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Sequence in copolymers is underexploited in synthetic copolymer design despite the 

overwhelming evidence of the importance of sequence in controlling polymer properties that is 

seen in biological polymers.  A series of poly(α-hydroxy acid)s consisting of lactic (L); glycolic 

(G) and caprolactone-derived (C) units has been prepared using segmer assembly polymerization

(SAP).  The segmers, which consist of the targeted repeat unit, e.g. LGC, are first prepared by 

the coupling of orthogonally protected building blocks.  The periodic copolymers, e.g., (LGC)n 

were then prepared by a step-growth condensation reaction.  The retention of the sequence in the 

copolymers was confirmed by NMR analysis and the chemical shifts were compared with those 

previously assigned based on the analysis of statistical copolymers.  Thermal properties, Tg and 

Tm were found to depend both on composition and, in a few cases, sequence.  Selected 

poly(lactic-co-glycolic acid)s (PLGAs) with embedded stereosequences (LS vs. LR), were found 

to form crystalline stereocomplexes, in some cases as blends and in others as homopolymers that 

included both stereoisomers as mini-blocks. The sequence fidelity of PLGAs was defined and 

determined for a series of copolymers with controlled levels and types of errors.  Both NMR and 

Matrix-Assisted Laser Desorption/Ionization (MALDI) mass spectrometry were used to quantify 

the error level.  An alternate synthetic method for sequenced PLGAs, based on Entropy-Driven 

Ring-Opening Metathesis Polymerization (ED-ROMP) was developed. Embedding the target 
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sequence in an unstrained macrocycle bearing an olefinic reactive group allowed for ED-ROMP 

and produced sequenced copolymers with improved molecular weight control relative to SAP. 

Kinetic studies were consistent with an entropy-driven process. Copolymers comprised of 

repeating sequences were synthesized by SAP and ED-ROMP and their properties were then 

characterized. 
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1.0  INTRODUCTION 

1.1 SYNTHESIS OF SEQUENCED COPOLYMERS 

Nature has long been known to utilize sequence in biopolymers such as DNA and peptides. DNA 

contains an exact sequence of the monomers adenine, cytosine, guanine, and thymine. Peptides, 

on the other hand, are synthesized from a slightly larger pool of amino acids monomers (20). The 

exact sequence of monomers in these biomacromolecules gives rise to the overall three-

dimensional structure as well as their functions and properties.1-3 

While the relationship between sequence and properties is fairly well understood in the 

previously mentioned biopolymers, accessing exact sequences in synthetic copolymers is 

difficult to achieve. Recently, a push in the synthetic polymer community, including the Meyer 

group, has been undertaken to synthesize sequenced copolymers and study how their properties 

are affected by their monomer order.4-9 In the last decade, our group has focused on synthesizing 

sequenced copolymers and investigating the interesting sequence specific behavior of these 

polymeric materials.10-22  

This dissertation, which forms a part of this body of Meyer group contributions to the field of 

sequenced copolymers, is divided into five chapters. In Chapter 1 an overview of relevant 

background is presented, starting with the introduction of the importance of the polymers which 

are the subject of these studies, poly(lactic-co-glycolic acid)s (PLGAs), to the biomedical field.   
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Also described is the synthetic approach most widely used in the preparation of the random 

copolymers.  Next, the methodology utilized by the Meyer group to synthesize Repeating 

Sequenced Copolymers (RSC)s by Segmer Assembly Polymerization (SAP) will be introduced.  

In Chapter 2, the synthesis and characterization of RSCs of poly(lactic acid-co-caprolactic 

acid)s (PLCAs), poly(glycolic acid-co-caprolactic acid)s (PLGCAs), and the terpolymers 

poly(lactic-co-glycolic-co-caprolactic acid)s is discussed. The correlation between NMR and 

thermal data with sequence is analyzed.  

In Chapter 3, the use of NMR spectroscopy and Matrix Assisted Laser Desorption/Ionization 

Time of Flight (MALDI-ToF) mass spectrometry to determine the sequence fidelity (and the 

error rate) in PLGAs is described.  

In Chapter 4 a new synthetic strategy is presented for the preparation of sequenced poly(α-

hydroxy acid)s. The method, Entropy-Driven Ring-Opening Metathesis Polymerization (ED-

ROMP), produces polymers similar to those prepared by SAP but with improved molecular 

weight control. 

In the last chapter the synthesis of enantiomeric PLGAs (polymers with opposite 

stereochemistry) and stereochemical mini-block copolymers (copolymers that contain short 

blocks of varying stereoisomers) is described.  Evidence for the formation of sterereocomplexes 

is presented.   

1.1.1 Poly(lactic-co-glycolic acid)s: importance as a material in biomedical applications 

Poly(α-hydroxy acid)s such as PLA, poly(ε-caprolactone) (PCL), poly(glycolide) and their 

copolymers (particularly PLGA), have been used in applications such as drug delivery and tissue 

engineering scaffolds.23-28 The polymers are biodegradable and bioassimilable once they have 
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been hydrolytically degraded into their corresponding monomeric units. Stereochemically pure 

PLA, PCL, and PGA are generally highly crystalline materials which yield longer degradation 

times so the body takes longer to clear the materials from the body.23,26,29 Of these biodegradable 

polymers, PLGAs, which comprise random polymers of lactic acid (L) and glycolic acid (G), 

have dominated due to their faster degradation rates and overall lack of crystallinity.23,24,27 These 

properties have translated into the widespread use of PLGAs in biomedical applications.23-25,30 

Although these polymers, as used are random copolymers, the overall properties of PLGA can be 

tuned by varying the polymer’s molecular weight, the L:G content of the polymer, the 

stereochemistry of the lactic unit, and the average block length if the L and G units.23-25  

PLGAs are generally synthesized using one of two methods. The first is the step-wise 

condensation polymerization of glycolic acid and lactic acid.31-33 The second, and by far the most 

widely used, is the ring-opening polymerization (ROP) the cyclic lactones, lactide and glycolide 

(Figure 122).34-39 Both of these approaches produce random sequences of the monomers L and G. 

In general, the only sequence that can be obtained using these methods is the simple alternating 

sequence, which can be accessed by ROP of the difficult-to-prepare methyl glycolide.36-38,40  

It has been our goal, to develop methods for preparing sequenced PLGAs so that we can 

explore the connection between sequence and properties, with the long term objective of 

preparing novel materials for bioengineering applications.   
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Figure 1. The synthesis of PLGA by condensation and ring-opening polymerization. Reprinted and modified with 
permission Ref. 22, Short, A. L., "Sequenced copolymers with controlled molecular weights prepared via entropy-
driven ring-opening metathesis polymerization" University of Pittsburgh, 2016. Copyright 2016 Amy L. Short. 

1.1.2 Sequenced copolymers and their preparation 

Nature uses sequence, or ordering of specific monomers, in biomacromolecules such as DNA 

and proteins to dictate structure and function.1-3,41,42 While the importance of sequence has been 

known for decades, sequence in synthetic materials has been relatively under utilized.5-9,43 

Creating polypeptides with an exact sequence was investigated early on by Vigneaud et al. 

where an octapeptide with the hormonal activity of oxytocin was synthesized44 and 

revolutionized by R. B. Merrifield when solid phase synthesis of peptides was developed.45 

Until recently, there has been little to no control over sequence in synthetic copolymers. 

Alternating, gradient, and block copolymers were some of the the first steps towards creating 

synthetic sequenced copolymers.46-50  
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More recent attempts at sequenced materials have utilized a variety of methodologies to 

create highly orderd polymers. Chain-growth polymerizations have been utilized by various 

groups for the synthesis of precision polymers.51-53 Using atom transfer radical polymerization 

(ATRP), the Matyjaszewski group has been able to synthesize block, gradient, and periodic 

copolymers.54  

Sequenced copolymers have also been prepared by using step-growth mechanisms.53,55-61 The 

Meyer group has also a developed a step-growth polymerization methodology to synthesize 

sequenced copolymers (described in the next section).  

Taking a page from Nature, sequenced copolymers have been prepared using templates.62-65 

DNA and synthetic templates have been developed to direct polymerization and obtain 

sequenced copolymers. 

1.1.3 Repeating sequence copolymers prepared via segmer assembly polymerization 

The Meyer group has developed what we have termed the Segmer Assembly Polymerization 

(SAP) method to polymerize precisely sequenced oligomers (segmers) of lactic and glycolic 

acid.  PLGAs prepared by SAP consist of a periodic repeat of the target sequence. The segmers 

are prepared by coupling reactions of orthogonally protected monomers (Scheme 1). Upon full 

removal of the protecting groups the segmers are polymerized using a condensation 

polymerization method to give repeating sequence PLGA (Scheme 2). More complex sequences 

can be obtained by the iterative deprotection and subsequent coupling reactions to other 

monomers. We have demonstrated that this approach can be used to form polymers with a large 

variety of embedded sequences.14-17 
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Scheme 1. SAP methodology of iterative deprotection/coupling reactions to prepare segmers. Segmers are then 
polymerized to to give a repeating sequence copolymer. 

 

Scheme 2. Segmer assembly polymerization of the segmer LLG (contains a lactic unit connected to another lactic 
unit and a glycolic unit) to yield a repeating sequence copolymer of Poly LLG.  

Using this approach, Ryan Stayshich et al., prepared the first examples of sequenced PLGA 

copolymers. The Mns of the polymers ranged from 12-41 kDa with dispersities (ᴆ) between 1.3 

and 1.6. 1H NMR spectroscopy of the sequenced copolymers showed that solution-phase 

conformations of the PLGAs were highly sequence and stereochemically dependent. The high 

resolution obtained in the NMR spectra proves that polymers synthesized have an exact sequence 

with little to no scrambling.15 

Hydrolysis studies on these polymers conducted by Li et al. provide evidence that sequence 

has a dramatic effect on the degradation profiles of sequenced PLGAs. They compared the 

hydrolysis rate of random PLGAs prepared by ROP, and the SAP method (polymerization of LL, 

LG, GL, and GG oligomers) and two alternating Poly LGs with different molecular weights. The 

random PLGAs exhibited rapid mass loss in the first two weeks. The sequenced PLGAs 
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displayed a more linear hydrolysis rate after an initial small mass loss. This linear rate is 

dramatically different than that of the random PLGAs showing that sequence in the alternating 

polymers did in fact have an effect on the polymer’s properties.18-20 

 

Figure 2. Plot of normalized molecular weight as a function of time for the repeating sequence and random 
copolymers of poly(lactic-coglycolic acids). Inset: SEC plots for day 56 hydrolysis samples. Asterisks represent 
low-molecular-weight oligomers. Reprinted with permission from Ref 18, Li, J.; Stayshich, R. M.; Meyer, T. Y. 
"Exploiting Sequence To Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers" J. Am. Chem. Soc. 
2011, 133, 6910. Copyright 2011 American Chemical Society. 

 
While the RSCs of PLGA displayed sequence-dependent properties over their random 

counterparts, the SAP methodology did not allow us to have molecular weight control of our 

polymer samples since it is a condensation polymerization. Without molecular weight control, 

repeating the same polymerization of a segmer will not necessarily yield a polymer with the 

same molecular weight as a previous experiment. Since polymer properties are to an extent 

dependent on molecular weight,66 there was an obvious need to develop a method that would 

allow for the synthesis of sequenced PLGAs with molecular weight control. 
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1.1.4 Entropy-driven ring-opening polymerization 

We hypothesized that entropy-driven ring-opening polymerization (ED-ROP) might be a useful 

method to take a step closer to synthesizing sequenced copolymers with molecular weight 

control. ED-ROP, while very similar to ROP, has a few characteristics that set it apart from the 

the common ROP. ROP generally involves macrocycles that consist of 5-8 atoms and the driving 

force of the reaction is the release of ring strain, an enthalpic process. When the ring size 

becomes too large, around 14 atoms or larger, the enthalpic payoff is no longer significant 

enough to drive the reaction. The polymerization mechanism becomes that of ED-ROP. Upon 

ring-opening, the new conformational freedom of the atoms increases, the entropy of the reaction 

increases driving the reaction forward.67  

ED-ROP takes advantage of the equilibrium between linear and cyclic species, the ring-chain 

equilibrium. When in dilute solutions the equilibrium favors cyclic species, while in concentrated 

solutions the chain or polymer is favored. This polymerization mechanism is neither a step-

growth nor a chain-growth process due to this equilibration process and has a theoretical ᴆ of 2.68 

The molecular weight of the polymers produced will depend on the amount of end-groups that 

are introduced to the system. In many instances, a catalyst will be used for ED-ROP and the 

catalyst is the source of the end-group. This allows the degree of polymerization (DP) to be 

predicted based on the monomer to catalyst ratio.67,68  

ED-ROP can occur via multiple mechanisms; some examples are anionic, coordination-

insertion, and ring-opening metathesis polymerization (ROMP). Poly(alkylesters) have been 

prepared by all three of these mechanisms.68 Of particular importance is the polymerization 

method of entropy-driven ring-opening polymerization (ED-ROMP). ED-ROMP will be 

discussed in Chapter 4, where it was utilized in the synthesis of sequened PLGA analogues. 
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2.0  SYNTHESIS OF REPEATING SEQUENCE COPOLYMERS OF LACTIC, 

GLYCOLIC AND CAPROLACTIC ACIDS  

Sections 2.2 – 2.5 of this chapter have been reproduced and modified with permission from 

Weiss, R. M.; Jones, E. M.; Shafer, D. E.; Stayshich, R. M.; Meyer, T. Y., “Synthesis of 

Repeating Sequence Copolymers of Lactic, Glycolic and Caprolactic Acids” J. of Polym. Sci. 

Part A: Polym. Chem. 2011, 49, 1847-1855.17 © 2011 John Wiley & Sons, Inc.  

 

 

2.1 INTRODUCTION 

Sequence control in synthetic copolymers beyond simple alternation or the deliberate 

incorporation of long blocks is rare despite Nature’s spectacular examples of the potential 

benefits to be derived from strict control of polymer composition e.g. DNA and functional 

enzymes. Inspired by the sequence-derived properties of these biopolymers, however, there is an 

increasing interest in exploiting monomer order to tune polymer properties.5,6,41,69-73 

One area of potential application for sequenced copolymers that is particularly compelling is 

the creation of tailored biodegradable polyesters suitable for in-vivo uses such as tissue 

engineering scaffolding and drug-delivery. The most important class of polymers used for these 
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purposes are random copolymers prepared by ring-opening polymerization (ROP) of lactide, 

glycolide and other strained lactones.26,30,39,74-80 While the properties of these polyesters match 

well to the requirements in many cases, it is challenging to optimize them for specific 

applications since they are random copolymers of a necessarily limited list of bioassimilable 

monomers. The introduction of sequence control in these materials would greatly increase the 

range and control of properties without introducing new potentially toxic monomers or 

derivatives. 

 Recently our group has reported the synthesis of repeating sequence copolymers (RSCs) of 

glycolic and lactic acids (PLGAs).14,15 In the current study, we expand our polyester family to 

include caprolactic acid, the third most common monomer in this class of degradable polyesters.  

The expansion not only allows us to exploit the specific properties of this more flexible unit, 

which has been found to lower thermal transition temperatures (Tg and Tm) and increase tensile 

strength/elasticity of copolymers relative to PLGAs,81 but also to create and investigate more 

complex ternary sequences.   Herein, we describe the preparation and basic characterization of a 

family of sequenced copolymers bearing glycolic and caprolactic units (PGCAs), lactic and 

caprolactic units (PLCAs), and glycolic, lactic and caprolactic units (PLGCAs). 

2.2 RESULTS AND DISCUSSION 

2.2.1 Naming conventions 

For simplicity, monomers, segmers and polymers will be named according to the following 

conventions. Using the abbreviations in Table 1, segmers are represented by listing the 
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monomers in sequence order starting from the carboxylic acid end. The monomer 6-

hydroxyhexanoic acid is referred to throughout this paper by the less commonly used name of 

caprolactic acid and is represented with the letter C to be consistent with the literature on the 

closely related polymers involving the ROP of Ɛ-caprolactone. The terminal groups of oligomers 

are specified in the case where the acid and/or alcohol end-groups are protected. Using this 

approach, the name Bn-LLC-SiR3 describes a trimeric segmer composed of a benzyl protected S-

lactic acid, another S-lactic unit, and a silyl protected caprolactic unit. Polymer names are 

derived simply from the sequence used in their preparation: the polymer of deprotected oligomer 

LLC is termed for example, poly LLC. Note that the polymer name reflects the exact segmer 

used in the synthesis. It should be understood, however, that the names poly LLC and poly LCL 

would describe a polymer with the same repeating sequence overall, 

…LLCLLCLLCLLCLLCLLC…; the only differences would be in the identities of the terminal 

units. 

Table 1. Naming conventions for the segmers and polymers. 

Symbol Definition 

C Caprolactic (6-hydroxyhexanoic) acid unit 
G Glycolic acid unit 
L Lactic acid unit with S-stereochemistry (L-lactic acid) 
LR Lactic acid unit with R-stereochemistry (D-lactic acid) 
Lrac Lactic acid unit with a mixture S and R stereochemistry 
Bn Benzyl protecting group 

SiR3 Silyl protecting group (tert-butyldimethylsilyl) 
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2.2.2 Synthesis of sequenced copolymers containing L, G, and C 

The diprotected dimers, Bn-CC-SiR3, Bn-GG-SiR3, Bn-GC-SiR3, and Bn-LC-SiR3, were 

assembled in good yield with N,N’-dicyclohexylcarbodiimide/4-(dimethylamino)pyridinium p-

toluenesulfonate (DCC/DPTS) coupling of orthogonally protected monomeric building blocks 

consisting of the benzyl protected acids (Bn-L, Bn-LR, Bn-Lrac, Bn-G, Bn-LL and Bn-C) and 

silyl protected alcohols (C-SiR3 and G-SiR3), which were synthesized as previously 

reported.14,15,59,60 Longer, more complex sequences were assembled by selective deprotection and 

subsequent coupling of monoprotected units. tert-butyldimethylsilyl (TBDMS) groups were 

removed by reaction with acetic acid buffered tetrabutylammonium fluoride in THF. The 

orthogonal benzyl protecting groups were removed by hydrogenolysis in EtOAc with 10% Pd/C 

(5% w/w) under 1 atm H2.  

Repeating sequence copolymers of C, G, and L were synthesized from the completely 

deprotected segmers in yields from 40-85% (Table 2) using N,N’-diisopropylcarbodiimide 

(DIC) and DPTS to promote coupling (Scheme 3, poly LC and poly LLC examples).82 Polymers 

were characterized by NMR spectroscopy, size exclusion chromatography (SEC) and differential 

scanning calorimetry (DSC). Although transesterification was not significant as shown by 

analysis of 1H NMR spectra, resonances for small amounts of N,N’-diisopropylurea, produced as 

a by-product of the polymerization, were observed in some samples. The complete syntheses for 

all segmers are available in section 2.5. 

 

 

 



 13 

Table 2. PLGCA RSC Characterization 

Polymer Building Blocks % Yield 
Polymer 

Mn
a 

(kDa) ᴆb DPc Tg
d (ºC) Tm

f (ºC) 

LC L+C 50 37.9 1.4 204 (408) -29.6 32.9 
LLC L+LC 63 30.8 1.4 119 (357) -7.7 --- 
LRLC LR+LC 40 30.7 1.4 111 (333)  --- 
LracLC Lrac+LC 58 25.7 1.3 93 (279)  --- 
CLC C+LC 43 26.9 1.4 90 (270) -45.4 2.7 (34.2)g 

LLCC L+(L+CC) 67 40.6 1.6 109 (436) -26.8 --- 
LLLC LL+LC 59 24.0 1.5 73 (292) 5.7 --- 

LLLLC L+(LL+LC) 67 35.8 1.4 89 (445) 17.9 --- 
LLCLC L+(LC+LC) 73 49.1 1.4 110 (550) -19.8 --- 

GC G+C 57 26.4 1.4 153 (306) -37.6 35.6 (64.3)g 

GGC G+GC 72 24.9 1.5 108 (324) -19.8 36.5 (43.0)g 
CGC C+GC 56 18.3 1.4 64 (192) -49.7 45.4 

GGCC GG+CC 85 33.8 1.6 98 (393) -36.0 41.3 
GGGC G+(G+GC) 83 22.4 1.4 78 (311) -8.3 53.1 (67.3)g 

GGCGC G+(GC+GC) 65 21.7 1.5 54 (270) -30.1 34.2 
LGC L+GC 68 27.3 1.5 112 (336) -16.2 (-17.1)e --- 
GLC G+LC 50 29.4 1.4 120 (360) -10.5 (-9.4)e 37.7 

GCLC GC+LC 51 20.6 1.4 57 (228) -34.4 --- 
a) Determined by SEC in THF relative to PS standards. b) Mw/Mn. c) Based on oligomer weight. (Based 
on monomer molecular weight). d) Obtained in second heating cycle at 10ºC a min. e) Annealed on the 
DSC, cooling 0.2 ºC/min. f) Obtained in first heating cycle at 10ºC a min. g) Values in parenthesis denotes 
a second Tm. 

 

 

Scheme 3. Synthesis of example repeating sequence copolymers of lactic and caprolactic acids (poly LC and poly 
LLC). 

We have prepared 18 RSCs comprising a variety of permutations: dimeric (LC, GC); trimeric 

(LLC, LRLC, LracLC, CLC, GGC, CGC, LGC, GLC); tetrameric (LLCC, LLLC, GGCC, GGGC, 

GCLC); and pentameric (LLLLC, LLCLC, GGCGC). Of these combinations 15 are binary 

combinations of either C + L or C + G and three are ternary such that all three monomers are 

present, C + G + L (ternary sequences are underlined). Of particular interest are the sequences 

LGC and GLC which are connective isomers with identical compositions (Scheme 4). 
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Scheme 4. Synthesis of example repeating sequence copolymers of poly LGC and poly GLC. 

The molecular weights of the polymers are moderate but respectable, given that the 

polymerization proceeds via a step-growth condensation mechanism. The Mns of the polymers 

range from 18-49 kDa, with an average of 29 kDa (THF, PS standards). The dispersities (ᴆ) are 

narrow (1.3-1.6). MALLS analysis of sequenced copolymers of the closely related PLGA series 

acquired in an earlier study suggest that the absolute molecular weight of these polymers is 50-

90% of the SEC weight, depending on sequence.15 Based on this comparison and the lack of 

visible end groups in the NMR spectra we can conclude that the absolute molecular weights for 

even the shortest polymers reported here are greater than 10 kDa and that the monomer unit-

based DPs are greater than 100. 

2.2.3 NMR analysis of sequenced copolymers containing L, G, and C 

The NMR data for all of the copolymers were analyzed in detail and by comparing these data 

with our absolute knowledge of the monomer sequences we have been able to unambiguously 
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assign shifts for a variety of local monomer environments. Prior to presenting the analysis, 

however, it is important to describe the spectral conditions and to clarify the conventions of 

representation that we use to label local sequences. NMR data were generally acquired in CDCl3 

except for the 13C NMR spectra of the polymers containing only C and G monomers which were 

also analyzed in DMSO-d6 at 86 ºC to provide a more direct comparison with literature data for 

the random analogues. 

It is also important to standardize the order of representation of the sequences. As expressed 

previously, our convention is to write sequences from the carboxylic acid terminus to the alcohol 

end. The importance of rigorously adopting this convention is illustrated by the comparison of 

the two sequences CLLCCLLC and CLLCCLLC. In both sequences, the underlined 

caprolactic unit has both a C and an L closest neighbor. For CLLCCLLC, however, the L 

neighbor is on the carboxyl side and the C neighbor is on the alkoxy side. For CLLCCLLC the 

relationships are reversed. This difference results in a unique chemical environment for each of 

the caprolactic units as can be seen in the 13C NMR carbonyl shifts of δ 172.8 and δ 173.4, 

respectively (vide infra). As these two sequences are appear palindromic, however, it is crucial to 

the correct assignment that there is no ambiguity in the directionality of the sequence as written. 

To further the understanding of structure and function for polyesters bearing caprolactic units 

we have prepared exact sequence copolymers and have been able by in-depth analysis to 

independently assign the shifts of particular sequences and to more definitively determine the 

sensitivity of those shifts to the identity of the neighboring units. At the most basic level we can 

unambiguously assign the 13C carbonyl NMR resonances for the C, G and L units in all 

sequences by chemical shift (Figure 3). Caprolactic carbonyls fall in the range of δ 173.43-

172.58, lactic carbonyls δ 170.85-169.55, and glycolic carbonyls δ 167.87-166.59. In order to 
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discuss the assignment of resonances by sequence in more detail, however, it is important to note 

that the polymerization of a particular segmer produces multiple potential sequence patterns 

depending on the number of neighbors considered. Poly CLC, for example, has three 

spectroscopically distinct monomers since the C’s are inequivalent. Each of those monomers sits 

in a sequence environment that can be described in terms of the number of neighbors that 

significantly affect the shift. These patterns are illustrated in Figure 4 and are represented by the 

code “#_#”, where # represents the number of neighboring units on each side that contribute to 

the observed shift. 

 

 
Figure 3. Composite figure overlaying the 13C NMR chemical shifts for the carbonyls from all sequences within the 
prepared RSCs for three copolymer families listed bottom to top: (blue) PGCA in DMSO-d6 at 86 ºC, (green) PGCA 
in CDCl3 at RT, (pink) PLCA in CDCl3 at RT, and (orange) PLGCA in CDCl3 at RT. X denotes that the shift is the 
same if either an L or a C is located in that position. 
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Figure 4. Sequence environments for each monomer in poly CLC. The range of possible sensitivities is expressed 
by truncation of the sequence to those units that contribute e.g. CCLC and represented generically by the notation 
#X#, where X is the monomer whose shift is being analyzed and # represents the number of neighbors affecting the 
13C chemical shift of the carbonyl of the sequence e.g. 1X2. 

By comparing the chemical shifts of polymers bearing overlapping sequences we have been 

able to determine the degree of sensitivity for the carbonyl resonances of particular units to their 

neighbors. In the PLCA family, for example, the chemical shift of a lactic unit surrounded by 

two caprolactic units i.e. CLC is sensitive only to the 1_1 level. The identity of the next 

neighbors outward does not change the chemical shift; the lactic carbonyl of CCLCC exhibits the 

same chemical shift as LCLCL. In contrast, an L unit of a PLCA surrounded by two L units will 

be sensitive to a 2_2 level of resolution; the lactic carbonyls of LLLLC, CLLLC, and CLLLL all 

have distinct chemical shifts.   

By comparing the spectra across the different families, larger trends in resolution sensitivity 

can be identified. In particular, we observe that the chemical shifts for the carbonyl units flanked 

by caprolactic units are generally insensitive to further neighboring groups. For example, the 

shift of CLC, which corresponds to a 1_1 relationship, is found at δ 170.85 in poly LC, poly 

CLC, poly LLCLC, and poly GCLC. Although the CLC subunits in these polymers have 

inequivalent sequences when the next nearest neighbors are considered, there is no difference in 



 18 

carbonyl shift. The C units themselves were also found to be only mildly sensitive to neighbor 

identity in several sequences such as CC, CGC, and LC. The chemical shift was found to depend 

primarily on the identity of the monomer or monomers located to the left using the C-O 

convention. The flexibility and increased chain length of the caprolactic unit relative to the G and 

L units is the most probable reason for the observed attenuation of the influence of the 

neighboring groups on chemical shift overall. 

Previously, our group has studied the effects of varying the stereochemistry of lactic acid 

units in RSCs of PLGAs.15 To continue this study with the PLCA sequences, two copolymers 

poly LRLC and poly LracLC (where LR contains the R stereocenter and Lrac is a racemic lactic 

acid unit) were synthesized and compared with poly LLC (Figure 5). Poly LracLC exhibited 

eight peaks in the carbonyl region. The caprolactic acid carbonyl displays a 2_2 level of 

sensitivity to its lactic acid nearest neighbors. The four possible sequences are LLCLL, LRLCLL, 

LLCLRL, and LRLCLRL. The C units on either side of the sequence isolate the central C from the 

influence of the next level of neighbors. The chemical shifts at δ 172.80 and δ 172.54 match well 

with the C carbonyl peaks of poly LLC (δ 172.78, LLCLL) and poly LRLC (δ 172.55, 

LRLCLRL). The other two peaks at δ 172.83 and δ 172.50 in poly LracLC are therefore 

hypothesized to arise from the LLCLRL and LRLCLL sequences. We did not synthesize the 

standard, poly LLCLRLC, which would make it possible to differentiate the two signals. The 

four lactic acid carbonyl chemical shifts in poly LracLC match the four lactic acid carbonyl 

chemical shifts found in poly LLC and LRLC. The four possible sequences of CLLC, CLLC, 

CLRLC, CLRLC are able to be assigned to the lactic acid carbonyl peaks. The caprolactic acids 

that surround the L units are sufficiently insulating that the next level of neighbor has no further 

effect on the chemical shift.   
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Figure 5. δ 174-169 region of the 13C NMR spectra (125 MHz, CDCl3) of poly LRLC (top), poly LracLC (middle), 
and poly LLC (bottom). 

By condensing segmers of known sequence of C, G, and L to form the three RSC families we 

are able to decipher complex 1H and 13C NMR spectra. Furthermore, the narrow peak widths that 

are inherent in repeating sequence copolymers, for example poly LLC (Figure 6), allow for 

detailed assignments. In the RSCs of polymers containing only L and G that we have 

characterized previously, the methylene of the glycolic unit proved to be very sensitive to the 

stereochemistry of the lactic units in the sequence, in some cases exhibiting sensitivity for the 

relative stereochemistries of L monomers located 4 monomer units in either direction.15 We have 

found that while lactic units did create chemically inequivalent environments for nearby glycolic 

and caprolactic (α and ε) methylenes in the currently studied series, the increased length and 

flexibility of the caprolactic unit diminishes the influence of stereochemistry on the 1H NMR 

chemical shifts. In poly GCLC, in which the L stereocenter is insulated by a pair of caprolactic 

units, for example, diastereotopicity is not observable in the glycolic acid unit—the geminal 
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protons exhibit the same chemical shift (Figure 7). When a lactic unit is located on either side of 

a caprolactic unit, however, the neighboring α and ε methylenes of the caprolactic monomer are 

diastereotopic and present as a pair of doublets of triplets. The methylene protons are split 

vicinally by the neighboring caprolactic internal methylenes and then split geminally by each 

other. 

 

Figure 6. 1H NMR spectrum (300 MHz, CDCl3, 25 ºC) of (top) poly LLC; (middle) expansion focusing on selected 
multiplets; (bottom) 13C NMR spectrum (75 MHz, CDCl3, 25 ºC). 
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Figure 7. 1H NMR spectra (300 MHz, CDCl3, 25 ºC) for RSC terpolymers poly GLC, poly LGC, and poly GCLC. 
Range: δ 5.2-4.0. 

As copolyesters bearing caprolactic units have been the subject of many previous 

studies,26,75,76,81 significant prior effort has been made to interpret the microstructures of the 

random copolymers. The general approach of preparing materials by varying comonomer ratios 

and then assigning NMR resonance by statistical analysis has been carried out for the various 

classes of copolymer: PLCA, PGCA, and PLGCA. These very thorough studies, which primarily 

focus on the 13C NMR resonances for the carbonyl groups, have provided great insight into the 

structure function relationships for these classes of copolymers.74,83-87  

We have been able using our RSC standards to verify the 13C NMR assignments reported by 

others for PLCAs and PGCAs. A figure illustrating the correspondence is available in Figure 8 

and Figure 9. The greatest challenge in assembling the data for comparison was the 

determination of the convention for expressing sequence order employed in particular articles. In 

the ambiguous cases, our assignments determined from the RSCs were used to determine the 

convention used.  Once the sequences were aligned in the same C-O direction, however, the 
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sequence information obtained from the RSCs of PLCA and PGCA were generally found to be 

consistent with the assignments based on the statistical copolymers. There were differences in 

exact chemical shift, particularly for the PGCAs which were analyzed in DMSO-d6 at different 

temperatures, but the chemical shift regions and relative assignments corresponded. 

 

Figure 8. 13C NMR chemical shifts of the caprolactic and lactic regions of RSCs of PLCA (A) and statistical PLCA 
chemical shifts from the literature (B83, C74, D84, and E85).  

 

Figure 9. 13C NMR chemical shifts of the caprolactic and glycolic regions of RSCs of PGCA (A) at 86 ºC in DMSO 
and statistical PGCA chemical shifts from the literature (B86 and C87) at 100 ºC in DMSO. 
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2.2.4 Thermal data and analysis of sequenced copolymers containing L, G, and C 

The RSCs synthesized were analyzed by DSC to investigate their thermal properties. The 

copolymers exhibited Tgs ranging from -49.7 to 17.9 ºC (Table 2). The introduction of 

caprolactic acid decreased the Tgs relative to PLGAs.15 Although most of the polymers were 

amorphous, a few were semi-crystalline; Tms ranged from 2.7 to 67.3 ºC. Polymorphism, as 

evidenced by multiple Tm transitions, was observed for four of the RSCs. This phenomenon is 

common in aliphatic polyesters.88 

The thermal behavior of the binary RSCs, polymers containing only C and L or only C and 

G, depended primarily on the mole ratios of the two monomers involved rather than sequence. 

For example, in samples with only C and L units, it was observed as the χC is increased in the 

polymer, the Tg decreased and approached the Tg of ring opened poly(ε-caprolactone) (Figure 

10, numerical data is compiled in the appendix in Table 13 and Table 14). An analogous trend is 

observed for RSCs comprising only C and G units. In both systems, polymers with the same 

composition but different sequences exhibited nearly the same Tg. 
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Figure 10. Comparison of χC (mole fraction of caprolactic units) and Tg for RSCs (filled) and random copolymers 
obtained by ROP (open). a) PGCA RSCs and random copolymers of C + G. b) PLCA RSCs and random copolymers 
of C + L. Solid line represents the Fox Equation prediction. Tgs for ROP-synthesized PGA, PLLA, PCL and their 
random copolymers were obtained from the literature.26,29,89-96 

In contrast with the binary RSCs, sequence dependence of the thermal properties and 

morphology of the ternary PLGCA RSCs was observed. A difference of 6 ºC between the Tgs of 

poly GLC and poly LGC was observed despite the fact that the samples have comparable Mns 

(29.4 and 27.3 kDa) and the difference increases to 8 ºC after annealing. Moreover, poly GLC 

was crystalline with a Tm of 37.7 ºC, while poly LGC was amorphous. Poly GCLC had an 

intermediate Tg (-34.4 ºC) between those of poly GC (-37.6 ºC) and poly LC (-29.6 ºC).  

The Tgs of the RSCs of PLCA and PGCA match well to those predicted by the Fox equation 

while those of the random copolymers reported by others are more scattered and show a lower 

correspondence. The Fox equation predicts that the Tg of a binary copolymer is dependent on the 
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weight percent of each monomer in the copolymer and the Tg of each monomer’s homopolymer 

(eq. 1, wA = weight fraction monomer A).97 The RSCs of PLCA, PGCA, and PLGCA described 

herein exhibited Tgs that corresponded extremely well with those predicted by the Fox equation. 

Random PGCAs, in contrast, showed a high degree of scattering and the Tgs were significantly 

lower than the predicted values from the Fox equation.26,29,90-92 PLCAs while less scattered, 

exhibited Tgs higher than those expected.26,89,91,93-96 The deviations from theory for the random 

copolymers are likely due to the presence of long homopolymer blocks.98,99  

                                                                   1
Tg

= wA
TgA

+ wB
TgB

               (1) 

Poly GLC and poly LGC are predicted to have the same Tg from the Fox equation, but poly 

GLC exhibited a higher Tg than predicted, while poly LGC a lower Tg than predicted. This 

deviation can most likely be attributed to the specific sequence of the RSC. Although we have 

reported only one example of sequence specific thermal behavior in our RSCs, it is expected as 

more complex sequences are created; more sequence dependent properties will emerge. 

2.3 CONCLUSIONS 

We have prepared a series of RSCs of PGCA, PLCA, and PLGCA with exact and known 

sequences. By creating a large set of standard polymers and exploiting the unusually well-

resolved spectra that are characteristic of these RSCs, we have been able to unambiguously 

assign the 1H and 13C NMR spectra for these materials. This database was further used to confirm 

the previously reported assignments proposed by others for random copolymers. Thermal 

properties of the RSCs of PLCA and PGCAs were dependent on the monomer composition and 

correlated well with theory while thermal properties of RSCs of PLGCA exhibited exciting 
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sequence specific thermal behavior. Future work will focus on identifying other examples of 

sequence-specific behavior and on incorporating the caprolactic monomer into our group’s 

studies of RSCs in biomaterials. 

2.4 EXPERIMENTAL 

Materials. Ɛ-caprolactone (99%) was purchased from Acros and used without purification. 

Dicyclohexylcarbodiimide (DCC), dimethylaminopyridine (DMAP), and tert-

butyldimethylchlorosilane (TBDMSCl) (99%) were purchased from Oakwood and used as is. 

Diisopropylcarbodiimide (DIC) was purchased from Anaspec and Aldrich and 4-

(Dimethylamino)pyridinium 4-toluenesulfonate (DPTS) was synthesized according to previous 

literature.82 THF (99.5%) was purchased from EMD and used without further purification.  Ethyl 

acetate (Mallinckrodt) and methylene chloride (EMD) were distilled under nitrogen from 

calcium hydride. Column chromatography was performed using EMD 60 Å, 40-63 μm standard 

grade silica. Benzyl protected acids (Bn-C, Bn-L, Bn-LR, Bn-Lrac, Bn-G) and silyl protected 

alcohols (C-SiR3 and G-SiR3) were prepared according to previous literature.15,59,60 

NMR Spectroscopy. 1H (300 MHz, 400 MHz, 500 MHz, 600 MHz, and 700 MHz) and 13C (75 

MHz, 100 MHz, 125 MHz, 150 MHz, and 175 MHz) NMR spectra in CDCl3 were obtained from 

Bruker spectrometers and calibrated to the residual solvent peaks (δ 7.24 and δ 77.0 

respectively). 2D NMR experiments were recorded with Bruker 400, 500, 600 and 700 MHz 

NMR spectrometers equipped with a 5 mm gradient probe using HMBC and HMQC gradient 

pulse sequences. High temperature 13C NMR spectra for RSCs of PGCA were obtained in 

DMSO-d6 at 86.1 ºC (temperature internally calibrated using 80% ethylene glycol in DMSO).  
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Molecular Weight Analysis. HRMS data were acquired on a Waters LC/Q-TOF instrument. 

Elemental analysis was performed independently by Atlantic Microlab, Inc., Norcross, GA. 

Molecular weights and polydispersities were acquired on a Waters GPC (THF) with Jordi 500 Å, 

1000 Å and 10000 Å divinylbenzene (DVB) columns and refractive index detector (Waters) was 

calibrated to polystyrene standards. 

Thermal Analysis. Differential Scanning Calorimetry (DSC) experiments were performed with 

a TA Instruments Q200 DSC. Standard data were collected with a heating a cooling rate of 10 

ºC/min and Tms were collected from the first heating cycle, while Tgs were collected in the 

second heating cycle. Annealed samples were prepared by drop-casting (CH2Cl2) into DSC pans 

and then drying under vacuum for 24 hours. The data for annealed samples were collected in the 

first heating cycle. 

2.4.1 General procedure for DCC/DPTS coupling reactions 

The TBDMS-alcohol (1-1.2 equiv.), benzyl protected-acid (1-1.2 equiv.), DPTS (0.2 equiv.), and 

dicyclohexylcarbodiimide (DCC, 1.1-1.5 equiv.) were combined in dry CH2Cl2 (0.1 M in 

substrate). The reaction mixture was allowed to stir overnight under N2. Dicyclohexylurea 

(DCU) was removed by filtration and the resulting filtrate was concentrated in vacuo. The 

concentrate was purified by chromatography over silica using 2.5% ethyl acetate in hexanes as 

the eluent. 

Dimers. The diprotected dimers were prepared by combining the benzyl protected acids (Bn-C, 

Bn-G and Bn-L) with C-SiR3 or G-SiR3 using the general coupling procedure.15,59,60 
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Bn-CC-SiR3. The product was a colorless liquid (15.6 g, 80%). 1H NMR (400 MHz, CDCl3) δ 

7.37-7.28 (m, 5H), 5.10 (s, 2H), 4.02 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, J = 6.4 Hz), 2.35 (t, 2H, J = 

7.6 Hz), 2.27 (t, 2H J = 7.4 Hz), 1.70-1.57 (m, 6H), 1.54-1.47 (m, 2H), 1.40-1.29 (m, 4H), 0.87 

(s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 173.79, 173.31, 136.02, 128.55, 128.20, 

128.18, 66.15, 64.02, 62.96, 34.32, 34.12, 32.46, 28.32, 25.95, 25.51, 25.43, 24.80, 24.55, 18.34, 

-5.30; HRMS (M+Na) calc mass 473.2699, found 473.2711; Anal. calcd for C25H42O5Si: C, 

66.62; H, 9.39. Found: C, 66.89; H, 9.44. 

 

Bn-GG-SiR3. The product was a colorless liquid (10.9 g, 78%). 1H NMR (400 MHz, CDCl3) δ 

7.71-7.66 (m, 4H), 7.44-7.30 (m, 11H), 5.17 (s, 2H), 4.65 (s, 2H), 4.34 (s, 2H), 1.08 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ170.62, 167.30, 135.53, 134.76, 132.60, 129.90, 128.61, 128.52, 

128.35, 127.80, 67.10, 61.86, 60.66, 26.60, 19.23; HRMS (M+Na) calc mass 485.1760, found 

485.1741. 

  

Bn-GC-SiR3. The product was a colorless liquid (20.0 g, 84%). 1H NMR (300 MHz, CDCl3) 

δ 7.4−7.3 (m, 5H), 5.17 (s, 2H), 4.63 (s, 2H), 3.58 (t, 2H, J = 6.5 Hz), 2.40 (t, 2H, J = 7.5 Hz), 

1.7-1.6 (m, 2H), 1.6-.4 (m, 2H), 1.4-1.2 (m, 2H), 0.87 (s, 9H), 0.08 (s, 6H); 13C NMR (75 MHz, 

BnO

O
O

O
OTBDMS55

BnO

O
O

O
OTBDPS

BnO

O
O

O
OTBDMS5



 29 

CDCl3) δ 173.01, 167.77, 135.05, 128.61, 128.37, 67.03, 62.90, 60.52, 33.76, 32.40, 25.94, 

25.30, 24.60, 18.32, -5.31; HRMS (M+Na) calc mass 417.2073, found 417. 2108. 

 

Bn-LC-SiR3. The product was a colorless liquid (9.64 g, 83%).  1H NMR (300 MHz, CDCl3) 

δ 7.37−7.28 (m, 5H), 5.18 (d, J = 12.3 Hz, 1H), 5.12 (q, J = 7.0 Hz, 1H), 5.12 (d, J = 12.3 Hz, 

1H), 3.57 (t, J = 6.3 Hz, 2H), 2.36 (dt, J1 = 15.6 Hz, J2 = 7.8 Hz, 1H), 2.35 (t, J1 = 15.6 Hz, J2 = 

7.4 Hz, 1H), 1.63 (m, 2H), 1.51 (m, 2H), 1.47 (d, J = 7.0 Hz, 3H), 0.87 (s, 9H), 0.02 (s, 6H); 13C 

NMR (75 MHz, CDCl3) δ 173.04, 170.72, 135.35, 128.56, 128.35, 128.10, 68.38, 66.91, 62.92, 

33.94, 32.42, 25.94, 25.33, 24.61, 18.32, 16.89, -5.31; HRMS (M+Na) calc mass 431.2230, 

found 431.2240. 

