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Abstract 

JACO (Kinova Technology, Montreal, QC, 
Canada) is an assistive robotic manipulator that is 
gaining popularity for its ability to assist individuals 
with physical impairments in activities of daily 
living. To accommodate a wider range of user 
population especially those with severe physical 
limitations, alternative control methods need to be 
developed. In this paper, we presented a vision-
based assistive robotic manipulation assistance 
algorithm (AROMA) for JACO, which uses a low-
cost 3D depth sensing camera and an improved 
inverse kinematic algorithm to enable semi-
autonomous or autonomous operation of the JACO. 
The benchtop tests on a series of grasping tasks 
showed that the AROMA was able to reliably 
determine target gripper poses. The success rates for 
the grasping tasks ranged from 85% to 100% for 
different objects. 

Keywords: rehabilitation robotics, vision-based 
robot control, alternative robotic manipulation, 
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I. INTRODUCTION 
Assistive robotic manipulators have long been 

recognized to have great potential to assist 
individuals with physical disabilities in a range of 
activities of daily living (ADLs) [1-6]. In 2013, the 
U.S. Department of Veteran Affairs prescribed about 
170 assistive robotic manipulators to veterans with 
disabilities to support their independent living. One 
of the most popular assistive robotic manipulators is 
JACO from Kinova Technology (Montreal, QC, 
Canada). JACO is composed of six inter-linked 
segments with a three-fingered hand. A default 
control method for JACO is a 3D joystick with 7 
buttons and a knob. However, people who have 
severely impaired motor functions or have a 
combination of multiple disabilities have found it 

difficult or impossible to independently operate it 
[3].  

Vision-based autonomous control has been 
investigated as one of the solutions to accommodate 
people who cannot effectively use the manual 
control methods [7-15]. Vision-based control can 
transfer the loading in positioning and fine 
manipulation to the autonomous algorithm to reduce 
the complexity exposed to the user. To implement 
the vision-based autonomous control, many 
researchers adopted an eye-in-hand camera [7, 8, 13, 
15], on the robot gripper or wrist to guide the robot 
towards an object of interest. This approach needs to 
update the object locations continuously until the 
end-effector acquired the target object, and thus is 
computationally expensive. Some researchers 
mounted a camera on the fixed position at the robot 
base or shoulder [12]. While this approach has 
advantage of finding a path and grasping plan even 
when the object is occluded from the starting 
location or folding position [14], it requires the 
knowledge of the target object as well as the 
surroundings in advance to localize the target object 
and plan a trajectory [16]. Other researchers use the 
combination of the above two approaches to provide 
more reliable and robust control [10, 14]. However, 
the combined approach can significantly increase the 
implementation cost and system overhead. More 
recently, the use of 3D camera like Microsoft Kinect 
has been investigated in assistive robot applications 
[11]. 

We have developed and evaluated a vision-based 
assistive robotic manipulation assistance algorithm 
(AROMA) for JACO, which uses another kind of 
low-cost 3D depth sensing camera and an improved 
inverse kinematic (IK) algorithm over the IK 
algorithm provided by the JACO Application 
Program Interface (API). In addition, AROMA was 
developed on a Windows operating system instead 
of the Robot Operating System (ROS), which makes 
it easier for the algorithm to be adopted by non-
technical users and clinical professionals. 



 

II. DESIGN APPROACH 
AROMA consists of two inter-related modules: 

3D vision module and custom IK module. The 
following diagram (Figure 1) shows how the 
AROMA works. 

 
Figure 1. AROMA Activity Diagram 

 

A. 3D Vision module 
We adopted a low-cost short-range 3D depth-

sensing camera (Senz3D manufactured by Creative 
Labs, Inc., Milpitas, CA) in this study and mounted 
it on the robot base (Figure 2). The Senz3D uses the 
'time-of-flight' technique to obtain depth information 
within its field of view (diagonal 70 degrees) and 
working range (20-90m) at a maximum resolution of 
320x240. It is known that the ‘time-of-flight’ 
technique in general outperforms the structured light 
technique used in Microsoft Kinect [17]. The 
Senz3D can generate a 3D point cloud in which each 
point represents the distance (15-90cm) to objects 
within its field of view. Based on the 3D point cloud, 
the shape and the dimensions (width and height) of 
the target object can be estimated. To stabilize the 
depth data and increase the accuracy of the 
estimation, we used depth processing techniques 
provided by RGBD module (by Vincent Ronald) 
integrated into Intel’s open source computer vision 
library (OpenCV 3.0 alpha), including moving 
average filtering, and segmentation. Based on the 
estimated position and dimension of the target 
object, the end-effector pose (position and 
orientation) was calculated and fed to the custom IK 
module. The 3D point cloud-based approach is less 
dependent on diverse lighting conditions, as well as 
invariant to rotation as opposed to conventional 
approaches which usually require various poses of 
an object. 

