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Non-adiabatic charge transfer (CT) is one of the simplest but very important chemical reactions. 

As a model system, alkanedithiols are among the most popular ones for short- or medium-range 

CT. Peptide nucleic acid (PNA), which consists of nucleobases and peptide backbones, is another 

promising model system for long-range CT. Various models and computational methods have been 

developed to describe three major experimental configurations: electrochemical measurement with 

self-assembled monolayer films (SAMs), single-molecule conductance measurement and 

photoinduced electron transfer (PET). 

This dissertation have employed above methods to study the two model systems. The first 

work focuses on electrochemical models. Single-step models are widely used for analyzing CT 

through SAMs. However, long-range CT can occur in a “hopping” regime that involves multiple 

events. This study describes a three-step kinetic scheme to model CT in this regime. It is 

corroborated by the experimental results of a 10-mer PNA. The second study compares single 

molecule conductances of alkanedithiols and alkoxydithiols. Both molecular junction 

measurements and theoretical simulations by non-equilibrium Green’s function (NEGF) method 

show that the conductance is lower for alkoxydithiols and the difference is length dependent. A 

pathway analysis of the electronic coupling is used to explain the results. The last two studies 

address the importance of conformational distributions on CT in PNAs: The third study compares 

the electrochemical charge transfer rates of normal aeg-PNA and γ-PNA which has a less flexible 
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backbone. Theoretical simulations show that the greater flexibility of the aeg-PNA gives rise to a 

more frequent appearance of high-CT rate conformations. In the last study a new PNA scaffold 

with a [Ru(Bpy)3]
2+ donor and a bis(8-hydroxyquinolinate)2 copper acceptor for PET is described. 

Experiments show that whether the [Ru(Bpy)3]
2+ is terminally or centrally situated affects PET. 

Molecular dynamics simulations reveal that the difference in conformational distributions is a 

possible explanation. The above findings provide a deeper understanding of CT in molecules, and 

may facilitate the development of non-adiabatic dynamics in a bigger picture. 
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1.0  INTRODUCTION 

1.1 THE IMPORTANCE OF ELECTRON TRANSFER 

Electron transfer or charge transfer is commonly seen as the simplest but very important (if not the 

most important) chemical reaction.1,2 First, electron transfer is the key step in a lot of biological 

processes in nature, such as photosynthesis and respiration3–6 Second, it is a fundamental process 

in many artificial systems of great technological impact, such as batteries, solar cells, modern 

electronics, ...etc.7–14 Finally but perhaps most importantly for chemists, the methods used in 

electron transfer studies and the conclusions obtained from electron transfer studies connect all 

branches of chemistry. It has been more than half a century since Marcus’s groundbreaking work, 

but new experiments keep emerging from different aspects of electron transfer processes and 

electron transfer theory keeps evolving to explain more phenomena. There is no sign that this trend 

will stop soon. 

In this dissertation, experimental and computational methods are combined to study some 

fundamental aspects of electron transfer in newly developed nanoscale systems. In this chapter, 

features of the basic theory and related experimental/computational methods are reviewed. 



 2 

1.2 BASIC ELECTRON TRANSFER MECHANISMS 

1.2.1 Marcus Theory for Molecular Electron Tunneling 

1.2.1.1 Classical Marcus Theory 

The classical Marcus theory is probably the most famous and concise description of electron 

transfer. It can be derived from the following kinetic scheme for an outer-sphere bimolecular 

electron transfer in solvent:15–19 

 

Equation 1.1 

where (𝐷𝐴)† is the transition state and (𝐷+𝐴−)† is the resonant state of activated products. These 

two states have the same nuclear configuration but different electronic configurations (Franck-

Condon principle).15 The first step corresponds to the solvent reorganization, the second step 

corresponds to the actual electron transfer, and the last step corresponds to the formation of the 

products. By applying the transition state theory and standard techniques in chemical kinetics, such 

as the steady-state approximation and detailed balance, the overall reaction rate can be written as: 

𝑘𝐸𝑇 ∝ exp(−
Δ𝐺‡

𝑘𝐵𝑇
) 

Equation 1.2 

where Δ𝐺‡ is the activation energy and 𝑘𝐵 is the Boltzmann constant. Marcus further assumed two 

parabolas (see Figure 1.1) as the potential energy surfaces, and the final expression of 𝑘𝐸𝑇 was 

obtained: 

Δ𝐺‡ = −
(𝜆 + Δ𝑟𝐺 )

2

4𝜆
 

⟹ 𝑘𝐸𝑇 = 𝐴 exp(−
(𝜆 + Δ𝑟𝐺 )

2

4𝜆𝑘𝐵𝑇
) 

Equation 1.3 
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where 𝜆 is the reorganization energy and Δ𝑟𝐺 is the reaction free energy. The relationship between 

Δ𝐺‡ and thermodynamic parameters 𝜆 and Δ𝑟𝐺 can be easily derived from Figure 1.1B. It will be 

revealed in the next section that the pre-exponential factor 𝐴 is related to the electronic coupling 

𝐻𝐷𝐴 in the non-adiabatic (or diabatic) limit. It is amazing that there are only three parameters in 

Equation 1.3 while it can describe a very wide range of experiments. One of the most striking 

predictions of the equation is the Marcus “inverted region”. According to Equation 1.3, 𝑘𝐸𝑇 

reaches its maximum at 𝜆 = |Δ𝑟𝐺| and its value decreases if the driving force keeps increasing! It 

was not until about 25 years after Marcus’ prediction that the first experimental evidence for the 

existence of the inverted region was reported by Miller et al.20,21 

 

 
 

Figure 1.1. Panel A: Profile of an effective one-dimensional potential energy surface proposed by Marcus in 1960.22 

Adapted from Ref. 22 with permission of The Royal Society of Chemistry. The “inverted region” was predicted by 

Marcus in the same paper. The solid lines show the corresponding adiabatic potential energy surface and the dashed 

lines are the diabatic potential energy curves (See section 1.2.1.2) Panel B.: The definition of 𝝀, 𝚫𝑮‡, and 𝚫𝒓𝑮  in 

classical Marcus theory. 

  𝐻𝐷𝐴

Δ𝐺‡

Δ𝑟𝐺
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1.2.1.2   Diabatic States and the Semi-classical Marcus Theory 

Before the discussion of semi-classical theory, it is useful to expand the pre-exponential factor in 

Equation 1.3 as:23,24 

𝐴 = 𝑣𝑛𝜅𝑒𝑙 ⇒ 𝑘𝐸𝑇 = 𝑣𝑛𝜅𝑒𝑙 exp (−
(𝜆 + Δ𝑟𝐺 )

2

4𝜆𝑘𝐵𝑇
) 

Equation 1.4 

where 𝑣𝑛 is the frequency of passage (nuclear motion) through the transition state corresponding 

to the reaction coordinate value q𝐶, and 𝜅𝑒𝑙 is the electronic transmission coefficient. Two limits 

of electron transfer (ET) reactions can be defined by 𝜅𝑒𝑙: 1) an adiabatic limit if 𝜅𝑒𝑙 ≈ 1, which 

means that almost every passage through q𝐶 leads to electron transfer, and 2) a nonadiabatic limit 

if 𝜅𝑒𝑙 ≪ 1, which means that only a very small fraction of passages through the transition state 

along the nuclear coordinate results in electron transfer. Note that ‘bridge-mediated electron 

transfer’ usually occurs in the nonadiabatic limit, hence the adiabatic limit will not be discussed. 

The term “nonadiabatic” in the electron transfer literature is often viewed as a synonym for 

“weak-coupling”. However, the usage of nonadiabatic (as well as adiabatic) has its root in chemical 

reaction dynamics. Within the Born-Oppenheimer approximation, adiabatic potential energy 

surfaces (or curves) are the eigenstates of the Born-Oppenheimer Hamiltonian 𝐇, as plotted in the 

solid line in Figure 1.1A. When the adiabatic potential curves are well separated (e.g. when the 

nuclear configuration R is close to the bottom of the reactant curve “R”), the change of nuclear 

configuration will not cause an electric transition and the Born-Oppenheimer approximation works 

very well. In contrast, the adiabatic potential curves might be very close to each other at some 

region(s) (e.g., when R is near the transition state in Figure 1.1) and the separation of nuclear 

motion and electronic motion are not reliable. In the representation of adiabatic potential curves, 

a change of nuclear configuration from 𝐑 to 𝐑 + 𝚫𝐑 results in an electronic transition from the 

ground state (lower potential curve) to an excited state (upper potential curve). The breakdown of 
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the Born-Oppenheimer approximation at this nuclear configuration is caused by the nonadiabatic 

coupling (also called as vibronic coupling or derivative coupling), which comes from the 

momentum operator of the full molecular Hamiltonian and has a form like: 

𝜏𝑖𝑗(𝐑) ≡ ⟨Ψi|
𝜕
𝜕𝐑

Ψ𝑗⟩ Equation 1.5 

Direct calculation of the nonadiabatic coupling is usually not easy, especially when 

multiple adiabatic curves are close to each other and the main reason is that explicit derivatives of 

the wavefunctions are needed. To avoid such trouble, one can expand the wavefunctions on a 

complete orthonormal basis set that meets the following requirement:18,25,26 

𝐝𝑖𝑗(𝐑) ≡ ⟨Φi|
𝜕
𝜕𝐑

Φ𝑗⟩ = 0,   ∀𝑖, 𝑗, 𝐑 Equation 1.6 

That is, the derivative coupling vanishes in this representation and {Φi} is a strictly diabatic basis 

set. Of course {Φi} are not the eigenstates of the Born-Oppenheimer electronic Hamiltonian 𝐇 

anymore, but we can still calculate a set of potential energy surfaces by using ⟨Φ𝑖|𝐻̂|Φ𝑖⟩, and the 

results are called diabatic potential energy surfaces (PES), as shown in the dashed line in Figure 

1.1A. The adiabatic and nonadiabatic PES almost overlap everywhere expect for the small region 

near the transition state. More importantly, it has been shown that a dynamic process can be 

identically described in either the adiabatic picture with vibronic couplings (Equation 1.5) or in 

the diabatic picture with the electronic couplings ⟨Φ𝑖|𝐻̂|Φ𝑗⟩ —but the diabatic picture has the 

advantage of not requiring wavefunction derivatives and some important tools that deal with 

electronic couplings can be readily applied. 

 For electron transfer problems, a two-state model with two adiabatic potential curves as 

shown in Figure 1.1 is usually sufficient and one can relate the electronic couplings and adiabatic 

states analytically. 𝐇 in a diabatic representation is a  ×   matrix: 



 6 

𝐇 ≡ (
𝐇𝐷 𝐇𝐷𝐴

𝐇𝐴𝐷 𝐇𝐴
) = (

𝐸𝐷 𝐇𝐷𝐴

𝐇𝐷𝐴 𝐸𝐴
) Equation 1.7 

It should be noted that in Equation 1.7, D denotes the reactant diabatic state |𝐷⟩ where charge is 

localized on the donor and A denotes the product diabatic state |𝐴⟩ where the charge is localized 

on the acceptor, unless Koopmans’ theorem is assumed (see section 1.4.2.1).7,27 𝐸𝐷 or 𝐸𝐴 is not 

the “energy of the donor/acceptor” but the value of the reactant or product diabatic curve at nuclear 

configuration R. Diagonalize 𝐇 and one obtains the eigenenergies of the adiabatic states: 

𝐸𝐷 = 𝐸𝐴 is reached at 𝐑 = qC, see Figure 1.1B. Consequently, the energy gap between the two 

adiabatic curves at the transition state (𝐑 = qC) is  |𝐻𝐷𝐴|. In the weak (diabatic electronic) 

coupling limit of electron transfer (i.e., |𝐻𝐷𝐴| small), the two adiabatic curves are very close to 

each other, and the nonadiabatic coupling is indeed important. This limit can be considered as 

“nonadiabatic”, even in the sense of chemical reaction dynamics. Actually, because of the 

assumption of the second step in Equation 1.1 (the nuclear configuration and energy of (𝐷𝐴)† is 

the same as (𝐷+𝐴−)† but their electronic states are different), Marcus theory is intrinsically a 

nonadiabatic theory in terms of reaction dynamics. 

With this knowledge and these definitions in hand, one can derive the expression for the 

electron transfer rate constant, 𝑘𝐸𝑇. From a quantum-mechanical perspective, electron transfer is 

a transition from state |𝐷⟩ to |𝐴⟩. In the weak coupling limit, Fermi’s golden rule applies; and 

together with Franck-Condon principle, the following rate expression is obtained:19 

𝐸2(1) =
𝐸𝐷 + 𝐸𝐴

 
± √(

𝐸𝐷 − 𝐸𝐴
 

)
2

+ 𝐻𝐷𝐴
2  

=
𝐸𝐷 + 𝐸𝐴

 
± |𝐻𝐷𝐴| if 𝐸𝐷 = 𝐸𝐴 

Equation 1.8 
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𝑘𝐸𝑇 =
 𝜋

ℏ
|𝐻𝐷𝐴|

2|⟨𝐷𝑣𝑖𝑏|𝐴𝑣𝑖𝑏⟩|
2𝛿(𝐸𝐷 − 𝐸𝐴) 

=
 𝜋

ℏ
|𝐻𝐷𝐴|

2FCWD 

Equation 1.10 

 where FCWD is short for “Franck-Condon weighted density-of-states”. |𝐷𝑣𝑖𝑏⟩ and |𝐴𝑣𝑖𝑏⟩ are 

vibrational states of the reactant and product, respectively. The 𝛿 function ensures the conservation 

of energy in thermal electron transfer and distinguishes the FCWD from the common Franck-

Condon factor in vertical excitation. To get an explicit analytical expression for the FCWD, 

harmonic oscillators are commonly assumed (corresponds to the parabolic shape of the potential 

curves in Figure 1.1). In the high-temperature limit, 𝑘𝐵𝑇 ≫ ℏ𝜔 (where 𝜔 is the angular frequency 

of the vibrational degree of freedom) and the vibrational mode can be treated classically. That is, 

the Boltzmann distribution can be used and the electron transfer occurs only at the crossing point. 

To find FCWD is equivalent to find the probability of the reactant at 𝐑 = qc of an ensemble and 

the result is:18 

where 𝒵 is the partition function. After working out the expression for 𝒵 and 𝐸𝐷(𝐑) − 𝐸𝐴(𝐑) by 

using the parabolic shape assumption, the semi-classical expression of 𝑘𝐸𝑇 is obtained:24 

𝑘𝐸𝑇 =
 𝜋

ℏ
|𝐻𝐷𝐴|

2
1

√4𝜋𝜆𝑘𝐵𝑇
exp(−

(𝜆 + Δ𝐺𝑟)
2

4𝜆𝑘𝐵𝑇
) Equation 1.11 

At room temperature Equation 1.11 usually applies for reactions that have low frequency modes 

linked to the electron transfer. However, at very low temperature this result predicts that the rate 

constant goes to zero, lim
𝑇→0

𝑘𝐸𝑇 = 0, which is in contradiction with experimental observations. The 

𝑓(𝐑) =
1

𝒵
exp(−

𝐸𝐷(𝐑)

𝑘𝐵𝑇
) 

⇒ FCWD = ∫d𝐑  𝑓(𝐑)   𝛿(𝐸𝐷(𝐑) − 𝐸𝐴(𝐑)) 

Equation 1.9 
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expression for all temperature range has been derived by Jortner et al. and the details can be found 

in various reports.19,28–30 

1.2.2 Long-Range Electron Transfer: the Switch from Tunneling to Hopping 

Just as the meaning of “fast” changes in spectroscopy, the meaning of “long-range” seems to 

gradually changes with time. Before the discovery of “long-range” charge transfer in DNA, the 

electron tunneling in proteins or other donor-bridge-acceptor molecule over ~ 10 Å was already 

considered as long-range electron transfer.27,31,32 They were considered “long” because the 

medium between the donor and acceptor is mostly saturated chains, which are usually considered 

insulating. The coupling should be much smaller than what is observed from a simple semi-

classical direct tunneling model. The problem is solved by McConnell’s superexchange model, 

which predicts an exponential decay with the distance at long enough distances:33  

|𝐻𝐷𝐴|
2 ∝ exp(−𝛽 ∙ 𝑟𝐷𝐴) Equation 1.12 

where 𝛽 is a parameter that characterizes the steepness of the coupling’s decrease with distance. 

The superexchange model can be viewed as a variant of tunneling. Different from a semi-classical 

direct tunneling model, multiple pathways coexists and the molecular orbitals on the bridge 

participate, see Chapter 3 for a detailed discussion. Nevertheless, it is still a single-step and 

coherent model like direct tunneling. Marcus theory discussed in previous sections, applies. 

Currently a charge transfer over ~ 10 Å is not often considered that “long”, especially in 

nucleic acid studies. Charge transfer over a distance as long as 200 Å has been observed.34 More 

importantly, the distance dependence of the charge transfer rate in such systems deviates 

drastically from a superexchange mechanism. Usually it is not an exponential decay in the “long-

range” end but can be described by a power law:  
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𝑘 ∝ 𝑟𝐷𝐴
−𝛾

 Equation 1.13 

and the charge transfer still follows an exponential decay at the “short-range” end. The transition 

occurs at about ~ 10 to 20 Å depending on the sequence.35,36 This behavior has attracted a lot of 

theoretical studies. By now, most groups believe that this long-range charge transfer proceeds 

through an incoherent multiple-step “hopping” mechanism, while the superexchange still 

dominates in the “short” range.37,38 This does not mean that the Marcus theory cannot be used for 

long-range electron transfer, however. Actually, the fundamental steps in the various “hopping” 

mechanisms are often viewed as Marcus-like electron transfer events (usually multiple-step kinetic 

models do not impose much restraint on the elementary steps).39–45 That is, the elementary steps 

could still be coherent tunneling or superexchange and thus the Marcus theory can be applied. For 

DNA, Ratner et al. has discussed the possibility of thermal activation for the elementary step in 

hopping,46,47 and the conclusion is that the elementary step should occur by tunneling when there 

are three or fewer AT base pairs between two GC pairs (that is, the hopping sites for DNA). The 

prediction is consistent with our temperature dependence results of PNA, see Chapter 2. 

1.3 EXPERIMENTAL METHODS 

1.3.1 Electrochemical Measurement 

1.3.1.1 Self-Assembled Monolayers 

A SAM is a single ordered molecular layer formed spontaneously on a solid substrate through 

physical or chemical adsorption.48 The formation of an alkanethiol SAM is a typical example; by 

immersing a clean gold substrate into a solution of alkanethiols with the alkyl chain of several -
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CH2- units for hours (12~48 hours usually), a compact monolayer forms spontaneously because of 

the chemical adsorption of the -SH group on the gold surface and the hydrophobic forces that drive 

the packing of the alkane chains together. A ‘cartoon’ of a SAM is shown in Figure 1.2. A well-

ordered SAM has many potential applications. First, the SAM can be used as a protective coating 

by blocking access of undesired molecules to the metal surface.49 Second, SAMs can be used to 

control the wetting of a surface by changing the end-group (hydrophilic or hydrophobic). The 

surface of OTS (Octadecyltrichlorosilane) coated cuvettes is very hydrophobic and this protocol 

is routinely applied in many photophysical labs. This property can also be used in friction or 

lubrication control.50,51 In addition, the SAM motif offers the possibility to form a layer-by-layer 

structure and investigate more complex phenomena. For example, the direct electron transfer of 

proteins on SAMs is an extensive research field, with many potential applications.52,53 

 

Figure 1.2. A cartoon of a self-assembled monolayer (SAM). Gold is the most typical substrate but SAMs can also 

form on other metals and semiconductors, or even glass or quartz. 

In this work, a SAM provides a way to fix molecules on an electrode so that the charge 

transfer properties can be studied easily. The conductance of the SAM can be measured through a 

scanning probe microscopy (SPM), such as STM or C-AFM (Conductive-AFM). A more feasible 

way for many groups is to introduce an electroactive group (such as ferrocene), then the electron 

transfer process can be monitored by electrochemistry experiment, such as cyclic voltammetry. In 
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contrast to the more common solution electrochemistry, mass transport is fully eliminated for the 

case of immobilized redox molecules, and one can focus on the charge transfer process directly. 

For this reason, electroactive SAMs have become one of the more popular strategies for the study 

of charge transfer kinetics since the 1990s.54–56  

1.3.1.2 𝒌𝟎 Measurement 

A kinetic scheme for a single electron transfer event in electrochemistry may be written as 

where O and R denote the oxidized and reduced form of the redox species (or the electroactive 

group in the SAM), respectively.  

A very important feature of electrochemistry is that the  Δ𝑟𝐺 of the redox reaction in 

Equation 1.14 can be easily changed by the overpotential 𝜂, therefore the rate constants, 𝑘𝑟𝑒𝑑 and 

𝑘𝑜𝑥 are also subject to the overpotential 𝜂. To compare the intrinsic charge transfer properties of 

different systems, the standard heterogeneous rate constant 𝑘0 is used: 

Note that 𝑘0 cannot be measured directly. For solution electrochemistry, an extrapolation 

of the Tafel plot can be used, but it is not feasible for SAM electrochemistry. An obvious reason 

is that the consumed redox species cannot be replenished to reach a steady-state current when 𝜂 is 

kept as constant. Instead cyclic voltammetry is often used and the electric current can be expressed 

as: 

𝑖(𝑡) = 𝑛𝐹𝐴[𝑘𝑟𝑒𝑑(𝜂(𝑡))𝐶𝑂(𝑡) − 𝑘𝑜𝑥(𝜂(𝑡))𝐶𝑅(𝑡)]  Equation 1.16 

 
Equation 1.14 

𝑘0 = 𝑘𝑟𝑒𝑑(𝜂 = 0) = 𝑘𝑜𝑥(𝜂 = 0)  Equation 1.15 
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where 𝐶𝑂(𝑡) and 𝐶𝑅(𝑡) are the concentration of O and R near the electrode at time 𝑡. As shown 

later, 𝑘0 can be extracted by solving the above equation. The first step to solve Equation 1.16 is to 

eliminate 𝐶𝑂(𝑡) and 𝐶𝑅(𝑡) which are not direct observables in electrochemistry. This can be done 

formally by integrating the kinetic differential equation with proper boundary conditions: 

𝑑𝐶𝑅(𝑡)

𝑑𝑡
= 𝑘𝑟𝑒𝑑𝐶𝑂(𝑡) − 𝑘𝑜𝑥𝐶𝑅(𝑡) 

 
Equation 1.17 

The special difficulty in cyclic voltammetry is that the rate constants 𝑘𝑟𝑒𝑑 and 𝑘𝑜𝑥 also change 

with time because the overpotential is always changing. Therefore the crucial step left is to get the 

expression of 𝑘𝑟𝑒𝑑 and 𝑘𝑜𝑥 in terms of 𝜂. Marcus theory is a natural solution to this problem. 

However, charge transfer through redox SAMs is a heterogeneous electron transfer process, and 

its description requires that the single level Marcus theory, derived in section 1.2.1, must be 

modified accordingly. 

Consider an occupied electronic state 𝓀 in the electrode with energy 𝜀𝓀. In a cathodic 

reaction, electrons will transfer to the redox molecule and the free energy for electrons at state 𝑘 

is:  

Δ𝐺𝑟(𝜀𝓀) = 𝜀𝑓 − 𝜀𝓀 + 𝑒𝜂  Equation 1.18 

where 𝜀𝑓 is the Fermi energy and 𝜂 is the overpotential. In the non-adiabatic limit, Equation 1.11 

applies and the rate constant for electronic state 𝓀 is: 

Note that here the donor is actually the electrode. The overall reduction rate constant should be the 

sum over all occupied electronic states, that is,  

𝑘𝑟𝑒𝑑 =
 𝜋

ℏ
|𝐻𝐷𝐴|

2
1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝜌(𝜀) 𝑓(𝜀)  exp [−

(𝜆 + (𝜀𝐹 − 𝜀) + 𝑒𝜂)2

4𝜆𝑘𝐵𝑇
]  d𝜀

∞

−∞

 
 

Equation 1.20 

𝑘𝑟𝑒𝑑(𝜀𝓀) =
 𝜋

ℏ
|𝐻𝐷𝐴|

2
1

√4𝜋𝜆𝑘𝐵𝑇
exp (−

(𝜆 + Δ𝐺𝑟(𝜀𝓀))
2

4𝜆𝑘𝐵𝑇
) Equation 1.19 
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where 𝑓(𝜀) is Fermi function, and 𝜌(𝜀) is the density of states (DOS) of the electrode and is 

normalized with surface area. The subscript 𝓀 is dropped for simplicity. Similar expression can be 

written for hole transfer or anodic reactions, see Chapter 2. This kind of approach was pioneered 

by Dogonadze et al.57,58 On the other hand, if one assumes that the DOS of the oxidized form in 

solution is a normalized Gaussian distribution with √ 𝜆𝑘𝐵𝑇 as the standard deviation, then 

𝜌𝑟(𝜀) =
1

√4𝜋𝜆𝑘𝐵𝑇
 exp [−

(𝜆 + (𝜀𝐹 − 𝜀) + 𝑒𝜂)2

4𝜆𝑘𝐵𝑇
] Equation 1.21 

And Equation 1.20 can be obtained immediately by using Fermi’s golden rule: 

𝑘𝑟𝑒𝑑 =
 𝜋

ℏ
|𝐻𝐷𝐴|

2∫ 𝜌(𝜀) 𝑓(𝜀) ⋅ 𝜌𝑟 (𝜀, 𝜆)d𝜀
∞

−∞

 

=
 𝜋

ℏ
|𝐻𝐷𝐴|

2
1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝜌(𝜀) 𝑓(𝜀)  exp [−

(𝜆 + (𝜀𝐹 − 𝜀) + 𝑒𝜂)2

4𝜆𝑘𝐵𝑇
]  d𝜀

∞

−∞

 

Equation 1.22 

A similar conclusion applies for 𝑘𝑜𝑥 and the energy diagram is shown in Figure 1.3A. The shape 

of 𝜌𝑟(𝜀) can be rationalized by analyzing the charge transfer rate between the Fermi level of the 

electrode and the redox molecule using the single level Marcus theory.23 This approach was first 

proposed by Gerischer59 and is identical to Dogonadze’s approach in the non-adiabatic limit, as 

shown here, although they will diverge in the adiabatic limit.60–62 

Once Equation 1.20 or Equation 1.22 is obtained, Equation 1.16 can be solved numerically 

to simulate cyclic voltammetry. Figure 1.3B shows a set of cyclic voltammograms at different 

overpotential scan rate. One can find that the voltage of  the faradaic current peak current shifts a 

lot. Actually, the shift depends on both the scan rate and 𝑘0. By performing cyclic voltammetry at 

different scan rates and comparing the experimental voltammograms with simulated ones, the 

experimental 𝑘0 can be determined,55,56,63 see Chapter 2 for details. 
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Figure 1.3. Panel A: Schematic presentation of the DOS (Density Of States) and occupancies of the electrode and the 

redox couple. Occupied states are shown as filled area. 𝜺𝑭(𝑬) is the Fermi level of the metal, whose value is equivalent 

to the applied potential 𝑬. 𝑬𝟎 is the formal potential of the redox couple. Panel B: Simulated cyclic voltammgrams 

for 𝒌𝟎 = 𝟎. 𝟏𝟐𝟓. 

Equation 1.14 and Equation 1.20 only describe a single-step tunneling or superexchange 

process. They are adequate for systems such as a ferrocenated alkanethiol SAMs in which only 

superexchange is present. For more complicated systems such as peptide nucleic acid SAMs, the 

charge transfer mechanism is often in the incoherent multiple-step “hopping” regime. The validity 

of applying Equation 1.20 to such systems was never rigorously tested before. This is the main 

topic of Chapter 2, and a three-step model is developed to solve the problem. It turns out that the 

traditional single-step model can be used to fit the data, but the interpretation of the results requires 

some revision. 

1.3.2 Single-Molecule Conductance Measurement by Molecular Junctions 

1.3.2.1 Break Junction Experiments 

Single-molecule conductance measurements are the newest methods to study charge transport 

through a molecule.64 The earliest example is probably Reed’s measurement of the single-molecule 
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conductance of benzene-1,4-dithiol in a mechanically controllable break junction (MCB).65 Later, 

Tao et al.66 developed the Scanning Tunneling Microscopy controlled Break Junction (STM-BJ), 

and this method is now widely used. In the experimental part of Chapter 2 this method is used to 

probe charge transport through saturated chains. In this method, a gold tip is alternately brought 

into contact with a gold surface that is pre-modified with the molecule to be studied and then 

withdrawn. The tunneling current-distance dependence is recorded while a constant bias is applied 

between the tip and the substrate. When one or more molecules are present in the junction, current 

plateaus are observed on the current-distance profile instead of a simple exponential decay. The 

procedure is repeated several thousand times to probe various geometries of the molecules in the 

junction. 

The emergence of repeatable molecular junction technique might be the most important 

milestone in the development of molecular electronics which was initiated by H. Kuhn et al.67,68 

and Ratner et al.69 in the early seventies. After several decades, workers finally have a reliable 

platform to test current flow through individual molecules and investigate its dependence on the 

molecular structure.  This new ability has posed important challenges for theoretical chemists (and 

physicists) and spurred the development of non-equilibrium Green’s function formalism70 - 

because as an open system, the basic Marcus theory does not apply to the conductance experiment. 

An elementary quantum mechanics based introduction to NEGF will be presented in section 1.4.3. 

1.3.2.2 The Relationship between Conductance g and Rate Constant 𝒌𝟎 

The relationship between charge transfer and molecular conduction is a very fundamental 

question.71 The former one has been studied for decades and the latter is an emerging area, people 

are eager to know if previously gained knowledge can be applied and whether or not the new 

experiments can help us to answer some old but hard questions. The two processes represent two 
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facets of electron transmission through a molecular environment, and as such should be related. 

Still this relationship is not trivial for several reasons.72 First, as noted above, a molecular junction 

is an open system while intramolecular or intermolecular electron transfer is a closed system. 

Electrochemical systems with SAMs are also open systems, but for the studies with electroactive 

SAMs there is no steady-state current and therefore no “net” charge transport to a sink that is 

separate from the system. This means that the boundary conditions for those systems are totally 

different. Secondly, even though the core process in both situations is the same, the fact that in the 

conduction process one always puts a potential across the junction can change the electronic 

structure of the bridge. This problem can be eased in calculating g because one can also use the 

near-zero conductance and compare it with 𝑘0. Finally, the rate constant and conductance are 

actually different physical observables of different dimensionalities. 

Nitzan carefully studied this problem and he found that one is indeed proportional to other 

in the appropriate limit, and, surprisingly, this conclusion holds irrespective of whether they are in 

the superexchange or sequential hopping regime.73,74 New developments on this topic have 

emerged recently,75 however, within the scope of this dissertation, one can simply assume that the 

calculate near-zero conductance 𝑔 ∝ 𝑘0. Therefore, theoretical calculations of the conductance 

can also provide insights into the charge transfer problems, as in Chapter 3 and 4. 

1.3.3 Photoinduced Electron Transfer 

Photoinduced electron transfer (PET) is probably one of the most common ways to study 

intramolecular charge transfer. Gray and Winkler’s work on Ru-modified protein,76,77 Barton, 

Lewis and Wasielewski’s work on DNA charge transfer,78–84 and many other studies on donor-

bridge-acceptor molecules85–89 have elaborated and deepened our understanding of electron 
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transfer and its dependence on electronic coupling and nuclear bath degrees of freedom. 

Photoinduced electron transfer is usually performed in solution and the Δ𝑟𝐺  is usually not zero. 

Importantly PET of unimolecular systems made it possible to explore clearly the Marcus inverted 

region. 

PET studies can be distinguished by how the reaction progress is followed. It seems that 

most of the PET systems can be measured by transient absorption (TA) spectroscopy. TA is often 

operated in a pump-probe fashion. The PET process is initiated by a first short “pump” pulse and 

then concentration of the reaction and product as function of time are measured by following 

“probe” pulses (which is very different from electrochemistry and largely simplifies kinetics 

models, although Δ𝑟𝐺  cannot be controlled as easily as in electrochemistry). However, TA 

requires a high concentration of the sample to reach better S/N and might not be the best choice 

when the amount of sample is very limited or susceptible to aggregation. 

In this dissertation, time-resolved fluorescence which monitors the loss of reactant 

population rather than the rise of product formation is used to follow the PET process. More 

specifically, the time-correlated single photon counting (TCSPC) technique is used.90 In contrast 

to TA, TCSPC needs the sample to be fluorescent (or photoluminescent) and therefore not every 

system can be measured. However, if a system can be measured by TCSPC, it will have several 

advantages over TA. First, the concentration of the sample can be much lower, this is especially 

helpful when the amount of the sample is limited. TCSPC is based on photoluminescence and one 

can always increase the intensity of the light source (pulsed laser usually) as long as no 

photobleaching is observed. Even if the power of the laser cannot be increased, one can always 

increase the experimental time to collect enough counts. Second, photon counting is a Poisson 

process and the signal follows a Poisson distribution. Therefore a lot of statistical tools can be 
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applied and the maximum errors can be estimated pretty accurately. In Chapter 5 we implement a 

distributional fitting algorithm and show how new physics that cannot be found by traditional 

component fittings can be revealed. The details will be discussed there. 

1.4 COMPUTATIONAL METHODS 

1.4.1 𝚫𝒓𝑮 and 𝝀 

In electrochemistry, 𝑘0 is measured and Δ𝑟𝐺is set to be zero. Δ𝑟𝐺 is not zero in PET 

experiments but it can be calculated from Rehm-Weller equation based on the electrochemical 

data of the donor and acceptor.91,92 In computational chemistry, the entropy change is hard to 

estimate but it is usually small and can be ignored. The energy difference between two ground 

states (with solvation models if necessary) or the energy levels of two molecular orbitals are among 

the most routine tasks and the calculated values can be used to corroborate the experimental values, 

or provide preliminary validation of a theoretical method for further calculations. 

The accurate estimation of reorganization energy 𝜆 requires more effort and requires the 

calculation of the energy of one charge transfer state at the equilibrium geometry of the other 

state.93 𝜆 is divided into an inner-sphere, or intramolecular, reorganization energy 𝜆𝑖 and an outer-

sphere, or solvent, reorganization energy 𝜆𝑜. Experimentally,  𝜆 (= 𝜆𝑖 + 𝜆𝑜) can be determined by 

Equation 1.3 once the activation energy Δ𝐺‡ is obtained by a temperature dependence study and 

Δ𝑟𝐺 is estimated as above. In computational chemistry, however, 𝜆𝑖 and 𝜆𝑜 are usually estimated 

separately. Because the solvent is not involved, the estimation of 𝜆𝑖 is easier (comparing with 𝜆𝑜).  
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For intermolecular charge transfer or an intramolecular charge transfer where the donor 

and acceptor can be isolated (the bridge contributes little to 𝜆𝑖 in the non-adiabatic limit), Nelson’s 

four-point method is probably the easiest method and is widely used to compute 𝜆𝑖.
94,95 Take the 

charge transfer in a cation donor-acceptor complex for example. The reactant consists of the 

neutral donor (denoted as Dn) and the acceptor cation (denoted as Acc+). First one calculates the 

equilibrium energy of Dn and Acc+, donated as 𝐸0(Dn) and 𝐸0(Acc
+). Then the vertical ionization 

energy of Dn and the vertical electron affinity of Acc+ are calculated, denoted as 𝐼𝐸(Dn) and 

𝐸𝐴(Acc+) (IE and EA are all positive values). Finally, one relaxes the geometries of Dn+ and Acc 

to get the equilibrium energy of the product, that is, 𝐸0(Dn
+) + 𝐸0(Acc). 𝜆𝑖 is then expressed as: 

𝜆𝑖 = 𝜆𝑖(Dn) + 𝜆𝑖(Acc) 

= [𝐸0(Dn) + 𝐼𝐸(Dn) − 𝐸0(Dn
+)] + [𝐸0(Acc

+) − 𝐸𝐴(Acc+) − 𝐸0(Acc)] 
Equation 1.23 

Four geometries are optimized so it is called the “four-point” method. 

For intramolecular charge transfers in which the donor and acceptor are strongly correlated 

and cannot be easily split, one can use the neutral molecule and its cation instead.96 Besides, 

because |𝐷𝐴+⟩ is merely one excited state of |𝐷+𝐴⟩ (|𝐷+𝐴⟩ might be already an excited state, e.g. 

in PET), (further) excited state calculation can also be performed to get 𝜆𝑖 but one must be careful 

about picking up a clear charge transfer state and choosing the correct methods for excited state 

calculation. To avoid the trouble of excited state calculations, one may consider using constrained 

DFT (section 1.4.2.3) to get 𝜆𝑖 from a diabatic picture.25,97,98 Alternatively, one can start from the 

vibrational frequency calculations.96,99 In summary, several complementary methods are available 

for 𝜆𝑖 calculations and almost all donor/acceptor pairs are covered (unless for some large donors 

and acceptors that all computational methods are too expensive). In some cases, (e.g, when the 
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charge transfer emission is present), 𝜆𝑖 can also be extracted from spectroscopic data by 

sophisticated analysis to confirm the theoretical prediction.30,89,100 

The outer-sphere part 𝜆𝑜 is much more challenging than 𝜆𝑖 in computational chemistry. 𝜆𝑜 

arises from the polarization changes in the surrounding dielectric medium. In polar environments, 

𝜆𝑜 is often the dominate contribution to 𝜆. A proper description of solvent effects is crucial and 

commonly used implicit solvation models are usually not accurate enough. QM/MM method, 

which employs explicit solvent molecules, is probably the best method so far.101,102 However, the 

best results of 𝜆𝑜 are still usually qualitatively correct.103 The QM/MM calculation of 𝜆𝑜 is an 

interesting and active topic for theoretical chemists but it is not yet a routine prediction tool for 

experimental chemists, at least for now. The estimation of 𝜆𝑜 through classical or semi-classical 

models are more practical and popular. A standard estimation method for highly polar solvents 

from Marcus is:104,105 

𝜆𝑜 = (Δ𝑒)2 (
1

 𝑎1
+

1

 𝑎2
−
1

𝑅
)(

1

𝜖∞
−
1

𝜖0
) Equation 1.24 

where 𝑎1, 𝑎2, 𝑅, 𝜖∞ and 𝜖0 are the radii of the donor and acceptor, the distance between their 

centers, and the optical frequency and zero frequency dielectric constants of the solvent, 

respectively. In Equation 1.24, the donor and acceptor are treated as individual spheres immersed 

in a dielectric continuum medium and the dielectric image effects are neglected. The medium is 

assumed to be dielectrically unsaturated and only linear response is considered. The difference in 

the inverse dielectric constants relates to the fact that the electron configuration of the solvent 

molecules  readjust nearly instantaneously and thus do not contribute. Although widely used, a lot 

of restrictions are assumed in Equation 1.24. The possibilities to relax some restrictions were 

discussed in the original paper but a fundamental improvement requires the consideration of 

individual molecules. Matyushov et al. developed a molecular solvation model and the discrete 
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nature of the solvent/solute and high-order interactions are incorporated.106 The expression of 𝜆𝑜 

in this model is 

𝜆𝑜 = 𝜆𝑝 + 𝜆𝑖𝑛𝑑 + 𝜆𝑑𝑖𝑠𝑝 Equation 1.25 

where 𝜆𝑝 includes contributions from the solvent dipole and quadrupole moments, 𝜆𝑖𝑛𝑑 includes 

contributions from the induction forces, and 𝜆𝑑𝑖𝑠𝑝 includes contributions from the dispersion 

forces. The explicit expression of each term is more complicated than Equation 1.24 and they can 

be found in literature.107 It has been shown that this model is suitable for a wide range of solvents, 

including nonpolar and weakly dipolar aromatic solvents.30,107 

1.4.2 Electronic Coupling Calculation. 

Compared to energy calculations, electronic coupling calculation is the most unique part 

that distinguishes electron transfer calculation from other conventional tasks in computational 

chemistry. It is harder than the energy calculations in the sense that most quantum chemistry 

packages do not provide automatic tools for such analysis. Thus one has to look deeper into the 

results and cannot simply treat the software packages as black boxes, as in the energy calculation. 