Trimers. The diprotected trimers were prepared by combining the benzyl protected acids (Bn-C, 

Bn-G, and Bn-L) with the silyl protected alcohol dimers (GC-SiR3, CC-SiR3 and LC-SiR3) 

using the general coupling procedure. 

 

Bn-CGC-SiR3. The product was a colorless liquid (11.10 g, 74%). 1H NMR (300 MHz, CDCl3) 

δ 7.38-7.28 (m, 5H), 5.09 (s, 2H), 4.56 (s, 2H), 4.12 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, J = 6.5 Hz), 

2.40 (t, 2H, J = 7.7 Hz), 2.35 (t, 2H, J = 7.5 Hz), 1.71-1.60 (m, 6H), 1.66-1.56 (m, 2 H), 1.43-

1.38 (m, 4H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.25, 173.02, 167.93, 

135.97, 128.54, 128.20, 66.16, 65.08, 62.91, 60.50, 34.05, 33.77, 32.41, 28.15, 25.94, 25.32, 

24.61, 24.45, 18.33, -5.31; ΗRMS (M+Na) calc mass 531.2754, found 531.2711. 

BnO

O
O

O
OTBDMS5

BnO

O
O

O
O

O
OTBDMS5 5



 30 

 

Bn-GGC-SiR3. The product was a colorless liquid (6.85 g, 82%). 1H NMR (300 MHz, CDCl3) 

δ 7.39-7.29 (m, 5H), 5.18 (s, 2H), 4.71 (s, 2H), 4.70 (s, 2H), 3.58 (t, 2H, J = 6.3 Hz), 2.41 (t, 2H, 

J = 7.5 Hz), 1.72-1.62 (m, 2H), 1.56-1.45 (m, 2H), 1.41-1.31 (m, 2H); 13C NMR (75 MHz, 

CDCl3) δ 172.91, 167.40, 166.97, 134.87, 128.66, 128.62, 128.44, 67.29, 62.92, 61.04, 60.16, 

33.71, 32.41, 25.95, 25.31, 24.58, 18.34, -5.30; HRMS (M+Na) calc mass 475.2128, found 

475.2148. 

 

Bn-GLC-SiR3. The product was a colorless liquid (6.04 g, 75%). 1H NMR (300 MHz, CDCl3) δ 

7.39-7.29 (m, 5H), 5.17 (s, 2H), 5.13 (q, 1H, J = 7.2 Hz), 4.80 (d, 1H, J = 15.9 Hz), 6.89 (d, 1H, 

J = 15.9 Hz), 3.58 (t, 2H, J = 6.5 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.36 (dt, 1H, J1 = 

15.9 Hz, J2 = 7.5 Hz), 1.70-1.60 (m, 2H), 1.53-1.44 (m, 2H), 1.51 (d, 3H, J = 7.2 Hz), 1.40-1.30 

(m, 2H); 13C NMR (75 MHz, CDCl3) δ 173. 03, 170.35, 167.06, 134.89, 128.63, 128.46, 68.12, 

67.23, 62.94, 60.94, 33.86, 32.42, 31.57, 25.94, 25.33, 24.57, 22.64, 18.33, 16.84, 14.11, -5.31; 

HRMS (M+Na) calc mass 489.2285, found 489.2265. 

 

Bn-LGC-SiR3. The product was a colorless liquid (10.40 g, 75%). 1H NMR (300 MHz, CDCl3) 

δ 7.39-7.29 (m, 5H), 5.20 (q, 1H, J = 7.2 Hz), 5.18 (d, 1H, J = 12.3 Hz), 5.14 (d, 1H, J = 12.3 

Hz), 4.72 (d, 1H, J = 16.2 Hz), 4.62 (d, 1H, J = 16.2 Hz), 3.58 (t, 2H, J = 6.5 Hz), 2.40 (t, 2H, J 
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= 7.7 Hz), 1.71-1.61 (m, 2H), 1.54-1.47 (m, 2H), 1.50 (d, 3H, J = 7.2 Hz), 1,43-1.31 (m, 2H), 

0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 172.91, 169.93, 167.33, 135.13, 128.16, 

128.45, 128.15, 69.27, 67.17, 62.91, 60.26, 33.72, 32.41, 25.94, 25.31, 24.59, 18.33, 16.83,      -

5.31; HRMS (M+Na) calc mass 489.2285, found 489.2246. 

 

Bn-CLC-SiR3. The product was a colorless liquid (8.14 g, 71%). 1H NMR (300 MHz, CDCl3) δ 

7.38-7.27 (m, 5H), 5.09 (s, 2H), 5.03 (q, 1H, J = 7.2 Hz), 4.10 (t, 2H, J = 6.8 Hz), 3.58 (t, 2H, J 

= 6.5 Hz), 2.36 (dt, 1H, J1 = 15.6 Hz, J2 = 7.7 Hz), 2.35 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.34 

(t, 2H, J = 7.4 Hz), 1.70-1.58 (m, 6H), 1.56-1.46 (m, 2H), 1.44 (d, 3H, J = 7.2 Hz), 1.40-1.30 (m, 

4H), 0.86 (s, 9H), 0.016 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.24, 173.04, 170.90, 135.97, 

128.53, 128.19, 128.18, 68.38, 66.14, 64.99, 62.93, 34.05, 33.92, 32.42, 28.16, 25.93, 25.33, 

25.30, 24.60, 24.45, 18.31, 16.94, -5.32; HRMS (M+Na) calc mass 545.2911, found 545.2905. 

 

Bn-LCC-SiR3. The product was a colorless liquid (6.87 g, 84%). 1H NMR (400 MHz, CDCl3) δ 

7.35-7.30 (m, 5H), 5.18 (d, 1H, J = 12.4 Hz), 5.12 (d, 1H, J = 12.4 Hz), 5.11 (q, 1H, J = 7.2 Hz), 

4.02 (t, 2H, J = 6.8 Hz), 3.58 (t, 2H, J = 6.4 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.36 

(dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.28 (t, 2H, J = 7.6 Hz), 1.68-1.57 (m, 6H), 1.54-1.47 (m, 

2H), 1.47 (d, 3H, J = 7.2 Hz), 1.41-1.30 (m, 4H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, 

CDCl3) δ 173.79, 172.84, 170.69, 135.31, 128.58, 128.39, 128.12, 68.45, 66.96, 64.02, 62.96, 

34.32, 33.76, 32.46, 28.29, 25.95, 25.44, 25.41, 24.80, 24.41, 18.33, 16.89, -5.30; HRMS (M+K) 
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calc mass 561.2650; found 561.2622; Anal. calcd for C28H46O7Si: C, 64.33; H, 8.87. Found: C, 

64.45; H, 9.07. 

 

Bn-LLC-SiR3. The product was a colorless liquid (5.36 g, 60%). 1H NMR (300 MHz, CDCl3) δ 

7.38-7.28 (m, 5H), 5.18 (q, 1H, J = 7.2 Hz), 5.17 (d, 1H, J = 12.3 Hz), 5.11 (d, 1H, J = 12.0 Hz), 

5.07 (q, 1H, J = 7 Hz), 3.58 (t, 2H, J = 6.5 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.7 Hz), 2.36 (dt, 

1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 1.69-1.59 (m, 2H), 1.55-1.46 (m, 2H), 1.51 (d, 3H, J = 7.2 Hz), 

1.47 (d, 3H, J = 7.2 Hz), 1.40-1.30 (m, 2H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, 

CDCl3) δ 173.12, 170.33, 170.09, 135.10, 128.59, 128.46, 128.22, 69.03, 68.12, 67.13, 62.93, 

33.85, 32.42, 25.94, 25.31, 24.57, 18.32, 16.78, 16.69, -5.31; HRMS (M+Na) calc mass 

503.2441, found 503.2395. 

 

Bn-LRLC-SiR3. The product was a colorless liquid (3.28 g, 62%). 1H NMR (400 MHz, CDCl3) 

δ 7.37-7.29 (m, 5H), 5.19 (d, 1H, J = 12.4 Hz), 5.16 (q, 1H, J = 7.1 Hz), 5.13 (d, 1H, J = 12.4 

Hz), 5.13 (q, 1H, J = 7.1 Hz), 3.58 (t, 2H, J = 6.4 Hz), 2.36 (dt, 1H, J1 = 15.6 Hz, J2 = 7.6 Hz), 

2.35 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 1.68-1.61 (m, 2H), 1.54-1.46 (m, 2H), 1.48 (d, 3H, J = 

6.8 Hz), 1.47 (d, 3H, J = 7.2 Hz), 1.40-1.32 (m, 2H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (100 

MHz, CDCl3) δ 172.86, 170.14, 169.87, 135.20, 128.57, 128.42, 128.22, 69.16, 68.32, 67.11 

62.93, 33.91, 32.43, 25.95, 25.36, 24.64, 18.33, 16.86, 16.80, -5.30; HRMS (M+Na) calc mass 

503.2441, found 503.2416. 
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Bn-LracLC-SiR3. The product was a colorless liquid (4.74 g, 89%). 1H NMR (400 MHz, CDCl3) 

δ 7.35-7.29 (m, 10H), 5.21-5.10 (m, 7H), 5.07 (q, 1H, J = 7.1 Hz), 3.58 (t, 4H, J = 6.4 Hz), 2.43-

2.32 (m, 4H), 1.66-1.62 (m, 4H), 1.52-1.46 (m, 16H), 1.39-1.34 (m, 4H), 0.87 (s, 18H), 0.02 (s, 

12H); 13C NMR (100 MHz, CDCl3) δ 173.12, 172.86, 170.33, 170.14, 170.09, 169.87, 135.19, 

135.13, 128.60, 128.57, 128.47, 128.42, 128.22, 69.16, 69.04, 68.32, 68.13, 67.13, 67.11, 62.95, 

62.93, 33.91, 33.87, 32.43, 25.95, 25.36, 25.33, 24.63, 24.59, 18.33, 16.86, 16.79, 16.70, -5.30; 

HRMS (M+Na) calc mass 503.2441, found 503.2469. 

Tetramers. The diprotected tetramers were prepared by combining the benzyl protected acid 

dimers (Bn-GC, Bn-GG, Bn-LC, and Bn-LL) with the silyl protected alcohol dimers (GC-SiR3, 

CC-SiR3 and LC-SiR3) using the general coupling procedure unless otherwise notated. 

 

Bn-GGCC-SiR3. The product was a colorless liquid (6.94 g, quantitative). 1H NMR (400 MHZ, 

CDCl3) δ 7.38-7.30 (m, 5H), 5.18 (s, 2H), 4.71 (s, 4H), 4.04 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, J = 

6.6 Hz), 2.42 (t, 2H, J = 7.4 Hz), 2.28 (t, 2H, J = 7.6 Hz), 1.72-1.57 (m, 6H), 1.54-1.47 (m, 2H), 

1.43-1.29 (m, 4H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 173.80, 172.68, 

167.35, 166.94, 134.87, 128.66, 128.62, 128.43, 67.30, 64.00, 62.96, 61.05, 60.19, 34.31, 33.54, 

32.46, 28.29, 25.95, 25.43, 25.39, 24.79, 24.37, 18.33, -5.30; HRMS (M+Na) calc mass 

589.2809, found 589.2840. 
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Bn-GCGC-SiR3. The product was a colorless liquid (9.10 g, 86%). 1H NMR (300 MHz, CDCl3) 

δ 7.38-7.29 (m, 5H), 5.17 (s, 2H), 4.63 (s, 2H), 4.57 (s, 2H), 4.13 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, 

J = 6.5 Hz), 2.42 (t, 2H, J = 7.2 Hz), 2.40 (t, 2H, J = 7.5 Hz), 1.71-1.59 (m, 6H), 1.56-1.47 (m, 

2H), 1.44-1.31 (m, 4H), 0.86 (s, 9H), 0.017 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.01, 

172.74, 167.93, 167.72, 135.02, 128.62, 128.54, 128.38, 67.07, 65.05, 62.91, 60.57, 60.51, 33.77, 

33.54, 32.41, 28.12, 25.94, 25.32, 25.19, 24.61, 24.33, 18.32, 14.18, -5.31; ΗRMS (M+Na) calc 

mass 589.2809, found 589.2761. 

 

Bn-GGGC-SiR3. The product was a colorless liquid (2.86 g, 49%). 1H NMR (400 MHz, CDCl3) 

δ 7.34-7.32 (m, 5H), 5.18 (s, 2H), 4.79 (m, 2H), 4.72 (s, 2H), 4.71 (s, 2H), 3.58 (t, 2H, J = 6.4 

Hz), 2.41 (t, 2H, J = 7.4 Hz), 1.70-1.63 (m, 2H), 1.55-1.48 (m, 2H), 1.41-1.33 (m, 2H), 0.87 (s, 

9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 172.90, 167.30, 166.81, 166.59, 134.82, 

128.67, 128.65, 128.45, 67.35, 62.91, 61.17, 60.66, 60.11, 33.70, 32.40, 25.94, 25.31, 24.56, 

18.33, -5.31; HRMS (M+Na) calc mass 533.2183, found 533.2200. 

 

Bn-GCLC-SiR3. The product was a colorless liquid (5.01 g, 81%). 1H NMR (300 MHz, CDCl3) 

δ 7.35-7.31 (m, 5H), 5.17 (s, 2H), 5.04 (q, J = 7.0 Hz, 1H) 4.63 (s, 2H), 4.10 (m, 2H, J = 6.6 Hz), 

3.58 (t, 2H, J = 6.5 Hz), 2.40 (t, 2H, J = 7.4 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.7 Hz), 2.36 
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(dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 1.71-1.58 (m, 6H), 1.56-1.43 (m, 2H), 1.45 (d, 3H, J = 7.0 

Hz), 1.41-1.30 (m, 4H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.05, 172.74, 

170.91, 167.72, 135.02, 128.62, 128.54, 128.38, 68.39, 67.07, 64.98, 62.94, 60.57, 33.93, 33.55, 

32.43, 28.14, 25.94, 25.34, 25.19, 24.62, 24.33, 18.33, 16.96, -5.31; HRMS (M+Na) calc mass 

603.2965, found 603.2957. 

 

Bn-LLCC-SiR3. The product was a colorless liquid (4.57 g, 88%). 1H NMR (400 MHz, CDCl3) 

δ 7.36-7.30 (m, 5H), 5.18 (q, 1H, J = 7.2 Hz), 5.17 (d, 1H, J = 12.0 Hz), 5.12 (d, 1H, J = 12.4 

Hz), 5.07 (q, 1H, J = 7.2 Hz), 4.03 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, J = 6.6 Hz), 2.38 (dt, 1H, J1 = 

15.2 Hz, J2 = 7.0 Hz), 2.36 (dt, 1H, J1 = 15.6 Hz, J2 = 7.0 Hz), 2.27 (t, 2H, J = 7.6 Hz), 1.69-1.57 

(m, 6H), 1.54-1.47 (m, 2H), 1.51 (d, 3H, J = 7.2 Hz), 1.47 (d, 3H, J = 7.2 Hz), 1.42-1.30 (m, 

4H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 173.80, 172.90, 170.30, 170.07, 

135.11, 128.60, 128.48, 128.23, 69.06, 68.20, 67.14, 64.02, 62.96, 34.32, 33.68, 32.46, 28.30, 

25.95, 25.43, 25.40, 24.79, 24.38, 18.34, 16.79, 16.69, -5.30; HRMS (M+Na) calc mass 

617.3122, found 617.3118. 

 

Bn-LCLC-SiR3. The product was a colorless liquid (8.17 g, 97%). 1H NMR (300 MHz, CDCl3) 

δ 7.35-7.30 (m, 5H), 5.18 (d, 1H, J = 12.3 Hz), 5.12 (d, 1H, J = 12.3 Hz), 5.10 (q, 1H, J = 7.2 

Hz), 5.04 (q, 1H, J = 7.2 Hz), 4.15-4.03 (m (pair of dt), 2H), 3.58 (t, 2H, J = 6.3 Hz), 2.45-2.28 

(m (two pairs of dt), 4H), 1.70-1.57 (m, 6H), 1.56-1.44 (m, 2H), 1.47 (d, 3H, J = 7.2 Hz), 1.45 

(d, 3H, J = 7.2 Hz), 1.41-1.31 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 173.04, 172.78, 170.09, 
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170.67, 135.28, 128.57, 128.38, 128.12, 68.45, 68.38, 66.95, 65.00, 62.93, 33.92, 33.70, 32.42, 

28.14, 25.33, 25.20, 24.61, 24.32, 18.32, 16.95, 16.87, -5.31; HRMS (M+Na) calc mass 

617.3146, found 617.3148. 

 

Bn-LLLC-SiR3. The product was a clear yellow liquid (27.3 g, 81%). 1H NMR (300 MHz, 

CDCl3) δ 7.37-7.28 (m, 5H), 5.20-5.04 (m, 5H), 3.57 (t, 2H, J = 6.5 Hz), 2.38 (dt, 1H, J1 = 15.6 

Hz, J2 = 7.7 Hz), 2.36 (t, 1H, J1 = 15.9 Hz, J2 = 7.2 Hz), 1.69-1.59 (m, 2H), 1.55-1.46 (m, 2H), 

1.53 (d, 3H, J = 6.9 Hz), 1.51 (d, 3H, J = 6.9 Hz), 1.50 (d, 3H, J = 7.2 Hz), 1.40-1.30 (m, 2H), 

0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.14, 170.39, 169.95, 169.72, 135.06, 

128.60, 128.50, 128.24, 69.18, 68.81, 68.10, 67.18, 62.94, 33.86, 32.43, 25.94, 25.32, 24.58, 

18.33, 16.75 (2), 16.57, -5.31; HRMS (M+Na) calc mass 575.2652, found 575.2595. 

Pentamers. The diprotected pentamers were prepared by combining the benzyl protected acids 

(Bn-G and Bn-L) with the silyl protected alcohol tetramers (GCGC-SiR3, LCLC-SiR3, and 

LLLC-SiR3) using the general coupling procedure. 

 

Bn-GGCGC-SiR3. The product was a colorless liquid (6.03 g, 87%). 1H NMR (300 MHz, 

CDCl3) δ 7.38-7.31 (m, 5H), 5.18 (s, 2H), 4.71 (s, 2H), 4.63 (s, 2H), 4.14 (t, 2H, J = 6.6 Hz), 

3.58 (t, 2H, J = 6.5 Hz), 2.42 (t, 2H, J = 7.5 Hz), 2.40 (t, 2H, J = 7.5 Hz), 1.73-1.60 (m, 6H), 

1.56-1.47 (m, 2H), 1.45-1.31 (m, 4H), 0.86 (s, 9H), 0.018 (s, 6H); 13C NMR (75 MHz, CDCl3) 

δ 173.02, 172.62, 167.94, 167.34, 166.94, 134.86, 128.65, 128.62, 128.43, 67.29, 65.05, 62.92, 
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61.04, 60.51, 60.19, 33.77, 33.48, 32.42, 28.13, 25.94, 25.32, 25.19, 24.61, 24.29, 18.33, -

5.31; ΗRMS (M+Na) calc mass 647.2864, found 647.2803. 

 

Bn-LLCLC-SiR3. The product was a colorless liquid (4.42 g, 89%). 1H NMR (300 MHz, 

CDCl3) δ 7.34-7.29 (m, 5H), 5.18 (q, 1H, J = 7.2 Hz), 5.17 (d, 1H, J = 12.6 Hz), 5.11 (d, 1H, J = 

12.0 Hz), 5.07 (q, 1H, J = 7.2 Hz), 5.03 (q, 1H, J = 7.2 Hz), 4.10 (m (pair of dt), 2H), 3.58 (t, 2H, 

J = 6.5 Hz), 2.45-2.28 (m (2 pairs of dt), 4H), 1.70-1.59 (m, 6H), 1.56-1.42 (m, 2H), 1.51 (d, 3H, 

J = 7.2 Hz), 1.47 (d, 3H, J = 7.2 Hz), 1.45 (d, 3H, J = 7.2 Hz), 1.41-1.30 (m, 4H); 13C NMR (75 

MHz, CDCl3) δ 173.05, 172.85, 170.91, 170.29, 170.06, 135.07, 128.59, 128.47, 128.22, 69.05, 

68.38, 68.20, 67.14, 65.01, 62.94, 33.93, 33.62, 32.43, 28.15, 25.94, 25.34, 25.20, 24.61, 24.30, 

18.33, 16.95, 16.78, 16.68, -5.31; HRMS (M+) calc mass 666.343542, found 666.343059. 

 

Bn-LLLLC-SiR3. The product was a colorless liquid (5.48 g, 67%). 1H NMR (300 MHz, 

CDCl3) δ 7.35-7.29 (m, 5H), 5.20-5.05 (m, 6H), 3.58 (t, 2H, J = 6.5 Hz), 2.37 (dt, 1H, J1 = 15.9 

Hz, J2 = 7.7 Hz), 2.36 (dt, 1H, J1 = 15.6 Hz, J2 = 7.5 Hz), 1.69-1.59 (m, 2H), 1.58-1.46 (m, 2H), 

1.57 (d, 3H, J = 6.9 Hz), 1.53 (d, 3H, J = 7.2 Hz), 1.50 (d, 3H, J = 7.2 Hz), 1.50 (d, 3H, J = 7.2 

Hz), 1.43-1.30 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 173.14, 170.41, 169.92, 169.78, 169.58, 

135.04, 128.61, 128.51, 128.25, 69.24, 68.92, 68.80, 68.09, 67.20, 62.94, 33.86, 32.43, 25.95, 

25.32, 24.58, 18.33, 16.75, 16.64, 16.56, -5.30; HRMS (M+Na) calc mass 647.2864, found 

647.2830. 
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2.4.2 General procedure for the silyl deprotections.  

The diprotected oligomers were combined with 1.5 equiv. tetrabutylammonium fluoride (TBAF), 

and 8.0 equiv. glacial acetic acid (AcOH) in THF (0.1 M in substrate) and stirred overnight at 

RT, unless otherwise noted. The reaction mixture was added to 300 mL of brine and 250 mL of 

Et2O and the layers were separated. The aqueous layer was washed with Et2O (2 × 200 mL) and 

the organic layers were combined, dried over MgSO4 and then concentrated in vacuo. The 

concentrate was purified by chromatography over silica using 5-15% EtOAc in hexanes as the 

eluent.15 

 

Bn-GC. The product was a clear yellow liquid (5.72 g, 89%). 1H NMR (300 MHz, CDCl3) δ 

7.40-7.28 (m, 5H), 5.17 (s, 2H), 4.63 (s, 2H), 3.61 (t, 2H, J = 6.5 Hz), 2.41 (t, 2H, J = 7.4 Hz), 

1.72-1.62 (m, 2H), 1.61-1.51 (m, 3H), 1.46-1.37 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.96, 

167.82, 134.98, 128.60, 128.52, 128.36, 67.08, 62.49, 60.53, 33.66, 32.18, 25.03, 24.44; HRMS 

(M+Na) calc mass 303.1208, found 303.1212. 

 

Bn-GG. The reaction was carried out according to the general procedure for silyl deprotection 

except the reaction was stirred for 1 h at RT. The product was a white solid (3.33 g, 77%). 1H 

NMR (400 MHz, CDCl3) δ 7.39-7.31 (m, 5H), 5.19 (s, 2H), 4.74 (s, 2H), 4.28 (d, 2H, J = 5.6 

Hz), 2.52 (t, 1H, J = 5.8 Hz); 13C NMR (100 MHz, CDCl3) δ 172.68, 167.12, 134.79, 128.66, 
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128.41, 67.34, 61.09, 60.42; HRMS (M+Na) calc mass 224.068474, found 224.068223; Anal. 

calcd for C11H12O5: C, 58.93; H, 5.39. Found: C, 59.11; H, 5.30. 

 

Bn-LC. The product was a colorless liquid (4.94 g, 90%). 1H NMR (300 MHz, CDCl3) δ 7.38-

7.27 (m, 5H), 5.18 (d, 1H, J = 12.3 Hz), 5.12 (d, 1H, J = 12.6 Hz), 5.11 (q, 1H, J = 7.2 Hz), 3.61 

(t, 2H, J = 6.3 Hz), 2.38 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.2 

Hz), 1.70-1.60 (m, 2H), 1.57-1.50 (m, 2H), 1.47 (d, 3H, J = 7.2 Hz), 1.44-1.36 (m, 2H); 13C 

NMR (75 MHz, CDCl3) δ 173.02, 170.78, 135.25, 128.56, 128.37, 128.10, 68.41, 66.96, 62.52, 

33.81, 32.19, 25.02, 24.42, 16.87; HRMS (M+Na) calc mass 317.1365, found 317.1342. 

 

Bn-CGC. The product was a yellow clear liquid (6.82 g, 92%). 1H NMR (300 MHz, CDCl3) δ 

7.38-7.28 (m, 5H), 5.09 (s, 2H), 4.57 (s, 2H), 4.12 (t, 1H, J = 6.6 Hz), 3.65-3.60 (m, 2H), 2.42 (t, 

2H, J = 7.4 Hz), 2.35 (t, 2H, J = 7.4 Hz), 1.74-1.53 (m, 8H), 1.47-1.30 (m, 4H); 13C NMR (75 

MHz, CDCl3) δ 173.29, 172.97, 167.98, 135.96, 128.55, 128.22, 128.20, 66.18, 65.15, 62.52, 

60.53, 34.05, 33.69, 32.21, 28.14, 25.32, 25.05, 24.47; HRMS (M+Na) calc mass 417.1889, 

found 417.1917. 

 

Bn-GGC. The product was a colorless liquid (6.05 g, 94%). 1H NMR (300 MHz, CDCl3) δ 7.35-

7.24 (m, 5H), 5.13 (s, 2H), 4.67 (s, 2H), 4.66 (s, 2H), 3.55 (t, 2H, J = 6.5 Hz), 2.40-2.36 (m, 3H), 

BnO

O
O

O
OH5

BnO

O
O

O
O

O
OH5 5

BnO
O

O

O
O

O
OH5



 40 

1.69-1.59 (m, 2H), 1.56-1.47 (m, 2H), 1.41-1.31 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.70, 

167.26, 166.82, 134.66, 128.40, 128.36, 128.17, 67.01, 62.04, 60.82, 59.94, 33.36, 31.93, 24.87, 

24.23; HRMS (M+Na) calc mass 361.1263, found 361.1229. 

 

Bn-LGC. The product was a colorless liquid (3.60 g, 81%). 1H NMR (300 MHz, CDCl3) δ 7.38-

7.28 (m, 5H), 5.20 (q, 1H, J = 7.2 Hz), 5.18 (d, 1H, J = 12.3 Hz), 5.14 (d, 1H, J = 12.3 Hz), 4.72 

(d, 1H, J = 16.2), 4.62 (d, 1H, J = 16.3 Hz), 3.62 (t, 2H, J = 6.5 Hz), 2.42 (t, 2H, J = 7.4 Hz), 

1.73-1.63 (m, 2H), 1.62-1.52 (m, 2H), 1.50 (d, 3H, J = 7.2 Hz), 1.46-1.40 (m, 2H); 13C NMR (75 

MHz, CDCl3) δ 172.86, 169.92, 167.37, 135.10, 128.45, 128.15, 69.30, 67.19, 62.54, 60.27, 

33.62, 32.21, 25.06, 24.44, 16.82; HRMS (M+Na) calc mass 375.1420, found 375.1399. 

 

Bn-CLC. The product was a colorless liquid (2.07 g, 35%). 1H NMR (300 MHz, CDCl3) δ 7.38-

7.28 (m, 5H), 5.09 (s, 2H), 5.03 (q, 1H, J = 7.1 Hz), 4.10 (t, 2H, J = 6.6 Hz), 3.65-3.59 (m, 2H), 

2.39 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.39-2.29 (m (dt), 1H), 2.35 (t, 2H, J = 7.4 Hz), 1.72-

1.52 (m, 8H), 1.45 (d, 3H, J = 7.1 Hz), 1.42-1.30 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 173.30, 

173.00, 170.96, 135.96, 128.54, 128.22, 128.20, 68.43, 66.18, 65.18, 65.07, 62.52, 34.06, 33.83, 

32.22, 28.16, 25.31, 25.05, 24.45, 16.94; HRMS (M+Na) calc mass 431.2046, found 431.2063. 
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Bn-GLC. The product was a colorless liquid (2.21 g, 52%). 1H NMR (300 MHz, CDCl3) δ 7.39-

7.28 (m, 5H), 5.17 (s, 2H), 5.14 (q, 1H, J = 7.2 Hz), 4.80 (d, 1H, J = 15.9 Hz), 4.58 (d, 1H, J = 

15.9 Hz), 3.62 (t, 2H, J = 6.5 Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.5 Hz), 2.38 (dt, 1H, J1 = 15.6 

Hz, J2 = 7.4 Hz), 1.72-1.62 (m, 2H), 1.61-1.52 (m, 2H), 1.51 (d, 3H, J = 7.2 Hz), 1.45-1.35 (m, 

2H); 13C NMR (75 MHz, CDCl3) δ 172.96, 170.36, 167.03, 134.84, 128.61, 128.58, 128.44, 

68.13, 67.22, 62.54, 60.94, 33.73, 32.20, 25.03, 24.40, 16.81; HRMS (M+Na) calc mass 

375.1420, found 375.1397. 

 

Bn-LLC. The product was a colorless liquid (3.60 g, 90%). 1H NMR (300 MHz, CDCl3) δ 7.37-

7.27 (m, 5H), 5.18 (q, 1H, J = 7.2 Hz), 5.17 (d, 1H, J = 12.0 Hz), 5.11 (d, 1H, J = 12.3 Hz), 5.07 

(q, 1H, J = 7.2 Hz), 3.62 (t, 2H, J = 6.3 Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.5 Hz), 2.37 (dt, 

1H, J1 = 15.9 Hz, J2 = 7.2 Hz), 1.71-1.61 (m, 2H), 1.58-1.34 (m, 4H), 1.50 (d, 3H, J = 7.2 Hz), 

1.47 (d, 3H, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3) δ 173.07, 170.37, 170.06, 135.09, 128.59, 

128.47, 128.22, 69.07, 68.17, 67.14, 62.54, 33.74, 32.22, 25.04, 24.41, 16.77, 16.68; HRMS 

(M+Na) calc mass 389.1576, found 389.1583. 

 

Bn-LRLC. The product was a colorless liquid (2.24 g, 96%). 1H NMR (400 MHz, CDCl3) 

δ 7.37-7.28 (m, 5H), 5.18 (d, 1H, J = 12.4 Hz), 5.16 (q, 1H, J = 7.1 Hz), 5.14 (q, 1H, J = 7.2 Hz), 
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5.13 (d, 1H, J = 12.4 Hz), 3.63-3.60 (m, 2H), 2.38 (dt, 1H, J1 = 16.0 Hz, J2 = 7.4 Hz), 2.37 (dt, 

1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 1.70-1.63 (m, 2H), 1.59-1.51 (m, 2H), 1.48 (d, 3H, J = 6.8 Hz), 

1.47 (d, 3H, J = 7.2 Hz), 1.44-1.36 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 172.78, 170.14, 

169.85, 135.16, 128.56, 128.40, 128.20, 69.19, 68.31, 67.12, 62.54, 33.79, 32.23, 25.11, 24.46, 

16.83, 16.78; HRMS (M+Na) calc mass 389.1576, found 389.1540. 

 

Bn-LracLC. The product was a colorless liquid (3.16 g, 94%). 1H NMR (400 MHz, CDCl3) 

δ 7.36-7.29 (m, 10H), 5.21-5.11 (m, 7H), 5.07 (q, 1H, J = 7.1 Hz), 3.62 (t, 4H, J = 6.6 Hz), 2.45-

2.31 (m, 4H), 1.70-1.62 (m, 4H), 1.60-1.53 (m, 4H), 1.50-1.46 (m, 12H), 1.44-1.36 (m, 4H); 13C 

NMR (100 MHz, CDCl3) δ 173.06, 172.78, 170.37, 170.15, 170.06, 169.85, 135.17, 135.09, 

128.59, 128.56, 128.46, 128.41, 128.21, 69.20, 69.07, 68.32, 68.17, 67.14, 67.12, 62.55, 33.80, 

33.75, 32.23, 25.11, 25.04, 24.46, 24.42, 16.84, 16.78, 16.77, 16.68; HRMS (M+Na) calc mass 

389.1576, found 389.1592. 

 

Bn-GCLC. The product was a colorless liquid (2.59 g, 77%). 1H NMR (300 MHz, CDCl3) δ 

7.37-7.31 (m, 5H), 5.17 (s, 2H), 5.05 (q, 1H, J = 7.1 Hz), 4.63 (s, 2H), 4.11 (t, 2H, J = 6.6 Hz), 

3.65-3.59 (m, 2H), 2.40 (t, 2H, J = 7.5 Hz), 2.39 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.37 (dt, 1H, 

J1 = 15.6 Hz, J2 = 7.2 Hz), 1.72-1.52 (m, 8H), 1.49-1.33 (m, 4H), 1.46 (d, 3H, J = 7.1 Hz); 13C 

NMR (75 MHz, CDCl3) δ 172.96, 172.74, 170.94, 167.74, 135.06, 128.62, 128.53, 128. 36, 

68.45, 67.07, 65.03, 62.52, 60.58, 33.85, 33.55, 32.24, 28.15, 25.20, 25.08, 24.47, 24.34, 16.94; 

HRMS (M+Na) calc mass 489.2101, found 489.2144. 
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Bn-GGCC. The product was a colorless liquid (4.81 g, 91%). 1H NMR (400 MHz, CDCl3) δ 

7.35-7.31 (m, 5H), 5.18 (s, 2H), 4.71 (s, 4H), 4.04 (t, 2H, J = 6.6 Hz), 3.64-3.59 (m, 2H), 2.41 (t, 

2H, J = 7.4 Hz), 2.29 (t, 2H, J = 7.4 Hz), 1.71-1.52 (m, 8H), 1.46 (t, 1H, J = 1.46), 1.43-1.33 (m, 

4H); 13C NMR δ 173.73, 172.69, 167.35, 166.95, 134.84, 128.64, 128.60, 128.41, 67.28, 64.04, 

62.59, 61.03, 60.18, 34.18, 33.52, 32.28, 28.25, 25.38, 25.25, 24.63, 24.34; HRMS (M+Na) calc 

mass 475.1944, found 475.1924. 

 

Bn-GGGC. The product was a pale yellow liquid (1.65 g, 88%). 1H NMR (400 MHz, CDCl3) δ 

7.38-7.31 (m, 5H), 5.18 (s, 2H), 4.80 (s, 2H), 4.72 (s, 2H), 4.72 (s, 2H), 3.63 (m, 2H), 2.43 (t, 

2H, J = 7.2 Hz), 1.73-1.65 (m, 2H), 1.60-1.55 (m, 2H), 1.53-1.40 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 172.85, 167.34, 166.86, 166.60, 134.82, 128.68,128.66, 128.45, 67.39, 62.58, 61.18, 

60.69, 60.15, 33.63, 32.24, 25.07, 24.46; HRMS (M+Na) calc mass 419.1318, found 419.1328. 

 

Bn-LLCC. The product was a pale yellow liquid (3.07 g, 91%). 1H NMR (400 MHz, CDCl3) δ 

7.33-7.31 (m, 5H), 5.21-5.04 (m, 4H), 4.04 (t, 2H, J = 6.4 Hz), 3.64-3.60 (m, 2H), 2.38 (dt, 1H, 

J1 = 15.2 Hz, J2 = 7.0 Hz), 2.36 (dt, 1H, J1 = 15.2 Hz, J2 = 7.0 Hz), 2.29 (t, 2H, J = 7.4 Hz), 1.70-

1.54 (m, 9H), 1.51 (d, 3H, J = 7.2 Hz), 1.47 (d, 3H, J = 6.8 Hz), 1.42-1.34 (m, 4H); 13C NMR 

(100 MHz, CDCl3) δ 173.74, 172.94, 170.31, 170.07, 135.10, 128.60, 128.48, 128.22, 69.08, 
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68.21, 67.16, 64.08, 62.64, 34.21, 33.69, 32.31, 28.29, 25.42, 25.27, 24.65, 24.37, 16.78, 16.69; 

HRMS (M+Na) calc mass 503.2257, found 503.2222. 

 

Bn-LLLC. The product was a colorless liquid (7.91 g, 83%). 1H NMR (300 MHz, CDCl3) δ 

7.37-7.27 (m, 5H), 5.20-5.05 (m, 5H), 3.64-3.59 (m, 2H), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.5 

Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 1.53 (d, 3H, J = 6.9), 1.51 (d, 3H, J = 7.2 Hz), 1.50 

(d, 3H, J = 7.2 Hz), 1.46-1.37 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 173.08, 170.43, 169.94, 

169.68, 135.04, 128.59, 128.49, 128.68, 69.20, 68.84, 68.15, 67.18, 62.53, 33.74, 32.21, 25.03, 

24.42, 16.74, 16.56; HRMS (M+Na) calc mass 461.1788, found 461.1820. 

 

Bn-GGCGC. The product was a colorless liquid (2.87 g, 79%). 1H NMR (300 MHz, CDCl3) δ 

7.38-7.28 (m, 5H), 5.17 (s, 2H), 4.71 (s, 2H), 4.70 (s, 2H), 4.57 (s, 2H), 4.13 (t, 2H, J = 6.6 Hz), 

3.64-3.59 (m, 2H), 2.43-2.38 (m, 2H), 1.73-1.62 (m, 6H), 1.60-1.54 (m, 2H), 1.46-1.33 (m, 4H); 

13C NMR (75 MHz, CDCl3) δ 172.94, 172.62, 167.97, 167.34, 166.94, 134.83, 128.62, 128.59, 

128.40, 67.27, 65.08, 62.46, 61.02, 60.51, 60.17, 33.66, 33.45, 32.18, 28.09, 25.16, 25.03, 24.45, 

24.26; HRMS (M+Na) calc mass 533.2023, found 533.2042. 

 

Bn-LLCLC. The product was a colorless liquid (2.76 g, 90%). 1H NMR (300 MHz, CDCl3) δ 

7.34-7.29 (m, 5H), 5.18 (q, 1H, J = 7.2 Hz), 5.17 (d, 1H, J = 12.3 Hz), 5.11 (d, 1H, J = 12.3 Hz), 
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5.07 (q, 1H, J = 7.2 Hz), 5.04 (q, 1H, J = 7.2 Hz), 4.13-4.08 (m, 2H), 3.65-3.59 (m, 2H), 2.42 (dt, 

1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.41 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.40 (dt, 1H, J1 = 15.9 

Hz, J2 = 7.4 Hz), 2.40 (dt, 1H, J1 = 15.6 Hz, J2 = 7.1 Hz), 1.72-1.54 (m, 8H), 1.52-1.32 (m, 4H), 

1.50 (d, 3H, J = 7.2 Hz), 1.47 (d, 3H, J = 7.2 Hz), 1.45 (d, 3H, J = 7.2 Hz); 13C NMR (75 MHz, 

CDCl3) δ 172.99, 172.88, 170.96, 170.31, 170.06, 135.07, 128.59, 128.47, 128.22, 69.06, 68.44, 

68.20, 67.14, 65.06, 62.50, 33.82, 33.62, 32.22, 28.14, 25.19, 25.05, 24.45, 24.30, 16.93, 16.77, 

16.67; HRMS (M+) calc mass 552.257063, found 552.256030. 

 

Bn-LLLLC. The product was a colorless liquid (1.48 g, 92%). 1H NMR (300 MHz, CDCl3) δ 

7.37-7.27 (m, 5H), 5.19-5.05 (m, 6H), 3.61 (t, 2H, J = 6.5 Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 

7.5 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 1.71-1.60 (m, 2H), 1.59-1.49 (m, 2H), 1.45-

1.34 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 173.08, 170.44, 169.91, 169.73, 169.57, 135.02, 

128.59, 128.50, 128.23, 69.24, 68.93, 68.82, 68.14, 67.19, 62.52, 36.58, 33.74, 32.21, 25.03, 

24.41, 16.74, 16.72, 16.63, 16.54; HRMS (M+Na) calc mass 533.1999, found 533.2021. 

2.4.3 General procedure for benzyl deprotection of diprotected oligomers.  

The diprotected oligomers were combined with 10% Pd/C (5% w/w) in dry EtOAc (0.1 M in 

substrate) and stirred overnight at RT under 1 atm H2. The reaction mixture was then filtered 

through celite and concentrated in vacuo. The concentrate was purified by chromatography over 

silica using 5-10% EtOAc in hexanes as the eluent.15 
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CC-SiR3. The product was a colorless liquid (11.43 g, 96%). 1H NMR (400 MHz, CDCl3) δ 

10.93 (br s, 1H), 4.04 (t, 2H, J = 6.6 Hz), 3.58 (t, 2H, J = 6.6 Hz), 2.34 (t, 2H, J = 7.4 Hz), 2.28 

(t, 2H, J = 7.6 Hz), 1.68-1.57 (m, 6H), 1.54-1.47 (m, 2H), 1.43-1.33 (m, 4H), 0.86 (s, 9H), 0.02 

(s, 6H); 13C NMR (100 MHz, CDCl3) δ 179.14, 173.84, 63.98, 63.00, 34.31, 33.78, 32.42, 28.29, 

25.94, 25.42, 25.40, 24.79, 24.27, 24.27, 18.33, -5.30; HRMS (M+Na) calc mass 383.2230, 

found 383.2196. 

 

GC-SiR3. The product was a colorless liquid (6.38 g, 92%). 1H NMR (300 MHz, CDCl3) δ 9.62 

(br s, 1H), 4.63 (s, 2H), 3.59 (t, 2H, J = 6.5 Hz), 2.41 (t, 2H, J = 7.5 Hz), 1.71-1.61 (m, 2H), 

1.56-1.47 (m, 2H), 1.41-1.31 (m, 2H), 0.86 (s, 9H), 0.021 (s, 6H); 13C NMR (75 MHz, CDCl3) 

δ 173.08. 173.00, 62.98, 60.01, 33.69, 32.34, 25.93, 25.27, 24.55, 18.34, -5.31; HRMS (M+Na) 

calc mass 327.1604, found 327.1585. 

 

LC-SiR3. The product was a colorless liquid (6.20 g, 91%). 1H NMR (300 MHz, CDCl3) δ 9.57 

(br s, 1H), 5.08 (q, 1H, J = 7.1Hz), 3.58 (t, 2H, J = 6.5 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.7 

Hz), 2.36 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 1.70-1.60 (m, 2H), 1.56-1.47 (m, 2H), 1.50 (d, 3H, 

J = 7.1 Hz), 1.40-1.33 (m, 2H), 0.90 (s, 9H), 0.06 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 176.30, 
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173.09, 67.90, 63.00, 33.86, 32.40, 25.94, 25.60, 25.31, 24.56, 18.34, 16.80, -5.30; HRMS 

(M+Na) calc mass 341.1760, found 341.1745. 

 

GGC-SiR3. The product was a colorless liquid (4.34 g, 83%). 1H NMR (300 MHz, CDCl3) 

δ 10.42 (br s, 1H), 4.71 (s, 2H), 4.70 (s, 2H), 3.59 (t, 2H, J = 6.3 Hz), 2.41 (t, 2H, J = 7.5 Hz), 

1.71-1.61 (m, 2H), 1.56-1.47 (m, 2H), 1.41-1.31 (m, 2H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR 

(100 MHz, CDCl3) δ 173.04, 171.70, 167.32, 63.02, 60.14, 33.69, 32.32, 25.94, 25.27, 24.55, 

18.35, -0.03, -5.31; HRMS (M+Na) calc mass 385.1659, found 385.1638. 

