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ABT-737 inhibits the anti-apoptotic proteins B-cell lymphoma 2 (BCL-2) and BCL-X;. Meayamycin B
switches the splicing pattern of myeloid cell leukemia factor 1 (MCL1) pre-mRNA. Specifically, inhibition of
splicing factor 3B subunit 1 (SF3B1) with meayamycin B promotes the generation of the proapoptotic, short
splicing variant (MCL1-S) and diminishes the antiapoptotic, long variant (MCL1-L). This action was
previously associated with the cytotoxicity of meayamycin B in non-small cell lung carcinoma cell lines.
ABT-737 induced apoptosis in response to an ablation of MCL1-L by meayamycin B. In this study, we
further exploited this synergistic combination in head and neck squamous cell carcinoma (HNSCC), up to
90% of which overexpress MCL1 and BCL-X;. In a panel of seven HNSCC cell lines, the combination of
meayamycin B and ABT-737 rapidly triggered a Bax/Bak-mediated apoptosis that overcame the resistance
from HPV16-positive HNSCC against each agent alone. Both RT-PCR and Western blotting showed that
meayamycin B up-regulated MCL1-S and down-regulated MCL1-L. Significantly, we discovered that SF3B1
was involved in the splicing of oncogenic HPV16 E6 to produce non-oncogenic HPV16 E6%, indicating that
SF3B1 may inhibit HPV16-induced tumorigenesis.

ead and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide'. HNSCC

mostly occurs by cigarette/alcohol consumption; however, a subgroup of HNSCC (26%) is caused by the

integration of high-risk human papillomavirus (HPV), especially HPV16°. It has been perplexing that
only ~10% of those who were exposed to high-risk HPV16 or 18 develop cancer’. In oropharyngeal carcinoma
particularly, HPV16 is detected in over 60% of the cancer tissues*. Due to their distinct mechanisms of tumor-
igenesis, HPV-positive and HPV-negative HNSCC should be treated separately>®. Platinum-based chemother-
apy, the most commonly used drug regardless of HPV status, is far less effective against HPV-negative HNSCC"*®.
Moreover, in the past thirty years, the five-year overall survival rate of HNSCC has not improved’, warranting the
discovery of new pharmacological interventions.

The discovery of novel therapeutics requires a comprehensive understanding of the disease biology. Since
HPV16 is present in nearly 60% of all cervical cancers', its expression is most widely studied in cervical cancer
models. The HPV16 genome encodes six early (E) viral proteins (E1, E2, E4, E5, E6, and E7) and two late (L) viral
capsid proteins (L1 and L2), accompanying the differentiation stages of the host keratinocytes''. Among these
proteins, only the overexpression of E6 and E7 was correlated with malignant transformation'”. At the transcrip-
tion level, E6 and E7 share a mutual early p97 promoter. E6 is alternatively spliced to generate the full-length E6
and E6* lacking intron 1 (Figure 1A). Because the open reading frames of E6 and E7 are only 2 nucleotides apart,
the transcription of E6 prohibits the translation of E7 protein. Otherwise, when intron 1 is excised, splicing variant
E6* allows the translation of E7'*>'*. However, there is evidence showing that the translation of E7 is independent
of the splicing of E6'°. In response to epidermal growth factor, the activation of ERK1/2 pathway facilitates the
production of E6. SIRNA knockdown experiments demonstrated that hnRNP Al and hnRNP A2/B1 favored E6,
while splicing factor Sam68 and transcription factor Brm favored E6*'°. This report indicated that splicing and
transcription are coupled in HPV16 E6/E7 expression.

