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TOWARDS MONITORING WHEELCHAIR PROPULSION IN NATURAL 

ENVIRONMENT USING WEARABLE SENSORS 

Alejandra Manoela Ojeda Aguilar, M.S.  

University of Pittsburgh, 2013 
 
 
 

Due to lower limb paralysis, individuals with spinal cord injury (SCI) rely on their upper limbs 

for activities of daily living (ADLs) and wheelchair propulsion (WP). Previous research has 

found that specific biomechanical parameters of WP are associated with risk of UE pain and 

injury. However, the repetitiveness and quality of upper limb movements during WP are unclear.  

Recently, wearable sensors have been used to collect mobility characteristics of wheelchair 

users, but little research has looked into using them to monitor the quality of UE movements for 

WP in the natural environment. The purpose of this thesis was to develop and evaluate a WP 

monitoring device that can monitor wheelchair users’ activities, and propulsion parameters in the 

natural environment.  

This thesis is organized into three studies. The first study aims to develop activity 

classifiers that can distinguish WP episodes from a range of ADLs. Two classifying models were 

built using a Machine Learning (ML) technique. The model that yielded the highest accuracy 

showed an overall accuracy of 88.0%. Time spent on each activity was estimated based on the 

classifiers, and compared with the video observation. Percentage of difference between the 

criterion and estimated time ranged from 2.2% to 11.6%.  

The second study aims to estimate temporal parameters of WP, including the stroke 

number (SN) and push frequency (PF), using wearable sensors. The estimated SN and PF were 

compared with the criterion measures using the mean absolute errors (MAE) and mean absolute 
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percentage of error (MAPE). Intraclass Correlation Coefficients were calculated to assess the 

agreement. The accelerometer placed on the upper arm yielded the highest accuracy with the 

MAPE of 8.0% for SN and 12.9% for PF.  

The third study aims to estimate wheelchair propulsion forces. Propulsion forces were 

estimated from the accelerometer placed on the upper arm using a bagging regression technique. 

The estimated forces were compared with the criterion. Mean absolute errors (MAE), mean 

absolute percentage of error (MAPE), were calculated. The results showed an overall MAPE of 

17.9%. Intraclass Correlation Coefficients and Bland-Altman plots were used to assess the 

agreement between the criterion and the estimated force. 
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1.0  INTRODUCTION 

Individuals with spinal cord injury (SCI) rely extensively on their upper limbs for activities of 

daily living (ADLs) [1]. Wheelchair propulsion is one of the major ADLs for 40.5% of 

individuals with SCI [2]. The upper limbs were not anatomically designed to perform such 

demanding activities. Therefore, upper extremity (UE) pain and injury is a common problem 

among manual wheelchair users (MWUs) with SCI [3-11]. According to previous studies UE 

pain may have very negative impact in the lifestyle of MWUS decreasing their independence and 

quality of life [9, 12-14]. Previous research has found that specific biomechanical parameters of 

wheelchair propulsion such as push frequency, magnitude of force, and pattern of the hand 

during the no propulsive part of the stroke to be associated with risk of UE pain and injury [15]. 

However, the repetitiveness and quality of upper limb movements for wheelchair propulsion that 

occur on a daily basis in the natural environment are unclear. This could be due to the lack of 

convenient monitoring devices that could be used in the community.  

Most recently, wearable sensors have been increasingly used in monitoring ambulation, 

posture, and other ADLs among the able-bodied populations [16-19]. Wearable sensors have also 

been used to collect mobility characteristics of wheelchair users such as distance and speed 

travelled or  to estimate physical activity related energy expenditure of MWUs [20-22]. 

Wearable technology can help to monitor MWUs activity and biomechanical parameters in their 
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natural environment. This knowledge could help clinicians and researchers to better understand 

the etiology of upper extremity (UE) pain and injury. Furthermore, it could provide users 

valuable feedback on their propulsion performance. However, little research has looked into 

using wearable sensors to monitor the quality of upper limb movements for wheelchair 

propulsion in the natural environment. 

This thesis presents an analysis on the performance of wearable sensors, (tri-axis 

accelerometers and a wheel rotation monitor (WRM) in monitoring the quality of upper limb 

movements for wheelchair propulsion. The overall goal is to develop a tool to monitor actual 

upper extremity usage in natural environments.  This thesis consists of an introduction three 

studies and a conclusion. The first study evaluated the performance of three wearable sensors, 

(two-tri-axis accelerometers, and a wheel rotation monitor (WRM)) in detecting manual 

wheelchair users’ activities. A Random Forest (RF) technique was used to build a classification 

model, which was able to discriminate between four wheelchair users’ activities including: self-

propulsion, being pushed, functional arm movement and rest. Results in this study may lead to 

further analysis on propulsion biomechanics such as stroke number, push frequency, and forces. 

This analysis was conducted in the second and third studies. The second study evaluated the 

performance of four wearable sensors, (two-tri-axis accelerometers, and a wheel rotation monitor 

(WRM)) in counting the number of strokes and push frequency. An algorithm was developed to 

count the number of strokes and calculate the push frequency. The arm accelerometer showed 

the lowest error between the estimated and the criterion stroke number and push frequency. 

Knowing that the arm accelerometer had the better performance in counting the number of 

strokes, the third study evaluated the performance of an accelerometer placed on the arm and a 

WRM attached to the wheelchair in predicting the forces during propulsion. A regression model 
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based on a bagging technique was developed to estimate the wheelchair propulsion forces. 

Finally, the conclusion summarizes the findings of the three studies, their clinical applications 

and future work. 
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2.0  WHEELCHAIR ACTIVITY CLASSIFICATION USING WEARABLE SENSORS 

2.1 INTRODUCTION 

Due to lower limb paralysis, people with Spinal Cord Injury (SCI) rely extensively on their upper 

extremities for mobility and independence [1]. Therefore, it is not surprising that the incidence of 

UE pain among manual wheelchair users (MWUs) is high ranging from 49% to 78% [3-11].  UE 

pain and injury can have a severe impact in the lifestyle of manual wheelchair users, decreasing 

their functional abilities, independence, and quality of life [9, 12-14].  

Monitoring daily activities performed by MWUs might contribute to understand the 

etiology of upper extremity pain and injury, and could also help to promote a healthy lifestyle 

among manual wheelchair users. Detection of wheelchair propulsion episodes may allow further 

analysis of upper limb repetitiveness for wheelchair propulsion such as stroke number, push 

frequency, and forces. Furthermore, monitoring the general activity level of MWUs may help 

develop targeted interventions that reduce sedentary lifestyle in this population, as well as 

understand the relation between physical activity patterns and secondary conditions such as 

coronary heart disease, diabetes, an overweight [23].  

The use of wearable devices to monitor everyday activities has been widely studied in the 

ambulatory population [16, 18, 19, 24]. Studies have shown that wearable devices can be used to 
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assess able-bodied individual’s posture, gait, physical activity, as well as energy expenditure in 

the free-living environment [16-19]. However, only a limited number of studies have evaluated 

the use of wearable devices in detecting everyday activities among MWUs. Most of these studies 

have focused on monitoring gross mobility of wheelchair users by attaching a device to their 

wheelchairs [20-22]. A study conducted by Oyster et al. used a customized data-logging device 

to quantify wheelchair mobility and to assess the relationship between mobility and 

demographics, type wheelchair, and participation. A total of 132 persons with a spinal cord 

injury (SCI) were asked to use a customized data-logging device for 2 weeks. Distance traveled, 

average speed and average amount of time in the wheelchair were collected. Results showed that 

age was significantly related to average speed traveled per day. Whites were found to travel 

significantly further and accumulate more minutes per day compared with minorities. 

Participants who were employed traveled significantly further and for more minutes per day 

compared with those who were not employed. Findings indicate the efficacy of a customized 

data-logging device to track wheelchair mobility in community settings [25]. A study conducted 

by Sonenblum et al used a wheel-mounted bi-axial accelerometer to measure wheelchair 

movements, they found  that the device was able to detect wheelchair movement with an 

accuracy 90% [26]. Although wheelchair movements are indicative of UE activities of manual 

wheelchair users, they cannot tell the exact amount of UE movements. A study conducted by 

Postman et al. used six accelerometers placed around the wrists, thighs, and along the sternum to 

detect wheelchair propulsion from a range of activities of daily living (ADL) among 10 manual 

wheelchair users. Results showed that the accelerometers were able to recognize wheelchair 

propulsion episodes with an overall accuracy of 92% [27]. Ambur et al. explored the use of a 

wrist-worn accelerometry-based device to classify four wheelchair propulsion patterns. The 
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average classification accuracy was in the range of 60-90% depending on the surface type [28].  

French et al. further expanded this work to classify wheelchair propulsion patterns, self–

propulsion vs. external pushing, and surface type when three able-bodied individuals were tested 

in a laboratory setting. Results showed that the classifiers constructed were able to classify the 

three contexts with accuracies of up to 80-90% [29]. A study conducted by Ding et al. evaluated 

the performance of a tri-axis accelerometer placed on the dominant wrist and a wheelchair 

rotation monitor to classify wheelchair related activities among 27 wheelchair users. The results 

indicated that the two devices were able to classify the activities into three categories including 

self-propulsion, external pushing, and sedentary activities with an accuracy of 89.4-91.9% [30].  

In this project, we aimed to assess the location and number of devices required for 

classifying wheelchair related activities in the free-living environment of wheelchair users using 

a Random Forest (RF) classification algorithm. Three devices were considered in this study 

including an accelerometer placed on the dominant upper arm, a wheel rotation monitor clipped 

to the wheel, and an accelerometer attached beneath the seat. The ability to detect and classify 

daily activities of MWUs such as wheelchair propulsion may allow to perform further analysis 

on propulsion biomechanics such as stroke number, push frequency, and forces. This knowledge 

might contribute to understand the etiology of UE pain and injury, and could also help to 

promote a healthy lifestyle among manual wheelchair users. 
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2.2 METHODS 

2.2.1 Study Participants 

The Institutional Review Board at the University of Pittsburgh approved this study. A total of 26 

manual wheelchair users with SCI volunteered and provided informed consent prior to their 

participation in the study. Subjects were identified through the IRB approved wheelchair user 

registries developed by the Human Engineering Research Laboratories (HERL) and the 

Department of Physical Medicine and Rehabilitation at the University of Pittsburgh. In addition, 

participants were recruited via flyers posted in local rehabilitation facilities and outpatient 

facilities. Subjects were included in the study if they 1) were 18 years of age or greater; 2) use a 

manual wheelchair as a primary means of mobility; 3) have a Spinal Cord Injury. Subjects were 

excluded if they were unable to tolerate sitting for 2 hours, and/or have upper limb pain that 

limits their mobility. 

