Efforts towards the Macrocyclic Core of Marineosin A and Development of Pyrrolidine-Based Scaffolds for Diversity-Oriented Synthesis

> by

Rachel A. Perez
Bachelor of Science, Azusa Pacific University, 2006

Submitted to the Graduate Faculty of The Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH

Dietrich School of Arts and Sciences

This dissertation was presented
by

Rachel A. Perez

It was defended on
May $13^{\text {th }}, 2015$
and approved by
Craig S. Wilcox, Professor, Department of Chemistry
W. Seth Horne, Assistant Professor, Department of Chemistry

Barry Gold, Professor and Chair, Department of Pharmaceutical Sciences
Dissertation Advisor: Scott G. Nelson, Professor, Department of Chemistry

Copyright © by Rachel A. Perez
2015

Efforts towards the Macrocyclic Core of Marineosin A and Development of Pyrrolidine-Based Scaffolds for Diversity-Oriented Synthesis

Rachel A. Perez, PhD

University of Pittsburgh, 2015

The total synthesis of marineosin A, a unique spiroaminal with selective cytotoxicity, has been under investigation in our laboratory. A ruthenium-catalyzed enolate allylic alkylation methodology and azafulvene dimer-derived metathesis strategy have been considered as potential routes, towards the synthesis of the macrocyclic core of marineosin A.

A novel route to the synthesis of diverse pyrrolidine scaffolds, for diversity-oriented synthesis has additionally been under investigation in our laboratory. The synthetic route encompasses a series of reductive amination, iodocyclization, azide substitution, and reductive deprotection to deliver the target diamine scaffolds in 14-16\% yield. In addition, an asymmetric approach to the synthesis of $(2 S, 3 R, 4 R)$ - β-iodo amine has been presented, which takes advantage of selective $\mathrm{Ru}(\mathrm{II})$-catalyzed Claisen rearrangement methodology.

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 BIOLOGICAL ACTIVITY AND STRUCTURAL FEATURES. 1
1.2 PREVIOUS EFFORTS DIRECTED TOWARDS THE TOTAL
SYNTHESIS OF MARINEOSINS A AND B 3
1.2.1 Evaluation of Proposed Biosyntheses 4
1.2.2 Synthetic Strategies of Modeled Compounds 9
2.0 EFFORTS DIRECTED TOWARDS THE MACROCYCLIC CORE OF
MARINEOSIN A 14
2.1 LIMITATIONS OF PREVIOUS STRATEGIES 14
2.2 EFFORTS UTILIZING ENOLATE ALLYLIC ALKYLATION 14
2.2.1 Retrosynthetic Analysis 14
2.2.2 Ruthenium-Catalyzed Enolate Allylic Alkylation 15
2.3 EFFORTS UTILIZING AZAFULVENE DIMER METATHESIS 22
2.3.1 Retrosynthetic Analysis 22
2.3.2 Azafulvene Dimer Derived Metathesis 23
2.4 CONCLUSIONS 29
3.0 INTRODUCTION 30
3.1 DIVERSITY-ORIENTED SYNTHESIS OF NATURAL PRODUCT-LIKE
STRUCTURES 30
3.2 PREVIOUS APPLICATIONS OF 1, 3-CYCLOADDITION REACTIONS
FOR REGIO- AND STEREO-SPECIFIC FORMATION OF PYRROLIDINES 32
3.3 SYNTHESIS OF FUSED PYRROLIDINE-HYBRID LIBRARIES 36
4.0 DEVELOPMENT OF PYRROLIDINE SCAFFOLDS FOR DIVERSITY-
ORIENTED SYNTHESIS BY CLAISEN REARRANGEMENT OF ALLYL VINYLETHERS40
4.1 LIMITATIONS OF PREVIOUS STRATEGIES 40
4.2 RETROSYNTHETIC ANALYSIS OF FUNCTIONALIZED
PYRROLIDINE SCAFFOLDS 41
4.3 SYNTHESIS OF A GENERAL PYRROLIDINE SCAFFOLD FOR DIVERSIFICATION 42
4.3.1 Formation of Claisen Products from Simple Allyl Vinyl Ethers 42
4.3.2 Formation of Pyrrolidines from Claisen Products 43
4.4 DIVERSITY BY INCORPORATION OF C 3 SUBSTITUTION 48
4.5 ASYMMETRIC SYNTHESIS OF $\boldsymbol{\beta}$-IODO PYRROLIDINE SCAFFOLD 53
4.6 CONCLUSIONS 55
5.0 EXPERIMENTAL 56
5.1 EFFORTS TOWARDS THE SYNTHESIS OF MARINEOSIN A 57
5.2 DEVELOPMENT OF PYRROLIDINE SCAFFOLDS FOR DIVERSITY-
ORIENTED SYNTHESIS 65
APPENDIX A 91

APPENDIX B

BIBLIOGRAPHY107

LIST OF TABLES

Table 1. Enyne metathesis approach to marineosin macrocycle 26
Table 2. Relay-ring closing metathesis approach 27
Table 3. Exploration of dipolarophile reactivity with Schreiber's catalyst 37
Table 4. Cyclization conditions with various electrophilic iodine sources 45
Table 5. Iridium catalyzed isomerization of bis(allyl) ethers 211-216 51
Table 6. Synthesis of C_{3} substituted diamines 53
Table 7. Crystallographic Information for Compound 89 92
Table 8. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for 89 92
Table 9. Bond lengths [\AA] and angles [${ }^{\circ}$] for 89 93
Table 10. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 89 96
Table 11. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for
89. 97
Table 12. Crystallographic Information for Compound 194 99
Table 13. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for 194 100
Table 14. Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for 194. 101
Table 15. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 194 105

Table 16. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for
\qquad

LIST OF FIGURES

Figure 1. Representative structures of natural products isolated from marine actinomycetes 2
Figure 2. Structures of marineosins A (4) and B (5) and undecylprodigiosin (6) 3
Figure 3. Fenical's proposed biosynthesis 5
Figure 4. Synthesized spiroiminal stereoisomers 10
Figure 5. Lindsley's key retrosynthetic fragments 11
Figure 6. X-ray crystal structure of 89 20
Figure 7. Sources of skeletally diverse small molecules 30
Figure 8. Proposed transition state of Co (II)/ephedrine ligand 33
Figure 9. Application of Jørgensen's $\mathrm{Zn}(\mathrm{OTf})_{2} / t-\mathrm{BuBOX}^{\mathrm{a}}$ and Zhang's AgOAc/xylyl-FAP ${ }^{\mathrm{b}}$
systems to development of pyrrolidine libraries 36
Figure 10. Proposed transition state of $\mathrm{Ag}(\mathrm{I}) / \mathrm{QUINAP}$ catalyst 38
Figure 11. Thermal Claisen rearrangement of general allyl vinyl ether (174) 43
Figure 12. X-ray crystal structure of aziridinium 194 48
Figure 13. Asymmetric Ru (II)-catalyzed [3,3]-sigmatropic rearrangement of general allyl vinyl
ether (174) 54
Figure 14. X-ray crystal structure of 89 91

Figure 15. X-ray crystal structure of 194... 98

LIST OF SCHEMES

Scheme 1. Lindsley's retrosynthetic analysis 5
Scheme 2. Synthesis of $\mathrm{C}_{10}-\mathrm{C}_{23}$ fragment 6
Scheme 3. Failed synthesis of spiro-tetrahydropyran-dihydropyrrole aminal core 10 7
Scheme 4. Snider's retrosynthetic analysis 8
Scheme 5. Synthesis of model spiroiminals 8
Scheme 6. Shi's retrosynthetic analysis of spiroiminal fragment 9
Scheme 7. Synthesis of model spiroaminal lactam 10
Scheme 8. Synthesis of key intermediate 39 12
Scheme 9. Synthesis of model spiroiminal and macrocyclic fragments 13
Scheme 10. Proposed retrosynthetic analyses of marineosin A 15
Scheme 11. Ruthenium-catalyzed enolate alkylation of 56 and 61 16
Scheme 12. Forward synthetic route to model substrate 68 18
Scheme 13. Synthesis of diacetates 80 and 84 19
Scheme 14. Possible mechanism for the formation of 89 21
Scheme 15. Proposed retrosynthetic analyses of marineosin A 22
Scheme 16. Retrosynthetic analysis using azafulvene dimer 23
Scheme 17. Optimized synthesis of iodoalkyne 108 24
Scheme 18. Synthesis of enyne substrate 114 25
Scheme 19. Synthesis of relay-ring closing substrate 122 27
Scheme 20. Ring-closing metathesis approach 28
Scheme 21. [3+2] cycloaddition of N-metalated azomethine ylide with electron deficient alkenes
.. 32 32
Scheme 22. Synthesis of fused-pyrrolidine hybrid libraries 39
Scheme 23. Retrosynthetic analysis of racemic pyrrolidine scaffolds 42
Scheme 24. Synthesis of γ, δ-unsaturated aldehyde 43
Scheme 25. Synthesis of γ, δ-unsaturated amides and amines 44
Scheme 26. Proposed mechanism of iodoamination of 185 46
Scheme 27. Synthesis β-azido amine 192 and diamine 196 47
Scheme 28. Preparation of allylic alcohols 49
Scheme 29. Iridium-catalyzed deallylation 51
Scheme 30. Synthesis of β-iodo amine 253 55

LIST OF ABBREVIATIONS

Acac	Acetylacetonate
BICP	Bis(diphenylphosphino)-dicyclopentane
BINAP	.2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
Boc	tert-Butoxycarbonyl
BOX	Bisoxazoline
Cbz	Carboxybenzyl
CDI	1,1'-Carbonyldiimidazole
COE	Cyclooctene
Cp.	Cyclopentadienyl
Cp*	Pentamethylcyclopentadienyl
DBFOX	Dibenzofuranyl-2,2'-bisoxazoline
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL	Diisobutylaluminium hydride
DIC	$N, N '$-Diisopropylcarbodiimide
DMAP4-Dimethylaminopyridine
DMP	Dess-Martin periodinane

DMS	Dimethyl sulfide
DOS	Diversity-oriented synthesis
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
HMDS	Hexamethyldisilazane
HOBt	N-Hydroxybenzotriazole
ImH	Imidazole
MDM2	Murine double minute oncogene
NIS	N -iodosuccinimide
NMO	N-Methylmorpholine N -oxide
NMP	N-Methyl-2-pyrrolidone
Piv	Pivalate
PyBOP	xytripyrrolidinophosphonium hexafluorophosphate
QUINAP	1-(2-Diphenylphosphino-1-naphthyl)isoquinoline
TBHP.tert-Butyl hydroperoxide
TBS	tert-Butyldimethylsilyl
TES	Triethylsilyl
TFA	Trifluoroacetic acid
TIPS	Triisopropylsilyl
TMS	Trimethylsilyl
TMS q	(Trimethylsilyl)quinine
TPAP.Tetrapropylammonium perruthenate
Ts	Tosyl
xylyl-FAP	3,5-Dimethylphenyl bis-ferrocenyl amide phosphine

1.0 INTRODUCTION

1.1 BIOLOGICAL ACTIVITY AND STRUCTURAL FEATURES

Terrestrial bacteria within the order Actinomycetales have historically demonstrated a prolific ability to generate thousands of small molecule natural products. These compounds from terrestrial sources have included clinically useful antibiotics, anticancer agents and immunosuppressive agents. ${ }^{1}$ Amongst the most useful soil-derived genera, Streptomyces and Micromonospora account for the vast majority of microbial antibiotics discovered. ${ }^{2}$ Although the genus Streptomyces is generally associated with terrestrial soils, marine soil bacteria that require seawater for growth have become increasingly important sources of novel secondary metabolites. These marine actinomycetes that display distinct phylotypes, are unrelated to strains previously discovered on land or in the sea. Targeted screening has revealed secondary metabolites such as marinomycin A (1), marinone (2) and salinosporamide C (3) with substantial activities against selected human tumors and drug-resistant bacterial pathogens (Figure 1). ${ }^{3,4,5}$

Figure 1. Representative structures of natural products isolated from marine actinomycetes

Marineosins A and $B(\mathbf{4}, \mathbf{5})$, are two novel compounds originally isolated from cultures of sediment-derived marine actinomycetes, related to the genus Streptomyces (Figure 2). ${ }^{6}$ These unique spiroaminals were first identified by Fenical and coworkers in 2008. Biosynthetically, 4 and 5 are thought to have derived from a prodigiosin-like class of bacterial pigments. These features are highlighted by the presence of a bis-pyrrole functionality typified by undecylprodigiosin (6). However, the spiro-tetrahydropyran-dihydropyrrole aminal ring systems of the marineosins is unprecedented and believed to arise from a modification within the pigment pathway. ${ }^{7}$ Structurally, marineosin $A(4)$ and $B(5)$ differ at both C_{7} and C_{8} stereocenters, a feature which results in substantially different cytotoxic activities. The major isomer, marineosin A (4) displayed inhibition of human colon carcinoma HCT-116 with an IC_{50} of $0.5 \mu \mathrm{M}$. In contrast, marineosin $\mathrm{B}(\mathbf{5})$ displays considerably weaker cytotoxicity with an IC_{50} of $46 \mu \mathrm{M}$. Furthermore, testing of marineosin A (4) in a NCI 60 cell line panel indicated a broad cytotoxicity with selectivity against melanoma and leukemia cell lines (Figure 2). ${ }^{6,8,9}$

4

5

6

7

Figure 2. Structures of marineosins A (4) and B (5) and undecylprodigiosin (6)

Fenical and co-workers have also proposed a possible biosynthesis of 4 and 5. The envisioned route involves known 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (7), a key intermediate in the biosynthetic pathway of prodigiosin-like pigments, and relies on a potential inverse-electron-demand hetero-Diels-Alder cycloaddition to deliver the core marineosin structure (Figure 3). ${ }^{6}$ An alternative biosynthesis of the marineosins has additionally been proposed by Snider based on sequencing data of the gene cluster responsible for the biosynthesis of undecylprodigiosin (6) in Streptomyces coelicolor. ${ }^{10}$ The alternative route takes advantage of nonheme iron-dependent dioxygenases to initiate and sequester radicals throughout the pathway (Figure 2). ${ }^{9}$

1.2 PREVIOUS EFFORTS DIRECTED TOWARDS THE TOTAL SYNTHESIS OF MARINEOSINS A AND B

The biomimetic syntheses initially proposed by Fenical and Snider, have recently been evaluated. These preliminary efforts have focused primarily on key transformations en route to marineosins A (4) and $B(5)$. More recently, Lindsley and Shi have investigated synthetic
strategies based upon model systems of the 12-membered macrocyclic core and spiroiminal fragments of these natural products. ${ }^{11,12,13}$

1.2.1 Evaluation of Proposed Biosyntheses

Fenical's proposal shown in Figure 3, centers on the conversion of $\mathbf{9}$ to $\mathbf{1 0}$ via an intramolecular hetero-Diels-Alder reaction to simultaneously form both the dihydropyran ring and spiroaminal functionality. The hypothesized biosynthetic $\mathrm{C}_{1}-\mathrm{C}_{25}$ Diels-Alder substrate (9) was thought to result from a direct condensation of $\mathrm{C}_{1}-\mathrm{C}_{9} 4$-methoxy-2, 2'-bipyrrole-5-carbaldehyde (7) and the enone containing $\mathrm{C}_{10^{-}} \mathrm{C}_{24}$ pyrrole 8. Common to the biosynthetic pathway of prodigiosins, bipyrrole 7 has previously been demonstrated through feeding studies to be derived from proline, serine, glycine and several additional acetate subunits. Similar to Fenical's proposal the known biosynthesis of prodigiosins is convergent often involving late-stage condensation with substituted pyrroles. A diastereomeric mixture of 4 and 5 can therefore be explained by visualizing the ensuing cyclization occurring from above and below the plane of enone 9. ${ }^{6}$ A detailed account of subsequent steps towards the total synthesis of marineosin A and B have not been previously reported.

Figure 3. Fenical's proposed biosynthesis

In order to investigate this proposed biosynthesis, Lindsley and coworkers further developed a retrosynthetic analysis based upon Fenical's design. The analysis commences with a hetero-Diels-Alder cycloaddition to generate 10, followed by acid-mediated condensation of bipyrrole 7 with enone 8. ${ }^{14,15}$ Cross metathesis with methyl vinyl ketone provides enone 8, previously synthesized directly from pyrrole-2-carboxaldehyde $\mathbf{1 1}$ (Scheme 1). ${ }^{16}$

Scheme 1. Lindsley's retrosynthetic analysis

8
11

The three step sequence to enone 8, as detailed in Scheme 2, involved Grignard 15 addition to 1-(phenylsulfonyl)-1H-pyrrole-2-carbaldehyde (11), providing secondary alcohol $\mathbf{1 2}$. Ley oxidation to ketone $\mathbf{1 3}$ followed by a one-pot addition, rearrangement, deoxygenation and elimination cascade developed by Muchowski afforded intermediate 14. ${ }^{16}$ Notably, application of Muchowski's one-pot cascade was only pursued after preliminary disconnection pathways involving both $\mathrm{sp}^{2}-\mathrm{sp}^{3}$ Suzuki couplings and $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reactions with 2-pyrrole organometallics (Li or $\mathrm{B}(\mathrm{OH})_{2}$) failed to provide 14. Similarly, $\mathrm{S}_{\mathrm{N}}{ }^{2}$ disconnection pathways involving organometallic reagents and primary bromo- or mesyl- substituted pyrroles failed. ${ }^{8}$

Scheme 2. Synthesis of $\mathrm{C}_{10}-\mathrm{C}_{23}$ fragment

a) 15, THF, $0{ }^{\circ} \mathrm{C}$ to rt. b) TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$, rt. c) NaBH_{4}, i - $\mathrm{PrOH}, 24 \mathrm{~h}, 82$ ${ }^{\circ} \mathrm{C}$. d) $0.5 \mathrm{~mol} \%$ Grubbs-II (16), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C}$. NMO $=N$-methylmorpholine-N-oxide, TPAP $=$ tetrapropylammonium perruthenate.

Completion of the enone fragment under standard cross-metathesis conditions with 0.5 mol \% Grubbs-II (16) and methyl vinyl ketone provided $\mathbf{8}$ as a minor product in 21% yield. Interestingly, the major reaction pathway underwent Grubbs-II (16) catalyzed nucleophilic conjugate addition of $\mathbf{1 4}$ (at C_{10}) with methyl vinyl ketone. Further experimentation revealed the reaction to be general with respect to both electron rich pyrroles and acyclic Michael acceptors.

However, increasing catalyst loading from 0.5 to $30 \mathrm{~mol} \%$ and reducing reaction temperature permitted the further isolation of cross-metathesis product $\mathbf{8}$ in 40% yield. ${ }^{8}$

Acid-mediated condensation of the resulting enone $\mathbf{8}$ with bipyrrole 7, previously synthesized via literature protocol, generated the acyclic Diels-Alder substrate 9. As shown in Scheme 3, the proposed biomimetic Diels-Alder reaction of 9 to deliver the desired spiro-fused aminal core (10) was unsuccessful despite the exploration of various reaction conditions. Further molecular modeling studies revealed a large degree of flexibility present in the alkyl linker moiety, indicating an intramolecular Diels-Alder mechanism is likely energetically disfavored. ${ }^{8}$

Scheme 3. Failed synthesis of spiro-tetrahydropyran-dihydropyrrole aminal core $\mathbf{1 0}$

a) $7,0.87 \mathrm{M} \mathrm{HCl}, \mathrm{MeOH}$ than $\mathrm{NH}_{4} \mathrm{OH}$. b) Reaction conditions = heat, microwave, photochemical, Lewis acid catalysis, mineral acid catalysis, solvent, and additives.

Snider's biosynthetic efforts have focused mainly on the generation of a model system for the unprecedented spiroiminal fragment. The retrosynthetic analysis attempts to mimic an alternative biological pathway, previously suggested to involve the participation of several nonheme iron-dependent dioxygenases. As displayed in Scheme 4, the key disconnection results from simultaneous spiroiminal and tetrahydropyran ring formation from intermediate 18. Synthesis of intermediate $\mathbf{1 8}$ was believed to proceed via stepwise hydrogenolysis of the N-O bond followed by O-methylation of isoxazoline 19. Furthermore, the synthesis of $\mathbf{1 9}$ was envisioned to proceed through a series of addition, protection, and N-oxide cycloaddition of lactone 20. ${ }^{9}$

Scheme 4. Snider's retrosynthetic analysis

To investigate this sequence, model lactone 21 which lacks the macrocyclic ring of $\mathbf{4}$ was selected (Scheme 5). A series of vinyl addition, secondary alcohol protection, followed by N oxide cycloaddition with the derivative of 1-SEM-pyrrole-2-carboxaldehyde oxime (28) resulted in the formation of isoxazoline 23. Hydrogenolysis of the N-O bond over Raney nickel followed by methylation produced the spiroiminal precursor 24 . Treatment of 24 with 2 M aqueous hydrochloric acid hydrolyzed the triethylsilyl ether with a net loss of methanol, forming $\mathbf{2 5}$ in 35% yield, along with an inseparable 3:2 mixture of 26 and $\mathbf{2 7} .{ }^{9}$

Scheme 5. Synthesis of model spiroiminals

a) vinylmagnesium bromide, THF. b) TESCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{THF}$. c) $\mathbf{2 8}, 5 \%$ aqueous NaOCl , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) Raney Ni 2800, H_{2}, MeOH. e) NaH , MeI, THF, $25^{\circ} \mathrm{C}$. f) 2 M aqueous $\mathrm{HCl}, 1: 3$ $\mathrm{THF} / \mathrm{CH}_{3} \mathrm{CN} . \mathrm{TESCl}=$ chlorotriethylsilane, $\mathrm{DMAP}=4$-(dimethylamino)pyridine.

1.2.2 Synthetic Strategies of Modeled Compounds

Synthetic approaches based on the formation of model systems of the macrocyclic core and spiroiminal fragments of marineosins A and $B(\mathbf{4}, \mathbf{5})$, have recently been reported by Lindsley and Shi. ${ }^{13,12}$ Shi's retrosynthetic analysis indicated in Scheme 6, targets the spiroiminal fragment of marineosins A and $\mathrm{B}(\mathbf{4}, \mathbf{5})$. This approach relies on the late installation of the sensitive pyrrole ring via a Vilsmeier-Haack type reaction to afford 17. Spiroiminal formation was envisioned to occur through acid-catalyzed N-acyliminium ion cyclization of 30, prepared from commercially available reagents $\mathbf{3 1}$ and 32. ${ }^{13}$

Scheme 6. Shi's retrosynthetic analysis of spiroiminal fragment

A finalized synthesis of spiroaminal lactams $\mathbf{3 4}$ and $\mathbf{3 5}$ is displayed in Scheme 7. The route commences with DIBAL-H reduction of γ-valerolactone (31), followed by treatment of the resulting hemiacetal with 4-methoxy-3-pyrrolin-2-one (32) and 4 N NaOH in MeOH to give $\mathbf{3 0}$. Cyclization was achieved utilizing $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ to afford 33 , followed by hydrogenation to yield isomers $\mathbf{3 4}$ and $\mathbf{3 5}$ in 27% and 64% yield respectively. ${ }^{13}$

Scheme 7. Synthesis of model spiroaminal lactam

a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) $\mathbf{3 2}, 4 \mathrm{~N} \mathrm{NaOH}, \mathrm{MeOH}, 55^{\circ} \mathrm{C}$. c) p $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CHCl}_{3}, 60^{\circ} \mathrm{C} . \mathrm{d}$) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(50 \mathrm{~atm}), \mathrm{MeOH}, 60^{\circ} \mathrm{C}$.