 

LCC-SiR3. The product was a colorless liquid (4.22 g, 78%). 1H NMR (400 MHz, CDCl3) δ 

8.30 (br s, 1H), 5.08 (q, 1H, J = 7.2 Hz), 4.04 (t, 2H, J = 6.6 Hz), 3.60 (t, 2H, J = 6.6 Hz), 2.39 

(dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.38 (dt, 1H, J1 = 16.0 Hz, J2 = 7.2), 2.28 (t, 2H, J = 7.4 Hz), 

1.71-1.58 (m, 6H), 1.55-1.48 (m, 2H), 1.50 (d, 3H, J = 7.2 Hz), 1.44-1.38 (m, 2H), 1.37-1.29 (m, 

2H), 0.87 (s, 9H), 0.03 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 175.09, 173.92, 172.87, 68.00, 

64.08, 63.16, 34.35, 33.66, 32.27, 28.28, 25.94, 25.43, 24.77, 24.38, 18.37, 16.80, -5.30; HRMS 

(M+Na) calc mass 455.2441, found 455.2403. 

 

GCGC-SiR3. The product was a colorless liquid (6.10 g, 90%). 1H NMR (300 MHz, CDCl3) 

δ 8.96 (br s, 1H), 4.63 (s, 2H), 4.58 (s, 2H), 4.14 (t, 2H, J = 6.6 Hz), 3.59 (t, 2H, J = 6.5 Hz), 
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2.41 (t, 2H, J = 7.2 Hz), 2.40 (t, 2H, J = 7.5 Hz), 1.73-1.60 (m, 6H), 1.54-1.45 (m, 2H), 1.43-

1.33 (m, 4H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.25, 172.73, 172.00, 

167.98, 65.09, 63.04, 60.60, 60.07, 33.79, 33.49, 32.32, 28.13, 25.94, 25.29, 25.17, 24.61, 24.32, 

18.35, -5.31; HRMS (M+Na) calc mass 499.2339, found 499.2328. 

 

LCLC-SiR3. The product was a colorless liquid (4.15 g, 72%). 1H NMR (300 MHz, CDCl3) δ 

7.00 (br s, 1H), 5.09 (q, 1H, J = 7.0 Hz), 5.04 (q, 1H, J = 7.0 Hz), 4.13 (dt, 1H, J1 = 10.8 Hz, J2 = 

6.5 Hz), 4.11 (dt, 1H, J1 = 10.8 Hz, J2 = 6.3 Hz), 3.59 (t, 2H, J = 6.5 Hz), 2.40-2.35 (m (dt), 1H), 

2.38 (dt, 1H, J1 = 12.3 Hz, J2 = 7.2 Hz), 2.37 (dt, 1H, J1 = 10.8 Hz, J2 = 7.6 Hz), 2.36 (dt, 1H, J1 

= 7.4 Hz, J2 = 15.6 Hz), 1.72-1.59 (m, 6H), 1.56-1.44 (m, 2H), 1.50 (d, 3H, J = 7.0 Hz), 1.45 (d, 

3H, J = 7.0 Hz), 1.42-1.30 (m, 4H); 13C NMR (75 MHz, CDCl3) 175.03, 173.35, 172.84, 170.93, 

68.52, 68.03, 65.07, 63.05, 33.96, 33.66, 32.35, 28.17, 25.94, 25.32, 25.19, 24.61, 24.34, 18.35, 

16.94, 16.78, -5.31; HRMS (M+Na) calc mass 527.2652, found 527.2672. 

 

LLLC-SiR3. The product was a colorless liquid (6.92 g, 69%). 1H NMR (300 MHz, CDCl3) δ 

9.34 (br s, 1H), 5.16 (q, 1H, J = 7.2 Hz), 5.13 (q, 1H, J = 7.2 Hz), 5.08 (q, 1H, J = 7.2 Hz), 3.58 

(t, 2H, J = 6.5 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.7 Hz), 2.36 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 

Hz), 1.70-1.59 (m, 2H), 1.57-1.46 (m, 5H), 1.56 (d, 3H, J = 7.2 Hz), 1.53 (d, 3H, J = 7.2 Hz), 

1.39-1.30 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 175.21, 173.22, 170.42, 169.68, 68.77, 68.14, 

63.01, 33.84, 32.36, 25.93, 25.27, 24.57, 18.33, 16.74, 16.64, 16.58, -5.31; HRMS (M+Na) calc 

mass 485.2183, found 485.2216.  
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2.4.4 General procedure for benzyl deprotection of benzyl protected oligomers.  

The benzyl protected oligomers were combined with 10% Pd/C (5% w/w) in dry EtOAc and 

stirred overnight at RT under 1 atm H2. The reaction mixture was then filtered through celite and 

concentrated in vacuo. The concentrate was redissolved in EtOAc, dried over MgSO4 and 

filtered through celite. The filtrate was then concentrated in vacuo. No further purification was 

needed. 

 

GC. The product was a colorless solid (0.61 g, 74%). 1H NMR (300 MHz, CDCl3) δ 6.03 (br s, 

2H), 4.63 (s, 2H), 3.65 (t, 2H, J = 6.0 Hz), 2.42 (t, 2H, J = 7.1 Hz), 1.75-1.65 (m, 2H), 1.63-1.54 

(m, 2H), 1.51-1.40 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 173.05, 171.40, 62.12, 60.11, 33.72, 

31.64, 24.48, 24.31; HRMS (M+Na) calc mass 213.0739, found 213.0757. 

 

LC. The product was a colorless liquid (0.82 g, 97%). 1H NMR (300 MHz, CDCl3) δ 6.66 (br s, 

2H), 5.09 (q, 1H, J = 7.1 Hz), 3.64 (m, 2H), 2.40 (dt, 1H, J1 = 15.3 Hz, J2 = 7.2 Hz), 2.37 (dt, 

1H, J1 = 15.3 Hz, J2 = 7.1 Hz), 1.72-1.62 (m, 2H), 1.59-1.47 (m, 2H), 1.50 (d, 3H, J = 7.1 Hz), 

1.45-1.37 (m, 2H);  13C NMR (75 MHz, CDCl3) δ 174.86, 173.21, 68.07, 62.18, 33.82, 31.71, 

24,58, 24.30, 16.77; HRMS (M+Na) calc mass 227.0895, found 227.0874. 
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CGC. The product was a colorless solid (0.45 g, 94%). 1H NMR (300 MHz, CDCl3) δ 6.83 (br s, 

2H), 4.56 (s, 2H), 4.13 (t, 2H, J = 6.5 Hz), 3.61 (t, 2H, J = 6.5 Hz), 2.40 (t, 2H, J = 7.4 Hz), 2.31 

(t, 2H, J = 7.4 Hz), 1.71-1.51 (m, 8H), 1.44-1.32 (m, 4H); 13C NMR (75 MHz, CDCl3) δ 178.57, 

173.02, 168.01, 65.11, 62.33, 60.54, 33.73, 33.61, 31.94, 28.08, 25.23, 24.96, 24.37, 

24.15; ΗRMS calc mass 304.1522, found 304.1516. 

 

GGC. The product was a colorless solid (1.22 g, 91%). 1H NMR (300 MHz, DMSO) δ 13.22 (br 

s, 1H), 4.75 (s, 2H), 4.64 (s, 2H), 4.39 (br s, 1H), 3.37 (t, 2H, J = 6.3 Hz), 2.38 (t, 2H, J = 7.4 

Hz), 1.60-1.50 (m, 2H), 1.46-1.28 (m, 4H);  13C NMR (75 MHz, DMSO) δ 172.36, 168.61, 

167.51, 61.02, 60.52, 60.07, 33.07, 32.13, 24.91, 24.29; HRMS (M+Na) calc mass 271.0794, 

found 271.0821. 

 

LGC. The product was a colorless liquid (2.14 g, 95%). 1H NMR (300 MHz, CDCl3) δ 6.93 (br 

s, 2H), 5.16 (q, 1H, J = 7.2 Hz), 4.72 (d, 1H, J = 15.9 Hz), 4.63 (d, 1H, J = 15.9 Hz), 3.63 (t, 2H, 

J = 6.5 Hz), 2.42 (t, 2H, J = 7.2 Hz), 1.72-1.62 (m, 2H), 1.60-1.49 (m, 2H), 1.52 (d, 3H, J = 7.2 

Hz), 1.47-1.35 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 173.84, 173.08, 167.48, 69.10, 62.41, 

60.34, 33.57, 31.75, 24.88, 24.34, 16.71; ΗRMS (M+) calc mass 262.105253, found 262.104851. 

HO

O
O

O
O

O
OH5 5

HO
O

O

O
O

O
OH5

HO
O

O

O
O

O
OH5



 51 

 

CLC. The product was a colorless liquid (1.06 g, 86%). 1H NMR (300 MHz, CDCl3) δ 5.93 (br 

s, 2H), 5.04 (q, 1H, J = 7.0 Hz), 4.12 (t, 2H, J = 6.5 Hz), 3.63 (t, 2H, J = 6.5 Hz), 2.38 (dt, 1H, J1 

= 15.9 Hz, J2 = 7.5 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 2.33 (t, 2H, J = 7.5 Hz), 1.71-

1.52 (m, 8H), 1.46-1.33 (m, 4H), 1.45 (d, 3H, J = 7.0 Hz);  13C NMR (75 MHz, CDCl3) δ 178.42, 

173.09, 171.02, 68.50, 65.07, 62.43, 33.80, 33.73, 32.01, 28.15, 25.27, 24.98, 24.36, 24.20, 

16.92; HRMS (M+Na) calc mass 341.1576, found 341.1573. 

 

GLC. The product was a colorless liquid (1.19 g, 95%). 1H NMR (300 MHz, CDCl3) δ 7.42 (br 

s, 2H), 5.13 (q, 1H, J = 7.2 Hz), 4.73 (d, 1H, J = 16.2 Hz), 4.56 (d, 1H, J = 16.2 Hz), 3.61 (t, 2H, 

J = 6.5 Hz), 2.38 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 2.36 (dt, 1H, J1 = 15.9 Hz, J2 = 7.1 Hz), 

1.68-1.58 (m, 2H), 1.56-1.49(m, 2H), 1.51 (d, 3H, J = 7.2 Hz), 1.45-1.32 (m, 2H);  13C NMR (75 

MHz, CDCl3) δ 173.24, 170.46, 170.38, 68.23, 62.33, 60.74, 33.64, 31.60, 24.85, 24.26, 16.74; 

HRMS (M+Na) calc mass 285.0950, found 285.0974. 

 

LLC. The product was a colorless liquid (2.08 g, 84%). 1H NMR (300 MHz, CDCl3) δ 6.62 (br 

s, 2H), 5.15 (q, 1H, J = 7.2 Hz), 5.09 (q, 1H, J = 7.1 Hz), 3.63 (t, 2H, J = 6.3 Hz), 2.39 (dt, 1H, 

J1 = 15.6 Hz, J2 = 7.2 Hz), 2.38 (dt, 1H, J1 = 15.6 Hz, J2 = 6.9 Hz), 1.71-1.60 (m, 2H), 1.58-1.48 

(m, 8H), 1.45-1.35 (m, 2H);  13C NMR (75 MHz, CDCl3) δ 174.09, 173.24, 170.40, 68.84, 68.32, 
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62.44, 33.66, 31.81, 24.89, 24.32, 16.70 (2); HRMS (M+Na) calc mass 299.1107, found 

299.1098. 

 

LRLC. The product was a colorless liquid (1.41 g, 98%). 1H NMR (400 MHz, CDCl3) δ 6.97 (s, 

2H), 5.16 (q, 1H, J = 7.1 Hz), 5.11 (q, 1H, J = 7.1 Hz), 3.63 (t, 2H, J = 6.4 Hz), 2.39 (dt, 1H, J1 = 

15.6 Hz, J2 = 7.2 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.0 Hz), 1.70-1.62 (m, 2H), 1.60-1.51 (m, 

2H), 1.50 (d, 3H, J = 7.2 Hz), 1.49 (d, 3H, J = 7.2 Hz), 1.43-13.35 (m, 2H); 13C NMR (100 MHz, 

CDCl3) δ 173.77, 173.06, 170.30, 69.07, 68.30, 62.42, 33.76, 31.77, 24.94, 24.33, 16.77, 16.69; 

HRMS (M+Na) calc mass 299.1107, found 299.1096. 

 

LracLC. The product was a colorless liquid (2.03 g, 95%). 1H NMR (400 MHz, CDCl3) δ 6.62 (s, 

4H), 5.173 (q, 1H, J = 7.1 Hz), 5.168 (q, 1H, J = 7.1 Hz), 5.12 (q, 1H, J = 7.1 Hz), 5.10 (q, 1H, J 

= 7.1 Hz), 3.64 (t, 2H, J = 6.2 Hz), 3.637 (t, 2H, J = 6.4 Hz), 2.46-2.32 (m, 4H), 1.71-1.62 (m, 

4H), 1.59-1.49 (m, 4H), 1.53 (d, 3H, J = 6.8 Hz), 1.52 (d, 3H, J = 7.2 Hz), 1.51 (d, 3H, J = 6.8 

Hz), 1.50 (d, 3H, J = 6.8 Hz), 1.46-1.36 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 174.06, 173.79, 

173.20, 173.05, 170.38, 170.33, 69.07, 68.79, 68.34, 68.30, 62.51, 33.78, 33.67, 31.87, 31.83, 

24.95, 24.93, 24.34, 16.78, 16.73, 16.70; HRMS (M+Na) calc mass 299.1107, found 299.1108. 
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GGCC. The product was a white solid (3.12 g, 92%). 1H NMR (400 MHz, CDCl3) δ 6.35 (br s, 

2H), 4.71 (s, 2H), 4.68 (s, 2H), 4.05 (t, 2H, J = 6.4 Hz), 3.65 (t, 2H, J = 6.6 Hz), 2.36 (t, 2H, J = 

7.2 Hz), 2.30 (t, 2H, J = 7.6 Hz), 1.72-1.52 (m, 8H), 1.46-1.32 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ 174.12, 172.88, 170.11, 167.35, 64.20, 62.62, 60.75, 60.21, 34.17, 33.56, 31.77, 28.18, 

25.39, 25.13, 24.52, 24.39; HRMS (M+Na) calc mass 385.1475, found 385.1493. 

 

GGGC. The product was a colorless liquid (0.84 g, 82%). 1H NMR (400 MHz, CDCl3) δ 6.36 

(br s, 2H), 4.79 (s, 2H), 4.72 (s, 2H), 4.70 (s, 2H), 3.65 (t, 2H, J = 6.4 Hz), 2.43 (t, 2H, J = 7.2 

Hz), 1.72-1.67 (m, 2H), 1.60-1.53 (m, 2H), 1.45-1.37 (m, 2H); 13C NMR (100 MHz, CDCl3) 

δ 172.99, 170.20, 167.42, 166.65, 62.56, 60.93, 60.79, 60.20, 33.58, 31.79, 24.85, 24.40; HRMS 

(M+Na) calc mass 329.0849, found 329.0854. 

 

GCLC. The product was a colorless liquid (1.71 g, 96%). 1H NMR (300 MHz, CDCl3) δ 5.54 

(br s 2H), 5.06 (q, 1H, J = 7.1 Hz), 4.62 (s, 2H), 4.13 (dt, 1H, J1 = 10.8 Hz J2 = 6.5 Hz), 4.12 (dt, 

1H, J1 = 10.8 Hz, J2 = 6.3 Hz), 3.66 (t, 2H, J = 6.5 Hz), 2.41 (t, 2H, J = 7.5 Hz), 2.39 (dt, 1H, J1 

= 15.6 Hz, J2 = 7.2 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 1.73-1.54 (m, 8H), 1.47-1.36 

(m, 4H), 1.46 (d, 3H, J = 7.1 Hz);  13C NMR (75 MHz, CDCl3) δ 173.27, 172.84, 68.62, 65.17, 
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62.45, 60.28, 33.85, 33.57, 31.81, 28.16, 25.10, 24.88, 24.39, 16.90; HRMS (M+Na) calc mass 

399.1631, found 399.1662. 

 

LLCC. The product was a colorless liquid (2.05 g, 95%). 1H NMR (400 MHz, CDCl3) δ 6.13 (br 

s, 2H), 5.12 (q, 1H, J = 7.1 Hz), 5.08 (q, 1H, J = 7.1 Hz), 4.10-4.00 (m, 2H), 3.64 (t, 2H, J = 6.6 

Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.37 (dt, 1H, J1 = 16.0 Hz, J2 = 7.2), 2.30 (t, 2H, J 

= 7.4 Hz), 1.70-1.55 (m, 8H), 1.52 (d, 6H, J = 6.8 Hz), 1.45-1.32 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ 174.05, 173.82, 173.08, 170.24, 68.79, 68.28, 64.18, 62.64, 34.16, 33.75, 31.86, 28.22, 

25.42, 25.18, 24.54, 24.45, 16.69 (2); HRMS (M+Na) calc mass 413.1788, found 413.1789. 

 

LLLC. The product was a colorless liquid (3.02 g, 95%). 1H NMR (300 MHz, CDCl3) δ 6.19 (br 

s, 2H), 5.21-5.07 (m, 3H), 3.62 (t, 2H, J = 6.5 Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 2.37 

(dt, 1H, J1 = 15.9 Hz, J2 = 7.1 Hz), 1.71-1.61 (m, 2H), 1.58-1.50 (m, 2H), 1.56 (d, 3H, J = 7.2 

Hz), 1.53 (d, 3H, J = 6.9 Hz), 1,52 (d, 3H, J = 7.2 Hz), 1.44-1.37 (m, 2H);  13C NMR (75 MHz, 

CDCl3) δ 174.19, 173.13, 170.41, 169.63, 68.93, 68.86, 68.21, 62.52, 33.73, 31.93, 24.90, 24.40, 

16.75, 16.63 (2); HRMS (M+Na) calc mass 371.1318, found 371.1289. 

 

GGCGC. The product was a colorless solid (1.13 g, 60%). 1H NMR (300 MHz, CDCl3) δ 5.16 

(br s, 2H), 4.71 (s, 2H), 4.68 (s, 2H), 4.60 (s, 2H), 4.15 (t, 2H, J = 6.6 Hz), 3.67 (t, 2H, J = 6.3 
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Hz), 2.42 (t, 4H, J = 7.2 Hz), 1.74-1.63 (m, 6H), 1.61-1.54 (m, 2H), 1.49-1.37 (m, 4H);  13C 

NMR (75 MHz, CDCl3) δ 173.20, 172.80, 169.60, 168.24, 167.36, 65.27, 62.37, 60.82, 60.64, 

60.28, 33.68, 33.55, 31.66, 28.02, 25.03, 24.71, 24.34, 24.32; HRMS (M+Na) calc mass 

443.1529, found 443.1519. 

 

LLCLC. The product was a colorless liquid (1.63 g, 90%). 1H NMR (300 MHz, CDCl3) δ 5.96 

(br s, 2H), 5.14 (q, 1H, J = 7.2 Hz), 5.06 (q, 1H, J = 7.2 Hz), 5.04 (q, 1H, J = 7.2 Hz), 4.12 (t, 

2H, J = 6.6 Hz), 3.64 (t, 2H, J = 6.5 Hz), 2.46-2.29 (m (pair of dt, 2H), 2.39 (dt, 1H, J1 = 15.6 

Hz, J2 = 7.4 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 1.71-1.51 (m, 14H), 1.49-1.35 (m, 4H), 

1.45 (d, 3H, J = 7.2 Hz); 13C NMR (75 MHz, CDCl3) δ 

173.75, 173.16, 172.98, 171.10, 170.23, 68.79, 68.56, 68.28, 65.16, 62.44, 33.81, 33.67, 31.85, 2

8.10, 25.12, 24.88, 24.38, 24.33, 16.91, 16.71 (2); ΗRMS (M+Na) calc mass 485.1999, found 

485.1994. 

 

LLLLC. The product was a colorless liquid (1.44 g, 93%). 1H NMR (300 MHz, CDCl3) δ 5.86 

(br s, 2H), 5.20-5.06 (m, 4H), 3.63 (t, 2H, J = 6.5 Hz), 2.39 (dt, 1H, J1 = 15.6 Hz, J2 = 7.4 Hz), 

2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.2 Hz), 1.71-1.61 (m, 2H), 1.58-1.49 (m, 2H), 1.57 (d, 3H, J = 

7.2 Hz), 1.55 (d, 3H, J = 7.2 Hz), 1.53 (d, 3H, J = 7.2 Hz), 1.52 (d, 3H, J = 7.5 Hz), 1.44-1.34 

(m, 2H);  13C NMR (75 MHz, CDCl3) δ 174.27, 173.12, 170.43, 169.70, 169.55, 68.96, 68.88, 
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68.19, 62.54, 33.73, 31.95, 24.93, 24.37, 16.75, 16.65 (2), 16.59; HRMS (M+Na) calc mass 

443.1529, found 443.1571. 

2.4.5 General procedure for the polymerization of the sequenced segmers 

The polymerization procedure using DIC/DPTS was adapted from Stupp and coworkers.82 Under 

N2, the unprotected segmer (1 equiv.) and DPTS (0.2 equiv.) were dissolved in CH2Cl2 (3M with 

respect to segmer unless otherwise noted) and cooled to 0 ºC. DIC (1.5 equiv.) was added 

dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated 

twice from MeOH and then dried under vacuum.  

 

Poly GC. The product was a white solid (0.57 g, 57%). 1H NMR (300 MHz, CDCl3) δ 4.58 (s, 

2H), 4.14 (t, 2H, J = 6.5 Hz), 2.41 (t, 2H, J = 7.4 Hz), 1.73-1.61 (m, 4H), 1.45-1.35 (m, 2H); 13C 

NMR (75 MHz, CDCl3) δ 172.73, 167.87, 65.10, 60.53, 33.53, 28.14, 25.21, 24.33; SEC (THF): 

Mn – 26.4 kDa, Mw – 37.5 kDa, PDI – 1.42. 

 

Poly LC. The product was a colorless glass (0.37 g, 50%). 1H NMR (300 MHz, CDCl3) δ 5.04 

(q, 1H, J = 7.1 Hz), 4.12 (dt, 1H, J1 = 10.8 Hz, J2 = 6.8 Hz), 4.11 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 

Hz), 2.38 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 1.72-1.60 

(m, 4H), 1.46 (d, 3H, J = 7.1 Hz), 1.42-1.33 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.76, 
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170.85, 68.43, 65.05, 33.70, 28.16, 25.23, 24.33, 16.95; SEC (THF): Mn – 37.9 kDa, Mw – 53.9 

kDa, PDI – 1.42. 

 

Poly CGC. The polymerization was carried out in DMF. The product was a white, tacky glass 

(1.19 g, 56%). 1H NMR (300 MHz, CDCl3) δ 4.57 (s, 2H), 4.12 (t, 2H, J = 6.6 Hz), 4.03 (t, 2H, J 

= 6.6 Hz), 2.40 (t, 2H, J = 7.4 Hz), 2.27 (t, 2H, J = 7.5), 1.72-1.56 (m, 8H), 1.43-1.29 (m, 4H); 

13C NMR (75 MHz, CDCl3) δ 173.44, 172.76, 167.86, 65.11, 64.07, 60.50, 34.00, 33.56, 28.25, 

25.36, 25.32, 24.44, 24.37; SEC (THF): Mn – 18.3 kDa, Mw – 25.8 kDa, PDI – 1.41. 

 

Poly GGC. The polymerization was carried out in a 3:1 mixture of CH2Cl2 and DMF. The 

product was an off white, tacky glass (0.80 g, 72%). 1H NMR (300 MHz, CDCl3) δ 4.70 (s, 2H), 

4.65 (s, 2H), 4.14 (t, 2H, J = 6.6 Hz), 2.41 (t, 2H, J = 7.4 Hz), 1.72-1.60 (m, 4H), 1.44-1.34 (m, 

2H); 13C NMR (75 MHz, CDCl3) δ 172.59, 167.34, 167.08, 65.32, 61.02, 60.17, 33.43, 28.06, 

25.15, 24.25, 23.46 (DIU); SEC (THF): Mn – 24.9 kDa, Mw – 36.2 kDa, PDI – 1.45. 

 

Poly LGC. The product was an off white tacky glass (1.34 g, 68%). 1H NMR (300 MHz, CDCl3) 

δ 5.12 (q, 1H, J = 7.0 Hz), 4.71 (d, 1H, J = 16.2 Hz), 4.61 (d, 1H, J = 16.2), 4.11 (dt, 1H, J1 = 

10.8 Hz, J2 = 6.6 Hz), 4.11 (dt, 1H, J1 = 10.8 Hz, J2 = 6.5 Hz), 2.40 (t, 2H, J = 7.4 Hz), 1.71-1.59 
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(m, 4H), 1.47 (d, 3H, J = 7.0 Hz), 1.43-1.32 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.58, 

170.03, 167.24, 69.27, 65.25, 60.25, 33.43, 28.07, 25.16, 24.26, 16.85; SEC (THF): Mn – 27.3 

kDa, Mw – 39.6 kDa, PDI – 1.45. 

 

Poly CLC. The product was a colorless glass (0.42 g, 44%). 1H NMR (300 MHz, CDCl3) δ 5.04 

(q, 1H, J = 7.0 Hz), 4.11 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 4.10 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 

Hz), 4.03 (t, 2H, J = 6.8 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.7 Hz), 2.36 (dt, 1H, J1 = 15.9 Hz, 

J2 = 7.4 Hz), 2.28 (t, 2H, J = 7.5 Hz), 1.71-1.57 (m, 8H), 1.45 (d, 3H, J = 7.0 Hz), 1.42-1.30 (m, 

4H); 13C NMR (75 MHz, CDCl3) δ 173.43, 172.77, 170.83, 68.43, 65.05, 64.11, 34.05, 33.75, 

28.30, 25.41, 25.35, 24.48, 24.48, 24.40, 16.95; SEC (THF): Mn – 26.9 kDa, Mw – 37.1 kDa, PDI 

– 1.38. 

 

Poly GLC. The product was an off white tacky glass (0.38 g, 51%). 1H NMR (300 MHz, CDCl3) 

δ 5.13 (q, 1H, J = 7.2 Hz), 4.74 (d, 1H, J = 15.9 Hz), 4.53 (d, 1H, J = 15.9 Hz), 4.13 (t, 2H, J = 

6.6 Hz), 2.38 (dt, 1H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 1.70-

1.60 (m, 4H), 1.54 (d, 3H, J = 7.2 Hz), 1.43-1.33 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.70, 

170.28, 167.18, 68.16, 65.26, 60.91, 33.58, 28.08, 25.16, 24.25, 16.35; SEC (THF): Mn – 29.4 

kDa, Mw – 42.3 kDa, PDI – 1.44. 

O
O

O
O

O

O

5
n5

H

O
O

O
O

O

O

n5
H



 59 

 

Poly LLC. The product was a colorless glass (1.19 g, 63%). 1H NMR (300 MHz, CDCl3) 

δ 5.11 (q, 1H, J = 7.2 Hz), 5.08 (q, 1H, J = 7.2 Hz), 4.11 (t, 1H, J = 6.6 Hz), 4.10 (t, 1H, J = 6.6 

Hz), 2.38 (t, 1H, J = 7.5 Hz), 2.36 (t, 1H, J = 7.4 Hz), 1.70-1.58 (m, 4H), 1.53 (d, 3H, J = 7.2 

Hz), 1.49 (d, 3H, J = 7.2 Hz), 1.45-1.32 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 172.78, 170.26, 

170.22, 69.08, 68.22, 65.22, 33.63, 28.16, 25.20, 24.30, 16.84, 16.77; SEC (THF): Mn – 30.8 

kDa, Mw – 43.8 kDa, PDI – 1.4. 

 

Poly LRLC. The product was a colorless liquid (0.51 g, 40%). 1H NMR (600 MHz, CDCl3) 

δ 5.13 (q, 1H, J = 7.0 Hz), 5.09 (q, 1H, J = 7.2 Hz), 4.12 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 4.10 

(dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 2.37 (dt, 1H, J1 = 15.6 Hz, J2 = 7.2 Hz), 2.36 (dt, 1H, J1 = 

15.6 Hz, J2 = 7.2 Hz), 1.68-1.62 (m, 4H), 1.50 (d, 3H, J = 7.2 Hz), 1.46 (d, 3H, J = 7.2 Hz)1.40-

1.35 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 172.55, 170.05, 170.00, 69.17, 68.34, 65.22, 33.66, 

28.11, 25.23, 24.33, 16.89, 16.86; SEC (THF): Mn – 30.7 kDa, Mw – 41.5 kDa, PDI – 1.35. 

 

Poly LracLC. The product was a colorless liquid (1.08 g, 58%). 1H NMR (600 MHz, CDCl3) 

δ 515-5.057 (m, 4H), 4.15-4.07 (m, 4H), 2.38 (dt, 2H, J1 = 15.6 Hz, J2 = 6.9 Hz), 2.36 (dt, 2H, J1 

= 15.0 Hz, J2 = 6.9 Hz), 1.68-1.61 (m, 8H), 1.53 (d, 3H, J = 6.6 Hz), 1.50 (d, 3H, J = 6.6 Hz), 

O
O

O
O

O

O

n5
H

O
O

O
O

O

O

n5
H

O
O

O
O

O

O

n5
H



 60 

1.49 (d, 3H, J = 6.0 Hz), 1.46 (d, 3H, J = 7.2 Hz), 1.40-1.35 (m, 4H); 13C NMR (150 MHz, 

CDCl3) δ 172.83, 172.80, 172.54, 172.50, 170.27, 170.22, 170.04, 170.00, 69.18, 69.05, 68.34, 

68.20, 65.24, 65.22, 65.19, 33.66, 33.61, 28.14, 28.11, 25.23, 25.22, 25.20, 25.18, 24.32, 24.29, 

24.28, 16.89, 16.86, 16.84, 16.76; SEC (THF): Mn – 25.7 kDa, Mw – 33.6 kDa, PDI – 1.31. 

 

Poly GGCC. The product was a an offwhite solid (2.46 g, 85%). 1H NMR (400 MHz, CDCl3) δ 

4.70 (s, 2H), 4.65 (s, 2H), 4.14 (t, 2H, J = 6.6 Hz), 4.03 (t, 2H, J = 6.6 Hz), 2.41 (t, 2H, J = 7.6 

Hz), 2.28 (t, 2H, J = 7.6 Hz), 1.71-1.58 (m, 8H), 1.42-1.31 (m, 4H); 13C NMR (100 MHZ, 

CDCl3) δ 173.46, 172.64, 167.34, 167.08, 65.37, 64.08, 61.01, 60.17, 33.99, 33.50, 28.25, 28.12, 

25.36, 25.31, 24.43, 24.33; SEC (THF): Mn – 33.8 kDa, Mw – 54.0 kDa, PDI – 1.60. 

 

Poly GGGC. The product was a white solid (0.63 g, 83%). 1H NMR (400 MHz, CDCl3) δ 4.79 

(s, 2H), 4.71 (s, 2H), 4.66 (s, 2H), 4.14 (t, 2H, J = 6.6 Hz), 2.41 (t, 2H, J = 7.4), 1.71-1.61 (m, 

4H), 1.43-1.35 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 172.59, 167.24, 166.96, 166.59, 65.37, 

61.17, 60.66, 60.15, 33.43, 28.07, 25.16, 24.25; SEC (THF): Mn – 22.4 kDa, Mw – 32.4 kDa, PDI 

– 1.44. 
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Poly GCLC. The product was a colorless glass (0.81 g, 51%). 1H NMR (300 MHz, CDCl3) 

δ 5.04 (q, 1H, J = 7.1 Hz), 4.58 (s, 2H), 4.14 (t, 2H, J = 6.5 Hz), 4.12 (t, 2H, J = 6.3 Hz), 2.41 (t, 

2H, J = 7.5 Hz), 2.38 (dt, 1H, J1 = 15.9 Hz, J = 7.8 Hz), 2.37 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 

1.73-1.60 (m, 8H), 1.45 (d, 3H, J = 7.1 Hz), 1.45-1.34 (m, 4H); 13C NMR (75 MHz, CDCl3) 

δ 172.73, 172.71, 68.47, 65.12, 65.03, 60.55, 33.71, 33.57, 28.18, 25.25, 25.24, 24.35, 16.95; 

SEC (THF): Mn – 20.6 kDa, Mw – 28.6 kDa, PDI – 1.39. 

 

Poly LLCC. The product was a colorless glass (1.28 g, 67%). 1H NMR (400 MHz, CDCl3) δ 

5.13-5.04 (m, 2H), 4.14-4.07 (m, 2H), 4.02 (t, 2H, J = 6.4 Hz), 2.37 (t, 1H, J1 = 15.6 Hz, J2 = 6.8 

Hz), 2.36 (dt, 1H, J1 = 15.6 Hz, J2 = 6.6 Hz), 2.26 (t, 2H, J = 7.4 Hz), 1.68-1.57 (m, 8H), 1.52 (d, 

3H, J = 7.2 Hz), 1.48 (d, 3H, J = 7.2 Hz), 1.41-1.30 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 

173.41, 172.84, 170.26, 170.20, 69.04, 68.16, 65.20, 64.09, 33.99, 33.63, 28.25, 28.14, 25.35, 

25.27, 24.43, 24.33, 16.81, 16.74; SEC (THF): Mn – 40.6 kDa, Mw – 65.7 kDa, PDI – 1.62; Anal. 

calcd for HO-(C11H10O4)n-H: C, 58.05; H, 7.58. Found: C, 58.12; H, 7.47. 

 

Poly LLLC. The product was an off white, tacky glass (1.69 g, 59%). 1H NMR (300 MHz, 

CDCl3) δ 5.14 (q, 1H, J = 7.2 Hz), 5.09 (q, 1H, J = 7.2 Hz), 5.07 (q, 1H, J = 7.2 Hz), 4.10 (dt, 
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1H, J1 = 10.5 Hz, J2 = 6.8 Hz), 4.09 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 2.37 (dt, 1H, J1 = 15.9 

Hz, J2 = 7.5 Hz), 2.35 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 1.69-1.59 (m, 4H), 1.56 (d, 3H, J = 7.2 

Hz), 1.52 (d, 3H, J = 7.2 Hz), 1.47 (d, 3H, J = 7.2 Hz), 1.43-1.31 (m, 2H); 13C NMR (75 MHz, 

CDCl3) δ 172.80, 170.32, 170.08, 169.65, 69.17, 68.80, 68.17, 65.23, 33.56, 28.09, 25.13, 24.25, 

16.78, 16.72, 16.63; SEC (THF): Mn – 24.0 kDa, Mw – 34.9 kDa, PDI – 1.45. 

 

Poly GGCGC. The product was a white semisolid (0.68 g, 65%). 1H NMR (300 MHz, CDCl3) 

δ 4.70 (s, 2H), 4.66 (s, 2H), 4.57 (s, 2H), 4.15 (t, 2H, J = 6.5 Hz), 4.13 (t, 2H, J = 6.5 Hz), 2.413 

(t, 2H, J = 7.5 Hz), 2.407 (t, 2H, J = 7.4 Hz), 1.72-1.60 (m, 8H), 1.44-1.34 (m, 4H); 13C NMR 

(75 MHz, CDCl3) δ 172.73, 172.60, 167.87, 167.34, 167.09, 65.33, 65.08, 61.03, 60.53, 60.18, 

33.51, 33.46, 28.12, 28.09, 25.18, 24.31, 24.28; SEC (THF): Mn – 21.7 kDa, Mw – 31.7 kDa, PDI 

– 1.46. 

 

Poly LLCLC. The product was a colorless, tacky glass (1.11 g, 73%). 1H NMR (300 MHz, 

CDCl3) δ 5.19-4.99 (m, 3H), 4.17 (m, 4H), 2.46-2.28 (m, 4H), 1.71-1.59 (m, 8H), 1.53 (d, 3H, J 

= 6.9 Hz), 1.49 (d, 3H, J = 6.9 Hz), 1.45 (d, 3H, J = 6.6 Hz), 1.41-1.33 (m , 4H); 13C NMR (75 

MHz, CDCl3) δ 172.83, 172.74, 170.84, 170.28, 170.23, 69.06, 68.44, 68.20, 65.22, 65.05, 

33.68, 33.61, 28.15, 25.20, 24.32, 24.29, 16.94, 16.84, 16.76; SEC (THF): Mn – 49.1 kDa, Mw – 

70.1 kDa, PDI – 1.43. 
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Poly LLLLC. The product was a white, tacky glass (0.89 g, 67%). 1H NMR (300 MHz, CDCl3) δ 5.18-

5.03 (m, 4H), 4.10 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 4.09 (dt, 1H, J1 = 10.8 Hz, J2 = 6.6 Hz), 2.37 (dt, 1 

H, J1 = 15.9 Hz, J2 = 7.5 Hz), 2.35 (dt, 1H, J1 = 15.9 Hz, J2 = 7.4 Hz), 1.69-1.59 (m, 4H), 1.57 (d, 3H, J = 

6.9 Hz), 1.56 (d, 3H, J = 7.2 Hz), 1.53 (d, 3H, J = 7.2 Hz), 1.48 (d, 3H, J = 7.2 Hz), 1.41-1.31 (m, 2H); 

13C NMR (75 MHz, CDCl3) δ 172.80, 170.34, 170.07, 169.73, 169.55, 69.22, 68.93, 68.81, 68.17, 65.25, 

33.57, 28.10, 25.14, 24.26, 16.78, 16.74, 16.64 (2); SEC (THF): Mn – 35.8 kDa, Mw – 50.2 kDa, PDI – 

1.40. 
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3.0  DETERMINING SEQUENCE FIDELITY IN REPEATING SEQUENCE 

POLY(LACTIC-CO-GLYCOLIC ACIDS) 

The work described in this chapter includes contributions from Jian Li, Han H. Liu, and Michael 

A. Washington and Joseph A. Giesen and Scott M. Grayson from Tulane University and is 

accepted for publication 

3.1 INTRODUCTION 

3.1.1 Sequence and effects on properties 

Sequence control in synthetic polymers is relatively underdeveloped despite the overwhelming 

evidence from biological polymers and hybrid polymers such as peptide conjugates or DNA-

conjugates that sequence can be used to tune properties.1,2,41,42,100,101 The significant synthetic 

challenges in controlling monomer sequence are responsible for the paucity of data about the 

influence of sequence on polymer properties.7,8 Most of what is known about the effect of 

sequence on copolymer properties comes from the study of polymers with a more synthetically 

accessible alternating sequence, random copolymers with varying average block lengths, and 

block/multi-block copolymers.46-50 That being said, the dramatic differences in properties that 
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can be accessed within this limited list of motifs suggests that sequence engineering at a 

monomer-by-monomer level has a tremendous potential for impact. 

There have recently been increasing efforts to explore sequence in copolymers.7,8 There have 

been, for example, efforts to introduce and improve synthetic approaches to creating monomer 

order including methods based on chain-growth,51-54,102,103 step-growth,15-17,53,55-61 templating,62-65 

ring-opening,21,30,104-106 and linear iterative processes.107-115  Researchers have also begun to 

explore more deeply the effect of sequence on properties in a variety of materials such as 

conjugated materials,12,13,103 non-biological polymers designed to display a variety of side-chains 

as seen in peptides,111,112,116,117 biodegradable poly(α-hydroxy esters),15-19 and polymers in which 

side-chain placement and spacing are of primary interest.11,51,53,118-121  As sequenced copolymers 

become more prevalent, the development of analytical methodologies for both verifying and 

reading sequences and stereosequences is of increasing importance.122-132 

3.1.2 Calculation of sequence fidelity in copolymers 

In this chapter we seek to explore the concept of sequence fidelity (SF) as it pertains to periodic 

or repeating sequence copolymers with the long-term goal of correlating SF with bulk properties. 

This issue is important because it is likely that some level of error will be present in any 

sequenced copolymer prepared and, furthermore, that properties of the polymer will depend on 

the types and degree to which errors are present. For a polymer with a targeted sequence of 

(ABC)n, for example, mistakes wherein an ABC unit is replaced by an AB or BCA unit (or both) 

may be present in a particular sample. We define the SF in this context as the ratio of error-free 

to total polymer repeat units (eq. 1) and the error rate (ER) as in eq. 2.  The SF and ER are 

related in that the sum of all units, both correct and errors, will total 100% (eq. 3). Sequence 
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fidelity differs from the universally recognized concept of “purity” in that the definition accounts 

for mistakes that do not change the stoichiometry or chemical purity of the sample, e.g. when an 

ABC unit is replaced with a BCA unit.     

SF = error-free polymer repeat units
total polymer units

 × 100%      (1) 

ER = specific type of error unit
total polymer units

 × 100%       (2) 

SF = 100 −  ∑ER (3) 

We focused our SF studies on repeating sequence poly(lactic-co-glycolic acid)s or PLGAs 

that were previously reported by our group.15 This system was chosen because our group has 

considerable experience in preparing and characterizing these polymers and because we have a 

long term interest in understanding the role of sequence in determining the degradation behavior 

of these materials due to their potential for use in bioengineering applications. We have, for 

example, reported the preparation of a large number of sequenced polymers: poly LG, poly 

LLG, poly LLRG, etc., where L = the naturally occurring S enantiomer of lactic acid; LR = the R 

enantiomer; and G = glycolic acid). In studies of these repeating sequence copolymers, we have 

found important correlations between properties and monomer order. It was demonstrated that 

the order of the monomers dictates the hydrolysis behavior and that sequenced copolymers retain 

their morphology while losing molecular weight in a nearly linear fashion.18,19 These results are 

of interest because we have found that our sequenced PLGAs exhibit dramatically different 

behavior from random PLGAs which have been widely used for drug-delivery, cell-scaffolding, 

and degradable coatings for a variety of devices.24,133  

Sequence and sequence mistakes in copolymers have been previously examined using 1H 

NMR spectroscopy and mass spectrometry. NMR spectroscopy has long been established as a 

useful tool for characterizing monomer order and stereochemistry in copolymers. When chemical 
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shifts for particular sequences are known and when the shift differences between polyads of 

interest are resolved, the relative ratios can be determined by integration.124,127,130,132,134,135 

Sequence has increasingly been analyzed, particularly for complex polymers like peptides, using 

mass spectrometry.122-132,136 Key to these a majority of these analyses, however, is the 

monodispersity of the parent ion, and the controlled fragmentation of the biopolymer into 

component pieces prior to and/or during the experiment. Using sophisticated algorithms, these 

fragments are then computationally reassembled into their original structure and sequence.  The 

mass spectrometric analysis of synthetic polymers is more complicated in most cases due to the 

molecular weight dispersity inherent to most polymers. Indeed, soft ionization techniques, such 

as matrix-assisted laser desorption/ionization (MALDI) are usually employed to avoid the data 

complexity that results from fragmentation of complex mixtures or multiply charged species.  

Under these conditions, singly charged ions for the unfragmented polymer chains are resolved 

and can be analyzed to determine monomer distributions, repeating unit masses, end group 

identities, and information about architecture.122,126,137-143 

Herein, we report the use of non-optimized, one-dimensional matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to both characterize 

and quantify sequence in periodic PLGAs and we compare the accuracy of the quantitation with 

NMR spectroscopy. 



