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ABSTRACT 
 

Intensive research on human immunodeficiency virus (HIV) is being conducted in efforts 

to understand HIV pathogenesis. In the past decade, the development of innovative bioinformatics 

technology has focused research on the human gut microbiome and its potential role in the 

pathogenesis of HIV. Recent research has shown that gut microbial imbalance, or dysbiosis, may 

lead to microbial translocation and chronic inflammation in HIV-infected individuals, further 

enhancing HIV progression, potentially towards the development of AIDS. Gut microbiota in 

untreated men who have sex with men (MSM) with HIV can have an over-representation of pro-

inflammatory Proteobacteria, associated with mucosal and systemic immune activation. My 

research aims to investigate the gut microbiome of 16 untreated HIV-infected men who have sex 

with men (MSM) at time-points that are ~6 months pre-seroconversion and ~6 months post-

seroconversion to assess bacterial changes that may make individuals more susceptible to the 

development of AIDS, using Multicenter AIDS Cohort Study (MACS) fecal samples from 1984-

1985. Using high throughput sequencing technology, bacterial 16s rRNA genes were amplified, 

sequenced, and then clustered into operational taxonomic units using QIIME software.   Results 

showed that fecal samples from both non-HIV infected controls and HIV-infected MSM in 1984-

85 had dominant taxa from the phyla Firmicutes, Bacteroidetes and Proteobacteria. Both visits 

non-infected controls showed a relative abundance of Firmicutes (35.3%), Bacteroidetes (56%) 
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and Proteobacteria (5.53%); similarly, both visits seroconverters showed a relative abundance of 

Firmicutes (39.93%) Bacteroidetes (50.58%), and Proteobacteria (5.41)%). Genera level 

abundance of seroconverters (SC) both visits vs non-HIV infected controls both visits showed an 

increase in Prevotella (51.2% SC; 38% controls) and a decrease in Bacteroides (14.1% SC; 27.11% 

controls). These results suggest that an increase in Prevotella within the six month post-

seroconversion to HIV, with microbial translocation of Prevotella or its metabolites, could be a 

factor in subsequent development of AIDS. Alpha diversity and beta diversity are currently being 

analyzed to provide the statistical significance of these findings. This pilot study sets a strong 

foundation for building further research in the MACS assessing the effects of the microbiome in 

HIV infection. This study is important for public health because it will help further develop an 

understanding of and how microbial composition and microbial products influence the 

pathogenesis of progressive HIV infection; potentially formulating improved ancillary treatments 

to improve the long-term health of HIV infected persons on ART. 
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1.0  INTRODUCTION 

1.1 HUMAN IMMUNODEFICIENCY VIRUS (HIV) 

Human immunodeficiency virus (HIV) is a serious public health issue and since its 

discovery, has been a great focus of academic, biotechnological, and clinical research. Despite 

over 30 years of research, there is still little known about the pathogenesis of HIV. 

Approximately 36.7 million people worldwide, with 850,000 to 950,000 individuals living in the 

United States, have been diagnosed with human immunodeficiency virus (HIV); which can 

eventually cause acquired immunodeficiency syndrome (AIDS) (1). 1.1 million individuals 

worldwide died of AIDS-related illnesses in 2015 (1). In parts of Africa, there is a 4.4% HIV 

prevalence rate, which is dramatically higher than any other country (Americas have a 0.5% 

prevalence) (1). Outside of Africa, populations at highest risk include those with the highest 

amount of risky behavior such as intravenous drug users, prisoners, sex workers and men who 

have sex with men (MSM) (2). In 2014, MSM made up more than half of the new HIV diagnoses 

in the United States (3).  However, any individual participating in any risky behavior (i.e. 

unprotected sex) can acquire HIV and be unaware until tested, providing the opportunity to 

spread to other individuals (4).  Once infected with HIV, combination anti-retroviral therapy 

(cART) or anti-retroviral therapy (ART) can be used to suppress viral replication, and reduce 

acquired immunodeficiency syndrome (AIDS)-related mortality and morbidity, but ART 
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treatment is a life-long treatment with damaging side effects and is overall undesirable for an 

individual. When ART is stopped, replication of the virus begins again within weeks.  Current 

HIV/AIDS research focuses on searching for innovative therapies and preventative measures to 

provide better treatment and care to HIV-infected individuals. HIV disease progression depends 

on a variety of known and unknown factors. 

1.2 HIV VIROLOGY 

1.2.1 Classification 

HIV is from the family Retroviridae, genus Lentivirus, and can lead to the development 

of AIDS; a progressive immune system failure in which an individual becomes susceptible to 

opportunistic infections and cancers (5). HIV is a single stranded, positive sense, enveloped 

RNA virus(6).  HIV’s DNA is stored within a capsid and a lipid envelope. The virus is spherical 

with a diameter of ~100-120 nm. The viral genome consists of two copies of RNA and code for 

nine genes: Gag, Pol, Env (encode for structural proteins), Tat and Rev (encode for regulatory 

proteins), and Vpu, Vpr, Vif, and Nef (encode for accessory proteins)(6).  HIV has the ability to 

integrate its own DNA into the human host’s genome, and for this reason, it is very difficult to 

eliminate. 
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1.2.2 Entry and Replication 

