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Pretensioned girders have been commonly used in bridge construction for years. However, some 

problems remain that hinder the further application of longer and more heavily prestressed 

girders. The prestressing force can produce large stresses at both the top and bottom surfaces of 

the girders, especially near the ends where self-weight moments are minimal. Additionally, the 

transfer of large prestressing forces can cause local cracking. Partial debonding of straight 

strands, harping strands and/or adding top strands are three common approaches to mitigating 

such problems. However, harping is limited to those strands aligned with the member web, and 

adding top strands affects the overall stress state of the section. Comparatively, partial debonding 

is a simple and preferred approach. The total prestress force is introduced to the member 

gradually, reducing stress concentrations and associated end-region cracking. 

Even so, partial debonding decreases the longitudinal tension capacity particularly when 

a large number of strands is debonded. Excessive debonding, therefore, can also have detrimental 

effects of the flexure and shear capacity of the girder. This thesis aims to quantify the effects of 

partial debonding on initial girder stresses and ultimate girder capacity in an effort to identify 

acceptable prestressing strand debonding details. 

Two series of AASHTO Type III-VI girders having varying spans, amounts of 

prestressing and different debonding ratios are systematically analysed for their adherence and 
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consistency with present AASHTO LRFD Specification requirements. The analyses use a 

purpose-written MATLAB program. Analytically obtained girder capacities are validated with 

initial design capacities from the PCI Bridge Design Manual. An individual case is presented in 

order to illustrate the analysis procedure. From this study, acceptable partial debonding ranges, 

satisfying AASHTO-prescribed stress limits, are obtained. 

Conclusions indicate that the upper limit for an acceptable debonding ratio may be 

increased from the AASHTO-prescribed 25% to perhaps 50%. However the results also indicate 

that this upper limit is a function of span length and may be greater for longer spans. In many 

cases no acceptable amount of debonding was found for shorter spans. Further parametric study 

is required to establish such a relationship and to extend the study to other girder shapes. 
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NOMENCLATURE 

 

The following abbreviations and notation are used in this work. 

Abbreviations 

AASHTO American Association of State Highway and Transportation Officials 

FEM Finite Element Method 

LRFD Load and Resistance Factor Design 

MCFT Modified Compression Field Theory 

PCI Precast/Prestressed Concrete Institute 

Notation 

A girder section area  

Acg concrete cross sectional area 

Aps prestressed reinforcement area in the tension zone 

As area of nonprestressed tension reinforcement 

Av area of a transverse reinforcement within distance s 

b width of compression face of member 

bv section web breadth 

bw width member web(s) 

DC AASHTO-prescribed dead load of permanent components 



 xiii 

DW AASHTO-prescribed wearing surface load 

db nominal diameter of prestressing strand 

dv section web depth; effective shear depth 

dr maximum debonding ratio  

Ec modulus of elasticity of concrete 

Ep tensile modulus of elasticity of prestressing steel, taken as 28500 ksi 

e eccentricity of prestressing steel with respect to centroidal axis of member 

fc concrete stress 

fc' specified compressive strength of concrete 

fci concrete compressive stress at prestress transfer 

fpb compressive stress due to effective prestress 

fpe effective prestress in prestressed steel reinforcement 

fpi initial prestressing force  

fps stress in prestressed reinforcement at nominal strength 

fpu specified tensile strength of prestressing tendons 

fy specified minimum yield strength of reinforcing bars 

H girder depth 

I moment of Inertia 

IM AASHTO-prescribed vehicular impact load 

L span length 

LL AASHTO-prescribed vehicular live load 

ld development length 

lt transfer length 



 xiv 

M moment due to eccentric prestressing force in strands 

Mcr cracking moment 

MDC moment on girder due to dead load components and attachments 

MD moment on girder due to dead load components (including member self-weight) 

and attachments 

MDW moment on girder due to wearing surface 

Mn nominal flexural strength of girder 

Mu design ultimate flexural strength of girder 

N total number of strands  

Nu applied factored axial force taken as positive if tensile 

P prestress force 

S section elastic modulus (Eq. 2-3); center-to-center girder spacing  

Sb section modulus of the bottom of the member 

St section modulus of the top of the member 

s spacing of reinforcing bars 

T total tension force 

Tv additional tensile force in the longitudinal reinforcement 

ts thickness of slab 

Vc nominal shear resistance provided by tensile stresses in the concrete 

Vn nominal shear resistance of the section considered 

Vp component in the direction of the applied shear of the effective prestressing force; 

positive if resisting the applied shear 

Vs shear resistance provided by shear reinforcement 



 xv 

Vu factored shear force at section 

w Girder Self Weight 

yb distance from extreme bottom fiber to the section centroid 

yt empirical constant to determine an equivalent rectangular stress distribution in 

concrete 

β factor relating effect of longitudinal strain on the shear capacity of concrete, as 

indicated by the ability of diagonally cracked concrete to transmit tension 

ΔfpES prestress loss due to elastic shortening  

ΔfpLT prestress loss due to long term effects 

ΔfpT total prestress loss 

θ angle of inclination of diagonal compressive stresses (degrees) 

ϕ resistance factor 

κ multiplier for strand development length 

τ shear strength 

σ nominal strength 

ρa density of asphalt 

ρc density of concrete 

 

This thesis reports values in US units (inch-pound) throughout. The following “hard” conversion 

factors have been used:  

1 inch = 25.4 mm  

1 ft  = 0.3048 m 

1 kip = 4.448 kN  



 xvi 

1 ksi = 6.895 MPa  

  

Reinforcing bar sizes are reported using the designation given in the appropriate reference. A bar 

designated using a “#” sign (e.g.: #4) refers to the standard inch-pound designation used in the 

United States where the number refers to the bar diameter in eighths of an inch. 
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1.0  INTRODUCTION 

Pretensioned girders have gained large-scale acceptance and use because of their high quality 

and economic efficiency. However, some problems still exist and hinder the further application 

of longer and more heavily prestressed girders. The prestressing force in pretensioned girders can 

produce large stresses at both the top and bottom surfaces of the girders, especially near the ends 

of the girders where moments resulting from self-weight are minimal. Additionally, the transfer 

of large prestressing forces at girder ends can additionally lead to local cracking associated with 

bursting stresses or splitting. All these effects are compounded by the fact that prestressing force 

is introduced to the concrete at a very early age. Cracking can be mitigated by permitting greater 

concrete strength prior to prestressing transfer, but this is impractical and uneconomical. In 

practice, the magnitude of deleterious stresses can be reduced in three ways: 

(1) Partial debonding (also known as blanketing or jacketing) a number of strands near 

the beam end; 

(2) Harping some strands;  

(3) Adding top strands.  

Strands that can be harped are limited to those aligned with the member web(s), which 

may not be enough to sufficiently lower the stresses. Harped strands in relatively thin webs 

remain susceptible to splitting along their transfer length. Moreover, harping of 0.6 in. or 0.7 in. 
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strands poses challenges in terms of the capacity of hold-down devices and safety concerns, 

which are the main reasons why some fabricators will not harp strands. 

The addition of top strands will increase girder cost and affects the overall stress state of 

the section, counteracting bottom strands in the critical midspan region. Top strands can be 

debonded over the midspan region and cut at midspan after transfer. This practice, however, 

complicates production and erection. 

Compared to harping strands or adding top strands, partial debonding is easily 

accomplished using sheathing (flexible split-sheathing or rigid preformed tubes) or greasing. The 

prestressing force in partially debonded strands is transferred to the concrete at a distance from 

the end regions once bond is established. Thus, the total prestress force is introduced to the 

member gradually, reducing the stress concentrations and associated cracking at the beam ends. 

However, partial debonding of strands decreases the capacity of the longitudinal reinforcement 

particularly when cracks pass through the transfer length of debonded strands. If a large number 

of strands is debonded, the reduction of the longitudinal tension capacity could result in 

unacceptably reduced girder capacity issue near the supports. Excessive debonding can have 

other detrimental effects including the reduction of member flexure and shear capacity, and 

cracking associated with shear or load spreading. 

1.1 SCOPE AND OBJECTIVE OF THESIS  

Partially debonding straight prestressing strands near the ends of prestressed concrete bridge 

elements is an effective and economical way to address a number of early-age and serviceability 

issues. Since the use of higher strength concrete for carrying greater loads over longer spans 
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which requires greater prestressing forces is becoming more common, partial debonding 

becomes more critical to girder performance and to controlling end-region cracking. 

Accordingly, the AASHTO LRFD Specification provides requirements for partially 

debonded strands. AASHTO requires that at a given section, the number of debonded strands 

should be limited to 25% of the total number of strands. The commentary notes that a larger 

percentage based on “successful past practice” may be considered. For example, Texas permits 

up to 75% debonding, while North Carolina allows up to 30%. Arizona, on the other hand, does 

not allow any partial debonding in I-girders. Currently, there is no consensus regarding the 

permitted level of debonding. Furthermore, no universally accepted guidelines are available for 

establishing the layout of debonded strands, release pattern of the bonded and partially debonded 

strands, the length of the debonding regions, or the staggering lengths of debonded strands, 

among other issues. 

The proposed study focuses on partial debonding of straight strands used to control initial 

concrete stresses and cracking. The objective of the thesis is, therefore, to develop a unified 

approach to the design of partially debonded strand regions that addresses all aspects of the 

service and strength performance of the girder. This thesis will identify a number of AASHTO-

prescribed performance and detailing issues that will be systematically studied using a purpose-

written MATLAB program. The focus of the study is on quantifying the effects of partial 

debonding on the development of longitudinal forces in the prestressed reinforcement. Emphasis 

will be placed on the impact of partial debonding on the flexure and shear capacity of the 

member shear span (considering the increased forces carried by the longitudinal strands in the 

presence of shear). The goal of this thesis is to derive acceptable debonding ratios satisfying both 
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initial stress limits at prestress release and shear and flexural requirements at ultimate capacity 

for AASHTO girders (from Type III to Type IV) with different span lengths. 

1.2 OUTLINE OF THESIS 

This thesis addresses issues associated with the partially debonding of pretensioned girders, 

especially the determination of acceptable partial debonding ratios. Chapter 2 reviews bond 

mechanisms, calculations for transfer and development length and flexural and shear design for 

partial debonding, all based on AASHTO LRFD Specification. Chapter 3 presents the theoretical 

background and methodology of the MATLAB analyses conducted. Two series of 26 AASHTO 

Type III-VI girders with different debonding ratios are presented; one illustrative case is 

developed in a step-by-step manner. Chapter 4 presents a comparison of the results from the 

MATLAB program with those from PCI Bridge Design Manual. Additionally, the results are 

assessed against two criteria: the concrete tension stress limit of 0.24√fci and longitudinal tension 

capacity of the partially debonded strands, Apsfps. Acceptable debonding ratios, ensuring that 

both criteria are satisfied, are obtained for the girders analyzed. Chapter 5 concludes the thesis 

and identifies issues that require for further study. 
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2.0  END REGION BEHAVIOR IN PRETENSIONED MEMBERS  

2.1 INTRODUCTION 

In pretensioned members, bond transfers force between the prestressing strands and surrounding 

concrete. At the ends of members, strand capacity is ‘developed’ through the transfer length and 

development length. These lengths provide the ‘anchorage’ for the initial prestress force and 

ultimate force in the strand, respectively. The relevant AASHTO LRFD Specifications (2010) 

regarding transfer and development lengths are presented in this chapter. The concept of and 

reasons for the practice of ‘partial debonding’, in addition to the benefits and drawbacks of the 

practice, are introduced. The role of the primary reinforcing steel in assuring the shear capacity 

of a member and the detrimental effect of partial debonding on this role are described. 

2.2 BOND OF PRESTRESSING STRANDS  

In the end-region of a pretensioned beam, the prestressing force is developed by bond between 

the prestressing strands and surrounding concrete as follows: First, the initial prestressing force is 

applied to the strands externally and tensile force is held. After the concrete is poured and the 

initial strength is obtained, the strands are cut or gradually released, allowing the tensile force –  

the ‘initial prestressing force’ – to transfer from the strand to the surrounding concrete as shown 
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schematically in Figure 2-1. Following the transfer, the force is maintained through bond 

between strand and the concrete in the end region near the strand termination. The region from 

end of the concrete (where concrete and strand stresses are necessarily zero) to where the entire 

initial prestress force is developed into the concrete is called 'transfer region' or 'transfer zone' 

(Figure 2-1). While the bond stress is highly nonlinear along the transfer length as shown in 

Figure 2-1, it is conventionally considered as a uniform average value making the prestressing 

strand and concrete stress variations linear as shown in Figure 2-1. 

Loads applied subsequent to the transfer of the initial prestress force cause additional 

tension in the strand. This is also developed by bond although over a longer length referred to as 

the ‘development length’. 

Bond between prestressing strand and concrete can be ascribed to three mechanisms 

(Briere et al. 2013): a) adhesion between the strand surface and the surrounding cementitious 

material; b) friction and the Hoyer effect (Hoyer 1939); and c) mechanical interlock between the 

helical-shaped seven-wire strands and the surrounding concrete. The Hoyer effect describes a 

wedge effect caused by the radial expansion of the strand following the release of the initial 

prestress force (Figure 2-2). This effect is analogous to and includes the Poisson expansion of the 

strand. The Hoyer effect results in friction along the strand length which enhances the 

mechanical interlock and makes the primary contribution to the transfer of initial prestressing 

force along the transfer length. Mechanical interlock dominates the development of stress caused 

by applied load distributed along the development length (Briere et al. 2013).  
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2.2.1 Transfer Length and Development Length 

Making use of the uniform bond stress assumption, the AASHTO LRFD Bridge Design 

Specification (2010) defines strand development length in article 5.11.4.2: 

2( )
3d ps pe bl f f dκ= −                                                                                                  (Eq. 2-1) 

Where fpe= effective prestress; fps = the required stress in prestressing strands to be developed 

and db = the nominal strand diameter. The value of multiplier κ is 1.0 for pretensioned members 

for a depth smaller than 24 in. and 1.6 for members with a depth greater than 24 in. For members 

whose transfer length is not started from the end of the concrete (i.e. partially debonded strands), 

the multiplier κ is increased to 2.0, based on the recommendation from Kaar and Magura (1965) 

Equation 2-1 can be rewritten as: 

1 2 ( )
3
pe

d d d b ps pe b

f
l l l d f f dκ κ= + = + −                                                                    (Eq. 2-2) 

Where ld1 = the transfer length; ld2 = the flexural bond length. Typically, the transfer length is 

simplified as 60db, corresponding to fpe = 180 ksi which is a reasonable prestress estimation after 

losses. Thus, as shown in Figure 2-3, based on AASHTO LRFD Specifications (2010), the steel 

stress increases from zero to the effective prestressing stress (fpe) through the transfer length 

(60db); stress due to subsequent applied loads is developed over the remaining flexural bond 

length. The development length is the sum of the transfer length and the flexural bond length.  
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2.3 PARTIAL DEBONDING 

As described above, once concrete strength has achieved a minimum specified value the 

prestress force is transferred to the concrete. At prestress transfer eccentrically located strands 

introduce flexure into prestressed concrete girders. This flexure typically results in upward 

directed deflection, called camber, which will eventually be overcome by the application of 

structural loads. Camber results in tension at the top face of the member and compression at the 

bottom: 

 
S
Pe

A
Pfc ±

−
=                                                                                            (Eq. 2-3) 

Where fc is the concrete stress; P = the prestress force; e = the eccentricity of the prestress force 

and A and S are the section area and elastic modulus, respectively. 

At prestress transfer, the tensile stress at the top surface of the concrete is only mitigated 

by the self-weight of the member:  

 
S

M
S

Pe
A
Pf D

c ++
−

=                                                                      (Eq. 2-4) 

Where MD = the moment due to girder self-weight. 

Near the girder ends, the value of MD is negligible and the tensile stress often exceeds the 

cracking stress of the concrete – particularly since the concrete is typically several days old at the 

time of prestress transfer. The potential cracking is not only a structural concern but does affect 

durability, especially in bridge structures where the top surface of girders may eventually be 

subject to wetting or water ingress. For this reason, the AASHTO LRFD Specifications (2010) 

limits the allowable tensile stress at prestress transfer to 0.0948√fci; where fci = the concrete 

compressive stress at prestress transfer measured in the unit of ksi. This is hard to meet and may 
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increases to 0.24√fci, where mild reinforcement for controlling cracking is provided. Nonetheless, 

as to long girders requiring large amounts of prestressing strands, even the latter is difficult to 

meet. 