 68 

3.2 RESULTS AND DISCUSSION 

3.2.1 SAP of sequenced PLGAs 

The synthesis of all materials was carried out using our previously developed method for the 

preparation of repeating sequence copolymers bearing L-lactic acid (LS), R-lactic acid (LR), 

racemic lactic acids (Lrac), glycolic acid (G), and other hydroxy acids.15-18,21  The method, 

designated Segmer Assembly Polymerization (SAP), involves an initial preparation of segmers 

(sequenced oligomers) by Steglich esterification. The di-protected dimer Bn-LG-SiR3, for 

example, comes from the coupling reaction of the orthogonally protected monomers Bn-L (Bn = 

benzyl) and G-SiR3 (SiR3 = tert-butyl-di-phenylsilyl) (Scheme 5). Treatment with TBAF/AcOH, 

followed by hydrogenolysis over Pd/C gives the unprotected segmer LG. The difunctional 

segmer is then polymerized using a step-growth approach in the presence of 

diisopropylcarbodiimide (DIC) and 4-(dimethylamino) pyridinium p-toluenesulfonate (DPTS) to 

afford the sequenced copolymer Poly LG.  All materials described herein (Table 4) were 

prepared using variations of this strategy. With the exception of the “errormers” whose 

preparation is detailed below all materials have been previously reported and are described 

elsewhere.15 
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Scheme 5. Synthesis of Poly LG by SAP. 

3.2.2 MALDI-ToF analysis of repeating sequence PLGAs 

In analyzing PLGA samples that we have prepared using SAP, much can be learned from 

MALDI-ToF MS. As an example, the spectrum of a particular sample of Poly LLRG, which 

exhibited a significant number of errors, is analyzed (Figure 11). With a mass separation 

corresponding to a single LLG segmer, the major peaks in the mass spectrum correlate with the 

targeted sequence (stereochemistry can only be differentiated in special cases by MALDI-ToF 

MS analysis144,145 so the R subscript is omitted in the rest of this discussion). The presence of this 

dominant pattern is consistent with that which would be expected from the SAP assembly of 

LLG units. It is notable that all chains in this sample were cyclic. The tendency of esters to 

cyclize is well known and we find cyclics dominate in the SAP-produced species, despite the 

relatively high concentrations employed for the polymerizations (3 M), at least in 1000-5000 m/z 

weight range which is typically observable under the experimental conditions used.146 
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Figure 11. MALDI-ToF mass spectrum of Poly LLRG (top left), Poly LLRG expansion from 1850-2075 m/z 
(bottom left) and error analysis and assignment MALDI-TOF-MS peaks of Poly LLRG (right). Data acquired on 
Voyager-DE PRO MALDI-ToF MS system. 

Focusing on the 1850-2075 m/z region, isotopic peak envelopes that correspond to cyclic 

(LLG)n where n = 9 and 10 (a1 & a2) can be identified. Between these two error-free chains, 

peaks corresponding to +LG, +LL, and +LGG errors are found (c1, c2, d1). These minor series 

repeat between each set of major series peaks. 

It is important to note, however, that the identification of the extra units present in the series 

does not inherently give any information about their source or distribution in the chain. We 

cannot know, for example, whether the +LG error is due to the lack of an L unit from a single 

segmer LLG repeat unit or if the perceived error is the result of two errors, +L and +G. 

Moreover, we cannot rule out cancelling errors, e.g., a chain that encodes the same number of +L 

and +LG errors will be read as having no errors. Although MS/MS analysis would be expected to 

provide some additional information about error distribution, the analysis of fragments from 

polymers with short periodic sequences of two monomers and no fragmentation preferences is 
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challenging due to the limited number of possible masses. For example, a 5-mer fragment arising 

from an L-G cleavage with no error would have the structure LLGLL while a 5-mer fragment 

formed from L-L cleavage with a +L error, LLLGL, will have the same molecular weight. With 

this limitation in mind we have chosen to focus our attention on the one-dimensional spectra 

which for periodic copolymers encode substantial information about sequence fidelity. 

A second polymer example, Poly GLG, upon MALDI-ToF MS analysis also exhibited 

multiple identifiable errors (Figure 12). Investigating the region from 1540-1750 m/z the main 

isotopic peaks correspond to cyclic (GLG)9 and (GLG)10. Error peaks between the two main 

peaks correspond to cyclic (GLG)9 with additional units of +G, +L, +GG, +GL, and +GGG. 

These errors have a greater intensity compared with those observed for the Poly LLRG at the 

same degree of polymerization suggesting that the sequence fidelity of this sample is lower. 
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Figure 12. MALDI-ToF mass spectrum of Poly GLG (top), Poly GLG expansion from 1540-1750 m/z (middle), 
and error analysis and assignment of MALDI-ToF MS peaks of Poly GLG expansion spectrum (bottom). Data 
acquired on a Voyager-DE PRO MALDI-ToF MS system. 

It is important to note that for all MALDI-ToF MS data that are analyzed in this chapter, we 

have chosen to focus on the areas of the spectra that exhibit the greatest total intensity for both 
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perfect chains and chains containing errors, independent of the molecular weight of the sample. 

No effort was made to optimize the data collection to ensure or to determine if the spectrum 

obtained was representative of the absolute molecular weight distribution of the sample 

analyzed. The rationale for this approach and the validity will be discussed in more detail after 

the data are presented. 

In addition to identifying the types of errors, we found in the course of characterizing a wide 

range of sequenced copolymers, that the MALDI-ToF mass spectra also appeared to give 

quantitative information about the error frequency. The spectra of the dimeric alternating 

copolymer Poly LG, for example, demonstrate the variable nature of the errors present in 

particular samples. Focusing on the same region (ca. 1590-1870 m/z) for three independently 

prepared polymers, we observed a batch with an error rate below the detection threshold, another 

with only +L errors, and one were both +L and +G errors were present (Figure 13). 
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Figure 13. Expansion from 1590-1870 m/z of sample to sample variance in sequence error of Poly LG. Data 
acquired on a Voyager-DE PRO MALDI-ToF MS system. 

Given the existence of nearly “error-free” spectra and the lack of non-cyclic species which 

would be expected if fragmentation was occurring in the spectrometer, we can be confident that 

fragmentation during analysis does not contribute significantly to the production of observed 

errors.  Moreover, from a mechanistic perspective, the existence of error-free batches also 

indicated that the errors are not a necessary result of the polymerization reaction itself. We 

conclude, therefore, that under the reaction conditions that we use, the unintended mistakes result 

primarily from the contamination of monomer reagents, e.g., L units in LG monomers. Such 
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errors can arise either from inadequate purification of the monomers prior to polymerization 

and/or by decomposition of the monomers through hydrolysis or transesterification events, which 

are both known issues for alkyl esters of this type.147,148 

3.2.3 Synthesis and analysis of sequenced PLGA “errormers” 

Although in analyzing the MALDI-ToF MS data, it is straight-forward to the compare the 

intensities of the chains with and without errors, the accuracy of such a comparison was 

uncertain given the challenges inherent in obtaining representative chain distributions in 

MALDI-ToF spectra.149 We reasoned, however, that the MALDI signal response for a narrow 

weight range should give a crudely quantitative comparison, as the polyesters compared are all 

cyclic (same architecture and end groups), and have the same number of ester groups along the 

backbone. This hypothesis was tested—and was confirmed—by the preparation and 

characterization of a series of sequenced PLGAs with controlled error rates, termed “errormers” 

(Scheme 6). 

 

Scheme 6. Synthesis of PLGA errormers with controlled introduction of sequence errors 

Synthetically, samples with predominantly LG repeating units and variable amounts of +L 

errors, similar to the sample which gave the middle spectrum in Figure 13, were targeted. A 

HO O
O

OH
O

HO O
O

O
O

OH
O

x LG (100-x) LLG

HO O
O

O
O

O
O

O
O

O
O

H
x 100-x

DIC, DPTS

CH2Cl2, 3h

+



 76 

series of such polymers was produced by combining variable ratios of LLG and LG segmers 

under the standard step-growth conditions (Scheme 6). This method was used rather than the 

conceptually more simple approach of adding small amounts of L units to a polymerization of 

LG units because LG and LLG units should exhibit similar coupling environments for both the 

hydroxyl (L) and carboxylic (G) ends (see below for the validation of this hypothesis). For 

analysis purposes the LLG unit is, however, regarded as contributing a normal LG unit and a +L 

error unit.  As such, the polymer produced via a molar combination of 0.126 mmol of LLG and 

7.06 mmol LG, will include 0.126 mmol Lerr and 7.06 + 0.126 = 7.186 mmol of LG units. The 

mol% of Lerr (ER) is, therefore, calculated as 1.7% (0.126 mmol Lerr/(7.186 mmol LG + 0.126 

mmol Lerr) = 0.0172). Since there is only one type of error present, the predicted SF would be 1-

ER or 98.3%. 

Characterization of the polymer errormers by SEC (calibrated to PS standards) showed a 

molecular weight (Mn) range from ~16-31 kDa (Table 3). The dispersities (ᴆ) of the copolymers 

ranged from 1.3-1.6 which is consistent with our previous results using this polymerization 

method.15-17 MALLS analysis of previously synthesized sequenced PLGAs showed that the 

absolute molecular weight of these polymers is 50-90% of the SEC weight, depending on the 

sequence copolymer.15 

Table 3. Molecular weight data of sequenced PLGAs doped with an L unit error 

Polymer Mn (kDa)a Mw (kDa)a ᴆb 
0% errormer 15.9 25.2 1.6 
1.7% errormer 30.7 40.7 1.3 
2.4% errormer 17.2 28.0 1.6 
5.0% errormer 21.5 31.7 1.5 
8.4% errormer 14.0 22.4 1.6 
11.6% errormer 18.5 29.0 1.6 
a) Determined by SEC in THF relative to PS standards. 
b) Mw/Mn. 
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The polymers were first analyzed by 1H NMR spectroscopy and the error was quantified by 

integration (Figure 14a Standards for comparison are readily available in our laboratory as we 

have prepared a wide range of sequences including Poly LLG. Moreover, we have established 

that the 1H NMR spectra of these sequenced PLGAs are highly resolved and extremely sensitive 

to sequence such that errors are likely to be identifiable. In this case, the resonances for the +L 

error units which have a local pentad sequence of LGLLG were clearly distinguishable from 

those of L units embedded in the base sequence LGLGL. In particular, one half of the methine 

quartet associated with error L’s could be resolved from the region containing the base L 

methine signal. Analysis (including the subtraction of the other half of the partly overlapping 

error L quartet) gave the error estimations shown in Table 4. As can be seen, there is good but 

not perfect correlation between the stoichiometric feed percentages used and the errors 

determined by integration. 

Table 4. Sequenced PLGA errormer data 

Polymer Mol % 
Lerr

a Mol % Lerr:LGb NMRc 
error rate 

Error Rate 
MS % (ER)d 

Sequence Fidelity 
MS % (SF)d 

0% errormer 0.0 0:100 trace trace ~100.0 
1.7% errormer 1.7 1:57.8 2.3 1.2 98.8 
2.4% errormer 2.4 1:40.7 4.1 2.5 97.5e 
5.0% errormer 5.0 1:19 5.4 5.5 94.5 
8.4% errormer 8.4 1:10.9 11.3 11.0 89.0 
11.6% errormer 11.6 1:7.6 13.3 13.4 86.6 
a) (mol Lerr)/(mol Lerr + mol LGfrom LLG + mol LG) in feed b) (LG mol%)/(Lerr mol%) in feed c) 
Calculated from 1H NMR integrations of Lerr chemical shifts d) Calculated from MALDI-ToF mass 
spectra; acquired on a Bruker ultrafleXtreme MALDI ToF system e) MS acquired on a  Voyager-DE PRO 
MALDI-ToF system (lower resolution and sensitivity). 
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Figure 14. a) Comparison of the 600 MHz 1H NMR spectra b) Expansion (1560-1840 m/z) of MALDI-ToF mass 
spectra of 0, 1.7, 5.0, 8.4, and 11.6% errormers with the formula cyclic-(LG)n(L)m

 + Li+
 . Error-free chains are 

labeled with the repeat number n and chains with errors according to their repeat number and number of “L” errors, 
n + m(L). Acquired on a Bruker ultrafleXtreme MALDI ToF system. c) Expansion (1550-1950 m/z) of MALDI-ToF 
mass spectrum of the 11.6% errormer. Note: 2.4% errormer is not shown as the MS data were acquired on a lower 
resolution/sensitivity instrument. 
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The polymer samples were also analyzed by MALDI-ToF mass spectrometry. Not 

surprisingly, the molecular weight distributions observed in the mass spectrum (Mn 1000 to 3000 

m/z) differ significantly from those obtained by SEC (16-31 kDa) both due to the known 

overestimation of the molecular weights as calibrated to polystyrene15 and the inherent bias for 

shorter chains in the laser desorption process used to volatilize polymer chains for the mass 

spectrometry analysis.149 That being said, neither of these issues is expected to affect 

dramatically the types or quantities of errors observed, since the error pattern is redundant for 

each chain length and since errors are expected to be statistical in their distribution (Note: this 

assumption is tested and found to be true, vide infra).  The only requirement for analysis is that 

amongst the data collected there exists one or more chain lengths in which both the error-free 

chain and all significant error-containing chains have sufficient intensity to allow for a 

meaningful comparison. 

The MALDI-ToF MS data for the errormer set exhibits the expected pattern of error peaks 

and peaks for chains with more than one error as a function of both chain length and error rate. 

Focusing on the 1550-1840 m/z region which represents DP = 12-14 (Figure 14b), the 

qualitative progression can be clearly seen. First, it is clear that the 0% errormer is not strictly 

error-free. Trace amounts of +L errors (and some +G errors) were observed.  As we progress to 

the 1.7% errormer, peaks associated with +L are clearly increased and a small peak for +2L can 

also be identified. As the error rate increases the percentage of chains with errors increases and 

peaks for increasing errors per chain are observed. In the 11.6% errormer, peaks associated extra 

+L errors dominate over those from the error-free LG chains and peaks for error rates of up to 

+5L errors per chain (1927 m/z) have significant intensity (Figure 14c). It should be noted that 

the data for the 2.4% errormer is not included in the figure since it was collected on a mass 



 80 

spectrometer with significantly lower resolution/sensitivity. A plot of this mass spectrum can be 

found in the appendix (Figure 89). The 2.4% errormer data were, however, included in the 

calculations. 

To calculate sequence fidelity for these MS data, we used the general approach described in 

equation 4.  The expression SF(n) represents the sequence fidelity for a chain with a repeat 

number of n.  The total number of repeat units present with no error, n[(polymer)n] will be 

divided by the total intensity of all peaks associated with all chains with the base degree of 

polymerization n.  This approach generates a fidelity that should be independent of chain length 

and easily adaptable to a polymer sample that has more than one source of error.   

SF(𝑛𝑛) = 𝑛𝑛(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑛𝑛
𝑛𝑛(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝑛𝑛+∑ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥)𝑖𝑖𝑖𝑖,𝑥𝑥

     (4) 

 
SF(𝑛𝑛) = 𝑛𝑛(𝐿𝐿𝐿𝐿)𝑛𝑛+∑ (𝑛𝑛−𝑥𝑥)(𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒)𝑛𝑛𝑥𝑥=1−4

𝑛𝑛[(𝐿𝐿𝐿𝐿)𝑛𝑛+∑(𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒)𝑛𝑛]
     (5) 

Applied to the specific data collected on the LG errormer series, the SF(n) can be expressed 

as shown in equation 5. The total “correct LG” units in the numerator was calculated as the 

number of correct units present in the chains with no errors as n(LG)n plus the correct units 

present in the chains with mistake +L units. As stated earlier the added LLG units are treated for 

the purposes of analysis as two units, L + LG. The denominator represents the total repeat units 

present, where each LG or L is considered a unit. For example, a chain with the following 

sequence, LG-LG-LG-L-LG-LG-LG-L-LG would be counted as having an n of 7 and would 

contribute 7 correct LG units and two L error units to the total. For the quantities (LG)n, and 

(Lerr)n in the expression, the sum of the intensities of all peaks in the isotopic envelope was used.  

It should be noted that we verified independently that intensities tracked closely with integrations 

for these spectra (Figure 15). 
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Figure 15. Comparison of calculated sequence fidelity (SF) of poly LG 11.6% errormer’s chain lengths from 6-21 
obtained from intensity and integration values from the same mass spectrum. 

For each errormer sample the SF(n) was calculated for a range of chain lengths. The range of 

n selected for each sample was determined by the signal-to-noise ratio (S/N) of the strongest 

peak for each series—analysis was only carried out if this peak exhibited an intensity greater 

than 10% relative to the base peak for the entire spectrum. The intensity, sequence fidelity, and 

percent error data for each errormer were determined and are located in the appendix (Table 15-

18). The percent error determined for each chain length in each errormer can be found in Table 

5. 
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Table 5. Percent error calculated for each polymer chain length for each errormer determined by MALDI-ToF-MS 

 Error Frequency (=1-SF) (%) 
Chain 
Length 

1.7%-
errormera 

2.4%-
errormerb 

5.0%-
errormera 

8.4%-
errormera 

11.6%-
errormera 

6 2.1 --- 6.4 11.7 15.3 
7 2.2 --- 6.6 11.5 14.6 
8 2.5 3.2 5.6 11.2 14.1 
9 1.9 3.2 5.5 10.5 13.4 
10 1.7 3.0 5.6 11.6 14.3 
11 1.1 2.6 5.5 11.0 14.0 
12 1.3 2.2 5.3 10.8 13.7 
13 1.3 2.6 5.6 11.0 13.7 
14 1.2 2.6 5.4 11.1 13.1 
15 1.1 2.3 5.3 10.7 13.1 
16 1.2 --- --- 10.7 12.5 
17 1.3 --- --- --- 13.0 
18 1.3 --- --- --- 12.2 
19 --- --- --- --- 12.0 
20 --- --- --- --- 11.8 
21 --- --- --- --- 11.1 

aHi-res data obtained on a Bruker ultrafleXtreme MALDI TOF/TOF system b) 
low-res data obtained on a Voyager-DE PRO MALDI-TOF-MS 

 
We had anticipated that the fidelities/errors determined in this fashion would be independent 

of chain length but found instead that there was a small dependence on degree of polymerization. 

A particularly clear example of the observed behavior can be found in the analysis of the 11.6% 

errormer (Figure 16). We propose that the regime in which the fidelity is independent of n 

represents the best estimate because it is in this region that the relative intensities for the peaks of 

both the error-free and errormer chains are similar, which facilitates accurate comparison. When 

the peaks are similar in intensity the overestimation of the contribution of peaks with low S/N is 

minimized. Consistent with this hypothesis, the data for all samples skews towards a low SF at 

low chain lengths and high SF for longer chain lengths. It should be noted that at lower error 

rates, data show only the skew towards low SF at low chain lengths. The higher chain length 

deviation was not observed in the range of n whose signals were sufficiently intense for analysis. 
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It was possible in these cases, nevertheless, to identify a region in which chain length 

dependence was minimized to identify as the error estimate (Figure 17, Table 5). 

 
Figure 16. Sequence fidelity (SF %) of each chain length in 11.6% L doped Poly LG errormer. The dotted line is the 
average sequence fidelity of the flat region of the curve (86.5%). 

 

 
Figure 17. Sequence fidelity (SF %) of each chain length in Poly LG errormers (where the dotted line is the average 
sequence fidelity of the flat region of the curve. a) 1.7% errormer (98.8%), b) 2.4 % errormer (97.6%), c) 5.0% 
errormer (94.5%), d) 8.4% errormer (89.0%). 

Overall, both NMR spectroscopy and MALDI-ToF mass spectrometry provided a reasonable 

estimate of the sequence fidelity, although there were some interesting differences (Figure 18,  
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Table 6). NMR spectroscopy, which we expected to be quite accurate in this particular case due 

to the clean resolution and ease of identification of the signals due to errors, consistently 

suggested that the error rate was higher than what would be expected from the feed of LLG 

monomer. The MALDI-ToF MS analysis concurs with the NMR analysis at error rates greater 

than 5% but estimates that the error is either similar to or below the feed ratio for samples with 

lower error rates. 

 
Figure 18. Sequence fidelity of L-doped Poly LG errormers calculated from mole percent monomer in the feed 
(gray), MALDI-ToF MS (blue), and 1H NMR spectroscopy (red). 
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Table 6. Sequence fidelity and percent error of errormers determined by MALDI-ToF MS 

Polymer Sequence 
Fidelity (%)a 

Percent 
Error (%)a 

0% errormer 100 0.0 
1.7% errormer 98.8 1.2 
2.4% errormer 97.5 2.5 
5.0% errormer 94.5 5.5 
8.4% errormer 89.0 11.0 
11.6% errormer 86.1 13.4 
aSequence fidelity and percent error were 
determined by MALDI-ToF MS. 

3.2.4 Segmer relative reactivity study 

We determined by running a separate control experiment that the relative reactivities of the two 

monomers LLG and LG were similar. Orthogonally protected monomers of Bn-LLG, LLG-

SiR3, and LG-SiR3 were combined and subjected to coupling conditions (Scheme 7). The silyl 

monomers were used in combined excess to ensure free competition. The 1H NMR spectrum of 

the mixture of products Bn-LLGLLG-SiR3 and Bn-LLGLG-SiR3 was analyzed in the 5.4-5.1 

ppm range (Figure 19). The 1:1 integration of the diastereotopic G-methylene signals associated 

with the two products, suggest that there is no monomer preference. Although we did not carry 

out the reverse experiment (Bn-LG + LLG-SiR3 + LG-SiR3), the lack of preference in the initial 

competition experiment combined with our long experience coupling these and other related 

monomers suggests that any differences in reactivity are extremely small. 

 
Scheme 7. Coupling reaction of Bn-LLG, LLG-SiR3, and LG-SiR3 to determine if there is a monomer reactivity 
preference. The silyl protected monomers were added in excess (combined) compared to that of Bn-LLG. 
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Figure 19. Reactivity preference study of Bn-LLG with LLG-SiR3 and LG-SiR3. Top: 1H NMR spectrum of the 
reactants Bn-LLG, LLG-SiR3, and LG-SiR3. Bottom: the mixture of products Bn-LLGLLG-SiR3, Bn-LLGLG-
SiR3. In collaboration with Michael Washington. 

The finding that there is no preference for incorporation of LLG units into the polymer, 

suggests that either our analysis methods inherently overestimate error (especially at higher error 

rates where we would expect the greatest accuracy), or that the fidelity of the polymers does not 

match the feed for some other reason. While the answer to this question has not yet been 

definitively determined, we currently hypothesize that the isolation process, which involves a 

standard precipitation of the polymer in methylene chloride into methanol, enriches the less 

soluble high molecular weight fraction with chains containing more LLG. 

In considering the generality of the MALDI-ToF MS methodology for analyzing other 

periodic copolymers, three criteria must be met to ensure that the integrations can be compared 

quantitatively:  1) the error units must not have a dramatically different ionization efficiency than 

the monomers they replace; 2) the end groups of all chains being integrated should be the same; 

and 3) the molecular weight of a chain and a chain with errors must be relatively close to 
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minimize molecular-weight induced differences in volatilization. Finally, it must be 

acknowledged that the error levels that are quantifiable will depend on the range of molecular 

weights that exist in the sample and/or can be successfully detected. Very small error rates will 

be difficult to accurately quantify in very short chains and large error rates will be challenging to 

interpret in long chains because the abundance of error-free chains will approach zero. 

3.3 CONCLUSIONS 

We have used both 1H NMR spectroscopy and MALDI-ToF mass spectrometry to analyze 

copolymers containing repeating sequences of lactic and glycolic acids and we have used these 

methods to determine the types of errors and the sequence fidelity. In examining a series of 

polymers prepared with targeted error rates, both NMR and MALDI-ToF methods provided 

similar estimates of sequence fidelity. That being said, despite the proven utility of NMR 

spectroscopy for characterizing sequence, mass spectrometry may, in many cases, prove more 

useful for error analysis. In addition to providing structural information about the nature of the 

error, MS clearly differentiates systematic error from contamination, because the errors are 

shown as a function of chain length—longer chains show a systematic increase in errors/chain. 

NMR analysis cannot easily distinguish between inter- and intramolecular contamination. 

Moreover, assigning the specific nature of an error by NMR spectroscopy is not always possible, 

especially if standards do not exist, and error peaks may overlap with other resonances such that 

quantitation is not possible. Finally, the presence of low molecular weight oligomers (or other 

contaminants) complicates the analysis of the NMR data as those peaks cannot be differentiated 

easily from peaks due to sequence mistakes. 
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3.4 EXPERIMENTAL 

3.4.1 Materials 

All experiments were carried out in oven-dried glassware under an atmosphere of N2 using 

standard Schlenk line techniques. N,N’-dicyclohexylcarbodiimide (DCC) was purchased from 

Oakwood Chemical and used without further purification. Pd/C (10%) was purchased from Alfa 

Aesar. Triethylamine was distilled under nitrogen from calcium hydride. Methylene chloride 

(CH2Cl2, Fisher), ethyl acetate (EtOAc, Sigma Aldrich) and (THF, Fisher) were purified by 

passage over neutral activated alumina. The reagents 4-(dimethylamino)pyridinium 4-

toluenesulfonate (DPTS),82 silyl (-SiR3, tert-butyl-di-phenylsilyl) and benzyl (Bn) protected 

monomers, unprotected monomers and polymers were prepared according to previously 

published protocols.15,16,21 

3.4.2 Characterization 

1H NMR spectroscopy. 1H (500 and 600 MHz) NMR spectra were recorded using Bruker 

spectrometers in CDCl3 and calibrated to the solvent peaks of δ 7.24 ppm.  

Size exclusion chromatography. Molecular weights and dispersities were obtained on a Waters 

GPC (THF) with Jordi 500, 1000, and 10000 Å divinyl benzene columns, and refractive index 

detector (Waters) was calibrated to polystyrene standards. 

Differential scanning calorimetry. Differential scanning calorimetry was performed with a TA 

Instruments Q200 on polymers containing L and G monomers. Samples were prepared by 

dissolving in CH2Cl2, dropcasted into aluminum pans, and put under vacuum overnight. The 
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samples were annealed at 85 oC for 3 h. Each run had a heating and cooling rate of 10 oC/min. 

Tg’s were recorded in the second heating cycle. 

MALDI-ToF MS. Low-res MALDI-ToF MS spectra were obtained on a Voyager-DE PRO 

instrument with a 337 nm N2 laser. An accelerating voltage of 20 kV was applied. The mass 

spectra of the polymers were obtained in the reflection mode (500 shots). The polymers were 

dissolved in THF to yield a concentration of 1 mg mL-1. Potassium trifluoroactetate was prepared 

by addition of trifluoroacetic acid to potassium hydroxide. Potassium trifluoroacetate (KTFA) 

was used as the cationization agent and was dissolved in THF to form a 1 mg mL-1 solution. The 

matrix utilized was trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malonitrile 

(DCTB) in THF as a 40 mg mL-1 solution. The three solutions were combined in a ratio of 

1:1:1.5 (polymer solution: matrix solution: KTFA solution) and allowed to mix for 1 h. The 

solution was then was drop cast onto a 100-well MALDI plate and allowed to dry for 45 min 

before analysis. The spectra were analyzed using the OriginLab software package. High-res 

MALDI-ToF MS spectra were obtained in collaboration with Bruker Daltonics on a Bruker 

ultrafleXtreme MALDI ToF system. The samples were analyzed in the reflector positive mode. 

The polymers were dissolved in THF to yield a concentration of 10 mg mL-1. Dithranol was used 

as the matrix and was prepared at 20 mg mL-1 in THF and LiTFA (1 mg mL-1) was used as the 

cationization agent. The samples were prepared by combining the matrix, polymer sample, and 

LiTFA in a 10:5:1 ratio. The solution was drop cast onto a MALDI plate and allowed to dry. The 

spectra were analyzed using the Bruker flexAnalysis software package. The centroid peak 

detection algorithm was used. 



 90 

3.4.3 Errormer Synthesis 

0%Lerr. Bn-LG (1.7 g, 7.1 mol) and 10% Pd/C (0.08 g, 5% w/w) were combined in dry EtOAc 

(70 mL) under N2. The reaction vessel was evacuated and purged twice with a 1 atm H2 balloon. 

The reaction was allowed to stir overnight under 1 atm of H2. The reaction mixture was filtered 

over celite, EtOAc reduced in volume under reduced pressure, dried over MgSO4, filtered over 

celite, and concentrated in vacuo to provide the product as a colorless liquid (1.0 g, 96%). 1H 

NMR (300 MHz, CDCl3) δ 5.23 (q, J = 7.2 Hz, 1H), 4.29 (d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.5 

Hz, 1H), 1.57 (d, J = 7.5 Hz, 3H). 

Poly LG (0% errormer polymer). LG (1.0 g, 6.8 mmol) and DPTS (0.26 g, 0.9 mmol) were 

combined in dry CH2Cl2 (3 M with respect to substrate, 2.25 ml) with stirring at RT under N2. 

DIC (1.6 mL, 10.2 mmol) was added dropwise and the reaction was allowed to stir for 3h. The 

polymerization mixture was dissolved in a minimum amount of CH2Cl2 and precipitated into 

MeOH (75 ml). The solid was redissolved and then precipitated in MeOH (75 ml) and dried 

under vacuum to yield a colorless solid (0.34 g, 39%). 1H NMR (600 MHz, CDCl3) δ 5.23 (q, J = 

7.0 Hz, 1H), 4.86 (d, J = 16.2 Hz, 1H), 4.63 (d, J = 16.2 Hz, 1 H), 1.57 (d, J = 6.6 Hz, 3H); SEC 

(THF relative to PS standards) Mn: 15.9 kDa, Mw:  25.2 kDa, ᴆ: 1.6; Tg: 47 oC, Tm: 114 oC. 

1.7%Lerr. Bn-LG (1.7 g, 7.0 mol), Bn-LLG (0.04 g, 0.12 mol) and 10% Pd/C (0.09 g, 5% w/w) 

were combined in dry EtOAc (70 mL) under N2. The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm of H2. The 

reaction mixture was filtered over celite, EtOAc reduced in volume under reduced pressure, 

dried over MgSO4, filtered over celite, and concentrated in vacuo to provide the product as a 

colorless liquid (0.98 g, 91%). 1H NMR (500 MHz, CDCl3) δ LG: 5.24 (q, J = 7.2 Hz, 1H), 4.29 
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(d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.5 Hz, 1H), 1.57 (d, J = 7.0 Hz, 3H), LLG:  5.22 (q, J = 7.2 

Hz). 

1.7% errormer (ratio 1:58 LLG:LG). LG (0.97 g, 6.5 mmol), LLG (0.025 g, 0.11 mmol), and 

DPTS (0.26 g, 0.9 mmol) were combined in dry CH2Cl2 (3 M with respect to substrate, 2.15 ml) 

with stirring at RT under N2. DIC (1.5 ml, 9.8 mmol) was added dropwise and the reaction was 

allowed to stir for 3h. The polymerization mixture was dissolved in a minimum amount of 

CH2Cl2 and precipitated into MeOH (75 ml). The solid was redissolved and then precipitated in 

MeOH (75 ml) and dried under vacuum to yield a colorless solid (0.50 g, 58%). 1H NMR (600 

MHz, CDCl3) δ Poly LG: 5.23 (q, J = 7.0 Hz, 1H), 4.86 (d, J = 16.2 Hz, 1H), 4.63 (d, J = 16.2 

Hz, 1H), 1.68 (d, J = 7.2 Hz, 3H), LLG Errors: 5.18 (q, J = 7.0 Hz); SEC (THF relative to PS 

standards) Mn: 30.7 kDa, Mw: 40.7 kDa, ᴆ: 1.3; Tg: 50 oC. 

2.4%Lerr. Bn-LG (1.7 g, 7.0 mol), Bn-LLG (0.06 g, 0.18 mol) and 10% Pd/C (0.09 g, 5% w/w) 

were combined in dry EtOAc (70 mL) under N2. The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm of H2. The 

reaction mixture was filtered over celite, EtOAc reduced in volume under reduced pressure, 

dried over MgSO4, filtered over celite, and concentrated in vacuo to provide the product as a 

colorless liquid (1.0 g, 95%). 1H NMR (500 MHz, CDCl3) δ LG: 5.24 (q, J = 7.2 Hz, 1H), 4.29 

(d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.0 Hz, 1H), 1.57 (d, J = 7.0 Hz, 3H), LLG: 5.22 (q, J = 7.2 

Hz). 

2.4% errormer (ratio 1:40.7 LLG:LG). LG (1.0 g, 6.73 mmol), LLG (0.04 g, 0.17 mmol), and 

DPTS (0.27 g, 0.91 mmol) were combined in dry CH2Cl2 (3 M with respect to substrate, 2.3 ml) 

with stirring at RT under N2. DIC (1.6 ml, 10.4 mmol) was added dropwise and the reaction was 

allowed to stir for 3h. The polymerization mixture was dissolved in a minimum amount of 
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CH2Cl2 and precipitated into MeOH (75 ml). The solid was redissolved and then precipitated in 

MeOH (75 ml) and dried under vacuum to yield a colorless solid (0.51 g, 56 %). 1H NMR (600 

MHz, CDCl3) δ Poly LG: 5.23 (q, J = 7.0 Hz, 1H), 4.86 (d, J = 15.6 Hz, 1H), 4.63 (d, J = 16.2 

Hz, 1H), 1.62 (d, J = 7.2 Hz, 3H), LLG Errors: 5.19 q, J = 7.0 Hz); SEC (THF relative to PS 

standards) Mn: 17.2 kDa, Mw: 28.0 kDa, ᴆ: 1.6; Tg: 45 oC. 

5.0%Lerr. Bn-LG (1.7 g, 7.0 mol), Bn-LLG (0.12 g, 0.39 mol) and 10% Pd/C (0.09 g, 5% w/w) 

were combined in dry EtOAc (75 mL) under N2. The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm of H2. The 

reaction mixture was filtered over celite, EtOAc reduced in volume under reduced pressure, 

dried over MgSO4, filtered over celite, and concentrated in vacuo to provide the product as a 

colorless liquid (1.1 g, 97%). 1H NMR (500 MHz, CDCl3) δ LG: 5.24 (q, J = 7.0 Hz, 1H), 4.29 

(d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.5 Hz, 1H), 1.56 (d, J = 7.0 Hz, 3H), LLG: 5.19 (q, J = 7.0 

Hz), 4.29 (d, J = 21.0 Hz). 

5.0% errormer (ratio 1:19 LLG:LG). LG (1.01 g, 6.8 mmol), LLG (0.082 g, 0.37 mmol), and 

DPTS (0.29 g, 0.99 mmol) were combined in dry CH2Cl2 (3 M with respect to substrate, 2.4 ml) 

with stirring at RT under N2. DIC (1.7 ml, 10.8 mmol) was added dropwise and the reaction was 

allowed to stir for 3h. The polymerization mixture was dissolved in a minimum amount of 

CH2Cl2 and precipitated into MeOH (300 ml). The solid was redissolved and then precipitated in 

MeOH (250 ml) and dried under vacuum to yield a colorless solid (0.55 g, 57%). 1H NMR (600 

MHz, CDCl3) δ Poly LG: 5.23 (q, J = 7.0 Hz, 1H), 4.86 (d, J = 16.2 Hz, 1H), 4.63 (d, J = 16.2 

Hz,) 1.57 (d, J = 7.2 Hz, 3H), LLG Errors: 5.19 (q, J = 7.0 Hz), 4.62 (d, J = 16.2 Hz), SEC (THF 

relative to PS standards) Mn: 21.5 kDa, Mw: 31.7 kDa, ᴆ: 1.5; Tg: 49 oC. 
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8.4%Lerr. Bn-LG (1.7 g, 7.0 mol), Bn-LLG (0.22 g, 0.70 mol) and 10% Pd/C (0.10 g, 5% w/w) 

were combined in dry EtOAc (80 mL) under N2. The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm of H2. The 

reaction mixture was filtered over celite, EtOAc reduced in volume under reduced pressure, 

dried over MgSO4, filtered over celite, and concentrated in vacuo to provide the product as a 

colorless liquid (1.2 g, 96%). 1H NMR (500 MHz, CDCl3) δ LG: 5.22 (q, J = 7.2 Hz, 1H), 4.29 

(d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.0 Hz, 1H), 1.56 (d, J = 7.0 Hz, 3H), LLG: 5.23 (q, J = 7.2 

Hz), 5.18 (q, J = 7.0 Hz, 1H), 4.29 (d, J = 17.5 Hz). 

8.4% errormer (ratio 1:10.9 LLG:LG). LG (0.99 g, 6.7 mmol), LLG (0.15 g, 0.88 mmol), and 

DPTS (0.29 g, 0.97 mmol) were combined in dry CH2Cl2 (3 M with respect to substrate, 2.45 ml) 

with stirring at RT under N2. DIC (1.7 ml, 11.1 mmol) was added dropwise and the reaction was 

allowed to stir for 3 h. The polymerization mixture was dissolved in a minimum amount of 

CH2Cl2 and precipitated into MeOH (300 ml). The solid was redissolved and then precipitated in 

MeOH (250 ml) and dried under vacuum to yield a colorless solid (0.40 g, 39%). 1H NMR (600 

MHz, CDCl3) δ Poly LG: 5.23 (q, J = 7.2 Hz, 1H), 4.86, (d, J = 16.2 Hz, 1H), 4.63 (d, J = 15.6 

Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H), LLG Errors: 5.18 (q, J = 7.2 Hz), 4.62 (d, J = 15.6 Hz); SEC 

(THF relative to PS standards) Mn: 14.0 kDa, Mw: 22.4 kDa, ᴆ: 1.6; Tg: 48 oC. 

11.6%Lerr. Bn-LG (1.7 g, 7.0 mol), Bn-LLG (0.33 g, 1.0 mol) and 10% Pd/C (0.11 g, 5% w/w) 

were combined in dry EtOAc (80 mL) under N2. The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm of H2. The 

reaction mixture was filtered over celite, EtOAc reduced in volume under reduced pressure, 

dried over MgSO4, filtered over celite, and concentrated in vacuo to provide the product as a 

colorless liquid (1.3 g, 98%). 1H NMR (500 MHz, CDCl3) δ LG: 5.21 (q, J = 7.2 Hz, 1H), 4.29 
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(d, J = 17.5 Hz, 1H), 4.24 (d, J = 17.5 Hz, 1H), 1.55 (d, J = 7.5 Hz, 3H), LLG: 5.23 (q, J = 7.0 

Hz), 5.18 (q, J = 7.2 Hz), 4.29 (d, J = 17.5 Hz),  1.56 (d, J = 7.0 Hz). 

11.6% errormer (ratio 1:7.6 LLG:LG). LG (1.02 g, 6.9 mmol), LLG (0.23 g, 1.0 mmol), and 

DPTS (0.31 g, mmol) were combined in dry CH2Cl2 (3 M with respect to substrate, 2.6 ml) with 

stirring at RT under N2. DIC (1.85 ml, 12 mmol) was added dropwise and the reaction was 

allowed to stir for 3 h. The polymerization mixture was dissolved in a minimum amount of 

CH2Cl2 and precipitated into MeOH (300 ml). The solid was redissolved and then precipitated in 

MeOH (250 ml) and dried under vacuum to yield a colorless solid (0.67 g, 61%). 1H NMR (600 

MHz, CDCl3) δ Poly LG: 5.23 (q, J = 7.0 Hz, 1H), 4.86 (d, J = 16.2 Hz, 1H), 4.63 (d, J = 16.2 

Hz, 1H), 1.57 (d, J =  6.6 Hz, 3H), LLG Errors: 5.18 (q, J = 7.2 Hz), 4.85 (d, J = 16.2 Hz), 4.62 

(d, J = 15.6 Hz); SEC (THF relative to PS standards) Mn: 18.5 kDa, Mw: 29.0 kDa, ᴆ: 1.6; Tg: 48 

oC. 

3.4.4 Reactivity of monomers study.  

Bn-LLG (50 mg, 0.16 mmol, 1 equiv.) was combined with LLG-Si (44 mg, 0.096 mmol, 0.62 

equiv.), LG-Si (37.2 mg, 0.096 mmol, 0.58 equiv.), DPTS (9.5 mg, 0.032 mmol, 0.2 equiv.) and 

DCC (36.5 mg, 0.18 mmol, 1.1 equiv.) in 1.6 mL of dry CH2Cl2 under N2. The reaction mixture 

was stirred overnight at RT. The crude product mixture was filtered to remove dicyclohexylurea, 

concentrated in vacuo.  The crude product mixture was a colorless oil (118 mg, 98%). 
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4.0  SEQUENCE-CONTROLLED COPOLYMERS PREPARED VIA ENTROPY-

DRIVEN RING-OPENING METATHESIS POLYMERIZATION 

Sections 4.1 – 4.4 of this chapter have been reprinted with permission from Weiss, R. M.; Short, 

A. L.; Meyer, T. Y. "Sequence-Controlled Copolymers Prepared via Entropy-Driven Ring-

Opening Metathesis Polymerization" ACS Macro Letters 2015, 4, 1039. Copyright 2015 

American Chemical Society.21 

4.1 INTRODUCTION 

4.1.1 Recent advances in sequenced copolymers 

The sophisticated interplay between structure and function has long been apparent in naturally 

occurring biological architectures. In these systems, a precisely sequenced framework prepared 

from a small pool of simple monomers imparts the properties responsible for the characteristic 

functions. The important relationship between sequence and properties would be expected to 

translate to synthetic polymers but has been less studied. Efforts in non-biological polymers have 

historically focused on the more easily attainable and less sequence-controlled copolymer 

variants, i.e., random, alternating, block, and gradient structures.48,66,150,151 Recent advances have 

expanded the availability of more complex microstructures and the concomitant studies of these 
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new materials have established the potential for sequenced-based property 

control.8,43,51,53,73,104,117,152-162 

4.1.2 Segmer assembly polymerization of PLGAs  

We have long been interested in understanding the influence of sequence on polymer 

properties10-12,15-20,163 and have focused significant attention on poly(lactic-co-glycolic acids) 

(PLGAs) and other α-hydroxy acid macromolecules due to their importance as non-toxic 

biodegradable bioengineering materials.24,26,30  Our early efforts to prepare these materials relied 

on a segmer assembly polymerization (SAP) approach. Using this method, we prepared a library 

of sequenced copolymers and found that the rate of degradation and release of guest molecules is 

sequence-dependent.10,15,163 Although these results were exciting and established the power of 

sequence in tuning properties, the full realization of the potential of these materials was limited 

by the lack of molecular weight control inherent in the step-growth SAP methodology. We, 

therefore, set out to develop a method to obtain sequence-controlled polymers with improved 

control of chain length without sacrificing the fundamental poly(alkylester) structure. 

4.1.3 Entropy-driven ring-opening metathesis polymerization 

Herein, we report a strategy for making sequenced copolymers that utilizes entropy-driven ring-

opening metathesis polymerization (ED-ROMP) and produces polymers with controlled 

molecular weights. ED-ROMP involves the ring-opening of a low-strain or unstrained cyclic 

olefin to produce an entropically favored polymer.67,68,164,165 
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There are several characteristics of ED-ROMP which make this an ideal approach to the 

problem of sequenced copolymers: sequence conservation, generality and inherent molecular 

weight control. As with all ROMP reactions, the metathesis is highly selective and atom 

connectivity within the ring remains unchanged. Hillmyer and coworkers have cleverly exploited 

these characteristics to create sequenced copolymers from the ROMP of variously substituted 

cyclooctene rings.104 Although this process resembles ED-ROMP in some aspects, the reaction is 

inherently limited to rings that exhibit ring strain.  

