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Due to their presence in all forms of life, proteins have remained at the forefront of research in 

myriad disciplines. Chemists employ covalent modifications to probe protein structure and 

function. At the simplest level of structure, a naturally occurring protein comprises a linear 

sequence of L--amino acids, each of which displays one of twenty sidechains. Simple primary 

sequence modifications can impact the complex structure and function of proteins in interesting 

ways. In this dissertation, we document our efforts to understand this relationship through 

chemical modification of peptides and small proteins. 

The sequences of natural proteins can be partially substituted with unnatural amino acids, 

generating heterogeneous-backbone foldamers. The structures and functions of bioactive proteins 

have been recreated by heterogeneous-backbone foldamers. These protein mimics show 

increased resistance to proteolytic digestion; however, no effort has yet determined the relative 

protection efficiencies of unnatural residues. Thus, we ranked the proteolytic protection imparted 

by four commonly utilized unnatural residues substituted into a host peptide. These rankings 

have since been employed in the design of bioactive protein mimics. 

Covalent cross-linking of protein sidechains is one type of modification employed to 

stabilize protein structures. Cross-links made across -helices are thought to impart structural 

stability by preorganizing the backbone into an -helical conformation; however, there is limited 
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evidence bearing directly on this hypothesis. Thus, we compared the thermodynamic impacts of 

three cross-link types on folding in a small -helix rich protein. Our results support the 

preorganization hypothesis, showing a decreased entropic penalty of folding for all three cross-

linked proteins. This finding should help inform the endeavors of the peptide and protein cross-

linking community. 

The ability of heterogeneous-backbone foldamers to mimic bioactive proteins highlights 

their potential use as therapeutics. While our group has been developing design principles, we 

have not yet achieved structural and functional mimicry of a protein larger than 56 residues. 

Thus, we use native chemical ligation to generate a library of heterogeneous-backbone ubiquitin 

foldamers, some of which fold and function comparably to native ubiquitin. In addition to 

refining our design principles, this is the first example of a heterogeneous-backbone foldamer of 

this size and functional ability. 
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1.0  INTRODUCTION 

Note: Parts of this chapter were published as Werner, H. M.; Horne, W. S. “Folding and function in α/β-peptides: 

Targets and therapeutic applications.” Curr. Opin. Chem. Biol. 2015, 28, 75-82. It is reproduced from reference 1 

with permission from Elsevier Publishing Company. 

 

Proteins have received considerable attention among countless disciplines because they are 

essential for life. Their many functions are possible because proteins are arranged into a variety 

of organized structures. Accordingly, a significant branch of chemical biology research is 

devoted to elucidating the relationship between protein structure and function.  

1.1 PROTEIN STRUCTURE 

One approach toward investigating the protein structure-function relationship is to study protein 

folding, the process that transforms an expansive, linear chain of atoms into a compact, three-

dimensional protein conformation. Remarkably, the complex transformations involved in protein 

folding are dictated solely by the primary level of protein structure, a simple linear sequence of 

amino acids.2 In nature, amino acids have a consistent chemical connectivity comprising an L-α-

backbone that bears one of twenty canonical side chains (Figure 1). 
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Figure 1. Structural hierarchy of the PCNA protein (yellow highlight=backbone, R=sidechain). PDB: 1AXC 
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Local effects and interactions within amino acids of the primary structure, such as their 

conformational preferences and hydrogen bonding interactions, dictate folding into discrete 

secondary structures—helices, β-sheets, tight turns, and flexible loops.3 Hydrophobic and polar 

interactions between secondary structures form the tertiary structure of a protein, at the center of 

which the hydrophobic core is found.4 Tertiary structure represents the most complex 

conformation achieved by a single chain of amino acids; at the height of protein structural and 

functional complexity are quaternary structures, which are formed by the assembly of several 

tertiary structure subunits.5 The organized intricacy of protein structure and function provides an 

excellent setting in which to study the effects of chemical modifications. 

While the diversity of protein building blocks is limited in terms of covalent connectivity, 

nature commonly expands this diversity through post-translational modifications.6 Such chemical 

modifications, which include phosphorylation and acetylation, regulate countless cellular and 

metabolic processes.7-8 Taking inspiration from nature, scientists have made modifications to 

protein side chains and backbones to introduce artificial covalent connectivities. Modifying 

proteins at this molecular level is a sophisticated way to probe the relationships between protein 

primary sequence, higher-order structures, and functions.  

1.2 PEPTIDE MACROCYCLIZATION THROUGH SIDE CHAIN CROSS-LINKING  

Protein stability often arises from the generation of covalent macrocycles. For instance, nature 

does this in the form of localized cyclizations such as disulfide bonds9 and N-terminal 

pyroglutamate formation, 10 or global “head-to-tail” macrocyclizations—i.e. N- to C-terminus—

exemplified by proteins such as Cyclosporin A.11 From this, chemists have been inspired to 
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leverage natural and unnatural protein side chains to form peptide macrocycles.12 Through this 

approach, naturally occurring side chains or installed unnatural moieties can be chemoselectively 

tethered together to form a cross-link, typically across a helical face (residues i→i+4, i→i+7, or 

i→i+11) (Figure 2).  
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Figure 2. Comparison of different stapling chemistries on model pentapeptides. Reproduced from Ref. ## with 

permission from The Royal Society of Chemistry. 
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Side chain cross-linking results in the stabilization of protein structure—typically -helices—

and is often referred to as “peptide stapling.”13 

 The diversity of naturally occurring protein side chains allows for a variety of cross-

linking approaches. The earliest example of cross-linking in protein chemical synthesis involved 

the direct intramolecular cyclization of an amine (lysine) with a carboxylic acid (aspartic or 

glutamic acid) to form a lactam cyclized bioactive analog of human growth hormone-releasing 

factor.14 Another area of cross-linking research introduces a molecule that acts as a bifunctional 

linker between pre-existing side chains.12 For instance, work in the Pentelute lab focuses on the 

addition of perfluoroaryl molecules that covalently connect two cysteine side chains. Their most 

recent efforts resulted in cell-penetrating peptides with increased proteolytic stability attributed 

to perfluoroaryl cross-links.15 

The field has now shifted focus toward chemical modification of side chains to introduce 

interesting novel cross-linking functionalities. For example, the Verdine group pioneered the 

area of hydrocarbon-stapled peptides, which can be generated from the ring-closing metathesis 

of side chains that display terminal alkenes.16 A variety of chemoselective approaches can be 

employed to covalently cross-link protein side chains. For example, click chemistry can be used 

to install a triazole cross-link between side chains with terminal alkynes and azides.17 

Additionally, our group has developed oxime cross-linking, which represents another mild 

solution-phase approach toward covalent cross-linking.18 Such cross-linking approaches have 

increased α-helix stability in many protein systems, resulting in effective protein-protein 

interaction mimics and peptide therapeutics.19 Though the field has speculated as to the cause of 

structural stability increases,20 no work before ours (Chapter 3) had reported direct evidence 

bearing on this issue. 
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1.3 BACKBONE MODIFICATION AND FOLDAMERS 

Recently, a subset of protein modification research has focused on altering protein backbones. 

Protein backbone modification is often employed to advance our understanding of nature.21 Such 

examples include the use of backbone modification to probe bioactive structures of interleukin-

8,22 and to provide insight into controlling the dynamics of protein folding.23 Furthermore, 

judicious backbone modifications can be used to improve upon nature, resulting in proteins with 

enhanced folded24 and proteolytic stabilities.25 Modifications made to the backbones of 

individual amino acids generate so-called “unnatural” amino acids.21 The term “foldamer” refers 

to an oligomer of unnatural amino acids that folds into a discrete, compact structure reminiscent 

of a protein.26 In addition to recreating the structure of their natural counterparts, foldamers often 

exhibit functional benefits, including increased resistance to degradation by enzymes.1, 25 

Foldamers can be categorized by the diversity of their constituent building blocks. While 

homogeneous-backbone foldamers contain only one type of unnatural amino acid, their 

heterogeneous-backbone counterparts are comprised of an interspersed mixture of both unnatural 

and natural (i.e. L-α-) amino acids (Figure 3).27 
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Figure 3. Chain compositions of naturally occurring α-peptides and proteins, homogeneous-backbone foldamers, 

and heterogeneous-backbone foldamers. 

 

Among homogeneous-backbone foldamers, most work has investigated the interesting properties 

of β-peptides28-29 and the applications of “mirror image proteins”, which contain exclusively D-

α-residues.30 Interestingly, foldamers are not limited to amino acid-like building blocks. A 

significant subset of foldamer research studies aromatic monomers that can produce protein-like 

folds in their oligomeric states.31 

A broad field of research has demonstrated that unnatural backbone analogues of α-

peptides can adopt similar folds while resisting enzymatic degradation. Among the many 

backbones explored in this context, chains that blend α-amino acid residues with β-amino acid 

residues (α/β-peptides) have emerged as an important and well-studied class of heterogeneous 

backbone foldamers.1 α/β-peptides of a moderate length can show biological function resulting 

from binding to a natural protein receptor (Table 1).  
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Table 1. Bioactive α/β-peptides with therapeutic potential. 

 

α-Peptide 

Prototype 
Length 

β-Residue 

Content 

Secondary 

Structure 
Receptor Function (Implication) 

BH3 domains 26-mer 27% α-helix Bcl-xL, Mcl-1 Apoptosis regulation (cancer) 

gp41 (CHR 

domain) 
38-mer 29% α-helix 

gp41 (NHR 

domain) 
Viral cell entry (HIV) 

Neuropeptide Y 12-mer 17% α-helix Y4R 
Gastrointestinal regulation 

(various) 

PTH1-34 34-mer 18% α-helix PTH1R 
Calcium regulation 

(osteoporosis) 

GLP-1 31-mer 16% α-helix GLP1R Glucose regulation (diabetes) 

VEGF 19-mer 32% non-regulara VEGFR 
Angiogenesis (cancer, 

diseases of the eye) 

Anginex 34-mer 9% β-sheet Gal-1 
Angiogenesis, (cancer, 

diseases of the eye) 

ZVEGF 39-mer 15%a helix-turn-helixa VEGFR 
Angiogenesis, (cancer, 

diseases of the eye) 
a Cyclized via a disulfide bond. This table is adapted from ref. 1 with permission from Elsevier Publishing Company. 

 

β-Residues are among the most common building blocks in foldamer research, and a 

number of interesting biological activities have been reported for appropriately designed β-

peptides. Although β-residues are structurally diverse, those found in bioactive α/β-peptides 

generally fall into one of two categories (Figure 4): β3 or βcyc.  
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Figure 4. An α-peptide, example α/β-peptides, and their constituent residue structures. Replacing one or more α-

amino acid residues in a biologically active α-peptide sequence with β-residues can lead to heterogeneous-backbone 

α/β-peptides with native-like function and improved biostability. Chemical structures and abbreviations are shown 

for a natural -residue alongside those of the -residues This figure is adapted from ref. 1 with permission from 

Elsevier Publishing Company.  

 

β3-Residues are backbone-homologated variants of α-residues. In α/β-peptides, β3-residues offer 

the advantage of retaining protein-like side chain functionality while increasing backbone 

flexibility with an additional rotatable bond. In βcyc-residues (e.g., ACBC, ACC, ACPC, APC), 

one of the backbone torsions is constrained by a carbocyclic or heterocyclic ring. This offers the 

advantage of exerting control over folding behavior of the β-residue based on selection of ring 

size and stereochemistry. 

Successfully modifying the backbone of a natural protein is not trivial. Even an 

ostensibly minor modification can cause unexpected and detrimental consequences to the folding 

of a well-ordered sequence. This highlights the need to develop effective design strategies for the 

generation of foldamers and other backbone-modified proteins. 

1.3.1 Foldamer Design Strategies 

Early work on foldamer mimicry of the BH3 domain helps define two paradigms for the 

development of chemically modified proteins: structure- vs. sequence-based design. BH3 



 

11 

domains are conserved pro-apoptotic regions of the Bcl-2 protein family, which are crucial 

regulators of apoptosis.32 Pioneering structural studies elucidated several helical folding patterns 

available to α/β-peptides with an alternating 1:1 backbone repeat, and one of these scaffolds was 

used to develop an α/β-peptide BH3 domain mimic.33 Structure-guided introduction of side 

chains on the foldamer scaffold based on the known structure of the Bak/Bcl-xL interface 

resulted in an α/β-peptide that bound Bcl-xL, albeit with affinity much weaker than the prototype 

α-peptide BH3 domain. Replacement of the C-terminal half of the alternating α/β-peptide with a 

pure α-peptide backbone resulted in a chimeric oligomer with tight binding affinity for Bcl-xL as 

well as the ability to induce release of mitochondrial cytochrome C in cancer cell lysates. 

Unfortunately, the α-residue rich portion of the chimera proved highly susceptible to proteolytic 

degradation. 

Shortly after the work on chimeric α/β-peptide BH3 mimetics, an alternate design 

approach was developed. Starting from the BH3 domain of Bcl-2 family member Puma, a series 

of α/β-peptide variants were examined in which the side chain sequence of the natural ligand was 

displayed on all possible α/β3-peptide backbones with an ααβαααβ repeat. This “sequence-

guided” residue replacement strategy was inspired by findings that such modification can 

generate α/β-peptides with complex helix-bundle folding patterns.34 Screening seven oligomers 

based on the Puma BH3 domain yielded an α/β-peptide with Bcl-xL binding affinity 

indistinguishable from the natural α-peptide and significantly improved proteolytic stability. 

Later structural studies confirmed the binding mode of the Puma-based α/β-peptide with Bcl-xL 

was identical to that of natural BH3 domains.35 An important difference between the Puma α-

peptide and its α/β-peptide mimic was that the unnatural backbone lost the capacity to bind 

tightly to the anti-apoptotic Bcl-2 family protein Mcl-1; however, structure-guided side-chain 
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modification was able to restore this function.36 The development of α/β-peptides capable of 

modulating apoptotic signaling in the Bcl-2 protein family is an important early example of 

sequence-based backbone modification as a strategy for generating bioactive and protease-

resistant oligomers. 

The rapid success of sequence-based design as a strategy to generate α/β-peptide mimics 

of BH3 domains suggested it might be applicable to other prototype α-peptide sequences. 

Parathyroid hormone (PTH) is an 84-residue protein GPCR ligand that helps to regulate blood 

calcium levels. The 34-residue N-terminal peptide from PTH (PTH1-34) has the same activity as 

the full length protein and is a clinically used drug for the treatment of osteoporosis.37 Structural 

studies on the interaction of PTH with its receptor (PTH1R) suggest that residues 15-34 fold to 

form an α-helix that binds with high affinity to the GPCR extracellular domain, while the N-

terminal region contacts the transmembrane domain and is responsible for signaling.38 Sequence-

guided α→β3 residue replacement in an αααβ pattern generated an α/β-peptide PTH1-34 analogue 

with comparable receptor binding affinity in vitro and agonist activity in cell-based assays 

(Figure 5).39  
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Figure 5. Design of α/β-peptide mimics of the α-peptide GPCR ligand parathyroid hormone (PTH). (a) 

Sequences of the prototype α-peptide PTH-α, residues 1–34 of the native hormone, and its α/β-peptide mimic PTH-

α/β. (b) Comparison of in vitro bioactivity data for PTH-α and PTH-α/β: relative association affinity for parathyroid 

hormone receptor-1, relative half-life to proteolytic degradation by the enzyme trypsin, and relative activity in a cell-

based assay of cyclic adenosine monophosphate (cAMP) production. (c) Summary of key in vivo data obtained for 

PTH-α and PTH-α/β in mice: blood calcium levels after treatment with the indicated peptide at a dose of 20 nmol/kg 

and relative concentration of peptide remaining in serum as a function of time after treatment. This figure is adapted 

from ref. 1 with permission from Elsevier Publishing Company.   
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A particularly significant result of this work was the demonstration that α/β-peptide mimicry of 

the α-peptide prototype translated from in vitro experiments to an in vivo context. Mice treated 

with PTH1-34 or an α/β-peptide analogue showed identical initial spikes in blood calcium levels; 

however, a dramatic difference was observed in the duration of the effect. The α/β-peptide was 

able to sustain increased blood calcium several hours after levels in mice treated with the α-

peptide had returned to baseline. Quantification of peptide in serum suggested that this effect 

results from enhanced stability of the α/β-peptide to proteolytic degradation. The development of 

α/β-peptide mimics of parathyroid hormone is the first example of sequence-guided backbone 

alteration leading to an agent with biological efficacy in vivo. The α/β-peptide showed longer 

circulation times and increased duration of effect compared to the α-peptide administered at the 

same dose.  

