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ABSTRACT 

 

Microbicides are products designed for vaginal or rectal use to prevent transmission of 

the human immunodeficiency virus (HIV). The first generation non-antiretroviral (non-

ARV) microbicide candidates were intended to be a low-cost, female-controlled method 

of HIV prophylaxis because young women in the poorest regions of the world are 

disproportionately affected by HIV. However, these early microbicide candidates were 

not HIV specific and some disrupted the vaginal epithelium, increased immune 

activation in the female genital tract, or disturbed vaginal flora, while others simply did 

not work. Due to the poor clinical success of these first-generation candidates, there 

was a shift in focus to developing antiretroviral (ARV) compounds like tenofovir and 

dapivirine as microbicides. However, ARV-based microbicides may not prevent 

transmission of drug-resistant HIV.  Moreover, not all persons may want to use an ARV-

based product due to the potential of drug side-effects and the risk of developing drug-

resistance if the product is used inappropriately. While there has been progress in 

developing a product for oral HIV pre-exposure prophylaxis (PrEP), there are still no 

commercially available topical microbicide products. Topical microbicides are desirable 

because they deliver active agents directly to the vaginal or rectal mucosa where HIV 
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transmission occurs while avoiding systemic drug exposure. Hence non-ARV based 

microbicides are of great public health significance as a user-controlled tool for reducing 

the sexual transmission of HIV toward achieving the 2030 Sustainable Development 

Goal of ending AIDS and ensuring good health and well-being for all. Consequently, 

several years after the failure of the first generation of non-ARV vaginal gel 

microbicides, the lessons learned from these early trials have given rise to more 

rigorous preclinical evaluation protocols and novel formulation and delivery technologies 

for microbicides. This has resulted in renewed interest and new approaches to 

developing non-ARV microbicides. The new generation of non-ARV microbicide 

candidates being developed includes active biologics like broadly neutralizing 

monoclonal antibodies. This dissertation presents a pre-clinical evaluation of the 

potential of unformulated monoclonal HIV neutralizing antibodies to function as topical 

HIV microbicides in vitro and using human ex vivo models of rectal and vaginal mucosal 

transmission. 
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INTRODUCTION 

The women of sub-Saharan Africa bear the greatest burden of incident HIV infections in 

the world. This is due in part to social factors that restrict their ability to negotiate 

condom use in their sexual relationships; intravaginal hygiene practices (1, 2); lack of 

perceived risk (3-5); and biological factors that may make them more susceptible to HIV 

infection (6, 7). To address this disparity, research has been ongoing from the early 

days of the HIV epidemic toward the goal of producing microbicides for women (8). 

Microbicides are products designed to prevent the sexual transmission of HIV, and 

potentially other sexually transmitted diseases. The original paradigm was a gel product 

that could be self-administered vaginally. The first products were gels because vaginal 

gel and cream products such as spermicides and vaginal yeast medications already 

existed and the technology for their manufacture was readily accessible. However, 

since then, the various candidates being considered and the dosage forms used for 

microbicide products have expanded. This introduction provides an overview of the 

evolution of non-antiretroviral (non-ARV)-based microbicide development from the first 

generation candidates through the new generation of highly HIV-specific microbicide 

candidates. The progress in their evaluation and options for their potential application in 

reducing sexual transmission of HIV will also be discussed.  
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MUCOSAL HIV TRANSMISSION 

The early events surrounding HIV transmission during receptive vaginal or anal 

intercourse have been widely studied using various models. Semen from an HIV-

infected partner is deposited in the vaginal or rectal lumen. Cell-free virus in seminal 

plasma or cell-associated virus in the form of HIV infected leukocytes present in the 

ejaculate may cross the protective epithelial barrier of the vaginal or rectal lumen via 

multiple putative mechanisms. Viral transmission though the mucosal route is thought to 

impose a genetic bottleneck mediated by the selective pressure of the mucosal 

environment and mucosal immune response (9). These conditions select viruses with a 

unique genetic signature that is not observed in later stages of infection (9-11).  

 

Cell-free virions are thought to enter the submucosal space through breaks in the 

vaginal or anorectal epithelium that may occur during intercourse. They may also diffuse 

through intercellular spaces between the cells of the stratified squamous epithelium (12) 

of the vagina, ectocervix and rectum, which lack tight junctions. Columnar epithelial 

cells, which characterize the endocervical and colorectal epithelium, can capture virions 

at their apical surfaces, carrying them through the cell body and releasing them at the 

basolateral surface into the submucosa via transcytosis (13). Alternatively, sub-

epithelial dendritic cells or Langerhans cells resident in the mucosal epithelium can use 

long dendritic extensions to sample the surroundings as part of their immune 

surveillance function (14). In this way, these cells may capture virions in the lumen or 

intraepithelial space for transfer in endosomal compartments to local CD4+ T cells or 

those in regional lymph nodes which may then become productively infected (15, 16).  
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Cell associated virus transmission has been less thoroughly studied but HIV-infected 

leukocytes derived from semen have been shown to infiltrate recipient mucosal tissues 

(17). They may also form intercellular synapses with host immune cells through which 

CD4-mediated viral transfer may occur (18). Infected seminal leukocytes may also form 

interactions with epithelial cells through which there is directional shedding of nascent 

virus. These virus particles are endocytosed by the epithelial cells and released into the 

submucosa (13, 19) where they may encounter immune target cells.  

 

The mechanisms described demonstrate the need for HIV preventatives that are able to 

abrogate the numerous mechanisms of HIV entry into the vaginal and anorectal 

mucosa. Hence topical products that were applied shortly before intercourse became a 

popular approach to microbicide design. 
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Microbicide Mechanisms of Action 

 

Figure 1. Non-antiretroviral (ARV) microbicide mechanisms of action in the vaginal lumen 
Non-ARV microbicides were designed to prevent the establishment of HIV infection, mainly by preventing 
viral attachment and entry into target cells. In order to achieve this these products employed various 
mechanisms including lysing the virus to prevent infection (Detergents/Surfactants); inhibiting viral 
receptor or co-receptor engagement (Dendrimers, Broadly Neutralizing Antibodies, Lectins); bolstering 
natural defenses to infection (Buffering Gels); and disrupting viral envelope charge to prevent viral 
adsorption and fusion (Polyanions).  
 

Topical microbicide products were originally intended to be applied inside the vagina 

where mucosal exposure to HIV-infected semen occurs. The first generation 

microbicides were designed to disrupt the HIV life cycle before infection was 

established. These microbicides were non-specific for HIV but exerted their anti-HIV 

activity by lysing the viral inoculum and preventing viral adsorption or entry into target 

cells (Figure 1). This was achieved by a variety of mechanisms including degrading the 

protective viral envelope; inhibiting successful viral interaction with entry receptors or 

co-receptors; restricting virion mobility to the epithelium by suspending viral particles in 
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high viscosity formulations; and disrupting the electrostatic interactions between virus 

and receptors that promote viral adsorption. The nature of some of these non-ARV-

based products caused off-target effects which resulted in epithelial trauma and, in 

some cases, increased risk of HIV.  

First Generation Non-Antiretroviral Microbicides 

The first generation non-ARV microbicide candidates were a diverse array of 

compounds that included detergents, surfactants, polyanions, dendrimers, carrageenan 

derivatives and buffers, designed to inactivate the virus prior to infection of local 

immune cells and/or to bolster natural vaginal defenses to HIV infection. These early 

products had some degree of broad spectrum antimicrobial activity, partly due to their 

non-specific nature, which was desirable for simultaneous prevention of several 

sexually transmitted infections. An additional benefit of using non-ARV compounds was 

their inability to contribute to the development of drug resistance mutations in viral 

enzymes that could potentially arise with long-term use of ARV drugs. Thus non-ARV 

microbicides would be effective against wild-type and circulating drug resistant strains of 

HIV. Despite their promise, the first generation microbicide products were not 

successful in clinical evaluations due to lack of efficacy or poor safety indicators (Table 

1). 
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The nonionic surfactant, nonoxynol-9 (N-9) has long been used in commercially 

available spermicidal products and was the first investigational microbicide product. N-9 

showed potent activity against HIV-1 (34, 35) and herpes simplex virus type 2 (HSV-2) 

(35) in vitro, and consequently was evaluated as a microbicide for HIV prevention. 

Table 1. Outcomes of clinical trials evaluating first-generation non-ARV microbicides. 

Microbicide Candidate Clinical Trial Outcome References 

N-9  
(Surfactant) 

 No reduction in HIV incidence; higher 

incidence of genital ulcers  

 No reduced incidence of HIV, gonorrhea 

or chlamydia  

 Enhanced HIV acquisition  

(20)  

 

(21)  

 

(22) 

SAVVY 
(Surfactant) 

 Did not prevent male-to-female HIV 

transmission  

 Higher incidence of reproductive tract 

adverse events  

(23) 

 

(24) 

Carraguard 
(Carrageenan derivative) 

 Did not prevent HIV transmission  (25) 

BufferGel  
(Carbomer polyacrylic acid) 

 Did not prevent HIV transmission  

 Did not prevent other sexually transmitted 

infections 

(26) 

(27) 

PRO 2000 
(Naphthalene sulfonate) 

 Ineffective in reducing HIV acquisition  (28) 

Cellulose Sulfate  
(Sulfated polymer) 

 Increased HIV incidence with cellulose 

sulfate use, trial being halted early  

(29) 

VivaGel 
(Dendrimer) 

 Mild to moderate perturbations of genital 

and urinary tract microflora  

 Poor acceptability  

(30, 31)  

 

(32) 

ACIDFORM 
(Buffering gel) 

 Mild to moderate genitourinary irritation 

 Inconclusive microbicidal efficacy  

(33) 
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However, results from multiple clinical trials showed discrepancies in N-9 efficacy and 

safety. One prospective study enrolling HIV seronegative women to use an N-9 

contraceptive sponge did not show reduced HIV incidence compared to placebo. In 

addition, participants in the N-9 arm had a higher incidence of genital ulcers than the 

placebo group (20). Another double-blind, placebo-controlled study evaluated N-9 

efficacy in a cohort of HIV negative female sex-workers and showed no reduced 

incidence of HIV, gonorrhea or chlamydia (21). While these studies demonstrated no 

efficacy in reducing HIV incidence, one other study showed enhanced HIV acquisition in 

the N-9 treatment arm (22). Further in vitro studies showed that vaginal use of N-9 may 

cause tight-junction disruption in vaginal epithelial cells (36), and that N-9 was toxic to 

cells and tissues at doses suggested for therapeutic outcomes (37).  

 

SAVVY vaginal gel, containing 1% C31G, was evaluated as a topical broad spectrum 

vaginal microbicide. C31G is a combination of two surfactants shown to have 

comparable spermicidal efficacy to N-9 (38). Similar to N-9, safety data for SAVVY was 

variable. In animal studies, SAVVY showed a favorable safety profile in pig tailed 

macaques (39) but increased inflammation and epithelial disruptions after a single use 

in a mouse model (40). In phase I safety studies to evaluate SAVVY as a contraceptive 

product, SAAVY was deemed less irritating than N-9 in women (41) and had favorable 

acceptability among their male partners (42). SAVVY also inhibited HIV-1 in vitro (43) 

and Chlamydia trachomatis infection (44) in vitro and in macaque studies (39). However 

this benefit did not translate to humans, as two phase III clinical efficacy studies were 

largely inconclusive. These trials indicated no benefit to using SAVVY to prevent male-
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to-female HIV transmission (23, 24) and showed a higher incidence of reproductive tract 

adverse events with SAVVY use in one of the trial cohorts (24). Other products using 

various forms of surfactants did not reach human studies due to the concerns raised by 

these early trials. As a result, the microbicide field turned toward non-specific 

polyanionic gels, which were expected to be safer. 

 

The polyanionic gels comprise a diverse group of large molecules, including sulfated 

and sulfonated compounds. These compounds interact non-specifically with the 

positively charged HIV-1 gp120, interfering with viral adhesion or fusion to target cell 

membranes. Additionally, some polyanionic compounds also demonstrated inhibitory 

activity against other viruses such as influenza, HSV type 1 and 2 (HSV-1, HSV-2), and 

sexually transmitted pathogens like C. trachomatis and Neisseria gonorrhoeae (45), 

indicating their potential as broad spectrum microbicides.  

 

Carraguard was one of multiple iterations of polysulfonated carrageenan derivatives 

evaluated for their antiviral properties. Carraguard gel, comprised of 3% κ- and λ-

carrageenan, had inhibitory activity against HSV-2, human papilloma virus (HPV), and 

HIV transmission in vitro (46, 47). It also had favorable safety and acceptability profiles 

in phase I/II clinical studies (48, 49). However, more extensive pre-clinical testing of 

Carraguard showed that while it was safe, it was not efficacious against HIV, especially 

against clade A, C and CRF01_AE viruses (50) which are found in Africa and Asia. In a 

subsequent phase III clinical efficacy study, Carraguard failed to prevent HIV 

transmission (25).  
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PRO 2000 was a naphthalene sulfonate polymeric gel that demonstrated potent activity 

against HIV-1 (51) and HSV-2 (52), and reduced N. gonorrhoeae (53) infection in vitro 

and in animal studies. Despite these positive results, pre-clinical evaluation in human 

tissues ex vivo showed that although PRO 2000 gel was effective against HIV, use of 

the 4% PRO 2000 gel caused tissue toxicity (54), indicating a low therapeutic index. 

Lower doses were investigated and in a phase II/IIb clinical trial, use of 0.5% PRO 2000 

gel did not affect the incidence of N. gonorrhoeae, C. trachomatis or T. vaginalis 

infections (27), and had a modest, but not significant 30% reduction in HIV acquisition 

(26). A subsequent phase III clinical trial of 9000 women ultimately showed that PRO 

2000 was ineffective in reducing HIV acquisition (28).  