One of the reasons for this situation is that almost all modern quantum chemistry calculations are 

based on the adiabatic representations (for example, conical molecular orbitals and their 

eigenvalues are computed for Hartree-Fock level calculations), while rigorous electronic coupling 

calculations require a diabatic representation. However, one cannot create a strictly diabatic basis 

from a give adiabatic basis,25 therefore approximations must be used. Until now, there is still no 

“universal” method for any electron transfer systems and one needs to choose the best suitable 

method with caution. Another difficulty arises from the fact that the “molecular orbitals” in the 

popular DFT method lack physical meaning, therefore a lot of fast DFT methods cannot be used 
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and one often has to choose more “expensive” (that is more time and CPU power consuming) post-

Hartree-Fock methods. 

A simple method is to partially diagonalize the Fock matrix by using a “double 

diagonalization” method, see Equation 1.26.108,109 First, one partitions the full Fock matrix (that 

is, the Hartree-Fock Hamiltonian) to 𝐇 a donor part (𝐇𝑫𝑫) an acceptor part (𝐇𝑨𝑨), and their 

couplings. Then one diagonalizes the 𝐇𝑫𝑫 and 𝐇𝑨𝑨 separately. In this step two unitary matrixes 

are obtained. Next, one can construct a block diagonal matrix from the unitary matrixes. Applying 

the transformation to the full Hamiltonian 𝐇, one obtains the partially diagonalized 𝐇′. Note that 

the diagonal elements in 𝐇′ will be different from the matrix elements in the diagonalized 𝐇𝑫𝑫 

and 𝐇𝑫𝑫. Those values will be used if a third “bridge” part is included but is of no particular 

importance for a two-state approximation discussed here. What is important is that, in 𝐇′ the off-

diagonal matrix elements are the couplings between the corresponding localized MOs of the donor 

part and the acceptor part. For example, the coupling between the donor HOMO and the acceptor 

LUMO can be viewed as the coupling for thermal electron transfer, while the coupling between 

the donor LUMO and the acceptor LUMO might be viewed as the coupling for photoinduced 

electron transfer. As mentioned earlier, this method can also be generalized to include the bridge 

partition and the details can be found in various reports.108,110,111 
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𝐇 = (
𝐇𝑫𝑫 𝐇𝑫𝑨

𝐇𝑨𝑫 𝐇𝑨𝑨
) =

(

 
 

𝐻𝐷1𝐷1 𝐻𝐷1𝐷2
𝐻𝐷2𝐷1 𝐻𝐷2𝐷2

⋯
𝐻𝐷1𝐴𝑛−1 𝐻𝐷1𝐴𝑛
𝐻𝐷2𝐴𝑛−1 𝐻𝐷2𝐴𝑛−1

⋮ ⋱ ⋮
𝐻𝐴𝑛−1𝐷1 𝐻𝐴𝑛−1𝐷2
𝐻𝐴𝑛𝐷1 𝐻𝐴𝑛𝐷2

⋯
𝐻𝐴𝑛−1𝐴𝑛−1 𝐻𝐴𝑛−1𝐴𝑛
𝐻𝐴𝑛𝐴𝑛−1 𝐻𝐴𝑛𝐴𝑛 )

 
 

⟹

(

 
 

𝜀𝐷1 0

0 𝜀𝐷2
⋯

𝑉1,𝑛−1 𝑉1,𝑛
𝑉2,𝑛−1 𝑉2,𝑛

⋮ ⋱ ⋮
𝑉𝑛−1,1 𝑉𝑛−1,2
𝑉𝑛,1 𝑉𝑛,2

⋯
𝜀𝐴𝑛−1 0

0 𝜀𝐴𝑛 )

 
 
≡ 𝐇′ 

Equation 1.26 

However, it should be noted that as in Equation 1.7, 𝐇𝐷 corresponds to state DA (reactant, 

denoted as |𝐷⟩) and 𝐇𝐴 corresponds to state D+A− (product, denoted as |𝐴⟩), and the basis set for 

the 𝐇 is not molecular orbitals but electronic states (or Slater determinants).7 Therefore the above 

Fock matrix based method implicitly assumes Koopmans’ theorem (or one-electron 

approximation) for both the donor part and acceptor part,128-130,176 and the donor-acceptor 

couplings must be small enough to ensure that the adiabatic states are close enough to the diabatic 

states. These restrictions limit the usefulness of the simple method and various more rigorous 

methods have had to be developed. 

1.4.2.1 Koopmans’ Theorem based Energy Splitting calculation 

As discussed previously, the results of Hartree-Fock calculations are “naturally” expressed in 

adiabatic (eigen) states. To get the electronic coupling of the two diabatic states, one can use 

Equation 1.8 and calculate the adiabatic energy gap at the transition state as shown in Figure 1.4A. 

However, the search for a transition state is far from trivial, especially when the molecule is 

ionized. For symmetrical systems, Koopmans’ theorem drastically reduces the complexity of the 

calculation.27,112 The electronic configurations for the ground and excited surfaces at the transition 

state geometry is shown in Figure 1.4B. Note that we use hole transfer (that is, the donor-acceptor 
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complex is a cation) as the example. If Koopmans’ theorem holds for this system, the energy gap 

between the two states equals the energy difference between the two changed molecular orbitals 

(HOMO and HOMO-1 in Figure 1.4B). This statement is true at any nuclear coordinate. The 

remaining problem is how to reach the transition state. Again one can use Koopmans’ theorem and 

start with the neutral state. As shown in Figure 1.4A, the nuclear configuration of the cation 

transition state must be at the minimum of the neutral molecule potential curve because of the 

symmetry. One great advantage of the Koopmans’ theorem method is that the electron transfer 

pathway analysis can be easily performed within this framework, see Chapter 3 for the details. 

  

Figure 1.4. Panel A: Diabatic (dashed lines) and adiabatic (solid lines) potentials relevant for ionization of a 

symmetrical ethylene-bridge-ethylene system. Panel B: Electronic configurations for the two adiabatic state. 

Adapted with permission from Chem. Rev. 1992, 92, 395-410. Copyright (1992) American Chemical Society. 

Although the original Koopmans theorem based energy splitting calculation can only deal 

with symmetric systems, asymmetric systems can also be treated with the help of an external 

field.113,114 The applied external electric field will change the energy of the diabatic states and the 

adiabatic energy gap reaches the minimum when 𝐸𝐷 = 𝐸𝐴. Note however, that recent experiments 
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have shown that external electric fields might affect the couplings115 and one might want to apply 

Koopmans’ theorem to asymmetric system with caution. 

1.4.2.2 GMH and FCD 

Although strictly diabatic states cannot be constructed from adiabatic states, it is still possible to 

construct the ‘best’ diabatic states once a criterion is given. That is, one uses some unitary matrix 

to transform the adiabatic representation to a diabatic representation. The most widely used 

methods of this type are the generalized Mulliken-Hush (GMH) and fragment charge difference 

(FCD) methods. FCD can be viewed as a variant of GMH, hence GMH is discussed first. 

GMH theory is a generalization of the Mulliken-Hush model,116,117 which was developed 

to describe the charge transfer transition (optical electron transfer). Within the Condon 

approximation, the optical oscillator strength can be related to the transition dipole and eventually 

the electronic coupling. Here we will only focus on the relationship between the molecular dipole 

and the electronic coupling. A quick derivation118 of MH results is to assume that the two adiabatic 

states |1⟩ and | ⟩ (e.g., the neutral ground state and the charge separated excited state at the 

crossing point of Figure 1.1) can be written in a basis of two degenerate states |𝐷⟩ and |𝐴⟩ as: 

{
|1⟩ = 𝑐|𝐷⟩ + 𝑑|𝐴⟩, 𝐸1 = 𝐸𝐷 +

𝑑

𝑐
𝐻𝐷𝐴

| ⟩ = 𝑑|𝐷⟩ − 𝑐|𝐴⟩, 𝐸2 = 𝐸𝐷 −
𝑐

𝑑
𝐻𝐷𝐴

 Equation 1.27 

using the normalization condition (𝑐2 + 𝑑2 = 1). As in Equation 1.7 and Equation 1.26, |𝐷⟩ 

denotes the reactant state and |𝐴⟩ denotes the product. Because dipole moments will be calculated 

later, it might be better to visualize |𝐷⟩ as  𝐷−𝐴 where the excess charge is localized on the donor 

and |𝐴⟩ as 𝐷𝐴− where the excess charge is localized on the acceptor, although GMH can be applied 
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independently of whether |𝐷⟩ is neutral or negatively/positively charged. From Equation 1.27, the 

energy gap is given by 

Δ𝐸12 = 𝐸1 − 𝐸2 =
𝐻𝐷𝐴
𝑐𝑑

 
Equation 1.28 

Next we connect this result to the transition dipole between the ground (|1⟩) state and the 

excited (| ⟩) state. The (transition) dipole is defined as 

𝝁𝑘𝑙 ≡ ⟨𝑘|𝑟|𝑙⟩, 𝑘, 𝑙 = 1,  or 𝐷, 𝐴 
Equation 1.29 

so that 

𝝁12 ≡ ⟨1|𝑟| ⟩ = 𝑐𝑑{⟨𝐷|𝑟|𝐷⟩ − ⟨𝐴|𝑟|𝐴⟩} = 𝑐𝑑(𝝁𝐷𝐷 − 𝝁𝐴𝐴) Equation 1.30 

Combining Equation 1.28 and Equation 1.30, the product 𝑐𝑑 can be eliminated and the electronic 

coupling is 

𝐻𝐷𝐴 =
|𝝁12| Δ𝐸12
|𝝁𝐷𝐷 − 𝝁𝐴𝐴|

 
Equation 1.31 

The dipoles 𝝁𝐷𝐷 and 𝝁𝐴𝐴 are expressed in the diabatic basis and they cannot be measured directly. 

In the MH model an “effective” donor-acceptor length 𝑟𝐷𝐴 is defined to replace the denominator 

in Equation 1.31, and the final expression is 

𝐻𝐷𝐴 =
|𝝁12|  Δ𝐸12
𝑒 ⋅ 𝑟𝐷𝐴

 
Equation 1.32 

where 𝑟𝐷𝐴 has typically been estimated on the basis of molecular structure data. Note however that 

𝑟𝐷𝐴 is not well-defined in the sense of a distance in real space, because the actual charge 

distribution is never a 𝛿 function. 

To obtain Equation 1.30 (and eventually Equation 1.32), one assumes that the inter-site 

diabatic transition dipole 𝝁𝐷𝐴 is negligibly small. That is, 

𝝁𝐷𝐴 ≈ 0 
Equation 1.33 
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The reason for this assumption is quite obvious: diabatic states are charge localized states in 

electron transfer so that it is expected that |𝐷⟩ and |𝐴⟩ are not only orthogonal, but also have only 

a negligibly small charge density overlap. Therefore their dipole matrix element 𝝁𝐷𝐴 (≡ ⟨𝐷| 𝑟 |𝐴⟩) 

should also be small. However, this assumption turns out to be unnecessary to derive Equation 

1.32, as shown by Newton et al. upon re-examination of the Mulliken-Hush model and 

development of the GMH theory.119,120 Instead of assuming two diabatic states, one constructs |𝐷⟩ 

and |𝐴⟩ stepwise in GMH.16,121 First, one calculates all of the dipole matrix elements of state |1⟩ 

and | ⟩. Second, one calculates the direction 𝑣⃑0 of the dipole moment of state |1⟩ minus the dipole 

moment of state | ⟩ (that is, 𝑣⃑0 = (𝜇⃑11 − 𝜇⃑12) |𝜇⃑11 − 𝜇⃑12|⁄ ) and projects all dipole matrix 

elements onto that direction. Finally, one diagonalizes the dipole matrix and a transition matrix 

(sometimes also called as a “rotation matrix” because it is a  ×   matrix, similar to a rotation 

matrix for a 2-D vector in real space) is obtained. This step is crucial because by diagonalizing a 

dipole matrix one actually finds a representation in which the off-diagonal transition dipole matrix 

elements are zero. That is, one can replace the “≈” in Equation 1.33 with = in this representation. 

We can define this representation as an approximate diabatic representation. The Hamiltonian in 

this diabatic representation is: 

(
𝐻𝐷𝐷 𝐻𝐷𝐴

𝐻𝐴𝐷(= 𝐻𝐷𝐴) 𝐻𝐴𝐴
) = 𝐂−1 (

𝐻11 0
0 𝐻22

) 𝐂 
Equation 1.34 

where 𝐂 is the transition matrix. We are interested in the off-diagonal matrix element which is the 

electronic coupling between the diabatic states, and its expression is:  

𝐻𝐷𝐴 =
|𝝁12|  Δ𝐸12
|𝝁𝐴𝐴 − 𝝁𝐷𝐷|

 
Equation 1.35 
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Because the transformation matrix is known, the matrix elements in the diabatic representation 

(𝝁𝐴𝐴 and 𝝁𝐷𝐷) can be transformed back into the adiabatic representation (𝝁11 and 𝝁22) and the 

final expression is 

𝐻𝐷𝐴 =
|𝝁12|  Δ𝐸12

√|𝝁11 − 𝝁22|2 − 4|𝝁12|2
 

Equation 1.36 

The general idea behind the preceding steps is straightforward: We choose 𝝁𝐷𝐴 = 0 as the criterion 

for diabatic states and this can be ensured by using a transformation matrix that diagonalizes the 

dipole matrix. Therefore, no extra assumption is needed in GMH. Besides, comparing with 

Equation 1.32, all variables in Equation 1.36 are well defined in the adiabatic basis. Another 

advantage of GMH theory is that multi-state models can be calculated as well.16,121,122 However, 

this further generalization is beyond the scope of the dissertation and will not be discussed. 

In actual calculations, the most time consuming part of the GMH method is to obtain the 

two adiabatic states, e.g., the ground state and the first excited state. Once the adiabatic states are 

obtained, GMH calculations can be finished almost immediately and it has been incorporated into 

a few quantum chemistry packages as an additional feature for excited state calculations such as 

CI Singles (CIS), which is probably the simplest and cheapest method to obtain excited states.123,124 

Wavefunctions are not used in Equation 1.36, thus TD-DFT can be used for GMH calculations, in 

principle. However, many commonly used exchange-correlation functionals cannot treat charge 

transfer transitions properly and one must choose functionals carefully.125–127 In some applications, 

a high accuracy of the absolute value of 𝐻𝐷𝐴 is not required and GMH can be combined with 

Koopmans’ theorem to simplify the calculation. On the basis of Koopmans’ theorem, the dipole 

moment and energy difference between adiabatic states (Equation 1.36) can be replaced by 

variables for the corresponding molecular orbitals.128–130 This method is especially useful when 

calculating 𝐻𝐷𝐴 for a large ensemble of conformations.131 
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Following a similar spirit to GMH but with a more straightforward criterion, Voityuk et al. 

developed the fragment charge difference (FCD) method.132,133 In contrast to GMH, one needs to 

partition the molecule into the donor and acceptor part (“fragments”) explicitly. A  ×   donor-

acceptor charge difference matrix is defined with elements calculated as: 

Δ𝑞𝑘𝑙 ≡ 𝑞𝑘𝑙
Dn − 𝑞𝑘𝑙

Acc 

= ∫ 𝜌𝑘𝑙(𝑟)  d𝑟
𝑟∈ Dn

−∫ 𝜌𝑘𝑙(𝑟)  d𝑟
𝑟∈ Acc

 
Equation 1.37 

where “Dn” and “Acc” denote donor and acceptor (not |𝐷⟩ or |𝐴⟩), respectively. 𝜌𝑚𝑛(𝑟) is the 

matrix element of the density operator between states |𝑘⟩ and |𝑙⟩. In actual calculations a Mulliken 

population or other population analysis can be used for the integrations in Equation 1.37. 

According to such a definition, the diagonal elements Δ𝑞𝑘𝑘 and Δ𝑞𝑙𝑙 correspond to the charge 

difference between the donor and acceptor in state |𝑘⟩ and |𝑙⟩. The charge transfer and charge 

localization (that is, |Δ𝑞𝑘𝑘 − Δ𝑞𝑙𝑙|) are maximized after the diagonalization of the charge 

difference matrix. Using the rotation matrix to define the diabatic states, the FCD method yields 

the donor-acceptor coupling in a form very similar to that of GMH, namely 

𝐻𝐷𝐴 =
|Δ𝑞12|  Δ𝐸12

√|Δ𝑞11 − Δ𝑞22|2 − 4|Δ𝑞12|2
 

Equation 1.38 

Like GMH, FCD can also be applied to multi-state models. It is claimed that FCD is  more robust 

than GMH especially when the charge separation is strong and multiple states are involved.123,132 

Besides this feature, the explicit partition of the donor and acceptor gives the users more control 

and thus more benefits in the electronic coupling calculations. For example, the results of GMH 

would be hard to explain if |1⟩ and | ⟩ are delocalized. In such a case the “donor” and “acceptor” 

will be ambiguous in GMH but they are still well defined in FCD. 

 



 30 

1.4.2.3 Direct coupling and Constrained DFT  

In GMH and FCD the adiabatic states are calculated, and exited state calculations are required for 

high-accuracy results. However the excited states are troublesome in many cases and an alternative 

route to calculate the diabatic states without the calculation of adiabatic states would be helpful. 

Several strategies exist for this purpose. When the donor and acceptor are different molecules 

(such as the dimers discussed in 1.4.2.1) or well-separated fragments, one can calculate the 

neutral/charged states for the donor and charged/neutral states for the acceptor separately and 

simply combine the real space wavefunctions into two states and “pretend” they are diabatic. The 

couplings can then be calculated from the diabatic states directly.104,123,134 A small problem in the 

direct coupling scheme is that these “pretend” diabatic states are often not orthonormal, however 

one can use the Löwdin transformation135 to  orthogonalize them so that they are closer to the real 

diabatic states.2,123  

In one-electron assumption, the frontier orbitals of each natural fragment (donor or 

acceptor) can be used in the direct coupling scheme instead of charged states (Slater determinants) 

used in the above strategy.128-130 Take hole transfer between the two fragments in a dimer as an 

example; the electronic coupling is expressed as:  

𝐻𝐷𝐴 =
𝐻12 −

1
 
(𝐻11 + 𝐻22)𝑆12

1 − 𝑆12
 Equation 1.39 

where 𝐻12 = ⟨𝜙HOMO
1 |𝐇|𝜙HOMO

2 ⟩, 𝐻11 = ⟨𝜙HOMO
1 |𝐇|𝜙HOMO

1 ⟩, 𝐻22 = ⟨𝜙HOMO
2 |𝐇|𝜙HOMO

2 ⟩, 𝐻22 =

⟨𝜙HOMO
1 |𝜙HOMO

2 ⟩. 𝜙HOMO
1  and 𝜙HOMO

2  are the HOMOs of the first and second isolated molecules 

of the dimer respectively. The Löwdin orthogonalization has been used to obtain Equation 1.39 

and therefore the fragment orbitals do not need to be orthogonal.177,178 Note that at the self-

consistent field level, 𝐇 is the single-electron Fock operator and the matrix elements are evaluated 



 31 

iteratively by quantum chemistry software packages. For example, ADF that can utilize the orbitals 

of isolated fragments as the basis set in subsequent calculations and extract the matrix elements 

from the final Fock matrix.179 

The above strategies may fail for intramolecular charge transfer because the donor and 

acceptor are chemically bonded and corresponding fragment orbitals or states may not be well 

defined. Fortunately, in many cases, diabatic states can be clearly identified based on their electron 

density distributions. For example, |𝐷+𝐴−⟩ will have excess electron density on the acceptor side 

of the molecule. Thus, suitable diabatic states can be obtained by optimizing the wavefunction 

subject to a constraint on the density without calculating the excited adiabatic curve. This concept 

is the basis of the constrained DFT (CDFT) approach.25 The origin of CDFT can be traced back to 

the 1980s136 but it was not widely accepted until the recent robust implementation and the 

demonstration of its power in electron transfer calculations by Van Voorhis et al.97,98,137 Note that 

in CDFT the |𝐷⟩ and |𝐴⟩ states are calculated in parallel; they can be viewed as both “ground 

state”, just with different charge constraints; hence no excited state technique such as TD-DFT is 

needed. Therefore a major difficulty in charge transfer transition calculations are avoided and the 

choice of exchange-correlation functionals becomes much larger. In principle the CDFT 

calculations can be both faster and more accurate than GMH in electronic coupling calculations. 

One cannot only calculate |𝐻𝐷𝐴| at the transition state, but one can also calculate its change along 

the Marcus parabolas to test the Condon approximation. Such work has been reported and the 

validity of the Condon approximation is confirmed for several systems.97,138 

1.4.2.4 Application: Pathway Analysis 

One of the most interesting applications of electronic coupling calculations is the pathway 

analysis for electron transfer in the superexchange regime.118 It was initiated more than two 
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decades ago and is still an active field. The Koopmans’ theorem based pathway analysis will be 

discussed in detail in Chapter 3; GMH and FCD can be used in pathway analyses if the multiple 

state models are employed. There are also other quantum-mechanical methods.111,139 However, a 

pathway analysis based on CDFT has not been reported so far. This is probably because the current 

implementation of CDFT is only based on the two-state model. Beratan et al. realized that the 

electron tunneling parameters are transferrable for a large range of peptides and proteins and 

summarized it in their empirical Pathways model.140,141 It was implanted as a plugin in VMD 

recently, and the pathway analysis is now almost fully automatic.142 and has been used in protein 

electron transfer studies.143  

A very typical electron transfer pathway analysis is shown in Figure 1.5.144 In a 

Ru(byp)2(im)-His83 azurin, a combined QM and MD simulation showed that very rapid and large 

fluctuations exist in the electronic coupling between the Ru(II) donor and Cu(II) acceptor.145 

However, the origin of the fluctuations was not clear in the original report. By performing a 

pathway analysis, two main pathways were revealed. The routes look similar but one is largely 

destructive and has small coupling, while the other is constructive and has large coupling. 

Therefore a small fluctuation in geometry might lead to a large change in the electronic coupling. 

These studies predict the importance of the dynamical effects that will be discussed more in section 

1.4.4. In Chapter 4 such an effect is observed by electrochemistry, and in Chapter 5 a very similar 

donor-acceptor pair is used and the fluctuations are observed in photoinduced electron transfer. 
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Figure 1.5. The tunneling pathways of Ru(byp)2(im)-His83 azurin calculated using tunneling current analysis. 

Left: Destructive pathways. |𝑯𝑫𝑨| = 𝟏. 𝟕 × 𝟏𝟎−𝟔 eV. (b) Constructive pathways. |𝑯𝑫𝑨| = 𝟕. 𝟔 × 𝟏𝟎−𝟓 eV.144 

Reprinted with permission from J. Phys. Chem. B 2002, 106, 11356–11366. Copyright (2002) American 

Chemical Society. 



 34 

1.4.3 Conductance Calculations 

1.4.3.1 Semiclassical models 

 

Figure 1.6. A basic semiclassical molecular junction model with rectangular barrier that can be calculated 

by the Wentzel-Kramers-Brillouin (WKB) approximation. Electron transfer along the x-axis and the width 

of the barrier is 𝒅. 

Semiclassical models are among the simplest models to describe charge transport and SAM 

conductance in the tunneling regime. For one-dimensional problems such as the barrier shown in 

Figure 1.6, the WKB (Wentzel-Kramers-Brillouin) approximation is the most commonly used 

approach.146,147 The transmission factor 𝑇 for electrons transferring along the x-axis is expressed 

as: 

𝑇(𝐸𝑥) = 𝑔 exp(−
 √ 𝑚

ℏ
∫ d𝑥  √𝑈(𝑥) − 𝐸𝑥

𝑑

0

) 

𝑔 = 1 (if 𝑈(𝑥) varies slowly) 

Equation 1.40 

where 𝐸𝑥 is the kinetic energy, and 𝑚 is the mass of an electron. Taking the electrons moving in 

all directions into account and considering the Fermi distributions of electrons in the left and right 

electrode, one obtains an expression for the current density: 
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𝐽(𝑉) =
 𝑒𝜌

ℎ
[𝑒𝑉∫ 𝑇(𝐸𝑥, 𝑉)  d𝐸𝑥 +∫ 𝑇(𝐸𝑥, 𝑉) 

𝜇

𝜇−𝑒𝑉

(𝜇 − 𝐸𝑥)  d𝐸𝑥

𝜇−𝑒𝑉

0

] Equation 1.41 

where 𝜌 is the density of states (DOS) of the electrode. To use Equation 1.41 𝑈(𝑥) must be known 

and it is usually not feasible to measure. Simmons used an effective barrier height to replace 𝑈(𝑥) 

(Figure 1.7) and in this approximation Equation 1.41 can be simplified to148–150 

𝐽(𝑉) =
𝑒

4𝜋2ℏ𝑑2
{(𝜑0 −

𝑒𝑉

 
) exp [−

 𝑑√ 𝑚

ℏ
(𝜑0 −

𝑒𝑉

 
)

1
2
]

− (𝜑0 +
𝑒𝑉

 
)  exp [−

 𝑑√ 𝑚

ℏ
(𝜑0 +

𝑒𝑉

 
)

1
2
]} 

Equation 1.42 

where 𝑉 is the bias between the left and right electrode and 𝑑 is the width of the barrier. 

 

Figure 1.7. A barrier with arbitrary shape is replaced with an effective rectangular barrier with mean barrier height 𝝋𝟎. 

Note that at low bias, Equation 1.42 can be further simplified to an exponential decay form: 

𝐽 =
𝑉

𝑑
√
 𝑚𝑒𝜑0
ℎ

  exp [−
 𝑑√ 𝑚𝜑0

ℏ
] Equation 1.43 

Such a distance dependence is well known. It also predicts a linear J-V relationship at low bias and 

is confirmed by STM experiments.146 Another property of Simmons model is that it always 

predicts symmetrical J-V curves. The symmetry is not introduced in the “smoothing” step when 

U(x)
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an effective flat barrier is used. Actually, the symmetry of J-V curves comes from the symmetry 

of the WKB approximation (Equation 1.40). As long as Equation 1.40 is employed, the 

transmission factor will be the same from left to right or from right to left at the same bias, no 

matter how asymmetric the barrier might be. People have tried to extended Simmons model to 

explain some asymmetrical J-V curves that are observed at the semiclassical level, and it required 

that they either introduce asymmetrical electrodes or assume asymmetrical potential drops when 

the bias is reversed.151–153 Clearly, if one wants to study charge transport through possible 

molecular rectifiers69 by numerical simulation, a more advanced formulism is needed. 

1.4.3.2 Non-Equilibrium Green’s Function Formalism 

The Non-Equilibrium Green's Function (NEGF) method is now a standard paradigm for molecular 

and nanoscale charge transport problems.70,154–157 Green's functions were originally developed as 

an important mathematical tool to solve inhomogeneous differential equations. Suppose we need 

to solve the following equation for 𝑎(𝑥): 

(𝐸 − 𝐻̂)𝑎(𝑥) = 𝑏(𝑥) Equation 1.44 

where 𝐸 is a parameter and 𝐻̂ is an Hermitian operator. The Green's function 𝐺(𝑥, 𝑥′, 𝐸) associated 

with 𝐻̂ then satisfies 

(𝐸 − 𝐻̂)𝐺(𝑥, 𝑥′, 𝐸) = 𝛿(𝑥 − 𝑥′) Equation 1.45 

where 𝛿(𝑥 − 𝑥′) is the Dirac 𝛿 function. Now a specific solution to Equation 1.44 can be written 

in terms of the Green's function as 

𝑎(𝑥) = ∫ 𝐺(𝑥, 𝑥′, 𝐸)
+∞

−∞

 𝑏(𝑥′) d𝐸 Equation 1.46 
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In quantum chemistry, wave functions are usually expanded on a basis set and the matrix 

version of Green’s function is more convenient. Consider the solution to the following equation 

for {𝑎}: 

[𝐸𝐈 − 𝐇]{𝑎} = {𝑏} Equation 1.47 

where 𝐸 is a parameter, 𝐈 is the identity matrix, 𝐇 is an Hermitian matrix, and {𝑎} and {𝑏} are 

column vectors. The Green’s function for 𝐇 is then defined as: 

𝐆(𝐸) = [𝐸𝐈 − 𝐇]−1 

⟹ [𝐸𝐈 − 𝐇]𝐆(𝐸) = 𝐈 
Equation 1.48 

The above equation is a matrix analog of Equation 1.45. Note that if 𝐛 = 0, 𝐇 is the single particle 

Hamiltonian of the system, the physical meaning of E would be the energy of the single particle. 

A spectral function 𝐀(𝐸), which has the physical meaning of density of states (DOS), can be 

defined as: 

𝐀(𝐸) = 𝑖[𝐆𝑅(𝐸) − 𝐆𝐴(𝐸)] Equation 1.49 

where 𝐆𝑅(𝐸) is the retarded Green’s function and 𝐆𝐴(𝐸) is the advanced Green’s function: 

𝐆𝑅(𝐸) = [(𝐸 + 𝑖0+)𝐈 − 𝐇]−1 

𝐆𝐴(𝐸) = [(𝐸 − 𝑖0+)𝐈 − 𝐇]−1 

Equation 1.50 

where 0+ denotes a positive infinitesimal. It is introduced here to break the symmetry of the matrix. 

The names of the above two functions come from the fact that their Fourier transforms describe 

the evolution of the system after and before an impulse of perturbation respectively. 𝐆𝐴 is the 

conjugate transpose of 𝐆𝑅; the superscript of  𝐆𝑅 is usually dropped when no confusion can be 

made. Therefore Equation 1.49 can be re-written as 

𝐀(𝐸) = 𝑖[𝐆(𝐸) − 𝐆+(𝐸)] Equation 1.51 

Equation 1.51 can be rationalized by the corresponding Green’s functions of pure numbers: 
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𝑖[𝐺(𝐸) − 𝐺+(𝐸)] = 𝑖 [
1

𝐸 − 𝜀𝛼 + 𝑖0+
−

1

𝐸 − 𝜀𝛼 − 𝑖0+
] 

= [
 𝜂

(𝐸 − 𝜀𝛼)2 + 𝜂2
]
𝜂→0 

 

=  𝜋 𝛿(𝐸 − 𝜀𝛼) ≡ 𝐴(𝐸) 

Equation 1.52 

where 𝜀𝛼 denotes any of the eigenvalues of 𝐻̂. With 𝐀(𝐸), the correlation function or the “lesser” 

Green’s function can be defined as 

𝐆<(𝐸) = 𝑖  𝑓(𝐸)  𝐀(𝐸) Equation 1.53 

where 𝑓(𝐸) is the Fermi function. 𝐆<(𝐸) has the meaning of the matrix version of the electron 

density per unit energy. 

It seems that the Green’s function is only a trivial mathematical transformation of known 

results for isolated molecular systems at the Hartree-Fock level. However, the Hartree-Fock 

Hamiltonian (denoted as “𝐇0”) does not contain any correlation interactions and a better 

Hamiltonian can be written as: 

𝐇 = 𝐇0 + 𝚺  Equation 1.54 

where 𝚺 is the self-energy matrix containing (some) correlation interactions. The Green’s function 

𝐆 for 𝐇 can be calculated by the Dyson equation (the variable E is dropped for clarity): 

𝐆 ≡ [𝐸𝐈 − 𝐇𝟎 − 𝚺]−𝟏 = 𝐆𝟎 + 𝐆𝟎𝚺𝐆  Equation 1.55 

where 𝐆𝟎 is the Green’s function for 𝐇0. One can imagine that by improving 𝚺 or adding more 

self-energy terms, the Green’s function method can provide a systematic framework to solve the 

Schrödinger equation of isolated systems by using Equation 1.55. Hence it is very widely used in 

many-body theories and other post-Hartree-Fock methods.158,159 More importantly for us, it 

provides a (if not “the”) way to study the transport problem for an open system based on the results 

of isolated systems; see below. 
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Consider a molecule that is attached to an electrode. In this case, the Hamiltonian may be 

written as 

𝐇𝐹𝑢𝑙𝑙 ≡ (
𝐇𝐸𝑙 𝛽

𝛽+ 𝐇0
) Equation 1.56 

where 𝐇𝐸𝑙 is the Hamiltonian of the isolated electrode, 𝐇0 is the Hamiltonian of the isolated 

molecule, and 𝛽 and 𝛽+ are the couplings. It is obvious that the dimension of 𝐇𝐸𝑙 is much larger 

than the dimension of 𝐇, and 𝐇𝐹𝑢𝑙𝑙 cannot be evaluated on any computer. Fortunately we can still 

focus on the molecule in the Green’s function formalism by adding a “correction” to 𝐇0, that is: 

[𝐸𝐈 − 𝐇0 − 𝛽𝐆𝐸𝑙𝛽
+]{𝜓0} = {𝑆} Equation 1.57 

where {𝜓0} is the wavefunction for the isolated molecule, 𝐆𝐸𝑙 is the retarded Green’s function for 

the isolated electrode, and {𝑆} is some non-zero column vector because now {𝜓0} is not a 

eigenvector of [𝐇0 − 𝛽𝐆𝐸𝑙𝛽
+]. Compared with Equation 1.54, 𝛽𝐆𝐸𝑙𝛽

+ is just another type of self-

energy (although now it is anti-Hermitian instead of Hermitian, as in Equation 1.54). Equation 

1.57 can be re-written as: 

[𝐸𝐈 − 𝐇0 − 𝚺]{𝜓0} = {𝑆}    with    𝚺 ≡ 𝛽𝐆𝐸𝑙𝛽
+ Equation 1.58 

Note that Equation 1.58 has the same form as Equation 1.47 or Equation 1.44 and Equation 1.54. 

However, our purpose is quite different here: {𝜓0} is already known and we are interested in 

obtaining other properties of the open system. If we define the Green’s function of the molecule 

in contact with the electrode, 

𝐆 ≡ [𝐸𝐈 − 𝐇0 − 𝚺]−1 Equation 1.59 

then 𝐆 {𝑆} = {𝜓0}.  Although no positive infinitesimal is explicitly used, the Green’s function 

defined in the above equation is indeed a retarded Green’s function, because 𝐆𝐸𝑙 is a retarded 

Green’s function. Consequently, the spectral function 𝐀(𝐸) and correlation function 𝐆<(𝐸) can 

be expressed by using Equation 1.51 and Equation 1.53. That is, one can obtain the most useful 
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information without solving for the wavefunctions for the open system. Comparing with isolated 

molecules, 𝐀(𝐸) now has the physical meaning of a “local” DOS because only the states on the 

molecular bridge are counted. 

To further simply the calculation, a broadening matrix can be defined as: 

𝚪 ≡ 𝑖[𝚺 − 𝚺+]−1 = 𝛽𝐀𝐸𝑙𝛽+ Equation 1.60 

where 𝐀𝐸𝑙 is the spectral function of the isolated electrode. The spectral function of the molecule 

in contact with the electrode 𝐀(𝐸) can be expressed as: 

𝐀 ≡ 𝑖[𝐆 − 𝐆+]−1 = 𝐆𝚪𝐆+ = 𝐆+𝚪𝐆 Equation 1.61 

𝚪 is called the “broadening matrix” because the effect of the coupling broadens 𝐀(𝐸) from a sum 

of Dirac 𝛿 functions, for isolated systems, to a multiple modal distribution with finite width for 

each peak, for open systems. 

The above discussion can be easily generalized to open systems with two electrodes. The 

(retarded) Green's function is 

𝐆 = [𝐸𝐈 − 𝐇0 − 𝚺𝐿 − 𝚺𝑅]
−1  Equation 1.62 

where 𝐿 and 𝑅 denote the left and right electrode, respectively. The spectral function and 

correlation function are 

𝚪 = 𝚪𝐿 + 𝚪𝑅 = 𝛽𝐿𝐀𝐿
𝐸𝑙𝛽𝐿

+ + 𝛽𝑅𝐀𝑅
𝐸𝑙𝛽𝑅

+ 

𝐀 = 𝐆[𝚪𝐿 + 𝚪𝑅]𝐆
+ = 𝐆𝚪𝐿𝐆

+ + 𝐆𝚪𝑅𝐆
+ ≡ 𝐀𝐿 + 𝐀𝑅  

[𝐆<] = [𝐀𝐿]𝑓𝐿 + [𝐀𝑅]𝑓𝑅 

Equation 1.63 

with the above equations, the current flow can be calculated. The basic idea is to use the time-

dependent Schrödinger equation associated with 𝐇𝐹𝑢𝑙𝑙 to get the net charge injection rate at a given 

electrode/molecule interface at energy E; see chapter 9 of Datta 200570 and chapter 8 of Datta 

1995154. The overall current will be proportional to the integral of the charge injection rate. In this 
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process the electrode wavefunction can be eliminated by using the self-energy matrix, and the final 

expression of the electric current is (left electrode/molecule interface as example):  

𝐽 = 𝐽𝐿 =
𝑞

ℎ
∫ (Trace[𝚪𝐿𝐀]𝑓𝐿 − Trace[𝚪𝐿𝐆

<]) d𝐸
+∞

−∞

 Equation 1.64 

Insertion of Equation 1.61 and Equation 1.63 into Equation 1.64 gives the Landauer 

formula: 

𝐽 =
𝑞

ℎ
∫𝑇(𝐸) [𝑓𝐿(𝐸 − 𝜇𝐿) − 𝑓𝑅(𝐸 − 𝜇𝑅)] d𝐸 Equation 1.65 

where 𝑇(𝐸) is the transmission function and 

𝑇(𝐸) = Trace[𝚪𝐿𝐀𝑅] = Trace[𝚪𝑅𝐀𝐿] 

= Trace[𝚪𝐿𝐆𝚪𝑹𝐆
+] = Trace[𝚪𝑅𝐆𝚪𝑳𝐆

+] 
Equation 1.66 

Equation 1.65 and Equation 1.66 give the formal solution of the coherent current. In 

Chapter 3 and 4 these equations are applied to real molecular systems. There are some additional 

remarks about the applications I would like to make. First, orthogonal basis sets are assumed in 

the above derivation. Although non-orthogonal basis sets can be used theoretically, additional care 

must be taken.160–162 To avoid such troubles, one can do electronic structure calculations with an 

orthogonal basis set directly (such as INDO/S calculation in Chapter 4), or change the 

representation of the final Fock matrix to an orthogonal basis set representation, such as the NAO 

Fock matrix used in Chapter 3. Second, the above protocol is not self-consistent, because we do 

not calculate the wavefunctions of the open system and therefore the electron density of the 

molecule is frozen to its isolated state. To reach a self-consistent solution, one needs to solve 

Poisson’s equation (∇2𝑈(𝑟) = 𝜌(𝑟) 𝜀0⁄ , where 𝜌(𝑟) is the net charge density) for the electric 

potential 𝑈(𝑟) with boundary conditions connecting the electric potentials of the left and right 

electrode. The calculated 𝑈 will be used in solving the Schrödinger equation for the molecule to 
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get a new 𝜌(𝑟). This procedure will be performed iteratively until self-consistency is reached. 

Commercial packages such as ATK can perform such calculations, but it is too complicated to be 

implemented in a MATLAB script. Therefore we will limit our calculation to weak coupling and 

near zero conductance limit where the self-consistency is not required. Third, Equation 1.65 and 

Equation 1.66 do not cover the incoherent current. Incoherent current is important for hopping. 

However, it is difficult to implement it in molecular systems and even commercial packages cannot 

reproduce the distance dependence, because of the lack of incoherent current.163 Dephasing can be 

included phenomenologically but additional parameters which cannot be measured directly by 

experiments must be introduced.164 Thus, it might be better to stick to coherent calculations if the 

experiments can be explained in this way. Finally, the NEGF method cannot only be applied to 

molecular systems, it can also be used to calculate J-V curves of semi-classical models where the 

potential barrier can be in arbitrary shape, see the examples in Reference 70. Different from the 

Simmons model discussed in section1.4.3.1, the WKB approximation (which requires 𝑈(𝑥) to 

vary slowly with distance) is not assumed and no “effective” barrier height is used in the NEGF 

formalism. Therefore a thin but tall barrier or a barrier with potential “spikes” can be calculated 

and the intrinsic asymmetry in the barrier might be captured. 

