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ABSTRACT 

Current antiretroviral therapies effectively slow AIDS progression and lengthen the life of AIDS 

patients but sadly, cannot completely cure HIV-positive individuals. The development of drug-

resistance in HIV often renders the current anti-HIV therapeutic regimens ineffective and even 

contraindicated in some cases. Thus there exists an urgent need to identify alternate targets for 

the discovery and development of newer anti-HIV drugs. A promising approach lies in targeting 

an underexplored yet critical accessory factor in HIV pathogenesis – Nef, which promotes AIDS 

progression by binding to a plethora of host cell factors leading to altered cell signaling. 

Identifying novel host factors that are direct effectors for HIV-1 Nef will enable future drug 

discovery directed against this key HIV virulence factor.  

In the first part of my dissertation study, I developed a novel, cell-based approach to 

explore the scope of Nef-SH3 interactions. Particularly, I explored the interaction of Nef with 

Tec-family kinases and their relevance to HIV biology. This assay allowed direct visualization of 

protein-protein interactions between Nef and three Tec family members – Bmx, Btk and Itk in 

live cells.  Interaction occurred between the SH3 domains of the kinases and a conserved 

polyproline motif on Nef. Allelic variants of Nef representing all the M-group HIV-1 subtypes 

interacted strongly with Itk demonstrating the highly conserved nature of this interaction. 

Interaction with Nef induced Itk activation which was reversed by treatment with an Itk inhibitor 

that also potently blocked Nef-dependent HIV replication. These results provide the first 
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evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family, and suggest that 

Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle. 

In the second part of this study, I validated the biological relevance of a newly 

determined high resolution crystal structure of Nef in complex with its best characterized kinase 

binding partner, Hck. Using human and yeast cell-based systems, I have shown by mutagenesis 

studies that the newly recognized intercomplex contact between Nef R105 and E93 in the RT 

loop of the SH3 domain is critical to complex formation and function. These results renew our 

perception of the Nef:Hck binding interface by offering new insight into possible conformations 

for the active Nef:Hck complex, which is essential for Nef function and further establishes it as a 

valid druggable target for HIV-1. 

Taken together, the studies presented in this dissertation deepen our understanding of the 

interaction between the HIV-1 virulence factor Nef and the Src family kinase, Hck; identify 

additional novel cytoplasmic tyrosine kinases that are direct SH3-based effectors of HIV-1 Nef 

and validate a novel virus:host cell interaction as a potential target for therapeutic intervention. 

Thus, my results not only have a strong public health significance and advance the field of HIV 

research, but also offer a step forward in our combat against what remains as one of the most 

relevant public health menaces of today – HIV/AIDS. 
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1.0  INTRODUCTION 

1.1 HUMAN IMMUNODEFICIENCY VIRUS 

1.1.1 AIDS AND HIV 

In 1981 the Centers for Disease Control and Prevention (CDC) reported the occurrence of 

Pneumocystis carinii pneumonia (PCP) in five previously healthy gay individuals [1, 3]. The 

unexplained incidence of this cellular-immune disorder in men with no prior history of 

immunodeficiency, was indeed the first report of what, a year after came to be known as 

acquired immunodeficiency syndrome (AIDS). The etiological agent of AIDS in humans was 

discovered in the laboratories of Drs. Robert Gallo and Luc Montagnier in 1983 [30, 117]. Barre-

Sinoussi and co-workers recovered a retrovirus from the lymph node of an individual suffering 

from lymphadenopathy syndrome (LAS), a condition that was believed to be associated with 

AIDS at that time. This retrovirus exhibited characteristics similar to that of Human T-cell 

Leukemia virus (HTLV). Gallo and his group concurred on finding HTLV isolates from AIDS 

patients during the same time. However, the unlikeliness of HTLV being the etiologic agent of 

AIDS was supported by the fact that this virus was lymphotropic, had high-titer replication in 

CD4+ cells yet was cytopathic and resulted in a characteristic loss of the CD4+ target 

population. Besides, hemophiliacs were also reported to have AIDS [2]. Further studies 
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corroborated the fact that this new human retrovirus was similar to HTLV in infecting CD4+ 

lymphocytes but had very distinct properties in being cytolytic - killing its target cells instead of 

producing immortalized stable cell lines as is characteristic of a typical HTLV [116, 210, 232]. 

Initially known by multiple names including Human T-Lymphotrophic virus III (HTLV-III), 

Lymphadenopathy-associated virus (LAV) and AIDS-associated retrovirus (ARV), the retrovirus 

was ultimately renamed by the International Committee on Taxonomy of Viruses as human 

immunodeficiency virus (HIV) in 1986 [69, 70]. The HIV/AIDS pandemic has expanded ever 

since, and thirty-three years later, continues to baffle the scientific community and remain as a 

major global public health issue. 

In these three decades, according to the World Health Organization (WHO), HIV/AIDS 

has claimed nearly 36 million lives. The most recent epidemiological estimates of 2013 from 

UNAIDS/WHO show that 35.3 million people worldwide are living with HIV/AIDS (Table 1.1). 

During 2012 alone, nearly 2.3 million adults and children were newly infected with HIV while 

1.6 million estimated individuals died of AIDS [4]. Sadly, sub-Saharan Africa happens to be the 

most affected region in the world, where nearly 1 in every 20 adults is infected with HIV. 

Overall, 69% of all people worldwide living with HIV resides in this region (Figure 1.1). 
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Table 1.1. Global HIV and AIDS statistics (regional estimates), 2012.  

 
Individuals living 

with HIV 
(millions)* 

Individuals newly 
infected with HIV 

(millions)* 

Adult 
Prevalence 

(%)* 

Deaths due to 
AIDS 

(thousands)* 

Sub-Saharan Africa 25.0  1.6 4.7 1200 
South and South-East Asia 3.9 0.27 0.3 220 

East Europe and Central Asia 1.3 0.13 0.7 91 
Latin America  1.5 0.86 0.4 52 
North America 1.3 0.048 0.5 20 

East Asia 0.88 0.081 <0.1 41 
Middle East and North 

Africa 
0.26 0.032 0.1 17 

Caribbean 0.25 0.012 1 11 
Western and Central Europe 0.86 0.029 0.2 7.6 

Oceania 0.051 0.0021 0.2 1.2 

TOTAL 35.3 2.3 0.8 1600 

Adapted from [4]. 

* The numbers reported here are estimates, based on the best information available. 
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Adapted from [4] 
Figure 1.1. HIV prevalence among adults in 2012 
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1.1.2 SIV AND HIV 

The history of simian immunodeficiency virus (SIV) dates back to as early as 1969 when housed 

rhesus macaques (Macaca mulatta) at the California Regional Primate Research Center 

reportedly had an outbreak of lymphomas. This apparently non-infectious condition was found to 

be accompanied with immunodeficiency in these animals and eventually led to the onset of 

opportunistic infections. Several years later the first prototypic isolates of SIV, the causative 

agent of what later came to be known as simian AIDS (sAIDS), were isolated [119, 312]. HIV 

and SIV both belong to the Lentivirus genus of the subfamily Orthoretrovirinae and family 

Retroviridae. Both of these viruses infect primates. Primate lentiviruses are subdivided into five 

distinct groups based on their sequence homology – HIV-1/SIVcpz, HIV-2/SIVmac/SIVsm, SIVagm, 

SIVsyk, SIVl’hoest’/SIVmnd [343]. Alignment of full genome sequences of HIVs and SIVs reveal 

genetic similarity as well as differences amongst all members. Based on molecular 

epidemiologic data and the high sequence homology, it is believed that the most common type of 

HIV that infects humans, HIV-1, was derived from SIVcpz, the strain that infects Pan troglodytes 

troglodytes subspecies of chimpanzee. Similarly, HIV-2 was derived from the other form of SIV 

found in sooty mangabeys (SIVsm) (Cercocebus atys). HIV subtypes 1 and 2 share merely 50-

60% sequence homology and thus lie on distinctly separate branches on the phylogenetic tree 

[17].  In fact HIV-2 shares greater similarity with SIV than with HIV-1. HIV-2 is predominantly 

found in the regions of Guinea-Bissau and Senegal in West Africa [187]. All of these viruses 

commonly infect CD4+ cells including macrophages and lymphocytes. In natural infections, SIV 

unlike HIV-1 does not cause illness but supports high-titer viral replication. However, rhesus 

macaques experimentally infected with SIV have been reported to develop AIDS-like disease. 
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Taking advantage of this finding, these experimentally infected monkeys have proved to be 

useful models for infection and disease progression in humans [52, 181].   

Based on alignment of full-length genome sequences, HIV-1 is subdivided into four main 

groups – M (major), N (neither M nor O), O (outlier) and P (pending identification of further 

human cases). It is likely that an independent cross-species transmission event gave rise to each 

of these groups. The M group constitutes the pandemic form of HIV-1 that likely emerged as a 

consequence of multiple cross-species transmission of SIVcpz to humans during the first score of 

the 20th century. Group M is further subdivided into nine subtypes or clades: A, B, C, D, F, G, 

H, J, and K, which are widespread and unique with respect to their global distribution (Figure 

1.2). Clade B is mostly prevalent in America, Europe and Oceania while clade C is the 

predominant subtype in South Africa, Indian subcontinent and China. Clade A is mostly 

circulating in North Asia, Western and Central Africa [17, 53, 157]. In regions where multiple 

clades co-exist, circulating recombinant forms (CRFs) of HIV-1 are generated. Through 2011, a 

total of 48 CRFs have been described. Epidemiological data report that subtype C infections 

account for nearly 48% of all global infections, while subtypes A (12%), B (11%), CRF02_AG 

(8%), G (5%) and D (2%) follow closely.  All the clades of M group taken together, exhibit more 

than 25% variation in their amino acid sequences in the Env and Gag regions [251, 336]. HIV-1 

Group N was discovered much later in 1998 and to date only 13 cases have been reported from 

Cameroon. Group O represents less than 1% of global infections. It was discovered before group 

N in 1990 and to date has been prevalent only in Cameroon, Gabon, and the neighboring regions.  

The most recently identified (2009) group P was found to have greater homology in its sequence 

with SIVgor (found in wild gorillas) than SIVcpz and has been documented for only two cases in 

Cameroon [187]. 
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Adapted from  [53]  
Figure 1.2  Global distribution and diversity of HIV-1 M group clades 
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1.1.3 HIV-1: Structure, Genome and Proteins 

HIV-1, the causative agent of AIDS, is a member of the exogenous Group VI viruses (ssRNA-

RT) since it uses its virally encoded reverse transcriptase enzyme to produce DNA from its 

single-stranded RNA genome and fuses with the host genome thereafter for replication and 

transcription by the host machinery.  

Virion Structure 

Unlike other retroviruses that are cone shaped, HIV is roughly spherical in shape with a diameter 

of about 120 nm (Figure 1.3). It is around 60 times smaller than the size of a red blood corpuscle. 

HIV also differs from the other retroviruses within its family in housing a conical capsid that has 

a diameter of 40-60 nm at its broader end and nearly 20 nm towards the narrower end [194]. The 

conical capsid is comprised of 250 hexameric subunits with 9.6 nm hexamer–hexamer spacing 

and exactly 12 pentamers, 5 at the narrow and 7 at the broader end [187]. The core is comprised 

of about 2000 copies of the viral Gag capsid (CA) protein, p24.  The matrix shell that surrounds 

the capsid is comprised of the myristoylated matrix (MA) protein, p17 [329]. The matrix protein 

layer lies between the outer envelope and the inner capsid core thereby imparting a definite rigid 

structure to the outer viral membrane. The outermost viral envelope is derived from the host cell 

via budding and thus consists of a lipid bilayer enriched with cellular proteins like beta-2-

microglobulin, major histocompatibility antigens, actin, HLA-DR and ubiquitin [11, 22]. The 

viral envelope has 72 surface projections or spikes containing two major viral glycoproteins 

derived from the precursor gp160 by proteolytic cleavage [113]. These glycoproteins stick out of 
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the viral membrane as spiked protein tufts of about 200 Å per particle. They help in viral entry 

and syncytia formation.  Each of these glycoprotein spikes is comprised of three copies of the 

glycosylated surface (SU) protein, gp120, and a stem comprised of three copies of the 

transmembrane (TM) protein, gp41 [227]. The central capsid core houses a ribonucleoprotein 

complex comprised of two copies of the viral RNA genome bound to thousands of the highly 

basic nucleocapsid (NC) protein, p7. Inside the core, there are also several copies of viral 

enzymes including protease, integrase, reverse transcriptase and some of the accessory proteins 

like Nef, Vif and Vpr.  

 

 
The structure of a typical HIV-1 virion showing the major structural and enzymatic proteins. Adapted and redrawn 
from a publicly available figure from the webpage of the NIAID, NIH, US Dept. of Health and Human Services. 
 
Figure 1.3. HIV virion structure 
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Genome 

The HIV genome spans more than 9.8 kilobases comprising nine overlapping genes that are 

flanked by long repetitive sequences at the both ends known as long terminal repeats (LTR) 

(Figure 1.4). The nine open reading frames (ORFs) encode 15 proteins including structural, 

enzymatic and ancillary viral proteins [111]. The three common lentiviral genes of HIV are the 

gag (group-specific core antigen), pol (polymerase) and env (envelope) genes that encode for 

structural and enzymatic proteins essential for the viral life cycle. The HIV genome is 

comparatively more complex than the other retroviral genomes within its family, in that it 

includes six auxiliary genes - tat (transactivator) and  rev (regulator of viral protein expression) 

that serve regulatory roles and vif, vpu, vpr and nef that serve accessory yet indispensable roles in 

viral infectivity, replication, egress and pathogenesis in vivo [115, 209]. However, HIV-2 harbors 

another gene, vpx in lieu of vpu (Figure 1.4). 

Structural Proteins 

The three main lentiviral genes – gag, pol and env that determine the primary structure of the 

virus, undergo post-translational proteolytic processing to yield multiple structural and 

enzymatic proteins (Table 1.2). The primary unspliced HIV-1 mRNA transcript produces the 

Gag protein along with a Gag-Pol fusion protein in a ratio of 20:1. The Gag-Pol fusion 

polyprotein results from a ribosomal frameshifting during translation within the HIV-1 gag-pol 

overlapping region [169]. Autocatalytic processing and cleavage of the fusion polypeptide yields 

the Gag and the Pol precursor proteins. 
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Schematic representation of the primate lentiviral HIV RNA genome which includes 9 ORFs.  These encode 
structural (gag, pol, env), regulatory (tat, rev) and accessory (vif, vpu, vpr, nef) genes that give rise to fifteen 
proteins. To note, HIV-2 encodes for a different accessory protein, Vpx, in lieu of Vpu in HIV-1. Diagram not to 
scale. 

 

Figure 1.4. HIV genome organization 
 

 

The 55kDa N-terminally myristoylated Gag precursor polyprotein (p55), encoded by the 

gag gene, self-assembles at the host cell membrane and recruits the viral genomic RNA (2 

copies), viral and other cellular proteins thereby triggering viral budding. During the maturation 

step, the p55 protein is proteolytically cleaved into the capsid (CA, p24), matrix (MA, p17), 

nucleocapsid (NC, p7) proteins and other smaller spacer polypeptides (p1, p2, p6) [128, 170]. 

The myristoylated MA is derived from the N-terminal end of p55.  The MA molecules largely 

associate with the inner layer of the viral envelope. They also assist in transporting the viral 

genome to the host nucleus after uncoating of the virion particle post-entry [114]. The nuclear 

import machinery of the host recognizes a karyophillic signal on the MA protein which allows 
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the viral genome to enter the host nucleus, thereby allowing HIV to infect nondividing cells 

[211]. The viral core CA protein helps incorporate Cyclophilin A (CypA) into the virion particle 

which is critical for replication [110]. The viral RNA houses a packaging signal that consists of 

four stem loop structures towards its 5' end.  The RNA-binding protein, NC recognizes and binds 

to the viral genome at the site of packaging signal via two zinc finger motifs, thereby stabilizing 

it during viral assembly and also during reverse transcription [152, 201, 329]. 

The Pol polypeptide is cleaved by the virally encoded protease into 4 different enzymes – 

protease (PR, p10), integrase (IN, p31), RNase H (p15) and reverse transcriptase (RT, p50). 

Sometimes, inefficient cleavage results in the RNase H being linked to the RT as a single 

polypeptide (p65). RT exhibits RNA- and DNA-dependent DNA polymerase activity and along 

with RNase H, is responsible for the generation of the viral cDNA. RT lacks proof-reading 

activity, leading to error-prone replication and generation of HIV-1 quasispecies within the same 

host. After reverse transcription, IN mediates the integration of the HIV proviral DNA into the 

host cell genomic DNA. The multifaceted IN includes an exonuclease activity (that trims the 

linear viral cDNA at its ends), an endonuclease activity (that cleaves the host DNA) and a ligase 

activity (that creates covalent linkages at the ends of the proviral cDNA). Host cellular enzymes 

then repair and integrate the viral and the host DNA. The aspartyl protease p10 is required for 

cleaving the Gag-Pol polyprotein during viral maturation [162]. 

The envelope precursor protein, Env (gp160) is synthesized in the ER from the singly 

spliced viral mRNA and then undergoes glycosylation on specific asparagine residues while 

migrating through the Golgi complex. Env glycosylation is essential for viral infectivity. A 

cellular protease cleaves Env (gp160) into a transmembrane domain (TM, gp41) and a surface 

protein (SU, gp120). The Env protein exists as a trimer of gp120 in noncovalent interactions with 
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gp41 [111, 329]. The SU protein has nine highly conserved disulfide bonds and five 

hypervariable regions that are responsible for recognizing, binding and interacting with the viral 

receptors on the host cell surface. The third loop, V3 of the hypervariable regions binds to the 

HIV co-receptors CXCR4 and/or CCR5, thereby determining the preferential tropism of the 

virus for either T cells or primary macrophages, respectively [168]. The gp120 protein also 

interacts with DC-SIGN on the surface of dendritic cells. This results in infection of CD4+ T 

cells more efficiently and also potentially facilitates mucosal transmission of HIV to lymphoid 

tissues. After attachment of the virus onto the host cell, the TM protein, via its N-terminal 

fusogenic domain, helps in the fusion of the viral and cellular membranes thereby releasing the 

viral inner components into the cytosol of the infected cell [122].   

 

Regulatory Proteins 

Unlike conventional transcription factors that bind DNA, the regulatory proteins of HIV – Rev 

and Tat - are sequence-specific RNA binding proteins (Table 1.2). They are mainly found in the 

nuclei and nucleoli of infected cells.  

The 19 kDa Rev protein (p19) binds to a 240 base region of a complex secondary 

structure of RNA, known as the Rev response element (RRE). Specifically Rev binds at the Rev 

high affinity binding site on stem loop 2 of the RRE, which forms a non-Watson-Crick G-G base 

pair [31]. Rev mediates the transport of unspliced and/or incompletely spliced viral mRNA from 

the nucleus to the cytosol. Rev-mediated export of the viral mRNA out of the nucleus occurs 

through the interaction of the Rev effector domain (that contains a nuclear export signal, NES) 

with its cognate NES receptor, CRM1. Essentially the role of Rev is indispensable for HIV-1 
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replication since it induces the transition from the early to the late phase of HIV gene expression. 

Proviruses lacking Rev function have been found to be transcriptionally active but fail to express 

the viral late genes and thus also fail to produce infectious mature virions.  

The 14 kDa Tat protein is a transcriptional transactivator that binds to the transactivation 

response element (TAR), a short stem-loop structure located at the 5’-end of HIV RNAs [108]. 

The binding of Tat to TAR enhances transcription from the LTR regions of the HIV genome. 

More specifically, Tat stimulates the elongation phase of HIV transcription in an effort to allow 

more time to produce full-length transcripts rather than shorter ones [107]. Tat essentially 

recruits a serine kinase, CDK9 that phosphorylates the RNA polymerase II at its C’-terminal 

domain. Tat has also been found to regulate the expression of cellular genes like TNF-β, TGF-β, 

and MIP-1α [162]. 

Auxiliary Proteins 

The accessory proteins of HIV are not absolutely indispensable for viral replication in vitro, yet 

serve as critical virulence factors in vivo (Table 1.2). Vpr, Vpu, and Vif are translated from 

incompletely spliced mRNA and thus are expressed during the late phase of viral infection which 

is Rev-dependent. On the other hand, Nef is expressed from a multiply spliced mRNA and is 

thus Rev-independent.  

The smallest of the accessory proteins is Vpr.  Approximately 100 copies of this 15 kDa 

protein get incorporated into each viral particle during viral budding and egress with the help of 

p6 protein [71]. Vpr helps HIV infect non-dividing cells by abetting nuclear import of the 

preintegration complex (PIC) [156]. Vpr likely tethers the viral genome directly to the nuclear 

pore rather than involving any additional nuclear localization signals to the PIC. Studies have 
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reported that expression of Vpr in cells blocks the activation of p34cdc2/cyclin B complex, 

thereby preventing cells from entering into the mitosis phase during cell division cycle [154]. 

Vpu is a 16 kDa polypeptide that is expressed from the same mRNA that encodes for 

Env. This integral membrane phosphoprotein primarily has two roles. First, it triggers the 

ubiquitin-mediated degradation of CD4 molecules complexed with Env. This helps separate Env 

molecules from being bound to CD4 molecules that get trapped within the ER during virion 

assembly [345]. Vpu also enhances the release of mature virions from the infected host cell 

surface. Previous studies suggest that in absence of Vpu, mature virions are prevented from 

being released from the host cell and mainly tend to remain attached to the host cell surface 

[188]. 

Vif plays an essential role in the replication of HIV in PBMCs and subsequent production 

of infectious progeny viruses. This 23 kDa protein interacts with the HIV restriction factor, 

apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) which is a 

cytidine deaminase.  Vif targets APOBEC3G for proteosomal degradation via an elongin-cullin-

suppressor of cytokine signaling (SOCS) box (ECS) E3 ligase complex [240]. In the absence of 

Vif, this host antiviral factor gets incorporated in progeny virions, resulting in deamination of 

cytosine nucleotides during the cDNA synthesis step. These deoxycytidine to deoxyuridine 

transitions cause G to A hypermutations in the proviral DNA, resulting in reduced coding and 

replicative capacity of the virus. Vif has also recently been found to interact with and activate 

Src family kinases but the relevance of this interaction to HIV-1 pathogenesis yet remains to be 

determined [224].  

Nef is expressed in the early steps of the HIV life cycle and is typically the first viral 

protein to be produced to detectable levels in an infected cell [9, 86, 101]. This 27 kDa protein is 
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myristoylated at its N terminal end which leads to it being targeted to the membrane of the cell 

post translation [148]. Nef has been shown to have multiple functions, like the downregulation of 

the expression of viral receptors and coreceptors (CD4, CXCR4, CCR5) and also MHC-I on the 

infected cell’s surface, the perturbation of T cell activation, and enhancement of HIV infectivity. 

Nef supports high-titer viral replication in vivo and is essential for HIV pathogenesis and AIDS 

progression. Also, Nef functions by interacting with a multitude of host cellular factors resulting 

in alteration of cell signaling pathways leading to cell proliferation, regulation of transcription 

factors, immune recognition and cell survival [270]. Since the current dissertation revolves 

around Nef and its interactions with host cellular factors, its structure, key motifs instrumental in 

mediating its functions and its role in viral pathogenesis and disease progression are discussed in 

detail in section 1.2. 
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Table 1.2. HIV proteins 

 Name of Protein  Protein Size  

Gene Precursor Products  Precursor Products Function 

gag 

Gag   p55  Gag precursor protein 

 CA   p24 Capsid structural protein 

 MA   p17 Viral matrix protein 

 NC   p7 RNA binding protein 

    p6 Role in viral budding 

pol 

Pol   Pr160gag-pol  Pol precursor protein 
 RT   p66/51 Reverse Transcriptase 

polymerase; RNase H 

 PR   p15 Protease: processes viral 
proteins post translation 

 IN   p11 Integrase: integrates viral 
cDNA into host genome 

env 

Env   gp160  Envelope precursor 
protein 

 SU   gp120 Envelope surface protein 

 TM   gp41 Transmembrane protein 

tat  Tat   p14 Transactivates viral gene 
expression 

rev  Rev   p19 Regulates viral mRNA 
transport 

nef  Nef   p27 Enhances infectivity, 
replication and immune 
escape 

vif  Vif   p23 Enhances viral infectivity 

vpu  Vpu   p16 Viral release and egress 

vpr  Vpr   p15 Virus replication, 
transactivation 

Adapted from [209, 310] 
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1.1.4 HIV-1 life cycle 

HIV-1 infects and replicates in CD4+ T lymphocytes and macrophages. A pictorial schematic of 

the life cycle of an HIV-1 virion is represented in Figure 1.5 with all the steps numbered 1 

through 9. A mature virion enters into a host cell through interaction of the viral surface gp120 

protein with the CD4 receptor on the surface of the target cell (step 1). This interaction exposes 

the coreceptor binding site leading to the engagement of host cell CCR5 or CXCR4 chemokine 

coreceptors (step 2). At this stage the transmembrane gp41 protein undergoes conformational 

changes at its HR1 and HR2 helical regions and with the help of the fusogenic peptide leads to 

the fusion of the viral envelope and the host cell plasma membrane (step 3). This creates a fusion 

pore through which the viral core enters the cell [130]. Inside the cell, the viral core uncoats in 

the presence of CypA to release the 2 copies of positive sense single-stranded RNA into the 

cytosol (step 4).  Next, the reverse transcriptase (RT) enzyme binds to the viral genomic RNA 

and reverse transcribes the single stranded RNA to synthesize linear double-stranded cDNA 

resulting in the formation of the pre-integration complex (PIC). The viral accessory protein Vpr 

and other cellular factors then help the PIC enter the host cell nucleus (step 5-6). The viral 

integrase (IN) enzyme then integrates the proviral DNA into the host cell genomic DNA where 

staggered nascent cDNA 3’ ends covalently attach to the 5’ open ends of the chromosomal DNA. 

Host transcription factors drive RNA Pol II mediated transcription from the 5’ LTR of the HIV-1 

provirus. The viral Tat protein binds to TAR on the transcribed mRNAs to produce differentially 

spliced variants of the viral genomic mRNA. The mRNAs are transported to the cytosol by the 

Rev protein bound to the RRE on the mRNAs (steps 6-7). The genomic RNA serves as mRNA 

for translation of Gag and Gag-Pol precursor proteins. The singly and multiply spliced mRNA 

transcripts upon translation produce Env and the other auxiliary proteins, respectively. The Env  
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Adapted and redrawn from a publicly available figure from the webpage of the NIAID, NIH, US Dept. of Health and 
Human Services. 

Schematic diagram representing the entry, replication and egress of the virus in and out of a host cell. The main 
steps involve (1) viral binding to receptor, (2) engagement of coreceptor, (3) fusion and entry, (4) uncoating of viral 
core, (5) reverse transcription, (6) entry of PIC into nucleus and integration into host chromosomal DNA, (7) 
transcription and splicing to generate spliced and unspliced mRNA transcripts (8) translation, post-translational 
modification and core particle assembly at host cell membrane and (9) release and post-release maturation of 
progeny virions. For details of every stage, see text section 1.1.4. 

Figure 1.5. HIV life cycle 
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proteins undergo post-translational glycosylation in the Golgi complex. The Env, Gag, Gag-Pol 

proteins are targeted to the plasma membrane of the infected cell where they cluster into 

detergent-resistant membrane microdomains. The viral envelope gets enriched in lipids from the 

host plasma membrane. The viral core gets assembled at the host cell membrane from Env, Gag, 

Gag-Pol , Vpr, Nef, Vif and 2 copies of capped polyadenylated full-length viral genomic RNA 

(step 8) [43, 177]. Post assembly, virions bud off from the host cell. Nef plays an essential role in 

viral egress releasing non-infectious immature virions from host cells. Viral maturation begins 

along with, or immediately following virion budding (step 9). The viral protease cleaves and 

processes the Gag and Gag-Pol precursor proteins at specific sites, thereby separating the 

functional domains [111]. Viral maturation involves production of the fully processed 

components MA, CA, NC, p6, protease, reverse transcriptase, and integrase proteins, which 

rearrange to form mature infectious virions. 
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1.1.5 HIV-1 pathogenesis 

Cell tropism and Receptors 

The entry of HIV into a host cell is primarily triggered by the interaction of the HIV envelope 

glycoproteins with CD4 receptor on the surface of the host cell. Besides the CD4 receptor, 

seven-pass transmembrane fusion-mediating coreceptors from the chemokine receptor family are 

also required for HIV to infect cells. The chemokine receptors and coreceptors include the CXC 

family (CXCR1- 5) and the CC family (CCR1- 9). CCR5 and CXCR4 are the major co-receptors 

and nearly all HIV-1 isolates can use either or both. The T-tropic HIV strains (X4 viruses) 

selectively interact with the CXCR4 chemokine coreceptor to infect lymphocytes [68]. The M-

tropic HIV strains (R5 virus) interact with the CCR5 chemokine coreceptor, and also in some 

instances CCR2 and CCR3, to infect macrophages and dendritic cells. CCR8 permits infection 

by both X4 and R5 viruses. The selectivity of different HIV strains in infecting cells depends on 

the differences in chemokine coreceptors present on the target cell. The gp120 V3 loop region 

determines which of the host cell CCR5 or CXCR4 chemokine coreceptors will be engaged [68]. 