 

 
Figure 2. JACO with Senz3D camera 

B. Custom Inverse Kinematics Module 
Before developing the custom IK module, we 

investigated two inherent problems with JACO. One 
problem is that the JACO API provides an IK 
function where the input is the center of the wrist-to-
hand link, instead of the target end-effector pose. 
Because the default IK function does not consider 
the virtual link between the end-effector and the 
target object, there are inevitably collisions during 
object manipulation when default IK is used. 

 
Figure 3. JACO working spaces 

Another problem is the JACO workspace and 
positioning accuracy. According to the JACO 
technical documents, JACO can reach approximately 
90cm in all directions using joystick control. 
However, when using the default IK function, we 
noticed that JACO has a decreased working space 
due to the embedded singularity avoidance 
algorithms. To examine the actual workspace where 
there is no limitation in performing translational, 
rotational and grasping motions, we programmed the 
JACO to automatically reach and perform all three 
basic motions (i.e., translational, rotational, and 
grasping) at 1cm resolution within the theoretical 
workspace of 90cm radius and 110 degrees of phi φ 



 

(Figure 3). The JACO robot arm was found fully 
functional within the area 3 (i.e., a quarter-ellipsoid 
with about 62cm radius and 110 degrees of phi φ 
excluding the dead zone). In the area 2 (a quarter-
ellipsoid with around 73cm radius and 110 degrees 
of phi φ), one of the three basic motions does not 
work and JACO gets stuck due to the singularity 
avoidance algorithms, until manual control with the 
physical joystick overrides the current command. In 
the area 1, in addition to the same problem as in the 
area 2, the positioning accuracy of the JACO arm is 
severely compromised, and the end-effector has 
difficulty keeping still in place. 

To address these issues, we developed a custom 
IK module that considered the missing tip-target link 
kinematic based on the target object pose through the 
3D vision module and the robot parameters of the 
JACO robotic arm as shown in Table 1, 2, and 3. To 
compute minimum effort IK solution and plan 
trajectory to reach to a desired goal position, we 
adopted OpenRAVE’s IKFast robot kinematics 
compiler, which analytically solves and generates 
optimized IK functions. We also adjusted dynamics 
caused by common factors like gravity and 
positioning tolerances by refining the IK solution 
using the Levenberg-Marquardt algorithm, also 
known as a damped least square method [18, 19]. 
The refined IK solution was sent to the JACO 
controller where virtual joystick signals emulating 
physical joystick commands were used to control 
JACO. 

The arm sagging issue, that is the hand position 
of the JACO arm drops down 1-2cm whenever 
grasping commands are sent, was solved by using 
Cartesian command information (API function: 
GetCommandCartesianInfo()), instead of relying on 
the reported current arm position (API function: 
GetHandPosition()). 

 
Table 1. D-H Parameters of JACO 

DH Parameters 
 alpha(i-1) a(i-1) di theta1 

1 0 0 D1 q1 
2 -pi/2 0 0 q2 
3 0 D2 0 q3 
4 -pi/2 0 d4b q4 
5 2*aa 0 d5b q5 
6 2*aa 0 d6b q6 

 

 

 

Table 2. Link length values 
Link length values (meters) 

 Length Explanation 
D1 0.2102 Base to elbow 
D2 0.4100 Arm 
D3 0.2070 Front arm 
D4 0.0750 First wrist 
D5 0.0750 Second wrist 
D6 0.1850 Wrist to the hand 

 

Table 3. Alternate parameters 
Alternate parameters 

aa ((11.0*PI)/72.0) 
ca (cos(aa)) 
sa (sin(aa)) 

c2a (cos(2*aa)) 
s2a (sin(2*aa)) 
d4b (D3 + (ca-c2a/s2a*sa)*D4) 
d5b (sa/s2a*D4 + (ca-c2a/s2a*sa)*D5) 
d6b (sa/s2a*D5 + D6) 

 

III. METHODS 
A. Instruments 

The instruments used for testing AROMA 
included a JACO robotic arm, a Senz3D camera, and 
a laptop computer running the custom software 
under Windows 7 Operating System. The JACO 
robotic arm was a research edition assembled in the 
year of 2012. All configuration parameters were 
maintained at default values throughout the 
experiment. The firmware version was 5.0.5.0033 
and the API version was R5.0.2. The robot arm was 
fixed to a table using clamps and the Senz3D camera 
was attached to JACO 2cm below from the center of 
the robot base. The custom software, written in the 
C#/C++ programming language, controlled the 3D 
vision and the custom IK algorithms, while 
monitoring the robot behaviors.  