Final installation of the pyrrole ring involving a $\mathrm{Tf}_{2} \mathrm{O}$ mediated Vilsmeier-Haack type reaction, resulted in the formation of three spiroiminal stereoisomers (Figure 4). Unfortunately, the stereochemistry of both synthetic targets was unrealized. In the case of marineosin B (5), isomer $\mathbf{3 7}$ reflects the desired stereochemistry, however $\mathbf{3 6}$ and $\mathbf{3 8}$ are unnatural products. However, the authors contribute a degree of stability to the presence of the fused macrocyclic ring in the natural product, making the desired stereochemistry of marineosin A (4) more favorable. ${ }^{13}$

Figure 4. Synthesized spiroiminal stereoisomers

Similarly, Lindsley has recently focused on the synthesis of the model spiroiminal structure 41 and macrocyclic fragment 40 (Figure 5). The retrosynthetic analysis hinges on the formation of $\mathbf{3 9}$, which is utilized as an intermediate en route to $\mathbf{4 0}$ and 41. Synthesis of key
intermediate $\mathbf{3 9}$ commenced with an aldol reaction under Crimmins' conditions to deliver Evans' syn product 44, from aldehyde 42 and 43 . Hydrolysis of the auxiliary followed by TIPS protection, hydroxyl-directed epoxidation, benzyl protection of the secondary alcohol, and PMB deprotection resulted in the formation of $\mathbf{4 5}$ in 14% yield over 5 steps. Finally, directed opening of the epoxide with Red-Al, protection of the primary hydroxyl group and conversion of the secondary alcohol to methyl ether afforded key intermediate 39 (Scheme 8). ${ }^{12}$

39

40

41

Figure 5. Lindsley's key retrosynthetic fragments

Access to the model spiroiminal of marineosins A and B $(\mathbf{4}, \mathbf{5})$ from intermediate $\mathbf{3 9}$ was initiated by a sequence of reductive deprotection of pivalate followed by oxidation of the resulting alcohol to aldehyde, Pinnick oxidation to the corresponding carboxylic acid and final coupling with ammonium chloride to provide amide 47. Hydrogenolysis of the benzyl ether and hydrogenation of the olefin, followed by oxidation of the resulting secondary alcohol and acid mediated cyclization resulted in the formation of 41 (Scheme 9, part a). ${ }^{12}$

Scheme 8. Synthesis of key intermediate 39

45

39
a) 1. TiCl_{4}, DIPEA, NMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 2. 42, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) 1. $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF} ;$ 2. TIPSCl, $\mathrm{ImH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. c) $\mathrm{VO}(\mathrm{acac})_{2}$, TBHP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) 1 . $\mathrm{BnBr}, \mathrm{NaH}, \mathrm{TBAI}$, THF; 2. DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{pH} 7$ phosphate buffer. e) Red- Al , THF. f) 1. PivCl, pyr, $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 2$. $\mathrm{Me}_{3} \mathrm{OBF}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

A synthesis of the macrocyclic fragment 40 commences with a sequence of TIPS deprotection, oxidation, vinyl Grignard addition and second oxidation to afford α, β-unsaturated ketone 48 (Scheme 9, part b). Stetter reaction of 48 with 6-heptenal afforded the RCM substrate 49. A final ring closing metathesis of $\mathbf{4 9}$, followed by microwave assisted pyrrole construction afforded target macrocycle 40 in 5.1% overall yield from (S)-propylene oxide. ${ }^{12}$

Scheme 9. Synthesis of model spiroiminal and macrocyclic fragments

46

Part A. a) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) SO_{3}-pyr, $\mathrm{Et}_{3} \mathrm{~N}$, DMSO. c) 1. $\mathrm{NaO}_{2} \mathrm{Cl}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methyl-2-butene; 2. EDC, HOBt, $\mathrm{NH}_{4} \mathrm{Cl}$, DMF. d) 1. Pd/C, H_{2}, EtOAc; 2. TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. e) $0.01 \mathrm{M} \mathrm{HCl}, \mathrm{MeOH}$. Part B. a) $\mathrm{BF}_{3} . \mathrm{OEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) SO_{3}-pyr, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}$. c) 1. vinylmagnesium bromide, THF; 2. Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) 6-Heptenal, $\mathrm{Et}_{3} \mathrm{~N}$, thiazolium hydrochloride, 1, 4-dioxane. e) Grubbs I catalyst ($30 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.0005 M). f) $\mathrm{NH}_{4} \mathrm{OAc}$, MeOH , microwave irradiation.

2.0 EFFORTS DIRECTED TOWARDS THE MACROCYCLIC CORE OF MARINEOSIN A

2.1 LIMITATIONS OF PREVIOUS STRATEGIES

Previous syntheses performed by Lindsley and others, which target the spiroaminal and macrocyclic ring systems of marineosins A and B , have focused on the development of model systems. Additionally, biomimetic studies initiated by Fenical and Snider, have failed to generate the tetrahydropyran core and spiroiminal fragment of marineosins A and B . However, the cytotoxic activities and the unique structural aspects of marineosin A and B , continue to generate interest in these marine derived natural products. Therefore, a direct and efficient route towards the total synthesis of marineosins A and B is needed.

2.2 EFFORTS UTILIZING ENOLATE ALLYLIC ALKYLATION

2.2.1 Retrosynthetic Analysis

Our strategy features an intramolecular ruthenium-catalyzed enolate allylic alkylation of disubstituted allylic acetate $\mathbf{5 4}$, resulting in the formation of product $\mathbf{5 3}$ containing the core of marineosin A (Scheme 10). The spiroiminal fragment of 4 was envisioned to be installed in two
subsequent steps. Addition of α-metalated pyrrole into the impending nitrile, followed by attack at C_{8} by the resulting imine provides the first major disconnection. Ozonolysis of substrate 51, results in hemiketal formation and construction of the pyran ring. We further planned a series global deprotection, oxidation, and asymmetric addition of cyanomethylzinc bromide to afford product 51. With the major framework of the macrocycle to be constructed via an enolate allylic alkylation reaction of disubstituted allylic acetate $\mathbf{5 4}$, we initially sought to generate model substrate 63 which lacked the $\mathrm{C}_{14}-\mathrm{C}_{19}$ fragment (Scheme 11).

Scheme 10. Proposed retrosynthetic analyses of marineosin A

2.2.2 Ruthenium-Catalyzed Enolate Allylic Alkylation

An alternative route towards Claisen products of type $\mathbf{5 9}$ has previously been developed in our group, utilizing easily prepared pyrrole silyl enol ether 55, and allylic acetate 56. ${ }^{17}$ This ruthenium-catalyzed enolate allylic alkylation methodology provides similar C-C bond connections traditionally obtained from Claisen reactions, while maintaining high diastereo- and
enantioselectivity (Scheme 11). A mechanism for the transformation of $\mathbf{5 6}$ to $\mathbf{5 9}$ is believed to proceed via oxidative addition into the $\mathrm{C}-\mathrm{O} \sigma$-bond of allyl acetate $\mathbf{5 6}$, followed by nucleophilic addition of silyl enol ether 57 to the resulting Ru-bound 58. However, the extension of this methodology to disubstituted allylic acetates of type 61 as the pro-electrophile, and the application of this methodology to natural product synthesis is previously unexplored. An analogous mechanism leading to the formation of 63, involves the oxidative addition of ruthenium into a single $\mathrm{C}-\mathrm{O} \sigma$-bond of allylic diacetate 61. Nucleophilic addition of silyl enol ether $\mathbf{5 7}$ into the newly formed Ru-bound intermediate $\mathbf{6 2}$ is expected to result in the formation of 63 (Scheme 11).

Scheme 11. Ruthenium-catalyzed enolate alkylation of 56 and 61

To investigate the applicability of the ruthenium-catalyzed enolate allylic alkylation methodology towards the synthesis of the core of marineosin A, we initially focused our efforts on the preparation of allylic diacetate $\mathbf{6 5}$, which we planned to utilize in the reaction with pyrrole silyl enol ether 55 (Scheme 12). We chose to omit the $\mathrm{C}_{14}-\mathrm{C}_{19}$ linker, which would later
constitute the macrocyclic core during our initial studies, in order to probe the reactivity of the substrate. Completion of the synthesis of model substrate 68, involves global deprotection of 66, and subsequent oxidation of the resulting primary alcohol function of 67 (Scheme 12). Since the electronic properties of protecting groups are known to modulate pyrrole reactivity, we planned on implicating both benzyl and TIPS groups to test this effect. Additionally, both benzyl and TIPS groups are stable towards the planned deprotection and alcohol oxidation conditions (Scheme 12).

To begin our studies into the reactivity of allylic diacetates, we synthesized cinnamyl diacetate (76) as a precursor to the pyrrole derivative. Knoevenagel condensation of benzaldehyde (73) with diethylmalonate followed by DIBAL reduction and acylation afforded the pro-electrophile 76 in 51% yield over 3 steps (Scheme 13). Exposing cinnamyl diacetate (76) and pyrrole silyl enol ether $\mathbf{8 5}$ to $5 \mathrm{~mol} \%$ of $\mathrm{Ru}(\mathrm{II})$ complex generated in situ through the reaction of $\left[\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{PF}_{6}$ with ligand 90 , in the presence of $\mathrm{B}\left(\mathrm{OPh} p \mathrm{NO}_{2}\right)_{3}$ gave no reaction after $24 \mathrm{~h} .{ }^{18}$ Additional reactions performed at $50{ }^{\circ} \mathrm{C}$ or using $\left[\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}$ as an alternative catalyst gave no reaction after 48 h (eq 1).

Scheme 12. Forward synthetic route to model substrate 68

67, $\mathrm{X}=\mathrm{H}$
71, $\mathrm{X}=\mathrm{C}_{7}$ Linker
68, $X=H$
72, $X=C_{7}$ Linker

The inconclusive results obtained from our model system encouraged us to seek alternative substrates, to further investigate the application of this methodology. We next sought to directly synthesize diacetates $\mathbf{8 0}$ and $\mathbf{8 4}$, which lack the $\mathrm{C}_{14}-\mathrm{C}_{19}$ linker (Scheme 13). Knoevenagel condensation of differentially protected pyrrole 2-carboxaldehydes 77 and $\mathbf{8 1}$ resulted in the formation of $\mathbf{7 8}$ and $\mathbf{8 2}$ in $\mathbf{9 5 \%}$ and $\mathbf{9 8 \%}$ yield. However, the reduction of $\mathbf{7 8}$ and 82 with DIBAL proceeded to 1, 4-reduction of the double bond as the dominant pathway. This may be attributed to the formation of a stabilized aluminum intermediate, which redirects hydride delivery. The competing 1, 2-reduction of $\mathbf{7 8}$ and $\mathbf{8 2}$ provided the desired products $\mathbf{7 9}$ and $\mathbf{8 3}$ in 6% and 30% yield, in 10 minutes at $-78^{\circ} \mathrm{C}$. Acylation of the resulting diols delivered diacetates $\mathbf{8 0}$ and $\mathbf{8 4}$ in moderate yields of 80% and 88% (Scheme 13).

Scheme 13. Synthesis of diacetates 80 and 84

77, $R=B n$
81, $R=$ TIPS

78, $\mathrm{R}=\mathrm{Bn}$ (95\%)
79, $\mathrm{R}=\mathrm{Bn}$ (6\%)
80, $\mathrm{R}=\mathrm{Bn}$ (80\%)
82, R = TIPS (98\%)
83, $\mathrm{R}=\mathrm{TIPS}$ (30\%)
84, R = TIPS (88\%)
a) diethyl malonate, piperdine, DMAP, $50^{\circ} \mathrm{C}$. b) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$. c) acetyl chloride, pyridine, THF, $0^{\circ} \mathrm{C}$. d) DMAP $=4$-dimethylaminopyridine, DIBAL $=$ diisobutylaluminium hydride.

To investigate the alkylation of N-protected pyrrole derivatives with silyl enol ethers, we next examined the reactions of diacetates $\mathbf{8 0}$ and $\mathbf{8 4}$. Exposing N-benzylpyrrole allylic diacetate 80 and pyrrole silyl enol ether 85 to $5 \mathrm{~mol} \%$ of $\mathrm{Ru}(\mathrm{II})$ complex generated in situ from $\left[\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{PF}_{6}$ and ligand 90 , in the presence of $\mathrm{B}\left(\mathrm{OPh} p \mathrm{NO}_{2}\right)_{3}$ resulted in $<10 \%$ conversion to the linear product as determined by ${ }^{1} \mathrm{H}$ NMR (eq 2). Alternatively, exposing N TIPS pyrrole allylic diacetate $\mathbf{8 4}$ to $\mathrm{Ru}(\mathrm{II})$-catalytic conditions resulted in the complete conversion of $\mathbf{8 4}$ to bicyclic caprolactam $\mathbf{8 9}$ in 24 h (eq 3). An X-ray crystal structure of $\mathbf{8 9}$ is displayed in Figure 6.

Alternative reaction conditions: $\mathrm{rt}, 50^{\circ} \mathrm{C}$ and $\left[\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}$

Figure 6. X-ray crystal structure of $\mathbf{8 9}$

The mechanism of $\mathbf{8 9}$ formation is believed to involve oxidative addition of Ru (II) across the allylic acetate $\mathrm{C}-\mathrm{O} \sigma$-bond, resulting in the formation of a reactive allylic intermediate (Scheme 14). With simple substrates enolate addition typically favors the more highly substituted center, resulting in the bias formation of branched Claisen-type products. However, a reversal in enolate preference may be explained by a more sterically hindered allylic intermediate, leading to the exclusive formation of linear product 91. Oxidative addition of $\mathrm{Ru}(\mathrm{II})$ across the second allylic acetate $\mathrm{C}-\mathrm{O} \sigma$-bond of 91 , results in the formation of allylic intermediate 92. Intramolecular attack by pyrrole on the reactive intermediate (92) and subsequent rearomatization results in the formation of the observed product (89) (Scheme 14).

Scheme 14. Possible mechanism for the formation of $\mathbf{8 9}$

In conclusion, the extension of ruthenium-catalyzed enolate allylic alkylation methodology to disubstituted allylic acetates is a nonproductive route towards the synthesis of marineosin A (4). However, based on these studies a novel route to bicyclic caprolactam structures has been identified.

2.3 EFFORTS UTILIZING AZAFULVENE DIMER METATHESIS

2.3.1 Retrosynthetic Analysis

With the primary objective of developing an operative path towards the selective generation of marineosin A (4), we next developed an alternative retrosynthetic analysis implementing an exoselective hetero Diels-Alder reaction. Our modified retrosynthetic analysis commences with the disconnection of the spiroiminal fragment via stereoselective C_{8} - H insertion of an acyl nitrene or nitrenoid intermediate, resulting from the breakdown of acyl azide 93. A sequence of t-butyl ester hydrolysis, acid chloride conversion, followed by azide addition provides compound $\mathbf{9 3}$. The t-butyl ester 94 was envisioned to be installed though metal hydride-mediated reduction of the $\mathrm{C}_{8} \alpha$-alkoxy ester, followed by Mukaiyama aldol addition into the corresponding aldehyde. Hydrogenation of the $\mathrm{C}_{21}-\mathrm{C}_{22}$ double bond of $\mathbf{9 6}$, and subsequent methyl transfer provides $\mathbf{9 5}$. An exo-selective hetero Diels-Alder reaction with ethyl glyoxylate (98) generates tetrasubstituted pyran 96 (Scheme 15).

Scheme 15. Proposed retrosynthetic analyses of marineosin A

2.3.2 Azafulvene Dimer Derived Metathesis

To generate the key Diels-Alder precursor 97, we chose to initiate our study with a domino ringclosing /cross-metathesis reaction of enyne $\mathbf{9 9}$ in the presence of vinyl acetate. Construction of 99 was expected to proceed through a short sequence of nitrogen protection, and subsequent olefination of pyrrole-2-carboxaldehyde 101. Alkylation of azafulvene dimer $\mathbf{1 0 3}$ with iodoalkane 104, and hydrolysis of the resulting intermediate (102) could provide $\mathbf{1 0 1}$ in a single step. ${ }^{19}$ Protecting the resulting aldehyde was especially important, since the basicity and nucleophilicity of nitrogen atoms deactivate the catalyst through coordination with the metal center. Notably, this process is advantageous due to the possible formation of a variety of 5substituted pyrrole-2-carboxaldehydes (Scheme 16).

Scheme 16. Retrosynthetic analysis using azafulvene dimer

In order to investigate our planned ring-closing metathesis we first examined the synthesis of aldehyde precursor 101. The three step synthesis of iodoalkyne $\mathbf{1 0 8}$ initiated with the triple bond isomerization of alkyne $\mathbf{1 0 5}$, by a zipper reaction to afford terminal alkyne 106 . Trimethylsilyl protection of the terminal alkyne and successive halogenation afforded $\mathbf{1 0 8}$ in
80% yield over 3 steps (Scheme 17). To prevent the formation of the corresponding lithium acetylide during the course of the alkylation reaction, terminal alkyne protection was required. Employing $\mathbf{1 0 8}$ as the electrophile, alkylation of azafulvene dimer $\mathbf{1 0 3}$ with n-BuLi in THF at $-78{ }^{\circ} \mathrm{C}$ resulted in the formation of $\mathbf{1 0 9}(32 \%)$. While attempts to install tosyl or t-Boc nitrogen protecting groups were unsuccessful on this substrate, benzyl protection proceeded to the desired substrate 111 in 60% yield. These results indicate steric hindrance, as well as, the electron withdrawing effect of the adjacent aldehyde may impact pyrrole protection. Olefination of the aldehyde function, followed by trimethylsilyl deprotection of the terminal alkyne proceeded to yield the metathesis substrate 114 in $\mathbf{7 4 \%}$ yield over two steps (Scheme 18).

Scheme 17. Optimized synthesis of iodoalkyne 108

a) ethylene diamine, $\mathrm{NaH}, 60^{\circ} \mathrm{C}$. b) n - $\mathrm{BuLi}, \mathrm{TMSCl},-78{ }^{\circ} \mathrm{C}$. c) $\mathrm{PPh}_{3}, \mathrm{ImH}, \mathrm{I}_{2}, \mathrm{rt} . \mathrm{TMS}=$ trimethylsilyl, $\mathrm{ImH}=$ imidazole.

We next sought to investigate the tandem ring-closing/cross-metathesis reaction which would afford diene 115. However, in the presence of $10 \mathrm{~mol} \%$ Grubbs-II catalyst (16) and vinyl acetate (117) $\left(0.01 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}\right)$ no anticipated ring-closed product was observed (Table 1, entry 1). Substituting Hoyveda-Grubbs-II catalyst (118) in place of Grubbs-II (16) resulted in the incomplete conversion of $\mathbf{1 1 4}$ to disubstituted derivative $\mathbf{1 1 6}$ (entry 3). Similar results were obtained at elevated temperatures $\left(0.01 \mathrm{M}\right.$ toluene, $\left.100^{\circ} \mathrm{C}\right)$, resulting in the formation of no ringclosed products (entries 2 and 4). However, derivative 116 was formed in 32% yield at elevated temperature utilizing Hoyveda-Grubbs-II catalyst (118), indicating that cross-metathesis of the
terminal alkyne with vinyl acetate (117) proceeded as the dominant pathway. Additionally, reactions performed in the presence of ethylene (1 atm) resulted in the complete decomposition of substrate 114. This result was in accordance with previous reports in which metatheses of 2vinyl aromatic heterocycles do not proceed at an appreciable rate. ${ }^{20}$ In particular, 2-vinyl pyrroles may display diminished reactivity due to the possible formation of a charged resonance intermediate, impeding the formation of an electron rich carbon-ruthenium bond and enabling the competing alkyne metathesis.

Scheme 18. Synthesis of enyne substrate 114

a) n - BuLi than NaHCO_{3}. b) NaH , TsCl ; NaH BnBr ; DMAP, $\mathrm{Boc}_{2} \mathrm{O}$. c) $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}$, KHMDS. d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH. Ts $=$ tosyl, $\mathrm{DMAP}=4-$ dimethylaminopyridine, $\mathrm{Boc}=t$-butoxycarbonyl, KHMDS $=$ Potassium hexamethyldisilazide.

Table 1. Enyne metathesis approach to marineosin macrocycle

${ }^{\mathrm{a}}$ Reaction conditions: 4 equivalents of vinyl acetate (117). ${ }^{\mathrm{b}}$ Reaction conditions: ethylene $(1 \mathrm{~atm}) .{ }^{\mathrm{c}} 0.01 \mathrm{M}$ solvent. ${ }^{\mathrm{d}}$ Determined by crude ${ }^{1} \mathrm{H}$ NMR spectra.

To promote intramolecular enyne metathesis, and favor the formation of the macrocyclic core, we next employed a relay ring-closing metathesis strategy for directing metal activation. This relay strategy, initially developed by Hoye and coworkers, has previously been utilized to direct metal movement to poorly reactive alkenes. ${ }^{21}$ To generate relay substrate $\mathbf{1 2 2}$, we initiated our synthesis with alkyne deprotection, followed by a Horner-Wadsworth-Emmons reaction to afford E-alkene 120 (Scheme 19). Diisobutylaluminium hydride-mediated reduction and O allylation afforded the desired relay substrate 122. As displayed in Table 2, ring-closing conditions utilizing $15 \mathrm{~mol} \%$ Grubbs-II (16) at $60^{\circ} \mathrm{C}$ over 24 h in 1,2-dichloroethane (DCE) produced none of the desired product 115 (entry 1). Similarly, the addition of 1-4 equivalents of vinyl acetate (117) yielded only starting material (entries 3 and 4). These results may be attributed to the formation of unstable 1,3-diene intermediates resulting in alkyne polymerization, in the absence of vinyl acetate (117). In an attempt to bypass 1,3-diene formation, 1,4-benzoquinone (BQ) was additionally investigated as an additive for the desired
metathesis reaction based on the previous success of Diver and coworkers. ${ }^{22}$ Unfortunately, 7.5 mol $\%$ 16, in the presence of $10 \mathrm{~mol} \%$ BQ produced no desirable results (Table 2, entry 2).

Scheme 19. Synthesis of relay-ring closing substrate 122

a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH. b) triethyl phosphonoacetate, KOH , THF. c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2 .}$ d) allyl bromide, NaH, THF. DIBAL $=$ diisobutylaluminium hydride.

Table 2. Relay-ring closing metathesis approach

${ }^{\text {a }}$ Catalyst loading: $15 \mathrm{~mol} \% .{ }^{\mathrm{b}}$ Catalyst loading: $7.5 \mathrm{~mol} \% .{ }^{\mathrm{c}} 1$ equivalent vinyl acetate (117). ${ }^{\mathrm{d}} 4$ equivalents vinyl acetate (117).

Alternatively, we sought to synthesize 129, which would constitute the macrocyclic core of diene 115, with the goal of eliminating competing pathways associated with initiation at the alkyne. Based on the approach implemented by Donohoe for the completion of the furan core of cembranolide, we next investigated the utility of olefin metathesis for macrocycle formation
(Scheme 20). ${ }^{23}$ Cross-coupling of 1-bromo-6-chlorohexane (123) with allylmagnesium bromide in the presence of CuCl afforded 124 in 70% yield. This species underwent chloride displacement under Finkelstein conditions to provide 125 in 93% yield (Scheme 20). ${ }^{24}$ Accordingly, alkylation of azafulvene dimer 103 with $\mathbf{1 2 5}$, followed by hydrolysis of the resulting alkylated species afforded aldehyde $\mathbf{1 2 6}$ in 51% yield. Nitrogen protection of the pyrrole 126, followed by Wittig olefination of the aldehyde function provided the olefin metathesis substrate $\mathbf{1 2 8}$ in 38% yield over two steps. However, the attempted intramolecular olefin metathesis of $\mathbf{1 2 8}$ in the presence of either Grubbs-II (16) or Hoyveda-Grubbs (118) catalysts produced no detectable ring-closing derivative and recovery of the substrate (128). Furthermore, prolonged reaction times and elevated reaction temperatures were unable to effect the desired transformation. Presumably, entropic factors which limit the probability of end-toend encounters in larger ring systems are responsible for the observed results. In addition, a higher activation barrier due to increased ring stain is evident in larger size rings. ${ }^{25}$

Scheme 20. Ring-closing metathesis approach

a) allylmagnesium bromide, $\mathrm{CuCl}, \mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}$. b) NaI , acetone, $60^{\circ} \mathrm{C}$. c) $\mathbf{1 0 3}, n-\mathrm{BuLi}$ than NaHCO_{3}. d) $\mathrm{NaH}, \mathrm{BnBr}$. e) $\mathrm{CH}_{3} \mathrm{PPh}_{3} \mathrm{Br}$, KHMDS. f) $10 \mathrm{~mol} \% \mathbf{1 6}$ or 118, ethylene (1 atm), $0.01 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h} . \mathrm{g}$) $10 \mathrm{~mol} \% \mathbf{1 6}$ or $\mathbf{1 1 8}$, ethylene (1 atm), 0.01 M toluene, $100^{\circ} \mathrm{C}, 48 \mathrm{~h} . \mathrm{HMDS}=$ hexamethyldisilazane.

2.4 CONCLUSIONS

We have presented two dissimilar approaches with the primary objective of developing an operative path towards the generation of marineosin A. The extension of an enolate allylic alkylation approach to disubstituted allylic acetates resulted in the formation of bicyclic caprolactam structure 89. However, no operative route towards the synthesis of marineosin A was established. Primarily due to the diminished reactivity of N-protected pyrrole derivatives towards silyl enol ether $\mathbf{8 5}$, in the presence of catalytic amounts of ruthenium (II). In addition, an azafulvene dimer metathesis strategy was investigated as a potential route towards the macrocyclic core of marineosin A. However, we were unable to affect the desired ring-closing metathesis, presumably due to the diminished reactivity of 2-vinyl pyrrole derivatives, as well as, entropic factors which limit the reactivity of larger ring systems.

