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STATISTICAL CHARACTERIZATION OF MORPHODYNAMIC SIGNALS

USING WAVELET ANALYSIS

Ronald R. Gutierrez, PhD

University of Pittsburgh, 2013

Morphodynamic and hydrodynamic properties are concomitantly part of the entire dynamic

of river systems and commonly present both temporal and spatial persistent variability.

Therefore, the study of both river morphodynamic signals (e.g. bed forms and meandering

and anabranching river morphometrics) and hydrodynamic signals (e.g. velocity fields, sed-

iment concentrations) requires both temporal and spatial multi-scale signal representations.

The present research is focused on the former type of signals and it is a first attempt to dis-

criminate such signals and, subsequently, develop the theoretical background to link these

processes at different spatial and temporal scales and determine the scales that have more

influence on river evolution.

The present research contribution has reached the following achievements: [1] to design

a methodology to discriminate bed form features (e.g. bars, dunes and ripples) via the com-

bined application of robust spline filters and one-dimensional continuous wavelet transforms,

allowing the quantitative recognition of bed form hierarchies. The methodology was tested

by using synthetic bed form signals and subsequently applied to the analysis of bed form

features from the Paraná River, Argentina. [2] To design a methodology for the statistical

analysis of the spatial distribution of meandering rivers morphometrics by coupling the ca-

pabilities of one-dimensional wavelet transforms, principal component analysis and Frechét

distance. A universal river classification method is also proposed. [3] To perform a novel

study of the planimetric configuration of confluences in tropical free meandering rivers lo-

cated in the upper Amazon catchment. River confluences in tropical environments represent
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areas where biota is concentrated; therefore, a better understanding and characterization

of these features has a particular importance for the Amazonian ecosystem. [4] To eval-

uate the potential of on two-dimensional wavelet transforms in the analysis of bed form

features. The broader impact will be an improved understanding of river morphodynamics

of the upper Amazon River for practical applications such as navigability. Furthermore, the

project will provide an updated statistical analysis of the meandering rivers dynamics for

practical applications, including erosion control, river ecology, and habitat restoration. The

developed statistical tool will be included as an application of the RVR Meander platform

(www.rvrmeander.org), which is a broadly used software for river restoration.
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1.0 INTRODUCTION AND MOTIVATION

Morphodynamic and hydrodynamic properties are concomitantly part of the entire dynamic

of river systems and they commonly present both temporal and spatial persistent variability.

Therefore, the study of both river morphodynamic signals (e.g. bed forms, bank forms,

and meandering and anabranching river morphometrics) and hydrodynamic signals (e.g.

velocity fields, sediment concentrations) requires both temporal and spatial multi-scale signal

representations. The present research is a first attempt to discriminate the former signals

in order to, subsequently, develop the theoretical background to link these processes at

different spatial and temporal scales and determine the scales that have more influence on

river evolution.

Despite copious research on river bed forms, there is not a standard methodology to dis-

criminate bed form features based on their length scales. Most of the studies have also simpli-

fied bed forms as two-dimensional entities, although they exhibit markedly three-dimensional

patterns in natural channels. Past methodologies for bed forms scale discrimination have

used moving average and Gaussian filters, Fourier transforms and one-dimensional wavelets,

which have proved to be limited in describing highly non-stationary and three-dimensional

signals as bed form signals. Likewise, there is not a tailored statistical tool to analyze and to

classify meandering rivers. On the other hand, there is limited number of studies on tropical

rivers such as those located at the upper Amazon River basin; even though the Amazon river

represents the world’s largest river and is crucial to sustain the humankind.

The present research has the following main objectives: [1] to design a methodology to

discriminate bed form features (e.g. bars, dunes and ripples) based on a scale hierarchization

criterion; [2] to design a statistical tool to study the plan morphometrics of meandering

and complement the prevailing Bryce classification criteria; and subsequently, study the
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spatial distribution of meanders (e.g. confluences, morphometrics, class variation); and [3]

to asses the capabilities of the two-dimensional wavelet transforms in the analysis of bed

form features. The thesis is split into 6 chapters, being Chapter 1 a brief introduction to

the main text.

Chapter 2 deals with the background in the analysis of river morphodynamic signals,

and the previous work of the thesis author on the analysis of bed form features using one di-

mensional wavelet transforms and robust spline filters is highlighted. As part of the thesis to

obtain the MSc. degree, the author of this thesis proposed a standardization of the nomen-

clature and symbolic representation of bed forms, and detailed the combined application

of robust spline filters and continuous wavelet transforms to discriminate these morphody-

namic features, allowing the quantitative recognition of bed form hierarchies. The proposed

methodology for bed form discrimination was firstly applied to synthetic bed form profiles,

which were sampled at a Nyquist ratio interval of 2.5-50 and a signal-to-noise ratio interval

of 1-20, and subsequently applied to a detailed 3D bed topography from the Rı́o Paraná,

Argentina, which exhibits large-scale dunes with superimposed, smaller bed forms. After

discriminating the synthetic bed form signals into 3 bed form hierarchies that represent

bars, dunes and ripples, the accuracy of the methodology was quantified by estimating the

reproducibility, the cross correlation and the standard deviation ratio of the actual and re-

trieved signals. For the case of the field measurements, the proposed method was used to

discriminate small and large dunes; and subsequently obtain and statistically analyze the

common morphological descriptors such as wavelength, slope, and amplitude of both stoss

and lee sides of these different size bed forms. Analysis of the synthetic signals demonstrated

that the Morlet wavelet function is the most efficient in retrieving smaller periodicities such

as ripples and smaller dunes features, and that the proposed methodology effectively dis-

criminated waves of different periods for Nyquist ratios higher than 25 and signal-to-noise

ratios higher than 5. The analysis of the bed forms of the Paraná River revealed that, in

most cases, a Gamma probability distribution, with a positive skewness, best describes the

dimensionless wavelength and amplitude for both the lee and stoss sides of large dunes. For

the case of the smaller superimposed dunes, the dimensionless wavelength showed a discrete

behavior that is governed by the sampling frequency of the data, and the dimensionless
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amplitude better fits the Gamma probability distribution, again with a positive skewness.

The study thus provided a robust methodology for systematically identifying the scales and

magnitudes of bed forms in a range of environments.

Chapter 3 details the proposed methodology for meandering river morhometrics sta-

tistical analysis. The Mean Center (MC) is defined as the midterm lifespan coherent wave

of the meanders centerline and it is obtained using a methodology that combines the ca-

pabilities of the principal component analysis and the discrete wavelet transforms. The

Daubechies-10 wavelet —at level J = 5− 8 best defines the MC. The application of wavelet

cross correlation shows that river curvature is strongly correlated with that of the MC; thus,

in confined rivers, lower local curvature at the river centerlines are related to peaks in the

MC local curvature; conversely, in freely meandering rivers, compound bends and multiple

loops are associated to peaks in the MC local curvature. In all the cases, the river’s normal-

ized curvature exhibit a normal distribution after the Johnson transformation is performed.

Likewise, wavelet analysis of the dimensionless curvature indicates that the arc-wavelength is

typically bimodal, with higher and lower coherent frequencies respectively ranging from ∼5B̄

and ∼20B̄ − 25B̄ (B̄ is the channel width). The normalized planform amplitudes typically

ranges in the interval ∼2B̄-7B̄ for confined rivers and in the interval ∼8B̄ to higher than

20B̄ for freely meanders. The application of the normalized Fréchet distance is introduced

as well as the gradient of the curvature wavelet entropy to classify freely from confined me-

anders. Confined meanders are bounded by a normalized Fréchet distance ∼650. Thus, the

MC shows to be a strong frame to classify meandering rivers and also has also the potential

to discriminate modeled from natural meandering rivers.

Chapter 4 elaborates on the characterization of free meandering rivers confluences.

Most of the past studies on river confluences dynamics are based on a limited number of

experimental and field data that mainly represent the morphodynamic, hydrodynamic and

sedimentary processes of alluvial river channels with limited planform activity and concen-

trated solely around the confluence region. This novel contribution focuses on the study of

the planimetric configuration of confluences in tropical free meandering rivers located in the

Upper Amazon catchment. Since river confluences in tropical environments represent areas

where biota is concentrated, a better understanding and characterization of these features
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has a particular importance for the Amazonian ecosystem. Confluence of meandering rivers

or meander trains (asumming one is the main channel and the other a tributary) imposes

the following general changes in the planimetric configurations of these channels: [1] modu-

lation of the morphodynamics of the upstream main (M) and tributary (T) channels and [2]

modulation of the morphodynamics of the downstream main channel (MT), thus increasing

the arc-wavelength and amplitude and resembling a constructive effect in the superposition

of curvature waves. A Wavelet analysis of the normalized channel curvature was performed

by using the continuous Morlet Wavelet function. This analysis indicates that important

transient perturbations in the curvature frequency spectrum are being developed when the

ratio between the tributary width and the main channel width (upstream of the confluence

point) (β = BT/BM) are higher than 0.5, as those perturbations become more dominant

when the width-ratio (β) increases.

Chapter 5 examines the state of the art of the application of two-dimensional wavelet

transforms in the analysis of topographic data and proposes the design of synthetic bed form

signals that might be used benchmark signals for calibration of the two dimensional wavelet

functions parameters (e.g. dilation, translation and rotation parameters). Chapter 6,

presents the proposed future work towards the statistical characterization of morphodynamic

signals. The final chapter, Chapter 7, covers the main conclusions of the present thesis.
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2.0 BACKGROUND

2.1 INTRODUCTION TO THE RESEARCH PROBLEM

River morphodynamic signals are comprised by planform (i.e. river centerline planime-

try), altimetric (e.g. bed forms), and bank form data. These signals help to understand

the spatial and temporal scales of river migration; therefore, not only characterization of

morphodynamic features is possible, but also to define heterogeneous regions along the lon-

gitudinal and transversal direction of the river. They have been studied extensively in the

past [42, 229, 128, 127, 2, 182]. It is important to mention that Blondeaux and Seminara;

1985 ([42]) referred as unified planimetric and altimetric instabilities to the interaction of

force and free bars, respectively. Herein, a combination of planform and altimetric perturba-

tions describes the bank morphology and bank alignment (lateral perturbations) which is a

consequence of heterogeneous distribution of local flow structure and shear stresses induced

by bed and planform morphology [6]. Even though these in channel morphodynamic struc-

tures have been known for long time, little has been done to [1] characterize their dominant

spatial and temporal scales of the morphological signals, and [2] to study the interactions to

form the natural bed, bank and planform river configuration and the participation, as a main

controlling factor, of the morpho-sedimentary characteristics of the floodplain. Figure 2.1

shows the planform, altimetric and lateral morphodynamic structures (e.g. meander bends,

progressive bedforms and bank morphology, respectively). Even though these morphody-

namic settings are different (in Figure 2.1), similar signals can be obtained by using the

curvature along the streamwise direction for the case of meandering channels, bed elevation

along longitudinal transects showing ripples superimposed over sand bars or dunes for the

case of bed morphology, and longitudinal transects along the banks that show the lateral
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Figure 2.1: Examples of morphodynamic structures: (a) meandering channel (Ucayali River,

Peru, [7]), (b) unidirectional-dominated bedforms (laboratory experiments, [58], (c) bank

morphodynamics (Rio Puerco, New Mexico, [127]).(a.1), (b.1) and (c.1) represent the mor-

phodynamic structure and (a.2), (b.2) and (c.2) represent the uni-directional signal for each

morphodynamic feature.
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oscillation of bank alignment and morphology. Therefore by developing uni-directional sta-

tistical and morphometric tools benefits its physical description and understanding of each

of these morphodynamic signals, but also their correlation among these signals when date is

available.

In recent years, several morphometric tools [108, 167, 9, 90] have been developed to char-

acterize the above morphodynamic structures. However, little has been done for applying

one-dimensional (1D) wavelets into this characterization. Very few exceptions are related

to streamflow and sediment load temporal variations in the Mississippi River [223], first at-

tempt to characterize bedform morphology under laboratory conditions [58], first attempt

to characterize bedform morphology in a field scale condition, the Parana River [98], first

attempted to characterize planimetric patterns of meandering rivers [2, 4], seabed morphol-

ogy pattern recognition [158] and riverbed roughness [191]. In general the application of

wavelets into the description of geophysical signals were performed for the case of fluid me-

chanics with isolation of coherent structures in turbulent flows, meteorology with temporal

variability of coherent convective storm structures, climatology with long-term land tem-

perature series, paleoclimatology with oxygen isotopic ratios from marine sediments, among

others [143]. This study concerns to the development of a 1D morphodynamic statistical

tool that includes the wavelet methodology as well as other morphometric tools that will be

explained below. The following are the current morphometric tools that were developed to

characterize these morphodynamic structures:

2.1.1 Meandering Channels

For the case of meandering channels, some development of morphometric variables and the

application of 1D-wavelets have been proposed to quantify the main characteristics of the

meandering streams and further conduct numerical comparison and/or statistical analysis.

Knowledge of these conditions is also important for understanding fluvial landforms, for re-

constructing paleo environments, and for predicting the effects of natural and, increasingly

often, man-induced changes in the modern environment. This knowledge can only be ob-
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tained if meander geometry is not only quantified but is reduced to a manageable number

of parameters [88]. Howard and Hemberger, 1991 [108] measured 40 morphometric variables

that were aimed to quantify the sinuosity, meandering wavelength, curvature moment, mean-

der asymmetry, and pattern irregularity. Morphometric variables were roughly grouped into

two categories; those that are assemble averages for the entire measured channel, and that of

half-meanders defined by successive inflection points. Morphometric variables of meandering

rivers could be applied to other quasi-periodic natural phenomena, such as dune profiles, wa-

ter waves, and sedimentary coastlines characterized by regular cuspate planform [108]. With

the aim of distinguishing between natural and modeled channels, [90] proposed using just 12

relevant morphometric variables. They also introduced a new morphodynamic length scale

associated with spatially oscillating disturbances and pointed out that once normalized with

this length scale, the relevant morphologic features of the simulated long-term patterns (e.g.,

the probability of density function of local curvature and the geometric of oxbow lakes) tend

to collapse on two distinct behaviors, corresponding to either sub-resonant or super-resonant

conditions, depending on the dominant morphologic regime. Spectral analysis of meanders by

[235, 60, 88, 76, 106] indicate that the characteristic meander wavelength is a poor indicator

of the dominant frequencies of oscillation and there seems to be more than one characteristic

wavelength in a meander system. Chang and Toebes, 1970 [60] analyzed the correlation

between the curvature distribution and both discharge and geology and found that the dis-

tributions are not of Gaussian type. These spectral analyses were carried out by using the

windowed Fourier transform which assumes that the data is stationary although river plan

form parameters possess trend, or non-stationarities, because of the continuous increase of

the flow rate hence the increase of river dimensions going downstream [60]. Fourier analyses

have severe limitations for analyzing signals that include significant departures from station-

arity, consisting of intermittent burst processes or intermittent processes. A high number of

Fourier coefficients are necessary to take into account these structures which are visible on

some intervals and invisible on others [143]. Wavelet analysis has been developed in order

to provide a performing analyzing tool for this kind of signals. It effectively renders possible

a timescale localization of the process thanks to a projection on a class of functions which

in turn makes it possible to extract information within a local neighborhood [143].
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2.1.2 Bed Forms

For the case of altimetric structures, riverbed morphology studies reveled that commonly

found morphological bed features in continental shelves and rivers are ripples, dunes and

bars. They have been usually observed in amalgamated form, i.e. ripples superimposed

upon dunes [58]. Although the distinction between ripple and dune is so apparently obvious

that many authors fail to mention their criteria for separating them in field and laboratory

studies; however these criteria are often different. Ashley, 1990 [21] proposed a wavelength of

0.60 m as threshold to separate ripples from dunes, and this became the official criterion [117].

After the separation had been done, wavelet tools can be applied to estimate the dominant

wavelength, amplitude and lee and stoss slopes. This information is important to later

separate the skin and form shear stresses. Gutierrez et. al., 2012 [98] successfully used one-

dimensional wavelets to quantify the dominant periods in bed forms for large natural channels

such as the Parana River. Since the election of the mother wavelet is crucial to retrieve

representative information of the bed forms, Gutierrez et. al., 2012 also provided insights

in the criteria to choose the most efficient mother wavelet based on sampling frequency

and signal-to-noise ratios quantities. A detailed description of the this work is presented in

Section 2.2.

2.1.3 Bank Morphodynamics and Alignment

These morphodynamic structures have received less attention and past studies where mainly

dedicated to calculate rate of erosion based on digitalization of aerial and satellite images

[183], to attempt to describe a physically-based model for bank erosion [147]. The bank

alignments are directly related to the importance on defining the channel width variation

[163] and its implications for meandering evolution. However, few attempts to characterize

the bank morphology and alignment were done by Kean and Smith (2006a, 2006b). There-

fore, for the case of bank morphology and bank alignment, there is no statistical analysis

that has been carried out to characterize the dominant scales.
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2.1.4 The Role of the Floodplain

A fluvial system is a physical system with history and the fluvial archive is the floodplain, a

fact frequently forgotten by engineers, planners and ecologist that applied actualistic short

time approaches concentrating on in channel processes. The heritage of the landforms and

the sedimentary architecture of the floodplain play a major role in the paths of transmis-

sion of water and sediments as well as on the control of rates of planform adjustments (ero-

sion/deposition rates at different fluvial reaches). Moreover, many of the models on planform

analysis (characterization) and migration of meandering rivers, as referenced above ([51, 229],

among others), do not integrate the valuable and fundamental information provided by the

morpho-sedimentary analysis of the floodplain.

2.2 DISCRIMINATION OF BED FORM SCALES USING ROBUST

SPLINE FILTERS AND WAVELET TRANSFORMS

2.2.1 Introduction

The quantification of variability in bed form geometry is necessary for scientific and practical

applications, such as in quantifying and explaining: [1] bed roughness [245, 13], [2] the

formation of cross-strata [206, 196, 239, 162, 40, 94, 210, 214], [3] the vertical sorting of

sediments [133, 41, 134, 141], [4] sediment transport rates [101, 259, 80, 139, 91, 232], [5]

the transition between 2D and 3D dunes [254], and [6] velocity pulsations within the flow

[100, 105, 231]. Such quantification is also required for the numerical modeling of flow

over bed forms (e.g. [131, 257, 236]), assessing the interaction between flow over bed forms

and ground-water [54, 53, 55], and evaluating contaminant transport [195]. For practical

purposes, the study of the variability of bed forms is important in: [1] the prediction of floods

and flow resistance [19, 121, 207, 132, 126, 258], [2] the prediction of potential disturbance

to man-made structures, such as river tunnels [18] and bridges, [3] predicting future changes

in sediment transport rates and biotic responses following dam removal (e.g. [178]), [4] for

estimating the relationship between bed form characteristics and biota [260, 240].
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The morphology and dynamics of alluvial bed forms are strongly governed by the in-

terrelationship between sediment transport and the hydraulic conditions. The persistent

variability in the geometry and migration rates of bed forms is the hallmark of behavior

under, and interacting with, unidirectional shear flows [118]. However, at present we lack a

consistent, non-arbitrary, quantitative description of both the morphology and dynamics of

bed forms across a range of spatial scales that is necessary to understand the effect of their

morphology upon bed form migration, sediment transport and the resultant bed roughness.