Also related to the current work is the recent report by Hawker and coworkers in which a 

macrocyclic monomer with embedded sequence was polymerized using a novel relay ring-

opening mechanism. In this system, which does not rely on ED-ROMP driving forces, a 

specialized trigger moiety was employed and is retained in the resulting polymer.105  

Entropy is the primary driving force for the ED-ROMP reactions utilized in the current study. 

Concentration is used to favor chains over rings under conditions which allow for equilibration. 

Molecular weight control is possible because the number of chains is determined by the catalyst 

introduced. Final molecular weight is then a function of monomer-to-initiator ratio and the 

concentration, which determines the ring-chain equilibrium. The intrinsic molecular weight 

control differentiates ED-ROMP from the closely related, primarily step-growth acyclic diene 

metathesis polymerization (ADMET).53,166,167  

ED-ROMP and the more general entropy driven ring-opening polymerization (ED-ROP) 

have been applied previously to a variety of macrocycles168-170 and the mechanism is well 

understood. To the best of our knowledge, this is the first example of ED-ROMP being explicitly 

used to produce polymers that display within them a series of sequenced monomers. 
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4.2 RESULTS AND DISCUSSION 

4.2.1 Synthesis of sequenced macrocycles and subsequent ED-ROMP 

We began our investigation by first preparing cyclic precursors containing L-lactic acid (L), 

glycolic acid (G), and ε-caprolactone (C)-derived sequenced oligomers (segmers).15-17 A typical 

synthesis begins with the doubly protected subunit Bn-GL-SiR3 (Scheme 8). Following 

hydrogenolysis to remove the benzyl group, carbodiimide-promoted coupling of GL-SiR3 with 

Bn-L produced the trimer Bn-LGL-SiR3. Deprotection of the acid followed by coupling to 

ethylene glycol (Eg) yielded the palindromic segmer Eg-(LGL-SiR3)2. Removal of the silyl 

protecting group with TBAF/AcOH gave the fully deprotected diol Eg-(LGL)2, which was 

coupled to either 4-pentenoic acid (P) or 3-butenoic acid (B, Scheme 9) to produce a diolefin-

terminated segmer. This convergent synthetic approach allows for the facile assembly of segmers 

of any length and sequence from a common set of building blocks using standardized 

procedures. Optimized approaches could be easily substituted if a particular sequence was 

targeted for scale up. 

 

Scheme 8. Synthesis of sequenced copolymer Poly (LGL-Eg-LGL-Od). 
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Scheme 9. Synthesis of sequenced copolymer poly (LGL-Eg-LGL-Hd) 

Ring-closing metathesis (RCM)171-173 with Grubbs’ 2nd generation catalyst (Grubbs 2) 

yielded the desired cyclic macromonomers. An analogous route was employed to prepare cyclic-

Eg-(LC-P)2 and cyclic-Eg-(LLC-P)2 (Scheme 10 and Scheme 11, respectively). Although dilute 

conditions were used to inhibit oligomerization, the reaction was easily performed on a 2-3 g 

scale.  
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Scheme 10. Synthesis of sequenced copolymer poly (CL-Eg-LC-Oed) 

 
Scheme 11. Synthesis of sequenced copolymer poly (CLL-Eg-LLC-Oed) 

Once the requisite macrocycles had been constructed, ED-ROMP was carried out in the 

presence of Grubbs 2 (Scheme 8). To promote polymerization over nonproductive 

intramolecular ring formation, the reactions were conducted at high concentration (0.7 M). The 

polymerizations were quenched with ethyl vinyl ether to provide a series of polymers whose 
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physical properties are shown in Table 7. The Mns of the polymers ranged from 26 to 60 kDa. 

The Tgs of the polymers depended on both sequence and spacer composition, ranging from -11 

oC for the LLC polymer to 32 oC for the LGL polymer with Hed spacer (Figure 20 and Figure 

21). Interestingly, the Tgs of the two poly (CL-Eg-LC-Oed) samples were both -27 oC, despite a 

significant difference in molecular weight (Figure 21). Therefore, both polymers are in the 

regime where thermal properties are no longer affected by degree of polymerization. The SAP 

approach, which generally produced polymers of lower molecular weights, exhibited a range of 

Tgs for similar sequences.15-17 

Table 7. Polymer molecular weight and thermal data 

Polymer M/cat Tg 
(oC)a 

Mn 
(kDa) 

Mw 
(kDa) ᴆ 

Poly (CL-Eg-LC-Oed)-1 78 -27 26b 32b 1.3b 
Poly (CL-Eg-LC-Oed)-2 164 -27 39b 48b 1.3b 
Poly (CLL-Eg-LLC-Oed)-1 20 - 24c 32c 1.3c 
Poly (CLL-Eg-LLC-Oed)-2 19 - 29c 37c 1.3c 
Poly (CLL-Eg-LLC-Oed)-3 45 - 42c 53c 1.3c 
Poly (CLL-Eg-LLC-Oed)-4 45 -11 47c 60c 1.3c 
Poly (CLL-Eg-LLC-Oed)-5 75 - 48c 63c 1.3c 
Poly (CLL-Eg-LLC-Oed)-6 75 - 50c 65c 1.3c 
Poly (CLL-Eg-LLC-Oed)-7 125 - 60c 78c 1.3c 
Poly (CLL-Eg-LLC-Oed)-8 126 - 56c 71c 1.3c 
Poly (LGL-Eg-LGL-Oed) 78 18 33b 44b 1.3b 
Poly (LGL-Eg-LGL-Od)d na 13 28b 41b 1.5b 
Poly (LGL-Eg-LGL-Hed) 80 32 33b 46b 1.4b 
Poly (LGL-Eg-LGL-Hd)d na 23 27b 42b 1.5b 
a) First heating cycle at 10 oC/min; b) SEC in THF, relative to PS standards; 
c) SEC in THF, absolute molecular weight data; d) produced by 
hydrogenation of the corresponding Oed or Hed precursor. 
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Figure 20. DSC thermogram of poly (LGL-Eg-LGL-Oed), poly (LGL-Eg-LGL-Od), poly (LGL-Eg-LGL-Hed), 
and poly (LGL-Eg-LGL-Hd). Arrows denote the Tg of each sequenced copolymer. 

 

Figure 21. DSC thermogram of poly (CL-Eg-LC-Oed)-1, poly (CL-Eg-LC-Oed)-2, and poly (CLL-Eg-LLC-
Oed). Arrows denote the Tg of each sequenced copolymer. 

4.2.2 1H NMR spectroscopy characterization of synthesized copolymers 

Based on our extensive experience characterizing SAP-produced α-hydroxy acid polymers with 

varying sequences15-17 we can confirm conclusively that the sequences embedded in the 

macrocycles were retained during the polymerization process (Figure 22-Figure 27). Using 1H 
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NMR spectroscopy, which we have previously shown is extremely sensitive to sequence in this 

class of polymers, we can rule out scrambling and epimerization. 

 

Figure 22. 1H NMR (600 MHz) spectrum of poly (CL-Eg-LC-Oed) 
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Figure 23. 1H NMR (400 MHz) spectrum of poly (CLL-Eg-LLC-Oed)-4 

 

Figure 24. 1H NMR (700 MHz) spectrum of poly (LGL-Eg-LGL-Oed) 
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Figure 25. 1H NMR (700 MHz) spectrum of poly (LGL-Eg-LGL-Od) 

 

Figure 26. 1H NMR (700 MHz) spectrum of poly (LGL-Eg-LGL-Hed) 
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Figure 27. 1H NMR (700 MHz) spectrum of poly (LGL-Eg-LGL-Hd) 

4.2.3 ED-ROMP polymerization kinetic study 

To determine if these reactions conform to the expectations of an ED-ROMP process, kinetic 

studies of cyclic-Eg-(LGL-P)2 polymerizations were carried out by quenching aliquots at 

specific time intervals. SEC characterization of these aliquots confirmed that the Mn sharply 

increased at the onset of propagation and reached a maximum within 15 min (Figure 28a, Table 

8). As expected during ED-ROMP, the Mn decreased and the dispersity (ᴆ) increased as 

secondary metathesis reactions became more prevalent. Secondary metathesis in this case means 

reaction of the catalytically active metal center with an internal double bond in the polymer 

chain. Secondary metathesis leads to ring-chain equilibration but does not scramble the 

embedded sequence. 
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Figure 28. ED-ROMP of cyclic-Eg-(LGL-P)2 a) Mn vs time (black) and dispersity vs time (red); b) monomer 
conversion (%) vs time; c) Mn vs monomer conversion (%). 

Table 8. Poly (LGL-Eg-LGL-Oed) polymerization kinetics data 

Reaction 
Reaction 

Time 
(min) 

Mass 
Monomer 

(g) 

Catalyst 
mass 
(mg) 

Solvent 
Amount 

(mL) 

Percent 
Conversion 

(%)d 
DPe Mn 

(kDa)f 
Mw 

(kDa)f ᴆf 

1a 5 0.2101 3.7 0.50 26.1 49 28.3 38.7 1.37 
2a 10 0.2136 3.7 0.50 49.1 77 44.5 52.7 1.18 
3a 15 0.2043 3.6 0.49 54.9 86 49.6 56.1 1.13 
4a 30 0.2158 3.8 0.51 53.4 87 49.8 57.2 1.15 
5a 45 0.2157 3.8 0.51 70.7 81 46.7 54.6 1.17 
6b 60 0.2107 3.7 0.50 83.8 81 46.5 55.3 1.19 
7c 90 0.2123 3.7 0.50 80.4 76 43.9 53.9 1.23 
8b 120 --- --- --- 87.6 69 39.8 51.3 1.29 
9c 180 --- --- --- 84.9 68 39.1 50.2 1.28 

10b 240 --- --- --- 85.9 70 40.3 49.7 1.23 
This table contains data compiled from three sets of kinetics experiments (a-c) carried out under similar conditions. a) Separate 
vials containing reaction mixtures were prepared parallel to one another and quenched at the appropriate time; b) and c) aliquots 
were removed from a single reaction vessel and quenched at the appropriate time; d) obtained by integration of the glycolic 
methylene region of the 1H NMR spectra e) Calculated from the obtained Mn values; f) SEC in THF, relative to polystyrene 
standards. 
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Monomer conversion rose rapidly and then saturated at a level determined by ring-chain 

equilibrium, in this case 85.9% (Figure 28b). Conversion was monitored using 1H NMR 

spectroscopy. The chemical shifts of the diastereotopic methylene protons of G, found at 4.9-

4.55 ppm, were distinct for the ring-closed and ring-opened species (Figure 29, Figure 30). The 

effects of secondary metathesis are also well illustrated by the plot of molecular weight vs. 

conversion (Figure 28c). 

 

Figure 29. The 400 MHz 1H NMR spectra of ED-ROMP of cyclic-Eg-(LGL-P)2 to poly (LGL-Eg-LGL-Oed). 
Major resonances from trans isomers and minor resonances from cis isomers. 
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Figure 30. The 400 MHz 1H NMR spectra (5.65-4.2 ppm) at varying time points of poly (LGL-Eg-LGL-Oed) 
synthesized from cyclic-Eg-(LGL-P)2 by ED-ROMP. 

The initial linear phase was followed by a gradual drop in molecular weight at moderate 

conversions. Once the ring-chain equilibrium was reached the molecular weight continued to 

decrease due to secondary metathesis reactions. The dispersities gradually rose to 1.3.  

Importantly, we see evidence in these initial experiments for the desired molecular weight 

control. It is clear from the kinetic studies that the reaction is following the course expected for 

an ED-ROMP process. As such, molecular weight is governed by the monomer-to-catalyst ratio 

([M]/[cat]) and the concentration of the reaction, which determine the proportion of monomers in 

chains with catalyst end groups.164,174 Consistent with this expectation, we found that when the 
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[M]/[cat] ratio was adjusted from 78:1 to 164:1 in the ED-ROMP of cyclic-Eg-(LC-P)2, the Mn 

of the crude reaction mixture increased from 26 to 39 kDa (Table 7). 

In a more detailed study of molecular weight control a series of polymerizations of cyclic-

Eg-(LLC-P)2 were carried out (Table 7, Scheme 11 and Table 9). Four different [M]/[cat] ratios 

(20, 45, 75, and 125) were used in duplicate polymerizations and their absolute molecular 

weights were determined (Figure 31). Importantly, the Mns increased consistently as a function 

of the [M]/[cat] ratio, although they did not track perfectly with those theoretically predicted.  

The pattern of the deviation, where molecular weights start higher than expected for low 

[M]/[cat] ratios and gradually decrease to lower than expected as the ratio of monomer to 

catalyst increases, has been observed previously for ED-ROMP polymerizations.175 It is also 

important to note that the reactions were highly reproducible—duplicate conditions produced 

nearly identical molecular weights. Note: as the ring-chain equilibrium could not be calculated 

for this monomer because of an unfortunate overlap of NMR signals, the previously observed 

ratio of 85.9% was used to estimate the predicted values in Figure 31.  Molecular weight 

predictions based on a reasonable range of ratios (80-90%) do not substantially change the 

analysis (Figure 32). 

Table 9. Poly (CLL-Eg-LLC-Oed) molecular weight control study data 

Poly monomer 
(mg) 

Monomer 
(mol) Cat (mol) Mol 

% cat 
CH2Cl2 

(µL) [M]/[cat] 
Adjusted 

theoretical 
Mn (kDa)a 

Mn 
(kDa)b 

Mw 
(kDa)b ᴆb 

1 50.9 6.66x10-5 3.39x10-6 5.10 95 20 12.0 24.2 31.8 1.31 
2 50.5 6.62x10-5 3.39x10-6 5.14 94 19 12.0 28.9 37.3 1.29 
3 48.1 6.73x10-5 1.49x10-6 2.21 96 45 27.8 41.8 52.8 1.27 
4 48.1 6.73x10-5 1.49x10-6 2.21 96 45 27.8 47.4 59.6 1.26 
5 47.7 6.67x10-5 8.92x10-7 1.34 95 75 45.9 48.4 63.0 1.30 
6 48.0 6.71x10-5 8.92x10-7 1.33 96 75 46.2 50.4 65.3 1.30 
7 48.0 6.73x10-5 5.35x10-7 0.80 96 125 77.0 59.5 78.2 1.31 
8 95.2 1.33x10-4 1.06x10-6 0.80 190 126 76.7 56.1 71.6 1.28 

This table contains data compiled from four sets of molecular weight control experiments carried out under similar conditions. 
The mol % catalyst was varied between each set. a) This value was calculated by applying a ring-chain equilibrium correction 
factor obtained from the kinetics experiment. The [M]/[cat] value was multiplied by 0.859 and then converted to Mn. These 
values were used in Figure 4 for the theoretical living polymerization values; b) SEC in THF, actual molecular weight data.  

 



 111 

 
Figure 31. Molecular weight control study of the polymerization of cyclic-Eg-(LLC-P)2 to form poly (CLL-Eg-
LLC-Oed) using varying [M]/[cat] ratios. The molecular weights determined are in red, while the dotted black line 
represents a theoretical living polymerization taking ring-chain equilibrium into account. 

 

Figure 32. Molecular weight control study of the polymerization of cyclic-Eg-(LLC-P)2 to form poly (CLL-Eg-
LLC-Oed) using varying [M]/[cat] ratios (20, 45, 75, and 125). The molecular weights determined experimentally 
are in red. The dotted lines represent theoretical living polymerizations taking three different ring-chain equilibria 
assumptions into account (80%, 85.9%, and 90%). The polymerizations in this study had the same monomer to 
solvent concentration as the kinetics study (Figure 28 and Figure 29, Table 8). Since concentration determines the 
ring-chain equilibrium and the concentration was the same as the kinetics study, we chose to use 85.9% to calculate 
the theoretical living polymerization values. It can be seen that changing to either 80% or 90% doesn’t change the 
overall trend of either being above or below the theoretical Mn. 
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4.2.4 Copolymer thermal properties 

The olefinic group in the metathesis “linker” could be removed by hydrogenation. The saturated 

polymers containing the LGL sequence were isolated as colorless solids with no visual evidence 

of catalyst contamination and conversions >97% (Scheme 8 and Scheme 9). Hydrogenation 

decreased the Tg of these polymers by 4–10 oC. 

4.3 CONCLUSIONS 

In summary, cyclic macromonomers containing ring-opened ε-caprolactone, lactic and glycolic 

acids were prepared by RCM and subsequently polymerized by ED-ROMP to yield sequence-

preserved copolymers with molecular weight control. Kinetic studies confirmed the adherence of 

the reaction to the expected ED-ROMP pathway and the extension of the procedure to multiple 

sequences established that the polymerization conditions are sequence-independent. 

The ED-ROMP approach to sequenced copolymers, which offers unique advantages over 

step-growth methods, should prove applicable to other sequences of α-hydroxy acids and to 

monomers beyond those described in this paper. It should be possible to execute ED-ROMP on 

any sequence that can be incorporated into an olefin-bearing macrocycle, a process greatly 

facilitated by the known propensity of RCM to generate large rings.171 Although monomer 

production is somewhat limited by the need for high dilution, the production of gram-scale 

quantities sufficient for laboratory studies is not challenging. The tolerance of RCM for 

functional groups and the generality of the reaction should also make it possible to design the 
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olefin-containing linker unit of the resulting copolymers to be compatible with the targeted 

properties and applications. Future studies will explore further the generality of this approach. 

4.4 EXPERIMENTAL 

4.4.1 General information 

All experiments were carried out in oven-dried glassware under an atmosphere of N2 using 

standard Schlenk line techniques. N,N’-dicyclohexylcarbodiimide (DCC) was purchased from 

Oakwood Chemical and used without further purification. 10% Pd/C was purchased from Alfa 

Aesar. Palladium, 10 wt% (dry basis) on activated carbon, wet, Degussa type E101 NE/W was 

purchased from Sigma Aldrich. Ethylene glycol (Eg) was purchased from Mallinckrodt and used 

without further purification. Methylene chloride (CH2Cl2, Fisher) and ethyl acetate (EtOAc, 

Sigma Aldrich) were purified by a Solvent Dispensing System by J. C. Meyer. Both were passed 

over two columns of neutral alumina. Anhydrous, inhibitor-free tetrahydrofuran (THF, >99.9%) 

and Grubb’s 2nd generation catalyst were purchased from Sigma Aldrich. Column 

chromatography was performed using Sorbent Technologies 60 Å, 40-63 μm standard grade 

silica. C-SiR3,17,60 4-(dimethylamino)pyridinium 4-toluenesulfonate (DPTS),82 Bn-G, Bn-L, L-

SiR3, and Bn-GL-SiR3 were prepared according previously-published protocols.15,59 Ring-

closing metathesis reactions were performed according to a modified preparation from Matsuya 

et al.173 All other chemicals were used without further purification. 
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4.4.2 Compound characterization 

1H (300, 400, 600, and 700 MHz) and 13C (75, 100, 150, and 175 MHz) spectra were obtained 

using Bruker spectrometers and are reported as δ values in ppm relative to the reported solvent 

(CDCl3 referenced to 7.24). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), 

triplet (t), quartet (q), multiplet (m), broad (br), and combinations thereof.  

HRMS data were obtained on a LC/Q-TOF instrument. Molecular weights and dispersities 

were obtained on a Waters GPC (THF) with Jordi 500, 1000, and 10000 Å divinyl benzene 

columns, and refractive index detector (Waters) was calibrated to polystyrene standards. 

Absolute molecular weight and dispersity data was obtained using a Viscotek multi-detector 

system (THF) consisting of a GPCmax VE2001 autosampler, VE 3580 RI detector, and 270 dual 

detector equipped with a right angle light scattering detector and viscometer.  The column series 

consisted of Waters Styragel HR1, HR3, and HR4E styrene-divinylbenzene columns packed 

with 5 µm particles.  Column and multi-detector calibration was completed using a narrow 

polystyrene standard and verified with a broad polystyrene standard.  The sample injection 

volume of 100 µL was run through the system at a rate of 0.50 mL/min.  

Differential scanning calorimetry was performed with a TA Instruments Q200 on polymers 

containing L and G monomers. Samples were prepared by first dissolving in CH2Cl2, dropcast 

into aluminum pans, and put under vacuum overnight. The samples were then annealed at 85 oC 

for 3 h. Each run had a heating and cooling rate of 10 oC/min. Differential scanning calorimetry 

of copolymers containing L and C were performed on a Perkin Elmer DSC 6000 equipped with a 

Perkin Elmer Intracooler. Tgs were collected in the in the first heating cycle. 
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4.4.3 Synthesis of cyclic macromonomers and copolymers 

 

GL-SiR3. To a stirring solution of Bn-GL-SiR3 (34.05 g, 71.44 mmol) in EtOAc (700 mL) under 

N2 was added 10% Pd/C (3.41 g, 10% w/w). The reaction vessel was then purged twice with a 

H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite and concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5-25% EtOAc in 

hexanes) to provide the product as a colorless liquid (27.61 g, 87.8%). 1H NMR (400 MHz, 

CDCl3) δ 11.03 (br s, 1H), 7.66-7.65 (m, 4H), 7.44-7.32 (m, 6H), 4.58 (d, J = 16.4 Hz, 1H), 4.47 

(d, J = 16.4 Hz, 1H), 4.38 (q, J = 6.8 Hz, 1H), 1.40 (d, J = 6.8 Hz, 3H), 1.08 (s, 9H); 13C NMR 

(100 MHz, CDCl3) δ 173.03, 172.79, 135.89, 135.73, 133.39, 132.89, 129.84, 127.67, 127.61, 

68.60, 59.98, 26.77, 21.23, 19.21; HRMS (M-H+) calc mass 385.14713, found 385.14768. 

 

 

Bn-LGL-SiR3. To a stirring solution of Bn-L (11.57 g, 64.21 mmol, 1.1 equiv.) and GL-SiR3 

(22.56 g, 58.37 mmol, 1 equiv.), in CH2Cl2 (290 mL) was added DPTS (13.25 g, 64.21 mmol, 

0.2 equiv.). Once the mixture became homogeneous, DCC (13.25 g, 64.21 mmol, 1.1 equiv.) was 

added and the reaction was allowed to stir overnight. The solution was filtered and the filtrate 

was concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5-

25% EtOAc in hexanes) to provide the product as a colorless liquid (32.03 g, 92.9%). 1H NMR 
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(400 MHz, CDCl3) δ 7.67-7.64 (m, 4H), 7.44-7.30 (m, 11H), 5.18 (q, J = 7.2 Hz, 1H), 5.17 (d, J 

= 14.0 Hz, 1H), 5.14 (d, J = 14.0 Hz, 1H), 4.65 (d, J = 16.0 Hz, 1H), 4.46 (d, J = 16.0 Hz, 1H), 

4.37 (d, J = 6.8 Hz, 1H), 1.47 (d, J = 6.8 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H), 1.08 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 172.99, 169.90, 166.86, 135.90, 135.73, 135.14, 133.41, 132.96, 

129.81, 128.61, 128.45, 128.14, 127.66, 127.60, 69.28, 68.80, 67.16, 60.29, 26.78, 21.27, 19.21, 

16.80; HRMS (M+NH4
+) calc mass 566.2574, found 566.2578. 

 

 

LGL-SiR3. To a stirring solution of Bn-LGL-SiR3 (13.86 g, 25.3 mmol) in EtOAc (250 mL) 

under N2 was added 10% Pd/C (5% w/w, 1.41 g). The reaction vessel was evacuated and purged 

twice with a 1 atm H2 balloon. The reaction was allowed to stir overnight under 1 atm H2. The 

vessel was placed under N2, filtered over celite, and concentrated in vacuo. The product was a 

colorless liquid (11.58 g, quantitative). 1H NMR (400 MHz, CDCl3) δ 11.13 (br s, 1H), 7.66-7.64 

(m, 4H), 7.43-7.32 (m, 6H), 5.16 (q, J = 7.2 Hz, 1H), 4.65 (d, J = 16 Hz, 1H), 4.42 (d, J = 16 Hz, 

1H), 4.36 (q, J = 6.8 Hz, 1H), 1.50 (d, J = 7.2 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H), 1.07 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 174.96, 173.08, 166.82, 135.89, 135.72, 133.38, 132.93, 129.82, 

127.65, 127.60, 68.70, 68.59, 60.23, 26.77, 21.26, 19.20, 16.67; HRMS (M+H+) calc mass 

457.16771, found 457.16838.  

 

 

 

O
O

OTBDPS

O

O

HO

O



 117 

 

Eg-(LGL-SiR3)2. To a stirring solution of ethylene glycol (0.76 g, 12.2 mmol, 1 equiv.) and 

LGL-SiR3 (11.66 g, 25.4 mmol, 2.1 equiv.) in CH2Cl2 (120 mL) was added DPTS (1.43 g, 4.85 

mmol, 0.4 equiv.). Once the mixture became homogeneous, DCC (5.45 g, 26.4 mmol, 2.2 equiv.) 

was added and the reaction was allowed to stir overnight. The solution was filtered and the 

filtrate was concentrated in vacuo. The crude material was purified by flash chromatography 

(SiO2, 7.5-20% EtOAc in hexanes) to provide the product as a colorless liquid (11.27 g, 98.3%). 

1H NMR (400 MHz, CDCl3) δ 7.67-7.63 (m, 8H), 7.44-7.31 (m, 12H), 5.12 (q, J = 7.1 Hz, 2H), 

4.64 (d, J = 16.0 Hz, 2H), 4.42 (d, J = 16.0 Hz, 2H), 4.36 (q, J = 6.8 Hz, 2H), 4.37-4.27 (m, 4H), 

1.45 (d, J = 7.2 Hz, 6H), 1.40 (d, J = 6.8 Hz, 6H), 1.07 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 

172.98, 169.75, 166.82, 135.88, 135.71, 133.38, 132.95, 129.81, 127.65, 127.59, 69.09, 68.58, 

62.69, 60.24, 26.77, 21.26, 19.20, 16.70; HRMS (M+NH4
+) calc mass 960.4022, found 

960.4017. 

 

 

Eg-(LGL)2. To a stirring solution of Eg-(LGL-SiR3)2 (3.16 g, 3.33 mmol, 1 equiv.) in THF (83 

mL) at 0 oC under N2 was slowly added acetic acid (3.0 mL, 53 mmol, 16 equiv.) and then 

tetrabutylammonium fluoride (1.0 M in THF, 10.0 mL, 9.98 mmol). The reaction was stirred at 0 

oC overnight, then the ice bath was removed and stirring continued at RT for an additional day. 

After cooling the reaction mixture to 0 oC, brine (150 mL) was added. The resulting aqueous 

layer was extracted with CH2Cl2 (3 x 150 mL), the combined organic layers were washed with 
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aqueous saturated sodium bicarbonate solution (150 mL), dried over MgSO4 and then 

concentrated in vacuo. The concentrate was then chromatographed over silica using 25-75% 

EtOAc in hexanes as the eluent to provide the product as a white solid (1.55 g, quantitative). 1H 

NMR (400 MHz, CDCl3) δ 5.17 (q, J = 7.1 Hz, 2H), 4.80 (d, J = 16.0 Hz, 2H), 4.72 (d, J = 16.0 

Hz, 2H), 4.41-4.31 (m, 6H), 2.89 (br s, 2H), 1.50 (d, J = 6.8 Hz, 6H), 1.46 (d, J = 6.8 Hz, 6H); 

13C NMR (100 MHz, CDCl3) δ 174.82, 169.71, 166.73, 69.39, 66.72, 62.78, 60.83, 20.22, 16.69; 

HRMS (M+NH4
+) calc mass 484.1666, found 484.1627. 

 

 

Eg-(LGL-P)2. To a stirring solution of Eg-(LGL)2 (2.74 g, 5.88 mmol, 1 equiv.) and 4-pentenoic 

acid (1.32 mL, 12.9 mmol, 2.2 equiv.) in CH2Cl2 (60 mL) was added DPTS (0.70 g, 2.37 mmol, 

0.4 equiv.). Once the mixture became homogeneous, DCC (5.45 g, 26.4 mmol, 2.2 equiv.) was 

added and the reaction was allowed to stir overnight. The reaction was filtered to remove the 

urea byproduct, the filtrate was diluted with CH2Cl2 (140 mL), washed with 1 M HCl (100 mL), 

and washed with sat. NaHCO3 (100 mL). The aqueous layer was then extracted with CH2Cl2 (2 × 

80 mL), the organic layers were combined, dried over MgSO4, and concentrated in vacuo. The 

crude material was purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide 

the product as a colorless solid (3.10 g, 83.6%). 1H NMR (400 MHz, CDCl3) δ 5.81 (ddt, J = 

16.9, 10.5, 6.4 Hz, 2H), 5.15 (q, J = 7.1 Hz, 2H), 5.15 (q, J = 7.1 Hz, 2H), 5.04 (ddt, J = 17.1, 

1.6, 1.6 Hz, 2H), 4.98 (ddt, J = 10.2, 1.4, 1.3 Hz, 2H), 4.84 (d, J = 16.0 Hz, 2H), 4.61 (d, J = 16.0 

Hz, 2H), 4.38-4.30 (m, 4H), 2.54-2.45 (m, 4H), 2.43-2.34 (m, 4H), 1.53 (d, J = 6.8 Hz, 6H), 1.49 

(d, J = 6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 172.31, 170.20, 169.69, 169.59, 136.40, 
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115.60, 69.24, 68.16, 62.74, 60.67, 33.09, 28.62, 16.84, 16.70; HRMS (M+H+) calc mass 

631.22326, found 631.22530. 

 

 

cyclic-Eg-(LGL-P)2. A solution of Grubbs’ 2nd generation catalyst (3.9 mg, 0.0046 mmol) in 

CH2Cl2 (1 mL) was added to a stirring solution of Eg-(LGL-P)2 (28.0 mg, 0.044 mmol) in 

CH2Cl2 (42 mL). An additional 1 mL of CH2Cl2 was used to rinse the vial that had contained the 

catalyst solution, and the reaction was allowed to stir at RT overnight. The reaction was 

quenched by adding 1 mL ethyl vinyl ether, and then concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 20-30% EtOAc in hexanes) to provide the product 

as a colorless liquid with an E/Z ratio of 5.1/1 (24.1 mg, 89.9%). 1H NMR (400 MHz, CDCl3) δ 

5.44-5.23 (trans) and 5.39-5.38 (cis) (m, 2H), 4.79 (trans) and 4.77 (cis) (d, J = 16 Hz, 2H), 

4.675 (trans) and 4.67 (cis) (d, J = 16.0 Hz, 2H), 4.38-4.31 (m, 4H), 2.44-2.41 (m, 4H), 2.39-

2.26 (m, 4H), 1.52 (d, J = 7.2 Hz, 6H), 1.50 (d, J = 7.2 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 

172.27 (cis), 172.22 (trans), 170.19 (trans), 170.15 (cis), 169.76, 166.61, 129.32 (trans), 128.97 

(cis), 69.35, 68.19 (cis), 68.10 (trans), 62.71 (trans), 62.63 (cis), 60.86 (cis), 60.77 (trans), 33.80 

(cis), 33.62 (trans), 27.56, 27.34, 22.75, 16.85 (trans), 16.78 (cis), 16.69 (trans), 16.65 (cis); 

HRMS (M+H+) calc mass 603.19251, found 603.19028. 
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Poly (LGL-Eg-LGL-Oed). Grubbs’ 2nd generation catalyst (10.5 mg, 0.012 mmol) was 

dissolved in CH2Cl2 (0.3 mL) and added via syringe to a stirring solution of cyclic-Eg-(LGL-P)2 

(0.57 g, 0.94 mmol) in CH2Cl2 (1.0 mL). The reaction was allowed to stir at RT for 4 h before 

being quenched through the addition of ethyl vinyl ether (0.2 mL). The reaction mixture was 

dissolved in a minimal amount of CH2Cl2 and precipitated into 250 mL stirring MeOH. The solid 

was isolated, dissolved in a minimal amount of CH2Cl2, precipitated in 175 mL of stirring 

MeOH, and dried under vacuum overnight to yield an off-white solid with an E/Z ratio of 5.4/1 

(0.42 g, 74.8%). 1H NMR (700 MHz, CDCl3) δ 5.50-5.41 (trans), 5.39-5.36 (cis) (m, 2H), 5.15 

(q, J = 7 Hz, 2H), 5.13 (q, J = 7 Hz, 2H), 4.84 (d, J = 16.1 Hz, 2H), 4.60 (d, J = 16,1 Hz, 2H), 

4.38-4.29 (m, 4H), 2.46-2.36 (m, 4H), 2.38-2.29 (m, 4H), 1.53 (d, J = 7.0 Hz, 6H), 1.49 (d, J = 

7.0 Hz, 6H); 13C NMR (175 MHz, CDCl3) δ 172.32 (trans), 172.21 (cis), 170.21, 169.75 (cis), 

169.69 (trans), 166.60, 69.34 (cis), 69.22 (trans), 62.74 (trans), 62.71 (cis), 60.76 (cis), 60.64 

(trans), 33.64 (trans), 33.61 (cis), 27.53 (trans), 22.47 (cis), 16.83 (trans), 16.79 (cis), 16.69 

(trans), 16.64 (cis); DSC: Tg = 18 oC; SEC (THF): Mn = 33.3 kDa, Mw = 44.5 kDa, ᴆ = 1.3. 

 

 

Poly (LGL-Eg-LGL-Od). A dried three-neck round bottom flask with two gas adapters was 

charged with THF (29.7 mL) and Poly (LGL-Eg-LGL-Oed) (0.124 g, 0.21 mmol with respect to 

the repeat unit). Once the polymer had dissolved, Degussa’s catalyst (0.25 g) was added and the 

reaction vessel was purged two times with H2. Stirring continued overnight under 1 atm H2..The 
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flask was then filled with N2 and the mixture was filtered over a layered, thick pad of celite and 

activated carbon. The filtrate was filtered over a short plug of celite and concentrated in vacuo to 

yield a colorless solid (0.123 g, 98.8%, 98.6% conversion). 1H NMR (700 MHz, CDCl3) δ 5.54-

5.52 (m, 0.02), 5.14 (q, J = 7.1 Hz, 2H), 5.12 (q, J = 7.1 Hz, 2H), 4.85 (d, J = 16.0 Hz, 2H), 4.60 

(d, J = 16.4 Hz, 2H), 4.38-4.30 (m, 4H), 2.38 (dt, J = 15.6, 7.5 Hz, 2H), 2.33 (dt, J = 16.0, 7.5 

Hz, 2H), 1.70-1.58 (m, 4H), 1.53 (d, J = 7.2 Hz, 6H), 1.49 (d, J = 7.2 Hz, 6H), 1.36-1.29 (m, 

4H); 13C NMR (175 MHz, CDCl3) δ 172.97, 170.30, 169.71, 166.62, 69.20, 68.03, 62.73, 60.61, 

33.69, 28.56, 28.31, 24.47, 16.82, 16.69; DSC: Tg = 13 oC; SEC (THF): Mn = 27.9 kDa, Mw = 

41.4 kDa, ᴆ = 1.5. 

 

 

Eg-(LGL-B)2. To a stirring solution of Eg-(LGL)2 (0.113 g, 0.243 mmol, 1 equiv.), 3-butenoic 

acid (0.05 mL, 0.588 mmol, 2.4 equiv.) in CH2Cl2 (2.4 mL) was added DPTS (0.029 g, mmol, 

0.4 equiv.). Once the mixture became homogeneous, DCC (0.112 g, 0.542 mmol, 2.2 equiv.) was 

added and the reaction was allowed to stir overnight. The reaction was filtered to and the filtrate 

was diluted with CH2Cl2 (50 mL), washed with 1 M HCl (50 mL), and washed with saturated 

aqueous NaHCO3 (50 mL). The aqueous layer was then extracted with CH2Cl2 (2 × 25 mL), the 

organic layers were combined, dried over MgSO4, and concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 17.5-20% EtOAc in hexanes) to provide the 

product as a colorless liquid (0.116 g, 79.2%). 1H NMR (400 MHz, CDCl3) δ 5.90 (ddt, J = 17.0, 

10.4, 6.8 Hz, 2H), 5.20-5.12 (m, 8H), 4.84 (d, J = 16.0 Hz, 2H), 4.61 (d, J = 16.0 Hz, 2H), 4.38-

4.30 (m, 4H), 3.21-3.10 (m, 4H), 1.54 (d, J = 6.8 Hz, 6H), 1.49 (d, J = 6.8 Hz, 6H); 13C NMR 
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(100 MHz, CDCl3) δ 170.82, 170.08, 169.69, 166.57, 129.59, 118.94, 69.24, 68.38, 62.73, 60.69, 

38.55, 16.78, 16.69; HRMS (M+H+) calc mass 603.19251, found 603.19073. 

 

 

cyclic-Eg-(LGL-B)2. A solution of Grubbs’ 2nd generation catalyst (52.7 mg, 0.062 mmol) in 

CH2Cl2 (1 mL) was added to a stirring solution of Eg-(LGL-B)2 (0.37 g, 0.62 mmol) in CH2Cl2 

(620 mL). An additional 1 mL of CH2Cl2 was used to rinse the vial that had contained the 

catalyst solution, and the reaction was allowed to stir at RT overnight. The reaction was 

quenched by adding 1 mL ethyl vinyl ether, and then concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 25-30% EtOAc in hexanes) to provide the product 

as a colorless liquid with an E/Z ratio of 3.9/1 (0.29 g, 81.4%). 1H NMR (400 MHz, CDCl3) δ 

5.79-5.78 (cis) and 5.75-5.72 (trans) (m, 2H), 5.20 (cis) and 5.20 (trans) (q, J = 7.2 Hz, 2H), 5.15 

(q, J = 7.2 Hz, 2H), 4.76 (cis) and 4.75 (trans) (d, J = 16.0 Hz, 2H), 4.66 (d, J = 16.0 Hz, 2H), 

4.41-4.32 (m, 4H), 3.29-3.05 (m, 4H), 1.51 (d, J = 7.2 Hz, 6H), 1.49 (d, J = 7.2 Hz, 6H); 13C 

NMR (100 MHz, CDCl3) δ 170.52 (trans), 170.33 (cis), 169.85 (trans), 169.81 (cis), 169.71 

(trans), 166.49, 125.67 (trans), 124.66 (cis), 69.42, 68.49 (cis), 68.38 (trans), 62.59 (cis), 62.52 

(trans), 60.88, 37.38 (trans), 32.66 (cis), 21.01, 16.74 (trans), 16.68 (cis), 16.62 (trans); HRMS 

(M+H+) calc mass 575.16066, found 575.15986. 
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Poly (LGL-Eg-LGL-Hed). Grubbs’ 2nd generation catalyst (5.8 mg, 0.0069 mmol) was 

dissolved in 0.28 mL CH2Cl2, added via syringe to a stirring solution of cyclic-Eg-(LGL-B)2 

(0.31 g, 0.55 mmol) was dissolved in CH2Cl2 (0.5 mL). The reaction was allowed to stir at RT 

for 4 h before being quenched through the addition of ethyl vinyl ether (0.2 mL). The reaction 

mixture was dissolved in a minimal amount of CH2Cl2 and precipitated into 125 mL stirring 

MeOH. The solid was isolated, redissolved in minimal CH2Cl2 and reprecipitated in 100 mL of 

stirring MeOH. The solid was dried under vacuum overnight to yield an off-white solid with an 

E/Z ratio of 4.7/1 (0.26 g, 81.8%). 1H NMR (700 MHz, CDCl3) δ 5.82-5.76 (cis) and 5.72-5.67 

(trans) (m, 2H), 5.15 (q, J = 7.0 Hz, 2H), 5.13 (q, J = 7.0 Hz, 2H), 4.84 (d, J = 16.1 Hz, 2H), 4.61 

(d, J = 16.1 Hz, 2H), 4.38-4.31 (m, 4H), 3.19-3.13 (m, 4H), 1.54 (d, J = 7 Hz, 6H), 1.49 (d, J = 7 

Hz, 6H); 13C NMR (175 MHz, CDCl3) δ 170.80, 170.48 (cis), 170.07, 170.04 (cis), 169.70, 

166.58, 125.68 (trans), 124.24 (cis), 69.22, 68.51 (cis), 68.43 (trans), 62.74, 60.67, 37.24, 32.60 

(cis), 16.78, 16.70; DSC: Tg = 32 oC; SEC (THF): Mn = 33.4 kDa, Mw = 46.0 kDa, ᴆ = 1.4. 

 

 

Poly (LGL-Eg-LGL-Hd). A dried three-neck round bottom flask with two gas adapters was 

charged with THF (30.2 mL) and Poly (LGL-Eg-LGL-Hed) (0.121 g, 0.21 mmol with respect to 

the repeat unit). Once the polymer had dissolved, Degussa’s catalyst (0.25 g) was added and the 

reaction vessel was purged two times with H2. Stirring continued overnight under 1 atm H2..The 

flask was then filled with N2 and the mixture was filtered over a layered, thick pad of celite and 
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activated carbon. The filtrate was then filtered over a short plug of celite and concentrated in 

vacuo to yield a colorless solid (0.112 g, 92.4%, 96.6% conversion). 1H NMR (700 MHz, 

CDCl3) δ 5.81-5.76 (cis) and 5.72-5.67 (trans) (m, 0.06H), 5.14 (q, J = 7.0 Hz, 2H), 5.12 (q, J = 

7.0 Hz, 2H), 4.85 (d, J = 16.1 Hz, 2H), 4.61 (d, J = 16.1 Hz, 2H), 4.7-4.31 (m, 4H), 2.43-2.35 (m, 

4H), 1.71-1.65 (m, 4H), 1.53 (d, J = 7.0 Hz, 6H), 1.49 (d, J = 7.0 Hz, 6H); DSC: Tg = 23 oC; SEC 

(THF): Mn = 27.1 kDa, Mw = 41.7 kDa, ᴆ = 1.5. 

 

Poly (LGL-Eg-LGL-Oed) polymerization kinetics study. The LGL-macromonomer was 

added to a vial and charged with a stir bar and appropriate amount of CH2Cl2 under N2. Once 

dissolved, a solution of Grubbs’ 2nd generation catalyst (1.25 mol%) in CH2Cl2 (0.7 M with 

respect to monomer, final concentration) was added and the reaction mixture was allowed to stir 

for given time. The reaction was then quenched with ethyl vinyl ether (0.1 mL). For two of the 

polymerizations (6 and 7), aliquots were removed at different time points. For reaction 6, 

aliquots was removed at 60 min (6) and 120 min (8) and quenched and then the rest of the 

reaction mixture was quenched at time 240 min (10). For reaction 7, an aliquot was removed at 

90 min (7) and quenched and then the rest of the reaction mixture was quenched at time 180 min 

(9). 

 

 

Bn-LC-SiR3. To a stirring solution of Bn-L (6.46 g, 35.8 mmol, 1.1 equiv.) and C-SiR3 (7.72 g, 

31.3 mmol, 1 equiv.) in CH2Cl2 (325 mL) was added DPTS (1.86 g, 6.32 mmol, 0.2 equiv.). 

