrane [27]. The PmrAB two-component regulatory 

system, encoded by the pmrCAB gene cluster, is responsible for these changes; mutations in pmrA 

or more commonly pmrB have been implicated in colistin resistance in A. baumannii [28].  PmrB 

is a sensor histidine kinase that senses environmental conditions including pH, Fe3+ and Mg2+ 

concentrations, and the presence of certain antibiotics. Then, PmrB phosphorylates PmrA, a 

response regulator that controls transcription of pmrC [29]. Other literature indicates that PmrB is 

also suspected to be a global regulator of other cellular growth processes [30]. Certain gain-of-

function mutations in pmrA and pmrB have been shown to increase expression levels of pmrC, 

which encodes a phosphoethanolamine transferase, PmrC, that adds phosphoethanolamine to the 

lipid A component of LPS [28, 31]. This lipid A modification disrupts the charge interaction 

between the negatively charged bacterial outer membrane and positively charged colistin and 

allows A. baumannii to survive despite the presence of high concentrations of colistin.  

1.3.2  Colistin resistance mediated by lpx genes 

Another strategy that A. baumannii uses to curtail the destructive effects of colistin is halting LPS 

production completely. Nine enzymes are involved in the biosynthesis of lipid A, the lipid 

component of LPS also known as endotoxin [32]. Deleterious mutations in any of the first three 

(LpxA, LpxC, or LpxD) have been associated with colistin resistance [27]. The enzyme UDP-N-

acetylglucosamine acyltransferase is encoded by LpxA and catalyzes the first step in lipid A 

biosynthesis. If it is defective, the resulting mutant A. baumannii produces no lipid A and thus no 
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LPS in contrast to wild-type lpxA strains. As in the case of lipid A modification from elevated 

PmrC levels, the absence of LPS prohibits the charge interaction between colistin and the bacterial 

membrane, leading to colistin resistance [27]. 

1.3.3  Role of mla genes in Gram-negative membrane structure 

In addition to mutating the outer membrane, A. baumannii has also been known to alter its inner 

membrane when challenged with colistin. Typically, LPS makes up the outer membrane while 

phospholipids exist only within the inner membrane. This balance is essential for proper barrier 

function in Gram-negative bacteria. Recently, a few groups have examined phospholipid synthesis 

pathways that may play a role in colistin resistance [33-35].  

The Mla pathway prevents phospholipids from accumulating in the outer membrane. MlaA 

is an outer-membrane associated protein, and MlaC has been identified as the protein that shuttles 

stray phospholipids across the periplasmic space back to the inner membrane [33]. The functions 

of MlaB, -D, and -F are less clear, but mutated versions of these proteins have been linked to 

colistin resistance. Furthermore, when colistin-resistant strains emerge that lack LPS, the entire 

Mla system is upregulated to compensate for the faulty outer membrane [34]. This system may 

work independent of or in conjunction with the Lpx pathway to affect colistin resistance. 

1.3.4  Fitness trade-offs associated with colistin resistance 

Although A. baumannii possesses a wide variety of mechanisms that contribute to colistin 

resistance, deleterious mutations in membrane components often are accompanied by fitness-

tradeoffs. Mutations in the PmrAB system confer a lower affinity for colistin, but these mutations 
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ultimately prove to be maladaptive. In in vitro growth experiments, the growth rates between wild-

type A. baumannii and derivative pmrB-deficient strains do not differ substantially until around 72 

hours. On the other hand, bacterial loads in mice show logarithmic differences within the first 24 

hours with the wild-type strain displaying the higher tissue burden [36]. In other words, the 

deleterious effects on fitness of colistin resistance mutations in the PmrAB system are magnified 

in vivo. Furthermore, the virulence is greatly diminished in strains with pmrB mutations compared 

to wild-type strains. While the resulting mutant strains may be quickly eliminated by the host 

immune response at first, subsequent adaptive mutations may accumulate that compensate for the 

reduced fitness, allowing the infection to come to clinical fruition [36]. 

In contrast to clinical isolates recovered that possess mutations in the PmrAB system, 

mutations that directly compromise membrane integrity are related to lower fitness. Lpx mutants 

exhibit significantly lower growth rates when compared with wild-type strains within the first 24 

hours of growth assays, unlike PmrAB mutants. Notably, however, both groups of mutants are 

outcompeted when grown in the same culture as their respective wild-type strains. Additionally, 

Lpx mutants are appreciably less virulent in in vivo experiments; infections with these strains 

rarely result in death in infected mice in comparison with wild-type infections [37]. There appears 

to be a much larger biological cost to mutations that affect the Lpx system than those that affect 

the PmrAB system. A. baumannii strains that have mutations in the Mla pathway also experience 

hindered growth and are less virulent than wild-type strains [38].  

1.3.5  Colistin resistance in pmrCAB-deficient A. baumannii 

Notwithstanding the large body of research that has been conducted on colistin resistance in A. 

baumannii, there is a dearth of information regarding the way that PmrCAB-deficient strains 
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respond when challenged with colistin. We report the results of generating colistin-resistant strains 

derived from A. baumannii strain AB5075 and three transposon-inactivated mutants with defective 

pmrC, -A, or -B. We used comparative genomic analyses to identify mutations in the lpx and mla 

genes that arose after exposure to colistin in vitro. We then characterized these strains 

phenotypically with growth curves, testing with antimicrobial agents other than colistin to 

elucidate the global impact of outer membrane perturbation on antimicrobial susceptibility, and 

analyzing the lipid structure of their membranes by MALDI-TOF mass spectrometry. Finally, 

consistent with the existing literature, these colistin-resistant mutants appeared to experience 

significant fitness costs due to their colistin resistance; they were less virulent than their colistin-

susceptible parent strains. This study corroborates reports that colistin-resistant strains that have 

severe defects in their membrane components do not persist in vivo and are thus unlikely to present 

a clinical challenge. However, and importantly, we also demonstrate that the presence of the 

PmrCAB system is not a prerequisite for A. baumannii to develop colistin resistance. While 

PmrCAB may affect and regulate many cellular growth processes, colistin resistance may develop 

independently outside of its control. 
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2.0 STATEMENT OF THE PROJECT 

Colistin-resistant A. baumannii strains have achieved global notoriety for the deadly, difficult-to-

treat infections that they cause. The resistance mechanisms that confer colistin resistance are 

mechanistically complex. Resistance mediated by pmrCAB is the best-characterized mechanism 

among clinical strains in the literature, but it is known that mutations in lpx or mla genes may also 

play a role. Nevertheless, the associations between these three gene clusters has never been 

characterized. For this project, we obtained a wild-type A. baumannii strain and derivative 

transposon-inactivated mutants of pmrC, pmrA, or pmrB and evolved colistin-resistant mutant 

strains. In doing so, we determined that strains deficient in pmrCAB are able to develop colistin 

resistance. We identified the secondary genetic mechanisms responsible for resistance in those 

strains. We characterized the strains phenotypically, examining their fitness and virulence, in order 

to observe the other cellular processes that are affected by genotypic changes that confer colistin 

resistance. 

2.1 AIM 1: GENERATE COLISTIN-RESISTANT MUTANTS FROM A. BAUMANNII 

5075 AND THE DERIVATIVE PMRC, -A, AND -B-INACTIVATED STRAINS 

This aim serves as the basis for the project and provided the bacterial strains used to carry out the 

study. Previous literature indicates that exposure to colistin drives evolution of resistant strains via 

genetic mutations, and thus we aimed to replicate this in the laboratory [24]. We generated resistant 

mutants both from the wild-type parent strain 5075 as well as from the mutants, 2238, 2241, and 
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2245, that have one of the three genes of pmrCAB disrupted. We demonstrated that having a 

functional pmrCAB is not necessary for developing colistin resistance in A. baumannii. We were 

able to compare genetic changes between the parent strain and the mutants to determine whether 

having pmrCAB intact has an effect on which mechanism allows the strains to prevail. Colistin-

susceptible A. baumannii strains have minimum inhibitory concentrations (MICs) in the range of 

0.25–2 µg/mL; therefore, we isolated resistant mutants with colistin MIC of ≥ 4 µg/mL [39].  

