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DNA polymerases are essential enzymes in all domains of life for both DNA replication 

and repair. We examined the thermodynamics and enzymatic activity related to the 

oligomerization of hyperthermophilic archaeal Sulfolobus solfataricus (Sso) primary DNA 

replication polymerase (Dpo1) and lesion bypass polymerase (Dpo4). Both Dpo1 and Dpo4 bind 

to DNA with initial high affinity monomeric binding followed by sequential binding of 

additional molecules at higher concentrations of the enzyme. Gel filtration, chemical 

crosslinking, isothermal titration calorimetry (ITC) and fluorescence anisotropy experiments all 

show a stoichiometry of three Dpo1 and two-four Dpo4 molecules bound to a single DNA 

substrate. In particular, oligomeric Dpo1-DNA complexes significantly increase both the kinetic 

rate and processivity of DNA synthesis.  

Differentiation of binding accurate DNA replication polymerase Dpo1 over error prone 

DNA lesion bypass polymerase Dpo4 is essential for the proper maintenance of the genome. 

Binding discrimination between these polymerases on DNA templates is complicated by the fact 

that multiple oligomeric species are influenced by concentration and temperature. Fluorescence 

anisotropy experiments were used to separate discrete binding events for the formation of 

trimeric Dpo1 and dimeric Dpo4 complexes on DNA. The associated equilibria are found to be 

temperature-dependent, generally leading to more favorable binding at higher temperatures for 

both polymerases. At high temperatures, DNA binding of Dpo1 monomer is slightly favored 
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over binding of Dpo4 monomer, but binding of Dpo1 trimer is strongly favored over binding of 

Dpo4 dimer, thus providing thermodynamic selection. 

The results from ITC showed an unusually strong temperature dependence of the change 

in heat capacity (∆C
o
p), which switches from positive to negative values with increasing 

temperature. The observed sign change in ∆C
o
p does not derive from temperature-dependent 

changes in structure, protonation, or electrostatics. Rather, we propose that temperature affects 

the coupled equilibria between self-associations of free Dpo1 or Dpo4 and their binding to DNA. 

Taken together, Sso differentiates between Dpo1 and Dpo4 binding to DNA by integrating 

molecular and cellular principles including concentration, temperature, oligomerization, and 

coupled equilibria to maintain uninterrupted, rapid, and high fidelity DNA replication. 
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1.0  INTRODUCTION 

1.1 DNA REPLICATION 

DNA replication is an essential biological process for all living organisms to pass their 

genome to their next generation. In DNA replication, a parent DNA duplex is duplicated into two 

identical daughter DNA duplexes, with each of them containing one single strand of the parent. 

Therefore DNA replication is regarded as a semiconservative process, which was hypothesized 

first by Watson and Crick,(2) and later proven by the Meselson-Stahl experiment.(3) The DNA 

replication process involves the coordination of multiple enzymes in several steps. First, a 

helicase unwinds a DNA duplex at a replication fork resulting in single-strand DNA, a template 

for DNA replication, which is then stabilized by single-strand binding protein (SSB). SSB 

prevents the re-annealing of the single-strand DNA and helps the loading of primase on specific 

priming initiation sites. Then, the primase catalyzes the synthesis of a short RNA strand 

complementary to the DNA priming initiation site. The RNA primer has a free 3’-hydroxyl 

group and can be handed off to a DNA polymerase to begin replication.(4) Upon the hydrolysis 

of deoxyribonucleoside 5’-triphosphates, DNA polymerase incorporates the hydrolyzed 

deoxyribonucleoside mono-phosphates to the free 3’-hydroxyl group on RNA primer. The new 

synthesized DNA strand is complementary to the DNA template. Because of the absolute 

requirement of free 3’-hydroxyl group, DNA polymerase has to elongate the two parental single-
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strand DNAs, which are the leading and the lagging strand, in different directions. While DNA 

can be synthesized continuously on the leading strand (3’→5’) in the direction of 5’→3’ without 

interruption, the synthesis of DNA on the lagging strand is discontinuous.  The lagging strand 

DNA polymerase also synthesizes DNA in the direction of 5’ → 3’ but occurs opposite to the 

direction of the progressing replication fork. Thus, the lagging strand has to recruit or recycle the 

DNA polymerase at newly synthesized RNA primers, creating small pieces of DNA fragments, 

known as Okazaki fragments. Meanwhile, the RNA primers on the completed Okazaki fragments 

are removed by an endonuclease, leaving gaps that are later filled by a DNA polymerase. Finally, 

these DNA fragments on the lagging strand are jointed together by DNA ligase. A model of the 

DNA replisome is demonstrated in Figure 1-1. 

                  

Figure 1-1. The DNA replication replisome. 
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1.2 DNA REPLICATION IN THE ARCHAEAL DOMAIN 

 

The fundamental process of DNA replication is conserved in all three domains of life, but 

the enzymatic details vary. While bacteria tend to use a simpler replication machinery involving 

fewer enzymes, eukaryotic organisms control the DNA replication mechanism with a meticulous 

and complicated collaboration of enzymes used primarily for regulation. Intriguingly, the third 

domain of life, Archaea, shares some similarity with both bacteria and eukaryotes.(5) Archaeal 

organisms are prokaryotes and lack a nucleus like bacteria, however, their DNA replication 

machinery is more homologous to that of eukaryotes.(6-8) In fact, Archaea seem to possess a 

simpler ancestral core group of enzymes compared with eukaryotes. These similarities allow us 

to investigate DNA replication mechanisms from archaea that are relevant to the homologous but 

more complex eukaryotic system.  

This work reported here attempts to understand the functions of Archaeal DNA 

replication proteins alone or in complexes as molecular machines. This information will be used 

to decipher Archaeon DNA replication mechanisms on both the leading and lagging strands as a 

model system to give a better perspective on eukaryotic DNA replication. Deficiencies in DNA 

replication have been linked to neurological diseases or cancer.(9) This information will be used 

to determine or suggest causes of aberrant DNA replication in cancer cells within a dynamic 

DNA molecular machine. 
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There are two main protein complexes involved in DNA replication: primosome and the 

DNA polymerase holoenzyme. While the primosome, including helicase and primase, initiates 

DNA replication, the DNA polymerase holoenzyme incorporates a complementary 

deoxynucleotide to the parent strand for elongation of a newly synthesized daughter strand. 

Within the replisome, the DNA polymerase holoenzyme is comprised of the polymerase and its 

accessory factors, PCNA (clamp or processivity factor) and RFC (clamp-loader). PCNA forms 

an oligomeric ring encircling DNA and serves as a moving platform for replication processing 

proteins.(10-14) In all three domains of life, clamps share morphological similarities, 

constructing toroidal conformers that must be opened and closed on to DNA and then slide along 

DNA to increase the speed and processivity of DNA replication.(15-17) 

Compared to other sliding clamps, the homodimeric bacterial β-clamp is not orthologous 

to the trimeric archaeal/eukaryal PCNA but is functionally analogous.  The PCNA clamp in 

Sulfolobus solfataricus is one of the most unique replication complexes due to the heterotrimeric 

arrangement consisting of three separate subunits.(10) Sulfolobus and a related creanarchaeal, 

Aeropyrum pernix, are the only organisms to date that possess three different but highly 

homologous proteins.(18) The Sulfolobus PCNA heterotrimer has a consistent stereochemistry 

and assembles first as a dimer of PCNA1 and 2. Then, the PCNA1/PCNA2 heterodimer can then 

bind to PCNA3.(10)  

Three different PCNA subunits imply that each may have preferred interacting protein 

partners. Indeed, three separate publications of crystal structures of PCNA complexes show 

PCNA heterotrimer alone,(17) PCNA1-PCNA2 heterodimer with Flap endonuclease 1 (Fen1, 

responsible for removing RNA primers in replication fork),(12) and PCNA heterotrimer with 

DNA ligase respectively.(13) SsoPCNA heterotrimer, but not individual monomers, can 
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stimulate the activities of Fen1 and ligase.(10) More specifically, PCNA1 interacts with either 

Fen1 or Dpo4 (the Y-family lesion bypass polymerase); PCNA2 interacts with the polymerase 

(Dpo1); and PCNA3 interacts with the DNA ligase.(13, 19) Also, the DNA repair nuclease 

(XPF) interacts with PCNA1 and PCNA3 to perform its endonuclease activity,(14) and uracil 

DNA glycosylase (UDG1, a family of enzymes involved in base excision repair) can interact 

with PCNA3.(11) An ensemble representation of the DNA polymerase holoenzyme based on the 

individual crystal structure complexes is shown in  

 

Figure 1-2. PCNA interacts with many proteins and holds them in close proximity to the 

replication fork, which may increase the processivity of polymerase holoenzyme, regulate DNA 

repair, and control ligation on the lagging strand.    

 

Figure 1-2. Model of the protein interactions arranged by SsoPCNA123 

(PDB ID 2hii). The polymerase (lavender) (PDB ID 1s5j) interacts with 

PCNA2 (brown). The DNA ligase (green) (PDB ID 2hiv) interacts with 

PCNA3 (orange). The flap endonuclease (red) (PDB ID 2izo) interacts 

with PCNA1 (blue). 

 

 

 

PCNA subunits not only have specific interaction partners, but also display differential 

interactions with the clamp loader, RFC.(10) Sulfolobus RFC contains one large (RFCL) and 

http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/Base_excision_repair
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four small (RFCS) subunits. The homotetramer of RFCS interacts with the PCNA1 + PCNA2 

dimer and RFCL interacts with PCNA3.(10) Again, three different subunits of PCNA have their 

preference to different RFC subunits inferring an unique PCNA-loading mechanism to DNA 

among all domains of life.(20)  

1.3 SULFOLOBUS SOLFATARICUS DNA POLYMERASE 

DNA polymerases can be classified into seven different families: A, B, C, D, X, Y, and 

RT based on different sequence homology.(21, 22) Family A contains both replicative 

mitochondrial DNA polymerase γ and repairing E. coli DNA pol I. Family B contains mostly 

replicative DNA polymerases, including eukaryotic DNA polymerases α, δ, ε, and E. coli DNA 

pol II. The B-family of DNA polymerases has remarkable accuracy during replication, and many 

of them have strong 3'-5' exonuclease proofreading activity. Family C polymerases are the 

primary bacterial chromosomal replicative enzymes which include E. coli DNA Polymerase III. 

Family D polymerases are still not well characterized and only found in the Euryarchaeota 

subdomain of Archaea but are thought to be primarily responsible for replication in the phyla.
(23)

 

Family X contains the short-patch base excision repair eukaryotic polymerase pol β, as well as 

other eukaryotic polymerases such as pol σ, pol λ, pol μ, and terminal deoxynucleotidyl 

transferase (TdT). The Y-family polymerases have low fidelities on undamaged templates and 

are unique for their abilities to bypass damaged DNA sites. The reverse transcriptase (RT) family 

uses an RNA template to synthesize the DNA strand, containing retroviruses and several 

eukaryotic polymerases.  

http://en.wikipedia.org/wiki/Euryarchaeota
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  Crenarchaeal Sulfolobus contains three B-type DNA polymerases (Dpo), Dpo1, Dpo2, 

Dpo3 and one Y-type Dpo4 in its genome.(24, 25) The B family polymerases have been 

classified as the primary replication polymerases and have similar structures across organisms 

that include fingers, thumbs, and palm domains which cradle DNA in the correct conformation 

for catalysis by using conserved aspartates as the active site residues.(26-32) In Figure 1-3a, a 

partial crystal structure of Dpo1 demonstrates a typical right handed conformation of the B-type 

polymerase with an extended fingers domain proposed to be involved in conformational changes 

associated with catalysis or protein-protein interactions.(33) On the other hand, as shown in 

Figure 1-3b, the structural domains of Y-family Dpo4 share most of structural feature with B-

family polymerase, but also includes a little finger domain.  It is suggested that the extended 

finger domain in Dpo1 and the little finger domain in Dpo4 can directly interact with each other 

for coupled uninterrupted lesion bypass during DNA replication.(34) At sites of DNA damage, 

Dpo1 interacts with a Dpo4 in a proposed polymerase-switching mechanism on the damaged 

DNA strand. 

The respective affinities of the polymerase accessory proteins are expected to be different 

for B-family-polymerase Dpo1, 2, and 3 and to date are only shown to interact with Dpo1.(10, 

19) Polymerase accessory proteins PCNA, RFC are known to increase the processivity of 

Dpo1.(35-37) Dpo1 and Dpo4 have been found to specifically interact with PCNA2 and PCNA1, 

respectively, through a PCNA interacting peptide (PIP) motif.(19, 38, 39) Specificities for 

replication enzymes, including Dpo1 and Dpo4, for simultaneous binding to PCNA hold these 

enzymes at high local concentrations at the replication fork in a common tool-belt model to 

maintain the speed and fidelity of DNA replication.(40) PCNA binds to all the other interacting 
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enzymes through an unique PIP interaction domain suggesting a requirement of switching of 

enzymes at this PIP motif to fulfill a variety of actions of DNA replication.(41)  

 

Figure 1-3. a) Overall Structure of Sso Dpo1. The Dpo1 structural domains are demonstrated in red (N-

terminal subdomain), yellow (exonuclease subdomain), green (palm), blue (fingers), magenta (thumb).(42) The 

extended finger on N-terminal subdomain is circled in yellow. b) Overall structure of Sso Dpo4-DNA complex, 

DNA bases shown as rods, and the incoming nucleotide and the Ca
2+

 ion in a ball-and-stick model. The Dpo4 

structural domains are demonstrated in red (palm), green (thumb), blue (finger), and purple (little finger); the DNA 

is in gold.(43) 

1.4  OLIGOMERIZATION OF SSO DNA POLYMERASES 

Oligomeric proteins, assemblies of two or more protein subunits, are found frequently in 

all domains of life. Protein oligomerization may be an evolutionary product, which have the 

advantages of increasing access, higher order complexity in a regulatory control.(44) Many 

primitive species use either homo-oligomeric or hetero-oligomeric proteins to support their 
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physiological function. On the other hand, higher order species, containing more variety of 

regulatory proteins, may use a specific enzyme to coordinate the formation of oligomeric 

complex. In this work, we focus on interactions, oligomerization, and thermodynamics of 

archaea replication and repair polymerases on DNA. Understanding the strategy and the 

mechanism in archaea Sso DNA replication system infers the evolutionary path for polymerase 

oligomerization and serves as an important and relevant model for detailing and comparing their 

eukaryotic counterparts.(45-47)  

Protein oligomerization is necessary for coordinated DNA replication at replication fork. 

Ishmael et al. showed the interaction of two DNA polymerases from bacteriophage T4 in a 

crosslinking assay.(48) The utility of this dimeric complex is illustrated by studying the 

catalytically inactive mutant of T4 DNA polymerase, which was shown to shut down ongoing 

DNA replication, suggesting a dynamic polymerase-switching mechanism during DNA 

replication.(49) In E. coli, polymerase oligomerization is medicated through the tau subunit of 

the clamp-loader complex.(50) This oligomerization is important in maintaining efficient 

Okazaki fragment processing as shown in Figure 1-4. The illustrations demonstrate the E. 

coli  replication fork containing a triple polymerase Pol III3-τ3-δδ′χψ complex.(1) Other DNA 

polymerases such as Klenow,(51) human pol β,(52) an African swine fever virus polymerase X 

have all been found to in a dimeric complex with DNA.(53) HIV reverse transcriptase (RT) also 

forms a dimer as the functional unit although one of the subunits (p55) is inactivated in favor of 

the active (p66) subunit.(54) Effects of polymerase oligomerization either alone or in concert 

with the accessory factors may have important implications in in maintaining high processivity 

and specificity, as well as coordinated DNA synthesis between the leading and lagging strands, 

and molecular switching between replication and repair polymerases.  
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In this work, affinities and stoichiometries of binding Dpo1 and Dpo4 to DNA has been 

examined using a number of techniques, including fluorescence anisotropy, analytical gel 

filtration, crosslinking assays, electrophoretic mobility shift assays, analytical ultracentrifugation, 

and isothermal titration calorimetry. Enzymatic evidence showing greater processivities for 

Dpo1 and Dpo4 at higher temperatures and protein concentrations promote DNA polymerase 

assembly, stability, and kinetics at the replication fork. Overall, our results indicate that the 

binding specificities of multiple oligomeric archaeal DNA polymerases are regulated by changes 

in cellular concentrations and temperature for efficient DNA binding recognition and synthesis.  

 

 

Figure 1-4. The illustrations demonstrate 

the E. coli  replication fork containing a triple 

polymerase Pol III3-τ3-δδ′χψ complex.(1)  
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2.0  A TRIMERIC DNA POLYMERASE COMPLEX INCREASES THE NATIVE 

REPLICATION PROCESSIVITY AND THERMODYNAMICALLY STABLIZE DNA 

DUPLEX
1
 

DNA polymerases are highly conserved enzymes found in all domains of life, and 

depending on the type, are primarily responsible for DNA replication or repair activities. Many 

of the structural and mechanistic features of these polymerases are shared across a broad range of 

organisms, but slight differences have been identified with regards to substrate specificity, 

template sensing, as well as coordinating polymerase and exonuclease activities.(55-58) The 

genome of  (Sso) contains DNA polymerase members from both the DNA replication B-family 

as well as a lesion bypass polymerase from the Y-family.(59, 60) The B-family DNA polymerase 

(SsoDpo1) has been shown to have the necessary enzymatic and kinetic properties to be the 

replicative polymerase in Sulfolobus.(61-66) A crystal structure of SsoDpo1 has been solved 

showing a typical right-handed conformation of the polymerase with an extended fingers domain 

hypothesized to be involved in either conformational changes involved in catalysis or protein–

protein interactions.(42) Under normal DNA replication conditions, SsoDpo1 is thought to 

interact with the heterotrimeric SsoPCNA complex to maintain a high degree of processivity and 

                                                 

1
 Text from this chapter is reprinted with permission from Andrey L. Mikheikin, Hsiang-Kai Lin, Preeti 

Mehta, Linda Jen-Jacobson and Michael A. Trakselis. Nucleic Acids Research 2009, 37, 7194-7205 
Copyright 2009 Oxford and Zhongfeng Zuo, Hsiang-Kai Lin, and Michael A. Trakselis. Biochemistry 2011, 
50, 5379-5390. Copyright 2011 American Chemical Society. 
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possibly with the Y-family DNA polymerase, SsoDpo4, to bypass DNA lesions.(67-70) This 

common tool belt model of protein interactions has been suggested to be important in increasing 

the local concentrations of proteins, especially DNA polymerases, at the replication fork to 

maintain the speed and accuracy needed for successful DNA replication.(71) This is even more 

evident with the many other known stable interactions with proliferating cell nuclear antigen 

(PCNA) within the cell.(72) 

Polymerase–polymerase interactions either directly or indirectly are also necessary for 

coordinated DNA replication on both the leading and lagging strands. Direct evidence of a 

polymerase interaction was detected by protein crosslinking in bacteriophage T4.(73) In addition, 

a dominant negative form of the T4 polymerase was shown to shut down DNA replication in a 

coordinated replisome, suggesting the utilization of a dynamic polymerase-switching mechanism 

during DNA replication.(74) In E. coli, polymerase coupling is mediated through the tau 

subunit.(50) In fact, a trimeric polymerase complex in which three copies of tau are incorporated 

into the clamp loader complex has been shown to be fully active on both the leading and lagging 

strands and may be an important factor in maintaining efficient Okazaki fragment 

processing.(75) In higher eukaryotes, it is currently unknown how the replication polymerases, ε 

and δ, are coordinated on the leading and lagging strands, respectively,(76) but they are thought 

to have specific yet unknown plastic interactions with accessory proteins and themselves to 

maintain the replication fork.(77) 

Because of a large distance between the polymerase and exonuclease active sites in most 

DNA polymerases, it has been suggested that there may be multiple polymerase-bound 

conformations. Co-crystal structures of E. coli Klenow polymerase and the homologous version 

in Thermus aquaticus bound to primer/template DNA identify separate polymerization and 
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editing modes of binding.(78-80) A recent report shows that Klenow can bind to primer/template 

DNA as a monomer or dimer, but the dimer form is more prevalent in the polymerization 

mode.(81) Effects of polymerase multimerization either alone or in concert with accessory 

factors may have important implications in maintaining high processivity as well as coordinated 

DNA synthesis between the leading and lagging strands. 

We have used a variety of biochemical techniques to investigate the stoichiometry 

of SsoDpo1 on DNA and show that the oligomeric state influences the mechanism of 

polymerization. We have determined that SsoDpo1 binds to a DNA primer/template initially as a 

monomer and cooperatively forms a trimeric polymerase complex with increasing concentrations. 

This trimeric complex can increase both polymerase kinetic activity and processivity. The 

organization of this multimeric polymerase is discussed with regard to binding conformation and 

effect on polymerization kinetics and has important implications for DNA replication 

mechanisms. In the later work, we also show that Dpo1 has a remarkable ability to stabilize weak 

base pairing interactions to replicate a template strand at high temperatures. This annealing 

activity is not recognized for either Thermus aquaticus pol I (Taq) or Pyrococcus furiosus B-

family DNA polymerase (Pfu-Pol), suggesting a relationship with the oligomeric state of Dpo1. 

 

2.1 MATERIALS AND METHODS 

Materials. Oligonucleotide substrates were purchased from Integrated DNA 

Technologies (IDT) (Coralville, IA). Gel purification of the DNA strands was performed as 
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previously described.(82) Primer/template and duplex substrates were prepared by mixing each 

strand in 1:1 ratio in a buffer containing 20 mM Tris (pH 7.5) and 200 mM NaCl. The annealed 

complex was heated at 95 °C for 2 min and allowed to cool down slowly for at least 2 hours in 

the heat block. M13mp18 was purchased from USB Corporation (Cleveland, OH). All 

radiochemicals were purchased from MP Biochemicals (Santa Ana, CA). Commercial enzymes 

were from NEB (Ipswich, MA). All other chemicals were analytical grade or better. 

SsoDpo1 was amplified from genomic S. solfataricus P2 (ATCC, Manassas, VA.) 

using Pfx50 polymerase (Invitrogen, Carlsbad, CA). Initial ligation of the PCR product into 

pGMET (Promega, Madison, WI) was performed using standard T-cloning. Standard 

QuikChange protocol (Stratagene, La Jolla, CA) was used to create an exonuclease mutant of 

SsoDpo1 (D231A/D318A). Specific restriction sites AseI and XhoI contained in the primers were 

used to clone SsoDpo1 into pET30a digested with NdeI andXhoI (Novagen) to include a C 

terminal His tag. The SsoDpo1 exonuclease mutant (D231A/D318A) was used hereafter in all 

studies described in this manuscript. DNA sequences were verified by the Genomics and 

Proteomics Core Laboratories at the University of Pittsburgh. 

SsoDpo1 expression and purification. pET30a-SsoDpo1 exo
−
 was transformed into 

BL21(DE3) Rosetta 2 (Stratagene) and grown at 37 °C. Cells were induced with 0.5 mM IPTG 

at OD600 between 0.5 and 0.6. The cells were lysed by sonication and heat treated at 70 °C for 30 

min followed by centrifugation. The lysate supernatant was purified further by Ni-NTA agarose, 

heparin and SP sepharose columns (GE Healthscience). Final cleanup and size selection was 

performed using a Superdex 200 26/60 gel filtration column. The extinction coefficient 

for SsoDpo1 was calculated to be 118,282 M
−1

cm
−1

.(83) 
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Analytical gel filtration. Superdex 200 10/30 column (GE Healthscience) was used at a 

flow rate of 0.2 ml min
−1

 in Buffer A [20 mM HEPES‐NaOH (pH 7), 240 mM NaCl, 5% 

Glycerol, 10 mM Mg(OAc)2, 0.2 mM DTT] and protein elution was monitored at 280 nm. 

Binding and kinetic experiments were performed using identical buffer conditions (Buffer A) 

unless indicated otherwise. The molecular ruler standards Thyroglobin (165 kDa, Sigma), 

Conalbumin (75 kDa, GE Healthscience), Albumin (43 kDa, Sigma), Myoglobin (17.6 kDa, 

Sigma) and Vitamin B12 (1.4 kDa, Sigma) were run to create a standard log curve fit by linear 

least squares. One hundred microliters SsoDpo1(100 µM) in the absence or presence of DNA 

substrates at concentrations of 20 µM was injected with the internal standard, vitamin B12, 

added for monitoring any elution shift. The molecular weight of the eluting species was 

calculated from the standard log plot. 

Electrophoretic mobility shift assay. Electrophoretic mobility shift assays (EMSAs) were 

performed in a 10 µl reaction volume containing Buffer A with 4 nM DNA probe labeled at the 

5′-end using a standard polynucleotide kinase reaction and 
32

P-γ-ATP, and the indicated amount 

of SsoDpo1. Binding reactions were allowed to equilibrate for 10 min followed by directly 

loading onto a gradient 4–15% polyacrylamide/TBE ReadyGel (BioRad, Hercules, CA). Gels 

were run for 1 h at 13 volts cm
−1

 followed by drying and imaging using a Storm phosphorimager 

(GE Healthscience). Quantification of the fraction of band shift was performed using the 

ImageQuant software (v5.0). 

Data were fit using non-linear least squares analysis using Kaleidagraph (Synergy, 

Reading, PA) to an equivalent multiple site binding model defined by: 

                                                                 (Equation 2-1) 
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where fmax is the maximum fraction shifted, P is the SsoDpo1 concentration, Kd is the 

dissociation constant and n is the Hill coefficient which defines cooperativity. 

Fluorescence anisotropy. Fluorescence anisotropy measurements were performed in 

Buffer A. A fluorescently labeled DNA hairpin 5′-Cy5-

TTTTTTTTTTTTTTTCGAATGGCGCTTTGCCTGGTTTTTACCAGGCAAAGCGCCATTCG 

that was HPLC purified (IDT) was used in all anisotropy experiments. Before measurements, the 

hairpin was heated to 95 °C and then allowed to anneal slowly to room temperature over at least 

1 h. Measurements were performed on FluoroMax-3 spectrofluorimeter (HORIBA Jobin Yvon). 

Fluorescence was excited at 645 nm, and the emission was monitored at 675 nm during 1-s 

integration times and represents an average of 10 consecutive readings. The absolute 

fluorescence intensity at 675 nm did not change with addition of a high concentration 

of SsoDpo1 ruling out the possibility that SsoDpo1 binds specifically to the Cy5 fluorophore. 

The fluorescence anisotropy, r, was calculated using the equation: 

                                                           (Equation 2-2) 

where I is the polarized fluorescence intensity with subscripts V and H identifying either vertical 

or horizontal polarized light, respectively. The G-factor is a correction for the difference in 

sensitivities of detection for horizontal and vertically polarized light, and was measured 

immediately before each experiment and is defined by 

                                                                               (Equation 2-3). 
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The observed anisotropy is the sum of all the anisotropy values for each species present. 

In this case, only the DNA was labeled so there is no contribution from free protein. Only 

species containing DNA, either alone or SsoDpo1-bound complexes contribute to the anisotropy, 

defined as 

                                                   (Equation 2-4) 

where fi is the fraction of an individual species and ri is the associated anisotropy values. 

Contributions to anisotropy are therefore equal to: 

                 (Equation 2-5) 

where rD, rDP, rDP3 are the anisotropy values for the DNA alone, singly bound SsoDpo1 and 

trimeric SsoDpo1-bound complexes, respectively. 

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) was performed 

using VP-ITC (MicroCal Inc., Northampton, MA) at 303°K for SsoDpo1 binding to DNA.(84) 

Prior to the experiment, SsoDpo1 and DNA were dialyzed in Buffer A. The concentrations of the 

dialyzed protein and DNA were determined prior to the titration. Typical titrations consisted of 

30 injections of 2 – 5 µl of DNA solution (500 µM) into the overfilled (∼1.4 ml) sample cell 

containing SsoDpo1 (20 μM). To obtain the effective heat of binding, the observed heats of 

reaction were corrected for the heat of dilution of the DNA by subtracting the baseline heats 

obtained after saturation. All data were fit using Origin 7.0 (MicroCal) to the following 

equation,(85) 
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  (Equation 2-6) 

where V0 is the volume of the cell, ΔH is the enthalpy of binding per mole of ligand, [P]t is the 

total [SsoDpo1] including both bound and free fractions, Ka is the binding constant, [D]t is the 

total DNA concentration and n is the stoichiometry of the reaction. 

Crosslinking studies. We performed all crosslinking studies in buffer A and over a range 

of [NaCl]. Sulfo-EGS [ethylene glycol bis(sulfosuccinimidylsuccinate)] (Pierce, Rockford, IL) 

was used as the crosslinker targeting free amino groups. 10 µM of SsoDpo1 was incubated with 

primer/template DNA (similar to ITC conditions) for 1 min at various temperatures, then 

crosslinker was added to a final concentration of 0.5 mM and the reaction mixture was incubated 

for 30 min at variant temperatures. The reaction was stopped by addition of 1 M Tris–HCl (pH 

7.5) to a final concentration of 50 mM and then incubating at room temperature for 15 min. 

Products of crosslinking reaction were analyzed using a 6% SDS–PAGE gel and stained with 

Coomassie dye. 

Polymerase kinetics. The polymerase assay monitored the incorporation of nucleotides 

on primer/template 5′ [γ-
32

P]-labeled DNA substrates. Individual primer strands were first 

labeled with [γ-
32

P ATP] using a standard polynucleotide kinase reaction and then annealed to 

M13mp18 or 31-mer ssDNA. The reaction was started by mixing labeled DNA substrates (4 nM), 

dNTPs (0.05 mM), reaction buffer and SsoDpo1 at various concentrations and incubating at 37 

or 60°C for various times. For single-turnover processivity experiments, SsoDpo1 was 

preassembled on ptDNA and the reaction was initiated with dNTPs and a 5000-fold excess of 
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ssDNA as a polymerase trap at 37 or 60 °C. One volume of stop solution (100 mM EDTA, 0.1% 

SDS, 80% Formamide, 0.1% Bromophenol Blue) was added to terminate the reaction. Aliquots 

were run on either a denaturing (14% Acrylamide/8M Urea/1X TBE) or alkaline agarose (0.8% 

agarose, 1N NaOH, 0.5 M EDTA) gel, dried and phosphorimaged. Quantification of the band 

intensities and lengths was performed using ImageQuant software (v5.0). The calculated rate of 

DNA synthesis (bp/min or fraction of full length product) as a function of SsoDpo1 

concentration was initially fit to a standard Michaelis–Menten equation, but a fit that included a 

positive cooperativity parameter (n) for allosteric enzymes according to the following equation, 

                                                           (Equation 2-7) 

gave a much better fit where Kd
'
 is the apparent catalytic dissociation constant for SsoDpo1 (P) 

and Vmax is maximal rate of synthesis. The off-rate of the polymerase for each oligomeric state 

can be calculated by dividing the rate of DNA synthesis (bp/min) by the average processivity 

(bp) to give min
−1

. 