There are two primary means of reducing the tensile stress at girder ends: a) harping 

strands to reduce the eccentricity and therefore the applied moment due to prestress force (Pe); b) 

debonding strands, resulting in reduced prestress force (P). Harping increases girder cost and is 

not practical in some cross sections.  

Debonding involves ‘blanketing’ the strands near their ends so that they may not bond to 

the concrete. Once the MD component is large enough to overcome the Pe component (Eq. 2-4) 

and maintain the value of fc ≤ 0.24√fci, the blanketing is terminated and bond is allowed to 

develop. In this case the transfer and development lengths of the blanketed strands does not 

initiate at the girder end but at the termination of the blanketing. This process is referred to as 

‘partial debonding’ and is the focus of this work. 

2.3.1 Bond Characteristics of Partially Debonded Strands 

In general, for fully bonded strands (those bonded along their entire length from the end of the 

girder), the adequate embedment length is able to develop the tensile force demand in the strand 

along the entire length of a member. In the end region of a beam, large compressive forces will 

be caused by the prestress force and the vertical reaction force at support; these will also help to 

develop the strand anchorage. However, for partially debonded strands, the transfer length begins 

at the end of the debonded length. Thus, the anchorage zone of partially debonded strands is in a 

less beneficial condition compared with fully bonded strands. Additionally, the reduced 

embedment length of partially debonded strands may result in insufficient development to resist 
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eventual flexural and shear loads along the partially debonded region. Finally, based on tests of 

girders having partially debonded strands, Kaar and Magura (1965) put forward a 

recommendation that the value of κ in Eqs 2-1 and 2-2 for partially debonded strands should be 

increased to 2.0. This recommendation is adopted in the AASHTO LRFD Specifications (2010). 

Burgueño and Sun (2011) indicated that different methods of sheathing used to debond 

strands have a significant influence on the transfer length of partially debonded strands. Based on 

their study, the transfer length of rigid sheathing was approximately 49% longer than that of 

flexible sheathing. The result indicated that flexible sheathing was not able to fully mitigate the 

bond mechanism associated with the expansion of prestressing strands (Hoyer effect) and bond 

transfer occurred over a shorter distance than expected. Thus, the concrete stresses in the 

debonded region may be higher than assumed in design and potentially cause cracking. 

Burgueño and Sun adopted a nonlinear FE model to calculate the stress transferred from the 

prestressing strands to the surrounding concrete and to evaluate end region damage when using 

flexible sheathing. They recommend using rigid sheathing to reduce end region cracks. 

2.4 SPECIFICATIONS FOR PARTIALLY DEBONDED STRANDS 

2.4.1 AASHTO LRFD Specifications (2010) 

While both harping and debonding have been in use with relative success for some time, the 

cracking of beam ends continues to be a problem in the production of pretensioned concrete 

beams. Part of the reason for this lingering problem is that there are many influencing factors and 

the solution has been based on rough ad-hoc approaches or on simple elastic stress analyses. 
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AASHTO LRFD Specifications (2010) Article 5.11.4.3 provides the requirements for partially 

debonded strands as follows: 

Length: 

• The development length, which is measured from the end of the debonded zone, can be 

obtained from equation 5.11.4.2-1 multiplied by a factor of 2.0. (i.e. κ = 2.0) 

• The length of debonding of any strand shall satisfy all limit states with consideration of the 

total developed resistance at any section being investigated. 

• Exterior strands in each horizontal row shall be fully bonded. 

Number: 

• The number of partially debonded strands should not exceed 25% of the total number of 

strands. 

• No more than 40% of strands in a horizontal row may be debonded. 

• No more than the greater of 40% of the debonded strands or four strands shall have the 

debonding terminated at any section. This is referred to as ‘staggering’ the debonding 

terminations. 

Details: 

• Debonded strands shall be symmetrically distributed about the centerline of the member. 

• Debonded length of pairs of strands that are symmetrically positioned about the centerline of 

the member shall be equal. 

It is noted that all aspects of Articles 5.11.4.3 are in mandatory language (“shall”) except 

the 25% of total strands limit (“should”); this implies that the Specification  recommends a 25% 

limit but has an implied 40% limit based on the other requirements. 
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2.4.2 State Amended Specifications 

State DOTs are permitted to amend AASHTO LRFD Specifications (2010). A selection of state-

amended specifications for partially debonded strands are briefly summarized in Table 2-1. It is 

seen that practices vary and are occasionally contradictory (AZ and IN). Texas is known to 

permit up to 75% total debonding in its U-girders. 

2.5 RELEVANT RESEARCH ON PARTIAL DEBONDING 

2.5.1 Experimental Studies 

Partial debonding is an effective way to reducing high concrete stresses in end regions of 

prestressed concrete members below AASHTO-acceptable limits. A number of past studies 

focused on eliminating end region cracking through the use of partial debonding (e.g. Ghosh and 

Fintel 1986, Oliva and Okumus 2010). These studies typically took the view of assessing the 

greatest level of partial debonding that is practical. Nonetheless, there remains a lack of 

consensus on the limits and applications of partial debonding. Observations, however, fall into 

two primary categories: 

Firstly, partial debonding introduces a critical issue of reduced longitudinal flexural 

reinforcement, therefore span characteristics (i.e. the moment-to-shear ratio) will influence 

member behavior significantly (Kaar and Magura 1965, Rabbat et al. 1979, Russell and Burns 

1993, Barnes et al. 1999). End region failures, including slip of prestressing strands and splitting 

are also observed which affect service, in addition to ultimate strength behaviour and capacity.  
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Secondly, partial debonding has little effect on shear capacity and can be neglected (Kaar 

and Magura, 1965; Abdalla et al. 1993; Barnes et al. 1999). Thus, the concrete (Vc) and 

transverse steel (Vs) components of shear capacity (described below in Section 2.6.1) are not 

affected. Although shear generates stress in the longitudinal strand, near the girder ends, the 

forces are  mainly influenced by arching or direct strut action with the anchorage provided at the 

support (Ma et al. 1999). This observation does not address cases in which debonding is carried 

some ways into the girder span however. 

2.5.2 Analytical Studies 

The finite element method (FEM) is often adopted to model the global  behavior of prestressed 

concrete members. But bond behavior and local effects in the end regions are complicated and 

numerous bond-slip models for strands and surrounding concrete are put forward. Baxi (2005) 

used finite element software (ABAQUS) to study the bond behaviour in both fully bonded and 

partially debonded strands, without considering concrete creep and shrinkage effects. In his 

simulation, the strand was modelled using truss elements and bond was modelled using nonlinear 

discrete spring elements.  

Burgueño and Sun (2011) considered creep and shrinkage of concrete by replacing spring 

elements with a more realistic contact surface to model bond. They employed the damage-

plasticity model for concrete and 3D solid elements for prestressing strands. Thus, the Hoyer 

effect could be simulated. However, mesh sizes were computationally unaffordable for analysis 

of full-scale members using 3D solid elements. 

 



 14 

2.6 SHEAR RESISTANCE AND BEHAVIOR OF PRESTRESSED GIRDERS 

The AASHTO LRFD Specifications (2010) provides two methods to calculate shear resistance of 

prestressed concrete elements: (1) the General Procedure in Article 5.8.3.4.2, and (2) the 

Simplified Procedure in Article 5.8.3.4.3. These two methods have similar requirements for the 

design of minimum reinforcement, maximum shear limits, and for accounting for the effect of 

the vertical component of prestressing, but they have different methodologies for calculating the 

concrete and steel components of shear resistance.  

2.6.1 Nominal Shear Resistance 

Article 5.8.3.3 provides the equation for the nominal shear resistance, Vn: 

'min( ,0.25 )n c s p c v v pV V V V f b d V= + + +                                                (Eq. 2-5) 

In which 

'0.0316c c v vV f b dβ=  (ksi)                                                                                    (Eq. 2-6) 

(cot cot )v y v
s

A f a
s

V
d θ +

=                                                                                     (Eq. 2-7) 

Where Vc = the concrete contribution to shear resistance; fc
' = concrete compressive strength；bv 

and dv are section web breadth and depth, respectively; Vs = the shear resistance provided by 

shear reinforcement having a yield capacity of fy, area of Av and spacing of s; Vp is the vertical 

component of the effective prestressing force. In section having no harped strands, Vp = 0. The 

upper limit,  Vc + Vs ≤ 0.25 fc
'bvdv is intended to control the diagonal compressive stresses and is 

based on the maximum diagonal tension strain in the member web. The values of the β and θ are 
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determined using the Modified Compression Field Theory (MCFT) as adopted in Article 

5.8.3.4.2. 

2.6.2 Longitudinal Reinforcement  

In a flexural member, shear will cause a tensile force in the longitudinal reinforcement in 

addition to that required to resist the flexure. Diagonal cracks usually occur near the support and 

the free body diagram can be drawn as shown in Figure 2-4. Summing moments about the 

compressive resultant force (point O), the additional tensile force in the longitudinal 

reinforcement, Tv, can be calculated as: 

 ∑ =−−+= 0cot)cot5.0( θ
φ

θ vp
y

u
vsvvO dVVdVdTM                                             (Eq. 2-8) 

 θ
φ

cot5.0 









−−= sp

y

u
v VVVT                                                                                     (Eq. 2-9) 

As the inclination of the diagonal crack, θ, becomes smaller (flatter) the additional tensile 

force Tv will increase. Article 5.8.3.5 prescribes that half of the applied factored axial tension 

load, Nu, is resisted by the longitudinal reinforcement. Considering the effects of flexure, shear 

and axial load, the total tensile force in the primary longitudinal reinforcing steel is: 

0.5 ( 0.5 )cotu u u
p s

v f v v

M N V V V
d

T θ
φ φ φ

= + + − −                                                          (Eq. 2-10) 

Adequate longitudinal reinforcement, including both prestressing strands and non-

prestressed bars, must provide enough tensile force to resist the total tensile force: 

0.5 ( 0.5 )cotu u u
ps ps s y p s

v f v v

M N VA f A f V V
d

T θ
φ φ φ

+ ≥ = + + − −                                  (Eq. 2-11) 
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AASHTO provides that in the critical region for shear extending from the inside edge of 

the bearing area of simple end supports to the section of critical shear, the longitudinal 

reinforcement on the flexural tension side of the member shall satisfy: 

( 0.5 )cotu
ps ps s y p s

v

VA f A f V V θ
φ

+ ≥ − −                                                                  (Eq. 2-12) 

Neglecting flexure and axial effects in this region reflect the expected beneficial effects 

of arching action in this region as described by Ma et al. (1999). 

Equations 2-11 and 2-12 clearly indicate that the longitudinal reinforcement is used to 

resist shear. Moreover, equation 2-12 should consider the possibility that tensile stress in the 

longitudinal reinforcement may not be fully developed at the critical section; that is fpu may not 

be fully developed at this section and thus fps < fpu. Therefore the available strands capacity must 

be determined based on the available development length. Partially debonded strands in this 

region clearly do not contribute to the resistance of the tension force T. 

For a simple support beam with only prestressing strands, Equation 2-11 can be rewritten 

as (Apsfps)/T ≥ 1 and can be used to determine whether available tensile capacity can be 

developed in prestressing strands or not. If the value of  (Apsfps)/T is less than 1 then the required 

tensile stress cannot be fully developed and additional reinforcement is required.  
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Table 1. Selection of state-amended requirements for partially debonded strands 

State 
Total strands 

permitted to be 
debonded 

Strands in one 
row permitted to 

be debonded 

Staggering 
cut-offs Other 

AASHTO 25% 40% 40% or 4 
strands  

PA 
(2000) 25% 40% 40% or 4 

strands 

additional 50% within 6 in. of 
beam end and 25% within 36 in. 

permitted for crack control 
NY 

(2006) 25% 40% but spacing 
must exceed 4 in. 

at least 24 
in. spacing 

not permitted in members having d 
< 15 in. 

OH 
(2007) 

25% mandatory 
for I-girders 40% 40% or 4 

strands 

maximum debonding length must 
be less than 0.16L-40 in. and 50% 
of debonded strands must be only 

half this length 
AZ 

(2011) 25% 40% 40% or 4 
strands 

debonding not permitted for I-
girders 

IN 
(2011) 

25% 
50% for I-girders 40% 40% or 4 

strands  

NE 
(2011) 

increase of 20% beyond AASHTO limits permitted 
with engineer’s permission  

NC 
(2011) 

30% 
(25% ‘preferred’) 40% 40% or 4 

strands  
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Figure 1. Bond stress distribution and transfer length (adapted from Leonhardt 1964) 

 

 

Figure 2. Schematic representation of the Hoyer effect (adapted from Burgueño 2011) 

  

Assumed Stress 
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Figure 3. Transfer and development lengths based on uniform bond assumptions of AASHTO LRFD Specifications 
(adapted from Kasan 2012)
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Figure 4. Free body diagram of forces after diagonal crack forms (AASHTO Specifications Article C5.8.3.5) 
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3.0  PARTIAL DEBONDING EFFECTS   

3.1 INTRODUCTION 

The prestressing force can produce large stresses in pretensioned girders. Near the ends of the 

girders, span effects (i.e. dead load moment) are minimal; but the transfer of large prestressing 

forces, applied with an eccentricity to the section, can result in cracking associated with the 

induced flexure at the top surface of the girder. Additionally, prestressing forces can cause local 

cracking, associated with spreading of prestressed forces in bulb-flanges or due to the Hoyer 

effect near the strand ends, or splitting, associated with transfer of the strand force through bond 

along the transfer length. These effects are made worse by the fact that prestress transfer occurs 

at a concrete age as early as 18-24 hours, before the tensile resistance of the concrete is well 

established. In order to reduce end region cracking, prestress transfer can be delayed in order to 

increase concrete strength; otherwise the prestress forces must be reduced. The former is not 

considered economical or practical in the prestressed concrete industry that relies on 24 hour 

casting cycles. Reduction of detrimental forces can be implemented in three primary ways: 1) 

partial debonding of strands (the focus of this study); 2) harping strands; and/or 3) adding top 

strands. Harping is not an available option for some kinds of girders (i.e. box girders) and is 

expensive, awkward and introduces additional concerns, including factory safety concerns, 

associated with strand hold down requirements. Additionally, harping may not entirely alleviate 
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issues associated with splitting cracks since the harped strands are often located in the very thin 

web elements of bulb-flanged girders.. Adding top strands – which reduces the negative moment 

at the girder ends and thus mitigates top surface cracking – increases costs and influences stress 

states along the entire girder length. Partial debonding and severing of top strands in the mid-

span region has been used to reduce the effect of top strands over the entire span, although these 

solutions are also costly and introduce new concerns of their own.  

Compared with the other two methods, partial debonding of straight strands is easily 

accomplished with and has minimal cost. In partially debonded strands, the strands are 

‘blanketed’ in order to transfer no stress to the concrete over a distance from the end of the girder. 

Stress is only transferred once the blanketing is terminated and bond is re-established. In this 

way, the large prestressing force is introduced gradually into the girder, decreases the 

concentrated stress transfer at the end of the girder. Partial debonding can, in many instances, 

effectively control or eliminate local cracking. 

However, partial debonding reduces the longitudinal capacity of the girder over the 

region of partial debonding and over the extended development length of the debonded strands. 

This is particularly critical where there is a shear crack passing through this region (Barnes et al., 

1999). At the end of the girder, over the support and often beyond the ‘critical section for shear’ 

(usually taken as a distance of one half the girder depth from the face of the support), the largest 

number of strands is debonded and the longitudinal tension capacity is most affected. This is the 

very region where longitudinal stress in the primary reinforcing steel is increased by the effects 

of shear, as described previously in Section 2.6.1.  
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AASHTO provides both requirements and recommendations for partial debonding – 

these are described in Section 2.4.1. Nevertheless, as noted in Section 2.4.2, there is no 

consensus on details partial debonding, particularly the maximum debonding permitted.  

3.1.1 Objective 

If a unified approach to partial debonding practice is to be developed, all aspects of the strength 

and service performance of the girder must be considered. Partial debonding has a dominant 

effect on flexural capacity near the ends of a girder and may also impact shear performance as 

partial debonding termination represents a stress-raiser of sorts in the high-shear regions of a 

pretensioned girder. In this work, analytical studies are developed to quantify effects of partial 

debonding with respect to these effects and in the development of longitudinal forces in the 

prestressing strands.  

