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ABSTRACT 

Francisella tularensis (Ft) is a highly infectious bacterium that causes tularemia, which 

manifests in multiple presentations such as ulceroglandular, pneumonic, or typhoidal forms. 

Pneumonic tularemia, a more severe manifestation, can result from inhalation of as few as 10 

colony forming units of Ft. The low infectious dose, its potential for aerosolization, and severity 

of disease has resulted in Ft classification as a Select Agent by the CDC for bioweapon potential. 

The severe clinical and financial burden a bioweapon attack utilizing Ft would impose on the 

U.S. makes development of therapeutics and vaccines an important contribution to protecting 

public health. Determination of vaccine targets requires knowledge of the early pathogenesis of 

Ft in the lungs. Ft infects a wide variety of cells, including lung macrophages and lung epithelial 

cells, likely involved in initial infection from aerosol; few have compared the permissivity of 

infection between these cell types to infection by Ft. We utilized an in vitro infection assay with 

murine macrophages (J774) and human alveolar epithelial cells (A549), and developed an ex 

vivo infection assay for 3D-cultured human primary bronchial epithelium (HBE), intended to 

mimic lung architecture. Early cellular events within SCHU S4 infected rabbit tissue, a model 

which exhibits clinical disease similar to humans, was assessed for cellular infiltration, changes 

in lung architecture, and apoptosis. I found that different strains of Ft (SCHU S4, LVS, and 

U112), grow at similar rates in A549 as J774 after initial infection. Moreover, I have 
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demonstrated that Ft can infect HBE in the 3D culture system. These data suggest that it takes Ft 

longer to infect the HBE cells than the A549 or J774 cells. This is the first infection assay 

performed within a 3D HBE culture, to our knowledge. Over the course of the first five days 

post-exposure there is an increasing amount of inflammation, hemorrhaging and apoptosis in 

rabbit lung. When taken altogether, these data suggest lung epithelial cells have an 

underappreciated role in Ft early pathogenesis and dissemination.  
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1.0  INTRODUCTION 

1.1 TULAREMIA 

Tularemia is the disease caused by Francisella tularensis. Humans can be infected by 

multiple routes including a bite by an arthropod vector, contact with an infected animal or 

carcass, ingestion of contaminated water or food and inhalation of the organism. It is not 

transmitted from human -to -human. Francisella is endemic in several areas of the world. The 

outbreaks of tularemia do not seem to follow any specific pattern from year-to-year. It is 

typically a seasonal disease. The incidence is highest from late spring to early fall [1]. There was 

an outbreak in the Rostov-on-Don region of the Soviet Union during 1941-42, in which 67,000 

cases were reported. The United States has had several outbreaks; however, only 14,000 cases 

were reported from 1920 to 1945. The number of reported cases worldwide has decreased since 

the 1950s. Between 1990 and 2000, the United States only had 1,400 reported cases [1].  

1.2 HUMAN INFECTION 

As mentioned previously, humans can be infected by Francisella tularensis through 

multiple routes. Each route shows different clinical presentation. The disease course is similar to 

other infectious diseases, which can make diagnosis difficult. The incubation period can range 
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from 1-21 days; however, the typical incubation period is 3-5 days. The disease onset is very 

rapid. It includes fever, chills, fatigue, body aches and headache. The bacteria replicate rapidly at 

the beginning of infection. The immunologic response is very important in controlling the 

disease. Cell-mediated responses are more important than antibody-mediated responses because 

the antibodies do not play an important role in preventing the disease or lessening severity. 

However, antibodies can be good for diagnosis [1].  

The strains from the subspecies tularensis (Type A) can cause significant mortality if left 

untreated. There are occasional cases of rhabdomyolosis and septic shock associated with disease 

caused by the subspecies tularensis. With the advent of effective antibiotics, the mortality rate is 

less than two percent. However, when the disease is untreated, the mortality rate can be as high 

as thirty to sixty percent. The symptoms of disease caused by this subspecies include: high fever, 

progressive weakness, malaise, anorexia, weight loss, dry cough, sore throat, substernal pain and 

occasionally gastrointestinal symptoms [1].  

The subspecies holarctica (Type B) is typically transmitted via infected water, it can also 

be transmitted the same ways as Type A strains. The predominant symptom associated with 

Type B infection is fever. There have been more cases of tularemia caused by Type B strains 

than Type A strains worldwide. Type B strains are not as virulent as Type A strains, but can 

cause substantial morbidity and mortality. The disease caused by the subspecies mediasiatica is 

similar to that caused by the subspecies holarctica and is rarely reported in humans [1].  

The subspecies novicida is avirulent in humans. Occasionally, it will cause disease in 

immunocompromised individuals. It has been reported in four individuals in the United States. 

Three of the four cases were in immunocompromised individuals. It has caused disease in 

several individuals in Canada, Australia and Spain too [1].  
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Respiratory illness is caused by inhalation of aerosolized F. tularensis. The respiratory 

illness may present initially as pneumonia. The respiratory disease varies greatly between Type 

A and Type B strains. The symptoms associated with Type A caused disease are chills, high 

fever, dyspnea, dry or productive cough, pharyngitis, chest pain, headache, profuse sweating, 

drowsiness and weakness. The symptoms can be severe and resemble typhoid fever. The disease 

caused by Type B strains varies. Some outbreaks have a small percentage of cases with 

pneumonia like symptoms. Other outbreaks have a high percentage of pulmonary changes [1]. 

1.3 ANIMAL MODELS 

Francisella infects a wide range of mammals. Hares, prairie dogs, voles, squirrels, 

beavers, mice and many others can all be infected with Francisella. The spread of Francisella in 

the Soviet Union was thought to have been caused by voles and mice. Also, several people have 

become infected after running a rabbit or rabbit den over with the lawn mower. Therefore, there 

is a broad range of animal models available. However, tularemia in many animal species has not 

been characterized [1]; therefore, it is difficult to find an appropriate animal model [2]. Several 

animals used in tularemia research are guinea-pigs, rabbits, rats, mice and monkeys. 

1.3.1 Rabbits 

The clinical presentation of Francisella infection in rabbits is like humans. The rabbits 

can develop a fever, lose weight, experience lethargy, decreased appetite and occasional 

diarrhea. Francisella can infect many organs in a rabbit’s body. For example, lung, spleen, liver, 
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kidney, intestine, and lymph node involvement has been found during Francisella infection. 

These organs have been involved in the human infection as well [2].  

1.3.2 Mice 

Mice have been used extensively in tularemia research. Mice vary from humans in 

susceptibility to different strains of Francisella. They are susceptible to both tularensis and 

holarctica subspecies of Francisella. There is initially a reduced inflammatory response to 

infection with either strain [1]. Mice infected with SCHU S4 experience ruffled fur, lethargy, 

anorexia and hunching with infected via aerosol and intranasally. Like humans, mice can have 

lung, spleen and liver involvement [2].  

1.4  FRANCISELLA TULARENSIS 

Francisella tularensis is a gram-negative facultative intracellular bacterium that causes 

tularemia. Francisella is in a group of bacteria with Listeria, Legionella and Rickettsia [1]. F. 

tularensis can infect a broad range of hosts, including humans. The disease varies based on route 

of infection and bacterial subtype [3].  

The intracellular life cycle for Francisella tularensis has been studied in murine 

macrophages. First, F. tularensis is phagocytosed and remains in the Francisella-containing 

phagosome. F. tularensis is released into the macrophage cytosol after the phagosome membrane 

is disrupted. There is extensive replication in the cytosol. Eventually the bacteria are released 

when the cells undergo cell death. The cycle then repeats itself [4].  
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1.4.1 U112 

There are two avirulent subspecies of F. tularensis as well: mediasiatica and novicida 

[5]. Infection with F. tularensis subsp. novicida is extremely rare in humans. Strain U112, which 

is used in this study, is in the subspecies novicida. F. novicida can be transmitted through 

ingestion of infected water. Unlike F. tularensis there are no known animal or arthropod hosts 

for F. novicida [6], but U112 is able to enter and replicate within amoebas [7]. 

1.4.2 Live Vaccine Strain 

An attenuated strain of F. tularensis holarctica, the Live Vaccine Strain (LVS), is used in 

this study. The LVS strain is originally derived from a strain used as a vaccine in the Soviet 

Union. During World War II, there was an outbreak of tularemia among the Soviet soldiers [8]. 

There were 67,000 cases of tularemia reported in 1941-42 in the Soviet Union [1]. LVS was 

developed to help reduce the number of tularemia cases among the soldiers. There was a 

reduction of tularemia cases; however, sanitation improvements could also explain the reduction. 

In 1956, the Soviet Union gave the strain to investigators at Fort Detrick. The investigators 

further attenuated the pathogen to give to at-risk personnel. The reasons for LVS attenuation 

remain unknown because the parent strain is unknown. Therefore, the LVS strain cannot be used 

as a vaccine because of the potential to revert [8]. LVS is the most commonly studied strain of F. 

tularensis because it mimics many of the features of virulent F. tularensis in culture but can be 

safely work with at BSL-2. 
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1.4.3 SCHU S4 

The virulent strain of F. tularensis subsp. tularensis used in this study is SCHU S4. 

SCHU S4 was originally isolated from a patient in Ohio in 1941 [2]. SCHU S4 is the prototype 

strain of virulent F. tularensis that is studied in laboratories.  

1.5 CELL TYPES   

It is widely believed that the major targets of F. tularensis are macrophages and dendritic 

cells [3]. However, F. tularensis can infect a wide variety of eukaryotic cell types including 

hepatocytes, osteoblasts, epithelial cells, erythrocytes, and even fresh water amoeba [2, 5, 9, 10]. 

