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CHARGE TRANSPORT IN DISORDERED MATERIALS

Adam Gerald Gagorik, PhD

University of Pittsburgh, 2013

This thesis is focused on on using Monte Carlo simulation to extract device relevant proper-

ties, such as the current voltage behavior of transistors and the efficiency of photovoltaics,

from the hopping transport of molecules. Specifically, simulation is used to study organic

field-effect transistors (OFETs) and organic photo-voltaics (OPVs). For OFETs, the current

was found to decrease with increasing concentration of traps and barriers in the system. As

the barrier/trap concentration approaches 100%, the current recovers as carrier begin to

travel through the manifold of connected trap states. Coulomb interactions between like

charges are found to play a role in removing carriers from trap states. The equilibrium cur-

rent in OFETs was found to be independent of charge injection method, however, the finite

size of devices leads to an oscillatory current. Fourier transforms of the electrical current

show peaks that vary non-linearly with device length, while being independent of device

width. This has implications for the mobility of carriers in finite sized devices. Lastly, the

presence of defects and high barriers (> 0.4 eV) was found to produce negative differential

resistance in the saturation region of OFET curves, unlike traps. While defects and barriers

prohibit carriers from reaching the drain at high voltages, the repulsive interaction between

like charged carriers pushes charges around the defects.

For OPVs, the effects of device morphology and charge delocalization were studied. Fill

factors increased with domain size in monolayer isotropic morphologies, but decreased for

band morphologies. In single-phase systems without Coulomb interactions, astonishingly

high fill factors (≈ 70%) were found. In multilayer OPVs,a complex interplay of domain

size, connectivity, tortuosity, interface trapping, and delocalization determined efficiency.
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1.0 INTRODUCTION

The mechanism of charge transport in disordered materials is highly debated and fundamen-

tally different than charge transport in inorganic materials. For inorganic semiconductors,

carriers are highly delocalized. This leads to the familiar picture of energy bands for conduc-

tion. In organic materials, conformational disorder and the coupling of electronic motions to

vibrations leads to the picture of localized carriers. The charge transport is then described

as hopping between these sites described by theories such as Marcus-Hush1 electron trans-

port and Miller-Abrahams2 conduction. Questions remain, however. How does the hopping

picture relate to the behavior of macroscopic devices? Why can we make devices based on

organic semiconductors that perform as well as they currently do? How do we make better

devices? To understand these questions, the relationship between charge transport and de-

vice behavior must be studied. The problem is not an easy one; the transport mechanism is

still not very well understood. Nevertheless, it is the goal of this thesis to use the molecular

scale picture of hopping charges to predict device relevant properties such as efficiency and

current-voltage behavior.

This thesis aims to address the following questions. How does the presence of barriers,

traps, and defects affect the current extracted from OFETs? Does the way we describe charge

injection matter for the equilibrium current? Can the mechanism of negative differential

resistance be described with the simulation? For OPVs, what are the effects of domain size?

How does charge delocalization affect charge extraction and exciton separation? Finally, how

significant of a role do the Coulomb interactions between charges play in charge transport?

A major goal of this work was to use simple models to describe charge transport in OFET

and OPV devices. The inclusion of physically relevant processes, such as the interaction

of charge carriers via explicit Coulomb interactions, leads to a simple, straight forward
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interpretation of device behavior. This physical intuition is often absent from methods

based on continuous differential equations. In the spirit of physical chemistry and modeling

in general, the Monte Carlo approach allows us to include only the most significant physical

processes and build up complexity only as needed.

1.1 REVIEW

Inexpensive, flexible, and synthetically variable organic materials are an alternative to in-

organic materials in organic field-effect transistors (OFETs), organic light-emitting diodes

(OLEDs), and organic photo-voltaics (OPVs).3–12 Many have realized that organic mate-

rials promise to allow tailoring of device properties, lower the environmental impact, and

lower the cost of mass producing devices. The devices are inexpensive to produce because

most materials are easily solution processed, and can be assembled using preexisting man-

ufacturing infrastructure, such as ink-jet or roll printing. Such devices can be recyclable,

synthetically variable, and possess other unique properties, such as flexibility.

However, the low efficiency of devices compared to their inorganic counterparts still limit

their use. This limitation can be overcome with a better and more fundamental framework

to describe charge dynamics in these materials. For OFETs, drawing on such understanding,

the parameters that most affect device operation, such as the on-off current ratio, the turn-

on voltage, or the effects of defects and charge mobility on current, can be optimized. For

OPVs, a more fundamental framework will allow one to probe the many processes that affect

OPV function, such as morphology, exciton injection, and exciton recombination.

In this section, we review some concepts needed to motivate and understand this thesis.

We will talk about charge hopping, charge mobility, the process of charge injection, the

effects of morphology, and other simulation models used to describe charge transport.
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1.1.1 Organic Materials

Common organic materials for OPVs are P3HT and PCBM, shown in Figure 1.1A and 1.1B.

However, many other candidates exist.3,11 PCBM is electron conducting, and generally called

an acceptor or n-type material. The molecular volume of PCBM is around 1 nm3, the same

size as the sites used in the Monte Carlo model. P3HT is hole conducting, and called a

donor or p-type material. Pthalocyanine, shown in Figure 1.1C, is another hole conductor,

also around 1 nm2 in size. Pthalocyanines with varying metal centers, such as Cu, Ni, or Zn,

can serve as traps and barriers for OFETs compared to metal-less pthalocyanines.

1.1.2 Charge Hopping

Charge transport in organic materials is described as hopping between localized states. We

can view it as excess electrons hopping between the lowest unoccupied molecular orbitals

(LUMOs) of adjacent molecules, or missing electrons (holes) hopping between the highest

occupied molecular orbitals (HOMOs) of adjacent molecules. The energy bands normally

present in inorganic materials localize because of the poor electronic overlap between adjacent

molecules and disorder present in the system. Charge carrier can then occupy the localized

states, which are essentially just orbitals. Transport is then described as hopping between

these states. Two expressions can be used. The first, is due to Miller and Abrahams, and

is shown in Equation 1.1, which is the transport rate, kij, for a charge hopping between two

molecules.2

kij = ν0e
−2γijrijmin

[

1, e−β∆E
]

(1.1)

In Equation 1.1, the ν0 is a hopping attempt rate, γij is a parameter representing the

coupling between molecules separated by a distance rij. ∆E is the energy change associated

with a charge hopping between molecule i and molecule j, and β−1 is kT , where T is the

temperature and k Boltzmann’s constant. The equation tells us that it is exponentially

less likely for charges to hop between molecules farther apart. Likewise, the hopping is

exponentially less likely the more positive the energy change. If the energy change is negative,

then the transport rate only depends on the distance between the molecules. The Miller-

Abrahams formalism allows for the possibility of transport at low temperatures, for example,
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(A) P3HT (B) PCBM

(A) metal-PC

Figure 1.1: Common organic semiconductors.
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through tunneling.

The second formalism is the Marcus-Hush electron transport theory. According to

Marcus-Hush, the transport rate, kij is given by Equation 1.2.

kij =
2π < Hab >

2

h̄

1√
4πλkT

e−
(∆G+λ)2

4λkT (1.2)

In Equation 1.2, h̄ is Planck’s constant, 〈HAB〉 is the electronic coupling between states,

λ is the reorganization energy, and ∆G is the free energy change. Both formalisms are

well adapted for Monte Carlo techniques. Each involves a rate in terms of a pre-factor and

a Boltzmann like exponential. The Miller-Abrahams is even in the form of a Metropolis

acceptance criterion.13 The probability of a process and the rate of the process are closely

tied. For example, consider Equations 1.3 and 1.4.

R =
S

T
(1.3)

P =
S

A
(1.4)

P is the probability of a process occuring, R is the rate of the process, A is the number

of attempts of the process, and S is the number of successes of the process. The probability

of the process can be directly related to the rate, as shown in Equation 1.5.

P =
RT

A
(1.5)
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1.1.3 Mobility

Mobility is the “constant” of proportionality between the drift velocity of carriers and the

electric field, as shown in Equation 1.6.

v = µE (1.6)

In Equation 1.6, v is the drift velocity of carriers, µ is the mobility, and E is the electric

field. µ has units of (cm s−1)/(V cm−1) = cm2 V−1 s−1. The mobility of organic materi-

als is low. For example, in the best of cases, consider a mobility of 10−1 cm2 V−1 s−1 =

10 nm2 V−1 ps−1. In an OFET with a length of 1000 nm, when a 100V bias is applied

between the source and drain, the carrier drift velocity is only 1 nm ps−1 = 1000m s−1.

Compare this to a mobility of 1500 cm2 V−1 s−1, which is close to the mobility of electrons

in silicon. For the same field, the electrons would be traveling with a drift velocity of

1.5× 104 nm ps−1 = 1.5× 107 m s−1, 5% of the speed of light.

The mobility need not be a constant. For example, the Poole-Frenkel effect predicts the

mobility to scale exponentially with the square root of the electric field14 at high electric

field. Monte Carlo disorder models can capture this effect.15

µ ∝ e
√
E (1.7)

We can calculate the mobility from the source-drain current, ISD in an OFET simula-

tion.16 The source drain current is given by Equation 1.8.

ISD =
µǫW

LD

[

(VSG − V0)VSD − V 2
SD

2

]

(1.8)

In Equation 1.8, ǫ is the dielectric constant, W is the width of the device, L is the

length of the device, VSG is the source gate voltage, and V0 is the threshold voltage. In the

saturation region of the current voltage curve, VSD > VSG. In this regime, Equation 1.8 can

be reduced to Equation 1.9.

√

ISD =

√

µǫW

2LD
(VSG − V0) (1.9)

The slope of a plot of
√
IDS vs. VSG can be used to calculate the mobility. VSG is related

to the carrier concentration by Equation 1.10.

VSG =
eND

ǫA
(1.10)
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1.1.4 Charge Injection

The performance of a device depends upon factors intrinsic to the semiconductor, such as the

resistance of the semiconductor - a property ultimately tied to the mobility of the carriers

in the material. However, outside factors also alter the device performance. For example, a

contact resistance is present when electrodes are connected to the device, because an energetic

barrier to charge injection forms. Lowering the contact resistance is often accomplished by

matching the work function with the frontier molecular orbitals of the organic semiconductor,

using self assembled monolayers between the contacts,17–19 or doping.20,21

Device geometry also plays a role in the injection barrier. The contract resistance in

bottom contact devices is large compared to top contact devices due to poor charge electrode

surface area and non-optimal morphology growth. Unfortunately, traditional lithographic

techniques are tailored towards bottom-contact manufacturing.19 Recently, however, Caironi

et al. have made top gate bottom contact n-type OFETs with contact resistances in the range

of 10 to 20 kΩ.22

For systems with a small channel size, optimization of contact resistance is crucial. The

overall resistance becomes dominated by the contract resistance for short channels because

the intrinsic resistance is proportional to channel length. Additionally, contact resistance op-

timization is especially needed for n-type devices, where the Fermi energy of the noble metal

electrode is often mismatched with the LUMO energy of the semiconductor. For example,

Cheng et al. have made downscaled, low-voltage, n-channel OFETs based on core-cyanated

perylenediimide. Although they measured a low contact resistance with Au electrodes, Ag

electrodes (which have a lower work function) were needed to counteract severe contact

effects in the short channel devices.23

1.1.5 OPV Morphology

The first OPV, based on a bilayer junction, was described in 1986, by Tang,24 with an effi-

ciency of 1%, and was fabricated from copper phthalocyanine and a perylene tetracarboxylic

derivative. Such devices consisting of separate p-type and n-type layers have been exten-

sively studied, reaching efficiencies of up to 5%.25,26 Initial studies on the photoexcitation
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in a mixture of poly-(p-phenylene vinylene) (PPV) and fullerene C60 by Sariciftci et al.,27

revealed that excitons in organic materials have short lifetimes and strong binding energy,

necessitating a p-n interface to facilitate charge separation.28 A structure suitable for charge

harvesting was proposed to be a bulk heterojunction (BHJ), in which p-type (donor) poly-

mer and n-type (acceptor) fullerene are dispersed in a disordered two-phase structure, on

a length scale comparable to the exciton diffusion length. Blends of regioregular poly(3-

hexyl)thiophene (rr-P3HT) as the donor with fullerene derivatives (such as [6,6]-phenyl-C61-

butyric acid methyl ester (PCBM)) as an electron acceptor became popular due to their

high efficiency.9,17,29–38 The increased performance of P3HT/PCBM solar cells was largely

attributed to their ability to form distinct phase interfaces, forming a bulk heterojunction,

without macroscopic phase separation. The size and structure of a bi-continuous, two-phase

bulk heterojunction is critical to exciton harvesting and charge carrier movement within

OPVs, determining their overall power conversion efficiency.

The performance of OPVs is highly sensitive to the device morphology, which describes

the physical connectivity and sizing of electron donors and electron acceptors within the

active layer. Device morphology not only depends upon the chemical and physical behavior

of the components, but also on the processes used to deposit them. Therefore, the un-

derstanding of how charge transport in OPVs is affected by morphology is of the utmost

importance.

1.1.6 Charge Delocalization

In organic materials, charge transport is typically described by localized carrier hopping

through a manifold of energy states. The charge carriers are localized to molecular sites

through disorder of the morphology and electron-phonon coupling. In contrast, highly delo-

calized carriers move through the energy bands of an inorganic material.

However, delocalization can still play a role in organic materials. Charge delocaliza-

tion is well known from electronic spectroscopy (i.e. π-stacked dimer excitations). It has

been suggested as a mechanism for efficient long range charge separation in organic semi-

conductors.39,40 For example, well ordered, semi-crystalline domains likely lead to charge
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delocalization and improved device performance in organic photovoltaics (OPVs). Devices

with well ordered morphologies have been reported with very large fill factors (76 − 80%)

and power conversion efficiencies of up to 8.7%.41 However, the complete picture is not clear.

While charge transport is enhanced by crystalline domains, exciton transport may be inhib-

ited in well ordered systems.42 This additional level of complexity is due to the dominance

of exciton diffusion occurring by an inter-chain mechanism. In fact, exciton delocalization in

regioregular P3HT is estimated to be as low as 1-2 nm, and therefore may not play a major

role in charge separation.43 Studying the interplay of delocalization with electrostatics may

help elucidate these effects.

The combination of electrostatics and delocalization can play a major role in the charge

separation process. For example, along with hot charge transfer (CT) states, calculations

by Tamura and Burghardt show that charge delocalization can lead to ultra fast (< 100 fs)

charge separation via the lowering of Coulomb barriers.44 While delocalization can be treated

very accurately in quantum calculations,43,45,46 the effect is generally ignored in meso-scale

simulations of charge transport. Here, highly accurate electrostatics are achieved by largely

ignoring the effects of delocalization and treating carriers as point charges.

1.1.7 Other Charge Transport Models

Other models have been used to describe charge dynamics in organic semiconducting systems,

usually based upon the gaussian disorder model (GDM) of Bässler, which assumes charge

hopping through transport states that have a Gaussian distribution for energy.47 When

incorporating the spatial correlation of sites,15 or the presence of traps,48–50 these models

give good agreement with experiment. Results of similar accuracy to the GDM can also be

obtained from continuum models, such as drift-diffusion equations.51 Our model differs from

the GDM in that site energies (and thus the density of states) are not assumed Gaussian,

and instead are explicitly assigned, as will be explained later. The model aims to compare

theory and experiment while deriving needed values from first principle calculations.45

The use of explicit electrostatics is critical in the model. Explicit Coulomb interactions

have been avoided by others due to their long range nature, making them computationally
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demanding in systems of realistic sizes, or requiring special treatment when using periodic

boundary conditions.52 Some authors have included explicit Coulomb calculations into their

models, but the simulation methods are unlike those used in this work. For example, when

solving diffusion and continuity equations, Poisson’s equation has been used to handle carrier

interactions.53 Sometimes, an approximate approach, such as a mean field or homogeneous

medium, is taken.52 Event-based Monte Carlo simulations by Watkins et al. have included

Coulomb calculations, but used a small cutoff (9 nm), far below the expected interaction

distance (∼15-30 nm) in low dielectric materials, even when using periodic boundary con-

ditions.54 More recent event-based Monte Carlo simulations, however, by Lyons et al. have

included explicit Coulomb interactions.55 Additionally, correlations between carriers, repre-

senting interactions, have been added to Gaussian Disorder Models,56 but obscure the detail

of underlying physical mechanisms.

1.2 PROJECT DESCRIPTION

In this section we give a brief summary of all the work performed and discussed in this

thesis. The work has focused on development of a Monte Carlo simulation framework for

charge transport, and application of that framework to OFETs and OPVs. Though sim-

ulation results were compared to and complimented by various experimental projects, all

experimental work was not performed by the author of this thesis. Finally, we note that the

chapters adaptations of previously published works.57–62

1.2.1 OFET Simulation

OFETs simulation involved studying charge injection and the presence of traps, barriers, and

defects in OFETs. For charge injection, two main methods were probed, named injection

and seeding. Seeding involves randomly placing charges during initiation, while injection

involves injecting carriers from the source electrode. It was found that the method of charge

injection does not affect the equilibrium current. However, both methods produce an oscil-
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lating current. The oscillating current, as well as carrier lifetime and path length, occurs

at frequencies that vary non-linearly with device length. These simulations were performed

at various device geometries. Additionally, the incorporation of multiple layers and a gate

potential into the simulation model for OFETs.

The effect of trap concentration on current in OFETs was examined. An asymmetric

curve was found, which has been verified by experimental studies. The falloff and recovery of

current with trap percentage becomes more extreme with increasing trap potential. Current

voltage curves for OFETs with traps, barriers, and defects were calculated. It was found

that defects and barriers of a high enough energy will lead to negative differential resistance.

1.2.2 OPV Simulation

To simulate OPVs, the simulation framework had to be reworked and extended, as discussed

below. OPVs simulations were first performed on monolayer systems. A series of morpholo-

gies were studied. Isotropic two phase morphologies of varying domain size were simulated

with and without the presence of scattered acceptor sites (pepper) in the donor phase. Ad-

ditionally, ideal band morphologies of increasing domain size, and single phase systems were

studied. It was found that device performance increases with increasing domain size in

isotropic systems, but decreases in band systems. The presence of pepper in the donor phase

was found to decrease the efficiency of isotropic systems. Similar to the monolayer systems,

isotropic two-phase morphologies were studied with increasing domain size. Ideal systems

based on the minimally curved surfaces called gyroid, p-surface, and d-surface, as well as

3D band morphologies were also simulated. Lastly, the effects of charge delocalization of

device performance was checked. For all morphologies, increased charge delocalization leads

to efficient separation of charge carriers.

1.2.3 Coding

A simulation framework was developed to perform all simulations. Though an extension

of previous work from another student and post doc, the code has been altered in signifi-

cant ways to accomplish the work in this thesis. Major changes included extension of the
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systems from monolayers (2D) to multilayers (3D), the inclusion of a gate potential for tran-

sistors, the output of carrier lifetime and path length, the simulation of holes and electrons

simultaneously, the implementation of checkpoint files, the extension of the source and drain

systems to include multiple faces of the device, the incorporation of recombination and exci-

ton injection, and the incorporation of charge delocalization into the Coulomb calculations.

Additionally, major refactoring of the code to be legible and commented. To aid in the in-

terpretation of simulations, a real time visualization of carrier movements was implemented

using OpenGL. Finally, CPU algorithms for Coulomb interactions were made more efficient,

and a GPU implementation was made.

1.3 OVERVIEW

First, the detailed description of the Monte Carlo model will be given, with a description

of approximations and algorithms. The novel approach to Coulomb interaction calculations

via GPUs will be described in this section. Next, the comparison of injection methods

for OFETs is presented. In the following chapter, there is a discussion of the effects of

traps, barriers, and defects in OFETs. In the final chapters, the extension of the Monte

Carlo model to OPVs is presented. The effects of domain size, morphology idealization,

and charge delocalization are discussed in the context of monolayer and multilayer OPVs.

The appendix includes data, such as IV curves, to supplement the main chapters. Also

in the appendix, previous work from unrelated projects in a previous group is included for

completeness. This work was used for the comprehensive examination portion of the graduate

program before the group dissolved. The project was implementation of novel Monte Carlo

move for atomistic simulations of polymers in explicit solvent. The move, called solvent

shift monte carlo (SSMC) aims to increase the sampling rate of inner torsional angles of

the polymer. Additionally, molecular dynamics (MD) simulations of the polymer poly(n-

isopropylacrylamide) (PNIPAAM) were performed. In these simulations, a temperature

dependent collapse of the polymer was observed.
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2.0 THEORETICAL MODEL OF CHARGE TRANSPORT

2.1 INTRODUCTION

A framework was developed to study charge transport in OFETs and OPVs using Monte

Carlo simulations. Guided by first principles and experiment, the model is based on charge

hopping.16,45,60 The model attempts to connect molecular details, such as energy levels, to

macroscopic device behaviors, such as current-voltage curves. Due to the complexity of the

problem, coarse graining is needed.

In this chapter, a detailed description of the simulation model for transistors and solar

cells is presented. The model is a Monte Carlo model. This means it consists of a pa-

rameterized energy function, a set of rules for proposing moves, and a way to calculate the

probability of performing moves. Basics moves include hopping between sites, injection from

electrodes, injection via illumination, recombination between holes/electrons, and extraction

of charges at the electrodes. The energy function consists of the interaction with the elec-

trodes (potential), the interaction between charges (Coulomb potential), and the assignment

of orbital energies (traps, barriers, and defects). All of these aspects will be discussed. In

addition, special focus is given to the calculation of the Coulomb potential between charges

on graphics processing units (GPUs).

2.2 SITES

The model consists of a rectangular lattice of sites in between two electrodes. The rectan-

gular lattice of sites can be a single layer or multiple layers. Each lattice site represents a
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single, small, organic semiconducting molecule on the order of 1 nm3. The size of the site

corresponds to the size of a phenyl-C61-butyric acid methyl ester (PCBM) or phthalocyanine

(PC) molecule (see Figure 1.1). OFET simulations use a single set of sites (grid), while OPV

simulations use two sets of sites (grids).

An energy value is associated with each site. In OPVs, one grid represents the HOMO,

while the other grid represents the LUMO. In OFETs, the grid represents either the HOMO

or the LUMO energy, depending upon the majority carrier. The HOMO sites are used for

hole dynamics, while the LUMO sites are used for electron dynamics.

When an excess electron occupies a site, this electron is sitting in the LUMO, and the

site is an anion. Likewise, when an excess hole occupies a site, there is an electron missing

from the HOMO, and the site is a cation. Whenever a hole and electron occupy the same

site simultaneously, the site is considered to be an exciton. For an exciton, the molecule

is in an excited state. There is both an electron missing from the HOMO and an excess

electron sitting in the LUMO. This may arise, for example, when the molecule absorbs light,

promoting an electron from the HOMO to the LUMO. Additionally, an exciton may form

when an electron and hole hop to the same site. The model does not allow for more than one

electron or hole to occupy a site at one time. Specifically, only the following situations are

possible: empty state, anionic state, cationic state, and first excitonic state. Currently, there

is no way for us to consider the spin of carriers, so there is no way to distinguish between

triplet or singlet excitons.

Extensive use is made of a unique mapping between sites and their x, y, z positions. The

position of an agent in the grid can be thought of as a 3-tuple of integers (xi, yi, zi). This

3-tuple can be hashed into a single number called the site-id, si. This mapping reduces the

amount of information that needs to be passed to the GPU during Coulomb calculation.

Also, the mapping allows for easy look-up of pre-computed values of distance on the central

processing unit (CPU). The following equations hold for site-ids, where all quantities are
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integers, and integer division applies. The dimensions of the grid are Lx, Ly, and Lz.

0 ≤xi <Lx xi =si%Lx (2.1)

0 ≤yi <Ly yi =si/Lx − (si/(LxLy))Ly (2.2)

0 ≤zi <Lz zi =si/(LxLy) (2.3)

0 ≤si <LxLyLz si =Lx(yi + ziLy) + xi (2.4)

2.3 SIMULATION

A typical simulation can be described as follows. Carriers arrive on the lattice by being

injected. For OFETs, carriers can be randomly seeded at initiation. Random seeding repre-

sents the gate electrode injecting charges at the semiconductor-dielectric interface. Carriers

can also be injected from the source electrode at a constant probability, or a probability that

depends upon energetics such as the image potential, the Coulomb energy, and the injection

barrier. The choice of a constant probability for the injection and removal of charge carriers

represents an assumption that the energetic barriers at the electrode-semiconductor inter-

faces are constant and small. For OPVs, carriers are injected as excitons (electron and hole

on the same molecule) onto a randomly selected site. Carrier injection by the electrodes has

not been simulated in OPVs.

This means that the model does not simulate the dark current. We have assumed an ideal

situation, where hole conducting and electron conducting sites absorb light at the same rate -

i.e. excitons have an equal probability to form anywhere in the entire system. In reality, this

situation is probably not true. Excitons are more likely to form away from the electrodes,

and one of the materials is more likely to form excitons than the other. Additionally, when

considering three dimensional systems, absorption rate should decrease linearly deeper into

the material.
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Once on the lattice, the movement of carriers is assumed to occur via thermally activated

hopping, based on a bimolecular charge transfer rate that can be described using Marcus-

Hush theory.1 Hopping occurs because electronic states are localized on molecular sites in

organic semiconductors, a result of the weak electronic interactions and disorder present

in the system.63,64 The criterion is described in section 2.4. As carriers reach the drain

electrodes, the number of carriers leaving the system is monitored. This information is used

to calculate a current.

2.4 METROPOLIS CRITERION

The Metropolis criterion for the probability of accepting a Monte Carlo move, with a coupling

constant, A, takes the following form:

P 1→2
accept = min



A,Ae
−∆E12

kT



 (2.5)

In traditional Metropolis criterion, A takes the value of 1. We have used a value of

1/3. What this means is that, regardless of the energy change being positive or negative,

moves are always rejected at least 2/3 of the time. When the energy change is positive, the

moves are rejected with probability greater than 2/3 Essentially, the coupling constant is

increasing the likelihood that charge carriers remain still – because the molecular sites are

not well “coupled” to one another.

Detailed balance is still maintained when including the coupling constant. Consider, for

example, the case when the energy change when going from state 1 → 2 is positive. In this

case the acceptance probabilities are:

P 1→2
accept = Ae

−∆E12

kT P 2→1
accept = A (2.6)

When simulating in the canonical ensemble, the probability to be in state 1 or state 2 is

given by the Boltzmann distribution:

P1 ∝ e

−E1

kT P2 ∝ e

−E2

kT (2.7)
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When the probability of proposing a move from state 1 → 2 is equal to the probability

of proposing a move from state 2 → 1, the detailed balance condition is still satisfied:

P 1→2
acceptP1 = P 2→1

acceptP2 →



Ae

−∆E12

kT







e

−E1

kT



 = A



e

−E2

kT



 (2.8)

The coupling constant is a parameter of the model whose value changes the magnitude of

currents calculated. Currents in the range of nA are calculated when a value of 1/3 is used.

The physical motivation for the coupling constant comes from the Miller-Abrahms theory of

phonon-assisted electron hopping, or the Marcus-Hush charge transfer theory, which is more

reliable in organic materials. For example, the Marcus-Hush charge transfer rate is given by:

ket =
2π〈Hab〉2

h̄

1√
4πλkbT

e

− (λ+∆G0)
2

4λkbT (2.9)

And so, the coupling constant encodes the electronic overlap between adjacent molecules

Hab, as well as the reorganization energy λ. These quantities are material specific and can

be calculated from quantum electronic structure calculations. For this work, we assumed an

ideal situation where the donor and acceptor phases have the same coupling constant, and

that two-site hops have an exponentially smaller coupling constant, reflecting smaller orbital

overlap and a higher reorganization barrier.

2.5 TIMESCALE

In the strictest sense, Monte Carlo methods should not provide information about dynamics.

This is routed in the fact that the potential V , through the Boltzmann factor, e−β∆V , gives

information about the probability distribution of particles in space, not time. On the other

hand, the kinetic energy, T , gives information about the distribution of particles in time (i.e.

their velocity distribution). In the derivation of the Monte Carlo acceptance probability in

the canonical ensemble, the configurational partition function is used, which has had the

kinetic information integrated away.
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However, with the following argument, we can recover dynamical information from a

Monte Carlo simulation. If Monte Carlo moves are kept physical or “small”, a series of

Monte Carlo configurations can be interpreted as a trajectory. That is, a timescale (∼1 ps)

can be associate with a Monte Carlo move that is “small” enough to be a physical transition

between states of the system. This has the practical implication of moves being restricted

to single-site to two-site hops. At no point are moves which transport carriers over large

distances allowed to occur.

This assumption is not hard to make. Consider a full MD trajectory. Such a trajectory,

has a starting state and an ending state. Multiple trajectories could connect these two states,

each with their own well defined timescale. An average over these trajectories can be used

to compute an average timescale that can be associated with the transition between the

two states. The MD trajectory is itself a valid Monte Carlo move. As the MD trajectory

becomes shorter, and the states more physically connected or correlated, the spread in the

timescale becomes smaller. In this way, one could view a MD trajectory as a series of very

small Monte Carlo moves. We use this argument to interpret the configurations produced

by the Monte Carlo as a trajectory.

2.6 ENERGY

The energy change, ∆E = q∆V , used in the Metropolis criterion has multiple contributions,

and is represented in terms of potentials, as shown in Equation 2.10.

Vsim = Vfield + VCoulomb + Vtrap (2.10)

Vfield represents a electric field across the device and has intrinsic and applied compo-

nents. We assume that the field varies linearly between the left and right electrodes.