Virus acquisition occurs through contact and exposure of infected bodily fluids and blood 

between individuals.  Initially, precursor glycoprotein (gp) 160 is cleaved by the cellular protease 

furin into two subunits, resulting in a surface subunit glycoprotein 120 (gp120) and a 

transmembrane subunit gp41.To enter a cell, docking must occur (7). Docking occurs when 

gp120 interacts with the CD4 receptor and a coreceptor (CCR5 and/or CXCR4) primarily on T 

lymphocytes (T-helper cells), macrophages (CCR5), and microglial cells (8). After interaction 

occurs, the viral envelope fuses with the host cell membrane through an unknown mechanism 

and releases viral contents into the host cell’s cytosol (8). Viral reverse transcriptase (RT) 

generates a double stranded (ds) complementary DNA (cDNA) and imports this DNA into the 

cell nucleus. After undergoing modifications, HIV transcripts are released and translated into the 

cytoplasm, where they are prepared for virion assembly in lipid rafts located on cellular 

membranes (8). Assembly occurs at different areas on different cell types; T-lymphocyte virion 

assembly occurs at the cell surface; whereas, in macrophages and dendritic cells, assembly 

occurs on endosomal membranes and buds off from the membrane (8). After budding, virions 

search for new target cells to infect and the cycle is repeated.  

1.2.3 Pathogenesis 

HIV infection has three distinct stages: acute infection, clinical latency (chronic 

infection), and AIDS (symptomatic stage) [(5), (9)]. Acute infection occurs between 2 to 4 weeks 

after HIV infection, some flu-like symptoms may be presented, but most infected individuals do 

not show symptoms during this stage. Exponential amounts of virus are produced during this 
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time, destroying CD4+ T cells in the process. Viral stability occurs within 3 months and is termed 

viral set point; when the host’s immune system develops antibodies for the virus. This antibody 

development is identified as seroconversion. During the clinical latency, or chronic HIV 

infection, virus continues to replicate in lymph nodes and blood, slowly damaging the infected 

host’s immune system (5). This period can last for several years before progressing to AIDS. 

Progression to AIDS is quicker in individuals who are not regularly taking ART; however, some 

individuals may never progress to AIDS. AIDS is defined by increased invasion of opportunistic 

infections (i.e., Toxoplasmosis, Salmonella septicemia and Candidiasis) and cancers (i.e., 

Kaposi’s sarcoma and lymphomas) that arise and thrive due to an overwhelmed immune 

system(5). During this stage, and infected individual’s CD 4 count drops below 200 cells per 

cubic millimeter (cells/mm3) of blood. Without antiretroviral therapy (ART), AIDS mortality is 

on average 3 years (5). Progression through each stage is dependent upon a variety of factors, 

age, HIV subtype, co-infections, nutrition status, stress level, genetic background, and ART (5).  

Pathogenesis of HIV infection and AIDS development is still being studied. It is believed 

that several types of viral and host factors (receptors/coreceptors) are involved in HIV disease 

progression (9). A 32-nt deletion in CCR5 commonly presented in Caucasian populations, 

protects individuals from being infected with HIV (homozygous CCR5 delta32/delta32), or slow 

the rate of development towards AIDS (heterozygous genotype) (10). Macrophages (MP) play a 

major role in immune regulation, and have been implicated in functioning in dissemination of 

HIV to various tissues in the body (11). MP’s primary function is to uptake free or opsonized 

virus (phagocytize) and destroy the virus through lysosome fusion/intracellular mechanisms (11) 

MP’s also have other functions during viral immunity: MP’s help facilitate antigen presentation 

through expression of high levels of major histocompatibility antigens (MHC) and T-lymphocyte 
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costimulatory molecules, MP’s secrete bioactive molecules which affect immunoregulatory 

functions via proinflammatory cytokines, as well as, secrete chemokines and other factors 

involved in viral infection and replication repression (11). Based on MP’s functions, it has been 

implicated as a potential factor in the pathogenesis of HIV towards AIDs (11). Programmed 

death-1 (PD-1), a negative regulator of T cell function expressed on cytotoxic T lymphocytes 

(CTL), has been implicated in being responsible for CTL functional defects (12, 13). This 

suggests PD-1 as a potential therapeutic target in reversing T-cell dysfunctions during HIV 

infection.   

1.2.4 Tropism 

HIV tropism is dependent on viral protein interactions with cell surface receptors; CD4 

receptor and a seven transmembrane coreceptor CCR5 or CXCR4. CD4 is expressed on T helper 

(Th) cells, regulatory T-cells, monocytes, macrophages and dendritic cells (DC) (14). Memory T 

cells, activated CD4+ lymphocytes, gut associated lymphoid tissues (GALT), macrophages, DC 

and microglia express the CCR5 co receptor; whereas, naïve, resting CD4+ lymphocytes, CD8 

cells, B-cells, neutrophils and eosinophils express the CXCR4 coreceptor (14). The majority of 

newly transmitted HIV infections use the CCR5 coreceptor.  HIV strains can be divided into 

three main trophic groups: macrophage-tropic (M-tropic), T-cell line tropic (T-tropic) or dual-

tropic (9). M-tropic strains, also known as R5 (CCR5 binding) virus, infect peripheral blood 

mononuclear cells (PBMC), monocytes, macrophages and T-lymphocytes; Mucosal epithelial 

cells express the coreceptor CCR5 allowing for R5 viruses to infect sexually; mainly through the 

rectal route into the intestinal tract. (15). T-tropic viruses (X4 virus), target CXCR4 coreceptor 

cells, preferentially CD4+ T cells, and only infect low levels in the GALT [(9), (16)].  
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1.3 GUT ASSOCIATED LYMPHOID TISSUES (GALT) AND HIV 

The gut associated lymphoid tissues (GALT), harbor more than 50% of the human’s total 

T lymphocytes; these lymphocytes are mostly activated in effort to fight pathogens (16). CD4+ T 

cells function in immune protection by communicating with B cells to produce antibodies, 

enhancing macrophage lineage cell production, and recruiting other immune cells such as 

neutrophils, eosinophils, and basophils to the site of infection (17). Th17 cells play a role in 

bacterial and fungal defense at mucosal surfaces and helps maintain enterocyte homeostasis (18). 