Recent sequence-based designs of foldamers have branched out beyond β-residue 

incorporation alone, increasing the heterogeneity of protein backbones. Work in our group has 

produced heterogeneous-backbone foldamer mimics of GB140 and zinc finger sp1-324 that 

contain Aib, N-Me-, and D-residues in addition to β-residues. From the Gellman lab, sequence-

guided α→β3 residue replacement in a two-helix VEGF-binding α-peptide, along with 

incorporation of βcyc-residues and Aib, generated a heterogeneous-backbone foldamer mimic 

with identical affinity for VEGF (Figure 6). 41  
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Figure 6. Design of a heterogeneous-backbone foldamer mimic of a phage-derived α-peptide that inhibits the 

interaction between VEGF and its receptors. (a) Sequences of the prototype VEGF-binding α-peptide ZVEGF-α and 

its heterogeneous-backbone foldamer mimic ZVEGF-α/β. (b) Crystal structure of ZVEGF-α/β bound to VEGF 

(PDB: 4WPB). (c) Comparison of in vitro bioactivity data for ZVEGF-α and ZVEGF-α/β: relative association 

affinity for VEGF, relative half-life to proteolytic degradation by the enzyme proteinase K, and relative activity in a 

cell-based assay of VEGF-induced proliferation. This figure is adapted from ref. 1 with permission from Elsevier 

Publishing Company. 
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Notably, the foldamer showed improved stability to proteolytic degradation in vitro and was able 

to inhibit VEGF-induced proliferation in cell-based assays. Despite these promising results, 

sequence-based design is not yet a perfected approach. For example, sequence-based α→β3 

substitutions, quite successful in the PTH analogues described above, were not tolerated in GLP-

1; incorporation of just three β3-residues in the 30mer abolished agonist activity entirely.42 The 

use of βcyc-residues proved much more effective; receptor binding affinity was retained in an 

analogue with five α→βcyc replacements in an αααβ pattern. Interestingly, the 12-residue N-

terminal segment of GLP-1 proved quite sensitive to backbone alteration; however, this problem 

was solved by the judicious use of two α-aminoisobutyric acid residues to block known 

proteolytic cleavage sites near the N-terminus. These optimized heterogeneous-backbone 

analogues of GLP-1, similar to PTH(1-34), were found to have enhanced in vivo efficacy. These 

advances highlight the utility of various unnatural amino acids in the sequence-based design of 

heterogeneous-backbone foldamers. 

 Heterogeneous-backbone foldamers are a class of molecules with significant therapeutic 

potential, especially in cases where the biological target is an extended protein surface. While 

early studies on modified backbones focused heavily on the mimicry of natural protein structure, 

more recent work has shifted toward the functional mimicry of bioactive α-peptides. These 

studies have shown that heterogeneous-backbone foldamers can be generated with biological 

properties identical to a prototype α-peptide, but with increased stability to degradation by 

proteases in serum. Examples of heterogeneous-backbone foldamers with long in vivo lifetimes 

represent a significant milestone toward improving bioavailability, a major limitation of current 

α-peptide pharmaceuticals. Although questions of potential toxicity and immunogenicity remain 
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areas for further investigation, heterogeneous-backbone foldamers already show tremendous 

promise as therapeutic agents and appear to be on a trajectory toward potential clinical use. 

1.4 GOALS OF THIS WORK 

While impactful findings have advanced the field of protein and peptide modification over the 

last 30 years, many open questions remain. Heterogeneous-backbone foldamers regularly show 

increased resistance to proteases; however, their proteolytic stability is often examined after the 

fact rather than a consideration at the outset of foldamer design. In a protein backbone 

interspersed with natural and unnatural residues, what is the most effective unnatural residue 

substitution strategy to achieve maximal protease protection with minimal artificial building 

block content? We investigate this question by undertaking a quantitative comparison of 

backbone-modified peptide proteolysis in Chapter 2. From this work, we propose that proteolytic 

stability be considered at the outset of foldamer design. Design considerations like these have the 

potential to yield heterogeneous-backbone mimics of natural proteins with predictable 

proteolytic stability. 

 The ability of side chain cross-links to stabilize protein structures, particularly α-helices, 

has long been appreciated in the study of intrinsically disordered proteins. The origin of this 

stabilizing effect is thought to be the result of backbone preorganization; however, no data 

bearing on this hypothesis has been reported. Can this hypothesis be corroborated? What 

thermodynamic variables are significant during the folding events of proteins with sidechain 

cross-links? We use a rigorous thermodynamic analysis of three common cross-link moieties to 
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address these questions in Chapter 3. We hope our results will inform the usage of sidechain 

cross-linking in the stabilization of α-helices. 

 Finally, the peptidomimetics community would greatly benefit from a set of rational 

design principles for heterogeneous-backbone foldamers. Our group has been working toward 

generating such principles through foldamer mimicry of protein GB1 and zinc finger sp1-3. We 

have successfully recreated these tertiary structures on heterogeneous-backbones; however, our 

efforts were limited by our synthetic approach. How can we target heterogeneous-backbone 

foldamers larger than 50 residues? Can our current design principles be applied to protein targets 

of increased structural and functional complexity? In Chapter 4, we examine these questions 

through the synthesis, structural characterization, and functional analysis of a heterogeneous-

backbone ubiquitin library. Applying our design principles to ubiquitin has not only allowed for 

their refinement, it has resulted in the largest known heterogeneous-backbone foldamer with 

significant function. 
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2.0  PEPTIDE BACKBONE COMPOSITION AND PROTEASE SUSCEPTIBILITY: 

IMPACT OF MODIFICATION TYPE, POSITION, AND TANDEM SUBSTITUTION 

Note: This work was published as H.M. Werner, C.C. Cabalteja, W.S. Horne* "Peptide backbone composition and 

proteolytic susceptibility: Impact of modification type, position, and tandem substitution." ChemBioChem 2016, 17, 

712-718. It is reproduced from reference 25 with permission from John Wiley and Sons Publishing Company. 

 

The clinical utility of peptides is limited by their rapid degradation by endogenous proteases. 

Modification of the peptide backbone can generate functional analogues with enhanced 

proteolytic stability. Existing principles for the design of such oligomers have focused primarily 

on effective structural mimicry. A more robust strategy would incorporate a rational approach for 

engineering maximal proteolytic stability with minimal unnatural residue content. Thus, we 

performed a systematic comparison of the proteolytic resistance imparted by four backbone 

modifications commonly employed in the design of protease-stable analogues of peptides with 

complex folding patterns. The degree of protection was quantified as a function of modification 

type, position, and tandem substitution in the context of a long, unstructured host sequence and a 

canonical serine protease. These results promise to inform ongoing work to develop biostable 

mimics of increasingly complex peptides and proteins.  
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2.1 INTRODUCTION 

The involvement of proteins in human pathology is of significant research interest, and 

pharmaceuticals that target proteins are in high demand. While small molecules can effectively 

bind to pockets that natively recognize small ligands, disrupting protein-protein interactions 

(PPIs) involving extended interfaces remains a substantial challenge.43-44 One solution to this 

problem is the use of larger peptide and protein based scaffolds, which have shown the unique 

ability to inhibit certain PPIs where small molecules have failed.45 The promise of peptide 

therapeutics is attenuated in part by poor oral bioavailability,46-48 often necessitating 

administration by invasive and inconvenient parenteral methods.46-47, 49-51 A significant 

contributor to poor peptide bioavailability is rapid degradation by endogenous proteases, which 

can result in very short in vivo lifetimes.46-48, 50-52 

Alterations to the chemical connectivity of the L-α-peptide backbone can be a useful 

means to improve proteolytic stability, and targeted backbone modification in short peptides has 

a rich history in the field of peptidomimetics research.53 More recent work has explored modified 

backbones in the context of larger oligomers, seeking to recreate complex functions of diverse 

bioactive peptides and proteins on protease-resistant scaffolds. Found at one end of the spectrum 

of such efforts is the introduction of one or two unnatural building blocks in a natural α-peptide 

to improve efficacy or stability.54-56 This tactic offers the advantage of employing a biological 

sequence as the prototype, and even limited unnatural backbone content, strategically placed, can 

lead to dramatically altered properties. At the other extreme are highly unnatural oligomeric 

backbones with protein-like folds and functions, often termed “foldamers.”26 Foldamers 

comprised entirely of a single type of unnatural monomer are inert to proteases and can show 
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interesting biological activities;29, 57-60 however, the design of completely unnatural sequences 

that effectively mimic natural peptides can be challenging.  

Recent results suggest significant potential for oligomers in which ~20-30% of the α-

residues in a bioactive sequence are replaced by some unnatural analogue.1, 21 Such backbone 

heterogeneity takes on another dimension when many classes of unnatural building blocks are 

incorporated alongside α-residues in a single chain. The use of heterogeneous-backbone 

foldamers over their homogeneous-backbone counterparts has the advantage of drawing from the 

wellspring of natural peptides for the design of unnatural analogues. In most examples of 

heterogeneous-backbone foldamer design, α-residue replacements are made in a manner guided 

primarily by structural considerations (e.g., maintaining local folding pattern and key interactions 

for receptor binding). While structural considerations alone can generate adequate proteolytic 

stability for biological applications, it would be valuable to additionally elucidate and employ an 

understanding of the relationship between proteolytic resistance and unnatural analogues. A 

combined approach including this consideration would enable the construction of oligomers 

where proteolytic protection is considered alongside structural issues at the outset. 

Considering this approach, we pursued a systematic examination of the proteolytic 

protection imparted by four of the most common modifications employed in the design of 

heterogeneous-backbone foldamers (Figure 7): N-Me-α-residues, the Cα-methylated α-residue 

Aib, D-α-residues, and β3-residues. 
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Figure 7. Chemical structures of the protease susceptible amide bond in a peptide, and the natural or unnatural 

residues examined. Systematic backbone modification patterns varying unnatural residue types, sequence positions, 

and tandem substitution. This figure is adapted from reference 25 with permission from John Wiley and Sons 

Publishing Company. 

 

N-methylation in peptides and proteins has long been significant to medicinal and biological 

chemistry.61-62 N-methylated analogs of substance P,63 LH-RH,64 β-amyloid peptide,65-67 

somatostatin,68 G protein ligands,56 endothelin-A/-B antagonists,69 αvβ3 receptor inhibitors,70 and 

Mcl-1 inhibitors71 have been generated, all exhibiting proteolytic stability greater than their non-

methylated counterparts. While the proteolytic stability of Aib can be traced back to the mid 

1930s,72 its resistance to enzyme degradation did not gain much attention until the 90s. Aib 

residue substitutions in p53,73 cell-penetrating peptide model amphipathic peptide (MAP),74 and 

antimicrobial peptide lipopeptaibol trichogin GA IV75 have proven effective in conferring 

proteolytic stability. D-α-amino acids, the enantiomers of natural L-α-amino acids, came under 

scrutiny during the mid-20th century, directly resulting from Krebs’ discovery of D-amino acid 

oxidase;76 however, the incorporation of D-amino acids in an effort to prevent enzymatic 

degradation was not envisioned until the early 1970s. Since then, the proteolytic stability 
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afforded by D-residues has been studied in proteins such as luteinizing hormone releasing 

factor,77-78 MUC2,79 magainin,80 Src kinase (SH3)25 and amyloid peptide Aβ(1-42).81-82  β3-

residue inclusion in biologically relevant molecules has surfaced over the last few decades, 

including work with bradykinin,83-84 the major histocompatibility complex (MHC),85-87 BH3-

domains,27, 88 gp41 of HIV,89 and most notably, an in vivo application in Teriparatide.39 

Combinations of these unnatural amino acids in a single peptide are scarce. Work in our group 

has utilized Aib, D-, N-methylated, and β3-amino acid substitutions in the protein GB1, 

successfully achieving protein-like tertiary folding behavior similar to that of wild type.40  While 

the half-life of the mutant GB1 was not increased, mass spectrometry analyses showed that large 

peptide fragments remained intact in the presence of the promiscuous proteinase K. 

Although each of these building blocks has been extensively studied in isolation,62, 74, 79, 90 

no prior report has sought to compare their effectiveness at shielding a substrate from proteolytic 

hydrolysis. Motivated by this gap in knowledge, we sought to address a number of open 

questions: (1) How do the variables of backbone modification type and position relative to a 

cleavage site affect protease efficiency?  (2) What are the molecular mechanisms by which 

various modified backbones exert proteolytic protection? (3) How do multiple backbone 

modifications work in concert to protect a peptide from hydrolysis? Gaining a deeper 

understanding of these issues promises new design strategies for achieving maximal proteolytic 

protection in heterogeneous-backbone foldamers with minimal unnatural residue content. 
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2.2 HOST PEPTIDE SEQUENCE AND EXPERIMENTAL DESIGN 

As outlined above, the primary goals at the outset of the present work were to gain new insights 

into the relationship between peptide backbone composition and proteolytic susceptibility, as 

well as the molecular origins of observed trends. To this end, we chose to carry out in vitro 

studies with an isolated sequence-specific protease rather than a promiscuous enzyme or whole 

serum. Chymotrypsin is the type example of the largest subfamily of serine proteases, which 

account for ~1/3 of total proteases in humans.91 Its prevalence has led to a robust literature on 

structure, mechanism, and substrate recognition behavior (spanning well beyond the primary 

cleavage site).92-93 While chymotrypsin substrate scope is well studied, the vast majority of that 

work has focused on short peptides, many of which contain unnatural leaving groups to facilitate 

spectroscopic analysis. We sought a host sequence for backbone modification that was more 

analogous to what the enzyme might encounter in the context of a larger bioactive peptide or 

protein.   

2.2.1 Investigation of Potential Host Sequences 

Our original concept was of an α-peptide that would: 1) be accessible by solid-phase peptide 

synthesis (SPPS), 2) contain no appreciable secondary structure, 3) be easily recognized and 

cleaved by chymotrypsin, and 4) yield digestion products visible by MALDI-TOF MS. We 

examined an initial set of three peptides in an effort to satisfy these requirements. α-peptides A, 

B, and C were derived from the C-terminal heptad repeat of gp41-5,94 the Z domain of 

Staphylococcal Protein A,95 and a subunit derived from the coiled coil GCN4-p196 (Figure 8).   
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Figure 8. Sequences of α-peptides A-C.  Putative cleavage sites are marked with a vertical red line. 

 

All three peptides were successfully synthesized by SPPS and appeared unfolded by circular 

dichroism spectroscopy (Figure 9). 

 

 

Figure 9. Circular dichroism spectra of peptides A-C. 

 

Although no peptide met all original criteria, we gleaned some important perspectives on our 

experimental design from this set of experiments. There were immediate complications with two 

of the three peptides. The digestion of peptide B was inefficient, as it required a working enzyme 

concentration nearly ten times higher than previous experiments, and we abandoned it in an 

effort to utilize enzyme frugally. The proteolysis of peptide C halted at roughly 50% peptide 

remaining. By HPLC, this looked like the result of secondary proteolysis, in which the digested 

peptide fragments have a higher affinity for chymotrypsin than did the parent peptide. While 



 

26 

peptide A initially looked promising, other cleavage sites were revealed upon initial efforts of 

unnatural amino acid incorporation. 

After discovering that chymotrypsin was hydrolyzing peptide bonds C-terminal to 

unexpected residues—namely, leucine, glutamic acid, and threonine—in all three of our initial 

peptides, we decided that a slight modification of our design was needed. Quantitative 

comparisons of protection would only be valid if we were monitoring a single cleavage site. If 

another peptide bond were easily cleaved once the initial site was protected, then the calculated 

half-life would be an underestimation of the true protection being afforded by the unnatural 

residue. Thus, we rigidified the third criterion for the host peptide to 3) be easily recognized and 

cleaved by chymotrypsin at a single cleavage site. 

2.2.2 Final Host Peptide Design and Backbone Modifications 

We loosely based the host peptide on a recently reported sequence motif selected by phage 

display for high inherent resistance to intestinal proteases, including chymotrypsin.97 We fused 

two of these motifs in a single chain and introduced a defined chymotrypsin-specific cleavage 

site (AY↓K)92 at the center to generate 21-residue α-peptide 2.1 (Figure 10).  

 

 

Figure 10. Prototype α-peptide 2.1 with putative site of proteolysis (dashed line) and corresponding Schechter-

Berger nomenclature. Positions of unnatural residue substitution are highlighted in gray. This figure is adapted from 

reference 25 with permission from John Wiley and Sons Publishing Company. 
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Peptide residues in gray are labeled according to Schechter-Berger nomenclature as “Pn”; n 

increases with distance away from the cleavage site, unprimed toward the N-terminus and 

primed toward the C-terminus. Peptide 2.1 is processed cleanly by chymotrypsin, resulting in 

two products observed by MALDI-TOF-MS from hydrolysis of the amide between residues 

Tyr11 and Lys12. Monitoring the reaction time course by HPLC reveals a single-phase 

exponential decay with a half-life of 8 min for 200 μM peptide in the presence of 0.25 μM 

chymotrypsin (Figure 11, left). As expected, we did not observe significant cleavage of the 

Y11A mutant over several days (Figure 11, right). 

 

 

Figure 11. Sequences, full progress degradation curves, and calculated half-lives of peptide 2.1 and Y11A. 

Observed proteolysis products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each 

peptide are indicated in its sequence. Data points represent at least two replicate proteolysis experiments, while error 

bars represent the SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit: Y = (Y0) e-kx 

(solid curve). 

 

To explore the effect of backbone modification on proteolytic stability, we synthesized a 

library comprising 32 analogues of peptide 2.1 in which individual α-residues in the prototype 

were replaced by one of four unnatural analogues: N-Me-α-residues, the Cα-Me-α-residue Aib, 
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D-α-residues, or β3-residues (Figure 7). These four classes of backbone modification were each 

scanned across eight positions surrounding the cleavage site (Arg7 to Ala14, P5 to P3’ in the 

Schechter and Berger nomenclature).98 In cases where the α-residue was replaced by N-Me-α-, 

D-α-, or β3-residues, the side chain from the prototype sequence was retained after backbone 

modification. In contrast, α→Aib substitution involves the loss of a side chain functional group. 

We therefore synthesized a set of alanine mutants of the parent sequence to isolate the effects of 

Cα-methylation from any potential change in proteolytic susceptibility resulting from the 

removal of a side chain. As expected, with the exception of Y11A, these alanine mutants were 

digested by chymotrypsin at rates comparable to that of peptide 2.1 (Figure 12). 

 

 

Figure 12. Normalized peptide half-lives for Xxx→Ala mutants of peptide 2.1 in the presence of -chymotrypsin. 

