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Vibrational anharmonicity strongly influences the properties of gas-phase complexes and

solids. Anharmonicity is responsible for the observation of “forbidden” vibrational transitions,

thermal expansion, and phonon-phonon scattering.

In the first portion of this dissertation the vibrational spectra of NO−3 ·H2O and its

isotopologues are examined through effective Hamiltonian and vibrational configuration

interaction calculations employing ab initio force constants. While a harmonic treatment of

the NO−3 ·H2O infrared absorption spectrum predicts two OH stretch transitions, four strong

peaks are experimentally observed. Anharmonic vibrational calculations confirm that the

“extra” transitions are due to the rocking motion of the water molecule relative to the nitrate

ion and a Fermi resonance between the OH stretch and water bend overtone.

The second part of the dissertation explores the nature of the vibrational anharmonicity

of gas hydrates and ice Ih as well as its effects on the structure and thermal conductivity. The

arrangement of the hydrogen atoms in the solids and the gas-water interactions are found to

have a strong influence on some of the properties of the crystals. Coarse-grained simulations

and analytic scattering approximations qualitatively reproduce the observed behavior of

the thermal conductivity of gas hydrates and ice. In addition, the calculations reveal that

guest-host coupling cannot fully explain the differences in the thermal conductivity of gas

hydrates and ice.
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1.0 INTRODUCTION

1.1 INTERACTIONS OF OF WATER MOLECULES

Water is one of the most important substances on Earth and one of the most well stud-

ied.1,2, 3, 4, 5, 6, 7, 8, 9, 10 However, due to its role in life, science, and technology, the interaction

between water and other molecules is still an active research topic. Calculations of the

properties of water containing systems or water-molecule interactions are complicated by

nuclear quantum effects,11,12,13,14 the use of force field models of varying accuracy,1,15,16,17

and the scale of the system. Of particular interest are the interactions of water with small

molecules and in molecular clusters.18,19,20,21,22,23,24,25 These systems can serve as an impor-

tant test of the accuracy of empirical and ab initio computational methods. To that end,

studies of the vibrational spectrum of NO−3 ·(H2O)n clusters can give insight into the bonded

and non-bonded interactions of the molecules.18,24,26,27,28 The water molecules in ion-water

clusters are often appreciably distorted away from their gas phase geometry29 and display

rich structure in the infrared absorption spectrum.27 Due to the complicated nature of the

vibrational coupling and geometric distortion, high-quality ab initio calculations need to be

employed to unravel the spectra.

At low temperatures water can form many different solid phases3,30,31,32,33,34 or can

form cage-like structures which can trap small molecules.35,36 While many solids consisting

primarily of water are only stable under extreme conditions, ice Ih and gas hydrates are

plentiful in the oceans and permafrost.37,38,39 In particular methane hydrate is of interest

due to its potential role in climate change,38,39 fuel harvesting, and clogged natural gas

pipelines.40 Methane trapped in gas hydrate deposits on the ocean floor could be extracted

to increase fossil fuel supplies, however, methane is a much more potent greenhouse gas than

1



carbon dioxide.41 The methane can be released by rapid heating (fuel harvesting), gradual

heating (climate change), or destabilization of the ocean sediments.

Studying the thermal and mechanical properties of solids at low temperatures often requires

methods which account for the nuclear quantum effects.42,43,44,33,34 Classical simulations

overpopulate high-frequency vibrations and do not include the effects of the quantum ground

state (zero-point) vibrations. Rigid water models often perform well in classical simulations

since the constraints remove the high-frequency motions of the hydrogen atoms. However,

flexible models do not introduce errors into the quantum simulation methods since the phonon

populations are consistent with the Bose-Einstein distribution. Accordingly, the quantum

methodologies are most appropriate appropriate for simulations of ice and gas hydrates at

low-temperatures. The thermal and mechanical properties of ice and gas hydrates are of

interest to industrial and environmental organizations that would like to determine how the

methane is released from ocean sediments as the temperature rises.

1.2 NUMERICAL METHODS

While large portions of undergraduate and graduate chemistry courses are focused on analytic

approaches, analytic solutions often do not exist for complicated systems. Fortunately, the

prevalence of computers allows for accurate approximations of quantum or classical dynamics

and properties. The remainder of this chapter gives a brief review of numerical approaches

for the study of vibrational spectroscopy and thermal transport.

1.3 VIBRATIONAL CALCULATIONS

1.3.1 Quantum Harmonic Oscillator

The study of molecular vibrations and rotations are important for extracting information

on the nature of the bonded and non-bonded interactions of molecules. The vibrational
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patterns can be measured experimentally through infrared, Raman, and neutron scattering

spectroscopies. Vibrational spectroscopy gives insight into the composition, bond structure,

and interactions of the system. The peaks in infrared and Raman spectra can be assigned

based on experimental data or by calculating the vibrational frequencies of the molecules.

The simplest theoretical model of vibrations is based on the harmonic oscillator for which the

Schrödinger equation can be solved analytically with a wave function built from the Hermite

polynomials multiplied by a Gaussian function. The solution to the quantum harmonic

oscillator can also be found by diagonalizing the Hessian matrix, which gives the normal

modes and harmonic frequencies.

For linear molecules, two of the frequencies calculated from the Hessian matrix are

rotations, and three others are translations. The rotations are low-frequency modes, and

can be excited simultaneously with the vibrations. The simplest method for treating the

rotations of molecules is the rigid rotor model, where the molecule is treated as if the bond

lengths do not change during as the molecule rotates. For a linear diatomic molecule the

Hamiltonian for the vibrations and rotations in inverse centimeter units is given by

Ĥ =
p̂2

2
+
J(J + 1)

2I
+
ω2q̂2

2
, (1.1)

where ω2 is the force constant for the vibration, p̂ is the momentum operator, I is the

moment of inertia (in inverse centimeter units), J is the total angular momentum quantum

number, and q̂ is the coordinate operator for the mass-scaled displacement from the potential

energy minimum. The Schrödinger equation can be solved using this Hamiltonian to give

the rovibrational frequencies of the linear diatomic. The calculated energy levels from this

Hamiltonian do not match the experimental frequencies due to the anharmonicity and non-

rigidity of the bond. The harmonic frequencies generated by diagonalizing the Hessian matrix

are typically 5-10% higher than the observed frequencies45 and must be multiplied by a

scale factor to improve the agreement with observed values. Since harmonic oscillators are

non-interacting, the vibrations need to be corrected for anharmonicity so that the vibrations

can be coupled.
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1.3.2 Anharmonic Oscillator

Anharmonicity can be introduced into the rovibrational energies by using a more complicated

molecular Hamiltonian, such as the Watson Hamiltonian.46 The Hamiltonian includes the

normal mode kinetic energy, the kinetic energy due to rotations, and the anharmonic potential,

Ĥ = T̂l + T̂c + V̂ (Q) . (1.2)

The kinetic energy terms included in the Watson Hamiltonian are defined as

T̂l =
∑
i

p̂2i
2
, (1.3)

and

T̂c =
1

2

∑
αβ

(Ĵα − π̂α)µαβ(Ĵβ − π̂β)− 1

8

∑
α

µαα , (1.4)

where Tl is the kinetic energy due to motions along the (3N-6) normal coordinates, Tc is the

kinetic energy due to non-rigid rotations of the molecule, Ĵ is the total angular momentum

operator, π̂α is the vibrational angular momentum operator, µαβ is the inverse of the moment

of inertia, and α, β refer to the Cartesian coordinates.

The anharmonic potential energy is given by

V̂ (Q) =
∑
i

Vi(qi) +
∑
ij

Vij(qi, qj) +
∑
ijk

Vijk(qi, qj, qk) + · · · , (1.5)

where qi is a normal coordinate and Q represents the set of all the normal modes. The

potential term, V̂ (Q), is due to both the harmonic frequencies and the coupling of the normal

modes. The accuracy of the potential depends on the amount of coupling that is included

and the accuracy of the electronic structure calculations employed to generate the potential.

While the full Hamiltonian includes the rotational degrees of freedom, their impact on the

energy levels are negligible in large systems and can often be neglected. The Schrödinger

equation employing the molecular Hamiltonian is typically solved via perturbation theory,47,29

configuration interaction,48 self-consistent field,48 and Monte Carlo approaches.25,49,50
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1.3.3 Periodic Systems

The vibrations of solids (phonons) can be determined through lattice dynamics (LD) calcu-

lations and be employed to calculate the heat capacity and thermal conductivity. Due to

the periodic nature of solids, the Hessian matrix no longer predicts the entire vibrational

spectrum. The vibrational frequencies of a periodic system depend on the wave vector, which

is sometimes referred to as the crystal momentum of the phonon. When the wave vector

dependence of the modes is introduced into the Hessian matrix, it becomes the dynamical

matrix. The phonon frequencies and vibrational modes are determined by diagonalizing the

dynamical matrix, D(k),51,52

D(k)ε(k, ν) = ω2(k, ν)ε(k, ν) . (1.6)

Here ε(k, ν) is the polarization vector (vibrational modes), k is the wave vector, and ν is the

dispersion branch. The dynamical matrix is related to the equations of motion51

mjü
n
j (t) =

∑
j′n′

Φnn′

jj′ u
n
j (t) , (1.7)

where u is the displacement from the minimum, Φ is the force constant matrix, j is the atom

index, mj is the mass of atom j, and n is the unit cell index. The force constant matrix

elements are defined using the second derivatives in the truncated Taylor series expansion of

the potential.

Φnn′

jj′,αβ =

 −∇α∇βV (R) j, n 6= j′, n′∑
j′′n′′ ∇α∇γV (R) j, n = j′, n′

, (1.8)

where R represents the positions of all of the atoms and (α,β,γ) refer to the Cartesian coor-

dinates of the atom with indices {j,n}, {j′,n′}, and {j′′,n′′}, respectively. The displacement

from the minimum can be written in terms of the equations above as

unj (t) =
∑
k,ν

m
− 1

2
j εj(k, ν)ei[k·r

n
j −ω(k,ν)t] , (1.9)

where rnj is the position of atom j in unit cell n. Employing the expressions above, the

dynamical matrix becomes

Dη,µ(k) =
1

√
mjmj′

∑
n′

Φ0n′

jj′,αβe
ik·[rn′

j′ −r
0
j ] , (1.10)
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where η = 3(j − 1) + α and µ = 3(j′ − 1) + β.

Harmonic lattice dynamics can be employed to determine phonon frequencies, vibrational

modes, and the heat capacity, but anharmonic corrections are required to calculate the

thermal conductivity and more accurate frequencies. Anharmonic corrections can be included

by using the third and fourth derivatives in the Taylor series expansion of the potential.

The perturbative corrections add a frequency shift, ∆(k, ν), and a line width, Γ(k, ν), to the

phonon spectrum calculated with the harmonic approximation.53 The corrected frequencies

become

ωa(k, ν) = ω(k, ν) + ∆(k, ν) , (1.11)

where ωa(k, ν) is the anharmonic frequency.

1.4 HEAT CAPACITY AND THERMAL CONDUCTIVITY

1.4.1 Debye Model

Since bulk solids effectively extend infinitely in all directions, it is often useful to discuss

the density of states (DOS) rather than individual phonon frequencies. The Debye model

represents the DOS as an elastic continuum which can be utilized to calculate the heat

capacity of a solid based on its physical properties.54 The dispersion relation for the phonons

is given by

ω(k) = vsk , (1.12)

where ω is the frequency and vs is the speed of sound in the solid. The density of states is

then written as

Ξ(ω) =
V ω2

2π2v3s
, (1.13)

where V is the volume of the solid and the cutoff frequency of the elastic continuum is defined

as54

ω3
D =

6π2v3sN

V
, (1.14)
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where N is the number of particles. In order to make the expressions easier to manipulate,

the frequencies can be converted to dimensionless units,

x = ~ωβ , (1.15)

XD = ~ωDβ =
Θ

T
, (1.16)

and

Θ =
~vs
kb

3

√
6π2N

V
, (1.17)

where β = 1/kbT , kb is the Boltzmann constant, and Θ is the Debye temperature.

The harmonic oscillator thermal energy and heat capacity can be written in terms of x

and Θ,

U = 9NkbT

(
T

Θ

)3 ∫ XD

0

x3

ex − 1
dx , (1.18)

CV =
∂U

∂T
, (1.19)

and

CV = 9Nkb

(
T

Θ

)3 ∫ XD

0

x4ex

(ex − 1)2
dx , (1.20)

where U is the vibrational energy and CV is the heat capacity at constant volume.

The Debye model produces relatively simple equations for thermal properties and can be

used as an estimate of how the energy and heat capacity behave as a function of temperature.

At very low temperatures the Debye model predicts that the heat capacity should have a T 3

dependence and that at temperatures much greater than the Debye temperature it should

approach the classical limit, 3Nkb.
54 Figure 1.1 shows the heat capacity of a Debye solid

with Θ = 192 K.
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Figure 1.1: The heat capacity calculated using the Debye model with Θ = 192 K.

1.4.2 Boltzmann Transport Equation

Thermal conductivity is a property that describes how well thermal energy moves through a

solid.53 Fourier’s law gives the linear relationship between the heat flux and the temperature

gradient.

J = κ∇T , (1.21)

where J is the heat flux through a solid, κ is the thermal conductivity, and ∇T is the

temperature gradient. The thermal conductivity can be calculated by using the Boltzmann

transport equation (BTE) and the relaxation time approximation (RTA).53,52 The single

mode RTA-BTE is given by (
∂ft
∂t

)
coll

= vg · ∇T
(
∂ft
∂T

)
, (1.22)

ft = f + f ′ , (1.23)
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and (
∂ft
∂t

)
coll

= −f
′

τ
, (1.24)

where vg is the group velocity of the phonon mode, ft is the non-equilibrium phonon

distribution function, f is the Bose-Einstein distribution function, f ′ is the fluctuation of

the distribution function, (∂ft
∂t

)coll represents the collisions of phonons, and τ is the phonon

relaxation time. While Eqs. 1.22-1.24 are given for a single phonon mode, the extension

to higher dimensions is straight forward. The equilibrium distribution function and the

relaxation time can be found using the frequencies

f =
1

ex − 1
, x = ~ωβ , (1.25)

and line widths

τ =
1

2Γ
. (1.26)

By combining the equations above with the net phonon heat flux, the thermal conductivity

can be calculated using

J = V −1
∑
k

∑
ν

~ωvgf ′ , (1.27)

and

κ = V −1
∑
k

∑
ν

~ωv2gτ
∂f

∂T
. (1.28)

The phonon heat capacity can also be calculated with the following expression

Cp
V = V −1~ω

∂f

∂T
, (1.29)

where the superscript p indicates that the heat capacity is for a single phonon mode.

1.5 CLASSICAL SIMULATIONS

While the harmonic vibrational calculations described above include nuclear quantum effects

and can easily be performed for both large and small systems, the computational cost of

anharmonic corrections increases rapidly with the size of the system. For large systems, it is

often useful to employ classical simulations which are far more efficient and include the full

anharmonic potential instead of a Taylor series approximation.
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1.5.1 Molecular Dynamics

Molecular dynamics (MD) simulations are performed on a collection of atoms by propagating

Newton’s equations of motion. The equations are discretized in time and are given by55

Fn = −∇Vn = mr̈n , (1.30)

ṙn+1 = ṙn + r̈n∆t , (1.31)

and

rn+1 = rn + ṙn∆t+
r̈n∆t2

2
, (1.32)

where F is the force, V is the potential energy, r is a vector representing the potions of

all atoms in the system, and ∆t is the time interval between time step n and n + 1. The

natural ensemble for molecular dynamics is the mircocanonical ensemble (NVE), where the

number of particles and energy are conserved inside a constant volume simulation box (SB).

Although the NVE simulations are the native result of propagating Newton’s equations, most

experiments are typically performed in the canonical (NVT) or isothermal-isobaric (NPT)

ensembles. In the NVT ensemble, the temperature is held constant instead of the energy, and

the NPT ensemble also holds the pressure to be constant by adjusting the size of the SB.

1.5.2 Control of Temperature and Pressure

The temperature (pressure) in NVT (NPT) simulations is controlled through a thermostat

(barostat) which links the system to an external ”bath”. The temperature and pressure can

be controlled through scaling procedures,56 modified equations of motion (non-Newtonian),57

and stochastic processes.58 The Berendsen thermostat (barostat) scales the kinetic energy

(volume) so that a fluctuation in the temperature (pressure) relaxes to the desired magnitude

in a set amount of time.56 While this type of procedure is easily implemented and does

not significantly impact the dynamics (weak coupling), it does not reproduce the true NVT

(NPT) ensemble. Another procedure is to derive damped and driven equations of motion that

are designed to reproduce fluctuations consistent with the canonical or isothermal-isobaric
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ensembles. A popular procedure of this class of thermostats and barostats is the Nosé-Hoover

method.57

1.5.3 Thermal Conductivity from Non-Equilibrium Molecular Dynamics

An alternative to the BTE approach for calculating the thermal conductivity is to perform

classical simulations of the heat flow through the SB. A solid, liquid, or gaseous system is

constructed in a SB with a large aspect ratio. The two ends of the SB become the heat

source and heat sink where energy is added or removed from the system, respectively. If a

temperature gradient is imposed across the SB, then the two sides of the system are no longer

in thermal equilibrium and, hence, the simulations are no longer sampling the equilibrium

NVE, NVT, or NPT ensembles. Non-equilibrium molecular dynamics (NEMD) simulations

of the thermal conductivity are based on Fourier’s law,

J = κ∇T , (1.33)

where J is the heat flux, κ is the phonon thermal conductivity, and ∇T is the temperature

gradient. The flux and temperature gradient can be extracted directly from the molecular

dynamics (MD) simulations to calculate the thermal conductivity,

κ =
|∆E±|∆z
A∆T∆t

, (1.34)

where ∆E± is the energy added (+) or removed (-) at the edges of the SB, ∆z is the distance

between the heat source and sink, ∆t is the simulation time, and ∆T is the difference in

temperature between the heat source and sink. The thermal conductivity can be determined

using two different approaches59,60,61,62,63 by applying either a heat flux, (|∆E±|/A∆t), or a

gradient, (∆T/∆z), during the simulations. Unfortunately, the NEMD approach introduces

artificial boundaries in the SB. Phonons can scatter off of the boundaries and hence, the

thermal conductivity will be underestimated. The thermal conductivity calculated using

NEMD simulations can be corrected by performing the simulations for a range of system

sizes and extrapolating to the bulk limit. NEMD simulations are not the only method to

calculate the thermal conductivity through classical simulations, however, they are the most

straight forward and trivially easy to implement.
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2.0 VIBRATIONAL SPECTROSCOPY OF THE WATER-NITRATE

COMPLEX IN THE OH STRETCHING REGION

2.1 PREFACE

This chapter was previously published as:

Nadja Heine?, Eric G. Kratz?, Risshu Bergmann, Daniel P. Schofield, Knut R. Asmis, Kenneth

D. Jordan, and Anne B. McCoy; Vibrational Spectroscopy of the Water-Nitrate Complex in

the OH Stretching Region; J. Phys. Chem A; doi:10.1021/jp500964j

? Authors contributed equally

Some modifications have been made to the text. In particular the supporting information

was extended to include additional information on the anharmonic force constants. The

IRMPD experiments on the NO−3 ·H2O complex were performed by Nadja Heine and Risshu

Bergmann. The generation of molecular geometries for the CCSD(T)-F12/VTZ-F12 potential

energy surface was performed by Daniel P. Schofield. Anne B. McCoy performed diffusion

Monte Carlo simulations employing the CCSD(T)-F12/VTZ-F12 potential energy surface.

2.2 INTRODUCTION

Nitrate ions in aqueous media play an important role in a wide range of environmental and

biological processes. The nitrate anion is the major chromophore in the Antarctic snow.64

Nitrate is also one of the most abundant tropospheric ions and a major constituent of sea

salt and mineral dust aerosols.65,66 A fundamental understanding of how nitrate ions are

hydrated in the bulk28 as well as at the air-aqueous interface67 is thus of importance with

12



respect to understanding atmospheric aerosol chemistry. Spectroscopic studies of anion-water

clusters in the gas phase,68,69,70,71,72 in general, and on nitrate-water clusters,27 in particular,

play an important role in elucidating the nature of ion-water interactions one water molecule

at a time (microhydration) in the absence of counter ions and of an extended solvation

network. In the present study we focus on characterizing the interaction of the nitrate anion

with a single water molecule and report vibrational spectra of the gas phase NO−3 ·H2O,

NO−3 ·D2O, and NO−3 ·HDO isotopologues in the OH (and OD) stretching region measured

using temperature-dependent infrared multiphoton dissociation (IRMPD) spectroscopy.

Studies of other water-anion complexes73,29,74,75 have shown that, in general, there is

a significant red-shift of the water OH stretch vibration in the complexes compared to

the gas-phase water monomer. In addition, in the case of HCO−2 ·H2O, CH3NO−2 ·H2O and

CH3CO−2 ·H2O, the vibrational spectra in the OH stretch region display progressions of up to

five members with observed spacings of about 80 cm−1. These progressions are due to the

water rock vibration and result from a large cubic force constant coupling the OH stretch

and water rock degrees of freedom.