High-level HIV viral replication occurs in the gut mucosal tissues. CD4+ T cells (TH17) are 

depleted early on in infection, mostly through apoptosis, but also through another programmed 

cell death process known as pyroptosis (19); decreasing immune efficiency and leading to the 

inability to control HIV infection.  Furthermore, research conducted by Sankaran et al 2005, 

showed a downregulation of mucosal genes related to digestion and lipid metabolism, cell cycle, 

and cell growth regulation in HIV-infected individuals (20).   

Extreme depletion of CD4+ T cells leads to increased intestinal wall permeability and 

systemic translocation of microbes and microbial products; subsequently leading to an increased, 

constant immune activation. HIV can deplete CD4+ T cells through direct (cytopathogenic), 

indirect (generation of incomplete reverse transcripts, leading to an extreme inflammatory 

response) or negative (reduces the immune system’s ability to regenerate new CD4+ T cells) 

mechanisms (2)  

Anti-retroviral therapy (ART) has drastically improved HIV patient’s lives, but is not a cure. 

In high HIV prevalent areas, such as Sub-Saharan Africa, ART is incomplete or unobtainable; 

other therapeutics and treatments need to be developed and implemented. A promising focus for 

a co-therapeutic is the gut microbiome. Without ART, HIV/AIDS patients are more susceptible 
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to microbial/viral infections (21, 22). It has been shown that even when HIV-infected individuals 

are receiving ART, their gut microbiota does not reconstitute fully (23-25).  

1.4 THE GUT MICROBIOME 

The human microbiome is defined as all the metagenome of bacteria, viruses, fungi and 

archaea living on or in the human body. The human body is composed mostly of microbial cells, 

with microbial cells consisting of approximately 90% of the cells (26). Gut homeostasis is 

maintained greatly by gut microbiota. Gut bacteria process nutrients and provide metabolites 

important for nutrition, as well as, a variety of small molecules such as short chain fatty acids 

(SCFAs) that provide energy for enterocytes and have immunomodulatory effects (27). 

Microorganisms have been shown to play an important role in modulating the human host 

immune system and metabolism (28). The gut microbiome protects the host’s intestines from 

invasion or colonization of exogenous pathogens through what is known as colonization 

resistance (29). These commensal microorganisms can protect through the production of 

antimicrobial peptides and IgA, or by enhancing the host’s innate/adaptive immune responses 

(26). The microbiota plays an important role in the human immune system, with potential 

involvement with diseases and their pathogenesis. In recent years, the microbiota has been 

shown to be correlated with metabolic diseases such as obesity, diabetes, and luminal diseases 

such as irritable bowel diseases (IBD); Crohn’s disease, celiac disease, and irritable bowel 

Syndrome (IBS), as well as HIV/AIDS (21, 26, 30-40). 
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In the recent years with the development of new sequencing techniques and promising 

results, there has been a major focus on the microbiome and its relationship to disease 

pathogenesis. A pubmed search of “microbiome” shows 34,311 articles have been published 

since 1971, and a pubmed search of “HIV and the microbiome” shows 412 articles published 

since 1991; However, there are no studies to date that focuses on the pre- and post- 

seroconversion microbiota in HIV infected individuals. This is due to the difficulty in delineating 

such HIV seroconversions in this era of relatively low numbers of primary infections in 

developed countries.  

1.5 MICROBIAL COMPOSITION INSIDE THE HUMAN GUT 

 The healthy gut microbiota consists of primarily the Phyla Firmicutes and Bacteroidetes. 

Phyla Actinobacteria and Verrucomicrobia are also abundant. The level of diversity, distribution 

and number of bacteria varies greatly throughout the human gut. Streptococcus is the dominant 

genus in the distal esophagus, duodenum and jejunum; whereas, Helicobacter dominates the 

stomach [(41, 42)] Helicobacter also determines the diversity of the gastric flora; if Helicobacter 

inhabits as a commensal, the dominant genera of the gastric flora include Streptococcus, 

Prevotella, Veillonella and Rothia; however, if Helicobacter inhabits as a pathogenic phenotype, 

the richness of the gastric genera decreases drastically.  Over 70% of all the microbes found in 

the human body are constituted in the large intestine. This is the primary focus for research on 

disease states and pathogenesis, (i.e., HIV), when using fecal data. Firmicutes and Bacteroidetes 

are the primary phyla of the large intestine. In a healthy gut microbiome, there are constant stable 

levels of pathogenic microorganisms (≤0.01% abundance), including Salmonella enterica, 
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Campylobacter jejuni, Vibrio cholera, Escherichia coli (E. coli) and Bacteroides fragilis. 

Largely, low abundance of phyla Proteobacteria, with high abundance of Bacteroides, 

Prevotella, and Ruminococcus are characteristics of a healthy gut microbiome (43).  Microbes 

that are characteristically identified in stool and can be used for luminal microbiota analysis 

include Bacteroides, Bifidobacterium, Streptococcus, Enterobacteriacae, Enterococcus, 

Clostridium, Lactobacillus, and Ruminococcus (44). 

