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ABSTRACT 

There is very little information available on how HIV-1 transmits through mucosal 

epithelial layer since it does not express HIV-1 receptor. Overall goal of the project is to 

elucidate the role of cellular factors and reproductive hormones on HIV-1 transmission across 

ectocervical and colonic mucosa in an organ culture model. We hypothesize that upon exposure 

to HIV-1, a complex signal transduction network is activated in epithelial cells, which leads to 

compromised barrier function by disrupted tight junctions and expression of immune mediators, 

which would recruit immune cells towards the epithelial layer for replication of virus. 

Furthermore, reproductive hormone might have an effect on HIV-1 acquisition risk. To test the 

hypothesis, we evaluated in context of tissue structure whether HIV-1 induces tight junction 

disruption in ectocervical and colon epithelial cells, examined the cellular factors, including 

inflammatory cytokines that are involved in HIV-1 transmission across ectocervical epithelia and 

evaluated the effect of reproductive hormone on HIV-1 transmission. Our results in aim 1 

showed that after exposure to HIV-1, no significant changes in the tight junction/adherens 

junction protein expression were observed in ectocervical and colon epithelia. However, these 

tissues were infected after exposure to HIV-1. Our data thus indicate that HIV-1 transverses the 

ectocervical/colon mucosal epithelia without profoundly disrupting the tight junction/adherens 

junction between epithelial cell. In aim 2, we found that after HIV-1 exposure, the level of 

CXCL10 and CXCL11 messages in ectocervical epithelia were upregulated and such induction 
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of cytokines in ectocervical epithelia was dependent on HIV-1 infectivity.  Furthermore, we 

measured the expression level of cellular factors in HIV-1 exposed ectocervical epithelia by next 

generation sequencing. Our results indicate that, cellular genes like IL36A, FMO2, CXCL10, 

MUC1, SAA1 and IL8 were differentially expressed in ectocervical epithelia exposed to HIV-1 

compared to controls. These results suggest that exposure to HIV-1 induces cytokine production 

and other cellular factors in epithelial cells. In aim 3, we investigated the impact of reproductive 

hormones on the risk of HIV-1 acquisition by analyzing the susceptibility of ectocervical/vaginal 

tissues to HIV-1 infection and by comparing the epithelial thickness/tight junction protein 

expression in ectocervical/vaginal tissues at different phases of menstrual cycle. Our results 

showed no difference in HIV-1 susceptibility, epithelial layer thickness and tight 

junction/adherence junction protein expression levels in ectocervical/vaginal tissues at different 

stages of the menstrual cycle. Taken together, our results suggest that risk of HIV-1 infection in 

the ectocervical/vaginal region does not vary over the course of menstrual cycle. These findings 

are of public health importance because they expand our understanding on mechanism of 

atraumatic HIV-1 transmission in mucosal area that may be important for developing effective 

strategies for preventing HIV-1 transmission. 
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1.0  INTRODUCTION 

In 1981, increasing cases of opportunistic infections were documented in homosexual 

men and AIDS (acquired immune deficiency syndrome) was recognized as a new disease [1]. 

AIDS is caused by two lentiviruses, human immunodeficiency viruses (HIV) types 1 and 2 [2]. 

Both types of HIV likely originated by cross-species transmissions of simian immunodeficiency 

viruses (SIV), which are known to naturally infect African non-human primates [3]. HIV-2 

infected people have longer incubation periods and lower morbidity [3, 4]. Due to the high error 

rate of the reverse transcriptase, HIV-1 is remarkably diverse. Thus HIV-1 has evolved over time 

into different groups and subtypes. HIV-1 strains can be classified into M, O and N groups [5]. 

Currently, there are millions of people living with HIV-1 in the world. HIV-1 transmission 

occurs through different routes like contaminated needle sharing, blood transfusion, sexual 

transmission and perinatal transmission [6]. However, sexual transmission through female 

reproductive tract and rectal regions accounts for majority of transmission in adults. HIV-1 

traverses the epithelial layer of these mucosal regions through intercourse-induced mechanical 

microabrasion of the mucosal surface and also without mechanical tear. However, the exact 

mechanism of atraumatic transmission of HIV-1 through cervical and rectal mucosa during 

sexual transmission is not known. Elucidating the mechanism of atraumatic HIV-1 transmission 

through cervical and colon mucosa is very important to develop effective strategies for 

prevention of HIV-1 transmission. 
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1.1 HIV-1 EPIDEMIOLOGY  

In 2013, UNAIDS estimated that globally 35.3 million people were living with HIV-1 in 

the world   [119].  The numbers of people living with HIV-1 in Sub Saharan Africa, South East 

Asia, Latin America, Europe, North America, Middle East and North Africa were 25 million, 3.9 

million, 0.88 million, 1.5 million, 0.86 million ,1.3 million, 0.26 million respectively (Figure 1) 

[126]. In 2013, 2.1 million people became newly infected with HIV-1 and about 1.5 million 

deaths occurred due to AIDS [126]. The majorities of HIV-1 viral strains are classified as group 

M which has various subtypes (A to K) [5] and are distributed worldwide.  Subtype A infections 

are endemic to Central and East Africa as well as East European countries. Subtype B infections 

are endemic to West and Central Europe, the Americas, Australia, South America, and several 

southeast Asian countries. Subtype C infections are endemic to Sub Saharan Africa, India, and 

Brazil. Subtype D infections are endemic to North Africa and the Middle East. Subtype F 

infections are endemic to South and Southeast Asia. Subtype G infections are endemic to West 

and Central Africa. Subtype H, J, and K infections are endemic to Africa and the Middle East [7]   

[126]. 

Although currently there is no cure for HIV-1 infection, many studies have been carried 

out to understand the virus, its life cycle and pathogenesis leading to development of 

antiretroviral drugs that have helped to reduce viral transmission and disease progression. A 

study showed that the percentage of HIV-1 positive people receiving treatment was highest in 

Western Europe and North America (50%), Latin America (45%) and lowest in the Middle East 

and North Africa [127]. 
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Figure 1. UNAIDS global report on adults and children to be living with HIV-1 in 

2013 

 

UNAIDS 2013 Report of the Global AIDS Epidemic. 2013. UNAIDS (Open access 

journal) 

Epidemiological distribution of HIV-1 positive people in the world with highest number of 

people living with HIV-1 in Africa 

1.2 HIV-1 LIFE CYCLE  

1.2.1 Binding and Fusion 

HIV-1 primarily infects CD4+ T cells and macrophages. HIV-1 lifecycle begins by 

binding of the gp120 subunit of HIV-1, the surface Env glycoprotein to the T cell surface 

receptor CD4. This causes conformational changes in gp120 and exposes the binding site for a 

co-receptor, CCR5 or CXCR4[8]. Furthermore, this causes conformational changes in the HIV-1 

transmembrane protein gp41[9], which then penetrates into the cell membrane to fuse with the 

host cell membrane and release the viral core into the host cytoplasm. Studies have also shown 
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that HIV-1 can be endocytosed rapidly and fuse the viral envelope with the endosomal 

membrane, releasing the viral core into the cellular cytoplasm (Figure 2). [10].  

1.2.2  Uncoating and Integration 

The HIV-1 core is composed of the viral capsid (CA) proteins, the replication enzymes 

reverse transcriptase (RT), integrase (IN) and the viral genomic RNA. The viral core released 

into host cytoplasm undergoes morphological changes to dissociate the capsid protein subunit. 

Studies have shown that host factors like cyclophilin A are required for this process of uncoating 

[11, 12]. This is a very crucial step in the virus life cycle for subsequent nuclear import. Host 

factors like Tripartite motif-containing protein target the viral capsid protein and cause premature 

uncoating, thus impeding viral infection [13-15]. 

After the process of fusion and uncoating, the two strands of HIV-1 RNA genome with 

the proteins- protease, integrase and reverse transcriptase are released into the cytoplasm. Host 

proteins like transportin-SR2 and importin 7, and viral proteins like Vpr, aid nuclear import of 

this pre-integration complex that contains IN, viral DNA, cellular proteins [16, 17]. Reverse 

transcriptase consists of three subunits: a reverse transcriptase domain, a polymerase domain, 

and a RNAase H domain. The reverse transcriptase domain first converts ssRNA to ssDNA, 

followed by conversion of ssDNA to dsDNA using polymerase domain. The original RNA 

template is then cleaved and degraded by the RNase H domain. The low proofreading ability of 

reverse transcriptase results in high mutation rates of HIV-1. Viral enzyme integrase (IN) 

catalyzes the integration of viral dsDNA, mainly at sites of the host chromosome that are actively 

transcribed[18]. Integrase cleaves the 3’ viral DNA end and inserts it into host DNA.  Once 

integration is complete and the retrovirus is in its ‘provirus’ form, this dsDNA contains the long 
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terminal repeats (LTR), which are made of U3, R, and U5. The LTR plays an important role in 

transcriptional regulation after integration of viral DNA into the host genome. 

1.2.3 Transcription and Translation  

Transcription of integrated proviral DNA takes place using the host RNA polymerase II 

and the viral transcription transctivator (Tat) [19]. Tat is unique sequence-specific activator of 

transcription and recognize an RNA element in nascent transcripts. Cellular proteins initiate 

transcription of proviral DNA in infected cells at some basal rate [19]. Tat proteins are the 

produced from the initial viral transcripts. These Tat proteins are imported into the nucleus and 

stimulate the transcription of proviral DNA. The viral RNA are produced and they undergo post-

transcriptional modifications by 5’ capping and 3’ polyadenylation.  The transcripts are either 

unspliced or multiple spliced. Proteins like Tat and Rev are produced from the multiply spliced 

transcripts.  Some of the unspliced transcripts are used as the genetic material to be packaged 

into virions while the remaining unspliced transcripts are used for synthesis of polyprotein 

precursors like Gag and Gag-Pol.  For the transport of the mRNA template to the cytoplasm, Rev 

shuttle back into the nucleus, bind to the Rev Response Element in env and transport the 

transcripts to the cytoplasm which are then translated to form viral proteins.  

1.2.4 Assembly and Maturation  

Once the viral proteins and viral RNA are synthesized, they are directed to the plasma 

membrane for assembly. Assembly of viral components takes place by myristylation of the N-

terminal of Gag polyprotein followed by budding of the assembled viral components from the 
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plasma membrane [20]. Protease then cleaves Gag and Gag-Pol polyproteins for the formation of 

matured virion [21]. 

 

Figure 2. Key aspects of the HIV-1 life cycle 

 

Figure taken from Rambaut, et al. Nature Reviews Genetics 5, 52-61, January 2004. 

Permission granted from rights holder, Nature Publishing Group. 

1.3 NATURAL HISTORY OF HIV-1 INFECTION 

HIV-1 can infect humans and disrupt the innate and adaptive immune systems. Based on 

CD4 counts, viral loads and clinical presentation, the course of HIV-1 infection is classified into 

three broad stages that include the acute stage, the chronic stage and the AIDS stage (Figure 3). 

Acute phase of HIV-1 diseases is characterized by an initial high peak of plasma viremia 

and associated depletion of CD4+ T cells [8].  The reduction of CD4+ T cells is evident in the 
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peripheral blood, but is prominent and drastic at gut-associated lymphoid tissues due to HIV-1  

targeting of CCR5+ CD4+ memory T cells that account for most mucosal CD4+ T cells [22]. 

Studies in rhesus macaques showed that 60% of mucosal memory CD4+ T cells were infected 

and 80% of the infected cells were depleted within four days of SIV infection[23, 24]. This 

observation has been consistent in HIV-1 infected humans. Studies have suggested that HIV-1 

positive people will lose the majority of mucosal CD4+ T cells by the third week of infection and 

this depletion occurs more prominently in the initial few days of infection [8, 25, 26]. The 

neutralizing antibodies are produced by B cells a few weeks to months after infection. However 

their function in viral control has been controversial. Three to four weeks post infection is also 

characterized by development of adaptive immunity, giving rise to the initial HIV-1 specific 

CD8+T cell response that is temporally associated with initial drop on viremia. The CD8+ T cell 

response plays an important role in determining the plasma set point of HIV-1 and the 

subsequent slopes of CD4+ T cell decline [26].  

A study by Fiebig et al. classified the acute phase of infection into six stages (Figure 3) 

based on HIV-1 replication and antibody responses [27]. During the first stage, there is an 

increase in viremia and only HIV-1 RNA can be detected in the blood. After about 7 days 

(Fiebig stage 2), HIV-1 RNA levels rise above 10,000 copies/mL and p24 antigen can be 

detected [27]. This stage is also characterized by intense inflammatory responses with high level 

of chemokines and cytokines. At stage 3, which is about one to two weeks after onset of 

symptoms, detectable levels of HIV-1 antibodies are seen in blood. Stages 4, 5 and 6 (7 days to 1 

month after infection) is characterized by detection of intermediate and clear western blot band 

for defining HIV-1 infection. 
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Figure 3. Fiebig Laboratory Staging of Acute HIV-1 Infection 

 

Figure taken from McMicheal, et al. Nature Reviews Immunology 10, 11-23 (2010) 

Permission granted from rights holder (Nature publishing group). 

 

While the acute phase of HIV-1 infection is marked by rapid increase in viral load and 

decrease in CD4+ T cell, the chronic phase demonstrates strikingly different viral and T cell 

dynamics. The chronic stage is characterized by reduced and stable viral load whereas CD4+T 

cell numbers rebound and are stable [25, 26]. However, there is a high level of immune 

activation. This immune activation leads to increase in the number of activated CD4+ T cells and 

consequently, the target cell numbers for HIV-1 infection [22]. Moreover, the number of Th17 

CD4+
 

T cells is reduced in the gut, which leads to increased intestinal permeability and 

microbial translocation, which further leads to systemic activation of immune cells [28, 29]. 

Immune activation causes loss of CD4+T cells, which leads to apoptosis, and loss of CD8+ T 

cells and B cells during the latter stage of chronic infection [30, 31]. Previous studies have 

shown that this immune activation during the chronic stage is the main cause of HIV-1 
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immunopathogenesis [32]. Unlike humans and rhesus macaques, Sooty mangabeys can also be 

infected with SIV and undergo CD4+T cell loss, but do not exhibit immune activation and do not 

develop disease [33].  

 

Figure 4. Natural course of HIV-1 infection 

 

Figure taken from Ping An, et al. Trends in Genetics  26 (3): 119–131, March 2010. 

Permission granted from rights holder, Elsevier Publishing Group 

 

The last stage of HIV-1 infection is AIDS (Figure 4).  AIDS is characterized by CD4 T 

cell numbers of 200/mm3 or lower[34]. Naïve T cell depletion, degradation of memory T cells 

and increased immune activation play an important role in disease progression[26]. Loss of 

CD4+ T cells leads to anergy in B cells [35]. Moreover, during AIDS the CD8+ T cells do not 

receive effective and appropriate co-stimulatory signals from CD4+ T cells leading to activation- 
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induced cell death of CD8+ T cells upon re-stimulation with antigen [36]. The resulting 

immunodeficiency leads to opportunistic infections such as kaposi’s sarcoma, tuberculosis, 

pneumonia, cryptococcosis [26]. 

1.4 HIV-1 TRANSMISSION 

HIV-1 transmission occurs through contaminated needle sharing, blood transfusion, 

mother-child transmission and during sexual intercourse[6]. HIV-1 prevalence is 28 times higher 

among drug users, 12 times higher in sex workers, 19 times higher in homosexual men and up to 

49 times higher in transgender women and men compared to rest of the adult population [119]. 

HIV-1 spreads primarily through the genital and rectal mucosa during sexual intercourse [37], 

which accounts for the majority of HIV-1 transmission in adults. Based on non-human primate 

studies, virus can traverse through the mucosal barrier within hours after inoculation of SIV in 

both vaginal [38] and rectal areas followed by establishing small founder population of infected 

cells [39]. These founder viruses have been shown to be less diverse in newly infected HIV-1 

positive people compared to the viruses isolated from the transmitter[40]. This genetic bottleneck 

of HIV-1 transmission has been confirmed in studies where viruses were sequenced in 

heterosexual transmission pair during acute infection [40, 41].  