Functionally, E6 inhibits apoptosis by triggering the degradation of p53, and E7 enhances cell proliferation by
binding to another tumor suppressor protein retinoblastoma-associated protein (pRb)'”**. Whereas the function
of full-length E6 is relatively well understood, the function of E6* is still elusive, and available data lend contro-
versial conclusions; through RT-PCR analysis, E6* expression was found to be significantly higher in late stage
cervical lesion than early stage counterparts'>*. In contrast, E6* counteracts the anti-apoptotic action of E6 in the
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Figure 1| (A). Splicing of HPV16 E6 gene. (B). Structures of meayamycin
B and ABT-737.

degradation of p53 and precaspase 8>, Additionally, the overex-
pression of E6* is cytotoxic when expressed in immortalized monkey
fibroblasts CV-1 cells*. In sum, these unconnected pieces of data
argue that both basic and translational studies of E6 splicing are
lagging, calling for further studies advanced by novel strategies.

Meayamycin B (Figure 1B), the most potent inhibitor of splicing
factor 3B (SF3B), sensitized non-small cell lung carcinoma cells
(A549 and H1299) to ABT-737 (Figure 1B) by modulating the splic-
ing of Mcl-1**. Similar observations were reported for the combina-
tion of spliceostatin A (structurally similar to meayamycin B) and
ABT-737 in neuroblastoma®. Given the mutual risk factors, such as
alcohol and cigarette consumption, shared between non-small cell
lung carcinoma and HNSCC***’, we reasoned that meayamycin B
might also prime HNSCC cells for ABT-737. Therefore, we wished to
examine the anticancer activity of meayamycin B, as a single-agent or
in combination with ABT-737. In addition, we used meayamycin B
to examine the role that SF3B subunit 1 (SF3B1) plays in the splicing
of MCLI and more importantly, HPV16 E6.

Methods

Cell lines. Four HPV16-positive HNSCC cell lines, UD-SSC2 (gift from Professor
Henning Bier, University of Dusseldorf, Germany)*®, UM-SCC47 (gift from Professor
Thomas Carey, University of Michigan)***, 93-VU-147T (gift from Professor Hans
Joenje, VU Medical Center, The Netherlands)*', UPCLI:SCC90%, and the HPV16-
negative HNSCC cell lines PCI-13 and PCI-15B (gifts from Professor Theresa
Whiteside, University of Pittsburgh Cancer Institute)** and UM-SCC22B (gift from
Professor Thomas Carey, University of Michigan)** were used throughout the study.
Bax/"/Bak ™/~ and wild-type mouse embryonic fibroblasts (MEFs) were gifts from
the late Professor Korsmeyer (Harvard Medical School) through Professor Scott
Oakes (University of California, San Francisco)®. 93-VU-147T cell line was cultured
in DMEM/F12 medium (Gibco, New York), and other cell lines were cultured in
Dulbecco’s Modified Eagle’s Medium (Gibco, New York). All cell culture media were
supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, and 2%
L-glutamine. Cells were maintained at 37°C in air containing 5% CO,.

Pharmacodynamic interaction analysis. The cells were exposed to meayamycin B
and ABT-737 at various concentrations, either as single agents or in concomitant
combinations (at a constant 3 : 5000 ratio) for 72 h until cell viability was monitored
using the MTS (([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt])) method. Bliss expected effect (Egxp,
expressed as cell viability) from the combination of meayamycin B and ABT-737 were
calculated using Egxp = Ex + Eg — EA*Ep, where E, and Ej are effects from each
single-agent treatment at a given dose. The difference between the Bliss expected and
the observed effect (Eops) of the combination is AE = Egxp — Eops (Figure 2A). AE
scores were summed across the dose range to generate a Bliss sum. Bliss sum = 0

indicates that the combination treatment is additive (as expected for independent
pathway effects); Bliss sum > 0 indicates an activity greater than additive (synergy);
and Bliss sum < 0 indicates the combination is less than additive (antagonism).

Annexin V - fluorescein isothiocyanate (FITC) and propidium iodide (PI)
staining. In all cases, cells were treated with 3 nM meayamycin Band 5 pM ABT-737
(alone or in combination), an equal volume of DMSO as a negative control, or

133 uM cisplatin as a positive control. Cells were treated for 5 h and stained with
Annexin V-FITC (BD Pharmingen, CA) and PI (BD Pharmingen, CA) following the
manufacturer’s protocol. The cells were then analyzed by flow cytometry using a
CyAn cytometer (Beckman Coulter, CA). Data were analyzed using Summit V4.3
software.