Robertson et al.74 have found that for complexes adopting a single ionic hydrogen-bond

motif (SIHB), the red-shift of the OH stretch is well-correlated to the proton affinity of the

anion. In contrast for the double ionic hydrogen bond motif (DIHB), the red-shift is about

200 cm−1 smaller than for SIHB complexes with similar proton affinities. We note further that

although HCO−2 ·H2O, CH3NO−2 ·H2O and CH3CO−2 ·H2O adopt DIHB structures, NO−2 ·H2O

adopts a SIHB structure. It is not clear a priori which bonding motif would be adopted by

the NO−3 ·H2O complex. Anion photoelectron spectroscopy23 as well as IRMPD experiments27

in the fingerprint region (600-1800 cm−1) are not conclusive, although both favor the DIHB

motif based on predictions from electronic structure calculations. However, the exact nature

of the DIHB global minimum energy structure, either a symmetric C2v isomer with two

equivalent hydrogen bonds76,21,24 or a slightly asymmetric variant of Cs symmetry,71,27,19,26,77

remains unclear. Prior theoretical studies indicate that the global minimum of NO−3 ·H2O is

asymmetric but only 0.2-0.3 kJ/mol more stable than the C2v transition state structure.

In order to aid in assigning the experimentally observed IRMPD spectra of NO−3 ·H2O,

NO−3 ·D2O, and NO−3 ·HDO we have undertaken calculations of the vibrational spectra of
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these species using model Hamiltonian approaches that allow for OH (OD) stretch-rock cubic

coupling as well as for Fermi resonances with the water bend overtone. The calculations

confirm our expectation that in all three isotopologues there is a progression due to the water

stretch-rock coupling with spacings of approximately 80 cm−1, with the further complication

in the H2O and D2O cases of a Fermi resonance between the OH (OD) stretch modes and

the water bend overtone.

2.3 EXPERIMENTAL DETAILS

The IRMPD experiments were carried out using a previously described ion-trap tandem

mass-spectrometer.27,78 Briefly, nitrate-water complexes are produced by electrospray in a

modified commercial Z-spray source from a 1 mM solution of HNO3 (Fluka) in a 1:3 mixture

of 15 MΩcm deionized water and acetonitrile. For the isotopologues, 1.5 mM solutions

of 1.5 mmol/L DNO3 in 1:3 deuterium oxide (both 99 atom % D, Sigma Aldrich) and

acetonitrile are used. The beam of ions is skimmed and collimated in a decapole ion guide,

and subsequently mass-selected in a commercial quadrupole mass filter. After mass selection,

the cluster anions are deflected by 90◦ using an electrostatic quadrupole deflector and focused

into a cryogenically-cooled ion trap, held at 15 K for the initial experiments and increased

up to 300 K for the temperature-dependent measurements. Here, the anions are collected for

99 ms and thermalized through collisions with a He buffer gas. In a 10 Hz cycle, ions are

extracted and focused into the center of the extraction region of a time-of-flight (TOF) mass

spectrometer, where they interact with a tunable wavelength (2.5-4.5 µm) IR laser pulse

from a nanosecond OPO/OPA IR laser system79 with typical pulse energies of 5 mJ. If the

wavelength of the IR radiation is in resonance with a vibrational transition, fragmentation of

the (parent) anions occurs. All anions are extracted by a set of high voltage pulses and are

detected as a function of their TOF using an MCP detector.

A mass spectrum is obtained for each laser shot. IR spectra are recorded by averaging

over 50-70 TOF mass spectra per wavelength and scanning the laser wavelength. The fluence

as well as the optical path length of the laser pulse is increased using a multipass cell-setup.18
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The photodissociation cross section, σ(ν), is determined from the relative abundances of the

parent and photofragment ions, IP (ν) and IF (ν), and the frequency dependent energy fluence

(assuming a constant interaction area throughout the range of scanned wavelengths), φe(ν),

using80

σ(ν) = −φe(ν)−1 ln

[
1− IF (ν)

IP (ν) + IF (ν)

]
. (2.1)

2.4 IRMPD SPECTRA

2.4.1 15 K Spectra

Figure 2.1 shows an overview of the experimental IRMPD spectra of NO−3 ·H2O and its

hydrogen related isotopologues NO−3 ·D2O and NO−3 ·HDO, covering the OH (3200-3800 cm−1)

and OD (2300-2900 cm−1) stretching regions. Band positions are listed in Table 2.1. The

spectra were measured at an ion trap temperature of 15 K. The only observed photofragment

is NO−3 . The energy of at least two photons is required to overcome the predicted dissociation

limit (see below) and hence the IRMPD intensities plotted in Figure 2.1 may deviate from a

linear absorption behavior.

The IRMPD spectrum of cold NO−3 ·H2O (see Figure 1a) shows a surprisingly rich structure

in the hydrogen-bonded OH stretching region (¡3600 cm−1)70 and little or no signal in the

regions of the symmetric (νs, 3657 cm−1) and antisymmetric (νa, 3756 cm−1) stretching

vibrational frequencies of the free water molecule,81 suggesting the exclusive presence of a

DIHB complex. At least five characteristic peaks are observed at 3363, 3398, 3464, 3542

and 3620 cm−1 and labeled A0 to A4, respectively. A closer look reveals a weak background

throughout the 3200-3650 cm−1 range and several smaller features. The observation of a series

of peaks in-between 3363 and 3620 cm−1 suggest that the two OH oscillators are coupled to

one (or more) lower frequency modes. Indeed, the spectrum shows similarities with those

reported earlier by Myshakin et al.29 for Ar-tagged CH3NO−2 ·H2O and CH3CO−2 ·H2O and

HCO−2 ·H2O by Gerardi et al.73 where this structure was assigned to a progression in the water

rocking mode built on top of an OH stretch fundamental. In the present case, the spectrum
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Figure 2.1: Experimental IRMPD spectra of the hydrogen-related isotopologues of the nitrate-

water complex in the OH and the OD stretching region measured at an ion trap temperature

of 15 K: (a) NO−3 ·H2O, (b-c) NO−3 ·HDO, (d) NO−3 ·D2O. See Table 2.1 for peak positions.

16



appears more complex, as peaks A0 to A4 are not equidistantly spaced, but separated by 35

cm−1 (A1-A0), 66 cm−1 (A2-A1), 78 cm−1 (A3-A2), and 78 cm−1 (A4-A3).

Further insight into the assignment of the IRMPD spectra can be gained by isotopic

substitution. The IRMPD spectrum of cold NO−3 ·HDO in the OH stretching region (see

Figure 2.1b) indeed shows a similar, but simpler and slightly blue-shifted progression (B0 to

B3) with an origin at 3423 cm−1 (B0). Peaks B0 to B3 (see Table 2.1) are more evenly spaced:

78 cm−1 (B1-B0), 82 cm−1 (B2-B1) and 63 cm−1 (B3-B2). A shorter progression of similar

spacing (84 cm−1) is also observed in the OD stretching region (see Figure 2.1c) consisting of

only two peaks at 2503 (C0) and 2587 cm−1 (C1). These observations are consistent with

an assignment to progressions in the water rock mode ( 80 cm−1), whose frequency is not

expected to show a pronounced isotope-dependence, built on top of either the OD or OH

stretching fundamental. They also suggest that the progression for NO−3 ·H2O has an extra

feature near the origin due to Fermi-type coupling to the water bend overtone 2νb.
82 The

origin of the more than twice as broad peaks in the OH stretching region in the NO−3 ·HDO

spectrum compared to the peaks observed in all the other spectra reported in Figure 2.1

remains unclear.

Finally, the IRMPD spectrum of cold NO−3 ·D2O (see Figure 2.1d) looks similar to the

NO−3 ·HDO spectrum in the OD stretching region (see Figure 2.1c), but exhibits an additional

band at 2561 cm−1 (D1). Assuming similar rocking vibrational frequencies for the H2O,

HDO and D2O complexes, peaks D0 and D2, separated by 82 cm−1, correlate to bands C0 ad

C1. They thus correspond to the origin and first member of the stretch-rock progressions,

of which the one observed in the NO−3 ·D2O spectrum lies 13 cm−1 higher in energy. This

leaves peak D1 unassigned, which we tentatively attribute to overtone excitation of the D2O

bending vibration.

2.4.2 Temperature Dependent Spectra

IRMPD spectra of hotter NO−3 ·D2O and NO−3 ·H2O complexes, measured at ion trap tem-

peratures up to room temperature, are compared to the 15 K spectra, discussed above, in

Figure 2.2. The ions probed in the 50 K IRMPD spectra appear only slightly hotter than
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Species Band positions

NO−3 ·H2O 3363(A0), 3398(A1), 3464(A2), 3542(A3), 3620(A4)

NO−3 ·HDO 2503(C0), 2587(C1), 3423(B0), 3501(B1), 3583(B2), 3646(B3)

NO−3 ·D2O 2516(D0), 2561(D1), 2598(D2)

Table 2.1: Positions (in cm−1) of the main bands observed in the IRMPD spectra of NO−3 ·H2O,

NO−3 ·HDO and NO−3 ·D2O shown in Figure 2.1.

Figure 2.2: Experimental IRMPD spectra of NO−3 ·D2O (left) and NO−3 ·H2O (right) measured

at ion trap temperatures of 15, 50, 100, 200 and 300 K. The 15 K spectra are the same as

shown in Figure 2.1.
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those in the 15 K spectra. This suggests, that the present experimental procedure of filling

and extracting the ions, using a continuous buffer gas flow, allows for efficient thermalization

of the ions slightly below 50 K, but probably not completely down to the lowest possible ion

trap temperature of 15 K. At 100 K the observed features in the IRMPD spectra significantly

broaden and hot bands to the red of the origins gain in intensity. At the highest temperatures

measured, 200 K for NO−3 ·D2O and 300 K for NO−3 ·H2O, the discrete features cannot be

distinguished anymore and a continuous absorption is observed from 2300 to 2700 cm−1

(NO−3 ·D2O) and 3150-3700 cm−1 (NO−3 ·H2O). At these ion trap temperatures a new feature

is observed in the free OD and free OH stretching regions, respectively, signaling the breaking

of one of the two hydrogen bonds and the existence of both of SIHB and DIHB complexes.

2.5 COMPUTATIONAL DETAILS

The geometry optimizations and the calculations of the quadratic and cubic force constants

were performed at the CCSD(T)83,84/aug-cc-pVDZ85,86 level of theory with the CFOUR

package.87 To examine the sensitivity of the geometry and harmonic frequencies to the

basis set, additional calculations were carried out at the CCSD(T)/aug-cc-pVTZ, CCSD(T)-

F12b88/VDZ-F12,89 and CCSD(T)-F12b/VTZ-F12 levels of theory. The F12 calculations were

carried out with the MOLPRO package90 since CFOUR lacks the explicitly correlated F12

method. In the computed spectra, transitions were given Gaussian widths with a half-width

of 15 cm−1, close to that of the peaks in the experimental spectrum of the NO−3 ·H2O complex

obtained at T = 15 K.

2.6 GEOMETRICAL STRUCTURE AND ADIABATIC POTENTIALS

The calculated minimum energy structure of NO−3 ·H2O at the CCSD(T)/aug-cc-pVDZ level of

theory has Cs symmetry and is depicted in Figure 2.3. This is in contrast to the HCO−2 ·H2O,

CH3NO−2 ·H2O and CH3CO−2 ·H2O complexes, for which the two OH groups of the water
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R1 = 0.96 Å R1 = 0.97 Å R1 = 0.97 Å

R2 = 0.98 Å R2 = 0.97 Å R2 = 0.99 Å

θ = 97.8◦ θ = 96.5◦ θ = 101.4◦

Erel = 0 cm−1 Erel = 11 cm−1 Erel = 962 cm−1

Figure 2.3: Structures of the NO−3 ·H2O potential energy minimum (left) and C2v transition

state (middle) optimized at the CCSD(T)/aug-cc-pVDZ level of theory. The right-most

structure corresponds to a local minimum energetically lying 962 cm−1 above the global

minimum structure. The hydrogen-nitrogen distances are indicated in Angstroms.
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Figure 2.4: Adiabatic rock potentials for the NO−3 ·H2O complex with 0 and 1 quanta in

the OH stretch determined at the CCSD(T)/aug-cc-pVDZ level of theory. The OH stretch

excited state potentials (str. 1 and 2) are depicted in the local mode representation. The

excited state potentials have been shifted downwards by 3350 cm−1 for convenience.

molecule are symmetrically equivalent.29,73 However, the C2v transition state for conversion

between the two symmetrical structures of NO−3 ·H2O is calculated to be only 11 cm−1 above

the potential energy minima at the CCSD(T)/aug-cc-pVDZ level of theory, in agreement

with the calculations at the same level of theory in Ref.27 This is much lower than the rock

frequency, which is calculated to be 84 cm−1 in the harmonic approximation. A common

aspect of the geometries of the NO−3 ·H2O, HCO−2 ·H2O, CH3NO−2 ·H2O and CH3CO−2 ·H2O

complexes is the small water HOH angle, which is calculated to be 97.8◦ for the NO−3 ·H2O

complex. At the global minimum, the complex has a binding energy of approximately 5625

cm−1 calculated at the CCSD(T)-F12b/VTZ-F12 level of theory. In addition to the Cs

global minimum, there is a second minimum lying 962 cm−1 above the global minimum.

The high energy minimum has a larger HOH angle and is further distorted away from C2v

symmetry. Additional details on the water-nitrate intaction energy and the vibrationally

averaged structure can be found in the supporting information.
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3710.20 cm−1 3694.28 cm−1 1705.33 cm−1 70.25ι̇ cm−1

(Asym. Str.) (Sym. Str.) (Bend) (Rock)

3799.85 cm−1 3571.29 cm−1 1713.01 cm−1 84.09 cm−1

(s) (l) (b) (r)

Figure 2.5: Harmonic frequencies of the four key vibrational modes of NO−3 ·H2O. Results

for the Cs potential energy minimum are shown at the bottom of the figure and those for

the C2v transition state structure are shown at the top of the figure. All results are from

CCSD(T)/aug-cc-pVDZ calculations. For the C2v structure the depicted normal modes are

antisymmetric stretch, symmetric stretch, water bend (b), and intermolecular rock (r), with

the rock mode having an imaginary frequency. For the Cs minimum, the two water stretch

vibrations are labeled as the long stretch (l) and short stretch (s), where long and short refer

to the lengths of the water OH bonds. The bend and rock modes are labeled as (b) and (r),

respectively.
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In considering the distortion of the complex from C2v symmetry it is useful to define the

angle φ between the vectors bisecting the HOH angle of the water molecule and the ONO

angle of the nitrate ion. The vectors are oriented so that the angle between them is 0◦ for

the C2v structure. At the minimum energy structure shown in Figure 2.3 the value of the φ

angle is 15◦ compared to 0◦ in the transition state structure. The value of the φ angle at the

potential energy minimum is very sensitive to the atomic basis set employed. As the basis

set is expanded along the sequence aug-cc-pVDZ, aug-cc-pVTZ VDZ-F12, and VTZ-F12 the

minimum energy structure becomes closer to C2v symmetry, and the water rock harmonic

frequency decreases. Here VnZ-F12 refers to CCSD(T)-F12b calculations with the VnZ-F12

basis set. With the largest basis sets employed, the value of the φ angle is only 4-7◦ at the

potential energy minimum and the rock frequency is calculated to be only 20-35 cm−1 within

the harmonic approximation. Thus it is possible that, in the limit of a complete basis set,

the global minimum could have a C2v structure.

Insight into the vibrational spectra of NO−3 ·H2O and its isotopologues is provided by the

calculating the adiabatic rock potentials for the complex with zero and one quanta in the

OH stretch local mode degrees of freedom.

V g.s.
Ad. = EB.O.(φ) + EZPE(φ) , (2.2)

and

V ex.
Ad. = EB.O.(φ) + EZPE(φ) + ωloc(φ) , (2.3)

where V g.s.
Ad. and V ex.

Ad. refer to the ground and excited state potentials, respectively, EB.O.(φ)

is the Born-Oppenheimer energy obtained from the geometry optimization at a fixed φ value,

EZPE(φ) is the harmonic zero-point energy (ZPE) calculated using the optimized geometry

and excluding the rock degree of freedom, and the last term in Eq. 2.3, ωloc(φ), is the frequency

of the OH stretch local mode. Figure 2.4 reports the adiabatic rock potentials with zero or

one quanta in the OH stretch obtained at the CCSD(T)/aug-cc-pVDZ level of theory. In

the adiabatic ground state the rock potential is very flat, and, even in the absence of the

small barrier at φ = 0, the potential is highly anharmonic. The minima in the excited state

potentials are displaced to φ = ±21◦, and the resulting potentials are more harmonic than the

ground state potential. The crossing point of the two excited state potentials occurs about
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175 cm−1 above their minima. Since the experimentally observed spacing in the progressions

in the OH (OD) stretch region is about 80 cm−1, the third energy level in the progression lies

above the crossing point. In addition, given the shape of the excited state potentials shown

in Figure 2.4, the spacing between the nr = 1 and nr = 2 levels would be expected to be

smaller than that between the nr = 0 and nr = 1 levels. This suggests that the φ angle, as

defined above, is not fully satisfactory for representing the rock coordinate. It is also likely

that the shape of the nloc = 1 potentials would differ if the curves were generated using the

anharmonic frequencies for EZPE and ωloc.

We have also calculated the adiabatic potentials at the CCSD(T)-F12b/VDZ-F12 level

(see supporting information), obtaining potentials very close to those depicted in Figure 2.4.

Thus, in spite of the sensitivity of the rock angle of the Born-Oppenheimer potential energy

surface to the basis set, the adiabatic potentials, especially those for the excited state, are

relatively insensitive to the basis set used in the calculations.

2.7 NORMAL MODES AND CUBIC FORCE CONSTANTS

The four key vibrations for understanding the anharmonic coupling in the OH stretch region

of NO−3 ·H2O spectrum are the two OH stretches, the water bend (b), and the water rock

(r). These vibrations and their frequencies at the CCSD(T)/aug-cc-pVDZ level of theory are

depicted for the C2v and Cs structures in Figure 2.5. The two OH stretch modes become

localized in the Cs structure, and the l and s labels refer to the long and short OH bonds,

respectively. The calculated harmonic frequencies of these modes and the relevant cubic force

constants are listed in Table 2.2. The table also includes results for the various isotopologues

of the NO−3 ·H2O complex. Separate entries are given for NO−3 ·HDO and NO−3 ·DHO complexes,

where the first atom (H or D) specified for the water molecule refers to the atom engaged in

the long OH bond, and we will define the coupling constants as coming from either the HDO

or DHO complexes. A full list of the harmonic frequencies for the isotopologues can be found

in the supporting information.
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2.8 EFFECTIVE HAMILTONIAN

In their study of the CH3NO−2 ·H2O and CH3CO−2 ·H2O complexes, Myshakin et al.29 in-

troduced a model Hamiltonian employing harmonic OH stretch and water rock degrees

of freedom together with a λqaqsqr cubic coupling, where qs and qa are, respectively, the

symmetric and antisymmetric OH stretch normal coordinates, and qr is the water rock

normal coordinate. By assuming an adiabatic separation between the OH stretch and water

rock degrees of freedom, and switching to a local mode approximation for the OH stretch

vibrations, Myshakin et al. obtained analytical expressions for the rock potentials for the

system with nloc = 0 and 1 quanta of OH stretch. This model predicts displaced minima for

the nloc = 1 stretch potentials with the displacements (in dimensionless coordinates) being

∆qr = ±ωasr/2ωr, where ωr and ωasr are, respectively, the rock frequency and the cubic force

constant in wavenumbers. The nloc = 0→ 1 OH stretch absorption spectrum is then given

by

∆E(nr) = ωloc −
ω2
asr

8ωr
+ nrωr , (2.4)

where ωloc is the frequency of the OH stretch local mode, the second term on the right-hand

side gives the red-shift of the origin, and nr is the number of quanta in the nloc = 1 potential.

The transition intensities for this model can be calculated using the overlap of harmonic

oscillator wave functions of the ground and excited displaced harmonic potentials. Assuming

that the ground state is in its zero-point level, the relative intensities of the levels in the

progression are given by:29

Inr ∝
exp(−0.5∆q2r)(∆qr)

2nr

2nrnr!
. (2.5)

This model was quite successful at reproducing the observed vibrational spectra in the OH

stretch region of CH3NO−2 ·H2O and CH3CO−2 ·H2O.

The adiabatic model of Myshakin et al. assumes that the equilibrium structure is sym-

metrical and that the rock potential of the ground state is well described as harmonic. In

this displaced oscillator model, the harmonic rock frequency is necessarily the same for the

nloc = 0 and nloc = 1 potentials. However as seen from examination of the potential energy

curves in Figure 2.4, this is not the case for NO−3 ·H2O.
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Harmonic frequencies

Mode NO−3 · H2O NO−3 · D2O NO−3 · HDO NO−3 · DHO

ωs 3799.85 2763.94 2760.46 3797.68

ωl 3571.29 2591.82 3571.60 2597.64

ωb 1713.01 1246.16 1541.49 1476.68

ωr 84.09 76.34 77.91 82.33

Cubic force constants

Type NO−3 · H2O NO−3 · D2O NO−3 · HDO NO−3 · DHO

ωssr -105.65 -78.54 -76.57 -106.10

ωllr 242.42 169.11 234.97 174.47

ωsbb -99.33 -55.48 15.01 -268.60

ωlbb 151.72 104.49 314.03 -12.39

Table 2.2: Selected harmonic frequencies and reduced cubic force constants (cm−1) of

NO−3 ·H2O calculated at the CCSD(T)/aug-cc-pVDZ level of theory.

Harmonic frequencies Force constants

Species ω1 ω2 ωr ω11r ω22r

NO−3 ·H2O 3571.29 3571.29 80.00 242.42 -242.42

NO−3 ·D2O 2591.82 2591.82 80.00 169.11 -169.11

NO−3 ·HDO 3571.60 2597.64 80.00 234.97 -174.47

Table 2.3: Frequencies and reduced cubic force constants (cm−1) used in the effective

Hamiltonian calculations. The force constants for NO−3 ·HDO are taken from the long OH

(OD) stretch modes from the calculations on NO−3 ·HDO and NO−3 ·DHO (Table 2.2).
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Figure 2.6: Vibrational spectra for the water-nitrate isotopologues generated using the

effective Hamiltonian given by Eq. 2.12 and with intensities calculated using Eq. 2.5.