Considering that the respiratory infectious dose is 15 CFU in humans, the bacterium’s initial 

interactions in the respiratory tract are likely to be with epithelial cells. Therefore, it seems 

reasonable that F. tularensis infection of lung epithelial cells in early pathogenesis of this 

pathogen in order to develop a vaccine to prevent infections.  

1.5.1 Murine Macrophages 

The J774 cell line was derived from a BALB/cN female mouse with reticulum cell 

sarcoma [11]. This cell line is a macrophage-like cell line [12]. J774 cells have been used to 

determine the best lysing solution when working with Francisella [13]¸ the cytokine and 

chemokine patterns during Francisella infection [14], and the factors involved in the Francisella 

Type IV section system [15]. 
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1.5.2 Human Alveolar Epithelium 

The A549 cell line was derived from a 58-year-old male with carcinoma [16]. These cells 

are alveolar type II epithelial cells [12]. A549 cells have been used to study Francisella entry via 

micropinocytosis [17], immune suppression [17], differences in 2D and 3D cell culture responses 

to infection [18], ability of Francisella to infect human lung epithelium [12] and adherence to 

nonphagocytic cells [19]. 

1.5.3 Human Primary Lung Epithelium 

Most epithelial cell research in vitro is done with 2D monolayer cell cultures. However, 

these cell cultures are very different from the structure of the cells in the lungs. Cells cultured in 

a monolayer on hard plastic lose certain phenotypic characteristics. This results in changes in 

their function, biochemistry and morphology [18]. More recently 3D cell cultures have been used 

to more accurately model the lung epithelium. Cells in 3D cultures have cilia, apical-basal 

polarity, and produce mucus unlike 2D monolayers.  

For example, A549 cells grown in a flask do not display the same phenotypic 

characteristics as A549 cells grown using rotary wall vessel (RWV) bioreactors. The RWV 

bioreactor rotates the vessel horizontally. The cells are in a constant free-fall within the culture. 

This allows the cells to attach to one another creating a tissue-like phenotype. A549 cells grown 

in the RWV suspension culture have tight junctions and adherens junctions. A549 cells in 2D 

culture have type IV collagen localization in the nucleus, but 3D cultured have basolateral 

surface localization. There are also differences in the presence of laminin. Collagen and laminin 

are important in adhesion of the cells to the extracellular matrix. This suggests that there is 
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polarization of the A549 cells in RWV cultures. A549 monolayer cultures produce very low 

levels of respiratory mucins and the production of the mucins is intracellularly. The 3D cultures 

of A549 cells show higher levels of mucin production at the apical side of the culture, indicating 

proper mucin location for mucous production [20]. RWV cultured A549 cells seem to be more 

resistant to F. tularensis infection suggesting that 3D cultures better predict what was going on in 

vivo during infection.  

By using a 3D culture, the ability of F. tularensis to infect human primary epithelial cells 

can be evaluated. Therefore, the use of the 3D cultures may give us a better idea of what is going 

on in the lung epithelium during infection with F. tularensis.  

1.6 CELL DEATH 

1.6.1 Types of cell death 

There are three known types of cell death: necrosis, apoptosis and pyroptosis. For 

apoptosis, activated proteases and ATP is required. Cells undergoing apoptosis maintain cell 

membrane integrity until the late stages of the process. During necrosis, cell membrane damage 

occurs either directly or indirectly. Cells undergo energy depletion, swell and leak their 

cytoplasmic contents. Pyroptosis is a caspase-1 dependent form of necrosis. Apoptosis does not 

elicit a high inflammatory response; whereas, pyroptosis and necrosis do [21].   
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1.6.2 Apoptosis 

In apoptosis, cells maintain membrane integrity up until they are engulfed by the 

phagocytes. This type of cell death does not cause an immunologic response. Therefore, a 

pathogen could be causing cell death without triggering an inflammatory response. Although, the 

pathogen may activate the phagocytes that engulf the dead cells [22]. Apoptosis has initiator and 

effector caspases. The initiator caspases include caspase-2, 8, and 9. The effector caspases are 

caspase-3, 6, and 7. 

 There are two apoptosis pathways: extrinsic pathway and intrinsic pathway. The extrinsic 

pathway is activated by extracellular ligands and death receptors. This pathway uses caspases 3, 

6, 7, 8, and 10. During the intrinsic apoptosis signaling, cytochrome c is released from the 

mitochondria. It activates the formation of the apoptosome which recruits pro-caspase-9.  Pro-

caspase-9 gathers by the apoptosome, which activate it. The apoptosome cleaves pro-caspase-3 

into caspase 3. Caspase-3 cleaves ICAD into CAD, which ultimately cleave the DNA in the 

nucleus [23].  Cell shrinkage and blebbing are characteristics of cells undergoing apoptosis. 

1.6.3 Pyroptosis 

Two different types of programmed cell death have been well described, which include 

those that fall under the category of either apoptosis or pyroptosis. Pyroptosis is commonly 

caused by infections with pathogens. This type of cell death does have an inflammatory 

response. IL-1α, IL-1β, and IL-18 are commonly released causing the inflammatory response 

[22]. Pyroptosis is inflammasome-dependent. There are several caspases involved in this 

process: caspase-1 and mouse caspase-11.  
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Pyroptosis can be triggered by cell damage.  Bacterial toxins or activation of the P2X7 

receptor are two examples of cell damage known to activate pyroptosis. After activation, 

potassium is released from the cell. NLRP3 is activated when the chaperones dissociate due to 

efflux of potassium. Several NLRP3 domains interact with the adaptor protein ASC. The CARD 

domains of ASC aggregate causing the CARD domains of caspase-1 to aggregate. The caspase-1 

is then cleaved into its’ active form. The active caspase-1 then cleaves immature pro-

inflammatory cytokines including IL-18 and IL-1β. Alternatively, there is a caspase-1 

independent inflammasome pathway. Caspase-11 detects intracellular lipopolysaccharide [23]. In 

pyroptosis there is in influx of fluid, causing the cell to swell and ultimately lyse [22].  

 

1.7 PUBLIC HEALTH SIGNIFICANCE 

Francisella tularensis is an ideal biological warfare agent for many reasons. Its’ low 

infectious dose and aerosol delivery make it an ideal agent. SCHU S4 was weaponized in the 

past by the Soviet Union and the United States [8]. While tularemia is treatable, it is important to 

have a vaccine for it. Since there is not a vaccine, research on how the virulent strain infects 

versus the less virulent strains is very important. It could provide information on how to create a 

vaccine against the agent. Therefore, it would be easier to prevent natural outbreaks as well as to 

protect against its’ use in biological warfare.  
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2.0  SPECIFIC AIMS 

 Currently, the early pathogenesis of Francisella in lung epithelial cells is unknown. This 

project focuses on the ability of Francisella to infect and replicate within lung epithelial cells 

and cell death and inflammation in rabbit lung tissues. This will be accomplished by 

comparing results from in vitro work with transformed cell lines, human primary lung cells and 

tissue samples from infected rabbits.  

2.1 AIM 1: TO USE AN IN VITRO MODEL OF INFECTION WITH LVS AND SCHU 

S4 IN HUMAN ALVEOLAR EPITHELIUM AND HUMAN PRIMARY LUNG 

EPITHELIUM 

 The goal of this aim is to determine if Francisella tularensis can infect human 

alveolar epithelium (A549) and human primary lung epithelium (HBE) and establish 

infection assay protocols. This will be accomplished by: 

a. Performing infection assays to determine if F. tularensis can infect

human primary lung epithelium

b. Determining growth rates of F. tularensis in both A549 and

primary lung epithelium
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c. Establish an infection assay protocol for the human primary lung

epithelium

2.2 AIM 2: PATHOGENESIS OF SCHU S4 IN RABBIT LUNG TISSUE 

 The goal of this aim is to determine whether the animal model correlates with the in 

vitro and ex vivo models. This correlation will be assessed by: 

a. Determining the presence and concentration of F. tularensis in the

tissue samples

b. Determining whether cell death is occurring in the tissue samples

c. Determining if inflammation and hemorrhaging are increasing

each day post-exposure in the tissue samples
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3.0  MATERIALS AND METHODS 

3.1 BIOSAFETY 

All work with the SCHU S4 strain of Francisella was done in BSL-3+ laboratories. Work 

with this agent included wearing a disposable gown, rubber work boots, double gloves and a 

powered air purifying respirator (PAPR). All materials used during work with agent were 

disinfected with vesphene, double bagged and autoclaved. Work with U112 and LVS strains of 

bacteria was done in BSL3+ as well as BSL2 laboratories. The same procedures for BSL3+ as 

above were used. The BSL2 procedures include working in a Class II Biosafety cabinet, with 

gloves and splashguard gown. Bleach is used as a disinfectant in the BSL2 laboratories. 

3.2 RABBITS 

Female New Zealand White rabbits were housed in the BSL-3 laboratory. Temperature 

chips were implanted prior to exposure. The studies were approved by University of Pittsburgh’s 

IACUC. Animals were exposed via aerosol in the class-III biosafety cabinet. Plethysmography 

data was collected to determine dose. Aerosol was calculated by multiplying the all-glass 

impinger (AGI) (CFU/mL) by the AGI volume (10 mLs) by the aerosol time (1/10 min) by the 

AGI flow rate (1 min/6 L). The dose was calculated by multiplying the aerosol (CFU/L) by 
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minute volume (mL/min) by a conversion factor (1L/1000mL) by the duration of the aerosol (10 

min). The bronchoalveolar lavage was collected at time of necropsy by inserting 10 mL PBS into 

the lungs and removing the PBS from the lungs. Dilutions were made and plated on CHA plates.   