 

1.4.4 A Dynamic Picture: Molecular Dynamics and Conformational Gating 

In previous sections the Condon approximation (e.g. electronic coupling is independent of the 

nuclear coordinates) is always assumed. Note, however, that this does not imply that all charge 

transfer reactions occur from a unique nuclear configuration. This picture is far from the truth, 

especially in liquid solvents and for flexible molecules such as peptide nucleic acids.131,165 The 
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Condon approximation assumes that there is a timescale separation between the nuclear motion(s) 

and the electronic transition, such that the electron tunneling event occurs rapidly compared to the 

nuclear motions.  For a given ensemble of donor and acceptor molecules a range of distances and 

configurations may exist and they will have different electronic couplings and reaction rates.  Even 

for a donor-bridge-acceptor supermolecule, the donor to acceptor distance, 𝑟𝐷𝐴, might change with 

bridge vibrations and this will lead to a change in 𝐻𝐷𝐴 in the superexchange regime (see Equation 

Equation 1.12). Such effects have been observed in several systems.166–168 

To obtain a full picture of charge transfer in computational chemistry, we need to generate 

an ensemble of conformations instead of just focusing on one optimized structure. This can be 

done by molecular dynamics (MD), see chapter 4 and 5. In our implementation, thousands of 

snapshots were taken from the equilibrium MD trajectories. The Condon approximation only 

applies to individual conformation snapshots but not the whole trajectory. That is, we can draw a 

pair of Marcus parabolas as Figure 1.1 for each snapshot. They will have similar 𝜆 and the coupling 

𝐻𝐷𝐴 will be kept unchanged within each pair of parabolas. They will have similar 𝜆 and the 

coupling 𝐻𝐷𝐴 will be kept unchanged within each pair of parabolas. However, 𝐻𝐷𝐴 may vary a lot 

among different pairs (or different snapshots). Note that the actual position of each snapshot on its 

Marcus parabolas is arbitrary, and we are not interested in reaching any particular position such as 

the crossing point within the Condon approximation. Actually, depending on the activation energy, 

reaching the correct donor/acceptor and solvent molecule nuclear configuration of transition state 

(crossing point) of any pair of the Marcus parabolas could be a very rare event in equilibrium MD 

and may only be obtained by special techniques such as transition path sampling169–171; or even go 

beyond Born-Oppenheimer molecular dynamics.172,173174 
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The Condon approximation could eventually be problematic in some cases. Very recently 

Beratan et al. found that 𝐻𝐷𝐴 is very sensitive to the molecular geometries in near resonance 

tunnelings for some nucleic acids so that the non-Condon effects dominate, and the charge transfer 

mechanism changes to “flickering resonance”.175 This effect is beyond the scope of this 

dissertation but it is worth noting and might become an important direction in future electron 

transfer studies. 

1.5 DISSERTATION OUTLINE 

The work described in this dissertation employs a wide range of experimental and theoretical 

methods discussed above to address some fundamental problems in nanoscale charge transfer. 

Electrochemical measurement is probably the most feasible experimental mothed for most labs 

and its application in the “hopping” regime is discussed in Chapter 2. As mentioned in section 

1.3.1, the traditional electrochemical analysis is based single-step non-adiabatic electron tunneling 

models and the validity of applying this model to “hopping” regime was never rigorously tested 

before. Chapter 2 describes a three-step kinetic scheme to model charge transfer in this regime. 

Some of the features of the three-step model are probed experimentally by changing the chemical 

composition of the SAM. As an example, the charge injection barrier for a SAM composed of a 

10-mer peptide nucleic acid (PNA) is extracted by using the three-step model and a temperature 

dependence of the charge transfer rate. 

Starting from Chapter 3, experimental and theoretical methods are combined to explore 

nanoscale objects. In Chapter 3, single molecule conductance measurements on alkanedithiols and 

alkoxydithiols (dithiolated oligoethers) were performed using the STM-controlled Break Junction 
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method (STM-BJ, see section 1.3.2) to ascertain how the oxygen heteroatoms in saturated linear 

chains impact the molecular conductance. The results show that the conductance of the oligoethers 

is lower than that of alkane chains with the same length. These experimental findings are 

substantiated by computational studies. First, the experimental trend were reproduced by NEGF 

formulism (see section 1.4.3) and explained by the differences in the spatial distribution of the 

molecular orbitals that contribute most to the conductance. Second, a pathway analysis was 

performed and the trend is discussed in terms of the electronic couplings in the Marcus theory of 

non-adiabatic electron transfer. The consistency between the two methods corroborates Nitzan’s 

results on the relationship between molecular conductance and charge transfer rate (see section 

1.3.2). 

Chapter 4 focuses on the dynamic effects of the charge transfer. Peptide nucleic acid with 

an aminoethylglycine backbone (aeg-PNA) and that with a γ-methylated backbone (γ-PNA) have 

been studied. The common aeg-PNA has a flexible structure, whereas γ-PNA has significantly 

more rigid structure than aeg-PNA. Experimental electrochemical measurements show that the 

charge transfer rate through an aeg-PNA bridging unit is twice the charge transfer rate through a 

γ-PNA bridge unit. Theoretical NEGF conductance calculations of PNA electronic properties, 

which are based on a molecular dynamics structural ensemble, reveal that the difference in the 

charge transfer rate results from the difference in the extent of backbone fluctuations of aeg- and 

γ-PNA. The greater flexibility of the aeg-PNA gives rise to more broadening and a more frequent 

appearance of highly-conductive conformations, as compared to γ-PNA. This finding has 

implications for the design of nucleic acid-based molecular electronics components. 

Finally, a new scaffold for studying photoinduced charge transfer has been constructed by 

connecting a [Ru(Bpy)3]
2+ donor to a  bis(8-hydroxyquinolinate)2 copper [CuQ2] acceptor through 
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a peptide nucleic acid (PNA) bridge in Chapter 5. Intramolecular electron transfer from 

[Ru(Bpy)3]
2+* to [CuQ2] has been observed in time-resolved photoluminescence (TCSPC, see 

section 1.3.3). Depending on the positions of the donor, the conformational effects might be 

important and the power of lifetime distribution analysis to resolve the charge transfer details has 

been demonstrated. Molecular dynamics simulations are used to explore the donor-PNA-acceptor 

structure and the resulting conformational distribution provides a possible explanation for the 

distribution of electron transfer rates. 
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2.0  A THREE-STEP KINETIC MODEL FOR ELECTROCHEMICAL CHARGE 

TRANSFER IN THE HOPPING REGIME 

This work has been published as Yin, X.; Wierzbinski, E.; Lu, H.; Bezer, S.; de Leon, A. R.; Davis, 

K. L.; Achim, C.; Waldeck, D. H. J. Phys. Chem. A 2014, 118, 7579–89. The author of the 

dissertation proposed the model, performed the electrochemical measurement of the 10-mer PNA 

and did subsequent analysis. E.W. provided data of other PNA strands and H.L. performed the 

measurement of the C11. S.B. and A.R.L. synthesized the PNA strands. K.L.D. provided data of 

mismatched PNAs. All authors participated in the writing and revision of the manuscript. 

 

Single-step non-adiabatic electron tunneling models are widely used for analyzing 

electrochemical rates through self-assembled monolayer films (SAMs). For some systems, such 

as nucleic acids, long-range charge transfer can occur in a “hopping” regime that involves multiple 

charge transfer events and intermediate states. This report describes a three-step kinetic scheme to 

model charge transfer in this regime. Some of the features of the three-step model are probed 

experimentally by changing the chemical composition of the SAM. This work uses the three-step 

model and a temperature dependence of the charge transfer rate to extract the charge injection 

barrier for a SAM composed of a 10-mer peptide nucleic acid that operates in the “hopping” 

regime. 
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2.1 INTRODUCTION 

A number of theoretical studies have addressed the detailed mechanism of charge transfer through 

nucleic acids, which can range from the superexchange (tunneling) limit to incoherent hopping.1–

8 For the incoherent limit, the application of simple random walk models1,2 provides a weak (or 

‘soft’) length dependence, similar to that observed experimentally. More detailed models 

distinguish the hopping through A:T base pairs from that through G:C base pairs.3 The elementary 

steps of such hopping could be either direct tunneling/superexchange or thermally activated.4 

Those models all assume the presence of localized holes on a single site (nucleobase); however 

delocalized models, such as polaron hopping, can also explain the dependence of the rate constant 

on the length.5,6 Besides analytical models, ab initio/DFT and semi-empirical approaches are 

widely used, and they can provide valuable insight into the parameters used in analytical models, 

which cannot be obtained easily from experiments.7,8  

Several studies have used electrochemistry to probe charge transfer through self-assembled 

monolayers (SAMs) of nucleic acids, including DNA9–16 and more recently peptide nucleic acid 

(PNA),17,18  on gold electrodes. As a DNA analog with similar Watson-Crick base pairing but a 

neutral backbone,19–24 PNA forms more compact SAMs than DNA.25–27 Electrochemical studies 

of long-range charge transfer through SAMs of PNA duplexes show that charge transfer through 

PNA takes place through  a multi-step “hopping” mechanism25,28,29  similar to that reported for 

DNA.30–37 

Often, it is not possible to determine all the observables in the above models from 

electrochemical measurements. To interpret the results of electrochemical experiments of nucleic 

acid SAMs, workers still rely on a single-step Marcus theory based analysis;38–40 however this 

analysis assumes direct tunneling or single-step charge transfer from the electrode to the 
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electroactive reporter, an assumption that is not consistent with the multi-step hopping mechanism. 

In this work, a general three-step model is proposed, and it is parameterized from the results of a 

temperature dependence study of a typical 10-mer PNA duplex. The three-step model is then tested 

by application to several experiments. 

2.2 THEORETICAL CONSIDERATIONS 

The charge transfer rate constant can be extracted from cyclic voltammetry data; however the value 

of the rate constant depends on the electrochemical model used in the analysis. This section begins 

by reviewing the single-step non-adiabatic electron tunneling model, then proceeds to defining a 

more realistic kinetic scheme of long-range charge hopping, and ends by developing a simplified 

three-step kinetic model for the voltammetry. 

2.2.1 Single-Step Approximation 

In the single step approximation, the electron transfer between an electroactive reporter, e.g. 

ferrocene (Fc), and an electrode through the self-assembled monolayer (SAM) can be represented 

by Equation 2.1: 

 
Equation 2.1 

This approximation is appropriate if the electron transfer occurs by direct superexchange 

(e.g., the process 𝑘𝑆𝐸  in Figure 2.1A is the dominant pathway). The rate law for the formation of 

ferrocenium (oxidized ferrocene) may be written as 
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𝑑

𝑑𝑡
𝑃𝐹𝑐 = 𝑘𝑜𝑥(1 − 𝑃𝐹𝑐) − 𝑘𝑟𝑒𝑑𝑃𝐹𝑐 Equation 2.2 

where 𝑃𝐹𝑐 is the population of ferrocenium. Using a density-of-states treatment and assuming a 

Marcus (Gaussian) density of states,39,41,42 the rate constant for charge transfer with the electrode 

can be written in as 

𝑘 =
 𝜋

ℏ
|𝑉|2

1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝜌(𝜀) 𝑓(𝜀)  exp [−

(𝜆 + (𝜀𝐹 − 𝜀) + 𝑒𝜂)2

4𝜆𝑘𝐵𝑇
]  𝑑𝜀

∞

−∞

 Equation 2.3 

The (𝜀𝐹 − 𝜀) + 𝑒𝜂 term corresponds to the Gibbs free energy of the reaction, where 𝜀 is the energy 

of an electronic state in the electrode, 𝜂 is the overpotential, and 𝜀𝐹 is the energy of the Fermi level. 

𝜌(𝜀) is the density of electronic states of the electrode, 𝑓(𝜀) is the Fermi-Dirac distribution, and V 

is the effective electronic coupling between the electrode and the redox probe states. Given that η 

is a function of time (t) and scan rate (𝑣) in cyclic voltammetry, the rate constants for oxidation 

𝑘𝑜𝑥 and reduction 𝑘𝑟𝑒𝑑 depend on the time and scan rate, namely 𝑘𝑜𝑥 = 𝑘(𝜂(𝑡, 𝑣))   and   𝑘𝑟𝑒𝑑 =

𝑘(−𝜂(𝑡, 𝑣)). 

Lastly, we note that the standard heterogeneous rate constant 𝑘0, which is defined as the 

rate constant at 𝜂=0 V, is given by 

𝑘0 =
 𝜋

ℏ
|𝑉|2

1

√4𝜋𝜆𝑘𝐵𝑇
∫ 𝜌(𝜀)𝑓(𝜀) exp [−

(𝜆 + (𝜀𝐹 − 𝜀))
2

4𝜆𝑘𝐵𝑇
]

∞

−∞

𝑑𝜀 
Equation 2.4 

 

By using Equation 2.2 through Equation 2.4, the cyclic voltammograms can be simulated 

for different 𝑘0 values and voltage sweep rates v, and the potential of the faradaic current peak can 

be assigned.  These calculations allow one to make plots of the faradaic current peak shift versus 

log(𝑣) for different 𝑘0 values. These calculated curves (or working curves) can be compared to 
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plots of the experimental faradaic current peak shifts versus voltage scan rate to extract  a 𝑘0 value 

from the experiment.38,40,43,48  

 

Figure 2.1. Panel A shows the structure of the SAM made of the 10-mer PNA duplex 1; 1 is Cys-TCACTAGATG-

Fc:Lys-CATCTAGTGA. Panel B shows the energy levels 1. The base pair bridge energy levels are assigned based 

on the HOMO level of the base with the lower oxidation potential. The rate constants for nearest neighbor coupling 

are labeled, and 𝑘𝑆𝐸 is the rate for direct superexchange. Panel C shows the kinetic picture of the three-step model; 

which uses three kinetic steps: charge injection (𝑘𝐸𝐵 and 𝑘𝐵𝐸), charge hopping (𝑘𝐵𝐵
𝑜𝑥  and 𝑘𝐵𝐵

𝑟𝑒𝑑), and the redox 

reaction of the terminal probe (𝑘𝐵𝐹  and 𝑘𝐹𝐵). The direct superexchange tunneling is neglected in the hopping 

regime. B1 and Bn are respectively the first and the last hopping site on the molecular bridge. In the model system, 

they do not have to represent a particular nucleobase pair of the molecular bridge, but may represent an effective 

site. 
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2.2.2 Multiple-Step Charge Transfer Process at Equilibrium 

Figure 2.1B shows an energy diagram for charge transfer by incoherent hopping transport from an 

electrode to ferrocene through a nucleic acid duplex. The molecular oxidation levels are shown for 

the sequence of the 10-mer  peptide nucleic acid (PNA) duplex used as a model molecule in this 

study (further referred to as duplex ‘1’). 44 For the oxidation reaction discussed here, the electrode 

is the hole donor and ferrocene is the hole acceptor. The rate constants are shown only for the 

nearest neighbor charge transfer pathway. It is worth noting that the actual picture is much more 

complicated because many non-nearest neighbor pathways can contribute to the overall charge 

transfer in long chains.4,39,45 This scheme is chosen because the length dependence of charge 

transfer in a PNA duplex has been shown to be consistent with a sequential, superexchange-

mediated, hopping mechanism.25 To facilitate the comparison with experiments, the above picture  

can be simplified as suggested by Petrov et al.46 That is, for a general hopping (electron or hole) 

process in a donor-bridge-acceptor system, one can replace the detailed scheme in Figure 2.1B 

with a scheme that uses a single effective energy barrier 𝜀  for all bridge units, and non-nearest 

neighbor pathways can be ignored. Different charge transfer rate constants between base pairs are 

replaced by a single average rate constant 𝑘𝐵𝑃. The sum of the charge transfer rate of the hopping  

pathway and that of the direct superexchange pathway (𝑘𝑆𝐸), gives the overall charge transfer rate 

and its length dependence with reasonable parameters. For example, comparison of this model to 

photoinduced charge transfer through proline oligomers gives an 𝜀  of 0.2-0.4 eV.46,47 However, 

in G-C and A-T base pairs, the energy difference is larger than between the units in peptide bridges 

and one must be careful when applying Petrov’s approximation. For example, one may need to 

treat the charge transfer between neighboring G-C base pairs instead of any two adjacent base pairs 

as the elementary hopping step,4 or use effective hopping sites instead of particular base pairs. 
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Even after simplification of the real system by Petrov’s approximation, the kinetic scheme 

remains too detailed for meaningful comparison with the PNA-mediated electrochemical charge 

transfer rates that are measured. Specifically, the residence time of the charge on the bridge and 

the charge transfer rate of each elementary hopping step must be explicitly considered in this 

approximation. Recent bridge-only simulations28,48,49 provide useful insights as to appropriate 

parameter values for PNAs, such as duplex 1. Because the electrochemical charge transfer occurs 

between ground electronic states and is significantly slower than that found for photo-induced 

electron transfer, the residence time of charge on the bridge is not expected to be rate limiting. 

Hence, the rate limiting steps are likely to be the charge injection onto or off of the bridge and a 

more coarse grained view of the bridge will be acceptable. That is, the overall charge transfer 

scheme of Figure 2.1B can be simplified further to the approximate scheme in Figure 2.1C. Note 

that as shown later in the paper, the charge hopping on the bridge is unlikely to be a conventional 

rate limiting step no matter how small the absolute 𝑘𝐵𝐵 value would be. In reality, even if the 𝑘𝐵𝐵 

limited hopping does exist, it is unlikely to happen within several tens of base pairs, considering 

soft length dependence in the hopping regime; thus we believe the model should be applicable to 

all current measureable systems. Also, because of the coarse grained nature of the model, it is not 

sensitive to the static or dynamic disorders of the film as long as the charge transfer rate is 

approximated homogeneous for all molecules. A strong inhomogeneity in the charge transfer rate 

will lead to severe broadening of the redox peaks of the cyclic voltammetry,38 which is not 

observed either. If that happens in other systems, the model can be easily expanded to a linear 

combination of a serious of the primitive three-step models with different 𝑘𝐵𝐵 and/or other 

parameters which will be discussed through the whole paper. 
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The kinetics of the redox reaction given by the scheme shown in Figure 2.1C may be 

written as 

 

Equation 2.5 

 

This mechanism uses three steps: charge injection with the electrode (𝑘𝐸𝐵 and 𝑘𝐵𝐸), an effective 

hole hopping rate on the bridge (𝑘𝐵𝐵
𝑜𝑥

 and 𝑘𝐵𝐵
𝑟𝑒𝑑), and the redox reaction of Fc (𝑘𝐵𝐹 and 𝑘𝐹𝐵). The 

direct superexchange tunneling from the electrode to the redox reporter (𝑘𝑆𝐸) is neglected because 

we are modeling a long PNA duplex and the direct superexchange is too slow to contribute 

significantly to the overall charge transfer.a In a tight binding description, B1 is the bridge site that 

is directly coupled to the electrode, and Bn is the bridge site that is directly coupled to the ferrocene 

redox reporter. By comparison to the multiple-step hopping scheme (Figure 2.1B), the charge 

transfer rate constants 𝑘𝐵𝐵
𝑜𝑥  and 𝑘𝐵𝐵

𝑟𝑒𝑑  are effective (or apparent) rate constants that replace the 

detailed kinetics of hopping between bridge sites, which are not directly coupled to the termini, 

electrode and ferrocene.46 Similar ideas (simplifying multiple-step hopping on the bridge to an 

effective single step) have been proposed for photoinduced electron transfer, but have not been 

applied for electrochemical systems.50 

                                                 

a It is straightforward to add 𝑘𝑆𝐸  back by including more parameters when modeling a short duplex.  
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2.2.3 The Three-Step Model and Cyclic Voltammetry 

2.2.3.1 Kinetic Equations of the Three-Step Model 

The three step charge transfer mechanism represented by the diagram shown in Figure 2.1C and 

Equation 2.5 can be described by the following set of kinetic equations: 

𝑑𝑃𝐵1

𝑑𝑡    
= 𝑘𝐸𝐵

′ (1 − 𝑃𝐵1)[ℎ
+] − 𝑘𝐵𝐸

′ 𝑃𝐵1[𝑒
−] − 𝑘𝐵𝐵

𝑜𝑥𝑃𝐵1(1 − 𝑃𝐵𝑛)

+ 𝑘𝐵𝐵
𝑟𝑒𝑑 𝑃𝐵𝑛(1 − 𝑃𝐵1) 

𝑑𝑃𝐵𝑛
𝑑𝑡 

= 𝑘𝐵𝐵
𝑜𝑥𝑃𝐵1(1 − 𝑃𝐵𝑛) − 𝑘𝐵𝐵

𝑟𝑒𝑑𝑃𝐵𝑛(1 − 𝑃𝐵1) − 𝑘𝐵𝐹𝑃𝐵𝑛(1 − 𝑃𝐹𝑐)

+ 𝑘𝐹𝐵𝑃𝐹𝑐(1 − 𝑃𝐵𝑛) 

𝑑𝑃𝐹𝑐
𝑑𝑡

= 𝑘𝐵𝐹𝑃𝐵𝑛(1 − 𝑃𝐹𝑐) − 𝑘𝐹𝐵𝑃𝐹𝑐(1 − 𝑃𝐵𝑛) 

Equation 2.6 

where 𝑃𝐵1,  𝑃𝐵𝑛, and 𝑃𝐹𝑐 are the normalized fractions of holes on corresponding sites, and [ℎ+] 

and [𝑒−] are the concentration of holes and electrons on the electrode. Note that the population on 

each of the bridge sites is usually much smaller than unity and [ℎ+] or [𝑒−] can be incorporated 

into the rate constant expression for an electrochemical process (see Equation 2.3). Hence the 

oxidation/reduction of 𝐵1 is quasi-first order and the Eq. 6 can be simplified as follows:  

𝑑𝑃𝐵1
𝑑𝑡

= 𝑘𝐸𝐵 − 𝑘𝐵𝐸  𝑃𝐵1 − 𝑘𝐵𝐵
𝑜𝑥𝑃𝐵1 + 𝑘𝐵𝐵

𝑟𝑒𝑑 𝑃𝐵𝑛 

𝑑𝑃𝐵𝑛
𝑑𝑡 

= 𝑘𝐵𝐵
𝑜𝑥𝑃𝐵1 − 𝑘𝐵𝐵

𝑟𝑒𝑑𝑃𝐵𝑛 − 𝑘𝐵𝐹𝑃𝐵𝑛 ⋅ (1 − 𝑃𝐹𝑐) + 𝑘𝐹𝐵𝑃𝐹𝑐  

𝑑𝑃𝐹𝑐
𝑑𝑡

= 𝑘𝐵𝐹𝑃𝐵𝑛 ⋅ (1 − 𝑃𝐹𝑐) − 𝑘𝐹𝐵𝑃𝐹𝑐 

Equation 2.7 

If all the rate constants are independent of time, this set of equations describes completely 

the reaction system. However, the rate constants are dependent on the potential profile through the 
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SAM, and it changes with time in cyclic voltammetry, as the applied potential is scanned. Thus a 

numerical method is needed to solve these equations and their solution is presented in the “Results 

and Discussion” section. 

2.2.3.2 The Overall Rate Constant for Charge Transfer 𝒌𝒕𝒐𝒕
𝟎   

While the single-step model uses a single rate constant 𝑘0 to simulate the voltammograms, the 

three-step model uses several different rate constants to describe the overall charge transfer 

process. Because several rate constants are not convenient to use and can be difficult to quantify 

separately, it is desirable to understand how the 𝑘0 from an analysis using the single-step model 

can be related to the parameters in the three-step model. 

We define an effective overall rate constant 𝑘𝑡𝑜𝑡
0  by the rate of charge exchange with the 

electrode in the steady state limit. This definition reduces to the traditional one for 𝑘0 in a single 

step model.51 Thus we can numerically propagate the equations in time, at the formal potential, 

from the initial condition until it converges to steady state and define an (effective) overall rate 

constant by the condition 𝑘𝑡𝑜𝑡
𝑜𝑥 = 𝑘𝑡𝑜𝑡

𝑟𝑒𝑑 ⇒ 𝑘𝑡𝑜𝑡
0 = 𝑘𝑡𝑜𝑡

𝑜𝑥 = 𝑘𝑡𝑜𝑡
𝑟𝑒𝑑. An apparent 𝑘𝑡𝑜𝑡

0  can be found by 

considering the “formal” rate equation for the single-step model, in which 

𝑑𝑃𝐹𝑐
𝑑𝑡

= 𝑘𝑡𝑜𝑡
𝑜𝑥 (1 − 𝑃𝐹𝑐) − 𝑘𝑡𝑜𝑡

𝑟𝑒𝑑𝑃𝐹𝑐 

= 𝑘𝑡𝑜𝑡
0 (1 − 𝑃𝐹𝑐) − 𝑘𝑡𝑜𝑡

0 𝑃𝐹𝑐  

= 𝑘𝑡𝑜𝑡
0 −  𝑘𝑡𝑜𝑡

0 𝑃𝐹𝑐  

⇒ 𝑘𝑡𝑜𝑡
0 =

𝑑𝑃𝐹𝑐
𝑑𝑡

(1 −  𝑃𝐹𝑐)⁄  

Equation 2.8 

where 𝑃𝐹𝑐 (as a function of time) is obtained by way of Equation 2.7. In contrast to the cyclic 

voltammetry simulation, all rate constants in Equation 2.7 are held at their formal potential values. 
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This apparent 𝑘𝑡𝑜𝑡
0  is independent of time in a one-step electron transfer process, but changes with 

time in a multi-step process and converges to the final 𝑘𝑡𝑜𝑡
0  as equilibrium is approached. In the 

analysis below, the calculation is stopped after the time iteration at which the change in apparent 

𝑘𝑡𝑜𝑡
0  becomes smaller than 10−5 s-1, which is well within the precision of the experimental 

measurements. 

2.2.3.3 Simplified Expression for 𝒌𝒕𝒐𝒕
𝟎  

Besides the direct numerical simulation, an approximate analytical expression for 𝑘𝑡𝑜𝑡
0  can be 

obtained through the overall forward rate constant 𝑘𝑡𝑜𝑡
𝑜𝑥  for the following reaction:  

 
Equation 2.9 

Because charge hopping occurs thermo-neutrally at the formal potential (see Figure 2.1C), we have 

made the approximation that 𝑘𝐵𝐵
𝑜𝑥  ~ 𝑘𝐵𝐵

𝑟𝑒𝑑 = 𝑘𝐵𝐵. The overall rate constant for ferrocene oxidation 

is given by  

𝑘𝑡𝑜𝑡
𝑜𝑥 ≡

𝑑𝑃𝐹𝑐
𝑑𝑡

= 𝑘𝐵𝐹𝑃𝐵𝑛 Equation 2.10 

and at steady-state, 

0 =
𝑑𝑃𝐵1
𝑑𝑡

= 𝑘𝐸𝐵 ⋅ 1 − 𝑘𝐵𝐸  𝑃𝐵1 − 𝑘𝐵𝐵𝑃𝐵1 + 𝑘𝐵𝐵𝑃𝐵𝑛 

0 =
𝑑𝑃𝐵𝑛
𝑑𝑡 

= 𝑘𝐵𝐵𝑃𝐵1 − 𝑘𝐵𝐵𝑃𝐵𝑛 − 𝑘𝐵𝐹𝑃𝐵𝑛 

Equation 2.11 

Solving these equations leads to 

𝑘𝑡𝑜𝑡
0 = 𝑘𝑡𝑜𝑡

𝑜𝑥 =
𝑘𝐸𝐵

𝑘𝐵𝐸
𝑘𝐵𝐵

+
𝑘𝐵𝐸
𝑘𝐵𝐹

+ 1
 

Equation 2.12 
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Because charge transfer from the bridge to the electrode and to the ferrocene is exergonic 

and because the hopping occurs thermoneutrally and proceeds through multiple sites,46 one expects 

that 𝑘𝐵𝐸 ≫ 𝑘𝐵𝐵 and 𝑘𝐵𝐹 ≫ 𝑘𝐵𝐵. In these limits 𝑘𝐵𝐸/𝑘𝐵𝐵 is the dominant term in the denominator 

of Equation 2.12, and 𝑘𝑡𝑜𝑡
0  can be approximated as: 

𝑘𝑡𝑜𝑡
0 ≈

𝑘𝐸𝐵
𝑘𝐵𝐸

⋅ 𝑘𝐵𝐵 Equation 2.13 

As the charge injection from the electrode and from the ferrocene are symmetric at the 

formal potential, as shown in Figure 2.1C, 𝑘𝑡𝑜𝑡
0  becomes 

𝑘𝑡𝑜𝑡
0 = 𝑘𝑡𝑜𝑡

𝑟𝑒𝑑 ≈
𝑘𝐹𝐵

𝑘𝐵𝐹
𝑘𝐵𝐵

+
𝑘𝐵𝐹
𝑘𝐵𝐸

+ 1
≈
𝑘𝐹𝐵
𝑘𝐵𝐹

⋅ 𝑘𝐵𝐵 
Equation 2.14 

Although Equation 2.13 and Equation 2.14 may appear different, they take the same form 

when the effective barrier 𝜀  is used. At electrochemical equilibrium, the principle of detailed 

balance requires that: 

𝑘𝐸𝐵 ⋅ 𝑃𝐸𝑙𝑒𝑐 = 𝑘𝐵𝐸 ⋅ 𝑃𝐵1 Equation 2.15 

Using 𝑃𝐵1 𝑃𝐸𝑙𝑒𝑐⁄ ∝ exp(− 𝜀 𝑘𝐵𝑇⁄ ), we find that 

𝑘𝑡𝑜𝑡
0 ∝ exp (−

𝜀 
𝑘𝐵𝑇

) ⋅ 𝑘𝐵𝐵 Equation 2.16 

Aside from a constant, Equation 2.16 shows that the absolute value of 𝑘𝑡𝑜𝑡
0  is determined 

by two parameters, the electrode-bridge energy barrier 𝜀  and 𝑘𝐵𝐵. A charge hopping process that 

can be described by Equation 2.16  will be called in the “normal” hopping regime because the 

overall charge transfer rate is proportional to the charge hopping rate on the molecular bridge. 

Note that Equation 2.16  only holds if 𝑘𝐵𝐸 ≫ 𝑘𝐵𝐵 and 𝑘𝐵𝐹 ≫ 𝑘𝐵𝐵. In the case that 𝑘𝐵𝐸 is 

the smallest among the three rate constants, Equation 2.12 reduces to 
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𝑘𝑡𝑜𝑡
0 ≈ 𝑘𝐸𝐵 Equation 2.17 

and the overall reaction is charge-injection limited and becomes independent of the charge hopping 

rate on the molecular bridge.  

If 𝑘𝐵𝐹 is the smallest, Equation 2.12 reduces to  

𝑘𝑡𝑜𝑡
0 ≈

𝑘𝐵𝐹
𝑘𝐵𝐸

⋅ 𝑘𝐸𝐵 =
𝑘𝐸𝐵
𝑘𝐵𝐸

⋅ 𝑘𝐵𝐹  Equation 2.18 

In the derivation of Equation 2.16 we have shown that  
𝑘𝐸𝐵

𝑘𝐵𝐸
=

𝑘𝐹𝐵

𝑘𝐵𝐹
. Inserting this result into 

Equation 2.18, we find that 

𝑘𝑡𝑜𝑡
0 ≈ 𝑘𝐹𝐵 Equation 2.19 

and the overall reaction is redox reporter limited. The same conclusion can be drawn directly from 

Equation 2.14 as well; see Supporting Information for a detailed discussion of the transition from 

𝑘𝐵𝐵 independent region to 𝑘𝐵𝐵 depenent regions. 

As we will show in the last part of the discussion section, charge transfer through the duplex 

1 is not charge injection or redox reporter limited; the more general result (Eq. 2.12 or 2.14) will 

be used in further discussion regarding duplex 1. Note the steady-state approximation used to 

obtain Equation 2.12 requires small change in the hole population on the bridge, which means the 

hopping site should not be oxidized drastically before the completed oxidation of ferrocene. This 

requirement can be tested in cyclic voltammetry easily because a large change in the hole 

population will result in additional peaks or distortion of the ferrocene peak. The three-step model 

should apply as long as no such distortion is observed. Since there are indeed no additional peaks 

or distortion for duplex 1 (vide infra), it is expected that model should be applicable within the 

range of at least several tens of base pairs because of the soft length dependence of charge hopping. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Numerical Simulations of Cyclic Voltammograms 

2.3.1.1 Potential Drop in Hopping 

 

Figure 2.2. The energy diagram for the three step model shown here is similar to that shown in Figure 2.1C, 

but it includes an applied overpotential 𝜂𝑡𝑜𝑡. The parameters 𝐸𝐵%, 𝐵𝐹%, and 𝐵𝐵% are introduced to account 

for a variable potential drop through the SAM (see text for more details). 

Because the potential profile of the electrode-bridge-ferrocene system52 and consequently the 

overpotential at each of the sites B1, Bn, and Fc, is not known, the time evolution and the kinetic 

rates between these sites, which are required for simulating the voltammograms, are not known 

either. One only knows the value of the overall bias, or total overpotential 𝜂𝑡𝑜𝑡 relative to the 

formal potential of ferrocene. Although a few theoretical and experimental studies have addressed 

this issue,53–59 it is not yet clear how to realistically model the applied potential drops through a 

SAM assembly. To simulate the voltammograms, we introduce three new parameters that 
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correspond to the contributions of local potential drops (change in the energy of the Fermi level of 

the electrode and the energy of sites B1 and Bn when out of equilibrium) to the total potential drop 

across the interface (equal to 𝜂𝑡𝑜𝑡); see Figure 2.2.  𝐸𝐵% is the percentage of the potential drop at 

the electrode-bridge interface; 𝐵𝐵% is the percentage of the potential drop across the bridge itself; 

and 𝐵𝐹% corresponds to the potential drop at the bridge-ferrocene interface. Equation 2.20 is the 

constraint applied to the three parameters: 

𝐸𝐵% + 𝐵𝐵%+ 𝐵𝐹% = 100% Equation 2.20 

If values for these parameters are known, the overpotential for each step in the kinetic 

model is defined, and the Marcus theory can be applied. Some evidence indicates that the potential 

drop occurs over the whole charge transfer pathway for insulating films such as alkyl monolayers.1 

However, a π-stack structure is presumed to be more ‘conductive’ than alkyl chains, and it may be 

the most ‘conductive’ part along the charge transfer pathway (i.e., the hopping rates are assumed 

to be much faster than the injection rates, vide supra). Thus 𝐵𝐵% is taken to be the smallest. 

Another important constraint is that the oxidation and reduction waves are often found to be 

symmetric, or nearly so, in the experiments. Thus, the relative magnitudes of 𝐵𝐵%, 𝐸𝐵%, and 

𝐵𝐹% were adjusted to generate the most symmetric voltammograms. 

2.3.1.2 Comparison of Simulated Voltammograms Based on Single-Step and Three-Step 

Models 

Because the long range charge transfer through nucleic acids is widely studied, we have adapted 

parameters from those studies60,61 and from earlier peptide nucleic acid (PNA) experiments25 to 

simulate voltammograms and to compare the three-step model with the traditional single-step 

model. The numerical simulations were performed using MATLAB. Based on earlier studies of 
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ferrocene-terminated SAMs of alkanethiols29,39 and the findings for the ferrocene-terminated 

undecanethiol (C11) SAMs reported here (vide infra), the reorganization energy 𝜆 was set to 0.8 

eV for the ferrocene oxidation in both the single-step and the three-step model. For the single-step 

model only the parameter 𝑘0 remained to be adjusted; whereas for the three-step model, the energy 

barrier 𝜀 , the site-to-site hopping rate constant 𝑘𝐵𝐵, and the potential drop profile were adjusted. 

For each model voltammograms were simulated and compared with the experimental data (vide 

infra). For the molecular bridge sites in the three-step model, the effective energy difference 

between the ferrocene and the bridge state, 𝜀 , was chosen to be 0.24 eV, by systematically 

comparing the experimental temperature dependence of 𝑘𝑡𝑜𝑡
0 (vide infra) and the simulated one. 

Once 𝜀  was chosen, the rate constant for the site-to-site hopping constant, 𝑘𝐵𝐵, was adjusted to 

obtain a good agreement between the calculated 𝑘𝑡𝑜𝑡
0  and the apparent charge transfer rate from 

experiment. It is found that if the 𝑘𝐵𝐵 value is 1.5 × 103𝑠−1, then  𝑘𝑡𝑜𝑡
0  is 0.23 𝑠−1, which is similar 

to the 𝑘0 values found for duplex 1 when a single-step model is used. The value of 𝑘𝐵𝐵 is also 

consistent with literature reports for similar systems.32,50,62,63 The potential drop parameters 

𝐵𝐵% = 5%, 𝐸𝐵% =  0%, and 𝐵𝐹% = 75% generated the highest symmetry for the simulated 

voltammograms. 

With the parameter values given above, cyclic voltammograms for ferrocene were 

simulated. Figure 2.3A shows the simulations obtained using the three-step model. Note that the 

simulated peak shifts and peak heights are not totally symmetric as seen most clearly in the trumpet 

plot in the lower panel of the figure. In addition, single-step (Equation 2.2) simulations were 

performed to reproduce the oxidation peak shift (panel B) and the reduction peak shift (panel C) 

of the trumpet plot in panel A for the three-step simulation. The 𝑘0 values for the single step 

simulations, 0.13 𝑠−1 for the oxidation and 0.28 s-1 for the reduction, differ significantly from the 
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0.24 s-1 value that is used in the three-step model simulation; however the average of the two rate 

constants, 0.21 s-1, differs from it by only ≈ 10%. The difference between the oxidation and 

reduction peak shifts arise from using different charge injection rates at the electrode-bridge 

interface (𝑟𝑖𝑛𝑗
𝑜𝑥 ) and the ferrocene-bridge interface (𝑟𝑖𝑛𝑗

𝑟𝑒𝑑). These results indicate that the single-step 

analysis (used to find 𝑘0) provides a reasonable approximation for the overall rate (𝑘𝑡𝑜𝑡
0 ) in the 

multi-step charge transfer process, considering current experimental precision; however, the use 

of the single-step model masks some important features of the process, vide infra. 

 

Figure 2.3. Simulated voltammograms and peak shifts from the formal potential 𝐸0 are shown as a function of the 

potential scan rate. A) These simulations are for the three-step model with 𝜀 = 0. 4 eV , 𝐵𝐵% = 5%, 𝐵𝐵% = 5% 

and 𝐵𝐹% = 75%, and 𝑘𝑡𝑜𝑡
0 = 0. 3 s-1. In panel B) the simulations use the single-step model with a lower limit of 𝑘0 

(0.13 s-1), and in panel C they use the single-step model with an upper limit of 𝑘0 (0.28 s-1); see text for details T is 

taken to be 298 K. 
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2.3.2 Electrochemistry Results 

2.3.2.1 Cyclic Voltammetry Measurements 

 

Figure 2.4. Panel A: Typical cyclic voltammgrams of the PNA duplex 1 (background substracted) are shown for 

a temperature of 298K. The asymmetry of the anodic and cathodic current, e.g. the currents at formal potential, can 

be observed. Panel B: 𝑘0 was found to be 0.15 s-1 by using a fit of both the anodic and cathodic peak shifts with a 

single rate constant. Panel C: If the oxidation and reduction peak shifts are treated seperately, the 𝑘0 that is extracted 

from the shift of oxidation peaks is 0.10 s-1 and the 𝑘0 that is extracted from the shift of reduction peaks is 0.20 s-

1. Panel D: The temperature dependence of 𝑘0 for ferrocene tethered to SAMs of the PNA duplex 1 and C11 alkanes 

are plotted for comparison. The 𝑘0s were obtained from the best fit to a single rate constant and normalized to the 

rate constant 𝑘𝑅𝑇
0  at room temperature (298 K). 
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Cyclic voltammetry measurements at different temperatures were performed to determine the 

temperature dependence of the electrochemical rate constant through SAMs of the 10-bp PNA 

duplex 1 and of an alkane (C11). The observed redox potential of the ferrocene is the same for the 

two different bridges, however the cyclic voltammograms of the PNA duplex 1 showed an 

asymmetry (see Figure 2.4A). Figure 2.4B shows a fit of the data with a single 𝑘0 = 0.15 𝑠−1, 

however the fitting is improved if different rate constants are used for the shifts of the oxidation 

(0.1 s−1) and reduction peaks (0.  s−1) – see Figure 2.4C. The average of the oxidation and 

reduction rate constants from the fit in Figure 2.4C coincides with the 𝑘0 obtained in Figure 2.4B. 