Half-lives are normalized to the half-life of peptide 2.1 (dotted line). Error bars represent the error in the fit of the 

full progress curve. 
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Peptide 2.1 is highly resistant to cleavage by the enzyme outside the engineered 

hydrolysis site; the Y11A mutant showed no apparent digestion at the engineered cleavage site 

up to 5 days under the same conditions (Figure 11, right). α-Peptide 2.1 and its Aib- and D-

residue-modified counterparts lack any measurable secondary structure by circular dichroism 

(CD) spectroscopy (Figure 13). 

 

 

Figure 13. Circular dichroism (CD) scan spectra of α-host peptide compared with Aib (left) and D-residue (right) 

substituted peptides. This figure is adapted from reference 25 with permission from John Wiley and Sons Publishing 

Company. 

 

This is an important feature as it enables the attribution of protection afforded by various 

modifications to changes in backbone chemical connectivity rather than changes in the folded 

state. 

Each of the peptides described above was synthesized by Fmoc solid phase methods and 

purified by preparative reverse phase HPLC; the identity and purity of the final products were 

assessed by MALDI-TOF-MS and analytical HPLC, respectively. After synthesis and 

purification, each peptide was subjected to proteolysis under identical experimental conditions 

(50 nM chymotrypsin, 160 μM peptide, 50 mM TBS buffer pH 7.5) and the reactions were 
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monitored over time by analytical HPLC and MALDI-TOF-MS. Some peptides exhibited 

digestion profiles that plateaued at a non-zero value (Figure 14). 
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Figure 14. Representative example of halted proteolysis. In these cases, half-lives were calculated from the 

extrapolated full progress curve (dotted line). 

 

This has previously been observed during proteolysis of backbone-modified peptides.56, 99-101 We 

attribute these observations to enzyme inactivation,102 which we investigated further in 

unpublished work. While enzyme inactivation is an indirect form of proteolytic protection, the 

focus of the present study is on the inherent susceptibility of a particular backbone. Thus, we 

treated these data by extrapolating a full progress digestion curve from the time points collected 

before product inhibition. Assuming that under different circumstances the initial rate of 

proteolysis could be sustained, this treatment of the data provides the most conservative estimate 

of the degree of protection that could be afforded by a particular backbone modification.  

The resulting dataset for single residue substitutions is summarized as a set of normalized 

half-life values for degradation as a function of backbone modification type and position (Figure 

15). 
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Figure 15. Normalized peptide half-lives as a function of substitution type and position. α→Aib half-lives are 

normalized to the corresponding Ala mutants of peptide 2.1. All others are normalized to the half-life of peptide 2.1. 

Error bars represent the error in the fit of the full progress curve. An asterisk over a bar indicates that proteolysis 

was observed outside of the putative site. This figure is adapted from reference 25 with permission from John Wiley 

and Sons Publishing Company. 
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2.3 DISCUSSION OF BACKBONE MODIFICATION IMPACT 

2.3.1 Single Substitution by Type and Position 

Predictably, modification of the backbone at the primary specificity site P1 (i.e., Tyr11) resulted 

in significant protection (100-1000 fold increased half-life). The more intriguing aspect of the 

data were trends in the moderate changes in proteolytic susceptibility observed upon substitution 

near, but not at, the chymotrypsin cleavage site. Here both the magnitude and profile of 

protection differed for each backbone modification type. A summary of the key observations for 

each class of unnatural monomer is provided in the following section, along with interpretation 

of some results in terms of potential molecular mechanisms of protection. 

In general, N-Me-α-residue incorporation provided the smallest degree of proteolytic 

protection among the unnatural monomer types examined. Only three positions clustered directly 

around the cleavage site (P1-P2ʹ) gave rise to >10-fold improvement in stability relative to the 

prototype α-peptide. This result is not surprising, given that N-Me-α-residues are also most 

similar among the modified backbones examined to natural α-residues in folding propensity and 

structural properties. We propose that the positional dependence of N-Me-α-residue 

incorporation can be interpreted based on putative enzyme–substrate hydrogen bonds. Like most 

proteases, chymotrypsin recognizes substrates in an extended conformation, resulting in 

hydrogen bonds to alternating residues at sites P3, P1, and P2ʹ (Figure 16).92  
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Figure 16. Proposed mode of protection for N-Me-residues: chymotrypsin (surface) complexed with a 

representative non-covalent inhibitor (PDB: 1GL0). Amide protons of residues P3, P1, and P2’ are hydrogen bonded 

(hashed black lines) to chymotrypsin. This figure is adapted from reference 25 with permission from John Wiley and 

Sons Publishing Company. 

 

Since amide methylation replaces a hydrogen-bond donor with a potential steric clash, it would 

be expected to provide protection only when incorporated on the face of substrate that engages 

the enzyme binding pocket. This hypothesis is supported by the observation that α→N-Me-α 

replacement at P1 or P3 results in strong to moderate proteolytic protection, while the same 

modification at P2 leads to no change in susceptibility relative to the parent α-peptide (Figure 

15). The proteolytic resistance imparted by P1ʹ N-methylation is likely the result of a steric clash 

during formation of the acylenzyme intermediate.103 

Cα-methylation through incorporation of Aib provided protection over a wider range from 

the cleavage site relative to α→N-Me-α substitution; >10-fold protection was observed from P3-

P2ʹ and near 10-fold protection at P4 and P2ʹ. Interestingly, >2-fold protection was observed as 

far as from the cleavage site as position P5, where all other backbone modifications examined 

had no effect. The complete protection observed upon substitution at P1 is unsurprising, given 

the loss of the key Tyr side chain. In order to focus analysis of data from the other peptides in the 
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Aib series on the contribution of backbone methylation, we normalized the half-life of each to 

the corresponding Ala mutant of prototype α-peptide 2.1. The strong protection conferred by Cα-

methylation at P1ʹ likely results from a steric clash around the scissile amide bond; however, the 

behavior of the remaining Aib mutants is more readily interpreted as a result of altered 

conformational preferences. 

Compared to L-α-residues, Aib has a more constrained range of accessible backbone 

conformations, favoring α-helical secondary structure.104 An induced folded structure in the 

substrate would certainly alter proteolytic processing; however, analyses of the Aib series by CD 

indicated no measurable change to the random coil signature observed for the prototype peptide 

(Figure 13). We reasoned that Aib, although not inducing a particular folded state, may be 

altering the denatured ensemble to disfavor chymotrypsin recognition of the substrate. Support 

for this hypothesis can be found in the analysis of 11 published crystal structures of the enzyme 

in complex with inhibitors that mimic natural substrate recognition.105-110 A Ramachandran plot 

comparing the average backbone conformation observed at substrate positions P4-P2ʹ to a 

previously calculated profile for Aib shows that the conformation necessary for effective 

recognition by the enzyme falls in a disallowed region for the unnatural residue (Figure 17).111-

112 
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Figure 17. Proposed mode of protection for D-/Aib residues: Overlaid Ramachandran plots of L-α-residues, D-α-

residues, and Aib. The average dihedral angles observed at each inhibitor residue (P4-P2’) are represented by a 

black point. This figure is adapted from reference 25 with permission from John Wiley and Sons Publishing 

Company. 

 

Among the backbone modification types examined, alteration of Cα stereochemistry 

through single incorporation of D-α-residues resulted in the greatest degree of protection over the 

widest range. >10-fold increases in half-life were observed after incorporation of a D-residue at 

any of six positions surrounding the cleavage site (P4-P2ʹ). Known features of chymotrypsin 

stereospecificity explain some aspects of the data;113-114 however, the dramatic protection 

resulting from D-residue incorporation at remote sites was surprising. Literature precedent 

suggests the S3 site of chymotrypsin is not particularly stereospecific,92, 115 but these conclusions 

were based on analysis of short 4-5 residue substrates. Our results show that, in a more native-

like extended oligomer, D-residues impart strong protection as far from the cleavage site as P4. 

As with Cα-methylation, the impact of D-residue incorporation on proteolytic susceptibility can 

be most readily interpreted in terms of an altered ensemble constituting the unfolded state. As 
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with Aib, the typical substrate conformation at residues P4-P2ʹ falls in the disallowed region of 

the D-residue Ramachandran plot (Figure 17). 

Peptides containing α→β3 substitutions showed a moderate degree of protection from 

degradation by chymotrypsin. Substitution adjacent to the site of hydrolysis (P1 or P1ʹ) resulted 

in only a 100-fold improvement in proteolytic stability (compared to >1000-fold for Aib), and 

the range of >10-fold protection only extended over four residues (P3-P1ʹ). Although the extra 

methylene unit relative to an α-residue leads to additional conformational flexibility, β3-residues 

have been shown capable of recreating protein-like helix, sheet, loop, and turn secondary 

structures when incorporated into α/β-peptides.21 Thus, the majority of proteolytic protection 

afforded by α→β3 residue substitution is not likely the result of the inability of the modified 

peptide to adopt a native-like conformation. The extra backbone methylene unit may interfere 

sterically by changing the spacing of side chains distributed along the substrate. Alternatively, β-

residue incorporation may disrupt chymotrypsin-substrate interactions by inverting the display of 

side chains along the extended strand.116 

2.3.2 Impact of Tandem Backbone Modifications 

The above data provided insights into the role of backbone modification type and position in 

determining susceptibility of a given amide bond to hydrolysis by chymotrypsin; however, open 

questions remained. In the design of heterogeneous-backbone foldamers that mimic larger 

peptides and proteins, there are many potential cleavage sites, the identities of which are often 

not known a priori. Efforts to generate stable analogues are characterized by two opposing 

trends. The proteolytic stability of a backbone is generally positively associated with its 

unnatural content; completely unnatural backbones (e.g., β-peptides, D-α-peptides) are inert, and 
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the stability of heterogeneous backbones will improve with increasing unnatural content. 

Activity and modification are often negatively associated; the more a backbone is modified, the 

less likely it is to maintain a native-like folding pattern and function. When the entire peptide 

backbone is considered protease susceptible, evenly spaced modification along a sequence is the 

most efficient means to achieve maximal biostability with minimal chemical alteration. Thus, we 

sought to determine the optimal density of modification and how it varies with the type of 

unnatural monomer employed. 

In an effort to address this issue, we synthesized and characterized a series of additional 

peptides bearing two substitutions flanking the cleavage site. Comparing their degradation rates 

to the corresponding singly substituted analogues provided insights into synergistic effects of 

backbone modification on proteolytic protection. Due to the prevalence of bioactive α/β-peptides 

in the recent heterogeneous-backbone foldamer literature,1 we focused attention initially on 

tandem β3-residue substitutions. Five peptides were prepared and characterized, each bearing two 

α→β3 substitutions separated by two to six α-residues surrounding the cleavage site (Figure 18). 
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Figure 18. Prototype α-peptide and tandem β3-residue substituted sequences with putative site of proteolysis (red 

hashed line) and corresponding residue nomenclature. Positions of β3-residue substitution are highlighted cyan. 

Normalized peptide half-lives as a function of tandem β3-residue substitution position. Half-lives were normalized to 

the half-life of peptide 2.1. Error bars represent the error in the fit of the full progress curve. This figure is adapted 

from reference 25 with permission from John Wiley and Sons Publishing Company. 
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We expected the half-life of a tandemly-substituted peptide to be predictable from our single-

substitution data. Briefly, we assumed that the proteolysis of a peptide with two substitutions 

would equal the sum of the activation energies from the constituent single-substitution 

proteolysis reactions. Because the half-life (t1/2) of proteolysis is logarithmically related to 

activation energy, we calculated the expected half-lives of tandem substitutions by adding the 

natural logs of the corresponding single substitution half-lives. 

Surprisingly, multiple α→β3 substitutions appeared to be synergistic; their observed half-

life was greater than expected. Tandem mutants bearing β-residues separated by two, three, or 

four α-residues (βα↓αβ, βαα↓αβ, βααα↓αβ) showed a degree of protection that was comparable 

to β3-residue substitution directly at the cleavage site. This observation suggests there may be a 

maximum achievable stability conferred by a particular type backbone modification. Increasing 

the spacing between substitutions α-residues (βααα↓ααβ) resulted in a half-life that was lower, 

albeit still greater than predicted from the single substitutions. Interestingly, incorporation of two 

β3-residues separated by six α-residues (βαααα↓ααβ) led to a tandem mutant that was 

significantly less stable than any of the single β3 substitutions and even more susceptible to 

chymotrypsin than the host α-peptide. This result demonstrates that combined backbone 

modifications can have a negative synergistic effect, and the correlation between unnatural 

residue density and proteolytic stability is not necessarily direct.  

The trends observed in the tandem β3-residue mutants prompted us to investigate 

potential synergistic effects of incorporating the other monomer types. Thus, N-Me-α, Aib, and 

D-α-residues were incorporated in combination in a fixed pattern (Xααα↓ααX) where β3-residue 

incorporation led to only a modest improvement in proteolytic stability (Figure 19). 
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Figure 19. Prototype α-peptide and various tandem substituted sequences with putative site of proteolysis (red 

hashed line) and corresponding residue nomenclature. Positions of unnatural substitution are highlighted gray. 

Normalized peptide half-lives are shown as a function of unnatural residue substitution type at sequence positions 

P4 and P3’. The half-life of the tandem Aib substituted peptide is normalized to the corresponding Ala mutants. All 

others are normalized to the half-life of peptide 2.1. Error bars represent the error in the fit of the full progress curve. 

This figure is adapted from reference 25 with permission from John Wiley and Sons Publishing Company. 
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Backbone modifications that alter local folding propensity (D-α, Cα-Me-α) had strong positive 

synergistic effects on proteolytic stability when combined in a single chain. In contrast, 

combining N-Me-α residues led to a degree of protection no different than predicted from the 

corresponding single substitutions. This further supports our hypothesis that N-Me-α-residues 

confer proteolytic resistance by disrupting specific enzyme–substrate interactions rather than by 

affecting local folding. 

2.4 SUMMARY AND FUTURE DIRECTIONS 

In summary, we compared the proteolytic protection afforded by four building blocks commonly 

used in heterogeneous-backbone foldamers. Systematic examination of the variables of backbone 

modification type and position in the context of a long unstructured host α-peptide and the 

canonical serine protease chymotrypsin reveal some clear trends. In terms of isolated α-residue 

replacement, the degree of protection imparted as a function of modification type follows as D-α 

> Cα-Me-α > β3 > N-Me-α. Differences are most apparent at sites 2-4 residues removed from the 

scissile amide bond. The proposed modes by which the unnatural residues exert protection fall 

under two broad categories: (1) interference with specific enzyme-substrate contacts (local 

effects), and (2) alteration of the denatured ensemble of the unstructured host peptide (global 

effects). 

D-α and Cα-Me-α residues likely impart proteolytic stability by shifting the denatured 

ensemble away from conformers effectively recognized by the enzyme. As a result, the 

protection they exert from proteolysis is large in magnitude, wide-ranging, and synergistic when 

substitutions are combined in a single chain. N-Me-α-residues appear to influence proteolytic 
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susceptibility primarily through disruption of discrete enzyme–substrate contacts, making their 

effects modest in magnitude, short-range, and simply additive when combined. Among the 

residue types examined, the behavior of β3-residues was most complex. The protection afforded 

was modest in magnitude yet somewhat wide-ranging, and the molecular origins are difficult to 

unambiguously define. The effects of combined backbone α→β3 replacements can be 

synergistic; however, the density of β3-residues is not directly correlated to proteolytic resistance. 

Although the scope of the present findings is limited by involving only a single protease, 

they generate a number of clear hypotheses for future work on the development of agents that 

recreate natural peptides and protein function on biostable scaffolds. Considerations for effective 

structural mimicry are now well defined for many systems, and we can begin to develop design 

principles for achieving maximal proteolytic stability at minimal unnatural backbone content. 

For example, both Aib and β3-residues can be readily incorporated into peptide and protein 

helices.117 β3-Residues have the functional advantage of retaining native side chains, but our data 

suggest Aib may impart a greater degree of proteolytic protection at lower substitution density. 

Taken together, these observations suggest that chiral Cα-methylated amino acids bearing 

protein-derived side chains may be superior to both Aib and β3-residues as building blocks in 

heterogeneous-backbone foldamers. As another example of a new design insight, the folding 

propensity of D-α-residues differs greatly from their L-α counterparts, but they are quite 

effective turn inducers.118 Given the far-ranging proteolytic protection provided by even limited 

backbone stereochemical alteration, our data suggest D-residues as an ideal backbone 

modification in situations where they would be structurally accommodated.  

It is our hope that these and other aspects of the present study will inform ongoing work 

on the design of heterogeneous-backbone foldamers and prompt further investigation into the 
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mechanisms by which unnatural amino acids impart proteolytic stability. Areas of particular 

interest include how backbone alteration influences the structure of the denatured ensemble119 as 

well as the detailed kinetics (i.e., kcat, Km) for the enzymatic degradation of modified substrates. 

Finally, while unexpected, the enzyme inactivation observed during this work highlights the 

potential relevance of these results to informing the design of protease inhibitors.  