HIV target cells with CD4 receptors commonly include mononuclear phagocytes like blood 

monocytes and tissue macrophages, as well as T lymphocytes, natural killer (NK) cells, 

hematopoietic stromal cells, dendritic cells (follicular dendritic cells in lymph nodes and 

epithelial Langerhans cells), and microglial cells in brain [68, 209]. Galactosylceramide 

expressed by immature dendritic cells derived from human monocytes as well as those isolated 

from blood and mucosal tissues harbor a mucosal epithelial receptor for gp41 on HIV [218]. The 

R5 virus more readily infects dendritic cells and macrophages, has a high rate of replication, and 

is less visible to cytotoxic lymphocytes. Thus the CCR5 tropic virus generally predominates 
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early in HIV infection. Over time, mutations in HIV lead to the emergence of CCR5/CXCR4 

dual tropic virus, and finally the more cytopathic CXCR4 tropic strain predominates. 

Polymorphisms and mutations in the chemokine receptor genes explain the phenomenon of 

resistance to HIV infection in some individuals. The four commonly reported mutations in the 

co-receptors that confers resistance to HIV-1 infection include CCR5-Δ32, CCR5-m303, CCR2-

64I and the ligand for CXCR4, SDF1-3’A [282]. The most prominent polymorphism is the 

defective CCR5 product with a 32 base pair deletion (CCR5-Δ32). The resistance to HIV 

infection in individuals homozygous for CCR5-Δ32 highlights the importance of CCR5 receptor 

during transmission and pathogenesis [88, 202]. 

Infection and transmission 

After the initial entry into host cells and establishment of infection, progeny virions either bud 

off from infected cells, or are released into the systemic circulation following lysis of the host 

cell. This burst of viremia can be easily detected in peripheral blood in mononuclear cells and 

plasma. Mature virions are carried via lymphatic vessels to regional lymph nodes. Neurons, 

astrocytes, and microglia in the central nervous system also express CCR5 and thus are 

susceptible to infection. Mononuclear phagocytes in the spleen, liver, and bone marrow can then 

become infected with HIV. Besides lymph nodes, the gut associated lymphoid tissue in 

gastrointestinal submucosa represents a considerable reservoir for HIV [187, 209].  

The major routes of HIV transmission were originally identified as sexual contact, 

contaminated blood and mother-to-child. HIV infection can occur through oropharyngeal, 

cervical, vaginal, and gastrointestinal mucosal surfaces, even without mucosal disruption. 

Dendritic, epithelial, and microfold cells pave the gateway for viral entry into mucosal lamina 
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propria. Dendritic cells bind HIV through a type C lectin, squeeze between the tight junctions in 

the epithelium and deliver it to the underlying layer of T cells resulting in dissemination to 

lymphoid organs. HIV-infected macrophages can transmigrate across fetal oral and intestinal 

epithelia as well [187].  

Disease progression and Immunological response to HIV infection 

Most HIV infections likely begin from a single "founder" virus, from which subsequent clones 

develop. On average, it takes about 8 to 10 years for an initial infection to progress to clinical 

AIDS in untreated adults, yet this period varies. In some individuals AIDS may be manifested in 

2 to 3 years following infection while for some the onset of AIDS may be delayed beyond 10 

years. The time from mucosal infection to viremia is about 4 to 11 days. Individuals with 

primary HIV infection, also known as acute retroviral syndrome, may develop symptoms in 2 to 

6 weeks from the time of exposure. These symptoms often include fever, fatigue, nausea, 

myalgia, lymphadenopathy, acute meningoencephalitis, pharyngitis, diffuse erythematous 

macular, weight loss, mucocutaneous ulcerations, and diarrhea [209]. 

The acute phase of HIV infection is marked by lymphocytopenia and/or thrombopenia in 

the peripheral blood. During this time, there is active viral replication particularly in CD4 

lymphocytes (typically with a doubling time of around 20 hrs), marked HIV viremia (~50,000 

copies/mL) and seroconversion accompanied by a steady decline in CD4+ lymphocyte counts.  

During this time, cytotoxic CD8 lymphocyte counts increase, as symptoms subside and viremia 

decreases. However, atypical lymphocytes are absent [263, 331]. Both humoral and cell-

mediated immune responses play a role during this stage. Generally, within 1-3 months 

following initial infection with HIV, as the viremia decreases, levels of CD4 lymphocytes 
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rebound after their primary phase of depletion, but fail to attain pre-infection levels. The final 

stage of progression to AIDS is typically preceded by five initial stages – an eclipse period 

followed by the respective appearance in blood of HIV-1 RNA, p24 antigen, positive EIA and 

finally the p31 band in positive immunoblots [74]. 

Following the acute phase, the infection next becomes clinically latent when little or no 

virus can be detected in peripheral blood mononuclear cells yet active viral replication continues 

in lymphoid tissues [247]. The CD4 T cell count and the immune response remain moderately 

low. In this stage, HIV is found either in the extracellular region of the follicular dendritic cells 

comprising the germinal centers in lymphoid tissues or as latent or replicating virions inside 

mononuclear cells. A typical immune response consisting of virus-specific CD4 lymphocytes is 

lacking in HIV infections [208]. However, a handful of seropositive patients on antiretroviral 

therapy have been reported to lodge a persistent polyclonal CD4 lymphocyte mediated immune 

response leading to a cytokine response with elaboration of interferon gamma and beta 

chemokines.  With progression to disease, the actively replicating virus cripples the innate 

immune system which in turn can allow opportunistic bacterial infections to set in. Mononuclear 

phagocytic cells of the innate immune system (monocytes and macrophages) serve as reservoir 

for infection. During the latent phase of infection, the immune system deteriorates, primarily 

through depletion of CD4 lymphocytes, cytotoxic CD8 cells (leading to exhaustion of controlling 

T cell responses) and cytokines like IL-2 (that regulate lymphoid proliferation) [187, 209]. HIV 

also affects thymic activity in curbing its capacity to produce new T lymphocytes, which can be 

detected by measuring levels of T-cell receptor excision circle (TREC) that results from 

differential splicing of the variable (V), diversity (D) and joining (J) chains of the TCR gene 

[273]. 
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The stage of clinical AIDS is defined and marked by a total CD4 lymphocyte count dipping 

below 200 - 500 cells per μL, the emergence of syncytia-forming (SI) variants of HIV, derived 

from non-syncytia-forming (NSI) variants and subsequent development and contraction of 

typical opportunistic infections and/or neoplasms diagnostically associated with AIDS [179]. 

Other markers that indicate progression to AIDS are HIV-1 RNA levels in peripheral blood, p24 

antigenemia, elevated serum levels of beta2-microglobulin (β2-M), IgA, and high levels of 

neopetrin in serum, CSF and urine. 

HIV-infected individuals can be grouped as typical progressors, rapid progressors, 

nonprogressors, and elite controllers. The typical progressors average 8 to 10 years of “latent” 

infection before the appearance of clinical AIDS while rapid progressors progress to AIDS in 2-3 

years. Genetic factors play a deciding role in the speed of progression of HIV infection. 

Individuals with HLA alleles B*5701, B*5703, B27, and B51 or the 801le variant of the Bw4 

motif, a ligand for the immunoglobulin-like receptors KIR3DS1 and KIR3DL1 (that control NK 

cell function) exhibit slower progression to AIDS [229]. About 10% of HIV positive individuals 

are nonprogressors, or "long-term survivors," in whom the immune system does not seem to 

demonstrate any significant decline for more than 10 years. These patients typically have a stable 

CD4 lymphocyte count, are seronegative and host a strong virus-inhibitory CD8+ T-lymphocyte 

response. The “elite controllers” are able to subdue their viremia levels even below the 

detectable limit (< 50 copies/ml) without treatment. They, like the typical progressors have an 

initial viremia after the primary infection with HIV, but soon after their immune system stands 

up with minimal loss of CD4 lymphocytes, and a robust response from cytolytic NK cells, 

polyfunctional CD4 and CD8 cytotoxic lymphocytic responses including efficient granzyme-B-

mediated cytolysis [29, 242, 248]. 
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1.1.6 Vaccines and current treatment options 

Design and development of a safe and universally efficacious vaccine against HIV is 

undoubtedly the most desired armament in our combat against HIV/AIDS. Vaccine therapy is 

imperative since it will not only provide long-lasting immunity to protect healthy uninfected 

individuals but also boost immunity in seropositive individuals as well (generally referred to as 

post-infection immunization). Unfortunately no such standard vaccine therapy is available yet. 

Amongst the major obstructions in the development of an effective vaccine are HIV epitope 

variability, ability of HIV to evade host immune surveillance during cell to cell transmission, 

lack of an effective neutralizing immune response, and the induction of adverse immune 

reactions to endogenous human proteins leading to pathogenicity and non-effectiveness of 

engineered viral strains that have been generated as candidate vaccines [228].  

Several initial studies used the HIV gp120 or 160 envelope protein to induce a humoral 

response, or lipopeptides where synthetically produced palmitoylated peptide fragments of viral 

proteins were used to enhance the cell-mediated immunogenic response [84, 92]. Another 

approach was to use recombinant vaccinia poxvirus along with HIV envelope proteins that could 

induce mucosal immunity. Parallel studies generated gene disrupted HIV-1 strains that could 

provide protection against the wild type pathogenic strains[228, 338]. Findings like SIVmac239 

with a partial deletion in the nef gene or even carrying multiple gene deletions, protected rhesus 

macaques effectively against the wild type intact SIV infection were exciting [85, 351, 352]. 

However the observation that the disrupted nef gene can revert to a fully functional form over the 

course of viral replication represented a major setback to this approach [50, 285]. These early 

studies highlighted the importance of the nef gene for the viral replication process. In other 

contemporary relevant studies, it was found that a secondary deletion in the vpr gene of 
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SIVmac239, alongside nef, offered protection against a related strain (SIVmac251) but failed to 

protect against challenge with a non-homologous SIVsmE660 strain [351]. Taken together, these 

studies suggested that heightened immune responses against one viral strain may not be effective 

against infection with a non-homologous viral strain. Inability to protect against infection with 

heterologous strains was observed in humans as well.  Patients mounting a strong immune 

response against a particular HIV clade were able to control their initial HIV infection, but 

eventually became superinfected with a different clade of HIV [264].  Thus, a single HIV 

vaccine may not be able to provide effective protection against other heterologous strains [209]. 

In recent years, only three candidate HIV vaccines have completed clinical efficacy trials. 

These include (1) a recombinant protein of the HIV-1 envelope (AIDSVAX); (2) a 

nonreplicating adenovirus serotype-5 vector expressing an internal HIV-1 protein (Gag); and (3) 

(RV144), a combination of AIDSVAX and a canarypox vector expressing HIV-1 immunogens 

(ALVAC). The first two candidate vaccines failed their efficacy trials. The third candidate 

vaccine, RV144 appeared to be short-lived, although it showed a modest 31.2% efficacy [27]. 

Presently the most efficacious treatment option available is ‘highly active antiretroviral 

therapy’ (HAART) which slows down the progress of the disease, yet cannot completely 

eliminate HIV from infected persons. A variety of pharmacologic agents have been developed to 

treat HIV infection. HAART comprises of a cocktail of at least three medications belonging to at 

least two different classes of antiviral agents. The antiviral agents are classified into four groups 

based on the mechanism of their action (1) nucleoside reverse transcriptase inhibitors, (2) non-

nucleoside reverse transcriptase inhibitors, (3) protease inhibitors, and (4) others like entry, 

integrase and fusion inhibitors.   
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The first effective antiretroviral agent was zidovudine (ZDV) which is a nucleoside 

analog that interferes with the function of reverse transcriptase (RT). This nucleoside reverse 

transcriptase inhibitor (NRTI), initially called azidothymidine (3’-azido-3’-deoxythymidine) is 

an analog of thymidine which is phosphorylated to an active triphosphate form by cellular 

enzymes. Incorporation of the phosphorylated ZDV results in the termination of chain elongation 

and cDNA formation which is otherwise essential for subsequent viral replication [340, 350]. 

Some other examples of NRTIs in the clinic are Stavudine (d4T), Abacavir, Tenofovir and 

Lamivudine (3TC). Non-nucleoside reverse transcriptase inhibitors (NNRTI) also block the 

action of the RT.  However, these drugs bind to an allosteric site close to the active site leading 

to a conformational change and loss of RT activity [259, 340]. Examples of NNRTIs currently 

on the market are Efavirenz, Nevirapine and Etravirine. NNRTIs can be used in combination 

with NRTIs to increase the efficacy of antiviral therapy. 

Protease inhibitors (PIs) are an important class of anti-HIV drugs that block the 

generation of mature virions from immature precursor proteins. PIs are synthetic analogues of 

the regions of HIV proteins that bind to the active site of the protease enzymes to block activity. 

A chief problem in the development of this class of drugs was finding an effective, specific 

inhibitor of HIV protease that did not also interfere with normal cellular proteases. Examples of 

FDA approved drugs include saquinavir (saquinavir mesylate), ritonavir, indinavir (indinavir 

sulfate), nelfinavir, and amprenavir. Protease inhibitors are often most effective at high dosages, 

but myriad side effects including nausea, vomiting and diarrhea and general gastric intolerance 

and adverse reactions at high doses limit their use [341].  

Other prominent classes of antiretroviral drugs include the entry inhibitors, fusion 

inhibitors and integrase inhibitors. Entry inhibitors prevent HIV entry into the host cells and are 
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particularly effective in the early stages of viral infection. Entry inhibitors like vicriviroc and 

maraviroc are CCR5 receptor antagonists that compete with viral gp120 binding to CD4+ co-

receptors on T cells [146]. The fusion inhibitor, enfuvirtide blocks HIV gp41-mediated 

membrane fusion. It is a synthetic peptide corresponding to 36 amino acids within the C-terminal 

heptad repeat region (HR1) of HIV gp41 protein. It has a low genetic barrier to resistance and 

must be used in combination with other drugs [197]. Integrase inhibitors, also known as 

Integrase Strand Transfer Inhibitors (ISTIs), inhibit the action of the viral integrase enzyme. 

Integrase inhibition prevents the incorporation of the proviral DNA copy to the host cell DNA. 

Raltegravir and elvitegravir are ISTIs that specifically inhibit the final step of the three steps 

involved in the DNA transfer process [288].  

The HAART approach combines several anti-HIV agents belonging to different classes. 

The standard recommended ART regimens have various combinations including (2NRTI + 

NNRTI); (NtRTI + NRTI); (NtRTI + NNRTI); (2NRTI + PI) OR (2NRTI + 2PI) [323]. Fixed 

dose combinations with different anti-viral agents have been combined into single medication 

pills to enhance patient adherence and effectiveness of HAART. For example a combination of 

emtricitabine and tenofovir (both NRTIs) with Rilpivirine (second generation NNRTI) named 

Complera (manufactured by Gilead Sciences and Johnson and Johnson) was approved by the 

FDA in 2011 [5, 34, 105] . However due to the high error rate of the HIV reverse transcriptase 

and poor patient commitment to treatment regimens, mutant viruses are rapidly generated and 

selected over non-mutant strains.  

The field of HIV vaccine development is challenging however the rewards of a safe and 

globally effective vaccine will be tremendous. In parallel, ART is useful in prolonging the lives 

of treated patients by elevating CD4 T-cell counts and partially suppressing HIV replication 
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resulting in the decrease of the frequency and severity of opportunistic infections. However, drug 

intolerance, cross reactivity, and toxic side effects of anti-viral agents, particularly in high doses 

are significant problems for all drugs used to treat HIV infection and thus can severely limit the 

use and benefit of HAART in patients. This necessitates continued research to identify newer 

alternative targets for therapeutic intervention as well as the design and development of 

improved antivirals for the inhibition of viral spread to curtail new infections.  Most importantly, 

a continuing pipeline of new agents is needed to increase the lifespan of infected individuals, 

especially those that are refractory to existing HAART regimens.  

The accessory proteins (Vpr, Vpu, Vif, and Nef) encoded by the HIV genome play 

critical roles in viral pathogenicity and thus represent alternative targets for drug discovery [10, 

134, 138, 165, 219]. Owing to its multifaceted nature, and essential role in promoting immune 

escape, HIV-1 Nef is a very attractive target for anti-retroviral drug discovery.  HIV-1 Nef stands 

at a very central position in my dissertation research, wherein I have explored the scope of 

interaction of this HIV-1 protein with host cell kinases and characterized their interactions. Thus, 

a more detailed discussion will follow in the subsequent sections and chapters leading to the 

rationalization of Nef:host cell factor interactions as a promising target for future antiretroviral 

drug targeting.   
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1.2 HIV-1 NEF 

1.2.1 AIDS and HIV-1 Nef: role in viral pathogenesis 

Despite our enormous efforts to combat the most prevalent contemporary social menace, HIV 

still remains an elusive target for eradicating cure or effective immunization. The key to its 

elusive nature is the ability of the virus to mutate spontaneously, interact and hijack host cellular 

and transcriptional machinery, alter host cell trafficking and signaling, evade host immune 

system and persist comfortably in latent reservoirs. The multifaceted accessory protein of HIV 

and SIV, Nef plays a key role in mediating most, if not all, of the above listed viral survival 

strategies to its own advantage.  Nef is a multifunctional protein that lacks intrinsic catalytic 

activity, and thus functions by interacting with host cellular factors involved in cellular 

activation, immune recognition and survival [270] and in a way optimizes the cellular 

environment for viral replication and release.  

Early studies identified Nef as a negative factor based on findings that it decreased viral 

replication and transcription, resulting in inhibition of viral pathogenesis [7, 115, 321]. However, 

soon after and in hundreds of studies since, Nef has been firmly established as a positive effector 

of HIV pathogenesis. Nef, now re-identified as an accessory HIV protein with numerous effector 

functions, is required for high titer viral replication and AIDS pathogenesis in vivo [9, 101, 143, 

149, 150, 182, 183, 230, 311].  

Some of the earliest and most powerful evidence for Nef as an essential gene for disease 

progression in vivo comes from Kestler et al., who showed that rhesus monkeys infected with 

nef-deleted SIV failed to develop AIDS-like disease [182]. Further, while some groups reported 

that interruption of the unique portion of the nef gene from SIV rendered the virus non-
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pathogenic [85, 182, 351], some described the phenomenon of natural reversion of mutations in 

SIV nef genes to restore functional Nef protein and the pathogenicity of the virus [50, 51, 285, 

342]. The existence of strong selective pressure to drive the reversion of Nef mutations in order 

to regain SIV virulence confirmed the vital role of Nef in the induction of viral pathogenicity.   

In 1998, Hanna et al. showed that in transgenic mice, human CD4 promoter-directed 

expression of the full HIV-1 genome targeted the expression of viral genes to CD4+ T cells, 

macrophages and dendritic cells, leading to the development of AIDS-like disease. These mice 

exhibited AIDS-associated symptoms including depletion of CD4+ T cells, thymic atrophy, 

immunodeficiency and premature death [142]. Follow-up studies showed that targeted 

expression of Nef alone to T-cells and macrophages is sufficient for development of an AIDS-

like syndrome in transgenic mice [143].  

A more recent study has demonstrated an essential role for Nef in HIV infection in vivo. 

Using mice reconstituted with the human immune system, Zhou et al. showed that wild-type 

HIV-1 infection in these mice resulted in rapid depletion of CD4+ T-cells while infection with 

Nef-defective virus failed to deplete CD4+ T-cells. This observation supports a direct role for 

Nef in thymocyte killing that complements the results with Nef-transgenic mice [367].  

Moreover, further studies have reported detection of mutated Nef alleles in long term 

non-progressors, defined as a subset of HIV-infected individuals who defy the normal 

progression curve of the disease, maintain normal levels of CD4+ T cells and fail to progress to 

AIDS after a decade or more in the absence of antiretroviral therapy [89, 121, 186, 225, 326].  

These findings support an essential role for Nef in HIV infection, disease progression and AIDS 

development in humans. 
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1.2.2 HIV-1 Nef: structure and key recognition motifs 

Nef is a polymorphic, 27-35 kDa accessory protein unique to primate lentiviruses and is encoded 

by a single exon located towards the 3’ end of the env gene and extends into the U3 region of the 

3' LTR of the viral genome.  Nef is one of the early proteins of HIV that is expressed even before 

the integration of the viral genome into the host chromosome. It is the first viral protein to be 

expressed to detectable levels in a cell right after HIV-1 infection.  

Nuclear magnetic resonance (NMR) and X-ray crystallography studies have shown that 

Nef consists of flexible N- and C-terminal loops and a globular core domain (a.a. 54-205) [112, 

205]. The largest of the six accessory proteins of HIV/SIV, Nef lacks any known biochemical 

activity and thus executes its functional effects by interacting with various host cellular factors.  

Although the amino acid sequence and length of HIV-1 Nef are variable, several distinct 

functional domains have been identified. Comparison of aligned sequences from Nef allelic 

variants reveals conserved structural motifs with defined roles in binding specific intracellular 

proteins. Figure 1.6 summarizes many of these Nef motifs and the most prominent ones are 

discussed in greater detail below.  

N-terminal myristoylation 

HIV-1 Nef contains the sequence MGxxx(S/T) at its flexible amino-terminal domain. Nef 

undergoes post-translational modification at this motif by a ubiquitously distributed enzyme N-

myristoyl transferase, wherein a myristoyl group is covalently linked to the glycine residue at the 

G2 position. The myristoylation at G2 along with two lysine residues (K4xxK7), and four 

arginines (R17xRxRR22) near the N-terminus of the protein targets the protein to the inner leaflet 
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of the cell membrane [33, 41, 126, 148]. Some of the validated binding partners of Nef include 

CD4, MHC-I, PAK2 kinase, actin, and calmodulin [102, 226, 283]. The highly conserved N-

terminal myristoylation motif of Nef is critical not only for interaction with these binding 

partners but also for induction of MHC-1 and CD4 down-regulation and in a holistic sense, for 

HIV-1 replication [151, 253].  

Mutagenesis studies have shown that the myristoylation site is indispensable for the 

ability of Nef to induce depletion of CD4+/CD8+ thymocytes and subsequent development of 

AIDS-like disease in transgenic mice [144]. Myristoylation also plays a vital role in Nef-

mediated activation of NFAT, NFκB, and induction of IL-2 expression leading to enhanced 

transcription from the viral LTR and HIV-1 replication in T cells stimulated by CD3 and CD28 

[339]. Thus the conserved myristoylation motif plays a crucial role in many Nef functions 

critical for HIV-1 pathogenesis. 

The acidic motif 

HIV-1 Nef has a conserved N-terminal acidic motif (E62EEE) which is required for the binding 

and interaction of Nef with trafficking adaptor protein PACS-2. This interaction targets Nef to 

the trans-Golgi region where it assembles a multi-kinase complex (SFK/ZAP-70/PI3K) to 

internalize MHC I molecules. HIV-1 Nef triggers the down-regulation of MHC class I molecules 

and in a way facilitates the viral replication by evading host immunity and NK cell mediated 

lysis of the infected cell as described in the previous section. Sequence alignment from 186 

different strains revealed that the Nef acidic motif is highly conserved.  Rare exceptions include 

the insertion of a fifth acidic residue (E or D) and sometimes a non-conservative insertion of a 

Gly only in eight sequences [24, 36, 126, 166].  
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Figure courtesy of Dr. John Engen, Northeastern University, Boston, USA. 
  
Figure 1.6. Structure-function relationships in Nef 
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The dileucine motif 

HIV-1 Nef has a highly conserved dileucine (L164L165) sequence motif localized to its carboxy-

terminal loop which functions as an endocytosis signal. SIV Nef has a tyrosine-based motif 

instead. Both the dileucine motif and tyrosine-based motif act as well characterized 

internalization signals for CD4 down-regulation that directs cellular proteins to clathrin-coated 

vesicles. Mutation of the dileucine motif impairs the ability of Nef to down-regulate CD4 [40, 

133, 256]. This motif on Nef is involved in binding the clathrin adaptor AP-2 through the alpha 

and sigma (α-σ2) subunits hemicomplex. The Nef:AP-2 complex interacts with the cytoplasmic 

tail of CD4, to form a tripartite Nef:AP-2:CD4 complex [57] which triggers the formation of 

clathrin-coated pits. This results in rapid internalization of CD4, delivering it to lysosomes via 

the multivesicular body pathway [87].  Several other studies have reported the requirement for 

the dileucine motif on Nef for binding to the AP-1 and AP-3 adaptor complexes via their 

medium (µ) subunits [75, 83, 124, 171].  

The diarginine motif 

Nef encodes a highly conserved diarginine motif (R105K/R) at the N-terminus of the α4 helix of 

the folded core.  The first Arg is absolutely conserved while the second can be replaced with Lys 

or Gln. This conserved motif, together with the SH3-binding motif, is required for Nef-mediated 

activation of the cellular serine/threonine p21-activated kinase (PAK2) leading to T- cell 

activation, induction of LTR activity, cytoskeletal rearrangement and subsequent facilitation of 

HIV-1 replication. Nef-induced activation of PAK2 is also essential in progression of simian 

AIDS. Moreover, this activation and binding of PAK2 is conserved and required but not 
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sufficient, for induction of multi-organ AIDS-like disease in transgenic mice [103, 104, 143, 269, 

284, 286, 334]. 

The SH3-binding motif (PxxPxR)  

Nef has a highly conserved proline-rich motif (PxxPxR) that binds to the SH3 domains of host 

cell proteins [270, 281, 325], most notably members of Src family of non-receptor protein-

tyrosine kinases (SFKs) and causes constitutive activation [46, 281, 325]. The PxxPxR motif is 

highly conserved across all major clades of HIV-1, implying an essential role in Nef function.  

X-ray crystallography of a Nef-SH3 complex (PDB:1EFN) (Figure 1.7) reveals that the 

conserved proline residues form a typical polyproline type II helix that contacts the hydrophobic 

surface of the SH3 domain [137, 205].  This interaction is stabilized by an ionic interaction 

between SH3 Asp100 and the conserved Arg in the Nef PxxPxR sequence. The crystal structure 

and other mutagenesis studies revealed other essential determinants of high-affinity Nef-SH3 

interaction in addition to the PxxPxR motif.  These include residues that form a hydrophobic 

pocket (Y120, F90, and W113) in the three dimensional structure of the folded core that contacts 

Ile96 in the RT loop of the Hck SH3 domain [61, 205]. HIV-1 Nef binds to Hck SH3 with 

relatively high affinity in the nM to low μM range, depending upon the allelic variant. The 

laboratory B-clade SF2 allele has the highest reported affinity for isolated Hck SH3 domain (KD 

= 70 nM) while Nef from the primary HIV-1 subtype A2 has the lowest (KD = 21.10 μM) [239].  

The interaction of Nef with an SFK SH3 domain via its PxxPxR motif is required for 

Nef-induced down-regulation of MHC class I receptors, a key function in immune evasion of 

HIV-infected cells [36, 54, 166].  The intact SH3-binding motif of Nef has been shown to be 

essential for intracellular Lck accumulation and also for interference with the functions of the 
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immunological synapse [140]. Although the polyproline motif on Nef is dispensable for the 

down-regulation of cell surface CD4 receptors, it is critical for augmentation of HIV-1 

replication in infected peripheral blood mononuclear cells (PBMC) as well as SIV replication in 

macaques [182, 281] and development of the AIDS-like syndrome in transgenic mice [145].  

 

 

 

 

 

Crystal structure of Nef interacting with a Src family kinase SH3 domain (PDB: 1EFN). Key determinants of the 
high affinity binding of Nef (blue-gray) to SH3 domain (red) involve contacts between not only the SH3 
hydrophobic surface and the conserved PxxPxR motif on Nef but also the I96 residue on the RT loop of SH3 and 
the hydrophobic pocket formed by Nef residues Y120, F90, and W113. Numbering of residues in the figure is 
based on the crystal coordinates from [205]. 
 

Figure 1.7. Crystal structure of Nef-SH3 complex  
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1.2.3 Implications of Nef:Host cell interactions in viral pathogenesis 

Nef protects the infected cell, ensures its survival and enhances primate lentiviral persistence 

mainly by (1) facilitating viral immune evasion and (2) supporting viral replication.  The non-

enzymatic Nef protein functions through interactions with a multitude of host proteins and these 

interactions form the mechanistic basis for almost all of Nef’s pleiotropic effects on an HIV 

infected cell. Based on current reports to date, Nef may interact directly with as many as 60 

cellular factors and affect the function of more than 180 cellular proteins. An extensive list of all 

cellular factors that have been reported to bind to Nef or whose function is affected by Nef has 

been summarized at http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/nef.html.  

In the section that follows, I have summarized the interactions and functions of Nef that 

facilitate immune evasion and ones that directly support viral replication and spread. It might be 

advantageous for the reader (in an effort to refrain from developing any misconceptions) to bear 

in mind that these functions of Nef are not spatio-temporally exclusive from one another. Instead 

the Nef:host cell interactions mutually complement one another and cooperatively ensure the 

maintenance of a favorable cellular environment that facilitates viral persistence and spread. 

Interactions facilitating viral immune evasion 

Nef enables the virus to escape recognition by the host immune system in several different ways.   

