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EFFICIENT COMPUTER SIMULATIONS OF PROTEIN-PEPTIDE BINDING USING WEIGHTED

ENSEMBLE SAMPLING

Matthew C. Zwier, PhD

University of Pittsburgh, 2013

Molecular dynamics simulations can, in principle, provide detailed views of protein-protein association processes.

However, these processes frequently occur on timescales inaccessible on current computing resources. These are

not particularly slow processes, but rather they are rare — fast but infrequent. The weighted ensemble (WE) sam-

pling approach provides a way to exploit this separation of timescales and focus computing power efficiently on

rare events. In this work, it is demonstrated that WE sampling can be used to efficiently obtain kinetic rate con-

stants, pathways, and energy landscapes of molecular association processes. Chapter 1 of this dissertation further

discusses the need for enhanced sampling techniques like the WE approach. In Chapter 2, WE sampling is used

to study the kinetics of association of four model molecular recognition systems (methane/methane, Na+/Cl– ,

methane/benzene, and K+/18-crown-6 ether) using molecular dynamics (MD) simulations in explicit water. WE

sampling reproduces straightforward “brute force” results while increasing the efficiency of sampling by up to

three orders of magnitude. Importantly, the efficiency of WE simulation increases with increasing complexity of

the systems under consideration. In Chapter 3, weighted ensemble Brownian dynamics (BD) simulations are used

to explore the association between a 13-residue fragment of the p53 tumor suppressor and the MDM2 oncopro-

tein. The association rates obtained compare favorably with experiment. By directly comparing both flexible and

pre-organized variants of p53, it is shown that the “fly-casting” effect, by which natively unstructured proteins may

increase their association rates, is not significant in MDM2-p53 peptide binding. Including hydrodynamic interac-

tions in the simulation model dramatically alters the association rate, indicating that the detailed motion of solvent

may have substantial effects on the kinetics of protein-protein association. In Chapter 4, an all-atom molecular

dynamics simulation of p53-MDM2 binding is described. We obtain an association rate that agrees with the exper-

imental value. The free energy landscape of binding is “funnel-like”, downhill after the initial encounter between

p53 and MDM2. Together, the studies described here establish that WE sampling is highly effective in simulating

rare molecular association events.
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1.0 THE NEED FOR ENHANCED SAMPLING

This chapter is based on a review article previously published as: Zwier, M. C., and Chong, L. T. (2010)
Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol 10,
745–752

1.1 INTRODUCTION

Many biological processes — including enzyme catalysis, signal transduction, and protein-protein bind-

ing — involve protein motions that occur on multiple timescales. 1 As illustrated in Figure 1.1, these

motions include ps-ns dynamics of side chains, ns-µs relative motions of protein domains, and µs-ms

allosteric transitions. 2 Furthermore, the shorter timescale dynamics can influence and be influenced by

longer-timescale motions. 3,4 The flexibility of proteins and the associated ensemble of alternate confor-

mational states are important for many pharmaceutically-relevant species. 3,5,6

Although X-ray crystallography or NMR spectroscopy can provide ensemble-averaged structures of

certain conformational states, they cannot always characterize short-lived or unstructured species, such

as transient binding pockets, 8 alternative conformations of active sites, 9 or proteins with intrinsically

disordered regions, 10,11 and it may be precisely those species that could lead to new classes of pharma-

ceuticals. 6,12 Molecular dynamics (MD) simulations can complement experiments by providing the time

resolution and atomic detail necessary for monitoring the step-by-step progression of conformational

changes (e.g. the opening and closing of active-site protein “flaps”). Given sufficient computational re-

sources, such simulations can span multiple timescales, revealing how fast, local fluctuations (ps-ns)

might facilitate slower, functionally-relevant collective motions of the protein (≥ µs), providing detailed

views of the mechanisms of conformational transitions. However, typical computing resources limit

these simulations, which ideally include explicit water molecules, to the nanosecond timescale. Thus,

direct “brute force” simulations — simply running simulations for a sufficiently long time (i.e. many

times longer than the slowest event of interest) — have limited use in capturing biologically-relevant

1



Bond vibrations

Surface
side chain rotation

Hinge bending Allosteric transitions

Loop motions

Intermolecular
diffusion

10 fs 1 ps 1 ns 1 µs 1 ms 1 s

1 second 1 hour 1 year 1.4 million years

Buried
side chain rotation

Time required on a typical desktop computer

Timescales of typical protein motions

Protein folding

Figure 1.1: Timescales of typical protein motions and estimated computational time to simulate

them. Motions and their corresponding timescales are indicated above the axis. Below the axis is a rough

estimate of the amount of “wallclock” time required to perform a molecular dynamics (MD) simulation

of a typically-sized protein-protein complex solvated in explicit water (∼45,000 atoms) on a typical (2.6

GHz dual-core) desktop computer. To capture the fastest motions of proteins (i.e. bond vibrations), MD

simulations must employ femtosecond time steps; a large number of simulation steps are therefore re-

quired to reach biological timescales, making MD simulations of protein systems very computationally

expensive. For the computer described above, tens of nanoseconds of dynamics are accessible within

weeks, but to reach the millisecond timescale would require millennia. (Timescales are from Refs. 2 and

7, except for intermolecular diffusion, which is derived from Ref. 7 assuming 1 mM concentration of the

diffusing species.)
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motions (e.g. induced-fit binding13). As illustrated in Figure 1.1, many biologically-relevant motions

(fs-ns) are readily accessible to modern computers, but many motions which may be of interest (µs and

beyond) are far out of reach.

The desire to access biological timescales with MD simulations has driven the development of inno-

vative enhanced sampling techniques. These techniques invariably increase computational throughput

at the cost of introducing additional assumptions, e.g. the system under study is strictly at equilibrium,

or that initial and final states of a transition can be unambiguously identified and rigorously defined.

Common to all these enhanced-sampling techniques is the assumption of a separation of timescales,

where a process has a long characteristic time not because the transitions involved are slow, but rather

because the transitions are rare, with long waiting times between otherwise fast events. It is the elimina-

tion of this waiting time that allows these techniques to access biologically-relevant timescales.

Here, we discuss recent developments in both brute force simulation and enhanced sampling tech-

niques. Due to space constraints, we have restricted our discussion to methods which involve motion on

a single, unmodified free energy surface.a The distinct advantage of such approaches is that the dynam-

ics of the system under study are completely unperturbed, and furthermore, realistic kinetic information

may be readily extracted from simulations; this information (e.g. kinetic rates and timescales of motion)

provides another means of validating simulation with experiment. On the other hand, this admittedly

limited scope precludes us from discussing in detail other promising enhanced sampling methods, 2,14

including those that under some circumstances can yield realistic kinetic rates. 15,16 In preparing this

review, we found it helpful to summarize the similarities and differences among each of the many tech-

niques discussed below. As shown in Figure 1.2, the techniques discussed here can be grouped according

to whether they provide continuous, atomically-detailed pathways of transitions between two states or

not, and also according to the amount of a priori information required to construct a simulation. Gener-

ally, methods that require more information about a system involve more assumptions, but can generate

pathways (or trajectories) of the biological event of interest with greater efficiency.

aThe free energy surface of a chemical system — free energy as a function of atomic coordinates — completely defines
its dynamics; it depends on the microscopic interactions between atoms and macroscopic thermodynamic variables such as
temperature, volume, and pressure.
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[64]

Figure 1.2: Techniques capable of accessing biomolecular timescales. When feasible, large-scale brute

force dynamics with explicit consideration of solvent provide the greatest possible detail with the fewest

possible assumptions. Where such simulations are not possible, other enhanced sampling techniques

can be used to obtain kinetic information, transition paths, or both. In general, where increased a priori

knowledge (yellow, red, and blue regions, top to bottom) is required to run a simulation, greater effi-

ciency gains compared to brute force dynamics are possible; the price of increased throughput is often

a greater number of assumptions about or restrictions on the system being simulated. For convenience,

references are provided in which each enhanced sampling method was first presented for simulation of

biochemical systems. In the case of Markov state models, the first discussion of using multiple shorter-

timescale simulations to reach longer-timescale kinetics of biological systems is cited.
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1.2 BRUTE FORCE DYNAMICS

When feasible, brute force simulations provide the greatest possible detail with the fewest possible as-

sumptions relative to other MD-based sampling techniques. As highlighted in Figure 1.2, very little a

priori knowledge is required to run a brute force dynamics simulation — generally only a force field and

a representative initial structure. These are not trivial concerns, particularly as the force field completely

defines the thermodynamics of a system, 17 and slight imbalances in force field parameterization can

significantly alter the results of simulations, 18 especially for long time scales; 19 however, agreement with

experiment is generally acceptable for the biological questions being addressed. 17,20

While the cost of running these brute force simulations is high, computing resources continue to

grow in size and power. Continued optimization of MD software, coupled with the decreasing cost of

commodity hardware — particularly multi-core processors — has played a key role in reaching microsec-

ond timescales for typical biological systems (e.g. ∼104 – 105 atoms), timescales that were inaccessible

only five years ago. Furthermore, recently-developed hardware specialized for performing MD simula-

tions is poised to generate microseconds of dynamics per day on similarly-sized biological systems. 20,21

Though the overall computing landscape has not changed dramatically in the last year, the use of

general-purpose graphics processing units (GPGPUs) in the field of molecular dynamics continues to

grow (cf., e.g., 22–26, AMBER 11, 27 GROMACS, 28 OpenMM29). While impressive gains in throughput

are possible with GPGPUs for certain calculations involved in an MD simulation, 30 the small on-board

memory and high cost of communication with GPGPUs has severely limited the ability of GPGPUs to ac-

celerate MD calculations effectively. 25 This communications problem must be overcome before GPGPU-

accelerated MD calculations can hope to supplant traditional large-scale parallel MD calculations, which

continue to provide access to long timescales 31 and large systems. 32

1.3 KINETIC “GLUE”

The high computational cost of accessing biological timescales with brute force simulations (see Fig-

ure 1.1) has led to the development of several methods that attempt to obtain long-timescale information

by “gluing together” shorter-timescale simulations. Two examples with proven applicability to biological

systems are Markov state models and Milestoning.
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1.3.1 Markov state models

Markov state models (MSMs) — discrete-state kinetic models — seek to describe the behavior of a sys-

tem in terms of a finite number of metastable (relatively long-lived) states and the rates of transitions be-

tween them. 33–40 These transition networks are generally constructed by grouping many conformations

from multiple, relatively short brute force simulations such that conformational transitions within states

(groups) are common but transitions between states are rare. 34,36 The requirements for this statewise

decomposition of conformational space can be expressed several ways: (A) the timescales for intrastate

transitions are short but the timescales for interstate transitions are long; (B) the probability of having

moved from some state i at time t to some other state j at time t +d t depends only on the lag time

d t ; or (C) the probability of moving from state i to state j does not depend on how the system came

to be in state i . It is the first property (A, the separation of timescales) that enables MSMs to capture

long-timescale kinetic information from short-timescale dynamics, and it is the lattermost property (C,

“memorylessness”) that is perhaps most familiar as the defining property of a Markov process, hence the

name Markov state model.

Construction of a Markov state model reduces many individual conformations and the detailed dy-

namics connecting them into a discrete set of states, their relative probabilities, and a matrix of (lag-

time-dependent) transition probabilities between each pair of states. 34 Each state represents a distribu-

tion of quickly-interconverting conformations, which may (but need not) correspond to experimentally

well-defined populations, such as those that might be identified by NMR spectroscopy. From the transi-

tion probability matrix and state populations, quantities such as the overall transition rate between two

states, the set of paths connecting them, and the contribution of each path to the overall rate can be

calculated. 38,41 Thus, MSMs present a coarse-grained view of both the conformational space of the sys-

tem and the dynamics within it. MSMs have been used primarily to study protein folding mechanisms,

showing good agreement with experiment in both structural information and folding rates. 35,36,39,40,42–47

However, these models are generally applicable to the problems of identifying kinetically-distinct states

of proteins under given conditions (e.g. temperature, ionic strength) and determining the kinetics of

slow conformational transitions. The particular strength of MSMs may in fact be their ability to indicate

native state ensembles of structures, providing information complementary to that provided by X-ray

crystallography and NMR spectroscopy experiments.

It should be noted that short trajectories suitable for MSM construction may be generated with

replica exchange molecular dynamics (REMD), 48 a popular method for enhancing sampling of con-
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formational space. 49 Many copies (“replicas”) of a system are simulated in parallel at multiple temper-

atures, and configurations are occasionally swapped between temperatures (generally according to a

Boltzmann criterion). Although this technique does not generally permit the extraction of reaction rates,

Markov state models can be constructed from the brief trajectory segments between replica exchanges,

and reaction rates may then be determined from the MSMs. 15

1.3.2 Milestoning

The Milestoning approach developed by Elber and co-workers also uses kinetic information from

shorter-timescale simulations to infer long-timescale kinetics. 50,51 Unlike MSMs, from which definitions

of states may be obtained, Milestoning requires a priori definitions of initial and final states and a one-

dimensional order parameterb that specifies “how far along” a simulation is in a transition between the

initial and final states. This order parameter is divided by a number of surfaces (“milestones”) and equi-

librated ensembles of simulations are prepared at each milestone. In a second simulation phase, the

constraint holding simulations to milestone surfaces is removed, and as simulations reach neighboring

milestones, the time required by each simulation to reach a neighboring milestone (in either a forward

or backward direction) is recorded. This simulation between milestones — rather than between initial

and final states — effectively eliminates the waiting time that would otherwise be sampled by brute force

simulations.

The central assumption of Milestoning is that all degrees of freedom other than the order parame-

ter relax completely between subsequent milestones. Under this assumption, the “incubation times”

between milestones, obtained as described above, may be transformed into the global first-passage

time distribution, the probability distribution of times required to reach the final state from the ini-

tial state. 51 When a single timescale dominates a system, the first-passage time distribution is expo-

nential and the reaction rate is simply the inverse of the mean first passage time, but in a system

where multiple timescales are important, the first passage time distribution is capable of describing

the resulting non-exponential behavior, 52 as has been demonstrated explicitly for Milestoning simu-

lations. 50,51 This added flexibility reflects the fact that the central assumption of Milestoning (complete

relaxation along all non-order-parameter coordinates) is less restrictive than that of Markov state mod-

els (where complete relaxation is assumed in all degrees of freedom within each state). However, the

bThis order parameter (also called a “progress coordinate” by some practitioners) is a scalar value which varies continuously
and (generally) monotonically between particular values at the initial and final states. It may, but does not necessarily, reflect a
formal reaction coordinate.
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cost of this increased detail in the determination of kinetics is reduced detail in determination of con-

formational states; initial and final states, the order parameter, and adequate milestones must be known

prior to a Milestoning simulation of a system. The utility of the Milestoning approach is demonstrated

well by a recent study involving the recovery stroke of myosin (a millisecond process), which provided

experimentally-testable mechanistic insights and a rate consistent with experiment. 53

1.4 PATH SAMPLING TECHNIQUES

Path sampling approaches seek to determine the detailed dynamics of pathways between well-defined

metastable states. These techniques are complementary to MSMs and Milestoning, which can provide

definitions of metastable states and detailed kinetics of transitions between well-defined metastable

states, respectively. The most widely used methods in recent years are transition path sampling (TPS)

and its variants, such as transition interface sampling (TIS); forward flux sampling (FFS); and weighted

ensemble (WE) sampling.

1.4.1 Transition path sampling

Transition path sampling (TPS), which is based on early work by Pratt, 54 was first presented more than

a decade ago 55 and has subsequently been extensively employed, refined, and reviewed. 56–59 TPS is a

Monte Carlo sampling of MD-simulated paths between initial and final states, which (as highlighted in

Figure 1.2) must be known a priori. Each path is typically generated by randomly selecting a segment

of the previously-sampled path, perturbing its coordinates and/or momenta, and then “shooting off”

MD trajectories both forward and backward in time from the perturbed segment; 57 thus, this scheme

requires the dynamics of the system to be invariant under time reversal, i.e. the system must be at equi-

librium. 58 The resulting set of paths between the initial and final states and their relative probabilities

together provide a detailed picture of how transitions between the initial and final states progress. TPS

does not directly provide kinetic information; rather, a subsequent (computationally-expensive) um-

brella sampling calculation is required, 57 a limitation which led directly to the development of transi-

tion interface sampling (discussed below). As with all path sampling methods, the presence of long-

lived intermediate states 60 or multiple distinct transition pathways separated by substantial free energy

barriers 61 may severely reduce the effectiveness of TPS. Nonetheless, TPS is capable of describing rare
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transitions in biological systems. Recently, TPS was used to determine the pathways of conformational

change in the activation of photoactive yellow protein (PYP), predicting experimentally-detectable in-

termediates and suggesting experiments which can be used to validate the TPS results. 62 In a striking

combination of a number of enhanced sampling techniques, Juraszek and Bolhuis used transition path

sampling to determine the pathways of conformational change in folding and unfolding mechanisms of

formin binding protein 28 (FBP28) and then map the free energy landscape of the protein; the computed

unfolding barrier is in agreement with experiment. 63

1.4.2 Transition interface sampling

The high computational cost of obtaining kinetic information with TPS inspired the development of

transition interface sampling (TIS) and several variants thereof. 64–66 Transition interface sampling, along

with FFS and WE, partitions an order parameter connecting initial and final states with several dividing

surfaces (“interfaces”); this again represents an increase in the amount of information required to start

a simulation (see Figure 1.2). In TIS, a Monte Carlo procedure very similar to TPS — including forward

and backward shooting of MD trajectories — is used to sample paths between each pair of adjacent

interfaces; the reaction rate is then determined by the flux out of the initial state and the conditional

probabilities of reaching each interface in turn. 67 In this way, the paths and transition rate between initial

and final states are determined simultaneously. Interface-based sampling methods like TIS may suffer

greatly in efficiency if significant free-energy barriers exist between interfaces, particularly if the barriers

must be surmounted in order to reach the next interface. 68

1.4.3 Forward flux sampling

The forward flux sampling (FFS) method of Allen et al. was presented as an alternative to TPS and TIS

without the requirement of microscopic reversibility, thus allowing path-sampling studies of nonequi-

librium systems. 58,59,69–71 Like TIS, FFS requires well-defined initial and final states, an order parameter

describing the transition between them, and partitioning of the order parameter by interfaces. Rather

than using Monte Carlo techniques to sample transition paths, MD simulations — propagating forward

in time only — are used to determine the paths between interfaces. When a dynamics trajectory reaches

an interface, its coordinates and momenta at the interface are saved, then used to start a number of new

simulations from the interface. The reaction rate is calculated in terms of a set of conditional crossing

probabilities, and transition paths between initial and final states may be obtained by tracing completed
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paths from the final state back to the initial state. 70 As in TIS and WE, high barriers between interfaces

may cause a sharp drop in sampling efficiency, as simulations can progress to the next interface only

rarely. 68 A particularly interesting feature of FFS is the existence of well-defined estimates for computa-

tional efficiency as functions of FFS simulation parameters (e.g. the number of interfaces), allowing for

selection of efficient parameters. 72,73 FFS has been used primarily in simplified models of various sys-

tems (cf. Refs. 58 and 59), but it has also been applied to an all-atom folding simulation of the trp-cage

mini-protein. 74

1.4.4 Weighted ensemble sampling

The weighted ensemble (WE) sampling technique is conceptually quite similar to FFS, though it predates

FFS by nearly a decade. 75 Originally conceived to accelerate sampling in Brownian dynamics simula-

tions, 75–77 weighted ensemble sampling is asymptotically correct for a much broader class of stochastic

simulations, including MD simulations. 78 WE sampling uses independent simulations, each carrying a

statistical weight, to explore conformational space. Like TIS and FFS, WE sampling requires definitions

of initial and final states, an order parameter, and the partitioning of space along the order parame-

ter into bins. Simulations are propagated for a fixed time period, after which a statistically-rigorous

reweighting procedure is used to keep the number of simulations in each bin constant without alter-

ing the total probability in each bin. Thus, as unoccupied bins become populated, more simulations

are created with which to explore that region of phase space, and as simulations cross backwards into

previously-traversed bins, they will likely be eliminated, reducing oversampling. As simulations reach

the destination state, their probability weights are recycled to the initial state, establishing a steady-state

flow of probability from the initial state to the final state. The resulting transition paths are continuous,

and the macroscopic reaction rate is obtained simultaneously as the net flow of probability into the des-

tination state. 75 WE sampling has a theoretical and algorithmic framework that naturally supports more

than one order parameter, making it an attractive option for sampling rare events in systems that cannot

be described with a single order parameter. 68 Achievement of a steady-state probability flow from the

initial state to the final state may be accelerated using concepts developed from non-equilibrium um-

brella sampling79 (see Section A.3), partially ameliorating the difficulty shared by WE, TIS, and FFS of

surmounting barriers between interfaces (i.e. within bins). 68

WE sampling in the context of a residue-based Monte Carlo simulation has recently been used to

study the kinetics and conformational transitions between the apo and holo forms of calmodulin, show-
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ing excellent agreement and efficiency gains compared to brute force Monte Carlo sampling. 80 Our

own group has recently determined that WE sampling in conjunction with MD simulations achieves

high efficiency in modeling simple molecular association events (methane/methane, methane/benzene,

Na+/Cl– , and 18-crown-6/K+) in explicit water (see Chapter 2 and Reference 81), indicating that this ap-

proach is a promising one for studying protein/small-molecule and protein/protein interactions. Appli-

cations of the WE approach to the study of protein-peptide association kinetics and energy landscapes

are discussed in Chapters 3 and 4.