2.5 EXPERIMENTAL 

2.5.1 Materials 

2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium hexafluorophosphate (HCTU), 

Fmoc-D-Val-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-β3-HAsn(Trt)-OH, 

Fmoc-β3-HArg(Pbf)-OH, and Fmoc-N-Me-Asn(Trt)-OH were purchased from AAPPTec. Fmoc-

D-Asn(Trt)-OH, Fmoc-D-Ala-OH, Fmoc-D-Tyr(tBu)-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-β3-

HVal-OH, Fmoc-β3-HAla-OH, Fmoc-β3-HTyr(tBu)-OH, Fmoc-β3-HLys(Boc)-OH, Fmoc-β3-

HSer(tBu)-OH, Fmoc-N-Me-Val-OH, Fmoc-N-Me-Ala-OH, Fmoc-N-Me-Tyr(tBu)-OH, and 

Fmoc-N-Me-Ser(tBu)-OH were purchased from Chem-Impex International. Fmoc-N-Me-

Arg(Pbf)-OH was purchased from ChemPep. NovaPEG Rink Amide resin and Fmoc-protected 

α-amino acids were purchased from Novabiochem. Fmoc-α-Me-Ala-OH, Fmoc-N-Me-

Lys(Boc)-OH, N,N-diisopropylethylamine (DIEA), and bovine α-chymotrypsin were purchased 

from Sigma–Aldrich. All other reagents were purchased from Acros Organics, Fisher Scientific, 

JT Baker, and Sigma–Aldrich. 
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2.5.2 Peptide Synthesis and Characterization 

Peptides were synthesized using microwave-assisted (CEM MARS) Fmoc-solid-phase synthesis 

techniques. All peptides were prepared as the C-terminal carboxamide using NovaPEG Rink 

Amide resin (0.025 mmol scale). Fmoc protected amino acids (0.1 mmol) were coupled to the 

growing peptide chain with HCTU (0.1 mmol) and DIEA (0.15 mmol) in NMP (1 mL) for 2 

minutes after a 1.5-minute ramp to 90 °C. Double couplings were performed at hindered amine 

nucleophiles (i.e. proline or N-methylated residues). Fmoc groups were removed with 4-

methylpiperidine in DMF (20% v/v) for 1 minute after a 1.5-minute ramp up to 90 °C. The resin 

was washed three times with DMF after each reaction. After the final deprotection, the resin was 

rinsed three times each with DMF, dichloromethane, and methanol, and then dried. Peptides 

were cleaved from resin using a solution of TFA/H2O/TIS (95%/2.5%/2.5%) for 3 hours. After 

precipitation in cold diethyl ether, the solutions were centrifuged, and the pelleted solids were 

dissolved in mixtures of 0.1% TFA in H2O and 0.1% TFA in acetonitrile. Peptides were purified 

by preparative RP-HPLC on a Phenomenex Luna C18 column using gradients between 0.1% 

TFA in H2O and 0.1% TFA in acetonitrile. Peptide identity and purity were determined by mass 

spectrometry (Voyager DE Pro MALDI-TOF, Table 2) and analytical RP-HPLC (Figures 20-

24), respectively.  
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Table 2. MALDI-TOF data for all peptides. 

 

Peptide [M+H]+ m/z 

 Expected Observed 

α-host (2.1) 2223.1 2223.4 

P5Ala 2138.0 2137.6 

P4Ala 2195.1 2194.8 

P3Ala 2180.1 2179.9 

P1Ala 2131.1 2131.4 

P1’Ala 2166.1 2165.8 

P2’Ala 2207.1 2205.9 

P5D 2223.1 2221.2 

P4D 2223.1 2222.5 

P3D 2223.1 2222.3 

P2D 2223.1 2223.1 

P1D 2223.1 2221.9 

P1’D 2223.1 2223.5 

P2’D 2223.1 2223.1 

P3’D 2223.1 2221.5 

P5N-Me 2237.1 2236.8 

P4N-Me 2237.1 2236.3 

P3N-Me 2237.1 2236.7 

P2N-Me 2237.1 2237.5 

P1N-Me 2237.1 2236.6 

P1’N-Me 2237.1 2237.4 

P2’N-Me 2237.1 2236.4 

P3’N-Me 2237.1 2237.0 

P5β3 2237.1 2236.8 

Peptide [M+H]+ m/z 

 Expected Observed 

P4β3 2237.1 2236.9 

P3β3 2237.1 2236.8 

P2β3 2237.1 2236.1 

P1β3 2237.1 2237.1 

P1’β3 2237.1 2237.4 

P2’β3 2237.1 2237.0 

P3’β3 2237.1 2236.0 

P5Aib 2152.1 2151.8 

P4Aib 2209.1 2208.6 

P3Aib 2194.1 2193.9 

P2Aib 2237.1 2237.3 

P1Aib 2145.1 2143.6 

P1’Aib 2180.1 2179.6 

P2’Aib 2221.1 2220.8 

P3’Aib 2237.1 2236.6 

P2-P2’β3 2251.1 2249.4 

P3-P2’β3 2251.1 2250.1 

P4-P2’β3 2251.1 2250.9 

P4-P3’β3 2251.1 2250.0 

P5-P3’β3 2251.1 2250.6 

P4-P3’D 2223.1 2223.1 

P4-P3’N-Me 2251.1 2250.9 

P4-P3’Aib 2223.1 2222.7 
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Figure 20. HPLC chromatograms of purified peptides. 



 

47 

 

Figure 21. HPLC chromatograms of purified peptides. 
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Figure 22. HPLC chromatograms of purified peptides. 
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Figure 23. HPLC chromatograms of purified peptides. 
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Figure 24. HPLC chromatograms of purified peptides. 

 



 

51 

Peptide stock concentrations were quantified by UV spectroscopy (ε280 = 1280 M-1 cm-1). Stock 

concentrations for peptides lacking a chromophoric residue (Y11A, Y11Aib) were estimated by 

weight to volume. 

2.5.3 Circular Dichroism Spectroscopy 

Solutions of 40 μM peptide in 20 mM sodium phosphate buffer (pH 6.9) were subjected to CD 

scans using an Olis DSM17 circular dichroism spectrophotometer.  Scans were performed at 20 

°C from λ 200 – 260 nm with 1 nm step size, 2 nm bandwidth, and 5 s integration time at each 

wavelength.  All measurements were baseline corrected against a buffer blank measured in the 

same cell. Scans were smoothed by the Savitzky-Golay method120 using GraphPad Prism. 

2.5.4 Proteolysis Reactions 

The concentrations of bovine α-chymotrypsin stock solutions were quantified by UV 

spectroscopy (ε280 = 51,240 M-1 cm-1). Aliquots of 0.25 μM chymotrypsin in TBS (50 mM Tris, 

150 mM NaCl, pH 7.5) were made and frozen. Each proteolysis reaction was initiated by the 

addition of chymotrypsin from a freshly thawed aliquot to a 200 μM solution of peptide in water, 

giving a final sample composition of 160 μM peptide, 50 nM chymotrypsin, 50 mM Tris, 150 

mM NaCl, pH 7.5. For each time point, a 50 μL portion of the reaction was removed and 

quenched with 0.5% (v/v) trifluoroacetic acid (40 μL). Quenched samples were analyzed by 

analytical RP-HPLC (90 μL injection), and the undigested peptide remaining was quantified by 

integration of the corresponding chromatogram peak. MALDI-MS was also performed at each 

time point to identify the sites of enzymatic hydrolysis. A plot of percent peptide remaining vs. 
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time was generated, and the data was fit to a one-phase exponential decay using GraphPad Prism 

to generate a calculated half-life (Figures 25-32). 
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Figure 25. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). 



 

54 

 

Figure 26. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 



 

55 

 

Figure 27. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 
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Figure 28. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 
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Figure 29. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 
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Figure 30. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 
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Figure 31. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 
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Figure 32. Full progress degradation curves and calculated half-lives of various peptides. Observed proteolysis 

products (horizontal black lines) and corresponding cleavage sites (vertical red lines) for each peptide are indicated 

in its sequence. Data points represent at least two replicate proteolysis experiments, while error bars represent the 

SEM for each timepoint. Full digestion curves are modeled by a one-phase decay fit with a variable plateau value Y 

= (Y0 – YP) e-kx + YP (solid curve). For peptides that did not degrade fully, the earliest data points are modeled by a 

one-phase decay model with a plateau constrained to zero Y = (Y0) e-kx (hashed curve). 



 

61 

3.0  THERMODYNAMIC ORIGIN OF -HELIX STABILIZATION BY SIDE-CHAIN 

CROSS-LINKS IN A SMALL PROTEIN 

Note: This work was published as C.M. Haney‡, H.M. Werner‡, J.J. McKay, W.S. Horne* "Thermodynamic origin 

of α-helix stabilization by side-chain cross-links in a small protein." Org. Biomol. Chem. 2016, 14, 5768-5773. It is 

reproduced from ref. 121 with permission from The Royal Society of Chemistry.  

 

Peptide cross-linking has been widely explored as a means of constraining short sequences into 

stable folded conformations, most commonly α-helices. The prevailing hypothesis for the origin 

of helix stabilization is an entropic effect resulting from backbone pre-organization; however, 

obtaining direct evidence bearing on this hypothesis is challenging. Here, we compared the 

folding thermodynamics of a small helix-rich protein domain and analogues containing one of 

three common cross-linking motifs. Analysis of the folding free energy landscapes of linear vs. 

cyclized species reveal consistent trends in the effect of cyclization on folding energetics, as well 

as subtle differences based on the chemistry of the cross link. Stabilization in all three systems 

arises entirely from a reduction in the entropic penalty of folding that more than compensates for 

an enthalpic destabilization of the folded state. 



 

62 

3.1 INTRODUCTION 

The importance of protein-protein interactions (PPIs) in pathology has made specific binders of 

protein surfaces an important goal in biomedical research.44, 122 Due to the inability to target most 

PPIs with small molecules, considerable effort has been invested in the generation of peptide-

based agents that can engage larger binding surfaces and show enhanced inhibitory efficacy.123-

124 However, a lack of well-folded structure in short peptide sequences can diminish potency and 

specificity as well as contribute to rapid proteolytic degradation. In order to address these issues, 

researchers have explored the use of protease-resistant backbones1, 53 as well as constraint of 

natural backbones by covalent bonds.12 The prevalence of α-helices in PPIs125 has encouraged 

particular interest in mimics of helical peptides,118, 126 though covalent constraint of other 

secondary structures has also been examined.118, 127 

A variety of methods have been developed for the generation of covalently constrained 

peptides. Some approaches employ bimolecular cyclization by reaction of a peptide chain with 

an exogenous linking molecule.12, 20, 128 However, the most common strategies are based on 

direct intramolecular cyclization via peptide side-chains. Such side-chain to side-chain 

cyclization, often termed “cross-linking” or “stapling,” has relied on both natural (e.g. Asp, 

Lys)129 and unnatural (e.g. olefin-functionalized)16 amino-acid pairs. Many cross-linking 

methods require significant on-resin manipulation during solid-phase peptide synthesis to 

introduce the macrocycle, but we and others have described alternative strategies which can be 

performed using fully unprotected substrates.18, 130-133 In addition to side-chain cross-linking, 

prior work has shown helix stabilization can also be achieved through covalent constraint of 

backbone atoms.134-135 
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The stabilization of helices by cross-linking is thought to arise primarily from a reduction 

in backbone conformational freedom; however, direct evidence bearing on this hypothesis is 

limited.20 Prior work has compared various cross-link types for their ability to stabilize short α-

helices,136 as well as the effect of residue spacing and macrocycle size.133, 137-140 A more 

complete understanding of the physical basis for the stabilization of folded states requires 

examination of folding thermodynamics. Analysis of thermodynamic changes is challenging for 

short sequences due to the lack of a fully folded structure or well-defined folding transition. 

Accordingly, prior work seeking the thermodynamics associated with α-helix cross-linking has 

taken place primarily in the context of peptide-peptide and peptide-protein complexes.138, 141-144 

Data from such systems are valuable; however, interpretation with respect to the molecular 

origins of helix stabilization is difficult when the process of folding and assembly are 

inseparable. 

Determination of the thermodynamic impact of cross-link formation on helical folding in 

the absence of quaternary contacts requires a well-folded unimolecular motif that undergoes a 

simple two-state unfolding transition. Here, we apply three established cross-linking methods in 

such a system—a small helix-rich protein with a compact tertiary fold. Examination of folding 

thermodynamics for each cyclized species compared to its linear counterpart reveal consistent 

perturbations to the overall energy landscape of folding. These perturbations shed light on the 

molecular mechanisms by which side-chain cyclization stabilizes α-helices. Subtle differences 

observed in the side-by-side comparison of three established cyclization chemistries provide data 

bearing on their relative effectiveness as α-helix stabilizers. 
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3.2 RESULTS AND DISCUSSION 

In selecting a host peptide for our studies, a sequence with the following characteristics was 

sought: (1) a monomeric and stable folded structure in aqueous solution, (2) one or more α-

helices in which to insert a cross-link, and (3) a length amenable to preparation by solid-phase 

synthesis and post-synthetic manipulations associated with cross-link formation. Based on these 

considerations, we chose the villin headpiece (VHP) domain for our work (Figure 33).  
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Figure 33. Sequence and crystal structure of the villin headpiece (VHP) domain (PDB 3TRW). 
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The 36-residue VHP sequence folds into a compact tertiary structure consisting of three α-helices 

that pack to form a defined hydrophobic core (Figure 33).145-146 VHP is a widely used model 

system in the study of folding kinetics and thermodynamics in short, fast-folding sequences.147-

153 

To avoid complications from methionine oxidation during synthesis and biophysical 

analysis, we replaced the two Met residues in VHP with hydrocarbon isostere norleucine to 

generate sequence 3.1 (Figure 34).  

 

 

Figure 34. Sequence and crystal structure of the VHP domain, linear mutant 3.1 with cross-linking site indicated 

(PDB 3TRW). B = norleucine. This figure is adapted from ref. 121 with permission from The Royal Society of 

Chemistry. 

 

Circular dichroism (CD) spectroscopy and thermal denaturation experiments indicate 3.1 has a 

tertiary folding pattern and stability similar to the native VHP sequence (Tm = 65 °C for 3.1 vs. 

70 °C for wild-type VHP).154-155 Having established 3.1 as a suitable host sequence, we next 
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designed and prepared three mutants (3.2a-3.4a) containing amino acids suitable for cross-link 

formation, and three corresponding cyclized variants (3.2b-3.4b). In each case, the cross-link is 

installed at the same site, between positions 27 and 31 on the C-terminal VHP helix (Figure 35).  
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Figure 35. Sequence of the VHP domain, linear mutants 3.1 and 3.2a-3.4a, and cyclized variants 3.2b-3.4b. B = 

norleucine. This figure is adapted from ref. 121 with permission from The Royal Society of Chemistry. 
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We reasoned substitution at this solvent-exposed position would minimize the impact of each 

cross-link on the packing interactions involved in folding and enable the thermodynamic analysis 

to inform maximally on the effect of cyclization on helix folding propensity. The i→i+4 spacing 

for each cross-linking moiety (Figure 35) was selected based on prior work suggesting this is 

optimal for stabilizing an α-helical fold for macrocycle sizes in the range we examine here.18, 133, 

137 

VHP variants 3.2b-3.4b represent three established methods for helix stabilization by 

side-chain to side-chain cross linking: lactam (3.2b),156 triazole (3.3b),157 and oxime (3.4b).18 We 

chose these three motifs based on their ease of introduction synthetically and high degree of 

similarity in terms of structure and polarity (Figure 36).  

 

 

Figure 36. Molecular models of lactam, triazole, and oxime cyclized helices. This figure is adapted from ref. 121 

with permission from The Royal Society of Chemistry. 

 

In each case Lys31 is replaced by an isosteric or nearly isosteric analogue, and Gln27 is replaced 

with an appropriate moiety to enable cyclization on resin or in solution. The resulting cross-links 

among 3.2b-3.4b vary only slightly in overall macrocycle size as well as placement of non-

rotatable bonds relative to the backbone. 
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Linear peptides 3.1 and 3.2a-3.4a were prepared by Fmoc solid-phase methods. The 

lactam in cyclic peptide 3.2b was installed on-resin after revealing Lys31 and Asp27 side chains 

masked with 4-methyltrityl and phenylisopropyl groups, respectively (Figure 37).156  
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Figure 37. Synthesis of cyclic peptides from their linear precursors: A) on-resin cyclization of 3.2a to generate 3.2b, 

B) solution phase cyclization of 3.3a to generate 3.3b and C) solution phase cyclization of 3.4a to generate 3.4b. 
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Triazole peptide 3.3b was prepared by the chemoselective cyclization of precursor 3.3a in 

solution through the copper(I)-mediated dipolar cycloaddition between alkyne-functionalized 

residue J and azide-functionalized residue Z (Figure 35).133 Oxime peptide 3.4b was prepared by 

the solution cyclization of 3.4a; periodate-mediated cleavage of the vicinal amino alcohol in the 

U residue unmasks a glyoxylic aldehyde that subsequently reacts with the nearby aminooxy X 

residue to form the oxime (Figure 35).18 Each synthetic VHP variant was purified by preparative 

reverse-phase HPLC and its identity was confirmed by MALDI-MS prior to further analysis. 

We first sought to determine any effect side-chain substitutions in linear sequences 3.2a-

3.4a had on folding relative to 3.1. CD scans (Figure 38) suggested no impact on the folded state 

resulting from the mutations necessary for cross-link introduction.  
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Figure 38. Circular dichroism (CD) data for peptides 3.1, 3.2a-3.4a and 3.2b-3.4b at 50 μM concentration. Left: CD 

scans acquired at 20 °C. Right: CD thermal melts obtained by monitoring molar ellipticity at 222 nm as a function of 

temperature; circles represent measured ellipticity values, while dashed or solid lines represent the nonlinear fit to a 

two-state thermal denaturation model. This figure is adapted from ref. 121 with permission from The Royal Society 

of Chemistry. 
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In thermal denaturation experiments, 3.2a and 3.4a exhibited two-state unfolding transitions, 

with minimal change in the observed Tm relative to 3.1 (Table 3, Figure 38). Two-state 

unfolding transitions were modeled with seven parameters related by Equations 1-3. 