Caspase 3/7 activity assays. The cells, seeded at 1.0 X 10* per well in triplicate in
white solid-bottom 96-well plates, were treated with 3 nM meayamycin B and 5 pM
ABT-737 (alone or in combination) or an equal volume of DMSO as a negative
control for 9 h. Then, caspase 3/7 activity was monitored using Caspase-Glo® 3/7
reagent (Promega, WI) with a Modulus II Microplate Reader (Promega, WI)
following the manufacturers’ protocols. The caspase 3/7 activity was expressed as the
mean luminescence signal from the compound-treated wells divided by that from
vehicle-treated wells.

RNA isolation and RT-PCR. Total RNA was isolated using RNeasy mini kit
(QIAGEN, Maryland) and subjected to RT-PCR analysis (1 ug per reaction) using
the SuperScript® II reverse transcriptase (Invitrogen, New York). The thermocycler
program for the HPV-16 E6 and E7, BCL-X, MCLI, and B-actin involved an initial
denaturation at 94°C for 5 min, 30 cycles at 94°C for 30 sec, 58°C for 30 sec, 72°C for
50 sec, and a final elongation at 72°C for 7 min. The primer sequences are included in
Table S1 (Supporting Information). The PCR products were examined on 1.5%
agarose gels and imaged by a Molecular Imager Gel Doc™ XR+ (Bio-Rad, CA). The
intensities of the bands stained with ethidium bromide were quantified with the Lab
Imager software (Bio-Rad, CA). Of note, the sizes of the splicing variants for HPV16
E6 and Mcl-1 were not factored when calculating the relative abundance of a splicing
variant of interest.

siRNA transfection. The pre-designed ON-TARGETplus modified siRNA duplexes
targeting SF3B1 (020061-13) was obtained from Dharmacon (Dharmacon, MA). 93-
VU-147T and UM-SCC47 cells were seeded (2.5 X 10°) into 35-mm dishes and
transfected with 125 nM siRNA using lipofectamine 2000 (Invitrogen, NY) for 24 h
before usage. iGENOME Non-Targeting siRNA Pool #2 (Dharmacon, MA) was
used as a negative control. Transfection efficiency was evaluated by western blotting
of SF3B1 protein after 48-72 h post transfection.

Western blotting. Cells were harvested in a cell lysis buffer (50 mM Tris-HCI,

150 mM NaCl, 1% Triton X-100, 0.1% SDS, and 1 mM PhCH,SO,F) and a cocktail of
protease inhibitors (Roche, IN). Total protein (50 pg) was electrophoresed on a 12%
SDS-polyacrylamide gel and transferred to polyvinylidene difluoride membranes
(Millipore, MA). Membranes were blocked at room temperature for 1 h with a
blocking buffer (5% non-fat dry milk in 10 mM Tris-HCl pH 7.6, 150 mM NaCl,
0.1% Tween-20) and then incubated at 4°C overnight with rabbit anti-MCL1 (5453S),
anti-BCL-2 (28708S), anti-B-actin (49708S) (Cell signaling technology, MA), anti-BCL-
X1/BCL-Xs (sc-634) (Santa Cruz, CA), or mouse anti-SF3B1 (D221-3) (MBL, IL)
followed by 1-h incubation with a horseradish peroxidase (HRP)-conjugated anti-
rabbit IgG (7074S) or anti-mouse secondary antibodies (Cell signaling technology,
MA). Blots were developed with ECL Plus reagents (PerkinElmer Life and Analytical
Science, MA) and quantified using an Image Gauge Version 4.0 (FUJIFILM, NJ).

Statistics. Data analysis and graph plotting were carried out using a GraphPad Prism
5.0c for Mac (GraphPad Software). All of the data were presented as mean * standard
deviation and were analyzed by Student’s t test or ANOVA followed by the Tukey’s
multiple comparison; the significance level for all analyses was 5%.

