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ABSTRACT 

Francisella tularensis is a gram negative, non-motile, coccobacillus that is the causative 

agent of tularemia. There is concern that F. tularensis could be used as a biological weapon and 

development of vaccines is a high priority to the military given the rise of terrorist attacks and 

significant impact a biological attack would have on public health. Type A strains are highly 

virulent but the current live vaccine strain (LVS) is based on a type B strain which is only partially 

protective against aerosol challenge with SCHU S4 (S4), a type A strain. Historically mice have 

been the most commonly used model to study vaccines and pathogenesis of F. tularensis. 

However, mice are acutely sensitive to tularemia such that strains that are attenuated or avirulent 

in other mammals cause lethal disease in mice. Therefore, the rabbit model has been used in these 

studies because New Zealand White rabbits have a disease course and susceptibility similar to 

humans. 

The data presented here will demonstrate that the humoral immune response plays a role 

in the protection and survival from a F. tularensis infection. A novel ELISA assay has been used 

to examine antibody titers against F. tularensis in the plasma of rabbits post vaccination and 

analyzed to determine if there is a correlation to survival against challenge with SCHU S4. In 

addition, data was analyzed to compare various vaccines, vaccination routes, and vaccine doses to 

determine if one provided better protection and higher survival rate. 



 v 

 

 

 

 

 

 

PREFACE 

“The most exciting phrase to hear in science,  

the one that heralds new discoveries,  

is not 'Eureka!' but 'That's funny...'” 

~Isaac Asimov 

 

 

 

 

 

 

 

 

 

http://www.brainyquote.com/quotes/quotes/i/isaacasimo109758.html
http://www.brainyquote.com/quotes/quotes/i/isaacasimo109758.html
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1.0  INTRODUCTION 

 

Diseases have plagued mankind since the beginning. Military commanders saw how 

sickness could decimate an army. An enemy that came quickly, silently, was often deadly, and 

impossible to stop for centuries. It was only a matter of time before mankind began to use 

disease as a weapon of war. 

“Bioterrorism- the deliberate release of viruses, bacteria, or other biological agents used to 

cause illness or death in people, animals, or plants.”1 As early as 600 BC, when the Athenian 

dictator Solon used helleborus roots to contaminate the water supply during the siege of Kirrha, 

acts of biological warfare have been used to weaken and kill the enemy2. In 2001, anthrax was sent 

in letters demonstrating the increasing knowledge of terrorists to produce and use biological 

weapons1-4. The anthrax attacks in 2001 solidified the warnings of a bioterrorism attack from a 

question of ‘if’ to a question of ‘when’4,5. 

After World War I, the 1925 Geneva Protocol for preventing biological weapons 

proliferation attempted to control the development of biological weapons because of the use of 

chlorine gas by the Germans, but failed miserably2,6. During World War I and II, bioweapons were 

studied by both sides and during World War II the United States began its Biological Warfare 

program which continued into the Cold War2,7. However, in the midst of the Cold War, President 

Nixon took action to stop further offensive biological weapons development because it was 

believed biological weapons were of little use and the United States wanted to make progress in 

negotiations to ban biological and toxin weapons7. In 1975 the Biological Weapons Convention 

(BWC) became the first multilateral disarmament treaty banning the development, production and 

stockpiling of an entire category of weapons of mass destruction8. Agreements were made to 
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provide annual reports on data on research centers and laboratories, information on vaccine 

production facilities, information on national biological defense research and development 

programs, and other information that pertained to infectious disease outbreaks, past biological 

research, and regulations in the country pertaining to specific activities related to the BWC. Over 

the years the laws regarding potential bioweapons in the United States strengthened. In 1995, 

Congress passed the Antiterrorism and Effective Death Penalty Act of 1996 which required Health 

and Human Services to develop regulations for the transfer of select agents1. A select agent is 

defined as one that has the potential to pose a severe threat to human, animal, and/or plant health 

and safety9. Following the 2001 anthrax attacks the USA Patriot Act in 2001 and the Public Health 

Security and Bioterrorism Preparedness and Response Act of 2002 required Health and Human 

Services and the United States Department of Agriculture to develop regulations for the 

possession, use, and transfer of select agents1. In 2010, an executive order directed the Department 

of Health and Human Services and Department of Agriculture to tier the select agents, with a Tier 

1 designation presenting “the greatest risk of deliberate misuse with significant potential for mass 

casualties or devastating effect to the economy, critical infrastructure, or public confidence1.” 