Within the first week of infection, local proliferation of the founder population takes 

place to produce viruses and virus-infected cells [38]. The local expansion of the viruses is 

crucial and causes dissemination of infection to draining lymph node [42, 43]. During the second 

week of infection, virus spreads to the lymphatic tissue [44]. These lymphatic regions have more 

HIV-1-target cells, which are distributed in close proximity compared to the regions at the portal 
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of entry [44]. Thus the virus replicates and spreads very rapidly once it reaches the lymphatic 

tissues. At the end of second week, the virus level in the tissues and blood peaks and by the 

fourth week of infection, viral levels decline to a steady lower level [44]. In these lymphatic 

tissues, the virus continues to replicate and the proviruses are hidden in latently infected 

cells[45]. Thus these lymphatic regions act as a reservoir for viruses and CD4+T cells in these 

regions undergo depletion, which eventually leads to disease progression [44]. 

Below is a detailed description of the initial events in transmission in ectocervical and 

rectal/colon mucosa. In order for HIV-1 to be transmitted through ectocervial and rectal/colon 

regions, the virus must cross the epithelial barrier of these mucosal tissues.  

1.4.1 Epithelial barrier and HIV-1 transmission through ectocervical mucosa 

1.4.1.1 Ectocervical mucosal barrier 

Mucosal surfaces are the primary sites of HIV-1 transmission.  Since the mucosal 

epithelia are the first cells that HIV-1 has to encounter before transmission through the mucosal 

region, physical and functional characteristics of the epithelia are important in determining the 

outcome of HIV-1 exposure [46]. The epithelial layer of vaginal and ectocervical mucosa is 

composed of stratified squamous epithelial cells. These epithelial cells are compactly bound,  

which in turn offer protection against entry of pathogens [47].  

TJ are intercellular junctional structures that facilitate cell-to-cell adhesion and play an 

important role in epithelial cell function [48]. TJ are elaborate structures comprised of 

transmembrane proteins like claudins, occludin and cytosolic proteins such as the zona occludens 

(ZO) proteins[48]. There are about 24 different types of claudins. The transmembrane proteins 

occludin and claudin are made of two extracellular loops, four transmembrane domains, and two 
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intracellular domain which contribute to the tightness of paracellular barriers[48]. ZO proteins 

act as adapter molecules connecting the TJ proteins to the actin cytoskeleton (Figure 5) [47]. The 

adherens junction (AJ) on the other hand is composed of epithelial cadherin (E-cadherin), which 

is linked to the cytoskeleton via vinculin, and alpha and beta catenin [49]. AJs help in stabilizing 

cell-to-cell contact, help the formation of TJs, and also play a role in regulating barrier 

permeability.  Studies have shown that loss of E-cadherin increased TJ permeability and also 

altered the localization of claudin-1,4 and ZO-1. TJ forms a barrier that restricts the transport of 

ions and nonelectrolytes through the extracellular clefts between cells (the ‘gate’ function)[50]. It 

also serves to maintain cell polarity forming a “fence” that restricts the diffusion of proteins and 

lipids between apical and basolateral surfaces [51, 52]. Na/K/ATPase expressed basolaterally 

plays a crucial role in development of epithelial polarity [51, 52]. Additionally, the continuous 

sloughing off of the superficial layers of ectocervical/ vaginal epithelium prevents the 

colonization and infection of many pathogens [53, 54]. However, large surface area of vaginal 

and ectocervical region increases the opportunity for HIV-1 to interact with and traverse through 

these mucosal epithelia. 
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TJ-tight junction, AJ- adherens junction, D- desmosomes. 

 

Figure 5. Localization of interepithelial adhesion molecules between epithelial cells in the 

ectocervical tissues 

 

Figure taken from Blaskewicz et al. Biology of Reproduction, 85(1):97-104. 2011. (Open 

access journal) 

 

1.4.1.2 HIV-1 transmission through ectocervical mucosa 

For successful HIV-1 transmission through vaginal or ectocervical mucosa, the virus 

must cross the epithelial barrier of these mucosal regions. The virus can traverse the epithelial 

layer through intercourse-induced mechanical micro abrasion of the mucosal surface and also 

without mechanical tear [55]. Studies using female macaques infected with SIV, humanized-

mice and human cervical explants infected with HIV-1 have shown that SIV/HIV-1 infection can 

be established by both cell-free viruses and cell-associated viruses [53, 56]. Regardless whether 

HIV-1 virions are inoculated as cell free virus or cell-associated, the mechanism of HIV-1 
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transmission through the ectocervical mucosal layer, which does not express HIV-1 receptors, is 

not clear. 

HIV-1 has been shown to bind epithelial cells via gp340, heparin sulfate, sulfated 

lactosylceramide, proteoglycans and syndecans, which are expressed on the genital mucosa 

epithelial cells [57, 58]. However, the relative contribution of these molecules to HIV-1 

transmission in ectocervical and vaginal mucosa is uncertain. Studies using epithelial cells 

derived from the lower female genital tract have showed the binding, entry and the subsequent 

transfer of HIV-1 to susceptible CD4+ T cells. Virus transfer can take place by transcytosis in 

primary genital epithelial cells, where the viruses can traverse from the apical to the basal region, 

released from the cells and then infect susceptible target immune cells. However, only small 

percentages of viruses are able to pass through epithelial cells by transcytosis [53, 59]. Studies 

have also shown that cell-associated viruses appear to be more efficient in transcytosis than a 

cell-free virus [53, 60, 61]. Since cell-free virus seems to be more efficient in transmission than 

cell-associated HIV-1 and there are more viruses present in semen as cell-free than cell-

associated virus [53, 60, 61], transmission seems to occur mostly via cell-free route. Therefore, 

transcytosis may not play an important role in the majority of sexual transmission.  

The ectocervical and vaginal tissues have target cell population like dendritic cells and 

spatially distributed CD4+T cells just beneath the epithelial layer [53]. Thus once the virus 

traverses the mucosal barrier, they can easily access and infect the underlying target cells. 
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1.4.2 Mucosal barrier and HIV-1 transmission through rectal/colon mucosa 

The colonic and rectal mucosa are the major site of HIV-1 transmission in unprotected 

heterosexual and homosexual transmission. Risk of HIV-1 transmission through unprotected 

rectal intercourse is 10-fold higher compared to vaginal intercourse [62, 63].  

The colon and rectal mucosa are lined by a single layer of columnar epithelial cells, 

which are also compactly bound by intercellular junctional complexes including tight junction 

(TJ), adherence junction (AJ) that are crucial for preserving the integrity of the epithelial layer. 

Thus, gut mucosae with their intact TJ and AJ serves as the key barrier against the passage of 

macromolecules including pathogens. Apart from the tight junctions between the epithelial cells, 

the local secretion of mucin and antibodies on the epithelial surface help in preventing the entry 

of antigens and microorganisms [53]. A previous study has reported the presence of galactosyl 

ceramide on colorectal epithelial cell lines, which mediates virus attachment and entry[64]. 

However, the relative contribution of the galactosyl ceramide in HIV-1 transmission in colon 

mucosa is uncertain. Moreover, epithelial cells do not express CD4 receptors that are required for 

HIV-1 entry. Therefore, the mechanism of HIV-1 transmission across intact colon/rectal mucosa 

is still unclear. 

HIV-1 transmission through rectal mucosa has been of particular importance because 

rectal mucosa is rich in lymphoid aggregates and follicles. The gut associated lymphoid tissue 

has dense populations of lymphocytes and antigen presenting cells that undergo continuous 

activation and proliferation by the luminal antigens.  Thus, once the virus traverses through the 

mucosal barrier, this region serves as an important site for viral replication and persistence. SIV 

entry through rectal mucosa has been shown to be a rapid process and it takes four hours for the  
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virus to establish infection in the lamina propria, lymphoid aggregates [65]. In case of humans, 

studies using colon explants have shown HIV-1 replication in colon tissues after exposure to 

HIV-1 [66]. 

1.5 INFLAMMATORY RESPONSE IN MUCOSAL EPITHELIAL CELLS 

Once HIV-1 crosses the epithelial layer, the virus establishes infection in small focal “hot 

spots”[58, 67]. Cervical and intestinal epithelial cells express TLRs 1to 5 &9 to recognize both 

bacterial and viral pathogenic motifs in the lumen[58]. TLR-mediated activation has been shown 

to induce cytokine production including CXCL10, IL-6, CXCL11, SDF-1, MIP-1α, MIP-1β, IL-

8 TNFα, GM-CSF, Type 1 IFNs and RANTES, which play an important role in recruiting 

immune cells and enhancing their functions [58]. Various in vitro studies have shown that HIV-1 

induces production of cytokines like IL8, MIP1 Beta, MCP-1, thymic stromal lymphopoietin 

(TSLP), TNFα, IL 6 in genital and intestinal cell lines [68, 69]. Brenchley et al. have shown that 

the degree of inflammation within the gastrointestinal tract was associated with viral replication 

and further observed that colonic mucosa from HIV-1 infected patients had significantly higher 

levels of pro-inflammatory cytokine expression (e.g. TNFα, IFN-γ, and IL-6) compared to 

control patients [22, 44].  Sastry et al. have reported up-regulation of TSLP in human cervical 

epithelial cell lines post-HIV-1 exposure that strongly activates human myeloid DC[70], while 

others have shown accumulation of HIV-1 RNA positive CD4+ T cells in the epithelial 

submucosal junction at six hours post-infection in human cervical tissue [55]. Therefore, 

epithelial cells may be the first target cells for HIV-1 to induce local immune activation, which 

enables the establishment of initial HIV-1 infection in the mucosal region.  
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CD4+ T cells are susceptible target cell population for SIV/HIV-1 infection and studies 

in humans have shown the presence of spatially dispersed populations of the target cells and 

other lymphocytes just beneath the epithelium in submucosa regions [53]. Studies have 

suggested that at the portal of entry, CD4+ T cells are the principle cell types to be infected and 

these infected founder population are important for the subsequent systemic infection [44, 53].  

Based on a monkey study in which the local foci of SIV infection were mapped, the 

newly infected cells increased near the foci of infected founder cells, and the infection spread 

along the tracts of infiltrating inflammatory cells[71]. Exposure to SIV on the endocervical 

epithelium increased expression of MIP3α in the epithelial cells that in turn attracted pDCs 

(Plasmacytoid dendritic cells) [72]. These pDCs produce MIP-1β and other chemokines, which 

recruits CD4 T cells [44, 53]. Therefore, despite the presence of low density SIV target cells at 

the portal of entry, SIV is able to exploit the innate inflammatory responses which results in 

recruiting large number of target cells and establish infection in the mucosal region [44]. Thus 

the innate antiviral and inflammatory defense mechanism during SIV infection may facilitate 

SIV transmission. Another study has reported that exposure to semen caused secretion of 

chemokines and proinflammatory cytokines [73]. These cytokines are shown to recruits immune 

cells like DCs, macrophages and neutrophils beneath the cervical epithelium [73].   

Epithelial cells are the first line of defense against various pathogen infections in mucosal 

area and the TJs present between the epithelial cells play a critical role in maintaining the 

epithelial barrier. Various studies have shown that cytokines play an important role in 

modulating the structures and functions of TJs between epithelial cells [74, 75]. Pro-

inflammatory cytokines such as IL-1β, TNF-α and IFN-γ disrupt the TJs between cells [76-78]. 
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Whereas, IL-10, IL17 and TGF-β prevent TJ disruption and also accelerate the development of a 

TJ barrier  [79, 80].   Studies using endothelial cells and intestinal cell lines like T84, Caco2 have 

demonstrated that IFN-γ alters tight junction structure by translocating TJ protein occludin from 

TJ into endosome through macropinocytosis [81] and also by activation of PI3-kinase and NF-

kB pathways [82]. Furthermore, TNF-α and IL-1β induces the expression of myosin light-chain 

kinase protein which triggers alteration in distribution of TJ proteins occludin, claudin 1, claudin 

4 and JAM-1 in renal and intestinal epithelial cell line[83, 84]. These disruptions in TJ proteins 

lead to increase in paracellular permeability between epithelial cells and favor the entry of 

pathogens and macromolecules through the epithelial layer. Thus exposure to HIV on the 

mucosal epithelial cells may cause induction of cytokine from epithelial cells, which can recruit 

immune cells towards the epithelial layer and disrupt TJs between the epithelial cells, creating 

microenvironments conducive to viral transmission.  

1.6 INFLUENCE OF REPRODUCTIVE HORMONES AND MENSTRUAL CYCLE 

ON HIV-1 TRANSMISSION THROUGH ECTOCERVICAL AND VAGINAL TISSUES: 

Globally, there are about 17.3 million HIV-1 positive women and the majority of them 

are of reproductive age[85]. More than 100 million women use hormonal forms of contraception 

including oral contraceptive pills and the injectable Depot medroxy progesterone acetate 

(DMPA) [85]. Therefore, it is very important to understand the relationship between hormonal 

contraception and HIV-1 acquisition. The menstrual cycle of a woman is characterized by 

changes in level of reproductive hormone and divided into three phases: proliferative, ovulatory 

and secretory phase. During the proliferative phase, which is the first half of the menstrual cycle, 
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estradiol level is very low (Figure 6). The estradiol level then rises and peaks 2-3 days before 

ovulation followed by a rapid decline in estradiol level after ovulation (Figure 6). After 7-10 

days, the estradiol and progesterone level increases (secretory phase) after which levels of both 

hormones decline, initiating menstruation [86].  These changes in hormonal level help in 

preparing the female genital tract for sperm survival and migration to fallopian tube for 

successful fertilization [53, 60, 61, 86, 87]. In addition, IgA, IgG and antimicrobials like SLPI, 

HBD2, human neutrophil peptide-1-3 levels in cervical-vaginal lavage decline during the mid-

cycle and rise during the end of menstrual cycle[85, 86, 88]. The antiviral responses are 

regulated by type 1 interferons (IFNs) and IFN stimulated genes. IFNε is one of the type 1 IFNs 

which has antiviral activities.  A study has also confirmed the role of IFNε by demonstrating 

significant increase in susceptibility of IFNε deficient mice to vaginal infection by HSV-2 and 

Chalmydia muridarum compared to the wild type mice[89]. Estrogen also induces the expression 

of IFNε and thus the level of IFNε is higher during the proliferative phase compared to the 

secretory phase of the menstrual cycle [89].  Therefore, hormones play a crucial role in antiviral 

defense in the female genital tract [89]. Therefore, natural fluctuation in hormone levels of 

estradiol and progesterone may play a key role in HIV-1 transmission, and consequently 

secretory phase has been postulated to provide a window of vulnerability to HIV-1 infection at a 

certain phase of menstrual cycle. 
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Figure 6. Relative changes in levels of estradiol and progesterone during the proliferative 

and secretory stages of the menstrual cycle   

 

Figure taken from Wira et al. AIDS. 2008 October 1; 22(15): 1909–1917 (Open access 

journal). 

 

A number of in vivo studies have been conducted to study the effect of hormones on 

HIV-1 transmission, but the results are controversial with studies presenting evidence in support 

and against hormonal effect on HIV-1 transmission.  Studies in non-human primate models have 

shown that during the normal menstrual cycle, intravaginal inoculation of SIV in the secretory 

phase (progesterone dominant phase) had a higher infection rate than those inoculated during the 

proliferative phase (estrogen dominant phase) of menstrual cycle[90]. Furthermore, studies using 

injectable hormone in non-human primate models have shown that administration of DMPA, a 

progesterone based contraceptive, resulted in a 7.7-fold increase in SIV acquisition, increased 

viral levels and favored replication of the viruses that use CXCR4 co-receptor [91]. Another 

study by Abel et al. reported that protective effect of attenuated lentivirus against intravaginal 
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challenge with pathogenic SIV was abrogated in DMPA treated immunized macaques compared 

to DMPA untreated immunized macaques [92].  In contrast, Smith et al. showed that 

administration of estrogen in the form of subcutaneous implants or intravaginal cream protected 

ovariectomized female rhesus macaques against SIV infection through intravaginal inoculation 

[93]. However, the effect of hormones on HIV-1 transmission has not been consistent in humans. 

Polis et al. critically reviewed most of the epidemiological studies on the effect of different 

forms of hormonal contraceptive (oral, injectable and implants) on HIV-1 transmission[94]. This 

review found that while there are reports showing a significant increase in risk for HIV-1 

transmission by using oral hormone based contraceptive (progesterone-only pills), there are an 

equal number of other reports showing non-significant increase in HIV-1 transmission by using 

oral hormone based contraceptive. In the case of injectable DMPA based contraceptives, only 

four out of nine studies reported significant association of DMPA and HIV-1 transmission [94]. 

The differences in outcome among these various studies is probably due to imprecise 

measurement of the timing of hormonal contraceptive use, differences in sexual behavior 

between contraception users and non-users, smaller sample sizes, infrequent measurement of 

contraception and HIV-1 infection [86, 94]. However, a study using ex vivo human endocervical 

tissues showed that productive HIV-1 infection of human endocervical tissue explants correlated 

with the secretory phase of the menstrual cycle [95].  