 

Cellulose sulfate gel, another polyanionic gel product, was evaluated for use as a 

contraceptive and HIV microbicide. It showed inhibition of HIV (51, 55) and HSV-2 (55, 

56) transmission in in vitro studies; but in human efficacy trials cellulose sulfate 

increased HIV incidence, resulting in the trial being halted early (29). The increased 

transmission could be attributed to disruption of epithelial tight-junctions, which allowed 

HIV virions to gain better access to the underlying immune cells in the lamina propria 

(36). In addition, subsequent work in a murine model showed seminal fluid reduced the 

potency of polyanionic microbicide gels (14), suggesting that seminal proteins may 

neutralize the charge of the polyanionic compounds. The lack of efficacy demonstrated 

by the polyanionic gels in clinical trials decreased enthusiasm for further work with these 

compounds.  
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Dendrimers are synthetic three dimensional nanoparticles, consisting of several 

branching units that radiate from a central core (57) (pictured in Figure 1). While these 

macromolecules were originally used as tools for drug delivery, the use of the 

polyanionic L-lysine-based SPL7013 dendrimer in an HIV candidate microbicide gel was 

among the first uses of dendrimers as bioactive agents. A carbopol gel formulation of 

SPL7013, VivaGel, showed efficacy in reducing HSV-2 infection in animal studies using 

mouse and guinea pig models (58). Also, vaginal application of SPL7013 gel protected 

pigtailed macaques from vaginal SHIV challenge (59). In human studies, although 

VivaGel was found to be safe; it caused mild to moderate shifts in genital and urinary 

tract microflora to Gram negative bacteria (31, 32) and was poorly accepted by study 

participants (30). Hence, VivaGel is no longer being investigated as an HIV microbicide 

product.  

 

Buffering gels were another group of non-ARV products considered as microbicide 

candidates. These gels were acidic with modest buffering capacity and could maintain 

the vaginal pH of 4.5–5 after ejaculation in the vaginal lumen. Semen has been shown 

to raise the pH of the vaginal lumen to pH 7 or higher as quickly as 30s after ejaculation 

(60). The resulting higher pH can last for up to 2h and is thought to help stabilize HIV 

virions in the vagina, thus increasing opportunities for infection (61). One such gel, 

BufferGel, is a carbomer polyacrylic acid gel and demonstrated a favorable safety 

profile (62) and activity against C. trachomatis and N. gonorrhoeae infection in vitro and 

in animal models (53, 63). BufferGel also demonstrated contraceptive properties in 
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animal models (64), and inhibited sperm motility in vitro (46). However, in clinical trials, 

BufferGel was ineffective in reducing HIV (26) and other sexually transmitted infections 

(27); and women using BufferGel had no reductions in pregnancy compared to the 

placebo gel users (28). Another buffering gel, ACIDFORM, was also investigated due to 

its ability to maintain acidic pH and acidify semen in the vagina. ACIDFORM delivers L-

lactic acid to the vaginal lumen – the lactic acid isomer produced by commensal 

Lactobacilli that colonize the vagina. It also showed some efficacy as a possible 

treatment for bacterial vaginosis (BV) (33), had contraceptive properties, and 

demonstrated protection from N. gonorrhoea (65) and HSV-2 (66) transmission in 

animal studies. However, in phase I clinical safety studies ACIDFORM use was 

associated with mild to moderate genitourinary irritation (33). 

Antiretroviral-Based Microbicides 

Safety concerns and the lack of efficacy demonstrated by the first-generation 

microbicide candidates caused a general shift in the field of microbicides to explore HIV-

specific compounds; hence ARV-based microbicides were investigated. The first ARV to 

be evaluated as a microbicide was the nucleotide reverse transcriptase inhibitor (NRTI), 

tenofovir (TFV). This drug was evaluated as a 1% TFV topical gel formulation and 

demonstrated mixed results in several phase IIb/III clinical studies. In CAPRISA 004, a 

1% TFV vaginal gel was evaluated for efficacy in sexually active women using the 

product before and after sex (twice in a 24h period; BAT24) and showed a 39% 

reduction in HIV risk overall and 54% reduction in risk in those who achieved high levels 

of adherence (67). Two other studies of the efficacy of 1% TFV gel in cohorts of young 
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women unfortunately showed no benefit amidst poor adherence by the participants (68, 

69). While these studies may indicate the need to explore other options to reduce HIV 

transmission in high-risk young women, they also provide proof-of-principle that topical 

PrEP could work if there is adherence to the regimen (70).  

 

The NNRTI, dapivirine, is another ARV being evaluated for use as a microbicide. 

Dapivirine was licensed for development as a microbicide after the compound showed 

poor oral bioavailability that precluded its use as an HIV therapeutic.  Dapivirine 

microbicides were first formulated as vaginal gels (71-73), which showed good efficacy 

against HIV in animal studies (74). Additionally, vaginal application of dapivirine gel 

formulations resulted in low systemic absorption (71, 72), while high sustained 

concentrations in cervicovaginal tissues were maintained – a favorable pharmacokinetic 

profile for an ARV-based microbicide. One of the caveats to using ARVs as 

microbicides is the increased risk of developing drug resistance with inappropriate use. 

Strategies to decrease this risk include reducing systemic exposure to the ARV and 

improving user adherence by using long-acting formulations that provide sustained 

delivery of the drug to susceptible tissues instead of on-demand preparations such as 

gels. Various formulation strategies have been attempted to optimize sustained 

dapivirine delivery. Among them are polymeric films (75-77) and vaginal rings (78, 79). 

The most developed dapivirine product is a vaginal ring that has shown favorable safety 

and acceptability data in phase I clinical trials (78), and a single entity vaginal ring 

formulation of dapivirine is being evaluated in two concurrent phase III trials (80, 81). 
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New Non-Antiretroviral Microbicides 

Although ARV microbicide candidates have had some success in clinical trials, efforts 

have recently been refocused on developing non-ARV alternatives. This is amid 

concerns of increased transmitted HIV resistance with larger scale use of ARVs for 

prevention of mother-to-child transmission and increased access to combined 

antiretroviral therapy (cART). It has also been widely acknowledged that there is not a 

“one-size-fits-all” microbicide product to meet the needs of every susceptible niche 

population. Hence, non-ARV microbicides may increase the options available for HIV 

prevention. The new non-ARV microbicide candidates are highly HIV-specific, in 

comparison to the first generation microbicides, and include active biologics like algal 

and bacterial lectins, as well as broadly neutralizing monoclonal antibodies (nAbs) 

specific for HIV envelope epitopes.  

 

Cyanovarin-N, a mannose-binding lectin isolated from the cyanobacterium Nostoc 

ellipsosporum, binds to HIV gp120 in a manner that is independent of CD4 receptor or 

coreceptor interactions (82). Its activity inhibits HIV binding and entry, thus reducing HIV 

transmission. Cyanovarin-N has been shown to prevent vaginal acquisition of SHIV in 

nonhuman primate models (83) and in human ex vivo tissue culture (84). Another lectin, 

Griffithsin is a mannose-specific lectin isolated from the marine red alga Griffithsia sp. 

This protein binds to HIV virions, preventing viral adsorption to target cells and causing 

an irreversible inhibition of HIV infectivity. Griffithsin has shown potent cross-clade anti-

HIV activity (85) and broad spectrum antiviral activity against HSV-2 (86), hepatitis C 

(87), and coronaviruses (88). The lectins have generally had favorable safety profiles in 
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vitro (89, 90); and in macaque studies (83); although cyanovarin-N was shown to have 

mitogenic effects and cause increased expression of inflammatory markers in PBMC 

cultures (91). Development of a cyanovarin-N microbicide is ongoing and work is in 

progress to define clinical safety and efficacy metrics for a rectal-specific griffithsin gel 

product. 

 

Broadly neutralizing antibodies to HIV were isolated from chronically HIV infected 

individuals and have demonstrated cross-reactivity to a variety of HIV strains in vitro. 

These antibodies develop broad neutralizing capacity over time through a process of 

somatic hypermutation (92). HIV neutralizing antibodies have been the focus of vaccine 

researchers. However, their potential as HIV microbicides is now being explored. These 

antibodies bind to key regions on the HIV gp120 envelope protein, preventing 

interactions with entry receptors and co-receptors on host target cells, thereby reducing 

viral entry. Neutralizing antibodies were shown to inhibit HIV infection in vitro (93-95) as 

well as in mouse (96) and macaque models (97-99) of infection. Importantly, animal 

studies involving topical vaginal application of neutralizing antibodies with subsequent 

vaginal viral challenge have provided proof-of-concept that antibodies can retain their 

function in mucosal secretions and are a viable microbicide (96, 100).  

 

Although the first phase of microbicide research did not result in a successful non-ARV 

microbicide product, advances were made in HIV prevention science, and more 

comprehensive pre-clinical evaluation models were developed that could better predict 

the efficacy and safety of potential microbicide candidates.  These include efficacy and 
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toxicity evaluations in human ex vivo tissue models of mucosal HIV transmission (54, 

101); and the identification of safety biomarkers that may predict microbicide failure 

(102, 103).  

 

In this dissertation, nAbs are assessed for their potential to function as HIV 

microbicides. This evaluation interrogates nAb efficacy in preventing attachment and 

entry of HIV into target cells in human ectocervical or colonic tissues ex vivo, 

incorporating models of cell-free and cell-associated HIV transmission. Most evaluations 

of HIV therapeutics and preventatives are undertaken using models of cell-free HIV 

transmission.  However cell-associated transmission of HIV is believed to be more 

efficient than cell-free transmission at mucosal surfaces and has been shown to occur 

during sexual transmission of HIV (17). In addition, increases in circulating drug-

resistance resulting from more widespread use of cART makes it necessary to ensure 

microbicide efficacy against drug resistant strains of HIV. Hence, the efficacy of nAbs to 

prevent transmission of cell-associated and drug-resistant cell-free HIV are investigated. 
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STATEMENT OF HYPOTHESES AND EXPERIMENTAL AIMS 

Hypotheses 

 
1) nAbs will reduce transmission of cell-free HIV but will show reduced potency in 

the presence of semen caused by factors in semen that enhance HIV infection 

and affect protein interactions. 

 

2) nAbs will be effective against cell-associated virus but will demonstrate reduced 

potency due to reduced access to target viral epitopes during cell-associated 

transmission via intercellular synapses. 

 

3) nAbs will retain efficacy against viruses that have resistance to HIV enzyme 

inhibitors. 
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Experimental Aims 

Aim 1: Evaluate the efficacy and safety of nAbs against cell-free HIV using human 

tissue ex vivo.  

The IC90 values for nAbs against cell-free HIV-1JR-CSF will be established in vitro to 

determine the comparative efficacy of the nAbs used in this study. The functional 

efficacy of nAbs in preventing HIV transmission in the presence or absence of semen 

will then be evaluated ex vivo, using ectocervical and colonic tissue obtained from non-

infected donors. Additionally, the safety of topically applied nAbs will be assessed by 

comparisons of tissue viability and architecture after nAb exposure, as well as 

quantitative cytokine and chemokine expression associated with the use of nAbs ex 

vivo. These data will establish the functional capacity of nAbs to prevent mucosal 

transmission of HIV in a biologically relevant human model. 

 

Aim 2: Evaluate nAbs against drug-resistant and cell-associated HIV using human 

tissue ex vivo.  

The IC90 of nAbs against a panel of WT and drug resistant strains of HIV will be used to 

determine their comparative susceptibility in vitro. nAb efficacy in preventing cell-cell 

transmission will also be evaluated in mucosal tissues ex vivo using a novel model of 

cell-associated HIV derived from the PM1 cell line. These studies will probe the limits of 

protection conferred by a putative nAb microbicide using inocula that are relevant but 

often overlooked in microbicide evaluations. 
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CHAPTER 1: EFFICACY OF BROADLY NEUTRALIZING ANTIBODIES IN 

PREVENTING MUCOSAL TRANSMISSION OF CELL-FREE HIV-1 

1.1 CHAPTER OVERVIEW 

Broadly neutralizing monoclonal antibodies (nAbs) specific for HIV are being 

investigated for use in HIV prevention. Due to their ability to inhibit HIV attachment and 

entry into target cells, nAbs may be suitable for use as topical HIV microbicides. As 

such, they would present an alternative intervention for individuals who may not benefit 

from using antiretroviral-based products for HIV prevention. We theorize that nAbs can 

inhibit viral transmission through mucosal tissue, thus reducing the incidence of HIV 

infection. The efficacy of PG9, PG16, VRC01, and 4E10 antibodies was evaluated in an 

ex vivo human model of mucosal HIV transmission. nAbs reduced HIV transmission; 

causing 1.5 – 2 log10 reduced HIV replication in ectocervical tissues and ≈ 3 log10 

reduction in colonic tissues over 21 days. These antibodies demonstrated greater 

potency in colonic tissues, with a 50-fold greater dose being required to reduce 

transmission in ectocervical tissues. Importantly, nAbs retained their potency and 

reduced viral transmission in the presence of whole semen. No changes in tissue 

viability or immune activation were observed in colonic or ectocervical tissue after nAb 

exposure. Our data suggest that topically applied nAbs are safe and effective against 
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HIV infection of mucosal tissue and support further development of nAbs as a topical 

microbicide that could be used for anal as well as vaginal protection.  

1.2 INTRODUCTION 

With circulating drug-resistant virus on the rise in many communities where pre-

exposure prophylactics (PrEP) will be used (104), the risk of transmitting virus with 

reduced susceptibility to ARVs is possible.  To circumvent this risk, several non-ARV 

microbicide candidates are being considered. Previous investigations of non-ARV 

microbicides used non-HIV specific formulations of compounds like surfactants, 

polyanions, and buffering agents; yet all were ineffective in preventing HIV acquisition. 