2.2 AIM 2: CHARACTERIZE GENOTYPES AND PHENOTYPES OF RESULTING 

RESISTANT MUTANT STRAINS 

Here we investigated the underlying genetic mechanisms responsible for colistin resistance in the 

mutant strains and also linked the genotypes with resulting phenotypic changes. The genotypic 

characterizations were addressed as follows in the sub-aims: 

1. First, we conducted comparative genomic analyses on whole genomes to identify 

differences in the genomes of the paired susceptible and resistant strains. We compared 

non-synonymous SNPs and looked for insertions, deletions, and insertion sequences 

that may disrupt genes. 

2.  We looked for common loci where mutations occurred and investigated the cellular 

processes in which these genes are involved.  

Once the sequences of these mutations were confirmed, we performed a thorough 

phenotypic characterization of the mutant strains and compared them with the strains from which 

they were derived. The below sub-aims describe the phenotypic characterization experiments: 
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1. Cell morphology was assessed by Gram stain. This indicates whether the 

structure of the cell is compromised as a result of mutations. 

2. The strains’ antibiogram, or their susceptibility profile to a panel of antibiotics, 

was tested. This demonstrated whether the mutations have effects on antibiotics 

other than colistin. 

3. The strains were also subjected to MALDI-TOF mass spectrometry in order to 

define the composition of the lipids in their outer membrane. A peak at a m/z of 

1728 represents normal hexa-acylated LPS, and that at m/z of 1911 indicates 

hexa-acylated LPS [40].  

2.3 AIM 3: DEFINE TRADEOFFS THAT EXIST BETWEEN RESISTANCE, FITNESS, 

AND VIRULENCE IN THE COLISTIN-RESISTANT MUTANT STRAINS 

Evolving colistin resistance typically involves structural modification in bacteria. Oftentimes, the 

resulting resistant phenotype can impose significant biological costs on the organism when it 

compromises vital parts of the cell. Therefore, resistance may come at a significant fitness cost 

that prevents the affected strains from establishing infection in a human host. Moreover, resulting 

resistance may be accompanied by “collateral susceptibility” to antibiotics that typically do not 

have any antimicrobial activity against Gram-negative bacteria due to their inability to penetrate 

the outer membrane [41].  

For A. baumannii in particular, many of the known colistin resistance mechanisms involve 

modification of the lipid A component of LPS on the outer membrane. LPS is the endotoxin which 

is responsible for eliciting an immune response through its interaction with Toll-like receptor 4 



 13 

[42]. A. baumannii strains with absent or compromised LPS are severely attenuated in many types 

of in vivo models [37]. We aim to model these fitness and virulence tradeoffs using Galleria 

mellonella, the caterpillar of the greater wax moth. This insect serves as an acceptable organism 

for modeling many aspects of human infections. It has both a cellular and humoral immune 

response; the former is mediated by at least six different types of hemocytes and the latter by 

opsonins, antimicrobial peptides, and a fibrous matrix that serves to trap bacteria [43]. We used G. 

mellonella because they are inexpensive and do not raise ethical concerns. 
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3.0 MATERIALS AND METHODS 

3.1 STRAINS USED 

We obtained A. baumannii strain AB5075-UW from the Manoil Laboratory at the University of 

Washington (UW). This well-characterized clinical strain was first isolated at Walter Reed Army 

Medical Center in 2004. It is a multidrug-resistant strain that accurately captures recent trends of 

resistance in clinical strains, including resistance to carbapenems; notably, however, it remains 

susceptible to tetracycline and hygromycin, making it suitable for genetic manipulations in 

laboratory settings [44]. AB5075-UW is also susceptible to colistin (MIC = 0.5 µg/mL). The 

Manoil Lab has curated a transposon-mutant library derived from AB5075-UW, and from it we 

also procured three mutants, each with a tetracycline-resistance (Tet-R) cassette disrupting and 

thus inactivating pmrC, pmrA, or pmrB, as shown in Figure 2 below [45]. The mutants were 

designated 2238 (pmrC disrupted), 2241 (pmrA disrupted), and 2245 (pmrB disrupted), and the 

parent was designated 5075. 



 15 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Transposon-inactivated mutants 

The lower blue arrows represent pmrC, pmrA, and pmrB. They are split into upper and lower parts due to the 
transposon insertion. Red arrows represent T26 inserted into pmrC (2238), pmrA (2241), and pmrB (2245). The 
direction and position of the tetR gene are also indicated by the blue arrows above the genes. 
 

3.1.1  Assessment of baseline colistin-susceptibility of University of Washington (UW) 

strains 

These four strains were subjected to broth microdilution according to the Clinical and Laboratory 

Standards Institute (CLSI) standard methods to determine their baseline colistin MIC and to 

examine whether there was a dose-dependent inhibition by colistin. Briefly, a 0.5 McFarland 

solution of each strain was prepared in 0.85% NaCl. The solution was diluted 1000-fold into 

cation-adjusted Mueller Hinton broth. Colistin sulfate salt (Sigma-Aldrich Corp., St. Louis, MO, 
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USA) was prepared as a 10mg/mL solution in dH2O and diluted in cation-adjusted Mueller Hinton 

broth. Then, 50 µL of colistin was serially diluted in a 96-well plate, and 50 µL of bacterial 

inoculum was added to each well. Plates were incubated with plastic lids overnight at 35°C and 

growth was observed the next day. The strains were tested in biological triplicate, and the OD600 

measuring growth in each well was read using a Tecan Plate Reader Infinite 200 PRO (Tecan Life 

Sciences, Switzerland).  

3.2 MUTANT GENERATION AND SELECTION 

Colistin-resistant mutants were derived from 5075, 2238, 2241, and 2245, as diagramed in Figure 

3 below. A culture of each was grown in lysogenic broth (LB) for approximately 4 hours until a 

density of 1.8 x 109 cfu/mL was achieved (Step 1). Then, 200µL of each cell suspension was plated 

on LB plates containing 4 µg/mL or 8 µg/mL of colistin (Step 2). The mutation rates for strains of 

A. baumannii have been shown to range from 2.6 × 10−9 (95% CI: 3.43 × 10−10 to 6.37 × 10−9) for 

the wild-type ATCC 19606 (a susceptible control strain) to 2.1 × 10−6 (95% CI: 2 × 10−6 to 

3 × 10−6) for hypermutator MDR strains [46]. After overnight incubation at 35°C, colonies that 

grew were subcultured on an LB plate with the same concentration of colistin as the plate from 

which it was originally isolated (Step 3). In order to verify that mutants were genetically stable, 

the strains were then passaged 4 times on LB plates without colistin and grown overnight at 35°C 

(Step 4a). The resulting strains were then tested by broth microdilution according to CLSI 

standards (Step 5). Strains that had an MIC of 4 µg/mL or greater were saved and subjected to 

further testing, detailed in this project. The colonies originally isolated on plates with colistin 4 
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µg/mL and 8 µg/mL were also serially passaged on plates containing two-fold higher amounts of 

colistin until growth on a plate with 64 µg/mL was achieved (Step 4b). These strains were also 

then passaged four times on plain LB plates and their MICs were determined by broth 

microdilution (Step 5). Strains with MICs of ≥ 128 µg/mL were saved at -80°C and further 

investigated as well. Mutants were generated in biological triplicate. There were two pairs of 

isolates which initially had a colistin MIC of 4 or 8 µg/mL and then after serial passaged on colistin 

plates had an MIC of ≥ 128µg/mL, and they were included in the subsequent investigation. 