Epithelial thickness and tight junction proteins play an important role in preventing 

transmission of various microorganisms through the cervical and vaginal mucosa. Although 

several studies using non-human primate models have showed that DMPA treatment can 

increase SIV transmission through vaginal region, the exact mechanisms for these effects have 

not been determined. Smith et al. showed that administration of estrogen caused thickening of 
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the vaginal stratified epithelium, which protected the macaques against intravaginal challenge 

with pathogenic SIV [93]. From these results they postulated that vaginal thinning by 

progesterone might be the reason for increased SIV transmission [91, 93]. In case of human, 

atrophic vaginitis is common in postmenopausal women due to estrogen deficiency and is 

characterized by a dry, thin epithelium, which bleeds after minimal trauma [96]. In a European 

study, a higher age of the women (greater than or equal to 45 years) was found to be associated 

with increased risk for male-female HIV-1 transmission that might be due to reduced estrogen 

level in the women suggesting that hormones also might influence HIV-1 acquisition in humans 

[94, 97]. Human studies on women using DMPA failed to show thinning of the vagina to the 

same extent seen in the NHP studies. However, it is difficult to compare the results from rhesus 

macaque studies to human studies due to the differences in anatomy and physiology of the 

reproductive tract of rhesus macaques and humans [86]. 

Hormones regulate the production of different cytokines from the epithelial cells in 

female genital tract. For example, estrogen induces secretion of different cytokines including IL-

6, IL-10, TGFβ and IL-4 of epithelial cells of female genital tract [98-100].  Studies have shown 

that cytokines such as IL-1β, TNF-α, IFN-γ disrupt the TJs and cytokines such as IL-10, IL17, 

TGF-β have a role in development of a TJ barrier [76-80].  Another study reported that estrogen 

inhibits the production of IL-1α and TNF-α in vaginal epithelial cell lines, which can in-turn 

suppresses inflammation and also prevent TJ disruption [101]. In contrast, other in vitro studies 

have also shown that estrogen can alter the expression of TJ proteins like occludin and increase 

the permeability in cultured human ectocervical epithelial cells [102, 103]; progesterone but not 

estradiol increased expression of TJ proteins claudin 1,3,4, 7 and occludin in primary cultured 

human endometrial epithelial cells [104]. These studies suggest that TJ could be regulated by 
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hormones in the human female reproductive tract during menstrual cycle. Taken together, the 

effect of hormonal pressure on HIV-1 acquisition in human remains unclear. Due to the 

extremely high number of women using hormonal contraception, it is important to evaluate the 

effect of reproductive hormones on HIV-1 acquisition risk through the genital tract. 
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2.0  SPECIFIC AIMS 

HIV-1 infection predominantly occurs through genital and rectal mucosa by sexual 

transmission. The mucosal lining of the female genital tract and intestine provides a robust 

barrier and these mucosal epithelial cells demonstrate no expression of CD4 receptor. However, 

HIV-1 passes through this protective layer and infects underlying CD4+ cells. The mechanism 

that allows HIV-1 to traverse the mucosal epithelia is not clearly understood. Studies on SIV 

infection in non-human primates demonstrate that when inoculated intravaginally with SIV, the 

virus crossed the epithelial layer within hours to generate sufficient virus and established 

infection in small foci within 48-72 hours [44]. The intercellular tight junctions and the 

intactness of apical membrane on the epithelial cells are very important for the preservation of 

the barrier function [47, 48]. The disruption of the tight junctions can increase the permeability 

between epithelial cells, leading to translocation of microbes, and inflammatory conditions in the 

mucosa [22, 44, 69].  Studies have shown that exposure to HIV-1 increases permeability in 

intestinal cell lines like Caco-2, T84 cells and primary endometrial epithelial cells [69, 105]. 

HIV-1 exposure also induced production of cytokines like IL8, MIP1 Beta, MCP-1, TSLP, 

TNFα, IL 6 in genital epithelial cells and T84 cells [68, 69]. All of these studies infer that HIV-1 

can compromise the integrity of the mucosal barrier, induce inflammatory responses and increase 

target cell availability in the epithelial lining of the mucosal regions, which may facilitate the 

transmission of HIV-1. Furthermore, a number of studies have shown that during the course of 
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the menstrual cycle, the migration of immune cells like DCs, macrophages and neutrophils 

occurs in the lower female genital tract. Furthermore, estradiol and progesterone, whose levels 

fluctuate in the menstrual cycle, play a key role in regulating the physiology of FG. All these 

make the female genital tract uniquely susceptible to HIV-1 infection at specific times during the 

menstrual cycle. Although studies in macaques conclusively demonstrate that reproductive 

hormones influence SIV acquisition risk, epidemiological investigations in humans have been 

inconclusive. We, therefore, hypothesized that exposure to HIV-1 increases the 

permeability of epithelia in the human mucosal tissue by disrupting the tight junctions (TJ) 

in epithelia, and stimulates the production of inflammatory cytokines, which promote HIV-

1 transmission across the mucosal epithelium and facilitate infection in the ectocervical and 

rectal/colon area. Additionally, the susceptibility of the female genital tract to HIV-1 

transmission/acquisition is altered by the dynamic changes of reproductive hormone levels 

at different stages of menstrual cycle. To test our hypothesis, we propose the following 

specific aims: 

Aim1: To study the effect of HIV-1 exposure on the integrity of tight junction and 

adherence junction in the epithelia of ectocervical and rectal/colon tissues.  

Human ectocervical tissues and rectal/colon tissues were set in an established organ 

culture and the epithelial layer of the tissue were exposed to HIV-1. The epithelial layers of 

control/HIV-1 exposed tissue were examined for morphology and thickness by Haematoxylin 

and Eosin (H&E) staining. The quantity and distribution of tight junction proteins like ZO1, 

Claudin 4, adherens junction proteins like E-Cadherin in the epithelial cells of ectocervical and 

rectal/colon tissues were assessed by confocal immunofluorescence (IF) microscopy and by 

quantitating the images using the ImageJ and NS1 Element software. 
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Aim 2: To examine the cytokine expression profile in ectocervical epithelia and 

colon mucosa following exposure to HIV-1. 

The mucosal layers of the control/HIV-1 exposed ectocervical and colon tissues were 

isolated followed by RNA extraction. The mRNA levels of various cytokines were measured by 

real time RT-PCR. To characterize the comprehensive profile of gene regulation in epithelial 

layer by HIV-1 exposure, next generation sequencing in an Ion Torrent technology platform was 

performed on extracted RNA samples from isolated human ectocervical epithelia following 

exposure to HIV-1 or control supernatant. To examine the effect of HIV-1 exposure on the 

distribution of immune cells, the presence of CD3+ CD8+cells` in the intraepithelial and 

subepithelial regions of the control and HIV-1 exposed tissue was investigated by IF. 

Aim 3: To study the effect of reproductive hormone on the susceptibility to HIV-1 

infection in human ectocervical /vaginal tissues. 

Ectocervical/vaginal tissue biopsies were obtained from premenopausal, HIV-1 uninfected 

women during the proliferative, ovulatory and secretory phases of menstrual cycle. Susceptibility 

of the ectocervical/vaginal tissues to HIV-1 infection was evaluated using non-polarized organ 

culture by exposing the tissues to HIV-1 and quantifying the p24 production in culture 

supernatant at different time after exposure to HIV-1. To determine the HIV-1 acquisition risk at 

different phases of menstrual cycle, the TJ profile and thickness of epithelial layer were studied 

in these tissues at those phases of cycle. 



 27 

3.0  MATERIALS AND METHODS 

3.1 VIRUS CULTURE 

PM1 cells, a T cell line that expresses CD4, CXCR4 and CCR5 were used to propagate 

R5 HIV-1. Briefly, PM1 cells were maintained in RPMI 1640 (Mediatech) containing 100 U/mL 

penicillin/0.1 mg/mL streptomycin, 20% fetal bovine serum (FBS) and 10 mM HEPES. PM1 cell 

were infected by R5-HIV-1 BAL-1 (NIH AIDS reagent Catalog # 11445) for 3 hours followed 

by washing to remove excess virus and then cultured for 15 days. Starting from day 3 post-

infection, culture supernatant containing HIV-1 was collected every other day and filtered 

through an Amicon Ultra-15 filter device (Millipore, Billerica, US) to remove soluble cytokines. 

The control culture supernatant was prepared in the same way but the cells were not infected 

with HIV-1. 

The filtered HIV-1 BAL viral stock was then quantified using HIV-1 p24 ELISA and its 

infectivity titer (TCID50/mL) was determined by titration on CD8 depleted PBMC from normal 

blood donors.  Briefly, CD8 depleted PBMCs were treated with phytohemaglutinnin for three 

days to activate CD4+ cells followed by centrifugation at 500xg for 10 minutes. These CD8 

depleted PBMCs were then seeded in a 96-well plate and incubated with cell-free HIV-1 BAL, 

which were serially diluted (1:5) in 10% RPMI media for 7 days at 37ºC. Culture supernatants at 

1:10 dilution were harvested periodically and frozen at 70ºC. Frozen culture supernatants were 
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subsequently thawed and HIV-1 p24 was analyzed for infectivity titer according to the 

manufacturer’s protocol. Aldrithiol-2 (AT2) inactivated HIV-1 ADA (R5 virus) was a gift from 

J. D. Lifson, National Cancer Institute, Frederick, Maryland. HIV-1 proteins gp120 envelope 

protein was obtained from NIH AIDS Reagent Program (catalog# 11784). 

3.2 HUMAN ECTOCERVICAL/COLON MUCOSAL TISSUE CULTURE  

3.2.1 Sources of ectocervical and colon tissues 

Ectocervical tissues were obtained from premenopausal, HIV-1 negative patients with no 

history of sexually transmitted diseases who were undergoing hysterectomy for medical reasons 

unrelated to cervix at the Magee Women Hospital of the University of Pittsburgh Medical 

Center. The colon tissues were obtained from HIV-1 negative patients undergoing surgical 

resection of colon for medical reasons like cancer or non-inflammatory conditions at the 

University of Pittsburgh Medical Center.  The Institutional Review Board of the University of 

Pittsburgh approved this study as an Exempt study. Informed consent from individuals was 

waived because this study used tissues that were procured through the Tissue Procurement 

Facility with only generalized patient information such as age and race of the patients. 

3.2.2 Organ culture with ectocervical tissues 

Ectocervical tissues were collected and processed within 2 hours of surgery. To study 

TJ/AJ proteins, the organ culture was performed with ectocervical tissues. Ectocervical tissues 
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were immersed in antibiotic solution (Penicillin-Streptomycin (20,000 U/ml), Fungizone (250 

μg/ml) and Nystatin (120 U/ml) in PBS) for 5 minutes and then rinsed twice with RPMI media. 

The stromal side was then trimmed to about 2-3mm thick and the ectocervical punch biopsies 

(6mm diameter) were placed into a 12 well transwell (Becton Dickson, NJ, USA)) with the 

epithelial layer facing up and its edge was sealed with 3% agarose at room temperature. Cell-free 

HIV-1 (TCID50 of 106) or control supernatant was added on the epithelial layer of the tissue in 

the upper chamber and complete IL-2 media (RPMI media, heat-inactivated fetal bovine serum 

(10%), and interleukin-2 (500 U)) was added to the bottom well. Cultures were incubated at 37ºC 

for 24 hours in a CO2 incubator. To serve as a positive control for TJ/AJ disruption, ectocervical 

epithelia were exposed to 10 mM EDTA (Fisher Scientific International Inc., Hampton, NH) at 

37ºC for 2 hours in a CO2 incubator.  

To study cytokine regulation in ectocervical tissues, the epithelial layer of ectocervical 

tissues was exposed to either cell-free HIV-1 BAL (TCID50 of 106), GP120 0.8nM (0.1ug/ml), 

AT2 inactivated HIV-1 (71ng/ml) or control supernatant in an organ culture.  Cultures were 

incubated at 37ºC for 24 hours in a CO2 incubator. The tissues after organ culture were frozen 

down in OCT (Thermo Fisher. USA) at -80ºC and cryosectioned (7μm thickness) for subsequent 

studies. 

To study HIV-1 transmission, ectocervical tissues were inoculated with cell-free HIV-1 

BAL (TCID50 of 106) supplemented in IL2 medium and cultured overnight in CO2 incubator at 

37°C. Following the incubation, the biopsies were washed with PBS to remove excess virus and 

cultured again for additional 16 days. To monitor virus growth, HIV-1 p24 production was 

measured by ELISA (SAIC-Frederick) in the culture supernatant in every 3 days during the 

culture period. 
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3.2.3 Organ culture with colon tissue 

Colon tissues were collected and processed within 2 hours of surgery. Similar to cervical 

tissues, colon tissues were immersed in a concentrated antibiotic solution and then rinsed with 

RPMI. The tissues were dissected into 6mm diameter biopsies and inoculated with 300μl of cell-

free HIV-1 BAL (TCID50 of 106) or control supernatant supplemented with RPMI with IL2 

media in 12 well plates (Becton Dickson, NJ, USA)) for 6 hours in CO2 incubator at 37°C.  To 

study the effect of HIV-1 exposure on cytokine production of epithelial cells, colon biopsies after 

HIV-1 exposure were then frozen down in OCT at -80’C.  To study the effect of HIV-1 exposure 

on TJ/AJ, the tissues were fixed in safefix II (Fisher Scientific, MI, USA) for 2 hours, paraffin 

embedded and sectioned (7μm thickness) using a VibratomeTM.  

To study virus transmission, colon biopsies were exposed to HIV-1 BAL (TCID50 of 106) 

for 6 hours. The biopsies were then washed with PBS to remove excess virus and cultured for 16 

days. HIV-1 p24 level was measured in the culture supernatant every 3 days by ELISA. 

3.3 HUMAN ECTOCERVICAL AND VAGINAL TISSUES AT DIFFERENT PHASES 

OF MENSTRUAL CYCLE 

This study is an ongoing collaborative study with the Brown University supported by a 

grant from NIAID. The recruitment of volunteers for the study and procurement of ectocervical, 

vaginal tissue biopsies was conducted at the Brown University according to Institutional Review 

Board of the Brown University.  The ectocervical and vaginal biopsies were shipped at 4° 

overnight to our lab to perform organ culture and subsequent experiments. 
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3.3.1 Study population 

Ectocervical and vaginal biopsies were obtained from women volunteers at different 

phases of menstrual cycle. The women in this study were not taking any form of exogenous 

hormones at 

 

the time of enrollment and expressed their pre-defined interest in not starting any form of 

hormonal contraception during the study period. 

Individuals who satisfied the following criteria were recruited to study the influence of 

reproductive hormone and stage of menstrual cycle on HIV-1 transmission: 18 years of age or 

older, HIV-1 negative, not pregnant, had normal pap smear reports in the last one year, did not 

have any history of sexually transmitted infections and did not have any acute illness, had not 

used any steroids, immunomodulatory drugs for last six months and were not immunized in the 

last one-month, agreed to give informed consent and follow-up visits. 

Furthermore, baseline test for HIV-1, HSV-2, gonorrhea, chlamydia, trichomoniasis, 

bacterial vaginosis and pregnancy test were performed for all the women at their first visit. 

To study the susceptibility of cervical/vaginal tissues to HIV-1 infection at different 

phases of menstrual cycle, two biopsies from cervical and vaginal regions were obtained from 21 

donors at their proliferative phase, 6 donors at their ovulatory phase, 11 donors at their secretory 

phase. To study the effect of HIV-1 on cervical/vaginal epithelial layer thickness and TJ at 

different phases of menstrual cycle, cervical and vaginal biopsies from 7 donors at their 

proliferative, ovulatory and secretory phase were obtained.  
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3.3.2 Organ culture for ectocervical/vaginal tissues obtained from different phases of 

menstrual cycle 

Ectocervical/vaginal tissues were exposed to HIV-1, washed and cultured in a non-

polarized set up. Briefly, the tissues were exposed in a 96-well flat bottom plate to cell-free HIV-

1 BAL (TCID50 of 106) or control supernatant supplemented with IL2 media for 24 hours, 

washed with PBS, cultured for 16 days in IL2 media and virus production was monitored every 3 

days by HIV-1 p24 measurement in the culture supernatant by ELISA. 