F. tularensis causes a spectrum of disease that is mostly determined by the route of 

infection and is treatable with a wide range of antibiotics, but the antibiotics must be 

administered as quickly as possible to prevent relapses10,11. The most virulent form is pneumonic 

disease which has a 30-60% mortality rate if left untreated and can be lethal at extremely low 

doses, as low as 10 CFU10-12. The former Soviet Union and the United States (prior to 1969) 

developed F. tularensis as a biological weapon and due to the low infectious dose the Centers for 

Disease Control (CDC) have classified F. tularensis as a Tier 1 Select Agent12. In addition, the 

Soviet Union reportedly continued their biological weapons programs into the 1990s and 
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developed F. tularensis strains that were antibiotic resistant and could cause disease in LVS 

vaccinated individuals13. The potential of F. tularensis to be misused was recognized by the 

World Health Organization. The Word Health Organization modeled studies to predict the 

effects of an airborne release of 50 kg and calculated that in a population of 5 million people- 

250,000 people would present with disease, one million people would require preventative 

antibiotics for at least 10 days, even if exposed individuals were treated with antibiotics within 

48 hours 25,000 would require hospitalization and 2,500 would die13,14. Civilians and military 

personal massively exposed via aerosol or orally are likely to develop the most severe form of 

tularemia, resulting in high mortality rates; survivors would require hospitalization and have 

frequent relapses15. In addition, by releasing F. tularensis via aerosol it is likely that enzootic 

reservoirs would be established in wild animals resulting in subsequent outbreaks in humans15. 

These calculations were in 1970 and did not factor in an antibiotic resistant strain of F. 

tularensis13,14. F. tularensis is considered a biological agent that presents an abundant risk of 

deliberate misuse with significant potential for mass casualties or devastating effect to the 

economy, critical infrastructure, or public confidence, and pose a severe threat to public health 

and safety9.  

 

1.1  Francisella tularensis 

Francisella tularensis is a gram-negative, intracellular bacterium that is the causative agent 

of tularemia, also known as rabbit fever. There are four subspecies of F. tularensis, two of which 

cause disease in humans, Francisella tularensis subsp. tularensis (a.k.a type A) and Francisella 

tularensis subsp. holarctica (a.k.a type B), of which type A is considered more virulent16. F. 

tularensis is a zoonotic disease and is most commonly found in rodents, hares, and rabbits; these 
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are not thought to be reservoirs because infection causes acute disease in these species13. Notably, 

human outbreaks often correlate with animal outbreaks of the disease13,17. In addition, arthropods 

including ticks, mosquitos, and biting flies have been shown to be primary vectors for tularemia18-

20. Tularemia can also be transmitted to humans through direct contact with infected animals, 

transplanted organs, ingestion of contaminated food, water, or soil, and inhalation of infectious 

aerosols from dust from contamination hay or lawn mowing21-25.  

While the specific virulence factors of tularemia are not well understood, the pathogenesis 

of the bacterium is known. Once a human is infected F. tularensis enters a macrophage through 

phagocytosis and disrupts the phagosomal membrane to infiltrate the cytoplasm of the 

macrophage26.  Once F. tularensis replicates inside the macrophage it is released through apoptosis 

and into the blood stream and plasma where it propagates a cycle of infection, escape, and 

reinfection27. The ability of F. tularensis to invade erythrocytes may contribute to relapses of 

tularemia after a short cycle of antibiotics because erthryocytes live for approximately four 

months28.  