1.5 CONCLUSIONS

Conformational changes in biologically-relevant systems span an enormous range of time scales, from

picosecond dynamics of side chains through microsecond or slower dynamics of coordinated confor-

mational transitions. All-atom MD simulations have typically been limited by computing power to mi-

croseconds of simulation time or less. Even so, with increasing computing power, brute force MD sim-

ulations continue to provide detailed views on biologically-relevant conformational transitions. Addi-

tionally, a number of enhanced sampling techniques have matured to the point of reaching biological

timescales with MD simulations. The most promising avenue for exploration of the dynamics and ki-

netics of pharmacologically-relevant systems appears not to be any single MD sampling technique, but

combinations of techniques that, when used together, yield far more information than any technique

alone (e.g. Ref. 63). With advances in simulation approaches and computing power, MD simulation is

becoming increasingly useful in providing detailed structural and mechanistic insight into biologically-

relevant events that are of pharmaceutical interest.
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1.7 APPENDIX: REFERENCE NOTES

The following notes highlight specific references used throughout this chapter.

* = of particular interest. ** = of outstanding interest.

15* Markov models are used to extract realistic kinetic information from replica exchange molecular

dynamics simulations, which are generally unable to provide such information.

16* A unique study of how exact, unperturbed thermodynamic averages and (in some cases) realistic

macroscopic reaction rates can be extracted from perturbed dynamics.

21* A lucid introduction to high-performance computing as applied to biomolecular systems.

32* A detailed discussion of the technical complexities involved in scaling molecular dynamics simula-

tions to large core counts.

44** The folding of a small protein (the PinWW domain) is studied using short MD trajectories in explicit

solvent, Markov state models, and transition path theory; folding occurs along multiple pathways,

and therefore the authors argue that a probabilistic view of protein folding mechanisms is necessary.

51** An exceptionally clear and thorough description of the Milestoning procedure, with a superior bal-

ance of detailed theory and straightforward explanation, a forthright discussion of the strengths and

weaknesses of the Milestoning method, and detailed comparison to similar methods.

58* A concise review of enhanced sampling techniques, including all those discussed here, focusing on

biological applications.

59* Another review of enhanced sampling techniques, with a particular focus on forward flux sampling

(FFS).

63** A model study demonstrating the great utility of combining multiple enhanced sampling tech-

niques. The authors use three techniques, each according to its own particular strength, to elucidate

the folding mechanism of a small protein (the FBP28 WW domain).

80* The first application of weighted ensemble sampling to large-scale conformational transitions of a

protein switch (apo and holo forms of calmodulin).
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2.0 THE EFFICIENCY OF THE WEIGHTED ENSEMBLE APPROACH FOR MOLECULAR

ASSOCIATION SIMULATIONS

This chapter is based on a research article previously published as: Zwier, M. C.; Kaus, J. W.; Chong, L. T.
J Chem Theory Comput 2011, 7, 1189–1197.

2.1 INTRODUCTION

Proteins bind their partners in a highly specific manner. Understanding the mechanisms of these bind-

ing events is not only fundamentally interesting, but could also impact fields such as protein engineering,

host-guest chemistry, and drug discovery. Atomistic molecular dynamics (MD) simulations can poten-

tially offer the most detailed views of molecular recognition events, especially when performed with

explicit solvent. However, only up to a microsecond of simulation is practical on typical computing re-

sources, while protein binding events require microseconds and beyond. 1 It is therefore computationally

prohibitive to capture these events by sufficiently long “brute force” simulations. Fortunately, the long

timescales required for protein binding events are not necessarily because the actual events take a long

time; instead, the events may be fast but infrequent, separated by long waiting times.

Path sampling approaches 50,55,64–66,69,70,75,82 aim to capture rare events by minimizing the simu-

lation of long waiting times between events. 83 Weighted ensemble sampling75 is one such approach

which is rigorously correct for any type of stochastic simulation, 78 easily parallelized, and simultane-

ously provides both transition paths and their associated kinetics. 75 Weighted ensemble sampling has

been applied to Brownian dynamics simulations of protein-protein binding, 75 protein-substrate bind-

ing, 77 protein folding, 76 Monte Carlo simulations of large-scale conformational transitions in the molec-

ular switches calmodulin80 and adenylate kinase, 84 and molecular dynamics simulations of alanine

dipeptide in implicit solvent. 68
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Figure 2.1: Molecular recognition systems of this study. From left to right, two methane molecules;

Na+/Cl−; benzene and methane; and K+ ion with 18-crown-6 ether. All systems were immersed in ex-

plicit water molecules. (Prepared with VMD. 105)

We apply the weighted ensemble path sampling approach with explicit-solvent MD simulations. Our

goal is to determine the efficiency of the weighted ensemble approach relative to brute force simula-

tion in sampling molecular associations for a range of well-studied systems: methane/methane, 85–90

Na+/Cl−, 91–100 methane/benzene, 101,102 and K+/18-crown-6 ether 103,104 (Figure 2.1). These systems

were chosen because of their small size and relatively low barriers to association (∼ 2 kB T ); combined,

these features make feasible the simulation of association events by brute force, providing us with op-

portunities to evaluate not only the efficiency of the weighted ensemble approach, but its validity as

well.

2.2 THEORY

2.2.1 Overview of weighted ensemble sampling

Weighted ensemble sampling uses “statistical ratcheting” to efficiently sample rare events using stochas-

tic simulations. 68,75,80,83 To monitor the progress of these simulations toward the rare event of interest

(i.e. molecular association), a progress coordinate between the source (A, unbound) and destination

(B , bound) states is defined by one or more order parameters; this progress coordinate is then divided

into bins. A number of simulations are started in the unbound state A, which are then propagated for

a fixed time τ. After this propagation time, if a simulation has progressed into a bin closer to the desti-

nation state B , its current state is used to start replicas of that simulation; these replicas diverge due to
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the stochastic nature of the underlying dynamics. Alternatively, if the simulation has regressed toward

the source state A, it is effectively terminated. This resampling procedure 78 involving the replication

of productive simulations and termination of unproductive simulations is repeated at fixed intervals (τ,

2τ, 3τ, and so on) until the desired number of rare events (crossings into state B) is sampled. Once a

simulation reaches the destination state B , it is removed from the destination state B and “recycled” as

a new simulation starting from the source state A. As this propagation and resampling procedure is re-

peated, the transition path ensemble — an ensemble of continuous trajectories between the source and

destination states — is generated. As shown in Figure 2.2, some common history is shared among this

ensemble of trajectories, and each trajectory has a maximum length τNτ after Nτ iterations of propa-

gation and resampling. When the trajectories are generated using molecular dynamics simulations, a

stochastic thermostat is required to allow for divergence of trajectories after resampling.

To maintain correct statistics and kinetics of the transition paths, each simulation is assigned an

appropriate statistical weight. When simulations are replicated, their statistical weights are split; when

simulations are terminated for regressing toward the source state A, their statistical weights are merged

into existing replicas; and when simulations are terminated for reaching the destination state B , their

statistical weights are removed from the destination state B and assigned to newly-created replicas in

the initial state A.

2.2.2 Rate constants

Weighted ensemble sampling yields kinetic information as a simulation progresses. After steady-state

probability recycling is attained, the rate constant k is given by the average probability current IB into

the destination state B : 52,75,80

k = 〈IB 〉 (2.2.1)

where the angle brackets indicate a time average. Because the recycling procedure described above elim-

inates all probability from the destination state B at each resampling, the probability current IB may be

approximated as

IB ≈ PB (τNτ)

τ
(2.2.2)

where τ is the weighted ensemble propagation/resampling timestep and PB (τNτ) is probability con-

tained in the destination state at time τNτ (weighted ensemble iteration Nτ) immediately prior to recy-

cling. Since PB (τNτ) must be monitored in order to ensure probability conservation during a weighted

ensemble simulation, the rate constant k is obtained “for free.”
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Figure 2.2: Schematic diagram of weighted ensemble molecular dynamics trajectories. Replication

and termination of simulations occurs at intervals of τ, the propagation/resampling time. Trajectories a

and b are terminated at t = 3τ and trajectory c reaches the destination state at t = 4τ, at which time its

statistical weight is assigned to a newly-created replica which traces out trajectory h; the dotted arrows

indicate a transfer of statistical weight but not history. Trajectories are replicated at at t = τ, t = 2τ, and

t = 5τ. Note that trajectories e, f , and g share common history but are independent from trajectories d

and h, which themselves are mutually independent.
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The partially shared history of weighted ensemble trajectories results in highly correlated probability

current measurements; that is, IB (τNτ) and IB (τ[Nτ − 1]) are not statistically independent. The time

average 〈IB 〉 may be computed in the usual way, but the associated confidence interval (encompassing

the statistical error in the rate constant) must be computed with a method that accounts for the time

correlation within IB , such as Monte Carlo bootstrapping. 75,106,107

On the other hand, the quantity accessible from brute force dynamics is not the probability current

into the destination state, but is rather a set of elapsed times between completed transition events. That

is, brute force simulation does not yield the rate constant directly, but rather the first passage time dis-

tribution. For transitions dominated by a single timescale, this distribution is exponential, and the rate

constant is simply the inverse of the mean first passage time 〈tfp〉: 52

k = 〈tfp〉−1 (2.2.3)

It should be noted that these two methods for determining the rate constant k are alternative mathemat-

ical descriptions of the same underlying physical principles (for an extensive discussion, see Ref. 52).

Thus, rate constants obtained from brute force and weighted ensemble simulations may be directly

compared, given that the same model was used for propagating dynamics in both cases and that the

confidence interval for the rate constant is calculated correctly for the weighted ensemble simulation.

2.2.3 Transition event durations

If a system exhibits rare but fast events, then the transition event duration ted — the amount of time it

takes a transition to complete once it starts — is much less than the mean first passage time 〈tfp〉 (which

includes the waiting time between rare events):

ted ¿〈tfp〉

The cumulative probability distribution of ted, F (ted), is at least approximately an indicator of the extent

of sampling of the transition pathways. Distinct pathways will have associated characteristic transition

durations, 108 and as transition pathways are sampled, F (ted) will become better-resolved. Thus, the

self-convergence of F (ted) is a strong indicator that the transition path ensemble has been adequately

explored.

The cumulative transition event duration distribution F (ted) is built up directly from simulation tra-

jectories simply by noting the time elapsed between exiting the source state A and entering the destina-

tion state B . In the brute force case, a set of event durations is transformed directly into a cumulative
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distribution function in the usual manner (by counting the number of ted less than a specified value):

F (ted) = 1

N

∑
i

h(ted(i )) (2.2.4)

where i indexes transitions, N is the number of transition events observed, ted(i ) is the duration of tran-

sition event i , and h is an indicator function satisfying

h(ted(i )) =
 1 if ted(i ) ≤ ted

0 otherwise

Weighted ensemble simulations, on the other hand, yield not the set of event durations {ted} but a

set {(ted, w)} of transition event durations and corresponding terminal statistical weights. These termi-

nal weights partially encode the probability of arriving at the final state and so a weighted variation of

Equation 2.2.4 must be used:

F (ted) =
∑

i wi h(ted(i ))∑
i wi

(2.2.5)

There are several advantages to describing the transition event duration distribution as an (empiri-

cal) cumulative distribution function. First, rigorous confidence bands may be assigned to empirical dis-

tribution functions, 109,110 allowing one to assign error bars to the entire ted distribution and facilitating

the comparison of simulation results. Second, the number of points Ne in a realization of F (ted) is equal

to the number of unique transition event durations sampled, and as such can be considered a statistical

sample size for the purposes of quantifying sampling, even in the weighted ensemble case. For this same

reason, Equation 2.2.5, despite being cast in a weighted form, describes a formal empirical distribution

function and is therefore an unbiased estimator of the true cumulative distribution function. 110

2.2.4 Relative efficiency of weighted ensemble simulations

Any meaningful metric for comparing the relative efficiencies of weighted ensemble and brute force

simulations must account for not only the computational expense of obtaining an estimate on a quantity

such as the rate constant, but also the uncertainty of that estimate. In other words, an efficiency metric

must take error bars into account. For a given quantity like the reaction rate k, we define the efficiency

of weighted ensemble sampling relative to brute force as

S = t(WE)

teff
(2.2.6)

where t(WE) is the aggregate weighted ensemble simulation time (not overcounting shared history) and

teff is the effective amount of brute force simulation time that would be required to obtain an estimate
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with the same size error bar as that obtained from a weighted ensemble simulation. Consideration of the

error structure of brute force simulations and application of Equation 2.2.6 gives the following efficiency

metrics Sk and Sed for sampling of the association rate constant k and ted distribution, respectively:

Sk = t(BF)

t(WE)

(
∆k∗

(BF)

∆k∗
(WE)

)2

(2.2.7)

Sed = t(BF)

t(WE)

(
Ne(WE)

Ne(BF)

)
(2.2.8)

where t represents total simulation time, ∆k∗ is the width of the 95% confidence interval on the rate

constant k relative to the time average 〈k〉, and Ne is the number of unique time values in the empirical

distribution function F (ted); the subscripts (BF) and (WE) represent values from brute force and weighted

ensemble simulations, respectively. Detailed derivations of Equations 2.2.7 and 2.2.8 are provided in

Sections 2.7.2 and 2.7.3.

2.3 METHODS

2.3.1 Model systems

Four systems were used to test the feasibility of using weighted ensemble sampling with explicit-solvent

MD simulations to study molecular association events. These systems all possess simple, one-dimensional

progress coordinates by which it is possible to unambiguously define “how close to binding” a simula-

tion is at any point in time. All systems were immersed in boxes of explicit water molecules. The model

systems in order of progressively more challenging features are described below.

Methane/methane. This system is a simple example of a hydrophobic interaction. The natural

progress coordinate of this system is simply the center-to-center distance between the two methane

molecules.

Na+/Cl−. This system is a simple example of an electrostatic interaction. The natural progress coor-

dinate of this system is the center-to-center distance between the two ions.

Methane/benzene. Like the methane/methane system, methane/benzene is a model of hydropho-

bic interactions, but unlike the previous two systems, it does not exhibit an effective spherical sym-

metry. However, our brute force simulations of this system revealed that the condensed-phase bound

state involves precession of the methane molecule about the surface of the benzene ring. Therefore, de-
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spite the broken spherical symmetry, the natural progress coordinate for this system is effectively one-

dimensional and was taken to be the distance between the methane carbon and the center of mass of

the benzene carbon atoms.

K+/18-crown-6 ether. This system is a simple example of the binding of a (trivially) rigid substrate

(K+) by a flexible partner (18-crown-6 ether). Like methane/benzene, this system does not exhibit effec-

tive spherical symmetry. However, both simulation103,104 and X-ray crystallography 111 have indicated

that the bound structure consists of the K+ ion co-planar with the crown ether oxygen atoms. The nat-

ural progress coordinate for this system is therefore the distance between the K+ ion and the center of

mass of the ether oxygen atoms.

2.3.2 Simulation details

Both brute force and weighted ensemble simulations were performed using the GROMACS 4.0.5 soft-

ware package. 28 Production dynamics (both brute force and weighted ensemble) were propagated in

the canonical (NVT) ensemble at 300 K using a Langevin thermostat112 (coupling time 1 ps). Van der

Waals interactions were switched off smoothly between 8 and 9 Å; to account for the truncation of the

van der Waals interactions, a long-range analytical dispersion correction113 was applied to energy and

pressure. Real-space electrostatic interactions were truncated at 10 Å. Long range electrostatic interac-

tions were calculated using particle mesh Ewald 114 (PME) summation. Bonds to hydrogen atoms were

constrained to their equilibrium lengths using LINCS, 115 allowing for a 2 fs integration timestep.

Each model system was constructed in its unbound state and solvated in a dodecahedral periodic box

with a minimum 12-Å clearance between the solutes and the box walls. Following a 1000-step steepest-

descent energy minimization, each system was subjected to 20 ps of NVT thermal equilibration followed

by 1 ns of constant-pressure (NPT) density equilibration using a weak isotropic Berendsen barostat116

(reference pressure 1 bar, coupling time 5 ps, and compressibility 4.5×10−5 bar−1). In both equilibration

stages, all heavy atoms were restrained using a harmonic potential. The resulting equilibrated systems

were used as starting points for both brute force and weighted ensemble MD simulations. The initial pair

separations were 10, 10, 17, and 15 Å for methane/methane, Na+/Cl−, methane/benzene, and K+/18-

crown-6 ether, respectively. The GROMOS 45A3 united-atom force field 117 and SPC/E 118 water model

were used for methane/methane and Na+/Cl−, while the OPLS-AA/L force field 119 and the TIP3P 120 wa-

ter model were used for methane/benzene and K+/18-crown-6 ether. Atom type assignments for K+/18-

crown-6 ether are provided in Figure 2.4.
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2.3.3 Brute force dynamics propagation

Brute force simulations for all model systems were started from the endpoints of their respective second-

stage (density) equilibration runs. Each simulation was continued until a sufficient number of tran-

sition events were observed, with solute positions recorded every 10 fs. The methane/methane and

methane/benzene systems were both run as single 1-µs trajectories. Na+/Cl−and K+/18-crown-6 ether

required multiple independent trajectories to observe a sufficient number of transition events; ten inde-

pendent 1-µs trajectories were run for Na+/Cl−, and 100 independent 100-ns trajectories were run for

K+/18-crown-6 ether.