One of the most prominent functions of Nef involves its ability to down-modulate cell surface 

expression of major histocompatibility–I (MHC-I) molecules by targeting them to the trans-

Golgi network (TGN), followed by TGN-associated endosomal compartments and finally to 

lysosomes for degradation. Nef may either accelerate endocytosis of expressed MHC-I from the 

http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/nef.html
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cell membrane or prevent the normal anterograde transport of MHC-I molecules post translation 

from the TGN to the cell surface [277]. In this process Nef recruits and interacts with the 

phosphofurin acidic cluster sorting protein-1 (PACS-1); the µ1 subunit of the clathrin adaptor 

complex AP1 and subsequently β-COP – all of which are implicated in endosomal trafficking. 

The downregulation of Class I MHC helps the HIV-infected cell to avoid host immune 

surveillance by CD8+ cytotoxic T lymphocytes and thus decreases the efficiency of the killing of 

HIV infected cells by cytotoxic T cells [36, 78, 287, 293].  

MHC-I HLA-C and –E are recognized by inhibitory NK cell receptors (iNKRs) to 

prevent NK cell cytotoxicity under normal physiological conditions. Non-selective down-

modulation of MHC-I results in reduced iNKR engagement and induces NK cell cytolysis. Nef 

therefore selectively interacts with the cytoplasmic tails of HLA-A and HLA-B but not HLA-C 

or –E [72, 203]. This prevents NK cell-mediated lysis of infected cells despite reduced levels of 

MHC-I surface molecules. Besides hiding from surveilling NK and CTLs, Nef also assists in cell 

survival by directly killing attacking bystander CD8+ CTLs by upregulating expression of FasL 

death factor on the infected cell surface [355]. Nef interacts directly with the HLA class II 

histocompatibility antigen gamma/invariant chain (Ii or CD74). Nef up-regulates surface 

expression of Ii which in turn caps the MHC-II peptide binding site during endosomal 

trafficking, resulting in restricted MHC-II-antigen presentation leading to impaired helper T cell 

responses [324].  

One of the most extensively studied roles of Nef involves downregulation of the cell 

surface expression of CD4 leading to perturbation of T cell activation, and enhancement of HIV 

infectivity [118]. Nef directs the endocytosis of CD4 by linking it to both the AP-2 clathrin 

adaptor complex and COP-1 lysosomal targeting protein culminating in its subsequent lysosomal 
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degradation. Nef binds the cytoplasmic tail of CD4. This interaction involves a dileucine repeat 

sequence in the membrane proximal region of CD4 and also the dileucine motif, two diacidic 

motifs and a hydrophobic pocket on Nef. Reduced expression of CD4 on the cell surface appears 

to be advantageous to the virus for several reasons:  1) avoiding superinfection of the host cell by 

newly released progeny virions; 2) enhancement of virion budding by preventing CD4 

interaction with Env; and 3) reducing CD4-mediated inhibition of HIV transcription by releasing 

the CD4-associated Lck signaling molecule, which may promote T cell activation and enhanced 

viral replication [8, 118, 198, 199]. 

Nef has been reported to bind to the cytoplasmic tails of the co-stimulatory molecules, 

CD28 in T cells and B7 (CD80/CD86) in APCs and induce their endocytosis via the AP-2 

clathrin adaptor pathway and an actin-based endocytic pathway (involving activation of c-Src 

and Rac) respectively. By down-regulating surface expression of the co-stimulatory molecules, 

Nef induces antigen-specific tolerance and T cell anergy, thereby suppressing an effective 

immune response against the virus [16, 55, 56, 315]. 

Interactions facilitating viral infectivity, replication and spread 

Nef modulates the activation status of the infected T cells and enhances viral infectivity of 

progeny virions to promote replication and persistence. In addition to down-regulating cell 

surface expression of CD4 and CD28, Nef also interacts with numerous signaling proteins and 

increases the responsiveness of infected T cells to stimulation.  This results in constitutive 

activation of downstream signaling pathways that activate transcription factors. The virus 

benefits from this, since activation of transcription factors would result in increased expression 

of HIV provirus. 
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It is well established that Nef interacts with SH3 domains of host cellular proteins via its 

conserved polyproline (PxxPxR) motif. Members of the Src family of non-receptor protein 

tyrosine kinases (SFKs) are  among the best studied binding partners for Nef, and are involved in 

different Nef-mediated functions like MHC-I downregulation, viral infectivity and replication 

[61, 91, 98, 239, 281, 325]. Nef has also been reported to interact with the SH3 domain of VAV, 

a Rac1 guanine nucleotide exchange factor (GEF), probably to trigger the JNK/SAPK signaling 

pathway and to induce cytoskeletal rearrangements [104].  

Nef interacts with serine and threonine kinases as well, most notably the p21-activated 

serine–threonine kinase 2 (PAK-2). Association of Nef with PAK-2 reportedly plays a crucial 

role in viral replication, apoptosis, T cell activation, and disease progression [66, 103, 270]. 

Interactions of Nef with additional effectors that lead to subversion of T cell signaling pathways 

include protein kinase C (PKC), and interactions with the Ras-Raf-MAP kinase pathway [161, 

348]. Nef alters T cell signaling by exerting pleomorphic effects on T cell activation depending 

on where it is localized in the cell. Early studies showed that expression of Nef in Jurkat T cells 

prevented antigen receptor-mediated induction of interleukin 2 mRNA expression and also 

inhibited induction of transcription factor NF-kappa β DNA-binding activity by T-cell mitogens 

[216, 241]. Expression of a CD8-Nef chimeric molecule in Jurkat cells led to either inhibition or 

stimulation of T-cell receptor signaling when the chimeric molecule localized to the cytosol or 

the cell membrane respectively [32]. Further studies reported that Nef led to elevation of T cell 

signaling in Nef transgenic mice [304]. 

In T cells, Nef blocks the Fas/FasL and tumor necrosis factor-alpha (TNFalpha) apoptotic 

pathways through the apoptosis signal-regulating kinase-1 (ASK-1) [123]. Similarly, through an 

association with PAK and PI3-kinases, Nef stimulates Bad-phosphorylation resulting in the 
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induction of anti-apoptotic signaling [349]. In macrophages, Nef increases expression of the anti-

apoptotic factor Bcl-XL through the Erk/MAPK pathway [62]. In addition, Nef also has been 

shown to promote macrophage cell survival through activation of the signal transducer and 

activator of transcription, STAT-1 and -3 [45, 106, 254]. By redirecting the infected cell from 

normal cellular apoptotic pathways to cell survival, Nef enables the infected cell to survive, thus 

providing a favorable cellular environment for its reproduction and persistence.  

In an effort to augment the expression of its own genome, HIV Nef induces transcription 

factors like NFAT, NFκB, IRF-1/2, c-fos, Jun-D that transactivate the HIV-1 LTR promoter. It 

also induces the expression of cellular co-factors like CDK9, elongation factor Tat-SF1 and 

cytokines like IL-2, TGFβ that help in viral replication [15, 303].  

Nef is incorporated into progeny virions during assembly, which is then cleaved by the 

viral protease upon maturation. Recent studies have implicated the interaction of Nef with the 

GTPase Dynamin-2 (Dyn-2) in the enhancement of virion infectivity [257]. By binding to Dyn-

2, which is an essential regulator of clathrin-dependent endocytosis, Nef increases clathrin-

coated pit formation [230]. Thus, Nef-mediated enhancement of virion infectivity depends on 

both,  Nef binding to Dyn-2 and clathrin-coated pit formation. 

Besides manipulating the infected host cells, Nef also alters the cellular environment to 

promote viral spread. It has been reported that Nef induces secretion of the two CC-chemokines, 

macrophage inflammatory proteins 1αand 1β (MIP-1α/β) by HIV-1-infected macrophages. These 

secreted chemokines in turn stimulate chemotaxis of resting T-cells towards sites of virion 

release from infected macrophages, contributing to viral spread [317]. Further studies reported 

that Nef can also stimulate the production of soluble paracrine factors, sCD23 and sICAM from 

HIV-1 infected macrophages which in turn upregulate B-cell receptors leading to resting T-
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lymphocyte stimulation making them permissive for productive HIV-1 infection [316]. 

Extracellular Nef has also been found to expedite the spread of T-cell-tropic HIV variants and 

facilitate a switch in dominant replicating viral strains from R5 to X4 viruses [28]. Taken 

together, these and other studies indicate that Nef has evolved complex strategies to manipulate 

the cross-talk between different cell types to ensure viral persistence, spread and the expansion 

of the cellular reservoir of HIV-1 within the host. 

1.2.4 Nef as a drug target for HIV/AIDS 

The high rate of mutations resulting from the error-prone activity of HIV-1 reverse transcriptase 

leads to the incidence of new resistance mutations in patients on chronic antiretroviral therapy. 

Failure to adhere to prescribed drug regimens also threatens the emergence of resistance leading 

to limited range of subsequent treatment options, higher rates of disease progression and poorer 

clinical outcomes. The gradual development of resistance to ART regimen drugs points to the 

continual need for the discovery and development of new antiretrovirals against alternate targets. 

As discussed in section 1.1.6, Nef and its downstream signaling partners represent very attractive 

targets for antiviral drugs. For example, Nef binds to SH3 domains of Hck, Lyn and Src via its 

proline-rich motif [281, 325] and a hydrophobic pocket [61] causing constitutive kinase 

activation. Other studies have reported that transgenic mice that expressed Nef-2PA, a mutant in 

which the conserved PxxP motif is mutated to AxxA never developed AIDS-like disease [145]. 

These studies strongly suggest that Nef-SH3 interaction is a crucial step essential for viral 

pathogenesis and thus pose as an exciting alternative target for rational drug discovery and 

design. Several virtual, computational and in vitro screening approaches have begun to identify 

novel antagonists for Nef [307].  These studies are described in more detail below. 
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 Early studies identified a phenoxyacetamido benzoic acid derivative (D1) and an analog 

(DLC27), that interfered with not only Nef:SH3 interaction in a mammalian cell-based protein-

protein interaction assay but also partially blocked Nef-induced MHC-I downregulation [35]. 

Similarly, a derivative of the Streptomyces metabolite UCS15A, called ‘2c’ was found to interact 

with the SH3-domain binding site on Nef as well as the ridge in between the central β-sheet and 

the C-terminal α-helices of Nef. This compound rescued down-regulation of MHC-I expression 

in HIV-1 infected primary CD4+ T-cells by blocking the formation of the Nef-mediated multi-

kinase (SFK/ZAP-70/PI3K) complex and subsequent Src-family kinase activation. [67, 91].  

However the low potency and poor physiochemical properties of these compounds limits their 

further development as antiretroviral drug leads.  

Recent work from our group has established that selective inhibitors of Nef-mediated 

Src-family kinase activation also block Nef-dependent HIV replication and infectivity.  An in 

vitro screen of a kinase inhibitor-biased library (2500 compounds) identified a group of 4-amino-

diphenylfuranopyrimidine (DFP) compounds that selectively blocked Nef-mediated Hck 

activation.  These compounds also inhibited Nef-dependent HIV-1 replication in cells infected 

with HIV-1 chimeras carrying nef alleles representative of all of the major clades of HIV-1 [97, 

239]. Subsequent studies used the same Nef-Hck assay in an automated screen of a much larger, 

chemically diverse library of more than 200,000 compounds.  This screen identified a novel 

diphenylpyrazolodiazene compound (B9) that preferentially inhibited Nef-dependent activation 

of Hck. This compound also potently inhibited Nef-dependent replication of wild-type HIV-1 

NL4-3 chimeras expressing nef alleles representative of all M-group HIV-1 clades, with IC50 

values in the nanomolar range [98].  Our group also recently identified another small molecule 

Nef antagonist, a dihydrobenzo-1,4-dioxin-substituted analog of N-(3-aminoquinoxalin-2-yl)-4-
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chlorobenzenesulfonamide (DQBS).  This compound was identified in a yeast-based phenotypic 

screen for compounds that rescue the inhibitory effect of ectopic Nef-mediated Hck activation in 

yeast. DQBS was shown to potently inhibit Nef-dependent HIV-1 replication and MHC-I 

downregulation in T-cells [327].  Computational docking studies, as well as direct interaction 

assays (surface plasmon resonance; differential scanning fluorimetry), demonstrate that both B9 

and DQBS interact directly with Nef to block Hck activation.    

Taken together, these studies highlight the promise of pharmacologically targeting this 

virulence factor as a new approach towards AIDS treatment.  Discovering and developing 

antagonistic molecules that can interfere with the critical functions of HIV-1 Nef may lead to 

alternate therapeutic strategies that can work synergistically with the existing antiretroviral 

therapies. 
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1.3 PROTEIN TYROSINE KINASES 

Literature reviewed in the preceding sections illustrates the critical role for host protein kinases 

as binding partners and effectors for HIV-1 Nef.  In the succeeding sections that follow, I will 

first write about the background on general strategies by which viruses exploit host cell kinases 

to their own advantage.  I will then discuss the structure and function of the Src kinase family in 

detail, because of its importance to HIV-1 Nef function.  This will then be followed by a review 

of the related Tec kinase family - the interaction of Tec family kinases with HIV Nef being the 

main focus of this dissertation project.  

1.3.1 Role of Kinases in virus:host interactions 

The kinome, defined as the kinase complement of the human genome, constitutes around 1.7% 

of all human genes. It consists of 518 kinases, amongst which 90 belong to the superfamily of 

protein tyrosine kinases (PTKs) where every active protein kinase phosphorylates a tyrosine on a 

distinct set of substrates in a regulated manner [220]. The PTKs principally function to mediate 

signal transduction in eukaryotes and thus are involved in the regulation of diverse cellular 

processes including growth, differentiation, metabolism, transcription, cell cycle progression, 

adhesion, and motility. Serving as key regulators of cell signaling, the loss of regulation of PTK 

activity has often been associated with development of several pathological states including 

diabetes, cancer, congenital syndromes and even viral infections [220, 245, 276]. Viruses, for the 

sake of their progression and spread, often hijack host cell protein-tyrosine kinase signaling 

pathways.  A few examples are described in more detail below.   
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In a recent study, the cytoplasmic tyrosine kinase, focal adhesion kinase (FAK) has been found 

to link early activation of phosphatidyl-inositol-3-kinase (PI3K) and actin reorganization to aid 

in influenza A virus entry. Inhibition of FAK signaling was found to not only disrupt the actin 

network leading to sequestration of the virus at the cellular boundary but also impede viral RNA 

replication [96]. 

The host tyrosine kinases often can play dual roles, interacting with viral proteins to alter 

cellular signaling cascades but also signal to activate the innate and humoral immune arsenal 

against the pathogen. For instance, a comprehensive genome-wide high-throughput cDNA screen 

has recently identified a novel antiviral tyrosine kinase (TNK1) that induces IFN-stimulated 

genes, and phosphorylates STAT1 leading to the induction of JAK-STAT signaling during 

Hepatitis C virus (HCV) infection [244].  

The Src family of non-receptor tyrosine kinases (SFKs) has also recently emerged as 

cellular factors that are often exploited by viruses to their own benefit. Commonly, viral proteins 

bind to specific motifs on these kinases, leading to phosphorylation of viral and cellular proteins 

and triggering of aberrant signaling cascades.  Some of the different viral proteins that interact 

with host cell SFKs are tabulated in Table 1.3. Some of the earliest studies reported the 

interaction of the polyoma virus middle T (mT) antigen with the kinase (SH1) domains of the 

SFKs, Src and Fyn. The mT protein, which is expressed early in the viral lytic cycle and is 

responsible for the onset of multiple tumors, is a substrate for SFKs and also interacts with 

molecules essential for downstream oncogenic signaling (e.g. PLCγ, PI3K and Shc) [81, 129, 

178].  

The nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) has been shown to bind 

to the recombinant SH3 domains of Hck, Lck, Lyn and Fyn in vitro, but not Src, down-
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modulating the activity of Hck, Lck and Lyn but stimulating that of Fyn [217]. In B cells, it 

directly binds to the Src homology 2 (SH2) and 3 (SH3) domains of Fyn and activates it. 

Observations like upregulation of HCV replication following siRNA targeted knock-down of 

Fyn suggests that NS5A possibly negatively regulates HCV replication by activating Fyn kinase 

for persistent infection [238, 295]. However, in HCV-infected hepatocytes c-Src directly 

interacts with the viral RNA-dependent RNA polymerase (NS5B) via its SH3 domain and with 

the nonstructural phosphoprotein NS5A via its SH2 domain. These interactions are essential to 

maintain the protein-protein interaction of NS5A and NS5B, an event which is required for viral 

replication, and whereby NS5A mediated Fyn activation remains dispensable [255]. The 

VP11/12 protein of herpes simplex virus (HSV-1) mimics an activated growth factor receptor in 

binding to the SH2 domain of and activating the SFK Lck via its tyrosine-based motifs (YETV 

and YEEI), resulting in the stimulation of PI3K/Akt signaling [313, 335]. 

Recent reports implicate the interaction of the neuraminidase protein (NA) of influenza A 

virus with carcinoembryonic antigen-related cell adhesion molecule 6/cluster of differentiation 

66c (C6) in enhancing host cell survival during productive viral infection and replication. The 

NA:C6 interaction activates the Src/Akt signaling cascades via elevated phosphorylation levels 

of Src, FAK, Akt, GSK3β, and Bcl-2 [120]. 
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Table 1.3. Different viral proteins that interact with host SFKs  

Virus Viral Protein Src family kinase 

Polyomavirus Polyoma middle-T antigen (mT) Src and Fyn 

Avian Influenza virus Non-structural protein 1  Src 

Epstein-Barr virus Latent membrane protein 2A Lyn 

Human T-cell leukemia virus type 1 Accessory protein p13 SFKs 

Herpes simplex virus Tegument protein VP11/12 Lck 

Herpesvirus saimiri Tyrosine kinase interacting protein Lck 

Hepatitis C virus Non-structural protein 5A (NS5A) Src 

 
RNA-dependent RNA polymerase non-
structural protein 5B (NS5B) 

Src 

SIV/HIV Accessory viral protein X (Vpx) Fyn 

HIV-1 Accessory viral protein Nef Hck, Lyn, c-Src 
Adapted from [245]. 

 

1.3.2 Src family of non-receptor protein tyrosine kinases (SFK) 

The Src-family kinases (SFKs) are a group of non-receptor protein tyrosine kinases that 

transduce signals for cell adhesion, migration, growth, differentiation and survival in response to 

growth factors, cell surface ligands and cytokines [49, 249, 250]. Of the 11 members that 

comprise the Src-family kinase complement of the human genome, 8 have been well 

characterized, namely c-Src, Lck, Hck, Lyn, Fyn, c-Yes, Blk, and Fgr [99, 300]. Of these, Src, 

Yes and Fyn are ubiquitously expressed while Blk, Fgr, Lck, Hck and Lyn are found mainly in 

hematopoietic cells. Lck and Fyn are found in T-cells while Hck and Fgr are restricted almost 

exclusively to macrophages and other myeloid leukocytes. Blk and Lyn are expressed primarily 

in B-cells [80, 246, 322, 366].  
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1.3.2.1 SFK structure 

Elucidation of the crystal structures of the downregulated conformations of Hck and c-Src have 

advanced our understanding of the three dimensional spatial arrangement of the structural 

domains of SFKs [82, 301, 346, 354]. As shown in Figure 1.8, the general domain organization 

of all SFKs consists of an N-terminal myristoylation signal sequence for membrane localization 

followed by a unique region, a Src-homology 3 domain (SH3), a Src-homology 2 domain (SH2), 

and a tyrosine kinase domain (Src-homology 1 domain) and a C-terminal tail [33, 99, 271, 300]. 

Unique region 

The N-terminus of each Src family member contains a consensus sequence for myristoylation 

(M1GxxxST7) which contributes to membrane localization [271, 272]. Membrane targeting of 

SFK is critical for their complete functional activity and signal transduction [49].  This sequence 

is followed by a stretch of about 100 amino acids unique to each family member (Figure 1.8).  

This region is also the site of palmitoylation in most cases, another acyl modification important 

for membrane localization. This unique region may represent a key determinant in the selectivity 

of these closely related kinases for their downstream targets [246].  Indeed, in chicken embryo 

fibroblasts replacement of the c-Src unique domain with that of its closest phylogenetic relative, 

c-Yes not only blocked c-Src-mediated activation of PI3K, phosphorylation of c-Raf and Akt and 

downregulation of RhoA-GTP which is involved in dynamic regulation of actin, but also 

compromised the ability of Src to alter cell morphology and stimulate motility and invasive 

potential [314].  

 



52 

Src-homology 3 (SH3) domain 

The SH3 domain is about 55-70 amino acids long, lacks catalytic activity and thus exerts its 

effects through protein-protein interactions. Small hydrophobic grooves on the outer surface of 

the domain are suitable for binding polyproline sequences on a target peptide (Figure 1.8)[73, 

362]. The proline-rich (PxxP) sequence on the target protein typically forms a left-handed 

polyproline type II (PPII) helix in which every residue is oriented 120o from each other [191, 

192, 233]. This results in the two conserved Pro residues pointing in the same direction towards 

the SH3 domain. The first proline in this PPII helix interacts with a key Trp located within one of 

the hydrophobic pockets on the SH3 binding surface [100, 292]. In the downregulated crystal 

structures of inactive c-Src and Hck, the “linker” region between SH2 and kinase domain forms a 

PPII helix to which the SH3 binds in an intramolecular fashion. The SH3 domain regulates the 

kinase activity by binding to the SH2-kinase linker. 

Src-homology 2 (SH2) domain 

The SH2 domain is larger in size than the SH3 domain, and is about 100 amino acids in length. It 

recognizes and binds to specific phosphotyrosine sequences, with pTyr-Glu-Glu-Ile (pYEEI) the 

preferred recognition sequence for Src-family kinase SH2 domains (Figure 1.8). The two pockets 

for ligand binding in the SH2 domain accommodate the phosphorylated tyrosine in the first 

pocket followed by a hydrophobic isoleucine residue in the second shallower pocket [73, 99, 

308, 309, 337]. However, all SH2 domains contain an invariant arginine residue (Arg174 in c-

Src) in the first binding pocket that is essential for interaction with the phosphorylated tyrosine 

[337]. The second binding pocket and surrounding surface residues may differ amongst SH2 
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domains to confer specificity to the SH2-binding motif.  In the context of downregulated SFKs, 

the SH2 domain binds to the tyrosine-phosphorylated tail, providing a second contact important 

for repression of kinase activity. 

Kinase (SH1) domain 

The kinase domain of SFKs mediates the catalytic activity of the protein (Figure 1.8) and thus, is 

responsible for the catalytic transfer of the γ-phosphate group from ATP to tyrosine in the 

substrate. In between the two lobes of the kinase domain rests a catalytic cleft, which is 

surrounded by key amino acids integral to the binding of both the substrate sequence and ATP 

[189]. The key residues within the catalytic site which coordinate the ATP-Mg++ complex during 

catalysis include Asp386 and Asn391 (residues are numbered according to chicken c-Src). 

Conserved Lys295 and Glu310 form a salt bridge critical to the catalytic step, while  Asp404 of 

the conserved DFG motif (amino acids 404-406) coordinates association of ATP-Mg2+ [39, 141, 

278]. The catalytic site can switch between “open” and “closed” states during activation or 

inhibition of the kinase respectively and this is regulated by an activation loop tyrosine residue 

(Y416) (Figure 1.8). Phosphorylation on Y416 opens the catalytic site, allowing access to the 

ATP and substrate into the cleft [79, 353]. When unphosphorylated, Y416 forms hydrogen bonds 

with R385 and D386, effectively blocking the opening of catalytic site [6, 82, 289]. The 

sequence and structural homology of the kinase domain is high not only amongst family 

members (c-Src, Lck, Fyn) within the Src family but also with members of other tyrosine kinase 

families (like Csk and Abl kinase) [39, 185, 200, 237, 243]. 

 



54 

C-terminal tail 

The carboxy-terminal tail is relatively short, about 15-17 amino acids long and mainly functions 

to negatively regulate kinase activity via a weak tyrosine-based SH2-binding motif (Figure 1.8) 

[215, 308]. The conserved Tyr (Y527 in c-Src) is phosphorylated by negative regulatory kinases, 

C-terminal Src kinase (Csk) or Csk-homologous kinase (CHK) (Figure 1.8), allowing the C-

terminal tail to bind intramolecularly to the SH2 domain [49, 64, 65, 234, 235]. 

Dephosphorylation of Tyr527 by cellular phosphatases releases the tail from the SH2 domain, 

leading to activation of the kinase domain [278, 279]. In the activated state, the 

unphosphorylated Y527 stacks onto a conserved Pro residue (P529) thereby holding the tail in a 

pocket within the C-lobe of the kinase domain [82]. 

 

 

Figure 1.8. Structure of Src Family Kinases 
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1.3.2.2 Regulation of activity of SFKs 

Intra- and inter- molecular interactions in SFKs directly or indirectly regulate their activity. As 

discussed above, intramolecular interaction of the SH2 domain with the C-terminal tail Tyr-

based motif (SH2-tail interaction) and binding of the SH3 domain with the SH2-kinase linker 

(SH3-linker interaction) are critical to kinase regulation (Figure 1.9). Substitution of wild type 

Hck tail with the high-affinity SH2-binding sequence YEEI rendered the kinase refractory to 

activation by competing high affinity SH2-binding ligands [260, 289]. Release of the SH2-tail 

association is sufficient to activate the kinase, in spite of an intact SH3-linker contact. Previous 

work from our lab has shown that mutation of Y527 increases kinase activity by releasing the 

SH2-tail association, even in the presence of a mutationally enhanced SH3-linker contact [207]. 

X-ray crystal structures of c-Src and Hck provided critical insights into the role of the 

interaction of the SH3 domain with the linker connecting the kinase and the SH2 domains, in 

regulation of kinase activity [260, 301, 346, 354]. The SH3 domain engages a PPII helix formed 

by a weak SH3-binding motif on the linker, which is not well conserved among the SFK family 

and poorly resembles the established PxxP sequence typical of high affinity SH3 ligands. 

Mutagenesis studies from our group have shown substituting the Hck linker prolines with 

alanines is sufficient to induce SH3 domain release from the linker, resulting in activation of the 

kinase in rodent fibroblasts [46, 47]. Follow-up studies from our group reported that switching 

the Hck linker lysines for prolines strengthened the binding of the linker to the SH3 domain 

[207]. Taken together, these findings indicate that the wild-type linker regions in SFKs indeed 

mediate a suboptimal SH3 binding which may allow for external high-affinity SH3 ligands to 

compete with the linker to bind to the SH3 domain and induce kinase activation. In case of a 
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high-affinity SH3 ligand like Nef, SH3 engagement results in displacement of the linker thus 

relieving its negative regulatory influence on the kinase domain (Figure 1.9) [46, 47, 206, 231].  

 

Regulatory intramolecular interactions in SFKs critical to kinase regulation include the interactions of SH2 domain 
with the C-terminal tail Tyr-based motif (SH2-tail interaction) and also binding of the SH3 domain with the SH2-
kinase linker (SH3-linker interaction). A high-affinity SH3 ligand like Nef binds to and engages the SH3 domain 
resulting in displacement of the linker thus relieving its negative regulatory influence on the kinase domain.  

Figure 1.9. Nef binding to Hck-SH3 domain causes constitutive kinase activation. 

 

Thus, activation of SFKs can result from inter-molecular interactions of the protein with either 

SH2 or SH3 ligands that can release the kinase from its negative regulatory intramolecular 

interactions. In the presence of Nef, kinase activity reaches a higher level than that achieved with 

tail release alone, suggesting that maximal activation of the kinase requires release of both the 

intramolecular engagements or that the SH3-linker interaction is the more dominant regulator of 

activity of Src kinases. As described in detail above, besides these two levels of regulation, a 

direct regulatory mechanism lies in the catalytic cleft of the kinase domain where 

Active complex (model)Downregulated Hck

HIV-1 Nef

Nef PPII helix

Hck PPII helix

PDB: 1QCF

SH3
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phosphorylation of the activation loop tyrosine residue switches the catalytic site from a  ‘closed’  

to an ‘open’ state and vice versa. 

1.3.2.3 Binding and Activation of SFKs by Nef 

As discussed in section 1.2.2, Nef contains a conserved proline-rich SH3-binding motif 

P72QVP75LR that can bind with high affinity to SH3 domains on host proteins including SFKs 

[46, 270, 281, 325]. Previous in vitro and cell-based studies have shown that Nef binds to SH3 

domains of Hck, Lyn, Fyn, Lck and Src via its PxxPxR motif, although high affinity binding is 

only observed with the SH3 domains of Hck and Lyn in vitro.   In the case of Hck, Lyn and c-

Src, Nef binding displaces the SH3-linker interaction, leading to constitutive kinase activation 

[42, 61, 281, 325].  

A few studies have reported binding of Nef to the Fyn SH3 domain [18] or full-length 

Fyn [58], albeit in both cases the binding affinity was relatively low (two-digit micromolar 

range). However, switching the Fyn-SH3 Arg96 residue to Ile (as in the sequence of Hck) raised 

the affinity of Nef for Fyn almost 100-fold [KD(Fyn) > 20 µM versus KD (FynR96I) = 380 nM] 

[204] [205]. Yet, several other studies reportedly failed to establish evidence of Nef binding to 

Fyn [44, 61, 76, 281]. Thus, whether Nef actually binds to Fyn in a cellular environment remains 

controversial.  