Results

Meayamycin B synergized with ABT-737 to cause apoptosis. We
previously reported that meayamycin B sensitized non-small cell
lung carcinoma cells (A549 and H1299) to ABT-737 by modu-
lating the splicing of MCL1**. Here, we investigated the apoptotic
response of a panel of HNSCC cells to the combination of meaya-
mycin B and ABT-737. There are two methods in common use for
calculating the dose-response relationship expected from combina-
tion therapy when two drugs are assumed to have no interactions:
Loewe additivity® and Bliss independence”. Loewe additivity
assumes that two inhibitors act on a target through a similar
mechanism, as shown by Chou and Talalay for mutually exclusive
enzyme inhibitors®. Bliss independence assumes that inhibitors can
bind mutually nonexclusively through distinct mechanisms. The
insufficient water solubility of ABT-737 prohibited the generation
of dose response curves required for the Loewe method. Therefore,
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Figure 2 | Meayamycin B (MAMB) synergized with ABT-737 in HNSCC cell lines. (A). 72-h viability assays with MTS using meayamycin B and

ABT-737 as single agents or in combination at a constant 3 : 5000 ratio. B-C. Evaluation of synergistic interaction between meayamycin B and ABT-737 in
HNSCC cells using the Bliss independence model. (B). 3D graph of Egxp — Eops expressed as differences in the percentage of viable cells that are treated by
the combination. (C). Bliss sums demonstrate strong synergism in HNSCC cell lines (n = 3). The data represent results from three separate experiments

and each data point constitutes mean * SD.

Bliss independence was used to determine drug interactions. To this
end, we performed 72-h MTS-based antiproliferation assays in a panel
of seven cell lines PCI-13, PCI-15B, UM-SCC22B, UPCI:SCC90, 93-
VU-147T, UM-SCC47, and UD-SCC2 (GIs, data shown in Table 1).
Meayamycin B only inhibited the growth of 93-VU-147T, UM-
SCC47, and UD-SCC2 cells. Intriguingly, the combination of meaya-
mycin B and ABT-737 eradicated these cells (Figure 2A). In others,
especially UM-SCC22B and UPCI:SCC90, single-agent meayamycin
B induced substantial cell death, and the combination with ABT-737
did not enhance this effect. As an evaluation of drug interaction with
Bliss independence, AE values - expressed as the cell viability-
difference between expected and observed combination treatment
- demonstrated a significantly higher cell growth inhibition by the
combination (Figure 2B). In addition, Bliss sums clustered in the
range of 400-600 (Figure 2C), indicating strong synergism.

Meayamycin B dropped ABT-737’s Gls, values by 1-2 orders of
magnitude (Table 1). These data underscore the scope and
generality of the efficacy for the combination of meayamycin B
and ABT-737 in HNSCC cell lines.

To confirm that the meayamycin B and ABT-737 causes apopto-
sis, we stained treated cells with Annexin V-FITC and PI and mon-
itored the rates of apoptosis using flow cytometry. To demonstrate an
early onset of apoptosis triggered by the combination of the two
drugs, we chose 4-h exposure for four HNSCC cell lines (PCI-15B
and PCI-13 as HPV16-negative, and UM-SCC47 and UPCL:SCC90
as HPV16-positive). After 4-h exposure, we observed 5-10% more
Annexin V-positive population (Figure 3, right quadrants) in the
combination-treated than in cisplatin-treated (positive control) cells,
indicating the rapidity of apoptosis stimulation. Necrosis (Figure 3,
upper left quadrants) was also induced as a secondary event in the
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Table 1 | 72-h growth inhibition assays for meayamycin B and ABT-737, as single agents or in combination in HNSCC. For the combination
data, [meayamycin B]:[ABT-737] = 3:5000
Glso