To analyze the epithelial layer thickness and TJ protein expression between epithelial 

cells, the ectocervical tissues exposed to HIV-1 or control supernatant for 24 hours were washed 

and fixed in safefix II (Fisher Scientific, MI, USA) for 2 hours and then paraffin embedded and 

sectioned (7μm thickness) using a Vibratome TM.  

3.4 HISTOLOGY AND IMAGE ANALYSIS  

Ectocervical, vaginal and colon tissues sections were stained with hematoxylin and eosin 

(H&E) and examined by light microscopy to assess tissue morphology after exposure to control 

supernatant or HIV-1 over the culture period. After obtaining bright field images of H&E stained 

ectocervical/vaginal tissues, the thickness of epithelial layers was measured in three 

representative areas of mucosa from the basement membrane up to the surface using the 

Metamorph software. The mean of epithelial layer thickness was calculated for each biopsy. 
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3.5 IMMUNOFLUORESCENCE ANALYSIS OF CERVICAL AND COLON TISSUES 

3.5.1 Antibodies 

Rabbit polyclonal-α-ZO1(cat# 617300), rabbit polyclonal-α-Claudin-1((cat# 519000), 

mouse monoclonal-α-Claudin-4((cat# 329400), mouse monoclonal-α-E-cadherin(cat# 131700) 

were purchased from Invitrogen, Camarillo, CA, US.  Mouse monoclonal-α-Na/ K/ATPase (05-

369), rabbit polyclonal-α-CD3 (A0452), mouse polyclonal-α-CD68 (M0814)negative control 

rabbit immunoglobulin (x0936) were purchased from Millipore, Massachusetts, USA and Dako, 

Glostrup, Denmark respectively.  Mouse IgG1 isotype (556648) was purchased from BD 

Pharmingen.  Goat -α-mouse Alexa 488 and goat-α-rabbit Cy3 was purchased from Jackson 

Immunoresearch, West Groove, PA. 

3.5.2 Immunofluorescence staining ectocervical and colon tissues 

To study TJ/AJ proteins and distribution of CD3+/CD8+ cells, ectocervical, vaginal and 

colonic tissues were examined by immunofluorescence microscopy. Paraffin embedded 

ectocervical and colon tissue sections were deparaffinized and antigen retrieval was performed 

by heating sections in sodium citrate buffer (005000, Invitrogen, Frederick, MD, USA) in a 

microwave followed by cooling to room temperature for 10 min. Tissues were washed with PBS 

followed by permeabilizing with Triton X-100 and blocking with 2% BSA for 20 min. After 

washes, the tissue sections were then treated with one of the following primary antibodies: rabbit 

polyclonal anti ZO1, Claudin-1, mouse monoclonal anti Claudin-4, E-cadherin, Na/ K/ATPase at 

a dilution of 1:50, 1:75, 1:200 and 1:500 respectively for 60 min at room temperature. Tissue 
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sections were stained in parallel with an isotype control antibodies: negative control Rabbit 

Immunoglobulin, Mouse IgG1 isotype. Tissues were washed with 0.5% BSA and incubated with 

either goat anti-mouse Alexa 488 or goat anti-rabbit Cy3 at a dilution of 1:500 or 1:1000 

respectively, in 0.5% BSA for 1 hour. Nuclear counterstaining was done with DAPI. All sections 

were mounted in gelvatol and coverslips were sealed on slides.  

 

In the case of frozen ectocervical tissues, the tissue blocks were cryosectioned using 

cryostat (Microm HM550, Thermofisher).  The cryosections were fixed with 2% PFA in PBS for 

20 min and washed with 0.5% BSA. The tissue sections were then blocked with 2% BSA, treated 

with primary antibodies (ZO-1, Claudin-1, Claudin-4, E-Cadherin, Na/K/ATPase, CD3, CD8), 

secondary antibodies, DAPI and sealed using coverslip as mentioned earlier for colon tissues.  

Images were taken with Olympus Fluoview 1000 confocal microscope using a 20x or 40x oil 

objective. For acquiring images on confocal microscopy, the identical image acquisition setting 

was used for control and HIV-1 exposed tissues. For each experimental condition 12-20 separate, 

random images were obtained and analyzed using NSI Elements software. 

3.5.3 Image analysis for tight junction and adherence junction expression 

Images were analyzed using ImageJ program (http://rsb.info.nih.gov/ij/) or NSI Elements 

software. To examine ZO1 nuclear colocalization in ectocervical epithelia, 30 nuclei were 

randomly chosen per field and ZO 1 nuclear colocalization was analyzed using ImageJ program 

by maintaining the same threshold setting for the entire dataset. To study Claudin-4, E-cadherin, 

Na/K/ATPase protein expression in ectocervical epithelia, fluorescence intensity of the proteins 

in the epithelial region was measured respectively using NSI Elements software maintaining the 

http://rsb.info.nih.gov/ij/
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same threshold setting for the entire dataset and the fluorescence intensity was normalized to 

number of nuclei. In case of colon tissues, fluorescence intensity of ZO-1, Claudin-4, Ecadherin, 

Na/K/ATPase proteins was measured using NSI Elements software as mentioned for the 

ectocervical tissues.  

3.5.4 Image analysis of immune cell distribution 

The numbers of immune cells were measured using NSI Elements software maintaining 

the same threshold setting for an entire dataset. To study CD3+, CD8+ cell distribution in 

intraepithelial regions, the ratio between the number of immune cells in intraepithelial region and 

beneath the basolateral membrane, and the total number of immune cells in the field was 

analyzed and compared between control and HIV-1 exposed ectocervical tissues.  

3.6 TRANSMISSION ELECTRON MICROSCOPY 

Human colon tissues were exposed to control supernatant or HIV-1 for 6 hours and fixed 

in 2.5 % glutaraldehyde for 1 hour at room temperature.  The biopsies were washed with PBS 

and processed as previously described[106]. Briefly, biopsies were post-fixed in aqueous 1% 

OsO4, 1% K3Fe(CN)6, dehydrated with ethanol series, infiltrated in 1:1 mixture of propylene 

oxide: Polybed 812 epon resin (EBS Sciences, East Grandy, CT) and epon for 1– 3 hours. This 

was further embedded in molds, cured and ultrathin (60-80nm) sections of the vitreous were 

collected on copper grids. Furthermore, they were stained with lead citrate, 2% uranyl acetate 
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and TEM images were acquired using a JEOL JEM 1011 TEM (Peabody, MA) at 80kV fitted 

with a side-mount AMT 2k digital camera (Advanced Microscopy Techniques, Danvers, MA). 

3.7 MICRODISSECTION OF EPITHELIAL LAYER AND RNA EXTRACTION 

The ectocervical and colon tissues exposed to control, HIV-1, AT2 or GP120 were 

cryosectioned followed by microdissection of the epithelial layer under microscope to minimize 

contamination from submucosa layer. RNA was extracted from the epithelial layer using RNA 

zol B (TEL-TEST, INC, Friendswood, TX).  

3.8 TAQMAN® REAL-TIME PCR 

RNA was isolated from microdissected ectocervical epithelial or colon mucosal layer 

using RNA Bee (TEL-TEST, INC) according to the manufacturer's instructions and treated with 

RNase free DNase (Roche Applied Science) for 30 min followed by RT-PCR. The cDNA was 

synthesized using Superscript II reverse transcriptase (Invitrogen).  The purity of the ectocervical 

epithelial regions obtained was assessed by the enrichment of cytokeratin 13 (Krt13) mRNA, 

which is predominately expressed in epithelial cells. The mRNA levels of cytokeratin 13 and 

cytokines of CXCL10, CXCL11, IL-6, IL1β, IL8, IL-10, TNFα and IFNγ were measured in the 

microdissected epithelial layers by real-time RT-PCR as described before[107]. Krt13 

(endogenous control for epithelial cells), human CXCL10, CXCL11, IL-6, IL1β, IL8, IL-10, 

TNFα, IFNγ primers and probes labeled with FAM / MGB were purchased from Life 

Technology (Table 1).  
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Table 1. Real time RT PCR primers and probes gene assay ID 

Gene Primer and probe * 

IL1β Hs99999029_m1 

IL-6 Hs99999032_m1 

IL8 Hs99999034 

IL-10 Hs00961622_m1 

 TNFα Hs99999043 

IFNγ Hs00989291_m1 

 CXCL10 Hs00171042_m1 

 CXCL11 Hs00171138_m1 

 KRT13 Hs00999762_m1 

* Gene assay ID of primer and probe commercially purchased from Life

Technology 

Real time RT-PCR with gene specific primers/probes was performed as described 

previously[108]. Briefly, RNA was reverse-transcribed with TaqMan® Reverse Transcription 

Reagents (Applied Biosystems) following manufacturer’s protocols. A 25 μl PCR mixture 

consists of 20XTaqMan® Pre-Developed Assay Reagents (Applied Biosystems), 5 μl cDNA 

(20ng total RNA equivalent) and 2X TaqMan® Universal PCR Master Mix. Real-Time PCR was 

carried out using ABI Prism 7000 Sequence Detection System under the following cycling 

condition: 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 sec and 60 °C for 1 min. 

Results were expressed as fold-change relative to control. 
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3.9 NEXT GENERATION SEQUENCING USING ION TORRENT TECHNOLOGY 

3.9.1 RNA extraction and library construction 

RNA was extracted from microdissected epithelial layer of the tissue as described earlier. 

mRNAs were isolated from the total RNA with a commercially available kit (Dynabeads® 

mRNA DIRECT™ Micro Purification Kit, Life Technologies). This was followed by cDNA 

Library construction using Ion Torrent RNA-Seq Kit (Life Technologies) for whole 

transcriptome libraries. For individual sample Barcodes 1 through 8 were attached using Ion 

Xpress 1-16 barcoding kits. Quantitation of cDNA libraries was performed using the Ion Library 

Quantitation Kit (Life Technologies) to evaluate appropriate template dilution factor for 

subsequent emulsion PCR and sequencing. This was followed by next generation sequencing 

using the Ion Torrent platform according to manufacturer’s protocols. 

3.9.2 Data analysis 

Raw sequencing reads were in FastQ format. CLC Genomics Bench 7 was used to assess 

the quality of raw sequencing reads. Reads were accepted based on the length (longer than 25 

nucleotides) and number of ambiguous bases (Phred Quality score higher than 20). Quality 

trimming and adapter sequence clipping were performed prior to downstream analyses. The 

mean reads obtained after trimming in control ectocervical epithelia was 1.8 million and in HIV-

1 exposed ectocervical epithelial was 1.7 million (Table 2). The trimmed reads were then 

mapped to Homo sapiens (hg19) mRNA sequence. 
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Table 2. Read count after trimming in control and HIV-1 exposed ectocervical epithelia 

used for mapping with Homo sapiens (hg19) sequence in Ion Torrent sequencing.  

CONTROL/HIV-1 EXPOSED 
NUMBER OF 

DONORS 
MEAN TOTAL READS 

AFTER TRIM 
 TOTAL READS AFTER 

TRIM (RANGE) 

Control 6 1857244.5 810930 to 2837978 

HIV-1 6 1709218.5 733413 to 2380879 

Bioconductor edgeR was employed to perform the differential expression analysis, and 

since it is a pairwise comparison, general linear model was used for the analysis. To make sure 

there were sufficient counts for each gene in the test, genes with mean read counts higher than 10 

were retained in the analysis. Genes with Benjamini-Hochberg adjusted false discovery rate 

(FDR) <0.05 and absolute values of logFC greater than 1 were considered as significant genes.  

3.9.3 Confirmation of Ion Torrent result by target-specific real time PCR 

The expression level of the differentially expressed genes obtained from Ion Torrent data 

were evaluated again by real time PCR with specific primers and probes of IL36A, FMO2, 

CXCL10, MUC1, SAA1, IL8 as described earlier. 

3.10 STATISTICAL ANALYSES 

Data are presented as mean ± standard deviation. For analyzing mRNA expression levels, 

parametric single sample t test was used to determine the significance (p<0.05) for the fold 

change observed in HIV-1 treated group relative to controls. To determine significance (p<0.05) 

in fluorescence intensity of TJ proteins between HIV-1 treated group and controls, parametric 

paired student t test was applied. For comparisons of mRNA cytokine expression levels in the 
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ectocervical tissues treated with HIV-1, GP120, or AT2, T-Test Unequal Variance analysis was 

performed with significant level at p<0.05. To compare the susceptibility to HIV infection, levels 

of TJ protein expression and epithelial thickness in groups from different stages of menstrual 

cycle, ANOVA and Kruskal-Wallis analysis were performed with p<0.05. 
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4.0  SPECIFIC AIM 1: EFFECT OF HIV-1 EXPOSURE ON THE INTEGRITY OF 

TIGHT JUNCTION IN THE EPITHELIAL CELLS OF ECTOCERVICAL AND COLON 

TISSUES 

4.1 INTRODUCTION 

The disruption of tight junctions (TJ) can lead to microbial translocation and 

inflammation in the mucosa[69]. Various pathogenic organisms like rotavirus, astrovirus and 

E.coli have developed strategies to disrupt the TJ, leading to pathogenic conditions characterized 

by increased intestinal permeability[109, 110]. Studies on the effects of HIV-1 on tight junctions 

have been contradictory. Tugizov et al. demonstrated that incubation of fetal oral mucosa with 

HIV-1-infected lymphocytes and macrophages for 4 hours did not cause disruption of epithelial 

junctions [111]. Whereas another study suggested that HIV-1 disrupted TJs in polarized tonsil 

epithelial cells [112]. TJ disruption and decrease of transepithelial electrical resistance have also 

been observed in human primary endometrial cells and intestinal cell lines after exposure to 

HIV-1 [69]. Studies in rhesus macaques have demonstrated that during SIV infection, the 

integrity of epithelial barrier lining the GI tract is damaged and it is associated with microbial 

translocation and inflammation [44].  However, few data are available in the literature describing 

the effect of HIV-1 on epithelial tight junction in human cervical and rectal/colonic tissues. 
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We, therefore, hypothesized that exposure to HIV-1 on the ectocervical and colon 

epithelium disrupts tight junctions and their functions, which increases the permeability of 

epithelial layers in ectocervical and rectal/colon tissues.  

4.2 RESULTS 

4.2.1 Effect of HIV-1 exposure on the integrity of the cervical/colonic mucosal epithelia 

The intactness of the apical cell membrane of epithelial cells and the intercellular TJ, AJ 

form the basis of the barrier function of mucosal epithelia[50]. We first performed histological 

examination of the epithelial layer of the ectocervical and colon tissues to determine the integrity 

of epithelial layer after incubation in organ culture.  In the ectocervical tissues, hematoxylin and 

eosin (H&E) staining showed that the epithelium lining the ectocervical mucosa remained intact 

after cultivation for 24 hours and was characterized by multilayered stratified squamous 

epithelial cells, basal layer and submucosa. Histological examination of colon tissues showed 

retention of the epithelium and lamina propria cell integrity after 6 hours in culture, which was 

similar to that of healthy colon tissue without cultivation. However, when colon explants were 

cultured for more than 10 hours, shedding of the epithelial layer was detected (data not shown). 

Next, to determine the effect of HIV-1 on the integrity of mucosal epithelia, ectocervical 

and colon tissues were exposed to HIV-1 for 24 hours and 6 hours, respectively, followed by 

H&E staining of fixed tissues. The morphology of epithelial layer and the basal layer in the 

ectocervical tissues remained largely unchanged after exposure to HIV-1 for 24 hours, which 

was similar to ectocervical tissues exposed to control supernatant (Figure 7A).  Similarly, 
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colonic tissues exposed to HIV-1 for 6 hours also maintained an intact mucosal layer, resembling 

the morphology of the colonic tissues exposed to control supernatant (Figure 7B). 

 

Figure 7. Effect of HIV-1 exposure on the integrity of the ectocervical/colon mucosal 

epithelia  

 

H&E staining was performed on ectocervical tissues (A) and colon tissues (B) exposed to 

HIV-1 (106 infectious viral units) or control supernatant in the organ culture for 24 hours 

and 6 hours respectively. Images were obtained by bright field microscopy E: Epithelium; 

L: Lumen of ectocervix. Magnification in ectocervical tissues 10x and magnification in 

colon tissues 40x. 
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4.2.2 Characterization of tight junction and adherence junction in ectocervical tissues  

The epithelial layer in ectocervical and colonic tissues provides a robust barrier against 

microorganisms. Various studies have shown the existence of TJ and AJ between epithelial cells 

in the colon tissue, but very little information is available regarding the structure and molecular 

composition of ectocervical epithelial junctions between the cells [47]. To determine whether TJ 

and AJ exist in multilayer ectocervical epithelium, we examined the profiles of a number of TJ 

proteins (ZO1, Claudin 1, Claudin 4), AJ protein (E-Cadherin) and Na/K ATPase in ectocervical 

epithelium. 