Interaction of Nef with Lck has also been controversial. There are reports of Nef binding 

to SH3 domain, SH2 domain and full length Lck, though the interaction is quite weak [42, 58, 

77, 93]. HIV-1 Nef, instead of activating, reportedly inhibits Lck activity both in vitro and in 

cultured cells [77, 135, 136], although other studies failed to show any effect of Nef on Lck in 

defined expression systems (fibroblasts and yeast). 
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The prototype SFK, c-Src, is ubiquitously expressed in all HIV target cell types.  Nef 

binds to the full-length as well as the SH3 domain of c-Src, albeit with a lower affinity than the 

Hck SH3 domain [19, 44, 61]. Contrary to Hck and Lyn, c-Src has an Arg in lieu of the critical 

Ile96 residue, implicated in high-affinity binding of Nef to the Hck-SH3 domain [204, 205, 346]. 

Nef has been reported to be able to activate c-Src in a yeast based kinase assay [325] and in a 

model of HIV-associated nephropathy utilizing glomerular podocytes from HIV-transgenic mice 

[155] but not in a fibroblast transformation assay [44]. This difference may be due to the 

requirement for additional cellular factors in the activating mechanism. 

The Lyn tyrosine kinase is expressed in myeloid cells, as well as in brain and B cells 

(283). Lyn is the only other SFK that contains an Ile residue at position 96 in its SH3 domain like 

Hck [61]. Several studies have shown that Nef binds to the SH3 domain of Lyn and full-length 

Lyn as well. Nef has also shown to activate Lyn [46, 207, 239, 281, 325]. 

As is common to the regulation of SFK activity, Hck in its inactive conformation, 

involves intramolecular association of the SH3 domain with the SH2-kinase linker region [99]. 

The SH3 domain engages a PPII helix formed by a weak SH3-binding motif on the linker 

(Figure 1.8). The conserved Nef core has been found to have a particularly high affinity for the 

Hck SH3 domain. This polyproline motif on Nef binds to the Hck SH3 domain and displaces it 

from its regulatory position from the back of the kinase domain and activates Hck through an 

SH3-domain displacement mechanism (Figure 1.8) [46, 231]. Substitution of the Pro residues on 

Nef to Ala, blocks Nef:Hck interaction and kinase activation. Besides the PxxP motif, conserved 

residues Phe90, Trp113 and Tyr120 in the hydrophobic pocket within the Nef core domain are 

essential for the recruitment and activation of Hck [61, 281]. Nef-mediated Hck activation has 
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been implicated in many of the critical functions of Nef including downregulation of MHC-I and 

enhancement of viral replication as well as infectivity [24, 91, 98, 166, 327].  

 

 

1.3.2.4 Hck and HIV-1 AIDS 

 

Hck is chiefly expressed in macrophages and dendritic cells that are important HIV-1 target 

cells. Several studies from our group as well as other laboratories have provided a strong body of 

evidence supporting a role for Hck as a direct effector of HIV-1 Nef and is exploited by this 

virulence factor to mediate its critical functions towards the establishment of a productive 

infection and disease progression. Cell-based and in vitro studies have shown that HIV-1 Nef 

binds to Hck SH3 domain via its PxxPxR motif [281, 325] and a hydrophobic pocket [61] 

leading to constitutive kinase activation. Transgenic mice expressing Nef-2PA, a mutant in 

which the conserved PxxP motif is mutated to AxxA, never developed AIDS-like disease [145].  

Also, Nef-induced AIDS-like disease development was delayed in Hck-null mice [145]. M-

tropic HIV replication is blocked upon knockdown of Hck expression with antisense 

oligonucleotides in primary human macrophages, an important site of expression of this Src-

family member [190]. Suppression of Nef-dependent Hck activation in brain-derived microglial 

cells, by expressing dominant-negative Hck or CD45 phosphatase, inhibits HIV replication 

[184]. As already described above, ongoing work from our group has established that selective 

inhibitors of Nef-mediated Hck activation also block Nef-dependent HIV-1 replication and 

infectivity, suggesting that the Nef-Hck interaction may be essential for efficient viral growth in 
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vivo [91, 97, 98, 239, 252, 327]. Thus these studies highlight the importance of the Nef-Hck 

signaling pathway, and more generally of Nef interactions with cellular tyrosine kinases, in HIV-

1 infection, pathogenesis and disease progression. 

 

1.3.3 Tec family of non-receptor protein tyrosine kinases (TFK) 

The Tec family of non-receptor protein tyrosine kinases (TFKs) comprises the second largest 

family of cytoplasmic PTKs and includes five members – Bmx, Btk, Itk, Tec and Txk [306]. 

These proteins share amino acid sequence homology within the family and also have a similar 

structural domain organization as the SFKs.  Information on other synonymous names for each 

member of this family and their chromosomal locations, molecular sizes, expression profile, and 

other properties are tabulated in table 1.4. 

In 1990, Mano et al. in an effort to isolate novel PTKs, screened a mouse liver cDNA 

library with a probe encoding the v-Fps tyrosine kinase domain and identified the coding 

sequence of a previously unknown kinase [222]. This resulted in the identification of the first 

member of the family, Tec.  In the following years, several other groups reported the 

identification of the four other related kinases – Itk, Btk, Txk and Bmx (in the chronology of 

their discovery) that comprised the entire Tec kinases family [139, 302, 319, 328, 332]. In 

mammals, these kinases are expressed predominantly in hematopoietic cells including T 

lymphocytes and other HIV target cell types. Btk is expressed primarily in B cells whereas T 

cells express Itk, Tec and Txk. Bmx is expressed both in B-cells and macrophages [359]. The 

members of this family share a common domain organization with Src family kinases (e.g., an 

SH3-SH2-kinase core) with subtle and comparable differences in relevance with their functional 
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regulations, although the mode of regulation is less clear in case of TFKs. The protein structure 

of the Tec kinases will be discussed in greater detail in section 1.3.3.1.  
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Adapted from [306, 359] 

 

Family Members Bmx Btk Itk Tec Txk 

Other names PSCTK3, Etk PSCTK1, ATK, 
BPK 

PSCTK2, Emt, Tsk, 
LYK PSCTK4, Dsrc28C PSCTK5, Rlk 

Chromosomal 
positions Xp22.2 Xq21.33-q22 5q31-32 4p12* 4p12* 

Gene accession 
number   X83107 X58957 D13720.1 D29767 L27071 

Protein Size (a.a) 675 659 620 631 502; 527 

Molecular wt (kDa) 78 76.3 71.8 73.6 55; 58 

Tissue distribution 

Ubiquitous: 
epithelial cells, 
keratinocytes, 
granulocytes, 

monocytes 

Myeloid and B 
cells, mast cells 

Myeloid and T cells, 
mast cells, NK and NK-T 

cells 

Myeloid, B and T 
cells, 

melanocytes, 
embryonic limb, 

hepatocytes 

T cells, mast 
cells 

Phosphorylation sites Y215 (auto); Y223; 
Y566 Y223 (auto); Y551 Y180 (auto); Y511 Y206 (auto); Y519 Y91 (auto); Y420 

Function 
Inhibits p53; 

activates STAT3; 
antiapoptotic. 

BCR driven; 
activates PLCγ1,γ2, 

PKC; B-cell 
maturation; cell 

adhesion; apoptosis 

TCR driven; Th2 
responses; activates 

PLCγ1; actin 
reorganization; thymic 

selection 

Activates AP1, 
NFAT, 

transcription from 
IL-2 promoter 

TCR driven; 
Th1 responses; 

activates 
transcription 
from IFNγ 
promoter; 

activates PLCγ1 

Table 1.4 Overview of Tec family Kinases 
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Bmx (bone marrow tyrosine kinase gene in chromosome X), also known as Etk 

(epithelial and endothelial tyrosine kinase) is expressed in the endothelium of large arteries, 

endocardium, bone marrow, myeloid cell lines, lung, and prostate cell lines. Bmx has the highest 

amino acid sequence homology to Btk and is localized on the same chromosome (X), suggesting 

that they were generated during evolution by gene duplication [319]. This ~80 kDa protein 

kinase has been implicated in the activation of Rho and serum response factor in response to 

heterotrimeric G proteins stimulated by extracellular stimuli like hormones and 

neurotransmitters. In addition, Bmx is phosphorylated by SFKs and is responsible for Src-

induced activation of STAT3 in the context of cellular transformation. 

Btk (Bruton’s tyrosine kinase) is a ~77 kDa protein kinase expressed chiefly in myeloid 

and B-cells. Also known as Emb (expressed in mast cells, myeloid cells and B-lymphocytes), 

inactivating mutations in this kinase cause X-linked agammaglobulinemia (XLA) in humans and 

X-linked immunodeficiency (xid) in mice. XLA is an inherited immunodeficiency characterized 

by a complete absence of the humoral immune response resulting from a severe deficit of B- 

lymphocytes, plasma cells and profound hypogammaglobulinemia. Consistent with the deficient 

expression of Btk mRNA, protein, and kinase activity in XLA pre-B and B cell lines, it was 

originally termed as Bpk (B-cell progenitor kinase) [167, 328].  

Itk (IL-2 inducible T-cell kinase) or Tsk (T-cell-specific kinase) or Emt (expressed in 

mast cells, myeloid cells and T lymphocytes), as the names suggest is the highest expressed 

family member in naïve T cells and thymocytes [159, 302, 357]. This 72 kDa kinase is expressed 

in spleen, lymph nodes, and natural killer T cells. The localization of the itk gene to chromosome 

5q31-32 makes it unique since the other members of the family are believed to have been 

generated in evolution by gene duplication. Itk plays a major role in regulating downstream 
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signaling from the T-cell receptor, in T-cell development and function, all of which shall be 

discussed in greater detail in subsequent sections. 

As described above, this family of kinases was named after Tec (Tyrosine kinase 

expressed in hepatocellular carcinoma), the first member discovered. Alternative splice sites on 

mRNA and alternate start sites yield multiple isoforms (ranging from 58 to 73.6 kDa) in humans. 

Tec is expressed in bone marrow, spleen, thymus, T-cells, B-cells, myeloid cells and even in 

hepatocarcinoma. Chromosomal mapping and detailed analysis reveals that the tec and txk genes 

are both localized on the same locus 4p12 of chromosome 4 in humans and are just 1.5 kbp apart 

from each other. Both of these kinase genes likely arose from a common ancestor through gene 

duplication. 

Txk/Rlk (resting lymphocyte kinase) is found in thymocytes (mast and T-cells) at 

several-fold lower levels than Itk, and is an atypical member of this family. Txk lacks the 

Pleckstrin homology (PH) domain and the Btk motif in its amino-terminal region, the structural 

hallmarks of the other TFKs. Instead, it contains a cysteine-rich motif in its unique region that 

upon being palmitoylated can subsequently target the kinase to the cell membrane. Smallest in 

size (~61 kDa) of all the family members, Txk is commonly expressed as two isoforms that arise 

by alternative initiation of translation from the same cDNA. The shorter isoform lacks the 

cysteine string motif and in the absence of any fatty acid modification localizes to the nucleus 

while the larger isoform is cytosolic. However, Txk is similar to the other members of the 

family, in being phosphorylated and activated by SFKs, supporting a role for this kinase in 

signaling downstream of Src kinases in T cell activation [90, 221]. 
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1.3.3.1 Tec Family Kinase structure  

The Tec kinases share a common domain organization like Src family kinases that includes SH3 

and SH2 domains, followed by the kinase domain. However, Tec kinases lack N-terminal 

myristoylation sequences and C-terminal regulatory tyrosines as are found in SFKs. Instead the 

Tec kinases possess an amino-terminal pleckstrin homology (PH) domain that binds inositol 

phosphates and acts as a membrane anchor [359]. Also, Tec kinases possess a Tec homology 

(TH) region, just upstream of the SH3 domain, consisting of a proline-rich motif engaged in 

intramolecular interaction with the SH3 domain and thus kinase regulation [13].  

Pleckstrin Homology (PH) domain  

The Pleckstrin Homology (PH) domain, about 100 amino acids long, forms a β-barrel from two 

β-sheets and a C-terminal α-helix and is a characteristic feature present only in the Tec family of 

kinases, amidst all non-receptor protein tyrosine kinases known.  It serves to tether the Tec 

kinases to the cell membrane, as does the myristoylation signal in SFKs. The positive charge on 

one end of its structure renders the domain with a strong affinity for phospholipids and 

phosphatidylinositols (PIs) [147, 267]. The PH domains of Btk, Tec and Itk have all been 

reported to have higher binding affinities for phosphatidylinositol-3,4,5-trisphosphate 

[PI(3,4,5)P3] than phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol-4-

phosphate [PI(4)P] or inositol-1,3,4,5-tetrakisphosphate (IP4) [296]. Thus, the PH domain acts as 

a conditional switch that recruits the Tec kinases to the cell membrane in a PI3-K activity-

dependent manner. This is supported by the finding that addition of PI3-K inhibitors blocked 

membrane targeting and subsequent activation of Itk [25, 60]. Substitution of the entire Itk PH 

domain with a myristoylation sequence targeted the kinase constitutively to the membrane but 
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failed to activate it, indicating that mere localization of these kinases to the membrane is not 

sufficient for their activation. The PH domain upon binding the PI3-K product, PIP3 localizes the 

kinases to the cell membrane in close proximity of their cognate activating kinases (typically 

SFKs). Also, the PH domains serve as binding modules for other membrane-associated proteins 

that possibly regulate Tec kinase activities. For instance, the Btk PH domain has been shown to 

bind to Gα subunits of heterotrimeric G- proteins and protein kinase C β1 as well [173, 360].  

Tec Homology (TH) domain 

The 80 residue long TH domain contains a conserved Btk motif (a globular core consisting of 27 

amino acids) at the amino-terminus of the domain followed by a proline-rich (PxxP) region in 

the carboxy-terminal half of the domain. The Btk motif contains characteristic conserved Cys 

and His residues forming a zinc binding fold. Along with the C-terminal end of the PH domain, 

the Btk motif constitutes a binding site for active Gα subunits of heterotrimeric G proteins. The 

PxxP motif assumes a PPII helix constituting a binding site for SH3 domains on other proteins, 

typically SFKs. Btk and Tec contains two such PxxP motifs while Bmx, Itk, and Txk have only 

one. Except for having the PxxP motif, Bmx has a ‘TH-like’ domain instead of a classical one. 

The TH domain is integral to the activity of these kinases since its intramolecular association 

with the adjacent SH3 domain via it PxxP motif locks the kinase in an autoinhibited state [221, 

306, 333]. 

Src Homology 3 (SH3) domain 

The SH3 domain in TFKs (except for Bmx, which lacks a classical SH3 domain) is related to 

those of SFKs and shows a high degree of conservation of sequence. Bmx carries a truncated 
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SH3-like domain. As in SFKs, the SH3 domain binds to polyproline motifs and is involved in 

inter- and intra-molecular associations, thereby holding a key to the regulation of the kinase’ 

activity. Besides binding to the PxxP motif, the Itk SH3 domain was also shown to bind 

specifically to the Itk SH2 domain, which does not contain a canonical PxxP consensus sequence 

[38]. A handful of proteins that reportedly bind to the SH3 domain of TFKs include Wiskott-

Aldrich syndrome protein (WASP), Sam68, SLP-76, Vav1, c-Cbl and hnRNP-K [221]. Studies 

that report constitutive activation of Tec following truncation of its SH3 domain and 

development of XLA following a deletion in the Btk SH3 domain support a critical role for this 

domain in regulation of kinase’ activity [358, 365]. 

Src Homology 2 (SH2) domain 

Like the SH3 domain, TFK SH2 domains also bear high sequence homology to SFK SH2 

domains. As is reminiscent of SFKs, the SH2 domain in TFKs binds to phosphotyrosine motifs 

on other proteins. Some of the host cell proteins identified to bind to SH2 domain of Btk include 

phosphorylated adaptor protein BLNK/SLP-65 in B cells; while Itk has been found to bind to 

SLP-76, Vav1, LAT and PLCγ1 via its SH2 domain. These interactions are presumably needed 

for downstream PLCγ activation. The Tec SH2 domain essentially binds to and phosphorylates 

the docking protein Dok-1 and BRDG1 as well as PI-3K subunits p85b and p55PIK [59, 131, 

318]. Intermolecular association of TFKs with their cognate binding partners via their SH2 

domains may result in activation or inactivation of the kinase. For instance, interaction of Itk 

SH2 domain with the prolyl-isomerase cyclophilin A (CypA) inactivates the kinase, while 

interaction with Cyclosporin A leads to Itk activation [132]. 
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Kinase (SH1) domain 

The catalytic domains of Tec kinases are highly conserved and include a conserved activation 

loop tyrosine residue that is transphosphorylated by an SFK for the initial activation of the 

kinase. X-ray crystal structures of Itk kinase domain in both active and inactive states reveal that 

phosphorylation of the activation loop tyrosine residue does not induce any conformational 

change in the kinase domain, indicating that the activation of the kinase may not involve a 

phosphorylation-dependent conformational switch [48]. In contrast to many other tyrosine kinase 

domains, the isolated kinase domains of TFKs are kinetically inactive, indicating the possible 

role of other domains in regulating kinase activity [153]. Besides their enzymatic activity, the 

kinase domains of TFKs contain a highly conserved caveolin-binding motif. Both Bmx and Btk 

have been reported to associate with caveolin (a principal component of caveolae membranes 

that play critical roles in several cellular signaling cascades) in vivo thereby inhibiting tyrosine 

phosphorylation on Btk [330]. The interaction of Tec SH2 domain with p85b and p55PIK 

subunits of PI3K is also dependent on the Tec kinase domain [318].  

 

1.3.3.2 TFK: Function and Regulation 

Functionally Tec kinases play a role in modulating antigen receptor signaling by participating in 

the phosphorylation of phospholipase C-γ (PLCγ), regulate the actin cytoskeleton and serve as 

critical mediators of immune responses in both B and T cells. In T cells, Tec kinases contribute 

to T helper cell differentiation and lineage commitment [306]. Tec kinases bind to SFKs via their 

TH domain Pro-rich motif and act downstream of SFK-induced intracellular signaling pathways 

[223].  
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In B- and T-cells, BCR and TCR stimulation and activation unfolds a complex 

orchestration of events downstream which involves activation of TFKs. Downstream 

consequences include mobilization of intracellular Ca2+, Erk activation, gene transcription, 

cytokine release and actin reorganization. The common upstream regulators of Itk include the 

TCR/CD3 signaling complex, chemokine receptors, and heterotrimeric GPCRs.  Antigen 

receptor stimulation leads to phosphorylation of the CD3 immunoreceptor tyrosine-based 

activation motifs (ITAMs) by activated Lck which can then bind the ZAP-70 kinase (zeta-

associated protein of 70 kilodaltons). ZAP-70 activation by Lck in turn activates the linker for 

activated T cells (LAT) and the SH2 domain-containing leukocyte phosphoprotein of 76 

kilodaltons (SLP-76).  At this point a signalosome complex consisting of LAT-SLP-76-PLCγ-

Grb2-GADS-SOS is formed in T cells while parallel activation of PI3K and accumulation of its 

product, PIP3 helps recruit Itk to the cell membrane. Here Itk gets phosphorylated by Lck and 

autophosphorylates itself to interact with the signalosome. Itk then binds to and directly 

phosphorylates PLCγ and activates it, which in turn catalyzes the hydrolysis of PIP2 to IP3 and 

DAG. IP3 functions as a major mediator of Ca2+ mobilization from cytoplasmic storage vesicles 

while DAG leads to activation of MAPK pathways and protein kinase C isozymes. Similarly in 

B-cells, the signalosome complex consists of BLNK/SLP-65, PLCγ, Vav, Grb2 and SOS and 

leads to the ultimate downstream effects of activation of transcription factors [14, 132, 265]. 

As discussed in detail earlier (section 1.3.2.1), SFKs are regulated via intramolecular 

and/or intermolecular interactions. In the downregulated state, the SFK SH2 domain binds to the 

regulatory phosphotyrosine on the C-term tail, the SH3 domain binds to the SH2:kinase linker 

and the unphosphorylated activation loop tyrosine covers the catalytic site between the two lobes 

of the kinase domain. However, a mechanistic understanding of the regulation of activity in 
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TFKs remains somewhat obscure, since Itk and other Tec family members have remained 

refractory to crystallization in their full-length forms.  

Unlike SFKs, TFKs lack a conserved C-terminal inhibitory tyrosine residue. Instead, 

TFKs possess two principal tyrosine residues, one in the activation loop of the kinase domain 

and one in the SH3 domain that play regulatory roles. Like other non-receptor PTKs, Tec kinases 

also are involved in intramolecular and intermolecular interactions. Requirements for the 

activation of Tec kinases typically involve four events: (1) interaction of the PH domain with 

phosphorylated inositol lipids (that are products of PI3-K activation) required for membrane 

association; (2) phosphorylation of the regulatory activation loop tyrosine residue by SFKs; (3) 

disruption of intramolecular engagements and (4) intermolecular interactions with other proteins 

via the SH2 and kinase domains [14, 265]. Results from several studies show that in TFKs, the 

activation loop tyrosine residue in the kinase domain (Y511 in Itk – corresponding Tyr residues 

for each of the TFK members are tabulated in table 1.4) is phosphorylated by SFKs, leading to 

partial activation of the kinase. This is followed by subsequent autophosphorylation of the SH3 

domain tyrosine residue (Y180 in Itk).  Phosphorylation of both regulatory tyrosine residues is 

required for the full activation of the protein [160, 344]. Recruitment of the kinases to the plasma 

membrane via their PH domain brings the kinase to close proximity to its cognate upstream 

kinase (e.g. a Src-family member) that can phosphorylate the kinase domain tyrosine residue - 

this allows for the disruption of inhibitory intramolecular associations, allowing the regulatory 

domains to bind their substrates.  

Andreotti et al. showed by multidimensional NMR that the Itk TH and SH3 domains 

engage in an intramolecular regulatory association that prevents the Itk SH3 domain and the TH 

proline-rich region from interacting with their ligands. This intramolecular complex formation 
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may hold the kinase in a closed, autoinhibited conformation [13]. In a follow up study, they 

found that Txk-TH domain does not interact with its own SH3 domain. This opposing mode of 

self-association within the otherwise closely related Txk and Itk proteins may be attributed to the 

difference in the lengths of their TH-SH3 linker regions. Itk has five more residues in its linker 

region than Txk, which likely imparts the flexibility to the kinase to fold and self-associate 

intramolecularly [196]. In a further study, the Andreotti group found that dual SH3-SH2 domain-

containing fragments of Itk could self-associate intermolecularly in solution indicating the 

presence of a possible intramolecular association between the SH3 and SH2 domains of Itk. This 

may provide a plausible mechanism for the displacement of the intramolecular regulatory 

sequence, a step that might be required for full activation of the kinase [38].  Unlike Itk, the Btk 

and Tec-TH domains possess two proline-rich sequences which can undergo asymmetric 

homodimerization with their SH3 domains. With accumulating concentrations of the kinase at 

the cell membrane, these kinases tend to form dimers [195, 261]. 

Bmx and Txk are the atypical members in this family. Bmx lacks a classical SH3 domain, 

and has a PxxP motif surrounded by non-conserved residues while Txk lacks a TH domain. 

Moreover, the SH3-like domain in Bmx has two potential sites of tyrosine autophosphorylation. 

Yet, Bmx activation requires the two major activation steps of membrane association and 

phosphorylation of the regulatory tyrosine residue in the kinase domain [95, 262] 

Termination of Tec family kinase signaling can occur in two different ways – either by 

the activity of a phosphatase or by interaction with other proteins. Expression of activated 

phosphatases like PTEN in T cells or SHIP and PTEN in B cells reduces PIP3 levels and thus 

prevents further recruitment and activation of Tec kinases [294]. Several proteins have also been 

implicated in the inactivation of Tec kinases. Btk activity is regulated by IBtk, PKCβ, Pin1 
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(protein interacting with NIMA1) [214] while Itk is negatively regulated by a peptidyl prolyl 

isomerase, cyclophylin A (CypA) [175].   

 

1.3.3.3 Itk and HIV-1 AIDS 

Given its critical role in CXCR4- and TCR-mediated signaling and cytoskeletal regulation in T 

cells, Itk has very recently emerged as a potential target for anti-HIV therapeutic intervention. In 

resting human CD4+ T cells the endogenous level of Itk expression is extremely low [176]. 

Stimulation of TCR leading to subsequent activation of CD4+ cells enhances transcription of the 

Itk gene – which is key to a productive infection of HIV in these cells. Readinger et al. showed 

that use of either a selective Itk chemical inhibitor or Itk SH2 mutants to block Itk function, leads 

to inhibition of actin-dependent HIV-1 entry, viral replication and transcription. Use of an 

siRNA directed against Itk to block kinase expression, also reduced F-actin polarization in 

response to HIV gp120 and HIV replication in primary human CD4+ T lymphocytes and Jurkat 

T cells [266]. In a follow up study, this group went on to show that Itk impacts HIV-1 replication 

and viral egress in T cells by co-localizing with the HIV-1 Gag protein at sites of F-actin 

accumulation and membrane lipid rafts at the plasma membrane [290]. 

Other work has shown that proteasome inhibitors reduced the steady state levels of TFKs 

in hematopoietic cells [363]. Based on the finding that reduction of Itk activity can affect HIV 

replication, Yu et al. evaluated the effects of proteasome inhibitors on HIV infection and/or 

replication. HIV replication was significantly blocked in activated PBMCs treated with the 

clinically approved proteasome inhibitor Bortezomib (Velcade) [364].   
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Mice that are homozygous null for Itk (Itk-/-) have delayed responses to viral infection yet 

can clear all viral infections tested to date [23]. However in these mice the major in-vivo defects 

include impaired responses to pathogens and Th2-stimulants, indicating that compensatory 

pathways are less efficient in the absence of Itk [26]. However, these results suggest that it would 

be fair to believe that antagonists targeting Itk would not impair all immune functions in T cells, 

and may represent a reasonable approach to HIV therapy. All these studies taken together present 

a justifiable body of evidence for the implication of Itk and other Tec family kinases in 

HIV/AIDS, and therefore represent an attractive drug target for the treatment of AIDS. 
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2.0  STATEMENT OF HYPOTHESES AND SPECIFIC AIMS 

The HIV-1 accessory protein Nef supports high-titer viral replication in vivo and is essential for 

HIV pathogenesis and AIDS progression [101, 126, 143, 182]. Nef functions by interacting with 

multiple host cell effectors involved in cellular activation, immune recognition and survival 

[158]. Nef binds to the SH3 domains of host cell proteins, most notably members of Src family 

of non-receptor protein-tyrosine kinases (SFKs) like Hck, Lyn and Src [46, 281, 325] via its 

conserved proline-rich motif (PxxPxR) and hydrophobic pocket [61] causing constitutive kinase 

activation. Selective inhibitors of Nef-induced SFK activation block Nef-dependent HIV 

replication [97] suggesting that the Nef-SFK pathway may be essential for efficient viral growth 

in cell culture.  These studies strongly suggest that Nef-SH3 interaction is a common early event 

in HIV-infected cells that generates important downstream signals essential for viral 

pathogenesis. Thus, Nef-SH3 interactions represent a rational target for anti-HIV drug 

development and it is important to elucidate all these Nef-directed signaling pathways for 

rational drug design. The importance of Nef:SH3 interaction demands a systematic cell-based 

analysis of the Nef-SH3 interactions for a better understanding of Nef-directed signaling in the 

HIV-1 infected cell.  
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2.1 HYPOTHESIS I 

Previous work has established that Nef binds the SH3 domains and activates SFKs in vitro, in 

defined cellular systems (fibroblasts, yeast) and in HIV target cells. Besides SFKs, Tec kinases 

(Bmx, Btk, Itk, Tec, Txk) are also expressed in HIV target cells and possess SH3 domains 

important to their regulation. Tec kinases modulate antigen receptor signaling in lymphocytes 

and contribute to TH cell differentiation, lineage commitment and their activation downstream of 

antigen receptors involves SFKs. Recent studies have implicated the Tec family member Itk in 

HIV infectivity and replication [266], although the mechanism by which HIV infection is linked 

to Itk is unknown. The possibility of Nef interaction with Tec-family kinases through their SH3 

domains has not been investigated. However the predominant expression of this family of 

kinases in HIV target cells supports an investigation of this possibility. In light of the importance 

of SH3 interaction in Nef function, I tested the hypothesis that HIV-1 Nef preferentially binds to 

a specific subset of SH3 domain-containing proteins (kinases) and that these interactions are 

indispensable for Nef-mediated downstream signaling in support of viral replication.  

To address this hypothesis, I developed a novel, cell-based approach and explored the 

scope of interaction of HIV-1 Nef with Tec family kinases and the relevance of this interaction to 

HIV biology with four specific aims as outlined in the following section. 
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2.1.1  SPECIFIC AIMS 

Aim 1: Test the ability of SH3-domain containing Tec family kinases to bind to HIV-1 Nef 

in cells and characterize the interaction mechanism.  

In this Aim, I probed the interaction of HIV-1 Nef with Tec-family kinases using a cell-based 

bimolecular fluorescence complementation (BiFC) assay. First I developed and validated this 

assay using the Src-family kinase Hck, which is a well characterized binding partner for Nef. 

Using this approach, I found that full-length Bmx, Btk, and Itk interacted strongly with HIV-1 

Nef at the plasma membrane, while Tec and Txk did not. Parallel BiFC experiments with shorter 

constructs consisting of only SH3 domains (along with the N-terminal regions required for 

membrane localization) were carried out, which supported interaction through the SH3 domain. 