Diffusion Monte Carlo (DMC) calculations50 (see supporting information) based on an

analytical representation of the NO−3 ·H2O potential energy surface calculated at the CCSD(T)-

F12b/VTZ-F12 level give an anharmonic rock frequency close to 80 cm−1 for the ground

state, which agrees well with the spacings of the observed progressions in NO−3 ·HDO. This

is appreciably larger than the 35 cm−1 value of the harmonic rock frequency calculated at

the CCSD(T)-F12b/VTZ-F12 level of theory. Thus, it is fortuitous that the harmonic rock

frequency from the CCSD(T)/aug-cc-pVDZ calculations is close to the observed splittings

accompanying excitation of the OH stretch vibration in NO−3 ·HDO.

In spite of the issues raised in the preceding paragraph, in the absence of Fermi resonances,

the observed energy levels in the OH and OD stretch regions of NO−3 ·H2O and its isotopologues

are well described by

∆E(nr) = ωloc −∆ + nrωr , (2.6)

where ∆ is a frequency shift that depends on the anharmonic coupling, ωr is the rock frequency

associated with the nloc = 1 potential. This has motivated us to apply an extension of the
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model of Myshakin et al. to the water-nitrate complex. Specifically, the extended model

allows for both OH (OD) stretch local modes, which is important for the NO−3 ·HDO complex.

The relevant model Hamiltonian is given by

H = H1 +H2 +Hr +Hc , (2.7)

Hi =
p2i
2

+
ω2
i q

2
i

2
, i = 1, 2, r , (2.8)

and

Hc =
λ1q

2
1qr

2
+
λ2q

2
2qr

2
, (2.9)

where H is the total Hamiltonian, H1, H2, and Hr are the Hamiltonians for the OH (OD)

stretch and rock modes, Hc is the coupling Hamiltonian, and pi, ωi, qi and λi are, respectively,

the momentum, harmonic frequency, mass-scaled coordinate and cubic coupling constants for

mode i. The two local modes are designated “1” and “2”, while, as above, the rock mode is

labeled by “r”.

The effect of the cubic coupling on the frequencies of the OH (OD) stretch modes can be

approximated as a first-order perturbation to the ground state energy.

Ei =
ωi
2

+
λi
2
〈0|q2i qr|0〉 =

ω′i
2
, (2.10)

where

ω′i = ωi +
λiqr
2ωi

, i = 1, 2 . (2.11)

The same result can be obtained by completing the square giving, ω′i =
√
ω2
i + λiqr, and

retaining the first two terms of the Taylor series expansion of the right-hand side.

Assuming that the stretch vibrations behave as harmonic oscillators with the new fre-

quencies ω′i, the effective Hamiltonian becomes

Heff =
p21
2

+
p22
2

+
p2r
2

+
ω′21q

2
1

2
+
ω′22q

2
2

2
+
ω2
rq

2
r

2
,

(2.12)

which can be solved, within the adiabatic approximation, as if the system contains three

independent harmonic oscillators.
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The remainder of the derivation follows that of Myshakin et al.29 and is given in the

supporting information section. With the assumption that the OH stretch ground state is

initially in the nr = 0 level, the excitation energies are given by:

∆E1(nr) = ω1 −
ω2
11r

4ωr
− ω11rω22r

8ωr
+ nrωr , (2.13)

where ω11r and ω22r are the reduced cubic coupling constants in inverse centimeter units,

ωiir =
λi

ωi
√
ωr

. (2.14)

An analogous expression, ∆E2(nr), is obtained for the second OH stretch local mode. It

should be noted that Eq. 2.13 reduces to Eq. 2.4 when ω11r and ω22r are of equal magnitude

with opposite signs, as occurs at C2v symmetry. Since the CCSD(T)/aug-cc-pVDZ force

constants are calculated with a φ value near the minimum in the ni = 1 potentials, the

local environment experienced by the long OH stretch can be assumed to provide a good

approximation for the stretch local modes. In light of this, for NO−3 ·H2O we take ω1 = ω2 = ωl,

ω11r = ωllr, and ω22r = −ωllr. We further take ωr = 80 cm−1. With these assumptions, the

model gives potentials that approximately reproduce those in Figure 2.4. As with the original

C2v model, the transition intensities are estimated by Eq. 2.5.

This Hamiltonian can be readily applied to the NO−3 ·D2O, NO−3 ·DHO, and NO−3 ·HDO

isotopologues. Table 2.3 lists the values of the OH stretch and rock frequencies and the

iir force constants used in the effective Hamiltonian calculations of the isotopologues. The

assumptions for NO−3 ·D2O are the same as for NO−3 ·H2O. However, since the two water

stretching modes are not identical in the HDO (DHO) isotopologue, the effective Hamiltonian

was constructed by employing the OH stretch parameters calculated for both NO−3 ·DHO and

NO−3 ·HDO. Specifically the harmonic frequencies are defined as ω1 = ωl (HDO) and ω2 = ωl

(DHO), and the cubic coupling constants for this system are taken to be ω11r = ωllr (HDO)

and ω22r = ωllr (DHO).

Qualitatively, the effective Hamiltonian calculations reproduce the trends in the experi-

mental spectra except for the extra features that are due to Fermi resonances that are not

accounted for by the model. Specifically, the model predicts red-shifts in the origin of the

OH stretch-rock progression about two times larger than those found for OD, in qualitative
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agreement with experimentally observed isotopic shifts. In the IRMPD spectrum of NO−3 ·D2O,

the peaks in the stretch-rock progression are separated by ∼40 cm−1. However, it is likely

that the bend overtone is coupling with the OD stretch and that the peak due to the Fermi

resonance (D1) appears between the nr = 0 and nr = 1 OD stretch-rock transitions, which

would then correspond to D0 and D2, respectively.

The agreement between the model Hamiltonian and the experiments is quite good, however

the model seems to incorrectly predict the relative shifts of the isotopologues. For instance

the OH stretch vibration of NO−3 ·H2O is blue-shifted above the NO−3 ·HDO OH stretch. This

is likely due to the influence of the stretch-bend coupling which is strongest for the H2O and

D2O isotopologues. While the model Hamiltonian predicts that the stretch-rock progression

is shorter for NO−3 ·D2O than for NO−3 ·H2O in agreement with experiment, the lengths of both

progressions are larger than experimentally observed. In part, this reflects the inadequacy

of Eq. 2.5 to calculate the intensities, due to the neglect of non-linear terms in the dipole

moment expansion and the fact that the rock potential for the nloc = 0 ground state is highly

anharmonic.

2.9 VIBRATIONAL CI

Although the effective Hamiltonian approach gives a qualitative description of the experimental

spectra, a more sophisticated treatment is required to include the participation of Fermi

resonances with the water bend overtone. To accomplish this, vibrational configuration

interaction calculations were performed within the local mode approximation using the

Hamiltonian:

H = H1 +H2 +Hb +Hr +Hc , (2.15)

where H1, H2, and Hr are as defined above, Hb is the Hamiltonian for the HOH bend, and

Hc =
ωllr
2

(q21 − q22)qr +
ωlbb
2

(q1 + q2)q
2
b , (2.16)

couples the OH stretch modes to both the rock and the bend modes. The basis functions

used in the calculations were of the form |n1, n2, nb, nr〉, where n1, n2, nb, and nr refer to
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Figure 2.7: Vibrational spectra of NO−3 ·H2O calculated with vibrational CI calculations

employing (a) the ωllr force constant and (b) the ωllr and ωlbb force constants. The calculations

for both (a) and (b) employed scaled frequencies as described in the text.
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Figure 2.8: Comparison of the experimental spectrum of NO−3 ·H2O at T = 15 K to the

spectrum calculated using the vibrational CI method. The calculations include the ωllr and

ωlbb force constants and the scaled frequencies given in the text.
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the number of quanta in the local OH stretch, HOH bend, and rock degrees of freedom,

respectively. Based on a series of exploratory calculations, the vibrational CI calculations

were found to be well converged with a basis set using up to five quanta in the water OH

stretch, bend, and rock modes, and up to twenty quanta in the stretch-rock progressions.

Since the strength of the Fermi resonance between the OH stretch and HOH bend overtone

is strongly dependent on the values of the fundamental frequencies, scaled frequencies were

employed to correct for anharmonic interactions not included in the model. The frequencies

used for NO−3 ·H2O are 3485 and 1700 cm−1 for the OH stretch and HOH bend modes,

respectively. These frequencies were chosen to match the origin of the progression and

to bring the bend overtone into near degeneracy with the origin of the rock progression

accompanying excitation of the OH stretch fundamental of NO−3 ·H2O. A value of 80 cm−1

was chosen for the water rock frequency as that closely corresponds to the observed spacings

(in the absence of Fermi resonances). The cubic force constants employed were taken from

Table 2.2. All intensity was assumed to derive from the fundamental transitions.

The results of the vibrational CI calculations on NO−3 ·H2O are shown in Figure 2.7.

Figure 2.7a shows the vibrational spectrum obtained neglecting the Fermi resonance with the

water bend overtone. This spectrum is close to that obtained with the effective Hamiltonian

from the previous section, which is not surprising as the effective Hamiltonian and the CI

calculations essentially contain the same physics. The spectrum obtained including the Fermi

resonance with the bend overtone is reported in Figure 2.7b. The first member of the rock

progression in Figure 2.7a is now replaced by a pronounced doublet. Figure 2.8 shows a direct

comparison between the experimental and calculated spectra of NO−3 ·H2O. An interesting

feature of the calculated spectrum is the appearance of a weak feature near 3415 cm−1. Based

on an analysis of the CI coefficients, this extra peak results from both OH stretch local

modes interacting with the bend overtone simultaneously. The calculated spectrum is in

good agreement with that measured experimentally in terms of the locations of the peaks.

The calculations are less successful at reproducing the experimentally observed intensity

distribution. This most likely reflects the need allow for the highly anharmonic nature of the

rock motion associated with the ground state potential energy surface when calculating the

intensities.
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2.10 CONCLUSION

IRMPD spectroscopy of cryogenically-cooled water-nitrate complexes combined with anhar-

monic vibrational calculations reveals strong anharmonic coupling in the OH stretch region

of the IR spectrum of NO−3 ·H2O and its isotopologues. This gives rise to a progression in the

water rock vibration, and in the case of the H2O and D2O complexes, there is also a strong

Fermi resonance with the water bend overtone. This assignment is confirmed by effective

Hamiltonian and vibrational configuration interaction calculations have been carried out to

aid in assigning the observed vibrational spectra of NO−3 ·H2O, NO−3 ·HDO, and NO−3 ·D2O.

As found earlier for HCO−2 ·H2O, CH3NO−2 ·H2O and CH3CO−2 ·H2O, the water stretch-rock

coupling causes a red-shift in the origin of the rock progression. Interestingly, in the ab-

sence of this red-shift, the energy gap between the water bend overtone and the OH stretch

fundamental would be too great for there to be significant mixing between the OH stretch

and bend overtone. Finally, NO−3 ·H2O belongs to the class of anion-water complexes with

a double ionic hydrogen bond motif, which is consistent with the structures found for the

HCO−2 ·H2O, CH3NO−2 ·H2O and CH3CO−2 ·H2O complexes. However, the adiabatic ground

state rock potential is highly anharmonic in the case of NO−3 ·H2O.

2.11 SUPPORTING INFORMATION

2.11.1 SAPT Analysis

A symmetry-adapted perturbation theory91 (SAPT2+3) analysis of the interaction energy

of the C2v and Cs forms of NO−3 ·H2O was performed using the PSI4 package.92 These

calculations were carried out using Hartree-Fock-based SAPT with the aug-cc-pVDZ basis

set.85,86 In the notation of the PSI4 package, SAPT2+3 includes intramonomer correlation

up to second order and intermonomer correlation up to third order. Table 2.4 reports the

resulting electrostatic (∆Eel), exchange (∆Eex), induction (∆Eind), and dispersion (∆Edisp)

contributions to the interaction energy. Exchange-induction and δHF contributions are
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Component Structure

C2v Cs

∆Eel -1.0 -0.98

∆Eex 0.74 0.75

∆Eind -0.21 -0.23

∆Edisp -0.18 -0.17

∆ETot. -0.65 -0.65

∆Ect -0.10 -0.10

a using the CCSD(T)/aug-cc-pVDZ optimized geometries

Table 2.4: Energy contributions (eV) to the NO−3 ·H2O interaction energy from SAPT

calculations.a

included in ∆Eind, and exchange-dispersion, induction-dispersion, and exchange-induction-

dispersion contributions are included in ∆Edisp. Charge transfer between the two monomers

is included in ∆Eind. The charge transfer contributions to the interaction energies, estimated

using the approach of Stone and Misquitta,93 are quite small, being 15.0 and 16.2% of the

total interaction energy for the C2v and Cs structures, respectively.

2.11.2 Thermal Displacement

At low temperatures the NO−3 ·H2O complex has approximately C2v symmetry (DIHB). As the

temperature rises the complex can access higher energy regions of the potential where the there

is one hydrogen bond and one free OH stretch (SIHB). Calculations using partition functions

employing harmonic vibrational frequencies and assuming the rigid rotor approximation

predict that that at T = 300 K the high-energy minimum (right-most structure in Figure 2

of the main manuscript) has a population of about 20%. Given the higher IR intensity of the

hydrogen bonded OH stretch of the high-energy isomer than for the OH stretch vibrations of
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the ground state isomer, this could account for the extra structure observed in the IRMPD

spectrum at T = 300 K.

2.11.3 Additional Frequency Calculations

Table 2.5 reports the complete set of harmonic frequencies for the NO−3 ·H2O complex and its

isotopologues at the CCSD(T)/aug-cc-pVDZ Cs minimum. NO−3 ·HDO and NO−3 ·DHO are

viewed as separate entities. Figure 2.9 shows the adiabatic potentials from the main text

recalculated at the CCSD(T)-F12b/VDZ-F12 level of theory. The potential energy curves

are nearly identical to those calculated at the CCSD(T)/aug-cc-pVDZ level of theory.

2.11.4 Additional Details of the Effective Hamiltonian

In this section the derivation of the effective Hamiltonian is given. Starting with the model

Hamiltonian from the main text:

H = H1 +H2 +Hr +Hc , (2.17)

Hi =
p2i
2

+
ω2
i q

2
i

2
, i = 1, 2, r , (2.18)

and

Hc =
λ1q

2
1qr

2
+
λ2q

2
2qr

2
, (2.19)

where H1, H2, and Hr are the Hamiltonians for the OH stretch and rock modes, and Hc

is the coupling Hamiltonian. pi, ωi, qi and λi are, respectively, the momentum, harmonic

frequency, mass-scaled coordinate and cubic coupling constants for mode i.

The effect of the cubic coupling on the frequencies of the OH stretch frequencies can be

approximated as a first-order perturbation to the ground state energy.

Ei =
ωi
2

+
λi
2
〈0|q2i qr|0〉 =

ω′i
2
, (2.20)

where

ω′i = ωi +
λiqr
2ωi

, i = 1, 2 . (2.21)
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Mode NO−3 ·H2O NO−3 ·D2O NO−3 ·HDO NO−3 ·DHO

15 3800s 2764s 3572l 3798s

14 3571l 2592l 2760s 2598l

13 1713b 1412 1541b 1477b

12 1405 1343 1401 1397

11 1343 1246b 1343 1341

10 1038 1038 1038 1038

9 825 825 825 825

8 744 702 718 703

7 703 698 702 698

6 699 542 698 588

5 337 243 255 308

4 288 224 250 247

3 198 190 194 194

2 84 76 78 82

1 38 38 38 38

ZPE 8393 6967 7707 7666

b water bend frequency, l long OH stretch, s short OH stretch

Table 2.5: Harmonic vibrational frequencies (cm−1) of the various isotopologues of the

water-nitrate complex at the CCSD(T)/aug-cc-pVDZ level of theory.
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excited state potentials are depicted in the local mode representation, and excited state

potentials have been shifted downwards by 3350 cm−1 for convenience.

Assuming that the stretch vibrations behave as harmonic oscillators with the new fre-

quencies ω′i, the effective Hamiltonian becomes

Heff =
p21
2

+
p22
2

+
p2r
2

+
ω′21q

2
1

2
+
ω′22q

2
2

2
+
ω2
rq

2
r

2
,

(2.22)

Up to this point the derivation is the same as that found in the main text. We now

continue by finding the stretch-rock potentials and deriving the transition energies. The rock

potential including the OH stretch zero-point energy is given by

Vr,0,0 =
ω1

2
+
ω2

2
+
λ1qr
4ω1

+
λ2qr
4ω2

+
ω2
rq

2
r

2
. (2.23)

The minimum of this potential occurs at

q(0,0)r = −
(

λ1
4ω1ω2

r

+
λ2

4ω2ω2
r

)
. (2.24)
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This process can be repeated to obtain the rock potential for one quanta in the first OH

stretch vibration:

Vr,1,0 =
3ω1

2
+
ω2

2
+

3λ1qr
4ω1

+
λ2qr
4ω2

+
ω2
rq

2
r

2
, (2.25)

which has its minimum at

q(1,0)r = −
(

3λ1
4ω1ω2

r

+
λ2

4ω2ω2
r

)
. (2.26)

By expanding Vr,n,m about q
(n,m)
r , where n and m refers to the excitation level of the OH

stretch local modes, and assuming that the OH stretch ground state is initially in the nr = 0

level, the excitation energies are given by

∆E1(nr) = ω1 −
ω2
11r

4ωr
− ω11rω22r

8ωr
+ nrωr , (2.27)

and

∆E2(nr) = ω2 −
ω2
22r

4ωr
− ω11rω22r

8ωr
+ nrωr , (2.28)

where ω11r and ω22r are the reduced cubic coupling constants in inverse centimeter units,

ωiir =
λi

ωi
√
ωr

. (2.29)

Eq. 2.27 reduces to

∆E(nr) = ω1 −
ω2
11r

8ωr
+ nrωr , (2.30)

when ω11r and ω22r are of equal magnitude with opposite signs.
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2.11.5 Diffusion Monte Carlo Calculations

A B3LYP ab initio molecular dynamics simulation was performed for NO−3 ·H2O employing

the Turbomole package,94 which generated 33955 geometries and their corresponding energies.

The energies were then recalculated using the CCSD(T)-F12b/VTZ-F12 (F12) method in

MOLPRO. The F12 potential energy surface (PES) was generated from fits to a permuta-

tionally invariant polynomial constructed from Morse-like terms as described by Braams and

Bowman95 and can easily be applied to dynamics or vibrational calculations.

Diffusion Monte Carlo calculations were performed using the algorithm initially described

by Anderson.96,97 The details of the simulation and our implementation can be found in

our earlier studies.50 In the present study, the DMC simulation was run with time steps

of 10 atomic units for 51000 time steps with a value of α of 0.01 H. The calculated ground

and excited state energies reflect the values obtained by averaging the DMC energies over

the last 30000 time steps of the simulation, and taking the average of five such independent

simulations. Descendent weighting was used to obtain the probability amplitude.98 Here

the simulation was started from the equilibrated ground state wave function. The DMC

was run for an additional 5000 time steps. In addition, the excited state energy and wave

function were obtained using the fixed-node approximation in which a node was placed in

the wave function when the distances between the two hydrogen atoms in water and the

closest oxygen atom in NO−3 were equal. The other simulation parameters were the same

as for the ground state. Based on these calculations, we obtain a zero-point energy (using

the CCSD(T)-F12/VTZ-F12 PES) of 8361± 5 cm−1 and a rock frequency of 81± 5 cm−1.

The nature of the excited state was verified by examination of plots of the projections of the

probability amplitude onto φ, defined in the text.

2.11.6 Additional Force Constants and Dipole Derivative Constants

A large number of force and dipole derivative constants were determined for the NO−3 ·H2O

complex, however, only a small number of these constants were employed in the effective

Hamiltonian and VCI calculations. Tables 2.6-2.8 list the remaining force, rotational, and

dipole derivative constants that are relevant to the four key vibrational modes. Table 2.7
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Mode Frequency Mode Frequency

ωs 3799.85 ωl 3571.29

ωb 1713.01 ωr 84.09

Type Force Constant Type Force Constant

ωllr 242.42 ωssss 1520.38

ωssr -105.65 ωllll 1582.00

ωlbb 151.72 ωbbbb -60.07

ωbbr -16.16 ωrrrr 6218.72

ωbrr 174.89 ωllss 16.67

ωlss -189.63 ωssbb -255.82

ωllb -298.69 ωssrr -1969.00

ωsbb -99.33 ωllbb -308.21

ωbbb 178.96 ωllrr -1516.09

ωsbr -725.26 ωbbrr 763.24

ωlsr 1.31 ωlll -2636.05

ωlsb -115.13 ωsss 2550.51

ωsrr -2087.90 ωrrr -90.79

ωlrr 1752.01 ωlbr -630.76

ωssb -258.78 ωlls -172.51

a short stretch (s), long stretch (l), water bend (b), and water rock (r)

Table 2.6: Harmonic frequencies, cubic, and semi-diagonal quartic force constants calculated

at the CCSD(T)/aug-cc-pVDZ level of theory.a All values are in cm−1 and are unscaled.