 Colonic organisms function in nutrient metabolism; for example, Bacteroides, Roseburia, 

Bifidobacterium, Faecalibacterium, and Enterobacteria produce short chain fatty acids (SCFA) 

such as butyrate, propionate, and acetate that provide energy to the host (45). Lipid metabolism 

is another function of some colonic organisms (i.e Bacteroides thetaiotaomicron), as well as, 

lipid hydrolysis (46). Gut microbial proteinases and peptidases work together with human 

proteinases for efficient protein metabolizing; the L-histidine to histamine conversion is an 

example of this cooperative function (47). Some Bacteroides members have been shown to 

synthesize conjugated linoleic acid (CLA) and have immunomodulatory properties; Bacteroides 

intestinalis can also deconjugate primary bile acids (48-51). In the large intestine, a two-tiered 

mucus layer prevents luminal microbes from epithelial contact and therefore antimicrobial 

proteins are limitedly produced here (52). Antimicrobial proteins (i.e., cathelicidins, C-type 

lectins and [pro] defensins) function mainly in the small intestine and are produced by Paneth 

cells through induction via certain gut microbiota (e.g., Bacteroides thetaiotaomicrobe and 

Lactobacillus sp.) (53, 54).   

 Gut microbiota have been shown to manipulate the innate and adaptive immune systems 

in mammals: Bacillus fragilis produces a symbiosis factor, polysaccharide A, which induces T-

regulatory cells through TLR2 signaling, further enhancing immunologic tolerance (55). MyD88 
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(an adaptor molecule important for toll like receptor signaling) dependent mechanisms, 

important for maturation of IL1β in response to pathogenic organisms, are induced by 

commensal organisms (55). A study in murine intestines showed short filamentous bacteria 

inducing CD4+ T helper cells, which in return produce interleukin (IL)-17 and IL-22 in the 

lamina propria; resulting in an increased expression of inflammatory genes and antimicrobial 

defenses, further protecting against intestinal pathogens (56, 57). Macrophages recently were 

shown (in mice) to be dependent on cross talking with microbes in the intestinal tract to produce 

IL-1β and promote intestinal immune homeostasis (58).  

1.6 THE GUT MICROBIOME AND HIV 

Recent discovery of the “leaky gut theory,” has been implicated in HIV progression 

towards AIDS. It is known that HIV over activates the immune system, but the mechanism is 

still unclear. The leaky gut theory may be associated with this immune over activation. This 

theory implies that bacteria/bacterial products such as lipopolysaccharides (LPS), translocate out 

of the gastrointestinal tract (GIT), due to an increased permeability of the GIT and overall 

decreased mucosal barrier integrity (e.g., tight junctions decline), and into the blood, causing a 

systemic chronic immune activation (59, 60). Chronic immune activation is detrimental to 

individuals infected with HIV. Increased T cell turnover creates an imbalance in the immune 

homeostasis and results in T-cell half-life decrease, T cell clonal exhaustion, and possibly 

depletion of memory T cell pools; additionally, chronic immune activation leads to constant T 

cell generation, and subsequently driving viral replication (18)  
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An assortment of research has shown drastic differences in the enteric microbiome 

composition of HIV-infected and non-HIV infected individuals (24, 33). Among these studies, 

untreated HIV-infected individual stools were analyzed resulting in a major increase in the 

bacterial genus Prevotella and a significant decrease in Bacteroides (24, 30, 33, 34). A study 

conducted in China evaluated uninfected and chronically HIV-infected human stool samples for 

alpha (diversity within samples) and beta diversity (diversity between samples) and discovered an 

increase in the phyla Firmicutes and Proteobacteria in chronic HIV infected patients, in 

comparison to non-HIV infected controls (61). In the same study, an increase of 

Bacteroides and Arabacteroides were also observed in chronically infected patients. There have 

been conflicting results on the changes of the microbiome regarding HIV infection. Several 

studies, (23, 30, 33, 34, 62) showed an increase of Prevotella and a loss of Bacteroides in HIV 

infected individuals; whereas, other studies have shown the opposite effects (63) or no difference 

in these two genera (31, 63, 64). 

HIV disrupts the overall immune system by destroying CD4+ T cells and allowing for 

opportunistic infections to occur, eventually leading to the development of AIDS. However, it is 

not fully understood what makes an individual susceptible to developing AIDS or the exact 

sequence of pathogenesis from HIV towards the development of AIDs. This research study 

therefore focuses on pre-and post-seroconversion fecal sample analysis from the Multicenter 

AIDS Cohort Study (MACS). This longitudinal cohort study of the natural history of HIV 

infection in men who have sex with men (MSM) has collected pre and post seroconversion fecal, 

serum, and plasma samples since 1984. My study uses 1984-1985 fecal specimens. Here I 

address the hypothesis that the pre-seroconversion microbiome is compromised in some MSM, 

making them more vulnerable to developing AIDS after HIV infection, OR a subset of MSM 
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develop such a microbiomic risk factor for AIDS after (post-) HIV seroconversion. Thus, in 

either case the microbiome enhances susceptibility of an individual to progress towards AIDS. I 

propose that this is mediated by massive immune activation caused by microbial product 

translocation from the gut to the blood. 

1.7 ANALYZING THE MICROBIOME 

There are two main techniques used for analyzing the microbiome: metagenomics and 

16S rRNA gene. In my study, 16S rRNA approach was used. 16S ribosomal RNA (rRNA) 

sequencing is common in the microbiome field. The 16S rRNA is a conserved gene found only 

in bacteria and archaea. Amplifying the 16S rRNA helps to identify and compare bacteria that 

are present within a sample. The V4 region of the 16S rRNA gene is a variable region that is 

targeted in microbiome studies because it has the lowest geodesic distance (location on the 16S 

rRNA gene) and is part of the major function of the 16S rRNA gene than other variable regions; 

it is therefore more sensitive and reliable as a marker for bacterial and phylogenetic analysis 

(65). Data resulting from sequencing the 16S rRNA can be analyzed using bioinformatic 

approaches. One popular bioinformatic approach is the QIIME pipeline (Quantitative Insight Into 

Microbial Ecology).  