Theoretical research on the morphodynamics of non-cohesive channel beds has largely fol-

lowed five distinctive approaches [99] in which sediment continuity was incorporated into the

governing equations [84], the water-bed interface was regarded as a Kelvin-Helmholtz insta-

bility [159], the fluid-bed interface was investigated using linear stability theory [130], kine-

matically admissible bed form profiles were obtained using the Helmholtz Kirchoff method

[175], and dimensionless statistical correlations were performed [263].

Statistical methods developed for the description of bed forms in alluvial channels were

first proposed by [189] and [83]. Research performed following the fifth statistical approach

has typically used morphometric parameters such as bed form height (∆), wavelength (λ) and

steepness (∆/λ) to describe and classify features such as ripples and dunes commonly found

on continental shelves and within river channels in various superimposed states [21, 58].

Some early studies considered bed form profiles to be stochastic variables [190, 115, 176]

that were analyzed by using time series analysis techniques [156]. However, more recent

studies have used spatial scaling techniques that treat bed elevations in a bed form profile as

a random function, rather than identifying individual bed forms in a profile [187, 118, 250].

The variability of bed form morphology is the principal factor determining the total

form roughness of a channel, and there is theoretical, laboratory, and field evidence that

the roughness of bed forms of all wave lengths, up to the scale of the largest bed forms,

play a key role. It has also been hypothesized that the variability in geometric variables of

individual bed forms within a reach affects the reach-averaged form roughness [250]. Based

on experimental measurements and field data, [265] proposed that the form resistance, f”,

when ripples are superimposed upon dunes can be estimated as f” = 4Ξ if Ξ >' 10−2,

and as f” = [3.3 log(Ξ− 1)− 2.3]−2 if Ξ <' 10−2; where Ξ = ∆2

Λh
(see Figure 2.2a for the
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geometric definition of these variables). These relationships suggest that drag resistance is

dependent mainly on the geometric characteristics of dunes. Field measurements also prove

the importance of the geometry of larger dunes in the drag resistance, even using other

relationships such as those proposed by Vanoni-Hwang, van Rijn (modified) and Engelund

as reported by [120]. Moreover, [250] hypothesized that the variability of individual bed forms

within a reach affects the reach-averaged form roughness, and base this hypothesis on the

analogy between grain roughness and form roughness. For example, the 65%, 84%, or 90%

percentiles of the grain size distribution are often used as a representative particle diameter

in predicting the grain roughness. Similarly, form roughness may also be determined from

bed forms that are higher, longer or steeper than the median or mean bed form height, bed

form length, or bed form steepness, respectively [250].

Past approaches to the quantification of bed form variability have used and applied

spectral analysis [103, 115, 116, 19, 156, 132], smoothing techniques such as a moving-average

[48, 120, 259, 104, 91, 250], signal roughness techniques [232], fractals [260], and logistic

regression [123]. However, moving-average techniques as well as Fourier series analysis have

generally proved to be insufficient as a tool to extract the long-term variation from signals

that contain a long-term trend with a superimposed fine oscillation (i.e. the short term

variation) [241]. This lack of success is primarily because in using spectral analysis, the

major assumption is that the bed form waves are two-dimensional and not highly variable in

the cross-stream direction [156]. Likewise, the Fourier transform, which is used in spectral

analysis, has severe limitations when analyzing signals that include significant departures

from stationarity and consist of intermittent and/or aperiodic processes. In those cases, a

high number of Fourier coefficients are necessary to take these processes, that may be visible

in some intervals but not in others, into account [143]. Thus, a limited representation of

the frequencies of nonlinear processes, such as river bed morphology, is obtained. Wavelet

transforms were developed to overcome the limitations of Fourier transforms and have been

applied to fluid mechanics in the isolation of coherent structures in turbulent flows [85],

in analyzing the temporal variability of coherent convective storm structures [142], within

investigation of long-term land temperature/climate series [29], in analyzing oxygen isotopic

ratios from marine sediments [208], and in analyzing the local curvature of meanders [8].
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Figure 2.2: Bed form parameters after (a)[19], (b) [265] (c) [259], (d) [251], (e) [118], (f) [249],

(f) [252] and (h) [136]. In each case, the blue dotted lines represent the mean elevation.
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Some recent applications of 1D-wavelets in sedimentology encompass temporal varia-

tions within streamflow and sediment loads [223], characterization of bed form morphology

[58, 233], sediment concentration distributions [87], the recognition of patterns in seabed

morphology [158], analysis of riverbed roughness [191], and investigation of flow structure

over alluvial sand dunes [231]. Herein, we demonstrate that this technique identifies the var-

ious scales of bed forms present within a series and significantly improves the quantification

of form roughness at different bed form scales.

2.2.2 Bed Form Discrimination Method and Data

2.2.2.1 Synthetic Signal Data In order to assess the accuracy of the discrimination

methodology proposed herein, a set of well-constrained synthetic signals were firstly ex-

amined. These signals comprise three waves of different periodicity that are intended to

replicate ripples, dunes and bars. Ripples are represented by a random signal generated us-

ing the Wichman-Hill algorithmthat in some instances imposes periods not sufficient large on

the generated signals [140]. The mean of these signals is equal to zero, and their variance was

changed in order to obtain an interval with signal-to-noise ratios (SNR) from approximately

1 to 20. The SNR is defined as the ratio between the variance of the random signal and the

variance of the signal comprised by the summation of the bar and dunes signals. The stoss

side of the dunes is represented by the lower-regime dunes equation η2,s(x) (Equation 2.1)

and proposed by [99]. The lee face is represented by a straight line, defined by Equation 2.2.

η2,s = SL

{
1

2π sin kπ
2

(
ln sin

π

L

(
x+

L

2
[1− k]

)
− ln sin

π

2
[1− k]

)
+
x

L

}
; for 0 ≤ x ≤ kL

(2.1)

η2,l = −a(L− x)

(k − 1)L
; for kL < x ≤ L (2.2)

where S is the slope a/b, S = tan(θ), for θ =10 ◦ (see [99] for geometric details). L is the

dune wavelength (assumed to be equal to 10 m) and k is the normalized length of the stoss

face, which was assumed to be equal to 0.7. This value is close to k = 0.667 as predicted

by theory for mature ripples and dunes [99]. Centered (zero mean) versions of these dunes
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are used in the present application. Higher noise was applied to the dunes stoss side than

that of lee side, in order toreplicate the position of the ripples that are far more common

supperimposed on the stoss side of dunes.

Bars are represented by the sinusoidal function η3(x) = a ∗ Sin(2x/T − c) + d; where x

is the relative distance in meters, a = 0.05 m, T (the period) is equal to 200, c = 100 and

d = 0.05x. The term d provides a slope in this synthetic bar signal.

The bed form synthetic signals are discretized at sampling intervals ∆x = 2m, 1m, 0.5m,

0.167m, 0.125m and 0.1m. Based on the ratio proposed by [71], the Nyquist ratio (NR)

is defined as the number of times (> 1) the Nyquist sample rate is necessary to accurately

recover the intermediate bed form scales (e.g. dunes). Since the life-span of the bed forms

depends on the sediment transport rate fixed by flow conditions and on the bed form excur-

sion, the distance over which an induvidual may travel [15], this definition aims to estimate

the best sampling intervals for river bed forms where the intermediate scales present longer

life-spans than that of the shorter scales (e.g. ripples). Since the Nyquist rate to recover

dunes of L = 10m is ∆xN = 5, an interval of NR = ∆xN/∆x of 2.5, 5, 10, 30, 40 and 50 is

obtained.

2.2.2.2 Paraná Study Reach Bed forms measured within the Ŕıo Paraná, the World’s

seventh largest river by mean flow discharge [96], are used as field test data herein. The

study reach is located at 16 km north of Corrientes, NE Argentina (see Figure 2.3), close to

its confluence with the Rio Paraguay.

The flow regime of the Ŕıo Paraná is characterized by summer floods between February

and March and spring low water levels [192]. At the study reach, the channel pattern can

be classified as multi thread/braided [192] and the river is approximately 2.5 km wide and

5-12 meters deep [198]. [198], surveyed a river bed 370 m wide, 1.2 km long, and 5-12

meters deep using a RESON 8125 multibeam echo sounder, and simultaneously obtained

3D flow information with an acoustic Doppler current profiler. In order to prepare the data

for the present analysis, a structured 1-m grid was obtained from this survey. Thus, 370

longitudinal transects of 1028 points (1-m sampling interval and NR=100) were obtained.
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Figure 2.3: Location of fieldsite on the Ŕıo Paraná. The outline of islands are represented

by thin gray lines.
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The first transect (j = 1) was located at the northing 6977640 and the last (j = 370) at

the northing 6978010 (Fig. 2.4). Figure 2.4 also shows that the bed morphology of the

Ŕıo Paraná is characterized by 3D dunes with few straight crests that are subparallel, but

with numerous undulating crests that possess saddles and lobes that occasionally bifurcate,

especially in regions of deeper flow [198]. Inspection of the transects at the center and

boundaries of the survey area (see Figure 2.5) shows that most of the dunes are highly

asymmetric, with crestal platforms followed by marked changes of slope on the lee side (see

[198] for more details). The larger bar feature is likely a forced bar created as flow is routed

around a mid-channel bar to the north of the field survey area.

2.2.2.3 The Hierarchical Scale Discrimination of Bed Forms There is currently

no standard definition or methodology for the identification and discrimination of different

bed form hierarchies (e.g. ripples, dunes, bars) generated on a natural mobile bed. As

illustrated in Figure 2.2, various researchers have followed different approaches to quantifying

and naming the geometric characteristics of bed forms. For example, bed form length has

been defined as: i) the length of a line connecting two subsequent troughs, ii) the distance

between two successive mean bed level up-crossings (points that reach the mean bed elevation

by describing a positive slope), iii) the distance between two successive mean down-crossings

(points that reach the mean bed elevation by describing a negative slope), and iv) the distance

of two successive crests or two successive troughs (see Figures 2.2c, 2.2f and 2.2h). Similarly,

bed form height has been defined as either the difference in elevation between a crest and

its downstream trough, or as the shortest distance between a crestal elevation and the line

between two troughs [249].

Likewise, some researchers (Figures 2.2d and 2.2f) have discriminated the length and

amplitude of both the lee and stoss sides of dunes, which is more realistic because they

represent markedly different regions of flow over asymmetrical dunes. In the lee side, a region

of flow separation, with reattachment occurring approximately 4-8 dune heights downstream

of the crest, and an expanding flow region are formed [35, 231]. These same gross patterns

of flow also exist over the stoss and lee sides of the ripples, although dunes influence the
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Figure 2.4: Bed morphology of the Ŕıo Paraná after [198]. Flow is from right to left. The

water depth shown here was acquired in 2004 using a multibeam echosounder. Note the ubiq-

uitous superimposition of three-dimensional small dunes on larger three-dimensional dunes.

The cyan, green and blue lines represent the location of the profiles shown in Figure 2.5.
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Figure 2.5: Bed form profiles (refer to sections j=1, j=185, and j=370 in Figure 2.4). Flow

from left to right. Notice the existence of crestal platforms on dunes in the shallower areas.
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water surface elevation and generate large-scale macro turbulence that may reach the water

surface [138, 31, 36, 219].

Scaling remains a characteristic signature of bed forms [13], and both field and laboratory

data often show multiple superimposed scales of bed forms. It is therefore frequently neces-

sary to effectively subdivide these differing bed form scales into useful, quantified waveforms

with different periodicities. Several experiments indicate that ripple heights and wavelengths

are independent or slightly dependent on the flow depth [218, 83, 25, 213, 66, 62, 67, 65]; fur-

thermore, the equilibrium ripple height is remarkably independent of the grain size [213]. [21]

proposed arbitrary thresholds of 5, 10, 100 m for bed form length to differentiate ”small”,

”medium” and ”large” dunes, and proposed a classification scheme to distinguish ripples

from dunes by defining ripples as features that have wavelengths generally less than 0.6 m.

Although this criterion is based on an observational gap (which is currently being filled),

it is often used as an accepted criterion for distinguishing between ripples and dunes but

without any theoretical or causative process explanation. In practice, the discrimination

between ripples and dunes is often taken as obvious, so that many authors fail to explain

the criteria used for their discrimination in field and laboratory studies [117]. It is thus clear

that the study of differing scales of bed forms requires both a standardized method for their

quantification and description of their geometric descriptors.

The most widely-used definitions of various bed form geometric descriptors are given in

Figures 2.2a, 2.2b, 2.2d, 2.2e and 2.2f, with the definitions in Figures 2.2c and 2.2h often not

being used [251]. In order to standardize the symbolic representation of bed form geometric

descriptors in bed form hierarchies, the symbols presented in Figure 2.6 are adopted herein.

These symbols mainly agree with those presented by [251], although are applied on all bed

form hierarchies and many have been widely used in past research, although they have not

been used on a standardized basis (see Figure 2.2). Each descriptor is represented by a letter

e.g. η (for bed form elevation), λ (for bed form length), ∆ (for bed form height), and h (for

water depth) followed by three indicators that represent [1] its position (as superscript, but

avoiding this descriptor if the bed form elevation is represented) e.g. crest (c), trough (b),

stoss (s), and lee (l); [2] its ordinal with respect to all the hierarchies (as sub-script and

giving the first ordinal to the higher frequencies; e.g. ripples or small dunes); and [3] the
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Figure 2.6: Symbolic representation of bed form descriptors for a given hierarchy adopted

in the present study. These descriptors mainly agree with those presented by [251], but

are applied on all of the bed form hierarchies. The bold black arrow represents the flow

orientation and the blue dashed line the mean bed elevation of the preceding bed form scale.

total number of hierarchies (as a subscript). Therefore, the first hierarchy corresponds to

ripples (or small dunes), the second to dunes, and the third to bars. Thus, for h (or η) the

following relationship is always verified: h = h1,3 + h2,3 + h3,3.

2.2.2.4 Method of Bed Form Scale Discrimination Investigations on bed form dy-

namics face the difficulty of defining an objective methodology to adequately quantify bed

forms of different scale. This difficulty is principally due to the deterministic and stochastic

nature of bed forms, where bed form profiles (BFPs) can further be viewed as a series of

discrete bed form elements, continuous bed-elevation fields or some combination of these

perspectives [65]. [251] proposed a methodology, named the bed form tracking tool, which

uses spectral analysis and a weighted moving-average as a smoothing technique over BFPs

that were previously verified to be statistically homogeneous. Generally speaking, such a

methodology works according to the following procedure over individual BFPs: [1] it finds

and replaces outliers, [2] a trend line is estimated based on the nature of the BFP (e.g.

flume experiments or field measurements), [3] the BFP is detrended, [4] the BFP is filtered
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by applying a weighted moving-average filter, [5] the zero upcrossings (points where the fil-

tered BFP crosses the zero line) and downcrossings (point where the filtered BFP crosses

the zero line in downward direction; Figure 2.2g) are obtained, and finally [6] the geomet-

ric characteristics of the individual bed forms are estimated. This methodology performs

reasonably well in minimizing any subjectivity in the estimation of the variability of bed

forms, although it uses a filter that may not be completely suitable to detrend a BFP. A

weighted-average is any average that has multiplying factors to give different weights to data

at different positions in the sample window. Mathematically, the moving-average is a convo-

lution of the data points with a fixed weighting function, and can therefore be considered as

a rigid convolution function. The present work proposes the use of robust spline filters and

the application of continuous wavelet transforms to perform a hierarchical discrimination

and separation of different bed form scales. Discrete wavelet transforms and robust spline

filters have been successfully used in the discrimination of engineering surfaces [211], which

similar to bed forms are comprised of a range of spatial wavelengths. Engineering surfaces

are split into form profiles that are similar to bars, waviness profiles that are similar to dunes

and roughness profiles that are similar to ripples [211].

2.2.2.5 The Robust Spline Filter A fully automated robust spline procedure for

uniformly-sampled datasets is used herein. The algorithm, based on a penalized least squares

method, allows fast smoothing of uniformly sampled data yi of n elements, by means of the

discrete cosine transform.

To minimize or cancel the side effects of high leverage (a measure of the influence, be-

tween 0 and 1, of a given point on a fitting model due to its location in the space of the

inputs), the algorithm constructs weights with a specified weighting function by using the

current residuals and updating them, from iteration to iteration, until the residuals remain

unchanged. In practice, five iterative steps are sufficient [93].

The algorithm uses a bisquare weighting function which is mathematically defined by

Equation (2.3). The smoothed data ŷi is determined by the parameter s which is a real

positive scalar that controls the degree of smoothing. Thus, as the parameter s increases,

the degree of smoothing of ŷi also increases. It is important to note that in Equation (2.3).
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ui is the Studentized residual which is adjusted for standard deviation and leverage. The

student residual is mathematically represented by Equation (2.4).

wi =


rl

[
1−

(
ui

4.685

)2
]2

if
∣∣∣ ui

4.685

∣∣∣ < 1,

0 if
∣∣ ui

4.685

∣∣ ≥ 1

(2.3)

ui =
ri

σ̂
√

1− hi
(2.4)

In the above equation ri = yi − ŷi is the residual of the ith observation, hi is its cor-

responding leverage and σ̂ is a robust estimate for the standard deviation of the residuals

given by 1.4826MAD, where MAD denotes the median absolute deviation. The leverage

values hi are all given by the diagonal elements of the hat matrix H. However, a faster and

more economical alternative for robust smoothing can be obtained using an average leverage,

which is mathematically defined by:

hi =
1

n

∑
i

Hii =
Tr(H)

n
(2.5)

An approximated value for Tr(H)/n is given by:

Tr(H)

n
≈ ri

n∑
i=1

[1 + s(2− 2 cos((i− 1)π/n)2]−1 (2.6)

The approximated Studentized residuals finally reduce to the expression:

ui = ri

∣∣∣∣∣∣1.4826MAD(r)

√
1−

√
1 +
√

1 + 16s√
2
√

1 + 16s

∣∣∣∣∣∣
−1

(2.7)

The use of the bisquare weightings in combination with the approximated Studen-

tized residuals provides a robust version of the above-mentioned smoothing. An iteratively

weighted robust version of the algorithm is used to deal with occurrences of missing and

outlying values [93].
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2.2.2.6 The Wavelet Transform The unidimensional wavelet transform (WT) of a

signal f(x) ∈ L2 is obtained by the convolution of the signal and the wavelet function (WF)

or mother wavelet ψ(x) as expressed by Equation (4.1), where a is the scale parameter, b

is the location parameter and ψ̄a,b(t) is the complex conjugate of ψa,b(t), as mathematically

represented by Equation (4.2).