In this work, extensive study of strand debonding in AASHTO Type III-VI girders is 

carried out. Required debonding ratios – defined as the total number of partially debonded 

strands to the total number of strands in the section – are found for various girder and bridge 

geometries to satisfy the AASHTO compression and tension stress limits for concrete in 

pretensioned members described in AASHTO Specifications Articles 5.9.4.1.1 and 5.9.4.1.2: 

Concrete compression stress limit: fc ≤ 0.60fci; and 

Concrete tension stress limit: fc ≤ 0.24√fci (ksi) 

Where fci
 = concrete strength at the time of prestressing force transfer (absolute values of stress 

are assumed in both cases). The compression limit primarily affects the greatest number of 

strands that may be placed in a section. The tension limit, usually critical at the girder ends, 

where span effects are negligible, affects the required amount of partial debonding.  
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Having established the required partial debonding to meet concrete stress limits at 

prestress transfer, the girder ultimate flexural and shear capacity is then considered. In Section 

2.5.1.2, for a simply support beam, Equation 2-10, defining the total stress carried by the 

longitudinal reinforcing steel, must be satisfied at all locations along the span. Between the 

supports and the critical section for shear, AASHTO permits the designer to consider only shear 

in determining the stress which the longitudinal reinforcement must resist, as shown in Equation 

2.12. Assuming no mild reinforcement component, both of these equations are simplified by the 

capacity check: 

1/ ≥TfA psps                                                                                                  (Eq. 3-1) 

Where T is described by Equation 2.10 or 2.12 depending on the location being considered in the 

span. If the value of (Apsfps)/T is less than 1, the required tensile stress cannot be developed by 

the available reinforcement. This may occur 1) if too many strands are debonded; i.e.: Aps is too 

small; or 2) the strands that are present are not fully developed; i.e.: fps < fpu.  

3.1.2 Scope 

The premise of this work is that partial debonding is an established practice for pretensioned 

girders. The work develops a methodology establishing an appropriate maximum debonding 

ratio that addresses all aspects of girder design. Two series of 26 AASHTO Type III-VI girders 

with different debonding ratios are analysed using the AASHTO design procedures (a MATLAB 

worksheet for representative Case B29 is provided in Appendix A; a summary of calculation for 

Case B29 is provided in Appendix B). All analysis is based on AASHTO LRFD Specification 

requirements. Results from the MATLAB analysis are compared initial design values provided 

in the PCI Bridge Design Manual (2011) in order to validate the model. Critical concrete tensile 
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stress and longitudinal tension capacity are computed to establish the efficacy of the partial 

debonding provided. 

3.2 PROTOTYPE GIRDERS 

3.2.1 Girder Selection 

In this study, AASHTO Type III, IV, V and VI girders are considered. Girders are divided into 

two series: Series A and Series B.  

 Series A considers 14 girders. In this series the span length and total number of strands is 

constant and the girder size is varied. The cases considered are reported in Table 3-1.  

 Series B considers 12 Type IV girders with the total number of strands held constant, 

while the girder length and spacing is varied. The cases considered are reported in Table 3-2. 

 Girder dimensions are given in Figure 3-1 and Table 3-3. Gross section properties of the 

girders (without slabs) are given in Table 3-4. The maximum permitted strand arrangement is 

shown in Figure 3-2.  

All prototype girders are designed based on the procedure laid out in Appendix A5 of the 

AASHTO LRFD Specification. All are assumed to be interior girders of un-skewed multiple-

girder bridges having at least five girders. Based on this, different combinations of span length, L, 

and girder spacing, S, result in the same required girder capacity; hence the groupings by number 

of strands, N, in Tables 3-1 and 3-2. Solid slabs having thickness, ts, given in Table 3-5 span 

between the girders. The effective width of the slabs – for determining girder resistance – is 
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taken as that described by AASHTO: the least of 1) 25% of the span length; 2) 24 times the slab 

thickness (Table 3-5); or 3) the girder center-to-center spacing, S. 

All girders are simply supported over the span shown in Tables 3-1 or 3-2. Bearing 

support length is 10 in. in every case and the girders are supported over the full bottom flange 

width (dimension B2 in Figure 3-1 and Table 3-3). All girders were provided with #4 stirrups as 

shear reinforcement; these are spaced at 24 in. over the remainder of the span. 

3.2.2 Partial Debonding 

Four levels of partial debonding are considered for each prototype girder: no partial debonding 

and approximately 25%, 50% and 75% partial debonding. Actual debonding ratios, dr, vary 

slightly since only an even number of strands may be debonded while still respecting symmetry 

in the girder. In all cases, debonding is incrementally applied over three, 3 ft long segments 

extending from the girder ends as shown in Figure 3-3. The maximum debonding occurs over the 

support location (from the end of the beam to 3 feet) and all strands are fully bonded at 9 ft. 

Details of each prototype beam and debonding arrangement are given in Tables 3-6 and 3-7 for 

Series A and B, respectively. In these tables, the maximum debonding ratio, dr, is given and the 

bonded strand arrangement is given. Only four rows of strands are considered (Figure 3-2), these 

are labelled R1 to R4 from the bottom-up. Selected debonding patterns, preferentially maintained 

strands in R1 and R2; in some cases debonding 100% of strands in R3 and R4. The total number 

of strands in each section and their arrangement are given in the final columns of Tables 3-6 and 

3-7 as the strand arrangement from 9 ft to mid-span. All details are symmetric about mid-span.    
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3.2.3 Assumed Material Properties 

3.2.3.1 Prestressing Steel 

All girders are reinforced with 0.6 in. diameter low-relaxation seven wire strand. This strand has 

an area, Aps = 0.215 in2 and an ultimate strength of  fpu = 270 ksi. The strand modulus of 

elasticity is Ep = 28500 ksi. The initial prestressing force is fpi = 0.75fpu = 203 ksi. Losses are 

transfer are assumed to be  0.11fpu =  29.4 ksi, resulting an effective prestress force at transfer of 

fpe =  0.64fpu =  173.1 ksi. When considering ultimate capacity, the effective long term prestress 

force is assumed to be 0.56fpu = 151 ksi. 

3.2.3.2 Concrete 

The assumed 28-day compressive strength of the girders is fc
'
 = 8 ksi, while that of the additional 

slab (Table 3-5) is fc
'
 = 4 ksi. The girder strength at prestress transfer is assumed to fci = 6.8  ksi. 

Thus the compressive stress limit at prestress transfer is  fc < 0.60fci= 4.1 ksi. The concrete tensile 

stress limit is fc < 0.24√fci = 0.63 ksi. The concrete strength at prestress transfer, although it is 

that used to establish initial design details in the PCI Bridge Design Manual may be higher than 

is seen in practice. A value of 0.6fc, equal to 4.8 ksi in this case, is more typical. 

3.2.4 Applied Loads 

3.2.4.1 At Prestress Transfer 

At prestress transfer, the girders are assumed to be simply supported over their span L and have 

attained a concrete strength of fci = 6.8 ksi. Only the self-weight of the girder, given in Table 3-4, 

is applied as a uniformly distributed load. The ratio of allowed tension stress to the maximum 
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concrete tension stress is determined at the face of the support and at the critical section for shear, 

d/2 from the face of the support, where d = the girder depth: 

0.24√fci/ft         (Eq. 3-2)  

The value of the tension stress at the top surface of the section is found from Eq. 2-4. For 

these calculations, a load factor of unity is used. 

3.2.4.2 STENGTH I Load Condition 

In order to assess the efficacy of the partially debonded strands to resist ultimate loads, the 

tensile stresses developed in the strand (Eqs. 2-10 and 2-12) are determined and the capacity-to-

demand ratio is found: 

Apsfps/T         (Eq. 3-3) 

Where fps is determined as the stress which may be developed in the strand at the location 

of interest. That is, fps = 0 for strands that are partially debonded. Additionally, once bonded, the 

transfer and development lengths of these strands, calculated using Eq. 2-2 are determined 

applying the factor ĸ  = 2.  

Only the STRENGTH I load combination (AASHTO Article 3.5 and 3.6)  is considered: 

1.25DC + 1.5DW + 1.75(LL + IM)      (Eq. 3-4) 

Where DC is the weight of components, including: 

the girder self weight (Table 3-4) 

the self weight of the concrete slab (ρc = 150 pcf) 

DW is the weight of the wearing surface; in these analyses, a 3 in. asphalt (ρa = 125 pcf) 

wearing surface is assumed.  

LL is the AASHTO-specified HL-93 live load combination specified as the greater effect 

of 1) HL-93 design truck load + 640 plf lane load; or 2) design tandem load + 640 plf design lane 
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load. The spans, in all cases are sufficiently long that the HL-93 truck, shown in Figure 3-4a, 

governs design for moment. The location of the HL-93 vehicle for determining shear capacity is 

shown in Figure 3-4b.   

IM is the dynamic load allowance taken as 0.33LL; thus the final term in Eq. 3-4 

becomes 1.75(LL + 0.33LL) = 2.33LL. 

The multiple presence factor is taken as 1.0, assuming that two lanes are loaded and the 

distribution factors for moment and shear are calculated accordingly (AASHTO Article 4.6.2.2). 

The bridges are assumed to be unskewed, therefore the skew correction factor is 1.0. 

3.3 REPRESENTATIVE PROTOTYPE EXAMPLE 

In order to demonstrate the analysis conducted using the MATLAB program, a representative 

example – Case  B29 in Table  3-7 – is presented in detail in the this section. Complete 

calculations are presented in Appendix B. The prototype is a 105-foot long AASHTO Type IV 

girder having 26-0.6-in., 270-ksi straight strands arranged in three rows having 10, 8 and 8 

strands, respectively, as shown in Figure 3-3.  

Twelve of the 26 strands (46%) were debonded over the initial 3 feet, eight strands (31%) 

were debonded to 6 feet, and four strands (15%) were debonded to 9 feet. From 9 feet to the mid-

span all 26 strands are fully bonded. The maximum debonding ratio is 0.46 for this girder. The 

girder section and elevation are shown in Figure 3-3. Based on AASHTO Specifications, the 

transfer length (see Section 2.2.1) is lt = 1.6(60db) = 58 in. for the fully bonded strands and lt = 

2.0(60db) = 72 in. for the partially debonded strands as shown in Figure 3-6. Similarly, the 
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development length for the partially debonded strands is 2.0ld = 175 in. and 1.6ld =140 in. for the 

fully bonded strands (Figure 3-5).  

The strand stress immediately after transfer is 173 ksi. The prestress transfer results in the 

beam ‘hogging’ and concrete tension forces generated along the top surface. These are only 

mitigated by the girder self-weight. If no partial debonding were present, the concrete tensile 

stress near the support (calculated using Eq. 2-3) significantly exceeds the concrete tensile stress 

limit: 
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Where yb = 24.73 in. for AASHTO Type IV girders (Table 3-4) and the individual layers of 10, 8 

and 8 strands are spaced at 2 in. (i.e.: e = yb – 2 for lowest row of strands, etc.). As demonstrated 

by Equation 3-5, partial debonding is required. In this case, the 46% debonding provided 

successfully reduced the tensile stresses below the prescribed limit as shown in Figure 3-6. In 

this case, the 26 strand arrangement does not result in concrete compressive stress exceeding the 

permitted limit of 0.6fci – this is also shown in Figure 3-6.  

Under the STRENGTH I load combination the maximum moment and shear effects are 

generated. Figure 3-7a shows the prestressing strand capacity ratio given by Eq. 3-1 along the 

girder span. It is seen that this ratio exceeds unity – indicating adequate capacity – from just 

beyond the face of the support. At the critical section, the ratio is 2.04. AASHTO Specifications 

(and common design practice) neglects shear-induced effects in the region between the face of 

the support and the critical section for shear; thus the strand capacity is adequate for Case B29.  
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 Figure 3-7b shows the shear capacity and demand along the entire girder. Due to the 

length of the girder, the shear demand is not significant and remains comfortably below the shear 

capacity provided by the girder. 
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Table 2. Series A 

Girder Length (ft) No. of Strands 
in mid-span Girder Type Girder Spacing (ft) 

L N  S 

50 12 
III 
IV 
V 

10 
12 
12 

70 16 

III 
IV 
V 
VI 

8 
10 
10 
12 

100 28 

III 
IV 
V 
VI 

6 
8 

10 
12 

125 40 
IV 
V 
VI 

6 
8 

10 

 

Table 3. Series B 

Girder Length (ft) No. of Strands 
in mid-span Girder Type Girder Spacing (ft) 

L N  S 
65 
60 
55 
50 

12 

IV 

6 
8 

10 
12 

105 
95 
90 
85 

26 

6 
8 

10 
12 

120 
115 
105 
100 

38 

6 
8 

10 
12 
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Table 4. Dimensions (in.) shown in Figure 3-1 (PCI Bridge Design Manual, 2011) 

Girder 
Type D1 D2 D3 D4 D5 D6 B1 B2 B3 B4 B5 B6 

III 45.0 7.0 0.0 4.5 7.5 7.0 16.0 22.0 7.0 4.5 0.0 7.5 
IV 54.0 8.0 0.0 6.0 9.0 8.0 20.0 26.0 8.0 6.0 0.0 9.0 
V 63.0 5.0 3.0 4.0 10.0 8.0 42.0 28.0 8.0 4.0 13.0 10.0 
VI 72.0 5.0 3.0 4.0 10.0 8.0 42.0 28.0 8.0 4.0 13.0 10.0 

 

Table 5. Gross section properties (PCI Bridge Design Manual, 2011) 

Girder 
Type 

Section Area 
in.2 

 Distance from Neutral 
Axis to Soffit) 

in. 

Moment 
of Inertia 

in.4 

Girder 
Self Weight 

kip/ft 
 A yb I w 

III 560 20.27 125,390 0.583 
IV 789 24.73 260,730 0.822 
V 1013 31.96 521,180 1.055 
VI 1085 36.38 733,320 1.130 

 

Table 6. Slab thickness 

Girder Spacing 
(ft) 

Thickness of Slab  
(in.) 