 

 

Figure 3. Diagram showing the process of colistin-resistant mutant generation 
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3.3 MUTANT CONFIRMATION BY PCR 

In order to confirm that the resulting colistin-resistant mutant strains were A. baumannii, we 

performed polymerase chain reaction (PCR) with primers specific for β-lactamase gene blaOXA-51 

and Choice Blue Taq (Thomas Scientific, Swedesboro, NJ). [47]. This β-lactamase gene is intrinsic 

to the chromosome of A. baumannii species. Furthermore, in the University of Washington strains 

that had pmrC, pmrA, or pmrB disrupted by the transposon containing tetR, the presence of the 

transposon (T26 pgro-172) in the colistin-resistant mutants was verified using primers designed to 

amplify it as well as part of the gene that it disrupts. The primer binding sites are shown in Figure 

2 above. 

Table 1. Primers used for UW strain verification 

 Primer name Primer sequence (5′→3′) Tm (°C) 
 OXA51 U AACAAGCGCTATTTTTATTTCAG 50.3 
 OXA51 L CCCATCCCCAACCACTTTT 55.4 
 T26 Pgro-172 TGAGCTTTTTAGCTCGACTAATCCAT 56.2 

(2238, pmrC disrupted) ABUW_0827 R (+14) GTTCTAGGCTCGCTTTAGTTTAC 53.3 
(2241, pmrA disrupted) ABUW_0828 R (+14) CCCGAAATTTTAAATTATG 41.8 
(2245, pmrB disrupted) ABUW_0829 R (+16) CAAGAGCTTACGTAATCACGC 53.8 

 

3.4 COMPARATIVE GENOMIC ANALYSES 

Genomic DNA from the four UW strains and the colistin-resistant mutant strains derived from 

them were extracted using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Germantown, MD). 

Extracted gDNA was sequenced using Illumina MiSeq 250-bp paired-end sequencing. The 

mutants’ genomes were mapped against the complete reference genome of A. baumannii AB5075-

UW (Genbank accession no. CP008706.1). This genome was annotated with Prokka. SNPs were 
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determined using the Breseq mapping pipeline. The frequency threshold for identifying variants 

was set to 80% because a higher threshold was not able to identify any mutations in some of the 

strains (data not shown). 

3.5 SANGER SEQUENCING 

Sanger sequencing was used to confirm SNPs and small insertions or deletions in the mutant strains 

that were identified by BreSeq. The affected genes were amplified by PCR using the primers listed 

in Table 2 and then purified using the Qiagen PCR Purification Kit (Qiagen, Germantown, MD). 

Purified products were sent for Sanger sequencing (Genewiz, South Plainfield, NJ). The trace files 

were analyzed to confirm the nucleotide sequences. 

Table 2. Primer sequences for mla and lpx genes 

Target gene Primer name Primer sequence (5′→3′) 
Tm 
(°C) 

mlaA AB_mlaA F ATGAATTATTCTAATTTACTTTTGTCG 48.9 
 AB_mlaA R TTATTTTTCGGTTTTATCAG 43.6 

mlaC mlaC pro F KpnI GCGGTACCTTGATGAAGATGCTTATATAA 56.6 
 mlaC pro R SalI GCGTCGACTTATTTTTGTTTATTCTGATT 54.8 

mlaD mlaD F seq GCATGAAATCACGTACTAGTGAGCTGGCC 62.4 
 mlaD R seq CGCTCAACAAATGACGGCTGTGCA 62.5 

mlaF mlaF F seq GCATGATTGCCATTATGAATAATAAAA 52.2 
 mlaF R seq GCTGGACGAACCTCGTTATC 55.5 

lpxA IpxA F seq GCATGAGCAATCACGATTTAATCCATTC 56.9 
 lpxA R external CCAAAATCTGAAGAAGCAAAATTCTTTAACAAA 56.0 

lpxC ABUW_0152 F (-20) CACCAAAAAACAGAGCAGGC 55.0 
 ABUW_0152 R (-20) GACAATGACTTATGTCAC 45.0 

lpxD lpxD F Seq GCATGAAAGTGCAACAATATCGTT 54.7 
 lpxD R Seq GCTTTACGCAAATTAAAAGTTGATTC 52.3 
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3.6 GROWTH CURVES 

Growth curves were generated over 6 hours for each mutant strain and compared with parent 

strains. Overnight cultures of each strain were grown in 5 mL of LB broth shaking at 150 rpm at 

37°C. The next morning, starting OD600 were standardized to 0.1 for each culture. Strains were 

grown in 10 mL of LB broth shaking at 150 rpm at 37°C. OD600 of 1 mL of each culture was 

recorded every hour for 6 hours. Growth curves for each isolate were done in biological triplicate. 

3.7 GRAM STAINING 

The colistin-resistant mutant strains were stained in order to visualize their morphology and outer 

membrane composition. Briefly, a 10 µL loop of water was placed on a glass slide. A sterile 

toothpick was touched to the cell culture from an agar plate, and the cells were spread out in the 

loop of water. The slide was heat fixed. Crystal violet stain was applied to the slide and allowed 

to set for approximately 30 seconds. The slide was rinsed gently with water until the water ran 

clear.  Next, Gram’s iodine was added to the slide and allowed to set for approximately 30 seconds. 

The slide was rinsed as before. After that, the slide was destained by applying 90% ethanol just 

until the visible stain washed out. Finally, safranin was applied to the slide and allowed to set for 

approximately 30 seconds. The slide was gently rinsed and allowed to air dry. The slides were 

visualized under a light microscope and were imaged. 
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3.8 ANTIMICROBIAL SUSCEPTIBILITY TESTING WITH GRAM-POSITIVE 

AGENTS 

Trek Sensititre GPN4F plates were used to test susceptibility of the strains against a panel of 

Gram-positive antimicrobial agents (Thermo Fisher Scientific, Waltham, MA). Plates were 

inoculated by diluting a McFarland 0.5 solution made in deionized sterile by a factor of 1000 in 

cation-adjusted Mueller-Hinton broth and adding 50 µL into each well with a multi-channel pipet. 

Plates were covered with adhesive stickers and incubated at 35°C for 18-24 hours. Visible pellets 

in wells were recorded as growth, and the lowest concentration without growth was designated the 

MIC. 

3.9 LIPID A CHARACTERIZATION 

Cell pellets of the mutant strains were prepared by growing a 1 µL loopful of cells in a 3-mL LB 

broth culture for approximately 2 hours. Cells were pelleted by centrifuging 1mL of culture at a 

time at 10,000 rpm for 5 minutes and removing the supernatant. Pellets were shipped on dry ice to 

the laboratory of Dr. Robert Ernst at the University of Maryland for lipid analysis. 

3.9.1  Lipid A extraction 

Lipid A from the bacterial outer membrane was isolated from whole cells using an isobutyric 

acid/ammonium hydroxide-based extraction procedure, as described by El Hamidi, et al. Cells 

from a broth culture were pelleted then resuspended in 70% isobutyric acid and 1M ammonium 
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hydroxide 5:3 and boiled at 100°C for 45 minutes. Samples were then cooled on ice and 

centrifuged for 5 minutes at 8000 x g. The supernatant was diluted 1:1 in endotoxin-free water in 

a new tube. Samples were flash-frozen using dry ice and were lyophilized overnight. The next day, 

the dry cells were washed twice with 1 mL of methanol, then lipid A was extracted in 100 mL of 

chloroform:methanol:water (3:1:0.25 vol:vol:vol). Samples of 1 µL of each were loaded onto a 

stainless steel MALDI target plate (Hudson Surface Technology, Fort Lee, NJ), and 1 µL of 

norharmane matrix (Sigma-Aldrich, St. Louis, MO) at a concentration of 10 mg/mL in 2:1 

chloroform:methanol (vol:vol) was added. Spots were allowed to air dry before analysis [48].  

3.9.2  Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry 

The lipid A extracted as described above was analyzed in negative ion mode with reflectron mode 

on a Bruker microFlex (Bruker Daltonics, Billerica, MA) matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. The data were collected 

with flexControl software and processed with flexAnalysis. Spectra were baseline-smoothed and 

then used to estimate lipid A structures based on molecular weight. 