2.2.2 Instrumentation 

Subjects were fitted with three monitoring devices as shown in Figure 1. The three monitoring 

devices included a custom wheel rotation monitor (WRM) attached to the wheelchair wheel and 

two off-the-shelf tri-axis accelerometers (Shimmer Research, Dublin) worn on the dominant 

upper arm, and underneath the wheelchair seat, respectively.  

• The wheel rotation monitor (WRM) was developed at the HERL. It is a lightweight and 

self-contained device that can be easily attached to the wheelchair’s wheel without any 
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modifications to the wheelchair. It tracks the wheel rotation through three reed switches 

mounted 120° apart on the back of the printed circuit board and a magnet mounted at the 

bottom of a pendulum. As the wheel rotates and exceeds 120° of rotation, one of the reed 

switches is triggered, and date and time stamps are recorded. This information can be 

further processed to obtain the distance, speed, and time of movement [31]. The WRM 

has been used in previous studies to collect mobility characteristics of manual wheelchair 

users with different diagnoses [32-34].   

• The tri-axis accelerometer (Shimmer Research, Dublin, Ireland) used in this study is a 

small low-power device that can record the motion data into a micro SD card. The upper 

arm accelerometer was sampled at 20Hz. and the accelerometer underneath the seat was 

sampled at 60 Hz.  

 

 

 

Figure 1: Instrumentation Setup 

2.2.3 Experimental Protocol 

Subjects were asked to pay two visits to HERL, each visit lasting about 2.5 hours. During the 

first visit, subjects completed a demographics survey. After subjects were fitted with the 

WRM Seat Accelerometer 

Arm Accelerometer 
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instrumentation described in the previous section, they were asked to propel their wheelchairs on 

two surfaces including a level surface of 33 meters and a sloped surface of 15 meters with a 3 

degree incline. Participants propelled their wheelchairs on the level surface twice at three 

different speeds: self-selected, fast paced (approximately 1.75 m/s), and slow paced 

(approximately 0.59 m/s). The fast and slow paced speeds were regulated by asking the subjects 

to follow a power wheelchair with the preset speeds. Participants also propelled their wheelchairs 

up the sloped surface at a self-selected speed. After completing the propulsion trials participants 

were asked to complete a series of representative activities of daily living (ADLs): self-

propulsion at a chosen pace on level and up slope surface, being pushed by someone else on 

level and up slope surface, and to simulate a series of daily activities, such as doing laundry, 

cooking, dressing, open doors. During the second visit, participants were asked to perform only 

the propulsion trials as detailed for the first visit. The purpose of the second visit was to collect 

additional propulsion information in order to have more data to build the model. All trials were 

videotaped using a hand-held digital video recorder. 

2.2.4 Data Collection and Analysis 

Videos recorded during the laboratory visits were used to label the different activities performed 

by the participants and served as a criterion measure for the classifying model. Two investigators 

watched and labeled the activities independently. Videos were re-examined when there was 

discrepancy.  Labeled activities were then grouped into 4 categories including self-propulsion on 

level or sloped surfaces, being pushed on level or sloped surfaces, Functional Arm Movement 

(FAM) such as doing laundry, preparing food, dressing, opening doors, using a dishwasher, 
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drinking water, cleaning hands, eating, opening drawers, and picking up things from the floor, 

and resting.  

The wheelchair velocity data obtained from the wheel rotation monitor (WRM) and the tri-

axial and resultant acceleration from the upper arm, and underneath the seat accelerometers were 

collected from both visits. A custom MATLAB® (Version 7.11.0 R2010b, The Mathworks, Inc. 

USA) program was written to label these data according to the video recordings, and to extract 

statistical features over windows of 10 seconds with 50% overlap.  We experimentally compared 

window sizes of 5 second, 7 seconds, 10 seconds, and 12 seconds, and found that the 10-second 

window size produced the best classification performance. Feature extraction on sliding windows 

with 50% overlap has demonstrated to be beneficial [35]. The extracted features included: mean, 

standard deviation (SD), root mean square (RMS), mean absolute deviation (MAD), zero 

crossing (ZC), mean crossing (MC), magnitude, energy, entropy, correlation, number of peaks 

(NP), number of peaks multiplied by the MAD, and Wheelchair_Movement (WM). In order to 

assess the location and number of sensors that best classify wheelchair activities, two feature 

matrixes were fed into WEKA (Waikato Environment for Knowledge Analysis version 3.6.4 

1999-2010) to develop activity classifiers using a Random Forest (RF) algorithm. RF trains an 

ensemble of individual decision trees, every tree is built using a random subset of samples and 

variables, after a large number of trees are generated, they vote for the most popular class [36]. 

Several studies have shown the advantages of RF classification technique over other classifying 

algorithms [37-39]. Data fed into WEKA to build the first model included features from the arm 

accelerometer, the WRM, and the accelerometer beneath the chair, this first matrix consisted of a 

total of 119 features and 12,280 instances or windows. For the second model, the data from the 

seat accelerometer was ignored. The second feature matrix consisted of 80 features and 12,280 
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instances or windows. Features were reduced using a correlation based feature selection (Cfs), 

this algorithm identifies and screens irrelevant, redundant, and noisy features and identifies 

relevant features as long as their relevance does not strongly depend on other features. The 

algorithm uses an heuristic search called Best First (BF) that allows backtracking this is, it moves 

through the search space by making local changes to the current feature subset, if the path being 

explored begins to look less promising, the best first search can back-track to a more promising 

previous subset and continue the search from there [40]. Reduced features for the first model 

included 5: Mean_velocity, correlation_x_Arm, correlation_y_Arm, mad_xyz_Arm, and 

mean_x_Seat.  Reduced features for the second model included 4 features: mean_velocity, 

correlation_x_Arm, correlation_y_Arm, and mad_xyz_Arm. Both models were validated using 

Ten-fold cross-validation that takes the original sample (12,280 instances) and randomly divide 

the data in 10 subsamples of the same size. Of the 10 subsamples, a single subsample is left out 

for validation, and the remaining 9 subsamples are used as training data to build a model. This 

process is then repeated 10 times with each of the 10 subsamples used exactly once for 

validation. The 10 results from each iteration are then averaged to produce agreement measures 

[41]. Precision, Recall and F-Measure and a weighted average for each measure was calculated 

to assess the agreement between the predicted activity and the criterion activity from the videos. 

The estimated time for each activity category was compared with the criterion time based on 

video recordings. Mean absolute error (MAE) calculated as the average of the absolute 

differences between the estimated time and the video time, and mean absolute percentage of 

error (MAPE) calculated as the average ratio between the absolute difference and the video time.  
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2.3 RESULTS 

A total of 26 participants were tested in the study. Their demographics are described in Table 1. 

Table 2 shows Precision, Recall and F-Measure for each activity category of the classification 

model built with the arm accelerometer, the seat accelerometer, and the WRM. Table 3 shows 

Precision, Recall and F-Measure for each activity category of the classification model built with 

the arm accelerometer, and the WRM. Table 4 and 5 shows mean absolute error, and mean 

absolute percentage of error between the criterion time and the estimated time for the model built 

with the arm accelerometer, the seat accelerometer, and the WRM. Table 6 and 7 shows mean 

absolute error, and mean absolute percentage of error between the criterion time and the 

estimated time from the model built with the arm accelerometer, and the WRM. Table 8 and 9 

shows the classification confusion matrix for each model.  

 
Table 1: Participant Demographics 

 

Demographic variables Mean ± SD 

Sex  

    Female  6 

    Male 20 

Age (years) 40 ± 14 

Weight (lb.) 159 ± 41 

Manual Wheelchair Usage (years) 13 ± 8 

Injury Level Range  

    Paraplegia (T4 and below) 20 

    Tetraplegia (T3 and above) 6 

Self-reported pain (WUSPI)  7 ± 10 
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Table 2: Agreement Measures based on Arm, Seat Accelerometers, and WRM 

 

 Precision Recall (TP) F-Measure 

Being Pushed 0.832 0.741 0.783 

Propulsion 0.922 0.94 0.931 

Functional Arm (FAM) 0.835 0.843 0.839 

Rest 0.859 0.837 0.848 

Overall 0.880 0.881 0.880 

 

Table 3: Agreement Measures based on Arm Accelerometer and WRM 

 

 Precision Recall (TP) F-Measure 

Being Pushed 0.698 0.643 0.670 

Propulsion 0.895 0.92 0.907 

Functional Arm (FAM) 0.742 0.724 0.733 

Rest 0.779 0.769 0.774 

Overall 0.819 0.821 0.820 
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Table 4: Activity Time Comparison based on Arm, Seat Accelerometers, and WRM 

 

 Criterion 
(sec) 

Estimated 
(sec) 

MAE 
(sec) 

MAPE 
(%) 

Being Pushed 237±4 211± 26±18 11.0±7.7 
Propulsion 2516±3 2567± 55±41 2.2±1.6 
FAM 1362±2 1375± 52±32 3.8±2.4 
Rest 1445±3 1407± 40±32 2.8±2.2 

 

Table 5: Speed Time Comparison based on Arm, Seat Accelerometers, and WRM 

 

 Criterion 
(sec) 

Estimated 
(sec) 

MAE 
(sec) 

MAPE 
(%) 

Self-Selected 1250±2 1322±42 64±32 6±3 
Slow-Pace 943±2 938±34 23±25 3±3 
Fast-Pace 324±3 257±18 54±18 21±7 

 

Table 6: Activity Time Comparison based on Arm Accelerometer and WRM 

 

 Criterion 
(sec) 