Determination of Melting Temperatures. DNA melting temperature measurements were 

conducted on a Varian Cary100 Bio UV visible spectrophotometer. The UV absorbance at 260 

nm was measured for 1.5 μM DNA with or without 1.5 μM Dpo1exo in assay buffer [50 mM 

glycine (pH 8) and 5 mM Mg(CH3COO)2] at every integral temperature point from 4 to 90 
o
C 

programmed at a rate of 1 
o
C/min. The melting temperature was determined from a plot of the 

UV absorbance versus temperature for multiple replicates and analyzed using the included 

software. 
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2.2 RESULTS 

2.2.1 Analysis of SsoDpo1‐DNA substrate complex formation by analytical gel filtration 

During the purification as detected by both preparatory and analytical gel 

filtration, SsoDpo1 exists as a monomer (101 kDa) and eluted alone at 13.5 ml (Figure 2-1). 

Addition of DNA was found to shift the equilibrium of binding to a higher molecular weight 

species consistent with the formation of a higher-order complex. Although lower concentrations 

of NaCl (100 mM) gave a larger proportion of the higher-order complex (data not shown), we 

used 240 mM NaCl contained in buffer A in further binding and kinetic assays to reduce any 

potential contributions of nonspecific aggregation events. 

Figure 2-1. Gel filtration profile of a 

constant initial concentration of SsoDpo1 (100 

µM) and various DNA substrates (20 µM). 

Single strand (ssDNA) (31-mer), blunt duplex 

(dsDNA) (50/50-mer) and primer/template 

(p/tDNA) (21/31-mer) DNA are shown. Peaks 

identified as A, B and C represent trimer:DNA, 

monomer:DNA and monomer forms 

of SsoDpo1, respectively according to fit of a 

standard molecular weight ruler. A constant 

concentration of vitamin B12 was used as an 

internal standard in all the experiments to 

account for drift in the elution profile (peak D). 

To determine relative binding 

affinities for different DNA substrates, 

an identical initial loading 

concentration (100 µM) of SsoDpo1 

was incubated with separate DNA substrates and then analyzed by analytical gel filtration. The 

most obvious change in these elution profiles is from the complexation of SsoDpo1 and p/tDNA 

(21/31) (Figure 2-1). This shifted peak (bottom panel) eluted at a position consistent with a 

trimeric SsoDpo1 complex bound to DNA (as determined from the standard log curve with 
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molecular weight markers). Complexes with single strand and with blunt duplex DNA were also 

compared under the same conditions. In both cases, a protein–DNA complex eluted in the 

position (unresolved from free monomeric protein) predicted for a monomeric SsoDpo1–DNA 

complex. Blunt duplex DNA was able to stimulate the formation of a trimeric complex, 

significantly more than with ssDNA but less than p/tDNA. 

It is possible that higher-order complexes exist on the single and double strand substrates 

at the high initial concentrations prior to injection, but because of dilution during the course of 

gel filtration chromatography, the equilibrium is driven to the lower-order 

monomeric SsoDpo1—DNA species. The composition of the peaks C and B (Figure 2-1) 

consisting of monomer and monomer bound to DNA would therefore dominate the equilibrium 

after elution from the column for the single and dsDNA substrates. 

2.2.2 EMSA of SsoDpo1/DNA complexes 

EMSAs were utilized to analyze the binding of SsoDpo1 to 5′ [γ-
32

P]-labeled ssDNA, 

dsDNA and primer/template (p/tDNA) substrates (Figure 2-3). SsoDpo1 can bind to all 

substrates, since in all cases, a shift in the apparent molecular weight is observed. For SsoDpo1 

binding to ssDNA and dsDNA, only two bands are clearly observed on the gels (Figure 2-3A): 

lower band corresponds to unbound DNA (at [SsoDpo1] < 150 nM) and upper one (at [SsoDpo1] 

> 1500 nM) corresponds to SsoDpo1‐DNA complex. There is some evidence, just above a 

background level, of an intermediate band from 150 to 1500 nM SsoDpo1 with the dsDNA 

template (Figure 2-3B) consistent with either a monomer or dimer of SsoDpo1 bound to DNA. 

This monomeric or dimeric polymerase DNA complex was not reproducible due to its low 

abundance with some DNA substrates. Fitting these data to a model that analyzes the percent of 
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DNA shifted, regardless of the complex state (Equation 2-1), identifies a cooperativity of binding 

leading to a stoichiometry of SsoDpo1‐DNA complex as 3:1 (Figure 2-2A and B). Similar global 

binding affinities and stoichiometries are calculated for ss- and dsDNA templates (Table 2-1). 

These results cannot specifically rule out preferential binding of a preformed trimeric SsoDpo1 

complex to either substrate due to the low abundance of an intermediate band, which could 

indicate either progression of SsoDpo1 binding cooperatively or dimeric SsoDpo1 binding 

directly to DNA. 

 

Table 2-2-1. Dissociation constants (KT) and stoichiometries (n) of SsoDpo1 binding to different DNA 

substrates determined by EMSAs 

DNA substrate KT
a
 (nM) Stoichiometry (n) 

ssDNA(21-mer) 0.42 ± 0.02 2.8 ± 0.4 

dsDNA (21/21-mer) 0.33 ± 0.02 2.7 ± 0.3 

Short p/tDNA (21/31-mer) 0.27 ± 0.01 2.8 ± 0.1 

Medium p/tDNA (21/40-mer) 0.23 ± 0.01 3.1 ± 0.2 

Long p/tDNA (28/66-mer) 0.10 ± 0.01 3.0 ± 0.3 
 
a
The dissociation constant (KT) represents the overall binding affinity of the total complex of SsoDpo1 to 

DNA. In this analysis, it includes parameters from monomeric, dimeric and trimeric SsoDpo1 binding to DNA. 
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Figure 2-2. Shows the fits of EMSA for different DNA templates from Figure 2-3 according to equation 1 for A) 

ssDNA (21mer), B) dsDNA (21mer), C) short primer/template DNA (21/31mer), and D) medium primer/template 

(21/40mer), E) long primer/template DNA (28/66). When the presence of monomeric and dimeric polymerase:DNA 

complex was observed, the fits of the individual species are shown in D) and E). Both the stoichiometric values of n 

and the global dissociation constant (KT) are reported in Table 1. F) Compares the total EMSA shift between DNA 

substrates. 
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Figure 2-3. EMSA of the interaction of 

SsoDpo1 with a variety of different DNA 

substrates labeled at the 5′-end with
32

P; (A) 

single strand (21-mer), (B) duplex DNA 

(21/21-mer), (C) short primer/template 

DNA (21/31-mer), (D) medium 

primer/template (21/40-mer) and (E) long 

primer/template DNA (28/66). The 

concentration of SsoDpo1 was increased as 

shown above the gels identically for all 

experiments. The shift to the top of the gel 

identifies the trimeric polymerase complex 

highlighted by an arrow labeled with 3. The 

other arrows labeled 1 and 2 represent a 

monomeric and dimeric DNA complex, 

respectively. Dashed arrows represent 

extremely weak and faint complexes, 

while solid arrows are highly reproducible 

complexes. Fits of the fraction of DNA 

shifted are shown in Figure 2-2. 

 

http://nar.oxfordjournals.org/cgi/content/full/gkp767/DC1
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In contrast, four bands are 

observed on the gels for the 

complex of SsoDpo1 with p/tDNA 

substrates with increasing size 

(Figure 2-3C, D and E). These 

additional protein DNA complexes, 

barely visible with the dsDNA 

substrate above, are more 

pronounced with p/tDNA and 

appear at lower protein concentrations. These additional bands labeled 1 and 2 are more clearly 

seen in the case of p/tDNA with a longer single-stranded tail (Figure 2-3D and E). Bands 1 and 2 

suggest the formation of another type of SsoDpo1–DNA complex with an apparent lower 

molecular mass than the fully shifted protein DNA complex seen in Figure 2-3A and B. The 

Figure 2-4. A) DNase I footprinting of 

SsoDpo1 on ptDNA (28/66mer). The 

template strand (66mer) is labeled at the 

5’ end with 
32

P. Increasing 

concentration of SsoDpo1 shows 

protection from eight bases from the 

primer template junction in the dsDNA 

region. B) Similar experiments with 

increasing concentrations of SsoDpo1 

designed to target primarily the ssDNA 

were performed with S1 nuclease. S1 

nuclease primarily cleaves at a primer 

template junction but also cleaves 

ssDNA and dsDNA to lesser extents. A 

shift in cleavage is seen nine bases into 

the ssDNA template from the primer 

template junction with increasing 

concentrations of SsoDpo1. C) Shows 

the cleavage sites (arrows) of both 

DnaseI and S1 nuclease on the pimer 

template substrate at high 

concentrations of SsoDpo1 
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stoichiometry of SsoDpo1 binding to DNA was determined by performing an EMSA at high 

concentrations of DNA (7.5 µM) and stained with either ethidium bromide or coomassie blue 

(data not shown) and was found to be 3.5 ± 0.7 for SsoDpo1:DNA. 

Higher mobility of this type of complex in gel compared to the upper band 3 indicates a 

lower stoichiometry of this type of complex: either monomeric or dimeric (1 : 1 or 2 : 

1 SsoDpo1:DNA ratio, respectively). At [SsoDpo1] > 150 nM, band 1 and eventually band 2 

disappear and SsoDpo1‐DNA complex has mobility similar to the trimeric complex observed for 

ss- and dsDNA (see above). Fitting the percentage of DNA (fraction of total DNA) shifted above 

the free DNA position revealed a 3:1 SsoDpo1:DNA stoichiometry (see Figure 2-2C, D and E) 

(Table 2-1). Since band 1 appears at a lower [SsoDpo1] concentration than in either the ssDNA 

or dsDNA EMSA, the monomeric SsoDpo1 has a higher initial affinity (∼3-fold) for p/tDNA 

compared to ss- and dsDNA and promotes the cooperative formation of a 

trimeric SsoDpo1/DNA complex that proceeds first through a dimeric SsoDpo1/DNA complex. 

At high concentrations of SsoDpo1 for either the 21/40-mer or 28/66-mers substrate (Figure 2-

3D and E), there may be a percentage of complex that is above the molecular weight for the 

trimer. The resolution between trimer and higher complex states in these cases is small and 

difficult to differentiate. Binding of additional polymerase molecules (>3) to these longer 

templates at either the single strand or double strand ends may be responsible for these 

complexes. 

To determine if this complex is binding along the length of these longer primer-template 

substrates or specifically at the primer-template junction, we used nuclease footprinting to map 

protected sites with increasing concentrations of SsoDpo1 corresponding to monomer and trimer 

formation (Figure 2-4). A reproducible footprint is observed at roughly 9–10 bases on either side 
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of the primer-template junction for both 

monomer and trimer. A shift in the 

hypersensitivity of DNA cleavage by S1 

nuclease upon binding of SsoDpo1 

identifies the free ssDNA boundary. The 

extreme double or single strand ends are 

not protected in these assays even at high 

concentrations of SsoDpo1 (2 µM). 

2.2.3 Stoichiometric fluorescence anisotropy of SsoDpo1 binding to DNA 

To learn more about the stoichiometry of SsoDpo1‐DNA complex, we monitored the 

increase in fluorescence anisotropy upon SsoDpo1 binding to fluorophore-labeled DNA (Figure 

2-5A). Fluorescence anisotropy monitors the relative rotational diffusion rates of molecules so 

Figure 2-5. Quantifying stoichiometry of 

SsoDpo1 binding to DNA. (A) Dependence 

of fluorescence anisotropy of labeled DNA 

hairpin (see the ‘Materials and Methods’ 

section) on SsoDpo1:DNA stoichiometry. 

DNA concentration was fixed at 400 nM 

while the concentration of SsoDpo1 was 

increased to give the stoichiometry listed on 

thex-axis. Cy5 was excited at 645 nm and an 

increase in anisotropy corresponding to a 

decrease in rotational diffusion due to 

SsoDpo1 binding was monitored at 675 nm. 

Fits to the approximate limiting individual 

slopes are used to extrapolate the 

stoichiometry of the two binding phases for 

a monomeric-bound SsoDpo1 (blue dash) 

and trimeric SsoDpo1 complex (green dot). 

(B) ITC titration of primer/template (21/31-

mer) DNA substrate into SsoDpo1. Data was 

fit using Origin software and Equation (2-6) 

to yield thermodynamic parameter (ΔH°) 

14.86 ± 0.252 kcal mol
–1

, equilibrium 

association constant (Ka) 8.68 × 10
5 
± 4.9 × 

10
4
 M and stoichiometry (n) 0.352 ± 0.043 

DNA:SsoDpo1. 
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that an increase in molecular mass upon complex formation produces an increase in anisotropy. 

A ptDNA hairpin labeled with fluorescent dye, Cy5, at the 5′-end was used as a substrate (see the 

‘Materials and Methods’ section). This hairpin eliminates a potential binding site at the double 

strand end known to be a binding site for some polymerases.(86) The concentration of this 

fluorescent DNA substrate used in these experiments (400 nM) is higher than normally used to 

measure dissociation constants (Kd) so that stoichiometry can be monitored. 

Binding of SsoDpo1 to DNA was monitored by the increase in anisotropy upon addition 

of protein. The titration curve is also characterized by a steep slope for SsoDpo1:DNA ratio < 1, 

a more shallow slope for 1 <SsoDpo1:DNA ratio < 3 followed by saturation at SsoDpo1:DNA 

ratio > 3. Such stoichiometric titration curve behavior indicates the presence of at least two 

different types of SsoDpo1‐DNA complexes. The approximate slopes of the individual binding 

events are shown along with their apparent stoichiometries (Figure 2-5A). Note that changing the 

initial DNA concentration 2-fold does not change stoichiometry (data not shown). Based on the 

magnitude of anisotropy change associated with each slope before a breakpoint, we suggest that 

the initial complex monitors formation of a 1:1 SsoDpo1:DNA ratio and the other with a 3:1 ratio 

(Figure 2-5A). There are not sufficient data to detect an additional slope associated with a 

2:1 SsoDpo1:DNA ratio. However, we were able to determine an absolute stoichiometry 

of SsoDpo1 to DNA of 3:1 and show that formation of this complex proceeds through a higher 

affinity 1:1 state. 

2.2.4 ITC to determine thermodynamic parameters of SsoDpo1 binding 

ITC was used to determine the stoichiometry and thermodynamic parameters 

for SsoDpo1 binding to the short primer/template (21/31-mer) substrate (Figure 2-5B). From a fit 



 29 

to the binding isotherm generated from titration of p/tDNA into a cell containing SsoDpo1, the 

following parameters were calculated for the reaction at 30 °C according to Equation 6: an 

apparent equilibrium association constant (Ka) of 8.7 ( ±0.5) × 10
5 

M
–1

 (i.e. Kd = 1.2 ± 0.1 μM), 

an endothermic ΔH° of 14.9 kcal mol
−1

 and a stoichiometry of 2.84 ± 0.04 SsoDpo1:DNA. Based 

on these values, the binding free energy (ΔG° = ‐RT ln Ka) is −8.2 kcal mol
−1

 and TΔS° is 23.1 

kcal mol
−1

. Thus at 30°C, the binding of SsoDpo1 to the 21/31 primer/template is enthalpically 

unfavorable and entropically favorable. However, if there is a large negative heat capacity 

change (i.e. strong temperature dependences for ΔH° and ΔS°) for SsoDpo1 polymerase binding 

to DNA, we anticipate that at the physiological temperature (75 °C) for S. solfataricus, the 

driving force for the formation of the SsoDpo1‐DNA complex will switch from entropy to 

enthalpy. This has been shown for Taq and Klentaq DNA polymerases. (87) For Taq and 

Klentaq polymerase, the minimum for ΔG° is near 50 °C, but for SsoDpo1 the minimum may 

occur at even higher temperatures. In addition, the stoichiometry for the overall binding reaction 

can be measured in these experiments and is consistent with both the EMSA and anisotropy 

experiments showing a trimer of SsoDpo1 capable of binding to primer/template DNA. 

2.2.5 Protein chemical crosslinking of a SsoDpo1 complex 

To directly show the physical contact between SsoDpo1 molecules alone and in complex 

with DNA, we employed chemical crosslinking. Covalent crosslinking of multimeric forms of 

proteins can be easily detected by SDS‐PAGE.(88) We used a Sulfo-EGS crosslinker containing 

two amine-reactive groups—NHS esters, connected with a relatively short linker (16.1 Å  length), 

so that only protein amino groups in close proximity can be covalently modified. 
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Crosslinking of free SsoDpo1 and in presence of DNA at two SsoDpo1:DNA ratios (1:1 

and 3:1) produced two distinct complexes (Figure 2-6A). Whereas only one band at 101 kDa is 

seen for unmodified SsoDpo1, addition of crosslinker leads to the appearance of the second band 

at roughly 303 kDa. Trimeric SsoDpo1 can be captured over a range of NaCl concentrations up 

to 600 mM (Figure 2-6B). The molecular weight band is consistent with a trimer of SsoDpo1. 

Surprisingly, this trimer band is also present in the absence of DNA. Because no complex 

of SsoDpo1 in the absence of DNA was found by analytical gel filtration, we suggest that the 

interaction is transient at the concentrations of SsoDpo1 used in the gel filtration analysis and 

only detectable by covalent capture of this complex. Addition of DNA significantly increases the 

amount of crosslinked trimer complex suggesting the presence of a more stable complex 

consistent with the gel filtration experiments. At the same time, there is no significant difference 

when crosslinking is performed at two different concentrations of SsoDpo1, over a range of 

different temperatures, or using different DNA substrates (Figure 2-6). It should be noted that 

no SsoDpo1 dimer—either with or without DNA—is observed possibly due to the lower relative 

abundance of a dimeric species as well as the detection limits of coomassie staining. It is 

probable that in the time and concentrations used to perform the crosslinking experiments, very 

little dimer is present due to the cooperative association and capture this complex into the 

trimeric state, effectively reducing the dissociation to zero. Alternatively, simultaneous binding 

of two SsoDpo1 molecules to different sites on SsoDpo1 may be favored in this case. 
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Figure 2-6. Covalent protein crosslinking of SsoDpo1. (A) Performed in the absence and presence of 

different ratios of primer-template DNA. Lane 1: protein ladder, lane 2: SsoDpo1 without modification, lane 

3: SsoDpo1 plus crosslinker, lane 4: SsoDpo1–DNA complex plus crosslinker (1:1 SsoDpo1:DNA ratio), lane 

5: SsoDpo1–DNA complex plus crosslinker (3:1 SsoDpo1:DNA ratio). (B) Covalent protein crosslinking of 10 

µM SsoDpo1 performed at different concentrations of NaCl (10–1000 mM) in the presence of 100 nM ptDNA 

(21/31). Lane 1: protein ladder, lane 2: SsoDpo1:DNA without modification, lanes 3–8:SsoDpo1:DNA plus 

crosslinker at different [NaCl]. 

2.2.6 Polymerization kinetics at different oligomeric states of SsoDpo1 

We tested the polymerization kinetics of both monomeric and trimeric SsoDpo1‐DNA 

complexes at 60 °C. Traditional polymerase extension assays using a primed M13 substrate were 

performed at different concentrations of SsoDpo1, quenched after 2 min, and then separated on 

an alkaline agarose gel (Figure 2-7A). Quantification of the average rate of synthesis based on 

the size of the DNA was performed by comparing to λHindIII DNA standards in lane 1 using the 

ImageQuant software. The measured polymerization rate was vastly different at concentrations 

shown to be primarily monomer (<200 nM) versus those that are primarily trimer (>750 nM). A 

fit of the polymerization data to Equation 7 was more consistent with a cooperativity model for 

kinetic activity (Figure 2-7B) to give a kinetic Kd for SsoDpo1 of 542 ± 5 nM and a maximal rate 

(Vmax) of 422 ± 4 bp min
−1

. A positive cooperativity constant associated with this fit was 14 ± 1. 

Thus, the formation of a trimeric SsoDpo1 is required for maximal activity of this enzyme. This 
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catalytic Kd is slightly higher than the binding constant for the trimeric complex determined in 

our EMSAs (Table 2-1). This suggests that fully formed trimeric SsoDpo1 that approaches 

binding saturation in Figure 2-3E is necessary for optimal kinetic activity. At higher 

concentrations of enzyme (>2 µM), we consistently see a decrease in the kinetic rate. We suspect 

this is enzyme inhibition due to binding and blocking of additional sites on the single strand 

region of M13. This would cause an impediment to the active polymerase complex, and although 

the polymerase roadblock can be removed by the active one, it requires a certain amount of time 

that negatively affects the overall rate of synthesis. 

 

Figure 2-7. (A) Polymerase experiments 

were performed on primed M13 in the 

absence or presence of a DNA trap to 

monitor processivity at different 

concentrations of SsoDpo1. A 5000-fold 

excess of ssDNA trap was added with 

dNTPs to initiate the reaction and then 

bind any dissociated SsoDpo1 to prevent 

further synthesis. Experiments were 

quenched after 5 min and analyzed on an 

alkaline agarose gel for products >100 

bases. Lanes 2–7 are kinetic experiments 

used to show the rate of DNA synthesis as 

a function of [SsoDpo1]. Lanes 8–12 are 

identical to lanes 2–7 except that ssDNA 

trap was included to monitor processivity 

as a function of [SsoDpo1] concentration. 

(B) Experiments covering a more 

complete range of SsoDpo1 concentrations 

were performed and quenched at an 

identical 2-min time point. The rate of 

polymerization is calculated as the length 

of DNA synthesized divided by the time 

(bp/min) as calculate from the standard 

molecular weight markers (M) using 

ImageQuant software. Data was fit using 

Equation (7) for positive allostery to yield the following parameters: Kd = 543 ± 5 nM and Vmax = 422 ± 4 bp min
–1

. 

(C) The average length of DNA synthesized as a function of [SsoDpo1] when DNA trap is included (lanes 8–12 in A) 

was calculated from the molecular weight markers using ImageQuant software. 

 

http://nar.oxfordjournals.org/content/37/21/7194.long#disp-formula-7
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We also performed identical kinetic assays on short ptDNA (21/31) to eliminate the 

possibility of binding multiple molecules laterally along the length of the DNA substrate. Due to 

the rate of synthesis measured above, these experiments were performed at 37 °C and quenched 

after 10 s and shown and quantified in Figure 2-8A and B. Similar kinetic constants and 

cooperativity curves to those fit above were also determined for the short ptDNA template 

confirming an active trimeric form of SsoDpo1. 

 

Figure 2-8. A) The degree of 

full length product formation 

synthesized from short ptDNA 

(21/31) at different 

concentrations of SsoDpo1 at 37 
o
C after 10 seconds is shown 

and B) quantified. Maximal full 

length product occurs at 

concentrations greater than 400 

nM and the catalytic Kd is 

calculated to be 292 ± 5 nM 

according to equation 7. As can 

be seen from this plot, positive 

cooperativity is apparent with a 

Hill coefficient equal to 4.9 ± 

0.3. C) Processivity experiments 

over a range of [SsoDpo1] were 

performed on the short ptDNA 

(21/31) as single turnover assays 

in the presence of a large excess 

of cold ssDNA trap as described 

in the Materials and Methods. 

D) Quantification of the single 

turnover products shows 

positive cooperativity with a 

catalytic Kd equal to 400 ± 10 

nM and a Hill coefficient of 7.4 

± 1,4. E) A kinetic time course 

of product formation 

synthesized from short ptDNA 

(21/31) for two different 

concentrations of SsoDpo1 representing primarily monomer or trimer (150 nM vs 1200 nM). F) The rates of full 

length product formation are fit to equation 8 and equal to 0.025 ± 0.012 sec
-1 

and 0.14 ± 0.01 sec
-1

 for 150 nM and 

1200 nM, respectively. 
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As can be seen from Figure 2-7, concentrations of SsoDpo1 that are primarily monomer 

have a rate of synthesis of <50 bases min
−1

, while the trimer rate is >300 bases min
−1

. Because 

we can detect the rate of synthesis from the average length of DNA products independent of the 

total amount of fully extended product, we are specifically examining how the oligomeric state 

of SsoDpo1 influences the rate of synthesis and not the quantity of product formation. Under 

these conditions, the rate of synthesis is influenced by the off-rate and subsequent on-rate of 

either the monomeric or trimeric forms of SsoDpo1. In these experiments, increasing the 

concentration of enzyme will naturally increase the re-association rate dependent on the Kd to 

produce longer DNA products. In order to examine the effect of monomer or trimer on the rate of 

DNA synthesis independent of re-association events, we utilized single-turnover experiments. 

2.2.7 Polymerase processivity at different oligomeric states of SsoDpo1 

In these single-turnover assays, the length of DNA synthesized prior to dissociation from 

the DNA template is measured. Once SsoDpo1 dissociates from the primed M13 template, it is 

trapped by binding to a high concentration of cold primer/template DNA substrate. We titrated 

the concentration of ssDNA trap needed to obtain a consistent processivity value and found that 

a 5000-fold excess of primer-template DNA was sufficient to trap all dissociated SsoDpo1 as to 

not rebind the 
32

P-labeled substrate and further influence our results. 

Due to the range in processivity lengths that we found dependent on the concentration 

of SsoDpo1, we separated the products on a denaturing acrylamide (short DNA fragments <100 

bases) and alkaline agarose (long DNA fragments >100 bases) gels (Figure 2-9and Figure 2-7A). 

For concentrations of SsoDpo1 that are mostly monomeric (120 nM), we measured an average 

processivity value of 18 ± 6 bases. This is consistent with processivity values measured for other 
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polymerases in the absence of accessory factors.(89-91) Upon increasing the concentration 

of SsoDpo1 to promote trimer formation, the maximal processivity value increased roughly 500-

fold to 942 ± 46 bases (Figure 2-7C). Similar to the kinetic data above, higher concentrations 

of SsoDpo1 (>2 µM) show a reduction in processivity. This can be attributed to binding of 

additional molecules of SsoDpo1 along the single strand region of M13 that can prematurely 

displace an active trimeric SsoDpo1 complex. 

As above and to test single monomeric or trimeric SsoDpo1 complexes on DNA, we 

utilized the short ptDNA substrate (21/31) in similar 

single-turnover experiments at 37 °C and quenched 

after 10 s (Figure 2-8C and D). Once again, the data 

matched a cooperative fit similar to Figure 2-7C 

where the trimeric SsoDpo1 is required for maximal 

processivity. 

Due to greater processivity, the 

trimeric SsoDpo1 complex is more stable on the DNA 

substrate such that the off-rate is greatly reduced. By 

taking the rates of DNA synthesis and the processivity 

values for the monomeric and trimeric SsoDpo1 

Figure 2-9. Polymerase experiments were performed on 

primed M13 in the absence or presence of a DNA trap to monitor 

processivity at different concentrations of SsoDpo1. A 5000 fold excess 

of ssDNA trap was added with dNTPs to bind any dissociated SsoDpo1 

in prevent further DNA synthesis. Experiments shown here were 

analyzed on a denaturing PAGE gel to show products < 100 bases. More 

>100 base product can be seen for higher concentrations of Dpo1 (lanes 

4 vs. 5). 
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(Figure 2-7), we can calculate the off-rates as 2 min
−1

and 0.5 min
−1

, respectively. A 4-fold 

decrease in the off-rate for the trimeric SsoDpo1 over that of the monomeric form promotes both 

an increase in the DNA synthesis ability and processivity for the enzyme complex. 

2.2.8 Thermal Stabilization Activity of Dpo1  

We designed four hairpin DNA substrates (named according to their melting 

temperatures, TM) with different TM values that place the annealed bases at the 3’-end, leaving 10 

thymine bases in the template strand. A stretch of thymidines in the template region was included 

to limit any hairpin formation to the designed site. The TM values of the DNA substrates without 

and with Dpo1 were experimentally measured as described in Materials and Methods (Table 2-2). 

In all cases, addition of Dpo1 increased the TM and stabilized weak base pairing interactions for 

the DNA hairpins. There was an average increase of 5.5 
o
C in the hairpin TM when Dpo1 was 

included. 

Table 2-2. DNA Sequences and Melting Temperatures 
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2.3 DISCUSSION 

SsoDpo1 is one of the four predicted DNA polymerases contained within the genome of S. 

solfataricus and has been proposed to be the main DNA replication polymerase.(60) Despite this, 

there was no detailed information about the binding thermodynamics or kinetics of this 

polymerase to DNA. In most respects, SsoDpo1 is structurally and enzymatically similar to other 

DNA polymerases from the B-family except for an insertion in the fingers domain of the enzyme 

proposed to play a role in stabilization between the exonuclease and polymerase domains as well 

as a potential SsoDpo4 interaction site.(42, 70) This unique insertion in SsoDpo1 may act as a 

landing pad for other proteins within the context of DNA replication or repair, or it may serve to 

form the trimeric SsoDpo1 complex described here. 

In this chapter, the binding of SsoDpo1 to DNA was found to induce and stabilize the 

formation of a trimeric DNA polymerase complex that activates polymerization. Formation of 

the trimeric form of the polymerase has important implications in the enzymatic activities of this 

enzyme complex that occur during DNA replication. Higher-affinity binding to the 3′-OH of the 

first polymerase followed by cooperative formation of the trimeric polymerase complex is 

consistent with the read-ahead function of this polymerase in detecting lesions on the template 

strand.(92, 93) 

2.3.1 Monomeric, dimeric and trimeric polymerase complexes are detected on p/tDNA 

substrates 

During protein purification and in the absence of DNA substrates, SsoDpo1 exists stably 

and solely as a monomer as shown by the analytical gel filtration studies even at very high 
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concentrations (>20 µM) after elution from the column. Primer/template DNA was shown to 

shift the molecular mass of the complex to multiple forms consistent with a monomeric, dimeric 

and trimeric form of SsoDpo1 bound to DNA. Initial binding of SsoDpo1 to primer/template 

DNA depends slightly on template length, as a monomeric SsoDpo1‐DNA complex was not 

reproducibly detected by EMSA with the 21/31-mer substrate but more easily observed with a 

longer primer/template strand. DNA polymerases are known to bind with higher affinity to the 

3′OH of the primer strand in the active site to discriminate incorporation of the next nucleotide 

from the template strand, so it is not surprising that SsoDpo1 binds to this junction. What is 

surprising is the observation that an additional two molecules of SsoDpo1 bind cooperatively to 

the initial SsoDpo1/DNA complex. 

