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ABSTRACT 

Years of research and the development of effective therapeutic treatments, have 

dramatically improved the life expectancy rates for HIV-infected individuals. However, there is a 

subpopulation of aging, infected individuals who have experienced an adverse impact on their 

long-term health and quality of life, the mechanism of which has become an increasing concern 

of public health importance. The counteractive outcomes of aging within the infected population 

leaves many susceptible to developing age related morbidities in the form of cognitive 

impairment, brain atrophy, and other neurocognitive disorders at an earlier age then those within 

the non-infected population. These symptoms manifest in the form of HIV-associated 

Neurocognitive Disorder or HAND in infected individuals. Fully understanding the process in 

which HAND can occur has been a striving goal within the Public Health community. Our goal 

is to determine if there are specific genetic and/or microbial factors within individuals that may 

be contributing to their development of cognitive decline. All these efforts could provide 

comprehensive insight at an endophenotypic level into the pathological mechanism of HAND, 

and a better understanding of how diversity in the gut microbiome can affect health and aging. 

Subsequently, this information could lead to the identification of genetic biomarkers, 

development of treatments, and therapeutic options for regulating chronic HIV infection and 

neuropathology. We hypothesize that inherited SNPs in genes of the folate metabolism pathway 

affect the availability of methyl groups within the cell, and consequently influence DNA 
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methylation, leading to the development of HAND in seropositive individuals, and 

neurocognitive decline in seronegative individuals. We also hypothesize that there is an altered 

composition of the microbiome within the gut of infected individuals, the presence of which 

directs the level of HIV pathogenesis and HAND development. In comparing HIV+ and 

Cognitive Decline groups against control groups, we do not have sufficient evidence to conclude 

that there is an increased risk of adverse outcome in association with any of the folate genes that 

we observed. Isolation of bacterial genome produced expected PCR product, and data 

interpretation following 16S rRNA sequencing will soon yield definitive microbial composition 

analysis.  
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1.0  INTRODUCTION 

Since its initial discovery in the early 80’s, HIV has grown into a global epidemic that 

has affected around 78 million people and lead to over 39 million deaths.  Currently a little over 

35 million people are living with the disease (WHO, 2016). The high incidence of infection has 

led to increased efforts in HIV research; resulting in a better understanding of HIV pathogenesis 

and leading to the development of efficient drug treatments. All these efforts contributed to 

decreasing the incidence of new infections globally and transforming HIV infection into a 

chronic and manageable disease. Since its introduction in the 90’s, combined antiretroviral 

therapy (cART) has served as an effective therapeutic treatment for HIV, decreasing morbidity, 

mortality, and dramatically improving life expectancy. Current antiretroviral therapies work by 

suppressing viral replication and inhibiting disease progression. According to UNAIDS, 

antiretroviral therapy has contributed to the addition of 11.7 million years to infected individuals 

globally (UNAID, 2016). During the pre-cART era, individuals with advanced HIV prognosis 

along with severe immunosuppression developed a progressive subcortical dementia termed 

AIDS dementia complex or AIDS encephalopathy. But successful antiretroviral therapy has led 

to a dramatic decrease in the development of HIV-associated dementia within the infected 

population and reduced the risk of opportunistic infections in the central nervous system (CNS). 

Even with all this advancement in research and success in treatment; there is still a subpopulation 

of aging, infected individuals who have experienced a milder form of neurocognitive decline 
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with an adverse impact on their long-term health and quality of life even in the presence of active 

viral suppression, implying that HIV has neurocognitive effects on the brain and aging (Simoes 

& Justino, 2015). The counteractive outcomes of aging within the infected population leaves 

many susceptible to developing age related morbidities in the form of cognitive impairment, 

brain atrophy, and other neurocognitive disorders at an earlier age (before 60) then those within 

the non-infected population (Rickaboagh, 2015). The attributing cause of this phenomenon has 

yet to be definitively linked to either the long-term effects of antiviral treatment or chronic HIV 

infection.  

1.1 HIV-ASSOCIATED NEUROCOGNITVE DISORDER (HAND) 

1.1.1 Classification and Clinical Manifestation 

HIV-associated Neurocognitive Disorder or HAND is a major neurocognitive disorder 

that plagues long-term infected individuals {Clifford, 2013}, serving as the leading neurological 

complication caused by HIV-1 infection (Simoes & Justino, 2015). A variety of clinical 

symptoms manifest during the shifting stages of HIV infection: the neurological complications 

associated with HAND include cognitive, motor, and behavioral symptoms. The gravity of the 

the pathology, severity of symptoms, and impact on quality of life are used as measures to 

determine the type of HAND is affecting an individual. Using the classification system, Frascati 

criteria, HAND is broken down into the following subsets:  

1. Asymptomatic Neurocognitive Impairment (ANI): acquired cognitive impairment 

without any functional impairment 
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2. Mild Neurocognitive Disorder (MND): functional impairment with mild interference; 

enough to interfere with their working ability, cause reduced reasoning and ability to 

understand  

3. HIV Associated Dementia (HAD): functional impairment that interferes with daily 

functioning  

ANI and MND are the more prevalent forms of HAND and also the most difficult to 

define. Both conditions are defined by their level of functional impairment, however, due to 

limitations in testing and confounding factors, analysis is subjective and an exact diagnosis 

between the two disorders may be imprecise (Simoes & Justino, 2015).  

1.1.2 Pathogenesis  

HAND manifests when HIV spreads from the initial site of infection to the nervous 

system. The exact mechanism in which neuro-pathogenesis evolves into HAND has yet to be 

thoroughly identified; however, one commonly accepted theory is that HIV “traffics” into the 

CNS by hitchhiking on activated monocytes and lymphocytes, during the the early stages of 

exposure and infection (French, 2009). The systemic spread of HIV to the CNS leads to tissue 

damage and pathological changes in the basal ganglia, the deep white matter, and the 

hippocampus. Though systemic infection of HIV in the CNS and cerebral spinal fluid (CSF) 

occurs during early infection, not all occurrences of HIV infection in the brain leads to the 

development of HAND. Chronic CNS infection, persistent viral replication, inflammation, and 

neuronal injury and impairment have all been linked as risk factors in the pathogenesis of HAND 

(Simoes & Justino, 2015). 
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1.2 GENETIC EFFECTS ON PATHOGENESIS 

In a previous experiment monitoring DNA methylation changes in HIV positive men 

with cognitive decline; whole genome methylation profiles were completed on a group of men 

from a long term longitudinal study (Pitts men Study-PMS). The measurements used in this 

study, examined the extent of methylation changes in individuals between two time points that 

were 10 years apart. The authors found a distinctive perturbation of methylation in individuals 

with cognitive decline, both in seropositive men with HAND and in seronegative men with 

comparable cognitive decline. They also found that the seropositive samples with HAND were 

on average fifteen years younger than the seronegative men with comparable cognitive decline. 

The data suggest that there was a noticeable methylation response associated with the presence 

or absence of cognitive decline, suggesting that DNA methylation could serve as a biomarker for 

cognitive changes in both seropositive and seronegative individuals. Methylation changes were 

also monitored amongst seropositive and seronegative individuals who did not show cognitive 

decline, however there was no significant difference in methylation between them (Martinson, 

2015). 

 Recently, there has been other evidence linking DNA methylation to the development of 

HAND and studies have associated accelerated aging during HIV infection to site-specific 

changes in methylation patterns {Rickabaugh, 2015}. It is suggested that genetic variants may 

influence the host’s susceptibility and progression rate of neuropathogenesis {Kallianpur, 2014}. 

In a more recent paper by Gross et al; they found that chronically infected pateints exhibited 

increased methylation changes at age associated methylation sites and both recently and 

chronically infected pts, had an average age-acceleration of 4.9 years, suggesting that it is HIV 

infection and not the length of infection is assoicated with accelerated ageing. All of this suggest 
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that CpG DNA methylation in the blood correlates with accelerated ageing and can serve as a 

signature a epigenetic tool ( Gross, et al., 2016). 