Single agent
Cell lines Meayamycin B (nM) ABT-737 (u M) ABT-737 (1 M) in combination
PCI-13 HPV-16-negative 0.19 = 0.07 15+1.8 0.59 =0.83
PCI-15B 0.14 = 0.06 11 =45 0.19 =0.19
UM-SCC22B 0.60 £0.12 19+29 0.84 £ 0.86
UM-SCC47 HPV-16-positive 0.038 = 0.006 19 =123 0.20£0.11
93-VU-147T 0.074 = 0.039 43 =35 0.50 =0.70
UD-SCC2 0.025 = 0.009 28 +2.9 0.15=0.02
UPCI:SCC90 0.074 = 0.022 6.6=1.5 0.14 = 0.082

apoptotic pathway®. As a downstream apoptotic event, activated
caspase 3/7 (9-h exposure) experienced 7- to 15-fold increase with
more evident changes observed in cells relatively resistant to each
single-agent (Figure 4A). Taken together, the Annexin V-FITC/PI
staining and the caspase 3/7 activity assays both suggest rapid syn-
ergistic apoptosis-stimulation by the combination of meayamycin B
and ABT-737 in HNSCC cell lines.

To further support the onset of apoptosis mediated by Bax/Bak, we
exposed Bax™'"/Bak™'~ MEFs and SV40-immortalized wild-type
MEFs to the combinations of meayamycin B and ABT-737. We chose
9-h exposure for caspase 3/7 activity assays because it should take
more than 4 h to observe the downstream effects of meayamycin B.
Similarly to HNSCC, the wild-type, but not Bax™'~/Bak™'~ MEFs,
showed dose-dependent caspase 3/7 activation upon combination
treatment (Figure 4B lower panel). Accordingly, Bax™'~/Bak™'~
MEFs were significantly more resistant to the combination treat-
ments (Figure 4B upper panel), suggesting that Bax/Bak-mediated
apoptosis is a mechanism of cell killing by the combination of meaya-
mycin B and ABT-737. Of note, other cell death pathways such as
autophagy might have contributed to a ~15% decrease of prolifera-
tion in Bax~'"/Bak™~ MEFs caused by the combination, since
MCLI1-elimination triggers autophagic cell death when Bax is
defected™*.

Basal expression of MCLI correlates with meayamycin B sensiti-
vity. In PCI-13 and 93-VU-147T cells, we previously observed a
correlation between the MCLI-L level and the response to
meayamycin B. To determine whether basal MCL1-L expression
more broadly correlates with meayamycin B sensitivity, we
assessed the basal expression of MCL1-L, BCL-X, and BCL-2 using
Western blotting (Figure 5A). BCL-X} was expressed in all the cell
lines at levels statistically unrelated to meayamycin B response; BCL-
2 was abundant in UPCI:SCC90. MCLI1-L was the dominant MCL1
isoform in all the cell lines except UM-SCC22B, which exclusively
expressed MCL1-S. In addition, the total levels of MCL1 in PCI-13,
PCI-15B, UM-SCC22B and UPCIL:SCC90 were consistently higher
than those in the other cell lines (MCL1/B-actin = ~1.5 versus
=0.8). Interestingly, three out of the four MCL1-abundant cell
lines were HPV16-negative.

The efficacy of meayamycin B against the seven HNSCC cell
lines was revisited. Based on their responses to the compound,
they fell into two sub-groups; PCI-13, PCI-15B, UM-SCC22B and
UPCIL:SCC90 were nearly eradicated, while UM-SCC47, UD-SCC2,
and 93-VU-147T stopped growing upon meayamycin B exposure at
sub- to low-nanomolar concentrations (Figure 5B). With the excep-
tion of UPCL:SCC90, all meayamycin B-sensitive cell lines were
HPV16-negative, indicating that HPV16 might desensitize cells to
meayamycin B. Generally, we observed higher sensitivity toward
meayamycin B in HPV16-negative, MCL1-abundant cells.