To characterize the interaction further, I carried out mutagenesis studies to evaluate the 

importance of residues that contribute to interaction of Nef with the Tec family kinases through 

their SH3 domains. Replacement of the SH3 domain RT-loop Ile critical for interaction with the 

Nef hydrophobic pocket with Arg compromised interaction of Hck, Btk and Itk with Nef, 

thereby supporting a role for the SH3 RT-loop in Nef recognition. Replacement of the Ala 

residue in the RT loop of the Tec SH3 domain with Ile restored interaction with Nef by BiFC, 

supporting the idea that Tec and Src family kinases interact with Nef though a similar structural 

mechanism.  

 

Aim 2: Test the hypothesis that interaction with the Tec kinases is a conserved property of 

Nef allelic variants.  

In this Aim, I used primary nef alleles representative of the major HIV-1 subgroups A1, A2, B, 

C, F1, F2, G, H, J, K and tested for their interaction with full length Itk, using the cell-based 
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BiFC assay. Allelic variants of Nef representative of all M-group HIV-1 clades interacted 

strongly with Itk in the BiFC assay, suggesting Nef-Itk interaction is highly conserved across all 

major HIV-1 subtypes. These findings are important because they address for the first time 

whether or not HIV Nef variants retain a conserved pattern of SH3 recognition and also address 

the generality Nef-Itk interaction. 

 

Aim 3: Investigate the functional relevance of Nef interaction with Tec family kinases in the 

context of HIV infection.  

Selective inhibitors of Nef-induced SFK activation block Nef-dependent HIV replication [97]. 

Previous studies have shown that a small molecule inhibitor of Itk, BMS-509744, blocks HIV-1 

infectivity and replication in vitro [266].  To investigate the importance of Nef:Itk interaction in 

HIV-infected cells, I tested the effect of BMS-509744 on wild-type vs. Nef-defective HIV 

infectivity in TZM-bl cells as well as replication in CEM-T4 and Jurkat cells. I found that this Itk 

inhibitor blocks Nef-dependent wild-type HIV infectivity and replication, but not that of a Nef-

defective mutant. These results suggest that Nef provides a mechanistic link between HIV and 

Itk signaling in the viral life cycle.   

 

Aim 4: Evaluate the effect of Nef:SH3-kinase interactions on the activity of Itk. 

To address this aim, I turned to immunoprecipitation assays.  Itk expressed alone or in 

combination with Nef in mammalian cells was immunoprecipitated and subsequently analyzed 

for levels of tyrosine phosphorylation by immunoblotting. Results from this aim indicated that 

Nef induces autophosphorylation and thus activation of Itk which was found to be sensitive to 

the Itk inhibitor, BMS-509744. 
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2.2 HYPOTHESIS II 

Elucidation of high-resolution structures of Nef:SFK complexes is critical to our understanding 

of Nef:SFK signaling and rational drug design. Our lab recently determined the crystal structure 

of a recombinant HIV-1 Nef core protein in complex with the tandem SH3-SH2 regulatory 

region of human Src-family kinase Hck (Hck32). Novel Nef:SFK interactions were observed in 

the crystal structure. The complex crystallized as a dimer of Nef:Hck32 complexes, with the 

expected interaction between the conserved Nef PxxPxR motif and the Hck SH3 domain 

observed in earlier structures of Nef with SH3 only. However, the Nef dimer interface was found 

to be completely reoriented and much more compact relative to these previous structures, with an 

intercomplex contact observed between Nef R105 and SH3 E93. Based on these findings, I 

hypothesized that interaction of Nef R105 with Hck SH3 E93 is required for complex 

formation with full-length Hck and kinase activation by Nef.   

In an effort to validate the biological significance of the new X-ray crystal structure of 

the HIV-1 Nef:Hck32 complex, I completed two specific aims as follows below. 

2.2.1 SPECIFIC AIMS 

Aim 1: Investigate the role of the Hck-SH3 RT loop E93 in stabilizing Hck binding to the 

Nef dimer.  

In order to evaluate the functional importance of this interaction to complex formation, I 

addressed this aim by mutagenesis studies and compared the mutant versus wild type proteins in 

a cell-based BiFC assay. The Hck-SH3 RT loop E93 was mutated to Ala. Mutant and wild type 

full-length Hck and corresponding shorter constructs (consisting of SH3 and SH3-SH2 domains 
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only, including the N-terminus in each case) were tested for their ability to bind to Nef in the 

BiFC assay. Interaction of mutant full-length Hck with Nef was significantly weaker than wild 

type Hck. This finding indicated that this additional SH3 domain contact is important for stable 

interaction of full-length Hck with Nef in cells, providing important validation for the new 

crystal structure of Nef in complex with the Hck SH3-SH2 unit. 

 

Aim 2: Investigate whether Hck-SH3 RT loop residue E93 is important to the activation of 

Hck by Nef. 

To evaluate the effect of the Hck SH3 domain E93 mutation on Nef-mediated kinase activation, I 

took advantage of a yeast-based kinase assay previously developed in our laboratory to study 

Nef-mediated activation of Src-family kinases without interference from mammalian host cell 

kinases [239, 325]. Wild type full length Hck was found to be constitutively activated by Nef in 

yeast, consistent with our previous studies. However, Nef failed to activate mutant full length 

Hck E93A, in agreement with its inability to interact with Nef by BiFC. In parallel experiments, 

I evaluated by immunoblot analyses the extent of tyrosine phosphorylation on yeast cell proteins 

as a result Nef-mediated Hck activation. Levels of overall tyrosine phosphorylation were 

significantly reduced in cells co-expressing Nef and mutant Hck E93A, compared to cells 

expressing wild type Hck. These results support an essential role for Hck SH3 E93 in the 

formation of the active Nef-Hck complex. 
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3.0  THE INTERACTION OF HIV-1 NEF WITH TEC FAMILY KINASES AND ITS 

RELEVANCE TO HIV BIOLOGY
§
 

§
 Work presented in this chapter has been published in the Journal of Biological Chemistry, 2014 
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3.1 SUMMARY 

The non-enzymatic HIV-1 Nef virulence factor functions by interacting with diverse host cell 

signaling proteins.  Nef particularly binds to the SH3 domains of Src-family kinases via its 

conserved polyproline motif, resulting in kinase activation important to viral infectivity, 

replication, and MHC-I downregulation.  In addition to SFKs, Itk and other Tec-family kinases 

are also present in HIV target cells and possess SH3 domains important to their regulation. 

Recently, Itk has been implicated in HIV-1 infectivity and replication. However, the molecular 

mechanism linking Itk to HIV-1 is not clearly known. In this study, we explored the interaction 

of Nef with Tec-family kinases using a cell-based bimolecular fluorescence complementation 

(BiFC) assay. In this approach, interaction of Nef with a partner kinase juxtaposes non-

fluorescent YFP fragments fused to the C-terminus of each protein, resulting in YFP 

complementation and a bright fluorescent signal. Using BiFC, we observed that Nef interacts 

with the Tec family members Bmx, Btk, and Itk but not Tec or Txk.  Interaction with Nef occurs 

through the kinase SH3 domains, and localizes to the plasma membrane. Allelic variants of Nef 

from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the 

highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase 

activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication in a Nef-

dependent manner. We also showed that Nef induced Itk activation in transfected cells that was 

sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef 

interacts with cytoplasmic tyrosine kinases of the Tec family, and suggest that Nef provides a 

mechanistic link between HIV-1 and Itk signaling in the viral life cycle. 
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3.2 INTRODUCTION 

The HIV-1 accessory factor Nef is a 27 kDa protein unique to the primate lentiviruses HIV and 

SIV. Nef is expressed early in the viral life cycle [20, 126] and is required for high-titer viral 

replication and disease progression in vivo [101, 143, 182, 311].  Previous studies have shown 

that non-human primates infected with Nef-deleted SIV failed to develop AIDS-like disease 

[182].  Defective nef alleles have also been detected in HIV sequences recovered from long-term 

non-progressors [89, 186, 225, 367], individuals infected with HIV that do not or only very 

slowly develop AIDS despite many years without antiretroviral therapy. Moreover, targeted 

expression of Nef in CD4+ T-cells and macrophages induces an AIDS-like syndrome in 

transgenic mice even in the absence of other HIV-1 gene expression [143].  More recent studies 

with HIV-1-infected humanized mice show that viral load and CD4+ T-cell loss are also 

dependent on Nef [367]. Taken together, these studies support an essential role for Nef in HIV 

pathogenesis and AIDS progression. 

Non-catalytic in nature, Nef acts by interacting with a multitude of host cell proteins 

involved in cellular activation, protein trafficking, immune recognition and survival [158]. Nef 

selectively binds to the SH3 domains of several classes of host cell proteins [280], including 

members of Src family of non-receptor protein-tyrosine kinases.  Of the Src-related kinases in 

the human kinome, Nef has been shown to preferentially interact with Hck, Lyn and c-Src via 

their SH3 domains.  Structural studies have shown that Nef interacts with Src-family kinase SH3 

domains through a highly conserved polyproline (PxxPxR) motif as well as a hydrophobic 

pocket formed by the three-dimensional fold of the Nef core [61].  The Nef PxxPxR motif adopts 

a polyproline type II helix, which engages the hydrophobic grooves on the SH3 domain surface, 

while the hydrophobic pocket engages an isoleucine residue on the RT-loop of the SH3 domain. 
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Nef activates Src-family kinases constitutively by disrupting and displacing the inhibitory 

engagement of the SH3 domain with the SH2-kinase linker region and releasing it from its 

regulatory position on the back of the kinase domain [46, 231]. 

Several lines of evidence support a critical role for the Nef PxxPxR motif in the various 

functions of this multifaceted virulence factor, Nef.  Development of AIDS-like disease in Nef 

transgenic mice requires the PxxPxR motif and is delayed in mice that are homozygous-null for 

Hck [145].  The PxxPxR motif is also required for Nef-mediated MHC-I [91] and CCR5/CXCR4 

downregulation [305], functions critical to escape of HIV-infected cells from host immune 

surveillance. M-tropic HIV replication is blocked upon knockdown of Hck expression in primary 

human macrophages, an important site of expression of this Src-family member [190]. Our 

laboratory has recently established that selective inhibitors of Nef-induced SFK activation block 

Nef-dependent HIV infectivity and replication in cell culture [97, 98, 239].  These studies 

support the idea that interaction of Nef with SH3-containing kinases and other proteins is an 

early event in HIV-infected cells that generates important downstream signals essential for a 

productive infection and viral pathogenesis. 

In addition to Src-family kinases, members of the Tec kinase family are also expressed in 

HIV target cells.  Like Src-family members, Tec kinases also have SH2 and SH3 domains that 

control kinase activity and function [14, 265]. These kinases are expressed predominantly in 

hematopoietic cells in mammals. The Tec family consists of five members:  Btk, which is 

expressed primarily in B cells; Itk, Tec and Txk, which are expressed in T cells; and Bmx, which 

is expressed both in B-cells and macrophages. Tec kinases modulate antigen receptor signaling 

and serve as critical mediators of immune responses in both B and T cells.  In T cells, Tec 

kinases contribute to T helper cell differentiation and lineage commitment [265]. Interestingly, 
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Tec kinases are activated by direct phosphorylation by Src-family kinases downstream of the T-

cell receptor, leading to intracellular calcium mobilization as well as phospholipase Cγ and 

MAPK activation [14].   

Recent studies have implicated the Tec family kinase Itk in the HIV-1 life cycle.  Using 

selective pharmacological inhibitors and siRNA targeting Itk, Readinger et al. showed that loss 

of Itk activity compromised viral transcription, particle assembly, and viral spread [266]. 

However, the molecular mechanism linking HIV-1 to this T cell kinase was not reported.  The 

well-known connection of HIV-1 Nef to Src-family kinase activation, the close relationship of 

Src and Tec family kinases in T cells, and the requirement for Itk activity in HIV replication 

suggested a possible link between Nef and Tec family kinases in HIV target cells.  In this study, 

we developed a novel, cell-based approach to investigate the direct interactions of HIV-1 Nef 

with Tec-family kinases. Using a bimolecular fluorescence complementation (BiFC) assay, we 

demonstrate that three members of the Tec kinase family interact directly with Nef through their 

SH3 domains. We also found that Nef induces activation of Itk which is sensitive to the selective 

Itk inhibitor, BMS-509744. Our experiments also confirmed that the interaction of Nef with Itk 

kinase is a conserved property of Nef allelic variants representative of ten distinct M-group HIV-

1 subtypes.  Using BMS-509744, we show that Itk kinase activity is required for wild-type HIV 

infectivity and replication, but not that of a Nef-defective mutant. Taken together, these results 

show that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life 

cycle, and support further exploration of this signaling pathway as a potential target for anti-

retroviral drug development. 
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3.2.1 Bimolecular Fluorescence Complementation (BiFC) Assay 

The bimolecular fluorescence complementation (BiFC) assay has emerged as a relatively 

straightforward and sensitive assay for direct visualization of protein:protein interaction in living 

cells. BiFC also enables visualization of the subcellular localization of the interacting protein 

complexes. Application of this assay to mammalian cells was first described by Hu et al., in their 

2002 study of interactions between dimeric transcription factors of the Myc-Mad-Max family 

[163]. The technique involves fusing two interacting proteins to non-fluorescent fragments of the 

yellow fluorescent protein (YFP; yellow shifted variant of GFP) such that when the two proteins 

interact, the YFP fragments are brought into close proximity. As a result, the YFP structure 

reassembles, leading to a fluorescent signal (Figure 3.1) [164, 180]. 

One practical limitation of using YFP for BiFC assays is the requirement for incubation 

at room temperature to allow maturation of the chromophore. This potentially limits its 

application in studies involving living cells that do not tolerate non-physiological conditions. To 

circumvent this problem, fluorescent protein fragments derived from Venus, a variant of YFP, 

are often used [299]. The Venus protein, first developed by Miyawaki and co-workers in 2002, 

encodes a novel mutation (F46L) which under physiological conditions accelerates chromophore 

oxidation thereby allowing fast and efficient maturation at 37 °C [236, 268].  
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Non-fluorescent N- and C-terminal fragments of the YFP variant Venus are fused to Nef (Nef-VN) and the SH3 
domain of Hck (SH3-VC). Co-expression and interaction of the two proteins inside cells juxtaposes the Venus 
fragments resulting in structural complementation and green fluorescence. 
 

Figure 3.1. Bimolecular Fluorescence Complementation (BiFC) assay principle 
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3.3 MATERIALS AND METHODS 

3.3.1 Cell culture, Reagents and Antibodies 

Human 293T cells were obtained from the American Type Culture Collection (ATCC).  TZM-bl 

reporter cells and the T lymphoblast cell lines CEM-T4, MT2 and Jurkat (Clone E6-1) were 

obtained from the NIH AIDS Research and Reference Reagent Program. TZM-bl and 293T cells 

were cultured in Dulbecco’s Modified Eagle’s Medium/high glucose (DMEM) (Gibco Life 

Technologies) supplemented with 10% fetal bovine serum (heat inactivated, 3x 0.1 µm sterile 

filtered) (Gemini Bio-Products). CEM-T4 and MT2 cells were passaged in RPMI 1640 medium 

(Gibco Life Technologies) supplemented with 10% fetal bovine serum and 2mM L-glutamine 

(200 mM; 100x; Gibco Life Technologies). All cells were maintained at 370C in a 5% CO2 

water-jacketed incubator (Forma Scientific).  

Primary antibodies used in this study were obtained from Santa Cruz Biotechnology (Hck 

rabbit polyclonal N-30, sc-72; Itk mouse monoclonal clone 2F12, sc-23902; Itk rabbit polyclonal 

M-109, sc-1697), Abcam (V5 tag mouse monoclonal, ab27671), Millipore (V5 tag rabbit 

polyclonal, ab3792; Phosphotyrosine mouse monoclonal, clone 4G10, 05-321), the National 

Institutes of Health AIDS Research and Reference Reagent Program (HIV-1 JR-CSF Nef 

monoclonal, 1539; HIV-1 Nef monoclonal EH1, 3689; Nef Antiserum polyclonal, 2949) and the 

National Cancer Institute-Frederick AIDS and Cancer Virus program (HIV-1 p24). Secondary 

antibodies used in this study were obtained from Southern Biotech [Goat Anti-Rabbit IgG (H+L) 

Mouse/Human ads-TXRD, 4050-07; Goat Anti-Mouse IgG (H+L), Human ads-TXRD, 1031-07; 

Goat Anti-Mouse IgG (H+L), Human ads-AP, 1031-04], LiCor [Donkey Anti-Mouse IgG (H+L) 

IRDye 800CW, 926-32212], Invitrogen Molecular Probes [Pacific Blue Goat Anti-Mouse IgG 
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(H+L), P31582; Pacific Blue Goat Anti-Rabbit IgG (H+L), P10994] and the NCI-Frederick 

AIDS and Cancer Virus program [Goat anti-Rabbit IgG (H+L)-HRP]. 

3.3.2 BiFC assay expression vectors 

Tec-family kinase cDNA clones were obtained from the Dana-Farber/Harvard Cancer Center 

PlasmID DNA Resource Core (Bmx, HsCD00327726; Btk, HsCD00346954; Itk, 

HsCD00021352; Tec, HsCD00341367; and Txk, HsCD00294897). The coding regions for wild-

type, full length Hck and Tec family kinases were amplified by PCR and fused in-frame with a 

V5 epitope tag at their C-termini (Figure 3.2). The reverse primers for each individual kinase 

was designed to include the V5 tag sequence and as well introduce the unique KpnI or AccIII 

restriction sites at the 3'-end. The C-terminal coding sequence of the Venus protein (residues 

Ala154-Lys238) was amplified by PCR with an introduction of a unique KpnI or AccIII 

restriction site at its 5'-end. The PCR amplified products were then subcloned into the 

mammalian expression vector pcDNA3.1(-) via the unique sites to create the BiFC fusion full 

length wild type (WT) constructs. Truncated shorter BiFC constructs were created with the 

Venus C- fragment fused to the SH3 domains of each kinase including the N-terminal 

myristoylation sequence and unique domain for Hck and N-terminal Pleckstrin and Tec 

Homology domains for the Tec kinases to maintain the natural lipid modification and spacing 

from the membrane (Figure 3.2).  

For the BiFC expression construct, Nef-VN (SF2 allele; B clade), was created as 

described elsewhere [258].  A similar BiFC construct with a PxxPxR mutant of Nef-SF2 was 

prepared for use as a negative control. The N-terminal sequence of the Venus protein (encoding 

residues Val2-Asp173) was PCR-amplified and subcloned via a unique BamHI restriction site to 
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the C-terminal end of the coding sequences of representative Nef proteins from the HIV-1 M-

group subtypes A1, A2, B, C, F1, F2, G, H, J and K in the mammalian expression vector 

pcDNA3.1(-). The Nef-2PA, Hck-I96R, Btk-M96R, Itk-N96R and Tec-A96I mutants were 

created via site-directed mutagenesis (QuikChange® II XL Site-Directed Mutagenesis Kit, 

Stratagene).  The Venus template was a generous gift from Dr. Atsushi Miyawaki, RIKEN Brain 

Science Institute, Saitama, Japan.  

 

Src Family

3 kinase2
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PH 3 kinase2TH
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The Src and Tec family kinases share a core of SH3 and SH2 domains followed by a kinase domain. Truncated 
expression constructs were created for BiFC experiments (SH3-VC) in which sequences N-terminal to the SH2 
domain from Hck and all five Tec family members were fused to the C-terminal fragment of the Venus form of YFP 
(VC). Full-length BiFC expression constructs were created in a similar manner, with a V5 epitope tag inserted 
between the C-terminal end of each kinase and the VC fragment to enable immunostaining for kinase expression. 
 

Figure 3.2. Src and Tec family kinase domain organization and BiFC expression constructs 
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3.3.3 BiFC assay and Immunofluorescence 

Human 293T cells were plated on glass bottom microwell dishes (MatTek, P35G-1.5-14-C) and 

allowed to attach overnight. The cells were transfected with complementary pairs of BiFC 

expression vectors using standard calcium phosphate techniques as described elsewhere [45].  

Thirty hours post transfection, the cells were fixed with freshly prepared 4% paraformaldehyde 

(stock 16% solution; Electron Microscopy Sciences), permeabilized with 0.2% Triton X-100 and 

blocked with 2% BSA (Sigma) in PBS overnight. Cells were stained with primary antibodies 

against Hck (1:1000), the V5 tag (1:750) or Nef (1:1000) for 1 hour at room temperature at their 

respective dilutions (in parentheses). Immunostained cells were visualized with secondary 

antibodies conjugated to Texas Red or Pacific Blue at a dilution of 1:1000 and 1:500 

respectively. Two-color imaging was done at constant exposure times for each channel using a 

Nikon Eclipse TE300 inverted microscope and a SPOT RT slider CCD high resolution digital 

camera and software (Diagnostic Instruments). Three-color BiFC and IF images were recorded 

using confocal microscopy (Fluoview FV-1000, Olympus). Image analysis was performed with 

the Java-based image processing program, ImageJ (version 1.48s), to determine the BiFC and 

immunofluorescence (IF) intensities of individual cells.  Mean pixel densities were calculated for 

the BiFC and IF channels for a minimum of 100 cells and data are expressed as BiFC to IF signal 

ratios. 

3.3.4 Cytotoxicity Assay 

The Itk inhibitor BMS-509744 was the generous gift of Dr. Jian-Kang (Jack) Jiang of the 

National Center for Advancing Translational Sciences, NIH. CEM-T4, Jurkat and TZM-bl cells 
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were incubated at 37oC in absence or presence of the Itk inhibitor BMS-509744 over a 

concentration range of 10nM - 10μM in DMSO as a carrier solvent at a final concentration of 

0.5%. Cytotoxicity was assessed for TZM-bl cells after 48 hours and CEM-T4 and Jurkat cells 

after 10 days using the Cell Titer Blue reagent (Promega) and the manufacturer’s protocol.  

3.3.5 HIV assays 

Wild-type (WT) and Nef-defective (ΔNef) HIV-1 proviral genomes (NL4-3 strain) in the 

plasmid vector pUC18 were transfected into 293T cells with XtremeGENE 9 transfection 

Reagent (Roche) according to the manufacturer’s protocol. The viral supernatant was collected 

48 h post-transfection and amplified by infecting MT2 cells with 500pg/ml of virus for 4 days in 

a 6-well plate.  Titers of the amplified stocks were determined by HIV-1 p24 Antigen Capture 

ELISA kit (NCI-Frederick) as per the manufacturer’s protocol.  

For HIV replication assays, CEM-T4 and Jurkat cells were incubated overnight in the 

absence or presence of the Itk inhibitor BMS-509744 in a final concentration of 0.5% DMSO as 

carrier solvent.  Cells were then infected with the WT and ΔNef viruses, and replication was 

assessed 10 days later by p24 Gag protein levels in the culture supernatant by standard HIV-1 

p24 Antigen Capture ELISA kit (NCI-Frederick) using manufacturer’s protocol. ELISA plates 

were read on Biotek. 

For infectivity assays, the reporter cell line TZM-bl was pre-incubated with BMS-509744 

overnight in a final concentration of 0.5% DMSO as carrier solvent. The WT and ΔNef viruses 

were also pre-incubated with the inhibitor for 4 hours prior to infecting the cells. Viral infectivity 

was determined using the Luciferase Assay system (Promega) as described elsewhere [98]. 
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3.3.6  Immunoprecipitation and Blotting 

For inhibitor experiments, 293T cells were pre-incubated with the Itk inhibitor BMS-509744 or 

the DMSO carrier solvent (at a final concentration of 0.5%) overnight prior to transfection.  

Human 293T cells were transfected with wild-type full-length Itk and HIV-1 Nef (SF2 allele) 

either alone or in combination as described above. Thirty hours post-transfection, the cells were 

lysed by sonication in lysis buffer (50 mM Tris-hydrochloride, pH 7.4, 1% NP-40, 0.25% 

sodium deoxycholate, 150 mM sodium chloride, and 1 mM EDTA) supplemented with 1 mM 

sodium orthovanadate, 1 mM sodium fluoride, 5 U/ml Benzonase (Novagen), and Protease 

Inhibitor Cocktail Set III (Calbiochem). Lysate protein concentrations were determined using 

Pierce Coommassie Plus assay reagent (Thermo Fisher).  Itk was immunoprecipitated from 1 mg 

of each cell lysate with 1 µg anti-Itk rabbit polyclonal antibody and protein G-Sepharose 

(Invitrogen) for 2 hours at 4 °C, followed by washing with lysis buffer. Immunoprecipitated 

proteins were separated by SDS-PAGE, transferred to PVDF or nitrocellulose membranes, and 

probed with mouse monoclonal antibodies to phosphotyrosine (4G10), Itk and Nef. 

  

3.3.7 Statistical Analyses 

Quantitative analyses of all BiFC data are reported as the mean value ± standard error of mean 

(SEM) from three independent experiments (n=3). Data from the cytotoxicity assays and the 

viral infectivity and replication assays are presented as the mean value ± SEM from three 

independent experiments (n=3), each performed in triplicate wells. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Src and Tec kinases share a common structural domain organization 

Previous work has established that Nef binds to the SH3 domains of the Src-family members 

Hck, Lyn and c-Src, leading to kinase activation in vitro [231, 325], in defined cellular systems 

such as fibroblasts and yeast [46, 206, 325] and in HIV-1 target cells [98, 239].  Members of the 

Tec family of non-receptor protein tyrosine kinases also possess SH3 domains important to their 

regulation [37]. Germane to our investigation, we compared the domain organization of the Src 

and the Tec kinase families. Figure 3.2 illustrates the overall domain organization of these two 

kinase families. A closer look at their general structure revealed that both the families share a 

core of SH3 and SH2 domains, followed by the kinase domain. In addition, Src-family kinases 

have an N-terminal myristoylation signal sequence for membrane localization [271, 275], 

followed by an N-terminal sequence unique to each family member. SFKs also have a C-

terminal tail with a phosphotyrosine residue critical to negative regulation of kinase activity [65].  

Structural studies have shown that the SH3 domain engages a PPII helix formed by the SH2-

kinase linker to hold the kinase in the downregulated state [289, 300, 301, 353, 354]. Binding of 

Nef to the SH3 domain displaces the linker, relieving its negative regulatory influence on the 

kinase domain [46, 206, 231].  In contrast to Src-family kinases, each Tec family kinase 

possesses an N-terminal pleckstrin homology (PH) domain that binds to lipid phosphoinositides 

and acts as a membrane anchor [37] (Figure 3.2). Tec kinases also possess a Tec homology (TH) 

domain N-terminal to the SH3 domain, consisting of a proline-rich motif engaged in 

intramolecular interaction with the SH3 domain that may also contribute to regulation of kinase 
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activity [13]. The similarity in the domain architecture of these two kinases families led us to 

explore the possibility that Nef may interact with Tec kinases through their SH3 domains.  

3.4.2 Development of a cell-based BiFC assay for Nef:SH3 interaction 

Previous studies of Nef interactions with the SH3 domains of Src-family kinases have relied on 

solution-based approaches with recombinant purified proteins that do not account for the 

influence of membrane localization on the interacting partners. In addition, sequences N-terminal 

to the SH3 domain (Figure 3.2) impact the spatial relationship between the SH3 domain and Nef 

at the membrane surface.  To address these issues, we were interested in developing a cell-based 

BiFC assay to investigate the interaction of Nef with SH3 domain containing Tec and Src-family 

kinases. In this assay, the two interacting proteins (Nef and the SH3-kinase, in our case) are 

fused to non-fluorescent fragments of the yellow fluorescent protein (YFP; yellow-shifted 

variant of GFP).  If and when the two proteins of interest interact, juxtaposition of the YFP 

fragments would result in structural complementation of the fluorophore, leading to a bright 

fluorescent signal (Figure 3.1) [180]. 

To develop a working BiFC assay for Nef interactions with SH3 domains, we first chose 

to examine the interaction of Nef with the Src-family kinase, Hck, which has been studied in 

detail in many other systems (see Introduction). The readout of the BiFC assay involves 

multicolor confocal microscopy and relies on the simultaneous detection of green YFP 

fluorescence (indicative of interaction) and immunofluorescent staining of the partner proteins as 

normalizing controls for protein expression. Therefore assay development first necessitated 

control experiments to ensure the specificity of the antibodies and to rule out the possibility of 

bleed-through fluorescence between the different channels.  
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We first expressed the full-length or SH3 domain of Hck as a fusion protein with the C-

terminal fragment of Venus [268].  The Hck BiFC fusion proteins (Hck-VC and SH3-VC, see 

Figure 3.2) also retained the natural N-terminal myristoylation signal and unique domain to 

enable membrane targeting and proper spacing from the membrane. Similarly, to preserve N-

terminal myristoylation and membrane localization of Nef, the complementary N-terminal 

fragment of Venus (VN) was fused to the C-terminal end of HIV-1 Nef (SF2 allele) to make the 

Nef BiFC fusion protein (Nef-VN). To test for interaction of Nef with the Hck by BiFC, the 

Hck-VC and SH3-VC proteins were expressed either alone or in combination with wild type 

Nef-VN in 293T cells. Transfected cells were fixed, immunostained with antibodies against Nef 

or the kinase epitope tag, V5, and imaged by confocal microscopy using the ‘sequential mode’ 

with every image resulting from an average of three Kalman frames. The ‘sequential’ mode of 

imaging allows light of each wavelength to pass through its corresponding color filter 

sequentially, thereby eliminating the possibility of the colors bleeding through parallel open 

channels. As shown in Figure 3.3, expression of full-length Hck or Nef alone, showed up either 

in the red (Texas Red) or blue (Pacific blue) channels, respectively (Figure 3.3; column 2 and 3). 