3.0 INTRODUCTION

3.1 DIVERSITY-ORIENTED SYNTHESIS OF NATURAL PRODUCT-LIKE STRUCTURES

Diversity-oriented synthesis (DOS) involves the deliberate, simultaneous and efficient synthesis of multiple targets that are not only diverse in the appendages they display, but also in their molecular architectures. ${ }^{26}$ In contrast to target-oriented synthesis and combinatorial chemistry (focused library synthesis), diversity-oriented syntheses are not aimed at one particular target (Figure 7). In these approaches retro-synthetic analysis is used to theoretically deconstruct complex target molecules into simple starting materials. In DOS, a "forward synthetic" strategy must be constructed to facilitate the transformation of simple starting materials into an array of complex and diverse products. ${ }^{27}$

Figure 7. Sources of skeletally diverse small molecules

This process first described in the pioneering work of Schreiber, aims to synthesize collections of molecules that represent the variety of charges, polarities, bonding interactions and architectures that can potentially be recognized by nature's biomolecules. ${ }^{26}$ Over the last few years, the potential for DOS has been exemplified by the synthesis of discrete skeletons with unique motifs. While several strategies have focused on structural motifs such as benzopyran, β amino alcohol, allenoate and indole cores for the synthesis of alkaloid-like skeletons and ring systems, the diversity-oriented strategies of pyrrolidines remains relatively unexplored. ${ }^{28,29}$

Pyrrolidines are an important class of heterocycles that have been found in numerous natural products and have served as useful molecular scaffolds in medicinal structures. For example, in cancer research small molecule MDM2 inhibitors based on the spirocyclic oxindolepyrrolidine core of natural alkaloids such as spirotryprostatin A and alstonisine have showed good selectivity between cancer and normal cells with wild-type p53. ${ }^{30}$ Neuroprotective agent kaitocephalin ${ }^{31}$, hepatitis C virus RNA polymerase small molecule inhibitors ${ }^{32}$, the synthetic influenza drug A-192558 ${ }^{33}$ and the antitumor antibiotic bioxalomycin $\beta 1^{34}$ all are examples in which the pyrrolidine ring is an important structural motif. Accordingly, the diversity-oriented synthesis of natural product-like libraries in which pyrrolidine scaffolds provide a core for the development of structurally complex, stereochemically rich and densely functionalized substructures are needed.

3.2 PREVIOUS APPLICATIONS OF 1, 3-CYCLOADDITION REACTIONS FOR REGIO- AND STEREO-SPECIFIC FORMATION OF PYRROLIDINES

The [3+2] cycloaddition reaction of azomethine ylides with electron poor dipolarophiles is a powerful and concise method for the synthesis of highly substituted five-membered ring heterocycles. ${ }^{35}$ Specifically, the dipolar cycloaddition of and azomethine ylide and an electrodeficient olefin is a valuable transformation because it creates two carbon-carbon bonds and four potential stereocenters in a single step. The biological importance of pyrrolidines has encouraged the advancement of diastereo- and enantioselective $[3+2]$ cycloadditions of azomethine ylides, and several routes to these 1, 3-dipoles have been developed. ${ }^{36}$ Among the different versions of this reaction, the most practical approach has been the interaction of stabilized N -metalated azomethine ylides $\mathbf{1 3 2}$ with electron deficient alkenes $\mathbf{1 3 3}$ (Scheme 21). ${ }^{36 a, 37}$

Scheme 21. [3+2] cycloaddition of N -metalated azomethine ylide with electron deficient alkenes

The enantioselective version of this transformation utilizing chiral based ligands was first investigated in 1991 by Grigg. ${ }^{38}$ Using a stoichiometric amount of $\operatorname{Co}(\mathrm{II})$ and the chiral ephedrine ligand 138, the reaction of azomethine ylide 135 with methyl acrylate (136) primarily resulted in a single enantiomer of pyrrolidine 137 (eq 4). While reaction time and enantiomeric
excess of the product remained unchanged in a variety of solvents, the use of cobalt chloride demonstrated a profound effect on both values. The choice of a molar equivalent of CoCl_{2} and the chiral ephedrine ligand 138 gave the highest yields (45-84\%) with an appreciable enantiomeric enrichment of 96%. However, a substantial amount of imine hydrolysis and dimerization was observed in these reactions. ${ }^{36 a, 38}$

The observed facial selectivity of these reactions is rationalized by using transition state 142 (Figure 8). Due to the cis-conformation of the methyl and phenyl groups on the ligand, addition occurs only at the less hindered face of the ylide. ${ }^{38}$ Grigg has additionally reported utilizing AgOTf and a chiral bisphosphine ligand on identical substrates, however detailed reaction conditions such as catalyst loading and substrate scope were not reported. ${ }^{39}$

Figure 8. Proposed transition state of Co (II)/ephedrine ligand

Catalytic variants of Griggs' stoichiometric cycloadditions of N -metalated azomethine ylides have more recently been demonstrated by Jørgensen and Zhang. ${ }^{35,40}$ In 2002, Jørgensen investigated the reactions of N-benzylidene- and N-(2-naphthylmethylidene) glycinates 143 and 139, with methyl acrylate (136) in the presence of catalytic $\mathrm{Cu}(\mathrm{OTf})_{2}$ and $\mathrm{Zn}(\mathrm{OTf})_{2}$ and chiral bisoxazoline ligands. Optimized conditions for the formation of pyrrolidines $\mathbf{1 4 5}$ and $\mathbf{1 4 6}$ were obtained with catalytic $\mathrm{Zn}(\mathrm{OTf})_{2}$ and chiral bisoxazoline ligand $(S)-t$-Bu-Box-ligand (144) (eq 5). Reactions with a series of imines of glycine methyl ester and various electron deficient alkenes catalyzed by Jørgensen's system have demonstrated a variety of yields (12% to $>95 \%$) and enantiomeric enrichments (<5\% to 94\%) (Figure 9). ${ }^{35}$

Work completed by Zhang further examined the cycloadditions of azomethine ylides utilizing catalytic $\operatorname{Ag}(\mathrm{I})$ in conjunction with various chiral phosphine ligands. However, initial investigations of this catalyst system with benzylidene glycinate $\mathbf{1 4 3}$ and dimethylmalenate (147), failed to promote substantial diastereo- or enantioselectivies and resulted in poor conversions. ${ }^{40}$ Addition of the Trost modular ligand $148,{ }^{41}$ previously utilized in asymmetric allylic alkylations resulted in a significant improvement in reactivity and enantioselectivity (94\% yield and 76% ee). An additional increase in selectivity was also observed upon replacement of the phenyl groups with 3,5-dimethylphenyl (86\% ee) (eq 6). ${ }^{40}$

Overall, reactions employing imines of glycine methyl ester with various olefins catalyzed by Zhang's AgOAc/xylyl-FAP system demonstrated higher yields (73-98\%) and enantiomeric enrichment (70% to 97% ee) then previously reported by Jørgensen's system. Representative members resulting from the $[3+2]$ cycloaddition of azomethine ylides with typically used olefins is shown in Figure 9. In all cases only the endo products were isolated. Alkyl imino esters were found to be significantly less reactive under the same conditions with lower yields and ee (82% yield over $48 \mathrm{~h}, 70-81 \%$ ee). ${ }^{40}$

Figure 9. Application of Jørgensen's $\mathrm{Zn}(\mathrm{OTf})_{2} / t-\mathrm{BuBOX}^{\mathrm{a}}$ and Zhang 's $\mathrm{AgOAc} / \mathrm{xylyl}-\mathrm{FAP}^{\mathrm{b}}$ systems to development of pyrrolidine libraries

3.3 SYNTHESIS OF FUSED PYRROLIDINE-HYBRID LIBRARIES

Based upon the previous chiral catalyst studies developed by both Zhang and Jørgensen, Schreiber has applied 1,3-dipolar cycloaddition reactions to the synthesis of fused pyrrolidine libraries. Focusing on silver (I) acetate reactions with chiral phosphine ligands previously engaged in Zhang's work, Schreiber has examined six additional commercially available chiral phosphines. The reaction which was initially explored with methyl N-benyzlidene glycinate $\mathbf{1 4 3}$ and t-butyl acrylate is displayed in Table 3, entry 1. Unexpectedly, of the commercially available ligands examined the P , N ligand (S)-QUINAP (159) displayed the best levels of both diastereo- and enantioselectivity. ${ }^{42}$

Table 3. Exploration of dipolarophile reactivity with Schreiber's catalyst

	 158	$\xrightarrow[\text { THF, Temp }]{\substack{\mathrm{AgOAc}, 159, i-\mathrm{Pr}_{2} \mathrm{NEt}}}$			$\mathrm{CO}_{2} \mathrm{Me}$	 QUINAP, 159
Entry	Dipolarophile	Temp	Time	Yield	Endo:Exo ${ }^{\text {e }}$	\% ee
$1^{\text {a }}$	tert-butyl acrylate	$-45^{\circ} \mathrm{C}$	20 h	84\%	>20:1	91\%
$2^{\text {a }}$	dimethyl maleate	$-60{ }^{\circ} \mathrm{C}$	48 h	88\%	>20:1	60\%
$3^{\text {b }}$	tert-butyl crotonate	$-20^{\circ} \mathrm{C}$	85 h	97\%	>20:1	84\%
$4^{\text {b }}$	tert-butyl cinnamate	$-20^{\circ} \mathrm{C}$	85 h	62\% ${ }^{\text {c }}$	2:1	81\%, $50 \%{ }^{\text {d }}$

${ }^{\text {a }}$ Catalyst loading: $3 \mathrm{~mol} \%$. ${ }^{\mathrm{b}}$ Catalyst loading: $10 \mathrm{~mol} \%$. ${ }^{\text {c }}$ Combined yield endo/exo products. ${ }^{\mathrm{d}}$ Enantioselectivity exo product. ${ }^{\mathrm{e}}$ Determined by crude ${ }^{1}$ H NMR spectra.

To further expand the scope of the reaction, the nature of the aromatic group was also explored. Exchanging the aromatic substituent on α-imino ester 143, with 4-methoxyphenyl, 4-cyanophenyl, 2-tolyl, and 2-napthyl groups under the same conditions similarly demonstrated high levels of diastereoselectivity (>20:1) and enantioselectivity (94-96\% ee) regardless of the electronic properties of the rings. However, the sterically hindered 2-tolyl gave lower enantioselectivity (95% yield, 89% ee). Analysis of the reactivity of the Schreiber's catalyst system with different electron-deficient olefins is shown in Table 3. The proposed transition state 161 is thought to derive selectivity by sterically hindering one face of the 1,3 -dipole limiting the approach of the incoming dienophile (Figure 10). ${ }^{42}$

161

Figure 10. Proposed transition state of $\operatorname{Ag}(\mathrm{I}) /$ QUINAP catalyst

Schreiber's work is the first example of a catalytic asymmetric cycloaddition of azomethine ylides to be featured in the parallel synthesis of a fused pyrrolidine scaffolds. The diversity-oriented synthesis which builds upon these scaffolds has resulted in the formation of bridged-piperdine/fused-pyrrolidine and spirocycle-oxindole/fused-pyrrolidine hybrid libraries. ${ }^{43}$ A key feature of Schreiber's new catalyst system for diversity-oriented synthesis of pyrrolidine hybrid-libraries is the extension of this reaction to $500-600 \mu \mathrm{~m}$ polystyrene "macrobeads". As displayed in Scheme 22, pyrrolidine scaffolds could be initially loaded onto alkylsilylderivatized macrobeads. Coupling with various protected amino acids (glycine, leucine, phenylalanine, and proline) provided after deprotection the 24 member sublibrary (163). The resulting pyrrolidine scaffolds were then released and coupled to bridged piperdine (162) structures and spirocyclic-oxindole (165) structures or inversely coupled then released to yield the final small molecule hybrids. In each case, final sublibrary coupling involved PyBOP/DMAP-promoted esterification and HF-pyridine mediated release of the surrogate bead. ${ }^{43,44,45}$

Scheme 22. Synthesis of fused-pyrrolidine hybrid libraries

(20 compounds)

163
(24 compounds)

Ph

165

(16 compounds)
a)1. PyBOP, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$, 16h; 2. HF-py, THF, $23^{\circ} \mathrm{C}$, 2 h , then TMSOEt. b) $\mathbf{1 6 5}$, HFpy, THF, $23{ }^{\circ} \mathrm{C}$, 2h, then TMSOEt. DMAP $=4$-dimethylaminopyridine, py $=$ pyridine, $\mathrm{PyBOP}=$ benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate, $\mathrm{TMS}=$ trimethylsilyl.

4.0 DEVELOPMENT OF PYRROLIDINE SCAFFOLDS FOR DIVERSITYORIENTED SYNTHESIS BY CLAISEN REARRANGEMENT OF ALLYL VINYL ETHERS

4.1 LIMITATIONS OF PREVIOUS STRATEGIES

Diversity-oriented synthesis is an emerging field that seeks to enrich chemical space by the development of divergent pathways towards new pharmaceutically active compounds. Previous methodologies developed by Grigg, Zhang, and Schreiber have resulted in the formation of hybrid-pyrrolidine libraries. However, the electronic requirements inherent within dipolar cycloaddition reactions have restricted the substrate scope available via this strategy. Moreover, the compounds derived from this approach have yet to display any biological activities. Therefore, novel pyrrolidine scaffolds which build structural complexity from simple and similar compounds are needed to synthesize diverse libraries of natural product- and drug-like molecules.

4.2 RETROSYNTHETIC ANALYSIS OF FUNCTIONALIZED PYRROLIDINE SCAFFOLDS

In the past few years, our laboratory has demonstrated the value of $\operatorname{Ir}(\mathrm{I})$-based catalyst systems for the chemo- and stereoselective isomerization of bis(allyl) ether substrates. ${ }^{46}$ Additionally, the enantio- and diastereoselective $\mathrm{Ru}(\mathrm{II})$-catalyzed Claisen rearrangement of unactivated allyl vinyl ethers has also been demonstrated. ${ }^{47}$ To validate the potential applicability of these methodologies to the diversity-oriented synthesis of drug-like compounds, we sought to develop a route to functionalized pyrrolidine scaffolds. Our retrosynthetic analysis commences with the reductive deprotection of β-azido amine 168, resulting in the formation of diamine $167 .{ }^{48}$ Nucleophillic ring opening by azide at C_{5} or C_{4} of $\mathbf{1 6 9}$ results in the formation of both desired kinetic (168) and thermodynamic (170) products. ${ }^{49,50}$ The predominant process of nucleophilic displacement of iodine, is next expected to proceed through a $\mathrm{S}_{\mathrm{N}} \mathrm{i}$ mechanism to generate aziridinium ion 169. Preferential 5-exo-cyclization of $\mathbf{1 7 2}$ generates the anticipated β-iodo amine 171. Lastly, reductive amination of γ, δ - unsaturated aldehyde $\mathbf{1 7 3}$ will afford $\mathbf{1 7 2}$ (Scheme 23).

Scheme 23. Retrosynthetic analysis of racemic pyrrolidine scaffolds

4.3 SYNTHESIS OF A GENERAL PYRROLIDINE SCAFFOLD FOR DIVERSIFICATION

4.3.1 Formation of Claisen Products from Simple Allyl Vinyl Ethers

Since its discovery in 1912 by Ludwig Claisen, the [3, 3] sigmatropic rearrangement of allyl vinyl ethers (174) to produce γ, δ-unsaturated carbonyl compounds (176) has been highly utilized in synthetic transformations. ${ }^{51}$ The rearrangement which proceeds through a chair-like transition state (175) to provide racemic syn-diastereomer 177, results in the generation of a new carboncarbon bond and two adjacent stereocenters (Figure 11). ${ }^{52}$

Figure 11. Thermal Claisen rearrangement of general allyl vinyl ether (174)

Based upon the success of $\operatorname{Ir}(\mathrm{I})$-based catalyst systems developed in our laboratory, we initially synthesized aldehyde $\mathbf{1 8 1}$ as a model compound en route to pyrrolidine scaffolds (Scheme 24). Williamson ether synthesis of cinnamyl alcohol (178) with allyl bromide, followed by iridium catalyzed isomerization of the terminal double bond afforded allyl vinyl ether $\mathbf{1 8 0}$ in 88% yield over two steps. ${ }^{46}$ Claisen rearrangement under thermal conditions of $\mathbf{1 8 0}$ afforded γ, δ-unsaturated aldehyde 181 in 93% yield (Scheme 24).

Scheme 24. Synthesis of γ, δ-unsaturated aldehyde

a) allyl bromide, NaH , THF. b) $\left[\operatorname{Ir}(\mathrm{COE})_{2} \mathrm{Cl}\right]_{2}, \mathrm{PCy}_{3}, \mathrm{NaBPh}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone. c) $80^{\circ} \mathrm{C}$, toluene. $\mathrm{COE}=$ cyclooctene

4.3.2 Formation of Pyrrolidines from Claisen Products

To validate our synthesis design, we initiated our investigation with the generation of amides $\mathbf{1 8 2}$ and 183, along with, amines 184 and 185 (Scheme 25). Pinnick oxidation followed by treatment of the resulting γ, δ-carboxylic acid derivative with ammonium hydroxide and benzylamine, afforded primary and secondary amides $\mathbf{1 8 2}$ and $\mathbf{1 8 3}$ in 88% and 90% yield, respectively. ${ }^{53}$ The secondary amine 184 was synthesized in 67% yield via reductive amination with triethylsilane and benzylcarbamate. Similarly, treatment of $\mathbf{1 8 1}$ with sodium triacetoxyborohydride, and
benzylamine afforded secondary amine $\mathbf{1 8 5} 73 \%$ yield (Scheme 25). ${ }^{54}$ Having successfully established routes to the syntheses of $\mathbf{1 8 2}$ to $\mathbf{1 8 5}$, we next sought to probe the reactivity of these compounds towards various electrophilic sources of iodine to complete the desired cyclization.

Scheme 25. Synthesis of γ, δ-unsaturated amides and amines

a) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, 2-methyl-2-butene, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$ then oxalyl chloride. b) $\mathrm{NH}_{4} \mathrm{OH}$ (aq). c) benzylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. d) benzyl carbamate, TES, TFA, MeCN. e) benzylamine, $\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{TES}=$ triethylsilane, TFA = trifluoroacetic acid.

Proceeding with our planned synthesis we subjected amines 182-185 to various electrophilic sources of iodine, to affect the desired cyclization reaction. The use of 3 equivalents of elemental iodine, in combination with NaHCO_{3} and $\mathrm{K}_{2} \mathrm{CO}_{3}$ provided β-iodo amines 186-189 in 34-51\% (Table 4, entries 1-5). Alternatively, utilizing 1.1 equivalents of NIS, amines $\mathbf{1 8 5}$ and 184, selectively afforded 5-exo-products 189 and 188 in 70% and 64% yield respectively (entries 6 and 7). However, N-benzyl amine $\mathbf{1 8 5}$ displayed a shorter reaction time, with complete conversion in 20 minutes. In contrast N-carboxylbenzyl amine $\mathbf{1 8 4}$ reached completion only after 2 h . The diminished yields and elongated reaction time of $\mathbf{1 8 4}$ may be explained by increased steric volume or diminished nucleophilicity of the nitrogen atom.

Table 4. Cyclization conditions with various electrophilic iodine sources

${ }^{\text {a }}$ Reaction performed in the dark. ${ }^{\mathrm{b}}$ Reaction performed in the presence of ambient light. ${ }^{\text {c }} 3$ equivalents of I_{2}; 1.1 equivalents of NIS were utilized. ${ }^{\text {d }} 3$ equivalents of base.
${ }^{\mathrm{e}}$ Isolated yields. NIS $=\mathrm{N}$-iodosuccinimide.

To decipher any effect of light on the cyclization reaction, identical reactions employing 1.1 equivalents of NIS and N-benzyl amine $\mathbf{1 8 4}$ or N-carboxybenzyl amine $\mathbf{1 8 5}$ were monitored under ambient light. As demonstrated in Table 4, minimal improvements in isolated yields were observed for both substrates 184 and $\mathbf{1 8 5}$. These results led us to conclude, that the presence of light was not a decisive factor in the successful cyclization of $\mathbf{1 8 4}$ or $\mathbf{1 8 5}$. However, having obtained complete conversion of $\mathbf{1 8 5}$ to $\mathbf{1 8 9}$ within 20 min, along with higher isolated yields in comparison to the conversion of $\mathbf{1 8 4}$ to $\mathbf{1 8 8}$, we decided to employ N-benzyl amine $\mathbf{1 8 5}$ for further methodology development.

A plausible mechanism for the formation of pyrrolidine $\mathbf{1 8 9}$, involves the reversible formation of iodonium ion 190 upon reaction of 185 with an electrophilic source of iodine (Scheme 26). Intramolecular ring-opening by nitrogen at C_{4} of $\mathbf{1 9 0}$, provides 5-exo-cyclization product 189. Furthermore, transition state 191 which allows the iodonium ion, phenyl, and
methyl groups to occupy pseudoequatorial positions around the developing pyrrolidine ring provides the most stable conformation of $\mathbf{1 8 9}$.

Scheme 26. Proposed mechanism of iodoamination of $\mathbf{1 8 5}$

At this stage, we sought to convert β-iodo amine 189 to the desired β-azido amine 192 which, through reductive deprotection, would be converted to the desired diamine scaffold. To accomplish this, we planned to generate both pyrrolidine (192) and piperdine (193) products via an aziridinium intermediate 195 (Scheme 27). The existence of 195 would be expected to arise, from the intramolecular substitution of primary iodide by the pyrrolidine nitrogen of $\mathbf{1 8 9}$. Subsequent ring-opening by the azide nucleophile at either C_{4} or C_{5}, would result in the formation of 192 and 193 . Reacting $\mathbf{1 8 9}$ with sodium azide (1.5 equivalents, DMF, $50^{\circ} \mathrm{C}$) led to the formation of pyrrolidine 192 as the major product $(192: 193=2.5: 1)$. This ratio remained consistent in the presence of bulky azide sources, such as tetrabutylammonium azide. ${ }^{55}$ Indicating azide anions liberated from various sources, displayed a similar preference for nucleophilic attack at the least hindered carbon of the aziridine ring. ${ }^{56}$ We further sought to investigate the effect of a larger counter ion on the regioselectivity of the ring-opening reaction. This was to be accomplished by iodide abstraction and exchange for the non-nucleophillic hexafluoroantimonate ion. Treating β-iodoamine $\mathbf{1 8 9}$ with 1.2 equivalents of AgSbF_{6} resulted in
the formation of the crystalline product 194 (95% yield), which was further reacted with sodium azide (1.5 equivalents, DMF, $50{ }^{\circ} \mathrm{C}$) (Figure 12). Analysis of the products by ${ }^{1} \mathrm{H}$ NMR indicated the formation of $\mathbf{1 9 2}$ and $\mathbf{1 9 3}$ in a 2.5:1 ratio. Thus, the azide anion preferentially attacks at the sterically least hindered center, independent of iodide or hexafluoroantimonate counter ion.

Scheme 27. Synthesis β-azido amine 192 and diamine 196

a) NaN_{3}, DMF. b) $\mathrm{AgSbF}_{6}, \mathrm{THF}$, rt. c) $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$, $\mathrm{NH}_{4} \mathrm{HCO}_{2}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}$.

With the completion of a route to model β-azido amine 192, we next sought to generate the desired diamine scaffold utilizing a global reduction strategy. To accomplish this, we first investigated several strategies utilizing palladium on carbon (5\% and 10%) to generate diamine

196, resulting from concomitant azide reduction and benzyl deprotection (Scheme 27). In a majority of instances, reduction of the azide function without deprotection occurred or complete decomposition of the product was observed. However, using Pearlman's catalyst $\left(\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\right)$ in conjunction with ammonium formate, we obtained diamine 196. Treating 192 with $10 \mathrm{~mol} \%$ $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in the presence of 12.5 equivalents of $\mathrm{NH}_{4} \mathrm{HCO}_{2}$ at $80^{\circ} \mathrm{C}$ provided 196 in 90% yield. ${ }^{57}$ These results indicate that $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ serves as a superior catalyst when both N debenzylation and azide reduction are desired.

Figure 12. X-ray crystal structure of aziridinium 194

4.4 DIVERSITY BY INCORPORATION OF C3 SUBSTITUTION

Having established a synthetic route towards pyrrolidine 196, we next focused on the generation of various pyrrolidine scaffolds for DOS. To demonstrate the versatility of this approach and integrate heterocycles with multifunctional sites, we initially identified 203-208 as potential
substrates. The work presented within this section, describes the alternative C_{3} substitutions made in place of the phenyl group (Scheme 28).

The preparation of allylic alcohols 203-208 from simple compounds is displayed in Scheme 28. 1-(Triisopropylsilyl)pyrrole-3-carbaldehyde (197) was prepared according to literature procedure. ${ }^{58}$ Knoevenagel condensation of aldehyde 197 with monoethylmalonate, followed by benzyl protection and DIBAL-H reduction afforded allyl alcohol 203 in $\mathbf{7 3 \%}$ yield over 3 steps. Unexpectedly, simultaneous TIPS deprotection was found to occur during condensation. A similar sequence of condensation, protection and reduction generated 204 in 55\% yield over 3 steps. Simple reduction of trans-3-(2-furyl)acrolein (200) afforded desired alcohol 206 in 91% yield. Allyl alcohols 205, 207, and 208 were synthesized through a two-step protocol of condensation and reduction from aldehydes 199, 201, and 202 in acceptable yields (66-75\% yield).