B. Data Collection 
In the experiment, picking-up/grasping tests were 

conducted with two different kinds of objects: balls 
with 3 different diameters (4.5cm, 6.5cm, and 
8.5cm) and a bottle of water (Figure 4). The ball 
experiment started with commanding the robot to 
pick up a ball placed at a random position within 
JACO’s theoretical workspace on the table. Upon 
successful grasping of the ball, the robot picked up 
the ball 50cm high and then dropped it off to a 
random position. The robot then went back to the 
default home position, and then automatically 



 

repeated the same procedure 100 times. If the robot 
failed to grasp the ball in two consecutive times, the 
investigator put it in the random position manually. 
For the bottle experiment, the investigator manually 
put it at the random location (calculated by a random 
number generator) each time and the experiment was 
repeated 20 times. Throughout the tests, the 
estimated object locations and dimensions were 
recorded, and performance measures including time 
to grasp the target object (from the start of each trial 
to when the target object is picked up 50cm high) 
and success rate were calculated. 

 
Figure 4. Test Objects 

IV. RESULTS 
The results from the experiments are presented in 

Table 4. 

Table 4. Test Results 

B
all Size 

Ball Experiment Bottle Experiment 
Average 
Grasping 

Time (sec) 

Success 
Rate 

Average 
Grasping 

Time (sec) 

Success 
Rate 

S 5.51 (±1.38) 93/100 5.96 (±1.95) 17/20 
M 4.17 (±0.97) 100/100 
L 4.46 (±1.48) 100/100 

 

From Table 1, it took longer to grasp the bottle 
than the balls, possibly due to different gasping 
strategies (Figure 5). Based on the estimated 
dimension of the target object, either grasping from 
the side or the top will be automatically selected.  

As for the success rate, grasping the small ball 
was least reliable with 93% success rate. In the failed 
trials, the JACO hand was able to pick up the ball 
but then dropped it off before reaching to the target 
height. We speculated that the glossy surface of the 
small ball might compromise the object pose 
estimation and thus lead to unreliable grasping 
points. Table 5 shows the deviations between actual 
object widths and estimated ones for each ball. The 
small ball not only had the largest variance among 

the three balls, but also had tendency to 
underestimate the object size. The success rate of the 
bottle grasping test was 85%. The failed trials were 
mostly due to the collisions between the JACO hand 
and the bottle. For both the small ball and bottle 
experiments, the object locations were well 
distributed and the locations (marked in red) where 
unsuccessful trials occurred were highly scattered 
and no systemic pattern was found (Figure 7 and 8). 
In addition to the object pose estimation error, 
JACO’s positioning tolerance of ±8mm might also 
affect the performance. 

 
Figure 5. Different grasping strategies 

Table 5. Object Width Estimation 
Width (mm) Small Medium Large 

Actual 45 65 85 
Estimate 39.1(±4.57) 64.3(±2.57) 84.86(±2.28) 

 

 
Figure 6. Small Ball Placements (cm) 

 
Figure 7. Bottle Placements (cm) 

 



 

V. DISCUSSION 
Our results indicated that AROMA has potential 

to enable users who are current unable to use an 
assistive robotic manipulator to use it by providing 
an autonomous or semi-autonomous robotic 
manipulation assistance. The AROMA has some 
advantages over the conventional vision-based 
approach. First, unlike other research studies [7-9, 
12, 13], it relies on point clouds generated from a 
low-cost 3D depth sensing camera, thus the 
computational cost is less than the conventional 3D 
object pose estimation algorithms which require 
images of various poses such as the front side, 
backside, and all possible 3D rotations of the object. 
Chung and colleagues evaluated a vision-based 
autonomous function of assistive robotic 
manipulator, mounting a high resolution webcam on 
the robot shoulder [12]. In the study, they measured 
the task completion time and the success rate for a 
drinking task which consist of various subtasks 
including picking up the drink from a start location, 
conveying the drink to the proximity of the user’s 
mouth. The average task completion time for picking 
up a soda can on the table was 12.55 (±2.72) seconds 
including the average object detection time of 0.45 
(±012) seconds. The success rate of the pick-up task 
was 70.1% (44/62). 