40



x y

µs 0.0145738140 -0.0256012640

µl -0.1182073118 -0.0304721646

µb -0.1049802785 0.0131264608

µr -0.0337812707 -0.1840428733

µss -0.0049592373 -0.0022633775

µll -0.0293876407 -0.0023188771

µbb -0.0076918401 -0.0042768314

µrr -0.0632807576 -0.0116856099

µls -0.0060339765 0.0016331026

µsb 0.0033594076 0.0045875584

µsr 0.0168662346 -0.0101666279

µlb -0.0083140295 0.0025163976

µlr 0.0333614467 0.0064241828

µbr -0.0002353636 0.0079446227

a Molecule located in the xy plane

Table 2.7: Dipole derivative constants calculated at the Cs minimum structure at the

CCSD(T)/aug-cc-pVDZ level of theory.a
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α β γ

B 0.4223 0.09055 0.07456

ζls 0.0 0.0 0.02416

ζsb 0.0 0.0 -0.6984

ζsr 0.0 0.0 -0.3452

ζlb 0.0 0.0 -0.7049

ζlr 0.0 0.0 0.3510

ζbr 0.0 0.0 0.01036

Table 2.8: Rotational and Coriolis coupling constants calculated by the CFOUR program at

the CCSD(T)/aug-cc-pVDZ level of theory. The symbols α, β, and γ refer to the directions

of motion for the asymmetric top.

lists all the dipole derivative constants that can be used in the dipole integrals at the Cs

minimum. The rotational constants and Coriolis constants are listed in Table 2.8, however,

these have a negligible effect on the frequencies. More force, Coriolis, and dipole derivative

constants were computed for these modes, however, the constants are reported only for those

that affect only the water stretch, bend, and rock modes.

2.11.7 Adiabatic potentials for NO−3 ·HDO

The CCSD(T)/aug-cc-pVDZ adiabatic potentials were also calculated for NO−3 ·HDO. While

the ground state NO−3 ·H2O potential is symmetric about φ = 0◦, the NO−3 ·HDO ground

state potential has a single minimum near φ = −13◦. Since the excited state potential for

the OH stretch mode has a minimum near φ = 20◦, excitations of the OH stretch involve a

rearrangement of the complex.
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Figure 2.10: CCSD(T)/aug-cc-pVDZ adiabatic potentials calculated for (a) NO−3 ·H2O and

(b) NO−3 ·HDO. The deuterated potentials show that the potential energy minima for the

ground state and OH stretch are shifted away from φ = 0◦.
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3.0 EFFECTS OF PROTON DISORDER ON THE CRYSTAL STRUCTURE

OF METHANE CLATHRATE HYDRATE

3.1 INTRODUCTION

Methane hydrate has been a popular topic for scientific research in the last 100 years. Despite

the large number of papers published on the topic,99,100,101,102,103,104,105,36,37,43,106,107,108,109,110

many of its properties are still not well understood. Methane hydrate is of interest as a

potential source of natural gas and is an important agent in climate change. From x-ray

crystal structure determinations,103,36 it is known that methane hydrate is a type I clathrate

hydrate with a cubic unit cell (Pm3̄n) containing 46 water and 8 methane molecules. The

water molecules are arranged in two small dodecahedral and six large tetradecahedral cages

with the methane molecules located at the centers of the cages.

Each water molecule in methane hydrate has four neighboring waters, and, as for ice Ih,

there are approximately [(3/2)n] possible structures with different proton arrangements,10

where n is the number of water molecules in the cell. Theoretical investigations of ice

have found that its structure and properties are sensitive to the order or disorder in the

proton arrangement.15,32,111,30,3, 112 For example, proton-ordered ice XI (Cmc21) has a higher

thermal conductivity than proton-disordered ice Ih,30 and some of the ice XI structures are

ferroelectric.3,112 We expect that proton disorder can similarly impact the properties of

methane hydrate.

Due to the relatively large size of the unit cell, one might expect that it is adequate to

construct the supercell by replicating either the lowest energy unit cell113 or a randomly

generated unit cell. However, if a single unit cell is replicated to produce the supercell,

considerable order results in the positions of the protons, which could impact the values of
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the properties of interest. In order to accurately represent the bulk crystal, one has to employ

large supercells that do not simply replicate the proton arrangement of the unit cell. In the

following sections we explore how the structure and density of the methane hydrate crystal

depend on the treatment of proton order and disorder.

3.2 COMPUTATIONAL DETAILS

3.2.1 Crystal Structure

The methane hydrate supercells were constructed starting from a bare oxygen lattice, and the

coordinates of the hydrogen atoms were generated semi-randomly according to the Bernal-

Fowler rules2 using the Monte Carlo algorithm of Buch et al.3 Two different procedures were

employed to assign the hydrogen coordinates:

(i) The hydrogen positions were assigned for a single unit cell which was then replicated in
all directions to produce proton-ordered crystals.

(ii) The hydrogen positions were assigned for a bare oxygen NcxNcxNc supercell to produce
proton-disordered supercells, where Nc is the number of unit cells in the x, y, and z
directions.

3.2.2 Optimizations

To represent the interactions of the molecules in the crystal, flexible atomistic potentials were

employed for water along with a single Lennard-Jones sphere for each methane molecule.114

Three different water models were employed in the structural optimizations. The first water

force field was q-SPC/FW,12 which is a flexible variant of the SPC family of water models that

was parametrized for use in path integral molecular dynamics simulations. The second water

force field was TIP3P with harmonic bond and angle potentials.7,115 The third force field

was the modified central force model (MCFM),116 which represents the atomic interactions

using a pair-potential and utilizes a switching function to smoothly transition between the

bonded and non-bonded regimes. For each force field the Wolf method117 was employed with
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Ordered

Supercell # a b c a?c RMSP†

1 11.6006 11.4774 11.4264 11.5012 6.356×10−1

2 11.6253 11.3576 11.5282 11.5032 9.617×10−1

3 11.4983 11.7440 11.2822 11.5066 0.1640×101

4 11.6697 11.3480 11.4897 11.5017 0.1145×101

5 11.5422 11.6590 11.3263 11.5083 0.1197×101

6 11.7511 11.3995 11.3932 11.5134 0.1453×101

7 11.5620 11.4395 11.5252 11.5088 4.459×10−1

8 11.5624 11.4002 11.5616 11.5078 6.629×10−1

Avg. 11.6014 11.4781 11.4416 11.5069 0.1018×101

Disordered

9 11.5048 11.4964 11.5149 11.5054 6.558×10−2

10 11.4912 11.5418 11.4843 11.5058 2.226×10−1

11 11.4856 11.4853 11.5471 11.5060 2.529×10−1

12 11.5225 11.4990 11.4896 11.5037 1.204×10−1

13 11.4310 11.5053 11.5885 11.5081 5.593×10−1

14 11.5037 11.4977 11.5169 11.5061 6.993×10−2

15 11.5103 11.5081 11.4998 11.5061 3.955×10−2

16 11.4688 11.5362 11.5116 11.5055 2.417×10−1

Avg. 11.4897 11.5087 11.5191 11.5058 1.965×10−1

? ac = 3
√
abc, † Root mean squared percent deviation of a, b, and c from ac.

Table 3.1: Lattice constants (Å) from optimizations of methane hydrate 2x2x2 supercells

with different proton arrangements employing the q-SPC/FW potential.
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Figure 3.1: Deviations from cubic symmetry as a function of supercell size (NcxNcxNc) for

(a) ordered and (b) disordered supercells. The results from simulations employing the SPC/E

force field have been connected with lines so that the trends can easily be seen.

a damping parameter of α = 0.20 Å−1 to treat long-range electrostatics. The cutoffs for

Coulomb and Lennard-Jones interactions were chosen to be 10.0 and 9.0 Å, respectively.

Both 2x2x2 and 3x3x3 supercells were used in the structural optimizations (P = 0 atm)

using the GULP simulation package.118 All optimizations allowed both the atomic positions

and the three lattice constants to vary without constraints. In the determination of the

optimized lattice constants, results from eight different randomly chosen supercells were used

to gather statistics.

3.2.3 Molecular Dynamics

To account for thermal effects on the lattice constants, molecular dynamics (MD) simulations

were carried out using the LAMMPS simulation package.115 Two force fields were employed

for the MD simulations, the SPC/E rigid monomer model,119 and the coarse-grained mW

model,6,100 which does not explicitly include hydrogen atoms. MD simulations were performed

in the NPT ensemble at T = 100 K and P = 1 atm using the Nosé-Hoover57 thermostat and
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barostat, with time constants set to 50 and 500 fs, respectively, and a timestep of 0.5 fs. The

MD simulations were first equilibrated in a cubic box with isotropic pressure coupling for 1

ps followed by a 50 ps equilibration with anisotropic pressure coupling. The production runs

were performed for an additional 50 ps after equilibration with a sampling rate of 5 fs. As for

the optimizations described above, eight different supercells were employed in the molecular

dynamics simulations.

3.3 RESULTS AND DISCUSSION

The lattice constants from optimizations using the q-SPC/FW potential with eight different

proton-ordered and eight different proton-disordered 2x2x2 supercells are reported in Table

3.1. The table also reports the root mean square percent (RMSP) differences of the three

lattice constants from that of a cubic structure with the same density, ac

ac =
3
√
abc ,

where a, b, and c are the orthorhombic lattice constants. Calculations with and without

cubic constraints show that ac is a good estimate of the true cubic lattice constants. In the

following discussion we will assume that ac is the cubic lattice constant.

Several trends apparent upon examination of Table 3.1:

(i) The deviation of the lattice constants from those for cubic symmetry are as large as 0.2
and 0.08 Å for the ordered and disordered supercells, respectively.

(ii) The value of ac is relatively insensitive to the arrangement of the protons and, hence,
the density of the crystal is essentially unaffected by the treatment of proton disorder.

In addition to the lattice constants, the energies from the optimizations were examined, and

were found to be uncorrelated with the RMSP deviation from cubic symmetry.

Figure 3.1 reports the mean percent deviations from cubic symmetry obtained from

the optimizations and MD simulations with different supercell sizes. Not surprisingly, the

mW model, which lacks explicit hydrogen atoms, essentially retains cubic symmetry even

when small supercells are employed. The calculations using the SPC/E force field show
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similar deviations from cubic structure as found with the flexible water models. The SPC/E

simulations were performed on supercell sizes between 2x2x2 and 6x6x6. The simulations

show that the proton-disordered supercells converge to a cubic structure as the system grows

while the mean RMSP deviation of the lattice constants continue to fluctuate around a mean

RMSP of ∼1% for the proton-ordered supercells.

Distributions of bond lengths, bond angles, and O-O distances (not shown) were also

examined for ordered and disordered orthorhombic structures as well as for structures

constrained to a cubic lattice. No statistically significant differences were found between

the different types of supercells, and the distributions of geometrical parameters found for

methane hydrate with the q-SPC/FW potential are consistent with those found by Kuo et al.

for ice.111

Our findings for the structural properties of ordered methane hydrate are also consistent

with calculations on ice XI. An analysis of DFT optimizations of ice XI performed by Hirsch

et al.15 shows similar deviations from the ideal structure for the 16 proton-ordered supercells

(average RMSP: 0.90%). Additionally the average of the ice XI lattice constants give a c : a

ratio consistent with experimental and other theoretical results for ice Ih.32,120,121

Although the scope of this study was restricted to the lattice constants and density, it is

reasonable to assume that the effects of proton disorder could perturb the mechanical and

thermodynamic properties of methane hydrate. Thus it is important to use proton-disordered

supercells rather than replicating the structure of a particular unit cell when performing

calculations on methane hydrate.

3.4 ADDITIONAL FIGURES AND TABLES

While Table 3.1 and Figure 3.1 give a reasonable overview of the results, more detailed figures

and tables can be constructed. Figure 3.2 displays the lattice energy of the structures in

Table 3.1 and the corresponding percent deviations from the cubic structure. While the

proton-ordered structures have larger deviations from cubic symmetry, there does not appear

to be any correlation between the RMSP deviation and the potential energy of the structure.
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Figure 3.2: Comparison of the lattice energies and the RMS percent deviation from the cubic

structure for the q-SPC/FW optimizations in Table 3.1.

Table 3.2 reports some of the largest deviations from cubic symmetry found after optimizing

the structures with the q-SPC/FW and TIP3P models. Tables 3.3 and 3.4 report the average

lattice constants and mean RMSP deviations from cubic symmetry for the optimizations and

molecular dynamics simulations.
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Type Water Model a b c a†c RMS

Ord. 2x2x2 q-SPC/FW 11.4983 11.7440 11.2822 11.5066 0.188664

Ord. 2x2x2 q-SPC/FW 11.7511 11.3995 11.3932 11.5134 0.167259

Dis. 2x2x2 q-SPC/FW 11.4856 11.4853 11.5471 11.5060 0.029095

Dis. 2x2x2 q-SPC/FW 11.4310 11.5053 11.5885 11.5081 0.064362

Ord. 3x3x3 q-SPC/FW 11.5483 11.3816 11.5830 11.5040 0.087884

Ord. 3x3x3 q-SPC/FW 11.5214 11.6079 11.3959 11.5081 0.087026

Dis. 3x3x3 q-SPC/FW 11.4745 11.5674 11.4749 11.5055 0.043720

Dis. 3x3x3 q-SPC/FW 11.4652 11.5126 11.5382 11.5053 0.030235

Ord. 2x2x2 TIP3P 11.4884 11.1414 11.3412 11.3228 0.142207

Ord. 2x2x2 TIP3P 11.1514 11.3313 11.5166 11.3321 0.149065

Dis. 2x2x2 TIP3P 11.3370 11.3789 11.2602 11.3253 0.049146

Dis. 2x2x2 TIP3P 11.3921 11.2542 11.3273 11.3244 0.056339

Ord. 3x3x3 TIP3P 11.2188 11.3369 11.4253 11.3267 0.084584

Ord. 3x3x3 TIP3P 11.3246 11.1078 11.5477 11.3253 0.179596

Dis. 3x3x3 TIP3P 11.3615 11.3172 11.2972 11.3253 0.026846

Dis. 3x3x3 TIP3P 11.2979 11.3692 11.3045 11.3238 0.032186

† ac = 3
√
abc

Table 3.2: Optimized lattice constants of the two structures with the largest deviations from

the cubic structure in the q-SPC/FW and TIP3P data sets.
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Type Water Model a b c a†c Mean RMSP

Ord. 2x2x2 q-SPC/FW 11.6014 11.4781 11.4416 11.5069 0.1018×101

Ord. 3x3x3 q-SPC/FW 11.5182 11.4752 11.5202 11.5045 5.796×10−1

Dis. 2x2x2 q-SPC/FW 11.4897 11.5087 11.5191 11.5058 1.965×10−1

Dis. 3x3x3 q-SPC/FW 11.4948 11.5139 11.5084 11.5057 1.676×10−1

Ord. 2x2x2 TIP3P 11.3002 11.2806 11.3892 11.3233 8.404×10−1

Ord. 3x3x3 TIP3P 11.3329 11.2804 11.3652 11.3261 6.335×10−1

Dis. 2x2x2 TIP3P 11.3436 11.3247 11.3066 11.3250 2.948×10−1

Dis. 3x3x3 TIP3P 11.3285 11.3280 11.3156 11.3241 1.507×10−1

Ord. 2x2x2 MCFM 11.9236 12.0378 11.8503 11.9370 0.1221×101

Ord. 3x3x3 MCFM 11.9136 11.9494 11.9475 11.9369 0.1062×101

Dis. 2x2x2 MCFM 11.9263 11.9509 11.9325 11.9366 4.295×10−1

Dis. 3x3x3 MCFM 11.9172 11.9442 11.9475 11.9363 3.048×10−1

† ac = 3
√
abc

Table 3.3: Average orthorhombic lattice constants compared to a cubic structure. Results

were obtained by averaging the properties of 8 individual optimizations.
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Ordered

Size Water Model a b c a†c Mean RMSP

2x2x2 SPC/E 11.8291 11.6733 11.6523 11.7180 0.1060×101

3x3x3 SPC/E 11.7886 11.7175 11.6427 11.7161 0.1004×101

4x4x4 SPC/E 11.6637 11.7637 11.7211 11.7161 0.1251×101

5x5x5 SPC/E 11.7786 11.7426 11.6285 11.7164 8.527×10−1

6x6x6 SPC/E 11.7786 11.6545 11.7183 11.7170 9.284×10−1

Disordered

2x2x2 mW 11.6899 11.6901 11.6902 11.6901 4.861×10−3

3x3x3 mW 11.6902 11.6901 11.6900 11.6901 2.502×10−3

2x2x2 SPC/E 11.7229 11.7077 11.7183 11.7163 3.005×10−1

3x3x3 SPC/E 11.7179 11.7167 11.7161 11.7169 2.271×10−1

4x4x4 SPC/E 11.7175 11.7203 11.7141 11.7173 1.216×10−1

5x5x5 SPC/E 11.7169 11.7183 11.7161 11.7171 7.318×10−2

6x6x6 SPC/E 11.7174 11.7168 11.7165 11.7169 6.434×10−2

† ac = 3
√
abc

Table 3.4: Average orthorhombic lattice constants compared to a cubic structure. Results

were obtained by averaging the properties obtained from 8 individual molecular dynamics

simulations.
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4.0 QUASI-HARMONIC THERMAL EXPANSION AND MECHANICAL

PROPERTIES OF ICE IH AND GAS HYDRATES

4.1 INTRODUCTION

Clathrate hydrates are of interest as a possible source of natural gas and due to their

role in climate change. Despite the large number of papers published on gas hydrates,

99,100,101,102,103,104,105,122,36,37,43,106,124,125,107,126,108,109,110 there are still many properties of

these structures that are not fully understood. One of the complexities of gas hydrates, which

is shared by ice Ih, is the existence of an astronomically large number of structures that differ

only in the proton arrangement of the waters.

Ice Ih has a hexagonal crystal structure with four water molecules in the unit cell.

While there are many other phases of ice, Ih is the most common. Based on x-ray crystal

structures,103 methane and xenon clathrates (MH and XH, respectively) are type I (sI)

hydrates with body centered cubic unit cells36 (Pm3̄n) containing forty-six water molecules

and eight of the guest species. The water molecules are arranged in two small dodecahedral

and six large tetradecahedral cages with the guest species being located at the centers of the

cages.

There is significant interest in the thermal and mechanical properties of gas hydrates. An

accurate description of the anharmonicity and dynamics of the crystals is required to produce

properties consistent with the experiments. Simulations using classical molecular dynamics

(MD) include anharmonic effects, but the dynamics lack nuclear quantum effects, and hence,

are not accurate at low temperatures. Harmonic lattice dynamics (LD) calculations can be

performed by optimizing the structure and applying a normal mode analysis to calculate

the properties of the phonons, which are treated as quantum quasi-particles. However,
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Figure 4.1: Free energy relative to the minimum value at each temperature, F (a)

)
T

=

F (a, T )/(min[{F (T )}]).

harmonic lattice dynamics, by definition, does not treat vibrational anharmonicity. A simple

method to improve the LD calculations and introduce the effects of finite temperatures is the

quasi-harmonic approximation (QHA).118,54,127 Within the QHA, phonons are assumed to be

harmonic and the free energy is used to optimize the structure instead of the potential energy.

Since the frequency of the phonons depends on the lattice constants, this approximation allows

the anharmonicity to be included, in an effective manner, through volume and temperature

dependent changes in the phonon energy and entropy.

In this work the QHA is used to determine the properties of ice Ih, MH, XH, and the

hypothetical empty hydrate (EH). Results are presented for the lattice constant, speed of

sound, and elastic properties as a function of temperature. These calculations serve as an

important test of the approximations and water models.
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Figure 4.2: Lattice constants for (a) methane hydrate, (b) xenon hydrate, and (c) ice

Ih calculated using the SPC/FW, q-SPC/FW, and TIP3P potentials within the QHA.

Experimental results are also shown for MH,43 XH122 and ice Ih (FW EOS)123 as well as (d)

a comparison between the methane, xenon and empty hydrates. Note that the experiments

were performed on the deuterated hydrates.
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Figure 4.3: Comparison of lattice constants determined using QHA, MD, and diffraction

experiments.43 The QHA calculations show significant improvement compared to the MD

simulations. The QHA and MD calculations were performed using the SPC/FW potential.

The MD simulations were performed with the LAMMPS simulation package115 at 0 atm.

4.2 COMPUTATIONAL METHODS

4.2.1 Crystal Structures

The gas hydrate structures used in the calculations were constructed as proton disordered

2x2x2 supercells. For ice 5x3x3 proton disordered supercells were generated from an or-

thorhombic structure15 with eight water molecules in the unit cell. The sizes of the supercells

were chosen so that the gas hydrate and ice structures are approximately the same size. Each

cell used in the calculations started as a bare oxygen lattice, which later had the hydrogen

atoms added to the structure. The positions of the hydrogens were generated semi-randomly

according to the Bernal-Fowler rules2 using the Monte Carlo algorithm of Buch et al.3

4.2.2 Force Fields

To represent the intermolecular interactions in the solids, flexible atomistic potentials were

employed for water along with a single Lennard-Jones site for methane and xenon.114,128,129,101
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Figure 4.4: Sound speeds for ice Ih and gas hydrates calculated using the SPC/FW, q-

SPC/FW, and TIP3P potentials within the QHA. Results are shown for the (a) longitudinal

wave velocity of MH and XH, (b) transverse wave velocity of MH and XH, (c) longitudinal

wave velocity of ice Ih compared to MH, XH, and EH, and (d) transverse wave velocity of ice

Ih compared to MH, XH, and EH.
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Figure 4.5: Bulk and shear moduli for ice Ih and gas hydrates calculated using the SPC/FW,

q-SPC/FW, and TIP3P potentials. Results are shown for (a,b) MH and XH, and (c,d) ice Ih

compared with MH, XH, and EH.
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Figure 4.6: Calculated sound velocities and moduli for MH and ice Ih employing the

SPC/FW potential compared to extrapolated results taken from Helgerud et al.35 Note that

the experiments were performed above T = 200 K.
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Figure 4.7: Lattice constants for the deuterated crystals calculated using the SPC/FW

potential within the QHA. The deuterium substitution causes both ice and gas hydrates to

contract.