Among them, the surfactant nonoxynol-9 (N-9), which is commercially available as a 

spermicide, was shown to have anti-HIV activity in vitro (35). However, clinical 

evaluation of N-9 was stopped due to increased HIV incidence in women using an N-9 

vaginal gel (22). Additionally, N-9 was shown to cause tight junction disruptions in 

epithelial cells in vitro (36) and to be harmful to beneficial vaginal flora (105). Other 

candidates such as BufferGel (26); the carrageenan derivative, Carraguard (25); and 

the polyanionic gels (PRO 2000 (26) and cellulose sulfate (36)); were all unsuccessful 

as HIV microbicides. Unlike the previous candidates, the new non-ARV microbicide 

candidates being investigated are HIV-specific agents and include broadly neutralizing 

monoclonal antibodies (nAbs). 
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While nAbs have been investigated extensively in the development of HIV vaccines, 

increased focus has been placed on their development for HIV prevention. Originally 

isolated from chronically HIV infected individuals, nAbs were shown to retain potent 

neutralizing activity across a broad range of HIV clades (95). These highly cross-

reactive antibodies are only found in a small subset of HIV-infected individuals (92, 

106), and develop their broad cross-reactivity through a process of somatic 

hypermutation over 2-4 years (92, 107). They bind epitopes on key regions of the HIV 

envelope and directly inhibit the ability of the virions to engage entry receptors on target 

cells, thereby reducing viral infection. nAbs like VRC01, b12 and NIH 45-46 exert their 

HIV inhibitory activity by bind to the CD4 binding site (108); while 4E10, 10E8 and 2F5 

bind to the membrane proximal external region (MPER) at the base of the viral envelope 

spike (108); and others, like PG9 and PG16, recognize quaternary glycosylation motifs 

on the exposed variable loops of gp120 (108). nAbs have shown efficacy in reducing 

HIV transmission in vitro (93, 95) and in vivo using animal models of HIV transmission 

(96, 100). This ability to inhibit viral transmission is particularly important in the context 

of HIV prevention, as it is better to prevent HIV acquisition, than to overcome the 

complications inherent to treating an established HIV infection. nAbs also bridge the gap 

between non-HIV specific compounds and ARV drugs in the spectrum of HIV 

microbicide candidates. The antibodies are specific for HIV but their activity has not 

been shown to affect viral sensitivity to HIV enzyme inhibitors. Conversely, viral 

neutralization by nAbs is not expected to be hampered by drug resistance mutations in 

traditional ARV drug targets – HIV reverse transcriptase, protease and integrase. This is 

because HIV envelope proteins are not under the selective pressure of HIV enzyme 
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inhibitors. Hence, nAbs are expected to retain efficacy against those viruses that are 

ARV-resistant.  

 

In this chapter, the efficacy of nAbs – PG9, PG16, VRC01 and 4E10 – was evaluated in 

human mucosal tissue ex vivo. While studies of nAb efficacy have been conducted 

using animal models, this study is the first to evaluate the efficacy of topically applied 

nAbs using a relevant human mucosal model of HIV transmission. Individual nAb 

potency was assessed in the absence or presence of semen, in addition to their safety 

in mucosal tissue. The results of these assessments support the use of nAbs as a 

viable alternative to ARV-based HIV preventatives for dual compartment use.  

1.3 MATERIALS AND METHODS 

Reagents: Unless otherwise noted, culture media were purchased from Mediatech, Inc. 

(Manassas, VA); serum and media supplements were purchased from Gemini 

BioProducts (West Sacramento, CA). Whole human semen from pooled donors was 

purchased from Lee BioSolutions (St. Louis, MO). 

 

Antibodies: VRC01-N, 4E10-N and HSV-8-N monoclonal antibodies were generously 

provided by Dr. Kevin Whaley (Mapp Biopharmaceuticals Inc., San Diego, California). 

These antibodies were produced in genetically engineered Nicotiana benthamiana 

plants, a species closely related to tobacco (109); hence in this paper they have been 

given a ‘–N’ designation. PG9 and PG16 monoclonal antibodies produced in Chinese 
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hamster ovary (CHO) cells, were provided by the International AIDS Vaccine Initiative 

(La Jolla, CA). All antibodies used are IgG1 isotype. The HSV-8-N antibody has 

specificity for an HSV-1/2 envelope epitope and was used as a non-HIV-specific isotype 

control.   

 

Virus: HIV-1JR-CSF was chosen as the inoculum for the current studies because it is a 

CCR5-using virus which preferentially infects T cells over macrophages (110) and 

retains transmitter/founder virus qualities (111, 112). The pYK-JR-CSF molecular clone 

was purchased from ATCC (Manassas, VA). 293T cells were a gift from Christina 

Ochsenbauer-Jambor and John C. Kappes from the University of Alabama, 

Birmingham. 293T cells and were cultured in complete DMEM (cDMEM; 1× DMEM 

supplemented with v/v 10% heat-inactivated fetal bovine serum (FBS) and 1% Pen-

Strep-L-Glut). 293T cells were transfected with proviral DNA using the Lipofectamine 

2000 reagent (Invitrogen, Carlsbad, CA). After 48h, mature HIV virions were harvested 

from the culture medium by filtration through a 0.45 µM pore syringe filter. The tissue 

culture infectious dose (TCID50) was determined in activated human peripheral blood 

mononuclear cells (Central Blood Bank, Pittsburgh, PA) using the Reed-Muench 

method (113).  

 

Assessment of nAb neutralization activity in vitro: TZM-bl cells (114) were obtained 

through the NIH Research Reagent Program, Division of AIDS, NIAID, NIH: Dr. John C. 

Kappes, Dr. Xiaoyun Wu and Tranzyme Inc., and were cultured in cDMEM. Individual 

wells of a 96-well plate were seeded with 1×104 cells which were allowed to adhere 
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overnight. Culture medium in each well was replaced with 100 µL of 2× nAb dilutions or 

with cDMEM in untreated control wells, and cells were incubated for 1h at 37°C. Treated 

cells and untreated controls were inoculated with 3,000 TCID50 HIV-1JR-CSF in 100 µL 

and cultured for 48h.  Tat-activated luciferase expression was detected using the Bright-

Glo Luciferase Assay reagent (Promega, Madison, WI) and luminescence was 

measured using the SpectraMax M3 plate reader (Molecular Devices, LLC; Sunnyvale, 

CA). The 90% inhibitory concentrations (IC90) were determined using SigmaPlot 

software version 11.0 (Systat Software, Inc., San Jose, CA).  

 

Ex vivo tissue culture: Normal human ectocervical tissues were obtained from pre-

menopausal women undergoing routine hysterectomy after informed consent (IRB 

#PRO09110431) or purchased from the National Disease Research Interchange (NDRI; 

http://ndriresource.org/) and transported overnight on wet ice. Polarized explants were 

prepared from the specimens as described elsewhere (54). Briefly, the ectocervical 

epithelium was trimmed of the muscularis and 5 mm diameter explants were mounted 

with the epithelium upward in 12 mm permeable trans-well supports and sealed in 

position with Matrigel basement membrane matrix (BD Biosciences, San Jose, CA). 

Ectocervical explants were activated with 1 µg/mL phytohemmaglutinin-P (PHA-P) and 

cultured in DMEM supplemented with v/v 10% human A/B serum, 1% Pen-Strep-L-Glut, 

100 U/mL human interleukin-2 (hIL-2) (Roche Diagnostics, Indianapolis, IN)  and 1% 

non-essential amino acids (Lonza, Walkersville, MD).  
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Human colonic tissue was obtained after informed consent (IRB #PRO09110431) from 

individuals undergoing scheduled colon resection for non-inflammatory conditions (101). 

The epithelium and lamina propria were trimmed of excess adipose tissue and muscle, 

and 5mm diameter explants were mounted with the epithelium upward on gel foam 

inserts in 12mm permeable trans-well supports and sealed with Matrigel. Colonic 

explants were activated with 1 mg/mL PHA-P and cultured in RPMI-1640 supplemented 

with v/v 5% human A/B serum, 1% Pen-Strep-L-Glut, 0.5 mg/mL Zosyn (Wyeth, 

Collegeville, PA), 100 U/mL hIL-2 (Roche Diagnostics, Indianapolis, IN) and 2.5 mM 

Hepes (Hyclone, Logan, UT). 

 

Efficacy evaluations in human tissue ex vivo: Paired polarized explants were treated 

with nAbs, 24h (colon) or 48h (ectocervix) after set-up. nAbs were applied at 2× the final 

concentration to the apical surface of the appropriate explants in duplicate and cultured 

for 1h at 37°C. Controls were treated similarly with either medium only or with the HSV-

8-N antibody. After 1h, each explant was inoculated apically with 50,000 TCID50 

(ectocervix) or 10,000 TCID50 (colon) HIV-1JR-CSF, suspended in RPMI-1640 or 50% v/v 

pooled, whole human semen (Lee BioSolutions, St. Louis, MO). Tissues were incubated 

for 24h after which the basolateral medium was collected and the explants were washed 

with 1× DPBS (Mediatech, Inc., Manassas, VA). Basolateral media was replenished 

with fresh media supplemented with 100 U/mL hIL-2, and subsequently collected every 

3 to 4 days, up to 21 days post infection and stored at -80°C. Viral replication was 

monitored by measuring HIVp24 in the basolateral media using the Alliance HIV-1 p24 

Antigen ELISA kit (PerkinElmer, Waltham, MA). Individual ectocervical explants were 
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fixed in formalin at 21 days post-infection and processed for immunohistochemical (IHC) 

analysis of intracellular HIVp24 antigen (54).  

 

Evaluation of immune activation and tissue viability ex vivo: Non-activated, 

polarized ectocervical and colonic explants were treated on the apical surface with 1.5 

µM or 0.03 µM nAbs, respectively. For controls, tissues were treated with medium only 

(negative control) or with 1 µg/mL PHA-P and 100 U/mL hIL-2 in the basolateral 

medium (positive control). All treatments were performed in duplicate and tissues were 

cultured for 24h at 37°C and 5% CO2. Basolateral media was sampled 24h after 

treatment and used for quantitative comparison of inflammatory cytokines (IFN-γ, IP-10, 

IL-1β, IL-6, IL-8, TNF-α, GM-CSF, IL-12, MIP-1β, IL-18 and IL-15) using a Milliplex™ 

Human Cytokine/Chemokine Magnetic Bead panel (EMD Millipore Corp., Billerica, MA). 

For viability assays, non-activated, polarized explants were treated with nAbs as 

described above for 24h. Control tissues were treated apically with medium only or a 

1:5 dilution of Options Gynol II® Extra Strength gel (Caldwell Consumer Health LLC, 

Madison, NJ), containing 3% N-9. After 24h treatment, explants were processed for 

histology and viability determination by MTT assay.  

 

Statistical analysis: All variables were inspected using descriptive statistics and 

graphical methods. For analyses, raw HIVp24 values were log-transformed because 

their distribution was heavily skewed. Linear mixed models were used to investigate the 

effects of semen, nAb treatment and different nAb doses on the trajectory of HIVp24 

during the 21 day culture period. For all models, random effects for explants and tissue 
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donors were included to adjust for any clustering effect of repeated measures within 

each explant and tissue donor. Separate models were used for ectocervix and colon 

data. 

 

The model used to evaluate the effect of different nAbs on HIVp24 included dummy 

variables for nAbs, day of culture, and the interaction between day of culture and 

individual nAbs as fixed effects. To evaluate the effect of semen on nAb potency, the 

model included the presence or absence of semen, day of culture, and the interaction 

between these factors as fixed effects. The effect of semen on HIVp24 was also 

investigated while adjusting for the effect of nAbs using a model that included the 

presence or absence of semen, dummy variables for each nAb, day of culture, the 

interactions between day of culture and semen or nAb treatment as fixed effects. The 

effect of individual nAbs at each dose was investigated with dose, day of culture, 

dummy variables for each nAb, and interactions between day of culture and dose, or 

each nAb as fixed effects. A model using dose, day of culture, and their interaction term 

as fixed effects was used to interrogate the effect of nAb dose on HIVp24. Finally, the 

effect of semen and nAb dose was investigated separately for each antibody, using a 

model that included the effects of semen, nAb dose, and their interaction separately for 

each antibody. All analyses were performed in R (R Foundation for Statistical 

Computing, Vienna, Austria).  

 

Comparison was made between treatment and viability outcomes from MTT viability 

experiments using one-way ANOVA. The effect of nAb treatment on cytokine 
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concentrations were compared using two-way ANOVA and the Holm-Sidak correction 

for multiple comparisons. Colon and ectocervix data were analyzed separately and 

analysis was performed using GraphPad Prism version 6.05 (GraphPad Software, La  

Jolla, CA). 