Estimated 
(sec) 

MAE 
(sec) 

MAPE (%) 

Being Pushed 237±4 219±31 28±21 11.6±8.8 
Propulsion 2516±3 2587±44 71±44 2.8±1.8 
FAM 1362±2 1328±52 48±40 3.8±2.9 
Rest 1445±3 1426±58 45±38 3.1±2.7 
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Table 7: Speed Time Comparison based on Arm Accelerometer and WRM 

 

 Criterion 
(sec) 

Estimated 
(sec) 

MAE 
(sec) 

MAPE 
(%) 

Self-Selected 1250±2 1335±31 69±32 7±3 
Slow-Pace 943±2 923±30 25±21 3±3 
Fast-Pace 324±3 258±16 53±17 20±6 

 

Table 8: Confusion Matrix based on Arm, Seat Accelerometers, and WRM 

 

  
Estimated 

B
P 

SP
  

FA
M

 

R
es

t 

Criterion 

Being Pushed 351 75 9 39 

Propulsion 46 4731 127 128 

FAM 14 185 2295 229 

Rest 11 143 318 2418 

 

Table 9: Confusion Matrix based on Arm Accelerometer, and WRM 

 

  Estimated 

B
P 

SP
  

FA
M

 

R
es

t 

   

Criterion 

Being Pushed 305 85 22 62 

Propulsion 75 4629 193 135 

FAM 30 289 1971 433 

Rest 27 171 470 2222 
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2.4 DISCUSSION 

This study provides insight into the usage of wearable devices to classify activities of manual 

wheelchair users. Results showed that a classification model built with the combination of three 

sensors’ data, yielded better accuracies than the model built only with two sensors.  As shown in 

table 2 and 3 the overall precision difference between the two models was of 6.0 percentage 

points.  These results suggested that the seat accelerometer data contributed to improve activity 

classification.  Previous studies have shown that the combination of multiple accelerometers aid 

in  better recognition and classification of activities [35]. Both models were able to classify four 

activity categories including self-propulsion, functional arm movement, being pushed, and rest 

with overall accuracies of 88.0% and 82.0% respectively. These results are slightly lower to the 

results by Potsma et al, who used six accelerometers to distinguish wheelchair propulsion and 

hand biking from other ADLs among 10 MWUs, achieving an overall accuracy of 92% in 

detecting wheelchair propulsion and hand biking [27]. The differences between Postman et al, 

study and the present study are that they excluded all activity data that lasted less than 5 seconds, 

considered both wheelchair propulsion and hand biking as one activity, and used 6 wired 

connected accelerometers. Using a wearable monitoring system consisting of 6 wired connected 

accelerometers might limited participant’s mobility, and it may limits its use in natural 

environments. Results in this study suggested that wireless wearable sensors could be a more 

convenient solution for monitoring activities of MWUs in their natural environment. 

Regarding accuracy within the four activity categories, self-propulsion and rest were 

consistently classified with higher accuracies, this could be due to the very distinguishable 

features of each activity such as high resultant acceleration and speed for wheelchair propulsion 
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in contrast with low resultant acceleration and low or none speed for rest. The activity category 

that showed the lowest accuracies was being pushed; this could be due to the small number of 

samples included in the model (474 instances), not allowing the classification model to correctly 

discriminate this activity.  These results are consistent with those reported by Ding et al, who 

evaluated the used an eWatch attached to participant’s wrist a WRM to detect four activities 

categories. Results showed that the activity category with the highest accuracy was self-

propulsion and the activity category with the lowest accuracy was being pushed [30]. However, 

the percentage of accuracies (self-propulsion: 87.6%, being pushed: 76.2%, sedentary activity: 

56.8% and non-activity 79.9%) were lower than the accuracies presented in this study. These 

higher accuracies could suggest that the upper arm is a better location than the wrist to detect 

MWUs activities.  

When comparing accuracies from each activity category, self-propulsion accuracies for both 

models were higher than those reported by French et al, where 3 non-wheelchair users were 

tested with a eWatch (tri-axial accelerometer) placed on the wrist and a WRM attached to the 

wheelchair frame. Results showed accuracies of 74% for self-propulsion and 86% for external 

pushing [42] .This difference in accuracy could be due to the type of classification technique 

French et al used. They evaluated two different classification techniques: K-Nearest Neighbor 

(KNN), and Support Vector Machine (SVM). The KNN algorithm is an instance-based 

representation that uses the instances themselves to represent what is learned, rather than 

inferring a rule or decision tree.  In the KNN algorithm each instance is compared with existing 

ones using a distance metric, and the closest existing instance is used to assign the class to the 

new one.  The SVM algorithm is a combination of linear modeling and instance-based learning. 

It selects a small number of boundary instances from each class and builds a linear function that 
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separates them as widely as possible [43].  The Random Forest (RF) algorithm trains an 

ensemble of individual decision trees, every tree is built using a random subset of samples and 

variables, after a large number of trees are generated, they vote for the most popular class. This 

technique allows to have significant improvements in classification accuracy generated by an 

ensemble of decision trees [36]. Several studies have shown the advantages of RF classification 

technique over other classifying algorithms [37-39]. 

Both models were able to classify activities, with high precision percentages, as well as high 

recall percentages. Precision is defined as a measure of the proportion between the total number 

of instances that were correctly classified and all the instances classified in an activity. It is 

calculated as 𝑃 = 𝑡𝑝
𝑡𝑝+𝑓𝑝

 where tp is true positive, and fp is false positive Recall is define as a 

measure of proportion between the total numbers of instances that were correctly classified from 

all the true instances in an activity. It is calculated as 𝑅 = 𝑡𝑝
𝑡𝑝+𝑓𝑛

 where fn is false negative.  The 

F-Measure is a measure of the overall performance and it combines precision and recall into a 

single measure. It is calculated as 𝐹 = 2𝑃𝑅
𝑅+𝑃

 [44]. The activity with the highest F-Measure was 

self-propulsion with a value of 93.1 for the first model and 90.7 for the second model. These 

results showed that wearable sensors could discriminate propulsion episodes from other ADLs 

with high accuracy. Being able to detect self-propulsion from other activities may be able to help 

researches deeply investigate propulsion biomechanics measures such as stroke number, push 

frequency and forces.  

As shown in table 8 and 9 FAM is sometimes confused with rest. This could be related to the 

variety of activities grouped into this category, and the different way people perform these 

activities. For example some activities such as programming the machines (dishwasher, washing 
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machine, dryer machine), eating, may require very little arm movement, and not wheelchair 

movement at all thus resulting in conditions similar to a rest category. In addition, some 

participants were moving their arms while being at rest.  Another activities that were sometimes 

confused were being pushed and self-propulsion. This confusion could be because some 

participants moved their arms while being pushed, thus generating accelerations and wheelchair 

movement similar to those of propulsion.  

The largest difference between the estimated and criterion time was found during the being 

pushed activity with a MAPE of 11.0% for the first model and 11.6% for the second model. The 

second, largest difference in time was FAM with 3.5% for the first model and 3.8% for the 

second model. On the other hand, the smallest difference between the estimated and the criterion 

was found during the self-propulsion activity with only 2.2% and 3.1 % MAPE.  Regarding 

accuracies based on speed results showed that the largest difference between the estimated and 

criterion time was found during the fast-pace trials with a MAPE of 21.0% for the first model 

and 20.0% for the second model. The smallest difference was found during the slow-pace trials 

with only 3.0 % MAPE for both models.  These results suggest that wearable sensor could be a 

viable option for monitoring time spent on different manual wheelchair activities in their natural 

environment. This information can provide clinical professionals and researchers with an 

indication of manual wheelchair user activity levels. It can also provide a tool to increase manual 

wheelchair users’ awareness of their own activity levels, promoting regular physical activity. 

One limitation of the study was the small number of samples for the being pushed category. 

This category only had a total of 474 instances compared with the other activities that had around 

4000 instances. A second limitation was that sometimes participants used their non-dominant 
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hand to perform some ADLs; in these cases we were not able to collect acceleration data. A third 

limitation was that participants pushed their chairs only on smooth surfaces the protocol did not 

include rough surfaces, this may limit the ability to perfectly mimic wheelchair propulsion over 

natural surfaces. Finally no data was collected for overhead activities and transfers which are 

common activities among MWUs. Future work could try to balance the different activities, to 

have equal data from each activity avoiding imbalance among the activities, include different 

surface roughness and overhead activities to better simulate real life conditions.   

2.5 CONCLUSION 

Results in this study suggest that the use of two tri-axis accelerometers and a WRM could be a 

viable option to accurately detect manual wheelchair user activities such as self-propulsion, 

being pushed, functional arm movement and rest.  Detecting activity of manual wheelchair users 

in the natural environment, could contribute to better understand the etiology of UE pain and 

contribute to the preservation of upper limb functions among manual wheelchair users with SCI. 

This study could result in a potential tool that can monitor the actual activity levels among 

manual wheelchair users, and may help researchers and clinicians to quantify the quality of UE 

movement and monitor the effectiveness of interventions in the natural environment.  
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3.0  TEMPORAL PARAMETERS ESTIMATION FOR WHEELCHAIR 

PROPULSION USING WEARABLE SENSORS 

3.1 INTRODUCTION 

According to the 2010 Survey of Income and Program Participation (SIPP), about 3.6 million 

people aged 15 years and older in the US use a wheelchair [45]. Most of these individuals use a 

manual wheelchair for mobility. Manual wheelchair users often rely on their upper extremity 

(UE) for almost all activities of daily living (ADLs). Some of their daily activities such as 

wheelchair propulsion and transfers require high forces and repetitiveness of UE movements. 

Therefore, it is not surprising that the incidence of UE pain and injury among manual wheelchair 

users is high, ranging from 49% to 78% [3-11]. 

Given the negative impact that UE pain and injury may have in the lifestyle and quality 

of life of manual wheelchair users [9, 12-14], the Consortium for Spinal Cord medicine 

published the monograph, Preservation of Upper Extremity Function Following Spinal Cord 

Injury:  A Clinical Practice Guideline for Health Care Professionals, where it provides concise 

ergonomic and equipment recommendations based on the review of published evidence [46].  