The cooperative formation of a trimeric complex occurs at a higher dissociation constant 

than the monomeric form, but it is not outside the dissociation constant (Kd) realm of polymerase 

DNA interactions detected previously and is within a physiological concentration range to be 

biologically relevant for replication proteins held at the replication fork.(70, 94, 95) In support, 

Zhang et al.(96) has shown what we suspect to be a monomeric EMSA of SsoDpo1 (300 nM) 

interacting with Orc/Cdc6 homologs while also reporting alterations in SsoDpo1 activity at 

trimeric concentrations (900 nM). This shows that both monomeric and trimeric forms 

of SsoDpo1 can have specific interactions with other proteins that modulate its activity. 

2.3.2 Specific protein‐protein interactions within SsoDpo1 are responsible for 

trimerization on a variety of DNA substrates 

A stoichiometry of three molecules of SsoDpo1 to one molecule of DNA was observed 

for binding to different DNA substrates in four independent assays including: analytical gel 
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filtration, EMSA, fluorescent anisotropy and ITC experiments. Although trimeric polymerase 

complexes form with single stranded, double stranded and primer/template substrates, the trimer 

of SsoDpo1 has the highest affinity for the primer/template substrate due to the presence of a 3′-

OH at the primer/template junction. The relative global binding affinities of this trimeric 

polymerase complex for other DNA substrates varied little (Table 2-1), highlighting a possible 

non discriminating binding mode resulting from specific protein‐protein interactions of the 

second and third polymerase with the first. The first molecule of SsoDpo1 differentiates between 

DNA substrates (ss-, ds- versus p/t) due to the identification of a monomeric SsoDpo1 shift in 

our EMSA experiments with p/tDNA at lower concentrations. Cooperative formation of the 

trimeric complex then occurs at higher concentrations. Both the detection and quantification of 

trimeric SsoDpo1 on short p/tDNA (21/31) where only a single molecule of SsoDpo1 can bind 

laterally to the DNA as well as the restricted binding to the primer-template junction even at high 

concentrations of SsoDpo1 as detected by nuclease footprinting is consistent with preferential 

binding to the primer-template junction and subsequent SsoDpo1 binding directly to the primary 

polymerase. 

In support of this binding model, protein crosslinking identified the presence of a 

complex consisting of primarily a trimeric SsoDpo1. Because our gel filtration results were never 

able to detect a complex larger than a monomer in the ‘absence of DNA’, we suspect that 

the Kd for the oligomerization in the absence of DNA is much higher, such that the off-rate is 

large. Protein crosslinking was able to capture this transient complex through the formation of a 

covalent bond between molecules. We were also never able to detect a polymerase complex 

larger than a trimer for shorter ptDNA substrates where only a single polymerase can be bound 
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laterally on DNA. This is consistent with our gel filtration studies which also did not detect the 

presence of complexes >300 kDa. 

Taken together, these findings allow us to propose a model for the trimeric complex 

of SsoDpo1 bound to the primer-template substrate that encircles the DNA (Figure 2-10). In this 

model, one polymerase molecule is bound to DNA substrate in an active conformation while the 

two others have little or no contacts with DNA. In this model, one, two or all three SsoDpo1 

molecules can be accessible to binding cofactors such as PCNA. In fact, this proposed circular 

representation of the trimeric polymerase complex is reminiscent of the structure of the 

processivity factor, PCNA, known to increase processivity for monomeric SsoDpo1 along with a 

variety of other DNA polymerases,(68, 97) and is most likely responsible for the increase in 

processivity that we detect with the trimeric complex. We have arranged our model in this 

fashion due to the absence of any species greater than a trimer as well as a means to explain the 

enhanced processivity of the trimeric species. 

 
Figure 2-10. Hypothetical model of the SsoDpo1 trimeric complex bound to the primer-template DNA substrate. (A) 

is rotated 90° to the right to obtain (B). The trimeric polymerase complex is shown to encircle the DNA substrate 

(gray). The active polymerase is in light blue, while the other two molecules are in darker blue and are not directly 

bound to the DNA template. 
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2.3.3 The monomeric and trimeric SsoDpo1 complexes contribute differently to the kinetic 

proficiency of the polymerase 

This is not the first example of a higher-order DNA polymerase complex, but it is the 

first trimeric-specific DNA polymerase complex of which we are aware. In E. coli, when three 

subunits of tau are incorporated into the gamma complex (clamp loader), a replisome can be 

constructed with three polymerases,(75) but these are not specific polymerase‐polymerase 

interactions. Instead, each polymerase is held in the replisome by specific interactions with the 

tau subunit. We determined the effect of having a monomeric or trimeric SsoDpo1 complex 

assembled on DNA with the associated kinetic activity of both polymerization and processivity. 

Both the kinetic rate constant for polymerization as well as the processivity are increased with 

the trimeric SsoDpo1. In fact, the kinetic rate data with increasing concentration of SsoDpo1 also 

showed a cooperativity term similar to the binding data. Maximal DNA synthesis is achieved by 

the formation and associated activity of a trimeric SsoDpo1. Therefore, depending on the 

concentration of the polymerase at the replication fork and accessibility of binding in the context 

of the entire replisome, the DNA synthesis ability can be controlled. This concentration 

dependence on the kinetics of polymerization is unlike that shown for other B-family DNA 

polymerases from T4 or E. coli.(74, 98, 99) 

Single-turnover experiments that monitor how long a polymerase stays associated with 

the DNA template before dissociating clearly show that the trimeric SsoDpo1 complex has a 

much greater processivity than that of the monomeric form. Therefore, the trimeric polymerase 

represents a dynamic complex able to promote the formation of longer DNA products before 

dissociation. Based on our model for binding (Figure 2-10), the active sites of the three 

polymerases are in a close enough proximity to the DNA template that they could easily 
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exchange binding to the DNA template. We hypothesize that this mode of polymerase binding 

and active site switching is responsible for the increased processivity that we have observed. 

Transient dissociation from a DNA substrate by an individual molecule of SsoDpo1 would allow 

for proximal binding of one of the other two molecules in the complex. Data presented here 

provide a general mechanism to increase polymerase processivity in the absence of cofactors due 

solely by polymerase oligomerization. 

We have shown previously, that the DNA polymerase from bacteriophage T4 utilizes 

dynamic processivity mechanism to recruit additional molecules of the polymerase from solution 

to the replication fork during coupled leading and laggings strand synthesis.(74) Sulfolobus may 

utilize a similar form of dynamic polymerase processivity in the absence of PCNA. We propose 

that multiple polymerases at the replication fork could also allow for alternative binding to the 

DNA substrate in the polymerase or exonuclease active sites to more effectively process the 

DNA substrate. The polymerase used in these experiments is devoid of exonuclease activity to 

allow for thermodynamic-binding measurements, so, we were unable to examine the exonuclease 

activities for the monomeric or trimeric forms. This ability to switch between polymerase and 

exonuclease active sites is essential in maintaining the high proofreading ability of this class of 

enzymes.(100) E. coli Klenow and rat polymerase β show stoichiometries of two and four, 

respectively, on their DNA substrates.(81, 101) In the case of Klenow, binding of a dimeric 

complex in the polymerization mode is favored and may play a role in coordinating high-fidelity 

DNA synthesis. 

The existence of multiple polymerase oligomeric forms allows for the possibility of 

differential functions of these complexes. This may be influenced and/or modified by the 

presence or absence of accessory factors, such as SsoPCNA, known to interact with SsoDpo1. A 
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trimeric polymerase complex may also build up in response to specific states of DNA 

conformations or in response to roadblocks, such as lesions, to DNA replication. Because of the 

lack of nucleotides in all our binding assays, we are simulating a stalled DNA polymerase so that 

we can measure the thermodynamics of binding to different DNA substrates. Within the cell, 

both thermodynamics and kinetics of binding conformation will determine the activities and 

states of complexes (either monomer or trimer); for example, in response to a lack of nucleotides, 

RNA primer handoff from the primase, DNA damage on the template strand or physical blocks 

to SsoDpo1. 

Theoretically, only two SsoDpo1 molecules are necessary for a switch to occur between 

polymerase and exonuclease active sites. In addition to increasing processivity, the third DNA 

polymerase found in our complex may have a role in coordinating DNA synthesis on the lagging 

strand. In E. coli PolIII, the tau subunit acts to coordinate synthesis on the leading and lagging 

strands;(75) however, the protein component or motif required for coupled DNA synthesis in 

eukaryotes and archaea has yet to be determined. The identification of this trimeric polymerase 

complex in Sso may be the first evidence for a polymerase complex capable of highly processive 

replication in the absence of accessory factors. Additionally, upon formation of the lagging 

strand holoenzyme, it is possible that another trimeric polymerase complex may also be 

associated with each Okazaki fragment. In any case, efficient processing of DNA in response to 

nucleotide selection, dNTP concentration pressures, proofreading and replication blocks, requires 

a dynamic polymerase complex capable of efficiently handling each scenario. The trimeric 

polymerase complex found in Sso may be an effective model system to study the coordination of 

these events. 
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2.3.4 Dpo1 thermodynamically stabilizes DNA  

Severe destabilizing thermodynamic forces that persist at high physiological temperatures 

for Sso would make maintaining annealed dsDNA templates during replication difficult. It is 

thought dsDNA is stabilized by specific DNA binding proteins, which is necessary to protect the 

integrity of the genome at high temperatures. SsoDpo1 has the inherent ability to stabilize 

thermodynamically weak base pairing interactions to facilitate template dependent DNA 

polymerization. Surprisingly, SsoDpo1 is also found to have robust terminal transferase activity 

that proceeds by two independent mechanisms: a loop-back annealing template-dependent 

polymerase activity and a slower template independent TdT activity.(102) The loop back 

mechanism utilizes Sso Dpo1’s annealing mechanism to synthesize DNA using internal strand 

hybridization. These annealing and transferase activities have not been noted for any other DNA 

replication polymerase within this family and may provide a mechanism for efficient replication 

and repair at high temperatures. 

2.4 CONCLUSION 

In this chapter, we were able to detect the stepwise assembly of monomeric, dimeric, and 

trimeric complexes of Dpo1 associating with DNA by EMSA in a basic reaction condition 

(pH~8.5). While the trimeric and monomeric complexes will be compared and discussed in the 

following chapters, the dimeric complex cannot be reproducible observed by other techniques 

under a neutral environment. Most likely, the second and third molecules of SsoDpo1 bind 

cooperatively giving two predominate species, monomer and trimer on DNA. Therefore, we will 

not discuss the dimeric complex of Dpo1 with DNA further in other chapters.  
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Furthermore, we used DNA foot-printing assays to demonstrate that the trimeric Dpo1 

complex binds solely at the primer-template junction. Therefore, we proposed a hypothetical 

model of the SsoDpo1 trimeric complex encircling DNA (Figure 2-10). However, we also 

detected the association between the trimeric Dpo1 complex and ssDNA or dsDNA at similar 

concentration range by EMSA (Figure 2-3). In order to eliminate the additional association 

between Dpo1 and the single-strand or double strand part along with the association with the 

primer/template DNA, we used a shorter DNA hairpin substrate (10 bps of single-strands and 12 

bps of double-strands, about the size of Dpo1) allowing for a single association between 

polymerases and DNA in the following chapters. 

The relative physiological roles of these Dpo1 complexes in DNA replication are still 

unclear, but we were able to demonstrate that the trimeric complex has a better kinetic 

proficiency than the monomeric Dpo1-DNA complex in the DNA replication. Assumed protein 

occupies 20% weight of cell,(103) and Sso cell has diameter of 1 m, the concentration of Dpo1 

in Sso cell is roughly 2.2 M based on quantitative immunoblot analysis.(104) This 

concentration lies in the concentration range of the trimeric Dpo1 complex formation. We will 

demonstrate that the DNA binding affinity of Dpo1 is higher and the free energy is lower at 

Sso’s physiological temperature (~ 75 
o
C) than its lesion bypass partner Dpo4 in the following 

chapters, showing that Dpo1 is playing a primary role at DNA replication fork. 
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3.0  DIFFERENTIAL TEMPERATURE-DEPENDENT MULTIMERIC ASSEMBLIES 

OF REPLICAITON AND REPAIR POLYMERASES ON DNA INCREASE 

PROCESSIVITY
2
 

Over the past two decades, a multitude of DNA polymerases have been discovered and 

classified into at least six separate families.(105) Many organisms have multiple DNA 

polymerases with humans having fifteen.(106) Most traditional B-family DNA polymerases are 

involved in faithful copying of our genome, while Y-family DNA polymerases have more 

flexible active sites allowing for synthesis across locations of DNA damage in an effort to 

maintain uninterrupted DNA synthesis during replication. Binding and recognition of normal or 

damaged DNA bases require that each DNA polymerase has a precise specificity with the 

appropriate DNA template to maintain fidelity of replication or repair directed by interacting 

proteins at the replication fork. Specificity is increased through interactions with shared 

accessory proteins for DNA replication and repair polymerases at the site of catalysis. 

Alternatively, the repeated shuttling between polymerization and exonuclease states of B-family 

DNA polymerases at sites of damage may locally destabilize binding, allowing a Y-family 

polymerase to bind more specifically to bypass the lesion.(107) Therefore, a question arises as to 

how each polymerase is regulated with regards to binding the correct DNA substrate.    

                                                 

2
 Text from this chapter is reprinted with permission from Hsiang-Kai Lin, Susan F. Chase, Thomas M. 

Laue, Linda Jen-Jacobson, and Michael A. Trakselis. Biochemistry 2012, 51, 7367-7382. Copyright 2012 
American Chemical Society. 
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DNA polymerases Klenow,(51) T4 gp43,(48) human pol (108, 109) and African 

swine fever virus polymerase X have all been found to form 2:1 complexes with DNA.(53, 110) 

Other DNA polymerases appear at the replication fork as multimers during DNA replication 

through interactions with their accessory proteins.(111) Interestingly, DNA replication 

polymerases have also been found to exchange freely from solution during active replication, 

suggesting that either direct interactions between polymerases or indirect interactions through 

accessory proteins provide mechanisms for switching enzymes at the site of catalysis.(112, 113) 

Therefore, it is likely that the high concentration of DNA polymerases within or around 

replisome complexes is a common mechanism for coordinated DNA synthesis, increased kinetics, 

and coupled replication and repair to maintain the genomic integrity of the cell. 

DNA replication in archaea serves as an important and relevant model system for 

detailing the molecular mechanisms of DNA polymerases homologous to their eukaryotic 

counterparts.(114-116) Contained within the archaeal Sulfolobus solfataricus genome are DNA 

polymerases from both the B-family replication (Dpo1) and Y-family lesion bypass (Dpo4) 

families. Both individual DNA polymerases have been structurally characterized,(33, 117, 118) 

have similar specificities for DNA,(119, 120) and robust kinetics,(121-123) but differ in their 

fidelities for nucleotide incorporations.(121, 124-126) Dpo4’s lower fidelity, as well as the 

ability for Sulfolobus to survive in the absence of this protein,(127) highlights a nonessential role 

in DNA replication. Direct interaction between Dpo1 and Dpo4 has also been noted and is 

thought to be important for uninterrupted lesion bypass during DNA replication.(34) We have 

also shown that Dpo1 can form a trimeric complex in the presence of DNA,(120) suggesting that 

homo and heteroligomeric DNA polymerase complexes exist.    
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Quantification of binding various DNA polymerases to DNA has been examined using a 

number of techniques to characterize this single binding event. The resulting temperature 

dependent thermodynamic binding parameters can provide insight into the specificity of the 

binding process through determination of the heat capacity change (∆C
o

p).(128, 129) Although a 

strongly negative ∆C
o

p has been shown to be the thermodynamic signature of sequence-specific 

binding,(129) the non-sequence specific binding to primer template DNA by the A-family DNA 

polymerases from Thermus aquaticus (Taq) and Escherichia coli (Klenow) is also associated 

with large and negative ∆C
o

p values.(128, 130-134). Even though there is no sequence specificity, 

the negative ∆C
o

p is consistent with the high structural complementarity of the DNA polymerase 

binding to the primer template junction, visualized in a variety of crystal structures.(118, 128, 

135, 136). The inherent thermostability of proteins from Sso (where the growth temperature is 

~75 
o
C) allows us to fully investigate the energetic constraints of DNA polymerase binding to 

DNA. Access this broad temperature range results in a more complete thermodynamic 

characterization of the differences in binding B and Y-family polymerases to an undamaged 

DNA primer-template. These thermodynamic differences can be evaluated directly by 

determining the affinities (Kd), free energies (∆G
o
), heat capacity changes (∆C

o
p), and 

stoichiometries (n) for binding each polymerase. 

Here, we use chemical crosslinking, isothermal calorimetry (ITC), and analytical 

ultracentrifugation (AUC) to show that Dpo4, like Dpo1, can also form an oligomeric complex 

on DNA. Using AUC, we have found both a strong concentration dependent and modest 

temperature dependent shift in the reaction boundaries, highlighting changes in Dpo4 monomer-

dimer and Dpo1 monomer-trimer equilibria. Temperature dependent equilibrium fluorescent 

anisotropy binding experiments were used to separate the free energy (∆G
o
) of binding either 
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monomer or higher order oligomeric DNA polymerases (Dpo1 or Dpo4) states. For both 

polymerases, we have detected an initial higher affinity monomeric binding site followed by 

sequential binding of additional polymerase molecules to form either trimeric Dpo1 or dimeric 

Dpo4 complexes on DNA. Separation and quantification of these individual binding events 

reveal that a Dpo1 monomer binds to DNA with only slightly greater affinity than Dpo4 up to 50 

o
C. This binding affinity difference is exaggerated at the highest temperatures, suggesting that 

binding of Dpo1 to undamaged DNA templates is favored at physiological growth conditions for 

Sso. The free energy associated with trimer Dpo1 binding to DNA is significantly more 

favorable than that associated with dimer Dpo4 DNA binding, and this difference increases 

strongly with increasing temperature. Enzymatic evidence showing greater processivities for 

Dpo1 and Dpo4 at higher temperatures and protein concentrations is used to explain the role of 

temperature and oligomeric state in promoting DNA polymerase assembly, stability, and kinetics 

at the replication fork. Collectively our results indicate that the binding specificities of multiple 

oligomeric archaeal DNA polymerases are regulated by changes in cellular concentrations and 

temperature for efficient DNA binding recognition and synthesis. 

 

3.1 MATERIALS AND METHODS 

 

Materials. Oligonucleotide substrates including the 37 nucleotide (nt) DNA hairpin, 5’-

fluorescein or 5’-Cy3 labeled DNA were purchased from Integrated DNA technologies (IDT, 

Coralville, IA). The sequence of the 37 nucleotide DNA hairpin was 5’-

TTTTTTTTTTCCCGGGCCGGCGTTTCGCCGGCCCGGG, which included a 12 base-pair 
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duplex region, a three residue loop, and a ten residue single strand template. DNA was dissolved 

in annealing buffer [20 mM HEPES (pH 7) and 200 mM NaCl], heated to 95 
o
C for 15 minutes, 

and then cooled to room temperature by turning off the hot plate overnight. M13mp18 was 

purchased from USB Corporation (Cleveland, OH). All radiochemicals were purchased from MP 

Biochemicals (Santa Ana, CA) or Perkin Elmer (Waltham, MA). Commercial enzymes were 

from NEB (Ipswich, MA). All other chemicals were analytical grade or better. 

Dpo1 and Dpo4 were purified as described except for a few modifications.(117, 120) The 

exonuclease deficient version of Dpo1 (D231A/D318A) was recloned into pET30a (NdeI/XhoI) 

to introduce a stop codon and remove the C-terminal His tag. Both polymerases were expressed 

using an autoinduction protocol using Rosetta 2 cells (Stratagene).(137) Cells were lysed by 

sonication and heat treated at 70 
o
C for 30 minutes followed by centrifugation. The Dpo1 lysate 

was purified using a HiTrap MonoQ, heparin, and Superdex-200 gel filtration columns. The 

wild-type untagged Dpo4 lysate was purified using a HiTrap MonoQ, heparin, and 

hydroxylapatite (Sigma-Aldrich) columns.(117) 

Crosslinking Studies. Dpo4 was dialyzed in crosslinking buffer [50 mM HEPES (pH 7.0), 

150 mM NaCl, 10 mM EDTA] and reduced using 10 mM Tris (2-carboxyethyl) phosphine 

hydrochloride (TCEP-HCl) (Thermo Scientific, Rockford, IL). Dpo4 (8 µM) was then either 

 nucleotide hairpin for 5 minutes at room temperature. 

Chemical crosslinking experiments were initiated with 0.33 mM 1,11-bis-

maleimidotriethyleneglycol [BM(PEG)3] or ethylene glycol bis[succinimidylsuccinate] [EGS] 

(Pierce, Rockford, IL) targeting free cysteines or free amines, respectively, in close proximity.  

The reaction was then incubated for 15 minutes at 22 
o
C. Products were separated on an 8% 

SDS-PAGE gel and stained with coomassie dye. 
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Isothermal Titration Calorimetry (ITC). Prior to analysis, titrants and analytes were 

dialyzed against Buffer A [20 mM HEPES-NaOH (pH 7), 150 mM NaCl, 5% Glycerol, 10 mM 

Mg(OAc)2 -X, Corning Inc., 

NY), and degassed. Isothermal titration calorimetry was performed using a VP-ITC (MicroCal 

Inc., Northampton, MA) as described previously (120). Titrations were performed by titrating 

-nt hairpin (primer template) (5-
o
C or 60 

o
C. 

The heats of the reaction were corrected for the heat of dilution by subtracting the signal after 

reaching saturation. All data were fit using Origin 7.0 (MicroCal) according to the following 

equation: 

 

(Equation 3-1) 

where V0 is the volume of the cell, 
o
 is the enthalpy of binding per mole of ligand, 

[M]t is the concentration of DNA including both bound and free fractions, Ka is the association 

constant, [L]t is the total ligand (Dpo4) concentration, and n is the stoichiometry of the 

reaction.(120, 138) 

Analytical ultracentrifugation (AUC) - Sedimentation velocity experiments. 

Sedimentation velocity experiments were performed using an Optima XLI analytical 

ultracentrifuge (Beckman Coulter, Fullerton, CA) equipped with a prototype fluorescence optical 

system (Aviv Biomedical). Samples of protein alone or with (50 nM) fluorescein labeled 37-nt 

hairpin (primer-template) DNA in Buffer A were loaded into ultracentrifuge cells at various 
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concentrations (0, 10, 50, 100, 200, 500, 1000, 2000, 5000, and 10,000 nM) into a double-sector 

charcoal-Epon centerpiece in either a 4- or 8-hole titanium rotor and subjected to an angular 

velocity of 45,000 rpm with the temperature at 10, 20, or 30 °C. Absorbance or fluorescence 

scans as a function of radial position were collected by scanning at 280 nm (protein alone) or at 

488 nm (protein with fluorescein DNA) at 20-μm radial increments, averaging 3 revolutions / 

scan. Sedimentation velocity boundaries were analyzed in the least squares sedimentation 

coefficient distribution (ls-g*(s)) model using program SEDFIT (version 12.1).(139) The 

sedimentation coefficient, s, is given by Svedberg’s equation: 

(Equation 3-2) 

where MW is the molecular weight, Dt is the diffusion coefficient,   is the partial specific 

volume,  is the solvent density, R is the universal gas constant, and T is temperature. Observed 

weight average sedimentation coefficients were converted to s20,w (standard conditions of 20 °C 

in water) accounting for partial specific volumes, buffer densities, and viscosities, calculated 

using SEDNTERP.(140, 141) 

Fluorescence anisotropy, equilibrium binding, and thermodynamic parameters. A 5’ 

Cy3-labeled 37-nt hairpin primer template DNA construct, described previously,(120) was used 

in the fluorescence anisotropy experiments. Titrations were performed in Buffer A using a fixed 

concentration of DNA (4 nM) and varying concentrations of protein (0-20 µM). Anisotropy 

measurements were performed using a FluoroMax-3 spectrofluorimeter (HORIBA Jobin Yvon) 

equipped with automated polarizers and regulated with a thermostated cuvette holder. The DNA 

and protein were allowed to equilibrate at each temperature for at least 30 minutes prior to 



 54 

measuring the anisotropy. Titrations at higher temperatures (>45 
o
C) were performed in a capped 

cuvette to limit concentration changes due to evaporation. Fluorescence was excited at 550 nm, 

and the emission with various combinations of polarizers was monitored at 564 nm during a 5 

sec integration time. The fluorescence anisotropy, r, was calculated automatically by the 

instrumental software using the equation: 

(Equation 3-3) 

where I is the polarized fluorescence intensity with subscripts V and H identifying either 

vertical or horizontal polarized light, respectively. The G-factor is a correction for the difference 

in sensitivities of detection for horizontal and vertically polarized light. In all titrations, protein 

was titrated into DNA. After each addition, the protein was equilibrated until no further change 

in anisotropy was detected, generally 1 minute. The fluorescence intensity of Cy3 is known to 

change with temperature.(142) Therefore, the slits were adjusted accordingly at each temperature 

to give a total fluorescence signal of approximately 10
6
 counts per second (CPS) for each 

titration. As a control for specific binding, the absolute fluorescence intensity at 564 nm did not 

change significantly with addition of a high concentration of either Dpo1 or Dpo4 measured at 

the beginning and end of the experiment. 

Anisotropy data were fit to either a single 

(Equation 3-4) 

or sequential binding sites equation 
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(Equation 3-5) 

or identical sites equation 

                (Equation 3-6) 

where A is the change in anisotropy, P is either Dpo1 or Dpo4 concentration, Kd is the 

dissociation constant for each binding event (subscript 1 or 2), and n is the stoichiometry. At 

least three independent titrations were performed at each temperature to obtain average Kd1 and 

Kd2 parameters. Kd1 and Kd2 were used to directly calculate free energy change (∆G
o
) for 

monomer:  

(Equation 3-7) 

and oligomer (Dpo1 trimer or Dpo4 dimer): 

(Equation 3-8) 

where R is the universal gas constant and T is temperature. 

Thermodynamic parameters were extracted from the temperature dependence of the 

Gibbs-Helmholtz plot from a multiparametric fit according to the following equations  

(Equation 3-9) 
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(Equation 3-10) 

 

(Equation 3-11) 

where ∆G
o
 is the standard free energy change, ∆H

o 
is the change in enthalpy, and ∆S

o
 is 

the change in entropy, using a constant heat capacity  at each temperature, T. TH is the 

temperature in which ∆H
o
 = 0, TS is the temperature where T∆S

o
 = 0. 

The binding data were also fit to a van’t Hoff plot of lnKapp versus 1000/T according to 

the following equation: 

(Equation 3-12) 

where Kapp is the apparent equilibrium constant and R is the universal gas constant. 

Buried surface area calculations. Solvent accessible surface areas for Dpo4 bound to 

DNA (PDB ID: 2RDJ) were calculated for buried nonpolar (∆Anp) and polar (∆Ap) surface areas 

using a 1.4 Å  probe radius as described.(143, 144) The heat capacity change associated 

with binding was calculated from a surface area-based model according to Spolar et al.(145) 

(Equation 3-13) 
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Polymerase/DNA binding simulations.The cumulative binding data for Dpo1 and Dpo4 

were fit and modeled according to the minimal kinetic scheme outlined in Figure 3-11A and B 

using a simulation with Berkeley Madonna (University of California, Berkeley). 

DNA polymerase processivity. Processivity experiments for Dpo1 and Dpo4 were 

performed and analyzed as previously described but at additional temperatures.(120) 5’-
32

P end-

labeling of a DNA primer was performed using Optikinase (USB) and 
32

-ATP according to 

manufacturer’s directions. Primed M13mp18 DNA template (40 nM) was preincubated with 

various concentrations of Dpo1 or Dpo4 (as indicated in the Figure legends) at the experimental 

temperatures in Buffer A, and the reaction was initiated with the addition of dNTPs (0.1 mM 

of stop solution [50 mM NaOH, 1 mM EDTA, 3% (w/v) Ficoll (Type 400, Pharmacia), 0.05 % 

(w/v) bromocresol green, 0.04 % (w/v) xylene cyanol] was added to terminate the processivity 

reactions after 60 minutes for 40 
o
C, 30 minutes for 50 

o
C, and 10 minutes for 60 or 70 

o
C 

reactions. Aliquots were run on an alkaline agarose gel (0.8% agarose, 50 mM NaOH, 1 mM 

EDTA) or denaturing 20% PAGE gel, dried and imaged using a Storm Phosphorimager (GE 

Healthsciences). Quantification of the mean band lengths was performed using ImageQuant 

software (v5.0) compared with a 
32

P end labeled 1kb ladder (Invitrogen). 
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3.2 RESULTS 

3.2.1 Detection of dimeric Dpo4  

After purifying Dpo4, we noticed a small amount of protein consistent with a covalent 

dimer on SDS-PAGE gels, especially under non-reducing conditions. We investigated the 

validity of a possible Dpo4 dimer using protein cross-linking. Chemical crosslinkers, BM(PEG)3, 

which targets native reduced cysteines, or EGS, which targets free amines in close proximity 

(<18 Å ), were both used to capture a dimer in solution. Dpo4 contains a single native cysteine 

residue (C31) which allows for the possibility of inferring information about the structure of a 

crosslinked species. Using the thiol-thiol crosslinker [BM(PEG3)], we were able to crosslink a 

dimeric Dpo4 both in the absence and presence of DNA (Figure 3-1A, lanes 2 and 3). There is no 

significant difference in the amount of crosslinked Dpo4 complex in the presence of DNA. 

Therefore, a monomer-dimer equilibrium exists both on and off DNA. Unreduced Dpo4 loaded 

onto the SDS-PAGE gel also shows a small quantity of dimeric product suggesting that a 

disulfide bond can form between subunits without added crosslinker (Figure 3-1A, lane 4). 