1.4 RESULTS 

1.4.1 Assessment of nAb efficacy in vitro 

 Using TZM-bl cells, the IC90 of all nAbs against HIV-1JR-CSF infection in vitro was 

derived. The potency of nAbs, VRC01-N and 4E10-N, produced in the transgenic N. 

benthamiana expression system were also compared to the same nAbs produced in the 

traditional CHO cell system (VRC01 and 4E10) and were shown to have equivalent 

inhibitory activity (p>0.05) (Table 2). The IC90 values indicated that nAb potency 

followed the order of PG16 > PG9 > VRC01/VRC01-N >> 4E10/4E10-N. Due to their 

equivalence to CHO cell-produced nAbs and greater availability, the Nicotiana-produced 

antibodies were used in the subsequent work. 
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1.4.2 nAbs reduce HIV transmission in human ectocervical tissue ex vivo  

In experiments to define nAb potency in mucosal tissue, equivalent molar 

concentrations of IgG for all nAbs was used. As the IC90 value of VRC01-N was 

intermediate in the range of the other nAbs used in this study (Table 2), the doses of all 

nAbs were standardized to the effective concentrations of VRC01-N. For ectocervical 

tissue, 1.5 µM and 0.3 µM IgG were used, which was the dose of IgG equivalent to 50× 

and 10× the IC90 of VRC01-N, respectively. Similarly, for colonic tissue, 0.03 µM and 

0.003 µM were used, which was equivalent to 1× and 0.1× the VRC01-N IC90. The 

HSV-8-N isotype control antibody was also used at a concentration of 0.3 µM in 

ectocervical tissues or 0.003 µM in colonic tissues. 

 

Table 2. Comparative in vitro efficacy of nAbs 

against HIVJR-CSF infection of TZM-bl cells. 

nAb IC90 (µM) SDev p-value 

PG16 0.000435 0.000268  

PG9 0.00410 0.003981 

VRC01 0.0734 0.059379 
0.165 

VRC01-N 0.0298 0.019791 
‡
4E10 0.727 n/a 

0.350 
4E10-N 1.19 0.375102 

Results are the mean of 4 or more experiments.  
‡
Result of 1 experiment 



29 

nAbs were applied to the apical surface of tissues for 1h before inoculation with virus to 

simulate peri-coital application of a topical microbicide preparation. Using this strategy, 

treatment of ectocervical tissues with 1.5 µM and 0.3 µM doses of VRC01-N, PG9 and 

PG16  significant reductions in HIVp24 over the 21 day culture period (p<0.0001) 

compared to the untreated control. Treatment with 1.5 µM VRC01-N, PG9 or PG16 

caused median reductions of 1.5, 1.9 and 1.8 log10 pg/mL HIVp24 at day 21 of culture, 

respectively, as compared to the untreated control (Figure 2a, Table 3). Conversely, 

treatment with 4E10-N did not significantly reduce HIVp24 (p=0.5797) (Figure 2a, Table 

3), as the concentrations used were below the in vitro IC90 of this nAb (Table 2). 

However, tissues pre-treated with doses of 59.5 µM and 11.9 µM 4E10-N in ectocervical 

tissues and 1.19 µM and 0.119 µM in colonic tissues showed reduction in HIV 

transmission (Appendix B). These doses correspond to the 50×, 10×, 1× and 0.1× IC90 

of 4E10-N (Table 2), respectively; and also reflect an 8 to 40-fold greater concentration 

than the effective doses of nAbs used in this study. Treatment with the isotype control 

antibody, HSV-8-N, also did not affect HIV replication (p=0.2830) (Table 3). There was 

also a greater reduction in HIVp24 with the use of 1.5 µM PG9 (p=0.0171) and PG16 

(p=0.0302) at day 21 compared to 0.3 µM of these nAbs (Table 3). While there was a 

trend, the high dose of VRC01-N was not significantly different from the low dose 

(p=0.0810). This suggests that the neutralizing capacity of 0.3 and 1.5 µM doses of 

VRC01 may have been saturated by the inoculum used in the ectocervical model. The 

dose effect observed with PG9 and PG16 antibodies in the same model supports that 

these nAbs are more potent, and is concordant with the nAb hierarchy of potency 

observed in vitro (Table 2).  
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Figure 2. nAb efficacy in human mucosal tissue ex vivo 
Tissues were treated for 1h before inoculation with HIVJR-CSF. Viral replication was monitored in a) 
ectocervical and b) colonic tissues by p24 antigen ELISA on basolateral culture supernatants collected 4, 
7, 11, 14, 17 and 21 days post infection. Data points represent the median and interquartile range of ≥5 
tissues from individual donors. 
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1.4.3 Lower concentrations of nAbs are required to protect human colonic 

tissues ex vivo 

Using 0.03 or 0.003 µM nAbs (Figure 2b), treatment with PG16 (p<0.0001), PG9 

(p<0.0001), VRC01-N (p<0.0001) caused significant reductions in HIVp24 over the 

treatment period. Pretreatment of colonic tissues with 0.03 µM PG16, PG9 and VRC01-

N yielded reductions of 3.0, 3.3 and 3.3 log10, respectively, in median HIVp24 by day 21 

of culture, compared to untreated controls (Figure 2b). A dose effect was observed in 

colonic tissues as tissues treated with the low doses (0.003 µM) of VRC01, PG9 or 

PG16 had decreases in median HIVp24 of 1.2 log10 or less at day 21 (p<0.0001) 

Table 3. Effect of nAbs on HIVp24 at day 21 post-infection in human tissues ex vivo. 

 Cervix Colon 

Treatment Dose (µM) 
Log10  

Δ HIVp24 p-value Dose (µM) 
Log10  

Δ HIVp24 p-value 

VRC01-N 
1.5  -1.523 

<0.0001 
0.03  -3.315 

<0.0001 
0.3 -0.898 0.003  -0.221 

4E10-N 
1.5  +0.067 

0.5797 
0.03  -0.342 

0.1994 
0.3  -0.192 0.003  -0.458 

PG9 
1.5  -1.924 

<0.0001 
0.03 -3.319 

<0.0001 
0.3  -1.516 0.003 -1.233 

PG16 
1.5  -1.752 

<0.0001 
0.03  -3.037 

<0.0001 
0.3  -1.547 0.003  -0.813 

HSV-8-N 0.3  -0.005 0.2830 0.003  +0.102 0.3117 

p-values represent comparisons of the change in p24 over time in tissues treated with 

each nAb, regardless of dose, relative to untreated tissue. 
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compared to tissues treated with 0.03 µM nAbs (Table 3). However, treatment with 

4E10-N had no effect on HIVp24 at any of the concentrations used (p=0.1994). Median 

reductions of <0.5 log10 observed in median HIVp24 at day 21 in tissues treated with 

4E10-N did not reach statistical significance and support the lack of potency observed 

with 4E10-N in this study. Infection curves for those tissues treated with 0.003 µM PG9 

or PG16 showed a delay in infection, not observed with VRC01-N, with virus production 

expanding 14-17 days post infection (Figure 2b). These results support that PG9 and 

PG16 demonstrated superior potency in colonic tissue as compared to ectocervical 

tissue (Figure 2a), and are also concordant with the order of nAb potency described in 

our in vitro assays (Table 2). Higher doses of nAbs showed greater response than lower 

doses of the same nAb in colonic tissues, with the exception of 4E10-N.  

1.4.4 nAbs retain potency in the presence of semen 

During in vitro evaluations of some non-ARV microbicides like the polyanionic gel, PRO 

2000, semen was shown to abrogate its anti-HIV activity (115). The counteractive effect 

of semen on microbicides has been attributed to an activity of seminal proteins on 

microbicide moieties (115); the formation of amyloid fibrils that enhance HIV attachment 

to target cells (116); and the neutralizing effect of semen that lowers the vaginal pH, 

prolonging the survival of HIV virions (61, 117-119). Hence, the potency of nAbs was 

compared in the presence and absence of whole human semen in ectocervical (Figure 

3a) and colonic (Figure 3b) tissues. Semen had no effect on HIVp24 concentrations 

(p=0.2382) or on nAb potency in ectocervical tissue (p = 0.0670) as compared to no-

semen controls. In colonic tissues (Figure 3b), the presence of semen had no effect on 
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nAb potency during the 21 day culture period (p=0.0940), and comparison of HIVp24 

also showed similar levels of HIV replication in the presence or absence of semen 

(p=0.1177). These data show no enhancement of HIV infection or effect on nAb activity 

in the presence of semen, and collectively support that nAbs applied topically would be 

effective in preventing sexual transmission of HIV.  
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Figure 3. Potency of nAbs in the presence of semen in human tissues ex vivo 
Tissues were treated for 1h before inoculation with HIVJR-CSF in the presence or absence of 50% human 
semen. Viral replication was monitored in a) ectocervical and b) colonic tissues by p24 antigen ELISA on 
basolateral culture supernatants collected 4, 7, 11, 14, 17 and 21 days post infection. Data points 
represent the median and interquartile range of ≥5 tissues from individual donors. 
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1.4.5 Safety of nAbs 

The safety of nAb treatment was assessed in ectocervical and colonic tissue explants 

using the MTT assay and histology. Tissue viability after 24h treatment with nAbs was 

compared to untreated tissues and tissues treated with N-9 (Figure 4a, b). There was 

no loss of viability with nAb treatment, compared to untreated tissues. However, 

treatment with N-9 decreased tissue viability to a mean of 13% percent (p = 0.0007) 

relative to untreated tissues in ectocervical tissue (Figure 4a) and 17% percent (p = 

0.0002) in colonic tissue (Figure 4b). Colonic and ectocervical tissues treated with nAbs 

were histologically comparable to untreated tissues after 24h exposure to treatment. 

However, N-9-treated tissues showed considerable sloughing of the epithelium and 

focal necrosis (Figure 4a, b). Inflammatory cytokine levels were measured in the culture 

supernatants of tissues treated for 24h with 1.5 µM nAbs in ectocervix or 0.3 µM nAbs 

in colon. In ectocervical tissues, concentrations of GM-CSF, IFN-γ, IL-1β, MIP-1β and 

TNF-α were significantly elevated (p<0.01) by PHA + hIL-2 as compared to the 

untreated ectocervical tissues (Figure 4c). Cytokine concentrations between nAb-

treated and untreated ectocervical tissues were not significantly different, with the 

exception of IP-10, which had significantly lower concentrations in tissues treated with 

VRC01-N compared to untreated tissues (p<0.01). In colonic tissues, 24h treatment with  
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Figure 4. nAb safety in mucosal tissue  
a) Ectocervical or b) colonic explants were treated for 24h with 1.5 µM (ectocervix) or 0.03 µM (colon) 
nAbs or N-9 for 24h. Viability was measured using the MTT viability assay and represented as the mean 
percent viability relative to untreated tissues and standard deviation; n = 5. Histologic panels show 
images of comparative hemotoxylin and eosin staining of representative tissues after 24h treatment. 
Images were captured at 20× magnification. Quantitative Luminex analysis was performed on c) 
ectocervical or d) colonic tissue culture supernatants after 24h treatment with nAbs or an immune 
activation cocktail containing PHA-P + hIL-2. The histogram represents the mean cytokine concentration 
(pg/mL) and standard deviation for each treatment, n = 3-5 tissues. Statistical comparisons were made 
using One- or Two-Way ANOVA with the Holm-Sidak correction for multiple comparisons, where α = 0.05; 
** p<0.01, *** p<0.0001. 
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nAbs did not cause significant differences in inflammatory cytokine concentrations 

compared to untreated tissues (Figure 4d). However, there was a significant increase in 

concentrations of IL-6 and IL-8 between untreated tissues and tissues treated with PHA 

+ hIL-2 (p<0.0001). These data suggest that 24h treatment with nAbs does not 

adversely affect viability or expression of inflammatory cytokines in ectocervical or 

colonic tissues ex vivo. 

1.5 DISCUSSION OF RESULTS 

Early microbicide development was focused on vaginal products. However, recent 

efforts have expanded to optimize products to safely prevent HIV transmission during 

receptive anal intercourse as well. While these new products are directed at reducing 

HIV incidence among MSM, it has also been acknowledged that heterosexual anal 

intercourse may be under-reported due to social taboos and other factors (120-122). 

This issue has shifted the paradigm of microbicide development toward a new 

generation of dual-compartment microbicides that are safe for both vaginal and rectal 

use (123, 124). Hence, in this study we used models of rectal and vaginal mucosal 

transmission to evaluate the potential of topically applied nAbs. This study presents the 

first comprehensive pre-clinical evaluation of nAbs as a topical microbicide using a 

human ex vivo model of sexual HIV transmission. These data show that nAbs are 

potent and effective in reducing mucosal HIV transmission in human ectocervical and 

colonic tissues ex vivo. These results are concordant with animal studies where nAb 

preparations applied to the vaginal lumen before vaginal inoculation with SHIV were 
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protective (100, 125). Importantly, nAb potency was not affected by the presence of 

whole semen. In addition, this study shows that nAbs have a good safety profile, with no 

loss of tissue viability or immune activation that could preclude their use as an effective 

topical HIV microbicide.  

 

The effective nAb dose for ectocervical tissue (1.5 µM) was 50 times more than the 

effective dose for colonic tissue (0.03 µM) (Figure 2). It is currently unclear why there is 

a different effect of nAbs between colonic and ectocervical tissues. Pharmacokinetic 

studies of intravenous, intramuscular and orally administered ARVs have shown 

differential deposition of drugs in female genital and rectal compartments. Higher drug 

levels are typically found in the rectal tissue compared to the female genital tract (17, 

126); and topically applied drugs are metabolized differently in the vaginal and rectal 

mucosae (127). However, in the context of a topically applied preparation of nAbs, 

where pharmacokinetic coverage is limited to the lumen, those previous observations 

do not explain why higher concentrations of topically applied nAbs are required to 

prevent viral transmission in cervical tissue compared to colonic tissue. The greater 

potency of nAbs observed in this model of rectal mucosal transmission is not easily 

explained by differences in the size of the inoculum used and merits further exploration. 

nAb potency in the order, PG16>PG9>VRC01-N>>4E10-N was resolved in vitro. 

However, in the ex vivo model, the distinction between the potency of PG9 and PG16 

was not well defined. Lower doses of both of these nAbs caused a delay in infection 

(Figure 2), further attesting to the greater potency of these nAbs in comparison to 

VRC01-N or 4E10-N. This may suggest that further dilutions of PG9 and PG16 may 
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have been needed in both tissue models to better define the comparative potency of 

these antibodies.  