Co-expression of Nef with Hck (full-length and truncated after the SH3 domain) resulted in 

strong fluorescence in the green (GFP) channel specifically (Figure 3.3; columns 1 and 4), 

indicative of interaction. Staining of the SH3-VC construct with anti-V5 antibody failed to 

produce red fluorescence, thereby confirming the specificity of the V5 antibody (Figure 3.3; 

column 4). Results from this experiment serve as an important control for our subsequent 

imaging analyses and confirmed the specificity of the individual antibodies, and the selectivity of 

the color filters on the microscope thereby excluding the possibility of false positive signals.  
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Confocal microscopy IF staining controls validate the three color channels and antibody specificity. N-terminal and 
full-length Hck BiFC expression constructs (SH3-VC & Hck-VC; see Figure 3.2) and Nef-VN were expressed alone 
or in combination in 293T cells. Cells were fixed, immunostained with antibodies against the V5 epitope and/or Nef 
as indicated above each column panel, and imaged by confocal microscopy for interaction (BiFC) and protein 
expression by immunofluorescence 30 h later.  
 

Figure 3.3. Confocal microscopy IF staining controls 
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Next, we wanted to validate that the emergence of green fluorescence signal was dependent on 

Nef:SH3 interaction.  As shown in Figure 3.4A, co-expression of Hck-SH3-VC with wild type 

Nef-VN resulted in a strong BiFC signal, consistent with interaction between Nef and the SH3 

domain of Hck.  In contrast, co-expression of the Hck-SH3-VC with a Nef mutant in which the 

PxxPxR motif essential for SH3 binding was replaced with AxxAxR (Nef-2PA-VN) 

dramatically reduced the BiFC signal (Figure 3.4A).  Immunofluorescence (IF) staining with 

anti-Nef and anti-Hck antibodies showed a comparable level of protein expression in each 

transfected cell population. Image analysis was performed to determine the relative fluorescence 

intensities for BiFC and IF from each of the transfected cell populations. Mean pixel intensities 

of the BiFC and IF signals were determined for approximately 100 individual cells, and are 

plotted in Figure 3.4B. This approach showed a strong linear correlation of Nef/SH3 interaction 

(BiFC signal) as a function of protein expression level relative to both Nef and the Hck SH3 

domain.  BiFC to IF ratios of approximately 1.0 were obtained for cells transfected with wild-

type Nef, regardless of whether the Nef or SH3 IF signal was  used as the normalizer. This ratio 

decreased by nearly 10-fold for cells expressing the Nef-2PA mutant.  We also calculated BiFC 

to IF ratios from the mean pixel intensities of the entire image fields obtained from three 

independent experiments (Figure 3.4C). This approach produced BiFC to IF ratios ~ 0.8 for 

wild-type Nef that was reduced to nearly 0.1 with the Nef-2PA mutant. This finding strongly 

argues for the importance of the conserved PxxPxR motif on Nef for a strong interaction with the 

SH3 domains of other proteins, and provides an important control for the BiFC assay in that it 

demonstrates that fluorescence complementation is dependent upon Nef-SH3 domain interaction. 

These results validated the use of the BiFC approach to explore the interactions of Nef with Tec 

family kinases in a cell-based assay.  
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(A) Nef interaction with the Hck SH3 domain drives BiFC in transfected 293T cells. The Hck-SH3-VC fusion 
protein was co-expressed with the wild-type Nef (Nef-VN) or an interaction-defective mutant (Nef-2PA-VN). 
Transfected cells were fixed and immunostained with anti-Nef and anti-Hck antibodies, followed by confocal 
microscopy. Representative BiFC and Nef immunofluorescence (IF) images are shown.  (B) Single-cell image 
analysis.  Mean pixel intensities for the Nef/Hck-SH3 BiFC signal are plotted against the Nef and Hck IF signal 
intensities for ~100 cells.  Results with wild-type (WT) and mutant (2PA) Nef are shown.  The linear regression 
lines are also included on the plots.  (C) BiFC to Nef-IF and Hck SH3-IF signal ratios were determined from the 
average pixel intensities of whole image fields from three independent experiments and are presented as the mean 
ratio value ± SEM. Results with wild-type (WT) and mutant (2PA) Nef are shown.  The mean BiFC/IF ratios 
obtained for the Nef-2PA mutant are significantly lower compared to wild-type Nef when normalized to either Nef 
or Hck SH3 immunofluorescence (p < 0.0001 in a two-tailed unpaired t-test).  
Figure 3.4. Cell-based BiFC assay for Nef/SH3 domain complex formation 
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3.4.3 Nef interacts with a subset of Tec family kinases 

Using the BiFC assay, we next investigated the interaction of HIV-1 Nef with Tec family kinases 

through their SH3 domains.  First, we fused the SH3 domains of Btk, Itk, Tec and Txk to the C-

terminal fragment of Venus. These SH3-VC constructs also included the N-terminal PH and TH 

domains to maintain proper membrane targeting and spacing from the membrane (Figure 3.2).  

Because Bmx lacks clear SH3 domain sequence homology (see Figure 3.7), we created an 

analogous VC construct using the Bmx sequence encoding the region starting from the N-

terminal end until a couple of residues upstream of the SH2 domain start site.  Each of the Tec 

kinase SH3-VC constructs was then co-expressed with Nef-VN in 293T cells (0.5 μg of each 

complementary construct), followed by immunofluorescent staining for Nef as before.  As shown 

in Figure 3.5A, co-expression with Nef-VN yielded a strong, membrane-localized BiFC signal 

with the SH3-VC proteins from Bmx, Btk and Itk, but not for Tec or Txk. Nef expression was 

assessed by immunostaining with an anti-Nef-antibody. Single-cell image analysis yielded linear 

correlations for BiFC vs. IF with the Bmx, Btk and Itk SH3 domains, with BiFC to IF ratios of 

approximately 1.0.  For the Tec and Txk SH3 domains, this ratio was less than 0.05, consistent 

with a lack of interaction (Figure 3.5B). Comparing the mean pixel densities of BiFC and IF 

signals of the whole image fields yielded a BiFC to IF ratio of approximately 1.0 for cells 

transfected with Bmx, Btk or Itk and ~0.2 for Tec and Txk. These results support the idea that 

HIV-1 Nef selectively interacts with Bmx, Btk, and Itk through their SH3 domains. 
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(A) Tec family kinase N-terminal BiFC expression constructs (SH3-VC; see Figure 3.2 ) were co-expressed with 
Nef-VN in 293T cells.  Cells were fixed, immunostained with Nef antibodies, and imaged by epifluorescence 
microscopy for interaction (BiFC) and protein expression by IF 30 hours later. (B) Mean pixel densities of the BiFC 
and Nef IF signal intensities were measured for ~100 cells and plotted as shown.  The linear regression lines are also 
included on the plots. 
Figure 3.5. BiFC reveals novel interactions between Nef and a subset of Tec-family kinases  
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BiFC results presented in Figure 3.5 show that Nef interacts with the N-terminal regions 

of Bmx, Btk and Itk, most likely through their SH3 domains.  However, the absence of the 

kinase domain in these constructs may expose an SH3 surface not normally available for 

interaction with Nef.  To address this issue, we next performed BiFC experiments with full-

length Bmx, Btk and Itk as well as full-length Hck as a positive control.  In each case, the C-

terminal fragment of Venus (VC) was fused to the C-terminal end of the kinase (Figure 3.2).  A 

V5 epitope tag was inserted between the C-terminus of the kinase and the VC fragment to enable 

immunofluorescent staining for kinase expression.  Each of these kinase-VC proteins was co-

expressed in 293T cells with Nef-VN as before, and the cells were fixed and immunostained for 

Nef as well as kinase expression.  The cells were then imaged by 3-color confocal microscopy 

for BiFC as well as Nef and kinase expression by immunofluorescence.  As shown in Figure 

3.6A, a strong BiFC signal was observed with all four kinases, providing direct evidence that Nef 

interacts with full-length Bmx, Btk, and Itk as well as Hck in cells.  The BiFC signal observed 

with each of the Tec family kinases showed striking localization to the cell periphery, consistent 

with the plasma membrane localization of both interacting partners. To verify that the BiFC 

signals observed with the full-length Tec kinases were dependent on the interaction of Nef with 

their SH3 domains, parallel experiments were performed with the Nef-2PA-VN construct which 

is defective for SH3 binding as described above. Co-expression of Nef-2PA with Bmx, Btk and 

Itk significantly reduced the BiFC signals thereby lowering the BiFC to IF ratio (Figure 3.6B), 

supporting a requirement for the Nef PxxPxR motif for interaction with Tec family kinases 

through their SH3 domains. 
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BiFC constructs for the full-length Tec-family members Bmx, Btk and Itk as well as the Src-family kinase Hck (see 
Figure 3.2) were co-expressed with wild-type Nef -VN or a Nef mutant defective for SH3 binding (Nef-2PA-VN) in 
293T cells.  Cells were fixed, immunostained for Nef and kinase expression (V5 epitope) 30 hours later, and 
analyzed by confocal microscopy.  (A) Representative images of wild-type Nef interaction with each kinase by 
BiFC (green), Nef expression (blue), partner kinase expression (red), along with a merged image.  (B) Quantitative 
comparison of the BiFC to IF ratios for interactions of the full length kinases with wild-type versus mutant forms of 
Nef. The BiFC to Nef IF signal ratios were determined from the average pixel intensities of the whole image fields 
from three independent experiments using ImageJ. Data are plotted as the mean ratio ± SEM. 

Figure 3.6. Nef interacts with full-length Tec-family kinases 
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3.4.4 Tec and Src family kinase SH3 domains interact with Nef in a similar manner 

BiFC results presented above provide strong evidence for the interaction of Nef with a subset of 

Tec family kinases, and point to the SH3 domain as the site of Nef binding.  Structural studies 

have shown that the Nef PxxPxR motif forms a polyproline type II helix that contacts the 

hydrophobic surface of Src-family kinase SH3 domains [137, 205]. This interaction is stabilized 

by a salt bridge between SH3 Asp100 and the conserved arginine in the Nef PxxPxR sequence.  

Conserved residues in the Nef hydrophobic pocket (Tyr120, Phe90, and Trp113) contact Ile96 in 

the RT loop of the SH3 domain, and the importance of this interaction has been verified in 

mutagenesis studies [61, 205]. A sequence alignment of the Tec family kinase SH3 domains with 

that of the Src-family kinase Hck is presented in Figure 3.7A, and shows the clear amino acid 

sequence homology of the Btk, Itk, Tec, and Txk SH3 domains with that of Hck.  Interestingly, 

the corresponding Bmx region is quite divergent in terms of sequence conservation (Figure 

3.7B).  Nevertheless, this Bmx region interacts strongly with Nef in a PxxP-dependent manner 

(Figure 3.6), suggesting that it adopts an SH3-like fold that is competent for Nef binding. 
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(A) The SH3 domain amino acid sequence of the Src-family kinase Hck is aligned with SH3 sequences of the Tec 
family members Btk, Itk, Tec, and Txk.  The positions of Hck residues essential for Nef interaction are highlighted 
in red (Ile96 and Asp100).  (B) Alignment of the Btk SH3 domain amino acid sequence with the corresponding 
region of Bmx.  Despite low sequence homology, this region of Bmx is sufficient for Nef binding in a PxxP-
dependent manner (see text) 
Figure 3.7. SFK and TFK SH3 domain sequence alignment 

 

 

To explore the structural basis of Tec-family kinase SH3 domain interactions with Nef, we 

aligned the NMR structures of the Btk, Itk, and Tec SH3 domains with the X-ray crystal 

structure of Nef in complex with a Src-family kinase SH3 domain (PDB: 1EFN).  As shown in 

Figure 3.8A, an acidic residue is positioned in the Btk, Itk and Tec SH3 domains for a possible 

ionic contact with Nef Arg77 in a manner analogous to Asp100 in the Src-family kinase SH3 

domain. The Txk SH3 domain, however, has an unfavorable asparagine (Asn) in this position.  

Amino acid position 96 in the RT-loops of the Btk and Itk SH3 domains is occupied by 

methionine and asparagine, respectively. These substitutions may be tolerated in place of the 

isoleucine found in the RT loop of the Src-family kinase SH3 domain, as a strong BiFC signal 

was observed with both of these kinases and Nef (Figures 3.5 and 3.6).  In contrast, alanine and 

arginine are present in this position in the Tec and Txk SH3 domains, respectively. These 
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differences may compromise interaction with the Nef hydrophobic pocket, as no BiFC signal 

was detected with these SH3 domains (Figure 3.5).  SH3 domain residues that occupy RT-loop 

positions 96 and 100 in the Tec versus Src-family kinases are summarized in Figure 3.8B; their 

positions in the overall SH3 sequences are highlighted in the sequence alignment presented in 

Figure 3.7. 

SH3 domain structural alignments described above suggest that the amino acid occupying 

the RT-loop position analogous to Ile96 in the Hck SH3 domain may be an important 

determinant of Nef binding to Tec family kinases via their SH3 domains.  To test this possibility, 

we substituted RT-loop residue 96 in the SH3 domains of full-length Hck, Btk and Itk (all Nef 

binders) with arginine, which is present at this position in the Txk SH3 domain (a non-binder).  

In all three cases, arginine substitution compromised interaction with Nef as visualized by BiFC 

(Figure 3.8C).  This reduction was stronger with Hck and Btk, while the effect was less 

pronounced with Itk, suggesting that other regions of Itk may contribute to Nef recruitment. In a 

complementary experiment, we substituted RT-loop Ala96 in the Tec SH3 domain with Ile, and 

found that this change dramatically enhanced interaction with Nef by BiFC (Figure 3.8C).  These 

results support a key role for the SH3 domain in the interaction of Nef with Tec family kinases in 

cells, and suggest that Nef interacts with Src and Tec family kinases through a similar 

mechanism. 
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(A) Structural alignment of Tec family kinase SH3 domains with a Nef-SH3 complex. The X-ray crystal structure of 
Nef (purple) bound to a Src family kinase SH3 domain (red) was aligned with the NMR structures of the Btk (cyan), 
Itk (green), and Tec (orange) SH3 domains. An acidic residue is present at RT-loop position 100 in all three Tec 
family SH3 domains for potential polar contact with Nef Arg77 in a manner analogous to Asp100 in the Hck SH3 
domain.  In Hck, RT-loop Ile96 makes hydrophobic contacts with conserved Nef residues Phe90, Trp113, and 
Tyr120. Btk and Itk have Met and Asn at position 96, respectively, while human Tec has Ala at this position.  The 
side chains of the conserved Nef PxxP motif are also shown (Pro72 and Pro75).  Note that in the mouse Tec SH3 
structure used for the model, position 96 is occupied by threonine; this residue was replaced with alanine to match 
the human sequence for illustrative purposes. The PDB codes for the structures used in this model are: Nef/SH3 
complex, 1EFN; Btk SH3, 1AWX; Itk SH3, 2RNA; Tec SH3, 1GL5. Models of X-ray and NMR structures were 
produced using PyMOL. (B) Comparison of Hck SH3 domain residues (RT-loop positions 96 and 100) essential for 
Nef binding and kinase activation with the analogous positions in Tec-family kinases.   (C) Mutagenesis of RT-loop 
residue 96 impacts Hck, Btk, Itk, and Tec interaction with Nef as assayed by BiFC. The BiFC to Nef-IF signal ratios 
were determined from whole-field analyses of three independent transfected cultures and are plotted as the mean 
ratio value ± SEM. 
 
Figure 3.8. Tec family kinase SH3 domain RT-loops control interactions with Nef 
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3.4.5 Interaction with Itk is a highly conserved property of all M-group HIV-1 Nef alleles 

Previous studies have reported that selective targeting of Itk with siRNA or kinase inhibitors 

blocks crucial steps in the HIV-1 life cycle [266, 290].  Fluorescence complementation studies 

presented above show that Nef interacts with Itk via its SH3 domain, suggesting a mechanistic 

link between HIV-1 and Itk activity in the host cell. We therefore explored whether interaction 

with Itk is conserved across a wide variety of HIV-1 subtypes.  For these studies, we created 

BiFC expression constructs for primary nef alleles representative of all M-group HIV-1 subtypes 

(A1, A2, B, C, , F1, F2, G, H, J, K), and co-expressed them with the complementary expression 

vector for full-length Itk.  Sequence information for these alleles has been reported elsewhere 

[239]. As shown in Figure 3.9, co-expression of full-length Itk-VC in combination with the VN 

fusions of each of the Nef alleles yielded a strong BiFC signal that localized to the cell 

membrane. Expression of both interacting partners was confirmed in individual cells by 

immunostaining with anti-Nef and anti-V5 (epitope tag for Itk) antibodies, and merged images 

show co-localization. This result demonstrates that interaction of Nef with Itk is a highly 

conserved property of a diverse set of HIV-1 subtypes. 
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Nef clones representative of each of the M-group HIV-1 clades shown (A1, A2, B, C, F1, F2, G, H, J, and K) were fused to the N-terminal fragment of 
Venus (VN) and co-expressed with the complementary full-length Itk-VC construct in 293T cells.  Cells were fixed and immunostained for Nef and kinase 
protein expression (anti-V5 antibody) 30 h later.  Cultures were analyzed by confocal microscopy for Nef:Itk interaction by BiFC (green), Nef expression 
(blue) and Itk expression (red).  Representative images are shown along with a merged image in the bottom panel. 
 

Figure 3.9. Interaction with Itk is conserved across Nef alleles  
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3.4.6 Assessment of the cytotoxicity of the Itk inhibitor, BMS-509744, to human cell lines 

BMS-509744 was first described by Lin et al. as a highly potent and selective inhibitor of Itk that 

can reduce lung inflammation in an ovalbumin induced allergy (asthma) mouse model [212]. The 

X-ray crystal structure of Itk in complex with BMS-509744 revealed that this aminothioaryl-

thiazolo compound (Figure 3.10A) potently inhibits kinase activity in an ATP-competitive 

manner by binding to the kinase domain and stabilizing the activation loop (amino acids 503-

520) in a substrate-blocking inactive conformation [193]. This cell-permeable compound is 

extremely selective for Itk with an IC50 as low as 19 nM and exhibits little or no activity against 

14 other related kinases (IC50 ≥1.1 µM).  

Prior to using the Itk inhibitor, BMS-509744 in HIV replication experiments, we 

performed independent experiments to verify whether BMS-509744 exhibited cytotoxicity in the 

human cells that we would use for viral assays.  The HIV host cell lines Jurkat, CEM-T4 and 

TZM-bl cells were cultured in presence of increasing concentrations of BMS-509744 ranging 

from 0.01 μM to 10 μM. Cell viability was determined after 2 days for TZM-bl cells and after 10 

days for Jurkat and CEM-T4 cells in accordance with the length of treatment anticipated for 

infectivity and replication experiments in each cell line. Little or no cytotoxicity was observed in 

any of the cell lines up to a concentration of 3 μM (Figure 3.10B). At the highest concentration 

tested (10 μM) the CEM-T4 cells were the most tolerant while only 10% of the TZM-bl cells 

were viable in the culture. Subsequent experiments with this compound were therefore 

performed at different concentrations as noted in the experiments with the maximum 

concentration tested at 3.0 µM. 
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(A) Chemical structure of the Itk inhibitor BMS-509744, [N-(5-((3-((4-Acetylpiperazin-1-yl)carbonyl)-4-methyl-6-
methoxyphenyl)thio)thiazol-2-yl)-4-(N-1,2-dimethylpropylaminomethyl)benzamide]. (B) To evaluate the 
cytotoxicity of BMS509744, each of the cell lines shown was incubated with the Itk inhibitor over the range of 
concentrations indicated. Cell viability was determined by Cell Titer Blue assay (Promega) after 48 h in TZM-bl 
cells and after 10 days in Jurkat and CEM-T4 cells. These time points were selected to match the time course of the 
HIV assays performed in the respective cell lines. Results are presented as mean percent of cell viability observed in 
the presence of the DMSO carrier solvent alone ± SEM (n=3). 
 
Figure 3.10. Cell viability in presence of the Itk inhibitor, BMS509744 
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3.4.7 A selective Itk Inhibitor blocks HIV infectivity and replication in a Nef-dependent 

manner 

Previous work has shown that HIV infectivity and replication are sensitive to the selective Itk 

inhibitor, BMS-509744 [266]. However, the molecular mechanism linking HIV-1 infection to 

activation of Itk is still unclear. In the present study so far, we have shown that Nef interacts with 

Itk and this interaction is conserved amongst all Nef alleles representative of M-group HIV-1 

subtypes. Thus our next aim was to deduce the relevance of this interaction to HIV biology. To 

explore the possible role of Nef in the activation of Itk in the context of HIV-1 infection, we first 

evaluated Nef-dependent HIV-1 infectivity in presence or absence of BMS-509744 in the TZM-

bl reporter cell line [125]. In this system, infectivity is measured by stimulation of a luciferase 

reporter gene which is driven by the HIV-1 LTR following infection with wild-type or Nef-

deleted (ΔNef) HIV-1. As shown in Figure 3.11 A, HIV-1 infectivity was reduced by almost 

50% in the absence of Nef in the TZM-bl cells, consistent with prior studies [98].  Incubation of 

cells with BMS-509744 at a concentration of 3 μM suppressed wild-type HIV-1 infectivity to the 

same level as Nef-defective HIV (Figure 3.11 B).  By contrast, this Itk inhibitor had no effect on 

infectivity of Nef-defective HIV-1, supporting a requirement for Nef expression in its 

mechanism of action. 
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(A) HIV-1 infectivity is Nef-dependent. TZM-bl cells were infected with wild-type and Nef-deleted (ΔNef) HIV 
NL4-3, and viral infectivity was assessed 2 d later as luciferase activity. Results are plotted as relative light units ± 
SEM (n=3).  B) Inhibition of HIV infectivity by BMS-509744 is Nef-dependent. TZM-bl cells were pre-incubated 
overnight with BMS-509744 over the range of concentrations shown, followed by infection with wild-type and 
ΔNef HIV NL4-3. Infectivity was assessed 2 days later as luciferase activity. Results are presented as mean percent 
of HIV-1 infectivity observed in the presence of the DMSO carrier solvent alone ± SEM (n=3). 
 
Figure 3.11. Inhibition of HIV infectivity by the Itk inhibitor BMS-509744 requires Nef 
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To assess the role of Nef-dependent Itk activity in the context of HIV-1 replication, we 

turned to CEM-T4 lymphoblasts, which support viral replication in a Nef-dependent manner [98, 

239]. As shown in Figure 3.12A, wild-type HIV-1 replicated more efficiently than the Nef-

deleted virus over a wide range of viral inputs in CEM-T4 cells. Addition of BMS-509744 

blocked wild-type virus replication in a concentration-dependent manner, with a reduction of 

almost 80% at the highest concentration tested (3 μM; Figure 3.12C).  Remarkably, this Itk 

inhibitor had no effect on the replication of Nef-defective HIV-1 over the same concentration 

range, suggesting that Nef couples HIV-1 to Itk signaling in T-cell hosts. Note that Nef-deleted 

HIV-1 input was 10-fold higher than wild-type for these experiments (500 vs. 50 pg/ml p24 

equivalents) to compensate for the reduced infectivity and replication of the mutant.  In addition 

to CEM-T4 cells, we also tested the effect of BMS-509744 on HIV-1 replication in Jurkat T-

cells.  Unlike CEM-T4 cells, HIV-1 replication is Nef-independent in this cell line (Figure 

3.12B) [97]. As shown in Figure 3.12D, treatment of Jurkat cells with BMS-509744 had no 

effect on either wild-type or Nef-defective HIV-1 replication, supporting a requirement for Nef 

in the mechanism of action of this compound on viral replication.   
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(A) HIV-1 replication in CEM-T4 cells is enhanced by Nef.  CEM-T4 cells were infected with wild-type and Nef-
deleted (ΔNef) HIV NL4-3 and viral replication was assessed 10 d later by p24 Gag ELISA.  Results are plotted as 
mean p24 levels ± SEM (n=3).  (B) HIV-1 replication is independent of Nef in Jurkat T cells.  Jurkat cells were 
infected with wild-type and ΔNef HIV NL4-3 and viral replication was assessed 10 d later by p24 Gag ELISA.  
Results are plotted as mean p24 levels ± SEM (n=3).  (C) Inhibition of HIV-1 replication by BMS-509744 requires 
Nef in CEM-T4 cells.  Following overnight pre-incubation with BMS-509744, cells were infected with the wild-type 
and ΔNef viruses.  Input of ΔNef HIV was increased by 10-fold relative to the wild-type virus to compensate for the 
reduced replication of the mutant virus. HIV replication was determined by p24 ELISA 10 days later, and is 
expressed as mean percent of replication observed with the DMSO-treated controls ± SEM (n=3). (D) BMS-509744 
has no effect on HIV-1 replication in Jurkat T cells. Jurkat cells were pre-incubated overnight with BMS-509744 
before infection with the wild type or ΔNef virus. HIV replication was determined by p24 ELISA 10 days later, and 
is expressed as mean percent of replication observed with the DMSO-treated controls ± SEM (n=3). 
 

Figure 3.12. Inhibition of HIV replication by the Itk inhibitor BMS-509744 requires Nef 
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3.4.8 Nef stimulates Itk kinase activity 

Results presented so far demonstrate that HIV-1 Nef interacts with Itk at the plasma membrane, 

and that the enhancement of HIV-1 infectivity and replication by Nef are sensitive to a selective 

Itk kinase inhibitor.  These observations imply that interaction with Nef stimulates Itk kinase 

activity.  To test this possibility directly, we transfected 293T cells with full-length Itk and Nef 

either alone or in combination. Itk was then immuno-precipitated from the transfected cell 

lysates and probed with anti-phosphotyrosine antibodies. As shown in Figure 3.13A, Itk was not 

detectably autophosphorylated when expressed alone in 293T cells, consistent with its low 

intrinsic kinase activity as reported elsewhere [176]. However, co-expression of Itk with Nef 

resulted in a dramatic increase in Itk phosphotyrosine content, consistent with Nef-dependent 

enhancement of kinase activity.  We then repeated this experiment in the presence of the Itk 

inhibitor, BMS-509744, and observed a concentration-dependent decrease in Itk phosphotyrosine 

content. Nef-dependent Itk tyrosine phosphorylation was almost completely blocked at an 

inhibitor concentration of 1.0 µM (Figure 3.13A), which agrees with the concentration of this 

compound required to inhibit Nef-dependent HIV replication and infectivity.  Very similar 

results were obtained following immunoblot analyses of the transfected cell lysates with 

antiphosphotyrosine antibodies (Figure 3.13B).  In this case, a strong tyrosine-phosphorylated 

band was observed in cells co-expressing Nef and Itk but not in cells expressing either protein 

alone. Tyrosine phosphorylation of this band, which migrates at ~72 kDa, is also potently 

inhibited by BMS-509744, and therefore is likely to represent autophosphorylated Itk.  
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Full-length Itk kinase and Nef were expressed in 293T cells either alone or in combination in absence or presence of 
increasing concentrations of the Itk Inhibitor BMS-509744.  A) Cells were lysed 30 hours later, and Itk 
immunoprecipitates were analyzed by immunoblotting for phosphotyrosine content (pTyr) as well as Itk protein 
expression.  Representative blots are shown at the top.  This experiment was repeated in triplicate, and the relative 
phospho-Itk and Itk protein levels were quantitated using the LiCOR Odyssey infrared imaging system.  Relative 
signal intensities were corrected for background and used to calculate ratios of the phospho-Itk to Itk levels.  The 
resulting ratios were then normalized to the highest value (phospho-Itk in presence of Nef without inhibitor) and are 
presented in the bar graph as the mean normalized ratio ± SEM (n=3).  B) Lysates from the same cell cultures in part 
A were immunoblotted directly with antibodies to phosphotyrosine (pTyr) as well as Itk and Nef. A representative 
blot is shown at the top, and the data were quantitated and processed as per part A. 
 

Figure 3.13. Co-expression with Nef induces Itk activation that is sensitive to BMS 509744 
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3.5 SIGNIFICANCE AND CONCLUSION 

Most current anti-HIV combinational therapeutic regimens target viral enzymes like reverse 

transcriptase, integrase, protease, as well as viral fusion and entry proteins. Growing incidences 

of multiple and cross resistance against approved HAART drugs necessitate identification of 

newer molecular targets in an infected cell. In an effort to widen the arena of cytoplasmic 

tyrosine kinases with SH3 domains that are direct effectors for HIV-1 Nef, we used a novel, cell-

based approach to explore the scope of Nef:SH3 interactions. Using a BiFC approach, we 

discovered for the first time that Nef via its conserved PxxP motif directly binds to the SH3 

domain of a specific subset of Tec family kinases. Binding of Nef to Itk is highly conserved 

among all major clades of HIV-1 and selective pharmacological targeting of Nef-induced Itk 

activation inhibits Nef-dependent HIV-1 infectivity and replication. Taken together, our findings 

open the doors to a handful of novel interactions that take place within an infected cell. These 

results validate the Nef-Itk interaction as a potential target for future anti-HIV drug development.   