Reduction of this disulfide bond with TCEP reduces the fraction of dimer in favor of monomer 

(Figure 3-1, lane 1). We were also able to detect an equivalent reduced dimeric Dpo4 species 

using an amino-amino crosslinker (EGS) which crosslinks lysine residues in an interface. These 

crosslinking results suggest that dimeric Dpo4 complexes can exist in solution and that at least 

one conformation positions the single cysteine residue at the protein-protein interface, similar to 

that observed in an x-ray structure of Dpo4 bound to DNA (Figure 3-1B).(146) 
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Figure 3-1. Dimeric Dpo4 complex formation. A) Covalent protein crosslinking of Dpo4 in the 

absence and presence of DNA hairpin or thiol-thiol crosslinker [BM(PEG)3]. Lane 1: reduced 

Dpo4, Lane 2: reduced Dpo4 with crosslinker, Lane 3: reduced Dpo4-DNA complex (37-nt 

hairpin) with crosslinker, and Lane 4: unreduced Dpo4. The positions corresponding to monomer 

(40 kDa) and dimer (80 kDa) form of Dpo4 are shown in the right margin. B) X-ray structure of 

one possible dimeric Dpo4 conformation found in the crystal unit (PDB ID: 2W9B) consistent 

with crosslinking at the C31 interface between molecules. Highlighted in purple and orange 

surfaces are the little finger domains from each Dpo4 molecule. 

3.2.2 Stoichiometry of Dpo4 binding to DNA by isothermal titration calorimetry 

In order to verify that a dimeric Dpo4 complex can exist on DNA over a broad 

temperature range, we used ITC to quantify the thermodynamics and stoichiometry of binding at 

15 °C and 60 
o
C (Figure 3-2). At 15 

o
C, binding is primarily entropically driven, and a fit of the 

binding isotherm to Equation 3-1 gave the following values: Kapp = 6.5 ± 0.6 x 10
5
 M

-1
, ∆H

o
ITC = 

8.1 ± 0.2 kcal mol
-1

, and n = 0.64 ± 0.01. The resulting ∆G
o

ITC is –7.7 kcal mol
-1

 and the 

calculated entropic contribution (T∆SITC) is 15.7 kcal mol
-1

. At 60 
o
C the binding is primarily 

enthalpically driven, and a fit of the binding isotherm to Equation 3-1 gave Kapp = 2.2 ± 0.5 x 10
6
 

M
-1

, ∆H
o

ITC = -8.0 ± 0.5 kcal mol
-1

, and n = 0.66 ± 0.01. The resulting ∆G
o

ITC is -9.7 kcal mol
-1

 

and the calculated T∆SITC is 1.7 kcal mol
-1

. Importantly, the stoichiometries at 15 °C and 60 
o
C 

are similar and are consistent with more than one molecule of Dpo4 bound to DNA. A dimer was 
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also seen using chemical crosslinking. Although the titrations appear to go to completion, the 

stoichiometries do not saturate to n = 0.5 (two Dpo4 molecules per DNA) indicating that the 

dimeric Dpo4 complex is in equilibrium with monomer-DNA complex under these conditions. 

 

 Figure 3-2. Stoichiometry and thermodynamics of Dpo4 binding to DNA. ITC titration of 400 

M DNA hairpin into 25 M SsoDpo4 at A) 15 
o
C and B) 60 

o
C as described in Materials and 

Methods. Data were fit using Equation 3-1 to yield stoichiometries (n) 0.64 ± 0.01 or 0.66 ± 0.01 

(DNA:Dpo4), apparent equilibrium association constants (Kapp) 6.52 ± 0.59 x 10
5
 or 2.23 ± 0.50 

x 10
6
 M, enthalpy changes (H

o
ITC) 8.08 ± 0.16 or 8.00 ± 0.22 kcal mol

-1
, and entropy changes 

(S
o

ITC) 54.6 or 5.1 cal mol
-1 

K
-1

 at 15 
o
C and 60 

o
C, respectively. 

 

3.2.3 Analytical velocity sedimentation detects the formation of oligomeric Dpo1 and Dpo4 

complexes with DNA 

Analytical ultracentrifugation (AUC) sedimentation velocity experiments were performed 

with either protein alone (Dpo1 or Dpo4) at 10, 20 or 30 
o
C to monitor the concentration and any 

temperature dependent equilibria. For either Dpo1 or Dpo4 alone, there was an increase in the 

peak position of the sedimentation reaction boundary, ls-g*(s), with concentration (1 or 10 M), 
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as expected at each temperature based on 280 nm detection. The sedimentation reaction 

boundaries were corrected for changes in the diffusion coefficient with temperature to give the 

sedimentation coefficient, s20,w, and represent solution equilibrium distribution values for each 

experimental condition. Increasing the concentration of Dpo4 from 1 to 10 M did not change 

the s20,w values significantly. At constant concentrations of Dpo1 or Dpo4, the weight average 

s20,w value shifts slightly larger with increasing temperature (Figure 3-3). Analysis of the reaction 

s20,w distribution values of 4.19 ± 0.01, 

4.29 ± 0.01, and 4.32 ± 0.01 for 10, 20, and 30 
o
C, respectively. Similarly, analysis of the 

reaction boundaries for 10 M Dpo4 resulted in weight average s20,w distribution values of 2.52 ± 

0.01, 2.55 ± 0.01, and 2.59 ± 0.01 for 10, 20, and 30 
o
C, respectively. Increasing s20,w values are 

consistent with a shift in the equilibrium towards formation of larger species. For protein alone 

(Dpo1 or Dpo4), these changes in s20,w are only slightly significant over this limited temperature 

range.   

 

Figure 3-3. Analytical ultracentrifugation (AUC) velocity absorbance experiments of Dpo1 and 

Dpo4 alone. Shown are the ls-g*(s) distribution profiles for A) 1 μM or B) 10 μM Dpo1 or C) 1 

μM or D) 10 μM Dpo4 alone at 10 (blue), 20 (black), or 30 
o
C (red). The inset highlights the 

region of the weigh average s20,w values, and the vertical blue line indicates the weight average 

s20,w value at 10 
o
C.  
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More specific information on complex assembly can be obtained by examining the 

reaction boundaries for titration of each polymerase with a constant concentration (50 nM) of 

fluorescent hairpin primer-template DNA using analytical ultracentrifugation fluorescence-

detected sedimentation (AU-FDS) (147). By monitoring the reaction boundaries of fluorescent 

DNA in the AUC velocity experiments, we are able to examine a much greater dynamic range of 

protein concentrations (50 - 5000 nM) than with absorbance alone. Titration of Dpo1 at 10, 20, 

and 30 
o
C shows a clear increase in the s20,w distributions and boundaries with concentration, 

consistent with the detection of multiple protein bound DNA complexes (Figure 3-4A-C). Here, 

discrete s20,w populations for monomeric and trimeric Dpo1 can be identified. Interestingly, the 

s20,w reaction boundaries at identical concentrations of Dpo1 bound to DNA shift towards larger 

species with increasing temperature more significantly than for the free protein alone. For 

example, specifically examining 100 nM Dpo1 across the three temperatures, the weight average 

s20,w values increase with increasing temperature: 4.66 ± 0.03, 4.77 ± 0.01, to 4.86 ± 0.01 at 10, 

20, and 30 
o
C, respectively (Figure 3-5A).  At 1 M Dpo1, the weight average s20,w values 

increase from 5.71 ± 0.01, 5.89 ± 0.01, to 6.04 ± 0.01 at the same temperatures, respectively 

(Figure 3-5B).  
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Figure 3-4. Solution assembly of oligomeric polymerases on DNA. Analytical 

ultracentrifugation velocity fluorescence detected sedimentation (AU-FDS) experiments showing 

the ls-g*(s) distribution profiles as a function of Dpo1 or Dpo4 concentrations: 0 (-○-, purple) , 

10 (-∆-, pink), 50 (-□-, blue), 100 (-◊-, cyan), 200 (-x-, light green), 500 (-+-, dark green), 1000 

(-▲-, yellow), 2000 (-●-, orange)  and 5000 nM (-■-, brown) at A) and D) 10 
o
C , B) and E) 20 

o
C , or C) and F) 30 

o
C, respectively. Every fifth data point is indicated for simplicity and all data 

were fit as described in Materials and Methods. s20,w positions representing monomer or trimer 

Dpo1 and monomer or dimer Dpo4 are indicated by arrows. 
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Figure 3-5. Analytical ultracentrifugation velocity fluorescent experiments (AU-FDS) of Dpo1 

and Dpo4 bound to DNA. Shown are the ls-g*(s) distribution profiles for 50 nM fluorescent 

DNA hairpin primer-template and Dpo1 at A) 100 nM and B) 1 μM or Dpo4 at C) 100 nM and 

D) 5 μM as a function of temperature [10 (blue dotted) , 20 (black dotted), and 30 
o
C (red solid)]. 

Data was analyzed as described in Materials and Methods. The vertical dotted blue line indicates 

the position of the weight average s20,w value at 10 
o
C. 

  

Titration of Dpo4 on fluorescent hairpin primer-template DNA using AU-FDS also 

shows an increase in the s20,w boundaries at each temperature (Figure 3-4D-F) consistent with 

populations consisting of both monomeric and dimeric Dpo4-DNA complexes. Binding of Dpo4 

to DNA does not appear to occur until the Dpo4 concentration exceeds 100 nM at 10, 20, or 30 

o
C. Moreover, the reaction boundary continually shifts to larger species between 500 - 5000 nM. 

Similar to the behavior of Dpo1, the reaction boundaries at constant concentrations of Dpo4 

measured at 10, 20, and 30 
o
C also increase or shift to slightly larger weight-average complexes 

more significantly than protein alone. Examination of 5 M Dpo4 across the three temperature 

ranges (10, 20, and 30 
o
C) shows that the weight average s20,w values increase from 3.79 ± 0.02, 

3.84 ± 0.01, to 4.12 ± 0.01, respectively (Figure 3-5D). The equilibrium shift in the 

sedimentation coefficients with temperature can be most clearly seen at 100 nM Dpo4 (Figure 3-

5C) where initial binding is only observed at 30 
o
C. This observation agrees well with the 

fluorescence anisotropy data below which measures a Kd1 value of 0.130 ± 0.004 µM at 33 
o
C 

but has larger Kd1 values at lower temperatures (Table 3-1). 
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3.2.4 Temperature dependent separation of polymerase binding events using fluorescence 

anisotropy 

In order to investigate further the individual binding events of Dpo1 or Dpo4 on DNA, 

we used fluorescence anisotropy to evaluate the constants for the monomeric (Kd1) and 

subsequent oligomeric (Kd2) binding steps over a range of temperatures. The melting temperature 

(TM) of the DNA primer template hairpin was measured from a shift in the UV absorbance and 

found to be 88 
o
C, which is well above our experimental temperature range. Dpo1 and Dpo4 

were titrated into low concentrations of a Cy3 labeled DNA primer template hairpin and the 

increase in fluorescence anisotropy due to binding was monitored (Figure 3-6). The increase in 

anisotropy as a function of Dpo1 concentration was fit to each of a single (Equation 3-4), a 

sequential (Equation 3-5), or an identical-sites mode (Equation 3-6). The sequential mode fit best 

to the fluorescence anisotropy data of both Dpo1 and Dpo4. While single binding mode gave a 

significant larger chi-square factor, the identical-sites mode had only slightly larger chi-square 

value than the sequential mode. However, in Chapter 2 and Chapter 4, EMSA experiments 

demonstrate that the binding is comprised of an initial high-affinity binding site followed by a 

second sequential lower-affinity binding. The second and third individual binding events for 

Dpo1 cannot be separated from our EMSA or ITC data (Chapter 4) suggesting that simultaneous 

or cooperative binding is probable.(120) Therefore, the sequential binding mode better represents 

the binding scenario. The fits to these individual equations to the data are consistent with 

stoichiometric values and processes measured by ITC, chemical crosslinking, AUC, EMSA, and 

gel filtration.(120) The differences in the individual Kd values (1 and 2) for each DNA 

polymerase are greater than 10-fold (Table 3-1) and generally decrease concurrently with 

temperature up to 50 
o
C. Kd2, fit from the anisotropy experiments, is the intrinsic constant for 
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binding of one of the two monomers in the second step, while Kd2
2
 represents the constant for 

simultaneous binding of both Dpo1 monomers in the second “step” to form the trimeric Dpo1-

DNA complex.   

 

Figure 3-6. Quantification of individual binding steps leading to oligomeric polymerase-DNA 

complexes. Representative normalized individual equilibrium fluorescence anisotropy titrations 

for A) - B) Dpo1 and C) - D) Dpo4 binding to DNA at low or high temperatures, respectively. 

Data are included for both lower 6.8 (-○-, purple), 12.0 (-□-, blue), 17.0 (-◊-, cyan), 22.1 or 27.3 

(-x-, dark green), 32.8 or 32.9 (-+-, light green), 38.0 (-∆-, light orange) and upper temperatures 

43.3 (-●-, blue), 48.8 (-■-, dark orange), 53.7 or 53.9 (-♦-, pink), 58.9 or 59.7 (-▲-, brown), and 

63.7 or 65.7 
o
C (-▼-, grey). The individual data points were fit to Equation 3-5 to determine Kd1 

and Kd2 values for Dpo4 or Dpo1, respectively. At least three independent titrations were 

performed and fit at each temperature and the resulting values are reported in Table 3-1. 
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Table 3-1Equilibrium fluorescence anisotropy binding parameters for polymerase binding to DNA 

Dpo1 Dpo4 
Temp 

(
o
C) 

Kd1  

(µM)
a
 

Kd2  

(µM)
a
 

Temp 

(
o
C) 

Kd1  

(µM)
a
 

Kd2  

(µM)
a
 

6.8 0.322 ± 0.023 17.2 ± 0.3 6.8 0.435 ± 0.116 9.32 ± 0.88 

12.0 0.208 ± 0.057 8.01 ± 1.21 12.0 0.329 ± 0.107 5.16 ± 0.05 

17.0 0.170 ± 0.023 5.78 ± 0.13 17.0 0.214 ± 0.003 4.70 ± 1.01 

22.2 0.109 ± 0.016 4.70 ± 0.78 22.1 0.176 ± 0.010 3.22 ± 0.72 

27.4 0.105 ± 0.003 3.70 ± 0.32 27.3 0.164 ± 0.009 2.82 ± 0.35 

32.8 0.094 ± 0.001 2.68 ± 0.11 32.9 0.130 ± 0.004 3.01 ± 0.92 

38.0 0.097 ± 0.003 2.48 ± 0.06 37.8 0.140 ± 0.066 2.33 ± 0.40 

43.3 0.144 ± 0.003 2.60 ± 0.22 43.2 0.133 ± 0.026 1.72 ± 0.46 

48.8 0.144 ± 0.015 1.82 ± 0.36 48.8 0.125 ± 0.051 2.32 ± 0.95 

53.9 0.113 ± 0.032 2.41 ± 0.79 53.8 0.155 ± 0.065 2.71 ± 0.99 

58.9 0.208 ± 0.022 3.21 ± 0.21 58.9 0.444 ± 0.115 3.81 ± 0.28 

63.7 0.198 ± 0.026 4.52 ± 0.40 65.2 0.674 ± 0.080 7.18 ± 0.93 
a
Kd1 and Kd2 are the equilibrium dissociation constants for the first and second binding events, 

respectively. Values are means and standard errors from parameters fit to Equation 3-5 from at 

least three independent titration experiments at each temperature. 
 

 

Figure 3-7. Representative equilibrium fluorescence anisotropy titrations. A) Dpo1 at 22.1 
o
C 

binding to a 5’ Cy3 labeled DNA hairpin. The purple solid line (χ
2
 = 0.044) show the fit for single 

binding (Dpo1 Kd,app = 0.185 ± 0.021) (Equation 3-4). The blue dashed line (χ
2
 = 0.011) shows the 

fits for a sequential binding mode (Dpo1 Kd1 = 0.110 ± 0.021 μM and Kd2 = 3.82 ± 1.67 μM) 

(Equation 3-5). The red dashed line (χ
2
 = 0.015) shows the fits for an identical-sites mode (Dpo1 

Kd,app = 0.270 ± 0.038) (Equation 3-6)  B) Dpo4 at 22.1 
o
C binding to a 5’ Cy3 labeled DNA 

hairpin. The purple solid line (χ
2
 = 0.055) shows the fit for single binding (Dpo4 Kd,app = 0.540 ± 

0.070) (Equation 3-4). The blue dashed line (χ
2
 = 0.0018) shows the fits for a sequential binding 

mode (Dpo4 Kd1 = 0.178 ± 0.102 μM and Kd2 = 4.23 ± 2.73 μM) (Equation 3-5). The red 

dashed line (χ
2
 = 0.020) shows the fits for an identical-sites mode (Dpo1 Kd,app = 0.860 ± 

0.186) (Equation 3-6)   
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The temperature dependences of the monomeric and trimeric binding equilibria for Dpo1 

to DNA are plotted in a Gibbs-Helmholtz plot (∆G
o
 vs. T) (Figure 3-8A) or a van’t Hoff plot 

(lnK vs. 1000/T) (Figure 3-8B), and reported in Table 3-2 and 3-3. Analysis by these two 

methods allows for easy visualization of any nonlinearity in the temperature dependence of 

binding for each molecular event. The overall free energy for trimeric Dpo1 binding to DNA is 

the sum of the free energies for the first and second binding steps, where the second “step” 

represents the simultaneous or cooperative binding of two additional monomers to the 

monomeric Dpo1-DNA complex (described in Table 3-4). The free energy minima for 

monomeric and trimeric Dpo1 binding both occur at ~61 
o
C. The predicted critical temperatures 

for TH (where ∆H = 0) and TS (where T∆S = 0) are 36 °C and 60 
o
C for monomeric and 41 °C 

and 60 °C for trimeric Dpo1, respectively. TH represents the temperature where Ka is at a 

maximum, and TS represents the temperature where ∆G is most favorable. This binding behavior 

is indicative of a temperature dependent binding enthalpy (∆H
o
) with fitted heat capacity changes 

(∆C
o

p) (Equation 3-9) for monomer and trimeric Dpo1 binding equal to –0.43 ± 0.07 cal mol
-1

 K
-

1
 and -1.02 ± 0.12 cal mol

-1
 K

-1
, respectively (Table 3-2). The parallel large decreases in ∆H

o
 and 

T∆S
o
 with temperature are compensatory, resulting in smaller changes in ∆G

o
, and are generally 

characteristic of sequence specific DNA binding proteins (Figure 3-9A and B).(128, 129, 148) It 

seems possible that Dpo1 and the DNA at the primer-template junction achieve a degree of 

structural complementarity comparable to that in sequence-specific protein-DNA interfaces, thus 

making a significant contribution to the large negative 
o

p. Subsequent structural specific 

binding of two additional molecules of Dpo1 at that site completes the trimeric Dpo1-DNA 

complex as identified previously by DNA footprinting.(120) 
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Figure 3-8. Thermodynamic differences of monomeric and oligomeric Dpo1 and Dpo4 binding to DNA. Gibbs-

Helmholtz plots of free energy of binding (DG
o
) for A) monomeric (solid -●-, blue) or trimeric (dashed -■-, light 

blue) Dpo1 and C) monomeric (solid -○-, red) or dimeric (dashed -□-, pink) Dpo4 as a function of temperature. 

Error bars represent the standard error from multiple experiments at each point. Lines show the fits of the data to 

Equation 3- C
o

p (cal mol
-1

 K
-1

) values of for monomeric (-0.43 ± 0.07) and trimeric (-1.45 ± 0.14) Dpo1 

and monomeric (-0.68 ± 0.10) and dimeric (-1.22 ± 0.15) Dpo4. van’t Hoff plots highlighting the individual binding 

states for B) Dpo1 or D) Dpo4. Lines show the fits to Equation 3-12. 

Table 3-2 Thermodynamic parameters for DNA binding by Dpo1. 

 Monomeric Dpo1 Trimeric Dpo1 

Temp 

(
o
C) 

o
 

(kcal mol
-1

)
a
 

o
 

(kcal/mol)
c
 

T∆S
o
  

(kcal mol
-1

)
c
 

∆G
o
 

(kcal mol
-1

)
b
 

∆H
o
  

(kcal/mol)
c
 

T∆S
o
  

(kcal mol
-1

)
c
 

6.8 -8.3 ± 0.1 12.3 20.7 -20.5 ± 0.1 49.1 69.8 

12.0 -8.7 ± 0.2 10.1 18.9 -22.1 ± 0.4 41.6 63.5 

17.0 -9.0 ± 0.1 8.0 17.0 -23.0 ± 0.1 34.4 57.3 

22.2 -9.4 ± 0.1 5.8 15.1 -23.9 ± 0.3 26.8 50.7 

27.4 -9.6 ± 0.1 3.6 13.2 -24.6 ± 0.1 19.3 44.0 

32.8 -9.8 ± 0.1 1.3 11.1 -25.5 ± 0.1 11.5 36.9 

38.0 -10.0 ± 0.2 -0.9 9.0 -26.0 ± 0.2 4.0 30.0 

43.3 -9.9 ± 0.1 -3.2 6.9 -26.1 ± 0.1 -3.7 22.7 

48.8 -10.1 ± 0.1 -5.5 4.7 -27.0 ± 0.3 -11.7 15.1 

53.9 -10.4 ± 0.2 -7.7 2.6 -27.3 ± 0.6 -19.1 7.9 

58.9 -10.2 ± 0.1 -9.8 0.5 -26.9 ± 0.2 -26.3 0.7 

63.7 -10.4 ± 0.1 -11.8 -1.6 -26.9 ± 0.1 -33.2 -6.3 
a
Calculated from the Gibbs free energy Equation 3-7, ∆G

o
 = -RTlnK1 for monomeric Dpo1 

binding. 
b
Calculated from the Gibbs free energy Equation 3-8, ∆G

o
 = -RTlnK1 -2RTlnK2 for 

formation of the trimeric Dpo1-DNA complex. 
c
The predicted enthalpy (∆H

o
) and entropy (T∆S

o
) 

components are calculated from the fit to the Gibbs-Helmholtz Equations 3-9~11.
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Table 3-3 Thermodynamic parameters for DNA binding by Dpo4. 

 Monomeric Dpo4 Dimeric Dpo4 

Temp 

(
o
C) 

∆G
o
 

(kcal mol
-1

)
a
 

∆H
o
 

(kcal/mol)
c
 

T∆S
o
  

(kcal mol
-1

)
c
 

∆G
o
 

(kcal mol
-1

)
b
 

∆H
o
  

(kcal/mol)
c
 

T∆S
o
  

(kcal mol
-1

)
c
 

6.8 -8.2 ± 0.2 18.6 26.6 -14.6 ± 0.1 35.4 49.9 

12.0 -8.5 ± 0.2 15.0 23.5 -15.4 ± 0.2 29.0 44.4 

17.0 -8.9 ± 0.1 11.6 20.5 -16.0 ± 0.1 22.9 39.0 

22.1 -9.1 ± 0.1 8.2 17.4 -16.5 ± 0.1 16.7 33.4 

27.3 -9.3 ± 0.1 4.6 14.1 -17.0 ± 0.1 10.3 27.5 

32.9 -9.7 ± 0.1 0.8 10.5 -17.4 ± 0.1 3.5 21.1 

37.8 -9.8 ± 0.3 -2.5 7.3 -17.9 ± 0.2 -2.5 15.4 

43.2 -10.0 ± 0.1 -6.2 3.8 -18.3 ± 0.1 -9.1 9.0 

48.8 -10.2 ± 0.3 -10.0 -0.02 -18.6 ± 0.5 -16.0 2.3 

53.8 -10.3 ± 0.3 -13.4 -3.4 -18.6 ± 0.2 -22.1 -3.8 

58.9 -9.7 ± 0.2 -17.4 -7.6 -18.0 ± 0.2 -29.3 -11.2 

65.2 -9.6 ± 0.1 -21.2 -11.5 -17.6 ± 0.1 -36.2 -18.3 
a
Calculated from the Gibbs free energy Equation 3-7, ∆G

o
 = -RTlnK1 for monomeric Dpo4 

binding. 
b
Calculated from the Gibbs free energy Equation 3-8,  ∆G

o
 = -RTlnK1 -RTlnK2 for 

formation of the dimeric Dpo4-DNA complex. 
c
The predicted enthalpy (∆H

o
) and entropy (T∆S

o
) 

components are calculated from the fit to the Gibbs-Helmholtz Equations 3-9~11.
 

 

 

 
Table 3-4 Definition of Equilibrium Steps and Polymerase States. 

 Dpo1 Dpo4 

Stepa K
app

 ∆C°P (app) K
app

 ∆C°P (app) 

First K1 –0.43 K1 –0.68 

Second K22 –1.02 K2 –0.51 

Overall b K1K2
2 -1.45 K1K2 -1.22 

a As measured from fluorescence anisotropy. b Product of equilibrium constants leading to 
trimetric Dpo1 and dimeric Dpo4 
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Figure 3-9. Fitted thermodyanamic parameters ΔH
o
 (dashed -○-) , TΔS

o
 (dotted -□-), and ΔG

o
 

(solid -●-), for A) monomeric Dpo1 (dark blue) B) trimeric Dpo1 (light blue), C) monomeric 

Dpo4 (red), or D) dimeric Dpo4 (pink) assemblies on DNA primer template plotted from values 

in Tables 3-2 and 3-3 

 

Dpo4 also shows a nonlinear temperature dependence of binding for both the monomer 

and dimer, as visualized in a Gibbs-Helmholtz plot (Figure 3-8C) or van’t Hoff plot (Figure 3-

8D), and reported in Table 3-4. The free energy minima for monomeric and dimeric Dpo4 

assemblies occur at ~49 
o
C, and 51 

o
C, respectively. The predicted critical temperatures for TH 

and TS are 34 
o
C and 49 

o
C for monomeric and 39 

o
C and 55 

o
C for dimeric Dpo4, respectively.  

The temperature at which Dpo4 binding shifts from primarily entropically driven to enthalpically 

driven occurs in the range of 35 
o
C to 40 

o
C and is consistent with the ITC results from Figure 3-

2. This binding behavior is also indicative of a temperature dependent ∆H
o
 with fitted ∆C

o
p 

values (Equation 3-9) for monomer and dimeric Dpo4 binding of -0.68 ± 0.09 cal mol
-1

 K
-1

 and -

1.22 ± 0.15 cal mol
-1

 K
-1

, respectively. Again, parallel changes in ∆H and T∆S with temperature 

are indicative of temperature dependent enthalpy/entropy compensation (Figure 3-9 C and D). 



 72 

3.2.5 Calculated ∆Cp values from burial of nonpolar and polar surfaces upon Dpo4-DNA 

complex formation 

The burial of polar and nonpolar surface areas upon binding has been used as a predictive 

measure relating structural details to thermodynamic parameters. Heat capacity data for the 

transfer of small molecule model hydrocarbons and amides from the liquid state to the aqueous 

solution were used to obtain an empirical relationship for the calculation of (see Equation 

3-13) from computed values of changes in nonpolar and polar surfaces upon protein folding or 

protein-ligand interaction.(145, 149) For the folding of many proteins and the interaction of 

proteins with small ligands, there has been adequate agreement between the experimentally 

observed ∆Cp values and those predicted from burial of surface area. However, for association of 

macromolecules and some protein-folding reactions, there are many additional solution factors 

that contribute to the strongly negative observed ∆Cp values. A significant source of the 

discrepancy between ∆C
o

p and  values is the restriction of configurational 

(conformational-vibrational) degrees of freedom upon association.(134, 150-154) 

Although the buried surface area for Dpo1 binding to DNA cannot be determined directly 

due to the lack of an appropriate crystal structure, 3437 Å
2
 of surface area are buried when a 

Dpo4 monomer binds to primer template DNA.(143) The changes in polar (∆Ap) and nonpolar 

(∆Anp) solvent accessible surface area upon Dpo4 binding to DNA are -1753 Å
2
 and -1683 Å

2
, 

respectively. From these values, we calculate a  value of -0.29 cal mol
-1

 K
-1

 at 25 
o
C for 

monomeric Dpo4 binding to DNA from surface area contributions alone. As noted above, 
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although the burial of nonpolar (∆Anp) or polar (∆Ap) surface areas is often considered the most 

important factor contributing to ∆C
o
p, other factors such as electrostatics, solvation, protonation, 

conformational strain, thermal or vibrational fluctuations, and linked equilibria can often have 

much larger contributions to ∆C
o
p accounting for deviation from the experimental value.(155) 

 

3.2.6 Modeling temperature dependent binding populations of Dpo1 and Dpo4 

Using a sequential assembly scheme with a cooperativity parameter for Dpo1 or with no 

cooperativity parameter for Dpo4, and the parameters from the anisotropy experiments, we are 

able to model the relative populations of monomer or oligomer for Dpo1 or Dpo4 bound to DNA 

as a function of temperature (Figure 3-10). Using this analysis, there is both a concentration and 

temperature dependent effect on the formation of monomeric or oligomeric Dpo1 or Dpo4. 

Below 400 nM, there is preferential binding of a monomeric Dpo1 and Dpo4 to DNA. In the 

range between 400 – 2000 nM, there is a mixed population of monomer and oligomeric Dpo1 or 

Dpo4 complexes with DNA. At concentrations greater than 2 M, there is preferential binding of 

trimeric Dpo1 and dimeric Dpo4. In this analysis, it is also clear that the assemblies and 

populations are influenced by temperature. For Dpo1, there is an increase in affinity for both the 

first and second binding events up to 50 
o
C. Above 50 

o
C, there is a slight decrease in the second 

binding step in favor of the first. A similar trend occurs for Dpo4 with the cutoff being around 45 

o
C. More than 50% of the Dpo1 population exists in a trimeric state at concentrations greater 

than 1.5 M while a Dpo4 concentration of 3 M is required for 50% dimer. 
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Figure 3-10. Concentration dependent assembly of oligomeric polymerase-DNA complexes. A) Trimeric Dpo1 

assembly on DNA follows initial higher affinity binding of one molecule (K1) followed by a second step of 

cooperative assembly of two additional molecules (K2). B) Dimeric Dpo4 assembly on DNA that includes two 

sequential binding events with differing affinities (K1 and K2). Simulations of the relative populations for 

monomeric i) Dpo1 or Dpo4 (open symbols, representing K1) or ii) trimeric Dpo1 or dimeric Dpo4 (closed symbols, 

representing K2) as a function of temperature and concentrations as described in the Supporting Information. 