Three different water models were employed in order to determine how the properties depend

on the choice of empirical force field. The first water potential is a flexible variant of the

TIP3P model. This model was parametrized for use with long range electrostatics, and

has the constraints replaced by harmonic potentials.115,7 In MD simulations, the use of

constraints improves the thermodynamic properties by removing degrees of freedom which

are frozen-out at low-temperatures. However, LD calculations include nuclear quantum

effects, and hence these degrees of freedom are naturally frozen-out when flexible models are

employed. The second water potential is the SPC/FW water model9 which is a flexible variant

in the SPC family of potentials. The third water model is the q-SPC/FW potential of Paesani

et al.12 This model is similar to the SPC/FW water model, but has been parametrized

for use in path integral molecular dynamics (PIMD) simulations. Since LD calculations

include some nuclear quantum effects, the q-SPC/FW potential is particularly appropriate.

In all cases the Wolf electrostatics method117 was applied with a damping parameter, α, of

0.20 Å−1 and the cutoff for Coulomb and Lennard-Jones interactions were set to 10.0 and

9.0 Å, respectively. Although, strictly speaking, force fields should be employed with the
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same cutoffs and electrostatic methods that were employed during the parametrization, the

methods described above were employed for the sake of consistency.

4.2.3 Quasi-Harmonic Lattice Dynamics

To determine the equation of state for the solids, the Helmholtz free energy was calculated

on a grid of 51 different lattice constants and 40 different temperatures using the GULP

simulation package.118 For ice the lattice constant ranged between 4.350-4.600 Å and for the

gas hydrates the lattice constant ranged between 11.45-11.95 Å. These ranges were chosen

through exploratory calculations that are not reported here. The atomic positions were

optimized at each lattice constant before the phonon calculations are performed. Due to the

relatively small size of the supercells, a 5x5x5 grid of wave vectors was employed during the

phonon calculations. The Helmholtz free energies from the grid were then fit to a 4th order

polynomial, F(V,T). The resulting state equation was minimized at each temperature to

determine the thermal expansion. The mechanical properties were determined using the QHA

lattice constants. The properties from different proton disordered structures were weighted by

the Boltzmann population of the crystal based on the zero-point corrected potential energy.

4.3 RESULTS

4.3.1 Free Energy

Figure 4.1 shows a contour plot of the Helmholtz free energy of methane hydrate as a function

of lattice constant and temperature. To make the minimum of the free energy more visible,

the free energy at each lattice constant and temperature was scaled by the minimum value

for that temperature,

F (a)

)
T

= F (a, T )/(min[{F (T )}]) , (4.1)

where min[{F (T )}] is the minimum of the free energy at temperature T . Although calculations

were performed on only 10 structures for each solid, Boltzmann weighting the structures leads

to a single structure dominating the averages below 100 K. It is quite likely that repeating
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the calculations with larger numbers of supercells would produce many nearly degenerate

structures and one structure would to dominate the Boltzmann weighted averages. Despite

the relatively small number of structures, the calculations were assumed to be converged

since there are only slight variations in the mechanical properties of the different proton

disordered structures.

4.3.2 Lattice Constants

Figure 4.2 reports the calculated cubic lattice constant of the gas hydrates as a function

of temperature. The low temperature lattice constants for the SPC/FW and q-SPC/FW

models are in good agreement with molecular dynamics simulations using the SPC/E force

field101 and the results are also very similar to QHA calculations performed by Shpakov et

al. employing the rigid SPC force field.43 The agreement is not surprising given that the

SPC/E, SPC/FW, and q-SPC/FW are all variants of the SPC water model. In the 10-200

K temperature range all of the water models predict an increase of approximately 0.10 Å.

The temperature dependence and magnitude of the increase in the lattice constant are in

good agreement with the experimental results for the deuterated hydrates which start near

11.80 Å.105,122,43 Compared with MD simulations which predict a nearly linear trend (see

Figure 4.3), the QHA lattice constants have a quadratic trend, which improves the agreement

between the LD calculations and the experiments at low temperatures. The accuracy of the

QHA calculations at low temperatures is due primarily to the inclusion of nuclear quantum

effects. At higher temperatures the QHA begins to breakdown and the thermal expansion is

overestimated. The beginning of the breakdown of the QHA occurs at approximately half

the Debye temperature, which is calculated to be between 208-213 K for methane hydrate

while employing the SPC/FW potential.

Although it is difficult to see in Figure 4.2, the SPC/FW calculations predict that ice

should contract up to T = 50 K followed by thermal expansion for the rest of the temperature

range reported here. The equation of state reported by Feistel and Wagner (FW EOS)123

shows a trend qualitatively similar to the SPC/FW results except the FW EOS lacks the

thermal contraction at low temperatures. Feistel and Wagner noted that thermal contraction
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is found in some experiments, however, there is significant statistical noise found in that

temperature range.

At T = 10 K, the EH lattice constant is larger than for either MH or XH and at higher

temperatures the magnitude of the thermal expansion is lowest for the guest-free hydrate.

This suggests that the guest molecules both make the structure more tightly bound and

strongly contribute to phonon anharmonicity. With the SPC/FW potential, both ice Ih and

EH exhibit a small degree of thermal contraction at low temperatures, followed by a small

amount of thermal expansion of the lattice at higher temperatures.

In addition to the calculations on the standard H2O based crystals, calculations were also

performed on the D2O variants. The QHA calculations show that both the gas hydrates and

ice Ih contract when deuterium is substituted for the hydrogen. This trend is not consistent

with experimental results for ice Ih, but is consistent with theoretical results employing

empirical force fields.11 The expansion of D2O ice Ih is a quantum effect that is not captured

by LD or PIMD when empirical force fields11 are employed in the calculations.

4.3.3 Mechanical Properties

Figure 4.4 reports the temperature dependence of the longitudinal (P-wave) and transverse

(S-wave) speeds of sound for the solids. The magnitude of the P-wave velocity is in reasonably

good agreement with the results of MD simulations and experiments,101,36,37,35 and the

calculations predict that the P-wave velocity should decrease with temperature. The S-wave

velocity is predicted to slowly rise with temperature in calculations with the q-SPC/FW and

SPC/FW force fields, while the TIP3P potential predicts that the S-wave velocity is nearly

temperature independent. Figure 4.5 shows the bulk and shear moduli for ice Ih and the gas

hydrates for temperatures between 10 and 200 K. The bulk modulus of ice Ih is in excellent

agreement those from the QHA-LD and PIMD simulations of Ramı́rez et al.44 which employed

the q-TIP4P/F water model. The calculated moduli are larger than the experimental values

reported by Helgerud et al.37 and Sloan et al,36 although the experiments were carried out

at higher temperatures than the calculations reported here. While experimental results for

the speed of sound and other elastic properties are sparse at temperatures below 200 K, the

64



results of Helgerud et al.35 can be extended to lower temperatures using the fit to their data.

The extrapolated values for the P-wave velocity and bulk modulus shown in Figure 4.6 are

in qualitative agreement with the calculations within the QHA and the QHA-LD results

predict reasonable magnitudes for all of the elastic properties. However, the S-wave velocity

and shear modulus are predicted to rise with temperature for the SPC/FW and q-SPC/FW

models, which is not in agreement with the extrapolated results from Helgerud et al. While

the experimental measurements predict linear trends for the elastic properties, it should be

noted that the measurements were performed on polycrystaline samples in the temperature

range of 250-300 K. As found for the thermal expansion, the calculated elastic properties of

EH display similar behavior as those found for ice Ih. This is not surprising since the elastic

properties are affected by the ”softening” of the crystal due to thermal expansion.

4.4 CONCLUSION

The lattice constants and mechanical properties of MH, XH, EH, and ice were determined

from LD within the QHA. The calculations are in qualitative agreement with experimental

measurements. The TIP3P force field is shown to underestimate the lattice constants for

both gas hydrates and ice to a greater extent than those found while employing the SPC

based potentials. The QHA-LD lattice constants of XH showed larger deviations from the

experimental measurements than those calculated for MH, however, it is possible that this is

due to the parameters for the the xenon Lennard-Jones potential which were determined for

the gas phase Xe·H2O system. The calculated lattice constants for all of the crystals were

within 1-3% of those measured experimentally.

The QHA properties presented above show that the choice of empirical force field can

have a relatively large effect on the results of the calculations. The q-SPC/FW potential is

corrected for the nuclear quantum effects and accurately predicts the vibrational density of

states, and hence, would be expected to give accurate results for the properties of gas hydrates.

However, the rigid SPC water model used by Shpakov et al. predicts lattice constants nearly

identical to the experimental results. The large variation in the temperature behavior of the
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lattice constants and mechanical properties predicted by the SPC, SPC/FW, q-SPC/FW,

and TIP3P suggests that care needs to be taken both when choosing a force field and while

interpreting the accuracy of the results.
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5.0 THERMAL CONDUCTIVITY OF METHANE HYDRATE AND ICE IH

FROM COARSE-GRAINED NON-EQUILIBRIUM MOLECULAR

DYNAMICS

5.1 INTRODUCTION

Methane hydrate (MH) is a type I (sI) clathrate with the methane molecules trapped inside

water cages. The cages are arranged in a body-centered cubic lattice103,36 (Pm3̄n) with the

unit cell being comprised of two small dodecahedral and six large tetradecahedral cages.

While the heavy atoms in both ice and gas hydrates are arranged in an ordered structure,

the hydrogen atoms are disordered. The unusual thermal conductivity of gas hydrates has

attracted considerable interest. The thermal conductivity of ice Ih displays, over a wide

range of temperatures, a T−1 dependence behavior typical of a crystaline solid.30,130 Gas

hydrates, on the other hand, have very low thermal conductivities with a weak temperature

dependence, consistent with the behavior of amorphous materials.106

Many theoretical studies of the thermal conductivities of ice Ih and MH have been carried

out using molecular dynamics simulations and atomistic force fields.108,109,99,101,102 Due to the

computational effort required for either Green-Kubo or non-equilibrium molecular dynamics

(NEMD) calculations of the thermal conductivities relatively small supercells have generally

been employed. Molinero and coworkers have demonstrated that the coarse-grained mW

potential6,100 is remarkably successful at predicting structural properties of ice and MH. The

mW model represents water as a single particle that interacts via the three-body Stillinger-

Weber131 potential. The mW model has also been extended to include methane-methane,

and methane-water interactions in methane hydrate.100
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Figure 5.1: Schematic representation of the initial conditions of the simulation box. Here H

and C denote the heat source and sink, respectively.

Two mechanisms have frequently been proposed to explain the low thermal conductivity

of gas hydrates. One proposal is that the anomalous thermal behavior of MH is a consequence

of guest-host coupling.99,125,107,126,108,109 An alternative proposal is that it is an inherent

property of the host lattice and that the guest molecules have little or no effect on the

thermal transport properties.101,102,108,109 In this paper we investigate the thermal transport

mechanism in ice Ih and MH using non-equilibrium molecular dynamics simulations in

conjunction with the coarse-grained mW model which allows us to use much larger simulation

cells than have been employed in previous studies.

5.2 COMPUTATIONAL DETAILS

5.2.1 Structures and mW Potential

Within the mW model, the molecular interactions are described as a combination of two and

three-body interactions,

V =
∑
i,j

Vij +
∑
i,j,k

Vijk , (5.1)
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ε (kcal/mol) σ (Å) λ

H2OH2O 6.189 2.3925 23.15

CH4-CH4 0.340 4.08 0.0

H2O-CH4 0.180 4.00 0.0

Table 5.1: Parameters for the mW model as given by Molinero and coworkers.6,100

where Vij is the two-body potential and Vijk is the three-body potential. Within the Stillinger-

Weber potential the components are defined as

Vij = Aε

[
B

(
σ

rij

)4

− 1

]
e

(
σ

rij−aσ

)
, (5.2)

and

Vijk = λε[cos(θijk)− cos(θ0)]
2

×e
(

γσ
rij−aσ

)
e

(
γσ

rik−aσ

)
,

(5.3)

where A = 7.049556277, B = 0.6022245584, γ = 1.2, a = 1.8 is the cutoff parameter,

θ0 = 109.47◦ is the ideal tetrahedral angle, σ represents the size of the particle, ε is the well

depth in the potential, and λ scales the strength of the three-body potential. The three-body

term in the potential allows the particle to capture the tetrahedral structure of water while

remaining computationally efficient. In the case of the methane-methane and methane-water

interactions, only the two-body terms are retained in the potential. The parameters of the

model are given in Table 5.1. The coarse-grained nature of this model allows for the use of

large simulation boxes and long timescales.

The initial configurations were constructed based on x-ray crystal structures103,15 which

were then equilibrated at P = 1 atm and temperatures between T = 10 and 200 K. Molecular

dynamics simulations within the NPT ensemble were performed with a 1 fs timestep using

the LAMMPS simulation package.115 The Nosé-Hoover thermostat and barostat57 were

employed with time constants of 50.0 and 500.0 fs, respectively. In addition to ice Ih and MH,

calculations were performed on the hypothetical empty hydrate (EH). The EH structures were
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produced by simply removing the methane molecules from the equilibrated MH structures,

which is justified by the small changes in the volume of the unit cell when the guest molecules

are removed.

The basic building blocks for constructing the hydrate simulation boxes were 2x2x2

supercells which were then replicated in the long direction. The MH boxes were replicated

2-15 times while EH was replicated 2-20 times. For ice, the simulation boxes were constructed

from a 5x3x3 supercell (based on an orthorhombic unit cell containing 8 water molecules15)

which was then replicated 4-40 times in the long direction. Due to the tensor nature of

the thermal conductivity, 3 simulations were performed in the x, y, and z directions for a

total of 9 simulations at each temperature and box size. This procedure was used for all

of the solids despite the expected isotropic behavior for the cubic hydrates. The sizes of

the simulation boxes were determined by running successively larger simulations until the

thermal conductivity converged. Larger simulation boxes were employed for ice and EH due

to the larger magnitude of the thermal conductivity (phonon lifetimes).

5.3 PHONON PROPERTIES

For the coarse-grained potential to be useful for the determination of the thermal conductivity,

it is essential that the model gives a low-frequency phonon spectrum similar to that obtained

from atomistic models. To validate the phonon properties, we calculated the velocity-velocity

autocorrelation functions and the phonon density of states (DOS) for the coarse-grained

solids. The DOS is defined as the normalized Fourier transform the autocorrelation function,

Ξ(ω) =
3N
∫
〈m~v(0) · ~v(t)〉e−ı̇ωtdt∫ ∫
〈m~v(0) · ~v(t)〉e−ı̇ωtdtdω

, (5.4)

where Ξ is the DOS, m is the mass of the particle, ~v is the velocity vector, ω is the frequency,

N is the number of particles, and 〈· · · 〉 indicates an ensemble average.

Atomistic MH calculations were performed with the GULP simulation package118 em-

ploying the SPC/FW potential9 for water and a single Lennard-Jones site for each methane

molecule.114 Additional details on the atomistic calculations can be found in the supporting
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Figure 5.2: The vibrational density of states calculated at T = 200 K for ice Ih and methane

hydrate as described by the coarse-grained and atomistic models. The SPC/FW potential

and a Lennard-Jones potential are employed in the atomistic calculations for water and

methane, respectively.
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Figure 5.3: Inverse thermal conductivity plotted against the inverse length of the temperature

gradient at T = 100 K. A strong non-linear trend can be seen when the small simulation

boxes are employed. The subset of the data shown in the inserts was extrapolated to calculate

the bulk thermal conductivity. The results shown for ice were taken from the simulations in

the z direction.

information. The phonon spectra from the coarse-grained and atomistic models are reported

in Figure 5.2. The mW potential gives a phonon spectrum of MH in reasonable agreement

with that obtained using the SPC/FW model. The DOS calculated for MH and EH are very

similar, although the spectrum of the fully-occupied hydrate shows the presence of additional

low-frequency methane vibrations that are not observed in the EH spectrum.

5.4 NON-EQUILIBRIUM SIMULATIONS

The NEMD approach is often referred to as the “direct method“ since it directly yields the

properties measured in the experiments. There are several algorithms that can be utilized

for calculating thermal transport properties through NEMD simulations.59,60,61,62,63,132 A

popular procedure is to apply a thermal flux and determine the average temperature gradient,

while an older and less popular method is to apply a gradient and measure the average flux.
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Figure 5.4: Thermal conductivity of ice Ih, methane hydrate, and the hypothetical empty

hydrate as a function of temperature. Experimental results are also shown for ice (×30,∗130)

and methane hydrate.106

Applying a flux is more popular due to the smaller fluctuations in the measurement of the

gradient compared with the flux.60 However, the application of a gradient is trivially easy to

implement, temperature controlled, and the temperature profile can be initialized as gradient

to accelerate the formation of steady-state conditions.

The NEMD simulations performed here utilized a periodic rectangular simulation box

with one thermostat in the middle and one at the edge (see Figure 5.1). The temperatures in

the heat source and heat sink were controlled using the Berendsen thermostat56 with a time

constant of 2.0 fs. The slab was initialized with a partial gradient by setting six regions with

different temperatures then propagating the equations of motion for 2 ns. The temperature

difference between the thermostats was set to 10 K and the heat flux was determined from

the amount of energy added (removed) to the heat source (sink) after 14 ns. The thermal

conductivity is determined from

J =
|∆E(±)|
2∆tA

= κ
2∆T

∆R
, (5.5)

and

κ(±) =
|∆E(+)|∆R
4∆t∆TA

, (5.6)
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where J is the heat flux, κ is the thermal conductivity, ∆T is the temperature difference

between the source and sink, ∆R is the total length of the simulation box, ∆t is the simulation

time, A is the cross-sectional area, and ∆E(±) is the energy added (+) or removed (−) by

the thermostats. The factors of 2 in Eq. 5.5 account for the periodic nature simulation box

where the flux is split between the two possible directions of flow and the gradient is across

half of the simulation box. Due to statistical fluctuations in the thermostated regions, the

values of κ(+) and κ(−) will be slightly different and this deviation reflects some of the error

in the calculated thermal conductivity. In the limit of an infinitely long simulation, the two

thermal conductivities will be identical.

Due to boundary scattering at the heat source and sink, the thermal conductivity from

NEMD simulations is dependent on the length of the simulation boxes. To correct for the

boundary scattering, the thermal conductivity must be determined for a series of progressively

larger simulation boxes and then extrapolated to infinite length. The values of the thermal

conductivity were obtained by extrapolating the set κ−1(±) versus N−1cell,

1

κ
=

α

Ncell

+
1

κ∞
(5.7)

where Ncell is the number of unit cells between the source and sink, α is the slope, and κ∞

is the bulk thermal conductivity. Employing both the (+) and (−) values of the thermal

conductivity allows the statistical errors of the individual simulations to be taken into account

during the extrapolation procedure. Tests of the convergence of the calculations with the

system size can be found in the supporting information.

5.5 SIMULATION RESULTS

Figure 5.3 reports the inverse thermal conductivity of the solids plotted against N−1cell. The

thermal conductivities are found to have a very non-linear trend with respects to the box

size, however, Eq. 5.7 assumes that the boundary scattering varies linearly with the length of

the temperature gradient. In order to perform a linear extrapolation, data needs to be only

taken from simulations that are sufficiently large. We have found that simulation boxes with

74



at least 50 unit cells between the source and sink need to be utilized for ice, while at least 10

cells need to be utilized for MH and EH. The simulation boxes used to converge the values

of the thermal conductivity are much larger than those used in previous studies.101,102 The

linear regions used to extrapolate the thermal conductivity are shown in the inserts of Figure

5.3.

The thermal conductivity determined from from the NEMD simulations of MH and

EH are reported in Figure 5.4a and the results for ice are are given in Figure 5.4b. For

comparison, the corresponding experimental measurements are given for ice and MH.30,106,130

Most significantly, the calculations predict the thermal conductivity to be much larger for ice

than for MH. The calculations give a T−1 dependence in each case, although the slope is very

low for MH and EH. Qualitatively, these trends are in good agreement with experimental

measurements. The simulations using the mW potential overestimate the thermal conductivity

for ice and MH by a factor of 2-3, however, similar behavior is found for silicon as described

by the Stillinger-Weber model.133,61,62,63 It was found previously that atomistic simulations

with the SPC/E model also overestimate the thermal conductivity of MH by a factor of ∼ 2,

depending on the temperature. A more thorough description of the effects of coarse-graining

are included in the supporting information.

The conductivity calculated for EH is found to be slightly larger than that found for

MH. This suggests that the low thermal conductivity found for MH is not due only to the

guest-host coupling, however, the methane-water interactions do play a role in the mechanism.

Experimental measurements show that the thermal conductivity of MH is nearly constant

over a wide temperature range, consistent with an amorphous material.106 The simulations

show that the thermal conductivity of both ice and MH have a T−1 dependence, although the

slope is smaller for MH. It is possible that the neglect of the hydrogen atoms is causing the

coarse-grained hydrates to behave as a crystaline solid. Earlier SPC/E NEMD simulations of

MH showed an extremely weak T−1 dependence of the thermal conductivity.
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5.6 CONCLUSION

In this work it has been demonstrated that the coarse-grained mW potential qualitatively

reproduces the experimental thermal conductivity measurements for both ice Ih and methane

hydrate. Larger supercells are required to obtain converged values of the thermal conductivity

from the simulations than have been found to be necessary when using atomistic models. This

suggests that there are important scattering processes that are lacking in the coarse-grained

model.

The thermal conductivity calculations suggest that the low thermal conductivity in gas

hydrates is due to the molecular structure of the gas hydrates as well as guest-host coupling.

This is evident by the similar conductivities of the filled and empty hydrates and the large

difference between the conductivities of ice Ih and the hydrates. The thermal conductivity is

slightly higher for EH than MH, which suggests that the methane-water interaction decreases

the thermal conductivity, however, the difference between EH and ice is still quite large.