 DNA methylation is an essential process that drives cell differentiation, healthy 

embryonic development, and gene regulation; reactions result in the addition of a methyl group 

to the cysteine nucleotide, altering gene expression and function (Bailey, 1999). Several genes 

are involved in the maintenance of methylation in cells, but vitamins like folic acid, are 

imperative for the synthesis of DNA. More specifically, Folate metabolism plays a significant 

role in the synthesis of S-adenosylmethionine (SAM), which is a methyl group donor in various 

methylation reactions, including the methylation of DNA {Nazki, 2014}. Additional 

polymorphisms have been characterized in other genes involved in folate metabolism, such as 

cystathionine beta-synthase (CBS), methionine synthase (MS), and methionine synthase 

reductase (MTRR), but their functional roles have not yet fully been characterized (Rajagopalan, 

et al., 2012).  

 Several pathways rely on folate metabolism to maintain its processes as depicted in 

Figure 1 Folate Metabolism Pathway, (Human Pathology , 2003) however deficiencies in 

folate modulation has attributed to the development of numerous diseases (depression/ dementia) 

and cellular dysfunction (DNA damage, compromising neuronal integrity). As stated previously; 

the presence of one enzyme in particular, S-adenosylmethionine (SAM), relies on the efficiency 

of folate metabolism. Folate deficiencies hinders S-adenosylmethionine’s ability to donate 

methyl groups to important biosynthetic reactions, impacting neuronal homeostasis, and 

increasing the risk for neuropathologies. Specifically, decreased levels of S-adenosylmethionine 

in the brain and in the cerebral spinal fluid have been discovered to be associated with 

Alzheimer’s disease, the most common form of dementia (Linnebank, et al., 2010). Deficiencies 
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in folate metabolism also leads to increased levels of circulating homocysteine; the presence of 

which has been associated with advanced aging, vascular risks, and cerebrovascular and 

neurodegenerative changes (Selley, 2007). 

 Folate metabolism is influenced by several factors including dietary intake of folic acid 

and polymorphisms of associated genes. Aberrant folate metabolism leads to abnormal 

distribution of methyl groups, reduced DNA stability, and consequent development of various 

diseases {Bailey, 1999}. Polymorphism within the genes involved in folate metabolism has been 

implicated in the development of a variety of metabolic and developmental disorders. The most 

well-known variant is the C677T mutation (rs1801133) in the methylenetetrahydrofolate 

reductase gene MTHFR, which causes an alanine-to-valine substitution in the MTHFR protein. 

The valine-containing variant is thermolabile and has reduced enzyme activity. This mutation 

has been implicated in the development of neural tube closure defects in pregnancy, and of 

cardiovascular disease later in life. Recently, it has also been found to be associated with mild 

cognitive impairment in two cohort studies (Rajagopalan, et al., 2012).  

 With what is understood, DNA methylation is used as a screening method for cancers, 

neurological disorders and age determination; however, it is not a defined method to monitor 

HAND development.  
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Figure 1 Folate Metabolism Pathway, (Human Pathology , 2003) 

 The preferred method of neurocognitive screening is MRI brain resonance imaging. 

MRIs are sensitive to identifying white matter and meningeal diseases (Cryan & Dinan, 2012); 

however, this technique isn’t useful in identifying early stages of inter-cranial opportunistic 

diseases in pre-symptomatic HIV patients. Early diagnosis leads to better prognosis, so this 

process is not an option to be used to identify early stages of HIV-associated neurological 

disorders, therefore another method needs to be identified.  

Studying genetic variation, such as single nucleotide polymorphisms (SNPs), in folate 

genes could begin a molecular investigation that could provide comprehensive insight at a 

genomic level to understand the causal mechanisms of HAND, and to aid in identifying specific 

markers and precursors to disease.  

Based on these findings we hypothesize that Mendelian inherited SNPs in genes of the 

folate metabolism pathway affect the availability of methyl groups within the cell, and 

consequently influence DNA methylation that leads to the development of HAND in seropositive 
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individuals, and of neurocognitive decline in seronegative individuals. We further hypothesize 

that these SNPs may serve as biomarkers of neurocognitive decline risk in these individuals.   

1.2.1 Specific Aim #1 

We investigated this hypothesis by identifying several candidate SNPs in genes 

implicated in folate metabolism, DNA methylation, and the development of cognitive decline, 

and determining their allele frequency distributions in HIV seropositive and seronegative 

individuals from the Pitt Men’s Study who exhibit symptoms of cognitive decline, matched with 

seropositive and seronegative controls who do not show these symptoms.  

1.3 HIV INFECTION AND NEUROPATHOLOGY 

HIV infection induces a systemic and progressive immunodeficiency that damages the 

mucosa, lymphoid tissues, and the brain. The damage results in neuropathological changes, 

immune dysfunction, and inflammation. During acute infection, HIV can cross the blood brain 

barrier through infected cells and infect the CNS. The virus continues to spread to other cells 

(microglia, astrocytes, etc.) (Nightingale, et al., 2014). In response to HIV in the CNS, 

monocytes become activated, inducing the release of proinflammatory cytokines and 

neurotoxins. Viral replication in the brain and responses to the infection cause neuronal damage 

that leads to impaired cognitive and motor ability, speech and behavioral changes, and memory 

dysfunction in infected individuals (Kallianpur, 2014). Even under the controlled regimen of 

antiretroviral therapy and inhibited viral replication; infected adults can still exhibit persistent 
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systemic inflammation due to latent reservoirs and a higher frequency of activated adaptive and 

innate immune cells {French, 2009}. Chronic inflammation is considered to affect the 

accelerated aging and morbidity seen within the infected population.  

1.3.1 Gut Microbiome and HIV Pathogenesis 

The gastrointestinal tract and its mucosal environment is heavily saturated with HIV 

target cells. During the systemic spread of HIV infection, the virus migrates through the Gut-

Associated Lymphoid Tissue (GALT) and infects CCR5+CD4 T cells. The subsequent loss of 

CD4 T cells in the gut reduces mucosal integrity and indirectly causes epithelial injury. The 

damage to the gut mucosa includes dysbiosis, microbial translocation, and loss of critical 

immune cells within the mucosa {Deeks, 2013}.  

1.3.1.1 Dysbiosis  

Under normal conditions the gut consists of commensal bacteria that aid in metabolizing 

nutrients in the food we eat. The normal enteric microbiota also supports healthy symbiosis and 

immune surveillance between microorganisms and the host (Sommer, 2014). Other properties of 

a healthy gut include protective mucosa, antimicrobial peptides, resident immune cells, and 

secreted antibodies. During infection, the increased release of proinflammatory and microbial 

products activates the IDO pathway, inhibiting the differentiation of TH17 cells and causing a 

shifting loss of IL-17 and IL-22 T cells {Deeks, 2013}. These immune cells are important for 

maintaining epithelial integrity in the gut; the loss of these cells impairs the guts antimicrobial 

properties and induces tissue damage. The depletion of these immune cells also results to an 

enhanced levels of bacterial species and increased microbial translocation.  
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1.3.1.2 Microbial Translocation  

Due to the enhanced loss of mucosal integrity and the breakdown of tight epithelial 

junctions, all other protective barriers within the gut mucosa become compromised creating an 

ideal environment for microbial translocation to occur. Proinflammatory products made up of 

bacteria and fungi and metabolites are systemically released into circulation and migrate to local 

tissue (Stilling, 2014). The microbial products enter the portal vein and then travel to the liver. 