Simulations are shown for 6.8 (purple ○ or ●), 17.0 (cyan □ or ■), 27.4 (green ◊ or ♦), 38.0 (yellow ∆ or ▲), 48.8 

(orange  or ▼), and 58.9 or 59.7 (red  or ) 
o
C temperatures.  

 

3.2.7 Dpo1 and Dpo4 Processivities Increase with Temperature and Concentration 

To provide a biochemical explanation for the different binding specificities for DNA 

polymerases across a variety of temperatures, we assayed the temperature dependent 

polymerization processivity for Dpo1 and Dpo4. Processivity is a measure of the stability of an 

enzyme substrate complex during successive catalytic steps. Processive DNA polymerases have 

a higher rate constant for the catalytic step of DNA synthesis (kpol) than for dissociation from the 

template (kdis).(156) The ratio between these kinetic parameters determines the processivity value. 

The processivity for Dpo4 has been measured previously over a limited concentration range of 

0.5 – 200 nM representing primarily monomer, and although there is a slight increase in 

processivity with concentration, it was concluded that Dpo4 is essentially a distributive enzyme 

with processivity value of 1 to 2 nucleotides.(117) Interestingly, in processivity reactions where 

the concentration of Dpo4 was in 20-fold excess to DNA, products of over a hundred nucleotides 
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in length were synthesized, suggesting that polymerase interactions may modestly increase 

processivity. Another report of processivity when DNA template was in excess to Dpo4 (35 nM) 

gave a value of 16 at 37 
o
C.(123) More strikingly, we have previously measured a large increase 

in processivity for Dpo1 when it is in the trimeric conformation over that of the monomeric 

form.(120) 

We have performed additional DNA polymerization experiments at various temperatures 

(40, 50, 60 and 70 
o
C) to determine if higher temperatures promote greater rates or processivities 

for Dpo1 due to increased binding specificity. Both kinetic and processivity experiments were 

performed at either 200 nM or 2.0 M Dpo1 to represent contributions from primarily 

monomeric or trimeric species, respectively (Figure 3-11A). We chose 40 
o
C over room 

temperature experiments due to slower rates of synthesis that would limit detection. The DNA 

synthesis rate for trimeric Dpo1 at 40, 50, 60, and 70 
o
C was measured to be 36 ± 3, 209 ± 4, 447 

± 30, and 529 ± 35 bp/min, respectively, and always greater than monomeric Dpo1 rate at 36 ± 

12, 76 ± 14, 366 ± 45, and 400 ± 55 bp/min, respectively (Figure 3-12). Processivity experiments 

were initiated with the simultaneous addition of dNTPs and a high concentration of unlabeled 

DNA trap. Polymerase molecules that dissociate from the prebound radioactive primer-M13 

template will be captured by binding to a cold DNA substrate and no longer contribute to the 

signal for the experiment. The concentration of trap required to be effective at all polymerase 

concentrations was determined empirically by titrating trap until no further increase in 

processivity was noted. Reactions were incubated for different times at each temperature 

depending on the rate of synthesis. Dpo1 processivity at 200 nM (representing monomer) 

increased slightly with increasing temperature from 41 ± 12, 62 ± 14, 187 ± 45, and 220 ± 56 

nucleotides at 40, 50, 60, and 70 
o
C, respectively, (Figure 3-
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(representing trimer) increased more dramatically from 98 ± 2, 493 ± 5, 933 ± 39, to 1191 ± 52 

nucleotides at 40, 50, 60, and 70 
o
C, respectively (Figure 3-11B). At temperatures greater than or 

equal to 50 
o
C, the processivity of the trimeric state of Dpo1 is much greater than that of the 

monomeric complex and reflects a change in the specificity of binding DNA consistent with the 

fluorescence anisotropy data presented above.  

 

Figure 3-11. Processivity of Dpo1 increases with temperature and concentration. A) Dpo1 processivity assays were 

performed at 40, 50, 60, and 70 
o
C representing monomer (0.2 M) (left panel) or trimer (2.0 M) (right panel) 

concentrations and separated on a denaturing alkaline agarose gel as described in the Materials and Methods. The 

inset cartoon describes the experimental protocol for processivity experiments. Longer reaction times were used for 

lower temperatures to compensate for slower polymerase rates. Processivity values were calculated from DNA size 

markers and calculated using ImageQuant software. Quantification of the processivity values (bp) comparing 

monomeric (0.2 M, grey) or trimeric (2.0 M, black) Dpo1 at 40, 50, 60, and 70 
o
C.  

 

Figure 3-12. Quantification of the average rate (bp/min) for 

0.2 μM (grey) and 2.0 μM (black) Dpo1 at 40, 50, 60, and 70 
o
C from alkaline agarose gels. DNA length values were 

obtained compared to DNA size markers and calculated using 

ImageQuant software. Error bars represent the standard error 

from at least three independent kinetic experiments. Kinetic 

experiments were quenched after 4 minutes for all 

temperatures. 
For Dpo4, processivities also increase with 

increasing enzyme concentration at a variety of 

temperatures (Figure 3-13) but to a lesser extent 

than for Dpo1. As for Dpo1, the Dpo4 processivity 
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increases slightly at 200 nM (representing monomer) and more dramatically at 5 M 

(representing dimer) with increasing temperature (Figure 3-14). This is not only visualized by 

longer products separated on the gel, but also more radioactivity seen in the wells at the higher 

concentrations or temperatures. Interestingly at both monomeric and dimeric Dpo4 

concentrations, there is an apparent decrease in processivity when going from 60 to 70 
o
C 

consistent with decreased specificity of binding measured for Dpo4 at those temperatures using 

fluorescence anisotropy (Figure 3-8C). Similar to Dpo1, the processivity values increase when 

dimeric Dpo4 concentrations are used compared with monomeric Dpo4 concentrations at all 

temperatures.  

 

Figure 3-13.. Processivity of Dpo4 increases with temperature and concentration. Dpo4 processivity assays were 

performed at A) 40, B) 50, C) 60, and D) 70 
o
C for concentrations ranging from 0.05 – 10 M and separated on a 

denaturing acrylamide gel. Reactions were initiated with dNTPs and excess ssDNA trap as described in the 

Materials and Methods. 
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Figure 3-14..Dpo4 processivity assays were performed at 40, 50, 60, and 70 oC representing monomer (0.2 μM) 

(left panel) or dimer (5.0 μM) (right panel) concentrations and separated on a denaturing acrylamide gel as described 

in the Materials and Methods. The inset cartoon describes the experimental protocol for processivity experiments. 

Longer reaction times were used for lower temperatures to compensate for slower polymerase rates. 

 

3.3  DISCUSSION 

Using chemical crosslinking, isothermal titration calorimetry, analytical 

ultracentrifugation, and fluorescence anisotropy, we have been able to identify, separate, and 

quantify multiple binding events for DNA replication (Dpo1) and repair polymerases (Dpo4) to 

DNA that lead to different specificities and activities with temperature. Consistent with our 

previous report,(120) Dpo1 forms a concentration dependent trimer at all temperatures. 

Unexpectedly, Dpo4 behaves similarly, forming a dimeric complex that becomes more favored 

at higher temperatures. For both Dpo1 and Dpo4, the affinities of monomeric and subsequent 

oligomeric binding generally increase as the temperature approaches the physiological range. 

The changes in polymerase equilibria with concentration and temperature can be clearly 

visualized using analytical ultracentrifugation even over a limited temperature range (10 - 30 
o
C). 
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Comparison of monomeric polymerase binding to DNA shows that the differentially stronger 

affinity of Dpo1 than Dpo4 becomes even more exaggerated as physiological temperatures (75 

o
C) are approached, providing for thermodynamic selection of a DNA replication polymerase on 

undamaged templates. These thermodynamic results are reflected in the enzymatic behaviors, in 

that we measured a greater processivity for nucleotide incorporation at higher temperatures and 

oligomeric states for both DNA polymerases. The equilibrium microenvironment in the cell or 

more importantly at the replication fork will direct binding and association of a variety of DNA 

polymerase complexes to promote efficient DNA replication in the presence of any damage.  

3.3.1 Evidence for Oligomeric Dpo1 and Dpo4 Complexes Bound to DNA 

Identification, isolation, and assembly of the trimeric Dpo1 complex at the primer 

template junction have been discussed previously (120) but is now verified and quantified across 

a large temperature range. Similarly, crosslinking and ITC suggest that assembly of a dimeric 

Dpo4 is also possible. Using AU-FDS experiments, we were able to directly monitor the size 

distribution of polymerase DNA complexes in solution at multiple temperatures. Interestingly, 

for both Dpo1 and Dpo4 bound to DNA, there is a modest but reproducible shift in the 

sedimentation boundaries to larger coefficients with increasing temperature. Unfortunately, 

analytical ultracentrifugation can only be performed over a limited temperature range, 10 
o
C to 

30 
o
C; as these effects may have been greater if higher temperatures could have been probed. A 

shift to a larger s20,w value in sedimentation velocity experiments is consistent with a change in 

the population of complexes towards a larger average size. The shifts in reaction boundaries 

occur at lower concentrations for Dpo1 than for Dpo4, consistent with the anisotropy result that 

Dpo1 has a higher affinity for DNA than Dpo4 at identical temperatures. Distinct s20,w 
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populations are more easily seen for Dpo1, due to large differences in the molecular weight 

between the complexes of monomer and trimer with DNA. For Dpo4, the size difference 

between monomeric and dimeric bound states is much less, causing a general broadening of the 

s20,w distribution and discrete s20,w weight average values for each state are not observed. The 

most obvious temperature dependent reaction boundary shifts occur at concentrations equal to 

the dissociation constant for polymerase binding to DNA (i.e. 100 nM Dpo4 at 30 
o
C in Figure 3-

5C). Shifts in the reaction boundaries of Dpo1 bound to DNA with increasing temperature are 

more subtle, but reproducible, in this experimental range; these shifts are characterized by better 

resolution between monomeric and trimeric Dpo1 at 30 
o
C (Figure 3-4C). Although only 

qualitatively, the individual sedimentation boundaries correlate well with the Kd1 and Kd2 binding 

affinities (K1 and K2 in Figure 3-10) for Dpo1 and Dpo4 to DNA measured by fluorescence 

anisotropy. Sedimentation equilibrium experiments would be useful in quantifying the actual 

populations for either Dpo1 or Dpo4 alone or bound to DNA, but unfortunately resulted in 

uninterpretable spectra, probably due to some precipitation or aggregation during the long times 

required to attain sedimentation equilibrium. No loss in spectral signal was detected in the 

analytical velocity experiments suggesting that aggregation and precipitation is not an issue for 

shorter time scales.  

Although there are a number of biochemical, kinetic and structural papers involving the 

mechanism of action for Dpo4,(117, 118, 123, 124, 143, 157-161) none of them suggest that a 

dimeric DNA polymerase complex is the active species. However, we have confirmed Dpo4 

binding to DNA as a dimer using chemical crosslinking, the stoichiometry values from ITC, and 

analytical ultracentrifugation. The apparent dissociation constants measured by ITC at 15 
o
C 

(  
o
C (  
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fluorescence anisotropy and EMSA results previously published and most likely represent 

contributions of equilibria from monomer and dimer Dpo4 binding to DNA.(104, 162, 163) The 

analytical ultracentrifugation results show that binding begins at a concentration of 100 nM and 

then proceeds in a concentration dependent manner towards dimer above 500 nM. According to 

the fits of the fluorescence anisotropy experiments, dimer assembly persists across a range of 

temperatures. From a variety of Dpo4:DNA X-ray structures, the site size of Dpo4 on DNA 

consists of roughly 10 bases of dsDNA and 4 bases of ssDNA straddling the primer template 

junction.(118) The DNA hairpin primer-template used in these studies has a 12 base pair duplex 

and a 10 base single strand region, thus restricting binding site size to a single DNA polymerase. 

The location of the protein crosslink can be pinpointed because there is only a single native 

cysteine residue (C31) in Dpo4 but does not exclude other dimeric Dpo4 structures. Unlike what 

we observed for Dpo1,(120) the presence of DNA did not significantly affect the degree of 

crosslinking, suggesting that at the concentrations used for this experiment, Dpo4 can form a 

dimer in the absence of DNA.  

Within the RCSB Protein Data Bank (www.rcsb.org), there exist roughly 100 structures 

of Dpo4 both without DNA and bound to various types of DNA templates (damaged and 

undamaged). Roughly, one-third of these structures have multiple Dpo4 molecules interacting in 

the crystal unit in various conformations. Many of these multimeric structures show Dpo4 in a 

conformation that would allow the cysteine residues in the interface to be in close enough 

proximity for crosslinking to occur.(164-166) The rest of the oligomeric Dpo4 structures are in a 

variety of alternative dimeric or tetrameric complexes. Additionally, a number of structures for 

the analogous Dbh polymerase from Sulfolobus acidocaldarius also show oligomeric complexes 

in the crystal unit with the homologous cysteine residue in close enough proximity for 

http://www.rcsb.org/
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crosslinking.(167, 168) Although we cannot be certain of the exact conformation, we are able to 

detect and verify a previously unrecognized dimeric Dpo4 complex across all temperature ranges 

that is consistent with our thermodynamic binding data. Moreover, the variety of dimeric and 

tetrameric states of Dpo4 seen by X-ray crystallography may suggest that the binding equilibria 

are even more complex than we include in our model (Figure 3-10B).  

3.3.2 Thermodynamic differences in binding oligomeric replication and repair polymerases 

to primer-template DNA  

In fluorescence anisotropy experiments, optimum fits to binding isotherms for the 

titration of Dpo1 or Dpo4 with DNA are obtained using a model for a sequential assembly path 

involving two binding events. Information from crosslinking, EMSA, gel filtration, AUC, and 

ITC experiments about the initial (monomeric) and final (trimeric for Dpo1 and dimeric for 

Dpo4) forms of polymerase-DNA complexes was essential for differentiating between single and 

multiple binding events in the anisotropy experiments.(120) For Dpo1 and Dpo4, there is an 

initial higher affinity binding of one polymerase molecule to DNA. The binding of the second 

and third molecule of Dpo1 to complete the trimer is proposed to occur cooperatively;(120) 

however since a dimeric Dpo1-DNA complex cannot be resolved, our data are insufficient to 

separate these secondary binding events. Formation of a Dpo4 dimer proceeds through two 

sequential binding events. For both Dpo1 and Dpo4, binding of additional polymerase 

molecule(s) to the first is inferred primarily from the limited DNA template size and the direct 

contacts found using chemical crosslinking.(120) Previous reports on binding affinity for Dpo1 

and Dpo4 are consistent with our values for monomeric assembly at room temperature but those 

studies did not test higher concentrations required for multimeric assemblies.(163, 169)  
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A comparison of the DNA binding affinities of monomeric Dpo1 and Dpo4 shows that 

binding affinity is only slightly more favorable for monomeric Dpo1 across all temperature 

ranges but becomes more selective at physiological temperatures (Figure 3-15 and Figure 3-16). 

The free energy change for binding the first molecule of Dpo1 decreases steadily with 

temperature up to at least ~65 
o
C, where binding is preferred by about -0.8 kcal mol

-1
 over Dpo4. 

Dpo4, on the other hand, has a free energy binding minimum around 50 
o
C, disfavoring binding 

to undamaged DNA in the presence of Dpo1. Dpo4 is smaller, known to have a more open active 

site than typical B-family polymerases, exists in two distinct conformations, and has subtle 

repositioning of active site residues upon binding.(118, 143, 170, 171) The little finger domain 

and associated linker in particular seem to be most 

important for stable binding to DNA. On the other 

hand, the binding affinity of Dpo1 to DNA is more 

favorable at higher temperatures, consistent with 

formation of a tight closed conformation on DNA, 

resulting in greater DNA stabilizing 

ability/annealing noted previously.(172)  

Figure 3-15. Gibbs free energy differences (ΔΔG
o
) for DNA binding, comparing Dpo1 to Dpo4 monomers (○) or 

comparing trimeric Dpo1to dimeric Dpo4 (■), plotted as a function of temperature. 
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Figure 3-16. Thermodynamic differences between Dpo1 and Dpo4 binding to DNA. A) Gibbs-Helmholtz or B) 

van’t Hoff plot comparison of the free energy of binding (ΔGo) for monomeric Dpo1 (solid -●-, blue) or Dpo4 (solid 

-○-, red) as a function of temperature. C) Gibbs-Helmholtz or D) van’t Hoff plot comparison of the free energy 

(ΔGo) for formation of trimeric Dpo1 (dashed -■-, light blue) or dimeric Dpo4 (dashed -□-, pink) as a function of 

temperature. Error bars represent the standard error from multiple experiments at each point. Lines in the Gibbs-

Helmholtz plots show the fits of the data to Equations 3-9~11. Lines in the van’t Hoff plots show the fits to Equation 

3-12. 

There is a larger differential in the free energies of binding of the oligomeric forms of the 

polymerases (trimeric Dpo1 or dimeric Dpo4) (Figure 3-14 and Figure 3-16) than for the 

monomeric forms. The ∆G° for formation of a trimeric Dpo1 complex is much more favorable 

than that for formation of a dimeric Dpo4 complex. The difference in binding energies becomes 

even more exaggerated at higher temperatures, thus increasingly favoring the trimeric Dpo1 

complex at physiological temperatures. At 64 
o
C, binding of trimeric Dpo1 is enormously 

favored (by about -9.3 kcal/mol) over dimeric Dpo4. The slight preference for binding primer-

templates by the Dpo1 monomer (over that of the Dpo4 monomer) will lead to trimeric Dpo1 

complex formation, thus selecting against Dpo4 binding.  

3.3.3 Formation of both monomeric and oligomeric polymerase-DNA complexes produces 

large negative ∆C
o

p values 

Amongst the thermodynamic parameters (∆G, ∆H, ∆S, ∆CP, and volume) ∆Cp is one of 

the least well known, but potentially the most informative with respect to extracting molecular 



 85 

information about specificity. Because ∆Cp was first analyzed for protein folding, the working 

hypothesis was that the net negative ∆Cp reflected primarily the burial of nonpolar surface 

area.(145, 149) However, a number of studies on site-specific protein-DNA complexes have 

shown large deficits between the values predicted from surface burial and experimental 

∆C
o

p values.(128, 129, 134, 148, 151-153, 155) In addition to desolvation of nonpolar surface 

upon binding, other factors such as restriction of conformational-vibrational motions of the 

macromolecules, interfacial waters, and linkage of other binding equilibria (protonation, cation 

and anion binding, and conformational changes) contribute to the protein-DNA binding reaction 

and can potentially account for the deficit between  and ∆C
o

p.(128, 129, 173-180) 

Although a strongly negative ∆C
o

P value has generally been considered a key signature of 

sequence-specific DNA-protein interactions,(128) large negative values of ∆C
o

P have also been 

observed for the formation of interfaces with high structural complementarity between DNA 

polymerases and their primer-template substrates.(130, 131, 181, 182) 

In the absence of appropriate monomeric or oligomeric polymerase-DNA structures, 

contributions of surface area burial cannot be directly assessed. The only appropriate data set is 

for a monomeric Dpo4-DNA structure, which underestimates the contributions of buried surface 

area (  -0.29 cal mol
-1

 K
-1

) to the experimental value. The ∆C
o

P values are similar for 

monomeric Dpo1 (-0.43 cal mol
-1

 K
-1

)
 
and Dpo4 (-0.68 cal mol

-1
 K

-1
) but significantly more 

negative than the 
 
value

 
suggesting that other factors in addition to surface area burial 

contribute to the experimental ∆C
o

p values.  
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Because we have been able to monitor the sequential steps in polymerase binding, we 

have also found that the ∆C
o

p values for assembly of trimeric Dpo1 and dimeric Dpo4 complexes 

are strongly negative, suggesting that structure-specific binding is occurring during formation of 

these oligomeric DNA complexes as well. The sign and magnitude of the ∆C
o

p values for 

formation of Dpo1 and Dpo4 oligomers are consistent with other specific dimerization or binary 

protein binding events.(183-186) No structural information is available for an oligomeric Dpo1 

complex, nor can we be certain of the molecular arrangement of a dimeric Dpo4 complex, which 

makes calculation of buried surface area difficult. Nevertheless, exclusion of water molecules, 

favorable surface interactions between the polymerase molecules, and restriction of 

configurational freedom within the oligomeric complex are consistent with the magnitudes for 

the oligomeric polymerase-DNA ∆C
o

p values. Therefore, many of the factors discussed above 

may contribute to the strongly negative ∆C
o

P values observed for the formation of trimeric Dpo1 

and dimeric Dpo4 complexes with primer-template DNA substrates. 

3.3.4 Oligomeric DNA Polymerases Have Increased Activities and Processivities 

Generally, processivity is thought to be a temperature independent parameter although 

slight decreases in processivity with increasing temperature have been noted for the telomerase 

enzyme.(187) DNA polymerases alone are fairly distributive enzymes unless accompanied by 

their respective circular clamp proteins which can increase processivity from less than 20 to 

greater than 10,000 bases.(188) Previously, we found that the processivity of Dpo1 was 

dependent on concentration, such that that trimeric complex had much greater processivity 

(~1000 bases) than the monomer at 60 
o
C.(120) We have now shown that the processivity for 

both Dpo1 and Dpo4 increases with temperature. An increase in processivity with temperature 
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was noted for both monomeric and oligomeric complexes of Dpo1 and Dpo4 although the effect 

was more dramatic for the oligomeric states. Trimeric Dpo1 was 4-5 fold more processive than 

monomeric Dpo1; dimeric Dpo4 was significantly more processive than monomeric Dpo4; but 

the processivity of trimeric Dpo1 was more than 15-fold greater than that of dimeric Dpo4 at 

higher temperatures. Even though Dpo4 is generally considered to be a distributive enzyme, the 

increased affinities for binding DNA noted with increasing temperatures and concentrations also 

increase the processivity. We reason that for Dpo1 and Dpo4, a more tightly bound monomeric 

or oligomeric complex promotes greater processivities at higher temperatures. For Dpo1, the 

affinity for DNA generally increases with temperature, and formation of a trimeric Dpo1 reduces 

the off-rate of the complex from DNA over monomeric Dpo1 explaining the larger processivity 

values. The combination of higher intrinsic processivity for monomeric Dpo1 compared with 

Dpo4, as well as increased binding affinity at higher temperatures of the Dpo1 trimer, contribute 

to the enzymatic activity resulting in high trimeric Dpo1 processivity.(120) In fact, phi29 is the 

only other characterized DNA polymerase with a greater processivity value and acts analogously 

by topologically encircling the DNA template.(189, 190) 

Increased binding affinity of Dpo4 to DNA also correlates well with increasing 

processivity up to 60 
o
C. At 70 

o
C, the processivity decreases slightly, consistent with the 

measured affinity values. Previously, when high concentrations of Dpo4 were used, an increase 

in the length of product synthesized was observed suggesting that either faster repeated binding 

was occurring in the absence of trap or cooperation between molecules at higher concentrations 

afforded greater processivity.(171) The authors implicated the little finger domain of Dpo4 in 

maintaining moderate processivity by creating a closed more stable enzyme complex on DNA. 

The conformational change of the little finger domain is considered to be the rate limiting step 
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and occurs both before and after chemistry.(123, 191) Kinetic experiments have shown that of 

the 7 steps within the catalytic cycle for a single nucleotide incorporation event, the 

conformational change step that precedes chemistry is most affected by temperature increasing 

20-fold from 37 to 56 
o
C.(158) Moreover, the little finger domains are in close proximity with 

one another in a variety of dimeric and tetrameric Dpo4 crystal structures including our 

crosslinking model in Figure 3-1B, suggesting that dimerization may stabilize a closed complex, 

decrease the off-rate, and increase the rate limiting conformational change step to positively 

affect processivity.  

Clearly, a tightly bound trimeric Dpo1 complex will increase the speed and processivity 

of polymerization and may be utilized in various genomic maintenance applications. At 75 
o
C, 

binding of Dpo4 will be disfavored on undamaged primer-templates where Dpo1 is directing 

synthesis. Selection and increased processivity will also be provided through interactions with 

the processivity clamp, SsoPCNA123, but the affinities of Dpo1 for PCNA2 and Dpo4 for 

PCNA1 are very similar.(192, 193) Switching from Dpo1 to Dpo4 will depend on a change in 

the thermodynamics of binding either due to polymerase stalling, repeated shuttling between 

polymerase and exonuclease sites, detection of DNA damage, or a change in the local 

concentrations. In those cases, binding of Dpo4 would become preferred. It has been recently 

estimated that the concentration of Dpo1 is at least an order of magnitude greater than that of 

Dpo4 in the cell suggesting that Dpo1 will be preferentially bound and will have a significant 

population of trimer at the replication fork.(104) Interestingly, mRNA levels of Dpo1 decrease 

when cells are exposed to DNA damage in favor of Dpo4 and another B-family DNA 

polymerase (Dpo2),(194, 195) suggesting that equilibrium changes will direct appropriate 

binding of the required DNA polymerase.  
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Although the oligomeric state of Dpo1 modulates both the speed and processivity of 

replication, the biological role of a dimeric Dpo4 remains elusive. Due to only slight increases in 

biochemical activity, we would predict that a dimeric Dpo4 would not be essential for cellular 

catalysis, but rather in either increasing the concentration of DNA polymerases at sites of DNA 

damage or stabilizing the closed conformational state promoting catalysis. Accurate and efficient 

DNA replication at high temperatures requires minimal differences in the thermodynamics of 

DNA polymerase binding to DNA for easy exchange of enzymes for uninterrupted synthesis. 

This thermodynamic compensation will be affected by small changes in the cellular equilibria 

that direct formation of higher order protein complexes that promote a variety of genomic 

maintenance activities. The detection of multimeric polymerase complexes for both Dpo1 and 

Dpo4 suggests a possible mechanism for exchange, whereby direct interactions between 

polymerases maintain high local concentrations at the replication fork that can 

thermodynamically switch binding modes when required.  

3.4  CONCLUSION 

In Chapter 2, we observed that Dpo1 can form a trimeric complex on DNA using a 

variety of experimental techniques. Here, we have also detected the oligomerization of Dpo4 by 

cross-linking (Figure 3-1). While Dpo1’s trimer complex is stimulated by the association with 

DNA, the dimerization of Dpo4 at a native cysteine can occur off DNA. The physiological 

environment of Dpo4 in Sso cell is around 150 nM, which lies squarely in the concentration 

range of the monomeric DNA complex. On the other hand, the calculated cellular concentration 

of Dpo1 (2.2 M) would suggest that it will have significant enzymatic contributions of trimer to 
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DNA replication (Chapter 2).(54) Therefore, Dpo4’s role will be secondary to assist in DNA 

replication by bypassing site specific lesions. In some instances, Dpo4 may still use the 

oligomerization to increase the local availability of enzyme at the replication fork. 

We have found that each polymerase binds to DNA in a stepwise manner with an initial 

higher-affinity binding and a sequential lower-affinity binding by EMSA (Chapter 2 and Chapter 

4) and fluorescence anisotropy (this chapter). For the initial binding to DNA, the affinities of 

Dpo1 and Dpo4 are very similar over the temperature range between 6.8 and 65.7 
o
C. However, 

trimeric Dpo1 is more stable and with a lower free energy than dimeric Dpo4 with increasing 

temperature, especially at the physiological temperature of Sso (~75 
o
C). The temperature-

dependent preference in the oligomeric affinities demonstrates a strategy for how Sso chooses 

Dpo1 as a primary player in DNA replication. 

A recent study shows that the TH (the temperature where the heat enthalpy equals to zero) 

reveals the temperature where DNA polymerases begin to have enzymatic activity).(1) Here, in 

Figure 3-9, we further support this idea with the fact that at 40 
o
C (TH for both oligomeric form 

of Dpo1 and Dpo4 complex), both Dpo1 and Dpo4 have significant higher activities than that at 

room temperature. Our results also suggest that at Ts (at the temperature the binding entropy 

equals to zero), Dpo1 (65 
o
C) and Dpo4 (55 

o
C) are close to their maximum activities. We would 

have to test this hypothesis directly to understand the thermodynamic rationale behind this 

observation in the future. 
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4.0  TEMPERATURE DEPENDENT COUPLED EQUILIBRIA INFLUENCES 

BINDING THERMODYNAMICS FOR OLIGOMERIC DNA POLYMERASES 

COMPLEXES 

DNA polymerases are responsible for faithfully incorporating nucleotides opposite a 

DNA template during DNA replication or repair to maintain the genomic integrity of all 

organisms. B-family DNA replication polymerases have high intrinsic DNA synthesis accuracy 

that is augmented further by an exonuclease proofreading domain. Y-family DNA polymerases 

act specially to replicate across damaged templates in a potentially error prone manner. 

Therefore, B-family polymerases are proposed to stall at sites of DNA damage awaiting the 

temporary recruitment of a Y-family polymerase to bypass the lesion.(196) Core structural and 

mechanistic aspects between these polymerase families are shared highlighting conserved 

binding modes, although plasticity in the active site of Y-family polymerases allows for 

incorporation opposite DNA damage in the template strand.(197) Similar binding affinities and 

specificities for replication and lesion bypass polymerases to primer/template DNA will abrogate 

high fidelity DNA synthesis in the absence of other molecular factors that direct binding. 

Undoubtedly, multiequilibria processes including self-associations, specific interactions with 

other accessory proteins, and individual kinetic steps will control access to DNA and ensure high 

fidelity synthesis even in the presence of DNA damage.  
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The molecular signal responsible for the exchange of polymerases at sites of damage has 

not been identified, although in yeast and bacteria, it is proposed to occur through coupled 

interactions with the processivity clamp, which destabilize binding of one polymerase in favor of 

the other.(198-202) Alternatively, the repeated shuttling between polymerization and 

exonuclease modes of the B-family polymerase at sites of damage(107) may locally destabilize 

binding allowing a Y-family polymerase to bind more specifically to bypass the lesion. There 

has also been some evidence suggesting that multiple DNA polymerases are concentrated at the 

replication fork and dynamically exchange during replication and repair processes.(34, 112, 113, 

120)  

In Chapter 3, DNA binding by various DNA polymerases has been examined using 

fluorescence anisotropy and analytical ultracentrifugation, suggesting the specificities of Dpo1 

and Dpo4 to DNA can be regulated by oligomerization, which is directly affected by the 

concentration and temperature. In this chapter, the detailed coupled equilibrium between 

different oligomeric states has been described thermodynamically by isothermal titration 

calorimetry (ITC). ITC provides the most complete thermodynamic profile. The change in 

enthalpy ( ) can be directly measured and fit to a binding isotherm to give the stoichiometry 

(n) and the equilibrium binding constant (Ka). From  and the Ka, the change in the binding 

free energy ( ) and the change in entropy ( ) can be calculated. Determination of the 

temperature dependences of  and gives the heat capacity change ( ), which can 

provide insight in to the specificity of the binding process.(128, 129) Determination of  is 
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especially important for differentiating binding processes for multiple enzymes within a cell that 

have similar substrate preferences.  