T (a, b) =

∞∫
−∞

x(t)ψ̄a,b(t) dt, for a > 0, (2.8)

ψa,b(t) =
1√
a
ψ(
t− b
a

) (2.9)

According to the Parseval’s theorem the same wavelet transform can be expressed as:

T (a, b) =
1

2π

∞∫
−∞

x̂(f)
¯̂
ψa,b(f) df (2.10)

where x̂(f) and ψ̂a,b(f) are the Fourier transforms of x(f) and ψa,b(f), respectively. The

wavelet power spectrum is defined as |T (a, b)|2.

Wavelets have advantages over traditional Fourier methods in analyzing physical sit-

uations where the signal contains discontinuities and sharp spikes. They also provide a

flexible time or spatial-scale window that is localized on time or space-scale planes [211].

The most widely-used continuous WFs are the Morlet and the n− th derivatives of the

Gaussian (DOG). Among the DOGs, the Ricker or so- called Mexican hat wavelet represents

the second derivative. The selection of the appropriate WF depends on both the mathemat-

ical and physical nature of the parameter being analyzed. Different categories of wavelet,

and various types of wavelets within each category, provide a multitude of options to choose

from when analyzing a process of interest [89]. The complex Morlet function is expressed by

Equation (2.11) in its simplest form (where k0 is the central frequency, which is generally as-

sumed to be 5 or bigger to satisfy the wavelet admissibility condition). The Ricker function,

which is a real function, is mathematically represented by equation Equation (2.12).

ψ(t) =
1

π1/4
.ei2πk0te−t

2/2 (2.11)
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ψ(t) = (1− t2).e−t
2/2 (2.12)

According to the uncertainty Heisenbergs principle, there is a lower limit to the product

of frequency and time resolution. Thus, as time resolution is improved, frequency resolution

degrades and vice versa [14].

The Morlet function provides lower area of the Heisenberg cell than the DOGs WT and

retrieves accurate wavelengths at higher signal-to-noise ratios and lower sample frequencies.

The wavelet analysis of the synthetic signals confirms this. Morlet WF (see Figure 2.7)

retrieves frequencies of the order of ripples for sampling frequencies below 0.25 m, and that

the efficiency of the DOGs improves as the order of the derivative is increased. This efficiency

of the Morlet WT is particularly important to retrieve frequencies of the order of ripples.

Therefore, it is used for all the estimations with wavelet transforms. They are performed by

using a modified version of the wavelet software provided by [243].

2.2.2.7 Discrimination Method For each synthetic signal and Rı́o Paraná BFP, the

separation procedure encompasses the following steps and is valid for either h or η signals:

1. The outliers are identified and replaced by the mean water depth h (or bed form elevation

η).

2. The continuous wavelet analysis is performed on the given h (or η) signal (see Figures 2.8

and 2.9). The global wavelet transform spectrum (see Figures 2.8c and 2.9c) provides in-

formation to find the wavelength (192 m for signal SSNR80SNR489 and 337 m for j=100)

of the wave that underlies the dunes that have a mean wavelength of approximately 10

m and 62 m, respectively.

3. The original synthetic signal (η in Figure 2.11) and BFP (h in Figure 2.10) are filtered

by using the robust spline filter with several values of the parameter s. A wavelet trans-

form analysis is then performed for each filtered signal and the one that has a mean
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Figure 2.7: Wavelet global spectrum for Morlet and the derivatives of the Gaussian wavelet

functions for signal SSNR100SNR494. The former retrieves higher frequencies such as the

synthetic ripples with ∼0.30m of wavelength, at any signal to noise ratio and Nyquist ratio.

It is important to note that the 5m wavelength is imposed by the synthetic ripples.
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Figure 2.8: Wavelet analysis output for section j=100. Bed form migration from left to

right. (a) Bed form profile at section j=100, (b) contours of the wavelet power spectrum

using the Morlet wavelet function (the dotted yellow line represents the cone of influence and

the bold contours are the contours at 95% confidence limits), and (c) global wavelet power

spectrum showing the main frequencies in section j=100 (the dotted red line represents

the 95% confidence interval; thus, the peaks located at the right side of such line are the

wavelengths are at 95% of the confidence level). The higher frequency, 337 m, is used by the

program to discriminate the third bed form hierarchy (bars).
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Figure 2.9: Wavelet analysis output for synthetic signal SSNR80SNR489 (refer to Fig. 2.8

for details about the definition of the graphical representations). Notice the limitation of the

wavelet transforms to retrieve wavelengths that are located closer to the edge of the cone of

influence.
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wavelength closest to 192 m (for SSNR80SNR489) or 337 m (for j=100) is found. These

signals become the third level of bed form discrimination (h3,3 in Figure 2.10 and η3,3 in

Figure 2.11).

4. ĥ3 (or η̂3 for the synthetic signals) is defined as ĥ3 = h− h3,3 and contains the signal

of dunes with superimposed smaller dunes (or superimposed ripples for the synthetic

signals).

5. The ĥ3 signal (or η̂3 for the synthetic signals) is filtered by using the robust spline filter

with different values of the parameter s, to obtain several dune-like signals, named ĥ2(s).

For the case of synthetic signals several ripple-like signals, named η̂2(s), are obtained.

6. The ĥ3 signal is subtracted from each ĥ2(s) to obtain a set of smaller-dune-like signals,

named ĥ1(s) (or ripple-like signals, named η̂1(s) for the synthetic signals).

7. A wavelet analysis is performed on each ĥ1(s) and this determines a mean wavelength of

0.6 m (an arbitrary threshold that defines ripples) and 5m (an arbitrary threshold that

defines small dunes) for SSNR80SNR489 and j=100, respectively. These criteria are, as

stated above, the objective criteria used to define ripples and small dunes. The chosen

signal then becomes the first level of the bed form discrimination (η1,3 in Figure 2.11 and

h1,3 in Figure 2.10), and the corresponding η̂2(s) and ĥ2(s) becomes the second level of

bed form separation (η2,3 in Figure 2.11 and h2,3 in Figure 2.10).

2.2.3 Results

2.2.3.1 Accuracy of the Method The accuracy of the method is assessed by analyz-

ing the synthetic signals. Our results reveal that the method provides a high accuracy in

retrieving information from the bar and dune form scale signals. A cross-correlation analysis

of the retrieved and actual bar and dunes signals is persistently higher than 0.9 at lags equal
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to zero for NR>25 at any SNR (see Figures 2.12b-c and Figures 2.13b-c). Likewise, their

standard deviation ratios (Figure 2.14b and Figure 2.14c) are markedly closer to a value of

unity for NR>25 at any SNR.

Filters necessarily induce some deformation on the signals [211, 180], and this is critical

for retrieving higher-frequency ripple signals. A closer analysis of these signals indicates

that the cross-correlation between the actual and recovered signals is higher than 75% for

NR>25 (see Figure 2.12a), and that the robust spline filter does not lag the ripple signal

as shown in Figure 2.13a. However, the robust spline filter does distort the amplitudes (see

Figure 2.14a), especially for NR>25 and SNR<5, with most of the amplitude deformations

occurring in the bed form troughs. It is important to note that among the different filters,

the robust spline filter minimizes such trough deformation [211]. Our results reveal that

this limitation of the filters is improved when the points of the ripple signal with negative

elevations, and below 2.5 times the standard deviation threshold, are considered as outliers,

and are therefore fixed at such a threshold.

In order to assess the reproducibility of the ripple frequencies, the reproducibility ratio,

defined as the ratio between the number of common peaks (of the actual and retrieved

ripple signals) detected in at least 50% of the whole spectra and the total number of peaks

corresponding to the number of peaks detected across all the spectra [180], was quantified.

These results highlight that the reproducibility is higher than 70% for NR>25 (Figure 2.15).

Synthetic data that exhibits self-similarity was used. The synthetic data is comprised by

ripples (Gaussian distributed), small and medium dunes (whose height follows the Gamma

distribution) and bars (generated by using the sinusoidal equation described above. The

methodology also shows good performance, with a higher efficiency being observed in bars

and dunes than for the case of ripples. Figure 2.16 presents an instance of the synthetic

signal and a set of results from the analysis. They indicate that the best results are achieved

for NR > 30. This type of signals were also used to generate two-dimensional synthetic bed

form data (see Section 5.3.1.2).

2.2.3.2 Discrimination of Bed Form Scales at the Fieldsite After the procedure

outlined above is applied to the 370 fieldsite BFPs, various scales of bed forms are found
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Figure 2.16: Discrimination of synthetic signals exhibiting self similarity. (a) Synthetic signal

comprised by ripple, small dunes, medium dunes and bars; (b) retrieved ripple signal, (c)

retrieved dune signal; (d) retrieved bars signal; (e.1) retrieved ripples, (e.2) retrieved dunes:

and (e.1) retrieved bars.
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(Figs. 2.17-2.19), respectively. Figure 2.17b shows that for the case of markedly 3D medium

and large dunes, the small dunes with higher amplitudes are concentrated near to the troughs

and their amplitudes tend to increase as they near the crests of the larger dunes, denoting

that the process of bed form amalgamation is prevalent for 3D dunes. This pattern is absent

for large dunes that are more 2D and with crests sub-parallel with their neighbors, and may

be explained by the fact that obliquity of the crestline influences the length of any separation

zone and thus influences the magnitudes of the leeside Reynolds stresses, drag coefficients and

the dispersal patterns of sediments [35]. Indeed, Figure 2.18 shows that crestal platforms are

commonly present over 3D large dunes. According to [168] and [253], turbulence generated

by 3D dunes is weaker than the 2D case, due to the generation of secondary flows over the

3D forms, perhaps highlighting a process of the crest having conditions transitional to an

upper stage plane bed. Figure 2.19 shows that the bar is highly variable along the survey

area, and thus a linear representation of this feature is too simplistic.

A wavelet analysis using the Morlet wavelet function (Eq. 2.11) on the ĥ3 signals was also

conducted, and the average wavelet power spectrum, namely the power Hovmöller, for 4-8 m

and 8-16 m bands was obtained. The power Hovmöller is a 2D contour plot used to display

the wavelet variance of the bed form profile along the x-axis at distinct transverse locations,

y. This 2D contour plot allows assessment of the variability of the power distribution in

both the longitudinal and transverse directions, as well as isolation of features characterized

by a certain range of dimensions, such as wavelength [58]. Figure 2.20a indicates that the

higher frequency bed forms are located mainly in the troughs and at the lower portions of

the stoss sides of the larger dune forms. Likewise, Figure 2.20b indicates that the second

band is densely distributed with large dunes, especially close to the troughs.

Since the methodology analyses stream wise transects, it has the potential to locate the

crests and troughs of the bed form hierarchies present in the study area even for temporal

bed form analyses, although it is limited in fully describing the 3D nature of the bed forms.

2.2.3.3 The Statistics of Bed Form Features The data for different sized bed forms,

filtered as the signal of the smallest bed forms over the stoss side of the larger dunes are
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Figure 2.17: (a) h1,3 (small dunes) data of the Ŕıo Paraná survey, and (b) inset of small

dunes superimposed on markedly three-dimensional larger dunes. Here, the smaller dunes

(yellow areas) concentrate in the trough region of the larger dunes and grow in amplitude as

they get closer to the crests of the larger bed forms. Flow is from right to left.
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Figure 2.18: h2,3 (medium to large dunes) data of the Ŕıo Paraná survey. Note that crestal

platforms are developed on the shallower, markedly three-dimensional, larger dunes. Sub-

parallel larger dunes tend to be more two-dimensional. Bed forms migration from right to

left.
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Figure 2.19: h3,3 (bars) data of the Ŕıo Paraná survey. Flow is from right to left. This bed

form hierarchy imposes a highly non-stationary condition on the BFPs. A linear represen-

tation of this feature would be too simplistic for this survey.
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Figure 2.20: Power Hovmöller of the averaged wavelet power spectrum for two scale bands of

the h2,3 swath: (a) [4− 8]m (small dunes), (b) [8− 16]m (medium size dunes). In all cases,

the contours present the variance with a 95% confidence level.
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analyzed statistically later. The histograms of the dune descriptors (see Figure 2.21a-f) show

that there is a marked difference in the distribution of the wavelength of smaller features on

the lee and stoss sides. Similar results have been reported by [113], [92], [132] and [136]. Our

results also indicate that there is a strong correlation between the wavelength and amplitude

of the superimposed smaller dunes on the stoss side; conversely, the same parameters are

not correlated on the lee side.

The probability distribution functions (PDFs) of the dimensionless descriptors of the

large and small dunes, together with the Weibull, Gaussian, Gamma, GEV, and Pareto

distributions, are shown in Figure 2.22. In each case, the dimensionless value of each de-

scriptor is defined as the descriptor divided by its mean value. The goodness of fit of some

distribution functions was also evaluated by the normalized Anderson-Darling test (normal-

ized with the Gamma A2, denoted A2*; see Table 2.1) that allows testing of a wider range

of distributions when some of the parameters may not be known [75]. The minimum A2*

value denotes the best fit to the PDF. In most of the cases (Figs 2.22a-2.22d and Table 2.1),

the Gamma distribution provides the best goodness of fit. Likewise, all the parameters

show a positive skewness and leptokurtic distribution. A similar analysis was performed

on the small dune sample population (Figs 2.23a and 2.23b; Table 2.1). The histograms

(Fig. 2.21d-f) demonstrate that the wavelength of these bed forms on both the stoss and

lee sides present the characteristics of discrete variables. On the other hand, the absolute

value of their amplitudes reveals that the characteristic amplitude is approximately 0.05 m.

These slopes, when compared to that of the dunes, present lower values for the stoss side

but similar values in the lee side. The Gamma distribution presents the best goodness of fit,

with the kurtosis being positive and greater than that of the larger dunes, and possessing a

leptokurtic distribution.

Thus, it is important to note that the recurrence of the Gamma PDF as the best describer

of the bed form descriptors probability density justifies normalizing the Anderson-Darling

test results with the Gamma’s A2.
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Figure 2.21: Histograms of the large dune descriptors: (a) The dimeswavelength of the lee

side (λl2,3) shows higher variability than that of the stoss side; (b) the amplitudes of the

stoss and lee sides (∆s
2,3 and ∆l

2,3) show similar distribution of frequencies; (c) the slope of

the stoss side (Ss2,3), shows an almost symmetrical distribution; however, the slope at the

lee side (Sl2,3), that is closely related to the angle of repose of the sediment material, shows

higher variability. Histograms of the small dunes descriptors: (d) the wavelengths at the

stoss and lee sides (λs2,3 and λl2,3) in the continuity of the interval is strongly determined by

the sampling frequency; (e) the amplitudes at the stoss and lee sides (∆s
2,3 and ∆l

2,3) shows

similar distribution. The small dunes, that represent shorter life-span structures, appear

not to be related to the angle of repose of the sediment material any more; (f) no markedly

variability between the lee and stoss slopes.
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Figure 2.22: Probability distribution of the larger dunes dimensionless descriptors: (a) stoss

amplitude, (b) lee amplitude, (c) stoss wavelength, and (d) lee wavelength.

Table 2.1: Normalized Anderson-Darling test results. The minimum value defines the stan-

dard probability density function that best describes a given normalized bed form geometric

descriptor.

Descriptor Gaussian Weibull Gamma LEV

∆l∗
1,3 50.9 5.9 1.0 5.2

λl∗1,3 1.0 0.9 1.0 1.1

Sl∗1,3 9.4 1.4 1.0 3.2

∆s∗
1,3 45.7 3.4 1.0 6.1

λs∗1,3 0.9 0.9 1.0 1.2

Ss∗1,3 29.0 3.0 1.0 5.4

∆l∗
2,3 2.5 3.0 1.0 2.3

λl∗2,3 3.4 2.2 1.0 0.7

Sl∗2,3 0.5 0.5 1.0 0.6

∆s∗
2,3 0.2 0.7 1.0 1.7

λs∗2,3 13.3 6.5 1.0 0.6

Ss∗2,3 8.0 14.1 1.0 2.5
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Figure 2.23: Probability distribution of the small dunes dimensionless descriptors: (a) lee

amplitude, (b) stoss amplitude.

2.2.4 Discussion

2.2.4.1 Discrimination Method The new methodology proposed herein is based on

the scaling definition of dunes and ripples, is applicable to laboratory and field measure-

ments and overcomes the limitations of using a moving average and spectral analysis. The

methodology allows the user to define the third level based on the potential scales of interest.

The present methodology has successfully discriminated larger bars and different scales

of dunes. By analyzing synthetic signals, the procedure has also been shown to perform

well in retrieving and quantifying the various scales of signal within a bed form series (up

to the third-level wave) when at least one period of such a wave is present in the BFP,

although it does impose some waviness where no single period is present. Therefore, there

is an uncertainty in our results, although this is imposed by the data length rather than

the methodology. Since the methodology solves for the ′′s′′ parameter that minimizes this

limitation, the retrieved larger scale signal is still more suitable than using a linear trend

line (e.g. [249]) that may not be applicable for large rivers such as the Rio Paraná, where

the mean river bed fluctuates over long distances.

Some researchers [249, 92] highlight that the definition of ripples as bed forms that have

wavelengths less than 0.60 m is restrictive, although other researchers (e.g. [152]) have

successfully used such a threshold. [65] suggest the use of a threshold bed form height to
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distinguish transient sand pile ups from stable bed forms that offer a resistance to flow. The

estimates presented herein demonstrates that, even though the ripple definition is limited,

when coupled with the capabilities of both robust spline filters and wavelet transforms such

widely accepted discrimination criterion can retrieve relevant information for ripples and

dunes for both their lee and stoss sides. Unfortunately, few studies have focused on the

transitional areas between bed form states (e.g. see [33, 37]), even though they are critical

to explain bed form scales.