 



118 

4.0  THE BIOLOGICAL SIGNIFICANCE OF A NEW X-RAY CRYSTAL 

STRUCTURE* OF HIV-1 NEF IN COMPLEX WITH THE TANDEM SH3-SH2 REGION 

OF THE SRC-FAMILY KINASE, HCK
§§ 

* The X-ray crystal structure was determined by Dr. John Jeff Alvarado. 
§§

Work presented in this chapter has been published in the Journal of Biological Chemistry, 

2014. Details of the new Nef structure in complex with the Hck SH3-SH2 region are described in 

introductory section 4.2. 

 

 

 

 

 

With kind permission from JBC: 

Alvarado, J. J1,2, S. Tarafdar1,3, J. I. Yeh2, and T. E. Smithgall1. Interaction with the SH3-SH2 
region of the Src-family kinase Hck structures the HIV-1 Nef dimer for kinase activation and 
effector recruitment. J Biol Chem. 2014 Aug 13. [Epub ahead of print] 

 
1Departments of Microbiology and Molecular Genetics and 2Structural Biology, University of Pittsburgh 
School of Medicine, Pittsburgh, PA  15219 

 
3Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of 
Pittsburgh, Pittsburgh, PA 
 

http://www.ncbi.nlm.nih.gov/pubmed/25122770


119 

4.1 SUMMARY 

HIV-1 Nef represents an important potential drug target by virtue of its interactions with host 

cell signaling molecules and its critical role in HIV-1 pathogenesis and AIDS progression. Nef 

supports high-titer viral replication in vivo and functions by interacting with multiple host cell 

effectors, including Hck and other Src-family kinases.  We have recently determined the high 

resolution X-ray crystal structure of Nef in complex with the Hck SH3-SH2 regulatory regions. 

The complex crystallized as a dimer of Nef:SH3-SH2complexes. Elucidation of structural details 

of the dimeric complex not only confirmed previously recognized contacts, but also identified 

new contacts at the Nef:Hck interface and revealed a novel Nef dimer interface. In this present 

study we have performed human and yeast cell-based studies to validate the biological 

significance of one novel inter-complex contact between Nef and the Hck SH3 domain 

(involving E93 on the Hck RT-loop and Nef R105) identified in this new structure. Mutagenesis 

of Hck SH3 E93 interfered with Nef:Hck complex formation by BiFC and kinase activation  

supporting a role for this previously unrecognized contact in stable complex formation between 

Nef and full-length Hck in cells.  
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4.2 INTRODUCTION 

As has been already discussed earlier in this document, the lentiviral virulence factor Nef is 

essential for the high-titer replication of HIV and SIV in vivo and is required for the development 

of AIDS-like disease in monkeys [20, 126, 158, 182]. Targeted expression of Nef in CD4+ T-

cells and macrophages causes AIDS-like disease in transgenic mice [143, 174]. Viral strains with 

mutated Nef alleles have been recovered from long-term non-progressors, implicating Nef as a 

critical virulence factor for human AIDS [89, 186]. 

Lacking any biochemical activity, Nef mediates its functional effects by interacting with 

multiple cellular factors, like immune (MHC-I, TCR) and viral (CD4, CXCR4, CCR5) receptors, 

trafficking proteins, and protein kinases [280], most notably members of the Src kinase family. 

Nef binds to the SH3 domains on the SFKs via its PxxPxR motif which is highly conserved 

among primary HIV isolates [127, 205, 298]. Nef proteins derived from all major and minor 

subtypes of HIV-1 have been shown to bind to and activate endogenous Src-family kinase 

activity in HIV-infected cells.  Inhibition of this pathway blocks Nef-dependent enhancement of 

HIV replication, infectivity [98, 239] and MHC-I downregulation [91].  

Early structural studies of HIV-1 Nef shed light upon the Nef dimer interface and also the 

mechanism of SFK-SH3 domain binding. However, structural details of the N-terminal anchor 

domain and the internal flexible loop were not reported.  A more recent structure of full-length 

Nef bound to an MHC-I peptide in complex with the clathrin adaptor AP-1 μ1 subunit, revealed 

a larger portion of the Nef N-terminal anchor domain. The putative N-terminal amphipathic α-

helix and the acidic cluster on Nef were shown to interact with the second helix in the Nef core 

domain and μ1 subunit, respectively [172]. These observations highlight the principle that 

interaction with larger protein ligands provides additional stabilizing contacts for flexible Nef 
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regions. In an effort to better understand the mechanism of Nef-dependent SFK activation and 

also identify additional regions of contact between Nef and Hck, we recently determined the X-

ray crystal structure of HIV-1 Nef in complex with the SH3-SH2 tandem regulatory domains of 

human Hck to 2.0 Å resolution, which is described in detail in the following section.  

Remarkably, the Nef complex structure reveals previously unrecognized contacts at the Nef:SH3 

interface, contacts between Nef and the SH2 domain, and a novel Nef dimer interface.  We 

performed cell-based studies to validate the newly identified contacts in the structure and our 

results demonstrate that these novel interactions are essential for stable association of Nef with 

full-length Hck in cells and kinase activation.  Our findings suggest that Nef interaction with Src-

family kinases not only leads to kinase activation, but also results in structural remodeling of Nef 

consistent with recruitment of the AP-1 machinery essential for MHC-I downregulation. 

4.2.1 Structure of the HIV-1 Nef core in complex with the Hck tandem SH3-SH2 domains 

(Hck32) 

The Nef:Hck32 complex corresponds to the structured core of Nef (residues 58-205; residue 

numbering is based on the crystal structure of Nef NL4-3 [205]) bound to the Hck SH3-SH2 

region.  The Nef:Hck32 complex crystallized as a dimer of the two complexes with a total buried 

surface area of 10,520 Å2 (Figure 4.1). Superposition of the individual Nef protein, SH3 and SH2 

domain structures from each half of the dimer reveal that they are almost identical with root-

mean-square-deviations of 0.41 Å, 0.17 Å, and 0.59 Å respectively.  The new structure of the 

dimer complex is consistent with the proposed mechanism of Nef-induced Hck activation by 

disruption of the inhibitory interaction between the SH3 domain and the SH2-kinase linker. 

Superposition of the Nef:Hck32 complexes onto the SH2 domain of downregulated, near full-
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length Hck reveals that in the dimer complex, the Nef-bound SH3 domains are significantly 

displaced from the linker, supporting the SH3 domain displacement model of Hck activation 

[231]. 

 

 

 

Figure Courtesy of Dr. John Jeff Alvarado, University of Pittsburgh. 

The dimer of two Nef:Hck32 complexes A and B, oriented in a fashion resembling a ‘handshake’ conformation.  For 
complex A, Nef is colored light purple, the SH3 domain is red, and the SH2 domain is blue; in complex B, Nef is 
rendered in green, the SH3 domain is pink, and the SH2 domain is light blue. 

Figure 4.1. Overview of the dimeric Nef:Hck32 complex structure 

 

 

Typically in all SFKs, the SH3 and SH2 domains are joined by a connector region comprised of 

eight residues that form an N-terminal β-turn followed by a 310-helix [12, 21, 94, 301, 346, 353]. 

While the structures of the individual Nef, SH3, and SH2 proteins making up the dimeric 

Nef:Hck32 complex are nearly identical, the relative orientation of the SH2 domains in each of 
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Figure Courtesy of Dr. John Jeff Alvarado, University of Pittsburgh. 

Superposition of the individual Nef structures in the complexes A and B superimposes the SH3 domain perfectly. 
However, it reveals alternative positioning of the SH2 domains which are redirected 116o away from each other. The 
positions of the SH3-SH2 connector regions (gray) are indicated in the superposition on the left. The color of 
individual Nef, SH3 and SH2 proteins are similar to those in Fig. 4.1.  

Figure 4.2. Distinct relative orientation of SH2 domains in the Nef:Hck32 dimer complex 

 

the two hemi-complexes are distinct, such that they are oriented 116° away from each other 

based on the angle of the axes passing through the center of mass of each domain (Figure 4.2).  

The difference in orientation arises from the absence of the conserved 310-helix in the SH3-SH2 

connector region in one of the hemi-complexes, where Hck residues 143-146 compulsively adopt 

an extended non-helical conformation due to lack of main-chain hydrogen bonding. In this dimer 

complex, residues in the loops connecting the central β-sheets and α-helices of each SH2 domain 

engages in extensive Van der Waals contacts with Nef residues from the distal end of the N-

terminal anchor domain and αB helix.  

 Consistent with previous crystal structures of Nef:SH3 dimer complexes (Figure 4.3A) 

[18, 205],  the Nef αB-helices form the dimer interface in our new Nef:Hck32 dimeric complex 

90o

Connector
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as well (Figure 4.3B).  However, the Nef monomers in the Nef:Hck32 complex are significantly 

reoriented relative to the previous Nef:SH3 complex. As shown in Figure 4.3C, superposition of 

one Nef monomer from each of the dimer complexes (our Nef:Hck32 dimer versus previous 

Nef:SH3 dimer; PDB: 1EFN) reveals that the other Nef  monomers in each dimer complex are 

rotated 87° around the y-axis and 82° around the z-axis from the center of mass resulting in a 

much more compact structure. The relatively reoriented Nef dimer observed in our Nef:Hck32 

complex structure is stabilized by four distinct dimer interfaces – three hydrophobic interfaces 

involving the N-terminal residues and αB-helix residues the Nef and a unique fourth interface 

that involves hydrophobic interactions as well as hydrogen-bonding contacts encompassing the 

Nef αA-helix C-terminus, the αB-helix N-terminus, and the αA-αB loop. Contrary to the 

Nef:SH3 structures where an ionic contact between the side chains of Nef R105 and D123 

stabilizes the dimer interface (Figures 4.3 D) [18, 204], these residues do not contribute to the 

Nef dimer interface in the Nef:Hck32 complex. Instead, as shown in Figure 4.3E, they are now 

repositioned 22 Å away from each other leading the Nef residue R105 to engage in novel 

intermolecular interactions while D123 is solvent exposed and potentially available to participate 

in interactions with other proteins, such as the AP-1 µ1 clathrin adaptor protein critical to MHC-I 

downregulation [172, 213].   
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Figure Courtesy of Dr. John Jeff Alvarado, University of Pittsburgh. 

(A) Nef dimer from a previous Nef:SH3 complex (Nef monomers are light and dark orange; PDB: 1EFN). (B) Nef 
dimer in the Nef:Hck32 complex (Nef monomers are green and purple).  Nef αB helices form the dimer interface in 
both the structures. (C) Superposition of Nef monomers from the structures in A and B. The resulting rotations along 
the y and z axes for the non-superimposed Nef monomer are shown.  (D) Close up view of the dimer interface from 
a complex of Nef with an SH3 domain showing the role of D123:R105 ionic interaction in dimerization.  (E) Nef 
D123 is solvent exposed due to being repositioned away from the dimer interface more than 22 Å away from Nef 
R105 in the Nef:Hck32 structure. 
 

Figure 4.3. Hck SH3-SH2 binding stabilizes a compact Nef dimer 
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4.2.2 Unique intermolecular Nef:SH3 interactions in the HIV-1 Nef:Hck32 complex 

Previous structural and functional studies have implicated two HIV-1 Nef regions in SFK-SH3 

domain engagement and kinase activation – the highly conserved P72xxP75xR77 motif and a 

hydrophobic pocket formed by the first two α-helices of the Nef core [18, 46, 61, 204, 205, 231, 

281]. As has been discussed in detail in the preceding chapters, the polyproline motif interacts 

with the RT- and N-Src-loops of the SH3 domain while conserved residues in a Nef hydrophobic 

pocket engage a single RT-loop isoleucine residue unique to the Hck and Lyn SH3 domains. 

Both of these interactions are present in the structure of the Nef:Hck32 complex and involve all 

previously identified residues on both Nef and the kinase proteins.   

Besides these known Nef:SH3 contacts, a unique intermolecular/intercomplex interaction 

was identified in the new dimeric Nef:Hck32 structure.  As described in the previous section 

4.2.1 the relatively reoriented Nef dimer interface lacks the ionic contact between the side chains 

of Nef residues R105 and D123 in the Nef:Hck32 dimer complex. While the repositioned D123 

residue faces the solvent, the R105 residue on one complex engages in a previously 

unrecognized intercomplex salt-bridge with the SH3 domain RT-loop residue E93 from the 

opposite complex (Figure 4.4).  Two such reciprocal intercomplex R105:E93 salt bridges are 

observed within the dimeric Nef:Hck32 complex structure. This novel interaction serves as an 

additional intermolecular contact between Nef and the kinase-SH3 domain near the previously 

identified critical I95 (corresponds to I96 as referred in [61, 204, 320]) residue, supporting a 

stabilizing influence in the context of full-length Hck.  Studies described below provide evidence 

that this previously unrecognized interaction is important for Nef:Hck complex stabilization and 

subsequent kinase activation. 
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Figure Courtesy of Dr. John Jeff Alvarado, University of Pittsburgh. 
 
The dimer of Nef:SH3 complexes A and B is shown at the top with the coloring of individual proteins as per Figure 
4.1. The unique intercomplex ionic contacts between Nef R105 and SH3 E93 are illustrated as sticks.  Close-up view 
of each ionic interaction is enlarged below and shows a well-ordered 2Fo – Fc electron density (cyan mesh; 
contoured at 1σ).  The expanded view on the left is rotated 180o with respect to the overall view above in order to 
maintain the same orientation as the view on the right.  
 
Figure 4.4. Unique Nef:SH3 interactions in the Nef:Hck32 complex 
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4.3 MATERIALS AND METHODS 

4.3.1 Cell culture, Reagents and Antibodies 

Human 293T cells were obtained from the ATCC and were cultured in Dulbecco’s Modified 

Eagle’s Medium/high glucose (DMEM) (Gibco Life Technologies) supplemented with 10% fetal 

bovine serum (Gemini Bio-Products). All cells were maintained at 370C in a 5% CO2 water-

jacketed incubator (Forma Scientific).  

Primary antibodies used in this study were obtained from Santa Cruz Biotechnology 

(Phosphotyrosine mouse monoclonal, pY99, sc-7020; Csk rabbit polyclonal C-20, sc-286; Hck 

rabbit polyclonal N-30, sc-72), Millipore (Actin mouse monoclonal, clone C4, MAB1501) and 

the National Institutes of Health AIDS Research and Reference Reagent Program (HIV-1 JR-

CSF Nef monoclonal, 1539; HIV-1 Nef monoclonal EH1, 3689). Secondary antibodies used in 

this study were obtained from Southern Biotech [Goat Anti-Rabbit IgG (H+L) Mouse/Human 

ads-TXRD, 4050-07; Goat Anti-Mouse IgG (H+L), Human ads-AP, 1031-04; Goat Anti-Rabbit 

IgG (H+L), Human ads-AP, 4010-04], LiCor [Donkey Anti-Mouse IgG (H+L) IRDye 800CW, 

926-32212; Donkey Anti-Rabbit IgG (H+L) IRDye 680RD 926-68073], and Invitrogen 

Molecular Probes [Pacific Blue Goat Anti-Mouse IgG (H+L), P31582]. 

4.3.2 Mammalian Expression Vectors for BiFC 

The coding regions of wild-type human Hck SH3 and SH3-SH2 domains (including the N-

terminal myristoylation sequence and unique domain to maintain the natural lipid modification 

and spacing from the membrane) was PCR-amplified using primers: FWD 
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5’(CGCgaattcGCCACCATGGGGTG)3’; REVSH3 5’(GCGggtaccCTCTGTCTCCAGAGAGTC 

AAC)3’; REVSH3-SH2 5’(GCGggtaccCATGCAGGGCACCGACAGTTTCTGG)3’. The reverse 

primers were designed to introduce the unique KpnI restriction site at the 3'-end. The C-terminal 

coding sequence of the Venus variant of the YFP protein (residues Ala154-Lys238) was 

amplified by PCR with an introduction of a unique KpnI restriction site at its 5'-end using the 

primers: FWD 5’(GCGggtaccGCCGACAAGCAGAAGAACGG)3’; REV 5’(GCGaagcttTCA 

CTTGTACAGCTCG)3’ and subcloned into the mammalian expression vector, pcDNA3.1(-) 

(Invitrogen). The coding regions of wild-type human Hck SH3 domain, Hck SH3-SH2 domains 

as well as full-length p59 Hck were then subcloned upstream and in frame with this Venus 

fragment for expression of the SH3-VC, 32-VC and Hck-VC fusion proteins, respectively.  The 

SH3 domain mutation (E93A) was then introduced into these vectors via site-directed 

mutagenesis (QuikChange® II XL Site-Directed Mutagenesis Kit, Stratagene) using the primers: 

Sense 5'(GCCCTGTATGATTACGcGGCCATTCACCACGAA)3’; Antisense 5’(TTCGTGG 

TGAATGGCCgCGTAATCATACAGGGC)3’. Construction of the complementary BiFC 

expression vector for HIV-1 Nef SF2 (Nef-VN) has been described elsewhere [258]. 

4.3.3 Yeast Expression Vectors  

The coding sequence for human wild-type Hck (p59 isoform) with either a wild type (YQQQ) or 

a constitutively downregulated (YEEI) C-terminal tail were PCR amplified with the introduction 

of unique restriction sites EcoRI and NotI at their 5' and 3’-ends respectively. The primers used 

were: FWD 5’(CGCgaattcGCAATAATGGGGTGCATGAAGTCCAAG)3’; REVYQQQ 5’(GCC 

GgcggccgcTCATGGCTGCTGTTGGTACTGGCT)3’ and REVYEEI 5’(GCCGgcggccgcTCATG 

GGATCTCTTCGTACTGGCTCTCTGTGGCCGT)3’. The 5’ primers were designed to 



130 

introduce the yeast translation initiation sequence (AATA) immediately upstream of the 5’ ATG 

start codon. Hck and HIV-1 Nef (SF2 allele) were subcloned downstream of the Gal1 and Gal10 

promoters in the yeast expression vectors pYC2/CT-Ura (Invitrogen) and pESC-Trp 

(Stratagene), respectively.  The pYC2/CT vector houses the CEN6/ARSH4 sequence for low-

copy replication. Hck SH3 domain mutants E93Q and E93A were created via site-directed 

mutagenesis using the QuikChange® II XL site-directed mutagenesis kit and the manufacturer’s 

protocol (Stratagene). The primers used were: Sense(E93Q) 5'(GTTGCCCTGTATGAT 

TACcAGGCCATTCACCACG)3'; Antisense(E93Q) 5'(CGTGGTGAATGGCCTgGTAATCAT 

ACAGGGCAAC)3'; Sense(E93A) 5'(GCCCTGTATGATTACGcGGCCATTCACCACGAA)3’; 

Antisense(E93A)  5’(TTCGTGGTGAATGGCCgCGTAATCATACAGGGC)3’. Construction of 

the yeast expression vectors pESC-Trp-Csk and pESC-Trp-Csk/Nef has been described by our 

group previously elsewhere [325].  

4.3.4 Bimolecular Fluorescence Complementation (BiFC) Assay 

Human 293T cells were plated on glass bottom microwell dishes (MatTek, P35G-1.5-14-C) and 

allowed to attach overnight. Cells were transfected with complementary BiFC expression vectors 

- wild type(WT) and mutant (E93A) forms of SH3-VC, SH3-SH2-VC, Hck-VC and Nef-VN 

using standard calcium phosphate techniques as described elsewhere [45]. Eighteen hours post 

transfection, cells were fixed with freshly prepared 4% paraformaldehyde (stock 16% solution; 

Electron Microscopy Sciences), permeabilized with 0.2% Triton X-100 and blocked with 2% 

BSA (Sigma) in PBS overnight. Cells were immunostained with primary antibodies against Hck 

(1:1000), and Nef (1:1000) for 1 hour at room temperature at their respective dilutions (in 
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parentheses). Immunostained cells were visualized with secondary antibodies conjugated to 

Texas Red or Pacific Blue at a dilution of 1:1000 and 1:250 respectively. Three-color BiFC and 

IF images were recorded using confocal microscopy (Fluoview FV-1000, Olympus). Image 

analysis was performed with the Java-based image processing program, ImageJ (version 1.48s), 

to determine the BiFC and immunofluorescence (IF) intensities of individual cells for a 

minimum of 100 cells. Mean pixel densities were calculated for the BiFC and IF channels and 

(mean ± SEM) of the BiFC:IF signal ratios were computed from independent experiments (n=3). 

4.3.5 Yeast assay for Nef-mediated Hck activation 

Growth Suppression assay 

Saccharomyces cerevisiae strain YPH 499 (Stratagene) was transformed (Bio-Rad GenePulser 

II) with pESC-Trp and pYC2/CT-Ura expression plasmids for Hck, Csk and Nef by 

electroporation (at 1.5 kV, 25 µF, 200 W). Transformed colonies were grown for 3 days at 30 oC 

on synthetic drop-out agar plates lacking uracil and tryptophan (SD/-U-T) with glucose as the 

sole carbon source to repress protein expression.  Colonies were then cultured in synthetic drop-

out liquid medium with glucose for 18 hours at 30 oC.  Culture densities were normalized to 

OD600 of 0.2 (A600=0.2) and spotted onto SD/-U-T agar plates containing galactose as the sole 

carbon source to induce protein expression. Yeast cultures were spotted in 4 fold dilutions 

starting at an A600=0.2. Plates were incubated for 4 days at 30 oC and imaged on a scanner. 

Growing yeast colonies appear as dark spots against the translucent agar background. 

Representative image of one from three independent experiments is shown.  
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Immunoblot analysis of Nef-Mediated Hck activation 

Yeast cultures from transformed colonies that were used for the growth suppression assay were 

cultured in galactose-containing liquid dropout medium lacking uracil and tryptophan (SD/-U-T) 

for 18 hours at 30 oC to induce protein expression. Optical densities of cultures were normalized 

to an OD600 of 0.2, and cells were pelleted and lysed with 0.1 N sodium hydroxide for 5 min at 

room temperature. Lysates were separated via SDS-PAGE, transferred to polyvinylidene 

difluoride (PVDF) membranes or nitrocellulose membranes, and probed with antibodies to 

phosphotyrosine, Csk, Hck, and Nef. Actin levels were also probed as a loading control. 

 

4.3.6 Statistical Analyses 

Quantitative analyses of the data are reported as the mean value ± standard error of mean (SEM) 

from three independent experiments (n=3).  
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4.4 RESULTS AND DISCUSSION 

4.4.1 Hck-SH3 RT loop residue E93 is involved in stabilizing Hck binding to Nef dimer 

As detailed in the introduction (section 4.2.2), the recently determined high resolution structure 

of the dimeric Nef:Hck32 complex from our group revealed novel contacts between Nef and the 

Hck SH3 domain, likely providing additional stability to the dimer complex structure. To 

evaluate the functional importance of the newly identified interaction of Nef R105 with the Hck-

SH3 RT Loop Glu93 to complex formation, we turned to the cell-based bimolecular fluorescence 

complementation (BiFC) assay [180, 320]. The BiFC assay, as we have discussed in the previous 

chapter, is a relatively straight-forward technique that relies on the association between two non-

fluorescent fragments of YFP when brought into close proximity by an interaction between 

proteins fused to the fragments. 

 For these studies, a non-fluorescent N-terminal fragment of Venus (a YFP variant that 

permits fluorophore maturation under cell culture conditions [268]) was fused to the C-terminal 

end of HIV-1 Nef (SF2 allele) to preserve N-terminal myristoylation and membrane localization 

(Nef-VN). On the other hand, we expressed the full-length, the SH3 domain, and the SH3-SH2 

domain of Hck as fusion proteins with the C-terminal fragment of Venus to create the wild type 

SH3-WT, 32-WT and Hck-WT constructs. The Hck BiFC fusion proteins included the natural N-

terminal myristoylation signal and unique domain to enable membrane targeting and proper 

spacing from the membrane (Figure 4.5).   
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Truncated and full-length expression constructs were created for BiFC experiments (SH3-WT; 32-WT; Hck-WT) by 
fusing the proteins to the C-terminal fragment of the Venus form of YFP (VC). The truncated shorter constructs 
included sequences N-terminal to either the SH2 domain (SH3-WT) or kinase domain (32-WT) from wild type Hck. 
The glutamic acid (E) residue in the Hck SH3 RT-loop was mutated to Alanine (A) in the wild type expression 
constructs to generate the corresponding mutant BiFC constructs (SH3-E93A; 32-E93A; Hck-E93A). 

Figure 4.5. Mammalian expression vectors for BiFC fusion constructs 

 

Co-expression of Nef-VN with wild type SH3-WT, 32-WT and full-length Hck-WT in 293T 

cells yielded a bright fluorescent signal (18 hours post transfection) that localized to the 

membrane, indicative of Nef interaction with both the truncated and full-length Hck proteins and 

subsequent complementation of the Venus fluorophore (Figure 4.6, top panel). When this 

experiment was repeated using the SH3-E93A and 32-E93A constructs (in which SH3 E93 was 

substituted with alanine), Nef interacted with the truncated mutant constructs resulting in a 

SH3-WT 3 VC

3 kinase2Hck

Hck-WT 3 kinase2 VC

32-WT 3 2 VC

SH3-E93A 3 VC

32-E93A 3 2 VC

Hck-E93A 3 kinase2 VC
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comparable level of BiFC signal as seen with their wild type counterparts (Figure 4.6, bottom 

panel).  The observation that the E93A substitution did not impact the interaction of Nef with the 

shorter Hck constructs consisting of only the unique, SH3 and SH2 domains is consistent with 

previous Nef:SH3 crystal structures in which the SH3 E93:Nef R105 contact is not present 

(18,54).  However, when Nef-VN was expressed with the full-length Hck-VC, the BiFC signal 

was reduced by more than 90% (Figure 4.6, bottom panel), indicating that this additional SH3 

domain contact is important for stable interaction of full-length Hck with Nef in cells.  
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(Top) Bimolecular fluorescence complementation (BiFC) analysis of Nef:Hck interaction.  Human 293T cells were 
transfected with expression plasmids for Nef fused to N-terminal fragment Venus, and either the N-terminal region 
of Hck including the SH3 domain, SH3-SH2 domain or full-length Hck fused to the complementary C-terminal 
Venus fragment.  Parallel experiments were conducted with wild-type (WT) and SH3 domain mutants in which E93 
was replaced with alanine (E93A).  Eighteen hours after transfection, cells were fixed and stained with antibodies to 
the Hck N-terminal region and Nef.  Three-color confocal images were recorded for BiFC (green), which is 
indicative of Nef:Hck interaction, as well as Hck and Nef protein expression by immunofluorescent staining. 
(Bottom) Mean pixel intensities of the BiFC and immunofluorescent (IF) signals were determined for at least 100 
cells per condition using ImageJ.  BiFC:IF signal ratios were calculated and are presented below as mean ratio ± 
S.E.M.   

Figure 4.6. Interaction of Nef R105 with Hck SH3 E93 is required for complex formation 



137 

4.4.2 Hck-SH3 RT loop E93 is important to the activation of Hck by Nef 

To evaluate the effect of the Hck SH3 domain E93 mutation on Nef-mediated kinase activation, 

we turned to a yeast-based co-expression system previously used in our laboratory to study Nef-

mediated activation of Src-family kinases. Yeast cells do not intrinsically express orthologs of 

mammalian tyrosine kinases providing an ideal background for study of Src-family kinase 

interactions with partner proteins.  However, yeast do perform post-translational modifications 

including myristoylation, which is critical to SFK and HIV-1 Nef function. 

 Because yeast cells lack Csk, the master regulator of Src-family kinase activity, 

ectopically expressed SFKs (Hck, in our case) are highly active and phosphorylate endogenous 

yeast proteins and cause growth suppression [109, 274].  Co-expression of Hck with Csk causes 

downregulation of Hck kinase activity and rescues growth.  However, our previous work has 

shown that expression of Nef with Csk-downregulated Hck causes constitutive activation of Hck 

in the same manner as observed in HIV-infected cells, leading to growth arrest [325].  HIV-1 

Nef-induced activation of SFKs can be measured by both monitoring yeast cell growth on solid 

culture medium and by evaluating levels of tyrosine phosphorylation of endogenous proteins 

from cell lysates. Thus yeast cells provide a well-defined, experimentally amenable and relevant 

model system to study the effect of Nef interactions with Src family kinases [325, 326].  