The presence of the microbial pathogens are then sensed by antiviral immune cells in the liver; 

those same cells then activate the proinflammatory and profibrotic pathways resulting in chronic 

inflammation and liver dysfunction {Duffield, 2005}. Microbial translocation decreases immune 

surveillance, impairs lymphoid tissue function, and induces peripheral circulation of microbial 

products while also inhibiting clearance of these products. 

So what are the underlying causes of age related morbidities and neurocognitive disorders 

in HIV infected individuals? 

1.4 GUT MICROBIAL COMPOSITION AND HIV NEUROPATHOGENESIS  

The link between microbial composition and altered function in behavior and cognition 

has led to the development of the concept of microbiota-gut-brain axis {Stilling, 2014}. The gut 

microbiota influences the host’s behavior and CNS activity by decreasing synaptic connection 

and promoting pain and anxiety perception {Sommer, 2013}. Increased presence of 

inflammatory cells and intestinal dysbiosis interferes with microbiota-gut-brain signaling; 

effecting behavior, cognition, and emotion {Moloney, 2014}. This process is depicted in Figure 

2 Microbiota-Gut-Brain Axis (Cryan & Dinan, 2012). Understanding how diversity in the gut 
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microbiome can affect health and aging have led to the development of treatments and provided 

options for regulating chronic HIV infection and neuropathology Hypothesis: We hypothesize 

that there is an altered composition of the microbiome within the gut/stool of infected 

individuals, the presence of which directs/guides the level of HIV pathogenesis and HAND 

development.  

 

Figure 2 Microbiota-Gut-Brain Axis (Cryan & Dinan, 2012) 

1.4.1 Specific Aim #2 

We investigated this hypothesis by isolating microbial DNA from stool samples collected 

in the pre-cART era from men within the Pitt Men’s Study who later went on to become infected 

with HIV and develop HAND, and also from men who remained seronegative. The composition 

of these DNA samples will then be determined by 16S rRNA subunit sequencing. 
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2.0  RESEARCH DESIGN 

2.1.1 SNPs in genes involved in Folate Metabolism and DNA Methylation 

2.1.1.1 Subject Sampling 

DNA Samples: PBMC pellets were prepared from blood collected from male subjects 

enrolled in the Pitt Men’s Study, the Pittsburgh branch of the Multicenter AIDS Cohort Study 

(MACS).  The MACS is a multicenter (Baltimore, MD; Chicago, IL; Pittsburgh, PA; and Los 

Angeles, CA) ongoing prospective study, founded in 1984, of the natural and treated histories of 

HIV-1 infection in men who have sex with men.  Participants attend clinics bi-annually for a 

physical exam and sample collection, and complete extensive questionnaires about their medical 

history, behavior changes, and overall quality of life.  All samples were obtained from volunteer 

participants who had read and agreed to the consent policy implemented by the MACS for the 

protection of human subjects, and approved by the Institutional Review Board (IRB) at each 

MACS site. Study participants were separated into the following groups (n=86):  

• HIV-/Cognitive Decline- (n = 16) 

• HIV-/Cognitive Decline+ (n = 12) 

• HIV+/Cognitive Decline- (n = 26) 

• HIV+/Cognitive Decline+ (n = 26) 
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2.1.1.2 Extraction and Purification of Genomic DNA 

Genomic DNA was extracted from PBMC pellets using the QIAGEN® QIAamp DNA 

Blood Mini Kit, and following the manufacturer’s protocol. The process uses silica-membrane 

technology, to selectively purify DNA and filter samples through a fast spin column. This 

process was completed previous to my arrival to the lab. DNA was available at a concentration 

of 5 ug/mL for genetic analysis. 

2.1.1.3 SNP Selection 

Based on a review of the literature, nine single nucleotide polymorphisms (SNPs) in 

genes involved in folate uptake and metabolism were selected for analysis;  

• 5-methyltetrahydrofolate homocysteine methyltransferase [MTR]: rs1805087 

• Methionine synthase Reductase [MTRR]:  rs1801394 

• Methylenetetrahydrofolate Reductase [MTHFR]: rs1801133, rs1801131 

• Cystathionine beta-Synthase [CBS]: rs234706 

• Methylenetetrahydrofolate dehydrogenase 1 [MTHFD1]: rs2236225 

• Nuclear Factor, Erythroid 2-like 2 microRNA 3128 [MIR3128/NFEL2]: 

rs1806649 

• Glutathione S-transferase Omega 2/ MicroRNA 4482 [GST02/MIR4482-1]: 

rs4925 

• Transcobalamin II [TCN2]: rs1801198 

TaqMan® assays were obtained for each of these SNPs from Applied Biosystems (Foster 

City, CA).  
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2.1.1.4 TaqMan® SNP Genotyping Assays 

The assays were prepared using TaqMan Genotyping Master Mix (Applied Biosystems) 

and the SNP assays previously listed (Table 14. TaqMan SNP Genotyping Assay List) 

(Applied Biosystems). The reaction mix was prepared for each reaction using the following: 5.00 

ul of 2X TaqMan® Master mix, 0.15 ul of 20X working stock of Genotype Assay, and 4.85 ul of 

Nuclease-Free water. 10 ul of master mix and 1 ul of genomic DNA at a concentration of 

5ug/mL, was placed into each respective well. Plate was then vortexed and spun before being 

placed into a Life Technologies StepOne Plus Real-Time PCR system.  

Table 1. Real-Time PCR/QPCR 

 Per Sample Total 

Genotype Master Mix (TaqMan) 5.0ul 500ul 

MTHFR Primer Probe .15ul 15ul 

DiH20 4.85 485ul 

DNA sample (5ug/ml) 1ul  

 

2.1.1.5 PCR Plate Read and Analysis 

Raw fluorescent data was collected at the end of each cycle of the PCR process. Allele 

specific TaqMan probes with linked reporter dyes FAM™/SYBR® Green, VIC®/JOE™ 

detected alleles specific to the polymorphism of interest. ROX™ dye was included as a passive 

reference.  

The StepOne™ Software v2.1 was used to determine the location and intensity of the 

fluorescent signals in each read, the dye associated with each fluorescent signal, and the 
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significance of the signal. The raw data was then graphed into a scatter plot using Microsoft 

Excel. 

 

 

 
Figure 3 Allelic Discrimination Plot (Victor, 2015) 

2.1.1.6 PCR Amplification of Genomic DNA 

DNA was selectively amplified via touchdown PCR. All PCR preparations were 

completed on ice, gently mixed, quickly spun, and then placed in Mastercycler® Gradient 

(Eppendorf) to complete the following program: Initial denaturation at 95°C for 2 minutes, 

followed by cycles consisting of denaturation at 95°C for 30 seconds, annealing at 61°C for 30 

seconds, and elongation at 72°C for 1 minute. These cycles were repeated another 13 times with 

an decrementing annealing temperature of 0.05°C per cycle. The samples were then denatured at 
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95°C for 30 seconds, annealed at 57°C for 30 seconds, and elongated at 72°C for 1 minute, for a 

further 22 cycles.  

  

Table 2. PCR Master mix 

 

MATERIALS PER SAMPLE 

5 ug/ml of DNA sample (previously diluted) 2 ul 

10x Buffer 2.5 ul 

25 mM MgCl2 1.5 ul 

25 mM dNTPs 0.2 ul 

10 mM Primers 0.4 ul 

Taq Polymerase 0.2 ul 

DiH2O 18.2 ul 

TOTAL  25 ul 

 

DNA yields were confirmed using gel electrophoresis. 