3.10 VIRULENCE OF PARENT STRAINS AND MUTANTS 

The four UW strains and their derived mutants were injected into G. mellonella waxworm 

caterpillar larvae [49]. A 10 µL inoculum of 5 x 107 cfu/mL suspended in 10mM MgSO4 was 

injected into the hemocoel of each larva via the last left proleg, giving an inoculum of 5 x 105 
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cfu/larva. Ten larvae were infected with each strain. The larvae were incubated in a dark incubator 

at 35°C and survival was recorded every 24 hours for 72 hours. This experiment was performed 

in biological triplicate. 
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4.0 RESULTS 

4.1 AIM 1: MUTANT STRAIN GENERATION 

4.1.1  Baseline colistin minimum inhibitory concentration (MIC)/dose response of UW 

strains 5075, 2238, 2241, and 2245 

The colistin MICs of the four original UW strains were determined by broth microdilution as 

described in Chapter 3, and the resulting OD600 values were plotted on a log2 scale as below. The 

MICs of each strain were between 0.0625 µg/mL and 0.125 µg/mL of colistin. All of the strains 

were susceptible to colistin, based on CLSI standards, and there was no observable difference in 

the way these strains responded to colistin.  

Figure 4. Graphical representation of colistin MIC in UW strains 
 
Colistin MICs were determined to be 0.125 µg/mL for 5075, and 0.0625 µg/mL for 2238, 2241, and 2245. The CLSI 

clinical breakpoint for colistin susceptibility in A. baumannii is ≤ 2 µg/mL. 
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4.1.2  Generation of colistin-resistant mutant strains 

Colistin-resistant mutant A. baumannii strains were derived from the four strains obtained from 

the Manoil Laboratory at the Universitiy of Washington, as described in Chapter 3. A total of 20 

mutants were isolates and used for this study. Four different rounds of mutant generation were 

carried out so that each strain from UW produced at least one mutant in biological triplicate for 

the sake of reproducibility. The following Table 3 depicts the mutants generated from each round. 

 

Table 3. Biological replicate rounds of mutant generation 

Round Parent 5075 2238 (pmrC mut) 2241 (pmrA mut) 2245 (pmrB mut) 

1 5075B 2238M 
X 

2245G 

 5075F 2238O 2245L 

2 

X 

2238EE 2241KK 

X  2241MM 

 2241QQ 

3 P1.4L 
X 

A2.8 B2.4L 

 P1.4H   

4 P6.4 C2.4 A3.8L B7.8 

  C7.8 A3.8H  

Strains generated from 4 separate rounds of growing in the presence of colistin and the UW isolates from which they 
were derived. An X indicates that no mutants were obtained in that round.  

4.1.3  Colistin broth microdilution on mutant strains 

The four parent strains from UW and their respective mutant strains were tested by broth 

microdilution, as described in Chapter 3. The results are listed in Table 4 below. 
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Table 4. Colistin MIC of mutant strains from broth microdilution 

 Strain Colistin MIC (µg/mL) 

5075 Parent 
Background 

5075  0.125 
5075B >128 
5075F >128 
P1.4 H >128 
P1.4 L 8 
P6.4 >128 

pmrC-
inactivated 

Background 

2238 0.0625 
2238M >128 
2238O >128 

2238EE >128 
C2.4 >128 
C7.8 >128 

pmrA-
inactivated 

Background 

2241 0.0625 
2241KK >128 
2241MM 128 
2241QQ >128 

A2.8 128 
A3.8H >128 
A3.8L 32 

pmrB-
inactivated 

Background 

2245 0.0625 
2245 G >128 
2245 L >128 
B2.4L 8 
B7.8 >128 

 

4.1.4  PCR confirming the presence of blaOXA-51 and transposon T26 

All of the mutants selected for this study, as well as the parent UW strains from which they were 

derived, were positive for blaOXA-51 by PCR, indicating that they were A. baumannii. Strain 5075 

and the colistin-resistant mutants derived from it did not have T26 and thus tested negative for it 

by PCR. The parent strains 2238, 2241, and 2245 and their respective colistin-resistant mutants 

tested positive for T26 when the primers listed previously were used. Therefore, we were able to 

conclude that these strains had pmrC, pmrA, or pmrB inactivated and thus unavailable to contribute 

to colistin resistance.  
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4.2 AIM 2: GENOTYPIC AND PHENOTYPIC CHARACTERIZATION OF MUTANTS 

4.2.1  Comparative genomic analyses and Sanger sequencing results 

Breseq identified many mutations in each strain. However, for this study, we elected to focus on 

mutations in lpx and mla genes, which are listed in the table below. These genes are well-

characterized in the literature and have direct effects on compromising outer membrane integrity. 

A full list is available in the Appendix. Mutations were confirmed using the primers in Table 2, 

with the exception of C2.4 because the primer binding sites were likely too far away after the new 

junction rearrangement to give the expected PCR product. 

Table 5. Mutations identified in lpx and mla genes of colistin-resistant mutant strains 

 Strain Gene Mutation 

5075 
Background 

5075B mlaA L12* 
 lpxA G68C 
5075F mlaF 11bp del 
P1.4 H mlaD (A)7→6 frameshift 
 lpxA *263Y 
P1.4 L lpxA *263Y 
P6.4 lpxC ISAba1 +9bp 

pmrC 
inactivated 

2238M mlaC Frameshift, add C at 384/624 nt 
2238O lpxC H264Y 
2238EE lpxA New junction 
C2.4 lpxA 9 nt duplication** 
C7.8 lpxC Gene broken and rearranged 

pmrA 
inactivated 

2241KK mlaC (GTTATTT) nt duplication 
2241MM mlaF 19 nt deletion 
2241QQ lpxC P30L 
 mlaD (T) 7→6 frameshift 
A2.8 Unknown - 
A3.8 H Unknown - 
A3.8 L Unknown - 

pmrB 
inactivated 

2245G lpxC L119* 
 mlaA 23 nt duplication 
2245L mlaC 1nt deletion frameshift 
B2.4 L Unknown - 
B7.8 mlaF G50D 
 lpxA L253H 
   

**The lpxA mutation in C2.4 was not confirmed by Sanger sequence. 
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4.2.2  Growth curves 

Growth curves were generated for the UW strains and derivative colistin-resistant mutants as 

described in Chapter 3 in biological triplicate on different dates. The below graphs represent the 

ODs recorded at each time point, including error bars. For each set of mutants, the parent strain 

consistently exhibited higher rates of growth. The mean growth rate of the mutants varied, but the 

same general trends were observed each time for each strain relative to the rest of the group. 

 

Figure 5. 6-hour growth curves of the UW strains and respective colistin-resistant mutants 
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4.2.3  Gram stain of colistin-resistant mutants 

The four UW strains and their derivative colistin-resistant mutant strains were Gram-stained as 

described in Chapter 3. A control stain was prepared using a Staphylococcus aureus ATCC 25923 

strain as a Gram-positive control (purple cocci in clusters) and an Escherichia coli ATCC 25922 

strain as a Gram-negative control (pink bacilli) (Figure 6D). The wild-type 5075 strain showed 

Gram-negative, short bacilli (Figure 6A). The mutant strains exhibited varying results; some 

stained as Gram-negative coccobacilli (5075 B, Figure 6B), while others stained as Gram-positive 

cocci or had undefined shapes (2238 M, Figure 6C). 

 

Figure 6. Gram Stains  
 

5075 Parent (A) stained as Gram-negative coccobacilli, 5075 B (B) stained as Gram-negative coccobacilli, 2238M 
(C) stained as Gram-positive cocci, and positive and negative control strains (D) where Staphylococcus aureus 

stained as Gram-positive cocci and Escherichia coli stained as Gram-negative bacilli. 
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4.2.4  Antibiograms of strains 

One Trek Sensititre  plate per isolates was inoculated as described in Chapter 3. The MIC of 

each strain is recorded in µg/mL in the table below. The strains from UW are highlighted in grey. 

Notably, the UW strains 2238, 2241, and 2245, which have the transposon containing the 

tetracycline resistance gene, have high tetracycline (TET) MICs.  