Vfield(xj, yj, zj) =
VR − VL

L
xj (2.11)
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VL is the potential of the left electrode, VR is the potential of the right electrode, L is

the length between the electrodes, and xj is the position of the charge carrier j. The field is

assumed not to vary in the y direction (width of the device).

VCoulomb(xj, yj, zj) =
N
∑

|rij |>0

qi
4πǫ0ǫ|rij|

(2.12)

VCoulomb represents Coulomb forces arising from the interaction of all N carriers. The

Coulomb interaction is subjected to a cutoff of 50 nm and damped by a dielectric constant

ǫ of 3.5, which is typical of organic semiconductors. Special care is needed for the Coulomb

interaction when a hole and electron occupy the same molecule. VCoulomb evaluates to zero in

this case, implying that there is no energetic force to form an exciton in the model. Therefore

we introduce Vexciton to represent the exciton binding energy. Vexciton simply replaces the case

in the Coulomb sum where |rij| = 0 and i 6= j. A value of 0.5 eV is used for electrons, and

a value of −0.5 eV is used for holes. This is just enough energy to overcome the Coulomb

interaction between a hole and electron separated by 1 nm. The net effect of this process

is an exciton binding energy of 0.5 eV − 0.411 eV = 0.089 eV. This means the dissociation

probability is P = 1.0% in the absence of all other potentials. Interfaces, the electrode

potential, and other carriers make the dissociation increase.

When moving to delocalized charges, the exciton binding energy does not remain constant

with the delocalization parameter, σ (see chapter 6). To overcome this, the interaction of

a hole and an electron on the same site was set to VSI + VExciton, where VSI is the self

interaction. The self interaction is the interaction energy between two charges separated

by 1 nm. This formalism forces the exciton binding energy to be Vexciton regardless of the

value of σ. Vexciton was set 0.089 eV to keep comparison with point charges consistent.

The probability to dissociate excitons into free carriers is a parameter that deserves further

investigation.

Vtrap represents the shift in HOMO or LUMO energy when considering sites as different

molecules, and encodes the morphology into the energy landscape. Vtrap depends on position

in space and if one is considering the HOMO or LUMO. For example, when a site is in the

hole conducting phase, Vtrap is some ǫ < 0 for the HOMO. This encourages holes to travel

in this phase.
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Special meaning is assigned to the electrode potentials in solar cell simulations. To

calculate an IV curve for a solar cell, the voltage applied across the cell in the simulation

was varied over some range, for example, −2.0 and 2.0V. It was then assumed that the

voltage in the simulation (Vsim) was really made up of an intrinsic voltage (Vint) and an

extrinsic voltage (Vapplied), as shown in equation 2.13.

Vsim = Vint + Vapplied (2.13)

Vint is the result of the difference between the work functions of the two electrodes. We

consistently used a value of Vint = 1.5V for each system. To get an IV curve, we plotted the

calculated current vs. Vapplied. The calculated IV curves are s-shaped, and exhibit saturation

regions when charge transport is very efficient.

2.7 CONCENTRATION

While we impose a maximum carrier concentration as a parameter (mainly for algorithmic

reasons, the maximum is almost never reached, unless a morphology has very poor con-

ductivity pathways. Instead, the actual carrier concentration reached (at equilibrium) is

dictated by various other factors, such as the injection rate of excitons into the system or

the rate of removal of carriers (at the electrodes or through recombination). Additionally,

the spatial distribution of carriers at equilibrium is not uniform, but rather anisotropic. On

the other the hand, the max concentration in an OFET is dictated by the gate electrode. In

OFET simulation, an equilibrium concentration is reached as the source injects charges at a

constant rate.

2.8 SOURCES AND DRAINS

To calculate a current, a dynamical interpretation of the Monte Carlo moves was made.

Strictly speaking, Monte Carlo samples the configuration space only (see section 2.5). In
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other words, it doesn’t make sense to associate a trajectory with the configuration space,

especially when the sampled configurations are disconnected from each other physically.

For example, you can’t arrange the generated configurations in a movie where particles

continuously move from state to state. However, we feel a dynamical interpretation is valid

when the proposed moves are physical and can be associated with a timescale. By physical

moves, we mean that the Monte Carlo moves are between adjacent sites, or next nearest

neighbors. An unphysical move would be moving carriers over much larger distances. By

associated timescale, we mean the calculable ∼1 ps electron/hole transfer rate when carriers

hop between molecules on the order of ∼13 nm3 in size.

Calculating current in an OFET simulation is straight forward. There is only one drain,

on the right side of the system. We define positive current to be electrons flowing to the

right. Therefore the flux of carriers through the right face is used to calculate a current.

The current is simply the number of charges that flow through the drain divided by the total

time.

An equilibration time is accounted for. To account for equilibration, one must subtract

out the statistics from the equilibration period. For example, consider a system where the

drain has a success rate of 100 at 100 000 steps into the simulation and a success rate of 500

at 500 000 steps into the simulation, the end of the simulation. To account for 100 000 steps

of equilibration, the final success rate will be 500− 100 = 400.

The situation is slightly more complicated when multiple carrier types and drains are

present. To extract a current from the simulation, the following method was used. We kept

track of the carrier type and cell face (electrode) a carrier exited. There are four possibilities:

holes leave through the right electrode (NHR), holes leave through the left electrode (NHL),

electrons leave through the right electrode (NER), electrons leave through the left electrode

(NEL). The convention remains that electrons leaving the right electrode as positive current.

Therefore, the current (I) through the device is calculated as:

I = (NHL +NER −NHR −NEL)
e

τ
(2.14)

τ is the simulation time, e is the elementary charge, and the differentN are carrier counts.

Additionally, the current density (J), is calculated as I/A, where A is the cell surface area.
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2.9 EXCITON INJECTION

Exciton injection, was implemented in a probabilistic fashion using an injection rate. The

injection rate quantifies the probability that a molecule (simulation site) will absorb a photon.

The energy from the photon excites an electron from the HOMO orbital into the LUMO

orbital. A rough estimate for an injection rate was calculated by examining the AM1.5

solar spectrum. By integrating the irradiance (Wm−2 nm−1) over wavelength to obtain the

incident power (Wm−2), using the average energy of an photon (around 700 nm, 1.77 eV),

and the area of a solar cell device (2562 nm2), a rate of 10−3 ps−1 was used. Not every

single photon incident is absorbed, so this is definitely an over estimation. However, we did

observe that current in a single-phase morphology scales linearly with injection rate. Since

the injection rate depends upon the area of the solar cell, the rate was scaled linearly with

surface area for systems larger or smaller than 2562 nm2.

We have not tested how the characteristic parameters like fill factor change with exciton

injection rate. However, we have tested individual current-voltage points, and found that

the current calculated at a given voltage point increases linearly. Also, if the injection rate is

abnormally high, a large amount of carriers in the system can lead to a situation where charge

carriers form Coulombically-bound clusters. Basically the system can freeze. Although we

believe that this situation is unrealistic, we note that the formation of these clusters can be

mitigated by increasing the recombination rate. Finally, we note that in the two dimensional

case, the photon flux was constant. In a three dimensional system, an enhanced photon flux

could increase layers which receive low light.

2.10 EXCITON RECOMBINATION

We implemented recombination by first identifying all excitons in the simulation and remov-

ing some with a small probability called the recombination rate. The recombination rate

quantifies the probability that an exciton (electron-hole pair on one site) will recombine. In

this process, light or heat is emitted as an excess electron in the LUMO transitions into
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the vacant orbital represented by the hole (lack of an electron) in the HOMO orbital. Note

that we are not talking about the event where a hole and electron on separate molecules

combine to form an exciton, but rather that a molecule with a hole and electron already

present decays into the neutral molecule. The process of recombination was implemented

by identifying excitons at the end of each Monte Carlo step, and removing excitons if some

random number between 0 and 1 was less than the recombination rate. Simulations were ran

with a recombination rate of 10−5 ps−1. This is equivalent to saying that one would expect

a recombination event at least once every ∼105 ps, if there is at least one exciton present in

the system.

2.11 OPENCL

In this section, the use of the open compute language (OpenCL) for Coulomb calculations is

discussed. OpenCL is a programming framework for heterogeneous computing developed by

the Khronos Group. With OpenCL, one can harness the parallel processing power of both

the GPU and the CPU in a single computer program. OpenCL is an open source, platform

independent alternative to proprietary languages such as Nvidia’s compute unified device

architecture (CUDA). The speedup using a GPU with OpenCL for Coulomb calculations is

shown in Figure 2.1.

The calculation of the Coulomb interactions between a set of point charges must be per-

formed repeatedly and accurately during the simulation. The problem can be stated as fol-

lows. Given a set of charges, Q = {qi | 0 ≤ i < N} and their positions Ri = {ri | 0 ≤ i < N}
find the potentials Vj = {vj | 0 ≤ j < M} at the points Rj = {rj | 0 ≤ j < M} using Equa-

tion 2.15, where ǫ0 is the permittivity of free space and ǫ is the dielectric constant.

Vj =
N
∑

i=0

qi
4πǫǫ0|rj − ri|

(2.15)

A given component of the sum in Equation 2.15 is called the kernel.
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Unfortunately, brute force calculation of Equation 2.15 would scale as M × N , where

N is the number of charges and M is the number of locations to calculate the potential at.

This is due to a double loop over M and N , as shown below.

for j in range(M): # loop over M potential points

vj = 0.0 # zero potential at point j

for i in range(N): # loop over N charges

rij = (xj - xi) * (xj - xi) + # calculate r2ij
(yj - yi) * (yj - yi) +

(zj - zi) * (zj - zi)

if rij > 0: # make sure potential is finite

rij = sqrt(rij) # square root (slow)

vj += qi / rij # division (slow)

vj = vj / (4 * pi * e * e0) # fix units

Typically, M will be 2N , encompassing the current and trial positions of charge carriers at a

given simulation step. Therefore, the simulation will scale as kN2, where k is some prefactor.

If the number of charges doubles, the simulation will take four times as long. Additionally,

the presence of a square root, division, and “if” statement inside the inner loop slow the

calculation down greatly. Sometimes, the calculation of the potential is desired at every

single lattice point in the grid. Such a calculation is extremely slow due to the large number

of lattice points. For example, consider a system of 1000 charges. A normal Coulomb

calculation, at the current and trial locations would involve 2 × 1000 × 1000 = 2× 106

evaluations of the kernel in Equation 2.15. On the other hand, if the simulation occurs on

a grid of 256× 256× 32 = 2 097 152 sites, the number of kernel evaluations to calculate the

potential everywhere is 2 097 152 000, nearly 1048 times as many calculations.

There are many tricks to speeding up Coulomb calculations. While some are algorithmic

in nature, others make physical assumptions that may sacrifice accuracy. One of the most

basic methods is the use of a neighbor list. A neighbor list is a record of particle pairs that

fall within a certain cutoff distance of one another. In this case, only the pairs need be

considered in the summation. The neighbor list assumes that the state of the system does

not change significantly between simulations steps. This makes the reconstruction of the

neighbor list, an N2 process in its own right, less frequent than the Coulomb calculation.

The neighbor list also assumes that the Coulomb interactions are negligible outside a certain

cutoff distance. This assumption tends to be a poor one for potentials that are long ranged.
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The Coulomb potential is of the form rn, where n = −1. Potentials of this form are long

ranged if the integral over a sphere, 4π
∫∞
0

r2rn, diverges. Only potentials with n < −2 will

converge. Neighbor lists are bad for Monte Carlo simulations, where the state of the system

can change rapidly with “non-physical“ transitions.

In the lattice simulation, exact calculation of the Coulomb interactions are desired. To

combat the intense cost, parallel computation can be used. First off, the calculation of the

sum in Equation 2.15 can be performed for different j independently by different threads.

Threads need only have read access to the charge locations and write access to a memory

location of a specific j. This form of parallel computation is straightforward and easily

achieved with the open multi-processing (OpenMP) library. The CPU implementation of

the Coulomb loop uses this form. The speedup depends upon the number of cores the CPU

can dedicate, anywhere from 2 to 48.

for j in range(M): # loop over M potential points

spawnThread()

...

def thead(j):

for i in range(N): # CPU threads perform inner loop

...

The speedup using the parallel CPU implementation is shown in Figure 2.2. Although the

speedup is near linear in the number of cores, the CPU algorithm is quadratic in the number

of charges. A much faster algorithm can be accomplished with GPUs.

The heart of the GPU Coulomb calculation is performed by the kernel. The kernel can

be viewed as the instructions followed by a single worker (thread). To understand the kernel,

a little background on the architecture of a GPU is needed. As shown in Figure 2.3, a GPU

has various components. The GPU is divided into workers (threads). These workers have

their own private memory, that is small and fast to access, but restricted to the worker. The

workers are then grouped together into work groups (blocks). A work group has its own local

memory. This memory is also very fast to access. However, although all workers in the work

group share the memory, any workers outside of the work group cannot access the memory.

There are many work groups, all with their own workers and local memory. Every work on

the GPU has access to the global memory of the GPU. However, accessing this memory is

costly. If all the workers try to access the same region of the global memory at the same
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Figure 2.3: OpenCL host and device memory layout.

time, the algorithm will become very slow.

With the layout in mind, we can now describe the kernel. The kernel takes eight ar-

guments. Three are arrays, prefixed by the compiler directive __global, which means the

array is located in the global memory of the GPU. Although all workers can read and write

to the global memory, repeated access is extremely inefficient. The signature of the kernel

and description of the arguments is shown below.

__kernel void coulomb(

__global double *o, // array for output, size = number of grid sites

__global int *s, // site-ids

__global int *q, // charges

int n, // number of electrons, holes, and defects

int c2, // square of cutoff

int xsize, // size of grid in x-direction (length)

int ysize, // size of grid in y-direction (width)

double prefactor // electrostatic prefactor

) {

// note: site-ids (s) and charges (q) contain:

// electron ids/charges (current) size=E

27



// hole ids/charges (current) size=H

// defect ids/charges size=D

// electron ids/charges (future) size=E

// hole ids/charges (future) size=H

The kernel works by assigning a charge (in the present or the future) to each work group.

The work group id, get_group_id(0), is used to index the site ids and charge arrays. This

variable is the same for every worker in the work group. The dimensions of the grid are used

to convert the site id into the position of the charge.

// each worker of work group loads the same charge and site,

// using the "work group id"

int qi = q[get_group_id(0)];

int si = w[get_group_id(0)];

// extract position from site using the grid dimensions

int zi = (si) / (xsize * ysize);

int yi = (si) / (xsize) - (zi * ysize);

int xi = (si) % (xsize);

The total number of work groups, W , needed is shown in Equation 2.16, where E is the

number of electrons, H is the number of holes, and D is the number of defects. The array

“s” of the kernel must at least be this size. The factors of 2 represent that calculations must

be performed using the current and future sites of carriers. Although useless information,

the kernel also calculates the potential felt at defect sites to simplify the algorithm. If the

defects are uncharged, they are excluded from the calculation.

W = 2E + 2H +D (2.16)

The real work begins as workers in the work group load the site ids and charges of

interacting charges into local memory. The workers must be made aware of the local memory,

which must be large enough to store all information (charges, sites, potentials) for a chunk.

Each worker in a work group keeps a running sum of the calculations it has performed. This

is what the local memory vlocal is for. The work must set the initial value to 0 using its

unique local id, get_local_id(0). After this, the workers wait for the other workers to

catch up.
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// allocate local memory for this work group

__local int slocal[1024]; // sites : large enough...

__local int qlocal[1024]; // charge : optimal size = 256

__local double vlocal[1024]; // potentials : 256 < 1024

// each worker sets local potential to zero

vlocal[get_local_id(0)] = 0;

// wait for the other workers to get to this point

barrier(CLK_LOCAL_MEM_FENCE);

Each worker in the work group is responsible for loading a different portion from the

global memory. Due to the limited size of the work group, this process is done in chunks

until all interactions have been accounted for. The optimum number of workers in the work

group is 256, as shown in Figure 2.4.

The number of chunks needed is the total number of charges, n divided by the size of

the work group, get_local_size(0). It is unlikely that these numbers will divide evenly,

so an extra chuck is added.
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// calculate how many pieces we can divide the total list of

// charges/positions into

int num_loads = n / (get_local_size(0)) + 1;

The main loop is over the chunks. For each chunk, a worker calculates its unique load id.

This load id indexes into the global site and charge arrays. The worker then uses its local

work group id, get_local_id(0), to save the information from global memory to the local

memory. The workers then wait for the other workers to finish loading the chunk information

into the local memory. A special site id of -1 is used to indicate a worker that should not

calculate an interaction during this chunk. This happens when the load id is larger than the

number of charges. It can happen when the work group size and number of charges are not

multiples of one another.

// start loading chunks of charges to calculate on

for (int load_number = 0; load_number < num_loads; load_number++)

{

// each worker loads a different charge

int load_id = get_local_size(0) * load_number + get_local_id(0);

if (load_id < n) //number of charges

{

slocal[get_local_id(0)] = s[load_id];

qlocal[get_local_id(0)] = q[load_id];

}

else

{

slocal[get_local_id(0)] = -1;

qlocal[get_local_id(0)] = -1;

}

barrier(CLK_LOCAL_MEM_FENCE);

Once all information is loaded into local memory, each worker calculates a contribution

to the Coulomb interaction. The loaded site id is mapped to the x, y, and z positions of

the interacting charge. If the distance is greater than zero and less than the cutoff, the

contribution is added to the local potential array. Workers must wait for other workers in

the work group to finish. This is because the next chunk can not be loaded while other

workers are calculating Coulomb interactions.

// each worker performs a different q/r calculation

int sj = slocal[get_local_id(0)];

if (sj >= 0)

{
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int zj = (sj) / (xsize * ysize);

int yj = (sj) / (xsize) - (zj * ysize);

int xj = (sj) % (xsize);

double r = (xi - xj) * (xi - xj) +

(yi - yj) * (yi - yj) +

(zi - zj) * (zi - zj);

// compute the interaction

if (r > 0 && r < c2)

{

vlocal[get_local_id(0)] += qlocal[get_local_id(0)] * rsqrt(r);

}

}

barrier(CLK_LOCAL_MEM_FENCE);

}

Once the loop over chunks has been finished, the potentials in the local potential array,

vlocal must be summed. There is no easy way to do this sum in parallel. Therefore, a single

worker (worker 0 of the work group) is responsible for summing the potentials. Finally, the

result is saved to the global output array.

barrier(CLK_LOCAL_MEM_FENCE);

if (get_local_id(0) == 0)

{

double v = 0;

for (int l = 0; l < get_local_size(0); l++)

{

v = v + vlocal[l];

}

//o[si] = v;

o[get_group_id(0)] = prefactor * v;

}

}

The full kernel is given below, without interruption.

__kernel void coulomb(

__global double *o, // array for output, size = number of grid sites

__global int *s, // site-ids

__global int *q, // charges

int n, // number of electrons, holes, and defects

int c2, // square of cutoff

int xsize, // size of grid in x-direction (length)

int ysize, // size of grid in y-direction (width)

double prefactor // electrostatic prefactor

) {
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int qi = q[get_group_id(0)];

int si = w[get_group_id(0)];

int zi = (si) / (xsize * ysize);

int yi = (si) / (xsize) - (zi * ysize);

int xi = (si) % (xsize);

__local int slocal[1024];

__local int qlocal[1024];

__local double vlocal[1024];

vlocal[get_local_id(0)] = 0;

barrier(CLK_LOCAL_MEM_FENCE);

int num_loads = n / (get_local_size(0)) + 1;

for (int load_number = 0; load_number < num_loads; load_number++)

{

int load_id = get_local_size(0) * load_number + get_local_id(0);

if (load_id < n)

{

slocal[get_local_id(0)] = s[load_id];

qlocal[get_local_id(0)] = q[load_id];

}

else

{

slocal[get_local_id(0)] = -1;

qlocal[get_local_id(0)] = -1;

}

barrier(CLK_LOCAL_MEM_FENCE);

int sj = slocal[get_local_id(0)];

if (sj >= 0)

{

int zj = (sj) / (xsize * ysize);

int yj = (sj) / (xsize) - (zj * ysize);

int xj = (sj) % (xsize);

double r = (xi - xj) * (xi - xj) +

(yi - yj) * (yi - yj) +

(zi - zj) * (zi - zj);

if (r > 0 && r < c2)

{

vlocal[get_local_id(0)] += qlocal[get_local_id(0)] * rsqrt(r);

}

}
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barrier(CLK_LOCAL_MEM_FENCE);

}

barrier(CLK_LOCAL_MEM_FENCE);

if (get_local_id(0) == 0)

{

double v = 0;

for (int l = 0; l < get_local_size(0); l++)

{

v = v + vlocal[l];

}

//o[si] = v;

o[get_group_id(0)] = prefactor * v;

}

}

The Coulomb kernel described above is for calculating the potential at the charge posi-

tions, in the future and past, due to other charges. This is all that is needed for the Monte

Carlo simulation. However, a related problem, useful for analysis and comparison to experi-

ments, such as kelvin probe atomic force microscopy, is calculating the Coulomb potential at

every point in the grid. The first problem is slow on the CPU. The second is second problem

is painfully slow, if not impractical. However, a GPU implementation is very practical and

fast.

Below is the GPU implementation for calculating the Coulomb potential everywhere in

the grid. The algorithm is very similar. However, it uses the multi-dimensional nature

of work groups to simplify the indexing. The underlying algorithm is very similar to the

previous one. With a 3D kernel, the simulation grid is mapped directly onto the GPU

architecture. This time, each work group represents a single site in the simulation. There

are as many work groups as there are sites. Contrast this to the above kernel, where each

work group represented a location to calculate an interaction at. This puts a limit on the

size of the grid that the GPU can handle. There is a maximum number of work items that

a kernel can handle, specific to the GPU.

__kernel void coulomb(

__global double *o, // array for output, size = number of grid sites

__global int *s, // site-ids

__global int *q, // charges

int n, // number of electrons, holes, and defects

int c2, // square of cutoff

double prefactor // electrostatic prefactor

33



) {

// map 3D local work item indices to 1D index j

int j = get_local_id(0) +

get_local_id(1) * get_local_size(0) +

get_local_id(2) * get_local_size(0) * get_local_size(1);

// map 3D work group indices to 1D index k

int k = get_group_id(0) +

get_group_id(1) * get_num_groups(0) +

get_group_id(2) * get_num_groups(0) * get_num_groups(1);

// let ’this work item’ know about the local memory for the

// work group it belongs to

// ... to be accessed using the index ’j’

__local int slocal[64];

__local int qlocal[64];

__local double vlocal[64];

// have ’this work item’ set its own initial potential to zero

vlocal[j] = 0;

barrier(CLK_LOCAL_MEM_FENCE);

// loop over global memory in chunks of size local_volume = (Sx * Sy * Sz)

// There are n charges, so you need to do at least n / local_volume loads,

// maybe 1 more if the numbers don’t divide nice.

int local_volume = get_local_size(0) * get_local_size(1) * get_local_size(2);

int num_loads = n / (local_volume) + 1;

for (int load_number = 0; load_number < num_loads; load_number++)

{

// ’this work item’ is responsible for loading information for a

// single charge from the arrays s and q

int load_id = local_volume * load_number + j;

if (load_id < n) //number of charges

{

slocal[j] = s[load_id];

qlocal[j] = q[load_id];

}

else

{

// don’t load from s and q if our load_id was greater than the

// number of charges in s and q - it can happened when

// the numbers don’t divide nicely.

slocal[j] = -1;

qlocal[j] = -1;

}

barrier(CLK_LOCAL_MEM_FENCE);
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// ’this work item now calculates a q / r for the local id it

// loaded ... only if it loaded one (s >= 0)

int s = slocal[j];

if (s >= 0)

{

// calculate the x,y,z for the charge ’this work item’ loaded

// from the 1D index s

int z = (s) / (get_num_groups(0) * get_num_groups(1));

int y = (s) / (get_num_groups(0)) - (z * get_num_groups(1));

int x = (s) % (get_num_groups(0));

// calculate the distance between x,y,z and ’this work group’ -

// remember each point in the 3D space we are calculating

// the coulomb potential in got assigned to a work group;

// The assignment was done in such a way so that the work group

// ids corresponded to the position of the point the work group

// is assigned to.

double r = (get_group_id(0) - x) * (get_group_id(0) - x) +

(get_group_id(1) - y) * (get_group_id(1) - y) +

(get_group_id(2) - z) * (get_group_id(2) - z);

// Check for cutoff and make sure r != 0

// which happens when a charge is present at the work groups

// position

if (r > 0 && r < c2)

{

vlocal[j] = vlocal[j] + qlocal[j] * rsqrt(r);

}

}

barrier(CLK_LOCAL_MEM_FENCE);

}

barrier(CLK_LOCAL_MEM_FENCE);

// If ’this work item’ is work item 0 in the work group, tally up the

// results from the other work groups and write them to the

// output vector o.

if (j == 0)

{

double v = 0;

for (int l = 0; l < local_volume; l++)

{

v = v + vlocal[l];

}

o[k] = prefactor * v;

}

}

Both coulomb kernels were easily modified to include delocalization of charges. The error

function is used to represent delocalized charges.
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Figure 2.5: Self interaction.

vlocal[get_local_id(0)] += qlocal[get_local_id(0)] * erf(erffactor * r)/r;

When calculating the Coulomb interactions over future and present positions of charges,

the future position of a charge can interact with itself in the past. We call this interaction

the self interaction. On this CPU, one can easily check to see if the interacting charge is the

same as the acting charge. However, this information is not present on the GPU. Therefore,

after the GPU calculation results are sent back to the CPU, the self interaction is subtracted

off of the answer. The same process was adopted for pure CPU calculations, to save the

evaluation of an “if” statement in the inner Coulomb loop. A simple example of the self

interaction is shown in Figure 2.5.
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3.0 CHARGE INJECTION DYNAMICS : CHARACTERISTICS OF

DEVICE TURN-ON

The text in this chapter has been adapted from Gagorik and Hutchison, Simulating Charge

Injection and Dynamics in Microscale Organic Field-Effect Transistors .59

3.1 INTRODUCTION

Monte Carlo simulations were used to investigate the carrier dynamics in realistic, finite-

sized, small-molecule, organic field-effect transistors (OFETs) within the first few nanosec-

onds of device turn-on, as well as the system equilibrates. The results show that the device

current exhibits large magnitude oscillations (64± 27 nA) during device turn-on if the initial

configuration assumed no carriers in the device (i.e., carriers only arrive through injection

from the source electrode). After equilibration (125 ns), the current continues to oscillate,

however, at lower magnitude (64± 2 nA), even if the initial configuration assumed randomly

placed charges. Fourier Transforms of device current as a function of simulation time show

that these oscillations occur at well-defined device-geometry dependent frequencies, inde-

pendent of initial configuration of the system. Examination of the carrier lifetimes and path

lengths, which were found to vary non-linearly with device length, are used to argue that

the oscillations are the result of the charge injection procedure, which assumed a constant

probability event. The results suggest that carriers travel in waves in realistically finite-

sized devices and that carrier lifetime and path length vary non-linearly by device geometry.

Alternating current studies of OFETs may be useful in confirming these findings.

In this section, the Monte Carlo simulation framework to examine the dynamics of charge
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carriers during device turn-on in a single-molecule (Cu-phthalocyanine), realistically sized

(128 by 128 to 1024 by 1024 nm2) organic field-effect (OFET) transistor. We wish to discuss

the effects of charge injection and transport, and predict behavior not discussed elsewhere

in the simulation or experimental literature. In particular, we examine the case of constant

probability injection (90%) limited by carrier concentration as a function of simulation time,

device geometry, and energetics. A constant probability of injection ignores the details of the

organic semiconductor metal interface, and this view is tested against more detailed models.

We find that the rate at which carriers traverse the organic semiconductor oscillates

with time. This oscillation leads to a turn-on source-drain voltage at low simulation times.

The frequencies present in the oscillation are shown to decrease non-linearly with source-

drain length, an effect ultimately linked to a nonlinear increase in carrier lifetime and path

length. We find that the ultimate source of the oscillations is the restriction of free carrier

concentration in the device. In real devices, free carrier concentration is fixed by using a gate

electrode. The result is discussion relevant for experimentalists interested in time-dependent

behavior of OFETs. For example, while the quality of OFET devices has been judged using

carrier mobility, evaluated mostly from drain current in the steady-state, the understanding

of transient behavior of OFET is needed for potential high-frequency applications.65

3.2 COMPUTATIONAL METHODS

First, the model used to simulate charge transport is described. Second, all simulation

parameters are outlined for the systems used to investigate charge injection in the model.

3.2.1 Description of Model

Our group has developed a coarse-grained Monte Carlo simulation model to study charge

dynamics in organic semiconductors.16,60 The model aims to compare theory and experiment

while deriving needed values from first principle calculations.45 Unlike our previous work, the

present study focuses on injection and dynamics in a pure OFET material with no defects
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or traps.

Geometrically, the model consists of a source electrode, a rectangular lattice of sites, a

drain electrode, and charge carriers. The arrangement is representative of a thin-film transis-

tor. The rectangular lattice of sites can be a single layer or multiple layers. The individual

sites correspond to single organic semiconductor molecules, such as phthalocyanine. The

device geometry is illustrated in Figure 3.1A. The model assumes a single carrier device,

that is a p-type or n-type semiconductor. In this work we study hole transport, however, the

results are symmetric with respect to the charge used for carriers. Disorder in the system

is explicitly included in the energy landscape (discussed below). A single layer is normally

sufficient, because injected charge tend to be confined to a region very near the dielectric

interface.66

A gate electrode is not explicitly included in this work, however, a fixed concentration

of carriers is maintained in the device. The desired target concentration is an average value.