Scheme 28. Preparation of allylic alcohols

202

a) monoethylmalonate, DMAP, piperdine, DMF, rt. b) $\mathrm{BnBr}, \mathrm{NaH}$, DMF, $0{ }^{\circ} \mathrm{C}$ to rt. c) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$. d) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $0{ }^{\circ} \mathrm{C}$ to rt. DMAP = 4-Dimethylaminopyridine.

Following the procedure previously developed for the incorporation of cinnamyl aldehyde (178) into the pyrrolidine scaffold (196), we next sought to generate the corresponding aldehydes from allylic alcohols 203-208. The reaction of allylic alcohols 203-208 with 1.2 equivalents of allyl bromide and 1.3 equivalents of NaH in THF, provided bis(allyl) ethers 211216 in $89-99 \%$ yield (Table 5). Subsequent iridium catalyzed isomerization of ethers 211-215 $\left(0.5 \mathrm{~mol} \%\left[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}_{2}, 3 \mathrm{~mol} \% \mathrm{PCy}_{3}, 2 \mathrm{~mol} \% \mathrm{NaBPh}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.\right.$ Acetone $)$ provided 217-221 in $67-85 \%$ yield, with the exception of pyridine di(allyl) ether 216. Interestingly, iridiumcatalyzed deallylation of $\mathbf{2 1 6}$ proceeded to completion in less than a minute, and provided allylic alcohol 205 in 99% yield. Facile O-deallylation of bis(allyl) ether 216 can be attributed to the rapid formation of cationic tetrasubstituted complex 227. Coordination of the pyridine ring to the metal center, deactivates the triphosphene catalyst (222) towards isomerization enabling the competing $\mathrm{S}_{\mathrm{N}} 2^{\prime}$-type reaction. Nucleophilic of attack of chlorine, present in the reaction mixture results in the formation of allylic alcohol $\mathbf{2 2 9}$ and allyl chloride (230) (Scheme 29).

Table 5. Iridium catalyzed isomerization of bis(allyl) ethers 211-216

${ }^{\mathrm{a}}$ Isolated yields. $\mathrm{COE}=$ cyclooctene.

Scheme 29. Iridium-catalyzed deallylation

We next examined the conversion of allyl vinyl ethers 217-221 into the corresponding diamines, according to our previously determined protocol. Claisen rearrangement of 217-221 afforded γ, δ-unsaturated aldehydes 232-236 under thermal conditions. Reductive amination of the pending aldehydes followed by iodocyclization, and azide substitution ultimately afforded β azido pyrrolidines 238-241 (Table 6). ${ }^{46,55,57,59,60}$ We were unable to isolate β-azido pyrrolidine 237 following treatment with 2 equivalents of benzylamine $\left(\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. This may be explained by the reactive nature of the pyrrole ring, which underwent frequent decomposition. Reductive deprotection of β-azido pyrrolidines 239 and 240 utilizing Pearlman's catalyst provided 244 and 245 in 91% and 93% yield, respectively. However, global reductive deprotection of 4-hydroxybenzyl derivative $\mathbf{2 3 8}$ could not accurately be reproduced utilizing our standard reductive deprotection conditions $\left(10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}\right.$, 12.5 equivalents $\mathrm{NH}_{4} \mathrm{HCO}_{2}$, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}$). Pearlman's catalyst was additionally found to effect the dehalogenation of aryl halide 241 with concomitant reduction to afford diamine 196. In all cases, decreased catalyst loading produced similar results, with 100% conversion of 241 to model diamine 196. It was therefore concluded, that palladium hydroxide on carbon in the presence of ammonium formate effectively catalyzes dehalogenation of aryl bromides at an appreciable rate.

Table 6. Synthesis of C_{3} substituted diamines

[^0]
4.5 ASYMMETRIC SYNTHESIS OF β-IODO PYRROLIDINE SCAFFOLD

The enantio- and diastereoselective Ru (II)-catalyzed Claisen rearrangement of unactivated allyl vinyl ethers has recently been investigated in our laboratory (Figure 13). ${ }^{47}$ Having developed a racemic synthesis of diamines 196, $\mathbf{2 4 4}$, and 245 we sought to develop an asymmetric route to β iodo amine 253 and decipher the configuration at the newly formed stereocenter (Scheme 30).

Figure 13. Asymmetric Ru (II)-catalyzed [3,3]-sigmatropic rearrangement of general allyl vinyl ether (174)

The mechanism of the transformation of allyl vinyl ether $\mathbf{1 7 4}$ to anti-product 247 involves the formation of π-allyl intermediate (246), which undergoes enantioselective attack by a ruthenium-bound enolate (Figure 13). Oxidative addition into the C -O σ-bond of allyl vinyl ether $\mathbf{1 7 4}$ is facilitated by the presence of Lewis acids, through oxygen coordination. In agreement with previous reports, the ruthenium-catalyzed rearrangement of allylic vinyl ether 179, employing $5 \mathrm{~mol} \% \mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3} \mathrm{PF}_{6}$ and $5 \mathrm{~mol} \% \mathrm{~B}(\mathrm{OPh})_{3}$ as the Lewis acid provided anti-[3,3] product $\mathbf{2 5 0}$ and [1,3]-product $\mathbf{2 5 1}\left(\mathbf{2 5 0} \mathbf{2 5 1}=5: 1, \mathbf{2 5 0}_{\text {anti }} \mathbf{2 5 0}\right.$ syn $_{\text {sy }}=10: 1,92 \%$ ee $)$ in 91% yield (eq 7).

Reductive amination of ($2 R, 3 R$)-2-methyl-3-phenylpent-4-enal (250) with benzylamine in the presence of sodium triacetoxyborohydride, followed by iodocyclization with N -
iodosuccinimide provided ($2 S, 3 R, 4 R$)- β-iodo amine $\mathbf{2 5 3}$ (Scheme 30). NOESY analysis revealed no correlation between H_{2} and H_{3}, suggesting an arrangement which diminishes steric interactions between the iodo and phenyl substituents. The relative stereochemistry of C_{2} and C_{3} is also in agreement with previous X-ray data (Figure 12).

Scheme 30. Synthesis of β-iodo amine 253

a) benzylamine, $\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. b) NIS, THF. NIS $=$ N -iodosuccinimide.

4.6 CONCLUSIONS

We have presented a novel route to the synthesis of diverse pyrrolidine scaffolds for diversityoriented synthesis. This route involves the incorporation of a previously developed $\operatorname{Ir}(\mathrm{I})$-based catalyst systems for selective isomerization of bis(allyl) ether substrates, as well as, reductive amination, iodocyclization, azide formation, and reductive deprotection protocols developed herein. ${ }^{46}$ Additionally, an asymmetric approach to the synthesis of $(2 S, 3 R, 4 R)$ - β-iodo amine 253 has been presented using selective $\mathrm{Ru}(\mathrm{II})$-catalyzed Claisen rearrangement methodology. ${ }^{47}$ Pyrrolidine scaffolds present an avenue of interest, since to our knowledge no other diversityoriented syntheses have previously been developed. Furthermore, our scaffolds are capable of further diversification through the incorporation of various electrophilic reagents.

5.0 EXPERIMENTAL

General Information: All reactions were performed in dry glassware under an atmosphere of oxygen-free nitrogen using standard inert atmosphere techniques for the manipulation of both solvents and reagents. Anhydrous solvents were obtained by passage through successive alumina- and Q5-packed columns on a solvent purification system. Acetone was distilled from Drierite ${ }^{\circledR}$ and stored under nitrogen over $4 \AA$ MS. Sodium hydride (60% dispersion in mineral oil) and sodium triacetoxyborohydride were purchased from Sigma-Aldrich, and used directly. Palladium hydroxide (10% on carbon) and ammonium formate were purchased from Alfa-Aesar. Allyl bromide was purchased from Sigma-Aldrich and purified by distillation over CaH_{2}. Cinnamyl alcohol, $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}$, and PCy_{3} were purchased from Strem, and were stored and weighed out in a nitrogen-filled glove box. NMR spectra were recorded on a Bruker Avance$400(400 \mathrm{MHz})$ spectrometer with chemical shifts reported relative to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ and $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$ NMR spectra. Infrared spectra were recorded on a Nicolet Avatar 360 FT-IR spectrometer. High resolution mass spectra were obtained on a VG7070 or Fisons Autospec high-resolution magnetic sector mass spectrometer. Analytical thin layer chromatography (TLC) was performed on EM Reagent 0.25 mm silica gel $60-\mathrm{F}$ plates. Flash chromatography was performed over EM silica gel 60 (230-240 mesh). The anti Claisen adduct $\mathbf{2 5 0}$ utilized in the asymmetric synthesis was prepared according to literature procedure. ${ }^{47}$ The enantiomer ratio was determined by chiral stationary phase GLC (Varian Chirasil-Dex CB

WCOT Fused Silica CP 7502 Column, $25 \mathrm{~m} \times 0.25 \mathrm{~mm}$) and was assigned by comparison to previous reports. ${ }^{47}$

5.1 EFFORTS TOWARDS THE SYNTHESIS OF MARINEOSIN A

2-((1-Benzyl-1H-pyrrol-2-yl)methylene)propane-1,3-diyl diacetate (80):
Acetyl chloride (3.0 equiv, $0.3 \mathrm{~mL}, 4.14 \mathrm{mmol}$) was added over 15 minutes to a solution of pyridine (4.0 equiv, $0.45 \mathrm{~mL}, 5.52 \mathrm{mmol}$) and 2-((1-benzyl-1H-pyrrol-2-yl)methylene)propane-1,3-diol (79) (335 mg, 1.38 mmol$)$ in THF $(3.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was then warmed to ambient temperature and stirred for 12 h . The resulting solution was quenched with 10 mL of water and the aqueous and organic portions were separated. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$ and the combined organic layers were washed with aqueous CuSO_{4}, water, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (40% ethyl acetate in hexanes) to afford 361 mg of the title compound (80%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.32-7.27 (m, 3H), 7.01-6.99 (m, 2H), 6.77 (app s, 1H), 6.47 (app s, 1H), 6.31 (app s, 1H), 6.22 (app s, 1H), $5.10(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.9,170.7,137.7,128.8,127.6,126.4,123.8,122.9,111.9,108.8,66.8$, 61.52, 50.8, 20.9. ${ }^{2}$

2-((4R,5R)-1-Methyl-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)pyridine
(90): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71$ (ddd, $\left.J=1.0,2.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.10$ $(\mathrm{td}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{dt}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 11 \mathrm{H}), 4.99(\mathrm{~d}$, $J=10.5,1 \mathrm{H}), 4.36(\mathrm{~d}, J=10.5,1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H})$. This compound was prepared according to literature procedure and matches the characterization data provided in the following the publication: Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell, D. R., J. Chem. Soc. Perk. T 1 2001, (13), 1500-1503.

(Z)-2-((1-Benzyl-1H-pyrrol-2-yl)methylene)-4-methyl-5-oxo-5-(1H-
 $0.03 \mathrm{mmol})$ and ligand $90(5 \mathrm{~mol} \%, 9.6 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added to THF $(1.22 \mathrm{~mL})$ inside a nitrogen-filled glovebox, and the mixture was periodically agitated over 15 minutes. The resulting solution was then transferred to a mixture containing allylic diacetate 80 (200 mg, 0.61 mmol$)$, (Z)-1-(1-((trimethylsilyl)oxy)prop-1-en-1-yl)-1H-pyrrole (85) (1.05 equiv, $125 \mathrm{mg}, 0.64 \mathrm{mmol})$, and $\mathrm{B}\left(\mathrm{OPh} p \mathrm{NO}_{2}\right)_{3}(15 \mathrm{~mol} \%, 38.9 \mathrm{mg}, 0.09 \mathrm{mmol})$. The solution was removed from the glovebox and stirred at ambient temperature for 24 h . After 24 h the reaction mixture was concentrated under a stream of N_{2}, diluted with pentanes and filtered through a pad of Florisil ${ }^{\circledR}$. The product was purified by flash chromatography (30% ethyl acetate in hexanes) to afford 21 mg of the title compound (9\%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17(\mathrm{~d}, \mathrm{~J}=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{t}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29-6.27(\mathrm{~m}, 3 \mathrm{H}), 6.19-6.16(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3.0 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.8,171.1,137.8,131.3,128.8,128.0,127.5,126.4$, $126.2,123.0,122.3,119.0,115.6,113.3,110.9,108.3,63.1,50.7,39.9,37.1,20.9,17.5 .^{2}$

2-((1-(Triisopropylsilyl)-1H-pyrrol-2-yl)methylene)propane-1,3-diyl

diacetate (84): Acetyl chloride (3.0 equiv, $0.63 \mathrm{~mL}, 8.73 \mathrm{mmol}$) was added over 15 minutes to a solution of pyridine (4.0 equiv, $0.95 \mathrm{~mL}, 11.6 \mathrm{mmol}$) and 2-((1-(triisopropylsilyl)-1H-pyrrol-2-yl)methylene)propane-1,3-diol (83) (900 mg, 2.91 mmol) in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was then warmed to ambient temperature and stirred for 12 h . The resulting solution was quenched with 30 mL of water and the aqueous and organic portions were separated. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and the combined organic layers were washed with aqueous CuSO_{4}, water, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (30% ethyl acetate in hexanes) to afford 1.01 g of the title compound (88%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.89(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $18 \mathrm{H}) .{ }^{1}$

(S,E)-6-Methyl-8-((1-(triisopropylsilyl)-1H-pyrrol-2-yl)methylene)-

6,7,8,9-tetrahydro-5H-pyrrolo[1,2-a]azepin-5-one
(89):
$\left[\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}(5 \mathrm{~mol} \%, 6.40 \mathrm{mg}, 0.01 \mathrm{mmol})$ and ligand $90(5 \mathrm{~mol}$ $\%, 4.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ were added to THF $(0.5 \mathrm{~mL})$ inside a nitrogen-filled glovebox, and the mixture was periodically agitated over 15 minutes. The resulting solution was then transferred to a mixture containing allylic diacetate $84(100 \mathrm{mg}, 0.25 \mathrm{mmol})$, (Z)-1-(1-((trimethylsilyl)oxy)prop-1-en-1-yl)-1H-pyrrole (85) (1.05 equiv, $52 \mathrm{mg}, 0.27 \mathrm{mmol}$), and $\mathrm{B}\left(\mathrm{OPh} p \mathrm{NO}_{2}\right)_{3}(15 \mathrm{~mol} \%, 16.2 \mathrm{mg}, 0.04 \mathrm{mmol})$. The solution was removed from the glovebox and stirred at ambient temperature for 24 h . After 24 h the reaction mixture was concentrated under a stream of N_{2}, diluted with pentanes and filtered through a pad of Florisil ${ }^{\circledR}$. The resulting product was
purified by flash chromatography (15% ethyl acetate in hexanes) to afford the title compound as a white solid. Recrystallization of $\mathbf{8 9}$ from $\mathrm{Et}_{2} \mathrm{O} /$ Hexanes yielded crystals suitable for X-ray diffraction analysis (Appendix A) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (app s, 1H), 6.79 (app s, $1 \mathrm{H}), 6.32-6.03(\mathrm{~m}, 5 \mathrm{H}), 3.78(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{~m}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 173.2,133.7,132.2,131.8,125.8,119.9,119.3,113.1,111.2,110.7,109.9,37.8,36.8$, $36.2,18.1,17.9,12.9 .^{2}$

2-Benzylidenepropane-1,3-diyl diacetate (76): Acetyl chloride (3.0 equiv, $0.21 \mathrm{~mL}, 2.91 \mathrm{mmol}$) was added over 15 minutes to a solution of pyridine (4.0 equiv, $0.32 \mathrm{~mL}, 3.88 \mathrm{mmol}$) and 2-benzylidenepropane-1,3-diol (75) ($159 \mathrm{mg}, 0.97 \mathrm{mmol}$) in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was then warmed to ambient temperature and stirred for 12 h. The resulting solution was quenched with 10 mL of water and the aqueous and organic portions were separated. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and the combined organic layers were washed with aqueous CuSO_{4}, water, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (20% ethyl acetate in hexanes) to afford 216 mg of the title compound $(90 \%$) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}){ }^{1}$

$N 5, N 5, N 10, N 10-T e t r a m e t h y l-5 H, 10 H-d i p y r r o l o[1,2-a: 1 ', 2 '-d] p y r a z i n e-$ 5,10-diamine (103): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.96(\mathrm{dd}, J=2.5,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.26(\mathrm{dd}, J=4.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{~m}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H}), 2.22(\mathrm{~s}$, 12H). This compound was prepared according to literature procedure and matches the characterization data provided in the following the publication: Muchowski, J. M.; Hess, P. Tetrahedron Lett. 1988, 29 (7), 777-780.

(9-Iodonon-1-yn-1-yl)trimethylsilane (108): n-Butyllithium (2.0 equiv, $56 \mathrm{~mL}, 78.5 \mathrm{mmol}$) was added drop wise to a solution of non-8-yn-1-ol (106) $(5.5 \mathrm{~g}, 39.2 \mathrm{mmol})$ in THF $(131 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h . After this time, chlorotrimethylsilane (2.5 equiv, $12.5 \mathrm{~mL}, 98 \mathrm{mmol}$) was added and the reaction was stirred an additional 30 min at $-78^{\circ} \mathrm{C}$. The resulting solution was then warmed to $0{ }^{\circ} \mathrm{C}$ and slowly quenched with 45 ml of water. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were washed with water, 2 M HCl , saturated aqueous NaHCO_{3}, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (197 mL), and triphenylphosphine (1.2 equiv, $12.4 \mathrm{~g}, 47.1 \mathrm{mmol}$) and imidazole (2.0 equiv, $5.33 \mathrm{~g}, 78.4 \mathrm{mmol}$) were added at ambient temperature. Then mixture was then cooled to $0^{\circ} \mathrm{C}$ prior to the addition of I_{2} (1.2 equiv, $11.95 \mathrm{~g}, 47.1 \mathrm{mmol}$) and stirred for 1 h . After 1 h , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ until the solution changed from red to clear. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, concentrated, diluted with hexanes and filtered through a pad of Celite ${ }^{\circledR} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.19(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=9.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.1(\mathrm{~s}, 9 \mathrm{H}) .^{1}$

5-(9-(Trimethylsilyl)non-8-yn-1-yl)-1H-pyrrole-2-carbaldehyde (109): n Butyllithium (3.0 equiv, $18.1 \mathrm{~mL}, 21.7 \mathrm{mmol}$) was added to a solution of azafulvene dimer $103(1.77 \mathrm{~g}, 7.23 \mathrm{mmol})$ in THF (145 mL) at $-15^{\circ} \mathrm{C}$, and stirred for 1.5 h . The resulting deep purple solution was cooled to $-60{ }^{\circ} \mathrm{C}$ and a solution of iodoalkyne $\mathbf{1 0 8}$ (2.2 equiv, $5.13 \mathrm{~g}, 15.9 \mathrm{mmol}$) in THF (5 mL) was added. The pale yellow solution was warmed to ambient temperature and stirred 12 h , during which the solution became orange in color. After this time, 75 mL of saturated aqueous NaHCO_{3} was added and the reaction solution was further diluted with THF $(50 \mathrm{~mL})$ and heated to $80^{\circ} \mathrm{C}$. The reaction was refluxed for 3 h at $80^{\circ} \mathrm{C}$, cooled to ambient temperature and poured into a solution of aqueous NaHCO_{3} $(50 \mathrm{~mL})$. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the combined organic layers were washed with water and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (30% ethyl acetate in hexanes) to afford 1.32 g of the title compound (32%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 9.31$ (broad s, 1H), $6.89(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 8 \mathrm{H}), 0.1(\mathrm{~s}, 9 \mathrm{H}) .{ }^{1}$

1-Benzyl-2-(non-8-yn-1-yl)-5-vinyl-1H-pyrrole (114): Potassium carbonate (2.0 equiv, $554 \mathrm{mg}, 4.0 \mathrm{mmol}$) was added to a solution of 1-benzyl-2-(9-(trimethylsilyl)non-8-yn-1-yl)-5-vinyl-1H-pyrrole (113) (757 mg, 2.0 mmol) in $\mathrm{MeOH} / \mathrm{THF}(10 \mathrm{~mL} / 4 \mathrm{~mL})$ at ambient temperature and stirred 2 h . The resulting solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$, filtered through a pad of Celite ${ }^{\circledR}$ then purified by flash chromatography (10% ethyl acetate in hexanes) to afford 480 mg the title compound (78%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 6.42(\mathrm{~m}, 2$
H), $5.96(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.88(\mathrm{~d}, J=11 \mathrm{~Hz}), 2.45(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}$, $8 \mathrm{H}) .{ }^{1}$

(E)-2-(3-(Allyloxy)prop-1-en-1-yl)-1-benzyl-5-(non-8-yn-1-yl)-1H-

 pyrrole (122): (E)-3-(1-Benzyl-5-(non-8-yn-1-yl)-1H-pyrrol-2-yl)prop-2-en-1-ol (121) ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$) was slowly added to a suspension of $\mathrm{NaH}(1.3$ equiv, $16.0 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was warmed to ambient temperature and stirred for 1.5 h . After this time, allyl bromide (1.2 equiv, $30.0 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) was added and the reaction was stirred 3 h before being quenched with 25 mL of water. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with water, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (20% ethyl acetate in hexanes) to afford 50 mg of the title compound (44%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.31-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-$ $5.81(\mathrm{~m}, 3 \mathrm{H}), 5.14-5.10(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{dt}, J=2.5,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.36-$ $1.26(\mathrm{~m}, 8 \mathrm{H}) .{ }^{1}$

5-(Non-8-en-1-yl)-1H-pyrrole-2-carbaldehyde (127): ${ }^{1} \mathrm{H}$ NMR (400 MHz,
$\left.\mathrm{CDCl}_{3}\right): \delta 9.58,($ broad s, 1H) $9.53(\mathrm{~s}, 1 \mathrm{H}), 6.89($ appt s, 1 H$), 6.08$ (appt s, 1H), 5.84-5.75 (m, 1H), 5.01-4.92 (m, 2H), 2. $66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H})$,
1.67-1.63 (m, 3H), 1.39-1.26 (m, 10H). This compound was prepared according to the following the publication: Muchowski, J. M.; Hess, P. Tetrahedron Lett. 1988, 29 (7), 777-780.

1-Benzyl-2-(non-8-en-1-yl)-5-vinyl-1H-pyrrole
 (128):
 Potassium

 hexamethyldisilazide (1.3 equiv, $6.14 \mathrm{~mL}, 3.07 \mathrm{mmol}$) was added to a solution of methyltriphenylphosphonium bromide (1.5 equiv, $1.26 \mathrm{~g}, 3.54 \mathrm{mmol}$) in THF (35 mL) at ambient temperature, and was stirred vigorously for 30 min . After 30 min , a solution of aldehyde $\mathbf{1 2 7}(730 \mathrm{mg}, 2.36 \mathrm{mmol})$ in THF (24 mL) was added and the reaction was stirred an additional 1 h . The resulting solution was poured into 130 mL of $\mathrm{Et}_{2} \mathrm{O}$: water (1:1) and the aqueous and organic layers were separated. The aqueous portion was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ mL) and the combined organic layers were washed with water, and brine. The organic portion was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (20% ethyl acetate in hexanes) to afford 551 mg of the title compound (76%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.32-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.44-6.39(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{~d}, J$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=1.5,150.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.00-4.89(\mathrm{~m}, 3 \mathrm{H})$, $2.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 8 \mathrm{H}) .{ }^{1}$
5.2 DEVELOPMENT OF PYRROLIDINE SCAFFOLDS FOR DIVERSITYORIENTED SYNTHESIS

General Procedure for the Formation of Di(Allyl) Ethers (General Procedure A): Sodium Hydride (1.3 equiv, 60% suspension in mineral oil) was added to a solution of alcohol \mathbf{A} (1.0 equiv) in THF (0.8 M) at $0^{\circ} \mathrm{C}$, and the solution stirred 30 minutes. Allyl bromide \mathbf{B} (1.2 equiv) was added and the resulting suspension was warmed to ambient temperature and stirred an additional 3 hrs. The reaction mixture was slowly quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was further purified by flash chromatography.

General Procedure for the Formation Allyl Vinyl Ethers (General Procedure B):

 $\left[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}_{2}(0.5 \mathrm{~mol} \%), \mathrm{PCy}_{3}(3 \mathrm{~mol} \%)\right.$ and $\mathrm{NaBPh}_{4}(2 \mathrm{~mol} \%)$ were combined in a nitrogenfilled glovebox. Immediately after removal from the glovebox, a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /acetone $(0.6$ $\mathrm{M}, 30: 1$) was added and the resulting red-orange solution was stirred 5 min at ambient temperature. Di(Allyl) ether A (1 equiv) was added to the catalyst solution in a minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the reaction was monitored by TLC ($1-30 \mathrm{~min}$.). The reaction mixture wasconcentrated under a steam of N_{2}, diluted with pentanes and the resulting heterogeneous mixture was filtered through a pad of Florisil ${ }^{\circledR}$. The resulting solution was then concentrated and purified by flash chromatography.