Note that the asymmetry, whi ch is apparent for the trumpet plot of 1, is not observed for the case 

of the C11 SAM.   

Figure 2.4D plots the logarithm of the electron transfer rate constants 𝑘0 versus 1/T for 

both 1 and C11 SAMs.  A linear least squares fit to the ln(𝑘0 ⋅ √𝑇/𝑘𝑅𝑇
0 ⋅ √ 98) as a function of 

𝑇−1 was performed to extract the apparent reorganization energy: 

ln (
𝑘0 ⋅ √𝑇

𝑘𝑅𝑇
0 ⋅ √ 98

) = −
𝜆

4𝑘𝐵
⋅ (
1

𝑇
−

1

 98
) Equation 2.21 

The temperature dependence for the C11 SAM is softer than that of the 10-bp PNA. Using 

a Marcus model and assuming that the temperature dependence arises solely from the 

reorganization energy, a best fit is obtained for C11 with a 𝜆 value of 0.80 eV, in agreement with 

other work,29,39 and for the 10-bp PNA with a 𝜆 of 1.1 eV. The detailed differences in the SAMs 

is unlikely to cause such a large difference in the reorganization energy of the ferrocene, hence the 

three-step model was fit to the experimental temperature dependence with 𝜆 constrained to be 0.80 

eV. 
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2.3.2.2 Obtaining 𝜺𝒉 from the temperature dependence of 𝒌𝟎 

 

Figure 2.5. Panel A shows the dependence of the standard electrochemical rate constant 𝑘0 on the temperature 

for the experimental PNA data and for the three-step simulation; the 𝑘0 values are normalized to 𝑘𝑅𝑇
0 . Panel B 

shows a two-dimensional plot for the goodness-of-fit; the two significat parameters are the effective charge 

injection barrier 𝜀 , and the charge transfer rate across the bridge 𝑘𝐵𝐵. 

The temperature dependence of the electrochemical rate constant 𝑘0 for the PNA duplex 1 was 

simulated by the three-step model to extract the energy barrier 𝜀 . As shown in Equation 2.16, the 

overall rate constant 𝑘𝑡𝑜𝑡
0  mainly depends on 𝑘𝐵𝐵 and 𝜀 . Because the temperature induced change 

of 𝑘𝐵𝐵 and the effect of 𝜀  cannot be distinguished in current electrochemical experiments, all of 

the temperature dependence was assumed to arise from 𝜀  and 𝑘𝐵𝐵 was taken to be temperature 

independent in the simulation.a  Figure 2.5A shows a plot of the experimental rate constant 

observed for the duplex 1 with that found from the simulations by Equation 2.8 using the same 

parameters as for the voltammograms in Figure 2.3. The good agreement between the simulation 

                                                 

a The dependence of k0
tot on kBB is somewhat weaker than that implied by the approximate 

expression Equation 2.16; see the Supplemental Information for a discussion. 
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and the experiment reveals that the activation energy can be explained in terms of the three-step 

model and its effective energy barrier 𝜀 . The best fit curve that is shown in Figure 2.5A has an 𝜀  

of 0.24 eV. Figure 2.5B shows a plot of how the goodness of fit, ∑ [𝑘𝑡𝑜𝑡
0 (𝑇𝑖) − 𝑘0(𝑇𝑖)]

2
𝑖 , depends 

on the two parameters 𝑘𝐵𝐵 and 𝜀 . This plot shows that the best agreement between the simulated 

results and the PNA data are found for 𝜀 ≈ 0. 4 eV, and it is not very sensitive to 𝑘𝐵𝐵 in the 

tested range.  

 

Figure 2.6. Panel A shows an energy diagram for the molecular levels of Cys-A7-Fc. The energy barrier is calculated 

from the HOMO of A7 (1.46 eV) and the HOMO of ferrocene (1.1 eV). Panel B shows an energy diagram that may be 

appropriate for duplex 1 based on our knowledge from electrochemical experiments. 

The charge injection barrier of 0.24 eV is consistent with the 0.36 eV energy offset between 

the HOMO of ferrocene  and that of adenine, recently reported by Schlaf and coworkers64 for 

single-strand Cys-A7-Fc ( see Figure 2.6A). Figure 2.6B shows a sketch of what the energy profile 

might look like for the duplex, assuming that the Au, cysteine, and ferrocene offsets are at the 

same place as that in Panel A. The duplex nucleotide energies are taken to lie at 1.34 eV. Note that 

the energy levels in the ferrocene modified PNA bridges lay closer to gold Fermi level than the 

levels in ferrocene-free PNAs.64 For duplex 1, several effects may cause the actual energy barrier 

to be lower than the 0.36 eV value found for Cys-A7-Fc. First, the guanines in duplex 1 have a 

A B 
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much lower oxidation level (and thus higher HOMO energy) than adenine and thymine,44 which 

should lower the effective barrier. Second, the formation of base pairs and the enhanced 𝜋-stack 

in duplexes may facilitate some delocalization of the HOMOs and further reduce the effective 

energy barrier. Lastly, the broadening of molecular levels by thermal fluctuation and other factors 

could play a role in determining the energy offsets.48,49 Although a quantitative analysis is not 

possible at this time, the small upper limit that is set on the energy barrier by the photoemission 

measurements is consistent with the 𝜀  value extracted from the electrochemical data. 

2.3.3 PNA Linkage/Bridge Scheme and Kinetic Terms of the Model 

The rate constant 𝑘𝑡𝑜𝑡
0  has contributions from the elementary steps of charge injection to the bridge, 

charge hopping along the bridge, and the oxidation of the redox probe. Here we use chemical 

changes of the PNA duplex 1 and its terminal groups (e.g. linker between the duplex and the gold 

electrode, or redox probe) to vary these elementary steps. While it is not rigorously possible to 

adjust them independently in this way, a judicious choice of which groups to change can make it 

approximately so. Table 2.1 shows 𝑘𝑡𝑜𝑡
0  values for different PNA duplexes used to test the 

predictions of the three-step model. 

Table 2.1. 𝑘0 and surface coverages for PNA SAMs with different linkage/bridge schemes at room temperature. 

Linker-PNA Sequence-Redox Probe 𝑘0 / 𝑠−1 Coverage (pmol/cm−2) 

Cys-PNA(TA)-Fc (duplex 1) 0. 3 ± 0.10 4 ± 15 

Sec-PNA(TA)-Fc (see SI) 0.18 ± 0.05 16 ± 3 

Cys-PNA(CA)-Fc65 0.05 ±  0.0  5  ±  33 

Cys-Ala-PNA(TA)-Fc (see SI) 0.13 ±  0.04 30 ±  10 

In the previous discussion, we have assumed that the charge transfer in duplex 1 is in the 

“normal” hopping regime, i.e., 𝑘𝐵𝐸 ≫ 𝑘𝐵𝐵 , 𝑘𝐵𝐹 ≫ 𝑘𝐵𝐵, and that Equation 2.16 holds. These 

A

) 

B

) 
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assumptions were tested experimentally. First, a selenocysteine (Sec) was used to replace cysteine 

as the anchoring linker. The electronic coupling between the Se-Au bond is reported to be stronger 

than that of S-Au66 and thus 𝑘𝐵𝐸 is expected to be higher for Sec-PNA(TA)-Fc than for duplex 1. 

The use of a Se linker does not cause a dramatic boost in the overall 𝑘0; rather the two rates are 

within experimental error of each other. This result implies that duplex 1 is not charge injection 

limited; see Equation 2.17. Second, the influence of the charge hopping rate was evaluated by 

comparing the 𝑘0 for the fully complementary PNA duplex 1 to that for the PNA duplex with a 

single CA base pair mismatch (Cys-PNA(CA)-Fc). In these duplexes, both systems are attached 

to the gold electrode through a cysteine linker, and they have similar coverages on the electrode. 

The comparison shows that the overall rate of the charge transfer is affected strongly by the 

disruption of the base pair stacking, and the experimental 𝑘0 value is five times higher for the fully 

complementary sequence. This result implies that the rate constant expression for duplex 1 should 

have a form in which 𝑘𝐵𝐵 plays a role; i.e., Equation 2.16. 

To explore further the charge injection limited regime, the duplex Cys-Ala-PNA(TA)-Fc 

was synthesized, in which an alanine spacer is inserted between the cysteine and the duplex, 𝑘0 is 

a factor of two smaller than for 1. Because 𝑘𝑡𝑜𝑡
0  in Equation 2.16 does not change with 𝑘𝐵𝐸, it may 

be that the additional alanine reduces 𝑘𝐵𝐸 so that it is comparable to 𝑘𝐵𝐵 and 𝑘𝑡𝑜𝑡
0  is affected. This 

result suggests that the Cys-Ala-PNA(TA)-Fc may be close to the charge injection limited regime.  

Although current data do not warrant a detailed quantitative analysis, the results show that 

the injection rates at the electrode-bridge interface and bridge-redox reporter interface can 

contribute significantly to the overall rate. The effective energy barrier is mainly determined by 

the bridge-redox reporter interface and the overall charge transfer rate is determined by both 𝜀  

and 𝑘𝐵𝐵 (duplex 1, Cys-PNA(CA)-Fc and Sec-PNA(TA)-Fc). In summary, the overall charge 
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transfer rate depends on the charge injection barrier at the electrode bridge interface, the hopping 

rate through the bridge, and the oxidation/reduction of the redox probe to varying degrees, and it 

can be manipulated by the functional design of the studied molecules. 

2.3.4 Comparison with Photoinduced Charge Transfer Rates 

Another fact that can be explained by the three-step model is the difference between the absolute 

charge transfer rates measured in photoinduced charge transfer and those measured in 

electrochemical experiments. The absolute values of the charge transfer rates for DNA bridges 

have been measured by a number of different groups67 using spectroscopic methods. The 

spectroscopic rate constant 𝑘𝑡𝑜𝑡
0  is usually about 103 to 105 times larger than those reported for 

PNA molecules by electrochemistry,29 even though both of the mechanisms are believed to be 

charge hopping through 𝜋-stacks. It seems unlikely that the detailed differences in the structures 

themselves can lead to such a large difference. The difference does not seem to arise from the 

reaction free energy Δ𝑟𝐺 either, because the difference can still be observed when the hopping 

sites are all the same (thus the Δ𝑟𝐺 (hopping) is usually taken as zero).67,68 In fact, the main 

difference between the spectroscopic and electrochemical experiments is that the spectroscopic 

experiments32,37,63,67,68 have no electrodes and the photoinduced charge injection step is very fast, 

causing the overall reaction to be 𝑘𝐵𝐵 limited. Therefore the photoinduced electron transfer rate at 

Δ𝑟𝐺 = 0 is mainly 𝑘𝐵𝐵; not 𝑘𝑡𝑜𝑡
0  as in electrochemical experiments. In contrast, Equation 2.16 

shows that 𝑘𝑡𝑜𝑡
0  depends strongly on 𝜀  for the electrochemical rate. At room temperature, 𝜀  is 

about 8~10 times larger than 𝑘𝐵𝑇, leading to the result that 𝑘𝐵𝐵 is about 103~104 times larger 

than 𝑘𝑡𝑜𝑡
0 , which can account for most of the difference in the two types of measurements. 
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2.4 CONCLUSIONS 

In this work, the multi-step charge hopping through PNA SAMs was examined and a new three-

step phenomenological model was developed to simulate the charge transfer process and interpret 

the electrochemical measurements. A temperature dependence study of a 10-basepair PNA duplex 

was performed and compared with the predictions of the three-step model. The importance of the 

energy barriers between the molecular bridge and the electrochemical reporter was revealed by 

applying the three-step model to the experimental results. An injection barrier of 0.24 eV was 

extracted by comparing the simulation with the experimental data, and it is in reasonable 

agreement with the results from photoelectron spectroscopy. Although designed for 

electrochemical measurements, the model may be used in a broader context such as comparing 

electrochemical data with spectroscopic results. 

2.5 EXPERIMENTAL METHODS 

2.5.1 Electrochemical Measurements 

2.5.1.1 Electrode Preparation 

A gold wire (0.5 mm diameter, 99.999%, Alfa Aesar, MA) was cleaned by immersion in “piranha” 

solution (1:3 H2O2 and 98% H2SO4) for at least 30 min and then washed with deionized water (>18 

MΩ · cm). (CAUTION! The piranha solution is a very strong oxidizing agent and extremely 

dangerous. Eye protection and gloves should be used during handling.) The wire was sealed in a 

soft-glass capillary tube with the tip exposed. The tip of the gold wire was heated to form a ball. 
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The gold ball was reheated in a flame until glowing, then slowly cooled, and finally quenched in 

deionized water.  This annealing process was repeated more than fifteen times until a smooth ball 

electrode was obtained. The area of the electrode was determined electrochemically69 and found 

to be typically ~0.1 cm2. 

2.5.1.2 Preparation of Self-Assembled Monolayers 

SAMs of PNA were prepared by incubating gold ball electrodes in 300 𝜇L of a 20 µM ds-PNA 

solution for 40 h at 27 °C.33-35 After incubation, the gold electrodes were washed with deionized 

water and directly used in the electrochemical studies. 

SAMs of Fc(CH2)11SH were prepared by incubating gold ball electrodes in 500 𝜇L of an 

ethanol solution of Fc(CH2)11SH and CH3(CH2)9SH for 24 h at 27 °C. The total thiol concentration 

was 1 mM and the mole ratio of Fc(CH2)11SH to CH3(CH2)9SH was 1 to 9. After the initial 

incubation, the electrodes were rinsed with ethanol and transferred to 1mM CH3(CH2)9SH ethanol 

solution for another 24 h to remove weakly bounded Fc(CH2)11SH. The electrodes were then 

removed from the incubation solution, washed sequentially with ethanol and deionized water and 

directly used in the electrochemical studies. 

2.5.1.3 Cyclic Voltammetry 

Cyclic voltammetry was carried out with a CH Instrument Electrochemical Analyzer 430 (Austin, 

TX). The three-electrode electrochemical cell consisted of an Ag/AgCl (1 M KCl) reference 

electrode, a platinum wire as a counter electrode, and a SAM-coated gold ball electrode as the 

working electrode. All experiments were performed in a 1 M NaClO4 (pH 6-7) aqueous electrolyte 

solution. The uncompensated solution resistance of a similar system was measured by AC 

impedance and found to be less than 5 Ω, so that the iR drop was not important for the 
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measurements. The coverage of the PNA ferrocene SAM was calculated by integrating the charge 

under the voltammetric peaks. 𝑘0 was obtained by fitting the peaks shifts with working curves 

from the traditional single step model.29,38 

The whole electrochemical cell was placed in a water jacket. The temperature was 

monitored by an Omega 44006 thermistor (precision ±0.2 K), which was sealed in a Teflon cap 

and inserted into the solution beside the electrodes, and it was adjusted by a circulating water 

Endocal RTE-4 refrigerated circulating bath system. Measurements were performed at 298K first, 

then the system was heated or cooled and the measurements were carried out after the system 

stabilized at the desired temperature. The temperatures were controlled to be within a precision of 

±0.5 K.  

2.6 SUPPORTING INFORMATION 

2.6.1 PNA Synthesis and Characterization 

The A, G, C, and T PNA monomers were purchased from ASM Research Chemicals and were 

used without further purification. The Tpy PNA monomer was synthesized by a previously 

published method.70 All other reagents were commercially available, analytical grade quality, and 

used without further purification.  PNA was manually synthesized by solid phase peptide synthesis 

using the Boc-protection strategy, as previously described.71 The PNA was cleaved off the resin, 

ether precipitated, dried, dissolved in water, and purified by reverse phase HPLC on a Symmetry 

C18 300 5 μm 4.6 mm × 250 mm column. A 30 min linear gradient from 0.1% TFA in water to 

acetonitrile at 1 mL/min was used for elution. The PNA absorbance was monitored at 260 nm with 



 82 

a Waters 2996 Photodiode Array Detector. Collected fractions were characterized on an Applied 

Biosystems Voyager Biospectrometry Workstation with Delayed Extraction (Applied Biosystems, 

Foster City, CA)  using an R-cyano-4-hydroxycinnamic acid matrix (10 mg/mL in 1:1 

water/acetonitrile, 0.1% TFA). The fractions with correct molecular weight were lyophilized and 

then resuspended in water.  The concentration of PNA oligomers in water was determined by UV 

absorption at 90°C using the sum of the extinction coefficients of the constituent PNA monomers 

at 260 nm taken from the literature. ε260 used in the calculation of the PNA concentration were 

8600 M−1cm−1 for T, 6600 8600 M−1cm−1 for C, 13700 M−1cm−1 for A, and 11700 M−1cm−1 for 

G.72 The extinction coefficient for the Tpy monomer at 260 nm was 9750 M-1cm-1. 70 

Table 2.2. PNA sequences and molecular masses. 

PNA sequence calculated   m/z experimental m/z 

Cys-TCACTAGATG-Fc 3043 3044 

Lys-CATCTAGTGA 2855 2856 

Sec-TCACTAGATG-Fc 3088.7 3087.5 

Cys-Ala-TCACTAGATG-Fc 3113 3113 

2.6.2 The effect of 𝒌𝑩𝑩 on 𝒌𝒕𝒐𝒕
𝟎  

The approximate expression, Equation 2.16, overstates the dependence of 𝑘𝑡𝑜𝑡
0  on 𝑘𝐵𝐵, which is 

more rigorously found by numerical solution of the following equation (Equation 2.8 in the 

manuscript): 
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𝑑𝑃𝐹𝑐
𝑑𝑡

= 𝑘𝑡𝑜𝑡
𝑜𝑥 (1 − 𝑃𝐹𝑐) − 𝑘𝑡𝑜𝑡

𝑟𝑒𝑑𝑃𝐹𝑐 

= 𝑘𝑡𝑜𝑡
0 (1 − 𝑃𝐹𝑐) − 𝑘𝑡𝑜𝑡

0 𝑃𝐹𝑐 

= 𝑘𝑡𝑜𝑡
0 −  𝑘𝑡𝑜𝑡

0 𝑃𝐹𝑐 

⇒ 𝑘𝑡𝑜𝑡
0 =

𝑑𝑃𝐹𝑐
𝑑𝑡

(1 −  𝑃𝐹𝑐)⁄  

Equation 2.22 

For the calculations shown in Figure 2.7, we set 𝑘𝐵𝐹 to be 4000 and varied 𝑘𝐵𝐵 from 0 to 

5000; these values are similar to that found for duplex 1 is in the normal hopping regime.  𝑃𝐹𝑐 (as 

a function of time) was obtained by numerical simulation of the three-step model, as described in 

the manuscript. As Figure 2.7A, a ten-fold change in 𝑘𝐵𝐵 from 500 to 5000 gives rise to only a 

factor of three change in 𝑘𝑡𝑜𝑡
0 . The numerical derivative of 𝑘𝑡𝑜𝑡

0  is also calculated and plotted in 

Figure 2.7B. Instead of being a constant, the derivate decreases as approaching the redox reporter 

limited region, clearly showing a sub-linear dependence of 𝑘𝑡𝑜𝑡
0  on 𝑘𝐵𝐵. 

  
Figure 2.7. Panel A shows the simulation results of 𝑘𝑡𝑜𝑡

0  as a function of 𝑘𝐵𝐵. Panel B shows the numerical 

derivatives of 𝑘𝑡𝑜𝑡
0 . Its decreasing clearly shows a sub-linear dependence of 𝑘𝑡𝑜𝑡

0  on 𝑘𝐵𝐵. 

A more quantitative analysis can be obtained by using the numerical derivative. Suppose 

𝑘𝑡𝑜𝑡
0  and 𝑘𝐵𝐵 are related by a general power law 𝑘𝑡𝑜𝑡

0 = 𝐴 ⋅ (𝑘𝐵𝐵)
𝛼, then 
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ln 𝑘𝑡𝑜𝑡 = 𝐴 + 𝛼 ⋅ ln 𝑘𝐵𝐵 Equation 2.23 

Take the derivative on both sides: 

𝑑 ln 𝑘𝑡𝑜𝑡
𝑑𝑘𝐵𝐵

= 𝛼
𝑑 ln 𝑘𝐵𝐵
𝑑𝑘𝐵𝐵

 Equation 2.24 

The expression of 𝛼 is obtained as follows: 

𝛼 =
𝑘𝐵𝐵
𝑘𝑡𝑜𝑡

⋅
𝑑𝑘𝑡𝑜𝑡
𝑑𝑘𝐵𝐵

 Equation 2.25 

The soothed results of 𝛼 calculated using Equation 2.25 are plotted in Figure 2.8A. 

Obviously, the linear relationship (𝛼 ≈ 1) only hold when 𝑘𝐵𝐵 is very small, see the logarithmic 

scale plot in Figure 2.8B. A sub-linear relationship is expected as 𝑘𝐵𝐵 increases and eventually 

𝑘𝑡𝑜𝑡
0  will become independent of 𝑘𝐵𝐵 as 𝑘𝐵𝐵 tend to infinity (i.e. lim

𝑘𝐵𝐵→∞
𝛼 = 0 in the redox reporter 

or charge-injection limited region).  

  
Figure 2.8. Panel A: 𝛼 (defined in Equation 2.23) plotted as a function of 𝑘𝐵𝐵. It approaches unity (linear 

relationship) when 𝑘𝐵𝐵 approaches 0 and approaches zero as 𝑘𝐵𝐵 tend to infinity. Panel B: Same as panel A but 

plotted in logarithmic scale, showing the quasi-linear relationship as 𝑘𝐵𝐵 → 0. 
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2.6.3 Additional Cyclic Voltammograms 

The cyclic voltammograms of Sec-PNA(TA)-Fc (Figure 2.9), Cys-Ala-PNA(TA)-Fc (Figure 

2.10), are presented below. The SAM modified electrodes were prepared by using the same method 

as for duplex 1. All measurements were performed in 1 M NaClO4 (pH 6-7) aqueous electrolyte 

solution at room temperature. 

 

Figure 2.9. Panel A shows cyclic voltammograms for Sec-PNA(TA)-Fc at three different scan rates.  Panel B shows 

a plot of the faradaic peak shift versus the logarithm of the voltage scan rate (scaled to k0). The dashed curve shows a 

fit to the data with a 𝒌𝟎 of  𝟎. 𝟐𝟎 𝒔−𝟏. 
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Figure 2.10. Panel A shows cyclic voltammograms for Cys-Ala-PNA(TA)-Fc at three different scan rates.  Panel B 

shows a plot of the faradaic peak shift versus the logarithm of the voltage scan rate (scaled to k0). The dashed curve 

shows a fit to the data with a 𝑘0 of  0.13 𝑠−1. 
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3.0  THE EFFECT OF OXYGEN HETEROATOMS ON THE SINGLE MOLECULE 

CONDUCTANCE OF SATURATED CHAINS 

This work has been published as Wierzbinski, E.; Yin, X.; Werling, K.; Waldeck, D. H. J. Phys. 

Chem. B 2013, 117, 4431–41. The author of this dissertation performed the theoretical analysis. 

 

Single molecule conductance measurements on alkanedithiols and alkoxydithiols 

(dithiolated oligoethers) were performed using the STM-controlled Break Junction method in 

order to ascertain how the oxygen heteroatoms in saturated linear chains impact the molecular 

conductance. The results show that the conductance of the oligoethers is lower than that of alkane 

chains with the same length, and the difference in conductance increases with chain length, over 

the range studied. These experimental findings are substantiated by computational studies. 

Electronic structure calculations allow the difference in the conductance of these two families of 

molecules to be traced to differences in the spatial distribution of the molecular orbitals that 

contribute most to the conductance. A pathway analysis of the electronic coupling through the 

chain is used to explain the dependence of the electronic coupling difference on the chain length.  

3.1 INTRODUCTION 

Since the concept of molecular electronics first appeared,1,2 progress in the development of 

experimental methods for determining the charge transfer properties of organic molecules (as 

prospective elements of electronic devices) has evolved to allow measurements on individual 

molecules.3–7 Single molecule conductance measurements have been used to quantify the charge 
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transport properties for a diverse array of molecules, including saturated and unsaturated 

hydrocarbons,6,8–14 conjugated oligomers,15–18 fullerenes,19 metal complexes,20,21 porphyrins,22–25 

peptides,26,27 and nucleic acids.4,28–33 Saturated hydrocarbons are often used as model molecular 

bridges,8–14 because of the simplicity of their chemical structure and the establishment of 

superexchange as their charge transfer mechanism for chains of twenty methylenes and less. This 

work compares the conductance of methylene chains (-CH2-CH2-CH2) to oligoethers (-CH2-CH2-

O-) of corresponding length. The STM-controlled break junction method6 was used to measure the 

single molecule conductance of three alkanedithiols, containing five, eight, and eleven methylene 

units, and the three corresponding dithiolated oligoethers, in which every third methylene unit is 

replaced by an oxygen. Comparison of these two sets of organic compounds provides a way to 

probe how the local electronic differences between carbon and oxygen affect the conductance of 

saturated chains. Presumably, the construction of molecular electronic devices would require 

binding several molecules or functional groups together. Hence knowledge about the influence of 

various kinds of chemical bonds on the charge transfer properties is necessary in order to produce 

functional electrical circuits. Similar concerns were addressed recently by Whitesides and 

coworkers, who studied the impact of introducing amide bonds into hydrocarbon chains on the 

conductance of self-assembled monolayers (SAMs).34 The findings reported here demonstrate that 

the conductance of the saturated chains can be decreased below the level found for saturated 

hydrocarbon chains, and that an ether-type linkage may be used as an alternative to hydrocarbons 

in situations where one wishes to decrease the electronic coupling between different fragments of 

a complex molecular structure. 

Comparison of the charge transfer properties of saturated hydrocarbon and ether chains has 

been probed by Napper et al. using electroactive SAMs.35 That report used alkanethiol and 
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alkoxythiol SAMs, in which a small fraction (circa 5%) of the chains were appended with a 

terminal ferrocene as a redox reporter group, and measured the electrochemical rate constant. They 

reported a four to five-fold decrease in the rate constant for the ether-linked ferrocene as compared 

to the alkyl linked ferrocene. The electrochemical rate constant is sensitive to a combination of the 

properties of the molecular bridge, as well as the quality of the monolayer36,37 and intermolecular 

interactions.35,36,38–40 Napper’s study also varied the diluent molecules between ferrocenated 

alkanethiols and alkoxythiols in order to quantify the influence of the electrical dipole in the 

monolayer on the measured rate constant. They found that thirty to forty percent lower rate 

constants were measured whenever ferrocenated molecules with the same covalent linkage to the 

electrode were embedded in the ether monolayer. These studies showed that the effects produced 

by the environment (overall dipole moment in the monolayer) were dramatically smaller than the 

through-bond electronic coupling in determining electrochemical rate constant.41 The 

electrochemical through-bond unimolecular rate constant was predicted to be proportional to the 

molecular conductance of the same molecular bridge;42–44 thus Napper’s results imply that the 

single molecule conductances of alkanes should be higher than that of ethers.  

Computational studies were used to understand the origin of the differences in the 

experimental conductance of the hydrocarbon and oligoether chains. The trend in the calculated 

conductance, hydrocarbon chain more conductive than the alkoxy chain, agrees with experiment. 

Furthermore, the trend in the delocalization level of the calculated molecular orbitals (MOs) in 

these two families of molecules agrees with the experimental trend in their single molecule 

conductances. To quantify the degree of the delocalization of the MOs, the concept of normalized 

localization factors is introduced, and it shows a higher delocalization of the MOs for the 

hydrocarbon chains than for the ether-linked chains. In order to better understand the role of the 
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oxygen atoms in the saturated chains, an analysis of electronic coupling pathways based on natural 

bond orbitals (NBO) was used.35,45 A perturbation treatment46 is used to assess the relative 

contribution from each pathway to the overall coupling, in the limits of hole-mediated 

superexchange and electron-mediated superexchange. This procedure shows that non-nearest 

neighbor couplings are a dominant contributor to the overall coupling for long chains. To 

understand the impact of the oxygen on the electronic coupling (and in consequence on the 

molecular conductance) and its length dependence, the pool of the orbital interactions used in the 

perturbation treatment was expanded to accommodate additional electronic interactions that arise 

from the presence of multiple oxygen atoms in the oligoether chains. This analysis shows how the 

oxygen atoms affect the electronic couplings differently in the short and long molecular chains. 

3.2 EXPERIMENTAL SECTION 

3.2.1 Compounds. 

The STM break junction method was used to measure the conductance of three alkoxy dithiolated 

saturated linear molecules [2-mercaptoethyl ether (5-O), 2,2′-(ethylenedioxy)diethanethiol (8-O), 

and tetra(ethylene glycol) dithiol (11-O)] and three alkanedithiols of corresponding length  [1,5-

pentanedithiol (5-C), 1,8-octanedithiol (8-C), and 1,11-undecanedithiol (11-C)]. All compounds 

were purchased from Sigma-Aldrich in the highest available purity grade and were used without 

additional purification. 
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3.2.2 Single Molecule Conductance (STM-Controlled Break Junction) Measurements. 

The conductance of the single dithiolated molecules was measured using the STM-controlled 

break-junction method.6 In this experiment, the molecules of interest are occasionally trapped 

between the substrate and an STM tip by periodic modulation of the tip-substrate separation. 

During this process, the tunneling current is monitored as a function of the tip-substrate distance 

at a constant bias voltage. The conductance is determined by analysis of the current-distance 

characteristics. All measurements were performed with an Agilent 5500 system equipped with an 

environmental chamber. The STM head was placed in a homemade, acoustically isolated Faraday 

cage, which was mounted on an active antivibrational system (Table Stable) located on an optical 

table. A brief description of the STM-BJ measurements is presented below.  

Experiments were performed using freshly cut gold STM tips (0.25 mm, 99.999% gold 

wire, Alfa Aesar). Typically, 5-10 tips were used to collect sufficient data for each molecule. 100 

nm thick gold films on silicon (Sigma-Aldrich) were used as the substrates. Typically, at least 

three independent substrates were used to collect 2000 - 3000 current-distance characteristics for 

each studied compound. Prior to the measurements, the substrates were cleaned for 10-20 s in 

piranha solution, rinsed solely with deionized water, and dried under a stream of argon. 

Measurements were performed in 2 mM solutions in mesitylene under an argon atmosphere. A 10 

nA/V preamplifier was used in the measurements. Current-distance curves were recorded under 

0.5 V bias. Curves that displayed current plateaus (20-30% of the total data set) were manually 

selected for further analysis. Measured conductances were plotted in the form of normalized 

histograms on a logarithmic scale, with 25 bins per decade. For each of the studied molecules, a 

Gaussian function was fitted to the conductance distribution to determine the position of the 

conductance peak. The conductance distributions are plotted on a linear scale together with the 
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fitted Gaussian functions in the Supporting Materials. Conductance results are expressed in the 

units of the quantum conductance, 𝐺0 =   𝑒2/ℎ ≈ 77 𝜇S. 

In order to plot two dimensional (2-D) conductance-displacement distributions it is 

necessary to determine a zero distance in a constant and meaningful way.  For each-current-

distance curve, the beginning of the drop of measured current from its maximum value of 100 nA 

(~  .5 × 10−3 𝐺0) was taken to define the zero of distance. This part of the curve represents the 

moment at which direct contact between the gold tip and gold substrate breaks, and thus measured 

current rapidly decreases to zero. The distributions were built with a bin size in the displacement 

scale of 0.24 Å. 

3.2.3 Theoretical Calculations of the Conductance. 

A nonequilibrium Green’s function (NEGF) method, which has been verified in the weak coupling 

limit47,48 was employed to calculate the conductance. First, the geometries of all six molecules 

were optimized at the RHF/6-31G(d) level using Gaussian 03.49 Next, the Fock matrix from the 

last SCF calculation was transformed into a fully localized natural atomic orbitals (NAOs) 50,51 

through Gaussian’s NBO 3.1 routine52 and used in the following Green’s function:  

𝐺(𝜀) =
1

𝜀𝐈 − 𝐅 − L − R
 Equation 3.1 

where F is the NAO Fock matrix, and 𝜀 is the energy variable.  The self-energy matrix , which 

describes the molecular orbital (eigenstates of the NAO Fock matrix) broadening that arises from 

the coupling to left (L) and right (R) electrodes, was calculated using the broadening matrix 𝚪 

through 𝚪 = 𝑖[𝚺 − 𝚺+]. The values of the matrix elements of 𝚪 represent the coupling between 

corresponding NAOs and electrodes. A 0.1 eV electrode-NAO coupling strength, which is the 
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same value used previously,32,48 was set for the terminal sulfur NAOs. Because linkers are always 

present in experiments, the terminal carbon atoms were included in the broadening matrix to get 

the correct trend of conductance. The method for the weak coupling limit is optimized for model 

molecules without a “linker”. For the models with linkers, the coupling was kept weak enough 

between the electrode and terminal carbon NAOs so that the molecular bridge states are not 

significantly perturbed. The transmission was computed by the way of Eqn 3.2, 

𝑇(𝜀) = 𝐓𝐫[𝚪𝐿𝑮𝚪𝑅𝑮] Equation 3.2 

and the conductance was calculated by way of Landauer’s formula, 

𝜎 =
𝑞2

ℎ
∫𝑇(𝜀) 𝐹𝑇 (𝜀 − 𝐸𝐹) d𝜀 Equation 3.3 

where q is the elementary charge, h is Planck’s constant. The function FT is the difference between 

the Fermi functions of the left and right electrode,32 namely 

𝐹𝑇(𝜀 − 𝐸𝐹) =
1

4𝑘𝐵𝑇
sech2 (

𝜀 − 𝐸𝐹
 𝑘𝐵𝑇

) Equation 3.4 

𝐸𝐹 is the Fermi level, which was set to -5.5eV to reflect the value for Au.53 Because of the strong 

decrease in the value of 𝐹𝑇  as the energy 𝜀 moves away from 𝐸𝐹, the dominant contribution to the 

conductance 𝜎 is from 𝑇(𝜀 = 𝐸𝐹). By defining a scoring factor,47 the transmission (and the current) 

was decomposed into contributions from specific orbitals: 𝑇(𝜀 = 𝐸𝐹)  =  ∑ SF𝑚𝑚 . The scoring 

factor is expressed as 

SF𝑚 =∑
Γmn
L Γnm

R

(𝐸𝐹 − 𝜀𝑚)(𝐸𝐹 − 𝜀𝑛)
𝑛

 Equation 3.5 

in which Γ𝑚𝑛
𝐿  and Γ𝑛𝑚

𝑅  are the corresponding elements of matrixes 𝚪𝐿 and 𝚪𝑅. 𝜀𝑚 is the energy of 

molecular orbital 𝑚. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Single Molecule Conductance. 

The single molecule conductance was studied using the STM-BJ6 method, in which a gold STM 

tip serves as one electrode and the gold substrate serves as a second electrode of the junction 

(Figure 3.1A). During retraction of the tip from the substrate, the current was measured as a 

function of the distance between the electrodes. In pure solvent, the current-distance curves are 

characterized by an exponential decay, such as the black curves presented in Figure 3.1C. If thiol 

functionalized molecules are present in the solvent, they can be trapped between the tip and the 

substrate and contribute to the overall conductance of the junction. Figure 3.1C shows sample 

experimental curves (presented in conductance scale) with step-like features that result from the 

conduction of the different molecules studied in this work. The structures of the molecules are 

given in Figure 3.1B.  
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Figure 3.1. Panel A shows a cartoon representation of the STM break junction. Panel B shows the molecular 

structures of  1,5-pentanedithiol (5-C), 2-mercaptoethyl ether (5-O), 1,8-octanedithiol (8-C), 2,2′-

(ethylenedioxy)diethanethiol (8-O), 1,11-undecanedithiol (11-C), and tetra(ethylene glycol) dithiol (11-O). Panel 

C shows sample conductance-distance curves recorded in the presence of the molecules in the junction. For 

comparison typical curves recorded in pure mesitylene (solvent) are shown also. 

 

Because the conformations of the molecules and their binding geometries can vary, the 

measured conductance varies from trace to trace;10–12 nevertheless its distribution is characteristic 

for each studied compound. Figure 3.2 shows two-dimensional conductance - displacement 
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distributions constructed from the many conductance - distance curves recorded for each 

compound. The displacement axis reflects the distance at which the STM tip is withdrawn after 

the direct contact between the tip and the substrate is broken.  

For each compound, the measured conductance varied by less than an order of magnitude, 

and the conductance for a family of compounds became smaller with the increasing length of the 

molecule. The values of the conductances that were determined for the alkanedithiol chains (5-C, 

8-C, and 11-C) are in good agreement with the values reported by others for the single molecule 

conductance of alkanedithiols11,12 (more details are provided in the Supporting Materials, see 

section 3.5). The average distances at which the junctions break are dependent on the length of the 

molecules, and it varies from 2 to 3 Å for 5-C and 5-O, to 3 to 5 Å for 8-C and 8-O, and 6 to 8 Å 

for 11-C and 11-O. Other than a shift in the conductance values of the steps, no significant 

difference in overall shape of the conductance-distance dependencies (Figure 3.1C) and in the 

average length of the conductance steps (Figure 3.2) were observed between the hydrocarbon and 

oligoether chains with the same number of bridge units (sum of -CH2 and oxygen atoms in the 

chain). Furthermore, a comparison of the conductance distributions constructed for the 5-C and 5-

O chains show very similar conductances for these two compounds. Nonetheless, the situation 

changes when longer molecules, with a larger number of oxygen atoms in the chain, are compared 

with their hydrocarbon analogs.  
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Figure 3.2. Two dimensional conductance-displacement distributions are shown for 1,5-pentanedithiol (A), 2-

mercaptoethyl ether (B), 1,8-octanedithiol (C), 2,2′-(ethylenedioxy)diethanethiol (D), 1,11-undecanedithiol (E), 

and tetra(ethylene glycol) dithiol (F). The color bar in panel A is common for all compounds.  

Figure 3.3 shows a direct comparison between the conductance distributions constructed 

for alkanedithiol (5-C, 8-C, and 11-C) and oligoether (5-O, 8-O, and 11-O) molecules. Evaluation 
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of the conductance distributions for 5-C and 5-O indicates that replacing a single carbon atom in 

the hydrocarbon chain by an oxygen reduces the average conductance of the chain by several 

percent. If each third methylene unit in the chain is replaced by an oxygen (compounds 8-O and 

11-O, see Figure 1B), the effect becomes stronger and leads to about a fifty percent decrease of 

the average conductance when compared to the hydrocarbon counterparts (8-C and 11-C). The 

increasing influence of the oxygen atoms on the conductance of the longer oligoether chains, which 

is observed in the single molecule conductance experiments, were confirmed by theoretical 

calculations with the NEGF method. Both measured and calculated conductances are given in 

Table 3.1.  

 

Figure 3.3. The plot compares the conductance distributions of dithiolated hydrocarbons (5-C, 8-C, 11-C) and 

oligoethers (5-O, 8-O, 11-O). The shaded distributions represent the hydrocarbon chains and the colored curves 

sketch the distributions for the corresponding oligoethers (green is 11-O, aqua is 8-O, and blue is 5-O).  
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Table 3.1. The average experimental conductance of studied compounds and the calculated conductance of the 

model compounds. 