 

 

Equation 1. Relationship between free energy of unfolding (G), melting temperature in oC (Tm), enthalpy of 

unfolding at Tm (H), change in heat capacity during unfolding (Cp), and temperature in oC (x). 

 

 

Equation 2. Function representing the fraction of molecules in the denatured state at a given temperature in oC (x). 

 

 

Equation 3. Ellipticity (Y) as a function of temperature (x) with parameters representing the ellipticity of the 

unfolded state at 273K (U), slope of the unfolded baseline (MU), ellipticity of the folded state at 273K (F), and 

slope of the folded baseline (MF). 
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Table 3. Thermodynamic parameters for folding at 293 K for VHP domain 3.1, linear mutants 3.2a-3.4a, and cyclized variants 3.2b-3.4b. 

 

Peptide 
Macrocycle 

size 
[θ]222 (deg cm2 
dmol-1 res-1)a 

Tm (°C)b 
ΔH (kcal 
mol-1)c 

TΔS (cal 
mol-1)c 

ΔCp (kcal 
mol-1 K-1)c 

m (kcal 
mol-1 M-1)c 

ΔG (kcal 
mol-1)d 

3.1 - -12,900 65 ± 1 -7.9 ± 0.4 -6.2 ± 0.3 -0.29 ± 0.03 0.58 ± 0.04 -1.7 
3.2a - -12,900 63 ± 1 -10.6 ± 0.5 -8.4 ± 0.4 -0.36 ± 0.03 0.74 ± 0.04 -2.2 
3.2b 20 -12,900 80 ± 0.5 -9.6 ± 0.2 -6.6 ± 0.2 -0.32 ± 0.01 0.66 ± 0.02 -3.0 
3.3a - -12,000 52 ± 2 -9.2 ± 0.2 -7.5 ± 0.2 -0.29 ± 0.01 0.73 ± 0.02 -1.7 
3.3b 21 -14,600 95 ± 0.6 -7.9 ± 0.3 -4.6 ± 0.2 -0.31 ± 0.02 0.57 ± 0.03 -3.3 
3.4a - -11,400 60 ± 2 -9.3 ± 0.5 -7.2 ± 0.4 -0.32 ± 0.03 0.69 ± 0.04 -2.1 
3.4b 23 -9,500 77 ± 7 -7.7 ± 0.6 -5.3 ± 0.5 -0.31 ± 0.05 0.58 ± 0.06 -2.3 

a Mean residue molar ellipticity at 222 nm from a CD scan carried out at 20 °C. b Midpoint of the thermal unfolding transition in the absence of 
chemical denaturant as determined by a fit of simple CD melts to a two-state thermal denaturation model; error represents the parameter 
uncertainty from the fit. c Parameters obtained from fitting coupled thermal-chemical denaturation experiments to the Gibb-Helmholtz 
equation; error shown is the parameter uncertainty from the fit. d Calculated from ΔH and TΔS. 
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In contrast, linear peptide 3.3a proved to be somewhat destabilized relative to the parent 

sequence (ΔTm ≈ -13 °C). This may result from replacing the solvent-exposed polar Lys31 and 

Gln27 in 3.1 with more hydrophobic residues J and Z. 

We next assessed the impact of cross-link formation on folding and thermal stability by 

comparing CD data for linear peptides 3.2a-3.4a and their cyclic counterparts 3.2b-3.4b. 

Consistent with expectation based on precedent for the known cross-linking chemistries 

examined, cyclization had minimal effect on the helical signature observed in CD scans but led 

to improved resistance to denaturation (Figure 38). Lactam peptide 3.2b, triazole 3.3b, and 

oxime 3.4b all showed significantly greater thermal stability relative to their linear counterparts 

and did not reach a clear fully unfolded state by the highest temperature measured (95 °C). 

Interestingly, the unfolding transitions were slightly shallower for the cyclic series, suggesting 

the possibility of altered folding landscapes. 

In order to rigorously examine the folding thermodynamics before and after cross-link 

formation, we performed thermal-chemical denaturation experiments monitored by CD, a 

method previously applied to explore protein folding energetics in a variety of natural and 

unnatural systems.119, 158-159 Analysis of the resulting data provides the changes to free energy 

(ΔG), enthalpy (ΔH), entropy (ΔS), and heat capacity (ΔCp) accompanying the folding process, 

as well as the dependence on the folding free energy on denaturant concentration (m). We 

subjected VHP peptide 3.1, linear mutants 3.2a-3.4a, and cyclized variants 3.2b-3.4b to this 

experiment (Figure 39, Table 3). 
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Figure 39. Thermal-chemical denaturation plots for peptides 3.1, 3.2a-3.4a and 3.2b-3.4b as indicated above each 

plot. Helicity at 222 nm is monitored as both temperature and denaturant concentration vary. Raw data (points) are 

fit (surface) to extract thermodynamic parameters for the folding equilibrium. This figure is adapted from ref. 121 

with permission from The Royal Society of Chemistry. 
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Data for 3.1 and 3.2a-3.4a revealed measurable changes to folding thermodynamics 

among the series despite the conservative nature of the mutations (Figure 40, Table 3).  

 

 

Figure 40. Free energy, enthalpy, and entropy of folding for VHP domain 3.1, linear mutants 3.2a-3.4a, and cyclic 

variants 3.2b-3. 4b. All thermodynamic parameters are reported at 293 K. This figure is adapted from ref. 121 with 

permission from The Royal Society of Chemistry. 

 

In all cases, an unfavorable change in the entropy of folding (ΔSfold) was observed, accompanied 

by an increase in susceptibility to chemical denaturant (m). Peptide 3.2a showed a favorable 

change in folding enthalpy (ΔHfold) relative to 3.1, which we attribute to the ability of Lys31 to 

form a salt bridge with newly introduced Asp27 in 3.2a. These data suggest that VHP is 

somewhat sensitive to sequence alterations even at solvent-exposed sites, consistent with prior 

studies showing how mutations can change the thermodynamics and/or kinetics of VHP 

folding.147-148, 155, 160 

In order to isolate the effects of cyclization from the side-chain alterations necessary to 

introduce a given type of cross-link, we compared the thermodynamic parameters of folding for 

each cyclized peptide to those for its corresponding linear precursor. In terms of folding free 

energy, cyclization had a consistently favorable effect, with the magnitude of stabilization 
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varying from 0.2-1.6 kcal mol-1 at 293 K. The improvement in stability as a function of cross-

link chemistry followed the trend triazole > lactam > oxime. The stabilization upon cyclization 

was entirely entropic in origin for all three cases (TΔΔS 1.8-3.0 kcal mol-1 at 293 K). This 

provides direct thermodynamic evidence supporting the hypothesis that backbone 

preorganization is a general mechanism by which side-chain to side-chain cross links stabilize 

folded α-helices. Intriguingly, cyclization had a consistent unfavorable effect on ΔHfold for all 

three cross-link types (Table 3, Figure 40), which partially abrogates the favorable effect on 

ΔSfold. While the origin of the effect is not clear, we suggest that cyclization might abolish 

enthalpically favorable polar contacts that exist between the side-chains of the linear precursors. 

The importance of backbone flexibility in the impact of cyclization on folding energetics 

is further supported by the changes to the sensitivity of the fold to chemical denaturant upon 

cyclization. The magnitude of m is known to correlate strongly with the change in solvent 

accessible surface area upon protein folding and is typically similar for proteins of similar 

size.161 Assuming similar folded states among the series of VHP variants examined (supported 

by the CD scan results), the consistent decrease in the magnitude of m upon cyclization indicates 

the cyclized peptides are less accessible to solvent when unfolded compared to their linear 

counterparts. This, in turn, suggests a more compact ensemble constituting the denatured state 

and increased residual folded structure in the denatured ensemble due to the presence of the 

macrocycle; however, the data obtained does not rule out potential contributions from altered 

solvation of the modified protein surface.161 
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3.3 CONCLUSIONS 

Significant interest in development of α-helical peptides as inhibitors of PPIs has led to diverse 

methods to stabilize helical conformations, and side-chain to side-chain cross-links have proven 

quite successful in this context. The invention of such strategies was motivated by the hypothesis 

that cyclization can stabilize a helical fold by reducing chain entropy in the unfolded state and 

promoting the desired folded conformation. This hypothesis has proven challenging to probe by 

direct thermodynamic analysis in a unimolecular fold. Through examination of three different 

i→i+4 cross-linking motifs in a small protein rich in α-helical regions, we have obtained data 

bearing on the fundamental molecular mechanisms by which side-chain to side-chain cyclization 

stabilizes α-helices. 

Consistent decreases in both the entropic penalty toward folding and the sensitivity of the 

folded state to chemical denaturant provide direct evidence supporting the hypothesis that 

backbone preorganization is the dominant factor, regardless of the cross-linking chemistry 

employed. Subtle differences are observed in the magnitude of these effects as a function of 

cross-link size, structure, and flexibility. Among three similar polar motifs examined, cyclization 

via a triazole proved best, followed by lactam, then oxime. We also note a consistent enthalpic 

penalty toward folding upon cyclization that works against the favorable entropic effect. This 

suggests that cyclization, even at solvent-exposed sites, may perturb the network of weak 

interatomic interactions that drive folding. 

Overall, these results suggest that covalent constraint via cross-linking stabilizes α-

helices by reducing the disorder of the unfolded state and altering its solvation. Further 

exploration of the effects of cross-link formation on the folding energy landscape and kinetics 

may help to guide researchers in the a priori selection of the optimal cross-linking strategy to 
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utilize in a given system in order to generate stabilized α-helical peptides for therapeutic 

applications. 

3.4 EXPERIMENTAL 

3.4.1 Materials 

Solvents and reagents were purchased from Sigma Aldrich, Baker, EMD Millipore, Fisher, 

Acros Organics, or ChemImpex, and used as received. Fmoc-protected monomers for installation 

of residues X, U, and Z were synthesized as previously described.18, 138, 162 Flash column 

chromatography was performed using SorbTech (60 Å, 40-63 μm) silica gel. MALDI- TOF mass 

spectrometry was performed on a Voyager DE Pro instrument. Circular dichroism spectra were 

recorded on an Olis DSM17 spectrometer equipped with a Peltier temperature controller using 

quartz cuvettes of 0.1 cm path length. Preparative and analytical HPLC were performed on 

Phenomenex Luna C18 columns using gradients between 0.1% TFA in water and 0.1% TFA in 

acetonitrile. 

3.4.2 Peptide Synthesis, Cyclization, and Purification 

Peptides 3.1, 3.2a, and 3.4a were synthesized on NovaPEG Rink Amide Resin with microwave 

heating (MARS microwave reactor, CEM). Amino acid couplings were performed with 5 

equivalents of amino acid to resin. Natural α-amino acids were preactivated with HCTU (5 

equivalents to resin) and DIEA (7.5 equivalents to resin) in NMP for 2-3 minutes. Unnatural 
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residues were preactivated with PyBOP (5 equivalents to resin) and DIEA (7.5 equivalents to 

resin) in NMP for 2-3 minutes. The preactivated amino acid was then added to the resin in a 

reaction vessel equipped with a stir bar, and a microwave program consisting of a 2 minute ramp 

to 70 °C followed by a 4 minute hold at 70 °C was run. The resin was washed three times with 

DMF and then treated with 20% 4-methylpiperidine in DMF using a microwave deprotection 

program consisting of a 2 minute ramp to 80 °C followed by a 2 minute hold at 80 °C. The resin 

was washed with DMF, and the above cycle was repeated until the desired peptide chain was 

obtained. Peptides were cleaved from resin by treatment with 92.5% TFA, 3% water, 3% 

ethanedithiol, and 1.5% triisopropylsilane. 

Peptide 3.3a was synthesized at room temperature on NovaPEG Rink Amide Resin using 

a Protein Technologies, Inc. Tribute automated peptide synthesizer. The synthesis proceeded in 

the same couple-wash-deprotect cycle as stated above with the following exceptions. Couplings 

were performed for 50 minutes with 7 equivalents of amino acid relative to resin. Natural amino 

acids were preactivated with HCTU (7 equivalents to resin) and N-methylmorpholine (14 

equivalents to resin) in DMF for 2 minutes. Unnatural residues were preactivated with PyBOP (7 

equivalents to resin) and N-methylmorpholine (14 equivalents to resin) in DMF for 2 minutes. 

Deprotections were performed in 2 iterations of 4.5 minutes each. The peptide was cleaved from 

resin by treatment with 95% TFA, 2.5% water, and 2.5% triisopropylsilane. 

Lactam-cyclized peptide 3.2b was prepared via on-resin cyclization.156 A linear precursor 

was assembled on resin bearing 4-methyltrityl (Mtt) group at Lys31 and a phenylisopropyl ester 

(OPip) at Asp27. Following assembly of the protected chain, but prior to N-terminal Fmoc 

deprotection, the resin was washed five times with dichloromethane. The resin was then 

subjected to treatment with 3% TFA acid and 5% triisopropylsilane in dichloromethane for 5 
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min. The procedure was repeated three times to achieve removal of the Mtt and OPip groups. 

The resin was then washed three times with DMF, treated with PyBOP (1 equivalent to resin) 

and DIEA (1.5 equivalents to resin) in NMP and subjected to the microwave coupling program 

described above. This procedure was repeated twice to form the desired lactam cross-link 

between Asp27 and Lys31. Following cyclization, the N-terminal Fmoc group was removed and 

the peptide cleaved from resin by treatment with 92.5% TFA, 3% water, 3% ethanedithiol, and 

1.5% triisopropylsilane. 

Following cleavage of peptides 3.1, 3.2a-3.4a and 3.2b from resin, the crude peptide was 

precipitated in cold diethyl ether and pelleted by centrifugation. The ether was decanted, and the 

resulting pellet dissolved in water and acetonitrile with 0.1% TFA. Purification was performed 

by HPLC on a Luna C18 preparative column using gradients between 0.1% TFA in water and 

0.1% TFA in acetonitrile. Peptide identity and purity were determined by MALDI-TOF mass 

spectrometry (Table 4) and analytical RP-HPLC (Figure 41), respectively. 

 

Table 4. MALDI-TOF data for peptides 3.1, 3.2a-3.4a and 3.2b-3.4b. 

 

 [M+H]+ (m/z) 

Peptide Calculated Observed 

3.1 4151.3 4151.1 

3.2a 4138.2 4138.0 

3.2b 4122.7 4122.4 

3.3a 4146.8 4146.0 

3.3b 4146.8 4146.5 

3.4a 4212.3 4212.3 

3.4b 4163.2 4163.0 
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Figure 41. Analytical HPLC chromatograms of purified peptides 3.1, 3.2a-3.4a and 3.2b-3.4b. This figure is 

adapted from ref. 121 with permission from The Royal Society of Chemistry. 
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Triazole-cyclized peptide 3.3b was prepared from purified peptide 3.3a by copper(I)-

mediated azide-alkyne cycloaddition in solution.133 Pure, lyophilized 3.3a and CuSO4•5H2O 

(4.4 equivalents) were dissolved in 2:1 water:tert-butanol (v/v) to give a final peptide 

concentration of 2 mg/mL. Sodium L-ascorbate (4.4 equivalents) dissolved in water was added in 

4 portions over the course of 1 hour. The reaction was placed on a shaker at room temperature 

for 30 minutes following completion of ascorbate addition. Then product 3.3b was purified by 

preparative HPLC. This procedure was repeated as necessary to obtain sufficient purified 3.3b 

for subsequent biophysical analysis. 

Oxime-cyclized peptide 3.4b was prepared from purified 3.4a by treatment with aqueous 

sodium periodate.18, 138 Pure, lyophilized 3.4a was dissolved in water and its concentration 

determined by UV-Vis spectroscopy (ԑ280 = 5690 M-1 cm-1 based on Trp absorbance).163 A stock 

of sodium periodate was prepared in water and the concentration determined by UV-Vis 

spectroscopy (ԑ280 = 317 M-1 cm-1).164 Oxidation and cross-link formation was performed by 

dilution of the peptide stock with water, buffer, and periodate to a final concentration of 100 μM 

peptide in 100 mM pH 7 phosphate buffer with 1 equivalent periodate in a total volume of 2 mL. 

The reaction was allowed to stand for 15 minutes, then product 3.4b was purified by preparative 

HPLC. This procedure was repeated to obtain sufficient purified 3.4b for characterization. 

3.4.3 Molecular Modelling 

Molecular modelling of the cross-linked helices shown in Figure 36 was carried out using 

Spartan’10 (Wavefunction Inc.). Coordinates for the VHP domain were obtained from a 

published crystal structure (PDB 3TRW).165 The C-terminal helix was extracted from chain A in 

that structure (acetyl N-terminus, methyl amide C- terminus). All atoms were frozen except for 
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the side chains of Gln27 and Lys31, which were deleted and rebuilt to correspond to the lactam, 

triazole, or oxime cross-link present in 3.2b-3.4b. A Monte Carlo equilibrium conformation 

search was performed for each model with the MMFFaq force field. The lowest energy 

conformer obtained for each cross-link is shown in Figure 36. 

3.4.4 Circular Dichroism Spectroscopy and Data Analysis 

Stock solutions of peptides 3.1, 3.2a-3.4a and 3.2b-3.4b were prepared in water, and the 

concentration of peptide was determined by UV-Vis spectroscopy (ԑ280 = 5690 M-1 cm-1).163 

Samples for CD analysis were prepared by dilution of the peptide stock with water and buffer 

stocks to yield solutions consisting of 50 μM peptide in 50 mM pH 7 phosphate buffer with the 

appropriate quantity of guanidinium chloride. 