3.3 CELL CULTURE 

The A549 and J774 cell lines were originally obtained from the ATCC. The J774 cells 

were then cryopreserved in FBS containing 10% DMSO, and stored in a LN2 freezer. The A549 

cells were then cryopreserved in a base medium of DMEM-10 containing 10% DMSO, and 

stored in a LN2 freezer. The cells are thawed by diluting the vial contents with DMEM-10 media 

containing 1x penicillin and streptomycin, and 10% fetal bovine serum, and ultimately removing 

the cells from the DMSO containing freezing medium through a series of washes. The cells are 

centrifuged at 600xg for 5 minutes for each wash step. Then the cells are resuspended in 

DMEM-10 containing 1x penicillin and streptomycin, and 10% fetal bovine serum and put in a 

flask. Cells are split every few days when they reach confluency. J774 cells are removed from 

the flask using a cell scrapper. A549 cells are removed from the flask using 2 mL trypsin after 3 

washes with PBS.  

3.4 BACTERIA 

Three F. tularensis strains of varying virulence were used in this project. A F. tularensis 

subspecies novicida strain (U112), a F. tularensis subspecies holarctica strain (LVS), and a F. 
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tularensis subspecies tularensis strain (SCHU S4) were used. These strains are the most 

commonly used in laboratories to look at intracellular infection by F. tularensis. The SCHU S4 

and LVS strains are grown for 48 hours before use. The U112 strain is grown for 24 hours before 

use because it grows at an accelerated rate on CHA compared to LVS and SCHU S4.  

3.5 INFECTION ASSAY 

Two days pre-infection, LVS and SCHU S4 is streaked onto a CHA plate. One-day pre-

infection cells are harvested and centrifuged for 5 minutes at 600xg in DMEM-10 with 

antibiotics. The cells are resuspended in 10-15 mLs of DMEM-10 without antibiotics. The cells 

are counted using a hemocytometer and concentration is adjusted to 300,000 cells/mL. One mL 

of cells is put into each well of a 12-well plate. The plates are placed in the incubator overnight 

at 37 °C and 5% CO2. U112 is streaked onto a CHA plate one day pre-infection as well. On the 

day of infection, a loop full of bacteria is mixed into PBS and read on the microplate reader or 

spectrophotometer. Once the OD is close to the desired OD (0.08 for the plate reader in the BLS-

2 lab and 0.1 for the spectrophotometer in the BSL-3 lab; wavelength: 600), the media is dumped 

out of the wells and 100 μL of the PBS solution is added to each well. The plates are incubated 

for 2 hours at 37°C with 5% CO2. At the end of the incubation period, the wells are washed 3 

times with PBS containing 50 μg/mL of gentamicin. Then 1 mL of media containing 50 μg/mL 

of gentamicin is added to each well. The plates incubated for 1 hour at 37°C and 5% CO2. At the 

end of the incubation period, the cells are washed with PBS without antibiotics. 0.02-1% SDS is 

added to the 0 hours post-infection (HPI) wells, while 2 ml of DMEM-10 containing 2 μg/mL of 

gentamicin is added to the remaining wells. After waiting 10 minutes for the SDS to lyse the 
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cells, the cell lysate is serially diluted to 10-5 and plated on CHA quad plates. The bacterial 

inoculum is serially diluted as well out to 10-8 and plated on CHA quad plates. The plates are 

placed in the incubator at 37°C and 5% CO2. At the 24, 48 and 72-hour time points the cells are 

lysed, serially diluted and plated the same way as above. The colonies are counted 48 hours after 

being plated for LVS and SCHU S4, while the U112 plates are counted 24 hours after being 

plated. The infection efficiency was calculated by taking the CFU at 0 HPI and dividing it by the 

inoculum. Doubling was calculated by subtracting the log of 0 HPI multiplied by 3.32 from the 

log of the other timepoints.  

3.6 HBE INFECTION ASSAY 

Two days prior to infection, LVS and/or SCHU S4 was streaked onto a CHA plate. The 

cells were obtained from Mike Myerburg’s lab (Division of Pulmonary, Allergy and Critical 

Care Medicine, University of Pittsburgh, Department of Medicine). The media was removed, 

wells washed with PBS and antibiotic free media was added. Cells were washed with DTT then 

PBS three times to remove extracellular debris and mucous. The bacterial inoculum was 

prepared by taking a sample of the bacteria off of the plates and mixing it into PBS. The 

inoculum was adjusted using OD. Once the desired OD was reached, 50 µl of the inoculum was 

added to the top of each well. The plates were incubated at 37°C for 2 hours. The inoculum was 

removed from the 0 HPI wells. The cells were incubated with 100 µl PBS with 50 µg/mL 

gentamicin for an hour. The cells were washed with PBS 3 times. The last wash volume was 

brought up to 1 mL. Dilutions were made and plated. The cells were then lysed with 0.02% SDS 

up to a total volume of 1 mL. A pipette tip was used to help lyse the cells. The tip was moved in 
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circles around the well inserts then in cross motions. Once the cells were lysed, dilutions were 

made and 50 µl were plated on CHA quad plates. The plates were incubated at 37°C for 48-72 

hours and the colonies were counted. The cells were lysed at 0 and 24 HPI. See results section 

for assay development.  

3.7 CASPASE-3 FLUORESCENT ASSAY IN CELL CULTURES 

This protocol is adopted from the Abcam Caspase 3 Assay Kit manual (ab39383). The 

infection assay will be performed as described above until the lysing step. The cells will be 

harvested by adding 100 µl trypsin to each well. After the cells detach from the plate, 900 µl of 

DMEM-10 without antibiotics is added. The cells are pelleted by centrifugation at 6000xg for 5 

minutes. The cells are washed with PBS, counted and 1-5 x 106 cells are pelleted by 

centrifugation. The pellet is resuspended in 50 μL of chilled Cell Lysis Buffer. The solution is 

incubated on ice for 10 minutes. The samples can be frozen at -80°C at this point. DTT is added 

to 2X reaction buffer (10µl DTT per mL 2X reaction buffer) immediately before use. 50 μL of 

reaction buffer mix is added to each of the samples. 5 μL of the 1 mM DEVD-AFC substrate is 

then added to each sample. The samples are incubated at 37°C for 1-2 hours. The samples are 

read on a fluorometer at an excitation of 355 nm and an emission of 520 nm. 
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3.8 CASPASE-3 FLUORESCENT ASSAY IN TISSUES  

Rabbits were serially sacrificed after being infected with SCHU S4. The rabbit tissues 

were harvested and frozen at -80°C. The frozen tissues were thawed and cut into 0.03-0.05 g 

pieces. The tissues were homogenized in 1 mL chilled cell lysis buffer. The samples were 

incubated for 10 minutes. Samples were pelleted by centrifugation at 20000xg for 2-5 minutes. 

The supernatant was transferred to a clean tube. The samples can be frozen at -80°C at this point. 

50 µl of each sample is transferred to a well in a 96-well plate. DTT is added to the 2X reaction 

buffer immediately before use. 50 µl of the reaction buffer mix is added to each well. 5µl of 

DEVD-AFC substrate is added to each well. The plate is incubated (protected from light) for 1-2 

hours at 37°C. The samples are read on a fluorometer at an excitation of 355 nm and an emission 

of 520 nm. 

3.9 CASPASE-1 FLUORESCENT ASSAY IN CELL CULTURES 

This protocol is adopted from the Abcam Caspase 1 Assay Kit manual (ab39412). The 

infection assay will be performed as described above until the lysing step. The cells will be 

harvested by adding 100 µl trypsin to each well. After the cells detach from the plate, 900 µl of 

DMEM-10 without antibiotics is added. The cells are pelleted by centrifugation at 6000xg for 5 

minutes. The cells are washed with PBS, counted and 1-5 x 106 cells are pelleted by 

centrifugation. The pellet is resuspended in 50 μL of chilled Cell Lysis Buffer (Abcam). The 

solution is incubated on ice for 10 minutes. The samples can be frozen at -80°C at this point. 

DTT (Abcam) is added to 2X reaction buffer (10µl DTT per mL 2X reaction buffer) immediately 
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before use. 50 μL of reaction buffer mix is added to each of the samples. 5 μL of the 1 mM 

YVAD-AFC substrate (Abcam) is then added to each sample. The samples are incubated at 37°C 

for 1-2 hours (protected from light). The samples are read on a fluorometer at an excitation of 

355 nm and an emission of 520 nm. 

3.10 CASPASE-1 FLUORESCENT ASSAY IN TISSUES 

This protocol is adopted from the Abcam Caspase 1 Assay Kit manual (ab39412). The 

infection assay will be performed as described above until the lysing step. The cells will be 

harvested by adding 100 µl trypsin to each well. After the cells detach from the plate, 900 µl of 

DMEM-10 without antibiotics is added. The cells are pelleted by centrifugation at 6000xg for 5 

minutes. The cells are washed with PBS, counted and 1-5 x 106 cells are pelleted by 

centrifugation. The pellet is resuspended in 50 μL of chilled Cell Lysis Buffer (Abcam). The 

solution is incubated on ice for 10 minutes. The samples can be frozen at -80°C at this point. 

DTT (Abcam) is added to 2X reaction buffer (10µl DTT per ml 2X reaction buffer) immediately 

before use. 50 μL of reaction buffer mix is added to each of the samples. 5 μL of the 1 mM 

YVAD-AFC substrate (Abcam) is then added to each sample. The samples are incubated at 37°C 

for 1-2 hours. The samples are read on a fluorometer at an excitation of 355 nm and an emission 

of 520 nm. 
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3.11 HEMATOXYLIN AND EOSIN STAINING 

The first three steps of this protocol were performed by dipping the slide in xylene for 3 

minutes each time. These steps removed the paraffin on the slides. The next four steps were 

varying percentages of ethanol (100, 100, 95 and 70). These steps were a minute a piece. The 

next two steps were one-minute wash steps. The next step was the hematoxylin staining step. 