Since microbiome research generates large datasets, bioinformatic pipelines, such as 

QIIME and MOTHUR are essential in analyzing large microbiome datasets. QIIME is an open-

source bioinformatics pipeline used to analyze large, raw microbiome data. Once sample 16S 

rRNAs are amplified and sequenced, raw bacterial sequences are subjected to quality control (i.e 

clean up (demultiplexed and read quality), read count restrictions (<1000 read counts samples 
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are rejected from the study), OTU table generation, taxonomy assignment (i.e greengenes, RDP), 

phylogenetic analysis, alpha and beta diversity analyses and many more microbiome analyses.  

Alpha and beta diversity measure the amount of diversity within and between samples. 

Alpha diversity measures the richness and evenness of a sample. The richness of a sample is the 

number of species that are genetically related to each other, measured using operational 

taxonomic units (OTUs); whereas, the evenness is the relative abundance of the species richness 

in the sample. Beta diversity is the comparison of diversity of samples to each other, by 

measuring distance or dissimilarity between each sample pair (phylogenetic measurement). Beta 

diversity addresses the question of which sample, A, B or C are more similar in composition to 

one another. 
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2.0  PUBLIC HEALTH IMPORTANCE 

Understanding what drives systemic immune activation is critical for understanding HIV 

pathogenesis and subsequent AIDS development. This study will help further develop an 

understanding if and how microbial composition and microbial products influence the 

pathogenesis of progressive HIV infection. They could help formulate improved ancillary 

treatments to improve the long-term health of HIV infected persons on ART.  

2.1 STATEMENT OF PROJECT AND HYPOTHESIS 

My project focuses on analyzing the pre-seroconversion and post-seroconversion gut 

microbiota using fecal samples from MACS individuals from 1984 to 1985, to address the 

hypothesis that bacterial changes from pre-to post seroconversion may make individuals 

susceptible to developing AIDS. There are three timepoints we will be analyzing in regard to AIDs 

development: development of AIDS within 2-3 years after seroconversion (SC), development 

within 5-7 years of SC and development of AIDS 10 years after SC. DNA extraction, amplification 

of the bacterial 16s rRNA genes through PCR, high-throughput sequencing and bioinformatic 

analysis will be used to assess this hypothesis. QIIME software will be used to analyze the raw 

sequence data and PRISM will be used to analyze data provided from QIIME. Sequences will be 

clustered into operational taxonomic units using QIIME, and alpha and beta analyses will be 

compared between individuals who developed AIDS versus those who did not. Bar charts will be 

used to represent data visually. Using these techniques, we hypothesize that microbial composition 
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will show decreased microbiome diversity after HIV seroconversion, with more diversity decrease 

in those who developed AIDS, indicating a possible role in the susceptibility to the development of 

AIDS.  Results from this thesis project will be used for future analysis of the gut microbiome 

among these MACS individuals to evaluate biomarkers, as well as, potential metabolites that may 

play a role in HIV pathogenesis towards AIDS 
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3.0  METHODS 

3.1 SAMPLING AND SAMPLE COLLECTION 

MACs fecal samples (n=55) were chosen from the repository of stored samples in 1984 

and 1985. Fecal samples were stored at -80°C. Fecal samples were chosen at two timepoints for 

the same individual: Visit 1 (0 months): Non-HIV infected controls and pre-seroconverters, and 

visit 2 (~6 months): Non-HIV infected controls and ~6 month post-seroconversion. Samples were 

chosen from categories: seronegative (SN) and seroconverters (SC). Seroconverters who 

developed AIDS were chosen based on three time points: development of AIDS within 2-3 years 

after seroconversion (SC), development within 5-7 years of SC and development of AIDS 10 years 

after SC.  

3.2 DNA EXTRACTION 

DNA was isolated using the MO Bio PowerSoil® DNA Isolation Kit (Qiagen, United 

States) was performed in accordance to MO Bio Incorporated’s instructions, (PowerSoil® DNA 

Isolation Kit 2016, United States) with an additional step of heating tubes for 10 minutes. A 

negative control was run for each DNA extraction set, totaling to six negative DNA extraction 

controls. 
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3.3 PCR AND SEQUENCING 

From extracted DNA, PCR amplification of the bacterial 16S rRNA gene V3-V4 

hypervariable region was performed using Caporaso et al primers and the Q5 HS-High-Fidelity 

polymerase (NEB). Thermocycler conditions were 98C for 30s, (98C for 10s, 57C for 30s, 72C 

for 30s) repeated for 30 cycles, 72C for 2 min and hold at 4 degrees.  One negative PCR control 

was run and one positive control consisting of 8 different known bacterial DNA. 

For amplified DNA confirmation, agarose gels were run at 250V for 10-15 minutes, using 

5.0ul of amplified DNA and 5.0 of 2X marker (totaling 10ul in each well). Unconfirmed samples 

were re-amplified using 0.5ul extracted DNA to prevent PCR crossover and run again on an 

agarose gel. Repeats which failed two times were re-extracted from the stool sample.  

The V3-V4 regions were pooled and mixed in equal concentrations and then sequenced 

using the Illumina MiSeq (San Diego, California).  