The guideline recommends reducing the frequency of repetitive upper limb tasks, minimizing 

forces required to complete tasks, and minimizing extremes of wrist and shoulder motions. It 
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also makes recommendations on wheelchair propulsion techniques such as reducing the number 

of strokes and push frequency.  

Temporal parameters of wheelchair propulsion such as the number of strokes and push 

frequency have been quantified in laboratory settings using motion capture systems and 

SmartWheels, a force sensing wheel that can replace the wheelchair wheel to collect propulsion 

parameters [5, 47-49]. Unfortunately, due to the cost and intricate settings, these valuable tools 

are not appropriate for assessing UE movement in the home and community environment. 

Therefore, the repetitiveness of UE movement for wheelchair propulsion out of clinical settings 

is unclear. With the recent advancement of sensors and miniature technologies, accelerometers 

emerge as a possible solution for monitoring wheelchair propulsion parameters in the natural 

environment, contributing to the understanding and prevention of UE pain and injury in manual 

wheelchair users.  

Previous studies have used accelerometers and other sensors to track gross mobility of 

wheelchair users. A pilot study conducted by Kumar et al. used a customized data-logging device 

to determine driving characteristics including distance, speed, and driving time of 19 power 

wheelchair soccer players [32]. A similar study conducted by Coulter et al. used two tri-axial 

accelerometers placed on the wheels of a wheelchair to estimate gross mobility of 14 manual 

wheelchair users with SCI. The results showed that the accelerometers were able to recognize 

wheelchair propulsion episodes with an overall accuracy of 92% [27]. A study conducted by 

Gendle et al. investigated the revolutions, duration, and direction of movements. They found the 

activity counts from the accelerometer were significantly different between light and moderate 

effort indicated by the heart rates [20]. Other researchers have evaluated the performance of 

accelerometers in detecting manual wheelchair user activities. A study conducted by Postman et 
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al. used six accelerometers placed on different parts of the body to detect wheelchair propulsion 

episodes from a range of ADLs among 10 MWUs. Results showed that the accelerometers were 

able to recognize wheelchair propulsion episodes with an overall accuracy of 92% [21]. 

Although gross mobility, activities and its intensity of manual wheelchair users is, to some extent 

indicative of their UE movements, it cannot tell the exact amount and repetitiveness of UE 

movements for wheelchair propulsion.  

Knowing the repetitiveness of UE movements for wheelchair propulsion that occur on a 

daily basis could be important for understanding and preventing UE pain and injury. However 

research looking into using wearable sensors to directly estimate temporal parameters of 

wheelchair propulsion is limited.  A study conducted by Hiremath et al. estimated temporal 

parameters of wheelchair propulsion including push frequency, propulsion time, and recovery 

time based on hand acceleration collected via a motion analysis system among 29 manual 

wheelchair users. Results showed high intraclass correlation between the estimated and criterion 

measures [50]. A study conducted by Turner et al. investigated the use of an accelerometer 

placed beneath the chair and a wheel-mounted magnet to detect wheelchair propulsion 

parameters including the number of strokes, push frequency, distance, and speed. Ten manual 

wheelchair users were asked to propel their wheelchair on indoor and outdoor surfaces. 

Estimated parameters were compared with criterion values obtained from OptiPush wheels. 

Results showed the average percentage of errors were -1.0% for the number of strokes and -1.7% 

for push frequency [51]. 

The purpose of this study is to assess the validity of a tri-axis accelerometer placed at 

three locations (i.e. wrist, upper arm, and underneath the wheelchair seat) in estimating temporal 

parameters of wheelchair propulsion including the number of strokes and push frequency. The 
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information obtained can guide appropriate use of accelerometers for monitoring UE movements 

for wheelchair propulsion in the natural environment.  

3.2 METHODS 

3.2.1 Study Participants  

The Institutional Review Board at the University of Pittsburgh approved this study. A total of 26 

manual wheelchair users with SCI volunteered and provided informed consent prior to their 

participation in the study. Subjects were identified through the IRB approved wheelchair user 

registries developed by the Human Engineering Research Laboratories (HERL) and the 

Department of Physical Medicine and Rehabilitation at the University of Pittsburgh. In addition, 

participants were recruited via flyers posted in local rehabilitation facilities and outpatient 

facilities. Subjects were included in the study if they: 1) were 18 years of age or greater; 2) use a 

manual wheelchair as a primary means of mobility; 3) have a Spinal Cord Injury. Subjects were 

excluded if they were unable to tolerate sitting for 2 hours, and/or have upper limb pain that 

limits their mobility. 

3.2.2 Instrumentation 

Subjects were fitted with four monitoring devices and a SmartWheel (Three Rivers Holdings Inc., 

Mesa, AZ). The four monitoring devices included a custom wheel rotation monitor (WRM) 

attached to the wheelchair wheel and three off-the-shelf tri-axis accelerometers (Shimmer 
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Research, Dublin) worn on the dominant upper arm, dominant wrist, and underneath the 

wheelchair seat, respectively.  

• The wheel rotation monitor (WRM) was developed at the HERL. It is a lightweight and 

self-contained device that can be easily attached to the wheelchair’s wheel without any 

modifications to the wheelchair. It tracks the wheel rotation through three reed switches 

mounted 120° apart on the back of the printed circuit board and a magnet mounted at the 

bottom of a pendulum. As the wheel rotates and exceeds 120° of rotation, one of the reed 

switches is triggered, and a date and time stamp is recorded. This information can be 

further processed to obtain the distance, speed, and time of movement [31]. The WRM 

has been used in previous studies to collect mobility characteristics of manual wheelchair 

users with different diagnoses [32-34].   

• The tri-axis accelerometer (Shimmer Research, Dublin, Ireland) used in this study is a 

small low-power device that can record the motion data into a micro SD card. The two 

upper arm accelerometers were sampled at 20Hz and the accelerometer underneath the 

seat was sampled at 60 Hz. 

• The SmartWheel (Three Rivers Holdings Inc., Mesa, AZ) is a 3-D force and torque-sensing 

wheel that measures push forces, push smoothness, push frequency, speed, and push 

length in every push cycle. It is sampled at 240 Hz.  Subjects’ wheelchair wheels were 

replaced with a SmartWheel at the dominant side and a dummy wheel at the other side to 

balance the weight of the SmartWheel. The use of SmartWheel did not change the camber or 

the axle position. 
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3.2.3 Experimental Protocol 

Subjects were asked to pay two visits to HERL with each visit lasting about 2.5 hours. During 

the first visit, subjects completed a demographics survey and the Wheelchair Users Shoulder 

Pain Index Questionnaire (WUSPI). The WUSPI questionnaire measures shoulder pain based on 

15 questions using a 10 cm visual analogue scale, resulting in a total score from 0 (no pain) to 

150 (extreme pain) [52]. After subjects were fitted with the instrumentation described in the 

previous section, they were asked to propel their wheelchairs on two surfaces including a level 

surface of 33 meters and a sloped surface of 15 meters with 3 degrees of incline. Participants 

propelled their wheelchairs on the level surface twice at three different speeds: self-selected, fast 

paced (approximately 1.75 m/s), and slow paced (approximately 0.59 m/s). The fast and slow 

paced speeds were regulated by asking the subjects to follow a power wheelchair with the preset 

speeds. Participants also propelled their wheelchairs up the sloped surface at a self-selected 

speed. All trials were videotaped using a hand-held digital video recorder.   

During the second visit, participants were first asked to perform the propulsion trials as 

detailed for the first visit. Participants were then asked to complete a training session where they 

watched a multimedia instructional program (MMP) on a laptop computer that aimed to teach 

appropriate propulsion techniques. The MMP was developed by a previous study based on 

propulsion biomechanics literature and the Clinical Practice Guideline, which emphasized 

reducing push frequency and increasing push angle [53]. Examples of good and bad techniques 

were provided. After subjects practiced the propulsion techniques following the video training, 

they were asked to perform the same propulsion trials. This visit allows us to assess if the 

accelerometers were capable to capture propulsion changes due to training.  
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3.2.4 Data Collection and Analysis 

Videos recorded during the two visits served as the criterion measure of the stroke number. Two 

investigators independently counted the stroke number for each propulsion trial, and video 

footages were re-examined when there was a discrepancy between the two investigators. The 

criterion push frequency was directly obtained from the SmartWheel. 

Acceleration signals collected by the accelerometers on the wrist, upper arm, and underneath 

the seat were filtered using an 8th-order Butterworth low-pass filter with a cutoff frequency 

defined by the fundamental frequency calculated based on each propulsion trial. For the arm and 

wrist accelerometers, the resultant accelerations (the vector sum of three directions) were used to 

obtain the stroke number. For the seat accelerometer, only the longitudinal component (parallel 

to the propulsion direction) was used. An algorithm was developed to extract the stroke number 

for each propulsion trial. The algorithm first calculated a threshold defined as the mean 

acceleration plus 0.5 standard deviation over each trial. The stroke number was then counted as 

the number of acceleration peaks over the established threshold. Push frequency was calculated 

as the mean propulsion time between each stroke divided by one. Figure 2 shows a visual 

example of the stroke number and push frequency estimation. Custom MATLAB® (Version 

7.11.0 R2010b, The Mathworks, Inc. USA) programs were used to process the acceleration 

signals.  

The estimated stroke number and push frequency from the three accelerometers were 

compared with the criterion by calculating the mean absolute errors (MAE) calculated as the 

average of the absolute difference between the estimated and the criterion, and mean absolute 
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percentage errors (MAPE) calculated as the average ratio between the absolute difference and 

the criterion.  𝑀𝐴𝐸 = 1
𝑛
∑ 𝐸𝑖 − 𝐶𝑖𝑛
𝑖=1  𝑎𝑛𝑑  𝑀𝐴𝑃𝐸 = 1

𝑛
∑ (𝐸𝑖 − 𝐶𝑖)/𝐶𝑖𝑛
𝑖=1   where Ei is the 

estimated measure and Ci is the criterion measure. In addition, the Intraclass correlation 

coefficients ICC(3, 1) were used to assess their agreements. Bland-Altman plots were performed 

to provide a visual analysis of their agreements. Each point on the Bland and Altman plot 

represents the mean (x-axis) and the difference (y-axis) of the criterion and estimated values for 

each propulsion trial. We used all the propulsion trials during the first and the second visit to 

access the agreement [54].   