The slides were placed in hematoxylin for three minutes. There were two thirty second wash 

steps. The slide was immersed in acid alcohol for thirty-five seconds. There were two thirty 

second wash steps. The next step was the bluing step with Scott’s tap water for thirty seconds. 

There were two one-minute wash steps. Next was the eosin staining step (2 minutes). The next 

four steps are the dehydrating steps with the same ethanol used above in reverse order. The last 

three steps are one-minute xylene steps.  

3.12 TUNEL ASSAY 

The Invitrogen Click-iT TUNEL Colorimetric IHC Detection Kit was used. First, the 

cells were deparaffinized by placing slides in xylene twice for five minutes, 1:1 xylene:100% 

ethanol for five minutes, 100% ethanol for 5 minutes then 3 minutes, 95% ethanol for 3 minutes, 

85% ethanol for 3 minutes, 75% ethanol for 3 minutes, 50% ethanol for 3 minutes, 0.85% NaCl 

for five minutes and then 1X PBS for 5 minutes. Proteinase K (Invitrogen) was added so that the 

whole tissue was covered. Samples were incubated for 10-20 minutes at room temperature. The 

slides were washed by immersing in PBS for five minutes. The slides were immersed in fixative 

solution for five minutes at room temperature. The slides were rinsed with PBS then washed by 
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immersion in PBS for five minutes twice. The slides were rinsed with deionized water. 100 µl of 

TdT Reaction Buffer (Invitrogen) was added to each slide (covering the whole tissue). The slides 

were incubated for 10 minutes at 37°C. The TdT Reaction Mixture (Invitrogen) was prepared by 

adding 558µl TdT Reaction Buffer (Invitrogen), 10µl EdUTP (Invitrogen), and 30µl TdT 

Enzyme (Invitrogen). The TdT Reaction Buffer (Invitrogen) was removed by blotting with a 

Kimwipe. 50µl of the TdT Reaction Mixture (Invitrogen) was added to each slide. The slides 

were incubated for one hour at 37°C. The slides were rinsed with PBS and immersed in 2X SSC 

for fifteen minutes. The slides were washed twice by immersing them in PBS for five minutes. 

The slides were immersed in 3% hydrogen peroxide for five minutes at room temperature. The 

slides were washed twice by immersion in PBS for five minutes. The slides were washed twice 

with 1X Click-iT TUNEL Colorimetric Wash solution (Invitrogen) for five minutes. The 1X 

Click-iT TUNEL Reaction Buffer Additive (Invitrogen) working solution was prepared by 

diluting the solution 1:10 in deionized water. The Click-iT TUNEL Colorimetric Cocktail was 

prepared by adding 510µl 1X Click-iT Reaction Buffer (Invitrogen), 24µl CuSO4 (Invitrogen), 

6µl Biotin Azide (Invitrogen), and 60µl 1X Click-iT Reaction Buffer Additive working solution. 

50 µl of the Click-iT TUNEL Colorimetric Reaction Cocktail was added to each slide. The slides 

were incubated protected from light for 30 minutes at 37°C. The slides were rinsed with PBS 

then washed twice with the 1X Click-iT TUNEL Colorimetric Wash solution (Invitrogen) for 5 

minutes. The slides were rinsed with deionized water then about 200 µl of 1X Streptavidin-

Peroxidase Conjugate (Invitrogen) was added to each slide. The slides were incubated at room 

temperature for 30 minutes. The slides were washed three times for 5 minutes with PBS. The 

slides were rinsed with deionized water and excess water was removed. 5 µl of DAB Chromogen 

(Invitrogen) was added to 95 µl DAB substrate buffer for each slide. The 100 µl was added to 
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each slide and incubated for a maximum of 10 minutes at room temperature. The slides were 

washed thoroughly with deionized water. Slides were counterstained with methyl green. 0.05% 

methyl green solution was made in sodium acetate. Slides were washed in distilled water after 

staining. Slides were immersed in methyl green solution for five minutes. The slides were rinsed 

with distilled water. Next, the slides were dehydrated by immersion in 95% ethanol 10 times. 

The slides were dipped in 100% ethanol 10 times. That step was repeated. The slides were 

cleared by immersion in xylene.  

3.13 SLIDE CUTTING 

Slides were cut on a microtome. Tissue blocks were placed on the microtome. The blade 

was changed to ensure clean cuts. The blade was pushed up against the block and locked into 

place. The wheel was rotated to move the block up and down. Sections were cut at 5 microns. As 

the sections came off in ribbons, the ribbons were carefully placed on top of warm water. The 

sections of the ribbons were separated by gently poking holes in the wax as it warmed. A clean 

glass slide was angled in the water under each section and carefully moved upward to “catch” the 

section on the slide. Slides were placed at an angle to allow water to run off and then incubated 

overnight at 57°C.  
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3.14 LUNG DIGEST 

First, a piece of lung tissue was weighed and placed in a petri dish. The piece was minced 

with scissors into 1 cm pieces. The lung pieces were placed in a 50 ml conical with 25 ml 

digestion media. The tubes were placed in a 37°C water bath for 45-60 minutes. After 

incubation, the pieces were transferred back to the petri dish. The pieces were mashed with a 5 

ml syringe plunger and washed with HBSS-Hepes-DNaseI. The tissue was mashed carefully, to 

prevent it from becoming slimy. The liquid was run through a 70µm cell strainer sitting in a 50 

ml conical. The tubes were centrifuged at 600xg for 10 minutes. The supernatant was removed 

and placed in Oakridge tubes. The Oakridge tubes were centrifuged at 4000xg for 10 minutes to 

get free bacteria. The pellet was resuspended in 20 ml of PBS, dilutions were made and plated on 

CHA. The pellet remaining after the supernatant was moved to Oakridge tubes is resuspended in 

10 ml of ACK lysing buffer. The ACK mixture was incubated for 5-10 minutes at room 

temperature. After incubation, the total volume was brought up to 50 ml with PBS. The tubes 

were centrifuged at 600xg for 10 minutes at 4°C. The supernatant was removed, and the pellet 

was washed with 30-40 ml of MACs buffer. The tubes were centrifuged at 600 xg for 10 minutes 

at 4°C. The supernatant was removed, and cells were resuspended in 1 ml of freezing media 

(90% FBS and 10% DMSO) and frozen at -80°C.  
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4.0  IN VITRO MODEL OF INFECTION 

The first aim of this project was to determine whether F. tularensis could infect human 

primary lung epithelial cells at an air-liquid interface and to compare that with conventional in 

vitro infection of A549 cells, a transformed human lung epithelial cell line, and J774 cells, a 

transformed murine macrophage cell line that is commonly used with F. tularensis. Three strains 

of F. tularensis were used: U112, LVS, and SCHU S4. Overall, this aim focuses on the ability of 

F. tularensis to infect and replicate in these cells. 

4.1.1 Initial Infection Assays 

First, the infection assay was performed using J774 cells only. Next, I compared the 

ability of F. tularensis to infect and replicate in A549 cells to that of infection in J774 cells. For 

the initial assays, J774 (a mouse macrophage cell line) and A549 (a human alveolar epithelial 

cell line) were infected with one of three strains of F. tularensis (U112, LVS, SCHU S4). U112, 

LVS and SCHU S4 have been used in experiments individually and occasionally two have been 

compared; however, the goal of this experiment was to demonstrate whether infection and 

replication in lung epithelium had a role in virulence of the different strains. Although the 

infections were performed on separate days, the same passage of eukaryotic cell stocks were 

used for all the assays with a target multiplicity of infection (MOI) of 100. The actual MOIs for 
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the three infections were slightly higher than the target of 100. The LVS infection had an MOI of 

106. The U112 infection had an MOI of 119. The SCHU S4 infection had an MOI of 131 based 

on the bacterial inoculum that was plated (Table 1). Unfortunately, some time points had cells in 

a nonquantifiable range. Also, there was no growth at several time points for SCHU S4 and LVS, 

so the data is not shown.   

           Table 1. J774 and A549 Infection. 

Strain Cell 

Type 

Eukaryotic Cells 

(log10) 

MOI Infection at Time 

0 (CFU) 

Infection 

Efficiency 

(%) 

U112 A549 5.58 119 3150 0.0070 

U112 J774 5.58 119 2131 0.0047 

LVS A549 5.58 133 200 0.0004 

LVS J774 5.58 133 

SCHU S4 A549 5.58 165 2113 0.0034 

SCHU S4 J774 5.58 165 1163 0.0019 

J774 and A549 cells were infected with U112, LVS and SCHU S4. The number of cells plated 24 hours pre-
infection, MOI calculated by dividing the CFU by the number of cells plated, CFU at time 0 and infection 
efficiency. The CFU at 0 HPI and infection efficiency are blank for J774 cells infected with LVS because no 
colonies grew on the 0 HPI CHA plates. Infection efficiency is calculated by dividing the CFU at 0 HPI by the MOI 
times number of cells (300,000). 

Since there were missing time points from the first assay, the assay was performed again 

with just the J774 cells. Again, the target MOI was 100. However, the MOI for U112 and LVS 

assays was 70 and the MOI for the SCHU S4 assay was lower at 48 (Table 2). In the previous 

experiment, there were 380,000 cells/well. In this experiment, there were only 300,000 

cells/well. Therefore, there would be less cell-to-cell interaction, which could impact cell-to-cell 
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infection. There was data for every time point and strain of F. tularensis (Figure 1). The U112 

and SCHU S4 counts increased at every time point, which was not expected based on published 

results and previous experiments in the laboratory. Whereas, the LVS counts increased between 

0 and 24 HPI, but remained steady through 72 HPI (Figure 1). Typically, the colony counts peak 

at 24 or 48 HPI and drop at 72 HPI. 