CD scans were performed from 200-260 nm with 1 nm step size, 2 nm bandwidth, and 5 

second integration time at each wavelength. CD melts were performed by monitoring molar 

ellipticity at 222 nm over the range of 2 °C to 95 °C in 3 °C increments, with a dead band of 0.5 

°C and a 2 minute equilibration time at each temperature. All measurements were baseline 

corrected against a buffer blank measured in the same cell. Scans were smoothed by the 

Savitsky-Golay method using GraphPad Prism. Thermal melts of samples lacking guanidinium 

were fit to a two-state thermal denaturation model using GraphPad Prism to obtain Tm values.166 

Cyclic peptides 3.2b-3.4b failed to reach a fully unfolded state over the temperature range 

measured. Tm values for these sequences were determined by constraining the unfolded baselines 

based on data for the corresponding linear sequence 3.2a-3.4a. Raw data from thermal-chemical 

denaturation experiments were fit using Mathematica 8 (Wolfram) and equations reported 

previously.159 
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4.0  MODULAR SYNTHESIS, FOLDING, AND FUNCTION OF BACKBONE-

MODIFIED UBIQUITINS 

Chemical modification is a versatile tool that scientists can use to probe the structure and 

function of proteins. One modification approach involves the synthesis of heterogeneous-

backbone foldamers, which have shown promise as structural and functional mimics of their 

natural protein counterparts. This approach has previously been shown to recapitulate the 

structures of two natural proteins; however, to date it has not been applied to design a large 

heterogeneous-backbone foldamer protein mimic with significant biological function. In an 

effort to fill this knowledge gap, we report here the design, synthesis, and functional 

characterization of a library of heterogeneous-backbone ubiquitin variants. Nine backbone-

modified variants of the native protein were synthesized in a modular fashion through native 

chemical ligation and desulfurization techniques. Circular dichroism (CD) spectroscopy 

indicated the library of variants adopt folds similar to that of wildtype ubiquitin. In collaboration 

with the Brodsky lab in the Biological Sciences Department at the University of Pittsburgh, the 

variants were assessed for biological function. Four variants successfully ubiquitinated 

chaperone protein Hsc70 in vitro and were then subjected to a more complex ubiquitination and 

retrotranslocation assay. All four variants were able to ubiquitinate a transmembrane protein, and 

three conclusively facilitated its retrotranslocation from a biological membrane to the cytosol. 
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These results represent the first examples of highly-unnatural, yet functional heterogeneous-

backbone foldamers larger than 50 residues. 

4.1 INTRODUCTION 

Proteins play a crucial role in life, and thus have sustained great interest across many fields. One 

approach toward understanding the folding and function of proteins is through global or 

localized modification of their structure to introduce artificial covalent connectivity. In addition 

to providing valuable insights into the protein structure-function relationship, such modification 

can be used to impart benefits including increased cell permeability,167-169 resistance to proteases, 

25, 170-171 structural stability,121, 172-174 and improved bioactivity.175-176 The degree of protein 

modification can vary from the replacement of a single amino acid residue,177 to the complete 

stereochemical inversion of an L-protein to its D-protein counterpart.178 A moderate approach 

toward modifying proteins involves blending a fraction (20-30%) of the natural L-amino acids 

with unnatural counterparts, which generates a “heterogeneous-backbone” foldamer.27 

Heterogeneous-backbone foldamers, in contrast with de novo-designed modified 

proteins,179 are derived from natural protein sequences. Through a process called sequence-based 

design, a portion of the L--amino acids in a natural sequence are replaced with unnatural amino 

acids.  Early work focused on mimicry of isolated secondary structures such as -helices35, 89, 180-

183 and -hairpins,116, 184-185  then advanced to mimicry of various secondary structures in the 

context of a larger tertiary fold.117, 119, 186-187 Our group has recently achieved structural mimicry 

of all secondary structures in two tertiary folds: the 56-residue protein GB1,40 and the 28-residue 

zinc-finger protein sp1-3.24 Moving beyond structural mimicry, the Gellman group has reported 
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heterogeneous-backbone foldamers that successfully recapitulate the functions of several natural 

peptides and proteins smaller than 40 residues, including parathyroid hormone,39, 188-189 a phase-

derived VEGF mimic,41, 190 and glucagon-like peptide 1.42 

Inspired by these promising examples, our goal has been to develop a general approach 

for the design of heterogeneous-backbone tertiary folds with predictable structural propensities 

and functional properties. In pursuit of this approach, we have produced prototype principles for 

the sequence-based design of backbone-modified proteins that retain the structures of their 

natural protein counterparts.21 However, we have not yet utilized these principles to achieve 

structural and functional mimicry of a protein larger than 56 residues. The goal of the work 

described in this chapter is to further develop our design principles by applying them to 

ubiquitin, a medium-sized protein with a complex range of functions. We employed these 

principles to design and synthesize a library of backbone-modified ubiquitin variants, some of 

which are structurally and functionally comparable to the natural protein. In addition to 

validating current design principles, these results are expected to guide their refinement and 

future application to the sequence-based backbone modification of other proteins. 

4.2 SYSTEM DESIGN 

We decided to target ubiquitin protein because it: 1) is of a medium-length (76 residues), 2) is 

amenable to preparation by total chemical synthesis,177, 191-192 3) adopts a complex fold with a 

variety of secondary structures, and 4) has many essential and diverse biological functions, some 

of which are measurable. First, we designed a “WT” ubiquitin (WTchem) with two side-chain 

point mutations: Met1Nle to avoid methionine oxidation, and Phe4Tyr to facilitate chromophoric 
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detection. We then designed two heterogeneous-backbone ubiquitin variants—one 

conservatively designed, and one ambitiously designed—each containing about 15-20% 

unnatural residues (Figure 42).  

 

 

Figure 42. Secondary structure map of ubiquitin with sequences of wildtype ubiquitin (WTexp), chemically 

synthesized ubiquitin (WTchem), the conservative design variant (Cons), and the ambitious design variant (Amb). 

Side-chain point mutations are bolded in the WTchem sequence (B = norleucine). Unnatural residues in the variant 

sequences are highlighted with circles, which are color-coded to the residue structures (below). Side-chain R groups, 

when present, are indicated by the single letter code of the corresponding -amino acid. 

 

When deciding how to modify the backbone of ubiquitin, we carefully considered several of its 

structural and functional features, as detailed in the following sections. 

4.2.1 Structural and Functional Considerations  

The tertiary structure of ubiquitin contains an -helix, a short 3/10-helix, a 4-stranded -sheet, 

and 6 -turns; the fold is held together by a 14-residue hydrophobic core193 and several 

intramolecular polar contacts (Figure 43).  
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Figure 43. Hydrophobic core (left) and intramolecular polar contacts (right) present in ubiquitin. Green = 

hydrophobic core sidechains, red = oxygen atoms, blue = nitrogen atoms. PDB: 1UBQ. 

 

Our first structural design consideration was to keep as many of these intramolecular interactions 

as possible intact, thus reducing the possibility of disrupting the native tertiary structure. 

Interestingly, the tertiary fold of ubiquitin is somewhat similar to protein GB1 (Figure 44), 

which our lab has mimicked successfully in previous work.40, 117, 119, 186-187  

 

 

Figure 44. Tertiary fold comparison of GB1 (left, PDB: 2QMT) and Ubiquitin (right, PDB: 1UBQ). 

 

Thus, our conservative design for ubiquitin backbone modification is based on our first 

successful heterogeneous-backbone mimic of GB1.40 We decided to incorporate 3-residues in 
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the -helix in an iterative i→i+4 substitution pattern, N-Me-residues in the sheet regions, and 

Aib residues or D-Pro-Gly dipeptides in the turns. Unlike GB1, ubiquitin contains a 3/10-helix, 

design principles for which our group has not yet established. Previous studies have shown that 

short peptide sequences containing Aib residues adopt 3/10-helical conformations.194-196 Thus, 

after a dihedral angle analysis of the four residues in the 3/10-helix, we hypothesized that a 

Ser57Aib replacement would likely be accommodated.  

Our design of the ambitious ubiquitin variant was derived from findings in later work on 

GB1 mimics. The -helix contains Aib residues, which were previously shown to be most 

favorably accommodated in -helices.117 In other studies, our group determined that Acc, a cyc-

residue (note: this residue is distinct from the cyclic -residue ACC in Chapter 1), was well-

tolerated in a small hairpin peptide184 and in the -sheet of GB1.186 Accordingly, we planned to 

incorporate four Acc residues into ubiquitin, one in each strand of the -sheet. Though our group 

and others have previously modified tight turns in many systems,40, 185, 197-198 generalizable 

design principles for the mimicry of turn secondary structures have remained elusive. Thus, the 

riskiest aspect of the ambitious variant design is the decision to include D-Pro-Gly in 5 of the 6 

ubiquitin turns. This decision was partly inspired by a functional consideration from our earlier 

work (Chapter 2),25 which suggested D-residues are most effective in preventing proteolytic 

digestion. 

Because the primary side chain sequence of a protein dictates its folding and subsequent 

function, we must consider the presence or absence of side chains in the unnatural residues we 

are employing. N-Me-, D-, and 3-residues are able to retain the native side chains of ubiquitin, 

but Acc residue replacement always involves the loss of a side chain. While substituting Aib for 

an alanine residue preserves the native methyl side chain, replacement of any other residue with 
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Aib will result in side chain deletion. Thus, it is important to note that our conservative and 

ambitious designs retain 93% and 84% of the native side chains displayed by ubiquitin, 

respectively. This further highlights a need for new classes of unnatural residues that are able to 

preserve the side chain functionalities of native sequences. 

Preserving the function of ubiquitin was a priority in the design of the foldamer mimics. 

Ubiquitin serves an important cellular role, primarily in the tagging and degradation of misfolded 

proteins.199 A trio of enzymes, the ubiquitin cascade enzymes, attach ubiquitin through its C-

terminus onto misfolded or extraneous proteins (Figure 45).  
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Figure 45. Ubiquitin is attached to a protein substrate by the ubiquitin cascade enzymes (E1, E2, and E3). This 

figure is adapted from reference 200 with permission from Annual Reviews. 
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First, a ubiquitin activating enzyme (E1) activates the C-terminus of ubiquitin for nucleophilic 

attack. A cysteine residue on a ubiquitin conjugating enzyme (E2) then forms a thioester bond 

with ubiquitin. Finally, a ubiquitin ligase (E3) recruits the target protein and ubiquitinates it, 

either alone (HECT-type), in combination with an E2 enzyme (RING-type), or through the 

recruitment of a multi-protein complex (ex. SCF-type). After monoubiquitination occurs, the 

cascade enzymes facilitate the polymerization of ubiquitin onto the substrate, termed 

polyubiquitination. The various functions of ubiquitin are determined by the characteristics of 

polyubiquitin chains (Figure 46), which are formed through isopeptide bonds between the C-

terminus of one ubiquitin and a lysine residue (or N-terminus) of another. 
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Figure 46. The function of ubiquitin is determined by the nature of its lysine-linked polyubiquitin chains. This 

figure is adapted from reference 201 with permission from Portland Press Publishing. 
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We considered these functional aspects during the design of our ubiquitin variants. We 

first avoided modifications at the C-terminus, where ubiquitin is attached to ubiquitin cascade 

enzymes as well as target proteins. To preserve the possibility for polyubiquitination, we aimed 

to maintain the 7 lysine sidechains in ubiquitin; however, we had to make some exceptions. First, 

while the 3-residues used in helices in the conservative design retain the lysine sidechain, the 

Aib residues of the ambitious design do not. We attempted to mitigate this by shifting the Aib 

substitution pattern to avoid the lysines but were unable to avoid modifying Lys29. Second, Lys63 

exists at the center of a tight turn, which we modified in both designs. Finally, we sought to 

preserve the interactions that occur between ubiquitin and the enzymes that process it. Thus, we 

thoroughly inspected over 50 published crystal structures of complexes between ubiquitin and 

E1, E2, and E3 enzymes. Among these structures, we catalogued polar contacts and hydrophobic 

binding areas between ubiquitin and the enzymes (Figure 47).  
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Figure 47. Example analysis of ubiquitin (yellow) complexed with ubiquitin-conjugating enzyme E2 D2 (green) and 

E3 RING finger protein 165 (blue). Note the burial of the N-terminal turn (TLTG, spheres) at the interface of the E2 

and E3 enzymes, and the Arg42 side chain polar contact with the E2 enzyme. PDB: 5D0M. 
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We then identified the most common areas of interaction, avoiding modification of those areas in 

ubiquitin. For example, we did not modify the first turn of ubiquitin (TLTG) because it 

frequently appeared to be buried in hydrophobic pockets of the enzymes (Figure 47). This 

highlights the importance of exposed hydrophobic surfaces in protein-protein recognition 

events,202 such as those between ubiquitin and the cascade enzymes. We also preserved the side 

chain of Arg42, which makes a polar contact with all three enzymes in several crystal structures 

(Figure 47). Many other examples of these hydrophobic and polar interactions exist, and we 

judiciously considered them in our design efforts. 

4.2.2 Synthetic Considerations 

The sizes of protein targets pursued by our group to date have been limited by our synthetic 

approach; Fmoc-solid phase synthesis methods can only generate sequences up to ~50 residues 

long before overall yields begin to suffer. Chemical synthesis of proteins larger than 50 residues 

generally requires chemoselective ligation techniques, such as native chemical ligation (NCL).203 

Briefly, NCL couples two peptide fragments together using a sulfur nucleophile—typically a 

cysteine residue—followed by an S→N acyl shift, which forms a native amide bond (Figure 48).  
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Figure 48. Generalized native chemical ligation mechanism. A transthioesterification couples the N- and C-terminal 

protein fragments together, then an intramolecular S→N acyl shift generates an amide bond. R = alkyl or aryl group. 

 

For target protein sequences that lack a cysteine, such as ubiquitin, a desulfurization reaction can 

be used to transform the resulting cysteine to an alanine.204 There are two potential ligation sites 

in the sequence of ubiquitin that would allow for simple Cys→Ala desulfurizations: the first at 

Lys27—Ala28, and the second at Phe45—Ala46. We elected to use the former because we wished 

to use peptide hydrazides as thioester surrogates;205 to our knowledge, a peptide hydrazide larger 

than 40 residues has not been reported. Finally, in both designs we avoided modification near the 

proposed ligation site (K27-A28). The closest unnatural residues to this ligation site are at least 

2-3 amino acids away. This decision was inspired by unpublished work in which we observed 

reduced reaction rates when unnatural residues were incorporated at—or even 2 residues away—

from the ligation site. 

We envisioned the following retrosynthetic scheme to generate ubiquitin and variants 

(Figure 49).  
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Figure 49. Retrosynthetic scheme showing the proposed synthesis of WTchem and ubiquitin variants. The circles 

represent the polymeric solid supports of the peptide synthesis resins. SPPS = solid phase peptide synthesis, open 

circle = polystyrene, filled circle = NovaPEG. 
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Full-length ubiquitin and variants can be achieved by desulfurization of the corresponding 

Cys28Ala precursor, which is the product of a native chemical ligation reaction. The two peptide 

fragment starting materials for this ligation can be generated via Fmoc solid-phase peptide 

synthesis methods. The left-hand (N-terminal) thioester fragments can be prepared from a 

hydrazine-functionalized 2-chlorotrityl chloride polystyrene resin; upon cleavage, this generates 

a peptide hydrazide that can be subsequently converted to the thioester in situ.205 The 

nucleophilic right-hand (C-terminal) fragments can be synthesized on a NovaPEG Wang Resin.  

Finally, while NCL and other ligation techniques have been used to chemically 

synthesize many proteins with various post-translational modifications,206 these methods have 

not yet been used to synthesize a heterogeneous-backbone protein. In addition to closing this gap 

in the literature, a significant advancement of this work is the modularity of our synthetic 

approach, which showcases the potential of native chemical ligation to generate backbone-

modified protein libraries. While this type approach has accomplished divergent syntheses of 

natural proteins,207 to our knowledge it has not yet been used to synthesize highly-modified 

proteins such as the ones we generate herein. 

4.3 RESULTS AND DISCUSSION 

Comparing the structure and function of wildtype (WT) ubiquitin with that of the backbone-

modified ubiquitin variants enables rigorous examination of our design principles. After 

synthesizing and characterizing WT and variant ubiquitins by CD spectroscopy, we submitted 

them to the lab of Jeffrey Brodsky (University of Pittsburgh, Biological Sciences) for biological 

assays. 
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4.3.1 Modular Synthesis of Ubiquitin Variant Library 

WTchem ubiquitin was synthesized by native chemical ligation, using the peptide hydrazide 

thioester-masking approach (Figure 50).205  
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Figure 50. Scheme for the synthesis of ubiquitin variants. One of three N-terminal fragments is first oxidized, then 

an aryl thiol (MPAA) and one of three C-terminal fragments are added to the reaction simultaneously. The resulting 

A28C protein is isolated and purified by RP-HPLC, then subjected to a radical-mediated desulfurization, which 

restores the native alanine sidechain. 
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The N-terminal and C-terminal fragments—containing an acyl hydrazide and a cysteine, 

respectively—were synthesized by Fmoc solid phase peptide methods. In one-pot, the acyl 

hydrazide was oxidized to an acyl azide, converted to an aryl thioester, and the two fragments 

were ligated together in phosphate buffer at room temperature. Notably, the pH of this ligation is 

critical to reaction success; a ligation pH of 6.8 or 6.0 resulted in the formation of a byproduct 

that significantly reduces the yield of desired product. By mass, the byproduct appears to be an 

intramolecular cyclization of the lysine -NH2 onto the thioester of the N-terminal fragment 

(Figure 51).  
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Figure 51. Intramolecular cyclization of the lysine sidechain onto the terminus of the N-terminal peptide fragment 

resulted in a byproduct. 