The vacancies in the EH crystal likely scatter phonons or cause the heat to flow around the

structural cavities.

5.7 SUPPORTING INFORMATION

5.7.1 Atomistic DOS and Heat Capacity

The interactions of the crystals were represented using the SPC/FW water model9 with

a single Lennard-Jones sphere for methane. The methane-methane and methane-water

interactions were modeled using the OPLS united atom potential.114 The methane hydrate

crystals were constructed as 2x2x2 supercells with the hydrogen positions assigned using the

Monte Carlo algorithm of Buch et al.3

The lattice constants of methane hydrate at P = 0 atm were determined through a free

energy equation of state. To determine the equation of state for the solids, the Helmholtz

free energy was calculated on a grid of 51 different lattice constants (11.45-11.95 Å) and
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Figure 5.5: Thermal conductivity of ice determined from several different sets of system sizes.

As the smallest simulations are removed, the thermal conductivity increases.

40 different temperatures (10-200 K) using the GULP simulation package.118 Due to the

relatively small size of the supercells, a 5x5x5 grid of wave vectors was employed during the

phonon calculations. The Helmholtz free energies from the grid were then fit to a 4th order

polynomial, F(V,T). The vibrational DOS and heat capacity were determined between 10

and 200 K while employing a 5x5x5 grid of wave vectors. Since lattice dynamics calculations

only gives discrete harmonic frequencies, each vibrational mode was given a Lorentzian line

width of 0.5 cm−1 and the density of states was normalized to 3N , where N is the number of

atoms in the unit cell.

5.7.2 Extrapolation Tests

To test the convergence of the non-equilibrium simulations, the extrapolation procedures

were repeated for different sets of simulation data (Figure 5.5). As the smallest simulations

are removed from the data set, the thermal conductivity continues to rise. It is possible that

the calculations are not yet converged for all temperatures, however, the high temperature

simulations are effectively converged. In addition to size effects from calculations that are

not sufficiently large, it has been shown that thermal conductivity calculations can diverge

if the aspect ratio is too small.134 Figure 5.6 reports the thermal conductivity determined
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Figure 5.6: Thermal conductivity of ice calculated with different cross-sectional areas: 5x5

and 10x10 unit cells. The simulations with the lower aspect ratios show nearly the same

thermal conductivity as the simulations reported in the main paper.

from simulations with two different aspect ratios. Ice simulations using a cross-sectional area

of 5x5 ice unit cells and 10x10 unit cells show similar results. The 10x10 simulations show

significant noise since the simulations were performed only for simulation boxes of lengths 50,

75, and 100 unit cells.

5.7.3 Mechanism Fine Details

In addition to the overestimation of the Stillinger-Weber potential, several general aspects of

coarse-graining could alter the thermal conductivity. At first glance, the fact that the mW

model gives reasonable results for thermal transport is somewhat surprising. It appears that

the success of the coarse-grained model is partially due to cancellation of error between the

reduction in the number of degrees of freedom and the neglect of nuclear quantum effects. To

see why this is the case we examine a simple expression for the thermal conductivity given

by127,54

κ ≈ 1

3V
CV ν

2
effτeff , (5.8)

where CV is the heat capacity, νeff is the effective velocity of the phonons, τeff is the effective

lifetime of the phonons, and V is the volume. For a typical crystaline solid, the heat capacity
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Figure 5.7: Comparison of the heat capacities for methane hydrate with classical flexible

water, classical rigid water, classical coarse-grained water and quantum SPC/FW water.

In all cases the methane molecule is assumed to be a spherical particle. Here Nm is the

number of molecules in a unit cell. The figure on the right shows the differences between

the semi-classical and quantum phonon populations as a function of reduced temperature,

T ∗ = kT/~ω.
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increases with temperature until it reaches the classical value of 3Nk, where N is the number

of particles and k is the Boltzmann constant. The increase in the heat capacity causes

the thermal conductivity to increase as well. Meanwhile, due to anharmonic effects, the

effective lifetime of the phonons decreases with temperature. These trends cause the thermal

conductivity to increase with temperature up to a peak, then decrease as ∼ T−1. However,

in a classical simulation the heat capacity is approximately 3Nk and, hence, the thermal

conductivity starts at infinity and then decreases as the temperature rises. Figure 5.7a shows

the classical heat capacities of methane hydrate using a fully flexible water model, a rigid

water model, and the mW water model. For comparison, the figure shows the heat capacity

of atomistic methane hydrate determined from vibrational calculations which are described

above. These results suggest that the mW potential benefits from a favorable cancellation of

error in the heat capacity. Since the thermal conductivity is approximately proportional to

the heat capacity, the cancellation of error can improve the agreement between the classical

and quantum regimes.

In addition to the heat capacity, Figure 5.7b reports the semi-classical,

n(T ) =
kT

~ω
, (5.9)

and quantum,

n(T ) =
1

(exp(~ω/kT )− 1)
, (5.10)

phonon populations as a function of temperature. The semi-classical population is based on

the equipartition theorem, and the quantum population is the Bose-Einstein distribution. In

principle, if Eq. 5.8 is to be believed, the phonon lifetimes must be lower in simulations using

rigid or flexible water models to produce the correct thermal conductivity. The vibrational

states of the semi-classical system are over-populated and, hence, the thermal transport due

to the phonons will be overestimated unless the classical scattering rates are higher than

those found in the quantum regime.

On the other hand, the mW model is missing hydrogen atoms which introduce proton and

mass disorder into the atomistic simulations. The lack of disorder in the mW model causes

a reduction in the number of scattering events and raises the phonon lifetimes. This effect
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would presumably cause the thermal conductivity to be higher in coarse-grained simulations

than in atomistic simulations when the correct phonon populations are employed.
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6.0 QUALITATIVE STUDY OF THE THERMAL TRANSPORT IN GAS

HYDRATES AND ICE IH

6.1 INTRODUCTION

The unit cell of type I gas hydrates consists of six tetradecahedral and two dodecahedral

water cages in a cubic arrangement which enclose the guest species.103,36 The most important

type I hydrate is methane hydrate which is of interest as possible sources of natural gas.

Measurements of the thermal conductivity of gas hydrates have shown that the hydrate

conductivity has an anomalous temperature dependence when compared to ice. The thermal

conductivity of ice Ih behaves as a typical crystal and displays a T−1 dependence.30,130 Gas

hydrates, on the other hand, exhibit low thermal conductivity consistent with an amorphous

material.106

Theoretical studies of the thermal conductivity of gas hydrates have been conducted

through classical molecular dynamics simulations employing the Green-Kubo108,109,107,102

or non-equilibrium101,102 formalisms. The calculations often overestimate the thermal con-

ductivity of hydrates, however, the hydrate conductivity is calculated to be much lower

than that found for ice, in qualitative agreement with experiments. Many models exist to

predict the thermodynamic behavior of solids.127,54 The models are typically designed to

represent simple elastic continuum solids or crystals with no molecular structure. While the

approximations are often semi-empirical in nature and only give qualitative information, the

models are an important first step towards understanding the mechanisms at play. In the

following sections, we discuss the application of a simple analytic lattice dynamics model to

qualitatively reproduce the thermal transport properties of ice Ih, methane hydrate (MH),

xenon hydrate (XH), and the hypothetical empty hydrate (EH).
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Figure 6.1: The calculated MH density of states at T = 200 K calculated with lattice

dynamics within the quasi-harmonic approximation and using the SPC/FW force field. The

DOS displays 4 distinct regions: translational (0-350), librational (500-1000), HOH bend

(1400-1600), and OH stretch (3500-3700).

6.2 COMPUTATIONAL METHODS

6.2.1 Structures and Force Fields

The gas hydrate structures were constructed as proton-disordered 2x2x2 supercells, while

the ice crystals were generated from an orthorhombic structure15 to form proton-disordered

5x3x3 supercells. The positions of the hydrogens were assigned semi-randomly according to

the Bernal-Fowler rules2 employing the Monte Carlo algorithm of Buch et al.3 The lattice

constants and mechanical properties were determined through lattice dynamics within the

quasi-harmonic approximation (QHA-LD). The properties were determined as a function

of temperature by optimizing the Helmholtz free energy. The full details of the free energy

calculations can be found in the supporting information.

The water interactions were modeled with the SPC/FW potential, which is a flexible

variant of the simple point charge model (SPC). To simplify the guest-host interactions,

methane and xenon were represented by Lennard-Jones spheres.114,128,129,101 The Wolf
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Figure 6.2: Thermal conductivity due to propagating phonons and thermal diffusion calculated

for MH and XH. Results are shown for (a) the model with and without thermal diffusion,

and (b) the model compared to experimental measurements.106
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Figure 6.3: Thermal conductivity due to propagating phonons and thermal diffusion calculated

for ice Ih. Results are shown for (a) the model with and without thermal diffusion, and (b)

the model compared to experimental measurements (×30,∗130).
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Figure 6.4: Comparison of the thermal conductivity calculated for MH and ice while employing

(a) QHA lattice constants and (b) lattice constants taken from experiments (MH,43 ice123).
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Figure 6.5: Results of the model (a) with vacancy defects for EH and (b) without vacancy

defects. Assuming that each empty cage is a vacancy defect has a large effect on the thermal

transport properties, however, the effect is not large enough to produce amorphous behavior.
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Figure 6.6: Thermal conductivity of EH modeled as an ice-like solid with void defects.

The phonon scattering due to anharmonicity was estimated using the measured thermal

conductivity of ice Ih and combined with the elastic properties of EH and scattering due to

3.816 Å voids.
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electrostatics method117 was applied with α = 0.20 Å−1, and the cutoff for Coulomb and

Lennard-Jones interactions were set to 10.0 and 9.0 Å, respectively.

6.2.2 Model Density of States

As can be seen in Figure 6.1, the DOS for the hydrates is divided into roughly 4 regions. The

first region contains the low-frequency acoustic modes and modes consisting of center-of-mass

translations of molecules. The second region consists of the librational degrees of freedom,

and the last two regions contain combinations of intramolecular bending and stretching modes

of molecules. The phonon density of states (DOS) was modeled as a Debye continuum for

the translational degrees of freedom combined with Einstein oscillators for the librational,

water bend, and OH stretch modes.127 This treatment only requires a Debye cutoff frequency,

ωD, and three Einstein frequencies to represent the entire DOS. The motivation for dividing

the frequencies this way is to separate the propagating and non-propagating phonons in the

DOS. The low-frequency vibrations are approximately center-of-mass motions of molecules

which can propagate through the crystal and are represented by the Debye continuum. The

high-frequency modes are motions of the hydrogen atoms which are distributed semi-randomly

in the solid. The disordered nature of the hydrogens prevents the high-frequency modes

from propagating effectively in the crystal and, thus, these modes only carry heat through

random-walk diffusion.

The characteristic frequencies of the solids were determined from the mechanical and

vibrational properties calculated within the quasi-harmonic approximation. The Debye model

was used to calculate ωD with the number of molecules replacing the number of atoms in the

standard formula.54 For the Einstein oscillators, the average frequencies were taken from each

region of the gamma point DOS calculated with the SPC/FW model (Figure 6.1). While the

model DOS only qualitatively resembles the atomistic DOS, the model greatly simplifies the

thermal conductivity calculations discussed below.

87



6.2.3 Boltzmann Transport Equation

The thermal conductivity of a material can be calculated with the Boltzmann transport

equation (BTE),53,52

νs∇T
(
∂nt
∂T

)
=

(
∂nt
∂t

)
coll

, (6.1)

nt = n+ n′ , n =
1

ex − 1
, (6.2)

where νs is the speed of sound, nt is the non-equilibrium phonon distribution function, n is

the equilibrium Bose-Einstein distribution function, n′ is the fluctuation of the distribution

function away from equilibrium, x = ~ω/kT , and (∂nt
∂t

)coll represents the collisions of phonons.

The collision term of the BTE can be approximated using the relaxation time approximation

(RTA). Under the RTA, the nt is expected to relax to the equilibrium distribution within a

characteristic phonon relaxation time, τ ,

νs∇T
(
∂nt
∂T

)
=
n− nt
τ

. (6.3)

The relaxation time depends on the frequency of the phonon and the anharmonicity of the

mode. The RTA-BTE can be applied to Fourier’s law to calculate the thermal conductiv-

ity,53,54,135,136,137,138

κ ≈ 1

3V

∑
i

CV (xi)ν
2
s τ(xi) , (6.4)

where κ is the thermal conductivity, CV is the heat capacity of phonon i, and V is the volume.

If the spacing between the phonon frequencies is sufficiently small and an analytic expression

for the relaxation time is employed, the summation in Eq. 6.4 can be replaced by an integral

over a classical elastic continuum.

6.2.4 Thermal Transport

The thermal conductivity was modeled using the Klemens-Callaway expression139 combined

with Einstein diffusion140 for the high-frequency modes. The two transport components are

given by

κp =
k4T 3

8π2~3νs

∫ XD

0

x4τ(x)

sinh2(x/2)
dx , (6.5)
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κd =
k

24a

∑
i

3
√
Niωix

2
i

sinh2(xi/2)
, (6.6)

and

κ = κp + κd , (6.7)

where κp is the thermal conductivity due to propagating phonons, κd is the thermal conduc-

tivity due to random-walk diffusion, XD is the Debye cutoff, a is the lattice constant, and Ni

is the number of oscillators with frequency ωi.

In this approximation, the diffusion is restricted to certain regions of the DOS. For

instance, librational modes can transfer energy to other librational modes but not to the

translational degrees of freedom. The separation of the translational, librational, bending,

and stretching modes greatly simplifies the model.

6.2.5 Phonon Scattering

The scattering rates of the propagating phonons is divided into two mechanisms: inelastic

Umklapp scattering and vacancy scattering,

1

τ
=

1

τu
+

1

τv
, (6.8)

where τu is the relaxation time for Umklapp processes139 and τv is the relaxation time for

scattering off of vacancies or voids in the crystal.135,136 In this model vacancy scattering only

occurs in EH, while Umklapp scattering occurs in all crystals. The two inverse relaxation

times are combined through Matthiessen’s rule to determine the total inverse relaxation time.

The scattering rates are defined as

1

τu
=

2α2V NakTω
2

C2
VB

2
TµωD

, (6.9)

and

1

τv
=


9V fω4

4πNmν3s
Vacancy scattering

Nvoidπνsr
2
void

V
Void scattering

, (6.10)

where µ is the shear modulus, α is the volumetric thermal expansion coefficient, BT is the

isothermal compressibility, Na is the number of atoms in the unit cell, Nm is the number of
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molecules in the unit cell, rvoid is the radius of the voids, Nvoid is the number of voids in the

cell, f is the ratio of vacancies to the number of molecules in the perfect crystal. Both ωD

and CV are determined from the Debye model with only translational degrees of freedom.

The vacancy concentration, f is zero for ice and the fully occupied MH. In the model, cavities

in EH are treated as defects which can cause phonons to scatter. The anharmonic scattering

term takes advantage of a high temperature approximation139 which simplifies the equations

by making Eq. 6.5 a single integral over the DOS. Unfortunately, Eq. 6.9 is not a unique

expression.137 In a more accurate treatment of the scattering, the factor of 2 would be

replaced by Aexp(−bΘD/T ), where A and b are parameters that depend on the symmetry

of the crystal and ΘD is the Debye temperature. The expression in Eq. 6.9 was chosen for

simplicity and so that the treatment of cubic hydrates and hexagonal ice would be equivalent.

6.3 RESULTS

6.3.1 Thermal Diffusion

Thermal conductivity in crystaline solids is typically dominated the propagation of low-

frequency phonons while transport in amorphous solids is dominated by thermal diffusion

of non-propagating modes.54,127,140 Ice and gas hydrates have ordered oxygen lattices that

would support propagating phonons and a disordered hydrogen arrangement that would

produce non-propagating modes. Since there is a large mass difference between the hydrogen

and heavy atoms, the librational and intramolecular vibrational modes are effectively the

motions of hydrogen atoms. The results of calculations with and without the thermal diffusion

component are reported in Figure 6.2b. As the temperature is increased, phonon propagation

rapidly deteriorates due to phonon anharmonicity. Meanwhile, the higher frequency modes

start to become populated and carry heat through diffusion. The combination of the crystaline

and amorphous transport causes the hydrate thermal conductivity to increase to a peak,

decrease until ∼100 K, where it starts to increase again. Since the intramolecular vibrations
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have very high frequencies, these modes are essentially frozen-out in the calculations, while

the librational modes dominate the thermal diffusion component.

6.3.2 Comparison to Experiments

The lattice dynamics (LD) calculations for MH and XH (Figure 6.2a) display several key

features of the experimental measurements. Specifically, the calculations reproduce thermal

conductivity maxima near T = 50 K as well as the increasing thermal conductivity above

T = 100 K. Ice Ih shares many properties with gas hydrates: The crystals have ordered

oxygen lattices, similar mechanical properties, and both ice and gas hydrates exhibit proton-

disorder. Thus, one would expect the solids to have similar transport properties as well.

However, thermal transport in ice exhibits purely crystaline behavior while MH and XH have

trends seen in both crystals and amorphous solids. Within the LD model the trends can be

explained by the differences in the magnitude of the thermal expansion, which is related to

the anharmonicity. Since the thermal conductivity in ice Ih is an order of magnitude larger

than that found for the hydrates, the increase due to thermal diffusion is obscured by the

rapid decrease of the thermal transport through propagating phonons.

6.3.3 Role of Mechanical Properties

The mechanical properties of the solids only contribute to the scattering of propagating

phonons in the model. Most of the properties of MH, XH, EH, and ice Ih are strikingly similar

and the thermal expansion coefficient dominates the Umklapp scattering term. Ice and EH

have greatly reduced thermal expansion coefficients when compared with MH and XH. This

suggests that the phonon frequencies are more nearly harmonic without the presence of the

guest species. Since the thermal expansion coefficient is vital to the Umklapp scattering

rate, the calculations were repeated using input from experimental measurements. Figure 6.4

compares the results of the model using lattice constants taken from either QHA calculations

or experimental measurements.43 The improvement of the results when the experimental

lattice constants are employed likely highlights the breakdown of the QHA above half the

Debye temperature.118
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6.3.4 Vacancy and Void Scattering

Since the low thermal expansion coefficient causes ice Ih to have higher thermal conductivity

than the hydrates, it would be expected that the low thermal expansion in EH would cause

its conductivity to be similar to that found for ice Ih. However, classical simulations show

that EH has a conductivity similar to that found for MH and XH.101,102 The solution to this

contradiction lies in the structure of the hydrates. Although the guests make the phonons in

the hydrates more anharmonic, they also keep the entire structure filled. When the guests are

removed from the clathrate structure, defects are introduced. Since phonons can scatter off of

both defects and other phonons, the vacancies cause the thermal conductivity to decrease. In

order for the conductivity of MH and EH to be of nearly that same magnitude, the vacancy

scattering must be nearly as strong as the scattering caused by the guest-host coupling.

Figure 6.5 reports the thermal conductivity calculated for all of the solids with and without

vacancy defects for EH. It is clear that vacancy defects reduce the thermal conductivity,

however, the effect is not strong enough to produce a thermal conductivity consistent with

that found for other gas hydrates.

An alternative analysis can be performed by employing the expression for void scattering.

Since the void scattering has no frequency dependence, it is essentially a constant shift in the

thermal conductivity. If we assume that EH has anharmonic scattering rates similar to that

for ice Ih, the thermal conductivity of EH can be estimated from experimental measurements

on ice. If the heat capacity, sound velocity, and volume of ice are known, then the phonon

lifetime is given by

κice =
CV ν

2
iceτice

3Vice
→ τice =

κiceVice
Nicekbν2ice

. (6.11)

For simplicity, the sound velocity and volume can be taken to be the thermal averages from

the QHA-LD calculations and we will take the heat capacity to be equal to 3Nicekb. The

phonon relaxation time of ice can be combined with the expression for void scattering via

Matthiessen’s rule

1

τEH
=

1

τice
+

1

τvoid
=
Nicekbν

2
ice

κiceVice
+

8πνEHr
2
void

VEH
, (6.12)

where rvoid is taken to be the average σ from the methane and xenon Lennard-Jones potentials,

and the EH volume and sound velocity are taken to be the thermal averages from QHA-LD
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calculations. The thermal conductivity of EH is then given by

κEH =
NEHkbν

2
EHτEH

VEH
, (6.13)

or by grouping the constant terms,

κEH = C1

(
C2

κice
+ C3

)
, (6.14)

where

C1 =
NEHkbν

2
EH

VEH
, C2 =

Nicekbν
2
ice

Vice
, C3 =

8πνEHr
2
void

VEH
. (6.15)

This analysis yields a relatively simplistic conversion from measurements of the thermal

conductivity of ice to the thermal conductivity of EH. Figure 6.6 reports the EH thermal

conductivity determined from Eq. 6.14. While phonon scattering due to vacancies and voids

can reduce the thermal conductivity of ice to a magnitude consistent with the conductivity of

gas hydrates, the scattering rates assume that the defects are positioned randomly throughout

the crystal.

6.4 CONCLUSION

We have shown, through a simple lattice dynamics model, that the thermal transport in ice

and gas hydrates is due to a combination of propagating low-frequency phonons and thermal

diffusion through higher frequency modes. Despite the apparent differences between the

behavior seen in the experimental measurements of ice and gas hydrates, the mechanism

proposed here can adequately explain the observations. The thermal conductivity in ice,

MH, XH, and EH can be qualitatively explained through anharmonic phonon scattering,

scattering from defects, and thermal diffusion in high frequency modes.
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6.5 SUPPORTING INFORMATION

6.5.1 Quasi-Harmonic Lattice Dynamics

The lattice constants of the crystals at P = 0 atm were determined through a free energy

equation of state. To determine the equation of state for the solids, the Helmholtz free energy

was calculated on a grid of 51 different lattice constants (11.45-11.95 Å and 4.350-4.600 Å

for the hydrates and ice, respectively) and 40 different temperatures (10-200 K) using the

GULP simulation package.118 Due to the small size of the supercells, a 5x5x5 grid of wave

vectors was employed during the phonon calculations. The Helmholtz free energies from the

grid were then fit to a 4th order polynomial, F(V,T). The vibrational DOS and mechanical

properties were determined between 10 and 200 K. Since lattice dynamics calculations only

give discrete frequencies, each vibrational mode in the DOS was broadened with a Lorentzian

line width of 0.5 cm−1 and the DOS was normalized to 3N , where N is the number of atoms

in the unit cell.