    Table 2. J774 Infection Assay. 

Strain Cell Type Eukaryotic 

Cells (log10) 

MOI Infection at Time 

0 (CFU) 

Infection 

efficiency 

(%) 

U112 J774 5.48 150 967 0.0021 

LVS J774 5.48 100 1717 0.0057 

SCHU S4 J774 5.48 103 2750 0.0089 

J774 infection assay with U112, LVS and SCHU S4. The number of cells plated 24 pre-infection, MOI, CFU at 
Time 0, and infection efficiency are shown. Infection efficiency is calculated by dividing the CFU at 0 HPI by the 
inoculum. 
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Figure 1. J774 Infection Assay. 

J774 cells infected with U112, LVS and SCHU S4. Lysate was serially diluted and plated on CHA quad plates. 
Colonies were counted 48 hours later. Doubling rates at 24, 48 and 72 (left) hours and colony counts at 0, 24, 48 and 
72 HPI (right) are shown. Samples were performed in triplicate. Means and ranges are shown.  
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Next the same assay as above was performed with A549 cells only. The MOIs for this 

assay were lower than previously at 42, 78 and 20 for U112, LVS and SCHU S4 respectively 

(Table 3). Again, the U112 counts increased at every time point. Nothing grew for SCHU S4 at 

24 HPI, but the counts increased at both 48 and 72 HPI. There was no growth on the plates for 

the LVS infection at 0, 24 or 72 HPI (Figure 2). This may be a result of not mixing the inoculum 

well enough before adding it to each well. Also, the lysate may not have been mixed well before 

making the dilutions or the bacteria could have been lysed as well. During this assay, the 

supernatant was plated on CHA at the 24 HPI. There was growth on the U112 plate. Therefore, 

the gentamicin might not have been killing all the extracellular bacteria. Consequently, the 

results from these three assays cannot be described as intracellular spread from cell-to-cell only. 

This could be important because cell-to-cell spread could be a way of evading the immune 

system in the host.  

   Table 3. A549 Infection Assay 1. 

Strain Cell Type Eukaryotic 

Cells (log10) 

MOI Infection at 

Time 0 

(CFU) 

Infection 

Efficiency (%) 

U112 A549 5.58 42 540 0.0034 

LVS A549 5.58 78 

SCHU S4 A549 5.58 20 47 0.0006 

A549 cells were infected with U112, LVS and SCHU S4. The number of cells plated 24 hours pre-infection, MOI, 
CFU at 0 HPI and infection efficiency are shown below. Infection efficiency is calculated by dividing the CFU at 0 
HPI by the inoculum. 
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Figure 2. A549 Infection Assay 1. 

A549 cells infected with U112, LVS and SCHU S4. Lysate was serially diluted and plated on CHA quad plates. 
Colonies were counted 48 hours later. Doubling rates at 24, 48 and 72 (left) hours and colony counts at 0, 24, 48 and 
72 HPI (right) are shown. Samples were performed in triplicate. Means and ranges are shown. 

4.1.2 Lung Epithelial Cell Infection 

Since there were issues with getting results at each timepoint, I decided to focus on 

infecting the A549 cell line with SCHU S4 and LVS, but not U112. The infection assay was 

performed as previously described with new gentamicin. Eight infection assays were performed 

at once. Two of the infection assays were used to collect data on colony counts and doubling 

rates. The remaining assays were used to collect samples for the caspase-1 and caspase-3 assays. 

To improve the assay protocol, during the lysing step the pipet tip was used to break up the A549 

layer. The tip was moved in concentric circles around the wells and the in a cross motion to 

improve the lysing process. This was especially necessary at the 48 and 72 HPI timepoints 

because the epithelial cells were more confluent at these timepoints.  
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Table 4. A549 Infection Assay 2. 

Strain Cell Type Eukaryotic 

Cells (log10) 

MOI Infection at Time 0 

(CFU) 

Infection 

Efficiency (%) 

SCHU S4 A549 5.48 61.7 3050 0.0165 

LVS A549 5.48 68.3 250 0.0012 

A549 cells were infected with LVS and SCHU S4. The number of cells plated 24 hours pre-infection, MOI, CFU at 
0 HPI and infection efficiency are shown below. Infection efficiency is calculated by dividing the CFU at 0 HPI by 
the inoculum. 

Although the OD predicted the MOI would be 100, the MOIs ended up being 62 and 68 

bacteria per eukaryotic cell. This assay had exactly 300,000 cells in each well. At timepoint zero, 

the average number of LVS that were able to infect the cells was 93. While, over 2500 SCHU S4 

bacteria were able to infect the cells. The infection efficiencies for both bacteria are extremely 

low at below one percent (Table 4). Both the LVS and the SCHU S4 followed the predicted 

growth rates and doubling. SCHU S4 peaked at 24 HPI and LVS peaked at 48 HPI (Figure 3).  
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Figure 3. A549 Infection Assay 2. 

A549 cells were infected with LVS and SCHU S4. Lysate was serially diluted and plated on CHA quad plates. 
Colonies were counted 48 hours later. Doubling rates at 24, 48 and 72 (left) hours and colony counts at 0, 24, 48 and 
72 HPI (right) are shown. Only two wells of LVS had growth at 0 HPI, therefore LVS 0 HPI is the average of two 
wells and all LVS doubling rate are an average of two wells. All SCHU S4 data is the average of three wells. Means 
and ranges are shown.   
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The assay was repeated for reproducibility. The MOIs were higher for LVS and SCHU 

S4 compared to the previous assay (Table 5). However, both strains had lower CFU at 0 HPI. 

The growth rates for SCHU S4 peaked at 48 HPI as compared to 24 HPI. The doubling rates 

from both experiments follow the same pattern. LVS peaked at 48 HPI in both infection assays; 

however, it had high replication rates in the second infection assay. Overall, these data suggest 

that LVS and SCHU S4 have similar growth and doubling rates in A549 cells (Figure 4). 

However, SCHU S4 typically had a higher capacity to infect than LVS initially. The differences 

seen in the infection assays could be due to the bacteria used. While the initial loopfuls came 

from the same aliquot, the bacteria do not always recover the same from being thawed. 

Alternatively, it could just be experimental variation.  

  Table 5. A549 Infection Assay 3. 

Strain Cell Type Eukaryotic Cells 

(log10) 

MOI Infection at Time 

0 (CFU) 

Infection 

efficiency (%) 

SCHU S4 A549 5.48 66.7 467 0.0023 

LVS A549 5.48 86.7 123 0.0005 

A549 cells were infected with LVS and SCHU S4. The number of cells plated 24 hours pre-infection, MOI, CFU at 
0 HPI and infection efficiency are shown below. Infection efficiency is calculated by dividing the CFU at 0 HPI by 
the inoculum. 
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Figure 4. A549 Infection Assay 3. 

A549 cells infected with LVS and SCHU S4. Lysate was serially diluted and plated on CHA quad plates. Colonies 
were counted 48 hours later. Doubling rates at 24, 48 and 72 (left) hours and colony counts at 0, 24, 48 and 72 HPI 
(right) are shown. Samples were performed in triplicate. Means and ranges are shown. 

A549 cells were infected with SCHU S4 as previously described. Cells were lysed and 

the caspase levels were assessed using fluorescence. The plates were supposed to be read at 

400/505nm; however, the machine was unable to read at these wavelengths. The plates were read 

at 355/520nm. There were no significant differences in the fluorescence between timepoint and 

uninfected controls (Figure 5).  
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Figure 5. A549 Caspase-1 and Caspase-3. 

A549 cells were infected with SCHU S4. Cells were lysed and caspase levels were assessed. No difference in 
fluorescence levels was seen. Samples were performed in triplicate. Means and ranges are shown. 
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4.1.3 Human Primary Lung Infection 

The protocol used in the previously mentioned experiments was used to develop an 

infection assay for a 3D culture of human primary lung epithelium. These cultures are designed 

to mimic the structure of the epithelium in the human lung. These cells develop cilia, produce 

mucous and are polarized. The human bronchial epithelium was provided by Mike Myerburg’s 

lab (Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, 

Department of Medicine). The cells were obtained from his lab, washed to remove antibiotics 

and antibiotic free media was added. The first infection assays were performed with LVS only. 

The bacterial inoculum was created by adding a loopful of bacteria to PBS. The target MOI for 

the first assay was 10. 10 µl of bacterial inoculum was added to each well (Table 6). The cells 

were incubated for three hours at 30°C and 5% CO2. At the end of the incubation, PBS was 

added to the top. The liquid was removed, diluted and plated. The cells were then washed several 

times with PBS. The cells were lysed using 0.02% SDS. However, this would not lyse the cells. 

Sterile water was also used to try to lyse cells and it did not work as well. The 0.02% SDS was 

used again in combination with pipetting up and down which eventually lysed the cells. The cell 

lysate was diluted and plated. The media from the bottom of the wells was also diluted and 

plated. The idea was to see where the bacteria was: still on top of the cells, in the cells or through 

the cells. There was no growth on almost all the plates. There was growth for 1/6 of the top layer 

sets of plates (Table 6). From this infection assay, it was concluded that the MOI, infection time 

and amount of bacterial inoculum plated may influence the assay. The cells used for this assay 

came from a donor with silicosis. This could have influenced the cells susceptibility to F. 

tularensis.  
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Table 6. HBE Infection Assay 1. 