The method proposed herein shows potential in retrieving the ripple signal with a rea-

sonable level of accuracy, as demonstrated by the results of the synthetic signals analysis.

Moreover, by using wavelet transforms, the distribution of the wavelengths of small dunes

can also be estimated, and by using the robust spline filter the distribution of the amplitude

of bed forms within the Ŕıo Paraná can be quantified and robustly assessed.

2.2.4.2 The Statistics of Bed Forms The bed morphology of the Ŕıo Paraná com-

prises bars (unit, point, complex bars), dunes (of various scales) and ripples with a three-

dimensional morphology [198]. Bars have wavelengths from 325 m to >450 m, and generally

larger bars are associated with larger dunes. A similar trend has been reported by [137],

who studied the possible interaction between dunes and bars, and showed that the nonlinear

coupling between relatively short (dunes) and long (bars) wavelength bed forms may cause

the growth of bars.

In many instances in the present analysis, the dune signals show that higher trough-scour

depths, relative to mean bed level, are succeeded by a higher upstream dune. Indeed the

dunes within the present reach are markedly asymmetric, with the lee slope being nearly

four times that of the stoss slope. As shown in Figure 2.5, the small dunes exhibit irregular

three-dimensional features, which are similar to linguoid ripples that form under higher bed

shear stresses, or have had longer development times, and represent the second stage of the

transition from ripples to dunes [219].

If, similar to the signal to noise ratio, the scale-variance-ratio (SV Ri,j) is set as the

ratio between the standard deviation of the hierarchy i and that of the hierarchy j, the

present results show that SV R1,2 (SVR between small dunes and medium-large dunes) is
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not correlated to the average water depth (see Figure 2.24a); the cross correlation between

these signals is -3%. This implies that, similar to ripples, the height of the small dunes is

not highly dependent on the water depth. This finding may be explained by some of the

descriptors of the small dunes being governed by the local boundary layer thickness but

being independent of the water depth [83]. On the contrary, SV R2,3, the SVR between the

medium-large dunes and bars (see Figure 2.24b), shows high dependence on the average

water depth (the cross correlation between these signals is -87%), a relationship noted in the

past work [218, 213, 66, 62, 67, 65]. Therefore, SV Ri,j has the potential to become a robust

frame in which to verify the accuracy of discrimination.

In the present study, the Anderson-Darling test was used to estimate the goodness of

fit of the PDFs, which in past work has been assessed using a relative error [250] and the

Kolmogorov-Smirnov test [252]. However, the Kolmogorov-Smirnov test presents two main

limitations: [1] it tends to be more sensitive near the center of the distribution than at its

tails, and, [2] perhaps a more serious limitation is that the distribution must be fully specified.

Importantly, if the location, scale, and shape parameters are estimated from the data, then

the critical region of the Kolmogorov-Smirnov test is no longer valid, and typically must

be determined by simulation [188]. Use of the Anderson-Darling test, as proposed herein,

overcomes these limitations and appears a more useful technique.

The PDFs of the dimensionless descriptors of bed form characteristics vary for different

hierarchies. The PDFs that best describe the dune descriptors are the Gamma and Weibull

functions, whereas the smaller dunes are best represented by the Gamma distribution. In

all cases, the PDFs possess a positive skewness and leptokurtic distributions. Past studies

[19, 250] did not analyze the PDFs of the stoss and lee descriptors, and highlighted that the

PDFs are very sensitive to the preprocessing procedure. However, it is important to note

that some of these studies found that both dune and ripple elevations are best described

by the Gamma PDF [196, 153], whereas others found that the wavelengths, amplitudes and

heights are best described by an exponential probability law [19].
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Figure 2.24: (a) SV R1,2 (scale-variance-ratio between small and medium-large dunes), in-

dicating no correlation with the averaged water depth; a characteristic similar to that of

ripples. Conversely, (b) SV R1,2 (scale-variance-ratio between medium-large dunes and bars),

evidences strong dependence on the averaged water depth, as characteristic proper of the

dunes.
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2.2.5 Conclusions

The discrimination of different scales of bed forms is important in order to study the geomet-

ric variability, and quantify the influence of bed forms on the flow field and flow resistance.

The present study has developed a methodology that combines the capabilities of continuous

wavelet transforms and a robust spline filter to discriminate waves with different periodicities

in bed form profiles, and has applied this methodology to 3-D bed form data from the Rı́o

Paraná, Argentina.

This method uses a symbolic representation of bed form descriptors (e.g. wavelength,

amplitude and slope) for each hierarchy (e.g. small dunes, dunes, bars) and determines a

delimitation of such descriptors that is in-line with past model, laboratory and field studies.

The procedure has successfully retrieved the descriptors of the dunes scales for both the bed

form stoss and lee sides.

The synthetic bed forms considered herein comprise wavelength scales ranges up to four

orders of magnitude (e.g. bars of 200m down to ripples of 0.1m). For such a spectrum,

the methodology proposed herein retrieved effectively information concerning the bars and

dunes with a high accuracy for NR > 25 and SNR closer to 5. For the case of ripples,

the method retrieves a signal that is 75% correlated with the actual signal for NR > 25.

Likewise, the method retrieves around 70% of the wavelengths and 70% of the actual ripple

amplitudes when the NR is higher than 25, but slightly decreases as the NR is increased. In

cases where the frequency range is higher, the accuracy will tend to decrease as explained by

the Heisenberg uncertainty principle. This methodology is shown to be robust when applied

to bed form discrimination in the Ŕıo Paraná, Argentina, and allows separation of bar and

various scales of dunes, which are superimposed on each other and on the larger barforms.

One-dimensional wavelet transforms are not able to differentiate between a two-dimensional

and a three-dimensional bed form feature. Since bed forms in natural channels are predom-

inantly three-dimensional in planform, their scale-discrimination could be greatly assisted

by the application of two-dimensional wavelet transforms and coupled with two-dimensional

robust spline filters as proposed herein.
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3.0 PLANFORM CHARACTERIZATION OF MEANDERING RIVERS BY

USING WAVELET TRANSFORMS, PRINCIPAL COMPONENT ANALYSIS

AND FRECHÉT DISTANCE

3.1 INTRODUCTION

Meandering patterns are ubiquitous in natural channels [205], and are also present in other

phenomena such as rivulets running down plates [72, 49], water flowing over ice [76], ocean

currents [164, 244], channels carved by molten lava on the Moon, Mars and Venus [124],

subaqueous channels [112, 70, 12], barotropic jet stream paths [28], lightning paths [102, 16],

among others.

The quantification of the variability of meandering river morphometrics is necessary for

scientific and practical purposes. For scientific purposes it is key for studying: [1] the interre-

lationship between meanders and riparian vegetation [202, 50], [2] the influence of sinuosity

on surface and groundwater interrelationship [52], [3] distinguishing natural from modeled

channels [90, 108], [4] describing the implications of planform shapes into the morphody-

namics of subaerial channels [2], among others. For practical purposes it is necessary for:

[1] the design of civil infrastructure protection [247], [2] impact of reservoir on meandering

planforms [230], [3] river restoration [177, 1], among others.

Past approaches towards meanders classification (e.g. [63, 47, 228, 222]) were developed

with the aim of assessing stable and highly unstable planform patterns from maps, aerial

photographs or visual inspection and without field data. Based on these criteria the [47]

scheme was found to be the most appropriate [144]. According to the Brice classification

scheme (see [144] for details on the planform characteristics of each class), meandering rivers

have the following characteristics: [1] class A single phase with equiwidth and incised chan-
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nels; [2] class B1 single phase, equiwidth channel; [3] class B2 single phase, wider at bends,

no bars, [4] class C single phase, wider at bends with point bars; [5] class D single phase,

wider at bends with point bars, chutes common; [6] class E single phase, irregular with vari-

ation; [7] class F two phase underfit, wandering; [8] class G1. two phase, bimodal bankfull

sinuosity equiwidth; and [9] G2 two phase, bimodal bankfull sinuosity, wider at bends with

point bars.

Past approaches to the quantification of meandering curvature variability have used and

applied spectral analysis [235, 60, 88, 76, 106, 108, 170]. These spectral analyses were carried

out by using the Fourier transforms which assumes that the data is stationary although river

planform parameters possess trend, or non-stationarities. The latter is due to the continuous

increase of the flow rate hence the increase of river size going downstream [60]. Fourier

analyses have severe limitations for analyzing signals that include significant departures

from stationarity [60]. And, a high number of Fourier coefficients is necessary to take into

account structures which are visible on some intervals and invisible on others [143].

Past research in meandering morphometrics has followed two main approaches, namely,

techniques in which a bend or loop as a whole is considered and those in which certain

parameters of form or change are analyzed [106]. In the present contribution we follow the

latter approach and use wavelet transforms to quantify meandering morphometrics. Wavelet

Transforms were developed to overcome some of the limitations of the Fourier transforms and

have been successfully applied to other quasi-periodic geophysical signals such as bedform

profiles [158, 58, 98] and water waves [160, 171, 81, 82]. The present contribution extends

Abad, 2009’s ([7]) original application of the Wavelet transforms to the analysis of a plan-

form curvature signal of meandering rivers.
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3.2 METHODS

3.2.1 Data

3.2.1.1 Synthetic Meanders Sine generated meanders where proposed by Langbein

and Leopold, 1966 [146]. They are based on the theory of minimum variance and are widely

accepted as descriptive of self forming river planform geometry [264, 234, 174]. Sine generated

meanders are defined from the angle φi (in radians) that the curve, at a given point, makes

with the mean down valley direction [174], such that:

φi = ωi sin

(
2πs

Mi

)
, (3.1)

where ω represents the curve maximum angle of deflection, M is the bend length or arc-

wavelength, s is the distance along the stream, and the sub index i denotes the number

of bends being considered in the meander. Recent work performed by Mecklenburg and

Jayakaran, 2012 [174] defined the amplitude, plan wavelength (Lm) and global curvature

(K = M/Lm) of the sine generated meanders. They found the following approximated rela-

tionship between K and ω:

ω = (12 +
(−62208/K + ((−62208/K − 31104)2 + 322486300)0.5 − 31104)1/3

3(2)1/3
−

144(2)1/3

(−62208/K + ((−62208/K − 31104)2 + 322486300)0.5 − 31104)1/3
)1/2 (3.2)

Thus, a set of synthetic meanders were generated. They comprise: [1] single-period

meanders with M1 = 20 and K1 that ranges from 1.1 to 6; [2] two-period meanders with

M1 = 4000 and M2 = 70, and 1.1 ≥ K1 ≤ 3 and 3.5 ≥ K2 ≤ 5.5; and [3] three-period mean-

ders with M1 = 10, 000, M2 = 500 and M3 = 5 and 1.1 ≥ K1 ≤ 2 and 2.5 ≥ K2 ≤ 3.5 and

4 ≥ K3 ≤ 5. Subsequently, the meander curvature was estimated as C = −dφi/ds and the

geometric coordinates of the meander at point j + 1 were estimated by the following rela-

tionship:  xj+1(s)

yj+1(s)

 =

xj(s) + ds cos(φi(s))

yj(s) + ds sin(φi(s))

 (3.3)
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Figure 3.1 presents the details of the generated single-period meanders. Likewise, Figure 3.2a

and 3.2b show instances of the two-period and three-period meanders, respectively.

Figure 3.1: Generated single-period bends: (a.1, a.2, a.3 and a.4) geographical detail of the

curves with k = 1.1, 3, 4.5 and 6, respectively; (b.1) single bends in juxtaposition; and (b.2)

curvature signal of the bends presented in (b.1).

3.2.1.2 Natural Meanders Meander geometry is typically described in terms of the

curvature (C) which is estimated based on the discretization of the channel centerline in

equally-spaced points in local (curvilinear) or intrinsic coordinates [184, 108, 170, 154]. To

convert geographical (e.g. Easting, Northing) coordinates into local coordinates (e.g. s, n),

[154] proposed an algorithm that involves parametric description of the channel centerline

using cubic splines, calculation of centerline normal vectors and curvature using results from

differential geometry, and a local search to find in-channel data points and to compute their

local coordinates. The inverse transformation finds the nearest vertices of a discretized
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Figure 3.2: Synthetic meanders. Two-frequency instance for (a.1) K1 = 1.1 and K2 = 3.5,

(a.2) K1 = 3 and K2 = 5.5. Likewise, three-frequency instance for (b.1) K1 = 1.1, K2 = 2.5

and K3 = 4; and (b.2) K1 = 2, K2 = 3.5 and K3 = 5

centerline and uses a finite difference approximation to the streamwise rates of change of

the centerline’s Cartesian coordinates to obtain the geographic equivalent of a point. Past

research in meandering morphometrics has demonstrated that discretization of meanders at

spacing of approximately one channel width is suitable to avoid noisy from curvature signals

[106, 154, 182].

The data used herein is presented in Table 3.1 and includes rivers that range from class

B1 to class G2 according to the Brice modified classification scheme [47] and are located in

North and South America. Rivers class A, which represent the first degree on confinement

[157], are not considered in this contribution because they are deeply inset into geological

competent material such as bedrock, or they may be actively cutting through erodible ma-

terial but having negligible lateral migration [144]. In all cases, except the Ucayali River

(due to data scarcity), a minimum sample length of about 50-60 bends were used to avoid

highly variable statistics, as suggested by [108]. Likewise, centerline data for the years 1990

and 2000 were obtained for Beaver, Carauari, Madre de Dios, Pearl, and El Tigre Rivers.

For the Tahuamanu River, centerline data series for the years 1985, 1989, 1993, 1997, 2000,
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2003, 2006, 2009 and 2011 were obtained. Likewise, for the Ucayali River, centerline data

series for the years 1975, 1980, 1985, 1990, 1996, 2000, 2005, and 2010 were obtained.

Table 3.1: Study Rivers, B̄ is the mean river width.

River Location Mean B̄ Brice

Coordinates (m) Class

Beaver Canada 54◦ 16.511’N, 109◦ 43.572’W 54 F

Carauari Brazil 4◦ 4.953’S, 66◦ 25.972’W 359 D

Las Piedras Peru 112◦ 2.437’S, 69◦ 42.630’W 157 G2

Madidi Bolivia 12◦ 50.044’S, 67◦ 32.122’W 135 D

Medicine Canada 52◦ 12.357’N, 114◦ 15.121’W 43 B2

Pariamanu Peru 12◦ 23.139’S, 69◦ 35.045’W 78 B1

Pascagoula USA 30◦ 43.982’N, 88◦ 39.599’W 158 C

Pearl USA 30◦ 47.552’S, 89◦ 49.229’W 89 C

Red Deer Canada 51◦ 1.500’N, 111◦ 57.116’W 165 F

Steen Canada 59◦ 27.246’N, 117◦ 11.767’W 122 F

Tahuamanu East Bolivia 11◦ 25.619’S, 69◦ 4.187’W 153 G2

Tahuamanu West Peru 11◦ 23.032’S, 69◦ 36.952’W 155 G1

Tigre East Peru 4◦ 1.189’S, 74◦ 19.362’W 315 B2

Tigre West Peru 3◦ 21.611’S, 74◦ 57.047’W 200 E

Ucayali Peru 5◦ 19.587’S, 74◦ 21.968’W 1123 C (US), D(DS)

Yapacani Bolivia 16◦ 24.356’S, 64◦ 8.694’W 133 G2

3.2.2 Continuous Wavelet Transforms

Wavelets can be generally classified as discrete (DWT) and continuous (CWT). The former

is the analogue of the discrete Fourier transform (applicable to inputs that are often created
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by sampling a continuous function) and is more appropriate for data compression and signal

reconstruction, the latter is analogous to the Fourier transform and is usually applied to the

analysis and detections of signal singularities and patterns [20].

The unidimensional wavelet transform (WT) of a signal x(t) ∈ L2 is obtained by the con-

volution of the signal and the wavelet function (WF) or mother wavelet ψ(t) as expressed by

Equation (4.1), where a is the scale parameter, b is the location parameter and ψ̄a,b(t) is the

complex conjugate of ψa,b(t), as mathematically represented by Equation (4.2). According

to the Parseval’s theorem [14] the same wavelet transform can be expressed by Equation 4.3.

T (a, b) =

∞∫
−∞

x(t)ψ̄a,b(t) dt, for a > 0, (3.4)

ψa,b(t) =
1√
a
ψ(
t− b
a

) (3.5)

T (a, b) =
1

2π

∞∫
−∞

x̂(f)
¯̂
ψa,b(f) df (3.6)

where x̂(f) and ψ̂a,b(f) are the Fourier transforms of x(f) and ψa,b(f), respectively. The

wavelet power spectrum is defined as |T (a, b)|2; and in terms of computational cost, it is less

expensive to quantify it from Equation (4.3) [243].

The most commonly-used continuous WFs are the Morlet and the n− th derivatives

of the Gaussian, being the Ricker, or so-called Mexican hat wavelet, the second derivative.

According to the uncertainty in Heisenbergs principle, there is a lower limit to the product of

frequency and time resolution; in such a way that as time resolution is improved, frequency

resolution degrades and vice versa [14]. The Morlet function provides lower area of the

Heisenberg cell than the derivatives of the Gaussian wavelet functions and retrieves wave-

lengths of higher frequencies. This efficiency of the Morlet wavelet function is particularly

important to retrieve higher frequencies of bedforms [98] and river curvature. Therefore,

the continuous wavelet analysis is performed by using the Morlet wavelet function and a

modified version of the wavelet software provided by [243].
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3.2.3 The Principal Component Analysis - Discrete Wavelet Filter

Aminghafari et. al, 2006 ([17]) combined the ability of the principal component analysis

(PCA) to decorrelate the variables by extracting a linear relationship with that of the DWT

to extract deterministic features and approximately decorrelate autocorrelated measurements

[27, 17, 111, 180].

The DWT should meet the following requirements: [1] having compact support, it means

having a finite number, namely Nk − 1, of scaling coefficients (ck) and being smooth to some

degree. [2] Having a vanishing moment. The Daubechies wavelets have Nk/2 vanishing

moments which implies that they can suppress parts of the signal which are polynomial

up to the degree Nk/2− 1 [14]. [3] In order to minimize the number of high amplitude

coefficients, the support size should be reduced. Daubechies wavelets are optimal in the

sense that they have a minimum size support for a given number of vanishing moments

[169]. Therefore, the selection of the appropriate wavelet from the Daubechies wavelets

family is highly dependent on the physical and mathematical properties of the signal being

analyzed.