2.1.1.7 Sanger Sequencing 

Due to its poor separation of genotyping clusters on the TaqMan assay, we performed a 

Sanger Sequencing protocol on one of the SNPs in our profile (rs1801133-MTHFR C677T). The 

protocol was executed in the following order, on the PCR product prepared as described in the 

previous section: 
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1. Alkaline Phosphatase/Exonuclease I Digestion: This process removed any excess 

primers or dNTPs within our DNA template. A master mix of the following contents were 

prepared on ice: 

Table 3. Exo-SAP Master Mix 

Materials Volume Per 

Well 

Total in 

Master mix 

rAPid Alkaline Phosphatase (10 U/ul) 1 ul 100 ul 

rAPid Alkaline Phosphatase Buffer or 10x SAP 

Buffer 

1 ul 100 ul 

Exonuclease I (20U/ul) 0.05 ul 5 ul 

Sterile Water 7.95 ul 795 ul 

Total 10 ul - 

 

In each respective well, 10 ul of the PCR product and 10 ul of the master mix were added 

into the 96 Well .2mL PCR plate (GeneMate®), resulting in a total volume of 20 ul in each well. 

The PCR plate was then processed under the following Exo-SAPed conditions of 35°C for 45 

minutes (Incubation) followed by 85°C for 15 minutes (Heat-kill). 
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2. Sequencing  

 

Table 4. Sanger Sequencing Master Mix 

Materials Volume Per Well Total in Master mix 

1 uM Sequencing Primer 2.5 ul 250 ul 

5x BigDye Dilution Buffer 2 ul 200 ul 

BigDye Mix 0.5 ul 50 ul 

Total  5 ul  

A master mix of the above contents were prepared on ice. 5 ul of the Exo-SAPed 

processed DNA and 5 ul of the above master mix were placed into each respective well in the 96 

well plate, resulting in a total of 10 ul in each well. The plate was then placed under the 

following cycling conditions; incubation at 96°C for 3 minutes, followed by 96°C for 10 

seconds, 50°C for 5 seconds, and 60°C for 4 minutes. The last three steps were repeated for 24 

more cycles. 

3. Sequencing Cleanup  

Table 5. Sequencing Clean-up Contents 

Materials Volume Per Test 

Sequenced DNA 10 ul (already in the plate) 

125 mM EDTA 5 ul 

Absolute Ethanol 60 ul 

Total  75 ul 

 

The above contents were added to each well separately. The plates were sealed, inverted 

several times, and incubated in the dark for 15 minutes at room temperature. The plate was then 
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spun at 2500 g for  30 minutes at 4°C. Once spun, the plate was unsealed, covered with a folded 

paper towel, inverted and spun to up to 185g. 60 ul of 70% ethanol was then added to each well 

and the plate was resealed, and spun at 1650 g for 15 minutes at 4°C. Afterwards, the plate 

unsealed once again, covered with a folded paper towel, inverted and spun to up to 185g.The 

plate was then left at room temperature, unsealed for 20 minutes to air dry. The plate was 

wrapped in aluminum foil and transported to the core lab for further processing. 

2.1.1.8 Statistical Analysis 

All statistical analysis was performed using the following analysis software: Microsoft 

Excel, GraphPad Prism 6, and STATA Special Edition 14.0. To assess the relationships between 

the variables, data was separated and compared into the following populations for each SNP:  

1. HIV+ vs. HIV- 

2. HIV+ with cognitive decline vs. HIV- with cognitive decline 

3. HIV+ without cognitive decline vs. HIV- without cognitive decline 

4. Cognitive decline vs. without cognitive decline 

The degree of variation between each population was summarized graphically (Prism) 

and detailed in tables (Excel). Two sample binomial inference was concluded using odds ratio, 

risk ratio, and relative risk as statistical summaries; and p-value was determined using 2-sided 

Fisher’s exact test, statistical significance was set at p < 0.05 (STATA). 
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2.1.2 Microbial Composition 

2.1.2.1 Sample Collection  

All stool samples were collected from previously registered MACS study subjects by 

outreach workers. The outreach workers meet up with subjects at a variety of community 

locations in the Pittsburgh area between April 1984- March 1985. Stool samples collected during 

this timeframe were stored at -20C prior to processing in 2016. Table 13. List of Subject for 

Stool Samples 

2.1.2.2 DNA Extraction 

DNA was purified and isolated using the MO BIO Laboratories, Inc. PowerFecal® DNA 

Isolation kit. The process involved 7 steps: preparation, cell lysis, inhibitor removal, DNA 

binding, washing, and eluting. 

Preparation: A maximum amount of 0.25 grams of stool from each sample were placed 

into dry bead tubes along with 750 ul of Bead solution. The contents were gently vortexed to 

disband and separate stool particles. 60 ul of solution C1, a detergent containing disruption 

agents; was added to the tubes, manually mixed, and heat incubated for 10 minutes at 65C. This 

process prepares the samples for cell lysis by increasing the reaction rate between the lysis buffer 

and the sample products/ microbial cells. The tubes were then securely placed horizontally on the 

MO BIO Vortex Adapter and vortexed at maximum speed for 10 minutes. Samples were spun in 

a tube centrifuge for 1 minute at 13,000x g. 

Cell Lysis and Inhibitor Removal: Supernatants from the dry bead tubes were transferred 

into clean 2 mL collection tubes. 250 ul of Inhibitor Removal Technology® or Solution C2 was 

placed into each tube. C2 solution removes inhibitory substances (cellular debris, 
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polysaccharides, etc.) from the stool samples that may interfere with downstream DNA 

applications amplification and sequencing processing. Tubes were spun at 13,000 x g for 1 

minute. 600 ul of supernatant was transferred to a clean 2ml collection tube. 200 ul of solution 

C3 was added to each tube, briefly vortexed, then incubated at 4C for 5 minutes. Samples are 

then spun at 13,000 x g for 1 minute. 750 ul of the supernatant were transferred into clean 2 ml 

collection tubes. 

DNA Binding: 1200 ul of solution 4, a high concentration salt solution that allows DNA 

to bind; was placed into each tube, then vortexed for 5 minutes. 650 ul of supernatant was then 

placed into Spin filter tubes, spun for 1 minute at 13,000x g. Flow through was discarded and the 

method was repeated until all supernatant underwent this process (a total of three time). The high 

salt solution allows for the DNA to bind to the silica filter device. Where DNA binds to the filter, 

contaminants pass through. 

Washing: 500 ul of solution C5, an ethanol based wash solution; were placed into each to 

thoroughly clean bound DNA on the silica filter. Contents were spun for 1 minute at 13,000 x g 

and the flow through was discarded. Samples were spun again for 1 minute at 13,000 x g, 

allowing for the removal of excess wash solution.  

Eluting: The spin filters were then transferred into clean 2ml collection tubes and 100 ul 

of solution C6, a sterile elution buffer; were directly added to the filter membrane. Tubes were 

spun at 13,000 x g for 1 minute and the spin filter basket discarded. Extracted DNA were stored 

at -20C until PCR amplification and 16s RNA sequencing were performed. DNA yields were 

monitored via gel electrophoresis. 
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2.1.2.3 Selection of Primers 

Two forward and reverse 16S rDNA primers were chosen based on previous literature 

evaluations (Klindworth, 2013; Nossa, 2010). The following primers Klindworth-2013-341F, 

5’CCT ACG GGN GGC WGC AG-3 and Klindworth-2013-785R 5’ GAC TAC HVG GGT 

ATC TAA TCC-3; and Nossa-2010-803R 5’ CTA CCR GGG TAT CTA ATC C-3 and Nossa-

2010-347F GGA GGC AGC AGT RRG GAA T-3 were used in the PCR conditions as described 

in Table 15. PCR Primers. These primers include degenerate bases at many positions, in order 

to provide primers that will amplify the 16S region in as broad a range of bacterial taxa as 

possible.  