Multiple antibiotics have been studied as post exposure prophylaxis treatments to F. 

tularensis exposure, with some antibiotics seeming to be more effective than others. Streptomycin 

and gentamicin have been shown to be effective, first line therapies because susceptibility testing 

shows all four subspecies of F. tularensis are vulnerable29,30. Ciprofloxacin and other 

fluoroquinolones have been used effectively, but the data on them is limited31,32. In addition, 

tetracycline and chloramphenicol can be used, but since they are bacteriostatic, relapses are more 

common than with other antibiotics33,34. Lastly, it has been suggested that doxycycline is a good 

first line therapy along with streptomycin and gentamicin because it has greater efficacy compared 

to ciprofloxacin, F. tularensis is less likely to develop resistance, and is less expensive; however, 
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relapses are possible35,36. Mice studies have suggested that doxycycline is most effective if 

administered within 24 hours and its effectiveness drops to 30% if not given until 48 hours post 

exposure, while ciprofloxacin continued to be 70% effective for up to 72 hours post exposure37.  

 

1.2  Humoral Immune Response 

While protective immunity to tularemia has been historically attributed to cell-mediated 

immunity generated by an effective T cell response due to replication in the cytoplasm, F. 

tularensis has a significant extracellular phase in the blood, which makes it vulnerable to the 

humoral immune response27,38. As early as the 1960s there was evidence to support that the 

adaptive immune system and antibody responses play a role in control of infection due to passive 

transfer studies carried out in animals39-41.  

It has been shown that in humans naturally infected with F. tularensis specific IgM, IgG, 

and IgA antibodies appear about two weeks post infection, peak 1-2 months post infection, and 

can be detected up to a year later42. In addition, a study in 1985 showed that IgG, IgM, and IgA 

antibodies to F. tularensis after a naturally acquired infections were still present retained the ability 

to agglutinate bacteria and fix complement up to 11 years post infection43. Likewise in humans 

vaccinated with LVS specific IgM, IgG, and IgA antibodies are present in the sera about two weeks 

post vaccination and can be detected at least a year and a half later43-45. 

Research regarding the role of the humoral immune response to an infection with F. 

tularensis is limited because of a long held belief that the cell-mediated immune response played 

more of a role in long lasting immunity. More research is required to further elucidate the 

importance and mechanisms from the humoral immune response that are important for long lasting 

immunity. 
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1.3 Vaccines 

As pneumonic tularemia poses a threat to the public as a potential bioweapon, it is essential 

to understand the protective mechanisms connected with a competent immune response so a safe, 

effective vaccine can be discovered. Killed bacterial vaccines were found to be ineffective. In the 

1950s and 60s a type B strain was attenuated by passage in culture and was shown to provide good 

protection against an aerosol challenge with a virulent type a strain12,39,46. This strain was labeled 

the live vaccine strain (LVS), but is unlikely to be licensed by the FDA because the mechanism of 

attenuation is not known and there is potential for the virus to revert to a virulent strain38,39,47 

There is no licensed vaccine that provides adequate protection against tularemia in the 

event of a biological attack. While LVS is given to at risk personnel, it not licensed by the FDA, 

primarily due to the inadequate data on safety and efficacy12,15. Therefore, scientists are 

investigating new vaccines that would provide better protection should there ever be a large 

outbreak. While mice are the dominant animal that is used to study new vaccines for tularemia, 

mice are acutely sensitive to strains that are attenuated in humans making them a less than ideal 

candidate to study efficacy and level of protection12,15. Therefore, the Reed lab has begun to use 

a rabbit model because the disease course, and likely the antibody response, is similar to 

humans12,16.  

 



 7 

2.0   SPECIFIC AIMS 

 

The aim of this study is to examine the humoral immune response to vaccination with a 

live attenuated F. tularensis vaccine and whether that response correlates with protection against 

an aerosol challenge with virulent F. tularensis. This would contradict the long held dogma that 

cell mediated immunity plays a more important role in intracellular infections.  