S ts 
6 8 
8 8 
10 8.5 
12 9 
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Table 7. Debonding arrangements for Series A 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

Bonded Strands in each row (R) from the bottom of the girder 

0' to 3' 3' to 6' 6' to 9' 9' to L/2 

  L (ft) S (ft) N dr R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 
A1 III 70 8 16 0.00 8 8 0 0 8 8 0 0 8 8 0 0 8 8 0 0 
A2 IV 70 10 16 0.00 8 8 0 0 8 8 0 0 8 8 0 0 8 8 0 0 
A3 V 70 10 16 0.00 8 8 0 0 8 8 0 0 8 8 0 0 8 8 0 0 
A4 VI 70 12 16 0.00 8 8 0 0 8 8 0 0 8 8 0 0 8 8 0 0 
A5 III 100 6 28 0.00 10 10 8 0 10 10 8 0 10 10 8 0 10 10 8 0 
A6 IV 100 8 28 0.00 10 10 8 0 10 10 8 0 10 10 8 0 10 10 8 0 
A7 V 100 10 28 0.00 10 10 8 0 10 10 8 0 10 10 8 0 10 10 8 0 
A8 VI 100 12 28 0.00 10 10 8 0 10 10 8 0 10 10 8 0 10 10 8 0 
A9 III 50 10 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 

A10 IV 50 12 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
A11 V 50 12 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
A12 IV 125 6 40 0.00 12 12 12 4 12 12 12 4 12 12 12 4 12 12 12 4 
A13 V 125 8 40 0.00 12 12 12 4 12 12 12 4 12 12 12 4 12 12 12 4 
A14 VI 125 10 40 0.00 12 12 12 4 12 12 12 4 12 12 12 4 12 12 12 4 
A15 III 70 8 16 0.25 6 6 0 0 8 6 0 0 8 8 0 0 8 8 0 0 
A16 IV 70 10 16 0.25 6 6 0 0 8 6 0 0 8 8 0 0 8 8 0 0 
A17 V 70 10 16 0.25 6 6 0 0 8 6 0 0 8 8 0 0 8 8 0 0 
A18 VI 70 12 16 0.25 6 6 0 0 8 6 0 0 8 8 0 0 8 8 0 0 
A19 III 100 6 28 0.21 8 8 6 0 10 8 6 0 10 10 6 0 10 10 8 0 
A20 IV 100 8 28 0.21 8 8 6 0 10 8 6 0 10 10 6 0 10 10 8 0 
A21 V 100 10 28 0.21 8 8 6 0 10 8 6 0 10 10 6 0 10 10 8 0 
A22 VI 100 12 28 0.21 8 8 6 0 10 8 6 0 10 10 6 0 10 10 8 0 
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Table 7. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

Bonded Strands in each row (R) from the bottom of the girder 

0' to 3' 3' to 6' 6' to 9' 9' to L/2 

  L (ft) S (ft) N dr R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 
A23 III 50 10 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
A24 IV 50 12 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
A25 V 50 12 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
A26 IV 125 6 40 0.25 10 10 10 0 12 12 10 0 12 12 12 2 12 12 12 4 
A27 V 125 8 40 0.25 10 10 10 0 12 12 10 0 12 12 12 2 12 12 12 4 
A28 VI 125 10 40 0.25 10 10 10 0 12 12 10 0 12 12 12 2 12 12 12 4 
A29 III 70 8 16 0.50 4 4 0 0 6 6 0 0 8 8 0 0 8 8 0 0 
A30 IV 70 10 16 0.50 4 4 0 0 6 6 0 0 8 8 0 0 8 8 0 0 
A31 V 70 10 16 0.50 4 4 0 0 6 6 0 0 8 8 0 0 8 8 0 0 
A32 VI 70 12 16 0.50 4 4 0 0 6 6 0 0 8 8 0 0 8 8 0 0 
A33 III 100 6 28 0.50 6 6 2 0 8 8 2 0 10 10 4 0 10 10 8 0 
A34 IV 100 8 28 0.50 6 6 2 0 8 8 2 0 10 10 4 0 10 10 8 0 
A35 V 100 10 28 0.50 6 6 2 0 8 8 2 0 10 10 4 0 10 10 8 0 
A36 VI 100 12 28 0.50 6 6 2 0 8 8 2 0 10 10 4 0 10 10 8 0 
A37 III 50 10 12 0.50 4 2 0 0 6 2 0 0 8 4 0 0 8 4 0 0 
A38 IV 50 12 12 0.50 4 2 0 0 6 2 0 0 8 4 0 0 8 4 0 0 
A39 V 50 12 12 0.50 4 2 0 0 6 2 0 0 8 4 0 0 8 4 0 0 
A40 IV 125 6 40 0.50 8 8 4 0 12 10 4 0 12 12 8 2 12 12 12 4 
A41 V 125 8 40 0.50 8 8 4 0 12 10 4 0 12 12 8 2 12 12 12 4 
A42 VI 125 10 40 0.50 8 8 4 0 12 10 4 0 12 12 8 2 12 12 12 4 
A43 III 70 8 16 0.75 2 2 0 0 4 4 0 0 6 6 0 0 8 8 0 0 
A44 IV 70 10 16 0.75 2 2 0 0 4 4 0 0 6 6 0 0 8 8 0 0 
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Table 7. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

Bonded Strands in each row (R) from the bottom of the girder 

0' to 3' 3' to 6' 6' to 9' 9' to L/2 

  L (ft) S (ft) N dr R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 
A47 III 100 6 28 0.71 4 4 0 0 6 6 2 0 8 8 4 0 10 10 8 0 
A48 IV 100 8 28 0.71 4 4 0 0 6 6 2 0 8 8 4 0 10 10 8 0 
A49 V 100 10 28 0.71 4 4 0 0 6 6 2 0 8 8 4 0 10 10 8 0 
A50 VI 100 12 28 0.71 4 4 0 0 6 6 2 0 8 8 4 0 10 10 8 0 
A51 III 50 10 12 0.67 4 0 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
A52 IV 50 12 12 0.67 4 0 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
A53 V 50 12 12 0.67 4 0 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
A54 IV 125 6 40 0.70 6 6 0 0 10 8 4 0 12 10 8 2 12 12 12 4 
A55 V 125 8 40 0.70 6 6 0 0 10 8 4 0 12 10 8 2 12 12 12 4 
A56 VI 125 10 40 0.70 6 6 0 0 10 8 4 0 12 10 8 2 12 12 12 4 
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Table 8. Debonding arrangements for Series B 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

Bonded Strands in each row (R) from the bottom of the girder 

0' to 3' 3' to 6' 6' to 9' 9' to L/2 

  L (ft) S (ft) N dr R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 
B1 IV 65 6 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B2 IV 60 8 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B3 IV 55 10 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B4 IV 50 12 12 0.00 8 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B5 IV 105 6 26 0.00 10 8 8 0 10 8 8 0 10 8 8 0 10 8 8 0 
B6 IV 95 8 26 0.00 10 8 8 0 10 8 8 0 10 8 8 0 10 8 8 0 
B7 IV 90 10 26 0.00 10 8 8 0 10 8 8 0 10 8 8 0 10 8 8 0 
B8 IV 85 12 26 0.00 10 8 8 0 10 8 8 0 10 8 8 0 10 8 8 0 
B9 IV 120 6 38 0.00 12 12 10 4 12 12 10 4 12 12 10 4 12 12 10 4 
B10 IV 115 8 38 0.00 12 12 10 4 12 12 10 4 12 12 10 4 12 12 10 4 
B11 IV 105 10 38 0.00 12 12 10 4 12 12 10 4 12 12 10 4 12 12 10 4 
B12 IV 100 12 38 0.00 12 12 10 4 12 12 10 4 12 12 10 4 12 12 10 4 
B13 IV 65 6 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B14 IV 60 8 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B15 IV 55 10 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B16 IV 50 12 12 0.17 6 4 0 0 8 4 0 0 8 4 0 0 8 4 0 0 
B17 IV 105 6 26 0.23 8 6 6 0 10 6 6 0 10 8 6 0 10 8 8 0 
B18 IV 95 8 26 0.23 8 6 6 0 10 6 6 0 10 8 6 0 10 8 8 0 
B19 IV 90 10 26 0.23 8 6 6 0 10 6 6 0 10 8 6 0 10 8 8 0 
B20 IV 85 12 26 0.23 8 6 6 0 10 6 6 0 10 8 6 0 10 8 8 0 
B21 IV 120 6 38 0.26 10 10 8 0 12 12 8 0 12 12 10 2 12 12 10 4 
B22 IV 115 8 38 0.26 10 10 8 0 12 12 8 0 12 12 10 2 12 12 10 4 
B23 IV 105 10 38 0.26 10 10 8 0 12 12 8 0 12 12 10 2 12 12 10 4 
B24 IV 100 12 38 0.26 10 10 8 0 12 12 8 0 12 12 10 2 12 12 10 4 
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Table 8. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

Bonded Strands in each row (R) from the bottom of the girder 

0' to 3' 3' to 6' 6' to 9' 9' to L/2 

  L (ft) S (ft) N dr R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 
B25 IV 65 6 12 0.50 4 2 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
B26 IV 60 8 12 0.50 4 2 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
B27 IV 55 10 12 0.50 4 2 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
B28 IV 50 12 12 0.50 4 2 0 0 6 2 0 0 8 2 0 0 8 4 0 0 
B29 IV 105 6 26 0.46 6 4 4 0 8 6 4 0 10 8 4 0 10 8 8 0 
B30 IV 95 8 26 0.46 6 4 4 0 8 6 4 0 10 8 4 0 10 8 8 0 
B31 IV 90 10 26 0.46 6 4 4 0 8 6 4 0 10 8 4 0 10 8 8 0 
B32 IV 85 12 26 0.46 6 4 4 0 8 6 4 0 10 8 4 0 10 8 8 0 
B33 IV 120 6 38 0.47 8 8 4 0 10 10 8 0 12 12 8 2 12 12 10 4 
B34 IV 115 8 38 0.47 8 8 4 0 10 10 8 0 12 12 8 2 12 12 10 4 
B35 IV 105 10 38 0.47 8 8 4 0 10 10 8 0 12 12 8 2 12 12 10 4 
B36 IV 100 12 38 0.47 8 8 4 0 10 10 8 0 12 12 8 2 12 12 10 4 
B37 IV 65 6 12 0.67 2 2 0 0 4 4 0 0 6 4 0 0 8 4 0 0 
B38 IV 60 8 12 0.67 2 2 0 0 4 4 0 0 6 4 0 0 8 4 0 0 
B39 IV 55 10 12 0.67 2 2 0 0 4 4 0 0 6 4 0 0 8 4 0 0 
B40 IV 50 12 12 0.67 2 2 0 0 4 4 0 0 6 4 0 0 8 4 0 0 
B41 IV 105 6 26 0.77 4 2 0 0 8 4 2 0 10 6 4 0 10 8 8 0 
B42 IV 95 8 26 0.77 4 2 0 0 8 4 2 0 10 6 4 0 10 8 8 0 
B43 IV 90 10 26 0.77 4 2 0 0 8 4 2 0 10 6 4 0 10 8 8 0 
B44 IV 85 12 26 0.77 4 2 0 0 8 4 2 0 10 6 4 0 10 8 8 0 
B45 IV 120 6 38 0.74 4 4 2 0 10 8 4 0 12 10 6 2 12 12 10 4 
B46 IV 115 8 38 0.74 4 4 2 0 10 8 4 0 12 10 6 2 12 12 10 4 
B47 IV 105 10 38 0.74 4 4 2 0 10 8 4 0 12 10 6 2 12 12 10 4 
B48 IV 100 12 38 0.74 4 4 2 0 10 8 4 0 12 10 6 2 12 12 10 4 
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Figure 5. Section dimensions of AASHTO type girders  
(adapted from Appendix-B of PCI Bridge Design Manual, 2011) 

 

      

  

Figure 6. Strands arrangements of AASHTO I-girders 
(adapted from Appendix-B of PCI Bridge Design Manual, 2011) 
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Figure 7. Example of partial debonding (Case B29 in Table 3-7) 

 

a) Location of HL-93 vehicle to cause maximum moment in span 

 

b) Location of HL-93 vehicle to cause maximum shear at shear critical section 

Figure 8. Locations of design truck load at maximum moment and shear critical section 
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Figure 9. Schematic representation of development length (Case B29 in Table 3-7) 

 

 

Figure 10. Compressive (positive) and tensile (negative) stress at prestress transfer 
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a) Capacity ratio of prestressing strands along the girder length 
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b) Shear capacity and demand along the girder length 

Figure 11. Representative results from MATLAB analyses for Case B29 subjected to STENGTH I load 
combination with the HL-93 vehicle arranged for flexure (Figure 3-4a) 
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4.0  DISCUSSION OF RESULTS   

4.1 VALIDATION OF MATLAB MODEL 

Initial design capacities reported in the PCI Bridge Design Manual (2011) are adopted to 

validate the MATLAB-generated results, which strictly follow the AASHTO design procedures. 

The factored moment demand (Mu) and factored flexural resistance (ϕMn) based on the 

MATLAB code and obtained from the PCI Manual, are listed in Tables 4-1 and 4-2, for Series A 

and B, respectively. Table 4-3 shows the average, minimum and maximum values for the 

comparison of Mu and ϕMn, based on MATLAB code and PCI. Tables 4-1 and 4-2 also 

summarise the concrete tensile (0.24√f ci/fc) and longitudinal tension (Apsfps/T) capacity ratios 

obtained from the MATLAB analyses. 

As seen in Tables 4-1 to 4-3, the MATLAB analysis yields a girder capacity slightly 

smaller and an applied moment slightly greater than those provided by PCI. Since the girder 

sections are generally ‘well designed’, it is expected that the results from MATLAB and PCI are 

in good agreement, neither over- or under-designed for the parameters considered. The reason 

for the reduced ϕMn/Mu margin in the MATLAB analyses may be attributed to the inclusion of 

the wearing surface load, DW (Section 3.2.4.2), which is not included in the PCI preliminary 

design calculations. Based on the results shown, it is verified that the MATLAB analyses 

represent the girder design behaviour quite well. 
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4.2 SERIES A 

The concrete tensile stress (0.24√f ci/fct) and longitudinal tension capacity (Apsfps/T) ratios for 

Series A (Table 4-1), in which the span length and total number of strands is held constant and 

the girder types are varying, are plotted  as solid and dashed lines respectively, in Figure 4-1. In 

this figure, the total number of strands (12, 16, 28 and 40 strands) – and therefore the appropriate 

span lengths (50, 70, 100 and 125 ft) – increase from left to right on the horizontal axis. All four 

girder sizes, Type III through VI, are shown. Successful partial debonding must be sufficient to 

result in 0.24√f ci/fct ≥ 1.0 while maintaining enough bonded steel to ensure that Apsfps/T ≥ 1.0. 

Observations drawn from the results of the MATLAB analysis are as follows:  

(1) Critical concrete tensile stress fct falls as the girder depth H increases (from girder 

type III to girder type VI). This observation reflects the fact that fct is a function of the inverse of 

section area (1/A) and section modulus (1/St) (Eqs 2-3 and 2-4). As the girder depth (H) 

increases, section area (A) increases essentially linearly, while section modulus (St) increases as 

H2, thus fct decreases. 

(2) The additional tensile force in the longitudinal reinforcement (T) (Eq. 2-9) will 

increase as girder depth H increases (from girder type III to VI). This is because, for a fixed 

number of strands, the factored moment (ϕMu) and shear capacities (ϕVu) increase with an 

increase of the girder depth H,  thus T is increases. 

(3) For shallower girders (Type III) having shorter spans, the Apsfps/T ≥ 1 .0  is not 

satisfied at 0% debonding (consider Type III girders in Figure 4-1a). Thus, any debonding will 

make these critical girders more severe in terms of requiring mild steel to supplement the 

longitudinal tension capacity (As in Eq. 2-11). This is somewhat expected since the transfer and 
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development lengths are proportionally longer in relation to the girder depth and thus encroach 

further into the span where tension demands, T, are higher. Additionally for short shallow girders, 

in order to satisfy the 0.24√f ci/fct ≥ 1.0 concrete tensile requirement, some degree of debonding is 

required (Figure 4-1a). Thus, short shallow spans are particularly critical and may: a) require 

supplemental mild steel to satisfy Apsfps/T ≥ 1.0; and/or b) require measures other than debonding 

(such as harping) to satisfy 0.24√fci/fct ≥ 1.0. 

(4) For deeper girders (Type IV and larger) having longer spans and more prestressing 

strands, debonding is required to satisfy 0.24√f ci/fct ≥ 1.0, although there is reserve capacity in the 

Apsfps/T  ≥ 1.0 criteria to permit this. This can be seen in the case of 25% debonding shown in 

Figure 4-1b in which this degree of partial debonding reduces the concrete tensile stress in the 

beam, increasing 0.24√fci/fct. Although partial debonding does reduce Apsfps, the ratio Apsfps/T 

remains above unity for many cases, particularly those with a larger number of strands (Figure 4-

1b). Greater debonding (Figures 4.1c and d) reduces the concrete tensile strengths but also 

reduce the area of prestressing strand Aps to the extent that the Apsfps/T ≥ 1.0 criteria is no longer 

satisfied. 

4.3 SERIES B 

Maintaining the same girder section (Type IV), while the total number of strand and girder 

length are varying, the concrete tensile stress (0.24√f ci/fct) and longitudinal tension capacity 

(Apsfps/T) ratios (Table 4-2) for Series B plotted in Figure 4-2. Observations drawn from results 

of the MATLAB analysis are as follows: 
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(1) As total number of strand (N) increases, the concrete tensile stress ratio (0.24√f ci/fct) 

becomes more critical. For instance, this ratio is greater than unity for N=12, regardless of 

debonding ratio. However, this ratio is reduced greatly and is smaller than unity for both N=26 

and N=38, regardless of the debonding ratio (the case of N = 26 with dr = 77% does, in fact, 

barely satisfy the 0.24√f ci/fct criteria). This is mainly because the strands are distributed at the 

bottom of the section, resulting in greater eccentric moment (Pe in Eq. 2-4) and therefore 

increasing fct. The longer span, (L) which results in more self-weight-induced moment, can 

mitigate this effect to some extent. 