 

While the intramolecular cyclization at higher pH (6.8) can be explained by the increased 

nucleophilicity of the side chain amine, the same byproduct formation at pH 6.0 is somewhat 

puzzling. We suspect that at a pH < 6.4, the cysteine nucleophilicity is reduced to a sufficient 

extent that the competing intramolecular cyclization becomes favored over the intermolecular 

coupling of the two fragments. Allowing the ligation to proceed at pH 6.4 for roughly 5 hours 

generates the full-length ubiquitin sequence with an Ala28Cys mutation. The native alanine was 

then restored via radical-mediated desulfurization techniques.204 Reaction progress and product 
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purity were assessed by RP-HPLC, and product identity was confirmed by MALDI-TOF-MS 

(Section 4.5).  

With a reliable synthesis for WTchem in hand, we shifted focus to our heterogeneous-

backbone ubiquitin designs. Pursuing all possible combinations of the three N- and C-terminal 

fragments—i.e. WTchem, Cons, and Amb—results in eight ubiquitin variants in addition to 

WTchem ubiquitin (Figure 52).  

 

 

Figure 52. Full library of ubiquitin variants synthesized in this work. Note that proteins 4.1, 4.6, and 4.7 are the 

designed proteins WTchem, Cons, and Amb, respectively (see Figure 42). Side-chain R groups, when present, are 

indicated by the single letter code of the corresponding -amino acid. 

 

Thus, we proceeded to synthesize the remaining eight proteins by the same route as WTchem (4.1) 

ubiquitin. We first ligated and desulfurized the backbone-modified fragments with the WTchem 

fragments to generate four “chimera” variants (4.2-4.5). Combining only the backbone-modified 

fragments with each other furnish four fully-modified variants: our two original designs (Cons, 

4.6 and Amb, 4.7), and two N-/C-terminal swapped analogs (4.8 and 4.9). While there were 

noticeable differences among the reaction rates of the nine syntheses, no clear trends emerged. 
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Importantly, the route was able to generate sufficient material of all nine proteins for biophysical 

and biological characterization. 

4.3.2 Examination of Folding by CD Spectroscopy 

The structures of WT and variant ubiquitins were characterized through circular dichroism (CD) 

spectroscopy. While CD signatures can provide qualitative evidence of natural protein structure, 

comparative analyses become complicated when applied to proteins with modified backbones. 

Because CD spectroscopy involves a chiral light source, the presence of non-L--amino acids in 

a protein can alter its CD signature. Consequently, the CD signature of a backbone-modified 

protein can appear distinct from its natural counterpart even if the two proteins have similar 

folds. For example, the inclusion of -residues in a helix-bundle quaternary structure resulted in 

an atypical helical signature with a single minimum at 205 nm.180 Thus, it is important to 

consider that an unusual signature could be the result of either an altered fold or the presence of 

unnatural residues. With this consideration in mind, we were cautious in our comparisons of WT 

and variant ubiquitin CD signatures. 

We first compared the CD signatures of expressed ubiquitin with that of chemically 

synthesized WT, 4.1 (Figure 53). 
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Figure 53. CD scans of chemically synthesized and expressed ubiquitin. 

 

While the 206 and 222 nm minima are less intense in 4.1 compared with WTexp, the qualitative 

similarities between the two signatures suggest that they have similar tertiary folds. The small 

differences may arise from the two side chain alterations (Met1Nle, Phe4Tyr). 

We next examined the CD signatures of the chimera ubiquitin proteins (Figure 54). 
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Figure 54. CD scans of chimera ubiquitin variants. 

 

While some differences exist among the chimera variants, we were pleased to see that all 

signatures show some semblance of structure. Signatures of variants 4.3 and 4.5 show 

diminished and slightly blue-shifted minima, yet they remain qualitatively similar to that of 
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WTexp and 4.1. This suggests that though their tertiary structure may be somewhat perturbed, 

these variants likely resemble the natural fold of ubiquitin. On the other hand, signatures of 

variants 4.2 and 4.4 appear to be qualitatively distinct, with enhanced minima at 206 nm (relative 

to 4.1) but without a corresponding increase at 222 nm. It is encouraging that the 206 nm 

minimum is nearly as large in magnitude as WTexp. Though it is tempting to attribute this 

enhanced minimum solely to 3-residue incorporation, variants 4.2 and 4.4 only contain one and 

two 3-residues, respectively. Thus, we suspect that there may be multiple factors contributing to 

the dissimilar signatures we observe for the conservative design chimeras. 

Finally, we analyzed the CD data for the fully-modified ubiquitin variants (Figure 55).  
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Figure 55. CD scans of fully-modified ubiquitin variants. 

 

Like the chimera variants, the fully-modified ubiquitin variants also appeared to be structured. 

Variant 4.9 is least like WTexp and 4.1, with decreased minima intensities and a strongly blue-

shifted minimum near 200 nm. While the shape of the signature still indicates some folding, the 

strong shift toward 200 nm suggests that some population of this variant may exist as a random 

coil. Variant signatures for 4.7 and 4.8 have intensities similar to 4.1; however, the signature 

shape of variant 4.7 appears most disparate from all others. It is notable that this variant has the 
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most unnatural backbone among all variants. While it is possible that the atypical signature is the 

result of unnatural amino acid content, an alternative explanation could be the existence of 

increased -sheet character. Remarkably, the signature of variant 4.6 shows a 206 nm minimum 

that is nearly identical to WTexp. Though the shape of the signature is slightly different from that 

of WT ubiquitin, we were encouraged by the similarities of the spectra. 

Initially, we expected that some of the variants would not be folded. Gratifyingly, while 

perhaps slightly different from the tertiary fold of ubiquitin, it appears that all variants possess 

some structure. This observation suggests that our design principles are valid and can 

successfully generate heterogeneous-backbone foldamers that mimic the structure of their natural 

counterparts. 

4.3.3 CHIP E3 Ligase Ubiquitination in vitro Assay 

After determining that all synthesized variants were structured in solution, we were curious to 

assess their function. Collaborating with the Brodsky lab, we subjected all variants to an in vitro 

ubiquitination assay. In this ATP-dependent assay, the C-terminus (residues 395-646) of 

chaperone protein Hsc70 (previously shown to be modified by CHIP) is polyubiquitinated by 

Ube1 (E1), UbcH5b (E2), and CHIP, a RING-type E3 ubiquitin ligase.208 The extent of Hsc70395-

646 ubiquitination is then detected by Western blotting (for the GST-tag on Hsc70395-646). A 

reaction using a commercial isolate of WT ubiquitin serves as a positive control, and a reaction 

without the ATP necessary to drive ubiquitination is a negative control. We tested the ability of 

our ubiquitin variants to ubiquitinate Hsc70395-646 by adding them to the assay instead of 

expressed ubiquitin. From these experiments, we determined that variants 4.1, 4.2, 4.4, and 4.6 
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ubiquitinated Hsc70395-646 to varying degrees, while 4.3, 4.5, 4.7, 4.8, and 4.9 did not mono- or 

polyubiquitinate Hsc70395-646 to any observable extent (Figure 56).  

 

 

Figure 56. Representative substrate western blot of ubiquitination reactions with expressed and variant ubiquitins. 

 

We were pleased to see that synthetic ubiquitin (4.1) and a commercial isolate of WT ubiquitin 

(WT) exhibited nearly identical substrate polyubiquitination activity. Ubiquitin variant 4.2 also 

polyubiquitinated the substrate, albeit to a lesser extent than 4.1. Interestingly, while ubiquitin 

variants 4.4 and 4.6 successfully monoubiquitinated substrate, they were unable to form 

significant amounts of polyubiquitinated Hsc70395-646. However, these two variants did show 

minor amounts of diubiquitination in the western blot (Figure 57). 
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Figure 57. Representative total ubiquitination western blot of reactions with expressed and variant ubiquitins. 
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Unfortunately, we observed poor solubility in the case of variant 4.7, which precipitated upon 

being added to the reaction. As a band for monoubiquitination is not observed for 4.7, the higher 

molecular weight species present in the substrate blot are likely the result of aggregation rather 

than of polyubiquitination (Figure 56). It is noteworthy that the -ubiquitin polyclonal antibody 

was less efficient in recognizing variants 4.3, 4.7, and 4.9. Considering this observation together 

with the CD data (Figures 54 and 55), we suggest that these variants are least structurally 

comparable to native ubiquitin. 

Our qualitative observations prompted us to quantitatively compare the extent of 

ubiquitination among variants. To accomplish this, we quantified the relative amounts of 

unubiquitinated, monoubiquitinated, and polyubiquitinated Hsc70395-646 in replicate reactions by 

densitometric analysis of the scanned gel images (Figure 58). 
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Figure 58. Percentage of Hsc70395-646 (substrate) that is unubiquitinated, monoubiquitinated, and polyubiquitinated 

for each reaction. *Poor solubility of variant 4.7 resulted in an overestimation of polyubiquitinated substrate. Error 

bars represent the range of the data. 

 

The quantitative data corroborate our qualitative observations: WT ubiquitin and variant 4.1 

polyubiquitinate Hsc70395-646 to a similar extent, and variant 4.2 to a lesser extent. A minor 

amount of polyubiquitination is observed with variants 4.4 and 4.6, but a significant amount of 

Hsc70395-646 is monoubiquitinated. For all successful ubiquitination reactions (WT, 4.1, 4.2, 4.4, 

and 4.6), the relative amounts of monoubiquitinated Hsc70395-646 are similar.  

Our next goal was to investigate the reason for the disparities in polyubiquitination 

efficiency among variants. We identified the presence or absence of the K63 side chain as one 

possible source of the observed differences. While WT, 4.1, and 4.2 all contain K63, it is replaced 

with an Aib residue in variants 4.4 and 4.6. We hypothesized that the loss of sidechain at this site 

in variants 4.4 and 4.6 may preclude polyubiquitination by the particular set of ligases employed 
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in the assay. We were fortunate to be provided a set of Lys→Arg mutant ubiquitins from the lab 

of Philip Cole (Harvard) to test this hypothesis. For these experiments, we used K48R, K63R, or 

K48,63R as the ubiquitin source to determine their relative abilities to ubiquitinate Hsc70395-646 

(Figure 59). 

 

 

Figure 59. Substrate western blot of ubiquitination reactions with K48R, K63R, or K48,63R mutant ubiquitin 

proteins. 

 

UbcH5b and CHIP did not show a preference for either K63- or K48-linked polyubiquitin chains. 

Even the double replacement of both K48 and K63 resulted in polyubiquitin chains linked through 

any of the five remaining lysines in the sequence. Thus, our hypothesis was refuted, and the 

origin of the lack of polyubiquitination by variants 4.4 and 4.6 remains unclear. We suspect that 

these variants may have structural topology differences that are imperceptible by CD 
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spectroscopy, but sufficient to disrupt polyubiquitination by UbcH5b and CHIP due to the high 

selectivity of enzymes in the ubiquitin pathway for substrates and ubiquitin over other highly 

related ubiquitin-like proteins. 

4.3.4 in vitro Ubiquitin Conjugation and Retrotranslocation 

To further examine functional capabilities of the ubiquitin variants that mono- or 

polyubiquitinated Hsc70395-646 in the CHIP assay, we subjected 4.1, 4.2, 4.4, and 4.6 to an in 

vitro assay that monitors the ubiquitin-mediated degradation of a misfolded transmembrane 

protein in the endoplasmic reticulum (ER).209 After being polyubiquitinated, the substrate is 

"retrotranslocated" or extracted from the ER membrane and can be delivered for proteasome-

dependent degradation. It is important to note the major difference in complexity between these 

experiments and the CHIP assay. While both are performed in vitro, this assay more accurately 

mimics cellular conditions, containing multiple E3 ubiquitin ligases in addition to other 

biological machinery such as molecular chaperone complexes that recognize misfolded proteins. 

In these experiments, radiolabeled (125I) ubiquitin variant was added to a reaction containing 

cytosol, an ATP regenerating system (or apyrase in negative control), and microsomes displaying the 

misfolded membrane protein Chimera A*. After incubation, the reactions were separated into solid 

and liquid components, which contain membrane-bound and cytosolic species, respectively. The 

extent of membrane protein ubiquitination (Figure 60A) and retrotranslocated membrane protein in 

the cytosol (Figure 60B) was visualized by radioactive imaging of each 125I-ubiquitin variant. 
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Figure 60. Ubiquitination and retrotranslocation of Chimera A* by ubiquitin variants 4.1, 4.2, 4.4, and 4.6. * = 

relative molecular weight of Chimera A*. Bottom portions of gels represent western blots for Chimera A*. A) Total 

reaction ubiquitination observed for each ubiquitin variant (+ATP) and negative control reactions containing apyrase 

(-ATP). B) Ubiquitinated Chimera A* retrotranslocated to the cytosolic supernatant (S), and ubiquitinated Chimera 

A* remaining in the microsomal membrane pellet (P) after centrifugation. 
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 Remarkably, all tested variants successfully ubiquitinated membrane-bound Chimera A*, 

albeit to varying extents. The amount of ubiquitination appears to be inversely correlated with 

the percentage of modified backbone in each variant. In Figure 60B, we see in reactions with 

variants 4.1, 4.2, and 4.4 that an observable fraction of ubiquitinated Chimera A* is 

retrotranslocated to the supernatant (S) cytosol. Unfortunately, as the signal for 4.6 is already 

faint in the total reaction (Figure 60A), the corresponding retrotranslocation results are 

inconclusive. It is unclear whether the signal is absent because the amount retrotranslocated is 

below the detection threshold, or because retrotranslocation did not occur.  

It is imperative to consider the complexity of this assay when assessing the significance 

of these results. In contrast to the CHIP assay, in which ubiquitin variants were processed by the 

three added enzymes, the E1, E2, and E3 ubiquitin ligase CHIP, a positive result from this assay 

indicates that our variants have been recognized by myriad proteins. As in nature, ubiquitination 

can occur by many possible combinations of E1, E2, and E3 enzymes, many of which are present 

in these reactions. For retrotranslocation to occur, a polyubiquitin chain of at least four linked 

ubiquitins must be recognized by a large chaperone complex, which then removes Chimera A* 

from the membrane. It is noteworthy that our variants, which contain 5-18% unnatural residues, 

can successfully participate in this many molecular recognition events. Additionally, the 

observed ubiquitination by 4.4 and 4.6 and retrotranslocation of Chimera A* by 4.4 call into 

question the negative results observed in the CHIP assay. Perhaps the variants deemed 

“unsuccessful” in the CHIP assay could successfully mono- and polyubiquitinate a substrate in 

the presence of other E2 and E3 enzymes that were lacking in the CHIP assay. 
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4.4 CONCLUSIONS 

In summary, we successfully synthesized a library of nine ubiquitin variants through a modular 

approach of native chemical ligation and desulfurization techniques. While CD scans of these 

nine variants resulted in varying signatures, all proteins appeared to attain tertiary structures 

similar to that of ubiquitin. All nine variants were then subjected to a simple ubiquitination assay 

with purified E1, E2, and an E3 enzyme, where proteins 4.1, 4.2, 4.4, and 4.6 were able to 

successfully ubiquitinate a known substrate (Hsc70395-646) of this pathway, albeit to different 

degrees. Expressed WT ubiquitin and 4.1 showed identical ubiquitination profiles, variant 4.2 

polyubiquitinated substrate to a lesser extent, and variants 4.4 and 4.6 only monoubiquitinated 

substrate. We then submitted these four active variants to a more complex in vitro assay, 

measuring their ability to ubiquitinate and facilitate retrotranslocation of a misfolded 

transmembrane protein (Chimera A*) from a biological membrane. While all four variants 

successfully ubiquitinated Chimera A*, only variants 4.1, 4.2, and 4.4 conclusively facilitated 

Chimera A* retrotranslocation. 

This work represents a significant milestone in the mimicry of natural proteins by 

heterogeneous-backbone foldamers. We successfully applied our backbone-modification design 

principles to a larger and functionally complex protein. However, while our principles have 

proven valid for effective structural mimicry, they appear to need further refinement if we wish 

to use them for functional mimicry. Notably, all variants derived from only our conservative (or 

WTchem) design showed some level of function, while variants containing any part of our 

ambitious design appeared folded but unable to function. This observation sheds light on an 

important discrepancy; a positive CD scan result indicating folding does not necessarily translate 

to a functional protein. Our results suggest that more structural information than a CD scan may 
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be necessary to determine the potential of a backbone-modified protein to mimic the function of 

its natural counterpart. 

4.5 EXPERIMENTAL 

4.5.1 Materials 

Solvents and reagents were purchased from Sigma Aldrich, Baker, EMD Millipore, Fisher, 

Acros Organics, Alfa Aesar, or ChemImpex, and used as received. The Fmoc-protected 

monomer for installation of Acc was synthesized as previously described.210 MALDI-TOF mass 

spectrometry was performed on a Bruker ultrafleXtreme instrument. Circular dichroism spectra 

were recorded on an Olis DSM17 spectrometer equipped with a Peltier temperature controller 

using quartz cuvettes of 0.1 cm path length. Preparative, semi-preparative, and analytical HPLC 

were performed on Phenomenex Jupiter C18 columns using gradients between 0.1% TFA in 

water and 0.1% TFA in acetonitrile. 