PCA is a non parametric method of extracting information in high dimension and reduc-

ing the number of descriptive variables from a data set matrix X of dimensions n x p (the

number of measurements and variables, respectively) by projecting it onto a lower dimension

space P of dimension q ≤ min(n, p), where the new variables defining this space are called

the principal components [180]. This operation is carried out assuming that: [1] there is a

linear relationship between the data components; [2] the principal components with higher

associated variances represent the principal components, while those with lower variances

represent noise; and [3] the principal components are orthogonal, otherwise the PCA is not

soluble [119].

The Wavelet Principal Component Analysis (WPCA) scheme encompass the following

steps [17]: [1] perform the wavelet transform at level J of each column of the matrix X;

[2] Define Σ̂ε, the estimator of the covariance matrix, as Σ̂ε = MCD(D1) and then compute

V such that Σ̂ε = V ΛV T ; where Λ = diag(λi, 1 ≤ j ≤ J) and MCD(D1) is the Minimum

Covariance Determinant [224] applied to the D1 the matrix of the details at level 1. Apply
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to each detail after change of basis (namely DjV, 1 ≤ j ≤ J), the p univariate thresholding

strategies using the threshold ti =
√

2λi log n for the i− th column of DjV ; [3] Perform the

PCA of the matrix Aj and select the appropriate number pJ+1 of useful principal compo-

nents; [4] Reconstruct the denoised matrix X̂ from the simplified detail and approximation

matrices, by inverting the wavelet transform; and [5] perform a final PCA of the matrix X̂

obtained at step 4 and select the p̂ principal components. It is important to remark that for

steps 3 and 5 the components associated to eigenvalues greater than 5% of the sum of all

the eigenvalues are retained [17]. Herein, a methodology that combines of WT and PCA is

applied to different types of meandering rivers based on Brice classification scheme.

3.2.4 The Fréchet Distance

The Fréchet distance measures the closeness of two time series if stretching and compression

in time is allowed, but temporal succession is to be preserved [79]. The algorithm to estimate

the Fréchet distance uses a reparameterization continuous function f : [0, 1]→ [0, 1] which is

orientation-preserving, such that f(0) = 0 and f(1) = 1. Thus, given two reparameterization

functions f and g for two curves π and σ in <d, respectively, their width is defined by Eq. 3.7.

widthf,g(π, σ) = max
s∈[0,1]

‖ π(f(s))− σ(g(s)) ‖ (3.7)

This can be interpreted as the maximum length of a leash one needs to walk a dog, where

the dog walks monotonically along π according to f , while the handler walks monotonically

along σ according to g. In this analogy, the Fréchet distance is the shortest possible leash

admitting such a walk [77]. Recent application of the Fréchet distance to the analysis of geo-

physical signals encompasses the similarity or dissimilarity of hydrographs [79] and salinity

stratification [161].
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Figure 3.3: Mean centers for rivers: (a) Pariamanu (continuous yellow line: MC at 1990, red

dotted line: MC at 2000); (b) Medicine River B2; (c) Pearl; (d) Madidi; (e) Tigre-West; (f)

Beaver; (g) Tahuamanu-West(yellow dots: MC at 1985, red dots: MC at 2000, and green

dots: MC at 2011); (h) Tahuamanu-East; and (i) Ucayali (green, red, orange and cyan

lines are the MC at 1975, 1990, 2000, and 2010 respectively). In all figures, the MCs are

overlapped on 2000 LandSat images EarthSat MrSID Coverage.
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3.3 RESULTS AND DISCUSSION

3.3.1 Wavelet Analysis of the Synthetic Data

The analysis performed on the synthetic data reveals that the continuous wavelet transforms

(not shown here) can only retrieve the higher frequency of the synthetic data, although it

identifies the other periods. This result was expected since the quantification of the curvature

implies taking the derivative of the deflection angle φi with respect to the local coordinate s.

This operation detrends the deflection angle; and thus, the lower frequencies of the curvature

are attenuated. Therefore, the meander planimetry spectrum cannot be fully described by

analyzing the curvature signal. Complementary estimation of the mean center is necessary

to retrieve information of the lower frequencies. This fact is discussed in detail in the next

section.

3.3.2 The Mean Center: MC

We define the mean center (MC) as the midterm lifespan (e.g. 10 years or more) coherent

wave of the meanders centerline. In order to apply the wavelet-PCA (WPCA) method on the

centerline data, the centerline coordinates are treated as complex numbers in which the real

and imaginary parts are represented by the Easting and Northing coordinates respectively.

Similar consideration were applied in the past to study wind fields pattern recognition [256,

135]. We applied the WPCA filter on meandering rivers discretized at different sampling

rates that ranges from 0.5B̄ to 2B̄, where B̄ the mean river width. Our estimates show

that the Daubechies-10 wavelet best represents the aforementioned definition and the results

exhibit high sensitivity to the centerline’s sampling rate. The MC get stable at sampling rates

equal to B̄ and lays inside the rivers geological walls and floodplains. Since the Daubechies-

10 wavelet has 5 vanishing moments, the MC represent the river centerline wave having the

polynomial up to the fourth degree suppressed.

The WPCA at J = 1 represents the river centerline itself. Lower values of J are nec-

essary to obtain the MC for rivers that show low variability with respect to the MC (e.g.

confined meandering rivers). Confined meanders are those that are unable to fully develop
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the planform geometry of freely meanders because their lateral migration is constrained by

the walls of the relatively narrow valley through which they flow. Most of them have very

sharp bends at the point of impingement on the valley walls [185]. Our results demonstrate

that the WPCA at level J = 5 performs well for confined meanders (class F based on Brice

modified classification scheme [47]) and for freely meanders (class B1, B2, C, D, D, G1 and

G2) WPCA at levels of J = 7− 8 provides good results. It is important to note that in con-

fined meandering rivers such as the Beaver River, the actual valley center could be closer to

the MC, while in the case of freely meandering rivers (e.g. Ucayali River, Tahuamanu River,

etc.), it could differ from the valley center. In practice, river study reaches are comprised by

different Brice class sub-reaches; therefore, in order to define the appropriate WPCA level J

the MC should be compared with the available geological data. Our results with the analysis

of the composite cases for Tahuamanu West and East and Tigre West and East show that a

good approximation is achieved by J = 6− 8.

The present study uses satellite image data which has been available for around 35 years,

and rivers large enough to be visible on satellite images (as those included in the present

contribution). These rivers may evolve too slowly to reveal all their dynamical properties

over this time span [238]. This fact represents a limitation of fully quantification of the upper

margin of the MC lifespan. Figure 3.2.4 shows some of the results of the MC. Figures 3.2.4a-f

show that the MC for river class B1 to F slightly vary for the period 1990-2000 and we argue

that such condition is also valid for longer periods. For the case of Tahuamanu-West River

(Figure 3.2.4g), which is class G1, the MC slightly varies for the period 1985-2011 (27 years)

and it could keep on remaining the same for longer periods of time. On the other hand,

the Tahuamanu-East River (Figure 3.2.4h), which is class G2, the MC; slightly varies at

each 10 years. The Ucayali River (Figure 3.2.4i), which is a composite river (class C at the

upstream stretch and class D at the downstream stretch), present subtly changes in its MC

for the period 1975-1996 (21 years), and for the period 2000-2010 (10 years). For the period

1996 to 2000, the MC changes dramatically due to a reported man-made cutoff occurrence.

This anthropogenic distortion consisted of digging out small-width channels alongside a path

that crossed the neck cutoff to facilitate navigation and transportation to the local major

cities. Similarly, Coomes et. al., 2009 [69] described that the small-scale human action like
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enhancing meander cutoff resulted in significant ecological and economic consequences. They

mentioned that the 1998 Masisea cutoff (orange line in Figure 3.2.4i) in the Ucayali River

produced the most dramatic planform change in the River in the last 200 years.

As shown above, the WPCA could be used to obtain a reliable approximation of the true

valley centerline, thus the MC centerline serves as input to long-term morphodynamic mod-

els such as RVR Meander (www.rvrmeander.org) [1, 182] for predicting meander evolution

of specific rivers by considering the valley planform configuration.

3.3.3 The Interrelationship Between the Mean Center and Centerline Curva-

tures

The interrelationship between the MC and centerline curvatures is analyzed. To this end, the

normalized curvature signals from both entities were obtained by multiplying the curvature

by river width (B̄) and their local abscissas were normalized with their respective total

length. Thus obtaining C∗ − S∗ datasets. Subsequently, both signals were evenly discretized

and thus, time series were obtained. In all the instances in which the MC curvature present

marked peaks the local cross correlation was quantified using the wavelet coherence. This

methodology was proposed by [95] and has been used in the analysis of the periodicities of

solar activity [248], morpohological patterns in sandbar systems [226], paleoclimatic records

[125], sand transport in aeolian environments [24], among others. The analysis reveals that

even though the global correlation between the MC and centerline normalized curvatures

is weak (below 0.3 in most of the cases), a strong local correlation exists between them.

Figures 3.4a-f show that, in general, peaks in the centerline are strongly correlated with

peaks in the MC for the case of freely meanders. For the case of confined meanders, there is

also a strong correlation between global maxima curvature in the MC and lower curvature

in the centerline curvature. A visual analysis also confirms this fact.
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Likewise, some instances show that cutoffs are produced in the vicinity of peaks in the

MC local curvature. This is explained by the fact that each cutoff has a tendency to trigger

other cutoffs in its vicinity by causing accelerated local change, and therefore, generating a

cluster of cutoffs in space and time [237, 5].

Figures 3.4a-f also show that there are either positive or negative lags in the development

of peaks in the centerline curvature triggered by peaks in the MC curvature. Is is important

to note that in order to have reliable wavelet coherence estimates in the higher frequencies,

the data should not be highly non-normal [95]. An statistical analysis of the normalized

centerline curvature signals reveals that they can be approximated to a bivariate normal dis-

tribution after performing the Johnson transformation with a 95% of confidence interval. The

Johnson transformation consist of three types of functions to transform a given variable Y :

[1] the Log-normal system gL(Y ) = ln(Y ), [2] the bounded system gB(Y ) = ln[1/(1− Y ),

and [3] the unbounded system gU(Y ) = ln[Y 2 +
√
Y 2 + 1] [57]. In all the cases, the un-

bounded system best describes the meanders curvature. Figure 3.5 shows three examples of

this statement no mater the class of river we are dealing with. As it can be inferred from

the aforementioned relationships, the data needs to be positive. In order to have positive

normalized curvature data all the data set were translated to an origin equal to a value of

9, thus Ĉ was obtained.

Past researchers [90, 108] have used straight lines to perform the classification of river

bends and quantify the half-meander statistics. By using the appropriate wavelet level (e.g.

J = 5− 8), the MC also be used as a robust framework to perform such analysis. The

above correlation between the MC and the river centerline could be used as a surrogate for

floodplain modulation (e.g. geology, vegetation, soil distribution) into the development of

complex meander shapes.

3.3.4 The Planform Amplitudes

The planform amplitudes are defined as the orthogonal distance from the river centerline

to the MC. They are normalized with the mean river width and are denoted as ∆∗ in this
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Figure 3.4: At the top of each sub-figure the centerline (blue line) and MC curvatures (red

line, vertically scaled 10 times for the sake of visibility) are shown; at the bottom, the

wavelet coherence between these signals is shown for the rivers: (a) Pariamanu, (b) Madidi,

(c) Beaver, (d) Tahuamanu-West, (e) Tahuamanu-East, and (f) Ucayaly. In all cases, the

peaks in centerline curvature are strongly correlated with peaks in the MC curvature for

freely meanders; for the case of confined meanders (e.g. Beaver River) higher peaks in the

MC curvature are also correlated with lower centerline curvatures. The contours are showing

the degree of correlation.
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Figure 3.5: Normal distribution after the Johnson transform of the centerline curvature the

Pariamanu River at 2000 (left), Beaver River at 2000 (center) and Ucayali at 2000 (right).

In all cases, the abscissa represents the normalized amplitudes. The Ĉ data was obtained

by translating the C∗ data to an origin located at 9.

contribution (Figure 3.6). Typically, the planform amplitudes for freely meanders are in

the interval ∼[8− 20]. The higher values correspond to rivers class B1-F (Figure 3.6a-e)

whereas lower values correspond to river class G1 (Figure 3.6g). It is important to note

that ∆∗ > 20 were estimated for meanders that are located in tidal environments such as

the Pearl or Pascagoula river (not shown here but included in the data set). This fact was

expected because tidal meanders, as they evolve, exhibit strongly non stationary morpho-

metric descriptors (e.g. wavelength, radii of curvature and width) and remarkably different

from those observed in meandering rivers [170]. The normalized planform amplitudes in con-

fined rivers vary in the interval [2− 5], where the large values correspond to higher values

of ∆|SWT | such as the Beaver River (Figure 3.6f).

An statistical analysis of the amplitudes reveals that it is strongly normal distributed.

This was expected because the WPCA discriminated the coherent wave from transient wave

that coexist in the centerlines signals. This fact also indicates that this distribution can be

used in Monte Carlo simulations for midterm horizons.

64



Figure 3.6: Normalized historical planform amplitudes for River: (a) Pariamanu, (b)

Medicine, (c) Pearl, (d) Madidi, (e) Tigre-West, (f) Beaver, (g) Tahuamanu-West, (h)

Tahuamanu-East, and (i) Ucayali.
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3.3.5 The Meanders Wavelet Entropy and the Normalized Fréchet Distance

The wavelet entropy is a nonlinear chaotic measure that is used herein to quantify the degree

of either order or disorder of the meanders curvature signals. It is used herein to retrieve use-

ful information about the underlying dynamical process associated to each meandering class.

An ordered process is defined as a periodic mono-frequency signal (a signal with a narrow

band spectrum) having a wavelet representation resolved in one unique wavelet resolution

level because all relative wavelet energies are negligible, except the wavelet resolution level

which includes the representative signal frequency [215]. In meandering rivers, such kind of

signals would be represented by the curvature of ordered meanders that shift downstream

with a constant speed while maintaining a coherent shape [197]. On the antithesis of this

condition, chaotic meanders, characterized by alternating phases of lateral migration that

acts to increase sinuosity and sporadic shortening by cutoff events and subsequently oxbow

lakes formation, also exist. In the ordered state cutoffs act to destroy order, whereas in the

chaotic state cutoffs create order[237].

We use the Shannon wavelet entropy (SWT ), which is defined by Eq. 3.8 [23], where S

is the signal being analyzed and (Si) are wavelet coefficients of S in an orthonormal basis.

Subsequently, the absolute value of the annual entropy gradient (∆|SWT |) is obtained.

SWT = −
∑
i

S2
i log(S2

i ) (3.8)

We define δ∗F as the Fréchet distance between the meander centerline and its MC normal-

ized with the absolute value of the maximum planform amplitude; thus, the meander valley

control can be dimensionless quantified. Figure 3.7 shows the results obtained from the 52

realizations considered in the present study. This metric identifies a threshold of δ∗F ∼ 650 to

discriminate freely from confined rivers. By means of it, scales of the second and third degree

of confinement identified by [157] can also be quantified. Likewise, the ∆|SWT | metric sug-

gests that there are 4 categories of rivers laying in the intervals (e.g. [10−1 − 100], [100 − 101],

etc.). Therefore, these objective metrics have the potential to become meandering classifiers,

although more data and analysis is needed in this regard. We argue that based on these

classifiers boundaries of subresonant and superresonant morphodynamic regimes proposed

by [229] and [148] can also be identified.
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Figure 3.7: Classification of meandering rivers based on the normalized Fréchet distance

(δ∗F ) and the annual gradient of the Shannon wavelet entropy (∆|SWT |). The divide that

discriminates confined from free meanders (black dotted line) is located at δ∗F ∼ 650.

3.3.6 Wavelet Analysis of the Dimensionless Planform Amplitudes and Curva-

ture

The wavelet analysis of the meanders dimensionless curvature-local abscissa (C∗ − S∗, where

C∗ = CB̄ and S∗ = S/B̄) was also performed using the Morlet wavelet function. Such anal-

ysis concentrated in quantifying the arc wavelength, namely, the wavelength along the river

centerline.

Figure 3.8 shows the capability of the wavelet transforms to retrieve information from the

arc wavelength (e.g. dominant periods and spatial distribution of the frequencies) along the

entire stretch of the Pariamanu River for the year 1990. The dimensionless curvature (Figure

3.8a) varies in the interval ∼[−2.5to2.5] and shows to be non-stationary, namely, having a

non-constant mean value along the study stretch. Therefore, the Fourier analysis would

be limited in fully describing the spectrum of frequencies of this signal; moreover, it would
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Figure 3.8: Wavelet output for Pariamanu River for the year 1990. (a) The C∗ − S∗ signal

(where C∗ = CB̄ and S∗ = S/B̄) ; (b) wavelet spectrum of arc wavelength at 95% of con-

fidence (the dotted line represents the cone of influence border); and (c) the global wavelet

spectrum (the dotted line represents the 95% interval of confidence limit). Based on this

analysis, the dominant wavelenghts for the Pariamanu River (class B1) are respectively ∼2B̄

and ∼15B̄.
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not provide information about the spatial distribution of such spectrum. Conversely, wavelet

power spectrum (Figure 3.8b) shows that two marked frequency intervals are developed along

the stretch (bold white contours). They represent peaks in the frequency variance (Figure

3.8c) at 95% of confidence; being the high and low coherent arc-wavelengths respectively ∼2

and ∼15 times of the river mean width (∼78m). It is important to mention that the wavelet

software provided by [243] also estimates the confidence intervals of the wavelet analysis such

as the cone of influence (yellow dotted in Figure 3.8b) that bounds the edge effect of the

wavelet transforms, and the coherent arc-wavelength peaks at 95% of confidence, represented

by the peaks located over the 95%-divide (red dotted line in Figure 3.8c).

Figure 3.9a-h presents the C∗ wavelet spectra in which the contours below the 95%

of confidence have been filtered. They show that typically the lower coherent period is

weaker than the higher one and that regardless the meander class, it is ∼3B̄. In the present

contribution, we have considered stretches that range from 50km to 440 km, therefore, this

parameter exhibit not marked sensitivity to the reach length when an appropriate number

of bends (e.g. 50-60) are considered in the analysis. The higher coherent period ranges from

∼20B̄ to ∼25B̄. In such interval, the lower range corresponds to confined rivers. Intermittent

middle periods are developed specially for class G2 and composite rivers such as the Ucayali

River.