 

2.1 AIM 1: Evaluate the humoral response in New Zealand white rabbits that were vaccinated or 

challenged with F. Tularensis to determine whether antibody responses contribute to protection 

− Develop and use an ELISA assay to determine titers of igg in vaccinated rabbits before 

and after aerosol challenge with SCHU S4 

− Determine whether a correlation exists between igg levels and survival of rabbits 

challenged with SCHU S4 

2.2  AIM 2: Determine whether additional factors including hyper-immune sera or 

immunoglobulins, IgA and IgM, can influence rate of rabbits using the same novel ELISA assay 

− Ascertain when IgM first appears in the plasma in response to the vaccination since it is 

the first antibody made in response to infection and reveal if there is a correlation to 

survival. 

− Determine IgA levels from the last plasma sample taken after vaccination because IgA is 

involved in intracellular infections and analyze data to determine if there is a survival 

correlation  
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3.0   METHODS 
 

 

3.1  Biosafety  

All experiments using virulent F. tularensis SCHU S4 were performed at Biosafety Level 

3 (BSL-3) in the Regional Biocontainment Laboratory (RBL) at the University of Pittsburgh.  

Powered air purifying respirators (PAPRs) were worn for respiratory protection, and all work 

was conducted in a class II biosafety cabinet using Vesphene IIse (diluted 1:128, Steris 

Corporation, cat. #646101) as a disinfectant.  

 

3.2  Bacteria   

For aerosol exposures, virulent F. tularensis strain SCHU S4 was grown in brain heart 

infusion (BHI) broth at BSL-3. Stocks of attenuated mutants of SCHU S4 and LVS were generated 

previously and stored at -80°C in BSL-3. For ELISAs SCHU S4 was grown overnight in BHI broth 

and heat killed by incubating for 3 hours at 60oC in accordance with IBC-approved safety 

protocols. A small amount of material was plated to confirm that the bacteria were killed prior to 

removal from BSL-3. 

Plasma for ELISA assays was heat inactivated at 56oC for thirty five minutes in a water 

bath in accordance with IBC-approved safety protocols. The outside of the vials were then 

disinfected by briefly submerging them in Vesphene IIse. The vials were then dried, sealed in a 

small biohazard bag, that bag was then sprayed with Vesphene IIse and dried, sealed in another 

medium biohazard bag where the process for disinfection was repeated. The bag of vials was then 

taken out of BSL-3 and stored at -20oC in BSL-2 until needed for an ELISA. 
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3.3  Rabbits 

Young female New Zealand White (NZW) rabbits were housed in the University of 

Pittsburgh Regional Biocontainment Laboratory (RBL) at animal biosafety level 3+ (ABSL3+) for 

the duration of the study. All studies were approved by the University of Pittsburgh’s Institutional 

Animal Care and Use Committee. 

 

3.4  Vaccines & Challenge 

Dose: 1x109 cfu 

Route: Scarification, Oral, Aerosol 

Attenuated derivatives of F. tularensis were produced by Dr. Eileen Barry at the University of 

Maryland; Table 1 indicates the attenuating mutation and the virulence/protection seen in mice 

from studies conducted by Dr. Barry. 

Vaccinations and challenge were conducted by Dr. Doug Reed who was assisted by Le’Kneitah 

Smith (2010-2012), Amy Caroline (2014), Nicolas Garcia (2014), and Katherine Willett (2015). 

 

Table 1: Vaccinations and Attenuating Mutation 

Name Attenuating Mutation Mouse 

Virulence Protection 

ΔaroC Chorismate synthase; synthesize 
aromatic amino acids 

Attenuated No 

ΔguaBA Guanine biosynthesis  Attenuated No 

ΔaroD 3-hydroquinate dehydratase; 
synthesize aromatic amino acids 

Attenuated Yes 

LVS Unknown: likely multiple 
mutations 

Reduced Partial 
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In early experiments rabbits were vaccinated once and challenged thirty days later. In later 

experiments, prime & boost vaccinations were proposed and based on the timeline shown in 

Figure 1 challenge remained thirty days after the final vaccination. Challenge was by aerosol 

with virulent SCHU S4 grown in BHI at doses ranging from 280-10,000 cfu (12-430 LD50). 