Once the mixture became homogeneous, DCC (7.13 g, 34.5 mmol, 1.1 equiv.) was added and the 
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reaction was allowed to stir overnight. The solution was filtered and the filtrate was concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5% EtOAc in 

hexanes) to provide the product as a colorless liquid (12.80 g, 96%). 1H NMR (300 MHz, 

CDCl3) δ 7.37-7.28 (m, 5H), 5.18 (d, J = 12.3 Hz, 1H), 5.12 (d, J = 12.3 Hz, 1H), 5.12 (q, J = 7.0 

Hz, 1H), 3.57 (t, J = 6.3 Hz, 2H), 2.36 (dt, J1 = 15.6 Hz, J2 = 7.8 Hz, 1H), 2.35 (dt, J1 = 15.6 Hz, 

J2 = 7.4 Hz, 1H), 1.68-1.58 (m, 2H), 1.53-1.46 (m, 2H), 1.47 (d, J = 7.0 Hz, 3H), 1.39-1.29 (m, 

2H), 0.87 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 173.04, 170.72, 135.35, 128.56, 

128.35, 128.10, 68.38, 66.91, 62.92, 33.94, 32.42, 25.94, 25.33, 24.61, 18.32, 16.89, -5.31; 

HRMS (M+Na) calc mass 431.2230, found 431.2240. 

 

 

LC-SiR3. Bn-LC-SiR3 (8.74 g, 21.4 mmol) and 10% Pd/C (0.44 g, 5% w/w) were added to a 

stirring solution of EtOAc (215 mL, 0.1 M in substrate) under N2. The reaction vessel was then 

purged twice with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction 

had completed, the vessel was evacuated and filled with N2 and the mixture was filtered over 

celite and concentrated in vacuo. The crude material was purified by flash chromatography (SiO-

2, 2.5% EtOAc in hexanes) to provide the product as a colorless liquid (6.20 g, 91.1%). 1H NMR 

(300 MHz, CDCl3) δ 9.57 (br s, 1H), 5.08 (q, J = 7.1 Hz, 1H), 3.58 (t, J = 6.5 Hz, 2H), 2.37 (dt, 

J1 = 15.6 Hz, J2 = 7.7 Hz, 1H), 2.36 (dt, J1 = 15.9 Hz, J2 = 7.5 Hz, 1H), 1.70-1.60 (m, 2H), 1.56-

1.47 (m, 2H), 1.50 (d, J = 7.1 Hz, 3H), 1.40-1.33 (m, 2H), 0.90 (s, 9H), 0.06 (s, 6H); 13C NMR 

(75 MHz, CDCl3) δ 176.30, 173.09, 67.90, 63.00, 33.86, 32.40, 25.94, 25.31, 24.56, 18.34, 

16.80, -5.30; HRMS (M+Na) calc mass 341.1760, found 341.1745. 
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Eg-(LC-SiR3)2. To a stirring solution of ethylene glycol (0.60 g, 9.73 mmol, 1 equiv.) and LC-

SiR3 (6.50 g, 20.4 mmol, 2.1 equiv.) in CH2Cl2 (100 mL) was added DPTS (1.14 g, 3.88 mmol, 

0.4 equiv.). Once the mixture became homogeneous, DCC (4.21 g, 20.4 mmol, 2.1 equiv.) was 

added and the reaction was allowed to stir overnight. The solution was filtered and the filtrate 

was concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 5-

7.5% EtOAc in hexanes) to provide the product as a colorless liquid (6.38 g, 99.0%). 1H NMR 

(400 MHz, CDCl3) δ 5.07 (q, J = 7.1 Hz, 2H), 4.38-4.25 (m, 4H), 3.58 (t, J = 6.4 Hz, 4H), 2.37 

(dt, J1 = 15.6 Hz, J2 = 7.6 Hz, 2H), 2.36 (dt, J1 = 16.0 Hz, J2 = 7.6 Hz, 2H), 1.69-1.61 (m, 4H), 

1.55-1.47 (m, 4H), 1.46 (d, J = 7.2 Hz, 6H), 1.40-1.33 (m 4H), 0.87 (s, 18H), 0.02 (s, 12H); 13C 

NMR (100 MHz, CDCl3) δ 172.97, 170.67, 68.21, 62.94, 62.57, 33.91, 32.45, 25.96, 25.38, 

24.62, 18.33, 16.85, -5.30; HRMS (M+H+) calc mass 663.39543, found 663.39517. 

 

 

Eg-(LC)2. Eg-(LC-SiR3)2 (2.04 g, 3.08 mmol), acetic acid (2.8 mL, 49.2 mmol, 16 equiv.), and 

tetrabutylammonium fluoride (1 M in THF, 9.2 mL, 3 equiv.) were combined in THF (30 mL) 

and stirred overnight. The reaction mixture was then partitioned between 50 mL brine and 25 mL 

of diethyl ether and the layers were separated. The aqueous layer was extracted with diethyl ether 

(2 × 25 mL) and the combined organic layers were washed with aqueous saturated sodium 

bicarbonate solution (50 mL), dried over MgSO4 and then concentrated in vacuo. The crude 
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material was purified by flash chromatography (SiO2, 50% EtOAc in hexanes) to provide the 

product as a colorless solid (1.16 g, 86.3%). 1H NMR (400 MHz, CDCl3) δ 5.06 (q, J = 7.1 Hz, 

2H), 4.38-4.25 (m, 4H), 3.63-3.60 (m, 4H), 2.39 (dt, J1 = 15.6 Hz, J2 = 7.6 Hz, 2H), 2.38 (dt, J1 = 

16.0 Hz, J2 = 7.6 Hz, 2H), 1.70-1.62 (m, 6H), 1.60-1.53 (m, 4H), 1.47 (d, J = 7.2 Hz, 6H), 1.44-

1.39 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 172.99, 170.67, 68.25, 62.58, 62.46, 33.76, 32.19, 

25.05, 24.42, 16.82; HRMS (M+Na) calc mass 457.2050, found 457.2053. 

 

 

Eg-(LC-P)2. To a stirring solution of Eg-(LC)2 (0.57 g, 1.3 mmol, 1 equiv.) and 4-pentenoic acid 

(0.3 mL, 3 mmol, 2.3 equiv.) in CH2Cl2 (15 mL) was added DPTS (0.16 g, 0.54 mmol, 0.4 

equiv.). Once the mixture became homogeneous, DCC (0.60 g, 2.9 mmol, 2.2 equiv.) was added 

and the reaction was allowed to stir overnight. The solution was filtered and the filtrate was 

concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 10-15% 

EtOAc in hexanes) to provide the product as a colorless solid (0.79 g, 99.4%). 1H NMR (400 

MHz, CDCl3) δ 5.79 (ddt, J = 16.8, 10.4, 6.4 Hz, 2H), 5.06 (q, J = 7.2 Hz, 2H), 5.03 (m, 2H), 

4.97 (m, 2H), 4.37-4.28 (m, 4H), 4.05 (t, J = 6.6 Hz, 4H), 2.43-2.29 (m, 12H), 1.69-1.59 (m, 8H), 

1.46 (d, J = 7.2 Hz, 6H), 1.42-1.35 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 173.06, 172.76, 

170.54, 136.68, 115.43, 68.23, 64.12, 62.56, 33.68, 33.51, 28.85, 28.27, 25.39, 24.36, 16.82; 

HRMS (M+H+) calc mass 599.3068, found 599.3061. 
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cyclic-Eg-(LC-P)2. A solution of Grubbs’ 2nd generation catalyst (2.9 mg, 0.0034 mmol) in 

CH2Cl2 (1 mL) was added to a stirring solution of Eg-(LC-P)2 (19 mg, 0.032 mmol) in CH2Cl2 

(324 mL). An additional 1 mL of CH2Cl2 was used to rinse the vial that had contained the 

catalyst solution, and the reaction was allowed to stir at RT overnight. The reaction was 

quenched by adding 1 mL ethyl vinyl ether, and then concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 20-30% EtOAc in hexanes) to provide the product 

as a colorless liquid with an E/Z ratio of 2.8/1 (16.8 mg, 91.3%). 1H NMR (400 MHz, CDCl3) δ 

5.49-5.43 (trans) and 5.41-5.34 (cis) (m, 2H), 5.07 (q, J = 7.1 Hz, 2H), 4.37-4.29 (m, 4H), 4.06 

(cis) and 4.05 (trans) (t, J = 6.4 Hz, 4H), 2.38 (dt, J1 = 15.6 Hz, J2 = 7.2 Hz, 2H), 2.37-2.28 (m, 

10H), 1.70-1.58 (m, 8H), 1.47 (d, J = 7.2 Hz, 6H), 1.45-1.37 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ 173.06, 172.73, 170.54, 129.41 (trans), 129.04 (cis), 68.32, 64.13, 64.07, 62.55, 34.38, 

34.17, 33.67, 29.68, 28.30, 28.27, 27.79, 25.45, 25.40, 24.41, 24.37, 22.90, 16.82; HRMS 

(M+Na) calc mass 593.2574, found 593.2565. 
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Poly (CL-Eg-LC-Oed) varying catalyst amount study: 

 

Poly (CL-Eg-LC-Oed)-1. Grubbs’ 2nd generation catalyst (2.3 mg, 0.0027 mmol, 1.29 mol%) 

was dissolved in CH2Cl2 (0.1 mL), and to a stirring solution of cyclic-Eg-(LC-P)2 (0.12 g, 0.21 

mmol) in CH2Cl2 (0.21 mL). The reaction was allowed to stir at RT for 3 h before being 

quenched through the addition of ethyl vinyl ether (0.2 mL). An aliquot was removed from the 

polymerization and dried under vacuum overnight to yield an off-white solid (6.0 mg). 1H NMR 

(600 MHz, CDCl3) δ 5.47-5.40 (trans) and 5.36-5.35 (cis) (m, 2H), 5.06 (q, J = 7.0 Hz, 2H), 

4.37-4.29 (m, 4H), 4.05-4.02 (m, 4H), 2.42-2.25 (m, 12H), 1.68-1.59 (m, 8H), 1.46 (d, J = 6.6 

Hz, 6H), 1.41-1.36 (m, 4H); 13C NMR (150 MHz, CDCl3) δ 173.10, 172.78, 170.56, 129.38 

(trans), 128.97 (cis), 68.31 (cis), 68.22 (trans), 64.16 (cis), 64.10 (trans), 62.57, 34.15 (cis), 

34.10 (trans), 33.67, 28.28, 27.77, 25.44 (cis), 25.38 (trans), 24.36, 22.68, 16.83; DSC: Tg = -

27.3 oC; SEC (THF): Mn = 25.9 kDa, Mw = 32.4 kDa, ᴆ = 1.25. 

 

Poly (CL-Eg-LC-Oed)-2. Grubbs’ 2nd generation catalyst (1.2 mg, 0.0014 mmol, 0.61 mol%) 

was dissolved in CH2Cl2 (0.1 mL) added via syringe to a stirring solution of cyclic-Eg-(LC-P)2 

(0.13 g, 0.23 mmol) in CH2Cl2 (0.22 mL). The reaction was allowed to stir at RT for 3 h before 

being quenched through the addition of ethyl vinyl ether (0.2 mL). An aliquot was removed from 

the polymerization and dried under vacuum overnight to yield an off-white solid (7.6 mg). DSC: 

Tg = -27.2 oC; SEC (THF): Mn = 38.8 kDa, Mw = 48.1 kDa, ᴆ = 1.25. 
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Bn-LLC-SiR3. To a stirring solution of Bn-L (2.92 g, 16.2 mmol, 1.1 equiv.) and LC-SiR3 (4.66 

g, 14.6 mmol, equiv.) in CH2Cl2 (150 mL) was added DPTS (0.87 g, 2.94 mmol, 0.2 equiv.). 

Once the mixture became homogeneous, DCC (3.18 g, 15.4 mmol, 1.1 equiv.) was added and the 

reaction was allowed to stir overnight. The solution was filtered and the filtrate was concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 5% EtOAc in 

hexanes) to provide the product as a colorless liquid (6.54 g, 93%). 1H NMR (300 MHz, CDCl3) 

δ 7.38-7.28 (m, 5H), 5.18 (q, J = 7.1 Hz, 1H), 5.17 (d, J = 12.3 Hz, 1H), 5.11 (d,  J = 12.0 Hz, 

1H), 5.07 (q, J = 7 Hz, 1H), 3.58 (t, J = 6.5 Hz, 2H), 2.37 (dt, J1 = 15.6 Hz, J2 = 7.7 Hz, 1H), 2.36 

(dt, J1 = 15.9 Hz, J2 = 7.5 Hz, 1H), 1.69-1.59 (m, 2H), 1.55-1.46 (m, 2H), 1.51 (d, J = 7.2 Hz, 

3H), 1.47 (d, J = 7.2 Hz, 3H), 1.40-1.30 (m, 2H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (75 MHz, 

CDCl3) δ 173.12, 170.33, 170.09, 135.10, 128.59, 128.46, 128.22, 69.03, 68.12, 67.13, 62.93, 

33.85, 32.42, 25.94, 25.31, 24.57, 18.32, 16.78, 16.69, -5.31; HRMS (M+Na) calc mass 

503.2441, found 503.2395. 

 

 

LLC-SiR3. Bn-LLC-SiR3 (6.35 g, 13.2 mmol) was combined with 10% Pd/C (0.31 g, 5 % w/w) 

in EtOAc (135 mL, 0.1 M in substrate) and stirred under N2.  The reaction vessel was evacuated 

and purged twice with a 1 atm H2 balloon.  The reaction was allowed to stir overnight under 1 

atm H2.  The vessel was placed under N2, filtered over celite, and concentrated in vacuo.  The 

concentrate was chromatographed over silica using 10% EtOAc in hexanes as the eluent.  The 

BnO
O

O

O
OTBDMS

O

O

HO
O

O

O
OTBDMS

O

O



 131 

product was a colorless liquid (4.22 g, 81.8%).  1H NMR (400 MHz, CDCl3) δ 9.59 (br s, 1H), 

5.17 (q, J = 7.1 Hz, 1H), 5.09 (q, J = 7.2 Hz, 1H), 3.59 (t, J = 6.4 Hz, 2H), 2.38 (dt, J1 = 15.6 Hz, 

J2 = 7.6 Hz, 1H), 2.37 (dt, J1 = 15.6 Hz, J2 = 7.4 Hz, 1H), 1.68-1.61 (m, 2H), 1.55-1.47 (m, 2H), 

1.54 (d, J = 7.2 Hz, 3H), 1.52 (d, J = 7.2 Hz, 3H), 1.40 (m, 2H), 0.86 (s, 9H), 0.02 (s, 6H); 13C 

NMR (100 MHz, CDCl3) δ 175.27, 173.21, 170.26, 68.57, 68.15, 63.03, 33.85, 32.36, 25.95, 

25.31, 24.58, 18.34, 16.70, 16.68, -.531; HRMS (M-H+) calc mass 389.1996, found 389.2010. 

 

 

Eg-(LLC-SiR3)2. To a stirring solution of ethylene glycol (0.26 g, 4.15 mmol, 1 equiv.) and 

LLC-SiR3 (3.96 g, 10.2 mmol, 2.1 equiv.) in CH2Cl2 (42 mL) was added DPTS (0.24 g, 0.82 

mmol, 0.2 equiv.). Once the mixture became homogeneous, DCC (1.77 g, 8.57 mmol, 2.1 equiv.) 

was added and the reaction was allowed to stir overnight. The solution was filtered and the 

filtrate was concentrated in vacuo. The crude material was purified by flash chromatography 

(SiO2, 10% EtOAc in hexanes) to provide the product as a colorless liquid (2.74 g, 81.8%). 1H 

NMR (300 MHz, CDCl3) δ 5.13 (q, J = 7.2 Hz, 2H), 5.08 (q, J = 7.2 Hz, 2H), 4.38-4.27 (m, 4H), 

3.58 (t, J = 6.5 Hz, 4H), 2.37 (dt, J1 = 15.9 Hz, J2 = 7.8 Hz, 2H), 2.36 (dt, J1 = 15.6 Hz, J2 = 7.5 

Hz, 2H), 1.69-1.59 (m, 4H), 1.56-1.40 (m, 4H), 1.53 (d, J = 7.2 Hz, 6H), 1.50 (d, J = 7.2 Hz, 6H), 

1.39-1.29 (m 4H), 0.86 (s, 18H), 0.02 (s, 12H); 13C NMR (75 MHz, CDCl3) δ 173.08m, 170.27, 

169.97, 68.87, 68.10, 62.94, 62.69, 33.88, 32.44, 25.96, 25.36, 24.60, 18.33, 16.75, 16.72, -5.30; 

HRMS (M+NH4
+) calc mass 824.4648, found 824.4626. 
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Eg-(LLC)2. To a stirring solution of Eg-(LLC-SiR3)2 (1.48 g, 1.83 mmol, 1 equiv..) in THF (37 

mL) under N2 was slowly added acetic acid (1.7 mL, 29.3 mmol, 16 equiv.) and then 

tetrabutylammonium fluoride (1.0 M in THF, 5.5 mL, 5.5 mmol at rt. The reaction mixture was 

poured into brine (50 mL). The resulting aqueous layer was extracted with CH2Cl2 (3 x 50 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(75 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 

chromatographed over silica using 50-60% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (0.90 g, 84.5%). 1H NMR (400 MHz, CDCl3) δ 5.13 (q, J = 7.1 Hz, 

2H), 5.08 (q, J = 7.1 Hz, 2H), 4.35-4.28 (m, 4H), 3.61 (t, J = 6.4 Hz, 4H), 2.39 (dt, J1 = 16.0 Hz, 

J2 = 7.6 Hz, 2H), 2.37 (dt, J1 = 15.6 Hz, J2 = 7.4 Hz, 2H), 1.70-1.62 (m, 4H), 1.59-1.47 (m, 6H), 

1.52 (d, J = 7.2 Hz, 6H), 1.50 (d, J = 7.2 Hz, 6H), 1.44-1.36 (m, 4H); 13C NMR (100 MHz, 

CDCl3) δ 173.07, 170.30, 169.95, 68.91, 68.13, 62.66, 62.49, 33.75, 32.21, 25.04, 24.43, 16.71, 

16.69; HRMS (M+H+) calc mass 579.2653, found 579.2643. 

 

 

Eg-(LLC-P)2. To a stirring solution of Eg-(LLC)2 (0.65 g, 1.12 mmol, 1 equiv.) and 4-pentenoic 

acid (0.25 mL, 2.45 mmol, 2.2 equiv.) in CH2Cl2 (23 mL) was added DPTS (0.13 g, 0.45 mmol, 

0.4 equiv.). Once the mixture became homogeneous, DCC (0.51 g, 2.47 mmol, 2.2 equiv.) was 

added and the reaction was allowed to stir overnight. The reaction was filtered to remove the 

urea byproduct, the filtrate was diluted with CH2Cl2 (25 mL) and washed with sat. NaHCO3 (50 
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mL). The aqueous layer was then extracted with CH2Cl2 (2 × 50 mL), the organic layers were 

combined, dried over MgSO4, and concentrated in vacuo. The crude material was purified by 

flash chromatography (SiO2, 15-17.5% EtOAc in hexanes) to provide the product as a colorless 

liquid (0.77 g, 92.9%). 1H NMR (400 MHz, CDCl3) δ 5.84-5.74 (m, 2H), 5.13 (q, J = 7.1 Hz, 

2H), 5.08 (q, J = 7.2 Hz, 2H), 5.05-5.00 (m, 2H), 4.99-4.96 (m, 2H), 4.36-4.27 (m, 4H), 2.43-

2.31 (m, 12H), 1.69-1.58 (m, 4H), 1.52 (d, J = 7.2 Hz, 6H), 1.50 (d, J = 7.2 Hz, 6H), 1.42-1.34 

(m, 4H); 13C NMR (100 MHz, CDCl3) 

δ 173.04, 172.85, 170.22, 169.92, 136.69, 115.42, 68.85, 68.13, 64.12, 62.67, 33.65, 33.51, 28.85

, 28.27, 25.37, 24.35, 16.71, 16.70; HRMS (M+H+) calc mass 743.34846, found 743.34834. 

 

 

cyclic-Eg-(LLC-P)2. A solution of Grubbs’ 2nd generation catalyst (94.9 mg, 0.12 mmol) in 

CH2Cl2 (1 mL) was added to a stirring solution of Eg-(LLC-P)2 (0.82 g, 1.11 mmol) in CH2Cl2 

(815 mL). An additional 1 mL of CH2Cl2 was used to rinse the vial that had contained the 

catalyst solution, and the reaction was allowed to stir at RT overnight. The reaction was 

quenched by adding 1 mL ethyl vinyl ether, and then concentrated in vacuo. The crude material 

was purified by flash chromatography (SiO2, 15% EtOAc in hexanes) to provide the product as a 

colorless liquid with an E/Z ratio of 7.3/1 (0.58 g, 73.6%). 1H NMR (400 MHz, CDCl3) δ 5.48-
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5.39 (trans) and 5.37-5.35 (cis) (m, 2H), 5.12 (q, J = 7.2 Hz, 2H), 5.08 (q, J = 7.1 Hz, 2H), 4.39-

4.25 (m, 4H), 4.05 (cis) and 4.04 (trans) (t, J = 6.4 Hz, 4H),  ; 13C NMR (100 MHz, CDCl3) δ 

173.07, 172.89, 170.11, 170.02, 129.40 (trans), 129.03 (cis), 68.93, 68.12, 64.06, 62.64, 34.16, 

33.66, 28.26, 27.78, 25.40, 24.38, 16.70 (2); HRMS (M+H+) calc mass 603.19251, found 

603.19028. 

 

 

Poly (CLL-Eg-LLC-Oed)-4. Grubbs’ 2nd generation catalyst (0.76 mg, 8.9x10-4 mmol, 1.33 

mol%) was dissolved in CH2Cl2 (15 µL), and to a stirring solution of cyclic-Eg-(LC-P)2 (48.0 

mg, 0.067 mmol) in CH2Cl2 (81 µL). The reaction was allowed to stir at RT for 4 h before being 

quenched through the addition of ethyl vinyl ether was allowed to stir for 5 min and then was 

dried under vacuum overnight to yield an off-white solid (quant). 1H NMR (400 MHz, CDCl3) δ 

5.48-5.40 (trans) and 5.40-5.35 (cis) (m,  2H), 5.13 (q, J = 7.2 Hz, 2H), 5.07 (q, J = 7.2 Hz, 2H), 

4.37-4.27 (m, 4H), 4.034 (cis) and 4.029 (trans) (t, J = 6.8 Hz, 4H), 2.37 (dt, J1 = 16 Hz , J2 = 7.6 

Hz, 2H), 2.35 (dt, J1 = 16 Hz, J2 = 7.4 Hz, 2H), 2.33-2.23 (m, 8H), 1.69-1.58 (m, 8H), 1.53 (d, J 

= 7,2 Hz, 6H), 1.50 (d, J = 7.2 Hz, 6H), 1.42-1.34 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 

173.09, 172.88, 170.25, 169.93, 129.39 (trans), 128.98 (cis), 68.85, 68.13, 64.10, 62.69, 34.10, 

33.64, 28.27, 27.77, 25.37, 24.35, 16.72, 16.70; DSC: Tg = -11 oC; SEC (THF): Mn = 47 kDa, 

Mw = 60 kDa, ᴆ = 1.3. 

 

Poly (CLL-Eg-LLC-Oed) molecular weight control study. The LLC-macromonomer was 

added to a vial charged with a stir bar and pumped into a nitrogen filled glove box. An 
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appropriate amount of dry CH2Cl2 (0.7M with respect to monomer final volume) was added to 

dissolve the monomer. A solution of Grubbs’ 2nd generation catalyst (varying catalyst mol %) 

was prepared and added to monomer solution and allowed to stir for 4h. Monomer, catalyst and 

solvent amounts can be seen in Table 9. After 4h, the polymerizations were quenched with ethyl 

vinyl ether and allowed to stir for five minutes before concentrating in vacuo. 
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5.0  SYNTHESIS AND PREPARATION OF SEQUENCED PLGA 

STEREOCOMPLEXES 

The work described in this chapter includes synthetic contributions from Michael A. 

Washington. Some data and polymers were also utilized from the work performed by Ryan M. 

Stayshich.15,176  

5.1 INTRODUCTION 

5.1.1 Sequence matters 

Nature utilizes relatively small libraries of monomers and the sequence of these monomers to 

give biopolymers such as DNA and peptides numerous functions and properties.1,2 While nature 

has had millions of years to perfect the level of sequence control in peptides, synthetic chemists 

are just now attempting to tackle challenge of sequence control in synthetic polymers.7,8 Simpler 

architectures such as alternating, block, and gradient copolymers have been accessed and these 

materials have displayed properties that vary widely from their random copolymer equivalents.46-

50,177   

Researchers have recently have taken great steps toward the synthesis of materials with an 

exact sequence.7,8 Three examples of synthetic methods that have been employed to control 
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sequence are chain-growth,51-54,102 step-growth,15-17,53,55-61 and ring-opening 

polymerizations.21,30,104-106 Investigation of the effects that sequence has on monomer properties 

is an important area of focus to our group. Recently our group has focused on creating sequenced 

polymers in two areas: conjugated materials12,13 and poly(α-hydroxy acid)s.15-20  

5.1.2 Poly(α-hydroxy acid)s and tacticity 

Poly(α-hydroxy acid)s such as poly lactic acid (PLA), poly glycolic acid (PGA), and poly 

caprolactone (PCL), and the copolymer poly(lactic-co-glycolic acids) (PLGAs) are 

biodegradable and bioassimilabile and have been used in drug delivery and tissue engineering 

scaffolds.24,26,30 These polymers are usually prepared by ring-opening polymerization of the 

cyclic compounds lactide, glycolide and ε-caprolactone. When considering PLA, it is important 

to note that the repeat unit is inherently chiral. Polymers incorporating only L-lactide (S-lactide) 

are generally abbreviated as PLLA, D-lactide (R-lactide) as PDLA, and racemic lactide as PLA.  

Within PLA or any copolymer that contains lactic units, stereoisomeric relationships are 

possible. It is common in polymer chemistry to describe these relationships in terms of tacticity, 

independent of whether the repeat units are inherently chiral as is the case with lactic acid or 

whether the chirality is introduced only when the units are polymerized, as is the case for 

propylene.178 When two neighboring monomers have the same stereochemical orientation they 

are said to have an isotactic (i) relationship, e.g., two R-lactic units connected to one another (LR-

LR). When two neighboring lactic units have opposite stereochemistry (L-LR), they are said to be 

syndiotactic (s). Homopolymers of one stereoisomer, PLLA or PDLA, are by definition isotactic 

since the stereochemical relationship between each lactic unit in the polymer is isotactic. In a 

stereochemically alternating copolymer of PLA (-L-LR-L-LR-L-LR-), each neighboring lactic unit 
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has opposite stereochemistry (s) which gives a fully syndiotactic polymer. When racemic lactide 

is ring-opened, it yields a stereochemically random copolymer deemed atactic (Figure 33).30  

Also important is that stereochemically active units do no not need to be directly connected to be 

categorized.  Hence, a copolymer that includes the stereochemically neutral G unit, such LLRG 

could also be considered syndiotactic.   

 

Figure 33. Ring-opening polymerization of lactide to yield varying stereochemical sequences in PLA. 

Once polymerized, the stereochemical sequence of the PLA determines the properties of the 

polymer.30 For example, the isotactic (i) homopolymers PLLA and PDLA have melting 

transitions between 170-190 °C179 and syndiotactic PLA (a polymer with an alternating 

stereosequence, s) has a Tm of 152 °C.180 Random PLA, an amorphous polymer, does not have a 

melting transition.30 Stereochemical control in copolymers like PLGA (outside of the polymer by 

the Meyer Group and described herein) is limited to only isotactic and atactic relationships.39 
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5.1.3 Formation of stereocomplexes 

In 1987 Ikada et al. reported for the first time the complexation of enantiomeric PLLA and 

PDLA in solution. This complexation of two different polymers with opposing stereochemistries 

is called a stereocomplex. The co-precipitates were characterized by DSC and it was observed 

that the Tm of the polymer mixture had increased to 220-230 °C.181 The stereocomplex crystals 

were observed to have a compact 31 helical structure (Figure 34) where the homopolymers 

PLLA and PDLA form a 103 helix. De Jong et al. determined that the minimum lactic unit chain 

length for the formation of a stereocomplex was 7 while in PLLA/PDLA  where a DP ≥ 11 is 

required for crystallite formation.182 

 

Figure 34. Crystal structure of PLA stereocomplex. Reprinted with permission from Ref 169, Tsuji, H. 
"Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications" Macromol. Biosci. 
2005, 5, 569. © 2005 John Wiley & Sons, Inc.  
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Stereocomplexation in PLA was not the first example of this phenomenon to be observed. In 

1953, Pauling and Corey observed the formation of a stereocomplex between L- and D-

polypeptides. Complexation of isotactic and syndiotactic poly(methyl methacrylate)  was 

reported by Fox et al. in the late 1950s.183 The first example of a stereocomplex in a polyester 

was between in poly(α-methyl-α-ethyl-β-propiolactone) between the R and S isomers.184 

Stereocomplex formation in other poly(α-hydroxy acid) systems  include the block copolymer of 

poly(D-lactide-b-L-lactide),185 poly(L-lactide-co-ε-caprolactone) (PLLCA) and poly(D-lactide-co-

ε-caprolactone) (PDLCA),186 poly(D-lactide) and poly(L-lactide-co-glycolide), poly(D-lactide-co-

glycolide) and poly (L-lactide-co-glycolide).187 Stereocomplexation of polymers have seen use in 

biomedical applications such as formation of hydrogels, drug delivery, gene therapy and tissue 

engineering scaffolds.188-191 

The random copolymers PDLGA and PLLGA can also exhibit homo-crystallinity and 

stereocomplex formation. For homo-crystallization the fraction of lactic units must be greater 

than 0.75. Stereocomplexes, which form when the two polymers are blended, are observed with 

polymers that have lower weight fractions of lactic acid, as low as 0.675. The melting transition 

of the stereocomplex of enantiomeric PLGAs (PDLGA and PLLGA) decreases with the increase 

of mole fraction of the glycolic unit. In the sample with mole fraction ~0.65 of lactic units a Tm 

was observed at around 170 °C.187 The minimum lactic unit sequence length needed to form a 

stereocomplex in these enantiomeric PLGAs was calculated to be 5.5, lower than the 7 units 

required for stereocomplex formation in PDLA/PLLA.184 
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5.1.4 Sequenced copolyesters prepared by SAP  

Recently, our group has focused heavily on the synthesis of repeating sequenced copolymers of 

poly(α-hydroxy acid)s such as PLGAs, PLCAs, PGCAs, and PLGCAs. We are interested in the 

effect that sequence has on polymer properties. The sequenced polyesters are prepared by a step-

growth polymerization method in which sequenced oligomers (segmers) are polymerized by 

utilizing a DIC/DPTS coupling strategy we have deemed Segmer Assembly Polymerization 

(SAP).15,17-20 We have found that the melting transitions in sequenced PLGA, PLCA, PGCA, and 

PLGCAs that the sequence of the monomers and the stereochemical sequence has an effect on 

copolymer thermal properties.15,17 In the two PLGCAs that were synthesized, Poly LGC and 

Poly GLC, that the order of the monomers grave rise to a difference of almost 10 °C in their 

Tms.17  

5.1.5 Preliminary evidence for the stereocomplex formation in sequenced PLGAs  

We became intrigued about the possibility of stereocomplexes in our sequenced PLGAs when 

we observed an anomaly in the melting temperatures of stereoisomers of polymers with a 

structural sequence of (LLG)n. We observed that Poly LRLG and Poly LLRG (154 °C and 154 

°C) have alternating lactic unit stereochemistries and have Tms 40 °C higher than that of the 

stereopure LLG trimer (114 °C).15 The syndiotactic sequenced polymers display Tms that are 

similar to that of syndiotactic PLA which has a Tm of 152 °C even though the mole fraction of G 

units is 0.33.180 Syndiotactic PLA has a lower melting transition than that of the isotactic 

PLAs.180 In our system, the syndiotactic LLG sequenced polymers exhibited melting transitions 

that increased over the isotactic variants. This Tm increase more closely resembles the formation 
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of a stereocomplex, where two enantiomeric polymers co-crystallize. After observing the 

unexpected melting transition of the syndiotactic LLG polymer, we set out to explore this 

unexplained trend.  

5.2 RESULTS AND DISCUSSION 

5.2.1 Naming conventions 

Monomers, segmers (sequenced oligomers), and polymers will be named according to the 

abbreviations in Table 10. Orthogonally protected monomers of L-lactic acid (L), D-lactic acid 

(LR), and glycolic acid (G) units were prepared according to previous literature.15,17,21,59,176 

Segmers are listed in order by sequence from the carboxylic acid end to the alcohol terminus. 

Using these naming conventions, the compound with the name of Bn-LRLRG-SiR3 is a trimer 

that is composed of a benzyl protected R-lactic acid unit, an R-lactic acid unit, and a tert-

butyldiphenylsilyl protected glycolic acid unit. Once the trimer has been deprotected, the segmer 

is polymerized, and the obtained polymer is given the name from the segmer from which it was 

synthesized, i.e. Poly LRLRG. The polymer consists of the repeating sequence of LRLRG or 

...LRLRGLRLRGLRLRGLRLRGLRLRGLRLRG... 

Table 10. Naming conventions for the segmers and polymers 

Symbol Definition 
L L-Lactic acid unit (S stereocenter) 
LR D-Lactic acid unit (R stereocenter) 
G Glycolic acid unit 
Bn Benzyl protecting group 
SiR3 Silyl protecting group (tert-butyldiphenylsilyl) 
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5.2.2 Synthesis and characterization of repeating sequence copolymers towards the 

creation of copolymer stereocomplexes 

Starting with the orthogonally mono-protected acids (Bn-L, Bn-LR, and Bn-G) and alcohols (L-

SiR3, LR-SiR3, and G-SiR3), dimers were formed via the Steglich esterification reaction using 

DCC/DPTS.15,17,21,59,82,176 The silyl group was then removed from the dimer Bn-LRLR-SiR3 using 

TBAF/AcOH to yield the protected acid Bn-LRLR (Scheme 12). Coupling the free alcohol with 

LR-SiR3 gave the doubly protected trimer of Bn-LRLRG-SiR3. Silyl deprotection followed by 

hydrogenolysis reaction over Pd/C to the benzyl protecting group, produced the unprotected 

trimer LRLRG. The polymer Poly LRLRG was synthesized by a step-growth polymerization in 

the presence of DIC/DPTS. It is well established that these reaction conditions do not promote 

sequence-scrambling transesterification. Longer segmers, such as Bn-LRLRGLLG-SiR3 were 

prepared by coupling of shorter segmers that had been partially deprotected, e.g., Bn-LRLRG and 

LLG-SiR3. These longer segmers could then be doubly deprotected and polymerized as 

described to give a polymer such Poly LRLRGLLG which we categorize as “mini-block” 

copolymers herein. 

 
Scheme 12. Overall scheme towards the synthesis of repeating sequence copolymers Poly LRLRG and Poly 
LRLRGLLG beginning with the trimer Bn-LRLRG-SiR3. 
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The polymers were synthesized in good yield, ranging from 46-86% (Table 11). The 

molecular weights of the polymers were determined by SEC in THF relative to PS standards. 

The Mns ranged generally from 17-41 kDa, with the exception of Poly LLLLG and Poly 

LRLRLRLRG. The pentamers of these two polymers were highly crystalline and were difficult to 

dissolve for the polymerization and a 1:1 DMF/CH2Cl2 solvent mixture needed to be utilized. 

The catalyst DPTS, however, has a low solubility in DMF and we hypothesize that the low Mns 

obtained for these two polymers (6.0 and 8.8 kDa) is due to these solubility issues. 

Table 11. Polymer molecular weight and melting transition data 

Polymer Yield 
(%) 

Mn 
(kDa)a 

Mw 
(kDa)a ᴆb Anneal 

temp (oC)c Tg (oC)d Tm (oC)e 

Poly LG 63 33.4 39.5 1.2 100 55 107 
Poly LRG 46 23.0 32.0 1.4 100 53 107 
Poly LLG 70 41.2 50.5 1.2 100 50 114 
Poly LRLRG 81 26.2 38.4 1.5 100 53 117 
Poly LLRG 75 30.3 40.3 1.3 85 49 154 
Poly LRLG 59 30.6 43.1 1.4 85 50 154 
Poly GLLG 82 18.7 25.1 1.3 85 45e --- 
Poly LRLRGG 76 25.1 35.3 1.4 85 nd --- 
Poly LLLG 86 20.8 31.1 1.5 85 52e --- 
Poly LRLRLRG 81 31.9 43.2 1.4 85 55 --- 
Poly LLLLG 82 8.8 12.1 1.6 85 52 160 
Poly LRLRLRLRG 83 6.0 7.8 1.3 85 53 154 
Poly LRLRGLLG 84 17.1 25.3 1.5 85 50 98 (132)f 

Poly LRLRLRGLLLG 74 23.9 30.8 1.3 85 55 99 (124)f 
Poly LRLRLRLRGLLLLG 83 37.8 46.9 1.2 145 57 --- 
a) Determined by SEC in THF relative to PS standards. b) Mw/Mn. c) Annealed for 3h d) Obtained in the 2nd 
heating cycle at 10oC/min e) Obtained in the 1st heating cycle at 10oC/min f) 2nd melting transition. 

 
Of the polymers prepared, the majority are isotactic (i): poly LG, LLG, GLLG, LLLG, 

LLLLG, and their enantiomers. Poly LLRG and Poly LRLG, are stereochemically syndiotactic 

(s). The “mini-block” polymers, Poly LRLRGLLG, Poly LRLRLRGLLLG, and Poly 

LRLRLRLRGLLLLG, have more complex tacticities, is, iis, and iiis, respectively. Note: the 

tacticity in this case refers only to the relative stereochemistries of neighboring, but not 

necessarily adjacent, units.  Thus, the tacticity of Poly LRLRGLLG, whose chain sequence once 

expanded to include multiple repeat units becomes -LRLRGLLGLRLRGLLGLRLRGLLG- can 
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be described concisely as is by simple reference to the relative stereochemistries (i) of the 

adjacent L units followed by the relative stereochemistry of the L units that are separated by Gs 

(s) (Figure 35).   

 

Figure 35. The four mini-blocks that were synthesized by SAP. Below each polymer is the tacticity assignment of 
the polymer: Poly LRLG (s), Poly LRLRGLLG (is), Poly LRLRLRGLLLG (iis), and Poly LRLRLRLRGLLLLG 
(iiis). 

5.2.3 Characterization of isotactic and mini-block sequenced copolymers by 1H NMR 

spectroscopy 

The sequenced polymers were characterized by 1H NMR spectroscopy. The Meyer group has 

demonstrated previously that chemical shift of the diastereotopic glycolic methylene protons are 

extremely sensitive to monomer sequence, particularly stereosequence.15 This trend continues for 

the new copolymers prepared for the purposes of this study.  For example, there are significant 
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differences between the NMR spectra of segmer LRLRLRLRGLLLLG and Poly 

LRLRLRLRGLLLLG (Figure 36). Once polymerized, all of the methylene units become 

equivalent—since all are located between L units of opposite stereochemistry. 

 

Figure 36. Comparison between the 1H NMR spectra of LRLRLRLRGLLLLG (top, 400 MHz) and Poly 
LRLRLRLRGLLLLG (bottom, 700 MHz). 

The NMR data for the mini-block copolymers Poly LRLG, Polys LRLRGLLG, 

LRLRLRGLLLG, and LRLRLRLRGLLLLG are shown in Figure 37. In this case, the G unit 

chemical shift is relatively unaffected by the addition of L units beyond the second. The addition 

of L units is primarily observed in the increase in number of signals and integration for the L 

methine and methyl groups. 
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Figure 37. Comparison between the 1H NMR spectra (700 MHz) of Poly LRLG (top), Poly LRLRGLLG (top 
middle), Poly LRLRLRGLLLG (bottom middle) and Poly LRLRLRLRGLLLLG (bottom). 

The stereochemistry around the G unit, in contrast, has a significant effect on the 

diastereotopic G methylene chemical shifts when comparing a fully isotactic copolymer and the 

mini-block equivalent. When comparing the 1H NMR spectra of Poly LRLRLRG and Poly 

LRLRLRGLLLG, the isotactic polymer (i) exhibits a significant difference in the chemical shifts 

of the diastereotopic methylene resonance when compared to the iis copolymer (Figure 38). The 

magnitude of the difference makes it possible for us to unambiguously differentiate between 

these copolymers despite their structural homology. 
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Figure 38. Comparison of the 1H NMR (700 MHz) spectra of Poly LRLRLRG and Poly LRLRLRGLLLG. 

The most important aspect of the NMR data of these compounds, one that cannot be 

overemphasized, is that we can use the data to unambiguously confirm that the sequence created 

in the segmers is preserved in the polymer and that the polymers studied are free of significant 

sequence errors. 
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5.2.4 Characterization of sequenced PLGA copolymers by differential scanning 

calorimetry 

The sequenced polymers were characterized by DSC to determine their melting transitions. The 

polymers were annealed at 85 or 100 °C in aluminum DSC pans for 3 h. The samples were 

heated at 10 °C/min and the Tms were obtained in the first heating cycle (Table 11). Poly LG 

and Poly LRG exhibited melting transitions at 107 °C, while Poly LLG and Poly LRLRG had 

Tms observed at 114 °C. The pentamers Poly LLLLG and Poly LRLRLRLRG displayed Tms at 

160 and 154 °C respectively. As the L unit mole fraction was increased from 0.5 to 0.8 the 

melting transition increased. The isotactic copolymers Poly GLLG and Poly LLLG and the 

mini-block Poly LRLRLRLRGLLLLG did not exhibit melting transitions under the annealing 

conditions used. This is especially surprising for Poly LRLRLRLRGLLLLG, where the L unit 

mole fraction is 0.8.  

5.2.5 Stereocomplex formation of sequenced PLGAs 

We set out to form stereocomplexes of our sequenced PLGAs by either mixing the enantiomeric 

copolymers (i.e. combining Poly LLG and Poly LRLRG) or investigating the polymers that 

contained mini-blocks of lactic units (i.e. Poly LRLRGLLG). For the enantiomeric blends, the 

individual polymers (for example Poly LLG and Poly LRLRG, 1:1 weight fraction) were each 

dissolved in dry CH2Cl2 (2.5 mL) to obtain a concentration of 1 g/dL. The two solutions were 

then combined and vortexed. The copolymer solution was precipitated into rapidly stirring 

methanol (500 mL) and allowed to stir for 30 min before filtering the precipitation solution 

through a nylon filter to collect the coprecipitated enantiomeric blend as powders.192 The 
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polymers containing mini L blocks were prepared similarly to the blends; however, they were 

not mixed with another polymer.  

The coprecipitated polymer blends and mini-block copolymers were then annealed at 

temperatures ranging from 85-176 °C depending on the polymer blend. The annealed samples 

were then characterized by DSC to determine if stereocomplexes had been formed based on 

comparing the Tms of the polymer blends to that of the nonblended polymers (Table 12). Poly 

LLG and Poly LRLRG both have Tms of ~114 °C when annealed at 85 °C (Figure 39). When 

annealed at 130 oC a melting transition is no longer observed. Once blended and annealed at 

130oC a new melting transition is found at 147 °C giving strong evidence that a stereocomplex 

had indeed formed. Another example of a stereocomplex that was formed was the Poly LG/LRG 

blend. Annealing the blend at 130 °C yields a Tm at 144 °C, however, the transition is much 

weaker than that of the LLG blend.  