2.1.2.4 Amplification 

DNA samples underwent PCR processing to confirm the presence of bacterial genomic 

DNA. All PCR preparations were completed on ice, gently mixed, quickly spun, and then placed 

in Mastercycler® Gradient (Eppendorf) to complete the following program: Initial denaturation 

was set for 95°C for 5 minutes, followed by 25 cycles of denaturation at 95°C for 40 seconds, 

annealing at 55°C for 2 minutes, and at 72°C for 1 minute. This was followed by a final 

elongation at 72°C for 7 minutes. 
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Table 6. PCR Material 

MATERIALS PER SAMPLE 

5 ug/ml of DNA sample (previously diluted) 2 ul 

10x Buffer 2.5 ul 

25 mM MgCl2 1.5 ul 

25 mM dNTPs 0.2 ul 

10 mM Primers 0.4 ul 

Taq Polymerase 0.2 ul 

BSA 1.25 ul 

DiH2O 18.2 ul 

TOTAL  25 ul 

 

2.1.2.5 Gel Electrophoresis 

DNA yields were confirmed via agarose gel electrophoresis. All PCR products were 

placed into a 2% gel that was prepared in a mixture consisting of 2 grams of GenePure LE Quick 

Dissolve Agarose powder (500g-ISC BioExpress) and 100ml of 0.5x TBE buffer. The mix was 

placed into a microwave and heated for a maximum of 3 minutes; this allowed the the agarose to 

thoroughly dissolve within the buffer. 10 ul of fluorescent dye (10,000x in water- Phenix 

Research GelRed) was placed into the gel solution. The gel solution was then placed aside to 

cool, then poured into a cast with pre-set combs and allowed to set into a gel. Once set, the gel 

was placed into the Gel XL Ultra V-2 electrophoresis tank (Labnet International, Inc.). The gel 

was completely submersed within 0.5x TBE buffer. The samples were then prepared for loading 

with the following 1:10 concentration: 
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Table 7. Agarose Gel 

 Amount per Sample 

10X LOADING DYE (w/ xylene cyanol and bromophenol blue) 1 ul 

DNA SAMPLE (PCR Product) 2 ul 

DIONIZED WATER 7 ul 

The mixture was vortexed and spun. 5 ul of the above mix was placed into each 

respective well; one well was designated for the ladder PHIX174 DNA/HaeIII Digest Marker 

(50ng/ul- Thermo Scientific). The gel electrophoresis was set for 30 minutes at a voltage of 

100v.  

Analysis of the PCR products in the stained DNA gel were visualized and captured on a 

UV transilluminator, RedTM Imaging System (Alpha Innotech). 
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3.0  RESULTS 

3.1 SNPS INVOLVED IN FOLATE METABOLISM AND DNA METHYLATION 

 The raw data from the allelic discrimination analysis was converted into frequency tables 

using Microsoft Excel and that data was then plugged into the GraphPad Prism 6 software to 

generate the following graphs. Each SNP was analyzed for its association to cognitive decline 

and compared within the following groups: 

• HIV- individuals vs. HIV+ individuals 

• HIV- individuals with Cognitive Decline vs. HIV+ individuals with Cognitive Decline 

• HIV- individuals without Cognitive Decline vs. HIV+ individuals without Cognitive 

Decline  

• Individuals with Cognitive Decline vs. Individuals without Cognitive Decline 
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3.1.1 Allelic Discrimination  

 The data underwent an auto-scaling process in which genotyping software automatically 

determined the results of the assay. Allele specific TaqMan probes with linked reporter dyes, 

FAM™/SYBR® Green linked to allele 2, and VIC®/JOE™ linked to allele 1; detected alleles 

specific to the polymorphism of interest.  The data was generated into allele discriminating plots 

for each SNP. 

 

 

Figure 4. Allelic Discrimination of SNP rs4925- GST02/MIR4482-1 

 

 Majority of the raw data measuring location and intensity of each signal, were able to 

form 3 distinct clusters. However, for one SNP gene, rs1801133; the cluster formation was less 

distinct resulting in a muddled allelic discrimination plot that prove to be difficult to delineate 

any cluster groups.   
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 We proceeded with Sanger Sequencing to further define the allele pairing sequences at a 

nucleotide baes level, which allowed use to confirm the genotypes and generate the following 

graph. 

 
Figure 5 Allele Discrimination Plot rs1801133- MTHFR 

 
 In conclusion, there was no significant difference in grouping between the groups; 

however majority of the genes in our assay panel were able to form three distinct cluster groups 

of allelic variants in homozygous and heterozygous form. To further asses the results of our data, 

allele frequencies and associated risk summaries were graphed and calculated to further delineate 

any association to HIV infection and cognitive decline in each group for each SNP.  
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3.1.2 Risk Association 

Figure 6. Frequency of SNP alleles in HIV+ individuals versus HIV- individuals absent of cognitive condition 
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Table 8. SNP Association Results: HIV+ versus HIV- 

SNPs Minor Allele MAF (HIV+) MAF (HIV-) OR (95% CI) P-value 

rs234706 A 0.38 0.27 1.58 (.795-3.15) 0.2150 

rs1801131 G 0.55 0.20 0.962 (.495-1.87) 1.000 

rs1801133 A 0.34 0.18 1.09 (.518-2.31) 0.8497 

rs1801394 G 0.51 0.29 1.17 (.602-2.28) 0.734 

rs2236225 C 0.55 0.27 .917 (.466-1.80) 0.865 

rs1806649 T 0.29 0.18 1.30 (.607-2.77) 0.5579 

rs1801198 C 0.50 0.28 1.14 (.582-2.22) 0.7345 

rs4925 A 0.33 0.18 1.10 (.520-2.32) 0.8495 

Abbreviations: SNPs = Single Nucleotide Polymorphisms, MAF = Minor Allele Frequency in 
cases and controls, OR = Odds Ratio. Cases are subjects who are HIV+ at time of collection, 

controls are subjects who are HIV- at the time of collection. 
 

Table 8 depicts the statistical characteristics of single-nucleotide polymorphisms in folate 

genes amongst HIV+ (cases) and HIV- (control) subjects. We began by comparing the Minor 

Allele Frequencies (MAF) for the total case and control populations from each SNP and 

determined their risk of association to cognitive decline. In the graphical description, there is an 

equal distribution of data between each group within the HIV+ and HIV- population. For both 

populations (HIV+/HIV-) there is a higher frequency of major alleles being expressed and an 

equally lower amount of minor allele frequency being expressed between each group. There is 

one exception in the CBS gene (rs234706), the HIV- population seems to express a slightly 

higher frequency than the HIV+ population, however the frequency is not greater than the 
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expression level of major allele frequencies. Six out of eight SNPs expressed an Odds Ratio 

(OR) >1: (rs234706, rs1801133, rs1801394, rs1806649, rs1801198, rs4925); suggesting that for 

these genes, an individual expressing minor alleles are more at risk of the adverse outcome of 

cognitive decline. Two SNPs expressed OR < 1: (rs1801131 and rs2236225), suggesting that an 

individual expressing the minor alleles for these genes (MTHFR, MTHFD1) are at less risk of 

cognitive decline. However, all SNPs comparing HIV+ vs. HIV- groups expressed p-values > 

0.05; concluding that none of the associations were statistically significant. 
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Figure 7. SNP Allele Frequency distributions in HIV- individuals with Cognitive Decline versus HIV+ 

individuals with Cognitive Decline 
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Table 9. SNP Association Results: HIV+ versus HIV- with Cognitive Decline 

SNPs Minor Allele MAF (HIV+/CD) MAF (HIV-/CD) OR (95% CI) P-value 

rs234706 A 0.30 0.45 1.98 (.713-5.59) 0.1969 

rs1801131 G 0.35 0.36 1.05 (.372-2.98) 1.000 

rs1801133 A 0.26 0.32 0.667 (.214-2.07) 0.577 

rs1801394 G 0.39 0.41 1.088 (.393-3.01) 1.00 

rs2236225 C 0.48 0.27 0.403 (.139-1.178) 0.126 

rs1806649 T 0.17 0.23 1.47 (.429-5.04) 0.5308 

rs1801198 C 0.43 0.32 0.629 (.220-1.797) 0.4456 

rs4925 A 0.28 0.32 1.21 (.411-3.584) 0.7834 

Abbreviations: SNPs = Single Nucleotide Polymorphisms, MAF = Minor Allele Frequency in cases 
and controls, OR = Odds Ratio, CD = Cognitive Decline. Cases are subjects who are HIV+ at time of 
collection, controls are subjects who are HIV- at the time of collection, both groups exhibit cognitive 

decline. 
 