2.3.4 Determination of bound and unbound states

The analysis of brute force trajectories and the construction of weighted ensemble simulations require

unambiguous definitions of bound and unbound states for each system. Because all four model sys-

tems possess one-dimensional progress coordinates, the same protocol for determining these states was

applied to all four model systems. Pairwise condensed-phase interactions can be described by the po-

tential of mean force (PMF) u(r ), the free energy of the system as a function of pair separation r . 121

Taking the zero of energy to be the non-interacting limit, for constant-volume systems u(r ) is given by

the following: 90

u(r )/kB T =−
(

ln
P (r )

r 2 − ln
P (r0)

r 2
0

)
(2.3.1)

where P (r ) is the probability of observing the system at a pair separation r , r0 is the shortest distance

at which the pair is effectively non-interacting (du/dr ≈ 0 for all r > r0), and the factors of r 2 arise from

the transformation between the Cartesian coordinates of the MD simulation and the spherical polar

coordinates in which u(r ) is expressed. For each model system, the PMF u(r ) was determined using

Equation 2.3.1 with pairwise distance probabilities P (r ) taken from the brute force trajectories. The

unbound state A was defined as A = {r : r ≥ r0}, where (as above) r0 is the shortest distance at which

the pair is effectively non-interacting. This definition ensures that binding events observed in brute

force simulations are very nearly statistically independent. The bound state B was readily identified

as being near the global minimum of u(r ), and defined as B = {r : r < rB }, where rB is the separation

at which the global minimum well of u(r ) becomes concave up; that is, B is the basin of attraction of

the global minimum of u(r ). The remainder of progress coordinate space defines a transition region

T = {r : rB ≤ r < r0} wherein the partners are interacting but not definitively bound. PMF curves for each

system are provided in Figures 2.6 – 2.9.
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2.3.5 Determination of weighted ensemble simulation parameters

In addition to definitions of bound and unbound states, a weighted ensemble simulation requires selec-

tion of optimal bin sizes, numbers of replicas per bin, and propagation/resampling interval τ. In making

these selections, the extent of sampling should be maximized (generally meaning more bins and more

replicas per bin) while minimizing the overall computational cost (generally meaning fewer bins and

fewer replicas per bin).

For all four model systems, the potential of mean force was used to determine a bin spacing aimed

at maximizing the “ratcheting” effect of the weighted ensemble approach. Where the PMF was changing

rapidly with respect to pair separation, bin boundaries were chosen such that the crossing of a bin does

not require climbing more than ∼ kB T in energy as indicated by the appropriate PMF. This ensures that

the system can move about the progress coordinate with relative ease. Conversely, in the region where

the PMF is slowly-varying, a constant spacing of bins was adopted. The propagation period τ was then

chosen so that the RMS change in pair separation over a time τ was approximately equal to the width

of the bins in the slowly-varying region of the PMF. This resulted in bins of width ∼ 0.1 – 1.0 Å. Initial

tests indicated that 50 replicas per bin yielded sufficiently precise values for the rate constant k at a

reasonable computational cost, so this value was used for all four model systems. Detailed listings of

the resulting bin boundaries are provided in Figures 2.6 – 2.9, and the remaining weighted ensemble

sampling parameters are summarized in Table 2.4.

2.3.6 Weighted ensemble dynamics propagation

Weighted ensemble dynamics runs used exactly the same simulation parameters (force field, thermostat

parameters, box volume, etc.) as those of the corresponding brute force simulations. As with the brute

force simulations, the initial atomic coordinates and velocities were taken from the end of the equili-

bration phase for each model system. The weighted ensemble sampling algorithm was implemented

in an in-house computer code as described above. Replicas were propagated in parallel on 32 – 96 CPU

cores, requiring a few days to simulate each model system. Both the rate constant k and the (cumulative)

transition event duration distribution F (ted) were monitored every 50 or 100 τ, and the weighted ensem-

ble simulation was terminated when k was constant within uncertainty and F (ted) had converged to

within 95% confidence and remained at that level, as determined by a two-sided Kolmogorov-Smirnov

test 110 (a standard test of the statistical equivalence of two empirical distribution functions). Though

resampling was performed with a period of τ, all analysis of the simulations was conducted at a time res-
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olution of 10 fs (the period with which solute positions were recorded during the underlying dynamics

simulations). The resulting aggregate simulation times for each system are presented in Table 2.5.

2.4 RESULTS AND DISCUSSION

The purpose of this study was to determine the efficiency of weighted ensemble sampling relative to

brute force sampling for association events in four molecular recognition systems. As described above,

both the association rate constant k and the transition event duration distribution F (ted) can be used to

quantify sampling of the transition path ensemble. We compare the efficiency and accuracy of weighted

ensemble simulations relative to brute force simulations in terms of both rate constants and transition

event distributions.

2.4.1 Rate constants

The rate constant (k) values for brute force and weighted ensemble simulations were separately con-

verged to within statistical uncertainty. As shown in Table 2.1, the weighted ensemble simulations are in

qualitative agreement with brute force simulations for all systems; quantitative agreement was achieved

for Na+/Cl− and methane/benzene. The relative efficiency Sk of weighted ensemble sampling of the rate

constant was modest (1.4-fold) for Na+/Cl−, greater than five-fold for the diffusive systems (methane/

methane and methane/benzene), and 300-fold for the most complex system, K+/18-crown-6 ether.

It is not surprising that the rate constant obtained by weighted ensemble sampling for K+/18-crown-

6 ether does not agree with the brute force simulation, as the brute force F (ted) did not converge; it is less

clear why the rate constants for methane/methane are not in agreement. One possibility is that either

the brute force or the weighted ensemble simulation did not sample the full set of waiting times between

rare events. The waiting time tw between subsequent A → B transition events relates the first passage

time tfp and the transition event duration ted according to

tfp = ted + tw

In all cases (including that in which ted and tw are not statistically independent),

〈tfp〉 = 〈ted〉+〈tw〉

23



where the angle brackets denote the expectation (mean) value. Since 〈ted〉 ¿ 〈tfp〉 for all four systems

considered here, the discrepancy between brute force and weighted ensemble simulations in mean

waiting time 〈tw〉 accounts almost completely for the discrepancy in rate constants between simula-

tion techniques (see Table 2.2). It is likely that the overestimated brute force waiting time for K+/18-

crown-6 ether is due to poor convergence of the brute force simulation. Similarly, it seems likely that the

methane/methane brute force simulation underestimated tw for that system. In both of these cases, the

efficiencies presented in Table 2.1 represent lower bounds, as they assume complete convergence of the

brute force simulations.

Implicit in the foregoing analysis is the assumption that the first passage time distribution is expo-

nential:

f (tfp) = k exp(−ktfp) (2.4.1)

F (tfp) = 1−exp(−ktfp) (2.4.2)

where k is the rate constant, f (tfp) is the probability density of the first passage time distribution, and

F (tfp) is its cumulative distribution function. An exponential first passage time distribution would occur

in a system possessing (effectively) a single barrier of constant height. In this case, the rate constant k is

equal to the inverse mean first passage time [cf. Equation 2.2.3]. If the (cumulative) first passage time dis-

tribution F (tfp) is not exponential, then the inverse mean first passage time is at best an approximation

to the true rate constant; conversely, the weighted ensemble approach samples k directly, and so it can

be expected to recover the correct rate constant (within the bounds of statistical uncertainty) regardless

of whether the underlying physical mechanisms lead to an exponential first passage time distribution.

For three of the four model systems (Na+/Cl−, methane/benzene, and K+/18-crown-6), the first passage

time distributions obtained from brute force simulations conform to Equation 2.4.2 to within 95% confi-

dence (see Figure 2.5). For methane/methane, however, the first passage time distribution deviates from

the expected exponential distribution for tfp . 300 ps. This offers an alternative explanation for why the

rate constant values obtained for methane/methane differ between brute force and weighted ensemble

simulations: because the first passage time distribution F (tfp) is not exponential, the rate constant k

obtained from the brute force first passage time distribution as 〈tfp〉−1 may in fact be inaccurate.
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Table 2.1: Brute force (BF) and weighted ensemble (WE) aggregate simulation times t , rate constants (k),

and relative sampling efficiencies (Sk ) for the four model systems.

System tBF tWE kBF (ps−1) kWE (ps−1) Sk

Methane/methane 1 µs 299 ns 1.91±0.10×10−3 1.61±0.06×10−3 7.0

Na+/Cl− 10 µs 3.86 µs 1.86±0.09×10−4 1.82±0.11×10−4 1.4

Methane/benzene 1 µs 369 ns 8.6±0.7×10−4 7.7±0.3×10−4 8.7

K+/18-Crown-6 10 µs 322 ns 2.1±0.3×10−5 4.8±0.2×10−5 300

Aggregate simulation times correspond to the combined length of all trajectories (either brute force or

weighted ensemble) for each system, without overcounting common history in the case of weighted

ensemble simulations. Uncertainties on the rate constants represent 95% confidence intervals. Relative

efficiencies were calculated using Equation 2.2.7.

Table 2.2: Ratios of rate constants k and average waiting times 〈tw〉 for brute force (BF) and weighted

ensemble (WE) simulations.

System k(WE)/k(BF) 〈tw〉(BF) /〈tw〉(WE)

Methane/methane 0.842 0.841

Na+/Cl− 0.977 0.977

Methane/benzene 0.827 0.822

K+/18-Crown-6 1.93 1.94
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2.4.2 Transition event duration distributions

In general, the weighted ensemble simulations were as good or better than brute force simulations in

generating well-resolved (cumulative) transition event duration distributions F (ted). As shown in Fig-

ure 2.3, F (ted) was well-resolved by both brute force and weighted ensemble simulations for all systems

except K+/18-crown-6 ether, for which brute force sampling was not capable of providing a converged

F (ted) distribution. The resolution of distributions from weighted ensemble simulations far exceeds that

of distributions obtained from brute force simulations, as demonstrated in the increased number Ne of

unique transition durations sampled (see Table 2.3). Further, pathways generated by weighted ensem-

ble sampling and having different transition event durations were indeed noticeably different from each

other (see Supporting Information). These are strong indications that the weighted ensemble algorithm

effectively enhances sampling of the transition path ensemble. The relative efficiency Sed of sampling

F (ted) increased with the complexity of the molecular recognition system, ranging from one to three or-

ders of magnitude. The 1100-fold relative efficiency of weighted ensemble sampling for K+/18-crown-6

ether is a conservative estimate, as the referenced brute force simulation had not even reached conver-

gence with respect to F (ted).

As shown in Tables 2.1 and 2.3, Sk < Sed in all four cases. This is partly a consequence of our defini-

tions of the efficiency metrics Sk and Sed (see above and Sections 2.7.2, 2.7.3, and 2.7.4), but also reflects

that the rate constant k is generally more difficult to sample than the set of transition event durations

{ted}. In particular, convergence of the rate constant k requires sampling of all important pathways as

well as a steady state flow of probability through them.

2.4.3 How much sampling is required?

As evident for K+/18-crown-6 ether, the most complex system of this study, it is not always possible to

obtain converged brute force simulations of molecular association events. In such cases, how does one

know if the weighted ensemble approach has achieved sufficient sampling? One can, at least, gauge

the self-convergence of the association rate constants k and the transition event duration distributions

F (ted) obtained from the weighted ensemble simulations. However, self-convergence of these metrics

does not guarantee that the simulation has converged to the true value of k or F (ted).

As an illustration, consider the convergence of F (ted), the probability distribution of the event dura-

tion times ted. Even if two transition event distributions Fτ(1)(ted) and Fτ(2)(ted) obtained by time points

Nτ(1) and Nτ(2) > Nτ(1) in a weighted ensemble simulation are statistically equivalent, this does not nec-
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Figure 2.3: Transition event duration distributions obtained from (A) brute force and (B) weighted en-

semble simulations. The cumulative distribution function (CDF) of the transition event duration proba-

bility for each model system is shown in (C); the brute-force CDF is plotted as a 95% confidence interval

with dotted lines, and the solid line is the CDF obtained from the weighted ensemble simulation.
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essarily indicate asymptotic convergence on the true transition event duration distribution. Because

a weighted ensemble simulation of length Nτ iterations contains only trajectories of maximum length

τNτ, then a the statistical equivalence of Fτ(1)(ted) and Fτ(2)(ted) does not indicate that the entire event

duration distribution has been adequately sampled, merely that all pathways taking time t ≤ τNτ(1) to

traverse have been adequately sampled. Thus, for a weighted ensemble simulation of length τNτ, one

must ultimately decide whether data obtained for time scales less than τNτ are sufficient to provide in-

sights into the systems under study.

2.4.4 How does one choose optimal weighted ensemble parameters?

Efficient use of weighted ensemble sampling involves finding the optimal balance between computa-

tional expense and level of sampling. A poor choice of progress coordinate bins can easily lead to over-

sampling relatively unimportant regions of phase space. A large number of replicas not only aids rapid

exploration of phase space, but also determines the precision of probability current value and thus ki-

netic information; however, the total computational cost of weighted ensemble scales approximately

linearly with the maximum number of system replicas. A short propagation/resampling period τ allows

many opportunities for replicas to split and explore newly-visited regions of phase space and for replicas

to merge to avoid oversampling regions of phase space, but ultimately may not allow sufficient diver-

gence of trajectories to allow for efficient exploration of phase space.

Integral to the construction of a weighted ensemble simulation is the choice of a progress coordinate

that is sufficiently sensitive to quantify “how far along” the reaction is. Any number of relatively low-

cost enhanced-sampling or energy landscape smoothing techniques2,14,122 might be employed to guide

the choice of a progress coordinate, including metadynamics; 123,124 targeted, 125 steered, 126 or acceler-

ated 127 molecular dynamics; or the recently-developed orthogonal space random walk method. 128 A

number of short brute force simulations may be required to determine the average time evolution of the

progress coordinate, which in turn determines the most efficient choices of bin spacing and the propa-

gation/reweighting period τ. Finally, it may be necessary to adjust these parameters “on the fly” during

a simulation, especially for large systems with complex, rough energy landscapes (i.e. proteins) where

long-lived intermediate states may be encountered in the course of a simulation. A discussion of how to

select these parameters in practice is included in Section A.1.
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The complexities and advantages of actively adjusting the numbers of bins, their boundaries, and

the number of replicas in each bin has been discussed in detail; 75 such schemes could be used to detect

replicas that “stall” in certain progress coordinate bins and adjust the weighted ensemble simulation to

compensate. These schemes would not be able to cope effectively with systems possessing intermediate

states with lifetimes comparable to the mean first passage time; such systems do not exhibit the sep-

aration of timescales which weighted ensemble sampling is designed to exploit. However, using ideas

developed from nonequilibrium umbrella sampling, it is possible to reweight phase space density ana-

lytically in order to accelerate the attainment of steady-state probability recycling; 68 this would in turn

accelerate the determination of the rate constant in systems with ted ≈ tfp at the possible expense of

efficient sampling of the transition path ensemble.

Finally, it should be noted that the weighted ensemble approach is but one instance of a class

of “interface-based” enhanced sampling techniques which share a number of strengths and potential

weaknesses; 58,59,83 other such techniques include transition interface sampling (TIS) and variants, 64–66

forward flux sampling (FFS), 69,70 and Milestoning. 50 (See Chapter 1 for a brief overview of these meth-

ods.) All of the methods in this class are rare event sampling methods that divide phase space along dis-

tinct interfaces, and each method is capable of providing realistic kinetic rates. Provided a well-chosen

progress coordinate, these methods are equivalent in principle with respect to the information which

can be obtained from them and the efficiency with which that information is obtained, at least for equi-

librium systems. Among these methods, however, the weighted ensemble approach is uniquely flexible;

in particular, sampling can be maximized while minimizing computational cost both by dividing phase

space according to arbitrary boundaries in any number of dimensions, and by adjusting the level of

sampling within each region (by adjusting the number of simulation replicas within a bin). The cost of

this flexibility, however, is the complexity of determining efficient choices for parameters such as the

progress coordinate, bin boundaries, and the number of replicas per bin. In situations where a reason-

able progress coordinate cannot be determined, a method not dependent on a progress coordinate (such

as transition path sampling 55,56,60 or a recently-developed variation of Milestoning 129) may be neces-

sary. Similarly, if efficient choices for simulation parameters (such as bin boundaries and the number of

replicas per bin) cannot be made in advance and adjustment of these parameters during a simulation

is impractical, then a method like FFS (for which analytical expressions for efficiency as a function of

simulation parameters exist 72,73) may be a better choice.
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2.4.5 Why are efficiencies what they are?

The efficiency of a weighted ensemble simulation is largely determined by weighted ensemble simula-

tion parameters, particularly the propagation/resampling period τ, the choice of progress coordinate(s),

and the locations of bin boundaries. 108 For some systems, brute force simulation is already highly effi-

cient at sampling the molecular association events; this is confirmed by the modestly increased weighted

ensemble sampling efficiencies (Sk and Sed) for methane/methane, Na+/Cl−, and methane/benzene.

However, the fact that the weighted ensemble approach increases rather than decreases efficiency indi-

cates that even in such cases, the weighted ensemble technique is capable of accelerating sampling of

both k and F (ted). On the other hand, the very high relative efficiency of sampling in K+/18-crown-6

ether is particularly encouraging. Despite the small size of the system, brute force MD was incapable of

effective sampling of rate constants and transition event duration distributions for K+/18-crown-6 ether,

almost certainly due to the high (approximately 14 kB T , 8.3 kcal/mol) barrier to dissociation. Weighted

ensemble sampling was able to obtain self-converged values of both the rate constant k and the tran-

sition event duration distribution F (ted). This is primarily because probability recycling completely cir-

cumvents the necessity to climb the 14 kB T dissociation barrier in order to observe another binding

event.

These results point encouragingly to the ability to simulate protein-protein binding events with

weighted ensemble molecular dynamics. With well-chosen bin boundaries, the weighted ensemble

technique should increase sampling efficiency exponentially with increasing barrier heights. This is

because placing bin boundaries sufficiently close to each other effectively linearizes the probability of

crossing a number of bins in succession, rather than surmounting a barrier in one step with a proba-

bility which decreases exponentially with barrier height. 51 As a concrete example, the barrier to associ-

ation in a diffusion-limited protein-protein system is approximately 10 kB T (roughly five times that of

the model systems). If this exponential efficiency scaling holds, then one can expect about 20,000-fold

improvement in sampling for such a system. In other words, if a given computational resource is other-

wise capable of generating 500 ps per calendar day (a substantial but accessible level of computational

power), this efficiency gain corresponds to reaching a timescale of about 1 ms in 100 days, compared to

the 50 ns that would otherwise be possible in the same amount of time. However, since protein-protein

binding pathways involve significant metastable intermediate states (e.g. encounter complexes130), it is

possible for a simulation to “stall” in such a state. As discussed above, several techniques exist which may
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partially ameliorate this difficulty, but in the end, a number of simulations connecting the intermediate

states may be necessary to fully explore binding events in such systems.

2.5 CONCLUSIONS

We have applied the weighted ensemble path sampling approach to molecular dynamics simulations in

explicit solvent, enabling the detailed sampling of rare molecular association events. We have compared

the efficiency of weighted ensemble sampling relative to brute force sampling in simulating association

events of methane/methane, Na+/Cl−, methane/benzene, and K+/18-crown-6 ether. Relative to brute

force simulation, weighted ensemble sampling of these four systems confirms that the weighted ensem-

ble approach reproduces or even improves sampling of both the rate constant k and the distribution

of transition event durations. This improvement is on the order of 300 and 1100-fold, respectively, for

a system exhibiting significant conformational flexibility (K+ binding with 18-crown-6 ether). We ex-

pect efficiency gains to grow with increasing barriers to association. However, the existence of signifi-

cant metastable intermediate states may hinder sampling in such systems, requiring the use of various

enhancements to the weighted ensemble method in order to explore binding events in such systems.