 (2) With the same total strand number, fpsAps/T ≥ 1.0 is more critical for shorter spans 

than for longer spans. This is because for the shorter span, the factored shear force (Vu) is greater 

than for longer spans having the same moment capacity; this leads to a larger value of T (Eq. 2-

9). For the same span length, fpsAps/T ≥ 1.0 is more critical at larger debonding ratios since fpsAps 

is smaller in this instance. 

(3) Short beams having fewer strands easily satisfy the 0.24√f ci/fct ≥ 1.0 criteria. Since 

debonding will generally not be required for such shorter beams, additional mild steel may be 

needed to meet the fpsAps/T ≥ 1.0  criteria. In the cases shown in Figure 4-2, a Type IV girder 

having only 12 strands requires no debonding to satisfy concrete tension requirements but 

requires additional mild steel to meet the fpsAps/T ≥ 1.0 criteria for lengths less than about 62 ft.  

(4) Longer beams having a large number of strands do not easily meet the 0.24√f ci/fct ≥ 

1.0 criteria, despite being able to accommodate relatively large amounts of debonding. Thus 

harping will likely be required in addition to debonding to meet the concrete tension stress 

criteria. Longer beams can accommodate greater debonding but the debonding itself has a 

proportionally smaller impact on the concrete tension stresses. 
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4.4 ACCEPTABLE PARTIAL DEBONDING 

This study aimed at establishing a reasonable range for the maximum partial debonding ratio 

permitted for AASHTO type girders. The successful debonding ratio must be sufficient to satisfy 

both the concrete tensile stress ratio: 0.24√f ci/fct ≥ 1.0 and the longitudinal tension capacity ratio: 

Apsfps/T ≥ 1.0. 

To illustrate this requirement, an AASHTO type IV girder having a span of 105 ft and a 

total of 26 strands is selected as the example. Different debonding ratios – 0%, 23%, 46% and 

77%, representing cases B5, B17, B29, and B41 in Table 4-2 are considered. The resulting 

capacity ratios are plotted against the debonding ratio in Figure 4-3.  The location at which the 

trend line of 0.24√f ci/fct passes unity represents the minimum debonding ratio required to satisfy 

concrete tensile limits. The intersection of the Apsfps/T trend line with unity represents the 

maximum debonding ratio permitted that will still satisfy longitudinal steel stress requirement. In 

the case shown in Figure 4-3, the debonding ratio must exceed 0.31 to satisfy the concrete stress 

limit but may not exceed 0.39 in order to continue to satisfy the longitudinal tension requirement 

without the addition of mild steel; thus an acceptable debonding ratio falls between these values 

in this case. The acceptable range of debonding ratios varies with girder type, length, spacing, 

total number of strands and etc.  Acceptable debonding ratios are summarized in Table 4-4 from 

which the following conclusions are drawn: 

(1) The "unsuccessful" debonding ratios (N/A in the Table 4-4) primarily result because 

strand capacity ratio (Apsfps/T) is difficult to achieve. Therefore other approaches, such as the 

addition of mild steel, should be implemented to improve the shear capacity of the girders. 

(2) Acceptable debonding ratios may not be found for shorter spans (also having smaller 

number of strands). For example, both concrete and longitudinal steel criteria cannot be met for 



49 

50 ft and 70 ft AASHTO Type III girders, 50 to 65 ft AASHTO Type IV girders, and 70 ft 

AASHTO Type V and VI girders. This means, in most cases, that even fully bonded strands 

cannot meet the strand capacity requirement (Apsfps/T>1.0). Additional mild steel is therefore 

required in the end regions for shorter span girders. 

(3) With an increase of girder height (from Type III to Type IV), it is more likely to 

obtain acceptable debonding ratios due to the greater efficiency of the remaining bonded strands 

over a longer lever arm (dv in Eq. 2-10 ).  

(4) The acceptable range of debonding ratios is relatively small for moderate span lengths 

and becomes broader for longer spans. Consider the example of Type V girders:, the acceptable 

range of debonding ratio for 100 ft (with 28 total strands) is 0.04-0.10; this increases to 0.35-0.45 

for L = 125 ft (with 40 total strands).  

While the range of acceptable debonding ratio may seem restricted, it must be recalled 

that the ranges provided are based on both concrete and longitudinal tension criteria. The ‘upper’ 

limit on the range is a function of the Apsfps/T criteria. The only way to increase this is to provide 

additional mild steel, a detail that is often considered impractical, particularly in heavily 

reinforced sections. The lower limit, on the other hand, is a function of the 0.24√f ci/fct criteria. 

This may be partially or even fully addressed by harping strands or by the addition of prestressed 

reinforcement at the top of the section (this is often sacrificial and is cut at some point in the 

erection process, usually following the application of the deck). Thus, were a limit is shown in 

Table 4-3, the range may be practically extended downward, but not upward. 
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Table 9. Results of Series A 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

 

fc 
0.24√fci 

T 
Apsfps MATLAB 

values PCI values PCI 
MATLAB 

support critical 
section ϕMn Mu Mu 

ϕMn ϕMr Mu Mu 
ϕMr Mn Mu 

  L (ft) S (ft) N dr    (kip-ft)  (kip-ft)    
A1 III 70 8 16 0.00 0.70 0.97 1.99 3693 3847 0.96 3862 3669 1.05 0.96 1.05 
A2 IV 70 10 16 0.00 0.98 0.88 1.87 4462 4883 0.91 4658 4586 1.02 0.96 1.06 
A3 V 70 10 16 0.00 1.58 0.95 2.05 5162 5183 1.00 5322 4945 1.08 0.97 1.05 
A4 VI 70 12 16 0.00 1.64 0.86 1.89 5920 6063 0.98 6127 5656 1.08 0.97 1.07 
A5 III 100 6 28 0.00 0.44 1.60 3.37 5961 5519 1.08 6214 5402 1.15 0.96 1.02 
A6 IV 100 8 28 0.00 0.60 1.41 3.06 7340 7309 1.00 7667 6940 1.10 0.96 1.05 
A7 V 100 10 28 0.00 0.95 1.26 2.80 8728 9109 0.96 9000` 8623 1.04 0.97 1.06 
A8 VI 100 12 28 0.00 0.98 1.13 2.58 10084 10663 0.95 10438 9864 1.06 0.97 1.08 
A9 III 50 10 12 0.00 0.88 0.74 1.49 2882 2694 1.07 3003 2543 1.18 0.96 1.06 

A10 IV 50 12 12 0.00 1.25 0.69 1.44 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
A11 V 50 12 12 0.00 2.02 0.75 1.58 3957 3491 1.13 - - - - - 
A12 IV 125 6 40 0.00 0.44 2.08 4.38 9662 8723 1.11 9541 8532 1.12 1.01 1.02 
A13 V 125 8 40 0.00 0.69 1.78 4.00 11794 11258 1.05 12287 11454 1.07 0.96 0.98 
A14 VI 125 10 40 0.00 0.70 1.55 3.57 13970 13461 1.03 14242 13347 1.07 0.98 1.01 
A15 III 70 8 16 0.25 0.95 0.73 1.56 3693 3847 0.96 3862 3669 1.05 0.96 1.05 
A16 IV 70 10 16 0.25 1.36 0.66 1.46 4462 4883 0.91 4658 4586 1.02 0.96 1.06 
A17 V 70 10 16 0.25 2.21 0.71 1.60 5162 5183 1.00 5322 4945 1.08 0.97 1.05 
A18 VI 70 12 16 0.25 2.29 0.65 1.48 5920 6063 0.98 6127 5656 1.08 0.97 1.07 
A19 III 100 6 28 0.21 0.56 1.25 2.70 5961 5519 1.08 6214 5402 1.15 0.96 1.02 
A20 IV 100 8 28 0.21 0.78 1.11 2.46 7340 7309 1.00 7667 6940 1.10 0.96 1.05 
A21 V 100 10 28 0.21 1.24 0.99 2.25 8728 9109 0.96 9000 8623 1.04 0.97 1.06 
A22 VI 100 12 28 0.21 1.27 0.89 2.07 10084 10663 0.95 10438 9864 1.06 0.97 1.08 
A23 III 50 10 12 0.17 1.00 0.63 1.31 2882 2694 1.07 3003 2543 1.18 0.96 1.06 
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Table 9. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

 

fc 
0.24√fci 

T 
Apsfps MATLAB 

values PCI values PCI 
MATLAB 

support critical 
section ϕMn Mu Mu 

ϕMn ϕMr Mu Mu 
ϕMr Mn Mu 

  L (ft) S (ft) N dr    (kip-ft)  (kip-ft)    
A24 IV 50 12 12 0.17 1.44 0.60 1.26 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
A25 V 50 12 12 0.17 2.36 0.64 1.39 3957 3491 1.13 - - - - - 
A26 IV 125 6 40 0.25 0.58 1.56 3.34 9662 8723 1.11 9541 8532 1.12 1.01 1.02 
A27 V 125 8 40 0.25 0.91 1.34 3.10 11794 11258 1.05 12287 11454 1.07 0.96 0.98 
A28 VI 125 10 40 0.25 0.94 1.16 2.77 13970 13461 1.03 14242 13347 1.07 0.98 1.01 
A29 III 70 8 16 0.50 0.95 0.52 1.12 3693 3847 0.96 3862 3669 1.05 0.96 1.05 
A30 IV 70 10 16 0.50 1.39 0.49 1.05 4462 4883 0.91 4658 4586 1.02 0.96 1.06 
A31 V 70 10 16 0.50 2.34 0.52 1.15 5162 5183 1.00 5322 4945 1.08 0.97 1.05 
A32 VI 70 12 16 0.50 2.33 0.48 1.07 5920 6063 0.98 6127 5656 1.08 0.97 1.07 
A33 III 100 6 28 0.50 0.69 0.80 1.79 5961 5519 1.08 6214 5402 1.15 0.96 1.02 
A34 IV 100 8 28 0.50 1.00 0.71 1.64 7340 7309 1.00 7667 6940 1.10 0.96 1.05 
A35 V 100 10 28 0.50 1.67 0.63 1.50 8728 9109 0.96 9000 8623 1.04 0.97 1.06 
A36 VI 100 12 28 0.50 1.59 0.58 1.38 10084 10663 0.95 10438 9864 1.06 0.97 1.08 
A37 III 50 10 12 0.50 1.12 0.43 0.81 3437 3311 1.07 3003 2543 1.18 1.14 1.30 
A38 IV 50 12 12 0.50 1.66 0.42 0.79 3437 3311 1.04 3622 3111 1.16 0.95 1.06 
A39 V 50 12 12 0.50 2.77 0.44 0.86 3957 3491 1.13 - - - - - 
A40 IV 125 6 40 0.50 0.71 1.04 2.53 9662 8723 1.11 9541 8532 1.12 1.01 1.02 
A41 V 125 8 40 0.50 1.16 0.89 2.15 11794 11258 1.05 12287 11454 1.07 0.96 0.98 
A42 VI 125 10 40 0.50 1.10 0.77 1.92 13970 13461 1.03 14242 13347 1.07 0.98 1.01 
A43 III 70 8 16 0.75 1.11 0.33 0.66 3693 3847 0.96 3862 3669 1.05 0.96 1.05 
A44 IV 70 10 16 0.75 1.70 0.33 0.63 4462 4883 0.91 4658 4586 1.02 0.96 1.06 
A45 V 70 10 16 0.75 2.95 0.34 0.68 5162 5183 1.00 5322 4945 1.08 0.97 1.05 
A46 VI 70 12 16 0.75 2.83 0.33 0.64 5920 6063 0.98 6127 5656 1.08 0.97 1.07 
A47 III 100 6 28 0.71 0.69 0.48 1.13 5961 5519 1.08 6214 5402 1.15 0.96 1.02 
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Table 9. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

 

fc 
0.24√fci 

T 
Apsfps MATLAB 

values PCI values PCI 
MATLAB 

support critical 
section ϕMn Mu Mu 

ϕMn ϕMr Mu Mu 
ϕMr Mn Mu 

  L (ft) S (ft) N dr    (kip-ft)  (kip-ft)    
A48 IV 100 8 28 0.71 1.00 0.45 1.04 7340 7309 1.00 7667 6940 1.10 0.96 1.05 
A49 V 100 10 28 0.71 1.67 0.42 0.95 8728 9109 0.96 9000 8623 1.04 0.97 1.06 
A50 VI 100 12 28 0.71 1.59 0.40 0.88 10084 10663 0.95 10438 9864 1.06 0.97 1.08 
A51 III 50 10 12 0.67 1.26 0.34 0.66 3437 3311 1.07 3003 2543 1.18 1.14 1.30 
A52 IV 50 12 12 0.67 1.89 0.33 0.65 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
A53 V 50 12 12 0.67 3.24 0.35 0.70 3957 3491 1.13 - - - - - 
A54 IV 125 6 40 0.70 0.71 0.63 1.49 9662 8723 1.11 9541 8532 1.12 1.01 1.02 
A55 V 125 8 40 0.70 1.16 0.55 1.45 11794 11258 1.05 12287 11454 1.07 0.96 0.98 
A56 VI 125 10 40 0.70 1.10 0.50 1.29 13970 13461 1.03 14242 13347 1.07 0.98 1.01 
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Table 10. Results of Series B 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

 

fc 
0.24√fci 

T 
Apsfps MATLAB 

values PCI values PCI 
MATLAB 

support critical 
section ϕMn Mn Mu support critical 

section ϕMn Mn Mu 

  L (ft) S (ft) N dr    (kip-ft)  (kip-ft)    
B1 IV 65 6 12 0.00 1.31 1.13 2.29 3311 3077 1.08 3467 3014 1.15 0.95 1.02 
B2 IV 60 8 12 0.00 1.29 0.90 1.86 3344 3289 1.02 3501 3146 1.11 0.96 1.05 
B3 IV 55 10 12 0.00 1.27 0.78 1.61 3392 3361 1.01 3550 3171 1.12 0.96 1.06 
B4 IV 50 12 12 0.00 1.25 0.69 1.44 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
B5 IV 105 6 26 0.00 0.66 1.65 3.54 6706 6566 1.02 7030 6423 1.09 0.95 1.02 
B6 IV 95 8 26 0.00 0.65 1.37 2.95 6852 6736 1.02 7246 6933 1.05 0.95 0.97 
B7 IV 90 10 26 0.00 0.64 1.17 2.54 7004 7238 0.97 7334 6760 1.08 0.95 1.07 
B8 IV 85 12 26 0.00 0.64 1.04 2.26 7127 7574 0.94 7522 7064 1.06 0.95 1.07 
B9 IV 120 6 38 0.00 0.46 2.06 4.49 9268 8157 1.14 9571 8422 1.14 0.97 0.97 
B10 IV 115 8 38 0.00 0.46 1.66 3.64 9634 9149 1.05 10011 8672 1.15 0.96 1.06 
B11 IV 105 10 38 0.00 0.45 1.46 3.21 9910 9253 1.07 10372 9093 1.14 0.96 1.02 
B12 IV 100 12 38 0.00 0.45 1.29 2.86 10128 9809 1.03 10606 9126 1.16 0.95 1.07 
B13 IV 65 6 12 0.17 1.62 0.94 2.01 3311 3077 1.08 3467 3014 1.15 0.95 1.02 
B14 IV 60 8 12 0.17 1.56 0.75 1.63 3344 3289 1.02 3501 3146 1.11 0.96 1.05 
B15 IV 55 10 12 0.17 1.49 0.66 1.41 3392 3361 1.01 3550 3171 1.12 0.96 1.06 
B16 IV 50 12 12 0.17 1.44 0.60 1.26 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
B17 IV 105 6 26 0.23 0.88 1.27 2.79 6706 6566 1.02 7030 6423 1.09 0.95 1.02 
B18 IV 95 8 26 0.23 0.86 1.05 2.33 6852 6736 1.02 7246 6933 1.05 0.95 0.97 
B19 IV 90 10 26 0.23 0.85 0.90 2.00 7004 7238 0.97 7334 6760 1.08 0.95 1.07 
B20 IV 85 12 26 0.23 0.84 0.80 1.78 7127 7574 0.94 7522 7064 1.06 0.95 1.07 
B21 IV 120 6 38 0.26 0.61 1.52 3.42 9268 8157 1.14 9571 8422 1.14 0.97 0.97 
B22 IV 115 8 38 0.26 0.60 1.22 2.77 9634 9149 1.05 10011 8672 1.15 0.96 1.06 
B23 IV 105 10 38 0.26 0.59 1.07 2.45 9910 9253 1.07 10372 9093 1.14 0.96 1.02 
B24 IV 100 12 38 0.26 0.58 0.95 2.18 10128 9809 1.03 10606 9126 1.16 0.95 1.07 
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Table 10. (continued) 