Regulation of splicing of MCL1 pre-mRNA. MCL1 pre-mRNA is
spliced into antiapoptotic MCLI-L (solid line; Figure 6A) and
proapoptotic MCL1-S (dotted line). We exposed the cells to
meayamycin B either at 3 nM for various periods (1, 9, and 24 h)
or for 9 h at various doses (0.03, 0.3, and 3 nM). At the mRNA level,
meayamycin B up-regulated MCL1-S and down-regulated MCL1-L
in a dose- and time-dependent manner in all tested HNSCC cell lines
(Figure 6B and 6C). This reciprocal change of the two isoforms was
detectable at 9 h with 0.3 nM or 1 h with 3 nM meayamycin B
treatments and peaked within 9 h of 3 nM meayamycin B expo-
sure. Meayamycin B did not generate other splicing variants of
MCLI as evidenced by results from the RT-PCR with an amplicon
(for sequences, see Suppl. Table 1) spanning all three exons of MCLI.
At the protein level, we observed the same pattern in all the cell lines,
with UM-SCC22B as the only exception (Figure 6D and 6E); in UM-
SCC22B, RT-PCR showed a switch of MCLI alternative splicing but
Western blotting showed only a dominant MCL1-S upon meayamy-
cin B exposure. This observation indicates that MCL1 expression
may be regulated at other steps, such as post-translational modifica-
tions, that are specific for this cell line. Also, in comparison to a
partial obliteration of MCL1-L caused by single-agent meayamycin
B, the cells exposed to the combination for the same period (9 h in
PCI-15B) completely lost MCL1, demonstrating the onset of
apoptotic cell death (Figure 6F).

Meayamycin B also inhibited the constitutive splicing of MCL1 in
UM-SCC22B, PCI-15B, PCI-13, and UM-SCCA47 cell lines, as man-
ifested by the accumulation of a transcript without exon 1 (Suppl.
Figure S1). Together, these data suggest that meayamycin B
decreased antiapoptotic MCL1-L levels by modulating both alterna-
tive splicing and a cell type-dependent constitutive splicing.

In parallel, we also examined BCL-X, which is also prone to regu-
lation at the pre-mRNA splicing level in response to anticancer
drugs, enhancing the production of proapoptotic BCL-Xs***'. The
splicing of BCL-X did not change when the cells were incubated with
3 nM meayamycin B for 1, 9, or 24 h (Suppl. Figure S2 and S3).

Cell type-dependent inhibition of HPV-16 E6 splicing. During the
splicing process, inclusion or exclusion of intron 1 of E6 produces E6
or E6* splicing variant, respectively (Figure 1A). We assessed the
levels of E6 and E7 mRNA in meayamycin B- or DMSO-treated
HPV16-positive HNSCC cell lines. Figures 7A and B show that the
full-length transcript was dominant for E6 in the DMSO-treated
cells. In meayamycin B-treated UM-SCC47, 93-VU-147T, and
UPCI:SCC90 cells, E6 mRNA increased and E6* mRNA decreased
in a dose- and time-dependent manner. The inhibition was observed
as early as 1 h of meayamycin B-exposure as demonstrated in
UPCI:SCCI0 cells (Figure 7C). However, this alteration was not as
prominent in cell lines constitutively expressing lower levels of E6*,
such as UD-SCC2 cells. Due to the unavailability of HPV16 E6
antibody, we did not examine the changes of splicing of E6 at the
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Figure 3 | Annexin V-FITC/PI staining. Effects of meayamycin B and ABT-737 on the induction of early apoptosis (Annexin V-FITC staining) and late
apoptosis (PI staining) as measured by flow cytometry. The relative cell populations with positive Annexin V-FITC stains were plotted in each cell line.
The data show that within 4 h, the combination of 3 nM MAMB and 5 uM ABT-737 caused significantly higher population of apoptotic cells than

cisplatin (n = 3).

protein level. In all HPV16-positive cell lines, the E7 mRNA level was
unaffected, although E6 and E7 genes are co-transcribed*.