MOI Amount 

Plated 

Incubation 0 HPI Counts 24 HPI 

Counts 

Cell ID Disease 

19.5 10 µl 2 Hours All 0/0 except one top All 0/0 191 Silicosis 

HBE cells from a donor with silicosis were infected with LVS at an MOI of 19.5. 10 µl of inoculum were plated 
onto the cells. There was no LVS in the cell lysate and media at 0 HPI. One out of six wells of HBE cells had LVS 
growth in the inoculum wash at 0 HPI. There was no LVS in the cell lysate, media, or inoculum wash at 24 HPI. 

To address some of the possible issues from the first assay, another infection assay was 

performed. Different MOIs, incubation times and inoculum plated were tested (Tables 7 and 8). 

Cells from a healthy donor were used for this assay. This time only the cell lysate was diluted 

and plated. The cells were also lysed differently this time. The 0.02% SDS is added to each well 

and the pipette tip is used to scrape the cells of the film. This action also helps lyse the cells. 

Again, there was no growth on any of the plates (Table 8). Therefore, the question became: can 

Francisella even infect primary human lung epithelium?   

      Table 7. HBE Assay 2 Plate Setup. 

MOI:100 

100 µl 

2 Hours 

MOI: 100 

100 µl 

2 Hours 

MOI: 100 

50 µl 

2 Hours 

MOI:100 

50 µl 

2 Hours 

MOI: 10 

50 µl 

2 Hours 

MOI: 10 

50 µl 

2 Hours 

MOI:100 

100 µl 

3 Hours 

MOI: 100 

100 µl 

3 Hours 

MOI: 100 

50 µl 

3 Hours 

MOI:100 

50 µl 

3 Hours 

MOI: 10 

50 µl 

3 Hours 

MOI: 10 

50 µl 

3 Hours 

HBE cells were infected with 50-100 µl of LVS inoculum at target MOI of 100 or 10. The cells were incubated with 
the inoculum from 2 to 3 hours.  



34 

                  Table 8. HBE Infection Assay 2. 

Amount Plated MOI Cell ID Disease 0 HPI Counts 

100 µl 160 195 None All 0/0 

50 µl 322.5 195 None All 0/0 

50 µl 27.25 195 None All 0/0 

HBE cells from a healthy donor were infected with LVS at MOIs from 27.25-322.5. Inoculum was plated in 50-100 
µl amounts. There was no growth in the cell lysate at 24 HPI.  

To address this question the assay was repeated using 50 µl and MOI of 10 (Table 9). 

Again, the cells were from a healthy donor. However, only a 24-hour timepoint was plated. Also, 

the cells were infected with SCHU S4 and LVS to determine if there is a strain difference in 

infection. There was growth on both the LVS and SCHU S4 plates (Figure 6). This suggests that 

F. tularensis can infect primary human bronchial epithelium.

             Table 9. HBE Infection Assay 3. 

Strain Amount Plated MOI Cell ID Disease 

LVS 50 µl 7 190 None 

SCHU S4 50 µl 12.25 190 None 

HBE cells from a healthy donor were infected with two strains of F. tularensis: LVS and SCHU S4 at MOIs from 7-
12.25. The inoculum was plated in 50 µl amounts.  
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Figure 6. LVS and SCHU S4 colony counts in HBE cell lysate 24 hours post-infection. 

HBE cells from a healthy donor were infected with LVS and SCHU S4. There was no growth at 0 HPI. The CFU/ml 
lysate are shown. Samples were performed in triplicate. Means and ranges are shown. 

The assay was repeated to confirm results; however, there was inconsistency in the 

results. The cells used for this assay were from a donor with silicosis. The MOIs were similar to 

the MOIs in the previous assay (Table 10). There was growth at 24 HPI (Figure 7), but there was 

no growth at 0, 48, 72, or 96 HPI (Table 10). It was suggested that using PBS could be impacting 

the bacteria’s ability to survive in the inoculum. 

Table 10. HBE Infection Assay 4. 

Strain MOI Cell ID Disease 0 HPI 

Counts 

48 HPI 

Counts 

72 HPI 

Counts 

96 HPI 

Counts 

LVS 8 191 Silicosis 0/0 0/0 0/0 0/0 

SCHU S4 12.25 191 Silicosis 0/0 0/0 0/0 0/0 

HBE cells from a donor with silicosis were infected with LVS and SCHU S4 at MOIs from 8-12.25. There was no 
growth on the 0 HPI and 48 HPI plates. The PBS used for 72 and 96 HPI dilutions was contaminated, but there was 
no growth from the lysate.  
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Figure 7. HBE Infection Assay 4. 

HBE cells from a donor with silicosis were infected with LVS and SCHU S4. There was growth at 24 HPI for both 
the LVS and SCHU S4 infected cells. Samples were performed in triplicate. Means and ranges are shown. 

Another assay was performed using BHI and PBS for the inoculum. Francisella grows 

well in BHI, so if PBS was the problem, the results should have been more consistent. The MOIs 

were slightly lower than previous assays. The cells used for this assay were from a healthy donor 

(Table 11). However, again the results were inconsistent (Figure 8). The colony counts ranged 

from 2-60 within the replicate wells. There could be several explanations for the inconsistent 

results. First, cells from different donors were used for each assay. While the cells were from 

different donors, the results should still be consistent when compared to that same patient and 

this was not true. Therefore, that explanation seemed unlikely. Second, some of the CHA plates 

used in the last assay were dry and bumpy by the time the plates were counted. However, there 

was growth on some of the dry and bumpy plates. Finally, the assay protocol did not use 

antibiotics to kill the extracellular bacteria before lysing. Therefore, some extracellular bacteria 

may have been trapped in the cilia or mucous causing the higher colony counts. This seemed to 

be the most likely cause of inconsistency. To address this issue, several steps were added to the 

assay protocol. A DTT rinse was added to remove the mucous layer before infection to allow the 
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bacteria to access the cells easier. Also, a thirty-minute incubation with PBS with 50 µg/ml 

gentamicin was added. The wells were washed three times after to remove all the gentamicin. 

The last washing step was plated to confirm that all of the extracellular bacteria were killed with 

the gentamicin.  

Table 11. HBE Infection Assay 5. 

Strain Media MOI Cell ID Disease 

SCHU S4 PBS 7.25 190 None 

SCHU S4 BHI 7.75 190 None 

HBE cells from a healthy donor were infected with SCHU S4 at MOIs from 7.25-7.75. The inoculum was prepared 
in PBS and BHI.  
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Figure 8. HBE Infection Assay 5. 

There was growth in the HBE lysate at 0 and 24 HPI. The counts were inconsistent within the replicate wells. 
Samples were performed in triplicate. Means and ranges are shown. 

Cells from a donor with bronchopulmonary dysplasia and another donor with 

scleroderma and pulmonary arterial hypertension were used for this assay. The MOIs were 

higher than previous assays (Table 12). The additions to the protocol did not kill or remove all 
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the extracellular bacteria in the wells. All the last wash plates had colonies (Table 12). There was 

growth at 0 and 24 HPI (Figure 9). The quantity of intracellular bacteria could not be quantified 

due to the presence of bacteria in the last wash. 

Table 12. HBE Infection Assay 6. 

MOI Cell ID Disease 0 HPI Wash 24 HPI Wash 

15 197 Bronchopulmonary dysplasia Positive Positive 

15 199 Scleroderma/Pulmonary arterial hypertension Positive Positive 

HBE cells from a donor with bronchopulmonary dysplasia and another with scleroderma and pulmonary arterial 
hypertension were infected with SCHU S4 at a MOI of 15. All last washes contained SCHU S4.  
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Figure 9. HBE Infection Assay 6. 

Lysate from both HBE cell lines contained SCHU S4 at 0 HPI and 24 HPI. Samples were performed in triplicate. 
Means and ranges are shown. 

The gentamicin step is an hour for the A549 cells, so the gentamicin incubation time for 

the HBE cells was increased to an hour. Also, 900 µl of PBS was added to the 100 µl of last 

wash, dilutions were made and plated. The last wash CFU were subtracted from the lysate CFU 

to predict the number of intracellular bacteria. This assay was performed with cells from a donor 
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with bronchopulmonary dysplasia and another donor with scleroderma and pulmonary arterial 

hypertension. The MOIs were lower than the previous assay (Table 13). There was growth in the 

last wash and lysate; however, the growth in the lysate was higher than the last wash (Figure 10). 

I concluded that F. tularensis can infect HBE cells.  

Table 13. HBE Infection Assay 7. 

MOI Cell ID Disease 

6.75 197 Bronchopulmonary dyslplasia 

6.75 199 Scleroderma/Pulmonary arterial hypertension 

HBE cells from a donor with bronchopulmonary dysplasia and another with scleroderma and pulmonary arterial 
hypertension were infected with SCHU S4 at a MOI of 6.75. 

The assay was performed again for reproducibility with the cells from the donor with 

bronchopulmonary dysplasia. The MOI was higher than the previous assay, which may explain 

the higher wash and lysate counts (Table 14). Again, there was growth in the lysate and last wash 

at 0 and 24 HPI (Figure 11).  



40 

0 2 4
0

1

2

3

4

5

H B E  L y s a te

T im e p o in t  (h o u rs )

C
F

U
 (

lo
g

)

0 2 4
0

1

2

3

H B E  W a s h

T im e p o in t  (h o u rs )

C
F

U
 (

lo
g

)

0 2 4
0

1

2

3

4

5

H B E  F in a l

T im e p o in t  (h o u rs )

C
F

U
 (

lo
g

)

1 9 7

1 9 9

Figure 10. HBE Infection Assay 7. 