MOLECULE CONDUCTANCE / G0 

 MEASURED CALCULATED 

5-C (4.6 ± 2.9) × 10-4 2.6 × 10-9 

5-O (4.2 ± 2.3) × 10-4 1.9 × 10-9 

(5-O/5-C) 0.91 0.74 

8-C (5.2 ± 2.5) × 10-5 7.0 × 10-11 

8-O (2.5 ± 1.2) × 10-5 4.1 × 10-11 

(8-O/8-C) 0.48 0.59 

11-C (4.7 ± 1.9) × 10-6 2.2 × 10-12 

11-O (2.1 ± 0.7) × 10-6 1.3 × 10-12 

(11-O/11-C) 0.45 0.58 
a The NEGF methods used here are not expected to reproduce the absolute values of the experimental 

conductances for this system. Simplifications about the nature of the electrode-molecule coupling and the exact 

position of the metal Fermi levels can strongly shift the absolute values. The approach is believed to capture relative 

charge transport trends between systems, however.32,47,48 

3.3.2 Relationship between Electronic Structure and Calculated Conductance. 

Figure 3.4 compares the contributions of particular molecular orbitals (MOs) to the calculated 

conductance for the 8-C and 8-O molecules, by plotting scoring factors SF versus the molecular 

orbital energy (top row in Figure 4).47 Values of scoring factors can be positive or negative. Hence 

constructive and deconstructive interference between different MOs is important in determining 

the overall conductance of the molecule, which is proportional to the sum of all SFs (∑SFs). The 

bottom panel in Figure 4 compares the summation of SFs for occupied and unoccupied levels, 

beginning from the frontier molecular orbitals. That is, the sum is taken from the highest occupied 

molecular orbital (HOMO) downward in energy, and a corresponding sum is taken from the lowest 

unoccupied molecular orbital (LUMO) upward in energy. Three major conclusions can be deduced 

from this comparison: i) SFs are typically higher for HOMOs than LUMOs, suggesting hole-
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mediated charge transfer, ii) ∑SFs s are higher for the alkane chains, as compared to the alkoxy 

chains, iii) for both alkoxy and alkyl chains, the contributions of particular MO’s to the 

conductance become important below the HOMO-1 level. The comparisons of SFs and SFs for 

these molecules plotted versus energy, and versus MO index, are given in the Supporting Materials 

(Figures S4 to S6). 

 

Figure 3.4. Comparison of scoring factors (top row) and their sums (bottom row) for 8-C (blue) and 8-O (red) 

molecules, plotted versus MO Index. The sums are calculated separately for HOMO and LUMO levels starting 

from frontier molecular orbitals.  

Starting from the HOMO-2 level the differences in SF values, and consequently in ∑SFs,  

becomes apparent with a high contribution of this level to the conductance of the 8-C molecule, 
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but a negligible value for 8-O. Table 3.2 gives some energies for some selected MOs with respect 

to the vacuum level. The differences in energy of levels listed in Table 3.2 are less than 0.2 eV in 

all molecules. In particular, the energy of the HOMO-2 level in 8-C and in 8-O is similar, thus the 

molecular conductance of 8-C and 8-O cannot be explained exclusively by their orbital energetics. 

Table 3.2. Energies of selected molecular orbitals for the dithiol molecules. 

MOLECULAR 

ORBITAL 

ENERGY / eV 

5-C 5-O 8-C 8-O 11-C 11-O 

HOMO -9.68 -9.83 -9.63 -9.81 -9.60 -9.80 

HOMO-1 -9.69 -9.85 -9.63 -9.81 -9.60 -9.80 

HOMO-2 -12.00 -11.96 -11.76 -11.74 -11.55 -11.64 

a Note that the HOMO and HOMO-1 are primarily thiol nonbonding electrons (see text). 

Figure 3.5 shows the spatial distributions of selected MOs for 8-C and 8-O. One can see 

that the HOMO and HOMO-1 levels are fully localized at the terminal sulfur atoms, and are very 

similar for the alkyl and oligoether chains. This localization indicates little contribution from 

carbons on the bridge, and indicates that these orbitals can be viewed primarily as symmetric and 

antisymmetric combinations of the sulfur lone pair orbitals. The longer molecular bridge 

minimizes direct coupling between the two terminal atoms further. Together with the symmetry of 

these molecules, this leads to an interesting result that the HOMO and HOMO-1 levels are nearly 

degenerate and their total contributions to the conductance almost cancel each other in the weak 

coupling limit.  
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Figure 3.5. Spatial distributions are shown for selected molecular orbitals in 8-C (A) and 8-O (B). 

   

The spatial distribution of probability amplitude for the HOMO-2 level in these molecules 

is qualitatively different. In the case of 8-C, the HOMO-2 is delocalized along the entire molecule, 

while in the case of 8-O it is more localized on the oxygen atoms. Similar differences in the 

localization of the HOMO-2 levels have been found for the shorter and longer chains also, see 

Figure 3.6. 
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Figure 3.6. Spatial distributions of the HOMO-2 orbital are shown for 5-C (A), 5-O (B), 11-C (C), and 11-O (D). 

Spatial distributions of LUMO, HOMO, and HOMO-1 levels for these molecules can be found in the Supporting 

Materials. 

 

The degree of localization of the MOs was quantified by defining a normalized localization 

factor (NLF) for each MO. Because the MOs have been transformed into the natural atomic orbital 

(NAO) basis (vide supra), each MO can be decomposed into a linear combination of NAOs: 

MO𝑚 =∑𝑐𝑚,𝑖

𝑛

𝑖=1

NAO𝑖  Equation 3.6 

where 𝑐𝑚,𝑖 is a coefficient and |𝑐𝑚,𝑖|
2
 is the contribution of the ith NAO to the mth MO. A 

localization factor for MOm can be defined as the coefficient of variation of the corresponding MO 

coefficients: 

LF𝑚 =
std(𝑐𝑚)

〈𝑐𝑚〉
 Equation 3.7 

where std(𝑐𝑚) is the standard deviation of the series of 𝑐𝑚 and 〈𝑐𝑚〉 is the mean. To compare 

molecules with a different number of NAOs, LF is normalized to its highest possible value for 
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each molecular orbital and the normalized localization factor (NLF) is used in the following 

discussion. 

NLF𝑚 =
LF𝑚
LF𝑚𝑎𝑥

 Equation 3.8 

The NLF values can vary between 0 and 1, where ‘0’ means that the MO is fully delocalized 

(all of the chain’s heavy atom orbitals contribute equally to the MO) and ‘1’ means that the MO is 

localized on a single atomic orbital. Some of the calculated NLF values are presented in Table 3.3. 

The HOMO, and HOMO-1 levels are strongly localized on the terminal sulfur atoms (see Figure 

3.5), and the same high NLF value of 0.66 was calculated for these MOs in all the molecules. For 

both alkanes and oligoethers the LUMO is delocalized along the chain, however the contribution 

of this orbital to the overall conductance is small (see Figure 3.4, and Figures 3.12 and 3.13) 

because of its position with respect to the Fermi level. On the other hand, NLF values calculated 

for the HOMO-2 show a strong difference in the localization. The oligoethers have NLF values 

that are nearly as high as that of the HOMO and HOMO-1,54 whereas the alkyl chains show 

delocalization that is more similar to the LUMO orbitals. The contribution of each MO to the 

conductance (scoring factors) depends not only on the localization factor, but also on the MO's 

energy relative to the Fermi level and on how much the terminal atomic orbital (which is coupled 

with the electrode) contributes to the MO. Other than the HOMO-2 level, the NLFs of the 

hydrocarbons and oligoethers are quite uniform. This feature suggests that the differences in the 

HOMO-2 are largely responsible for the differences in the conductance.  
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Table 3.3. Normalized localization factors (NLFs) for selected molecular orbitals. 

MOLECULE 
MOLECULAR ORBITAL Filled 

Statesa HOMO-2 HOMO-1 HOMO LUMO 

5-C 0.30 0.66 0.66 0.29 0.34 

5-O 0.60 0.66 0.66 0.30 0.38 

8-C 0.27 0.66 0.66 0.29 0.28 

8-O 0.46 0.66 0.66 0.30 0.32 

11-C 0.27 0.66 0.66 0.30 0.25 

11-O 0.60 0.66 0.66 0.30 0.30 
a The average NLF of all MOs formed from the valence atomic orbitals. 

3.3.3 Analysis of the Charge Transfer Pathways. 

Although the MO based conductance analysis explains the general trend, analyzing the MOs 

directly masks how the local bonding and site energy changes affect the conductance. To further 

explore these effects, a pathway analysis based on fully localized natural bond orbitals (NBO)35,45 

was performed. Six symmetric, model molecules: •CH2(CH2)3CH2•, •CH2CH2OCH2CH2•, 

•CH2(CH2)6CH2•, •CH2(CH2OCH2)2CH2•, •CH2(CH2)9CH2•, and •CH2(CH2OCH2)3CH2•, were 

used as model donor-bridge-acceptor representations of 5-C, 5-O, 8-C, 8-O, 11-C, and 11-O 

molecules,  respectively. The terminal radicals played the role of the donor or the acceptor for each 

model molecule. Terminal sulfurs were not included in order to explore better the molecular bridge 

charge transfer properties of the chains. Following Lewis,42 the single molecule conductance in 

the superexchange regime can be approximated as 

𝜎 = |𝑉|2
 𝜋𝑒2

ℏ
[(
𝜋

6
)
2 3⁄ Dm,L𝑙m,L

𝑑𝑚,L
2 3⁄

 
Dm,R𝑙m,R

𝑑𝑚,R
2 3⁄

 ] Equation 3.9 

where V is the electronic coupling through the molecular bridge, D𝑚 is the density of electronic 

states in the metal, 𝑑𝑚 is atomic density of the metal (atoms cm-3), 𝑙𝑚 is the effective coupling 

length of the bridge’s wavefunction into the metal (in cm),  and the R (L) index indicates the right 
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(left) metal contact. The other symbols have their usual meanings. Because the electronic coupling 

is the only variable that depends on the molecular structure of the bridge, the conductance analysis 

is reduced to an electronic coupling analysis. The geometry and electronic structure of the triplet 

diradicals were calculated at the UHF/3-21G level using Gaussian 03,49 which is accurate enough 

for this NBO analysis – see Refs. 35,45,55. The Fock matrixes obtained from the ab initio calculation 

were transformed into the NBO basis using Gaussian 03’s NBO option.52 

 

Figure 3.7. This schematic diagram shows how the electronic coupling relates to the orbital splitting. The two 

unpaired electrons ( shown here as p atomic orbital’s) form frontier molecular orbitals (FMOs) that can be labeled 

as “+” or “−” based on their parities. The sign of the splitting depends on the order of the two FMOs. We follow 

the convention defined in Ref. 56. 

 

Both the radical cation coupling (dominated by hole-mediated superexchange) and radical 

anion coupling (dominated by electron-mediated superexchange) can be determined from the 

neutral molecule NBO Fock matrix, when combined with Koopmans theorem.56,57 The general 

procedure is to diagonalize the α and β NBO Fock matrices, from which the splitting of the α 

HOMO and HOMO-1 levels corresponds to 2|V| for the radical cation and the splitting of the β 

LUMO and LUMO+1 levels corresponds to 2|V| for the radical anion; see Figure 3.7.  If all 

elements of the NBO Fock matrix are retained, then the splittings are the same as the ones obtained 

from the original canonical molecular orbitals, because the change of basis does not affect the 

π+/−

π−/+

2|V|
p1 p2

π+/−

π−/+

 

Atomic Orbitals Molecular Orbitals

Koopmans' Theorem
Approximation



 111 

eigenvalues. The couplings obtained in this way are presented in Table 3.4 and labeled as “(full)”. 

The trend of |V|cation(full) reproduces the experimental conductance trends: i) ether chains have 

lower conductance than the corresponding alkyl chains; ii) the coupling difference between 5-C 

and 5-O is much smaller than the difference between the longer chains. Although |V|anion and 

|V|cation are almost the same for the shortest chain molecules, one must consider their energy level 

position with respect to the Fermi level to ascertain the relative importance of electron-mediated 

pathways versus hole-mediated pathways. The actual Fermi level is much closer to the filled 

molecular orbitals, which should make the hole-mediated charge-transfer more favorable. This 

inference is supported by the conductance calculation and the scoring factor analysis which show 

that the hole-mediated superexchange dominates the coupling. 

The benefit of the NBO pathway analysis arises from the use of a “reduced” NBO Fock 

matrix. The NBO basis set can be divided into “occupied” core orbitals, bonding orbitals, (C-C, 

C-O or C-H σ bonds in our system), and non-bonding lone-pair orbitals (the two terminal radicals; 

note the occupancy is one per orbital instead of two), “unoccupied” antibonding and extra-valence-

shell orbitals (Rydbergs). The diagonal elements of the NBO Fock matrix correspond to the self-

energy of each orbital, and the off-diagonal elements correspond to the interaction between the 

orbitals. By setting the corresponding off-diagonal elements to zero, one obtains a reduced Fock 

matrix with certain interactions turned off. The reduced Fock matrix can be treated in the same 

way as the full matrix to calculate a |V| that retains only the desired interactions. The last two rows 

in Table 3.4 show such calculations for the cation radical case where interactions involving core 

orbitals and unoccupied orbitals were zeroed out, so that |V| only contains the interactions among 

valence orbitals. Those values are similar to the corresponding “full” coupling, suggesting that the 

core orbitals and unoccupied orbitals play a minor role in the conductance. This finding is 
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consistent with the earlier MO analysis and validates this approach. Note that the error for the 

anion coupling is larger than that for the cation coupling, because the unoccupied molecular 

orbitals were used in the anion cases, and they contain more contribution from the unoccupied 

NBOs in the full Fock matrix. This feature is neglected because the anion pathways are less 

important than the cation pathways. The discussion below focuses on |V|cation and valence orbitals. 

 Table 3.4. Electronic couplings (in cm-1) for the radical cations and anions. 

 5-C 5-O 8-C 8-O 11-C 11-O 

|V|cation(full) 4451 4238 1560 1172 613 333 

|V|anion(full) 4587 5349 940 1326 202 339 

|V|cation(only valence orbitals) 4517 4334 1715 1265 733 378 

|V|anion(only valence orbitals) 5479 6568 1223 1814 299 532 

 

The NBO Fock matrix of valence orbitals can be further reduced to retain only the 

interactions of NBOs on a specific coupling pathway, and the |V|cation can be decomposed into a 

set of couplings for individual pathways. This calculation is similar to the scoring factor 

decomposition of the conductance that was discussed above, but from a more “local” perspective. 

The number of all possible pathways for all six molecules is too large to analyze one by one, but 

for the bridge length regime studied in this work, “forward” pathways through the C-C (and C-O 

for ether chains) backbone capture the main features of |V|cation.
56–61 Figure 3.8 shows the dominant 

forward pathways for each of the six model molecules. The pairwise couplings are very similar 

from one matrix to another because of the portability of NBO interactions. The symbol T indicates 

the coupling element involving a donor or acceptor, and t is used for coupling interactions only 

involving backbone sigma bonds. Following the convention defined in Ref. 56, the superscript 

indicates the distance between the two NBOs with 0 corresponding to the  nearest-neighbors. The 



 113 

subscript indicates the atom types, O for O-C, and C for C-C in each bond. Note that the terminal 

lone pair orbital is perpendicular to the nearest sigma bond so 0T is usually very small and 1T can 

be viewed as the de facto “nearest-neighbor” interaction. The signs of V come from the parity of 

the MOs and whether the symmetric level is higher than the anti-symmetric level. As observed 

previously,35,60 backbone only pathways are found to be constructive.  

 

Figure 3.8. The diagrams show the dominant coupling pathways for the diradical model molecules. Couplings of 

identical pathways are combined together, and the number of the pathways is indicated in the parentheses. 

  

From Figure 3.8, it is clear that the nearest neighbor pathway which is used in McConnell’s 

model (see below) is no more important than other non-nearest neighbor pathways, and it will 

become less and less important to the overall conductance as the chain length increases because of 

the rapid growth of the total number of non-nearest pathways.60 Another notable fact is that the 

McConnell pathways, 1C and 1O, have similar couplings, while the couplings of non-nearest 

pathways such as 4C/4O and 5C/5O, are always larger for alkyl chains as compared to ether chains. 
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Thus, the larger number of possible non-nearest neighbor pathways and their dominant 

contribution to the overall charge transport in the longer chains (8-C, 8-O, and 11-C, 11-O) can 

explain the larger conductance difference between the longer alkane and ether chains than in the 

short chains, such as 5-O and 5-O. 

Perturbation theory can be used to quantify this finding. The perturbation treatment 

decomposes the coupling strength of a pathway into the individual steps through the approximate 

expression46 

𝑉 =
∏ 𝐻𝑖,𝑗
Acc
Dn

∏ 𝑖Bd
 Equation 3.10 

𝐻𝑖,𝑗 represents the coupling between adjacent NBOs, starting from the NBO of the donor to the 

NBO of the acceptor through the sigma bond NBOs of the chain. i is defined as Δ𝑖 = 𝜖𝑖 − 𝜖Dn in 

which 𝜖𝑖 is the self-energy of the NBOs, and 𝜖Dn is the self-energy of the lone pair NBO of the 

donor (which is equal to the self-energy of the lone pair NBO of the acceptor). If only the nearest-

neighbor pathway is considered, the analysis reduces to the original McConnell superexchange 

model.62 Because of the portability of NBO, the averaged values for the same type of interaction 

were used; see Table 3.5. All the parameters in Table 3.5 are normalized to the corresponding C-

C bonds only interactions. The results of the perturbation treatment based on Table 3.5 are listed 

in Table 3.6. 

Table 3.5. Values of the normalized parameters used in the perturbation calculations. 

Subscript Δ 1T 2T 0t 1t 

CC 1 1 1 1 1 

OC 1.52 0.99 1.09 0.94 0.88 

OO -- -- -- 2.06 1.09 
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Table 3.6. Relative couplings that were calculated using the perturbation method for the most dominant charge 

transfer pathways are compared with the results obtained using MO splittings. 

Pathwaya (No. 0tOO)/(No. ΔOC)b Vo/Vc( perturbation) Vo/Vc 

1O 0.5 0.91 1.03 

2O 0 0.73 0.73 

3O 0.33 0.58 0.57 

4O 0.33 0.50 0.52 

5O 0.4 0.59 0.50 

6O 0.4 0.47 0.37 
a The labels refer to the diagrams in Figure 3.8. 

b Numbers of NBO interactions of each type in every pathway (see Figure 3.8) are tabularized in Table 3.7 

in Supporting Materials. 

As Table 3.6 shows, this analysis predicts a decrease in the ratio of VO to VC as the chain 

length increases, in qualitative argument with the experiment. Note that the errors are larger for 

the last two long pathways, which is probably caused by the accumulated deviation between the 

average values and the actual values of the NBO couplings. 

The interactions in the last two rows of Table 3.5 can be divided into two types which 

compensate each other: Type I interactions decrease the coupling compared to alkyl chains, and 

Type II interactions increase the coupling compared to alkyl chains. ΔOC is the strongest type I 

interaction, however others will play a role in the final coupling when a lot of them are included 

(that is, when the chain length is long enough). The strong “self-energy effect” (ΔOC) can be 

compensated by type II interactions, of which 0tOO is the strongest. The effects compensate most 

when the ratio of the number of 0tOO couplings and the number of the self energy differences ΔOC 

is as large as possible (see Table 6). The largest compensation exists for 1O pathway, thus the 

overall coupling is close to that of 1C.  In contrast, when non-nearest neighbor pathways that skip 

a C-O bond are present then the ratio will decrease. Although 1tOO and other type II interactions 

can compensate, they are minor as compared to 0tOO. The non-nearest neighbor pathways for 8-
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C/O and 11-C/O are much more important than for 5-C/O. Also, type I interactions other than ΔOC 

begin to play a role. The overall effect is that the conductance/coupling difference is larger in long 

chains, such as 8-C/O, and 11-C/O, than in the short 5-C/O.  

The pathway analysis, which is described above, only focuses on the |V|cation in Table 3.4. 

If  |V|cation is taken to be the only electronic coupling in the system, then the large electronic 

coupling difference for longer chains is similar to what Napper et al. found (|V|cation(C)/|V|cation(O) 

≈ 0.6 for a chain with 13 heavy atoms and one oxygen atom maximum),35 but it is an 

overestimation when compared with the conductance experiments and calculation. This 

overestimation may result from not including the electron mediated |V|n in this latter analysis and 

suggests that hole-mediated tunneling may be more important in the electrochemical charge 

transfer than in the conductance measurements.  

3.4 CONCLUSIONS 

Single molecule conductance measurements showed that the molecular conductance of alkoxy 

chains is smaller than that of alkane chains. Computational methods were used to show that the 

contribution of the molecular orbitals to the conductance depend strongly on their delocalization, 

with higher contributions for more delocalized orbitals. Delocalization of the orbitals was found 

to be higher in the alkyl chains than in the oligoethers, a trend that is in agreement with that of the 

conductances determined experimentally. In addition, an NBO pathway analysis shows that the 

self-energy shift of due to the presence of oxygen atoms is compensated by an increased coupling 

for the shortest chains, 5-C and 5-O. For the longer chains, the non-nearest neighbor contributions 
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to the overall coupling decreases this compensation and the difference in couplings through the 

two chains is more strongly manifested. 

3.5 SUPPORTING INFORMATION 

3.5.1 Conductance Distributions 

The conductance of the single dithiolated molecules was measured using the STM-controlled 

break-junction method.6 In this experiment, the molecules of interest are occasionally trapped 

between the substrate and an STM tip by periodic modulation of the tip-substrate separation. 

During this process, the tunneling current is monitored as a function of the tip-substrate distance 

at a constant bias voltage. The conductance is determined by statistical analysis of current-distance 

characteristics.  

Typically, 2000 - 3000 current-distance characteristics were collected to construct 

conductance distribution for each studied compound. A 10 nA/V preamplifier was used in 

measurements. Current-distance curves were recorded under 0.5 V bias. Curves attributed with 

current plateaus (20-30% of the total data set) were manually selected for further analysis. 

Measured conductances were plotted in the form of normalized histograms in logarithmic scale, 

with 25 bins per decade. For each of studied molecules, Gaussian function was fitted to the 

conductance distribution to determine position of the conductance peak. The conductance 

distributions plotted in linear scale together with fitted Gaussian functions are provided in 

Supporting Materials. Conductance results are expressed in quantum conductance units 𝐺0 =

 𝑒2/ℎ ≈ 77 𝜇S. 
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Figure 3.9. Conductance distributions (black diamonds) constructed for 1,5-pentanedithiol (A), 2-mercaptoethyl 

ether (B), 1,8-octanedithiol (C), 2,2′-(ethylenedioxy)diethanethiol (D), 1,11-undecanedithiol (E), and tetra(ethylene 

glycol) dithiol (F). Red dotted lines represent Gaussian distributions fitted to experimental data. 
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3.5.2 Comparison of Measured Conductance with Literature. 

We note that several modes of conductance, resulted by variations in Au-S bond geometry, have 

been determined in single molecule measurements of dithiolated molecules, in particular 

alkanedithiols.10–12 In Figure 3.10A is shown comparison of our experimental data obtained for 

alkanedithiols with the data adopted from Ref.12.This comparison indicates that the data presented 

in this manuscript corresponds to the “medium” mode of conductance data reported in Ref. 12. 

Comparison of the data obtained for 1,5-pentanedithiol molecule with preamplifiers characterized 

by different sensitivity and working range of currents is shown in Figure 3.10B. The “high” mode 

of conductance measured for that compound is in agreement with predictions given in Ref. 12, but 

it can be only measured with the preamplifier characterized by logarithmic characteristics, and it 

is too high for 10 nA/V preamplifier. Moreover, the “high” conductance peak is much smaller that 

of “medium” conductance, thus “high” conductance is hard to determine.  

 

Figure 3.10. Panel (A) show comparison of length distance dependences based on the conductance measurements 

presented in this work (blue symbols) and the data adopted from work of Wandlowski, Evers and coworkers (grey 
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symbols).11 Different grey symbols reflect different modes of conductance caused by the differences in the 

geometry of the thiol bond with gold.  Blue circles represent experimental data obtained in this work using 10 nA/V 

preamplifier. Squares represent conductance values determined in this work using preamplifier with logarithmic 

characteristics. Asterisks point to the peaks in the conductance distributions presented in panel (B) that were 

obtained for 1,5-pentanedithiol using preamplifiers with 10 nA/V and logarithmic sensitivity.   

Probing different contact geometries and their influence on the single molecule 

conductivity is out of the scope in this manuscript; therefore our results are limited to the data 

obtained using 10nA/V sensitivity, with main focus on the major peak in the conductance 

distributions.  

3.5.3 Dependence of the Single Molecule Conductance on the Length of Studied 

Molecules. 

 

 

Figure 3.11. Dependence of the conductance on the length of the hydrocarbon (A) and oligoether (B) chains. Dotted 

N. 
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3.5.4 Contributions of Molecular Orbitals to Calculated Conductance. 

  

Figure 3.12. Left Panel: Comparison of scoring factors (top row) and their sums (bottom row) for 5-C (blue) and 

5-O (red) molecules. The sums are calculated separately for HOMO and LUMO levels starting from frontier 

molecular orbitals. Energy of Fermi level EF=-5.5 eV that was used in conductance calculations is indicated in 

graphs by dotted lines. Right Panel: The same comparison plotted versus MO Index. 

 

  

EF 
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Figure 3.13. The scoring factors (top panel) and their partial sums (bottom panel) are shown for 8-C (blue) and 8-

O (red) molecules. The sums are calculated separately for HOMO and LUMO levels starting from frontier 

molecular orbitals. The energy of Fermi level EF=-5.5 eV that was used in conductance calculations is indicated in 

graphs by dotted lines. 
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Figure 3.14. Left Panel: Comparison of scoring factors (top row) and their sums (bottom row) for 11-C (blue) and 

11-O (red) molecules. The sums are calculated separately for HOMO and LUMO levels starting from frontier 

molecular orbitals. Energy of Fermi level EF=-5.5 eV that was used in conductance calculations is indicated in 

graphs by dotted lines. Right Panel: The same comparison plotted versus MO Index. 
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3.5.5 Calculated Energies of the LUMO Levels. 

We note that our calculations give, in all cases, a similar HOMO-LUMO gap of about 14 eV. The 

calculated position of the HOMO level is close to that determined from photoemission of 

alkanethiol self-assembled,63 while the calculated LUMO level is about 4.5 eV above the vacuum 

level. The high energy of the LUMO level results in the calculated HOMO-LUMO gap higher than 

the gap of 8 - 9 eV reported for bulk polyethylene,64,65 and 9-10 eV for alkanethiol SAMs.63 In 

these experiments, LUMOs from numerous molecules formed a band what is measured is the edge 

(onset) of the band. Besides, deficiencies significantly decrease the band edge because it is very 

unfavorable for a fully saturated alkane chain to acceptor excess electrons. Thus, the experimental 

gap values from bulk or SAMs cannot be compared with the theoretical single molecule HOMO-

LUMO gap directly. In the study presented in this manuscript, the relative position of the energy 

levels of the molecular orbitals in respect to the Fermi level of the gold electrodes for different 

chemical species (alkanes versus oligoethers) decides about the contribution of these MOs to the 

overall conductance, while the absolute value of the energy gap obtained in the calculations does 

not influence the conclusions.    
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3.5.6 Spatial Distributions of Selected Molecular Orbitals.  

 

Figure 3.15. Spatial distributions of selected molecular orbitals in 5-C. 
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Figure 3.16. Spatial distributions of selected molecular orbitals in 5-O. 

 

 

 

Figure 3.17. Spatial distributions of selected molecular orbitals in 11-C. 
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Figure 3.18. Spatial distributions of selected molecular orbitals in 11-O. 

3.5.7   Number of the Most Dominant Pathways used in Perturbation Method. 

Table 3.7. Number of NBO interactions of each type for the most dominant pathways used in the calculations in 

Table 3.6. 

 ΔOC 1TOC 2TOC 0tOC 0tOO 1tOC 1tOO 

1O 2 2 -- -- 1 -- -- 

2O 1 1 1 -- -- -- -- 

3O 3 1 1 2 1 -- -- 

4O 3 2 -- 1 1 1 -- 

5O 5 1 1 2 2 -- 1 

6O 5 1 1 4 2 -- -- 
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4.0  THE EFFECT OF BACKBONE FLEXIBILITY ON CHARGE TRANSFER 

RATES IN PEPTIDE NUCLEIC ACID DUPLEXES 

This work has been published as Wierzbinski, E.; de Leon, A.; Yin, X.; Balaeff, A.; Davis, K. L.; 

Rapireddy, S.; Reppireddy, S.; Venkatramani, R.; Keinan, S.; Ly, D. H.; Madrid, M.; Beratan, D. 

N.; Achim, C.; Waldeck, D. H.; Rappireddy, S. J. Am. Chem. Soc. 2012, 134, 9335–9342. The 

author of this dissertation performed molecular dynamics simulation and conductance analysis. 

 

Charge transfer (CT) properties are compared between peptide nucleic acid with an 

aminoethylglycine backbone (aeg-PNA) and that with a γ-methylated backbone (γ-PNA). The 

common aeg-PNA is an achiral molecule with flexible structure, whereas γ-PNA is a chiral 

molecule with a significantly more rigid structure than aeg-PNA. Electrochemical measurements 

show that the CT rate through an aeg-PNA bridging unit is twice the CT rate through a γ-PNA 

bridge unit. Theoretical calculations of PNA electronic properties, which are based on a molecular 

dynamics structural ensemble, reveal that the difference in the CT rate results from the difference 

in the extent of backbone fluctuations of aeg- and γ-PNA. In particular, fluctuations of the 

backbone affect the local electric field that broadens the energy levels of PNA nucleobases. The 

greater flexibility of the aeg-PNA gives rise to more broadening and a more frequent appearance 

of high-CT rate conformations, as compared to γ-PNA. This finding has implications for the design 

of nucleic acid-based molecular electronics components. 
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4.1 INTRODUCTION 

DNA and its synthetic analogues are of great interest because of their potential applications as 

scaffolds for nanostructures1–4 and as active elements in nanoelectronic devices.3,5 In part, this 

promise arises from the fact that nucleic acids can form well-defined, supramolecular structures 

based on Watson Crick hybridization. Our interest lies in the long distance charge transfer (CT) 

properties of nucleic acids (NAs) and the dependence of these properties on nucleobase sequence 

and the backbone chemistry.6–9 While the nucleobase effect on CT in nucleic acids is widely 

explored, the impact of the backbone’s properties on the CT is not as well studied.10,11 This work 

explores how the backbone rigidity affects the CT properties of nucleic acids. 

Several CT mechanisms are known to operate in NAs (see Ref. 12 and references therein). 

In the short distance range, the CT is characterized by an exponential decrease of the rate constant 

with distance and is commonly understood to follow a superexchange dominated tunneling 

mechanism. Across longer distances, the thermally-induced hopping mechanism is assumed to 

operate, wherein the CT rate constant decreases as a power law. In addition to the distance, the CT 

mechanism depends on the NA sequence and the energy levels of the charge donor and acceptor 

(or the electrode Fermi energy). In certain situations, a near-resonant CT regime was identified, 

wherein the hopping and superexchange CT mechanisms coexist.13 

The effect of the nucleobase sequence on the charge localization and transport is strongly 

correlated with the presence of guanine (G).14–18 Because of its lower oxidation potential with 

respect to the other nucleobases, G can stabilize positive charge (hole) and thus dominate the CT 

mechanism.19 The charge transport through DNA can also be accelerated by replacing adenine (A) 

in thymine-adenine (TA) base pairs by a lower oxidation potential base, such as 7-deazaadenine18 

or diaminopurine.17,18 It is important to note that clusters of lower oxidation potential bases do not 
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accelerate the overall charge transport.20–22 For example, Sugiyama and coworkers showed that 

adjacent G bases, GG or GGG, do not cause an increase in the rate constant of long-range charge 

transfer through DNA, but can act as hole trapping states.23,24 Electronic structure calculations 

suggest that CT may be enhanced by extending the aromaticity of the nucleobases, as in size-

extended DNA.25–29 Another strategy to manipulate the charge transport in nucleic acids is to 

incorporate metal ions into the nucleic acid helix, resulting in the so-called M-DNA.30,31 Finally, 

we note that CT through DNA can be significantly perturbed by “defects”, such as base pair (bp) 

mismatches,32–36 abasic sites,33 and methylated or oxidized nucleobases.37  

While earlier CT studies with NA’s show unequivocally that nucleobase sequence is a 

major determinant of the mechanism and CT rate, the influence of the NA backbone on charge 

transfer is relatively poorly studied.10,11 For example, Barton et al. showed that CT through DNA 

monolayers was not affected by a nick in the DNA backbone.11 However, other studies find that 

the nucleobase geometry and fluctuations, which are determined by the NA backbone chemistry, 

have a noticeable effect on the CT rate and mechanism in NA’s. For example, a theoretical study 

by Hatcher et al.10 concluded that the CT through 4 bp-long DNA and PNA38 duplexes was 

affected by the structural flexibility of the duplexes. In particular, the CT rate constant through 

PNA was predicted to be higher than that through DNA because larger fluctuations make PNA 

more likely to adopt conformations with stronger donor-acceptor couplings that favor CT. Notably, 

Hatcher et al. focused on charge mediation by the nucleobase stack only; the nucleic acid backbone 

was included in their geometry sampling but not in their quantum mechanical analysis of CT. This 

approximation has been standard in treating the NA electronic structure because the ground and 

the first excited states of the excess charge are localized mostly on the nucleobases.10,12,39,40  
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DNA analogues enable investigations of how the backbone structure and dynamics can 

affect the charge transfer rate through NAs. A wide variety of NA structures, such as locked nucleic 

acid (LNA),41,42 threose nucleic acid (TNA),43 glycol nucleic acid (GNA),44 and PNA45,46 are all 

available. Although these analogues hybridize according to the Watson-Crick rules, their 

helicoidal parameters and their conformational flexibility vary. Consequently, the electronic 

couplings among bases in different analogues of DNA vary as well. Additionally, the NA 

backbone structure and fluctuations affect those of the nucleobase stack and may have a gating 

effect on the CT through the nucleobases, as has been reported for DNA47–50 and other 

molecules.51–53 Apart from the direct conformational effect, the differences in the backbone 

structure and chemical composition between the NAs translate into differences in local electric 

field that the nucleobases experience. Hence, the polarization and broadening of nucleobase-

localized charge states differ among the NAs, resulting in different CT properties.39 

This study uses two different forms of ds PNA, aeg- and γ-methylated, to investigate how 

the backbone can affect charge transport, and hence the observed CT rate. Typically, the backbone 

of the PNA is based on the neutral and achiral 2‐aminoethylglycine (aeg),54–56 which is more 

flexible than the DNA backbone constrained by ribose rings and stiffened by the electric 

charge.57,58 Incorporation of side chains at the γ position of the backbone makes γ-methylated ( γ-

PNA) more rigid than aeg-PNA (Figure 4.1). 46,59 Consequently, hybrid duplexes PNA/DNA and 

PNA/RNA,54,55 and PNA/PNA duplexes that contain γ-PNA strands have greater thermal stability 

than the corresponding duplexes containing aeg-PNA strands.56  
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4.2 RESULTS AND DISCUSSION 

The CT properties of two different 7 bp ds PNAs were investigated: one contained only 

TA base pairs while the other contained a central GC base pair (Table 4.1). Using the same 

methodology as in earlier work,13,60–62 this study examined the oxidation and reduction of a 

ferrocene moiety (Fc) which was attached to a terminus of the PNA molecules assembled into a 

monolayer on a gold electrode. Cyclic voltammetry data were fitted by Marcus theory and used to 

determine the standard heterogeneous rate constant 𝑘0.
63

 The key finding of this study is that the 

electrochemical CT rate constants for γ-PNA duplexes are lower than those for aeg-PNA duplexes. 

Table 4.1. Sequences and functional groups of PNA duplexes. The PNAs were assembled on gold electrodes 

via a C-terminal cysteine (Cys) group. The N-terminal ferrocene served as the redox reporter group. 

Abbreviation Sequence 

aeg-PNA(TA) / γ -PNA(TA) 
Cys-T3-T-T3-Fc 

A3-A-A3-Lys 

aeg-PNA(GC) / γ-PNA(GC) 
Cys-T3-G-T3-Fc 

A3-C-A3-Lys 

 

(A) (B) 

Figure 4.1. (a) Chemical structure of the backbone of aeg-PNA; (b) Chemical structure of the γ-PNA. In this study, 

R = methyl.  



 138 

 

Figure 4.2. (A) Schematic representation of Fc-terminated PNA SAMs on gold electrodes used for electrochemical 

studies. (B) Voltammograms (normalized to the anodic peak current) taken at 30 mV/s for SAMs of aeg-PNA(TA) 

(blue, solid) and γ-PNA(TA) (blue, dashed) on gold electrodes. (C) Voltammograms (normalized to the anodic peak 

current) taken at 30 mV/s for SAMs of aeg-PNA(GC) (red, solid), and γ-PNA(GC) (red, dashed) on gold electrodes. 

(D) Voltammograms (non-normalized current) for a SAM of γ-PNA(GC) taken at scan rates from 5 to 30 mV/s (with 

5mV/s increment). (E) Peak position relative to the formal potential (Ep – E0) versus log (scan rate) for aeg- (filled 

symbols) and γ- (open symbols) PNA(TA) (blue triangles), and PNA(GC) (red diamonds) sequences, with 

corresponding Marcus theory fits: aeg- (dashed blue) and γ- (dotted blue) PNA(TA), and aeg- (dashed red) and γ- 

(dotted red) PNA(GC). 
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Surface coverage and thickness data for the PNA films are presented in Table 4.2. Self-

assembled monolayers (SAMs) of Fc-terminated PNA molecules were adsorbed on gold electrodes 

as described in the methods section below (cf. Refs.13,61). The surface coverage of the SAMs was 

determined from the total amount of charge transferred, which was obtained by integrating the 

area of the Faradaic current peaks (Figure 4.2B-D). The surface coverage of aeg- and γ-PNA SAMs 

are similar and indicate that both PNAs form densely packed monolayers on Au (Table 4.2). This 

observation was confirmed by ellipsometry measurements of the PNA film thickness (see Table 

4.2), which was found to be comparable to the thickness of 7 bp aeg-PNA monolayers reported 

earlier.13,62  

Figure 2.2 shows representative cyclic voltammograms for SAMs of ds aeg-PNA and γ-

PNA. Analysis of the voltammograms shows that the Fc redox couple is quasi-reversible. The 

relationship between the shift of the oxidation/reduction peak potential from the formal potential 

of the ferrocene (Ep – E0) and the scan rate can be described by Marcus theory, as was found in 

prior studies.13,60–62 The average standard heterogeneous rate constants determined for the ds PNA 

SAMs are presented in Table 4.2.  

Table 4.2. Electrochemical CT rate constant 𝑘0, surface coverage, and thickness of the ferrocene-terminated PNA 

films. 

Sequence 𝒌𝟎 / s-1 Coverage / pmol×cm-2 Film Thickness / nm 

aeg-PNA(TA) 0.25 ± 0.05 
110 ± 40 2.8 ± 0.6 

 γ-PNA(TA) 0.11 ± 0.06 
68 ± 21 2.8 ± 0.7 

aeg-PNA(GC) 0.57 ± 0.14 120 ± 50 
3.5 ± 0.2 

 γ-PNA(GC) 0.22 ± 0.07 86 ± 27 3.0 ± 0.4 

The data in Table 4.2 reveal two clear trends. First, replacement of a central TA base pair 

with a GC base pair causes an increase in the CT rate constant for both aeg- and γ–PNA by a factor 
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of about two. This effect demonstrates the sensitivity of the CT kinetics to the nucleobase identity: 

G has a higher oxidation potential than A, therefore, a GC pair presents a lower hole tunneling 

barrier than an AT pair.19 Second, comparison of the rate constants for duplexes of the same 

sequence but different backbone chemistry shows that a change from the aeg- backbone to the γ-

methylated backbone attenuates the CT rate constant by about a factor of two (Table 4.2).  This 

effect is new and its origin is not immediately evident. Thus the central question of this manuscript 

arises: Why does the chemical change in the backbone cause the CT rate constant to change? 