Case 
ID 

AASHTO 
Type 

Span 
Length Spacing Total 

strands 

Max. 
debond 

ratio 

 

fc 
0.24√fci 

T 
Apsfps MATLAB 

values PCI values PCI 
MATLAB 

support critical 
section ϕMn Mn Mu support critical 

section ϕMn Mn Mu 

  L (ft) S (ft) N dr    (kip-ft)  (kip-ft)    
B25 IV 65 6 12 0.50 2.70 0.59 1.24 3311 3077 1.08 3467 3014 1.15 0.95 1.02 
B26 IV 60 8 12 0.50 2.36 0.50 1.01 3344 3289 1.02 3501 3146 1.11 0.96 1.05 
B27 IV 55 10 12 0.50 2.10 0.45 0.87 3392 3361 1.01 3550 3171 1.12 0.96 1.06 
B28 IV 50 12 12 0.50 1.89 0.42 0.79 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
B29 IV 105 6 26 0.46 1.22 0.89 2.04 6706 6566 1.02 7030 6423 1.09 0.95 1.02 
B30 IV 95 8 26 0.46 1.09 0.74 1.70 6852 6736 1.02 7246 6933 1.05 0.95 0.97 
B31 IV 90 10 26 0.46 1.03 0.63 1.47 7004 7238 0.97 7334 6760 1.08 0.95 1.07 
B32 IV 85 12 26 0.46 0.98 0.57 1.31 7127 7574 0.94 7522 7064 1.06 0.95 1.07 
B33 IV 120 6 38 0.47 0.70 1.08 2.60 9268 8157 1.14 9571 8422 1.14 0.97 0.97 
B34 IV 115 8 38 0.47 0.69 0.87 2.10 9634 9149 1.05 10011 8672 1.15 0.96 1.06 
B35 IV 105 10 38 0.47 0.65 0.77 1.86 9910 9253 1.07 10372 9093 1.14 0.96 1.02 
B36 IV 100 12 38 0.47 0.63 0.68 1.65 10128 9809 1.03 10606 9126 1.16 0.95 1.07 
B37 IV 65 6 12 0.67 2.70 0.44 0.96 3311 3077 1.08 3467 3014 1.15 0.95 1.02 
B38 IV 60 8 12 0.67 2.36 0.38 0.79 3344 3289 1.02 3501 3146 1.11 0.96 1.05 
B39 IV 55 10 12 0.67 2.10 0.35 0.70 3392 3361 1.01 3550 3171 1.12 0.96 1.06 
B40 IV 50 12 12 0.67 1.89 0.33 0.65 3435 3311 1.04 3622 3111 1.16 0.95 1.06 
B41 IV 105 6 26 0.77 1.23 0.44 1.09 6706 6566 1.02 7030 6423 1.09 0.95 1.02 
B42 IV 95 8 26 0.77 1.09 0.39 0.91 6852 6736 1.02 7246 6933 1.05 0.95 0.97 
B43 IV 90 10 26 0.77 1.03 0.35 0.78 7004 7238 0.97 7334 6760 1.08 0.95 1.07 
B44 IV 85 12 26 0.77 0.70 0.33 0.18 7127 7574 0.94 7522 7064 1.06 0.95 1.07 
B45 IV 120 6 38 0.74 0.74 0.55 1.54 9268 8157 1.14 9571 8422 1.14 0.97 0.97 
B46 IV 115 8 38 0.74 0.71 0.47 1.23 9634 9149 1.05 10011 8672 1.15 0.96 1.06 
B47 IV 105 10 38 0.74 0.66 0.43 1.10 9910 9253 1.07 10372 9093 1.14 0.96 1.02 
B48 IV 100 12 38 0.74 0.64 0.39 0.98 10128 9809 1.03 10606 9126 1.16 0.95 1.07 
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Table 11. Validation of MATLAB analyses 

 Average 
Value COV minimum maximum 

Mn MATLAB/Mn PCI 0.96 3.1% 0.95 1.14 
Mu MATLAB/Mu PCI 1.05 4.7% 0.97 1.30 
φMn/Mu (in MATLAB) 1.02 5.6% 0.91 1.14 

φMn/Mu (in PCI) 1.10 4.1% 1.02 1.18 
 

Table 12. Acceptable partial debonding ratio for AASHTO type girders 

AASHTO 
Type Series 

Span 
Length 

(ft) 
Total no. of strands 

acceptable 
debonding 

ratio  
Comments 

III A 50 12 N/A Apsfps/T<1.0 
70 16 N/A Apsfps/T<1.0 

IV 

A 
70 16 N/A Apsfps/T<1.0 
100 28 0.45-0.55  
125 40 0.65  

B 
50-65 12 N/A Apsfps/T<1.0 

85-105 26 0.20-0.50  
100-120 36 0.75  

V A 
70 16 N/A Apsfps/T<1.0 
100 28 0.04-0.10  
125 40 0.35-0.45  

VI A 
70 16 N/A Apsfps/T<1.0 
100 28 0.07-0.12  
125 40 0.34-0.37  
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Figure 12. Concrete tension and prestressing steel tension capacity ratios for AASHTO shapes  
having the same number of strands (N) 
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Figure 13. Concrete tension and prestressing steel tension capacity ratios for AASHTO Type IV girders shapes 
having varying lengths and strand arrangements 
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Figure 14. Representative example of capacity ratios (cases B5, B17, B29, and B41 shown) 
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5.0  CONCLUSIONS AND FUTURE WORKS  

An overview of the conclusions and findings from this work are presented. Additionally, topics 

identified which require further investigation are also introduced. 

5.1 CONCLUSIONS 

In prestressed concrete girders, the strands are initially stressed, the concrete is placed, and once 

concrete strength has achieved a minimum specified value the prestress force is transferred to the 

concrete. At prestress transfer eccentrically located strands introduce flexure into prestressed 

concrete girders. This flexure typically results in upward camber of the girder, which will 

eventually be overcome by the application of structural loads. Camber results in tension at the 

top face of the member and compression at the bottom (Eq. 2-3); these stresses are only 

mitigated by the self-weight of the member at release (Eq. 2-4).  

 Near the girder ends, the effect of self-weight is negligible and the tensile stress often 

exceeds the cracking stress of the concrete – particularly since the concrete is typically several 

days old at the time of prestress transfer. The potential cracking is not only a structural concern 

but affects durability, especially in bridge structures where the top surface of girders may 

eventually be subject to wetting or water ingress. For this reason, the AASHTO Specifications 

(2010) limit the allowable tensile stress at prestress transfer to 0.0948√fci; where fci = the 



60 

concrete compressive stress at prestress transfer measured in the unit of ksi. This is hard to meet 

and may be increased to 0.24√f ci, where mild reinforcement for controlling cracking is provided. 

Nonetheless, with long girders requiring large amounts of prestressing strands, even the latter is 

difficult to meet. 

 There are two primary means of reducing the tensile stress at girder ends: a) harping 

strands to reduce the eccentricity and therefore the applied moment due to prestress force and b) 

debonding strands, resulting in reduced prestress force near the girder ends. Debonding was the 

focus of the present work. Debonding involves ‘blanketing’ the strands near their ends so that 

they may not bond to the concrete. Once the mitigating effect of girder self-weight is large 

enough to overcome the effect of camber and maintain the value of fc ≤ 0.24√fci, the blanketing 

is terminated and bond is allowed to develop. In this case the transfer and development lengths 

of the blanketed strands does not initiate at the girder end but at the termination of the blanketing. 

This process is referred to as ‘partial debonding’. The ratio of debonded strands to the total 

number of strands in the girder is referred to as the debonding ratio and is the parameter of girder 

design that is the focus of this work 

Two series of 26 AASHTO Type III-VI girders with different debonding ratios are 

analyzed using a MATLAB-based procedure. All analysis is based on and consistent with 

AASHTO LRFD Specification requirements. The results from AASHTO are validated by 

comparing these with the initial design values given in the PCI Bridge Design Manual (2011). 

To illustrate the analysis procedure, an individual case (Case B29, representing a 105 foot long 

Type IV girder having 26 0.6 in. strands) is presented in detail. The objective of the extensive 

parametric study presented is to establish an acceptable range or limits for debonding ratio.  
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The criteria for establishing an acceptable debonding ratio assumes that the girder will 

not failure under the external loads (i.e.: φMn/Mu ≥ 1.0) and that the concrete tension stress limit 

at prestress transfer and the longitudinal tension capacity of the prestressing strand provided are 

both satisfied. That is: 0.24√f ci/fct ≥ 1 .0 and  Apsfps/T ≥ 1.0, respectively. The following 

conclusions are drawn:  

1. The inability to establish a “successful” debonding ratio satisfying both criteria primarily 

results because strand capacity ratio (Apsfps/T) is difficult to achieve. Therefore other 

approaches, such as the addition of mild steel, should be implemented to improve the 

shear capacity of the girders (Eqs 2.11 and 2.12). This is especially the case for shallower 

girders with shorter spans. 

2. For girders having the same number of strands (N), fpsAps/T ≥ 1.0 is more critical for 

shorter spans than for longer spans. 

3. As the total number of strand (N) increases, the concrete tensile stress ratio (0.24√f ci/fct) 

becomes more and more critical. Longer beams having a large number of strands do not 

easily meet this criteria. 

4. With an increase of girder depth (from Type III to Type IV), it is more likely to obtain 

acceptable debonding ratios due to the greater efficiency of the remaining bonded strands 

over a longer lever arm (dv in Eq. 2-10 ).  

5. The acceptable range of debonding ratios is relatively small for moderate span lengths 

and becomes broader for longer spans. 

Although the range of acceptable debonding ratio may seem restricted (Table 4-4), it must be 

noted that the ranges provided are based on both concrete and longitudinal tension criteria. The 

‘upper’ limit on the range is a function of the Apsfps/T ≥ 1.0 criteria. The only way to increase 
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this is to provide additional mild steel, a detail that is often considered impractical, particularly in 

heavily reinforced sections. The lower limit, on the other hand, is a function of the 0.24√f ci/fct ≥ 

1.0 criteria. This may be partially or even fully addressed by harping strands or by the addition of 

prestressed reinforcement at the top of the section. 

 Considering the results obtained for AASHTO Type girders, it appears that the upper 

limit for an acceptable debonding ratio may be increased from the current AASHTO-prescribed 

25% to perhaps 50%. However the results also indicate that this upper limit is a function of span 

length, where the limit may be greater for longer spans, particularly given that no amount of 

debonding was found to be acceptable for shorter spans. Considerable further parametric study is 

required to establish such a relationship and to extend this work to other girder shapes. 

5.2 TOPICS FOR TUTURE INVESTIGATION 

5.2.1 Transfer and Development Lengths  

In this study, the MATLAB program based on 2-D model and AASHTO LRFD Specification can 

accurately capture the mechanical behaviour of the span (B-region of the beam where the 

behavior follows that of a Bernoulli beam). However, near the span ends (D-region or ‘disturbed’ 

region), where the strands are developed and debonded, more study is needed.  

Firstly, AASHTO LRFD Specification gives relatively conservative transfer and 

development length values and makes the assumption of uniform bond stress; these assumptions 

may be conservative for B-region design but are not necessarily so near the span ends. Shorter 

‘real-world’ transfer lengths may increase concrete tension and therefore lead to a greater need 
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for debonding. However, those same short lengths improve the Apsfps/T since fps is greater for a 

shorter development length. Experimental study which can accurately predict the real transfer 

and development lengths are needed.  

Secondly, the MATLAB program approach (essentially a plane-sections analysis) is 

inaccurate when predicting mechanical behaviour of the end D-regions. Three-dimensional finite 

element simulations which consider the "Hoyer effect" and transverse load spreading associated 

with strand patters are required. Adopting a representative bond-slip model and a reasonable 

concrete damage model are crucial to simulating the end region behavior. 

5.2.2 Crack Distribution 

Cracks occurring along the transfer length dimension are detrimental since they may lead to 

corrosion and ultimately failure of bond. The cracking that may occur in a typically end region 

are schematically shown in Figure 5-1. These cracks, even with small width, will gradually 

create a path for the ingress of corrosive substances and therefore, may lead to deterioration of 

the bond between the steel strands and surrounding concrete. Such deterioration may 

significantly impact the Apsfps/T criteria by reducing both fps (reduced bond) and Aps (loss of 

section due to corrosion). Although distributing the partial debonding along the pretensioned 

beam can effectively reduce the stress concentration at the end region and thus mitigate 

longitudinal splitting and some web cracking, new cracks may also occur at the terminations of 

the debonding due to stress concentrations at these locations. How to predict the crack width for 

both fully bonded and partially bonded pretensioned girders, as well as evaluating the corrosion 

resulted from cracks, should be carefully studied. 
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Figure 15. Typically observed end region cracks (adapted from Burgueño and Sun 2011) 
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APPENDIX A 

MATLAB PROGRAM  

This Appendix presents the entire MATLAB code used in this study. 

 The MATLAB program follows the AASHTO-prescribed design procedures and checks. 

This program was developed for convenient and efficient parametric study. Required input 

includes girder geometry and strand distribution in addition to some fundamental bridge 

characteristics including span, girder spacing and slab dimensions. The MATLAB code is used 

to calculate loads applied to in interior girder (calculating distribution factors) and the 

appropriate moment and shear envelopes for design. Capacity at critical sections – calculated 

using AASHTO-prescribed equations - is verified and all appropriate stress limits are calculated. 

The MATLAB code is not intended for design, but rather to calculate stresses and compare these 

to appropriate limits. It was developed with the objective of the present work as its goal. 

In the file all text following a “%” is an annotation, intended to clarify the code.
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%Step 1 Input Bridge geometry data 
fid_b=fopen('bridge_data.txt'); 
bridge_data_1=textscan(fid_b,'%s',1); 
bridge_data_2=textscan(fid_b,'%f %f %f %f %f %f %f',1); 
bridge_data_3=textscan(fid_b,'%f %f %f',1); 
girder_type=bridge_data_1{1};         %Girder type (interior or exterior) 
L=bridge_data_2{1};                   %Span length (ft.) 
S=bridge_data_2{2};                   %Girder spacing (ft.) 
ts=bridge_data_2{3};                  %Thickness of deck slab (in.) 
ta=bridge_data_2{4};                  %Thickness of wearing surface (in.) 
theta=bridge_data_2{5};               %Bridge skew 
de=bridge_data_2{6};                  %Exterior overhang (ft.) 
support_length=bridge_data_2{7};     %Support length (in.) 
weight_girder=bridge_data_3{1};      %Unit weight of girder (lb/ft^3) 
weight_slab=bridge_data_3{2};        %Unit weight of deck slab (lb/ft^3) 
weight_wearing=bridge_data_3{3};     %Unit weight of wearing surface (lb/ft^3) 
fclose(fid_b); 
  
%Girder data 
fid_g=fopen('girder_data.txt'); 
girder_data_1=textscan(fid_g,'%f %f %f %f %f %f',1); 
girder_data_2=textscan(fid_g,'%f %f %f %f',1); 
girder_data_3=textscan(fid_g,'%f %f %f %f',1); 
h=girder_data_1{1};                   %Girder depth (in.) 
bv=girder_data_1{2};                  %Girder's web width (in.) 
b_flange=girder_data_1{3};            %Girder's flange width (in.) 
t_flange=girder_data_1{4};            %Girder's flange thickness (in.) 
t_fill=girder_data_1{5};              %Girder's fillet thickness at the top flange (in.) 
b_fill=girder_data_1{6};             %Girder's fillet width at the top flange (in.) 
w=girder_data_2{1};                   %Self weight (k/ft) 
Ag=girder_data_2{2};                  %Cross-section area of non-composite section (in.^2) 
Ig=girder_data_2{3};                  %Moment of inertia of non-composite section (in.^4) 
Cgb=girder_data_2{4};                 %Distance from the bottom fiber to the centroid (in.) 
ydist=girder_data_3{1};               %Distance between layers (in.) 
Ap_s=girder_data_3{2};               %Area of one strand (in.^2) 
db=girder_data_3{3};                  %Diameter of strand (in.) 
Av=girder_data_3{4};                  %Total stirrup area (in.^2) 
fclose(fid_g); 
  