TJs regulate the passage of ions and small molecules through the paracellular pathway 

and serves as a permeability barrier (gate function) [49]. To evaluate the gate function, we 

measured the paracellular permeability of ectocervical epithelia to solutes (3 kD fluorescent 

labeled dextran). Cervical organ culture was set up as described in Materials and Methods, and 

tissues were treated with or without EDTA (10mM) for 2 hours. EDTA treated tissues and the 

control tissues were then exposed to 3 kD fluorescent labeled dextran for 1 hour. Tissues were 

frozen down in OCT at -80°C and sectioned (7μm thickness) followed by confocal microscopy 

to monitor the distribution of dextran in the tissues.  As shown in the Figure 8A, fluorescent-

labeled dextran was not detected within the epithelial layer or the submucosal region of the 

control tissue, which suggests that the dextran penetration was prevented by the TJs of the 

ectocervical mucosal epithelium. In contrast when ectocervical tissues were exposed to EDTA, 

an agent known to disrupt TJ/AJ, fluorescently labeled dextran penetrated the epithelial layers 

into the epithelial layer of the ectocervical tissue (Figure 8B). Therefore, the epithelial junction 

in cervical tissue could “gate” the diffusion of dextran between epithelial cells.  To study the TJ 

and AJ proteins, immunofluorescence staining of TJ and AJ proteins was performed on the 
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ectocervical and colon tissues exposed to control media or EDTA (10mM) for 2 hours.  

Immunofluorescence studies revealed distinct expression of interconnected ZO-1, Claudin-1 

expression pattern that were located around the perimeter of each epithelial cell (Figure 8C) in 

control ectocervical tissues. However, discontinuous punctate distribution of ZO-1 and Claudin-1 

between epithelial cells was detected in EDTA-treated ectocervical tissues (Figure 8C), 

indicating disruption of TJ/AJ.  
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Figure 8. Characterization of tight junction and adherens junction proteins in ectocervical 

tissues 

 

Ectocervical tissues incubated with fluorescent-labeled 3kD dextran (green) for 1 hour with 

(A)/without (B) prior exposure to EDTA (10mM) for 2 hours. Images were captured by 

confocal microscopy. The arrows on the right indicate that the dextran penetrated into 

epithelial layer of the ectocervical tissues exposed to EDTA.  E: Epithelium; L: Lumen of 

ectocervix. (C) Ectocervical epithelia were either exposed to control media or EDTA 

(10mM) for 2 hours. Ectocervical tissue sections were stained using antibodies against 

either ZO-1 (red), Claudin-1 (red), or nonspecific IgG isotype control. Nuclei were stained 

with DAPI (blue). Images were captured by confocal microscope. Magnification 40X. 

A B 

ISOTYPE CONTROLS IN 

CONTROL TISSUE 

CONTROL EDTA C 



 47 

4.2.3 Effect of HIV-1 on tight junction and adherence junction proteins in 

ectocervical/colon tissues 

Confocal scanning of ectocervical and colon tissues was performed, and images of 

mucosal epithelia were captured and quantitated.  Control epithelia were characterized by well-

defined and interconnected ZO-1, claudin 1, E-cadherin staining patterns located at the perimeter 

of each cell as a ring shape. Based on TJ protein distribution and expression in EDTA exposed 

ectocervical tissues (Figure 8C), if the TJ/AJ were disrupted in tissue epithelia, we expected the 

following characteristics of TJ/AJ proteins after exposure to HIV-1: discontinuous distribution 

pattern around the perimeter of cells, diffuse cytoplasmic localization of TJ/AJ proteins, presence 

of TJ/AJ protein in the apical and basal cell membranes, and reduced or complete inhibition of 

TJ/AJ protein expression. Contrary to our expectation, epithelial layers of ectocervical/colon 

tissues exposed to HIV-1 had similar distribution patterns of TJ proteins ZO-1, Claudin-1, 

Claudin-4 and E-cadherin compared to those in the control tissues (Figure 9,10,12).  Quantitative 

analysis revealed that there was no significant reduction in fluorescent intensity of ZO-1, Claudin 

4 and E Cadherin proteins in HIV-1 exposed tissues compared to control tissues indicating that 

there was no marked reduction in TJ/AJ proteins expression following exposure to HIV-1 

(Figure 11, 13). Furthermore a number of studies suggest that ZO-1 nuclear translocation could 

occur by disruption of ZO-1 protein in epithelial cells [113]. Quantitative analysis of the 

presence of ZO-1 in nuclei also revealed that there was no significant increase in ZO-1 nuclear 

translocation in ectocervical epithelial cells after exposure to HIV-1 (Figure 11E).  Thus, 

exposure to HIV-1 did not disrupt the distribution of TJ proteins and AJ protein between 

epithelial cells in both colon and ectocervical tissues.  
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Figure 9. Effect of HIV-1 exposure on tight junction proteins in ectocervical tissues 

 

Ectocervical epithelia were either exposed to HIV-1 (106 infectious viral units) or control 

supernatant for 24 hours in organ culture. Ectocervical tissue sections were stained using 

antibodies against ZO-1 (red), Claudin-1 (red), Claudin-4 (green) proteins or nonspecific 

IgG isotype control. Nuclei were stained with DAPI  (blue).  Five to ten images were 

captured from each biopsy by confocal microscopy. Magnification 40X. The images shown 

are representative of control/HIV-1 exposed biopsies from three different donors. 
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Figure 10. Effect of HIV-1 exposure on adherens junction protein and Na/K/ATPAase in 

ectocervical tissues 

 

Ectocervical epithelia were either exposed to HIV-1 (106 infectious viral units) or control 

supernatant for 24 hours in organ culture. Ectocervical tissue sections were stained using 

antibodies against either E-Cadherin (green) or Na/K/ATPase (green) proteins or 

nonspecific IgG isotype control. Nuclei were stained with DAPI (blue).  Five to ten images 

were captured from each biopsy by confocal microscopy. Magnification 40X. The images 

shown are representative of control/HIV-1 exposed biopsies from three different donors 
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Figure 11. Quantitation of tight junction and adherens junction proteins in ectocervical 

tissues 

 

Fluorescence intensity of ZO-1 (A), claudin-4 (B), E-Cadherin (C) or Na/K/ATPase (D) 

proteins in ectocervical epithelia was normalized based on number of nuclei in the selected 

fields. Data shown are the average of fluorescence intensity in epithelia exposed to control 

supernatant or HIV-1 and is presented as mean ± standard deviation of three independent 

experiments with different donors. (E) ZO-1 nuclear colocalization (shown as Pearson 

correlation coefficient between DAPI and ZO-1) in ectocervical epithelium. Data shown are 

the average of ZO-1 nuclear colocalization in epithelia exposed to control supernatant or 

HIV-1 and are presented as mean ± standard deviation of three independent experiments 

each with a different donor. 
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Figure 12. Effect of HIV-1 exposure on tight junction proteins and adherens 

junction proteins in colon tissues 

 

Human colon tissues were either exposed to HIV-1 (106 infectious viral units) or control 

supernatant for 6 hours. Colon tissue sections were stained using antibodies against either 

ZO-1 (red), Claudin-4 (green), E-Cadherin (green), Na/K/ATPase (green) protein or 

nonspecific IgG isotype control. Nuclei were stained with DAPI (blue). Five to ten images 

were captured from each biopsy by confocal microscopy. Magnification 40X. The images 

shown are representative of control/HIV-1 exposed biopsies from three different donors 
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Figure 13. Quantitation of tight junction and adherens junction proteins in colon 

tissues 
 

Fluorescence intensity of ZO-1 (A), Claudin-4 (B), E-Cadherin (C) or Na/K/ATPase (D) 

proteins in colon mucosa was normalized based on number of nuclei in the selected fields. 

Data shown are the average of fluorescence intensity in control supernatant or HIV-1 

exposed tissues. Data are presented as mean ± standard deviation of three independent 

experiments each with a different donor. 

4.2.4 Effect of HIV-1 on NA/K/ATPase in ectocervical/colon tissues 

TJ maintains cell polarity by restricting the lateral diffusion of proteins and membrane 

lipids between the basolateral and apical compartments [51]. Studies have suggested that 

Na/K/ATPase, which is located in the basolateral membrane of the cell, plays an important role 
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in the formation of tight junctions and development of polarity [52]. To study the effect of HIV-1 

on Na/K/ATPase expression pattern, the distribution of Na/K/ATPase between apical and 

basolateral membranes of epithelial cells was assessed in control or HIV-1 exposed 

ectocervical/colon tissues. In the control ectocervical/colon tissues, Na/K/ATPase staining was 

most intense in the basolateral regions and such distribution of Na/K/ATPase was not altered 

after exposure to HIV-1 (Figure 10,12). Furthermore, quantitative analysis of the expression of 

Na/K-ATPase also revealed that there was no significant difference in the Na/K/ATPase protein 

expression levels between HIV-1 exposed and control tissues (Figure 11,13). Thus, exposure to 

HIV-1 did not significantly disrupt Na/K/ATPase profiles in the epithelial cells in both colon and 

ectocervical tissues. 

4.2.5 HIV-1 transmission through ectocervical and colon tissues 

Since we did not observe any effect of HIV-1 exposure on TJ disruption, we investigated 

whether HIV-1 transmission did occur within 6 hours after exposure in colon and 24 hours after 

exposure to ectocervical tissue. For this purpose first we examined entry of HIV-1 across the 

epithelium layer within 6 hours of HIV-1 infection using transmission electron microscopy 

(TEM). Following exposure of colonic tissues to HIV-1 for 6 hours, TEM analysis demonstrated 

virus like particles inside and between the epithelial cells. Morphologically, the colon luminal 

surface exposed to both control supernatant and HIV-1 were characterized by presence of a 

compactly packed layer of epithelial cells with numerous microvilli (Figure 14A,B). 

Furthermore, the apical region of the colonic epithelial cells with and without HIV-1 exposure 

was characterized by intact epithelial junctions, which might prevent entry of luminal contents 

through the paracellular space. 
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Figure 14. Visualization of epithelial junctions in the human colon tissues by 

transmission-electron microscopy 

 

Colon biopsies obtained from one donor were exposed to control supernatant (A) or HIV-1 

(106 infectious viral units) (B) for 6 hours followed by transmission electron microscopy of 

the tissue sections. Tissue processing and transmission electron microscopy were 

performed with the help of Biological Imaging EM Core, University of Pittsburgh.  Blue 

arrow shows the epithelial junctions between colon columnar epithelial cells. Red arrow 

shows the HIV-like particles.  Magnification 25000X 

 

To examine further whether HIV-1 transmission occurs within 24 hours and 6 hours of 

exposure, transmission of HIV-1 in these tissues were examined. For this purpose colon and 

ectocervical tissues were exposed to HIV-1 for 6 or 24 hours respectively, after which the tissues 

were washed to remove the viral inoculum, and cultured in fresh medium for 16 days. HIV-1 

transmission was detected by observing an increase in the level of HIV-1 p24 in the culture 

supernatant of colon (Figure15A) and ectocervical (Figure15B) tissues. At day 4 post-infection, 

the viral replication became evident and it increased over the course of the culture period in both 
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colonic and ectocervical culture. At day 16 post infection, the average p24 in culture supernatant 

was 1,160 pg/ml in colon tissue and 13,967 pg/ml in ectocervical tissue.  

 

Figure 15. HIV-1 replication in colon/ectocervical tissues after exposure to HIV-1 in 

vitro 

 

Human colon tissues (n=3) (A) or human ectocervical tissues (n=10) (B) were inoculated ex 

vivo with HIV-1 (106 infectious viral units) for 6 hours or 24 hours respectively, then 

washed and cultured for 16 days. The culture supernatant was tested for HIV-1 p24 

antigen production at different time points. The ectocervical organ culture was 

performed with the help of Deena Ratner. Data are presented as mean ± standard 

deviation of independent experiments each with different donors (n=3 for colon tissues, 

n=10 for ectocervical tissues). 

4.3 CONCLUSION 

Our overall aim was to determine whether exposure to HIV-1 disrupts TJ/AJ between 

epithelial cells in the colon and ectocervical tissues as a mechanism of HIV-1 transmission 

through the mucosal epithelial barrier.  Interestingly, our result so far indicate that exposure to 

HIV-1 does not disrupt the TJ/AJ between epithelial cells in ectocervical and colon tissues. We 
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also observed that Na/K/ATPase, which is an indicator of fence function, did not significantly 

alter in the HIV-1 exposed ectocervical and colon tissues. However, HIV-1 transmission was 

observed in colon and ectocervical tissues. These observations suggest that HIV-1 does not 

disrupt TJ/AJ between epithelial cells for successful transmission through ectocervical and colon 

mucosa.  
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5.0  SPECIFIC AIM 2: EVALUATION OF INFLAMMATORY RESPONSE IN 

EPITHELIAL CELLS FOLLOWING HIV-1 EXPOSURE IN THE ECTOCERVICAL 

AND RECTAL EPITHELIAL TISSUES 

5.1 INTRODUCTION 

After exposure to HIV-1, cervical and intestinal epithelial cell lines have been shown to 

secrete cytokine including IL8, MIP1 Beta, MCP-1, TSLP, TNFα, IL 6 which play an important 

role in recruiting immune cells [44, 58, 68]. Similarly, studies in rhesus macaques have 

demonstrated increases in expressions of cytokines like MIP3α, MIP-1β in the cervical 

epithelium which recruits immune cells like pDCs and CD4 T cells [44, 72]. Therefore, epithelial 

cells may be one of the first cell targets for HIV-1 to induce local inflammatory responses, which 

may facilitate HIV-1 transmission. However, these conclusions are drawn from in vitro human 

cell line studies and in vivo monkey studies focusing on early events of SIV transmission during 

the first few days of infection. Due to ethical and practical reasons, similar studies for 

understanding the early events of HIV-1 transmission in the first few days of infection have not 

been performed in humans. As mentioned by Haase et al., within first few weeks of infection, 

SIV spreads to lymphatic tissues and establishes systemic infection [44]. Therefore to prevent the 

spread of HIV-1, understanding the early events of HIV-1 transmission is critical. We, therefore, 

examined the inflammatory responses caused by exposure to HIV-1 in ectocervical and colon 
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tissues using organ culture model. Based on the conclusions drawn from rhesus macaques’ 

studies, we hypothesize that interaction of HIV-1 with the ectocervical/rectal epithelium 

induces inflammatory gene expression in epithelial cells. Additionally, HIV-1 induced 

cytokines from epithelial cells will alter immune cell distribution in ectocervical tissues. 

5.2 RESULTS 

5.2.1 Cytokine gene expression profile following HIV-1 exposure in epithelial cells of 

ectocervical and colon tissues 

Previous studies have reported that following HIV-1 infection there is an upregulation of 

thymic stromal lymphopoietin (TSLP) that strongly activates human myeloid DCs, leading to 

robust induction of homeostatic proliferation of CD4+ T cells and promoting HIV-1 replication 

in the activated T cells [114]. Previous studies have also reported an increased production of 

cytokines like IL-2, IL-4, IL-5 and TNF-α in culture supernatants of HIV-1 exposed intestinal 

biopsies [115].  We therefore examined inflammatory response in the epithelial cells of the 

tissues exposed to HIV-1 since it may facilitate the establishment of local HIV-1 infection during 

HIV-1 transmission across the epithelial barrier. For this purpose, the mucosal epithelial layers 

from ectocervical tissues and mucosal layers from colonic tissues following HIV-1 exposure 

were harvested by microdissection followed by examination of the mRNA levels of different 

cytokines in epithelia.  

The purity of microdissected ectocervical epithelia was assessed by measuring the 

cytokeratin 13 mRNA, which is mainly expressed in epithelial cells and less expressed in 
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submucosa [116, 117]. The mean CT value of cytokeratin 13 mRNA in microdissected epithelial 

regions was 10 CT less than that of sub-epithelial regions, which indicated that the epithelial 

cells were enriched at least by 1000 fold in the microdissected epithelia compared to sub-

epithelial regions (data not shown). As shown in figure 16, the mean fold change of CXCL10 

and IL-6 mRNA expression was 2 fold or higher in human colon mucosa exposed to HIV-1 

compared to the tissues exposed to control supernatant. However, such increase was not 

statistically significant in HIV exposed colon mucosa. Significantly higher fold change of 

CXCL10 and CXCL11 mRNA expressions were detected in HIV-1 exposed ectocervical 

epithelia compared to the controls (Figure 17a). 