6.5.2 Characteristic Frequencies

The Debye cutoff frequency was determined with the standard formula54

ω3
D =

6π2v3sNm

V
, (6.16)

where vs is the speed of sound, V is the volume of the unit cell, and Nm is the number of

molecules in the unit cell. The number of molecules is employed in the formula so that the

Debye continuum only includes frequencies translational degrees of freedom. The frequencies

of the Einstein oscillators were determined by calculating the average frequency in the

three high energy regions of the DOS between T = 10-200 K. The three Einstein oscillator

frequencies were assumed to be constants in the model.
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7.0 SUMMARY OF THE DISSERTATION

7.1 CONCLUSION

In this dissertation, the vibrational and thermodynamic properties of the water-nitrate

complex, methane hydrate, xenon hydrate, and ice Ih have been discussed. Chapter 2

examines anharmonic coupling between the OH stretch and water rock degrees of freedom

in the NO−3 ·H2O complex. Effective Hamiltonian and vibrational configuration interaction

calculations confirm that the IRMPD spectrum of the dimer displays a Frank-Condon-like

progression in the water rock mode built on top of the OH stretch fundamental. Additionally,

the analysis shows that a Fermi resonance between the OH stretch fundamental and the

water bend overtone causes the first member of the progression to split into a strong doublet,

in the NO−3 ·H2O and NO−3 ·D2O isotopologues.

In Chapter 3 it is shown that the proton arrangement in gas hydrates can perturb the

structure of the crystal. The lattice constants of proton-ordered methane hydrate deviate

from the observed cubic symmetry by approximately 1%, independent of the size of the

supercell. While this effect is relatively small, the lattice constants of proton-disordered

methane hydrate converge to cubic symmetry as the size of the supercell is increased. Chapter

4 examines the properties of methane hydrate, xenon hydrate, empty hydrate, and ice Ih

through quasi-harmonic lattice dynamics calculations. The thermal expansion and elastic

properties of the solids determined using the QHA-LD approach are in qualitative agreement

with experiments and show that the phonons have more anharmonic character in the methane

hydrate and xenon hydrate than those in either empty hydrate or ice Ih.

In Chapter 5, the results of coarse-grained non-equilibrium molecular dynamics simulations

are reported for methane hydrate, empty hydrate, and ice Ih. While the thermal conductivity
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of all three solids exhibits a T−1 dependence consistent with crystaline solids, the coarse-

grained model reproduces the large difference in the magnitude of the thermal conductivity

of gas hydrates and ice. Finally in Chapter 6, the thermal transport mechanism in methane

hydrate, xenon hydrate, empty hydrate, and ice Ih is examined by employing a simplified

phonon density of states combined with analytic scattering approximations. The analytic

model suggests that in all four solids the low-frequency phonons produce a crystal-like T−1

dependence of the thermal conductivity combined with thermal diffusion through the the

librational degrees of freedom.

7.2 NOTES ON THE METHODS

While performing calculations on complex system, approximations are required to make the

equations tractable. I comment here on the algorithms and parameters employed during

the coarse-grained NEMD simulations. The coarse-grained NEMD simulations were initially

intended to be a tool to compare different approaches for the calculation of the thermal

conductivity (e.g. coarse-grained lattice dynamics, NEMD, and Green-Kubo simulations).

However, the early success of the NEMD simulations and the observation of strong size effects

lead to a full investigation of the thermal conductivity employing the coarse-grained model.

Since the size effects were first observed during tests of the computational methodologies,

some less common algorithms and simulation parameters were employed in the simulations.

For example, the time-constant of the Berendsen thermostat at the heat source and sink

was taken to be 2 fs. This extremely fast relaxation rate of the thermostat was employed

while trying to reduce the error bars on the extrapolated data, however, the effect of the

time-constant was not fully tested in the simulations. It is possible that a larger time-constant

(weaker coupling between the system and bath) would have produced different results. It

should be noted that the simulation boxes ranged from ∼40-1000 Å in length, while only

∼7 Å was included in the thermostated regions. Hence, the thermostats affected only small

portions of the whole simulation boxes.
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The use of two thermostats in the NEMD simulations can introduce statistical noise into

the calculated thermal conductivities. The preferred method for NEMD simulations (Reverse

NEMD, RNEMD) involves the application of a fixed thermal flux and the measurement of

the temperature gradient. RNEMD reduces the error present in the measurement of the

thermal conductivity by measuring a property that is essentially constant at steady-state (the

temperature gradient) and applying the flux. However, the system is initialized at a uniform

temperature and the system must form the steady-state temperature gradient before data

can be collected. One of the objectives of the NEMD method comparisons was to determine

if efficient simulations could be performed by initializing the non-equilibrium simulation box

with a temperature gradient to reduce the computational cost of reaching the steady-state.

Since the early NEMD simulations produced promising results, this approach was used in

the subsequent calculations.

7.3 FUTURE WORK

The research presented in this dissertation suggest several directions for future study. For

example, would be instructive to recalculate the vibrational spectrum of NO−3 ·H2O employing

a more accurate potential energy surface (PES). The vibrational CI and effective Hamiltonian

approaches employed in this dissertation utilized only a small subset of the anharmonic force

constants and a wave function based on a harmonic oscillator reference. The full PES (see

Appendix A) could be utilized in diffusion Monte Carlo simulations or CI calculations based

on a vibrational self-consistent field (VSCF) reference wave function.

The calculations of the thermal conductivity of gas hydrates and ice can be improved

by performing anharmonic lattice dynamics calculations and atomistic NEMD simulations.

Lattice dynamics calculations would aid in deciphering the thermal conductivity mechanism

by identifying individual phonons with long relaxation times (large contributions to the

thermal conductivity). By comparing the results of anharmonic lattice dynamics to atomistic

NEMD simulations with flexible water models and the coarse-grained NEMD simulations
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presented in this dissertation, the fine details of the thermal conductivity mechanism should

become clear.
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APPENDIX A

AB INITIO WATER-NITRATE POTENTIAL ENERGY SURFACE

A.1 ACKNOWLEDGEMENTS

This chapter describes unpublished work performed in collaboration with Dr. Daniel Schofield

(a former Jordan group post-doctoral fellow, currently a professor at Seattle Pacific University)

and Alan Nichol in the Csányi group at Cambridge.

A.2 INITIAL B3LYP AND CCSD(T)-F12 SURFACES

B3LYP/6-31+G(d) Born-Oppenheimer molecular dynamics simulations were performed for

NO−3 ·H2O employing the Turbomole package.94 The simulations were performed within the

microcanonical (NVE) ensemble using five different starting geometries. The trajectory was

sampled every 10 timesteps, which produced a data set containing 33955 geometries and

their corresponding energies. After removing duplicate structures, 31442 single point energy

calculations were performed at the CCSD(T)-F12b88/VTZ-F1289 (F12) level of theory in

MOLPRO .90 The potential energy surface (PES) was generated by fitting a permutationally

invariant polynomial constructed from Morse-like terms as described by Braams and Bow-

man.95 As in Chapter 2, the distortion from C2v symmetry is examined by defining the angle,

φ, between the vectors bisecting the HOH angle of the water molecule and the ONO angle of

the nitrate ion. The vectors are oriented so that the angle between them is 0◦ for the C2v
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Mode NO−3 ·H2O NO−3 ·D2O NO−3 ·HDO NO−3 ·DHO

15 3768 2742 3699 3766

14 3700 2683 2739 2690

13 1710 1441 1518 1501

12 1434 1373 1427 1425

11 1374 1247 1373 1372

10 1062 1062 1062 1062

9 830 829 829 829

8 735 720 720 720

7 720 715 716 716

6 716 537 672 634

5 369 265 292 309

4 246 203 221 219

3 194 186 190 189

2 38 37 37 38

1 29 26 27 27

ZPE 8462 7033 7761 7749

Table A1: Harmonic vibrational frequencies (cm−1) of the isotopologues of the water-nitrate

complex at the CCSD(T)-F12/VTZ-F12 surface level of theory.
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structure. Geometry optimizations employing the F12 surface predicted a structure with

φ ≈ 4◦, which is much lower than the angle predicted at the CCSD(T)/aug-cc-pVDZ level of

theory using analytical gradients.

Diffusion Monte Carlo calculations employing the fit surface (see Chapter 2) identified 212

geometries with energies thousands of wavenumbers below the ab initio global minimum of

the complex. The geometries of the molecules at these ”bad points” were essentially atomized.

Table A1 reports the harmonic frequencies of the water-nitrate isotopologues calculated using

the F12 surface. The most of the frequencies and the ZPEs are in good agreement with those

calculated at the CCSD(T)/aug-cc-pVDZ level of theory (Table 2.5), however, the OH stretch

and water rock frequencies are significantly different due to the above-mentioned change in

the φ angle.

A.3 AUGMENTATION OF THE SURFACE

The geometry and vibrational frequencies calculated using the F12 surface were in good

agreement with those obtained at the B3LYP/6-31+G(d) level of theory. However, the geom-

etry and key vibrational frequencies differ appreciably from the results obtained analytically

at the CCSD(T)/aug-cc-pVDZ level of theory. To ensure that the F12 calculations were

predicting the correct structures, additional single point energy calculations were performed

based on optimized geometries from different levels of theory, walks along the vibrational

modes, the ”bad points”, and random geometries near the stationary points. A total of 4943

geometries and energies were added to the F12 surface, however, the predicted geometries

and frequencies were essentially unchanged. To further test the accuracy of the F12 surface,

an alternative F12 surface was fit using only the 4943 new data points. Surfaces fit with the

original 31442 F12 data points, only the 4943 extra data points, and the total 36385 data

points produced nearly identical geometries and frequencies. The geometry optimizations and

frequency calculations employing the augmented F12 surface confirm that the F12 surface is

very accurate near the potential energy minimum.
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Method r1 r2 ∆r φ ωr ωb ωl ωs

B3LYP/6-31+G(d)a Surf 2.71 2.84 0.13 4.36 38 1744 3601 3684

B3LYP/aug-cc-pVDZ 2.58 3.06 0.48 15.82 50 1700 3490 3809

B3LYP/aug-cc-pVTZ 2.58 3.09 0.50 16.50 73 1701 3486 3807

B3LYP/aug-cc-pVQZ 2.59 3.05 0.46 14.88 89 1708 3514 3814

B3LYP/aug-cc-pV5Z 2.59 3.06 0.47 15.29 - - - -

MP2/6-31+G(d) 2.74 2.86 0.12 3.87 41 1768 3647 3723

MP2/aug-cc-pVDZ 2.56 3.03 0.48 15.68 89 1700 3522 3828

MP2/aug-cc-pVTZ 2.56 3.00 0.44 14.49 81 1699 3539 3831

MP2/aug-cc-pVQZ 2.58 2.92 0.34 11.05 66 1703 3596 3828

CCSD/aug-cc-pVDZ 2.59 3.05 0.46 15.05 86 1727 3621 3851

CCSD(T)/aug-cc-pVDZ 2.58 3.00 0.41 13.50 88 1713 3567 3800

CCSD/aug-cc-pVTZb 2.60 2.99 0.39 12.86 78 1731 3664 3865

CCSD(T)/aug-cc-pVTZ 2.59 2.92 0.33 10.80 - - - -

CCSD(T)-F12/VDZ-F12 2.64 2.84 0.21 6.80 22 1717 3666 3796

CCSD(T)-F12/VTZ-F12 Surf 2.68 2.79 0.11 3.58 35 1710 3700 3768

a Calculated with Turbomole, b Calculated with CFOUR

Table A2: Comparison of the geometries and frequencies calculated at different levels of

theory. The geometries are specified by the hydrogen-nitrogen distances (r1 and r2), the

difference between them (∆r = |r1 − r2|), and the φ angle. The geometry optimizations were

performed with the MOLPRO package except where otherwise noted.
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It should be noted that calculations performed with a small basis set, such as 6-31+G(d),

predict a nearly C2v geometry for the NO−3 ·H2O complex while calculations with larger

aug-cc-pVnZ (n=D,T,Q) basis sets predict a more highly distorted structure. However, in

comparing calculations employing the surfaces and ab initio methods, it became clear that

there is a strong basis set dependence and that the structure of the complex would have C2v

symmetry in the complete basis set limit (Table A2).

A.4 GAUSSIAN APPROXIMATION POTENTIAL

Csányi and coworkers141,16,142 developed the Gaussian approximation potential (GAP) to

generate accurate potential energy surfaces. The GAP method estimates the potential energy

based on the similarity of the structure to those in a library of ab initio geometries, energies,

and forces. The energy is inferred based on Gaussian process regression employing the known

energies. The surface can be systematically improved by adding to the data in the library

and the use of probabilities allows the surface to identify regions where the uncertainty is

high.

The 33955 B3LYP and 36597 CCSD(T)-F12 geometries and energies were sent to the

Csányi group (Cambridge) so that a GAP surface could be generated for the NO−3 ·H2O

complex. The dimer PES is constructed using two surfaces representing the isolated water

and nitrate molecules, along with a surface representing the interaction of the two monomers.

The water monomer surface was constructed as a GAP surface on top of the Partridge-

Schwenke143 potential for water. The nitrate monomer surface was created using the GAP

method and additional single-point energy calculations on the nitrate ion geometries at

the CCSD(T)-F12 level of theory. The monomer-monomer interactions are modeled using

electrostatic interactions between the molecules with corrections from a GAP surface based on

the interaction energies calculated at the CCSD(T)-F12 level of theory. The final combined

GAP surface is expected to be a significant improvement over the original F12 surface.
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APPENDIX B

NOTES ON THE FOLLOWING APPENDICES

The following chapters contain results from coarse-grained simulations of self-assembly. The

results were obtained under the guidance of Dr. David Earl at the University of Pittsburgh

between 2009 and 2010. Although the methodologies are consistent with the chapters above,

the simulations are unrelated to vibrational anharmonicity and thermal transport.
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APPENDIX C

SELF-ASSEMBLY OF DISCOTIC MOLECULES

C.1 INTRODUCTION

C.1.1 Self-Assembly

Many molecular systems self-assemble into more complex superstructures, and these systems

are important in technological and biological fields of research. Control of self-assembly is an

important goal in science and research often focuses on designing molecules to self-assemble

into a particular structure. In addition it would be valuable to design molecules in which

the self-assembly could be switched on and off. Both experiments and theory can be used

to design new molecules that take a desired structure. Cui et al.144 designed a system of

rod-like molecules that assemble into a crystal at high concentrations, but can be assembled

at lower concentrations by exposing the molecules to x-ray radiation. Yan et al.145 used

coarse-grained simulations to study a bent liquid crystal molecule that self-assembles into a

chiral column of random chirality, but could be doped to produce a consistent chirality.

One class of self-assembling molecules are discotic liquid crystals, which are rigid disk-like

structures. These molecules can assemble into columnar, nematic, and isotropic phases and

are often made up of molecules with an aromatic core. Figure C1 shows an example of the

structural order in the columnar and nematic phases. The isotopic phase is disordered in

all directions, the nematic phase has order in layers, and in the columnar phase the disks

grouped into stacks of molecules. Many different types of disk-like molecules are studied
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Columnar Nematic

Figure C1: 2D representations of the columnar and nematic phases.

with experimental and theoretical investigations, and the assembled structures can be quite

varied. Maeda et al.146 studied a system of half-disk molecules which combine to form whole

disks that stack into a columnar phase, and Mourad et al.147 studied a system of metal

hydroxyl ions that separates into a nematic and isotropic phase. Aida and coworkers148,149

experimented with hexa-peri-hexabenzocoronene with a two C12H25 chains on one side and

two (C6H4)-(OCH2CH2)3-(OCH3) chains on the opposite side. They found that this system

self assembles into a nanotube with a 14 Å cavity in tetrahydrofuran. Andrienko et al.150

used atomistic simulations to study hexabenzocoronene with aliphatic tails around the edges

of the disks. This system forms a columnar phase with several different packing structures,

however, the simulations of the disks were biased by starting with either a hexagonal or

rectangular columnar arrangement. A columnar liquid crystal phase can also show chirality.

One example is from the work of Barberá et al.,151 a melamine molecule hydrogen bonds to

three bent molecules made up of benzoic acid units. This hydrogen-bonded complex stacks

into columns and the bent molecules can twist so the whole complex takes on a propeller-like

shape.

Coarse-grained models are useful for studying systems that assemble into molecular

superstructures. Modeling self-assembly dynamics can be complicated due to the large

number of atoms in biological and liquid crystal forming molecules. By simplifying the models

used to represent the discotic molecules, simulations can be done on larger systems and larger

time scales. Cinacchi and Duijneveldt152 studied a system of contact lens-like particles which

form a isotropic phase, a nematic phase, and a cluster phase. The contact lens-like particles

were modeled as infinitely thin rigid particles, and the Monte Carlo simulations produced
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several phases observed in experiments. A single-bead model is the simplest method for

studying disk-like molecules, however, using more beads can add detail to the molecules being

studied.

C.1.2 Coarse-Grained Models

Coarse-grained models are a useful tool for studying complex systems and have several

advantages over atomistic models. A coarse-grained model reduces the number of particles in

the system and the number of interactions in the potential. This is usually accomplished

by combining several atoms into one larger bead and representing most of the long-range

interactions as a Lennard-Jones, (LJ), potential

ELJ(r) = 4ε

(
σ12

r12
− σ6

r6

)
, (C.1)

where ε is the depth of the well in the potential, σ represents the radius of the particle, and

ELJ is the interaction energy. The LJ potential is attractive when r is greater than 6
√

2σ, and

repulsive when r is less than 6
√

2σ. In atomistic models this potential is used to represent

the van der Waals forces due to excluded volume, dipole-dipole interactions, induced dipole

interactions, and dispersion interactions, however, in coarse-grained simulations it is used

to represent hydrophobic, hydrophilic, and hydrogen-bonding interactions as well. Another

common potential is the Weeks-Chandler-Andersen, (WCA), potential. The form of the

WCA potential is almost identical to the LJ potential, except that it is shifted and truncated

so that the potential is purely repulsive,

EWCA(r) =

 4ε

(
σ12

r12
− σ6

r6

)
+ ε r < 6

√
2σ

0 r ≥ 6
√

2σ

. (C.2)

The WCA potential is useful for two reasons, the first being that it is shorter range than the LJ

potential, and the second being that the WCA potential can keep particles from overlapping

without adding attractive forces. Representing all the possible long-range interactions of a

molecule as LJ and WCA interactions allows for simpler force field interactions and the forces

interact at a shorter range than force fields constructed using both the LJ and Coulomb

potentials.
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Coarse-grained models can be designed to represent both rigid and flexible regions of the

molecules. Rigid structures are useful when modeling molecules with a specific geometry or

when it is beneficial to limit the degrees of freedom in the simulation. However, there are

some regions in many molecules that require flexible chains of particles, and the chemical

bonds are typically modeled with a simple harmonic bond potential

Eharm(r) =
k

2
(r − r0)2 , (C.3)

where k is the spring force constant, r0 is the bond length, r is the distance between the

beads, and Eharm is the bond energy. This equation can also be used to restrain angles, θ in

calculations by replacing (r − r0) with (θ − θ0), and using the small angle approximation

Ebend(θ) =
k

2
(θ − θ0)2 . (C.4)

Other interactions can be modeled in force fields using Coulomb, dihedral angle, and

hydrogen-bonding potential terms. Neglecting the electrostatic interactions tends to speed

up a calculation since electrostatics are calculated using a potential proportional to 1
r
, which

requires a large cutoff in a neighbor list. The dihedral angle potentials are generally neglected

in coarse-grained models for simplicity and the fact that many of the particles in atomistic

simulations are included in larger beads.

Since coarse-grained models often employ the LJ potential to represent all of the molecular

interactions, the macroscopic properties are often defined in terms of σ and ε. The reduced

temperature (T ?) and pressure (P ?) are defined as

T ? =
Tkb
ε

, (C.5)

and

P ? =
Pσ3

ε
. (C.6)
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Figure C2: Structures of the four generic disks.

C.2 GENERAL DISKS

C.2.1 Description

Several general disk-like molecules were studied using molecular dynamics simulations in the

NPT and NVT ensembles. The disks were represented as rigid molecules with a central bead

and several branches, each branch consisted of three LJ beads (type A) followed by two WCA

beads (B) on the end. The first branches were evenly spaced starting with three branches in

a ”Y” shape, then four branches in a ”+” shape, and so forth. Figure C2 shows the shapes

of the four generic disks that were used in the simulations. The beads on the outside are

the solvophilic B beads, and the inner beads are the solvophobic A beads. For the general

disks, all σ and ε values were kept at a value of 1.0, and simulations were preformed with

and without solvent. When solvent was included, 20,000 beads of type B were used as the

solvent. Beads of type A were LJ attractive to other A beads, and all other interactions were

WCA repulsive. The various shapes are named based on the number of branches in the core

of the molecules by using a prefix (e.g. tri-branched).

Most of the simulations were performed at six different reduced temperatures between

T ? = 0.5 and T ? = 3.0 in increments of 0.5, while the reduced pressure was gradually increased.