Several explanations can be ruled out. First, methylation of the backbone does not have a 

significant effect on the average geometry of the nucleobase stack, to which the CT rate is highly 

sensitive. Indeed, a molecular dynamics (MD) simulations employing NMR constraints indicates 

that γ-PNA adopts a general P-form helical structure that is very similar to the well documented 

structure of aeg-PNA.59 Next, we can rule out the backbone effect on the structure of the PNA 

film. Because the CT rate constant measurements were performed on molecular monolayers, the 

number of the molecules and their arrangement in the SAMs might be expected to influence the 

overall CT rate constant. For example, CT in low-coverage films can be conformationally gated 

by bending of the DNA or PNA strand toward the electrode surface;64,65 however, such motions 

are disfavored in the closely packed PNA films used here (see Table 4.2).13,60–62 Besides, the trend 

in observed electrochemical CT rate with the measured PNA surface coverages (Table 4.2) is 

opposite to that expected for gating by large-scale molecular motions, i.e., the more densely packed 

films exhibit higher CT rates even though the large-scale molecular motions in those films are 

expectedly suppressed. Finally, the dependence of the rate constant on the PNA sequence provides 

another argument in favor of bridge-mediated CT, as opposed to the direct CT gated by PNA 
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bending motions. Thus, we are left to consider the effect of the backbone on the PNA structural 

fluctuations. 

Appreciation of the importance of conformational fluctuations on CT kinetics and 

mechanism in NAs and proteins has been growing.12,40,66 An important difference between aeg-

PNA and γ-PNA is the extent of structural fluctuations and their impact on the conformational 

ensemble of the nucleobase stack. It is possible that aeg-PNA more often populates well-coupled, 

high-conductance conformations of the base pairs than does γ-PNA because aeg-PNA adopts a 

broader range of conformations than γ-PNA. A computational study of four base-pair, palindromic 

fragments of DNA and PNA10 found that both the donor-acceptor coupling and the bridge hopping 

probability in NAs is linked to conformational flexibility. This result is consistent with the current 

experimental findings that the more flexible aeg-PNA has a larger CT rate constant than the 

rigidified γ-methylated PNA (Table 4.2). 

In order to test the hypothesis that structural fluctuations affect the CT rate, computational 

studies of PNA were performed according to a protocol established previously (see the Methods 

section for details).13,61 The MD simulations confirmed the a priori expectations that the flexibility 

and fluctuations of γ-PNA are smaller than those of aeg-PNA. For instance, the root mean square 

deviation (RMSD) of the aeg-PNA structure from its average is 25-30% higher than that found for 

γ-PNA (1.11±0.19 Å for aeg-PNA(TA) versus 0.81±0.15 Å for γ-PNA(TA) and 1.17±0.27 Å for aeg-

PNA(GC) versus 0.80±0.17 Å for γ-PNA(GC)). Next, the MD ensembles of PNA conformations were 

used to compute the near zero bias molecular conductance (which is assumed to be directly related 

to the molecular CT rate)12,67,68 and analyze the distribution of computed conductance values.13,61  

The near-zero bias conductance σ was computed using the non-equilibrium Green’s function 

formalism and Landauer’s formula; 
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𝜎 =
𝑞2

ℎ
∫𝑇(𝐸)𝐹𝑇(𝐸 − 𝐸𝐹)𝑑𝐸 Equation 4.1 

In Eqn. 4.1, E is the energy variable, T(E) is the transmission function (cf. Eqn. 3 in the Methods 

section), q is the elementary charge, h is Planck’s constant, and  

𝐹𝑇 (𝐸 − 𝐸𝐹)  =  (1/4𝑘𝐵𝑇) · sech
2((𝐸 − 𝐸𝐹)/ 𝑘𝐵𝑇) Equation 4.2 

is the difference between the Fermi functions of the left and right electrode.13,61 These calculations 

use a Fermi energy 𝐸𝐹   = -6.7 eV. The value of -6.7 eV is inferred from the 0.8 eV difference in 

the measured oxidation potential of Fc and G19 and the -7.5 eV average HOMO energy of G 

resulting from CNDO calculations.10 Because 𝐹𝑇  (𝐸 − 𝐸𝐹) peaks strongly near 𝐸𝐹 and is basically 

zero elsewhere, the main contribution to molecular conductance comes from the molecular orbitals 

(MOs) that lie near 𝐸𝐹  (cf. Eqn. 4.3). 

Two different models were used to calculate the conductance: one that only used the 

nucleobases and one that used the nucleobases, the backbone, and the water solvent (see the 

Methods section below). Figure 3 shows the calculated electronic density of states (DOS) for each 

of the four PNAs studied, and Table 4.3 shows the ratio between the median calculated 

conductances of aeg- and γ-PNA for each of the two studied sequences (cf. Table 4.7). If only the 

nucleobases are included in the calculations, then the DOS curves of aeg- and γ-PNA for each of 

the two studied sequences are very similar (Figure 3 top row). This result is consistent with the 

average geometries of the duplexes’ nucleobase stack being similar, but the ratio between the 

calculated conductances of aeg- and γ-PNA nucleobase stacks does not match the experimental 

trends (Table 4.3). When the PNA backbone and water solvation shell are included in the 

calculation, the DOS curves of the aeg-PNAs and γ-PNAs become broadened and shifted with 

respect to each other along the energy axis (Figure 3 bottom row). As a result of the shift, the aeg-

PNA ensemble has more electronic states (molecular orbitals) near 𝐸𝐹 and, consequently, larger 
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𝑇(𝐸𝐹) than the γ-PNA ensemble. The larger 𝑇(𝐸𝐹) translates into more MOs closer to the Fermi 

energy and a higher conductance for the aeg-PNAs (cf. Eqns. 4.1, 4.3). As shown in Table 4.3, 

inclusion of the backbone and the solvent in the calculations produces ratios between the calculated 

conductances of aeg- and γ-PNA that match the experimental trends well. 

While it has been shown the nucleic acid backbone makes but an insignificant contribution 

to molecular conductance39,69,70 there are several mechanisms by which the backbone and the 

solvent can affect the nucleobase-mediated CT. First and foremost, the fluctuations of the 

backbone geometry and the positions/orientations of the solvent molecules result in fluctuations 

in the electric field experienced by the nucleobases. Such fluctuations cause a broadening of the 

MO energy levels of the nucleobases, estimated to be as high as 1-2eV.71,72 Because the more 

flexible aeg-PNA produces larger electric field fluctuations than γ-PNA, it pushes more MOs 

towards 𝐸𝐹, thereby increasing 𝑇(𝐸) in the vicinity of 𝐸𝐹, and increasing the resulting PNA 

conductance (cf. Eqns. (1-3) and Figure 4.6A). 

Several other mechanisms of solvent/backbone-nucleobase interaction exist, and they 

appear to affect the PNA MOs, DOS, and molecular conductance in different ways (Figure 4.3, 

S3). First, the net electric field of the two backbone strands shifts the bases-only PNA DOS up the 

energy axis, thus increasing the PNA conductance.72 This effect is compensated by solvent 

screening which shifts the DOS curve down the energy axis (Figure 4.6). Second, the solvent 

screening apparently reduces the dipolar repulsion between the nucleobases which arises from 

near-alignment of neighboring nucleobases in the PNA duplex, owing to the relatively small twist 

of the P-type helix (17-23 deg/bp).46 This effect should shift the PNA DOS further down the energy 

axis. The cumulative result of all of these effects is a shift of the aeg-PNA DOS to higher energies 

than the γ-PNA DOS (Figure 4.3) and, consequently, a higher conductance for aeg-PNA than for 
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γ-PNA. A detailed analysis of the relative importance of the different mechanisms of nucleobase-

backbone and nucleobase-solvent interactions is beyond the scope of this manuscript. 

The effect of backbone electric field fluctuations on the nucleobase DOS distribution 

represents an important new consideration for quantitatively modeling charge transport through 

nucleic acids. Although, it has been shown before that the charge transfer rate in PNA is affected 

by the backbone flexibility, those studies focused on how fluctuations affected the DNA and PNA  

base stack geometry and hence the base-to-base overlap and molecular orbital delocalization.10 In 

contrast, this study finds a significant difference in the CT rate for two types of PNA that share a 

 

Figure 4.3. Electronic density of states (DOS) computed for the MD ensembles of the four studied PNA systems. Top 

row: DOS computed for nucleobases only. Bottom row: DOS computed for both bases and backbone, with the water 

included as point charges to account for the solvent screening of electrostatic interactions. The proximity of the DOS 

peaks to the Fermi level -6.7 eV, identified by the vertical dashed lines) puts the systems into a near-resonant regime.13  
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very similar geometry and fluctuations of the nucleobase stack, as well as the backbone geometry, 

but differ in the backbone flexibility. The results presented here indicate that the backbone 

fluctuations may affect the nucleobase-mediated molecular conductance by an amount comparable 

to those arising from structural fluctuations of the nucleobases themselves (cf. Figure 4.3),10 or 

even nucleobase substitution (compare the average rate constants of γ-PNA(GC) and aeg-PNA(TA) 

in Table 4.2).  

One should be cautious not to over-interpret the results of the theoretical calculations here. 

On the one hand, the amount of solvent in the shell surrounding the simulated PNA is likely 

different from the amount of solvent that saturates the experimental SAMs. In addition, the length 

of the MD simulation (2ns) is hardly sufficient for a comprehensive sampling of the PNA structural 

ensemble. It is telling that even though the experimental trends in charge transfer rates between 

the aeg- and γ-PNA have been reproduced, the trends between the different PNA sequences 

(PNA(GC) vs. PNA(TA)) were not (cf. Tables 4.2 and S4). Such a discrepancy could be attributed to 

the neglect of the direct coupling between the model electrodes and the non-terminal nucleobases, 

including the central GC base where the HOMO is predominantly localized.13 Yet, the qualitative 

conclusion that larger fluctuations cause larger MO broadening and increase the PNA molecular 

conductance is very general and likely to be valid regardless of the computational details. 

Table 4.3. The ratio of aeg- and γ-PNA conductances resulting from the theoretical calculations. Median values for 

the calculated ensembles of conductances were used (Cf. Figure 4.6B, Figure 4.7, Table 4.7). 

Sequence 

σ aeg-PNA /σ γ-PNA 

Bases only Whole PNA in water 

PNA(TA) 0.06 ± 0.06 
1.86 ± 1.74 

PNA(GC) 0.72 ± 0.44 2.13 ± 1.83 
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4.3 CONCLUSIONS 

In summary, this study explored the influence of structural flexibility on the charge transfer rate 

constant through PNA. Both the experimental and theoretical components of this study indicate 

that charge transport in PNA can be suppressed by limiting the conformational flexibility of the 

PNA duplex, e.g., by changing the backbone chemistry. While the charge transfer occurs through 

the nucleobases, the fluctuations of the PNA backbone broaden the nucleobase energy levels and 

thus increase the charge transfer rate. 

4.4 METHODS 

4.4.1 PNA Synthesis 

The synthesis of PNA oligomers with C-terminal cysteine and N-terminal ferrocene 

moieties was previously reported and discussed;60,61 further details are found in the Supporting 

Information.  Briefly, both the non-modified and γ-modified PNA oligomers were synthesized 

using solid phase peptide synthesis methods with a Boc protection strategy.38,73,74 Ferrocene 

carboxylic acid (Aldrich) was coupled to the N-terminus; oligomers were cleaved from the resin 

using trifluoroacetic acid (TFA) and trifluoromethanesulfonic acid (TFMSA), precipitated in ethyl 

ether, and dried under nitrogen. The solid products were dissolved in aqueous solution and purified 

by reverse-phase HPLC. PNA oligomers were characterized by MALDI-TOF mass spectrometry 

on an Applied Biosystems Voyager-DE STR workstation. The observed mass of each synthesized 

PNA agreed well with the expected mass (Supporting Information). PNA solutions were prepared 
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in deionized water, and the PNA concentrations were determined by UV-Vis spectrophotometry 

assuming ε(260) = 8600, 6600, 13700, and 11700 cm-1 M-1 for each T, C, A, and G monomer, 

respectively.38 PNA duplexes were formed by slow cooling (from 95 °C to 10 °C) of solutions 

containing 1:1 mixtures of the complementary PNA strands. 

4.4.2 Electrochemical Characterization of PNA SAMs 

4.4.2.1 Electrode Preparation and SAM formation 

Gold ball electrodes were prepared and annealed in a manner similar to earlier reports60–62 and 

were coated with PNA SAMs via 28-40 h immersion at 27° C in 0.3-1 mL of a 20 µM PNA 

solution (1:1 v/v acetonitrile/pH 7.0 10 mM sodium phosphate buffer).  Following incubation, 

electrodes were washed with deionized water and used directly in electrochemical experiments.  

4.4.2.2 Electrochemical Measurements 

Cyclic voltammetry (CV) was performed using a CH Instruments 618B or CHI430 

electrochemical analyzer in 1 M NaClO4 (pH ≈ 6-7), with a Ag/AgCl (1 M KCl) reference 

electrode, a platinum wire counter electrode and a PNA-modified gold wire electrode. Surface 

coverage was calculated by integrating the charge under voltammetric peaks. Kinetic data were 

obtained by plotting the peak separation versus scan rate and fitting the data by rate constants based 

on Marcus theory,75,76 using a reorganization energy (𝜆) of 0.8 eV.76 The rate constants so 

determined were unchanged with a ±0.2 eV variation in 𝜆.  Note that any changes in λ would 

systematically change all of measured 𝑘0 values and the relative trends would remain the same.  
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4.4.3 Ellipsometric Measurements of PNA Film Thickness 

Unmodified PNA was assembled on gold slides from EMF Corp. (Ithaca, NY) which consisted of 

a 100 nm Au layer over a 50 nm Ti binding layer on float glass. Gold slides for the γ-methylated 

PNA samples were obtained from Evaporated Coatings, Inc. (Willow Grove, PA), which consisted 

of a 150 nm Au layer over a 2 nm Ti binding layer on BK7 glass. The slides were cleaned by 

immersion in piranha solution for 2 min, and then rinsed with large amounts of deionized water, 

followed by ethanol rinsing and drying under nitrogen. The slides were then immersed in 1 mL 20 

µM PNA solution in 1:1 (v:v) acetonitrile:10 mM sodium phosphate buffer for 28 hours at 27° C.  

Following incubation, the samples were rinsed with ethanol and deionized water, and then dried 

under nitrogen. A Gaertner L-117 Null Ellipsometer was used to measure the thickness of the PNA 

films.   

4.4.4 Theoretical Calculations of PNA Structure and Conductance 

4.4.4.1 Molecular Dynamics Simulations 

The initial structures of left-handed aeg-PNA duplexes (TA)7 and (TA)3(GC)(TA)3 were 

constructed based on the average helicoidal parameters of experimentally determined aeg-PNA 

duplexes (PDB ID: 2K4G).46 The detailed protocol of initial structure construction is explained in 

Ref 13. To generate γ-PNAs, the hydrogens atoms in the R-configuration at the C2' positions along 

the PNA backbone were replaced with methyl groups. The force field ff99SB77 in Amber 1178 was 

complemented with the previously determined atomic partial charges for aeg-46 and γ-methylated 

PNA.59 The structures were solvated in a TIP3P water box, such that the distance between the 

walls of the box and the closest PNA atom was at least 17 Å. After energy minimization, the 
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solvated structures were subject to 2 ns of molecular dynamics using the module pmemd of Amber 

11,78 at T = 300 K and P = 1 atm, with periodic boundary conditions. 2,000 snapshots were saved 

every 1 ps for each trajectory and used for the subsequent electronic structure computations. The 

dynamics of PNA during the simulations was characterized by the root-mean square deviation 

(RMSD) and the helicoidal parameter distribution. The RMSDs of the PNA snapshots were 

computed with respect to the time-averaged structure after best-fit alignment of the heavy atoms. 

The helicoidal parameters were computed for the PNA base pairs with 3DNA79 (see Supporting 

Information). 

4.4.4.2 Analysis of the Electronic Structure 

The quantum mechanical analysis of the PNA structures extracted from the MD ensemble was 

based on single point self-consistent field calculations with the INDO/s method implemented in 

the CNDO program.80 The CNDO calculations were performed for either PNA nucleobases only 

(capped with hydrogens), or for the complete PNA including both the nucleobases and the 

backbone, or for the complete PNA surrounded by water. The waters were extracted from the MD 

simulation for each MD snapshot and were rearranged into a Voronoi cell centered on the PNA 

molecule to ensure even solvation of PNA on each side (see Ref. 39 for detail). The water atoms 

were included in the CNDO calculations as point charges, assigned according to the TIP3P water 

model. The calculated MOs were used as input to the molecular conductance calculations. 

4.4.4.3 Conductance Calculations 

The non-equilibrium Green’s function (NEGF) method81 used in previous studies13,61 was 

employed here to calculate the molecular conductance of PNA. In the NEGF calculations, the non-

hydrogen atoms of the A and T nucleobases of the terminal A:T base pairs were coupled to the 
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virtual electrodes. The conductance 𝜎 of a given PNA structure was computed using Eq. (1) (vide 

supra). The transmission function 𝑇(𝐸) was determined for every PNA structure as:13,61 

𝑇(𝐸) =  ∑
Γ𝑚𝑚
𝐿 Γ𝑚𝑚

𝑅

(𝐸 − 𝐸𝑚)
2+

1
4
(Γ𝑚𝑚

𝐿 +Γ𝑚𝑚
𝑅 )2

+

𝑚

∑
Γ𝑛𝑚
𝐿 Γ𝑚𝑛

𝑅

[(𝐸 − 𝐸𝑚)−
𝑖
 
(Γ𝑚𝑚

𝐿 +Γ𝑚𝑚
𝑅 )] [(𝐸 − 𝐸𝑛)−

𝑖
 
(Γ𝑛𝑛

𝐿 +Γ𝑛𝑛
𝑅 )]𝑚≠𝑛

 Equation 4.3 

Here, the indices m and n refer to the PNA MOs and  Γ𝑚𝑛
𝐿/𝑅

 are elements of the broadening matrices 

ΓL/R that describe the MO broadening due to the electrode coupling.13,61 

4.5 SUPPORTING INFORMATION 

4.5.1 Detailed PNA Synthesis 

The aeg PNA oligomers were synthesized using solid phase peptide synthesis methods with a Boc 

protection strategy.38,73,74 MBHA resin (Peptides International, Louisville, KY) with a loading of 

0.18 mequiv/g was down-loaded38 using Boc-L-Cys-(4-MeOBzl)-OH (NovaBiochem/Merck 

Biosciences, Switzerland) to an estimated loading of 0.04-0.06 mequiv/g.  Thereafter, depending 

on sequence, Boc-T-OH/ Boc-(A-Z)-OH/ Boc-(G-Z)-OH/ Boc-(C-Z)-OH (Applied Biosystems, 

Foster City, CA) or N-(2-Boc-aminoethyl)-N-(methyl)-glycine were coupled using 1H-

Benzotriazolium 1-[bis(dimethylamino)methylene]-5chloro-hexafluorophosphate(1),3-oxide 

(HCTU) (Peptides International) as a coupling agent. The γ-modified PNA oligomers were 

prepared in the same manner but using the γ-methylated monomers synthesized according to 

published procedures.54 Finally, ferrocene carboxylic acid (Aldrich) was coupled to the N-

terminus.  This coupling was repeated twice to increase the yield of ferrocene-conjugated PNA.  

Oligomers were cleaved from the resin using trifluoroacetic acid (TFA) and 



 151 

trifluoromethanesulfonic acid (TFMSA), precipitated in ethyl ether, and dried under nitrogen.  The 

solid products were dissolved in aqueous solution and purified by reverse-phase HPLC using a 

solvent gradient, from 0% to 50% acetonitrile in water over 40 min on a Waters Delta 600 pump 

with a 2996 photodiode-array detector (Milford, MA). PNA oligomers were characterized by 

MALDI-TOF mass spectrometry on an Applied Biosystems Voyager-DE STR Workstation. PNA 

solutions were prepared in deionized water, and the PNA concentrations were determined by UV-

vis spectrophotometry assuming ε(260) = 8600, 6600, 13700, and 11700 cm-1 ×M-1 for each T, C, 

A, and G monomer, respectively.38 PNA solutions for electrode incubation were typically 20 μM 

ss-PNA in 1:1 (v/v) acetonitrile/10 mM pH 7.0 sodium phosphate buffer. 

4.5.2 Properties of Studied Duplexes 

4.5.2.1 Masses of the Duplexes 

Table 4.4. Calculated masses of PNA molecules and corresponding m/z observed from MALDI-ToF MS (reflection 

mode, α-cyano-4-hydroxycinnamic acid matrix, laser intensity 1000). 

 

Sequence Expected Mass (Da) Observed m/z (Da) 

 Aeg-PNA  γ-PNA Aeg-PNA  γ-PNA 

PNA(TA) 
2196.0 
2072.1 

2294.2 
2170.3 

2195.54 
2071.61 

2316.85 (+Na) 
2168.9 

PNA(GC) 
2221.1 
2048.1 

2319.2 
2146.3 

2220.7 
2047.5 

2321.11 
2147.05 
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4.5.2.2 Melting Temperatures of ds-PNAs 

Table 4.5. Approximate melting temperatures Tm determined from heating curves measured at 260 nm for aeg- and 

𝛾-PNA sequences. 

Sequence 
Tm (oC) 

aeg-PNA 𝛾-PNA 

PNA(TA) 39 77 

PNA(GC) 40 60 
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4.5.2.3 Helical Parameters of Non-Modified and γ-Methylated PNAs 

 

  

  

  

Figure 4.4. Helical parameters of the base pairs for PNA(TA) sequence with aeg- (blue) and γ-methylated (red) 

backbone. 
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Figure 4.5.  Helical parameters of the base pairs for PNA(GC) sequence with aeg- (blue) and γ-methylated (red) 

backbone. 
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4.5.2.4 Electronic Structure and Calculated Conductance of Model PNAs 

(A) 

 
(B)  
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Figure 4.6. Dependence of the PNA electronic structure on sequence and the computational model. (A) Electronic 

density of states, plotted in the vicinity of the Fermi energy. (B) Resulting molecular conductance (shown is a 

median value of the calculated conductance, in arbitrary units), calculated for nucleobases ‘B’, whole PNA with 

included backbone ‘BB’, and whole PNA and solvating water ‘BBW’. 

 

Table 4.6. Energies of HOMO, HOMO-1 and HOMO-2 levels calculated for 7 bp long duplexes. 

System  HOMO HOMO-1 HOMO-2 

Base pairs only 
aeg- -6.82 ± 0.11 -6.94 ± 0.09 -7.04 ± 0.08 

γ- -6.77 ± 0.11 -6.89 ± 0.07 -6.99 ± 0.08 

Whole PNA molecule 
aeg- -6.44 ± 0.25 -6.58 ± 0.23 -6.69 ± 0.22 

γ- -6.48 ± 0.22 -6.61 ± 0.21 -6.71 ± 0.21 

Whole PNA with 

Water 

aeg- -6.82 ± 0.25 -6.97 ± 0.24 -7.08 ± 0.23 

γ- -6.95 ± 0.25 -7.11 ± 0.22 -7.22 ± 0.22 

 

 

  

Figure 4.7. Conductance distribution calculated for PNA(TA) (A), and PNA(GC) (B). 

 

(

B) 

(

A) 
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Table 4.7. Median values and the median absolute deviations for the calculated conductance ensembles (Cf. Figure 

4.6B, Figure 4.7). 

Sequence 
σ / S 

Bases only Whole PNA in water 

aeg-PNA(TA) (2.2 ± 2.1) × 10-12 (1.6 ± 1.3) × 10-13 

 γ-PNA(TA) (3.6 ± 3.6) × 10-11 (8.6 ± 4.0) × 10-14 

aeg-PNA(GC) (7.9 ± 3.3) × 10-14 (1.3 ± 1.0) × 10-13 

 γ-PNA(GC) (1.1 ± 0.5) × 10-14 (6.1 ± 2.3) × 10-14 
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5.0  LUMINESCENCE QUENCHING BY PHOTOINDUCED CHARGE TRANSFER 

BETWEEN METAL COMPLEXES IN PEPTIDE NUCLEIC ACIDS 

This work has been published as Yin, X.; Kong, J.; De Leon, A. R.; Li, Y.; Ma, Z.; 

Wierzbinski, E.; Achim, C.; Waldeck, D. H. J. Phys. Chem. B 2014, 118, 9037–45. The author of 

the dissertation is the lead author and performed the spectroscopic experiments and subsequent 

lifetime distribution and molecular dynamics analysis. J.K. and A.R.L. synthesized the PNAs. Y.L. 

provided the force field parameters. Z.M. developed the method to synthesize the Ru(bpy)3
2+ 

monomer. All authors participated in the writing and revision of the manuscript. 

 

A new scaffold for studying photoinduced charge transfer has been constructed by 

connecting a [Ru(Bpy)3]
2+ donor to a  bis(8-hydroxyquinolinate)2 copper [CuQ2] acceptor through 

a peptide nucleic acid (PNA) bridge. The luminescence of the [Ru(Bpy)3]
2+* donor is quenched by 

electron transfer to the [CuQ2] acceptor. Photoluminescence studies of these donor-bridge-

acceptor systems reveal a dependence of the charge transfer on the length and sequence of the 

PNA bridge and on the position of the donor and acceptor in the PNA.  In cases where the 

[Ru(Bpy)3]
2+ can access the 𝜋-base stack at the terminus of the duplex, the luminescence decay is 

described well by a single exponential; but if the donor is sterically hindered from accessing the 𝜋 

base stack of the PNA duplex, a distribution of luminescence lifetimes for the donor [Ru(Bpy)3]
2+* 

is observed.  Molecular dynamics simulations are used to explore the donor-PNA-acceptor 

structure and the resulting conformational distribution provides a possible explanation for the 

distribution of electron transfer rates. 
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5.1 INTRODUCTION 

Nucleic acids are interesting building blocks for supramolecular assemblies because of their 

predictable and programmable Watson-Crick base pairing, which in turn makes possible the 

encoding of specific three-dimensional architectures in the assemblies.1–5 Hence nucleic acids have 

been studied extensively as a building block for nanotechnology applications.6 Chemical synthesis 

has created either nucleic acid analogues, such as peptide nucleic acids (PNAs), or nucleic acids 

with functional groups, including redox centers and fluorophores, that impart functionality to the 

nucleic-acid-based nanostructures. This work reports on PNA, a synthetic analog of DNA that 

typically has a pseudo-peptide backbone composed of N-(2-aminoethyl)-glycine units.7–9 PNA 

offers a number of advantages over DNA for nucleic acid based structures, such as higher thermal 

stability, superior chemical stability in biological media, and control over the chirality.10,11 The 

PNA backbone and nucleobases have been chemically modified to confer desirable properties for 

specific applications, such as sequence specific binding to DNA, cell permeability, and others.12,13 

By substituting the PNA nucleobases with ligands that have a high affinity for metal ions, PNA 

duplexes that bind transition metal ions at specific positions can be created.10,11  

While we and others have appended electroactive groups to PNA and reported the results 

of electrochemical and sensing studies of PNA attached to solid surfaces,14–21 charge transfer 

through PNA duplexes in solution has not been reported. We have studied charge transfer through 

self-assembled monolayers (SAMs) of the PNAs by electrochemistry,22,23 and more recently, we 

have measured the single molecule conductance of the PNAs by a break junction method and 

compared it to the electrochemical charge transfer rates.24 Studies of unimolecular charge transfer 

in PNA, which is a synthetic analog of DNA with a neutral polyamide backbone rather than a 

diphosphate ester, polyanion backbone, provide insight into the fundamental features of long-range 
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charge transfer in nucleic acids, by making possible comparisons with existing work on DNA25–40 

and eventually with other nucleic acids. 

In this work, photoinduced electron transfer through PNA is studied between a 

[Ru(Bpy)3]
2+ electron donor and a  [Cu(8-hydroxy-quinolinate)2] ([CuQ2]), which acts as an 

electron acceptor. A PNA monomer that contains a [Ru(Bpy)3]
2+ complex tethered to the PNA 

backbone was synthesized (Monomer Ru in Figure 5.1) and introduced into PNA oligomers at 

different positions, either terminal or central, by solid phase peptide synthesis (Table 5.1 and 5.2). 

When [Ru(Bpy)3]
2+ was situated in a central position of the duplex, an abasic PNA monomer in 

which the secondary amine of the Aeg was capped with an acetyl group (Monomer B in Figure 

5.1) was introduced at the position complementary to [Ru(Bpy)3]
2+. The acceptor was created by 

Cu2+ coordination to a pair of Q ligands situated in complementary positions in the duplexes 

(Monomer Q in Figure 5.1).15 

 

 

 

Ru B Q 

Figure 5.1. The structure of PNA monomers. The nucleobase is replaced by [Ru(Bpy)3]2+ (Monomer Ru), formally, 

by a hydrogen atom (Monomer B), or by 8-hydroxyquinoline (Monomer Q). 
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5.2 METHODS 

5.2.1 PNA Synthesis and Characterization 

5.2.1.1 Materials 

The Boc-protected 8-hydroxyquinolinyl PNA monomer 2-(N-(tert-butyloxycarbonyl-2-

aminoethyl)-2-(8-hydroxyquinolin-5-yl)acetamido)acetic acid (Q, Figure 5.1C) and precursor 

2,2’-bipyridyl PNA monomer 1 (Figure 5.2) 2-(N-(tert-butyloxycarbonyl-2-aminoethyl)-2-(2,2’-

bipyridin-4-yl)acetamido)acetic acid, which are needed for synthesizing ruthenium(II) 

tris(bipyridyl) PNA monomer (Ru, Figure 5.1A), were synthesized as reported previously.15,41 The 

ruthenium(II) tris(bipyridyl) PNA monomer Ru, namely 2-(N-(tert-butyloxycarbonyl-2-

aminoethyl)-2-(2,2’-bipyridin-4-yl) acetic acid)-bis(2,2’-bipyridine)ruthenium(II), was 

synthesized from precursor 1, Bpy PNA monomer.42 The backbone monomer was synthesized 

from the coupling between tert-butyl 2-(2-(tert-butoxycarbonyl)ethylamino)acetate and acetic 

anhydride, followed by hydrolysis, as reported previously.22 All other reagents were commercially 

available, analytical grade quality, and used without further purification. 

5.2.1.2 Synthesis of [Ru(Bpy)3]2+-containing PNA monomer (Figure 5.2) 

All manipulations were carried out under low light. Bpy PNA monomer 1 (415 mg, 1mmol) was 

suspended in 43 ml of a 70% ethanol solution. cis-Bis(2,2’-bipyridine)dichlororuthenium(II) 

hydrate (500 mg, 0.96 mmol) was added to the suspension. The reaction mixture was refluxed for 

16 h and the solvent was removed by vacuum. The compound was purified by cation exchange 

chromatography using CM-sepharose resin, with an ammonium chloride step gradient. The desired 

product precipitated out of the solution upon addition of ammonium hexafluorophosphate. The 
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precipitate was filtered and washed several times with water and ether. An orange residue 

remained. Yield: 42% (447 mg). Mass Spectral data (ESI) calc./found 827.9/827.2. 1H NMR (300 

MHz, CD3CN)  8 m, 6H 80 m, 5H 9 m, 1H  m, 5H 0 m, 1H 0 m, 

5H 0  1 0 m, 2H, CH2 3 m, 2H, CH2 330 m, 2H, CH2 310 m, 2H, 

CH2 10 s, 9H, Boc 

 

Figure 5.2. The synthesis scheme for the PNA monomer that contains [Ru(Bpy)3]2+ complex. 
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C18 silica column on a Waters 600 model. Absorbance was measured at 260 nm with a Waters 

2996 Photodiode Array Detector. The concentration of PNA oligomers was determined by UV 

absorption at 90°C using the sum of the extinction coefficients of the constituent PNA monomers 
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1cm-1). The extinction coefficient for 8-hydroxyquinoline ε260 = 2570 M-1 cm-1 (at pH 7.0) was 

determined from the slope of a plot of A260 versus concentration.  

Characterization of the oligomers was performed by MALDI-ToF mass spectrometry on 

an Applied Biosystems Voyager Biospectrometry Workstation with Delayed Extraction and an R-

cyano-4-hydroxycinnamic acid matrix (10 mg/mL in 1:1 water/acetonitrile, 0.1% TFA). m/z for 

(M+H)+ were calculated and found to be P-AΑ α 3565.44/3568.05, P-ΑA β 2879.88/2882.03, P-

AG α 3582.63/3582.39, P-ΑG β 2864.87/2864.95, P-AGTGA α 3582.63/3579.06, P-AGTGA β 

2864.87/2863.12, P-AA-P’ α 4390.71/4392.44, P-AA-P’ β 3824.73/3824.83, P-AG-P’ α 

4415.82/4417.45, P-AG-P’ β 3799.10/3800.87. 

5.2.2 Photoluminescence Measurement 

Steady-state emission spectra were measured on a HORIBA Jobin Yvon Fluoromax 3 

fluorescence spectrophotometer. The luminescence decay data were collected using the time- 

correlated single photon counting (TCSPC) method with a PicoHarp 300 TCSPC module 

(PicoQuant GmbH). The samples were excited by light from a 440 nm pulsed diode laser (PIL043, 

ALS GmbH) operating at a 500 kHz repetition rate. Emission from the sample was collected at 

620 nm using a monochromator. All PNA samples were dissolved in 10 mM phosphate buffer 

(pH=7) and measurements were performed with a duplex concentration of 20 𝝁M. The 

concentration dependence was tested for P-AA/Cu, P-AA-P’/Cu, and P-AG-P’/Cu from 3 𝝁M to 

30 𝝁M (see Table 5.1 for sequence of the PNAs). In each case, no concentration dependence of 

the luminescence lifetime was observed, indicating a unimolecular decay process. The instrument 

response function had a full-width-at-half-maximum (fwhm) of ~60ps, which is much shorter than 
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the luminescence lifetimes (> 250 ns); thus tail fitting (discarding the rising part of the decay) was 

employed in the exponential component and lognormal distribution analyses. 

5.2.3 Lognormal Distribution Fitting of Luminescence Decays 

A general form of the luminescence decay law may be written as 

𝐷(𝑡) = 𝐶0 ⋅ ∫ 𝐴(𝜏) exp (−
𝑡

𝜏
)  d𝜏

∞

0

+ 𝐵0 
Equation 5.1 

where 𝐷(𝑡) is the emission intensity at time t and 𝐴(𝜏) is the normalized distribution function of 

luminescence lifetimes 𝜏. 𝐶0 is a parameter that represents the experimental signal at time zero, 

and 𝐵0 represents the background counts (noise level).  𝐷(𝑡) is a Laplace transform of 𝐴(𝜏) and 

to recover 𝐴(𝜏) one can perform an inverse Laplace transform. Several methods exist for this 

purpose, such as the maximum entropy method43 and a method for the recovery of 𝐴(𝜏) from 

frequency domain data.44–46 These methods do not require a priori knowledge about the shape of 

the distribution but they are usually very sensitive to noise and require very high counts (about 

5 × 105 counts per channel)47 because of the ill-conditioned nature of inverse Laplace 

transforms.48  

Here we assume a lognormal shape47 of the lifetime components and perform a direct 

fitting of the data which is much more robust with regard to noise. The lognormal distribution is 

used because it has the correct boundary behaviors.49 Using symbols similar to those used for the 

normal distribution, the lognormal distribution 𝑃(𝜏) is defined as: 

𝑃(𝜏) =
1

𝜏 ⋅ 𝜎√ 𝜋
exp {

−(ln 𝜏 − 𝜇)2

 𝜎2
} 

Equation 5.2 
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where 𝜇 is a parameter related to the peak maximum and 𝜎 is a parameter controlling the peak 

width. Note that 𝜇 and 𝜎 are not the mean and standard deviation of the distribution. Equation 5.2 

can be transformed to 

𝑃(𝜏) =
1

𝜎√ 𝜋
⋅ exp(

𝜎2

 
− 𝜇) ⋅ exp {

−[ln 𝜏 − (𝜇 − 𝜎2)]2

 𝜎2
} 

Equation 5.3 

From the above equation, it is straightforward to show that the peak maximum (mode) is 

exp(𝜇 − 𝜎2) and the mean is exp(𝜇 + 𝜎2  ⁄ ). 

Another reason to choose the lognormal distribution is that a lognormal distribution of 𝜏 is 

equivalent to a lognormal distribution of 𝑘. Because  𝜏 = 1/𝑘 , one finds that 

𝑃𝜏(𝜏) = exp {
−[ln 𝜏 − (𝜇 − 𝜎2)]2

 𝜎2
} =exp {

−[ln 𝑘 − (𝜎2 − 𝜇)]2

 𝜎2
} 

Equation 5.4 

where 𝑃𝜏(𝜏) = 𝜎√ 𝜋 𝑃(𝜏) ⋅ exp (
−𝜎2

2
+ 𝜇).  If one defines 𝜇′ =  𝜎2 − 𝜇, then one obtains: 

𝑃𝜏(𝜏) = exp {
−[ln 𝑘 − (𝜇′ − 𝜎2)]2

 𝜎2
} =𝑃𝑘(𝑘) 

Equation 5.5 

The overall distribution function  𝐴(𝜏) may contain more than one peak (two in the actual 

fitting used here) and it is defined as follows 

𝐴(𝜏) = 𝐶1 ⋅ 𝑃1(𝜏) + 𝐶2 ⋅ 𝑃2(𝜏) + ⋯ Equation 5.6 

where 𝐶1 and  𝐶2 are the normalized statistical weight of each peak. To fit 𝐴(𝜏) with experimental 

data, a set of discrete lifetimes (the number of lifetimes used is 200 in this work) from 1 ns to 1000 

ns are used to convert the integral in Equation 5.1 to a summation; that is,  

𝐷(𝑡) = 𝐶0 ⋅∑{𝐴𝑛 ⋅ exp (−
𝑡

𝜏𝑛
)}

𝑛

+ 𝐵0 
Equation 5.7 
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where 𝐴𝑛 = 𝐴(𝜏𝑛) is the amplitude of lifetime 𝜏𝑛. The 𝐷(𝑡) defined above is used for the fit with 

experimental data. Because TCSPC data follows a Poisson distribution, the fitting process varies 

the 𝐴𝑛 parameters in order to minimize the reduced chi-square 𝜒2: 

𝜒2 =∑
[𝐷(𝑡) − 𝐹(𝑡)]2

𝑁 ⋅ 𝐹(𝑡)
𝑡

 
Equation 5.8 

where N is the number of TCSPC channels. 𝜒2 is set as the objective function and is optimized to 

a minimum by using the Optimization Toolbox in MATLAB. The final 𝜒2 is smaller than 1.05 for 

all lognormal distribution fittings. 

5.2.4 Molecular Dynamics Simulation 

The molecular dynamics (MD) simulation followed a protocol like that previously reported 

for PNAs.50,51 The initial structures were constructed based on the average helicoidal parameters 

of experimentally determined PNA duplexes (PDB ID: 2K4G).52 Because a force field is not 

available for the [CuQ2] complex, an A:T base pair was used instead. The force field ff99SB53 was 

complemented with the previously determined atomic partial charges52 and the parameter set was 

adapted from another work54 for [Ru(Bpy)3]
2+. The structures were solvated in a TIP3P water box, 

such that the distance between the walls of the box and the closest PNA atom was at least 12 Å. 