To assess the validity of the accelerometers in capturing changes after training Intraclass 

Correlation Coefficients were calculated between the changes in the estimated parameters and 

the changes in the criterion parameters. Bland-Altman plots were also performed to assess their 

agreements. Independent sample t-test was performed to evaluate significant differences before 

and after training.  All statistical analysis was performed using SPSS software (ver. 18.0, SPSS 

Inc., Chicago, IL, USA). 

 

 

Figure 2: Visual Example for Stroke Number and Push Frequency Estimation 
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3.3 RESULTS 

The demographics of the participants are described in Table 1. Table 10 and 11 show the mean 

and standard deviation (SD) of the criterion and estimated temporal parameters. Table 12 shows 

the mean absolute error (MAE) and the mean absolute percentage of error (MAPE) between the 

criterion and estimated stroke number from each accelerometer. Table 13 shows the MAE and 

MAPE between the criterion and estimated push frequency from each accelerometer. Table 14 

shows the ICC (3, 1) between the criterion and estimated temporal parameters for each 

accelerometer. Table 15 shows the criterion and estimated SN before and after training and p-

values. Table 16 shows the criterion and estimated PF before and after training p-values Table 17 

shows ICC between the changes in the criterion measures after training and those in the 

estimated measures. All variables were calculated for the level surface trials (LS), the sloped 

surface trials (SS), and all trials combined (OA). Figure 3 and 4 show the Bland-Altman plots 

between the criterion and estimated stroke number (SN) and push frequency (PF) from each 

accelerometer, respectively.  

 

Table 10: Criterion and Estimated Stroke Number (SN) 

 

 Video Arm Wrist Seat 

Level Surface (LS) 24.6 ± 4.1 24.6 ± 4.0 24.6 ± 4.6 25.0 ± 4.3 

Sloped Surface (SS) 18.1 ± 1.1 17.2 ± 1.3 17.0 ± 1.4 17.7 ± 2.0 

Overall (OA) 22.4 ± 3.6 22.2 ± 3.6 22.1 ± 4.0 22.6 ± 3.8 
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Table 11: Criterion and Estimated Push Frequency (PF) 

 

 SMW Arm Wrist Seat 

Level Surface (LS) 0.95 ± 0.15 0.93 ± 0.09 0.94 ± 0.09 0.82 ± 0.19 

Sloped Surface (SS) 1.06 ± 0.09 1.02 ± 0.04 1.03 ± 0.13 0.94 ± 0.22 

Overall (OA) 0.98 ± 0.11 0.96 ± 0.06 0.98 ± 0.09 0.86 ± 0.18 

 

Table 12: SN Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)  

 

 MAE MAPE % 

 ARM WRIST SEAT ARM WRIST SEAT 

Level Surface (LS) 1.7 ± 1.5   2.4 ± 2.3 2.9 ± 3.5 7.7 ± 6.6 11.0±10.2 13.5 ± 16.4 

Sloped Surface 
(SS) 1.5 ± 1.2   1.8 ± 1.3  2.4 ± 2.1 8.6 ± 7.0 10.3 ± 7.9  13.4 ± 11.8 

Overall (OA) 1.6 ± 1.4   2.2 ± 2.1  2.7 ± 3.2 8.0 ± 7.1 10.8 ± 9.8  13.4 ± 15.6 

 

Table 13: PF Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) 

 

 MAE MAPE % 
 ARM WRIST SEAT ARM WRIST SEAT 
Level Surface (LS) 0.1 ± 0.1 0.2 ± 0.2 0.3 ± 0.2 16.1 ± 16.7 21.5 ± 21.4 25.4 ± 16.9 

Sloped Surface (SS) 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 6.4 ± 4.6 8.0 ± 6.1 21.8 ± 14.6 

Overall (OA) 0.1 ± 0.1 0.1 ± 0.1 0.2 ± 0.2 12.9 ± 15.1 17.2 ± 19.3 24.2 ± 16.6 
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Table 14: SN and PF Intraclass Correlation Coefficient (ICC) 

 

  ICC 95% CI p-value 

Stroke  

Number 

ARM 0.994 .988~.997 <0.001 

WRIST 0.990 .980~.995 <0.001 

SEAT 0.984 .972~.991 <0.001 

Push  

Frequency 

ARM 0.916 .843~.953 <0.001 

WRIST 0.889 .802~.936 <0.001 

SEAT 0.690 .071~.868 <0.001 

 

 

 

 

Figure 3: SN Bland-Altman Plots from the Arm, Wrist and Seat Accelerometers 
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Figure 4: PF Bland-Altman Plots from the Arm, Wrist and Seat Accelerometer 

 

Table 15: Criterion and Estimated SN before and after Training, Change and P-value 

 

  Before After Change 

  Mean STD Mean STD Mean STD P-value 

Video 
LS 25.5 7.6 22.3 5.7 -3.2 0.96 0.093 
SS 18.2 6.2 16.7 4.4 -2.1 1.13 0.682 
OA 21.8 7.8 19.6 5.8 -2.6 1.02 0.163 

Arm 
LS 25.2 7.2 22.7 5.6 -2.5 0.94 0.170 
SS 17.1 5.9 15.8 4.8 -1.9 1.06 0.707 
OA 21.2 7.7 19.3 6.2 -2.2 0.98 0.268 

Wrist 
LS 25.0 7.0 23.2 5.7 -1.8 0.93 0.306 
SS 16.9 6.0 16.1 4.1 -1.4 1.08 0.930 
OA 20.9 7.7 19.7 6.1 -1.6 0.98 0.477 

Seat 
LS 26.3 8.9 25.2 6.4 -1.1 0.84 0.129 
SS 18.0 6.7 17.3 5.6 -0.7 1.06 0.663 
OA 22.1 8.9 21.3 6.8 -0.8 0.95 0.193 



33 

 

 
Table 16: Criterion and Estimated PF before and after Training, Change and P-value 

 

  Before After Change  

  Mean STD Mean STD Mean STD P-value 

SMW 
LS 0.96 0.16 0.88 0.16 0.09 0.12 0.061 
SS 1.13 0.18 0.98 0.15 0.18 0.20 0.001 
OA 1.04 0.19 0.93 0.16 0.13 0.17 0.001 

Arm 
LS 0.94 0.14 0.89 0.13 0.05 0.13 0.197 
SS 1.05 0.14 0.95 0.13 0.14 0.19 0.007 
OA 1.00 0.15 0.92 0.14 0.09 0.17 0.007 

Wrist 
LS 0.93 0.11 0.90 0.12 0.03 0.09 0.327 
SS 1.08 0.19 0.98 0.14 0.13 0.21 0.024 
OA 1.00 0.17 0.94 0.13 0.08 0.17 0.022 

Seat 
LS 0.84 0.17 0.77 0.14 0.07 0.14 0.134 
SS 0.98 0.30 0.87 0.29 0.04 0.40 0.081 
OA 0.91 0.25 0.82 0.19 0.06 0.30 0.028 

 

Table 17: SN and PF Intraclass Correlation Coefficient (ICC) before and after Training  

 

  ICC 95% CI p-value 

Stroke  

Number 

ARM 0.980 .964~.989 <0.001 

WRIST 0.969 .916~.986 <0.001 

SEAT 0.870 .773~.925 <0.001 

Push  

Frequency 

ARM 0.856 .684~.899 <0.001 

WRIST 0.822 .711~.923 <0.001 

SEAT 0.568 .248~.752 <0.001 
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3.4 DISCUSSION 

This study provides insight into the usage of portable devices (e.g. tri-axis accelerometers) to 

track UE movements for wheelchair propulsion. The small discrepancies between the criterion 

and estimated parameters shown in Table 12 and 13 suggest that portable sensors have the 

potential to not only detect gross mobility levels of wheelchair users [20, 26, 27],  but to quantify 

the quality of UE movements for wheelchair propulsion in terms of the repetitiveness. The 

developed algorithm showed to be robust in calculating number of strokes based on acceleration 

data being the arm accelerometer the one who yielded the best results. We anticipate that the 

algorithm could be applied to home collected data.  

In terms of estimating the stroke number and push frequency, the arm accelerometer showed 

the highest accuracy among the three accelerometers, indicating that the upper arm could be a 

better location for detecting temporal parameters of wheelchair propulsion. The wrist 

accelerometer can be more sensitive to small UE movements, possibly leading to the increased 

error. The seat accelerometer showed the lowest accuracy with a MAPE of 13.4% for the stroke 

number and 24.2% for the push frequency. The estimation errors for the seat accelerometer were 

greater than the study by Turner et al. where they also placed an accelerometer beneath the 

wheelchair seat to estimate the stroke number and push frequency among 10 manual wheelchair 

users. Unfortunately, the data analysis results were not described in details. The study only 

reported an average percent error (i.e. -1.0% for stroke number and -1.7% for push frequency) 

instead of the MAPE averaged by each trial of each subject. An average percent error only 

indicates the estimation bias and may not be sufficient to show the estimation accuracy, as the 
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positive and negative estimation errors from the trials may cancel each other, resulting in smaller 

overall errors [51].  

Compared with the stroke number estimation, push frequency estimation was less accurate, 

which could be due to the estimation of the total cycle time comprised of push and recovery 

phases. The estimation algorithm based on the accelerometer signals was able to identify the 

push phase more accurately, but unable to accurately determine the end of recovery phases, 

possibly leading to the inaccuracy when estimating the cycle time.  

Table 15 and 16 showed that subjects reduced their stroke number and push frequency 

after the propulsion training program, but there were only significant difference on the PF on the 

up-sloped surfaces. Despite the lack of significant difference after training, the ICC values 

(Table 17) shows that the accelerometers were able to capture such changes. The responsiveness 

of the accelerometer and its estimation algorithm for propulsion parameters makes it possible to 

track the effectiveness of training out of clinical settings, contributing to the preservation of 

upper limb functions in manual wheelchair users with SCI [55]. 