For many of these Gram-positive agents, the mechanism of action involves inhibition of 

cell wall synthesis. Typically, the outer membrane of Gram-negative organisms prevents these 

antibiotics from breaching the membrane and entering the cell. However, without an outer 

membrane, the thin cell wall of these bacteria is exposed and thus is vulnerable to Gram-positive 

agents. 

For drugs for which there is a range of MICs among the strains, factors other than an absent 

membrane may be contributing to the resulting MICs for certain drugs. For example, all of the 

strains derived from the pmrA-inactivated strain (2241) have very low daptomycin (DAP) MICs. 

Therefore, the underlying defect in pmrA may be affecting the organisms’ ability to survive in the 

presence of daptomycin. 

Finally, mutants A2.8 and B2.4 L have antibiograms that are identical to their respective 

parent UW strains. They may have reverted to the parent strain, or it is more likely that the strains 

saved in the -80° freezer contained a mixed culture of the parent UW strain and the colistin-

resistant mutant. The mutant may be outcompeted when it is grown in co-culture with its parent 

UW strain because of the fitness cost of the mutations that confer colistin resistance.  
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Table 6 MIC of strains against a panel of Gram-positive antimicrobial agents. Concentration in µg/mL 
 

 

1ERY, erythromycin; CLI, clindamycin; SYN, quinupristin-dalfopristin; DAP, daptomycin; VAN, vancomycin; TET, 
tetracycline; AMP, ampicillin; GEN, gentamicin; LEVO, levofloxacin; LZD, linezolid; AXO, ceftriaxone; PEN, penicillin; RIF, 
rifampin; GAT, gatifloxacin; CIP, ciprofloxacin; SXT, trimethoprim-sulfmethoxazole; OXA+, oxacillin + 2% NaCl.  

4.2.5  MALDI-TOF Mass spectrometry  

Lipid A was extracted from the four UW strains as described in Chapter 3. The lipid A was run on 

the MALDI-TOF mass spectrometer and produced mass spectra. Significant mass spectral peaks 

were identified. Representative spectra are shown below; the top panel represents a spectrum 

where no lipid A peaks were detected, and the bottom panel shows one that detected peaks at mass-

to-charge ratios (m/z) of 1728 (hexa-acylated lipid A) and 1911 (hepta-acylated lipid A). Table 7 

indicates whether peaks were detected at the aforementioned m/z.  
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Strain                  
5075 >4 >2 >4 >8 128 ≤2 >16 >16 >8 >8 >64 >8 4 >8 >2 >0.5/9.5 >8 

5075B ≤0.25 1 0.5 2 ≤1 ≤2 0.5 ≤2 4 >8 ≤8 0.5 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
5075F ≤0.25 >2 1 >8 ≤1 ≤2 >16 >16 4 >8 16 >8 ≤0.5 8 >2 >0.5/9.5 ≤0.25 
P1.4 H ≤0.25 2 1 >8 2 ≤2 >16 >16 8 >8 16 >8 ≤0.5 4 >2 >0.5/9.5 >8 
P1.4L ≤0.25 >2 1 2 ≤1 ≤2 >16 8 8 >8 32 >8 ≤0.5 4 >2 >0.5/9.5 >8 
P6.4 ≤0.25 1 1 >8 ≤1 ≤2 8 16 4 >8 8 8 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
2238 >4 >2 >4 >8 >128 16 >16 >16 8 >8 >64 >8 4 8 >2 >0.5/9.5 >8 

2238M ≤0.25 1 0.5 2 ≤1 ≤2 0.5 ≤2 4 >8 ≤8 2 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
2238O ≤0.25 >2 1 >8 ≤1 ≤2 >16 >16 8 >8 16 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 

2238EE ≤0.25 2 1 >8 ≤1 ≤2 8 >16 8 >8 8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 
C2.4 ≤0.25 1 1 >8 2 ≤2 >16 >16 4 >8 ≤8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 
C7.8 ≤0.25 2 1 0.5 ≤1 ≤2 2 8 2 >8 ≤8 4 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
2241 >4 >2 >4 >8 128 16 >16 >16 8 >8 >64 >8 4 4 >2 >0.5/9.5 >8 

2241KK ≤0.25 >2 1 0.5 ≤1 ≤2 16 >16 4 >8 8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 
2241MM ≤0.25 >2 1 ≤0.25 ≤1 ≤2 16 >16 8 >8 8 >8 ≤0.5 4 >2 >0.5/9.5 0.5 
2241QQ ≤0.25 >2 1 ≤0.25 ≤1 ≤2 16 16 8 >8 8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 

A2.8 ≤0.25 >2 >4 >8 128 16 >16 >16 8 >8 >64 >8 4 8 >2 >0.5/9.5 >8 
A3.8H ≤0.25 1 -.5 ≤0.25 ≤1 ≤2 1 8 4 8 8 4 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
A3.8L ≤0.25 2 0.5 ≤0.25 ≤1 ≤2 1 8 4 >8 8 2 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
2245 >4 >2 >4 >8 128 16 >16 >16 8 >8 >64 >8 4 8 >2 >0.5/9.5 >8 

2245 G ≤0.25 >2 0.25 4 2 ≤2 >16 >16 4 8 8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 
2245 L ≤0.25 2 0.5 8 ≤1 ≤2 1 4 2 >8 8 2 ≤0.5 2 >2 >0.5/9.5 ≤0.25 
B2.4L ≤0.25 >2 >4 >8 128 16 >16 >16 8 >8 >64 >8 4 8 >2 >0.5/9.5 >8 
B7.8 ≤0.25 1 0.5 8 ≤1 ≤2 16 8 8 8 ≤8 >8 ≤0.5 4 >2 >0.5/9.5 ≤0.25 
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Figure 7. Example of spectra resulting from MALDI-TOF mass spectrometry 

No peaks were detected in C7.8 (top), whereas peaks were detected at m/z of 1728 and 1911 in P1.4H (bottom). 
 
 
Table 7. Presence or absence of hexa-acylated and hepta-acylated lipid A 

 Peak 
Strain 1728 1911 
5075 + + 
5075B + + 
5075F - - 
P1.4 H + + 
P1.4 L + + 
P6.4 - - 
2238 + small 
2238M - - 
2238O - - 
2238EE - - 
C2.4 - - 
C7.8 - - 
2241 + + 
2241KK - - 
2241MM + + 
2241QQ + + 
A2.8 + + 
A3.8 H - - 
A3.8 L - - 
2245 + + 
2245G - - 
2245L - - 
B2.4 L + - 
B7.8 + + 
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4.3 AIM 3: DEFINE RELATIONSHIP BETWEEN RESISTANCE, FITNESS, AND 

VIRULENCE IN COLISTIN-RESISTANT MUTANT STRAINS 

4.3.1  Waxworm survival 

G. mellonella caterpillars were infected as described in Chapter 3 and observed for 4 days. The 

infection model was carried out in biological triplicate, and the results were plotted in the below 

Kaplan-Meier survival curves. Significance was calculated with a Log-Rank test and based on p ≤ 

0.05.  

Virulence varied between biological replicates of this experiment. The caterpillars typically 

weigh between 150 and 200 milligrams, but it is not possible to adjust the inoculum delivered to 

each worm based on its mass because the volume delivered is very small, which may affect the 

observed virulence.  

Nonetheless, there were some general trends. The colistin-resistant mutants derived from 

UW strains 5075 and 2245 (pmrB inactivated) were less virulent than their respective parents. In 

contrast, no discernable trends were observed with the mutants derived from UW strains 2238 

(pmrC inactivated) or 2241 (pmrA inactivated) because the parent strains themselves exhibited 

variability. As work continues on this project, we expect to gain a clearer picture of the roles these 

genes play in virulence. 
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Figure 8, Kaplan-Meier survival curves of G. mellonella infected with A. baumannii strains 
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5.0 DISCUSSION 

Since the first antibiotics were discovered nearly a century ago, physicians and researchers have 

been engaging in an arms race with the bacteria that are responsible for causing numerous 

infectious diseases. The collection of antibiotics available shows promise early on in treating new 

disease outbreaks, but small subsets of the original population that evolve resistance linger. When 

those few organisms expand in number, they become the dominant population. In hospital settings, 

especially those in which patients are already severely immunocompromised, these newly-minted 

resistant bacteria can wreak havoc as they cause infections that cannot be treated by typical 

antibiotic regimens [4].  