3.4 BIOINFORMATICS ANALYSIS / QIIME 

Reads were demultiplexed into their corresponding samples based on the assigned barcodes 

(short sequences attached to the sample for sample identification) using QIIME pipeline. All the 

primers and barcoded sequences were removed.  Biom tables were constructed in QIIME using a 

closed reference approach and quality score of 25. Low output samples (with less than 1000 reads) 

were removed: 9 samples in my study were removed. 
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Operational taxonomic units (OTU) were chosen based on a 97% similarity using 

greengenes reference database. Reads that did not cluster were removed from analysis. Relative 

abundances of taxa at the phylum and genus level were estimated.  
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4.0  RESULTS 

4.1 STATISTICAL SUMMARY OF DATA 

Forty-one individual samples were categorized into 2 groups; Non-HIV controls (25 

samples) and Seroconverter AIDS (16 samples) (SC). Samples were then categorized into 4 

subgroups within the SC AIDS group, based on their time of AIDS development post 

seroconversion (Table 1): AIDS development within 2 to 5 years post seroconversion, AIDS 

development within 5 to 7 years post seroconversion, AIDS development within 7 to 10 years post 

seroconversion and AIDS development after 10 years post seroconversion. 2 of the 16 SC AIDS 

samples have not developed AIDS. None of the participants were on anti-retroviral therapy at the 

time of sample collection. All participants were white, except 1 in the subgroup >10 years who 

was black (Table 1). Ages ranged from 21-39 years old (Table 1).  

Table 1 Summarized Demographics of Samples 

 

 Table 1. Summarized demographics of non-HIV controls and seroconverter samples. W: White, B: Black, Y: 
Yes, N: No. Time to develop AIDS post-seroconversion  (2-5, 5-7, 7-10, >10) Note: 2 individuals have not developed 
AIDS.  

 
 
 
 
 

Table 1: Demographics Controls SC AIDS 2-5 years 5-7 years  7-10 years > 10 years 
Number of Subjects 26 16 3 2 4 7
Gender All Male All Male All Male All Male All Male All Male
Age (Mean ± SD) 33.33 ± 5.76 30.44 ± 4.66 34.33 ± 2.89 34 ± 1.41 28.25 ± 2.75 29 ± 5.48
Ethnicity (white) 26 15 3 2 4 6
Time diagnosed HIV since V1 (years) 0 0.5 0.5 0.5 0.5 0.5
Years lived with AIDS 0 8.56 ± 9.93 1.67 ±2.08 1 ± 1.41 6.75 ± 12.2 14.7 ± 9.03
Has smoked/Currently Cig Smoker 19 12 2 2 4 4
Used Pot Before Visit 1 13 15 3 2 4 6
Used Pot Since Visit 1 at Visit 2 18 13 3 2 3 5
# of Sexual partners  (Mean ± SD) 28.6 ± 32 67.4 ± 65.2 81.7 ± 36.2 115 ± 120.2 66.3 ± 58 48.3 ± 69.3
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4.2 DNA QUANTITATION 

We quantitated 3.0ul of purified amplified DNA, from each sample and each control, using 

the Qubit Fluorimeter. DNA concentration was measured in ug/ul and concentration values ranged 

from 0.733 ug/ul to 81.3 ug/ul (Table 2 & Figure 1A-1C).  
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Figure 1 Qubit DNA Quantitation Data 

 
Figure 1: Qubit DNA quantitation of samples and controls. 
A) HIV-Uninfected Controls DNA concentration for visit 1 (1A-25A) and visit 2 (1B-25B) . B) Seroconverter DNA 
concentration for visit 1 (26A-41A) and visit 2 (26A-41A) C) Kit Controls. C1-C6: MoBio Power fecal negative 
controls, C6r: Repeated, (+) Control: 8 known bacterial DNA- positive control; PCR (-): distilled water. DNA 
concentration is measured in ng/ul. 
 
 

Table 2 DNA Concentration Summary Table 

 
 
 
Table 2. Summarized Qubit Quantitation of DNA concentration in samples and controls. 
C1-C6: MoBio Power fecal negative controls, C6r: Repeated, (+) Control: 8 known bacterial DNA- positive 
control; PCR (-): distilled water. DNA concentration is measured in ng/ul. Out of range: below the level of 
detection ( >0.50ug/ul).  

Sample ID DNA Conc. (ug/ul) Sample ID DNA Conc. (ug/ul) Sample ID DNA Conc. (ug/ul) Sample ID DNA Conc. (ug/ul) Sample ID DNA Conc. (ug/ul)
1A 15 21A 59.3 16B 32.7 36A 0 40B 0
2A 26.7 22A 27.7 17B 0 37A 0 41B 0.84
3A 21.6 23A 38.7 18B 31.7 38A 0.74 C1 0
4A 57 24A 0.707 19B 80 39A 41 C2 1.5
5A 39.9 25A 0.807 20B 0 40A 9.13 C3 0
6A 14.1 1B 25.2 21B 12.8 41A 0 C4 0
7A 13.1 2B 61.9 22B 45.9 26B 43.5  C5 0
8A 62.4 3B 4.97 23B 27.6 27B 3.92 C6 1.22
9A 1.33 4B 1.15 24B 17.3 28B 0 C6r 0

10A 9.4 5B 0 25B 3.92 29B 0 (+) Cont. 1 18.3
11A 11 6B 0.733 26A 13.3 30B 1.11 PCR (-) 0
12A 31.4 7B 44.1 27A 0.807 31B 22.7
13A 8.73 8B 81.3 28A 43.5 32B 10.7
14A 15 9B 0 29A 49.5 33B 22.7
15A 11.3 10B 9.27 30A 19.1 34B 8.27
16A 39.4 11B 19.6 31A 37 35B 4.76
17A 29.1 12B 3.93 32A 17.8 36B 3.44
18A 28.2 13B 21.6 33A 52.8 37B 0
19A 16.5 14B 8.53 34A 0 38B 9.4
20A 31.1 15B 9.8 35A 5.46 39B 6.6