Considering the negative impact that UE pain and injuries can have on manual wheelchair 

users with SCI, it is important to monitor and understand how the use of upper limbs during 

wheelchair propulsion and other ADLs are related to such pain and injury.  The Clinical Practice 

Guideline on the Preservation of Upper Limb Function Following Spinal Cord Injury stresses the 

importance of reducing the frequency of repetitive upper limb tasks [46]. This study could result 

in a potential tool that can monitor the actual usage of UE in terms of the repetitiveness during 

wheelchair propulsion in the natural environment, and provide clinical professionals and 

researchers with an indication of activity levels as well as propulsion skills of wheelchair users in 
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their daily life. With the accelerometry technology getting cheaper and smaller, it is also possible 

to provide real-time feedback to wheelchair users about their upper limb use and repetitiveness, 

further contributing to the prevention of upper limb among this population.  

The study has some limitations.  Given that the sensor was placed on the dominant arm, 

we were not able to detect movement on the non-dominant arm. This could be important for 

those who propel their wheelchairs unevenly.  

3.5 CONCLUSION 

Results in this study suggest that the use of tri-axis accelerometers could be a viable option to 

accurately monitor temporal parameters of wheelchair propulsion in the natural environment of 

wheelchair users, especially when the accelerometer is worn on the upper arm. This study could 

result in a potential tool that can monitor the actual usage of upper limbs in terms of the 

repetitiveness and contribute to the preservation of upper limb functions among manual 

wheelchair users with SCI.  
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4.0  ESTIMATING WHEELCHAIR PROPULSION FORCE USING WEARABLE 

SENSORS 

4.1 INTRODUCTION 

Increased use of upper limbs to perform daily activities in manual wheelchair users (MWUs) has 

been associated with a high prevalence of upper extremity (UE) pain and injury.  This prevalence 

seems to be related to the duration of the Spinal Cord Injury [4]. Recent literature has found a 

relation between push rim biomechanics and risk of injury to the upper extremity (UE). 

Specifically, increasing propulsion frequency and a higher rate of rise of total push rim forces 

have been correlated with increased UE injuries [56]. A study conducted by Boninger et al. 

among 60 people with SCI found that those who pushed with greater force had higher risk of 

developing nerve dysfunction [15].  Other studies have also found a correlation between higher 

propulsion forces and UE pain and injury [11, 46, 57].  

UE pain can have a significant negative impact in the lifestyle of MWUs. Two of the most 

important impacts are on social participation and quality of life (QOL).  UE pain may reduce a 

person's ability and motivation to participate socially. Furthermore, QOL can be impaired 

because of the distress of the pain, this pain may reduce the ability of being independent, and 

functional [8-10].  Therefore, it is very important to preserve upper limb function and prevent 

UE pain and injury. The consortium for spinal cord medicine developed a clinical practice 
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guideline with several recommendations to preserve UE function after SCI.  According to this 

guideline, forces experienced at the shoulder during wheelchair propulsion should be reduced 

[46].  

Monitoring tools capable of assessing wheelchair propulsion biomechanics, specifically 

wheelchair propulsion forces, may play an important role in the preservation of UE function and 

prevention of pain. Nowadays, there are many monitoring tools and techniques that can be used 

to assess wheelchair propulsion forces. For example, a study conducted by Gil-Agudo et al, 

among 16 participants with SCI used four camcorders (Kinescan IBV) and a SmartWheel to 

analyze the change in shoulder joint forces during propulsion at two different speeds. The study 

found that  shoulder joint forces and moments depended strongly on the propulsion speed, 

increasing in magnitude when speed increased [49]. Another study conducted by Dubowsky et 

al, used kinematic data from a motion analysis system, kinetic data from force-sensing push 

rims, and electromyography data from four upper-limb muscles for ten push strokes to determine 

the force during propulsion and its difference between able bodied persons and people with 

paraplegia. The study concluded that greater muscle energy results in a greater resultant force in 

the shoulder and elbow, placing people with paraplegia at risk of developing upper extremity 

injuries [58]. A study conducted by Lin et al, developed a two-dimensional energy model to 

predict wheelchair propulsion forces. Ten able-bodied participants and 10 manual wheelchair 

users were asked to propel their chairs, kinematic data of the upper extremity joints were 

obtained using a planar four-bar linkage analysis, and used as an input to build a two-

dimensional energy model to detect hand-rim forces applied during wheelchair propulsion. 

Results demonstrated that predicted forces generally agreed with experimentally obtained forces 

in direction and magnitude for both inexperienced and experienced wheelchair users [59]. Many 
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of the actual monitoring tools such as motion capture systems, sensing wheels, electromyography 

data, and energy models can only be used in clinical settings. With the recent advancement of 

sensors and miniature technologies, accelerometers and wearable sensors emerge as a possible 

solution for monitoring wheelchair propulsion forces.  The performance of accelerometers and 

sensors such as customized data loggers have been studied in assessing different aspects of 

wheelchair propulsion, such as gross mobility, traveled distance, biomechanical parameters, 

energy expenditure, and activity classification [20, 21, 27, 32, 51, 60]. However, to the extent of 

our knowledge none of the previous studies have looked into the use of wearable sensors to 

estimate propulsion forces.   

The purpose of this study is to assess the performance of a tri-axis accelerometer placed at 

the upper arm, and a WRM in estimating force applied during wheelchair propulsion. This 

information can provide a convenient solution for monitoring wheelchair propulsion force in the 

natural environment. 

4.2 METHODS 

4.2.1 Study Participants 

The Institutional Review Board at the University of Pittsburgh approved this study. A total of 26 

manual wheelchair users with SCI volunteered and provided informed consent prior to their 

participation in the study. Subjects were identified through the IRB approved wheelchair user 

registries developed by the Human Engineering Research Laboratories (HERL) and the 
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Department of Physical Medicine and Rehabilitation at the University of Pittsburgh. In addition, 

participants were recruited via flyers posted in local rehabilitation facilities and outpatient 

facilities. Subjects were included in the study if they: 1) were 18 years of age or greater; 2) use a 

manual wheelchair as a primary means of mobility; 3) have a Spinal Cord Injury. Subjects were 

excluded if they were unable to tolerate sitting for 2 hours, and/or have upper limb pain that 

limits their mobility. 

4.2.2 Instrumentation 

Subjects were fitted with monitoring devices and a SmartWheel (Three Rivers Holdings Inc., 

Mesa, AZ) 1. The monitoring devices included a custom wheel rotation monitor (WRM) 

attached to the wheelchair wheel and one off-the-shelf tri-axis accelerometer (Shimmer 

Research, Dublin) worn on the dominant upper arm.  

• The wheel rotation monitor (WRM) was developed at the HERL. It is a lightweight and 

self-contained device that can be easily attached to the wheelchair’s wheel without any 

modifications to the wheelchair. It tracks the wheel rotation through three reed switches 

mounted 120° apart on the back of the printed circuit board and a magnet mounted at the 

bottom of a pendulum. As the wheel rotates and exceeds 120° of rotation, one of the reed 

switches is triggered, and a date and time stamp is recorded. This information can be 

further processed to obtain the distance, speed, and time of movement [31]. The WRM 

has been used in previous studies to collect mobility characteristics of manual wheelchair 

users with different diagnoses [32-34].   
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• The tri-axis accelerometer (Shimmer Research, Dublin, Ireland) used in this study is a 

small low-power device that can record the motion data into a micro SD card. The upper 

arm accelerometer was sampled at 20Hz. 

• The SmartWheel (Three Rivers Holdings Inc., Mesa, AZ) is a 3-D force and torque-

sensing wheel that measures push forces, push smoothness, push frequency, speed, and 

push length in every push cycle. It is sampled at 240 Hz. Subjects’ wheelchair wheels 

were replaced with a SmartWheel at the dominant side and a dummy wheel at the other 

side to balance the weight of the SmartWheel. The use of SmartWheel did not change the 

camber or the axle position. 

4.2.3 Experimental Protocol 

Subjects were asked to pay two visits to HERL with each visit lasting about 2.5 hours. During 

the first visit, subjects completed a demographics survey and the Wheelchair Users Shoulder 

Pain Index Questionnaire (WUSPI). The WUSPI questionnaire measures shoulder pain based on 

15 questions using a 10 cm visual analogue scale, resulting in a total score from 0 (no pain) to 

150 (extreme pain) [52]. After subjects were fitted with the instrumentation described in the 

previous section, they were asked to propel their wheelchairs on two surfaces including a level 

surface of 33 meters and a sloped surface of 15 meters with 3 degree incline. Participants 

propelled their wheelchairs on the level surface twice at three different speeds: self-selected, fast 

paced (approximately 1.75 m/s), and slow paced (approximately 0.59 m/s). The fast and slow 

paced speeds were regulated by asking the subjects to follow a power wheelchair with the preset 
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speeds. Participants also propelled their wheelchairs up the sloped surface at a self-selected 

speed. All trials were videotaped using a hand-held digital video recorder.   

During the second visit, participants were first asked to perform the propulsion trials as 

detailed for the first visit. The purpose of the second visit was to collect additional propulsion 

information in order to have more data to build the model. 

4.2.4 Data Collection and Analysis 

Kinetics data was collected from the SMARTWheel (SMW). A custom MATLAB® (Version 

7.11.0 R2010b, The Mathworks, Inc USA) program was used to process the data and calculate 

the resultant force defined as the vector sum of the three forces components (Fx, Fy, Fz), the 

mean peak resultant force  was calculated over windows of 10 second. The mean peak resultant 

force from each window was used as a criterion for the regression model. Using a MATLAB 

custom program data from the wheel rotation monitor (WRM) was converted to wheel speed. A 

set of statistical measures was calculated over 10-second windows for the x, y, z, and resultant 

acceleration of the arm accelerometer. These statistical measures included:  mean, standard 

deviation (SD), root mean square (RMS), mean absolute deviation (MAD), zero crossing (ZC), 

mean crossing (MC), magnitude, energy, entropy, correlation, and number of peaks (NP), 

number of peaks multiplied by the MAD. We experimentally compared the performance of the 

regression technique including the arm and seat accelerometer and only including the arm 

accelerometer. The difference in MAPE between the first and the second was only of 0.03 

percentage points. Therefore we decided to use only the arm accelerometer to estimate the 

propulsion forces. The calculated statistical measures together with the participants’ 
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demographics such as age, gender, level of injury, weight and years of experience using a 

wheelchair, the type of surface, and velocity were used to build a feature matrix with a total of 

120 features that was fed into the Waikato Environment for Knowledge Analysis (WEKA 

version 3.6 1999-2012).  To build the regression model features were reduced using a correlation 

based feature selection (Cfs) algorithm that identified and screens irrelevant, redundant, and 

noisy features and identifies relevant features as long as their relevance does not strongly depend 

on other features. The algorithm uses an heuristic search called Subset Size Forward Selection 

that performs an internal cross-validation in order to determine the optimal subset size [40]. 