The carrier concentration can be related to the voltage applied between the source electrode

and gate (vsg) in real FET devices.67 Higher vsg allows more charge carriers to be introduced

into the semiconductor film, which results in a higher source-drain current ids. For example,

a target concentration of 1% corresponds to 2621 carriers in a 1024×256 nm2 Si/SiO2 device,

with a vsg of 15.7V and 300 nm thick oxide layer.16

Although the target concentration is an average value, the resulting distribution of

charges tends to be anisotropic – even without the explicit inclusion of trap sites. See Fig-

ure 3.9A for a picture of the electrostatic potential, which is the root cause of the anisotropy,

to see how carriers distribute themselves.

The inclusion of a gate can be accomplished in the model by simulating the device with

multiple layers and a potential gradient along the z-direction. The effect of the potential

gradient forces carriers to travel in layers close to the gate electrode, essentially reproducing

most results of monolayer simulations. We are focused on simulating monolayer systems,

and we note that real devices can be monolayers.

A typical simulation can be described as follows. Carriers arrive on the lattice by be-

ing injected from the source electrode. Once on the lattice, the movement of carriers is

generally assumed to occur via thermally activated hopping, based on a bimolecular charge
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transfer rate that can be described using Marcus-Hush theory.1 Hopping occurs because

electronic states are localized on molecular sites in organic semiconductors, a result of the

weak electronic interactions and disorder present in the system.63,64

The hopping is accomplished by proposing Monte Carlo moves for carriers. The difference

in energy a carrier undergoes when moving from its current to proposed location is used in

a Metropolis criterion to simulate transport. While moves to lower energy are accepted

one-third of the time, moves to higher energy states are accepted one-third of a Boltzmann

factor involving the energy change. The Monte Carlo moves are restricted to be single site

hops, and a dynamic interpretation of the states produced is accomplished by associating

a timescale with the moves, regardless of if they are accepted or rejected. For example,

carriers will “spend more time” on states of low energy, like trap states, by nature of a small

probability to move to higher energy states. The timescale chosen for the moves is ∼1 ps,

and is consistent with quantum chemistry calculations and fast, efficient charge transfer,

however, the charge transfer rate only affects the magnitude of electrical currents calculated

by our code and not the trends observed.

The energy of carrier j, of charge q, at position (x, y), on a two dimensional lattice,

shown in equation 3.1, and diagrammed in Figure 3.1B, has multiple contributions.

E(x, y, q) = q

[

(

VD − VS

Lx

)

x+
N
∑

i 6=j

qi

4πǫ0ǫ
√

(x− xi)2 + (y − yi)2
+ Vdisorder(x, y)

]

(3.1)

First, the potential difference between the source, VS, and the drain, VD, electrodes

creates an electric field that is assumed to be constant along the length of the device, Lx.

This field is assumed zero along the y direction (the width of the device). Secondly, Coulomb

contributions arising from the interaction of all N carriers are explicitly added. The Coulomb

interaction is subjected to a cutoff of 50 nm and damped by a dielectric constant ǫ of 3.5,68

which is typical of the phthalocyanine semiconductors studied experimentally by our group.

Changing the dielectric constant in our simulation was found to have little effect. Traps

and barriers are modeled as perturbations in the energy landscape, Vdisorder(x, y), and have

been considered elsewhere.16,60 While most models assume that trap/barrier energies yield

a Gaussian distribution,48–51,69 we have frozen this assumption out. Instead, for a given site,

Vdisorder(x, y) is chosen explicitly to be 0.0 eV or some constant, typically on the order of ±0.1
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to ±3.0 eV. Note that a positive value indicates a trap for electrons, while being a barrier

for holes, since it is framed in terms of a potential. Sites that can not be traveled to, termed

defects, can also be included, and one may view them as sites with E(x, y, q) some energy

large enough that the Metropolis always rejects transfer to such a site. Defects, traps, and

barriers were not considered in this work, however, some disorder in the system can still be

argued to be present, for the Coulomb interactions add both spatial and energetic disorder

to the energy levels. See Figure 3.9A for a contour plot of the Coulomb energy in a device.

Device current is calculated as carriers arrive at the drain electrode. We count the number

of carriers collected at the drain per iteration and then use the transfer rate to calculate a

current. An example current-voltage curve can be seen in Figure 3.2. The current calculated

is the conduction current. There may also be a displacement current. When no charges

are allowed to enter from the source or drain, if a time varying voltage is present, then a

displacement current should be measurable. There is no time varying component from the

applied external potential. However, just before charges reach the drain, there is a time

varying local internal potential from the moving point charges. As charges approach the

drain, the change in induced charge on the drain generates the displacement current. While

we are not considering the induced charge on the drain electrode, which would simply pull

the carriers slightly towards the drain, the Coulomb interactions between the carriers are

capturing the local internal potential.

3.2.2 Systems Studied

Carrier dynamics were examined for device geometries consisting of a single monolayer of

well-defined small molecule sites. A single layer is one site or one molecule thick in the model.

The various device lengths and widths chosen all fell within the range of 128 to 1024 sites.

Each site represents a single organic semiconducting molecule, and corresponds roughly to

1 nm2, so devices range up to ∼1 ➭m2 in size.

For a given system, either the current-voltage curve was studied or a single current-

voltage point. When studying a single point, carrier lifetime and carrier path length were

recorded for every carrier. The carrier lifetime is the total number of simulation steps,
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Figure 3.1: Injection and energy model.

or Monte Carlo attempts, for a given carrier’s existence. Carrier path length is the total

distance a carrier travels when moving from source to drain. Note that the path length

is not a displacement or the mean free path and that the lifetime is not the time between

“collisions”. Indeed, due to electrostatic repulsion between carriers, actual collisions are rare

events.

Two additional parameters that were also examined during simulations were the poten-

tial calculation procedure, and the initial condition. For the potential calculation procedure,

Coulomb interactions between carriers were either included or left out. For the initial condi-

tion, two methods were employed. The first method is referred to as the seeding procedure,

while the second is called the injection procedure. The methods are illustrated in Figure 3.1A.

During the seeding procedure, carriers were first randomly placed on the lattice until the

desired carrier concentration was obtained. Then, the system was allowed to equilibrate for

a set number of steps, after which statistics were collected. For all steps after the random

seeding, charges were injected from the source if the system was below the desired carrier
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concentration. During the injection procedure, no random seeding occurred. The lattice

started off empty, and charges were injected from the source if the system was below the

desired carrier concentration. No equilibration period was employed so that equilibration

behavior at short time could be examined.

3.3 RESULTS

First we consider how source-drain current varies with source-drain voltage, and find a turn-

on source-drain voltage. Second, the instantaneous current is closely examined at short and

long simulation times to determine the origin of the turn-on. Third, Fourier transforms of the

instantaneous current are taken. Finally, in a further effort to explain the turn-on voltage,

carrier lifetime and path length are investigated. The effects of Coulomb interactions are

examined at each step, as well as the variance with lattice geometry where appropriate.

3.3.1 Current-Voltage Curves

Figure 3.2 shows the current-voltage curves for a 1024 by 512 nm system. Coulomb interac-

tions were included for this system and the injection procedure was used. The system ran

for 300 ns, and curves are shown at different simulation times.

The red curve (top) shows a typical current-voltage curve with a linear region below a

source-drain voltage of 40V, and a saturation region above 40V. The curve, corresponding

to simulation times after 200 ns, represents a well-equilibrated system. The curve lacks a

turn-on source-drain voltage, where source drain current is not observed until a sufficient

voltage is applied.

The green and blue curves show different current-voltage behavior, found under 20 ns,

early in the simulation. The system is not well equilibrated. During this period, there is no

current when the source-drain voltage is below 10 to 20V. This region is termed the turn-on

source-drain voltage. The turn-on voltage is not to be confused with the threshold voltage

of a gate electrode. The simulation suggests it may be kinetic in nature, only appearing at
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short times in non-equilibrated systems. It arises because of field-dependent mobility akin

to the Poole-Frenkel effect (carriers do not have enough thermal energy to hop all the way

to the drain at low electric field, which pulls them along, or in the absence of other carriers,

which pushes them apart). Turn-on voltages are expected in the output characteristics of

OFETs, as seen, for example, in the top-gate ambipolar light emitting OFETs demonstrated

by Zaumseil et al., where the turn-on is gate-voltage dependent.70

The inclusion of Coulomb interactions alters the current-voltage curves. With Coulomb

interactions, the magnitude of the current is non-zero at zero source-drain voltage. This

occurs partly because carriers are not allowed to re-enter the source electrode once on the

grid. A slight build up of charges near the source electrode creates repulsion that drives

a small current. The effect is not present when Coulomb interactions are not included.

Without Coulomb interactions, traps, or defects, at zero source-drain voltage all molecular

sites have equal energy. In this unrealistic equal energy scenario, one might expect carriers to

randomly walk to the drain given sufficient simulation time. The time is so long (> 300 ns),

however, that no appreciable current develops.

If the seeding procedure is used (the starting configuration has a random distribution of

carriers), even at early time, current-voltage curves reflect the prototypical OFET curve in

red. The turn-on effect is not present, unless traps are added to the system.

In a real device, saturation is commonly explained by a pinch-off effect. The chan-

nel through which current flows is “pinched off” near the drain electrode as vds rises. A

source-drain current continues to flow, however, because carriers still make it to the drain

by traveling through a resistive region outside the pinched off channel. Although further

increases in vds creates a larger pull on carriers towards the drain, the width and thus overall

resistance of the resistive region increases. These effects balance, and lead to the saturation

region.

In our simulation, saturation and a “pinched off” region also form. The maximum current

is limited by the number of carriers in the device, which is inevitably tied to the injection rate

and target concentration of the carriers. Both of these parameters are related to the gate

electrode potential, which is constant, and only alters the magnitude of the current seen in the

saturation region and the value of vds at which saturation arises. While the injection rate and
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Figure 3.2: IV curve during turn-on.

average carrier concentration are channel approximations in our model, they are sufficient

to yield pinch-off, channel formation, and current saturation behaviors because we include

explicitly carrier electrostatic interactions. We tried more detailed injection procedures and

they showed little differences from the simple approximation used in the bulk of this work,

suggesting our results are independent of the injection procedure.

We also note that the maximum current is related to how efficiently carriers can travel

across the device. The maximum rate at which carriers can travel from source to drain

happens when the carriers travel the shortest path - a straight line perpendicular to the

electrode surface. Carriers are likely to travel this path as vds increases, because the energy

change associated with moving along the channel becomes increasingly large compared to

other interactions, such as the Coulomb force, that may knock the carrier off this path. With

a constant carrier concentration and carriers traveling at a maximum rate, the current must

saturate.
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3.3.2 Instantaneous Current

Typically, the current, as seen in Figure 3.2, is calculated as the average across the total

simulation time. This rate, in units of carriers accepted per step, is converted to the average

current by using the transfer rate (∼1 ps) and the charge of the carriers (1 e). The process

can be repeated for smaller sampling intervals to calculate an instantaneous current which is

a function of the simulation time. This instantaneous current oscillates, but approaches the

average current as the system equilibrates. Note that we are talking about the magnitude

of the current oscillating with time and not its sign.

An oscillating instantaneous current can be seen in Figure 3.3A, where the injection

procedure is used for a 512 by 512 nm system with Coulomb interactions. Note that the plot

represents the value of the current at a single source-drain voltage point, 50V, on a given

current-voltage curve. At simulation times before 125 ns, the current is wildly oscillating at

64± 27 nA. Before 4 ns, the instantaneous is zero. At times after 125 ns, the system becomes

equilibrated. While the average current remains 64 nA and still oscillates, the oscillations

are much smaller at ±2 nA.

As Figure 3.3B shows, when the seeding procedure is used, corresponding to an already

equilibrated device, the current still oscillates with a standard deviation of 2 nA. However,

the wild oscillations are not present before 125 ns and the overall magnitude resembles the

injection procedure value of 64 nA after 125 ns.

An oscillating instantaneous current occurs with or without Coulomb interactions. How-

ever, the oscillations are smaller when Coulomb interactions are included. For example, after

125 ns, oscillations without Coulomb interactions were ±5 nA as compared to ±2 nA with

Coulomb interactions.

As channel length increases, the current magnitude does not change because the carrier

concentration is kept constant between the systems, and the surface area of the drain does

not change with device length. However, the large oscillation region at short simulation time

takes longer to equilibrate. As channel width increases, the current magnitude increases, as

expected because the drain surface area increases with device width.

46



(A) injection proceedure (B) seeding proceedure

0.0 0.5 1.0 1.5 2.0
Time (µs)

0

40

80

120

160
Cu

rr
en

t (
nA

)

0.0 0.5 1.0 1.5 2.0
Time (µs)

0

40

80

120

160

Cu
rr

en
t (

nA
)

Figure 3.3: I(t) injection vs seeding.

3.3.3 Fourier Transformed Current

To better examine the oscillatory behavior, a Fourier transform of the instantaneous current

was taken for a range of device geometries. Figure 3.4A and Figure 3.4B show the Fourier

transform power spectra for a 512 by 512 nm system with Coulomb interactions. The sam-

pling interval was 1 ns and the sampling period was 2 ➭s. In the frequency domain, this

gave a resolution of 500 kHz, a bandwidth of 1GHz, and Nyquist frequency of 500MHz.

Before performing the Fourier transform, a linear fit of the signal was subtracted and a

Hamming window applied. A given power spectrum shows relative intensity, where all peak

intensities are scaled by the maximum intensity. Figure 3.4A shows a Fourier transform

power spectrum of a simulation using the injection procedure. Peaks are seen at 157.5 and at

311.0MHz. Figure 3.4B shows a Fourier transform power spectrum of a simulation using the

seeding procedure. Peaks are seen at 155.5, 315.0 and 479.0MHz. The peak location is only

minutely affected by equilibration procedure. The higher frequency peaks are roughly inte-

ger multiples or overtones of the lowest frequency or fundamental peak (at ∼155-157MHz).
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Figure 3.4: FFT of I(t) injection vs seeding.

Although Figure 3.4B is an exception, the fundamental almost always has the highest inten-

sity. The exception may be an artifact of the bin size or frequency domain resolution, which

is determined by the sampling interval in the time domain.

When Coulomb interactions are not included, a given power spectrum becomes sharper

because, as mentioned when discussing the instantaneous current above, there are larger

amplitude oscillations when not including Coulomb interactions. As device length increases,

the fundamental peak and all other peaks are found to shift towards lower frequencies. The

shift occurs in a non-linear fashion. As device width increases, the fundamental peak and all

other peaks do not shift. We note that decoherence of the Fourier peaks arises when moving

from monolayers to multilayers.

Figure 3.5 shows Fourier transforms of instantaneous current for geometries with heights

and widths in the range 128 nm to 384 nm. Notice that the peak locations shift to lower

frequency with increasing device length, but do not change with device height.
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Figure 3.5: FFT of I(t) many geometries.
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3.3.4 Carrier Lifetime

Based on our findings from the Fourier transforms, which exhibit clear frequency peaks, the

carrier lifetime was monitored for systems with and without Coulomb interactions for same

device geometries. For every carrier in a simulation, a counter is created when the carrier

is injected from the source. Every time this carrier attempted a move, successful or not,

the counter was increased. When a given carrier reached the drain electrode, the carrier

reported the total number of counts. Each count contributes 1 ps to the carrier’s lifetime.

Histograms of the lifetimes were performed, and the shapes were nearly Gaussian.

Average lifetime remained relatively constant with device width for a given device length.

This suggests that the path taken by carriers is not influenced by device width. In contrast,

as Figure 3.6B shows, the average lifetime increased with device length for a given device

width. The quadratic fit performs better than the linear fit (see R2 values in Figure 3.6B),

suggesting that the lifetime varies non-linearly with device length. This behavior was seen

for all device widths examined. When Coulomb interactions are not included, the histograms

remained nearly Gaussian and the averages increased by approximately 1.0%. The shape

and location of the histograms did not depend upon the seeding or injection procedure.

3.3.5 Carrier Path Length

Much like carrier lifetime, the carrier path length was monitored for systems with and without

Coulomb interactions for the same device geometries. The path length is defined here as the

total distance traveled by a carrier as it journeys from source to drain. In a similar spirit

to carrier lifetime, each carrier starts a counter when it comes into existence. The counter

is only incremented if a carrier successfully performs a move. When a given carrier reaches

the drain electrode, the carrier reports the total number of counts. Each count contributes

1 nm, corresponding to the lattice spacing, to a carrier’s path length. If carriers traveled

a perfectly straight path from source to drain, then this path length would simply be the

device length.

The behavior of path length with device geometry was similar to carrier lifetime, but

not identical. For a given device length, path length remained constant with device width,
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suggesting carriers do not sample the entire width of the channel. However, there was a

“narrow channel effect” for devices with widths less than or equal to 256 nm when Coulomb

interactions were included. For these narrow channels, the path length is roughly 50 nm

less and the lifetime 150 ps less than the constant width values, suggesting carriers sample

∼256 nm of device width on average. As Figure 3.6A shows, for a given device width, path

length increased with device length. Again the R2 values suggest that the path length

increased non-linearly. In contrast to lifetime, when not including Coulomb interactions,

the magnitude of path length became noticeably larger. For example, the path length is

approximately 15% larger without Coulomb interactions for a 512 by 512 nm geometry. This

suggests, not surprisingly, that carriers sample more of the width when Coulomb interactions

are present, due to electrostatic repulsion. Additionally, the histograms are Gaussian without

including Coulomb interactions but have an asymmetric tail towards lower path lengths with

Coulomb interactions. The shape and location of the histograms do not depend upon the

seeding or injection procedure.

Figure 3.7B shows the average lifetime as a function of device width for a constant

device length of 384 nm including Coulomb interactions. The lifetime remains constant with

device width except below 384 nm, where the lifetime becomes noticeably smaller. The same

behavior is seen for the path length, shown in Figure 3.7A. The standard deviation of the

data, shown by the error bars or seen visually in the histograms shown in Figure 3.8, also

does not change significantly with device width.

3.3.6 Energy

Figure 3.8 shows histograms of path length and lifetime for a 256 × 256 nm device with

and without Coulomb interactions. Regardless of Coulomb interactions, the lifetime takes a

Gaussian shape and similar values. For the case shown, the maximum is only 0.95% smaller

when including Coulomb interactions. The path length maximum, however, is 13.0% smaller

when including Coulomb interactions. Additionally, the shape is non-Gaussian, with a tail

towards low path length when including Coulomb interactions. The result is independent of

the seeding or injection procedure. Changing the device length changes the location of the
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Figure 3.6: Lifetime and path length vs device length.
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maximum.

Figure 3.9A shows the Coulomb potential at every location in a 256×256 nm. Figure 3.9B

shows a linescan of this potential taken at y = 128 nm. While the system has reached the

desired concentration and an equilibrated state, the carriers are not distributed isotropically.

There is a depletion region near the drain electrode (right). Also, the majority of carriers

are traveling paths in the central region of the device because they are being repelled by

other carriers lining the surface.

3.4 DISCUSSION

The behavior of the source-drain device current in this model, namely its oscillatory nature,

is a function of charge injection at the source electrode. As part of the simulation model,

the number of carriers on the lattice is maintained by only allowing the source to inject

charges when the number of charges is below some desired concentration. Injection is then
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Figure 3.9: Energy contour of thin film.

allowed to occur with a certain constant probability. The procedure reflects the role of the

gate electrode and a charge injection barrier in the system.

The gate electrode is related to how charges are injected in the system. In a real system,

the gate opens up the conduction pathway by freeing charges in the system, a process

captured by the random seeding procedure. We note that the current oscillations are present

with or without this procedure. Otherwise, the gate lowers the molecular energy levels

relative to the source so that carriers can be injected and a current flow, a process captured

by the injection procedure. Equivalently, as the gate turns on, charges discharge. The freed

up sites allow for more carriers to flow in from the source. This effect, and others, such as

an injection barrier, are captured by the probabilistic injection procedure, whether constant

or calculated on the fly.

The understanding of charge injection barrier is important, because the development of

high efficiency organic (opto-)electronic devices is primarily based on charge injection at the

interface between metallic electrodes and organic semiconductors.71 The energetics of this

metal/organic interface play a key role in charge injection,72,73 and there are many models

to describe the mechanism.74–76 Models differ because the details of the process depend on

54



the system, however there are several common themes. For an up to date review, see Natali

and Caironi.77

Many parameters can, and do modulate charge injection (electric field, image potential,

barrier height, temperature, mobility, mechanism, etc). The mechanism determines which

parameters are significant. A carrier may tunnel from delocalized states in the metal to

localized states in the organic semiconductor at low temperature (low field), or surmount

a barrier by hopping at high temperature (high field). The contact between metal and

semiconductor may not be perfect, and an energy barrier will be present due to many factors.

For example, there is an energy difference between the semiconductor HOMO/LUMO and

metal work function, and a surface dipole may form. Additionally, there may be significant

rearrangement of the organic molecules after charge transfer, or the organic molecules may

have reacted with the metal surface. Whatever the mechanism or origin of the energy

barrier may be, we are assuming that carriers are accomplishing injection in an average

probabilistic fashion. The environments a carrier sees upon injection are averaged out both

over different locations near the source, and as time progresses. Simply put, the steady-

state rate of injection is roughly constant. This assumption is a coarse graining of the many

factors. There is one exception, namely the limitation of carrier concentration, that alters

this picture and produces the subtle effects on the simulation that are the subject of this

paper.

We have also considered and tested other injection procedures in these simulations. For

example, an energetic barrier to injection based on the Coulomb interaction of the injected

charge with other charges in the system, as well as their image charges was used. The

calculated barrier was used in the Boltzmann factor to determine an injection probability.

However, this procedure did not show any significant differences from a constant probability

model. This is because, after equilibration, the distribution of carriers near the source

does not change significantly. Therefore, the calculated injection probability is essentially

constant. The exact value of the constant probability of injection only influences the exact

magnitude of the current. It does not alter the shape of current-voltage curves or the

oscillatory behavior of the instantaneous current discussed above. The oscillatory behavior,

instead, arises from restrictions placed on the carrier concentration, as will now be explained.
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When the lattice is completely empty, as is the case at short times during the device

turn-on, the source injects charges at almost every time step. This in turn creates a “wave”

of charges that build up near the source electrode, and begins to travel towards the drain

electrode. The source stops injecting once it reaches the desired concentration, ending the

wave of carriers. The carrier wave spreads out as it travels to the drain. The rate of

travel is influenced by the energy landscape. As the magnitude of the source-drain potential

increases, the carriers reach the drain more quickly. When Coulomb interactions are present,

the carriers repel each other and the wave spreads out more rapidly.

Before the carrier wave reaches the drain, there is essentially no current. This is seen at

short times and low voltage in Figure 3.2. Once the wave reaches the drain, a large spike

in current occurs. This can occur at short times only if the source-drain voltage is large

enough or Coulomb interactions included. This is why a turn-on source-drain voltage is

seen. Experimental verification would require capturing and examining the current-voltage

curve within the first 15 ns.

Only as carriers reach the drain, can the source begin to inject charges again. A new

wave of carriers is released into the lattice, and as this process repeats, the waves become

more and more diffuse. Eventually, the system reaches a more uniform equilibrated steady

state which is similar to that created by an initial seeding of random carriers. Regardless

of using the seeding procedure or injection procedure, systems evolve to this equilibrated

spread out state.

Even when equilibrated, however, the pulsing nature of the source still causes the os-

cillatory current and peaks in the Fourier transforms. For example, the fundamental for

the 512 by 512 nm system occurs, regardless of equilibration procedure, near 158MHz. This

means that every ∼6 ps, carriers reach the drain in the equilibrated system. The oscillatory

nature remains because, in the equilibrated system, the number of charges is very close to

the desired concentration. When the system is at the desired concentration the source will

not inject charges. Likewise, when the system falls below the desired concentration a wave

of charges is injected by the source. While this is a consequence of requiring constant carrier

concentration in our simulations, the use of more detailed injection models shows little effect.

The non-linear decrease in fundamental frequency in the Fourier transforms and the
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non-linear increase in carrier lifetime with device length are connected. As the device length

increases, a given carrier has more of a chance to stray from a straight path, as illustrated

in Figure 3.10. Thus, the path it travels from the source to the drain becomes longer,

and therefore the time it takes to get from the source to the drain longer. As the lifetime

increases, the time between when the source can and cannot inject charges increases. This

increase correlates to the decrease in the fundamental Fourier frequency with device length.

In a similar manner, the lifetime and path length do not change with device width because

the average path taken remains similar with a constant device length. Consequently, the

fundamentals do not change with device width either.
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3.5 CONCLUSIONS

We explored charge transport in thin-film organic field effect transistors during and after

device turn-on using Monte Carlo simulation, paying close attention to the effect of device

dimensions and Coulomb interactions. We used two initial configurations for charge carriers,

an empty lattice and a randomly seeded lattice. In both cases, charges were injected with

a constant probability throughout the simulation and a desired carrier concentration was

maintained, and we found that a more sophisticated injection model was not needed.

The results for an empty lattice, independent of the presence of Coulomb interactions,

showed a turn-on source-drain voltage in the current-voltage curve that was, however, tran-

sient, and disappeared after the system equilibrated, resembling a typical current-voltage

curve for a randomly seeded system. On closer examination, we found that the turn-on for

an empty lattice was linked to an oscillating instantaneous current during device turn-on.

More surprisingly, the oscillating current was present in the well-equilibrated lattice, though

lower in magnitude, even for a randomly seeded lattice, which showed no turn-on voltage.

The Fourier transform of current as a function of simulation time, independent of ini-

tial configuration of charge carriers (empty lattice or randomly seeded) and the presence

of Coulomb interactions, showed well-defined fundamental peaks and overtones that were

a function of device dimensions. While independent of device width, peak frequencies and

their overtones shift, non-linearly, towards lower frequencies as device length increased. Ad-

ditionally, carrier lifetime and path length were found to increase non-linearly with device

length and remain constant with device width. We proposed that the nonlinear behavior of

the carrier lifetime, related to the frequencies observed in the Fourier transform, stems from

nonlinear increase of carrier path length with device length.

Finally, we proposed that the oscillating behavior of the current was a result of carrier

injection from the source, which could not inject charges when the system was at the free

charge carrier concentration limit. As a result of this injection process, carriers were found

to travel in waves of charge density even in the well equilibrated device.

Observing non-linear behavior in experimental devices would be a worthwhile exercise.

That is, how do carrier lifetime and path length change with device dimensions, and what
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would this mean for concepts like carrier mobility? Likewise, do charge carriers travel in

waves in real devices? If our proposed mechanism is correct, then they may, for real devices

do have a restricted free carrier concentration, fixed by a gate electrode, as well as injection

probability. To answer these questions, however, device properties like source-drain current

would need to be resolved to timescales on the order of nanoseconds. This is not outside the

realm of techniques like complex impedance spectroscopy, used to measure AC conductivity,

and provide information on processes with diverse timescales. For example, dielectric spec-

troscopy measurements have been made of doped polythiophene, poly(phenylene vinylene),78

or polypyrrole,79 which have measurements in the sub-THz range (τ ≈ ω−1, THz ∼ps).
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4.0 TRAPS, BARRIERS, AND DEFECTS : CONCENTRATION AND

NEGATIVE DIFFERENTIAL RESISTANCE

The text in this chapter has been adapted from Chen et al., Charge Transport in Imperfect

Organic Field Effect Transistors: Phthalocyanine Mixtures as Charge Trapping Models 62 and

Madison et al., Charge Transport in Imperfect Organic Field Effect Transistors: Effects of

Charge Traps .60 These works were coauthored.

4.1 INTRODUCTION

In this chapter, we discuss simulations of OFETs when defects, barriers, or traps are present

in the organic semiconductor. Barriers and traps are molecules with higher or lower HOMO

or LUMO levels than the native semiconducting molecule. When a carrier hops to a trap

site, it has significantly lower probability to hop out of the site. This manifests itself as a

lowering of the current observed in OFET current voltage curves. Likewise, there is a lower

probability for carriers to hop onto barriers sites. Defect may be thought of as barrier sites

with an HOMO-HOMO or LUMO-LUMO offset so high, that the probability to hop to the

site is essentially zero.

Figure 4.1 shows the energy of an electron in the field produced by a source and drain

electrode. Electrons are attracted to regions of positive potential. This means that a “trap”

for electrons is higher in potential. Electrons carry a negative charge. Therefore, higher

regions of potential turn into lower regions of energy. A similar picture can be drawn for

holes. However, holes are attracted to regions of negative potential. They still jump “down”

in energy, However, it is the custom to always draw energy levels in terms of the energy of
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Figure 4.1: Potential and energy with traps for electrons.

the electron. Therefore, one will often encounter the idea that holes “jump” up in energy.

What is meant is that the holes jump up the electron energy landscape. In reality, as holes

move towards more negative potentials, they release energy. The behavior is summarized in

Table 4.1.

Why is it necessary to differentiate between barriers and defects? As will be shown in

this chapter, there is a sharp cutoff in energy where barriers start behaving like defects. On

a technical note, barriers and defects are treated differently in the simulation. Defects are

sites which carriers are not allowed to travel to. Barriers, like traps, are sites with shifted

energies. In this sense, very high defects act as neutral defects.

What about very deep traps? An example might be interspersed PCBM in P3HT (dis-

∆V > 0 ∆V < 0

hole q > 0 barrier trap

electron q < 0 trap barrier

Table 4.1: Potential for holes vs electrons.
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cussed in chapter 5 where it is called “pepper”). One might term such sites, “defective” as

well. If electrons transport to “pepper”, then will get stuck there, making the site in some

sense defective. Once the electron is trapped, other carriers can not travel to the site. In

this way, deep traps act as charged defects.