%Material properties 
fid_m=fopen('material_data.txt'); 
material_data=textscan(fid_m,'%f %f %f %f %f %f %f',1); 
f_pu=material_data{1};                %fpu (ksi) 
delta_fpr=material_data{2};           %Loss due to relaxation (ksi) 
f_yt=material_data{3};                %yield strength of stirrups (ksi) 
fpc_girder=material_data{4};          %f'c for girders (ksi) 
fpci=material_data{5};                %f'c at release (ksi) 
fpc_deck=material_data{6};            %f'c for deck slab (ksi) 
Ep=material_data{7};                  %Strand modulus of elasticity (ksi) 
fclose(fid_m); 
%AASHTO factors for analysis & design 
fid_AASHTO=fopen('AASHTO_factors.txt'); 
AASHTO_factors=textscan(fid_AASHTO,'%f %f %f %f %f %f %f',1); 
DC=AASHTO_factors{1};                %DC 
DW=AASHTO_factors{2};               %DW 
LL=AASHTO_factors{3};                %LL 
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IM=AASHTO_factors{4};                %IM 
phi_f=AASHTO_factors{5};             %phi factor for flexure 
phi_v=AASHTO_factors{6};             %phi factor for shear 
RH=AASHTO_factors{7};                %Relative humidity (%) 
fclose(fid_AASHTO); 
  
%Stirrups data 
%Matrix stirrups gives the length in ft. (the 1st column) over which stirrup 
%spacing in inches (the 2nd column) is used 
%The last entry is the total stirrup (in.^2) 
stirrups=csvread('stirrups.txt'); 
%Miscellaneous 
xincr=0.1;                             %Increments (in ft.) of stations at which values are computed. 
tolerance=1e-10;                      %Tolerance for calculations 
%Strand data 
bonded_debonded = input('Are the strands fully bonded? Y/N [Y]: ', 's'); 
if isempty(bonded_debonded) 
    bonded_debonded = 'Y'; 
end 
if(strcmp(bonded_debonded,'Y')==1) 
    xdebond=0; 
else 
    xdebond=input('Input debond lengths (3 ft. increments are commonly used) :'); 
end 
%Ntotal is the number of bonded strand per layer in each region.   
%The size of this matrix is no. of debond regions x no. of rows of strand. 
if(strcmp(bonded_debonded,'Y')==1) 
    Ntotal=input('Input the no. of bonded strands per layer: '); 
else 
    Ntotal=input('Input the no. of bonded strands per layer in each region: '); 
end 
  
  
% 
%============================Calculations================================== 
%Miscellaneous 
%calculate the no. of strand layers & no. of debonded regions. 
[ndebond,nlayer]=size(Ntotal);  
  
% Step 2 Effective flange width of the composite section (in.) 
if(strcmp(girder_type,'interior')==1) 
    beff=S*12; 
else 
    beff=de+0.5*S*12; 
end 
%beff_temp1=0.25*L*12; 
%beff_temp2=12*ts+max(bv,0.5*b_flange); 
%beff_temp3=S*12; 
%beff=min(min(beff_temp1,beff_temp2),beff_temp3); 
  
% Step 3 kappa for computing development length, ld, for each zone 
kappa(1:ndebond)=0; 
kappa(1)=1.6; 
for i=2:ndebond 
    kappa(i)=2.0; 
end 
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Cgt=h-Cgb;              %Distance from the top fiber to the centroid 
Sb=Ig/Cgb;              %Bottom fiber section modulus 
St=Ig/Cgt;               %Top fiber section modulus 
l_t=60*db/12;           %Transfer length in ft. 
npoints=0.5*L/xincr;    %No. of points at which calculations are made. 
distance=(0:xincr:0.5*L); 
  
% Step 4 Factored self-weights in plf 
Girder_weight=(weight_girder*Ag/144)*DC;               %Girder  
Slab_weight_I=(ts/12)*S*weight_slab*DC;                %Slab for interior girders 
Slab_weight_E=(ts/12)*(S/2+de)*weight_slab*DC;        %Slab for exterior girders 
Wearing_weight_I=(ta/12)*S*weight_wearing*DW;         %Wearing surface for interior girders  
Wearing_weight_E=(ta/12)*(S/2+de)*weight_wearing*DW;  %Wearing surface for exterior girders 
Weight_I=Girder_weight+Slab_weight_I+Wearing_weight_I; 
Weight_E=Girder_weight+Slab_weight_E+Wearing_weight_E; 
% 
%Convert to klf 
Weight_I=Weight_I/1000; 
Weight_E=Weight_E/1000; 
% 
%Calculate the distance from the left support to the end of each region 
%with different stirrup spacing. 
xtemp=0; 
for i=1:length(stirrups) 
    xstirrup(i)=stirrups(i,1)+xtemp; 
    xtemp=xstirrup(i); 
end 
% 
%============================Analysis ===================================== 
EG=57000*sqrt(fpc_girder); %Modulus of girder 
ED=57000*sqrt(fpc_deck);   %Modulus of deck slab 
n=EG/ED;                     
eg=Cgt+ts/2; 
Kg=n*(Ig+Ag*eg^2); 
if(Kg<10000||Kg>7000000) 
    display('Kg is out of range per AASHTO') 
end 
%skew correction for shear (AASHTO Table 4.6.2.2.3c-1) 
skew_correction_shear=1+0.2*(((12*L*ts^3)/Kg)^0.3)*tand(theta); 
%skew correction for moment (AASHTO Table 4.6.2.2.2e-1) 
if(theta==0) 
    skew_correction_moment=1.0; 
else 
    c_1=0.25*(Kg/(12*L*ts^3))^0.25*(S/L)^0.5; 
    if(theta<30) 
        c_1=0.0; 
    end 
    skew_correction_moment=1-c_1*tand((min(60,theta)))^1.5; 
end 
  
%Step 5 Distribution factors 
%Interior Girders 
DM1_I=0.075+((S/9.5)^0.6)*((S/L)^0.2)*((Kg/(12*L*ts^3))^0.1);    %2+ lanes loaded 
DM2_I=0.06+((S/14)^0.4)*((S/L)^0.3)*((Kg/(12*L*ts^3))^0.1);      %1 lane loaded 
DMF_I=skew_correction_moment*(DM2_I/1.2);                        %see 3.6.1.1.2  
DM_I=skew_correction_moment*max(DM1_I,DM2_I); 
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DV1_I=0.2+(S/12)-(S/35)^2;                                         %2+ lanes loaded 
DV2_I=0.36+(S/25);                                                 %1 lane loaded 
DVF_I=skew_correction_shear*(DV2_I/1.2); 
DV_I=skew_correction_shear*max(DV1_I,DV2_I); 
%Exterior Girders 
DM1_E=(0.77+(de/9.1))*DM1_I;            %2+ lanes loaded 
DM2_E=(S-5+de)/S;                        %1 lane loaded, lever rule (assumed S>6 ft.) 
DMF_E=skew_correction_moment*(DM2_E/1.2); 
DM_E=skew_correction_moment*max(DM1_E,DM2_E);             
DV1_E=(0.6+de/10)*DV1_I;                %2+ lanes loaded 
DV2_E=DM2_E;                             %1 lane loaded, lever rule (assumed S> 6 ft.) 
DVF_E=skew_correction_shear*(DV2_E/1.2); 
DV_E=skew_correction_shear*max(DV1_E,DV2_E); 
[DM1_I DM2_I DMF_I DV1_I DV2_I DVF_I]; 
[DM1_E DM2_E DMF_E DV1_E DV2_E DVF_E]; 
%Controlling values 
[DM_I DMF_I;DM_E DMF_E;DV_I DVF_I;DV_E DVF_E]; 
% 
% Moment 
axle1a=(L/2-14-2.33)/L; 
axle1b=8; 
axle2a=(L/2-2.33)/L; 
axle2b=32; 
axle3a=(L/2+14-2.33)/L; 
axle3b=32; 
xpoint=0; 
for i=1:npoints+1 
    M_Lane(i)=(0.64*xpoint/2)*(L-xpoint)*LL; 
    V_Lane(i)=0.64*(0.5*L-xpoint)*LL; 
    if(xpoint<(0.5*L-2)) 
        M_Tandem(i)=25*xpoint; 
        V_Tandem_M(i)=25; 
    else 
        M_Tandem(i)=25*xpoint-25*(xpoint-(L/2-2)); 
        V_Tandem_M(i)=0; 
    end 
    if((xpoint/L)<axle1a) 
        M1(i)=(1-axle1a)*axle1b*xpoint; 
        V1(i)=(1-axle1a)*axle1b; 
    else 
        M1(i)=(1-axle1a)*axle1b*xpoint-((xpoint/L)-axle1a)*axle1b*L; 
        V1(i)=((1-axle1a)*axle1b)-axle1b; 
    end 
    if((xpoint/L)<axle2a) 
        M2(i)=(1-axle2a)*axle2b*xpoint; 
        V2(i)=(1-axle2a)*axle2b; 
    else 
        M2(i)=(1-axle2a)*axle2b*xpoint-((xpoint/L)-axle2a)*axle2b*L; 
        V2(i)=((1-axle2a)*axle2b)-axle2b; 
    end 
    if((xpoint/L)<axle3a) 
        M3(i)=(1-axle3a)*axle3b*xpoint; 
        V3(i)=(1-axle3a)*axle3b; 
    else 
        M3(i)=(1-axle3a)*axle3b*xpoint-((xpoint/L)-axle3a)*axle3b*L; 
        V3(i)=((1-axle3a)*axle3b)-axle3b; 
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    end 
    M_H20(i)=M1(i)+M2(i)+M3(i); 
    V_H20_M(i)=V1(i)+V2(i)+V3(i); 
    M_Lane_Tandem(i)=M_Lane(i)*LL+M_Tandem(i)*LL*IM; 
    V_Lane_Tandem_M(i)=V_Lane(i)*LL+V_Tandem_M(i)*LL*IM; 
    M_Lane_H20(i)=M_Lane(i)*LL+M_H20(i)*LL*IM; 
    V_Lane_H20_M(i)=V_Lane(i)*LL+V_H20_M(i)*LL*IM; 
    M_Control(i)=max(M_Lane_Tandem(i),M_Lane_H20(i)); 
    if(M_Lane_Tandem(i)>M_Lane_H20(i)) 
        V_Control_M(i)=V_Lane_Tandem_M(i); 
    else 
        V_Control_M(i)=V_Lane_H20_M(i); 
    end 
    M_Design_I(i)=M_Control(i)*DM_I; 
    VatM_Design_I(i)=V_Control_M(i)*DV_I; 
    M_Design_E(i)=M_Control(i)*DM_E; 
    VatM_Design_E(i)=V_Control_M(i)*DV_E; 
% 
% Shear 
V1_Tandem(i)=(1-(xpoint/L))*25; 
V2_Tandem(i)=(1-((xpoint/L)+(4/L)))*25; 
V_Tandem(i)=V1_Tandem(i)+V2_Tandem(i); 
V1_H20(i)=(1-(xpoint/L))*32; 
V2_H20(i)=(1-((xpoint/L)+(14/L)))*32; 
V3_H20(i)=(1-((xpoint/L)+(28/L)))*8; 
V_H20(i)=V1_H20(i)+V2_H20(i)+V3_H20(i); 
V_Lane_Tandem(i)=V_Lane(i)*LL+V_Tandem(i)*LL*IM; 
V_Lane_H20(i)=V_Lane(i)*LL+V_H20(i)*LL*IM; 
V_Control(i)=max(V_Lane_Tandem(i),V_Lane_H20(i)); 
V_Design_I(i)=V_Control(i)*DV_I; 
V_Design_E(i)=V_Control(i)*DV_E; 
%Dead load moment & shear 
M_DL_I(i)=Weight_I*(xpoint/2)*(L-xpoint); 
V_DL_I(i)=Weight_I*(0.5*L-xpoint); 
M_DL_E(i)=Weight_E*(xpoint/2)*(L-xpoint); 
V_DL_E(i)=Weight_E*(0.5*L-xpoint); 
% 
%Total moments & shears 
Total_M_Design_I(i)=M_Design_I(i)+M_DL_I(i); 
Total_VatM_Design_I(i)=VatM_Design_I(i)+V_DL_I(i); 
Total_M_Design_E(i)=M_Design_E(i)+M_DL_E(i); 
Total_VatM_Design_E(i)=VatM_Design_E(i)+V_DL_E(i); 
Total_V_Design_I(i)=V_Design_I(i)+V_DL_I(i); 
Total_V_Design_E(i)=V_Design_E(i)+V_DL_E(i); 
% 
%increments along the length 
%distance(i)=xpoint; 
xpoint=xpoint+xincr; 
% 
end 
% 
%Export to Excel for debugging purposes 
%xlswrite('check_M.xls',[distance',M_Lane',V_Lane',M_Tandem',V_Tandem_M', ... 
%                        M1',M2',M3',M_H20',V1',V2',V3',V_H20',M_Lane_Tandem', ... 
%                        V_Lane_Tandem_M',M_Lane_H20',V_Lane_H20_M',... 
%                        M_Control',V_Control_M',M_Design_I',VatM_Design_I', ... 
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%                        M_Design_E',VatM_Design_E']) 
%xlswrite('check_V.xls',[distance',V1_Tandem',V2_Tandem',V_Tandem', ... 
%                        V1_H20',V2_H20',V3_H20',V_H20',V_Lane_Tandem',V_Lane_H20',... 
%                        V_Control',V_Design_I',V_Design_E']) 
%xlswrite('check_V&M.xls',[distance',M_DL_I',V_DL_I',M_DL_E',V_DL_E',... 
%                          Total_M_Design_I',Total_VatM_Design_I', ... 
%                          Total_M_Design_E',Total_VatM_Design_E',... 
%                          Total_V_Design_I',Total_V_Design_E']) 
% 
%======================Analysis related to debonding======================= 
%Compute the percentage of debonded strands 
%Compute the no. of bonded strands in each region 
for i=1:ndebond 
    ndebond_region(i)=sum(Ntotal(i,1:end)); 
end 
% 
%Compute the precentage of debonded strands in each region 
for i=1:ndebond 
    percentdebond_perregion(i)=(ndebond_region(ndebond)-ndebond_region(i))/ ... 
        ndebond_region(ndebond); 
end 
%Compute the percentage of debonded strands in each row for each region 
for i=1:ndebond 
    for j=1:nlayer 
        percentdebond_perrow(i,j)=(Ntotal(ndebond,j)-Ntotal(i,j))/Ntotal(ndebond,j); 
    end 
end 
if(strcmp(bonded_debonded,'Y')==1) 
    xlswrite('percentdebond_perregion_bonded.xls',[percentdebond_perregion]) 
    xlswrite('percentdebond_perrow_bonded.xls',[percentdebond_perrow]) 
else 
    xlswrite('percentdebond_perregion_debonded.xls',[percentdebond_perregion]) 
    xlswrite('percentdebond_perrow_debonded.xls',[percentdebond_perrow]) 
end 
%percentdebond_perregion 
%percentdebond_perrow 
% 
%Compute the distance from the left support to each region. 
temp=0; 
xL(1)=0; 
for i=2:ndebond 
    xL(i)=xdebond+temp;  
    temp=xL(i); 
end 
% 
%Compute the distance to centroid of each layer 
temp=0; 
for i=1:nlayer 
    y(i)=temp+ydist; 
    temp=y(i); 
end 
% 
%Calculate the centroid of strands in each region (measured from the bottom fiber) 
for i=1:ndebond 
    Nsum(i)=0; 
    As_times_y=0; 
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    Aps(i)=0; 
    for j=1:nlayer 
        Nsum(i)=Nsum(i)+Ntotal(i,j); 
        As_times_y=As_times_y+y(j)*Ntotal(i,j); 
    end 
    Aps(i)=Nsum(i)*Ap_s;    %Total area of prestressing steel in each region 
    ybs(i)=As_times_y/Nsum(i); 
    e(i)=Cgb-ybs(i); 
end 
% 
%Compute the incremental area of prestressing steel in each region 
Apsincr(1)=Aps(1); 
for i=2:ndebond 
    Apsincr(i)=Aps(i)-Aps(i-1); 
end 
% 
%Step 6 Compute various losses 
f_py=0.9*f_pu; 
f_pbt=0.75*f_pu; 
f_pi=0.75*f_pu; 
gama_h=1.7-0.01*RH;             %AASHTO Eq. 5.9.5.3-2 
gama_st=5/(1+fpci);              %AASHTO Eq. 5.9.5.3-3 
Aps_total=Aps(ndebond); 
delta_fpLT=(10.0*f_pi*Aps_total*gama_h*gama_st/Ag)+(12*gama_h*gama_st) ... 
           +delta_fpr; 
em=Cgb-ybs(ndebond);            %average prestressing steel eccentricity @ midspan 
Eci=1820*sqrt(fpci); 
Mg_midspan=12*(L^2*w)/8;    %midspan moment due to self-weight 
delta_fpES=(Aps_total*f_pbt*(Ig+em^2*Ag)-em*Mg_midspan*Ag)/ ... 
           (Aps_total*(Ig+em^2*Ag)+(Ag*Ig*Eci/Ep));      %AASHTO Eq. (C5.9.5.2.3a-1) 
delta_fpT=delta_fpLT+delta_fpES; 
f_pe=f_pbt-delta_fpT; 
f_pt=0.75*f_pu*(1-0.07); 
% 
  