Reduce features included: entropy_z_Arm, Peaks_z_Arm, std_xyz_Arm, Weight, Age, and type 

of surface. A revised leave one subject out (LOSO) cross validation method where all the data 

from the 25 participants and half of the data from the validation subject were used as training 

data to build the model and the other half of the data from the validation subject was used as 

testing data to evaluate the model. This cross-validation process is repeated 26 times with each 

participant serving as the validation subject once. A Bagging Regression Technique was used to 

estimate the propulsion forces.  This technique is an aggregated technique that grows multiple 

decision trees and then averages the judgments of the individual trees. It reduces the variance 

associated with prediction, and thereby improve the prediction process [44]. Several studies have 

found Bagging Regression Technique to have substantial improvement in prediction over 

conventional regression techniques [61, 62]. Mean absolute error (MAE), and mean absolute 

percentage of error (MAPE) were calculated between the criterion and the estimated force for 

each model. 
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4.3 RESULTS 

Participant’s demographic characteristics are described in Table 1. Table 18 shows the mean and 

standard deviation (SD) of the criterion and estimated force for each type of surface. Table 19 

shows MAE and MAPE between the criterion and estimated force for each type of surface. Table 

20 shows the Intraclass Correlation Coefficient between the criterion and estimated force for 

each type of surface. All variables were calculated for the level surface trials (LS), the sloped 

surface trials (SS), and all trials combined (OA). Figure 5 show the Bland-Altman plots between 

the criterion and estimated force calculated for the level surface, and slope surfaces.  Table 21 

shows the criterion and estimated force, the Mean Absolute Error (MAE) and the Mean Absolute 

Percentage of Error MAPE (%) and WUSPI scores per subject. Results were calculated for both 

the level surfaces, and slope surfaces.  

 

Table 18: Criterion and Estimated Force (N) 

 

 Criterion (N) Estimated (N) 

Level Surface 33.4 ±17.1 33.3 ±14.1 

Sloped Surface  49.2 ±21.6 47.6 ±19.3 

Overall 37.7 ±19.7 37.2 ±16.9 
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Table 19: Force Mean Absolute Error (MAE) Mean Absolute Percentage Error (MAPE) 

 

 MAE (N) MAPE (%) 

Level Surface 5.27 ±5.38 18.1 ±20.5 

Up Slope  7.65 ±6.29 17.4 ±16.0 

Overall 5.92 ±5.73 17.9 ±19.4 

 

Table 20: Force Intraclass Correlation Coefficient 

 

 ICC 95% CI p-value 

Level Surface 0.944 .880~.994 <0.001 

Up Slope  0.967 .929~.985 <0.001 

Overall 0.958 .927~.975 <0.001 

 

 

 

Figure 5: Force Bland-Altman Plot 
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Table 21: Criterion and Estimated Force (N), MAE (N) and MAPE (%) and Pain Level 

 

 Criterion (N) Estimated (N)            MAE (N)                 MAPE (%) WUSPI 
SCORE 

1  51.3   ±16.0   46.6   ±13.9   7.4   ±4.2  13.0 ±8.7 6.0 
2  53.1   ±11.3   55.2   ±8.8   5.6   ±4.8  11.6 ±6.8 9.5 
3  69.3   ±14.5   62.6   ±8.4   6.8   ±6.6  9.9   ±27.0 0.0 
4  27.2    ±9.6   29.0   ±5.6   7.4   ±2.6  31.9 ±6.1 27.5 
5  39.5    ±8.7   37.3   ±9.5   3.6   ±3.2  9.0  ±15.3 2.5 
6  20.6    ±11.5   22.9   ±4.3   3.2   ±4.3  17.4  ±10.4 1.0 
7  60.0   ±23.5   61.7   ±16.6   4.9   ±6.7  9.5 ±8.8 14.4 
8  67.0   ±12.8   62.8   ±8.1   10.2   ±4.6  15.2 ±28.2 0.0 
9  27.9   ±18.3   29.1   ±14.7   5.9   ±4.7  27.0         ±8.3 0.0 
10  37.8   ±10.3   36.4   ±9.8   4.2   ±6.0  10.4 ±28.7 2.3 
11  27.2    ±14.0   27.8   ±8.9   5.3   ±6.0  20.4 ±11.6 0.6 
12  29.8    ±12.1   27.2   ±19.0   7.2   ±10.  21.2 ±37.7 0.0 
13  32.7   ±18.4   47.5   ±11.4   15.6  ±6.1  47.8         ±8.3 3.2 
14  37.4   ±10.9   33.8   ±7.9   7.5   ±3.5  18.7         ±13.7 4.4 
15  31.3   ±10.0   29.7   ±8.6   3.5   ±6.3  12.1 ±20.5 0.0 
16  25.9   ±12.0   25.9   ±9.9   4.9   ±2.8  19.2 ±10.3 0.0 
17  31.9    ±9.7   33.6   ±6.5   3.5   ±4.1  12.5 ±15.3 0.0 
18  25.7    ±14.3   26.0   ±7.3   5.0   ±4.7  20.4 ±19.6 2.3 
19  31.9   ±19.8   31.9   ±20.3   8.5   ±6.6  30.5 ±8.7 3.0 
20  62.9    ±7.2   62.0   ±5.0   7.1   ±2.4  10.7         ±10.4 20.8 
21  23.3    ±8.8   23.0   ±4.9   2.5   ±3.3  11.6 ±18.8 0.0 
22  23.4   ±13.8   22.0   ±10.7   4.6   ±4.3  22.3 ±25.3 0.0 
23  29.3  ±11.8   30.4   ±8.5   5.9   ±5.4  25.0 ±9.4 54.6 
24  49.1  ±15.6   47.1   ±8.9   6.2   ±7.7  12.1          ±37.0 0.0 
25  36.1  ±9.4   33.3   ±4.4   7.9   ±4.2  26.9 ±10.4 23.5 
26  26.6   ±19.7   25.7   ±16.9   4.5   ±5.7  15.6 ±19.4 25.0 

 

4.4 DISCUSSION 

This study provides insights into the usage of portable devices (e.g. tri-axis accelerometer and a 

WRM) to estimate wheelchair propulsion force. The MAPE between the criterion and estimated 
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force shown in table 19 suggest that portable sensors have the potential to estimate wheelchair 

propulsion force with an overall MAPE of 17.9%.  As shown in table 18 mean peak forces 

during the sloped surfaces are higher than the force during the level surface, this results are 

similar to those of Cowan et al, who examined the impact of surface type, wheelchair weight, 

and rear axle position on 53 ambulatory older adults with minimal wheelchair experience. 

Results showed that participants used the highest forces on the ramped condition [63]. The need 

of applying higher forces during a sloped or ramp surfaces may help to reduce the error between 

the criterion and the estimated. Participant need to make full contact on the push rim to keep 

going up providing a clearer criterion force. As shown in table 19, the overall MAPE for the up-

sloped surfaces was lower than for the level surfaces. Regarding the overall MAE, results 

showed that the regression models were able to predict forces with an absolute error of 5.9 N. A 

case study conducted by Rice et al, on a manual wheelchair user who received propulsion 

training for three months found that Mean Peak Resultant Force decreased by 14.9 N after 

training [64]. Results in this study suggested that wearable sensors could be capable of detecting 

force changes after an intervention under similar conditions of those from Rice et al.  

In terms of the performance of the regression model per subject the MAPE per subject, Table 

23 shows that some participants had higher MAPE. This could be because some of them pushed 

on the wheel instead of on the instrumented hand rim which was designed to sense the 

propulsion forces. Analyzing the videos recordings we confirmed that participant 4, 9, 13, 23, 

and 25 were pushing on the wheels. A second cause for having a MAPE over the average could 

be a poor grasping. Participants 19, and 22 who had a high spinal cord injury had a poor 

grasping.  Considering these limitations and omitting these subjects from the analysis the overall 

MAPE will decrease to 15.1%. Regarding the relation between the individual level of pain and 
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the performance of the regression model per subject results showed a weak positive  correlation 

with a correlation  coefficient r= 0.1863. These results suggest that the perceived level of pain is 

not highly correlated with the performance of the regression model. However, when we analyzed 

the data subject by subject we see that participants with WUSPI scores above the average 

showed also a MAPE above the average.  

When looking into the predictors of the regression models, (Appendix A) we noted that the 

body weight was a predictor in all models. This result is similar to the results found in a study 

conducted by Boninger et al, among 34 manual wheelchair users with paraplegia, they found that 

subject’s weight was related to push rim forces and median nerve function [65]. The average 

number of predictors among the different regression models was 6 features. None of the 26 

models’ predictors included any feature related with the velocity. This could be because even 

though the velocity has a correlation coefficient r = of 0.204 there were other attributes with 

higher correlations, for example the standard deviation of the arm resultant acceleration showed 

a higher correlation with a correlation coefficient of   r = 0.479, another attribute that was highly 

correlated with the criterion measures was the number of peaks from the z acceleration 

component with a correlation coefficient of  r= 0.417.  