Colony counts from last wash (top right) were subtracted from colony counts from cell lysate (top left). The results 
are shown (bottom). There are more colonies in the lysate than in the wash proving that SCHU S4 is infecting the 
HBE cells. Samples were performed in triplicate. Means and ranges are shown. 

                                Table 14. HBE Infection Assay 8. 

MOI Cell ID Disease 

15 197 Bronchopulmonary dysplasia 

HBE cells from a donor with bronchopulmonary dysplasia were infected with SCHU S4 at a MOI of 15. 
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Figure 11. HBE Infection Assay 8. 

Colony counts from last wash (top right) were subtracted from colony counts from cell lysate (top left). The results 
are shown (bottom). There are more colonies in the lysate than in the wash proving that SCHU S4 is infecting the 
HBE cells. Samples were performed in triplicate. Means and ranges are shown. 

4.2 PATHOGENESIS IN RABBIT LUNGS 

Rabbit tissues from a previous study were used. There were 12 rabbits in this study. 

Three rabbits were not infected before they were sacrificed. The remaining rabbits were serially 

sacrificed one, two and three days post exposure. There were three rabbits sacrificed at each time 
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point. At the time of sacrifice, the bronchoalveolar lavage was taken to determine presence of 

Francisella. The lungs from eight out of the nine infected rabbits’ lungs were digested. Some of 

the lung digest was serially diluted and plated on CHA plates to determine the presence of 

bacteria. The remaining tissues were harvest and frozen at -80°C. The lower left lung sections 

were homogenized later. Homogenate was plated to determine presence of bacteria. Also, the 

homogenate was lysed for caspase-1 and caspase-3 assays. There were three uninfected rabbits in 

this study; however, they were sacrificed differently than the infected rabbits. Also, there were 

positive colony counts for all three in the lower left lung of all three uninfected rabbits. 

Therefore, the controls were not used for the caspase and TUNEL staining. There were no other 

uninfected rabbit tissues to use as controls. More uninfected rabbits will have to be sacrificed for 

controls in the future. 

All infected rabbits received similar doses during the aerosol. The rabbits sacrificed three 

days post-exposure had slightly higher doses than the other rabbits. Bronchoalveolar lavage 

(BAL) was taken at time of necropsy. The BAL increased with each day post-exposure. The lung 

digest and homogenate colony counts peaked at day two post-exposure (Figure 12). Typically, 

unvaccinated rabbits develop fevers around day three post-exposure. The rabbits in this study 

developed fevers around day two or three post-exposure (Figure 12). 
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Figure 12. Francisella tularensis in Rabbit Lung Tissue. 

Lung tissue from rabbits sacrificed one, two and three days post-exposure was digested and titers were plated. 
Frozen lower left lung tissue was homogenized and titers were plated. Both homogenate and lung digest CFU/g 
peaked two days post-exposure. BALs were performed on rabbits during the necropsy. The CFU in the BAL 
increased with each day post-exposure. Mean and ranges are shown.  

4.2.1 Caspase Assays 

For the caspase assays the frozen tissues were thawed, weighed and homogenized in 

chilled cell lysis buffer. The samples were frozen and the assay was performed later. The plates 
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were supposed to be read at excitation/emission: 400/505 nm; however, the plate reader was 

unable to read at these wavelengths. Therefore, the first plates were read at 355/520 nm. There 

were no significant caspase differences in the infected and uninfected rabbit tissues. There were 

slightly higher caspase-1 levels in the rabbits sacrificed one day post-exposure. There were 

slightly higher caspase-3 levels in the rabbits sacrificed one day and three days post-exposure 

(Figure 13).  
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Figure 13. Rabbit Caspase Staining. 

The presence of caspase-1 and caspase-3 in lower left lung homogenate from rabbits sacrificed one, two and three 
days post-exposure. There does not appear to be any difference in the caspase levels in the infected and uninfected 
rabbits.  

4.2.2 Lung Slides 

Sections of the lungs of the rabbits were also paraffin-embedded and cut onto slides. 

Each rabbit tissue had a slide stained with H&E and a slide stained with TUNEL. Two of the 
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rabbits sacrificed one day post-exposure had healthy, uninflamed lungs. However, one showed 

evidence of some inflammation and hemorrhaging (Figure 14). One rabbit sacrificed two days 

post-exposure had a high amount of inflammation and hemorrhaging. The other rabbit showed 

no evidence of inflammation or hemorrhaging. Also, one rabbit sacrificed three days post-

exposure had a high amount of inflammation and hemorrhaging, while the other appeared to 

have healthy lungs (Figure 14).  

Figure 14. Inflammation in the lower left lung of rabbits sacrificed one to three days post-exposure to SCHU-
S4. 

Lower left lung tissue from rabbits sacrificed one (A-D), two (E-G) and three (H-I) days post-exposure were stained 
with hematoxylin and eosin. Images were taken at 10x magnification. Inflammation and hemorrhaging increases 
each day post-exposure.  

The slides were TUNEL stained as well. There is a small amount of DNA fragmentation 

in one of the rabbits sacrificed one day post-exposure. There is more DNA fragmentation in the 

rabbits sacrificed two days post-exposure. There is a higher amount of DNA fragmentation, 
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suggesting apoptosis, in the rabbits sacrificed three days post-exposure than the two days prior 

(Figure 15).  

Figure 15. DNA fragmentation in the lower left lung of rabbits sacrificed one to three days post-exposure to 
SCHU-S4. 

Lower left lung from rabbits sacrificed one (A-B), two (C-D) and three (E-F) days post-exposure were TUNEL 
stained. Images were taken at 10x magnification. The DNA fragmentation levels appear to increase each day post-
exposure. Although, the DNA fragmentation is present the level of DNA fragmentation is not high. There is some 
background seen on the slides (C).  

To confirm these results, slides from the upper right lung were cut. Also, lung tissue from 

rabbits sacrificed four and five days post-exposure were cut. The inflammation varied throughout 

each tissue sample, but it increased each day post-exposure (Figure 16). Specifically, the tissue 

from the rabbits sacrificed four days post-exposure showed extremely high levels of 

inflammation. There were almost no alveolar regions throughout the tissue. Edema can be seen 

in the tissues from the rabbits sacrificed five days post-exposure (Figure 18).  
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Figure 16. Inflammation in the upper right lung rabbits sacrificed one to three days post-exposure to SCHU-
S4. 

Upper right lung tissue from rabbits sacrificed one (A-D), two (E-H) and three (I-N) days post-exposure were 
stained with hematoxylin and eosin. Images are in pairs from the same rabbit to show varying levels of inflammation 
within the sections. Images were taken at 10x magnification. The most inflammation and hemorrhaging were seen in 
the rabbits sacrificed three days post-exposure.  
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Figure 17. DNA fragmentation in upper right lung of rabbits sacrificed one to three days post-exposure to 
SCHU-S4.  

Upper right lung tissue from rabbits sacrificed one (A-C), two (D-H) and three (I-L) days post-exposure were 
TUNEL stained. Images were taken at 10x magnification. The DNA fragmentation levels appear to increase each 
day post-exposure. Although, the DNA fragmentation is present the level of DNA fragmentation is not high. There 
was high background on most slides and control slides (not shown).   

The slides were also TUNEL stained. There appears to be increasing amounts of DNA 

fragmentation in the tissues (Figure 17). There were high levels of background on the control 

slide and several of the other slides. The background makes it difficult to definitively say there is 

TUNEL positive staining. The highest levels of TUNEL positive staining were seen in one rabbit 

sacrificed four days post-exposure and one sacrificed five days post-exposure (Figure 19). There 

were nodules in some of the rabbit tissues. These nodules stained TUNEL positive in the rabbit 

lung tissue from the rabbits sacrificed four days post-exposure (Figure 19). 
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Figure 18. Inflammation in the lung of rabbits sacrificed four and five days post-exposure to SCHU S4. 

Lung tissue from rabbits sacrificed four (A-F) and five (G-L) days post-exposure were stained with hematoxylin and 
eosin. Images are in triplicate from the same rabbit. Images were taken at 10x magnification. The most inflammation 
was seen in the rabbits sacrificed four days post-exposure (D-F).  
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Figure 19. DNA fragmentation in lung tissue from rabbits sacrificed four and five days post-exposure to 
SCHU S4. 

Lung tissue from rabbits sacrificed four (A-F) and five (G-L) days post-exposure were TUNEL stained. Images were 
taken at 10x magnification except image F. F was taken at 5x magnification. The DNA fragmentation levels vary 
between rabbits. The levels are higher in one rabbits sacrificed four days post-exposure (A-C) and five days post-
exposure (J-L) than the rabbits sacrificed one to three days post-exposure (shown previously). 

Overall, it appears that cell death and inflammation increased from one to four days post-

exposure to SCHU S4. The inflammation was slightly decreased in the rabbits sacrificed five 

days post-exposure. The hemorrhaging increased from one to three days post-exposure in the 

lung tissues. In the future, the results will be compared to new uninfected controls that were 

sacrificed the same way and do not have bacteria in the lungs.  
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5.0  DISCUSSION 

Previous groups have studied the cell types infected by Francisella in the lungs of mice. 

They found that U112, LVS and SCHU S4 strains of Francisella were able to infect alveolar 

macrophages, CD11bhigh macrophages, CD11blow/mid dendritic cells, CD11bhigh dendritic cells, 

monocytes, neutrophils and alveolar type II epithelial cells. Not surprisingly, they found that one 

day post-infection that alveolar macrophages composed most infected cells for all three strains. 