Defects, barriers, and traps all affect the magnitude of current and shape of an OFET

curve. As we will see, increasing the concentration of traps and barriers of modest energy

shift (< 0.05 − 0.15 eV) leads to a decrease in the observe current of an OFET. While the

minimum is observed around 40%, the current recovers as the concentration of traps or

barriers passes 60%.

In the saturation region of an OFET curve, the story changes. The large electric field

(e ∗ 100V/1000 nm ∗ 1 nm = 0.1 eV) provides a driving force to remove carriers from traps

as deep as or a little deeper than 0.1 eV. This is not the case for barriers and defects. There

is a high probability for electrons to move towards the drain electrode, which is at a more

positive potential relative to the source electrode. However, while this potential can drive

a carrier onto modest barrier sites, it can not push a carrier through a defect or very large

barrier site (> 0.4 eV). Instead, carriers will actually get stuck behind the defects. As this

chapter will show, this leads to negative differential resistance.

4.2 TRAP AND BARRIER CONCENTRATION

The behavior of current in OFETs as a function of traps concentration at modest trap

energies (0.0 eV < ∆V ≤ 0.3 eV for electrons, −0.3 eV ≤ ∆V < 0.0 eV for holes) is anti-

symmetric. That is, the current does not reach a minimum at 50% traps, as would be

predicted by percolation theory.

Figure 4.2 shows the current as a function of trap percentage for an experimental system

obtained by others.62 The system consisted of Ni(II)-octabutoxy-phthalocyanine (NiOBuPc)

and octabutoxy-naphthalocyanine (OBuNc) as a barrier model. The current decreases

rapidly with only a small introduction of OBuNc. This suggests that OBuNc is acting

as a high barrier or defect, or other defects are in the system. The current begins to recover
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From the work of Chen et al..62

Figure 4.2: Experimental trap concentration scan.
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Figure 4.3: Mobility vs trap concentration.
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From the work of Chen et al..62

Figure 4.4: Experimental IV curve with barriers.

as early as 20%, although significant recover does not occur until 80%.

Rather, the minimum is reached more rapidly (≤ 20% traps) for energies as low as

|∆V | ≤ 0.15 eV. Likewise, recovery of the current happens much earlier (∼60%) than

expected based on the initial falloff. Barriers of modest energy (0.0 eV < ∆V ≤ 0.3 eV for

holes, −0.3 eV ≤ ∆V < 0.0 eV for electrons), produce a current vs. concentration curve that

is a mirror image of the trap system.

4.3 NEGATIVE DIFFERENTIAL RESISTANCE

Simulations of thin film OFETs with dimensions of 1024 × 256 × 3 nm3 with 1% charge

carriers (7864 max carriers) were performed. Current was calculated for 0.5 ➭s and results

averaged over three simulation replicas. Only hole transport was considered. Coulomb inter-

actions were treated using point charges, delocalized Gaussian charges, and non-interacting

charges. For Gaussian charges, the standard deviation chosen was 1, 1.25 and 1.5 nm. IV

curves were calculated for systems with a mixture of 75% semiconductor and 25% shallow

traps (−0.05 eV), 25% high barriers (0.50 eV), and 25% defects. VDS was varied between
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0 and −150V. Additionally, the slope of the IV curve in the saturation region (differential

conductance) was measured as a function of trap/barrier energy (−1.0 to 1.0 eV) by calcu-

lating a few IV points in the saturation region (120, 140 and 150V). Figure 4.5 shows the

differential conductance in the saturation region as a function of trap or barrier energy for

a system with 25% traps or barriers. Differential conductance indicates how the conduc-

tance is changing as the voltage increases and is simply the slope of the IV curve. When

the trap energy is zero (pure system), the differential conductance is small and positive

(0.04 nS). Ideal saturation would mean that the conductance does not change with voltage.

This system is very near, but not completely saturated. Interestingly, as the trap or barrier

energy increases, the differential conductance reaches a maximum at ±0.16 eV. The peak

for traps (0.68 nS) is nearly twice the height as the peak for barriers (0.32 nS). A larger

differential conductance indicates a perturbed onset of ideal saturation. Therefore, this sug-

gests that traps are a larger hindrance to charge transport than barriers, likely because it

is thermodynamically favorable to fall into a trap. The peak location is near the energy

associated with the potential difference between the source and drain electrodes at satu-
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ration for an adjacent site hop (e(150V)/(1024 nm)(1 nm) ≈ 0.15 eV). It is this energetic

driving force, along with the Columbic interactions between carriers, which drives carriers

out of traps or into/past barriers. The presence of a peak indicates that traps/barriers are

(at first) an increasing hindrance to ideal saturation. As traps deepen beyond −0.16 eV,

the differential conductance begins to fall and remains zero for traps deeper than −0.4 eV.

Although the differential conductance calculated is zero beyond −0.4 eV, a saturated IV

curve does not exist. When traps are this deep, there is no current, because nearly all

carriers become trapped. There are many more trap sites than carriers. The simulation

assumptions, such as constant carrier concentration, may be invalid in this region. Barriers

behave differently as they become larger than 0.16 eV. The differential conductance falls off,

and becomes negative beyond 0.4 eV. At this energy, the barriers become insurmountable

hills or defects. Figure 4.7B shows IV curves for systems with 25% high barriers (0.50 eV).

Curves are shown for Coulomb interactions treated as point charges, delocalized Gaussian

charges (σ = 1.0, 1.25 and 1.50 nm), and non-interacting charges. All curves exhibit nega-

tive differential conductance in the saturation region (−0.013, −0.019, −0.021, −0.025 and

−0.042 nS). As charge interactions become weaker (higher sigma), the negative differential

conductance becomes more negative and thus the system more resistive. A mechanism for

defect induced negative differential conductance was proposed by Hanwell.16 Non-interacting

carriers become blocked/immobilized by the presence of defects, leading to a negative dif-

ferential conductance. However, when Coulomb interactions are present, other carriers are

funneled around the defects by the Coulomb interaction with blocked carriers. This leads to

a smaller differential conductance and faster onset of ideal saturation. Figure 4.6 shows IV

curves for systems with 25% defects. Again, curves are shown for the varying treatments

of Coulomb interactions. Curves show a negative differential conductance in the saturation

region (−0.015, −0.020 and −0.042 nS) of similar magnitude to the corresponding curves for

high barriers (−0.013, −0.021 and −0.042 nS). This indicates that the barriers are behaving

like defects. Figure 4.8 shows IV curves for systems with 25% shallow traps (−0.05 eV).

Curves are shown for Coulomb interactions treated as point charges, delocalized Gaussian

charges with σ = 1.00 nm, and non-interacting charges. All three exhibit positive differen-

tial conductance (0.065, 0.057 and 0.026 nS), in agreement with Figure 4.5. Non-interacting
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charges show the smallest differential conductance in the saturation region and reach near

ideal saturation at lower voltages (∼−100V) than interacting charges (> 150V). However,

non-interacting charges show lower current (-75 nA) in the saturation region compared to

interacting charges (−80 nA). This is a result of Coulomb interactions removing carriers

from trap sites.

4.4 CONCLUSION

The behavior of current in OFETs as a function of traps concentration at modest trap

energies (0.0 eV < ∆V ≤ 0.3 eV for electrons, −0.3 eV ≤ ∆V < 0.0 eV for holes) is anti-

symmetric. That is, the current does not reach a minimum at 50% traps, as would be

predicted by percolation theory. Rather, the minimum is reached more rapidly (≤ 20%

traps) for energies as low as |∆V | ≤ 0.15 eV. Likewise, recovery of the current happens

much earlier (∼60% traps/barriers) than expected based on the initial falloff. Barriers of

modest energy (0.0 eV < ∆V ≤ 0.3 eV for holes, −0.3 eV ≤ ∆V < 0.0 eV for electrons),

produce a current vs. concentration curve that is a mirror image of the trap system.

Beyond a critical value (|∆V | > 0.38 eV for the systems studied), the mirror symmetry

between trap and barrier current vs. concentration curves is broken. At this point, traps are

significantly deep that carriers can not escape. For example, without Coulomb interactions,

to have a escape probability of 1.0% from a trap that is 0.3 eV deep, an electric field of

0.391 eV C−1 nm−1 is needed. That is 391V over 1000 nm; the device would decompose! All

carriers in the OFET will be trapped and no current will flow. The Coulomb interactions

between carriers will drastically lower the required voltage to free the carriers. For example,

the repulsive energy from another like-charged carrier just 1 nm away is 0.411 eV. Ignoring

the mean field energy from all other carriers, this means an extra 0.206 eV of energy is

released when the carrier escapes the trap. This reduces the electric field needed (for a

1.0% probability) to 0.185 eV C−1 nm−1. Although 185V over 1000 nm is very high, this

calculation only includes the effect of a single extra like-charged charge. The addition of

more charges will lower the voltage to a reasonable level. In this way, Coulomb interactions
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are significant for the de-trapping process in OFETs.

This is not the case for barriers, however. For a barrier of 0.3 eV height, the above

probabilities and voltage also apply. However, the process is transport to the barrier site,

rather than escape from a trap site. This difference is crucial in the behavior of the OFET.

While deep traps will reduce the current to zero, making a dead device, current can still flow

in the presence of high barriers, when the barrier concentration is < 25%.

There will still be an IV curve with high barriers. However, negative differential resistance

will emerge in the saturation region. The mechanism is as follows. Carriers, which can not

easily transport to the barrier molecule, will be blocked from moving towards the drain

electrode. This is because, in the saturation region, the probability to move towards the

source is very low compared to other options. The most likely case is for the carrier to

remain in place. For example, consider a system with no barrier, and an electric field of

0.1Vnm−1. Ignoring Coulomb interactions, the probabilities are Pright, Pup, Pdown = 8.325%,

Pleft = 0.174%, Pstay = 74.85%. If there is a high barrier in front of the carrier, then

Pright ≈ 0%. This raises the probability of the carrier staying in place to Pstay = 83.18%.

Coulomb interactions will reduce the probability for the carrier to remain in place in both

cases. However, the probability for the carrier to stay put will remain higher when a barrier

is present, because Pright ≈ 0%.

When the voltage is lower (before the saturation region), the probability to move back-

wards is increased. This has the effect of reducing the probability of the carrier remaining in

place. For example, at 0.01Vnm−1, the probability to move backwards increases to 5.654%.

The net effect is that carriers can move around the barrier and navigate to the drain electrode

(increasing the measured current).

However, in the saturation region, increasing the voltage increasingly makes the proba-

bility for carriers to remain in place larger. The carrier become “stuck” behind the barriers.

Since they can not make it to the drain electrode, the current decreases with increasing

voltage. This is the so called negative differential resistance. The same phenomenon will

arise when sites are defective (i.e. carriers can not transport to the site).

Finally, Coulomb interactions can lead to a lessening of the negative differential re-

sistance. That is, the slope of the IV curve in the saturation region will have a smaller
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magnitude with Coulomb interactions. The probability of carriers that are “stuck” behind

defects to stay put remains high in this case. Actually, the probability is higher than the case

without Coulomb interactions. This is because the carrier must move against the field of

other carriers to escape. However, the probability of other carriers to move near the blocked

carrier is significantly reduced. For example, the probability goes from 8.325% (without

Coulomb interactions) to 0.139% with Coulomb interactions. The carrier is much more

likely to move around the blocked carrier. This increases the chance that this carrier will

make it to the drain electrode, increasing the current, and reducing the negative differential

resistance.
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5.0 MONOLAYER OPVS : DOMAIN SIZE EFFECTS IN IDEAL AND

ISOTROPIC SYSTEMS

The text in this chapter has been adapted from Gagorik et al., Monte Carlo Simulations of

Charge Transport in 2D Organic Photovoltaics .57

5.1 INTRODUCTION

The effect of morphology on charge transport in organic photovoltaics is assessed using

Monte Carlo. In isotopic two-phase morphologies, increasing the domain size from 6.3 nm to

18.3 nm improves the fill factor by 11.6%, a result of decreased tortuosity and relaxation of

Coulombic barriers. Additionally, when small aggregates of electron acceptors are interdis-

persed into the electron donor phase, charged defects form in the system, reducing fill factors

by 23.3% on average, compared to systems without aggregates. In contrast, systems with

idealized connectivity show a 3.31% decrease in fill factor when domain size was increased

from 4nm to 64 nm. We attribute this to a decreased rate of exciton separation at donor-

acceptor interfaces. Finally, we notice that the presence of Coulomb interactions increases

device performance as devices become smaller. The results suggest that for commonly found

isotropic morphologies, the Coulomb interactions between charge carriers dominates exciton

separation effects.

In this section, we have applied the Monte Carlo hopping code to charge transport in a

two-dimensional model OPV, by calculating current-voltage curves (IV curves). We assess

idealized charge transport in different morphologies by extracting quantities from the IV

curves such as open circuit voltage (Voc; I(Voc) = 0), short circuit current (Isc = I(0)),
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theoretical power (Pth = Isc × Voc), voltage at maximum power (Vmp; d(IV )/dV (Vmp) = 0),

current at maximum power (Imp = I(Vmp)), maximum power (Pmp = Imp × Vmp), and fill

factor (FF = Pmp/Pth). The fill factor is an important device parameter for optimizing

performance. Solar cells ultimately deliver power to a load, which has a resistance. When

the device is connected in series to the load, the current through the load has to equal

the current through the solar cell. We can find how much power the solar cell delivers

by intersecting the load line (Ohm’s Law for the load) with the IV curve of the solar cell.

The maximum power in a real device is quantified by the fill factor. In the IV Curves in

Figures 5.2 and 5.3, the fill factor is geometrically the ratio of the areas of the rectangles,

but more importantly is the percent of the maximum theoretical power obtainable from the

actual device.

The focus was on the effect of morphology alone on device performance; as such, many

assumed device properties were idealized and are unattainable in real materials. For example,

we have assumed that exciton injection, exciton recombination, and electrode collection

probabilities are constant, independent of material. In real devices, phases will differ in

their ability to absorb light, have different dielectric constants, and have different electrode

work function to frontier molecular orbital energy matching. Additionally, we have assumed

that charge transport in n-type and p-type materials is equal and efficient, and that voc is

maximized. In this work, we have not yet tested the effect of exciton injection rate. Instead,

we have assumed the averaged AM1.5 solar spectrum80 used for device verification.

5.2 SYSTEMS

Three classes of morphologies were examined: isotropic two-phase, band two-phase, and

single-phase. In the two-phase morphologies (isotropic and band), the highest occupied

molecular orbital (HOMO) of the electron donor (hole conducting) sites was chosen to be

0.5 eV higher in energy relative to the HOMO of electron acceptor (electron conducting)

sites. Likewise, the lowest unoccupied molecular orbital (LUMO) of the electron acceptor

(electron conducting) sites was chosen to be 0.5 eV lower in energy relative to the electron
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donor (hole conducting) sites.

The isotropic two-phase morphologies simulated are shown in Figure 5.1A. Morphologies

were simulated with the goal of achieving a randomly separated system two-phase with a

readily definable domain size 〈LP 〉. Most simulated two-phase morphologies require costly

numerical calculations of differential equations, such as the Cahn-Hilliard55,81 approach.

Other methods, such as Ising lattice relaxation, can introduce high-frequency noise and

difficulty in targeting a specific domain size.54 To avoid these issues while maintaining the

desired morphological characteristics, a macroscopic, algorithmic approach was developed to

produce realistic morphologies in a cheap, efficient and repeatable way.

The simulation of two-phase morphologies started with 2572 nm2 “canvas” arrays of uni-

formly random numbers between 0 and 1. These canvasses were then convoluted (locally

averaged) with isotropic 2D Gaussian kernels e
− i2

2σ2
l

− j2

2σ2
l to produce the set of four correlated

arrays with σl = 3, 5, 7, 9. These real-valued sets were then converted into binary maps by a

thresholding rule, with zeros corresponding to D (donor) and ones to A (acceptor) phases.

The average domain size in such binary maps was set by the value σl. To produce morpholo-

gies with equal volume fractions of both phases (φ1

φ2
= 0.5), thresholding was performed at

the 50% level of the cumulated probability of the normalized distribution of intensities. In

φ1

φ2
= 0.5 morphologies, the domain size 〈LP 〉is twice the size of σl. A pictorial illustration

of this process can be found in the supporting information.

Furthermore, to introduce simulated small-size aggregates, some pixels of one phase were

selected at random to be changed to the opposite phase, producing a “peppered” morphology.

This morphology simulates small islets of PCBM trapped in a network of P3HT, postulated

by others to be present in real devices.

5.3 RESULTS

Figure 5.2 shows IV curves for isotropic two-phase morphologies, and Figure 5.3 shows IV

curves when 2.5% pepper is added. 〈LP 〉for these morphologies were ≈ 6, 10, 14 and 18 nm.

These systems are named with the shorthand LP6, LP10, LP14, LP18. With small-sized
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Figure 5.1: 2D morphologies.

75



(A) (B)

FF = 34.2 %
Voc = 1.485 V
Isc = -0.247 nA
Vmp = 0.827 V
Imp = -0.152 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
LP6

FF = 38.8 %
Voc = 1.403 V
Isc = -0.252 nA
Vmp = 0.799 V
Imp = -0.172 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
LP10

(C) (D)

FF = 42.7 %
Voc = 1.528 V
Isc = -0.254 nA
Vmp = 0.895 V
Imp = -0.185 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
LP14

FF = 45.8 %
Voc = 1.673 V
Isc = -0.270 nA
Vmp = 1.030 V
Imp = -0.201 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
LP18

Figure 5.2: IV curves for isotropic 2D morphologies.
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Figure 5.3: IV curves for isotropic 2D morphologies with pepper.
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Figure 5.4: Fill factors for 2D morphologies.

acceptor aggregates added, (colloquially referred to as “pepper”), a P is appended to the

name. Without pepper, the calculated fill factors were FF ≈ 34, 38, 42 and 45%. With

pepper, the calculated fill factors were FF ≈ 28, 30, 30 and 34%, about a 20% decrease.

Additional increases in small-sized acceptor aggregates reduces the magnitude of current, but

does not have a large effect on fill factor. Figure 5.4A shows calculated fill factors in order

of increasing 〈LP 〉. Other extracted IV curve parameters can be found in the supporting

information.

Simulated IV Curves indicate that larger 〈LP 〉, in both the peppered and non-peppered

isotropic two-phase morphologies, yields a larger fill factor. Excitons must diffuse to inter-

faces in order to separate into free carriers, and the exciton diffusion length is on the order

of ∼10 nm. Logic would dictate that interfaces should be within one to two exciton diffu-

sion lengths, so it it counter-intuitive that morphologies with larger domain sizes performed

better than those with smaller domain size. Despite the fact that recombination was not

allowed to occur in these systems, the trend observed would not change because, as will be

shown for the band and single-phase systems, a recombination rate PR ≤ 10× 10−5 ps−1

does not have a large effect on calculated fill factor in this model. This idea was tested for

the two-phase isotropic system with 〈LP 〉 ≈ 18 nm, where the fill factor changed from 45.8%

to 45.2% when using a recombination rate of 10× 10−5 ps−1.
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The fill factor increases with larger domain size because more carriers are able to diffuse

to the electrodes at low bias voltages. In Figure 5.2, we can identify the increase in fill factor

as increase of the area of the gray rectangle (maximum power) relative to the area of the

blue rectangle (theoretical power).

After excitons dissociate at an interface, charge carriers still have to take a tortuous rout

to their respective electrodes. Although smaller domain size features may facilitate exciton

dissociation, narrower pathways through each phase in such morphologies pose problems for

current extraction. First, there may not be a complete path to an electrode for a carrier

to take in tortuous networks. Second, narrow pathways through small domain-size mor-

phologies inevitably force carriers to remain within the Coulomb influence of other charges,

complicating the energy landscape. Carriers will not move easily in narrow pathways already

filled with other carriers of the same charge, and Coulomb traps readily form at interfaces

between opposite charges. Consider, for example, that in a dielectric environment of ǫ = 2-

4, the thermal energy kT (0.026 eV at 300K), offsets the Coulomb interaction between two

charges at a distance of 14-28 nm. Therefore, carriers traveling in phase domains with widths

≤ 30 nm are strongly affected by the Coulomb force. These problems are mitigated as charge

carrier pathways widen, allowing more carriers to reach the electrodes. Others have noticed

that some degree of phase separation is desired, particularly in bulk heterojunction solar

cells.38,82 Additionally, it has been found that decreased miscibility of the donor-acceptor

phases leads to improved charge collection efficiency.83

In the peppered systems, the situation becomes worse, although a similar trend in fill

factor with 〈LP 〉is observed. The small acceptor aggregates act as electron traps in the hole

conducting phase. Trapped electrons then serve as charged defects for holes,16 reducing the

total current. For example, imp is on average 26% smaller in peppered simulations. As

a result, fill factors are on average 23.3% smaller with pepper. We note that the size of

the pepper is in correspondence with the size of a single PCBM molecule, on the order of

∼13 nm3. In a previous work, we studied the effects of homogeneous vs. heterogeneous traps

in OFETs.60 That work leads us to believe that incorporating larger pepper would either

lead to trapping islands or increased connectivity with very large pepper. Additionally, we

would expect percolation issues when the phases deviate largely from a 40:60 ratio. We have
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briefly probed the effect of the size of pepper, by simulating the LP6 and LP18 systems

with 4-site sized (22 nm2) pepper at the same concentration as 1-site sized pepper. We

found that transport was still inhibited in the LP6 system, which showed little change in fill

factor (28%). In contrast, we found that larger sized pepper in the LP18 system lead to an

increased fill factor (45% vs. 34% for small pepper), likely because trapped negative charge

is averaged over the larger defect. More work is needed to elucidate the effect of the larger

pepper.

For band morphologies, alternating stripes (bands) of electron conducting and hole con-

ducting material run from electrode to electrode. The width of the bands was varied (4,

8, 16, 32 and 64 nm), corresponding to the 〈LP 〉in the isotopic two-phase systems. In this

way, banded systems remove the complication of tortuous pathways to the electrodes, while

simultaneously testing varying conduction pathway widths. Band morphologies are shown

in Figure 5.1. The effect of exciton recombination rate was tested by changing the recombi-

nation rate from 10× 10−5 ps−1 to 0 ps−1 for each system. The fill factors for band systems

with recombination were FF ≈ 50.5, 50.7, 49.6, 49.2 and 47.2%. Without recombination,

the fill factors were FF ≈ 50.3, 51.0, 50.1, 50.2 and 46.8%, respectively. The fill factors

show little difference with recombination. Figure 5.4B shows calculated fill factors in order

of increasing 〈LPs〉. Other extracted IV curve parameters can be found in the supporting

information.

In contrast to isotopic two-phase systems, we find that the device performance does not

increase with increasing domain size, but instead reaches a maximum when channel width is

8 nm. At a channel width of 4 nm, the fill factor is only 1.4% smaller than the best performing

device. There is slightly increased likelihood to encounter Coulomb barriers and traps in the

4 nm case. Otherwise, as the channel width increases, the fill factor decreases. This occurs

because excitons have to traverse too large a distance to reach an interface. The results in

the band morphologies suggest that tortuous networks and connectivity to electrodes are

playing a larger role in the isotropic two-phase systems than the size of conduction pathways

within each phase.

In the single-phase morphology, all hopping sites have the same HOMO energy assigned,

and likewise for the LUMO. In these systems, the only source of energetic disorder arises from
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Coulomb interactions. In a real system, other sources of disorder, such as configurational

variation of molecular geometries or thermal fluctuations, would perturb the molecular or-

bital energies. Additionally, with no phase interfaces, separation of excitons into free charges

is unlikely in this system because the energetic cost to overcome the exciton binding energy

is not easily met.

The surface area of the device was varied in single-phase systems (642 nm2 – 5122 nm2).

Varying the surface area has an indirect effect on the exciton injection rate, because larger

areas will absorb more photons per step. The target injection rate for a 2562 nm2 system was

1× 10−3 ps−1, which is an overestimate compared to the AM1.5 solar spectrum. This rate

was then scaled linearly with surface area for systems larger or smaller than 2562 nm2. For

example, the 5122 nm2 system had a (1× 10−3 ps−1)(5122 nm2)/(2562 nm2) = 4× 10−3 ps−1

injection rate. Second, the effect of exciton recombination rate was tested by changing the

recombination rate from 10× 10−5 to 0 ps−1. Lastly, the effect of turning off Coulomb inter-

actions was tested. Figure 5.4C shows calculated fill factors for single-phase morphologies

vs grid surface area. The IV curves and extracted IV curve parameters can be found in the

appendix A.

The results for the single-phase systems again showed little difference when considering

recombination rate, and this difference is even less pronounced for surface areas ≤ 2562 nm2.

It was expected that the current density would not depend upon surface area, however, when

Coulomb interactions are included, we found that fill factors are larger in smaller devices.

The fill factor increases because isc grows, while imp shrinks with surface area. vmp and voc

remain essentially constant. We have noticed that removing the Coulomb interactions be-

tween carriers removes the scaling of fill factor with surface area in the single-phase systems.

As carriers become confined in smaller systems, a repulsive Coulomb environment may be

leading to the observed changes in fill factor with surface area. When the recombination rate

was set to zero, there were minor changes in extracted values. For example, |∆FF | ≤ 1.8%,

and ∆FF = 0.01 ± 1.0%. The largest change occurs for the large channel width of 64 nm,

where recombination leads to a reduction in imp and fill factor. It is also interesting to

note that recombination may be helping in the smaller channels, as a slight reduction in the

number of carriers makes the energetic landscape easier to traverse.
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5.4 CONCLUSION

In conclusion, a Monte Carlo hopping model was employed to simulate charge transport

in three classes of morphologies. Increasing the domain size, 〈LP 〉, in isotropic two-phase

morphologies increased device performance. In contrast, increasing domain size in two-phase

band systems decreased device performance. We attributed increasing device performance

in isotropic two-phase systems to decreased tortuosity of charge pathways and increased

connectivity to the electrode surfaces. We attributed decreasing device performance with

increasing domain size in band systems to a lack of interfaces for exciton dissociation. When

electron accepting aggregates are dispersed randomly throughout the electron donor, we

observed severe decreases in device performance in the isotropic two-phase systems. We

ascribed this to the formation of negatively charged defects in the hole conducting phase.

Finally, we observed that Coulomb interactions are the origin of increased efficiency in

the small devices due to a field dependent mobility. For all systems, Coulomb interactions

were found to play a crucial role in device behavior, and suggest that Coulomb interactions

are adequately accounted for in simulation models.
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6.0 MULTILAYER OPVS: CHARGE DELOCALIZATION AND

MORPHOLOGY

The text in this chapter has been adapted from Gagorik et al., Effects of Delocalized Charges

on Organic Photovoltaics: Nanoscale 3D Monte Carlo Simulations .61

6.1 INTRODUCTION

Monte Carlo simulations of charge transport in organic solar cells were performed for ideal

and isotropic bulk heterojunction morphologies while altering the delocalization length of

charge carriers. Previous device simulations have either treated carriers as point charges

or with a highly delocalized mean-field treatment. Our new model of charge delocalization

leads to weakening of Coulomb interactions and improved device performance at moderate

delocalization lengths, relative to point charges and more realistic predicted current and

fill factors. We find that charge delocalization leads to significantly increased acceptance

probability when escaping interface traps. In isotopic two-phase morphologies, increasing

the domain sizes leads to decreases in device efficiencies. We previously showed that tortuous

pathways in systems with small domain sizes can decrease device performance in thin film

systems. However, the diminishing effects of Coulomb interactions with delocalization, the

increased number of pathways in bulk systems, and efficient separations of excitons by small

domains reverses this effect in 3D. We emphasize that delocalization, which has largely been

ignored in the past, is an important parameter to consider and optimize when choosing

materials for organic solar cells.

The understanding of charge transport in disordered organic semiconductors is far from
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complete, and mechanisms are very different from inorganic materials. In these materials,

charge transport is typically described by localized carrier hopping through a manifold of

energy states. The charge carriers are localized to molecular sites through disorder of the

morphology and electron-phonon coupling. In contrast, highly delocalized carriers move

through the energy bands of an inorganic material.

However, delocalization can still play a role in organic materials. Charge delocaliza-

tion is well known from electronic spectroscopy ( i.e. π-stacked dimer excitations). It has

been suggested as a mechanism for efficient long range charge separation in organic semi-

conductors.39,40 For example, well ordered, semi-crystalline domains likely lead to charge

delocalization and improved device performance in organic photovoltaics (OPVs). Devices

with well ordered morphologies have been reported with very large fill factors (76 − 80%)

and power conversion efficiencies of up to 8.7%.41 However, the complete picture is not clear.

While charge transport is enhanced by crystalline domains, exciton transport may be inhib-

ited in well ordered systems.42 This additional level of complexity is due to the dominance

of exciton diffusion occurring by an inter-chain mechanism. In fact, exciton delocalization in

regioregular P3HT is estimated to be as low as 1-2 nm, and therefore may not play a major

role in charge separation.43 Studying the interplay of delocalization with electrostatics may

help elucidate these effects.

The combination of electrostatics and delocalization can play a major role in the charge

separation process. For example, along with hot charge transfer (CT) states, calculations

by Tamura and Burghardt show that charge delocalization can lead to ultra fast (< 100 fs)

charge separation via the lowering of Coulomb barriers.44 While delocalization can be treated

very accurately in quantum calculations,43–45 the effect is generally ignored in meso-scale

simulations of charge transport. Here, highly accurate electrostatics are achieved by largely

ignoring the effects of delocalization and treating carriers as point charges.