After energy minimization and equilibration, the solvated structures were subjected to a 2 ns MD 

run using the module ‘pmemd’ of Amber 1255 at T = 300 K and P = 1 atm, with periodic boundary 

conditions. A total of 2000 snapshots were saved for each trajectory (at every 1 ps) and used for 

the subsequent analyses. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Duplex Characterization 

The formation of the PNA duplexes and the binding of Cu2+ to the duplexes have been studied by 

thermal denaturation and by titrations using photoluminescence spectroscopy. Table 5.1 shows the 

sequence of several of the PNA duplexes that are studied in this work; see Table 5.2 for a more 

comprehensive list.41,42 The sequence of the duplexes is related to that of the duplex named P in 

Table 5.1. The positions of the donor unit (labeled Ru) and of the ligands (labeled Q) that form the 

[CuQ2] acceptor on the PNA duplexes are varied between the different systems studied.  In 

addition, the chemical nature of the base pairs has been varied (see P-AG and P-AA in Table 5.1).   

For example, PNA duplexes that contain a terminal Ru donor and can form the [CuQ2] acceptor 

have been synthesized with two or five nucleobases between the donor and acceptor positions. The 

name of these duplexes includes the names of the nucleobases situated between the donor and the 

acceptor; for example, duplex P-AA has two A nucleobases between the Ru monomer and Q 

ligand and can form two AT base pairs between the donor and the [CuQ2] acceptor.  Duplexes that 

have only one Q ligand (instead of a pair of Q ligands) have been synthesized as control systems 

and are labeled with a 1Q.  In addition, duplexes that have a duplex ‘tail’ which sterically hinders 

the Ru(Bpy)3
2+ donor from accessing the duplex terminus were synthesized, and they are identified 

by including the tail in the name of the duplex as P’. 
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Table 5.1. Sequences and melting temperatures Tm
 of the PNA duplexes with and without Cu2+.a 

Duplex Sequence 

Tm (oC)b 

without 

Cu2+ 
with Cu2+ 

P 
      H-AGTGATCTAC-H 

67 67 
H2N-Lys-TCACTAGATG-H 

P-AG     H-RuAGQGATCTAC-Lys-NH2 56 >75 
H2N-Lys-TCQCTAGATG-H 

P-AA 
    H-RuAAQGATCTAC-Lys-NH2 

56 >75 
H2N-Lys-TTQCTAGATG-H 

P-AG-1Q     H-RuAGQGATCTAC-Lys-NH2 58 52 
H2N-Lys-TCACTAGATG-H 

P-AA-1Q 
    H-RuAAQGATCTAC-Lys-NH2 

58 56 
H2N-Lys-TTACTAGATG-H 

P-AGTGA 
    H-RuAGTGAQCTAC-Lys-NH2 

47 >75 
H2N-Lys-TCACTQGATG-H 

P-AT-P’ 
     H-AGTGARuATQTCTAC-Lys-NH2 

48 70 
H2N-Lys-TCACTBTAQAGATG-H 

P-AG-P’      H-AGTGARuAGQTCTAC-Lys-NH2 48 66 
H2N-Lys-TCACTBTCQAGATG-H 

a Ru, Q, and B indicate the monomers in Figure 5.1; T, C, G, and A are the conventional nucleobase notations; 

and Lys indicates placement of a lysine; 

b The Tm values are an average of 2 or 3 measurements on 5 μM solutions of ds PNA in a pH 7.0, 10 mM 

sodium phosphate buffer solution and are known within 1°C. 
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Melting curves of PNA duplexes in the absence and presence of Cu2+ are shown in panels 

A and B of Figure 5.3; the melting temperatures Tm for all the duplexes are reported in Table 5.1. 

The Tm of the non-modified, 10-base pair PNA duplex P is 67C.  The Tm of duplexes that 

contained one or two Q ligands was lower than that of P by 9-20C. This decrease is similar to 

that caused by a base pair mismatch.  In the presence of Cu2+, the melting of the P-AG, P-AA, and 

P-AGTGA duplexes showed a hyperchromicity increase of more than 15% as the temperature was 

increased, but the hyperchomicity did not reach saturation. In these cases a two-state model cannot 

be used to determine the Tm but the increase in hyperchromicity indicates that the duplexes are 
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Figure 5.3.  Panel A shows melting curves of 

duplexes P (black), P-AA (blue), P-AT-P’ 

(green), and P-AA-1Q (red), P-AG (orange), P-

AGTGA (fuchsia), and P-AG-1Q (cyan) in the 

absence of Cu2+; and panel B shows melting 

curves for the same duplexes in the presence of 

Cu2+. Panel C shows a titration curve of a 10 𝜇M 

solution of P-AG duplex with Cu2+ , which is 

monitored by the luminescence intensity at 620 

nm (excitation at 440 nm). 
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stabilized by Cu2+.  For the other PNA duplexes, the melting curves measured in the presence of 

Cu2+ reached saturation, and the Tm determined using a two-state model was higher than that of 

duplex P by more than 15oC.56  This increase in stability in the presence of Cu2+ for all PNA 

duplexes that contain a pair of Q ligands could be attributed to the formation of a [CuQ2] complex 

that functions as an alternative base pair.  This interpretation of the melting temperature data is 

supported by the fact that the Tm of the PNA duplexes that contain only one Q ligand and cannot 

form an intra-duplex [CuQ2] complex (P-AG-1Q and P-AA-1Q) was 9C lower than that of P and 

was not stabilized by Cu2+. 

Photoluminescence titrations of the duplexes (Figure 5.3C and Figure 5.7) showed a 

decrease in the emission intensity of [Ru(Bpy)3]
2+ as the Cu2+ concentration increased. This 

decrease can be described by a bimolecular equilibrium between the Cu2+-free duplex and the 

duplex to which one equivalent of Cu2+ is coordinated (in which the luminescence of the Ru 

complex is quenched; see Supporting Information).43,45–49,57–60 The equilibrium constant from this 

analysis was found to be larger than 106 M−1.a The photoluminescence measurements described 

below were performed on 10 𝜇M to 20 𝜇M solutions of the PNA duplexes that contained two 

equivalents of Cu2+; under these conditions a K~ 106 M-1 imples that 97% of the duplexes are fully 

coordinated with Cu2+. 

                                                 

a The upper limit (which is larger than 1010) of the equilibrium constant was studied by more accurate 

methods such as ITC and UV titrations and it will be published in another paper. This manuscript 

focuses on the charge transfer thus only the low limit (which obtained by fitting the photoluminescence 

data to the bimolecular equilibrium model) is needed. 
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5.3.2 Charge Transfer and the Duplex 𝝅-stack 

The luminescence decay profiles for P-AG and P-AGTGA duplexes, which are presented in 

Figure 5.4, show the effect of the [CuQ2] acceptor on the [Ru(Bpy)3]
2+* luminescence. In the 

absence of Cu2+, the luminescence intensity of the [Ru(Bpy)3]
2+* complex in the P-AG and P-

AGCTA duplexes (Figure 5.9) is similar to that of the “free” [Ru(Bpy)3]
2+* complex in solution 

(Figure 5.8). Addition of Cu2+ to the solution of the duplexes modified with Ru, but with no Q 

ligands, left the luminescence of [Ru(Bpy)3]
2+* unaffected (Figure 5.11). In contrast, the addition 

of one or more equivalents of Cu2+ to a solution of duplexes that contain two Q ligands quenches 

the [Ru(Bpy)3]
2+* luminescence (Figure 5.3). These results indicate that quenching of the 

[Ru(Bpy)3]
2+* in the P-AG or P-AGCTA involves the [CuQ2] complex that is part of the PNA 

duplex. Energy transfer from [Ru(Bpy)3]
2+* to [CuQ2] is discounted as a decay pathway because 

of the poor overlap between the emission spectrum of [Ru(Bpy)3]
2+ (Figure 5.8 and Figure 5.9) 

and the absorption spectrum of  [CuQ2] (Figure 5.10). On the other hand, the electron transfer 

reaction [Ru(Bpy)3]
2+*+[CuQ2] → [CuQ2]- + [Ru(Bpy)3]

3+ is thermodynamically favorable 

(𝛥𝑟𝐺 < −0.6 eV before Coulomb correction,61,62 see SI). Hence, quenching of the  [Ru(Bpy)3]
2+* 

Figure 5.4. Luminescence decay for 20 M solutions of P-

AG (black) and P-AGTGA (red) in a pH 7.0, 10 mM 

phosphate buffer in the absence (solid lines) and presence 

(open circles) of two Cu2+ equiv. The time constants that are 

obtained from a best fit by a single exponential decay are 

shown in the figure. A support plane analysis (see 

supplemental information) indicates that they are accurate to 

± 1 ns; however sample to sample variations display a 

standard deviation of ~ 1.5% in the lifetime value (see section 

5 of the Supplementary Information). 
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occurs because of electron transfer to the acceptor [CuQ2].  This conclusion was corroborated by 

the observation of strong luminescence with the redox inactive [ZnQ2] in the P-AG duplex (see SI 

for details). Note that a conformational change between [CuQ2] and [CuQ2]  may occur after 

charge transfer; however, the reduction potential of [Ru(Bpy)3]
3+ is much more positive (+1.15 V 

vs. NHE) (See Supporting Information) than that of [CuQ2] (+0.05 V vs. NHE)61  and a fast back 

electron transfer in the ground state is expected to restore the planar structure of the [CuQ2] 

complex. This interpretation is supported by the fact that the system showed no signs of 

photoinduced degradation over the course of the experiments. 

The luminescence decays for [Ru(Bpy)3]
2+* in duplexes of P-AG and P-AGTGA were 

used to probe the length dependence of the charge transfer rate; see Figure 5.4. In each case the 

luminescence decay law could be described by a single exponential,a and the addition of Cu2+ 

caused a decrease of the luminescence lifetime of the [Ru(Bpy)3]
2+* for both duplexes. Assuming 

that the enhanced excited state decay rate of [Ru(Bpy)3]
2+* upon addition of Cu2+ is caused by 

electron transfer, the rate constant for electron transfer from [Ru(Bpy)3]
2+* to [CuQ2] can be 

calculated as 𝑘𝐶𝑇 = 1/𝜏 − 1/𝜏0; one obtains a value of 1.8 𝜇s-1 for P-AG and of 0.24 𝜇s-1 for P-

AGTCA. Although these values are for only two donor-acceptor distances, a decay parameter of 

𝛽 ~ 0.2 Å-1 is obtained if one assumes that 𝑘𝐶𝑇 ∝ exp(−𝛽 ⋅ 𝐷𝐷𝐴), in which 𝐷𝐷𝐴 is the distance 

between [Ru(Bpy)3]
2+* and [CuQ2] through the 𝜋-base stack. This value should be considered a 

lower limit however; as differences in Δ𝑟𝐺 for the P-AG than P-AGTGA duplexes that arise from 

differences in the Coulomb field stabilization of the different charge separated states also affect 

                                                 

a Although the luminescence decay of the Ru complex in P-AG/Cu can be fit with a single exponential 

decay, the goodness of the fit can be increased by using a single modal distribution. The origin of the 

distribution is discussed later. 
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the rate constant.63,64 Accounting for these differences causes the value of 𝛽 to increase to about 

0.4 Å-1 (see section 5 of SI). Nevertheless, the value of 𝛽 lies between the values reported for 

superexchange in single stranded PNAs (0.7∼0.8 Å-1)23,61,65 and hole hopping in duplex PNAs 

(0.07 Å-1)65 from electrochemistry. The difference between 𝛽 measured by luminescence in 

solution and by electrochemistry in SAMs of PNA may be caused by differences in the PNA 

geometry and/or by the fact that the charge transfer is likely to be electron-mediated66,67 in solution 

and hole-mediated23,65 in the SAMs.  

The distance dependence observed here for PNA is consistent with literature reports for 

DNA. The range of estimated 𝛽 values (0.2 to 0.4) for PNA are somewhat smaller than those 

reported for DNA in the superexchange regime, which range from 0.6-0.8,31,68–70 but are 

comparable to the range of 𝛽 values (0.2-0.4) Å-1 reported for hole transfers in DNA when the 

donor and acceptor are separated by 3-6 base pairs.71,72  Note that 𝛽 in DNA becomes < 0.1 Å-1 

once the hole transfer is in the hopping regime.69 For reductive electron transfer in DNA, fewer 

studies are available and the mechanism is not yet wholly clear, but a number of groups have 

reported small 𝛽 values for relatively short distances (less than 5 to 7 base pairs), ranging from 

0.11 Å-1 to 0.26 Å-1.66,67,73–75 Thus, the distance dependence observed here for photoinduced 

electron transfer in PNA is not atyp -stacked 

nucleobases in previous studies.  

To examine the importance of the 𝜋-stack between the Ru donor and acceptor on the 

electron transfer, the effects (1) of a base pair mismatch and (2) of the chemical nature of the base 

pairs situated between the donor and acceptor were studied. To create a mismatch, a T nucleobase 

was replaced by a C nucleobase in one of the two AT base pairs situated between the [Ru(Bpy)3]
2+ 

and the Q ligands in the P-AA duplex.  The lifetime of Ru increased from 278 ns for the fully 
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matched P-AA/Cu2+ duplex to 300 ns for the mismatched duplex in the presence of Cu2+.  This 

slowing of the charge transfer (longer lifetime) occurs, even though the mismatch is expected to 

cause more ‘fraying’ on the end of the base stack and suggests that the Ru(Bpy)3
2+ is not 

penetrating through to the [CuQ2]. For the fully complementary duplexes P-AA and P-AG, the 

difference in luminescence lifetime (278 ns for P-AA/ Cu2+ and 265 ns for P-AG/ Cu2+) is smaller 

than that found in the mismatch study. This weak dependence on sequence is consistent with 

previous work on DNA for excess-electron transfer and has been attributed to the very similar 

reduction potentials of the base pairs.66,67,76 These findings are consistent with charge transfer 

through the 𝜋-stack that is ‘electron mediated’. Given the small lifetime changes, this hypothesis 

was tested further by constructing PNA duplexes in which the Ru is centrally situated and thus its 

access to the base stack is sterically encumbered. 

5.3.3 Electron Transfer in Sterically Hindered Duplexes 

The luminescence decay of the [Ru(Bpy)3]
2+* complex depends on the position of the Ru complex 

in the duplex, i.e. terminal versus central, as can be seen by comparing the data for P-AG and P-

AG-P’ in the presence of Cu2+ (Figure 5.5A). The P-AG duplex has the [Ru(Bpy)3]
2+ at the end 

of the base stack while the P-AG-P’ duplex is elongated so that the [Ru(Bpy)3]
2+ cannot access 

the top of the nucleobase stack.  The excited state decay law of [Ru(Bpy)3]
2+* in the P-AG-P’ 

duplex cannot be fit by a single exponential; it could be fit by a double exponential decay law, 

however. 
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To quantify the difference between the P-AG/Cu and P-AG-P’/Cu decay laws, the 𝜒2 

surface of a double exponential fit of the two decays was analyzed. In this analysis the ratio of the 

two lifetime components (𝜏2/𝜏1) was kept fixed while their absolute values and the relative 

  

  

Figure 5.5. (A) Luminescence decays are shown for [Ru(Bpy)3]2+* emission in duplexes P-AG (black) and P-AG-

P’ (red) in the absence (solid lines) and presence (open circles) of Cu2+. Note that only every tenth data point is 

shown, so as to improve clarity of the image. (B) The optimized 𝝌𝟐 of a double exponential fit is plotted versus  

𝐥𝐧(𝝉𝟐/𝝉𝟏)  for P-AG (black) and P-AG-P’ (red) in the presence of Cu2+. (C,D) The distribution of lifetimes are 

shown for the [Ru(Bpy)3]2+* luminescence decay law. The color and symbol code is the same as panel A. Note that 

the distributions for the two duplexes in the absence of Cu2+ coincide and are centered at 𝟒𝟒𝟐 ns. The mean value 

and the relative statistical weight of each peak are labeled for P-AG/Cu and P-AG-P’/Cu in panels C and D. 
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amplitudes of the two decay components were varied to minimize the 𝜒2. Figure 5B shows a plot 

of the optimized 𝜒2 for the two decay laws as a function of ln(𝜏2/𝜏1),  where 𝜏1 and 𝜏2 are the 

two decay constants of the double exponential decay law. Note that when 𝜏2 = 𝜏1 (or 

ln(𝜏2/𝜏1) = 0) a single exponential is recovered. It is clear from the plots that the P-AG/Cu 

system is better described by a single exponential (i.e., lower 𝜒2 value at ln(𝜏2/𝜏1) = 0) than is 

the P-AG-P’/Cu system, and the 𝜒2 value of 1.4 for ln(𝜏2 𝜏1⁄ ) = 0 for P-AG/Cu is low enough 

to be considered acceptable for a single exponential fit. Moreover, the 𝜒2 versus ln(𝜏2 𝜏1⁄ ) curve 

reaches a minimum at 0.94 for P-AG/Cu whereas it is 1.31 for the centrally-attached P-AG-P’/Cu; 

again suggesting that P-AG/Cu is closer to a single exponential decay.  

The origin of the difference in 𝜒2 values (Figure 5B) is revealed by the lognormal lifetime 

distribution analysis (procedure described in the Methods section) as shown in Figs 5C and 5D. 

Note that without Cu2+ present the distribution of [Ru(Bpy)3]
2+* luminescence lifetimes in P-AG 

and P-AG-P’ are well described by a single exponential decay law, and the distribution plots in 

Figure 5.5C and 5.5D provide a lower limit on the peak width that is available from this analysis. 

In the presence of Cu2+, the luminescence decay of the [Ru(Bpy)3]
2+* in P-AG-P’ requires a 

bimodal distribution, whereas P-AG can be fit by a single mode distribution (albeit with a 

somewhat larger peak width than shown for the Cu2+ free case). The mean value for the long 

lifetime component of P-AG-P’ in the presence of Cu2+ is similar to the mean lifetime observed 

for P-AG and P-AG-P’ in the absence of Cu2+, but it has a larger width.  

The observation of two different lifetimes for P-AG-P’ and a single lifetime for P-AG 

could be caused by differences in the conformations available for the [Ru(Bpy)3]
2+ in these 

duplexes. The bimodal distribution of luminescence lifetimes observed for P-AG-P’ suggests that 

the PNA exists in (at least) two distinct conformations for which the charge transfer rates between 
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the [Ru(Bpy)3]
2+* and the [CuQ2] are significantly different and that the interchange between the 

two conformations is slow compared to the timescale of charge transfer. In contrast, the unimodal 

distribution for the luminescence decay of the [Ru(Bpy)3]
2+* complex in P-AG in the presence of 

Cu2+ indicates that the [Ru(Bpy)3]
2+* complex adopts one dominant conformation with respect to 

the [CuQ2] acceptor (or several ones that interconvert fast on the charge transfer timescale). This 

interpretation was corroborated by performing studies which showed that the luminescence decay 

of P-AG -P’/Cu2+did not change when a mismatch was introduced between the [Ru(Bpy)3]
2+* and 

the [CuQ2].  

In order to further test the conformation hypothesis, molecular dynamics (MD) simulations 

of the P-AG and P-AG-P’ were performed. In these calculations, the [CuQ2] complex was 

replaced by an AT base pair because an accurate [CuQ2] force field is not yet available. Figure 6 

shows the average structures of the duplexes that arise from typical trajectories and the 

distributions that were found for the donor-to-acceptor distance. Figure 6A shows the case of P-

AG for which one of the three bipyridine ligands participates in a 𝜋-𝜋 interaction with a terminal 

base pair. This interaction may restrict the flexibility of the [Ru(Bpy)3]
2+ and favor positions of 

the complex in which 𝜋-𝜋 stacking between pyridine ligands and the A-T base pair occurs. Note 

that the steric interactions between the two [Ru(Bpy)3]
2+ enantiomers and the left-handed PNA 

duplex are somewhat different (See SI for distributions of individual trajectories for PNAs that 

contain (Λ)- and (Δ)-[Ru(Bpy)3]
2+) and may contribute to broadening of the distribution; see 

Figure 6C. For the P-AG-P’ duplex the π-π interaction is less important; presumably because of 

the large steric effect that prevents [Ru(Bpy)3]
2+ from intercalating into the π-stack. In this latter 

system, the central [Ru(Bpy)3]
2+ can be flipped toward either end of the duplexes, resulting in a 

more complicated conformational  distribution. 
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To quantitatively characterize the distributions, the donor-acceptor distance 𝐷DA was 

calculated for snapshots of each trajectory at every 0.2 ps. 𝐷DA is defined as the distance between 

the Ru atom and the centroid of the “acceptor” AT base pair. As shown in the histogram of Figure 

5.6A, the 𝐷DA for the duplexes with a terminal [Ru(Bpy)3]
2+ complex have a single mode 

distribution; while for the duplexes with a central [Ru(Bpy)3]
2+ complex the distribution is bimodal 

( see Figure 5.6B). Moreover, the mean value of the short-distance peak in duplexes with a terminal 

[Ru(Bpy)3]
2+ complex is larger than the corresponding value for duplexes with a central 

Figure 5.6. The 𝐷DA distributions calculated using MD simulations for the analog of P-AG (A) and of 

P-AG-P’ (B). The insets are the average structure for one MD trajectory. The aromatic rings of the Bpy 

in [Ru(Bpy)3]2+ are shown in green. 
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[Ru(Bpy)3]
2+ complex, indicating that the latter duplexes would have a shorter luminescence 

lifetime than the former ones, as observed in experiments. An alternative definition of 𝐷DA was 

also considered but it gives rise to the same conclusions; see the Supporting Information for details. 

5.4 CONCLUSIONS 

In summary, this work demonstrates that [Ru(Bpy)3]
2+* can transfer an electron to a [CuQ2] 

complex incorporated into the nucleobase stack of a PNA duplex. If the [Ru(Bpy)3]
2+ complex can 

access the terminus of the duplex and interact with the nucleobase 𝜋 system, the electron transfer 

occurs through the nucleobase stack and is affected by mismatches and the number of nucleobase 

pairs between the donor and acceptor. If the [Ru(Bpy)3]
2+ cannot access the PNA terminus, charge 

transfer can still proceed directly from the [Ru(Bpy)3]
2+* to the [CuQ2] if they are close enough, 

however the charge transfer rate does not depend on the mismatches or the intervening nucleobase 

pairs. 

5.5 SUPPORTING INFORMATION 

5.5.1 The Table of PNA Sequences 

Table 5.2 provides a complete listing of the sequences of various PNA duplexes studied in this 

work. 
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Table 5.2. Sequences of PNA duplexes studied in this work. 

Duplex Sequence Strand ID 

P 
      H-AGTGATCTAC-H α 

H2N-Lys-TCACTAGATG-H β 

P-AG 
    H-RuAGQGATCTAC-Lys-NH2 α 

H2N-Lys-TCQCTAGATG-H β 

P-AA 
    H-RuAAQGATCTAC-Lys-NH2 α 

H2N-Lys-TTQCTAGATG-H β 

P-AG-1Q 
    H-RuAGQGATCTAC-Lys-NH2 α 

H2N-Lys-TCACTAGATG-H β 

P-AA-1Q 
    H-RuAAQGATCTAC-Lys-NH2 α 

H2N-Lys-TTACTAGATG-H β 

P-AGTGA 
    H-RuAGTGAQCTAC-Lys-NH2 α 

H2N-Lys-TCACTQGATG-H β 

P-AT-P’ 
     H-AGTGARuATQTCTAC-Lys-NH2 α 

H2N-Lys-TCACTBTAQAGATG-H β 

P-AG-P’ 
     H-AGTGARuAGQTCTAC-Lys-NH2 α 

H2N-Lys-TCACTBTCQAGATG-H β 

P-AA/TC 
    H-RuAAQGATCTAC-Lys-NH2 α 

H2N-Lys-TCQCTAGATG-H β 

P-AG/TT 
    H-RuAGQGATCTAC-Lys-NH2 α 

H2N-Lys-TTQCTAGATG-H β 

P-AT/TC-P’ 
     H-AGTGARuATQTCTAC-Lys-NH2 α 

H2N-Lys-TCACTBTCQAGATG-H β 

P-AG/TA -P’ 
     H-AGTGARuAGQTCTAC-Lys-NH2 α 

H2N-Lys-TCACTBTAQAGATG-H β 

P-R 
    H-RuAGTGATCTAC-Cys-NH2 α 

H2N-Lys-TCACTAGATG-H β 
a Ru, Q, and B indicate the monomers in Figure 5.1; T, C, G, and A are the conventional nucleobase notations; 

and Lys indicates placement of a lysine. 

5.5.2 More Photoluminescence Titrations of PNA duplexes with Cu2+ 

Two additional steady-state luminescence titrations (P-AA and P-AT-P’) are shown in Figure 5.7. 
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A  

 

B  

 

Figure 5.7. Panel A shows a titration curve for 10 𝝁M P-AA with excitation wavelength at 440nm. Panel B shows a 

titration curve for 10 𝝁M P-AT-P’ with excitation wavelength at 480nm. All spectra were measured in 10 mM pH=7 

phosphate buffer and the emissions were monitored at 620nm. 

5.5.3 UV and Steady-State Photoluminescence Spectra of the Donor and Acceptor 

Figure 5.8 shows steady state absorbance and luminescence spectra for [Ru(Bpy)3]
2+ (donor) in 

water, and Figure 5.9 shows the luminescence spectra for [Ru(Bpy)3]
2+ incorporated into PNA 

duplexes. Although the intensity of the emission spectra changes as Cu2+ is added to the solution, 

the shape of the spectra do not change. The emission spectra were collected on a Horiba Fluoromax 

3 fluorescence spectrometer.  
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Figure 5.8. Absorption (solid line) and emission (dotted line) spectra of free [Ru(Bpy)3]2+ in water. 

 

   

Figure 5.9. Panel A shows the emission spectrum of [Ru(Bpy)3]2+* on 20𝝁M P-AG, and panel B shows the emission 

spectrum of [Ru(Bpy)3]2+* on 20𝝁M P-AGTGA. The emission of free [Ru(Bpy)3]2+ in water is shown as a dotted 

line for reference. Both spectra were measured in 10 mM pH=7 phosphate buffer with an excitation wavelength at 

450nm, and in each panel the emission spectrum of [Ru(Bpy)3]2+* in water is plotted with a dotted line. 
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Figure 5.10 shows the UV spectra of hydroxyquinoline ligand and the metal complex 

[CuQ2] (acceptor) in solution. 

Two systems without Q were tested in order to show the inefficient quenching of the 

ruthenium complex by free Cu2+ in solution. Figure 5.11A shows the luminescence decay of 

[Ru(Bpy)3]
2+ when it is chemically attached at the end of the PNA duplex, P-R (see Table 5.2), 

both with and without added copper ion. The emission decay law does not change significantly 

after adding 10 equivalent of Cu2+ to 120 𝜇L of the 10 𝜇M P-R solution; the best fit decay lifetime 

changes from 457 ns to 455 ns, which is well within error of the measurement. Figure 5.11B shows 

the results for a similar study with 20 𝜇M free [Ru(Bpy)3]
2+ in buffer solution. In this latter case, 

the best fit emission lifetime changes slightly from 379 ns to 381 ns after adding 2 equivalents 

Cu2+ to the solution, well within experimental error of the fit. The results clearly show that no 

significant quenching occurs for the 40 𝜇M of free Cu2+. In experiments with Q, the concentration 

of excess Cu2+ is only half of 40 𝜇M and the effect of free Cu2+ can be ignored. 

Figure 5.10.  UV spectra are shown for a 40 

𝜇M solution of the hydroxyquinoline ligand 

(black) and a 40 micromolar solution of the 

complex [CuQ2] (red), in 25% MeCN and pH 7 

10 mM phosphate buffer at 25°C. High-

temperature spectrophotometric titrations of Q 

with CuCl2 have shown that [CuQ2] is stable 

even when the temperature is as high as 95°C.15 
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Figure 5.11. A) Time-resolved luminescence decays are shown for 10 𝝁M P-R. B) Time-resolved 

luminescence decays are shown for 20 𝝁M free [Ru(Bpy)3]2+. All spectra were measured in 10 mM pH=7 

phosphate buffer with an excitation wavelength at 440nm. 

5.5.4 Zn2+ as a Control for P-AG/Cu. 

Hydroxyquinoline itself has a weak fluorescence with a nanosecond timescale lifetime and its 

short-lived fluorescence is enhanced significantly in the presence of Zn2+. Figure 5.12A shows the 

steady-state photoluminescence titration curve of P-AG. When excited at 480nm where it is 

beyond the absorption peak of hydroxyquinoline, no inflection point is observed. However, an 

inflection point (maximum) around 0.6~0.7 was observed when monitored at 378nm where it is 

close to the maximum of hydroxyquinoline absorption peak. The increase of hydroxyquinoline 

emission clearly shows the binding of Zn2+ with P-AG. The binding is probably a two-step 

equilibrium because the inflection point is neither exactly 0.5 or 1. By using two-step equilibrium 

model fitting (where L stands for P-AG): 

Zn +  L ⇌ ZnL2, 𝐾1 =
[ZnL2]

[Zn][L]2
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ZnL + L ⇌  ZnL, 𝐾 =
[ZnL] 

[ZnL ][L]
 

We found that the effective bimolecular equilibrium constant 𝐾 = √𝐾1𝐾2 is larger than 

107 mol−1. When two equivalents of Zn2+ is added, there is less than 2% unbonded P-AG in 

solution and more than 80% of the P-AG exists in the form of ZnL2. 

A 

 

B 

 

Figure 5.12. A) Steady-state photoluminescence titration of 20𝝁M P-AG in 10mM pH=7 phosphate buffer with 

500 𝝁M Zn2+. Squares: Excited at 480nm. Diamonds: Excited at 378nm. The emission was monitored at 620nm for 

both titrations. B) Luminescence decay curves are shown for 20𝝁M P-AG (black solid line), P-AG with 2 equivalents 

of Cu2+(black circles), and P-AG with 2 equivalents of Zn2+ (aqua circles) in 10mM pH=7 phosphate buffer. 

The time-resolved results are shown Figure 5.12B. The fluorescence lifetime of Q is more 

than two orders of magnitude shorter and can be totally removed from the luminescence decay 

curves by discarding the first 10 ns. The long-lived component arises from the [Ru(Bpy)3]
2+* and 

the lifetime can be extracted from fitting the rest of the decay law. The best fit time constant for 

the [Ru(Bpy)3]
2+* emission data of the P-AG duplex is 440 ns and that for the P-AG/Zn duplex is 

430 ns. The small change supports the conclusion that the large quenching observed in P-AG/Cu 

is caused by the charge transfer from Ru* to Cu(II). 
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5.5.5 The Estimation of 𝒌𝑪𝑻
𝟎

 

The charge transfer rate was determined by using the following equation:  

𝑘𝐶𝑇 =
1

𝜏
−
1

𝜏0
 Equation 5.9 

This rate constant has contributions from the reorganization energy and the Gibbs free energy 

(Δ𝑟𝐺), as well as the electronic coupling. To compare with previous electrochemical data, the 

charge transfer rates 𝑘𝐶𝑇 should be converted to the rate constants 𝑘𝐶𝑇
0

, for which Δ𝑟𝐺 = 0.  

According to the classical Marcus theory,  

𝑘𝐶𝑇 =
 𝜋

ℏ
|𝐻𝐴𝐵|

 
1

√4𝜋𝜆𝑘𝑏𝑇
exp(−

Δ𝐺‡

𝑘𝑏𝑇
) Equation 5.10 

and 

Δ𝐺‡ =
(𝜆 + Δ𝑟𝐺)

2

4𝜆
 Equation 5.11 

Thus, one finds that 

𝑘0 = 𝑘𝐶𝑇 exp(
4Δ𝐺‡ − 𝜆

4𝑘𝑏𝑇
) Equation 5.12 

and Equation 5.11 can be written as 

𝜆 + ( Δ𝑟𝐺− 4Δ𝐺‡)𝜆 + (Δ𝑟𝐺)
 = 0 Equation 5.13 

where Δ𝐺‡ is the activation energy, 𝜆 is the reorganization energy and Δ𝑟𝐺 is the total Gibbs free 

energy change. Δ𝐺‡ can be measured in temperature dependence experiments and the result is 0.1 

eV as shown in Figure 5.13. 
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Figure 5.13. An Arrhenius plot is shown for the charge transfer rate in P-AG/Cu. 𝚫𝑮‡ ≈ 0.1 eV from the 

fitting. 

Δ𝑟𝐺 was estimated from literature values. The excited state energy of [Ru(Bpy)3]
2+is taken 

to be 2.12 eV,62 the oxidation potential of [Ru(Bpy)3]
2+ monomer is measured to be about 1.15 V 

(See Supporting Information Section 9), and the reduction potential of CuQ2 and the reduction 

potential of [CuQ2] is taken to be 0.05 V vs NHE.61 If the Coulomb interaction between the donor 

and acceptor is neglected, then Δ𝑟𝐺∞ = 1.15 + 0.05 −  .1  eV = −1.08 eV. The Rehm-Weller 

equation57 takes the correction of Coulomb interaction into account: 

Δ𝑟𝐺 = Δ𝑟𝐺∞ −
𝑒 

4𝜋𝜖0𝜖𝑟𝐷𝐷𝐴
 Equation 5.14 

where 𝜖0 is the vacuum permittivity and 𝜖𝑟 is the relative dielectric constant. Because 𝐷𝐷𝐴 is very 

small (≈ 1.4 nm), 𝜖𝑟 will become much smaller than the bulk solvent.58,64,77 If 𝜖𝑟 ≈  .5 then the 

Coulomb interaction is about 0.4 eV and Δ𝑟𝐺 ≈ −1.5 eV. 

Using the above values, 𝜆 could be 2.5 eV or 0.9 eV. 2.5 eV is far larger than most Ru 

complexes such as Ru(NH3)4L-(His33)-Zn-CytC (1.15 eV for L=NH3, pyridine, or 

isonicotinamide) or Ru(Bpy)2(im)(His33)-Fe-CytC (about 0.8 eV for im=imidazole).59 Thus using 

0.9 eV as the reorganization energy seems more reasonable, and Equation 5.12 becomes: 

𝑘0(𝐏 − 𝐀𝑮/Cu) ≈ 0.007𝑘𝐸𝑇 Equation 5.15 

Thus, one estimates 𝑘0 to be 1.3 × 104 s-1 for P-AG/Cu.   
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Using Eqn S6 to account for the shift in Δ𝑟𝐺 and the other parameters given, it is possible 

to estimate 𝑘0 for P-AGTGA/Cu. From Eqn S6 and a 𝐷𝐷𝐴 of 2.4 nm, one finds that Δ𝑟𝐺 = -1.32 

eV and  

𝑘0(𝐏 − 𝐀𝐆𝐓𝐆𝐀/Cu) ≈ 0.0009𝑘𝐸𝑇 Equation 5.16 

so that 𝑘0 is  10 s-1 for P-AG/Cu.  These results are compiled in Table 5.3. 

Table 5.3. Luminescence lifetimes and charge transfer rates in P-AG/Cu and P-AGTGA/Cu. 

PNA 𝜏 / ns 𝜏0 /ns 𝑘𝐶𝑇 / s-1 𝑘0 / s-1 

P-AG/Cu 246 440 1.8 × 106 1.3 × 104 

P-AGTGA /Cu 412 457 0. 4 × 106  .1 × 102 

Using the 𝑘0 values, which are scaled to the same reaction Gibbs energy, one can estimate 

β directly from 

ln (
𝑘0(𝐏 − 𝐀𝐆)

𝑘0(𝐏 − 𝐀𝐆𝐓𝐆𝐀
) = 𝛽 (DDA(𝐏 − 𝐀𝐆) − DDA(𝐏 − 𝐀𝐆𝐓𝐆𝐀)) Equation 5.17 

Using the results in Table 5.3 and the distances 1.4 nm and 2.4 nm from the MD simulations, one 

finds that  𝛽 = 0.41 Å-1. 

According to previous electrochemical experiments, charge transfer in duplexes with seven 

or more bases pairs (duplexes with less than seven base pairs were not measured by 

electrochemical methods) is in the ‘hopping’ regime and 𝑘0 is about 1 s−1.65 Assuming that the 𝛽 

obtained here holds for up to seven base pairs, then the 𝑘0 of a [Ru(Bpy)3]
2+ and Q containing 

PNA with seven base pairs between the donor and acceptor is predicted to be at most about 10 s−1.  

Given the rough nature of the estimates and the differences in the experiments, this comparison is 

considered to be acceptable. 
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5.5.6 Support Plane Analysis and Maximum Error in P-AG-P’ system 

When two decays have similar lifetimes, it is crucial to determine the fitting errors in the two 

decays to ascertain whether the difference is outside of the noise limit. In component fitting, the 

confidence interval can be obtained by using the Support Plane Analysis60 function of the FAST 

(Fluorescence Analysis Software Technology) software. The results from this analysis for the P-

AG-P’ system are listed in Table 5.4. The “Probability 60%” columns correspond to 𝑝 = 0.4, and 

the “Probability 90%” columns correspond to 𝑝 = 0.1. The confidence interval is determined from 

the standard deviation. The parameters in Table 5.4 show that no overlap of the confidence 

intervals occurs between the two cases, P-AGTGA and P-AGTGA/Cu. Also, the differences 

between the lifetimes of the two PNAs are much larger than the range of either confidence interval. 

Thus the difference between the lifetimes is significant; it does not arise from noise. 

Table 5.4. Support plane analysis of P-AGTGA and P-AGTGA/Cu 

 Probability 60% Probability 90% 

 𝜏 (ns) Conf low Conf high Conf low Conf high 

P-AGTGA 457 457.0 457.9 456.5 458.3 

P-AGTGA/Cu 412 411.8 412.5 411.5 412.9 

 

Even if the lifetimes are the same for P-AG/Cu and P-AGTGA/Cu, we can still assume a 

detection limit to estimate the maximum charge transfer rate in P-AGTGA/Cu. By propagation of 

errors in Equation 5.9, we have 

Δ𝑘
2 =

1

𝜏4
⋅ Δ𝜏

2 +
1

𝜏0
4 ⋅ Δ𝜏0

2  
Equation 5.18 

where Δ𝑘, Δ𝜏, and Δ𝜏0 are the limits of errors for 𝑘𝐸𝑇, 𝜏, and 𝜏0, respectively. Assuming that the 

experimental error limit of the luminescence lifetime determination is 3%, Equation 5.18 gives a 

Δ𝑘 of 0.09 × 106 s−1, meaning that the 𝑘𝐸𝑇 of the 5-basepair separated system is probably not 
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much larger than 0.3 × 106 s−1. Actually, the relative standard deviations of 𝜏 and 𝜏0 are only 

1.4% and 1.5% between three experiments (412 ns, 423 ns, 415 ns for 𝜏 and 457 ns, 470 ns, 460 

ns for 𝜏0), suggesting that the error estimate given here is a conservative one. 

5.5.7 Conformation Distributions by Enantiomer 

The distribution of donor-acceptor distances 𝐷𝐷𝐴 are shown in Figure 5.14 for four 

trajectories of P-AG - two for each of the [Ru(Bpy)3]
2+ optical isomers. Figure 5.15 shows 𝐷𝐷𝐴 

 

Figure 5.14. The donor-to-acceptor distance distributions are shown for four different trajectories of the P-AG duplex. 

Panels A and B are for the case of the Λ- donor chirality, and panels C and D are for the Δ- donor chirality. 
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distributions for four MD trajectories of tailed P-AG-P’, two for each of the [Ru(Bpy)3]
2+ optical 

isomers.  

 

Figure 5.15. Donor-to-acceptor distance distributions are shown for four different trajectories of the P-AG-

P’duplex. Panels A and B are for the case of the Λ- donor chirality, and panels C and D are for the Δ- donor 

chirality. For illustration purposes, trajectories are shown for the two dominant conformations that were observed. 
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5.5.8 Alternative Definition of 𝑫𝑫𝑨 

In the main text, 𝐷DA is defined as the distance between Ru atom and the centroid of the AT base 

pair. 𝐷DA can also be defined as the distance between the Ru atom and the center of the two N 

atoms in the A-T base pair, as shown in Figure 5.16: 

 

Figure 5.16. The alternative definition of 𝑫𝐃𝐀. 