Both the macrophages and alveolar type II epithelial cells had higher numbers of infected cells at 

one day post-infection when compared to three days post-infection [24]. The bacteria must peak 

between 24 and 48 HPI. Therefore, I expected to see similar results with our in vitro work. I 

found the growth rates peaked at 24 or 48 hours post-infection, indicating my in vitro work is 

consistent with the published in vivo studies. F. tularensis disseminates quickly through the 

body; therefore, by day three the bacteria are likely disseminating throughout the body and no 

longer needs to replicate at high levels in the epithelial cells.  

Based on those prior studies I expected that F. tularensis could infect both macrophages 

and lung epithelial cells. While macrophages are typically the focus of tularemia research, lung 

epithelial cells could also be important. There are far more epithelial cells along the surface of 

the lungs for bacteria to interact with than macrophages. Type II epithelial cells exchange gas 

and maintain a fluid balance. Their proximity to endothelial cells could aid in the dissemination 

of bacteria [3]. We found that F. tularensis can replicate at similar rates within A549 and J774 
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cells. Although, we found that the bacteria can infect more J774 cells initially than A549 cells. 

Due to the phagocytic nature of J774 cells this was an expected result. In our study, we found 

that the infection efficiency was lower than one percent. Hall and associates found that 0.2% of 

A549 cells were infected after six hours of infection. In comparison the Tc-1 cell line, a mouse 

lung epithelial cell line, had as high as 17% infected cells. They also found that both the Tc-1 

and A549 cell lines had less infected cells than the J774A.1 cell line [12]. Also, one group found 

that 0.05%-0.1% of the inoculum had successfully infected Hep-2 cells, human bronchial 

epithelial cells and A549 cells after four hours of infection [19]. Even though our infection 

efficiencies were lower than these, our infection time was half or a third of these previous study 

infection times. Ultimately, these data together suggest that F. tularensis can infect both 

macrophages and lung epithelial cells at low rates initially. However, once the F. tularensis 

infected either cell type, it can replicate and infect other cells.  

Hall et al. found that Francisella localizes to the alveolar regions of the lungs of infected 

mice one to seven days post-exposure to LVS. They saw very few bacteria in the apical surfaces 

of the bronchial epithelial cells. They also did not see any replication of bacteria with bronchial 

epithelial cells [12].  However, Lindemann et al. found that LVS was able to infect human 

bronchial epithelial cells. I wanted to infect human primary bronchial epithelial (HBE) cells to 

see if F. tularensis truly can infect human bronchial epithelial cells [19]. Also, the primary HBE 

cells more closely resemble the human lungs. Our preliminary data suggests that F. tularensis 

can infect HBE cells. However, F. tularensis is unable to infect the cells after two hours as seen 

in the A549 experiments. It appears that F. tularensis infects HBE cells at a slower rate than 

A549 cells, since the HBE twenty-four-hour post-infection counts are similar to the two-hour 

post-infection counts of the A549 cells. Future experiments need to be done to confirm these 
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results and to characterize the infection in these cells. Ultimately, this infection assay might be 

useful bridging the gap between the A549 experiment results and the disease in humans.  

Currently, it is unclear which type of cell death is induced by Francisella infection. Lai et 

al. observed pro-caspase 9 and 3 cleavage when they challenged J774 cells with LVS. Also, they 

observed cytochrome c release and degradation of poly-ADP-ribose polymerase and therefore; 

they concluded that Francisella was inducing apoptosis. Other studies found that procaspase-1 

was not necessary to induce cell death. Mice deficient in caspase-1 showed similar pathological 

responses to infection as the wild-type mice. Supporting the idea that the damage caused by cell 

death is not due to caspase-1 induced cell death. Also, the spleens of these mice stained 

positively for fragmented DNA and expressed activated caspase-3 supporting the observation 

that Francisella is causing apoptotic cell death in these animals. However, caspase-3 activation, 

fragmented DNA, necrosis and bacterial dissemination were greater in mice infected with F. 

tularensis isolate KU49 than LVS [25]. Isolate KU49 is more virulent than LVS; therefore, if the 

damage is caused by apoptotic cell death, then the higher levels of caspase-3 activation, 

fragmented DNA, necrosis and bacterial dissemination are expected in mice infected with the 

KU49 isolate. 

In contrast, other studies have shown pro-caspase-1 activation in mouse bone marrow 

derived macrophages after infection with LVS or U112 [25]. Studies with virulent strains of F. 

tularensis have shown low levels of caspase-1 activation [26]. To escape the phagolysosomes, 

the Francisella virulence factor iglC is required. The transcription of virulence factors iglC, 

pdpD and pdpA is regulated by mglA. MglA and pdpA are required to induce macrophage death. 

One group found that macrophages from caspase-1 deficient mice were highly resistant to cell 

death. Also, macrophages from these mice were resistant to F. tularensis-induced death when 
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infected with mglA and pdpA mutants. Therefore, F. tularensis-induced cell death must be 

dependent on bacteria replicating in the cytosol and caspase-1 activation. Similarly, apoptosis-

associated speck-like protein containing CARD (ASC) deficient macrophages were resistant to 

cell death induced by F. tularensis. ASC is an inflammasome adapter protein. Caspase-1 induced 

cell death seems to be a host defense against Francisella infection [27]. I hypothesized that both 

caspase-1 and caspase-3 are induced during Francisella infection. Based on the previous studies, 

it appears that pyroptosis is triggered to remove the bacteria from the cytosol where it replicates; 

however, it does not appear that this is successful in preventing severe disease. Whereas, 

apoptosis may be part of the pathogenesis of Francisella. Tissue damage during infection may be 

due to Francisella inducing apoptosis, since apoptosis is a form of cell death that does not trigger 

an immune response. Therefore, I expected to see positive caspase-1 and caspase-3 results in my 

fluorescent assays. Also, I expected to see positive TUNEL staining and caspase-1 staining in the 

sections from infected rabbit lungs. Unfortunately, I did not see any differences in the fluorescent 

assays. This could have been due to the inability to read at the correct wavelength, errors in the 

performing the assay or many other reasons. Ultimately, this experiment will need to be repeated 

with A549 and HBE cells. My TUNEL stained slides appear to be positive. There is a small 

amount of positive staining in the rabbit sacrificed one day post-exposure. One rabbit that was 

sacrificed two days post-exposure had a high amount of positive staining. The other had a 

medium amount. Both the rabbits sacrificed three days post-exposure had a high amount of 

positive staining. It appears that cell death increases each day post-exposure; therefore, F. 

tularensis infection is inducing cell death. However, these results do not signify the type of cell 

death or the cause of the cell death.  
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Based on previous studies, I expected to see and observed inflammation in the lungs of 

rabbits euthanized two and three-days post-infection. One group studied forty-two hares that 

were found dead due to Francisella. The researchers found that there was mild or no 

inflammation in the liver, spleen and bone marrow of these hares. Necrosis and lesions were 

found on organs throughout many of the hares’ bodies. Francisella was found in the cytoplasm 

of several cells types in the muscle of the hares [28]. However, there is no data on the day-post 

infection that these hares died or how they were infected. Another group infected F344 rats with 

aerosolized SCHU S4. At the time of death, typically four to five days post-infection, the rats 

have high bacterial counts in the lungs, liver and spleen. These rats had developed lung, liver and 

spleen inflammation and severe sepsis. The inflammation was observed in these organs at three 

days post-infection and increased through day seven post-infection [29]. Hares, rabbits and rats 

are not the only animals to develop lung inflammation post-infection with Francisella. Mice 

infected with LVS showed inflammation in the lungs six days post-infection [30]. Also, African 

green monkeys infected with SCHU S4 had hemorrhaging, lesions, edema and congestion in the 

lungs seven to eleven days post-infection [31].  I did see inflammation in the lower left lungs of 

the rabbits sacrificed on days two and three post-infection. Previously the activation of apoptosis 

by F. tularensis was mentioned; however, this seems on the contrary of the inflammation seen in 

the rabbit lungs. The inflammation could be from the immune system triggering pyroptosis to 

prevent F. tularensis from replicating in the cytosol. Cytokines are released during pyroptosis 

that cause inflammation at the site. Only several of the rabbits in our study developed 

inflammation in the lower left lung; however, typically the rabbits develop fevers three to four 

days post-infection. If I looked at tissues from later times points, it is likely that I would see 
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widespread inflammation. Future experiments will focus on different sections of the lung, other 

organs and later timepoints.  

The doses were similar for all our rabbits in this study; however, the rabbits sacrificed on 

day three post-infection had slightly higher doses. The bacteria levels in the BALs were highest 

in the rabbits sacrificed three days post-infection. Since the doses were slightly higher for these 

rabbits and the bacteria has had longer to replicate and spread, this is expected. The lung digest 

CFU and homogenate CFU peak two days post-infection. This is somewhat unexpected since the 

rabbits do not develop fever until three days post-infection. I would expect the CFU to peak on 

day three or four. However, if pyroptosis is occurring between day two and three, it could 

explain the higher BAL and the lower tissue counts. Also, F. tularensis disseminates throughout 

the body, so it may use the epithelial cells proximity to enter the circulatory system by day three.  

Overall, I think that lung epithelial cells do play an important role in F. tularensis 

pathogenesis. I think the proximity to the circulatory system aids in the dissemination of the 

bacteria. If we could prevent F. tularensis from infecting epithelial cells, maybe the infection 

could be prevented. Even though it does infect other cell types, if it cannot infect the epithelium, 

it may not be able to infect enough cells to start a productive infection. Future experimental 

interests include evaluating the caspase levels in A549 and HBE cells, further evaluating caspase 

and TUNEL staining in rabbit tissues, evaluating the metabolic impacts of Francisella infection 

on HBE cells and cytokine analysis.  
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