Although a strongly negative  has been shown to be the thermodynamic signature of 

sequence-specific binding,(129) the non-sequence specific binding to primer template DNA by 

the A-family DNA polymerases from T. aquaticus (Taq) and E. coli (Klenow) is also associated 

with large and negative  values.(128, 130-134) Even though there is no sequence specificity, 

the negative  is consistent with high structural complementarity of the DNA polymerase 

binding to the primer template junction visualized in a variety of crystal structures.(118, 120, 128, 

135, 136) Importantly, an accurate interpretation of  relies on the ability to understand all the 

molecular contributions to the bound conformations to define the energetics.(203, 204) The 

inherent thermostability of proteins from Sso (where the growth temperature is ~75 
o
C) allows us 

to fully investigate the energetic constraints of DNA polymerase binding to DNA. Access to this 

broad temperature range results in a more complete thermodynamic characterization of the 

differences in binding B and Y-family polymerases to an undamaged DNA primer-template. 

These thermodynamic differences can be evaluated directed by determining the , Kas, and 

stoichiometries for binding each polymerase. 

We have analyzed the temperature dependence of the thermodynamic parameters for 

DNA binding by B-family (Dpo1) and Y-family (Dpo4) polymerases from Sso. Electrophoretic 

mobility shift assays (EMSAs) at low and high temperatures were used to define the polymerase 

stoichiometries and equilibria for binding DNA. The assembly of Dpo1 proceeds though a 
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monomeric/DNA complex followed by the cooperative assembly of two additional molecules to 

form a trimeric Dpo1/DNA complex. Binding of Dpo4 to DNA is similar but proceeds through 

assembly of monomer, dimer, and tetramer complexes. As has been shown for many sequence-

specific DNA-binding proteins and also for the non-sequence-specific Taq and Klenow DNA 

polymerases,(131, 205-207) Dpo1 and Dpo4 binding to DNA measured by ITC shifts from being 

entropy-driven to enthalpy-driven as the temperature is increased. This entropy-enthalpy 

compensation has the consequence that  changes only slightly over a broad range of 

temperatures. Surprisingly for both Dpo1 and Dpo4, the heat capacity values ( ) are strongly 

temperature dependent and in some cases actually switch from a positive to a negative value over 

the experimental range. Interestingly, the presence of DNA thermodynamically stabilizes Dpo1 

predicting high structural complementarity for a Dpo1/DNA complex that corresponds to a large 

negative  at high temperatures. Neither buried solvent exposed surface areas, associated 

structural changes, protonation, nor electrostatics can account for the large temperature 

dependent heat capacity change ( ). Instead, coupled equilibria associated with oligomeric 

polymerase binding are highly temperature dependent directly affecting . Therefore, we 

conclude that the observed  is the summation of a constant intrinsic  for binding 

DNA and coupled equilibria  that changes with temperature. Taken together, these 

results suggest that complex thermodynamics and solution equilibria direct non-sequence 
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specific binding and assembly of these oligomeric DNA polymerases to DNA resulting in greater 

structural complementarity and free energy selection at higher temperatures.  

4.1 MATERIALS AND METHODS 

Materials. Oligonucleotide substrates were purchase from Integrated DNA Technologies 

(IDT (Coralville, IA). The sequence of the 37 base DNA hairpin was 5’-

TTTTTTTTTTCCCGGGCCGGCGTTTCGCCGGCCCGGG, which included a 12 base pair 

duplex region, a three residue loop, and a ten base single strand template. DNA was dissolved in 

annealing buffer [20 mM HEPES (pH 7.0) and 200 mM NaCl], heated to 95 
o
C for 15 minutes, 

and then cooled to room temperature by turning off the hot plate overnight. Untagged 

exonuclease deficient Dpo1 (D231A/D318A) and wild-type Dpo4 were purified as described 

previously.(208) All other chemicals were analytical grade or better. 

DNA Hairpin Denaturation Studies. 600 nM DNA hairpin was dissolved in [20 mM] 

Sodium cacodylate buffer (J.T.Baker) with 150 mM NaCl. The UV adsorption profile was 

measured using a Cary 100 UV-Vis Spectrophotometer (Varian, CA) over temperature ranges (4 

to 95 
o
C). The melting point was determined from the peak of derivative of adsorption profile as 

described previously.(172) 

Electrophoretic Mobility Shift Assays (EMSA). Native gel-electrophoretic mobility shift 

assays were performed in a 10 l reaction mixture containing reaction buffer [10 mM BisTris, 40 

mM Tricine (pH 7.0), 10 mM Mg(OAc)2, and 1.25 v/v % Glycerol], 4 nM DNA hairpin labeled 

at the 5’-end using a standard polynucleotide kinase reaction and 
32

P-γ-ATP using Optikinase 

(USB), and the indicated amount of polymerase and the DNA hairpin. Binding reactions were 
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allowed to equilibrate for 10 min at the indicated temperature followed by directly loading onto a 

temperature equilibrated 6% polyacrylamide gel [10mM BisTris, 40mM Tricine (pH 7.0)]. Gels 

were run for 20 minutes at 20 volts cm
-1

 in the running buffer [10mM BisTris, 40mM Tricine 

(pH 7.0)] and then imagined using a Storm phosphorimager (GE Healthscience). Quantification 

of the fraction of band shift was performed using the ImageQuant software (v5.0). Afterwards, 

EMSA gels were stained with coomasie dye to visualize protein species. The EMSA data for 

Dpo1 or Dpo4 was fit and modelled according to the Schemes 4-1 & 4-2 using Berkeley 

Madonna (University of California, Berkeley, CA) as described previously.(208) 

Isothermal Titration Calorimetry (ITC). Prior to analysis, titrants and analytes were 

dialyzed against Buffer A [20mM HEPES-NaOH (pH 7.0), 150 mM NaCl, 5% Glycerol, 10 mM 

Mg(OAc)2, 0.2 mM DTT], filtered by centrifuge tube filters (0.22 m, SPIN-X, Corning Inc., 

NY), and degassed. Buffer A is different than the ITC buffer used in Chapter 2 to better mimic 

physiological conditions. Isothermal titration calorimetry was performed using a VP-ITC 

(MicroCal Inc., Northampton, MA) as described previously.(120, 208) Titrations were 

performed both in the forward (DNA into protein) and reverse directions (protein into DNA) at 

various temperatures and concentrations. Typical forward titration experiments included 500 M 

DNA titrated into 25 M protein in at least 30 injections of 5-6 L. Reverse titrations included 

~190 M protein titrated into 1-3 M DNA in at least 30 injections of 5 L. The heats of the 

reaction were corrected for the heat of dilution by subtracting the signal after reaching saturation. 

All data were fit using non-linear least squares analysis in Origin 7.0 (MicroCal) according to the 

following identical single sites equation: 
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(Equation 4-1) 

where V0 is the volume of the cell, ∆H
o
 is the enthalpy of binding per mole of ligand, [P]t is the 

total concentration of protein including both bound and free fractions, Kobs is the apparent 

association constant, [D]t is the total DNA concentration, and n is the stoichiometry of the 

reaction, or to a sequential binding sites equation with two separate apparent binding constants 

(K1,obs and K2,obs) and enthalpies (∆H1,obs and ∆H2,obs): 

   (Equation 4-2) 

where the concentration of free DNA (D) was obtained from the following equation: 

        (Equation 4-3) 

according to the Scheme 4-1 for Dpo1 binding equilibria: 

      (Equation 4-4)  

    (Equation 4-5)  

while in Scheme 4-2 for Dpo4 binding equilibria 

      (Equation 4-6)  
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                         (Equation 4-7) 

The Gibbs free energy of binding 
o
) was calculated as  

                (Equation 4-8)  

where R is the universal gas constant and T is the temperature. Thermodynamic parameters were 

extracted from a fit of the temperature dependence of the Gibbs-Helmholtz plot according to the 

following equation:  

   (Equation 4-9)  

where ∆G
o
 is the standard free energy change, ∆H

o 
is the change in enthalpy, and ∆S

o
 is the 

change in entropy, using a constant heat capacity  at each temperature, T. TH is the 

temperature in which ∆H
o
 = 0, TS is the temperature where T∆S

o
 = 0. 

The temperature dependent heat capacity  was determined from a fit of the ITC 

data of  as a function of temperature (T) using the following equation. 

 (Equation 4-10) 
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where ∆H(T) is the binding enthalpy measured at different temperatures,  is the fitted heat 

capacity and  is the fitted enthalpy values at any chosen reference temperature Tr. All fitting 

was performed using KaleidaGraph (ver 3.52, Synergy Software) or Origin (ver 9, OriginLab).  

Electrophoretic mobility measurements. The electrophoretic mobility of Dpo1 or Dpo4 

alone or bound to the 31base hairpin was measured using a Beckman Coulter ProteomeLab 

PA800 instrument and a 60 cm, 50 m ID, eCap amine capillary. An electrosmotic flow marker 

(EFO), 0.02% v/v DMSO, was injected with each sample with detection at 214 nm. A voltage of 

6 kV was applied and the protein electrophoretic mobility (p) was calculated from the sample 

velocity (x), the EOF velocity (EOF), and the electric filed (E) according to the following 

equation.(209, 210) 

     (Equation 4-11) 

The apparent charge ( p and the diffusion coefficient (D) from 

the sedimentation velocity data according to the following equation: 

      (Equation 4-12) 

where kB is the Boltzmann’s constant (1.3807 x 10
-16

 erg/K), T is temperature (K), and e is the 

elementary charge (1.60 x 10
-19

 C) using ZUtilities (v 1.1).(211) 

Circular Dichroism (CD) Structural Measurements. Circular dichroism (CD) 

experiments were performed using a DSM 17 (Olis Inc., Bogart, GA) and a 1 or 5 mm path 

length cell. Thermostability experiments were assembled either in the presence or absence of the 
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31 base DNA hairpin (2 M) and either Dpo1 (4 M) or Dpo4 (4 M). The molar ellipticity (Θ) 

at 222 nm was monitored over a temperature range from 20 to 95
 o
C in 5 

o
C intervals controlled 

by a peltier. The spectra from at least three separate scans at were averaged and analyzed as 

described.(212) Structural assays were performed at 20 and 60 
o
C using DNA hairpin 10 M 

DNA hairpin or 10 M Dpo1 or Dpo4. The individual spectra were averaged and compared with 

the spectrum of their mixture (1:1 vol. %).  

Scheme 4-1 

 

Scheme 4-2 

 

4.2 RESULTS 

4.2.1 Detection of Discrete Polymerase/DNA Complexes by EMSA  

Previously, we have shown the stepwise assembly of Dpo1 onto primer template DNA 

included a single higher affinity binding site followed by the cooperative assembly of two 

additional molecules of Dpo1 with lower affinity.(120, 208) In order to directly verify and 

visualize the stoichiometry and affinity of multiple states of Dpo1-DNA complexes at higher 

temperatures, we performed electrophoretic mobility shift assays (EMSA) at 22 
o
C (Figure 4-1) 

and 50 
o
C (Figure 4-2) binding to a 37 base hairpin DNA substrate. The size of the hairpin (12 

base duplex, 10 base duplex, and 3 base hairpin loop) was chosen to restrict binding of 



 102 

polymerase at a single primer-template junction site, limit nonspecific binding, and be highly 

thermostable. The melting temperature (Tm) of the DNA hairpin was measured from a shift in the 

UV absorbance and found to be 88 ± 1 
o
C, which is well above our experimental temperature 

range. Titration of Dpo1 at low concentrations of DNA (5 nM) clearly showed the presence of 

multiple gel shifted species (monomer or trimer) with different apparent affinities (Figure 4-1A 

and 4-2A). For Dpo1, the dissociation constant ( ) for the monomeric species is estimated 

to be 200 nM, while the trimeric species forms at concentrations greater than 500 nM (Figure 4-

1B and 4-2B). Note that the formation of the trimeric Dpo1 species is dependent on prior 

formation of the monomeric Dpo1 species. Also, no significant dimer species can be resolved 

using these conditions. Therefore, the binding equilibria can be explained by higher affinity 

monomeric Dpo1 binding ( ) followed by the cooperative assembly of two additional 

molecules at higher concentrations ( ) to form the trimeric species (Scheme 4-1).  

Dpo4 has a slightly different binding equilibrium to DNA, where a monomer, dimer, and 

oligomeric species are individually isolated on EMSAs at 22 
o
C (Figure 4-1C) and 50 

o
C (Figure 

4-2C). Based on a number of crystal structures, the oligomeric species most likely represents a 

tetrameric Dpo4 bound with one molecule of DNA.(208) Monomeric Dpo4 binding to DNA has 

a slightly greater apparent affinity (  <100 nM) than monomeric Dpo1 (Figure 4-1B). The 

dimeric Dpo4 species begins to form at concentrations greater than 300 nM before converting to 

the oligomeric species at concentrations greater than 1 M. The binding equilibrium for Dpo4 

proceeds through higher affinity monomeric binding ( ) followed by subsequent formation 
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of a dimeric Dpo4 ( ) before conversion to the tetrameric species ( ) (Scheme 4-2) 

and are consistent with experiments at 50 
o
C (Figure 4-2) and those performed previously.(120) 

The EMSAs were very similar at 22 
o
C and 50 

o
C.  

 

 

Figure 4-1. EMSA titrations of A) Dpo1 and C) Dpo4 on 4 nM 
32

P-labelled DNA hairpin at 22 
o
C. Positions of 

monomer (M) and trimer (T) for Dpo1, monomer (M), dimer (D), and oligomer (O) for Dpo4 and free DNA are 

indicated. Quantifications of B) Dpo1 or D) Dpo4 titrations and complexes for free DNA (-▲-), monomer (-♦-), 

dimer (-■-), or oligomer (-●-) were simulated and fit as described in Experimental Procedures. 

 

 

Figure 4-2. EMSA titrations of A) Dpo1 and C) Dpo4 on 4 nM 
32

P-labelled DNA hairpin at 50 
o
C. Positions of 

monomer (M) and trimer (T) for Dpo1, monomer (M), dimer (D), and oligomer (O) for Dpo4 and free DNA are 

indicated. Quantifications of B) Dpo1 or D) Dpo4 complexes for free DNA (-▲-), monomer (-♦-), dimer (-■-), 

trimer or oligomer (-●-) were simulated and fit as described in Experimental Procedures.  

 

4.2.2 EMSA that mimic the forward ITC (DNA into protein) at low and high temperature 

Before performing forward ITC experiments, we decided to mimic these titrations by 

performing EMSA experiments at 22 
o
C (Figure 4-3) and 50 

o
C (Figure 4-4) to visualize 

individual protein/DNA complexes during the course of the titration and inform our fitting 
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parameters. At low concentrations of DNA, a trimeric Dpo1 species is clearly seen (Figure 4-3A-

C and 4-4A-C). After titrating increasing concentrations of DNA, there is a concerted conversion 

to a monomeric Dpo1/DNA species converting to at 1:1 species at the appropriate stoichiometry. 

Similar results are apparent for Dpo4 where an oligomeric complex is converted stepwise 

through dimeric Dpo4/DNA and monomeric Dpo4/DNA species also with appropriately 

quantified stoichiometries (Figure 4-3D-F and 4-4D-F). 

 

Figure 4-3. Stoichiometric EMSA titrations of DNA hairpin into 25 M A) Dpo1 and D) Dpo4 at 22 
o
C. Constant 

trace amounts of 
32

P-labelled DNA are present in each lane. Corresponding Coomassie-stained gels of B) Dpo1 and 

E) Dpo4. Positions of monomer (M) and trimer (T) for Dpo1 and monomer (M), dimer (D), and oligomer (O) for 

Dpo4 and free DNA are indicated. Quantifications of C) Dpo1 or F) Dpo4 titrations and complexes for free DNA (-

▲-), monomer (-♦-), dimer (-■-), or oligomer (-●-) were simulated and fit as described in Experimental Procedures. 
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Figure 4-4. Stoichiometric EMSA titrations of DNA hairpin into 25 M A) Dpo1 and D) Dpo4 at 50 
o
C. Constant 

trace amounts of 
32

P-labelled DNA are present in each lane. Corresponding Coomassie-stained gels of B) Dpo1 and 

E) Dpo4. Positions of monomer (M) and trimer (T) for Dpo1 and monomer (M), dimer (D), and oligomer (O) for 

Dpo4 are indicated. Quantifications of C) Dpo1 or F) Dpo4 titrations and complexes for free DNA (-▲-), monomer 

(-♦-), dimer (-■-), or oligomer (-●-) were simulated and fit as described in Experimental Procedures. 

4.2.3 Temperature dependence of binding Dpo1 and Dpo4 to primed DNA as determined 

by forward isothermal titration calorimetry (ITC) experiments (DNA titrated into protein) 

In the forward ITC titrations (DNA into protein) experiments, DNA is titrated into a 

constant amount (~25 M) of protein and the observed enthalpies are measured. Titrations were 

performed from 5 - 60 
o
C and the change in enthapies (∆Hobs), stoichiometries (n), and 

association constants (Ka) for Dpo1-DNA and Dpo4-DNA complex formation were measured as 

a function of temperature. These parameters and the calculated binding free energy (∆G
o
) and 

change in entropy (T∆Sobs) are calculated from a fit to a single-site equation (Equation 4-1) and 

listed in Tables 4-1 & 4-2 for Dpo1 and Dpo4, respectively. With these experimental conditions, 
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DNA will be titrated into an equilibrium solution that quickly favors oligomeric complex 

formation for both Dpo1 (trimer) and Dpo4 (dimer/tetramer) on DNA as a result of excess 

protein over DNA. As the titration proceeds, the equilibrium will shift towards more monomeric 

polymerase binding to DNA. Figure 4-5 shows representative titrations and fits (Equation 4-1) 

for forward titrations of Dpo1 and Dpo4 at 20 and 60 
o
C, respectively. Binding of either 

thermophilic polymerase to DNA is again primarily entropically driven at lower temperatures 

and enthalpically driven at higher temperatures.  

Table 4-1.Thermodynamic parameters for ITC forward titrations of DNA into 

Dpo1
1
  

Temp 

(
o
C) 

∆H
o 

(kcal/mol) 

T∆S
o
 

(kcal/mol) 

Ka 

(10
6
) 

∆G
o
 

(kcal/mol) 
n 

(Dpo1:DNA) 

∆C
o
p  

(kcal/mol K)
2
 

5 13.6 20.8 0.53 -7.3 2.5 0.99 

10 15.0 22.3 0.42 -7.3 2.3 0.69 

15 20.0 27.4 0.41 -7.4 2.3 0.39 

20 19.3 ± 2.0 27.1 ± 3.4 0.65 -7.8 ± 0.2 2.5 0.10 

25 20.9 ± 2.7 28.4 ± 2.6 0.33 -7.5 ± 0.1 2.2 -0.20 

30 16.2 ± 2.0 23.5 ± 1.7 0.19 -7.3 ± 0.3 2.0 -0.49 

32 18.9 26.5 0.24 -7.5 2.3 -0.61 

35 16.4 24.1 0.30 -7.7 2.5 -0.79 

37 16.1 23.5 0.15 -7.4 1.8 -0.90 

40 10.2 18.3 0.45 -8.1 2.9 -1.08 

44 5.1 13.0 0.26 -7.9 2.6 -1.32 

45 4.7 12.9 0.39 -8.1 2.1 -1.38 

49 -2.7 6.5 1.7 -9.2 5.0 -1.61 

50 -2.4 8.0 11.3 -10.4 5.6 -1.67 

52 -6.2 2.3 0.49 -8.5 6.3 -1.79 

55 -13.3 -4.2 1.22 -9.2 2.6 -1.97 

60 -21.8 ± 2.0 -12.7 ± 3.6 0.96 -9.1 ± 0.1 2.6 -2.26 
1
Standard error calculated from multiple ITC experiments. Calculated form a single site mode 

(Equation 4-1). 
2
Calculated from the tangent to the fit in Figure 4-6A. 
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Table 4-2.Thermodynamic parameters for ITC titrations of DNA into Dpo4
1
  

Temp 

(
o
C) 

∆H
o 

(kcal/mol) 

T∆S
o
 

(kcal/mol) 

Ka 

(10
6
) 

∆G
o
 

(kcal/mol) 

n 

(Dpo4:DNA) 

∆C
o
p  

(kcal/mol K)
2
 

2.2 6.9 14.6 1.3 -7.7 1.4 0.03 

5 7.4 14.9 0.89 -7.6 1.6 -0.01 

7 7.9 15.5 0.87 -7.6 1.6 -0.04 

10 7.4 ± 0.5 15.1 ± 0.6 0.78 -7.6 ± 0.1 1.4 -0.08 

15 7.9 15.7 0.74 -7.7 1.5 -0.14 

20 8.5 16.4 0.78 -7.9 1.5 -0.21 

25 8.9 ± 0.9 16.6 ± 0.7 0.44 -7.7 ± 0.1 1.7 -0.27 

27 4.6 12.8 0.82 -8.1 1.3 -0.30 

30 4.9 12.9  0.67 -8.1 1.4 -0.34 

35 -1.7        7.0 1.4 -8.7 2.8 -0.27 

40 -2.0 7.0 2.2 -9.1 2.9 -0.47 

45 -3.0 ± 0.3 7.3 ± 0.9 13.5 -10.4 2.0 -0.53 

50 -7.7 ± 0.3 1.4 ± 0.4 1.5 -9.1 ± 0.1 2.3 -0.60 

55 -7.6 7.8 2.9 -9.2 1.8 -0.66 

60 -9.7 ± 1.0 6.5 ± 0.3 1.5 -9.1 ± 0.3 1.7 -0.73 
1
Standard error calculated from multiple ITC experiments. Calculated form a single site mode 

(Equation 4-1). 
2
Calculated from the tangent to the fit in Figure 4-6B.

 

 

 

 
Figure 4-5. Representative ITC forward titrations of primer template DNA into Dpo1 at A) 20 

o
C and B) 60 

o
C; and 

Dpo4 at C) 20 
o
C and D) 60 

o
C. Top panels are raw isotherms and bottom panels are integrated heats and their 

fitting. Binding is endothermic at 20 
o
C and exothermic at 60 

o
C for both DNA polymerases. The thermodynamic 

parameters for all experiments are reported in Table 4-1 and 4-2. 

 

The individual enthalpies obtained from the forward ITC fits to Equation 4-1 were 

plotted as a function of temperature to measure the calorimetric heat capacity change for the 

binding equilibria of Dpo1 or Dpo4 to DNA (Figure 4-6). The resulting thermodynamic 

parameters  and are again found to be parallel and temperature dependent leading to 
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small changes in ∆G
o
. Interestingly a plot of ∆H

o
 as a function of temperature for Dpo1 binding 

show that the change in heat capacities (∆C
o
p,Dpo1) are not independent of temperature. In fact in 

both cases,  ∆C
o
p is strongly temperature dependent and changes from an unusual positive to a 

more conventional negative value as the temperature is increased indicative of more specific 

complementarity of binding without any change in solution conditions (Figure 4-6C). A fit of the 

∆H
o
 for Dpo1 to Equation 4-10 extracted large temperature dependent heat capacity values 

(∆∆C
o
p,Dpo1) of -59 ± 3 cal mol

-1
 K

-2
, respectively (Figure 4-6). Note that, this large negative  

∆∆C
o
p,Dpo1 causes a change in values of  ∆C

o
p,Dpo1from 1.10 kcal mol

-1
 K

-1 
at 3 

o
C to -2.26 kcal 

mol
-1

 K
-1 

at 60 
o
C. 

 

Figure 4-6. Temperature dependencies of the enthalpies (∆H
o
, -●-), entropies (T∆S

o
, -▲-), or free energies (∆G

o
, -

■-) for the forward ITC titrations (DNA into protein) fitted to single-site mode for A) Dpo1 or B) Dpo4. Error bars 

represent the standard error from multiple experiments. C) The enthalpies for ∆HDpo1  were fit to Equation 4-10 for 

H
cal

/T. ∆∆C
o
p,Dpo1  was found to be -59 ± 3 cal mol

-1
 K

-2 
. ∆C

o
p,Dpo1  values ranged from 1.10 kcal mol

-1
 K

-1 
at 3 

o
C 

to -2.26 kcal mol
-1

 K
-1 

at 60 
o
C. The enthalpies for ∆H

o
Dpo4 were also fit to Equation 4-10 for H

cal
/T .  ∆C

o
p,Dpo4 

was found to be -13 ± 4 cal mol
-1

 K
-2 

. ∆C
o

p,Dpo4  values for ∆H
o
Dpo4  ranged from 0.02 kcal mol

-1
 K

-1 
at 3 

o
C to -0.73 

kcal mol
-1

 K
-1 

at 60 
o
C. The individual thermodynamic parameters are reported in Table 4-2.  

 

Forward ITC titrations with Dpo4 (Figure 4-6B) shows a similar character as with Dpo1 

(Figure 4-6A). Note that at 40 
o
C, the enthalpy of binding approaches the TH (where ∆H= 0) and 

could not be measured accurately. The ∆∆C
o
p value for Dpo4 in the forward titration was found 
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to be -13 ± 4 cal mol
-1

 K
-2 

 causing ∆C
o
p to range from 0.02 kcal mol

-1
 K

-1 
at 3 

o
C to -0.73 kcal 

mol
-1

 K
-1 

at 60 
o
C. Both measured enthalpic values and associated equilibria for Dpo4 binding to 

DNA are also strongly affected by temperature. Based on the stoichiometries described below, 

K3 in Scheme 2 has little influence in these forward titrations. (Figure 4-7) 

The stoichiometry for Dpo1 binding to DNA (protein:DNA) are consistent with a trimeric 

Dpo1/DNA complex at almost all temperatures (Table 4-1). In these forward ITC titrations, the 

concentration of protein is high in the cell (~20 M) and small amounts of DNA are titrated into 

the cell promoting an initial equilibrium shift towards trimer formation. Equilibrium exchange of 

Dpo1 subunits from a trimeric Dpo1/DNA complex towards a monomeric Dpo1/DNA complex 

during the course of the titration would result in a slightly greater stoichiometry value from 

theoretical (i.e. < 3). This along with a change in solution equilibria with temperature will make 

the stoichiometry measured by ITC a lower limit of the binding. Interestingly, the stoichiometry 

values seem decrease slightly with increasing temperature (Figure 4-7) suggesting that a trimeric 

Dpo1/DNA complex is thermodynamically favored at higher temperatures.  

Similarly, a multimeric stoichiometry, (protein:DNA), is also measured for Dpo4 that 

also decreases slightly with temperature (Table 4-2 & Figure 4-7). This slight temperature 

dependence in the stoichiometry values suggests that multiequilibria processes also vary across 

the temperature range for this enzyme. Instead of converging on a tetrameric Dpo4/DNA 

stoichiometry (i.e. n = 4), the values are more consistent with a dimer under these ITC titration 

conditions and concentrations.  Although the increase in stoichiometry values with temperature 

for the forward ITC experiments are not statistically significant for both Dpo1 and Dpo4 

according to the statistical T-test, the temperature-dependence trend is consistent with other 
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techniques such as EMSA, analytical ultracentrifugation (Chapter 3) and fluorescence anisotropy 

(Chapter 3).  

 

Figure 4-7. Plot of the reciprocal stoichiometry (n) 

of binding (protein:DNA) for Dpo1 (-♦-) and Dpo4 

(-◊-) as a function of temperature in the forward ITC 

titrations. Individual data is included in Tables 4-1 

and 4-2. Included are lines indicating the 

stoichiometry position of dimer, trimer, and tetramer 

bound to DNA.  

 

 

 

4.2.4 EMSA that mimic the reverse ITC (Protein into DNA) at low and high temperature 

Again, we used EMSAs that mimic the titration course of reverse ITC to understand the 

relative population of oligomeric and monomeric polymerase-DNA complexes at 22 and 50 
o
C. 

Similar to the EMSA that mimicked the forward ITC, monomeric and trimeric Dpo1 species are 

also clearly seen in the reverse titration (Figure 4-8A-B). Quantification of the 
32

P shifted DNA 

bands, show an intermediate stoichiometry (Dpo1:DNA) peak around 1.5 followed by a 

conversion to a stoichiometry of three, consistent with trimer Dpo1 (Figure 4-8C). Monomeric, 

dimeric, and tetrameric species for Dpo4 are also verified on phophorimaged (Figure 4-8D) and 

commasie stained (Figure 4-8E) EMSA gels and quantified appropriately (Figure 4-8F).  
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Figure 4-8. 
o
C. Constant 

trace amounts of 
32

P-labelled DNA are present in each lane. Corresponding Coomassie-stained gels of B) Dpo1 and 

E) Dpo4. Positions of monomer (M) and trimer (T) for Dpo1 and monomer (M), dimer (D), and oligomer (O) for 

Dpo4 are indicated. Quantifications of C) Dpo1 or F) Dpo4 titrations and complexes for free DNA (-▲-), monomer 

(-♦-), dimer (-■-), or oligomer (-●-) were simulated and fit as described in Experimental Procedures. 
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Figure 4-9. 
o
C. 

Corresponding Coomassie-stained gels of B) Dpo1 and E) Dpo4. Constant trace amounts of 
32

P-labelled DNA are 

present in each lane. Positions of monomer (M) and trimer (T) for Dpo1, monomer (M), dimer (D), and oligomer 

(O) for Dpo4 and free DNA are indicated. Quantifications of C) Dpo1 or F) Dpo4 titrations and complexes for free 

DNA (-▲-), monomer (-♦-), dimer (-■-), trimer or oligomer (-●-) were simulated and fit as described in 

Experimental Procedures. 