 Table 9 depicts the statistical characteristics of SNPs in folate genes amongst the HIV+ 

with Cognitive Decline and the HIV- with Cognitive Decline. To further delineate if there is an 

association amongst the HIV+ and HIV- populations, we sought to compare the two groups with 

the condition of Cognitive Decline. There is more variation of data distribution within these 

groups. In the following SNPs: rs1801131, rs1801394, rs1806649, and rs4925; the distribution of 

data is similar to what was seen in the previous graphs. There is equal distribution of minor and 

major alleles between the two groups were there is greater expression of the major allele within 

these SNPs. rs2234225 and rs1801198 graphically show a distribution pattern of a higher 

frequency of minor alleles being expressed in HIV+ population and a higher frequency of major 



33 

alleles being expressed in HIV- population.  For the SNPs rs234706 and rs1801133, majority of 

the HIV+ population is expressed a higher frequency of the major alleles and the HIV- 

population expressed slightly higher frequency of the minor allele. Five out of eight SNPs 

expressed an OR > 1: (rs234706, rs1801131, 1801394, 180649, rs4925); suggesting that for 

those genes, individuals expressing the minor alleles are at higher risk of cognitive decline than 

those expressing the major alleles. Three SNPs expressed OR < 1: (rs1801133, rs2236225, 

1801198), suggesting that in relation to those genes, individuals expressing the minor alleles are 

at less risk of cognitive decline. However, all SNPs comparing HIV+ with Cognitive Decline vs. 

HIV- with Cognitive Decline expressed p-values > 0.05; concluding that none of the associations 

were statistically significant. 
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Figure 8. SNP Allele Frequencies of HIV- individuals without Cognitive Decline versus HIV+ individuals 

without Cognitive Decline 



35 

 

Table 10. SNP Association Results: HIV+ versus HIV- without Cognitive Decline 

SNPs Minor Allele MAF (HIV+/No CD) MAF (HIV-/No CD) OR (95% CI) P-value 

rs234706 A 0.28 0.33 1.384 (.531-3.60) 0.6265 

rs1801131 G 0.50 0.22 1 (1-1) 1.000 

rs1801133 A 0.26 0.22 .944 (.333-2.68) 1.000 

rs1801394 G 0.39 0.42 1.228 (.497-3.03) 0.8186 

rs2236225 C 0.35 0.44 1.75 (.691-4.429) 0.2505 

rs1806649 T 0.28 0.28 1.058 (.395-2.83) 1.00 

rs1801198 C 0.33 0.44 1.837 (.736-4.58) 0.247 

rs4925 A 0.22 0.22 1.108 (/383-3.21) 1.000 

Abbreviations: SNPs = Single Nucleotide Polymorphisms, MAF = Minor Allele Frequency in cases and 
controls, OR = Odds Ratio, CD = Cognitive Decline. Cases are subjects who are HIV+ at time of collection, 

controls are subjects who are HIV- at the time of collection, neither groups exhibit cognitive decline. 
 

 Table 10 depicts the statistical characteristics of folate genes amongst the HIV+ without 

Cognitive Decline and the HIV- without Cognitive Decline. SNPs rs1806649, rs4925, 

rs1801133, and rs1801394 show an equal distribution of major and minor alleles amongst the 

HIV+ and the HIV- population where there expressing higher frequencies of the major alleles. 

rs234706, rs2236225, and rs1801198 are expressing higher frequencies of major alleles in the 

HIV+ population versus a slightly higher frequency of minor alleles in the HIV- population.  

Rs1801131 is expressing a unique variation of distribution where the HIV+ population is 

expressing a higher frequency of minor alleles versus a higher frequency of major alleles in the 

HIV- population. Six out of eight SNPs expressed an OR > 1: (rs2347, rs1801394, rs2236225, 

rs1806649, 1801198, rs4925); suggesting that for those genes, individuals expressing minor 
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alleles are more at risk of cognitive decline. One SNP expressed OR < 1: (1801133), suggesting 

that in relation to those genes, individuals expressing minor alleles are at less risk of cognitive 

decline. However, One SNP had an OR equal to 1: (rs1801131), suggesting that there is no 

significant difference between the two groups. However, all SNPs comparing HIV+ without 

Cognitive Decline vs. HIV- without Cognitive Decline expressed p-values > 0.05; concluding 

that none of the associations were statistically significant.  
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Figure 9. Frequency of SNP Alleles in individuals with Cognitive Decline versus No Cognitive Decline  
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Table 11. Single SNP Association Results: Cognitive Decline versus No Cognitive Decline 

 

Table 11 depicts the statistical characteristics of folate genes amongst the Cognitive 

Decline group and the group Without Cognitive Decline. For majority of the SNPs compared 

within this group, the distribution pattern is similar between the groups (cognitive decline vs. 

without cognitive decline) though the levels vary between the SNPS.  Both groups are expressing 

higher allele frequencies of the major alleles. In SNP rs1806649, the population without 

cognitive decline is expressing a slightly higher frequency of minor alleles than the population 

with cognitive decline, but overall the major allele frequencies are expressed at a higher level. In 

the SNP rs4925, the reverse is seen, the population with cognitive decline is expressing a slightly 

higher level of major alleles than the population without cognitive decline, but overall the the 

SNPs Minor Allele MAF-CD MAF-No CD OR (95% CI) P-value 

rs234706 A 0.34 0.30 .874 (447-1.71) 0.7347 

rs1801131 G 0.36 0.38 1.81 (.948-3.48) 0.1008 

rs1801133 A 0.28 0.24 .903 (.440-1.85) 0.8560 

rs1801394 G 0.39 0.40 1.08 (.556-2.05) 0.8711 

rs2236225 C 0.42 0.39 1 (-) 1.000 

rs1806649 T 0.18 0.28 1.79 (.842-3.79) 0.1376 

rs1801198 C 0.39 0.38 .702 (.372-1.32) 0.3348 

rs4925 A 0.29 0.22 .712 (.346-1.47) 0.3667 

Abbreviations: SNPs = Single Nucleotide Polymorphisms, MAF = Minor Allele Frequency in 
cases and controls, OR = Odds Ratio, CD = Cognitive Decline. Cases are subjects who 
experience cognitive decline, controls are subjects who do not exhibit cognitive decline. 
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major allele frequencies are expressed at a higher level. Three out of eight SNPs expressed an 

OR >1: (rs1801131, rs1801394, rs1806649); suggesting that for those genes, individuals 

expressing minor alleles are more at risk of becoming HIV+ or developing cognitive decline. 

Four SNPs expressed OR < 1: (rs2347006, rs1801133, rs1801198, rs9425), suggesting that in 

relation to those genes, individuals expressing minor alleles are less at risk of becoming HIV+ or 

developing cognitive decline. However, One SNP had an OR equal to 1: (rs223225), suggesting 

that there is no significant difference between the two groups. However, all SNPs comparing 

Cognitive Decline vs. No Cognitive Decline groups expressed p-values > 0.05; concluding that 

none of the associations were statistically significant. 