Table 2.                                                                     DNA Concentration summary table for all samples
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4.3 PHYLUM LEVEL TAXONOMY ANALYSIS 

To examine differences in bacterial composition in samples, 100% stacked bar charts were 

created at the phylum level. The three top dominant phyla in both visits for non-HIV infected 

samples were Bacteroides (56%), Firmicutes (35.3%), and Proteobacteria (5.53%). For controls 

Visit 1 samples Bacteroides composition constituted of (56.19%) of total bacteria, Firmicutes 

constituted (34.30%) and Proteobacteria constituted (5.71%) of total bacteria. Controls visit 2 

samples consisted of (53.4%), (34.8%), (5.77%) respectively (Figure 2A-2B). The three top 

dominant phyla in both visits for seroconverter AIDS were Bacteroides (50.58%), Firmicutes 

(39.93)%, and Proteobacteria (5.41%). Visit one SC AIDS constituted of Bacteroides (44%), 

Firmicutes 37.10%), and Proteobacteria (7.81%); whereas Visit 2 SC AIDS constituted of 

Bacteroides (59.25%), Firmicutes (34.34%) and Proteobacteria (2.25%) (Figures 2C-2D). 

Bacteroides, Firmicutes and Proteobacteria are summarized in Figures 3A-5B, comparing controls 

and seroconverters AIDS groups.  
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Figure 2 Phylum Level Taxonomy Bar Charts 

 
 

Figure 2: Phylum-level taxon distribution in non-HIV infected controls.  
A) Visit 1 (1A-25A) Controls. B) Visit 2 (1B-25B) Controls. C) Visit 1 pre-seroconversion (26A-41A). D) Visit 2 post-
seroconversion (26B-41B).  Phyla abundance is shown as a percentage of total bacterial sequences within the sample.   
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Figure 3 Bacteroidetes Relative Abundance 

Figure 3. Bacteroidetes relative abundance. 
A) in Visit 1 non-HIV controls (Seronegative) and Pre-seropositive samples. B) in Visit 2 non-HIV controls 
(Seronegative) and Post-seropositive samples. SN: Seronegative, SC: Seroconverter. 
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Figure 4 Firmicutes Relative Abundance 

Figure 4. Firmicutes relative abundance. 
A) in Visit 1 non-HIV controls (Seronegative) and Pre-seropositive samples. B) in Visit 2 non-HIV controls 
(Seronegative) and Post-seropositive samples. SN: Seronegative, SC: Seroconverter. 
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Figure 5 Proteobacteria Relative Abundance 

Figure 5. Proteobacteria relative abundance. 
A) in Visit 1 non-HIV controls (Seronegative) and Pre-seropositive samples. B) in Visit 2 non-HIV controls 
(Seronegative) and Post-seropositive samples. SN: Seronegative, SC: Seroconverter. 
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4.4 GENUS LEVEL TAXONOMY ANALYSIS 

To examine differences in bacterial composition in samples, 100% stacked bar charts were 

created at the genus level. The four top dominant genera in both visits for non-HIV infected 

samples were Prevotella (38.0%), Bacteroides (27.11%), Faecalibacterium (4.68%), and 

Succinivibrio (4.60%) (Figure 6A). Visit 1 non-HIV controls constituted of Prevotella (39.49%), 

Bacteroides (25.50%), Faecalibacterium (4.32%), and Succinivibrio (3.96%). Visit 2 non-HIV 

controls constituted of Prevotella (36.50%), Bacteroides (28.80%), Faecalibacterium (5.06%), 

and Succinivibrio (5.20%) (Figure 6A). The three top dominant genera in both visits for SC AIDS 

is Bacteroides (14.1%), Prevotella (51.2%), Faecalibacterium (5.1%). Visit 1 SC AIDS 

constituted of Bacteroides (17.05%), Prevotella (40.32%), Faecalibacterium (6.78%) (Figure 

6C).  Visit 2 SC AIDS constituted of Bacteroides (14.04%), Prevotella (60.50%), 

Faecalibacterium (3.70%) (Figure 6D). Top 4 most abundant genus level bacterial composition 

in seroconverter groupings are shown in Table 3.  

 

Table 3 Percent Average Genus Bacterial Composition of SC AIDS groups 
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      Figure 6A. 
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Figure 6 Genus Level Taxonomy Bar Charts 
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Bacteroides, Prevotella, Faecalibacterium, and Ruminococcus are summarized from pre- 

seroconversion to post-seroconversion in Figure 7A-7H and fold change is assessed in 

supplementary figure 2 (Supp. 2). Bacteroides, showed, on average, a decrease from pre-

seroconversion (10.11%) to post-seroconversion (8%), correlating with previous studies who 

have shown a decrease in Bacteroides in HIV infected individuals compared to seronegative 

controls (Table 4). Prevotella showed an increase from pre-seroconversion (24%) to post-

seroconversion (42%) (Figure 7C-7D). Ruminococcus and Faecalibacterium showed little to no 

change in composition between pre-and post-seroconversion groups (Figure 7E-7H).  