Rabbits were monitored for 30 days for clinical signs of disease and bled at regular intervals to 

assess changes in white blood cells, bacteremia, erythrocyte sedimentation rate, and antibody 

titer. 

 

 

Figure 1: Timeline of Prime & Boost Vaccinations with Challenge  

 

3.5  ELISA 

Enzyme-linked immunosorbent assays (ELISA) were performed using standard ELISA 

procedures. Plates were coated with heat-killed SCHU S4 and stored at 4oC until use. 1:50 dilutions 

of rabbit sera in phosphate-buffered saline (PBS)-Tween and 5% nonfat milk were plated in 

duplicate in half log dilutions and incubated for 1 hour at 37°C on 96 well plates coated with heat 

killed SCHU S4. After washing plates with PBS-Tween on Skan Washer 300 Version B plate 

washer (Skatron Instruments), secondary goat anti-rabbit IgG-horseradish peroxidase (HRP) at 

1:5000 dilution, secondary goat anti-rabbit IgM alpha chain HRP at 1:2500 dilution, or goat anti-

rabbit IgM mu chain HRP at 1:2500 dilution was added to the plates at and incubated for 1 hour 

at 37°C. Antibodies were diluted in PBS-Tween with 5% nonfat milk. After incubation with 

secondary antibody, the plates were washed again with PBS-Tween. BM chemiluminescence 
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ELISA substrate (POD) (Roche 11582950001) was prepared mixing 100 parts of solution A with 

1 part of solution B. The POD chemiluminescence solution was added to the plates and plates were 

immediately read on a SpectraMax L (Molecular Devices) or Orion Microplate Luminometer 

(Berthold Detection Systems) plate reader at 405 nm and absorbance was recorded in Microsoft 

Excel 2010.  

 

3.6  Statistical Methods 

Data was transferred from Microsoft 2010 to GraphPad Prism version 6.00 for Windows 

for analysis. Graphing and four parameter logistical regression of the absorbances was performed 

in GraphPad Prism 6. Statistical analyses including calculation of EC-50, slope, one-way analysis 

of variance (ANOVA), unpaired t test, and Mantel-Cox rank test were all done on GraphPad. All 

tests were analyzed for significance.   
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4.0  RESULTS 
 

 

4.1  IgG titers in vaccinated rabbits 

Analyses were first performed to determine if the live attenuated vaccines developed by 

Dr. Barry protected or extended time to death against a virulent aerosol challenge with SCHU S4. 

Initial experiments delivered attenuated strains by scarification; one group was given LVS for 

comparison purposes while another was inoculated with PBS (mock-vaccinated controls). As 

shown in Figure 2, both ΔguaBA and ΔaroD significantly extended time to death (p=0.0002) with 

some rabbits surviving challenge while LVS only extended time to death. 
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Figure 2: Live attenuated vaccines protect against an aerosol challenge with virulent SCHU 
S4.  

 

 To assess the humoral response, blood was drawn on days 7, 14, 21, and 28 post-

vaccination. Figure 3 is a representative example of the change in IgG titers overtime as measured 

by ELISA. As time progressed, the antibody titers increased. The most prominent change was on 

day 28 between survivors, shown in green, and non survivors, shown in red. Rabbits that survived 
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subsequent aerosol exposure to SCHU S4 after vaccination had a notably increased antibody 

response on day 28.  
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Figure 3: Measurement of IgG titers against heat killed SCHU S4 (hkSCHU S4) in 
individual rabbits after inoculation with ΔaroD by scarification.  
 
Graphs show four-parameter logistical regression analysis.  