A comparison of the river curvature historical wavelet spectrum provides information

about the temporal changes in the meanders frequencies distribution. The occurrence of

higher frequencies are related to planform dynamics such as horizontal and vertical het-

erogeneities that are splitting elongated meanders and producing smaller meanders [181].

Figure 3.10 presents the historical distribution of the frequencies of the contours at 95% of

confidence. A threshold that represents around the 25% of the whole frequency spectrum is

set to defined the lower and higher frequencies (black dotted lines in Figure 3.10a-c). Thus,

for the period 1990-2000, the Yapacani River (class G2, Figure 3.10a) shows a marked decre-

ment (∼50%) in the relative area of the higher frequencies at the expense of an increment

in the relative area of the lower frequencies (∼50%), resembling an amalgamation process.

For the case of the Steen River (class F with lower normalized Fréchet distance, Figure
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Figure 3.9: Wavelet spectrum output for the normalized curvature of Rivers (a) Medicine,

(b) Pearl, (c) Madidi, (d) Tigre-West, (e) Beaver, (f) Tahuamanu-West, (g) Tahuamanu-

East, and (h) Ucayali. The spectra show only the contours at 95% of confidence and the

cone of influence (dotted magenta lines). Regardless of the river class, the lower coherent

period is typically ∼3B̄ and the higher coherent period varies ∼20B̄ − 25B̄. In all cases the

represented year is 2000.
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Figure 3.10: Historical spatial distribution of the arc wavelength frequencies for: (a) Ya-

pacani River (class G2) for the period 1990-2000, (b) Steen River, class F (1990-2000), and

(c) Ucayali River, composite, (1990-2005). In all cases, blue contours represent earlier years

than the cyan contours. The quantities in the figures represent the density of the higher

(HF) and lower (LF) frequencies for a given year.
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3.10b) shows a slight change in the area of the lower and higher frequencies. On the other

hand, for the period 1990-2005, the Ucayali River (Figure 3.10c) presents an increase of

∼200% in the area of the higher frequencies at the expense of a ∼10% decrement in the

lower frequencies, resembling a markedly splitting process of the lower frequencies to pro-

duce higher frequencies (the bend planform shape is becoming more complex). Both the

splitting and the amalgamation processes are also observed in river bed form configurations

[98]. The capability of the continuous wavelet transforms to identify and quantify changes in

the frequency spectrum could also be compared with those of simulated meanders to assess

the effectiveness of the model to replicate the observed processes. Based on this analysis, it

is evident that the balance in frequency of meanders is a notorious process at which plan-

form shapes are constantly adapted along the river evolution, and it could show its potential

when comparing paleochannels to modern channels for understanding climatic effects into

morphodyamics of meandering rivers.

The continuous wavelet analysis performed on the planform amplitudes (Figure 3.11)

reveals that this parameter has a quasi periodic behavior ranging from markedly polymodal

with a peak period of ∼40B̄ − 120B̄ in the case of freely meanders (Figure 3.11a-d and

Figure 3.11f-h) to monomodal with a period of ∼20B̄ − 40B̄ (for the case of confined rivers,

Figure 3.11e). In the former case the lower magnitude of the wavelength interval corre-

sponds to river class B2 and the upper one to river class G2. In the latter case, the lower

margin of the wavelength interval corresponds to confined rivers with higher ∆|SWT | such as

the Beaver River, and the upper marging to lower ∆|SWT | such as Steen and Red Deer Rivers.

3.4 CONCLUSIONS

The quantification of the variability of meandering rivers morphometrics is necessary for sci-

entific (e.g. analyzing the interrelationship between meanders and riparian vegetation, the

influence of sinuosity on surface and groundwater interrelationship, distinguishing natural

from modeled channels, among others) and practical purposes (e.g. . the design of civil
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Figure 3.11: Wavelet spectrum output for the planform amplitude from Rivers (a) Paria-

manu, (b) Medicine, (c) Pearl, (d) Madidi, (e) Tigre-West, (f) Beaver, (g) Tahuamanu-West,

(h) Tahuamanu-East, and (i) Ucayali. The spectra show only the contours at 95% of confi-

dence and the cone of influence (dotted magenta lines). They show a polymodal spectrum for

the case of free meanders (Figure 3.11a-e and Figure 3.11g-i) and a monomodal spectrum

for confined meanders (Figure 3.11f). In all the cases the represented year is 2000.
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infrastructure protection, impact of reservoir on meandering planforms, river restoration,

among others). Herein, a set of 16 meandering rivers (providing a total of 52 realizations)

from various geographical locations that ranges class B1, B2, C, D, E, F, G1, and G2 ac-

cording to the Brice modified classification scheme are studied in the present contribution.

Meandering rivers geographical coordinates are treated as complex numbers such that the

real part is the Easting coordinate and the imaginary part is the Northing coordinate. The

combined application of the discrete wavelet transforms and the principal component anal-

ysis provides a reliable methodology to define the mean center (MC) of the river. The MC

represents a robust reference to analyze river meandering parameters for middle-terms (e.g.

10-∼30 years). Historical analysis of the river centerlines shows that the Daubechies-10

wavelet —at level J = 5 for class F and J = 7− 8 for class B, C, E, and G—best defines the

MC. Therefore, the MC represents the wave from the river centerline signal having the forth-

degree polynomial suppressed. The MC in confined meandering rivers (class F) is closer to

the valley center; however, in the case of freely meandering rivers, it could differ from the

actual valley center. Therefore, the MC shows to be a strong frame to estimate the middle

term migration of meandering rivers.

The application of wavelet transforms on the normalized C∗ − S∗ signals provides spatial

distribution of the arc wavelength, the amplitudes and sinuosity with respect to the MC.

The application of the wavelet coherence on the C∗ reveals that these parameters exhibit

high correlation with the local curvature of the MC. Thus, in confined rivers, lower local

curvature at the river centerlines are related to higher MC local curvatures; conversely, in

free meandering rivers, compound bends and multiple loops are associated to higher MC

local curvatures; and most of the instances show that cutoffs are produced in the vicinity

of peaks in the MC local curvature. The dimensionless centerline curvature fits the normal

distribution after the Johnson transformation is performed. Likewise, the historical analysis

of the arc wavelength provides insight on the changes in the frequency spectrum; thus, the

amalgamation process of higher frequencies to produce a lower ones and the splitting of lower

frequencies to produce higher ones can be quantified and identified not only in a stretch scale

but also in a local scale.
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We define the planform amplitudes as the orthogonal distance of the centerline from

the mean center. In all of the cases, this parameter, when normalized with the river mean

width, is normally distributed and typically ranges in the interval ∼2-7 for confined rivers

and in the interval ∼8 to higher than 20 for free meanders (the upper bound corresponds to

meanders located in tidal environments).

We introduce the application of the Fréchet distance to measure the similarity between

the river centerline and the MC and the curvature wavelet entropy. When normalized with

the absolute value of the maximum amplitude, the former metric shows to be a strong frame

to classify free from confined meanders. Confined meanders are bounded by a normalized

Fréchet distance ∼650. The absolute value of the wavelet entropy gradient effectively quan-

tifies four degrees of dynamics of the meandering curvature signal.
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4.0 CHARACTERIZATION OF CONFLUENCES OF FREE MEANDER

TRAINS AT THE UPPER AMAZON BASIN

4.1 INTRODUCTION

River confluences are ubiquitous features in river networks. They represent entities at which

rapid changes in flow, sediment discharge and hydraulic geometry must be accommodated

[34]. Past research in this topic has shown that the main parameters that influence the

dynamics of confluences are the momentum ratio between the combining flows and the

three-dimensional geometry of the junction, namely the degree of discordance (defined as the

relative depth of incision of the confluent thalwegs [129]) and the planform confluence angle

[43]. There is also evidence that the curvature of the incoming channels should also be taken

into account [39]. Geologically, river confluences are locations with different sedimentary

facies which could provide significant insights into the paleomorphology of river systems

[34, 56, 246]. [32, 38, 43, 216] and [217] proposed conceptual models for the hydrodynamic,

bed morphodynamic and sedimentary processes that take place in river confluences. These

models progressively identified six different zones at confluences: [1] zone of stagnation, [2]

flow deflection zone, [3] flow separation zone, [4] zone of maximum velocity, [5] zone of flow

recovery and [6] zone of shear (and the existence of a second zone of shear for pronounced

bed discordance cases); and determined that the extent and location of these zones vary

with the junction angle, the degree of discordance and the hydrological variability of the

tributary confluences. From the morphological stand point, channel confluence can broadly

divided into three elements: [1] distinct, and commonly steep, avalanche faces that form at

the mouth of each of the confluence channels, [2] a region of pronounced scour within the

center of the junction, and [3] bars of sediment which are formed within the post-confluence
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channel [34]. Earliest research (e.g. [179, 22, 32, 34]) determined that there is a positive

correlation between the maximum scour depth and the confluence angle.

Contrary to the Playfair’s Law [204] that stated that fluvial confluences are morpholog-

ically accordant, namely having negligible degree of discordance, past studies have demon-

strated that they are mainly discordant (e.g. confluences having tributary beds higher than

those of the main channel). This issue was attributed to differences in channel forming

discharges and diversity in the geology and sediment size of the bed and the banks [129].

Likewise, in cases of temporal variations in uplift rate result in discontinuities in slope (knick-

points) that propagate upstream through the channel network. In the absence of diffusion

or spatial heterogeneity in erodibility or uplift rate, these knickpoints progress with constant

vertical velocity [186].

Confluence flow structures show some resemblance to those in meander bends, but modi-

fied because of the abrupt change in tributary direction as well as general difference involving

the presence of a free-shear layer between the confluent flows. The introduction of asym-

metry in terms of velocity ratio reduces sensitivity to junction angle. By far the strongest

changes in secondary circulation strength arise from the introduction of bed discordance, and

even low magnitude discordance may have a significant, albeit localized effect [46]. Sediment

research at confluences [246, 217] indicates that [1] tributary sediments impact on the main

stream, thus punctuanting the downstream trend in sediment size decrease; [2] the size of

the tributary is an important factor for tributary impact on the main stream; and [3] the

particle size decreases from the active flow bed towards the banks and bars.

Ribeiro et al., 2012 [217] stressed the fact that current understanding of channel con-

fluences is based on experimental (e.g. [179, 209, 242]), field (e.g [212, 122, 199, 151, 149,

200, 246, 216]) and numerical models (e.g. [44, 45, 46, 43, 220, 68, 217]) that surprisingly

represent a small number of investigated configurations. To the best of our knowledge, these

configurations do not include confluences in meandering rivers. Ribeiro and collaborators

also stated that although these studies have provided valuable insight in the dynamics of

confluence zones, they do not represent the full range of channel confluences encountered in

nature that vary in, e.g. planform and slope of the confluent channels, confluence angle, dis-

charge and momentum ratios, bed material and sediment supply. Likewise, [199], based on
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field data from the confluence-diffluence case in the Parana River, warned that caution must

be applied in assuming that processes observed in small channels can be scaled up linearly

with increasing channel size. This limitation in the representativity of natural confluence

configurations is particularly critical for the case of tropical rivers, such as those located in

the Amazon catchment, from which even limited knowledge is available as underlined by

[150].

River confluences are the mixing of three waters: two distinct river waters and one ground

water, even if this latter is generally obscured by the higher discharge of the rivers [145].

Probably, this active interface leads to a high concentration of biota in their proximities [30,

78, 200, 193]. For the case of the Amazon system, for instance, this aspect of the confluences

has a paramount importance, in the sense that confluences may have a preponderant role in

its ecosystem structure. The present contribution, focuses on the study of the planimetric

characteristics of the confluences of meandering rivers or meander trains located in the upper

Amazon River. To that end, Wavelet transforms are applied on the curvature signals of

the meandering rivers and subsequently, the transient changes of the curvature frequencies

imposed by the main channel over the tributary and the by the tributary over the main

channel are analyzed. Wavelet transforms have been successfully used in the analysis of

river morphodynamic signals (e.g. bed forms and meander morphometrics) [58, 233, 98, 97].

Herein, this study is based not only at the point of confluence but considering the meander

patterns of the upstream rivers, since the point of confluence is a consequence of the dynamics

of meander trains.

4.2 DATA AND METHODOLOGY

4.2.1 Data

The confluences are comprised by three elements (Figure 4.1), namely the main channel

stretch located upstream of the confluence (M), the tributary stretch (T) and the main

channel stretch located downstream of the confluence (MT). The dominant arc-wavelength
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or Fourier period (λ), mean width (B) and reach length (L) of the aforementioned stretches

are also described. Likewise, the confluence angle (ψ) is estimated using the nearest incoming

channel curvatures into the confluence (see Figure 4.1).

Figure 4.1: Main parameters in a confluence of meander trains. Main channel upstream

of the confluence point (M), tributary channel (T) and Main channel downstream of the

confluence point (MT). The M, T and MT channels were digitalized from satellite images

covering an average of 40-60 bends (LM , LT , and LMT ) in each channel. The dominant

arc-wavelength of the M, T and MT channels are λM , λT and λMT , respectively. The mean

width of the M, T and MT channels are BM , BT , and BMT .

The present study is based on 20 confluences located in the upper Amazon catchment

(Figure 4.2) that represent confluences with the width-ratio β = BT/BM ranging from 0.2 to

1. These confluences are located in the North East of Peru and North West of Brazil. Proper

of environments with homogeneous and gently sloped geologic beds [30], the catchments in

the study region are dentritic, as can be inferred from the flow direction shown in Figure 4.2.

All of the confluence parameters are summarized in Table 4.3 and the planform configurations

(satellite images from year 2000 was provided by NASA [173]) of the confluences are found

in Figures 4.4 and 4.5. Notice that the confluence of meander trains involve at least the

digitalization of around 40-60 bends, thus the sampling data is quite representative from

confluences the world.
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Figure 4.2: Location of the confluences used in this study and the flow direction in the study

area, after [172]. The inset shows that the studied confluences are located in the upper part

of the Amazon river (represented by the bold blue line). The flow direction map indicates

that the river network is dentritic.

4.2.2 Methodology

The continuous wavelet analysis of the meander curvature signals for the M, T and MT

channels is performed herein. The continuous unidimensional wavelet transform of a signal

x(t) ∈ L2 is obtained by the convolution of the signal and the wavelet function or mother

wavelet ψ(t) as expressed by Equation (4.1), where a is the scale parameter, b is the location

parameter and ψ̄a,b(t) is the complex conjugate of ψa,b(t), as mathematically represented by

Equation (4.2). According to the Parseval’s theorem [14] the same wavelet transform can be

expressed by Equation (4.3).

T (a, b) =

∞∫
−∞

x(t)ψ̄a,b(t) dt, for a > 0, (4.1)

ψa,b(t) =
1√
a
ψ(
t− b
a

) (4.2)
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ID Longitude Latitude LM LT LMT BM BT BMT β ψ
(Km) (Km) (Km) (m) (m) (m) BT/BM

1 74.969 3.322 248 91 152 165 113 235 0.7 74
2 75.069 2.726 36 49 50 89 46 99 0.5 83
3 75.119 2.964 50 35 91 99 45 113 0.5 82
4 75.035 3.332 73 23 78 229 37 240 0.2 89
5 73.652 3.898 185 62 127 111 110 204 1.0 51
6 76.035 2.128 78 89 136 75 73 128 1.0 69
7 74.802 3.116 27 43 78 43 40 69 0.9 61
8 72.119 5.402 136 97 245 111 100 176 0.9 52
9 71.402 4.447 302 183 324 175 173 294 1.0 104
10 71.785 4.488 192 138 110 158 106 204 0.7 81
11 72.885 5.177 79 93 108 93 81 135 0.9 129
12 73.235 5.271 53 39 93 63 48 81 0.8 111
13 72.952 5.524 102 42 77 79 49 93 0.6 73
14 72.402 5.665 64 60 97 61 54 80 0.9 161
15 72.035 5.615 77 34 59 105 49 116 0.5 76
16 72.102 5.884 88 52 77 80 69 105 0.9 36
17 72.102 6.106 36 37 52 52 42 69 0.8 105
18 71.952 5.718 18 12 34 38 30 49 0.8 40
19 70.252 4.653 105 106 88 129 124 218 1.0 67
20 72.785 8.951 180 76 249 86 59 112 0.7 81

Figure 4.3: Confluences in the North East of Peru and North West of Brazil.

T (a, b) =
1

2π

∞∫
−∞

x̂(f)
¯̂
ψa,b(f) df (4.3)

where x̂(f) and ψ̂a,b(f) are the Fourier transforms of x(f) and ψa,b(f), respectively. The

wavelet power spectrum is defined as |T (a, b)|2; and in terms of computational cost, it is less

expensive to quantify it from Equation (4.3) [243]. Past experience has demonstrated that

the Morlet wavelet function is the most efficient function in retrieving higher frequencies of

bedforms [98] and river curvature [97]. Therefore, the continuous wavelet analysis herein

is performed by using the Morlet wavelet function and a modified version of the Wavelet

toolbox provided by [243].
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Figure 4.4: Plan view of some of the confluences (1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, and

19). For their geographic locations, please see Figure 4.3.
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Figure 4.5: Plan view of some of the confluences (14, 15, 16, 17, 18, and 20). For their

geographic locations, please see Figure 4.3.
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4.3 RESULTS

4.3.1 Changes in the Curvature Patterns

Some reserachers stated that in terms of flow processes, the confluence angle is an indepen-

dent variable [246]; although some modeling (e.g. [107, 73]) and field evidence (e.g. [74])

suggest that confluence angles can be described by a Gaussian distribution with an average

of 72◦ and that they are a function of QαSoz, where Q is the water discharge, So is the bed

slope and z ranges from −2 ≤ z ≤ 0. [107] suggested that the confluence angle (ψ) can be

estimated by the following relationship:

ψ = cos(SoMT/SoM) + cos(SoMT/SoT ) (4.4)

Q and So were not estimated in the present study; however, they are considered to be

proportional to the mean channel width [194, 155]. Thus, α was estimated by replacing So

by B in Equation 4.4, but neglecting the cosine operator. Figure 4.6 shows that the α = 3.5

approximately represent the mean value of the data. The highest value corresponds to Con-

fluence 4 and can be explained by the fact the there is another confluence located upstream

and closer to Confluence 4. Certainly, further work is needed to estimate a relationship

between ψ and α that fully describe the confluence angle in meandering rivers.