Developing a system for measuring propulsion forces is complex [66].  Previous studies 

have tried to measure push rim forces using inverse dynamic models [67], external devices such 

as sensing push rims and smart wheels [11, 68]. Despite the ample research in understanding 

forces applied during propulsion, few studies have evaluated the performance of wearable 

sensors, like accelerometers, to estimate the force during propulsion. This study has shown that 

accelerometers have the potential to estimate propulsion force with an average error of 17.9%.  
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Based on the revised LOSO cross validation method results suggested that incorporating to the 

model the propulsion data from a new participant, could increase the accuracy in estimating the 

propulsion forces. This suggests that a personal calibration consisting on collecting propulsion 

data from an unknown participant and adding this data to the model may enable it to predict 

propulsion forces with higher accuracies. We envision that this calibration would need to be 

done at a clinical setting in order to use the SamrtWheel as the criterion measure.  With the 

accelerometers and wearable sensors technology getting cheaper and smaller, it is also possible 

to provide real-time feedback to wheelchair users about their upper limb use.  According to the 

Clinical Practice guideline on the preservation of upper extremities after SCI, a reduction in the 

force applied during propulsion, may reduce the risk of developing UE pain and injury [46]. This 

study is a first step toward the development of a device capable of monitoring propulsion force in 

natural environments. This knowledge could contribute to the preservation of upper limb 

functions among MWUs with SCI.  

The study has several limitations the first one is related to the SmartWheel and the dummy 

wheel. Although these two wheels had the same size, and dimensions, the weights were slightly 

different, which might cause some turning tendency. The imbalance of pushing may affect the 

force direction and might also change the way people push their chairs. Another limitation is that 

even though we advised participants to use the push rim to push their chairs, none all of them did 

it this way, and some pushed on the wheel instead of the instrumented hand rim which was 

designed to sense the propulsion forces. Future studies should consider using SmartWheels on both 

sides and require participants to push on the push rim. 
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4.5 CONCLUSION 

Results in this study suggest that the use tri-axis accelerometer could be a viable option to 

monitor propulsion force in not only clinical settings but also in the natural environment. This 

study could result in a potential tool that can monitor the actual usage of upper limbs in terms of 

propulsion force and contribute to the preservation of upper limb functions among manual 

wheelchair users with SCI. 



51 

 

5.0  CONCLUSION AND FUTURE WORK 

Results in this thesis suggest that wearable sensors could be a viable option to monitor UE 

quality of MWUs in their natural environment. It has been shown that a combination of 

accelerometers and a WRM could classify activities of manual wheelchair users, provide data to 

understand the repetitiveness of UE movement counting the number of strokes and push 

frequency, and estimate the force during propulsion in the natural environment. This knowledge 

could contribute to a better understanding of the etiology of UE pain and may also contribute to 

the preservation of upper limb functions among manual wheelchair users with SCI. Furthermore, 

it may help researchers and clinicians to quantify the quality of UE movement and monitor the 

effectiveness of interventions in the natural environment. 

Regarding the activity classification model, results showed that a classification model built 

with the combination of three sensors, (Arm accelerometer, seat accelerometer, and WRM), 

yielded better accuracies than the model built only with two sensors (Arm accelerometer and the 

WRM). Both models were able to classify four activity categories including self-propulsion, 

functional arm movement, being pushed, and rest with overall accuracies of 88.0% and 82.0% 

respectively. Self-propulsion and rest were consistently classified with higher accuracies. The 

activity category that showed the lowest accuracies was being pushed; this could be due to the 

small samples of being pushed included in the model.  When comparing the estimated time spent 
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on each activity with the criterion time from the video, mean absolute percentage of error were 

low ranging from 2.2% to 11.6%. These results suggest that wearable sensors could be used to 

monitor time spent on different manual wheelchair users’ activities in the natural environment. 

This information can provide clinical professionals and researchers with an indication of manual 

wheelchair user activity levels. It can also provide a tool to increase manual wheelchair users’ 

awareness of their own activity levels, promoting regular physical activity.  

Knowing the repetitiveness of UE movement, specifically the number stroke and push 

frequency could be an important factor in preventing UE pain and injury.  Results of the stroke 

number and push frequency estimation presented in Chapter 3 suggest that portable sensors have 

the potential to quantify the quality of UE movements for wheelchair propulsion in terms of the 

repetitiveness. The responsiveness of the accelerometer and its estimation algorithm for 

propulsion parameters makes it possible to track the effectiveness of training out of clinical 

settings, contributing to the preservation of upper limb functions in manual wheelchair users with 

SCI. With the accelerometry technology getting cheaper and smaller, it is also possible to 

provide real-time feedback to wheelchair users about their upper limb use and repetitiveness, 

further contributing to the prevention of upper limb pain and injury among this population. 

People who push with greater force have higher risk of developing nerve dysfunction and 

UE pain. Therefore, forces experienced at the shoulder during wheelchair propulsion should be 

reduced [15]. Results presented in Chapter 4 suggest that portable sensors have the potential to 

estimate wheelchair propulsion force with an overall MAPE of 17.9%. Regarding the overall 

MAE, results showed that regression models based on a bagging technique were able to predict 

forces with an absolute error of 5.9 N. suggesting that this regression technique could be capable 
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of detecting changes after an intervention. The revised LOSO validation showed that by adding 

some propulsion data of a new participant to the regression model; it could estimate propulsion 

forces with higher accuracies. This study is a first step toward the development of a device 

capable of monitoring propulsion force in natural environments. 

Results in this thesis may have different clinical applications. Result in chapter 2 suggests 

that accelerometers have the ability to monitoring general activity levels of MWUs by 

distinguishing different activities. This knowledge may help clinicians to promote healthy 

lifestyles among MWUs, and may also help them to develop targeted interventions, and to better 

understand the relationship between physical activity patterns and secondary conditions such as 

heart disease, diabetes, and overweight among MWUs.  In addition, this knowledge may also 

help end-users to be aware of their physical activity levels, and may help to decrease sedentary 

lifestyles among. Results in chapter 3 and 4 suggest that accelerometers have the capability to 

monitor the quality of UE movement. This knowledge may help clinicians to monitor actual 

usage of UE in terms of the repetitiveness out of clinical settings, in MWU’s natural 

environment. It may help clinicians to have an indication of the users’ propulsion skills. This 

knowledge may help clinicians to justify wheelchair choices. For example, a clinician  ask a MWU 

to use wearable sensors, and data con be collected to prove whether a user propels more using an 

specific type of wheelchair for instance a light weight manual wheelchair versus a standard  

wheelchair.  Having an objective measure of the quality of UE movement has potential to impact 

insurance policies, such as those restricting wheelchair upgrades and renewals. It may also help 

clinicians to find the perfect wheelchair settings, and fit for each client.  In addition, a wearable 

monitoring tool for MWUs can provide users a real time feedback about their upper limb use and 

repetitiveness movements that may help them to prevent pain and injury.  
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Future work could take advantage of the advancement in miniature sensor and wireless 

technologies. Accelerometers could be integrated with gyroscopes which could provide more 

detail information about UE movement. Commonly used technology such as Smartphones could 

be used to collect, store and transmit information that could provide feedback to end-users. 

Furthermore, information could be transmitted to clinicians who could monitor wheelchair 

propulsion skills and the effectiveness of training. Results in this thesis suggested that models 

and algorithms developed could be applied to community collected data. This information could 

help to understand the etiology of UE pain, and could contribute to the preservation of UEs.  



55 

 

APPENDIX.  REDUCED FEATURES 

REDUCED FEATURES 

Table 22: Models Reduced Features per Subject 

 

 

M1  entropy_z_Arm M2  entropy_z_Arm M3  entropy_z_Arm M4  entropy_z_Arm M5  entropy_z_Arm M6  entropy_z_Arm 
M1   Peaks_z_Arm M2   Peaks_z_Arm M3   Peaks_z_Arm M4   Peaks_z_Arm M5   Peaks_z_Arm M6   Peaks_z_Arm 
M1  std_xyz_Arm M2  std_xyz_Arm M3  std_xyz_Arm M4  std_xyz_Arm M5  std_xyz_Arm M6  std_xyz_Arm 
M1  Weight M2  Weight M3  Weight M4  Weight M5  Weight M6  Weight 
M1  TypeSurface M2  TypeSurface M3  TypeSurface M4  TypeSurface M5  TypeSurface M6  TypeSurface 
M1  Age M2  Age M3  Age M4  Age M5  Age M6  Age 

M7  entropy_z_Arm M8  entropy_z_Arm M9  entropy_z_Arm M10  entropy_z_Arm M11  entropy_z_Arm M12  entropy_z_Arm 
M7   Peaks_z_Arm M8   Peaks_z_Arm M9   Peaks_z_Arm M10   Peaks_z_Arm M11   Peaks_z_Arm M12   Peaks_z_Arm 
M7  std_xyz_Arm M8  std_xyz_Arm M9  std_xyz_Arm M10  std_xyz_Arm M11  std_xyz_Arm M12  std_xyz_Arm 
M7  Weight M8  Weight M9  Weight M10  Weight M11  Weight M12  Weight 
M7  TypeSurface M8  Age M9  TypeSurface M10  TypeSurface M11  TypeSurface M12  TypeSurface 
M7  Age M8  TypeSurface M9  Age M10  Age M11  Age M12  Age 

M13  entropy_z_Arm M14  entropy_z_Arm M15  entropy_z_Arm M16  std_z_Arm M17  entropy_z_Arm M18  entropy_z_Arm 
M13   Peaks_z_Arm M14   Peaks_z_Arm M15   Peaks_z_Arm M16  entropy_z_Arm M17   Peaks_z_Arm M18   Peaks_z_Arm 
M13  std_xyz_Arm M14  std_xyz_Arm M15  std_xyz_Arm M16  std_xyz_Arm M17  std_xyz_Arm M18  std_xyz_Arm 
M13  Weight M14  Weight M15  Weight M16  Weight M17  Weight M18  Weight 
M13  TypeSurface M14  TypeSurface M15  TypeSurface M16  TypeSurface M17  TypeSurface M18  Years of experience 
M13  Age M14  Age M15  Age M16  Age M17  Age M18  TypeSurface 

M18  Age 

M19  entropy_z_Arm M20  mean_x_Arm M21  entropy_z_Arm M22  entropy_z_Arm M23  mean_x_Arm M24  entropy_z_Arm 
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