 

Multiple experiments using different vaccines and different routes of inoculation were 

performed and IgG titers were measured for each animal using ELISA. The first set of experiments 

looked at ΔguaBA, ΔaroD, ΔaroC, and LVS via while a control group was inoculated with PBS 

(mock-vaccinated). Blood was drawn at days 7, 14, 21, and 28 post vaccination and using four 

parameter logistical regression of the absorbances the median effective concentration (EC50) was 

calculated.  
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Figure 4: EC50 of serum IgG titers elicited by ΔguaBA, ΔaroD, ΔaroC, and LVS after 
scarification.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation. 

 

Figure 4 shows the individual and averaged EC50 values for rabbits inoculated with 

ΔguaBA, ΔaroD, ΔaroC, and LVS by scarification compared against the mock at four time points. 
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While day 7 showed no significant difference between vaccine recipients or controls, days 14, 21, 

and 28 did show significant comparisons. Day 14 had three significant points, ΔguaBA vs mock, 

ΔaroD vs mock, and ΔaroC vs mock, with p=0.0020, p<0.0001, and p=0.0007, respectively. Day 

21 only had one slightly significant comparison with ΔaroC vs mock with p=0.0254. Day 28, 

however, had the most four significant comparisons with ΔguaBA vs mock p=0.0010, ΔaroD vs 

mock p=0.0011, ΔaroC vs mock p=0.0174, and LVS vs the mock p=0.0271.  

The next set of experiments examined oral inoculation with vaccines ΔguaBA, ΔaroD, and 

LVS. A fourth group was given a prime and a boost of ΔaroD orally (2x ΔaroD). Blood was drawn 

on days 7, 14, 21, and 28 post-inoculation to measure serum IgG titers. Results are shown in Figure 

5. IgG titers were elevated in the LVS and 2x ΔaroD group on both day 14 and day 21 and on day 

28 for 2x ΔaroD. However, one-ways ANOVAS performed for each time point found that none of 

the vaccine groups were found to be statistically significant from mock-vaccinated controls.  
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Figure 5: EC50 of serum IgG titers elicited by ΔguaBA, ΔaroD, 2 times the dose of ΔaroD 
(2x ΔaroD), and LVS given orally.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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Based on the protection see in murine and rabbit studies, ΔaroD was chosen to be the main 

focus of future experiments. Rabbits were vaccinated by aerosol exposure to ΔaroD or LVS. The 

IgG titers of LVS and ΔaroD were then compared with mock-vaccinated controls using one-way 

ANOVA to calculate significance.  
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Figure 6: EC50 of serum IgG titers elicited by ΔaroD and LVS given by aerosol.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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As shown in Figure 6, both ΔaroD and LVS had higher IgG levels compared to the control 

at days 14 and 21, and the higher levels on those days were significant. On day 14 ΔaroD vs mock 

p=0.0011 and LVS vs mock p=0.0001 as calculated by one-way ANOVA. An unpaired t-test was 

used for day 21 to compare LVS and ΔaroD; the difference was significant (p=0.0331). An 

unpaired t-test was chosen as opposed to a one-way ANOVA because there were not enough data 

points in the control group. When days 7 and 28 were analyzed, no significance was found between 

vaccination groups and mock-vaccinated controls. When the routes of vaccination- scarification, 

aerosol, or oral, with ΔaroD were analyzed in relation of time to death, scarification and aerosol 

had the best results, although differences with oral ΔaroD were not significant when analyzed 

using a Mantel-Cox test.  

 

 

Figure 7: Impact of vaccination route on survival conferred by ΔaroD.  
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A prime/boost vaccination study with ΔaroD was carried out to evaluate whether this 

would boost the level of protection. Rabbits were vaccinated with an aerosol prime/scarification 

boost (AP/SB), scarification prime and aerosol boost (SP/AB), or an aerosol prime and aerosol 

boost (AP/AB). When determining the route of vaccination for the prime and boost experiments, 

scarification was chosen under the belief it would provide systemic immunity while aerosol would 

provide respiratory immunity. Based on the superior survival seen with the aerosol prime/boost of 

aroD (83% survival; see Figure 8), a subsequent experiment examined ΔguaBA and ΔaroD via 

aerosol in order to measure the IgG antibody response.  