4.3.2 Spatial Variability of Dominant Arc-wavelengths Along the Transitional

Region

The planimetric geometry of meandering rivers is typically described in terms of the curva-

ture (C). This parameter is obtained by discretizing the channel centerline in equally-spaced

points and it is expressed in local or intrinsic coordinates [184, 108, 170, 154, 181]. The analy-

sis presented herein was performed by using normalized curvature (C∗) and normalized local

abscissa (S∗) data, such that C∗ = CBM and S∗ = S/BM (S is the streamwise coordinate).

Figures 4.4 and 4.5 show the planform configuration of the confluence of meander trains,

herein, only few of these confluences will be explained in detail.
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Figure 4.6: Actual angle of confluence (ψ) and α, the indirect estimate of ψ from Equa-

tion 4.4 (replacing So by B and neglecting the cosine operator). The red bold line (α = 3.5)

represents the mean value of the data. The highest value corresponds to Confluence 4, lo-

cated very close to another confluence (not included in the present study) located upstream

of Confluence 4.

4.3.2.1 Confluence 5 (β ∼ 1.0 and ψ = 51◦) Figure 4.7(a) presents the confluence of

almost two identical rivers (in terms of the channel width, β = 1). Figure 4.7(b.1) shows

that in a geological time scale, there would be a radius of influence where the instantaneous

point of confluence can change depending on the dynamics of the M and T channels. Herein,

we are not showing historical evidence of the radius of influence (Rc) for Confluence 5, since,

thus, this study is focused on the arc-wavelenghts of the instantaneous configuration of the

M, T and MT channels (Figure 4.7(b.2) and (b.3)). Figure 4.7(c) shows the normalized

curvature signal for M and MT channels. It shows that after the confluence point, the

peaks of the curvature decreases, thus the adaptation of the morphodynamic shapes require

some spatial parameters such as R∗M , R∗T , and R∗MT (these parameters are being normalized

by using BM). Figure 4.7(d) shows the wavelet output for the M and MT channel (using

the M and MT channel curvature), where the dominant arc-wavelenght (calculated using the

Wavelet power spectrum) for the M and MT channels are λ∗M ∼ 14.9BM and λ∗MT ∼ 24.2BM ,

respectively. This increase in the MT arc-wavelength can be observed on the Satellitle image

(Figure 4.7(a)). Due to the confluence of these two freely meandering rivers, there is an effect

upstream and downstream where the planform morphology requires some lag for adaptation.
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Figure 4.7: Confluence 5. (a) Plan view in the year 2000, (b) plan view detail in year

2011 (b.1: Radius of the confluence point, b.2: R∗M and R∗T , and b.3: R∗MT ), (c) Nor-

malized streamwise curvature (C∗ = CBM) versus the normalized streamwise coordinate

(S∗ = S/BM), (d) Wavelet output (normalized Fourier period represents that normalized

arc-wavelenght) of the M and MT channels. Notice that the red dashed line shows the con-

fluence location. The dotted yellow line represents the cone of influence border and the bold

lines represent the contours at 95% of confidence of finding bends at those locations. The

normalized streamwise coordinate (S∗) and the normalized Fourier Period or arc-wavelength

(F. Period∗) are being normalized by BM .
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These influences are denominated R∗M ∼ 118.3BM and R∗MT ∼ 331.7BM . Herein, these

parameters were computed by using the Wavelet power spectrum and by observing the

tendency of the wavelet output (Figure 4.7(d)). These transitional regions (upstream and

downstream of the confluence point) could depend on several specific parameters (e.g. flow

hydrograph of the M and T channels, bed elevation at the point of confluence, geological

constrains of the M and T channels, among other parameters), herein, the characterization

of the transitional regions are made based solely on the normalized curvature signal for the

M, T and MT channels. Even though β is close to 1 for this confluence, the position of the

confluence point has not moved in the last 30 years, suggesting that a relative slow evolution

takes place in this confluence. However for geological time scale, some evidence of changes

on ψ and the confluence planform dynamics could be found.

4.3.2.2 Confluence 4 (β ∼ 0.2 and ψ = 89◦) For the Confluence 4, the Wavelet power

spectrum output at 95% shows few bends along the M and MT channels, since the length of

the upstream and downstream reaches might not be enough to be considered representative

(there are confluences upstream and downstream); thus, a 75% confidence interval is used

instead of the 95% to compute the dominant arc-wavelengths and the transitional region

parameters. It seems that for this confluence, there is not a notorious difference between

dominant parameters upstream and downstream of the confluence (λ∗M ∼ λ∗MT ∼ 8−32BM),

since the perturbations (from the T channel, λ∗T ∼ 0.5−2BM) is quite small (β = 0.2). Thus,

when β is quite small, the changes in the planform morphodynamics of the MT channel are

not quite important or it could be neglected. Notice that this analysis is being performed

considering only geometric parameters related to channel configuration and channel width.

At this point, hydraulic and sediment transport processes are not incorporated explicitly,

rather than analyzing the planform morphodynamic behavior of meander trains. For this

case, the parameters for the transitional region, R∗M , R∗T , and R∗MT are very small and they

could be neglected.

4.3.2.3 Confluence 1 (β ∼ 0.7 and ψ = 74◦) For instance, Figure 4.9(a) shows the

Wavelet power spectrum for the M and MT channels. The contour regions represent the
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Figure 4.8: Wavelet output for Confluence 4. (a) M and MT channels, (b) T channel. Ma-

genta dashed lines are showing the cone of influence border for 95% or 75%. The normalized

curvature signal does not present major changes after the confluence point for the M and MT

channel, and there is no an upstream effect into the T channel. The normalized streamwise

coordinate (S∗) and the normalized Fourier Period or arc-wavelength (F. Period∗) are being

normalized by BM .
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Figure 4.9: Wavelet power spectrum output of the dimensionless curvature at Confluence 1.

(a) Wavelet spectrum of M and MT channels, (b) Wavelet spectrum of the T channel. The

normalized streamwise coordinate (S∗) and the normalized Fourier Period or arc-wavelength

(F. Period∗) are being made dimensionless by BM .

wavelet power spectrum at 95% of confidence and the dotted magenta line represent the

cone of influence. The vertical bold red dashed line represent the location of confluence 1

(S∗ ∼ 1450). At Confluence 1, no evident perturbation to the original curvature signal is

observed (the train of bends from the upstream stretch along the main channel are maintained

downstream of the confluence). It may be explained by the fact that there is an upstream

confluence with β = 0.6 very close to Confluence 1 (see Figure 4.4), thus the train of bends

enter to Confluence 1 region without recovering its dynamic equilibrium stage and bend

maturity. Similarly, Figure 4.9(b) shows that no marked perturbation is imposed in the

power spectrum of the T channel. The normalized dominant arc-wavelengths along the M,

T and MT channels are: λM∗ ∼ λMT ∗ ∼ 8 − 32BM , and λT ∼ 4 − 10BM . Under these

conditions, where no major changes on the dominant scales are described upstream and

downstream of the confluence, the parameters for the transitional region (R∗M , R∗T , and

R∗MT ) are negligible.
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Figure 4.10: Wavelet output for Confluence 12. (a) M and MT channel stretches (the dotted

vertical red line represents the location of the confluence), and (b) T channel. For the sake

of better visualization, only the contours at 75% of confidence and the cone of influence

(dotted magenta lines) are presented.

4.3.2.4 Confluence 12 (β = 0.8 and ψ = 111◦) For Confluence 12, a marked pertur-

bation in the dominant arc-wavelength in the M, MT and T channels is observed (Fig-

ures 4.10(a)-4.10(b). The dominant arc-wavelengths along the M, MT and T channels are:

λM∗ ∼ 4 − 32BM , λMT ∗ ∼ 8 − 64BM , and λ∗T ∼ 4 − 16BM . Under these conditions, no

major changes in the dominant arc-wavelength are described upstream and downstream of

the confluence along the M, T and MT channels, however, there is a change in the periodicity

of these bends as the contour regions diminished along the streamwise coordinate.

4.3.2.5 Confluence 19 (β ∼ 1.0 and ψ = 67◦) Figures 4.11 (a) and (b) present Wavelet

power spectrum. The dominant arc-wavelengths along the M, MT and T channels are:

λM∗ ∼ 4 − 32BM , λMT ∗ ∼ 16 − 32BM , and λ∗T ∼ 8 − 32BM . From Figure 4.11 it seems

that even though there is not a notorious change in the dominant arc-wavelength, there is a

change in the periodicity of finding bends with a specific length scale.
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Figure 4.11: Wavelet output for Confluence 19. (a) M and MT channels and (b) the T

channel. Note that a dramatic change in the main channel frequency spectrum is imposed

by the confluence; in the tributary channel the channel is straighten close to the confluence

as the higher and lower frequencies are suppressed.

4.3.3 Discussion

Most of the widely used softwares to model freely meandering channels (e.g. RVR meander,

MIANDRAS, iRIC) are based on deterministic equations that are solved by assuming the

simplifications described by [238]: [1] the channels width is spatially and temporal constant,

[2] the water surface super-elevation is linear, [3] the energy gradient is uniform along the

downstream direction, [4] the average channel depth is uniform in the downstream direction,

[5] transient bed forms (e.g. ripples, dunes, migrating bars) are not included, [6] negligible

sidewall effects exist on the near-bank flow. Likewise, it is assumed that the discharge is

spatially and temporally constant [181]. At confluences, these assumptions may not be

valid; therefore, future work in confluence modeling at catchment scales will require the

coupling of the physically-based equations with statistical information retrieved from the

channel morphometrics such as the probability distributions that describe the confluence

angles ([74]) and meanders curvature ([97]).
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The study of the morphodynamics of the meandering confluences should consider catch-

ment parameters such as the proximity between confluences and the shape of the catchment.

Previous studies indicate that heart shaped and pear shaped basins containing dentritic

networks favor increasing tributary size and hence greater confluences effects downstream

compared with rectangular basins containing trellis or parallel networks [30, 246]. This fact is

closely related to the variability of the channel discharges. Past research has demonstrated

that river geometry is a function of river flow time sequence, thus channels narrow as a

function of increasing annual flood variability. Therefore, it is impossible to associate the

channel geometry with a single discharge of a certain frequency of occurrence, because the

role of the discharge depends heavily on the current channel form which is an end result of

antecedent flows [266, 255]. Furthermore, [255] states that bank erosion rate distributions

in a bend show a high sensitivity to the flow sequencing. Visconty and his collaborators

observed a relevant downstream migration of the erosion regions in the experimental setups

with a variable discharge. Field investigations also confirms (e.g. [203]) that channel width

is influenced by a wide variety of formative discharges.

4.4 CONCLUSIONS

The study of confluences is important for practical and scientific purposes. For scientific pur-

poses it is important to understand the confluence dynamics and the parameters that govern

it. Several studies have revealed that confluences have a preponderant role in the ecosys-

tem structure of rivers. Even though past studies have casted light to better understand

the morphodynamics of confluences, they are based on the experimental, field and modeling

representation of a limited number confluence conditions (e.g. slopes, discordance degrees,

river types, discharge and momentum ratios) and localized to the instantaneous confluence

point. This study focuses on meandering rivers confluences and, to the best of our knowl-

edge, there is not precedent study on the matter, trying to identify the main morphometrics

from confluences of meander trains.
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Given the relevance of the the Amazon River as the world’s largest river and its role

to sustain the humankind, this study has focused on meandering confluences located in the

upper Amazon catchment. The study is based on 20 confluences in which the width-ratio (β)

ranges between 0.2− 1. Confluence of meandering rivers or meander trains (asumming one

is the main channel and the other a tributary) imposes the following general changes in the

planimetric configurations of these channels: [1] modulation of the morphodynamics of the

upstream main (M) and tributary (T) channels and [2] modulation of the morphodynamics

of the downstream main channel (MT), thus increasing the arc-wavelength and amplitude

and resembling a constructive effect in the superposition of curvature waves. Thus, in all

the channel stretches, transient curvature lengths are developed.
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5.0 APPLICABILITY OF TWO-DIMENSIONAL WAVELETS IN THE

ANALYSIS OF THREE-DIMENSIONAL BED FORMS

5.1 INTRODUCTION

Most of the past studies on river bedforms dynamics have concentrated on two-dimensional

forms, with constant heights and straight crest lines transverse to the flow and their as-

sociated turbulent flow structure. This morphological simplification has imposed inherent

limitations on the interpretation and understanding of dune form and flow dynamics in nat-

ural channels, where dune and ripples are predominantly three-dimensional [198].

Past approaches to the quantification of bedform variability have used and applied spectral

analysis [115, 19, 156, 132], smoothing techniques such as a moving-average [250], signal

roughness techniques [232], fractals [260], and logistic regression [123]. [98] applied robust

spline filters and one-dimensional continuous wavelet transforms to discriminate bedform

features at different scales, namely bedform hierarchies, and argued that two-dimensional

wavelet transforms, when coupled with two-dimensional robust spline filters, would substan-

tially improve the discrimination methodology for predominantly three-dimensional bedform

features.

This chapter focuses in the state of the art of the application of two-dimensional wavelet

transforms and in the design of synthetic bed form signals that might be used benchmark

signals for calibration of the wavelet functions parameters (e.g. dilation, translation and

rotation parameters). Future work in this regard may use this study to: (a) estimate the

dominant wavelengths, amplitudes and slopes; and (b) retrieve the predominant directions

of the bifurcations for three-dimensional (3D) bedform data.
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5.2 CONCEPTUAL FRAMEWORK

5.2.1 Two-Dimensional Wavelet Transforms

Similarly to one-dimensional wavelets there are discrete and continuous two-dimensional

wavelet functions. Generally speaking, the former wavelets functions have been used to the

great extent in the analysis of images synthesis and compression; while the latter have been

used in the determination of specific features, such as hierarchical structure, edges, filaments,

contours, boundaries, etc. [20].

At present, 2D wavelets have not been used in the analysis of 3D bedforms. Antonie et.

al., 2004 [20] pointed out that recent applications of 2D continuous wavelets in climatology

(e.g. analysis of hurricanes, radar-depicted spatial rainfall, enhancement of thin-line features

of in meteorological radar reflectivity images, etc.) and fluid dynamics (detection of coherent

structures in turbulent flows, velocity field, disentangling of a wave train, etc.)

There are mainly two types of 2D continuous wavelet functions, namely: [1] isotropic wavelets

(e.g. 2D Mexican hat wavelet), which are used when no oriented features are present in the

or relevant in the signal; and [2] anisotropic wavelets (e.g. the 2D Morlet wavelet), whose

effective support of its Fourier transform is contained in a convex cone in spatial frequency

space with the apex at the origin. They are used when marked oriented features are present

in the signal. Past experience in the matter indicates that the latter wavelets perform better

when noise is present in the signal [20].

For the present research, 2D versions of the Mexican Hat (a real wavelet function) and

Morlet (a complex wavelet function) wavelets will be used. Equations (5.1), (5.3) and (5.2)

represent the mathematical definitions of the 2D wavelet transform, Morlet wavelet function

and Mexican Hat wavelet function in its isotropic version, respectively. Graphical represen-

tations of the aforementioned wavelet functions are presented in Figure 5.1.

T (a, b) =
1√
a

∞∫
−∞

∞∫
−∞

f(x, y)ψ̄(
x− b
a

,
y − b
a

) dxdy, ; for a > 0 (5.1)

ψMH(x, y) = (x2 + y2 − 2).e−
1
2

(x2+y2) (5.2)
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ψθH(x, y) = ei(w
0
1x+w0

2y)e−(x2+y2)/2; for |(w0
1, w

0
2)|> 5; and θ = tan−1w

0
2

w0
1

(5.3)

where w0 represents the wave vector and 0 ≤ θ ≤ 2π indicates the direction of the wavelet

[89]. The condition |(w0
1, w

0
2)|> 5 is necessary to comply with the admissibility condition,

namely ψ̂θM(0, 0) = 0 (the hat symbol denotes the Fourier transform).
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Figure 5.1: 2D wavelet functions: (a) Mexican Hat (isotropic version) in the position domain,

(b) Morlet - real part in the position domain, and (c) Morlet - imaginary part in the position

domain for w0 = (5, 500).

5.2.2 Recent Applications of 2D Wavelets in the Analysis of Surface Topogra-

phy, Edge Detection and Geophysical Signals

In order to retrieve important information regarding to the orientation of the crests and

troughs of bedforms at different scales, it is necessary to apply edge detection techniques.

2D continuous Gabor wavelets have been successfully used in palmprint verification (e.g.

[262]) and wavelet entropy has been used to define an optimal threshold selection for edge

detection (e.g. [261]). The former methodology couples the capabilities of the of two-

dimensional Gabor wavelets and pulse coupled neural network and proved to be robust to

the variations of orientations position of past approaches on the matter; although shows to be

computationally expensive [262]. The latter methodology achieved the automatic selection of
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the optimal threshold by estimating the minimum entropy of the two-dimensional data and

proved to be more efficient than the Donoho’s and Madchakham’s methods [261]. Having the

peaks and troughs of the bed form data is particularly important to analyze multi-temporal

bed form data which is common in experimental research, three-dimensional correlation can

be performed in order to measure the three-dimensional evolution of bed form features (e.g.

ripples, dunes, bars), estimate the rates of migration and quantify the descriptors of the bed

forms splitting and amalgamation processes.

Dunes represent coherent structures in bed form data. Therefore, we believe that past

experience of the application of wavelet transforms in the extraction of coherent structures

in turbulent flow should be used. Discrete wavelet transform and discrete wavelet packet

transforms have been used to discriminate low entropy ”coherent” (similar to dune and bar

features) and high-entropy ”incoherent” (similar to ripple features) components of vorticity,

as reported by [227]. This research work found that only about 3% of the large ampli-

tude coefficients of the discrete wavelet transform and discrete wavelet packet transforms

are necessary to represent the coherent component and preserve the vorticity probability

distribution function and spatial and temporal correlations.

Past application of 2D real discrete wavelets transforms on image processing and surface

topography has proved that they (first and second-generation wavelets) lack shift invariance

and directional sensitivity, which resulted in aliasing and that they are limited in extracting

morphological features without undesirable artifacts such as the pseudo-Gibbs effect [165].