 We first expressed functionally active wild type and mutant full-length Hck in yeast 

expression vectors. The genes of interest were cloned using GAL-inducible expression vectors, 

in order to control protein expression with galactose as the sole carbon source. To use this 

system to explore the effect of the SH3 E93 mutant on Nef-induced activation, the wild-type, 

and E93A forms of Hck were expressed alone, in the presence of Csk, or in the presence of Csk 

and Nef.  The cultures were grown to equal densities, and then plated on galactose agar over a 
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range of dilutions to induce protein expression.  Parallel cultures were grown in liquid medium 

containing galactose, and cell lysates were prepared and immunoblotted for Hck, Nef and Csk 

protein expression as well as protein-tyrosine phosphorylation of yeast cell proteins.  As shown 

in Figure 4.7 (top panel), expression of the wild type Hck alone caused growth arrest of yeast 

cells which can be rescued with the co-expression of Csk. Co-expression of the wild-type Hck 

with Nef caused, as expected, almost complete growth arrest in yeast, even in the presence of 

Csk. However, the Hck-E93A mutant was completely refractory to Nef-mediated activation, 

consistent with its inability to interact with Nef by BiFC. These effects correlated well with 

strong phosphorylation of cellular proteins on tyrosine Figure 4.7 (bottom panel), consistent 

with our previous work [239, 325]. These results taken together suggest that the inter-complex 

interaction of Nef R105 with SH3 domain E93 is required for kinase activation 

  

 

 

 

 

 

 

 

 

 

 



139 

 
Saccharomyces cerevisiae was transformed with galactose inducible expression plasmids for wild-type Hck (WT), 
the SH3 domain mutant (E93A), the regulatory kinase Csk and HIV-1 Nef in the combinations shown.  Transformed 
colonies were cultured in glucose medium to equal densities and spotted onto agar plates containing galactose as the 
sole carbon source to induce protein expression. Plates were incubated for 4 days at 30oC and imaged on a scanner. 
Growing yeast colonies appear as dark spots against the translucent agar background (top panel).  Transformed yeast 
colonies were also cultured in liquid medium plus galactose to induce protein expression.  Cell lysates were 
separated via SDS-PAGE followed by immunoblotting for protein phosphotyrosine content (pTyr) as well as Nef, 
Csk, and Hck expression along with actin as a loading control (bottom panel). 
 

Figure 4.7. SH3 domain E93 is important to the activation of Hck by Nef 
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In similar experiments, we expressed full length wild-type and mutant (E93A) Hck with the 

modified “YEEI” tail.  This modification enhances tail interaction with the SH2 domain and 

controls Hck activity in the absence of the negative regulatory ‘tail kinase’ Csk, so that the 

kinase adopts a constitutively downregulated conformation even in the absence of Csk. When 

these downregulated forms of wild-type and mutant Hck were expressed alone, they failed to 

arrest yeast cell growth, indicative of their inactive states and consistent with our recently 

published work Figure 4.8 (top panel) [327]. In presence of Nef, the wild-type Hck-YEEI caused 

complete growth arrest in the yeast cells, suggesting that Nef interacts with Hck in this system 

and activates it through an SH3-dependent mechanism, previously defined in vitro and in 

mammalian cells [325, 326].  In contrast, co-expression of Nef with the Hck-YEEI E93A mutant 

resulted in only a partial induction of growth arrest and a modest increase in phosphorylation of 

yeast cell proteins. As was observed in the growth suppression assay, the differential effects of 

Nef on the activation of downregulated wild-type and mutant Hck was also seen in the 

immunoblot analyses of tyrosine phosphorylation of cellular proteins Figure 4.8 (bottom panel). 

These results taken together support an essential role for Hck SH3 E93 in the activation of Hck 

by Nef.  
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Saccharomyces cerevisiae was transformed with galactose inducible expression plasmids for constitutively 
downregulated wild-type and mutant Hck (WT and E93A) carrying an YEEI tail, and HIV-1 Nef in the 
combinations shown.  Transformed colonies were cultured in glucose medium to equal densities and spotted onto 
agar plates containing galactose as the sole carbon source to induce protein expression. Plates were incubated for 4 
days at 30oC and imaged on a scanner. Growing yeast colonies appear as dark spots against the translucent agar 
background (top panel).  Transformed yeast colonies were also cultured in liquid medium plus galactose to induce 
protein expression.  Cell lysates were separated via SDS-PAGE followed by immunoblotting for protein 
phosphotyrosine content (pTyr) as well as Nef, Hck and actin expression (bottom panel). 
 

Figure 4.8. Nef-mediated Hck activation by SH3 domain displacement requires SH3 domain E93 residue 
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As a control, we also expressed and tested a mutant Hck wherein the Glu93 was replaced by 

Glutamine (Gln, Q) – that is not expected to disrupt the salt bridge. As shown in Figure 4.9 (top 

panel), expression of wild-type and mutant (E93Q) Hck alone suppressed yeast cell growth 

indicative of their activity, which can be rescued with the co-expression of Csk. Expectedly, co-

expression of both the WT and E93Q Hck with Nef arrested yeast cell growth completely  even 

in the presence of Csk.  The levels of strong phosphorylation of cellular proteins on tyrosine 

Figure 4.9 (bottom panel), agree with the growth suppression assay observation. Thus these 

control experiment results confirm that the formation of intercomplex salt bridge between 

residue 105 on Nef and residue 93 on the Hck SH3 domain is critical for Nef-mediated activation 

of Hck. 



143 

 
Saccharomyces cerevisiae was transformed with galactose-inducible expression plasmids for wild-type Hck (WT), 
the SH3 domain mutant (E93Q), the regulatory kinase Csk and HIV-1 Nef in the combinations as shown.  
Transformed colonies were cultured in glucose medium to equal densities and spotted onto agar plates containing 
galactose as the sole carbon source to induce protein expression. Plates were incubated for 4 days at 30oC and 
imaged on a scanner. Growing yeast colonies appear as dark spots against the translucent agar background (top 
panel).  Transformed yeast colonies were also cultured in liquid medium plus galactose to induce protein expression.  
Cell lysates were separated via SDS-PAGE followed by immunoblotting for protein phosphotyrosine content (pTyr) 
as well as Nef, Csk, and Hck expression along with actin as a loading control (bottom panel). 
 

Figure 4.9. Substitution of Glu with Gln does not affect Nef-induced Hck activation 
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4.5 SUMMARY AND CONCLUSIONS 

Better comprehension and analysis of critical contacts by which Nef binds to cellular kinases and 

thus mediates its functions form the basis of identifying vulnerable targets for rational drug 

design and development. The structure of Nef in complex with the tandem SH3-SH2 region of 

Hck revealed a new interaction at the Nef:SH3 interface not identified in previously reported 

structures of Nef with the SH3 domain alone. Here we validate the biological significance of the 

new X-ray crystal structure of HIV-1 Nef in complex with the Hck SH3-SH2 region, and 

demonstrate in human and yeast cell-based systems, that the novel interaction of Nef R105 with 

Hck-SH3 E93 discovered in this structure is essential for complex formation with full-length 

Hck and kinase activation. Mutating the Glu93 residue to Ala on Hck not only compromised 

interaction between Nef and the full-length kinase in a cell-based BiFC assay but also inhibited 

Nef-induced Hck activation. These findings strongly suggest that Hck SH3 Glu93 residue is 

critical to Nef signaling through this kinase pathway. The observation that disruption of this 

contact leads to inhibition of Nef-mediated SFK activation and subsequent downstream signaling 

underscores the validity of the Nef:SH3 interface as a rational target for structure-based design 

and development of new antiretroviral agents. 
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5.0  DISCUSSION 

5.1 SUMMARY AND DISCUSSION OF MAJOR FINDINGS 

For my dissertation project, I set forth to develop a novel, cell-based approach to explore the 

scope of Nef-SH3 interactions.  In particular, I planned to focus on the ability of Nef to bind to 

SH3 domains of a broad range of tyrosine kinases that are predominantly expressed in HIV-1 

target cells.  The rationale for the focus on kinases related to their key role in HIV target cell 

activation, and our recent proof of concept studies demonstrating that inhibitors of Nef-induced 

Src-family kinase activation block Nef-dependent HIV-1 replication. 

For this study, I adapted a BiFC assay previously developed in our lab to study Nef 

homodimerization to probe the interaction of Nef with Tec-family kinases through their SH3 

domains in a cellular context. The BiFC assay as has been discussed in chapter 3 is a relatively 

straightforward assay that allows direct visualization of protein-protein interactions and their 

subcellular localization within the live cells. However, one disadvantage of this assay relates to 

the irreversible nature of the reconstituted YFP fluorophore. Since the assay relies on the 

reconstitution of the functional structure of YFP from juxtaposition of its two non-fluorescent 

halves, it is often susceptible to false positive signals resulting from very weak interacting 

partners or even from non-interacting proteins that happen to come close at a distance sufficient 
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for structural complementation of the YFP. For this reason it was very important to validate the 

assay using a well-known interaction prior to extending this approach to other kinases. 

I validated the reproducibility and reliability of the assay using the Src-family kinase 

Hck, one of the best characterized SH3 binding partners for Nef.  The Hck SH3 domain and full-

length Hck both interacted strongly with Nef by BiFC, providing assay validation as well as new 

evidence for this interaction at the cellular level. In order to verify whether the observed BiFC 

signal was solely dependent on Nef:SH3 interaction, a mutant of Nef defective for SH3 binding 

was used. The Nef-2PA mutant interacted with the Hck SH3 domain very weakly, almost 10-fold 

lower than wild type Nef.  It is to be noted that substitution of the conserved Nef proline residues 

to alanine did not completely kill interaction of Nef with the SH3 domain completely. This 

observation is consistent with previous findings that besides the polyproline motif, other key 

determinants and critical motifs on Nef are essential for SH3 domain binding. 

Using the BiFC approach, next I went on to show that Nef also interacts with the Tec-

family kinases Bmx, Btk, and Itk but not Tec or Txk.  Experiments with truncated forms of Bmx, 

Btk, and Itk lacking the SH2 and kinase domains also produced bright, membrane-localized 

BiFC signals in presence of Nef, supporting interaction through the SH3 domain.  Sequence and 

structural alignment revealed that Tec and Txk have alanine and arginine, respectively, in place 

of the Hck SH3 domain RT-loop isoleucine critical for interaction with the Nef hydrophobic 

pocket, suggesting a possible explanation for their failure to interact.  Replacement of this 

alanine in the Tec SH3 domain with isoleucine restored Nef binding, supporting a role for the 

RT-loop residue 96 in Nef recognition, and suggesting that Src and Tec-family kinases interact 

with Nef through very similar mechanisms. The corresponding residues of Hck, Bmx, Btk and 

Itk at position 96 were mutated to arginine to match the residue on Txk (a non-binder) and even 
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Fyn, since the structure of Nef in complex with an SFK-SH3 domain was first determined with 

Fyn carrying a R96I mutation [204]. Replacement of Ile96 to Arg in Hck almost completely 

blocked interaction with Nef, reminiscent of previous findings where the highly homologous 

wild type Fyn SH3 (carrying R96) domain had very weak affinity (KD >20µM) as opposed to 

wild type Hck SH3 (carrying I96) domain bound to Nef with the highest affinity reported for an 

SH3-mediated interaction at that time (KD 250 nM) [204]. However, replacement of the Btk and 

Itk residue 96 with Arg interrupted their interaction with Nef but did not completely block it. 

This finding suggests that other residues in the SH3 domains of these two kinases play an 

essential role in Nef binding. Nef allelic variants representing all M-group HIV-1 clades 

interacted strongly with Itk in this assay, demonstrating that Nef-Itk interaction is highly 

conserved all major HIV-1 subtypes. My findings report for the first time that co-expression with 

Nef induces Itk autophosphorylation, which is sensitive to inhibition by BMS-509744, a highly 

selective small molecule inhibitor of Itk activity.  BMS-509744 also inhibited both HIV-1 

infectivity and replication in a Nef-dependent manner, supporting a functional link between Nef 

and Itk in the HIV-1 life cycle.  Consistent with these observations, this inhibitor had no effect 

on HIV replication in Jurkat T-cells, which support HIV replication in a Nef-independent 

manner.  These results suggest that Nef directly bridges HIV-1 infection with Itk signaling in T 

cells. 

In the second part of my project, I set out to build upon and validate the biological 

significance of our recently determined X-ray crystal structure of HIV-1 Nef in complex with the 

regulatory apparatus (tandem SH3-SH2 unit) of its binding partner and kinase effector, Hck. 

While key elements of previous Nef structures with isolated SH3 domains are present in our new 

dimeric Nef:Hck32 complex, the addition of the SH2 domain and SH3-SH2 connector in the 
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crystal structure revealed remarkable differences. These included a completely reoriented Nef 

dimer interface with the Hck SH2 domains impinging on the N-terminal region of Nef to 

stabilize a dimer conformation that exposes Asp123, a residue critical in multiple Nef functions 

including CD4 and MHC-I downregulation as well as enhancement of viral replication [172, 

213, 258]. The Nef:SH2  interactions likely help to position the PxxPxR motif for interaction 

with the SH3 domain, and also stabilize a functionally important Nef dimer conformation.  A 

novel intercomplex salt bridge between Nef R105 and E93 in the RT loop of the SH3 domain 

was also identified. 

 I performed mutagenesis studies to test whether this new contact between Nef and the 

kinase is required for complex formation and activation of Hck by Nef. Replacement of the 

glutamic acid residue with alanine (E93A) compromised Nef interaction with full length Hck but 

not the shorter truncated constructs consisting of SH3 domain alone or SH3-SH2 domains. While 

the full-length Hck-E93A protein failed to interact with Nef by BiFC signal at eighteen hours 

post transfection, a partially positive BiFC signal was observed with this mutant thirty-six to 

forty hours post transfection. The gradual incidence of a BiFC signal with the mutant Hck may 

be interpreted in two alternate ways.  First, it may be so that the mutation of this crucial new 

contact residue does not abrogate interaction completely, but weakens and delays the interaction 

between Nef and Hck significantly. Secondly, it is likely that the interaction actually may never 

take place. The observation of the BiFC signal after long hours of incubation, may be an artifact 

resulting from the irreversible nature of the assay. However, overall these results indicate that the 

salt bridge is critical for the complex formation of Nef with full-length Hck.  

In the yeast-based assay, the disruption of this newly identified salt bridge by 

mutagenesis resulted in failure of Nef to activate the full length Hck.  However, the basal level of 
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Hck activity being unequal in case of the wild type and mutant kinases complicates 

interpretations of the results. It apparently becomes difficult to compare the extent of Nef-

induced change in phosphorylation levels of Hck if the basal levels of phosphorylation vary. To 

address this problem, we switched to constitutively downregulated forms of Hck proteins that 

carry a YEEI tail and therefore do not require co-expression of Csk for kinase inactivation. This 

change simplifies the system while avoiding growth suppression when expressed in the absence 

of Nef. Our previously published studies have shown that Nef interacts with Hck-YEEI in this 

system through an SH3-dependent mechanism and the structural basis of Hck-YEEI activation 

by Nef in yeast is indistinguishable from that observed in mammalian cells [327]. Thus failure of 

Nef to activate mutant Hck-E93A-YEEI is clearly implies that Nef is unable to displace and 

release the SH3:linker interaction which is  consistent with its inability bind full-length mutant in 

Hck the BiFC studies.  Taken together, our recently determined Nef:Hck32 structure and results 

from my study to validate the new intermolecular contact between Nef and Hck  strongly support 

the existence of multiple active conformations for Nef that dependent upon the host cell binding 

partner to which they are bound.   
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5.2 OVERALL DISCUSSION 

The biological consequences of most of the interactions of Nef with host cell proteins are still 

poorly understood. Overall, however, our current understanding suggests that Nef binding 

recruits host signaling proteins to the inner cell membrane and lipid rafts thereby, bringing them 

into close proximity with other signaling proteins that modulate their catalytic activity. In this 

way, Nef may prime T cells for activation without any external stimuli. In fact, several studies 

have shown that Nef alone can trigger T cell activation signaling pathways, inducing a 

transcriptional program that mimics conditions resulting from T cell activation by an anti-CD3 

antibody. 

As I discussed in detail in section 1.3.3.2, stimulation of the antigen receptor on an 

uninfected T-cell leads to downstream effects involving activation of Itk (Figure 5.1 upper 

panel; figure not to scale), culminating in the activation of transcription factors that drive gene 

expression. Physiological activation of Itk requires three conditions: disruption of autoinhibitory 

interactions within the kinase; recruitment and localization of Itk molecules at the cell 

membrane; and transphosphorylation of its activation loop tyrosine (Y511) by an SFK, typically 

Lck. In an uninfected T-cell, stimulation of the TCR by an antigenic peptide bound to an MHC 

molecule on an APC, engages CD4 leading to activation of Lck.  Activated Lck phosphorylates 

ITAMs on the TCR and the coreceptor CD3, which in turn recruits ZAP-70 to the ITAMs via 

their SH2 domains and leads to ZAP-70 activation.  Lck also phosphorylates Itk that is recruited 

to the cell membrane following the activation of PI3K. 

As has been discussed previously, Nef binds and activates Hck and other Src-family 

kinases by SH3 domain displacement from its autoinhibitory interaction with the SH2:kinase 
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linker region. The observation that Nef induces activation of Itk in the absence of exogenous 

stimuli raises interesting questions about the mechanism of Itk kinase activation.   

Previous work from our group and others has shown that Nef forms dimers in cells, and 

that dimerization is important for Src-family kinase activation by Nef as well as other Nef 

functions [98, 213, 258, 361]. These observations suggest that a single Nef dimer may recruit 

two kinase molecules, resulting in juxtaposition of their kinase domains and subsequent 

activation by trans-phosphorylation of their kinase domain activation loops.  In theory, a Nef 

dimer could recruit two heterologous kinases, i.e., a Src-family kinase and a Tec family member, 

like Itk as is in our study. Nef-dependent formation of such a heterodimer could lead to 

stimulation of both kinases through a similar mechanism. Indeed, physiological activation of Itk 

requires, in part, trans-phosphorylation by a Src-family kinase in the context of T cell receptor 

activation as discussed above [14]. Thus it can be reasonably speculated that in a HIV-infected 

T-cell, in absence of any external stimuli, Nef possibly recruits Itk to the inner cell membrane 

and allows transphosphorylation of the two bound heterologous kinases resulting in their 

activation (Figure 5.1 lower panel; figure not to scale). In parallel, the Nef-activated SFK may 

also phosphorylate the CD3 ITAMs and ZAP-70 in an effort to unleash the subsequent 

downstream signaling steps. Indeed, other recent work from our group has shown that Nef 

induces activation of ZAP70 in H9 T-cells [327].  Thus in the absence of any external stimuli, 

HIV-1 Nef may trigger multiple T-cell signaling pathways, including Itk, leading to transcription 

of viral genes from the HIV-1 LTR. My results also complement the recent observations of 

Schiralli Lester, et al., which show co-localization of Itk and HIV-1 Gag proteins to the plasma 

membrane at sites of F-actin accumulation and lipid rafts in HIV-1 infected T cells [290]. They 

also reported that Itk inhibitors disrupt Itk co-localization with viral Gag as well as virus-like 
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particle release. Taken together, these results suggest that Nef may play a role in the recruitment 

of Itk to this subcellular compartment, resulting in kinase activation, which in turn contributes to 

viral replication and egress. 
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Figure 5.1. Comparison of T-cell signaling pathway in an uninfected stimulated versus HIV-infected cell 
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5.3 FUTURE DIRECTIONS 

Evaluation of the effect of inhibition of Nef-induced Itk activation on Nef-dependent HIV-1 

replication in more relevant settings 

My current study presents the first evidence that Nef interacts with the Tec family kinase, Itk and 

that pharmacological inhibition of this interaction blocks HIV-1 replication in a Nef-dependent 

manner. For my study I used the human 293T cells and the T lymphoblast cell lines CEM-T4 and 

Jurkat to evaluate the effect of inhibiting Nef-induced Itk activation on the viral life cycle. HIV-1 

replication is also Nef-dependent in peripheral blood mononuclear cells (PBMCs) as well as co-

culture of T cells with macrophages or endothelial cells [63, 230, 311]. Since these cells when 

infected with HIV-1 represent a “closer to the real infection” milieu including other natural host 

cellular players, it would be interesting to evaluate the effect of inhibition of Nef-induced Itk 

activation in these systems. This can be achieved either by using the Itk inhibitor or siRNA 

directed against Itk followed by subsequent complementation/rescue studies. Further, it will be 

even more interesting to evaluate the same in the transgenic mouse model characterized by 

AIDS-like disease development. This will also allow us to evaluate the efficacy of the Itk 

inhibitor in vivo, which is an essential finding before trying this inhibitor in higher animal 

models including non-human primates.  

Determination of high resolution crystal structure of Nef in complex with Bmx, Btk and Itk 

Cell-based BiFC data from my studies have shown that Nef binds to Bmx, Btk and Itk through 

their SH3 domains. Further, mutagenesis studies have shown that the residue at position 96 
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(which corresponds to Ile 96 in Hck) is a critical determinant for Btk and Itk in their ability to 

bind to Nef. However, replacement of Met96 and Asn96 to Arg on Btk and Itk respectively did 

not abolish their interaction with Nef completely, indicating that other intermolecular contacts 

may contribute to the interaction. In light of the importance of Nef:Itk signaling in the viral life 

cycle, it would be very interesting to determine the high resolution X-ray crystal structure of Nef 

in complex with either of these kinases. This will not only provide significant insight into the 

Nef:Tec-family kinase binding interface and help identify additional crucial contacts for kinase 

activation but will also help delineate the mechanism of Nef-induced Tec-family kinase 

activation, which is not completely clear even under physiological circumstances.   

Bmx is an atypical member of the Tec family of kinases, in that it lacks sequence 

homology with classical SH3 domains yet possesses an “SH3-like” domain for Nef binding. 

Surprisingly, despite the poor sequence homology of Bmx with the other members of the Tec 

family in this region (Figure 3.7), my work shows that there must exist a PxxP/Nef recognition 

element in Bmx that allows it to bind strongly to Nef. This is reminiscent of the SH2 and 

phosphotyrosine-binding (PTB) domains – which, in spite of having no structural 

relationship/similarity, bind specifically to phosphotyrosine-containing peptides, albeit with 

subtle differences in their selectivity towards recognizing residues adjacent to the binding sites 

on their targets [291, 297, 356]. Thus, determination of the crystal structure of Nef with the 

shorter construct of Bmx lacking the SH2 and kinase domains would be really interesting. This, I 

believe, will highlight novel recognition motifs on the kinase that Nef can bind to even in 

absence of a classical SH3 domain. Also, this will exemplify and corroborate the idea that two 

very distinct and dissimilar sequences indeed can fold and form the same functional domain.  
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Elucidation of mechanism of Nef-induced Itk activation and signaling  

Previous studies have reported that Nef-mediated activation of the Erk MAPK pathway and 

enhancement of HIV-1 transcription in T cells depends on Lck activity [347]. While some 

studies report that Nef binds to Lck directly, some others suggest an indirect role for Lck [42, 58, 

77, 93, 239, 325].  Since Itk is activated through phosphorylation of its activation loop tyrosine 

Y511 by Lck under normal conditions (e.g., T-cell receptor activation), Nef-mediated binding 

and recruitment of Itk to the plasma membrane hints at the underlying link between Lck activity 

and Nef effector functions. This possibility may be explored further in greater detail by using 

RNAi knockdown studies followed by complementation or rescue experiments.  

Based on our logical thought that a single Nef dimer may recruit two different kinase 

molecules bringing them to close proximity to allow transphosphorylation and subsequent kinase 

activation, it may be inferred that such a phenomenon, if true, may drive differential signaling 

pathways simultaneously in an HIV infected cell. Whether such a dimer of heterocomplexes 

indeed forms in an infected cell can be determined by coupling FRET to BiFC assays. If such 

dimeric heterocomplexes indeed exist, it will help us delineate specific downstream signaling 

cascades and identify additional Nef effectors that can be targeted for pharmacological 

inhibition. Expression of Nef leads to activation of T cells and enhancement of transcription 

from the LTR promoter. To evaluate the downstream effects of Nef-induced Itk activation, Nef-

mediated gene expression profiling may be done in the presence or absence of the Itk inhibitor in 

cell lines that exhibit Nef-dependent viral replication.  This approach will help us identify 

signaling pathways that are up-/down-regulated by the Nef:Itk interaction. 
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5.4 CLOSING REMARKS 

The year 2014 marks the thirty third anniversary of the HIV/AIDS pandemic – and sadly, despite 

of intensive research efforts worldwide, this devastating disease cannot be cured. While current 

therapeutic strategies have transformed HIV infection from a terminal to a chronic illness for 

many patients, lack of an effective vaccine and emergence of drug-resistant strains mark 

HIV/ADIS as one of the most challenging public health threats even today. This underscores the 

urgency in finding additional targets for development of newer drugs. Nef represents an exciting 

potential drug target because of its important role in HIV-1 pathogenesis and interactions with 

host cell signaling molecules. In an effort to identify novel interactions of Nef within an infected 

cell, in my dissertation I have provided the first direct evidence for Nef interacting with three 

cytoplasmic tyrosine kinases that are critical to HIV target cell signaling. In particular, I have 

shown that pharmacological inhibition of Nef-mediated Itk activation blocks Nef-dependent 

enhancement of HIV-1 replication and infectivity in human cells. Based on my current study and 

observations, I believe, targeting the Nef:Itk signaling axis in an infected cell may represent a 

broadly useful strategy to combat HIV/AIDS. I earnestly hope, my findings will contribute to the 

field of HIV research, advance our understanding of the varied viral strategies that are 

undertaken by the virus to ensure a productive infection and also possibly lead us towards newer 

avenues of HIV therapeutics.  
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ABBREVIATIONS 

AIDS……………... Acquired immunodeficiency syndrome 
AP-1/2…………… Activator protein 1/2 
APC……………… Antigen presenting cell 
BiFC……………... Bimolecular fluorescence complementation 
BMS……………… Bristol-Myers Squibb 
BSA……………… Bovine Serum Albumin 
C-………………… Carboxy 
CA……………….. Capsid 
CCR/CXCR……… Chemokine receptors 
CD4……………… Cluster of differentiation 4 
cDNA……………. complementary DNA 
COP-1…………… Coat protein 1 
Csk………………. c-Src tyrosine kinase 
CypA…………….. Cyclophilin A 
DFP……………… Diphenylfuranopyrimidine 
DMSO…………… Dimethyl sulfoxide 
DQBS……………. Diaminoquinoxaline benzenesulfonamide 
ER……………….. Endoplasmic reticulum 
FAK……………… Focal adhesion kinase 
FWD……………... Forward 
GEF……………… GTP exchange factor 
GFP……………… Green fluorescent protein 
GSK3β…………… Glycogen synthase kinase-3 beta 
HAART………….. Highly active antiretroviral therapy 
HIV………………. Human immunodeficiency virus 
HLA……………… Human leucocyte antigen 
HTLV……………. Human T-lymphotrophic virus 
IC50………………. half maximal inhibitory concentration 
IF………………… Immunofluorescence 
IFN………………. Interferon 
IgG………………. Immunoglobulin G 
IL-2……………… Interleukin-2 
IN………………… Integrase 
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ITAM……………. Immunoreceptor tyrosine-based activation motif 
JAK……………… Janus kinase 
JNK……………… c-Jun N terminal kinase 
kb………………… kilobase 
KD………………... dissociation constant 
kDa………………. kilo-daltons 
LAT……………… Linker of activated T cells 
LTR……………… Long terminal repeat 
M………………… Molar 
MA………………. Matrix 
MAPK…………… Mitogen-activated protein kinase 
MHC…………….. Major histocompatibility complex 
MIP-1α…………... Macrophage inflammatory protein-1 alpha 
ml………………… milliliter 
mM………………. millimolar 
mRNA…………… messenger RNA 
N…………………. Normal 
N-………………… Amino 
N/NRTI………….. non-/nucleoside reverse transcriptase inhibitor 
NC……………….. Nucleocapsid 
NFAT……………. Nuclear factor of activated T cells 
NFκB…………….. Nuclear factor kappa-light-chain-enhancer of activated B cells 
NK………………. Natural killer 
nm……………….. nanometer 
nM……………….. nanomolar 
ORF……………… open reading frame 
P…………………. Proline 
PACS-2………….. Phosphofurin acidic cluster sorting protein 2 
PAK2……………. p21 protein- activated kinase 2 
PBMC……………. Peripheral blood mononuclear cells 
Pg………………… picograms 
PH……………….. Pleckstrin homology  
PI………………… protease inhibitor 
PI3K……………… phosphoinositide 3- kinase 
PIC………………. preintegration complex 
PIP3……………… phosphatidylinositol (3,4,5) triphosphate 
PKC……………… Protein kinase C 
PLCγ…………….. Phospholipase C gamma 
PPΙΙ………………. polyproline type II 
PR………………... Protease 
PTK………………. protein tyrosine kinase 
pTyr/pY………….. phosphotyrosine 
R…………………. Arginine 
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REV……………… Reverse 
RT……………….. Reverse transcriptase 
sAIDS……………. simian AIDS 
SEM……………… Standard error of mean 
SFK………………. Src family kinase 
SH3………………. Src-homology 3 
SIV………………. Simian immunodeficiency virus 
ssRNA…………… single stranded RNA 
STAT…………….. Signal transducer and activator of transcription  
SU………………... Surface 
TCR……………… T cell receptor 
TGN……………… trans-Golgi network  
TH………………... Tec homology 
TM……………….. transmembrane 
U…………………. Units 
VC……………….. C-terminal fragment of Venus 
VN……………….. N-terminal fragment of Venus 
vs………………… versus 
WT………………. wild type  
XLA……………… X-linked agammaglobulinemia 
YFP……………… Yellow fluorescence protein 
α-  ..……………… anti 
ΔNef……………... delta Nef/defective Nef 
32………………… SH3-SH2 domain 
µg………………… microgram 
µl…………………. microliter 
µM……………….. micromolar 
Å…………………. angstrom 
oC………………… degree Celsius 
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