To address these questions, we have incorporated delocalization into our existing Monte

Carlo model16,57,59,60 of charge transport in OPVs. We have used the Monte Carlo model

to examine a series of four isotropic two-phase morphologies with increasing domain size,

three ideal morphologies based on minimum curvature surfaces, and morphologies based on

bands (see Figure 6.4). The effects of delocalization have been examined by varying the
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delocalization length of the carriers, from 0.75 to 1.50 nm. We have also simulated point

charges and non-interacting charges.

We have used the Monte Carlo simulation to predict current-voltage curves (IV Curves).

From the IV curves we have computed the efficiency of each system by calculating fill factors.

The fill factor (FF ) is the ratio of the maximum power that can be extracted from the cell

to the theoretical power, as shown in Equation 6.1:

FF =
vmp × imp

voc × isc
× 100% (6.1)

In Equation 6.1, imp is the current at maximum power, vmp is the voltage at maximum

power, isc is the short circuit current, and voc is the open circuit voltage. The fill factor

ranges between 0 and 100%, and can be viewed as the ratio of the areas of two rectangles

- a smaller one formed by imp and vmp, and a large one formed by isc and voc. The closer

the fill factor is to 100%, the more square (ideal) the IV curve, and the more efficient the

performance of the solar cell. In a real device, the solar cell is connected to an external load,

which has a resistance, R. Only when R is the ratio vmp/imp can the maximum power be

extracted from the device. The short circuit current isc corresponds to R = 0, while the

open circuit voltage corresponds to R = ∞.

6.2 MODEL

The model consists of a lattice of sites representing molecules ˜1 nm3 in size, approximately

the same size as an isolated fullerene. Each site is considered a neutral molecule. In this

work, we have used a lattice of 192 × 192 × 32 nm3. Charge carriers, such as holes and

electrons, can occupy the sites. Holes are to be viewed as an electron missing from the

highest occupied molecular orbital (HOMO) of a molecule. Electrons are to be viewed as an

excess electron in the lowest unoccupied molecular orbital (LUMO). When an electron and

hole occupy the same site, they are an exciton. Excitons can recombine to form unoccupied

sites.
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The simulation proceeds by injecting excitons randomly in the system. We have assumed

that the system is ideal in that all sites have the same probability to form an exciton,

regardless of thickness. In the future, we will relax these assumptions. For now, we have

used an injection probability estimated from the AM1.5 solar spectrum, and is proportional

to the surface area of the device. For a 256× 256 nm2 area, we have estimated an injection

probability of 10−3 ps−1. This injection probability is scaled by a factor of 1922/2562 = 0.5625

for an area of 192× 192 nm3. Recombination is also allowed to occur at a fixed probability

for excitons in the system. Unlike injections, a fixed recombination probability does not

correspond to a fixed rate because excitons are only considered when holes and electrons

occupy the same site. A constant probability is a simplification; recombination in organic

solar cells can happen by many mechanisms with different timescales.84 For example, for

a bimolecular recombination mechanism, the Langevin expression predicts recombination

rate to depend upon the hole/electron mobilities, the electron/hole concentrations, and the

intrinsic carrier concentration.84 We have used a fixed recombination probability of 10−4 ps−1,

inspired by kinetic Monte Carlo simulations.85–87

Charges hop between adjacent sites using the Metropolis criterion. The probability to

hop between sites is HABe
−β∆E if ∆E ≤ 0. If ∆E > 0, the probability to hop between sites

is HAB. HAB is a coupling constant representing the approximate electronic overlap between

molecular wavefunctions. We have used HAB = 1/3, independent of hopping direction. HAB

is made exponentially smaller, HAB = 1/27, for a two-site hop. Carriers are considered

individually for trial moves.

Sites are assigned energies representing the HOMO and LUMO energies of the molecules,

as shown in Figure 6.1. There are three main contributions: the donor/acceptor offset, the

overall device potential between electrodes (including differences between metal workfunc-

tions), and the Coulomb interaction between charges.

The sites are classified as donor or acceptor, according to the system morphology chosen,

as discussed below. The donor/acceptor LUMO and HOMO are offset by a constant energy

∆ELL = ∆EHH = 0.5 eV. This value is slightly larger than the Coulomb interaction between

two opposite charges spaced 1 nm apart (0.411 eV). It provides a driving force to separate

carriers at the interface.
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Figure 6.1: Energy model for solar cells.

Next, a linear electrostatic potential is applied between the electrodes, using the potential

difference ∆V = Vf − Vi and width of the device, L. This potential includes the external

and intrinsic bias. To construct an IV curve, this potential is varied from −2.0 to 2.0V.

Disorder is added to the system using the Coulomb interaction, as shown in Equation 6.2.

In Equation 6.2, N is the number of charges (carriers or charged defects), q is the charge,

rij is the distance between charges i and j, and ǫ = 3.5 is the dielectric constant. For

every Monte Carlo move, the Coulomb interaction must be calculated for the initial and

final state - around 2×N ×Nsteps times. Even with a cutoff of 50 nm and lookup table for

inter-cell distances, the brute force evaluation of Equation 6.2 is the most time consuming

step of the simulation, because it scales as N2. Therefore, a parallel GPU implementation

of the Coulomb sum was used to make the calculation feasible. With the GPU code, carrier

numbers of 10 000 or more can be handled.

VC(rj) =
N
∑

i=0

q

4πǫǫ0|rij|
(6.2)

Equation 6.2 describes the interaction between point charges. To compute the potential

due to a charge distribution, on uses Poisson’s Equation, ∇2V = ρ/(ǫǫ0), where ρ is the

charge density. When using a charge density described by spherically symmetric Gaussians
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Figure 6.2: Coulomb potential with delocalized charges.

(Equation 6.3), an analytical solution can be found (Equation 6.4). The result is is sim-

ply the Coulomb law multiplied by the error function, with a parameter σ describing the

delocalization length.

ρ(rj) =
N
∑

i=0

q

σ3(2π)3/2
e−

|rij |
2

2σ2 (6.3)

V erf
C (|rj|) =

N
∑

i=0

q

4πǫǫ0|rij|
erf

( |rij|
σ
√
2

)

(6.4)

The error function only modifies the Coulomb interaction at short range. For exam-

ple, when σ = 1.0 nm, 0.95 ≤ V erf
C /VC ≤ 1 at r ≥ 2.0 nm. However, at short dis-

tances, the Coulomb potential is significantly diminished. For example, when σ = 1.0 nm,

0.0 ≤ V erf
C /VC ≤ 0.68 at r ≤ 1.0 nm. This effect can be seen in Figure 6.2A, where the

potential at each value of σ converges to the Coulomb potential at large r (i.e. ≥ 3.0 nm).

The charge density as a function of r is shown in Figure 6.2B.

Figure 6.3 shows energy and acceptance probability as a function of sigma. The system

is a hole at the origin (r = 0nm), and an electron at 1 to 3 nm away. The energy change
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Figure 6.3: Probability vs sigma

for moving the electron from 1 to 2 nm, or from 1 to 3 nm, is shown in zero field and in

0.02V nm−1 = 2V/200 nm field. Table 6.1 lists numerical values associated with the graphs

in Figure 6.3. The acceptance probability increases significantly with sigma.

6.3 SYSTEMS

Morphologies were constructed with a domain of 192 × 192 × 32 nm3, or 1 179 648 sites.

Periodic boundary conditions were not used, to properly include finite size effects in real

materials. All morphologies consisted of a donor and an acceptor phase whose frontier

molecular orbital were offset by 0.5 eV, as described above. In addition to more realistic

morphologies, idealized morphologies were also considered.

The ideal morphologies studied are shown in Figure 6.4. The first three ideal morpholo-

gies were constructed from equations of triply periodic minimal surfaces.88 Triply periodic

minimal surfaces are free of self intersections and contain perfect connectivity to the elec-
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σ(nm) rhole(nm) relec0(nm) relec1(nm) ∆r(nm) E0(eV) E1(eV) ∆E(eV) β∆E Pacc(%) HabPacc(%)

0.00 0 1 2 1 -0.411 -0.206 0.186 7.184 0.076 0.025
0.25 0 1 2 1 -0.411 -0.206 0.186 7.183 0.076 0.025
0.50 0 1 2 1 -0.393 -0.206 0.167 6.460 0.156 0.052
0.75 0 1 2 1 -0.336 -0.204 0.112 4.341 1.302 0.434
1.00 0 1 2 1 -0.281 -0.196 0.065 2.496 8.243 2.748
1.25 0 1 2 1 -0.237 -0.183 0.034 1.313 26.913 8.971
1.50 0 1 2 1 -0.204 -0.168 0.015 0.599 54.958 18.319

0.00 0 1 3 2 -0.411 -0.137 0.254 9.836 0.005 0.000
0.25 0 1 3 2 -0.411 -0.137 0.254 9.835 0.005 0.000
0.50 0 1 3 2 -0.393 -0.137 0.236 9.112 0.011 0.000
0.75 0 1 3 2 -0.336 -0.137 0.179 6.933 0.097 0.004
1.00 0 1 3 2 -0.281 -0.137 0.124 4.800 0.823 0.030
1.25 0 1 3 2 -0.237 -0.135 0.082 3.180 4.159 0.154
1.50 0 1 3 2 -0.204 -0.131 0.053 2.041 12.993 0.481

Table 6.1: Interaction energies vs sigma.

trodes. The minimal surfaces chosen, which are of the form f(x, y, z) = 0, were the gyroid

(Eq. 6.5, Figure 6.4A), p-surface (Eq. 6.6, Figure 6.4B), and d-surface (Eq. 6.7, Figure 6.4C).

cos(kxx) sin(kyy) + cos(kyy) sin(kzz) + cos(kzz) sin(kxx) = 0 (6.5)

cos(kxx) + cos(kyy) + cos(kzz) = 0 (6.6)

sin(kxx) sin(kyy) sin(kzz) + sin(kxx) cos(kyy) cos(kzz)+

cos(kxx) sin(kyy) cos(kzz) + cos(kxx) cos(kyy) sin(kzz) = 0
(6.7)

In Equations 6.5, 6.6, and 6.7, k is an angular wavenumber, defining the periodicity

of the surface. We choose a k that corresponds to a wavelength λ = 8nm, as shown in

Equation 6.8, where L is a dimension of the grid, and n is the number of periods along the

dimension. Only isotropic systems (k = kx = ky = kz) were studied. In isotropic systems,

the minimum possible distance between surface boundaries is λ
2
= 4nm.

λ =
L

n
=

192 nm

8
=

32 nm

4
= 8nm (6.8)

k =
2π

λ
=

2π

8 nm
=

π

4 nm
(6.9)

In practice, sites were assigned by evaluating f(x, y, z) on the domain and threshold-

ing. Donor sites were placed where f(x, y, z) >= 0, while acceptor sites were placed where
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f(x, y, z) < 0. This assignment makes the zero-level contour-isosurface of f(x, y, z) the

boundary between donor and acceptor sites.

The last ideal morphology studied was the “band” morphology. The band morphology

is a checkerboard pattern of alternating donor and acceptor sites in the yz-plane, extended

along x-direction. Two band morphologies were used. The band4 morphology had a checker

size of 4×4 nm2. The band8 morphology had a checker size of 8×8 nm2. Figure 6.4D shows

a 32× 32× 32 nm3 slice of the band4 morphology.

More realistic isotropic morphologies, akin to typical organic bulk heterojunctions, are

also shown in Figure 6.4. Isotropic morphologies were constructed using an algorithm dis-

cussed previously,57 extended to three dimensions. In the algorithm, a grid of random noise

is constructed in the domain. Then, this noise is convoluted with a three-dimensional Gaus-

sian of desired width, σ. Finally, thresholding is applied to make a roughly 50/50 mixture

of isotropic two-phased morphology. Four isotropic systems were studied, named iso3, iso4,

iso6, and iso9. The value of σ used for the Gaussian kernels were 3, 4, 6 and 9 nm. These σ

lead to a domain size of 5.1, 8.1, 9.57 and 13.97 nm and inter-facial area of 196.04, 123.31,

104.39 and 71.52m2 cm−3. The iso3 morphology domain size is comparable to the ideal mor-

phologies minimum distance between phases of 4 nm, excluding the band8 morphology. The

band8 morphology is more in line with the iso4 system.

6.4 DISCUSSION

Figure 6.5A shows computed fill factors for ideal morphologies. Aside from the band8 mor-

phology, each ideal system has the same domain size of 4 nm. As the delocalization is

increased from point charges (σ = 0.00 nm) to delocalized charges (σ = ∞), the average

FF increases from 35% to 58%. The FF continues to increase, less dramatically, as the

delocalization is increased to σ = 1.50 nm. Non interacting charges, which can be viewed as

infinitely delocalized carriers in this model, yield devices with the best FF (70%). While

there is no clear trend in morphology with delocalized charges, the trend with point charges

is gyroid < d-surface < p-surface < band4.
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Figure 6.5B shows computed fill factors for isotropic two phase morphologies as a function

of sigma. The iso4 and iso6 systems have very similar domain size (8.1 and 9.57 nm). Within

error, their FF are very similar. As the delocalization of carriers increases, the device

performance increases. The most dramatic increase occurs between point charges and σ =

0.75 nm, where the fill factors increase from < 40% to > 50%. However, the differences of

FF for σ = 0.75 − 1.50 nm is much less pronounced. Only when non-interacting charges

(σ = ∞) are used, does the FF increase significantly.

In a previous study, on simulations of 2D monolayer devices, we found that decreasing the

domain size leads to poorer charge extraction in thin films.57 We argued that while smaller

domain sizes lead to efficient exciton separation, small tortuous pathways can hinder charge

extraction. The close proximity of charges and tortuous morphology to the electrodes lead to

a disordered energy landscape with a limited number of viable pathways to the electrodes.

The trend appears to reverse in larger bulk 3D systems. That is, smaller domains show

improved device performance at each value of the delocalization parameter σ. However, we

note that the effects are relatively small and within error bars. More replicas need to be

simulated and averaged to elucidate the effect. The interplay between tortuous pathways

and efficient exciton separation, the separation wins. We propose that more pathways have

opened up in the 3D environment than were present in the 2D thin film simulations.

Figure 6.6 shows snapshots of the Monte Carlo simulation for the iso3 morphology at

voc. At voc, the potential between the electrodes balances the internal intrinsic bias. There-

fore, there is very little incentive for excitons to separate and free carriers to travel to the

electrodes. Recombination is the most likely fate of the carriers in this regime. However,

the effects of charge delocalization are easily visualized at voc. When σ = 0.75 nm (6.6A,

6.6C), holes and electrons remain bound in interface traps. However, as the delocalization

is increased to σ = 1.50 nm (6.6B, 6.6D), the number of bound interface traps decreases sig-

nificantly. The energetics of escaping the interface trap are more favorable when the carriers

are delocalized.

Consider, for example, an electron hole pair trapped at an interface. The exciton has

separated, putting the electron in the LUMO of the acceptor, and the hole in the HOMO

of the donor. The Coulomb attraction between the hole and electron (ǫ = 3.5) separated by
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1 nm is 0.411 eV, nearly 15.9 times larger than kT at 300K (0.0259 eV). A potential difference

of 1.0V between electrodes separated by 256 nm only releases 0.003 90 eV of energy during

the 1.0 nm hop out of this state. Given that the Coulomb attraction is only halved at

2.0 nm, this means the hole and electron will “separate” only a minuscule fraction of the

time (e−β∆E = 0.0407%). Even if the carriers reach this state, it is extremely likely the

charges fall back into the charge trap state, and possibly recombine. There must be other

mechanisms to explain the efficient charge separation in organic materials.

The delocalization of charges can weaken the Coulomb interaction between trapped car-

riers. The interaction of spherically symmetric Gaussian charge distributions can be modeled

using the standard Coulomb law and the error function (Eq. 6.4). Using this model, the prob-

ability to separate carriers, of only modest delocalization lengths (0.5-1.5 nm) can increase

dramatically. For example, a delocalization length of 1.0 nm dampens the Coulomb interac-

tion by erf(1.0/
√
2) = 68% at an electron hole separation of 1.0 nm. The probability to es-

cape the charge trap state increases by over a factor of 100 (∆E = 0.0806 eV, P = 4.42%).

6.5 CONCLUSION

In summary, we have predicted that the charge delocalization leads to increased charge

extraction in OPVs. We propose that the weakening of energetic barriers, particularly in

Coulomb interface traps leads to the efficient separation of charges. Lastly, in isotropic two-

phase morphologies, decreased domain size leads to increased device performance. Unlike

thin films, where the Coulomb force dominates the energy landscape of separated charges,

more pathways open up in 3D systems. Small domains lead to efficient exciton separation,

while the increased number of pathways in 3D alleviate interface trap formation between

separated carriers.
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Figure 6.4: 32x32x32 slices of 3D surfaces.
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7.0 CONCLUSION

In this chapter, the findings of this thesis are summarized.

7.1 SUMMARY

7.1.1 Injection

The physical picture of charge injection in OFETs matters when attempting to understand

charge transport in these devices. On the one hand, the “seeding” procedure represents

the introduction of carriers at random locations into the semiconductor. In this case, the

potential difference between the gate and source electrodes lead to the oxidation of the

semiconductor, introducing carriers into the conduction channel. On the other hand, the

“injection” procedure represents the effect the gate electrode has on the energy of frontier

orbitals relative to the Fermi energy of the electrodes. As the orbital energy is brought in

line with the electrode Fermi level, charge injection from the electrodes becomes an energet-

ically favorable process. While both procedures are aspects of the same phenomenon, it is

important to examine the effects of these processes in finite sized devices.

I explored charge transport in thin-film organic field effect transistors during and after

device turn-on using Monte Carlo simulation, paying close attention to the effect of device

dimensions and Coulomb interactions. I used two initial configurations for charge carriers,

an empty lattice and a randomly seeded lattice. In both cases, charges were injected with

a constant probability throughout the simulation and a desired carrier concentration was

maintained, and I found that a more sophisticated injection model was not needed.
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The results for an empty lattice, independent of the presence of Coulomb interactions,

showed a turn-on source-drain voltage in the current-voltage curve that was, however, tran-

sient, and disappeared after the system equilibrated, resembling a typical current-voltage

curve for a randomly seeded system. On closer examination, I found that the turn-on for

an empty lattice was linked to an oscillating instantaneous current during device turn-on.

More surprisingly, the oscillating current was present in the well-equilibrated lattice, though

lower in magnitude, even for a randomly seeded lattice, which showed no turn-on voltage.

The Fourier transform of current as a function of simulation time, independent of ini-

tial configuration of charge carriers (empty lattice or randomly seeded) and the presence

of Coulomb interactions, showed well-defined fundamental peaks and overtones that were

a function of device dimensions. While independent of device width, peak frequencies and

their overtones shift, non-linearly, towards lower frequencies as device length increased. Ad-

ditionally, carrier lifetime and path length were found to increase non-linearly with device

length and remain constant with device width. I proposed that the nonlinear behavior of

the carrier lifetime, related to the frequencies observed in the Fourier transform, stems from

nonlinear increase of carrier path length with device length.

Finally, I proposed that the oscillating behavior of the current was a result of carrier

injection from the source, which could not inject charges when the system was at the free

charge carrier concentration limit. As a result of this injection process, carriers were found

to travel in waves of charge density even in the well equilibrated device. The fundamental

oscillation frequencies decrease non-linearly with device length. Therefore, this effect is a

phenomenon of finite sized devices.

Observing non-linear behavior in experimental devices would be a worthwhile exercise.

That is, how do carrier lifetime and path length change with device dimensions, and what

would this mean for concepts like carrier mobility? Likewise, do charge carriers travel in

waves in real devices? If our proposed mechanism is correct, then they may, for real devices

do have a restricted free carrier concentration, fixed by a gate electrode, as well as injection

probability. To answer these questions, however, device properties like source-drain current

would need to be resolved to timescales on the order of nanoseconds. This is not outside the

realm of techniques like complex impedance spectroscopy, used to measure AC conductivity,
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and provide information on processes with diverse timescales. For example, dielectric spec-

troscopy measurements have been made of doped polythiophene, poly(phenylene vinylene),78

or polypyrrole,79 which have measurements in the sub-THz range (τ ≈ ω−1, THz ∼ps).

7.1.2 Trap/Barrier Concentration

The behavior of current in OFETs as a function of trap concentration at modest trap energies

(0.0 eV < ∆V ≤ 0.3 eV for electrons, −0.3 eV ≤ ∆V < 0.0 eV for holes) is antisymmetric.

That is, the current does not reach a minimum at 50% traps, as would be predicted by

simple percolation theory. Rather, the minimum is reached more rapidly (≤ 20% traps) for

energies as low as |∆V | ≤ 0.15 eV. Likewise, recovery of the current happens much earlier

(∼60% traps/barriers) than expected based on the initial falloff. Barriers of modest energy

(0.0 eV < ∆V ≤ 0.3 eV for holes, −0.3 eV ≤ ∆V < 0.0 eV for electrons), produce a current

vs. concentration curve that is a mirror image of the trap system.

7.1.3 Negative Differential Resistance

Beyond a critical value (|∆V | > 0.38 eV for the systems studied), the mirror symmetry

between trap and barrier current vs. concentration curves is broken. At this point, traps are

significantly deep that carriers cannot escape. However, beyond this energy, barriers begin

to behave like defects. The probability for carriers to sit behind defects increases as the

voltage is increased. This leads to a decrease of current in the saturation region. Coulomb

interactions with the “stuck” carriers push other carriers around the barriers. This leads to

a reduction in the magnitude of the negative differential resistance.

7.1.4 Monolayers

I extended the Monte Carlo model to solar cells simulation. The extended model was em-

ployed to simulate charge transport in three classes of morphologies. Increasing the do-

main size, 〈LP 〉, in isotropic two-phase morphologies increased device performance. In con-

trast, increasing domain size in two-phase band systems decreased device performance. I
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attributed increasing device performance in isotropic two-phase systems to decreased tortu-

osity of charge pathways and increased connectivity to the electrode surfaces. I attributed

decreasing device performance with increasing domain size in band systems to a lack of inter-

faces for exciton dissociation. When electron accepting aggregates are dispersed randomly

throughout the electron donor, I observed severe decreases in device performance in the

isotropic two-phase systems. I ascribed this to the formation of negatively charged defects

in the hole conducting phase.

Larger domains leading to more efficient exciton separation is in opposition to the com-

mon held belief that small domains to mitigate recombination losses. While this is in some

sense true, as shown by the monolayer band systems, a more complex mechanism is at play.

This is because there are still hindrances to charge transport after exciton separation. Es-

caping charge transfer states is an energetically expensive process. While the LUMO-LUMO

offset provides energy to push the exciton into the charge transfer state near an interface,

more energy is still needed to escape the charge transfer state. Other process must be at

play, such as kinetically hot electrons or weakening of Coulomb barriers through charge

delocalization.

Finally, I observed that Coulomb interactions are the origin of increased efficiency in the

small devices due to a field dependent mobility. This was a hint that charge delocalization

can lead to more efficient devices. This is because non-interacting charges can be viewed

as infinitely delocalized charges. For all systems, Coulomb interactions were found to play

a crucial role in device behavior, and suggest that Coulomb interactions are adequately

accounted for in simulation models.

7.1.5 Multilayers

Multiple layer simulations are expensive. The equilibration time and number of charge

carriers increase significantly. Calculations were feasible only by extensive use of GPUs for

the Coulomb interactions. Such novel algorithms are a breakthrough for OPV simulation.

Isotropic morphologies of increasing domain size showed less correlation with domain

size than monolayer systems. The increased number of charge pathways in three dimensions
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reduces the effects of tortuosity observed in monolayers. In monolayer systems, the fill factor

increased with domain size, because the tortuosity decreased. Even the smallest of domain

sizes in multilayer systems shows efficient charge extraction.

Device efficiency for ideal morphologies was not significantly different than isotopic sys-

tems. This suggests that morphology, at least at the level studied, is not playing as much

of a role in charge extraction. While ideal morphologies contain perfect connectivity to the

electrodes, multilayer isotopic systems still contain appreciable connectivity. For this reason,

it is not surprising that efficiencies between the two were similar.

Lastly, I have predicted that the charge delocalization leads to increased charge extraction

in OPVs. In some sense, charge delocalization is a finer aspect of system morphology. Align-

ment of aromatic rings, for example, can lead to charge delocalization and increased mobility

in preferential directions. I propose that the weakening of energetic barriers, particularly

in Coulomb interface traps leads to the efficient separation of charges. Other mechanisms,

absent from the model, such as hot carriers, could lead to interface trap escape. This work

has made it apparent that exciton separation is an easier step when compared to breaking

apart charge transfer states.

In summary, in isotropic two-phase morphologies, decreased domain size leads to in-

creased device performance. Unlike thin films, where the Coulomb force dominates the

energy landscape of separated charges, more pathways open up in 3D systems. Small do-

mains lead to efficient exciton separation, while the increased number of pathways in 3D

alleviate interface trap formation between separated carriers.

7.1.6 Conclusion

This thesis has focused on on using Monte Carlo simulation to extract device relevant prop-

erties, such as the current voltage behavior of transistors and of efficiency photovoltaics,

from the molecular picture of hopping. The physical picture presented by the model, which

is often absent from other models, has been invaluable to interpreting OFET measurements.

The approximation of the Gaussian disorder of energy levels (traps) has been relaxed. This

has provided a model with a highly tunable energy level distribution, that can be compared
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easily with experiments. From the model, the mechanism by which current is mediated by

the concentration traps and barriers at different regions of the current voltage curve is now

understood and verified. Likewise, a mechanism for negative differential resistance, which

is observed in experiments,62 has been proposed in terms of the presence of barriers and

defects.

Extending the hopping model to OPVs is a new approach, markedly different from kinetic

Monte Carlo and continuum models. Predicting device efficiency from morphology is a hard

problem, involving effects from multiple length and time scales. Connecting the molecular

picture of electron transfer to the macroscopic world of functional devices is necessary for fill

factor prediction. The model has begun to challenge long help beliefs about the transport

of charges in OPVs. The common argument of small domain size leading to efficient exciton

separation in OPVs is only part of a more complex picture involving the interplay between

domain size, connectivity to electrodes, tortuosity of pathways, Coulomb bound interface

traps, and charge delocalization.
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APPENDIX A

OPV MONOLAYER DATA

This appendix contains data that accompanies chapter 5.
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A.1 BAND
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Figure A1: IV curve parameters for 2D band morphologies.
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Figure A2: IV curves - band with recombination

105



PR = 0 run 0 run 1 run 2

4 nm

FF = 50.3 %
Voc = 1.505 V
Isc = -0.293 nA
Vmp = 0.972 V
Imp = -0.228 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band4 [run 0]

FF = 50.5 %
Voc = 1.505 V
Isc = -0.298 nA
Vmp = 0.979 V
Imp = -0.232 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band4 [run 1]

FF = 50.8 %
Voc = 1.503 V
Isc = -0.297 nA
Vmp = 0.968 V
Imp = -0.234 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band4 [run 2]

8 nm

FF = 50.8 %
Voc = 1.500 V
Isc = -0.295 nA
Vmp = 0.982 V
Imp = -0.228 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band8 [run 0]

FF = 50.2 %
Voc = 1.499 V
Isc = -0.301 nA
Vmp = 0.973 V
Imp = -0.233 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)
6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band8 [run 1]

FF = 51.0 %
Voc = 1.496 V
Isc = -0.300 nA
Vmp = 0.981 V
Imp = -0.233 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band8 [run 2]

16 nm

FF = 49.5 %
Voc = 1.500 V
Isc = -0.299 nA
Vmp = 0.983 V
Imp = -0.225 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band16 [run 0]

FF = 49.6 %
Voc = 1.502 V
Isc = -0.296 nA
Vmp = 0.966 V
Imp = -0.228 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band16 [run 1]

FF = 49.8 %
Voc = 1.499 V
Isc = -0.301 nA
Vmp = 0.962 V
Imp = -0.233 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band16 [run 2]

32 nm

FF = 49.1 %
Voc = 1.498 V
Isc = -0.296 nA
Vmp = 0.953 V
Imp = -0.228 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band32 [run 0]

FF = 48.7 %
Voc = 1.502 V
Isc = -0.296 nA
Vmp = 0.968 V
Imp = -0.224 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band32 [run 1]

FF = 49.7 %
Voc = 1.497 V
Isc = -0.291 nA
Vmp = 0.959 V
Imp = -0.226 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band32 [run 2]

64 nm

FF = 47.0 %
Voc = 1.506 V
Isc = -0.294 nA
Vmp = 0.938 V
Imp = -0.221 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band64 [run 0]

FF = 47.9 %
Voc = 1.503 V
Isc = -0.294 nA
Vmp = 0.960 V
Imp = -0.220 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band64 [run 1]

FF = 46.8 %
Voc = 1.500 V
Isc = -0.294 nA
Vmp = 0.944 V
Imp = -0.219 nA

2 1 0 1 2 3 4
V (V)

-0.40

-0.20

0.00

0.20

0.40

I (
nA

)

6

3

0

3

6

J 
(A

 m
−2

)

1e3
Band64 [run 2]

Figure A3: IV curves - band without recombination
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A.2 MONO
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Figure A4: IV curve parameters for 2D mono morphologies.
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Figure A5: IV curves - mono with recombination
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Figure A6: IV curves - mono without recombination
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Figure A7: IV curves - mono without Coulomb
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A.3 ISO
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Figure A8: IV curve parameters for isotropic 2D morphologies.
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Figure A9: IV curves for isotropic 2D morphologies with pepper 10.
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APPENDIX B

OPV MULTILAYER DATA

This appendix contains data that accompanies chapter 6. All IV curves, surface morpholo-

gies, and IV curve parameters are included.
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B.1 ISOTROPIC MORPHOLOGIES

B.1.1 Surfaces

(A) iso3 (B) iso4

(C) iso6 (D) iso9

Figure B1: Isotropic 3D surfaces.
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B.1.2 Parameters
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Figure B2: Summary of isotropic morphologies.
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Figure B3: Iso 3D - FF
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Figure B4: Iso 3D - Voc
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Figure B5: Iso 3D - Vmp
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Figure B6: Iso 3D - Isc
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Figure B7: Iso 3D - Vmp
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Figure B8: Iso 3D - Pth
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Figure B9: Iso 3D - Pmp
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B.1.3 IV Curves
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Figure B10: IV curves - iso3
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Figure B11: IV curves - iso4
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Figure B12: IV curves - iso6
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Figure B13: IV curves - iso9
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B.2 IDEAL MORPHOLOGIES

B.2.1 Surfaces

(A) gyroid (B) p-surface

(C) d-surface (D) band4

Figure B14: Ideal 3D surfaces.
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B.2.2 Parameters
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Figure B15: Summary of ideal morphologies.
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Figure B16: Ideal 3D - FF
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Figure B17: Ideal 3D - Voc
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B.2.3 IV Curves
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Figure B23: IV curves - band4
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Figure B24: IV curves - band8
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Figure B25: IV curves - gyroid
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Figure B26: IV curves - p-surface
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Figure B27: IV curves - d-surface
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APPENDIX C

SOLVENT SHIFT MONTE CARLO

C.1 INTRODUCTION

In this section, the goals of this project are first presented. Then, an introduction to the

problem is given.