SF3B1 inhibition by siRNA and meayamycin B. We asked whether
meayamycin B regulates the splicing of HPV16 E6 and MCL1
exclusively through inhibiting SF3B1. Since none of these patient-
derived HNSCC cell lines have been subject to gene transfection, we
used HeLa cells to test the transfection methods for SF3B1
knockdown. At 48 and 72 h post transfection, HeLa cells were

directly subject to RNA extraction for the detection of MCL1
alternative ~ splicing pattern using RT-PCR. SF3BI1-siRNA
remarkably switched the dominant MCLI variant from MCL1-L to
MCL1-S, indicating SF3B1 is involved in the alternative splicing of
MCLI in HeLa (Suppl. Figure S4)*.

Subsequently, we knocked down SF3B1 in HPV16-positive UM-
SCC47 and 93-VU-147T cell lines. In all cases, cells were collected at
48 h post transfection, because MCLI was regulated similarly at 48 h
and 72 h post SF3B1 knockdown in HeLa cells. As shown in
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Figure 8A, SF3B1-siRNA effectively eliminated a majority of SF3B1
protein in both cell lines. Figure 8B shows the effect of SF3B1 knock-
down and meayamycin B, as single treatment or in combination, on
the splicing of HPV16 E6 and MCLI. RT-PCR was used to examine
the relative abundance of each splicing variant of E6 and MCLI1.
Without SF3B1 inhibition, the E6/E6* ratios were 47/53 and 92/8
in UM-SCC47 and 93-VU-147T, respectively. In UM-SCC47, SF3B1
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knockdown increased the E6/E6* ratio to 82/18, while non-targeting
siRNAs did not alter the ratio. The effect was less evident in 93-VU-
147T, probably because of the low basal level of E6*. Analogous to
E6, the MCL1-L/MCLI-S ratios in UM-SCC47 and 93-VU-147T
were decreased by SF3B1 knockdown from 86/14 and 81/19 to 65/
35 and 48/52, respectively. These data indicate SF3B1 is involved in
the regulation of the splicing of HPV16 E6 and MCLI1.
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Meayamycin B caused the splicing alterations to the E6 and MCL1
in HPV16-positive HNSCC cells. Hence, we asked whether such
effect from meayamycin B (Figures 6 and 7) was solely via SF3B1
inhibition. We exposed UM-SCC47 and 93-VU-147T cells treated
with SF3B1 siRNA or non-targeting siRNAs to 1 nM meayamycin B
for 3 h. Interestingly, although meayamycin B alone only caused
negligible changes to the splicing of E6 and MCLI, the drug
enhanced the levels of changes caused by SF3B1 knockdown
(Figure 8B). This was especially prominent in UM-SCC47 cells, with
the E6/E6* ratios increased from 82/18 to 90/10, and MCL1-L/
MCLI-S ratios increased from 65/35 to 23/77. The fact that short-
term treatment with low-dose meayamycin B could further change
the splicing pattern beyond silencing SF3B1 might be explained by
the different modes of inhibition by pharmacological and biological
techniques. For a protein target such as SF3B1 that interacts with
RNAs and proteins, an siRNA knockdown eliminates the entire pro-
tein entity, thereby obliterating these interactions. In contract,
meayamycin B might inhibit a subset of the functions of the target,
causing partial disturbance to the protein scaffold that might still
allow a subset of RNA-protein and/or protein-protein interactions
to occur*.

Discussion

More than 90% of human genes undergo alternative splicing to gen-
erate multiple mRNA variants in a tissue-specific manner*. The
corresponding protein isoforms have different, even antagonistic,
properties. Their deregulation has been implicated in various disease
states, including cancer*’. Therefore, splicing modulators represent a

promising molecular therapeutic strategy. This in vitro study in
seven HNSCC cell lines revealed that meayamycin B synergized with
ABT-737 to quickly trigger Bax/Bak-mediated apoptosis. Meaya-
mycin B selectively regulated the alternative splicing of MCLI1,
increasing proapoptotic MCL1-S and decreasing antiapoptotic
MCL1-L. Importantly, the total MCL-1 level correlated with the
single-agent efficacy of meayamycin B. In selected cell lines, meaya-
mycin B also inhibited constitutive splicing of MCL1 and HPV16 E6.
In 93-VU-147T cells, knockdown of HPV16 E6 induced an increase
of total MCL1 level by an unknown mechanism.