Second, the AROMA uses infrared images, and 
thus is less dependent on ambient lighting conditions 
than conventional image processing which requires 
images of an object under different lighting 
conditions or sources in order to improve the 
algorithm invariance to diverse lighting conditions. 
Tsui et al. developed a vison-based autonomous 
system for a wheelchair-mounted robotic 
manipulator using two stereo cameras, one mounted 
over the shoulder on a fixed post and one mounted 
on the gripper. Once the user only needed to indicate 
the object of interest by pointing to the object on a 
touch screen, the autonomous control automatically 
took over the rest of the task by reaching towards the 
object, grasping it, and bringing it back to the user 
[10]. They evaluated this system with 12 individuals 
with various physical and cognitive disabilities, 
where participants were asked to retrieve an object 
from a bookshelf. The success rate of the 
autonomous function was 65% (129/198). Of the 69 
unsuccessful trials, 56 (81%) were due to algorithm 
failures. Jiang et al. also developed a vision-based 
autonomous robot control system combining a JACO 
robot arm with two Microsoft Kinect sensors: one 
for recognizing user voice, gesture and body part; 
the other for object recognition [11]. User’s voice 
and hand gestures were used as the robot control 

commands. The object recognition algorithm relied 
on a two-step process, which extracted the feature 
vector for an object using Histogram of Oriented 
Gradients algorithm, then trained the model and 
classified the objects applying nonlinear support 
vector machine algorithm. The system was evaluated 
by one participant with four different manipulation 
tasks (5 trials per each), including, drinking, phone 
calling, taking a self-portrait, and taking photos of 
the surroundings. The performance time ranged from 
14-130 seconds and accuracy ranged from 52-98%.  

Third, AROMA addressed the inherent 
limitations of the JACO onboard IK algorithm, 
including the missing tip-target link, reduced 
working space, and arm sagging issues. In addition, 
the AROMA was developed under a Windows 
operating system, making it not only easier to 
integrate new and existing alternative input devices 
without developing additional driver software, but 
also increasing the likelihood of adoption by users 
and clinical professionals. 

However, AROMA has also several limitations. 
First, when dealing with the missing tip-target link, 
we aimed to find a goal configuration of the end-
effector that matches the target object pose under the 
assumption that there is no obstacle between the 
manipulator and the target object. This may 
compromise the manipulation performance and 
safety in challenging environments such as cluttered 
space. To address this issue, additional sensors such 
as an eye-in-hand camera or force/tactile sensors 
could be adopted. Second, the experiments were 
conducted with simple shaped objects with smooth 
surfaces. To accommodate a variety of everyday 
objects with different characteristics, the damping 
factor for the DLS method may need to be adjusted 
to achieve a balance between performance stability 
and speed. Lastly, it is also important to apply 
AROMA to real-world manipulation tasks and test it 
with individuals having upper extremity 
impairments.  

In addition to supporting autonomous operation 
of JACO, an practical application of AROMA is to 
support semi-autonomous control, where direct user 
control is combined with robot autonomy, 
strategically reducing the complexity exposed to the 
user while keeping the user in the control loop [20]. 
Users usually find fine manipulation of a robot 
manipulator more challenging and spend more time 
on adjusting the end-effector position and orientation 
before grasping. AROMA could potentially address 
this issue by allowing users to use conventional input 
methods (e.g., joystick) to move the arm close to the 



 

target object, and then user voice control to 
command the robot for fine manipulation, e.g., 
grasping or pushing. Kim et al. found that while user 
effort required for operating the robot with 
autonomous control was significantly less than with 
the manual control, user satisfaction with the 
autonomous control was lower than with the manual 
control [13]. With the semi-autonomous control, 
users only need to control the gross motion and leave 
the fine manipulation to AROMA, which could 
potentially lead to improved performance and 
satisfaction.  

We are planning on two follow-up studies to 
apply the AROMA. One study is to apply the semi-
autonomous approach to an overhead track mounted 
assistive robotic system called KitchenBot [21], 
which operates along an overhead track built into the 
kitchen to assist individuals with physical disabilities 
for tasks in a typical kitchen environment. Another 
study is to combine AROMA with automatic speech 
recognition to provide complete hands-free semi-
autonomous operation. 
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