This is explained by fact that wavelet transform focuses only on the low frequency decom-

position in a successive manner but the dominant spatial frequencies of, for instance, image

textures are usually located in middle frequency regions [61]. Thus, similar textures with

symmetric orientations are almost indistinguishable in the wavelet domain [109]. In order

to overcome these limitations of the discrete wavelet transforms the adaptive modulated

wavelet transform (e.g. [110]) and the orthogonal quincunx wavelets with fractional orders

(e.g. [86]) were proposed. Recently, complex ridgelets (e.g. [166]) and dual-tree complex

wavelet transforms (e.g. [165], [59]) have been successfully used in minimizing the aforemen-

tioned artifacts of the real discrete wavelet transforms.
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5.3 METHODS AND RESULTS

5.3.1 Synthetic Signals

In order to determine benchmark data to estimate the capabilities and limitations of the 2D

Morlet and 2D Mexican hat wavelets two main types of synthetic bed forms were generated,

namely:

5.3.1.1 Type 1 - Synthetic Signals They represent 3D data comprised by the same

bars, dune and ripples waves described in Section 2.2.2.1. A variation of this data is repre-

sented by dunes that present waviness in the X-axis and Y-axis. The equation that describes

this 3D synthetic bar is given by Eq. 5.4.

η3,3 = ax sin(2πX/Tx − cx) + ay sin(2πY/Ty − cy) + s3X (5.4)

where ax = 0.05; ay = 0.05; Tx = 400; Ty = 400; cx = 100; cy = 100; s3 = -0.005; and X

and Y represent the coordinate matrices at the x-axis and y-axis, respectively. Figure 5.3a-b

respectively show a detail of this signal and the extension of the synthetic plot.

5.3.1.2 Type 2 - Synthetic Signals There is a constant scaling of bed form height

versus length over five orders of magnitude (see Figure 5.2). These universal bed form data

indicates that bed form steepness decreases continuously with increasing wavelength, and

cast doubt on the idea that steepness is a diagnostic of bed form type [117]. Likewise, past

research indicates that both dune and ripple height is best described by Gamma probability

distribution. Therefore, the Type 2 - synthetic data was defined by: [1] generating Gamma

distributed data with 5 < λ < 10 (small dunes) and 10 < λ < 100 (medium dunes); [2] gen-

erating random slopes bounded by 0.0677 and 0.16; thus, by knowing the slope and the

wavelengths the dunes height were estimated; [3] using the equation that describes mature

dunes (see Section 2.2.2.1) the geometry of the dunes were generated; and [4] 2D bars (see

Section 2.2.2.1) and 3D bars similar to the ones used for generating Type 1 synthetic signals
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were used. Figure 5.3d-e show the geometry of a typical cross section and the 2D synthetic

plot, respectively.

Figure 5.2: Plot of bedform height versus length (after [117]) for a collection of field and

laboratory data. Mean and maximum best-fit power law relationships are shown on the plot.

5.3.2 Results

Perron et. al., 2008 ([201]) used two-dimensional Fourier transforms to study high resolution

topographic maps. Perron and his collaborators successfully retrieved quasiperiodic ridge-

and-valley structures. The two-dimensional Fourier transform was applied on the bed form

synthetic signals. The results (Figures 5.3c and 5.3f) show that it is limited in identifying

the spectrum of frequencies that are present in the signals. As shown in Fig. 5.3c, for

the case of the Type 1 synthetic signal (Type1-SS), 2D Fourier spectrum barely identifies

the dune frequency of ∼0.1 (λ = 10) but does not identify the bar frequency of ∼0.0025

(λ = 400) in the X-axis. In the Y-axis it does identify the bar frequency. Likewise, for the

case of the Type 2 synthetic signal, Type2-SS, (Fig. 5.3f), it identifies the whole spectrum of

wavelengths. This was expected for Type2-SS since, as a whole, it is more stationary than

Type1-SS.
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2D Morlet and Mexican Hat wavelets were applied on Type1-SS and Type2-SS. As ob-

served in Fig. 5.4 the 2D Mexican hat wavelet coefficients defined by Eq. 5.1 provides limited

information of the ripples and dunes from Type1-SS; although it improves for the bar scale.

However, it performs better in retrieving information of small dunes, medium dunes and

bars from Type2-SS (Fig. 5.5). This fact was expected because the Mexican hat wavelet is

not efficient in detecting directions [20], even in the cases in which the anisotropic version

where used (e.g. Figs. 5.4d, 5.4e, and 5.4f). The 2D Morlet wavelet is highly sensitive

to the directional angle; thus for some orientations (e.g. θ = 0 and θ = π/2) it is limited

in retrieving information from Type1-SS (Fig. 5.6); although, it improves for the case of

Type2-SS (Fig. 5.7). At this point, neither the accuracy of the Morlet wavelet nor that of

the Mexican hat wavelet has been assessed; to that aim, quantitative calibration tests are

required. 2D Morlet, the Derivative of Gaussian and Mexican hat wavelets at scale a = 1.5

and θ = 0 were used to evaluate their capabilities in retrieving the bed form features crests.

Some results are presented in Figure 5.8. For this purpose the Derivative of the Gaussian

wavelet performed better for the case of Type1-SS.

5.4 CONCLUSIONS

The use of two dimensional wavelets requires finding the most efficient angular, scale and

sampling grid parameters. To this end, it is necessary designing benchmark signals that,

to best extent, replicate bed form features (e.g. ripples, dunes and bars) in their realistic

scales (e.g. ripples with wavelengths λ < 0.60m, dunes with 5 ≤ λ ≤ 200m, and bars with

λ > 400m) and following appropriate probability distributions (e.g. Gamma distribution

for dunes and ripple heights). These signal should also replicate some bed form geometry

singularities (e.g. crestal platforms, crestal joints and bifurcations, among others) that are

commonly observed in natural environments. Subsequently, new methodologies (e.g. dis-

crete wavelet packet transforms, adaptive modulated wavelet transforms, complex ridgelets,

orthogonal quincunx wavelets with fractional orders, etc.) should be quantitative tested and,

thus, their parameters calibrated.
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Figure 5.3: Bedform-like synthetic signals: (a) Detail of three-dimensional synthetic bed

forms with uniform dune geometry superimposed over 3D bars, (b) extension of the synthetic

plot, (c) 2D fast Fourier spectrum of the signal, (d) typical cross section of two-dimensional

synthetic bed form plot with variable dune geometry, (e) extension of the synthetic plot, and

(f) 2D fast Fourier spectrum of the signal.
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Figure 5.4: 2D Mexican Hat wavelet coefficients for Type 1 - Synthetic Signal at: (a) scale

a = 2 and directional angle θ = 0, (b) a = 5 and θ = 0, (c) a = 20 and θ = 0, (d) a = 2 and

θ = π/2, (e) a = 5 and θ = π/2, and (f) a = 20 and θ = π/2.
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Figure 5.5: 2D Mexican Hat wavelet coefficients for Type 2 - Synthetic Signal at: (a) scale

a = 2 and directional angle θ = 0, (b) a = 5 and θ = 0, (c) a = 20 and θ = 0, (d) a = 2 and

θ = π/2, (e) a = 5 and θ = π/2, and (f) a = 20 and θ = π/2.
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Figure 5.6: 2D Morlet wavelet coefficients for Type 1 - Synthetic Signal at: (a) scale a = 2

and directional angle θ = 0, (b) a = 5 and θ = 0, (c) a = 20 and θ = 0, (d) a = 2 and θ = π/2,

(e) a = 5 and θ = π/2, and (f) a = 20 and θ = π/2.
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Figure 5.7: 2D Morlet wavelet coefficients for Type 2 - Synthetic Signal at: (a) scale a = 2

and directional angle θ = 0, (b) a = 5 and θ = 0, (c) a = 20 and θ = 0, (d) a = 2 and θ = π/2,

(e) a = 5 and θ = π/2, and (f) a = 20 and θ = π/2.
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Figure 5.8: Crest lines retrieved from (a) Type 1-SS using 2D-Morlet wavelet, (b) Type 1-SS

using 2D-Gauss wavelet, and (c) Type2-SS using 2D-Mexican hat wavelet.
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6.0 FUTURE WORK

6.1 RIVER MORPHOMETRICS

Human activities and development continually have an impact on the environment, including

waterways. Factors such as increased runoff in densely populated areas can lead to stream

bank erosion and change the natural course and migration of a river. Additionally, the

removal of aging dam structures necessitates reconstruction activity. Attempts to mitigate

these negative impacts through restoration can be unsuccessful or have unpredictable results

if not done properly. In order to properly restore a river to a more stable condition it

is important to study the properties of the river, specifically the geometric properties of

its planform so that an appropriate geometry can be selected [221]. The initial costs of

stream restoration projects can be very high. Bulk estimates indicate that the cost of river

restoration is over 129,000 us Dollars per river mile [26]. Currently there is not a tailored

toolbox that could aid designers in performing statistical analysis of rivers (e.g. meandering

rivers). Such tool is necessary to characterize different types of bends (Fig. 6.1), based on

the orientation and number of loops and provide statistics of both bends population and

individual bends (e.g. length of bend, sinuosity, and amplitude). As studied in this thesis,

there is close relationship between the river centerline curvature and that of the mean center.

However, there is not a clear understanding of the ranges of mean center curvature that

triggers upstream-skewed bends, downstream-skewed bends, compound bends or multiple

loops based on the classification of Frascati and Lanzoni, 2009 [90] shown in Fig. 6.1 for each

type of meandering river based on the Brice classification scheme [47]. This would cast light

in the probabilistic prediction of bend types at the vicinity of the mean center curvature

singularities.
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Figure 6.1: Examples of the shapes of meandering bends generated synthetically using the ZS

linearized flow field (after [90]). (a) Upstream-skewed bend, (b) downstream-skewed bend,

(c-f) compound bends, and (g and h) multiple loops. The flow is from left to right.
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6.2 2D-WAVELET BASED ANALYSIS OF BED FORMS

6.2.1 3D Benchmark Synthetic Bed Form Signals

As highlighted in Section 5.3.1.2, the application of 2D wavelet based techniques require

designing benchmark bed form synthetic signals. Some work have been performed in this

matter. For instance, Rubin and Carter, 2006 [225] proposed several functions to replicate

bed form geometry (Fig. 6.2); however, they do not include all the spectrum of scales (e.g.

ripples, dunes, and bars) that would allow to effectively calibrate the parameters of the 2D

wavelet based functions.

Figure 6.2: Bed form representation (after [225]) for: (a) structures formed by transverse

bed forms with curved, out-of-phase crestlines and lunate plan forms: (b) bed forms with

along-crest- migrating, out-of-phase sinuosities; (c) structure formed by straight-crested lon-

gitudinal bed forms with superimposed, sinuous, out-of-phase transverse bed forms ; and (d)

structure formed by migrating bed forms with spurs that reverse asymmetry and migration

direction but have no net along- crest displacement.
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6.2.2 2D Wavelet Based Tool

A tailored 2D wavelet based tool should be designed. To this end, the following tasks should

be considered:

6.2.2.1 Program Coding The programming language to code the 2D-wavelet program

will be MATLAB. Many widely used 1D-wavelet programs are coded in this language. One of

the most popular one, the Torrence and Compo 1D-wavelet program [243] as well as wavelet

programs and studies developed by Stanford University (WAVELAB 850), Harvard Univer-

sity (wavdetect) used the MATLAB environment. MATLAB is a prototyping environment,

meaning that it focuses on ease of development with language flexibility and interacting de-

bugging which is limited in performance oriented languages like C++ and FORTRAN. The

coding should cover the following general aspects:

1. Graphical user interface design to improve the usability of the program.

2. Functions to improve the stability under invalid or unexpected inputs.

3. Incorporate the latest methodologies (i.e. complex ridgelets, dual-tree complex wavelet

transforms) in the analysis river bedforms. For comparison purposes continuous and

discrete 2D-Wavelet transform functions such as Morlet wavelet and B-spline wavelets

studied by Chui, 1992 ([64]) would be included.

4. Riverbed morphology retrieval functions to estimate predominant wavelength, amplitude

and slope of ripples and dunes and describe the orientation of dominant bifurcations.

5. Statistical framework functions to estimate 2D-wavelet means and variances in the phys-

ical and Fourier space and bicoherence analysis.

6. Output data functions.

6.2.2.2 Program Testing A functional test to verify specific actions or functions of

the code would be carried out at certain benchmarks through the program development in

order to minimize the fixing cost. Likewise, the compatibility and stability of the program

should also be checked. The program would be validated by using synthetic and collected

data (e.g. bed form data from the Parana River and the Amazon River). The benchmark
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synthetic data would be used to test the program under different conditions of sampling

frequency, stationarity, signal-to-noise ratios and topographical singularities (e.g. stepped

relief changes). Likewise, riverbed and laboratory collected data would also be used to test

the program.

6.2.3 Field Data from the Amazon River

Latrubesse et al., 2005 ([150]) have underlined the relatively limited knowledge available

on tropical rivers. It is particularly true in the upper Amazonian floodplains (area that

occupies Bolivia and Peru), where very little is known concerning fluvial dynamics, except

on the middle and lower Amazon river (area that occupies Brazil). Bathymetric data of the

Amazon River was collected in May 2012 by using a Multibeam Echosounder at 12 study

plots located in the main and secondary channels of the Amazon River (Figure 6.3).

The data analysis for the Amazon river would be carried out by using the aforementioned

2D wavelet based toolbox. The statistics of the bedform at different scales will be compared

for the main and secondary channels for confluence and diffluence cases. This characteriza-

tion of 3D bedforms for the case of anabranching channels will be the first scientific outcome

correlating anabraching structures with development of bedforms.
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Figure 6.3: Study plots located in the main and secondary channels of the Amazon River

[4, 3]. These plots are tipically 1-2 km length and 100-200 m width. The survey was carried

out in July 2012 using mutibeam echosound, in coordination with the Peruvian Navy.
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6.3 CORRELATION BETWEEN MORPHODYNAMIC AND

HYDRODYNAMIC SIGNALS

There is a hydraulic transitional region (response lag of the flow structure to local curvature)

that occurs just upstream of the bend apex (near the inflexion point upstream of a bend

apex) for an upstream and downstream oriented bend [10]. Likewise, experimental work

performed under flat smooth bed condition in a periodic, asymmetric, Kinoshita meandering

channel [11] showed that: [1] for the case of bends oriented upstream valley, the bed forms are

produced just upstream of the bend apex, whereas for the case of bends oriented downstream

valley they are observed around the upstream inflection point, and [2] the downstream-skewed

condition produces the deepest scour region, which is located downstream of the bend apex.

To date; however, neither the spatial correlation between bed form, planform and bank form

signals nor the correlation between the morphodynamic and hydrodynamic signals have been

studied.

2D wavelet based tools have the potential to quantify river hydrodynamic and morpho-

dynamic structures, and their interrelationship, without making a two-dimensional simplifi-

cation of the phenomena.
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7.0 CONCLUSIONS

The following conclusion are drawn:

• As part of the study of morophodynamic signals, a methodology that combines the

capabilities of signal processing techniques (e.g. one dimensional continuous wavelet

transforms and a robust spline filter) was developed to discriminate waves with different

periodicities in bed form profiles.

• The application of one dimensional continuous and discrete wavelets, principal compo-

nent analysis and the Frechét distance has allowed to define the mean center of mean-

dering rivers. The mean center represents a robust reference to analyze river meandering

parameters for middle-term horizons (e.g. 10-∼30 years). These techniques have also

proved to be effective in the development of a universal river classification system that

could complement the prevailing observational Brice classification scheme.

• To the best of my knowledge this thesis has addressed for the first time the study of me-

andering rivers confluences in the Upper Amazon catchment. The wavelet analysis has

allowed to identify and quantify based on planimetric configurations of the main, tribu-

tary and downstream main channel the following confluence features: [1] modulation of

the morphodynamics of the upstream main and tributary channels and [2] modulation of

the morphodynamics of the downstream main channel imposing arc-wavelength and am-

plitude increments and resembling a constructive effect in the superposition of curvature

waves.

• The capabilities of the 2D wavelet based tools have not been fully used in the analysis of

three dimensional bed form data. The use of two dimensional wavelets requires finding

the most efficient angular, scale and sampling grid parameters. To this end, it is neces-
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sary designing benchmark signals that fully represent the configurations that commonly

observed in natural environments (e.g. crestal platforms, crestal joints and bifurcations,

etc.)
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[219] André Robert and William Uhlman. An experimental study on the ripple-dune tran-
sition. Earth Surf. Processes Landforms, 26:615–629, 2001.

[220] M. Roca, J.P. Martin-Vide, and P.J.M. Moreta. Modelling a torrential event in a river
confluence. Journal of Hydrology, 364:207–215, 2009.

[221] Philip Roni and Timothy J. Beechie. A review of stream restoration techniques and a
hierarchical strategy for prioritizing restoration in Pacific Northwest watersheds. North
American Journal of Fisheries Management, 22(1), 2002.

[222] David L. Rosgen. A classification of natural rivers. Catena, 22:169–199, 1994.

[223] A. Rossi, N. Massei, B. Laignel, D. Sebag, and Y. Copard. The response of the
Mississippi River to climate fluctuations and reservoir construction as indicated by
wavelet analysis of streamflow and suspended-sediment load, 1950-1975. Journal of
Hydrology, 377(3-4):237–244, 2009.

[224] Peter J. Rousseeuw. Least meadian of squares regression. Journal of the American
Statistical Association, 79(388):871–880, 1984.

[225] D. M. Rubin and C. L. Carter. Cross-bedding, bedforms, and paleocurrents. In SEPM
Concepts in Sedimentology and Paleontology, volume 1. 2006. 2nd Editiion.

[226] B. G. Ruessink, G. Coco, R. Ranasinghe, and I. L. Turner. Coupled and noncou-
pled behavior of three-dimensional morphological patterns in a double sandbar system.
Journal of Geophysical Research, 112, 2007. doi:10.1029/2006JC003799.

[227] Jori E. Ruppert-Felsot, Olivier Praud, Eran Sharon, and Harry L. Swinney. Extraction
of coherent structures in a rotating turbulent flow experiment. Physical Review E,
72(1), 2005. DOI: 10.1103/PhysRevE.72.016311.

[228] Stanley A. Schaumm. The fluvial system. John Wiley and Sons, New York, USA, 1977.

[229] G. Seminara, G. Zolezzi, M. Tubino, and D. Zardi. Downstream and upstream influence
of river meandering. Part 2. Planimetric development. Journal of Fluid Mechanics,
438:213–230, 2001.

136



[230] F. D. Shields, Andrew Simon, and Lyle J. Steffen. Reservoir effects on downstream
river channel migration. Environmental Conservation, 27:54–66, 2000.

[231] Dan H. Shugar, Ray Kostaschuk, James L. Best, Daniel R. Parsons, Stuart N. Lane,
Oscar Orfeo, and Richard J. Hardy. On the relationship between flow and suspended
sediment transport over the crest of a sand dune, Ŕıo Paraná, Argentina. Sedimentol-
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