 

4.2  IgG titers imply protection  
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Figure 8: Impact of prime/boost vaccination on the level of protection.  
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Figure 9: EC50 of serum IgG titers elicited from a prime boost study.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  

 

When using one-way ANOVA to examine significance between groups in the prime boost 

study, multiple points of significance were calculated as shown in Table 2.  

 

Table 2: Significance calculated by one-way ANOVA of groups in prime/boost study 

Groups Compared p value 
AP/SB vs ΔguaBA 0.0247 
AP/SB vs ΔaroD 0.0015 
AP/SB vs mock <0.0001 
SP/AB vs ΔguaBA 0.0003 
SP/AB vs ΔaroD <0.0001 
SP/AB vs mock <0.0001 
AP/AB vs ΔguaBA 0.0014 
AP/AB vs ΔaroD <0.0001 
AP/AB vs mock <0.0001 
ΔguaBA vs mock <0.0001 
ΔaroD vs mock <0.0001 
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Time to death was compared to day 28 post-vaccination EC50 of the IgG antibody titers 

(for most samples, the peak of the response) to determine if a possible correlation could be drawn.  
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Figure 10: Serum IgG antibody titers correspond with survival against aerosol challenge 
with SCHU S4. 

 

The antibody titers in Figure 10 are from 28 days post vaccination, or two days prior to 

challenge with SCHU S4. The data shown is across all vaccine groups and routes. Using a one-

way ANOVA it was found that r2=0.5250 and p<0.0001, implying that antibody titers can predict 

protection.  

 

4.3  IgM and IgA titers in vaccinated rabbits 

After examining IgG titers, antibodies IgM and IgA were studied because IgM is the 

typically the first antibody made in response to an infection and IgA is produced at mucosal 
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surfaces. IgA was chosen because pneumonic tularemia is the most fatal version of the disease and 

the respiratory tract and lungs are part of the mucosal immune system. First IgM and IgA levels 

were determined for rabbits inoculated with ΔguaBA, ΔaroD, ΔaroC, or LVS by scarification were 

measured. IgM titers were measured on days 7 and 14, while IgA was measured on day 28 (Figure 

11). 

 

 
Figure 11: EC50 of serums IgM (days 7 and 14) and IgA (day 28) titers elicited by ΔguaBA, 
ΔaroD, ΔaroC, and LVS after scarification.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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Using one-way ANOVA in GraphPad it was determined that only IgM levels on day 14 

were significant; where ΔaroD vs mock p=0.0018 and ΔaroC vs mock p=0.0085. No comparisons 

from day 7 or IgA on day 28 were found to be significant. Next, IgM and IgA levels were 

determined in rabbits vaccinated with ΔguaBA, ΔaroD, 2x ΔaroD, or LVS given orally (Figure 

12).   
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Figure 12: EC50 of serums IgM (days 7 and 14) and IgA (day 28) titers elicited by ΔguaBA, 
ΔaroD, 2 times the dose of ΔaroD (2x ΔaroD), and LVS given orally.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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No significance was found in the IgM levels for days 7 and 14 or in IgA levels. The next 

experiment looked at ΔaroD and LVS administered by aerosol (Figure 13).   
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Figure 13: EC50 of serums IgM (days 7 and 14) and IgA (day 28) titers elicited by ΔaroD 
and LVS given by aerosol.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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In Figure 13, one way ANOVA tests were performed for IgM and an unpaired t test was 

performed for IgA because there were only two groups to compare and an ANOVA needs three 

or more. There was no significance in the IgA graph or IgM at day 7, but at day 14 all comparisons 

were highly significant with ΔaroD vs LVS p=0.0001, ΔaroD vs mock p<0.0001, and LVS vs 

mock p<0.0001.  Following the layout of the IgG titers, IgM and IgA levels were next calculated 

for ΔguaBA, ΔaroD, and ΔaroD given as a prime/boost (Figure 14).  
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Figure 14: EC50 of serums IgM (days 7 and 14) and IgA (day 28) titers elicited from a 
prime boost study.  
 