C.1.1 Goals

The aim of this research was to extend the SSMC method,89 proposed by Hixson et al. to

the atomistic simulation of polymers in explicit solvents. The main hypothesis was that the

SSMC method would significantly increase the phase space sampling of atomistic systems

compared to existing methods. The project work was performed by first implementing a

Monte Carlo simulation code for atomistic systems. The SSMC method was then examined

for simple polymer systems in explicit solvent.

C.1.2 Problem

The monte carlo method is a powerful method with a lot of promise for the statistical

mechanical simulation of polymers in chemistry. As an alternative to the molecular dynamics

technique, Monte carlo offers the theoretical potential to explore phase space very efficiently.

In practice, however, MD is often the method of choice for the simulation of chemical systems

in explicit solvents.
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The success of a Monte carlo technique intimately relies on the ability to produce reason-

able random input. In the context of chemistry, one desires to create physically reasonable

configurations of a system in a random way. The task is difficult and impractical when

systems are dense. The short comings of the Monte carlo method in dense systems make the

MD method more desirable.

The problem faced in this work was to apply a relatively new Monte carlo move, or way

of generating random input, to dense systems.

C.2 BACKGROUND

In this section, background on the Monte carlo method is presented. The core principle

of importance sampling is explained by first discussing a brute force averaging example.

The Metropolis method to importance sampling is then introduced, and put into context

by discussing Monte carlo moves in chemical simulations. Finally, the issues faced by the

Monte carlo method in dense systems are explained.

C.2.1 Monte Carlo

A very well established and commonly used method for computer simulation is called Monte

carlo. Though applicable in many different ways in many different subjects, all forms of

Monte carlo generally use random numbers to solve a problem of interest. In the context

of the chemistry, Monte carlo (MC) can be used to sample the configurational space of a

system of particles, among other things. In particular, one can use the Monte carlo method

to evaluate the thermal averages defined by statistical mechanics. Thermodynamic averages

offer a solid connection between experimental observables and theory, making their efficient

and accurate evaluation important. Consider the standard form for the average value of a

quantity A, as prescribed by statistical mechanics.

< A >=

∫

dqNdpNA(qN ,pN)P (qN ,pN)
∫

dqNdpNP (qN ,pN)
(C.1)
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In equation C.1, the average of A is simply the sum of the possible values of A weighted

by the likelihood of A. The possible values of A depend upon the domain over which

A can be defined. In statistical mechanics, A is any quantity that can be calculated by

quantum mechanics or approximated by classical mechanics. Statistical mechanics gives the

likelihood of A, in the canonical ensemble, to be the Boltzmann distribution. In a classical

approximation, A takes on values which are defined by all possible positions and momenta

of the particles in a system. This very large domain, of dimension 6n, is often called phase

space. For all but the most special cases, the thermodynamic average is a multidimensional

integral that cannot be evaluated with traditional methods. The dimensionality is simply

too large.

C.2.2 Brute Force

To understand how Monte carlo works, first consider the steps of a brute force monte carlo

scheme. The steps can be summarized as follows.

1. domain

2. random input

3. evaluate function

4. average (over distribution)

In this scheme, one chooses random points in some domain, evaluates some function on

that domain, and averages the result over some known probability distribution. The classic

example of this process is determining the average depth of the Nile river. For example, the

depth of water may be measured at random points on the surface of the earth. The depth

of the Nile is then determined by averaging the depths subject to a probability distribution.

The probability distribution describes how likely it is for a point on the earth to be in the

Nile river.

The brute force scheme suffers from some obvious drawbacks. First, one must choose a

great deal of points, the number of which can never be known, to obtain accurate results.

That is, points not in the Nile River do not contribute to the average. Additionally, we are

less likely to pick points the contribute significantly to the average as the domain increases
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in size. Second, one must know the probability distribution fully. The brute force method

illustrates the principles behind a monte carlo average, but is not used in practice.

C.2.3 Importance Sampling

Instead of evaluating integrals using the brute force scheme, the method of importance

sampling scheme can be used. Importance sampling can be viewed as a variation on the

brute force method. The steps are as follows.

1. domain

2. random input ∝ distribution

3. evaluate function

4. average (equally)

There are two main differences. First, the random input is chosen to be proportional

to the probability distribution. Second, the average is not performed over the probability

distribution. All points are considered to contribute equally to the average. In the context

of the Nile river example, random points on the earth are more likely to be chosen in the

region of containing the Nile River. One can average the resulting depths equally because

the depths appear with their correct weight.

C.2.4 Metropolis Method

To apply the method of importance sampling, one must devise a scheme to produce random

input proportional to a probability distribution. Metropolis et al. 13 were able to devise such

a scheme by appealing to concepts in probability theory. The method provides a way to

decide if freely chosen random input is reasonable ( proportional to the distribution ). It

works by making a given state of a system depend only upon the previous state.

To understand how Metropolis produced this acceptance criterion, one first imagines a

system with a set of possible states. First, there is a probability ρn that the system is in a

given state n, called the current state. Second, there is a probability πn→m that the system

transitions from the current state n to another state m. This transition probability depends
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only upon the current state. The probability to be in a new state is simply the probability

to be in the current state times the likelihood to transition to the new state, ρm = πn→mρn.

By continually multiplying by the likelihood to transition between states, the probability

to be in a new state approaches a well defined limiting distribution ρ∗. That is, successive

applications of πn→m to ρ∗ leave the system at equilibrium. By satisfying this condition

on πn→m, called balance, Metropolis was able to form the acceptance criterion. With the

acceptance criterion, and the assumption that sampling is ergodic, the importance sampling

method is easily employed.

Here is how it works. One can be more strict on the balance condition. At equilibrium,

one can say that the net flux between two states is zero. The system is said to satisfy detailed

balance.

αm→npm→nρm = αm←npm←nρn (C.2)

Equation C.2 is a law dictating how states of the system change. The states of the

system, or their location in the domain, are n and m. The probability that a system be in

any particular state is ρm or ρn. The probability that a system attempt a transition from

one state to another is given by pm→n or pm←n. The probability that a system accept a

transition from one state to another is given by αm→n or αm←n. Note that the probability to

transition between states, πn→m or πn←m, is simply the product of attempting and accepting

a transition.

To take advantage of equation C.2, Metropolis assumed that the probability to propose

transitions was symmetric.

αm→n = αm←n (C.3)

In statistical mechanics, the probability to exist in some state is simply the Boltzmann

distribution for the canonical ensemble.

ρn =
e−βUn

Z (N, V, T )
(C.4)

In equation C.4, Un is the potential energy of state n and Z (N, V, T ) is the config-

urational partition function at constant volume, temperature, and particle number. With
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Figure C1: Metropolis method acceptance criterion.

these assumptions, detailed balance can be satisfied by making the probability of accepting

a transition have the following form.

pm→n = min
{

1, e−β[Un−Um]
}

(C.5)

In equation C.5, one takes the probability to transition from state m to state n as the

minimum of 1 or the Boltzmann factor describing the potential energy difference between

the two states. The criterion is visualized graphically in figure C1. Whenever the energy

of the new state lower that the energy of the current state, the new state is accepted with

unit probability. However, whenever the energy of the new state is higher than the energy

of the current state, the new state is accepted is probability that decays exponentially with

the difference in energy between the states.

The Metropolis criterion allows random input to be generated according to the Boltz-

mann distribution, an essential step to importance sampling and the application of the monte

carlo method to chemical systems.
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C.2.5 Chemical Context

In chemical calculations, one can easily apply the importance sampling method discussed

above. In this situation, one evaluates the thermodynamic integral C.1 for the chemical

system. The domain, or limits of integration, are all possible configurations or locations of

particles for the system. Of course, not all configurations contribute to the integral because

the Boltzmann distribution says some configurations are not likely. And so, in the spirit of

importance sampling, we approximate the integral by performing averages over configura-

tions that appear with their proper weight. We generate these configurations by producing

random configurations of the system and subjecting them to the Metropolis criterion de-

scribed earlier.

C.2.6 Moves

A very powerful aspect of the Metropolis scheme is the absolute freedom one has in choosing

random configurations. We are free to perform nonphysical transitions, allowing the pos-

sibility to rapidly sample the domain. There are several standard moves used to explore

conformational degrees of freedom in molecular systems. The simplest possible move is a

simple translation of a randomly chosen particle. However, such moves are only acceptable

for all but the smallest displacements in systems where the atom is in a molecule. This is

because of somewhat large energetic changes from multiply disrupted bond lengths, angles,

and torsions.

The more common approach is to choose internal degrees of freedom for possible configu-

rational changes. During these moves, all other degrees of freedom are kept frozen. Examples

include bond length changes, bond angle changes, and torsion angle changes. Additionally,

translations and rotations of entire molecules are often applied.

While some of these small scale moves work well, additional large scale moves can be

much more advantageous. The phase space can be sampled extremely rapidly with the

use of clever moves, especially when used in combination. Some examples include parallel

tempering, configurational-bias monte carlo, hybrid Monte carlo, pivot moves, and geometric

cluster algorithms. Torsional moves, in particular, greatly change the configuration of a
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polymer.

C.2.7 Dense Systems

As powerful as monte carlo can be for statistical mechanical simulations, there is a reason

MD is often preferred for the simulation of polymers in explicit solvents. It is unfortunate

that, almost all moves that significantly change the configuration of the polymer are rejected

in explicit solvent. This means that sampling is probably not ergodic, and accurate averages

can not be obtained.

For example, consider performing a Monte Carlo simulation of a polymer in explicit

solvent in the canonical ensemble. Trial moves that change the configuration of the polymer

could easily generate overlapping particles. Overlapping particles are a major problem in

Monte carlo. Recall that the Metropolis criterion leads to the probability of accepting a trial

move depending upon the energy difference between the old state configuration and the new

proposed state. The energy of these states is calculated using a parameterized force field

which undoubtedly must contain some inter-particle pair potential. Computing the energy of

a configuration that contains overlapping particles would clearly cause a pair potential, such

as the Lennard-Jones potential, to become large. Thus, the energy of such a configuration

would be large compared to the configuration it was generated from and such a trial move

would be rejected.

C.3 METHODS

In this section, the Solvent Shift Monte Carlo move and its implementation are described.

A brief overview of the simulation program is given.

C.3.1 Solvent Shift

The solvent shift monte carlo move aims to alleviate the problem of overlapping particles by

combining an internal coordinate move for a solute with a cluster rotational move for any
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overlapping solvent particles. In this section, the steps of the SSMC move are outlined.

The solvent shift monte carlo move involves small and large internal torsional moves of

a solute polymer followed by an iterative rotational cluster move of surrounding solvent to

remove particle overlap. The steps might be summarized as follows.

1. choose random dihedral

2. choose random angle

3. choose rotation method

4. find atoms that move

5. generate rotation matrix

6. perform dihedral rotation

7. identify overlapping particles

8. rotate overlapping solute

9. iteratively identify and rotate solute

10. propose or terminate

One must choose a random solute dihedral angle to change. While a dihedral angle can

be defined between any four points in space, for a molecule it is common to define dihedral

angles between four atoms connected along a line. If the atoms 1-2-3-4 are connected along a

line, then a dihedral angle is defined between them. This type of dihedrals is called a proper

dihedral angle, and turn out to be the most convenient types of dihedral to perform Monte

carlo moves with. A list of all proper dihedral angles for a system is stored, and a randomly

generated integer in the index space of this list is generated in order to choose the dihedral

angle. Though any proper dihedral angle may be chosen this way, it is important to note

that proper dihedral angles near the core of a large polymer are generally more tricky to

accept in dense systems.

One must choose a random angle. A random floating point number is first generated

between negative and positive one half. This number is then multiplied by a preset de-

sired maximum angular displacement. The end product is a number between negative and

positive the maximum angular displacement. This method is necessary to ensure that the

probability of proposal remains symmetric in the Metropolis criterion. Often, the preset
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desired maximum angular displacement is allowed to optimize during equilibration periods

of the simulation. Another option for angle choosing exists if one desires angles to be within

a certain range. A pre-chosen angular range and average value is a first specified. A random

floating point number is generated between negative and positive one half. This number is

then multiplied by the pre-chosen desired range. Another random number between zero and

one is then generated. If this number is larger than one half, the desired average angle is

added. Otherwise, the desired average angle is subtracted.

One must choose how the molecule is to rotate. For this work, one side of a dihedral is

kept frozen while the other side rotates. Consider a proper dihedral defined between atoms

1-2-3-4. One may choose atoms 1-2-3 to remain fixed while atom 4 (and all atoms connected

to atom 4) rotate. Conversely, one may choose atoms 2-3-4 to remain fixed while atom 1

(and all atoms connected to atom 1) rotate. Another option for rotation might be to fix

atoms 1-2 and rotate atoms 1 and 4 (and their connections) by half angles. This option

is an unnecessary complication for the SSMC move. The side of the dihedral to rotate is

randomly chosen by generating a random number between zero and one. If this number is

greater than one half, then a rotation axis is defined between atoms 2-3, while atom 4 and its

connections are targeted for rotation. Otherwise, a rotation axis is defined between atoms

3-2, while atom 1 and its connections are targeted for rotation.

One must find all atoms that rotate based on the axis chosen and the side of the dihedral

that moves. A list of all connections in the system is stored. An algorithm is devised to use

this list to generate all atoms that should move from these connections. A recursive function

is used with care for this algorithm.

One must generate a rotation matrix based on the axis chosen and the angle chosen.

Various methods exist for producing rotation matrices. The method of quaternions was

used to produce the rotation matrix in this work. Quaternions are simply four dimensional

vectors of unit length, i.e. points on the surface of a four dimensional hyper-sphere. The

space of rotations in three dimensions can be shown to be equivalent to the surface of this

hyper-sphere. A quaternion can be generated easily from an axis and angle using a simple

formula. The usefulness of quaternions lies in the simple arithmetic needed to generate the

rotation matrix (no expensive sin or cos functions need to be evaluated). The inverse of the
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rotation matrix, also needed, is simply its transpose because rotation matrices are unitary.

With the axis, angle, moved atoms, and rotation matrix, a rotation move on the solute is

performed. One must choose an atom to use as a reference for rotation calculations. An atom

in the proper dihedral axis is chosen as a reference point. For example, atom 3 in dihedral

angle 1-2-3-4 is chosen when atoms 2-3 define the axis and atom 1 remains fixed. This step is

necessary because rotation matrices can not be trivially applied to atoms restricted to move

under periodic boundary conditions. Correct application of rotation matrix is ensured by first

calculating the minimum distance vectors between the reference atom and atoms targeted

to move. This may be visualized as switching to a minimum image frame of reference about

the reference atom. The rotation matrix is applied to the set of calculated minimum image

vectors. After rotation, the rotated vectors become the new moved atom positions by adding

the reference atom vector and fixing periodic boundaries. Everything described up until this

step is essentially equivalent to a simple torsional move.

After the solute rotation, particles that overlap are identified. This is done by looping

over the neighboring atoms that moved and calculating atom-atom distances. If the distance

is less than some tolerance, the molecule an overlapping atom belongs to is targeted. Should

the molecule identified as overlapping is the solute molecule itself, the move is rejected

immediately.

The identified overlapping molecules are simply rotated in the reverse direction ( using

the transpose rotation matrix ) about the dihedral axis. The process is repeated. Molecules

are continually identified until no overlapping particles are identified. Should this condition

never be met, the move is rejected after some set number of iterations. During this process,

intimate tracking of molecules that move is kept.

The configuration reached is then subjected to the Metropolis criterion kept earlier.

Energy change is calculated for particles that moved only. No bond angles or bond lengths

change during a dihedral move. No non-bonded terms change between particles that do not

move. This includes non-bonded forces between atoms that moved and neighboring fixed

atoms, improper dihedrals that changed, and proper dihedrals that changed. List of proper

and improper dihedrals that may change during a dihedral move are pre-computed at the

beginning of a simulation.

141



Figure C2: SSMC move steps.

C.3.2 Programming

This section contains a brief discussion of the simulation program written to investigate the

SSMC move. The code was written using the C++ programming language (1998 standard)

using an object oriented approach.

The code uses a simulation run object to perform a Monte carlo simulation. The simu-

lation run object orchestrates the behavior of move objects and an energy calculator object.

The simulation run object implements the main Monte carlo loop, handles input, and reports

output. Input information included a list of atoms, molecules, molecular terms (bonds, an-

gles, dihedrals, non-bonded information, connect information), an initial configuration, and

program options. This information is rigorously checked for consistency and stored in many

objects types. The object types include points, matrices, atoms, molecules, bonds, angles,

proper dihedrals, improper dihedrals, simulation box, topology, and simulation run. Output

information includes a configuration trajectory as well as various simulation parameters and

statistics.

The move objects perform standard Monte carlo moves. There is a base move class

through which various specific moves are derived. The base class knows how to apply the
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Metropolis criterion, implements the accept and reject behavior of a move, and suggests

a virtual function to perform a given move. Derived moves implemented were molecule

translation, molecule rotation, bond displacement, angle bending, small and large proper

dihedral moves, and of course the SSMC move.

The energy calculator object knows how to calculate total energy and energy changes

by communicating with a topology object. The topology object contains a list of atoms,

molecules, bonds, angles, dihedrals, and non-bonded information. The topology object

knows how to report potential contributions from its various terms. The energy calcula-

tor object knows how to sum up these contributions to obtain total energies and energy

changes. Additionally, the energy calculator object performs non bonded calculations by

communicating with a cell linked list object. The cell linked list object informs the energy

calculator about how atoms are arranged into neighboring cells in the simulation. Finally, a

simulation cell object allows the correct application of periodic boundary conditions.

C.4 RESULTS

C.4.1 Implementation Test Systems

To implement the move a simple (small) test system was used to ensure that the move was

working as intended. The test system was a alkane molecule and a single water molecule.

The AMBER force field, TIP4P water model, and OPLS charges were used. The alkane was

in a extended conformation. The water molecule was placed so that it would be overlapping

with the alkane if a central proper dihedral angle of the alkane were changed by 180 degrees.

The Lennard-Jones contribution to the potential energy as a central dihedral is rotated for

this system is shown in figure C3A.

It is clear from the figure that the energy spikes when the dihedral angle is changed by by

180 degrees. Any torsional moves near this amount are rejected due to large energy changes.

For this system, SSMC torsional moves were performed with 100 percent frequency. Only

torsional changes of 180 degrees were attempted and only the central dihedral was selected
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for this test. The move showed 100 percent acceptance. The simulation trajectory indicated

that, as the torsional angle of the alkane changed by 180 degrees, the water molecule move

rotated about the dihedral axis by negative 180 degrees, as expected. When torsional moves

of a random magnitude are chosen, the acceptance drops slightly. This is because small angle

changes that lead to overlap than can not effectively be removed.

This test did not indicate how the move would begin to behave in denser systems. So,

two more water molecules were added to the simple alkane system. The water molecules were

placed such that, should the alkane dihedral change by 90, 180, or 270 degrees there would

be overlap. The Lennard-Jones contribution to the potential energy as a central dihedral

is rotated for this system is shown in figure C3B. It is clear from the figure that it would

be very difficult to accept a torsional move in this system. When torsional moves of only

90, 180, or 270 degrees were attempted, the systems showed 100 percent acceptance. When

torsional moves of a random magnitude are chosen, the acceptance drops slightly.

Finally, the number of waters leading to possible overlap was increased to seven. The

water molecules were placed such that, should the alkane dihedral change by any multiple

of 2π
7

there would be overlap. Unfortunately, the both random and fixed angle attempts

showed very poor acceptance rates in such a system. The arrangement of water molecules

chosen was most likely unfavorable.

C.4.2 Simple Alkane System

This section describes results for a simple polymer in a well solvated water box. A 10 carbon

alkane was simulated using the AMBER force field in TIP4P water with OPLS charges. The

simulation was in a roughly 3 nm3 cell with around 1000 water molecules. A water box was

first prepared and equilibrated using molecular dynamics at constant pressure. The alkane

was inserted into the box and equilibrated to ensure the proper box size and density of water

was reached.

Taking the initial configuration of the system to be the well equilibrated polymer + wa-

ter box, various Monte carlo simulation were performed at constant volume. Equilibration

was also performed during Monte carlo to allow move parameters to optimize. In addition
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Figure C3: LJ potential during SSMC move.

to SSMC moves, translation, rotation, bond, angle, and standard torsional moves were at-

tempted with equal frequencies. Different distance overlap criteria and torsional angle choos-

ing methods were attempted for the SSMC move. Small moves were attempted by choosing

random torsional angle changes such that 0 ≤ |θ| ≤ 60 or 0 ≤ |θ| ≤ 120. Large moves were

attempted by choosing random torsional angle changes such that 120 − δ ≤ |θ| ≤ 120 + δ

or 60 − δ ≤ |θ| ≤ 60 + δ. The acceptance rate, configurational trajectories, and proposed

energy changes were examined to diagnose the SSMC move.

Distance overlap criteria was examined between 1.0 and 5.0 Å. While values between 1.0

and 2.0 Å did not seem to differ, values of 3.0 Å and above would cause the move not to

converge on a proposed configuration. With high distance overlap criteria, it is too difficult

to reach a no overlap state during iterative rotation of solvent molecules. Values below 1.0 Å

did not effectively target water molecules for movement.

For large moves, where proposed angle changes are forced to be around a desired value,

SSMC were not accepted. The SSMC acceptance rate for small moves, where proposed
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angle changes may be in a range that includes zero, showed an acceptance rate of roughly

5.0 percent. However, the acceptance rate for simple torsional moves when angles were

chosen with the same method was also roughly 5.0 percent.

Analysis of configurational trajectories showed that, when a torsional angle did change,

the angle change was not significantly large. This suggests that only small torsional angle

moves were being accepted. If a torsional angle move is small no water molecules would be

moved during a SSMC proposal. Sometimes a large change would be accepted, even in the

large move cases. However, these large changes never occurred for central dihedral angles of

the alkane. Only small groups near ends would rotate, something not difficult to accomplish

with standard torsional moves. None of the accepted moves seemed to involve rotation of

solute molecules.

The energy changes of proposed moves were collected. Figure C4 shows proposed energy

changes histograms in three cases. Shown on the left are energy changes for moves proposed

with 0 ≤ |θ| ≤ 120. Some proposed configurations have energy changes close to zero and

less than zero. These configurations are most likely the small angle and end group rotations

discussed earlier. The majority of energy changes occur at energies much to high to be

accepted.

Shown in the middle are energy changes for moves proposed with 60−10 ≤ |θ| ≤ 60+10.

The scale on this graph is extended to show that no moves are proposed with energies

negative or near zero. Almost all changes are clustered at very high energies. It is possible

that effective rotation of solvent can not be achieved at this angle.

Shown on the right are energy changes for moves proposed with 120−10 ≤ |θ| ≤ 120+10.

There are fewer negative energy counts compared to the 0 ≤ |θ| ≤ 120 case. The peak near

zero most likely corresponds to end group rotation changes.

The energy change histograms indicate that the move is suffering in dense systems. The

energy changes are too high to remedy by parallel tempering methods. If we desired a

1.00 percent acceptance probability, then the ratio of a proposed move energy change to kT

should be around 4.61. This means energy changes above 4.61 kT are not very likely to be

accepted. With kT at 300K being 0.592 kcal/mol, energy changes above 2.73 kcal/mol are

not very likely to be accepted. Even at 1000K, a move will not be accepted with energy
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Figure C4: SSMC move energy changes in realistic density.

changes above 9.09 kcal/mol.

C.4.3 Betapeptide Various Densities

This section describes results for a betapeptide polymer in a solvated water box at various

densities. The idea was to see if the SSMC move could be accepted at various densities. The

betapeptide was βVal-βAla-βLeu-βAla-βVal-βAla-βLeu. The AMBER force field, TIP4p

water model, and derived charges were used. The simulation was in a roughly 6.5 nm3

cell with around 9000 water molecules. A water box was first prepared and equilibrated

using molecular dynamics at constant pressure. The betapeptide was inserted into the box

and equilibrated to ensure the proper box size and density of water was reached. After

equilibration, molecular dynamics was run at constant volume for a short time. Nine initial

configurations were taken from the constant volume molecular dynamics trajectory.

Taking the initial configurations of the system, various Monte carlo simulation were per-

formed at constant volume. Solvent molecules were removed randomly to produce initial

configurations at lower densities. Systems were produced with 2000, 4000, and 6000 sol-

vent molecules. These densities are far from the realistic 9000 solvent molecules. Each
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configuration underwent 2 million Monte carlo moves.

In addition to SSMC moves, translation, rotation, bond, angle, and standard torsional

moves were attempted with equal frequencies. SSMC moves chose angles such that 0 ≤
|θ| ≤ 120. For standard torsional moves, angles were chosen such that 0 ≤ |θ| ≤ 30. In this

way, any large torsional change observed is due to the SSMC move. The distance overlap

criterion used was 1.0 Å. The acceptance rate, configurational trajectories, and proposed

energy changes were examined to diagnose the SSMC move.

The acceptance rates in the presence of 2000, 4000, and 6000 solvent molecules were

all close to 9.0 percent. Observation of the configurational trajectories showed that some

of these acceptances were non central dihedral angles or small torsional changes. However,

there were noticeable large changes in central dihedral angles. If or not solvent molecules

moved during these transitions was not kept track of. It is possible that the SSMC move

worked in the reduced density systems. However, it is also possible that no solvent molecules

moved during the SSMC moves. Simulations with no SSMC moves and large torsional moves

should be performed.

C.5 CONCLUSIONS

C.5.1 Struggles

The SSMC has low to no acceptance rate in the systems studied. This is because proposed

configurations have large energy changes compared to previous configurations. Large energy

changes cause the moves to be rejected. Why were the proposed configurations higher in

energy?

Consider what the SSMC is saying about energy of a system. SSMC says there is a

distance overlap criterion that quantifies if or not molecules are overlapping. Should the

distance between two molecules be too low, SSMC decides the system must be somewhere

too high on the potential energy surface. The solution to finding a lower energy configuration

is to march a specific amount along a generalized coordinate. The generalized coordinate
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is the angle the water molecule makes about a dihedral axis. The specified amount is

the randomly chosen angle change for the move. There is no special rule saying that we

should reach a local minimum by performing this transformation. It is almost like saying

walking a random direction by some random amount will always bring a system to a local

minimum. The entire idea of rotating molecules around a dihedral axis to approach a low

energy configuration is wrong. This is especially true as the potential energy surface becomes

less coarse grained. Systems at lower densities accept moves because the potential energy

surface becomes less spiky.

The distance overlap criterion is probably not correctly quantifying overlap. Overlap-

ping means something along the lines of being high on the potential energy surface. The

orientation of solvent molecules is going to play role in the energy. The potential around a

water molecule is far from spherically symmetric. How can distance alone correctly quantify

overlap?

The idea of a single distance criterion for all atoms in the stem is completely wrong.

Different atoms are different sizes and have different strengths of interaction. A hydrogen

atom can get closer to other atoms than an oxygen atom can. The Lennard-Jones sigma and

epsilon are different for every single possible combination of atoms in a system. Therefore

the average distances between atoms will be different depending upon the atoms involved.

The distance criterion required to get convergence was most likely too small to begin

with. Consider the distance between waters in a realistically dense system. It might be

somewhere on the order of 3.0 Å according to the radial distribution function for water.

Choosing an overlap criterion this high, however, causes the SSMC move not to converge

on a non-overlapping condition. Above a certain value, there comes a point where spheres

drawn around atoms intersect no matter their orientations about the dihedral axis.

It is safe to conclude that the SSMC does not work for systems with complicated potential

energy surfaces. The SSMC produces unrealistic configurations of the system. This is a result

of some bad assumptions made about the potential energy surface. The SSMC move needs

a lot of work in order to be feasible.
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C.5.2 Future Work

The SSMC move needs a more realistic way of generating lower energy configurations from

configurations with overlap. While rotation of solvent molecules about the dihedral axis

does not produce configurations of low energy, the transformation might be a good enough

start. The fact is we know that after a dihedral angle change of the polymer, there is a huge

gaping hole where part of the polymer used to be. Rotation about the dihedral axis can

put the overlapping particles in this hole. While the resulting configuration is almost never

of lower energy, it can be made lower energy by employing minimization techniques. There

are numerous minimization techniques, and they can be combined. To speed things up, not

all the particles in the system would have to move during the minimization. In the end, a

minimization would be a small price to pay to generate such a large change in configuration

of the stem. Another possibility would be to avoid the rotation. Instead, simply identify

the overlapping particles and grow them in the hole region with random orientations. Place

them with probability based on the Boltzmann factor. This could generate low energy

configurations.