 

The delay in infection observed with PG9 and PG16 treatment (Figure 2) is likely the 

result of a small portion of the inoculum that was not neutralized by nAb treatment. This 

low level infection would have taken some time to expand enough to generate p24 

concentrations that were above the ELISA limit of detection. Hence, the observed 

outgrowth is likely due to insufficiency of the antibody dose used. It is unlikely that this 

outgrowth of virus was due to the emergence of escape mutants as exposure to a single 

dose of nAbs would not have provided sufficient selective pressure in this model. 

However, it must be acknowledged that viruses with natural polymorphisms in envelope 

glycoproteins that make them resistant to neutralization by a single antibody may be 

more effectively prevented by using combinations of anti-HIV antibodies that 

simultaneously target multiple key envelope epitopes. 

 

The relative lack of potency demonstrated by 4E10-N was not surprising as this 

antibody, although broadly neutralizing, has been characterized as being only 

moderately potent (128). 4E10 exerts its main HIV inhibitory activity by MPER-binding; 

however this antibody is also polyreactive, engaging in relatively short-lived, low avidity 

interactions with other hydrophobic moieties (129). These may contribute to the 

decreased potency of 4E10 in HIV neutralization. The observed lack of potency may 

also be attributed to slower neutralization kinetics seen in MPER antibodies like 4E10 

and 2F5. These antibodies require an epitope conformation that is thought to only be 
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realized post-receptor engagement in more neutralization-resistant HIV-1 isolates like 

HIV-1JR-CSF (130).  

 

Seminal plasma contains factors that enhance HIV transmission (116, 131), and others 

that may interfere with microbicide activity (115). Previous microbicide evaluations 

showed that PRO 2000 gel protected mice from HSV-2 transmission. However in the 

presence of semen, the product showed decreased efficacy in vitro (115). It was 

postulated that this effect may have been due to seminal protein interactions with the 

polyanion that blocked binding to HIV. This effect of semen essentially precludes the 

use of PRO 2000 for prevention of mucosal HIV transmission, where the putative 

inoculum is HIV-infected semen. In comparison, evaluation of nAb potency in the 

presence of semen, shows that nAb activity in this model was not affected.  

 

Preliminary safety data on the use of topically applied nAbs (Figure 4) suggest that they 

are suitable for use as a topical on-demand prophylactic. In experiments to determine if 

there was immune activation due to nAb treatment, nAbs generally caused no changes 

in concentrations of inflammatory mediators, suggesting their suitability as topical 

microbicides. Additional safety evaluations may be necessary to determine the safety of 

other nAb applications. Previous non-antiretroviral microbicide candidates were shown 

to cause immune activation. Increased expression of IP-10 in the female genital tract 

has been associated with increased HIV acquisition (132) and is indicative of an 

inflammatory milieu. Treatment of ectocervical tissue with VRC01-N was associated 
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with decreased expression of IP-10 (Figure 3c), suggesting that these nAbs do not 

increase production of soluble pro-inflammatory mediators.  

 

Regarding a nAb microbicide, antibodies are highly specific for their cognate HIV 

epitopes and are native to the human body, hence nAbs applied luminally are expected 

to have negligible adverse effects that would preclude a therapeutic benefit.  Traditional 

pharmaceutic antibody production uses transgenic mouse or human cell systems – both 

of which can be cost prohibitive to producing an affordable antibody-based topical 

microbicide. The cost of producing a pharmaceutic grade supply of antibodies using 

mammalian cell or animal systems was estimated at $5-6 million over 18 months. In 

comparison, the use of transgenic plant production systems has made large scale 

production of antibodies feasible and relatively cheap. Production of a pharmaceutic 

grade supply of antibodies in transgenic plant production systems was estimated to cost 

$0.5–0.8 million over 12 months (109). These time and cost savings are important 

factors for making a nAb microbicide accessible for use in resource-limited settings.  

 

These data show that nAbs are effective in models of both rectal and vaginal 

transmission, and may be considered for formulation as a dual-compartment 

microbicide product. Hence, an antibody-based microbicide could possibly expand 

microbicide application beyond vaginal use in high-risk women to rectal application and 

use in other vulnerable populations. A nAb microbicide may also be recommended for 

use by heterosexual couples engaging in both vaginal and anal sex. nAb efficacy is not 

expected to be affected by HIV mutations selected as a result of suboptimal ARV use, 
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hence a nAb microbicide could be used by HIV serodiscordant couples. In addition, 

nAbs may provide a non-ARV microbicide option for individuals who choose to avoid the 

side-effects of using an HIV drug. Our findings using unformulated nAbs suggest that 

these antibodies can prevent mucosal transmission of HIV when applied pericoitally, 

and would likely be safe and effective as topical vaginal or rectal microbicides. 
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CHAPTER 2: POTENCY OF BROADLY NEUTRALIZING ANTIBODIES AGAINST 

ALTERNATIVE INOCULA 

2.1 CHAPTER OVERVIEW 

Due to the increased use of cART, there is an increased risk of developing ARV drug 

resistance and transmitting drug resistant HIV. Hence non-ARV-based microbicides like 

nAbs present a promising alternative where ARV-based products may fail. Additionally, 

most evaluations of HIV microbicides use models of cell-free HIV infection; however in 

the context of sexual transmission, cell-associated HIV transmission is believed to be 

more efficient than cell-free viral transmission. Semen from HIV positive men has been 

found to contain HIV-infected seminal leukocytes that can usurp normal intercellular 

interactions with epithelial cells and target cells to efficiently transfer virus without 

releasing free virions into the extracellular space. Hence, cell-associated virus and drug-

resistant HIV are both important targets for HIV microbicides but are often overlooked in 

pre-clinical evaluations.  

 

In this chapter, the efficacy of topically applied nAbs in preventing cell-associated HIV 

transmission in human tissues ex vivo and transmission of cell-free drug-resistant 

strains in vitro was assessed. Viral strains used also included transmitted/founder 
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viruses. Neutralization by nAbs, PG9 and VRC01-N, was not affected in viruses that 

had drug resistance mutations for NRTIs or NNRTIs. However, variations in envelope 

genotype and glycosylation greatly affected antibody neutralization. The 

transmitted/founder strain, THRO, was found to be highly resistant to neutralization by 

PG9 and VRC01. CXCR4-tropic strains were also more neutralization-resistant than 

CCR5-tropic strains. In comparisons of nAb efficacy against cell-associated HIV 

transmission ex vivo, PG9 and PG16 were more potent than the CD4-binding site 

antibody, VRC01-N, and reduced HIV transmission as effectively as dapivirine (DPV) in 

polarized ectocervical explants. These studies suggest that using combinations of nAbs 

with complementary neutralization breadth may improve the functional efficacy of a 

topical antibody-based microbicide product.  

2.2 INTRODUCTION 

With the increased use of cART in recent years, and the amended World Health 

Organization guidelines that advocate initiation of cART for anyone living with HIV 

regardless of CD4+ cell count (133), there is an increased risk of transmitting drug-

resistant strains of HIV. These viral strains may have mutations that can confer reduced 

sensitivity to multiple classes of drug (134), hence transmission of these strains may not 

be effectively prevented using ARV-based microbicides. This underscores the utility of 

non-ARV-based microbicides for HIV prevention in the current treatment landscape, and 

highlights the need for pre-clinical evaluation of microbicides for their efficacy in 

preventing transmission of drug resistant strains of HIV. 
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Historically, most models used for evaluating candidate HIV therapeutics and 

preventatives have used cell-free HIV inocula. However, sexual HIV transmission can 

occur from an infected cell to a target cell without free virus being released into the 

extracellular medium. Cell-to-cell transmission occurs via intercellular virological 

synapses that allow directed transfer of nascent virus to the target cell within a 

protected space (17). Viral transfer from an infected cell may also occur via transcytosis 

of nascent virus by epithelial cells and subsequent transfer to subepithelial or 

intraepithelial immune cells (13, 135). Additionally, infected leukocytes have the 

inherent ability to infiltrate the mucosal barriers of the rectal and vaginal compartments 

where they can directly engage target cells in the submucosa (17, 18). These processes 

improve the kinetics of virus-receptor engagement or occur in restricted spaces that 

may protect the virus from some host restriction factors and innate immune factors that 

may have inhibited cell-free virus. Hence, cell-to-cell HIV transmission is thought to be 

more efficient than transmission of cell-free virus. 

 

In the context of sexual transmission of HIV, free viral particles can be found in seminal 

plasma as well as in infected leukocytes present in the ejaculate. Virus has been 

successfully propagated from these HIV infected seminal leukocytes (17, 136), 

indicating that HIV-infected cells in semen are a potential source of infectious virus. 

Hence evaluation of microbicide efficacy against cell-associated HIV transmission is 

warranted. 
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In this study, the efficacy of nAbs in preventing transmission of cell-free drug resistant 

strains of HIV and cell-associated virus are investigated in vitro. The panel of nAbs used 

includes VRC01-N, 4E10-N, PG9 and PG16, which had been evaluated previously for 

their efficacy in preventing transmission of cell-free wild-type (WT) HIV (Chapter 1, 

Figure 2). These antibodies each bind different viral epitopes – VRC01-N binds to the 

CD4 binding site; 4E10-N binds to the MPER at the base of HIV gp41; and PG9 and 

PG16 recognize glycosylation motifs on variable regions 1 and 2 (V1/V2) of HIV gp120 

(108). To interrogate the ability of nAbs to inhibit cell-to-cell transmission of HIV in 

human cervical and colonic tissues ex vivo, a model of cell-associated HIV transmission 

was developed using the PM1 CD4+ T cell line. This study presents a pre-clinical 

evaluation of the efficacy of topically applied nAbs in preventing transmission of inocula 

that are not commonly used, but could be transmitted if there are gaps in microbicide 

protection. Hence nAbs are evaluated for efficacy against a panel of cell-free drug-

resistant HIV inocula in vitro and cell-associated virus in a human model of mucosal 

transmission.  

2.3 MATERIALS AND METHODS 

Culture Media: All culture media were purchased from Mediatech, Inc. (Manassas, 

VA); serum and media supplements were purchased from Gemini BioProducts (West 

Sacramento, CA).  
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Antibodies: Plant-produced VRC01-N and 4E10-N monoclonal antibodies were 

generously provided by Dr. Kevin Whaley (Mapp Biopharmaceuticals Inc., San Diego, 

California). PG9 and PG16 monoclonal antibodies were provided by the International 

AIDS Vaccine Initiative (La Jolla, CA). All antibodies used are IgG1 isotype.  

 

Virus strains: The pTHRO.c/2626 and pCH077.t/2627 subtype B infectious molecular 

clones of transmitted/founder viruses (137) were obtained from the NIH AIDS Research 

& Reference Reagent Program, Division of AIDS, NIAID, NIH: Dr. John Kappes and Dr. 

Christina Ochsenbauer. pTHRO is known to have a wild-type (WT) reverse 

transcriptase (RT) phenotype and CH077 has N/NRTI drug resistance mutations K65R 

and Y181C. The pYK-JR-CSF molecular clone was purchased from ATCC (Manassas, 

VA), and the xxLAI-162 and xxLAI-182 molecular clones were a gift from Dr. Urvi 

Parikh, University of Pittsburgh. The xxLAI strains were constructed by inserting full 

length subtype C RT sequences derived from study participants into the xxHIV-LAI 

backbone. Hence these strains have subtype B CXCR4-tropic envelopes, but subtype C 

RT. xxLAI-162 has a WT RT genotype and xxLAI-182 has the L100M, K101E, V106M, 

E138K and F227L mutations in RT that contribute to DPV resistance. 

 

Cell-free virus stocks: 293T cells were a gift from Christina Ochsenbauer-Jambor and 

John C. Kappes from the University of Alabama, Birmingham. 293T cells and were 

cultured in complete DMEM (cDMEM; 1× DMEM supplemented with v/v 10% heat-

inactivated fetal bovine serum (FBS) and 1% Pen-Strep-L-Glut). 293T cells were 

transfected with proviral DNA using the Lipofectamine 2000 reagent (Invitrogen, 
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Carlsbad, CA). After 48h, mature HIV JR-CSF WT/K65R, CH077 and THRO virions 

were harvested from the culture medium by filtration through a 0.45 µM pore syringe 

filter. xxLAI-162 and xxLAI-182 were harvested similarly after 24h. The tissue culture 

infectious dose (TCID50) was determined in activated human peripheral blood 

mononuclear cells (Central Blood Bank, Pittsburgh, PA) using the Reed-Muench 

method (113).  

 

Viral envelope sequence alignments: Full-length protein sequences for gp160 of JR-

CSF, THRO, CH077 and the subtybe B reference strain HXB2 were obtained from 

GenBank (http://www.ncbi.nlm.nih.gov/genbank/) – accession numbers U45960.1, 

JN944930, JN944909 AND K03455.1, respectively. Sequences were aligned using the 

N-GlycoSite tool available from the online HIV sequence database 

(http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.html), which predicts 

putative sites of N-linked glycosylation (138). Sequence output was annotated manually.  

 

Cell-associated virus stocks: PM1 cells (139) were obtained through the NIH AIDS 

Research & Reference Reagent Program, Division of AIDS, NIAID, NIH: Dr. Marvin 

Reitz, and cultured in complete RPMI (cRPMI; RPMI supplemented with v/v 10% FBS 

and 1% Pen-Strep-L-Glut). TZM-bl cells (114) were also obtained through the NIH AIDS 

Research & Reference Reagent Program, Division of AIDS, NIAID, NIH: Dr. John C. 