The regulation of HPV16 E6 splicing in vivo awaits full character-
ization. Spliceosomal UlsnRNP-binding cis-acting elements have
been identified in HPV16 genome*. Whether and how the U2
snRNP and its associated subcomplexes SF3a and 3b interact with
HPV16 genome is still unclear. In addition, it was found that viruses
can modify the expression of splicing factors of the host cells to meet
their needs*. This lack of systematic understanding calls for ded-
icated attention to the splicing regulations of this tumorigenic virus.
These observations also justify the rising necessity to treat HPV 16-
positive and HPC16-negative HNSCC as two separate diseases.

In this study in HNSCC, SF3B1 inhibitor meayamycin B and
SF3B1 knockdown each could lead to dominant splice variants of
HPV16 E6 and MCL-1 to E6 and MCLI-S, respectively. These
demonstrated that the biogenesis of E6* and Mcl-1g require
SF3B1 in HNSCC cells. Interestingly, 3-h treatment of meayamy-
cin B could significantly enhance the effect of SF3B1 knockdown,
indicating that meayamycin B affected other splicing regulatory
proteins involved in these splicing events. Concerning the short-
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term of meayamycin B exposure, it is likely resulted from a direct
interaction. Possible explanations include (1) meayamycin B fits
into an interface where SF3B1 interact with its binding partners,
which was proposed in the target ID studies of another SF3b
inhibitor pladienolide*’; (2) meayamycin B has other distinct
binding target.

In general, HPV16 positive cells were more resistant to meayamy-
cin B or ABT-737 alone, which was overcome when the drugs were
combined. The resistance might stem from HPV16 proteins such as
E6, E7 and E2 that individually negatively regulate pro-apoptotic
proteins in the host cells'***",

A myriad of strategies employ genetic and pharmacologic
approaches for targeting MCL1%. Since MCLI is alternatively spliced
into isoforms with antagonistic functions, targeting alternative splic-
ing is advantageous; with the obliteration of antiapoptotic MCL1-L,
proapoptotic MCL1-S increases and selectively neutralizes residual

MCLI1-L. Here, we report the first small molecule that modulates the
splicing of MCL1 in HNSCC. Combined with our previous reports in
non-small cell lung carcinoma, these studies demonstrate a positive
correlation between the MCLI level and the efficacy of SF3B1 inhi-
bitors, indicating their potential usage for cancers overexpressing
MCL1.

Meayamycin B and other FR901464 analogs presumably target
SE3B1 that was recently reported to regulate BCL-X alternative splic-
ing®. Interestingly, BCL-X, also abundantly expressed in HNSCC,
was not altered by meayamycin B. This was consistent with our
previous findings in non-small cell lung carcinoma and Webb’s find-
ings in pediatric rhabdomyosarcoma Rh18 cells using their structur-
ally similar analog®**. This lack of changes in the BCL-X system
may be a cell type-dependent splicing regulation for this gene.
Importantly, the unresponsiveness of BCL-X with extended expo-
sure (48-h data not shown) indicates that the rapid modulation of
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MCL1 splicing was a main contributor to the rapid apoptosis we
observed from the combination of meayamycin B and ABT-737.

In summary, we demonstrated that the combination of SF3B1
inhibitor meayamycin B and BCL-X/BCL-2 inhibitor ABT-737 trig-
gered apoptosis in HNSCC in vitro models. Single-agent meayamy-
cin B elicited stronger toxicity in MCL1-abundant HPV16-negative
than in MCL1-deficient HPV16-positive HNSCC, representing a
potential therapy for MCL1-addicted cancer. In addition, HPV E6
is the first viral gene discovered to be regulated by SF3B1 inhibitors at
a splicing level; this discovery indicates the feasibility of meayamycin
B as a chemical probe to study the splicing regulation of HPV16 E6
and other viral genes.
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