This change of definition does not cause a significant change in the distribution of of 𝐷DA 

values; see Figure 5.17.  

Figure 5.17. Distance distribution are shown for P-AG in panel A and for P-AG-P’ in panel B. Not that only the 

short distance (quenched condition) peak is shown for P-AG-P’. 
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5.5.9 Cyclic Voltammogram of Cysteine-Ru(Bpy)3
2+ 

The oxidation potential of Ru monomer in a Cysteine-Ru(Bpy)3
2+ self-assembled monolayer 

(SAM) was measured by cyclic voltammetry and is found to be +1.15 V (versus NHE). The SAM 

modified electrode was prepared as previously reported.23 

 

 

Figure 5.18. Cyclic voltammogram of Cys-Ru(bpy)3
2+ SAM on a gold electrode. Measured in 0.1 M 

tetrabutylammonium tetrafluoroborate/MeCN with Ag/AgNO3 reference electrode at a scan rate of 100 V/s. 
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6.0  CONCLUDING REMARKS 

In this dissertation, experimental methods as well as theoretical/computational methods have been 

employed to study the fundamental charge transfer properties of peptide nucleic acids and small 

organic molecules. Chapter 2 is dedicated to electrochemical measurement of charge transfer in 

the “hopping” regime. A new three-step phenomenological model was developed to simulate the 

multiple-step charge transfer process. As a first test, both the three-step model and a traditional 

single-step non-adiabatic tunneling model have been applied to the electrochemical measurement 

of a 10-base pair PNA duplex SAM. It is shown that the fitting results of the single-step model can 

be explained in terms of the apparent charge transfer rate constant 𝑘𝑡𝑜𝑡
0  within the three-step 

framework; however, the three-step model predicts the importance of the energy barriers between 

the molecular bridge and the electrochemical reporter (injection barrier) in multi-step charge 

hopping process, which is not explicitly included in the single-step model. A temperature 

dependence study of a 10-base pair PNA duplex was performed. An injection barrier of 0.24 eV 

was extracted by comparing the three-step model simulation with the experimental data. This value 

is in reasonable agreement with the results obtained using photoelectron spectroscopy. Further 

experiments have been done to vary the charge transfer rate in each major step of the electron 

transfer in the 10-base pair PNA system. All experimental results are consistent with the 

predictions of the three-step model. Although designed for electrochemical measurements, the 

model may be used in a broader context such as for comparing electrochemical data with 

spectroscopic results. 

In Chapters 3-5, experimental measurements are combined with theoretical computations. 

The effect of oxygen heteroatoms on the single molecule conductance of saturated organic chains 
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is the focus of Chapter 3. STM-controlled break junction measurements showed that the molecular 

conductance of ether chains is smaller than that of alkane chains. NEGF methods were used to 

show that the contribution of the molecular orbitals to the molecular conductance depends strongly 

on their delocalization, with higher contributions for more delocalized orbitals. Delocalization of 

the orbitals was found to be higher in the alkyl chains than in the oligoethers, a trend that is in 

agreement with that of the conductances determined experimentally. In addition, an NBO pathway 

analysis was performed for the alkane and ether chains such that the results can also be interpreted 

in the language of Marcus theory of non-adiabatic electron transfer. For the shortest chains, 5-C 

and 5-O, the effect of the self-energya shift from C to O is compensated by an increased coupling. 

For the longer chains, the non-nearest neighbor contributions to the overall electronic coupling 

decreases this compensation and the difference in couplings through the two chains is more 

strongly manifested. 

Optimized structures have been used in the theoretical analysis in Chapter 3 to obtain a 

single, static picture of charge transfer. In Chapter 4 and 5, more flexible and complicated systems 

are studied, which required a more dynamic picture and the analysis of an ensemble of 

conformations. The study in Chapter 4 explored the influence of structural flexibility on the charge 

transfer rate constant through PNA. Both the experimental and theoretical components of this 

study indicate that charge transport in PNA can be suppressed by limiting the conformational 

flexibility of the PNA duplex, e.g., by changing the backbone chemistry. While the charge transfer 

occurs through the nucleobases, the fluctuations of the PNA backbone broaden the nucleobase 

energy levels and thus increase the charge transfer rate. The fluctuating nature of the higher 

                                                 

a The diagonal elements of corresponding Fock matrix, not the self-energy matrix or self-energy 

operator in NEGF methods. 
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molecular conductance might not be the most desirable property if one wants to simply replicate 

the mechanism of the solid-state electronics to molecular electronics. As findings of fundamental 

science, the intrinsic fluctuations may lead to the development of molecular devices with novel 

mechanisms that are very different from the ones found in solid-state devices. 

Finally, Chapter 5 explores a new scaffold for intramolecular photoinduced electron 

transfer studies. It is experimentally shown that [Ru(Bpy)3]
2+* can transfer an electron to a [CuQ2] 

complex incorporated into the nucleobase stack of a PNA duplex. If the [Ru(Bpy)3]
2+ complex can 

access the terminus of the duplex and interact with the nucleobase 𝜋-stack system. The electron 

transfer occurs through the nucleobase stack and is affected by mismatches and the number of 

nucleobase pairs between the donor and acceptor. If the [Ru(Bpy)3]
2+ cannot access the PNA 

terminus, charge transfer can still proceed directly through space from the [Ru(Bpy)3]
2+* to the 

[CuQ2] if they are close enough, however the charge transfer rate does not depend on the 

mismatches or the intervening nucleobase pairs. Comparing with the electrochemical method used 

in Chapter 4, the photophysical method in Chapter 5 allows one to reveal more details of charge 

transfer dynamics (and therefore possible conformational distributions) by using a lifetime 

distribution analysis. The conformational distribution has been corroborated by molecular 

dynamics simulations. Different from long-range hole hopping, the excess electron transfer in 

nucleic acids demonstrated in this chapter is still not well understood in the charge transfer 

community. This work shows again that the combined experimental and theoretical/computational 

study may be the best way to solve such complicated problems. 

In summary, a new electrochemical model is proposed and verified, and different 

experimental methods together with appropriate computational approaches have been employed 

to explore the effects of different electronic structure (Chapter 3) as well as different geometries 
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and dynamics (Chapter 4 and 5) on the molecular conductance and electron transfer rate. If the 

explored system is rigid and not conformationally gated, one may focus on the optimized structure 

and analyze the conductance by the NEGF formulism or electronic coupling calculations, 

otherwise the dynamic effects must be taken into account, e.g., generating an ensemble of 

conformations by molecular dynamics. In a bigger picture, the non-adiabatic electron transfer 

within the framework of Marcus theory explored in this dissertation is a special case of a broader 

area of non-adiabatic dynamics. Because of the complexity, numerical simulations are preferred 

for quantitative estimation of transition probabilities for non-adiabatic dynamics other than 

electron transfer. However, clear physical pictures and simple lessons are usually lost in the huge 

amount of data, which is just the opposite of Marcus’ paradigm. As more complex non-adiabatic 

electron transfer systems are being explored, the evolution of electron transfer theory and models 

may eventually lead to or inspire novel general theories that bridge the current gap between the 

electron transfer and other non-adiabatic dynamics without obscuring the usefulness for guidance 

to experiments and understanding mechanisms by adding too many parameters.  
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APPENDIX 

MATLAB SCRIPTS FOR CHAPTER 1 

The main MATLAB script for the three-step model (Words after “%” are comments): 

close all; % delete all windows. 

 

%%----Part I: In this part, variables, functions and parameters for the simulation and data output are defined.----%% 

xaxis='sr'; %The xaxis could be 'lam' or  'sr'. ‘sr’ means “scan rate”. 

yaxis='shift'; %The yaxis could be 'shift' or 'width' 

method='mmm'; %The method could be 'mcc', 'mcm' or 'mmm'. Note: Now only 'mmm' method is supported. 

ifplotshift=true; %true if you need to plot peak shifts. 

plotextra=false; %plot extra parameters. ‘False’ by default. 

plotK=false; 

%upperlimit=1e-4; 

tstart=tic; 

global dos Estep ifplotk0; %Make the three variables “global” so other scripts can use them. 

 

%% ---------------------Definations related to k0--------------------------% 

%Electrode-Bridge interface 

dos=true; %use the ‘DOS’ model described in chapter 1. Always true. 

deEB=0.235; % define the barrier height or 𝜀 . 

 

%The followings are the kBE (electrode-bridge), kBB(bridge hopping) and kBF(bridge-reporter) rates at 

equilibrium. 

kBE_fp=37.5e3; 

%On the Bridge 

kBB_fp=2e3; %kBBarray=(1:0.1:2)*1e3; 

%Bridge-Reporter Interface 

kBF_fp=3.3e3; 

 

scalingfactor=kBE_fp/kBF_fp; %scaling factor is used to control the asymmetry. 

 

%% ---------------------Definitions about dynamic changes----------------% 

%-------Lambdas------% 

larray=0.1:0.1:1.0; %Defines the reorganization energy array to calculate. Used only when 𝜆 is to be plotted. 

lambdaEB=0.2; 

lambdaBB=0.1; 

lambdaBF=0.6; 

%-------Electric Potential Drop Percentages---% 

ptgEB=0.2; %Percentage of the potential drop occurring at the Electrode-Bridge interface or “EB%” in the paper. 

ptgBB=0.05; % This is “BB%”, the potential drop across the bridge. 

 

%% ------Simulation Setups-----% 

T=298; %temperature 
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E0=0.0; %formal potential set to 0. 

Einit=-0.4; %Initial voltage set to -0.4 V. 

Eend=0.4; %Final voltage set to 0.4 V. 

Estep=2e-4; % Voltage step. The interval between to calculated voltages. 

varray=[1 3 5 8 12 18 30]*1e-3; %Scan rate (scan speed) array, in mV/sec. 

 

ifplotk0=false; 

xarray=[]; %to be plotted on the x-axis. 

 

%% ---------------------Part II: Start Simulation--------------% 

if strcmp(method,'mcc') 

    cvode=@pebf_mcc; %not implemented yet. 

    ptgEB=1; 

elseif strcmp(method,'mcm') 

    cvode=@pebf_mcm; %not implemented yet. 

    %ptgEB=0.5; 

elseif strcmp(method,'mmm') 

    cvode=@pebf_mmm; %call pebf_mmm for actual simulation. 

end 

 

%close all; 

 

%Initializing the array to store rate data. 

if strcmp(xaxis,'lam'); %if the x-axis is 𝜆. 

    Ecell=cell(1,length(larray)); 

    pparray=zeros(1,length(larray)); 

    %warray=pparray; 

    k0array=pparray; 

    kEBcell=Ecell; 

    kBEcell=Ecell; 

    akBFcell=Ecell; 

    akFBcell=Ecell; 

    Icell=Ecell; 

    Solcell=Ecell; 

    Timecell=Ecell; 

    Ycell=Ecell; 

    kBFcell=Ecell; 

    kFBcell=Ecell; 

    kBBoxcell=Ecell; 

    kBBredcell=Ecell; 

    pcell=Ecell; 

    wcell=Ecell; 

    lestr=cell(length(larray),1); 

    i=1; 

    for lambdaEB=larray 

         

%The cvode used later is actually pebf_mmm. 

%Only Ecell, pcell, and Icell would be used. kEBcell, kBEcell.. and other variables stores the calculated rate 

constants and are for debug use only. 

 

[k0array(i),Solcell{i},Ecell{i},Icell{i},kEBcell{i},kBEcell{i},kBBoxcell{i},kBBredcell{i},kBFcell{i},kFBcell{i},p

cell{i},wcell{i}]=cvode(T,v,E0,Einit,Eend,deEB,kBE_fp,scalingfactor,lambdaEB,ptgEB,kBB_fp,lambdaBB,ptgBB,

lambdaBF,ptgTUN); 

        Timecell{i}=Solcell{i}.x; 

        Ycell{i}=Solcell{i}.y; 

        lestr{i}=[num2str(larray(i)),' eV']; 
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        i=i+1; 

    end 

    xarray=larray; 

    xxlabel='\lambda_{EB} / eV'; 

xtitle='vs. \lambda_{EB}'; 

 

%Make call for simulation as a function of scan speed (scan rate). 

elseif strcmp(xaxis,'sr'); %scan rate is chosen by default. 

%The cvode used later is actually pebf_mmm. 

%Only Ecell, pcell, and Icell would be used. kEBcell, kBEcell.. and other variables stores the calculated rate 

constants and are for debug use only. 

 

    pparray=zeros(1,length(varray)); 

    %warray=pparray; 

    k0array=pparray; 

    Ecell=cell(1,length(varray)); 

    kEBcell=Ecell; 

    kBEcell=Ecell; 

    akBFcell=Ecell; 

    akFBcell=Ecell; 

    Icell=Ecell; 

    Solcell=Ecell; 

    Timecell=Ecell; 

    Ycell=Ecell; 

    kBFcell=Ecell; 

    kFBcell=Ecell; 

    kBBoxcell=Ecell; 

    kBBredcell=Ecell; 

    pcell=Ecell; 

    wcell=Ecell; 

    lestr=cell(length(varray),1); 

    i=1; 

    for v=varray 

        

[k0array(i),Solcell{i},Ecell{i},Icell{i},kEBcell{i},kBEcell{i},kBBoxcell{i},kBBredcell{i},kBFcell{i},kFBcell{i},p

cell{i},wcell{i}]=cvode(T,v,E0,Einit,Eend,deEB,kBE_fp,scalingfactor,lambdaEB,ptgEB,kBB_fp,lambdaBB,ptgBB,

lambdaBF,ptgTUN); 

        Timecell{i}=Solcell{i}.x; 

        Ycell{i}=Solcell{i}.y; 

        lestr{i}=[num2str(varray(i)*1e3),' mV/s']; 

        i=i+1; 

    end 

    xarray=log10(varray); 

    xxlabel='log_{10}(v)'; 

xtitle='vs. Scan Rate'; 

 

else %If none of the above (lambda or scan rate) is selected. 

    disp('Nothing to do...') 

end 

warray=zeros(2,length(wcell)); %the array to store peak widths. 

pparray=zeros(2,length(pcell)); %the array to store peak positions. 

for i=1:length(wcell); 

    warray(:,i)=wcell{i}; 

    pparray(:,i)=pcell{i}; 

end 

%-------------------------------------------------------------------------% 
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%Plotting the "production" curve, or working curve, or the trumpet plot. 

if ifplotshift 

    if strcmp(yaxis,'width') %Plot width on y-axis. Disabled by default. 

        yarray=warray; 

        yylabel='FWHM / mV'; 

        fulltitle=['Width ',xtitle]; 

    elseif strcmp(yaxis,'shift') %Plot shift on y-axis. Chosen by default. 

        yarray=pparray*1000; 

        yylabel='E-E_0 / mV'; 

        fulltitle=['Shift ',xtitle]; 

    else 

        disp('I am confused, but what to plot?') 

    end 

    h=figure;hold all;plot(xarray,yarray,'--rs','LineWidth',2,... 

        'MarkerEdgeColor','k',... 

        'MarkerFaceColor','g',... 

        'MarkerSize',10); 

    %title(fulltitle);%,'FontSize',20); 

    xlabel(xxlabel);%,'FontSize',20); 

    ylabel(yylabel);%,'FontSize',20); 

    grid off; 

    set(findall(h,'-property','FontSize'),'FontSize',16,'FontName','Times'); 

    print(h,'-dpng','-r75',[fulltitle,'.png']); 

    %print(h,'-depsc',fulltitle,'.eps']); 

    %End of Plotting Production Curve. 

    %-------------------------------------------------------------------------% 

    box on; 

    set(gca,'YTick',-100:25:100); 

end 

 

%% Plotting CVs for all lambdas/scan rates,... 

ni=0; 

h=figure;hold all; 

%The length of Ecell is the number of CVs to be plotted. Ecell stores the potential data and Icell stores the current 

data. 

for i=1:length(Ecell) 

    plot(Ecell{i},Icell{i},'LineWidth',2); 

    temparr=Ecell{i}; 

    save(['run_pebf_Ecell_to_symm',num2str(i),'.dat'],'temparr','-ascii') 

    temparr=Icell{i}; 

    save(['run_pebf_Icell_to_symm',num2str(i),'.dat'],'temparr','-ascii') 

end 

xlim([Einit,Eend]); 

ylim([-0.4 0.3]); 

set(gca,'YTick',-0.3:0.1:0.3); 

grid off; 

box on; 

legend(lestr,'Location','Best');%title('CVs'); 

set(findall(h,'-property','FontSize'),'FontSize',16,'FontName','Times'); 

print(h,'-dpng','-r75','CVs.png'); 

 

%End of Plotting CVs 

 

%save the data. 

save -ascii run_pebf_parray_to_symm.dat pparray 
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%end of the main script. 

 

The definition of function pebf_mmm (where the kinetic equations are solved) in the above 

script: 

function [k0,Sol,Earray,Iarray,kEBarray,kBEarray,kBBoxarray,kBBredarray,kBFarray,kFBarray,Vp,width] = 

pebf_mmm(T,v,E0,Einit,Eend,deEB,kBE_fp,scalingfactor,lambdaEB,frctEB,kBB_fp,lambdaBB,frctBB,lambdaBF,

~) 

%Electrode-Bridge-Fc System. 

%E-->B: Marcus (m) 

%B-->B: Constant (c) 

%C-->C: Marcus (m) 

%version 0.5 

%choose whether DOS model is used 

global dos Estep;  

 

 

%% --------------------Parameter Defination Area--------------------------% 

kB=8.617343e-5; %Boltzmann Constant in eV/K 

%T=298; 

kT=kB*T; 

%Estep=1e-4; %1e-4 is the step used in eif_marc.m. 

 

%kBBox=kBB_fp*2; %I use kBBox and kBBred b/c it's easier to extend. 

%kBBred=kBB_fp/2;%kBB_fp; 

if dos==true; 

    cEB=kBE_fp/(T^0.5*intkred(lambdaEB,-deEB)); 

    kEB_fp=cEB*T^0.5*intkox(lambdaEB,-deEB); 

    kBF_fp=kBE_fp/scalingfactor; %to get cBF; 

    disp(['kEB_fp= ',num2str(kEB_fp,'%0.4g')]); 

    disp(['kBE_fp= ',num2str(kBE_fp,'%0.4g')]); 

    disp(['kBB_fp= ',num2str(kBB_fp,'%0.4g')]); 

    disp(['kBF_fp= ',num2str(kBF_fp,'%0.4g')]); 

    disp(['kFB_fp= ',num2str(kBF_fp*kEB_fp/kBE_fp,'%0.4g')]); 

else 

    cEB=kBE_fp/(T^(-0.5)*exp(-(lambdaEB-deEB).^2/4/lambdaEB/kT)); 

    kEB_fp=cEB*T^(-0.5)*exp(-(lambdaEB+deEB).^2/4/lambdaEB/kT); 

    kBF_fp=kBE_fp/scalingfactor; %to get cBF; 

    disp(['kEB_fp= ',num2str(kEB_fp,'%0.4g')]); 

    disp(['kBE_fp= ',num2str(kBE_fp,'%0.4g')]); 

    disp(['kBB_fp= ',num2str(kBB_fp,'%0.4g')]); 

    disp(['kBF_fp= ',num2str(kBF_fp,'%0.4g')]); 

    disp(['kFB_fp= ',num2str(kBF_fp*kEB_fp/kBE_fp,'%0.4g')]); 

end 

%lambdaBF=0.8; 

cBF=kBF_fp*T^(0.5)*exp((lambdaBF-deEB)^2/4/lambdaBF/kT); %The constant to replace actual dos. 

cBB=kBB_fp*T^(0.5)*exp(lambdaBB/4/kT); %The constant to replace actual dos. 

frctBF=1-frctEB-frctBB; % BF%. Note I used frctBF and frctEB, frctBB in this script. 

 

%% Calculate k0 

k0=pebf_fk0(kEB_fp,kBE_fp,kBB_fp,kBF_fp); %Find k0 at eqiulibuim. 

display(['k0= ',num2str(k0)]); 

%k0=1;%when no need to find this value now, set to 1. 
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%% -------------------Starting the oxidation process----------------------% 

tic; %Solving the ode using Solver provided by MATLAB 

display('ODE Timer Started...'); 

opts=odeset('MaxStep',Estep/v,'Vectorized','off'); 

%display('ODE Started'); 

 

Sol=ode15s(@pdba21_ode,[0 (Eend-Einit)/v],[0, 0, 0],opts); %was ode15s 

 

pTime=Sol.x(1):1e-3/abs(v):Sol.x(end); 

pY=interpa(Sol.x,Sol.y,pTime); 

pY(pY>1)=1; 

 

pEarray=Einit+v*pTime; 

 

%If taking the last hopping site into account... 

%pIarray=[0,diff(pY(3,:))./diff(pTime)]+[0,diff(pY(2,:))./diff(pTime)]; 

pIarray=[0,diff(pY(3,:))./diff(pTime)]; 

 

pkBF=kBF(pTime); 

pkFB=kFB(pTime); 

pkBBox=kBBox(pTime); 

pkBBred=kBBred(pTime); 

pkEB=pkBF; %Initialize pkEB & pkBE. 

pkBE=pkBF; 

 

i=1; 

for E=pEarray 

%    if dos==true 

        pkEB(i)=kEB_marcus(pTime(i)); 

        pkBE(i)=kBE_marcus(pTime(i)); 

    i=i+1; 

end 

 

 

try 

    pwidth=fwhm(pEarray,pIarray); 

catch ME 

    disp(ME); 

    pwidth=0; 

end 

%% -------------------Starting the reduction process----------------------% 

v=-v; 

Eori=Einit; 

Einit=Eend; 

Eend=Eori; 

nSol=ode15s(@pdba21_ode,[0 (Eend-Einit)/v],pY(:,end)',opts); %was ode15s 

 

nTime=nSol.x(1):1e-3/abs(v):nSol.x(end); 

nY=interpa(nSol.x,nSol.y,nTime); 

 

nEarray=Einit+v*nTime; 

 

%if taking the last hopping site into account... 

%nIarray=[0,diff(nY(3,:))./diff(nTime)]+[0,diff(nY(2,:))./diff(nTime)]; 

nIarray=[0,diff(nY(3,:))./diff(nTime)]; 
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Sol.x=[pTime nTime+pTime(end)]; 

Sol.y=[pY nY]; 

% Time=Sol.x; 

% Y=Sol.y; 

Earray=[pEarray nEarray]; 

Iarray=[pIarray nIarray]; 

 

 

 

try 

    nwidth=fwhm(nEarray,nIarray); 

catch ME 

    disp(ME); 

    nwidth=0; 

end 

 

tempt=toc;%Finishing Solving the two ODEs... 

disp(['ODE Done. Time used: ',num2str(tempt),' seconds']); 

%% ----------------End of Reduction Process-------------------------------% 

 

%Iarray(Iarray<0)=0; 

%Iarray(1:round(length(Iarray)/50))=0; 

%Iarray=smooth(Earray,Iarray)'; 

%Iarray(Iarray<0)=0; 

%figure; 

%plot(Earray,Y);grid; 

%figure; 

%plot(Earray,Iarray);grid; 

 

pVp=pEarray(pIarray==max(pIarray))-E0; 

nVp=nEarray(nIarray==min(nIarray))-E0; 

%cEBlc kox and kred. Just for output, won't be used in Solving ODEs. 

%kEBarray=zeros(1,length(Earray)); 

%kBEarray=zeros(1,length(Earray)); 

v=-v; 

%Eend=Einit; 

Einit=Eori; 

% akBF=[pakBF,nakBF]; %Apparent kBF 

% akFB=[pakFB,nakFB]; %Apparent kFB 

kBFarray=[pkBF fliplr(pkBF)]; %the array of kBF 

kFBarray=[pkFB fliplr(pkFB)]; %the array of kFB 

kBBoxarray=[pkBBox pkBBox]; 

kBBredarray=[pkBBred pkBBred]; 

kEBarray=[pkEB fliplr(pkEB)]; 

kBEarray=[pkBE fliplr(pkBE)]; 

 

pVp=mean(pVp); %in case the CVs are "stepwise" (esp. using crude step). 

nVp=mean(nVp); %in case the CVs are "stepwise" (esp. using crude step). 

 

Vp=[pVp,nVp]; 

Vp=Vp(1:2); %just for debugging; usually there is only 1 pVp and 1 nVp. 

width=[pwidth,nwidth]; 

%k0=1; 

%Earray((Iarray-0.5*max(Iarray)<0.1) 

%% ----------Definition of subfunctions-----------------------------------% 
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    function dy=pdba21_ode(t,y) 

        dy     = zeros(3,1); 

        %The kinetic equations. Note the rate constants are changing. 

         

        dy(1) = kEB_marcus(t)*1-kBE_marcus(t)*y(1)-kBBox(t)*y(1)+kBBred(t)*y(2); % including the reverse 

reaction 

        dy(2) = kBBox(t)*y(1)-kBBred(t)*y(2)-kBF(t)*y(2)*(1-y(3))+kFB(t)*y(3); % including the reverse reaction 

        dy(3) = kBF(t)*y(2)*(1-y(3))-kFB(t)*y(3); 

    end 

 

    function Pot=Bias(t) %Total Potential Drop (bias) between the Electrode and Fc. Positive and Negtive. 

        Pot=Einit-E0+v*t; 

    end 

%% The following three functions calculate the potential difference at Bridge/Ferrocene, Bridge/Bridge and 

Electrode/Bridge interface. 

    function Pot=etaBF(t) %Positive at f.p. 

        Pot=deEB+Bias(t)*frctBF; 

    end 

    function Pot=etaBB(t) %Zero at f.p. 

        Pot=Bias(t)*frctBB; 

    end 

    function Pot=etaEB(t) %Note it is negtive at f.p. 

        Pot=frctEB*Bias(t)-deEB; 

end 

 

%%The following functions calculate the potential dependence of the rate constants using Marcus theory. 

    function k=kBBox(t) 

        k=cBB*T^(-0.5)*exp(-(lambdaBB-etaBB(t)).^2/4/lambdaBB/kT); 

    end 

 

    function k=kBBred(t) 

        k=cBB*T^(-0.5)*exp(-(lambdaBB+etaBB(t)).^2/4/lambdaBB/kT); 

    end 

 

    function k=kEB_marcus(t) 

        if dos==true 

            k=cEB*T^0.5*intkox(lambdaEB,etaEB(t)); 

        else 

            k=cEB*T^(-0.5)*exp(-(lambdaEB-etaEB(t)).^2/4/lambdaEB/kT); %to check the origin of asymmetry. 

        end 

    end 

 

    function k=kBE_marcus(t) 

        if dos==true 

            k=cEB*T^0.5*intkred(lambdaEB,etaEB(t)); 

        else 

            k=cEB*T^(-0.5)*exp(-(lambdaEB+etaEB(t)).^2/4/lambdaEB/kT); %to check the origin of asymmetry. 

        end 

    end 

 

    function k=kBF(t) 

        k=cBF*T^(-0.5)*exp(-(lambdaBF-etaBF(t)).^2/4/lambdaBF/kT); 

        %k=kBF_fp; 

    end 

 

    function k=kFB(t) 
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        k=cBF*T^(-0.5)*exp(-(lambdaBF+etaBF(t)).^2/4/lambdaBF/kT); 

        %k=kBF(t)*kFB_fp/kBF_fp; %This is idneticEBl to the fixt kBF and kFB! 

        %k=kFB_fp; 

    end 

 

%The following functions calculate the integral over potentials. 

    function y=intkox(lambda,eta) %The integral part of k_eg 

        y=quadgk(@k_eta,(lambda-eta)/kT-100,(lambda-eta)/kT+100); 

        %y=quadgk(@k_eta,-Inf,Inf); 

        function y=k_eta(x) 

            NsExp=(x-(lambda-eta)/kT).^2*(kT/4/lambda); %The exponent part (no sign) 

            pA=exp(NsExp); 

            pB=exp(x+NsExp); 

            y=1./(pA+pB); 

        end 

    end 

    function y=intkred(lambda,eta) %The integral part of k_eg 

        y=quadgk(@k_eta,(lambda-eta)/kT-100,(lambda-eta)/kT+100); 

        %y=quadgk(@k_eta,-Inf,Inf); 

        function y=k_eta(x) 

            NsExp=(x-(lambda+eta)/kT).^2*(kT/4/lambda); %Thune exponent part (no sign) 

            pA=exp(NsExp); 

            pB=exp(x+NsExp); 

            y=1./(pA+pB); 

        end 

    end 

 

end  
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The main script for the single-step model 

%all definitions are similar as in the scripts for the three-step model. 

close all; %close all windows 

xaxis='sr'; %Calc Working curve for an assigned k0. 

tstart=tic; 

k0=0.275;%k0=0.125 for lower limit, 0.275 for upper limit. 

tim=100; 

T=298;%Temperature is 298K. 

E0=0; %Formal potential set to 0. 

Einit=-0.4; 

Eend=0.4; 

global Estep; 

Estep=2e-4; %Use 1e-4 for production CV 

%v_k0=[0.001 0.00316 0.01 0.0316 0.1 0.316 1];% 10 100];% 3.16 10 31.6 100]% 316 1000]; %v/k0 

%lambdaarray=v_k0*k0; %Real v, in V/s 

%varray=[1 5 30]*1e-3; 

varray=[30]*1e-3;% 80 100]*1e-3; 

varray=[1 3 5 8 12 18 30]*1e-3; 

larray=0.1:0.1:1; 

 

ifsave=false; %Do not save if only need a test! 

if strcmp(xaxis,'sr'); 

    lambda=0.8; 

    SepArray=varray; 

    Ecell=cell(1,length(varray)); 

    Solcell=Ecell; 

    Icell=Ecell; 

    koxcell=Ecell; 

    kredcell=Ecell; 

    pcell=Ecell; 

    wcell=Ecell; 

    lestr=cell(length(varray),1); 

    i=1; 

    for v=varray 

        %Get peak position by solving ode. 

        

[Solcell{i},Ecell{i},Icell{i},koxcell{i},kredcell{i},pcell{i},wcell{i}]=peif_marc(k0,T,lambda,E0,Einit,Eend,v); 

        SepArray(i)=max(pcell{i})-min(pcell{i}); 

        %[Sol,Earray,Iarray,kayox,kayred,Vp,width]=peif_marc(k0,T,lambda,E0,Einit,Eend,v); 

        lestr{i}=[num2str(varray(i)*1e3),' mV/s']; 

        i=i+1; 

    end 

    %eval(['parray_',num2str(k0*tim),'_div_',num2str(tim),'=parray;']); %Save parray at different k0 to different 

arrays 

    %Start plotting the working curve 

    warray=zeros(2,length(pcell)); 

    parray=zeros(2,length(pcell)); 

    for i=1:length(wcell); 

        warray(:,i)=wcell{i}; 

        parray(:,i)=pcell{i}; 

    end 

    h=figure; 

    plot(log10(varray),parray*1000,'--rs','LineWidth',2,... 

        'MarkerEdgeColor','k',... 
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        'MarkerFaceColor','g',... 

        'MarkerSize',10); 

    set(gca,'FontSize',16); 

    xlabel('log_{10}(v)','FontSize',16);ylabel('E-E_0/mV','FontSize',16); 

    %title('Shift vs. Scan Rate','FontSize',16); 

    print(h,'-dpng',['peif_workingcurve_k0_',num2str(k0),'.png']); 

    grid off; 

    box on; 

    ylim([-100,100]); 

    set(gca,'YTick',-100:25:100); 

set(findall(h,'-property','FontSize'),'FontSize',16,'FontName','Times'); 

elseif strcmp(xaxis,'lam') %Try to get the relationship between the peak width and lambda. 

    v=varray(10); 

    Ecell=cell(1,length(larray)); 

    Solcell=Ecell; 

    Icell=Ecell; 

    koxcell=Ecell; 

    kredcell=Ecell; 

    lestr=cell(length(larray),1); 

    i=1; 

    for lambda=larray 

        %Get peak position by solving ode. 

        

[Solcell{i},Ecell{i},Icell{i},koxcell{i},kredcell{i},pcell{i},wcell{i}]=peif_marc(k0,T,lambda,E0,Einit,Eend,v); 

        lestr{i}=[num2str(larray(i)),' eV']; 

        i=i+1; 

    end 

     

    %Start plotting the FWHM vs. E curve 

    h=figure; 

    plot(larray,warray,'--rs','LineWidth',2,... 

        'MarkerEdgeColor','k',... 

        'MarkerFaceColor','g',... 

        'MarkerSize',10); 

    set(gca,'FontSize',16); 

    xlabel('\lambda /eV','FontSize',16);ylabel('FWHM/V','FontSize',16); 

    title('FWHM vs. \lambda: Elec-Fc System','FontSize',16); 

    print(h,'-dpng',['peif_fwhm_k0_',num2str(k0),'.png']); 

    %Finish plotting 

else 

    disp('Nothing to do...') 

end 

 

%Plotting CVs 

h=figure;hold all; 

for i=1:length(Ecell(1:end)) 

    plot(Ecell{i},Icell{i},'LineWidth',2); 

    temparr=Ecell{i}; 

    if ifsave==true 

        save(['run_peif_Ecell_',num2str(i),'.dat'],'temparr','-ascii') 

    end 

    temparr=Icell{i}; 

    if ifsave==true 

        save(['run_peif_Icell_',num2str(i),'.dat'],'temparr','-ascii') 

    end 

end 
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legend(lestr(1:end));%title('CVs'); 

grid off; 

box on; 

set(findall(h,'-property','FontSize'),'FontSize',16,'FontName','Times'); 

set(gca,'YTick',-0.3:0.1:0.3); 

 

return; 

 

%Plotting rate constants 

figure;plot(Ecell{1},[koxcell{1};-kredcell{1}]);title('k_{ox} and k_{red}'); 

 

%Plotting populations 

PFc=Solcell{1}.y; 

corrarray=ones(1,length(PFc)/2); 

corrarray=[corrarray,-corrarray]; %to make reverse scan negtive 

 

figure;plot(Ecell{1},PFc.*corrarray,'k.');title('P_{Fc}'); 

 

disp('----------------------------------------'); 

disp(['k0: ',num2str(k0)]); 

disp(['SepArray: ',num2str(SepArray)]); 

disp('----------------------------------------'); 

 

return; 

 

%Plotting k_ox and k_red vs. E 

figure;hold all;%Plotting kox 

for i=1:length(Ecell) 

    plot(Ecell{i},log10(koxcell{i})); 

end 

legend(lestr);title('log_{10}k^{ox}');xlabel('Bias/V'); 

 

figure;hold all;%Plotting kred 

for i=1:length(Ecell) 

    plot(Ecell{i},log10(kredcell{i})); 

end 

legend(lestr);title('log_{10}k^{red}');xlabel('Bias/V'); 

 

disp(warray); 

toc(tstart); 

 

The definition of peif_marc (where the kinetic equations are solved) in the main script for 

the single-step model: 

function [Sol,Earray,Iarray,kayox,kayred,Vp,width]=peif_marc(k0,T,lambda,E0,Einit,Eend,v) 

%Electrode-Insulator-Fc system, simulated using full Marcus formulism 

kB=8.617343e-5; %Boltzmann Constant in eV/K 

%T=298; 

kT=kB*T; 

global Estep 

%Estep=1e-3; %step of voltage (in volt) 

cA=k0/intkox(0)/T; 

%mod='ode'; 

%Eend=E0+0.2; 
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%Calc k at different voltages 

%pEarray=Einit:Estep:Eend-E0; 

 

%if mod=='ode' 

tic; %pSolving the ode using pSolver provided by MATLAB 

%matlabpool(maxNumCompThreads); %Set the pool, so parfor can be used. 

opts=odeset('MaxStep',Estep/v); 

%----------------Start Solving the Oxidation Process----------------------% 

pSol=ode15s(@eif_ode,[0 (Eend-Einit)/v],0,opts); 

% 12/29/2012: Looks like @eif_ode is what I need to modify for the p-presentation. 

pTime=pSol.x(1):Estep/abs(v):pSol.x(end); 

pY=interpa(pSol.x,pSol.y,pTime); 

% while pY(end)<0.995 

%     Eend=Eend+0.1; 

%     pSol=odextend(pSol,[],(Eend-Einit)/v); 

%     pTime=pSol.x; 

%     pY=pSol.y; 

% end 

pEarray=Einit+v*pTime; 

pIarray=[0,diff(pY)./diff(pTime)]; 

%figure;plot(pEarray,pY);grid; 

try 

    pwidth=fwhm(pEarray,pIarray); 

catch ME 

    disp(ME); 

    pwidth=0; 

end 

%----------------Finish Solving the Oxidation Process---------------------% 

%----------------Start Solving the Reduction Process----------------------% 

v=-v; 

Eori=Einit; 

Einit=Eend; 

Eend=Eori; 

nSol=ode15s(@eif_ode,[0 (Eend-Einit)/v],pY(end),opts); 

% 12/29/2012: eif_ode again. 

nTime=nSol.x(1):Estep/abs(v):nSol.x(end); 

nY=interpa(nSol.x,nSol.y,nTime); 

% while pY(end)<0.995 

%     Eend=Eend+0.1; 

%     pSol=odextend(pSol,[],(Eend-Einit)/v); 

%     pTime=pSol.x; 

%     pY=pSol.y; 

% end 

nEarray=Einit+v*nTime; 

nIarray=[0,diff(nY)./diff(nTime)]; 

%figure;plot(pEarray,pY);grid; 

 

try 

    nwidth=fwhm(nEarray,nIarray); 

catch ME 

    disp(ME); 

    nwidth=0; 

end 

%----------------Finish Solving the Reduction Process---------------------% 

toc;%Finishing Solving the ODE... 
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Sol=pSol; 

Sol.x=[pTime nTime+pTime(end)]; 

Sol.y=[pY nY]; 

Earray=[pEarray,nEarray]; 

Iarray=[pIarray,nIarray]; 

kayox=zeros(1,length(Earray)); 

kayred=zeros(1,length(Earray)); 

 

%Calc kox and kred. Just for output, won't be used in pSolving ODEs. 

i=1; 

for E=Earray 

    kayox(i)=cA*T*intkox(E); 

    kayred(i)=cA*T*intkred(E); 

    i=i+1; 

end 

pVp=pEarray(pIarray==max(pIarray))-E0; 

nVp=nEarray(nIarray==min(nIarray))-E0; 

Vp=[pVp,nVp]; 

width=[pwidth,nwidth]; 

%--------------definations of subfunctions----------------------% 

 

%kinetic equations. 

    function dy=eif_ode(t,y) 

        %% The following is the orignal expression. 

        dy=(1-y)*cA*T*intkox(Einit+v*t-E0)-y*cA*T*intkred(Einit+v*t-E0); 

        %% The followin is used to explore the asymmetry of the TSM. 

        %dy=(1-y)*cA*T*intkox(Einit+v*t-E0)-y*cA*T*intkred(Einit+v*t-E0);  

    end 

 

    function y=intkox(eta) %The integral part of k_eg 

        y=quadgk(@k_eta,(lambda-eta)/kT-100,(lambda-eta)/kT+100); 

        %y=quad(@k_eta,-1000,1000); 

        function y=k_eta(x) 

            NsExp=(x-(lambda-eta)/kT).^2*(kT/4/lambda); %The exponent part (no sign) 

            pA=exp(NsExp); 

            pB=exp(x+NsExp); 

            y=1./(pA+pB); 

        end 

    end 

 

    function y=intkred(eta) %The integral part of k_eg 

        y=quadgk(@k_eta,(lambda-eta)/kT-100,(lambda-eta)/kT+100); 

        %y=quad(@k_eta,-1000,1000); 

        function y=k_eta(x) 

            NsExp=(x-(lambda+eta)/kT).^2*(kT/4/lambda); %The exponent part (no sign) 

            pA=exp(NsExp); 

            pB=exp(x+NsExp); 

            y=1./(pA+pB); 

        end 

    end 

 

end 
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