Acinetobacter baumannii is a type of bacteria that is becoming particularly difficult to treat 

due to the development of antibiotic resistance. What first started out as an innocuous soil organism 

has evolved to become one of the World Health Organization’s priority pathogens: those for which 

there is a desperate need to develop new treatment options [22]. Equipped with many intrinsic 

resistance genes, A. baumannii is able to persist when challenged with common antimicrobials. 

Furthermore, its genome is prone to genetic changes and rearrangements that confer resistance [9].  

Because of its unique resilience, treatment options for A. baumannii are dwindling, and 

physicians are turning to colistin, a polymyxin antibiotic, as a last-resort. However, colistin 

resistance in A. baumannii is already making these infections even more problematic. Gene 

clusters including pmrCAB, lpx, and mla are all areas of interest to those studying resistance 

mechanisms in A. baumannii [35]. These genes are all related to the outer membrane of A. 

baumannii. Existing literature cites pmrC as the primary component responsible for membrane 

modifications that confer colistin resistance. The aim of this project was to investigate what 
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mechanisms other than pmrC are involved in colistin resistance. We employed mutants with 

inactivated pmrC and its two-component regulators, pmrA and pmrB to accomplish this goal [28, 

31].  

It was, in fact, possible to generate colistin-resistant mutants in vitro from the UW 5075 

strain and each of its three transposon-inactivated mutants of pmrCAB. In total, 20 colistin-resistant 

mutants were generated from the four UW strains. Their colistin MICs were in the resistant range, 

according to the CLSI breakpoint, in contrast to the original strains, which were all colistin-

susceptible and had no large differences in their MICs, nor did they exhibit a dose-dependent 

inhibition by colistin. The mutants were genetically stable, and the ones derived from the 

transposon-inactivated strains maintained the transposon even after developing colistin resistance, 

making it possible to compare the colistin-resistant mutants to their respective parent strains by 

variant calling between their whole genomes.  

The Breseq analysis pipeline identified many SNPs and small insertions and deletions, but 

the most notable mutations were clustered in the lpx and mla loci. Therefore, we decided to pursue 

those genes for this study since they have been investigated in existing literature [33, 35]. All of 

the mutations were confirmed by Sanger sequencing, with the exception of C2.4. Breseq indicated 

that there was new junction evidence in this gene; therefore, it is possible that the gene was broken 

and spliced into two different locations in the genome, which prohibited the primers from 

amplifying the section between the fragments. Additionally, Breseq did not identify mutations in 

lpx or mla within the genomes of B2.4L, A2.8, A3.8H, or A3.8L, suggesting that additional, yet 

unknown pathways to colistin resistance may exist. These mutants had other candidate genes that 

may be related to colistin resistance, but analyzing them was beyond the scope of this project. 
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 As future work, it would be beneficial to plot the mutated genes in a KEGG pathway in 

order to see which global processes they are a part of and whether said processes are tied to colistin 

resistance. Performing RNAseq would also be beneficial because we would be able to see the 

global impact on upregulation and downregulation of genes under the control of each component 

of pmrCAB. Alternatively, we could determine whether any components of pmrCAB were 

upregulated in these mutants using qRT-PCR.  

Notably, none of the colistin-resistant mutant strains had mutations in pmrCAB, even the 

ones derived from the 5075 strain. However, this is consistent with previous literature which 

suggests that pmrCAB mutants are more likely to be recovered from clinical specimens [37]. Such 

mutations are more favorable for isolates that need to have an intact membrane in order to stand 

the challenges posed by the host’s internal environment, whereas laboratory strains are able to 

survive with compromised membranes in the in vitro growth conditions used here. This 

discrepancy between resistance mechanisms seen in clinical isolates versus ones generated in vitro 

could be because mutations in pmrCAB lead to gain of function mutations, which are energetically 

costly to the bacteria. On the other hand, loss of function mutations such as the ones seen here are 

not as costly. 

The phenotypic assessment of these mutants revealed that the mutant strains struggled 

more in the growth assay than the parent strains from which they were derived. Without an outer 

membrane, the bacteria may be more susceptible to changes in their environment, such as osmotic 

pressure or pH, limiting the robustness of their growth. The Gram stains offer visual corroboration 

of this hypothesis; the irregular shape of some of the cells suggests that they are not well contained 

and may be falling victim to changes caused by the environment. Furthermore, some strains stained 

Gram-positive. Without the LPS on their outer membrane, the crystal violet stain is able to 
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penetrate to the peptidoglycan in the cell wall much easier. The same is true for the Gram-positive 

antimicrobial agents. The decreased MICs to many of the drugs in the Sensititre plates indicate 

that the drugs are able to infiltrate the barrier that is left vulnerable due to the absence of the outer 

membrane.  

The MALDI-TOF analysis gives molecular confirmation of the lack of lipid A in some 

strains. Particularly with the strains derived from the pmrC mutant, we observe that neither hexa-

acylated nor hepta-acylated lipid A is present, suggesting perhaps a complete loss of the outer 

membrane. This may be due to the underlying disruption of pmrC in the UW strain. However, 

these strains had mutations only in lpxA, lpxC, and mlaC; these may be the most crucial genes for 

ensuring an intact outer membrane due to their pivotal roles in LPS synthesis and lipid asymmetry 

maintenance, respectively.  

The survival data from the waxworms were inconsistent. However, a few strains exhibited 

consistently different virulence from their respective parent strains. For example, 5075F and P1.4L 

were consistently significantly less virulent than 5075, and 2245G was consistently significantly 

less virulent than 2245. The mutant strain A3.8 H was consistently significantly different from 

2241, but twice it was less virulent and once it was more virulent. The waxworm model has many 

benefits, but it also has several limitations, including the variation in the viability of the worms.  

Overall, for some of the mutant strains, we were able to obtain a clear picture of the 

mechanisms responsible for their colistin resistance and associated reduced fitness and/or 

virulence. However, for other strains, the data were either inconsistent or we would need further 

characterization to pinpoint the exact genetic changes that confer colistin resistance. 
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6.0 CONCLUSIONS 

In conclusion, we were able to generate colistin-resistant A. baumannii strains in the laboratory, 

even when the components of pmrCAB, which are the primary source of colistin resistance in this 

species, were not functioning. We were able to characterize genetic mutations responsible for the 

defective outer membrane that allowed these strains to live unaffected by the presence of colistin.  

Mutations in the lpx and mla genes were the focus of this study, as they have been well-

characterized previously in the literature. It is important to note that these are distinct mechanisms 

that may serve as secondary colistin resistance mechanisms in situations where pmrCAB are 

defective. Variations in the lpx and mla genes had direct effects on the presence or integrity of the 

outer membrane and affected the bacteria’s ability to grow and cause infection. These mutant 

strains also were easily killed by low concentrations of Gram-positive antibiotics, likely due to 

their cell wall being exposed without the protection of the outer membrane. The in vivo waxworm 

model gave varied results with regards to virulence. However, certain mutants which were 

consistently less virulent than their respective parent strains may not be viable. 

Moving forward, other genes identified by the Breseq pipeline should be investigated for 

their role in colistin resistance. Additionally, the wild-type versions of the mutated lpx and mla 

genes can be complemented back into the colistin-resistant mutant strains in order to observe 

whether restoring those components also restores the phenotype of the wild-type strains when 

confronted with Gram-positive antibiotics. 
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7.0 PUBLIC HEALTH SIGNIFICANCE 

Antibiotic resistance is a critical threat that is putting millions of people’s lives in danger [4]. In 

recent years, antibiotic-resistant bacteria have repeatedly made headlines due to their public health 

significance. The bacteria responsible for these diseases are costly to the healthcare industry and 

patients alike and have been associated with poorer patient outcomes [50].  As multidrug-resistant 

bacterial infections spread, doctors and researchers clamor for new treatment options [6]. 