In addition to the pressure annealing simulations, the tri-branch disks were also simulated

at a constant pressure while the the temperature was gradually decreased. The tri-branch

simulations were performed first and since the six pressure annealing simulations seemed to

produce the best results, all other simulations were performed under the same conditions
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and the pressure dependence of all the systems seemed to be small. The observations and

plotted data discussed below are all based on the same procedure of six simulations with the

pressure increasing slowly. These pressure-annealing simulations allowed for large portions of

phase-space to be sampled.

Simulations were performed using an in house code, Pittsburgh Molecular Modeling. Each

simulation had 5,000,000-15,000,000 simulation steps and all plots were produced under

the same conditions. Each unsolvated simulation contained 1000-3000 disks, each solvated

simulation contained 500 disks and the number of disks included the unsolvated simulations

did not seem to have a strong effect on the structures. The simulation time step was 3 fs, the

temperature and pressure were controlled using the Nosé-Hoover thermostat and barostat

and data was printed every 10,000 time steps to save disk space. Since the simulations

were coarse-grained, the temperature, pressure, and energies were all in reduced units. The

reduced units cause all physical properties to be relative to force field parameters and kT ,

however, the trends remain the same in real units. The temperature and pressure range used

in most of the simulations kept the system as a liquid, and freezing was observed only at

very high reduced pressures.

C.2.2 Tri-branch

Simulations of the tri-branch disks with no solvent formed either an isotropic phase or

clustered into a micelle-like phase. No long column phase was observed, however some of the

disks did stack on top of one another, and more disks appear to stack as the temperature

was increased. Simulations including solvent show the tri-branch disks forming clusters at

low temperatures, and an isotropic mixture at high temperatures. Two types of clusters were

observed in the simulations. The first type appeared in very low temperature simulations, and

consisted of an elongated cluster with little overall order to the structure. The second type

appeared in slightly higher temperature simulations, and consisted of micelle-like structures

where several stacks of 2-3 tri-branch disks would interlock to form a micelle-like structure.
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C.2.3 Quad-branch

Simulations of the quad-branch disks showed the formation of short stacks of about 3-5

molecules in the absence of solvent. The solvated quad-branch disks showed a tendency to

form elongated clusters at low temperatures, and then form short columns that grouped

together. The grouped columns alternated direction and sometimes formed a structure

that resembles a branched column. The stacks and columns got longer as the temperature

was increased, but then started getting shorter and the higher temperature systems moved

towards an isotropic mixture.

C.2.4 Penta-branch

Simulations of the unsolvated penta-branch disks showed the formation of short columns at

low temperatures and the formation of long columns at higher temperatures. The columns

that formed were randomly oriented, and no highly ordered columnar phase was observed.

The solvated penta-branch disks formed short columns at low temperatures and the columns

got longer as the temperature was increased. The columns were not ordered in any way, but

rather formed in random directions.

C.2.5 Hexa-branch

Simulations of unsolvated hexa-branch disks showed the formation of columns at all temper-

atures. The columns were randomly oriented, and became longer at higher temperatures.

The solvated hexa-branch disks form short stacks at low temperatures and then form long

columns at higher temperatures. Simulations at higher temperatures formed columns that

spanned almost the entire box length.

C.2.6 Results

Simulations of the tri-branch disks showed formation of only clusters and micelles, while the

penta-branch and hexa-branch disks formed long columns. The quad-branch disks were in

between the tri-branch and penta-branch disks and formed short stacks and long clusters. None
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Figure C3: Radial distribution function for the four unsolvated generic disks at a reduced

temperature of T ? = 1.5.
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Figure C4: Radial distribution function for the six unsolvated penta-branch simulations at

different reduced temperatures.
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of these discotic molecules formed the highly ordered columnar phase observed in experiments

and atomistic models. Experimental results for discotic molecules show the formation of a

hexagonal columnar phase and a nematic phase.153 According to Chandrasekhar et al.,153

the nematic phase is less common than the columnar phase for discotic liquid crystals. The

experimental results also show that long side chains are required for the formation of liquid

crystal phases and that realistic models need to account for the flexible side chains. There are

several possible explanations for the difference between the generic disks and experimental

results, first, all forces in this model are spherically symmetric, while atomistic models and

experiments have directional forces such as π−π stacking. Second these disks have no flexible

side chains, the side chains are rigid WCA repulsive particles which do not allow the columns

to get close together. Third, the generic disks had very short side chains, not the long chains

in the experimental systems. The generic disks studied in this work do show some general

trends. As the temperature was increased, the molecules switch from forming clusters and

small stacks to forming long columns. The columns appear to get longer as the simulation

temperature is increased, but then the length starts to decrease again. If the temperature

increase was continued the disks would be expected to return to an isotropic phase. All the

geometries appeared to form columns at different temperatures, but the general trend is that

the molecules with more branches form more stable columns.

The radial distribution function, g(r), was calculated for the unsolvated generic disks by

using the distribution of the center bead of each disk.

g(r) =
ρshell
ρideal

=
NshellVT
NTVshell

(C.7)

Here ρshell is the density of the shell between r and dr, ρideal is the density of the whole

system, Nshell is the number of particles in the shell, Vshell is the volume of the shell, VT is

the total volume, and NT is the total number of particles. The plots in Figure C3 show an

increasing number of peaks as the number of branches in the disk increases which implies

that the disks with more branches form structures with longer ranged order. The g(r) plots

also shows an increasing peak heights as the branches are increased which is due to more

of the disks being in a column-like structure. The g(r) plots in Figure C4 show that as the

temperature increases, columns get longer, but then start to shorten again as can be seen in
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the plots of the unsolvated penta-branch disk at the six simulation temperatures. The peak

height and number of peaks increases between T = 0.5 and T = 2.5, but then the plot for

T = 3.0 has peaks that are similar to T = 2.0.

C.3 EXPERIMENTAL DISKS

C.3.1 Description

Two of the experimental systems listed above were also studied using coarse-grained models.

The first system was the hexabenzocoronene with C12H25 chains on one side of the molecule

and (C6H4)-(OCH2CH2)3-(OCH3) chains on the other side, which will be referred to as HBC.

Several models were used to study the HBC molecules, most of the models represented each

aromatic ring as one bead and each chain as three beads, which produces a thirteen bead

hexagonal disk with solvophobic chains on one end and solvophilic chains on the other end.

The experimental and coarse-grained structures are shown in Figure C5. The models that

were used in the simulations can be viewed as a progression towards greater detail. The

simplest model is a hexa-branch disk altered so that one half of the disk is solvophobic and the

other half of the disk is solvophilic, which creates a generic disk with symmetry similar to the

experimental HBC disk. The rest of the HBC models have the geometry of the experimental

structure shown in Figure C5b. One model is completely rigid with all σ and ε values set to

1.0, another is the same except the chains attached to the disk are flexible, and the other two

are parametrized with experimental thermodynamic data.

The second experimental system is based on a system that consists of a melamine core

with three bent molecules hydrogen bonded to the core, and this hydrogen-bonded complex

will be referred to as a propeller molecule. The propeller system was represented as a three

bead triangle for the core, with the bent molecules having one bead for each benzoic acid

unit, and two flexible beads for the carbon tails on the bent portion. The model was also

parametrized using experimental thermodynamic data.
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(a) (b)

Figure C5: (a) Experimental and (b) coarse-grained HBC molecules.

Most simulations of the experimental disks were performed under the same conditions as

the six pressure annealing simulations for the generic disks discussed above. Additional low

density simulations were performed for the HBC molecules using the NVT ensemble with

Brownian dynamics so that the solvent effects were represented as a frictional term and force

with a random magnitude and direction. For the propeller molecules a wider temperature

range was used since the experimenters reported the formation of the super-structures at

high temperatures.

C.3.2 Generic HBC Molecules

Parameters and interactions for the first HBC model are show in Table C1. The atom

types are as follows: G represents the aromatic core, I represents the solvophilic regions,

B represents the solvophobic regions, and S represents the tetrahydrofuran solvent. For

simplicity, all σ, ε, and mass values were set to 1.0.

Simulations of the rigid HBC disks with no solvent showed the formation of columns

that spanned most of the box, although the orientations of the columns were distributed

randomly. Simulations of the solvated rigid HBC disks resulted in the formation of clusters
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Type Mass σ ε Type G I B S

G 1.00 1.00 1.00 G LJ WCA WCA WCA

I 1.00 1.00 1.00 I WCA LJ WCA LJ

B 1.00 1.00 1.00 B WCA WCA LJ WCA

S 1.00 1.00 1.00 S WCA WCA WCA WCA

Table C1: Parameters (right) and interaction table (left) for the basic model of HBC.

at low temperatures and long columns at mid to high temperatures. The columns would

form clusters of 2-3 columns where the solvophobic tails were in the middle of the cluster of

columns. The columns were mostly oriented in the same direction in the highest temperature

simulation.

Simulations of solvated flexible HBC showed small layer-like structures, short columns,

and clusters at low temperatures and large bilayers, monolayers, and columns formed at

higher temperatures. In the mid temperature range the most stable structure was either a

monolayer made from 2-3 columns or a bilayer made from two monolayers. As the temperature

increased, columns with the solvophobic regions paired up started to appear, and in the

highest temperature simulation only these paired columns were present.

Simulations of the hexa-branch disks with one half of the disk solvophobic and the other

half solvophilic where performed in solvent. Low temperature simulations of this model

produced short columns that sometimes clustered so the solvophilic parts were together.

Simulations with mid to high temperatures showed the formation of long columns that

grouped into clusters of 3-6 columns to shield the solvophobic beads from the solvent.

C.3.3 Parametrized HBC Molecules

The HBC disks were parametrized so that the ε values were not the same among different

types of particles. Thermodynamic data from the literature was employed to estimate the

ε values of each bead. The ε values for the interaction of two different types of beads were
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Type Mass σ ε Type G I B S

G 1.00 1.00 1.44 G LJ WCA WCA WCA

I 1.00 1.00 1.06 I WCA LJ WCA LJ

B 1.00 1.00 1.00 B WCA WCA LJ WCA

S 1.00 1.00 1.55 S WCA WCA WCA WCA

Table C2: Parameters (right) and interaction table (left) for the parametrized HBC model.

generated using the combination rule εij =
√
εiiεjj. The data used to generate the values

came from the standard state enthalpy of vaporization or sublimation of compounds similar

to the four particle types. For instance, the core of the HBC molecule is made up of fifteen

aromatic rings, so the enthalpies of aromatic compounds were divided by the number of

aromatic rings and averaged to estimate the well depth of the aromatic ring LJ interaction.

After the well depths for each bead were determined, all the energies were divided by the

smallest value to produce relative interaction energies. The result was a series of ε values

near 1.0, but different for each bead. Table C2 shows the parameters and interactions that

resulted from this process.

Solvated simulations of HBC with this force field produced small bilayers at low tem-

peratures, large bilayers at mid temperatures, then long unpaired columns at the highest

temperature. This force field produced a wide range of structures, the smallest bilayers were

about the size of a micelle, while the largest had almost every molecule in one bilayer. As

the temperature increased monolayers, bilayers, and paired columns started to form, only to

be replaced by long columns at the highest simulation temperature.

C.3.4 Re-parametrization

The second parametrization method divided the aromatic ring beads into three different

types. Different regions of the aromatic core were given different interaction strengths, the

center bead and the six surrounding beads were parametrized using coronene, the two lone

118



Type Mass σ ε

G 1.32 1.00 1.31

A 1.34 1.00 1.08

C 1.40 1.00 1.16

I 1.00 1.00 1.01

B 1.04 1.00 1.00

S 1.33 1.00 1.23

Table C3: Parameters for the re-parametrized model of HBC.

aromatic rings attached to the solvophobic tails were parametrized using benzene, and to

account for the hydrogens on the outside of the disk, the outer six aromatic beads were

parametrized with hexane. After the new set of ε values were generated, the masses of each

bead were changed so that each bead had a mass appropriate for its composition. Table C3

shows the parameters for the new beads. In the new model A represents the aromatic beads

on the outer edge of the core, and C represents the aromatic rings attached to the solvophilic

tails. Table C4 shows the interaction types for the different beads.

The solvated simulations using this force field produced mostly small bilayers. The higher

temperature simulations showed some larger bilayers, columns, and monolayers, but majority

of the molecules were in small bilayers.

C.3.5 Results

The simulations using the first parametrized force field appeared to capture structures closer

to the experimental structures than the other models for HBC. Due to the large size of the

experimental structure, none of the simulations contained enough molecules to form the whole

graphitic nanotube. Since the tube is made up of a large bilayer, the formation of bilayers

and paired columns is similar to the experimental structures, however, larger simulations
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Type G A C I B S

G LJ LJ LJ WCA WCA WCA

A LJ LJ LJ WCA WCA WCA

C LJ LJ LJ WCA WCA WCA

I WCA WCA WCA LJ WCA LJ

B WCA WCA WCA WCA LJ WCA

S WCA WCA WCA WCA WCA WCA

Table C4: Interaction table for the re-parametrized model of HBC.

would be required to see the layers or columns twisting into a tube or forming a bilayer which

exhibits curvature.

C.3.6 Propeller

The coarse-grained model for the propeller molecule was parametrized by using benzoic acid

for the beads on the bent molecule and using melamine for the core. The core had three

beads to represent the ring and one bent molecule was bonded to each ring bead. The bent

molecules were made up of five benzoic acid beads in a ”V” shape, and two carbon chain

beads at the end of each side of the V. The bent molecules were held in place via a harmonic

bond to the ring and two harmonic angle terms between the ring, bent molecule, and a

dummy atom. The model was designed to approximately hold the whole molecule planar,

but allow the V shaped parts to rotate.

C.3.7 Results

In the lowest temperature simulation, the propeller molecules separated from the solvent

and as the temperature increased the molecules formed clusters, pairs, and long column-like

structures. The column-like structures that formed were not columns of the disk-like core, but
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rather elongated structures with no overall order to the disk-like cores. No chiral structures

were observed, even when just two molecules were stacked into a pair.
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APPENDIX D

SELF-ASSEMBLY OF PEPTIDE AMPHIPHILES

D.1 INTRODUCTION

D.1.1 Description

Peptide amphiphiles are an important class of molecules for self-assembly research. Ex-

periments have shown peptide amphiphiles can assemble into layers, fibers, micelles, and

helical structures. Chen et al.154 designed peptide amphiphiles that self-assemble with gold

nanoparticles to form double helices. The nanoparticle-amphiphiles building blocks consist

of C11H23CO-AYSSGAPPMPPF chains attached to gold nanoparticles. The double helix

consists of two ribbons of the amphiphile with the the hydrophobic tails of the ribbons paired

up. The double ribbon then twists into a helix, with the nanoparticles on the outside.

Research by Meister et al.155 also showed the formation of a helical structure using

amphiphiles and gold nanoparticles. The amphiphile used in their work was a bipolar

phospholipid, resembling a bola, which form a fiber structure containing a helical arrangement

of molecules. The achiral molecules were shown to form this chiral structure in both the

experiments and Monte Carlo simulations containing only two atom types. The atom types

included in the simulations were large hydrophilic head beads and smaller hydrophobic spacer

beads.

Purely theoretical models have been developed based on physical properties, coarse-

grained simulations, and atomistic simulations.156,157 The complexity of the model used

122



has a direct impact on the information that can be extracted from the research. Simple

models can be created by writing Hamiltonians or free energies in terms of system properties,

environmental conditions, and concentrations of molecules. Designing equations to model

the system is efficient, however, the approach focuses on bulk properties instead of giving

detailed chemical insight. More complex models have been developed that focus on entropic

and geometric effects, these models can show which structures are likely to form, even in

the absence of chemical detail. Snir and Kamien158 showed that a column could adopt a

helical structure with just a hard sphere model to represent the interactions of particles, and

Tsonchev et al.159 showed that micelles have a higher factional density than other possible

structures which makes that structure very stable.

Simple coarse-grained models of amphiphiles can also be developed based lattice Monte

Carlo simulations. Panagiotopoulos and coworkers160,161 used grand canonical Monte Carlo

simulations to study the structure formation of rigid nanoparticles with flexible tails. These

simulations were used to produce phase diagrams, calculate free energies, and calculate

osmotic pressures of the various shapes and sizes of nanoparticles. Lattice models have an

advantage over atomistic and other coarse-grained models due to the lower computational

cost of Monte Carlo simulations on a lattice. Since the distance between lattice points is

already known, costly distance calculations are unnecessary, and larger systems or longer

simulation times can be achieved. However, since lattice models restrict where a particle can

be located, structural details such as chirality may be lost.

Ratner and coworkers159,162,163,164 used atomistic molecular dynamics simulations to study

the structure formation of Zwitterionic peptide amphiphiles. Their work showed that the

structure formation was due to a combination of the hydrogen bonding of the region near

the carbon tail, the dipole of the head group, and the hydrophobic and hydrophilic effects.

Their work produced phase diagrams for the amphiphiles based on the pH and composition

of the mixture, as well as showing that a curved structure is more stable than an uncurved

structure.
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D.1.2 MARTINI Force field

Marrink and coworkers165,166,167 have developed the coarse-grained MARTINI force field

which attempts to capture atomistic detail while still being efficient enough to be useful

for studying large systems and biologically important molecules. The model was originally

designed to study the self-assembly of lipids and surfactants, however, it was later extended

to amino acids and proteins. The model uses approximately four heavy atoms per bead, and

represents most interactions with the Lennard-Jones and harmonic bond potentials. Charges

can be added to some of the beads to represent the effects of pH on structure formation, and

dihedral angle potentials can be used to include geometric details such as a ring being planar

and an amino acid sequence having a helical conformation. This model is simple, 5-10 times

faster than atomistic simulations, has faster diffusion and kinetics, and reproduces structures

and phases consistent with experimental observations.

D.2 MARTINI PEPTIDES

D.2.1 Methods

Molecular dynamics simulations of C11H23CO-AYSSGAPPMPPF were preformed using the

MARTINI force field and the GROMACS software package while varying the concentration

of amphiphiles, system size, and pH. The pH was varied by simulating both the protonated

and deprotonated forms of the amphiphile, and the deprotonation was assumed to occur at

the last amino acid in the chain. Both NVT and NPT simulations were used for comparison

and the simulation size was changed to test for size effects on the structure formation. Three

different mole fractions (0.005, 0.010, and 0.030) of amphiphiles were used in the simulations.

In addition to the simulations of C11H23CO-AYSSGAPPMPPF, calculations were per-

formed with variations of the peptide amphiphile structure. Extra alanines were added to

the start of the peptide near the carbonyl, the AYSS sequence was repeated, and the carbon

tail was lengthened. These changes were made so the effects of the hydrophobic interaction
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and the formation of beta sheets could be assessed (the AYSS sequence was thought to form

a beta sheet in the double helix structure).

D.2.2 Results

The structures of the MARTINI peptide amphiphile is shown in Figure D1a, the four beads on

the left represent the hydrophobic tails, the eight beads arranged with triangular arrangement

represent the ring structures, and the remaining beads represent the amino acids and their

side chains.

Several different phases and structures were found in an analysis of the simulations,

including an isotropic phase, columns, layers, micelles, and a network structure. Both the

column and layer structures had two variations, the protonated molecules formed flat layers

and straight columns, while the deprotonated molecules formed a wavy layer and a column

that appeared to have either a wave or a twist. With the exception of the network structure,

all of the simulation structures corresponded to a structure seen experimentally, however,

the structures found in the simulations displayed some unusual properties. For instance,

both layers and wavy layers are seen experimentally, however, the layers from the MARTINI

peptides had some of the hydrophobic beads exposed to the solvent. The layer seemed

to be made up of peptide regions with hydrophobic pockets distributed across the surface.

Additionally, the other structures had the hydrophobic regions exposed to the solvent instead

of being shielded by the hydrophilic regions. The network structure seemed to form in the

higher concentration and larger simulation boxes, and was characterized as having all the

amphiphiles along the edges of the simulation box.

The amphiphiles constructed with the MARTINI force field systems did model self-

assembly and produced structures with superficial similarities to experimental work, however,

the results were not accurate enough to give insight or predict properties. Since the MARTINI

model does produce accurate simulations of lipid bilayer formation, it can be concluded

that peptide amphiphiles are too far removed from the molecules used to parametrize the

MARTINI model.
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(a) (b)

Figure D1: (a) MARTINI and (b) Monte Carlo versions of C11H23CO-AYSSGAPPMPPF.

D.3 OTHER MODELS

Two models that are more coarse-grained than the MARTINI force field, but tailored towards

C11H23CO-AYSSGAPPMPPF were designed using just four atom types. The first type was

hydrophobic beads for the tail that interacted with themselves via the LJ potential, and the

WCA potential for all other beads. The second type was a protein bead that was LJ attractive

to the solvent and other protein beads, but WCA repulsive to the hydrophobic beads. The

third type was a solvent bead, and the last bead was a beta sheet forming bead. The beta sheet

forming bead was constructed so that it was LJ attractive to itself in one direction and WCA

repulsive to itself in the perpendicular direction. The model also had the option of turning

on dipole forces on the protein beads. The C11H23CO-AYSSGAPPMPPF structure under

this model would become CCCCCC-BBBBPPPPPPPP, and could capture the hydrophobic,

hydrophilic, hydrogen bonding, and dipoles deemed important in the literature. This model

is shown in Figure D1b, the six beads on the left represent the hydrophobic tails, the four

beads in the middle represent the peptides that want to form beta sheets, and the eight beads

on the right represent the hydrophilic peptides.

The difference in the two models was the choice of simulation methods. The first model

used molecular dynamics simulations to study the self-assembly while the second model used

a lattice Monte Carlo method. The purpose of these models was to test if the four interactions

mentioned above were enough to form either the ribbon or double helix structures reported

by Chen et al., however, the parameterization was never completed during the course of this

research.
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