Nonetheless, these results indicate that weighted ensemble sampling in conjunction with MD simula-

tions is likely to allow for the effective determination of transition paths and rate constants for protein

binding events.
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2.7 SUPPORTING INFORMATION

2.7.1 Description of K+/18-Crown-6 Ether Binding Pathways

To further explore the distinct pathways of binding that result in a broad distribution of event duration

times ted, the pathways of binding for the K+/18-crown-6 ether system were examined. Five trajecto-

ries were taken from the weighted ensemble simulation, corresponding to the minimum (Movie S1), first

quartile (Movie S2), median, third quartile, and maximum event duration times. In the shortest trajec-

tory, the K+ ion binds quickly to the oxygens of the ether (Figure 2.10A) and spends a very short time

bound to one or two oxygens before it fully binds to all six oxygens (Figure 2.11A) . In the other four tra-

jectories, the K+ ion spends variable amounts of time at certain distances away from the crown ether

(Figure 2.10B), suggesting that the K+ ion may be penetrating solvation shells prior to binding to the

ether oxygens. Upon approaching the ether, the K+ ion binds to one or two of the ether oxygens (Fig-

ure 2.11B), occasionally moving to another oxygen (or pair of oxygens) before binding fully. Thus, the

amount of time needed to penetrate each solvation shell and the amount of time spent bound to only

one or two oxygens appears to be the primary differences between trajectories having different event

duration times ted.

2.7.2 Derivation of the Relative Efficiency Metric Sk

Our derivation loosely follows that of Huber and Kim in their original discussion of the efficiency of

weighted ensemble sampling. 75 Assuming that binding events in brute force simulations are indepen-

dent, the width ∆A of a confidence interval on any time-averaged quantity of interest A depends on the

number Nobs of transitions observed as

∆A∗ ∝ N−1/2
obs

where

∆A∗ =
∣∣∣∣∆A

〈A〉
∣∣∣∣

is the width ∆A of the confidence interval relative to the mean value 〈A〉. Since the rate constant k

is simply the number of transitions observed per unit simulation time, Nobs ≈ kt , where t is the total

amount of time simulated; thus,

∆A∗ ∝ t−1/2 (2.7.1)
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Table 2.3: Number of unique transition durations Ne and relative efficiency Sed of sampling of the transi-

tion event duration distribution for brute force (BF) and weighted ensemble (WE) simulations. Relative

efficiency was calculated using Equation 2.2.8.

System Ne(BF) Ne(WE) Sed

Methane/methane 1021 2304 7.5

Na+/Cl− 1415 8780 16

Methane/benzene 750 5485 20

K+/18-Crown-6 145 5007 1100

Table 2.4: Weighted ensemble simulation parameters. rB is the maximum separation of the bound state,

r0 is the minimum separation of the unbound state, L is the width of uniformly-spaced bins in slowly-

varying regions of the PMF (see “Methods”), Nb is the total number of bins used in the simulation, and τ

is the dynamics propagation period.

System rB (Å) r0 (Å) L (Å) Nb τ (ps)

Methane/methane 4.00 10.00 0.2 13 0.5

Na+/Cl− 2.80 14.98 1.0 22 5.0

Methane/benzene 5.65 17.00 0.8 15 1.0

K+/18-Crown-6 0.20 11.60 1.0 14 0.5
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This allows us to construct an efficiency metric by asking how long a brute force simulation is re-

quired to obtain the same confidence interval as is obtained from a weighted ensemble simulation. Con-

structing an equality of proportions using Equation 2.7.1,

t−1/2
eff

t−1/2
(BF)

=
∆A∗

(WE)

∆A∗
(BF)

where teff is the effective brute force time required to obtain a confidence interval of relative width∆A∗
(WE)

(as obtained from a weighted ensemble simulation, as by block averaging or bootstrapping) and ∆A∗
(BF)

is the relative width of the confidence interval as obtained from a brute force simulation of length t(BF).

This leads immediately to

teff = t(BF)

(
∆A∗

(BF)

∆A∗
(WE)

)2

We define efficiency as the reciprocal of simulation time (“faster is better”), and thus the efficiency

S of weighted ensemble sampling relative to brute force is the ratio of weighted ensemble and effective

brute force reciprocal simulation times:

S =
t−1

(WE)

t−1
eff

= teff

t(WE)
(2.7.2)

Thus,

S = teff

t(WE)

= t(BF)

t(WE)

(
∆A∗

(BF)

∆A∗
(WE)

)2 (2.7.3)

where t(WE) is the total dynamics time of the weighted ensemble simulation without overcounting shared

history.

Substituting the reaction rate k and the relative width of its confidence interval ∆k∗ for A and ∆A∗

for both brute force (BF) and weighted ensemble (WE) results in the following expression for the relative

efficiency Sk of sampling the rate constant:

Sk = t(BF)

t(WE)

(
∆k∗

(BF)

∆k∗
(WE)

)2

(2.2.7)

Note that efficiency Sk increases with decreasing weighted ensemble simulation time t(WE) or confidence

interval width ∆k∗
(WE).

2.7.3 Derivation of the Relative Efficiency Metric Sed

Again, we assume that transitions between the initial and destination states are independent events oc-

curring with an average rate k (the rate constant), and thus in a brute force simulation of length t we
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expect to see N = kt transition events. Here, k is the (unknown) true rate constant, not the rate constant

determined by either brute force or weighted ensemble sampling.

We then ask, given a brute force simulation with transition event duration (ted) effective sample size

Ne(BF) and a weighted ensemble simulation with ted effective sample size Ne(WE), we ask how long a brute

force simulation would be required to produce an effective sample size of Ne(WE). Proceeding as above

and constructing an equality of proportions from N = kt :

Ne(BF)

Ne(WE)
= kt(BF)

kteff

where teff is the effective brute force simulation time required to produce Ne(WE) transition events. Solv-

ing for teff gives

teff = t(BF)
Ne(WE)

Ne(BF)

and inserting in Equation 2.7.2 gives

Sed = teff

t(WE)

= t(BF)

t(WE)

(
Ne(WE)

Ne(BF)

) (2.2.8)

Note that Sed increases with decreasing weighted ensemble simulation time t(WE) and increasing

weighted ensemble effective sample size Ne(WE).

As it is possible to assign a confidence band to an empirical distribution function, 109 it is possible to

follow the derivation of Sk in a step-by-step manner, replacing the width of the confidence interval by the

width of the confidence band about the empirical distribution function F (ted). The resulting expression

is identical to that of Equation 2.2.8.

2.7.4 Why is Sk < Sed?

The definitions of Equations 2.2.7 and 2.2.8 result in Sk < Sed, in practice. For equal numbers of tran-

sition events, the ratio ∆k∗
(BF)/∆k∗

(WE) < 1 in Equation 2.2.7, since the time correlation in k increases

the statistical uncertainty in k. Conversely, for equal amounts of aggregate dynamics time, the ratio

Ne(WE)/Ne(BF) > 1 in Equation 2.2.8, since the weighted ensemble algorithm effectively eliminates the

waiting time between events that brute force simulation is required to sample. The power of 2 in Equa-

tion 2.2.7 further reduces Sk relative to Sed.
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Table 2.5: Total simulation time required for convergence of weighted ensemble sampling. τ is the dy-

namics propagation period, Nτ is the number of weighted ensemble iterations necessary to achieve and

sustain a 95% confidence level on the transition event duration distribution F (ted), and τNτ is the maxi-

mum continuous trajectory length supported by the WE simulation. The aggregate time corresponds to

the combined length of all trajectories without overcounting common history.

System τ (ps) Nτ τNτ (ps) Aggregate time

Methane/methane 0.5 1000 500 299 ns

Na+/Cl− 5.0 800 4000 3.86µs

Methane/benzene 1.0 500 500 369 ns

K+/18-Crown-6 0.5 1000 500 322 ns

36



HA1

CA

HA2

OAB

HB1 HB2

CB

CC

CD

CE

CF

CGCH

CI

CJ

CK

CL

HC1

HC2

HD1

HD2

HE1

HE2

HF1

HF2

HG1 HG2HH2HH1

HI1

HI2

HJ1

HJ2

HK1

HK2

HL1

HL2

OCD

OEF

OGH

OIJ

OKL

Atom Type Atom Type Atom Type Atom Type
CA 182 CD 182 HG1 185 HJ1 185

HA1 185 HD1 185 HG2 185 HJ2 185
HA2 185 HD2 185 OGH 180 CK 182
OAB 180 CE 182 CH 182 HK1 185
CB 182 HE1 185 HH1 185 HK2 185

HB1 185 HE2 185 HH2 185 OKL 180
HB2 185 OEF 180 CI 182 CL 182
CC 182 CF 182 HI1 185 HL1 185

HC1 185 HF1 185 HI2 185 HL2 185
HC2 185 HF2 185 OIJ 180 K+ 408
OCD 180 CG 182 CJ 182

Figure 2.4: OPLS/AA atom type assignments for 18-crown-6 ether.
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Figure 2.5: First passage time distributions F (tfp) from brute force simulations. The observed distribu-

tions are shown as a 95% confidence interval bounded by dotted lines. Exponential distributions of first

passage times
[
F (tfp) = 1−exp(−ktfp)

]
with rate constant k = 〈tfp〉−1 are shown with solid lines.
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Figure 2.6: Potential of mean force u(r ) for methane/methane associations, given in units of kB T (left

axis) and kcal/mol (right axis). The unbound state A, transition region T , and bound state B are marked

with horizontal arrows. Bin boundaries are marked with vertical lines and tabulated.

39



0 2 4 6 8 10 12 14 16 18

-2

-1

0

1

2

3

4

5

-4

-2

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18

ATB

Pair separation r (Å)

Po
te

nt
ia

l o
f m

ea
n 

fo
rc

e 
u(

r)
 (k

BT
)

Po
te

nt
ia

l o
f m

ea
n 

fo
rc

e 
u(

r)
 (k

ca
l/m

ol
)

Bin boundaries r and potential of mean force u(r ) at each boundary:

r /Å u(r )/kB T r /Å u(r )/kB T
2.80 -2.21 6.90 -0.61
2.88 -1.21 7.90 -0.36
3.00 -0.09 8.90 -0.31
3.10 0.85 9.90 -0.20
3.29 1.93 10.90 -0.15
3.79 1.76 11.90 -0.10
3.94 1.03 12.90 -0.07
4.12 0.12 13.90 -0.04
4.39 -0.96 14.90 -0.02
5.43 -0.97 15.90 -0.01
5.90 -0.35

Figure 2.7: Potential of mean force u(r ) for Na+/Cl− associations, given in units of kB T (left axis) and

kcal/mol (right axis). The unbound state A, transition region T , and bound state B are marked with

horizontal arrows. Bin boundaries are marked with vertical lines and tabulated.
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Figure 2.8: Potential of mean force u(r ) for methane/benzene associations, given in units of kB T (left

axis) and kcal/mol (right axis). The unbound state A, transition region T , and bound state B are marked

with horizontal arrows. Bin boundaries are marked with vertical lines and tabulated.
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Figure 2.9: Potential of mean force u(r ) for K+/18-crown-6 ether associations, given in units of kB T (left

axis) and kcal/mol (right axis). The unbound state A and transition region T are marked with horizontal

arrows. The bound state B = {
r : r < 0.20 Å

}
is not labeled. Bin boundaries are marked with vertical lines

and tabulated.
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Figure 2.10: Distance between the center of mass of the 18-crown-6 oxygen atoms and the K+ ion for (A)

the shortest weighted ensemble trajectory and (B) for weighted ensemble trajectories with first-, second-

(median), third-, and fourth-quartile (maximum) transition event duration times.

43



2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

D
is

ta
nc

e 
(Å

)

0

5

10

15

20

25

0 100 200 300 400 500

D
is

ta
nc

e 
(Å

)

Time (ps)

1st quartile
median

3rd quartile
maximum

(A)

(B)

Figure 2.11: Minimum distance between the K+ and any oxygen of 18-crown-6 for (A) the shortest

weighted ensemble trajectory and (B) for weighted ensemble trajectories with first-, second- (median),

third-, and fourth-quartile (maximum) transition event duration times.
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3.0 COARSE-GRAINED SIMULATIONS OF PROTEIN-PEPTIDE ASSOCIATIONS

The work described in this chapter was performed in equal-authorship collaboration with David Wang,
who performed the simulations themselves and compiled an initial draft of the manuscript which formed
the basis of this chapter.

3.1 INTRODUCTION

The kinetics of molecular recognition events are of long-standing interest to a variety of fields, including

host-guest detection, drug design, and protein engineering. Among these fields, a prevailing assumption

is that the preorganization of the unbound ligand conformation to its receptor-bound conformation will

result in faster association rates than more flexible unbound conformations. This assumption, however,

may be challenged by the prevalence of intrinsically disordered proteins, 131 many of which adopt well-

defined structures only upon binding their partners. In particular, a theoretical study has suggested that

disorder provides a kinetic advantage through a “fly-casting” mechanism. 132 In this mechanism, it is

hypothesized that a flexible, disordered protein has a larger “capture” radius than a preorganized, well-

folded, protein, enabling it to bind its partner weakly, but more quickly at relatively long distances. The

protein then folds as it “reels in” its partner, coupling its folding to the binding process.

To directly test the fly-casting hypothesis, one must compare the association rates of the disordered

and exact, preorganized versions of the protein to the same partner. While a number of experimen-

tal studies have explored this hypothesis, 133–145 none provide definitive proof since it is not possible to

create the preorganized analog of the intrinsically disordered protein without significantly altering its

chemical structure. As a result, many have studied the coupled folding and binding process of intrinsi-

cally disordered proteins using molecular simulations with minimal models that provide residue-level

detail (i.e. Cα models). 146–148 Only one of these studies has compared the binding kinetics of the dis-

ordered and preorganized versions of a protein, focusing on a classic system that has been proposed to

bind via fly-casting: the phosphorylated KID domain and its partner protein KIX. Results from this study
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suggest that the disordered KID domain does indeed have a kinetic advantage over its fully preorganized

analog (∼2.5x faster). However, this advantage is not attributed to a larger capture radius, as proposed in

the fly-casting mechanism, but rather to a fewer number of intermolecular collisions that are required to

form the intended, native complex.

Here, we use molecular simulations to directly compare the association rates for another classic sys-

tem: a peptide fragment (residues 17-29) of the transactivation domain of the p53 tumor suppressor

and its cellular inhibitor, the MDM2 oncoprotein. Upon binding MDM2, the intrinsically disordered p53

peptide adopts an alpha-helical conformation. The mechanism of MDM2-p53 binding has also been of

great biomedical interest since many cancers have been linked to overexpression of MDM2, which in-

activates p53. 149 Our study is novel in several respects. First, we employ a more detailed protein model

than previous simulation studies using the usual, minimal Cα model, but with the addition of coarse-

grained side chains. This level of detail was required since the binding-induced folding of the disordered

peptide into an alpha-helix occurs only when steric effects of side chains are introduced. Second, we

examine the kinetic effects of including hydrodynamic interactions (HI) between the protein residues

in the simulations since these interactions for the disordered and preorganized p53 peptides are poten-

tially different and could thereby result in different kinetics of binding to the MDM protein. Last, but not

least, we apply the “weighted ensemble” path sampling approach75 in conjunction with our molecular

simulations to efficiently generate an extensive ensemble of binding pathways and rigorously compute

association rate constants. In this study, all weighted ensemble simulations were performed using the

open-source, high-performance WESTPA (Weighted Ensemble Simulation Toolkit with Parallelization

and Analysis) software, which exhibits nearly perfect scaling out to thousands of CPUs (see Section A.4).

3.2 METHODS

3.2.1 The Protein Model

All proteins were represented by a residue-level model with coarse-grained side chains in which each

amino acid consists of one Cα pseudo-atom and up to three side chain pseudo-atoms. 150 Using this

coarse-grained model, the MDM2-p53 peptide complex consists of 262 pseudo-atoms, which is ∼32% of

the system size for the corresponding all-atom model (820 atoms). Coordinates for the MDM2-p53 com-

plex were taken from the X-ray crystal structure (PDB code: 1YCR). 151 A Gō-type potential energy func-
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tion152,153 governs the conformational dynamics of the protein model. Bonded interactions between

atoms are modeled by standard molecular mechanics terms:

Ebonded = ∑
bonds

kbond(r − req)2 + ∑
angles

kangle(θ−θeq)2 + ∑
dihedrals

V1[1+cos(φ−φ1)]+V3[1+cos(3φ−φ3)]

(3.2.1)

in which r , θ, φ are pseudo-bond lengths, pseudo-angles, and pseudo-dihedrals, respectively; V1 and V3

are potential barriers for the dihedral terms. Equilibrium bond lengths (req), angles (θeq), and dihedral

phase angles (φ1 andφ3) were taken from the crystal structure. The force constants kbond and kangle were

set to 100 kcal/mol/Å and 20 kcal/mol/radian, respectively.

Nonbonded interactions between residues separated by four or more pseudo-bonds were modeled

in one of two ways, depending on whether or not the residues form (native) contacts in the native, bound

state. A native contact was defined as two heavy atoms located within 5.5 Å of each other in the crystal

structure of the protein complex. Native contact interactions were modeled using a Lennard-Jones-like

potential:

E native
ij = εnative

5

(
σnative

ij

rij

)12

−6

(
σnative

ij

rij

)10 (3.2.2)

in which εnative is the energy well depth for the native interaction, r represents interatomic distance

during simulation, andσnative represents the corresponding distance in the crystal structure. Non-native

interactions were modeled using a purely repulsive potential:

E native
ij = εnon-native

(
σnon-native

ij

rij

)12

(3.2.3)

in which σnon-native
ij and εnon-native are set to 4.0 Å and 0.60 kcal/mol, respectively. The number of in-

tramolecular native contacts for p53 and MDM2 are 63 and 884, respectively. In addition, there are 174

intermolecular native contacts between p53 and MDM2.

3.2.2 Brownian dynamics (BD) simulations

All simulations were performed using a standard Brownian dynamics algorithm, 154 as implemented in

the UIOWA-BD software. 150,155 For simulations that do not include hydrodynamic interactions (HI), the

only nonzero elements in the diffusion tensor are the diagonal elements where pseudo-atom i = j , which

were calculated with the Stokes-Einstein relation Dii = kB T /6πηs a, where ηs is the solvent viscosity (set

to 0.89 cP to represent water at 25 ◦C) and a is the hydrodynamic radius of the pseudo-atom. For sim-

ulations that include HI, the off-diagonal elements (i 6= j ) are also nonzero, hydrodynamically coupling
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pseudo-atoms i and j . The elements of the Dij submatrices were evaluated as described by Frembgen-

Kesner and Elcock. 150 We used a hydrodynamic radius of 3.5 Å, which has been found to be the opti-

mal value for reproducing translational diffusion coefficients of all-atom protein models for the coarse-

grained model used in our study. 150 A time step of 50 fs was used, constraining pseudo-bonds between

residues to their native bond lengths using the LINCS algorithm. 115

3.2.3 Parameterization of the model

To model the degree to which the MDM2 protein and p53 peptide are folded, we tuned the potential

well depth εnative accordingly. For the fully flexible, disordered version of the p53 peptide, we use an

εnative value of 0.05 kcal/mol, which resulted in a low average fraction of native contacts (0.14± 0.05;

uncertainties represent one standard deviation) over five independent, standard Brownian dynamics

simulations of 10 µs each. For the preorganized version of the p53 peptide, we used an εnative value of

1.7 kcal/mol to keep the peptide folded even in the unbound state (average fraction of native contacts:

0.995±0.0096). An εnative value of 0.6 kcal/mol was chosen for the MDM2 protein to ensure that it re-

mains folded throughout 10-µs simulations. Finally, the εnative value for native residue-residue contacts

between MDM2 and p53 was tuned to the minimum value (6.0 kcal/mol) that would enable the fully

disordered peptide to adopt the expected helical conformation when bound to MDM2 and remain in

this state throughout 10 µs of standard Brownian dynamics simulations. This value was set to be the

same for the disordered and preorganized versions of the p53 peptide, assuming that their MDM2 bind-

ing affinities are the same. This assumption is supported by the fact that the distributions of the fraction

of native contacts between MDM2 and the p53 peptide observed from the 10-µs simulations are vir-

tually indistinguishable from one another for the disordered and preorganized versions of the peptide

(Figure 3.1).