Tantamount to the urgent need for new antibiotics is the need to understand mechanisms of 

resistance to existing drugs. With understanding of the processes and key genes involved, 

researchers can develop strategies to exploit weaknesses in resistant bacteria. 

This study presents a possible scenario in which A baumannii is not able to employ its 

primary mode of colistin resistance. We observed that it is possible for A. baumannii to develop 

additional but distinct mechanisms of resistance by mutating genes in other pathways. However, 

after a thorough characterization, it is evident that these colistin-resistant mutants experience 

significant fitness and virulence costs that make them unlikely to cause infection in human hosts 

and ascend to public health relevance. However, were they to thrive in a human host, these mutant 

strains experience a reversion of phenotype that renders them essentially Gram-positive organisms, 

and they could easily be treated with common Gram-positive agents. Nevertheless, it is important 

to have this knowledge as we develop best practices for treating A. baumannii infections in clinical 

settings. 
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APPENDIX SUPPLEMENTAL TABLE 

Table 8 Other mutations detected 

Strain Gene Function Mutation 
5075B nhaP Na+/H+ antiporter +T frameshift 

 rocC Amino-acid permease missing coverage evidence 
 pepN_2 Aminopeptidase N missing coverage evidence 
 mdlY mandelamide 

hydrolase 
missing coverage evidence 

  "intergenic" 4 deletions of 500-600bp 
5075F ABUW5075_02303 Putative phospholipase 

A1 
(A)6->7 

 yveA Aspartate-proton 
symporter 

unassigned new junction evidence 

 rnd_1 n/a delete 3142bp 
2238M prc Tail-specific protease 1bp deletion 

  "intergenic" deletions of 703bp and 524bp 
 yqiJ hypothetical inner 

membrane protein 
missing coverage evidence 

 xerD tyrosine recombinase unassigned new junction evidence 
2238O ABUW02238_01322 hypothetical protein (CAGTT)duplication 

 pepN_2 Aminopeptidase N missing coverage evidence 
 aadB 2"-aminoglycoside 

nucleotidyltransferase 
missing coverage evidence 

  Putative phospholipase 
A1 

unassigned new junction evidence 

 xerD tyrosine recombinase unassigned new junction evidence 
2238EE  "intergenic" 703bp deletion 

 nhaP Na+/H+ antiporter missing coverage evidence 
 hvrA_2 Trans-acting 

regulatory protein 
unassigned new junction evidence 

 xerD tyrosine recombinase unassigned new junction evidence 
2241KK rocC Amino-acid permease T->A bp change intergenic 

 copB_1 copper resistance 
protein B 

A->T bp change intergenic 

  Putative phospholipase 
A1 

+G frameshift 

 yxaF yxaF_3 txn regulator 712bp deletion 
 pepN_2 Aminopeptidase N missing coverage evidence 
 gdhA_2 glutamate 

dehydrogenase 
missing coverage evidence 

 smf-1_2 major fimbrial subunit 
SMF-1 

missing coverage evidence 

 yveA Aspartate-proton 
symporter 

unassigned new junction evidence 
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 yqiJ hypothetical inner 
membrane protein 

unassigned new junction evidence 

 OXA-133 beta lactamase unassigned new junction evidence 
   994, 683, and 501bp intergenic deletions 

2241MM copB_1 copper resistance 
protein B 

A->T bp change intergenic 

 yxaF yxaF_3 txn regulator 712bp deletion 
 rocC Amino-acid permease missing coverage evidence 
 mdlY/emrA_3 mandelamide 

hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 pepN_2 Aminopeptidase N missing coverage evidence 
 gdhA_2 glutamate 

dehydrogenase 
missing coverage evidence 

 nhaP Na+/H+ antiporter missing coverage evidence 
   994, 683, and 501bp intergenic deletions 

2241QQ yxaF yxaF_3 txn regulator 712bp deletion 
 rocC_1 Amino-acid permease missing coverage evidence 
 mdlY/emrA_3 mandelamide 

hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 pepN_2 Aminopeptidase N missing coverage evidence 
 gdhA_2 glutamate 

dehydrogenase 
missing coverage evidence 

 nhaP Na+/H+ antiporter missing coverage evidence 
  Putative phospholipase 

A1 
unassigned new junction evidence 

   683bp deletion intergenic 
2245G mexB_2 multidrug resistance 

protein MexB 
S79* 

 xerD tyrosine recombinase A217E, V151L, R148S 
  putative HTH-type 

transcriptional 
regulator 

missing coverage evidence 

  Putative phospholipase 
A1 

unassigned new junction evidence 

   657, 583, and 507bp intergenic deletions 
2245L xerD tyrosine recombinase A217E, V151L, R148S 

 mdlY/emrA_3 mandelamide 
hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 cpdA_2 cyclic adenosine 
monophosphate 
phosphodiesterase 

missing coverage evidence 

 yveA Aspartate-proton 
symporter 

missing coverage evidence 

   583bp intergenic deletion 
 OXA-133 beta lactamase unassigned new junction evidence 

A2.8  hydroxycinnamoyl-
CoA hydratase/lyase 

3 and 4 bp  

Table 8 continued 
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 pyrB aspartate 
carbamoyltransferase 

T167T (just nucleotide variation) 

 wecB_2 UDP-N-
acetylglucosamine 2-
epimerase 

C315R 

 aacA4 Aminoglycoside N(6')-
acetyltransferase type 
1 

C->A bp change intergenic 

 pepN_2 Aminopeptidase N missing coverage evidence 
 gltC_5 HTH-type 

transcriptional 
regulator 

missing coverage evidence 

 mdlY Mandelamine 
hydrolase 

missing coverage evidence 

 qseB_2 transcriptional 
regulatory protein 
QseB 

missing coverage evidence 

 anoR transcriptional 
activator prtoein 

missing coverage evidence 

 fadD long-chain-fatty-acid-
AMP ligase FadD32 

missing coverage evidence 

 smf-1_2 major fimbrial subunit 
SMF-1 

missing coverage evidence 

 aacA4 Aminoglycoside N(6')-
acetyltransferase type 
1 

missing coverage evidence 

 yfcG_1 Disulfide-bond 
oxidoreductase YfcG 

unassigned new junction evidence 

 tuf1 elongation factor Tu unassigned new junction evidence 
 repE replication initiation 

protein 
unassigned new junction evidence 

 yveA Aspartate-proton 
symporter 

unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 fusA elongation factor G unassigned new junction evidence 
 rpoN RNA polymerase 

sigma-54 factor 
unassigned new junction evidence 

 aac aminoglycoside 2'-N-
acetyltransferase 

unassigned new junction evidence 

 qseC_2 sensor protein QseC unassigned new junction evidence 
 sixA phosphohistidine 

phosphatase SixA 
unassigned new junction evidence 

 copA_2 copper resistance 
protein B 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 pdhD dihydrolipoyl 
dehydrogenase 

unassigned new junction evidence 

 dnaB_2 replicative DNA 
helicase 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
A3.8H  hydroxycinnamoyl-

CoA hydratase/lyase 
3 and 4 bp  

Table 8 continued 
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 aacA4 Aminoglycoside N(6')-
acetyltransferase type 
1 

C->A bp change intergenic 

 pepN_2 Aminopeptidase N missing coverage evidence 
 gltC_5 HTH-type 

transcriptional 
regulator 

missing coverage evidence 

 emrA_3 multidrug export 
protein EmrA 

missing coverage evidence 

 copB_1 copper resistance 
protein b 

unassigned new junction evidence 

 copA_1 copper resistance 
protein a 

unassigned new junction evidence 

 smf-1_2 major fimbrial subunit 
SMF-1 

missing coverage evidence 

 yfcG_1 Disulfide-bond 
oxidoreductase YfcG 

unassigned new junction evidence 

 tuf1 elongation factor Tu unassigned new junction evidence 
 repE replication initiation 

protein 
unassigned new junction evidence 

 yveA Aspartate-proton 
symporter 

unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 fusA elongation factor G unassigned new junction evidence 
 rpoN RNA polymerase 

sigma-54 factor 
unassigned new junction evidence 

 aac aminoglycoside 2'-N-
acetyltransferase 

unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 copA_2 copper resistance 
protein A 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 pdhD dihydrolipoyl 
dehydrogenase 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
  hydroxycinnamoyl-