General Procedure for the Formation of $\boldsymbol{\gamma}$, $\boldsymbol{\delta}$-Unsaturated Aldehydes (General Procedure C): Allyl vinyl ether \mathbf{A} (1.0 equiv) was added to toluene $(0.5 \mathrm{M})$ and the reaction was heated to $80^{\circ} \mathrm{C}$ and stirred for 12 hrs . The resulting solution was then concentrated and purified by flash chromatography.

General Procedure for the Formation of $\boldsymbol{\gamma}, \boldsymbol{\delta}$-Unsaturated Amines (General Procedure D): Aldehyde \mathbf{A} (1.0 equiv), $\mathrm{NaHB}(\mathrm{OAc})_{3}$ (2.0 equiv), benzylamine (2.0 equiv), and acetic acid (1.0 equiv) were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. After 15 minutes the reaction was warmed to rt and stirred an additional 12 hrs . The resulting solution was quenched with sodium carbonate (0.1 M) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was further purified by flash chromatography.

A

General Procedure for the Formation of $\boldsymbol{\beta}$-Iodo Pyrrolidines (General Procedure E): Pentenamine A (1.0 equiv) and NIS (1.1 equiv) were added to THF (0.3 M) at ambient temperature and the reaction was stirred for 1 hr . The resulting mixture was then concentrated and immediately purified by flash chromatography.

General Procedure for the Formation of $\boldsymbol{\beta}$-Azido Pyrrolidines and 3-AzidoPiperdines

(General Procedure F): Pyrrolidine \mathbf{A} (1.0 equiv) and NaN_{3} (1.5 equiv) were added to DMF $(0.12 \mathrm{M})$ and the reaction was heated to $50^{\circ} \mathrm{C}$ and stirred for 1 h . The resulting solution was diluted with water $(0.1 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was then purified by flash chromatography.

General Procedure for the Formation of $\boldsymbol{\beta}$-Amino Pyrrolidines (General Procedure G): Pyrrolidine A (1 equiv) was added drop wise to a slurry of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(10 \mathrm{~mol} \%)$ and $\mathrm{NH}_{4} \mathrm{HCO}_{2}$ (12.5 equiv) in $\mathrm{EtOH}(0.5 \mathrm{M})$ at rt. After 30 minutes, the reaction was warmed to 80 ${ }^{\circ} \mathrm{C}$ and refluxed for an additional 4 hrs . The mixture was then cooled and filtered through a pad of Celite ${ }^{\circledR}$ eluting with MeOH. The resulting viscous oil was purified by reverse phase MPLC.

(\boldsymbol{E})-(3-(Allyloxy)prop-1-en-1-yl)benzene (179): General procedure A was followed employing 2.87 mL of cinnamyl alcohol (22.3 mmol), 1.16 g of NaH (29 mmol), and 2.33 mL of allyl bromide (26.7 mmol) in 30 mL of THF. The resulting product was purified by flash chromatography (10% diethyl ether in hexanes) to afford 3.90 g of the title compound (93\%) as a colorless oil. This compound matches the characterization data provided in the following the publication: Kerrigan, N. J.; Bungard, C. J.; Nelson, S. G. Tetrahedron 2008 (64) 6863-6869.

(\boldsymbol{E})-2-(3-(Allyloxy)prop-1-en-1-yl)furan (213): General procedure A was followed employing 1.2 g of (E)-3-(furan-2-yl)prop-2-en-1-ol (10 mmol), 521 mg of $\mathrm{NaH}(13 \mathrm{mmol})$, and 1.0 mL of allyl bromide (12 mmol) in 12.5 mL of THF. The resulting product was purified by flash chromatography (10% diethyl ether in hexanes) to afford 1.6 g of the title compound (99%) as a colorless oil. This compound matches the characterization data
provided in the following the publication: Geherty, M. Catalytic Asymmetric Claisen Rearrangements. The Development of $\mathrm{Ru}(\mathrm{II})$-Catalyzed Formal [3,3] Sigmatropic Rearrangements and Related Enolate Allylation Reactions. Ph.D. Thesis, University of Pittsburgh, December 2012.

(E)-1-(3-(Allyloxy)prop-1-en-1-yl)-3-methoxybenzene

(214): General procedure A was followed employing 1.73 g of (E)-3-(3-methoxyphenyl)prop-2-en-1-ol (11 mmol), 557 mg of $\mathrm{NaH}(14.3 \mathrm{mmol})$, and 1.14 mL of allyl bromide (13.2 mmol) in 13 mLof THF. The resulting product was purified by flash chromatography (10% diethyl ether in hexanes) to afford 2.2 g of the title compound (99\%) as a colorless oil. This compound matches the characterization data provided in the following the publication: Geherty, M. Catalytic Asymmetric Claisen Rearrangements. The Development of $\mathrm{Ru}(\mathrm{II})$-Catalyzed Formal [3,3] Sigmatropic Rearrangements and Related Enolate Allylation Reactions. Ph.D. Thesis, University of Pittsburgh, December 2012.

(E)-1-(3-(Allyloxy)prop-1-en-1-yl)-4-bromobenzene (215): General procedure A was followed employing 2.10 g of (E)-3-(4-bromophenyl)prop-2-en-1-ol (10 mmol), 521 mg of $\mathrm{NaH}(13.1 \mathrm{mmol})$, and 1.0 mL of allyl bromide (12 mmol) in 12 mL of THF. The resulting product was purified by flash chromatography (50% diethyl ether in hexanes) to afford 2.33 g of the title compound (92\%) as a colorless oil. This compound matches the characterization data provided in the following the publication: Geherty, M. Catalytic Asymmetric Claisen Rearrangements. The Development of Ru(II)-Catalyzed Formal [3,3] Sigmatropic Rearrangements and Related Enolate Allylation

Reactions. Ph.D. Thesis, University of Pittsburgh, December 2012.

(E)-3-(3-(Allyloxy)prop-1-en-1-yl)-1-benzyl-1H-pyrrole (211): General procedure A was followed employing 165 mg of (E)-3-(1-benzyl-1H-pyrrol-3-yl)prop-2-en-1-ol (0.77 mmol), 40.1 mg of $\mathrm{NaH}(1.0 \mathrm{mmol})$, and $80 \mu \mathrm{~L}$ of allyl bromide (0.92 mmol) in 4 mL of THF . The resulting product was purified by flash chromatography (50% diethyl ether in hexanes) to afford 180 mg of the title compound (92%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~m}, 1 \mathrm{H}), 6.01-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H})$.

(E)-1-(3-(Allyloxy)prop-1-en-1-yl)-4-(benzyloxy)benzene (212): General procedure A was followed employing 1.0 g of (E)-3-(4-bromophenyl)prop-2-en-1-ol (4.16 mmol), 217 mg of $\mathrm{NaH}(5.40 \mathrm{mmol})$, and 0.432 mL of allyl bromide (5 mmol) in 13 mL of THF. The resulting product was purified by flash chromatography (8 \% ethyl acetate in hexanes) to afford 1.6 g of the title compound (100%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.54(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=6.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=1.0,16$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H})$.

(E)-2-(3-(Allyloxy)prop-1-en-1-yl)pyridine (216): General procedure A was followed employing 540 mg of (E)-3-(pyridin-2-yl) prop-2-en-1-ol (4 mmol), 208 mg of $\mathrm{NaH}(5.2 \mathrm{mmol})$, and 0.415 mL of allyl bromide (4.8 mmol) in 5 ml of THF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 624 mg of the title compound (89%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.55(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{dt}, J=1.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dt}, J=1.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ $(\mathrm{m}, 2 \mathrm{H}), 5.97(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=1.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{dd}, J=1.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J$ $=4.5,2 \mathrm{H}), 4.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$.

((E)-3-(((E)-Prop-1-en-1-yl)oxy)prop-1-en-1-yl)benzene
(180): General procedure B was followed employing 2.0 g of di(allyl) ether $179(11.5 \mathrm{mmol})$, 52 mg of $[\mathrm{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(0.057 \mathrm{mmol}), 96 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.345 \mathrm{mmol})$, and 79 mg of NaBPh_{4} (0.23 mmol) in 18.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6 \mathrm{~mL}$ Acetone. The resulting product was purified by flash chromatography (gradient elution 5% diethyl ether in hexanes) to afford 1.5 g of the title compound (75%) as a colorless oil. This compounds characterization materials match the data provided in the following publication: Kerrigan, N. J.; Bungard, C. J.; Nelson, S. G. Tetrahedron 2008 (64) 6863-6869.

2-((E)-3-(((E)-Prop-1-en-1-yl)oxy)prop-1-en-1-yl)furan
(219): General procedure B was followed employing 1.6 g of di(allyl) ether 213 (10 mmol), 44.8 mg of $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(0.05 \mathrm{mmol}), 84 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.3 \mathrm{mmol})$, and 68.4 mg of NaBPh_{4} (0.2 mmol) in 16.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6 \mathrm{~mL}$ Acetone. The resulting product was purified by flash chromatography (5\% diethyl ether in hexanes) to afford 1.1 g of the title compound (75\%)
as a colorless oil. This compounds characterization materials match the data provided in the following publication: Geherty, M. E.; Dura, R. D.; Nelson, S. G. J. Am. Chem. Soc. 2010, 132, 11875-11877.

1-Methoxy-3-((E)-3-(((E)-prop-1-en-1-yl)oxy)prop-1-en-1-yl)benzene (220):

General procedure B was followed employing 2.32 g of di(allyl) ether 214 (11 $\mathrm{mmol}), 49.28 \mathrm{mg}$ of $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(0.055 \mathrm{mmol}), 92.4 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.33$ $\mathrm{mmol})$, and 75.24 mg of $\mathrm{NaBPh}_{4}(0.22 \mathrm{mmol})$ in 17.4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.6 \mathrm{~mL}$ Acetone. The resulting product was purified by flash chromatography (10% diethyl ether in hexanes) to afford 1.95 g of the title compound (84%) as a colorless oil. This compounds characterization materials match the data provided in the following publication: Geherty, M. E.; Dura, R. D.; Nelson, S. G. J. Am. Chem. Soc. 2010, 132, 11875-11877.

1-Bromo-4-((E)-3-(((E)-prop-1-en-1-yl)oxy)prop-1-en-1-yl)benzene (221):
General procedure B was followed employing 2.51 g of di(allyl) ether 215 $(10 \mathrm{mmol}), 44 \mathrm{mg}$ of $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(0.05 \mathrm{mmol}), 84 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.3$ $\mathrm{mmol})$, and 68.1 mg of $\mathrm{NaBPh}_{4}(0.2 \mathrm{mmol})$ in 16.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.5 \mathrm{~mL}$ Acetone. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 1.80 g of the title compound (72\%) as a colorless oil. This compounds characterization materials match the data provided in the following publication: Geherty, M. Catalytic Asymmetric Claisen Rearrangements. The Development of $\mathrm{Ru}(\mathrm{II})$-Catalyzed Formal [3,3] Sigmatropic Rearrangements and Related Enolate Allylation Reactions. Ph.D. Thesis, University of Pittsburgh, December 2012.

1-Benzyl-3-((E)-3-(((E)-prop-1-en-1-yl)oxy)prop-1-en-1-yl)-1H-pyrrole
(217): General procedure B was followed employing 180 mg of di(allyl) Bn ether $211(0.71 \mathrm{mmol}), 3.18 \mathrm{mg}$ of $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(3.5 \mathrm{mmol}), 96 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.21 \mathrm{mmol})$, and 79 mg of $\mathrm{NaBPh}_{4}(0.014 \mathrm{mmol})$ in 1.1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.2 \mathrm{~mL}$ Acetone. The resulting product was utilized directly without purification to afford 121 g of the title compound (67%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=1.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dt}, J=6.5,15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.00(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=1,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H})$.
 1-(Benzyloxy)-4-((E)-3-(((E)-prop-1-en-1-yl)oxy)prop-1-en-1-yl)benzene (218): General procedure B was followed employing 1.0 g of di(allyl) ether 212 (3.56 mmol), 16 mg of $[\operatorname{Ir}(\mathrm{COE}) \mathrm{Cl}]_{2}(0.017 \mathrm{mmol}), 30 \mathrm{mg}$ of $\mathrm{PCy}_{3}(0.11 \mathrm{mmol})$, and 24.5 mg of $\mathrm{NaBPh}_{4}(0.071 \mathrm{mmol})$ in 5.8 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / 0.2 \mathrm{~mL}$ Acetone. The resulting product was utilized directly without further purification to afford 0.85 g of the title compound (85%) as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.38-7.31(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=6.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}$, $2 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H})$.

rac-(2R,3S)-2-Methyl-3-phenylpent-4-enal (181): General procedure C was followed employing 2.8 g of allyl vinyl ether $\mathbf{1 8 0}(16 \mathrm{mmol})$ in 32 mL of toluene. The resulting product was utilized directly without further purification to afford 2.8 g of the title compound (99%). This compounds characterization materials match the data
provided in the following publication: Kerrigan, N. J.; Bungard, C. J.; Nelson, S. G. Tetrahedron 2008, 64 (29), 6863-6869.

rac-(2R,3S)-3-(Furan-2-yl)-2-methylpent-4-enal (234): General procedure C was followed employing 519 mg of allyl vinyl ether 219 (3.16 mmol) in 7 mL of toluene. The resulting product was utilized directly without further purification to afford 490 mg of the title compound (94\%). This compounds characterization materials match the data provided in the following publication: Geherty, M. E.; Dura, R. D.; Nelson, S. G. J. Am. Chem. Soc. 2010, 132, 11875-11877.
 rac-(2R,3S)-3-(3-Methoxyphenyl)-2-methylpent-4-enal (235): General procedure C was followed employing 1.95 g of allyl vinyl ether $\mathbf{2 2 0}(10 \mathrm{mmol})$ in 20 mL of toluene. The resulting product was utilized directly without further purification to afford 1.89 g of the title compound (97%). This compounds characterization materials match the data provided in the following publication: Geherty, M. E.; Dura, R. D.; Nelson, S. G. J. Am. Chem. Soc. 2010, 132, 11875-11877.
 rac-(2R,3S)-3-(4-Bromophenyl)-2-methylpent-4-enal (236): General procedure C was followed employing 1.26 g of allyl vinyl ether $221(5 \mathrm{mmol})$ in 10 mL of toluene. The resulting product was utilized directly without further purification to afford 1.16 g of the title compound (92%). This compounds characterization materials match the data provided in the following publication: Geherty, M. E.; Dura, R. D.; Nelson, S. G. J. Am. Chem. Soc. 2010, 132, 11875-11877.

rac-(2R,3S)-3-(1-Benzyl-1H-pyrrol-3-yl)-2-methylpent-4-enal (232): General procedure C was followed employing 40 mg of allyl vinyl ether 217 (0.15 mmol) Bn in 5 mL of toluene. The resulting product was utilized directly without further purification to afford 35 mg of the title compound $(87 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.71$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}$, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt}, J=2.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

rac-(2R,3S)-3-(4-(Benzyloxy)phenyl)-2-methylpent-4-enal (233): General procedure C was followed employing 633 g of allyl vinyl ether 218 (2.25 mmol) in 5 mL of toluene. The resulting product was utilized directly without further purification to afford 517 mg of the title compound (82%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.70(\mathrm{~d}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-6.95(\mathrm{~m}, 9 \mathrm{H}), 6.02(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H})$, $3.51(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dt}, J=3.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

rac-(2R,3S)-N-Benzyl-2-methyl-3-phenylpent-4-en-1-amine (185): General procedure D was followed employing 100 mg 181 (0.57 mmol), 242 mg of $\mathrm{NaHB}(\mathrm{OAc})_{3}(1.15 \mathrm{mmol}), 0.125 \mathrm{~mL}$ of benzylamine (1.15 mmol), and $33 \mu \mathrm{~L}$ of acetic acid (0.57 mmol) in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (50% diethyl ether in hexanes) to afford 99 mg of the title compound (65%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.33-7.15(\mathrm{~m}, 10 \mathrm{H}), 6.06(\mathrm{~m}, 1 \mathrm{H})$, $5.01(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.3$,
$141.0,128.4,128.1,127.5,126.3,115.0,54.9,54.2,53.6,37.9,16.4$; IR (thin film): 3061, 3026, 2961, 2875, 2816,1492, 1452, 1117, 1072, 1028, 994, 913, $736 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}:$266.1909; found 266.1906.

rac-(2R,3S)-N-Benzyl-3-(furan-2-yl)-2-methylpent-4-en-1-amine
(234b):
General procedure D was followed employing 490 mg of $\mathbf{2 3 4}(2.98 \mathrm{mmol}), 1.26$ mg of $\mathrm{NaHB}(\mathrm{OAc})_{3}(5.96 \mathrm{mmol}), 0.652 \mathrm{~mL}$ of benzylamine (5.96 mmol), and 0.172 mL of acetic acid (2.98 mmol) in 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (60% diethyl ether in hexanes) to afford 600 mg of the title compound (79%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.19(\mathrm{~m}, 6 \mathrm{H}), 6.21(\mathrm{t}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.04-5.00(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.40(\mathrm{t}, J=7.5 \mathrm{~Hz}), 2.58(\mathrm{dd}, J=5.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=$ 6.5 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 155.9,140.8,137.4,128.1,127.8,126.6,116.0$, 109.8, 105.7, 53.9, 52.9, 47.1, 37.02, 15.7; IR (thin film): 3063, 3030, 2973, 1640, 1557, 1500, 1454, 1402, 1279, 1148, 1010, 922, $734 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$: 256.1701; found 256.1711.

rac-(2R,3S)-N-Benzyl-3-(3-methoxyphenyl)-2-methylpent-4-en-1-amine
(235b): General procedure D was followed employing 2.10 g of 235 (10 $\mathrm{mmol}), 4.2 \mathrm{~g}$ of $\mathrm{NaHB}(\mathrm{OAc})_{3}(20 \mathrm{mmol}), 2.25 \mathrm{~mL}$ of benzylamine $(20 \mathrm{mmol})$, and 0.590 mL of acetic acid $(10 \mathrm{mmol})$ in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (60% diethyl ether in hexanes) to afford 2.01 g of the title compound (65\%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-$
$7.20(\mathrm{~m}, 7 \mathrm{H}), 6.74(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 5 \mathrm{H}), 3.10(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.77(\mathrm{dd}, J=4.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 159.6,145.1,140.9,129.3,128.3,128.0,126.8,120.4,115.0$, 114.0, 111.1, 55.0,54.2, 53.6, 37.8, 16.4; IR (thin film): 3062, 3026, 2999, 2957, 2904, 2832, 1600, 1584, 1489, 1453, 1316, 1262, 1161, 1117, 1047, 994, 913, 780, $735 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$: 295.1936; found 295.1918.

rac-(2R,3S)-N-Benzyl-3-(4-bromophenyl)-2-methylpent-4-en-1-amine
(236b): General procedure D was followed employing 1.0 g of 236 (3.95 $\mathrm{mmol}), 1.67 \mathrm{~g}$ of $\mathrm{NaHB}(\mathrm{OAc})_{3}(8.0 \mathrm{mmol}), 0.870 \mathrm{~mL}$ of benzylamine $(8.0$ $\mathrm{mmol})$, and 0.225 mL of acetic acid (4.0 mmol) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (60% ethyl acetate in hexanes) to afford 842 mg of the title compound (62\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.34-6.95(\mathrm{~m}, 9 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=4.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 142.3,140.4,131.4,129.9,128.3,128.2,127.9,119.8$, $115.5,54.2,53.9,53.4,37.8,16.2$; IR (thin film): 3063, 3026, 2961, 2874, 2816, 1637, 1487, 1453, 1402, 1117, 1073, 1028, 1010, 915, 819, 736, $698 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NBr}(\mathrm{M}+\mathrm{H})^{+}$: 344.1014; found 344.1021.

rac-(2R,3S)-N-Benzyl-3-(4-(benzyloxy)phenyl)-2-methylpent-4-en-1-
amine (233b): General procedure D was followed employing 517 mg of $\mathbf{2 3 3}$ $(1.84 \mathrm{mmol}), 778 \mathrm{~g}$ of $\mathrm{NaHB}(\mathrm{OAc})_{3}(3.68 \mathrm{mmol}), 0.403 \mathrm{~mL}$ of benzylamine (3.68 mmol), and 0.105 mL of acetic acid (1.84 mmol) in 19 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (60% diethyl ether in hexanes) to afford 496 mg of the title compound (72\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.45-6.91(\mathrm{~m}, 14 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

rac-(3S,4R)-1-Benzyl-2-(iodomethyl)-4-methyl-3-phenylpyrrolidine (189): General procedure E was followed employing 2.0 g of pentamine 185 (7.53 mmol), and 1.86 g of NIS (8.28 mmol) in 25 mL of THF. The resulting mixture was concentrated and immediately purified by flash chromatography (10% diethyl ether in hexanes) to afford 2.21 g of the title compound (75\%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.27-7.05(\mathrm{~m}, 10 \mathrm{H}), 4.29(\mathrm{dt}, 4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=5 \mathrm{~Hz}$, 2H), 3.43 (dd, $J=3.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=1.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.31$ $(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.55(\mathrm{~d}, 6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 143.4,137.6,128.9,128.3,127.2,126.9,64.6,62.0,60.9,60.5,38.8$, $35.9,18.1$; IR (thin film): $3521,2930,2862,1669,1501,1439,1388,1256,1094,1064 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NI}(\mathrm{M}+\mathrm{H})^{+}: 392.0875$; found 392.0877.

rac-(3R,4R)-1-Benzyl-3-(furan-2-yl)-2-(iodomethyl)-4-methylpyrrolidine (234c): General procedure E was followed employing 600 mg of pentamine 234b (2.45 mmol), and 579 mg of NIS (2.58 mmol) in 7.5 mL of THF. The resulting mixture was concentrated and immediately purified by flash chromatography (10% diethyl ether in hexanes) to afford 521 mg of the title compound (58\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.18(\mathrm{~m}, 6 \mathrm{H}), 6.25(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dt}, J=4.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ddd}, J=2.0,2.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=2.0,2.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{q}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.81$ $(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 155.7,141.1$, 137.7, 128.9, 128.3, 127.2, 109.9, 107.1, 64.2, 61.8, 60.6, 54.0, 37.2, 32.2, 18.0; IR (thin film): $3027,2954,2926,2872,2801,2758,1495,1454,1126,1009,732 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOI}(\mathrm{M}+\mathrm{H})^{+}: 382.0668$; found 382.0704.

rac-(3S, 4R) - 1 - Benzyl - 2 - (iodomethyl) - 3-(3 - methoxyphenyl) -
4-methylpyrrolidine (235c): General procedure E was followed employing 500 mg of pentamine 235b (1.69 mmol), and 417 mg of NIS $(1.86 \mathrm{mmol})$ in 5.6 mL of THF. The resulting mixture was concentrated and immediately purified by flash chromatography (10% diethyl ether in hexanes) to afford 361 mg of the title compound (50%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.25-7.14$ $(\mathrm{m}, 6 \mathrm{H}), 6.73-6.62(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{dt}, J=4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~d}, J=13 \mathrm{~Hz}$, $2 \mathrm{H}), 3.44(\mathrm{ddd}, J=2.0,2.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{ddd}, J=2.0,2.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=11$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.56(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 159.8,159.6,145.1,137.7,129.1,128.4,127.3,112.0$,
$64.7,62.0,61.0,60.6,55.2,38.8,35.8,18.2$; IR (thin film): 3027, 2952, 2831, 2801, 2759, $1601,1585,1491,1454,1435,1365,1317,1264,1155,1046,909,876,779,734 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOI}(\mathrm{M}+\mathrm{H})^{+}$: 422.0981; found 422.0952.