Table 12. Melting transitions of polymer stereo blends 

Polymer blend 
Tm (°C) of 

non-blended 
polymer 

Annealing 
temperature of 

blend (°C)c 

Stereocomplex 
Tm (°C)d 

LG/LRG 107, 107a 130 144 
LLG/LRLRG 114, 117a 130 147 
LLRG/LRLG 154,154b 156 159 
GLLG/LRLRGG --- 130 --- 
LLLG/LRLRLRG --- 145 --- 
LLLLG/LRLRLRLRG 160, 154b 176 --- 
LRLRGLLG --- 145 143 
LRLRLRGLLLG --- 145 151 
LRLRLRLRGLLLLG --- 145 --- 
a) Annealed at 100 °C b) Annealed at 85 °C c) Samples were annealed overnight 
in an aluminum DSC pan d) Tms were obtained in the 1st heating cycle, 10 °C/min. 

 



 151 

 

Figure 39. DSC of Poly LLG annealed at 85 (black solid line) and 130 °C (black dashed line), Poly LRLRG 
annealed at 85 (red solid line) and 130 °C (red dashed line), Poly LLG/LRLRG blend annealed at 130 °C (blue solid 
line), and  Poly LRLRGLLG annealed at 145 °C (blue dashed line). Stereocomplexes indicated to have formed in 
the LLG blend and Poly LRLRGLLG where the Tms of the polymers have been raised from ~114 to ~143 °C. 

 

Figure 40. DSC of Poly LG annealed at 100 °C (solid line), Poly LRG annealed at 100 °C (long dashed line), and 
Poly LG/LRG blend annealed at 130 °C (short dashed line). A stereocomplex melting transition is indicated to have 
formed due to the increased Tm observed in the Poly LG/LRG blend (144 °C). 

Interestingly, varying the annealing temperature of the blends and the mini-blocks had a 

dramatic effect on the Tms of the polymers. An example of this can be seen in the Poly 

LLG/LRLRG blend and in Poly LRLRGLLG (Figure 41). In the Poly LLG/LRLRG blend, 

annealing below the Tms of the individual polymers (~114 oC) yields a melting transition that 

resembles the non-blended polymers. Annealing above 114 oC at 145 oC yields a Tm of 145 oC, a 

30 oC increase indicating that a stereocomplex had formed for the Poly LLG blend. In the Poly 
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LRLRGLLG sample, annealing below 120 oC gives two broad melting transitions. Tms between 

99-110 oC (when annealed at 85 and 100 oC respectively) are suspected to be that of the 

homocrystallites. Annealing at 145 oC, one strong melting transition is observed at 143 oC, which 

is very similar to the stereocomplex Tm of the Poly LLG blend. 

 

 

Figure 41. The effect of increasing the annealing temperature from 85-145 °C on the Poly LLG/LRLRG blend (left) 
and 85-156 °C for Poly LRLRGLLG. 

We have observed evidence of stereocomplex formation in two different sequenced 

enantiomeric blends Poly LG/LRG and Poly LLG/LRLRG and two of the sequenced mini-blocks 

Poly LRLRGLLG and Poly LRLRLRGLLLG. After annealing the polymer blends at 

temperatures greater than the Tms of the non-blended polymers, Tms of 33-37 oC higher were 

observed. These raised melting temperatures are initial evidence that stereocomplexes have 

formed between our sequenced PLGAs. Mini-block copolymers that contain opposing 

stereochemical blocks were found to have melting transitions between 143-151 oC after they 

were annealed. These melting transitions are similar to the Tms of the sequenced blends of the 

same lactic unit content. In the mini-block Poly LRLRLRGLLLG a stereocomplex was formed as 
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evidenced by the Tm at 151 °C, but a stereocomplex of the similar Poly LLLG/LRLRLRG blend 

was not formed. This is surprising since all of the other enantiomeric blends that exhibited a 

stereocomplex Tm, displayed nearly identical transitions in their mini-block equivalents. 

It was not obvious why stereocomplexes were not observed for blends based on Poly GLLG 

and Poly LLLG nor for the mini-block copolymer Poly LRLRLRLRGLLLLG.  It is possible that 

these sequences are somehow poorly suited to forming polymer crystals. There may be some 

level of “geometric frustration” which inhibits the formation of local crystallites.193 A particular 

sequence may not, for example, have a place where a lamellar “turn” will allow for the perfect 

registry of one section of the copolymer with another. Future modeling experiments of the 

folding and helical nature of these polymers may prove to be useful in predicting crystallinity in 

sequenced PLGAs. 

We did attempt to acquire both powder x-ray diffraction (XRD) in collaboration with 

researchers from the research group of Prof. Nat Rosi and wide-angle X-ray scattering (WAXS) 

in collaboration with researchers from the group of Prof. Tomasz Kowalewski of CMU on some 

of the materials that exhibited melting points. In both cases it proved difficult to prepare samples 

with sufficient crystallinity in the format required. In the case of XRD, for example, we were 

unable to obtain a fine-enough powder despite many attempts. 

5.3 CONCLUSIONS 

Sequenced PLGA isotactic polymers and stereochemical mini-block copolymers with increasing 

L unit content were synthesized and characterized by 1H NMR spectroscopy. In the 1H NMR 

spectra it was found that the peaks were well resolved for all of the polymers synthesized. 
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Isotactic sequenced copolymers such as Poly LRLRLRG (iii) could be distinguished from the 

stereoblock isomer, Poly LRLRLRGLLLG (iis) through analysis of the G methylene resonances 

which are particularly sensitive to the surrounding stereochemical and monomeric sequence. 

Characterization of the individual copolymers by DSC showed that as the lactic unit content 

increased in the copolymers, the Tms of the polymers increased. This trend matched that of 

PLGAs synthesized with 0.75 lactic acid content and above in the literature.187 The mini-block 

copolymers when annealed below 120 oC exhibited melting transitions for the homocrystallites 

as well for the stereocomplexes.  

Upon blending enantiomeric mixtures of polymers (i.e. Poly LLG and Poly LRLRG) and 

annealing them at temperatures greater than the Tms of the non-blended polymers, Tms of 33-37 

oC higher were observed. These raised melting temperatures are initial evidence that 

stereocomplexes have formed between our sequenced PLGAs. Mini-block copolymers that 

contain opposing stereochemical blocks were found to have melting transitions between 143-151 

oC after they were annealed. These melting transitions are similar to the Tms of the sequenced 

blends of the same lactic unit content. 

 

5.4 FUTURE WORK 

In future experiments, the polymers Poly GLLG and Poly LLLG and the mini-block Poly 

LRLRLRLRGLLLLG should be subjected to a wider range of annealing conditions to try and 

form polymer crystallites, e.g., increased annealing time and varied annealing temperatures. 

Another experiment that could be performed is preparing the blends from the melt instead of the 
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coprecipitation method that was utilized in this study. Preparing the stereocomplexes from the 

melt has been used in the literature previously.184 Finally, it may also be possible to induce 

crystallization by seeding or through the introduction of external stress during annealing. 

While the data suggests that stereocomplexes of the polymers in this study are forming based 

on the data obtained DSC, the formation of a stereocomplex needs to be confirmed by another 

method such as XRD or WAXS. WAXS and small-angle X-ray scattering were used previously 

to characterize the crystal structure of PLA stereocomplexes.184 To obtain these data, it will 

likely be necessary to collaborate more closely with groups who have experience with similar 

materials and can, therefore, provide advice regarding the sample preparation in addition to 

helping with the collection and analysis of data. 

5.5 EXPERIMENTAL 

5.5.1 General information 

All experiments were carried out in oven-dried glassware under an atmosphere of N2 using 

standard Schlenk line techniques. N,N’-dicyclohexylcarbodiimide (DCC) was purchased from 

Oakwood Chemical and used without further purification. 10% Pd/C was purchased from Alfa 

Aesar. Methylene chloride (CH2Cl2, Fisher) and ethyl acetate (EtOAc, Sigma Aldrich) were 

purified by a Solvent Dispensing System by J. C. Meyer. Both were passed over two columns of 

neutral alumina. Anhydrous, inhibitor-free Tetrahydrofuran (THF,  >99.9%) was purchased from 

EMD and passed over activated alumina. Column chromatography was performed using Sorbent 

Technologies 60 Å, 40-63 μm standard grade silica. 4-(dimethylamino)pyridinium 4-
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toluenesulfonate (DPTS),82 Bn-G, Bn-L, Bn-LR, L-SiR3, LR-SiR3, Bn-GG-SiR3, Bn-LL-SiR3, 

Bn-LLG-SiR3, Bn-LLLG-SiR3, Bn-LLLG, LLLG, Poly LLG, Poly LRLG, Poly LLRG, and 

Poly LLLG were prepared according to previously-published protocols.15,59,176 All other 

chemicals were used without further purification. 

5.5.2 Characterization of synthesized compounds 

NMR spectroscopy. 1H (300, 400, 500, 600, and 700 MHz) and 13C (75, 100, 125, 150, and 175 

MHz) spectra were obtained using Bruker spectrometers and are reported as δ values in ppm 

relative to the reported solvent (CDCl3 referenced to 7.24). Splitting patterns are abbreviated as 

follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br), and 

combinations thereof.  

Mass spectrometry. HRMS data were obtained on a LC/Q-TOF instrument.   

Size exclusion chromatography. Molecular weights and dispersities were obtained on a Waters 

GPC (THF) with Jordi 500, 1000, and 10000 Å divinyl benzene columns, and refractive index 

detector (Waters) was calibrated to polystyrene standards. For poly LRLRGG and poly LRG SEC 

data was obtained on a Waters Instrument equipped with a 717 plus autosampler, a Waters 2414 

refractive index (RI) detector  and  two  SDV  columns  (Porosity  1000  and  100000  Å;  

Polymer  Standard. The eluent was THF (1 mL/min, 40 oC) and the molecular weights were 

calibrated to PS standards. 

Services) 

Differential scanning calorimetry. DSC was performed with a TA Instruments Q200. Samples 

were prepared by first dissolving in CH2Cl2, dropcast into aluminum pans, and put under vacuum 
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overnight. The samples were then annealed at 85 oC for 3 h. Each run had a heating and cooling 

rate of 10 oC/min. Tgs were collected in the in the first heating cycle. 

5.5.3 Synthesis of sequenced PLGAs for stereocomplex formation 

5.5.3.1 DCC/DPTS coupling reactions 

 

Bn-LRG-SiR3. To a stirring solution of Bn-LR (2.71 g, 15.0 mmol) and G-SiR3 (5.21 g, 16.6 

mmol), in CH2Cl2 (150 mL) was added DPTS (0.91 g, 3.1 mmol). Once the mixture became 

homogeneous, DCC (3.43 g, 16.6 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the 

product as a colorless liquid (5.71 g, 79.6%). 1H NMR (400 MHz, CDCl3) δ 7.69- 7.65 (m, 4H), 

7.44-7.29 (m, 11H), 5.19-5.12 (m, 3H), 4.35 (d, J = 16.4 Hz, 1H), 4.29 (d, J = 16.8 Hz, 1H), 1.44 

(d, J = 7.2 Hz, 3H), 1.08 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 170.58, 170.26, 135.57, 135.54, 

135.26, 134.77, 132.70, 132.69, 129.88, 129.62, 128.58, 128.37, 128.37, 128.08, 127.79, 127.77, 

127.69, 68.73, 67.00, 61.99, 26.61, 19.25, 16.86; HRMS (M+NH4
+) calc mass 494.23573, found 

494.23094. 

 

Bn-LRLR-SiR3. To a stirring solution of Bn-LR (15.0 g, 83.0 mmol) and LR-SiR3 (30.0 g, 91.3 

mmol), in CH2Cl2 (830 mL) was added DPTS (4.91 g, 16.7 mmol). Once the mixture became 
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homogeneous, DCC (18.8 g, 91.1 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the 

product as a colorless liquid (39.9 g, 98.0%). 1H NMR (400 MHz, CDCl3) δ 7.71-7.61 (m, 4H), 

7.44-7.27 (m, 11H), 5.14 (d, J = 12.0 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.97 (q, J = 7.1 Hz, 

1H), 4.30 (q, J = 6.8 Hz, 1H), 1.36 (d, J = 6.8 Hz, 3H), 1.31 (d, J = 6.8 Hz, 3H), 1.07 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 173.04, 170.30, 135.94, 135.74, 135.23, 133.45, 133.07, 129.76, 

128.55, 128.38, 128.18, 127.62, 127.54, 68.52, 66.96, 60.37, 26.77, 21.06, 19.20, 16.71; HRMS 

(M+Na+) calc mass 513.2073, found 513.2063. 

 

Bn-LRLRG-SiR3. To a stirring solution of Bn-LRLR (5.00 g, 19.8 mmol) and G-SiR3 (6.87 g, 21.8 

mmol), in CH2Cl2 (200 mL) was added DPTS (1.22 g, 4.15 mmol). Once the mixture became 

homogeneous, DCC (4.6 g, 22 mmol) was added and the reaction was allowed to stir overnight. 

The solution was filtered and the filtrate was concentrated in vacuo. The crude material was 

purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the product as a 

colorless liquid (8.17 g, 75.1%). 1H NMR (400 MHz, CDCl3) δ 7.70-7.65 (m, 4H), 7.44-7.28 (m, 

11H), 5.19 (q, J = 7.1 Hz, 1H), 5.17 (d, J = 12.8 Hz, 1H), 5.12 (d, J = 12.8 Hz, 1H), 5.11 (q, J = 

7.1 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.51 (d, J = 6.8 Hz, 3H), 1.43 

(d, J = 6.8 Hz, 3H), 1.07 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 170.60, 170.04, 169.84, 135.57, 

135.54, 135.11, 134.78, 132.73, 132.70, 129.88, 128.60, 128.48, 128.22, 127.80, 127.78, 69.13, 

68.44, 67.15, 61.96, 26.61, 19.25, 16.76, 16.66; HRMS (M+Na+) calc mass 571.2128, found 

571.2139. 
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Bn-LRLRLR-SiR3. To a stirring solution of Bn-LRLR (1.82 g, 7.21 mmol) and LR-SiR3 (2.61 g, 

7.94 mmol), in CH2Cl2 (70 mL) was added DPTS (0.42 g, 1.44 mmol). Once the mixture became 

homogeneous, DCC (1.66 g, 8.04 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the 

product as a colorless liquid (14.23 g, 88.5%). 1H NMR (400 MHz, CDCl3) δ 7.68-7.64 (m, 4H), 

7.44-7.28 (m, 11H), 5.16 (d, J = 12.0 Hz, 1H), 5.15 (q, J = 7.1 Hz, 1H), 4.32 (q, J = 6.7 Hz, 1H), 

1.48 (d, J = 7.2 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H), 1.32 (d, J = 7.2 Hz, 3H), 1.08 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 173.10, 170.04, 169.88, 135.95, 135.75, 135.12, 133.44, 133.07, 

129.78, 129.76, 128.59, 128.46, 128.22, 127.64, 127.56, 69.06, 68.49, 68.25, 67.12, 26.78, 21.12, 

19.20, 16.75, 16.50; HRMS (M+Na+) calc mass 585.2285, found 585.2303. 

 

Bn-LRLRGG-SiR3. To a stirring solution of Bn-LRLR (3.18 g, 12.6 mmol) and GG-SiR3 (5.18 g, 

13.9 mmol), in CH2Cl2 (125 mL) was added DPTS (0.74 g, 2.5 mmol). Once the mixture became 

homogeneous, DCC (2.88 g, 13.4 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 5% EtOAc in hexanes) to provide the 

product as a colorless liquid (7.02 g, 91.8%). 1H NMR (400 MHz, CDCl3) δ 7.68 (m, 4H), 7.44-

7.29 (m, 11H), 5.19 (q, J = 7.2 H, 1H), 5.18 (q, J = 7.2 H, 1H), 5.17 (d, J = 12.4 Hz, 1H), 5.12 (d, 
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J = 12.4 Hz, 1H), 4.74 (d, J = 16.4 Hz, 1H), 4.63 (d, J = 16.0 Hz, 1H), 4.36 (d, J = 17.2 Hz, 1H), 

4.32 (d, J = 16.8 Hz, 1H), 1.51 (d, J = 7.6 Hz, 3H), 1.49 (d, J = 7.6 Hz, 3H), 1.07, (s, 9h); 13C 

NMR (100 MHz, CDCl3) δ 170.50, 169.60, 169.45, 166.87, 135.53, 135.05, 132.60, 132.58, 

129.91, 128.60, 128.49, 128.22, 127.80, 69.27, 69.08, 61.81, 26.59, 19.23, 16.73, 16.60; HRMS 

(M-C(CH3)3) calc mass 549.1581, found 549.1585. 

 

Bn-LLLL-SiR3. Prepared by Michael A. Washington. To a stirring solution of Bn-LL (1.29 g, 

5.11 mmol) and LL-SiR3 (1.89 g, 4.72 mmol), in CH2Cl2 (50 mL) was added DPTS (0.28 g,  

0.97 mmol). Once the mixture became homogeneous, DCC (1.18 g, 5.73 mmol) was added and 

the reaction was allowed to stir overnight. The solution was filtered and the filtrate was 

concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 5-7.5% 

EtOAc in hexanes) to provide the product as a colorless liquid (2.70 g, 91%). 1H NMR (400 

MHz, CDCl3) δ .68-7.64 (m, 4H), 7.42-7.28 (m, 11H), 5.13 (m, 4H), 4.93 (q, J = 7.2 Hz, 1H), 

4.30 (q, J = 6.8 Hz, 1H), 1.50-1.47 (m, 6H), 1.41-1.36 (m, 6H), 1.07 (s, 9H); 13C NMR 

(400MHz, CDCl3) δ 173.12, 169.94, 169.65, 135.74, 135.08, 133.07, 129.77, 128.60, 128.49, 

128.23, 127.64, 69.20, 68.79, 68.48, 68.23, 67.17, 26.78, 21.13, 19.20, 16.74, 16.56; HRMS 

(M+H2O) calc mass 652.2704, found 652.2695. 

 

Bn-LRLRLRG-SiR3. To a stirring solution of Bn-LRLRLR (1.52 g, 4.70 mmol) and G-SiR3 (2.24 

g, 7.12 mmol), in CH2Cl2 (70 mL) was added DPTS (0.41 g, 1.40 mmol). Once the mixture 

became homogeneous, DCC (1.60 g, 7.76 mmol) was added and the reaction was allowed to stir 
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overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 2.5% EtOAc in hexanes) to provide the 

product as a colorless liquid (2.71 g, 93.0%). 1H NMR (400 MHz, CDCl3) δ 7.70-7.65 (m, 4H),  

7.43-7.29 (m, 11H), 5.20-5.09 (m, 5H), 4.34 (d, J = 16.8 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 1.51 

(d, J = 7.2 Hz, 6H), 1.49 (d, J = 6.8 Hz, 3H), 1.07 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 

170.60, 169.92, 169.89, 169.65, 135.56, 135.35, 135.07, 134.78, 132.71, 132.68, 129.87, 129.62, 

128.60, 128.49, 128.23, 127.79, 69.21, 68.89, 68.42, 67.17, 61.93, 26.60, 19.24, 16.74, 16.72, 

16.55; HRMS (M+Na+) calc mass 643.2339, found 643.2383. 

 

Bn-LRLRLRLR-SiR3. To a stirring solution of Bn-LRLR (7.99 g, 31.7 mmol) and LRLR-SiR3 

(12.98 g, 32.4 mmol), in CH2Cl2 (310 mL) was added DPTS (1.87 g, 6.34 mmol). Once the 

mixture became homogeneous, DCC (7.18 g, 34.8 mmol) was added and the reaction was 

allowed to stir overnight. The solution was filtered and the filtrate was concentrated in vacuo. 

The crude material was purified by flash chromatography (SiO2, 5-7.5% EtOAc in hexanes) to 

provide the product as a colorless liquid (18.61 g, 92.6%). 1H NMR (400 MHz, CDCl3) δ 7.68-

7.64 (m, 4H), 7.44-7.28 (m, 11H), 5.17 (d, J = 12.0 Hz, 1H), 5.13 (q, J = 7.2 Hz, 2H) 5.10 (d, J = 

12.4 Hz, 1H), 4.92 (q, J = 7.1 Hz, 1H), 4.31 (q, J = 6.7 Hz, 1H), 1.49 (d, J = 7.2 Hz, 3H), 1.48 (d, 

J = 7.2 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H), 1.37 (d, J = 7.2 Hz, 3H), 1.07 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 173.13, 169.94 (2), 169.66, 135.94, 135.73, 135.05, 133.40, 133.04, 129.77, 

128.60, 128.49, 128.23, 127.63, 127.55, 69.19, 68.78, 68.45, 68.21, 67.17, 26.76, 21.13, 19.19, 

16.73, 16.55 (2); HRMS (M+Na+) calc mass 657.2496, found 657.2525. 
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Bn-LLLLG-SiR3. Prepared by Michael A. Washington. To a stirring solution of Bn-L (2.92 g, 

16.2 mmol) and LLLG-SiR3 (7.79 g, 14.7 mmol), in CH2Cl2 (150 mL) was added DPTS (0.86 g, 

2.94 mmol). Once the mixture became homogeneous, DCC (3.35 g, 16.2 mmol) was added and 

the reaction was allowed to stir overnight. The solution was filtered and the filtrate was 

concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 2.5-5% 

EtOAc in hexanes) to provide the product as a colorless liquid (8.62 g, 84.8%). 1H NMR 

(400MHz, CDCl3) δ 7.67-7.65 (m, 4H), 7.41-7.31 (m, 11H), 5.20-5.09 (m, 6H), 4.34 (d, J = 16.8 

Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.57-1.49 (m, 12H), 1.06 (s, 9H). 13C NMR (400MHz, 

CDCl3) δ 170.61, 169.90, 169.70, 169.55, 135.54, 135.07, 132.70, 129.88, 128.61, 128.51, 

128.24, 127.80, 69.25, 68.96, 68.88, 68.42, 67.20, 61.95, 26.61, 19.25, 16.74, 16.63, 16.57; 

HRMS (M+H2O) calc mass 710.2767, found 710.2759. 

 

Bn-LRLRLRLRG-SiR3. To a stirring solution of Bn-LRLRLRLR (10.44 g, 26.3 mmol) and G-SiR3 

(9.19 g, 29.2 mmol), in CH2Cl2 (260 mL) was added DPTS (1.55 g, 5.27 mmol). Once the 

mixture became homogeneous, DCC (5.98 g, 29.0 mmol) was added and the reaction was 

allowed to stir overnight. The solution was filtered and the filtrate was concentrated in vacuo. 

The crude material was purified by flash chromatography (SiO2, 5-7.5% EtOAc in hexanes) to 

provide the product as a colorless liquid (10.49 g, 57.5%). 1H NMR (400 MHz, CDCl3) δ 7.68 

(m, 4H), 7.43-7.29 (m, 11H), 5.19-5.09 (m, 3H), 5.17 (q, J = 7.1 Hz, 1H), 5.16 (q, J = 7.1 Hz, 

1H), 5.12 (q, J = 7.1 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.4 Hz, 1H), 1.56 (d, J = 
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7.2 Hz, 3H), 1.51 (d, J = 6.8 Hz, 3H), 1.49 (d, J = 7.2 Hz, 3H), 1.49 (d, J = 6.8 Hz, 3H), 1.06 (s, 

9H); 13C NMR (100 MHz, CDCl3) δ 171.11, 169.90 (2), 169.70, 169.55, 135.57, 135.53, 135.07, 

132.73, 132.69, 129.88, 128.60, 128.51, 128.24, 127.79, 127.77, 69.25, 68.95, 68.88, 68.42, 

67.19, 61.95, 26.61, 19.25, 16.73, 16.62, 16.56; HRMS (M+NH4
+) calc mass 710.2997, found 

710.2963. 

 

Bn-LRLRGLLG-SiR3. To a stirring solution of Bn-LRLRG (2.16 g, 6.97 mmol) and LLG-SiR3 

(2.88 g, 6.28 mmol), in CH2Cl2 (65 mL) was added DPTS (0.37 g, 1.27 mmol). Once the mixture 

became homogeneous, DCC (1.45 g, 7.02 mmol) was added and the reaction was allowed to stir 

overnight. The solution was filtered and the filtrate was concentrated in vacuo. The crude 

material was purified by flash chromatography (SiO2, 5% EtOAc in hexanes) to provide the 

product as a colorless liquid (3.51 g, 74.4%). 1H NMR (400 MHz, CDCl3) δ 7.68-7.65 (m, 4H), 

7.43-7.29 (m, 11H), 5.22 (q, J = 7.1 Hz, 1H), 5.18 (q, J = 7.1 Hz, 1H), 5.17 (q, J = 7.1 Hz, 1H), 

5.16 (d, J = 12.0 Hz, 1H), 5.12 (q, J = 6.9 Hz, 1H), 5.11 (d, J = 12.4 Hz, 1H), 4.78 (d, J = 16.0 

Hz, 1H), 4.65 (d, J = 16.0 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.56 (d, J 

= 6.8 Hz, 3H), 1.50 (d, J = 7.2 Hz, 3H), 1.49 (d, J = 7.2 Hz, 3H), 1.49 (d, J = 6.8 Hz, 3H), 1.06 

(s, 9H); 13C NMR (100 MHz, CDCl3) δ 170.60, 169.88, 169.77, 169.52, 169.33, 166.44, 135.56, 

135.53, 135.05, 132.71, 132.66, 129.88, 128.61, 128.51, 128.22, 127.80, 127.77, 69.30, 69.19, 

68.83, 68.40, 67.20, 61.93, 60.73, 26.60, 19.24, 16.72, 16.68, 16.61; HRMS (M+Na+) calc mass 

773.2605, found 773.2574. 
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Bn-LRLRLRGLLLG-SiR3. To a stirring solution of Bn-LRLRLRG (0.199 g, 0.52 mmol) and 

LLLG-SiR3 (0.25 g, 0.47 mmol), in CH2Cl2 (4.7 mL) was added DPTS (0.03 g, 0.10 mmol). 

Once the mixture became homogeneous, DCC (0.12 g, 0.58 mmol) was added and the reaction 

was allowed to stir overnight. The solution was filtered and the filtrate was concentrated in 

vacuo. The crude material was purified by flash chromatography (SiO2, 15% EtOAc in hexanes) 

to provide the product as a colorless liquid (0.33 g, 77.7%). 1H NMR (400 MHz, CDCl3) δ 7.68-

7.65 (m, 4H), 7.43-7.29 (m, 11H), 5.23-5.09 (m, 8H), 4.79 (d, J = 16.0 Hz, 1H), 4.65 (d, J = 16.0 

Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.56 (d, J = 7.2 Hz, 3H), 1.557 (d, J 

= 6.8 Hz, 6H), 1.51 (d, J = 7.2 Hz, 3H), 1.50 (d, J = 6.8 Hz, 3H), 1.49 (d, J = 7.2 Hz, 3H), 1.07 s, 

9H); 13C NMR (100 MHz, CDCl3) δ 170.60, 169.88, 169.60, 169.51, 169.43, 169.36, 166.44, 

135.57, 135.54, 135.07, 132.74, 132.71, 129.88, 128.61, 128.51, 128.23, 127.80, 127.78, 69.27, 

69.19, 68.91, 68.87, 68.42, 67.20, 61.95, 60.75, 26.62, 19.25, 16.73, 16.67, 16.58, 16.53, 14.19; 

HRMS (M+Na+) calc mass 917.3028, found 917.3062. 

 

Bn-LRLRLRLRGLLLLG-SiR3. To a stirring solution of Bn-LRLRLRLRG (0.52 g, 1.1 mmol) and 

LLLLG-SiR3 (0.61 g, 1.0 mmol), in CH2Cl2 (10 mL) was added DPTS (0.06 g, 0.21 mmol). 

Once the mixture became homogeneous, DCC (0.23 g, 1.1 mmol) was added and the reaction 

was allowed to stir overnight. The solution was filtered and the filtrate was concentrated in 

vacuo. The crude material was purified by flash chromatography (SiO2, 20% EtOAc in hexanes) 

to provide the product as a colorless liquid (0.93 g, 88.7%). 1H NMR (400 MHz, CDCl3) δ 7.67-
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7.65 (m, 4H), 7.43-7.29 (m, 11H), 5.21-5.09 (m, 10H), 4.79 (d, J = 16.0 Hz, 1H), 4.66 (d, J = 

16.0 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.57 (m, 15H), 1.50 (d, J = 6.8 

Hz, 1H), 1.499 (d, J = 6.8 Hz, 1H), 1.49 (d, J = 6.8 Hz, 1H), 1.06 (s, 9H); 13C NMR (100 MHz, 

CDCl3) δ 170.59, 169.90, 169.87, 169.70, 169.55, 169.50 (2), 169.39, 169.36, 166.43, 135.56, 

135.52, 132.72, 132.68, 129.87, 128.60, 128.51, 128.23, 127.79, 127.77, 69.26, 69.18, 69.08, 

69.00, 68.93 (2), 68.87, 68.41, 67.19, 61.93, 60.74, 26.60, 19.24, 16.72 (2), 16.67, 16.59 (4), 

16.55, 14.18; HRMS (M+Na+) calc mass 1061.34451, found 1061.34635. 

5.5.3.2 Silyl deprotection of di-protected segmers 

 

Bn-LRLR. To a stirring solution of Bn-LRLR-SiR3 (25.0 g, 50.9 mmol) in THF (500 mL) under 

N2 was slowly added acetic acid (5.25 mL, 91.7 mmol) and then tetrabutylammonium fluoride 

(1.0 M in THF, 76.4 mL, 76.4 mmol). The reaction was stirred for 55 min and then brine (450 

mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 300 mL), the 

combined organic layers were washed with aqueous saturated sodium bicarbonate solution (300 

mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 

chromatographed over silica using 7.5% EtOAc in hexanes as the eluent to provide the product 

as a white solid (12.4 g, 96.4%). 1H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 5H), 5.21 (q, J = 

7.1 Hz, 1H), 5.18 (d, J = 12.4 Hz, 1H), 5.13 (d, J = 12.0 Hz, 1H), 4.35-4.29 (m, 1H), 2.72 (d, J = 

5.2 Hz, 1H), 1.52 (d, J = 7.2 Hz, 3H), 1.42 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

175.10, 169.96, 135.04, 128.61, 128.52, 128.22, 69.37, 67.23, 66.67, 20.41, 16.80; HRMS 

(M+Na+) calc mass 275.0895, found 275.0894. 
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Bn-LRLRG. To a stirring solution of Bn-LRLRG-SiR3 (8.13 g, 14.8 mmol) in THF (200 mL) 

under N2 was slowly added acetic acid (6.8 mL, 119 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 22.2 mL, 22.2 mmol). The reaction was stirred for 90 min and then brine 

(200 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 150 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(200 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 

chromatographed over silica using 10-25% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (4.24 g, 92.1%). 1H NMR (500 MHz, CDCl3) δ 7.37-7.30 (m, 5H), 

5.21 (q, J = 7.0 Hz, 1H), 5.20 (q, J = 7.0 Hz, 1H), 5.17 (d, J = 12.0 Hz, 1H), 5.13 (d, J = 12.5 Hz, 

1H), 4.26 (d, J = 17.0 Hz, 1H), 4.20 (d, J = 17.5 Hz, 1H), 2.37 (br s, 1H), 1.517 (d, J = 7.0 Hz, 

3H), 1.516 (d, J = 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 172.68, 169.88, 169.60, 135.04, 

128.61, 128.52, 128.23, 69.33, 69.16, 67.23, 60.47, 16.75, 16.67; HRMS (M+Na+) calc mass 

333.0950, found 333.0963. 

 

Bn-LRLRLR. To a stirring solution of Bn-LRLRLR-SiR3 (13.90 g, 24.7 mmol) in THF (250 mL) 

under N2 was slowly added acetic acid (2.5 mL, 43.7 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 37.0 mL, 37.0 mmol). The reaction was stirred for 85 min and then brine 

(250 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 200 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(250 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 
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chromatographed over silica using 10-25% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (7.70 g, 96.1%). 1H NMR (400 MHz, CDCl3) δ 7.37-7.30 (m, 5H), 

5.19 (q, J = 7.1 Hz, 2H), 5.18 (d, J = 12.8 Hz, 1H), 5.12 (d, J = 12.0 Hz, 1H), 4.36-4.30 (m, 1H), 

2.69-2.68 (m, 1H), 1.52 (d, J = 7.2 Hz, 3H), 1.51 (d, J = 7.2 Hz, 3H), 1.47 (d, J = 6.8 Hz, 3H); 

13C NMR (100 MHz, CDCl3) δ 175.09, 169.88, 169.57, 135.05, 128.64, 128.60, 128.51, 128.25, 

69.29, 69.08, 67.22, 66.69, 20.48, 16.75, 16.64; HRMS (M+Na+) calc mass 347.1107, found 

347.1100. 

 

Bn-LRLRGG. To a stirring solution of Bn-LRLRGG-SiR3 (3.26 g, 5.3 mmol) in THF (54 mL) 

under N2 was slowly added acetic acid (2.5 mL, 39.7 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 8.1 mL, 8.1 mmol). The reaction was stirred for 90 min and then brine 

(50 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 50 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(50 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 

chromatographed over silica using 7.5-25% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (1.16 g, 58.7%). 1H NMR (400 MHz, CDCl3) δ 7.37-7.29 (m, 5H), 

5.19 (q, J = 7.1 Hz, 1H), 5.186 (q, J = 7.1 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 5.12 (d, J = 12.4 

Hz, 1H), 4.82 (d, J = 16.0 Hz, 1H), 4.75 (d, J = 16.0 Hz, 1H), 4.33-4.22 (m, 2H), 2.38 (t, J = 5.8 

Hz, 1H), 1.51 (d, J = 6.8 Hz, 3H), 1.51 (d, J = 6.8 Hz, 3H), 1.509 (d, J = 6.8 Hz, 3H); 13C NMR 

(100 MHz, CDCl3) δ 172.59, 169.86, 169.36, 166.65, 135.03, 128.61, 128.52, 128.22, 69.34, 

69.32, 67.23, 60.83, 16.73, 16.61; HRMS (M+H+) calc mass 369.1173, found 369.1186. 
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Bn-LRLRLRG. To a stirring solution of Bn-LRLRLRG-SiR3 (2.69 g, 4.34 mmol) in THF (45 mL) 

under N2 was slowly added acetic acid (2.0 mL, 35 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 6.5 mL, 6.5 mmol). The reaction was stirred for 90 min and then brine 

(50 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 50 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(50 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 

chromatographed over silica using 12.5-35% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (1.59 g, 96.0%). 1H NMR (400 MHz, CDCl3) δ 7.37-7.28 (m, 5H), 

5.22 (q, J = 7.2 Hz, 1H) 5.17 (q, J = 7.2 Hz, 1H), 5.17 (d, J = 12.4 Hz, 1H), 5.16 (q, J = 6.9 Hz, 

1H), 5.11 (d, J = 12.4 Hz, 1H), 4.27 (d, J = 17.2 Hz, 1H), 4.20 (d, J = 17.2 Hz, 1H), 2.41 (br s, 

1H), 1.57 (d, J = 7.2 Hz, 3H), 1.52 (d, J = 6.8 Hz, 3H), 1.50 (d, J = 7.2 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 172.67, 169.87, 169.64, 169.50, 135.03, 128.59, 128.50, 128.22, 69.27, 69.11, 

69.09, 67.20, 60.36, 16.72 (2), 16.56; HRMS (M+Na+) calc mass 405.1162, found 405.1145.  

 

Bn-LRLRLRLR. To a stirring solution of Bn-LRLRLRLR-SiR3 (17.21 g, 27.1 mmol) in THF (275 

mL) under N2 was slowly added acetic acid (2.8 mL, 49 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 40.7 mL, 40.7 mmol). The reaction was stirred for 70 min and then brine 

(275 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 250 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(250 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 
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chromatographed over silica using 10-25% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (10.48 g, 97.5%). 1H NMR (500 MHz, CDCl3) δ 7.36-7.29 (m, 5H), 

5.23-5.14 (m, 4H), 5.11 (d, J = 12.5 Hz, 1H), 4.36-4.31 (m, 1H), 2.68 (m, 1H), 1.57 (d, J = 7.0 

Hz, 3H), 1.51 (d, J = 7.0 Hz, 3H), 1.50 (d, J = 7.0 Hz, 3H), 1.47 (d, J = 7.0 Hz, 3H); 13C NMR 

(125 MHz, CDCl3) δ 175.10, 169.88, 169.61, 169.50, 135.08, 128.60, 128.51, 128.23, 69.28, 

69.08, 69.04, 67.20, 66.70, 20.49, 16.73, 16.70, 16.57; HRMS (M+H+) calc mass 397.1499, 

found 397.1498. 

 

Bn-LLLLG. Prepared by Michael A. Washington. To a stirring solution of Bn-LLLLG-SiR3 

(6.89 g, 9.95 mmol) in THF (100 mL) under N2 was slowly added acetic acid (5.0 mL, 79.6 

mmol) and then tetrabutylammonium fluoride (1.0 M in THF, 14.9 mL, 14.9 mmol). The 

reaction was stirred for 60 min and then brine (250 mL) was added. The resulting aqueous layer 

was extracted with diethyl ether (3 x 225 mL), the combined organic layers were washed with 

aqueous saturated sodium bicarbonate solution (250 mL), dried over MgSO4 and then 

concentrated in vacuo. The concentrate was then chromatographed over silica using 10-15% 

EtOAc in hexanes as the eluent to provide the product as a colorless liquid (3.65 g, 80.8%). 1H 

NMR (400MHz, CDCl3) δ 7.44-7.31 (m, 5H), 5.17 (m, 6H), 4.27 (d, 1H), 4.21 (d, 1H), 2.41 (s, 

1H), 1.58 (m, 6H), 1.50 (m, 6H). 13C NMR (400MHz, CDCl3) δ 172.65, 169.86, 169.64, 169.52, 

135.02, 128.58, 128.48, 128.21, 69.26. 69.09, 67.18, 60.45, 25.94, 16.71, 16.62, 16.53, 14.16;  

HRMS (M+NH4
+) calc mass 472.1775, found 472.1819. 
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Bn-LRLRLRLRG. To a stirring solution of Bn-LRLRLRLRG-SiR3 (10.83 g, 15.6 mmol) in THF 

(155 mL) under N2 was slowly added acetic acid (7.1 mL, 124 mmol) and then 

tetrabutylammonium fluoride (1.0 M in THF, 23.5 mL, 23.5 mmol). The reaction was stirred for 

90 min and then brine (250 mL) was added. The resulting aqueous layer was extracted with 

diethyl ether (3 x 225 mL), the combined organic layers were washed with aqueous saturated 

sodium bicarbonate solution (250 mL), dried over MgSO4 and then concentrated in vacuo. The 

concentrate was then chromatographed over silica using 10-30% EtOAc in hexanes as the eluent 

to provide the product as a colorless liquid (6.43 g, 90.5%). 1H NMR (400 MHz, CDCl3) δ 7.36-

7.29 (m, 5H), 5.22 (q, J = 7.1 Hz, 1H), 5.20-5.12 (m, 4H), 5.11 (d, J = 12.0 Hz, 1H), 4.29-4.18 

(m, 2H), 2.37-2.34 (m, 1H), 1.58 (d, J = 7.2 Hz, 6H), 1.51-1.49 (m, 6H); 13C NMR (100 MHz, 

CDCl3) δ 172.69, 169.88, 169.64, 169.54, 169.50, 135.05, 128.60, 128.51, 128.22, 69.27, 69.14, 

69.09, 69.02, 67.20, 60.47, 16.73 (2), 16.64, 16.55; HRMS (M+NH4
+) calc mass 472.1819, found 

472.1794. 

 

Bn-LRLRGLLG. To a stirring solution of Bn-LRLRGLLG-SiR3 (3.13 g, 4.17 mmol) in THF (40 

mL) under N2 was slowly added acetic acid (1.9 mL, 33 mmol) and then tetrabutylammonium 

fluoride (1.0 M in THF, 6.2 mL, 6.2 mmol). The reaction was stirred for 60 min and then brine 

(50 mL) was added. The resulting aqueous layer was extracted with diethyl ether (3 x 40 mL), 

the combined organic layers were washed with aqueous saturated sodium bicarbonate solution 

(125 mL), dried over MgSO4 and then concentrated in vacuo. The concentrate was then 
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chromatographed over silica using 20-35% EtOAc in hexanes as the eluent to provide the 

product as a colorless liquid (1.96 g, 91.7%). 1H NMR (400 MHz, CDCl3) δ 7.36-7.28 (m, 5H), 

5.24 (q, J = 7.1 Hz, 1H), 5.21 (q, J = 7.2 Hz, 1H), 5.18 (q, J = 7.2 Hz, 1H), 5.17 (q, J = 7.1 Hz, 

1H), 5.16 (d, J = 12.4 Hz, 1H), 5.11 (d, J = 12.4 Hz, 1H), 4.78 (d, J = 16.0 Hz, 1H), 4.67 (d, J = 

16.0 Hz, 1H), 4.28-4.17 (m, 2H), 2.47 (s, 1H), 1.564 (d, J = 7.2 Hz, 3H), 1.562 (d, J = 7.2 Hz, 

3H), 1.50 (d, J = 6.8 Hz, 3H), 1.49 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 172.62, 

169.86, 169.52, 169.36, 169.33, 166.43, 135.02, 128.58, 128.48, 128.20, 69.31, 69.20, 69.07, 

68.97, 67.18, 60.75, 60.43, 16.68 (3), 16.56; HRMS (M+NH4
+) calc mass 535.1428, found 

535.1450. 

5.5.3.3 Hydrogenolysis of di-protected segmers 

 

GG-SiR3. To a stirring solution of Bn-GG-SiR3 (10.66 g, 23.0 mmol) in EtOAc (230 mL) under 

N2 was added 10% Pd/C (0.53 g, 5% w/w). The reaction vessel was then purged twice with a H2 

balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite and concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 5% EtOAc in 

hexanes) to provide the product as a colorless solid (6.46 g, 75.3%). 1H NMR (400 MHz, CDCl3) 

δ 11.3 (br s, 1H), 7.69-7.67 (m, 4H), 7.45-7.35 (m, 6H), 4.66 (s, 2H), 4.36 (s, 2H), 1.08 (s, 9H); 

13C NMR (100 MHz, CDCl3) δ 173.32, 170.62, 135.54, 132.56, 129.96, 127.82, 61.82, 60.08, 

26.61, 19.24; HRMS (M+NH4
+) calc mass 390.17313, found 390.17159. 
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LRLR-SiR3. To a stirring solution of Bn-LRLR-SiR3 (18.2g, 37.1 mmol) in EtOAc (370 mL) 

under N2 was added 10% Pd/C (0.91 g, 5% w/w). The reaction vessel was then purged twice 

with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had 

completed, the vessel was evacuated and filled with N2 and the mixture was filtered over celite 

and concentrated in vacuo. The crude material was purified by flash chromatography (SiO2, 5% 

EtOAc in hexanes) to provide the product as a colorless liquid (13.0 g, 87.7%). 1H NMR (400 

MHz, CDCl3) δ 10.50 (br s, 1H), 7.68-7.65 (m, 4H), 7.44-7.32 (m, 6H), 4.93 (q, J = 7.2 Hz, 1H), 

4.32 (q, J = 6.7 Hz, 1H), 1.40 (d, J = 6.8 Hz, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.08 (s, 9H); 13C 

NMR (100 MHz, CDCl3) δ 176.29, 173.11, 135.95, 135.74, 133.40, 132.98, 129.79, 127.64, 

127.56, 68.51, 68.09, 26.76, 21.08, 19.19, 16.58; HRMS (M-H+) calc mass 399.1628, found 

399.1629. 