 In conclusion, we do not reject that null hypothesis of the odds ratio equaling 1 for the 

following comparisons: HIV- vs HIV+; HIV+ with cognitive vs HIV-  with cognitive decline; 

HIV+ without cognitive decline vs HIV-  without cognitive decline; and cognitive decline vs no 

cognitive decline regardless of serostatus, based on the two-sided Fischer’s exact test at level 

0.05. We have do not have sufficient evidence to conclude that for the following genes: (CBS, 

MTHFR, MTRR/FASTKD3, MIR3128/NFEE2L2, TCN2/PES1, GST02/MIR4482-1, MTHFD1), 

germline genetic polymorphisms are associated with risk of either being HIV+ or developing 

cognitive decline (Rosner, 2011). 
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3.2 MICROBIAL COMPOSITION 

Figure 10. DNA Ladder Map (Scientific, 2016) 

 

Figure 11 Gel Electrophoresis of Isolated Stool DNA 
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 Figure 9: Results of PCR product. Gel electrophoresis was conducted on amplified DNA 

samples to ensure the presence of bacterial genomic DNA. The primers used are predicted to 

give a PCR product with an estimated size of 444 bp, which can be seen in the above gel 

electrophoresis image, suggesting that the archival fecal samples we processed retain 

microbiome genetic material that is suitable for 16S RNA sequencing analysis. 
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4.0  DISCUSSION 

HAND and its neuropathological conditions that attribute to neurocognitive decline and 

accelerated aging remain to be imminent ailments that afflict long term infected individuals. The 

limitations and subjectivity within the current methods of analysis leaves much margin for error 

impacting diagnosis, treatment, and therapy; all of which aids in the morbidity and decreased 

quality of life seen within these infected individuals. DNA methylation has so many implications 

in healthy development and cellular growth; and aberrations in the pathways that mediate DNA 

methylation also heavily impact disease development and cellular dysfunction. Identifying 

biomarkers associated with cognitive decline could subsidize the burden of disease within the 

infected population and also assist in early diagnosis for those genetically predisposed within the 

uninfected population. 

The gut microbiota facilitates so many facets within an organism; digestion, priming of 

the immune system, maintaining immune function, and symbiosis. All efforts influence the 

host’s behavior and the CNS activity. Alterations to that environment leads to dysfunction and 

other systemic immunodeficiencies. Accepting that the gut microbiota is an important facet in 

immunity and health makes it all the more imperative to understanding how diversity in the gut 

microbiome can affect health and aging. Identifying microbial factors could provide better 

options for regulating chronic HIV infection and neuropathology. The overall goal is to gain 

better insight of the underlying causes of age related morbidities and neurocognitive disorders to 
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aid in early diagnosis, provide a more refine form of treatment, and to grasp a better 

understanding of the mechanisms in which neurocognitive decline is occurring. This was the 

purpose of all our efforts in which we sought to identify key factors by monitoring genetically 

inherited single nucleotide polymorphisms of folate genes and compositional alterations in the 

microbiota of individuals.  

In our first project monitoring SNPs involved in folate metabolism and DNA 

methylation; we compared the following sample groups: HIV-/cognitive decline-, HIV-/cognitive 

decline+, HIV+/HAND-, HIV+/HAND+. We did not see any significant associations of single 

nucleotide polymorphisms and the occurrence of cognitive decline. Though the data did not 

produce any significant inference, the variable distribution seen within the graphs of certain 

SNPs suggests that there could be some minor differences between populations (HIV+/: 

rs1801131, rs1801394, rs1801133, rs2236225, rs1806649, rs1801198, rs4925; HIV+/- w/ 

cognitive decline: rs234706, rs2236225, rs1801198; and HIV+/- No CD: rs1801131). Under the 

null hypothesis, there is no association to cognitive decline in relation to polymorphism in the 

folate genes amongst the various groups we observed. Based on our statistical summary, we were 

not able to reject the null hypothesis. Unfortunately, our sample size (86 subjects) may not have 

been large enough to notice any significant differences. Increasing the sample size within each 

group would increase the power of our test, decrease variations, and narrow the confidence 

interval; all of which provide more precise information about the parameter. Power is a statistical 

measure that asses a tests ability to accurately detect a result, if the result did in fact occur. 

Power, also referred to as sensitivity, allows us to compare the probabilities of success within the 

two populations we are are observing and is heavily influenced by effect size (Rosner, 2011). 
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Now when the sample size increases the power increases and that then decreases the chance of 

the test picking up false negatives or type II error. 

Future directions would include looking at other genes associated with the regulation of 

the complement cascade, clearance of immune complexes, and immune response. But even if we 

decided to look at these candidate genes that have been shown to contribute to a form of 

dementia, our current sample size would not allow us to infer any significant association between 

the groups. Another hurdle would be attaining subjects of a certain group. Acquiring more 

subjects for the HIV+/ HAND+ group would be difficult, as these subjects make up a small 

portion of the infected population.  

As shown previously in the results, we were able to determine that there was bacterial 

DNA within the samples that we processed. The samples have been sent to the University of 

Pittsburgh Genome Research Core to undergo 16S RNA characterization by amplicon 

sequencing on the Ion Torrent platform (Life Technologies). Once the samples are sent off to the 

core, they begin profiling the bacterial 16S rRNA in the sample. This is done through the use of 

primers designed to amplify hypervariable regions in the bacterial 16S rRNA gene. A multiplex 

PCR will target these regions and produce amplicon products of varying size. Those amplicon 

products are then used to create libraries and templates. The samples are sequenced through an 

Ion PGM semiconductor sequencer. This is a next generation process that detects released 

hydrogen ions during DNA synthesis and converts the data into a digital signal (Scientific, 

ThermoFisher, 2016). Once complete a bioinformatic software will automatically upload the 

output data and classify the reads using 1 of 3 reference libraries. This process allows us to 

identify the complex microbial composition within each stool sample and differentiate what is 



45 

observed by taxonomy and phylogeny. At the time in which this thesis was written, we have not 

received the output data report.  

Once we receive the data we can use various diversity indexes to measures the level of 

species variation within the gut of our sample subjects. The Shannon entropy and Simpson 

diversity index would allow us to determine the species richness within the gut (alpha diversity) 

and determine the extent in which certain species were gained or lost within the gut as well (beta 

diversity). Richness is defined as the amount of species found within the site that are genetically 

related and evenness measure the abundance of species in proportion to the richness of a species 

within the site (University of Idaho, 2009). 

Some possible confounding factors that may affect what we do see within in our samples 

is the process in which the samples were collected and the amount of time the samples spent in 

storage. As stated previously, the samples were collected in a variety of community locations, 

some of which were non-clinical settings. The process in which the stool samples were collected 

may have introduced some environmental contamination that may skew the biodiversity results 

that we might find. Also the stool samples were collected well over 30 years ago; this introduces 

several different extraneous circumstances that may impact our data results. Years in the freezer 

may have caused some deterioration to occur, degrading certain species of bacteria that could not 

withstand the long term conditions of storage while others remained intact for years. This 

random process compromises the integrity of the samples in a way that leads to bias produced 

results. It is for this reason we checked for DNA products prior to shipping off our samples to the 

core lab in an effort to compensate for degradation and any compromise that may have occurred 

throughout the years in storage. 
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The normal gut microbiome is made up of enterotypes including the following species: 

Bacteriodes, Prevotella, and Ruminococcus. These species work together to maintain 

homeostasis and symobiosis within the gut envrionment. However during HIV infection, a series 

of alterations in the compsition and other facets occur. In a study conducted by Zevin et a, 

(2016); they determine which microorgnaisim were enriched while others decreased in HIV 

infected individuals. The following set of bacteria increased in compositon in HIV infected 

indiduals: Provotella, Pseudomonas, Desulfovibrio, Acinoetobacter. Campylobacter, 

Escherichia, Ruminococcus. While the following set of bacteria depleted with the microbiome in 

HIV infected individual:  Bacteroides, Lactobacillus, Bifidobacterium, Eubacterium, 

Coprococcus, Blautia, Ruminococcus (Zevin, McKinnon, Burgerner, & Klatt, 2016). For certain 

diet and the condition of the immune system “structures” the gut microbiota. HIV is known to 

negatively impact the cellular and molecular processes of both the innate and adaptive immune 

system. Both these systems are essential in shaping the composition of the intestinal bacteria; the 

difference in microbial composition may impact how the immune system responds to HIV and 

other infections. So gaining a better perspective on these factors could help facilitate treatment 

for gut-associated diseases and its effect on HIV pathogenesis.  