%Step 7 Compute f_ps & Mn 
k=2*(1.04-(f_py/f_pu));         %AASHTO Eq. 5.7.3.1.1-2 
if(fpc_deck<=4)   
    beta1_deck=0.85; 
else 
    beta1_deck=max(0.65,(0.65-0.2*(fpc_deck-8))); 
end 
if(fpc_girder<=4)   
    beta1_girder=0.85; 
else 
    beta1_girder=max(0.65,(0.65-0.2*(fpc_girder-8))); 
end 
beta1avg=0.5*(beta1_deck+beta1_girder); 
for i=1:ndebond 
    dp=h+ts-ybs(i); 
%  
    c1=(Aps(i)*f_pu)/((0.85*fpc_deck*beff*beta1avg)+ ... 
       (k*Aps(i)*f_pu/dp)); 
%    
    Cforce1_2=0.85*fpc_deck*ts*beff; 
    num2=Aps(i)*f_pu-Cforce1_2+0.85*fpc_girder*b_flange*ts; 
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    denom2=0.85*fpc_girder*beta1avg*b_flange+k*Aps(i)*f_pu/dp; 
    c2=num2/denom2; 
%     
    Cforce1_3=0.85*fpc_deck*beff*ts; 
    Cforce2_3=0.85*fpc_girder*b_flange*t_flange; 
    num3=0.85*fpc_girder*(ts+t_flange)*bv+Aps(i)*f_pu-Cforce1_3-Cforce2_3; 
    denom3=0.85*fpc_girder*beta1avg*bv+(Aps(i)*f_pu*k/dp); 
    c3=num3/denom3; 
% 
    Cforce1_4=0.85*fpc_deck*beff*ts; 
    Cforce2_4=0.85*fpc_girder*b_flange*t_flange; 
    Cforce3_4=0.85*fpc_girder*t_fill*(bv+b_fill); 
    num4=Aps(i)*f_pu+0.85*fpc_girder*(ts+t_flange+t_fill)*bv- ... 
         Cforce1_4-Cforce2_4-Cforce3_4; 
    denom4=(0.85*fpc_girder*beta1avg*bv)+(f_pu*k*Aps(i)/dp); 
    c4=num4/denom4;       
%If c is within the thickness of the deck slab    
    if(c1<=ts) 
        NA(i)=c1; 
        f_ps(i)=f_pu*(1-k*c1/dp); 
        a1=beta1_girder*c1; 
        Mn(i)=Aps(i)*f_ps(i)*(dp-0.5*a1); 
    end 
%If c is flange beam flange thickness.       
    if(c2>ts&&(c2-(ts+t_flange))<tolerance) 
        NA(i)=c2; 
        f_ps(i)=f_pu*(1-k*c2/dp); 
        a2=beta1avg*c2; 
        T=Aps(i)*f_ps(i); 
        Cforce=0.85*fpc_girder*b_flange*(beta1avg*c2-ts); 
        Mn(i)=T*(dp-0.5*ts)-Cforce*0.5*a2; 
    end 
%If c is within the tapered portion. 
     if(c3>(ts+t_flange)&&(c3-(ts+t_flange+t_fill))<tolerance) 
         NA(i)=c3; 
         f_ps(i)=f_pu*(1-k*c3/dp); 
         a3=beta1avg*c3; 
         Cforce3_3=0.85*fpc_girder*(beta1avg*c3-ts-t_flange)*bv; 
         T=Cforce1_3+Cforce2_3+Cforce3_3; 
         Mn(i)=T*(dp-0.5*ts)-Cforce2_3*(0.5*ts+0.5*t_flange)- ... 
               Cforce3_3*(0.5*a3+0.5*t_flange); 
     end 
%If c is within the web.      
     if(c4>(ts+t_flange+t_fill)) 
         NA(i)=c4; 
         f_ps(i)=f_pu*(1-k*c4/dp); 
         a4=beta1avg*c4; 
         Cforce4_4=0.85*fpc_girder*(beta1avg*c4-ts-t_flange-t_fill)*bv; 
         T=Cforce1_4+Cforce2_4+Cforce3_4+Cforce4_4; 
         Mn(i)=T*(dp-0.5*ts)-Cforce2_4*(0.5*ts+0.5*t_flange)- ... 
              Cforce3_4*(((t_fill*(2*b_flange+bv))/(3*(b_flange+bv)))+t_flange+0.5*ts)- ... 
              Cforce4_4*(0.5*a4+0.5*ts+0.5*t_fill); 
      end 
end 
% 
%Step 8 Compute various stresses along the span 
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for i=1:npoints+1 
    x=distance(i); 
    P_pt(i)=0; 
    fpoAps(i)=0; 
    fpsAps(i)=0; 
    Aps_overlength(i)=0; 
    Mg(i)=0.5*w*x*(L-x); 
    for j=1:ndebond 
        if(x>=xL(j)) 
            dist=x-xL(j); 
            fpt(i,j)=min(f_pt,dist*f_pt/l_t); 
            fpo(i,j)=min(dist*0.7*f_pu/l_t,0.7*f_pu); 
            P_pt(i)=P_pt(i)+Apsincr(j)*fpt(i,j); 
            fpoAps(i)=fpoAps(i)+Apsincr(j)*fpo(i,j); 
            f_top(i)=(Mg(i)*12/St)+(P_pt(i)/Ag)-(P_pt(i)*e(j)/St); 
            f_bottom(i)=-(Mg(i)*12/Sb)+(P_pt(i)/Ag)+(P_pt(i)*e(j)/Sb); 
            if(dist<=l_t) 
                fps(i,j)=min((dist*f_pe/l_t),f_pe); 
            else 
                l_d=(1/12)*kappa(j)*(f_ps(j)-(2/3)*f_pe)*db; 
                fps(i,j)=min(f_ps(j),(f_pe+(dist-l_t)*(f_ps(j)-f_pe)/(l_d-l_t))); 
            end 
            fpsAps(i)=fpsAps(i)+Apsincr(j)*fps(i,j); 
            Aps_overlength(i)=Aps_overlength(i)+Apsincr(j); 
        end 
    end 
end 
%  
%Export to Excel for debugging purposes 
%xlswrite('check_stresses.xls',[distance',P_pt',f_top',f_bottom',fpoAps',... 
%                             Aps_overlength',fpsAps']) 
% 
  
%Step 9 Check the effects of debonding on shear capacity 
Mu(1:length(distance))=0; 
Vu(1:length(distance))=0; 
MuDesign(1:length(distance))=0; 
if(strcmp(girder_type,'interior')==1) 
    Mu=M_Design_I; 
    MuDesign=Total_M_Design_I; 
    Vu=VatM_Design_I; 
%    Mu=Total_M_Design_I; 
%    Vu=Total_VatM_Design_I; 
else 
    Mu=M_Design_E; 
    MuDesign=Total_M_Design_E; 
    Vu=VatM_Design_E; 
%    Mu=Total_M_Design_E; 
%    Vu=Total_VatM_Design_E; 
end 
dv=0.72*h;              %Assume dv=0.72h 
%Calculate strirrup spacing along the length  
istart=1; 
for i=1:length(distance) 
    vu=Vu(i)/(bv*dv); 
    if(vu<0.125*fpc_girder) 



75 

        s_max(i)=min(24,0.8*dv); 
    else 
        s_max(i)=min(12,0.4*dv); 
    end 
    if(distance(i)<=xstirrup(end)) 
        if((distance(i)-xstirrup(istart))<=tolerance) 
            Stirrup_s(i)=min(s_max(i),stirrups(istart,2)); 
        else 
            istart=istart+1; 
            Stirrup_s(i)=min(s_max(i),stirrups(istart,2)); 
        end 
    else 
%        spacing=min(s_max,stirrups(istart,2)) 
        Stirrup_s(i)=s_max(i); 
    end 
  
end 
for i=1:length(distance) 
    temp=(abs(Mu(i)*12/dv)+abs(Vu(i))-fpoAps(i))/(Aps_overlength(i)*Ep); 
    epsilon(i)=max(0,temp); 
    beta(i)=4.8/(1+750*epsilon(i)); 
    theta(i)=29+3500*epsilon(i); 
    v_c(i)=0.0316*beta(i)*sqrt(fpc_girder); 
    V_c(i)=v_c(i)*bv*dv; 
    V_s(i)=(Av*f_yt*dv/Stirrup_s(i))*(1/tand(theta(i))); 
    V_n(i)=min((V_c(i)+V_s(i)),(0.25*fpc_girder*bv*dv)); 
    T_force(i)=(Mu(i)*12)/(dv*phi_f)+(1/tand(theta(i)))*((Vu(i)/phi_v)-0.5*V_s(i)); 
    fpsAps_over_T_force(i)=fpsAps(i)/T_force(i); 
end 
% 
%Check the flexural capacity 
ratio=phi_f*Mn(ndebond)/(max(MuDesign)*12); 
str = ['phiMn/Mu = ',num2str(ratio)] 
% 
%Export to Excel for debugging purposes 
%xlswrite('checks_Vc,Vs,T.xls',[distance',Mu',Vu',epsilon',beta',theta',v_c',... 
%                               V_c',V_s',T_force',fpsAps_over_T_force']) 
% 
%Perform the following tasks only if the girder has adequate flexural 
%capacity. 
if(ratio>(1+tolerance)) 
%Strut angle at critical section near the support. 
angle=interp1(distance,theta,(0.5*support_length/12),'cubic'); 
% 
%Location of critical section near the support. 
distance_at_support=(0.5*support_length/12)+ybs(1)*(1/tand(angle))/12; 
%     
%Export data for further ploting in Excel 
if(strcmp(bonded_debonded,'Y')==1) 
    xlswrite('fpsAps_T_bonded.xls',[[0;0;distance'],[dv;distance_at_support;fpsAps_over_T_force'] 
        ]) 
else 
    xlswrite('fpsAps_T_debonded.xls',[[0;0;distance'],[dv;distance_at_support;fpsAps_over_T_force'] 
        ]) 
end 
% 
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APPENDIX B 

REPRESENTATIVE PROTOTYPE EXAMPLE -  CASE B29 

This example presents the capacity calculation for the partially debonded girder of Case B29 

described in Section 3.3 and Table 3-7. Capacity calculations were made using the MATLAB 

program described in Appendix A, which follows the methodology of AASHTO LRFD 

Specification (2010).  
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STEP 1: INPUT SECTIONAL AND MATERIAL PROPERTIES 

Girder properties 

Span Length:  105 ft. 

Spacing : 6 ft 

Skew : 0 degrees  

Prestressing Steel:  0.6 in. diameter, 270 ksi low-lax strands  

Total No. of strands in mid-span: 26 

Concrete Compressive Strength:  fc
' = 8 ksi for the girder and 4 ksi for the slab 

 

Section properties 

AASHTO Type IV Girder:  Acg = 789 in2  

Ix = 260,730 in4  

yb = 24.73 in. 

Unit weight = 150 psf 

Slab:  ts = 8 in. 

S = 6 ft.  

Unit weight = 150 psf 

Wearing surface: t = 3 in. 

Unit weight = 125 psf 
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STEP 2: EFFECTIVE WIDTH 

The effective flange width: LRFD 4.6.2.6.1 
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STEP 3: DEAD LOAD ANALYSIS  

Components and Attachment: DC  

Girder self-weight:  = (150×789/144)×1.25 = 1027 lb/ft 

Slab self-weight: (8/12)×6×150×1.25 = 750 lb/ft 

Wearing Surface: DW 

Asphalt thickness = 3 in.: (3/12)×6×125×1.5 = 281 lb/ft 

Total Weight: DC+DW 

Total weight: 1027+750+281 = 2059 lb/ft = 2.059 klf. 
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STEP 4: COMPUTE LIVE LOAD DISTRIBUTION FACTORS FOR INTERIOR 

GIRDERS 

Longitudinal Stiffness Parameter:  

Kg = n(I+Aeg
2) = 1.604×106 LRFD 4.6.2.2.1 

Distribution Factor for Moment – Interior Girders, mgM,IN:   
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mgM,IN =0.544 

LRFD T4.6.2.2.2b-1 

 

Distribution Factor for Shear – Interior Girders, mgV,IN:   

One Lane Loaded:  
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mgV,IN =0.671 

LRFD T4.6.2.2.3a-1 
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STEP 5: LIVE LOAD ANALYSIS 

 Moment (HL-93) Shear (HL-93) 

LANE 
LOAD 

  

TANDE
M 

  

TRUCK 

  

DESIGN 

IM = 33% (LRFD T3.6.2.1-1) 

MDesign = mgM,IN × MLL+IM  

      = 0.544MLL+IM 

 

IM = 33% (LRFD T3.6.2.1-1) 

 

VDesign = mgV,IN × VLL+IM  

      = 0.671VLL+IM 
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STEP 6: EFFECTIVE PRESTRESS 

Determine Effective Prestress, Ppe: 

Ppe = Aps × fpe 

 

Total Prestress Losses: 

ΔfpT = ΔfpT + ΔfpLT immediately before transfer 

Effective Prestress Losses: 

fpe = Initial Prestress - Total Prestress Losses 

LRFD Eq. 5.9.5.1-1 

 

Loss due to elastic shorting, ΔfpES:  
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LRFD Eq. C5.9.5.2.3a-1 

 

Approximate lump sum estimate of time-dependent losses  
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LRFD Eq. 5.9.5.3-3 
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ΔfpR = an estimate of relaxation loss = 2.4 ksi  

fpi = 0.75 x 270 = 202.5 ksi  

Total Prestress Losses, ΔfpT:   

ksifff pESpLTpT 5.31=∆+∆=∆  

Effective Strength in strands, fpe:  

 

ksifff pTpupe 1715.3127075.075.0 =−×=∆−=  
 

 

STEP 7: COMPUTE NOMINAL FLEXURAL RESISTANCE  

Average stress in prestressing steel at nominal resistance of member: 

)1(
p

pups d
ckff −=

 

LRFD Eq.5.7.3.1.1-1 

fpu = 270 ksi and k = 0.28 for low lax strands 

dp = distance from extreme compression fiber to C.G. of 

prestressing tendons: 

dp = 54+8 – 3.8 = 58.2 in. 

 

At mid-span, Aps = 26 × 0.215 = 5.59 in.2  
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LRFD Eq. 5.7.3.1.1-4 

 

a = β1c = 0.75 × 7.9 = 5.93 in. < 8 in. 

Therefore, rectangular section behavior assumption is valid  
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LRFD Eq. 5.7.3.2.2-1 

 

 

STEP 8: CHECK THE STRESS DUE TO SELF -WEIGHT 

Moment due to girder self-weight: 0.822×1052/8 = 1132.8 kip-ft 

At mid-span, Fi = 1052.7 kip, em = 24.73- 3.86 = 20.9 in. 

The tensile stress at the top of the girder is: 
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The compressive stress at the bottom of the girder is: 
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The top and bottom stresses along the whole girder are shown in Figure 3-6. 

 

STEP 9: CHECK THE DEBONDING ON SHEAR 

The spacing of stirrup is 24in. along the whole girder. 
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Shear resistance along the whole girder is shown in Figure 3-7a. At the sections near the support, 

shear failure may be expected.  
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