Data from mock-vaccinated rabbits are also shown. Graphs show results for individual rabbits 
(blue circles) at each time point; black lines are the mean for each group with the error bars 
indicating the standard deviation.  
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Data for mock vaccinated rabbits was not available for IgA analysis. Using one-way 

ANOVA calculations it was determined that IgM levels on day 7 and 14 were highly significant 

with p<0.0001, for both ΔguaBA and ΔaroD compared to mock vaccinated rabbits. The EC50 of 

IgM antibody titers measured at days 7 and 14 were then graphed with respect to time to death to 

ascertain whether there was a correlation with survival similar to what was seen with IgG (Figure 

15).  
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Figure 15: IgM antibody titers at days 7 and 14 correlate with survival 
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Figure 16: IgA levels do not seem to correlate with survival  

 

Both day 7 and day 14 IgM titers were highly significant. Day 7 was p<0.0001 with 

r2=0.3799 and day 14 was calculated to be p<0.0001 and r2=0.4505 (Figure 15). However, IgA 

levels on day 28 did not correlate with survival, p=0.4926 and r2=0.2611 (Figure 16).  
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5.0  DISCUSSION 

 

Francisella tularensis is a potential bioweapon that has the ability to cripple the American 

society and leave us vulnerable to a follow up terrorist attack. The need for a safe and effective 

vaccine as well as a better understanding of how the immune system responds to a F. tularensis 

infection is essential. While LVS is currently given to at risk personnel as an investigational new 

drug, it is not currently licensed by the FDA and is unlikely to be due to the possibility of the virus 

mutating back to a virulent state. Due to these facts the Reed lab and collaborators have been 

experimenting with live attenuated strains of F. tularensis with the goal of developing one as a 

vaccine that would provide better protection that LVS and to gain a better understanding of the 

components of the immune system that contribute to survival.  

 In comparing the live attenuated vaccines developed by Dr. Barry with LVS it was found 

that rabbits vaccinated with ΔguaBA and ΔaroD survived challenge while LVS only extended time 

to death. IgG titers determined by ELISA for days 7, 14, 21, and 28 post-vaccination demonstrated 

that ΔaroD vaccinated rabbits that survived subsequent SCHU S4 challenge had higher antibody 

titers on day 28 than non-survivors. These results implied that antibodies play a role in survival 

against pneumonic tularemia. Various vaccines were then tested via scarification, oral inoculation 

and aerosol delivery. It was not surprising that day 7 IgG titers were not significant because the 

immune response is in the beginning stages. Serum IgG titers were elevated on days 14, 21, and 

28 after scarification for aerosol vaccination (Figures 4 & 6). IgG titers were not significantly 

increased after oral vaccination with any of the vaccines tested.  Across all vaccination studies, 

serum IgG titers on day 28 post-vaccination were found to predict survival after challenge. 
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 IgM and IgA antibodies were also studied to see if they too could predict survival. IgA 

titers on day 28 post-vaccination were not found to be significant with any route of vaccination 

and did not correlate with protection. It is possible that IgA levels at earlier time points post-

vaccination could predict protection but these were not evaluated. IgM levels were found to be 

significant with both scarification and aerosol vaccinations across all vaccine groups. As with IgG, 

the strongest IgM titers were seen in the prime/boost groups. Somewhat surprisingly, both day 7 

and day 14 of the IgM titers correlated with survival although not quite as strongly as IgG titers.  

Francisella tularensis is a facultative intracellular bacterial pathogen. Protection has been 

thought to be a result of cell-mediated immune responses. The data presented here, however, 

demonstrate that serum IgG and IgM titers elicited in rabbits after inoculation with live attenuated 

strains of F. tularensis correlate with survival after aerosol challenge with the virulent SCHU S4 

of F. tularensis. Since the route of entry is the lung, it was surprising that IgA titers did not correlate 

with protection. Nevertheless, the data suggests that antibody may play a role in the protection 

although further experimentation will be needed to determine the mechanisms and antigens 

involved in the humoral response. 
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