 His-Ube1,211 His-CHIP,212 and GST-Hsc70395-646
212 were expressed and purified from 

BL21(DE3) competent cells (New England Biolabs) for in vitro ubiquitination assays with 

ubiquitin variants. pET21d Ube1 were provided by Dr. Cynthia Wolberger (Addgene plasmid 

#34965211). pET151/D-TOPO CHIP  and pGST‖2 Hsc70395-646  were obtained from Dr. Saurav 

Misra.208 Transformed cells were cultured in Luria broth (LB) + 100 μg/mL ampicillin at 37 °C 

225 rpm until reaching an OD600 of 0.3, then induced with 500 μM isopropyl β-D-1-

thiogalactopyranoside (IPTG), incubated for 24 hrs. at 15-18 °C, and subsequently harvested at 
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8000xg. Cell pellets were stored at -80 °C. Ubiquitin variants K48R, K63R, and K48,63R were 

provided by Dr. Philip Cole. 

4.5.2 Fragment Synthesis and Purification 

N-terminal ubiquitin fragments were synthesized on 2-chlorotrityl chloride resin as previously 

described205 with microwave heating (MARS microwave reactor, CEM). 2-chlorotrityl chloride 

resin was activated twice with 5% hydrazine monohydrate in DMF (v/v) for 30 minutes each at 

30 °C. Unactivated resin sites were then capped with 5% methanol in DMF (v/v) for 10 minutes 

at room temperature. Amino acid couplings were performed with 5 equivalents of amino acid to 

resin. Fmoc-protected amino acids were preactivated with HCTU (5 equivalents to resin) and 

DIEA (7 equivalents to resin) in NMP for 2 minutes. The preactivated amino acid was then 

added to the resin in a reaction vessel equipped with a stir bar, and a microwave program 

consisting of a 1.5 minute ramp to 90 °C followed by a 2 minute hold at 90 °C was run. The resin 

was washed with DMF, DCM, then DMF and treated with 20% 4-methylpiperidine in DMF 

using a microwave deprotection program consisting of a 1.5 minute ramp to 90 °C followed by a 

1 minute hold at 90 °C. The resin was washed with DMF, DCM, then DMF, and the above cycle 

was repeated until the desired peptide chain was obtained. Peptides were cleaved from resin by 

treatment with 90% TFA, 8% water, and 2% triisopropylsilane for 3 hours. 

C-terminal ubiquitin fragments were synthesized at room temperature on NovaPEG 

Wang Resin using a Protein Technologies, Inc. Tribute automated peptide synthesizer. The resin 

was loaded by adding Fmoc-Gly-OH (5 equivalents), N,N'-diisopropylcarbodiimide (5 

equivalents), and 4-dimethylaminopyridine (0.1 equivalents) to the NovaPEG Wang resin 

suspended in anhydrous DMF. The suspension was stirred for 3.5 hours at room temperature. 
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The resin was acetyl-capped with 4-dimethylaminopyridine (2 equivalents) and acetic anhydride 

in anhydrous DMF (10% v/v) for 10 minutes at room temperature. The resin was rinsed with 

DMF, DCM, and methanol, and dried in a desiccator overnight. Resin loading was determined 

by a spectrophotometric method in which a portion of resin was deprotected with 4-

methylpiperidine, and the absorbance of the subsequent dibenzofulvene-4-methylpiperidine 

adduct (ԑ300 = 6234 M-1 cm-1) was measured. The synthesis proceeded in the same couple-wash-

deprotect cycle as stated in the above paragraph with the following exceptions. Couplings were 

performed for 50 minutes at room temperature with 5 equivalents of amino acid relative to resin. 

Fmoc-protected amino acids were preactivated with HCTU (5 equivalents to resin) and N-

methylmorpholine (10 equivalents to resin) in DMF for 2 minutes. When coupling to N-methyl-

residues, Fmoc-protected amino acids were preactivated with PyAOP (5 equivalents to resin) and 

N-methylmorpholine (10 equivalents to resin) in DMF for 2 minutes. Deprotections were 

performed in 2 iterations of 4.5 minutes each. The peptide was cleaved from resin by treatment 

with 94% TFA, 2.5% water, 2.5% ethanedithiol, and 1% triisopropylsilane for 4 hours. 

 Following cleavage of peptide fragments from resin, the crude peptide was precipitated in 

cold diethyl ether and pelleted by centrifugation. The ether was decanted, and the resulting pellet 

dissolved in water and acetonitrile with 0.1% TFA. Purification was performed by HPLC on a 

Jupiter C18 preparative column using gradients between 0.1% TFA in water and 0.1% TFA in 

acetonitrile. Peptide identities and purities were determined by MALDI-TOF mass spectrometry 

(Table 5) and analytical RP-HPLC (Figure 61), respectively. 
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Table 5. MALDI-TOF data for N- and C-terminal Ubiquitin Fragments. 

 

 [M+H]+ (m/z) 

Peptide Calculated Observed 

N’ WT 3048.5 3048.5 

N’ Cons 3046.5 3046.7 

N’ Amb 2966.6 2966.0 

C’ WT 5577.0 5577.6 

C’ Cons 5571.5 5571.4 

C’ Amb 5389.3 5389.6 
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Figure 61. Analytical HPLC chromatograms of purified N- and C-terminal ubiquitin fragments. Notably, the 

irregular tailing effects observed in the peptide hydrazide chromatograms are precedented.213 
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4.5.3 General Native Chemical Ligation and Desulfurization Procedures 

Ubiquitin fragments were coupled by native chemical ligation using the peptide hydrazide 

thioester-masking approach.205 An Eppendorf tube containing 600 L N-terminal ubiquitin 

fragment (2 mM) in ligation buffer (0.2 M NaH2PO4 
. 2H2O, 6M Gdn . HCl, pH 3.0) was 

equipped with a stir bar and cooled to -15 °C in a salt ice bath. 40 L sodium nitrite in water (0.5 

M) was added and the solution was stirred at -15 °C for 15 minutes. To this was added a 600 L 

solution containing both the C-terminal ubiquitin fragment (2 mM) and 4-mercaptophenylacetic 

acid (69 mM) in ligation buffer. The solution was warmed to room temperature and the pH was 

raised to 6.4. The reaction was monitored by quenching a 1L aliquot with TCEP (0.1M) and 

analyzing by RP-HPLC. Upon completion, the reaction was quenched with 250 L TCEP 

(0.1M) and purified via semi-preparative HPLC to furnish the Ala28Cys ubiquitin variant. 

Protein identities and purities were determined by MALDI-TOF mass spectrometry (Table 6) 

and analytical RP-HPLC (Figure 62), respectively. 

 

Table 6. MALDI-TOF data for A28C protein ligation products. 

 

 [M+H]+ (m/z) 

Protein Calculated Observed 

4.1 A28C 8595.8 8596.2 

4.2 A28C 8593.8 8594.9 

4.3 A28C 8513.8 8513.5 

4.4 A28C 8586.9 8587.8 

4.5 A28C 8404.8 8407.0 

4.6 A28C 8585.0 8585.3 

4.7 A28C 8322.8 8322.8 

4.8 A28C 8402.8 8405.3 

4.9 A28C 8505.0 8505.0 
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Figure 62. Analytical HPLC chromatograms of ubiquitin A28C intermediates. 
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Ala28Cys ubiquitin variants were desulfurized using free-radical-mediated 

desulfurization.204 Pure, lyophilized protein was dissolved in 500 L neutral ligation buffer (0.2 

M NaH2PO4 
. 2H2O, 6M Gdn . HCl, pH 6.5). To this solution was added 500 L TCEP (1 M in 

water), 100 L tert-butylthiol, and 50 L VA-044 (0.1 M in water). The reaction was warmed to 

37 °C and stirred for 5 hours. Upon completion, the reaction was purified by semi-preparative 

HPLC. Protein identity and purity were determined by MALDI-TOF mass spectrometry (Table 

7) and analytical RP-HPLC (Figure 63), respectively. 

 

Table 7. MALDI-TOF data for ubiquitin variants. 

 

 [M+H]+ (m/z) 

Protein Calculated Observed 

4.1 8563.7 8564.8 

4.2 8561.7 8562.5 

4.3 8481.7 8482.1 

4.4 8554.9 8555.5 

4.5 8372.7 8375.0 

4.6 8552.9 8552.9 

4.7 8290.7 8291.4 

4.8 8370.7 8372.6 

4.9 8472.9 8474.9 
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Figure 63. Analytical HPLC chromatograms of ubiquitin variants. 
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4.5.4 Circular Dichroism Spectroscopy 

Stock solutions of ubiquitin variants were prepared in water, and the concentration of peptide 

was determined by UV-Vis spectroscopy (ԑ280 = 2560 M-1 cm-1).163 Samples for CD analysis 

were prepared by dilution of the peptide stock with water and buffer stocks to yield solutions 

consisting of 40 μM peptide in 50 mM phosphate buffer pH 5.6. CD scans were performed from 

200-260 nm with 1 nm step size, 2 nm bandwidth, and 5 second integration time at each 

wavelength. All measurements were baseline corrected against a buffer blank measured in the 

same cell. Scans were smoothed by the Savitsky-Golay method using GraphPad Prism. 

4.5.5 CHIP In Vitro Ubiquitination Assay 

Note: these experiments were performed by Samuel Estabrooks from the Brodsky Lab in the Department of Biology 

at the University of Pittsburgh. 

 

Recombinant human CHIP was purified from pelleted cells as described previously.214 Cell 

pellets containing Ube1 were lysed in 10 mM imidazole, 50 mM NaPO4 pH 8, 300 mM NaCl, 5 

mM 2-mercaptoethanol, 0.25% Triton-100X, 2 mg/mL lysozyme for 30 min. on ice followed by 

sonication. Recovery of intact Ube1 required addition of protease inhibitors (1% PMSF, 0.2% 

leupeptin, 0.1% pepstatin A, Roche protease inhibitor cocktail) to lysis buffer and all purification 

buffers. After centrifugation, cleared Ube1 cell lysates were applied to Ni-NTA agarose resin 

(Qiagen), washed with 30 mM imidazole, and eluted with 200 mM imidazole. Peak His-Ube1 

fractions were pooled, dialyzed into 20 mM HEPES pH 7.4, 20 mM NaCl, and further purified by 

anion exchange chromatography over DEAE-Sepharose (GE Healthcare). Ube1 was eluted across a 

50-300 mM NaCl gradient and peak fractions were pooled, dialyzed into 50 mM HEPES pH 7, 50 
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mM NaCl, further concentrated by centrifugal filtration (Millipore), flash frozen in liquid nitrogen, 

and stored at -80 °C. Cell pellets containing GST-Hsc70395-646 were lysed in 50 mM Tris pH 7.5, 150 

mM NaCl, 5 mM 2-mercaptoethanol, 0.25% Triton-100X, 2 mg/mL lysozyme, sonicated, and 

cleared lysates applied to glutathione agarose (Sigma). After washing, GST-Hsc70395-646 was eluted 

with 6.8 mg/mL reduced glutathione. Peak fractions were pooled, dialyzed into 50 mM HEPES pH 7, 

50 mM NaCl, flash frozen, and stored at -80 °C. Purified proteins were verified by Coomassie 

Brilliant Blue staining. Protein concentration was determined by Pierce BCA protein concentration 

assay (Thermo Fisher Scientific). 

 Protein quantities indicate final reaction molarities in 20 µL reactions. Reactions were 

initiated by combining 125 nM His-Ube1, 1 μM UbcH5b (Boston Biochem E2-622), and ATP 

reaction buffer (50 mM HEPES pH 7.0, 50 mM NaCl, 2 mM ATP, 4 mM MgCl2) with 140 μM 

recombinant human ubiquitin (Boston Biochem U-100H) or a synthetic ubiquitin variant. After 

incubation at 37 °C, ubiquitin-charged E1/E2 mixtures were dispensed to reaction tubes containing 3 

μM His-CHIP, 10 μM GST-Hsc70395-646, and excess reaction buffer (50 mM HEPES pH 7.0, 50 mM 

NaCl) pre-incubated on ice for 20 min. Active reactions proceeded for 1 hr. at 37 °C, before 

quenching by addition of 2X SDS sample buffer supplemented with 50 mM EDTA. Quenched 

reactions were resolved by 10% SDS-PAGE, then transferred to nitrocellulose. Transferred reactions 

were treated with either α-GST HRP-conjugated antibody (Abcam ab3416) to indicate GST-

Hsc70395-646 substrate ubiquitination, or with α-ubiquitin antibody (P4D1, Santa Cruz Biotechnology 

sc-8017) followed by α-mouse HRP-conjugated antibody (Cell Signaling Technology 7076S) to 

indicate total ubiquitination. Reactions were visualized by chemiluminescent detection (Bio-Rad 

ChemiDoc XRS+) and quantified by densitometry in ImageJ. Western blot chemiluminescence was 

first converted to grayscale, and the raw integrated densities of unubiquitinated, monoubiquitinated, 

and polyubiquitinated substrate bands were measured. Relative percentages of each species were then 
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normalized to the sum of raw integrated density in each lane. Three reaction and western blot 

replicates were performed for each ubiquitin variant and wildtype ubiquitin. 

4.5.6 in vitro Ubiquitination Conjugation, and Retrotranslocation Assays 

Note: these experiments were performed by G. Michael Preston from the Brodsky Lab in the Department of Biology 

at the University of Pittsburgh. 

 

A total of 4 reactions were set up, one for each ubiquitin variant. Columns were washed three times 

with 1 x PBS + 1% BSA and pre-equilibrated in this solution overnight in the cold room. A stock of 

iodine monochloride (ICl, Apodaca Laboratory, Department of Medicine) was made by diluting 33 

mM ICl to a final concentration of 0.66 mM in 2M NaCl. The reaction was initiated by adding 4 µL 

of 125I2 (Perkin Elmer, NEZ033010MC) to 120 µL of an 833 mM Tris, pH 8.0, 0.11 mM ICl solution 

for exactly 1 min at room temperature. To these reactions, 50 µg of variants 4.1, 4.4, and 4.7 and 25 

µg of variant 4.2 were added and incubated for 10 minutes at room temperature. The reactions were 

stopped by the addition of NaI to a final concentration of 0.4 M. Reactions were loaded onto the pre-

equilibrated desalting columns and allowed to run into the column. The columns were washed with 

300 µL of 1 x PBS + 1% BSA. After the wash, the iodinated ubiquitin variants were collected in 600 

µL of 1 x PBS + 1% BSA. The relative counts per µL of each iodinated ubiquitin variant was then 

determined by scintillation counting, the samples were aliquoted, and stored at -80 °C.  

in vitro ubiquitination conjugation reactions were performed using a variation of a previously 

described method209 and consisted of 1 mg/ml microsomes purified from wild type yeast expressing 

Chimera A*,215 1 mg/mL cytosol, and an ATP regenerating system (1 mM ATP, 40 mM creatine 

phosphate, 0.2 mg/mL creatine phosphokinase in 250 mM sorbitol, 150 mM potassium acetate, 5 

mM magnesium acetate, 20 mM HEPES pH 6.8) in a final volume of 40 µL. Purified yeast cytosol 
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was prepared using liquid nitrogen via a modified version of a previously published technique.216 

After cells were grown at 37 °C for 1 h, they were harvested, washed in 250 mM sorbitol, 150 mM 

potassium acetate, 5 mM magnesium acetate, 20 mM HEPES pH 6.8, and flash frozen in liquid 

nitrogen. The frozen cells were then lysed using a cold mortar and pestle for 1 min in the presence of 

liquid nitrogen for a total of 6 rounds of grinding. Addition of apyrase (0.02 units/reaction) instead of 

the ATP regenerating system served as a negative control. Samples were pre-incubated at room 

temperature for 10 min, after which 125I-ubiquitin (3.8 x 106 cpm/rxn) was added. The samples were 

then incubated at 35 °C for 55 min. Half of each reaction was removed and kept for a “Total” 

ubiquitination sample. The remaining reactions were centrifuged 10 minutes at 18,000 x g and 4 

C. The supernatants were removed and placed in a fresh 1.5 mL Eppendorf tube as the 

retrotranslocated population of ubiquitinated substrate. The pellets were resuspended in an equal 

volume of fresh buffer (250 mM sorbitol, 150 mM potassium acetate, 5 mM magnesium acetate, 20 

mM HEPES pH 6.8). 125 µL of a 1.25% SDS Stop solution (50 mM Tris–Cl, pH 7.4, 150 mM NaCl, 

5 mM EDTA, 1.25% sodium dodecyl sulfate (SDS), 1 mM PMSF, 2 mM leupeptin, 0.7 mM 

pepstatin A, and 10 mM N-ethylmaleimide (NEM)) was added to all samples and incubated at 37 °C 

for 30 min. A total of 400 µl of a Triton solution (50 mM Tris–Cl, pH 7.4, 150 mM NaCl, 5 mM 

EDTA, 2% Triton X-100, 1 mM PMSF, 2 mM leupeptin, 0.7 mM pepstatin A, and 10 mM NEM), 35 

µl of a 50/50 protein A-sepharose slurry in Protein A bead resuspension solution, and anti-HA 

antibody were then added to each reaction and samples were immunoprecipitated overnight at 4 °C 

on a rotator. After centrifugation, the pellets were washed 3 times in an IP wash buffer, and after all 

fluid was removed from the beads, TCA sample buffer (80 mM Tris, pH 8, 8 mM EDTA, 3.5% SDS, 

15% glycerol, 0.08% Tris base, 0.01% bromphenol blue, 5% fresh β-mercaptoethanol) was added, 

the samples were briefly agitated, and incubated at 37 °C for 30 min. The precipitated chimera was 

then resolved on duplicate 10% SDS-polyacrylamide gels. One gel was transferred to nitrocellulose 
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and incubated with anti-HA-HRP antibody to control for IP levels. The second gel was washed in 

ddH2O, placed on filter paper, and dried. Dried gels were then exposed to a phosphorfilm for two 

weeks.  
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