 Fold changes were assessed between visit 1 and visit 2 of Non-HIV infected individuals 

(Supp. 3). Bacteroides, Prevotella, Faecalibacterium and Ruminococcus fold changes among 

non-HIV infected individuals showed little to no difference from visit 1 to visit 2.  
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Figure 7 Top Four Genus Level Bacterial Relative Abundances 
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5.0  DISCUSSION 

In this study, we focused on microbial composition differences among healthy non-HIV 

infected controls and those who developed HIV, as well as any microbial compositional changes 

between AIDS development timepoints post-seroconversion (i.e 2-5 years, 5-7 years, 7-10 years, 

>10 years). We compared the fecal bacterial microbiome among age-matched and sex-matched 

individuals. We found that both healthy controls and HIV-infected MSM predominantly were 

colonized by 3 main phyla: Bacteroidetes, Firmicutes and Proteobacteria. This confirmed previous 

gut phyla characterizations in HIV infection (66).  Within these main phyla we saw the greatest 

microbial abundance among the gram-negative genera Prevotella, Bacteroides, Faecalibacterium 

and Ruminococcus in both our healthy controls and seropositive.  

Previous research has shown that a switch from the genus Bacteroides to Prevotella can 

occur during the early stages of HIV-infection (23). In our non-HIV infected controls, we saw very 

little changes in Bacteroides and Prevotella genera from visit 1 to visit 2 (a six month interval); in 

the HIV-infected samples, we noticed a small decrease in the Bacteroides visit 1 (17%) to visit 2 

(11%), and we did see an increase in the Prevotella genera between visit 1 (40%) and visit 2 (60%). 

This correlates with previous research showing a decrease in Bacteroides and an increase of 

Prevotella in HIV-infected individuals compared to seronegative controls (Table 4).  Although 

not significant possibly due to the small number of samples tested, there was noticeable increase 

of Prevotella within the six months post-HIV seroconversion. Even though some studies have been 

elucidating that high Prevotella is correlated with diseased states, diets rich in carbohydrates and 

simple sugars (Western Diets), has been shown to be Prevotella-abundant in healthy US adults 
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(67). This is important because it shows that the microbiome varies among cultural and dietary 

regions, and that Prevotella is not necessary related to disease state.  

Overall our descriptive study revealed that pre-seroconversion (before HIV-infection) the 

microbiome showed an increase in the genus Prevotella and a decrease in genera Bacteroides, 

Faecalibacterium, and Ruminococcus compared to post-seroconversion (i.e., within the first six 

months after HIV-infection).   

The changes we saw in our study are not broadly definitive primarily due to the relatively 

small sample size. There are still many questions that need to be addressed and further studied. 

Are the changes we see in the HIV seroconverters due to the changes of integrity in the gut? Are 

these changes driving HIV progression or dissemination? Or is HIV infection driving these 

changes? 

Table 4 Summary of HIV Microbiome Studies Findings 

 

Phylum Genera Outcome Reference
Decreased abundance 34
Increased abundance Ling et al  2016
Decreased abundance 33, 61

Roseburia Decreased abundance 27, 64
Ruminococcus Decreased abundance 64, Dubourg et al  2016

Alistipes Decreased abundance 64
Increased abundance 61

Arabacteroides Increased abundance 61
Decreased abundance (24, 30, 33, 34) 
Increased abundance 61,Noguera et al 2016
Increased abundance 63

Increased abundance
(23, 24, 30, 33, 34, 62, Pinto Cardoso 

et al 2017
Noguera et al  2016

Decreased abundance 63
Proteobacteria Increased abundance 31,33, 61

Firmicutes

Table 4                  Prevelant intestinal microbes found in HIV microbiome studies

Prevotella

Bacteroidetes

Faecalbacterium

Bacteroides
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It is important to note that although the negative assay controls presented microbial 

composition, the DNA concentration was extremely low compared to the positive control. It is 

believed that the concentration is too low to influence the data (Table 2). 

5.1 FUTURE DIRECTIONS 

 Since a beta-diversity analysis was not conducted, we do not have conclusive evidence to 

suggest correlation among changes in the gut microbiome of these participants. Beta-diversity 

should be a reliable statistical analysis. Future studies will look at these microbial changes and 

other demographics that may play a role (i.e., smoking and drinking behaviors, number of sexual 

partners, age). Prevotella showed an increase in post-seroconversion vs pre-seroconversion 

samples, and it could be possible that microbial translocation of Prevotella or its metabolites is 

occurring. Future studies should also assess potential biomarkers to define whether abundance or 

lack thereof a core gut microbiota species post-seroconversion leads to greater susceptibility to 

developing AIDS, and if there is an association with increases in serologic markers of 

inflammation related to translocation of microbial products, increases in HIV load, and decreases 

in CD4+ T cell numbers.   

The increase of Prevotella and decrease of other genera may indicate the possibility of 

metabolites being overproduced, underproduced, or newly produced. This inferred change in 

metabolites could indicate new biochemical pathways being activated or turned off. Future studies 

should focus on metagenomic analysis approaches, on MACS fecal samples (both 1984-1985 

samples and contemporary samples), to identify any metabolites being lost or gained during 

microbiome dysbiosis that may lead to the development of AIDS sooner.  
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 Another future aim will be to analyze seroconverters who developed AIDs to those who 

did not develop AIDS to assess any microbial compositional changes. It is inferred that microbial 

differences would be seen between those who developed AIDS vs those who did not.  

The microbiome changes due to many factors. When analyzing the microbiome, one should 

keep in mind the natural microbiota changes when trying to determine which taxa are driving 

healthy and diseased states. For our study, we must also consider that our sample population, who 

tested positive for HIV within 6 months after visit 1, due to limited assays, may have produced 

false negatives.  

.  
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APPENDIX: SUPPLEMENTARY FIGURES 

 

Figure 8 Phylum level taxonomy of AIDS groupings 
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Figure 9 Fold changes of Top Four Genera from Pre-to Post Seroconversion 
 

 

 

Figure 10 Fold changes of Top Four Genera from Non-HIV infected controls 
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