 

Figure 16. Cytokine gene expression in epithelia following HIV-1 exposure in the 

colon tissues  

 

Colon tissues (n=3-7) were exposed to either HIV-1 (106 infectious viral units) or control 

supernatant for 6 hours. Total RNA was extracted from microdissected mucosal layers 

followed by real time RT-PCR for cytokine gene expression. GAPDH, a house-keeping 

gene, was measured for internal controls. Experiments were repeated in 7 different donors. 

Each donor had two biopsies per treatment. Each circle () represents the fold change of 

HIV-1 exposed mucosal layer compared to controls from each biopsy and horizontal lines 

represent mean values of the fold-change in the HIV exposed biopsies compared to controls 
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RNA extraction and Real-time RT PCR were performed with the help of Ming Ding.  

 

 

 

To determine if infectious HIV-1 was required for such cytokine induction, ectocervical 

tissues were exposed to infectious HIV-1, AT2-inactivated HIV-1 or gp120 followed by 

microdissection of epithelial layer. As shown in Figure 17B and 17C, both AT2-inactivated HIV-

1 and HIV-1 gp120 failed to increase cytokine expression in the ectocervical epithelial cells. 

These results indicate that infectious HIV-1 is required for cytokine induction in ectocervical 

epithelial cells.  
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Figure 17. Cytokine gene expression in epithelia following HIV-1 exposure in the 

ectocervical tissues 

Ectocervical tissues (n=9) were exposed to either control supernatant, HIV-1 (106 infectious 

viral units), AT2 inactivated HIV-1 or GP120 for 24 hours. Total RNA was extracted from 

microdissected epithelial layers followed by real time RT-PCR for cytokine gene 

expression. KRT 13, a house-keeping gene, was measured for internal controls. 

Experiments were repeated in 9 different donors. Each donor had two or more biopsies per 

treatment. Each circle () represents the fold change observed from each biopsy in the 

treated biopsies compared to controls. (A) Fold change observed in HIV-1 exposed 

ectocervial epithelia compared to control. (B) Fold change observed in HIV-1 or AT2 or 

GP120 exposed ectocervial epithelia compared to control. Horizontal lines represent mean 

values of the fold-change. RNA extraction and Real-time RT PCR was performed with the 

help of Ming Ding 

 

A 

C 
B 

CXCL10 CXCL11 

n=9 

n=9 n=9 



 62 

5.2.2 Changes of gene expression profiles of cellular factors in ectocervical epithelia 

following HIV-1 exposure 

Besides these cytokines, there might be other cellular factors that are involved in HIV-1 

transmission through the epithelial layer and facilitate infection in the ectocervical tissues. To 

identify cellular factors in epithelia that are involved in HIV-1 transmission, a comprehensive 

transcriptome analysis by next generation sequencing using an Ion Torrent platform was 

performed with the RNA extracted from epithelia of ectocervical tissues (n=6) exposed to HIV-1 

or control supernatant. 

The mapped sequences based on mRNA database were analyzed to compare the 

expression levels of individual gene by statistical software R. Expression levels of about 52,000 

genes were analyzed. The genes that had no expression or low read counts were excluded for 

further analysis. Expression levels of the remaining 10,711 gene were further analyzed based on 

false discover rate <0.05 to examine if their expression levels were significantly changed after 

exposure to HIV-1. Table 3 lists the top 10 most differentially expressed genes by fold change in 

HIV-1 exposed ectocervical epithelia compared to the controls. The top 10 most differentially 

expressed genes in HIV exposed ectocervical epithelia were IL36A, FMO2, CXCL10, MUC1, 

SAA1, IL8, WARS, RHOBYB3, SPRR2G, SECTM1.  Amongst these genes, the expression 

level of IL36A, FMO2, CXCL10, MUC1, SAA1, IL8 were significantly higher (p<0.05) with 2 

or higher fold change in HIV-1 exposed ectocervical epithelia compared to the control (Table 3, 

Figure 18). The genes, like CXCL10, IL8, SAA1, that were significantly upregulated after 

exposure to HIV-1 are known to play an important role in immune cell migration[72, 118-120], 

whereas MUC1 has a role in protecting against infection by preventing the binding of pathogens 
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to cells[121]. Thus up-regulation of these cellular factors such as CXCL10, IL8, SAA1 might 

increase target cell availability by recruiting immune cells towards the epithelial layer.  

 

Table 3. Differentially expressed genes in HIV-1 exposed ectocervical epithelia compared to 

the controls as evaluated by next generation sequencing in an Ion Torrent platform 

 

 

* Indicates statistically significant expressions. 
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Figure 18. Heat map of differently expressed genes in HIV-1 exposed ectocervical 

epithelia compared to controls 

 

Heat map of the genes that were significantly (p<0.05, fold change ≥ 2) upregulated in HIV-

1 exposed ectocervical epithelia (n=6) compared to controls.  CTL- Ectocervical tissues 

exposed to control supernatant; HIV: Ectocervical tissues exposed to HIV-1 for 24 hours. 

Ion torrent sequencing was performed with the help of Ming Ding and data analysis was 

performed with the help of Dr. Chengli Shen. 

 

Differential expressions of these genes were further confirmed by real time RT-PCR of 

the 9 donors (Table 4).  The mean values of fold changes of IL36A, FMO2, CXCL10, MUC1, 

SAA1, IL8 expression in HIV-1 exposed ectocervical epithelia relative to controls were 1.75 

(SD±0.95), 2.09(SD±1.41), 11.32(SD±11.8), 2.29(SD±1.94), 2.64(SD±2.6), 2.12(SD±1.48) 

respectively. 
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Table 4. mRNA expression levels (fold change relative to control) of cytokines in HIV-1 

exposed ectocervical epithelia by real time RT-PCR 

 

 

5.2.3 Study of immune cell migration in ectocervical tissues after exposure to HIV-1 

Studies in rhesus macaques have suggested that inflammatory responses after SIV 

infection might facilitate SIV transmission by increasing target cell availability [44]. Since the 

immune cells are target cells for HIV-1, we assessed whether exposure to HIV-1 increased the 

number of immune cells in epithelial and subepithelial regions of ectocervical tissues. For this 

purpose, we examined the distribution of CD3+ and CD8+ cells in the intraepithelial and 

submucosal regions in control and HIV-1 exposed ectocervical tissues using 

immunofluorescence staining for CD3 and CD8 followed by confocal microscopy. Images 

acquired from 10 high power fields randomly chosen per slide were obtained for analysis. CD3+ 

or CD3+/CD8+ cells were detected throughout the intraepithelia and submucosal regions, both as 

single cells and in clusters (Figure 19A,B).  Based on the current literature, we expected 

increases in CD3+/CD8+cell populations in the intraepithelial layer and just beneath the 

basement membrane in HIV-1 exposed ectocervical tissue. However, there was no significant  
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difference (p=0.53) in the ratio of number of CD3+ CD8+ cells in intraepithelial region to total 

number of CD3+ CD8+ in HIV-1 exposed ectocervical tissues compared to the control (Figure 

19C).  
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Figure 19. CD3+ CD8+ immune cell distribution in ectocervical tissues after 

exposure to HIV-1 

 

Ectocervical tissues were either exposed to control supernatant (A) or HIV-1 (106 infectious 

viral units) (B) for 24 hours. Ectocervical tissue sections were stained using antibodies 

against CD3 (red), CD8 (green), isotype control for CD3 (red) or isotype control for CD8 

(green). Nuclei were stained with DAPI (blue). Five to ten images were captured from each 

biopsy by confocal microscopy. Magnification 40X. The images shown are representative of 

control/HIV-1 exposed biopsies from three different donors. Each donor had two biopsies 

per treatment. (c) Ratio of the number of immune cells in the epithelial region and just 

     CONTROL                                    HIV  

SUBMUCOSA 
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beneath the basolateral membrane (region A), and the total number of immune cells in 

mucosa and submucoa (region B) in each image. 

A to region B quantitated in each confocal image obtained from control/HIV-1 treated 

biopsies and horizontal lines represent mean value. Data are presented as mean ± standard 

deviation. 

 

We also tried to examine the changes in the distribution of macrophages in ectocervical 

epithelia after exposure to HIV-1. Immunofluorescence staining for CD68 was performed on 

control and HIV-1 exposed human ectocervical tissues. As a positive control for CD68 staining, 

immunofluorescence staining of axillary lymph node tissues obtained from a rhesus macaque 

was performed at the same time. Axillary lymph node tissues were a gift from Dr. Todd Reinhart 

(University of Pittsburgh). Confocal microscopic images showed strong expression of CD68+ 

cells in rhesus macaque tissues (Figure 20). Unfortunately, no clear staining of CD68+ cells were 

observed in human ectocervical tissues (n=2) (Figure 20). Similarly, despite multiple attempts 

using antibodies from different companies, distinct staining of CD4+ cells was not observed in 

the ectocervical tissues (data not shown). This might be due to the quality of antibodies used in 

the study. Therefore, we were not able to determine the changes in distribution of CD4+ or 

CD68+ cells in ectocervical epithelia after exposure to HIV-1.  
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Figure 20. CD68+ immune cell staining in ectocervical tissues  

 

Tissues sections from human ectocervical tissues and rhesus macaque axillary lymph node 

were stained for CD68 (red in human tissues, green in rhesus macaque tissues). Images 

were captured by confocal microscopy. DAPI-stained nuclei shown in blue.  

5.3 CONCLUSION 

We sought to determine the effect of HIV-1 on local inflammatory responses in epithelial 

cells, which may facilitate the establishment of local HIV-1 infection after HIV-1 crosses the 

epithelial barrier. We found that HIV-1 exposure to epithelium induced marginal CXCL10 and 
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IL6 expression in colonic tissue and CXCL 10 and CXCL11 in cervical tissues. Such induction 

of cytokines in ectocervical epithelia was dependent on infectious virus exposure. Furthermore, 

next generation sequencing of the mRNA isolated from ectocervical epithelial layers have 

identified certain cellular gene expression in epithelia following HIV-1 infection that may be 

important for HIV-1 transmission by recruiting immune cells for productive HIV-1 infection. 

However, there was no change in the distribution of CD3+ CD8+ immune cells in the 

intraepithelial and subepithelial region after HIV-1 infection. 
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6.0  SPECIFIC AIM 3: SUSCEPTIBILITY OF ECTOCERVICAL AND 

VAGINAL TISSUES TO HIV-1 INFECTION AT DIFFERENT STAGES OF 

MENSTRUAL CYCLE 

6.1 INTRODUCTION 

Natural fluctuations in levels of the hormones estradiol and progesterone play a crucial 

role in regulating physiology and function within the female genital tract, and may introduce a 

window of vulnerability to HIV-1 infection at specific times during the menstrual cycle [87]. 

Studies in non-human primate models have shown that progesterone treatment caused vaginal 

thinning and increased SIV acquisition in monkeys, whereas estrogen treatment protected female 

rhesus macaques against SIV infection [91, 122]. A number of epidemiological and laboratory 

studies have studied the influence of reproductive hormone on HIV-1 acquisition risk in women 

with few studies reporting a significant association between hormones and HIV-1 transmission 

while other studies failed to show such association [86, 94]. Moreover, studies have proposed 

multifactorial mechanisms of hormonal contraceptive use on HIV-1 infection including vaginal 

thinning, and evaluated the vaginal thickness in women using DMPA.  However, conclusions 

from these studies have not been consistent so far. In vitro studies using human cervical cell lines 

have shown that reproductive hormones like estradiol altered the expression level of tight 

junction proteins and increase transepithelial resistance [102-104]. Thus, it remains uncertain if 
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and how reproductive hormones alter the risk of HIV-1 acquisition. We, therefore, 

hypothesized that reproductive hormones might influence susceptibility to HIV-1 infection 

in human ectocervical and vaginal tissues by altering thickness of epithelial layer and 

disrupting tight junction proteins between epithelial cells  

6.2 RESULTS 

6.2.1 Assessment of susceptibility to HIV-1 infection in ectocervical and vaginal tissues 

obtained at different stages of the menstrual cycle 

Previous studies have postulated that during the menstrual cycle, there is a window of 

vulnerability in which the potential for viral infection in the female genital tract is increased[87]. 

Progesterone treatments in monkeys have been used to increase susceptibility to vaginal 

inoculation of SIV in studies of candidate HIV-1 vaccines[85, 86, 94, 123]. Therefore, we 

hypothesized that the cervical/vaginal tissues at different stages of menstrual cycle might be 

more susceptible to HIV-1 infection due to the elevation or depression of a reproductive 

hormone in a particular phase of menstrual cycle. To test this hypothesis, ectocervical and 

vaginal tissues obtained from women in proliferative (n=21), ovulatory (n=6) or secretory phases 

(n=11) were exposed to HIV-1 for 24 hours respectively. The tissues were then washed to 

remove the viral inoculum, and cultured in fresh medium for 16 days. HIV-1 transmission was 

monitored by measuring production of HIV-1 p24 periodically in the culture supernatant of 

ectocervical (Figure 21A, Table 5) and vaginal (Figure 21B, Table 6) tissues. On day 4 post-

infection, viral replication became evident and increased during the course of culture period in 
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both ectocervical and vaginal tissue cultures (Figure 21A,B). On day 16 post-infection, the 

average p24 in culture supernatant of ectocervical tissues (Table 5) obtained during the 

proliferative phase, ovulatory phase and secretory phase was 10,979.2 (±10,031.8) pg/ml, 

3,834.2 (±5,137.6) pg/ml, 7,637.9 (±8,873) pg/ml respectively. In vaginal tissues (Table 6), on 

day 16 post infection, the average p24 in culture supernatant of vaginal tissue obtained during 

proliferative phase, ovulatory phase and secretory phase was 4,003.5 (±3,791.2) pg/ml, 2,372.8 

(±1,239.3) pg/ml, 4418.9 (±9,051.1) pg/ml respectively.  

  

Figure 21. HIV-1 replication in ectocervical/vaginal tissues obtained from different 

phases of menstrual cycle 

 

Human ectocervical tissues (n=6-21) (A) or human vaginal tissues (n=6-21) (B) obtained 

from different phases of menstrual cycle were exposed to HIV-1 (106 infectious viral units) 

for 24 hours, then washed and cultured for 16 days. The culture supernatant was tested for 

HIV-1 p24 antigen production at different time points. The ectocervical/vaginal organ 

culture was performed with the help of Deena Ratner. Data are presented as mean ± 

standard deviation of 6 to 21 independent experiments each with different donors. 
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Table 5. HIV-1 p24 (pg/ml) production in ectocervical tissues obtained from 

different phases of menstrual cycle 

 

 

SD: Standard deviation 

IQ range: Interquartile range 

KW: Non parametric Kruskal-Wallis analysis  
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Table 6. HIV-1 p24 (pg/ml) production in vaginal tissues obtained from different 

phases of menstrual cycle 

 

 

 

SD: Standard deviation 

IQ range: Interquartile range 

KW: Non parametric Kruskal-Wallis analysis  

To compare HIV-1 replication in ectocervical/vaginal tissues obtained from different 

phases of menstrual cycle, parametric and non parametric statistical analysis of p24 values were 

conducted at each time point (day 4, 8, 12) post HIV-1 infection for p24 produced in 



 76 

cervical/vaginal tissues obtained from either proliferative, ovulatory or secretory phase of 

menstrual cycle. Statistical analyses by both parametric and non-parametric method 

demonstrated that irrespective of the time points after HIV-1 infection, there were no statistically 

significant differences  (p=0.2) between the p24 produced in cervical/vaginal tissues obtained 

from either proliferative or ovulatory or secretory phase of menstrual cycle.  To evaluate the 

overall virus production during the culture period, the area under the curve (AUC) was also 

calculated based on the p24 production on days 4, 8, 12, 16 post infection of cervical/vaginal 

tissues obtained from either proliferative or ovulatory or secretory phase. As shown in Table 5 

the mean AUC for cervical tissues obtained at proliferative, ovulatory and secretory phase were 

72,390.5, 32,622.2 and 55,271.6 pg/ml respectively. In case of vaginal tissues, AUC for the 

vaginal tissues obtained at proliferative, ovulatory and secretory phase were 28,180.8, 17,731.0 

and 31,176.6 pg/ml respectively (Table 6). However, statistical analysis by both parametric and 

non-parametric methods showed there were no statistical differences (p=0.232) between AUC in 

cervical/vaginal tissues obtained at different phases of menstrual cycle. These results suggest that 

the overall susceptibility to HIV-1 infection in cervical/vaginal tissues was not significantly 

changed at different phases of menstrual cycle. 