rac - (3S, 4R) -1-Benzyl-3-(4-bromophenyl)-2-(iodomethyl) -4methylpyrrolidine (236c): General procedure E was followed employing 700 mg of pentamine $\mathbf{2 3 6} \mathbf{b}$ (2 mmol), and 505 mg of NIS (2.2 mmol) in 7 mL of THF. The resulting mixture was concentrated and immediately purified by flash chromatography (10% diethyl ether in hexanes) to afford 517 mg of the title compound (55%) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-6.95(\mathrm{~m}, 6 \mathrm{H}), 4.21(\mathrm{dt}, J=4.0$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.5(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{ddd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\operatorname{appt~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H})$, $0.52(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 142.4,137.6,131.4,128.9,128.3$, $127.2,120.6,64.4 .61 .8,60.8,60.0,38.7,35.2,17.9$; \mathbb{R} (thin film): 3026, 2953, 2802, 1491, 1454, 1407, 1365, 1339, 1264, 1126, 1100, 1069, 1028, 1010, 877.6, 815, 738, $700 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NBrI}(\mathrm{M}+\mathrm{H})^{+}: 471.0059$; found 471.0052.
 rac-(3S,4R)-1-Benzyl-3-(4-(benzyloxy)phenyl)-2-(iodomethyl)-4methylpyrrolidine (233c): General procedure E was followed employing 496 mg of pentamine 233b (1.33 mmol), and 329 mg of NIS (1.46 mmol) in 4.5 mL of THF. The resulting mixture was concentrated and immediately purified by flash chromatography (10% diethyl ether in hexanes) to afford 325 mg of the title compound (48%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $87.48-6.97(\mathrm{~m}, 14 \mathrm{H}), 5.15$
(s, 2H), $4.39(\mathrm{dt} . J=4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H})$, $3.04(\operatorname{app~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.05(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

rac-(3S, $\quad 4 R$)-2-(Azidomethyl)-1-benzyl-4-methyl-3-phenylpyrrolidine (192): General procedure F was followed employing 360 mg of pyrrolidine $189(0.920 \mathrm{mmol})$, and 90 mg of $\mathrm{NaN}_{3}(1.38 \mathrm{mmol})$ in 8 mL of DMF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 143 mg of the title compound 203 (51%) and 53 mg of compound 204 (19\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.14(\mathrm{~m}, 10 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.11(\mathrm{ddd}, J=4.0,4.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, J=1.5,2.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}$, $3 \mathrm{H}), 1.71(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.7$, 137.7, 129.0, 128.6, 128.3, 128.1, 127.2, 127.1, 63.4, 62.6, 60.8, 58.0, 56.1, 36.0, 16.8; IR (thin film): 3061, 3028, 2952, 2905, 2804, 2762, 2097, 1494, 1453, 1367, 1346, 1264, 1109, 1071, 1052, $754 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 307.1923; found 307.1921.

rac- (3R, 4R) - 2 -(Azidomethyl)-1-benzyl-3-(furan-2-yl)-4-methylpyrrolidine
(239): General procedure F was followed employing 521 mg of pyrrolidine $\mathbf{2 3 4 c}$ (1.36 mmol), and 133 mg of $\mathrm{NaN}_{3}(2.05 \mathrm{mmol})$ in 11.5 mL of DMF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 138 mg of the title compound 239 (34%) and 136 mg of compound $\mathbf{2 3 9 b}$ (33\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.17(\mathrm{~m}, 6 \mathrm{H}), 6.27(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dt}, J=6.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{ddd}, J$ $=1.0,2.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=1.0,2.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.86(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.67(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.8,141.5,137.7,129.0,128.3,127.2,110.2,107.8,62.5,61.8,60.6,57.6$, 49.3, 34.4, 16.9; IR (thin film): 3062, 3028, 2955, 2927, 2807, 2763, 2097, 1600, 1506, 1454, 1368, $1348,1265,1148,1109,1069,1052,1028,1010,966,918,869,803,733,699,674,598 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 297.1715; found 297.1710.

rac - (3S, 4R) - 2 - (Azidomethyl) -1 - benzyl -3-(3 -methoxyphenyl)-4methylpyrrolidine (240): General procedure F was followed employing 361 mg of pyrrolidine $\mathbf{2 3 5} \mathrm{c}(0.857 \mathrm{mmol})$, and 83.5 mg of $\mathrm{NaN}_{3}(1.28 \mathrm{mmol})$ in 7 mL of DMF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 132 mg of the title compound $\mathbf{2 4 0}$ (46%) and 74 mg of compound $\mathbf{2 4 0 b}(26 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.28(\mathrm{~m}, 6 \mathrm{H})$, 6.84-6.78 (m, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{ddd}, J=1.5,3.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=1.5,2.0 .6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H}), 1.80(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.69(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.8,142.4,137.7,129.6,129.0,128.4$, $128.3,127.3,112.2,63.4,62.7,60.9,57.9,56.2,55.1,36.0,16.8$; IR (thin film): 3027, 2953, 2804, 2763, 2096, 1601, 1585, 1491, 1454, 1436, 1368, 1264, 1155, 1109, 1049, 779, 744 $\mathrm{cm}^{-1} ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 337.2028$; found 337.2036.

rac-(3S,4R)-2-(Azidomethyl)-1-benzyl-3-(4-bromophenyl)-4-
methylpyrrolidine (241): General procedure F was followed employing 500 mg of pyrrolidine $\mathbf{2 3 6 c}$ (1.1 mmol), and 104 mg of $\mathrm{NaN}_{3}(1.6 \mathrm{mmol})$ in 9 mL of DMF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 178 mg of the title compound 241 (42%) and 116 mg of compound $\mathbf{2 4 1 b}(27 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.23$ $(\mathrm{m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{ddd}, J=1.5$, $3.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{ddd}, J=1.0,2.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{q}, J=11 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.78(\mathrm{t}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 0.61(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.9,137.7,131.8, \quad 129.0,128.4,127.3,120.9,63.3,62.6,60.8,57.8,55.6,34.0,16.8 ; \mathrm{IR}$ (thin film): 3331, 3085, 3062, 3027, 2954, 2904, 2806, 2763, 2097, 1602, 1591, 1491, 1463, $1454,1407,1368,1346,1307,1265,1185,1131,1110,1071,1053,1028,1010,965,909,871$, 815, 734, 700, 648, 617, $541 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Br}(\mathrm{M}+\mathrm{H})^{+}$: 385.1028; found 385.1020 .

rac-(3S,4R)-2-(Azidomethyl)-1-benzyl-3-(4-(benzyloxy)phenyl)-4methylpyrrolidine (238): General procedure F was followed employing 325 mg of pyrrolidine 233c (0.653 mmol), and 63.7 mg of $\mathrm{NaN}_{3}(0.980 \mathrm{mmol})$ in 5.5 mL of DMF. The resulting product was purified by flash chromatography (10% ethyl acetate in hexanes) to afford 123 mg of the title compound $\mathbf{2 3 8}$ (46%) and 94 mg of compound 238b (34\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-6.94(\mathrm{~m}$, $14 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{t}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 0.67$ (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$.
rac-(4S,5R)-3-Azido-1-benzyl-5-methyl-4-phenylpiperidine (193): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.22(\mathrm{~m}, 10 \mathrm{H}), 4.14(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=3.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~m}, 3 \mathrm{H}), 2.31$ $(\mathrm{m}, ~ 1 \mathrm{H}), 0.96(\mathrm{~d}, \quad J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 141.3,139.5,128.7,128.6,128.4,128.2,127.0,126.9,72.6,60.6,59.4,56.4$, 51.0, 39.5, 18.0; IR (thin film): 3084, 3062, 3028, 3003, 2957, 2923, 2869, 2796, 2729, 2097, 1724, 1703, 1601, 1584, 1494, 1452, 1373, 1357, 1335, 1286, 1203, 1137, 1071, 1029, 991, 959, 915, 827, 755, 700, $649 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 307.1923; found 307.1916.

rac-(4R,5R)-3-Azido-1-benzyl-4-(furan-2-yl)-5-methylpiperidine (239b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.15(\mathrm{~m}, 6 \mathrm{H}), 6.22(\mathrm{dd}, J=1.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=5.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=3.5 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H})$, $2.88(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63,(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): 155.0, 141.5, 139.2, 128.4, 128.2, 127.0, 110.0, 105.7, 69.5, 60.0, 59.1, 51.3, 49.0, 36.4, 18.4; IR (thin film): 3028, 2959, 2925, 2870, 2798, 2098, 1596, 1506, 1496, 1452, 1376, 1333, 1290, 1239, 1147, 1070, 1011, 911, 803, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 297.1715$; found 297.1711.

rac-(4S,5R)-3-Azido-1-benzyl-4-(3-methoxyphenyl)-5-methylpiperidine (240b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 3 \mathrm{H})$, $4.03(\mathrm{~d}, J=11,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}$, $J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{td}, J=3.0,13$
$\mathrm{Hz}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 159.7,142.9,139.4,129.6,128.5,128.2,126.9,120.4,114.0,111.6,72.3,60.4$, 59.2, 56.2, 55.1, 51.0, 39.3, 18.0; IR (thin film): 3027, 2956, 2923, 2868, 2834, 2794, 2097, 1601, 1584, 1491, 1453, 1373, 1285, 1266, 1159, 1047, 777, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 337.2028$; found 337.2013.

rac-(4S,5R)-3-Azido-1-benzyl-4-(4-bromophenyl)-5-methylpiperidine (241b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}$, $5 \mathrm{H}), 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.45(\mathrm{dd}, \mathrm{J}=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, 3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.78$ $(\mathrm{dd}, \mathrm{J}=2.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 140.2,139.2,131.7,129.8,128.5,128.3,126.9,120.5$, 72.3, 60.3, 59.1, 55.7, 50.8, 39.4, 17.7; IR (thin film): 3027, 2957, 2924, 2797, 2097, 1489, 1452, $1410,1283,1136,1073,1010,910,816,737,699$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{Br}(\mathrm{M}$ $+\mathrm{H})^{+}: 385.1028$; found 385.1036 .

rac-(4S,5R)-3-Azido-1-benzyl-4-(4-(benzyloxy)phenyl)-5-methylpiperidine (238b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.33-6.81 (m, 14H), 4.92 ($\mathrm{s}, 2 \mathrm{H}$), 3.98 (d, $J=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=3.0,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ $(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 157.7,139.5,137.1 .133 .4,129.2,129.1,128.6,128.6,128.4,128.3,128.0,127.6$, $127.5,127.0,115.0,72.5,70.0,60.4,59.3,55.5,51.0,39.3,17.8$.

rac-((3S,4R)-4-Methyl-3-phenylpyrrolidin-2-yl)methanamine (196): General procedure G was followed employing 1.03 g of pyrrolidine 192 (3.38 mmol), 473 mg of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.338 \mathrm{mmol})$, and 2.66 g of $\mathrm{NH}_{4} \mathrm{HCO}_{2}(42.3 \mathrm{mmol})$ in 35 mL of EtOH. The resulting oil was utilized directly without any further purification to yield 578 mg of the title compound (90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.18(\mathrm{~m}, 5 \mathrm{H}), 3.23$ (dd, $J=1.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=1.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dt}, J=4.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ $(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.49$, (broad s, 3H), $0.59(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.7$, 128.6, 126.7, 60.2, 54.5, 54.4, 54.3, 37.4, 17.0; \mathbb{R} (thin film): 3027, 2954, 2922, 2867, 2795, 2360, 2339, 1493, 1453, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2}(\mathrm{M})^{+}: 190.146999$; found 190.146829.
 rac-((3R,4R)-3-(Furan-2-yl)-4-methylpyrrolidin-2-yl)methanamine (244): General procedure G was followed employing 136 mg of pyrrolidine 239 (0.459 $\mathrm{mmol})$, 64 mg of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.045 \mathrm{mmol})$, and 361 mg of $\mathrm{NH}_{4} \mathrm{HCO}_{2}(5.73$ mmol) in 5 mL of EtOH . The resulting oil was utilized directly without any further purification to yield 75 mg of the title compound (91%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 7.47$ (appt s, 1H) , $6.39(\mathrm{dd}, J=2.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=5.0$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=5.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dt}, J=4.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=11 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD): $\delta 154.4,141.6,109.7,107.4,52.7,52.0,51.9,51.4,35.0$, 15.8; IR (thin film): $3849,3741,3583,3365,2298,1588,1468 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}(M)^{+}$: 181.13354; found 181.13308.

rac- ((3S, 4R)-3-(3-Methoxyphenyl)-4-methylpyrrolidin-2-yl) methanamine (245): General procedure G was followed employing 132 mg of pyrrolidine $\mathbf{2 4 0}$ (0.392 mmol), 55 mg of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(0.039 \mathrm{mmol})$, and 308 mg of $\mathrm{NH}_{4} \mathrm{HCO}_{2}$ (4.90 mmol) in 4 mL of EtOH . The resulting oil was utilized directly without any further purification to yield 79 mg of the title compound (93%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD): $\delta 7.29-723(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}$, $1 \mathrm{H}), 3.33(\mathrm{dd}, J=3.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ $(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 0.65(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 138.8,130.2,129.2,128.1,127.3,113.3,54.4,53.1,50.2,49.7,46.4,33.9,15.0$; IR (thin film): 3904.1, 3871.7, 3854.1, 3854.1, 3840.3, 3821.8, 3806.8, 3751.4, 3735.7, 3712.2, 3690.3, $3676.4,3649.5,3629.7,3399.7,1647.7,1387.7,1324.9,1064.7 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}(M)^{+}$: 221.16484; found 221.16457.

rac- (3S,4R)-1-Benzyl-3-methyl-4-phenyl-1-azoniabicyclo[3.1.0]hexane hexafluoroantimonate (V) (194): To a rt solution of pyrrolidine 189 (130 $\mathrm{mg}, 0.332 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ was added Silver hexafluoroantimonate (V) (1.2 equiv, $114 \mathrm{mg}, 0.398 \mathrm{mmol}$) in the dark. The resulting mixture was stirred 2 h at rt , then filtered through a pad of Celite ${ }^{\circledR}$. The resulting solid was recrystallized with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexanes}$ to afford 157 mg of the title compound (95\%) as a colorless solid. Recrystallization of $\mathbf{1 9 4}$ from $\mathrm{Et}_{2} \mathrm{O} /$ Hexanes yielded crystals suitable for X-ray diffraction analysis (Appendix B). $\mathrm{mp} 38-42{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.57-7.02 $(\mathrm{m}, 10 \mathrm{H}), 4.80(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H})$, $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=3.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=7 \mathrm{~Hz}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.6,131.1,131.0,129.9,129.4,128.6,128.2$, 127.1, 64.0, $62.8,58.5,54.2,51.7,48.2,16.48$; IR (thin film): $3054,2986,2305,2253,1421$, 1265, 909, 738, 704, $661 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}(\mathrm{M})^{+}:$264.1752; found 264.1745.

N-((1R,2S)-2-Hydroxy-2,3-dihydro-1H-inden-1-yl)-4-(pyrrolidin-1-

 yl)picolinamide (249): This compound was prepared according to literature procedure and matches the characterization data provided in the following the publication: Geherty, M.E.; Dura, R.D.; Nelson, S.G. J. Am. Chem. Soc.2010, 132, 11875-11877.

(2R, 3R)-2-Methyl-3-phenylpent-4-enal (250): $\left[\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}(5 \mathrm{~mol} \%$, $31 \mathrm{mg}, 0.07 \mathrm{mmol})$, picolinamide $249(5 \mathrm{~mol} \%, 23 \mathrm{mg}, 0.07 \mathrm{mmol})$ and THF (2.9 mL) were combined in a nitrogen-filled glovebox. The mixture was periodically agitated over 30 min , then transferred to a mixture containing allyl vinyl ether ($250 \mathrm{mg}, 1.43 \mathrm{mmol}$), $4 \AA \mathrm{MS}$ $(100 \% \mathrm{wt} / \mathrm{wt}, 250 \mathrm{mg})$ and $\mathrm{B}(\mathrm{OPh})_{3}(5 \mathrm{~mol} \%, 21 \mathrm{mg}, 0.07 \mathrm{mmol})$. Immediately after removal from the glovebox, $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mol} \%, 15 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ was added and the resulting solution was stirred an additional 24 hours at ambient temperature. The resultant solution was concentrated under a stream of N_{2}, filtered through a plug of Florisil ${ }^{\circledR}$ and concentrated to yield $225 \mathrm{mg}(90 \%)$ as a mixture of $\mathbf{2 5 0}$ and (E)-2-methyl-5-phenylpent-4-enal as the only detectable products. Separating the stereoisomers of $\mathbf{2 5 0}$ by GLC flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, method: $90^{\circ} \mathrm{C}$ for 10 min , ramp @ $0.7^{\circ} \mathrm{C} / \mathrm{min}$ to $160^{\circ} \mathrm{C}$, hold for $5 \mathrm{~min} ; \operatorname{Tr}(\mathrm{min})=44.9\left[(2 \mathrm{~S}, 3 \mathrm{~S})-\mathbf{2 5 0}_{\text {anti }}\right], 45.6$ $\left(\mathbf{2 5 0}_{\text {synl }}\right), 46.9\left(\mathbf{2 5 0}_{\text {syn }}\right), 47.4\left[(2 R, 3 R)-\mathbf{2 5 0}_{\text {anti }}\right]($ ratio $=17.6: 11.5: 31.8: 431)$ provided the
enantiomer ratio $(2 S, 3 S) \mathbf{- 2 5 0}_{\text {anti: }}:(2 R, 3 R)-\mathbf{2 5 0}_{\text {anti }}=3.9: 96.1(92 \%$ ee $) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 9.57(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\mathrm{t}, J=9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7 \mathrm{~Hz})$. This compound was prepared according to literature procedure and matches the characterization data provided in the following the publication: Geherty, M.E.; Dura, R.D.; Nelson, S.G. J. Am. Chem. Soc. 2010, 132, 1187511877.

(2R,3R)-N-Benzyl-2-methyl-3-phenylpent-4-en-1-amine (252): General procedure D was followed employing 200 mg of aldehyde $\mathbf{2 5 0}$ (1.14 mmol), 480 mg of $\mathrm{NaHB}(\mathrm{OAc})_{3}(2.3 \mathrm{mmol}), 0.25 \mathrm{~mL}$ of benzylamine $(2.3 \mathrm{mmol})$, and $66 \mu \mathrm{~L}$ of acetic acid (1.14 mmol) in 12 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified by flash chromatography (70% diethyl ether in hexanes) to afford 181 mg of the title compound (60%) as a colorless oil. $[\alpha]_{\mathrm{D}}^{23}+38\left(c 2.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.31-7.17 (m, 10H), $6.01(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=9.0 \mathrm{~Hz}$, , $1 \mathrm{H}), 2.52(\mathrm{dd}, J=5.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=4.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.9,139.9,128.4,128.3,128.0,127.8,126.8,126.1$, 115.7, 54.4, 54.0, 53.7, 38.0, 16.0; IR (thin film): 3835, 3027, 2959, 2926, 1638, 1493, 1453, 1116, 912, 735, $699 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}: 266.1909$; found 266.1904.

General procedure E was followed employing 150 mg of pentamine 252 (0.57 $\mathrm{mmol})$, and 140 mg of NIS (0.63 mmol) in 2 mL of THF. The resulting mixture was purified by flash chromatography (10% diethyl ether in hexanes) to afford 63 mg of an inseparable mixture of the title compound 253, and 1-benzyl-3-iodo-5-methyl-4phenylpiperidine as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.40-7.10(\mathrm{~m}, 10 \mathrm{H}), 4.67$ $(\mathrm{dt}, 4.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=3.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=4.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 0.54(\mathrm{~d}, 7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1}$ Characterization data obtained for ${ }^{1} \mathrm{H}$ NMR only. Compound not utilized in final route.
${ }^{2}$ Characterization data obtained for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR only. Compound not utilized in final route.

APPENDIX A

X-RAY CRYSTAL DATA FOR (S,E)-6-METHYL-8-((1-(TRIISOPROPYLSILYL)-1H-

PYRROL-2-YL)METHYLENE)-6,7,8,9-TETRAHYDRO-5H-PYRROLO[1,2-A]AZEPIN-

5-ONE 89

Figure 14. X-ray crystal structure of $\mathbf{8 9}$

ORTEP structure of (S,E)-6-methyl-8-((1-(triisopropylsilyl)-1H-pyrrol-2-yl)methylene)-6,7,8,9-tetrahydro-5H-pyrrolo[1,2-a]azepin-5-one. The molecular structure is drawn with 50% probability displacement ellipsoids; hydrogen atoms are drawn with an artificial radius.

Table 7. Crystallographic Information for Compound 89

Identification code	perez1	
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{OSi}$	
Formula weight	396.64	
Temperature	$100(2) \mathrm{K}$	
Wavelength	$1.54178 \AA$	
Crystal size	$0.020 \times 0.140 \times 0.200 \mathrm{~mm}$	
Crystal habit	clear green plate	
Crystal system	triclinic	
Space group	$\mathrm{P}-1$	
Unit cell dimensions	$\mathrm{a}=7.3821(3) \AA$	$\alpha=100.975(3)^{\circ}$
	$\mathrm{b}=11.1160(5) \AA$	$\beta=99.125(2)^{\circ}$
	$\mathrm{c}=15.2794(7) \AA$	$\gamma=108.084(2)^{\circ}$
Volume	$1137.81(9) \AA \AA^{3}$	
Z	2	
Density (calculated)	$1.158 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$1.020 \mathrm{~mm}^{-1}$	
$\mathrm{~F}(000)$	432	

Table 8. Atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for $\mathbf{8 9}$

	\mathbf{y} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
Si1	$0.05288(6)$	$0.20810(4)$	$0.86395(3)$	$0.01729(19)$
O1	$0.77490(18)$	$0.40359(14)$	$0.61921(9)$	$0.0283(3)$
C1	$0.7814(3)$	$0.16723(17)$	$0.85265(13)$	$0.0204(4)$
N1	$0.0849(2)$	$0.08457(14)$	$0.77980(10)$	$0.0193(3)$
N2	$0.5123(2)$	$0.46806(14)$	$0.61705(10)$	$0.0189(3)$
C2	$0.6719(3)$	$0.1662(2)$	$0.75851(14)$	$0.0294(5)$
C3	$0.6899(3)$	$0.03516(19)$	$0.87475(15)$	$0.0292(5)$
C4	$0.1625(3)$	$0.18985(17)$	$0.97931(12)$	$0.0206(4)$
C5	$0.3854(3)$	$0.2208(2)$	$0.99879(14)$	$0.0284(5)$
C6	$0.1096(3)$	$0.2684(2)$	$0.05917(13)$	$0.0294(5)$
C7	$0.1692(3)$	$0.37321(18)$	$0.84274(15)$	$0.0299(5)$
C8	$0.3838(3)$	$0.40516(18)$	$0.83567(13)$	$0.0262(4)$
C9	$0.1370(4)$	$0.4826(2)$	$0.90539(19)$	$0.0451(6)$
C10	$0.1033(3)$	$0.97052(17)$	$0.79822(13)$	$0.0218(4)$
C11	$0.1175(3)$	$0.89215(17)$	$0.72201(14)$	$0.0236(4)$
C12	$0.1077(3)$	$0.95680(17)$	$0.65140(13)$	$0.0210(4)$

	\mathbf{y} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
C13	$0.0873(2)$	$0.07420(16)$	$0.68731(12)$	$0.0179(4)$
C14	$0.0714(2)$	$0.17646(17)$	$0.64175(12)$	$0.0185(4)$
C15	$0.1710(2)$	$0.21673(16)$	$0.58035(12)$	$0.0173(4)$
C16	$0.1498(2)$	$0.33110(17)$	$0.54477(12)$	$0.0188(4)$
C17	$0.3135(2)$	$0.45528(17)$	$0.59844(12)$	$0.0186(4)$
C18	$0.3008(3)$	$0.56714(18)$	$0.64568(13)$	$0.0237(4)$
C19	$0.4937(3)$	$0.65324(18)$	$0.69464(14)$	$0.0271(4)$
C20	$0.6195(3)$	$0.59132(18)$	$0.67709(13)$	$0.0239(4)$
C21	$0.6025(3)$	$0.37823(17)$	$0.58713(12)$	$0.0199(4)$
C22	$0.4768(2)$	$0.25459(17)$	$0.51322(12)$	$0.0191(4)$
C23	$0.3167(2)$	$0.16149(17)$	$0.54753(12)$	$0.0183(4)$
C24	$0.6033(3)$	$0.18226(18)$	$0.47554(13)$	$0.0234(4)$

Table 9. Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$ for $\mathbf{8 9}$

Si1-N1	$1.7947(16)$	$\mathrm{Si1-C7}$	$1.8834(19)$
Si1-C1	$1.8833(18)$	$\mathrm{Si1-C4}$	$1.8944(18)$
O1-C21	$1.211(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.531(2)$
C1-C3	$1.540(2)$	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	1.0
N1-C10	$1.391(2)$	N1-C13	$1.399(2)$
N2-C20	$1.401(2)$	N2-C17	$1.406(2)$
N2-C21	$1.409(2)$	C2-H2A	0.98
C2-H2B	0.98	C2-H2C	0.98
C3-H3A	0.98	C3-H3B	0.98
C3-H3C	0.98	C4-C5	$1.539(2)$
C4-C6	$1.536(3)$	C4-H4A	1.0
C5-H5A	0.98	C5-H5B	0.98
C5-H5C	0.98	C6-H6A	0.98
C6-H6B	0.98	C6-H6C	0.98
C7-C9	$1.504(3)$	C7-C8	$1.539(3)$
C7-H7A	1.0	C8-H8A	0.98
C8-H8B	0.98	C8-H8C	0.98
C9-H9A	0.98	C9-H9B	0.98
C9-H9C	0.98	C10-C11	$1.355(3)$
C10-H10	$0.86(2)$	C11-C12	$1.410(3)$
C11-H11	$0.92(3)$	C12-C13	$1.379(3)$
C12-H12	$0.96(2)$	C13-C14	$1.466(2)$