Kappes, Dr. Xiaoyun Wu and Tranzyme Inc., and were cultured in cDMEM. 
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PM1 cells were inoculated with HIV-1JR-CSF at an m.o.i. of 0.5 in the presence of 2.5 

µg/mL diethylaminoethyl-dextran (DEAE-dextran) for 24h. Cells were washed, cultured 

for 3 days, and then harvested and stored in liquid nitrogen. Comparative infectivity of 

PM1JR-CSF cells and cell-free HIV-1JR-CSF was determined by titration in TZM-bl cells. 

Briefly, PM1 cells were thawed and washed before being treated with 200 mg/mL 

mitomycin C (Sigma-Aldrich, St. Louis, MO) for 1h at 37°C. Treatment with mitomycin C 

inhibits PM1 cell division, preventing expansion of the PM1JR-CSF inoculum. Cells were 

washed 3 times, and titrations of mitomycin C-treated PM1 cells were used to inoculate 

monolayers of TZM-bl cells. HIV-1 tat-activated luciferase induction was measured after 

48h using the Bright-Glo Luciferase Assay reagent (Promega, Madison, WI). 

Luminescence was measured using the SpectraMax M3 plate reader (Molecular 

Devices, LLC; Sunnyvale, CA). Controls were uninfected TZM-bl cells and TZM-bl cells 

inoculated with 3,000 TCID50 cell-free HIV-1JR-CSF. 

 

Flow cytometry: Surface staining of PM1JR-CSF cells for CD4 antigen was performed 

using mouse anti-human CD4-FITC (BD Biosciences, San Jose, CA).  Viability was 

assessed using the LIVE/DEAD™ Fixable Aqua Dead Cell stain (Invitrogen, Carlsbad, 

CA), and quantitative assessment of intracellular HIV core antigen was performed in 

viable PM1JR-CSF cells using the mouse monoclonal antibody, KC57-PE (Beckman 

Coulter, Inc. Indianapolis, IN). Uninfected PM1 cells were used as staining controls and 

used to set the sorting gates. Multicolor flow cytometry was performed using the BD 

LSRFortessa X20 cell analyzer instrument (BD Biosciences). Analysis was performed 

using FlowJo Data Analysis Software V.10.0.8 (FlowJo LLC., Ashland, OR). 
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Assessment of nAb inhibition of cell-associated virus transmission in 

vitro: Individual wells of a 96-well plate were seeded with 1×104 TZM-bl cells which 

were allowed to adhere overnight. Culture medium in each well was replaced with 100 

µL of 2× nAb or drug dilutions, or with cDMEM in untreated control wells. Cells were 

incubated for 1h at 37°C. Treated cells and untreated controls were inoculated with 

3,000 TCID50 cell-free HIV-1JR-CSF or an equivalent inoculum of PM1JR-CSF cells in 100 

µL and cultured for 48h.  Tat-activated luciferase expression was detected using the 

Bright-Glo Luciferase Assay reagent (Promega, Madison, WI) and luminescence was 

measured using the SpectraMax M3 plate reader (Molecular Devices, LLC; Sunnyvale, 

CA). The 90% inhibitory concentrations (IC90) were determined using SigmaPlot 

software version 11.0 (Systat Software, Inc., San Jose, CA).  

 

Ex vivo tissue culture: Normal human ectocervical tissues were obtained from pre-

menopausal women undergoing routine hysterectomy after informed consent (IRB 

#PRO09110431) or purchased from the National Disease Research Interchange (NDRI; 

http://ndriresource.org/) and transported overnight on wet ice. Polarized explants were 

prepared from the specimens as described elsewhere (54). Briefly, the ectocervical 

epithelium was trimmed of the muscularis and 5 mm diameter explants were mounted 

with the epithelium upward in 12 mm permeable trans-well supports and sealed in 

position with Matrigel basement membrane matrix (BD Biosciences, San Jose, CA). 

Ectocervical explants were activated with 1 µg/mL phytohemmaglutinin-P (PHA-P) and 

cultured in DMEM supplemented with v/v 10% human A/B serum, 1% Pen-Strep-L-Glut, 
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100 U/mL human interleukin-2 (hIL-2) (Roche Diagnostics, Indianapolis, IN)  and 1% 

non-essential amino acids (Lonza, Walkersville, MD).  

 

Efficacy evaluations in human ectocervical tissue ex vivo: Paired polarized 

explants were treated with nAbs 48h after setup. nAbs were applied at 2× the final 

concentration to the apical surface of the appropriate explants in duplicate and cultured 

for 1h at 37°C. Controls were treated similarly with either medium only or with DPV. 

After 1h, each explant was inoculated apically with the equivalent of 50,000 TCID50 

PM1JR-CSF, suspended in RPMI-1640. Tissues were incubated for 24h, after which the 

basolateral medium was collected and the explants were washed with 1× DPBS 

(Mediatech, Inc., Manassas, VA). Basolateral media was replenished with fresh media 

supplemented with 100 U/mL hIL-2, and subsequently collected every 3 to 4 days, up to 

21 days post infection and stored at -80°C. Viral replication was monitored by 

measuring HIVp24 in the basolateral media using the Alliance HIV-1 p24 Antigen ELISA 

kit (PerkinElmer, Waltham, MA). 

2.4 RESULTS 

2.4.1 nAbs reduce transmission of cell-free transmitted/founder and drug 

resistant HIV in vitro 

In vitro evaluations of nAb efficacy were conducted against a panel of cell-free HIV 

strains using TZM-bl cells that had been pre-treated with titrations of nAbs, TFV or DPV 
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for 1h before inoculation.  The IC90 of each treatment was determined for each strain 

used. These experiments generally showed that viruses remained susceptible to nAb 

neutralization regardless of decreased susceptibility to TFV or DPV (Table 4). Drug 

resistant strains like JR-CSF K65R and CH077 shared similar neutralization sensitivity 

with the wild-type reference strain, JR-CSF WT. They showed 0.7 – 1.6 fold change in 

susceptibility to nAb neutralization despite the presence of mutations in RT. A similar 

observation was made for the xxLAI strains that included wild-type LAI-162 and NNRTI-

resistant variant LAI-182, which had a 2.8-fold increased IC90 compared to the wild-

type. These data show that virus neutralization is not affected by the RT genotype. It 

may also be inferred that a similar outcome would be observed with viruses that have 

developed drug resistance to other HIV enzyme inhibitors like integrase and protease 

inhibitors.  
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Interestingly, the THRO transmitted/founder virus, which has a wild-type RT genotype, 

showed >12,000 fold reduced susceptibility to PG9 compared to the reference strain, 

JR-CSF WT. THRO also showed reduced susceptibility to VRC01, requiring 15× the 

IC90 of JR-CSF WT. Both the WT and drug-resistant variants of the CXCR4-tropic xxLAI 

virus showed similar susceptibility to PG9 neutralization, while the IC90 of the xxLAI 

viruses was considerably greater than that of JR-CSF WT (>3000-fold). These results 

suggest that nAbs that recognize glycan-dependent epitopes may be less efficient at 

neutralizing CXCR4-tropic viruses. Collectively, these data confirm that nAbs are not 

affected by mutations in HIV RT; but nAb efficacy is affected by envelope 

polymorphisms and variations in envelope glycosylation patterns which may be harder 

to predict. 

 

Table 4. Comparative susceptibility of a panel of HIV viruses to nAb neutralization and ARV 
inhibition. 
 HIV Strain 

 JR-CSF WT JR-CSF K65R CH077 THRO LAI-162 LAI-182 
Treatment IC90 (Fold change relative to reference strain)‡ 

TFV 
16.46 µM  
(1) 

125.75 µM  
(7.6) 

63.21 µM  
(3.8) 

17 µM  
(1.03) 

27.46 µM 
(1) 

46.43 µM 
(1.7) 

DPV 
2.31 × 10-3 µM 
(1) 

5.77 × 10-3 µM 
(2.5) 

8.77 µM  
(3797) 

1.45 × 10-3 µM 
(0.6) 

6.17 × 10-3 µM  
(1) 

9.96 × 10-1 µM  
(161) 

PG9 
4.16 × 10-4 µM 
(1) 

6.69 × 10-4 µM 
(1.6) 

6.60 × 10-4 µM 
(1.6) 

> 5 µM 
(>12,000) 

>1.5 µM 
(1) 

>1.5 µM  
(1) 

VRC01-N 
7.51 × 10-2 µM 
(1) 

5.56 × 10-2 µM 
(0.7) 

5.39 × 10-2 µM  
(0.7) 

1.12 µM  
(15) 

2.48 × 10-2 µM  
(1) 

6.91 × 10-2 µM  
(2.8) 

Values represent the mean of 3 independent experiments.  
‡ JR-CSF WT is the reference strain for JR-CSF K65R, CH077 and THRO, and LAI-162 is the reference strain for LAI-182. 
CH077 RT mutations: K65R, Y181C 
LAI-182 RT mutations: L100M, K101E, V106M, E138K and F227L 
Drug resistance was defined as a fold change ≥ 3 relative to the reference strain. 
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To address this hypothesis, full length gp160 envelope sequences for JR-CSF, THRO 

and the neutralization-sensitive CH077 were compared against a sequence for the 

HXB2 strain to identify specific genotypic differences in THRO that could mediate PG9-

neutralization resistance. Previous studies had identified mutations in residues V127, 

N156, S/F158-159, K/N160, T/S162, Y173, F176 and V/I181, in the V1/V2 loops of 

gp120 that contributed to PG9 neutralization resistance (140). Putative N-linked 

glycosylation sites N136, N141, N156, N160, N186 and N197, were also identified in the 

loops (140). The positions of N-linked glycosylation sites and mutations in the envelope 

sequences were noted, and differences between THRO and JR-CSF that were not 

shared with CH077 were denoted as THRO-specific PG9-resistance mutations. These 

include substitutions N156K, N160E, Y173T, F176R, and V/I181R (Figure 5), which had 

been previously identified as affecting PG9 neutralization (140). Interestingly, non-K 

residues at positions 168-170 had been associated with PG9 resistance (141) and 

THRO was the only strain with no consensus to the reference sequence at these 

residues (Figure 5). THRO also contained the unique R166N and Q170N mutations that 

resulted in putative N-linked glycosylation sites that were not present in the CH077 or 

JR-CSF WT sequences. THRO, JR-CSF and CH077 each had 6 putative N-linked 

glycosylation sites within the V1/V2 sequence; although the position of those residues 

varied (Figure 5). CH077 also had some deviations from the JR-CSF V1/V2 loop 

sequence and differed in the position of putative N-glycosylation sites (Figure 5); but 

those mutations did not seem to affect PG9 neutralization in this strain (Table 4). These 

findings support a role for differences in both sequence and N-linked glycosylation 

patterns in the PG9-resistance observed in the THRO transmitted/founder virus. As 
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THRO was also resistant to VRC01 (Table 4), sequence homology in the V5 loop, loop 

D and CD4-binding loop sequences of gp120 was also compared as these regions have 

been identified as key interfaces for VRC01 binding (142, 143). There was substantial 

sequence variation at the V5 loop, loop D and CD4-binding loop in both THRO and 

CH077. However, CH077 remained susceptible to VRC01 neutralization, whereas 

THRO showed 15-fold VRC01 resistance. This suggests that loss of sensitivity to 

VRC01 may be mediated by multiple mutations within the various key contact sites and 

warrants further investigation to identify the determinants of VRC01 resistance. 
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Figure 5. Comparison of viral envelope sequences and glycosylation 
Multiple envelope sequence alignment compares JR-CSF WT, THRO and CH077 to the HXB2 subtype B 
reference sequence. Alignments show putative sites of N-linked glycosylation that are in concordance 
with the reference sequence (green text) and N-linked glycosylation sites resulting from sequence 
deviations (red text), that may interfere with nAb neutralization. The V1/V2 loop forms the PG9 epitope 
and the VRC01 epitope spans contacts in the CD4-binding loop, loop D and the V5 loop. Yellow residues 
were previously identified as being important for PG9 neutralization, while regions highlighted in pink, 
blue and purple were identified as having a role in VRC01 neutralization sensitivity. THRO demonstrated 
resistance to PG9 and VRC01 neutralization in vitro (Table 4), while CH077 remained sensitive to both 
nAbs. 
 

2.4.2 Developing a cell-associated inoculum 

HIV-infected CD4+ T cells have been found in semen and their number contributes to 

the cell-associated inoculum in those secretions. To evaluate the efficacy of nAbs in 

preventing cell-associated HIV transmission, a model was developed using the PM1 

CD4+ T cell line and HIVJR-CSF, and is denoted as PM1JR-CSF. PM1 cells were inoculated 

with HIVJR-CSF for 24h before being washed.  Cells were cultured for another 48h before 
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being frozen and stored in liquid nitrogen. The percentage of HIV-infected cells in the 

PM1JR-CSF culture was determined by flow cytometric detection of surface CD4 antigen 

expression and intracellular HIVp24 on thawed cells. 3.6% of viable PM1 cells were 

found to be infected (CD4+, p24+) (Figure 6a).  