With all the progress made in research and treatment development HIV has transformed 

into a chronic disease in which quality of life could be stable if active on antiretroviral regimen. 

However, even with all that, the attributing mechanism of neuropathogenesis and HAND has yet 

to be distinctively identified. Because of that finding biomarkers like the ones we looked at 

SNPs, components of the microbiome, etc., or in other forms is an important public health 

outcome that we should continue to strive an answer for. These biomarkers could serve as early 
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indicators of not only HAND but other age- related cognitive disorders in both HIV infected 

individuals and uninfected individuals. within the infected population. 

Overall, comparing and identifying significant genetic and microbial factors associated 

with HAND within the HIV-infected subpopulation, could subsequently resolve the burden of 

disease suffered within this subpopulation. Further investigation into how these factors may or 

may not contribute to disease development in each individual is of importance for both science 

and public health. 

In future directions monitoring the difference in cellular immune response in relation to 

immune dysfunction and alterations in gut microbiota and asses how disease severity impacts gut 

microbiota composition can provide more insight to the level of influence the gut microbiota has 

on HIV pathogenesis.  
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APPENDIX A: SUPPLEMENTAL TABLES 
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Table 12. List of Subjects and Sero-status 

ID CONDITION ID CONDITION ID CONDITION 

1 HIV-/Cognitive Decline- (M) 33 HIV+/Cognitive Decline+ 65 HIV-/Cognitive Decline- 

2 HIV-/Cognitive Decline- (M) 34 HIV+/Cognitive Decline+ 66 HIV+/Cognitive Decline-  

3 HIV-/Cognitive Decline- (M) 35 HIV+/Cognitive Decline+ 67 HIV+/Cognitive Decline-  

4 HIV-/Cognitive Decline- 36 HIV+/Cognitive Decline+ 68 HIV+/Cognitive Decline-  

5 HIV-/Cognitive Decline- 37 HIV+/Cognitive Decline+ 69 HIV+/Cognitive Decline-  

6 HIV-/Cognitive Decline- (M) 38 HIV+/Cognitive Decline+ 70 HIV+/Cognitive Decline-  

7 HIV-/Cognitive Decline- (M) 39 HIV+/Cognitive Decline+ 71 HIV+/Cognitive Decline-  

8 HIV-/Cognitive Decline- (M) 40 HIV+/Cognitive Decline+ 72 HIV+/Cognitive Decline-  

9 HIV-/Cognitive Decline- (M) 41 HIV+/Cognitive Decline+ 73 HIV+/Cognitive Decline-  

10 HIV-/Cognitive Decline- (M) 42 HIV+/Cognitive Decline+ 74 HIV+/Cognitive Decline- 

11 HIV-/Cognitive Decline+ (M) 43 HIV+/Cognitive Decline+ 75 HIV-/Cognitive Decline+ 

12 HIV-/Cognitive Decline+ (M) 44 HIV+/Cognitive Decline+ 76 HIV-/Cognitive Decline- 

13 HIV-/Cognitive Decline+ (M) 45 - 77 HIV-/Cognitive Decline- 

14 HIV-/Cognitive Decline+ (M) 46 - 78 HIV+/Cognitive Decline- 

15 HIV-/Cognitive Decline+ (M) 47 - 79 HIV-/Cognitive Decline+ 

16 HIV+/Cognitive Decline- (M) 48 - 80 HIV-/Cognitive Decline- 

17 HIV+/Cognitive Decline- (M) 49 - 81 HIV-/Cognitive Decline+ 

18 HIV+/Cognitive Decline- (M) 50 - 82 HIV+/Cognitive Decline- 

19 HIV+/Cognitive Decline- (M) 51 HIV+/Cognitive Decline+ 83 HIV-/Cognitive Decline+ 

20 HIV+/Cognitive Decline-  52 HIV+/Cognitive Decline+ 84 HIV-/Cognitive Decline+ 

21 HIV+/Cognitive Decline- (M) 53 HIV+/Cognitive Decline+ 85 HIV-/Cognitive Decline+ 

22 HIV+/Cognitive Decline- (M) 54 HIV+/Cognitive Decline+ 86 HIV-/Cognitive Decline+ 

23 HIV+/Cognitive Decline- (M) 55 HIV+/Cognitive Decline+   

24 HIV+/Cognitive Decline- (M) 56 HIV-/Cognitive Decline-   

25 HIV+/Cognitive Decline+ (M) 57 HIV+/Cognitive Decline-   

26 HIV+/Cognitive Decline+ (M) 58 HIV+/Cognitive Decline+   

27 HIV+/Cognitive Decline+ (M) 59 HIV+/Cognitive Decline-    

28 HIV+/Cognitive Decline+ 60 HIV+/Cognitive Decline-    

29 HIV+/Cognitive Decline+ 61 HIV+/Cognitive Decline-    

30 HIV+/Cognitive Decline+ 62 HIV+/Cognitive Decline-    

31 HIV+/Cognitive Decline+ 63 HIV+/Cognitive Decline-    

32 HIV+/Cognitive Decline+ 64 HIV-/Cognitive Decline-   
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Table 13. List of Subject for Stool Samples 

 Sero-Status Date of Repeat 

1 HIV+ - 

2 HIV- - 

3 HIV- - 

4 HIV- 4/17/84 

5 HIV+ - 

6 HIV+ - 

7 HIV- 10/17/84 

8 HIV+ - 

9 HIV- - 

10 HIV- - 

11 HIV-/HIV+ - 

12 HIV- 4/25/85 
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Table 14. TaqMan SNP Genotyping Assay List 

SNP ID Gene Location Polymorphism 

rs234706 CBS Chr.21: 44485350 A/G 

rs1801131 MTHFR Chr.1: 11854476 G/T 

rs1801133 MTHFR Chr.1: 11856378 G/A 

rs1801394 MTRR/FASTKD3 Chr.5: 7870973 A/G 

rs236225 MTHFD1 Chr.6: 79115935 C/G 

rs1806649 NFEE2L2;MIR3128 Chr.2: 178118152 C/T 

rs1801198 TCN2;PES1 Chr.22: 31011610 C/G 

rs4925 GST02/MIR4482-1 Chr.10: 106022789 A/C 

 

Table 15. PCR Primers 

 

 

Gene  Sequence (5’-3’) 

MTHFR C677T Forward TGA AGG AGA AGG TGT CTG GGG GA 

 Reverse AGG ACG GTG CGG TGA GAG TG 

MTHFR C677T Forward TCT TCA TCC CTC GCC TTG AAC 

 Reverse AAG TGA TGC CCA TGT CGG TG 

KLINDWORTH-2013-341F/785R Forward CCT ACG GGN GGC WGC AG 

 Reverse GAC TAC HVG GGT ATC TAA TCC 

NOSSA-2010-347F/803R Forward GGA GGC AGC AGT RRG GAA T 

 Reverse CTA CCR GGG TAT CTA ATC C 
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APPENDIX B: SUPPLEMENTAL FIGURES 
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Figure 12 Research Design Schematic SNP Allelic Discrimination (Victor, 2016) 
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Figure 13 Procedural Schematic of Fecal DNA Isolation (Victor, 2016) 
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                              Figure 14 Process to identify microbial products (Victor, 2016) 
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