C14-C15	1.340(3)	C14-H14	0.94(2)
C15-C23	$1.500(2)$	C15-C16	1.515(2)
C16-C17	$1.502(2)$	C16-H16A	1.00 (2)
C16-H16B	0.96(2)	C17-C18	1.352(3)
C18-C19	1.431(3)	C18-H18	0.96(2)
C19-C20	1.347(3)	C19-H19	0.92(3)
C20-H20	0.96(3)	C21-C22	1.520 (2)
C22-C24	1.520(2)	C22-C23	$1.545(2)$
C22-H22	1.00 (2)	C23-H23A	0.96(2)
C23-H23B	0.95(2)	C24-H24A	0.98
C24-H24B	0.98	C24-H24C	0.98
N1-Si1-C7	109.31(8)	N1-Si1-C1	107.35(8)
C7-Si1-C1	111.20(8)	N1-Si1-C4	105.81(8)
C7-Si1-C4	114.55(9)	C1-Si1-C4	108.26(8)
C2-C1-C3	109.99(16)	C2-C1-Si1	113.49(13)
C3-C1-Si1	110.69(12)	C2-C1-H1A	107.5
C3-C1-H1A	107.5	Si1-C1-H1A	107.5
C10-N1-C13	106.19(15)	C10-N1-Si1	122.52(13)
C13-N1-Si1	131.21(12)	C20-N2-C17	108.04(15)
C20-N2-C21	121.93(15)	C17-N2-C21	130.00(15)
C1-C2-H2A	109.5	C1-C2-H2B	109.5
H2A-C2-H2B	109.5	C1-C2-H2C	109.5
H2A-C2-H2C	109.5	H2B-C2-H2C	109.5
C1-C3-H3A	109.5	C1-C3-H3B	109.5
H3A-C3-H3B	109.5	C1-C3-H3C	109.5
H3A-C3-H3C	109.5	H3B-C3-H3C	109.5
C5-C4-C6	110.11(15)	C5-C4-Si1	114.34(13)
C6-C4-Si1	112.65(12)	C5-C4-H4A	106.4
C6-C4-H4A	106.4	Si1-C4-H4A	106.4
C4-C5-H5A	109.5	C4-C5-H5B	109.5
H5A-C5-H5B	109.5	C4-C5-H5C	109.5
H5A-C5-H5C	109.5	H5B-C5-H5C	109.5
C4-C6-H6A	109.5	C4-C6-H6B	109.5
H6A-C6-H6B	109.5	C4-C6-H6C	109.5
H6A-C6-H6C	109.5	H6B-C6-H6C	109.5
C9-C7-C8	113.02(18)	C9-C7-Si1	113.46(15)
C8-C7-Si1	114.58(13)	C9-C7-H7A	104.8
C8-C7-H7A	104.8	Si1-C7-H7A	104.8

C7-C8-H8A	109.5	C7-C8-H8B	109.5
H8A-C8-H8B	109.5	C7-C8-H8C	109.5
H8A-C8-H8C	109.5	H8B-C8-H8C	109.5
C7-C9-H9A	109.5	C7-C9-H9B	109.5
H9A-C9-H9B	109.5	C7-C9-H9C	109.5
H9A-C9-H9C	109.5	H9B-C9-H9C	109.5
C11-C10-N1	$110.33(17)$	C11-C10-H10	$125.1(14)$
N1-C10-H10	$124.4(14)$	C10-C11-C12	$107.20(16)$
C10-C11-H11	$129.3(16)$	C12-C11-H11	$123.5(17)$
C13-C12-C11	$107.75(17)$	C13-C12-H12	$125.3(13)$
C11-C12-H12	$126.9(13)$	C12-C13-N1	$108.53(15)$
C12-C13-C14	$128.83(17)$	N1-C13-C14	$122.64(15)$
C15-C14-C13	$126.13(16)$	C15-C14-H14	$116.6(12)$
C13-C14-H14	$117.2(12)$	C14-C15-C23	$124.17(16)$
C14-C15-C16	$119.82(16)$	C23-C15-C16	$115.88(15)$
C17-C16-C15	$110.02(14)$	C17-C16-H16A	$104.2(11)$
C15-C16-H16A	$112.6(11)$	C17-C16-H16B	$112.5(14)$
C15-C16-H16B	$116.1(14)$	H16A-C16-H16B	$100.5(17)$
C18-C17-N2	$107.41(15)$	C18-C17-C16	$128.28(16)$
N2-C17-C16	$123.91(15)$	C17-C18-C19	$108.51(17)$
C17-C18-H18	$126.3(15)$	C19-C18-H18	$124.9(15)$
C20-C19-C18	$107.80(17)$	C20-C19-H19	$125.5(15)$
C18-C19-H19	$126.6(15)$	C19-C20-N2	$108.25(17)$
C19-C20-H20	$131.8(14)$	N2-C20-H20	$119.9(14)$
O1-C21-N2	$119.36(16)$	O1-C21-C22	$123.24(17)$
N2-C21-C22	$117.39(15)$	C24-C22-C21	$110.65(15)$
C24-C22-C23	$109.58(14)$	C21-C22-C23	$112.66(15)$
C24-C22-H22	$110.2(11)$	C21-C22-H22	$106.1(12)$
C23-C22-H22	$107.5(12)$	C15-C23-C22	$115.55(14)$
C15-C23-H23A	$109.3(12)$	C22-C23-H23A	$106.1(12)$
C15-C23-H23B	$110.0(13)$	C22-C23-H23B	$109.8(13)$
H23A-C23-H23B	$105.5(16)$	C22-C24-H24A	109.5
C22-C24-H24B	109.5	H24A-C24-H24B	109.5
C22-C24-H24C	109.5	H24A-C24-H24C	109.5
H24B-C24-H24C	109.5		

Table 10. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 89
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U_{12}$]

$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U} \mathbf{3 3}^{c} \mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$		
Si1	$0.0165(3)$	$0.0150(3)$	$0.0192(3)$	$0.0037(2)$	$0.0039(2)$	$0.0045(2)$
O1	$0.0158(7)$	$0.0358(8)$	$0.0295(7)$	$0.0043(6)$	$0.0013(5)$	$0.0082(6)$
C1	$0.0188(9)$	$0.0210(9)$	$0.0223(9)$	$0.0056(7)$	$0.0052(7)$	$0.0080(7)$
N1	$0.0172(7)$	$0.0175(7)$	$0.0228(8)$	$0.0049(6)$	$0.0045(6)$	$0.0058(6)$
N2	$0.0162(7)$	$0.0200(7)$	$0.0172(7)$	$0.0025(6)$	$0.0015(6)$	$0.0042(6)$
C2	$0.0190(9)$	$0.0413(11)$	$0.0270(10)$	$0.0085(9)$	$0.0026(7)$	$0.0109(8)$
C3	$0.0191(9)$	$0.0249(10)$	$0.0424(12)$	$0.0118(9)$	$0.0066(8)$	$0.0043(7)$
C4	$0.0196(9)$	$0.0190(8)$	$0.0200(9)$	$0.0037(7)$	$0.0019(7)$	$0.0046(7)$
C5	$0.0194(10)$	$0.0295(10)$	$0.0309(11)$	$0.0101(9)$	$-0.0011(8)$	$0.0033(8)$
C6	$0.0324(11)$	$0.0324(10)$	$0.0215(10)$	$0.0062(8)$	$0.0044(8)$	$0.0102(9)$
C7	$0.0316(11)$	$0.0207(9)$	$0.0412(12)$	$0.0101(9)$	$0.0171(9)$	$0.0088(8)$
C8	$0.0246(10)$	$0.0219(9)$	$0.0272(10)$	$0.0072(8)$	$0.0058(8)$	$0.0009(7)$
C9	$0.0479(14)$	$0.0277(11)$	$0.0569(15)$	$0.0069(11)$	$0.0166(12)$	$0.0097(10)$
C10	$0.0223(9)$	$0.0183(9)$	$0.0252(10)$	$0.0081(8)$	$0.0053(7)$	$0.0065(7)$
C11	$0.0214(9)$	$0.0160(9)$	$0.0326(11)$	$0.0051(8)$	$0.0049(7)$	$0.0069(7)$
C12	$0.0159(9)$	$0.0195(8)$	$0.0244(10)$	$0.0015(7)$	$0.0040(7)$	$0.0046(7)$
C13	$0.0128(8)$	$0.0184(8)$	$0.0190(8)$	$0.0016(7)$	$0.0023(6)$	$0.0033(6)$
C14	$0.0147(8)$	$0.0185(8)$	$0.0205(9)$	$0.0013(7)$	$0.0015(7)$	$0.0069(7)$
C15	$0.0135(8)$	$0.0170(8)$	$0.0169(8)$	$0.0000(7)$	$-0.0017(6)$	$0.0043(6)$
C16	$0.0153(9)$	$0.0218(9)$	$0.0197(9)$	$0.0047(7)$	$0.0025(7)$	$0.0081(7)$
C17	$0.0177(9)$	$0.0197(8)$	$0.0196(9)$	$0.0074(7)$	$0.0045(7)$	$0.0067(7)$
C18	$0.0292(10)$	$0.0225(9)$	$0.0232(10)$	$0.0072(8)$	$0.0089(8)$	$0.0120(8)$
C19	$0.0373(11)$	$0.0173(9)$	$0.0241(10)$	$0.0025(8)$	$0.0074(8)$	$0.0073(8)$
C20	$0.0236(10)$	$0.0203(9)$	$0.0205(9)$	$0.0033(7)$	$0.0016(7)$	$0.0006(7)$
C21	$0.0175(9)$	$0.0231(9)$	$0.0191(9)$	$0.0062(7)$	$0.0045(7)$	$0.0062(7)$
C22	$0.0168(9)$	$0.0228(9)$	$0.0179(9)$	$0.0041(7)$	$0.0029(7)$	$0.0083(7)$
C23	$0.0168(9)$	$0.0189(9)$	$0.0183(9)$	$0.0038(7)$	$0.0021(7)$	$0.0065(7)$
C24	$0.0217(9)$	$0.0264(9)$	$0.0262(10)$	$0.0071(8)$	$0.0091(7)$	$0.0121(8)$

Table 11. Hydrogen atomic coordinates and isotropic atomic displacement parameters $\left(\AA^{2}\right)$ for $\mathbf{8 9}$

	\mathbf{x} / \mathbf{a}	y/b	z/c	$\mathbf{U}(\mathbf{e q})$
H1A	-0.2368	0.2363	0.8992	0.024
H2A	-0.4679	0.1447	0.7571	0.044
H2B	-0.3109	0.1006	0.7110	0.044
H2C	-0.2757	0.2528	0.7471	0.044
H3A	-0.4511	0.0158	0.8687	0.044
H3B	-0.2486	0.0398	0.9376	0.044
H3C	-0.2890	-0.0342	0.8320	0.044
H4A	0.1017	0.0955	0.9782	0.025
H5A	0.4308	0.2090	1.0593	0.043
H5B	0.4515	0.3115	0.9975	0.043
H5C	0.4158	0.1615	0.9519	0.043
H6A	0.1696	0.2558	1.1171	0.044
H6B	-0.0331	0.2379	1.0509	0.044
H6C	0.1585	0.3615	1.0605	0.044
H7A	0.0957	0.3673	0.7803	0.036
H8A	0.4333	0.4924	0.8249	0.039
H8B	0.3916	0.3400	0.7847	0.039
H8C	0.4632	0.4035	0.8930	0.039
H9A	0.2009	0.5655	0.8910	0.068
H9B	0.1929	0.4878	0.9692	0.068
H9C	-0.0039	0.4658	0.8968	0.068
H10	0.099(3)	-0.049(2)	0.8499(15)	0.021(5)
H11	0.134(4)	-0.188(3)	0.7145 (18)	0.045(7)
H12	0.112(3)	-0.075(2)	0.5890(16)	0.023(5)
H14	-0.013(3)	0.2203(18)	0.6587(13)	0.012(4)
H16A	0.029(3)	0.3483(19)	0.5541(13)	0.017(5)
H16B	0.132(3)	0.320(2)	0.4796(16)	0.029(6)
H18	0.182(4)	0.584(2)	0.6508(16)	0.034(6)
H19	0.527(3)	0.735(2)	0.7340(17)	0.034(6)
H20	0.760(4)	0.619(2)	0.6954(16)	0.036(6)
H22	0.409(3)	0.284(2)	0.4637(14)	0.017(5)
H23A	0.250(3)	0.0863(19)	0.4972(14)	0.013(5)
H23B	0.376(3)	0.130(2)	0.5943(15)	0.020(5)
H24A	0.7052	0.2416	0.4541	0.035
H24B	0.5215	0.1074	0.4243	0.035
H24C	0.6646	0.1511	0.5239	0.035

APPENDIX B

X-RAY CRYSTAL DATA FOR RAC-(3S, 4R)-1-BENZYL-3-METHYL-4-PHENYL-1ANONIABICYCLO[3.1.0]HEXANE HEXAFLUOROANTIMONATE (V) 194

Figure 15. X-ray crystal structure of 194

ORTEP structure of rac-(3S,4R)-1-benzyl-3-methyl-4-phenyl-1-azoniabicyclo[3.1.0]hexane hexafluoroantimonate (V). The molecular structure is drawn with 50% probability displacement ellipsoids; hydrogen atoms are drawn with an artificial radius.

Table 12. Crystallographic Information for Compound 194

Identification code	perez2
Chemical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{NSb}$
Formula weight	500.12
Temperature	150(2) K
Wavelength	1.54178 A
Crystal size	$0.020 \times 0.080 \times 0.180 \mathrm{~mm}$
Crystal habit	translucent colourless plate
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=10.3372(2) \AA \quad \alpha=62.3680(7)^{\circ}$
	$\mathrm{b}=10.4889(2) \AA \beta=78.1060(7)^{\circ}$
	$\mathrm{c}=10.5185(2) \AA \quad \gamma=81.1370(8)^{\circ}$
Volume	986.45(3) \AA^{3}
Z	2
Density (calculated)	$1.684 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$11.634 \mathrm{~mm}^{-1}$
F(000)	496
Diffractometer	Bruker Apex II CCD
Radiation source	IMuS micro-focus, Cu
Theta range for data collection	4.38 to $68.23{ }^{\circ}$
Index ranges	$-12<=\mathrm{h}<=12,-12<=\mathrm{k}<=11,-12<=1<=12$
Reflections collected	18064
Independent reflections	3519 [$\mathrm{R}(\mathrm{int}$) $=0.0208]$
Coverage of independent reflections	97.3\%
Absorption correction	multi-scan
Max. and min. transmission	0.8010 and 0.2290
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$
Data / restraints / parameters	3519 / 0 / 332
Goodness-of-fit on F2	0.828
Δ / σ max	0.002
Final R indices	$\begin{array}{ll} 3438 \text { data; } & \mathrm{R} 1=0.0185, \mathrm{wR} 2= \\ \mathrm{I}>2 \sigma(\mathrm{I}) & 0.0588 \end{array}$
	all data $\quad \mathrm{R} 1=0.0189, \mathrm{wR} 2=$

0.0596

Weighting scheme
$\mathrm{w}=1\left[\left[\mathrm{\sigma}^{2}\left(\mathrm{~F}_{\mathrm{F}}{ }^{2}\right)+(0.0680 \mathrm{P})^{2}\right]\right.$
where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3$
Largest diff. peak and hole 0.772 and $-0.331 \mathrm{e}^{-3}{ }^{-3}$
R.M.S. deviation from mean $0.057 \mathrm{e}^{\circ}{ }^{-3}$

Table 13. Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for 194

	x / a	y / b	z / c	$\mathrm{U}(\mathrm{eq})$
Sb1	$0.76125(2)$	$0.74101(2)$	$0.54529(2)$	$0.02610(7)$
F1	$0.87160(16)$	$0.87272(19)$	$0.5333(2)$	$0.0559(4)$
N1	$0.72392(16)$	$0.31645(18)$	$0.38418(17)$	$0.0266(3)$
C1	$0.7429(3)$	$0.4648(2)$	$0.3614(2)$	$0.0383(5)$
F2	$0.81830(16)$	$0.78801(18)$	$0.34871(15)$	$0.0472(3)$
C2	$0.6479(2)$	$0.3751(2)$	$0.4864(2)$	$0.0298(4)$
F3	$0.62455(15)$	$0.88699(17)$	$0.49326(18)$	$0.0480(3)$
C3	$0.6930(2)$	$0.2843(2)$	$0.6344(2)$	$0.0280(4)$
F4	$0.64894(16)$	$0.61089(17)$	$0.55656(19)$	$0.0511(4)$
C4	$0.75965(19)$	$0.1454(2)$	$0.6243(2)$	$0.0280(4)$
F5	$0.70185(19)$	$0.6912(2)$	$0.74115(17)$	$0.0599(4)$
C5	$0.8210(2)$	$0.1989(3)$	$0.4649(2)$	$0.0321(5)$
F6	$0.89949(16)$	$0.59694(17)$	$0.59171(17)$	$0.0495(4)$
C6	$0.8590(2)$	$0.0652(3)$	$0.7289(2)$	$0.0365(4)$
C7	$0.5856(2)$	$0.3127(2)$	$0.8579(2)$	$0.0325(4)$
C8	$0.4827(2)$	$0.2912(3)$	$0.9732(2)$	$0.0366(5)$
C9	$0.3766(2)$	$0.2152(2)$	$0.9931(2)$	$0.0364(4)$
C10	$0.3714(2)$	$0.1608(2)$	$0.8964(2)$	$0.0365(4)$
C11	$0.4739(2)$	$0.1831(2)$	$0.7805(2)$	$0.0336(4)$
C12	$0.58089(18)$	$0.2589(2)$	$0.76029(19)$	$0.0282(4)$
C13	$0.65653(19)$	$0.2998(2)$	$0.2808(2)$	$0.0303(4)$
C14	$0.7907(2)$	$0.1563(2)$	$0.1585(2)$	$0.0347(4)$
C15	$0.8851(2)$	$0.1435(3)$	$0.0498(3)$	$0.0411(5)$
C16	$0.9458(2)$	$0.2646(3)$	$0.9397(3)$	$0.0454(6)$
C17	$0.9100(2)$	$0.3973(3)$	$0.9393(2)$	$0.0424(5)$
C18	$0.8150(2)$	$0.4099(2)$	$0.0480(2)$	$0.0351(4)$
C19	$0.75597(18)$	$0.2890(2)$	$0.15932(19)$	$0.0280(4)$

Table 14. Bond lengths [\AA] and angles [${ }^{\circ}$] for 194

Sb1-F5	$1.8637(15)$
$\mathrm{Sb} 1-\mathrm{F} 6$	$1.8712(14)$
$\mathrm{Sb} 1-\mathrm{F} 2$	$1.8728(14)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.492(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.499(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.477(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	$0.99(3)$
$\mathrm{C} 2-\mathrm{H} 2$	$0.93(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.553(3)$
$\mathrm{C} 4-\mathrm{C} 6$	$1.521(3)$
$\mathrm{C} 4-\mathrm{H} 4$	$0.93(2)$
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	$1.02(3)$
$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	$0.91(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.393(3)$
$\mathrm{C} 7-\mathrm{H} 7$	$0.98(2)$
$\mathrm{C} 8-\mathrm{H} 8$	$0.95(3)$
$\mathrm{C} 9-\mathrm{H} 9$	$0.95(2)$
$\mathrm{C} 10-\mathrm{H} 10$	$0.99(3)$
$\mathrm{C} 11-\mathrm{H} 11$	$0.98(3)$
$\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A}$	$0.93(2)$
C14-C19	$1.387(3)$
C14-H14	$0.85(3)$
C15-H15	$0.94(3)$
C16-H16	$0.93(3)$
C17-H17	$0.95(3)$
C18-H18	$0.94(3)$
Sb1-F1	$1.8683(15)$
Sb1-F4	$1.8725(14)$
Sb1-F3	$1.8750(14)$
N1-C5	$1.499(3)$
N1-C2	$1.506(2)$
C1-H1B	$0.92(3)$
C2-C3	$1.528(3)$
C3-C12	$1.518(3)$
C3-H3	$0.92(2)$

C4-C5	1.525(3)
C5-H5A	0.92(3)
C6-H6A	0.96(3)
C6-H6C	0.97(3)
C7-C12	1.393(3)
C8-C9	1.379(3)
C9-C10	1.391(3)
C10-C11	1.394(3)
C11-C12	1.385(3)
C13-C19	1.503(3)
C13-H13B	1.00(2)
C14-C15	1.385(3)
C15-C16	1.389(4)
C16-C17	1.381(4)
C17-C18	1.389(3)
C18-C19	1.385(3)
F5-Sb1-F1	90.87(9)
F1-Sb1-F6	90.03(8)
F1-Sb1-F4	179.27(5)
F5-Sb1-F2	178.66(6)
F6-Sb1-F2	88.85(7)
F5-Sb1-F3	90.42(8)
F6-Sb1-F3	178.40(5)
F2-Sb1-F3	89.56(7)
C13-N1-C1	119.34(16)
C13-N1-C2	120.78(16)
C1-N1-C2	58.92(13)
C2-C1-H1B	118.8(16)
C2-C1-H1A	118.5(15)
H1B-C1-H1A	116.(2)
C1-C2-C3	119.52(19)
C1-C2-H2	118.0(13)
C3-C2-H2	120.5(14)
C12-C3-C4	114.77(17)
C12-C3-H3	109.6(15)
C4-C3-H3	110.9(15)
C6-C4-C3	113.13(17)
C6-C4-H4	112.2(15)

C3-C4-H4	106.2(14)
N1-C5-H5A	109.4(17)
N1-C5-H5B	106.8(15)
H5A-C5-H5B	114.(2)
C4-C6-H6B	110.4(18)
C4-C6-H6C	111.3(15)
H6B-C6-H6C	107.(2)
C8-C7-H7	120.3(14)
C9-C8-C7	120.67(19)
C7-C8-H8	116.2(16)
C8-C9-H9	122.6(13)
C9-C10-C11	119.61(19)
C11-C10-H10	118.2(15)
C12-C11-H11	120.1(14)
C11-C12-C7	119.19(17)
C7-C12-C3	119.42(17)
N1-C13-H13A	104.6(15)
N1-C13-H13B	103.8(13)
H13A-C13-H13B	108.(2)
C19-C14-H14	119.(2)
C14-C15-C16	120.0(2)
C16-C15-H15	119.5(16)
C17-C16-H16	120.6(18)
C16-C17-C18	120.6(2)
C18-C17-H17	115.8(18)
C19-C18-H18	120.6(18)
C14-C19-C18	119.10(18)
C18-C19-C13	120.95(18)
F5-Sb1-F6	91.18(7)
F5-Sb1-F4	89.15(8)
F6-Sb1-F4	90.70(8)
F1-Sb1-F2	90.47(8)
F4-Sb1-F2	89.51(8)
F1-Sb1-F3	89.86(7)
F4-Sb1-F3	89.41(7)
C13-N1-C5	119.34(16)
C5-N1-C1	116.07(17)
C5-N1-C2	107.47(15)

C2-C1-N1	60.78(13)
N1-C1-H1B	114.9(15)
N1-C1-H1A	115.9(15)
C1-C2-N1	60.30(13)
N1-C2-C3	107.75(17)
N1-C2-H2	112.6(14)
C12-C3-C2	112.96(17)
C2-C3-C4	103.24(16)
C2-C3-H3	104.8(14)
C6-C4-C5	113.60(16)
C5-C4-C3	103.85(16)
C5-C4-H4	107.2(14)
N1-C5-C4	104.42(15)
C4-C5-H5A	112.4(17)
C4-C5-H5B	109.6(15)
C4-C6-H6A	113.2(16)
H6A-C6-H6B	110.(2)
H6A-C6-H6C	105.(2)
C8-C7-C12	119.92(19)
C12-C7-H7	119.8(14)
C9-C8-H8	123.1(16)
C8-C9-C10	119.76(18)
C10-C9-H9	117.6(13)
C9-C10-H10	122.2(15)
C12-C11-C10	120.85(18)
C10-C11-H11	119.0(14)
C11-C12-C3	121.40(17)
N1-C13-C19	110.67(15)
C19-C13-H13A	113.9(15)
C19-C13-H13B	114.8(13)
C19-C14-C15	120.8(2)
C15-C14-H14	120.(2)
C14-C15-H15	120.4(16)
C17-C16-C15	119.4(2)
C15-C16-H16	120.0(18)
C16-C17-H17	123.6(18)
C19-C18-C17	120.2(2)
C17-C18-H18	119.1(18)

C14-C19-C13 119.94(18)

Table 15. Anisotropic atomic displacement parameters $\left(\AA^{2}\right)$ for 194
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U_{12}$]