3.2.4 Weighted ensemble simulations

To efficiently simulate protein binding events, we used the weighted ensemble (WE) path sampling ap-

proach75 in conjunction with Brownian dynamics (BD) propagation. In the WE approach, a progress

coordinate is set up between the initial and target states (e.g. unbound and bound states, respectively).

The progress coordinate is then divided into bins with the goal of populating each bin with N simula-

tions, or “walkers,” which are each assigned a statistical weight. Starting with N walkers in the initial

state, the dynamics of each walker are simultaneously propagated and occasionally coupled by replica-
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tion and combination events at short time intervals τ based on their progress towards the target state,

splitting and combining the statistical weights, respectively, such that no bias is introduced into the dy-

namics. 78,81 Any walkers that reach the target state are terminated, and their probabilities are recycled

into new initial states, thereby maintaining steady-state conditions. Further, any walkers where the sep-

aration between p53 and MDM2 exceeded 50 Å were similarly terminated and recycled into new initial

states, in order to maintain a constant effective concentration of 3.2 mM.

The simulations were started from 3000 unbound states in which the p53 peptide and MDM2 protein

were separated by b = 35 Å with randomly selected orientations. The unbound conformations of each

binding partner were randomly selected from five 10-µs standard Brownian dynamics simulations of

that binding partner. A one-dimensional progress coordinate was used for WE sampling, consisting of

the root-mean-square deviation (RMSD) of Cα atoms in the p53 peptide after alignment of MDM2. This

progress coordinate was partitioned with a bin spacing of 4 Å. The WE propagation/resampling interval

τ was set to 100 ps, which allowed for at least one walker to traverse a bin after propagation for a time

τ; the number of walkers per bin was enforced to be 48. Trajectories reaching either the bound state

or a “drift” state in which p53 and MDM2 are at least 50!Å apart were recycled to the initial state with

randomly chosen orientations and conformations. The bound state was defined as having a Cα RMSD

of p53 within one standard deviation of the average value obtained from simulations of the bound state

(0.098±0.018 Å). Simulations were run for 2000 – 3000 iterations, requiring ∼6 days using 112 cores at

a time on 2.66 GHz Intel Xeon quad-core processors (325 ns/day/core). This number of iterations was

sufficient for achieving convergence of the computed association rate constants (Figure 3.4). To generate

free energy landscapes of the binding process, each of the two simulations with HI was extended an

additional 500 iterations with no recycling at the bound state (while maintaining recycling at the outer

sphere) to generate state populations under pseudo-equilibrium conditions.

3.2.5 Calculation of rate constants

All rate constants were calculated using the first 2000 iterations (for simulations with HI) or 3000 iter-

ations (for simulations without HI) of the weighted ensemble simulations in which the dynamics were

propagated under steady-state conditions. To calculate a rate constant kij for transitions from state i to

j (i.e. rate constants of transitions from the unbound state to the bound state kon, unbound state to en-

counter complex k1, encounter complex to unbound state k−1, and encounter complex to bound state

k2), we monitor the flux of probability fij carried by WE walkers from state i to state j per unit time, and
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normalize by the fraction of probability pi most recently in state i : 156

kij =
fij

pi
(3.2.4)

To provide internal validation of our computed association (“on”) rate constants kon, we also com-

puted kon using a hybrid approach which combines probability fluxes from WE simulation with the

method of Northrup, Allison, and McCammon for calculating association rates with BD simulations (the

“NAM approach”). 157 Applying the NAM approach involves the creation of two concentric spheres in

which MDM2 is positioned at the center. The radius b of the inner sphere, on which p53 is initially

positioned, is chosen sufficiently large so that the motions of the binding partners are isotropic; here,

b = 35 Å. In addition to being terminated at the bound state, walkers are also terminated at the outer

sphere of radius q = 50 Å (the “truncation sphere”), which marks the boundary between the simulation

region and a region where relative diffusion of p53 and MDM2 is considered analytically rather than by

simulation. The association rate is then given by

kon = kD (b)β

1− (1−β)kD (b)/kD (q)
(3.2.5)

in which kD (r ) is the diffusion-limited rate constant for the two partners achieving a separation r from

an infinite separation and β is the probability that a simulation starting from the unbound state with

a separation of b (35 Å) reaches the bound state before drifting apart to a separation of q (50 Å). As-

suming that the motions of the two partners are isotropic for r > b leads to the Smoluchowski result

kD (r ) = 4πDr , in which D represents the relative translational diffusion coefficient of the two partners

(see Section A.1.2 for a derivation of the relative translational diffusion coefficient in terms of individual

translational diffusion coefficients). Under this assumption, Equation 3.2.5 reduces to

kon = 4πDbβ

1− (1−β)b/q
(3.2.6)

The value for D was computed by evaluating the diffusion coefficient of each binding partner from five

standard 10-µs BD simulations of each partner (a total of 100,000 conformations, sampled every 100 ps).

The β value was estimated using the following equation: 77

β= fbind

fbind + fdrift
(3.2.7)

where fbind is the steady-state flux into the bound state and fdrift is the steady-state flux into the drift

(q > 50 Å) state in the WE simulation.

Uncertainties in the rate constants were computed using a block bootstrapping method on the steady

state fluxes. This method of error analysis is appropriate for a time-correlated data set with an unknown
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distribution. From our dataset of fluxes, we created 10,000 new datasets of the same size as the initial

sample. Each new dataset was generated by randomly selecting, with replacement, fluxes from the orig-

inal dataset. A distribution of means was generated from the new datasets, from which variability was

used to calculate 95% confidence intervals. Because many segments that reach the target states in our

simulations share common history and are time correlated, the assumption of independent events is

only valid when the data is sampled at a frequency at which there is no autocorrelation. Therefore, the

autocorrelation function was calculated for flux data every iteration of weighted ensemble, which pro-

vides an estimate of the correlation time in number of iterations. Bootstrapping is then applied to the

subset of flux information separated by the correlation time. Finally, error analysis and association rate

calculations were performed only after an approximate steady state was achieved (Figure 3.4).

3.2.6 Calculation of percentages of productive collisions

The percentage of successful collisions was calculated by the ratio of the steady-state flux into the bound

state and into a collision state defined by a minimum distance of 5 Å.

3.2.7 Calculation of the “capture” radius

To quantify the extent that the p53 peptide can reach out to contact its partner protein — termed the

“capture radius” — we computed the radius of the longest principal axis of an approximate ellipsoid

surrounding the peptide. A radius of gyration tensor was first constructed as follows:

R =


∑

x2
n

∑
xn yn

∑
xn zn∑

yn xn
∑

y2
n

∑
yn zn∑

zn xn
∑

zn yn
∑

z2
n

 (3.2.8)

where R is the gyration tensor and (xn , yn , zn) are the coordinates of the nth psudoatom assuming the

center of geometry is located at the origin. The eigenvalues of R, {λ1,λ2,λ3}, give the principal moments

of the gyration tensor along the principal axes of the peptide. Assuming λ3 > λ2 > λ1, then the radius of

the longest principal axis, RM , is given by:

RM = 2
√
λ3 (3.2.9)
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3.3 RESULTS AND DISCUSSION

3.3.1 Modeling the binding-induced folding of p53

In order to simulate the MDM2-binding kinetics of the disordered and preorganized versions of the p53

peptide, it is essential to ensure that both versions of the peptide can fold to a similar extent upon binding

the MDM2 protein. In particular, simulations of the native MDM2-p53 complex should be sufficiently

detailed such that the fully flexible, disordered version of the peptide will remain folded. This was not

possible using a minimal Cα protein model; however, the addition of coarse-grained side chains (as de-

scribed in Methods) accomplished this goal, with the average fraction of native contacts of the bound

peptide being 0.80±0.06 (uncertainties represent one standard deviation; see Figure 3.1) over 10 µs of

standard molecular simulations that included HI between protein residues. The steric effects of the side

chains are therefore required for modeling the coupled folding and binding process of the fully disor-

dered peptide.

3.3.2 Binding pathways and free energy landscape

With the aid of the WE approach, extensive sampling of MDM2-p53 binding pathways was obtained

using molecular simulations, yielding 33,393 and 55,842 binding events, respectively, for the disordered

and preorganized versions of the p53 peptide when HI were included in the simulations (Table 3.2).

These binding events resulted from a large, diverse ensemble of 3000 unbound states in which the MDM2

protein and p53 peptide were randomly oriented. While many of these binding pathways share common

histories, a large number of the pathways are fully independent: 399 and 629 pathways for the disordered

and preorganized peptides, respectively.

Interestingly, the free energy landscapes of binding corresponding to these coarse-grained simu-

lations (Figure 3.2) are consistent with those from atomistic simulations (Chapter 4), which reveal a

“funnel-like” landscape near the binding site once the encounter complex is formed. This similarity

in free energy landscapes suggests that the MDM2-p53 binding process may indeed involve a minimally

frustrated free energy landscape that is driven by short-range interactions, as exemplified by the Gō-like

potential employed here.
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3.3.3 Binding kinetics

As shown in Table 3.1, the computed rate constants for MDM2-p53 associations are essentially the same

for the disordered and preorganized versions of the p53 peptide, regardless of whether or not hydrody-

namic interactions (HI) were included. In addition, the association rate constants computed using Equa-

tion 3.2.4 are consistent with those computed using the hybrid WE/NAM approach of Equation 3.2.6,

providing internal validation of the computed rates.

With the inclusion of HI, the resulting association rate constants are ∼3-fold faster than those from

simulation without HI. The increased rate is likely due to the faster relative diffusion coefficient of the

binding partners (∼3.9× 10−6 cm2 s−1 vs. ∼0.5× 10−6 cm2 s−1), which is in good agreement with that

predicted for the corresponding all-atom protein models by the hydrodynamics program HYDROPRO 158

(3.6×10−6 cm2 s−1), confirming the effectiveness of using appropriate hydrodynamic radii to reproduce

translational diffusion coefficients of the corresponding all-atom models. 150 At first glance, the increased

association rate that results when HI is included may appear to be at odds with the findings from a recent

study involving coarse-grained simulations of associations between the proteins barnase and barstar, 159

in which it was found that the inclusion of intermolecular HI in the simulations decreases the association

rate relative to the rate computed from simulations with no HI. Our results are not in conflict with these

results, since our comparison involves the inclusion of full HI (both intramolecular and intermolecular)

relative to the case without HI.

Interestingly, percentages of productive collisions for disordered and preorganized peptides are simi-

lar (see Table 3.1). This result is in contrast to a previous simulation study in which the disordered version

of the KID domain (which at ∼28 residues is about twice as long as the p53 peptide considered here) ap-

pears to require a fewer number of intermolecular collisions than the ordered version to form the native

complex. 148

3.3.4 Does MDM2-p53 binding involve a “fly-casting” effect?

In our molecular simulations, which employ a Gō-type potential, the fully disordered version of the p53

peptide folds only upon binding the MDM2 protein (i.e. folding begins only when ∼40% of the native

MDM2-p53 contacts are formed; see Figure 3.5). We have therefore created the best possible scenario

for observing a fly-casting effect in our simulations. Even so, we observe no significant difference in the

overall association rate constants for the disordered vs. preorganized versions of the p53 peptide. There-

fore, our results do not reveal an overall kinetic advantage of the disordered version of the p53 peptide
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in binding MDM2. These results are consistent with the fact that the rate of binding a high-affinity pep-

tide by a truncated, unfolded version of the Fyn SH3 domain (lacking four carboxyl-terminal residues)

is essentially the same as that of the full-length, folded version of the domain. 160 In addition, it is worth

noting that the kinetic advantage predicted by the original study that proposed the fly-casting mecha-

nism is only up to 1.6-fold for the binding of a single arc repressor molecule to a DNA site. 132 This modest

difference in rates is consistent with a previous simulation study comparing the kinetics of binding the

KIX protein by the disordered vs. preorganized version of the phosphorylated, KID domain. 148 While it is

reported that the binding by the disordered version of the domain is ∼2.5-fold faster, the domain exists in

a much greater range of conformations (i.e. forming ∼30 – 90% of intramolecular native contacts) than

the preorganized version (60 – 90%) for in the bound state defined for the rate calculations (forming 80%

of intermolecular native contacts). The difference in the rates would be expected to be less than 2.5-fold

if the definition of the bound state required the same extent of folding in the KID domain.

Furthermore, the disordered version of the p53 peptide does not appear to have a significantly larger

capture radius than its preorganized analog (Figure 3.3). As monitored by the maximum principal axis

radius (RM ), the most probable capture radius of the disordered peptide is only slightly greater (by 1.3 Å,

∼8.5%) than that of its preorganized analogue. While the disordered peptide achieves a maximum ra-

dius of 6.8 Å (∼41%) greater than that of the preorganized peptide, it also assumes more contracted

conformations, resulting in an average only slightly different from the preorganized case. One potential

explanation for the absence of “fly-casting” may be that the p53 peptide is not sufficiently long to ex-

hibit a significantly larger capture radius in its unfolded state vs. folded state. However, according to the

simulation study involving the much longer, disordered KIX domain (28 residues), any kinetic advantage

resulting from the increased capture radius is negated by the effects of a slower diffusion coefficient,

which is inversely proportional to the capture radius. 148

3.3.5 Efficiency of weighted ensemble simulations

The computation of well-converged association rate constants requires the generation of a large num-

ber of binding pathways, which was greatly facilitated by the use of the WE approach. We estimate the

efficiency of WE simulation over standard “brute force” simulations by considering the number of CPU

hours required to generate the same number of binding events as WE simulation using brute force simu-

lations (on the same computer resource). We approximate binding as a single-exponential process such

that the number of binding events can be estimated by N kt , where N is the number of brute force simu-
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lations, k is the association rate constant, and t is the length of a simulation. If each simulation is ∼2 µs

in length (an amount that can be computed in about a week on a single CPU), then ∼500 of these simu-

lations would need to be run to generate the 629 binding pathways (each from a distinct unbound state)

that resulted from our WE simulations with HI for the disordered p53 peptide. These ∼500 simulations

would require ∼82,500 CPU hours. Our WE simulations of MDM2-p53 binding required only ∼8600 CPU

hours, representing a ∼10-fold gain in efficiency over brute force simulation.

3.4 CONCLUSIONS

We have directly tested the “fly-casting” binding mechanism for a classic system involving an intrinsi-

cally disordered peptide: a p53 peptide and its partner protein, MDM2. In particular, we compared the

MDM2-association rates of the fully disordered peptide with its exact, preorganized analog using molec-

ular simulations. By applying the weighted ensemble path sampling approach, we have simulated, with

high efficiency, an extensive ensemble of binding pathways, with > 30,000 binding events among hun-

dreds of distinct pathways. Based on the association rate constants computed from these simulations,

our weighted ensemble simulations are at least ∼10 times more efficient than standard (“brute force”)

simulations.

The rate constants are essentially the same for both the disordered and preorganized versions of the

peptide, indicating that the flexibility of the peptide has no impact on its kinetics of binding. Fly-casting

is therefore not a significant effect for the MDM2-p53 peptide system, even though the ideal scenario for

this effect was modeled using a Gō-type potential that ensured folding of the peptide only upon binding

MDM2. Our results also do not support the conventional assumption that preorganized ligands should

lead to faster binding than more flexible ligands for the MDM2-p53 peptide system. It appears that the

fully flexible, “disordered” version of the p53 peptide may already preorganize the most critical residues

for binding (i.e. residues that are the most deeply buried upon binding MDM2, forming the greatest

number of residue-residue contacts between MDM2 and p53) by simply linking them together with the

peptide backbone.

Finally, we investigated the effects of hydrodynamic interactions (HI) on the association rate con-

stants. The inclusion of HI results in faster association rate constants due to faster translational diffusion

coefficients of the binding partners.
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Given the general features of our protein model, all of the above conclusions are likely to be relevant

to any protein-peptide system in which long-range interactions are not critical and the peptide is a sim-

ilar length (∼13 residues) and intrinsically disordered, adopting an alpha helix only upon binding the

partner protein.
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Table 3.1: Computed rate constants and percentage of productive collisions from weighted ensemble

simulation of associations of the disordered and preorganized versions of the p53 peptide with the

MDM2 protein, with or without hydrodynamic interactions (HI). The relative diffusion coefficients of

the p53 peptide and MDM2 protein are also reported, computed based on five 10-µs simulations of each

binding partner. Uncertainties represent 95% confidence intervals.

With HI Without HI

Disordered Preorganized Disordered Preorganized

WE kon (108 M−1 s−1) 1.8±0.2 2.3±0.2 0.42±0.05 0.44±0.04

Hybrid WE/NAM kon (108 M−1 s−1) 2.6±0.3 2.6±0.2 0.46±0.05 0.44±0.05

k1 (1011 M−1 s−1) 2.9±0.2 2.5±0.2 3.1±0.8 2.1±0.4

k−1 (109 s−1) 1.4±0.3 2.8±0.2 6.0±2.6 17.5±1.2

k2 (106 s−1) 5.8±0.7 7.4±0.6 1.3±0.2 1.4±0.1

% productive collisions 1.05±0.025 1.18±0.15 0.16±0.07 0.22±0.06

D (10−9 cm2 s−1) 3.91±0.02 3.98±0.02 0.495±0.002 0.495±0.002

Table 3.2: Extent of sampling of binding events.

With HI Without HI

Disordered Preorganized Disordered Preorganized

Number of binding events 33,393 55,842 43,214 102,938

Number of distinct binding pathways 399 629 95 116
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Figure 3.1: Shifts in the probability distributions of the fraction of native contacts of each binding partner

from the unbound to bound state. (A) The disordered p53 peptide exhibits dramatic conformational

change between the unbound (dashed line) and bound (solid line) states. The preorganized peptide was

highly folded even in the unbound state (0.995±0.0096 ) (B) MDM2 becomes slightly more folded upon

binding MDM2. All distributions were generated from five 10 µs runs of standard Brownian dynamics

simulations. Conformations were taken every 100 ps.
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Figure 3.2: Free energy landscapes as a function of the Cα RMSD of the p53 peptide after alignment of

the MDM2 protein (from the crystal structure of the bound state 151) vs. the minimum distance between

the MDM2 protein and p53 peptide. (A) The diffusion of the disordered p53 peptide is nearly barrier-

free. After colliding with MDM2, it climbs a small, but significant, kinetic barrier for rearrangement into

the bound state. (B) The preorganized p53 peptide exhibits similar barrier-free diffusion. In contrast to

disordered p53, it must overcome a large barrier for rearrangement. Data was taken from all trajectories

in weighted ensemble simulations, where conformations were sampled every 1 ps. Energies were cal-

culated as the negative log of the probability in each bin. Probabilities were determined based on the

weights of each walker in weighted ensemble.
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Figure 3.3: Distributions of the “capture” radius, as measured by the maximum principal axis radius RM ,

for both the disordered (dashed line) and preorganized (solid line) p53 peptides. Distributions are taken

from 100 µs of molecular simulations of unbound p53, where conformations are taken every 100 ps.

Figure 3.4: Evolution of MDM2-p53 association rates. The dashed lines indicate the 95% confidence

intervals.
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Figure 3.5: Free energy landscapes as a function of the fraction of native contacts formed within the

p53 peptide vs. between the MDM2 protein and p53 peptide. Conformations were sampled every 1

ps. (A) The flexible p53 peptide remains folds only after a significant portion of the peptide is bound to

MDM2. (B) The preorganized p53 peptide undergoes a small degree of unfolding upon binding before

reassuming its native, bound conformation.
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4.0 ATOMISTIC SIMULATIONS OF PROTEIN-PEPTIDE ASSOCIATIONS

4.1 INTRODUCTION

The complete characterization of protein binding processes has remained elusive to laboratory exper-

iments due to the fleeting nature of transition and intermediate states along the pathways. Molecular

dynamics (MD) simulations can, in principle, provide a “microscope” for viewing these critical biological

processes in full atomic detail and high temporal resolution, but are computationally demanding. While

advances in computer hardware and software have led to notable successes in simulating protein bind-

ing events with either small-molecule inhibitors161–164 or peptides, 165 such “brute force” simulations —

simply running the simulations long enough to capture at least one binding event — are not practical

on typical computing resources. Some efforts have therefore been made to estimate rate constants for

long-timescale processes from relatively short, discontinuous simulations 163,166 with the construction

of Markov state models. 167 However, it is not clear that sufficient sampling has been achieved in these

studies to characterize the free energy landscape of binding.