 

The proportion of PM1JR-CSF infection that was attributable to shedding of cell-free virus 

particles that were either loosely attached to PM1JR-CSF cells or newly released into the 

supernatant was examined. This was assessed by comparing the magnitude of HIV 

infection generated in TZM-bl cells that were seeded in the basolateral chamber of 

plates containing 0.4 µM-pore transwell supports. Cell-free HIVJR-CSF or PM1JR-CSF 

inocula were introduced in the apical chamber. As cells were too large to pass through 

the 0.4 µM pore, any infection in the basolateral layer of TZM-bl cells was attributed to 

shedding of cell-free virus. The magnitude of this infection was compared to that in 

TZM-bl monolayers that were directly inoculated with cell-free HIVJR-CSF or PM1JR-CSF 

cells in the basolateral chambers. After 48h incubation, inoculation with PM1JR-CSF cells 

in the apical chamber of the transwell support caused 2% of the magnitude of infection 

caused by the infection control – an equivalent inoculum of cell-free HIVJR-CSF deposited 

directly on the TZM-bl monolayer (Figure 6b). In comparison cell-free HIVJR-CSF in the 

apical chamber caused 45% the magnitude of the cell-free infection control. Hence 

minimal cell-free virus was shed from PM1JR-CSF cells (Figure 6b).  
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Figure 6. Developing the PM1JR-CSF cell-associated inoculum  
a) HIV infection was assessed by flow cytometry in thawed PM1JR-CSF cells. b) The proportion of infection 
that was due to cell-free virus shedding from PM1JR-CSF cells across a 0.4µM membrane was assessed in 
TZM-bl cells, and c) PM1JR-CSF cell viability was monitored after mitomycin C treatment. Cell-free 
transmission b), and viability of mitomycin C-treated PM1JR-CSF cells c), are represented as the mean and 
standard deviation of 3 independent experiments.  
 

To confirm that mitomycin C-treated PM1JR-CSF cells did not replicate in culture, 

effectively expanding the inoculum, their viability was monitored over time. Viable 

mitomycin C-treated PM1JR-CSF cells were identified by trypan blue exclusion and 

counted daily. Cell viability decreased to 0% 72h after mitomycin C-treatment (Figure 
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6c). These experiments suggest that the PM1JR-CSF cells generated in this study are a 

suitable model inoculum for cell-associated HIV transmission.  

2.4.3 nAbs show differential efficacy in reducing cell-associated HIV 

transmission 

Ectocervical tissues were pre-treated in duplicate with 1.5 µM nAbs or 10 µM DPV for 

1h before inoculation with mitomycin C-treated PM1JR-CSF cells. The 1.5 µM dose of 

nAbs used represents the highest concentration of nAbs that was previously shown to 

provide protection from cell-free HIV transmission in ectocervical tissues ex vivo 

(Chapter 1). Similarly, 10 µM DPV added to the culture medium was found to be 

protective in ex vivo cervical and colonic tissues using cell-free HIV-1BaL (144). Tissues 

were washed after 24h to remove the inoculum and treatments, and HIVp24 was 

measured in culture supernatants collected at 4, 7, 11, 14 and 21 days after inoculation. 

The protective index of each treatment was calculated as the proportion of explants that 

were protected out of all explants treated with an individual treatment. In comparisons of 

median HIVp24, nAbs PG9 and PG16 consistently reduced cell-associated HIV 

transmission as effectively as the ARV, dapivirine (Figure 7). In contrast, 4E10-N 

provided poor protection from transmission of PM1JR-CSF cell-associated virus in 

ectocervical tissues ex vivo, with a protective index of 0.17; and 4E10-N-treated tissues 

had similar median levels of viral replication to untreated control tissues. VRC01-N 

generally appeared protective, with median HIVp24 levels similar to dapivirine-treated 

tissues. However, this protection was not consistent across tissues, as shown by the 

large interquartile range of HIVp24 in VRC01-N-treated tissues and the marginal 
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protective index of 0.67 (Figure 7). Additionally VRC01-N demonstrated approximately 

10-fold decreased potency against the cell-associated PM1JR-CSF inoculum in vitro 

compared to cell-free HIVJR-CSF (Appendix C). Collectively these data suggest that 

nAbs, PG9 and PG16 are more effective than VRC01-N in reducing cell-associated HIV 

transmission in human ectocervical tissues ex vivo, and that PG9 and PG16 may be 

more potent against this inoculum. 

 

 
 
Figure 7. nAb efficacy against cell-associated HIV transmission in ectocervical tissues ex vivo 
Tissues were treated in duplicate with nabs for 1h before inoculation with PM1JR-CSF. Viral replication was 
monitored by HIVp24 antigen ELISA on supernatants collected 4, 7, 11, 14, 17 and 21 days post 
infection. Data points represent the median and interquartile range of 3 tissues from individual donors. 
The protective index was calculated as the proportion of explants that were protected out of all explants 
treated with an individual treatment. 
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2.5 DISCUSSION OF RESULTS 

Pre-clinical evaluations of nAbs applied as topical microbicides have shown that they 

can reduce mucosal transmission of HIV. While most models used cell-free HIV or 

SHIV, this study presents a comprehensive evaluation of topically applied nAbs against 

inocula not commonly included in pre-clinical evaluations. These include strains of HIV 

with drug resistance mutations in RT, and cell-associated HIV. nAbs retain efficacy 

against viruses that are resistant to ARVs like TFV and DPV. NRTIs and NNRTIs like 

TFV and DPV have been used in cART regimens in resource-limited settings and can 

select viruses with cross resistance that reduces their susceptibility to entire classes of 

RT inhibitory molecules (134). Additionally, DPV and TFV products are undergoing 

clinical evaluation for their suitability as HIV preventatives, hence comparisons of their 

efficacy against alternative inocula is warranted.  

 

The viral strains used in this study include the CCR5-tropic JR-CSF wild-type and K65R 

mutant strains; subtype B transmitted/founder strains CH077 and THRO; and two 

CXCR4-tropic xxLAI strains, one with a wild type RT genotype (LAI-162) and the other 

with multiple NNRTI drug resistance mutations (LAI-182). THRO was highly resistant to 

neutralization by the CD4-binding site antibody, VRC01-N, compared to JR-CSF and 

other subtype B viruses used in this study (Table 4). VRC01 interaction with the HIV 

CD4-binding site has been shown to be mainly inhibited by antigenic variation in 

variable region 5 (V5) and loop D sequences of gp120, but these changes did not affect 

binding of soluble CD4 (sCD4) (142). However, THRO was previously shown to be 

more susceptible to inhibition by sCD4 than JR-CSF (137), suggesting that the sCD4 



62 

binding site on THRO is intact. This indicates that the observed THRO resistance to 

VRC01-N neutralization may be due in part to genotypic differences in the variable 

region 5 and loop D sequences of gp120, and are confirmed by discovery of envelope 

polymorphisms in these regions (Figure 5). THRO was also highly resistant to PG9 

neutralization (Table 4). Sequence comparisons of CH077, THRO and the reference 

strain JR-CSF identified envelope polymorphisms in the V1/V2 loops of THRO gp120 

that resulted in changes in key residues and altered positioning of putative N-linked 

glycosylation sites. As PG9 recognizes a quaternary glycosylation motif, its binding is 

greatly affected by changes in protein sequence, glycosylation and electrostatic 

interactions (145). Hence, it may be inferred that the polymorphisms present in the 

THRO envelope sequence translated to sufficient differences in the quaternary glycan 

structures to disrupt key contacts for PG9 binding, rendering THRO resistant to that 

nAb. These data also highlight how vulnerable the neutralization efficacy of nAbs with 

glycan-based epitopes can be to the plasticity of HIV envelope glycosylation. HIV 

envelope glycosylation can be highly heterogeneous, may vary across subtypes (146, 

147), the stage of infection at viral isolation (11), co-receptor usage (148, 149), and 

even according to the cell-type used to produce virus (150). Therefore, nAbs like PG9 

that bind gp120 glycan epitopes, despite their potency, may not provide sufficient 

microbicidal efficacy if used singly due the inherent heterogeneity of envelope glycan 

structures in various HIV strains. In this study, all viruses were produced using the same 

cell types; hence there would be reduced heterogeneity in glycan processing for the 

viral envelope across strains used in this study.  
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CXCR4-tropic xxLAI viral envelopes showed similar responsiveness to VRC01-N 

neutralization compared to CCR5-tropic JR-CSF, but have dramatically decreased 

susceptibility to PG9 neutralization (Table 4). CXCR4-tropic viruses evolve longer 

variable loops and increased envelope glycosylation with the switch from preferential 

CCR5 to CXCR4 co-receptor usage (148, 149), and this may account for the greatly 

reduced sensitivity to PG9 neutralization. It has been postulated that establishment of 

HIV infection by mucosal transmission of HIV is mediated by CCR5-tropic virus strains 

that have been selected by the mucosal transmission bottleneck (10). Although the 

relative proportion of CXCR4-tropic HIV transmission is low, it has been reported at up 

to 20% in various cohorts (151-153); consequently CXCR4-tropic HIV may still be 

transmitted. Most entry inhibitors target CD4-CCR5-mediated HIV entry, but the CXCR4 

mechanism is neglected. Hence, the evaluation of nAb efficacy against CXCR4-tropic 

HIV is necessary.  

 

These data demonstrate the potential envelope diversity of HIV inocula and highlight the 

importance of using combinations of nAbs in any antibody-based microbicide product. 

nAbs neutralize 70-90% of HIV strains (95, 154), hence if a single nAb is used there 

may be gaps in coverage that could result in HIV transmission even if the product is 

used correctly. Hence it is advisable to formulate nAb microbicides with combinations of 

antibodies that have complementary neutralization profiles to provide the broadest 

neutralization coverage and prevention efficacy possible.  
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Not surprisingly, the presence of drug resistance mutations in HIV RT did not affect nAb 

potency as the viral envelope is not expected to be under the selective pressure of HIV 

enzyme inhibitors. This was demonstrated in comparisons of nAb neutralization in the 

JR-CSF and xxLAI strains, where both wild-type and drug resistant variants show 

similar susceptibility to nAb neutralization, despite having much greater differences in 

ARV susceptibility. The demonstrated efficacy of nAbs in reducing transmission of 

viruses with drug resistance to NRTIs and NNRTIs supports that nAbs are suitable as a 

non-ARV microbicide candidate. These data also underscore the utility of nAbs in HIV 

prevention in the current landscape of increased ARV use and the resulting increased 

risk of transmitted drug resistance. Hence, nAbs would be a useful tool for preventing 

transmission in sero-discordant couples, especially where pregnancy is desired. 

 

In evaluations of nAbs against cell-associated HIV in ectocervical tissues ex vivo, DPV 

was used as the ARV control. Due to its poor solubility and cellular uptake and because 

it does not require cellular metabolism to be active, most of the DPV activity would 

occur extracellularly, providing the basis for comparison to the extracellular viral 

inhibition demonstrated by nAbs. PG9 and PG16 consistently reduced HIV transmission 

to levels that were comparable to DPV-treated tissues, lending further support to the 

superior neutralization potency of PG9 and PG16 (155) demonstrated in Chapter 1. 

However, VRC01-N was less potent against cell-associated virus, suggesting that the 

dose of VRC01-N used was not sufficient to achieve similar neutralization coverage to 

that observed against cell-free HIV (155) (Chapter 1). This may also be due to reduced 

efficacy of CD4-binding site antibodies like VRC01 against cell-associated virus (156).  
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Due to the use of a T cell-associated inoculum, it may have been inferred that the main 

mechanism of cell-cell HIV transmission in the ectocervical explant model is via the 

virological synapse and is CD4-mediated (157). However, the reduced efficacy of 

VRC01-N against cell-associated HIV transmission in the ex vivo explant model may 

suggest that cell-to-cell transmission in this model may rely on a CD4-independent 

mechanism. Hence, cell-cell transmission of HIV in the cervicovaginal mucosa may be 

characterized more by uptake of virions by epithelial cells and their subsequent 

transcytosis and transfer to submucosal immune cells, than by transfer using the 

virological synapse, which is CD4-mediated. Although these mechanisms cannot be 

credibly defined in this study, these data do suggest a role for cell-to-cell virus transfer 

in the natural history of HIV transmission and predict that higher doses of nAbs may be 

required to reduce cell-to-cell compared to cell-free HIV transmission.  

 

Taken together, data from pre-clinical evaluations of nAbs as topical microbicides show 

that they can reduce mucosal transmission of various HIV inocula. These include 

transmitted/founder strains with reduced ARV susceptibility, and cell-associated HIV. 

nAbs also reduced transmission of tenofovir- and dapivirine-resistant strains of HIV. It 

was noted that CD4-binding site nAbs like VRC01 may be less potent against cell-

associated HIV, an observation that could advise dosing of a microbicide containing 

CD4-binding site antibodies. Additionally, the variable potency of nAbs against different 

strains of recommends the use of nAb combinations over single nAbs for effective 
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prevention of HIV. These data suggest that nAbs would be an effective non-ARV 

microbicide option to reduce transmission of HIV.  
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DISCUSSION AND CONCLUSION 

ADVANCES IN MICROBICIDE DEVELOPMENT 

The focus of microbicide design has expanded from producing vaginal gels to 

generating a variety of formulation and delivery platforms to create many options for 

populations at high-risk of HIV acquisition, which includes the first products for rectal 

use. This is a departure from the previous efforts that sought a one-size-fits-all product. 

While gel formulations are still being considered, advances in vaginal drug delivery have 

moved toward solid dosage forms (e.g. quick dissolving films, tablets and 

suppositories). Those dosage forms can deliver active molecules with more diverse 

physical properties including hydrophobic molecules that have proven challenging to 

deliver in aqueous formulations (158). Use of these new dosage forms expands the 

repertoire of potential microbicide candidate compounds to include those that may have 

had unfavorable release profiles in an aqueous gel format. Solid dosage forms would 

also circumvent some user acceptability issues such as messiness, discharge or 

leakage that have been reported for vaginal gels (158). Another benefit to using these 

dosage forms is the ability to co-formulate active compounds with incompatible 

physicochemical properties into a single delivery platform. This technology could also 

lend itself well to developing multipurpose products that incorporate multiple active 
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compounds to prevent simultaneous infection by various pathogens or concomitantly 

provide contraception. 