The SSMC move needs a more realistic way of identifying overlapping particles. It

is difficult to correctly identify if particles overlap based on a single distance. One could

compare distance calculations between atoms to some fraction of the Lennard-Jones sigma

for the pair. This comparison might give a better indication of overlap. The idea of using an

angular criterion to identify overlap is somewhat impractical. Quaternions could be used to

quantify the orientation of molecules, however, it is unclear what a good criterion for proper

orientation would be.

The SSMC move needs to focus on internal angles. When proposing small or large

angle changes on dihedrals near the ends of molecules the SSMC move is not accomplishing

anything an ordinary torsional move could not already perform. One can restrict the dihedral

angles chosen to be core angles of the polymer during SSMC moves.

The SSMC move needs to focus on large angle changes. Small torsional angle changes

do not contribute to large conformational changes of the system. Standard torsional moves

can handle the small torsional changes. SSMC does not need to be proposing moves with
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small angle changes. Focus should be put on optimizing and making the move work with

large angle changes.

Other move types could benefit from SSMC if it was working. SSMC does not necessarily

need to be combined with torsional moves, although torsional moves are ideal for changing

conformations greatly. Other moves, such as angle changes, could benefit from the removal

of overlapping particles in proposed configurations.

SSMC could be combined with more advanced techniques. Once the SSMC generates

new configurations with a non-negligible acceptance rate, the possibilities are endless. The

move can be combined with any other valid Monte carlo move to make a valid Monte carlo

scheme.
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APPENDIX D

PNIPAAM

D.1 INTRODUCTION

In this section, an introduction to the polymer PNIPAAM is given. An attempt is made to

discuss some previous experimental and theoretical information on PNIPAAM and derived

copolymers. Reasons why PNIPAAM is worthy of study and the goals of this theoretical

work are presented.

D.1.1 Goals

The goal of this project was to theoretically probe the conformations of the polymer poly(n-

isopropylacrylamide) (PNIPAAM). In particular, the role of water in the temperature de-

pendent collapse of the polymer was to be investigated. These goals were to be met us-

ing the molecular dynamics method. The project was motivated by experimental studies

that estimated the number of waters withing amide and carbonyl groups on PNIPAAM,

and suggested a mechanism of collapse.90 Previous MD results on the simulation of n-

isopropylacrylamide (NIPAAM) polymers by other parties91 were to be confirmed and ex-

tended upon.

An extension of the project was to investigate copolymers of PNIPAAM made with the

comonomers acrylic acid (AAC) and hydroxyethyl methacrylate poly-(trimethylene carbon-

ate) (HEMAPTMC). In particular, how the behavior of collapse changes and the effect of
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Figure D1: NIPAAM, HEMAPTMC, and AAC.

pH on col-polymer systems was to be examined. These goals were also to be met using MD.

The extension was motivated by a biological application of the copolymer system and related

copolymer hydrogels to mydocardial infraction repair.92

D.1.2 Structure

When talking about the structure of a polymer, it is convenient to divide the discussion be-

tween chemical structure and geometrical structure or conformation. The chemical structure

is the information about the bits and pieces that make up the polymer and how they are

molded together. The conformation is how the molded pieces are arranged in space at any

given moment in time. While the chemical structure plays an important role in determin-

ing the geometrical structure, the chemical structure is not the only factor. Environmental

factors also play a huge role. The environment includes information about the state of

the system such as temperature or pressure. Other chemical species may interact with the

polymer and different regions of the polymer may even interact with each other. These

intermolecular and intramolecular interactions affect the overall geometrical conformation.
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Additionally, it must be pointed out that even at equilibrium a polymer does not exist as a

single geometrical conformation. There is and must be an ensemble of conformations that

give rise to the observed average conformation.

First, the chemical structure of PNIPAAM is discussed. PNIPAAM is a polymer made

from the monomer NIPAAM. Chemically, NIPAAM monomers contain an isopropyl group,

an amide group, and a vinyl group. The amide group consists of a carbonyl bound to a

secondary amine. The polymerization of NIPAAM occurs at the vinyl group. Upon poly-

merization, the vinyl carbon bound to amide can become chiral. This allows the polymer

to exhibit tacticity. The relative steriochemistry of monomers can be an ordered pattern or

random. If the pattern involves alternating steriochemistry, the polymer is called syndiotac-

tic. If the pattern involves repeating steriochemistry, the polymer is called isotactic. If the

pattern is random, then the polymer is atactic. Polymers of PNIPAAM should be atactic in

most situations.

Second, factors that could influence the geometrical structure of PNIPAAM are discussed.

Special emphasis is put on the role of water in the environment. The chemical structure of

PNIPAAM allows for self interaction and intimate interaction with water. Specifically, the

amine hydrogen along with the carbonyl oxygen allow NIPAAM monomers to hydrogen

bond to one another. Additionally, the amide brings hydrophilic character to PNIPAAM

in aqueous solution. The carbonyl carbon can hydrogen bond to water hydrogens and the

amine hydrogen can hydrogen bond to water oxygen. Multiple hydrogen bonds can occur

to the carbonyl. For example, one or two hydrogen bonds may form on the carbonyl. The

structure of the polymer as well as the presence of other water molecules will determine how

many hydrogen bonds are allowed sterically. The hydrogen bonds themselves may serve as

nucleating sites for the formation of highly structured water clusters. The formation of water

clusters can provide an extra enthalpic diving force for formation of hydrogen bonds.

The isopropyl and vinyl groups bring hydrophobic character to PNIPAAM. That is,

hydrogen bonds are not expected to form near isopropyl groups or vinyl groups. Waters

forced to remain near an isopropyl group pay an entropic penalty and have no enthalpic

stabilization from hydrogen bonding. Overall this is an unfavorable situation. In the end,

the interplay between enthalpy and entropy govern the conformation of PNIPAAM, the

154



amount of hydrogen bonding, the formation of water clusters, and structure of the solvent.

D.1.3 Phase Behavior

When aqueous solutions of PNIPAAM are made, the system exhibits phase behavior. There

is a phase where the solution is cloudy with low transmittance and a phase where the solution

shows high transmittance. The abrupt phase transition, which is independent over a range

of concentrations and polymer molecular weights, occurs around 32 ◦C. The reason why a

phase transition occurs is known to be the result of expansion and collapse of PNIPAAM

polymers with changes in temperatures. At low temperatures PNIPAAM exists in a solvated

extended state. At high temperatures PNIPAAM exists in a collapsed insoluble state.

The system comprised of PNIPAAM and water exhibits what is known as a lower critical

solution temperature (LCST). The LCST is simply a critical point on the water-polymer-

mixture phase diagram. Below this temperature, phase boundaries cease to exist. That

means the compounds are miscible in all proportions. This is the point where the solution

has high transmittance. Any temperature above the LCST will induce phase separation or

precipitation. This is the point where the solution is cloudy with low transmittance. The

value of the LCST, and therefore the phase transition, is also known to depend upon other

thermodynamic variables such as pH or salt concentration. Typically, lowering the pH or

increasing the ionic strength of the solution will decrease the LCST. Chemical substitution

of monomers to form PNIPAAM copolymers will also alter the LCST.

The LCST behavior exists in other forms of PNIPAAM. As polymers often do, PNIPAAM

can form a polymer network. This happens when the polymer chains physically aggregate in

a nonlinear fashion, creating a web of entangled polymer chains. PNIPAAM actually forms

a covalent polymer network; chains are bound to each other covalently. The network may

have holes and pockets. Water or other substances can fill the holes. When a PNIPAAM

polymer network is expanded into it full volume by a fluid such as water, it is by definition

a gel. If the fluid or swelling agent is water, PNIPAAM is said to form a hydrogel. A

PNIPAAM hydrogel will also exhibit a phase behavior near the LCST. The hydrogel will

change dimensions macroscopically, shrinking with increases in temperature. Volume phase
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transition is another name for the phase transition in this situation.

Sometimes, PNIPAAM is classified as a thermally responsive polymer because of the

phase behavior. As was mentioned above, PNIPAAM basically becomes less soluble in water

as the temperature is increased. Often compounds become more soluble when temperature of

the system is increased, making this behavior counterintuitive. Thermo-responsive polymers,

and more generally polymers which respond to environmental variables have many practical

applications to be discussed below.

D.1.4 Applications

PNIPAAM can be used in drug delivery applications. For example, Dufresne et al. syn-

thesized several PNIPAAM copolymers containing hydrophobic moieties and pH-sensitive

units.93 They showed the copolymers to be a potential safe and efficient alternative for

the solubilization of hydrophobic drugs in drug delivery applications. In their work, the

copolymers would self-assemble in aqueous solution into micellar structures whose stabil-

ity depended upon pH. The root of this behavior was a result of the phase behavior of

PNIPAAM. Hydrophobic drug molecules were then enclosed in the hydrophobic region of

the micelle. Since the micelle was only stable at certain pH, it would destabilize (releasing

the drug) when the pH changed (in the interior of a tumor cell). Particularly interesting,

these PNIPAAM copolymers, already known to exhibit low cytotoxicity, where shown to be

more effective in delivering the photosensitizer aluminum chloride phthalocyanine used in

photo-radiation treatment of cancer in an implanted mouse mammary tumor model.

PNIPAAM can be used in sensor applications. For example, Zhang et al. produced

glucose sensitive PNIPAAM copolymer microgel.94 In their work, they functionalized a PNI-

PAAM copolymer microgel with the common glucose sensitive molecule phenylboronic acid

(PBA). The resulting system exhibited the volume phase transition at a reduced tempera-

ture dependent on PBA content. The microgel particles, however, swelled in the presence

of glucose, an effect that depended upon pH, ionic strength, and PBA content. The micro-

gel showed significant response to glucose even under physiological conditions, suggesting a

sensor application for diabetes.
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D.2 BACKGROUND

In this section various concepts in MD that need to be understood to simulate PNIPAAM

and copolymers are discussed briefly.

D.2.1 Integration

In MD one needs to integrate the system forward in time according to the laws of classical

mechanics. This must be done numerically, and so requires an integration algorithm. Tradi-

tional methods such as Euler and Runge Kutta are not used very often. Instead, a common

choice for integration is the Verlet algorithm as shown in equations D.1, D.2, and D.3.

ri(t+ h) = 2ri(t)− ri(t− h) + h2ai(t) (D.1)

vi(t) =
ri(t+ h)− ri(t− h)

2h
(D.2)

ai(t) =
fi(t)

mi

(D.3)

ri(t), vi(t), ai(t), and fi(t) are the position, velocity, acceleration, and force vector of or

on particle i at time t. h is an algorithmic parameter called the time step. The choice of h

can greatly affect the stability of the algorithm and the accuracy of the results. The Verlet

algorithm uses the current position, some previous position, and the force on a particle to

calculate the position at a later time. Velocity is not needed to perform the integration,

making equation D.2 optional. Unfortunately, the Verlet algorithm suffers from precision

loss and is not self starting.95

Another algorithmic choice is a variation of the Verlet algorithm called the leap-frog

algorithm as shown in equations D.4 and D.5.

ri(t+ h) = ri(t) + hvi(t+
1

2
h) (D.4)

vi(t+
1

2
h) = vi(t−

1

2
h) + hai(t) (D.5)
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While the leap-frog algorithm explicitly includes the velocity and avoids the calculations

of large number differences, the velocities obtained are not synchronized with the positions

obtained. In the leap-frog algorithm, position, velocity, and acceleration for at least four

different times are involved in the acceleration. Since the velocities are out of sync, an extra

step is needed to calculate velocities which are in sync with the positions.95

D.2.2 Force Field

As discussed in section D.2.1, MD is a classical dynamics problem that requires the in-

tegration of Newton’s equations of motion. Newton’s second tells us the time rate change

of momentum of a particle is intimately tied to the force on that particle. One needs to

know the forces present to perform the integration. The net force on an entire simulation

cell should be zero and not time varying when energy is conserved. However, inter-particle

forces are present. A common practice is to use an empirically or theoretically derived force

field to describe the forces in the system. Often the force field consists of a set of parameter-

ized potential functions and their parameters. Force functions are then the negative gradient

of the the potential functions.

Depending upon how interactions are defined, a force field is sometimes termed as all-

atom, coarse-grained, or hybrid. All-atom force fields explicitly represent all atoms in the

system and define potentials including all atoms explicitly. Coarse-grained force fields do

not necessarily represent all atoms in the system as single particles. Hybrid force fields

may represent some atoms explicitly and others as coarse-grained. Solvent molecules in a

system form a special class of molecules. It is common for solvent molecules to have a very

specific force field or be modeled without the use of explicit particles. The entire set of

potential functions can be viewed to form a multi-dimensional potential energy surface A

coarse-grained surface can be understood as a smoothed out version of the atomistic surface.

Dynamics occur on a faster timescale with less resolution on the coarse-grained surface.

Potentials can be divided into bonded interactions and non-bonded interactions. Bonded

interactions exist for molecules in the system and describe how the potential energy of a

molecule changes as the molecules conformation changes. It is most convenient to describe
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bonded interactions in terms of generalized internal coordinates such as bond distances, bond

angles, and dihedral angles.

Non-bonded interactions encompass how individual atoms in the system respond to the

presence of all other atoms in the system. Atoms need not participate in chemical bonding

or be in the same molecule to experience the non-bonded forces. Non-bonded interactions

usually depend upon the distance between one, two, or more atoms. Mostly, but not always,

the dependence on position is finite Laurent polynomial. Should the non-bonded interactions

in this case depend upon some power of distance no greater than negative three, then the

interactions are termed short ranged. Likewise, for powers greater than negative three, the

interactions are termed long ranged. A few potentials common to the AMBER force field,96

an all-atom force field, are discussed below. First, bonded interactions are discussed.

Probably the three most useful internal generalized coordinates to a chemist are atom-

atom bond distances, atom-atom-atom bond angles, and atom-atom-atom-atom bond proper

dihedral angles. Emphasis is put on the fact that only distances, angles, and dihedrals where

atoms are properly bonded are being considered here. For each of these simple internal

coordinates, atomistic potentials can be defined. For example, a potential can be defined for

each bond in a system.

V (|rij|) = kij (|rij| − rij0)
2 (D.6)

In equation D.6, |rij| is the distance between particles i and j, rij0 is the equilibrium

bond length for atoms i and j, and kij is the force constant describing the curvature of the

potential or magnitude of the energy involved in the interaction. This is only one possible way

to represent a bond interaction potential. Other potentials might more accurately represent

the bond, such as the Morse potential. However, most of the time, MD does not allow for

the possibility of chemical changes like bond breaking. The bonding potential shown is not

without flaws. Should an atom move some very large distance with respect to it’s bonded

partner a great deal of instability to a calculation can be introduced into the simulation.

Likewise, poor initial configurations of systems could cause similar problems. A similar

harmonic potential can be defined for angles in the system, by replacing the equilibrium
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length with an equilibrium angle and position with the intermolecular angle.

V (θijk) = kijk(θijk − θijk0)
2 (D.7)

Equation D.7 is similar to equation D.6. The equation is now defined for the angle θijk

between atoms i, j, and k, as well as their respective force constant kijk and equilibrium

angle θijk.

The last most useful internal coordinate defining a potential, the dihedral angle, needs

special consideration. A dihedral angle is the angle formed between two defined planes

formed by four atoms. One can form many different planes and combinations of two planes

from four atoms. When four atoms are bonded end on end, two planes can be uniquely

defined with the first three atoms and the last three atoms. The angle between these two

planes in termed the proper dihedral angle when the angle domain is between 0 and 2π. A

potential is often defined for all proper dihedrals in a system.

V (φijkl) = kijkl cos (nijklφijkl − φijkl0) (D.8)

In equation D.8, φijkl is the dihedral angle for atoms i, j, k, and l. The magnitude of the

interaction is determined by the force constant kijkl, while the multiplicity nijkl determines

the period or number of maxima and minima seen. The location of the minima and maxima

is controlled by the phase angle φijkl0. For any single dihedral angle in a system, a sum of

terms like equation D.8 can be used to define the overall dihedral potential. The sum is not

unlike a Fourier series.

When four atoms are bonded in a T-shaped pattern, two planes can be formed by each

half of the T. The angle between these two planes is termed the improper dihedral angle.

A potential is often defined for angles of this type only when the atoms confined to a

plane at equilibrium geometry. The potential is not defined for every possible improper

dihedral, rather only for certain ones such as around the planar carbonyl carbon. The

same potential form used for proper dihedrals can be used for improper dihedrals, although

harmonic functions are occasionally used also.

The non-bonded interactions are discussed next. To simplify the calculation, only pair-
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wise non-bonded interactions are often considered. For short range interactions, the six-

twelve pair potential called the Lennard-Jones potential is used.

V (|rij|) = 4ǫ

[

(

σij

|rij|

)12

−
(

σij

|rij|

)6
]

(D.9)

In equation D.9, |rij| is the distance between atoms i and j, ǫ is a depth determining the

strength of attraction, and σ is a distance identifying the onset of repulsion. The Lennard-

Jones potential encompasses the many possible intramolecular short range interactions into

a single form. Dispersive attraction and hydrogen bonding forces, among other things, are

encompassed by the attractive inverse-six term. Pauli exclusion is included by the repulsive

inverse-twelve term.

For long range interactions, the familiar Coulomb potential for point charges is often

used.

V (|rij|) =
1

4πǫ0

qiqj

|rij|
(D.10)

In equation D.10, |rij| is distance between atoms i and j, qi and qj are the charges on

atoms i and j, and ǫ0 is the permittivity of free space. The use of the Coulomb potential

is somewhat of an approximation. Coulombs law is the correct solution of Poisson’s Equa-

tion for point charges in electrostatics, however, atoms are not point charges. The more

realistically point like charges, the electrons and nucleons, are not explicitly represented in

a MD simulation. As a consequence atomic charges are derived and assigned to reside at

atomic positions. This is done by picking a set of charges for atomic centers that reproduce a

quantum mechanically derived charge distribution. The process does not really capture the

idea that the electronic distribution of charges changes as atoms change their environment.

Atoms are polarizable; the idea of an atomic charge on each atom constant throughout a

simulation is a vast over simplification.

One needs more than just the forms of potentials to calculate. Be it the Lennard-Jones

epsilon and sigma, or the harmonic bond equilibrium length, a suitable set of parameters

need to be provided. The parameters can be extracted from experiment, theory, or a com-

bination. Parameters such as the equilibrium bond length or force constant can be obtained
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by fitting the a potential function to quantum mechanically derived equivalent. A set of pre-

chosen molecules is used to do the fitting. The Lennard-Jones parameters can be derived by

optimization of MC liquid simulations to reproduce experimental densities. Parameters for

specific molecules, like water, other solvents, or amino acids, are often optimized to reproduce

experimental phase points or enthalpies.

D.2.3 Periodic Boundary Conditions

To perform atomistic MD on a system of particles of macroscopic size is unrealistic. One

can only hope to simulate a system on the order of a few hundred thousand particles in

any reasonable amount of time. To better produce the properties of a bulk material while

simultaneously keeping the number of particles explicitly represented in a simulation to

a minimum, special techniques are required. A common possibility is to apply periodic

boundary conditions (PBC).

Consider a simulation cell containing N particles. The idea of PBC is to imagine the

simulation cell to be tessellated in all directions in space. All the particles inside the simula-

tion cell are also replicated into all mirror image cells. The concept is not unlike the idea of

the unit cell used to represent the infinite periodic lattice of a solid. Only particles inside the

central unit cell are kept track of. As a MD simulation proceeds, particles inside the unit cell

move around according to the equations of motion describing the system. PBC ensure that,

should a particle pass through some face of the central unit cell, the particle will re-enter

the face opposite the face it passed through. In this way, PBC allow one to replicate the

behavior of an infinite system. The assumption is, however, that the infinite system is truly

an isotropic replication of the central unit cell.

In reality, all particles in all images interact with another via non-bonded forces described

in section D.2.2. This concept presents a challenge conceptually and computationally. How

to handle it appropriately is discussed below in sections D.2.4 and D.2.5. A common

practice to remove the infinite nature of the problem is to apply a the minimum image

convention concept. The minimum image convention ensures that the cutoff to a long range

interaction is no larger than half the shortest primitive lattice vector describing the simulation
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cell. Doing so makes sure that particles only interact with their nearest neighbors, reducing

the sum over all images to a sum over nearest images. Special care is needed to correctly

identify nearest neighboring particles and compute minimum inter-particle distances.

How PBC are implemented in a simulation depends largely upon the translation symme-

try of the simulation cell. If there is a geometry that tessellates in space then it can be used

as a unit cell. Only regular polygons are used, greatly restricting the possible choices. Some

examples include a simple cube or a truncated octahedron. Clever choice of the simulation

cell can be used to reduce the number of particles used in the simulation, thus speeding

up the simulation. Any simulation cell can be represented most generally by three lattice

vectors which form a triclinic cell.

D.2.4 Short Range Interactions

The calculation of non-bonded forces can be a computational bottleneck. Often a computa-

tional scientist relies on parallelization of simulation codes and tricky algorithms to alleviate

this bottleneck. The nature of the non-bonded calculation, some algorithmic tricks, and the

idea of a neighbor list are discussed here.

The calculation of short range non-bonded forces is a complicated problem which requires

various approximations to be tractable. In brute force, the problem has computational

complexity N2, where N is the number of particles. This means that the time it takes to

perform the calculation scales quadratically.

One might consider the complexity of the problem arising from the application of PBC,

among other things. For example, consider the calculation of a short range pair-wise inter-

action between N particles in a simulation. Each particle should interact with each other

particle. If using PBC, each particle should also interact with all other periodic images of

particles. With these considerations in mind, the problem is the infinite sum. The sum

converges when the non-bonded forces are short range.

The application of an appropriate cutoff, particularly one adhering to the minimum image

convention, allows the problem to become commutable. The spatial cutoff limits the number

of interactions that need to be calculated, essentially truncating the sum and introducing
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some error.

To evaluate the sum, a double loop over all particles would be performed and the near-

est neighbor interaction calculated if two particles lie within the cutoff. The double loop

becomes slower as nested if statements are added. It is hard to avoid at least four nested

if statements inside the inner loop. Three are required for computing the correct minimum

image distance in three dimensions. A fourth is required to compare the distance to the

cutoff. Tricks such as comparing square inter-particle distances to square cutoffs are often

applied to avoid necessary calculation of square roots. Additionally, intelligent choice of loop

variables are chosen to take advantage of Newton’s third law or avoid double counting of

potential interactions. Still, the computational complexity is order N2 because of the double

loop over all particles. The task becomes extremely time consuming on the computer as the

system size increases.

Often parallelization of the problem helps to speed up the calculation. However, not

all problems are suited for parallel computing. The structure of the problem, the cost of

communication, and computational overhead created by parallelization all need to be con-

sidered. The calculation of short range non-bonded forces in combination with the structure

of a MD simulation lend themselves well to parallelization. Methods such as decomposing

the domain of a simulation across multiple computers are often employed to greatly speed

up the computation.

Another method to accelerate the calculation is the application of a neighbor list. The

neighbor list is used to speed up the calculation of non-bonded forces by reducing the com-

putational complexity of short range non-bonded forces. The idea of a neighbor list is to

reduce the size of the inner loop. The inner loop is changed from a loop over all particles

to a loop over neighboring particles. There are many variants of the neighbor list method,

however in the simplest version, lists of the neighbors are pre-calculated and stored for each

particle. The neighbors of a particle are those particles who lie within the cutoff. The neigh-

bor list can reduce the computational complexity to order N . While the construction of the

neighbor list is in itself a time consuming task of order N2, the construction need not be

performed every step if the neighbors are not changing very fast.
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D.2.5 Long Range Interactions

Not unlike the short ranged non-bonded forces, the long range non-bonded forces are a

computational bottleneck in a simulation. Although often suited for parallelization, long

range non-bonded forces are not suited for the simple application of a cut off in an infinite

system. The problem is rooted in the fact that if a potential varies as rn with n greater than

negative 3, the lost accuracy due to truncation is infinite.95 Probably the most important

example of long ranged non-boned potential is Coulomb’s law.

A cut off distance can not be accurately used with a potential like Coulomb’s Law in an

infinite system. This means that minimum image convention principle is not applicable to

the sum of Coulomb terms in a simulation. With no cut off to apply, a neighbor list can not

be used for the long range forces (actually it can, but in a very different way). The sum is

truly infinite over all periodic images of the simulation cell. It can be shown that the sum is

only conditionally convergent, approaching a well defined value on if performed in a certain

manner. Parallel computation can not remedy the problem of accuracy.

There are numerous ways to deal with the divergent behavior of long-range forces. The

method used and discussed here stems from the Ewald sum calculation of coulomb energies

in the periodic lattices of solids. A MC simulation cell is very like a periodic lattice.

The backbone of the Ewald sum method is to separate the sum of coulomb terms into

a short range contribution that can be safely truncated and a long range contribution that

can be accurately estimated. Essentially, the conditionally convergent coulomb sum over

all images of a periodic lattice is broken down into two rapidly converging sums. How the

portioning is performed is left up to the specific implementation of the method. The first

sum is made to be a short ranged sum that converges rapidly in real space. This means a

cut off, the minimum image convention, and the neighbor list can be used to accelerate this

short range contribution. The second sum is essentially the long range tailing correction.

The partitioning is done in such a way as to ensure the long range tailing correction is a

slowly varying function. This mean the long range tailing correction can be represented in

Fourier space by a finite number of wave vectors. In the end, the long range tailing correction

converges rapidly in reciprocal space, allowing it to be truncated in reciprocal space.
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The specific implementation of the Ewald method used here is called the particle mesh

ewald (PME) method.97 In the PME method, the coulomb sum is partitioned in the tradi-

tional sense by screening atomic charges with Gaussian charge distributions. The screened

charge distribution is the short ranged contribution of the sum and is performed in real

space with a cut off and the neighbor list. The canceling Gaussian screened distribution

along with the tailing corrections form the reciprocal space sum. Although analytic formula

exist for the evaluation of the reciprocal sum, PME, like other mesh methods, chooses to

evaluate the reciprocal sum on a mesh of grid points. This evaluation is accomplished by

interpolating the atomic charges onto the grid using interpolating polynomials. The choice

of the Lagrange interpolating polynomials is one characteristic that distinguishes PME from

some other mesh methods .98 The main advantage of evaluating the reciprocal sum on a

grid is that, instead of performing the sum, one can solve Poisson’s equation. The numeri-

cal solution to Poisson’s equation is very fast when using parallel forms of the fast Fourier

transform, which only works on finite difference grids. The PME method has computational

complexity Nlog(N).

D.2.6 Other Ensembles

It is often said that the natural ensemble for Newton’s equations of motion is the micro-

canonical ensemble. That is, systems evolving according to dynamics prescribed by Newton’s

laws are those with a constant number of particles, a constant volume, and a constant energy.

Gibbs postulated that time averages ( over the dynamics of a system ) are equivalent to

ensemble averages. The problem is that ensemble averages are, in general, not equivalent in

different ensembles. How does one deal with performing time averages for other ensembles?

Statistical mechanics tells us the meaning of a system at constant temperature. To be at

constant temperature, a system is in contact with a heat bath. The heat bath and system are

at a constant temperature. Individually, the bath or the system are not at constant energy.

They exchange energy with each other to reach the same temperature. Together, both

form an overall system that is at constant energy. Newton’s mechanics correctly describes

the dynamics of overall system, which is at constant energy. Newton’s mechanics does not
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Figure D2: Topology of the NIPAAM polymers studied.

correctly describe the dynamics of the individual system, which is at constant temperature. If

one can find a dynamics which does describe the individual system at constant temperature,

then one can perform the correct ensemble averages.

The Nose-Hoover method produces a deterministic dynamics that can be used to simu-

late a system at constant temperature .99,100 It is based on a reformulation of the Lagrangian

equations of motion of the system.95 The method introduces artificial variables into the La-

grangian that represent a heat bath. The dynamics observed represent the correct canonical

distribution. A similar approach, the Parrinello-Rahman method, is used to introduce a

volume bath or barostat.101 This allows a dynamics to be produced at constant pressure.

D.3 METHODS

The simulations performed are described in this section. First, the systems chosen for study

are presented. Second, simulation parameters used are discussed. Third, algorithmic pa-

rameters common to all simulations are given. Finally, the general simulation procedure is

outlined.
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D.3.1 Systems

A total of eight systems were examined. The systems are named A through G and shown

in figure D2. System A was a pure PNIPAAM polymer with an atactic arrangement of

monomers. The system contained 26 monomers and 8815 water molecules. System B was

also a pure PNIPAAM polymer with 26 monomers. However, system B had a syndiotactic

arrangement of monomers. The system contained 26 monomers and 8790 water molecules.

Systems C through H were copolymers of PNIPAAM. Hydroxyethyl methacrylate poly-(tri-

methylene carbonate) (HEMAPTMC) and neutral acrylic acid (AAC) were the comonomers

used. A medical study by Fujimoto et al. 92 examined these comonomers. Many possibilities

existed for choosing how many comonomers to use and their positions in the polymer. Sys-

tems with four comonomers were chosen, with three possible arrangements of comonomers

along the polymer backbone. In each case, two AAC comonomers and two HEMAPTMC co-

monomers were placed along the polymer chain. There were 5 PNIPAAM monomers placed

in between each comonomer and 6 placed to cap the ends. This made a total of 31 monomers.