A promising, alternative strategy for efficiently capturing long-timescale processes is to focus com-

puting effort on the “rare”, or infrequent, functional motions rather than the stable states (e.g. protein

conformational changes upon binding and not on the unbound or bound states) without altering the

underlying dynamics. 83 One such strategy is the “weighted ensemble” (WE) path sampling approach, 75

which can generate continuous trajectories and rate constants for the rare event of interest in a rigor-

ous manner for any type of stochastic dynamics. 78 The WE approach has been used in conjunction with

MD simulations of molecular associations, 81 Brownian dynamics simulations of protein binding 75,77

and protein folding76 and in coarse-grained simulations of large conformational transitions between al-

ternate folded states of proteins. 80,84,168 We have demonstrated that the WE approach can be orders of

magnitude more efficient than standard simulations — in terms of total computing time — in generating

pathways and rate constants of rare events for benchmark systems. 80,81,84,169 To efficiently simulate com-
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plex biological processes that involve metastable intermediates (e.g. protein folding and binding), how-

ever, it is necessary to apply the WE approach with a reweighting procedure for either non-equilibrium68

or equilibrium conditions. 156 The latter enables the simultaneous generation of equilibrium and non-

equilibrium observables, including state populations and rate constants; importantly, states do not have

to be defined in advance to compute rate constants between them. Other rare-events methods (cf.

Refs. 50,58,59,71,170,171), to our knowledge, have not been applied to protein binding.

Here, we apply the WE approach with an equilibrium reweighting procedure 156 (see Section A.3) to

characterize the free energy landscape and kinetics of binding between a peptide fragment of the p53 tu-

mor suppressor and its cellular inhibitor, the MDM2 oncoprotein. The MDM2-p53 peptide complex is a

classic system for studying protein-peptide binding in which the intrinsically disordered p53 peptide 172

adopts a helical conformation upon binding to a well-defined hydrophobic pocket of MDM2. 151 Since

many cancers are related to inactivation of p53 due to overexpression of MDM2, 149 there is great interest

in characterizing the MDM2-p53 binding process in order to determine ways to disrupt the binding. 173

Previous MD simulations of MDM2-p53 peptide binding have focused on solely the unbound and/or

bound states, 174–182 and the final approach of p53 to MDM2 from very short (∼3–5 Å) distances. 183,184

In addition, Brownian dynamics simulations have been used to generate diffusional collisions between

rigid models of the MDM2 protein and p53 peptide to form transient “encounter complex” intermedi-

ates. 185

In this work, we use a standard, fully flexible, all-atom protein model with GB/SA implicit sol-

vent186,187 to simulate the complete MDM2-p53 binding process, including transitions from the meta-

stable encounter complex to the native complex. More than 2000 continuous binding pathways have

been generated starting from an ensemble of >1500 unbound states in which the binding partners are

separated by 30 Å at random orientations. Our results demonstrate that the WE approach can simulta-

neously and efficiently generate both free energy landscapes and rigorous rate constants for a protein

binding process.

4.2 RESULTS AND DISCUSSION

We have used the weighted ensemble (WE) path sampling approach75,156 with an equilibrium reweight-

ing procedure 156 to generate pathways, free energy landscapes, and rate constants for associations and

dissociations between an N-terminal p53 peptide (residues 17 – 29) and the MDM2 oncoprotein (resi-

63



dues 25 – 109). This approach couples thousands of parallel trajectories to ensure uniform coverage of

a pre-selected progress coordinate without any bias in the dynamics of the simulation. 75,80 Consistent

with previous simulation studies of MDM2-p53 interactions, 178–181,183,184 our model of MDM2 is a trun-

cated version of the protein (residues 25-109) that lacks a mobile N-terminal region that is unresolved in

the crystal structure 151 and functions as a “lid“ over the p53 binding cleft. 188

4.2.1 Free energy landscape of binding

Starting from >1500 well-equilibrated unbound states (see Figure 4.4 and “Methods” for details), our WE

simulation our WE simulation resulted in a thorough exploration of the space around the MDM2 protein

by the p53 peptide (Figure 4.5). The simulation generated a total of 296 continuous binding pathways

for the p53 peptide and MDM2 protein and was completed in ∼15 days using ∼3,500 CPU cores at a

time on the XSEDE Stampede supercomputer (aggregate simulation time of ∼120 µs). Progress toward

binding was monitored with an RMSD-based progress coordinate and the bound state definition was

refined prior to kinetics analysis (see “Methods” and Figure 4.7). Two thirds (∼80 µs) of our ∼120 µs of

aggregate dynamics are involved in binding pathways, with ∼10% of the diffusional collisions between

the p53 peptide and MDM2 protein being productive (i.e. resulting in the native complex). All ∼1500 of

our initial unbound configurations of p53 and MDM2 contributed to binding, including non-helical p53

conformations (Figure 4.4) and configurations where p53 did not have a direct approach to the binding

pocket. The free energy landscape of the simulation as a whole (Figure 4.1A and B) and the portion of

the free energy landscape explored by trajectories contributing probability flux to binding events (Fig-

ure 4.1C) are quite similar, indicating that we have effectively sampled the portion of the free energy

landscape relevant to binding.

The free energy landscape (Figure 4.1A and B) of binding between the p53 peptide and MDM2 pro-

tein appears to be “funnel-like”, involving multiple binding pathways going down a free energy gradient.

In particular, after diffusive collisions of p53 and MDM2 form a metastable “encounter complex’ inter-

mediate, rearrangement of this encounter complex to the bound state is largely downhill. The idea of a

funnel near the protein binding site has been suggested by others 189 within the context of lattice-model

simulations 190 and docking studies 191–193 to rationalize the fact that protein-protein associations occur

at rates which are > 103 times faster than would be expected from the collision frequencies of spheri-

cal particles with specific docking constraints (∼103 M−1 s−1). 194 Importantly, the existence of a binding

funnel has been recognized as a requirement for robust docking of small-molecule inhibitors to protein
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drug targets. 195 Our atomistic simulations of protein binding pathways provide direct confirmation of

the binding funnel for a classic protein-peptide interaction.

4.2.2 Binding affinity and rate constants

Although the durations of successful binding trajectories range from ∼2.5 ns to ∼20 ns, the computed

association (“on”) rate constant is kon = 7.1 × 107 M−1 s−1 (with a 95% confidence interval of kon =
(3.5, 11.5)×107 M−1 s−1), suggesting that the protein binding process involves true rare events, i.e. the

actual duration of the binding transition itself is orders of magnitude less than its mean passage time.

This kon value is ∼10x slower than the only experimentally measured kon for the MDM2-p53 complex,

which involves the full-length MDM2 protein (9.2× 106 M−1 s−1). 196 As evident in Figure 4.2, the rate-

limiting step for MDM2-p53 binding (in the absence of the flexible MDM2 lid) is the formation of the

transient encounter complex, which is diffusion-controlled (> 105 M−1 s−1). 197 This step is then followed

by relatively rapid conformational rearrangements of the encounter complex to the native complex (for

a representative pathway, see Figure 4.3).

The faster kon computed for MDM2-p53 binding with the truncated MDM2 protein relative to the

experimental kon with the full-length protein likely results from the constitutively open binding cleft in

truncated MDM2 in contrast to the ∼10% open population in full-length MDM2. 198 Based on NMR stud-

ies, it has been demonstrated that the open state is in a slow dynamic equilibrium (>10-ms timescale)

with the closed state and that the only significant structural differences between these states are in the

flexible MDM2 lid region. 198 Furthermore, these studies have shown that the open state gives rise to a set

of resonances that is nearly identical to the single set of resonances observed for p53-bound MDM2, re-

flecting a shift of the conformational equilibrium towards the open state upon binding the p53 peptide.

If one assumes that binding only occurs when the lid is open (i.e. 10% of the time), our measured rate de-

creases by an order of magnitude, to kon =∼ 7×106 M−1 s−1, which coincides with the experimental value.

It should also be noted that our computed kon is likely faster than experimental measurements due to

our use of an implicit solvent model, since the frictional collision frequency is uniform throughout this

model. In particular, it has been proposed that the friction between a ligand and the solvent increases as

the ligand approaches a hydrophobic binding pocket, slowing down its rate of association. 199

In principle, an equilibrium WE simulation can simultaneously provide both association and dis-

sociation (“on” and “off”) rates. However, since our WE setup (e.g. progress coordinate, scheme for

combining trajectories, etc.) was focused on sampling association events, we did not observe a sufficient
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number of dissociation events to directly compute the koff value. Instead, we estimated koff as konKD

(using our computed kon of ∼ 7× 107 M−1 s−1) and computed KD directly from the populations of the

unbound and bound states sampled by our simulation. The computed KD = 60 nM is within a factor

of 2.5 of the experimentally measured value [121 nM200] for association of the p53 peptide to the same

truncated MDM2 protein in our simulation. The resulting koff = 4.3 s−1, which is within ∼2-fold of the

experimentally measured value for dissociation of the p53 peptide from the full-length MDM2 protein

(2 s−1). 196

4.2.3 The role of p53 residue F19

To further characterize the encounter complex, a free energy landscape was generated as a function of

the heavy-atom RMSD of three key “anchor” residues of the p53 peptide from its MDM2-bound crystallo-

graphic pose after alignment of (a) MDM2 and (b) itself. The anchor residues — F19, W23, and L26 — are

the residues of the p53 peptide that become the most buried upon binding MDM2. These residues have

been found by experimental mutagenesis studies to be crucial for binding. 196 About 70% of the confor-

mations in the encounter complex state feature burial of the p53 residue F19 at the p53-MDM2 interface

(Figure 4.8 for details), suggesting that F19 may be a kinetically important residue for MDM2-p53 bind-

ing. This result is consistent with experiments which have found that an F19A mutation of p53 abolishes

MDM2-p53 binding. 201 In addition, simulations involving the final approach of the F19A p53 peptide

have found that the peptide is unable to anchor into the binding cleft, sliding on the MDM2 surface in

a nonspecific manner instead. 202 Such deeply buried residues have been proposed to function as “an-

chors” that smooth out the binding process by avoiding kinetically costly structural rearrangements. 203

4.2.4 Efficiency of WE simulation

To estimate the efficiency of the WE sampling relative to brute force simulation, we focus on the amount

of computing time required on the same computing resource (XSEDE’s Stampede) to estimate the rate

constant for the longest timescale process, i.e. dissociation events, which occur > 104-fold more slowly

than the association events. Based on our estimated koff, the mean first passage time for unbinding is

∼0.2 s. To generate just a single dissociation event, ∼7×108 CPU hours would be required for a brute

force simulation; using 3500 CPU cores at a time, the simulations would require ∼26 years of wall-clock

time to complete. The estimation of koff is clearly not tractable in this case, particularly since multi-

ple dissociation events would be needed. Our WE simulation required only ∼1 million CPU hours and
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provided reasonable estimates of the KD, kon, and koff as well as a well-resolved free energy landscape.

In estimating the koff value alone (as well as KD from which koff is computed), our WE simulation is

∼1000-fold more efficient than brute force simulation. Since our simulation also generates a free energy

landscape of binding, which would not be well-resolved by the brute force simulations, this efficiency is

reasonably conservative.

4.3 CONCLUSIONS

We have used the WE path sampling approach 75 with an equilibrium reweighting procedure 156 to sim-

ulate the binding between an N-terminal peptide fragment of the p53 tumor suppressor with the MDM2

oncoprotein in atomic detail. Our simulation generated about 300 continuous binding pathways, result-

ing in computed kon, koff, and KD estimates consistent with experiment. This encouraging agreement

suggests that current simulation models such as the one used in this study [AMBER ff99SB-ILDN 204 with

GB/SA implicit solvent 186,187] are capable of identifying the native, bound state of the MDM2-p53 system

and providing realistic kinetics as well as thermodynamics.

The resulting free energy landscape provides the first confirmation (to our knowledge) from unbi-

ased, atomistic simulation that protein binding pathways can follow a “funnel-like” landscape, which

has long been an important assumption of molecular docking strategies for virtual screening and drug

discovery. In the absence of the N-terminal flexible lid in MDM2, MDM2-p53 binding is diffusion lim-

ited due to the rate-limiting formation of a metastable, encounter complex state, which subsequently

undergoes rapid rearrangement to the native, bound state. A key feature of the encounter complex state

is the anchoring of the p53 residue, F19, into the binding cleft of MDM2, suggesting that F19 may be a

kinetically important residue for MDM2-p53 binding.

Our WE simulations simultaneously provided pathways and equilibrium state populations in atomic

detail with rigorous rate constants for a complex biological process, i.e. protein-peptide binding, in ∼15

days on a supercomputer, which is orders of magnitude more efficient than brute force simulations.

The results suggest that rare-event strategies like WE could become an important technique for modern

biophysics.
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4.4 METHODS

4.4.1 Weighted ensemble (WE) simulation

We simulated the association between the MDM2 protein (residues 25 – 109) and p53 peptide (residues

17 – 29) using the WE approach75 with an equilibrium reweighting procedure, 156 as implemented in the

open-source, high-performance WESTPA (Weighted Ensemble Simulation Toolkit with Parallelization

and Analysis) software (see Section A.4). In this approach, a large number of simulations, or "walkers",

are started in parallel from the initial, unbound state and evaluated for replication or combination every

τ (according to the standard WE algorithm75) to maintain the desired number of walkers per bin along a

progress coordinate towards the target bound state; in our simulations, we used a τ value of 50 ps. All WE

simulations were performed by applying the equilibrium reweighting procedure 156 at regular intervals

of τ for the first half of the simulation to accelerate convergence in the sampling of thermodynamics and

kinetics of association. This procedure (outlined in Section A.3) uses the local convergence of kinetics to

properly redistribute weight across the entire progress coordinate space, and is required for accurate and

efficient equilibrium WE simulations in the presence of metastable intermediate states. 68,156 As a test of

simulation convergence, no equilibrium reweighting was applied in the second half of the trajectory to

ensure that the results remain unchanged in this part of the trajectory.

To extensively sample the unbound conformations of each binding partner, we performed a separate

WE simulation (with equilibrium reweighting) of each binding partner starting from its coordinates in

the crystal structure of the native MDM2-p53 complex (PDB code: 1YCR) 151 (the MDM2 protein was

capped with an acetyl group, with a charged C-terminus; the p53 peptide was capped with acetyl and

NH2 groups). These simulations involved the use of a one-dimensional progress coordinate consisting of

a heavy-atom RMSD of protein/peptide from its conformation in the native complex, increasing towards

10 Å. The coordinate was partitioned with a bin spacing of 0.1 Å; a total of 32 walkers per bin was enforced

throughout the simulations. Initial, unbound states for the binding simulations were then generated

by selecting conformations of each binding partner according to its probability from the last iteration

of the WE simulation and randomly orienting the partners with respect to each other at a separation

of 30 Å to yield ∼6.2 million possible pairs of unbound conformations of MDM2 and the p53 peptide.

These millions of walkers in the initial, unbound state were then reduced to ∼1500 walkers by assigning

the walkers to appropriate bins along the two-dimensional progress coordinate intended for the binding

simulation and combining walkers with small weights according to the standard WE algorithm 75 to yield
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8 walkers per occupied bin. This progress coordinate consisted of decreasing heavy-atom RMSDs of the

p53 peptide relative to its MDM2-bound crystallographic pose 151 following alignment on (a) MDM2 (to

monitor the extent of binding) and (b) itself (to monitor the extent of preorganization of the peptide for

binding). The coordinate was partitioned with a bin spacing of 0.2 – 2 Å in MDM2-aligned RMSD and

0.5 Å in p53-aligned RMSD. Using this two-dimensional progress coordinate, a total of ∼400 iterations

were performed to generate binding pathways, with a maximum trajectory length of ∼20 ns. After ∼200

WE iterations (about 57 µs of aggregate simulation time), both the energy landscape in the progress

coordinate (Figure 4.9) and the association rate (Figure 4.10) were reasonably converged. All analysis

was performed using the latter half of the simulation with conformations sampled every picosecond.

4.4.2 Propagation of dynamics

Dynamics in the WE simulation were propagated using the GROMACS MD engine (version 4.5.3) 28 along

with the AMBER ff99SB-ILDN force field204 and a generalized Born/surface area (GB/SA) implicit sol-

vent model 186,187 (Born radii calculated according to the OBC method 205). The GROMACS 4.5.3 source

code was modified to include the electrostatic effects of a uniform monovalent salt concentration on

the free energy of solvation (as employed in GB/SA calculations) according to a Debye-Hückel screening

expression. 205,206 Consistent with stopped-flow kinetics experiments, 196 the ionic strength was set to

150 mM. To maintain a constant temperature of 25◦ C, a Langevin thermostat112 was used with a water-

like collision frequency of 58 ps−1 [calculated from the self-diffusion coefficient of water 207]. The use

of a stochastic thermostat is required for WE sampling with MD simulation since the dynamics of the

simulation “walkers” must diverge when the walkers are replicated. To enforce a constant effective pro-

tein/peptide concentration (3.2 mM) while maintaining equilibrium conditions, the momenta of both

the MDM2 protein and p53 peptide in the trajectories were reversed whenever the minimum distance

between the MDM2 protein and p53 peptide was greater than 50 Å and the center-of-mass distance

between the protein and peptide was increasing. Bonds to hydrogen atoms were constrained to their

equilibrium lengths with the LINCS algorithm, 115 which permitted the use of a 2 fs integration time step.

Nonbonded interactions were truncated at 16 Å.

4.4.3 State definitions

The definition of the bound state (Figure 4.7, A and B) was refined based on the energy landscape ob-

tained from the WE simulation and confirmed by a separate control simulation that was started from the
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bound state (Figure S2); the average heavy-atom RMSD of the overall bound state from the correspond-

ing crystal structure 151 was 2.5± 0.5Å (the uncertainty represents an approximate 95% confidence in-

terval). Consistent with previous Brownian dynamics simulations of protein-protein association, 208 the

encounter complex through which all binding pathways pass was defined as a specific complex (with

at least one intermolecular native contact and a certain extent of binding by the p53 anchor residues)

as delineated in Figure 4.7C. The unbound state was defined as a p53-MDM2 separation of > 20 Å. Rate

constants for state-to-state transitions were computed as described below and were not particularly sen-

sitive to the choice of state boundaries.