CoA hydratase/lyase 
3 and 4 bp  

A3.8L  hydroxycinnamoyl-
CoA hydratase/lyase 

3 and 4 bp  

 aacA4 Aminoglycoside N(6')-
acetyltransferase type 
1 

C->A bp change intergenic 

  ABUW_03858 533bp del  
 pepN_2 Aminopeptidase N missing coverage evidence 
 emrA_3 multidrug export 

protein EmrA 
missing coverage evidence 

 smf-1_2 major fimbrial subunit 
SMF-1 

missing coverage evidence 

 yfcG_1 Disulfide-bond 
oxidoreductase YfcG 

unassigned new junction evidence 

 tuf1 elongation factor Tu unassigned new junction evidence 

Table 8 continued 
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 repE replication initiation 
protein 

unassigned new junction evidence 

 copA_2 copper resistance 
protein A 

unassigned new junction evidence 

 copB_1 copper resistance 
protein b 

unassigned new junction evidence 

 yveA Aspartate-proton 
symporter 

unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 fusA elongation factor G unassigned new junction evidence 
 rpoN RNA polymerase 

sigma-54 factor 
unassigned new junction evidence 

 aac aminoglycoside 2'-N-
acetyltransferase 

unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 pdhD dihydrolipoyl 
dehydrogenase 

unassigned new junction evidence 

 dnaB_2 replicative DNA 
helicase 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
B2.4L pyrB aspartate 

carbamoyltransferase 
1bp deletion 

   1044 and 775bp deletions 
 gdhA_2/rocC_1 glutamate 

dehydrogenase/amino-
acid permease RocC 

missing coverage evidence 

 alaA/gltT glutamate-pyruvate aminotransferase/proton/sodium-glutamate symport 
protein 

 fabG_2/glpE_1 3-oxoacyl-
reductase/Thiosulfate 
sulfurtransferase GlpE 

missing coverage evidence 

 mdlY/emrA_2 mandelamide 
hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 wecH O-
acetyltransferaseWecH 

missing coverage evidence 

 hfq RNA-binding protein 
hfq 

missing coverage evidence 

 dnaX_2 DNA polymerase III 
subunit tau 

missing coverage evidence 

 nhaP Na+/H+ antiporter missing coverage evidence 
 tuf1 elongation factor Tu unassigned new junction evidence 
 yveA Aspartate-proton 

symporter 
unassigned new junction evidence 

 yfcG_1 Disulfide-bond 
oxidoreductase YfcG 

unassigned new junction evidence 

 copA_1 copper resistance 
protein A 

unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 repE replication initiation 

protein 
unassigned new junction evidence 

Table 8 continued 
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 fusA elongation factor G unassigned new junction evidence 
 aac aminoglycoside 2'-N-

acetyltransferase 
unassigned new junction evidence 

 hchA_3 protein-nucleic acid 
deglycase 

unassigned new junction evidence 

 dnaB_2 replicative DNA 
helicase 

unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 pdhD dihydrolipoyl 
dehydrogenase 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
B7.8 hfq RNA-binding protein 

hfq 
A->T bp change intergenic 

 gltC_2 HTH-type 
transcriptional 
regulator 

missing coverage evidence 

 yxaF_3  missing coverage evidence 
 mdlY/emrA mandelamide 

hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 rpoN RNA polymerase 
sigma-54 factor 

unassigned new junction evidence 

 tuf1 elongation factor Tu unassigned new junction evidence 
 yveA Aspartate-proton 

symporter 
unassigned new junction evidence 

 yfcG_1 Disulfide-bond 
oxidoreductase YfcG 

unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 repE replication initiation 

protein 
unassigned new junction evidence 

 fusA elongation factor G unassigned new junction evidence 
 esiB_4 secretory 

immunoglobulin A-
binding protein 

unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
C2.4 pepN_2 Aminopeptidase N T->A bp change intergenic 

 smf-1_1 major fimbrial subunit 
SMF-1 

missing coverage evidence 

 rocC_2/gdhA_2 Amino-acid 
permease/Glutamate 
dehydrogenase 

missing coverage evidence 

 _01978 Extracellular serine 
proteinase 

missing coverage evidence 

 nhaP Na+/H+ antiporter missing coverage evidence 
 anoR transcriptional 

activator prtoein 
missing coverage evidence 

Table 8 continued 
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 aac aminoglycoside 2'-N-
acetyltransferase 

unassigned new junction evidence 

 tuf1 elongation factor Tu unassigned new junction evidence 
 yfcG_1 Disulfide-bond 

oxidoreductase YfcG 
unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 fusA elongation factor G unassigned new junction evidence 
 dnaB_2 replicative DNA 

helicase 
unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 ppiA peptidyl-prolyl cis-
trans isomerase A 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
C7.8 2491 hypothetical protein Q11* 

 queH Epoxyqueuosine 
reductase 

missing coverage evidence 

 mdlY/emrA mandelamide 
hydrolase/multidrug 
export protein EmrA 

missing coverage evidence 

 nhaP Na+/H+ antiporter missing coverage evidence 
 tuf1 elongation factor Tu unassigned new junction evidence 
 yfcG_1 Disulfide-bond 

oxidoreductase YfcG 
unassigned new junction evidence 

 sdaA L-serine dehydratase 1 unassigned new junction evidence 
 copA_1 copper resistance 

protein A 
unassigned new junction evidence 

 rpoN RNA polymerase 
sigma-54 factor 

unassigned new junction evidence 

 fusA elongation factor G unassigned new junction evidence 
 yveA Aspartate-proton 

symporter 
unassigned new junction evidence 

 aac aminoglycoside 2'-N-
acetyltransferase 

unassigned new junction evidence 

 dnaB_2 replicative DNA 
helicase 

unassigned new junction evidence 

 sixA phosphohistidine 
phosphatase SixA 

unassigned new junction evidence 

 higA1 antitoxin HigA1 unassigned new junction evidence 
 hvrA_2 Trans-acting 

regulatory protein 
unassigned new junction evidence 

P1.4H dnaX DNA polymerase III 
subunit tau 

missing coverage evidence 

 _1904 antibiotic biosynthesis 
monooxygenase 

missing coverage evidence 

 _1948/1949 indoleacetamide 
hydrolase/RNDfamily 
drug transporter 

missing coverage evidence 

 _1982 outer membrane 
protein E 

unassigned new junction evidence 

P1.4L rnd ribonuclease D R353S 
 hfq host factor Hfq missing coverage evidence 

Table 8 continued 
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 _0684 coproporphyrinogen 
III oxidase 

missing coverage evidence 

 _3773/3774 acyl-coA 
synthetase/AMP-acid 
ligase/R transcriptional 
regulator 

missing coverage evidence 

 _1982 outer membrane 
protein E 

unassigned new junction evidence 

P6.4  putative Na+/H+ 
antiporter 

ISAba1 + 9bp 

 _0884 putative Na+/H+ 
antiporter 

missing coverage evidence 

 _)885 biofilm-associated 
protein 

missing coverage evidence 

 pepN peptidase M1, alanyl 
aminopeptidase 

missing coverage evidence 

 dnaX DNA polymerase III 
subunit tau 

missing coverage evidence 

 _1904 antibiotic biosynthesis 
monooxygenase 

missing coverage evidence 

 filE filE missing coverage evidence 
  ISAba13 unassigned new junction evidence 
 _1802 peptidase M16 domain 

protein 
unassigned new junction evidence 

 _1982 outer membrane 
protein E 

unassigned new junction evidence 
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