6.2.2 Epithelial thickness and tight junction protein expression at different phases of 

menstrual cycle 

A decrease in epithelial thickness or epithelial junction protein expression could reduce 

the epithelial barrier function potentially favoring exposure of target cells to HIV-1 [124]. 

Studies in non-human primate models demonstrated that DMPA treatment reduced vaginal 

epithelial thickness and increased SIV transmission through vaginal mucosa [91]. In contrast, 
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estrogen treatment in non-human primates increased vaginal thickness and reduced vaginal SIV 

transmission [122]. Previous in vitro studies suggest that reproductive hormones like estrogen 

could regulate TJ proteins, transepithelial resistance in epithelial cells [87, 102-104], which 

might affect HIV-1 transmission.   

Therefore, we investigated whether the epithelial thickness and TJ protein expression in 

vaginal and cervical tissues changed at different phases of menstrual cycle. Furthermore, 

although in Aim 1 we have shown that HIV-1 does not cause profound effects on epithelial 

morphology and TJ/AJ proteins in the epithelial layer following exposure to HIV-1, we 

evaluated the influence of reproductive hormones on epithelial thickness and TJ protein 

expression between epithelial cells in HIV-1 exposed human ectocervical/vaginal tissues.  For 

this purpose human ectocervical (n=3 to 5) and vaginal tissues (n=3 to 5) obtained at different 

stages of menstrual cycle were exposed to control supernatant or HIV-1 for 24 hours followed by 

analysis of epithelial thickness and TJ proteins as mentioned in “Materials and Methods”. 

6.2.2.1 Analysis of epithelial thickness 

In the control group of uninfected ectocervical tissues (n=5) (Figure 22A), the average 

epithelial thickness at the proliferative phase, ovulatory phase and secretory phase was 130.12 

μm, 129.3μm and 110.3 μm respectively. Epithelial thickness in control uninfected vaginal 

tissues (n=5) (Figure 22B) tissues at proliferative phase, ovulatory phase and secretory phase was 

201.7 μm, 151.1μm and 149.8 μm respectively. Statistical analysis showed that there were no 

significant differences (p=0.3 for cervical tissues, p=0.12 for vaginal tissues) in 

ectocervical/vaginal epithelial layer thicknesses between the tissues obtained from the three 

phases of menstrual cycle. 
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Figure 22. Epithelial thickness of ectocervical tissues and vaginal tissues obtained at 

different phases of menstrual cycle 

 

Human ectocervical (A) and vaginal tissues (B) obtained from different phases of 

menstrual cycle were exposed to control supernatant for 24 hours. H&E staining of the 

tissue sections were performed and images were captured by bright field microscopy. 

Epithelial thickness was measured in three representative areas of mucosa from the 

basement membrane up to the surface and the mean of epithelial layer thickness was 

calculated for each biopsy. Experiments were repeated in ectocervical/vaginal tissues 

obtained from 5 different donors during different phase of menstrual cycle. 

represents epithelial thickness in ectocervical or vaginal tissues from each donor obtained 

ectocervical or vaginal tissues from each donor obtained during ovulatory and secretory 

phase respectively.  Horizontal lines represent mean value of ectocervical or vaginal 

epithelial thickness from all five donors. Data are presented as mean ± standard deviation 

of epithelial thickness of all 5 different donors. 

 

In case of HIV-1 exposed tissues, the average epithelial thickness in HIV-1 exposed 

ectocervical tissues (n=5) (Figure 23A), at proliferative phase, ovulatory phase and secretory 

phases was 145.04 μm, 83.6 μm and 81.49 μm, respectively.  Whereas, in HIV-1 exposed 

vaginal tissues (Figure 23B), average epithelial thickness at proliferative phase, ovulatory phase 

and secretory phases was 208.4 μm, 143.32 μm and 147.9 μm respectively. Similar to the control 

A B 

P=0.3 P=0.12 
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uninfected tissues, the epithelial thickness in HIV-1 exposed ectocervical/vaginal tissues was not 

statistically significantly different (p=0.24 for cervical tissues, p=0.32 for vaginal tissues).  

 

Figure 23. Epithelial thickness of HIV-1 exposed ectocervical tissues vaginal tissues 

obtained at different phases of menstrual cycle 

 

Human ectocervical (A) and vaginal tissues (B) obtained from different phases of 

menstrual cycle were exposed to HIV-1 (106 infectious viral units) for 24 hours. H&E 

staining of the tissue sections were performed and images were captured by bright field 

microscopy. Epithelial thickness was measured in three representative areas of mucosa 

from the basement membrane up to the surface and the mean of epithelial layer thickness 

was calculated for each biopsy. Experiments were repeated in ectocervical/vaginal tissues 

obtained from 5 different donors during different phase of menstrual cycle.  Each circle 

 

obtained 

ectocervical or vaginal tissues from each donor obtained during ovulatory and secretory 

phase respectively.  Horizontal lines represent mean value of ectocervical or vaginal 

epithelial thickness from all five donors. Data are presented as mean ± standard deviation 

of epithelial thickness of all 5 different donors. 

 

A B 

P=0.24 P=0.32 



 80 

6.2.2.2 Analysis of tight junction/adherens junction protein expression 

To investigate the TJ/AJ protein expression in control/HIV-1 exposed ectocervical tissues 

obtained from different stages of menstrual cycle, ectocervical tissues were obtained during 

different phases of menstrual cycle and exposed to control supernatant or HIV-1 for 24 hours. 

These ectocervical tissues were stained for TJ protein (claudin-4), AJ protein (E-Cadherin) and 

Na/K/ATPase followed by confocal microscopy. Confocal images of mucosal epithelia were 

quantitated for fluorescence intensity of TJ, AJ proteins. Control uninfected and HIV-1 exposed 

ectocervical tissues (n=3) obtained from different stages of menstrual cycle revealed the presence 

of TJ and AJ molecules with well-defined, interconnected Claudin-4 (TJ), E-cadherin (AJ), 

Na/K/ATPase expression pattern in the perimeter of individual epithelial cells (Figure 24). 

Quantitative analysis showed no significant differences in the fluorescence intensity of Claudin-4 

(p=0.28 for control, p=0.42 for HIV-1 exposed tissues), E-cadherin (p=0.21 for control, p=0.32 

for HIV-1 exposed tissues) or Na/K/ATPase (p=0.33 for control, p=0.43 for HIV-1 exposed 

tissues) in the epithelial cells of control uninfected (Figure 25), or HIV-1 exposed ectocervical 

tissues (Figure 26) obtained during different phases of menstrual cycle. These results indicate 

that expression levels of epithelial TJ and AJ proteins are not significantly different at different 

stages of menstrual cycle regardless of whether they are HIV-1 exposed or not.  
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Figure 24. Expression of tight junction and adherens junction proteins in control or HIV-1 

exposed ectocervical tissues obtained from proliferative phases of menstrual cycle 

 

Human ectocervical tissues (n=3) obtained from different phases of menstrual cycle were 

either exposed to control supernatant or HIV-1 (106 infectious viral units) for 24 hours. 

Ectocervical tissue sections were stained using antibodies against either Claudin-4 (green), 

E-Cadherin (green) or Na/K/ATPase (green) proteins. Nuclei were stained with DAPI 

(blue). Three images were captured from each biopsy by confocal microscopy. 

Magnification 40X. The images shown are representative of control/HIV-1 exposed 

ectocervical biopsies obtained during different phases of menstrual cycle from three 

different donors.  
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Figure 25. Quantitation of tight junction and adherens junction proteins in ectocervical 

tissues obtained at different phases of menstrual cycle 

 

Ectocervical tissues were obtained from women at different phases of menstrual cycle and 

exposed to control supernatant for 24 hours. Fluorescence intensity of E-Cadherin (A), 

claudin-4 (B), Na/K/ATPase (C) proteins in ectocervical epithelia was normalized based on 

number of nuclei in the selected fields. Data are presented as mean ± standard deviation of 

3 different donors for each phases of menstrual cycle. 

A B 

C 

P=0.21 
P=0.28 

P=0.33 
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Figure 26. Quantitation of tight junction and adherens junction proteins in HIV-1 exposed 

ectocervical tissues obtained at different phases of menstrual cycle 

 

Ectocervical tissues were obtained from women at different phases of menstrual cycle and 

exposed to HIV-1 (106 infectious viral units) for 24 hours. Fluorescence intensity of E-

Cadherin (A), claudin-4 (B), Na/K/ATPase (C) proteins in ectocervical epithelia was 

normalized based on number of nuclei in the selected fields. Data are presented as mean ± 

standard deviation of 3 different donors for each phases of menstrual cycle. 

6.3 CONCLUSION 

Due to the controversies regarding the effects of hormonal contraceptive usage on 

susceptibility of HIV-1 infection, we investigated (a) the susceptibility of ectocervical/vaginal 

tissues to HIV-1 infection and (b) the effect of HIV-1 on epithelial thickness and tight junction 

A B 

C 

P=0.32 P=0.42 

P=0.43 
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protein expression between epithelial cells in ectocervical/vaginal tissues obtained at different 

phases of menstrual cycle. Our results indicate that there were no significant differences in the 

susceptibility of ectocervical and vaginal tissues to HIV-1 infection among different phases of 

the menstrual cycle. Furthermore, epithelial layer thickness and epithelial TJ/AJ protein 

expression were not significantly different in the control (HIV-1 unexposed) or HIV-1 exposed 

ectocervical/vaginal tissues at the different stages of menstrual cycle, suggesting that epithelial 

barrier integrity did not change significantly during the course of the menstrual cycle regardless 

of whether they were subsequently HIV-1 exposed or not.  
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7.0  DISCUSSION 

Mucosal surfaces are the primary sites for HIV-1 transmission during heterosexual or 

homosexual intercourse. Despite the importance of rectal and cervical transmission in the AIDS 

epidemic [125], current knowledge regarding the mechanism of HIV-1 entry across mucosa is 

limited to in vitro studies involving primary cervical cells and intestinal cell lines, which do not 

reproduce fully the complexity and specificity of the cervical/colon milieus. The purpose of the 

current study was to understand the mechanism of HIV-1 transmission across the mucosa layer 

in the ectocervical and colonic tissue. In this study, we utilized a previously reported ectocervical 

tissue-based organ culture model [126] and colon organ culture to determine the mechanism of 

transmission across mucosal epithelia. Unlike cell lines, the tissue in the organ culture model is 

comprised of the epithelial layer, subepithelial region containing immune cells including T cells, 

langerhans cells and macrophages, and allows for the evaluation of HIV-1 transmission across 

the mucosa [127]. The simple columnar epithelial layer lining the colon tissues are more fragile 

than the stratified squamous epithelial layer lining the ectocervical tissues, which poses a 

technical challenge in maintaining the epithelium layer intact for more than six hours in organ 

culture. In our studies, H&E staining of colon tissues at various times in culture showed that the 

epithelium in the colon mucosa remained largely unchanged for up to six hours. Therefore, the 

six hours culture duration was used in all subsequent experiments with colon tissues. The 

mucosal epithelium lining the ectocervical tissue consists of stratified multi-layered squamous 
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epithelium, but the existence of TJ in ectocervical epithelium remains controversial. There are 

limited reports in the literature on the characterization of epithelial intercellular junctions in 

human ectocervical tissue or cell lines [128]. In this study, we examined the epithelial TJ and AJ 

junction proteins in normal human ectocervical tissues.  Our results confirm and extend the 

previous observation that TJ proteins ZO-1, claudin-4 and AJ protein E-cadherin are indeed 

present between the epithelial cells in the ectocervical [47] and colon/rectal tissues [129]. 

Various pathogenic organisms have been shown to traverse through the epithelial barrier 

at the mucosal surface by disrupting the TJ, which are characterized by defective TJ barrier and 

increased epithelium permeability [130, 131]. Recent studies have shown that HIV-1 disrupted 

the epithelial TJ in an intestinal cell line and primary endometrial epithelial cells [132, 133]. 

However, the direct effect of HIV-1 exposure on mucosal epithelium has not been studied in 

human ectocervical or colon tissues. The present study evaluated the effect of HIV-1 on TJ/AJ in 

cervical and rectal/colon epithelial layers in the context of mostly native tissue structure. 

Confocal microscopy analysis of stained TJ and AJ proteins suggest that the TJ/AJ structures in 

ectocervical/colon mucosal epithelia were not profoundly disrupted by exposure to HIV-1. To 

ascertain that HIV-1 indeed traversed through the epithelial layer without disrupting the TJ/AJ in 

the organ culture models, we examined HIV-1 transmission in the ectocervical and colon tissues. 

HIV-1 replication within the tissues was demonstrated in ectocervical and cultured colon tissues 

following exposure to HIV-1 for 24 hours and 6 hours respectively. These results suggest that 

HIV-1 transmission occurs through ectocervical tissues and colon tissues in the culture for 24 

hours and 6 hours, respectively. This confirms results from a previous study showing the 

presence of HIV-1 RNA+ cells in the epithelial-submucosal junction of ectocervical tissue after 

6 hours exposure to HIV-1 [55]. Our results also agree with previous reports showing rapid rectal 
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entry of SIV in a macaque model[39] and replication of HIV-1 in colon tissues after exposure to 

HIV-1[66]. These results indicate that HIV-1 transverses across the ectocervical/colon mucosal 

epithelia by other mechanisms instead of TJ/AJ disruption and TJ are not profoundly disrupted 

during the HIV-1 exposure period. Our result goes along with other study findings that TJ 

disruption occurs in colon tissues of both human [68], rhesus macaques[44] only at chronic 

stages of infection. Therefore HIV-1 transmission across epithelium in ectocervical/colon tissues 

might be mediated by other mechanisms like transcytosis, transmigration, by binding via an 

alternate receptor such as galactosyl ceramide, or by the aid of dendritic process from langerhan 

cells [53, 58]. In addition to these mechanisms, HIV-1 transmission in the colon/rectal region 

might also be mediated via M cells [134]. 

In response to HIV-1 infection, genital epithelial cell lines release TSLP hat strongly 

activates human myeloid DC, leading to robust induction of CD4+ T cell proliferation, 

promoting HIV-1 replication in these activated T cells [114]. Furthermore, studies have shown 

that accumulation of CD4+ T cells in human cervical tissue was detected within 6 hours post-

HIV-1 infection [126, 135]. These results suggest that exposure to HIV-1 induces an innate 

inflammatory reaction in the mucosal area, which facilitates downstream amplification of virus 

in CD4+ T cells at the intraepithelial and submucosal layers. Previous studies have also reported 

increased production of cytokines like IL-2, IL-4, IL-5 and TNF-α in culture supernatant of HIV-

1 exposed intestinal biopsies [115]. However, the cellular source of inflammatory cytokines in 

these mucosal regions remains unknown. To investigate the cytokine induction in mucosal 

epithelia post exposure to HIV-1, we analyzed the cytokine mRNA expression in microdissected 

mucosal epithelia of the control and HIV-1 exposed ectocervical/colon tissues, hypothesizing 

that epithelial cells are one of the primary sources of production of the inflammatory cytokines 
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after exposure to HIV-1. Our studies demonstrated that expression of the inflammatory cytokines 

like CXCL10 and CXCL11 is significantly higher in the ectocervical epithelia exposed to HIV-1 

compared to those exposed to control supernatant. Furthermore, we observed that AT2 

inactivated HIV-1 or purified HIV-1 gp120 did not upregulate cytokine expression. In the case of 

the colonic mucosal layer, HIV-1 induced higher expression of CXCL10 and IL6 after 6 hours 

exposure to HIV-1. These observations are in agreement with previous reports that intestinal cell 

lines and primary endocervical epithelial cells secreted TNF-α, IL-6, IL-8 and MCP-1 after 

exposure to HIV-1 [133]. Thus, results from our study suggest that exposure to HIV-1 induces 

cytokine responses in ectocervical and colon mucosa and, the epithelial cells might be one of the 

primary sources of inflammatory cytokines production. Furthermore, infectious HIV-1 is 

required to induce such cytokine response in ectocervical epithelia. The comprehensive analysis 

of gene expression in ectocervical epithelial after exposure to HIV-1 also demonstrated that 

exposure to HIV-1 upregulates expression of various cellular factors such as SAA1, IL36A, IL8, 

FMO2, MUC1 and CXCL10 in ectocervical epithelia. CXCL10 is an IFNs induced proteins 

[136, 137]. However, we did not detect increase in IFNs expression in ectocervical epithelia after 

exposure to HIV for 24 hours. This suggesting that dynamic changes occurs in the IFN 

expression pattern in these epithelial cells with rapid production of IFNs in epithelial cells 

following exposure to HIV-1 which induces CXCL10 expression, and the expression of IFNs is 

subsequently decreased.   The cellular factors like CXCL10 CXCL11, SAA1, IL8 have been 

reported to contribute in the recruitment of T cells, macrophages and dendritic cells [138-140], 

where as IL36A is known to activate NFκB pathway and also play an important role in adaptive 

immune response [141]. Therefore, the observed HIV-1 mediated up regulation of cellular 

factors including proinflammatory cytokines may be responsible for increasing the target cell 
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availability by recruiting the immune cells towards the epithelial layer and also by activating 

these immune cells. This increase in target cell availability might play an important role in 

establishing infection in the ectocervical region during viral transmission.  