 

LLG-SiR3. To a stirring solution of Bn-LLG-SiR3 (7.63 g, 13.9 mmol) in EtOAc (140 mL) 

under N2 was added 10% Pd/C (0.76 g, 5% w/w). The reaction vessel was purged twice with a 

H2 balloon and allowed to stir overnight under 1 atm H2. The reaction mixture was placed under 

N2, the mixture was filtered over celite and concentrated in vacuo. The crude product was 

purified by flash chromatography (SiO2, 7.5% EtOAc in hexanes) to provide the product as a 

colorless liquid (2.92 g, 45.7%). 1H NMR (500 MHz, CDCl3) δ 9.47 (br s, 1H), 7.68-7.65 (m, 

4H), 7.43-7.35 (m, 6H), 5.19 (q, J = 7.2 Hz, 1H), 5.13 (q, J = 7.0 Hz, 1H), 4.35 (d, J = 17 Hz, 

1H), 4.29 (d, J = 16.5 Hz, 1H), 1.53 (d, J = 7.0 Hz, 3H), 1.48 (d, J = 7.5 Hz, 3H), 1.07 (s, 9H); 
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13C NMR (125 MHz, CDCl3) δ 175.43, 170.70, 169.80, 135.56, 135.53, 132.71, 132.66, 129.90, 

127.80, 127.78, 68.62, 68.43, 61.95, 60.47, 26.61, ; HRMS (M-H+) calc mass 457.1683, found 

457.1642. 

 

LLLG-SiR3. To a stirring solution of Bn-LLLG-SiR3 (1.47 g, 2.4 mmol) in EtOAc (25 mL) 

under N2 was added 10% Pd/C (0.073 g, 5% w/w). The reaction vessel was purged twice with a 

H2 balloon and allowed to stir overnight under 1 atm H2. The reaction mixture was placed under 

N2, the mixture was filtered over celite and concentrated in vacuo. The crude product was 

purified by flash chromatography (SiO2, 15% EtOAc in hexanes) to provide the product as a 

colorless liquid (1.02 g, 81.5%). 1H NMR (400 MHz, CDCl3) δ 8.51 (br s, 1H), 7.68-7.64 (m, 

4H), 7.43-7.34 (m, 6H), 5.20 (m, 3H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.55 

(d, J = 7.2 Hz, 3H), 1.54 (d, J = 6.8 Hz, 3H), 1.49 (d, J = 7.2 Hz, 3H), 1.06 (s, 9H); 13C NMR 

(100 MHz, CDCl3) δ 171.31, 170.67, 169.95, 169.64, 135.56, 135.53, 132.69, 132.66, 129.89, 

127.80, 127.78, 68.87, 68.45, 61.93, 60.45, 26.60, 19.24, 16.71, 16.64, 16.56, 14.17; HRMS (M-

H+) calc mass 529.1894, found 529.1870. 

 

LLLLG-SiR3. To a stirring solution of Bn-LLLLG-SiR3 (1.58 g, 2.2 mmol) in EtOAc (21 mL) 

under N2 was added 10% Pd/C (0.087 g, 5% w/w). The reaction vessel was purged twice with a 

H2 balloon and allowed to stir overnight under 1 atm H2. The reaction mixture was placed under 

N2, the mixture was filtered over celite and concentrated in vacuo. The crude product was 

purified by flash chromatography (SiO2, 10% EtOAc in hexanes) to provide the product as a 
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colorless liquid (0.64 g, 48.8%). 1H NMR (400 MHz, CDCl3) δ 9.05 (br s, 1H), 7.68-7.65 (m, 

4H), 7.43-7.34 (m, 6H), 5.20-5.10 (m, 4H), 4.34 (d, J = 16.8 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 

1.57 (d, J = 7.2 Hz, 3H), 1.56 (d, J = 7.2 Hz, 3H), 1.53 (d, J = 7.2 Hz, 3H), 1.50 (d, J = 7.2 Hz, 

3H), 1.07 (s, 9H); 13C NMR (100 MHz, CDCl3) 

δ 175.42, 170.65, 169.93, 169.75, 169.55, 135.56, 135.53, 132.70, 132.67, 129.88, 127.80, 127.7

8, 68.92, 68.89, 68.72, 68.43, 61.94, 26.60, 19.24, 16.72, 16.61 (2), 16.56; HRMS (M-H+) calc 

mass 601.20996, found 601.21241. 

5.5.3.4 Hydrogenolysis of mono-protected segmers 

 

LRG. To a stirring solution of Bn-LRG (1.36 g, 5.7 mmol) in EtOAc (60 mL) under N2 was 

added 10% Pd/C (0.07g, 5% w/w). The reaction vessel was then purged twice with a H2 balloon 

and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the vessel was 

evacuated and filled with N2 and the mixture was filtered over celite, dried over MgSO4, filtered 

over celite and concentrated in vacuo to provide the product as a colorless liquid (0.83 g, 98.8%). 

1H NMR (400 MHz, CDCl3) δ 7.19 (br s, 2H), 5.21 (q, J = 7.1 Hz, 1H), 4.29 (d, J = 17.2 Hz, 

1H), 4.23 (d, J = 17. Hz, 1H), 1.54 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 175.00, 

172.78, 68.98, 60.37, 16.67; HRMS (M-H+) calc mass 147.02855, found 147.02880. 

 

LRLRG. To a stirring solution of Bn-LRLRG (2.00 g, 6.46 mmol) in EtOAc (65 mL) under N2 

was added 10% Pd/C (0.15 g, 7% w/w). The reaction vessel was then purged twice with a H2 
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balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite, dried over 

MgSO4, filtered over celite and concentrated in vacuo to provide the product as a colorless liquid 

(1.31 g, 92.0%). 1H NMR (400 MHz, CDCl3) δ 6.68 (br s, 2H), 5.22 (q, J = 6.9 Hz, 1H), 5.17 (q, 

J = 7.0 Hz, 1H), 4.29 (d, J = 17.6 Hz, 1H), 4.22 (d, J = 17.2 Hz, 1H), 1.56 (d, J = 7.2 Hz, 3H), 

1.54 (d, J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 174.98, 172.82, 169.70, 69.20, 68.94, 

60.43, 16.66, 16.64; HRMS (M+Na+) calc mass 243.0481, found 243.0491. 

 

LRLRGG. To a stirring solution of Bn-LRLRGG (0.95 g, 2.6 mmol) in EtOAc (26 mL) under N2 

was added 10% Pd/C (0.57 g, 5% w/w). The reaction vessel was then purged twice with a H2 

balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite, dried over 

MgSO4, filtered over celite and concentrated in vacuo to provide the product as a colorless liquid 

(0.70 g, 97.1%). 1H NMR (400 MHz, CDCl3) δ 6.88 (br s, 2H), 5.20 (q, J = 7.2 Hz, 1H), 5.16 (q, 

J = 7.1 Hz, 1H), 4.84 (d, J = 16.0 Hz, 1H), 4.76 (d, J = 16.0 Hz, 1H), 4.28 (s, 2H), 1.56 (d, J = 

7.2 Hz, 3H), 1.54 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 174.94, 172.64, 169.40, 

166.83, 69.35, 68.92, 60.82, 60.35, 16.60 (2); HRMS (M+H+) calc mass 369.1186, found 

369.1173. 
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LRLRLRG. To a stirring solution of Bn-LRLRLRG (2.10 g, 5.49 mmol) in EtOAc (55 mL) under 

N2 was added 10% Pd/C (0.36 g, 17% w/w). The reaction vessel was then purged twice with a 

H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had completed, the 

vessel was evacuated and filled with N2 and the mixture was filtered over celite and concentrated 

in vacuo. The crude material was purified by flash chromatography (SiO2, 35-60% EtOAc in 

hexanes) to provide the product as a colorless liquid (1.34 g, 83.4%). 1H NMR (400 MHz, 

CDCl3) δ 5.22 (q, J = 7.0 Hz, 1H), 5.18 (q, J = 7.0 Hz, 1H), 5.15 (q, J = 7.2 Hz, 1H), 4.28 (d, J = 

17.2 Hz, 1H), 4.22 (d, J = 17.2 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H), 1.57 (d, J = 7.2 Hz, 3H), 1.54 

(d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 175.15, 172.76, 169.76, 169.53, 69.16, 

69.11, 68.81, 60.42, 16.71, 16.61, 16.57; HRMS (M-H+) calc mass 291.0716, found 291.0741. 

 

LLLLG. Prepared by Michael A. Washington. To a stirring solution of Bn-LLLLG (3.65 g, 8.04 

mmol) in EtOAc (80 mL) under N2 was added 10% Pd/C (0.0.20 g, 5% w/w). The reaction 

vessel was then purged twice with a H2 balloon and allowed to stir overnight under 1 atm H2. 

Once the reaction had completed, the vessel was evacuated and filled with N2 and the mixture 

was filtered over celite, dried over MgSO4, filtered over celite and concentrated in vacuo to 

provide the product as a colorless solid (2.71 g, 92.5%). 1H NMR (400MHz, CDCl3) δ 5.20 (m, 

4H), 4.24 (d, J = 17.2 Hz, 1H), 4.22 (d, J = 17.2 Hz, 1H), 1.56 (m, 9H). 13C NMR (400MHz, 

CDCl3) δ 174.57, 172.76, 169.68, 169.57, 169.54, 69.20, 69.14, 69.07, 68.89, 60.46, 16.74, 

16.65, 16.59; HRMS (M+H+) calc mass 365.1097, found 365.1084. 
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LRLRLRLRG. To a stirring solution of Bn-LRLRLRLRG (5.20 g, 11.5 mmol) in EtOAc (115 mL) 

under N2 was added 10% Pd/C (0.27 g, 5% w/w). The reaction vessel was then purged twice 

with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had 

completed, the vessel was evacuated and filled with N2 and the mixture was filtered over celite, 

dried over MgSO4, filtered over celite and concentrated in vacuo to provide the product as a 

colorless solid (4.07 g, 97.5%). 1H NMR (400 MHz, CDCl3) δ 6.42 (br s, 2H), 5.22 (q, J = 7.1 

Hz, 1H), 5.18 (q, J = 7.2 Hz, 1H), 5.16 (q, J = 7.2 Hz, 1H), 5.14 (q, J = 7.2 Hz, 1H), 4.27 (d, J = 

17.2 Hz, 1H), 4.22 (d, J = 17.6 Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H), 1.57 (d, J = 7.2 Hz, 3H), 1.56 

(d, J = 7.2 Hz, 3H), 1.53 (d, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 175.07, 172.74, 

169.70, 169.57, 169.52, 69.17, 69.13, 69.02, 68.79, 60.44, 16.73, 16.62 (2), 16.57; HRMS (M-

H+) calc mass 363.09390, found 363.09219. 

 

LRLRGLLG. To a stirring solution of Bn-LRLRGLLG (1.90 g, 3.71 mmol) in EtOAc (40 mL) 

under N2 was added 10% Pd/C (0.10 g, 5% w/w). The reaction vessel was then purged twice 

with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had 

completed, the vessel was evacuated and filled with N2 and the mixture was filtered over celite, 

dried over MgSO4, filtered over celite and concentrated in vacuo to provide the product as a 

colorless liquid (1.47 g, 94.0%). 1H NMR (400 MHz, CDCl3) δ 6.49 (br s, 2H), 5.23 (q, J = 7.1 

Hz, 1H), 5.21 (q, J = 7.1 Hz, 1H), 5.18 (q, J = 7.1 Hz, 1H), 5.15 (q, J = 7.2 Hz, 1H), 4.78 (d, J = 

16.0 Hz, 1H), 4.69 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 17.6 Hz, 1H), 4.21 (J = 17.6 Hz, 1H), 1.564 
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(d, J = 7.2 Hz, 3H), 1.560 (d, J = 7.2 Hz, 3H), 1.55 (d, J = 7.2 Hz, 3H), 1.53 (d, J = 7.2 Hz, 3H); 

13C NMR (100 MHz, CDCl3) δ 174.56, 172.69, 169.57, 169.41, 169.31, 166.54, 69.25, 69.15, 

69.03, 68.90, 60.78, 60.40, 16.69, 16.65, 16.61, 16.57; HRMS (M+Na+) calc mass 445.0935, 

found 445.0958. 

 

LRLRLRGLLLG. To a stirring solution of Bn-LRLRLRGLLLG (1.19 g, 1.8 mmol) in EtOAc (18 

mL) under N2 was added 10% Pd/C (0.06 g, 5% w/w). The reaction vessel was then purged twice 

with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction had 

completed, the vessel was evacuated and filled with N2 and the mixture was filtered over celite, 

dried over MgSO4, filtered over celite and concentrated in vacuo to provide the product as a 

colorless solid (0.99 g, 97.1%). 1H NMR (400 MHz, CDCl3) δ 6.38 (br s, 2H), 5.24-5.11 (m, 

6H), 4.79 (d, J = 16.0 Hz, 1H), 4.67 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 17.2 Hz, 1H), 4.21 (d, J = 

17.2 Hz, 1H), 1.58-1.52 (m, 18H); 13C NMR (100 MHz, CDCl3) δ 174.95, 172.75, 169.68, 

169.51, 169.48, 169.43, 169.40, 166.48, 69.19, 69.16, 69.12, 69.08, 68.98, 68.78, 60.76, 60.43, 

16.71 (2), 16.64, 16.62, 16.59, 16.53; HRMS (M+Na+) calc mass 589.1395, found 589.1381. 

 

LRLRLRLRGLLLLG. To a stirring solution of Bn-LRLRLRLRGLLLLG (0.52 g, 0.65 mmol) in 

EtOAc (7 mL) under N2 was added 10% Pd/C (0.03 g, 5% w/w). The reaction vessel was then 

purged twice with a H2 balloon and allowed to stir overnight under 1 atm H2. Once the reaction 

had completed, the vessel was evacuated and filled with N2 and the mixture was filtered over 

celite, dried over MgSO4, filtered over celite and concentrated in vacuo to provide the product as 
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a colorless solid (0.46, quant). 1H NMR (400 MHz, CDCl3) δ 5.35 (br s, 2H), 5.24-5.11 (m, 8H), 

4.79 (d, J = 16.0, 1H), 4.66 (d, J = 16.0 Hz, 1H), 4.27 (d, J = 17.6 Hz, 1H), 4.21 (d, J = 17.6 Hz, 

1H), 1.58-1.52 (m, 24H); 13C NMR (100 MHz, CDCl3) δ 174.48, 172.74, 169.68, 169.58, 

169.56, 169.50, 169.46, 169.40 (2), 166.45, 69.81, 69.16, 69.11, 69.02, 69.00, 68.98, 68.83, 

60.77, 16.72, 16.69, 16.63 (3), 16.57 (3); HRMS (M-H+) calc mass 709.18218, found 709.18350. 

5.5.3.5 SAP of sequenced segmers 

 

Poly LRG. Under N2, LRG (0.81 g, 5.4 mmol) and DPTS (0.32 g, 1.1 mmol) were dissolved in 

CH2Cl2 (1.82 mL) and cooled to 0 ºC. DIC (1.28 mL, 8.2 mmol) was added dropwise by syringe 

and the reaction mixture was stirred for 3 h. The polymer was precipitated twice from MeOH 

and then dried under vacuum to yield a colorless solid (0.33 g, 46.0%). 1H NMR (400 MHz, 

CDCl3) δ 5.22 (q, J = 6.8 Hz, 1H), 4.85 (d, J = 16.0 Hz, 1H), 4.62 (d, J = 16.0 Hz, 1H), 1.56 (d, J 

= 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 169.35, 166.42, 69.13, 60.80, 16.71; SEC (THF): 

Mn – 23.0 kDa, Mw – 32.0 kDa, ᴆ - 1.39. 

 

Poly LLRG. Under N2, LLRG (1.35 g, 6.1 mmol) and DPTS (0.36 g, 1.2 mmol) were dissolved 

in CH2Cl2 (2.0 mL) and cooled to 0 ºC. DIC (1.44 mL, 14.2 mmol) was added dropwise by 

syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated twice from 

MeOH and then dried under vacuum to yield a colorless solid (0.93 g, 75.4%). 1H NMR (600 
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MHz, CDCl3) δ 5.20 (q, J = 7.2; 13C NMR (100 MHz, CDCl3) δ 169.35, 166.42, 69.13, 60.80, 

16.71; SEC (THF): Mn – 30.3 kDa, Mw – 40.3 kDa, ᴆ - 1.33. 

 

Poly LRLRG. Under N2, LRLRG (1.27 g, 5.7 mmol) and DPTS (0.35 g, 1.19 mmol) were 

dissolved in CH2Cl2 (1.92 mL) and cooled to 0 ºC. DIC (1.36 mL, 13.4 mmol) was added 

dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated 

twice from MeOH and then dried under vacuum to yield a colorless solid (0.95 g, 81.1%). 1H 

NMR (600 MHz, CDCl3) δ 5.20 (q, J = 7.2 Hz, 1H), 5.17 (d, J = 7.2 Hz, 1H), 4.85 (d, J = 15.6 

Hz, 1H), 4.60 (d, J = 16.2 Hz, 1H), 1.57 (d, J = 6.6 Hz, 3H), 1.56 (d, J = 7.2 Hz, 3H); 13C NMR 

(150 MHz, CDCl3) δ 169.49, 169.37, 166.49, 69.17, 68.98, 60.75, 16.67, 16.63; SEC (THF): Mn 

– 26.2 kDa, Mw – 38.4 kDa, ᴆ - 1.47. 

 

Poly LRLRGG. Under N2, LRLRGG (0.67 g, 2.4 mmol) and DPTS (0.14 g, 0.48 mmol) were 

dissolved in CH2Cl2 (0.8  mL) and cooled to 0 ºC. DIC (0.56 mL, 5.5 mmol) was added dropwise 

by syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated twice from 

MeOH and then dried under vacuum to yield a colorless solid (0.47 g, 76.0%). 1H NMR (600 

MHz, CDCl3) δ 5.22 (q, J = 7.2 Hz, 1H), 5.18 (q, J = 7.2 Hz, 1H), 4.86 (d, J = 16.2 Hz, 1H), 4.80 

(d, J = 16.2 Hz, 1H), 4.70 (d, J = 16.2 Hz, 1H), 4.66 (d, J = 16.2 Hz, 1H), 1.57 (d, J = 6.0 Hz, 
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3H), 1.56 (d, J = 6.6 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 169.41, 169.31, 166.44, 166.41, 

69.28, 69.00, 60.85, 60.66, 16.67, 16.61; SEC (THF): Mn – 25.1 kDa, Mw – 35.3 kDa, ᴆ - 1.40. 

 

Poly LRLRLRG. Under N2, LRLRLRG (1.30 g, 4.5 mmol) and DPTS (0.27 g, 0.92 mmol) were 

dissolved in CH2Cl2 (1.5 mL) and cooled to 0 ºC. DIC (1.05 mL, 10.3 mmol) was added 

dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated 

twice from MeOH and then dried under vacuum to yield a colorless solid (0.99 g, 80.6%). 1H 

NMR (700 MHz, CDCl3) δ 5.19 (q, J = 7.0 Hz, 1H), 5.17 (q, J = 7.0 Hz, 1H), 5.15 (q, J = 7.0 Hz, 

1H), 4.85 (d, J = 16.1 Hz, 1H), 4.59 (d, J = 16.1 Hz, 1H), 1.564 (d, J = 7.0 Hz, 3H), 1.561 (d, J = 

7.0 Hz, 3H), 1.52 (d, J = 7.0 Hz, 3H); 13C NMR (175 MHz, CDCl3) δ 169.50 (2), 169.45, 166.49, 

69.18, 69.08, 68.93, 60.77, 16.69 16.65, 16.58; SEC (THF): Mn – 31.9 kDa, Mw – 43.2 kDa, ᴆ - 

1.4. 

 

Poly LLLLG. Prepared by Michael A. Washington. Under N2, LLLLG (2.71 g, 7.44 mmol) and 

DPTS (0.44 g, 1.51 mmol) were dissolved in 1:1 CH2Cl2/DMF (1.24 mL and 1.24 mL) and 

cooled to 0 ºC. DIC (1.74 mL, 11.1 mmol) was added dropwise by syringe and the reaction 

mixture was stirred for 3 h. The polymer was precipitated twice from MeOH and then dried 

under vacuum to yield a colorless solid (2.22 g, 81.8%). 1H NMR (400 MHz, CDCl3) δ 5.21-5.13 

(m, 4H), 4.86 (d, J = 16.4 Hz, 1H), 4.59 (d, J = 16.0 Hz, 1H), 1.57-1.55 (m, 12H); 13C NMR (100 
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MHz, CDCl3) δ 169.56, 169.51 (2), 169.45, 169.49, 69.19, 69.09, 68.99, 68.93, 60.77, 16.69, 

16.66, 16.60 (2); SEC (THF): Mn – 8.8 kDa, Mw – 12.1 kDa, ᴆ - 1.6. 

 

Poly LRLRLRLRG. Under N2, LRLRLRLRG (4.04 g, 11.0 mmol) and DPTS (0.65 g, 2.2 mmol) 

were dissolved in CH2Cl2 (1.85 mL), DMF (1.85 mL) and cooled to 0 ºC. DIC (2.6 mL, 25.6 

mmol) was added dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer 

was precipitated twice from MeOH and then dried under vacuum to yield a colorless solid (3.17 

g, 82.5%). 1H NMR (700 MHz, CDCl3) δ 5.20-5.13 (m, 4H), 4.85 (d, J = 15.4 Hz, 1H), 4.59 (d, J 

= 16.1 Hz, 1H), 1.57-1.55 (m, 12H); 13C NMR (175 MHz, CDCl3) δ 169.57, 169.51 (2), 169.46, 

166.49, 69.17, 69.08, 68.97, 68.92, 60.75, 16.68, 16.65, 16.59 (2); SEC (THF): Mn – 6.0 kDa, 

Mw – 7.8 kDa, ᴆ -1.31. 

 

Poly LRLRGLLG. Under N2, LRLRGLLG (1.43 g, 3.4 mmol) and DPTS (0.21 g, 0.70 mmol) 

were dissolved in CH2Cl2 (1.1 mL) and cooled to 0 ºC. DIC (0.8 mL, 7.9 mmol) was added 

dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer was precipitated 

twice from MeOH and then dried under vacuum to yield a colorless solid (1.16 g, 84.4%). 1H 

NMR (700 MHz, CDCl3) δ 5.21 (q, J = 7.2 Hz, 1H), 5.18 (q, J = 7.2 Hz, 1H), 4.78 (d, J = 16.1 

Hz, 1H), 4.67 (d, J = 16.1 Hz, 1H), 1.56 (d, J = 7.0 Hz, 3H), 1.55 (d, J = 7.0 Hz, 3H); 13C NMR 
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(175 MHz, CDCl3) δ 169.38, 169.26, 166.43, 69.17, 69.00, 60.74, 16.69, 16.63; SEC (THF): Mn 

– 17.1 kDa, Mw – 25.3 kDa, ᴆ - 1.48. 

 

Poly LRLRLRGLLLG. Under N2, LRLRLRGLLLG (0.96 g, 1.7 mmol) and DPTS (0.10 g, 0.34 

mmol) were dissolved in CH2Cl2 (0.57 mL) and cooled to 0 ºC. DIC (0.4 mL, 3.9 mmol) was 

added dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer was 

precipitated twice from MeOH and then dried under vacuum to yield a colorless solid (0.68 g, 

73.5%). 1H NMR (700 MHz, CDCl3) δ 5.21 (q, J = 7.0 Hz, 1H), 5.18 (q, J = 7.0 Hz, 1H), 5.16 (q, 

J = 7.0 Hz, 1H), 4.79 (d, J = 16.1 Hz, 1H),  4.66 (d, J = 15.4 Hz, 1H), 1.559 (d, J = 7.0 Hz, 3H), 

1.558 (d, J = 7.0 Hz, 3H), 1.554 (d, J = 7.0 Hz, 3H); 13C NMR (175 MHz, CDCl3) δ 169.45, 

169.37, 166.43, 69.20, 69.10, 68.97, 60.78, 16.73, 16.67, 16.57; SEC (THF): Mn – 23.9 kDa, Mw 

– 30.8 kDa, ᴆ - 1.29. 

 

Poly LRLRLRLRGLLLLG. Under N2, LRLRLRLRGLLLLG (0.43 g, 0.61 mmol) and DPTS 

(0.036 g, 0.12 mmol) were dissolved in CH2Cl2 (0.2 mL) and cooled to 0 ºC. DIC (0.14 mL, 0.14 

mmol) was added dropwise by syringe and the reaction mixture was stirred for 3 h. The polymer 

was precipitated twice from MeOH and then dried under vacuum to yield a colorless solid (0.35 

g, 82.8%). 1H NMR (700 MHz, CDCl3) δ 5.21-5.13 (m, 4H), 4.79 (d, J = 16.1 Hz, 1H), 4.65 (d, J 

= 16.1 Hz, 1H), 1.55 (m, 12H); 13C NMR (175 MHz, CDCl3) δ 169.56, 169.46, 169.38 (2), 
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166.42, 69.18, 69.07, 68.98, 68.95, 60.74, 16.70, 16.67, 16.58 (2); SEC (THF): Mn – 37.8 kDa, 

Mw – 46.9 kDa, ᴆ - 1.24. 

5.5.4 Preparation of mixed polymer samples with opposing stereochemistry 

Samples to be used in stereocomplex formation. Each individual polymer was dissolved in dry 

CH2Cl2 to give a concentration of polymer to solvent as 1g/dL. The two polymer solutions were 

then mixed together and vortexed. The polymer solution was then added to 500 mL of rapidly 

stirring MeOH. The precipitation solution was allowed to stir for 30 min. The solution appeared 

cloudy or a dispersed polymer powder. The solution was then filtered through a 0.45 µm nylon 

filter to collect the polymer powder.  

 



 185 

APPENDIX A 

A.1 SYNTHESIS OF REPEATING SEQUENCE COPOLYMERS OF LACTIC, 

GLYCOLIC AND CAPROLACTIC ACIDS 

A.1.1 Data compiled for random PLCA, PGCA, and homopolymers PCL, PGA, and PLLA 

Table 13. Numerical data compiled for the random PLCAs and the homopolymers of PLLA and PCL.26,89,91,93-96 

Reference Polymer Mol % 
C 

Tg 
(ºC) 

Woodruff, M. A.; Hutmacher, D. W. Prog Polym Sci 2010, 35, 1217-1256. 
 

PLLA 0 60 

Choi, S. H.; Park, T. G. J Biomater Sci Polym Ed 2002, 13, 1163-1173. 
 

PCL 100 -58 

Wang, W.; Ping, P.; Chen, X.; Jing, X. J Appl Polym Sci 2007, 104, 4182-4187. PLCA 20 19.0 
  10 37.7 
 
 

 5 42.0 

Pappalardo, D.; Annunziata, L.; Pellecchia, C. Macromolecules 2009, 42, 6056-
6062. 

PLCA 6 51.0 

 
 

 40 10.0 

Baimark, Y.; Molloy, R. ScienceAsia 2004, 30, 327-334. PLCA 48 -24 
  48 -37 
  49 -35 
  49 -37 
  49 -36 
  49 -21 
  49 -27 
 
 

 48 -30 

Nomura, N.; Akita, A.; Ishii, R.; Mizuno, M. J Am Chem Soc 2010, 132, 1750-
1751. 

 

PLCA 51 -15.6 

Wei, Z.; Liu, L.; Qu, C.; Qi, M. Polymer 2009, 50, 1423-1429. PLCA 8 47 
  36 8 
  55 -16 
  77 -42 
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Table 14. Numerical data compiled for the random PGCAs and the homopolymers of PGA and PCL.26,29,90-92 

Reference Polymer Mol % 
C 

Tg 
(ºC) 

Woodruff, M. A.; Hutmacher, D. W. Prog Polym Sci 2010, 35, 1217-1256. 
 

PGA 0 35 

Choi, S. H.; Park, T. G. J Biomater Sci Polym Ed 2002, 13, 1163-1173. 
 

PCL 100 -58 

Dobrzynski, P.; Kasperczyk, J.; Jelonek, K.; Ryba, M.; Walski, M.; Bero, M. J 
Biomed Mater Res Part A 2006, 79, 865-873. 

 

PGCA 90 -50.1 

Dobrzynski, P.; Li, S.; Kasperczyk, J.; Bero, M.; Gasc, F.; Vert, M. 
Biomacromolecules 2005 

PGCA 17.6 -11.8 

  35.1 -43.6 
  36.1 -38 
  56.3 -55.9 
  55.0 -55.1 
  55.0 -47.8 
  83.5 -60 
  83.5 -60 
  85.2 -60.9 

Bero, M.; Czapla, B.; Dobrzynski, P.; Janeczek, H.; Kasperczyk, J. Macromol 
Chem Phys 1999, 200, 911-916. 

PGCA 4.2 12 

  13.0 9.3 
  19.0 1.3 
  33.3 -33 
  46.0 -55.5 
  61.3 -57.8 
  83.5 -60.3 

A.1.2 H, 13C NMR, and 2D NMR spectra of PGCAs, PLCAs, and PLGCAs 
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Figure 42. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly GC. 
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Figure 43. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LC. 
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Figure 44. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly CGC. 
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Figure 45. 2D COSY NMR (500 MHz, top) and 2D HMBC NMR (500 -125 MHz, bottom) spectra of Poly CGC. 
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Figure 46. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly GGC. 
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Figure 47. 2D COSY NMR (500 MHz, top) and 2D HMBC NMR (500 - 125 MHz, bottom) spectra of Poly GGC. 
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Figure 48. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly CLC. 
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Figure 49. 2D HMBC NMR (700 – 175 MHz, top) and expansion (bottom) spectrum of Poly CLC. 
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Figure 50. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LLC. 
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Figure 51. 2D HMBC NMR (700 – 175 MHz, top) and expansion (bottom) spectrum of Poly LLC. 
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Figure 52. 1H NMR (600 MHz, top) 13C NMR (150 MHz, bottom) spectra of Poly LRLC. 
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Figure 53. 2D COSY NMR (600 MHz, top) and expansion (bottom) spectrum of Poly LRLC. 
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Figure 54. 2D HMBC NMR (600 – 150 MHz, top) and expansion (bottom) spectrum of Poly LRLC. 
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Figure 55. 1H NMR (600 MHz, top) 13C NMR (150 MHz, bottom) spectra of Poly LracLC. 
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Figure 56. 2D COSY NMR (600 MHz, top) spectrum and expansion (bottom) of Poly LracLC. 



 202 

 

 
Figure 57. 2D HMBC NMR (600 – 150 MHz, top) spectrum and expansion (bottom) of Poly LracLC. 
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Figure 58. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly GLC. 
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Figure 59. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LGC. 
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Figure 60. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly GGCC. 
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Figure 61. 2D COSY NMR (600 MHz, top) and 2D HMBC NMR (600 - 150 MHz, bottom) spectra of Poly GGC. 
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Figure 62. Expansions of 2D HMBC NMR (600 – 150 MHz, CDCl3, 25 ºC) spectrum of Poly GGCC. 
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Figure 63. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly GGGC. 
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Figure 64. 2D HMBC NMR (600 - 150 MHz, top) spectrum and expansions (bottom left and right) of Poly GGC. 
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Figure 65. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly LLCC. 
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Figure 66. 2D COSY NMR (600 MHz, top) spectrum and expansions (bottom middle and bottom) of Poly LLCC. 
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Figure 67. 2D HMBC NMR (600 – 150 MHz, top) spectrum and expansions (middle and bottom) of Poly LLCC. 
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Figure 68. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LLLC. 
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Figure 69. 2D COSY NMR (500 MHz, top) spectrum and expansion (bottom) of Poly LLLC. 
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Figure 70. 2D HMBC NMR (500 – 125 MHz, top) spectrum and expansion (bottom) of Poly LLLC. 
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Figure 71. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly GCLC. 
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Figure 72. 2D HMBC NMR (700 – 175 MHz, top) and expansion (bottom) spectrum of Poly GCLC. 
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Figure 73. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly GGCGC. 
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Figure 74. 2D HMBC NMR (700 – 175 MHz, top) spectrum and expansions (bottom left and right) of Poly 
GGCGC. 
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Figure 75. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LLCLC. 
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Figure 76. 2D HMBC NMR (500 MHz, top) spectrum and expansion (bottom) of Poly LLCLC. 
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Figure 77. 2D HMBC NMR (500 – 125 MHz, top) spectrum and expansions (bottom left and right) of Poly 
LLCLC. 
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Figure 78. 1H NMR (300 MHz, top) 13C NMR (75 MHz, bottom) spectra of Poly LLCLC. 
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Figure 79. 2D COSY NMR (500 MHz, top) spectrum and expansion (bottom) of Poly LLLLC. 
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Figure 80. 2D COSY NMR (500 – 125 MHz, top) spectrum and expansion (bottom left and right) of Poly LLLLC. 
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A.2 DETERMINING SEQUENCE FIDELITY IN REPEATING SEQUENCE 

POLY(LACTIC-CO-GLYCOLIC ACIDS) 

A.2.1 Data from maldi 

Table 15. Intensity and percent error data determined by MALDI-TOF-MS of 1.7% errormer 

Chain length 
(X) (X+0L)X (X+1L)*(X-1) Correct Total SF (%) ER (%) 

6 13350 1600 14950 15270 97.90 2.10 
7 16380 2526 18906 19327 97.82 2.18 
8 22352 4984 27336 28048 97.46 2.54 
9 26514 4816 31330 31932 98.11 1.89 
10 38720 6939 45659 46430 98.34 1.66 
11 53031 6970 60001 60698 98.85 1.15 
12 63936 11165 75101 76116 98.67 1.33 
13 77259 14664 91923 93145 98.69 1.31 
14 92750 18161 110911 112308 98.76 1.24 
15 99630 18718 118348 119685 98.88 1.12 
16 82752 17925 100677 101872 98.83 1.17 
17 59041 15904 74945 75939 98.69 1.31 
18 44334 12631 56965 57708 98.71 1.29 

 

Table 16. Intensity and percent error data determined by MALDI-TOF-MS of 2.4% errormer 

Chain length 
(X) (X+0L)X (X+1L)*(X-1) Correct Total SF (%) ER (%) 

8 149839 45761 195600 202137 96.8 3.2 
9 135719 48368 184088 190134 96.8 3.2 
10 146160 55366 201526 207678 97.0 3.0 
11 180520 67128 247648 254361 97.4 2.6 
12 164930 54761 219691 224669 97.8 2.2 
13 162816 75189 238005 244271 97.4 2.6 
14 150832 78625 229457 235505 97.4 2.6 
15 153002 77287 230289 235810 97.7 2.3 
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Table 17. Intensity and percent error data determined by MALDI-TOF-MS of 5.0% errormer 

Chain 
Length (X) (X+0L)X (X+1L)* 

(X-1) 
(X+2L)* 

(X-2) 
(X+3L)* 

(X-3) Correct Total SF (%) ER (%) 

6 86070 17775 4792 1641 110278 117870 93.6 6.4 
7 86730 28158 5890 2188 122966 131656 93.4 6.6 
8 99616 36456 7140 1570 144782 153312 94.4 5.6 
9 102366 40728 8834 2892 154820 163881 94.5 5.5 

10 90830 44784 10136 3045 148795 157610 94.4 5.6 
11 80707 44300 11718 3120 139845 148049 94.5 5.5 
12 69528 40909 11140 3150 124727 131724 94.7 5.3 
13 58331 42288 12507 3990 117116 124111 94.4 5.6 
14 52346 39351 13236 3762 108695 114954 94.6 5.4 
15 42915 35154 11973 3600 93642 98895 94.7 5.3 

 

Table 18. Intensity and percent error data determined by MALDI-TOF-MS of 8.4% errormer 

Chain 
Length (X) (X+0L)X (X+1L)* 

(X-1) 
(X+2L)* 

(X-2) 
(X+3L)* 

(X-3) 
(X+4L)* 

(X-4) Correct Total SF (%) ER (%) 

6 39912 25530 6488 1374 0 73304 83028 88.3 11.7 
7 44982 34332 10620 2800 0 92734 104804 88.5 11.5 
8 43840 43183 15468 3520 0 106011 119448 88.8 11.2 
9 44964 46592 18116 5016 0 114688 128196 89.5 10.5 
10 37960 48285 22640 6454 2370 117709 133080 88.4 11.6 
11 33957 46670 25200 7128 2275 115230 129470 89.0 11.0 
12 30252 42251 23400 9270 3072 108245 121392 89.2 10.8 
13 24960 39852 26554 11360 3546 106272 119405 89.0 11.0 
14 20342 35633 26340 12320 4820 99455 111874 88.9 11.1 
15 16080 32494 25701 11292 4741 90308 101130 89.3 10.7 
16 13248 22080 21098 11700 4608 72734 81456 89.3 10.7 
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Table 19. Intensity and percent error data determined by MALDI-TOF-MS of 11.6% errormer 

Chain 
Length 

(X) 
(X+0L)X (X+1L)* 

(X-1) 
(X+2L)* 

(X-2) 
(X+3L)* 

(X-3) 
(X+4L)* 

(X-4) Correct Total SF (%) ER (%) 

6 28422 24475 8712 2340 --- 63949 75540 84.7 15.3 
7 29729 33276 12820 4012 --- 79837 93520 85.4 14.6 
8 27888 40600 18660 5165 --- 92313 107432 85.9 14.1 
9 27072 41144 22036 7350 --- 97602 112716 86.6 13.4 

10 22820 40536 25272 8925 3234 100787 117590 85.7 14.3 
11 17523 36760 25452 10184 3507 93426 108581 86.0 14.0 
12 14988 32670 23440 12438 4312 87848 101808 86.3 13.7 
13 11817 26640 25960 12860 4995 82272 95290 86.3 13.7 
14 10430 22165 22740 12430 5360 73125 84154 86.9 13.1 
15 8340 17192 19214 12996 5940 63682 73275 86.9 13.1 
16 6608 14580 17696 10920 5784 55588 63536 87.5 12.5 
17 4301 10496 13440 12236 6045 46518 53448 87.0 13.0 
18 3888 8755 11280 9150 5558 38631 43974 87.8 12.2 
19 3325 6750 8687 8656 5655 33073 37601 88.0 12.0 
20 2500 5586 7290 7344 5520 28240 32020 88.2 11.8 
21 1701 3740 6612 4662 3927 20642 23226 88.9 11.1 
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A.2.2 1H NMR spectra and data of Poly LG “errormers” 

 
Figure 81. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 0% errormer. 
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Figure 82. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 1.7% errormer. 

 
Figure 83. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 2.4% errormer. 
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Figure 84. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 5.0% errormer. 

 
Figure 85. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 8.4% errormer. 
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Figure 86. 1H NMR spectrum (600 MHz, CDCl3) of poly LG 11.6% errormer. 

Table 20. 1H NMR integration data of Poly LG errormers 

Polymer Each part of 1/2 
quartet integrated 

1/2 
quartet 

1 
quartet 

(A) 

2 
quartet 

Total 
Integration 
from NMR 

Total Int - 
2 L error 
quart (B) 

A/(2A+B) Percent 
error 

1.7% 
errormer 0.0086 0.0032 0.012 0.024 0.047 1.03 0.99 0.023 2.3 

2.4% 
errormer 0.014 0.0079 0.022 0.043 0.086 1.04 0.96 0.041 4.1 

5.0% 
errormer 0.021 0.0080 0.029 0.059 0.12 1.09 0.98 0.054 5.4 

8.4% 
errormer 0.050 0.016 0.066 0.13 0.26 1.16 0.90 0.113 11.3 

11.6% 
errormer 0.059 0.020 0.079 0.16 0.32 1.19 0.87 0.133 13.3 
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A.2.3 MALDI-ToF spectra of Poly LG “errormers” 

 
Figure 87. MALDI-ToF spectrum of Poly LG “errormer” 0% L error (0%-errormer) 
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Figure 88. MALDI-ToF spectrum of Poly LG “errormer” 1.7% L error (1.7%-errormer) 

 
Figure 89. Low-resolution MALDI-ToF spectrum of Poly LG “errormer” 2.4% L error (2.4%-errormer) 
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Figure 90. MALDI-ToF spectrum of Poly LG “errormer” 5.0% L error (5.0%-errormer) 

 

Figure 91. MALDI-ToF spectrum of Poly LG “errormer” 8.4% L error (8.4%-errormer) 
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Figure 92. MALDI-ToF spectrum of Poly LG “errormer” 11.6% L error (11.6%-errormer) 
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A.3 SEQUENCE-CONTROLLED COPOLYMERS PREPARED VIA ENTROPY-

DRIVEN RING-OPENING METATHESIS POLYMERIZATION 
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Figure 93. 1H NMR (600 MHz, top) and 13C NMR (150 MHz, bottom) spectra of poly (CL-Eg-LC-Oed). 
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Figure 94. 1H NMR (400 MHz) and 13C NMR (100 MHz, bottom) spectraof poly (CLL-Eg-LLC-Oed)-4 
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Figure 95. 1H NMR (700 MHz, top) and 13C NMR (175 MHz, bottom) spectra of poly (LGL-Eg-LGL-Oed). 
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Figure 96. 1H (700 MHz, top) and 13C NMR (175 MHz, bottom) spectra of poly (LGL-Eg-LGL-Od) 
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Figure 97. 1H NMR (700 MHz, top) and 13C NMR (175 MHz, bottom) spectra of poly (LGL-Eg-LGL-Hed) 
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Figure 98. 1H NMR (700 MHz, top) and 13C NMR (175 MHz, bottom) spectra of poly (LGL-Eg-LGL-Hd). 
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A.4 SYNTHESIS AND PREPARATION OF SEQUENCED PLGA 

STEREOCOMPLEXES 
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Figure 99. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LG. 

 

O O

O

O n



 246 

 

 
Figure 100. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly LRG. 
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Figure 101. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LLG. These spectra were 
obtained from Stayshich et al.15,176 
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Figure 102. 1H NMR (600 MHz, top) 13C NMR (150 MHz, bottom) spectra of Poly LRLRG. 
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Figure 103. 1H NMR (300 MHz, top) 1H NMR (100 MHz, enhanced region bottom) spectra of Poly LLRG. See 
Stayshich et al. for high resolution spectra.15,162 
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Figure 104. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly GLLG. Prepared by Michael 
Washington. 
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Figure 105. 1H NMR (600 MHz, top) 13C NMR (150 MHz, bottom) spectra of Poly LRLRGG. 
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Figure 106. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly LLLG. Prepared by Michael 
Washington. 
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Figure 107. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LRLRLRG. 
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Figure 108. 1H NMR (400 MHz, top) 13C NMR (100 MHz, bottom) spectra of Poly LLLLG. Prepared by Michael 
Washington. 
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Figure 109. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LRLRLRLRG. 
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Figure 110. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LRLRGLLG. 
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Figure 111. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LRLRLRGLLLG. 
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Figure 112. 1H NMR (700 MHz, top) 13C NMR (175 MHz, bottom) spectra of Poly LRLRLRLRGLLLLG. 

 

O O

O

O

O
O O

O

O O O
O

O

O

O
O

n

O
O

O
O



 259 

A.4.1 SEC of polymers synthesized 

 

Figure 113. SEC (THF) of Poly LRLRG (black) and Poly LRLRLRG (red) calibrated to PS standards. 

 

Figure 114. SEC (THF) of Poly LRLRGLLG (black), Poly LRLRLRGLLLG (blue), and Poly LRLRLRLRGLLLLG 
(blue) calibrated to PS standards. 
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Figure 115. SEC (THF) of Poly LRG (black) and Poly LRLRGG calibrated to PS standards. 
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