In system C, a HEMAPTMC comonomer was placed near each end of the polymer chain

and two AAC comonomers near the middle of the chain. In system D, an AAC monomer

was placed near each end of the polymer chain and two HEMAPTMC comonomers near

the middle of the chain. In system E, the two HEMAPTMC and two AAC comonomers

were alternated along the chain. The relative arrangements of the comonomers are indicated

in D2. These systems contained 15 314, 14 826, and 15 484 water molecules respectively.

Systems F, G, and H were identical to systems C, D, and E. However, the AAC monomers

were deprotonated. These systems were chosen in a crude attempt to examine the effect a

low pH environment. Sodium counter ions were added to keep the systems neutral. These

systems contained 15 766, 14 170, and 16 071 water molecules respectively.

D.3.2 Simulation Parameters

The AMBER force field (ff94) of Cornell et al. 96 along with the ff99sb modifications of

Hornak et al. 102 were used to model system interactions. The force field variant was chosen

for its extended parameterization beyond amino acids and nucleic acids. Additionally, the
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all atom, explicit hydrogen representation of molecules was desired. See section D.2.2.

The TIP4P-EW explicit water model of Horn et al. 103 was used to model a water solvent.

The model was used for its explicit representation of water molecules and an optimized

performance with Ewald electrostatics methods. The number of water molecules used with

each system was dictated by the size of the simulation cell used for each system. The volume

of the simulation cell along with a rough density of 1.0 g/mL was used estimate the number

of solvent molecules. Proper equilibration fixed the density.

The size of the simulation cell was determined by the length of a fully extended polymer

and the cutoff for short range interactions. While satisfying the minimum image convention,

the simulation cell size had to be so that a fully extended polymer had little or no chance

of interacting with itself. Octahedral boundary conditions were used for pure PNIPAAM

systems, while more general triclinic boundary conditions were used for copolymer systems.

The AMBER force fields do no provide atomic charges for a great deal of molecules.

Atomic charges for the NIPAAM monomer were taken from a previous PNIPAAM MD

study.91 Atomic charges were derived for HEMAPTMC and AAC monomers according to the

restrained electrostatic potential (RESP) method.104 The RESP method can be summarized

in a few steps.

1. perform a quantum mechanical geometry optimization of a molecule or residue.

2. perform a quantum mechanical single point calculation of the electrostatic potential

3. fit the derived electrostatic potential to point charges associated with each atom

During the geometry optimization, density functional theory (DFT) with the Becke 3-

parameter Lee-Yang-Parr (B3LYP) functional was used. A 6− 31G∗ basis was used during

geometry optimization and during electrostatic potential calculation. This basis set is rec-

ommended for the procedure.104 The Gaussian105 simulation software was used for these

calculations. The RESP fitting procedure was done with the aid of the Antechamber106

package.
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D.3.3 Algorithmic Parameters

The MD simulations were performed using the GROMACS simulation software.107–110 Many

algorithmic parameters were based on recommendations found in the GROMACS manual.111

The leap frog integration algorithm was chosen with a time step of 2 fs. See section

D.2.1.

For short range interactions, a spatial cutoff of 9.0 Å was used. A simple neighbor list was

used with update frequency of 10 steps to accelerate short range calculations. The neighbor

list was constructed using the same 9.0 Å cutoff. See section D.2.4.

For long range interactions, the particle mesh ewald (PME) method was used. See

section D.2.5. The long range interaction was partitioned into a rapidly varying short range

contribution and a slowly decaying long range contribution using the parameter α = 10−5.

The rapidly varying contribution was evaluated in real space with a spatial cutoff of 9.0 Å.

The slowly decaying contribution was evaluated in reciprocal space using the discrete fast

Fourier transform. Initially, the charge density was assigned to a isotropic lattice of grid

points spaced by 12.0 Å. The grid spacing was allowed to optimize for parallelization of the

Fourier transform according to GROMACS protocol. Atomic charges were interpolated onto

grid points using fourth order Lagrange interpolating polynomials. The relative permittivity

of the system was set to 1 and metallic boundary conditions were assumed.

For simulations in the canonical ensemble, the Nose-Hoover temperature algorithm was

employed. See section D.2.6. Temperature was different for various simulations. See section

D.3.2 or figure D3. The period of temperature fluctuations was set to 5 ps.

For simulation in an isothermal isobaric ensemble, the Parrinello-Rahman pressure al-

gorithm was also employed. See section D.2.6. All simulations were performed at 1.0 bar.

The simulation cell and particle positions were scaled in an isotropic manner. The pe-

riod of pressure fluctuations was set to 5 ps. The compressibility of the system was set to

4.5× 10−5 1/bar.
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Figure D3: Molecular dynamics procedure.

D.3.4 Simulation Protocol

The general simulation procedure was a multi-step process and is summarized in figure D3.

First, system configurations and topologies needed to be generated. The process to generate

initial configurations can be summarized as follows.

1. derive atomic charges for possible monomers

2. place the desired number and type of monomers end on end in a simple cubic coordinate

system.

3. find all atom types, bonds, angles, proper dihedrals, and improper dihedrals in the

system.

4. assign the correct force field terms.

5. minimize the geometry with a steepest descents algorithm.

6. place the resulting extended configuration in an appropriately sized octahedral or triclinic

coordinate system.

7. add enough water molecules to make the density approximately 1.0 g/mL.

171



The method used to derive atomic charges was in described in section D.3.2. To place

monomers end on end, atomic positions for a monomer were first generated in a chemical

software program. By carefully keeping tack of connection information, atactic and syndio-

tactic configurations could be generated as monomers were joined together. Systems A and B

were placed in an octahedral boundary system, while systems C through H were placed in a

triclinic boundary system. Roughly, the octahedral and triclinic systems had initial volumes

around 900 and 1800 nm[3]. Box sizes were chosen to satisfy the minimum image conven-

tion and remove the possibility of the polymer interacting with itself. This corresponds to

roughly 30 000 and 60 000 atoms per system. Steepest descents energy minimization needed

to be performed after generating the configuration and adding solvent molecules to remove

any bad energy contacts.

After the initial configurations were generated, the systems needed to be equilibrated at

different temperatures and pressures. The temperatures used were 290, 300, 310, and 320K.

These temperatures are above, below, and around the LCST of PNIPAAM. All systems

were simulated at a pressure of 1.0 bar. The equilibration process included 2 stages. First, a

200 ps equilibration in the canonical ensemble was performed at a desired temperature. Initial

velocities were generated according to the Maxwell distribution for this step. It was checked

that the system was stable and had a temperature fluctuating about the desired value.

Second, a second 200 ps equilibration was performed in an isothermal-isobaric ensemble at a

desired pressure and temperature. Velocities were not regenerated. It was checked that the

system had reached a stable density and box size.

After equilibration, a production run was performed in an isothermal-isobaric ensemble

for 75 ns at a desired temperature. Finally, production runs for systems A and B were

extended for an additional 75 ns.

The 200 ps stages, run at 2 fs per step, amounted to 100 000 steps each. The 75 ns runs,

also at 2 fs per step, amounted to 37 500 000 steps each. During that stage, statistics were

collected every 25 000 steps. This gave rise to 1500 or 3000 configurations to perform time

averages with.
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D.4 RESULTS

After simulations were complete, various methods of analysis was performed and is discussed

below in turn.

D.4.1 RMSD

In order to compare two conformations of a molecule, a molecular fitting algorithm can be

used. A molecular fitting algorithm requires a numerical measure of the difference between

two structures when they are positioned in space.95 The root mean square deviation (RMSD)

between two molecular conformations is one such numerical measure. When the RMSD

is minimized, by changing the relative orientation between two structures, the RMSD will

indicate how structures deviate from one another. The RMSD is defined to be the square root

of the average distance squared between corresponding atoms in two different conformations.

RMSD12 =

√

∑N
i=1 |ri1 − ri2|2

N
(D.11)

In equation D.11, RMSD12 is the root mean square deviation between conformations 1

and 2, N is the number of atoms in the polymer, ri1 is the position of atom i in conformation

1, and ri2 is the position of atom i in conformation 2.

To observe how the conformation of systems change throughout the simulation, the

RMSD was calculated with respect to the initial structure. Therefore, large values of RMSD

indicate that a conformation is different from the initial conformation. Note that the RMSD

between adjacent time frames offers much less information. That two time frames have

similar RMSD does not necessarily indicate two structures have similar structures. The

RMSD calculated is only to be interpreted as closeness to the initial conformation.

The goal of calculating the RMSD is to provide quantification to the possibly that PNI-

PAAM and copolymers are in a collapsed state. Since the initial structure of systems were

relatively extended, significant deviation of the RMSD from zero at later time frames opens

the possibility that the structure may be collapsed. It is important to emphasize may, for

we can only know the polymer is some state dissimilar from the initial conformation. There
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Figure D4: RMSD vs. time for systems A, B, C, and D.
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Figure D5: RMSD vs. time for systems E, F, G, and H.
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Figure D6: Radius of gyration vs. time for systems A, B, C, and D.
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Figure D7: Radius of gyration vs. time for systems E, F, G, and H.
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is no guarantee that state is collapsed.

When calculating RMSD, only the backbone atoms were considered. Backbone atoms

are the alkene carbons of the monomers. Figure D4 shows the RMSD verse time for system

A, B, C, and D. The RMSD is shown for 0 to 75 ns at 290K, 300K, 310K, and 320K.

Figure D5 shows the same for systems E, F, G, and H.

In general, the RMSD for every system is a quantity that constantly changes as the

simulation proceeds. The polymer is moving around; the conformation is constantly chang-

ing. That being said, regions where the RMSD of a system becomes large with low fluc-

tuations appear at various temperatures. For example, system A takes on an average

value of 1.108± 0.022 nm from 65 to 75 ns at 310K. Compare this to average value of

0.421± 0.010 nm, 0.616± 0.069 nm, and 0.422± 0.074 nm during the same time period at

the other temperatures. Clearly, the the RMSD at 310K in this region is much larger than

the other temperatures. Similar behavior can be found for the other systems. The behavior

of the copolymer systems, however, seems to be more disordered.

The RMSD varied throughout the simulation for each system. This only means that

the conformation has deviated from the initial extended state. It does not necessarily mean

that systems are extended or collapsed. The pure systems showed large deviations near the

known LCST of PNIPAAM. It is probable for the pure polymer to be found in some set of

states that are not extended near 310K. The copolymer systems occasionally showed large

deviations, but at no real consistent temperature. In any case, it is best to think of the

polymer existing in many states at a given temperature. The changing RMSD shows that

the state is always changing. The polymer fluctuates between these states.

D.4.2 Radius of Gyration

The radius of gyration (Rg) is a concept in many disciplines used to quantify the overall size

of an object. In polymer science, Rg is the mean squared distance of atoms from the center

of mass of a polymer.112

Rg =

√

∑N
i=1 |ri −Rcm|2

N
(D.12)

In equation D.12, Rg is the radius of gyration, N is the number of atoms in the polymer,
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ri is the position of atom i, and Rcm is the center of mass of the polymer.

To observe how the average size of the polymer throughout simulations, the Rg was

calculated for each system. The Rg provides a direct indication of the size of the polymers

at given times in the simulation. When combined with the RMSD calculated in section

D.4.1, one can argue if or not the polymer is in a collapsed state. In contrast to the RMSD,

it makes sense to directly compare the Rg between any time frame.

When calculating Rg, only the backbone atoms were considered. Backbone atoms are

the alkene carbons of the monomers. Figure D6 shows the Rg verse time for systems A, B,

C, and D. The Rg is shown for 0 to 75 ns at 290K, 300K, 310K, and 320K. Figure D7

shows the same for systems E, F, G, and H.

Examining system A, one can see that from 65 to 75 ns, the average Rg is 0.806± 0.015 nm

at 310K. Compared to other temperatures, whose averages are 1.484± 0.070, 1.122± 0.074

and 1.164± 0.091 nm, the Rg at 310K is much smaller. Recall that, during the same time

period, the RMSD of section D.4.1 increased greatly at 310K. System A is considered

collapsed in this region. Similar arguments could be made for other regions of different

systems.

Note also that system A is also noticeably smaller from 30 to 60 ns at 320K. However,

the RMSD was not very large during this time period. This is because system A at 320K

had an initial conformation that was probably not as extended as has been said previously.

Overall, the Rg for each system is a quantity that is always changing. The polymer

is moving around and its average size generally changes. However, not unlike the RMSD

results, the Rg appears to take on small and large values of various time periods. More

importantly, the moment Rg decreases often matches up exactly with the moment RMSD

increases in section D.4.1. For this reason, the polymer is argued to be collapsed when

the Rg is relatively small and extended when the Rg is relatively large. A good indication

of the meaning of relatively large is the value of Rg near the start of a simulation. The

starting configurations are already known to be extended. A good indication of the meaning

of relatively small is to assign a cutoff value for Rg, possibly around 1.1 nm. In the end, the

Rg and RMSD provide a way to tell if the polymer is extended or collapsed.
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(A) (B)

Figure D8: Extended and collapsed NIPAAM configurations.

D.4.3 Radial Distribution Function

The radial distribution function (RDF), pair distribution function, or pair correlation func-

tion, gives the probability of finding an atom a distance r from another atom compared to

the ideal gas distribution.95 In a simulation, the RDF is simply the ratio between the average

number density ρ(r) at a distance r from any given atom and the density at a distance r

from an atom in an ideal gas at the same overall density. Any deviation of the RDF from

unity reflects correlations between the particles due to the intermolecular interactions.113

The radial distribution need not be defined between all atoms in a system. For example, to

examine hydrogen bonding structure in a water model, the RDF could be defined between

the water oxygen atoms and water hydrogen atoms.

To calculate various RDFs, the algorithm described by Allen and Tildesley114 was used.

To handle the correct calculation of minimum particle distance in triclinic cells, the method

of W. Smith was applied.115 The RDF was investigated for possible hydrogen bonds and for

possible hydrophobic interactions. The goal of calculating RDF was to investigate the role

of water in the collapsed and extended state of PNIPAAM and copolymers.

An example set of RDFs are shown in figure D9. From left to right, the RDF was

180



Figure D9: Radial distribution functions for system A.

calculated for various functional groups PNIPAAM and the copolymer. Defined first was an

RDF between all amide hydrogens on NIPAAM monomers and all water oxygens. A peak

appears around 3.0 Å. It is more probable to find a water at this distance near an amide

than in an ideal gas of the same average density. The distance most likely corresponds to a

hydrogen bond.

Second from the left in figure D9 is an RDF defined between all carbonyl oxygens on

NIPAAM monomers and all water hydrogens. Two peaks appear near 2.0 and 3.0 Å. It seems

probable that two water molecules are hydrogen bonded to carbonyl at these two distances.

Third from the left and fourth from the left in figure D9 are RDFs defined for hydrophobic

interactions. The first is an RDF defined between all isopropyl groups on NIPAAMmonomers

and all water oxygens. The second is an RDF defined between all alkene carbons on NIPAAM

monomers ( the backbone atoms ) and all water oxygens. There is a peak in the first graph,

however, it is almost 5.0 Å away. There are no peaks in the second graph. It is not as likely

to find water molecules near the isopropyl or backbone atoms of the polymer. This makes

sense, because there should be no hydrogen bonding here.

A NIPAAM monomer making on average 3 hydrogen bonds, in the extended state at

least, is in agreement with spectroscopic results.90 However, according to the same paper, it

is to be expected that the NIPAAM amide remained unchanged while the NIPAAM carbonyl
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sheds a single hydrogen bond in the collapsed state. This would bring the total hydrogen

bond count down to 2 in the collapsed state. The RDF did not seem to indicate this.

The RDFs were calculated for all the systems at all the temperatures. They were calcu-

lated for the entire trajectory, and for portions of the trajectory deemed collapsed or extended

based on values of Rg. Unfortunately, little or no change was observed for any given RDF. To

confirm, various programs and routines were used. This was surprising because it is thought

that water plays an important role in the collapse of PNIPAAM and copolymers. However,

one possible explanation is that the RDF is in some sense rotationally averaged out. Just

because a hydrogen bound to one electronegative atom is within some distance of another

electronegative atom does not necessarily mean a hydrogen bond is being formed. It should

be that some sort of angular geometric criterion be met. In particular, one might expect the

angle at donor electronegative atom to be somewhat linear.

D.4.4 Water Counting

The number of solvent molecules around a solute within a cut off distance gives an indi-

cation of solvent structure around the solute. When examined as a function of simulation

time, one can observe if corresponding changes in solvent structure accompany changes in

solute structure. To further probe the role of solvent molecules in conformational changes of

PNIPAAM and copolymers, the number of waters around each polymer at a given time was

counted. First, the smallest distance between a water molecule and a polymer was identified.

dWP = min(|riW − rjP|) (D.13)

In equation D.13, dWP is the smallest distance between a water moleculeW and polymer

P. riW is the position of atom i in water molecule W. rjP is the position of atom j in the

polymer P. If the distance was less than some cut off, then water was counted as being

around the polymer.

W =











counted ifdWP ≤ c

not counted ifdWP > c

(D.14)

In equation D.14, W is a water molecule in question, and c is a desired cut off. The
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Figure D10: Water count vs. time for systems A, B, C, and D.
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Figure D11: Water count vs. time for systems E, F, G, and H.
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operation was performed for each water molecule in the system and monitored as a function

of simulation time. Distances were calculated at each trajectory frame using the minimum

image distance method of W. Smith.115 All atoms in a polymer and all atoms in a given water

molecule were included in the calculation. Cut off distances of 0.40 nm, 0.35 nm, 0.30 nm,

0.25 nm, and 0.20 nm. These distances are above and below common hydrogen bonding

distances.

Figure D10 shows waters counted around polymers in systems A, B, C, and D. The water

count is shown for 0 to 75 ns at 290K, 300K, 310K, and 320K. Figure D11 shows that same

for systems E, F, G, and H.

Over all systems, one can observe that the number of waters within 0.20 nm is relatively

constant. For systems A and B, the number of waters within this distance is roughly 35.

For systems C through H, the number of waters within this distance changes between 40

and 50. Recall systems C through H were the larger copolymer systems. More waters can

fit around larger polymers. The amide and carbonyl hydrogen bonding RDFs of section

D.4.3 contained peaks at 2.0 nm and were also observed not to change very much throughout

a simulation. It is possible that the waters counted within 0.20 nm correspond to carbonyl

and amide hydrogen bonds made to the polymers. However, the numbers are slightly larger

than the total number of amide and carbonyl groups in the polymer.

In a similar manner, waters counted withing 0.25 nm remain relatively constant. For

systems A and B, the number of waters within this distance is on average between 90 and

100. For systems C through H, the number is higher around 115 to 125. These numbers are

slightly more than twice but slightly less than three times the waters seen within 0.20 nm.

It seems likely that the waters counted within 0.25 nm encompass all hydrogen bonds made

to carbonyl and amide. This would include the second peak present in carbonyl hydrogen

bonding RDFs, which corresponds to a saturated carbonyl.

For distances of 0.30 nm, 0.35 nm, and 0.40 nm, one starts to see the number of waters

around the polymer begins to fluctuate. It can be seen that the number of waters generally

decreases when the polymer Rg decreases. At first it might seem odd that the number of

waters counted around PNIPAAM should decrease as PNIPAAM becomes smaller. Surely

more waters can fit around a polymer when the polymer is smaller. However, consider that
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the surface area of a polymer decreases with the overall size of the polymer. Since the surface

area of the polymer is smaller when it is collapsed, there are less polymer atoms near waters

and the count must decrease.

D.5 CONCLUSIONS

In this section the results of the study of PNIPAAM and copolymers are summarized. Pos-

sible future work is suggested.

D.5.1 Polymer Collapse

RMSD and Rg showed some general properties. Observing large RMSD and small Rg for

a polymer allowed it to be classified as collapsed or extended. At no point did any system

remain completely extended or collapsed throughout the entire simulation. The polymers

were always fluctuating between conformations at all temperatures. However, clearly distinct

regions of low Rg and high RMSD appear during specific time periods. It was often the case

that the times when a low Rg appeared corresponded to a time when RMSD was large.

When systems tended to enter a collapsed state for a significant time period, the amount

of fluctuations in both RMSD and Rg greatly decreased. The result suggests systems in

collapsed states are in deep wells on the potential energy surface.

Clearly collapsed states were observed for both pure NIPAAM polymers, systems A

and B. These states are identified by a large RMSD and low Rg with small fluctuations.

Below 310K, system A is mainly in an extended states. Above 310K, system A spends

significant time in a collapsed state. System B appears to spend some time collapsed below

310K, is defiantly collapsed at 310K, and is more extended above 310K. System B shows

a collapsed behavior much earlier in the simulation compared to system A. It may be easier

for a syndiotactic system to find a collapsed conformation where side chains do not interfere

sterically. The behavior of systems A and B agree with the experimentally known LCST of

pure PNIPAAM.

186



System C is mainly in a collapsed state at 300K and above. System D does not spend

significant time in collapsed states at any given temperature. If it is in a collapsed state, the

overall size of the polymer is still larger than systems C or E. This result can be explained

by the fact that system C contains large HEMAPTMC near the core of the polymer. Steric

interactions may be preventing system C from obtaining a collapsed state for a long period

of time. System E shows similar behavior to system C. The results suggest the LCST of

protonated copolymer systems is slightly lower than pure PNIPAAM systems.

Charged copolymer systems existed in extended states most of the simulation. A possible

exception is at 310K, where system F is collapsed. Even when in collapsed states, systems

F, G, and H show generally larger Rg. This result is most likely due to the inability to force

charged AAC groups near each other for long in collapsed states. System G may also suffer

from having large HEMAPTMC near the core of the polymer. The results suggest the LCST

of deprotonated copolymer systems is slightly higher or out of range of the temperatures

examined.

To explain the behavior of systems, consider the free energy change in going from an

extended to collapsed state. An extended state is enthalpically stabilized by polymer-water

contacts. In the collapsed state, these contacts are broken. A contribution may be recovered

by favorable polymer-polymer contacts in the collapsed state. However, the overall enthalpic

change to move from an extended state to a collapsed state is positive. That is, it takes

more energy to break polymer-water hydrogen bonds and destroy solvent structure than

is recovered by polymer-polymer contacts. However, as solvent structure is destroyed and

polymer-water contacts broken, the overall entropy of the water will increase. The increase

in entropy of the surrounding solvent is larger than the decrease in entropy of a collapsed

polymer. The entropic change to move from an extended state to a collapsed state must be

negative. In the end, it is the combination of enthalpy and entropy that determine if the

polymer remains extended or collapsed. At low temperatures, the enthalpy of stabilization

wins. The polymer remains extended because the free energy of going from a extended to

collapsed state is positive at low temperatures. As higher temperatures, the free energy

becomes negative because the entropy change in going from an extended to collapsed state is

positive. The entropy term beats the enthalpy term at higher temperatures. Deprotonated
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copolymer systems show a higher LCST because the enthalpy is more positive. It takes more

energy to bring protonated groups close together, and more energy to strip water molecules

away from highly charged groups. Therefore, a higher temperature is needed to make the

entropy term win in free energy change of collapse. The explanation does not seem to explain

why protonated systems show a lower temperature for collapse. It could be that the entropy

change is even more positive due to the large HEMAPTMC groups moving around, even in

the collapsed state.

D.5.2 Role of Water

To investigate how the solvent changed when NIPAAM collapsed the counting procedure and

RDF were calculated. The counting procedure showed two trends. Waters within 0.25 nm

of the polymer were not changing significantly as the polymer collapsed. These waters are

most likely involved in hydrogen bonding with the polymer. The result would suggest that

hydrogen bonding to the polymer is not changing significantly. The result is supported by

the lack in change of hydrogen bonding RDF. Waters from 0.30 nm to 0.45 nm decreased

in number as systems became collapsed. This result is because the surface area of exposed

polymer decreases as it collapses. It also suggest that it could be possible some polymer-water

contacts are being broken. By conservation of the number of water molecules, it must be

that the number of water molecules is increasing even farther away from the polymer during

collapse. This result agrees with the idea that the entropy of water molecules increases

during collapse.

Amide to water hydrogen bonding RDF and water counting suggest a single hydrogen

bond is made to NIPAAM in both the collapsed and extended state. Carbonyl to water

hydrogen bonding RDF and water counting suggest two hydrogen bonds are made to NI-

PAAM in both the collapsed and extended state. The result contradicts experiment, which

shows the number of carbonyl water hydrogen bonds should decrease by one in the collapsed

state. It is questionable how well hydrogen bonding can be represented and identified in the

simulation.
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Figure D12: Geometric criterion for hydrogen bonds.

D.5.3 Future Work

More works needs to be done to better probe the conformational changes of NIPAAM and

copolymers. The resolution with which one could observe hydrogen bonding in a simulation

could be increased. One could use a force field that explicitly includes potentials for hydrogen

bonding. The AMBER force field relies on non-bonded forces to include hydrogen bonding

effects. All hydrogen bonding phenomena are absorbed into the Lennard-Jones 6-12 potential

and Coulomb interactions. The idea is somewhat flawed. Hydrogen bonding, like many types

of bonding, is geometric in nature. In particular, one might expect the donor-hydrogen-

acceptor angle to be close to linear. How are spherically symmetric potentials, with no

angular terms, supposed to capture the geometric nature of hydrogen bonding? There are

better potentials that include angular effects and could be used to improve the results of the

simulation.

Along the same lines, one could come up with better methods to identify hydrogen bonds

in the simulation. For example, a geometric criterion could be used along with the water

counting method. Rather than just count the number of waters within some distance of the

polymers, count the number of water hydrogens within a distance of a hydrogen bonding

donor atom. Ensure that the hydrogen is only counted if the donor-hydrogen-acceptor angle

is some value. Consider the diagram in figure D12. It may also be possible to use an energy

criterion to identify hydrogen bonds.

More variations on systems need to be examined. For example, systems more represen-

tative of experimental systems. While experimental systems may be solutions of polymers,

the MD simulations are only of a single polymer in solution. Simulating a multi-polymer

system should not be out of the realm of possibilities. Coarse graining is a possibility if
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computational complexity becomes too large. A polymer network with water, or PNIPAAM

hydrogel, would be a very informative system to study. Likewise, more work needs to be done

in order to better understand the role of the HEMAPTMC and AAC copolymer systems.

System variation would be a good next step for copolymer systems.

D.5.4 Summary

In summary, one can observe collapsed an extended states of PNIPAAM and copolymers

near the known LCST. The temperature of collapse is less well defined in the simulation

compared to experimental values. However, the temperature of collapse seems to be at the

experimental LCST for pure system, slightly lower for copolymer systems, and slightly higher

for deprotonated copolymer systems. While hydrogen bonding does not seem to change close

to the polymers during collapse, the number of waters away from the polymer increases as

the polymer collapses.
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APPENDIX E

ACRONYMS

RMSD root mean square deviation. 177–179, 186, 191

Rg radius of gyration. 178, 179, 182, 185–187, 191

AAC acrylic acid. 152, 168, 169, 187, 190, 191

B3LYP Becke 3-parameter Lee-Yang-Parr. 169, 191

CPU central processing unit. 12, 14, 23, 26, 33, 36, 191

CUDA compute unified device architecture. 23, 191

DFT density functional theory. 169, 191

GDM gaussian disorder model. 9, 191

GPU graphics processing unit. 12–14, 23, 26, 27, 33, 36, 100, 191

HEMAPTMC hydroxyethyl methacrylate poly-(trimethylene carbonate). 152, 168, 169,

187, 188, 190, 191

HOMO highest occupied molecular orbital. 3, 14, 19, 22, 23, 55, 60, 191

LCST lower critical solution temperature. 155, 172, 178, 186–188, 190, 191

LUMO lowest unoccupied molecular orbital. 3, 7, 14, 19, 22, 55, 60, 100, 191

MC monte carlo. 131–134, 136–139, 142, 144, 147, 148, 151, 162, 165, 191
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MD molecular dynamics. 12, 18, 131, 132, 138, 152, 153, 157–159, 161, 162, 164, 169, 170,

189, 191

NiOBuPc Ni(II)-octabutoxy-phthalocyanine. 62, 191

NIPAAM n-isopropylacrylamide. 152, 154, 169, 181, 186, 188, 189, 191

OBuNc octabutoxy-naphthalocyanine. 62, 191

OFET organic field-effect transistor. iv, 1–3, 6, 7, 10–15, 20, 21, 37, 38, 44, 60, 62, 64, 69,

70, 79, 97, 99, 101, 191

OLED organic light-emitting diode. 2, 191

OpenCL open compute language. 23, 191

OpenMP open multi-processing. 26, 191

OPV organic photo-voltaic. iv, 1–3, 7, 8, 10–15, 72, 100, 102, 191

P3HT poly(3-hexylthiophene). 61, 191

PBA phenylboronic acid. 156, 191

PBC periodic boundary conditions. 162, 163, 191

PC phthalocyanine. 14, 191

PCBM phenyl-C61-butyric acid methyl ester. 14, 61, 191

PME particle mesh ewald. 166, 170, 191

PNIPAAM poly(n-isopropylacrylamide). 12, 152, 154–157, 168, 169, 172, 177, 178, 181,

182, 185–187, 190, 191

PPPM particle-particle particle-mesh. 191

RDF radial distribution function. 179, 181, 182, 185, 188, 191

RESP restrained electrostatic potential. 169, 191

SSMC solvent shift monte carlo. 12, 131, 138–140, 142, 143, 145–151, 191
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