Non-human primate studies suggest that exposure of endocervical epithelium to SIV 

results in the increased expression of cytokines like MIP-3α, MIP-1β which recruit pDCs and 

CD4 T cells [44, 72]. However the current knowledge on immune cell recruitment in human 

mucosa during HIV-1 transmission is limited. Understanding these early events of immune cell 

redistribution and establishment of initial infection in small founder population is critical for 

development of effective HIV-1 prevention approaches. Previous findings [53] and the results 

from the current study suggest that induction of cytokines in the mucosal epithelial cells post 

exposure to HIV-1 might be a strategy implemented by HIV-1 to prevent the hostile environment 

in the ectocervical/colonic mucosa through recruitment of HIV-1 target cells and establish initial 

infection. Although in our study we observed an increase in cytokine mRNA expression in the 

ectocervical epithelium after 24 hours exposure to HIV-1, we did not detect any change in CD3+ 

and CD8+ immune cell distribution in the ectocervical mucosa after the same period of HIV-1 

exposure time. Our finding of no difference in immune cell distribution after exposure to HIV-1 

may be due to the following technical limitations. First, the duration of HIV-1 exposure in organ 

culture is short.  Indeed in non-human primate study, changes in immune cell distribution were 

observed after 4 days post exposure to SIV through rectal mucosa [65]. Therefore, it would be 

optimal to examine the immune cell distribution in ectocervical tissues after a longer exposure 

time to HIV-1. Second, the tissue biopsies are devoid of blood supply in the organ culture, which  
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is the major source for immune cell recruitments under in vivo conditions. Therefore, future 

experiments are needed to explore the dynamic changes of immune cell distributions in human 

mucosal area before and after HIV-1 exposure. 

Changes in the level of reproductive hormone during the normal menstrual cycle in pre-

menopausal women result in modulation of immune conditions and creates optimal condition for 

fertilization during the secretory phase[86]. These studies suggest that this immune condition 

may create a window of vulnerability during the secretory phase of the menstrual cycle and 

increase the likelihood of HIV-1 transmission in women [86, 87]. Monkey studies demonstrating 

that progesterone treatment increased the efficiency of SIV infection by intravaginal inoculation 

also highlight the role of reproductive hormones in sexual HIV-1 transmission [91]. This raises 

two important questions concerning women’s health: 1) Are women more vulnerable to HIV-1 

infection during the secretory phase of menstrual cycle compared to other phases of menstrual 

cycle. 2) Does hormonal contraceptive use increase the risk of HIV-1 acquisition? 

Numerous studies have investigated the risk of HIV-1 transmission during usage of oral 

contraceptive DMPA [94]. However, the results from the previous studies are conflicting, with 

some studies reporting no significant association of hormone to HIV-1 acquisition and others 

showing significantly higher risk of HIV-1 acquisition [86, 94]. Most of the studies that 

demonstrated a higher risk of HIV-1 acquisition in DMPA users recruited high-risk women such 

as sex workers in their studies, which could create bias in their results [142, 143]. Moreover, 

studies have reported that women who use hormonal contraceptives have a tendency not to use 

condoms, which again represents another important bias [94, 144]. Therefore, further studies are 

required to determine whether women are more susceptible to HIV-1 infection during the 

secretory phase compared to the other two phases of the menstrual cycle.  
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In the present study we investigated the effect of reproductive hormones on HIV-1 

transmission through ectocervical and vaginal mucosa at different stages of the menstrual cycle. 

However, we did not detect significant difference in the tissue susceptibility to HIV-1 infection 

between the ectocervical/vaginal tissues obtained from the proliferative phase, ovulatory phase 

or secretory phase of the menstrual cycle. These results suggest that the level of reproductive 

hormone at different phases of menstrual cycle might not alter the susceptibility of 

ectocervical/vaginal tissues to HIV-1 infection under the assay conditions used. In 2012, the 

World Health Organization reviewed epidemiological and biological data, and recommend no 

restriction on use of any method of hormonal contraceptives for women at high risk of HIV-1 

[94]. In this regard, our results using ex vivo ectocervical/vaginal culture model are in agreement 

with both epidemiological and the biological evidence that reproductive hormones might not 

influence HIV-1 transmission.  

There are a number of possible reasons for lack of correlation between HIV-1 

susceptibility and hormonal levels during menstrual cycle. First, studies in non-human primates 

and women have shown that immune cell population including HIV-1 target cells like CD4+ 

DCs (dendritic cells) and T cells in vaginal tissues appeared to be stable throughout the 

menstrual cycle [97, 124]. Therefore, stable target cell population in cervical/vaginal tissues 

during all the phases of menstrual cycle might be one of the reasons for similar level of HIV-1 

susceptibility of ectocervical/vaginal tissues at different phases of menstrual cycle.  Second, in 

our organ culture the endogenous hormonal concentration in the tissues might be reduced or lost 

during the culture period, resulting in no difference in HIV-1 susceptibility of 

ectocervical/vaginal tissues at different phases of menstrual cycle. Therefore, in vitro organ 

culture might not be optimal for this type of study. Third, we might not be able to detect the 
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difference in HIV-1 susceptibility between the different phases of menstrual cycle due to the 

inter-individual variation in the present cross-sectional study. Further investigation using 

longitudinal study design might be necessary to observe the definite correlation between HIV-1 

susceptibility and hormonal level during menstrual cycle.  

Administration of progesterone to monkeys increases the risk of SIV transmission and 

this effect was thought to be associated to thinning of the vaginal mucosa [91]. Epithelial 

thickness of ectocervical/vaginal tissues during menstrual cycle has been investigated by a 

number of investigators, and different results reported by these investigators might be due to the 

differences in the observer bias, timing of tissue sampling, method of measurement, inter-

individual variability and statistical analyses [86, 87, 94]. For example, Burgos et al. reported 

that the epithelial thickness of vaginal mucosa was 22 layers on day 10, 33 layers on day 19, and 

23 layers on day 24 of the menstrual cycle [145]. However, the criteria for including the subjects 

in the study and the methods used for measurement were not stated. Findings from previous 

studies on the effect of DMPA on the epithelial thickness were also inconsistent, with two 

studies showing effect of DMPA on the vaginal epithelial thickness, while two other studies 

reported no change in the thickness of the vaginal tissue in women who use DMPA [94]. A study 

performed by Zondek et al. showed that the vaginal epithelial layer thickness was not 

significantly different in regularly menstruating women and women with primary/secondary 

amenorrhea (absence of a menstrual period) suggesting that thickness of the epithelial layer was 

not modified by changes in hormonal level during menstrual cycle [146]. We therefore 

investigated the epithelial thickness in human ectocervical and vaginal epithelium at different 

stages of menstrual cycle. We observed that the cervical/vaginal epithelial thickness was not 

significantly different during the secretory phase compared to the proliferative and ovulatory 
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phase of menstrual cycle.  To further evaluate the effect of changes in hormonal levels during the 

menstrual cycle on epithelial integrity, we measured the density of intercellular epithelial tight 

junction protein Claudin 4, adherence junction protein E-Cadherin and Na/K/ATPase. It has been 

previously shown that estrogen reduced the tight junctional resistance and altered the tight 

junction protein concentration in vaginal and cervical epithelial cell lines [86, 87, 102-104]. In 

contrast to estrogen, progesterone had no effect on trans-epithelial resistance in endometrial cells 

[87, 102, 104].  However, limited data exist on the effect of reproductive hormone on epithelial 

tight junction in human ectocervical tissues at different phases of menstrual cycle. We 

demonstrated that there was no statistical difference on the expression of TJ/AJ proteins in 

ectocervical tissues at different phases of menstrual cycle. These results suggest that the 

epithelial thickness and expression of epithelial TJ/AJ proteins in ectocervical/vaginal tissues 

might not be highly modulated by the hormonal changes during a menstrual cycle. These results 

confirm previous report by Chandra et al. that the vaginal epithelial thickness and the density of 

tight junction proteins do not change over the course of the menstrual cycle [124]. However, it is 

unknown if a small decrease in epithelial thickness and TJ/AJ protein expression in ectocervical 

epithelia may facilitate access of virions to mucosal HIV-1 target cells. 

Studies described in Aim 1 indicate that the exposure to HIV-1 did not exert profound 

effects on the morphology of epithelial layer and TJ/AJ protein profiles in the ectocervical 

epithelia. However, based on a previous study which suggests a window of vulnerability to 

infection at a certain phase of menstrual cycle [86], we hypothesized that exposure to HIV-1 may 

cause change in epithelial thickness and TJ/AJ under the influence of hormones. We therefore 

evaluated the effect of HIV-1 exposure on epithelial layer thickness and epithelial TJ/AJ protein 

in ectocervical/vaginal tissues at different stages of menstrual cycle. To the best of our 
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knowledge, this is the first study that evaluated the effect of HIV-1 on epithelial thickness and 

TJ/AJ proteins of vaginal/cervical tissues obtained from women at different stages of menstrual 

cycle.  Furthermore, our data demonstrate that HIV-1 does not alter the thickness and TJ/AJ 

protein profiles in ectocervical tissues at all the three phases of menstrual cycle. These data 

suggest that the phase of menstrual cycle does not alter the effect of HIV-1 on the epithelial 

barrier integrity in ectocervical/vaginal tissues. These results confirm previous reports by 

Bahamondes et al. that uninterrupted usage of DMPA in women for 18 years did not cause 

thinning of vaginal epithelium [97]. We therefore believe that if reproductive hormones like 

progesterone can increase the risk of HIV-1 transmission, the mechanism is possibly not related 

to modification in ectocervical/vaginal epithelial thickness or ectocervical TJ/AJ expression.  

 

Figure 27. Schematic representation of HIV-1 transmission in ectocervical tissues 

 

The ectocervical epithelium is made of multilayered squamous epithelial cells with tight 

junctions between the epithelial cells. Tight junctions play an important role in maintaining 

the barrier function of the epithelium. Transmission of cell-free HIV-1 across the intact 
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ectocervical epithelium occurs through unknown mechanism(s) without disrupting the 

tight junction. Exposure of ectocervical epithelium to HIV-1 up regulates expression of 

cellular factors such as CXCL10, CXCL11, IL8, IL36A and SAA1 in the epithelium. 

Cytokines like CXCL10, CXCL11, SAA1 and IL8 recruits immune cells towards the 

epithelial layer thus increasing the target cells availability for HIV-1 infection. Cellular 

factors such as IL36A activate the immune cells increasing the pool of target cells and fuel 

the local expansion that is necessary for establishment of infection in the ectocervical 

tissues once they cross the epithelial barrier. 

In summary, the current study provides evidence that although the squamous ectocervical 

epithelium (Figure 27A) and columnar colon epithelium act as a physical barrier against 

pathogen entry, it is not impenetrable to HIV-1. HIV-1 traverses through the ectocervical/colon 

epithelia most probably by mechanisms other than TJ/AJ disruption. However, HIV-1 exposure 

at the ectocervical epithelium results in upregulation of cellular factors including inflammatory 

cytokine expression in the epithelial cells, which is a rapid response and dependent on HIV-1 

infectivity (Figure 27B). These cellular factors recruit immune cells towards the epithelial layer 

and also activate these immune cells thus increasing the target cell availability for HIV-1 

infection (Figure 27C). Thus, once the virus crosses the mucosal epithelial barrier they infect the 

recruited target cells and establish infection in the ectocervical tissues. Our current study on 

reproductive hormones and HIV-1 acquisition also demonstrate that during the course of the 

menstrual cycle, the epithelial layer thickness and epithelial TJ/AJ protein profile in the 

ectocervical/vaginal tissues do not alter significantly. Additionally, there does not appear to be 

an association between menstrual cycle and the effect of HIV-1 on the epithelial barrier integrity 

in the ectocervical/vaginal tissues. Finally, different phases of menstrual cycle do not influence 

the susceptibility of ectocervical/vaginal tissues to HIV-1 replication. Taken together, current 

evidence thus suggests that HIV-1 acquisition risk through the ectocervical/vaginal region is not 

altered by the presence of reproductive hormone during the course of menstrual cycle. However, 
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the debate on reproductive hormones and the risk of HIV-1 acquisition remains open and may be 

resolved with a longitudinal study with larger number of subjects.  
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8.0 PUBLIC HEALTH SIGNIFICANCE 

HIV-1 infection is a global health concern. To develop a highly effective method to 

prevent HIV-1 transmission, it is crucial to gain a clear understanding of the mechanism of HIV-

1 transmission across ectocervical and colonic mucosa. In the current study, we evaluated the 

possibility that HIV-1 crosses cervical and colonic mucosae by disrupting tight junction proteins 

in epithelia by measuring the tight junction/adherens junction proteins following HIV-1 exposure 

in the epithelia of ectocervical and colon tissues.  An interesting finding of our study is that HIV-

1 exposure did not profoundly disrupt epithelial junction/adherens junction in ectocervical and 

colon tissues indicating the HIV-1 transmission in mucosal region may not be mediated by 

epithelial tight junction damage, indicating involvement of other mechanisms of HIV-1 

transmission. This work has public health significance because these findings will further 

enhance our understanding on the mechanism of HIV-1 transmission and also provide the basis 

for further inquiry on alternate routes for HIV-1 transmission. 

By investigating cellular factors that are involved in HIV-1 transmission across 

ectocervical mucosa, we found that expression levels of certain cytokines including CXCL10, 

CXCL11 and other cellular factors including IL36A, FMO2, CXCL10, MUC1, SAA1 and IL8, 

were upregulated in ectocervical epithelia after exposure to HIV-1. These findings make 

important contribution to public health in a number of ways. First, these differently expressed 

cytokines and cellular factors in the epithelial cells could be developed as biomarkers to identify 
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HIV-1 exposed individuals. Second, after confirming the relevance of these genes in HIV-1 

transmission, drugs that block the pathways involving these genes can be used to prevent HIV-1 

transmission. 

We also investigated the impact of reproductive hormones on HIV-1 transmission by 

measuring the susceptibility of ectocervical and vaginal tissues collected at different stages of the 

menstrual cycle to HIV-1 in an organ culture model. Our results indicate that there is no 

association between susceptibility to HIV-1 infection and the levels of reproductive hormone at 

different stages of menstrual cycle. These results indicate that there may not be a window of 

vulnerability during menstrual cycle where women could be more susceptible to HIV-1 

infection. Furthermore, women who are using contraceptives may not be at any further risk of 

HIV-1 acquisition than women who do not use hormonal contraceptives.  These findings have 

public health relevance in the context of contraceptive usage in women and risk of HIV-1 

transmission. 
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APPENDIX: ABBREVIATIONS USED 

AIDS: acquired immune deficiency syndrome 

AJ: Adherens junction 

DCs: Dendritic cells 

DMPA: Depot medroxy progesterone acetate/ Depo-Provera 

HIV: Human immunodeficiency viruses 

IL: Interleukin 

KRT 13: Cytokeratin 13 

LC: Langerhans cells 

mRNA: Messenger ribonucleic acid 

pDCs: Plasmacytoid dendritic cells 

RNA: Ribonucleic acid 

RNA: Ribonucleic acid 

SAA1: Serum amyloid A 

http://en.wikipedia.org/wiki/Depo-Provera
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SD: Standard Deviation 

SEM: Standard error of the mean   

SIV: Simian immunodeficiency virus 

TEM: Transmission electron microscopy 

TJ: Tight junctions 

TLR: Toll like receptor  

ZO-1: Zona occludens 
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