4.4.4 Rate calculations

The rate constant kij between states i and j is computed using the following:

kij =
fij

pi
C−1

eff

where fij is the flux of probability carried by walkers originating in state i and arriving in state j and

Ceff is the effective concentration of binding partners, calculated as Ceff = 1/[(4/3)πr 3NA] where r =
50 Å is the radius of the simulation region and NA is Avogadro’s number. (In these simulations, Ceff =
3.2 mM.) Normalization by pi amounts to a separation of equilibrium fluxes into multiple steady-state

fluxes, and is what allows us to extract rate constants corresponding to steady state experiments from

equilibrium data. 209 The conditional flux fij from state i to state j is evaluated by tracing the continuous

trajectories generated by the WE approach and noting when transitions from state i to state j occur;

if such a transition occurs any time within iteration Ni of WE sampling, then that transition generates

a contribution w/τ to the conditional flux fij (Ni ) from state i to state j arriving within iteration Ni ,

where w is the weight of the walker at the time of the transition. These flux values may be correlated in

time (Ni ) so, as done by others, 75 uncertainties in the rate constants kij were computed using a Monte

Carlo bootstrapping strategy. 106 In particular, bootstrapping was used to first determine the correlation

time tc of fij , representing the maximum lag time for which the autocorrelation of flux was statistically

significant. The fij measurements were then averaged in blocks of length tc , and the averages of the

blocks are used as input for another bootstrap to determine the 95% confidence interval of the mean

flux. This procedure reduces to block averaging210 in the limit of large effective sample size, but will

properly account for non-normality of the sampling distribution of the mean at smaller effective sample

sizes.
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4.4.5 Dissociation constant calculation

We calculate the dissociation constant KD as

KD = [unbound state]2

[bound state]

= [Punbound]2

[Pbound]
Ceff

where Punbound and Pbound are the probabilities of being in the unbound or bound states and Ceff is

the effective concentration, calculated as described above. Estimating Punbound and Pbound from our

simulation requires consideration of the Jacobian contribution to the volume of configuration space

subtended by each state. As the Jacobian of the bound state described above is difficult to determine, we

instead use the distance r of the most buried atom of p53 W23 to its position in the minimized crystal

structure. We then create a histogram of r from the positions of all walkers in the latter half of the WE

simulation, then divide the histogram by r 2 to account for the Jacobian term in going between the three-

dimensional Cartesian coordinates of W23 position and the one-dimensional distance r to its position

in the minimized crystal structure. We then normalize the histogram and integrate over the regions

corresponding to the bound state (r < 1.0 Å) and the unbound state (25 Å < r < 60 Å) to yield Pbound and

Punbound respectively. These states are determined by inspection of the potential of mean force along r

(Figure 4.11) and are conservative (as small as possible for the bound state and as large as possible for

the unbound state). The values of KD and koff thus obtained are conservative and are not particularly

sensitive to the particular boundaries chosen.
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Figure 4.1: Landscapes for free energy of p53-MDM2 binding. The landscape of binding is funnel-like

(A), as any trajectory that surmounts the barrier to initial association faces a downhill rearrangement (B)

to the bound state. A representative continuous binding pathway is superimposed on the free energy

landscape in (B) (see also Movie S1). Fully two-thirds of our 120 µs of dynamics are involved in binding,

and the energy landscape obtained from trajectories contributing flux to binding (C) matches that of all

trajectories (B). The binding RMSD of p53 anchor residues was defined as the heavy atom RMSD of the

three key hydrophobic residues of p53 that are deeply buried upon binding the MDM2 protein — F19,

W23, L26 — evaluated after alignment of the heavy atoms of MDM2.

Unbound BoundEncounter Complex

1.1 × 108 M-1 s-1

 < 2 × 106 s-1

4 × 105 s-1

kon = 7.1 × 107 M-1 s-1

 < 2 × 107 s-1

koff = konKD = 4.3 s-1KD = 60 nM

Figure 4.2: Kinetic mechanism for binding of p53 to MDM2 binding. Diffusion-limited collisions result

in the formation of a metastable encounter complex (center), which rapidly interconverts with the bound

state (right). Measuring the populations of the bound and unbound states allows us to determine a KD,

which in turn allows us to estimate the overall koff.
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Figure 4.3: Continuous p53-MDM2 binding pathway obtained from WE simulation, superimposed on

the free energy landscapes of binding: binding RMSD vs. minimum p53-MDM2 separation (upper left)

and preorganization RMSD of the p53 peptide vs. binding RMSD (lower left). The preorganization RMSD

reflects the similarity of the p53 peptide to its conformation in the minimized crystal structure, and was

calculated as the heavy-atom RMSD of the three key hydrophobic residues (F19, W23, and L26) of p53

after alignment on all heavy atoms of p53. At the beginning of the WE simulation (1), the p53 peptide

(gold) is separated from MDM2 (silver) by 30 Å. After diffusing to an encounter complex (2), p53 residue

W23 (blue) buries in its native position (3) while F19 (red) is buried in a non-native position. The p53

peptide then rearranges to the bound state (4), with F19 (red), W23 (blue), and L26 (green) buried in their

native, bound-state positions. This trajectory is also illustrated in Movie S1.
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Table 4.1: Rate constants and 95% confidence intervals for p53-MDM2 association.

Initial state Final state Rate Lower bound Upper bound Unit

Unbound Bound 7.1 3.5 11.5 ×107 M−1 s−1

Unbound Encounter 1.1 0.9 1.3 ×108 M−1 s−1

Encounter Bound 3.8 2.0 5.9 ×105 s−1

Bound Encounter 8×104 0 2×107 s−1

Encounter Unbound 8×103 0 2×106 s−1

In
cr

ea
si

ng
 R

M
SD

Increasing RMSD

Figure 4.4: Diversity of p53 initial conformations. The heavy atom RMSD of p53 (after alignment on

the heavy atoms of p53) increases both left to right and bottom to top. The minimized crystal structure

conformation is at the lower left.
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Figure 4.5: Locations visited by p53 center-of-mass (red) relative to MDM2 (blue) over the course of the

WE simulation (about 2 million conformations, sampled every 50 ps).

(A) (B)

Figure 4.6: Sampling of initial states for unbound (A) p53 and (B) MDM2. For p53 (A), WE (solid line)

samples unbound p53 conformations substantially better than 10 µs of brute force sampling (dotted

line).
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Figure 4.7: State definitions for p53-MDM2 binding as refined from WE simulations. The bound state

identified in the binding simulation (A) was confirmed by a separate control simulation which yielded a

similar energy landscape (B) as that obtained from the binding simulation. The encounter complex (C)

was defined as having at least one native p53-MDM2 residue-residue contact. Binding and preorgani-

zation RMSDs were defined as the heavy-atom RMSDs of p53 relative to the minimized crystal structure

after alignment on MDM2 or p53, respectively.
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Figure 4.8: Burial of p53 residue F19 in the encounter complex. The buried (SASA < 12 Å2, boxed at

left) and unburied (124 Å2 < SASA < 168 Å2, boxed at center) states were defined as the range of SASA

values within kT of the minima of the PMFs of F19 burial in the encounter complex and entire ensemble,

respectively. Integration of the encounter complex PMF over these regions gives the relative populations

of buried and unburied F19.
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Figure 4.9: Evolution of the probability distribution of progress coordinate values for (A) the “binding”

RMSD (heavy-atom RMSD of the p53 peptide after alignment on MDM2 heavy atoms) and (B) the “pre-

organization” RMSD (heavy-atom RMSD of p53 after alignment on itself). Both probability distributions

were relatively stable at 200 iterations of WE resampling. For reference, 200 iterations of WE corresponds

to about 58 µsof total sampling, and 396 iterations (the end of the WE simulation) corresponds to about

120 µs.
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Figure 4.10: Evolution of flux into the bound state, plotted for both the RMSD-based bound state defi-

nition described in the main text (blue), as well as for a definition based on the burial of the 3 key hy-

drophobic residues (red). In the latter case, the bound state was defined as F19 burial > 25 Å2, W23 burial

> 50 Å2, and L26 burial > 50 Å2. The shaded regions represent 95% confidence intervals as determined

by blocked bootstrapping; overlap indicates the agreement between the binding rates as determined

by the two bound state definitions. Though the rate as determined from the RMSD-based bound state

definition is slightly decreasing, the rate as determined from the burial-based bond state definition has

stabilized, as is evident from the constant lower bound of the 95% confidence band.
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Figure 4.11: Potential of mean force of most buried atom of W23 to its minimized crystal structure po-

sition. The vertical lines mark the boundaries used to define the bound and unbound states for the KD

analysis. These boundaries were determined by inspection of the PMFs and chosen to minimize the ex-

tent of the bound state and maximize the extent of the unbound state, providing a conservative estimate

of KD. The KD thus obtained was not particularly sensitive to the choice of these boundaries.
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5.0 CONCLUSIONS AND FUTURE DIRECTIONS

As discussed in Chapter 1, there remains a need for enhanced sampling approaches to reach long bi-

ologically interesting timescales with molecular dynamics simulations. Despite the steady increase of

computer power, the advent of GPU-augmented computing, and even the creation of a supercomputer

hand-tuned for MD (Anton211), interesting biological processes beyond the millisecond timescale are

not accessible with molecular dynamics simulations (cf. Figure 1.1). The longest, most detailed brute

force simulations of microsecond-scale protein folding events performed to date have obtained only

about ten folding events for each of the twelve small, fast-folding proteins studied. 212 Similarly, the

longest, most detailed brute force simulation of protein-small molecule associations obtained less than

five binding events for each of two drug-protein systems. 162

We showed in Chapter 2 that weighted ensemble molecular dynamics simulations can increase the

efficiency of sampling rare molecular association events by orders of magnitude. The degree to which

weighted ensemble simulations are accelerated relative to brute force depends on the heights of barriers.

Low-barrier systems see little acceleration relative to brute force simulation, but higher-barrier systems

see substantial improvement (two to three orders of magnitude, as a lower bound). Weighted ensemble

simulations reproduced brute force results in all cases, providing explicit confirmation that the formal

exactness of WE 78 translates effectively to actual simulations.

Encouraged by these results, in Chapter 3 we extended our use of weighted ensemble sampling to a

more complicated system: the association of a 13-residue fragment of p53 to MDM2 using a coarse-

grained model. The association rate for p53-MDM2 binding agreed very well with the experimental

value, indicating the utility of relatively simple structure-based potentials in examining the kinetics of

protein-peptide associations. We directly tested the “fly-casting” mechanism by simulating association

between MDM2 and both highly flexible and rigidly preorganized p53. The “fly-casting” mechanism hy-

pothesizes that intrinsically disordered binding partners have a kinetic advantage owing to larger capture

radii and subsequent coupled folding and binding. 132 We observed no significant difference in associ-
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ation rates between MDM2 and preorganized or unstructured p53, demonstrating that the fly-casting

mechanism is not a significant effect in binding between MDM2 and the p53 peptide considered here.

Hydrodynamic interactions increase the computed association rates by a factor of ∼4 – 5, due to the in-

creased remarkably, mostly due to changing the translational diffusion coefficients that dictate the rate

at which diffusional encounters between p53 and MDM2 occur.

All-atom simulations of p53-MDM2 binding were considered in Chapter 4. Using all-atom molec-

ular dynamics simulations in GB/SA implicit solvent, we obtained ∼300 binding events and the asso-

ciation rate and free energy landscape of p53-MDM2 binding. Our definition of the bound state was

obtained from the simulation itself, rather than imposed from the beginning of the simulation. The asso-

ciation rate we obtain agrees with the experimental value when considering that we omitted the flexible

“lid” that controls access to the MDM2 binding site. The free energy landscape of binding is “funnel-

like”; once p53 encounters MDM2, it is largely a downhill transition into the bound state. These results

would have been impossible to obtain with brute-force sampling, demonstrating that the WE approach

does indeed extend computer simulations of biologically interesting processes to otherwise inaccessible

timescales.

We obtain good agreement between our simulations of p53-MDM2 binding (kon ranging from ∼4×
107 M−1 s−1 to ∼4×108 M−1 s−1) and the experimental association rate (∼1×107 M−1 s−1). This agree-

ment is strengthened when considering that the models considered here lack the flexible “lid” over the

MDM2 binding cleft present in the experimental study, and we consequently may expect to obtain some-

what higher rates (up to ten-fold higher; see Chapter 4) by simulation than obtained in experiment. Fur-

ther, the highest association rates were obtained with the Gō-like potential of Chapter 3 (particularly

when including hydrodynamic interactions) which is not surprising given that Gō-type potentials are

known to accelerate protein dynamics due to their neglect of non-native interactions. 213–215 Taken to-

gether, these results indicate that the models we use are capable of modeling the kinetics of biomolecular

associations accurately. These results are likely to be applicable to the entire class of systems involving

the burial of an intrinsically-disordered protein in a hydrophobic pocket.

In developing these simulations, we have extended WE sampling to equilibrium conditions, which

opens up the possibility of determining (for example) protein-protein binding and unbinding rates,

pathways, and equilibrium constants simultaneously. Further, this lifts the original requirement for WE

sampling that the “target” state (B for A → B transitions) be known, and known well, in advance. We

have also directly obtained an equilibrium constant for a binding process, which is particularly exciting,

as as equilibrium constants are key values in describing molecular association in chemical, biological,
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and pharmacological contexts. However, in these simulations, we have obtained no continuous bound-

to-unbound trajectories in our atomistic p53-MDM2 simulation, which points to the necessity of fur-

ther developing equilibrium WE simulations so that equilibrium WE simulations reach their potential

for providing not only kinetics, energy landscapes, and equilibrium constants, but also the continuous

pathways that make WE sampling unique among enhanced sampling approaches.

Perhaps the greatest difficulty in performing WE simulations is selecting an effective progress coordi-

nate. There are preliminary indications that frequent resampling (short τ) WE simulations can decrease

sampling in degrees of freedom not spanned by the progress coordinate, relative to brute force trajecto-

ries of length similar to the maximum trajectory length of a WE simulation.a This is perhaps not surpris-

ing, as accelerating sampling along a progress coordinate necessarily leaves other degrees of freedom

to be sampled without acceleration — that is, essentially by brute force. Each WE dynamics segment

then amounts to a τ-length brute force simulation of degrees of freedom not explicitly considered by

progress coordinates. These degrees of freedom may prove unexpectedly critical in determining the ki-

netics of rare events. 216 Therefore, the progress coordinate that most effectively drives transitions from

some state A to some state B may not be the most effective in determining the macroscopic rate kAB of

A → B transitions. This issue is not unique to WE simulations, but rather plagues any enhanced sampling

technique that relies on a progress coordinate, including other path sampling approaches and Markov

state models. This being the case, in practice we obtain encouraging agreement between simulations

and experiment and between between simulations with different models. The coarse-grained models of

Chapter 3, the atomistic model of Chapter 4, and the experimental association rate of p53-MDM2 are

all in reasonable agreement. Further, alternative bound state definitions (RMSD and solvent accessible

surface area) for the atomistic simulation of p53-MDM2 binding give the same association rate. This

indicates that though the imposition of a progress coordinate may subtly complicate sampling of rare

processes, it does not necessarily do so.

After finding an effective progress coordinate, appropriate values for the propagation/resampling

time τ and locations of bin boundaries must be chosen. In all the studies contained herein, we have es-

timated τ and bin spacing using models for the relative diffusion of the two binding parters. Beyond this

estimation, progress toward binding was ensured simply by doubling the density of bin boundaries in

regions of progress coordinate space where the WE simulation appeared to stall. (A detailed description

of this procedure and the reasoning behind it is presented in Section A.1.) There has been little detailed

consideration of the effects of different progress coordinates, τ, or bin boundary locations on the effi-

aDaniel M. Zuckerman, personal communication
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ciency of WE simulations. There is a distinct need for this information, as it will allow construction of

WE simulations that use computer resources even more efficiently than they already do.

Finally, we have demonstrated that WE sampling not only effectively samples rare events like protein-

peptide associations, but also that these simulations are practical on current computing resources. In

order to perform these simulations, we developed our own WE software (WESTPA – the Weighted En-

semble Sampling Toolkit with facilities for Parallelization and Analysis), described in Section A.4. As

has been demonstrated by its use in the studies discussed herein, our software scales from the desktop

through many thousands of cores, efficiently exploiting the loosely-coupled nature of WE simulation tra-

jectories. WESTPA can interface with any stochastic simulation software and places particular emphasis

on making the massive amounts of data generated in WE simulations easily available for analysis. To our

knowledge, no other enhanced sampling method has such extensive software support. We have released

this software under an open-source license to enable others to use WE sampling for simulation of rare

events. This software will be described in detail in a forthcoming paper.

Overall, our results demonstrate that the WE approach can simultaneously and efficiently generate

both free energy landscapes and rigorous rate constants for rare chemical events, particularly the p53-

MDM2 binding process. These simulations would not have been possible with brute force simulations,

and point encouragingly to the utility of WE sampling in accessing otherwise inaccessible timescales.

The efficiency and flexibility of WE sampling, combined with the availability of user-friendly software,

makes the weighted ensemble approach likely to become a mainstay of computer simulation of rare

events in the coming years.
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APPENDIX

CONSTRUCTING AND RUNNING WEIGHTED ENSEMBLE SIMULATIONS

A.1 ESTIMATING WE SIMULATION PARAMETERS

The efficiency of weighted ensemble sampling depends on achieving a balance between good statistics

(maximizing the number of bin-to-bin and state-to-state transitions) and minimizing the total dynamics

time of the simulation. As is usually the case, these aims are somewhat at odds. The number of bin-to-

bin transitions can be maximized by increasing the number of walkers per bin, decreasing the size of

bins (and thus increasing the number of bins), or increasing the propagation/resampling period τ. The

total dynamics time can be minimized by reducing the number of total walkers in use, thus requiring

reducing the number of walkers per bin and/or the number of bins, or shortening τ. Thus, the size of

bins, the number of walkers per bin, and τ are mutually dependent, and all three affect the cost of the

WE simulation and the level of sampling attained. The following procedure has proven useful in both

coarse-grained and atomistic WE simulations, leading to reasonable sampling in reasonable computer

time. This is not proposed as an optimal procedure, but rather a sufficient one; a detailed study on

the effects of these simulation parameters on non-trivial systems is likely necessary to achieve the most

efficient possible sampling.

The procedure outlined below rests on a few observations:

1. In strongly-interacting regions of configuration space, the evolution of dynamics will be dominated

by (free) energy barriers.

2. In non-interacting regions of configuration space, or regions of the energy landscape that are in some

sense broad and flat, the evolution of dynamics will be dominated by diffusive mechanisms.
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The goal is to place bin boundaries so that the probability of progressing from one bin to the next is

locally constant. That is, the probability of traversing some number of bins M in Nτ iterations (corre-

sponding to length t = Nττ trajectory fragments) is linear in Nτ. This “linearizes” both diffusion (since

the probability of traversing a distance R will increase linearly with time t rather than with
p

t ) and bar-

rier climbing (since the probability of climbing a barrier of height E is linear with time t rather than with

exp[−E/kT ]). Incidentally, such a binning scheme will ensure a quadratic speedup of WE over brute

force in diffusive regimes and an exponential speedup of WE over brute force in regimes dominated by

high barriers.

On the surface it appears that item (1) above requires intimate knowledge of the potential of mean

force of the system to be studied. In practice, it does not. Because we do not know the energy landscape

in advance, we take advantage of the flexibility of the WE approach and simply double the density of bins

when we notice that transitions from one bin to another in that region of configuration space are too rare,

and repeat the process until transitions are sufficiently probable. Such an adjustment requires pausing a

WE simulation, but not restarting it from the beginning; rather, the bin boundaries can be adjusted and

the simulation continued. (This was the spirit of the on-the-fly binning approach presented by Huber

and Kim in the paper introducing WE. 75) Increasing bin density is superior to increasing the number

of walkers or the length τ of propagation, as increasing bin density will bring sampling closer to local

linearity, but increasing the number of walkers or increasing τ amounts to imposing a greater degree of

sampling locally by brute force.

Similarly, item (2) requires knowledge of the diffusive characteristics of the system under study. This

is generally not a problem, as the diffusive behavior of non-interacting species is well-understood, or at

least can be modeled sufficiently well for our purposes. In flat but interacting regions of configuration

space (say, flat but rough regions near protein binding or folding basins), we fall back to the procedure

of doubling bin density until transitions are not too rare.