 

Though the first generation microbicides were optimized to preserve the low pH vaginal 

environment and the Lactobacillus-dominant vaginal microbiome (159), the normal 

colorectal compartment has a distinctly different homeostatic environment. The lower 

genital tract has a pH closer to neutral and is sensitive to low pH and hyperosmolar 

conditions (160-162). Previous studies showed that rectal application of hyperosmolar 

products resulted in reduced epithelial barrier function and caused epithelial disruptions 

in the rectal lumen that could enhance HIV infection (105). Hence, new rectal-specific 

gel formulations of non-ARV microbicides are being optimized to address the need for 

rectal microbicides. Non-ARV rectal products that were considered include a topically 

applied cyanovarin-N gel that was effective in preventing rectal SHIV transmission in 

macaques (163), and a Griffithsin gel that is currently being investigated as the first 

rectal-specific non-ARV microbicide (K. Palmer, personal communication). These rectal 

studies are important as they could help further define rectal microbicide formulation 

parameters. This would pave the way for new rectal delivery formats and development 

of dual-compartment microbicide products that may be used vaginally and rectally. A 

nAb-based rectal specific product is not currently in development, however the pre-

clinical safety and efficacy data for nAbs in colonic tissues (Chapter 1) (155) strongly 

support further evaluation of nAbs for rectal use. 
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Multipurpose products had been conceived of early on in microbicides research, and 

microbicide candidates that also had purported contraceptive efficacy – N-9, SAVVY, 

Cellulose sulfate and BufferGel – were highly desirable, yet these early products were 

not safe or did not show antiviral or contraceptive activity. In this new phase of 

microbicide development multiple investigational products are being developed, but the 

most progress has been made with ARV-based multipurpose technologies, including 

intravaginal rings for sustained release of combinations of dapivirine or tenofovir, and 

the hormonal contraceptive levonorgestrel (164, 165). Combinations of TFV with the 

anti-herpetic, acyclovir (165) are also being developed to prevent HIV and HSV-2 

infection. Similarly, non-ARV multipurpose options are being investigated. Engineered 

Lactobacillus jensenii which produce cyanovarin-N are being developed to prevent BV 

and HIV (166). These engineered bacteria are intended to colonize the vagina and 

promote a healthy vaginal microbiota, while producing sustained protective 

concentrations of cyanovarin-N. Also, a phase I safety study of the first nAb microbicide 

product, a vaginal film containing a combination of VRC01 and the anti-HSV-2 antibody 

HSV-8 is ongoing (Clinical Trial #NCT02579083).  

 

The results of comparisons of nAb efficacy against the transmitted/founder virus strain, 

THRO (Chapter 2, Table 4) raise important questions about the success of this 

investigational VRC01/HSV-8 combination film microbicide. THRO demonstrated 

resistance to VRC01 neutralization in vitro, likely due to natural envelope 

polymorphisms in the THRO envelope gene (Chapter 2, Figure 5). That observation, 

along with the consideration that VRC01, despite its broad neutralization activity was 
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not 100% neutralizing against the panel of viruses used in its evaluation (154), 

collectively suggest that use of a single nAb intervention may not be effective as a 

microbicide. As microbicides are required to have great breadth of efficacy to 

accommodate the diversity of potential inocula, combinations of complementary HIV 

nAbs like PG9 or PG16 with VRC01, may provide better functional protection from HIV 

transmission. 

 

Alternative delivery formats are also being explored for non-ARV microbicides and the 

expansion of PrEP products. These new formulations are generally long-acting or 

sustained release delivery formats that are desirable for improving adherence as they 

do not rely on the user to adhere to a daily dosing regimen or use with every sex act. An 

example of the potential benefit of a long-acting formulation could be found in the 

results of the VOICE and FACTS 001 trials. These trials evaluated the efficacy of 

pericoitally applied tenofovir 1% gel in high-risk young women. Poor efficacy in these 

trials was attributed to poor adherence (67, 167); hence reliance on coitally dependent 

topical formulations may ultimately jeopardize the success of a microbicide, especially 

when adherence to the product is not optimal. Preclinical data for neutralizing antibodies 

and lectins indicate that they may be successful as topical microbicides but their 

pharmacokinetic coverage has not been fully defined in that context. However their 

activity is expected to be limited to the tissues of the vaginal or rectal lumen and provide 

protection over just a few hours. Hence, long-acting formulations of non-ARV 

microbicides may be most beneficial as they would accommodate less rigid application 



71 

guidelines, allowing the user a wider window of protection. That leeway may result in 

non-ARV microbicides being more effective overall. 

 

A long-acting injectable formulation containing the NNRTI, rilpivirine, is being developed 

as PrEP for monthly administration. Most of the drug candidates being developed for 

HIV prophylaxis to date have been either RT inhibitors or entry inhibitors; but a long-

acting injectable product containing the integrase inhibitor, cabotegravir is currently 

undergoing clinical evaluation. The cabotegravir long-acting nanosuspension has a long 

half-life that favors a quarterly dosing window (168). The major concern with the use of 

long acting injectable formulations is that due to their long-acting pharmacokinetic 

properties, they persist long after their therapeutic dose has waned, resulting in 

suboptimal amounts of drug for up several months (169). This creates a scenario where 

drug resistant virus may be selected if HIV infection occurs during this period (170) – 

the same problem they were designed to prevent. The use of long-acting nAb 

formulations may circumvent this risk as the likelihood of developing drug resistance is 

remote to nAbs. Ongoing clinical trials of a long acting VRC01 injectable for HIV 

prevention will test this hypothesis (Clinical Trial #NCT02568215). 

 

Alternative delivery formats are also being considered for non-ARV microbicide 

candidates. Studies are ongoing to determine the safety and pharmacokinetic metrics of 

a passive infusion of the broadly neutralizing HIV antibody, VRC01, in children, and 

cohorts of HIV-positive and negative adults (171-173). In addition, exploratory studies 

conducted to evaluate the sustained release of HIV neutralizing antibodies achieved 
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through the intramuscular administration of adenoviral vectors showed that humanized 

mice were protected from HIV infection (174). This novel delivery platform would 

provide longer lasting protection and represents a trend toward designing HIV 

preventatives with more prolonged protective effects than traditional on-demand 

microbicide products.  

 

Hence, advances in microbicide development encompass new formulations for topical 

microbicide products and have expanded the scope of microbicides to include rectal 

products. Novel delivery formats like injectables further broaden the scope of 

microbicides beyond topical products and effectively expand PrEP options. Also the 

focus on multipurpose products incorporates contraceptives that can add value to 

microbicide use for the user and may help avoid the stigma of taking an HIV 

preventative if contraceptives are widely used and accepted. However the heavy 

reliance on ARVs for prevention may ultimately create a landscape of increasing 

circulating drug resistance and decreased treatment options. This highlights a role for 

non-ARVs in HIV prevention. 

THE FUTURE OF NON-ARV MICROBICIDES 

The new generation of active biologic non-ARV microbicides represents a departure 

from the non-HIV specific compounds that had been considered previously. They are 

highly specific for HIV and are expected to inhibit transmission of viral strains that are 

resistant to HIV reverse transcriptase, integrase, and protease inhibitors. These non-
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ARVs hold promise for the future of HIV prevention, presenting an array of options to 

individuals who may not benefit from ARV-based microbicide products. Antibody- and 

lectin-based microbicides provide options for individuals in HIV serodiscordant 

partnerships who are trying to conceive, or where the infected partner is on ARV 

therapy. They may also be a more attractive non-chemotherapeutic option for 

individuals who want to avoid the potential side effects of taking a drug or the stigma of 

taking an ARV for HIV prevention. Preclinical safety and efficacy data on these 

compounds have been promising, and although clinical evaluations of non-ARV 

microbicide candidates are just beginning, they provide hope for a novel non-ARV 

microbicide product in the near future. 

 

Despite the many experimental microbicides in the development pipeline, the only 

approved biomedical HIV preventative has been Truvada, an oral ARV-based PrEP 

product. Formulation and delivery options have expanded to include more long-acting 

products; although the reliance on ARV-based prevention still presents the risk of 

developing drug-resistance. Additionally, most of the products are designed to prevent 

HIV infection, but there are currently no broad spectrum ARV-based microbicides in 

development to decrease the risk of concomitant transmission of other sexually 

transmitted pathogens that may also increase the risk of HIV acquisition.  

 

A vaginal ring containing a combination of TFV and acyclovir, and the VRC01/HSV-8 

vaginal film discussed previously are both being developed to simultaneously prevent 

HIV and HSV-2 transmission. The non-ARV candidate Griffithsin has broad spectrum 
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inhibitory activity against HSV-2 (86), hepatitis C (87), and coronaviruses (88) in vitro 

and is being investigated to define its broad spectrum activity. However there still 

remains a gap in biomedical interventions that provide comprehensive protection from 

sexually transmitted infections caused by both bacterial and viral pathogens.  

 

Combinations of nAbs could be used to prevent transmission of multiple sexually 

transmitted pathogens without the risk of drug interactions that may be a factor with 

combining active pharmaceutical compounds. While generalized multipathogen 

microbicides could be developed, it may be more beneficial to design microbicides that 

are tailored to the prevention needs of a specified geographic region or vulnerable 

population. Hence a nAb microbicide could be used to prevent HIV, chlamydia and HPV 

in one population, while another nAb product that prevents HIV, HSV-2 and gonorrhea 

may be used in another population. In this way nAb-based microbicides have the 

capacity to generate multiple iterations of tailored microbicide products and could 

generate more flexibility for their implementation. Additionally, nAbs could be combined 

with hormonal contraceptives as a multi-purpose product. Alternatively, antibodies to 

various contraceptive targets may become an option for non-hormonal contraception in 

the future. nAbs to seminal targets may be engineered using some of the strategies 

utilized by vaccine researchers to generate antibodies to novel epitope targets, although 

data on the antigenicity of spermatozoa is limited. 
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PUBLIC HEALTH SIGNIFICANCE 

There are approximately 37 million people living with HIV globally, and current 

estimates of incidence anticipate 2 million new HIV infections. While the number of new 

infections has fallen over the past 14 years (175), HIV/AIDS remains one of the greatest 

threats to public health in this century. There are few biomedical interventions to prevent 

sexual transmission of HIV, which is the most common route of infection. Oral PrEP has 

been approved but is only available in a few populations, and an HIV vaccine remains 

elusive. Hence the potential of HIV microbicides looms large as a viable tool to reduce 

HIV incidence. 

 

The data presented in this body of work suggest that neutralizing antibodies are safe 

and effective options for HIV prevention and present a much-needed alternative to ARV-

based preventatives. Such heavy reliance on ARV products increases the risk of 

circulating drug resistance in the population. This could abolish the utility of current 

therapeutic ARV regimens and jeopardize the great progress made in controlling the 

spread of HIV, and improving the health of persons living with HIV. Use of nAb-based 

microbicides would avoid this risk because antibodies are not expected to contribute to 

ARV resistance and can reduce transmission of drug-resistant HIV. Hence nAb-based 

microbicides can be used to provide truly universal protection from sexually transmitted 

HIV infection and their development is a real opportunity to abolish new HIV infections 

toward the goal of ending AIDS. 

 



76 

APPENDIX A: ABBREVIATIONS USED 

ARV Antiretroviral 

BV Bacterial vaginosis 

cART Combination antiretroviral therapy 

CHO Chinese hamster ovary 

DPV Dapivirine 

ELISA Enzyme-linked immunosorbent assay 

HIV Human immunodeficiency virus 

HSV Herpes simplex virus 

MPER Membrane proximal external region 

N-9 Nonoxynol-9 

nAbs Broadly neutralizing HIV antibodies 

NNRTI Non-nucleoside reverse transcriptase inhibitor 

NRTI Nucleoside/nucleotide reverse transcriptase inhibitor 

PrEP Pre-exposure prophylaxis 

RT Reverse transcriptase 

TFV Tenofovir 
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APPENDIX B: EFFICACY OF HIGHER CONCENTRATIONS OF 4E10-N AGAINST 

CELL-FREE HIVJR-CSF 

 

 
 
Efficacy of 4E10-N against cell-free HIVJR-CSF at higher concentrations 

Tissues were treated with 4E10-N at concentrations equivalent to 50× (59.5 µM), 10× (11.9 µM), 

1× (1.19 µM) and 0.1× (0.119 µM) the in vitro IC90 before inoculation with HIVJR-CSF. Viral 

replication was monitored by p24 antigen ELISA on basolateral culture supernatants collected 4, 

7, 11, 14, 17 and 21 days post infection. Data points represent the median and interquartile 

range of ≥3 tissues from individual donors. 
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APPENDIX C: COMPARISON OF VRC01-N NEUTRALIZATION OF CELL-FREE 

HIVJR-CSF AND CELL-ASSOCIATED PM1JR-CSF INOCULA 

 
 

Comparative VRC01-N IC90 
Cell-Free HIVJR-CSF PM1JR-CSF 

7.9 × 10-3 µM 7.3 × 10-2 µM 
 

 
Comparison of VRC01-N neutralization of cell-free HIVJR-CSF and cell-associated PM1JR-CSF 
inocula  
TZM-bl cell monolayers were treated with titrations of VRC01-N for 1h before being inoculated 

with the equivalent of 3,000 TCID50 of cell-free HIVJR-CSF or PM1JR-CSF and cultured for an 

additional 48h. Tat-activated luciferase expression was detected using the Bright-Glo Luciferase 

Assay reagent (Promega, Madison, WI) and luminescence was measured using the 

SpectraMax M3 plate reader (Molecular Devices, LLC; Sunnyvale, CA). The IC90 of VRC01-N 

was determined for each inoculum using GraphPad Prism software version 6.05 (GraphPad 

Software, La Jolla, CA). Data are from 3 experiments performed in triplicate. 
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