$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$	
Sb1	$0.02633(10)$	$0.02878(10)$	$0.02405(10)$	$-0.01374(7)$	$-0.00199(6)$	$-0.00028(6)$
F 1	$0.0438(8)$	$0.0568(10)$	$0.0858(12)$	$-0.0444(9)$	$-0.0128(8)$	$-0.0095(7)$
N 1	$0.0277(8)$	$0.0315(8)$	$0.0191(7)$	$-0.0122(6)$	$-0.0004(6)$	$0.0007(6)$
C1	$0.0551(13)$	$0.0333(11)$	$0.0247(10)$	$-0.0139(9)$	$0.0031(9)$	$-0.0075(9)$
F2	$0.0513(9)$	$0.0566(9)$	$0.0267(6)$	$-0.0166(6)$	$0.0005(6)$	$0.0004(7)$
C2	$0.0335(11)$	$0.0323(10)$	$0.0245(9)$	$-0.0165(8)$	$0.0006(8)$	$0.0013(7)$
F3	$0.0364(7)$	$0.0456(8)$	$0.0552(9)$	$-0.0209(7)$	$-0.0064(6)$	$0.0103(6)$
C3	$0.0281(10)$	$0.0336(11)$	$0.0235(10)$	$-0.0146(8)$	$-0.0008(8)$	$-0.0037(8)$
F4	$0.0523(9)$	$0.0443(8)$	$0.0629(10)$	$-0.0271(7)$	$-0.0038(7)$	$-0.0169(7)$
C4	$0.0275(9)$	$0.0338(10)$	$0.0227(9)$	$-0.0135(8)$	$-0.0033(7)$	$-0.0002(8)$
F5	$0.0738(11)$	$0.0751(12)$	$0.0289(7)$	$-0.0284(7)$	$-0.0001(7)$	$0.0073(9)$
C5	$0.0292(11)$	$0.0427(13)$	$0.0254(11)$	$-0.0183(9)$	$-0.0060(8)$	$0.0076(9)$
F6	$0.0507(8)$	$0.0482(9)$	$0.0458(8)$	$-0.0222(7)$	$-0.0140(7)$	$0.0205(7)$
C6	$0.0352(11)$	$0.0455(13)$	$0.0251(11)$	$-0.0134(9)$	$-0.0082(8)$	$0.0042(9)$
C7	$0.0317(10)$	$0.0405(12)$	$0.0269(10)$	$-0.0166(8)$	$-0.0035(8)$	$-0.0031(8)$
C8	$0.0414(12)$	$0.0485(13)$	$0.0238(10)$	$-0.0212(9)$	$-0.0037(8)$	$0.0012(9)$
C9	$0.0332(10)$	$0.0474(12)$	$0.0215(9)$	$-0.0131(8)$	$0.0042(8)$	$-0.0014(8)$
C10	$0.0339(10)$	$0.0456(12)$	$0.0269(10)$	$-0.0136(8)$	$0.0005(8)$	$-0.0095(9)$
C11	$0.0341(10)$	$0.0426(11)$	$0.0261(9)$	$-0.0175(8)$	$-0.0021(8)$	$-0.0039(8)$
C12	$0.0297(9)$	$0.0324(10)$	$0.0201(8)$	$-0.0108(7)$	$-0.0031(7)$	$0.0004(7)$
C13	$0.0287(9)$	$0.0385(11)$	$0.0228(9)$	$-0.0137(8)$	$-0.0048(8)$	$0.0012(8)$
C14	$0.0414(11)$	$0.0346(11)$	$0.0258(9)$	$-0.0117(8)$	$-0.0075(8)$	$0.0016(8)$
C15	$0.0445(12)$	$0.0478(14)$	$0.0368(11)$	$-0.0266(10)$	$-0.0102(9)$	$0.0117(10)$
C16	$0.0337(11)$	$0.0763(18)$	$0.0315(11)$	$-0.0321(11)$	$-0.0011(9)$	$0.0032(11)$
C17	$0.0412(12)$	$0.0568(14)$	$0.0255(10)$	$-0.0155(9)$	$0.0017(9)$	$-0.0118(10)$
C18	$0.0417(11)$	$0.0391(12)$	$0.0243(9)$	$-0.0147(8)$	$-0.0037(8)$	$-0.0022(8)$
C19	$0.0279(9)$	$0.0372(10)$	$0.0198(8)$	$-0.0137(7)$	$-0.0069(7)$	$0.0025(7)$

Table 16. Hydrogen atomic coordinates and isotropic atomic displacement parameters (\AA^{2}) for 194

x / a	y / b	z / c	$\mathrm{U}(\mathrm{eq})$	
H1B	$0.711(2)$	$0.539(3)$	$0.282(3)$	$0.036(6)$
H1A	$0.829(3)$	$0.478(3)$	$0.380(3)$	$0.042(7)$
H2	$0.558(2)$	$0.394(2)$	$0.479(2)$	$0.025(5)$
H3	$0.755(2)$	$0.337(2)$	$0.637(2)$	$0.025(5)$
H4	$0.691(2)$	$0.089(3)$	$0.641(2)$	$0.030(5)$
H5A	$0.831(3)$	$0.128(3)$	$0.435(3)$	$0.033(7)$
H5B	$0.906(3)$	$0.246(3)$	$0.446(3)$	$0.041(6)$
H6A	$0.934(3)$	$0.119(3)$	$0.709(3)$	$0.043(7)$
H6B	$0.887(3)$	$-0.021(3)$	$0.729(3)$	$0.049(7)$
H6C	$0.819(2)$	$0.045(3)$	$0.828(3)$	$0.037(6)$
H7	$0.662(2)$	$0.366(2)$	$0.845(3)$	$0.031(6)$
H8	$0.491(3)$	$0.331(3)$	$1.036(3)$	$0.044(7)$
H9	$0.303(2)$	$0.202(2)$	$1.068(2)$	$0.031(5)$
H10	$0.297(3)$	$0.106(3)$	$0.907(3)$	$0.038(6)$
H11	$0.470(2)$	$0.144(3)$	$0.713(3)$	$0.035(6)$
H13A	$0.610(2)$	$0.218(3)$	$0.338(3)$	$0.034(6)$
H13B	$0.592(2)$	$0.385(2)$	$0.250(2)$	$0.026(5)$
H14	$0.756(3)$	$0.082(3)$	$0.228(3)$	$0.060(9)$
H15	$0.906(3)$	$0.054(3)$	$0.048(3)$	$0.046(7)$
H16	$1.007(3)$	$0.257(3)$	$-0.135(3)$	$0.056(8)$
H17	$0.946(3)$	$0.484(3)$	$-0.134(3)$	$0.052(7)$
H18	$0.793(3)$	$0.501(3)$	$0.046(3)$	$0.053(8)$

BIBLIOGRAPHY

1. Zotchev, S. B., "Marine Actinomycetes as an Emerging Resource for the Drug Development Pipelines,"J. Biotech. 2012, 158, 168-175.
2. Fenical, W.; Jensen, P., "Developing a New Resource for Drug Discovery: Marine Actinomycete Bacteria,"Nat. Chem. Biol. 2006, 2, 666-673.
3. Kwon, H. C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W., "Marinomycins A-D, Antitumor-Antibiotics of a New Structure Class from a Marine Actinomycete of the Recently Discovered Genus Marinispora,"J. Am. Chem. Soc. 2006, 128, 1622-1632.
4. Pathirana, C.; Jensen, P. R.; Fenical, W., "Marinone and Debromomarinone: Antibiotic Sesquiterpenoid Naphthoquinones of a New Structure Class from a Marine Bacterium,"Tetrahedron Lett. 1992, 33, 7663-7666.
5. Williams, P. G.; Buchanan, G. O.; Feling, R. H.; Kauffman, C. A.; Jensen, P. R.; Fenical, W., "New Cytotoxic Salinosporamides from the Marine Actinomycete Salinispora Tropica,"J. Org. Chem. 2005, 70, 6196-6203.
6. Boonlarppradab, C.; Kauffman, C. A.; Jensen, P. R.; Fenical, W., "Marineosins A and B, Cytotoxic Spiroaminals from a Marine-Derived Actinomycete,"Org. Lett. 2008, 10, 5505-5508.
7. Furstner, A., "Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500 Years,"Angew. Chem. Int. Ed. 2003, 42, 3582-3603.
8. Aldrich, L. N.; Dawson, E. S.; Lindsley, C. W., "Evaluation of the Biosynthetic Proposal for the Synthesis of Marineosins A and B,"Org. Lett. 2010, 12, 1048-1051.
9. Cai, X.-C.; Wu, X.; Snider, B. B., "Synthesis of the Spiroiminal Moiety of Marineosins A and B,"Org. Lett. 2010, 12, 1600-1603.
10. Mo, S.; Sydor, P. K.; Corre, C.; Alhamadsheh, M. M.; Stanley, A. E.; Haynes, Stuart W.; Song, L.; Reynolds, K. A.; Challis, G. L., "Elucidation of the Streptomyces Coelicolor Pathway to 2-Undecylpyrrole, a Key Intermediate in Undecylprodiginine and Streptorubin B Biosynthesis,"Chem. Bio. 2008, 15, 137-148.
11. Panarese, J. D.; Konkol, L. C.; Berry, C. B.; Bates, B. S.; Aldrich, L. N.; Lindsley, C. W., "Spiroaminal Model Systems of the Marineosins with Final Step Pyrrole Incorporation,"Tetrahedron Lett. 2013, 54, 2231-2234.
12. Aldrich, L. N.; Berry, C. B.; Bates, B. S.; Konkol, L. C.; So, M.; Lindsley, C. W., "Towards the Total Synthesis of Marineosin A: Construction of the Macrocyclic Pyrrole and an Advanced, Functionalized Spiroaminal Model,"Eur. J. Org. Chem. 2013, 2013, 4215-4218.
13. Li, G.; Zhang, X.; Li, Q.; Feng, P.; Shi, Y., "A Concise Approach to the Spiroiminal Fragment of Marineosins,"Org. Biomol. Chem. 2013, 11, 2936-2938.
14. Pinkerton, D. M.; Banwell, M. G.; Willis, A. C., "Total Syntheses of Tambjamines C, E, F, G, H, I and J, BE-18591, and a Related Alkaloid from the Marine Bacterium Pseudoalteromonas Tunicata,"Org. Lett. 2007, 9, 5127-5130.
15. Daïri, K.; Yao, Y.; Faley, M.; Tripathy, S.; Rioux, E.; Billot, X.; Rabouin, D.; Gonzalez, G.; Lavallée, J.-F.; Attardo, G., "A Scalable Process for the Synthesis of the Bcl Inhibitor Obatoclax,"Org. Process Res. Dev. 2007, 11, 1051-1054.
16. Greenhouse, R.; Ramirez, C.; Muchowski, J. M., "Synthesis of Alkylpyrroles by the Sodium Borohydride Reduction of Acylpyrroles,"J. Org. Chem. 1985, 50, 2961-2965.
17. Geherty, M. E. Catalytic Asymmetric Claisen Rearrangements. The Development of Ru(II)-Catalyzed Formal [3,3] Sigmatropic Rearrangements and Related Enolate Allylation Reactions. Ph.D. Thesis [Online], University of Pittsburgh, Pittsburgh, PA, December 2012. dscholarship.pitt.edu/.16662/ (accessed Dec 28, 2014).
18. Davenport, A. J.; Davies, D. L.; Fawcett, J.; Russell, D. R., "Chiral Pyridylimidazolines: Synthesis, Arene Ruthenium Complexes and Application in Asymmetric Catalysis,"J. Chem. Soc. Perk. T 1 2001, 1500-1503.
19. Muchowski, J. M.; Hess, P., "Lithiation of the 6-Dimethylamino-1-Azafulvene Dimer. A Versatile Synthesis of 5-Substituted Pyrrole-2 Carboxaldehydes,"Tetrahedron Lett. 1988, 29, 777-780.
20. Kawai, T.; Komaki, M.; Iyoda, T., "Cross-Metathesis of Vinyl Aromatic Heterocycles with 1-Octene in the Presence of a Schrock Catalyst,"J. Mol. Catal. A - Chemical 2002, 190, 4553.
21. Hoye, T. R.; Jeffrey, C. S.; Tennakoon, M. A.; Wang, J.; Zhao, H., "Relay Ring-Closing Metathesis (RRCM): A Strategy for Directing Metal Movement throughout Olefin Metathesis Sequences,"J. Am. Chem. Soc. 2004, 126, 10210-10211.
22. Clark, J. R.; French, J. M.; Jecs, E.; Diver, S. T., "Geminal Alkene-Alkyne Cross Metathesis Using a Relay Strategy,"Org. Lett. 2012, 14, 4178-4181.
23. Donohoe, T. J.; Bower, J. F., "An Expedient Route to Substituted Furans via Olefin Cross-Metathesis,"Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 3373-3376.
24. Johnson, D. K.; Donohoe, J.; Kang, J., "Dilithium Tetrachlorocuprate Catalyzed Coupling of Allylmagnesium Bromide with α, ω-Dihaloalkanes,"Synthetic Commun. 1994, 24, 1557-1564.
25. Ghosh, S.; Ghosh, S.; Sarkar, N., "Factors Influencing Ring Closure through Olefin Metathesis - A Perspective,"J. Chem. Sci. 2006, 118, 223-235.
26. Spandl, R. J.; Thomas, G.; Diaz-Gavilan, M.; O'Connell, K. M. G.; Spring, D. R., Wiley: Ann Arbor, 2009; p 677.
27. Schreiber, S. L., "Target-Oriented and Diversity-Oriented Organic Synthesis in Drug Discovery,"Science 2000, 287, 1964-1969.
28. Spandl, R. J.; Bender, A.; Spring, D. R., "Diversity-Oriented Synthesis; A Spectrum of Approaches and Results,"Org. Biomol. Chem. 2008, 6, 1149-1158.
29. Thomas, G.; Wyatt, E.; Spring, D., "Enriching Chemical Space with Diversity-Oriented Synthesis,"Curr. Opin. Drug Discov. Devel. 2006, 9, 700-712.
30. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S., "StructureBased Design of Potent Non-Peptide MDM2 Inhibitors,"J. Am. Chem. Soc. 2005, 127, 1013010131.
31. Kobayashi, H.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H., "Absolute Configuration of a Novel Glutamate Receptor Antagonist Kaitocephalin,"Tetrahedron Lett. 2001, 42, 4021-4023.
32. Burton, G.; Ku, T. W.; Carr, T. J.; Kiesow, T.; Sarisky, R. T.; Lin-Goerke, J.; Baker, A.; Earnshaw, D. L.; Hofmann, G. A.; Keenan, R. M.; Dhanak, D., "Identification of Small Molecule Inhibitors of the Hepatitis C Virus RNA-Dependent RNA Polymerase from a Pyrrolidine Combinatorial Mixture,"Bioorg. Med. Chem. Lett. 2005, 15, 1553-1556.
33. Kati, W. M.; Montgomery, D.; Carrick, R.; Gubareva, L.; Maring, C.; McDaniel, K.; Steffy, K.; Molla, A.; Hayden, F.; Kempf, D.; Kohlbrenner, W., "In Vitro Characterization of A315675, a Highly Potent Inhibitor of A and B Strain Influenza Virus Neuraminidases and Influenza Virus Replication,"Antimicrob. Agents Chemother. 2002, 46, 1014-1021.
34. Scott, J. D.; Williams, R. M., "Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics,"Chem. Rev. 2002, 102, 1669-1730.
35. Gothelf, A. S.; Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A., "Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides-A Simple Approach to Optically Active Highly Functionalized Proline Derivatives,"Angew. Chem. Int. Ed. 2002, 41, 4236-4238.
36. (a) Gothelf, K. V.; Jorgensen, K. A., "Asymmetric 1,3-Dipolar Cycloaddition Reactions," Chem. Rev. 1998, 98, 863-910; (b) Kumar, A.; Gupta, G.; Srivastava, S., "Diversity-Oriented Synthesis of Pyrrolidines via Natural Carbohydrate Solid Acid Catalyst,"J. Comb. Chem. 2010, 12, 458-462; (c) Grigg, R.; Gunaratne, H. Q. N.; Sridharan, V., "X=Y-ZH Systems as Potential 1,3-Dipoles : Part 14. Bronsted and Lewis Acid Catalysis of Cycloadditions of Arylidene Imines of α-Amino Acid Esters,"Tetrahedron 1987, 43, 5887-5898; (d) Li, G.-Y.; Chen, J.; Yu, W.-Y.; Hong, W.; Che, C. M., "Stereoselective Synthesis of Functionalized Pyrrolidines by Ruthenium Porphyrin-Catalyzed Decomposition of α-Diazo Esters and Cascade Azomethine Ylide Formation/1,3-Dipolar Cycloaddition Reactions,"Org. Lett. 2003, 5, 2153-2156; (e) Galliford, C. V.; Beenen, M. A.; Nguyen, S. T.; Scheidt, K. A., "Catalytic, Three-Component Assembly Reaction for the Synthesis of Pyrrolidines,"Org. Lett. 2003, 5, 3487-3490; (f) Alemparte, C.; Blay, G.; Jørgensen, K. A., "A Convenient Procedure for the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes,"Org. Lett. 2005, 7, 4569-4572; (g) Garner, P.; Kaniskan, H. Ü.; Hu, J.; Youngs, W. J.; Panzner, M., "Asymmetric Multicomponent [C+NC+CC] Synthesis of Highly Functionalized Pyrrolidines Catalyzed by Silver(I),"Org. Lett. 2006, 8, 3647-3650; (h) Annunziata, R.; Cinquini, M.; Cozzi, F.; Raimondi, L.; Pilati, T., "1,3Dipolar Cycloaddition Reactions of Azomethine Ylides on Enantiomerically Pure (E)-[$\gamma]$ -Alkoxy-[$\alpha],[\beta]$-Unsaturated Esters,"Tetrahedron: Asymm. 1991, 2, 1329-1342.
37. (a) Barr, D. A.; Dorrity, M. J.; Grigg, R.; Hargreaves, S.; Malone, J. F.; Montgomery, J.; Redpath, J.; Stevenson, P.; Thornton-Pett, M., "X=Y-ZH Compounds as Potential 1,3-Dipoles. Part 43. Metal Ion Catalyzed Asymmetric 1,3-Dipolar Cycloaddition Reactions of Imines and Methyl Acrylate,"Tetrahedron 1995, 51, 273-294; (b) Galley, G.; Liebscher, J.; Paetzel, M., "Polyfunctionalized Pyrrolidines by Stereoselective 1,3-Dipolar Cycloaddition of Azomethine Ylides to Chiral Enones," J. Org. Chem. 1995, 60, 5005-5010; (c) Nyerges, M.; Rudas, M.; Tóth, G.; Herényi, B.; Kádas, I.; Bitter, I.; Töke, L., "Influence of $\mathrm{Ag}(\mathrm{I})$ and $\mathrm{Li}(\mathrm{I})$ Catalysts for 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. Reversal of the Stereochemistry," Tetrahedron 1995, 51, 13321-13330; (d) Barr, D. A.; Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; McMeekin, P.; Sridharan, V., "X-Y-ZH Systems as Potential 1,3-Dipoles : Part 15. Amine Generated Azaallyl Anios versus Metallo-1,3-dipoles in Cycloadditions of [α]-Amino Acid Esters. Facile Regio- and Stereo-Specific Formation of Pyrrolidines,"Tetrahedron 1988, 44, 557570.
38. Allway, P.; Grigg, R., "Chiral $\mathrm{Co}(\mathrm{II})$ and $\mathrm{Mn}(\mathrm{II})$ catalysts for the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides Derived from Arylidene Imines of Glycine,"Tetrahedron Lett. 1991, 32, 5817-5820.
39. Grigg, R., "Asymmetric Cascade 1,3-Dipolar Cycloaddition Reactions of Imines,"Tetrahedron: Asymm. 1995, 6, 2475-2486.
40. Longmire, J. M.; Wang, B.; Zhang, X., "Highly Enantioselective Ag(I)-Catalyzed [3 + 2] Cycloaddition of Azomethine Ylides,"J. Am. Chem. Soc. 2002, 124, 13400-13401.
41. Longmire, J. M. W., B; Zhang, X., "Highly Efficient Kinetic Resolution of 2Cyclohexenyl Acetate in Pd-Catalyzed Allylic Alkylation,"Tetrahedron Lett. 2000, 41, 5435.
42. Chen, C.; Li, X.; Schreiber, S. L., "Catalytic Asymmetric [3+2] Cycloaddition of Azomethine Ylides. Development of a Versatile Stepwise, Three-Component Reaction for Diversity-Oriented Synthesis,"J. Am. Chem. Soc. 2003, 125, 10174-10175.
43. Chuo, C.; Xiaodong, L.; Neumann, C. S.; M.-C Lo, M.; Schreiber, S. L., "Convergent Diversity-Oriented Synthesis of Small-Molecule Hybrids,"Angew. Chem. Int. Ed. 2005, 44, 2249-2252.
44. Clemons, P.; Koehler, A.; Wagner, B.; Springings, T.; Spring, D.; King, R.; Schreiber, S.; Foley, M., "A One-Bead, One-Stock Solution Approach to Chemical Genetics: Part 2,"Chem. Bio. 2001, 8, 1183-1195.
45. Gilchrest, B.; Eller, M.; Koehler, A.; McPherson, O.; Neumann, C.; Lewis, T. Therapeutic Methods using WRN Binding Molecules. U.S. Patent 2,008,027,990, August 29, 2007.
46. Nelson, S.; Bungard, C.; Wang, K., "Catalyzed Olefin Isomerization Leading to Highly Stereoselective Claisen Rearrangements of Aliphatic Allyl Vinyl Ethers,"J. Am. Chem. Soc. 2003, 125, 13000-13001.
47. Geherty, M. E.; Dura, R. D.; Nelson, S. G., "Catalytic Asymmetric Claisen Rearrangement of Unactivated Allyl Vinyl Ethers,"J. Am. Chem. Soc. 2010, 132, 11875-11877.
48. Metro, T.-X.; Duthion, B.; Gomez Pardo, D.; Cossy, J., "Rearrangement of β-Amino Alcohols via Aziridiniums: A Review,"Chem. Soc. Rev. 2010, 39, 89-102.
49. Hammer, C. F.; Heller, S. R.; Craig, J. H., "Reactions of β-Substituted Amines-II: Nucleophilic Displacement Reactions on 3-Chloro-1-Ethylpiperidine,"Tetrahedron 1972, 28, 239-253.
50. Verhelst, S. H. L.; Paez Martinez, B.; Timmer, M. S. M.; Lodder, G.; van der Marel, G. A.; Overkleeft, H. S.; van Boom, J. H., "A Short Route toward Chiral, Polyhydroxylated Indolizidines and Quinolizidines,"J. Org. Chem. 2003, 68, 9598-9603.
51. Claisen, L., "Uber Umlagerung von Phenol-Allyathern in C-Allyl Phenole,"Ber. Dtsch. Chem. Ges. 1912, 45, 3157-3166.
52. Martín Castro, A. M., "Claisen Rearrangement Over the Past Nine Decades,"Chem. Rev. 2004, 104, 2939-3002.
53. Bal, B. S.; Childers Jr, W. E.; Pinnick, H. W., "Oxidation of α, β-Unsaturated Aldehydes,"Tetrahedron 1981, 37, 2091-2096.
54. Bennasar, M. L.; Zulaica, E.; Alonso, S., "Preparation of RCM Substrates for Azepinoindole Synthesis: Reductive Amination versus Tetrahydro- γ-Carboline Formation,"Tetrahedron Lett. 2005, 46, 7881-7884.
55. Shiro, Y.; Kato, K.; Fujii, M.; Ida, Y.; Akita, H., "First Synthesis of Polyoxin M,"Tetrahedron 2006, 62, 8687-8695.
56. Hu, X. E., "Nucleophilic Ring Opening of Aziridines,"Tetrahedron 2004, 60, 2701-2743.
57. Boga, C. F., Claudo; Savoia, Diego, "Stereoselective Synthesis of 3,6-Disubstituted 1,2Diaminocyclohexanes through Ring-Closing Metathesis of 4,5-Diamino-1,7-Octadiene Derivatives,"Synthesis 2006, 2, 285-292.
58. Bray, B. L.; Mathies, P. H.; Naef, R.; Solas, D. R.; Tidwell, T. T.; Artis, D. R.; Muchowski, J. M., "N-(Triisopropylsilyl)pyrrole. A Progenitor "Par Excellence" of 3-Substituted Pyrroles,"J. Org. Chem. 1990, 55, 6317-6328.
59. Bennasar, M. L.; Zulaica, E.; Alonso, S., "Preparation of RCM Substrates for Azepinoindole Synthesis: Reductive Amination versus Tetrahydro-[$\gamma]$-Carboline Formation,"Tetrahedron Lett. 2005, 46, 7881-7884.
60. Davies, S. N., R; Price, P; Roberts, P; Russell, A; Savory, E.; Smith, A; Thomson, J., "Iodine-Mediated Ring-Closing Iodoamination with Concomitant N-debenzylation for the Asymmetric Synthesis of Polyhydroxylated Pyrrolidines,"Tetrahedron: Asymm. 2009, 20, 758772.

[^0]: ${ }^{\mathrm{a}}$ Isolated yields. ${ }^{\mathrm{b}}$ Not determined. $\mathrm{Bn}=$ benzyl, NIS $=N$-iodosuccinimide.