 

 

 

 

 



 113 

4.2.5 Temperature dependence of binding Dpo1 and Dpo4 to primed DNA determined by 

reverse isothermal titration calorimetry experiments (protein titrated into DNA) fitting to 

single-site mode (Equation 4-1) 

In order to more completely understand the thermodynamic parameters of polymerase 

assembly onto DNA, we measured the change in enthalpy (∆Hobs) and association constants (Ka) 

for Dpo1-DNA and Dpo4-DNA complex formation as a function of temperature using ITC in a 

reverse experiment (protein into DNA). Data were fitted to a single-site mode (Equation 4-1) 

resulting in thermodynamic parameters and the calculated binding free energy ∆G
o
 and change in 

entropy (T∆Sobs), which are listed in Tables 4-3 and 4-4 for Dpo1 and Dpo4, respectively. 

Reverse titrations of each polymerase titrated into DNA were performed from 5 - 60 
o
C. With 

these experimental conditions, protein will be titrated into a multiequilibria solution that initially 

favors monomeric polymerase/DNA complex formation similar to the EMSA in Figure 4-8A-C. 

As the titration proceeds, an equilibrium between monomer and oligomer binding will dominate. 

ITC experiments were performed across a range of temperatures to investigate both the enthalpic 

and entropic contributions to binding. Figure 4-10 shows representative titrations and fits for 

titrations of Dpo1 or Dpo4 into DNA at low and high temperatures, respectively. Binding of 

either thermophilic polymerase to DNA is primarily entropically driven at lower temperatures 

and enthalpically driven at higher temperatures. Although other equations including two sites 

sequential (Equation 4-2) and two independent sites were used to fit the raw isotherm data, a 

single site mode (Equation 4-1) has been used to report ∆∆C
o
p values that more close to the 

average of ∆∆C
o
p for 26 different systems.(38)  A three-step sequential binding equation (n=3) 

was not able to fit most of the data accurately or consistently. 
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Table 4-3.Thermodynamic parameters for ITC titrations of Dpo1 into DNA
1
  

Temp 

(
o
C) 

∆H
o 

(kcal/mol) 

T∆S
o
 

(kcal/mol) 

Ka 

(10
6
) 

∆G
o
 

(kcal/mol) 

n 

(Dpo1:DNA) 

∆C
o
p  

(kcal/mol K)
2
 

3 8.0 ± 0.1 15.0 ± 0.1 0.3 -7.0 ± 0.1 1.4 0.51 

5 7.9 ± 1.8 15.1 ± 1.6 0.4 -7.2 ± 0.2 1.4 0.48 

7.5 5.5 ± 1.9 13.0 ± 1.8 0.7 -7.5 ± 0.2 1.8 0.44 

10 5.8 ±  0.8 13.5 ± 0.6 0.8 -7.7 ± 0.2 1.4 0.40 

15 5.8 ± 0.4 13.6 ± 0.3 0.8 -7.8 ± 0.1 1.5 0.33 

20 5.5 ± 0.7 13.8 ± 0.7 1.5 -8.3 ± 0.2 1.3 0.26 

25 8.1 ± 1.1 16.0 ± 1.0 0.7 -8.0 ± 0.2 1.2 0.19 

30 6.8 ± 0.8 15.3 ± 0.7 1.2 -8.5 ± 0.1 1.5 0.11 

35 9.3 ± 2.1 17.2 ± 2.1 0.4 -7.9 ± 0.1 1.1 0.04 

40 2.3 ± 1.7 11.5 ± 1.7 2.4 -9.1 ± 0.3 1.4 -0.03 

45 2.8 ± 2.1 11.9 ± 2.2 1.8 -9.1 ± 0.3 1.1 -0.10 

50 1.8 ± 1.6 10.9 ± 1.6 1.4 -9.1 ± 0.1 1.2 -0.18 

55 -2.3 ± 1.4 7.8 ± 1.6 5.8 -10.1 ± 0.3 1.9 -0.25 

60 -7.2 ± 1.3 2.1 ± 1.4 1.2 -9.3 ± 0.2 1.3 -0.32 
1
Standard error calculated from multiple ITC experiments. Fit to a single site mode (Equation 

4-1).
 2
Calculated from the tangent to the fit in Figure 4-11A.

 

 

Table 4-4. Thermodynamic parameters for ITC titrations of Dpo4 into DNA
1
  

Temp 

(
o
C) 

∆H
o 

(kcal/mol) 

T∆S
o
 

(kcal/mol) 

Ka 

(10
6
) 

∆G
o
 

(kcal/mol) 

n 

(Dpo4:DNA) 

∆C
o
p  

(kcal/mol K)
2
 

3 3.8 ± 0.2 12.1 ± 0.5 3.3 -8.2 ± 0.3 1.6 -0.02 

5 4.4 ± 0.5 12.6 ± 0.6 2.6 -8.2 ± 0.2 1.5 -0.03 

10 3.7 ± 1.1 12.5 ± 0.9 7.2 -8.9 ± 0.2 1.5 -0.07 

15 4.5 ± 0.4 13.2 ± 0.6 4.5 -8.8 ± 0.2 1.5 -0.10 

20 2.3 ± 0.2 11.6 ± 0.2 7.9 -9.2 ± 0.1 1.5 -0.13 

25 2.6 ± 0.2 11.6 ± 0.1 4.2 -9.0 ± 0.1 1.6 -0.17 

30 2.3 ± 0.2 11.2 ± 0.1 3.0 -9.0 ± 0.2 1.3 -0.20 

35 0.2 ± 1.2 10.0 ± 1.4 9.8 -9.9 ± 0.3 1.3 -0.24 

40 -2.4 ± 1.3 6.3 ± 1.1 1.1 -8.7 ± 0.2 1.6 -0.27 

45 -5.1 ± 2.1 3.9 ± 2.5 1.4 -8.9 ± 0.4 1.8 -0.30 

50 -3.0 ± 1.0 6.3 ± 1.6 1.8 -9.3 ± 0.7 1.6 -0.34 

55 -4.3 ± 0.5 5.5 ± 0.5 3.4 -9.8 ± 0.2 2.1 -0.37 

60 -8.6 ± 0.3 1.2 ± 0.2 2.7 -9.8 ± 0.2 1.2 -0.41 
1
Standard error calculated from multiple ITC experiments. Fit to a single site mode 

(Equation 4-1). 
2
Calculated from the tangent to the fit in Figure 4-11B.
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Figure 4-10. Representative ITC titrations of Dpo1 at A) 15 
o
C and B) 60 

o
C; and Dpo4 at C) 5 

o
C and D) 55 

o
C into 

hairpin DNA. Top panels are raw isotherms and bottom panels are integrated heats and their fitting. Binding is 

endothermic at low temperatures and exothermic at higher temperatures for both DNA polymerases. The 

thermodynamic parameters for all temperatures are reported in Tables 4-3 and 4-4. 

 

 
Figure 4-11. Temperature dependencies of the enthalpies (∆H

o
, -●-), entropies (T∆S

o
, -▲-), or free energies (∆G

o
, -

■-) for the reverse ITC titrations (protein into DNA) for A) Dpo1 or B) Dpo4. Error bars represent the standard error 

from multiple experiments. C) The enthalpies for ∆H
o

Dpo1 were fit to Equation 4-10 for H
cal

/T. ∆∆C
o
p,Dpo1 was 

found to be -16 ± 4 cal mol
-1

 K
-2 

. ∆C
o

p,Dpo1 values ranged from 0.25 kcal mol
-1

 K
-1 

at 3 
o
C to -0.66 kcal mol

-1
 K

-1 
at 

60 
o
C. The enthalpies for ∆H

o
Dpo4  were also fit to Equation 4-10 for H

cal
/T. ∆∆C

o
p,Dpo4  was found to be -6 ± 2 cal 

mol
-1

 K
-2 

. ∆C
o
p,Dpo4  values for ∆H

o
Dpo4 ranged from -0.03 kcal mol

-1
 K

-1 
at 3 

o
C to -0.37 kcal mol

-1
 K

-1 
at 60 

o
C. The 

individual thermodynamic parameters are reported in Table 4-3 and 4-4.  

 

The individual enthalpies obtained from the reverse ITC fits were plotted as a function of 

temperature to measure the calorimetric heat capacity change for the binding equilibria of Dpo1 
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to DNA (Figure 4-11). Similar to the forward ITC, the change in enthalpy of monomeric Dpo1 

binding to DNA as a function of temperature shows a curvature in the data indicating that the 

change in heat capacity is temperature dependent, but this curvature is shallow than the curvature 

of the forward titration. A fit of the data to Equation 4-10 gives a temperature dependent heat 

capacity value (∆∆C
o
p,Dpo1) of -16 ± 4 cal mol

-1
 K

-2 
(Figure 4-11).  A derivative of the fit to 

Equation 4-10 and resulting tangent show that the heat capacity values (∆C
o
p,Dpo1) change from 

0.25 kcal mol
-1

 K
-1 

at 3 
o
C to -0.66 kcal mol

-1
 K

-1 
at 60 

o
C and including both positive and 

negative values. This apparent sign reversal in ∆C
o
p  as well as the detection of multiple DNA 

bound species of Dpo1 suggests that the coupled equilibria changes (K1 through K2 in Scheme 4-

1) as a function of temperature to where more structural complementary exists at higher 

temperatures associated with larger negative ∆C
o
p   values.  

For Dpo4 binding to DNA, the change in enthalpies as a function of temperature also 

shows slightly curvature. Fitting to Equation 4-10 gave ∆∆C
o
p,Dpo4  values of -6 ± 2 cal mol

-1
 K

-2
. 

A derivative of the fit for ∆H
o

Dpo4 and resulting tangent show that the heat capacity values 

(∆C
o
p,Dpo4) change from -0.03 kcal mol

-1
 K

-1 
at 3 

o
C to -0.37 kcal mol

-1
 K

-1 
at 60 

o
C.  

4.2.6 Temperature dependence of binding Dpo1 and Dpo4 to primed DNA determined by 

reverse isothermal titration calorimetry experiments (protein titrated into DNA) fitting to 

the two-site sequential binding mode (Equation 4-2) 

In order to separate the thermodynamic parameters of polymerase for the stepwise 

assembly onto DNA, we also fitted the reverse ITC (protein into DNA) with the two-site 

sequential mode (Equation 4-2&3) for both Dpo1 and Dpo4. The resulting parameters and the 
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calculated binding free energy  and change in entropy ( ) are listed in Tables 4-5 

and 4-6 for Dpo1 and Dpo4, respectively, and plotted into Figure 4-12. For both the first and 

second association step, binding of polymerase to DNA is primarily entropically driven at lower 

temperatures and enthalpically driven at higher temperatures consistent with the single site 

models above.  

The individual enthalpies (∆H
o
1 &∆H

o
2) obtained from the reverse ITC fits were plotted 

as a function of temperature to measure the calorimetric heat capacity change for the binding 

equilibria  of Dpo1 to DNA (Figure 4-12C). The individual values for ∆H
o
1  

and ∆H
o
2 at each temperature are dependent on the quality of the fit to the raw isotherm and the 

ability to accurately separate these parameters using Equation 4-2.  

Similar to the fittings with the single-site mode, a plot of the change in enthalpy 

(∆H
o
1,Dpo1) of monomeric Dpo1 binding to DNA as a function of temperature shows a curvature 

in the data indicating that the change in heat capacity (∆C
o
p,Dpo1) is temperature dependent. A fit 

of the data to Equation 4-10 gives a temperature dependent heat capacity value (∆∆C
o
p,Dpo1) of -

15 ± 3 cal mol
-1

 K
-2 

(Figure 4-12C).  A derivative of the fit to Equation 4-10 and resulting 

tangent show that the heat capacity values (∆C
o
p,1,Dpo1) change from 0.27 kcal mol

-1
 K

-1 
at 3 

o
C to 

-0.58 kcal mol
-1

 K
-1 

at 60 
o
C and including both positive and negative values. This apparent sign 

reversal in ∆C
o
p as well as the detection of multiple DNA bound species of Dpo1 again suggest 

that the coupled equilibria changes (K1 through K2 in Scheme 4-1) as a function of temperature to 

where more structural complementary exists at higher temperatures associated with larger 

negative  values. A plot of the change in enthalpy (∆H
o
2,Dpo1) resulting from formation of the 
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trimeric Dpo1 complex on DNA is more linear and giving a more traditional temperature 

independent change in heat capacity (∆C
o
p,2,Dpo1) of -0.15 kcal mol

-1
 K

-1
, which is very different 

from K2 detected in fluorescence assays (Chapter 3) (-1.0 kcal mol
-1

 K
-1

). The difference may 

result from the failure of the fitting by sequential binding mode to the complicated reverse ITC 

binding scenario or the assumptions made when deriving the ∆Cp values from only equilibrium 

binding using anisotropy. 

  For Dpo4 binding to DNA, the change in enthalpies for both ∆H
o
1,Dpo4 and∆H

o
2,Dpo4  as a 

function of temperature also show extreme curvature (Figure 4-13). Fitting of  or  to 

Equation 4-10 gave ∆∆C
o
p,Dpo4 values of -6 ± 1 and -3 ± 1 cal mol

-1
 K

-2
, respectively. A 

derivative of the fit for ∆H
o
1,Dpo4 and resulting tangent show that the heat capacity values 

(∆C
o
p,1,Dpo4) change from -0.06 kcal mol

-1
 K

-1 
at 3 

o
C to -0.31 kcal mol

-1
 K

-1 
at 60 

o
C. ∆H

o
1,Dpo4  

primarily represents the enthalpy associated with monomeric binding (K1) with smaller 

contributions from K2. A similar change is noted for ∆H
o
2,Dpo4 where ∆C

o
p,2,Dpo4 changes from 

0.00 kcal mol
-1

 K
-1 

at 3 
o
C to -0.29 kcal mol

-1
 K

-1 
at 60 

o
C. Although an absolute sign reversal 

(positive to negative) in  for Dpo4 binding to DNA is not directly measured over the 

experimental temperature range, positive ∆C
o
p values can be inferred from the fit at temperatures 

below 0 
o
C. Again, larger negative ∆C

o
p values at higher temperatures would imply more 

structural complementarity of binding. ∆H
o
2,Dpo4 in these reverse ITC experiments primarily 

represents Dpo4 dimer formation (K2 in Scheme 4-2) with less contribution from the weaker 

tetrameric association constant, K3. (Figure 4-7) Therefore, K1 – K3 for Dpo4 also have strong 

dependencies on temperature highlighting changes in couple equilibria processes identified in 

Figure 4-8 D-F and 4-9 D-F according to the Scheme 4-2.  
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Interestingly, the free energy (∆G
o
) minima for Dpo1 binding to DNA occurs at a higher 

temperature than for Dpo4 binding to DNA. ∆G
o
1,Dpo1 and ∆G

o
2,Dpo1 seem to decrease steadily 

across the experimental temperature range suggesting that the minima occur at temperatures 

greater than 60 
o
C. ITC experiments performed at temperatures greater than 60 

o
C were difficult 

to interpret because of severe noise in the spectrum from an inability to completely degas buffers 

at these high temperatures. For Dpo4, ∆G
o
1,Dpo4 and ∆G

o
2,Dpo4 minima occur at and 27 and 37 

o
C, 

respectively. The greater overall negative values for ∆G
o
 as well as the shift of the free energy 

minima to higher temperatures indicates that there is a thermodynamic preference for monomeric 

and trimeric Dpo1 binding to DNA over Dpo4 at physiological temperatures (~75 
o
C) for Sso, 

which was also suggested by fluorescence anisotropy assays (Chapter 3). However, the detected 

affinities of Dpo4 at temperature less than 40-45 
o
C where there is the greatest curvature in  

and  (Figure 4-11) are roughly ten-times greater in the reverse ITC compared with the 

fluorescence anisotropy assays (Chapter 3). Interestingly at higher temperatures where  or 

 become more linear and there is less contributions of coupling, the affinities actually agree 

well between the reverse ITC and fluorescence anisotropy (Chapter 3).  
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Table 4-5.Thermodynamic parameters for ITC titrations of Dpo1 into DNA
1
  

Temp 
(oC) 

 

(kcal/mol) 

 

(kcal/mol) 

Ka1 

(106 M)  
(kcal/mol) 

 

(kcal/mol) 

 

(kcal/mol) 

Ka2 

(106)  
(kcal/mol) 

3 5.4 ± 0.4 13.1 ± 0.1 2.1 -7.7 ± 1.3 6.1 ± 0.8 11.3 ± 2.1 0.15 -5.2 ± 1.3 
5 5.1 ± 0.1 13.0 ± 0.3 2.6 -8.0 ± 0.2 5.9 ± 1.4 12.1 ± 1.5 0.19 -6.2 ± 0.2 

7.5 5.1 ± 0.7 13.3 ± 1.2 1.7 -8.2 ± 1.3 5.1 ± 1.0 13.2 ± 2.2 0.29 -8.2 ± 1.3 

10 5.0 ± 0.7 13.2 ± 0.7 2.2 -8.2 ± 0.3 4.1 ± 1.5 10.9 ± 1.8 0.19 -6.8 ± 0.3 
15 5.2 ± 0.4 13.4 ± 0.4 3.1 -8.2 ± 1.2 3.3 ± 1.2 9.6 ± 1.0 0.42 -6.3 ± 1.2 

20 6.5 ± 0.7 14.7 ± 0.5 1.3 -8.2 ± 0.1 1.3 ± 0.6 9.0 ± 0.5 0.52 -7.7 ± 0.1 

25 7.7 ± 1.2 16.0 ± 0.9 1.2 -8.3 ± 0.3 1.3 ± 0.6 8.7 ± 0.7 0.25 -7.4 ± 0.3 
30 5.5 ± 1.0 15.6 ± 0.5 18.3 -10.0 ± 0.7 3.2 ± 0.9 11.7 ± 0.5 1.39 -8.5 ± 0.4 

35 4.9 ± 2.2 13.6 ± 1.9 1.5 -8.7 ± 0.3 0.6 ± 1.4 8.3 ± 1.2 0.30 -7.7 ± 0.3 

40 2.4 ± 1.5 12.2 ± 1.2 6.3 -9.7 ± 0.6 -0.1 ± 0.8 8.0 ± 1.0 0.41 -8.0 ± 0.6 
45 3.0 ± 1.5 9.8 ± 2.6 1.2 -8.8 ± 0.4 -1.8 ± 1.7 8.6 ± 2.3 0.28 -7.9 ± 0.5 

50 0.3 ± 1.5 9.8 ± 1.6 2.3 -9.5 ± 0.7 -1.3 ± 1.1 6.8 ± 0.6 0.15 -8.1 ± 0.7 

55 -1.7 ± 1.6 8.8 ± 2.7 7.4 -10.3 ± 0.8 -2.2 ± 1.6 8.8 ± 2.3 0.15 -9.3 ± 0.2 
60 -6.1 ± 0.8 4.0 ± 1.1 4.0 -10.1 ± 0.3 -2.6 ± 1.3 6.0 ± 1.4 0.47 -8.6 ± 1.4 

1Standard error calculated from multiple ITC experiments. Fit to a two-site sequential mode (Equation 4-2&3) 

 

 

 
Table 4-6.Thermodynamic parameters for ITC titrations of Dpo4 into DNA

1
 

Temp 

(oC) 

 

(kcal/mol) 

 

(kcal/mol) 

Ka1 

(106)  
 (kcal/mol) 

 

(kcal/mol) 

 

(kcal/mol) 

Ka2 

(106)  
 (kcal/mol) 

3 3.8 ± 0.6 13.4 ± 0.8 42 -9.6 ± 0.3 2.6 ± 0.5 10.6 ± 0.1 2.2 -8.0 ± 0.3 

5 4.0 ± 0.6 13.8 ± 0.9 52 -9.8 ± 0.5 2.2 ± 0.4 10.4 ± 0.2 3.1 -8.3 ± 0.5 

10 3.8 ± 0.8 14.3 ± 1.0 130 -10.5 ± 0.1 1.7 ± 0.4 10.6 ± 0.4 8.9 -9.0 ± 0.1 
15 4.5 ± 0.5 14.7 ± 0.7 60 -10.2 ± 0.1 1.6 ± 0.3 10.8 ± 0.4 9.0 -9.2 ± 0.1 

20 2.3 ± 0.3 13.4 ± 0.7 195 -11.1 ± 0.2 1.5 ± 0.2 10.4 ± 0.4 4.5 -8.9 ± 0.2 

25 2.5 ± 0.1 12.9 ± 0.3 45 -10.4 ± 0.2 1.2 ± 0.2 10.3 ± 0.1 5.6 -9.2 ± 0.2 
30 2.1 ± 0.1 12.5 ± 0.4 31 -10.4 ± 0.1 0.8 ± 0.2 9.7 ± 0.3 2.7 -8.9 ± 0.1 

35 0.1 ± 1.3 10.5 ± 2.1 22 -10.4 ± 0.1 0.1 ± 0.4 9.0 ± 0.3 2.1 -8.9 ± 0.1 

40 -2.2 ± 1.2 7.7 ± 0.9 9 -9.9 ± 0.1 -1.5 ± 0.9 7.1 ± 0.8 0.9 -8.5 ± 0.1 
45 -3.9 ± 1.2 5.7 ± 1.5 4 -9.5 ± 0.3 -2.9 ± 0.7 5.6 ± 0.5 0.7 -8.5 ± 0.3 

50 -2.4 ± 0.5 7.8 ± 1.0 8 -10.2 ± 0.3 -4.1 ± 1.7 4.2 ± 1.4 0.5 -8.4 ± 0.3 

55 -3.9 ± 0.2 6.3 ± 0.6 7 -10.3 ± 0.3 -4.0 ± 0.9 5.6 ± 1.1 2.5 -9.6 ± 0.3 
60 -8.3 ± 0.5 2.3 ± 1.0 9 -10.6 ± 0.8 -3.9 ± 0.5 4.4 ± 0.5 0.3 -8.3 ± 0.8 

Standard error calculated from multiple ITC experiments. Fit to a two-site sequential mode (Equation 4-2&3) 
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Figure 4-12. Temperature dependencies of the enthalpies (∆H
o
, -●-), entropies (T∆S

o
 , -▲-), or free energies (∆G

o
, -

■-) for reverse ITC titrations (protein into DNA) for the A) first or B) second binding events for Dpo1. Error bars 

represent the standard error from multiple experiments. C) The enthalpies for ∆H
o
1,Dpo1were fit to Equation 4-10 for 

H
cal

/T. ∆∆C
o

p,1,Dpo1 was found to be   -15 ± 3 cal mol
-1

 K
-2 

. ∆C
o
p,1,Dpo1values ranged from 0.27 kcal mol

-1
 K

-1 
at 3 

o
C to -0.58 kcal mol

-1
 K

-1 
at 60 

o
C. The enthalpies for ∆H

o
2,Dpo1 were fit to Equation 4-10 to yield ∆C

o
p,2,Dpo1 = -0.15 

± 0.01 kcal mol
-1

 K
-1

. The individual thermodynamic parameters are reported in Table 4-7.  
 

 

Figure 4-13. Temperature dependencies of the enthalpies (∆H
o
, -●-), entropies (T∆S

o
 , -▲-), or free energies (∆G

o
, -

■-) for reverse ITC titrations (protein into DNA) for the A) first or B) second binding events for Dpo4. Error bars 

represent the standard error from multiple experiments. C) The enthalpies for ∆H
o
1,Dpo4  were fit to Equation 4-10 for 

H
cal

/T. ∆∆C
o
p,1,Dpo4 was found to be -6 ± 1 cal mol

-1
 K

-2 
. ∆C

o
p,1,Dpo 4values ranged from -0.06 kcal mol

-1
 K

-1 
at 3 

o
C to -0.31 kcal mol

-1
 K

-1 
at 60 

o
C. The enthalpies for ∆H

o
2,Dpo1  were also fit to Equation 4-10 for H

cal
/T. 

∆∆C
o
p,2,Dpo4 was found to be -3 ± 1 cal mol

-1
 K

-2 
. ∆C

o
p,2,Dpo4values for ∆H

o
1,Dpo4 ranged from 0.00 kcal mol

-1
 K

-1 
at 3 

o
C to -0.29 kcal mol

-1
 K

-1 
at 60 

o
C. The individual thermodynamic parameters are reported in Table 4-8.  
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4.2.7 ITC Reverse Titration (protein into DNA) shows a floating stoichiometry which 

depends on initial accessibility to protein for DNA 

We have previously measured the stoichiometry of Dpo1 binding to DNA as 3:1 and 

Dpo4 binding to DNA as 2:1.(120, 208) Ideally, the stoichiometry for Dpo1/DNA and 

Dpo4/DNA in these reverse titrations should be similar, but were experimentally much lower 

when fit to an independent sites Equation 4-1. To determine if the measured stoichiometry (n) is 

affected by relative concentrations of protein and DNA, we changed the DNA concentration 

from 2.98 to 1.62 M in the cell while keeping the concentration of Dpo1 in the syringe constant. 

Reverse ITC titrations performed at 30 
o
C showed an increase in stoichiometry from 1.24 to 1.62 

with decreasing concentration of DNA (Figure 4-14). Experiments performed with lower DNA 

concentrations in the cell shifted the equilibria slightly towards binding additional Dpo1 subunits 

resulting in an apparent increase in stoichiometry (from 1.24 to 1.62). Therefore, the 

stoichiometry determined by reverse ITC depends on the initial accessibility to Dpo1 and Dpo4 

for DNA. The stoichiometry between polymerase and DNA can therefore be determined more 

accurately using the forward ITC experiments, in which less DNA is initially titrated into excess 

polymerase allowing the complete formation of the oligomeric complex earlier in the titration.  
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Figure 4-14. Reverse ITC titration of Dpo1 (194.7 µM) into DNA hairpin at 30 
o
C at two different concentrations of 

DNA A) 1.61 M and B) 2.98 M were used to examine stoichiometric binding events. Decreasing the 

concentration of DNA resulted in a greater stoichiometry (n) as indicated suggesting multiple individual binding 

events. Top panels are raw isotherms and bottom panels are integrated heats and their fitting.  

4.2.8 No observed changes in protonation upon polymerase binding to DNA with 

increasing temperature 

The observed enthalpy (∆H
o
obs) obtained in the ITC experiments is actually the sum of 

both the binding enthalpy (∆H
o
bind) and the ionization enthalpy of the buffer (∆H

b
ion) associated 

with any change in protonation (∆N) according to the following equation:(23) 

                    (Equation 4-13) 

To assess whether linked protonation occurs along with the binding to explain the 

temperature dependent heat capacity values (∆∆C
o
p) measured for Dpo1 and Dpo4 binding to 
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DNA, we performed forward ITC experiments at different temperatures and with different 

buffers (phosphate, HEPES, and imidazole) while holding the buffer concentrations and pH (7.0) 

constant. Each buffer was chosen to represent a broad separation of their ionization enthalpies 

( ).(213) The raw isotherms were fit to Equation 4-1 to determine the total enthalpy ( ) 

associated with binding. A plot of the ∆H
o
obs as a function of ∆H

b
ion gives the slope, ΔN, as the 

number of protons being released (positive value) or absorbed (negative value) upon 

binding.(214) The plots in Figure 4-15 and corresponding data in Tables 4-7 and 4-8 show 

minimal differences in ∆H
o
obs for Dpo1 or Dpo4 binding to DNA in buffers with different 

ionizations enthalpies (∆H
b

ion). Experiments were performed at three different temperatures 

resulting in ΔN equal to 0.18 ± 0.04, 0.82 ± 0.12, and 0.30 ± 0.10 at 10, 25, and 60
 o

C, 

respectively for Dpo1. ΔN was equal to 0.84 ± 0.15, 0.70 ± 0.15, and 0.21 ± 0.10 for 5, 15, and 

60
 o

C, respectively, for Dpo4. In all cases, the ΔN values are also slightly positive but less than 

one indicating that changes in protonation are not significantly contributing to the binding of 

either polymerase to DNA, nor to the large changes in ∆C
o
p with temperature.  
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Figure 4-15. Calorimetric ∆H
o

obsvalues from individual forward ITC experiments for A) Dpo1 or B) Dpo4 binding 

to the 37 base hairpin are plotted versus enthalpy associated with proton release from buffer (∆H
b
ion) in phosphate 

(1.22 kcal/mol), HEPES (5.03 kcal/mol), or imidazole (8.92 kcal/mol) buffer at pH = 7.0 and 150 mM NaCl. 

Thermodynamic values are reported in Tables 4-3 and 4-4. All slopes are less than one indicating less than one 

proton   is being released upon polymerase binding to DNA 

 

 
Table 4-7. Thermodynamic parameters for forward 

ITC titrations of DNA into Dpo1 in different buffers 

Buffer 

(pH=7.0) 

Temp 

(
o
C) 

 

(kcal/mol) 

 

(kcal/mol) 

NaP 10  11.7 ± 0.1  19.1 

 25 22.0 ± 0.5*  29.3 ± 0.5* 

 60 -20.4 ± 0.2*  -12.9 ± 0.2* 

Imidazole 10  13.0 ± 1.3* 20.2 ± 1.3* 

 25 31.3 ± 2.0*  38.3 ± 2.2* 

 60 -18.1 ± 3.7  -10.0 

* Represents the average and standard error from thee 

independent experiments. 
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Table 4-8. Thermodynamic parameters for 

forward ITC titrations of DNA into Dpo4 in 

different buffers 

Buffer 

(pH=7.0) 

Temp 

(
o
C) 

  

(kcal/mol) 

 

(kcal/mol) 

NaP 5  5.2 ± 0.2 12.5 

 15 5.9 ± 0.5 13.3 

 60 -7.2 ± 0.9   2.1 

Imidazole 5 11.7 ± 0.4 18.6 

 15 11.3 ± 0.7 18.4 

 60 -7.2 ± 0.4   4.5 

 

4.2.9 No observed changes in electrostatic state upon DNA binding with increasing 

temperature 

Changes in the charge state due to linked protonation or associated ions upon binding can 

also affect experimental heat capacity values.(177, 215) In order to verify that the charge state 

does not change significantly upon binding and contribute to the temperature dependent heat 

capacity changes for Dpo1 and Dpo4 measured by ITC, we utilized capillary electrophoresis as a 

measure of any change in apparent charge (z*) upon Dpo1 or Dpo4 binding to DNA. z* was 

determined (Table 4-9) using experimentally measured electrophoretic mobility values at 30 
o
C 

and the diffusion coefficient values obtained from the sedimentation velocity data above. z* can 

be converted to a net charge or valence (zcalc) which is the combination of any ionized amino 

acids and any territorial counter ions associated with the protein/DNA complex surface.(211) 

The net charge is calculated using a classical Debye-Hückel-Henry theory which accounts for the 

counter ion size, bulk electrostatic screening, and any electrophoretic effects.(216) For both 

Dpo1 and Dpo4 the net charge does not change significantly in the absence or presence of 
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hairpin DNA (Table 4-9) eliminating the possibility that linked protonation or bound ions are the 

cause of the temperature dependent  values. 