Of course, to do this, we need a working definition of how many bin-to-bin transitions are reason-

able. We will thus require a priori the probability α that a walker traverses a bin in a single iteration of

length τ. This can be accomplished by placing NB ≈ α−1 walkers in a bin and then tuning the size of

the bin appropriately, which amounts to asserting that one walker out of NB , on average, will traverse a

bin in one iteration of WE propagation and resampling. One can also view α as the fraction of walkers

that traverse a bin in one iteration. It is important that walkers traverse bins, rather than merely exit

bins (possibly through the same boundary they entered from), as this helps to ensure that the energy

landscape within a bin is approximately flat.
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Given the fractionα of walkers that we desire to traverse a bin, we may use diffusion arguments to de-

termine proper values for the propagation/resampling period τ and the width of bins R. This will require

a diffusion coefficient D for motion along a certain progress coordinate (or a single dimension of a multi-

dimensional progress coordinate). For the binding simulations considered in this work, the progress co-

ordinate was either separation or an RMSD metric that behaves as separation at long distances, and thus

the diffusion coefficient involved was that describing relative translational diffusion of the two binding

partners. (See Section A.1.2 for a derivation of the relative diffusion coefficient D = D1 +D2 of two part-

ners in terms of their individual translational diffusion coefficients D1 and D2.)

A.1.1 The Relationships Among Diffusion Coefficients, Propagation Time, Bin Width, and Replicas

Per Bin

Given an appropriate diffusion coefficient D , we seek values of the propagation/resampling period τ and

the width R of bins so that on average a fraction α of walkers in a bin traverse a bin within τ. Consider,

for simplicity, the one-dimensional case, where diffusion is governed by

∂P

∂t
= D

∂2P

∂r 2 , (A.1.1)

whose fundamental solution is

P (r,τ;D) = (4πDτ)−1/2 exp
(−r 2/4Dτ

)
(A.1.2)

The probability α= 1/NB that one of NB replicas will move at least a distance R along the relative coor-

dinate r in a time τ is

α= P (r > R,τ;D) =
∫ ∞

R
(4πDτ)−1/2 exp

(
− r 2

4Dτ

)
dr ;

note that here R represents the distance traveled (i.e. the bin width), not the coordinate of the collective

motion of the two particles. Letting σ=p
4Dτ, x = r /σ, d x = dr /σ, and X = R/σ, we have

α=
∫ ∞

X

1p
π

exp
(−x2)d x

= 1

2

∫ ∞

X

2p
π

exp
(−x2)d x

= 1−erf(X )

2

= 1−erf(R/σ)

2

= 1−erf
(
R/

p
4Dτ

)
2

. (A.1.3)
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Equation A.1.3 may then immediately be solved, giving

τ= 1

4D

(
R

erf−1(1−2α)

)2

(A.1.4)

where erf−1(x) is the inverse error function satisfying erf−1(erf(x)) = x. Equation A.1.4 states that for

two particles with relative diffusion coefficient D , there is a probability α that they will move at least

an amount R in relative displacement in a time τ. A typical use of Eq. A.1.4 would be to set R = 1 Å

(representing bin boundaries placed every 1 Å) and α = 1/NB , and thereby obtain the optimal value of

the propagation period τ to ensure that (on average) one out of NB replicas per bin will advance 1 Å to

the next bin in a single weighted ensemble iteration.

Equation A.1.4 provides a convenient, largely conservative estimatea for τ given a bin width R and

probability α, but is not exact for systems diffusing in three dimensions; rather, it overestimates τ by

about 50% at the α = 0.04 level. The reduction to a one-dimensional problem amounts to assuming

that relative motion is always either perfectly aligned or opposed, which is not true of three-dimensional

isotropic diffusion. Extending this result to three dimensions gives

α=
∫ ∞

R

∫ π

0

∫ π

0

1

σ3π3/2
exp

(
− r 2

σ2

)
r 2 sinθdr dθdφ (A.1.5)

=
∫ ∞

R

1

σ
p
π

( r

σ

)2
exp

(
− r 2

σ2

)
=

∫ ∞

X

1p
π

x2 exp
(−x2)d x

= 1−erf(X )

4
+ X

2
p
π

exp
(−X 2) (A.1.6)

where the integration in Eq. A.1.5 is over a hemisphere to represent that we wish to consider one di-

rection of change in relative separation (i.e. forward progress) only, and X = R/σ = R/
p

4Dτ as before.

Equation A.1.6 is easily solved for τ with a numerical root finding algorithm.

A.1.2 The Relative Diffusion of Two Particles

For a binding simulation, we are interested in the diffusion constant D that defines the relative motion

of the binding partners at long distances. The diffusion of two particles of diffusion coefficients D1 and

D2 relative to each other obey a diffusion equation with effective diffusion coefficient D = D1 +D2. To

see this, consider one-dimensional diffusion, which obeys the familiar relation

∂P

∂t
= D

∂2P

∂x2 , (A.1.7)

aSpecifically, this estimate is conservative in predicting τ for R/σ≈ 0.6 or higher.
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where P is probability (i.e. a suitably normalized concentration or number density), D is the diffusion

constant, and x(t ) is displacement at time t relative to time t = 0 and position x = 0. For two non-

interacting particles with diffusion coefficients D1 and D2 and displacements x1 and x2 relative to their

positions at time t = 0, this becomes

∂P

∂t
= D1

∂2P

∂x2
1

+D2
∂2P

∂x2
2

. (A.1.8)

Let the relative displacement r = x1 − x2, and also let R = (D2x1 +D1x2)/(D1 +D2). Using the chain rule

to rewrite ∂P/∂t in terms of ∂2P/∂r 2 and ∂2P/∂R2, we have

∂P

∂t
= D1D2

D1 +D2

∂2P

∂R2 + (D1 +D2)
∂2P

∂r 2 , (A.1.9)

which indicates that diffusion in the relative coordinate r obeys a diffusion equation with coefficient

D1+D2 and the combined coordinate R (the “center of diffusion” in a sense analogous to center of mass)

obeys a diffusion equation with coefficient (D1D2)/(D1+D2) (the “reduced diffusion coefficient,” in anal-

ogy to reduced mass).

The three-dimensional isotropic case is completely analogous, after replacing displacements with

displacement vectors and each second spatial derivative ∂2P/∂q2 with the operator ∇2
q (for each coor-

dinate q ∈ {x1, x2,r,R}), where ∇q is the gradient along the vector ~q . The diffusion equation in absolute

coordinates~x1 and~x2 is
∂P

∂t
= D1∇2

x1
P +D2∇2

x2
P (A.1.10)

and in “relative” coordinates~r and ~R is

∂P

∂t
= D1D2

D1 +D2
∇2

R P + (D1 +D2)∇2
r P (A.1.11)

The relative diffusion coefficient D1 +D2 may be obtained by sufficiently long molecular dynam-

ics simulations of the individual particles; by consideration of the interaction of solvent with the (rigid)

crystal structure of each particle (as in HYDROPRO 158); or simply by assuming each particle to be approx-

imately spherical, with radius equal to the radius of gyration Rg . In this lattermost case, the Stokes and

Einstein relations lead immediately to

D = kB T

6πηRg
, (A.1.12)

where η is the solvent viscosity, T is absolute temperature, and kB is Boltzmann’s constant. Performing

this calculation for two species of radii Rg (1) and Rg (2), we have the following for the relative diffusion

coefficient D :

D = D1 +D2 = kB T

6πη

(
1

Rg (1)
+ 1

Rg (2)

)
(A.1.13)

This spherical approximation has been surprisingly effective in practice.
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A.1.3 Summary

In summary, to construct a bin space for a weighted ensemble simulation:

1. Choose a value α which defines the fraction of walkers in a bin which traverse a bin along one

progress coordinate direction in one iteration. A reasonable balance of sampling and computational

cost seems to be α≈ 0.1, or about ten walkers per bin.

2. For large separations (or small interactions), choose a bin spacing R and a propagation resampling

period τ so that a fractionα of walkers in a bin traverse that bin in τ. This can be accomplished using

the diffusion arguments presented above.

3. Run the WE simulation, and check that about α−1 walkers progress from bin to bin each iteration.

This is trivial for empty bins, as this amounts to one more bin being populated in each dimension

with each new iteration.

4. If progress stalls, double the number of bins (halve the bin spacing) in the region where the simula-

tion has stalled.

5. Continue the WE simulation, repeating the subdivision of bins as necessary. Failure to progress in

the face of repeated increases in bin density may indicate a poor progress coordinate.

A.2 CALCULATION OF LANGEVIN THERMOSTAT COLLISION FREQUENCY FOR IMPLICIT

SOLVENT SIMULATIONS

Implicit solvent simulations using a Langevin thermostat are propagated using the Langevin equation,

where the acceleration of a given particle at a given timestep is

d 2~r

d t 2 = 1

m
~F −γd~r

d t
+ 1

m
δ~F (A.2.1)

where ~r is the position of the particle, m is its mass, ~F = −∇U is the force acting on the particle, δ~F

is a stochastic force, and γ is a damping constant. 217 The damping constant γ represents drag on the

particle due to the surrounding fluid. Invoking the imagery of frequent collisions with the surrounding

medium imparting drag, γ (with units of [1/time]) is sometimes called the “collision frequency”. Physi-

cally, the damping constant γ determines the terminal drift velocity of the particle under the influence

of an applied force, as can be seen by setting d 2~r /d t 2 = δ~F = 0 in Equation A.2.1 and noting

~F = mγ
d~r

d t
(A.2.2)
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or, in magnitude,
F

v
= mγ= ζ (A.2.3)

where v = |d~r /d t | is the velocity and ζ is called the viscous friction coefficient. The viscous friction

coefficient ζ and the diffusion coefficient D are linked by the Einstein relation

ζD = kT (A.2.4)

Substituting ζ = mγ into Equation A.2.4 allows one to obtain γ in terms of the diffusion coefficient D

(which in general is temperature dependent):

γ= kT

mD
(A.2.5)

The self-diffusion coefficient of water at 298 K is D = 2.299×10−9 m2/s (see Ref. 207), giving γ = 5.98×
1013 s−1, or 59.8 ps−1. The substantial variation in γ seen in the wild for implicit solvent simulations

likely derives from the estimation of D (or ζ) using various methods like Stokes’ Law (ζ = 6πηR for a

sphere of radius R in a medium of viscosity η) rather than experimentally-determined D or ζ values.

A.3 REWEIGHTING IN WEIGHTED ENSEMBLE SIMULATIONS

Though weighted ensemble simulations can be highly effective in accelerating sampling of kinetics and

thermodynamics of rare events, the “equilibration” period necessary for the initial state of the WE sim-

ulation to relax to a state representative of the energy landscape can be quite long, particularly when

long-lived metastable intermediates are present. For example, in a binding simulation, the initial state

of a WE simulation might be such that all walkers are in the unbound state (however diverse the config-

urations of that state may be), which is not at all representative of the binding landscape as a whole; it

then takes time for the entire landscape between the unbound state and the bound state to become pop-

ulated, and for the populations of various regions to relax to their steady-state (or equilibrium) values.

One can expect, however, that the rates for probability flows in and out of bins are determined almost as

soon as the bins are occupied (assuming that the bins are sufficiently small). Knowing this, it becomes

possible to use local bin-to-bin rate information to extrapolate the global population distribution. 68,156

We begin with the mathematical expression of a steady-state population distribution:

0 = dPi

d t
=∑

j
k ji P j −

∑
j

kij Pi (A.3.1)
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which expresses that bin i is at a steady state (the rate of change in population in bin i is zero), and that

steady state must be determined by the total probability flow into the bin from all other bins (
∑

j k ji P j )

and the total probability flow out of the bin to all other bins (
∑

j kij Pi ). (Here, kij represents the flow

from bin i to bin j .) This forms a system of algebraic equations in the populations Pi of bins and the rate

matrix kij .

Given an estimate of the rate matrix kij , solving this system of equations for the populations Pi of

bins gives the steady-state populations for all bins. (In practice, the system of equations A.3.1 is solved

in the least-squares sense, as noise in both the rate matrix kij and populations Pi can interfere with an

exact solution.) One can then uniformly scale the probabilities of walkers in bin i so that the total weight

in bin i equals the Pi obtained from the steady state equations. That is, if a bin i contains weight P∗
i , and

solving the steady-state equations indicates that bin i should contain probability Pi , one multiplies the

weight of each walker in the bin by the same factor Pi /P∗
i . Equation A.3.1, and therefore this procedure,

applies equally to both the “classic” steady-state formulation of WE and equilibrium WE (without sources

and sinks), as equilibrium is itself a steady state. 209

This procedure is exact in the limit of a precisely-known rate matrix kij with an infinite number of

bins. These conditions are never actually met, so in practice this procedure provides an estimate of the

steady-state probability distribution. If bins are constructed so that the population within a bin equi-

librates within a single propagation/resampling period τ (which occurs in the limit of small bins, long

τ, and/or the absence of substantial barriers within a bin), then this estimate rapidly converges to the

true steady-state population distribution of the system when applied repeatedly over the coarse of a

running WE simulation. Because the conditions under which convergence to the correct distribution is

guaranteed are impossible to meet exactly, it is wise to use reweighting periodically until the population

distribution seems to have converged, then cease this reweighting and observe whether the population

distribution relaxes substantially as the simulation progresses. In particular, the presence of substan-

tial barriers within bins can result in consistently incorrect rate matrix elements kij , which in turn can

cause this reweighting procedure to adjust the landscape to a steady but incorrect population distribu-

tion.b Using reweighting only for a portion of the simulation may allow (and in fact has allowedc) for the

detection of this condition.

bDaniel M. Zuckerman, personal communication.
cJoshua L. Adelman, personal communication.
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A.4 THE WESTPA SOFTWARE PACKAGE

In order to perform the simulations described in this dissertation, software for performing and analyzing

weighted ensemble simulations was necessary, and was therefore constructed over the course of about

four years. The resulting software package is called WESTPA (the Weighted Ensemble Sampling Toolkit

with facilities for Parallelization and Analysis), and has been released as open-source software for the

benefit of the simulation community. WESTPA has the following features:

Accessible, modular and extensible WESTPA is written in the Python programming languaged, allow-

ing WESTPA to leverage the diverse, high performance, and rapidly expanding Python scientific com-

puting ecosystem. Efficiency-critical routines are written in C via the excellent Cython extension lan-

guage for Python.e WESTPA currently runs on any Unix-like OS that is natively supported by Python,

including Linux and Mac OS X. The design of the WESTPA code is highly modular, allowing relatively

easy customization of how simulations are performed (Figure A1). WESTPA provides a number of

hooks that allow plug-ins (small pieces of software written by the user) to perform custom process-

ing at several points of the main simulation loop without the need to modify the WESTPA code. For

more complex customizations, most components of the WESTPA software can be swapped for cus-

tom versions at runtime.

Compatible with existing dynamics software As the weighted ensemble approach is rigorously correct

for any stochastic simulation, 78 WESTPA is designed to interface with any existing simulation pack-

age. This includes traditional stand-alone molecular dynamics packages like GROMACS, 218 AM-

BER, 219 or NAMD. 220 For increased flexibility and efficiency, WESTPA is also capable of interfacing

with simulation toolkits like OpenMM29 or fully user-programmed routines via a relatively simple in-

terface; a customized dynamics propagator need only define three relatively simple Python functions

(“propagate dynamics”, “generate initial state for a new trajectory”, and “get progress coordinate”).

Notably, because propagation of dynamics is handled by programs or routines external to WESTPA,

any optimizations that are already in place for propagation of dynamics (such as use of optimized

linear algebra libraries or offloading of computational work to GPUs or other coprocessors) are auto-

matically used by WESTPA simulations. Instructions for interfacing with various software packages

are available through the WESTPA software web site.f

dhttp://www.python.org
ehttp://www.cython.org
fhttps://chong.chem.pitt.edu/WESTPA/
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Flexible sampling The weighted ensemble approach is uniquely flexible among enhanced sampling

techniques. It naturally supports multidimensional progress coordinates, 83 may be used to perform

simulations under equilibrium conditions or generalized steady states (with sinks and sources for

trajectories), and reweighting techniques may be used to accelerate convergence in both thermo-

dynamic and kinetic observables. 68,156 Binning in WESTPA is highly flexible. Progress coordinates

may be single- or multidimensional. These progress coordinates may be divided into bins by bound-

aries on grids, Voronoi cells, or any user-defined function that can map progress coordinate values

to integers (bin numbers). The target number of walkers can vary from bin to bin, thus allowing a di-

rect specification of how much computational power to devote to each region of progress coordinate

space. Binning, including the ideal number of walkers in each bin, may change at any point in the

simulation without needing to discard existing simulation data.

Efficient, flexible data storage. Weighted ensemble simulations can produce prodigious amounts of

data. Foremost, different trajectories share history. For maximum efficiency, this shared history is

stored only once, along with a directed graph describing the connectivity of trajectory segments.

In addition to the (required) progress coordinate, arbitrary datasets associated with each trajectory

segment may be calculated and stored during the simulation for efficient access during subsequent

analysis. These datasets may be stored at an arbitrarily high time resolution. Trajectories them-

selves (e.g. the time-ordered configurations of molecular dynamics trajectories) are typically stored

in the native format of the underlying dynamics engine, which is usually highly optimized for space

or speed (for instance, XTC files for GROMACS, NetCDF files for AMBER, or DCD files for NAMD).

WESTPA stores all data in the cross-platform, language-neutral, highly efficient HDF5 file format.g

The HDF5 library provides optimized storage and retrieval of numerical data. The file format is cross-

platform and the library is language-neutral, meaning that the data produced by WESTPA may be

accessed from any programming language which has HDF5 bindings (Python,h C, C++, Fortran, Java,

and MATLAB, among others) on any machine for which the HDF5 library can be compiled (currently,

all major personal and scientific computing platforms).

Parallelization and scaling. The weighted ensemble approach is highly parallelizable, as trajectories are

very loosely coupled; the propagation of N walkers can always be distributed over up to N cores. As

shown in Figure A2, essentially perfect scaling has been achieved over thousands of cores. For large-

scale simulations (e.g. condensed-phase molecular dynamics simulations), performance is generally

ghttp://www.hdfgroup.org
hhttp://www.h5py.org
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not limited by the speed of communication between processors, but rather how quickly external

programs (e.g. for propagating dynamics or extracting progress coordinates) can be spawned or how

quickly analysis tools can read data from disk.

WESTPA includes facilities to distribute tasks such as dynamics propagation or subsequent analy-

sis over multiple cores within a node and multiple nodes within a network. Though designed with

weighed ensemble simulations in mind, these facilities are completely general, and may be used for

writing parallel programs in Python independent of the rest of the WESTPA framework. This par-

allelization can use a number of low-level communications methods, including threads, processes,

custom TCP/IP communication, or MPI. The custom TCP/IP communication is notable for being op-

erative even where MPI implementations do not allow repeated execution of child processes (as in

external dynamics engines), and for being capable of supporting a fan-out communication pattern

for reducing network load.

Analysis tools. WESTPA includes a suite of tools to analyze weighted ensemble simulations. Each tool

focuses on performing one task (e.g. “assign walkers to bins”,“calculate the probability distribution

of progress coordinate values”, or “plot the time evolution of a probability distribution”), so that tools

can be chained together to perform complicated analysis tasks. Most tools can run on multiple cores

to increase analysis throughput. Intermediate data is stored in the flexible and efficient HDF5 file

format. Because all data is stored in HDF5 format, analyses not directly addressed by the tools pack-

aged with WESTPA are relatively simple to implement — there is no need to “decode” data in order to

process it. That said, common analysis tasks are packaged as a programming framework for re-use

in customized analysis scripts.
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Figure A1: Logical structure of the WESTPA software package. components shown in blue are imple-

mented in WESTPA and may be replaced, if desired, by custom code. Components shown in yellow

indicate functionality that WESTPA coordinates, which can be customized by configuration options,

plug-ins, or custom code. Components shown in red must be provided by the user. In particular, dy-

namics propagation and progress coordinate calculation must be provided by an external executable or

a custom Python (or Python-accessible routine), and the presence of a filesystem shared among multiple

nodes of a cluster is currently presumed.
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Figure A2: Scaling of WESTPA simulations. WESTPA scales perfectly with fixed overhead to thousands of

cores. These data were taken from a production protein-peptide binding simulation.
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