Table 4-9. Net and Effective Charges or Valences for Dpo1 or Dpo4 Alone or Bound to DNA. 

 

Species 

Mobility 

(cm
2 
V

-1
s

-1
)

a
 

Apparent Charge (z*)
b
 

Net Charge 

(zcalc)
c
 

Dpo1 -1.36 x 10
-5

 0.7 4.1 

Dpo1/

DNA
d
 

-1.19 x 10
-5

 0.6 3.9 

Dpo4 -1.04 x 10
-5

 0.4 1.7 

Dpo4/

DNA
d
 

-8.27 x 10
-6

 0.3 1.2 

a
Calculated directly from CE experiments. 

b
Calculated from the electrophoretic mobility and hydrodynamic radius 

(Rh) from sedimentation velocity experiments for each. 
c
Calculated from the Debye-Hückel-Henry equation. 

d
DNA 

was the 37 base hairpin primer template.  

 

4.2.10 No significant structural changes in protein with increasing temperature. 

To measure any conformational/structural changes of either the polymerase or DNA that 

may occur upon binding and may contribute to the ∆∆C
o
p values, we utilized circular dichroism 

(CD). CD spectra of the free polymerase and DNA (unbounded) compared to the polymerase-

DNA complex (bounded) show only very slight changes in the spectra upon complex formation 

for both polymerases (Figure 4-16). Protein secondary structure was monitored at 219 nm, while 

the DNA conformation can be monitored at 250-280 nm. Importantly, the ellipticity values were 

monitored across a broad wavelength range at both 20 
o
C and 60 

o
C to assess and temperature 

dependent conformational effects. For both Dpo1 and Dpo4, changes in ellipticity monitoring the 

protein structure are not significantly different when bound to DNA at either temperature. The 

DNA structure upon Dpo4 binding has only slight differences in ellipticity, while the ellipticity 

value for Dpo1 at 260 nm is essentially unchanged. For Dpo4 (Figure 4-16C&D), equivalent but 
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small protein and DNA conformational changes were observed at both 20 and 60 
o
C. This may 

be consistent with a conformational change in the little finger domain of Dpo4 detected upon 

binding DNA using x-ray crystallography.(143) Most importantly, there are no significant 

differences in protein or DNA conformations for either Dpo1 or Dpo4 at the different 

temperatures.  

 

Figure 4-16. Circular dichroism experiments of Dpo1 alone (unbound) or bound to DNA at A) 20 
o
C or B) 60 

o
C or 

Dpo4 alone (unbound) or bound to DNA at C) 20 
o
C or D) 60 

o
C. Wavelengths were monitored from 210-300 nm to 

cover possible protein or DNA structural changes. The inset highlights the data from 214 to 222 nm of backbone 

amide structure of either Dpo1 or Dpo4.  
 

4.2.11 Thermostabilization of Dpo1 protein structure when bound to DNA 

We also examined the thermostabilities of each polymerase alone and in the presence of 

the DNA hairpin. We monitored the molar ellipticities at 219 nm as a function of temperature for 

Dpo1 or Dpo4 bound or unbound to DNA using circular dichroism (Figure 4-17). The protein 

secondary structures of both Dpo1 and Dpo4 are thermostable at high temperatures with melting 

temperatures (Tms) greater than 80 
o
C and 90 

o
C respectively for the proteins alone. In both cases, 

protein denaturation does not begin until temperatures greater than 75 
o
C are reached. 

Interestingly in the presence of DNA, the Tm of Dpo1 is stabilized by at least 12 
o
C (~92 

o
C) 

(Figure 4-17A), making it more thermodynamically similar to Dpo4. No significant increase in 

Tm was found for Dpo4 when bound to DNA (Figure 4-17B). The Tm for Dpo1/DNA was 
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estimated based on the midpoint of the melting curve for Dpo1 alone, as the spectral data doesn’t 

reach a maximum until temperatures greater than 100 
o
C are reached. Thermodynamic 

stabilization of the protein structure of Dpo1 upon binding DNA suggests that this complex 

exhibits a high degree of structural complementarity. 

 
Figure 4-17. Thermal melting of A) Dpo1 alone (unbound, grey) or bound (black) to DNA or B) Dpo4 alone 

(unbound, grey) or bound (black) to DNA. Circular dichroism experiments were monitored at 222 nm over 5 
o
C 

increments. The temperature shifts for Dpo1 binding DNA measured at the midpoints are indicated by a 12 
o
C shift. 

 

4.3 DISCUSSION 

We have investigated and compared the binding of DNA replication and repair 

polymerases to primer-template substrates and found extremely complex thermodynamics, which 

is caused by the temperature-dependent formation of oligomeric species. We have verified that 

the DNA replication polymerase from Sulfolobus solfataricus, Dpo1, has multimeric 

stoichiometry that increases slightly with higher temperature due to the changing in equilibria, 
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indicating a possible biological role for the trimer at physiological temperatures. Similarly, the 

DNA repair polymerase, Dpo4, primarily forms a dimer but can also oligomerize into a tetramer. 

Both DNA polymerases display unique and variable changes in heat capacity values that are 

temperature dependent. The molecular nature for the measured temperature dependent heat 

capacity has been systematically probed using forward and reverse ITC titrations and found to be 

most likely a result of a change in the solution coupled equilibria with temperature. We have 

eliminated the possibility that changes in protonation, associated anions, or the structure of 

protein or DNA have a large effect on the temperature dependent heat capacity values measured 

for Dpo1 and Dpo4. Rather, different changes in individual binding affinities of Dpo1 and Dpo4 

with temperature described here lead to changes in complex solution multiequilibria processes 

that affect ∆C
o
p and lead to high structural complementarity at higher temperatures. In Chapter 3, 

we measured constant ∆Cp’s for Dpo1 and Dpo4 using fluorescence anisotropy assays. The trace 

amount of DNA in fluorescence anisotropy assay reduces the coupling between the oligomeric 

and monomeric complex species, and therefore, we assumed that temperature-independent ∆Cp’s 

for both initial and sequential binding (Scheme 4-1 and 4-2) are reasonable. However, in this 

chapter, our results from ITC are more complicated and with a more significant “mass action” 

that occurs during the course of the titrations causing equilibria coupling between the monomeric 

and oligomeric species as a function of temperature. The differences in the coupled equilibria 

between monomeric and trimeric states of these two oligomeric polymerases to DNA creating 

fine balance of binding and enzymatic activity required for uninterrupted DNA replication and 

repair with high fidelity.    



 131 

4.3.1 Confirmation, Visualization, and Quantification of Oligomeric Polymerase/DNA 

Complexes 

We have previously shown that both trimeric Dpo1 and dimeric/tetrameric Dpo4 

complexes exist on DNA.(120, 208) Interestingly, trimeric Dpo1 stimulates both the kinetic and 

processive synthesis of DNA while oligomeric Dpo4 has little enzymatic enhancement. The 

hairpin DNA template used in the EMSA and ITC experiments of this chapter is slightly shorter 

than the primer template (21/31mer) used previously,(120) and therefore also precludes multiple 

binding events associated with longer DNA substrate. EMSA (Figure 4-1&2 A&B) of Dpo1 on 

DNA clearly show two separately migrating species that are consistent with monomeric and 

trimeric Dpo1/DNA complexes. Similarly, EMSA of Dpo4 on DNA (Figure 4-1 and 4-2 C&D) 

shows three separable species that are consistent with monomer, dimer, and tetramer/DNA 

complexes. Previously, we used TBE gels at basic pH to isolate trimeric Dpo1 complex on DNA 

(Chapter 2). Here, we use the native Bis/Tris gels at neutral pH were required for both effective 

separation of polymerase/DNA species and to compare directly with the ITC experiments at pH 

= 7.0.  

The stoichiometry for Dpo1 or Dpo4 binding to DNA determined from the ITC titrations 

are also consistent with EMSA results, showing monomer-oligomer equilibria with at least two 

separate binding steps. By performing both forward (DNA into protein) and reverse (protein into 

DNA) ITC titrations, we can obtain information on the reversibility of the equilibria processes 

from the fit of  described by Schemes 4-1 & 4-2. In reverse ITC titrations, binding of the 

higher affinity monomeric polymerases to DNA (K1) is favored because of the excess of DNA in 

the cell and will be dominated in enthalpy during the early injections. Smaller contribution from 
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multimeric binding in the later injections is primarily assigned to the second equilibria process, 

K2. We have verified that this coupled equilibria can be affected by reducing the concentration of 

DNA in the cell and measuring an associated increase in stoichiometry for Dpo1 binding within 

the same number of injections in reverse ITC titrations (Figure 4-10). Conversely, forward 

titrations (DNA into protein) allow for binding of multiple polymerase molecules to one DNA 

molecule in the cell during the initial injections due to the large excess of polymerase and better 

report the absolute stoichiometry of binding. In the forward ITC titrations, the apparent 

stoichiometry, the ratio DNA to polymerase decreases with increasing temperature for both 

Dpo1 and Dpo4, suggesting that oligomeric polymerase complex formation is favored 

enthalpically.  

4.3.2 Temperature dependent changes in heat capacities ( ) of binding DNA for Dpo1 

and Dpo4 

Generally, the change in heat capacity of binding is reported as being a temperature 

independent variable due to most experiments characterizing a single binding event or being 

performed over a limited temperature range. These ideal results provide a good linear fit for  

from experimentally determined values versus temperature. Large negative  values are 

generally indicative of a sequence-specific DNA binding proteins,(129, 148) but similar results 

have been found for polymerases binding precisely through structural complementarity at 

primer-template DNA junctions.(130, 131) Historically, changes in accessible polar (∆Ap) and 

nonpolar (∆Anp surface area were proposed to be the main molecular determinate that correlates 

with the magnitude of ∆C
o
p.(148) On the other hand, there is no theoretical requirement that 
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∆C
o
p be linear with temperature(217) nor be associated solely with burial of surface area, and as 

has been reported previously, nonlinearity may actually be a general phenomenon for proteins 

binding DNA.(218)  

Temperature dependent changes in ∆C
o
p  can be the result of a combination of changes in 

protonation, thermal and vibrational fluctuations, electrostatics, water solvation, or 

multiequilibria coupling as shown in equation 4-14 and have resulted in the derivation of a 

∆∆C
o
p  parameter to explain any non-linearity in ∆C

o
p.(129, 133, 174, 177, 203, 218, 219)  

∆C°P = –a∆Anp + b∆Ap – c(∆ConfVib) + d(Strain) + e(Anions) ± f(coupled equil.)  

(Equation 4-14). 

∆ConfVib and strain are the resulting change of configurationally vibrational freedom and 

structural strain, respectively. Anions is a general term for an ion effect.  

Examples of detected molecular features that alter heat capacity include changes in 

configurational freedom upon binding,(220) temperature effects of ssDNA base stacking,(221) as 

well as the flexibility and conformational changes that occur in proteins.(174, 222) The length of 

the ssDNA in the template strand can also influence the affinity of binding as it makes significant 

contacts with the polymerase.(120, 223, 224) As an example, recognition of uracil in the DNA 

template strand by the Family-B polymerase from P. furiosus was shown to have a moderate 

∆C
o
p primarily due to the limited binding energy associated with polymerase sensing interactions 

with uracil in this stalled conformation.(222)  

Although small changes in  with temperature have been noted for a number of more 

complex DNA binding situations,(203, 218) sign reversals in ∆C
o
p  (positive to negative) are 
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more rare. Drastic dependences of ∆C
o
p with temperature and anion identity and concentration 

have been reported previously for E. coli single stranded binding protein (SSB) binding to DNA 

where the sign of ∆C
o
p can actually change with temperature.(177) Recently, Lohman and 

coworkers have attributed this sign reversal in ∆C
o
p to conformational changes within the SSB 

tetramer that occur upon binding DNA at a second site to create the fully wrapped complex.(225) 

Another example of a sign reversal in ∆C
o
p has been found with a mutant of the thermophilic 

duplex DNA binding protein (Sac7d) from Sulfolobus acidocaldarius to DNA.(226) In this case, 

the nonlinear ∆C
o
p was determined to be the result of conformational distortion in DNA related 

to unfavorable enthalpy of binding at lower temperatures.  

Our results show a dramatic change in ∆C
o
p for different titrations across a broad 

temperature range (5 - 65 
o
C) for both Dpo1 and Dpo4. More surprising is that the heat capacities 

are generally positive at lower temperatures and switch to strongly negative values at 

temperatures greater the 35 
o
C. At physiological temperatures for Sso (75 - 80 

o
C), the binding 

enthalpy (∆H
o
) is strongly exothermic, and the heat capacity (∆C

o
p) is strongly negative 

consistent with high structural complementarity at the interface. At lower temperatures (< 35 
o
C), 

other molecular factors including equilibria changes contribute to unfavorable coupled enthalpies 

and entropies leading to a looser binding conformation and resulting in a positive ∆C
o
p. We have 

eliminated the possibility that changes in protonation, electrostatics, or the structure of either the 

protein or DNA change significantly with temperature. Rather, we propose that the transition in 

binding specificity for either polymerase, Dpo1 or Dpo4, is more likely related to a change in the 

coupled solution multiequilibria with temperature to promote formation of oligomeric 

polymerase complexes on DNA with high structural complementarity. Changes in the coupled 

equilibria or coupling of a system with temperature are generally negative(174) but can also have 
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large and unexpected consequences on the ∆C
o
p value depending on the type of multiequilibria 

process that occur. In fact, multiequilibria processes can even contribute to a positive ∆C
o
p if the 

coupling equilibria constants are more than a log different in their values.(174)  

Increasing temperature promotes binding of tight oligomeric polymerase conformations 

on DNA that result in a strong negative change in heat capacity. (Tables 4-1, 2, 5, and 6) 

Evidence of the structural complementarity comes from both a stabilization in Dpo1 structure 

(Figure 4-17A) and DNA duplex (Chapter 2) upon binding. The associated ∆∆C
o
p values 

measured for Dpo1 and Dpo4 are in line with other DNA polymerases such as Taq or Klentaq 

binding to DNA (218), however, this work provided better quality thermodynamic data over a 

wider temperature range, and thus the measured ∆∆C
o
p values have significantly lower 

associated errors. Changes in thermodynamic coupling with temperature influences the heat 

capacity change for polymerase binding to DNA  

In the forward ITC experiments, we detected significant influences of coupled 

equilibrium on ∆Cp’s for both Dpo1 and Dpo4. Any temperature dependent change in equilibria 

would result in a conversion from a loose to a tight binding oligomeric conformation resulting in 

temperature-dependent ∆∆C
o
p. In lower temperature forward ITC titrations, the trimeric Dpo1 or 

the dimeric Dpo4 will be less favored due to a smaller K2. At higher temperatures, formation of 

the oligomeric polymerase-DNA complexes proceeds with high structural complementarity for 

binding with a larger K2 resulting in large negative ∆C
o
p. At high temperatures, the ordered 

assembly pathway (K1 and K2) will have a larger thermodynamic influence for binding. 

Therefore, flux in the equilibria pathways with temperature and/or restrictions in the oligomeric 

polymerase-DNA conformations due to direct binding or ordered assembly would account for 

the temperature dependence on ∆C
o
p  for both Dpo1 and Dpo4. In the forward ITC, the ∆∆C

o
p  
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are -59 ± 3 and -13 ± 4  cal mol
-1

K
-2

 for Dpo1 and Dpo4, respectively. However, in the reverse 

ITC, the ∆∆C
o
p are -16 ± 4 and -6 ± 2 cal mol

-1
K

-2
 for Dpo1 and Dpo4, respectively. The smaller 

values in the reverse titrations most likely result from the difference in the mass environment 

(equilibria) in the forward ITC. While the forward ITC experience the coexistence of the 

monomeric and oligomeric state when less amount of DNA initially titrated into excess of 

polymerases, the reverse ITC (protein in to excess DNA) had the majority of monomeric state 

during first several titrations.  

From our previous fluorescence anisotropy studies (Chapter 3), we detected an 

interaction between polymerases to DNA that is governed by overall ∆Cp’s corresponding to first 

and second steps of binding, (Scheme 4-1 and 4-2) which are -1.45 and -1.22 kcal mol
-1

K
-1

 for 

Dpo1 and Dpo4 , respectively. However, we derived ∆Cp values assuming they were temperature 

independent. In this chapter, our results from ITC are more complicated with a temperature 

dependency of ∆Cp, which comes from coupled equilibria between the individual monomeric 

and oligomeric complexes. For example, in the forward ITC, DNA is initially titrated into excess 

of protein resulting in a mixture of oligomeric complexes with DNA, trimer and monomer 

complexes for Dpo1; tetramer, dimer, and monomer complexes for Dpo4. The individual 

complex can couple with one another and thus move the intrinsic equilibria between different 

complexes. Observed ∆C
o
p can be thought of as the summation of an intrinsic ∆Cp,intrin and a 

temperature-dependent coupling ∆Cp,coupl according to the following equation: 

∆C
o
p = ∆Cp,intrin+ ∆Cp,coupl             (Equation 4-15). 
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If the observed ∆C
o
p   is temperature dependent relative to TH, Equation 4-15 can be 

rewritten as: 

∆C
o
p = ∆Cp,intrin+ ∆∆Cp (T-TH)            (Equation 4-16). 

 

The overall ∆Cp,intrin for trimeric Dpo1 and dimeric Dpo4 reported in Chapter 3 are 1.45 

and 1.22 kacl mol
-1

 K
-1

, respectively. We can then calculate ∆Cp,coupl at each temperature using 

equation 4-15 and plotted the results in Figure 4-18. Note that a positive ∆Cp, coupl corresponds to 

a shift in the equilibria from oligomeric to monomeric species, while a negative ∆Cp, coupl 

corresponds to an opposite equilibria shift over the experimental temperature range. Most of ∆Cp, 

coupl values for ITC are positive except for values from the forward ITC of Dpo1 above ~45
o
C. 

This mass action shifts from oligomeric to monomeric species is more prominent at lower 

temperatures and is gradually alleviated with increasing temperature. The trend of ∆Cp, coupl is 

also supported in the EMSA studies, where monomeric species persist longer in the titration 

course at 22 
o
C than at 50 

o
C. (more lanes containing monomeric species in Figure 4-8 than in 

Figure 4-9). This ∆Cp, coupl may also be the result of an equilibrium in which the polymerase can 

complex themselves in the absence of DNA. (174) However, we are not able to detect the stable 

association of polymerase without DNA in any of our previous assays (Chapters 2 or 3).  
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Figure 4-18. The temperature dependency of ∆Cp,coupl in different ITC titrations. ∆Cp,coupl were calculated from 

equation 4-15. A) ∆Cp, coupl fore Dpo1 measured in forward ITC (1Fss ∆Cp,coup) and reverse ITC (1R ss ∆Cp,coup). B) 

∆Cp, coupl fore Dpo4 measured in forward ITC (4Fss ∆Cp, coup) and reverse ITC (4R ss ∆Cp, coup). The slopes of the 

lines report the  values. 

Instead, if we consider Equation 4-16 for Dpo1, for which TH is around 48 
o
C by forward 

ITC, the temperature dependent term equals to zero at TH, and the intrinsic ∆Cp  (around -1.6 kcal 

mol
-1

 K
-1

) dominates at temperatures greater than TH (Figure 4-19). This value is consistent with 

the intrinsic ∆Cp from fluorescence anisotropy study (-1.45 kcal mol
-1

 K
-1

) suggesting coupled 

equilibrium may diminish at higher temperatures for Dpo1. However, for Dpo4, the value of 

intrinsic ∆Cp from fluorescence anisotropy is -1.22 kcal mol
-1

K
-1 

which does not lie in the 

experimental ∆C
o
p range (0.02~-0.73 kcal mol

-1
K

-1
) obtained from forward ITC, suggesting a 

negative ∆∆C
o
p for Dpo4 still exists at higher temperatures. In support, we find that Dpo4’s 

oligomerization is not stimulated by DNA in our cross-linking assays (Chapter 3), indicating that 

Dpo4 has a significantly more complicated equilibria profile with monomer-dimer-tetramer 

complexes existing off DNA resulting in a negative ∆∆C
o
p contribution.  
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Figure 4-19. Temperature dependency of observed ∆C
o

p (●) for the binding of Dpo1 and DNA detected by forward 

ITC, assuming ∆∆Cp,coupl (▲) has no contribution above the TH (321 K) (vertical dashed line). Below TH, there is 

constant ∆∆Cp,coupl (0.059 kcal mol
-1

 K
-1

). Horizontal dotted line indicates where intrinsic DCp becomes temperature 

independent. 

 

4.3.3 Mechanism for Replication or Repair DNA Polymerase Binding Specificity 

The association constants as measured in the forward ITC experiments for Dpo1 and 

Dpo4 are very similar and parallel across a broad range of temperatures. The values suggest that 

at lower temp, Dpo4 generally has a higher binding affinity than Dpo1, but with increasing 

temperature, the affinities for Dpo1 and Dpo4 become more similar. In addition, Dpo1 has 

higher affinity at higher temperatures (>60 
o
C), but Dpo4 has its greatest affinity around 30

o
C. 

As the temperature approaches physiological (70 
o
C), the free energy of Dpo1 binding to DNA 

equals or surpasses that for Dpo4, especially when comparing a Dpo1 trimer to a Dpo4 dimer 

(Chapter 3). If the local concentrations at the replication fork are low (< 250 nM), then the 

specificities of binding individual molecules of either polymerase to DNA will depend primarily 

on the monomeric binding affinities for DNA and other accessory proteins. At higher local 
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concentrations, coupling between monomeric and oligomeric DNA polymerase equilibria would 

dominate and the lower total free energy for trimeric Dpo1 would provide thermodynamic 

selection.(208) Recently, quantification of the mRNA and protein levels in Sso have noted that 

Dpo1 is expressed at least an order of magnitude greater than Dpo4.(104) It was noted previously, 

that even under DNA damaging conditions, the concentrations of Dpo4 are stable.(194, 195) 

Therefore, higher concentrations of Dpo1 in the cell would thermodynamically favor binding of 

this polymerase over Dpo4 in spite of similar binding affinities.   

The small differences in oligomeric association constants between Dpo1 and Dpo4 would 

also allow for a mechanism of dynamic exchange of DNA polymerases at the replication fork for 

uninterrupted and coordinated DNA replication and lesion bypass processing. The coupled 

equilibria between monomer and trimer Dpo1 and monomer and oligomeric Dpo4 for binding 

DNA will compete. Subtle changes in protein levels will direct DNA binding of either DNA 

polymerase under the appropriate cellular conditions. Stalling at sites of damage (shuttling 

between polymerase and exonuclease active sites) will also destabilize Dpo1 binding in favor of 

lesion bypass ability of Dpo4. Dpo1 and Dpo4 are also known to interact directly in solution 

possibly providing for a mechanism of direct exchange.(34) The oligomeric nature of each DNA 

polymerase provides for a plausible mechanism of active site exchange within a heteroligomeric 

(Dpo1-Dpo4) complex depending on the type of DNA substrate (damaged or undamaged). It is 

proposed in E. coli or yeast that both polymerases are held at the replication fork and exchanged 

on the DNA template through interactions with the processivity factor.(227) This is also 

proposed for Sso, where specific contacts of Dpo1 with PCNA2 and Dpo4 with PCNA1 within 

the heterotrimeric PCNA123 complex may provide for close directed polymerase engagement of 

the DNA template.(192, 228) The regulation of these oligomeric polymerase complexes on DNA 
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as well as with interacting proteins including PCNA are influenced by small thermodynamic 

differences, coupled equilibrium processes, and cellular concentrations to direct efficient DNA 

replication or repair.  

4.4 CONCLUSION 

In Chapter 3, we found that for both Dpo1 and Dpo4, the binding between polymerases 

and DNA consists of an initial high-affinity binding site followed by a sequential lower-affinity 

binding, whose affinities are dependent on temperature. We derived the intrinsic heat capacity 

changes for the formation of the monomeric and oligomeric complexes. In this chapter, we 

examined more specifically the thermodynamics for this stepwise process using ITC and found 

that the true binding equilibria processes are more complicated. Most notably, we are surprised 

to find that the heat capacity changes for Dpo1 and Dpo4 are temperature dependent. We used 

several techniques to decipher the molecular factors affecting the heat capacity changes, and the 

cumulative results suggest that the temperature dependence results from the coupled equilibria 

between the monomeric and oligomeric polymerase-DNA complex. The complete coupled 

equilibria can alter the population of different complex states both in the presence and absence of 

DNA (Figure 4-20).(39, 174) Evidence for a polymerase equilibrium complex off DNA comes 

primarily from cross-linking assays (Chapter 2 and Chapter 3). However, this oligomerization 

was not detected by analytical ultracentrifugation (Chapter 3) or gel filtration assays (Chapter 2) 

suggesting that these individual equilibria (KA, KB, KC, and KD) are not strong compared to when 

DNA is present.  
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Figure 4-20. Complete equilibria profiles for oligomeric A) Dpo1 or B) Dpo4 biding to DNA. In addition to 

stepwise binding of polymerase to DNA in Schemes 4-1 and 4-2 and shaded here, polymerases may also associate 

off DNA with associated equilibrium constants KA, KB, KC, and KD. 
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5.0  SUMMARY AND FUTURE DIRECTIONS 

5.1 STRUCTURED CROWDING AND OLIGOMERIZATION OF DNA REPLICATION 

POLYMERASES 

 

The cellular environment is crowed with high concentrations of proteins, enzymes, 

substrates, and electrolytes. Twenty percent of the cellular mass comes from protein. (103) 

Molecular crowding decreases the diffusion rate, fluctuates equilibrium between protein and 

substrates, and affects the catalysis of enzymes, yet in most cases the metabolic processes 

proceed unencumbered. There are two types of crowding: uniform crowding and structured 

crowding. The latter refers to a highly coordinated cellular environment, where enzymes and 

other structural factors are clustered and organized, and are able to modulate physiological 

function effectively and dynamically. (229) In this work, we found that Sso DNA polymerases, 

Dpo1 and Dpo4, form oligomeric complexes with DNA. The detected oligomerization further 

increases the structured crowding to coordinate concerted actions within the DNA replication 

holoenzyme. In addition, this oligomerization can enhance the thermostability of Dpo1 (Chapter 

3) and DNA (Chapter 2) and physiological activities of polymerases (Chapter 2 and Chapter 3) 

in organisms that thrive at high temperatures.  
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5.2 TEMPERATURE-DEPENDENT DIFFERENTIATION BETWEEN DNA 

BINDING TO DPO1 AND DPO4 

Furthermore, we examined the mechanistic strategy to enhance physiological efficiency 

and replication fidelity through DNA polymerase oligomerization. We found that the 

oligomerization is stepwise for both Dpo1 and Dpo4, comprising an initial high-affinity binding 

step followed by a sequential weaker-affinity binding step. In the Sso cell, 2.2 M Dpo1 will 

promote the formation of trimeric Dpo1-DNA complexed at the 3’OH of the few primer strands 

available during DNA replication, while Dpo4 at a cellular concentration of 150 nM will be 

thermodynamically blocked from binding DNA and limited to monomeric binding only when a 

lesion is present and Dpo1 is destabilized. The temperature range where the maximum affinities 

of the protein-protein interactions (oligomerization) are different for Dpo1 (60~70 
o
C) and Dpo4 

(50 ~60 
o
C). Therefore, at Sso’s physiological temperature (75 

o
C), trimeric Dpo1 will primarily 

bind and synthesize DNA, while Dpo4 will bind and act only in certain instances such as at 

lesions where Dpo1 is destabilized from DNA. However, Dpo4 may also use oligomerization to 

increase the local availability around the replication fork, especially when DNA damage is 

abundant or promote heteroligomeric complexes with Dpo1 to coordinate polymerase exchange 

events. 

In addition to temperature-dependent binding affinities, we also found that both binding 

enthalpies and entropies are temperature-dependent, giving fascinating temperature dependent 

changes in heat capacity. We examined the molecular factors that vary heat capacity changes 

using a variety of biophysical techniques, and conclude that contributions from temperature 

dependent changes in coupled equilibria are the primary factors causing these temperature-
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dependent heat capacity changes. This coupled equilibrium may result from a complicated 

binding mechanism (174) or fluctuation between different binding states as shown in Equation 5-

1:(39) 

Cp = ∆U
2
/kT

2
 P0P1                                        (Equation 5-1) 

where ∆U is the energy difference between two binding states, P0 and P1. Thus, the 

coexistence of two or more binding states can increase the coupled heat capacity (Equation 5-1). 

This contribution is more extreme at lower temperatures where the curvature in the Gibbs-

Helmholtz plots for Dpo1 and Dpo4 are greater. The ∆∆Cp remains relatively constant over the 

lower temperature range (5~45 
o
C). However, at higher temperatures (>45 

o
C), less population of 

the monomeric state of Dpo1-DNA diminishes the coupled equilibria effect in CP. Note that at 

TH for Dpo1 (48 
o
C), the coupled heat capacity change is close to zero and contributes little to 

H has been recently suggested to be the starting point for physiological 

activity.(1) It is possible that the coupled equilibrium noted here for Dpo1 and Dpo4, i.e. moving 

the oligomeric state towards monomeric state, is responsible for reduced physiological activity at 

lower temperatures. 

5.3 FUTURE DIRECTIONS 

There are several thermodynamic and kinetic details within the DNA replication 

mechanism that are still unclear, including binding of polymerases to damaged DNA and how 

PCNA, the replication clamp, coordinates with Dpo1 and Dpo4 for uninterrupted DNA synthesis 

in the presence of lesions. I would predict that for damaged templates, Dpo4 would have higher 

binding affinity than Dpo1 for both monomeric and oligomeric forms, with a different 
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thermodynamic binding profile than with undamaged substrates, and TH,Dpo4 may increase. DNA 

replication polymerases from thermodynamic organisms including Sso are one of a few systems 

allowing a thorough examination of the relationship between oligomerization, thermodynamics, 

and kinetics providing a preliminary model for other replication systems and similar 

multiequilibria protein binding mechanisms. 
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